
*Corresponding author, e-mail: ssivanantham@vit.ac.in 

Research Article                   GU J Sci 33(1): 90-104 (2020)       DOI: 10.35378/gujs.434806 

Gazi University 

Journal of Science 

 

http://dergipark.gov.tr/gujs  

 

Low-Error Reconfigurable Fixed-Width Multiplier for Image Processing 

Applications  
 

Jean Jenifer Nesam JEYAKUMAR , Sivanantham SATHASIVAM*  

School of Electronics Engineering, Vellore Institute of Technology, Vellore – 632 014,  India. 

 

Highlights 

 Design of  low-error fixed-width multiplier for image processing applications. 

 New area-efficient algorithm for unsigned multiplication. 

 Performed in three different modes. 

 Reconfigurable from fixed-width to exact multiplier. 

 Image multiplication evaluates the performance of the multiplier. 

Article Info 

 

Abstract 

Compensating the error using additional circuitry is mandatory in a low-error fixed-width 

multiplier. Instead of compensating the error, reconfiguring n-bit fixed-width multiplier to n/2-

bit error-free full-width multiplier using decomposed multiplication is proposed in this paper. 

The decomposed block multiplication using an area-efficient New Bit Pair Recoding (NBPR) 

algorithm in fixed-width mode shows a relatively lesser truncation error than existing truncated 

multipliers. Reconfigurable 16 16  NBPR multiplier in three different modes 

(8 8, 16 8, 16 16)    with a fixed 16-bit product is verified on the TSMC 65nm CMOS standard 

cell library. The experimental results show that the NBPR multiplier consumes a lesser area than 

standard Booth multipliers. Evaluating the proposed multiplier in imaging shows improved 

PSNR with minimal error compared to other fixed-width multipliers.  
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1. INTRODUCTION 

 

Fixed width multiplication is a mandatory arithmetic computation in digital signal and image processing 

applications. The fixed-width multipliers get two n-bit inputs and produce the n-bit product. This can be 

achieved by truncating a few least significant parts of partial products (PPs) matrix [1,2]. The Post-

Truncated (PT) fixed-width multiplier round off the product after the completion of multiplication. PT 

provides better accuracy but occupies a large area. The Direct-Truncated (DT) fixed-width multiplier 

directly truncates the n-least significant PPs without error compensation. DT occupies less area but provides 

less accuracy. For an area-efficient, low error fixed-width multiplier, the truncation error is compensated 

using various techniques. Kidambi et al. [3] introduced a simple constant bias technique that reduced the 

error by adding constant bias to the retained adder cells. But the error can still be reduced. Later, the 

Variable Correction Technique (VCT) [4] and data-dependent compensation to compensate for the error 

have been developed [5-8]. In VCT, the unused PP bits are used to define the compensation vector. The 

calculated compensation vector is added with the product to reduce the error. Juang et al. [9] developed 

efficient carry generating circuits that generate the carry and feed the carry as an input to the non-truncated 

adder cells to compensate for the error. Flexible error based multiplier and multiply-add design have been 

developed for area reduced error-resilient applications [10]. Self-tuned error compensation is an efficient 

method to reduce the truncation error [11-13]. The area reduction multiplication using an approximation 

for image processing application is developed in [14,15].   
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All error compensated multipliers provided in this literature require an additional complex circuit to find 

the amount of compensation vector. Albeit, it shows relatively more error for image processing 

applications.  In this paper, the fixed-width multiplier performs without error compensation and provides 

the product accuracy better than error compensated fixed-width multipliers. The multiplier is reconfigurable 

to the exact multiplier using a control bit that provides distortion less application. In an inexact mode, the 

proposed multiplier eliminates the lower bits of the least decomposed block and the non-truncated higher 

bits are added to the higher blocks. This helps to reduce the truncation error with a slight increment in the 

area.  

 

This area overhead is balanced by using an efficient New Bit Pair Recoding (NBPR) algorithm. NBPR 

reduces the PP row height without computing Negative Encoding (NE) and Sign Extension (SE).  NE and 

SE are the common terms in existing bit pair recoding algorithms such as Booth [16-18] that incurred 

additional PP row which in turn occupies more area, power, and delay. NBPR generates the PP based on 

the number of 1’s in 4-bit recoded multiplier groups. The performance benefits of NBPR is given in section 

2. Finally, the developed multiplier is applied to image processing applications such as two different image 

multiplication and image color conversion. The behavioral simulation models are developed in Matlab to 

evaluate the performance of multiplier in imaging. The quality of the image is analyzed with its Peak Signal 

to Noise Ratio (PSNR) and compared with various truncated multipliers.  

 

The rest of the paper is organized as follows; section 2 describes the performance benefits of the NBPR 

multiplier over existing algorithm based multiplication. Section 3 gives the detail about reconfigurable 

multiplication. The introduced error due to truncation is analyzed in section 4. Section 5 for results and 

comparison and section 6 explains the suitability of the proposed multiplier for different image processing 

applications. Section 7 concludes the paper.  

 

2. NEW BIT PAIR RECODING (NBPR) ALGORITHM  

 

2.1. The NBPR Recoding 
 

Let us consider, ‘Y’ is the multiplier and NBPR recodes the multiplier Y as follows: 

 

 2 3 2 2 2 1 2 , ,  ,  j i i i iY y y y y                                                                                       (1) 

where,  2 2  1,2,3...
4

n
i j and j    .                                                                   

In Equation (1), the ‘j’ represents the number of recoded 4-bit groups. Based on the requirement of ‘j’, ‘i’ 

takes the value defined by 2j-2.  For an example, 12-bit multiplier defines j=1,2,3 and i=0,2,4. For each j 

and i value the multiplier is recoded as follows in Equation (2) 

     3 11 10 9 8 2 7 6 5 4 1 3 2 1 0    ;   =   ;    ;Y y y y y Y y y y y Y y y y y                                                                   (2) 

                

Based on the recoded group the NBPR selects the PDVs for PP reduction.  

 

2.2. PP Reduction Using NBPR Algorithm 

 

NBPR recoded 4-bit group performs the PP reduction using the diverse modules namely, PDV (PDV) 

generation, select logic (recoding), Merged PP addition. The following sub-section details each phase 

individually: 
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2.2.1. PDV Generation  

 

This module takes in two binary numbers for multiplication and recodes the multiplier operand as a non-

overlapped 4-bit group. Prior to multiplication, this module pre-defines a few values. Considering ‘X’ as 

the multiplicand (
1 2 2 1 0

...
n n

X x x x x x
 

 ) and the PDVs are assumed as follows:  

 

1. The representation of ‘0’ in Table 1 is computed 0 X .  

2. The other representations namely A, B,  C,  D are obtained by concatenating 0’s in a different position 

with multiplicand as below Equation (3), 

 

1 2 2 1 0000 ... ;n nA x x x x x    

1 2 2 1 000 ... 0;n nB x x x x x                        (3) 

1 2 2 1 00 ... 00;n nC x x x x x                                                                  

 1 2 2 1 0... 000;n nD x x x x x    

 

3. Adding ‘A’ and ‘B’ to generate ‘E’ value 

4. The summed up value is left-shifted twice ((A+B)<<2) and represented as ‘F’  

 

The values of A, B, C, D resemble the bit combinations of “0001”, “0010”, “0100” and “1000” respectively 

and the values are generated by replacing the 1’s position with the multiplicand and without changing the 

0’s position. The “0011” bit combination is generated as the result of adding ‘A’ and ‘B’. The bit 

combination “1100” is left-shifted twice to attain “0011”. The computed PDVs are listed in Table 1 and the 

generated PPs using the PDVs are provided in Table 2.   

 

Table 1.  PDVs of NBPR algorithm 

Bit combination Operation Representation 

0000 0 X  0 

0001 

Replace the 1's position by 

the multiplicand 

A 

0010 B 

0100 C 

1000 D 

0011 Add “0001” and “0010” E 

1100 2-bit left shift of “0011” F 

 

Table 2.  PDV selection using the NBPR Algorithm 

Recoded bits  

Z1 

Recoded bits  

Z2 
1i

y


  
i

y    
3i

y


   
2i

y


   

0 0 0 0 0 0 

0 1 A 0 1 C 

1 0 B 1 0 D 

1 1 E 1 1 F 

 

2.2.2. Merged Addition  

 

The two sets of 4-bit recoded group generates two (n+3)-bit size intermediate PPs. Thereby, merged 

addition on intermediate PPs reduces the number of PP rows from n to n/4. The pictorial representation of 

pp reduction using the NBPR algorithm is shown in Figure 1. The flowchart representation of the NBPR 

multiplier is provided in Figure 2. However, the 8 8  NBPR multiplier generates two PPs, it skips the 

reduction phase and directly fed to the final addition phase. NBPR uses adder tree in Carry Save Addition 

(CSA) format for n>8-bit. The final addition stage uses Carry Propagate Adder (CPA) to add the sum and 

carry.  
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Figure 1. Merged PP generation and addition in the NBPR algorithm 

 

 
Figure 2. Flowchart for NBPR multiplier 

 

2.3. Realization of NBPR Algorithm for n=8-Bit Multiplication 

 

Consider two unsigned binary numbers X=10101100 and Y=11101001. Multiplication X is realized using 

the NBPR algorithm in the following steps. The diagrammatic representation of the NBPR algorithm for 8-

bit multiplication is given in Figure 3.  

 

Step 1: PDV generation 

 00010101100;A   

    00101011000;B    

    01010110000;C    

    10101100000;D    

   
  110101100  10101100 2

1000000100

E



 
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  2 100000010000;F E     

 

Step 2: Select Logic (Recoding) 

 

1 3 2 1 0

2 7 6 5 4

1001;

1110;

Y y y y y

Y y y y y

 

 
  

 

MUX based selection of predefined value for the recoded bits 

 

1 0

3 2

00010101100

10101

1 01
1

2 10000 10 0

Z A y y
MUX

Z D y y

  
 

  
  

5 4

7 6

1 00101011000 10
2

2 100000010000 11

Z B y y
MUX

Z F y y

  
 

  
  

 

Step 3: Merged Addition/PP reduction (Z1 + Z2) 

  

1 11000001100;

2 100101101000;

PP

PP




  

 

Step 4: final Addition 

 

The second PP (PP2) is placed 4-bit left to the first PP (PP1) and Carry Propagate Adder (CPA) is applied 

for the final addition to producing a 16-bit product 

 

4                      

 1 4    2

11000001100 (100101101000) 2     

1001110010001100

Final product PP bit left shifted PP  

  



  

 

2.4. Decomposed 16x16 Multiplier Using 8x8 NBPR Multiplier 

 

The decomposed 16 16  multiplication split the 16-bit operand into two 8-bit sub-blocks and requires four 

8 8  NBPR multiplication as provided in Figure 4 to compute the 16 16  multiplier. After the sub-block 

multiplication, the appropriate blocks are added and the addition of overlapping bits is performed as shown 

in Figure 5.  

 

2.5. Final Addition 

 

The final addition is computed via Carry Propagating Addition (CPA). The CPA length of Wallace depends 

on the number of stages involved in the PP reduction phase. If S is the number of stages and 𝑁 is the number 

of bits in the operands, the final CPA length of Wallace is defined as in Equation (4) 

 

 3 N 5,

                    CPA length (2 ) 2  

 if N 5

                    CPA length (2 ) 1

Wallace

Wallace

for

N S

and

N S

 

   



   

                  (4) 

 



95  Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020) 

 

 
Figure 3. 8 × 8 multiplication using NBPR algorithm 

            

 

 

Figure 4. Decomposed 16x16 NBPR multiplier 

 

 
Figure 5. Final addition for 16x16 NBPR multiplier 

 

A direct implementation of N-bit multiplier or Dadda N-bit multiplier’s final CPA length is defined as in 

Equation (5) 

 

CPA length 2 2Dadda N                                                                                  (5)

  

The proposed NBPR multiplier has 20%   less CPA length and CPA size is determined by Equation (6) 

 

PrCPA length 17 7oposed i                                              (6) 
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where, 

~ 0.23      for 8 8 multiplier 

     1         for 16 16 multiplier

     2         for 24 24 mutiplier

     3         for 32 32 multiplier

i





 


 

. 

 

3. RECONFIGURABLE FIXED WIDTH MULTIPLIER 

 

Small-sized and high accuracy applications need 8 8  exact multiplication, whilst, the large bit-sized error-

resilient application uses the 16 8  or 16 16  inexact multiplication based on the requirement. A fixed 

width multiplier is the utmost common multiplier used in image processing applications.  Many truncated 

methods available to maintain the 16 16 multiplier with the 16-bit product. Directly truncate the least part 

of the partial product matrix is the simple method that achieves more area reduction with large accuracy 

loss. This accuracy loss is compensated in various ways using variable or constant correction compensation 

vectors. These compensation methods consume more area.   

 

This reconfigurable multiplier that can perform both exact and inexact multiplication without any area 

overhead. Distraction less image applications achieve in 8 8  exact mode albeit, the other two modes 

performing the application with less accuracy loss compared to existing truncated multiplier. The new 

reconfigurable multiplier is developed in this paper that can perform both exact multiplications without 

error and truncated multiplication with less error. In this proposed multiplier performs ,
2

n
n n n   and 

2 2

n n
  multiplication with the fixed n-bit product. This reconfigurability is achieved by using decomposed 

block multiplication and a 1-bit control bit.  The decomposed multiplier plane for 16 16  multiplier using 

four 8 8  NBPR multiplier is shown in Figure 6.  

 

In NBPR based fixed-width multiplier computes the multiplication in three different modes and the length 

of the data is modified based on the application requirement. Selecting differently sized sub-block 

multiplication as given in Figure 7, the reconFigured multiplication is performed. If A and B are two 16-

bit operands, the control bits and the corresponding mode of multiplication are given in Table 3. 

 

 
Figure 6. Decomposed multiplier plane for 16 × 16 NBPR multiplier 

 

Table 3. Control Bits and Corresponding Mode Selection 

 

Mode 

 

Control bit 

Input size  

Output size A B 

1 1 16-bit 16-bit  

16-bit 2 0 8-bit 8-bit 

3 0 16-bit 8-bit 
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In the proposed fixed-width multiplier, the output product size is fixed to 16-bit. The new NBPR multiplier 

can be performed as a 16 16  fixed-width multiplier ie). 16 16  multiplication with a 16-bit product in 

mode 1. In mode 2, it performs an exact 8 8  multiplication i.e). 8 8  multiplier with the 16-bit product, 

and truncated 16 8  multiplier with 16-bit product in mode 3.  

 

 
Figure 7. Three modes of computation a). 8 × 8 full-width multiplier b). 16 × 8 truncated multiplier c). 

16 × 16 truncated multiplier 

 

As shown in Figure 8, the 1-bit control bit selects the upper or lower half of the operand B values. If the 

control bit is ′0', the 2: 1 multiplexer selects the lower half of the 𝐵 operand 
0

B  and 
0 0

( )A B  NBPR 8 8  

multiplication is performed. 
0 0

( )A B  multiplication is considered as a 8 8  exact multiplier with 1the 6-bit 

product. Addition of 
0 0

( )A B  and uthe pper half of the 
1 0

( )AB  provides 16-bit truncated results for 16 8  

multiplication. If the control bit is ′ 1 ', the upper half of the B operand is 
1

B  selected and 
1 1

( )AB , 
0 1

( )A B

block multiplications are computed in mode 2. Direct 
1 0

( )AB  multiplication, 
1 1

( )AB  and 
0 1

( )A B  blocks 

are added accordingly to provide fixed width 16 16  multiplication in mode 3. 

 

 
Figure 8. Mode selection of NBPR multiplier 

 

4. ERROR ANALYSIS 

The 16 16  multiplication is achieved by using four 8 8  sub-blocks. All sub-block multiplications are 

performed in parallel. The half of the product of each multiplied sub-blocks are overlapped to the next 
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higher block and the truncation is performed only in the final addition stage. Keeping the overlapping bits 

and truncate the lower non-dependent bits help to reduce the truncation error. The generic product form of 

various modes of decomposed NBPR multiplier is given as in Equation (7). 

        

0 0

1 0 0 0

1 1 1 0 0 1 0 0

8 8

16 8

16 16 ( )

;

;

A B

A B A B

A B A B A B A B

P P

P P P

P P P P





 



 

  

                    (7) 

 

Each 𝑃𝐴𝑥𝐵𝑦
and  𝑥, 𝑦 𝜖 (0,1) in different modes refers one 8 8  NBPR multiplier. The error due to truncation 

in each mode is analysed in the following sub-section.  

 

4.1. NBPR 8 8  Exact Multiplication 

 

In 8 8  multiplication mode, it operates as an exact multiplier as given in Equation (8).  

 

0 0

7 7

8 8

0 0

A B i j

i i

P P a b

 

                                                                                                                           (8) 

 

where  
0 0

( )A B  is the 8 8  sub-block and , (0,1)
i j

a b   are individual bits inside the sub-block. The 8 8

multiplication provides 16 − 𝑏𝑖𝑡 product without error. The maximum error is computed as the difference 

between the exact product and the truncated product. Since 8 8  is an exact multiplier, the truncation part 

is considered as equivalent to exact product and the maximum error is equal to zero and the value is 

computed as shown in Equation (9)  

 

8 8
max ,max (| |) 0

TPA
A B exact truncatedP P



    .                                                                                              (9) 

 

 

4.2. NBPR 16 8  Truncated Multiplier 

 

In this mode, the multiplier gets two different sizes operand (16,8) for multiplication. The exact 

multiplication of 16 8  provides the 24-bit product. After the computation, truncating partial part of 
0 0( )A B

P

, the product size is fixed to 16-bit. The error limit in this mode is calculated as follows in Equation (10) 

 

1 0 0 0

15 7 7 7

(16×8) A B A B i i

i 8 0 i 0 0

16x8(tr)  (  )  .             

P =P +P = a a

                           

              P  

j j

j j

high low

high low upper half

b b

 

 

   

  

 

 

   

                                               (10) 

 

 
Figure 9. The (𝑛 ×

𝑛

2
) multiplication with 𝑛 − 𝑏𝑖𝑡 product ( 𝑛 = 16 − 𝑏𝑖𝑡 ) 
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The error limits can be computed from Figure 9, and the truncation error ( tr ) of 16 8  the truncated 

multiplier is bounded as given in Equation (11), 

 
0 92 2n

tr
                                                                                                                                           (11) 

 

where 𝑛 = 16 − 𝑏𝑖𝑡. 
 

4.3. NBPR 16x16 Fixed-Width Multiplier 

In this mode, the 16 16  multiplier discards the lower 
0 0

( )A B  block without computation and truncate a 

few parts of the product 
0 1 1 0

( )A B AB  to fix the output product size to 16-bit.  

 

Figure 10.  The (𝑛 ×  𝑛) multiplication with n- bit product ( 𝑛 = 16 − 𝑏𝑖𝑡 ) 

 

The truncation performed as given in Figure 10 and the truncation error limit in this mode is computed as 

follows in Equation (12) 

 

 width 1 1 1 0 0 116 16 ( )

15 15 15 7 7 15

i i i

i 8 8 i 8 0 i 0 8

(  half)

 

            a ( a a )

                .  

fixed A B A B A B

j j j

j j j

high mid upper

P P P

b b b

 

 

     

 

     

 

                                 (12) 

 

 

5. PERFORMANCE EVALUATION 

 

The functionality of the presented multiplier is verified on Modelsim 6.5b. After the functional verification, 

the multiplier is synthesized using Cadence's RC RTL compiler in 180 and 65nm technology. The separate 

TCL and SDC script are written for each mode. The performance of the proposed design is individually 

evaluated in the following sections.  

5.1. Analysis of NBPR Multiplier 

Detailed area, power and delay analysis of NBPR multiplier with other bit pair recoding algorithm is 

provided in this section. The Modified Booth Encoding (MBE) is the common algorithm for area-efficient 

multiplication. MBE reduces the PP rows with the computation of NE and SE terms.  Since NE and SE 

incurred more resources, many designs have been developed with the elimination of NE and SE. The 

negation of NE requires additional circuitry and its computations are highly complex. Even though the SE 

prevention techniques have been adopted, two SE bits till required in multiplication. From, the theoretical 

analysis of various Booth multipliers with NBPR claims the superiority of the proposed design.  

The righteousness of theoretical analysis has been proven by its experimental results. Each module in the 

NBPR algorithm namely PDV generation (‘E’ value), recoder logic, PP reduction and final addition for 8, 

16-bit multiplication is performed in 180 and 65nm technology and the results are provided in Table 4.  The 

excel of the NBPR algorithm in terms of area, power, and speed is verified by computing the design for 
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generating one bit of PP. The compared experimental results for generating one PP bit using various 

algorithms are provided in Table 5 and is the evidence that the NBPR uses only 72.5% less area and 18% 

less power with 34% increased speed when compared to the standard booth multipliers.  

 

Table 4. Synthesis report of various phases of NBPR multiplier (180 and 65nm) 

Mode of 

computation 

 n=8-bit n=16-bit 

nm #cells 
Area 

2( )m  

Power 

( )W  
Delay 

(ns) 
#cells 

Area 
2( )m  

Power 

( )W  
Delay 

(ns) 

PDV 

generation 

180 25 719 82.832 0.056 59 981 101.189 0.637 

65 24 61 8.187 0.044 31 132 1.316 0.081 

 

Recoder 

Select 

logic 

180 113 2365 87.853 0.190 259 5409 870.269 2.173 

65 88 362 23.247 0.017 146 639 156.321 0.236 

merged 

pp 

180 23 283 9.345 0.052 30 336 49.267 0.527 

65 22 44 2.128 0.056 31 49 9.844 0.056 

 

PP reduction 

180 - 253 4697 624.573 0.564 

65 - 94 558 169.290 0.067 

Final adder 
180 18 233 8.559 0.052 156 2262 217.123 8.772 

65 18 36 1.891 0.051 25 221 72.295 0.786 

 

Table 5. Area/power/delay report on generating one PP bit using MBE and NBPR in 65nm 

Design #cells 
Area 

2( )m  

Power* 

(μW) 

Delay 

(ps) 

Standard Booth 4 14 (100%) 0.967(100%) 84 (100%) 

Limberti [16] 6 16 (114.3%) 0.795 (84.7%) 74 (88%) 

Antelo [17] 6 14 (100%) 0.735(83.4%) 61 (72.7%) 

NBPR 3 10 (72.5%) 0.713(82%) 56 (66.7%) 

                                     *Power=Leakage power+Dynamic power 

 

5.2. Reconfigurable 16x16 NBPR Multiplier 

 

The area, power and delay consumption of reconfigurable NBPR multiplier is verified in this section. The 

Verilog code has been written for reconfigurable design as in Figure 8 and its functionality has been verified 

in Modelsim 6.5b simulator. After the functional verification, the design has been implemented on Cadence 

TSMC 180 and 65nm with a standard cell library. The obtained results are provided in Table 6.  

 

The area consumption of various truncated multipliers is compared with the NBPR multiplier in three 

different modes. The compared values on TSMC 180nm are provided in Table 7.  The presented NBPR 

multiplier in 16 16  fixed-width multiplication mode occupies 33.15% less area when compared to 

standard Booth multiplier. In full-width mode 8 8  shows approximately 1% less area and in truncated 

16 8  mode shows 54.65% less area compared to the standard multiplier. However, the NBPR multiplier 

occupies 15.5% more area compared to other direct truncated multipliers mentioned in the literature, due 

to the error reduced decomposed multiplication.  

 

Table 6. Implementation details of NBPR multiplier on 180 and 65 nm TSMC technology 

Technology Area 2( )m  Power ( )W  Delay (ns) PDP (fJ) APP 2 5( . )10m W   

180nm 20654 1286.093 0.5 643.047 265.63 

65nm 3614 220.176 0.5 110.088 7.96 
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Table 7. Area consumption of various truncated multipliers on 180nm technology 

Design 
Area (𝜇𝑚2) 

n=8 n=16 

Standard multiplier 7092.164 30896.219 

D-truncated 3337.495 15179.200 

K-G-As' [6] 3299.660 15179.200 

J-K-Cs' [1] 3640.836 16477.370 

K-Ss'[4] 5604.888 20688.631 

L.D. Vans' [3] 3640.83 16477.370 

Proposed 7037 (8x8) exact 
14011(16x8) tr 

20654(16x16) tr 

 

 

Table 8.  Max Error ( 𝜀𝑚𝑎𝑥 ) for various 16 × 16 fixed width multiplier 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.3 Maximum Error 
max

( )  Computation 

 

The maximum error 
max

( )  is theoretically computed as the difference between original results and actual 

results by applying its maximum value.  The 
max
 for 16 16  multiplier in different modes with various 

truncation depth (τ) value is given in Table 8. Compared to directly truncated (D-truncated) multiplier, the 

NBPR multiplier shows 93.33% reduction in error while, K-G-As', J-K-Cs', K-Ss', L.D Vans' and Yuan-

Ho Chens' designs have error improvement of  20%, 77.69%, 88.7%, 79.63%, and 82.79% respectively. 

Hence the NBPR multiplier shows significant error improvement, compared to direct truncate and other 

truncating multipliers.  

 

6. APPLICATIONS 

 

6.1. Image Multiplication  

 

The behavioral model of the multiplier is developed in Matlab and two 512 512  images are multiplied 

with different τ values. The τ value and the corresponding multiplied images are given in Figure 11. The 

quality of the resultant images is verified by using Peak Signal to Noise Ratio (PSNR). The PSNR is 

calculated by the Equation (13). 

 

   

 ( ,  )tr exactPeakSNR PSNR image image .                 (13) 

 

 

Design 

 

Algorithm 

𝜀𝑚𝑎𝑥 

Bit width (n) 

n=8 n=16 

D-truncated - 1793 983040 

Post-truncated - 128 32768 

K-G-As' [6] 2's complement 1280 786432 

J-K-Cs' [1] Booth 514.94 219316.22 

K-Ss' [4] Sign-magnitude 263.03 111083.52 

L.D Vans' [3] Baugh-Wooley 441 220245 

Yuan-Ho Chen [2] 2's complement 384.9 169181 

Proposed NBPR 0 
128 ( 16 × 8 ) 

65537 ( 16 × 16 ) 
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Table 9. PSNR of a multiplied image using NBPR multiplier 

Images 
PSNR(dB) 

τ =0 τ =8 τ =16 

image1 ∞ 54.5716 17.3624 

image2 ∞ 54.42 15.3881 

image3 ∞ 54.6148 14.2321 

 

 
Figure 11. Multiplied images 1). image1 2). image2 3). image3 with a). τ =0 b). τ =8 c). τ =16 

  

The PSNR is computed between the NBPR multiplier applied image and the exact multiplier applied image. 

The PSNR shows that the presented NBPR multiplier performs with better image quality. The PSNR values 

are given in Table 9. The various truncated multiplier based image multiplication in Table 10 is evident for 

the excellence of the proposed multiplier in imaging.  

 

Table 10.  PSNR comparison 

 

Design 

PSNR (dB) 

τ =8 τ =16 

DT 28.81 9.64 

PT 33.45 11.34 

K-G-As’ [6] 38.20 12.48 

J-K-Cs’ [1] 39.46 13.65 

K-Ss’ [4] 39.76 11.08 

L.D Vans' [3] 34.01 10.30 

Yuan-Ho Chens’ [2] 31.84 10.98 

Proposed 54.61 14.23 

 

6.2. Image Color Space Conversion (RGB to Gray) 

 

The Red, Green and Blue values in the RGB color image has the integer range from 0 to 255. Multiplying 

R, G, and B value with different coefficient and adding the multiplied values together provides different 

color space. The NBPR multiplier in 8 ×  8  exact multiplication mode is well suited for image color space 

conversion such as RGB color space to grayscale transformation. The RGB image is converted to a 

grayscale image using below Equation (14). The color-converted images from RGB to gray is given in 

Figure 12.  

 



103  Jean Jenifer Nesam JEYAKUMAR, Sivanantham SATHASIVAM / GU J Sci, 33(1): 90-104 (2020) 

 

Gray Image=0.2989 R+0.587 × G+0.114 × B                  (14)

                

Figure 12.  RGB to Gray a. flower1 b. flower2 c. Lena 

 

7. CONCLUSION 

Reconfigurable exact and inexact decomposed multipliers using a new algorithm for image processing 

applications have been presented in this paper. Based on the selection of different input sizes, the multiplier 

reconFigured from the exact 8 8  multiplier to inexact 16 8  and 16 16  multiplier. The error-free 

computation in 8 8  mode has provided the distortionless image quality, howbeit, the inexact other two 

modes (16 8,16 16)    have provided 93.33% lesser error compared to directly truncated multipliers. 

Moreover, the exact 8 8  NBPR multiplier is consumed 33.15% lesser area compared to standard MBE 

multipliers. Finally, the detailed performance analysis of various color image applications showcased the 

outperformance of a new multiplier with minimal degradation of image quality when compared to existing 

fixed-width multipliers. This makes the proposed reconfigurable NBPR multiplier more amicable for image 

processing applications.   
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