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ABSTRACT

In this paper, by using two-variable network functions, the explicit characterizations
of lossless ladder networks with lumped and distributed elements are aimed. The explicit
two-variable descriptions of some special classes of lossess ladders networks of low-pass,
high-pass, band-pass and band-reject types are presented. The explicit formulas define the
mixed elements networks under consideration are obtained up to a certain complexity. At
the end of this study, the application of the proposed method in the design of two-stage
microwave FET amplifier isillustrated with an example.

0z
Bu caypmada, kayypsyz, iki-kepyly devreerin iki-dedifkenli sacylma fonksyonlary
yardymyyla olufturulmasy problemi e dynmyftyr. Bu amagla, synyrly bazy karma, toplu ve
dadylmyp eemanly iki-kapyly devre topolojileri incdenerek, de adynan devreyi tanymlayan
sacylma parametrderine ilifkin agyk formiller  tlretilmiflir. Bu makaede, dde edilen agyk
formdiller, 11.7-12.2 GHz band ardydynda, MGF2124 mikroddga tranzigorlerini iceren cift
katly mikrodalga kuvvetlendirici tasarymyna uygulanmy/ayr.
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1. Introduction (only lumped or only distributed elements)

In the literature, the network design
with mixed, lumped and digtributed eements
has been recognized for a long time [1-4]. In

high frequency, high speed communication
networks and  Monoalitic Integrated Circuit
(MIC) layout dedgn, the mixed eements

network provides more advantages and
flexibilities with respect to Sngle dement

one. But unfortunately, a generd  procedure
like Darlinghton method in lumped network
gynthess 4ill doesn't exigt to desgn losdess
two-port networks with mixed eements. In
the most dudies, the redizbility conditions
for the redricted class of two-vaiade
functions have been examined and the
specid  attention has been devoted to a
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practicad ladder  network
composed of cascaded losdess smple
lumped dements and ided commensurate
trangmisson lines (UES) encountered in
broadband matching networks and
microwave filters, especidly.

configurations

The dudies on the scattering parameter

deription  of passve  multidimensond
(expecidly  two-dimensond) losdess  two-
ports have given rise to two-vaiadle

scattering  functions which  ae cdled
Scattering  Hurwitz  Polynomidg[5-6]. Based
on these new functions some atractive
results on the generd cascade synthess
problem has been introduced in recent
literaturg{7-11]. The <udies showed that
goat from the requirements of the pogtive
red or bounded rea conditions, additiona
conditions imposing the topologic
redricions has to be used to ensure
redlizability of a passve cascade structure for
two-variable case.

Sating from this idea, a scatering
approach to construct the losdess cascaded
two-ports  with mixed, lumped and
digributed eements is proposed in this
paper. Usng the topological redrictions of
some  two-vaiable dructures with smple
lumped dements and uniform transmisson
liness, by means of that approach, it is
highlighted that  two-variable  network
functions can be condructed on a scetering
basis.

2. Two-Variable Scattering Description of
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Fig. 1la- Generic form of lumped ladder
dructure with unit eements.
b- Simple lumped dements.

Condder the generic form of cascaded two-
port composed of smple lumped, dements
and uniform, equidday ided tramsmisson
lines (Unit Element ) shown in Fg.1.

As it is wdl known, the scatering
matrix S describing the mixed dement
dructure can be expressed in terms of two-
vaiable canonic polynomids f(p, 1), h(p, |)
and g(p, | ) asfollows:

sf. ©
s= L& 2 &
g gf -sh g
where; the lower asterisk () denotesthe
paraconjugation i.e. h-=h(-p,-1 ) and dso,

ghandf arered polynomids of the
complex variablespand | ;

g(p, | ) isa Scattering Hurwitz
polynomid,

f(p, | ) ismonic, s isaunimodular
congtant and

the polynomids are related by the
paraunitary condition :

a(p. )a(-p.-1)=h(p.l )h(-p.-1 )+f(p.l )i(-p.-| )(2)

For the cascade topology underconsideration,
the polynomid f hastheform

f(p, 1 )=fo(p)(2-1 %) "2 ©)

where fo(p) define the transmisson zeros of
the lumped cascade without UES, n denotes
the number of UEs in the mixed structure,

In other hand, the two-variable red

polynomids g=g(p,] ) and h=h(p,| ) can be
expresad in coefficients form as follows:

9(p.8) =p'E8,;
h(p, & =p"E &,
where, pT=[1 p P’ L pr”“J,

IT=[1I 1% L I“J N, isthetotal number of
lumped dementsin the mixed structure and
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3. Topologic Properties of Some L ossless
Ladder Networkswith Unit Elements

By udng the losdessness condition
(2 of two-ports, the two-vaiable red
canonic polynomias defining the scattering
matrix of the ladder networks under
congderation ae condructed to be
characterized the mixed dructures shown in
Fig.l. Otherwise, it is wdl known that the
scattering matrix and hence the canonic
polynomids have to satify some additiona
conditions to ensure the redizability as a
passve losdess cascade dructure. In  this
sudy, the additionad conditions which lead to
a redizable cascade dructure with pogtive
edement vaues are invedtigated by usng the
angle-variadble boundary conditions and the
topologic properties of the mixed eement
dructures.  For certain classes of  two-
varidble low-pass, high-pass, band-pass and
band-rgject type ladder dructures , the
baundary conditions can be esablished as
folows

Boundary Conditions:

Lowpass type ladder (The transmisson
zeros of the lumped cascade ae dl a
infinity):
Putting p=0 in (2), the obtained
polynomiasg(0,l ), h(0,l ) and f(O,l )
define the cascade of UEs where g(0,l )
isdrictly Hurwitz and
©)
9(01)9(0,-1 )=h(0J )h(O-1 y+(1-1 2" '

- Putting | =0in (2), the obtained
polynomials g(p,0), h(p,0) and f(p,0)
define the cascade of lumped section
where g(p,0) is gtrictly Hurwitz and
9(p.0)9(p.0)=h(p,0)h(p.0)+1 (6)

High-pass type ladder ( The transmisson
zeros of the lumped cascade are dl a zero):

Puting p=¥ in (2) the obtaned
polynomidsg(¥,l ), h(¥,l ) and f(¥,] ) define
the cascade of UEs where g(¥,| ) isdrictly
Hurwitz and

9(¥,| )g(¥,-| ):h(¥,| )h(¥’_| )+)(1_| 2)nI /2

)

Puting 1=0 in (2), the obtaned
polynomias g(p,0), h(p,0) and f(p,0) define
the cascade of lumped section where g(p,0) is
drictly Hurwitz and

a(p.0) g(p.0)=h(p,0) h(p,0) + p" (8)

Band-pass type ladder ( The trans. zeros are
itshdf a origin and the others a infinity):

- Putting p=0 or p=¥ in (2), the cascade of
UES can not got directly from the band-pass
type mixed structure. So, to be established
the boundary condition for the distributed
subsection (only UEs chain)  requires to
choose the losdess eguation fictitioudy as
follows

g(l) é(—l):_h(l ) ;1(-I)+<1-|2)”.’2 ©

where g , h arethefiditious polynomials

- Putting | =0in (2), the obtained polynomids
9(p,0), h(p,0) and f(p,0) define the cascade of

lumped section where g(p0) is drictly
Hurwitz and
9(p,0) g(P.0)=h(p,0) h(p,0) + p™'*  (10)
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Band-rgect type ladder (The trans. zeros
aedl a finite jw axis without end points):

Putting p=0 or p=¥ in (2), the obtained
polynomids{g(0,l ), h(0,] ) and f(O, )} or
{g¥,1), h(¥,]) and f(¥,1)} define the
cascade of UEs where g(0,1 ) or g(¥,!)

isgrictly Hurwitz (5 or 7).
Puting |=0 in (2), the obtaned
polynomiads g(p,0), h(p0) and f(p,0)

define the cascade of lumped section
where g(p,0) is strictly Hurwitz and

a(p.0)g(p,0)=h(p,0)n(p,0)+(L+kop’+ky*+..+k, p'°)
(12)

where,  knp=1 is chosen for the sake of
transformerless design.

The dngle vaiable boundary polynomias
define the ceatan row and column
coefficients  of  the  matrices Ly

andL ,defining the two-vaidde polynomids

h(p,l ) and g(p,| ) respectively. These are the
fird¢ row and the fird column for low-pass
type, the lagt row and the firg column for
high-pass type, only the fird column for
band-pass type and the first or the last row
and the fird column for band-rgect type
redricced mixed dructures. At the same
time, the two-variable losdessness equation
(2 is «idied with the gngle-varidble
boundary conditions given above. Now, the
congdruction problem of the canonic
polynomids (h(p,] ) and g(p,| )) is converted
to generate the remaining rows and columns
of the coefficent matrices which include the
cascade connection information.

4. Congruction of Two-Variable Network
Functionsfor Mixed Structures

In this section, the main idea is that
the losdess two-port networks composed of
lumped and didributed eements ae
described  in terms of the red coefficients of
h(p,! ) two-variable polynomid.

As wdl known, the mgor difficulty
in condruction of two-variadle network
functions is the explicit factorization of two-
vaiable polynomids encountered in the
losdessness condition (2) of the two-port.

An dtenative solution method be
used ingead of two-variable factorizetion is
to solve a quadratic equation set cdled
“Fundamenta Equation Set” given asfollow,
obtained by expressng the losdessness
relaion (2) in the coefficdents form given in
(4) and equating the same powers of p and |
init.

Thus, in two-variable case, the problem is
reduced to the solving of these quadratic
equations FES) which lead to a redizable
cascade dructure  with  postive  dement
vaues under proper condraints. The solution
of FES should be founded such tha two-
vaiable g(p,|) denominator polynomia of
the scatering parameters is  yidded as
Scattering Hurwitz polynomid. In order to
solve it, besdes the boundary conditions, we
need to consder some topologica condraints
on the coefficients in order to be obtained the
practicadl  (redizable)  solution. This
correspondes to determining of the solution
in such a way tha the resulting canonic
polynomids f(pl), g(p,l) and h(p,|) yidd
redlizable scattering parameters
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Fundamental Equation Set (FES)
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1=0

M

41. Construction of Losdess Two
Ports with lumped and Unit

Elements (UES)

The most practicadl  network
configurations from the redizaion point
of view are ladder forms congtructed of
cascaded smple lumped dements and
commensurate transmisson lines (UES)
as shown in Fig. 2 These types of
ladder networks are called to as low-pass,
high-pass, band-pass and band-reject
ladder with unit elements in Fig. 2(a-d)
respectively.

By the topologic andysis for each
class of cascade mixed Structures shown
in Fg2 the invented coefficient
condraints are edablished in Table 1.
Utilizing the boundary conditions (5-11)
together with these coefficient
condrants reflecting the connectivity
information, a unique and sufficient

1=0

(k=01,....,n)

explicit solution of FES (12) is obtained

up to low-order network complexity
usng a draghtfooward  dgebraic
procedure.

The obtaned explicit solutions
foo  the mixed dructures  under
consgderation are given In Table 25, and
their correspondence redizations are
shown in Fg. 3-6. The two-vaiadle
ladder network configurations obtained
in this study provide resoanable solutions
for the many practicd broadband
meatching problems, even though limited.

For high order ladders, direct
derivations  of coefficent  relations
become highly complicated, therefore
FES has to be solved numericaly. In the
reference [10] , a numeic solution
method based on Algebraic
Decompozition Technige is presented.
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5. Application

A fundamentad gpplication of the results
obtained is that of the computer-aided
red frequency broadband matching. The
red frequency matching is based on the

gengation of the red  scatering
parameters  defining  the  maching
networks, in tems of a st of

independent real parameters and then the

numerical determination  of  these
paameters by optimizing the gan
peformanceof the overadl sysem. So,
the scattering  representation  of  the
meatching

networks is generated from the partiadly
defined numerator polynomid h(pl) of
the unit normdized input reflection
function Su(pl )= hpl) / opl).
Then, the cetan coefficdents in the
coefficients matrice of h(p,l ) polynomid
are chosen as the independent unknown
parameters and determined to optimize
the transducere gain of the sysem by
means of an uncondrained nonlineer
search routine.  Later, sarting from these
independent  coefficients, we generate the
res of the coefficients matrices of h(p,l )
and g(p|) poly- nomids by usng the
explicit expressons for the mixed
structuresintroduced in the Sect. 4.

In the following, the use of the
obtained explicit solutions for band-pass
ladders with unit dements is illusrated
by a two-stage microwave FET amplifier
desgn example. As it is wel known, the
desng of microwave amplifie’s can be
conddered as the desgn of maiching
networks caled equdizers.

51 Two-Stage FET Microwave
Amplifier  Design

In this example, it is desred to
gynthesize front-end, interstage and back-
end matching networks for a par of
MGF 2124 microwave transstors over
the frequency band of 11.7-12.2 GHz (X
band). The source and the load
rezigsances are 50W. The scattering

parameters of the active device (MGF
2124) isgivenin [13].

For this amplifier example, it is
chosen the BPLU with three section
dructure for the input and output
matching networks, the BPLU with four
section for the interdage equdizer. The
front-end, interstage and  back-end
matching networks for the FET are

desgned successvely by usng the
sequentid amplifier desgn  technique

described in [6]. The dday lengths of the
trangmisson lines in dl matching
networks are adso chosen as additiond
free parameters and optimized
independently. As a reult of
optimization, we obtained the following
polynomid fooms  describing the
scatering  functions and  corresponding
redizations of the front-end, interstage
and back-end equdizers

The find mached amplifier
sysem has an average gain leve of 4.59
dB over the design passband of 11.7-12.2
GHz, which is shown in Fg8  Within
the passhand, the maximum and the
minumum gan leves ae obtaned as
5.03 dB and 3.85 dB respectively. Here,
the normdized e lements vdues ae
given only. Actual dement vaues can be
computed by denormdizing with Ry=50
Ohm and fp=12.2 GHz. In optimization

process, the free paameters are
initidized by ad-hoc choicesas+1 or -1.
55
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Froni-End Equalizer:

MGF 2124 FET

Myl

1 L, C1I
. Mﬁl‘l 1
L O 29,4
iyl

Cz %H%

o

[L1=0.6464, C;=1.2594,

L>=0.2621, C,=4.8843,

MGF 2124 FET

Z,=0.2678, t =0.3243, N;=0.538 ].
Interstage Equalizer:

MGF 2124 FET L3 Cy No:1 MGF 2124 FET
—— o | , LRSI ey S
22 s 7 L4 —l— | | . L

[L3=0.4743, C3=1.4966, L4=0.2561, C4=3.0767,

Z5,=0.9368, Z3=0.4186, t,=0.1784, N,=0.7609]

Hack Fnd FEgualizer:

Rl

Ls ©e M3:1
T

Z,=1.1905, N3=1.2804,

[ Ls=1.6156, Cs= 0.4898,

Ls=3.8598, Ce=0.3318,
t,=1.6183 ].

Fig.7. 2-gage amplifier design (g)Front-End (b)Interstage (c)Back-End Equdizers.

Table 6. After the optimization process, the obtained coefficient matrices

2e0.8148 0 0 a0.8148 0 O
¢- 02884 10725 . §1.7641 107257
L.=C 10464 - 0.7559™, L 4==C29050 12535 (a
:- 0.7132 1.0013 : 91.9147 1.0013:
§08494 0 B §0.8494 0 B
a0.9927 - 10597 0 6 29927 10597 0 §

g- 10466 21522 - 13122- 819247 3.0896 1.3122i
L,=612102 -20116 05578 ~, =.625243 37928 11451%, (b
¢ 0850 16850 - 09832~ 14822 23503 0.9832-
§0.5552 - 05926 0 B 5552 05926 0 g

2 0.7284 0 0 a9.7284 0 0
g 07806 - 12763, 21.5731 12763
L h:g- 1.2597 - 0.0728: L, :82.5401 1.0026: (g
11938 - 14938 18209 14938
é- 0.7383 0 B §0.7383 0 B
For (a) Front-End,  (b) Inter-Stage (c) Back-End Equdizers
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6. CONCLUSIONS

In this study, for two-variaddle losdess
two-port networks, the explicit
characterizetion is obtained up to a cetan
complexity usdng the two-varidble scattering
functions. Two-vaiadle  functiond
descriptions  of mixed dement low-pass,
hignh-pass, band-pass and  band-rgect
dructures are obtained to be quite useful
especidly in high speed/high frequency
mobile communication subcrcuits and  the
MMIC design packages. It is hoped that the
two-varigble explict characterizetion  will
provide a flexible tool to dedgners to
congtruct practicad matching networks and
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L ow-Pass Ladder with Unit Element
(LPLU)

High-Pass Ladder with Unit Element
(HPLU)

(0)

Band-Pass L adder with Unit Element
(BPLU)

(BRLU)

Fig. 2. Theladder network structures with mixed dements
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Tablel. Topologica properties of losdesstwo-ports under consideration

LPLU

1 911=9o1 910" hoship

2. gy, = hy, =0, (k+l>n+1; =0,12,...,n, k=012,...., ).
3. hg =My, . (k+l=n+1; k,1=012,...,n)
4. m=3gn(h, ,)=*1, m=Sgn(h,, )=+ 1
5 mFm=m=x1. for (n, =n+1).
HPLU
1. gnp-l,lz gnp,lgnp-l,o' hnpylhnp-l,o !
2. Ghws = h‘p_k,, =0, (k+I>n+1; =0,12,..,n, k=012,....,np).
3. hy . =mg, (k+I=n+1; Kk,1=0,1,2,....,n
4. m=359n (hoo) = 1, m=Son (h, ., )=£1
5 mEm=m==1. for (n=n+1)
BPLUs
1 gy (k+)>n+1 Oy =Nysg =0 (k=0,1,.,np), (I=0,1,.,n).
2' hn,-k,l = I’E]gr}-k,l ! (k+|): n +1 hn,+k,| = nagr}+k'| - (kzolll'lrb)l (lzolll'ln)'
3. m=Sgn(hoo)=Sgn(hnp,0)= 1, (K+l)=n+1,
mzwn( hn,-k,l)zwn( hnr +k,| )=il, (k=0,.,|’b, |:01-1n)

A g omn, =@ - M), o mh, )

Gy yoa” U 1 =(Gg-1- TIM0-0)/@, 0~ 1Y, 0
and (forn g, ).

Gy - TH, o =(Goy - MEN,5)./(G, - T, )

for mm=9 g .-, G DGy FOM (=

where (n=ny/2).;

5. mrm=m=+1  for(n=n+l) - g, .q,=9,,0,; for(n=n,
BRLUs
1. 01 =900 - h01hlo’ 91 "%y 10" hnhb-lo’
2. h, =mg, . (i=1,35.....,(np-1)),
3. Gy =kGon+ Ny =khy,  (224,..(b-2), - g, -, . =k(g,.- mh,.)
4. m=gn(h, ,)==1, where (n=rp/2)  m=Sgn(n, )=t1 (i=135.....,(n-1))
m=m=m=zx1 for (n=n+1
5. K=ty Mg for (n£2)

where k; (i=2,4,.,(n,-2)) are the coefficients of f(p,0) polynomid thet
defines the lumped subsection only, f(p,0)=(1+kop®+kap*+......... +p").

Entries of L 4 are nonnegative red numbers
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Table2. Explicit Formulasfor Low-Order LPLU

Gio=emo& go1={hoa>+1} Y, G11=0o1G10-ho1ho, hi1=ma1,

m=Sgn(hu1) ,

Qo=1, hoo=0,
m=5gn(ho)

o1 ={ (hor)*+1} 2
h1=mai1

Qo=810é
O11=0o1010—to1hno,

®0=1,h0o=0,  guo={(Mwo)*+2e0}"?,

nFSgN(hpo)=+ 1,

o2={ (o) ™+ 1}
®1=(1/b)(Podh1-eohn1), 1= of,

b1 ={ (ho1)?+2002+2} 2,
h1=(a/b)hxo + (b/a)hy2,

Q00,010 ,Go (SAME),
011=0o1010-ho1hio ,

o12=(1/a)(n1002-1ho2), hMo=mai2, a=go1-mhoz , b=g10-mhup
5 go=8eod  Bo={(h0)*+2(otio-heohno)} 2,  co={ho®+2mo} Y%,  @o=1, hoo=0,
o1={ (hor) #2002+ 2} 2, Qor={ (hoz)2+1} 12
11=0o1G10-ho1hno , hi1=(a/b)hyo + (b/a)ho,
1=(V/b)(%og11- Mo 1-Go1980+M01he0), hp1=ntpy, a=go1-Mo1 ,
i2=(Va)(an1902-m1ho2), hio=ntn2, b=gi0-no.
L ow-order Elementer Mixed Structures
A, k. L L
=1k e — -0 == L — i o
|2 Flment | © ‘ .E+ i k| : e J‘l_ 3 Elonasat n e f:a ) Ll = d
1=l pEEl el KLl =1 p=-l
L L
Oy L] T 0
Z EJ. 25 S > z :_
i T ; I I
o o 3r—‘— Ay, o O rl i
§ Hlement “ﬂTl =l e ”“‘"‘"ﬂ% 4 b T 4 = I
L T p—1 "_';:t:,:. i | =1
-: gl Z3 2] ': £
= -l y==1,4i=1

Fig. 3. LPLU network configurations up to 5 Element
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Table3. Explicit Formulasfor Low-Order HPLU

2| Go=food gui={(hu)?+1}2, G0=1, Mo=0, G1=C11Go-Mm1hoo, ho1=Mgo1,
m=Sgn(hoz) , m=Sgn(hoo)

3| wo=fvod Go={(Mo)*+2mo}"?, ®o=1 M0=0,  Gu=Catho—tpimo, Mu=nmus;
nFSgn(hoo)==+ 1,

4| go,G10 ,Goo (saMe), @1={ (1) +202+2} 12, @o={ (hoo)*+1} V2
011=01010-Mp1h10 , hi=(a/b)hoo + (b/a)hp2,  go1=(1/b) (o 1-Mootn1), ho1=1m G
io=(a)(n12-ihps), Mo=maio, a=g1-Mmipy , b=010-Mmhud

5 oo=food  Go={ (Mo)*+2(Goo-hooeo)} %, o={ (ko) +2ho} ", ®o=1,  heo=0
o1={ (he1)*+2052+2} 2, s2={ (he2)*+1}
1=01%0-Me1hpo , hp1=(a/b)hio + (b/a)hay,
011=(1/b)(Gro1-Miohp1-G31G00+Me1M00), M=, a=Qg-ney ,
®o=(Va)(p10s2-e1hs2), hpo=ntp2, b =gpo-Nipo.

L oworder Elementer Mixed Structures

L=l WL -1

i c
] 2B 00 ! I |—o ] , .
2 clement ’ g L L Z z 3 element z % L Lé z
0 D O | a0 b D a . . .
p=p=1 =Lyl pEpEl el L=l p=-1
C c
——I I {1 [ I |—D
L Z1 73 Z1 L Z2
C C C
: oo ) o = H
4 eement e lb:'l j,lf'l,]_]fl 5 element % L & 2] L% 4] % Ll 22
C c . ,
D—I I 0 D——_| | il
[ [ i1 -
Z1 % L[ 22 Z4 Z L
D . L 2

Fig. 4. HPLU network configurations up to 5 Element
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Table4. Explicit Formulasfor Low-Order BPLU

= OMmM 0 N

o =iho&  G10=(2(GoGoo-Meohoo)+o® +1)"%; Qo =Tt € o= (1+12)2
hj;=0,-an/N (for m=1); ] h,=agN- g, (form=-1);

ho1=Mmgo1, hp1=mes, Go1=(1/ay,) ( GooGr1-hoohn),

1= (1 a,,) (GeoGr1-heohua),

N=gio-mhyo, (form=-1); N=1/(tcho - m hyo) (for m=1)
3y =T~ Mhgy s m=x]1, a10 = dio-M hyo; M =hoo /Gho = oo/ Qo = £

3| Goo=1 Moo & G0 =(2(GoGoo-Meohoo)+hio? )25 820=(2(Gu0Goo-Muohoo-GsoGio*+heohio) +hpo? +1)3
S| g30=(2(Guolo- hohz0)+heo” )% QoI huo &
E| G, = (1+h, )112
Cl hy=gy-au/N (for m=1); h,y=ayN-g,; @Form=-1;
T) 9y, = (@ +h;,)H"” i1 = (Ma,y) (Go 1- Mo hp1),  OB1 =(U/a,,) (Bo G1 - heo 1),
M1 =mau1, he1 = Mgs1 ‘ a20=Cpo - Mhyo,, m=t1
%o =T hoo & 10=(2(G0G00-Nohoo)+io” )™ Go=(2(G10G00-Muohoo- G010 +Ms0Mo) o™ +1) ™
®B0=(2(G10%0-Muoho) +heo? )%; Qo= huo &
4| Ty = (20+gy,) + E(z)l)ljz Op, = (1+H(2)2)]/2
Ny =022~ Ao/ N hp1=Gp1- 3N (Form=1 );
S| h, =3,N-g, hp1=agyN- gpy (form=-1 ),
E| N=l/(go-mhyp) m=1, N=go-mho m=-1
C| %1=1/a,,) (%o %1 -hoohn1), 1=(1/a,, ) (B10ho -he1hyo),
T| ho1= mgo1, hu1 = M1,
| Ge=(/a,,) (G102 -Mihpo), G2=(1/a,,) (G102 -he1 Mp2)
O| h=mao, heo= Mas2, m=+1
N| gu=(1g,) (Go 1~ o o1 +his po), 1= (Vg,,) (Bo G1- heo Mea +hea hpo)

®1={ 2(931g£1-f’81h11 -810 (B2 -@30 G2 +0poGpo-hpohpot+1)+hpe 2} V2, o = (heo?® +1)¥2,
3y, =0y - Mhy, 3@, =T, - mh,, @10=Cio-Mhio, a30=0s0- M heo, a@21=1- M p1

Low-Order Elementer Mixed Structures

Dﬂ;ﬁqq N:1 a /H;E\_IC Nl . Nl . C_LN:I
! L
S ERE 0 TN A T 3 T =" E L R T e D
) ) o ()
(@ m=m=1 (b) m=1m=-1 2 (0) m=m=-1 (d) m=-1m=1
a TTL"I" IL]' M:1
Lzécﬂ_ z, F | a@;%x{(il T Nil
o T Loy C2
_ . i 2% T %'{
m=1 3 m=-1
I cl. I Cl
I G ) I G i B ] LML e || N1
. | N:1 o ml N:1 uuu‘l 0 ”W—I
" z) Lz%cﬂ. zy %{ 7 i z Lz%%%{ 2 lzécﬁf 2! %{ Lz%% 2 | 4 %{
0 T it T ¢ o
T o (@ W
(8) m=m=1 (b) m=1,m=-1 4 (c) m=-1, m=1 (d) m=m=-1
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Fig. 5. BPLU network configurations up to 4 Section
Table5. Explicit Formulasfor Low-Order BRLU

Qo= éno & Qo1=@+r)Y?,  G11=Cb10i0-ho1ho, m= Sgn(ho)
2 | hhi=mas, hp1= ho1 Q1= Oo1 m= Sgn(hi1)
G0=(2(@o-k2)+ho?)¥?,  Bo=(2(@o-k2)+heo?)Y?  G0=(2(2-gsoG10+heohio)+hoo? +ko2) M2,
3 | 1 =1, hu1=ho1, 011=%1010-ho1ho , h1=mai1,
®B1= Go130-Mo1hso, he1=mQg1 nE +1
1=Ko0p1, hp1=k2hos, K2 =Qpo-nipo
4 lg01=(2002000t2+019) Y2, go=(1+ho22) ?gu1=go1, Q2=Qo2, hur=ho, huz = hoy
S |011=Q1010-Mo1hio , hn1 :Z—lo ho2 +:i hpo,
E |g1=ho1+ka(gor-ho1) , m:%(%ga- hoMa) - Gio(GoG - M)
9o - Nl
C | 031=001%30-Mo1hs0 , her=2130 hgpt 201y,
a 01 a 30
T.|02=@1/ay) (102 -Mm1ho2), h2=m a2, 2= (1/ ay, ) (B1G2-Me1h02), he2=Mmp a2,
= Bgn(hpo). 2 = Ko Ooz, hp2 = k2 hoz, K2=Qpo-m hpo.
a01=0o1-Mos1, a10=010-Mo, a30=0so- Mo, nFm==+1.

Low-Order Elementer Structures

L L
2
C o 1 La
° o S i 0 Sl
@ o) o 7 L’g’_ L'é z Ca
o 0 o al Cz C‘1
L L o ] o 0
L=l Rl
() @
[(@m=m=1,(b)m=1,m=-1, (c)m=-1, m=1, (d)m=m=-1 m=1 , e -1,
D_D“'IL{flbﬂ 4 e
i cll_l Zy é:i Z2 D z, I_|c|1_| z é:i
@ ™)
Lz Lz
o éi = D'Rj:,_q éi - | ] -
(& m=m=1, (o)m=1,m=-1 (em=-1,m=1, (d)m=m=-1

Fig.6. BRLU network configurations up to 4 Section
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