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ABSTRACT

In this paper, two simple and accurate cell macromodels for PSPICE simulations of Cellular Neural
Networks (CNNs) are designed. Firstly, a brief information about CNNs and their benefits are
introduced. Then the nonlinear differential equations that characterize the CNNs and the equivalent
cell circuit given by Chua and Yang which realizes these equations are presented. With appropriate
source transformations, another cell equivalent that employs voltage controlled-voltage sources
instead of voltage controlled-current sources is devel oped. By substituting the dependent sources with
their actual circuits for both eguivalents, complete systems which are suitable for PSPICE
macromodeling are derived. Responses of astable and stable CNNs are analyzed with the proposed
macromodels and satisfactory results are observed after the simulations. The benefits and drawbacks
of the macromodels are also discussed in the conclusion section.

Keywords: Cellular Neural Networks, Equivalent Circuits, Smulation, PSPICE, Macromodels.

OZET
Bu makalede, Hucresel Snir Adlarynyn PSPICE benzetimleri icin basit ve glvenilir iki hlcre
makromodeli tasarlanmyptyr. Ylk olarak, kysaca Hicresel Sinir Adlary ve avantajlaryndan
bahsedilmiptir. Ardyndan, Hiicresel Sinir Adlaryny karakterize eden nonlineer diferansiyel denklem
takymlary tanytylmyp ve bu denklemleri gercekleyen, Chua ve Yang tarafyndan tasarlanmyp ebdeder
devreler sunulmuptur. Uygun kaynak déntptmleri yapylarak, gerilim kontrollu akym kaynaklary yerine
gerilimkontrollu gerilim kaynaklary kullanan yeni bir epdeder devretiretilmiptir. Her iki epdederdeki
badymly kaynaklar gercek devreleriyle dediptirilerek PSPICE makromodellemesine uygun tamyapylar
elde edilmiptir. Onerilen makromodellerle kararly ve kararsyz Hiicresel Sinir Adlarynyn benzetiml eri
yapylmyp ve tatmin edici sonuclar gézlenmiptir. Makromodellerin avantaj ve dezavantajlary sonuglar

kysmynda tartypyl myptyr.
Anahtar Kelimeler: Hicresel Snir Adlary, Epdeder Devreler, Benzetim, PSPICE, Makromodeller.
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1 Introduction: CNNs
CNNs are a class of dynamical neural networks
and were first proposed by Chua and Yang in
1988 [']. In the CNN architecture, the cells
(neurons) are connected to each other with a
neighborhood definition givenin (1).
D
N, G, =t n|madk- ii- i}eriekemaeren]
@
In the above formula, r is the neighborhood
dimension and (i, j), (k, I) arethelocations of the
cells in an MxN-cell network. Because of their
two dimensional structure, CNNs are very
suitable for image processing applications [?] as
well as for some optimization problems and their
implementation is easier when compared with
the Hopfield Dynamica Neural Networks since a
cell can only interact with its nearest neighbors
for an I =1 neighborhood dimension here, and
it is clear that this reduces the number of
connections (therefore the number of weight
coefficients) between the cells in the whole
system. Moreover, only two 3x3 weight
coefficient matrices and a constant threshold
value will be enough to represent a CNN having
a neighborhood dimension of one. A portion of
the structure mentioned above is shown in figure
-1

The state equation of the C(i, j) cell can be
written as:

LTRE. TR T éA(i,j;k,l)ka,
C(kIN N.(i.j)
- AB(.jkl)y, =0
COkIN N (i)
(29
where,
1
Yii = f(xk,l):E”Xk,l +]|' |Xk,l } 1|]
(2b)

isapiecewise linear function.

If we consider an MxN-cell structure and write
the above equations in matrix form, we will
have:

R=-X+A* f(X)+B*U+I ©)
Where x;; is the “state” of the cell C(i, j); yii is
the “output” of C(k, I); ug isthe“input” of C(k,
D; A, j; k, 1) isthe“weight coefficient” between
C(i, j) and the yy;; B(i, j; k, I) is another “weight
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coefficient” between C(i, j) and the uy; and
findly, li; is a “threshold” value common for all
cells. The weight coefficient matrices A and B
are also called “Cloning Template” and “Control
Template” respectively. The constant value of x;;

when t ® ¥ is called “X’; stable equilibrium

point”. Design of a CNN is the computation of
A, B matrices and | scaar. “ * " is the two-
dimensional convolution operator. The block
diagram of aCNN cell isshown in figure— 2 [*].

2 Circuit Equivalents of CNNs

We can also represent a CNN cell by means of a
dynamical circuit having conventional
components like the one in figure — 3. This cell
equivalent given by Chua and Yang in [1],
employs linear resistors, capacitors, dependent
and independent current/voltage sources and a
nonlinear dependent voltage source. Note that,
(2a) isthe node equation of the state vy;;.

The nonlinear voltage controlled-voltage source
at the output can be designed with a simple
opamp circuitry sketched in figure — 4(a) [].
Since the opamps are not ideal, the maximum
output voltages will be equal to (VOC - 2) not

Vee, R =R,,
R, =R; and gi"'%g@(vcc - 2) will give

the piecewise linear activation
characteristic defined with (2b).

therefore the conditions,

function

There are many articles in the literature about the
circuit designs of CNNs [°], [°], however they all
propose the dependent current sources for the
addition unit at the input of the cell. By
performing appropriate source transformations,
the “state” node can be converted to a mesh that
includes voltage controlled-voltage sources['] as
shown in figure — 5. In this topology, we will
only deal with the voltages and also it will enable
us to use the basic opamp adder circuit for serial
connected dependent sources.

3 Macromodel Design

Macromodels are circuit blocks used for
modeling the ICs in PSPICE F]. This simplifies
the simulation procedure because it reduces the
number of components and nodes in the models.
The analytical solutions of the differential
equations that represent the CNN structures are
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quite time consuming. Therefore, numerical
methods and simulation tools like PSPICE plays
acrucial rolein the analysis of such systems.

3.1. HSA10 M acromode

We first used the complete circuit shown in fig. —
6(a) for our macromodel design and named it
HSA10. Indeed, it is a cascaded adder, non-
inverting and inverting opamp blocks that uses
the UA741 macromodel. It can be considered as
an 8pin analog IC. A cell circuit constructed by
HSA10isgiveninfigure— 6(b).

In this circuit, the output voltage of a cell will be
+(V,_ - 2) voltsinstead of =1V in the stable
case since the noninverting amplifier block has a
maximum gain of (VCC - 2). The resistances

that represent the weight coefficients between the
inputs and the states can be calculated by

dividing the R, feedback resistance in the adder

circuit to the absolute value of the matching
element at the control template B; and the
resistances that determine the weight coefficients
between the outputs and states can be found by

dividing the R., XV, - 2) to the absolute

value of the matching element in the cloning
template A. Both +y (+Vv,) and -y (-v,) outputs
are available for positive and negative values of
the elements in the template matrices.

3.2. HSA11 M acromodd

Another macromodel is HSA11, which uses the
cell circuit given in [] derived from the Chua
and Yang' s conventional equivaent. In this
topology, avoltage controlled current source and
two inverting amplifier blocks built with UA741
macromodel are cascaded as shown in figure —
7(®. The operation of the circuit is
approximately the same with HSA10. Here, the
only difference is that the currents from the
neighbor cells are added at the input stage. The
complete cell circuit with HSA11 is sketched in
figure—7(b).

4 Smulations

In this section, three CNN structures with
different dimensions and templates are simulated
in order to test the validity of our macromodels.
The results are verified with the ones that were
found by Chuaand Yang' sequivalentin[Y].
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41  1x2-Cdl Oscillating CNN
Simulation
Firgly, a 1x2-cell CNN with opposite-sign

template [°] is analyzed with the macromodels.
The differential equations that represent such a
CNN are given below:

%, :-Vxl+awyl_ bx‘/yz (4a)
%, =-V,, tbxw +aw, (4b)
If we write these equationsin amatrix form,
esu  él Ouxgxu a -bung(x)u
€o U™ ut
gt O 1f & 33 a g &f (%)
, §u(000_€x, 4
e -

&, (001 8.0

Q)
will be found. Where the f(.) is the activation
function with piecewise linear characteristic. The
structure that realizes the above equations is
sketched in figure — 8.

For specific @ and b values it was shown that
this system will oscillate. We need two
macromodels for the simulation of this CNN.
The a and b values are chosen as 2 and 5
respectively. These correspond to 6500W and
2600W resistances for the weight coefficient

resistors if +V_ =+15V and R., =1kw

— RFl X(Vcc B 2)
T
s
initial conditions for the voltages of the

capacitors at each cell are 0.1V. A comparison
between Chua and Yang' s equivalent and our

macromodel for the V,,(t) and Vv, (t) state
voltagesis showninfigure—9.

since The Vv, (0)

The piecewise linear voltage characteristic
between vy and vy in a cell can also be observed
from the simulations as shown in figure — 10.

4.2. 1x3-Cdl Chaotic CNN Simulation

It is possible to generate chaotic signals by using
CNNs. Here, we smulated a 1x3-cell chaotic
CNN with the proposed macromodels. The
differential  equations that represents such a
system are given by Zou and Nossek in [°]. If we
rewrite the mentioned equations in matrix form,
we will have:
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The block diagram representation of the above
formisshownin figure— 11.

The phase planes for the v state voltages of
C(1,1) and C(1,2) cellsare plotted in figure — 12.

In this case, the weight coefficient resistance
matrix between the cells for our macromodels
will be equal to:

10400 4062 .5 4062 54
¢ 1KWx3V u
Ry=€1062 .5 Ry @— @818 .2 2954 5UWN
e b1l u
1062 .5 2054 .5 13k H
€A a

It is obvious that the orbits will not be the same
in the three circuits since the chaotic systems are
extremely sensitive to the initial conditions,
circuit parameters and voltage characteristics;
therefore to the circuit topology and rounding
errors in PSPICE program. However the double
scrolls observed from the simulations prove that
our macromodels can generate chaotic signals.

4.2 3x3-Cdl Stable CNN Simulation

As the last example, we simulated a 3x3-cell
stable CNN with the following templates A and
B and with athreshold value of | which are used
in a feature extraction application in an image
processing problem [*]. Note that, in the previous
sections, neither we used the two-dimensional
convolution, nor the input and threshold values
were included in the equations. In the following
application the two-dimensional convolution
operator will be employed and also the U and |
will be used. Below is the matrix form of the
mentioned system:

6-0.183% -0.2724 -0.1764 U
§‘=-x+g-0.2523 3.7405 - 0.2523 * f(x)+
P a0, 1R
& 0.1433 - 0.1396 - 0.1439 U
- 0.1396 - 0.0698 - 0.1396 U* U+

u

0.1439 0.1396 0.1433 H

&
é
&
%44444424444443

1=0.2540
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The U input is a 3x3-pixel portion of the image
that was processed and set equal to the initial
condition X(0):

€0.1513 0.1429 0.1261u

- 30.1429 0.1261 0.10928
€0.1345 0.1176 0.1008f

U=X(0)

The weight coefficient resistors realizing the

above templates when *V_ ==+15V and
R:; =1kw, are:

2 u
70806 47724 736%
N kWx3v y

Ro=59152 Ry @l— @475 5 51526 WV
e |3.7405 | a
3696 47724 70806 H

85978 4 7163 3 6949 .33

a kW y

=163 .3 Ry @4326 .6 7163 .3UW
e - 0.06%8 | a
5949 .3 7163 3 6978 .41

V, =0.254V\ R =1KW

The Vf stable equilibrium points computed
from Chua and Yang' s equivalent and from

circuits employing HSA10 and HSA1l
macromodels are equal to
€4.1277 - 3.9699 4.1267 U
v e avas € 4038 v, =-3.4529 - 3.4775 )
§4.1250 - 3.4578 - 3.3419
641166 -39589 41156y

VHS=8 40217 - 34419 - 34668 and
£41139 - 34468 - 33304

640687 -39697 41246y
VIS=R 40327 -34547 - 34794,

41230 -34594 -3344Y
respectively.

The transients for the states at each cell in the
models are sketched in figure — 13.

5 Conclusions

In this paper, a new topology employing voltage
controlled-voltage sources instead of voltage
controlled-current sources in CNNs is introduced
and two simple cell macromodels and subcircuit
programs are developed for PSPICE simulations.
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The proposed macromodels HSA10 and HSA11
are tested for 1x2-cdl, 1x3-cell astable and 3x3-
cell stable cases. Satisfactory results are
observed after the simulations.

If we want to simulate a CNN by using
conventional opamp macromodels of PSPICE,
we will need a huge number of elements since
even a Ixl-cell CNN having the topology in
figure — 7 will include 3 opamps, 8 resistors (6
inner, 2 weight coefficient, 1 threshold resistors)
and a capacitor; totally 12 components. Our
macromodels reduce this number, so they
simplify the simulation procedure. The number
of components required for constructing 1x2,
1x3 and 3x3-cell CNNs with the topology given
figure — 7 including UA741 macromodels as well
as with the HSA10 and HSA11s are shown in
Table — 1. It is evident that the efficiency of
macromodeling increases as the dimension of the
CNN increases.

A drawback of the HSA10 macromodel is that an
output from the “state” pin can’ t be taken, since
a component connected to that termina will
cause a load effect and change the total
impedance of the dynamical unit and obviously
this will decrease the v,; voltage. However the
problem is prevented in the HSA11 macromodel
by taking the “state” voltage from the output of
the dependent current source’ s opamp. Another
disadvantage is that the output voltage level is

* (VCC - 2) volts in both HSA10 and HSA11.

This can be pulled down to =1V by connecting
a simple voltage divider with an attenuation ratio

h h oy
of %Vcc - 2) to the 6" and 7" pins of the

macromodels. It can also be seen from the table
that the structures which employ HSA11 have
less number of components than the others.

The proposed macromodels can be used in the
transient analysis of the CNNs with various
dimensions and neighborhoods. They can also be
implemented as 8-pin analog ICs for adaptive
applications  which  use the variable

Biography of Mahmut Un
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transconductance blocks in [5,6] as the weight
coefficients.

References

[] CHUA L. O, YANG L. ‘Cdlular Neurd
Networks: Theory’, IEEE Trans. on Circuits and
Systems, 1988, VVol.35, N0.10, pp. 1257 — 1272

[2] GUZELIS C. ‘Image Processing with
Cellular Neural Networks, TUBITAK: Turkish
Council of Science Project No. EEAG — 103
Report, 1993 (In Turkish).

[3] CIMAGALLI V. BALS M., ‘Cdlular
Neural Networks. A Review', Proc. of the &
Italian Workshop on Parallel Architectures and
Neural Networks, May 1993, Vietri Sul Mare,
Italy.

[4] TANDER B., OZMEN A., UCAN ON,
‘Modding and Simulation of a 3x3 Cdlular
Neura Network with PSPICE’, 8" National
Electricd — Electronics — Computer Eng. Symp.,
September 1999, G.Antep, Turkey, pp. 655 — 657
(In Turkish).

[5] NOSSEK JA. SEILER G, ROSKA T,
CHUA L.O,, ‘Cédlular Neura Networks. Theory
and Circuit Design’, Int. J. of Circuit Th. And
Apps., 1992, Vol .20, pp. 533-553.

[6] HARRER H., NOSSEK JA. STELZL R,
‘An Analog Implementation of Discrete-Time
Celular Neurad Networks, IEEE Trans. On
Neural Networks, 1992, Vol.3, No.3, pp. 466-
476.

[7] NILSSON JW.  ‘Electric Circuits,
(Addison-Wesley Pub. Comp., 1993, 4™ Ed.).

[8] RASHID M.H., ‘SPICE: Circuits and
Electronics Using Pspice’, (Prentice-Hal, 1990).
[99 ZOU F., NOSSEK JA., ‘Bifurcation and
Chaos in Cellular Neural Networks, |EEE
Trans. on Circuits and Systems— |: Fundamental
Theory and Apps., 1993, Vol .40, No.3, pp. 166 -
173.

[10] zZOU F., NOSSEK JA., ‘Stability of
Cdlular Neural Networks with Opposite-Sign
Templates, IEEE Trans. on Circuits and
Systems, 1991, Vol.38, No.6, pp. 675 - 677.

Mahmut Un was born in Ceyhan, Turkey, 1950. He received both B. Sc. And M. Sc. Degrees in Electrical
Engineering from the Faculty of Electrical and Electronics Engineering, Y stanbul Technical University, Turkey
in 1973. Hereceived the Ph. D. Degree in 1983 from the Institute of Science and Technology of the same
University. In 1980 he joined the Electrical and Electronics Engineering Faculty of Yyldyz Technical
University.In 1988 hejoined the Electrical and Electronics Engineering Department of Y stanbul University.Since
1992 heis aprofessor of Circuit and Systems in the same Department. His research interests include control
systems, robotics, fuzzy systems, neural networks and biomedical engineering. Heisthe author or the co-author
of morethan 10 journal papersin national and international journals, more than 20 conference papers presented in
international and national conferences and 2 books related to the above mentioned areas.

Baran TANDER, Mahmut UN



428 Simple And Accurate Cell Macromodels For The Simulations Of Cellular Neural Networks

Captions:

Fig. 1: A 3x3 CNN structure with anr = 1 neighborhood dimension.

Fig. 2: Block diagram representation of a CNN cell.

Fig. 3: Chuaand Yang' scell equivalent

Fig. 4: (a) Activation function circuit, (b) Its piecewise linear characteristic.

Fig. 5: Another cell equivalent that employs voltage controlled-voltage sources.

Fig. 6: (@) Complete cdll circuit for HSA10 macromodel, (b) A Cell constructed with HSA 10.

Fig. 7: (@) Complete cell circuit for HSA11 macromodel, (b) A Cell constructed with HSA11.

Fig. 8: A 1x2-cell CNN structure with opposite sign templates.

Fig. 9: v,(t) State voltages in a 1x2-cell CNN simulation. (&) Chua and Yang's equivalent, (b) With
HSA10 macromode!, (c) With HSA11 macromodel.

Fig. 10: The piecewise linear voltage characteristics of the C(1,1) cell for both macromodels:
(Q)HSA10, (H)HSA1L

Fig. 11: A Chaotic CNN structure.

Fig. 12: The phase planes of the state voltages of C(1,1) and C(1,2) cells: (&) Chuaand Yang' s
equivalent, (b) With HSA10 macromodel, (c) With HSA11 macromodel.

Fig. 13: A comparison between the states of a 3x3-cell CNN models. (a) Chuaand Yang's equivalent,
(b) Circuit employing HSA10, (c) Circuit employing HSA11.

Illustrations:

é
<

Fig. 1: A3x3 CNN structurewith anr = 1 neighborhood dimension.
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Fig. 2: Block diagram representation of a CNN cell.
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Fig. 3: Chua and Yang' s cell equivalent
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Fig. 5: Another cell equivalent that employs voltage controlled-voltage sources.
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Fig. 6: (a) Complete cell circuit for HSA10 macromodel, (b) A Cell constructed with HSA10
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(b)Fig. 7: (a) Complete cell circuit for HSA11 macromodel, (b) A Cell constructed with HSA11.
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Fig. 8: A 1x2-cell CNN structure with opposite sign templ ates.
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Fig. 9: v(t) State voltagesin a 1x2-cell CNN simulation.

(a) Chua and Yang' s equivalent, (b) With HSA10 macromodel, (c) With HSA11 macromodel.
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Fig. 10: The piecewise linear voltage characteristics of the C(1,1) cell for both macromodels:

(2)HSA10, (b)HSALL.
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Fig. 11: A Chaotic CNN structure.
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Fig. 12: The phase planes of the state voltages of C(1,1) and C(1,2) cells:

(a) Chua and Yang' s equivalent, (b) With HSA10 macromodel, (c¢) With HSA11 macromodel.
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Fig. 13: A comparison between the states of a 3x3-cell CNN models.

(a) Chua and Yang' s equivalent, (b) Circuit employing HSA10, (c) Circuit employing HSA11.

Baran TANDER, Mahmut UN



Simple And Accurate Cell Macromodels For The Simulations Of Cellular Neural Networks

Table— 1: Quantities of the components for various CNN structures constructed with the complete
circuitinfigure— 7 by usng UA741 and with the HSA10 and HSA11 macromodels.

(UA741.mod: Fig-7) (HSA10.mod) (HSATL.mod)
CNN "QtyofR [ Qty. | Qty.of | QtyofR | Qty. | Qty.of | QtyofR | Qty. | Qty.of
Dimension|  (ith | ofC | Macro | (ith | ofC | Macro |  (with ofC | Macro
B&1) mode B&1) mode B&1) mode
Ix1 8 1 3 5 1 1 4 1 1
Total: 12 components Total: 7 components Total: 5 components
Ix2 20 2 6 14 2 2 12 2 2
Total: 28 components Total: 18 components Total:16 components
1x3 36 3 9 27 3 3 24 3 3
Total: 48 components Total: 33 components Total: 30 components
3x3 152 9 27 125 9 9 116 9 9
Total: 188 components Total: 143 components Total: 134 components
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