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Abstract. The object of the present paper is to classify (k, µ)′-almost Ken-
motsu manifolds admitting Cotton tensors. We have characterized (k, µ)′-
almost Kenmotsu manifolds with vanishing and parallel Cotton tensors. Be-
side this, (k, µ)′-almost Kenmotsu manifolds satisfying Cotton semisymmetry
and Q(g, C) = 0 are studied. Further, Cotton pseudo-symmetric (k, µ)′-almost
Kenmotsu manifolds are classified.

1. Introduction

On a (2n + 1)-dimensional Riemannian manifold (M2n+1, g), the (0, 3)-Cotton
tensor C is defined by [9]

C(X,Y )Z = (∇XS)(Y,Z)− (∇Y S)(X,Z)

− 1

4n
((Xr)g(Y, Z)− (Y r)g(X,Z)), (1.1)

where S and r denotes Ricci tensor and scalar curvature of M respectively. The
Cotton tensor is skew-symmetric in the first two indices and totally trace free. As
it is well known that a Riemannian manifold (Mn, g) is locally conformally flat
if and only if (1) for n ≥ 4 the Weyl tensor vanishes, (2) n = 3 the Cotton ten-
sor vanishes. Moreover for n ≥ 4, if the Weyl tensor vanishes, then the Cotton
tensor vanishes. We also see that when n = 3, the Weyl tensor always vanishes,
but the Cotton tensor does not vanish in general. In [20], Wang studied Cotton
flat almost coKähler 3-manifolds. In [5], the authors characterize two classes of
almost Kenmotsu manifolds admitting quasi-conformal curvature tensor and ex-
tended quasi-conformal curvature tensor, which are generalization of the conformal
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curvature tensor.

We now define an endomorphism X ∧A Y of the vector fields of M by

(X ∧A Y )Z = A(Y,Z)X −A(X,Z)Y, (1.2)

where A is a symmetric (0, 2)-tensor. Also for a (0, k)-tensor field T , k ≥ 1 and a
(0, 2)-tensor field A on M we define the tensor Q(A, T ) by

Q(A, T )(X1, X2, .., Xk;X,Y ) = −T ((X ∧A Y )X1, X2, .., Xk)

−..− T (X1, X2, .., (X ∧A Y )Xk). (1.3)

A Riemannian manifold M is said to be Ricci pseudo-symmetric [17] if the tensor
fields R ·S and Q(g, S) are linearly dependent, i.e., there exist a function LS : M →
R such that R ·S = LSQ(g, S) holds onM . In particular, a Ricci pseudo-symmetric
manifold with LS = 0 reduces to a Ricci semisymmetric manifold. The notion of
pseudo-symmetry also appears in the theory of plane gravitational waves. In [1],
pseudo-symmetric contact metric manifolds were studied by Arslan et. al. Also
Chaki type pseudo-symmetric lightlike hypersurfaces were studied by Sahin and
Yildiz [16]. Further, pseudo-symmetric Riemannian spaces were studied by Özen
and Altay [13]. Also Suh et. al. [15] studied Reeb parallel Ricci tensor on real
hypersurfaces in complex two-plane Grassmannians.
ξ-conformally flat K-contact manifolds have been studied by Zhen et al. [21].

Since at each point p ∈ M2n+1 the tangent space Tp(M2n+1) can be decomposed
into the direct sum Tp(M

2n+1) = φ(Tp(M
2n+1)) ⊕ {ξp}, where {ξp} is the one-

dimensional linear subspace of Tp(M2n+1) generated by ξp, the conformal curvature
tensor C is a map

C : Tp(M
2n+1)× Tp(M2n+1)× Tp(M2n+1)â†′φ(Tp(M

2n+1))⊕ {ξp}.

An almost contact metric manifold M2n+1 is called ξ-conformally flat if the pro-
jection of the image of C in {ξp} is zero.
In 1978, Gray [10] presented a new classes of manifold, namely, manifolds of

Codazzi type Ricci tensor, lies between the class of Ricci symmetric manifolds and
the class of manifolds of constant scalar curvature.

Definition 1.1. A semi-Riemannian manifoldM is said to be of Codazzi type Ricci
tensor if, (∇XS)(Y,Z) = (∇Y S)(X,Z) for any vector fields X, Y and Z holds on
M .

The paper is organized as follows:
In Section 2, we give some preliminary ideas on almost Kenmotsu manifolds. Sec-
tion 3 is devoted to study (k, µ)′-almost Kenmotsu manifolds satisfying Cotton
flatness(C = 0), Cotton parallelity(∇C = 0), Cotton semisymmetry(R · C = 0),
Q(g, C) = 0 and Cotton pseudo-symmetry(R · C = fCQ(g, C)).
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2. Preliminaries

A (2n + 1)-dimensional differentiable manifold M is said to have a (φ, ξ, η)-
structure or an almost contact structure, if it admits a (1, 1) tensor field φ, a
characteristic vector field ξ and a 1-form η satisfying ( [2], [3]),

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (2.1)

where I denote the identity endomorphism. Here also φξ = 0 and η ◦ φ = 0; both
can be derived from (2.1) easily.
If a manifold M with a (φ, ξ, η)-structure admits a Riemannian metric g such that

g(φX, φY ) = g(X,Y )− η(X)η(Y ),

for any vector fields X, Y on M , then M is said to be an almost contact metric
manifold. The fundamental 2-form Φ on an almost contact metric manifold is
defined by Φ(X,Y ) = g(X,φY ) for any X, Y on M . The condition for an almost
contact metric manifold being normal is equivalent to vanishing of the (1, 2)-type
torsion tensor Nφ, defined by Nφ = [φ, φ] + 2dη ⊗ ξ, where [φ, φ] is the Nijenhuis
tensor of φ [2]. Recently in ( [6], [7], [8], [14]), almost contact metric manifold such
that η is closed and dΦ = 2η ∧Φ are studied and they are called almost Kenmotsu
manifolds. Obviously, a normal almost Kenmotsu manifold is a Kenmotsu manifold
[12]. Also Kenmotsu manifolds can be characterized by (∇Xφ)Y = g(φX, Y )ξ −
η(Y )φX, for any vector fields X,Y . It is well known [11] that a Kenmotsu manifold
M2n+1 is locally a warped product I ×f N2n where N2n is a Kähler manifold, I is
an open interval with coordinate t and the warping function f , defined by f = cet

for some positive constant c. Let us denote the distribution orthogonal to ξ by D
and defined by D = Ker(η) = Im(φ). In an almost Kenmotsu manifold, since η is
closed, D is an integrable distribution.
Let M2n+1 be an almost Kenmotsu manifold. We denote by h = 1

2£ξφ and l =

R(·, ξ)ξ on M2n+1. The tensor fields l and h are symmetric operators and satisfy
the following relations [14]:

hξ = 0, lξ = 0, tr(h) = 0, tr(hφ) = 0, hφ+ φh = 0,

∇Xξ = X − η(X)ξ − φhX(⇒ ∇ξξ = 0), (2.2)

R(X,Y )ξ = η(X)(Y − φhY )− η(Y )(X − φhX) + (∇Y φh)X − (∇Xφh)Y, (2.3)

for any vector fields X,Y . The (1, 1)-type symmetric tensor field h′ = h ◦ φ is
anti-commuting with φ and h′ξ = 0. Also it is clear that ( [6])

h = 0⇔ h′ = 0, h′2 = (k + 1)φ2(⇔ h2 = (k + 1)φ2). (2.4)

In [6], Dileo and Pastore introduced the notion of (k, µ)′-nullity distribution, on an
almost Kenmotsu manifold (M2n+1, φ, ξ, η, g), which is defined for any p ∈M and
k, µ ∈ R as follows:

Np(k, µ)′ = {Z ∈ Tp(M) : R(X,Y )Z = k(g(Y,Z)X − g(X,Z)Y )

+µ(g(Y,Z)h′X − g(X,Z)h′Y )}. (2.5)
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The above notion is called generalized nullity distributions when one allows k, µ to
be smooth functions.
Let X ∈ D be the eigen vector of h′ corresponding to the eigen value λ. Then
from (2.4) it is clear that λ2 = −(k + 1), a constant. Therefore k ≤ −1 and
λ = ±

√
−k − 1. We denote by [λ]′ and [−λ]′ the corresponding eigen spaces re-

lated to the non-zero eigen value λ and −λ of h′, respectively. In [6], it is proved
that in a (k, µ)′-almost Kenmotsu manifold M2n+1 with h′ 6= 0, k < −1, µ = −2
and Spec(h′) = {0, λ,−λ}, with 0 as simple eigen value and λ =

√
−k − 1. The

distributions [ξ] ⊕ [λ]′ and [ξ] ⊕ [−λ]′ are integrable with totally geodesic leaves.
The distributions [λ]′ and [−λ]′ are integrable with totally umbilical leaves. Fur-
thermore, the sectional curvature are given by the following:

(a) K(X, ξ) = k − 2λ if X ∈ [λ]′ and
K(X, ξ) = k + 2λ if X ∈ [−λ]′,

(b) K(X,Y ) = k − 2λ if X,Y ∈ [λ]′;
K(X,Y ) = k + 2λ if X,Y ∈ [−λ]′ and
K(X,Y ) = −(k + 2) if X ∈ [λ]′, Y ∈ [−λ]′,

(c) M2n+1 has constant negative scalar curvature r = 2n(k − 2n).

Also
(∇Xh′)Y = −g(h′X + h′2X,Y )ξ − η(Y )(h′X + h′2X). (2.6)

In [18], Wang and Liu proved that for a (k, µ)′-almost Kenmotsu manifold M2n+1

with h′ 6= 0, the Ricci operator Q of M2n+1 is given by

Q = −2nid+ 2n(k + 1)η ⊗ ξ − 2nh′. (2.7)

From (2.5), we have

R(X,Y )ξ = k(η(Y )X − η(X)Y ) + µ(η(Y )h′X − η(X)h′Y ), (2.8)

where k, µ ∈ R. Also we get from (2.8)

R(ξ,X)Y = k(g(X,Y )ξ − η(Y )X) + µ(g(h′X,Y )ξ − η(Y )h′X). (2.9)

Using (2.2), we have

(∇Xη)Y = g(X,Y )− η(X)η(Y ) + g(h′X,Y ). (2.10)

3. Cotton tensor on (k, µ)′-almost Kenmotsu manifolds

In this section, we study Cotton tensor on (k, µ)′-almost Kenmotsu manifolds.
Before discussing our main results, we first state the following Lemma:

Lemma 3.1. (Prop. 4.2 of [6]) Let (M2n+1, φ, ξ, η, g) be an almost Kenmotsu
manifold such that h′ 6= 0 and ξ belonging to the (k,−2)′-nullity distribution. Then
for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′, the Riemann curvature tensor
satisfies:

R(Xλ, Yλ)Z−λ = 0,

R(X−λ, Y−λ)Zλ = 0,
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R(Xλ, Y−λ)Zλ = (k + 2)g(Xλ, Zλ)Y−λ,

R(Xλ, Y−λ)Z−λ = −(k + 2)g(Y−λ, Z−λ)Xλ,

R(Xλ, Yλ)Zλ = (k − 2λ)(g(Yλ, Zλ)Xλ − g(Xλ, Zλ)Yλ),

R(X−λ, Y−λ)Z−λ = (k + 2λ)(g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ).

Since the scalar curvature r = 2n(k−2n) = constant onM2n+1, then the Cotton
tensor defined in (1.1) reduces to

C(X,Y )Z = (∇XS)(Y,Z)− (∇Y S)(X,Z). (3.1)

Now from above we can state the following:

Proposition 3.1. The Cotton tensor of a (k, µ)′-almost Kenmotsu manifoldsM2n+1

vanishes if and only if the Ricci tensor is of Codazzi type.

Analogous to the definition of ξ-conformally flat almost contact metric manifold,
we define ξ-Cotton flat (k, µ)′-almost Kenmotsu manifold as follows:

Definition 3.1. A (k, µ)′-almost Kenmotsu manifold M2n+1 is said to be ξ-Cotton
flat if the Cotton tensor C satisfies C(X,Y )ξ = 0 holds for any vector fields X, Y
on M2n+1.

We now further investigate this as follows:
From (2.7), we have

S(X,Y ) = −2ng(X,Y ) + 2n(k + 1)η(X)η(Y )− 2ng(h′X,Y ) (3.2)

for any vector fields X, Y on M2n+1.
Taking covariant derivative of (3.2) along any vector field Z we have

∇ZS(X,Y ) = −2n∇Zg(X,Y ) + 2n(k + 1)(∇Zη(X))η(Y )

+2n(k + 1)η(X)(∇Zη(Y ))− 2n∇Zg(h′X,Y ). (3.3)

Now, we have

(∇ZS)(X,Y ) = ∇ZS(X,Y )− S(∇ZX,Y )− S(X,∇ZY ).

Using (3.2) and (3.3) in the foregoing equation, we obtain

(∇ZS)(X,Y ) = 2n(k + 1)(∇Zη)X)η(Y ) + 2n(k + 1)η(X)(∇Zη)Y

−2ng((∇Zh′)X,Y ). (3.4)

Now, using (2.6) and (2.10) in (3.4) we obtain

(∇ZS)(X,Y ) = 2n(k + 1)η(Y )(g(X,Z)− η(X)η(Z)

+g(h′X,Z)) + 2n(k + 1)η(X)(g(Y,Z)− η(Y )η(Z)

+g(h′Y, Z)) + 2ng(h′Z + h′2Z,X)η(Y )

+2nη(X)g(h′Z + h′2Z, Y ). (3.5)
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Making use of (3.5) in (3.1) we get after simplification

C(X,Y )Z = 2n(k + 2)(g(h′X,Z)η(Y )− g(h′Y, Z)η(X)) (3.6)

Now from (3.6), we observe that in a (k, µ)′-almost Kenmotsu manifolds M2n+1,
the Cotton tensor C satisfies C(X,Y )ξ = 0 for all vector fields X, Y on M2n+1.
Thus we state the following:

Proposition 3.2. A (k, µ)′-almost Kenmotsu manifold is always ξ-Cotton flat.

Now if the Cotton tensor C vanishes identically on M2n+1, then from (1.1) we
can say that the conformal curvature tensor is harmonic and therefore, from Corol-
lary 3.3 of [19] we get the following:

Proposition 3.3. A (k, µ)′-almost Kenmotsu manifoldM2n+1 is Cotton flat if and
only if it is locally isometric to the Riemannian product of an (n+ 1)-dimensional
manifold of constant sectional curvature −4 and a flat n-dimensional manifold.

We now discuss about (k, µ)′-almost Kenmotsu manifolds admitting parallel Cot-
ton tensor, i.e., ∇C = 0 holds on M2n+1.

Differentiating (3.6) covariantly along any vector field W , we get

∇WC(X,Y )Z = 2n(k + 2)((∇W g(h′X,Z))η(Y ) + g(h′X,Z)∇W η(Y )

−(∇W g(h′Y, Z))η(X)− g(h′Y,Z)∇W η(X)).

Now, using (2.4), (2.6), (2.10) and (3.6) in the above equation, we infer that

(∇WC)(X,Y )Z = ∇WC(X,Y )Z − C(∇WX,Y )Z − C(X,∇WY )Z

−C(X,Y )∇WZ
= 2n(k + 2){−η(Y )η(Z)g(h′W,X) + g(h′X,Z)(g(W,Y )

−η(W )η(Y ) + g(h′W,Y )) + η(X)η(Z)g(h′W,Y )

−g(h′Y, Z)(g(W,X)− η(W )η(X) + g(h′W,X))

+(k + 1)(η(Y )η(Z)(g(W,X)− η(W )η(X))

+η(X)η(Z)(−g(W,Y ) + η(W )η(Y )))}.
Consider ∇C = 0 and substituting X = Z = ξ in the foregoing equation yields

2n(k + 2){g(h′W,Y )− (k + 1)(g(W,Y )− η(W )η(Y ))} = 0,

which implies either k = −2 or

g(h′W,Y )− (k + 1)(g(W,Y )− η(W )η(Y )) = 0.

Case 1. If k = −2, then from λ2 = −k − 1 we get λ2 = 1. Without loss of
generality we assume that λ = −1.
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Now letting X, Y, Z ∈ [λ]′ and noticing that k = −2, λ = −1, from Lemma 3.1 we
have

R(Xλ, Yλ)Zλ = 0,

and

R(X−λ, Y−λ)Z−λ = −4(g(Y−λ, Z−λ)X−λ − g(X−λ, Z−λ)Y−λ),

for any Xλ, Yλ, Zλ ∈ [λ]′ and X−λ, Y−λ, Z−λ ∈ [−λ]′. Also noticing µ = −2 it
follows that K(X, ξ) = −4 for any X ∈ [−λ]′ and K(X, ξ) = 0 for any X ∈ [λ]′.
Again we see that K(X,Y ) = −4 for any X,Y ∈ [−λ]′ and K(X,Y ) = 0 for any
X,Y ∈ [λ]′. As is shown in [6] that the distribution [ξ] ⊕ [λ]′ is integrable with
totally geodesic leaves and the distribution [−λ]′ is integrable with totally umbilical
leaves by H = −(1−λ)ξ, where H is the mean curvature tensor field for the leaves
of [−λ]′ immersed in M2n+1. Here λ = −1, then the two orthogonal distributions
[ξ] ⊕ [λ]′ and [−λ]′ are both integrable with totally geodesic leaves immersed in
M2n+1. Then we can say that M2n+1 is locally isometric to Hn+1(−4) × Rn.

Case 2. If g(h′W,Y )− (k+ 1)(g(W,Y )− η(W )η(Y )) = 0, then substituting the
value of g(h′W,Y ) obtained from (2.7) we get

S(W,Y ) = −2n(k + 2)g(W,Y ) + 4n(k + 1)η(W )η(Y ). (3.7)

Tracing (3.7) we get r = 2n(k − 4n− 2nk) and equating it with the given value of
r = 2n(k − 2n) yields k = −1 which is a contradiction to the fact that k < −1 for
a (k, µ)′-almost Kenmotsu manifold with h′ 6= 0.
Hence we state the following:

Theorem 3.1. A (k, µ)′-almost Kenmotsu manifold M2n+1 with h′ 6= 0 is Cotton
parallel if and only if M2n+1 is locally isometric to the Riemannian product of
an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat n-
dimensional manifold.

We now define

Definition 3.2. A (k, µ)′-almost Kenmotsu manifolds M2n+1 is said to be Cotton
semisymmetric if the Cotton tensor C satisfies R · C = 0 on M2n+1, where R is
the Riemann curvature tensor.

Let M2n+1 be Cotton semisymmetric. Therefore, (R(X,Y ) ·C)(U, V )W = 0 for
any vector fields X, Y, U, V and W . Then we have

C(R(X,Y )U, V )W + C(U,R(X,Y )V )W + C(U, V )R(X,Y )W = 0. (3.8)

Using (3.6) in (3.8) we obtain

2n(k + 2)(g(h′R(X,Y )U,W )η(V )− g(h′V,W )η(R(X,Y )U))

+2n(k + 2)(g(h′U,W )η(R(X,Y )V )− g(h′R(X,Y )V,W )η(U))
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+2n(k + 2)(g(h′U,R(X,Y )W )η(V )− g(h′V,R(X,Y )W )η(U))

= 0. (3.9)

Substituting U = ξ in the foregoing equation and using (2.8), we obtain

2n(k + 2)g(k{η(Y )h′X − η(X)h′Y } − 2{η(Y )h′2X − η(X)h′2Y },W )η(V )

−2n(k + 2)g(h′R(X,Y )V,W )− 2n(k + 2)g(h′V,R(X,Y )W ) = 0.

Now replacing W by ξ in the above equation and using (2.8), we infer

2n(k + 2)g(h′V, k{η(Y )X − η(X)Y } − 2{η(Y )h′X − η(X)h′Y }) = 0. (3.10)

Using (2.4) in (3.10) and then substituting Y = ξ, after simplification we have

2n(k + 2)(2(k + 1){g(X,V )− η(X)η(V )}+ kg(h′V,X)) = 0. (3.11)

We now obtain the value of g(h′V,X) from (2.7) and then using it in (3.11) we get

2n(k + 2)(− k

2n
S(V,X) + (k + 2)g(V,X) + (k + 1)(k − 2)η(V )η(X)) = 0, (3.12)

which implies that either k = −2 or

S(V,X) =
2n(k + 2)

k
g(V,X) +

2n(k + 1)(k − 2)

k
η(V )η(X).

In the first case as discussed earlier in Case 1 of Theorem 3.1, M2n+1 is locally
isometric to Hn+1(−4) × Rn.
In the second case, tracing the (3.12) we obtain r = 2n

k (k2+2nk+2n−1). Also, in a
(k, µ)′-almost Kenmotsu manifold the scalar curvature r is given by r = 2n(k−2n).
Equating these two value of r, we get k = 1−2n

4n . For n = 1, k = − 14 and as n
increases, the value of k is approaching towards − 12 and hence −

1
2 < k ≤ − 14 . This

contradicts the fact that k ≤ −1.
Hence we can state the following:

Theorem 3.2. A (k, µ)′-almost Kenmotsu manifolds M2n+1 is Cotton semisym-
metric if and only if M2n+1 is locally isometric to the Riemannian product of
an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat n-
dimensional manifold.

Now if the Cotton tensor C satisfies the condition Q(g, C) = 0, then we have
Q(g, C)(U, V,W ;X,Y ) = 0 for all vector fields U, V, W, X and Y onM2n+1. Thus
we have from (1.3)

C((X ∧g Y )U, V )W + C(U, (X ∧g Y )V )W + C(U, V )(X ∧g Y )W = 0.

Now using (1.2) in the foregoing equation yields

g(Y, U)C(X,V )W − g(X,U)C(Y, V )W

+g(Y, V )C(U,X)W − g(X,V )C(U, Y )W

+g(Y,W )C(U, V )X − g(X,W )C(U, V )Y = 0. (3.13)
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Putting Y = W = ξ in the foregoing equation and using (3.6) yields that C(U, V )X =
0 and hence from Prop. 3.2 we get M2n+1 is locally isometric to Hn+1(−4) × Rn.
From the above discussion we have the following:

Theorem 3.3. In a (k, µ)′-almost Kenmotsu manifolds M2n+1, the Cotton tensor
C satisfies the condition Q(g, C) = 0 if and only if M2n+1 is locally isometric to
the Riemannian product of an (n + 1)-dimensional manifold of constant sectional
curvature −4 and a flat n-dimensional manifold.

Now as a generalization of the notion of Cotton semisymmetry, we define

Definition 3.3. A (k, µ)′-almost Kenmotsu manifolds M2n+1 is said to be Cotton
pseudo-symmetric if there exist a smooth function fC : M → R such that R · C =
fCQ(g, C) holds on M2n+1.

In particular, a Cotton pseudo-symmetric manifold with fC = 0 reduces to a
Cotton semisymmetric manifold. We now characterize Cotton pseudo-symmetric
(k, µ)′-almost Kenmotsu manifolds M2n+1, i.e., M2n+1 satisfies

(R(X,Y ) · C)(U, V )W = fCQ(g, C)(U, V,W ;X,Y )

for any vector fields X,Y, U, V and W on M2n+1.
In view of (3.9) and (3.13), it follows from that

2n(k + 2)(g(h′R(X,Y )U,W )η(V )− g(h′V,W )η(R(X,Y )U))

+2n(k + 2)(g(h′U,W )η(R(X,Y )V )− g(h′R(X,Y )V,W )η(U))

+2n(k + 2)(g(h′U,R(X,Y )W )η(V )− g(h′V,R(X,Y )W )η(U))

= fC(g(Y,U)C(X,V )W − g(X,U)C(Y, V )W

+g(Y, V )C(U,X)W − g(X,V )C(U, Y )W

+g(Y,W )C(U, V )X − g(X,W )C(U, V )Y ).

Substituting W = ξ in the above equation and using Prop. 3.1, we obtain

2n(k + 2)(g(h′U,R(X,Y )ξ)η(V )− g(h′V,R(X,Y )ξ)η(U))

= fC(η(Y )C(U, V )X − η(X)C(U, V )Y ).

Now using (2.8) and (3.6) in the foregoing equation we get

2n(k + 2)(g(h′U, k{η(Y )X − η(X)Y } − 2{η(Y )h′X − η(X)h′Y })η(V )

−g(h′V, k{η(Y )X − η(X)Y } − 2{η(Y )h′X − η(X)h′Y })η(U))

= fC(2n(k + 2)η(Y ){g(h′U,X)η(V )− g(h′V,X)η(U)}
−2n(k + 2)η(X){g(h′U, Y )η(V )− g(h′V, Y )η(U)}). (3.14)

Setting U = ξ in (3.14), we obtain

2n(k + 2)(−k{η(Y )g(h′V,X)− η(X)g(h′V, Y )}
+2{η(Y )g(h′V, h′X)− η(X)g(h′V, h′Y )})

= fC(−2n(k + 2)η(Y )g(h′V,X) + 2n(k + 2)η(X)g(h′V, Y )). (3.15)
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Now using (2.4) in (3.15), we have

2n(k + 2)(k − fC)(η(X)g(h′V, Y )− η(Y )g(h′V,X))

+4n(k + 1)(k + 2)(η(X)g(V, Y )− η(Y )g(V,X)) = 0. (3.16)

Replacing X by ξ in (3.16), we get

2n(k + 2)(k − fC)g(h′V, Y ) + 4n(k + 1)(k + 2)(g(V, Y )− η(Y )η(V )) = 0.

Now substituting the value of 2ng(h′V, Y ) from (2.7), we obtain

(k + 2)(−(k − fC)S(V, Y )− {2n(k − fC)− 4n(k + 1)}g(Y, V )

+{2n(k + 1)(k − fC)− 4n(k + 1)}η(Y )η(V )) = 0.

We now discuss it in the following cases.
Case 1. If k = −2, then as discussed earlier, M2n+1 is locally isometric to
Hn+1(−4) × Rn.
Case 2. If

−(k − fC)S(V, Y )− {2n(k − fC)− 4n(k + 1)}g(Y, V )

+{2n(k + 1)(k − fC)− 4n(k + 1)}η(Y )η(V ) = 0, (3.17)

then we consider the following two subcases:
(i). If fC = k, then from the above equation we see that

4n(k + 1)(g(Y, V )− η(Y )η(V )) = 0,

which implies k = −1, a contradiction.
(ii). If fC 6= k, then from (3.17) we can write

S(V, Y ) =
−2n(k − fC) + 4n(k + 1)

k − fC
g(V, Y )

+
2n(k + 1)(k − fC)− 4n(k + 1)

k − fC
η(V )η(Y ).

Tracing the previous equation yields r = 2n
k−fC (k2 + 2nk+ 4n− kfC + 2nfC). Now

equating it with r = 2n(k − 2n) we obtain k = −1, a contradiction. Hence, we are
in a position to state the following:

Theorem 3.4. A (k, µ)′-almost Kenmotsu manifold M2n+1 is Cotton pseudo-
symmetric if and only if M2n+1 is locally isometric to the Riemannian product
of an (n + 1)-dimensional manifold of constant sectional curvature −4 and a flat
n-dimensional manifold.

Remark 3.1. If we consider fC = 0 in the above theorem, then we obtain Theorem
3.2. So, Theorem 3.4 generalizes Theorem 3.2.

Example 3.1. In [4], the authors presented an example of a 5-dimensional (k, µ)′-
almost Kenmotsu manifold with k = −2 and µ = −2. Since k = −2, from (3.6) we
can say that the Cotton tensor C vanishes and M5 is locally isometric to H3(−4)×
R2. Hence, all the Theorems are trivially satisfied by this example.
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4. Conclusion

In this paper, we have studied (k, µ)′-almost Kenmotsu manifolds with Cot-
ton flatness, Cotton Parallelity, Cotton semisymmetry, Q(g, C) = 0 and Cotton
pseudo-symmetry. Finally, we conclude from all the Propositions and Theorems
proved here and Corollary 3.3 of [19] that

In a (k, µ)′-almost Kenmotsu manifold M2n+1, the following conditions are
equivalent:

(1) M2n+1 is Cotton flat,
(2) The Ricci tensor is of Codazzi type,
(3) The conformal curvature tensor is harmonic,
(4) M2n+1 is Cotton parallel,
(5) M2n+1 is Cotton semisymmetric,
(6) M2n+1 satisfies Q(g, C) = 0,
(7) M2n+1 is Cotton pseudo-symmetric.
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