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• To obtain the approach of difference scheme, finite difference method is used.  

• Stability and uniform convergence of presented difference method are investigated. 
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Abstract 

This study deals with a new approach method for solving singularly perturbed boundary value 

problem of convection-diffusion type. Firstly, bounds on the solution and its derivative of solution 

to be used later in the article are obtained. This robust method is constructed with fitted difference 

scheme on a uniform mesh. It is proved that the presented method is first-order convergent with 

respect to the perturbation parameter 𝜀 in the discrete maximum norm. Two examples are given 

to illustrate the efficiency of the method. The numerical results are presented in tables and figures. 
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1. INTRODUCTION 

 

Here we handle the following convection-diffusion problem with boundary layer behavior: 

 

            ,0 ,u x a x u x b x u x f x x l                                                                          (1)                                                

 

   0 ,  ,u A u l B                                                                                                                                     (2) 

where 𝐴 and 𝐵 are given constants and 0 < 𝜀 ≪ 1 is a very small positive parameter. It is supposed that 

the functions  𝑎(𝑥), 𝑏(𝑥)  and 𝑓(𝑥) are continuous differentiable in interval [0, 𝑙] and besides, our 

conditions are 

  0,a x                                                                                                                                                (3)

  0,b x                                                                                                                                                (4) 

Differential equations with a small parameter 𝜀 multiplying the highest-order derivative terms are called 

singularly perturbed differential equations. Standard numerical methods for solving singularly perturbed 

problems are unstable and do not give accurate results due to the perturbation parameter  . If suitable 

numerical methods such as finite difference method and finite element method [1-8] for solving these 
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problems are developed, then the stable and accurate results are obtained. Therefore, we prefer to apply 

finite difference method for this problem in this paper. 

 

There are the various approaches to the design and analysis of appropriate numerical methods for singularly 

perturbed differential equations in [9-17] and the references therein. Singular perturbation problems are 

located in various fields. For example, chemical-reactor theory, control theory, oceanography, fluid 

mechanics, quantum mechanics, hydro mechanical problems, meteorology, electrical networks and other 

physical models [18-25]. There is study of existence and uniqueness of singularly perturbed problems in 

[26].  

 

The present study is organized as follows: In Section 2, we state some required properties of the exact 

solution for analysis of numerical method. Then, the finite difference discretization is given in Section 3. 

In Section 4, we investigate the error evaluation on uniform mesh for the approximate solution of the 

problem (1)-(2). Furthermore, numerical results supporting the theory are presented. The obtained results 

are shown via tables and figures. 

 

Throughout the paper, 
0  , ,C C C

 denote generic positive constants independent of 𝜀 and the mesh 

parameter. For any continuous function 𝑔(𝑥) denote norms which    , 0,
0
max .  

l
x l

g g g x 
 

   

 

2. SOME PROPERTIES OF CONTINUOUS PROBLEM 

 

Here we give asymptotic estimates for the solution of continuous problem (1)-(2). These estimates will be 

used to analysis of the uniform convergence of difference approximations in the next sections. 

 

Lemma 2.1. Let us accept that the function  u x is the solution of (1)-(2) and

       1, , 0,a x b x f x C l . Then the equalities  

 

0 ,u C                                                                                                                                                      (5)

1

0  , C A B f 

    

and  

 ' 1
1 ,

x

u x C e






 
  

 
                                                                                                                           (6) 

hold.   

 

Proof. We first show the proof of (5). Here we define the maximum principle for the problem (1)-(2).  

Let L  be the differential operator in (1)-(2) and  2 0,C l   if    0 0,   0l    and 0,L 

0 ,x l  then ( ) 0x   for 0 x l  .  

Using the barrier function, we have 

   1( ) .x u x A B l x f 

        

By applying the maximum principle to the function above, we find  

   10 0,A A B l x f 

         

 0 0,B B A A        

and  
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             1L x f x A B b x a x b x l x f 

           

      0A B b x f x f       

According to maximum principle, we get  

  0x  . 

From this inequality, we obtain  

 
 

0,
l x f

u x A B



      

   
1

,u x A B l x f


     

which gives the proof of (5). 

We now show the proof of (4). We rewrite the problem (1)-(2) as  

       '' ' ,u x a x u x F x                                                                                                                     (7)   

where   

       .F x f x b x u x   

From the relation (7), we have  

   
 

 
 

0

11

' '

0

1
0  .

xx

a dxa d

u x u e F e d

  


 


 
                                                                                                 (8) 

We need an estimate for 𝑢′(0) in (8). Integrating this equality over (0, 𝑙), we have 

 
 

 
 

0

11

'

0 0 0

1
0 .

xx

a dl l xa d

B A u e dx F e d dx

  


 


 
     

From this equality we obtain 

 
 

 

 
0

1

0 0'

1

0

1

0 .

x

x

a dl x

a dl

B A F e d dx

u

e dx


 



 


 







 




 



                                                                                                   (9) 

We evaluate integral in denominator of (9) as 

 

*

**

0 0

1 1

0*

0 0 0

1

,

x x

a l

l l l a xa d a d
e

e dx e dx e dx
a



  
 





 



 


 
 

                                                                           (10)                                             

where 
 

  *

0,
max

l
a a x .                            

Applying the mean value theorem to integral in (9), we find 

       
0 0 0 0

1 1 1 1
l x x l x x

F exp a d d dx F exp a d d dx
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( )

1

1

0 0 0

  1 .

l x lx x
F F l

e d dx F e dx C
  

  
 


 

 


 
     

 
                                                                       (11) 

By writing the evaluations (10) and (11) in (9), we get                                                      

  1' 0 .
A B C C

u
 

 
                                                                                                                      (12)      

Using the estimate (12) in (8), we have 

 ' 1 ,
x x x

F FC C
u x e e e

  

  

   

  
 
 

     
 

 

which gives proof of (6). So, we have completed the proof of Lemma 2.1. 

 

3. CONSTRUCTION OF DIFFERENCE SCHEMES 

 

Let 𝜔𝑁 be a uniform mesh on  0, l  as follows: 

, ,   1,2, , 1;     ,N i

l
x ih i N h

N


 
      
 

 

 

 0, N N x x l    . 

Before describing our numerical method, we introduce some notation for the mesh functions. For any mesh 

function 𝑔(𝑥) defined on �̅�𝑁 we use  

  1 1 1 1 1 1
, 2, 

,
, 

2
,       ,    ,       ,       

2
o

i i i i i i i i i

x i
i i x ix i xx i

g g g g g g g g g
g g x g g g u

h h h h

         
     , 

1

1 1,

1

.
N

n

i

i

g g h g





    

Here we construct difference approximate on a uniform mesh for the problem (1)-(2). To obtain the 

approach of difference scheme, we will integrate equation (1) over (𝑥𝑖−1 , 𝑥𝑖+1). 

     
1 1

1 1

1 1  ,
i i

i i

x x

i i

x x

h Lu x dx h f x x dx 
 

 

                                                                                                           (13) 

where the basis functions 𝜑𝑖(𝑥) are as follows: 

 

 

 

 

   

 

 

1

1

1 

1

2

  1

1

( )  ,                    , ,

1

1

,                     , ,

1

0,                                           

i i

i i i

i

i i

i

i i i

i

a x x
exp

x x x x
a h

exp

a x x
x exp

x x x x
a h

exp





















 
   

  
 

   
 

 
   

  
 

  
 

 1  1                            , .  

 

i ix x x 













 



 

The functions 𝜑𝑖
(1)

(𝑥) and 𝜑𝑖
(2)

(𝑥) are the solution of the following problems, respectively: 
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 '' '

1 0,         , ,i i i i ia x x x      

   1 0,    1,i i i ix x     

 '' '

  10,          ,i i i i ia x x x     , 

   11,    0i i i ix x    . 

We can continue from (13) as 

               
1 1

1 1

'' '1 1i i

i i

x x

i i

x x

u x a x u x b x u x x dx f x x dx
h h

  
 

 

      , 

             
1 1 1

1 1 1

' ' '1 1 1i i i

i i i

x x x

ii i i i i

x x x

u x x dx a u x x dx b x u x x dx f R
h h h

   
  

  

       , 

       
1 1

1 1

' ' '1 1
,

 

i i

i i

x x

i i i i i i i

x x

u x x dx a u x x dx bu f R
h h

  
 

 

                                                                       (14) 

where we can express the reminder term 𝑅𝑖 as 

, , , , ,i i b i a i f i b iR R R R R R                                                                                                                            (15) 

with  

    
1

1

,

1
( ) ( ) ,

i

i

x

a i i i

x

R u x a x a x x dx
h






                                                                                                           (16)

   
1

1

,

1
( ) ( ) ( ) ( ) ,

i

i

x

b i i i i

x

R b x u x b x u x x dx
h






                                                                                                    (17) 

   
1

,

1
( ) ( ) .

i

i

x

f i i i

x

R f x f x x dx
h





                                                                                                                    (18) 

Using the quadrature rules in (2.1) and (2.2) from [1], we obtain the following precise relation: 

                   
1

1

1 ' 1 2 ' 21 ' ' 1 ' '
i i

i i

x x

i i i i i i

x x

h u x a u x x dx h u x a u x x dx     




      
      

     
1

, ,

1

,

1 21 1 1 1

,    ( ) ,
x i

i

x i

i

x

i

i

ix x

i i i x i i

x x

h u a u h x dx h u a u h x dx   




          

, , (1) (2) (1) (2)

,, ,
          , 

x i x i

i i i x i i i x ixi xx i x i

u u
a u a u u a u a u

h
     


                                                        (19) 

where 

     

 

1 1

1

1 11 1

/

1
1

  ,
1

1

i i

i

i i

i i

x x

i i a h
i ix x

a x x
exp

h x dx h dx
a h a h e

exp
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1 1

1

2 21 1

/

1
1

.
1

1

i i

i

i i

i i

x x

i i a h
i ix x

a x x
exp

h x dx h
a h e a h

exp


 
 



 



 

 
  

    
 

  
 

   

Using the relations 

0 ,  , 
,

,
2x i xx i

x i

h
u u u   

and 

0 ,
,

  ,  ,
2

x i x
i

i
x

h
u u u   

in (19), we obtain 

       
0 0

1 1 2 2

,  ,  ,
, ,

 2 2
,i i i i i i i ixx i xx

x i x i
i xx i

h h
u a u a u a u a u       

          0 0

2 1 1 2

,  , 
, ,

1 ,i
i i i i i i ixx i xx i

x i x i

a h
u a u u a u     




 
      

 
                                                (20)                                                                              

where 

      2 1
1 coth ,  ,

2

i i
i i i i i i

a h a h
      

 

 
     

 
                                                                          (21) 

     
1

1

1 2 1  1.
i

i

x

i i i

x

h x dx  




    

Then, by using the relation (20) in (14), we get  

, 
,

,     1  .oi i i i i ixx i
x i

iR i Nly y a y b y f                                                                                          (22)                          

Neglecting 𝑅𝑖 in the relation (22), we propose the following finite difference approximate for the problem 

(1)-(2): 

, 
,

,oi i i i i ixx i
x i

ly y a y b y f                                                                                                                 (23) 

0 ,  ,NAy y B                                                                                                                                          (24) 

where 
i  is defined by (21). 

 

4. STABILITY AND    UNIFORM CONVERGENCE  

 

Here we will give stability and uniform convergence of presented difference method. 

Lemma 4.1. If we accept the smoothness assumptions of Lemma 2.1, then the truncation function R
satisfies the following inequality. 

,
.

N

CR h


                                                                                                                                            (25)               

Proof. We first show that  

,
.

N
f ChR


                                                                                                                                           (26) 
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Applying the mean value theorem to function in (18), we get 

   
     ' '

 ,      , .
i

i i

i

f x f x
f max f x x x C x x

x x
 


    


 

Hence, we obtain 

,
.   

N
fR Ch


  

In second case let us indicate that 

,
.

N
a ChR


                                                                                                                                                (27) 

By applying the mean value theorem to the function in (16), we have 

 
     ' '

0  

) (
,     , .

i

i i

i

a x a x
a max a x x C h x x

x x
  


    


 

From this, we obtain  

 

1 1

1

1 1

1 1

0 1 0 1

1 1

1 1
1 2

i i

N

i i

x xx xN N

a l
i ix x

R C h C e d C C h l e dx 

  

 

 

  

 

  
          

    

0 1

0

2
2 .

l x

C C h l e dx Ch



 
   

 
  

In the same way, we can demonstrate the following inequality as similar to the inequality (27). 

 1

.
N

b l
R Ch


                                                                                                                                               (28) 

Applying the mean value theorem to the function in the relation (17), we take  

       
            

'

' '
i i

i

i

b x u x b x u x
b u max u x b x u x b x x x

x x
 


   


 

    '

1( ) '( ) ,   .i imax u x b x max u x b x x x c h x x       

From this, we get  

 

1

1

1

1

1 1 1

1

1
1 ,

i

N

i

xN

b l
i x

x
R c h c exp dx c h





 









  
     

  
  

which leads to (28). 

Hence, from the inequalities (26), (27) and (28) we have (25). 

Lemma 4.2.  Error function ,  0iz i N   satisfies the following inequality: 

 1

1

1

.
N

n

i il

i

z CR Ch R






                                                                                                                                      (29) 

Proof. According to maximum principle, we have 

,       1, 2, , 1,i iz i N    

where the function 𝜂𝑖 is the solution of the following difference problem. 
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, , ,i i xx i i ix
a R                                                                                                                              (30) 

0 0,   0.N                                                                                                                                                          (31) 

Let  𝜂𝑥,𝑖 = 𝑉𝑖. Then we rewrite the relation (30) as 

1

,
.

2

i i
i i ix i

V V
V a R 

    

Solving the first order difference with respect to 𝑉𝑖  for 1 ≤ 𝑖 ≤ 𝑁 − 1, we obtain 

0

1 1

1
2

.

1
2 2

k

i i
ik

i
k ik l

l

k

ha

R
V V h

ha ha






 

 
 

  
   
 

                                                                                                             (32) 

Using the inequality 1 xx e  and  cot 1
2 2

k k

k

a a
h

 



 
  

 
 we get  

0

1 1 1

/
  .

1
2 2 2

k

i i i
j jik

i
k i lk l j l

l l

k

a

aR
V V exp h h

a ha ha



 


   

   
   
      
         

                                                          (33) 

For the second term in the relation (33), we found  

1 1
1

1
max .

1
2 2

j

i
j

l N
l jj l

l

k

a

exp h C
ha ha






  
 

 
 
  
 

  
 

  

From this, the second term in the relation (33) is obtained as follows. 

1 1 1

/
,

/ 2

2

i i i
j jl

l
ll j l ll l

l

aR
h exp h Ch R

a h ha




   

 
  

 
    

and 

1

0 1 1

0
1

0 1

1 / 2

1 / 2

2 .
/

1 / 2

N i i j jl

i l j l
l j j

l

N i
k k

i k
k k

a hR
h h

a h a h

V
ha

h
ha












   



 

 
  
     

 
   
  

   

  

 

                                                                          (34) 

By setting the relation (34) in (32), we take 
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1

0

1 1

1
2

.

1
2

k

i n
k

i
kk i

k

a h

V Ch R
a h







 

 
 

  
  
 

                                                                                                                            (35) 

By using the relation (33) and (35) in (32) we obtain 

1

1

. 
n

i i

i

v Ch R




                                                                                                                                                        (36) 

So, we have   

1

1

.
n

i i

i

z Ch R




   

The Lemma 4.2 is proven. 

We now give the following uniform convergence result. 

Theorem 4.3. Suppose that 𝑎, 𝑏, 𝑓 ∈ 𝐶1[0, 𝑙]. Let 𝑢(𝑥) be the solution of the problem (1)-(2) and 𝑦 be the 

solution of the problem (23)-(24). Uniform error estimate  

 
,

NC
y u Ch


     

holds. 

  

Proof. This follows immediately by combining the two previous lemmas. 

 

5. NUMERICAL RESULTS 

Here we test two examples for applying of the theoretical results. 

Example 5.1. Our first test problem is as follows [27].  

       " '1 0.5 0,      0,1 ,
2

x
u x u x u x x

 
     
 

                                                                               (37) 

   0 0,    1 1.u u                                                                                                                                     (38) 

Its exact solution is given by 

   

2

1 42 0.5exp .

x
x

u x x




 
 

    
 
 
 

 

We describe the maximum errors 𝑒𝜀
𝑁 and the errors 𝑒𝑁 as follows: 

1
max ,           max .N N N

i i
i N

e u y e e 

 
 

    

We also describe the following convergence rates and the computed parameter uniform convergence rates, 

respectively: 

2 2
ln ln

,   .
ln 2 ln 2

N N

N N
N N

e e
e ep p
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Table 1. The calculated maximum errors and the orders of convergence for the numerical solution of 

problem (37)-(38) 

𝜀/𝑁 8 16 32 64 128 256 512 

10−3 0.0291666 

0.94 

0.0151209 

0.97 

0.0076884 

0.98 

0.0038760 

0.97 

0.0019725 

0.79 

0.0011393 

0.78 

0.0006604 

 

10−4 0.0291666 

0.94 

0.0151206 

0.97 

0.0076884 

0.98 

0.0038754 

0.99 

0.0019454 

0.90 

0.0010393 

0.85 

0.0006304 

10−5 0.0291665 

0.95 

0.0151206 

0.98 

0.0076884 

0.99 

0.0038774 

0.99 

0.0019456 

0.99 

0.0009754 

0.99 

0.0004878 

10−6 0.0291543 

95 

0.0151203 

0.98 

0.0076884 

0.99 

0.0038756 

1.00 

0.0019123 

0.97 

0.0009798 

1.00 

0.0004878 

10−7 0.0290543 

0.95 

0.0151204 

0.98 

0.0076882 

0.99 

0.0038742 

0.99 

0.0019419 

0.99 

0.0009772 

1.00 

0.0004878 

10−8 0.0290342 

0.94 

0.0151202 

0.98 

0.0076884 

0.99 

0.0038750 

1.00 

0.0019312 

1.00 

0.0009623 

0.98 

0.0004878 

10−9 0.0290540 

0.94 

0.0151200 

0.98 

0.0076884 

0.99 

0.0038751 

1.01 

0.0019134 

0.99 

0.0009601 

0.98 

0.0004878 

10−10 0.0290342 

0.94 

0.0151201 

0.98 

0.0076884 

0.99 

0.0038705 

1.01 

0.0019017 

0.99 

0.0009512 

0.96 

0.000487 

 

 

 

 
 

Figure 1. Numerical solution of problem (37)-(38) for different values of   and N  on the uniform mesh    

 

 

 
 

Figure 2. Exact solution and Numerical solution of problem (37)-(38) for varied values of    and N  on 

uniform grid 
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Figure 3. Errors of problem (37)-(38) for values 
4 6 8 0 0 ,  0 ,  0 , 0
        𝑎𝑛𝑑 256N  on the 

uniform grid 

 

Example 5.2. We secondly present the following example [27]. 

   " ' 1 2 0,     0 1,u x u x x x                                                                                                                (39) 

   0 0,   1 1.u u                                                                                                                                                  (40) 

Exact solution of example above is as follows. 

 
 

2

2ε 1 1 exp
ε

2 ε
1

1 exp
ε

x

u x x x x

  
    

     
 

  
 

. 

Table 2. The calculated maximum errors and the orders of convergence for the numerical solution of  

problem (39)-(40) 

 

 

 

 

 

 

 

 

𝜀/𝑁 8 16 32 64 128 256 512 

10−4 0.1092000 

0.90 

0.0584062 

0.95 

0.0300796 

0.98 

0.0151839 

1.00 

0.0075530 

1.03 

0.0036917 

1.07 

0.0017497 

10−5 0.1093575 

0.90 

0.0585750 

0.95 

0.0302541 

0.97 

0.0153611 

099 

0.0077316 

099 

0.0038710 

1.00 

0.0019293 

10−6 0.1093732 

0.90 

0.0585918 

0.95 

0.0302715 

0.97 

0.0153788 

0.98 

0.0077494 

0.99 

0.0038889 

0.99 

0.0019473 

10−7 0.1093748 

090 

0.0585935 

0.95 

0.0302732 

0.97 

0.0153806 

0.98 

0.0077512 

0.99 

0.0038907 

0.99 

0.0019491 

10−8 0.1093749 

0.90 

0.0585937 

0.95 

0.0302734 

0.98 

0.0153808 

0.99 

0.0077513 

0.99 

0.0038909 

1.00 

0.0019499 

10−9 0.1093749 

0.90 

0.0585937 

0.95 

0.0302734 

0.98 

0.0153808 

0.99 

0.0077514 

0.99 

0.0038909 

1.00 

0.0019493 

10−10 0.1093749 

0.89 

0.0585937 

0.95 

0.0302734 

0.98 

0.0153808 

0.99 

0.0077514 

0.99 

0.0038909 

1.00 

0.0019491 
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Figure 4. Numerical solution of problem (37)-(38) for values 
 5 9  0 ,  0 ,  0

     𝑎𝑛𝑑 64N  on the 

uniform mesh 

 

 

 

Figure 5. Exact solution and Numerical solution of problem (39)-(40) for values of 
 5 9  0 ,  0 ,  0

      

𝑎𝑛𝑑 64N  on the uniform mesh 

 

 

 

 

Figure 6. Errors of problem (39)-(40) for values of 
4 6 8 0 0 ,  0 ,  0 , 0
        and  64N  on the 

uniform mesh 
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According to above tables and figures, the curves of exact and approximate solutions are compared in 

Figures 2 and 5. In Figures 1 and 4, as   values decrease, the curves go towards the coordinate axes around 

x 0 . In Figure 3 and 6, the errors in the boundary layer region are maximum for different values . The 

values of   and N for which we solve the test problems are 2 ,  4,.., 0;  2 ,  3,.., 9.k kk N k       

The resulting error 
Ne and the uniform convergence rates

Np are given in Tables 1 and 2.  

 

6. CONCLUSION 

 

In this study, we have offered an effective finite difference method for solving second-order linear 

singularly perturbed boundary value problem. It is given that this method displays uniform convergence 

with respect to the perturbation parameter . We apply two examples to show the advantages and 

effectiveness of this novel approach. The algorithm, figures and tables are generated in Maple. In table and 

graphics, when N takes increasing values, it is seen that the convergence rate of the smooth convergence 

speed  is first order. The curves of exact solutions and approximate solutions are almost identical as 

shown in Figures 2 and 5. In Figures 1 and 4, as ε values decrease, the graph approaches more towards the 

coordinate axes in the boundary layer region around . In Figure 3 and 6, the errors in these regions 

are maximum because of the irregularity caused by the sudden and rapid change of solution in the boundary 

layer region around   for different values ε. As a result, the proposed scheme has worked very well 

as numerical results show. This method can also be used for solving other more different problems. 
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