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ABSTRACT 

 
In this paper, we present the problem of joint tracking of the direction of arrival (DOA) and range 
parameters of moving sources in the near field of an antenna array with two Expectation-
Maximization (EM) based recursive algorithms. The main characteristic of the first Recursive EM 
(REM) approach is to include computation of the gradient of the log-likelihood function and some 
form of the complete data Fisher information matrix. Compared to first REM approach, the second 
one utilizes the stochastic approximation of approximate conditional expectation of the complete data 
sufficient statistics. The proposed recursive algorithms in this work assume that the parameters of 
interest are described by a linear polynomial model. This paper concludes by presenting the 
simulation results of the suggested algorithms in order to illustrate the computational effectiveness of 
the both algorithms.   

 
Keywords: REM (Recursive Expectation Maximization), near field source localization  
 

1. INTRODUCTION 

In recent years, the source localization problem 

using passive sensor arrays has become very 

important for many applications ranging from 

sonar, navigation, seismology, geophysics to 

surveillance. However, the majority of the 

localization techniques deals with the case in 

which the source is assumed to be in the far field 

of the array. This assumption considers that the 

curvature of the waves can be neglected hence, 

the waves can be considered as plane waves. 

Thus each source location can be characterized 

by only the azimuth in that case. In contrast, if 

the sources are located close to the array (i.e. 

near field), the inherent curvature of the 

waveforms can no longer be neglected. 

Therefore, the location of each source has to be 

parameterized in terms of the direction of arrival 

(DOA) and range parameters. The localization of 

the near field sources is more involved than the 

far field case since the parameter vector to be 

estimated is extended to include the source 

ranges. It is therefore necessary to derive more 

sophisticated localization algorithms for 

estimating the azimuth together with the range. 

In recent years, there has been lots of research 

effort on the near field source localization 

techniques. A total least squares ESPIRIT like 

algorithm, based on fourth order cumulants was 

proposed in [1]. Moreover, a high resolution 
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algorithm that uses only second order statistics of 

the array outputs was introduced in [2]. 

However, due to many attractive features 

suitable to the near-field scenario such as 

consistency, asymptotic unbiasedness, and 

asymptotic minimum variance, ML approaches 

have been proposed, recently [3]. The ML 

approach is efficient and gives superior 

performance in case of little sample numbers and 

the presence of coherent signals. On the other 

hand, ML estimation algorithm requires high 

computational cost. Hence, several techniques 

have been studied to reduce the complexity of 

the ML estimator including Expectation 

Maximization (EM) iterative technique [4], [5]. 

EM algorithm converts the multidimensional 

search problem to the less dimensional parallel 

search problems in order to prevent the 

computational complexity. EM algorithms for 

estimating constant DOA parameters were 

discussed in [6], [7], [8], [9]. Furthermore, 

recursive EM approaches are maintained because 

of the time consuming and massy calculation 

characteristic of the EM algorithm. After 

gathering only a little observation data, the 

recursive EM algorithm is appropriate for online 

processes i.e. tracking, while the conventional 

EM algorithm is more suitable for offline 

processes. In addition, the recursive version of 

the EM algorithms was also applied to the time 

varying DOA estimation problem [10], [11], 

[12].  

 

In this paper, we primarily propose two recursive 

approaches to perform ML estimation of the time 

varying parameters of moving sources in near-

field of the antenna array. These approaches are 

based on the recursive form of the EM algorithm. 

Although several Recursive EM (REM) 

implementations have been proposed for the far 

field case in the literature, we consider the 

extension of two EM based recursive approaches 

previously proposed only for DOA estimation of 

far field parameters to estimation of time varying 

near field parameters in this paper. Both 

algorithms provide the DOA parameters as well 

as the range parameters of the radiating sources. 

The first approach is based on the stochastic 

approximation procedure applied directly on the 

parameters of interest. It involves computation of 

the gradient of the log likelihood function and 

some form of the complete data Fisher 

information matrix [11]. The second sequential 

approach utilizes the stochastic approximation to 

approximate conditional expectation of the 

complete data sufficient statistics [12]. In 

contrast to first approach, the second one 

replaces the Expectation step by a recursive 

stochastic approximation, while keeping the 

Maximization step unchanged.  

 

The rest of the paper is organized as follows; in 

section 2 the signal model constructed and the 

assumptions have been made related with the 

problem at hand is presented. The EM 

formulation and the motion of the sources are 

discussed in section 3. Two different REM 

algorithms are described in section 4 as two 

subsections. The simulations and results are 

provided and the performance of the algorithms 

is compared in section 5. The section 6 gives the 

conclusion and discuss the results. 

 

2. SIGNAL MODEL 

 
Before introducing the two EM based recursive 

approaches for joint tracking of the time varying 

azimuth and range parameters of the near field 

sources, we will first describe the time varying 

near field signal model in the sequel. In the near 

field scenario under consideration, it is assumed 

that the source signals are collected by a uniform 

linear array. M  narrow band signals from time 

varying 
1

( [ ( ),..., ( )]Mt t tθ θ) =θθθθ  directions arrive at 

an array of  N  sensors. 
1

( [ ( ),..., ( )]
M

t r t r t) =r  

vector represents the unknown range parameters 

of the mobile sources with nonlinear movement. 

Moreover, ( [ ( ), ( )]T Tt t t) = θθθθ TrΘΘΘΘ  represents the 

parameter super vector to be estimated 

corresponding to the moving sources. Thus, the 

signal model for the data observed at the output 

of the sensors at time instant t  is
( )t ∈�x

; 

 

( ) ( ( )) ( ) ( )t t t t= +ΘΘΘΘx H s u                 (1) 

 

where the steering matrix is    

 

1
( ( )) [ ( ( )),..., ( ( ))] N M

Mt t t ×= ∈�Θ Θ ΘΘ Θ ΘΘ Θ ΘΘ Θ ΘH d d    (2) 

 

Steering matrix consists of M  steering vectors 

 

    1( ( )) N

m
t ×∈�ΘΘΘΘd , 1,...,m M=              (3)              
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which is a function of unknown parameter vector 

 

( [ ( ), ( )]
T T T

m m mt t t) =ΘΘΘΘ θθθθ r
                      (4) 

 

For the m th source with an array of N  sensors, 

the steering vector can be approximated as [8]  

 
2

min min

2
max max

( ( ) ( ))

( ( ) ( ))

(2 ( ) 4 ( ))

( ( ) ( ))

1

( , )

m m

m m

m m

m m

j k t k t

j t t

m m

j t t

j k t k t

e

e

e

e

µ ζ

µ ζ

µ ζ

µ ζ

µ ζ

+

+

+

+

 
 
 
 
 

=  
 
 
 
 
  

M

M

d                 (5) 

 

min
k and 

max
k  denote 2N− nd and 2N nd 

sensors, respectively. The steering vector 

parameters ( )m tµ and ( )m tζ  are functions of the 

DOA parameter ( )m tθ  and the range parameter 

( )mr t  of the m th source as 

 

2
( ) sin ( )

m m
t t

π
µ θ

λ

∆
= −                         (6) 

2

2
( ) cos ( )

( )
m m

m

t t
r t

π
ζ θ

λ

∆
=                        (7) 

 

where λ  is the wavelength of wavefronts, ∆  is 

the distance between two successive sensors [7]. 

We also assume that M N< , and the waveforms 

of the M  narrow band signals 
1

1
( ) [ ( ),..., ( )]T M

M
t s t s t C ×= ∈s  are unknown and 

deterministic. Noise process 1( ) Nt C ×∈u  is 

independent, identical white complex Gaussian 

distributed with zero mean and covariance 

matrixν I , where ν  represents an unknown 

noise spectral parameter and I  is the identity 

matrix. 
 
Before discussing the development of two REM 

approaches, it is helpful to introduce the common 

assumptions on the signal (1) for both approaches: 

 

Assumption 1: Let (1), (2),...x x  be independent 

observations with ( ; )f ϑϑϑϑx  the probability 

density function, where ϑϑϑϑ  denotes an unknown 

parameter vector. 

 

Assumption 2: The augmented data associated 

with the EM algorithm (1), (2),...y y  is 

characterized by the pdf ( ; )f ϑϑϑϑy  [11]. The 

augmented data ( )ty , ( ( )) ( )t t=y xM  is a many 

to one mapping [4]. Let tϑϑϑϑ  denote the estimate 

after t  observations. 

The problem taken into consideration is the 

estimation of the direction of arrivals ( )tθθθθ  and 

range parameters ( )tr  of the time-varying 

signals recursively from the observation ( )tx  for 

a known number of sources. With this problem at 

hand, we present a recursive ML solutions based 

on the EM algorithm in the sequel. However we 

will first introduce general EM framework. 

 

3. EM FORMULATION 

 
The EM algorithm provides ML estimation of 

parameters when maximization of the likelihood 

function may not be feasible directly. It is an 

iterative procedure which consists of expectation 

and maximization steps. Although, the EM 

algorithm is a batch oriented approach, it is 

desirable to process the received data in a 

recursive form in order to eliminate the delay, 

reduce storage requirements and increase the 

computational efficiency. We therefore consider 

tracking of near-field parameters via recursive 

form of the EM algorithm [10]. 

 

To be able to easily apply the EM algorithm, the 

signal model must be formed in terms of the 

observed data (incomplete data) and a 

hypothetical data set (complete data). The 

complete data must be chosen in such a way that 

the complete data log likelihood function is 

easily maximized and the complete data log 

likelihood function can be easily estimated from 

the incomplete data [14]. The complete data 

( )ty  and the incomplete data are related by a 

linear transformation. 

 

Moreover, even for the application of the REM 

algorithm, the augmented data would be chosen 

with the following relation between the 

augmented data ( )t
m

y  and the incomplete data 

( )tx   

 
1

( ) ( )
M

m

m

t t
=

=∑x y                        (8) 
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The augmented data is obtained via separating 

the array output ( )ty  into its components as 

given below, 

 

( ) [ ( ), , ( ), , ( )]Tt t t t= K K
T T T

1 m M
y y y y         (9) 

  

The incomplete data consists of M  independent 

Gaussian vectors having mean ( ) ( )m md s tΘΘΘΘ  and 

each with identical covariance
m Mν I , thus the 

augmented data is given by 

 

( ) ( ) ( ) ( )
m m m m

t d s t u t= +ΘΘΘΘy ,   1 m M≤ ≤       (10) 

                          

Motivation behind this choice is that if one could 

somehow observe each of the incident waves 

separately, the estimation of its near-field 

parameters would be straightforward by 

performing M  parallel maximization. The 

logarithmic likelihood function of the augmented 

data is given as below 

 

1

log ( ( ); ) log log;

M

m

f N N
M

ν
π

=

  
= − +  

 
∑θ ϑθ ϑθ ϑθ ϑy  

( ( ) ( ) ( )) ( ( ) ( ) ( ))H

m m m m m m

M
t d s t t d s t

ν


+ − × 


θ θθ θθ θθ θy y   (11) 

  

(.)H  denotes the Hermitian transpose of a vector. 

The EM algorithm is an iterative procedure that 

makes use of the log-likelihood function of the 

augmented data (11) to obtain ML estimates of 

the source parameters. 

Moreover, the proposed algorithm assumes that 

sources are moving with constant velocity by a 

non-linear movement. Thus, the near-field 

parameters related to the sources are both 

changes with time which are described by the 

linear polynomial model as, 

 

0 1
t= +θ θ θθ θ θθ θ θθ θ θ   (12) 

0 1
t= +r r r     (13) 

 

where 
0 01 0

[ , , ]T

M
θ θ= Kθθθθ , 

1 11 1
[ , , ]T

M
θ θ= Kθθθθ , 

0 01 0
[ , , ]T

M
r r= Kr , 

1 11 1
[ , , ]T

M
r r r= K .  The direction 

of arrivals and the ranges are shown together in 

0 1 0 1
[ , , , ]T

m m m m m
r rθ θ=ΘΘΘΘ  and here                        

1
[ , , , , ]T T T T

m M
= K KΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ Θ . 

Since the recursive expectation maximization 

algorithm is only the used for estimation of angle 

and range parameters, we therefore consider only 

unknown parameter vector Θ in the development 

of REM procedures rather than complete 

unknown set [ ( ) , ( ) , ( ), ]T Tt t t ν=ϑ θϑ θϑ θϑ θ r s . 

 

4. PARAMETER ESTIMATION 

WITH INCOMPLETE DATA 
 

The problem we address in this section is the 

recursive estimation of the time varying near 

field parameters. Two different REM approaches 

lead to corresponding solutions. 

 

4.1. REM Algorithm I 

 
The first approach we propose here uses the 

stochastic approximation approach which can be 

thought as a stochastic generalization of an 

optimization procedure namely the Newton 

descent method. In this approach, inverse of the 

true Hessian matrix (gain matrix) and gradient 

vector of the logarithmic likelihood function of 

the augmented data provides an adaptive step in 

a recursion to lead to an asymptotically optimal 

search direction. 

 

This first REM algorithm maximizes the 

augmented log likelihood function using a 

stochastic approximation recursion at iteration i , 

given by 

 
1 1( ) ( ( ), )i i i i

i EM
tε+ −= + γγγγϑ ϑ ϑ ϑϑ ϑ ϑ ϑϑ ϑ ϑ ϑϑ ϑ ϑ ϑxllll         (14) 

 

where iε  is denotes the step size and  

 

( ) [ log ( ; ) ( ), ]i T

EM i
E f t

ϑ ϑ
=

= −∇ ∇
ϑ ϑϑ ϑϑ ϑϑ ϑ

ϑ ϑ ϑϑ ϑ ϑϑ ϑ ϑϑ ϑ ϑy xllll   (15) 

( ( ), ) log ( ( ); ) t

tt f t= ∇∇∇∇ϑϑϑϑ ϑ ϑϑ ϑϑ ϑϑ ϑ
γ ϑ ϑγ ϑ ϑγ ϑ ϑγ ϑ ϑx x

====
      (16) 

 

represent the augmented information matrix 

(gain matrix) and gradient vector, respectively, 

both evaluated at point iϑϑϑϑ  for the algorithm, and 

the gain matrix is calculated from the complete 

data of the EM algorithm . Moreover, ∇
ϑϑϑϑ

is a 

column gradient operator with respect to ϑϑϑϑ .  

Since the augmented data associated with the 

EM algorithm is characterized by the 

hypothetical data (complete data) assumed to 

arrive to the sensors separately instead of 

observed data (incomplete data), the augmented 

data 
m

y  therefore have a more simple form than 

the observed data x . Therefore, the calculation 
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of the augmented data information matrix 

( )i

EM
ϑϑϑϑllll  can be performed in a more simple way 

[11]. 

The convergence rate is achieved by the step 

size. Therefore, the step size iε  is chosen as a 

small positive constant for the stable operation in 

this work assuming the sources are moving 

slowly. 

Furthermore, the gradient vector ( ( ); )it νγγγγ x  

corresponding to the m th source DOAs 
m

θθθθ is 

given as below; 

 

0

2
log ( ( ); ) Re[( ( )

i

i

m

f t t
θ ν

=

∂
=

∂
ϑ ϑϑ ϑϑ ϑϑ ϑ

ϑϑϑϑx x  

0 0
( ( )) ) ( ( ( )) )]i i H i i

m m
t d t s′− Θ ΘΘ ΘΘ ΘΘ ΘH s (17) 

 

1

2
log ( ( ); ) Re[( ( )

i

i

m

f t t
θ ν

=

∂
=

∂
ϑ ϑϑ ϑϑ ϑϑ ϑ

ϑϑϑϑx x  

1 1
( ( )) ) ( ( ( )) )]i i H i i

m m
t d t s′− Θ ΘΘ ΘΘ ΘΘ ΘH s (18) 

  

Here the indices 0m  and 1m  refer to 
0

θθθθ  and 
1

θθθθ  

in equations (17)-(18). Similarly, the components 

of the gradient vector ( ( ); )it νγγγγ x  corresponding 

to the m th source range parameter 
m

r th are 

 

0

2
log ( ( ); ) Re[( ( )

i

i

m

f t t
r ν

=

∂
=

∂
ϑ ϑϑ ϑϑ ϑϑ ϑ

ϑϑϑϑx x  

0 0
( ( )) ) ( ( ( )) )]i i H i i

m m
t d t s′− Θ ΘΘ ΘΘ ΘΘ ΘH s (19) 

 

1

2
log ( ( ); ) Re[( ( )

i

i

m

f t t
θ ν

=

∂
=

∂
ϑ ϑϑ ϑϑ ϑϑ ϑ

ϑϑϑϑx x  

1 1
( ( )) ) ( ( ( )) )]i i H i i

m m
t d t s′− Θ ΘΘ ΘΘ ΘΘ ΘH s (20) 

  

Here the indices 0m  and 1m  refer to
o

r and 
1

r  in 

equations (19)-(20). Furthermore, the derivatives 

of the steering matrix with respect to DOA 

parameter and the range parameter are given as 

follows, respectively 

2
2 2

0 1

2
2 2

2
( sin cos )

22
( sin cos )

2

( ( ))

( ( ))

2
( cos

2 cos sin )

m m
m

i i
m m m

m

m m
m

i

m

j k k
r

i

m m t

m

m

j k k
r

m m

m

t

e
t

j k

k e
r

θ

π π
θ θ

λ λ

θ θ θ

θ

π π
θ θ

λ λ

θ
θ

π
θ

λ

π
θ θ

λ

∆ ∆
− +

= +

∆ ∆
− +

′

∂
= ∂ ∂ =

∂

∆
= −

∆
− ⋅

ΘΘΘΘ

ΘΘΘΘ

d

d

 

(21) 
 

2
2 2

0 1

2
2 2

2
( sin cos )

22
( sin cos )

2

( ( ))

( ( ))

2
( cos

2 cos sin )

m m
m

i i
m m m

m

m m
m

i

m r

j k k
r

i

m m r r tr

m

r

m

j k k
r

m m

m

t

e
t r

r

j k

k e
r

π π
θ θ

λ λ

π π
θ θ

λ λ

π
θ

λ

π
θ θ

λ

∆ ∆
− +

= +

∆ ∆
− +

′

∂
= ∂ ∂ =

∂

∆
= −

∆
− ⋅

ΘΘΘΘ

ΘΘΘΘ

d

d

 (22) 

 

To prevent the singularity and simplify the 

iterations instead of the whole block diagonal 

matrix, ( )i

EM
% ϑϑϑϑllll  with only diagonal components 

of ( )i

EM
ϑϑϑϑllll  used in equation (14). The 

components of diagonal matrix ( )i

EM
% ϑϑϑϑllll   

corresponding to m th source are derived with 

respect to the DOA and range parameters and 

related equation is given in (23):  

 

0 1 0 1, , ,
( )

2
Re ( ( ( )) ) ( ( ) ( ( )) )

i

EM

i i H i i H

m mi

diag

d t s t t
ν

 
 

′′= − −

%

Θ ΘΘ ΘΘ ΘΘ Θ

θ θθ θθ θθ θ
ϑϑϑϑ

r r

x H s

llll

          

2

  ( ( ) )
i i

m m
M d t s ′+


ΘΘΘΘ     (23) 

             

where the second derivatives of the DOA 

parameters and the range parameters are given as 

follows, respectively 

 
2

2 22
( sin cos )

2

2 2

2
( ( )) ( ( ))

m m
m

m

m

j k k
r

i i

m m m

m

e
t t

θ

π π
θ θ

λ λ

θ
θ

θ

∆ ∆
− +

∂
′′ = ∂ ∂ =

∂
Θ ΘΘ ΘΘ ΘΘ Θd d

2
( sin

m
j k

π
θ

λ

∆
= −  

2
2 222

( sin cos )
2 2 22 (cos sin ))

m m
m

j k k
r

m m

m

k e
r

π π
θ θ

λ λπ
θ θ

λ

∆ ∆
− +∆

−  (24) 
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2
2 22

( sin cos )
2

2 2

2
( ( )) ( ( ))

m m
m

m

m

j k k
r

i i

m m m r
m

r

e
t t r

r

π π
θ θ

λ λ

∆ ∆
− +

∂
′′ = ∂ ∂ =

∂
Θ ΘΘ ΘΘ ΘΘ Θd d  

2

2 2

3
( (2 cos )

m

m

j k
r

π
θ

λ

∆
= −  

2
2 222

( sin cos )
2 2 2

2
( cos ) )

m m
m

j k k
r

m

m

k e
r

π π
θ θ

λ λπ
θ

λ

∆ ∆
− +∆

                  (25) 

 

When the 1i+ΘΘΘΘ  parameter is estimated, the signal 

and noise parameters are calculated by means of 

ML estimation with respect to 1i+ΘΘΘΘ  and ( )tx  

given as follows; 

 
1 1 #( ) ( )i i t+ += θθθθs H x                            (26) 

1 11
( ) ( )

i i

xtr t
N

ν + + ⊥ =  

)
θθθθP C                      (27) 

 

where 1 #( )i+θθθθH  is the pseudo inverse of 1( )i+θθθθH , 

and 1 1( ) ( )i i+ ⊥ += −θ θθ θθ θθ θP I P  denotes the orthogonal 

complement of the following projection matrix: 
1 1 1 #( ) ( ) ( )i i i+ + +=θ θ θθ θ θθ θ θθ θ θP H H  and ( ) ( ) ( )H

x
t t t=

)
C x x . 

The update equation then has the following form, 

 
1 1( ) ( ( ), )i i i i

t EM
tε+ −= + γΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ ΘΘ Θ Θ Θxllll          (28) 

 

The steps of the proposed algorithm are 

summarized as follows;  

Step1: Choose the initial values of DOA, 0θθθθ  and 

range 
0

r  parameters. 

Step2: Calculate the gradient vector for DOAs 

and range parameters by the equations (12) and 

(13). 

Step3: Calculate the ( )i

EM
% ϑϑϑϑllll  augmented data 

information matrix for DOAs and range 

parameters by the equation (23). 

Step4: Update the parameters to be estimated by 

using the equation (28). 

Step5: Update the signal and noise parameters 
is , iν  by the equations (26)-(27) using  ( )i tΘΘΘΘ . 

 

The REM algorithm I is more convenient for 

slowly moving sources; however it suffers from 

the value of the step size. The step size must be 

chosen properly in order to get more accurate 

parameter estimates. Moreover, the signal and 

noise variance are also estimated together with 

azimuth and range parameters due to structure of 

the first algorithm. 

 

4.2. REM Algorithm II 

 
The second REM approach is related with the 

sufficient statistics of the complete data. The 

main idea in this recursive parameter estimation 

approach is to use the complete data set 

generated empirically. For the second REM 

algorithm, M  independent sources 1, ,m M= K   

with powers 
1

[ , , ]
M

α α= Kαααα , time varying 

directions 
1

[ (1), , ( )]T

M
tθ θ= Kθ  and distances 

from 
1

( ) [ ( ), , ( )]T

M
t r t r t= Kr  arrive at an array of  

N  sensors. The movement of the sources is 

described by the linear polynomial model and 

given by equations (12) and (13) as before. The 

parameter vector is given by 

[ ( ), ( ), ( ), ( )]t t t ν t=ϑϑϑϑ θ r α . We assume the 

likelihood function of the observations is 

complex multivariate Gaussian distribution and 

given as follows ( ) (0, ( ))N= ΓΓΓΓϑ ϑϑ ϑϑ ϑϑ ϑg x;  and 

covariance matrix is given as 

 

( ) ( ( )) ( ) ( ( ))t t ν= +αΓ Θ ΘΓ Θ ΘΓ Θ ΘΓ Θ Θϑϑϑϑ H

N
H P H I     (29) 

 

where ( ( ))tΘΘΘΘH  is the steering matrix consisting 

of M  steering vectors and given by (2) as 

before. Steering matrix is a function of unknown 

parameter vector and steering vector written for 

m th source and an array of N  sensors, 

1, ,k N= K  is given by (5). Similarly, the 

steering vector parameters are denoted by (6). 

The power matrix of the source 

( ) [ , , ]
1 M

diag α α= KααααP  and 
N

I  is the N  

dimensional identity matrix. By means of the 

complete data concept the array response can be 

written as the summation of M  independent 

complex Gaussian source signal with covariance, 

 

( ) ( ( )) ( ( ))
m m m m m N

t tα ν= +Γ Θ ΘΘ ΘΘ ΘΘ Θϑϑϑϑ Hd d I      (30) 

 

where 
1

( )
M

mm
tν ν

=
=∑  assuming ( ) /

m
t Mν ν= . The 

complete data is defined by the (8), (9) and (10). 

The joint pdf (probability density function) of the 

likelihood function is given as follows 

 

log( ( ; )) log ( )f N π= − −ϑ ϑϑ ϑϑ ϑϑ ϑy ψ  

,

1

[ ( ) ( )]
M

t m m
m

trace φ
=

+∑ ϑϑϑϑS y          (31) 

  

where 
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1

1 1

( ) log( / ) log(1 )
M M

m
m m

N M CMφ ν ν α−

= =

= + +∑ ∑ϑϑϑϑ (32) 

 

( )S = H
y yy                                                      (33) 

 
2 2

1

1
( ) ( ( )) ( ( ))

1

m
m m m

m

M
M t t

CM

ν α
φ ν

ν α

−

−

−
= − +

+
Θ ΘΘ ΘΘ ΘΘ Θϑϑϑϑ N

I d d

(34) 

and 

( ( )) ( ( ))
HC t t= Θ ΘΘ ΘΘ ΘΘ Θd d                    (35) 

 

,1 ,
( ), , ( )t t MS y S yK  are the empirical covariance 

matrices. The E-step of the algorithm can be 

obtained by using the following definition of 

, ,
( ; ) [ ; ]

H

m t t m t m ts X E Y Y X=ϑ ϑϑ ϑϑ ϑϑ ϑ .  

Thus the conditional expectation is calculated as, 

 

, ,
( ; ) [ ; ]

H

m t t m t m ts X E Y Y X=ϑ ϑϑ ϑϑ ϑϑ ϑ               (36) 

 

The following equation is written by using 

equation (36) as following, 

 

( ; ) ( ) ( ) ( ) ( )H

m m m m
s = − -1

Γ Γ Γ Γϑ ϑ ϑ ϑ ϑϑ ϑ ϑ ϑ ϑϑ ϑ ϑ ϑ ϑϑ ϑ ϑ ϑ ϑX  

( ) ( )( ) ( ) ( )H

m m
+ -1 -1
Γ Γ Γ Γϑ ϑ ϑ ϑϑ ϑ ϑ ϑϑ ϑ ϑ ϑϑ ϑ ϑ ϑHYY    (37) 

 

( )ΓΓΓΓ ϑϑϑϑ  and ( )
m

ΓΓΓΓ ϑϑϑϑ  are given as in (29) and (30). 

In the M-step of the algorithm 

 

1 1 1
( ( ; ) ),

t t t m t t t− − −
= + γ −

)) ) )
ϑϑϑϑs s s Y s   ( )

t t
=

) )
ϑ θϑ θϑ θϑ θ s     (38) 

  

is maximized. Here,  
t

γ   illustrates the step size 

[12]. In order to maximizing conditional 

likelihood function of the complete data, the 

following functions are maximized with respect 

to the parameters to be estimated, ( )
m

tθ  and 

( )
m

r t  

 

( ( )) ( ( )),
m m m m

m max t s t= Θ ΘΘ ΘΘ ΘΘ ΘHd d              (39) 

( ) ( ( )) ( ( )),m m m m ms arg max t s tθ = Θ ΘΘ ΘΘ ΘΘ Θ
θθθθ

H
d d        (40) 

( ) ( ( )) ( ( ))m m m m mr s arg max t s t= Θ ΘΘ ΘΘ ΘΘ ΘH

r

d d        (41) 

 

The maximization algorithm is based on Golden 

Section search and parabolic interpolation 

[13].Then the noise variance and the powers are 

computed 

1

1

1
( , , ) ( ( ) / )

( 1)

M

M m m
m

s s trace s m C
N

ν
=

= −
−
∑K (42) 

and 

1

1 2

( , , ) /
( , , ) m M

M

m C s s M
s s

C

ν
α

−
=

K
K       (43) 

 

Finally, by virtue of the sufficient statistics 

1 1 1
( ( ; ) ),

t t t m t t t− − −
= + γ −

)) ) )
ϑϑϑϑs s s Y s ( )

t t
=

) )
ϑ θϑ θϑ θϑ θ s  

is evaluated by using (37) and, 
t

)
ϑϑϑϑ  is computed 

by (39)-(43) [12]. 

 

The steps of the second proposed algorithm can 

be summarized as follows; 

Step1: Choose the initial values of DOA, 0θθθθ  and 

range 0r  parameters. 

Step2: Calculate the covariance matrices by the 

equations (29) and (30). 

Step3: Calculate the conditional expectation by 

the equation (37). 

Step4: Maximize the equations (39)-(41). 

Step5: Calculate the noise variance and power 

values by using the equation (42) and (43). 

Step6: Put the calculated parameter values at the 

necessary equations and update the ϑϑϑϑ . 

 

This REM approach requires the sufficient 

statistics of the complete data and is a stochastic 

parameter estimation procedure. The power and 

noise variance estimations are evaluated at each 

iteration step to obtain the covariance matrices of 

the sources. Thus, the covariance matrix provides 

useful information about the source signals. 

Moreover, in the M-step of the algorithm the 

optimization equations (39)-(41) is maximized 

and the parameters to be estimated are 

calculated. 

 

5. SIMULATONS AND RESULTS 
 

The near-field scenario taken into consideration 

consists of 5 sensors (identical antennas), and 2 

sources which are emitting different signals in 

the simulation. The moving sources emit signals 

at different locations, i.e., have different 

directions of arrival and range parameter values. 

In this scenario, the targets (sources) are 

followed by 1000 time steps and the experiments 

are repeated 100 times. Both algorithms are 

maintained for the same initial parameter values 

and the source signals are generated for each 

step, randomly. The azimuth angle is defined in 
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degree and, the range is defined in λ∆  unit. 

The rates of angle increment values are 

1
[0.003 , 0.01 ]

m
 = ° − °θθθθ  and the rates of distance 

increments are 
1

[0.005, 0.007]
m

 = −r  given for 

each time step for the both moving objects. 

Initially, the sources are located at, 
0

[2, ]
m

 4=r  

and the azimuths (angle parameters) are given as 

0
[ 10 , 45 ]

m
 = − ° °θθθθ . The range vector denotes the 

distances from the origin point of the array (the 

center of the antenna array) to the both sources.  

 
The special issues about both approaches can be 
summarized as follows, 
 
REM Algoritms I: The augmented data matrix 

and the gradient vector are calculated at each 

step of the algorithms. For the step size an 

appropriate value is chosen to provide a stable 

operation. 

REM Algoritms II: The covariance matrix is 

calculated to provide some useful information 

about the source signal. The azimuth, range, 

noise variance and source power values are 

computed for each iteration step and parameter 

vector is updated. Here, the statistical properties 

related with the source signals are utilized for 

estimating the angle and range parameter. 

The proposed algorithms are tested for a range of 

SNR values which changes from 0 to 50 dB. The 

results obtained from the simulations are 

presented in related figures. In all cases, the 

following MSEs are used for the 

θθθθ  and r ,  

 

2

1

1 ˆ( ) ,
m n

N

m m
n

MSE
N =

= −∑θθθθ
θ θθ θθ θθ θ 1,2, ,m M= K      (44) 

    

2

1

1
ˆ( ) ,

m n

N

m m
n

MSE
N =

= −∑r
r r 1,2, ,m M= K       (45) 

   

The algorithm II yields the better performance 

when examining the MSE characteristics for the 

azimuth angle and range parameters, on the other 

hand the first one needs a little bit less 

computation time comparing the both algorithm 

at the same time and the same parameter values. 

In addition, the fact can be inferred from the 

some fulfilled computer simulations that the 

increase of the number of sensors do not provide 

any performance gain, even may cause some 

performance degradation. Besides, MSE values 

can not be reduced rather by increasing the SNR 

value after about 20 dB. Considering the first 

approach, true movement trajectories and the 

estimated trajectories of two non-linear moving 

sources are shown in figure 1. The tracking of 

both DOA and range parameter values of the 

sources are illustrated in this figure. The objects 

have the both azimuth angle values and defined 

distance increments so their movements are non-

linear, as can be seen in the following figure 1 

and figure 4 for the both approach. 
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Figure 1. For the REM algorithm I, the true 

movement trajectory and the estimated trajectory of 

the non-linear moving sources. The unit of the x axis 

and y axis are degree and λ∆ , respectively 

 

 

The tracking trajectory is calculated by virtue of 

the real azimuth angles and range parameter 

values of the both sources and the estimated 

values for the time instants. The mean square 

error (MSE) of the estimated direction of the 

arrival values and range parameter values of the 

non-linear moving sources for SNR value 

changing from 0 to 40 dB in the near field are 

given in figure 2 and figure 3, respectively. True 

movement trajectories and the estimated 

trajectories of the sources are shown in the figure 

4 for the second approach. And also MSE of the 

estimated direction of arrival values and range 

parameter values SNR value are given in the 

figure 5 and figure 6, successively. 

 

 
 



777 
 

 
Serap ÇEKLĐ, Erdinç ÇEKLĐ, Nihat KABAOĞLU 

 

0 5 10 15 20 25 30 35 40 45 50
10

-3

10
-2

10
-1

10
0

SNR (Signal to Noise Ratio) dB

M
S

E
 f

o
r 

A
z
im

u
th

 (
M

e
a
n

 S
q

u
a
re

 E
rr

o
r)

MSE for Azimuth versus SNR for First REM Approach

Error for source 1

Error for source 2

 

Figure 2. For the REM algorithm I the MSE for the 

DOA parameters of the non-linear moving sources 

(the logarithmic axis) 
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Figure 3. For the REM algorithm I the MSE for the 

range parameters of the non-linear moving sources 

(the logarithmic axis) 

 

6. CONCLUSION 
 
In this study, two REM algorithms are proposed 
to estimate the directions of arrival and the range 
parameters of the near-field sources at the same 
time. Simulation results showed that the second 
proposed method presents excellent results in 
slowly time varying parameters. On the other 
hand, simulation results illustrated that if the 
amount of change in the localization parameters 
to be estimated (DOA and range) are increased 
or two source directions across with each other, 
the both algorithms have performance 
degradation.  
Moreover, we expose from the computer 

simulations that the calculation load changes 

with the step size, and the step size is chosen as a 

constant for the first approach. The estimated 

trajectories follow the true movement trajectories 

closely. It can be inferred that the MSEs for the 

DOAs and also the range parameters of the 

sources do not decrease too much by the 

increasing SNR values. Besides, the MSE values 

of the range parameters of both sources is very 

close to each other with changing SNR values for 

the first algorithm. The number of iteration steps 

affects a little bit the computation time for both 

algorithms. 

 

 

1 2 3 4 5 6 7 8 9 10
-1

0

1

2

3

4

5

6

7

Azimuth Trajectory

R
a
n

g
e
 T

ra
je

c
to

ry

The Movement Trajectory for Second REM Approach

Movement of source 1

Movement of source 2

Estimated trajectory 1

Estimated trajectory 2

 

Figure 4. For the REM algorithm II the true 

movement trajectory and the estimated trajectory of 

the non-linear moving sources. The unit of the x -axis 

and y -axis are degree and λ∆ , respectively 
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Figure 5. For the REM algorithm II the MSE for the 

DOA parameters of the non-linear moving sources 

(the logarithmic axis). 
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For time varying parameters, the tracking ability 

of a stochastic approximation procedure depends 

mainly on the dynamics of the true parameters, 

the gain matrix, and the step size [14]. Therefore, 

choosing suitable initial values plays an 

important role for the performances of the both 

algorithms. 
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Figure 6. For the 2nd REM algorithm the MSE for the 

range parameters of the non-linear moving sources 

(the logarithmic axis). 
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