

ISTANBUL UNIVERSITY –
JOURNAL OF ELECTRICAL & ELECTRONICS ENGINEERING

YEAR
VOLUME
NUMBER

: 2005
: 5
: 2

(1435-1441)

Received Date : 10.12.2004
Accepted Date: 27.03.2005

DYNAMIC MEMORY ALLOCATOR ALGORITHMS
SIMULATION AND PERFORMANCE ANALYSIS

1Fethullah Karabiber 2Ahmet SERTBAŞ 3A.Halim ZAIM

1,2,3 Istanbul University, Engineering Faculty, Computer Engineering Department
34320, Avcilar, Istanbul, Turkey

1E-mail: fetullah@istanbul.edu.tr 2E-mail: aserbas@istanbul.edu.tr

3E-mail: ahzaim@istanbul.edu.tr

ABSTRACT

In this work, Dynamic memory allocation that is critical issue in the design of computer systems is
examined. During first part of this project, improved software techniques separated into three
different categories such as Bit map, Linked list techniques, Buddy systems are analyzed. For this
purpose, algorithms are simulated by using C++ programming language. In the simulations, internal,
external and total fragmentation, and process times are used as performance criteria.

Keywords: Memory allocation, fragmentation, simulaton, programming

1. INTRODUCTION
Speed and performance are two of the most
performance measure in computer systems at
today’s world. The trend of using fast processors
in computer systems triggers improving high
performance units. Dynamic Memory Allocation
is used in arranging effectively the memory that
is indispensable module of computer systems.

Memory manager performs memory allocation
process. It is reported that dynamic memory
management consumes 23%-38% of the time in
six allocation-intensive C programs running on
17-SPECmarks SPARC architecture with 80 MB
of memory [1]. Object-oriented programs have a
very high object creation rate and, therefore, the
speed of memory allocation is crucial for
improving the system performance.

Until now, improved software techniques by
using various data structures are separated into
three different categories: Bitmap, Linked List
techniques, Buddy Systems.

Bitmap implementation use a bitmap, where each
bit represents some portions of memory and
indicates whether it is free or occupied.

The most popular method in dynamic memory
allocation techniques is Linked Lists. First Fit,
Best Fit, Worst Fit and Next Fit Linked List
techniques are well known and frequently used.
Although Memory usage of these algorithms is
good, list structure leads to decrease running
speed of these algorithms. Each memory request
(malloc function in C programming language)
causes to search all list sequentially. The
memory manager scans among the list until it
finds blocks that are big enough. The hole is then

Dynamic Memory Allocator Algorithms Simulation And Performance Analysis

Fethullah Karabiber, Ahmet SERTBAŞ, A.Halim ZAIM

1436

broken into two pieces; one for the process and
one for the unused memory.

Knowlton [2] and Knuth [3] described the
original buddy system. This memory
management scheme allocates blocks whose
sizes are powers of 2. Generally, this system is
called as the binary buddy system to distinguish
it from the other buddy systems. Hirschberg [4],
taking Knuth's suggestion, has designed a
Fibonacci buddy system with block sizes which
are Fibonacci numbers. Shen and Peterson [5]
have described an algorithm for a weighted
buddy system which provides blocks whose sizes
are 2k and 3*2k. Details of these systems are
explained at section 3. The other buddy systems:
Lazy buddy system based on that coalescing
process is postponed due to probability of the
same size request, Double buddy system which
allocates power of 2 (2, 4, 6.…) and power of 2
starting different size such as 3 (3, 6, 12…) by
using two trees, F-2 buddy which is based on the
recurrence relation Li+1=Li + Li-2 has similar
structure with Fibonacci. But the performance of
these systems is worse than binary, Fibonacci
and weighted.

In this paper, existing basic techniques are
examined. After giving the general information
about these techniques, performance
comparisons are performed. Simulator written in
C++ programming language is designed to
compare software techniques. Comparisons are
performed with respect to time and memory
usage (fragmentation) parameters.

2. BASIC CONCEPT OF DYNAMIC
MEMORY ALLOCATION
The goal of allocator design is usually to
minimize wasted space without undue time cost.
An allocator must keep track of which parts of
memory are in use and which parts are free. A
conventional allocator can not control the
number or size of live blocks. A conventional
allocator also can not compact memory, moving
blocks to make them contiguous. It must
respond immediately to a request for space
deciding which block of memory to allocate. It
can only deal with memory whether it is free and
only choose where in free memory to allocate the
requested block[6].

Allocators record the locations and sizes of free
blocks of memory in some kind of data structure.

These structures may be a linear list, a total or
partial tree or a Bitmap.

2.1. FRAGMENTATION
Fragmentation is one of the most important
problem that an allocator encounters. The
fragmentation problem prevents memory to be
used effectively. Fragmentation is classified as
external or internal [6].

2.1.1. Internal Fragmentation
Unless the set of requested block sizes is a subset
of the set of provided block sizes, it will be
necessary to allocate more memory space than
requested block size. The memory wasted due to
this overallocation is internal fragmentation.
Measure of internal fragmentation is the ratio of
number of overallocated blocks to number of
allocated memory.

memoryallocated
memorytedoverallocaionfragmentatInternal

_
__ = (1)

2.1.2. External fragmentation
External fragmentation happens when available
free blocks at memory are too numerous and
small and can not be used to allocate next
requests for larger blocks. Measure of external
fragmentation is the proportion of total memory
which is available when overflow occurs [7].

memoryavailable
memoryrequestedionfragmentatExternal

_
__ = (2)

2.1.3. Total fragmentation
Internal and external fragmentation are an
expected result of different properties of the
methods used in memory allocation. But, both
decrease the effective size of available memory
due to creation of memory portions that can not
be used. We define total fragmentation to be total
amount of memory which is unusable due to
either internal or external fragmentation. Since
our definition of internal fragmentation is the
propotion of allocated memory which is
unusable, while external fragmentation is a
proportion of total memory, total fragmentation
is not simple sum of internal and external
fragmentation, but rather calculated as,

)*(
*)1(

ExternalInternalExternalInternaltotal
ExternalInternalExternaltotal

−+=
+−= (3)

2.2. SPLITTING AND COALESCING
The allocator may split large blocks into smaller
blocks to satisfy the request. The remainders
from this splitting can be used to satisfy future
requests. The allocator also coalesces adjacent

Dynamic Memory Allocator Algorithms Simulation And Performance Analysis

Fethullah Karabiber, Ahmet SERTBAŞ, A.Halim ZAIM

1437

free blocks to yield larger free blocks. After a
block is freed, the allocator may check to see
whether neighboring blocks are free and merge
them into a single, larger block. Splitting and
coalescing processes must be done to decrease
fragmentation problem.

2.3. EXECUTING TIME
Another performance criteria in memory
allocation is execution time (allocation and
deallocatin duration). Splitting and coalescing
performed for decreasing fragmentation
increases the running time. In general, running
time is inversely proportional to fragmentation.

3. MEMORY ALLOCATION
TECHNIQUES
Very different techniques are developed to
combat fragmentation. Although, some of them
decrease external fragmentation, the others solve
internal fragmentation. But, there is not yet any
mechanism to solve this problem perfectly. The
basic allocation mechanisms are separated into 3
categories [5]:

• Bitmap
• Linked List techniques: First Fit, Best

Fit, Next Fit, Worst Fit
• Buddy Systems: Binary, Fibonacci,

Weighted

3.1. BIT MAP TECHNIQUE
The fundamental of Bitmap technique is that
status of each blocks in memory is represented
with a bit in Bit map which is 0 if the block is
free and 1 if it is allocated. Figure 1 shows part
of the memory and the corresponding bit map.
The smaller the allocation unit, the larger the
bitmap.

In spite of simplicity, the main problem is that
when it has been decided to bring a k unit
process into memory, the memory manager must
search the bit map to find k consecutive 0 bits in
the bit map. Searching a bit map for a request is a
slow operation, so in practice, bit maps are not
often used.

Figure 1: (a) A part of memory with five
processes and 3 holes. The tick marks show the
memory allocation units. The shaded regions (0
in the bit map) are free. (b) The corresponding
bit map

3.2. LINKED LIST TECHNIQUES
Memory management techniques by using
Linked lists is the most used technique. These
techniques allocate by using linked list structure.
Linked list techniques used more frequently are;

• First Fit: Allocate the first hole that is
big enough.

• Next Fit: Allocate the first hole that is
big enough starting where it left off.

• Best fit: Allocate the smallest hole that
is big enough.

• Worst Fit: Allocate the largest hole

3.2.1. First Fit
The memory manager starts to scan from
beginning of the lists until it finds a hole that is
big enough. The hole is then broken up into two
pieces, one for the process and one for the
unused memory. A problem with first fit is that
the larger blocks near the beginning of the list
tend to be split first and the remaining fragments
result in having a lot of small blocks near the
beginning of the list. These small memory blocks
can increase search times. Because many small
free blocks accumulate and the search must go
through them each time a larger block is
requested.

3.2.2. Next Fit
The greatest difference of this technique from
others is that search starts always different place
of the list. The pointer records the position where
the last search was satisfied and the next search
begins from there. By means of this feature,
Small and awkward memory hole can not
accumulate at the beginning of the list as first fit
technique.

Dynamic Memory Allocator Algorithms Simulation And Performance Analysis

Fethullah Karabiber, Ahmet SERTBAŞ, A.Halim ZAIM

1438

3.2.3. Best Fit
A best fit allocator searches the list to find
smallest free blocks large enough to satisfy a
request and then allocate this blocks. Best fit is
slower than first fit and next fit. Because it must
search the entire list every time it is called.

It is expected from this strategy that unused holes
are decreased. But, this is not performed and first
fit algorithm may be more successful from this
point of view. Because, after allocation are
performed, the remainder may be quite small and
perhaps unusable for next larger request. A little
time later, memory has a lot of small blocks and
total unused area is too much than that of first fit.

3.2.4. Worst Fit
Working manner of this technique is more
similar to best fit. Difference between them is
that while best fit select the smallest hole, worst
fit take the largest available hole. This strategy
produces the largest leftover hole, which may be
more useful than the smaller leftover from a best
fit approach.

Figure 2: sample representation of linked lists
(a) a part of memory (b) Corresponding linked
list

Figure 2 shows a part of memory and a linked
list represents status of block. For example,
When 2 blocks are requested, First fit allocates
free hole at 5, Best fit allocates free hole at 18
and worst fit allocates free hole at 8.

3.3. BUDDY SYSTEMS
Important property for the buddy systems over
first fit or best fit memory management schemes
was its reduction in search time to find and
allocate an available block of appropriate size.
By means of using tree structure, finding
appropriate hole is performed faster.

Although Buddy system is faster, it has a very
important disadvantage. Buddy systems are
inefficient in memory usage. Though the linked

list techniques have only external fragmentation,
buddy systems have both internal and external
fragmentation. Basis reason of this problem is
that allocated blocks are power of two (for
Binary buddy system). Therefore, first request
size round up to smallest number that is power of
two (for binary buddy) then allocation process is
performed.

3.3.1. Binary Buddy System
Working mechanism of Binary buddy system is
as follows: We start with the entire block of size
2U. When a request of size S is made: If 2U-1 <
S<= 2U then allocate the entire block of size 2U.
Else, split this block into two buddies, each of
size 2U-1. If U-2< S<= 2U-1 then allocate one
of the two buddies. Otherwise one of the two
buddies is split in half again. This process is
repeated until the smallest block greater or equal
to S is generated [7].

Figure 3 shows the settlement of binary buddy
system at binary tree. Striped circle, white circle
and gray circle represent respectively split blocks
for allocation, leave nodes that show free blocks,
nodes that shows used memory chunks.

Figure 3: Tree structure of Binary Buddy
System

3.3.2. Fibonacci Buddy System
In this system, blocks are split in respect of
Fibonacci numbers. Working mechanism of it is
similar to binary buddy system. Fibonacci series
are defined as follows.

)0(,1,0 1210 ≥+=== ++ nFFFFF nnn (4)

According to this definition, the elements of
Fibonacci series: 0, 1, 2, 3, 5, 8, 13, 21, 34, 55,
89, 144, 233, 377, 610, 987...

Figure 4 shows sample tree structure of
Fibonacci Buddy systems.

Dynamic Memory Allocator Algorithms Simulation And Performance Analysis

Fethullah Karabiber, Ahmet SERTBAŞ, A.Halim ZAIM

1439

Figure 4: Tree structure of Fibonacci Buddy
system

3.3.3. Weighted Buddy System
At the Weighted Buddy system, block sizes are
as 2k or 3* 2k. When blocks are split, applied
rules are showed in figure 5 and 6.

As showed in figure 5a, If split block size is 2k+2,
this block are split to 3*2k+2 and 2k block size. If
block size is 3*2k+2(Figure 6b), it separated into
2k+1 and 2k block sizes [3*2k -> (2k+1, 2k)].

Figure 5: (a) Splitting of 2k+2 block size (b)
Splitting of 3*2k+2 block size

 4. SIMULATION AND
PERFORMANCE ANALYSIS
Some of the examined software techniques are
simulated for performance analysis by using C++
programming language. For this purpose, First
Fit, Best fit, Worst Fit, Bit map, Binary Buddy
and Weighted Buddy software techniques are
simulated. Simulation results are obtained for
selected performance criteria that are
fragmentation, allocation and deallocation
duration in respect of memory size and
maximum allocatable object size. (Figure 8-10)
In practice, nodes which have a few fields for
holding allocation information are defined using
“struct NODE” structure. This structure consist

of field which hold father, left child, right child
in tree structure and next address in list. Another
field indicates status of blocks. If the value is ‘1’,
blocks are allocated, otherwise they are free.
Allocation and deallocation processes are
executed by using tree or list which is formed
based on this defined structure. Defined specially
by Mymalloc and Myfree functions at the
program are called randomly with 66%- 33%
probabilities respectively. Generated and
allocated values are saved in an array. When
Myfree function is called, a value is selected
randomly and then these blocks are deallocated.
This array hold allocated address values. The aim
of using this array is that it is not possible to
deallocate the address which has not been
allocated.

Allocation processes are performed by using
generated random numbers in program. Internal
and external fragmentation is calculated after
each allocation process. In this practice, total
fragmentation is calculated by using average
internal and external values for 100 steps.

Allocation and deallocation process can not be
calculated sensitively by using classic time
function in C++. Because, running time
implements in very short time. In order to solve
this problem, Windows API
“QueryPerformanceFrequency” is used. By this
API, each allocation and deallocation duration
and their average are calculated in the micro
second type. Program is run 100 times for
obtaining more realistic results.

Buddy systems suffer from both internal and
external fragmentation. The others have only
external fragmentation. Internal and external
fragmentation values of binary and weighted
buddy systems are showed graphically in figure
7. As shown in figure, it can be observed that
Weighted buddy system suffers from internal
fragmentation less than Binary buddy. In
contrast, in respect of external fragmentation
binary buddy is more successful. Another result
obtained from this figure is that maximum
allocatable block number is directly proportional
to external fragmentation.

In this study, although results of all techniques
are obtained in respect of performance criteria,
Graphics are drawn only for the best method in
each category. In this way, the performance of
categorically classified methods is evaluated.

Dynamic Memory Allocator Algorithms Simulation And Performance Analysis

Fethullah Karabiber, Ahmet SERTBAŞ, A.Halim ZAIM

1440

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1024-
256

1024-
128

1024-
64

512-
128

512-
64

512-
32

256-
64

256-
32

256-
16

Memory size- Max. object size

binary internal weighted internal
binary external weighted external

Figure 7: Internal and External fragmentation of
Buddy Systems

In figure 8, In respect of fragmentation criteria,
First fit is the best and Binary buddy is the worst
technique. Allocation of bit map method gives
close similarity to first fit. Because, searching
bits is performed as first fit.

Figure 9 shows that, according to allocation
process, the best performance technique is binary
buddy, the worst is bitmap. Search process in
tree structure can be done in shorter time than in
list structure. So, Buddy systems have the best
performance in respect of allocation process
duration. In contrast, in bit map techniques,
allocation is faster at small memory sizes due to
searching at bits and not splitting. The bigger
memory size, the slower allocation time in the bit
map.

In figure 10, in respect of deallocation duration
performance criteria, the most successful
technique is observed as bit map. As coalescing
process is used in bitmap technique, deallocation
process is performed in short time by updating
the bitmap by inverting (from 1 to 0) all bits
corresponding deallocated blocks.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1024-
256

1024-
128

1024-
64

512-
128

512-64 512-32 256-64 256-32 256-16

Memory Size - Max. Object Size

Firt Fit Bit Map Binary Buddy

Figure 8: Total fragmentation values of
techniques

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

1024-
256

1024-
128

1024-
64

512-
128

512-64 512-32 256-64 256-32 256-16

Memory Size - Max. Object Size

Firt Fit Bit Map Binary Buddy

 Figure 9: Allocation duration of techniques
(micro second)

0
0.5

1
1.5

2
2.5

3
3.5

1024-
256

1024-
128

1024-
64

512-
128

512-
64

512-
32

256-
64

256-
32

256-
16

Memory Size - Max. Object Size

Worst Fit Bit Map Binary Buddy

 Figure 10: Deallocation duration of techniques
(micro second)

Dynamic Memory Allocator Algorithms Simulation And Performance Analysis

Fethullah Karabiber, Ahmet SERTBAŞ, A.Halim ZAIM

1441

5. CONCLUSION
In this paper, Performance analysis of examined
memory allocation techniques is performed
comparatively in respect of performance criteria.

The performance analysis of examined memory
allocation techniques, a Simulator is written in
C++ programming language. In this study,
although results of all techniques are obtained, in
respect of performance criteria, Graphics are
drawn only for the best method in each category.
In this way, the performance of methods
classified categorically is evaluated. Despite First
Fit listing technique shows better performance
according to fragmentation, it can not show the
same success in respect of allocation and
deallocation time. Binary buddy is very fast but
it has the worst at fragmentation rate. According
to these results, it is seen that there are not yet
the best performance techniques point from all
performance criteria.

Consequently, it can not be said that the basic
memory allocation techniques are successful.
To minimize the fragmentation problem and to
allocate faster, new memory allocation
techniques can be implemented by using
hardware structure.

It is suggested that by using new and different
data structures, faster and more efficient memory
allocators can be achieved.

6. REFERENCES
[1] Zorn B., July 1993, The measured cost of
conservative garbage collection, Software-
Practıce And Experıence, Vol. 23, No. 7, 733-
756

[2] Shen. K.K. and Peterson, J.L., Oct. 1974, A
weighted buddy method for dynamic storage
allocation. Communications Of The ACM 17, 10,
558-562

[3] Barkle, R.E. ve Lee T.P., Dec 1989, A Lazy
Buddy System Bounded by Two Coalescing
Delays per Class, Proc. 12th Symp. Opertatıng
System Prıncples, vol:23, no:5, 167-176

[4] Hırschberg, D.S., Oct. 1973, A class of
dynamic memory allocation algorithms.
Communications Of The ACM 16, 10, 615-618

[5] Tanenbaum A.S. ve Woodhull A. S., 1997,
Operating Systems Design and Implementation,
Prentice Hall, Portland, 0-13-638677-6

[6]Wilson P. R., Johnstone M. S., Neely M. ve
Boles D., September 1995, Dynamic Storage
Allocation: A Survey and Critical Review,
International Workshop on Memory
Management, Kinross, Scotland, UK

[7] Peterson J.L. ve Norman T.A., June 1977,
Buddy systems, Communications Of The ACM,
Vol. 20, 421-431

Fethullah Karabiber was born in Adıyaman, Turkey in 1977. He received B.Sc. degree from İstanbul Technical
University, Department of Electronics and Communication Engineering in 2001. Since 2001 he has been working
as a reserch assistant in the department of Computer engineering in İstanbul University. His research interests
include VLSI, Computer architecture, digital design, VHDL, programming

Ahmet Sertbaş was born in İstanbul in 1965. He received the B.S. and M.Sc. degrees in electronic engineering
from the Istanbul Technical University in 1990, the Ph.D. degree in electronic department from Istanbul
University in 1997 respectively. He has worked as Research Assistant at I.T.U. during 1987-1990, research
engineer at Grundıg firm during 1990-1992, an instructor at the Vocational School of Istanbul University during
1993-1999. He is currently an Assoc. Professor in the Department of Computer Engineering at the University of
Istanbul. His research interests include computer arithmetic circuit design, computer architecture and computer-
aided circuit design, circuit theory and applications.

A. Halim Zaim received the B.Sc. degree (Honor) in computer science and engineering from Yildiz Technical
University, Istanbul, Turkey, in 1993, the M.Sc. degree in computer engineering from Bogazici University,
Istanbul, Turkey, in 1996 and the Ph.D. degree in electrical and computer engineering from North Carolina State
University, Raleigh, in 200. He is currently working as an Associate Prof. at Istanbul University. His research
interests include computer performance evaluation, satellite and high-speed networks, network protocols, optical
networks and computer network design.

