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Abstract: Objects and surfaces often appear in Particle Image Velocimetry (PIV) images. Unless masked, the 

features on these contribute to the cross correlation function and introduce an error in the vectors as a result of the 

PIV analysis in the vicinity of the phase boundary. Digital masking of objects has appeared numerous times in the 

literature as part of the analysis chain, with a growing focus on isolating moving features using dynamic masks. One 

aim of this article is to provide a summary of milestones achieved in dynamic masking covering a wide range of 

applications. Another aim is to show the difference between image masking and vector masking. Finally, two 

different dynamic masking examples are described in detail and compared. The examples used are selected from 

swimming microorganisms in small channels. In the first example, a histogram thresholding-based dynamic masking 

is used, while, in the second example, a novel technique employing a feature tracking-based dynamic masking is 

used. Results show that histogram thresholding-based masking provides better results for swimmers which randomly 

change shape and direction; whereas, feature tracking-based masking provides better results for swimmers which do 

not change shape or direction significantly. In order to show the improvement due to dynamic masking, a 

comparison is made between PIV results a) with no masking, b) with just image masking and c) with both image and 

vector masking. Results show that the best approach is to use both image and vector masking. 

Keywords: Dynamic masking, Image masking, Vector masking, Histogram thresholding based dynamic masking, 

Feature tracking-based dynamic masking. 

 

PARÇACIK GÖRÜNTÜLEMELİ HIZ ÖLÇME TEKNİĞİ İÇİN  

DİNAMİK MASKELEME TEKNİKLERİ 
 

Özet: Cisimlere ve yüzeylere Parçacık Görüntülemeli Hız Ölçümü (PIV) imajlarında sıkça rastlanır. Bunlar 

maskelenmediği sürece, çapraz korelasyon fonksiyonunu etkiler ve PIV analizi sonucu elde edilen hız vektörlerinde 

faz sınırına yakın yerlerde hatalı sonuçlar oluşturur. Cisimlerin dijital ortamda maskelenmesi, özellikle hareketli 

cisimlerin dinamik maske kullanılarak imajlardan çıkarılması hesap zincirinin bir parçası olarak literatürde pek çok 

kez yayınlanmıştır. Bu yazının bir amacı dinamik maskelemede ulaşılan kilometre taşlarının geniş bir uygulama 

yelpazesini de kapsayan bir özetini vermektir. Bir diğer amaç ise dinamik imaj ve vektör maskelemenin farklarını 

göstermektir. En son olarak, iki ayrı dinamik maskeleme örneği ayrıntılı olarak anlatılmakta ve karşılaştırılmaktadır. 

Kullanılan örnekler küçük kanallarda yüzen mikroorganizmalardan seçilmiştir. İlk örnekte histogram eşikleme ile 

dinamik maskeleme ve ikincide ise yeni bir teknik olan, özellik takibi ile dinamik maskeleme kullanılmıştır. Sonuçta, 

histogram eşikleme ile maskelemenin yüzme yönü ve şekli rastgele değişen yüzücülerde; özellik takibi ile 

maskelemenin ise şekli ve yönü pek değişmeyen yüzücülerde daha iyi sonuçlar verdiği ortaya çıkmaktadır. Dinamik 

maskelemenin yararını göstermek için maskeleme yapılmadan elde edilmiş PIV sonuçları, sadece imaj maskelemesi 

yapılarak elde edilmiş PIV sonuçları ve hem imaj hem de vektör maskelemesi yapılarak elde edilmiş PIV sonuçları 

karşılaştırılmıştır. Sonuçta hem imaj hem de vektör maskelemesinin kullanılmasının daha uygun olduğu ortaya 

çıkmıştır.  

Anahtar Kelimler: Dinamik maskeleme, İmaj maskeleme, Vektör maskeleme, Histogram eşikleme ile dinamik 

maskeleme, Özellik takibi ile dinamik maskeleme. 

 

INTRODUCTION 

 

Masking is an important step during PIV processing 

and, in many cases, manually-drawn static masks are 

sufficient to remove stationary objects from PIV 

images. Masking can be a relatively easy process if the 

unwanted section or object is stationary, however, it 

becomes an extremely cumbersome and time-consuming 

process if the object is moving. Especially in the case of 

time resolved PIV systems,—where thousands of images 

can be acquired in an image ensemble—manual masking 

of moving objects from each image is simply not 

practical. Static digital masking is rather straightforward 

and has appeared numerous times in the PIV literature; 
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therefore, any reference to static masking techniques is 

omitted here, and the focus will be on dynamic 

masking.  

 

With the introduction of high-speed PIV systems, 

time-resolved flow field information has become more 

readily available. Along with generating large numbers 

of images, this has also driven a necessity for an 

effective dynamic masking process when phase 

separated image processing is required in various 

multi-phase flow investigations. There are often 

significant velocity gradients across phase boundaries, 

which can cause cross-correlation based PIV methods 

to fail. Ironically, phase boundaries are often the focus 

of investigations where important fluid dynamics 

phenomena occur. In interrogation windows which 

overlap the boundary, the PIV computations are more 

likely to represent the displacements of the phase with 

the greater density of particle images. Therefore, it is 

essential to identify the phase boundary accurately in 

order to perform phase-separated PIV evaluations for 

a more accurate representation of the flow field where 

interesting flow phenomena occur. 

 

To date, many multi-phase flow investigations have 

used some form of dynamic masking and these cover 

almost all phase combinations: gas in liquid (e.g. 

bubbly flow reactors, boiling flows), liquid in gas (e.g. 

sprays, free surface flows), liquid in liquid (e.g. 

droplet formation, mixing), gas in gas (e.g. combustion 

diagnostics, flame front investigations), solid in liquid 

(e.g. sediment transport, swimming objects), solid in 

gas (e.g. flapping and flying objects) and solid, liquid 

and gas (e.g. landslide investigations). Separation of 

phases can be accomplished using optical methods, 

digital methods, and using additional hardware 

components (e.g. a secondary illumination mode, 

Lindken and Merzkirch, 2002). Phase separation can, 

of course, also be achieved using a combination of 

these. Of particular interest—and the focus of the 

current report—are the digital methods which create 

dynamic masks of moving objects by applying a 

number of image processing functions using the 

original image ensemble. Although a number of 

different image processing techniques can be used in 

tandem, digital separation methods can be grouped 

under three main categories: (i) size-based separation, 

(ii) greyscale histogram thresholding methods and (iii) 

boundary detection methods. This study is a first 

attempt to summarize existing literature on the three 

digital separation methods. Additionally, two 

examples are provided of recent dynamic masking 

applications from bio-micro-fluidics. The first 

application example demonstrates masking of a 

uniflagellate microorganism using histogram 

thresholding and the second details masking of a 

copepod microorganism using a novel feature 

tracking-based approach.  

 

 

Size-based separation 

 

The first study using moving masks for phase-separated 

PIV processing was by Gui and Merzkirch (1996) in a 

bubbly flow experiment. In their analysis, a digital mask 

was used to track & separate larger gas phase objects 

(bubbles) from the smaller seeding particles in the liquid 

phase for double-frame PIV recordings. The separation 

technique relied on the existence of a significant 

difference in size distribution between the bubbles and 

the seeding particles. In another bubbly flow 

investigation from the same research group, Lindken 

and Merzkirch (2000) used a similar digital masking 

technique. In this study, a secondary high-speed imaging 

system was added to reconstruct the bubble shape and 

position in three-dimensions. The light sheets of the two 

systems were perpendicular to one another, and the 3D 

bubble shapes were reconstructed using the 2D bubble 

contours produced by each of the high-speed imaging 

systems. The use of this secondary imaging system 

allowed phase-separated measurements of simultaneous, 

multiparameter information: (i) two-component planar 

velocity field, (ii) bubble positions and (iii) 3D bubble 

shapes.  

 

Separation of three phases was achieved by Fritz et al. 

(2003), who performed digital dynamic masking in a 

landslide wave tank without using additional hardware 

components. First, the seeding particles in the water 

phase were separated from the sliding granular matter 

and air, using image-processing functions. Second, the 

pixel value fluctuations arising from illumination 

intensity were removed using a sliding background 

subtraction. Finally, the water phase was isolated from 

the other two phases using digital dynamic masks 

similar to techniques used in Lindken & Merzkirch 

(2000). The ramp and water surface were masked to 

avoid biased correlation signals caused by total 

reflections and light scattering from floating seeding 

particles. This masking technique was used successfully 

in un-separated and separated flow conditions, meaning 

the mask was able to follow morphological changes in 

the two-phase flow.  

 

The size-based separation methods naturally rely on a 

significant size difference between the phases. If the size 

difference is small, i.e. if the size of the bubbles are 

close to the size of the particles, phase separation 

becomes quite difficult. Histogram thresholding 

methods, in combination with other image processing 

functions, have certain advantages in such situations and 

can be more effective when applied to other challenging 

flow configurations.  

 

Histogram thresholding methods 

 

Lindken and Merzkirch (2002) improved upon their 

previous size-based separation method by adding a 

histogram thresholding-based separation approach. They 

used the digital mask as an operator in the PIV 
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evaluation algorithm in which the separation of phases 

is performed on individual image histograms. 

Furthermore, a secondary light source in transmission 

mode was used in combination with PIV in order to 

get distinct background levels between particles and 

bubble areas. The detailed image processing steps are 

implemented such that they can be applied to large 

image ensembles in a systematic fashion (automated 

masking).  

 

In the realm of PIV literature, the term “dynamic 

masking” was first coined by Sveen and Daziel (2005). 

In their approach, dynamic masking allowed 

simultaneous measurements of velocity and density 

gradients by separating PIV and synthetic Schlieren 

signals in a gravity wave tank. In the experiment, 

backlit particle shadows were superimposed on 

synthetic schlieren images. The particle images were 

removed using a 3-step masking procedure. First, a 

background subtraction was performed based on pixel 

maximum to remove static features on the tank walls. 

Second, a histogram thresholding was performed to 

locate the particles, and third, an erosion filter was 

applied to increase the imaged particle size. The 

resulting image was used for masking the synthetic 

Schlieren images. Sveen and Daziel (2005) even 

measured the performance of their dynamic masking 

technique by comparing the RMS signal of a) a non-

seeded measurement, b) a seeded measurement 

without a mask and c) the seeded measurement with 

dynamic masking. They observed that the masking 

technique reduces RMS errors by 7%. 

 

Another performance assessment was made by Seol & 

Socolofsky (2008) using a PIV/LIF (Laser Induced 

Fluorescence) experimental setup.  In this study, 

experiments were performed in a bubbly two-phase 

flow and made a three-way comparison between a) 

optical phase separation, b) digital phase separation 

(masking) and c) mixed-phase PIV analysis with 

vector post processing. As a result of the error analysis 

among the data sets, it was found that the vector post-

processing algorithm performed well, but contained 

small errors in the fluid-phase velocity field around 

some bubbles. A five-step image processing chain was 

used to identify the bubble signatures for masking: (i) 

a 3x3 median filter, (ii) histogram thresholding at 5% 

of peak pixel value, (iii) binarization, (iv) opening / 

closing filters and (v) a dilation filter were used to 

generate the masking algorithm. The binary image 

mask was then multiplied by the original image to 

separate the bubbles from the fluorescent particles. In 

the processed particle image, the missing bubble 

regions were filled with an average background pixel 

value instead of a zero-pixel value so that the PIV 

algorithm is not biased by the sharp edges created by 

the masked bubble regions. 

 

Up until 2010, all the histogram thresholding-based 

techniques used in bubbly flow experiments relied on 

the use of additional systems or hardware components. 

In 2010, Deen et al. (2010) and Hammad (2010) 

reported masking of stationary and moving objects using 

only image processing functions, i.e. without the use of 

additional hardware components. Deen et al. (2010) 

described a combined image processing approach that 

deals with uneven illumination and masking, where a 

two-phase flow between the filaments of a spiral wound 

membrane module was digitally separated. The 

approach consisted of (i) intensity normalization to cope 

with uneven illumination, (ii) background subtraction to 

remove stationary objects and (iii) image masking to 

remove the moving bubbles in two-phase flow. The 

removal technique of moving bubbles—which appear as 

bright rings on the image—was similar to what was 

developed by Seol & Socolofsky (2008). Hammad 

(2010) performed phase-separated velocity 

measurements in a two-phase flow experiment in which 

the turbulent bubbly flow was produced by an impinging 

water jet on a horizontal air-water interface. Dynamic 

masking was performed using a sequence of low-pass, 

high-pass and morphology digital filters to yield 

background subtraction, bubble detection and phase 

separation. The liquid-phase containing the seeding 

particles was produced first by identifying the areas 

occupied by bubbles using median filtering, and then by 

subtracting the bubbles from contrast-enhanced images. 

Each phase was evaluated separately using an adaptive 

correlation-based PIV algorithm. 

 

In general, the dynamic masks generated in the literature 

have been accurate down to a single pixel. Wosnik and 

Arndt (2013) applied a slightly different dynamic 

masking technique based on a local threshold filter 

applied on the interrogation area. The experiment was 

performed in a bubbly wake produced by ventilated 

supercavitation, where only the velocity fields of the gas 

phase in the cavitating flow were obtained by PIV 

analysis of the bubbles. In order to retain vectors 

associated with bubbles, the original PIV image was 

thresholded not pixel-by-pixel, but by the size of the 

final interrogation area. The masked and unmasked 

regions were defined based on a pixel value summation 

over the final interrogation area compared to a defined 

threshold value. In other words, if the sum of the pixel 

values was above a certain threshold, the mask was 

“on”, and if below the mask was “off”. Therefore, the 

1024x1024 original image was converted to a 63x63 

binary image mask for 32x32-pixel final interrogation 

area and 50% overlap. That approach naturally 

produced a mask with coarser resolution. 

 

Histogram thresholding-based dynamic masking has also 

been applied in other challenging applications. Among 

these are (i) the masking of organisms during 

locomotion, (ii) the masking of droplets during break-up 

and (iii) the masking of reactants and products in 

combustion diagnostics.  
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Wadhwa et al. (2014) used a dynamic masking 

algorithm to investigate the flow field around A. 

Tonsa, a sub-millimeter sized microorganism, during 

locomotion. A two-step masking procedure was 

applied to remove the organism from the particle 

images: The procedure consisted of a sliding 

averaging of the pixel intensity values followed by 

thresholding to remove those pixels from the analysis 

which corresponded to the organism. The masking 

process made it “impossible” to get measurements in 

the close vicinity of the organism, especially around 

the swimming appendages. As a result, the masking 

parameters had to be adjusted for each recording 

manually in order to minimize the loss of useful data. 

After every pass of the processing and during post-

processing, outliers were removed using a median 

filter and de-noising. Later Ergin et al. (2015a) applied 

a feature tracking-based dynamic masking approach to 

achieve better results using the same raw images. This 

approach will be described in detail in Section 3. 

 

Carrier et al. (2015) used dynamic image and vector 

masking successfully in a droplet formation 

experiment where the dynamic mask was used to reject 

spurious vectors in the non-seeded continuous phase. 

The first step was to isolate the features in motion (the 

droplet interface and the seeding particles) from the 

static background. For this purpose, the harmonic 

mean was subtracted from the inverted pixel values of 

the raw shadow images. In addition to this, a static 

mask was applied to remove residual wall reflections. 

Finally a suitable histogram threshold level was 

selected so that only the features in motion had a non-

zero pixel value. Then a sufficient number of dilations 

(bright pixels flooding the dark pixels) were 

performed to fill the gaps between the particles and the 

interface entirely. A natural side effect of this dilation 

is the ‘fattening’ of the finger, which can be remedied 

by an equal number of erosions (dark pixels flooding 

the bright pixels). The masks generated in Carrier et 

al. (2015) were successful in following the 

morphological changes during the droplet formation, 

especially during the break-up stage (Fig. 1). A movie 

of the droplet break-up is available in Ref M1. 

Stevens et al. (1998) performed phase-separated PIV 

measurements in a combustion application. The 

experiment consisted of a premixed turbulent methane-

air flame in a stagnation plate configuration, where a 

dynamic masking technique was used to improve the 

PIV results for interrogation areas located along the 

flame front. In order to separate the reactant and product 

zones, local seeding density was used as the 

differentiator. The seeding density is often higher before 

combustion, and lower afterwards due to a sudden 

expansion of gases. As a result of the seeding denisty 

change, local mean pixel intensity in the PIV images is 

higher in the air-fuel mixture before combustion than 

after. Stevens et al. (1998) were able to determine the 

thin flame front using the Light Sheet Tomography 

technique, which is based on the local intensity of Mie 

scattering from the seeding particles. A suitable 

threshold applied on the mean pixel values was used to 

separate the two zones and a cross-correlation-based 

PIV algorithm was applied in each zone separately. 

 

The histogram-thresholding techniques seem to be more 

frequently applied in the literature; particularly for the 

masking of multiple medium-sized features in the flow 

field, such as bubbles, microorganisms, and droplets. 

Due to their flexibility and their ability to handle more 

challenging situations, they can even produce successful 

results along more complex phase boundaries such as a 

flame front in combustion applications.  

 

Boundary detection methods 

 

Boundary detection methods are more suitable for 

separation of phases across longer, single-phase 

boundaries such as flame fronts, surface instabilities 

and liquid free surfaces. For example, Coron et al. 

(2004) used a boundary detection method for phase 

separation in a turbulent premixed flame, very similar 

to what is described by Stevens et al. (1998). Both 

groups were successful in (i) obtaining the phase-

separated instantaneous velocity fields simultaneously, 

and (ii) improving the accuracy of the PIV 

measurements in the vicinity of the flame front. 

Additionally, Coron et al. (2004) were able to measure 

 
 

Figure 1. Snapshot of the flow field at rupture instant during the droplet break-up experiment performed by Carrier et 

al. (2015). Colors indicate velocity magnitude, max velocity 270 mm/s. Histogram thresholding based dynamic mask is 

able to follow morphological changes during droplet formation.  
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the flame front contour location. Coron et al. (2004) 

also perform a phase separation between fuel and 

reactants based on the fact that Mie scattering light 

intensity from the seeding particles is lower in 

products than in reactants—due to the gas expansion 

across the flame front.  In this study however, the 

active (deformable) contours technique was used for 

boundary detection rather than a histogram 

thresholding method. These deformable contours can 

be breifly described as curves or surfaces defined 

within a multi-dimensional domain which can move 

toward desired features (usually edges). The 

preferred model for their study employed parametric 

active contours, which allowed a compact 

representation of data. The boundary detection 

technique using active contours is an iterative 

procedure, in which an initial contour on the image 

domain is allowed to deform. Coron et al. (2004) 

used a contour obtained by the reliable averaging 

windows technique as an initial guess. After the final 

flame front contour was obtained, a mask was 

produced on one side of the contour at a time with 

PIV analysis performed in the fuel mixture phase and 

the combustion products phase separately. As a 

result, in regions where the interrogation windows 

stretch across the flame front, the densely seeded 

fuel phase did not influence the correlation function 

in the reactants phase.  

 

Another application where boundary detection 

methods prove to be more suitable are flows with 

free liquid surfaces. Sanchis and Jensen (2011) used 

Radon transformation for automatic boundary 

detection and performed phase separation in a 

stratified two-phase flow through a circular pipe. 

The boundary was identified by the seeding particles 

floating at the free surface, which appeared as a long 

connected dotted line in PIV recordings. The Radon 

transform is a mathematical tool well suited for the 

detection of linear features in noisy images and is 

commonly applied in computer vision. This 

technique tends to suppress pixel intensity 

fluctuations due to noise by the process of 

integration. A normalization procedure was included 

to take into account the aspect ratio of rectangular 

input images. During image processing, 

segmentation was necessary and an increased 

number of image segments were used in areas with 

increased curvature. Hermite cubic interpolation 

between adjacent segments allowed the 

reconstruction of the interface piece by piece across 

the entire image. This technique was able to track the 

interface with an accuracy of +/- 0.67 pixels under 

worst-case scenarios; i.e. in low particle density and 

with a noisy background.  

 

Honkanen and Saarenrinne (2003) provided a good 

overview of other digital object separation methods 

and their application in PIV analysis of turbulent 

bubbly flows. They described four different object 

separation methods including (i) probability of centre, 

(ii) convex perimeter, (iii) curvature profile and (iv) 

Shen’s method. The last three are breakpoint detection 

methods and were found to be more efficient than the 

probability of centre method for bubbly flows. Their 

superior performance is due to the fact that they search 

for connecting points of outlines of individual objects on 

the perimeter of the segment. Among all four methods 

the curvature profile method located the connecting 

points most accurately and most reliably, and it was also 

the least sensitive to noise. It should be noted that these 

findings only apply for bubbly flows where smooth 

contours are normally encountered during PIV 

recording. 

 

As can be seen in the literature, there are a great number 

of different masking approaches used by researchers, 

and it is quite difficult to universally comment whether 

one approach is better than the other. In the current 

work, the aim is not to name the best masking technique 

that works in every scenario. On the contrary, based on 

previous studies, the dynamic masking approach should 

be tailored for each application. Regardless of the 

approach being used, mask definition is the same; 

information from one or more phases must be 

suppressed while leaving information from the 

remaining phase(s). In the next section the mask 

definition for image masking and vector masking is 

presented. 

 

Mask definition  

 

The goal of dynamic masking is to get a specific pixel 

value (such as “0”) on the object that is to be masked 

and retain the pixel value information everywhere else 

for each image in the ensemble. This can be achieved in 

a 3-step procedure. In step one; a new image ensemble 

is produced by filtering, thresholding etc. to obtain a 

pixel value of 0 on the object and 1 everywhere else 

(Gui and Merzkirch 1996). In step two, each time step 

of the new image ensemble is multiplied by the 

corresponding time step of the original ensemble. If the 

original image background pixel value is nonzero, this 

results in a sharp pixel value difference between the 

mask and the image background.  As a remedy, in step 

three, background subtraction techniques can be used to 

obtain a 0 pixel value in the masked ensemble’s 

background, or the masked area can be padded with the 

average pixel value of the background (Seol & 

Socolofsky 2008). Finally, the mask ensemble can be 

applied to mask either the raw images (image masking) 

and/or the PIV results (vector masking). In short, the 

preferred image masking definition here is following 

Gui and Merzkirch (1996), where the mask is defined as 

a binary image and it is applied on the raw images using 

pixel-by-pixel image multiplication:  

Δ (i,j)= 0 if the pixel, p(i,j) belongs to the phase that is 

to be masked (Phase 1) 

Δ (i,j)= 1 if the pixel, p(i,j) belongs to the phase that is 

subject to PIV evaluation (Phase 2). 
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A typical phase-separated PIV evaluation of a two-

phase flow starts with image masking of phase 1 and 

PIV evaluation in phase 2. Then the binary mask is 

inverted to mask phase 2 using a simple pixel 

inversion and PIV evaluation is performed on phase 1. 

An additional vector masking step is usually applied 

after each evaluation in order to clean up the vectors in 

the masked phase close to the phase boundary (see 

Fig. 6). The vector masking definition is similar to 

image masking: 

Δ (i,j)= 0 if the vector V(i,j) belongs to the phase that 

is to be masked (Phase 1) 

Δ (i,j)= 1 if the vector V(i,j) belongs to the phase that 

is subject to PIV evaluation (Phase 2) 

 

Finally, both vector maps are merged to represent the 

two-phase flow field. For multiphase flows where 

more than 2 phases are present, the same approach can 

be used a number of times until each phase is 

represented in the flow field. In some cases, one of the 

phases could be a solid boundary in motion (e.g. 

flapping wing, rotating vane etc.) where PIV 

evaluation may not be necessary. In the following two 

sections, different dynamic masking strategies are 

described using the above mask definition.  In the 

Section 2, flow around a uniflagellate swimmer, 

Euglena Gracilis (E. Gracilis), is isolated using 

histogram thresholding-based dynamic masking. In the 

Section 3, flow around a breaststroke swimmer, 

Acartia Tonsa (A. Tonsa), is isolated using a novel 

tracking-based dynamic masking technique. Recently, 

similar dynamic masking procedures for E. Gracilis 

and A. Tonsa have been reported in Ergin (2015) and 

in Ergin et al. (2015a), respectively. The current work 

uses the same two raw particle image ensembles, but 

provides improved comparisons and descriptions 

(including flow charts for data analysis) of masking 

and velocimetry. In the case of E. Gracilis, the 

importance of dynamic masking is demonstrated by 

providing a three-way comparison between PIV results 

with a) no masking, b) image masking and c) vector 

masking. Similarly for A. Tonsa, a comparison 

between unmasked and masked PIV results is 

provided.  

 

HISTOGRAM THRESHOLDING-BASED 

DYNAMIC MASKING  

 

The microorganism E. Gracilis is known to use a 

single whip-like structure, called flagellum, in 

combination with rolling, stretching and contracting its 

flexible body. A schematic of this mono-flagellate is 

shown in Fig. 2. Its body length without the flagellum 

can vary between 20µm and 100µm. The flagellum is 

located at the end close to the photoreceptor, and the 

cell nucleus is centrally located in its body. Although 

imaging the flagellum is challenging, the 

photoreceptor and the cell nucleus can be detected 

easily under a microscope (Fig. 2). 

 
Figure 2. Schematic of E. Gracilis. Flagellum is added 

manually as it cannot be resolved by the optics. The 

photoreceptor, nucleus and chloroplast are visible under the 

microscope. 

 

The experimental measurement setup used in this 

masking example is a MicroPIV system manufactured 

by Dantec Dynamics.  The system components include 

an inverted fluoresence Microscope (HiPerformance), a 

sensitive CMOS detector (SpeedSense M310), a 

synchronization device (80N77 Timer Box), and a 

pulsed LED illumination system (Microstrobe). In 

biological flows, high-power pulsed laser illumination is 

often not preferred as this can disable the organism or 

influence its normal locomotion behaviour. For this 

reason, a lower-power LED-based pulsed illumination 

was used in backlit transmission mode which produced 

shadow particle images. 1µm-diameter seeding particles 

were introduced in small quantities until a sufficient 

seeding density was achieved for PIV. The seeding 

density was kept at a low level in order to avoid a 

change in normal swimming behaviour. The particle 

images were recorded at a frame rate of 12.5 fps, with a 

resolution of 1280 x 800 pixels. The images were 

acquired using a 40x magnification objective, producing 

a 0.64 mm x 0.4mm field of view (FoV). Later a smaller 

region of interest (ROI) is extracted with a resolution of 

323 x 529 pixels, corresponding to 162µm x 265µm in 

the object space. Single-frame image acquisition was 

performed with a constant time difference of 80ms. 

Since the FoV was relatively small (~0,25mm2), it was 

often necessary to wait until an organism swam through 

the FoV with the measurement system in operation. The 

images were continously acquired and stored in a ring 

buffer with the acquisition stopped manually after the 

organism had passed through the FoV. 83 consecutive 

frames were analyzed to produce 82 flow field 

measurements. Total recording time was 6.56s. Further 

details can be found in Ergin (2015). 

FFllaaggeelllluumm  

NNuucclleeuuss  

CChhlloorrooppllaasstt  
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Fig. 3a shows the raw PIV recording of a 47,5µm-tall 

E. Gracilis in the sparsely seeded flow. In the acquired 

ensemble, E. Gracilis meanders upwards through 

filtered water; covering a net distance of 

approximately 256µm (Fig. 4). Use of filtered water 

provides a cleaner, foreign-object-free background in 

the raw images and allows more precise seeding 

density adjustments. Furthermore, other marine 

organisms (predator or prey to E. Gracilis) that can 

change E. Gracilis’ normal locomotion behaviour are 

excluded.  

 

 
(a)     (b) 

Figure 4. Quality of dynamic masking (a) Recorded position 

(b) dynamic mask of E. Gracilis every 0.96s. 

 

The first step in image pre-processing is pixel 

inversion in order to work with positive particle 

images rather than particle shadows. Although 

working with (inverted) positive particle images 

during processing, it is preferable to present (re-

inverted) shadow particle images for better visibility 

(Fig. 3b and 3d). In the second step, a background 

subtraction is performed using the minimum pixel value 

found in the inverted ensemble (Fig. 3b). Next, a 

histogram thresholding-based dynamic mask is produced 

using the ensemble in the second step (Fig. 3c) and 

finally image masking is performed  (Fig. 3d). A flow 

chart describing the complete analysis chain for dynamic 

masking of E. Gracilis is shown in Fig. 5. 

 

 
Figure 5. Flow chart describing the analysis chain for 

dynamic masking of E. Gracilis.  

 

In the current study, the following image processing 

chain produced an acceptable dynamic mask: a 9x9 

median filter, a closing filter with 10 iterations, 

thresholding (min:125 max:4096), pixel inversion, 

thresholding (min:3970 max:4096), erosion filter with 2 

iterations, thresholding (min:0 max:1). The final 

thresholding step produces the binary image mask. In 

order to demonstrate the quality of the dynamic mask, 

position of E. Gracilis (Fig. 4a) and the used mask (Fig. 

4b) are shown side by side at selected time steps. One 

immediate observation is that the mask is slightly larger 

than the organism. This is intentional in order to keep a 

small margin around the masked object, and the margin 

thickness can be controlled by the number of erosions 

and dilations. Another observation is that the used mask 

may produce non-ideal results around image boundaries 

(see for example the top of Fig. 4b at t=5,76s). Apart 

    
(a)     (b)     (c)     (d) 

Figure 3. E. Gracilis during locomotion in water with 1-µm diameter seeding particles at t=1.92 s. (a) Raw image before 

background subtraction (b) after pixel inversion and background subtraction (re-inverted) (c) dynamic mask (d) particle image 

after image masking (re-inverted)  
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from these, the dynamic mask captures the position 

and the shape of E. Gracilis in a successful fashion.  

 

For velocity calculations, an adaptive PIV algorithm is 

used, which is an advanced particle displacement 

estimator implemented in DynamicStudio (Dantec 

Dynamics, Skovlunde, Denmark). Briefly, the 

implementation is a cross-correlation based, adaptive 

and iterative procedure employing vector validation 

and deforming windows: First, the displacement is 

calculated on an initial interrogation area (IA), which 

is larger in size compared to the final IA. In each step 

the IA is shifted by the displacement calculated in the 

previous step. For the case of E. Gracilis the final 

interrogation windows of 32x32 pixel are used with 

75% overlap. Window deformation is performed by 

adapting the IA shape to velocity gradients, with 

|du/dx|, |dv/dx|, |du/dy|, |dv/dy| < 0.25. 

 

Several passes can be made to further shift & deform 

the windows to minimize the in-plane particle dropout. 

For each IA size, this procedure is repeated until a 

convergence limit in pixels or a maximum number of 

iterations is reached. Then a 9-point, two-dimensional 

Gaussian fit is performed on the highest correlation 

peak to obtain the displacement field with subpixel 

accuracy in each pass. A number of FFT window 

(Hanning, Hamming etc.) and filter functions can be 

applied during the analysis. Between passes, spurious 

vectors are identified and replaced with a number of 

validation schemes including peak height, peak height 

ratio, SNR & Universal Outlier Detection (UOD) 

(Westerweel and Scarano 2005). Following 

Westerweel and Scarano (2005), UOD is performed 

between passes in a 5x5 neighbourhood with 0.1 

minimum normalization level and a detection 

threshold of 2.0. The vectors are considered valid if 

the peak height ratio is larger than 1.25. In other 

words, the displacement calculation is considered 

reliable when the highest peak (the assumed signal 

peak) is at least 1.25 times higher than the second 

highest peak (assumed to be noise) in the cross-

correlation function. This is certainly not the only 

vector validation method, but it is one of the oldest. A 

threshold value of 1.2 is often used in the literature, so 

in this respect the present threshold value of 1.25 is 

more conservative. The subpixel positioning accuracy 

of the Adaptive PIV algorithm is reported as 0.06 

pixels with 95% confidence (Ergin et al. 2015b). The 

0.06 pixels correspond to a 27.5nm displacement in 

the object space, and the velocity uncertainty is 

estimated as 0.34µm/s. An average filter in a 5x5 

neighbourhood and vector masking is applied after 

Adaptive PIV computations.  

 

A close up of the flow field around E. Gracilis at 

t=1.92s is shown in Fig. 6. In this figure, vectors 

represent the u and v components of the flow field and 

colors represent the magnitude of local velocity, where 

blue  areas  represent  stagnant  flow  regions. Figure 6  

((aa))   

((bb))   

((cc))   
 

Figure 6. Flow field around E. Gracilis at t=1.92s.   

(a) Without masking, (b) with image masking only, and  

(c) with both image masking and vector masking.  

Max velocity is 12µm/s in b and c. 
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includes three subfigures in order to make a three way 

comparison of the flow field first without the 

application of masking (Fig. 6a), second with image 

masking but without vector masking (Fig. 6b), and 

third with both image and vector masking (Fig. 6c). 

The raw particle image is also included in Fig. 6c in 

order to show the position of E. Gracilis with respect 

to the flow field. 

 

It is clear from Fig. 6a that without any masking the 

flow field in the immediate vicinity the organism is 

contaminated by the upward motion of the organism 

itself. This is simply because the features on the 

organism produce a strong correlation peak in 

interrogation areas that overlap the organism and the 

fluid around it. Application of image masking (Fig. 

6b) improves the situation significantly for the liquid 

phase, but this time some erroneous vectors are 

registered on the organism; vectors indicate a 

downward motion while the organism swims upwards. 

These spurious vectors can be cleaned with the 

application of vector masking (Fig. 6c), which leaves 

us with the flow field around E. Gracilis where the 

information is only coming from the liquid phase. The 

flow field reveals that the fluid is drawn towards the 

organism upstream and downstream, and fluid is 

expelled from the organism on the sides. The 

downstream flow field can be explained as the wake in 

the aft of the swimmer, and the upstream flow field is 

produced most likely by the flagellum pulling a stroke, 

the main source of propulsion. Due to continuity 

around the organism, the fluid is expelled outwards 

from the sides. This flow field also produces four 

small vortices, one at each corner of the image, i.e. due 

Southwest, Southeast, Northwest and Northeast of the 

organism. 

  

The histogram thresholding-based dynamic masking 

example described above proves to be quite powerful 

as it is able to tackle several important challenges 

encountered in the image ensemble: uneven 

illumination (Fig. 3a), random object trajectory, 

random object shape, and random object velocity (Fig. 

4). Although quite powerful, histogram-thresholding 

based dynamic masking strategies may not work for 

certain applications. In the following section, the 

feature tracking-based dynamic masking strategy was 

used, which proved to be more successful for the 

application.  

 

FEATURE TRACKING BASED DYNAMIC 

MASKING 

 

Recently the hydrodynamics of a ~220-μm-long A. 

Tonsa (Fig. 7) nauplius were analyzed in Wadhwa et 

al. (2014) using time-resolved MicroPIV/PTV 

(Particle Tracking Velocimetry), in which a two-step 

masking technique was applied to remove the 

organism from the particle images.  

 

 
Figure 7. Schematic of A. Tonsa nauplius at the beginning of 

a power stroke. From Ergin et al. (2015a). 

 

vicinity of the organism, especially around the 

swimming appendages. As a result, Wadhwa et al. 

(2014) had to adjust the masking parameters for each 

recording manually in order to minimize the loss of 

useful data. Later Ergin et al. (2015a) made some 

improvements on the masking strategy of Wadhwa et al. 

(2014) and provided some phase-locked averaged 

results. In the current study, the same particle image 

ensemble is used, but a more effective approach for both 

masking and velocimetry is employed. Although the new 

strategy is not successful in masking the swimming 

appendages, it enables more accurate measurements in 

the close vicinity of the organism without having to 

adjust masking parameters manually for each image and 

without having to apply phase-locked averaging. In the 

current study, an improved tracking algorithm is used, 

which tracks both the horizontal and the vertical position 

of A. Tonsa, whereas, Ergin et al. (2015a) performed 

tracking only in the vertical direction. Since A. Tonsa is 

moving slightly to the left (see Fig. 11), a larger mask 

was used in Ergin et al. (2015a). Second, the analysis 

consists of 16x16 final IA size with 50% overlap 

followed by a UOD scheme with a detection threshold 

of 0.5. This enabled the comparison of masked and 

unmasked flow fields at any instant, without resorting to 

phase-locked averaging. 

 

The experimental setup for the second application 

example is described in Wadhwa et al. (2014) and is 

summarized here briefly: Copepods A. Tonsa were 

cultured at 18°C and were transferred before 

experiments to the test aquarium containing filtered 

seawater. Only a few specimens were transferred in 

order to avoid possible interactions between them. The 

test aquarium is a glass cuvette (10x10x40mm) placed 

on a horizontal stage and kept at room temperature, 

between 18°C and 20°C. 

 

The experimental measurement setup is a long-distance 

Micro Particle Image Velocimetry (LDµPIV) system 

where the light sheet propagation direction and the 

camera viewing direction are perpendicular. As 

described in the previous application, high-power visible 

laser illumination is often not preferred in biological 
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flows. For this reason, a low-power, continuous-wave 

infrared laser (Oxford Lasers Ltd, 808nm wavelength) 

was used. Sheet forming optics were assembled to 

produce a 150µm thick light sheet, defining the 

measurement depth of the experiments. TiO2 seeding 

particles smaller than 2µm were introduced in small 

quantities until a sufficient seeding density was 

achieved. The particle images were recorded on a 

high-speed CMOS detector (Phantom v210, Vision 

Research Inc.) at a resolution of 1280 x 800 pixels. 

Single frame image acquisition was performed with a 

constant time difference of 500µs between frames, 

corresponding to 2000fps. The images were acquired 

with 11.65x magnification producing a 2.2mm x 

1.4mm FoV (approx 3mm2). Once again, the images 

were acquired and stored continuously in a ring buffer 

and the acquisition was stopped manually after the 

organism had passed through the FoV. Consecutive 

frames were used for two-frame PIV processing - quite 

typical for time-resolved PIV measurements: 65 

frames were analyzed to produce 64 flow field 

measurements. Further details can be found in Ergin et 

al. (2015a). 

 

The first, middle and last frame of the image ensemble 

are shown in Fig. 8, where a ~0.22mm tall A. Tonsa is 

in motion. During the experiment, A. Tonsa propels 

itself upwards through filtered seawater by pulling 

three breaststrokes and covering a distance of 

approximately 650µm (Average swim speed approx. 

20mm/s). It is observed that A. Tonsa moves in an 

almost-vertical straight line and its angular orientation 

does not change significantly (Fig. 8 and 10). 

Subsequent image analysis includes feature tracking, 

image masking, velocity field calculation, vector 

masking and image masking. 

     

Several different histogram thresholding-based 

dynamic masking strategies proved unsuccessful in a 

laboratory-fixed coordinate system; i.e. the “real-life” 

situation where the fluid is stationary and the 

microorganism is in motion. Since the microorganism 

did not rotate around its axis or change shape and 

moved in a relatively straight trajectory, a pixel-

accurate, cross-correlation based tracking method was 

implemented in order to track its position throughout 

the ensemble. The idea behind this tracking technique is 

to move to an object-fixed coordinate system in which 

the microorganism is fixed and the surrounding fluid is 

in motion. When the object is fixed, conventional static 

masking techniques can be applied on the images and/or 

on the calculated vectors. This was achieved in three 

steps: First, a feature was defined using the organism’s 

image in the first frame (Fig. 8a). It was possible to 

identify the organism throughout the ensemble because 

some of the seeding particles were stuck on the 

organism (Fig. 9). For this reason, the tracked feature 

was selected as the body of the organism, excluding the 

appendages. 

 

 
Figure 9. Close up of the A. Tonsa showing particles stuck on 

its body. 

      
(a)      (b)    (c) 

Figure 8. (a) First, (b) 33rd (middle), and (c) 65th (last) frames of the raw particle image ensemble. Boxes show the approximate 

borders of the ROI extracted around the organism.  
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Second, a new pixel-accurate tracking algorithm was 

implemented in Matlab, which locates the peak of the 

cross-correlation function between the defined feature 

and the entire image (Fig. 8). This essentially searches 

for the defined feature within the entire image. The 

algorithm is only pixel accurate because no subpixel 

fitting was performed during the computations. Figure 

10 shows the calculated cross correlation function for 

the first (Fig. 10a), the middle (Fig. 10b) and the last 

(Fig. 10c) frames in the ensemble, and the position of 

the cross correlation peak can be compared to the 

position of the organism in Fig 8a, 8b and 8c. The 

maximum pixel value of the cross correlation function 

in the ensemble reveals the nearly-linear trajectory of 

A. Tonsa (Fig. 11). 

 

  
Figure 11. A. Tonsa’s nearly linear trajectory during the 

experiment. 

 

Third, once the organism location was established on 

all frames, a constant-size ROI, (576x384 pix) was 

extracted around it (Fig. 8). The vertical ROI 

dimension (384 pixels) was the maximum value which 

could be used in all frames. The limitation was due to 

the first and the last frames, in which the imaged 

distance fore and aft of the organism must stay within 

the FoV throughout the ensemble (Fig. 8a and 8c). The 

horizontal ROI dimension (576 pixels) was a value 

which fixed the organism approximately in the center 

of the ROI horizontally, and reached sufficiently far 

into the flow field. This three-step procedure fixed the 

coordinate system on the organism and allowed the 

application of a conventional static masking procedure 

to remove the organism (image masking) and, 

eventually, the spurious vectors on the organism 

(vector masking). In this application, final 

interrogation windows of 16x16 pixel were used with 

50% overlap for PIV processing. Here, the uncertainty 

of 0.055 pixels corresponds to a 94.4 nm displacement 

in the object space, and the velocity uncertainty is 

estimated as 189 µm/s; i.e. 1% compared to the average 

swim velocity. A flow chart describing the analysis 

chain for dynamic masking and PIV analysis of A. 

Tonsa is shown in Fig. 12. 

 

 
 

Figure 12. Flow chart describing the analysis chain for 

dynamic masking of A. Tonsa. 

 

The organism’s swim velocity history could be 

measured by probing a vector in the far field, upstream 

of or beside the organism. A time history of this vector 

showed that the nauplius is an almost perfectly periodic 

swimmer, and that three full breaststroke cycles were 

recorded (Ergin et al. 2015a). Figure 13 shows the flow 

field around the organism during the power stroke in the 

vicinity of the maximum swim speed. This figure 

includes two subfigures in order to make a comparison 

of the flow field without tracking and masking (Fig. 

13a), and with tracking-based image and vector masking 

(Fig. 13b) at the same time instant. In Fig. 13b, the 

instantaneous swim velocity value is subtracted to show 

the flow field details around the organism. Similar to the 

case for E. Gracilis, it is clear from Fig. 13a that, 

without any masking, the flow field in the immediate 

vicinity of the organism is contaminated by the upward 

motion of the organism itself. This error is due to the 

fact that the features on the organism produce a strong 

correlation peak in interrogation areas which overlap 

both the organism and the fluid surrounding it. 

Application of image and vector masking (Fig. 13b) 

provides a cleaner picture where the flow field 

information around A. Tonsa is only extracted from the 

liquid phase.  

      
       (a)     (b)     (c)  

Figure 10. Correlation of the organism with itself in the (a) first, (b) 33rd (middle), and (c) 65th (last) frames.  
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(a)  

(b)  
 

Figure 13. Flow field during the power stroke at t=3.5ms, 

(a) without masking (b) with image and vector masking. 

Swim speed at this instant is ~40mm/s. Both subfigures are a 

result of 16x16 final IA size, 50% overlap followed by UOD 

scheme with a detection threshold of 0.5. 

 

In both masked and unmasked results, the wake behind 

the organism and two vortices are detected; one on 

each side of the organism and each with opposite 

rotation directions. The counter-rotating vortex system 

is an indication of a toroidal (ring) vortex system in 

three-dimensions which is in agreement with the 

previous findings in Wadhwa et al. (2014). The spatial 

dimension of the toroidal vortex is similar to the length 

of the organism. The observed toroidal vortex ring is 

more clearly visible in Fig. 13b when compared to Fig. 

2 in Wadhwa et al. (2014). This is primarily due to the 

improved image processing functions used here. The 

masking process successfully removes the contribution 

of moving particles stuck on the organism.  

 

DISCUSSION, RECOMMENDATIONS & 

FUTURE WORK 

 

Masking will continue to be an important step in PIV 

analysis because it allows phase-separated 

measurements which improve the velocity accuracy 

along phase boundaries. Phase boundaries are 

locations where many interesting flow phenomena 

occur, such as velocity gradients, flow separations, gas 

expansions, impinging flows and many others. 

Ironically, this is where masking algorithms often fail 

and generate the most measurement uncertainty. This 

necessitates the evaluation of mask quality along the 

actual phase boundaries and warrants some future 

investigations into the quantification of mask 

performance.  

 

It was shown in both application examples that masking 

improves the accuracy and understanding of the flow 

field, by removing the swimming object from the 

analysis. Furthermore, it is shown in the case of E. 

Gracilis that vector masking should almost always be 

accompanied with image masking for a better 

representation of flow around the organism. It is 

described here as “a better representation” of the actual 

flow field, because the accuracy can still be improved. 

For instance, there are often sharp velocity gradients in 

thin boundary layers and the size of the interrogation 

window where the cross-correlation is applied is 

relatively large. In such situations, the displacement 

estimation is often biased towards the faster moving 

fluid particles which are located away from the wall in 

the correlation window. Vector repositioning, wall 

windowing or particle tracking techniques can further 

improve the accuracy close to these boundaries. 

Achieving improved accuracy using dynamic masking in 

conjunction with the above mentioned boundary 

techniques will be the subject of future investigations. 

 

It is clear that the use of image processing functions is 

key for dynamic masking. Some image processing 

functions are more preferrable than others in the 

literature—median, opening, closing, erosion, dilation 

and threshold filters—and are widely used for histogram 

thresholding-based masking algorithms. Since the 

number of experimental conditions is infinite, it is 

essential to use these flexible image-processing 

functions to generate appropriate image masks. 

Additionally, manual mask generation is a user-

dependent process and should be avoided if possible. 

Instead, masking should be performed based on 

algorithms in a systematic and traceable fashion. 

Another recommendation is to work with positive 

particle images during algorithm development, which 

can be achieved by a simple pixel inversion in cases 

with particle shadows. 

 

Based on the results provided here, and in the author’s 

opinion, a histogram thresholding-based dynamic masking 

is recommended if the object / surface is deforming and 

changing direction. On the other hand, feature tracking-

based dynamic masking should be a better choice for 

dynamic masking if the object is rigid and does not rotate 

within the FoV. In practice, this is often not the case, 

because the object is either deforming or rotating. In order 

to cope with these situations, future investigations will 

focus on more advanced feature-tracking techniques 

where the tracked feature is changing shape and/or 

orientation from one frame to the next. 

 

Currently, no automated dynamic masking technique is 

reported which is capable of working globally for every 

application. There is a general demand for a robust 
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technique that performs automatic object recognition 

and phase separation, both for double-frame and for 

time-resolved acquisitions. This warrants future 

investigations which focus on a hybrid technique 

(histogram thresholding + boundary detection + 

tracking) for automated dynamic masking with 

minimum input from the user. Edge detection methods 

are few and far between in the literature, which may 

indicate more possibilities for better algorithms. In 

particular, the actively deforming contours technique is 

interesting for investigation because of its applicability 

to both smooth and rough contours. 

 

One final remark can be made on the effect of 

measurement plane thickness and object thickness on 

the accuracy of the masking techniques described here. 

(The thickness of the measurement plane is defined by 

the depth of field of the imaging system in the case for 

E. Gracilis and by the thickness of the light sheet in the 

case for A. Tonsa.) If the thickness of the object was 

much smaller than the measurement plane thickness, 

some particles may have been present in the illuminated 

zone between the object and the objective and could 

potentially be registered on the PIV images. This would 

have added some noise on top of the object image and 

may have had a negative influence on the accuracy for 

both masking techniques.  Fortunately, in both dynamic 

masking applications presented here, the imaged objects 

are are thicker than the measurement plane, so noise-

free object images were recorded.  
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