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Abstract 

 In this article, some coupled fixed point theorems for  F  -contraction mappings in complete metric spaces 

are proved. In addition, some results related to these theorems are given. 
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F -Büzülme Dönüşümleri için Bazı İkili Sabit Nokta Teoremleri  

Öz 

Bu çalışmada, tam metrik uzaylarda F-büzülme dönüşümleri için bazı ikili sabit nokta teoremleri ispatlanmıştır. 

Ayrıca, bu teoremlerle ilgili bazı sonuçlar verilmiştir. 

 

Anahtar Kelimeler:  Metrik uzaylar, Sabit nokta teorisi, F-büzülme, Tamlık. 

 

 

1. Introduction 

The concept of coupled fixed point was 

introduced by Guo and Lakshmikantham 

(1987). And, Bhaskar and Lakshmikantham 

(2006) introduced coupled fixed point for 

partially ordered metric spaces. A lot of  

authors such as Mutlu et.al. (2017 and 2018); 

Sabetghadam et.al. (2009); Samet (2010); 

Van Luong and Thuan (2011), gave different 

generalization of these theorems. 

Wardowski (2012) was introduced the 

concept of F -contraction and he gave a 

different generalization of  Banach 

contraction principle. Afterwards, various 

researchers examined some fixed point 

theorems for such type contraction mappings 

and they got some interesting and useful 

results (see; Abbas et.al., 2013; Altun et.al., 

2015; Batra and Vashistha, 2014; Cosentino 

and Vetro, 2014; Piri and Kumam 2014). 

In this manuscript, we examine some coupled 

fixed point theorems for F  -contraction 

mappings in complete metric spaces. In 

addition to this, we give some results related 

to these theorems. 
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2. Preliminaries 

Definition 2.1. (Wardowski 2012)   

Let a mapping :F    satisfies the 

following conditions: 

  ( 1)F  F  is strictly increasing, 

  ( 2)F  For each sequence { }n n   of positive 

numbers  

lim 0 lim ( )n n
n n

F 
 

    , 

 ( 3)F  There exists (0,1)k  such that 

0
lim ( ) 0k F


 


 . 

 is called as the family of all functions F  

which satisfy the conditions ( 1) ( 3)F F . 

Definition 2.2. (Wardowski 2012)   

Let ( , )X d  be metric space. :T X X  is 

called an F -contraction if there exist F  

and    such that  

( , ) 0 ( ( , )) ( ( , ))d Ta Tb F d Ta Tb F d a b   

(1) 

for each ,a b X .  

Example 2.3. (Wardowski 2012)  

Let :F    be denoted by ( ) lnF a a . 

It is obvious that, for any (0,1)k , the 

function F  satisfies the conditions 

( 1) ( 3)F F .  All self-mappings T  on X , 

which satisfies (1) is an F -contraction such 

that  

( , ) ( , )d Ta Tb e d a b  

for all ,a b X such that Ta Tb . 

It is clear that the inequality  

( , ) ( , )d Ta Tb e d a b  

also holds for ,a b X  such that Ta Tb . 

Then T  is a Banach contraction mapping. 

Example 2.4. (Wardowski 2012) 

Let :F    be denoted by ( ) lnF a a a 

(0, )a   . It is clear that, for any (0,1)k , 

the function F  satisfies the conditions  

( 1) ( 3)F F .  All self-mappings  T  on X  , 

which satisfies (1) is an -contraction such that 

 
( , ) ( , )( , )

( , )

d Ta Tb d a bd Ta Tb
e e

d a b

    

for all ,a b X , Ta Tb . 

3. Main Results 

Theorem 3.1.  

Let ( , )X d  be a complete metric space and 

:S X X X   be a self-mapping on X . If 

there exist F  and (0, )    such that 

the following condition holds 

( ( , ), ( , )) 0                 

( ( ( , ), ( , ))) ( ( , ) ( , ))

d S a b S u v

F d S a b S u v F d a u d b v  



   

(2) 

for all , , ,a b u v X , ( , ) ( , )S a b S u v , where 

1   , then S  has a unique coupled fixed 

point. 

Proof:  

We take 0 0,a b X  and set 

1 0 0 1 0 0

1 1

( , ), ( , ), ,

( , ), ( , ).n n n n n n

a S a b b S b a

a S a b b S b a 

  

 
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 If 
0 0 1n na a  , 

0 0 1n nb b   for some 0n  , 

then   

0 0 0 0 0 0 0 01 1( , ), ( , ).n n n n n n n na a S a b b b S b a    

Thus, 
0 0

( , )n na b  is a coupled fixed point for .S

We examine the case of either 

1 ( , )n n n na a S a b   or 1 ( , )n n n nb b S b a   for 

all n . Then,  

1 1 1( ( , ), ( , )) ( , ) 0n n n n n nd S a b S a b d a a     or 

1 1 1( ( , ), ( , )) ( , ) 0n n n n n nd S b a S b a d b b     

for all n . Using (2), we have  

1 2 1 1

1 1

( ( , )) ( ( ( , ), ( , )))

                              ( ( , ) ( , )).

n n n n n n

n n n n

F d a a F d S a b S a b

F d a a d b b

 

 

   

 

  

 

(3)  

And, from (2), we also get  

1 2 1 1

1 1

( ( , )) ( ( ( , ), ( , )))

                              ( ( , ) ( , )).

n n n n n n

n n n n

F d b b F d S b a S b a

F d b b d a a

 

 

   

 

  

 

(4) 

Since F  is strictly increasing, using (3) and 

(4), we obtain that 

 1 2 1 1( , ) ( , ) ( , )n n n n n nd a a d a a d b b       

and  

 1 2 1 1( , ) ( , ) ( , ).n n n n n nd b b d b b d a a       

Therefore, by letting 

1 2 1 2( , ) ( , ),n n n n nd d a a d b b      

we have 

1 1

1

( )( ( , ) ( , ))

   ( )

n n n n n

n

d d a a d b b

d

 

 

 



 






 

for all n . Since 1   , we get 1n nd d   

for all n . Consequently,  

1( ) ( )n nF d F d    for all n . We get 

1 0( ) ( ) ( )n nF d F d F d n              (5) 

for all n . If we take limit as n  in (5), 

we obtain 

lim ( ) .n
n

F d


   

From property ( 2)F , we have that lim 0.n
n

d




Using property ( 3)F , we can say that there 

exists (0, )k   such that lim ( ) 0k

n n
n

d F d


 . 

Using the inequation (5),  we get  

0 0 0( ) ( ) ( ( ) ) ( )

                              0.

k k k k
n n n n n

k
n

d F d d F d d F d n d F d

n d





   

  

(6) 

If we take limit as n  in (6), we get 

lim 0k

n
n

nd


 . Then there exists 0n   such 

that 1k

nnd   for all 0n n . Hence we get

1

1
n

k

d

n

  for all 0n n . We consider ,m n  

such that 0m n n  , we get 

1 1

1 1

1 2

1

( , ) ( , ) ( , ) ( , )

                          

 

                 + ( , ) ( , )

    

  

        

                         

 

      =

                    = 

m n m n m m m m

n n n n

m m n

m

i

i n

d a a d b b d a a d b b

d a a d b b

d d d

d

 

 

 





   



  

 1
1 1

1
.i

i i k

d

i

 

 

 

 

Since the series 1
1

1

i ki





  are convergent, { }na  

and { }nb  are Cauchy sequences in X . From 

completeness of ( , )X d , we can say that there 
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exist ,a b X  such that lim n
n

a a


  and 

lim .n
n

b b


  From property of metric, we obtain 

1 1( ( , ), ) ( ( , ), ) ( , )n nd S a b a d S a b a d a a    

1( ( , ), ) ( , ) ( ( , ), ( , )).n n nd S a b a d a a d S a b S a b   (7) 

In addition to this, from (2), we get 

( ( ( , ), ( , ))) ( ( ( , ), ( , )))

                                      ( ( , ) ( , )).

n n n n

n n

F d S a b S a b F d S a b S a b

F d a a d b b



 

 

 
 

From property of ( 1)F , we have 

( ( , ), ( , )) ( , ) ( , ).n n n nd S a b S a b d a a d b b        

(8) 

From (7) and (8), we obtain 

1( ( , ), ) ( , ) ( , ) ( , ).n n nd S a b a d a a d a a d b b   

Letting n , we get  

( ( , ), ) 0 ( , ) .d S a b a S a b a    

Similarly, we have also ( , )S b a b . Then 

( , )a b  is a coupled fixed of S . On the other 

hand, we assume that ( ', ')a b  is another 

coupled fixed point of S  such that 

( , ) ( ', ')a b a b . From (2), we get 

( ( , ')) ( ( ( , ), ( ', ')))

                       ( ( , ') ( , ')) .

F d a a F d S a b S a b

F d a a d b b  



  
   

(9) 

and 

( ( , ')) ( ( ( , ), ( ', ')))

                       ( ( , ') ( , ')) .

F d b b F d S b a S b a

F d b b d a a  



  

(10) 

From property of ( 1)F , (9) and (10), we get  

 ( , ') ( , ') ( , ')d a a d a a d b b    

and  

 ( , ') ( , ') ( , ').d b b d b b d a a    

Then we have

 

( , ') ( , ') ( )( ( , ') ( , ')).d a a d b b d a a d b b      

Since 1   , we get  

( , ') ( , ') 0.d a a d b b   

This implies that ( , ) ( ', ')a b a b , which is a 

contradiction. Then S  has a unique fixed 

point ( , )a b . 

If constants in Theorem 3.1. are taken equal, 

it is obtained the following corollary. 

Corollary 3.2.  

Let ( , )X d  be a complete metric space and 

:S X X X   be a self-mapping on X . If 

there exist F  and (0, )    such that 

the following condition holds 

( ( , ), ( , )) 0 ( ( ( , ), ( , )))

                                      ( ( ( , ) ( , )))
2

d S a b S u v F d S a b S u v

F d a u d b v





  

 

(11) 

for all , , ,a b u v X , ( , ) ( , )S a b S u v , where 

1  , then S  has a unique coupled fixed 

point. 

Example 3.3. 

Let X   and ( , )d a b a b   for all 

,a b X . We can easily say that ( , )d  is a 

complete metric space. We consider 

: (0, )F    such that ( ) lnF a a  for 

0a  . And, we define the mapping 

:S    with ( , )
3

a b
S a b

e


  for 0.   
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Then for all , , ,a b u v X , ( , ) ( , )S a b S u v  

and 
3

2
  , we get 

( ( ( , ), ( , )))
3 3

                                       
3 3

1
                                      

3

                             

a b u v
F d S a b S u v ln

e e

a u b v
ln

e e

ln a u b v lne

 

 



 





  
    

 

  
   

 

 
      

 

1
          ( ( ( , ) ( , ))).

3
F d a u d b v 

 

Then the expression (11) is satisfied. From 

Corollary 3.2., S  has a unique coupled fixed 

point. This point is (0,0)  . 

Theorem 3.4. 

Let ( , )X d  be a complete metric space and 

:S X X X   be a self-mapping on X . If 

there exist F  and (0, )    such that 

the following condition holds 

( ( , ), ( , )) 0 ( ( ( , ), ( , )))

( ( ( , ), ) ( ( , ), ))

d S a b S u v F d S a b S u v

F d S a b a d S u v u



 

  

 
                                                                                                                                                                                                                                       

(12) 

for all , , ,a b u v X , ( , ) ( , )S a b S u v , where 

1   , then S  has a unique coupled fixed 

point. 

Proof: 

We take sequences { }na  and { }nb  which have 

same properties in  the proof of Theorem 3.1. 

such as 1 ( , )n n na S a b   and 1 ( , )n n nb S b a  . 

From (12),  we get  

1 1 1

1 1 1

1 1

( ( , )) ( ( ( , ), ( , )))

        ( ( ( , ), ) ( ( , ), ))

        ( ( , ) ( , )).

n n n n n n

n n n n n n

n n n n

F d a a F d S a b S a b

F d S a b x d S a b a

F d a a d a a

 

 

 

  

  

 

  

 

 

 

From property ( 1)F , 

1 1 1

1 1

( , ) ( , ) ( , )

( , ) ( , ),
1

n n n n n n

n n n n

d a a d a a d a a

d a a d a a

 





  

 

 

 


 

where 0 1
1




 


. Then we get  

1 1( , ) ( , )n n n nd a a d a a    

for all n . We denote 1( , )n n nd a a  .  So, 

1( ) ( )n nF F      for all n . The 

following holds  

 1 0( ) ( ) ( )n nF F F n               (13) 

for all n . If we take limit as n  in 

(13),  we get lim ( ) .n
n

F 


   From property 

( 2)F , we have that lim 0.n
n




  Using ( 3)F , 

we  can say that there exist (0, )k   such 

that lim ( ) 0k

n n
n

F 


 . From (13), we get  

0 0 0( ) ( ) ( ( ) ) ( )

                               0.

k k k k

n n n n n

k

n

F F F n F

n

        



   

  
     

                                                                  (14)                                                                                        

Taking limit as n  in (14), we get 

lim 0.k

n
n

n


  There exist 1n   such that 

1k

nn   for 1n n . Then we get 

                 
1

1
.n

kn

                             (15) 

We consider ,m n  such that 1m n n  . 

From (15), we get  
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1 1

1 1

1

( , ) ( , ) (

 

, )

              

1
          

           

.

  

    

n m n n m m

n n m

i

i n

i n k

d a a d a a d a a

i

  



 

 









  

   









 

Then 1
1

1

n ki





  is convergent. Thus { }na  is a 

Cauchy sequence in X . In a similar way, we 

can show that { }nb  is a Cauchy sequence in 

X . From completeness of ( , )X d , there exist 

,a b X  such that lim n
n

a a


  and lim .n
n

b b


  

1 1

1

( ( , ), ) ( ( , ), ) ( , )

                   ( ( , ), ( , )) ( , )

n n

n n n

d S a b a d S a b a d a a

d S a b S a b d a a

 



 

 
  

1( ( , ), ) ( , ) ( ( , ), ( , )).n n nd S a b a d a a d S a b S a b  

(16) 

On the other hand, from (12), we get 

( ( ( , ), ( , ))) ( ( ( , ), ( , )))

                      ( ( ( , ), ) ( ( , ), )).

n n n n

n n n

F d S a b S a b F d S a b S a b

F d S a b a d S a b a



 

 

 
  

From property of ( 1)F , we get 

( ( , ), ( , )) ( ( , ), ) ( ( , ), ).n n n n nd S a b S a b d S a b a d S a b b     

     (17) 

From (16) and (17), we obtain 

1

1

1

( ( , ), ) ( , ) ( ( , ), ) ( ( , ), )

                            ( ( , ), ) ( , )

                            ( ( , ), ) ( ( , ) ( , ))

n n n n

n n

n n

d S a b a d a a d S a b a d S a b a

d S a b a d a a

d S a b a d da aa a

 

 

 







  

 

  

 

1

1
( ( , ), ) ( , ) ( , ).

1 1
n nd S a b a d a a d a a

 

 



 

 
 

Letting n , we get  

( ( , ), ) 0 ( , ) .d S a b a S a b a     

 Similarly, we have also ( , )S b a b . Then 

( , )a b  is a coupled fixed of S . On the other 

hand, we assume that ( ', ')a b  is another 

coupled fixed point of S  such that 

( , ) ( ', ')a b a b . From (12), we get 

( ( , ')) ( ( ( , ), ( ', ')))

        ( ( ( , ), ) ( ( ', '), ')) .

F d a a F d S a b S a b

F d S a b a d S a b a  



  
 

From property ( 1)F , we get ( , ') 0d a a  . 

Similarly, we can show that ( , ') 0d b b   

These imply that ( , ) ( ', ')a b a b , which is a 

contradiction. Then S  has a unique fixed 

point ( , )a b .  

Corollary 3.5. 

Let ( , )X d  be a complete metric space and 

:S X X X   be a self-mapping on X . If 

there exist F  and (0, )    such that 

the following condition holds 

( ( , ), ( , )) 0 ( ( ( , ), ( , )))

                    ( ( ( ( , ), ) ( ( , ), )))
2

d S a b S u v F d S a b S u v

F d S a b a d S u v u





  

 
 

for all , , ,a b u v X , ( , ) ( , )S a b S u v , where 

1  , then S  has a unique coupled fixed 

point. 

Example 3.6. 

Let [0, )X   . We define 

:[0, ) [0, )d     with ( , ) max{ , }d a b a b . 

([0, ), )d  is a complete metric space. We 

consider the mapping 

:[0, ) [0, ) [0, )S       such that 

( , )
12

a
S a b  . And, we choose ( ) ln( )F a a , 

(0, )a  . Then it is clear that for all 

), ,, 0, [a b u v  , ( , ) ( , )S a b S u v , ln 2   

and 
1

3
  , the condition 
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ln 2 ( ( ( , ), ( , )))

1
                  ( ( ( ( , ), ) ( ( , ), )))

6

F d S a b S u v

F d S a b a d S u v u



 
  

is satisfied. From the Corollary 3.5., S  has a 

unique coupled fixed point. 

Theorem 3.7. 

Let ( , )X d  be a complete metric space and 

:S X X X   be a self-mapping on X . If 

there exist F  and (0, )    such that 

the following condition holds 

( ( , ), ( , )) 0 ( ( ( , ), ( , )))

                     ( ( ( , ), ) ( ( , ), ))

d S a b S u v F d S a b S u v

F d S a b u d S u v a



 

  

 
     

                                                                                                

(18)  

for all , , ,a b u v X , ( , ) ( , )S a b S u v , where 

1   , then S  has a unique coupled fixed 

point. 

Proof:  

We take 0 0,a b X  and set 

1 0 0 1 0 0

1 1

( , ), ( , ), ,

( , ), ( , )n n n n n n

a S a b y S b a

a S a b b S b a 

  

 
. 

 From (18), we get  

1 1 1

1 1 1

1 1

1 1

1 1

( ( , )) ( ( ( , ), ( , )))

 ( ( ( , ), ) ( ( , ), ))

 ( ( , ) ( , ))

 ( ( , ))

 ( ( , ) ( , )).

n n n n n n

n n n n n n

n n n n

n n

n n n n

F d a a F d S a b S a b

F d S a b a d S a b a

F d a a d a a

F d a a

F d a a d a a

  

 



 

  

  

 

 

 



  

 



 

From property ( 1)F , we get  

1 1( , ) ( , )
1

n n n nd a a d a a



 


 

Since 1   , we get 
1

1
1 




. Then we get  

1 1( , ) ( , )n n n nd a a d a a   

for all n . If we denote 1( , )n n nd a a  , 

then the proof similar to proof of  Theorem 

3.4. Thus, { }na  is a Cauchy sequence in X . In 

a similar way, we can show that { }nb  is a 

Cauchy sequence in X . From completeness 

of ( , )X d , there exist ,a b X  such that 

lim n
n

a a


  and lim n
n

b b


 . As similar to proof 

of  Theorem 3.4., we get  

( ( ( , ), ( , ))) ( ( ( , ), ( , )))

                    ( ( ( , ), ) ( ( , ), )).

n n n n

n n n

F d S a b S a b F d S a b S a b

F d S a b a d S a b a



 

 

 
 

From property ( 1)F , we get 

1

1
( ( , ), ) ( , ) ( , ).

1 1
n nd S a b a d a a d a a

 

 



 

 

Letting n , we get   

( ( , ), ) 0 ( , ) .d S a b a S a b a    

Similarly, we have also ( , )S b a b . Then 

( , )a b  is a coupled fixed of S . Now we 

show that the coupled fixed point is unique. 

We assume that ( ', ')a b  is another coupled 

fixed point of S  such that ( , ) ( ', ')a b a b . 

From (18),  we get  

( ( , ')) ( ( ( , ), ( ', ')))

        ( ( ( , ), ') ( ( ', '), )) .

F d a a F d S a b S a b

F d S a b a d S a b a  



  
 

From property ( 1)F , we get 

( , ') ( ( , ), )
1

                    ( ( ', '), ')
1

d a a d S a b a

d S a b a



 



 


 


 

 

We get ( , ') 0d a a  . Similarly, we can show 

that ( , ') 0d b b   These imply that 
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( , ) ( ', ')a b a b , which is a contradiction. 

Then S  has a unique fixed point ( , )a b .  

Corollary 3.8. 

Let ( , )X d  be a complete metric space and 

:S X X X   be a self-mapping on X . If 

there exist F  and (0, )    such that 

the following condition holds 

( ( , ), ( , )) 0 ( ( ( , ), ( , )))

                    ( ( ( ( , ), ) ( ( , ), )))
2

d S a b S u v F d S a b S u v

F d S a b u d S u v a





  

 
 

for all , , ,a b u v X , ( , ) ( , )S a b S u v , where 

1  , then S  has a unique coupled fixed 

point. 

Example 3.9. 

If we take as ln3   and 
1

2
   in Example 

3.6., it is obvious that the condition 

ln 3 ( ( ( , ), ( , )))

1
                 ( ( ( ( , ), ) ( ( , ), )))

4

F d S a b S u v

F d S a b u d S u v a



 
 

is also satisfied for all ), ,, 0, [a b u v  ,

( , ) ( , )S a b S u v . From the Corollary 3.8., S  

has a unique coupled fixed point. 
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