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ABSTRACT 
 

Modularity and hierarchy are fundamental notions in structured system design. By subdividing a 
large and unstructured problem into smaller and tractable chunks, design automation becomes 
possible. In this paper we discuss the use of modularity and hierarchy for functional specialization 
during the development of neural networks. We study the behavioral differences and requirements for 
back-propagation training of feed-forward networks. Further we illustrate that a deliberate mix of 
hierarchically imposed evaluation functions will improve network accuracy and learning speed.   
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I. INTRODUCTION  
Compositional techniques are at the fundament 
of any complex design task. Where complex 
neural networks are plagued by learning 
problems, composition styles can help to 
increase the capacity and accuracy of neural 
networks 0, 0. Though providing better 
performance, the fundamental difficulty in 
network training 0 remains a major concern and 
several studies have been made for solutions to 
this problem 0, 0. Typically, literature defines 
three categories of compositions of a neural 

network [1]; ensembles, modules and 
hierarchies. 
 
Ensembles consist of a set of autonomous 
networks in which each network solves the 
complete problem. Data engineering typically 
derives the individual networks. By applying 
different subsets of the training set to the 
different networks in the ensemble, they 
generalize in different ways. A voting 
mechanism then reaches a final, overall decision: 
a mechanism well known in other engineering 
disciplines as well. This improves accuracy and 
robustness. 
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Figure 1. Some neural network types. 

 
Modular networks typically consist of a network 
of interconnected neural networks 0 or modules 
that each solve a sub-problem, see 0(a). For this 
approach extensions to the standard back-
propagation learning algorithm are necessary. 
For example techniques to schedule the learning 
of the modules to prevent unlearning, as 
proposed in 0. 
 
Hierarchical networks go one step further in the 
compositional sense. Each node in a neural 
network may be again a neural network, or a 
specialized function, as shown in 0(b). So a 
node's evaluation function is implemented by a 
neural network, while preserving the weights on 
its inputs from the upper layer.  
Both the modular and hierarchical approach 
focus on the structure of the overall network, this 
in contrast to the ensemble approach. Where data 
engineering suffices to support ensemble 
engineering, for modular and hierarchical 
networks also structure engineering should be 
defined. Both data-engineering and structure 
engineering are elements of a more generic 
knowledge engineering discipline.  
 
For the introduction of the problem we look at 
the function |sin(x)| * exp(-x) as appearing in an 
experiment in the non-destructive test of stitch 
welds [2]. There are some clear discontinuities in 
this function, that make it hard to learn on a 
network using a sigmoid transfer. It is widely 
claimed that neural networks need a 
differentiable _ and therefore continuous _ 
transfer. A similar observation seems valid for 
the function to be approximated. Nevertheless 
functional modularity proves to be able to 
approximate the target. Therefore the question 
arises: is there a structure transformation that 
links a learnable network to one that is more 
efficiently executable? 
 

2.STRUCTURE 
TRANSFORMATION 
Structure transformations are defined from two 
basic operations on nodes: 

• The composition of several nodes into a 
single node 

• The decomposition of a single node into 
a (sub-) network of nodes. 

Structure transformations require that the 
behavior of the structure before and after the 
transformation is identical: function 
preservation. 
 
In general, structure transformations are possible 
for function networks. This implies the definition 
of composition and decomposition rules for the 
nodes in such networks. So, functional networks 
are compositional, of course under certain 
conditions.  
 
Neural networks, as they are, do not support 
compositionality. The question is now to 
formulate the conditions that enable 
compositionality for the general case of a 
modular neural network. If such conditions 
cannot be found, then the modular network needs 
to be considered as a function network, in which 
each function is to be considered as a 
specification of a neural module. Since a 
function is a specification of a module, no formal 
manipulation of the structure of the modular 
neural network will exist. Here, the trained 
modular network is considered as an 
implementation of the module's function.  
 
The main consequence of this is that the neural 
modules need to be re-trained from scratch after 
each manipulation. This is feasible, but induces 
much training overhead. So, composition rules or 
conditions are essential for neural networks to 
prevent (or minimize) re-training components in 
a modular network. 
 
In this paper, we study this problem by 
considering only feed-forward neural networks 
with one hidden layer and a sigmoid (or its 
piece-wise linear functional equivalent) 
evaluation function for its neurons. Both for 
composition as for decomposition we can 
distinguish between a parallel and a cascade    
(de-) composition.  
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2.1 Parallel (de-) composition 
The transformation whereby a network is split 
into two or more different networks with the 
same inputs, while overall covering the original 
function is called decomposition.. The reverse is 
called a composition. Presume that both 
composing parts are implemented with neural 
networks, is this composition then feasible? Yes, 
since the networks can be merged in a very 
simple way as shown in 0. In this case all the 
layers are simply merged, and duplicate input 
nodes can be merged into single nodes. 
The same holds also for the decomposition, in 
which neurons in the hidden layer may need to 
be duplicated over both nodes. In 0c some arcs 
can be added to complete the module to a fully 
connected network. However the weights on 
these additional arcs should be zero. The new 
module has again a single hidden layer. So the 
composition of modules in a parallel way is 
transparent and therefore feasible. Also the 
parallel decomposition is feasible, but copies of 
input and hidden nodes must be made. 
 

 
Figure 2. Parallel (de-) composition 

 

2.2 Cascade (de-) composition 
In the cascade (de-) composition, some of the 
outputs of the internal nodes are input to the 
other internal node, together constituting the 
overall node. However, a cascade modular 
network has also internal arcs, this in contrast to 
parallel modular networks. 
 
In case neural networks implement both solid-
border nodes a complication occurs. The cascade 
of both neural networks cannot be easily 
reconstructed into a neural network with one 
hidden layer. This is caused by the non-linear 
(sigmoid) evaluation function in the neurons. It 
will be impossible to reconstruct the weights on 

all arcs in the modular network after 
decomposition. 
The resulting network in (b), has a number of 
peculiarities. First, it has not the same number of 
hidden layers for all inputs to each of the outputs, 
since some paths from inputs to some output are 
longer than others. For the upper inputs, four 
hidden layers exist, for the lower input only one. 
However, these layers can be merged into one 
again. The real issue occurs for decomposition. 
Due to the non-linear evaluation function in the 
hidden nodes, the merged hidden nodes cannot 
be disassembled easily into several hidden 
layers. So, composition is possible, but 
decomposition into a cascade network is 
prohibited by the non-linear evaluation function. 
 

Figure 3. Cascade (de-) composition 
 

3. FUNCTION SPECIALIZATION 
The obvious direction for a solution is to 
investigate relaxation of the sigmoid function. 
An overview of the historical progress, both in 
separation as in coverage, is depicted. Research 
on modifications of the evaluation function [3] 
has been done in order to investigate in 
simplifications for implementation purposes. It is 
shown in [4] that the evaluation function of the 
neurons is not always used on its full domain, but 
in most cases only in a subset of it, called the 
active domain. By this, a linearized evaluation 
function as valid in the neuron's active domain is 
sufficient to guarantee the accurate overall 
network functionality. 
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Figure 4. Historical Progress 

 
Next, this type of behavior transformations might 
help in case of certain cascade transformations, 
but as shown in [4], the assumption on the 
evaluation function's domain subset is not valid 
for all networks. This validity is expressed in [3] 
by a 'redundancy' measure.  
 
This type of transformations is not really suited 
for compositionality, since the behavior is also 
modified. Concluding, this type of behavioral 
transformations is not sufficiently general to 
enable cascade decompositions. However, it 
shows that partial linear evaluation functions are 
quite powerful in neural networks, without loss 
of accuracy. 
 
Our central assumption is that the sigmoid 
transfer function f can be interpreted as a 
rounding function on a piece-wise linear 
function. From [4] we know it as: 
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where  represents                         (1) 

This piece-wise linear function removes the non-
linearities from the network and therefore allows 
compositionality for cascade topologies, where 
the elements can be shown to be again networks 
without need for re-learning after a 
decomposition.  
 
The property that allows re-computing the 
weights in decomposition from a composed node 
is exactly found in the pieces from which the 
composed function is built. When computing a 
weight for each line-piece in the composed 
function it is always possible to find a 

decomposition for the function. Unfortunately, 
the original nodes and weights can not be 
recovered, but it is possible at least to decompose 
a network into different networks again. That is, 
networks with one hidden layer. 
 
Assigning a hidden node to each line-piece in the 
function can easily derive the number of hidden 
neurons. The direction of each line-piece leads 
then to the weight(s) for that node. So, piece-
wise linear evaluation allows the decomposition 
of a single network into cascade networks 
without the need to re-learn both component 
networks. 
 

4. PIECE-WISE LINEAR 
EVALUATION 
In [4] piece-wise linear evaluation for neural 
networks was presented without comparison with 
the sigmoid evaluation. It provides a dedicated 
and little general approach to training and design 
of the network architecture.  
 
In this paper we compare the alternatives since 
we want to show the generic feasibility of piece-
wise linear evaluation. Analyzing its learning 
behavior and the accuracy that can be obtained 
with this type of evaluation can show its 
feasibility. 
 
As example function to be learned we choose the 
weighted sine function f(x)=abs( sine(x)) × exp(-
x) [2], because it is non-trivial and consists of 
some sub-functions that can easily be separated 
into modules. This function is interesting, since it 
applies the abs function that introduces 
discontinuities on the multiples of π/2. Learning 
this type of discontinuity is well known to be 
difficult for the standard sigmoid neuron 
evaluation. Furthermore, output normalization of 
f(x) is superfluous. 
 
For all cases a relative low learning rate of 0.2 
with a momentum of 0.3 was applied. The 
learning rate needed to be low for learning 
convergence of the piece-wise linear evaluation 
function. For the sigmoid also a value of 0.6 was 
fine for learning, but makes the comparison 
invalid. 
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Figure 5. Non-normalized error for learning with 

hidden node range for sigmoid evaluation 
 

In 0 we have displayed the learning error of a 
sigmoid evaluation for several hidden neuron 
counts. There are some apparent learning 
problems. This may be explained by the typical 
character of the example function, with its 
discontinuities at π/2 multiples, that are difficult 
for the sigmoid, which can be observed in the 
late descent from the 0.5 error value downwards. 
 
The piece-wise linear function is expected to 
learn the discontinue behavior on the x=π/2 
multiples. The piece-wise linear function was 
modeled such that it came as close as possible to 
the sigmoid function. This is done in order to 
keep the error and weight values close to those of 
the sigmoid function and prevents training 
issues. 
 
While learning how large the impact is of the 
'smoothing' effect of the sigmoid, especially next 
to the borders between the different line-pieces. 
It turns out that the maximal difference at any 
point between the sigmoid and the piece-wise 
linear function is minimal when a=0.5/2.6 and 
b=0.5 in (1). 
 

 
Figure 6. Error for learning with hidden node 

range for piece-wise linear evaluation 
It is easy to see that the linear evaluation learns 
more stable than the sigmoid. The main 

difference is the dependence of the learning 
accuracy on the hidden neuron count. But, when 
the accuracy is sufficient, the learning will cause 
no problems. Apparently, the piece-wise linear 
evaluation is better equipped to handle the 
discontinuities in the function to be trained. 
 
In other words, the linear evaluation allows an 
additional degree of freedom in signal 
approximation. Raising the amount of hidden 
neurons improves the approximation accuracy, 
something the sigmoid evaluation is unable to 
do. A typical result is shown in 0. Where the 
sigmoid is always suffering from the bias-
variance problem, we are less dependent in the 
case of a piece-wise linear approximation. For 
instance, the best accuracy for a 15 node network 
was found to be 5.0 E-2 and for 25 nodes to be 
4.2 E-2. This signals a demand for many hidden 
neurons, that can be structurally improved by 
mixing sigmoid and linear approximation. 
 

 
Figure 7 .Piece-wise linear evaluation accuracy 

for 25 hidden nodes 
 

A number of experiments have been performed 
to proof the concepts. The relative learning 
speeds of each composition should provide 
information on hierarchical network learning, or 
more specific, provide information on learning 
with specialized evaluation functions. For 
reference purposes, we have first checked on the 
difference between 

• Piece-wise linear only, denoted by 'lin'. 
• Sigmoid only, denoted by 'sig'. 

Applying the sine or exp function in the hidden 
nodes makes little sense, since the sine and exp 
functions are very specific and thus prohibits 
learning to an acceptable level of accuracy. 
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Figure 8.Comparison 

 
The results are shown in 0. Overall the linear 
evaluation learns better than the sigmoid, as the 
sigmoid has difficulties to learn the 
discontinuities at the x=π/2 multiples. This 
causes local extrema in the error domain, that 
become apparent through the difficult learning 
during the first 500 epochs in 0. 
 

5. STRUCTURING THE PROBLEM 
Next, we have applied several combinations of 
evaluation functions to compare the effect of 
different specializations: 

• 'lin+sig' -Linear and sigmoid, on a 50/50 base 
• 'lin+sin' - Linear and sine, on a 50/50 base. 
• 'sig+sin' - Sigmoid and sine, on a 50/50 base. 

As shows, the sine evaluation adds enormously 
to the learning speed, in combination with a 
linear evaluation. However, instability occurs in 
the early phases of the training process, where 
the symmetry of the evaluation function easily 
causes a large amount of learning indecision. 
This results in such large errors, that we have 
simply omitted these data from the figure. 
 
We see from the 'lin+sig' curve, that the mixture 
of linear and sigmoid evaluation will be worse 
than pure linear but still better than pure sigmoid. 
Typically, the 'lin+sin' and 'sig+sin' training is 
less predictable than the sigmoid or linear-only 
learning. It happens quite often that a local 
optimum determines the best solution found, but 
with far from an acceptable accuracy. This did 
not happen for the 'sig+lin' and the 'lin' training. 

 

Figure 9.Effect of Modularity 
 
0 compares two hierarchical combinations 
'lin+sin' and 'sig+sin', with two modular 
networks, both with sine and exp as specialized 
modules, the first with a linear evaluation (the 
'ext-lin' curve), the second with a sigmoid 
evaluation (the 'ext-sig' curve). All modules 
deliver their output to the input of the network to 
be trained. 
 

 
Figure 10. Effect of Hierarchy 

 
Remarkable in 0 is that the modular approach 
(trains only the second stage network) learns 
much more smoothly than the hierarchical 
network. The hierarchical networks learn faster, 
but in case of the linear-sine combination very 
large error values in the early stages of the 
training occur. Again we observe that both 
hierarchical combinations 'lin+sin' and 'sig+sin' 
learn unpredictable. In several training runs these 
combinations converged into a local optimum 
with unacceptable error levels. 
 
The second part of the experiment compares 
modularity and hierarchy. This is done by 
comparison of the specialized evaluation 
functions with the simple modular approach as 
described in figure 2. This experiment was done 
for: 
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• both the sine and exp functions in the 
first stage. 

• sine in the first stage with x input to 
the second. 

• exp in the first stage with x input to the 
second. 

•  
So, in all cases only the network in the second 
stage needs to be learned, thus ruling out 
learning scheduling issues in our experiment. Of 
course, on a larger scale, learning scheduling will 
still be required. 
 
It is clear that the exp function provides the 
network in the second stage with relatively little 
information, due to its slow learning. 
Nevertheless the evaluation function has some 
influence, as the linear evaluation learns clearly 
faster. 
 
The sine function clearly provides more 
information, which results in faster learning. In 
this case, the choice of evaluation function does 
not have much impact. 
 
Overall what we observe from these experiments 
is the improved learning by adding functional 
specialization to the network. Also the linear 
function may be considered as specialization, 
due to its ability to fit the discontinuities. This is 
of importance as linear functions are amenable to 
linear transformation: function conserving 
rewriting rules of neural structures that do not 
require post-learning. 

 
 

Figure 11.Effect of Compositionality 
 

6. CONCLUSIONS 
In this paper we have presented the concept of 
hierarchical networks which is based on 
functional specialization. We have described the 
implications of functional specialization for 
learning in either a modular or a hierarchical 

network, illustrated by a simple experimental 
“proof of concept”. Given the results obtained, it 
is clear that in general functional specialization 
pays off and increases learning speed. Secondly, 
modularity provides a smoother learning curve, 
whereas hierarchy more easily ends up in a fast 
learning, with the observed larger chance of 
getting stuck into some local optimum. Further 
the lower alfa value than for pure sigmoid 
networks are more than compensated by the 
learning speed increase that is obtained. We have 
also shown by these experiments that structure 
engineering is essential to improve neural 
network performance additional to data 
engineering. 
 
In contrast to the popular belief, there does not 
seem to be a clear preference in terms of 
performance. A piece-wise linear evaluation 
function in the nodes provides at least the same 
level of accuracy as a sigmoid evaluation. This is 
however at the cost of more hidden nodes than 
are needed in sigmoid based networks. Next to 
this conclusion, the results also show that for 
functions with certain types of discontinuities, 
piece-wise linear outperforms the sigmoid 
evaluation, since accuracy scales with the 
number of hidden nodes for the piece-wise linear 
evaluation. This supports a need for designated 
specialization of the evaluation functions in 
neural networks. 
 
This result is relevant for a wide variety of signal 
processing applications. Next to the example 
featured here, this includes also a number of 
adaptive correction filters as for instance in 
digital decimation for oversampled A/D 
converters. 
 
But, the main result of our experiments is that 
compositionality of modular neural networks is 
possible under the condition of piece-wise linear 
evaluation. Piece-wise linear evaluation provides 
the ability to re-compute the weights for hidden 
nodes in a decomposition from a composite 
node. This ability enables cascade 
compositionality, which is sufficient for 
compositionality in general as we showed. By 
this result, structure manipulation becomes the 
key to knowledge engineering for ANN 
implementations. 
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