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ABSTRACT 
We present iterative decoding process of Geometric Product codes that is a newly proposed linear 
block code construction technique. We also report the bit error performances for one of the 
constructed code of the technique utilising our iterative decoding approach. 
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1. INTRODUCTION 
A new construction scheme of decomposable 
codes that generates wide range of binary linear 
block codes has been proposed recently and 
named as Geometric Product (GP) Codes [1]. It 
has attractive generator matrix that allows easy 
encoding implementation with almost arbitrary 
code length. Basically, this construction employs 
a general single parity check matrix and another 
two or more component generator matrices to 
geometrically construct the final product 
generator matrix of the constructed code. In this 
paper, iterative soft decision decoding of GP 
codes have been performed using the log-
likelihood algebra as Hagenhauer [2] described, 
but we use a similar notation as in [3]. 

 
2. CODE CONSTRUCTION 
A decomposable general product code generator 
matrix, Gy , can be obtained by the Kronecker 
product of matrices G1 and G2, as Gy = G2 ⊗ G1, 
where G2 is taken as a single parity check matrix, 
as below, 
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GP code construction uses Gy defined in (2) as a 
base matrix and augments another component 
generator matrix, Gz, in the specified geometrical 
manner to construct the ultimate generator matrix 
G as, 
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Utilizing the proposed GP code construction of 
(3), we can construct almost all the optimal 
Hamming distance-4 even codes in the size of (4) 
by specifying the component codes as C1 = (2, 1, 
2) and Cz = (2, 1, 1) with generator matrices G1 = 

[1 1] and Gz = [1 0], respectively. The generator 
matrix of the component code, C2, is a single 
parity check matrix and the length, n2, can take 
any even value greater than or equal to four. 
 

 

(3) 
 

            

         (4) 
where s is an even integer number and greater 
than or equal to eight. As an example, C = (n, k. 
d) = (12, 7, 4) GP code can be constructed as in 
(5), where n, k, d are code length, dimension and 
minimum Hamming distance, respectively. 
 

                    (5) 

3.  SYSTEM MODEL AND 
ITERATIVE DECODING PROCESS 
 
In our transmission system model, we consider 
Additive White Gaussian Noise (AWGN) 
channel environment with zero mean and the 
variance σ2 as N0/2, where N0 is single-sided 
noise spectral density. Binary Phase Shift Keying 
(BPSK) is used to map coded bits 1 and 0 as +1’s 
and -1’s at the output of the GP encoder, 
respectively. At the receiver, it is assumed that 
the ideal channel state information is available. 
Under these assumptions, our system model is 
designed as in Fig.1. 
 

 
Fig.1 Transmission system model for GP encoding and iterative decoding 

 
In this transmission system model, information 
bits ui ( i = 1,2,…,k) are encoded by GP encoder 
and coded bits vj ( j = 1,2,…,n) are transmitted 
over AWGN channel. The receiver side receives 
the received symbols rj = vj + nj , where n is 

independent and identically distributed Gaussian 
noise. The decoding process starts by calculating 
a useful metric called the log-likelihood ratio 
(LLR) for each received bit. 
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( ) ( ) ( ) ( )7vLvrLrvL +=  

 
where ( )rLC  is the LLR of the channel 

measurements of r and ( )vL  is the a priori LLR 
of the transmitted bit v, which is zero initially as 
all the transmitted bits are equally likely. The 
simplified notation of (7) can be written as in (8): 
 

( ) ( ) ( ) ( )8ˆ vLrLvL C +=′  
 
The channel measurement of a received signal rj , 

( )rLC , can be written as LLR under Gaussian 
noise as follows, 
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   After defining the channel measurement and a 
priori values, we introduce extrinsic LLR, 

( )vLe , that is obtained from the decoding 
process at the output of the decoder. The soft 
decision is made at the output of the decoder 

regarding ( )vL ˆ , which is a real number that 
provides a hard decision.  
 
( ) ( ) ( ) ( ) ( )10ˆ vLvLrLvL eC ++=

 
 
The sign of ( )vL ˆ  denotes the hard decision like 
+1 for positive values and -1 for negative values. 
The magnitude of  ( )vL ˆ  is the reliability of that 
decision.  In order to perform decoding regarding 
(10), we must show how to obtain the extrinsic 
information ( )vLe . It can be derived utilizing the 
generator matrix, G, of the GP encoder. The 
relation between each coded bits of v provides a 
sort of parity check information and so extrinsic 
information at the decoder. This relation can be 
specified from G by a careful observation. Each 
bit of v should be represented with other bits of 
v. We give an example over the generator matrix 
of GP (12, 7, 4) code as shown in (5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Relationships among the bits of v for 
(12,7,4) GP code 
 
In Fig. 2, ‘⊕ ’ denotes modulo-2 addition. The 
log-likelihood algebra [2] is used to define the 
sum of LLRs for a statistically independent v as 
follows: 
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( ) ( ) ( )( )[ 221 vLrLvL ce +=       ( ) ( )( )33 vLrLc +       ( ) ( )( ) ]44 vLrLc +             (12). 
 

v1 = v2 ⊕  v3 ⊕  v4 
    = v2 ⊕  v5 ⊕  v6 ⊕  v9 ⊕  v10        
      = v3 ⊕  v5 ⊕  v7 ⊕  v9 ⊕  v11  
       
v2 = v1 ⊕  v3 ⊕  v4 
    = v1 ⊕  v5 ⊕  v6 ⊕  v9 ⊕  v10          
      = v4 ⊕  v6 ⊕  v8 ⊕  v10 ⊕  v12  
       

 
v12 = v11 ⊕  v9 ⊕  v10 
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Here, ‘     ‘ denotes log-likelihood addition that 
gives the LLR of the module-2 sum of the 
involved bits. As an example, for the GP 
encoder, the soft output LLR value ( )1v̂L  is 
obtained utilizing (10), where one of the extrinsic 
LLR , ( )vLe , is obtained as shown in (12). 
 
Extrinsic LLR values, ( )vLe , are provided from 
the parity checks of a bit in v. As shown in Fig. 
2, there are many parity check equivalents of a 
bit in v. In order to obtain the final extrinsic LLR 
value, we must perform the operations similar to 
(12) for all the possible parity check equivalents 
of a bit in v repetitively. In our decoder, we 
perform similar operations as in (12) for all the 
bits of v with respect to their first parity check 
equivalents and then decode again for the second 
parity check equivalents and so on. The process 
ends when all the parity check combinations are 

used. As it can be realized that ( )vLe  is refined 
in each process of (12). The iterative decoding 
algorithm for a GP code proceeds as follows: 
 
1. Initialize the a priori information ( )vL  = 0. 

2. Find the ( )vLe  using all the possible parity 
check equivalents of a bit of v. Utilize   
    from Fig. 2 and (12).   
3. Set new ( )vL  = ( )vLe . 
4. If  iteration is necessary for more reliable 
decision go to step 2, otherwise go to step 5. 
5. The soft output LLR value is:  
      
 ( ) ( ) ( )vLrLvL eC +=ˆ                         (13). 

     If ( )vL ˆ  > 0 then v = 1, otherwise v = 0. 
 

 

 
4. CONCLUSION 
We have analyzed the iterative decoding process 
of GP codes and showed a way for iteratively 
decoding GP codes. We used similar iterative 
decoding process as described in [2] and [3] by 
using log-likelihood algebra for computational 
simplicity. Simulations have been performed for 

the (12, 7, 4) GP code over AWGN channel and 
observed that BER curve converges to the 
Viterbi decoding results of [1]. This paper is the 
first step for iterative decoding of GP codes. The 
future research includes efficient and practical 
probability decoding methods of GP codes for 
large code lengths. 
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