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ABSTRACT

In the paper, we study one-to-one mappings of p dimensional surfaces of n dimensional euclidean
spaces in 2n dimensional euclidean space. In the paper, we use the method of moving frames and
exterior forms. The results about conjugacy and orthogonality of nets and conformity of mappings
are obtained.
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1. Introduction

Let us consider completely orthogonal Euclidean spacesEn and Ēn in Euclidean spaceE2n, with common point
O. Let Vp and V p be smooth surfaces in En and Ēn, respectively. We are going to study a differentiable and one
to one mapping T :Vp →V p which transforms a domain Ω ⊂ Vp into a domain Ω̄ ⊂ V p. If point x1 changes in
the domain Ω then the point x2 = T (x1) describes the domain Ω̄ ⊂ V p, and the point x with position vector
−→x = −→x1 +−→x2, where −→x1 =

−−→
Ox1 and −→x2 =

−−→
Ox2, describes a domain Ω∗ of surface V ∗p , which is called a graph of

the mapping T [1].

2. Main Results

Let R1 = {x1, ~ei, ~eα}, R2 = {x2, ~en+i, ~en+α} (i, j = 1, p;α, β = p+ 1, n), be corresponding moving frames in En
and Ēn, and let ~ei ∈ Tp(x1), (dT )x1

(~ei) = ~en+i ∈ Tp(x2), where Tp(x1),Tp(x2) are tangent planes of the surfaces
Vp and V p, respectively, at the corresponding points x1 and x2, and ~eα and ~en+α form an orthonormal basis for
the orthogonal complements of Tp(x1) and Tp(x2) in corresponding spaces En and Ēn. Derivational formulae
for these frames are the following:

d~x1 = ωi~ei, d~ei = ωji~ej + ωαi ~eα, d~eα = ωiα~ei + ωβα~eβ (2.1)

d~x2 = ω̄i~en+i, d~en+i = ω̄ji~en+j + ω̄αi ~en+α, d~en+α = ωiα~en+i + ωβα~en+β . (2.2)

At the point x ∈ V ∗p a frame R = {x, ~εi, ~εp+i, ~εp+α, ~εn+α} is formed. Here ~εi = ~ei + ~en+i, ~εp+i = ~ei − ηisη̄sj~en+j ,
~εp+α = ~eα,~εn+α = ~en+α, ~εi ∈ Tp(x), and ηij , η̄ij are metrical tensors of the the surfaces Vp and V p, respectively.
Then metrical tensor of the surface V ∗p will be gij = ηij + η̄ij . The vectors ~ep+i, ~ep+α, ~en+α determine a plane
N2n−p(x), which is an orthogonal complement of the plane T (x) in the space E2n. Infinitesimal displacement
of the frame R are defined by the following equations:

dx = θi~εi, (2.3)

d~εh = θi
h
~εi + θp+j

h
~εp+j + θp+α

h
~εp+α + θn+α

h
~εn+α(h = i, p+ i, p+ α, n+ α) (2.4)
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The frames R1, R2 and R are agreed and therefore the following system of differential equations is obtained:

ωi = ω̄i = θi, ωαi = aαijω
j , aαij = aαji, ω

α = 0, ωα = 0, (2.5)

ωαi = bαijω
j , bαij = bαji, θ

p+i = 0, θp+α = 0, θn+α = 0, (2.6)

θp+ik = cp+ikj θ
j , cp+ikj = cp+ijk , θp+αk = cp+αkj θj , cp+αkj = cp+αjk , (2.7)

θn+αk = cn+αkj θj , cn+αkj = cn+αjk , ωji = θji + θp+ji , (2.8)

ωαi = θp+αi , ω̄ji = θji + θp+ki ηksη̄
sj , ω̄αi = θn+αi (2.9)

θp+βn+α = 0, ωβα + ωαβ = 0(α 6= β), ωβα + ωαβ = 0(α 6= β), (2.10)

ωαα = 0, ωαα = 0. (2.11)

If we consider in the plane Tp(x2) a unit sphere

η̄iju
iuj = 1, (2.12)

then in the transformation Kaf this sphere is obtained from an ellipsoid of plane Tp(x1), which is called the
deformation ellipsoid [2]. Main axes of this ellipsoid are defined from the system of equations

(η̄ij − µηij)ωj = 0, (2.13)

where µ is a root of the equation
det ‖η̄ij − µηij‖ = 0. (2.14)

System of p linearly independent fields of main directions of the ellipsoids of deformation define an orthogonal
net σp in, Ω which corresponds to the orthogonal net σp = T (σp) in the domain Ω̄ ⊂ V p.
In the case when all the semiaxes of the ellipsoid of deformation are different, for all points of the domain
under consideration, the nets σp and σp, are defined uniquely. This transformation should be included into the
type (1, 1, 1, ..., 1), based on the classification introduced by Melzi [3]. Bazylev V.T. calls the mappings of the
mentioned type as simple [1].
Parameters of the characteristic directions of the mapping are defined through the system of equations

(ωki − ωki )ωi = λωk. (2.15)

From the equations (2.5),(2.6),(2.7),(2.8),(2.9) we find

aαij = cp+αij , bαij = cn+αij . (2.16)

The equalities (2.16) show that there are 2(n− p) forms within 2n− p second quadratical forms of the surface
V ∗p , which are transferred from Vp and V p without any change.
Using the equalities (2.16), it is more suitable to denote the quadratical forms of the surface V ∗p as follows:

φp+k = cp+kij ωiωj , φp+α = aαijω
iωj , φn+α = bn+αij ωiωj .

The quadratical forms φp+α, φn+α are transferred from Vp and V p, respectively.
Suppose that within 2n− p quadratical forms φp+k, φp+α, φn+α the forms φp+k are linearly independent. Then
we have

φp+α = λp+αi φp+i, φn+α = λn+αi φp+i. (2.17)

In the general case each of the surfaces Vp and V p has p(p+1)
2 linearly independent quadratic forms. The

conditions (2.17) mean that within n− p quadratical asymptotic forms of the surfaces Vp and V p, which have in
general p(p+1)

2 linearly independent quadratic forms, there are only p forms remaining independent, for each.
We can consider in the plane N∗2n−p(x) of the graph of V ∗p the vectors

−→c ij = cp+kij
−→ε p+k +−→a ij +

−→
b ij (2.18)

−→a ij = ap+kij
−→e p+k,

−→
b ij = bp+kij

−→e n+p+k. (2.19)
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By taking into account (2.16), (2.17), from (2.18) we find

−→c ij = cp+kij

(
−→ε p+k + λn+ik

−→ε 2p+i + λn+p+ik
−→ε n+p+i

)
. (2.20)

Let us denote −→c k = −→ε p+k + λn+ik
−→ε 2p+i + λn+p+ik

−→ε n+p+i. Consequently, the vectors −→c k will be basis vectors of
the main normal N∗p of the surface V ∗p . By projecting orthogonally the the main normal N∗p on En and Ēn, we
find two planes

Ñp(x1) = [x1,
−→a i], Ñp(x2) = [x2,

−→
b i],

where −→a i = −→e i + λn+ki
−→e p+k,

−→
b i = −ηisη̄sj−→e n+j + λn+p+ki

−→e n+p+k. We can show that the plane Ñp(x1)(
Ñp(x2)

)
does not share a common line with the plane Tp(x1) and Np(x1) (Tp(x2) and Np(x2)).

Let us fix a net Σp on the surface Vp. The the set Σp = T (Σp) on the surface V p is fixed, too. Let us direct
the vectors −→e 1,

−→e 2, ...,
−→e p along the tangent lines of the lines of the net Σp at the point x1. Then the vectors

−→e n+1,
−→e n+2, ...,

−→e n+p will be directed along the tangent lines of the lines of the net Σp at the point x2 = T (x1).
Consequently, linear forms ωji (i 6= j), ωji (i 6= j) will be main that is

ωji = ajikω
k, ωji = bjikω

k. (2.21)

Let us consider p+ 1 dimensional planes [x,−→a i,−→e j ]
(
j = 1, p

)
in the space En. These planes have a common

line with the planes Np(x1). The directional vectors of these lines can be written as

−→η i = λn+ki
−→e p+k. (2.22)

So, if quadratical forms φp+k of the surface V ∗p are linearly independent then each net Σp on the surface Vp is
related in an invariant way to p linearly independent vector fields

−→η i = λn+ki
−→e p+k. (2.23)

We will consider here the vector −→η i0 as corresponding to the line ωi0 of the net Σp. In an analogous way it is
proved that the net Σp is related in an invariant way to linearly independent vector fields

−→
η i = ηisη

sjλn+p+ki
−→e n+p+k. (2.24)

The directional vectors of the associated nets Σ′p and Σ′p of the corresponding nets Σp and Σp, have expansions

~Ei = ηij−→e j ,
−→
E i = ηij−→e n+j . (2.25)

Let us consider the planes Π
(i)
p+1(x1) = [x1,

−→a j , ~Ei] (i = 1, p; j = 1, p) and their relative position with the plane
Np(x1). These planes share a common direction. So, the associated net Σp of the net Σp generates on Np(x1)
linearly independent vectors

~N i = ηijλn+ki
−→e p+k. (2.26)

In an analogous way we can show that the planes Π
(k)
p+1(x2) = [x2,

−→
b i, η

kj−→e n+j ] (k = 1, p) andNp(x2) are related
to the vector −→

N i = ηisλn+p+ks
−→e n+p+k. (2.27)

We find that
~N i = ηij−→n j ,

−→̄
n i = η̄is

−→
N s,
−→
N k = ηki

−→
n i. (2.28)

Using the formulae (2.18) and (2.19), we find that the vectors of forced curvature of the lines of the net Σp and
Σp have the following expansions:

−→a ij = cp+sij
−→n s,
−→
b ij = cp+sij ηseη̄

se−→n t. (2.29)

The conjugacy conditions of the net Σp ⊂ Vp can be expressed by the equalities −→a ij = 0 (i 6= j). Consequently,
cp+sij
−→n s = 0 (i 6= j). Here the vectors −→n s are linearly independent, and therefore

cp+sij
−→n s = 0 (i 6= j) . (2.30)

From (2.30) and (2.18), (2.19) we find that
−→
b ij = 0 (i 6= j), −→c ij = 0 (i 6= j). So, the following theorem holds true.
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Theorem 2.1. If the net Σp ⊂ Vp is conjugate then the corresponding nets Σp = T (Σp) and Σ∗p ⊂ V ∗p are also conjugate.

It is known that [4] the conjugate nets Σ′p and Σ′p of the nets Σp and Σp will be conjugate if and only if

ηitηjkap+stk = 0 (i 6= j) , η̄itη̄jkbp+stk = 0 (i 6= j) . (2.31)

From (2.16)-(2.19) we obtain ηitηjkcp+etk λn+se = 0, η̄itη̄jkcp+etk λn+p+se = 0. By taking into account the fact that
det ‖λn+se ‖ 6= 0, det ‖λn+p+se ‖ 6= 0 we obtain

ηitηjkcp+etk = 0, η̄itη̄jkcp+etk = 0 (i 6= j) . (2.32)

Let the net be conjugate. Then cp+sij = 0 (i 6= j). Using this we obtain from (2.32) that∑
s

ηisηjscp+ess = 0 (i 6= j) ,
∑
s

η̄isη̄jscp+ess = 0 (i 6= j) , (2.33)

where det
∥∥cp+lss

∥∥ 6= 0. We obtain
ηisηjs = 0 (i 6= j) , η̄isη̄js = 0 (i 6= j) . (2.34)

Let i = s. Then we have ηssηjs = 0, η̄ssη̄js = 0 (j 6= s). Consequently,we obtain ηjs = 0 (j 6= s), η̄js = 0 (j 6= s).
But this means that the nets Σp and Σp are orthogonal. The opposite is obvious. Therefore, we proved the
following theorem.

Theorem 2.2. The conjugate net Σp (or Σp = T (Σp)) is a basis for the mapping T if and only if the nets Σp and
Σp = T (Σp) are orthogonal.

Let us consider the case when the associated nets Σ′p and Σ′p, of the nets Σp and Σp = T (Σp), correspond

in the mapping T . By demanding ~Ek
(dT )x1−→

−→
E k and using ωi = ω̄i, we obtain η̄ij = kηij , and from this we

obtain ηij = k̄η̄ij . Comsequently, the mapping T is conformal. The opposite is also true. Let the mapping T be
conformal that is η̄ij = αηij . By multipying both sides of this equality by ηis and then finding sum for i we
obtain η̄ijη

is = αηijη
is = αδsj . Then we multiply both sides of the last equality by η̄je and find their sum for j.

We obtain η̄jeη̄ijηis = αδsj η̄
je = αη̄se that is Σ′p = T

(
Σ′p
)
. So, the following theorem holds true.

Theorem 2.3. Σ′p = T
(
Σ′p
)

if and only if the mapping T is conformal.

Note: Here we assume that Σp = T (Σp).
Remark: The author studied in his previous paper similar problems for 4 dimensional spaces [5].
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