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Abstract: Recently, many new discrete distributions have been obtained. The 
uniform-geometric distribution is a newly obtained discrete distribution. In 
literature, parameter estimation is rare in the case of censored samples for new 
discrete distributions. In this study, the parameter estimation based on type-I 
censored sampling for the unknown parameter of the uniform geometric 
distribution is obtained using the maximum likelihood, methods of proportions, 
methods of moments, and modified maximum likelihood estimation methods. The 
performance of estimation methods is compared using the Monte Carlo simulation 
via biases and mean squared errors. Finally, two real data applications are given. 

  
  

Düzgün Geometrik Dağılımının Sansürlü Örneklem Durumunda Parametre Tahmini  
 
 

Anahtar Kelimeler 
Düzgün Geometrik dağılım, 
En çok olabilirlik, 
Modifiye edilmiş en çok 
olabilirlik,  
Momentler yöntemi,  
Oranlar yöntemi. 

Özet: Son zamanlarda birçok yeni kesikli dağılım elde edilmiştir. Düzgün geometrik 
dağılım, yeni elde edilen kesikli bir dağılımdır. Yeni kesikli dağılımlar için sansürlü 
örneklem durumunda parametre tahmininin eksikliği oldukça fazladır. Bu 
çalışmada düzgün geometrik dağılımın bilinmeyen parametresi için tip-I sağdan 
sansürlü örnekleme dayalı parametre tahmini elde edilmiştir. Parametre tahmini en 
çok olabilirlik yöntemi, oranlar yöntemi, momentler yöntemi ve modifiye edilmiş en 
çok olabilirlik yöntemleri kullanarak elde edilmiştir. Yöntemlerin parametre 
tahminindeki performanslarını kıyaslamak için parametre tahminlerinden elde 
edilen yan ve hata kareler ortalaması Monte Carlo simülasyonu ile elde edilmiştir. 
Son olarak çalışmada gerçek iki veri uygulaması verilmiştir. 

  
 
1. Introduction  
 
In life testing experiments, the failure-time 
distribution is used to describe mathematically, the 
life of a machine, or an electronic device. The 
exponential, gamma, Weibull, and lognormal 
distributions are well-known in failure analysis. These 
models have been proposed by [1, 2]. However, it is 
challenging and unfeasible to evaluate the life-time of 
a unit in continuous-time. In practice, one can find 
situations in which a device's lifecycle is discrete 
random variables such as the number of shots of the 
copier until the toner runs out, electrical shocks that 
cause an electronic device to malfunction, the number 
of revolutions of a machine gear until it breaks down. 
 
In recent years, popular discrete distributions (such as 
geometric, negative binomial, etc.) have been worked 
to model lifetime data. Still, popular discrete 
distributions have limited practicality as models for 
reliability. Therefore, there is a need to obtain more 
sensible discrete lifetime distributions to comply with 
diverse types of lifetime data. So, many discrete 

lifetime distributions have been obtained with the 
discretized of the known continuous distributions in 
recent studies.  
 
These studies are given as follows, Nakagawa and 
Osaki (1975) studied discrete Weibull (DW) 
distribution [3]. Stein and Dattero (1984) discretized 
other types of Weibull (DW2) distribution [4]. Discrete 
normal (DN) and Rayleigh (DR) distributions are 
considered by Dilip Roy [5, 6]. Krishna and Pundir 
(2009) discretized Burr (DB) and Pareto (DP) 
distributions [7]. Another continuous distribution, the 
inverse Weibull distribution, is discretized by Jazi et al. 
[8] as discrete inverse Weibull (DIW) distribution. 
 
In recent studies, new discrete distributions have been 
obtained by compounding two discrete distributions. 
These studies are given by Hu et al. [9] and Déniz [10]. 
Also, Akdoğan et al. [11] proposed uniform-Geometric 
(UG) distribution by using this methodology. Finally, 
using the same method, Binomial-Discrete Lindley 
(BDL) distribution is suggested by Kuş et. al. [12]. 
Additionally, these authors have tried to determine 
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the distributional characteristics of discrete 
distributions in recent years. Although there are so 
many new discrete distributions, the parameter 
estimation in the case of censored sampling has not 
been studied except for the discrete Weibull 
distribution. 
 
Type-I censored sample is widespreadly used in real 
life and is widely used in reliability analysis [13]. 
Sometimes the experiment may be limited in terms of 
time and cost when a lifetime is discrete. For example, 
if a three-year warranty is required for the life of a 
part, the test may not continue after three years, which 
is known as type-I right censored data. Kulasekera 
[13] studied the parameter estimation in the case of a 
censored sample for DW distribution. 
 

In this study, the UG distribution introduced by 
Akdoğan et al. [11] is given in Section 2. In Section 3, 
method of moments (MM), maximum likelihood (ML), 
method of Proportion (MP), and modified maximum 
likelihood (MML) estimates of UG distribution 
parameter under the type I censored sample are 
obtained. The performance of the estimators in 
Section 4, according to the bias and mean square 
errors (MSE) criteria, are examined. In Section 5, two 
numerical examples are given to show the 
applicability. 

 
2.  Uniform-Geometric Distribution 
 
Akdoğan et al. [11] defined the probability mass 
function (pmf) and cumulative distribution function 
(cdf) of the UG distribution as 
 

𝑓(𝑡) = 𝑝(1 − 𝑝)𝑡−1𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖[(1 − 𝑝), 1, 𝑡], 𝑡 = 1,2, … (1) 
 
  and 
 

𝐹(𝑡) = 1 − 𝑝(1 − 𝑝)𝑡 [
1

𝑝
− 𝑡 𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖(1 − 𝑝, 1, 𝑡 + 1)] (2) 

 

 
Figure 1. Plots for pmf of 𝑈𝐺𝐷(𝑝) distribution. 

respectively, where 0 < 𝑝 < 1 . It will be denoted as 
𝑈𝐺𝐷(𝑝) and 𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖(𝑧, 𝑎, 𝑣) a Lerch zeta function is 
given by (see [14]) 
 

𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖(𝑧, 𝑎, 𝑣) = ∑
𝑧𝑛

(𝑣 + 𝑛)𝑎

∞

𝑛=0

. (3) 

 
 If 𝑇  has the pmf given in Eq. (1), then it is denoted 
by 𝑇 ∼ 𝑈𝐺𝐷(𝑝).  Figure 1, shows the graphs of the 
𝑈𝐺𝐷(𝑝) for some different 𝑝.  
 
3. Parameter Estimation Techniques 
 

3.1. Maximum likelihood estimation 
 

Let 𝑇1
0, 𝑇2

0, … , 𝑇𝑛
0  be i.i.d. observations from 𝑈𝐺𝐷(𝑝) 

and let each investigation be Type-I censored by 

1, , nK KK , respectively. So, we observe 

 

𝑇𝑖 = 𝑚𝑖𝑛(𝑇𝑖
0, 𝐾𝑖), 𝑖 = 1,2, … , 𝑛 (4) 

 
along with the indicator variables 
 

𝛿𝑖 = {
 1, 𝑖𝑓  𝑇𝑖 = 𝑇𝑖

0

0,                    𝑜. 𝑤.
 (5) 

 

Afterward, the log-likelihood function for 𝑈𝐺𝐷(𝑝) 
distribution based on the type-I censored sample is 
given by 
 

ℓ(𝑝) = 𝑙𝑜𝑔 {∏ 𝑓(𝑡𝑖)
𝛿𝑖(1 − 𝐹(𝑡𝑖))

1−𝛿𝑖

𝑛

𝑖=1

} 

= ∑ 𝛿𝑖 𝑙𝑜𝑔(𝑓(𝑡𝑖))

𝑛

𝑖=1

+ ∑(1 − 𝛿𝑖) 𝑙𝑜𝑔(1 − 𝐹(𝑡𝑖))

𝑛

𝑖=1

 

= ∑ 𝛿𝑖 𝑙𝑜𝑔(𝑝(1 − 𝑝)𝑡𝑖−1𝜑𝑖)

𝑛

𝑖=1

 

+ ∑(1 − 𝛿𝑖) 𝑙𝑜𝑔 (𝑝(1 − 𝑝)𝑡𝑖𝜗𝑖 [
1

𝑝
− 𝜗𝑖)])

𝑛

𝑖=1

 

(6) 

 

The likelihood equation is given by 
 

𝜕 𝑙𝑜𝑔( ℓ(𝑝))

𝜕𝑝
= 0 (7) 

 

∑ 𝛿𝑖 [
𝑡𝑖(1 − 𝑝) + 2𝑝 − 1

𝑝(1 − 𝑝)
−

1

𝑝(1 − 𝑝)𝜑𝑖

]

𝑛

𝑖=1

 

∑(1 − 𝛿𝑖) [
𝑝 + 𝑝2[𝑡𝑖 − 1 − (𝑡𝑖 + 1)𝜗𝑖]

𝑝3(1 − 𝑝) [
1

𝑝
− 𝜗𝑖]

]

𝑛

𝑖=1

 

+ ∑(1 − 𝛿𝑖) [
𝑡𝑖𝐷(𝑝)

𝑝
]

𝑛

𝑖=1

= 0, 

(8) 

    
where 𝜑𝑖 = 𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖[(1 − 𝑝), 1, 𝑡𝑖]  and 𝜗𝑖 =
𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖[(1 − 𝑝), 1, 𝑡𝑖]. The solution of the likelihood 
equation Eq. (8) will provide the ML estimators of 𝑝. It 
will be denoted by �̂�∗. Iterative methods can be used 
for this purpose. 
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3.2.  Method of proportions 
 

The MP is proposed by Khan et al. [15] to estimate the 
parameters of DW distribution. Now we proposed the 
same method for 𝑈𝐺𝐷(𝑝)  distribution. Let  
𝑇1, 𝑇2, … , 𝑇𝑛  be a random sample from 𝑈𝐺𝐷(𝑝) 
distribution and define indicator function, 
 

𝜐(𝑇𝑖) = {
1, 𝑇𝑖 = 0
0, 𝑇𝑖 > 0

 (9) 

 

then 𝑌 =
1

𝑛
∑ 𝜐(𝑇𝑖)𝑛

𝑖=1  shows the proportion of 1's in 

the censored sample. The proportion 𝑌 is a consistent, 
unbiased estimator of the probability 𝑓(1) =
𝑝𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖[(1 − 𝑝), 1,1]. Therefore, an estimate 𝑝 can 
be offered as 
 

𝑌 = 𝑝[𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖(1 − 𝑝), 1,1] = 0 (10) 
 

𝑝 𝑙𝑜𝑔(𝑝)

𝑝 − 1
− 𝑌 = 0 (11) 

 

the solution of Eq. (11) will provide the MP estimator 

of 𝑝. It will be denoted by �̂�. 
 
3.3.  Modified maximum likelihood estimation 
 
Let 𝑇1, 𝑇2, … , 𝑇𝑛  be a censored sample from 
𝑈𝐺𝐷(𝑝) distribution and the log-likelihood function 
given by Eq. (6). The ML estimation of 𝑝 is obtained by 
solving Eq. (8) for 𝑝. An iterative method to get the ML 
estimates. To avoid this duration, we used 
Kulasekera’s [13] approximation in the following 
fashion. Assuming 𝐾𝑖 > 1, 𝑖 = 1,2, … , 𝑛.  Let 𝑓(𝑝) =
𝐿𝐻𝑆 of Eq. (7). Then to achieve the ML estimator of 𝑝, 
the following equation should be solved:  
 

𝑓(𝑝) =
𝜕 𝑙𝑜𝑔( ℓ(𝑝))

𝜕𝑝
= 0. (12) 

 

Eq. (12) can not be solved numerically. Now, instead 
of solving Eq. (12), one can solve the system  
 

𝑓(�̂�) + (𝑝 − �̂�)
𝜕𝑓

𝜕𝑝
|

𝑝=𝑝

= 0 (13) 

 

where �̂� is the proportion estimate. The function 𝑓1 all 
the partial derivative is evaluated at �̂�. This procedure 
gives an estimator, which is called MML estimator of 
𝑝. It will be denoted by 𝑝. 
 
3.4. Methods of moments 
 
To estimate the parameter of 𝑈𝐺𝐷(𝑝) distribution by 
this method, we need the first sample moments, which 
is given below:  
 

𝑝 ∑ 𝑡((1 − 𝑝)𝑡−1𝐿𝑒𝑟𝑐ℎ𝑃ℎ𝑖[(1 − 𝑝), 1, 𝑡])

∞

𝑥=1

=
1

𝑛
∑ 𝑇𝑖

𝑛

𝑖=1

 (14) 

ome numerical methods such as the Newton-Raphson 
method can be used to solve Eq. (14). The solution of 
Eq. (14) is the MM estimator 𝑝∗ of parameter 𝑝.  
 
4. Simulation Study 
 
In the simulation study, we have generated random 
samples and calculated the ML, MM, MML, and MP 
estimates of 𝑝 and the performance of the estimators 
according to the bias and MSEs criteria are compared. 
In Tables 1-4, for different values of (𝑛, 𝑝, 𝐾),  we 
calculated these criteria of parameter estimates over 
5000 iterations. The MATLAB software is used in the 
simulation study. 
 
Table 1. Biases and MSEs estimate for 𝑝 = 0.3 

  MLE MMLE 

𝑛 𝐾 Bias Mse Bias Mse 

50 3 0.0675 0.0052 0.0811 0.0076 

100 3 0.0669 0.0051 0.0808 0.0073 

200 3 0.0273 0.0025 0.0174 0.0026 

300 3 0.0228 0.0021 0.0031 0.0022 

500 3 0.0112 0.0015 0.0013 0.0016 

      

50 5 -0.0262 0.0035 -0.0285 0.0042 

100 5 -0.0256 0.0021 -0.0284 0.0025 

200 5 -0.0250 0.0014 -0.0282 0.0016 

300 5 -0.0236 0.0012 -0.0281 0.0014 

500 5 -0.0182 0.0010 -0.0251 0.0011 

      

50 ∞ 0.0057 0.0024 0.0006 0.0025 

100 ∞ 0.0030 0.0011 0.0005 0.0012 

200 ∞ 0.0017 0.0006 0.0003 0.0006 

300 ∞ 0.0012 0.0004 0.0003 0.0004 

500 ∞ 0.0006 0.0002 0.0002 0.0002 

 

Table 2. Biases and MSEs estimate for 𝑝 = 0.3 

  MME MPE 

𝑛 𝐾  Bias Mse   Bias Mse  

50 3 0.0052 0.0026 0.0041 0.0047 

100 3 0.0010 0.0012 0.0011 0.0023 

200 3 0.0006 0.0006 0.0008 0.0012 

300 3 0.0005 0.0004 0.0005 0.0008 

500 3 0.0004 0.0002 0.0004 0.0004 

      

50 5 -0.0052 0.0026 0.0041 0.0047 

100 5 -0.0015 0.0012 0.0011 0.0023 

200 5 -0.0010 0.0006 0.0008 0.0012 

300 5 -0.0006 0.0004 0.0005 0.0008 

500 5 -0.0005 0.0002 0.0001 0.0005 

      

50 ∞ 0.0035 0.0025 0.0025 0.0047 

100 ∞ 0.0010 0.0012 0.0011 0.0023 

200 ∞ 0.0007 0.0006 0.0008 0.0012 

300 ∞ 0.0005 0.0004 0.0005 0.0008 

500 ∞ 0.0004 0.0002 0.0001 0.0003 
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Table 3. Biases and MSEs estimate for 𝑝 = 0.8 
  MLE MMLE 

𝑛 𝐾  Bias Mse   Bias Mse  

50 3 0.0259 0.0106 0.0127 0.0049 

100 3 0.0106 0.0030 0.0103 0.0026 

200 3 0.0026 0.0012 0.0020 0.0012 

300 3 0.0012 0.0009 0.0019 0.0009 

500 3 0.0006 0.0005 0.0014 0.0005 

      

50 5 0.0159 0.0080 0.0056 0.0060 

100 5 0.0068 0.0025 0.0031 0.0025 

200 5 0.0012 0.0012 0.0019 0.0012 

300 5 0.0009 0.0008 0.0013 0.0008 

500 5 0.0004 0.0005 0.0007 0.0005 

      

50 ∞ 0.0094 0.0089 0.0085 0.0046 

100 ∞ 0.0038 0.0024 0.0051 0.0024 

200 ∞ 0.0016 0.0012 0.0023 0.0012 

300 ∞ 0.0009 0.0008 0.0014 0.0008 

500 ∞ 0.0003 0.0005 0.0005 0.0005 

 
Table 4. Biases and MSEs estimate for 𝑝 = 0.8 

  MME MPE 

𝑛 𝐾  Bias Mse   Bias Mse  

50 3 0.0053 0.0047 0.0018 0.0055 

100 3 0.0037 0.0024 0.0018 0.0028 

200 3 0.0013 0.0012 0.0005 0.0014 

300 3 0.0008 0.0008 0.0004 0.0009 

500 3 0.0006 0.0005 0.0002 0.0006 

      

50 5 0.0039 0.0048 0.0006 0.0056 

100 5 0.0019 0.0024 0.0003 0.0029 

200 5 0.0013 0.0012 0.0005 0.0014 

300 5 0.0009 0.0008 0.0005 0.0009 

500 5 0.0005 0.0005 0.0004 0.0006 

      

50  ∞ 0.0067 0.0047 0.0033 0.0056 

100 ∞ 0.0038 0.0024 0.0020 0.0028 

200 ∞ 0.0016 0.0012 0.0009 0.0014 

300 ∞ 0.0009 0.0008 0.0005 0.0010 

500 ∞ 0.0003 0.0005 0.0001 0.0005 

 

From Tables 1-4, one can see that all estimates are 
biased, but these estimates asymptotically unbiased. 
The MM and MP estimates are almost like in terms of 
MSE and both perform better than ML and MML 
estimates. Furthermore, when the sample size 
increases, the values of bias and MSE decreases.  

 

5. Real Data Application 
 

The first data set: This data set analyzed by [16]. The 
data has been integrated for 12 or more cycles, a total 
of 586 women. The first real data are given in Table 5.  
 

Table 5. The fecundability data 
Cycles 1 2 3 4 5 6 7 8 9 10 11+ 

N 227 123 72 42 21 31 11 14 6 4 35 

Table 6.  Results of 𝑈𝐺𝐷(𝑝) for first real data 
 Complete Data 𝐾 = 3 𝐾 = 5 

ML 0.1889 0.1178 0.1485 

MP 0.1883 0.1883 0.1883 

MM 0.1784 0.1784 0.1784 

MML 0.1889 0.1178 0.1485 

 
The second data set: The second data set is given from 
Xie and Goh [17] and presents an industrial process. 
The data are: 
 
1   1   1   1   1   1   2   2   2   2   3   3   3   4   4   4   5   5   7   
9   11  13  14  14  17  18  26  29. 

 

Table 7. Results of 𝑈𝐺𝐷(𝑝) for second real data 

 Complete Data 𝐾 = 3 𝐾 = 5 

ML 0.0742 0.0469 0.0683 

MP 0.0772 0.0772 0.0772 

MM 0.0771 0.0771 0.0771 

MML 0.0742 0.0476 0.0763 

 

The ML, MP, MM, and MML estimates of 𝑝 for the first 
and second real data are given in Tables 6 and 7.  From 
these Tables, the ML, MP, MM, and MML estimators 
obtained almost the same for complete data. The MP 
and the MM estimates are almost identical in terms of 
estimates and both perform better than ML and MML 
estimates. 

 

6. Conclusion 

 

The censored sampling is very advantageous in terms 
of both cost and time. In this study, the ML, MM, MML 
and MP estimators of the 𝑈𝐺𝐷(𝑝)  distribution are 
obtained in the case of a censoring sample. In the 
simulation and real data, it shows that in the case of a 
censoring sample and a complete sample, the results 
are close to each other. In the case of limited time and 
cost, the units have 𝑈𝐺𝐷(𝑝)  distribution and can be 
used in the case of a censored sample, which is very 
advantageous for both time and cost. 
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