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Abstract

A linear graph is a bipartite graph with parts P and L that have propertites: LG1: Any two distinct vertices of P have exactly common
neighbour one vertex. LG2: δ (G)≥ 2. In this paper, we determined basic properties of finite linear graph.
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1. Introduction

In this paper, all graphs are considered finite, undirected without loops or multiple edges. We will mainly deal with the graph properties
namely girth, distance, neighborhood, degree, and regularity index of it. For more details,(see [8]). Let G be a graph with vertex sets
V (G) = P ∪L and edge sets E(G) = E, respectively. The degree of a vertex p is number d(p) of edges which are incident with it. The
minimum degree among the vertices of G is denoted by δ (G). The neighborhood of a vertex u∈V (G) is a set N(u) = {v∈V (G) : uv∈E(G)}.
The common neigborhood of vertices u1,u2, ...,un is a set CN(u1,u2, ...,un) =

⋂n
i=1 N(ui) and cn(u1,u2, ...,un) = |CN(u1,u2, ...,un)| is the

number of common neighborhood. The distance is length of the shortest path between two vertices of G and it denote by d(u,v); u,v ∈V (G).
The diameter of G diamG = max{ d(u,v) : u,v ∈V (G)}. The girth of G denoted g(G) is the lenght of it’s shortest cycle.A connected graph
that is 2-regular is called a cycle graph. All definitions and notations may be found in [1],[4],[5],[6],[7]. X ⊆ V(G) is called edge-free if
{p,q} /∈ E(G) for all p,q in X. A bipartite graph G = (P ∪L ,E) is a graph whose vertex set P ∪L can be partitioned into subsets P and
L in which end vertices of each edge of E(G) belongs either P or L . Also the parts of P and L edge-free [3].
In this paper show that elements of P and L denoted by p,q, ... and L,K, ..., respectively. We give some theorem for useful in the proof of
our result.

Theorem 1.1. [1] G is a bipartite graph if and only if it has not odd cycle.

2. Main Results

Definition 2.1. A linear graph is a bipartite graph with parts P and L such that satisfies the following conditions:
LG1: For all p,q ∈P such that p 6= q, cn(p,q) = 1,
LG2: δ (G)≥ 2.

Example 2.2. Let S=(P,L) be nontrivial linear space. Then incidence graph of S is a linear graph. (For linear spaces, see [2]).

Corollary 2.3. Let G = (P ∪L ,E) be a linear graph. Then G does not contain isoled vertex and pendant vertex.

Proof. It is clear from definition of linear graph (δ (G)≥ 2).

Corollary 2.4. Let G be a linear graph. Then it does not contain odd cycle.

Proof. It is clear from Definition 2.1 and Theorem 1.1.

Lemma 2.5. Let G be a linear graph. Then cn(L,K)≤ 1 for all K,L ∈L .
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Konuralp Journal of Mathematics 155

Proof. Let G be a linear graph. Suppose that cn(L,K)≥ n for K,L∈L and n ≥ 2. Then there exist vertices p1, p2, ..., pn∈P such that
{p1, p2, ..., pn} ⊆CN(L,K).
Then i 6= j, for pi, p j ∈ {p1, p2, ..., pn}, cn(pi, p j)≥ 2. This case contradicts with LG1.
Therefore cn(K,L)≤ 1.

Proposition 2.6. Let G = (P ∪L ,E) be a a linear graph. Then cn(u,v) = 0 for each (u,v) ∈P×L .

Proof. Let G be a linear graph. Suppose that cn(u,v) = 1 for (u,v) ∈ (P×L ). Then there exist exactly one vertex x in P ∪L such that
x ∈ N(u)⊆P and x ∈ N(v)⊆L . So x ∈P ∩L . This contradicts to P ∩L = /0. Therefore cn(x,y) = 0.

Corollary 2.7. Let G = (P ∪L ,E) be a a linear graph. Then cn(x,y) = {0,1} for all x,y ∈V (G).

Theorem 2.8. Let G = (P ∪L ,E) be a a linear graph. Then G is C4− f ree.

Proof. Let G be a linear graph. Suppose that G is not C4− f ree. Then G contains at least one cycle C4 : v1− v2− v3− v4− v1 for
v1,v2,v3,v4 ∈V (G). Then CN(v1,v3) = {v2,v4}. In this case cn(v1,v3) = 2. This case contradicts Corollary 2.7. Hence G is C4− f ree.

Proposition 2.9. Let G = (P ∪L ,E) be a linear graph. Then
i) For all p,q ∈P such that p 6= q, d(p,q) = 2.
ii) For all L,K ∈L such that L 6= K, d(L,K) ∈ {2,4}.
iii) For p ∈P and L ∈L , d(p,L) ∈ {1,3}.

Proof. i) Let G be a linear graph and let p and q be any distinct vertices of P . Since G bipartite graph, {p,q}/∈E(G). So d(p,q)6=1. From
LG1, cn(p,q) = 1. So there exist exactly one vertex L in L such that CN(p,q) = {L}. Therefore a path P : x−L− y is the shortest path
between p and q. So d(p,q) = 2
ii) For all L,K ∈L such that L 6= K, cn(L,K) ∈ {0,1} from Lemma 2.5.
Case 1. Let cn(L,K) = 1. There exist exactly one vertex p in P such that CN(L,K) = {p}. Therefore a path P : L− p−K is the shortest
path L and K. So d(L,K) = 2.
Case 2. Let cn(L,K) = 0. There exist two vertices p and q in P such that {p,L} ,{q,K} ∈ E(G) from LG2. From LG1, cn(p,q) = 1. Then
there exist exactly one vertex M in L such that CN(p,q) = {M}. If M = L, then CN(L,K) = {q} since q ∈ N(K) and q ∈ N(L). This
contradict to cn(L,K) = 0. So M 6= L. Similarly to M 6= K. Therefore a path P : L− p−M−q−K is the shortest path between L and K. So
d(L,K) = 4.
iii) For p ∈P and L ∈L .
Case 1. If {p,L} ∈ E(G) then a path P : p−L is the shortest path between p and L. So d(p,L) = 1.
Case 2. If {p,L} /∈ E(G) then there exist a vertex q in P such that {q,L} ∈ E(G) from LG2. Also cn(p,q) = 1 from LG1. So there
exist exactly one vertex M ∈L such that CN(p,q) = {M}. If M = L, this case contradicts {p,L} /∈ E(G). So M6=L. Therefore a path
P : p−M−q−L is the shortest path p and L. So d(p,L) = 3.

Corollary 2.10. Let G be a linear graph. For any two distinct vertices u and v of V (G), d(u,v) ∈ {1,2,3,4}.

Proof. It is trivial from Proposition 2.9.

Theorem 2.11. Let G be linear graph then G is connected.

Proof. For all u,v ∈ V (G) such that u 6= v, d(u,v) ∈ {1,2,3,4} from Corollary 2.10. So there exist at least a path P between u and v.
Therefore G is connected.

Lemma 2.12. Let G be a linear graph. Then G contains at least one C6.

Proof. Let G be a linear graph. Then there exist a vertex p in P since P 6= /0. From LG2, there exist two vertices L and K in L such that
L,K ∈ N(p). Also, there exist two vertices q and r in P such that q ∈ N(L), r ∈ N(K) and q 6= p, r 6= p from LG2.
If q = r, this case contradicts Theorem 2.8. So q 6= r. Since cn(q,r) = 1, there exist exactly one vertex N in L such that CN(q,r) = {N}.
So G contains at least one C6 : p−L−q−N− r−K− p.

Proposition 2.13. Let G be linear graph then girthG = 6.

Proof. The result clearly follows from Definition 2.1, Theorem 1.1 and Lemma 2.12.

Lemma 2.14. Let G be a linear graph and let p and L be two vertices in P and L , respectively such that p /∈ N(L). Then d(p)≥ d(L).

Proof. Let p ∈P , L ∈L such that p /∈ N(L) and d(L) = n. From LG2, n≥ 2. Therefore there exist vertices p1, p2, ..., pn ∈P such that
N(L)={p1, p2, ..., pn}. From LG1 there exist vertex Li in L such that {Li} ⊆CN(p, pi) for each i,1≤ i≤ n. Let pi, p j ∈ N(L) for i 6= j.
Then we take two vertices Li,L j ∈

⋃n
i=1 N(pi). If Li = L j , {L,Li} ⊆CN(pi, p j). Also L 6= Li. In this case contradicts with LG1. So Li 6= L j .

Therefore there exist two case.
Case 1. If q ∈ N(L) for each q ∈P such that q 6= p, then N(p) = {L1,L2, ...,Ln}. So

d(p) =| N(p) |= n. (2.1)

Case 2. If q /∈ N(L) for at least vertex q in P such that q 6= p, there exist exactly one vertex K in L such that CN(p,q) = {K} from LG1.
i) If K = Li for at least i,1≤ i≤ n. {L1,L2, ...Ln} ⊆ N(p).
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So

d(p)≥| N(p) |= n. (2.2)

ii) If K 6= Li for each i,1≤ i≤ n, K ∈ N(p) and Li ∈ N(p) .
So

d(p) =| N(p) |≥ n+1. (2.3)

From (2.1), (2.2) and (2.3), we can hold
d(p)≥ d(L).

Proposition 2.15. Let G be a linear graph. For p ∈P and Li ∈L

P =
⋃

Li∈N(p)

N(Li).

Proof. Let x ∈
⋃

Li∈N(p) N(Li). Then for ∃Li ∈ N(p), x ∈ N(Li). In this case x ∈P because of N(Li)⊆P . Therefore⋃
Li∈N(p) N(Li)⊆P . From LG1, there exist exactly one vertex qi ∈P such that CN(p,qi) = {Li}, for each i,1≤ i≤ d(p). Then qi ∈N(Li)

and Li ∈ N(p). So qi ∈
⋃

Li∈N(p) N(Li). Therefore P ⊆
⋃

Li∈N(p) N(Li). In this case, we can hold

P =
⋃

Li∈N(p)

N(Li).

Proposition 2.16. Let G be a linear graph. For p ∈P and Li ∈ N(p)

|P | −1 =
d(p)

∑
i=1

(d(Li)−1).

Proof. For p ∈P , d(p)≥ 2 from LG2. Then for each i,1≤ i≤ d(p) there exist vertex Li in P such that N(p) = {L1,L2, ...,Ld(p)}. By
Proposition 2.15, we get
|P |=|

⋃
Li∈N(p) N(Li) |. For Li ∈ N(p), except p

|P | −1 =
d(p)

∑
i=1

(d(Li)−1).

Corollary 2.17. Let G be a linear graph. Then there exist p ∈P and Li ∈L such that Li ∈ N(p) for each i,1≤ i≤ d(p). If d(Li) = s for
each Li ∈ N(p), then

|P | −1 = d(p)(s−1).

Proof. For each Li ∈ N(p) we can write from Proposition 2.16 and d(Li) = s,

|P | −1 =
d(p)

∑
i=1

(s−1)

then
|P | −1 = d(p)(s−1).

Lemma 2.18. Let G be a linear graph and let s≥ 2 be any positive integer. If the part L is s− regular then G is (r,s)−biregular such
that r = |P|−1

s−1 .

Proof. Suppose that L be regular. Then there exist any positive integer s≥ 2 and d(L) = s for all L ∈L . From Corollary 2.17, we hold

d(p) =
|P | −1

s−1
= r.

Therefore G is (r,s)−biregular.

Theorem 2.19. Let G be a linear graph and let Li ∈L , for each i,1≤ i≤| L |. Then

|P | (|P | −1) =
|L |

∑
i=1

(d(Li)(d(Li)−1).
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Proof. Suppose that G is a linear graph. Then we count the number of pairs of vertices of P in two different ways. First of all, there are(|P|
2

)
.

Second way, from LG1, there exist exactly one vertex L in L such that CN{pi, p j} = {L} for pair of distinct vertices of P . Thus
the total number of pairs of vertices of L is total number of pairs vertices of N(L) for each L ∈L . Summed over all vertices of L ,

∑
|L |
i=1 d(Li)(d(Li)−1). So

|P | (|P | −1) =
|L |

∑
i=1

(d(Li)(d(Li)−1)

Theorem 2.20. Let G = (P ∪L ,E) be a linear graph. For pi ∈P ,

∑
pi∈P

d(pi)(d(pi)−1)≤|L | (|L | −1)

Proof. Let G = (P ∪L ,E) be a linear graph. We introduce the following notation.

Λ
1
Li 6=L j

(Li,L j) = {(Li,L j) : cn(Li,L j) = 1 ve Li,L j ∈L }

Λ
0
Li 6=L j

(Li,L j) = {(Li,L j) : cn(Li,L j) = 0 ve Li,L j ∈L }.

Clearly,

Λ
1
Li 6=L j

(Li,L j)∩Λ
0
Li 6=L j

(Li,L j) = /0.

Also, there are
(|L |

2

)
pairs of vertices of L . (Counting {Li,L j} to be same pair as {L j,Li}.) By Lemma 2.5

| Λ1
Li 6=L j

(Li,L j) |+ | Λ0
Li 6=L j

(Li,L j) |=|L | (|L | −1).

Let pi ∈P. The number of ordered pairs of vertices in the L that have a common neighborhood pi is d(pi)(d(pi)−1). Summed over all
vertices of P ,that is | Λ1

Li 6=L j
(Li,L j) |= ∑pi∈P d(pi)(d(pi)−1). By Lemma 2.5, | Λ0

Li 6=L j
(Li,L j) |≥ 0 . So,

∑
pi∈P

(d(pi)(d(pi)−1)≤|L | (|L | −1).

Theorem 2.21. Let G be a cycle graph. G is a linear graph if and only if G =C6.

Proof. Let G be a cycle graph. Suppose that G =C6. Therefore there exist vertices v1,v2,v3,v4,v5,v6 ∈V (G) such that G : v1− v2− v3−
v4− v5− v6. Since G does not contain odd cycle it is a bipartite graph. Also δ (G) ≥ 2. In this case without loss of generality, we may
assume that P = {v1,v3,v5} and L = {v2,v4,v6} because of G =C6. Therefore G = (P ∪L ,E) is a linear graph.
Conversely let G be a linear graph and suppose that G 6=C6. By Proposition 2.13, girthG = 6. Also G does not contain odd cycle from
Corollary 2.4. Let G =C2k for k ≥ 4 is any positive integer. Hence we write
G = u1− v2−u3− v4− ...−u2k−1− v2k−u1 for ui,u j ∈ V (G), i = 1,3, ...,2k−1 and j = 2,4, ...,2k. We rewrite G so that it is bipartite
graph. P = {u1,u3,u5, ...,u2k−1} and L = {v2,v4, ...,v2k}. Also |P |≥ 4 and |L |≥ 4 because of k ≥ 4. So there exist at least four
vertices ua,ub,uc,ud in P .
From LG1, there exist vertices vab,vac,vad in L such that CN(ua,ub) = {vab}, CN(ua,uc) = {vac} and CN(ua,uc) = {vac}. If vab = vac
then N(vab) = {ua,ub,uc}. In this case d(vab)≥ 3. This case contradicts with being G is a cycle graph. So vab 6= vac. Similarly vab 6= vad .
However this case N(ua) = {vab,vac, ...,vad} then d(ua)≥ 3 which is a contradiction. Hence our assumption is false. Therefore G =C6.

Definition 2.22. The total number of minimum length path between ui and u j is called the linked number denoted c(ui,u j) = ci j.

Lemma 2.23. Let G be a linear graph. For pi ∈P and L j ∈L if pi ∈ N(L j) then ci j = 1.

Proof. It is clear from Proposition 2.9 (iii) and linear graphs are without multiple edges.

Lemma 2.24. Let G be a linear graph and let n≥ 2 be positive integer. For pi ∈P and L j ∈L such that pi /∈ N(L j),

ci j = n if and only if | {K ∈ N(pi) : cn(K,L j) = 1} |= n.

Proof. Suppose that ci j = n. From Proposition 2.9, the length of the minimum length paths between pi and L j is 3 such that pi /∈ N(L j).
So all minimum length paths between pi and L j are form of pi−K−q−L j such that K ∈ N(pi) and q ∈P . Then there exist exactly one
vertex K ∈ N(pi) for each minimum length paths between pi and L j such that cn(K,L j) = 1. Therefore | {K ∈ N(pi) : cn(K,L j) = 1} |= n.
Conversely the proof can be shown in a similar way.

Lemma 2.25. Let G be a linear graph. If pi /∈ N(L j) then the number neighbour vertices to pi and don’t have common neighbour to L j is
d(pi)− ci j .
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Proof. Let a and b be the following

a =| {L ∈ N(pi) : cn(L,L j) = 1} |

b =| {L ∈ N(pi) : cn(L,L j) = 0} | .

From Lemma 2.5 either cn(K,L j) = 0 or cn(K,L j) = 1 for each K ∈ N(pi) . So a+b =| N(pi) |= d(pi). ci j = a from definition of linked
number. Therefore

b = d(pi)− ci j

.

Theorem 2.26. Let G be a linear graph. For pi ∈P and L j ∈L ci j ≤ d(pi).

Proof. If pi ∈ N(L j) then ci j = 1≤ d(pi) from LG2. If pi /∈ N(L j) then d(pi)≥ ci j from Lemma 2.25.

Lemma 2.27. Let G = (P ∪L ,E) be a linear graph and let n≥ 2 be positive integer. For pi ∈P and L j ∈L such that pi /∈ N(L j)

d(L j) = n if and only if ci j = n .

Proof. Suppose that d(L j) = n for L j ∈L . From LG2, n≥ 2. Then there exist vertices q1,q2, ...,qn ∈P such that N(L j) = {q1,q2, ..,qn}.
From LG1, there exist Lk ∈L such that CN(pi,qk) = {Lk} for each k, 1≤ k ≤ n. If Lk = L j for at least k ∈ {1,2, ...,n} then pi ∈ N(L j).
However this case contradicts our assumption. So Lk 6= L j .
If Lk = Lt for k,t ∈ {1,2, ...,n}, CN{qk,qt}= {L j,Lt}. However this case conradicts LG1. So Lt 6= Lk. Therefore
| {K ∈ N(pi) : cn(K,L j) = 1} |=| {L1,L2, ...,Ln} |= n. From Lemma 2.24

ci j = n.

Conversely suppose that ci j = n. By Lemma 2.24,

ci j =| {K ∈ N(pi) : cn(K,L j) = 1} |= n.

So, for each K ∈ N(pi), there exist exacty one q j ∈ N(L j) such that CN(K,L j) = {q j}. In this case d(L j)≥ n. If d(L j)≥ n+1 there exist
at least q′ ∈ N(L j) such that cn(pi,q′) = 0 however this case contradicts LG1. Therefore d(L j) = n.

Theorem 2.28. Let = G(P ∪L ,E) be a linear graph. For pi ∈P and L j ∈L such that pi /∈ N(L j),

ci j = d(pi) if and only if d(pi) = d(L j) .

Proof. It is trivial from Lemma 2.27.

Theorem 2.29. Let G = (P ∪L ,E) be a linear graph. For each pi ∈P and L j ∈L such that pi /∈ N(L j),

if ci j = d(pi) then cn(R j,S j) = 1 for all R j,S j ∈L such that R j 6= S j .

Proof. Let G = (P ∪L ,E) be a linear graph. Assume that for pi ∈P and L j ∈L such that pi /∈ N(L j), ci j = d(pi). For R j,S j ∈L and
R j 6= S j,
Case 1. R j,S j ∈ N(pi). In this case, cn(R j,S j) = 1.
Case 2. R j ∈ N(pi) and S j /∈ N(pi). By assumtion and Lemma 2.25, cn(R j,S j) = 1.
Case 3. R j,S j /∈ N(pi). The proof is complete if cn(R j,S j) = 1. Suppose that cn(R j,S j) = 0. Then there exist qi ∈ N(R j) such that
qi /∈ N(S j). By assumption, ci j = d(qi). In this case the number neighbour vertices to qi and don’t have common neighbour to S j is
d(qi)− ci j = 0, from Lemma 2.25. However we contradict with cn(R j,S j) = 0. Therefore cn(R j,S j) = 1.
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