
*Corresponding author, e-mail: ssivanantham@vit.ac.in

Research Article GU J Sci 33(1): 90-104 (2020) DOI: 10.35378/gujs.434806

Gazi University

Journal of Science

http://dergipark.gov.tr/gujs

Low-Error Reconfigurable Fixed-Width Multiplier for Image Processing

Applications

Jean Jenifer Nesam JEYAKUMAR , Sivanantham SATHASIVAM*

School of Electronics Engineering, Vellore Institute of Technology, Vellore – 632 014, India.

Highlights

 Design of low-error fixed-width multiplier for image processing applications.

 New area-efficient algorithm for unsigned multiplication.

 Performed in three different modes.

 Reconfigurable from fixed-width to exact multiplier.

 Image multiplication evaluates the performance of the multiplier.

Article Info

Abstract

Compensating the error using additional circuitry is mandatory in a low-error fixed-width

multiplier. Instead of compensating the error, reconfiguring n-bit fixed-width multiplier to n/2-

bit error-free full-width multiplier using decomposed multiplication is proposed in this paper.

The decomposed block multiplication using an area-efficient New Bit Pair Recoding (NBPR)

algorithm in fixed-width mode shows a relatively lesser truncation error than existing truncated

multipliers. Reconfigurable 16 16 NBPR multiplier in three different modes

(8 8, 16 8, 16 16)   with a fixed 16-bit product is verified on the TSMC 65nm CMOS standard

cell library. The experimental results show that the NBPR multiplier consumes a lesser area than

standard Booth multipliers. Evaluating the proposed multiplier in imaging shows improved

PSNR with minimal error compared to other fixed-width multipliers.

Received: 21/06/2018
Accepted: 28/07/2019

Keywords

Fixed-Width multiplier

Reconfigurable multiplier
NBPR algorithm

Image processing applications

1. INTRODUCTION

Fixed width multiplication is a mandatory arithmetic computation in digital signal and image processing

applications. The fixed-width multipliers get two n-bit inputs and produce the n-bit product. This can be

achieved by truncating a few least significant parts of partial products (PPs) matrix [1,2]. The Post-

Truncated (PT) fixed-width multiplier round off the product after the completion of multiplication. PT

provides better accuracy but occupies a large area. The Direct-Truncated (DT) fixed-width multiplier

directly truncates the n-least significant PPs without error compensation. DT occupies less area but provides

less accuracy. For an area-efficient, low error fixed-width multiplier, the truncation error is compensated

using various techniques. Kidambi et al. [3] introduced a simple constant bias technique that reduced the

error by adding constant bias to the retained adder cells. But the error can still be reduced. Later, the

Variable Correction Technique (VCT) [4] and data-dependent compensation to compensate for the error

have been developed [5-8]. In VCT, the unused PP bits are used to define the compensation vector. The

calculated compensation vector is added with the product to reduce the error. Juang et al. [9] developed

efficient carry generating circuits that generate the carry and feed the carry as an input to the non-truncated

adder cells to compensate for the error. Flexible error based multiplier and multiply-add design have been

developed for area reduced error-resilient applications [10]. Self-tuned error compensation is an efficient

method to reduce the truncation error [11-13]. The area reduction multiplication using an approximation

for image processing application is developed in [14,15].

http://dergipark.gov.tr/gujs
https://orcid.org/0000-0003-4027-8165
http://orcid.org/0000-0002-1010-5178

91 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

All error compensated multipliers provided in this literature require an additional complex circuit to find

the amount of compensation vector. Albeit, it shows relatively more error for image processing

applications. In this paper, the fixed-width multiplier performs without error compensation and provides

the product accuracy better than error compensated fixed-width multipliers. The multiplier is reconfigurable

to the exact multiplier using a control bit that provides distortion less application. In an inexact mode, the

proposed multiplier eliminates the lower bits of the least decomposed block and the non-truncated higher

bits are added to the higher blocks. This helps to reduce the truncation error with a slight increment in the

area.

This area overhead is balanced by using an efficient New Bit Pair Recoding (NBPR) algorithm. NBPR

reduces the PP row height without computing Negative Encoding (NE) and Sign Extension (SE). NE and

SE are the common terms in existing bit pair recoding algorithms such as Booth [16-18] that incurred

additional PP row which in turn occupies more area, power, and delay. NBPR generates the PP based on

the number of 1’s in 4-bit recoded multiplier groups. The performance benefits of NBPR is given in section

2. Finally, the developed multiplier is applied to image processing applications such as two different image

multiplication and image color conversion. The behavioral simulation models are developed in Matlab to

evaluate the performance of multiplier in imaging. The quality of the image is analyzed with its Peak Signal

to Noise Ratio (PSNR) and compared with various truncated multipliers.

The rest of the paper is organized as follows; section 2 describes the performance benefits of the NBPR

multiplier over existing algorithm based multiplication. Section 3 gives the detail about reconfigurable

multiplication. The introduced error due to truncation is analyzed in section 4. Section 5 for results and

comparison and section 6 explains the suitability of the proposed multiplier for different image processing

applications. Section 7 concludes the paper.

2. NEW BIT PAIR RECODING (NBPR) ALGORITHM

2.1. The NBPR Recoding

Let us consider, ‘Y’ is the multiplier and NBPR recodes the multiplier Y as follows:

 2 3 2 2 2 1 2 , , , j i i i iY y y y y   (1)

where, 2 2 1,2,3...
4

n
i j and j   .

In Equation (1), the ‘j’ represents the number of recoded 4-bit groups. Based on the requirement of ‘j’, ‘i’

takes the value defined by 2j-2. For an example, 12-bit multiplier defines j=1,2,3 and i=0,2,4. For each j

and i value the multiplier is recoded as follows in Equation (2)

     3 11 10 9 8 2 7 6 5 4 1 3 2 1 0 ; = ; ;Y y y y y Y y y y y Y y y y y  (2)

Based on the recoded group the NBPR selects the PDVs for PP reduction.

2.2. PP Reduction Using NBPR Algorithm

NBPR recoded 4-bit group performs the PP reduction using the diverse modules namely, PDV (PDV)

generation, select logic (recoding), Merged PP addition. The following sub-section details each phase

individually:

92 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

2.2.1. PDV Generation

This module takes in two binary numbers for multiplication and recodes the multiplier operand as a non-

overlapped 4-bit group. Prior to multiplication, this module pre-defines a few values. Considering ‘X’ as

the multiplicand (
1 2 2 1 0

...
n n

X x x x x x
 

) and the PDVs are assumed as follows:

1. The representation of ‘0’ in Table 1 is computed 0 X .

2. The other representations namely A, B, C, D are obtained by concatenating 0’s in a different position

with multiplicand as below Equation (3),

1 2 2 1 0000 ... ;n nA x x x x x 

1 2 2 1 000 ... 0;n nB x x x x x  (3)

1 2 2 1 00 ... 00;n nC x x x x x 

 1 2 2 1 0... 000;n nD x x x x x 

3. Adding ‘A’ and ‘B’ to generate ‘E’ value

4. The summed up value is left-shifted twice ((A+B)<<2) and represented as ‘F’

The values of A, B, C, D resemble the bit combinations of “0001”, “0010”, “0100” and “1000” respectively

and the values are generated by replacing the 1’s position with the multiplicand and without changing the

0’s position. The “0011” bit combination is generated as the result of adding ‘A’ and ‘B’. The bit

combination “1100” is left-shifted twice to attain “0011”. The computed PDVs are listed in Table 1 and the

generated PPs using the PDVs are provided in Table 2.

Table 1. PDVs of NBPR algorithm

Bit combination Operation Representation

0000 0 X 0

0001

Replace the 1's position by

the multiplicand

A

0010 B

0100 C

1000 D

0011 Add “0001” and “0010” E

1100 2-bit left shift of “0011” F

Table 2. PDV selection using the NBPR Algorithm

Recoded bits

Z1

Recoded bits

Z2
1i

y


i

y
3i

y


2i

y


0 0 0 0 0 0

0 1 A 0 1 C

1 0 B 1 0 D

1 1 E 1 1 F

2.2.2. Merged Addition

The two sets of 4-bit recoded group generates two (n+3)-bit size intermediate PPs. Thereby, merged

addition on intermediate PPs reduces the number of PP rows from n to n/4. The pictorial representation of

pp reduction using the NBPR algorithm is shown in Figure 1. The flowchart representation of the NBPR

multiplier is provided in Figure 2. However, the 8 8 NBPR multiplier generates two PPs, it skips the

reduction phase and directly fed to the final addition phase. NBPR uses adder tree in Carry Save Addition

(CSA) format for n>8-bit. The final addition stage uses Carry Propagate Adder (CPA) to add the sum and

carry.

93 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

Figure 1. Merged PP generation and addition in the NBPR algorithm

Figure 2. Flowchart for NBPR multiplier

2.3. Realization of NBPR Algorithm for n=8-Bit Multiplication

Consider two unsigned binary numbers X=10101100 and Y=11101001. Multiplication X is realized using

the NBPR algorithm in the following steps. The diagrammatic representation of the NBPR algorithm for 8-

bit multiplication is given in Figure 3.

Step 1: PDV generation

 00010101100;A

 00101011000;B 

 01010110000;C 

 10101100000;D 

  110101100 10101100 2

1000000100

E



 

94 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

 2 100000010000;F E  

Step 2: Select Logic (Recoding)

1 3 2 1 0

2 7 6 5 4

1001;

1110;

Y y y y y

Y y y y y

 

 

MUX based selection of predefined value for the recoded bits

1 0

3 2

00010101100

10101

1 01
1

2 10000 10 0

Z A y y
MUX

Z D y y

  
 

  

5 4

7 6

1 00101011000 10
2

2 100000010000 11

Z B y y
MUX

Z F y y

  
 

  

Step 3: Merged Addition/PP reduction (Z1 + Z2)

1 11000001100;

2 100101101000;

PP

PP





Step 4: final Addition

The second PP (PP2) is placed 4-bit left to the first PP (PP1) and Carry Propagate Adder (CPA) is applied

for the final addition to producing a 16-bit product

4

 1 4 2

11000001100 (100101101000) 2

1001110010001100

Final product PP bit left shifted PP  

  



2.4. Decomposed 16x16 Multiplier Using 8x8 NBPR Multiplier

The decomposed 16 16 multiplication split the 16-bit operand into two 8-bit sub-blocks and requires four

8 8 NBPR multiplication as provided in Figure 4 to compute the 16 16 multiplier. After the sub-block

multiplication, the appropriate blocks are added and the addition of overlapping bits is performed as shown

in Figure 5.

2.5. Final Addition

The final addition is computed via Carry Propagating Addition (CPA). The CPA length of Wallace depends

on the number of stages involved in the PP reduction phase. If S is the number of stages and 𝑁 is the number

of bits in the operands, the final CPA length of Wallace is defined as in Equation (4)

 3 N 5,

 CPA length (2) 2

 if N 5

 CPA length (2) 1

Wallace

Wallace

for

N S

and

N S

 

   



   

 (4)

95 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

Figure 3. 8 × 8 multiplication using NBPR algorithm

Figure 4. Decomposed 16x16 NBPR multiplier

Figure 5. Final addition for 16x16 NBPR multiplier

A direct implementation of N-bit multiplier or Dadda N-bit multiplier’s final CPA length is defined as in

Equation (5)

CPA length 2 2Dadda N  (5)

The proposed NBPR multiplier has 20% less CPA length and CPA size is determined by Equation (6)

PrCPA length 17 7oposed i  (6)

96 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

where,

~ 0.23 for 8 8 multiplier

 1 for 16 16 multiplier

 2 for 24 24 mutiplier

 3 for 32 32 multiplier

i





 


 

.

3. RECONFIGURABLE FIXED WIDTH MULTIPLIER

Small-sized and high accuracy applications need 8 8 exact multiplication, whilst, the large bit-sized error-

resilient application uses the 16 8 or 16 16 inexact multiplication based on the requirement. A fixed

width multiplier is the utmost common multiplier used in image processing applications. Many truncated

methods available to maintain the 16 16 multiplier with the 16-bit product. Directly truncate the least part

of the partial product matrix is the simple method that achieves more area reduction with large accuracy

loss. This accuracy loss is compensated in various ways using variable or constant correction compensation

vectors. These compensation methods consume more area.

This reconfigurable multiplier that can perform both exact and inexact multiplication without any area

overhead. Distraction less image applications achieve in 8 8 exact mode albeit, the other two modes

performing the application with less accuracy loss compared to existing truncated multiplier. The new

reconfigurable multiplier is developed in this paper that can perform both exact multiplications without

error and truncated multiplication with less error. In this proposed multiplier performs ,
2

n
n n n  and

2 2

n n
 multiplication with the fixed n-bit product. This reconfigurability is achieved by using decomposed

block multiplication and a 1-bit control bit. The decomposed multiplier plane for 16 16 multiplier using

four 8 8 NBPR multiplier is shown in Figure 6.

In NBPR based fixed-width multiplier computes the multiplication in three different modes and the length

of the data is modified based on the application requirement. Selecting differently sized sub-block

multiplication as given in Figure 7, the reconFigured multiplication is performed. If A and B are two 16-

bit operands, the control bits and the corresponding mode of multiplication are given in Table 3.

Figure 6. Decomposed multiplier plane for 16 × 16 NBPR multiplier

Table 3. Control Bits and Corresponding Mode Selection

Mode

Control bit

Input size

Output size A B

1 1 16-bit 16-bit

16-bit 2 0 8-bit 8-bit

3 0 16-bit 8-bit

97 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

In the proposed fixed-width multiplier, the output product size is fixed to 16-bit. The new NBPR multiplier

can be performed as a 16 16 fixed-width multiplier ie). 16 16 multiplication with a 16-bit product in

mode 1. In mode 2, it performs an exact 8 8 multiplication i.e). 8 8 multiplier with the 16-bit product,

and truncated 16 8 multiplier with 16-bit product in mode 3.

Figure 7. Three modes of computation a). 8 × 8 full-width multiplier b). 16 × 8 truncated multiplier c).

16 × 16 truncated multiplier

As shown in Figure 8, the 1-bit control bit selects the upper or lower half of the operand B values. If the

control bit is ′0', the 2: 1 multiplexer selects the lower half of the 𝐵 operand
0

B and
0 0

()A B NBPR 8 8

multiplication is performed.
0 0

()A B multiplication is considered as a 8 8 exact multiplier with 1the 6-bit

product. Addition of
0 0

()A B and uthe pper half of the
1 0

()AB provides 16-bit truncated results for 16 8

multiplication. If the control bit is ′ 1 ', the upper half of the B operand is
1

B selected and
1 1

()AB ,
0 1

()A B

block multiplications are computed in mode 2. Direct
1 0

()AB multiplication,
1 1

()AB and
0 1

()A B blocks

are added accordingly to provide fixed width 16 16 multiplication in mode 3.

Figure 8. Mode selection of NBPR multiplier

4. ERROR ANALYSIS

The 16 16 multiplication is achieved by using four 8 8 sub-blocks. All sub-block multiplications are

performed in parallel. The half of the product of each multiplied sub-blocks are overlapped to the next

98 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

higher block and the truncation is performed only in the final addition stage. Keeping the overlapping bits

and truncate the lower non-dependent bits help to reduce the truncation error. The generic product form of

various modes of decomposed NBPR multiplier is given as in Equation (7).

0 0

1 0 0 0

1 1 1 0 0 1 0 0

8 8

16 8

16 16 ()

;

;

A B

A B A B

A B A B A B A B

P P

P P P

P P P P





 



 

  

 (7)

Each 𝑃𝐴𝑥𝐵𝑦
and 𝑥, 𝑦 𝜖 (0,1) in different modes refers one 8 8 NBPR multiplier. The error due to truncation

in each mode is analysed in the following sub-section.

4.1. NBPR 8 8 Exact Multiplication

In 8 8 multiplication mode, it operates as an exact multiplier as given in Equation (8).

0 0

7 7

8 8

0 0

A B i j

i i

P P a b

 

    (8)

where
0 0

()A B is the 8 8 sub-block and , (0,1)
i j

a b  are individual bits inside the sub-block. The 8 8

multiplication provides 16 − 𝑏𝑖𝑡 product without error. The maximum error is computed as the difference

between the exact product and the truncated product. Since 8 8 is an exact multiplier, the truncation part

is considered as equivalent to exact product and the maximum error is equal to zero and the value is

computed as shown in Equation (9)

8 8
max ,max (| |) 0

TPA
A B exact truncatedP P



   . (9)

4.2. NBPR 16 8 Truncated Multiplier

In this mode, the multiplier gets two different sizes operand (16,8) for multiplication. The exact

multiplication of 16 8 provides the 24-bit product. After the computation, truncating partial part of
0 0()A B

P

, the product size is fixed to 16-bit. The error limit in this mode is calculated as follows in Equation (10)

1 0 0 0

15 7 7 7

(16×8) A B A B i i

i 8 0 i 0 0

16x8(tr) () .

P =P +P = a a

 P

j j

j j

high low

high low upper half

b b

 

 

   

  

 

 

   

 (10)

Figure 9. The (𝑛 ×

𝑛

2
) multiplication with 𝑛 − 𝑏𝑖𝑡 product (𝑛 = 16 − 𝑏𝑖𝑡)

99 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

The error limits can be computed from Figure 9, and the truncation error (tr) of 16 8 the truncated

multiplier is bounded as given in Equation (11),

0 92 2n

tr
  (11)

where 𝑛 = 16 − 𝑏𝑖𝑡.

4.3. NBPR 16x16 Fixed-Width Multiplier

In this mode, the 16 16 multiplier discards the lower
0 0

()A B block without computation and truncate a

few parts of the product
0 1 1 0

()A B AB to fix the output product size to 16-bit.

Figure 10. The (𝑛 × 𝑛) multiplication with n- bit product (𝑛 = 16 − 𝑏𝑖𝑡)

The truncation performed as given in Figure 10 and the truncation error limit in this mode is computed as

follows in Equation (12)

 width 1 1 1 0 0 116 16 ()

15 15 15 7 7 15

i i i

i 8 8 i 8 0 i 0 8

(half)

 a (a a)

 .

fixed A B A B A B

j j j

j j j

high mid upper

P P P

b b b

 

 

     

 

     

 

      (12)

5. PERFORMANCE EVALUATION

The functionality of the presented multiplier is verified on Modelsim 6.5b. After the functional verification,

the multiplier is synthesized using Cadence's RC RTL compiler in 180 and 65nm technology. The separate

TCL and SDC script are written for each mode. The performance of the proposed design is individually

evaluated in the following sections.

5.1. Analysis of NBPR Multiplier

Detailed area, power and delay analysis of NBPR multiplier with other bit pair recoding algorithm is

provided in this section. The Modified Booth Encoding (MBE) is the common algorithm for area-efficient

multiplication. MBE reduces the PP rows with the computation of NE and SE terms. Since NE and SE

incurred more resources, many designs have been developed with the elimination of NE and SE. The

negation of NE requires additional circuitry and its computations are highly complex. Even though the SE

prevention techniques have been adopted, two SE bits till required in multiplication. From, the theoretical

analysis of various Booth multipliers with NBPR claims the superiority of the proposed design.

The righteousness of theoretical analysis has been proven by its experimental results. Each module in the

NBPR algorithm namely PDV generation (‘E’ value), recoder logic, PP reduction and final addition for 8,

16-bit multiplication is performed in 180 and 65nm technology and the results are provided in Table 4. The

excel of the NBPR algorithm in terms of area, power, and speed is verified by computing the design for

100 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

generating one bit of PP. The compared experimental results for generating one PP bit using various

algorithms are provided in Table 5 and is the evidence that the NBPR uses only 72.5% less area and 18%

less power with 34% increased speed when compared to the standard booth multipliers.

Table 4. Synthesis report of various phases of NBPR multiplier (180 and 65nm)

Mode of

computation

 n=8-bit n=16-bit

nm #cells
Area

2()m

Power

()W
Delay

(ns)
#cells

Area
2()m

Power

()W
Delay

(ns)

PDV

generation

180 25 719 82.832 0.056 59 981 101.189 0.637

65 24 61 8.187 0.044 31 132 1.316 0.081

Recoder

Select

logic

180 113 2365 87.853 0.190 259 5409 870.269 2.173

65 88 362 23.247 0.017 146 639 156.321 0.236

merged

pp

180 23 283 9.345 0.052 30 336 49.267 0.527

65 22 44 2.128 0.056 31 49 9.844 0.056

PP reduction

180 - 253 4697 624.573 0.564

65 - 94 558 169.290 0.067

Final adder
180 18 233 8.559 0.052 156 2262 217.123 8.772

65 18 36 1.891 0.051 25 221 72.295 0.786

Table 5. Area/power/delay report on generating one PP bit using MBE and NBPR in 65nm

Design #cells
Area

2()m

Power*

(μW)

Delay

(ps)

Standard Booth 4 14 (100%) 0.967(100%) 84 (100%)

Limberti [16] 6 16 (114.3%) 0.795 (84.7%) 74 (88%)

Antelo [17] 6 14 (100%) 0.735(83.4%) 61 (72.7%)

NBPR 3 10 (72.5%) 0.713(82%) 56 (66.7%)

 *Power=Leakage power+Dynamic power

5.2. Reconfigurable 16x16 NBPR Multiplier

The area, power and delay consumption of reconfigurable NBPR multiplier is verified in this section. The

Verilog code has been written for reconfigurable design as in Figure 8 and its functionality has been verified

in Modelsim 6.5b simulator. After the functional verification, the design has been implemented on Cadence

TSMC 180 and 65nm with a standard cell library. The obtained results are provided in Table 6.

The area consumption of various truncated multipliers is compared with the NBPR multiplier in three

different modes. The compared values on TSMC 180nm are provided in Table 7. The presented NBPR

multiplier in 16 16 fixed-width multiplication mode occupies 33.15% less area when compared to

standard Booth multiplier. In full-width mode 8 8 shows approximately 1% less area and in truncated

16 8 mode shows 54.65% less area compared to the standard multiplier. However, the NBPR multiplier

occupies 15.5% more area compared to other direct truncated multipliers mentioned in the literature, due

to the error reduced decomposed multiplication.

Table 6. Implementation details of NBPR multiplier on 180 and 65 nm TSMC technology

Technology Area 2()m Power ()W Delay (ns) PDP (fJ) APP 2 5(.)10m W 

180nm 20654 1286.093 0.5 643.047 265.63

65nm 3614 220.176 0.5 110.088 7.96

101 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

Table 7. Area consumption of various truncated multipliers on 180nm technology

Design
Area (𝜇𝑚2)

n=8 n=16

Standard multiplier 7092.164 30896.219

D-truncated 3337.495 15179.200

K-G-As' [6] 3299.660 15179.200

J-K-Cs' [1] 3640.836 16477.370

K-Ss'[4] 5604.888 20688.631

L.D. Vans' [3] 3640.83 16477.370

Proposed 7037 (8x8) exact
14011(16x8) tr

20654(16x16) tr

Table 8. Max Error (𝜀𝑚𝑎𝑥) for various 16 × 16 fixed width multiplier

5.3 Maximum Error
max

() Computation

The maximum error
max

() is theoretically computed as the difference between original results and actual

results by applying its maximum value. The
max
 for 16 16 multiplier in different modes with various

truncation depth (τ) value is given in Table 8. Compared to directly truncated (D-truncated) multiplier, the

NBPR multiplier shows 93.33% reduction in error while, K-G-As', J-K-Cs', K-Ss', L.D Vans' and Yuan-

Ho Chens' designs have error improvement of 20%, 77.69%, 88.7%, 79.63%, and 82.79% respectively.

Hence the NBPR multiplier shows significant error improvement, compared to direct truncate and other

truncating multipliers.

6. APPLICATIONS

6.1. Image Multiplication

The behavioral model of the multiplier is developed in Matlab and two 512 512 images are multiplied

with different τ values. The τ value and the corresponding multiplied images are given in Figure 11. The

quality of the resultant images is verified by using Peak Signal to Noise Ratio (PSNR). The PSNR is

calculated by the Equation (13).

 (,)tr exactPeakSNR PSNR image image . (13)

Design

Algorithm

𝜀𝑚𝑎𝑥

Bit width (n)

n=8 n=16

D-truncated - 1793 983040

Post-truncated - 128 32768

K-G-As' [6] 2's complement 1280 786432

J-K-Cs' [1] Booth 514.94 219316.22

K-Ss' [4] Sign-magnitude 263.03 111083.52

L.D Vans' [3] Baugh-Wooley 441 220245

Yuan-Ho Chen [2] 2's complement 384.9 169181

Proposed NBPR 0
128 (16 × 8)

65537 (16 × 16)

102 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

Table 9. PSNR of a multiplied image using NBPR multiplier

Images
PSNR(dB)

τ =0 τ =8 τ =16

image1 ∞ 54.5716 17.3624

image2 ∞ 54.42 15.3881

image3 ∞ 54.6148 14.2321

Figure 11. Multiplied images 1). image1 2). image2 3). image3 with a). τ =0 b). τ =8 c). τ =16

The PSNR is computed between the NBPR multiplier applied image and the exact multiplier applied image.

The PSNR shows that the presented NBPR multiplier performs with better image quality. The PSNR values

are given in Table 9. The various truncated multiplier based image multiplication in Table 10 is evident for

the excellence of the proposed multiplier in imaging.

Table 10. PSNR comparison

Design

PSNR (dB)

τ =8 τ =16

DT 28.81 9.64

PT 33.45 11.34

K-G-As’ [6] 38.20 12.48

J-K-Cs’ [1] 39.46 13.65

K-Ss’ [4] 39.76 11.08

L.D Vans' [3] 34.01 10.30

Yuan-Ho Chens’ [2] 31.84 10.98

Proposed 54.61 14.23

6.2. Image Color Space Conversion (RGB to Gray)

The Red, Green and Blue values in the RGB color image has the integer range from 0 to 255. Multiplying

R, G, and B value with different coefficient and adding the multiplied values together provides different

color space. The NBPR multiplier in 8 × 8 exact multiplication mode is well suited for image color space

conversion such as RGB color space to grayscale transformation. The RGB image is converted to a

grayscale image using below Equation (14). The color-converted images from RGB to gray is given in

Figure 12.

103 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

Gray Image=0.2989 R+0.587 × G+0.114 × B  (14)

Figure 12. RGB to Gray a. flower1 b. flower2 c. Lena

7. CONCLUSION

Reconfigurable exact and inexact decomposed multipliers using a new algorithm for image processing

applications have been presented in this paper. Based on the selection of different input sizes, the multiplier

reconFigured from the exact 8 8 multiplier to inexact 16 8 and 16 16 multiplier. The error-free

computation in 8 8 mode has provided the distortionless image quality, howbeit, the inexact other two

modes (16 8,16 16)  have provided 93.33% lesser error compared to directly truncated multipliers.

Moreover, the exact 8 8 NBPR multiplier is consumed 33.15% lesser area compared to standard MBE

multipliers. Finally, the detailed performance analysis of various color image applications showcased the

outperformance of a new multiplier with minimal degradation of image quality when compared to existing

fixed-width multipliers. This makes the proposed reconfigurable NBPR multiplier more amicable for image

processing applications.

CONFLICTS OF INTEREST

No conflict of interest was declared by the authors.

REFERENCES

[1] Jou, S.J. and Wang, H.H., "Fixed-width multiplier for DSP application", Proc. IEEE International
Symposium on Computer-Aided Control System Design , 318-332, (2000).

[2] Chen, Y.H., Lu, C.W., Chiang, H.C., Chang, T.Y., Hsia, C., "A low-error statistical fixed-width

multiplier and its applications," International Symposium on Instrumentation & Measurement, Sensor

Network and Automation (IMSNA), Sanya, 39-43, (2012).

[3] Van, L.D., Yang, C.C., "Generalized low-error area-efficient fixed width multipliers," IEEE

Transactions on Circuits and Systems-I: Regular Papers, 52(8): 1608-1619, (2005).

[4] King, E.J., Swartzlander, E.E. Jr., “Data-dependent truncation scheme for parallel multipliers,” Proc.

31st Asilomar Conference Signals, Systems, and Computers, 2: 1178–1182, (1997).

[5] Chen, Y-H., Li, C.Y., Chang T.Y., "Area-Effective and Power-Efficient Fixed-Width Booth

Multipliers Using Generalized Probabilistic Estimation Bias", IEEE Journal on Emerging and Selected

Topics in Circuits and Systems, 1: 277-288, (2011).

104 Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020)

[6] Kidambi, S.S., El-Guibaly, F. Antoniou, A., “Area-efficient multipliers for digital signal processing

applications,” IEEE Transactions on Circuits and Systems II Analog and Digital Signal Processing,

43(2): 90–94, (1996).

[7] Petra, N., Caro, D.D. Garofalo, V, "Truncated binary multipliers with variable correction and

minimum mean square error", Transactions on Circuits and Systems I: Regular Papers, 57(6): 1312-

1325, (2010).

[8] Wey, I.C., Wang, C.C, "Low-error and hardware-efficient fixed width multiplier by using the dual-

group minor input correction vector to lower input correction vector compensation error", IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 20(10): 1923-1928, (2012).

[9] Juang, T.B., Hsiao, S.F., "Low-error carry-free fixed-width multipliers with low-cost compensation

circuits", IEEE Transactions Circuits Systems II, 52(6): 299-303, (2005).

[10] Caro, D.D., Petra, N., Strollo, A.G.M., "Fixed-width multipliers and multipliers-accumulators with

min-max approximation error",Transactions on Circuits and Systems I: Regular Papers , 60(9): 2375-

2388, (2013).

[11] Wey, I.C., Peng, C.C., Liao, F.Y., "Reliable low-power multiplier design using fixed width replica

redundancy block", IEEE Transactions Very Large Scale Integr. (VLSI) Systems, 23(1): 78-87,

(2015).

[12] Drane, T.A., Rose, T.M., Constantinides, G.A., "On the Systematic Creation of Faithfully Rounded

Truncated Multipliers and Arrays," IEEE Transactions on Computers, 63(10): 2513-2525, (2014).

[13] Joshi, P.U., Deshmukh, R.B., Gudur, V., "Self-compensation scheme for truncation error in fixed

width multipliers," IET Circuits, Devices & Systems, 12(1): 55-62, (2018).

[14] Venkatachalam, S., Ko, S.B., "Design of Power and Area Efficient Approximate Multipliers," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, 25(5): 1782-1786, (2017).

[15] Sertbaş, A., El-Abdallah, H., Karabiber, F., “A Fast Multiplier Hardware Design for Interval

Arithmetic”, Istanbul University-Journal of Electrical and Electronics Engineering, 6: 169-174,

(2012).

[16] Lamberti, F., “Reducing the computation time in (short bit-width) twos complement multipliers,”
,IEEE Transactions on Computers, 60(2): 148–156, (2011).

[17] Antelo, E., Montuschi, P., Nannarelli, A., "Improved 64-bit Radix-16 Booth Multiplier Based on

Partial Product Array Height Reduction," IEEE Transactions on Circuits and Systems I: Regular

Papers, 64(2): 409-418, (2017).

[18] Ding, J., Li, S., "A Modular Multiplier Implemented With Truncated Multiplication," IEEE

Transactions on Circuits and Systems II: Express Briefs, 65(11): 1713-1717, (2018).

