

ISTANBUL UNIVERSITY ENGINEERING FACULTY
JOURNAL OF ELECTRICAL & ELECTRONICS

YEAR
VOLUME
NUMBER

: 2002
: 2
: 1

(409-415)

A FAST DIVIDER IMPLEMENTATION

BASED ON THE NEWTON-RAPHSON METHOD
USING PARALLEL COMPUTATION UNITS

Ahmet SERTBAª

Istanbul University, Faculty of Engineering, Computer Engineering Department
34850, Avcilar, Istanbul, TURKEY

e-mail: asertbas@istanbul.edu.tr

ABSTRACT
In this paper, a special divide hardware unit based on the Newton-Raphson iteration method is
proposed. To compute the reciprocal fast in division process, it utilizes fourth order Newton-Raphson
reciprocal approximations. By using fast and efficient parallel computation units the divider achives
the computations. These units compute the second, third and fourth order Newton Raphson terms
more faster than the standart technique using direct multipliers.

Key Words: Division, Newton-Raphson divider, parallel computation, hardwire units.

1. INTRODUCTION
As it is well kown, a division can be expressed as
the product of the dividend, and the reciprocal of
the divisor , q= a/b = a*(1/b). To compute the
reciprocal term (1/b) , the mu ltiplicative iterative
methods such as Newton-Raphson and Taylor
Series expansion can be used. The Newton-
Raphson Method with high-order iterations can
be written as follows:

Xi+1=Xi+Xi(1-bXi)+Xi(1-bXi)2+.....+Xi(1-bXi)n

(1)
Flynn[1] shows that the error decreases
exponentially as Ei+1=b*Ei

n+1 for an nth order
Newton-Raphson iteration given above.
Using standart arithmetic units, it requires four
iterations to achieve an error reduction of
Ei+4=b*Ei

16 for the first order implementation. On
the other hand, for the thirth order and the fourth
order Newton-Raphson implementation, in only
two iterations, they achieves an error reduction
of Ei+2=b*Ei

16 and Ei+2=b*Ei
25 respectively.

In previous work [2-3], the use of the parallel
squaring and cubing units were applied to the
Newton-Raphson iterative divide unit.
In this work, to reduce the reciprocal error, the
fourth order parallel computational unit proposed
by [4] is used to compute the fourth order
Newton-Raphson iteration.

2. CLASSIC NEWTON-RAPHSON
 DIVIDE
The classic first-order Newton-Raphson divide
unit iteration is Xi+1=Xi(2-bXi). It is clear that the
error decreases quadratically for each iteration.,
Ei+1=b*Ei

2. To determine the initial value for the
reciprocal term of 1/b, a ROM table lookup is
used, before the first iteration starts. In this
method, each iteration needs two multiplication
and one subtraction (2’s complement) operations.
On the other hand, to compute (2-bXi) term in a
single operation is possible. This term is called
as the fused multiply-subtract. After the last
iteration, the quotient (q) is computed by

A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

Ahmet SERTBAª

410

multiplying the dividend (a) by the reciprocal of
the divisior (1/b).

Figure 1 shows a Newton-Raphson divide unit
with a first order iteration. In the classical
technique, the operations can not be computed
independently and they depend on the result
produced by the previous operation.
Therefore this does not allow any parallel
process. The latency of the divide is given as
follow, if k iterations are required for the
operation:

 tdivisio = tlookuptable + 2k tmult + tmult. (2)

Fig.1. Classic divide unit for the first order

3. STANDART FOURTH-ORDER
 N.-R. DIVIDE
By means of the kth order iterative function
given in (1), the Newton-Raphson fourth order
iteration function can be expressed as follow:
Xi+1=Xi(1+(1-bXi)+(1-bXi)2+(1-bXi)3+(1-bXi)4

 (3)

In order to compute an n-bit reciprocal in a
single iteration, the look-up table size must be
approximately (n/5)x(n/5) bits.

Figure 2 shows a fourth order divide unit
implemented using classic technique. The
subtraction and additions can be fused with the
multiplications as described before.
To implement the fourth-order Newton-Raphson
Divide, a single or double multiplier may be
used. If k iterations with a single multiplier are
used, the latency of the divide is approximately
as follow:
 tdivisio = tlookuptable + 5k tmult + tmult. (4)

With two multipliers are used, the latency of the
unit can be given as:
 tdivisio = tlookuptable + 5k tmult (5)

Fig.2. The fourth-order Newton-R. Divide
Unit

A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

Ahmet SERTBAª

411

4. PROPOSED FOURTH-ORDER
 N.-R. DIVIDE UNIT
In a division operation, to compute the quotient
(q) as a parallel process, the special computing
units called as parallel computational units may
be used To show the efficiency of these units in
the divider implementation, the Newton-
Raphson iteration can be expressed as the fourth
order approximation.

q=a/b=aX[1+(1-bX)1+(1-bX)2+(1-bX)3+(1-bX)4]

 (6)

Where X is the initial prediction of the reciprocal
and can be taken the value from the lookup table.
Figure 3 shows the hardware section required to
implement the fourth order divide unit.
 The latency of the divide unit may be given as in
(7) , as long as all of the powers of (1-bX) term
can be computed directly by using the parallel
computational units that take the same time to
perform one multiplication.

 tdivisio = tlookuptable + 3 tmult (7)

The divider unit requires tree multipliers, one
squaring unit, one cubing unit and one fourth

order exponential computation unit. But the two
multipliers have small bit lenght (n/5 *n) and are
used to multiply (1-bX), (a*X) terms. The third
one is full lenght multiplier (n*n) and used to
multiply quotient (q=a/b). On the other hand, the
parallel squaring and cubing units are described
in detail [2]. Also, the fourth-order parallel
computation unit is modeled mathematically [4]
in the references.

In the next section, the proposed divider is
implemented for 24-bit operand, the length of
the IEEE single precision floating-point format.

5. THE DIVIDER
 IMPLEMENTATION
Firstly, by a table lookup, an initial value of the
reciprocal of the divisior should be determined.
As well known, for the lookup table, a 2lxm bit
ROM with l address bits and an m-bit output
words is required.
In the computations, to avoid getting the negative
numbers from (1-bX) term, the value stored in
each lookup table address should be less than
the reciprocal of all possible values of b.

Fig.3. Proposed fourth-order Newton Raphson Division Hardware

A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

Ahmet SERTBAª

412

Thus, the (1-bX) computation produces positive
values and it can be implemented as the fused
multiply-subtract. The partial product array of
the (1-bX) multiply can be reduced by using
Wallace tree technique . Therefore, the area
required to implement the partial product array is
approximately 30 % the size of the direct
multiplication technique.

(1-bX)2 is computed by squaring the result of the
former computation. Figure 4 shows the the
squaring unit partial product array reduction for
4-bit operand. The matched terms in the partial
product array are grouped and moved one higher
value position to the left in the reduced partial
product array by using aiaj + aj ai= 2*aiaj and
aiai= ai equivalences.

(1-bX)3 is computed by cubing of the q=(1-bX).
The parallel cubing unit proposed by [2]
computes the cube of an operand with 24 bit
length. This computation is 25% faster than the
direct multiplication technique. Figure 5
indicates the partial product terms and reduced
terms required to compute the parallel cube. In
this computation, three different reduction
techniques are applied to the cubing unit partial
product array. The first reduction technique is
performed on the three identical tems (a iaiai) of
the partial product array. This term is replaced
with a single term ai. The second reduction
technique is applied to the partial product terms
which include two identical terms. The three
terms with two identical bits are replaced by two
terms with a weighting of 3 as follow:
 aiaiaj + ajaiai + aiajai = 3*ajai

The third reduction technique is applied to the
partial product terms that include three different
terms. The six terms on the partial product array
are replaced with one three-different term with a
weighting of 6 as follow:
akaiaj +akajai+ajakai+ajaiak+aiakaj+aiajak= 6*akajai

As a similiar process, (1-bX)4 is computed as the
result of fourth-order of the q=(1-bX).

The parallel unit proposed by [4] computes the
fourth exponent of an operand with 24 bit
length. Figure 6 shows the partial product terms
and reduced terms required to compute the
parallel process.

Like the cubing reduction techniques, the four
identical , three identical, two identical and four
different terms are replaced by one single term,
one two term with a weighting of 4, one three
term with a weighting of 12, one four term with a
weighting of 24 respectively. Additionaly, these
reduced terms are shifted two-bit for the two
term and the three term with a weighting of 3,
three-bit for the four term with a weighting of 3
to the left.

The multiplication of (a*X) is a small
multiplication. An efficient multiplier can be
used to compute the effect of this term to the
result.

The final multiplier computes the result of the
(a*X) multiplication and the sum of the (1-b*X),
(1-b*X)2, (1-b*X)3, (1-b*X)4 terms. This
multiplication is the only full precision
multiplication.

6. CONCLUSIONS
A fast and efficient divider unit is proposed in
this study. To compute the reciprocal term (1/b),
the unit utilizes the fourth-order Newton-
Raphson iteration method. Parallel computation
units are used to reduce the latency of the
division operation. In the computations, a 24-bit
operand lenght known as IEEE format is
selected.

The latency of the proposed divider is less than
the latency of the classic Newton-Raphson
Method. Also, to compute the higher-order
terms the truncating technique can be used.
Thus, the needed hardwire can be significantly
reduced.

A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

Ahmet SERTBAª

413

 a3 a2 a1 a0
 a3 a2 a1 a0

 X
 a3 a0 a2 a0 a1 a0 a0a0
 a3 a1 a2 a1 a1 a1 a0a1

 PPA a3a2 a2 a2 a1 a2 a0a2
 a3 a3 a2a3 a1 a3 a0a3

 a3a2 a3 a1 a3 a0 a2 a0 a1 a0 _ a0

 RPPA a3 a2 a1 a1

 a2

Figure 4. Squaring Computational Unit

 a3 a2 a1 a0
 a3 a2 a1 a0

 X a3 a2 a1 a0

 a3a0a0 a2 a0a0 a1a0a0 a0a0a0
 a3a0 a1 a2a0a1 a1a0a1 a0a0a1
 a3a1a0 a2a1a0 a1a1a0 a0a1a0
 a3a2a0 a2a2a0 a1a2a0 a0a2a0
 a3a1a1 a2a1a1 a1a1a1 a0a1a1
 a3a0a2 a2a0a2 a1a0a2 a0a0a2
 PPA a3a3a0 a2a3a0 a1a3a0 a0a3a0
 a3a2a1 a2a2a1 a1a2a1 a0a2a1
 a3a1a2 a2a1a2 a1a1a2 a0a1a2

 a3a0a3 a2a0a3 a1a0a3 a0a0a3
 a3a3a1 a2a3a1 a1a3a1 a0a3a1

 a3a2a2 a2a2a2 a1a2a2 a0a2a2
 a3a1a3 a2a1a3 a1a1a3 a0a1a3

 a3a3a2 a2a3a2 a1a3a2 a0a3a2

 a3a2a3 a2a2a3 a1a2a3 a0a2a3
 a3a3a3 a2a3a3 a1a3a3 a0a3a3

 X1 a3 - - a2 - - a1 - - a0

 a3a2 a3a1 a3a0 a3a1 a2a0 a3a0 a2a0 a1a0

 X3 RPPA a3a2 a3a2a0 a2a1 a2a1 a1a0

 a3a2a1 a3a1a0 a2a1a0

Figure 5. Cubing Computational Unit

A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

Ahmet SERTBAª

414

 a3 a2 a1 a0
 a3 a2 a1 a0

 a3 a2 a1 a0

 a3 a2 a1 a0
 X a3a0a0a0 a2a0a0a0 a1a0a0a0 a0a0a0a0

 a3a0a0a1 a2a0a0a1 a1a0a0a1 a0a0a0a1
 a3a0a1a0 a2a0a1a0 a1a0a1a0 a0a0a1a0
 a3a1a0a0 a2a1a0a0 a1a1a0a0 a0a1a0a0

 a3a0a1a1 a2a0a1a1 a1a0a1a1 a0a0a1a1
 a3a1a0a1 a2a1a0a1 a1a1a0a1 a0a1a0a1
 a3a1a1a0 a2a1a1a0 a1a1a1a0 a0a1a1a0
 PPA a3a2a0a0 a2a2a0a0 a1a2a0a0 a0a2a0a0
 a3a0a2a0 a2a0a2a0 a1a0a2a0 a0a0a2a0
 a3a0a0a2 a2a0a0a2 a1a0a0a2 a0a0a0a2
 a3a1a1a1 a2a1a1a1 a1a1a1a1 a0a1a1a1

 Μ Μ Μ Μ

 Μ Μ Μ
 a3a2a2a2 a2a2a2a2 a1a2a2a2
 a3a3a3a1 a2a3a3a1 a1a3a3a1 a0a3a3a1
 a3a3a1a3 a2a3a1a3 a1a3a1a3 a0a3a1a3
 a3a1a3a3 a2a1a3a3 a1a1a3a3 a0a1a3a3
 a3a2a2a3 a2a2a2a3 a1a2a2a3 a0a2a2a3
 a3a2a3a2 a2a2a3a2 a1a2a3a2 a0a2a3a2

 a3a3a2a2 a2a3a2a2 a1a3a2a2 a0a3a2a2
 a3a2a3a3 a2a2a3a3 a1a2a3a3 a0a2a3a3
 a3a3a2a3 a2a3a2a3 a1a3a2a3 a0a3a2a3
 a3a3a3a2 a2a3a3a2 a1a3a3a2 a0a3a3a2

 a3a3a3a3 a2a3a3a3 a1a3a3a3 a0a3a3a3

X1 a3 - - - a2 - - - a1 - - - a0

X4 a3a2 a3a1 a3a2 a2a1 a2a0 a2a1 a1a0 a2a0 a1a0

 a3a0 a3a1 a3a0

 X3 a3a2 a3a1 a3a0 a2a0 a1a0

 a2a1

X3 a3a2a1 a3a2a1 a2a1a0 a2a1a0 a2a1a0

 a3a2a1 a3a1a0 a3a1a0 a3a1a0

RPPA a3a2a0 a3a2a0 a3a2a0

 a3a2a1a0

Figure 6. 4. Degree Computational Unit

A Fast Divider Implementation Based On The Newton-Raphson Method Using Parallel Computation Units

Ahmet SERTBAª

415

REFERENCES
[1] Flynn M., ‘ On division by Functional

Iteration.’, IEEE Transactions on Computers,
Volume C-19, pages 702-706, August 1970.

[2] Liddicoat A. and Flynn M., (2000), ‘Parallel

Square and Cube Computations’,Asilomar
Conference on Signals, Systems and
Computers, California, November.

[3] Liddicoat A. and Flynn M., (2000),
‘Pipelinable Division Unit’, CSL-TR-00-809,
The Technical Report, Computer System
Labrotary, Stanford University, September.

[4] Sertbaº A., ‘Fast and Efficient Parallel

Computation Units for Exponential
Functions’, ISCIS XVI International Symp.on
Computer and Information Systems’, Antalya-
Belek, November 5-9, 2001.

 Ahmet Sertbaº was born in Ýstanbul in 1965. He received the B.S. and
M.Sc. degrees in electronic engineering from the Istanbul Technical
University in 1990, the Ph.D. degree in electronic department from
Istanbul University in 1997 respectively.

 He has worked as Research Assistant at I.T.U. during 1987-1990, research
engineer at Grundýg firm during 1990-1992, an instructor at the Vocational
School of Istanbul University during 1993-1999. He is currently an Assoc.
Professor in the Department of Computer Engineering at the University of
Istanbul. His research interests include computer arithmetic circuit design,
computer architecture and computer-aided circuit design, circuit theory
and applications.

