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ABSTRACT

In the paper, we study one-to-one mappings of p dimensional surfaces of n dimensional euclidean
spaces in 2n dimensional euclidean space. In the paper, we use the method of moving frames and
exterior forms. The results about conjugacy and orthogonality of nets and conformity of mappings
are obtained.
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1. Introduction

Let us consider completely orthogonal Euclidean spaces E,, and E,, in Euclidean space Es,,, with common point

O. Let V, and V;, be smooth surfaces in E,, and E,,, respectively. We are going to study a differentiable and one

to one mapping 7" :V,, =V, which transforms a domain €2 C V}, into a domain 2 C V,,. If point z; changes in

the domain Q then the point zo = T'(x1) describes the domain Q C V,,, and the point = with position vector
= = = _ A = _ A : O * sk

7 = 7] + 75, where 77 = Oz and 75 = Oz, describes a domain Q* of surface V.5, which is called a graph of

the mapping 7' [1].

2. Main Results

Let Ry = {z1,€i, €}, Ro = {22,€n+ti,Enta} (1,5 = 1,p;a, 8 =p+ 1,n), be corresponding moving frames in E,
and E,, and let &; € T,(z1), (dT)z, (€;) = €nvi € Tp(x2), where Ty (x1),T,(z2) are tangent planes of the surfaces
V, and V,, respectively, at the corresponding points z; and x5, and €, and &, form an orthonormal basis for
the orthogonal complements of T,(z1) and T,(z2) in corresponding spaces E,, and E,,. Derivational formulae
for these frames are the following;:

dT) = W'&;, dé; = WlEj + WPE,, dEy = W' & + wles (2.1)

ATy = @' iy dErnyi = @) Enij + Of i ABria = W Enri +WiE, 5. (2.2)

At the point z € V) a frame R = {7,&},&p1i,Epras Enta ) 1S formed. Here & = €; + €14, Epri = €; — NisT™ €nt i,
Epta = Easnta = €ntas & € Tp(x), and 0,5, 7;; are metrical tensors of the the surfaces V,, and Vp, respectively.
Then metrical tensor of the surface vy will be g;; = ni; + 7:5. The vectors €., €pta, €nta determine a plane
Nsy,—p(x), which is an orthogonal complement of the plane T'(z) in the space Es,. Infinitesimal displacement
of the frame R are defined by the following equations:

dz = 0's;, (2.3)

déy = 0,6 + 0778, + 07 " Gppa + 0, Ensa(h =ip+ip+anta) (2.4)
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The frames R;, R and R are agreed and therefore the following system of differential equations is obtained:

wi:fDi:Gi,w?:a?jwj,a%:a?i,wa:O,GO‘:O, (2.5)
@y = b b = b, 07T = 0,007 = 0,0"T* =0, (2.6)
OFT = 0 T = 0T = T T = 27)
92*0‘ = cZ;LO‘QQ CZ;FQ = c?,j%wf = 9? + 9?”, (2.8)

Wi = 00T @l = 0] + 0 g o = gt (2.9)
075 = 0,wl +w§ = 0(a # 8),7 + 3% = 0(a # B), (2.10)
W =0,7% = 0. 2.11)

If we consider in the plane 7),(x2) a unit sphere
nuw =1, (2.12)

then in the transformation K, this sphere is obtained from an ellipsoid of plane T, (x1), which is called the
deformation ellipsoid [2]. Main axes of this ellipsoid are defined from the system of equations

(M — pmig)w’ =0, (2.13)

where 1 is a root of the equation
det [|7;; — pni; | = 0. (2.14)

System of p linearly independent fields of main directions of the ellipsoids of deformation define an orthogonal
net o, in, Q which corresponds to the orthogonal net 7, = T'(0,,) in the domain Q C V,,.

In the case when all the semiaxes of the ellipsoid of deformation are different, for all points of the domain
under consideration, the nets o, and 7, are defined uniquely. This transformation should be included into the
type (1,1,1,...,1), based on the classification introduced by Melzi [3]. Bazylev V.T. calls the mappings of the
mentioned type as simple [1].

Parameters of the characteristic directions of the mapping are defined through the system of equations

(WF — @)Wt = Ak, (2.15)
From the equations (2.5),(2.6),(2.7),(2.8),(2.9) we find
aij = C?‘;ra7 b?j = CZ+(¥. (2.16)
The equalities (2.16) show that there are 2(n — p) forms within 2n — p second quadratical forms of the surface
V5, which are transferred from V,, and V, without any change.
Using the equalities (2.16), it is more suitable to denote the quadratical forms of the surface V," as follows:

+k __
PP = C;

j—',—kwiwj7 ¢p+o¢ _ a%wiwj7 ¢n+a _ b;?_awiwj.
The quadratical forms ¢+, ¢" are transferred from V,, and V,, respectively.

q p p p Y-
Suppose that within 2n — p quadratical forms ¢P+%, ppte, pn+* the forms ¢P*+* are linearly independent. Then

pp q y p
we have
N . .
grre = APHagRti gnbo — yntogrti, (2.17)

In the general case each of the surfaces V, and V,, has % linearly independent quadratic forms. The

conditions (2.17) mean that within n — p quadratical asymptotic forms of the surfaces V,, and V,,, which have in

general % linearly independent quadratic forms, there are only p forms remaining independent, for each.
We can consider in the plane N3, () of the graph of V' the vectors

%
Ci=t e+ D+ by (2.18)
%
7@‘ = aff’“?ﬁk, bij = bf;_k?nerJrk- (2.19)
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By taking into account (2.16), (2.17), from (2.18) we find

Ty = (?M FATD A;;*P“?W,H) . (2.20)
Let us denote 7, = ?p+k + )\Z”?gpﬂ- + /\Z”’ +i?n+p+i. Consequently, the vectors < will be basis vectors of
the main normal N of the surface V. By projecting orthogonally the the main normal N; on E,, and E,,, we
find two planes

Np(a1) = [w1, @, Ny(wa) = w2, b1,

— k—
nti + )\n+p+

where d; =¢; + )\"+k_>p+k, ?1 = —msﬁsj € € nip+k- We can show that the plane N »(z1)
(N (22)) does not share a common line with the plane T,(z1) and N,(z1) (T, (x2) and N, (x2)).

Let us fix a net ¥, on the surface V,. The the set ¥, = T (3,) on the surface V, is fixed, too. Let us direct
the vectors @1, ?2, e p along the tangent lines of the lines of the net ¥, at the point ;. Then the vectors
i1, €ntas s ?nﬂ, w111 be directed along the tangent lines of the lines of the net X, at the point x5 = T'(z1).

Consequently, linear forms w] (i # j), @] (i # j) will be main that is
w! = al, Wk @ = bl T". (2.21)

Let us consider p + 1 dimensional planes [z, a., € 5] (j = ﬁ) in the space E,,. These planes have a common
line with the planes N, (x1). The directional vectors of these lines can be written as

Ti=A" e (2.22)

So, if quadratical forms ¢P** of the surface V;; are linearly independent then each net ¥, on the surface V, is
related in an invariant way to p linearly independent vector fields

o= AN e (2.23)

We will consider here the vector 74, as corresponding to the line w;, of the net ¥,. In an analogous way it is
proved that the net ¥, is related in an invariant way to linearly independent vector fields

j) _ .
M= NP (2.24)

The directional vectors of the associated nets 3/ and Y/, of the corresponding nets ¥, and ¥, have expansions

E'=nie;, i - (2.25)

Let us consider the planes Hg}rl(xl) = [21,d,,E] (i =1,p;j = 1,p) and their relative position with the plane

N, (z1). These planes share a common direction. So, the associated net X, of the net X, generates on N, (1)
linearly independent vectors

Nt =i \vthg . (2.26)

ey ~
In an analogous way we can show that the planes H1()k+)1 (z2) = [2, b 4,77 € nyj] (k = 1,p) and N (z2) are related
to the vector
-
Nt =pis\ntrtkg . (2.27)
We find that

7]{52 _>

N =i n],ﬁl—anS Nk (2.28)

Using the formulae (2.18) and (2.19), we find that the vectors of forced curvature of the lines of the net £, and
3, have the following expansions:

%
=T, b=t Mee1™ T . (2.29)

The conjugacy conditions of the net ¥, C V, can be expressed by the equalities @;; = 0 (i # j). Consequently,
cffsﬁs =0 (i # j). Here the vectors 7, are linearly independent, and therefore

I =00 #4) (2.30)

From (2.30) and (2.18), (2.19) we find that ?ij =0 (i #j), ?ij =0 (i # j). So, the following theorem holds true.
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Theorem 2.1. If the net X3, C V,, is conjugate then the corresponding nets 3, = T (,) and X5 C V, are also conjugate.
It is known that [4] the conjugate nets 3/ and 3, of the nets ¥, and ¥, will be conjugate if and only if
P al = 0 (i # 5) P = 030 # ) - (2.31)

From (2.16)-(2.19) we obtain nitn/*clFeAnts = 0, pitikclFeArtr+s = 0. By taking into account the fact that
det [|AZTS|| #£ 0, det || AZTPT#]| =£ 0 we obtain

n R = 0,7 PR = 0(i # j) . (2.32)
Let the net be conjugate. Then cf;rs =0 (¢ # j). Using this we obtain from (2.32) that
S ontEntere =0(i #4), Yy 0t =0(i #j), (2.33)
where det || 2 || # 0. We obtain
ne =00 # ), =06 # ). (2.34)

Let i = 5. Then we have 7**7/* = 0, 7**7)’* = 0 (j # s). Consequently,we obtain 7/* = 0 (j # s), ’* = 0 (j # ).
But this means that the nets X, and ¥, are orthogonal. The opposite is obvious. Therefore, we proved the
following theorem.

Theorem 2.2. The conjugate net %, (or 3, = T (3,)) is a basis for the mapping T if and only if the nets ¥, and

Y, =T (X,) are orthogonal.

Let us consider the case when the associated nets ¥/, and Y7), of the nets ¥, and ¥, = T'(%,), correspond

— (dT)e, = . , , o s y .
in the mapping 7. By demanding E* D Bk and using w’ = @', we obtain 77"/ = kn'/, and from this we

obtain 7;; = k7;;. Comsequently, the mapping 7" is conformal. The opposite is also true. Let the mapping 7" be
conformal that is 7;; = an;;. By multipying both sides of this equality by 7** and then finding sum for i we
obtain 7;;7"* = an;n"* = adf. Then we multiply both sides of the last equality by 77¢ and find their sum for j.
We obtain 77°7;;n* = ad3i’® = aij*® that is 3/, = T (). So, the following theorem holds true.

Theorem 2.3. Y/, = T (X)) if and only if the mapping T is conformal.

Note: Here we assume that &, = T'(3,).
Remark: The author studied in his previous paper similar problems for 4 dimensional spaces [5].
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