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Abstract 

The present paper addresses a new approach to reduce bias when there are undetected species in 

a plot. Partially density matrix plays essential role in this new proposed estimator. The 

performance of the new proposed estimator (𝐻̂𝑂) was compared to bias-corrected MLE (MLEBC), 

Jackknife (JK) and the proposed estimator of Chao and Shen (𝐻̂𝐶𝑆) using Principle component 

analysis (PCA). According to the result of the first PCA applied to the data including the 

estimators’ values of the assemblages,  𝐻̂𝑂 is located between JK and 𝐻̂𝐶𝑆 and its’ nearest 

neighbor becomes JK. The second PCA was applied to the data belonging to the relative estimator 

values between the pairwise assemblages and, it was found that 𝐻̂𝑂 is still located between JK 

and 𝐻̂𝐶𝑆 but its’ nearest neighbor becomes 𝐻̂𝐶𝑆 along the first axis at this time. Those results 

indicated that 𝐻̂𝑂 is a better estimator than MLEBC. Thus the new proposed estimator (𝐻̂𝑂) may 

also be used as an alternative bias-corrected estimator in addition to the other estimators.  
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1. INTRODUCTION 

 

There is a wide variety of indices to measure biodiversity. In this sense, Shannon entropy, a theory for 

uncertainly measure introduced first by Claude Shannon [1], is the most well-known entropic measure [2].  

 

Even though Shannon entropy is the most popular theory for biodiversity measure, rare events make 

Shannon entropy hard to estimate. There are no unbiased estimators of Shannon entropy for samples of 

fixed sizes. For incomplete samples, the main source of the bias comes from the undetected species.  

 

Many correction methods have been proposed to obtain the reliable entropy estimator with less bias [3-11]. 

Applications of those correction methods require the number of individuals to estimate sample coverage.  

 

With regard to the sample coverage approach to estimating the species number for an assemblage, assume 

that there are S species in a reference plot represented to that assemblage and they are labeled by 1,…, S. 

Let Xi be the number of the individuals of the ith species detected in the plot ( ∑ 𝑋𝑖
𝑆
𝑖=1 = 𝑛). The 

probabilities of relative values of the species (𝑋𝑖 𝑛⁄ ) are represented by 𝜋1, 𝜋2, … , 𝜋𝑆−1, 𝜋𝑆 (∑ 𝜋𝑖
𝑆
𝑖=1 = 1).   

Shannon entropy [1], is defined by  

 

𝐻 = − ∑ 𝜋𝑖 log(𝜋𝑖)  𝑆
𝑖=1              (1) 

 

Suppose that there are 100 species in a plot and 60 of them are singletons. Such plot data tell us that there 

should be undiscovered species in the plot due to many singletons. In this case, when 𝐻 is computed using 
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only the detected species, occurrence of sampling bias would be inevitable. That bias should therefore be 

corrected in order to compare the species diversity of the assemblage to those of the other assemblages.  

 

As mentioned before, many bias corrected methods have been developed. One of the most popular one was 

built by Chao and Shen [7] for abundance data as an unbiased estimator (Ĥ).  

 

𝐻̂ = − ∑
𝜋̃𝑖 log 𝜋̃𝑖

1−(1−𝜋̃𝑖)𝑛 𝐼(𝐴𝑖) = − ∑
𝐶̂𝜋̂𝑖 log𝐶̂ 𝜋̂𝑖

1−(1−𝐶̂𝜋̂𝑖)𝑛 𝐼(𝐴𝑖)𝑆
𝑖=1

𝑆
𝑖=1          (2) 

 

Ĉ is the estimator of the sample coverage. It is computed by 𝐶̂ = 1 − 𝑓1 𝑛⁄  where 𝑓1 denotes the number of 

species recorded only once (singletons). 𝜋̃𝑖 = 𝑋𝑖 𝑛⁄  is the MLE of 𝜋𝑖. 𝐼(𝐴𝑖) is the usual indicator function. 

If the event 𝐴𝑖 is true, then 𝐼(𝐴𝑖) = 1, otherwise 𝐼(𝐴𝑖) = 0.  

 

Apart from the proposed method by Chao and Shen [7], bias-corrected MLE has been also frequently used 

to reduce bias for abundance data.  

 

With regard to bias-corrected MLE (MLE+𝑆̂), 𝑆̂, reflects the estimator of total number of species (𝑆), and 

it is computed by the following equation 

 

𝑆̂ = 𝑆𝑎𝑏𝑢𝑛 +
𝑆𝑟𝑎𝑟𝑒

𝐶̂𝑟𝑎𝑟𝑒
+

𝑓1

𝐶̂𝑟𝑎𝑟𝑒
𝛾2             (3) 

 

where 

 

𝛾2 = max {
𝑆𝑟𝑎𝑟𝑒

𝐶̂𝑟𝑎𝑟𝑒

∑ 𝑖(𝑖−1)𝑓𝑖
ҡ
𝑖=1

(∑ 𝑖𝑓𝑖
ҡ
𝑖=1 )(∑ 𝑖𝑓𝑖−1)ҡ

𝑖=1

− 1, 0},           (4) 

 

𝛾2 denotes the estimator of squared CV [12,13]. The total number of the abundant and rare species in the 

plot are 𝑆𝑎𝑏𝑢𝑛 = ∑ 𝑓𝑖 = ∑ 𝐼[𝑋𝑖 > 𝜅]𝑆
𝑖=1

𝑛
𝑖=ҡ+1  and 𝑆𝑟𝑎𝑟𝑒 = ∑ 𝑓𝑖 = ∑ 𝐼[0 < 𝑋𝑖 ≤ 𝜅]𝑆

𝑖=1
ҡ
𝑖=1 . In the equation, 

ҡ =10 is the value of cut-point [14]. ∑ 𝑘𝑓𝑘 = 𝑛𝑛
𝑘=1  and sample coverage for the assemblage is 𝐶̂𝑟𝑎𝑟𝑒 = 1 −

𝑓1 ∑ 𝑘𝑓𝑘
10
𝑘=1⁄  where 𝑓1 denotes the singletons. 𝑓𝑘 is the number of species that are those represented ith. 

value of the number of the species. 

 

The other estimator is Jackknife methodology for bias correction. Chao and Shen [7] also used this estimator 

as proposed by Zahl [15] as well as bias-corrected MLE in comparison to the estimator they built.  

 

𝐽𝐾 = 𝑛 ln 𝑛 − (𝑛 − 1) ln(𝑛 − 1) +
1

𝑛
∑ 𝑓𝑘𝑘2 ln

(𝑘−1)

𝑘
−

1

𝑛
𝑛
𝑘=2 ∑ 𝑓𝑘𝑘 ln(𝑘 − 1)𝑛

𝑘=2      (5) 

 

where 𝑛 denotes the number of individuals, 𝑓𝑘 number of species that are represented exactly k times in the 

sample (𝑘 = 1,2, … 𝑚).  

 

The present paper offers a new estimator based on partially mixed density operator. Using the same data 

given by Chao and Shen [7] from Janzen, [16,17], Batten [18] and Holst [19], the performance of the new 

proposed estimator is discussed by comparing to the proposed estimator by Chao and Shen, bias corrected 

MLE and Jackknife estimator.  

 

2. PROPOSED ESTIMATOR 

 

The density operator for quantum system {⎹𝜓𝑖⟩, 𝑝𝑖} is 𝜌 ≡ ∑ 𝑝𝑖𝑖 {𝜓𝑖⟩⟨𝜓𝑖} and von Neuman entropy 𝑆(𝜌) 

of a quantum state 𝜌 is defined by the equation 

𝑆(𝜌) ≡ −Tr(𝜌𝑙𝑜𝑔(𝜌)).             (6) 
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In information theory, the Shannon entropy is defined by 𝐻(𝑝) = − ∑ 𝑝𝑖 log 𝑝𝑖
𝑛
𝑖=1  where ∑ 𝑝𝑖 =𝑛

𝑖=1

1 (0 < 𝑝𝑖 ≤ 1), 𝑝 = (𝑝1, 𝑝2, … 𝑝𝑛) is a probability distribution. If the eigenvalues of 𝜌 are 𝜆𝑖 then the von 

Neumann entropy can be re-expressed as 𝑆(𝜌) = − ∑ 𝜆𝑖
∞
𝑖=1 log(𝜆𝑖) = 𝐻(𝜆(𝜌)) [20].  

 

The von Neumann entropy is zero for any pure state. The main difference between von Neumann entropy 

and Shannon entropy arises when considering a mixture of quantum states which are not orthogonal.  

 

Partially mixed state is selected in order to estimate unbiased values in the present study. Consider a 

quantum system of two spin one half particles. One particle is in the z-up spin state and the other in the x-

up state. From the classical Shannon point of view, we have a mixture with 𝑝1 = 𝑝2 = 0.5, giving and 

entropy of −(0.5 log 0.5) − (0.5 log 0.5) = 1. The partially density matrix in the z-presentation is given 

by:  

 

𝜌 =
1

2
⎹ ↑⟩⟨↑ ⎸ +

1

2

(⎹↑⟩+⎹↓⟩) 

√2

(⟨↑⎸+⟨↓⎸)

√2
.            (7) 

 

The density matrix should be diagonalised to calculate von Neuman entropy (𝑆𝑣𝑁), i.e. to calculate its 

eigenvalues. That can be generated by solving secular equation (
0.75 − 𝜆 0.25

0.25 0.25 − 𝜆
) = 0. This yields λ= 

0.1464 or 0.8536, (i.e.  𝜆𝑚𝑖𝑛 = 0.1464  and 𝜆𝑚𝑎𝑥 = 0.8536 ) and, 𝑆𝑣𝑁 = 0.6007.  
 

With regard to the new proposed estimator 𝜆𝑚𝑎𝑥 is the main parameter. Let 𝑓𝑘 (abundance frequency 

counts), 𝑘 = 1,2, … , 𝑚, be the number of species that are detected exactly 𝑘 times in the plot. In this case, 

𝑘̂ denotes the value to be added to the number of individuals of a species that is detected exactly 𝑘 times in 

the plot. In other worlds, 𝑘̂ is the estimated number of individuals of the species detected 𝑘 times that 

referring to undetected species and it is computed by:  

 

𝑘̂ =
𝜆𝑚𝑎𝑥𝑘

𝑘𝑘 .                (8) 

 

𝜆𝑚𝑎𝑥 is calculated by the following equation 

 

𝜌𝑓𝑘
=

𝑓𝑘

𝑆𝑜𝑏𝑠
⎹ ↑⟩⟨↑ ⎸ +

(𝑆𝑜𝑏𝑠−𝑓𝑘)

𝑆𝑜𝑏𝑠

(⎹↑⟩+⎹↓⟩) 

√2

(⟨↑⎸+⟨↓⎸)

√2
          (9) 

 

where 𝑆𝑜𝑏𝑠 denotes the total number of detected species in a plot.  

 

Total value (𝑘̂) of the number of individuals of ith detected species and the estimated number of individuals 

of ith detected species obtained by referring to an undetected species is defined by the following equation.  

 

𝑘̃ = 𝑘̂ + 𝑘 .                      (10) 

 

When 𝑘̃ is found, 𝑝̃𝑘 is computed by:  

 

𝑝̃𝑘 =
𝑘̃

∑ 𝑓𝑘𝑘𝑆
𝑖=1 +∑ 𝑓𝑘𝑘̂𝑆

𝑖=1

=
𝑘̃

∑ 𝑓𝑘𝑘̃𝑆
𝑖=1

                   (11) 

 

where 𝑝̃𝑘 is the relative value obtained from total value of the number of individuals, ith detected species 

and the estimated number of individuals of ith detected species that is referred to an undetected species.  

 

Finally bias-corrected entropy (𝐻̂𝑂) is defined as:  

 

𝐻̂𝑂 = − ∑
𝑝̃𝑘 ln 𝑝̃𝑘

1−(1−𝑝̅)
(∑ 𝑓𝑘𝑘𝑆

𝑖=1 +∑ 𝑓𝑘𝑘̂𝑆
𝑖=1 )

𝑆
𝑖=1 𝐼(𝐴𝑖) = − ∑

𝑝̃𝑘 ln 𝑝̃𝑘

1−(1−𝑝̅)∑ 𝑓𝑘𝑘̃𝑆
𝑖=1

𝑆
𝑖=1 𝐼(𝐴𝑖)             (12) 
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where 𝑝̅ = 1 𝑆⁄  and 𝐼(𝐴𝑖) is the usual indicator function. If the event 𝐴𝑖  is true, then 𝐼(𝐴𝑖) = 1, 𝐼(𝐴𝑖) = 0, 
otherwise. In this approach, the species corresponding to each of the 𝑘 values, in particular doubletons play 

roles to reduce bias even though singletons have the highest contribution value.  

 

Suppose that there are 59 species, with only one induvial (𝑓1 = 59) and, the number of the total species 

(𝑆𝑜𝑏𝑠) is 78 in a sample plot.  The partially density matrix for 𝑓1 is:  

 

𝜌𝑓1
=

59

78
⎹ ↑⟩⟨↑ ⎸ +

(78−59)

78

(⎹↑⟩+⎹↓⟩) 

√2

(⟨↑⎸+⟨↓⎸)

√2
   

 

=
59

78
⎹ ↑⟩⟨↑ ⎸ +

19

78

(⎹↑⟩+⎹↓⟩) 

√2

(⟨↑⎸+⟨↓⎸)

√2
  

 

= (
0.878205 − 𝜆 0.121795

0.121795 0.121795 − 𝜆
) . 

 

This yields 𝜆𝑚𝑖𝑛 = 0,1026 and 𝜆𝑚𝑎𝑥 = 0,8974. In this case, 𝑘̂ = 0.8974 × 1 11 = 0.8974 ⁄ and 𝑘̃ =

0.8974 + 1 = 1.8974 for 𝑓1. If ∑ 𝑘̃𝑆
𝑖=1 =185, then 𝑝̃1 = 0.0102. This 𝑝̃1 value is valid for all the 

singeletons. After computing 𝑝̃𝑘 for all 𝑘, bias corrected entropy (𝐻̂𝑂) is found by using equation 12.  

 

3. DATA EXAMPLES  

 

The data including the frequency counts for beetles of DT (day-time) and NT (night-time) (Table 1) found 

in the paper of Chao and Shen [7] was obtained from “Osa primary-hill, dry season, 1967” in Janzen’s 

papers [16,17]. As explained by Chao and Shen [7], for DT and NT plots, most of the species has only one, 

two or three individuals, and there are only a few abundant species (Table 1). It is clear that a relatively 

large fraction of species has been missed in the plots due to occurrences of most singletons in both of the 

plots.  

 

As reported by Chao and Shen [7], MLEBC has the lowest precision for DT and NT Since the bias-corrected 

MLE yields the highest estimate (Table 2). The new proposed estimator (𝐻̂𝑂) has the closest value to the 

value of the proposed estimator of Chao and Shen (𝐻̂𝐶𝑆) for both of the plots (Table 2). In this case, it may 

be said that 𝐻̂𝑂 shows a much better precision than MLEBC for both of those plots.  

 

Table 1. Frequency counts for beetles data (DT (Day-Time), NT (Night-Time)), bird data (EW (Endemic 

woodland), (CP) Conifer plantation) and coin data (OS (Observed site), RS (Reserve site)) from Chao and 

Shen [7]  

 DT NT EW CP OS RS 

 𝑘 𝑓𝑘 𝑘 𝑓𝑘 𝑘 𝑓𝑘 𝑘 𝑓𝑘 𝑘 𝑓𝑘 𝑘 𝑓𝑘 

 1 59 1 56 1 4 1 2 1 102 1 156 

 2 9 2 9 2 3 2 1 2 26 2 19 

 3 3 3 7 3 5 3 2 3 8 3 2 

 4 2 5 2 5 1 4 1 4 2 4 1 

 5 2 7 1 6 1 5 1 5 1 5 0 

 6 2 10 1 11 1 9 1 6 1 6 0 

 11 1 14 1 16 1 11 1 7 1 7 0 

   16 1 21 1 14 1     

   18 1 25 1 20 1     

     26 1 30 2     

     35 1 65 1     

𝑆𝑜𝑏𝑠 78 79 20 14 141 178 

𝑛 127 170 170 198 204 204 

 

With regard to the data taken from Batten [18] by Chao and Shen [7], abundant species is dominant in both 

of EW and CP plots (Table 1). As a result of this, Chao and Shen [7] concluded that there were two missing 
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species for the EW and only one species was undiscovered for the CP. It means that almost all species were 

discovered. As a result of this, all estimators and 𝐻̂𝑂 exhibit very close values to the value of MLE.  

 

Coin data given by Holst [19] has been discussed previously by Chao and Lee [12]. The data for the two 

sides are given in Table 1. For two sides, as concluded by Chao and Lee [12], MLE is likely to be negatively 

biased. As can be seen in Table 2, 𝐻̂𝑂 yields the closest estimate to 𝐻̂𝐶𝑆 for OS while it has almost the same 

value with the value of JK for RS data.  

 

Table 2. The results of MLE, bias-corrected MLE (MLEBC), Jackknife (JK), the proposed estimator of 

Chao and Shen (𝐻̂𝐶𝑆) and the new proposed estimator (𝐻̂𝑂) for beetles data, bird data and coin data (note 

that the values of MLE, MLEBC, JK and (𝐻̂𝐶𝑆) were taken from Chao and Shen [7])  

Assemblages *MLE *MLEBC *JK *𝑯̂𝑪𝑺 𝑯̂𝑶 

DT 4.08 5.11 4.62 4.7 4.69 

NT 3.83 4.62 4.24 4.3 4.33 

EW 2.41 2.47 2.48 2.49 2.48 

CP 2.06 2.09 2.10 2.09 2.09 

OS 4.80 5.72 5.41 5.56 5.53 

RS 5.13 7.20 5.96 6.63 5.96 

 

Principle component analysis (PCA) was applied to observe the locations of the estimators using the data 

found in Table 2. As a result of the PCA, eigenvalues of the axes were found 0.918376 (96.264%), 

0.0301362 (3.1589%), 0.0053526 (0.56106%) and 0.000156992 (0.016456%) respectively.  

 

 
Figure 1. PCA results of the estimators 

 

It is clear that most of the percentage of the total variance (96.264%) is explained by the first axis. 

According to the first axis, MLE is located in the left site opposite to the location of MLEBC. 𝐻̂𝑂 is located 

between JK and 𝐻̂𝐶𝑆 and its’ nearest neighbor estimator is JK along the first axis.  

 

The relative estimator values between the pairwise assemblages were also computed (Table 3). By using 

this data, the applied PCA results were given in Figure 1. The first axis explains 95.69% of the total 

variance. According to the first axis, 𝐻̂𝑂 is still located between JK and 𝐻̂𝐶𝑆, but, instead of JK, its’ nearest 

neighbor is 𝐻̂𝐶𝑆 along the first axis in this time (Figure 1).  

 

Table 3. The relative values of the estimators in accordance with the pairs of the assemblages 

 MLE MLEBC JK 𝑯̂𝑪𝑺 𝑯̂𝑶 

DT/NT 1.065274 1.106061 1.089623 1.093023 1.081408 

DT/EW 1.692946 2.068826 1.862903 1.88755 1.892368 

DT/CP 1.980583 2.444976 2.2 2.248804 2.242596 

DT/OS 0.85 0.893357 0.853974 0.845324 0.847976 
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DT/RS 0.795322 0.709722 0.775168 0.708899 0.787081 

NT/EW 1.859223 2.210526 2.019048 2.057416 2.073773 

NT/CP 1.859223 2.210526 2.019048 2.057416 2.073773 

NT/OS 0.797917 0.807692 0.783734 0.773381 0.784140 

NT/RS 0.746589 0.641667 0.711409 0.648567 0.727829 

EW/CP 1.169903 1.181818 1.180952 1.191388 1.185074 

EW/OS 0.502083 0.431818 0.45841 0.447842 0.448103 

EW/RS 0.469786 0.343056 0.416107 0.375566 0.415924 

CP/OS 0.429167 0.365385 0.38817 0.375899 0.378122 

CP/RS 0.401559 0.290278 0.352349 0.315234 0.350969 

OS/RS 0.935673 0.794444 0.907718 0.838612 0.928188 

 

 
Figure 2. PCA results of the proportional values between the estimators of the assemblages 

 

4. CONCLUDING REMARKS AND DISCUSSION  

 

A new approach is proposed to reduce bias when there are undetected species in a plot. This new proposed 

estimator is based on partially mixed density matrix. If the species inventory is complete and all species are 

found in the plot, then the maximum likelihood approach (MLE) gives accurate results. Like the other 

estimators, (i.e. bias-corrected MLE (MLEBC), Jackknife (JK) and the proposed estimator of Chao and Shen 

[7] (𝐻̂𝐶𝑆)) the new proposed estimator (𝐻̂𝑂) computes a value, almost the identical value of MLE since a 

complete inventory includes many species and, very few of them are rare, meaning of slightly bias. 

However, such an inventory is not cost-effective and causes considerable time consuming. Bias-corrected 

estimators therefore play essential role to accurately measure biodiversity.  

 

As reported by Chao and Shen [7], Chiu et al. [21] and Chao and Chiu [22], due to sampling limitation, 

there are undetected species in almost every species inventory. Thus the simple count of species in a plot 

underestimates the true species richness. To estimate accurate or true species richness, rare species are 

important because they yield the most information about the undetected species. Computations of the 

estimators (i.e., MLEBC, JK and  𝐻̂𝐶𝑆 ) for obtaining the bias corrected values are based on this notion. The 

new proposed estimator was built considering the same notion. In this sense, the species with only one 

individual (singletons) in a reference plot give the most information about occurrences of another species 

that were not able to be detected during the inventory. In this approach, the other counts (k=2, 3,…,m) in 

particular doubletons play also role to reduce bias.  

 

The main difference of the new proposed estimator from the other estimators is that relative values (𝑝̃𝑘) are 

computed by summing up the number of individuals of the species detected  𝑘 times and the estimated 

number of individuals of the species detected  𝑘 times that refers to undetected species.  
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The results belonging to DT, NT, EW, CP and OS of the new proposed estimator 
(𝐻̂𝑂) seem to be very reasonable in comparison with the results of  𝐻̂𝐶𝑆. The most important differentiation 

appears between the results of 𝐻̂𝑂 and  𝐻̂𝐶𝑆 when OS data is used. However it is not unexpected result 

because 𝐻̂𝑂 is a different approach from  𝐻̂𝐶𝑆 and it computes the values using its’ self-algorithm.  

 

According the PCA results, as can be seen in Figure 1 and Figure 2, 𝐻̂𝑂 is located between JK and  𝐻̂𝐶𝑆 

along the first axes that explains most of the total variance. However there is an important difference 

between the results of the two PCA. Namely, by using the data including the values of the estimators, the 

applied first PCA results shows that the nearest neighbor of 𝐻̂𝑂 is JK. That result may be evaluated that the 

accuracy of 𝐻̂𝑂 is insufficient. However, the relativeness among the estimated values is usually essential in 

particular biodiversity modelling and mapping attempts from ecological point of view. The second PCA 

was therefore applied to the data including the relative values of the estimators between the pairwise 

assemblages and it was found that instead of JK, the nearest neighbor of 𝐻̂𝑂 became 𝐻̂𝐶𝑆.  

 

As a conclusion, all the results indicate that 𝐻̂𝑂 is no fewer than MLEBC. Thus the new proposed estimator 

(𝐻̂𝑂) can also be used as an alternative bias-corrected estimator as well as the other estimators. This 

proposed estimator may be also used to estimate unbiased diversity using transformed data obtained from 

species abundance data since it takes account of all the species data found in an assemblage.  

 

CONFLICTS OF INTEREST  

 

No conflict of interest was declared by the author. 

 

REFERENCES 

 

[1] Shannon, C.E., “A mathematical theory of communication”, Bell System Technical Journal, 27(3): 

379-423, (1948).  

 

[2] Gorelick, R., “Combining richness and abundance into a single diversity index using matrix 

analogues of Shannon’s and Simpson’s indices”, Ecography, 29: 525-530, (2006).  

 

[3] Miller, G., “Note on the bias of information estimates”, Information Theory in Psychology: Problems 

and Methods, 95-100, (1955).  

 

[4] Grassberger, P., “Finite sample corrections to entropy and dimension estimates”, Physics Letters A, 

128(6-7): 369-373, (1988).  

  

[5] Holste, D., Grosse, I., Herzel, H., “Bayes' estimators of generalized entropies”, Journal of  Physics 

A: Mathematical and General, 31(11): 2551-2566, (1998).  

 

[6] Grassberger, P., “Entropy Estimates from Insufficient Samplings”, ArXiv Physics e-prints, 0307138, 

(2003).  

 

[7] Chao, A., Shen, T.J., “Nonparametric estimation of Shannon's index of diversity when there are 

unseen species in sample”, Environmental and Ecological Statistics, 10(4): 429-443, (2003).  

 

[8] Schurmann, T., “Bias analysis in entropy estimation”, Journal of Physics A: Mathematical and 

Theoretical, 37(27): L295-L301, (2004).  

 

[9] Bonachela, J.A., Hinrichsen, H., Munoz, M.A., “Entropy estimates of small data sets”, Journal of 

Physics A: Mathematical and Theoretical, 41(20): 1-9, (2008).  

 

[10] Zhang, Z., “Entropy Estimation in Turing's Perspective”, Neural Computation, 24(5): 1368-1389, 

(2012).  



236 Kursad OZKAN / GU J Sci, 33(1): 229-236 (2020) 

[11] Chao, A., Wang, Y.T., Jost, L., “Entropy and the species accumulation curve: a novel entropy 

estimator via discovery rates of new species”, Methods in Ecology and Evolution , 4(11): 1091-1100, 

(2013).  

 

[12] Chao, A., Lee, S.M., “Estimating the number of classes via sample coverage”, Journal of the 

American Statistical Association, 87(417): 210-217, (1992).  

 

[13] Chao, A., Hwang, W.H., Chen, Y.C., Kuo, C.Y., “Estimating the number of shared species in two 

communities”, Statistica Sinica, 10: 227-246, (2000).  

 

[14] Chao, A., Ma, M.C., Yang, M.C., “Stopping rules and estimation for recapture debugging with 

unequal failure rates”, Biometrika, 80(1): 193-201 (1993).  

 

[15] Zahl, S., “Jackknifing an index of diversity”, Ecology, 58(4): 907-913, (1977).  

 

[16] Janzen, D.H., “Sweep samples of tropical foliage insects: description of study sites, with data on 

species abundances and size distributions”, Ecology, 54(3): 659-686, (1973a).  

 

[17] Janzen, D.H., “Sweep samples of tropical foliage insects: effects of seasons, vegetation types, 

elevation, time of day, and insularity”, Ecology, 54(3): 687-708, (1973b).  

 

[18] Batten, L.A., “Bird communities of some Killarney woodlands”, Proceedings of the Royal Irish 

Academy. Section B: Biological, geological, and chemical science. Royal Irish Academy, 76: 285-

313, (1976).  

 

[19] Holst, L., “Some asymptotic results for incomplete multinomial or Poisson samples”, Scandinavian 

Journal of Statistics, 8: 243-246, (1981).  

 

[20] Li, Y.,  Busch, P., “Von Neumann entropy and majorization”, Journal of Mathematical Analysis and 

Applications 408(1): 384–393, (2013).  

 

[21] Chiu, C.H., Wang, Y.T., Walther, B.A., Chao, A., “An improved nonparametric lower bound of 

species richness via a modified Good–Turing frequency formula”, Biometrics, 70: 671-682, (2014).  

 

[22] Chao, A., Chiu, C.H., “Species richness: estimation and comparison”, Wiley StatsRef: Statistical 

Reference Online, 1-26, (2016).  


