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Abstract 

Let 
,

ˆ
n mG  denote the set of all simple graphs with n vertices and m edges. In this paper, for a given 

type of graph Hermite matrix A, we determine the average values of the difference between A-

energies of two graphs randomly chosen from ,
ˆ

n mG . These results yield criterions for deciding 

when two graphs are almost A-equienergetic. Our results generalize some previous results in the 

literature. Moreover, we give new results on Laplacian energy. 

 

Received: 26/02/2019 
Accepted: 01/10/2019 

 

 

Keywords 

(A-) Energy of Graph 

Almost (A-) 
Equienergetic Graphs 

 

 

 

 

1. INTRODUCTION 

 

Let G be a simple graph with n vertices labeled as 
1 2, ,..., nv v v   and m edges. The degree of the vertex 

iv , 

denoted by 
id , is equal to the number of vertices adjacent to 

iv .  Let A(G) be the  0,1 -adjacency matrix of 

G with eigenvalues 
1 2, ,..., n   . The eigenvalues of A(G) are said to be the eigenvalues of G and to form 

its spectrum [1]. The energy of a graph G, denoted by  E G , is defined as the sum of absolute values of its 

eigenvalues, i.e., [2] 
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The concept of graph energy has important applications in molecular orbital theory of organic molecules 

[3,4]. It is used for estimation on the total  -electron energy of conjugated hydrocarbons [5]. For more 

information on  E G , see [6-9]. 

 

Two non-isomorphic graphs are said to be cospectral if they have same eigenvalues [1]. Any two graphs 

1G  and 
2G  having same number of vertices are said to be equienergetic if    1 2E G E G  [10-12]. 

Cospectral graphs are clearly equienergetic. Recently, several authors determined the constructions of 

noncospectral equienergetic graphs [13-16]. Furthermore, there exists graphs whose energies are different 

but remarkably close. These type of graphs are said to be almost equienergetic graphs [10,15]. At first, 
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Graovac et al. [10] gave some theoretical results for almost equienergeticity using the average value of the 

difference between the energies of two graphs. According to the numerical experience, the authors [15] 

took the criterion for almost equienergeticity of two graphs 
1G  and 

2G  such that     8

1 20 10E G E G      

and they gave detailed study on almost equienergetic trees. In [17], Stanić and Gutman showed that the 

limit value 810  is arbitrary and unjustified and presented some arguments in favor of possibility that the 

difference    1 2E G E G can be much smaller. For more details on almost equienergetic graphs, see [18]. 

Let    1 2, , , nD G diag d d d be the diagonal matrix of the vertex degrees of the graph G. The Laplacian 

matrix of G is defined as      L G D G A G   with 
1 2 0,n       where  A G  is the adjacency 

matrix of G [19]. In [20], Gutman and Zhou extended the concept of ordinary graph energy and defined the 

Laplacian energy of G as 
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                                                                                         (2) 

 

For survey and more information on  LE G , see [21-23]. 

 

In full analogy with graph energy, Laplacian equienergetic and almost Laplacian equienergetic graphs are 

defined and studied in [15]. For details on these graphs, see the recent papers [24-26]. 

 

Recall that [27] a square matrix  ,i jA a   such that *A A  is said to be Hermite matrix, where *A denotes 

the conjugate transpose of .A  This is well known fact that the eigenvalues of Hermite matrix A are real 

numbers and can be ordered according to decreasing size [27]. In [28], Liu and Liu generalized the concepts 

of graph energy and Laplacian energy to any Hermite matrix A as follows: For an n n  Hermite matrix A 

with eigenvalues  
1 2 n     , the energy of A or A-energy is defined as [28] 

 
 
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n

i

i

tr A
HE HE A

n




                                                                                                                       (3) 

 

where  tr A is the trace of the matrix A. Throughout this paper instead of  tr A , we shortly use the notion 

T. 

 

Let 
nI  be the n n  identity matrix. If A is a Hermite matrix, then n

T
A I

n
  is also a Hermite matrix [28].   

Let 
1 2 n      be the eigenvalues of n

T
A I

n
 . Obviously, i i

T

n
   , that is, i i

T

n
    [28]. Then, 

Equation (3) turns into [28] 

 
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n

i

i

HE HE A 
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                                                                                                                                   (4) 

 

Specially for a graph G, if A is the adjacency matrix (whose trace is 0) of G, then    HE A E G  [28]. If 

A is the Laplacian matrix (whose trace is equal to 2m) of G, then    HE A LE G [28]. 

 

For a given type of graph Hermite matrix A, two graphs are said to be A-equienergetic if they are not A-

cospectral, yet have equal A-energies [26]. Moreover, if the difference between A-energies of two graphs 

is very small, we call these graphs as almost A-equienergetic. In this paper, we determine the average values 

of this difference in order to decide when the difference is very small. Our results are natural generalization 

of the results obtained in [10,29] and give new results on Laplacian energy [20]. 
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2. PRELIMINARIES 

 

In this section, we give some preliminaries which will be used in the subsequent section. 

Lemma 2.1. [28] Let  i jA a be an  n n  Hermite matrix and let  
2

, 1

n

i j

i j

S a


 , where 
i ja  is the modulo 

of 
i ja . Then 

2
2 2

1 1 1 1

, , 0 and .
n n n n

i i i i

i i i i

T
T S S

n
   

   

         

For the case of adjacency spectrum and Laplacian spectrum in Lemma 2.1, the following corollary was 

given in [28]. 

 

Corollary 2.2. [4, 20, 28] 
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and 
2 22

1 1

2 1 2
2 2 .

2

n n def
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i i
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

 

    
          

     
   

Using Lemma 2.1, one can easily arrive at the following result. 

Lemma 2.3. Let  i jA a  be an n n  Hermite matrix with eigenvalues 
1 2 n     . Let 3

1
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  

and S and T  be given as in Lemma 2.1. Then  
3
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Let t denote the number of triangles of a graph G. For the case of adjacency and Laplacian matrices of G in 

Lemma 2.3, we have the following observation: 

 

Corollary 2.4. 

3

1
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      , see [30].   

Combining this with Corollary 2.2, 
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Let ,
ˆ

n mG  be the set of all simple graphs with n vertices and m edges and let 1 2 ,
ˆand n mG G G . Let 

1A  and 

2A  be the same kind of Hermite matrices of 
1G  and 

2G , respectively. The average value of the difference 

   1 2HE A HE A  will be denoted by     1 2E HE A HE A . In here, the averaging is taken over all 

pairs of the elements in ,
ˆ

n mG . Instead of     1 2E HE A HE A  we handle the following quantity 

     2

1 2E HE A HE A                                                                                                                         (5) 

whose statistical analysis is simpler. Indeed, 

       1 2E HE A E HE A E HE   

and 
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         
2 2 2

1 2 .E HE A E HE A E HE   

Since  1HE A  and  2HE A  are considered as independent random variables, 

             
2

1 2 1 2. . .E HE A HE A E HE A E HE A E HE   

Therefore 

          
22 2

1 2 2E HE A HE A E HE E HE   
  

                                                                               (6) 

where  E HE and  2E HE  denote the average values of the energy pertaining to any Hermite matrix of 

the graph and its square, respectively, averaged over all elements in 
,

ˆ
n mG . 

 

3. MAIN RESULTS 

 

Considering the similar techniques in [10], we now present general results which cover the energies of all 

Hermite matrices of graphs. For a given type of Hermite matrix A of a simple graph G with n vertices and 

m edges, recall that 
1 2 n      denote the eigenvalues of n

T
A I

n
 , where 

nI  is n n  identity matrix. 

Using Eq. (4), we first give an approximate relation between  E HE  and  2E HE , averaged over all 

elements in ,
ˆ

n mG . In order to do this, we assume that 
1 2, , , n    are replaced by the random variables 

1 2, , , nx x x  with an arbitrary probability distrubition which is the same for each 
ix . 

Theorem 3.1. Let  E HE and  2E HE be the average values of the energy pertaining to any Hermite 

matrix A of the graph and its square, respectively. Let S and T be given as in Lemma 2.1. Then 
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.
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
                                                                                                            (7) 

Proof. We start with taking the average value of the square of the energy pertaining to Hermite matrix A 
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by Lemma 2.1, for all graphs in ,
ˆ

n mG , 

2
2

1

.
n

i

i

T
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n




                                                                                                                                             (8) 

By replacing 
i and  

j  with 
ix and 

jx  and bearing in mind these two variables are statistically independent 

such that      i jE x E x E x  , we obtain 

    
2

2
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.
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E HE S nE x
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
                                                                                                             (9) 

Clearly, 

       
1 1 1

.
n n n

i i i

i i i

E HE E E E x nE x 
  

 
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 
                                                                           (10) 

Then, by (9) and (10), we have 

    
2

2
2 1

.
T n

E HE S E HE
n n


    

Hence, we complete the proof of theorem.  

By Corollary 2.2, for the adjacency matrices of the graphs in ,
ˆ , 2n mG S m  and 0T  . Therefore, from 

Theorem 3.1, we have the following result. 
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Corollary 3.2. [10] Let   E E  and  2E E  be the average values of the ordinary graph energy and its 

square, respectively. Then 

    
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2 .

n
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n


                                                                                                                     (11) 

By Corollary 2.2, for the Laplacian matrices of the graphs in 2

,

1

ˆ ,  2 ,  2
n
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
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  Then, from Theorem 3.1, we have the following observation: 

Corollary 3.3. Let  E LE  and  2E LE be the average values of the Laplacian energy and its square, 

respectively. Then 
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2 1
2 .
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E LE M E LE
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
                                                                                                               (12) 

Note that we get relation (7) without specifying the actual distribution of the random variables 
1 2, , , nx x x

. If we want to obtain the average difference (5) from (6) and (7), then we need to know this distrubution, 

at least approximately. For this, we utilize the probability function  x  of the random variables 

1 2, , , nx x x . Using the function  x , we present a statistical model for the actual distrubution of the 

eigenvalues 
1 2, , , n    associated with any type of Hermite matrix of the graphs in ,

ˆ
n mG . Note that  x  

must satisfy the following conditions [10]: 

  0,x    for all  ,x                                                                       (13) 

and 

  1x dx





                                                                                                                                               (14) 

By Lemma 2.1, for all graphs in ,

1

ˆ ,  0
n

n m i

i
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 . Then, we require that  

  0x x dx
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By (4) and (10) 
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Theorem 3.4. Let 
1G  and 

2G  be two graphs randomly chosen from the set ,
ˆ

n mG  and 
1A  and 

2A  be the 

same kind of Hermite matrices of 
1G  and 

2G , respectively. Further let S and T be given as in Lemma 2.1. 

Then 
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Proof. In this proof, we utilize the following uniform-distrubition for   x  [10] 
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Note that  x satisfies the conditions (13)-(15) and the parameter   in (18) will be determined with the 

condition 

 

2

2 .

T
S

nx x dx
n







                                                                                   (19) 



243 Ilkay ALTINDAG / GU J Sci, 33(1): 238-247 (2019) 

 

This gives just a reformulation of (8). In (19), the quantity 
2T

S
n

  must be considered as the average 

2T
S

n
  value of the graphs in 

,
ˆ .n mG  By (16), (18) and (19), we obtain that 

2

3
T

S
n

n


 
 

 
 and so 

 
23

.
2

T
E HE n S

n

 
  

 
                                                                                   (20) 

 

Then by (6), (7) and (20) 
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Hence the required result holds. 

From Theorem 3.4, we particularly have the following corollaries. 

 

Corollary 3.5. [10] By Corollary 2.2, for the adjacency matrices of the graphs in ,
ˆ

n mG , 2S m  and 0T 

. Thus 
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Corollary 3.6. By Corollary 2.2, for the Laplacian matrices of the graphs in ,
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Theorem 3.7. Let 
1G  and 

2G  be two graphs randomly chosen from the set ,
ˆ

n mG and 
1A  and 

2A be the same 

kind of Hermite matrices of 
1G  and 

2G , respectively. Further let P, S and T be given as in Lemmas 2.1 and 

2.3. Then 
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Proof. In the proof, we use the following model for  x which is given in [10] 
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Note that the parameters , ,h   and h  in (24) will be found from the conditions (14), (15), (19) and (25) 
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which is a reformulation of the identity given in Lemma 2.3. In (25), the quantity 
3

2

3 2ST T
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From (14) and (15), Graovac et al. 
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from which 
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                                           (27) 
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   

   
    

   

                          (28) 

By (16), (24) and (26)-(28), we also get 

 
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2

2
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.
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9
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         
      

  
    
  

 

Taking into account this result with (6) and (7), we obtain the required result. 

 

From Theorem 3.7, we particularly have the following results. 

 

Corollary 3.8. [10,29] By Corollaries 2.2 and 2.4, for the adjacency matrices of the graphs in 

,
ˆ , 6 , 2n mG P t S m   and  0T  . Thus 
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2

1 2 3 2
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m nt
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
                                                                 (29) 

Corollary 3.9. By Corollaries 2.2 and 2.4, for the Laplacian matrices of the graphs in ,
ˆ

n mG , 

3 2 2

1 1 1
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Therefore 

    
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Remark 3.10. We point out that (17) gives somewhat better estimation than (23) when 
3

2

3 2
0.

ST T
P

n n
    

Moreover, it is easy to see that (23) reduces to (17) when 
3

2

3 2
0.

ST T
P

n n
    

4. CONCLUSIONS 

 

In this paper, we present an approximate relation between the average values of the energy pertaining to 

any Hermite matrix of the graph and its square, averaged over all elements in 
,

ˆ .n mG  Using this result, for a 

given type of graph Hermite matrix A, we determine the average values of the difference between A-

energies of two graphs randomly chosen from 
,

ˆ .n mG These results generalize the results obtained in [10, 29] 

on graph energy [2] and Randić energy [31] and give new results on Laplacian energy [20]. Note that 

various analogous properties between the ordinary graph energy and Laplacian energy have been recently 

discovered in [20, 32]. From the results given in (11), (12), (21), (22), (29) and (30), we conclude that these 

results are also similarities between the graph energy and Laplacian energy. 

 

Finally, it is worth to mention that signless Laplacian energy, distance energy and etc. [6, 8, 33, 34] are also 

the special cases of the energy of Hermite matrix of a graph. Therefore all main results can be directly 

applied to these graph energies. 
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