SPECTRAL PROPERTIES OF A CONFORMABLE BOUNDARY VALUE PROBLEM ON TIME SCALES

ZEKI CEYLAN

Abstract

We study a self-adjoint conformable dynamic equation of second order on an arbitrary time scale \mathbb{T}. We state an existence and uniqueness theorem for the solutions of this equation. We prove the conformable Lagrange identity on time scales. Then, we consider a conformable eigenvalue problem generated by the above-mentioned dynamic equation of second order and we examine some of the spectral properties of this boundary value problem.

1. Introduction

We study the self-adjoint conformable dynamic equation of second order

$$
\begin{equation*}
L x=0, \text { where } L x(t)=\left(p x^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}(t)+q(t) x^{\sigma}(t) \tag{1.1}
\end{equation*}
$$

on an arbitrary time scale \mathbb{T}. Throughout we assume that $p, q \in C_{r d}$ and $p(t) \neq 0$ for all $t \in \mathbb{T}$.

Continuous conformable calculus is a natural extension of the usual calculus and has yielded several articles such as $[1-6]$. Some follow-up papers related to Sturm-Liouville equations for conformable calculus include [7-9].

Recently, researchers have started to deal with studies relating to conformable calculus on time scales (see [10-16]).

A conformable derivative on time scales was first introduced in [10] by the formula

$$
f^{\Delta_{\alpha}}(t)= \begin{cases}\frac{f(\sigma(t))-f(t)}{\mu(t)} t^{1-\alpha}, & \sigma(t)>t \tag{1.2}\\ \lim _{s \rightarrow t} \frac{f(t)-f(s)}{t-s} t^{1-\alpha}, & \sigma(t)=t\end{cases}
$$

Note that, if f is Δ-differentiable at a right scattered point $t \in \mathbb{T}_{[0, \infty)}^{\kappa}$ [17], then f is α - conformable differentiable and for the above definition we have

[^0]\[

$$
\begin{equation*}
f^{\Delta_{\alpha}}(t)=t^{1-\alpha} f^{\Delta}(t) \tag{1.3}
\end{equation*}
$$

\]

where $f^{\Delta}(t)=\frac{f^{\sigma}(t)-f(t)}{\sigma(t)-t}$.
The following formula [10, Theorem 4, iv] will be needed in the sequel:

$$
\begin{equation*}
f(\sigma(t))=f(t)+\mu(t) t^{\alpha-1} f^{\Delta_{\alpha}}(t) \tag{1.4}
\end{equation*}
$$

Assume $f, g: \mathbb{T} \rightarrow \mathbb{R}$ are conformable differentiable of order α. Then, if f and g are continuous, then the product $f g: \mathbb{T} \rightarrow \mathbb{R}$ is conformable differentiable with

$$
\begin{equation*}
(f g)^{\Delta_{\alpha}}=f^{\Delta_{\alpha}} g+(f o \sigma) g^{\Delta_{\alpha}}=f^{\Delta_{\alpha}}(g o \sigma)+f g^{\Delta_{\alpha}}, \tag{1.5}
\end{equation*}
$$

if f and g are continuous, then $\frac{f}{g}$ is conformable differentiable with

$$
\begin{equation*}
\left(\frac{f}{g}\right)^{\Delta_{\alpha}}=\frac{f^{\Delta_{\alpha}} g-f g^{\Delta_{\alpha}}}{g(g o \sigma)} \tag{1.6}
\end{equation*}
$$

valid at all points $t \in \mathbb{T}^{\kappa}$ for which $g(t) g(\sigma(t)) \neq 0$.
This paper consists of five sections. After this Introduction part, we will state an existence and uniqueness theorem in Section 2. In Section 3, we will recall the definition of α-Wronskian and we prove the conformable Lagrange identity after defining the Lagrange bracket of two functions. In Section 4, we will consider a conformable boundary value problem and we will investigate some of its spectral properties after proving the Green's theorem. Finally, we conclude the paper in Section 5 by giving some remarks about the current paper.

2. A Conformable Dynamic Equation

In this section, we will investigate the self-adjoint conformable dynamic equation (1.1). First, we will state a theorem concerning the existence and uniqueness of solutions of initial value problems for $L x(t)=f(t)$. Then, we will suggest a method to construct the solutions of (1.1).

Theorem 2.1. If $f \in C_{r d}, t_{0} \in \mathbb{T}$, and x_{0}, x_{0}^{α} are given constants, then the initial value problem

$$
\begin{equation*}
L x(t)=f(t), x\left(t_{0}\right)=x_{0}, x^{\Delta_{\alpha}}\left(t_{0}\right)=x_{0}^{\alpha} \tag{2.1}
\end{equation*}
$$

has a unique solution that exists on the whole time scale \mathbb{T}.
Proof. Define $y(t)=p(t) x^{\Delta_{\alpha}}(t)$. From here we have

$$
\begin{equation*}
x^{\Delta_{\alpha}}(t)=\frac{y(t)}{p(t)} \tag{2.2}
\end{equation*}
$$

With the help of (1.1), (1.4), (1.3) and (2.1) we have

$$
\begin{aligned}
y^{\Delta_{\alpha}}(t) & =\left(p x^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}(t)=f(t)-q(t) x^{\sigma}(t) \\
& =f(t)-q(t)\left(x(t)+\mu(t) t^{\alpha-1} x^{\Delta_{\alpha}}(t)\right) \\
& =f(t)-q(t) x(t)-q(t) \mu(t) t^{\alpha-1} x^{\Delta_{\alpha}}(t) \\
& =f(t)-q(t) x(t)-q(t) \mu(t) t^{\alpha-1} \frac{y(t)}{p(t)} \\
& =-q(t) x(t)-\frac{q(t) \mu(t) t^{\alpha-1}}{p(t)} y(t)+f(t) .
\end{aligned}
$$

Let $z(t)=\left[\begin{array}{l}x(t) \\ y(t)\end{array}\right]$. From (1.3) We may compute

$$
\left.\begin{array}{rl}
t^{1-\alpha} z^{\Delta}(t) & =t^{1-\alpha}\left[\begin{array}{l}
x^{\Delta}(t) \\
y^{\Delta}(t)
\end{array}\right]=\left[\begin{array}{l}
x^{\Delta_{\alpha}}(t) \\
y^{\Delta_{\alpha}}(t)
\end{array}\right]=\left[\begin{array}{c}
\frac{y(t)}{p(t)} \\
f(t)-q(t) x(t)-q(t) \mu(t) t^{\alpha-1} \frac{y(t)}{p(t)}
\end{array}\right] \\
& =\left[\begin{array}{c}
\frac{y(t)}{p(t)} \\
-q(t) x(t)-q(t) \mu(t) t^{\alpha-1} \frac{y(t)}{p(t)}
\end{array}\right]+\left[\begin{array}{c}
0 \\
f(t)
\end{array}\right] \\
0 & \frac{1}{p(t)} \\
-q(t) & \frac{-q(t) \mu(t) t^{\alpha-1}}{p(t)}
\end{array}\right]\left[\begin{array}{c}
x(t) \\
y(t)
\end{array}\right]+\left[\begin{array}{c}
0 \\
f(t)
\end{array}\right] . ~ \$ ~ . ~\left[\begin{array}{c}
\\
0
\end{array}\right.
$$

This is a system of dynamic equations whose components are rd-continuous. Therefore by Thorem 5.24 [18] we observe that a unique solution exists.

Now, let us suggest a method to construct solutions of the self-adjoint conformable dynamic equation (1.1). To do this, first, assume that x is a nontrivial solution of (1.1). Then

$$
x^{2}(t)+\left(p x^{\Delta_{\alpha}}\right)^{2}(t) \neq 0
$$

holds for all $t \in \mathbb{T}$, and for each t, we can find real numbers $\varrho(t)>0$ and $\varphi(t)$ with $0 \leq \varphi(t) \leq 2 \pi$ such that the equations

$$
\begin{gather*}
x(t)=\varrho(t) \sin \varphi(t), \tag{2.3}\\
p(t) x^{\Delta_{\alpha}}(t)=\varrho(t) \cos \varphi(t) \tag{2.4}
\end{gather*}
$$

are satisfied. We call (2.3) and (2.4) the Prüfer transformation.

Theorem 2.2. If x is a nontrivial solution of (1.1) and if ϱ and φ are defined by (2.3) and (2.4), then the equations

$$
\begin{gather*}
\varrho^{\Delta_{\alpha}}=\frac{\varrho}{p} \cos \varphi(\sin \varphi)^{\sigma}-\varrho q \sin \varphi(\cos \varphi)^{\sigma}-\frac{\varrho \mu q t^{\alpha-1}}{p} \cos \varphi(\cos \varphi)^{\sigma} \tag{2.5}\\
-\varrho(\sin \varphi)^{\Delta_{\alpha}}(\cos \varphi)^{\sigma}-\varrho(\cos \varphi)^{\Delta_{\alpha}}(\cos \varphi)^{\sigma} \\
\begin{array}{r}
(\sin \varphi)^{\Delta_{\alpha}}(\cos \varphi)^{\sigma}
\end{array}-(\cos \varphi)^{\Delta_{\alpha}}(\sin \varphi)^{\sigma}=\frac{1}{p} \cos \varphi(\cos \varphi)^{\sigma} \tag{2.6}\\
+\quad q \sin \varphi(\sin \varphi)^{\sigma}+\frac{\mu q t^{\alpha-1}}{p} \cos \varphi(\sin \varphi)^{\sigma}
\end{gather*}
$$

are satisfied.
Proof. Using the product rule for (2.3) yields

$$
\begin{aligned}
\varrho^{\Delta_{\alpha}}(\sin \varphi)^{\sigma}+\varrho(\sin \varphi)^{\Delta_{\alpha}}=(\varrho \sin \varphi)^{\Delta_{\alpha}}=x^{\Delta_{\alpha}} & =\frac{1}{p}\left(p x^{\Delta_{\alpha}}\right) \\
& =\frac{1}{p} \varrho \cos \varphi
\end{aligned}
$$

while doing the same for (2.4) implies

$$
\begin{aligned}
\varrho^{\Delta_{\alpha}}(\cos \varphi)^{\sigma}+\varrho(\cos \varphi)^{\Delta_{\alpha}}=(\varrho \cos \varphi)^{\Delta_{\alpha}} & =\left(p x^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}} \\
& =-q\left(x+\mu t^{\alpha-1} x^{\Delta_{\alpha}}\right) \\
& =-q x-\frac{\mu q t^{\alpha-1}}{p}\left(p x^{\Delta_{\alpha}}\right) \\
& =-q \varrho \sin \varphi-\frac{\mu q t^{\alpha-1}}{p} \varrho \cos \varphi
\end{aligned}
$$

where we have also used that x is a solution of (1.1) and got help from equation (1.4). Hence we obtain the two equations

$$
\begin{gather*}
\varrho^{\Delta_{\alpha}}(\sin \varphi)^{\sigma}+\varrho(\sin \varphi)^{\Delta_{\alpha}}=\frac{1}{p} \varrho \cos \varphi \tag{2.7}\\
\varrho^{\Delta_{\alpha}}(\cos \varphi)^{\sigma}+\varrho(\cos \varphi)^{\Delta_{\alpha}}=-q \rho \sin \varphi-\frac{\mu q t^{\alpha-1}}{p} \varrho \cos \varphi . \tag{2.8}
\end{gather*}
$$

We now multiply (2.7) by $(\sin \varphi)^{\sigma}$ and (2.8) by $(\cos \varphi)^{\sigma}$ and add the resulting equations to obtain (2.5). To verify (2.6), we multiply (2.7) by $(\cos \varphi)^{\sigma}$ and (2.8) by $-(\sin \varphi)^{\sigma}$ and add the resulting equations. Dividing the obtained equation by $\varrho>0$ directly yields (2.6).

Observe that the conformable dynamic equation (2.6) for φ is independent of ϱ. Of course it might be difficult to solve this equation, but once a solution of (2.6) is obtained, the linear conformable dynamic equation (2.5) for ϱ is readily solved.

3. Conformable Lagrange Identity on Time Scales

In this section, we collect some knowledge needed in the rest of this paper. First, we introduce the definition of α-Wronskian and give one of its properties, then we define the Lagrange bracket of two functions and prove the conformable Lagrange identity on time scales.
Definition 3.1. If $x, y: \mathbb{T} \rightarrow \mathbb{R}$ are conformable differentiable on \mathbb{T}^{κ}, then we define the α-Wronskian of x and y by

$$
W_{\alpha}(x, y)(t)=\operatorname{det}\left(\begin{array}{cc}
x(t) & y(t) \\
x^{\Delta_{\alpha}}(t) & y^{\Delta_{\alpha}}(t)
\end{array}\right)
$$

for $t \in \mathbb{T}^{\kappa}$.
The following lemma will be used in the proof of Theorem 3.4.
Lemma 3.2. If $x, y: \mathbb{T} \rightarrow \mathbb{R}$ are conformable differentiable on \mathbb{T}^{κ}, then

$$
W_{\alpha}(x, y)(t)=\operatorname{det}\left(\begin{array}{cc}
x^{\sigma}(t) & y^{\sigma}(t) \\
x^{\Delta_{\alpha}}(t) & y^{\Delta_{\alpha}}(t)
\end{array}\right)
$$

holds for $t \in \mathbb{T}^{\kappa}$.

Proof. For $t \in \mathbb{T}^{\kappa}$, we have by equation (1.4)

$$
\begin{aligned}
\operatorname{det}\left(\begin{array}{cc}
x^{\sigma}(t) & y^{\sigma}(t) \\
x^{\Delta_{\alpha}}(t) & y^{\Delta_{\alpha}}(t)
\end{array}\right) & =\operatorname{det}\left(\begin{array}{cc}
x(t)+\mu(t) t^{\alpha-1} x^{\Delta_{\alpha}}(t) & y(t)+\mu(t) t^{\alpha-1} y^{\Delta_{\alpha}}(t) \\
x^{\Delta_{\alpha}}(t) & y^{\Delta_{\alpha}}(t)
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
x(t) & y(t) \\
x^{\Delta_{\alpha}}(t) & y^{\Delta_{\alpha}}(t)
\end{array}\right) \\
& =W_{\alpha}(x, y)(t)
\end{aligned}
$$

which gives us the desired result.
Now, let us define the Lagrange bracket of two conformable functions, before proving the conformable Lagrange identity.
Definition 3.3. If $x, y: \mathbb{T} \rightarrow \mathbb{R}$ are conformable differentiable on \mathbb{T}^{κ}, then the Lagrange bracket of x and y is defined by

$$
\{x ; y\}(t)=p(t) W_{\alpha}(x, y)(t)
$$

for $t \in \mathbb{T}^{\kappa}$.
Define the set \mathbb{D} to be the set of all functions $x: \mathbb{T} \rightarrow \mathbb{R}$ such that $x^{\Delta_{\alpha}}: \mathbb{T}^{\kappa^{2}} \rightarrow$ \mathbb{R} is rd-continuous. A function $x \in \mathbb{D}$ is then said to be a solution of (1.1) provided $L x(t)=0$ holds for all $t \in \mathbb{T}^{\kappa^{2}}$. The below-given theorem follows immediately.

Theorem 3.4 (Conformable Lagrange Identity). If $x, y \in \mathbb{D}$, then

$$
x^{\sigma}(t) L y(t)-y^{\sigma}(t) L x(t)=\{x ; y\}^{\Delta_{\alpha}}(t)
$$

holds for $t \in \mathbb{T}^{\kappa^{2}}$.
Proof. By the product rule (1.5), we have

$$
\begin{aligned}
\{x ; y\}^{\Delta_{\alpha}} & =\left\{x p y^{\Delta_{\alpha}}-p x^{\Delta_{\alpha}} y\right\}^{\Delta_{\alpha}} \\
& =x^{\sigma}\left(p y^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}+\left(p y^{\Delta_{\alpha}}\right) x^{\Delta_{\alpha}}-y^{\sigma}\left(p x^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}-y^{\Delta_{\alpha}}\left(p x^{\Delta_{\alpha}}\right) \\
& =x^{\sigma}\left(p y^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}-y^{\sigma}\left(p x^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}} \\
& =x^{\sigma}\left(p y^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}-y^{\sigma}\left(p x^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}+q x^{\sigma} y^{\sigma}-q x^{\sigma} y^{\sigma} \\
& =x^{\sigma}\left(\left(p y^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}+q y^{\sigma}\right)-y^{\sigma}\left(\left(p x^{\Delta_{\alpha}}\right)^{\Delta_{\alpha}}+q x^{\sigma}\right) \\
& =x^{\sigma} L y-y^{\sigma} L x
\end{aligned}
$$

on $\mathbb{T}^{\kappa^{2}}$.

4. A Conformable Boundary Value Problem and Green's Function

In this section, we consider a conformable boundary value problem of the form

$$
\begin{equation*}
L x+\lambda x^{\sigma}=0, R_{a}(x)=R_{b}(x)=0 \tag{4.1}
\end{equation*}
$$

where $L x=x^{\Delta_{\alpha} \Delta_{\alpha}}+q x^{\sigma}$ such that $q: \mathbb{T} \rightarrow \mathbb{R}$ is rd-continuous, and

$$
R_{a}(x)=\gamma_{1} x(\rho(a))+\gamma_{2} x^{\Delta_{\alpha}}(\rho(a)), R_{b}(x)=\delta_{1} x(\rho(b))+\delta_{2} x^{\Delta_{\alpha}}(\rho(b))
$$

such that $\gamma_{1}, \gamma_{2}, \delta_{1}, \delta_{2} \in \mathbb{R}$ with $\left(\gamma_{1}^{2}+\gamma_{2}^{2}\right)\left(\delta_{1}^{2}+\delta_{2}^{2}\right) \neq 0$ hold.
A number $\lambda \in \mathbb{R}$ is called an eigenvalue of (4.1) provided there exists a nontrivial solution x of the conformable boundary value problem (4.1). Such an x is then called an eigenfunction corresponding to the eigenvalue λ.

We define the inner product of x and y on $[\rho(a), b]$ by

$$
\langle x, y\rangle=\int_{\rho(a)}^{b} x(t) y(t) \Delta_{\alpha} t:=\int_{\rho(a)}^{b} x(t) y(t) t^{\alpha-1} \Delta t
$$

and we say that x and y are orthogonal on $[\rho(a), b]$ provided $\langle x, y\rangle=0$. The norm of x is defined by

$$
\|x\|=\sqrt{\langle x, x\rangle} .
$$

The next theorem follows immediately from Theorem 3.4.
Theorem 4.1 (Green's Theorem). If $x, y \in \mathbb{D}$, then

$$
\left\langle x^{\sigma}, L y\right\rangle-\left\langle y^{\sigma}, L x\right\rangle=\{x ; y\}(b)-\{x ; y\}(a)
$$

holds.
Proof. This results from integrating both sides of the conformable Lagrange identity in Theorem 3.4 on $[a, b]$ and using the definition of the inner product.

It is easy to see that $W_{\alpha}(x, y)(\rho(a))=0$ if $R_{a}(x)=R_{a}(y)=0$ and $W_{\alpha}(x, y)(b)=$ 0 if $R_{b}(x)=R_{b}(y)=0$. Indeed, from Definiton 3.1 we have

$$
\begin{aligned}
W_{\alpha}(x, y)(\rho(a)) & =\operatorname{det}\left(\begin{array}{cc}
x(\rho(a)) & y(\rho(a)) \\
x^{\Delta_{\alpha}}(\rho(a)) & y^{\Delta_{\alpha}}(\rho(a))
\end{array}\right) \\
& =\operatorname{det}\left(\begin{array}{cc}
-\frac{\gamma_{2}}{\gamma_{1}} x^{\Delta_{\alpha}}(\rho(a)) & -\frac{\gamma_{2}}{\gamma_{1}} y^{\Delta_{\alpha}}(\rho(a)) \\
x^{\Delta_{\alpha}}(\rho(a)) & y^{\Delta_{\alpha}}(\rho(a))
\end{array}\right)=0 .
\end{aligned}
$$

The fact that $R_{b}(x)=R_{b}(y)=0$ implies $W_{\alpha}(x, y)(b)=0$ follows similarly.
Now, we shall provide a characterization for the eigenvalues of (4.1). For this, we denote the unique solutions (see Theorem 2.1) of the conformable initial value problem

$$
L x+\lambda x^{\sigma}=0, x(\rho(a))=\gamma_{2}, x^{\Delta_{\alpha}}(\rho(a))=-\gamma_{1}
$$

by $x(\cdot, \lambda)$, where $\lambda \in \mathbb{R}$, and we put $\Lambda(\lambda)=R_{b}(x(\cdot, \lambda))$. With this notation in mind, we have the following.

Theorem 4.2. λ is an eigenvalue of (4.1) if and only if $\Lambda(\lambda)=0$.
Proof. If $R_{b}(x(\cdot, \lambda))=0$, then $x=x(\cdot, \lambda)$ satisfies

$$
L x+\lambda x^{\sigma}=0, \quad R_{a}(x)=R_{b}(x)=0
$$

i.e., λ is an eigenvalue of (4.1). Conversely, let $\lambda \in \mathbb{R}$ be an eigenvalue of (4.1) with corresponding eigenfunction x. Then because of the unique solvability of the conformable initial value problem (observe $R_{a}(x)=0$), the equation $x=c x(\cdot, \lambda$) holds with $c=\frac{\gamma_{2} x(\rho(a))-\gamma_{1} x^{\Delta_{\alpha}}(\rho(a))}{\gamma_{1}^{2}+\gamma_{2}^{2}}$. Hence $R_{b}(x(\cdot, \lambda))=0$ which gives us the desired result.

The proof of Theorem 4.2 also shows that all eigenvalues of (4.1) are simple.

5. Conclusion

In this paper, we deal with a self-adjoint conformable dynamic equation of second order on an arbitrary time scale. We prove an existence and uniqueness theorem for the solutions of this equation and we suggest a method to construct these solutions via Prüfer transformation. Then we prove the conformable Lagrange identity. After that, we derive a conformable boundary value problem which consists of the above-mentioned conformable dynamic equation and boundary conditions. We prove Green's theorem with the help of conformable Lagrange identity and we provide a characterization for the eigenvalues of this conformable boundary value problem. Presented results of this paper are generalizations of some results in [17] via conformable derivative.

References

[1] T. Abdeljawad, On conformable fractional calculus, Journal of Computational and Applied Mathematics, 279(2015), 57-66.
[2] M. Abu Hammad, R. Khalil, Abel's formula and Wronskian for conformable fractional differential equations, Internat. J. Diff. Equ. Appl., 13(2014), No. 3, 177-183.
[3] M. Abu Hammad, R. Khalil, Conformable fractional heat differential equations, Internat. J. Pure Appl. Math., 94(2014), No. 2, 215-221.
[4] H. Abu-Shaab, R. Khalil, Solution of some conformable fractional differential equations, Int. J. Pure Appl. Math., 103(2015), No. 4, 667-673.
[5] M. J. Lazo, D. F. M. Torres, Variational calculus with conformable fractional derivatives, IEEE/CAA Journal of Automatica Sinica, 4(April 2017), No. 2.
[6] W. Rosa, J. Weberspil, Dual conformable derivative:Definition, simple properties and perspectives for applications, Chaos, Solitons and Fractals, 117(2018), 137-141.
[7] D. Anderson, R. I. Avery, Fractional-order boundary value problem with Sturm-Liouville boundary conditions, Electronic Journal of Differential Equations, 29(2015), 1-10.
[8] H. Batarfi, J. Losada, J. J. Nieto, W. Shammakh, Three-point boundary value problems for conformable fractional differential equations, Journal of Function Spaces, Volume 2015, Article ID 706383, 6 pages, doi:10.1155/2015/706383.
[9] B. P. Allahverdiev, H. Tuna, Y. Yalcinkaya, Conformable fractional Sturm-Liouville equation, Math. Meth. Appl. Sci., 42(2019), 3508-3526.
[10] N. Benkhettou, S. Hassani, D. F. M. Torres, A conformable fractional calculus on arbitrary time scales, Journal of King Saud University-Science, 28(2016), 93-98.
[11] M. Bohner, V. F. Hatipoğlu, Dynamic Cobweb models with conformable fractional derivatives, Nonlinear Anal., Hybrid Syst. 32(2019), 157-167.
[12] T. Gulsen, E. Yilmaz, S. Goktas, Conformable fractional Dirac system on time scales, J. Inequal. Appl., 2017:10, 2017.
[13] T. Gulsen, E. Yilmaz, H. Kemaloglu, Conformable fractional Sturm-Liouville equation and some existence results on time scales, Turk. J. Math. 42(2018), No. 3, 1348-1360.
[14] S. Rahmat, M. Rafi, A new definition of conformable fractional derivative on arbitrary time scales, Adv. Difference Equ., 2019:354, 2019.
[15] D. F. Zhou, X. X. You, A new fractional derivative on time scales, Adv. Appl. Math. Anal., 11(2016), No. 1, 1-9.
[16] C. Zhang, S. Sun, Sturm-Picone comparison theorem of a kind of conformable fractional differential equations on time scales, J. Appl. Math. Comput., 55(2017), 191-203, doi:10.1007/s12190-016-1032-9.
[17] M. Bohner, A. Peterson, Dynamic Equations on Time Scales, An Introduction with Applications, Birkhäuser, Boston Inc. Boston, MA, 2001.
[18] W. Kelley, A. Peterson, The Theory of Differential Equations Classical and Qualitative, Pearson Prentice Hall, Upper Saddle River, NT, 2004.

Mersin University, Institute of Science, Department of Mathematics, 33343, Mersin, Turkey.

Current address: Mersin University, Institute of Science, Department of Mathematics, 33343, Mersin, Turkey.

Email address: z2.ceylann@gmail.com

[^0]: Date: February, 2020.
 2000 Mathematics Subject Classification. 34N05, 26A33, 34K08.
 Key words and phrases. Time scales, Conformable derivative, Boundary value problems.

