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Abstract: In this paper, a novel method for reducing the high-order systems to first-order plus time-delay forms 

is introduced. For this purpose Support Vector Machines, which became a popular learning algorithm, is 

employed. Three parameters of the first-order plus time-delay forms are estimated by three parallel support 

vector regression machines. Satisfactory performance is obtained at the simulations. 
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1. Introduction 
 

Model order reduction for high order systems is 

always an attractive research area. There are many 

studies in the literature that meet several needs and 

requests for this purpose. A system can be reduced 

to its lower order equivalent or can be modeled in a 

special form. First-order plus delay-time (FOPDT) 

system model is one of these special forms and is 

popular in many applications [1]. There are many 

PID controller tuning techniques in literature 

[2,3,4]. The model order reduction method 

proposed by S.Skogestad presents an analytical 

approach for this problem [5]. In Skogestad‟s 

method, it is required to know the model and model 

order of the system being reduced and furthermore, 

the system has to be in s-domain. This method 

determining the effective time delay via „half-rule‟ 

also contains controller design procedures followed 

by the rules for model order reduction. 

At this work, an SVR algorithm is proposed to 

solve the simplification problem of high order 

systems to a first order time delay system. The 

model of the system is not required in the proposed 

SVR method. Instead, only some data applied to the 

input and their corresponding outputs is needed.  

The paper is organized as follows: The first 

order plus time delay model and its parameters are 

presented in section 2. Support vector regression 

mechanisms are described in section 3. The 

proposed method is given in section 4. Finaly, in 

section 5, simulations related to this method are 

carried out for four different high-order systems. 

Discussions and conclusions are presented in section 6. 

  

2. First Order Plus Time Delay Models 
 

A large number of industrial plants can be modeled 

approximately with a first order plus time delay 

(FOPTD) transfer function as follows [4]: 

 

Tdse
s

K 

1
                                                                 (1) 

 

where K is the plant gain,   is the time constant and Td 

is the time delay (dead time). Our method is based on 

computing these three parameters via support vector 

regression machines. Before the introduction of detailed 

structure of the method, a brief explanation for SVR 

machine is given. 

 

3. Support Vector Machines 
 

Support vector machine (SVM) has become a very 

popular intelligent learning algorithm and a good 

alternative for neural networks. This method is 

developed by Vapnik [6], still gaining popularity due to 

many of its attractive features [7,8,9,10]. The short 

summaries of support vector regression machines are 

given below. 

 

3.1. Support Vector Regression (SVR) 
 

The SVM can be used for the regression problems 

successfully [11,12,13]. Let us assume that the training 
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data group to be used for learning f(x) function 

having input-output relation is given as in the 

following set: 

 

 1 1 2 2( , ),( , )......( , ) , ,n

l lD x y x y x y x R y R        

(2) 

where x is the input and y is the output of the 

regression problem. Support vector machines find 

the function to be estimated as f(x). Input-output 

relation can be modelled with a linear regression 

model in feature space as the following: 

 

bxwwxf T ),(                                                (3) 

 

In the regression, differing from classification, 

approach error is used instead of margin between 

optimal distinctive hyper plane and support vectors. 

In practice, various loss functions exist. The loss 

function to be used here is ε-tolerance loss function 

defined as follows: 

 

0 ( , )

( , )

if y f x w
Y

y f x w other






  
 

 

                               (4) 

 

The philosophy of regression by SVM is that a 

tube or a band, which has radius ε, is defined 

around estimating function f(x,w). If the value f  is 

inside the tube, this means there is no loss. In other 

words, the loss is zero if the difference between 

estimated f value and measured y value is less than 

ε. The loss for all other estimating points excluded 

the tube equals to the absolute value of the 

difference between that estimating point and the 

radius of ε. Vapnik‟s loss function for ε=0 is equal 

to absolute loss function. 

The goal is to minimize the experimental and 

observational risk expressing total error in the 

formulation of SVM algorithm and 2
w  

simultaneously. Consequently, a linear 

bxw)w,x(f T   regression hyper-plane is found 

(with   and *  slack variables) by the following 

expression: 
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(5) 

 

where C is the tradeoff parameter and ε value is 

another tradeoff parameter between the sparseness 

of the representation and closeness to the data. These 

parameters are chosen by the user by trial-and-error. 

The constrained optimization problem stated above is 

solved by establishing the primary Lagrangian. 
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where 
i iα , β  are the Lagrangian multipliers. This is a 

saddle point problem which is difficult to solve. The 

Lagrangian function L has to be minimized with respect 

to b,w ,   and * . Thus, differentiating L with respect 

to b,w ,   and * , and setting the results equal to zero, 

the equivalent optimization problem becomes, 
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subject to    
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This secondary Lagrangian, W, is denoted by 

Lagrangian multipliers α ve α
* 

and maximized applying 

Karush-Kuhn-Tucker (KKT) optimality condition. After 

Lagrangian multipliers α and α
* 

 are obtained by a 

quadratic problem (QP) solver, optimal hyper-plane 

weight vector w  can be determined as, 

 

*

0

1

( - )
n

i i i

i

w x 


                                             (8) 

 

w vector is a linear combination of the input data. 

Among the training data, x vectors are called support 

vectors, whose (αi - αi
*
) coefficient is different from 

zero. Bias term of the regression hyper-plane is 

 

0 0

1

1
( - )

n
T

i i

i

b y x w
n 

                                            (9) 

 

The optimum regression hyper-plane can then be 

written as follows: 

 

 
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where α and α
*
 are Lagrange multipliers. Kernel 

functions have been introduced to decrease all of 

these inner product difficulties in the feature space 

[8]. Using the Kernel function the optimum 

regression hyper plane becomes, 

 





SVs

i

iii bxxKf
1

*
)()(w)(x,                             

(11) 

 

Kernel functions need to satisfy the Mercer 

condition [6] and two of most commonly used 

Kernel functions are; 

 

Polynomial kernel function: 
pK )1,(),( ''  xxxx  

Radial basis function: 






  2

2
'' 2exp),( xxxxK  

 

4. SVR-Based Approximation Method to 

FOPTD System 
 

In this study, representation of high-order systems 

in the form of Tdse
s

K 

1
of first-order plus time-

delay (FOPTD) system is realized using SVR 

learning algorithms (Fig. 1). SVR is applied as 

follows: 

 Values for TdK  and  , are chosen from 

various intervals. Time delay system 

models for the combinations of chosen 

parameter values are formed.  

 First, it is necessary to form training data 

pairs. The responses of the systems 

formed in the preceding step are 

employed as inputs of SVR. 

 The number of combination is (step 

number of K) x (step number of  ) x 

(step number of Td). Combinations are 

formed by three loops which lie one inside 

the other. In order to simultaneously 

estimate those three parameters 

simultaneously,
 TdK  and  ,  three SVRs 

are trained as parallel. 

 In training phase, TdK  and  ,  values 

corresponding to the each input data are 

employed as outputs of SVR 

 After completing the training phase, step 

responses of the reduced systems are 

applied to the inputs of the SVRs and then 

TdK  and  ,  values are obtained at the 

outputs of each SVRs. Training and test 

phases are considered consequently. 

 RBF and extended RBF kernel functions are 

used in both training and test phases. C and   

are chosen as 200 and 0.01 respectively. 

Modeling errors of both methods are evaluated 

for 500 sample points. 

 

 
 

Figure 1. High order system reduction via 3 parallel SVR. 

 

5. Simulation Examples 
 

For four different systems, some of which are time-

delay systems and all of which can be reduced to their 

first order representations, the SVR_foptd models, their 

Skogestad_foptd models and comparisons of their unit 

step responses are given below. 

 

System 1: 
)12.0)(1(

1
)(1




ss
sG  

SVR_foptd model and Skogestad_foptd model of the 

second-order system above are follows: 

 

s

SVR e
s

G 1396.0

)(1
10084.1

9953.0 


    ,   SVR_error = 0.0081 

 

s

Sko e
s

G 1.0

)(1
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
    ,    Sko_error = 0.0087 

 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

time [s]

y
1

 

 

Real system response

Skogestad foptd model

SVR foptd model

 
Figure 2: Step responses of the first system, Skogestad_foptd 

model and SVR_foptd model 

 

System 2: 
22

)11.0)(1)(120(

)115(2
)(






sss

s
sG  

SVR_foptd model and Skogestad_foptd model of the 

system above are follows: 
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s

SVR e
s
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)(2
14624.1

9455.1 


 ,  SVR_error = 0.1072 

 

s

Sko e
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     ,    Sko_error = 0.3061 
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Figure 3: Step responses of the second system, 

Skogestad_foptd model and SVR_foptd model 
 

System 3: 
43

)1(

1
)(




s
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SVR_foptd model and Skogestad_foptd model of 

the fourth-order system above are follows: 

 

s
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Figure 4: Step responses of the third system, 

Skogestad_foptd model and SVR_foptd model. 

System 4: se
ss

s
sG 






)15.0)(110(

12
)(4

 

SVR_foptd model and Skogestad_foptd model of 

the dead time system above are follows: 

 

s

SVR e
s

G 9775.0

)(4
15185.8

0007.1 


 ,  SVR_error = 0.0185 
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Figure 5: Step responses of the fourth system, 

Skogestad_foptd model and SVR_foptd model 

 

 

 

5. Conclusions 
 

An SVR algorithm is proposed to represent high order 

systems with their first order time delay models. The 

results obtained are compared with the method proposed 

by Skogestad as well as with the outputs of the real 

systems. The method proposed by Skogestad performs 

the model-order- reduction process by using a sequence 

of predefined rules. This method continues with some 

analytical rules following the reduction rules to design a 

controller. If obtaining FOPTD form of a high order 

system is the only thing demanded, Skogestad‟s method 

won‟t be suitable. Such as in the case of systems having 

zeros, serious differences and huge errors may appear 

while obtaining the system gain K. An SVR machine 

trained in a proper interval can overcome these 

problems. Moreover, the proposed SVR-based model-

order reduction method has a great advantage that there 

is no need to know the model of the system being 

reduced since it only uses input data of and their 

corresponding outputs. The proposed SVR-based 

method outperforms the method of Skogestad in the 

sense of reduction to FOPTD form. 

SVR comprises solution of quadratic programming and 

it works in a principle of minimization the squared 

error. Hence, SVR may not be able to calculate several 

important parameters for control systems, such as 

dominant poles, rise times as accurate as some control 

algorithms. Nevertheless, it is possible to obtain high 

performance in model-order-reduction using the results 

obtained from trials if proper search intervals for K,  , 

and Td  and proper kernel function are chosen. If the 

number of parameter-intervals and the samples of 

system response are increased, then algorithm slackens 

due to its loop-based structure. 
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Table 1. FOPTD models and modeling errors.  

System SVR_foptd model  Skogestad_foptd model SVR_error Sko_error 

G1(s) 
s

SVR e
s

G 1396.0

)(1
10084.1

9953.0 




 

s

Sko e
s

G 1.0

)(1
11.1

1 




 
0.0081 0.0087 

G2(s) 
s

SVR e
s

G 1978.0

)(2
14624.1

9455.1 




 

s

Sko e
s

G 15.0

)(2
105.1

5.1 




 
0.1072 0.3061 

G3(s) 
s

SVR e
s

G 5084.2

)(3
14649.1

9991.0 




 

s

Sko e
s

G 5.2

)(3
15.1

1 




 
0.0102 0.0102 

G4(s) 
0.9775

4( )

1.0007

8.5185 1

s

SVRG e
s


  

s

Sko e
s

G 25.1

)(4
15.4

625.0 




 
0.0185 0.2580 
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