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A Study over the Hyperbolic and Logarithmic Monomolecular, Logistic and Gompertz Growth 

Models 

Mehmet KORKMAZ1 *  

ABSTRACT: In this study in addition to classical monomolecular, logistic and Gompertz models, their 

hyperbolic and logarithmic growth models were found. After that it is searched the effect of these 

hyperbolic and logarithmic growth models on the choice of appropriate growth model by using two 

separate data sets. For this purpose, classical monomolecular, logistic and Gompertz growth models and 

their hyperbolic and logarithmic growth models are compared with some model selection criteria such 

as coefficient of determination, error sum of squares. For two data sets it is found that the results of these 

hyperbolic and logarithmic growth models are better than the results of these growth models. Thus, it is 

considered that these hyperbolic and logarithmic growth models can be used in addition to these growth 

models. Even the results of these hyperbolic and logarithmic growth models were found the same for 

both data sets. In addition, some other hyperbolic and logarithmic growth models can be investigated 

for getting the best model choice. 
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INTRODUCTION 

Growth is one of the well-known features in biological creatures (Burkhart and Strub,1974). 

Growth models describe the changing size of something over time. The process of developing a 

mathematical model is called mathematical modeling. A model may help to explain a system and to 

study the effects of different components, and also to make predictions about behavior (Oyamakin and 

Chukwu, 2015). 

A mathematical description of a real world system is often referred to as a mathematical model. A 

system can be formally defined as a set of elements also called components. A system can be formally 

defined as a set of elements also called components A set of trees in a forest stand, producers and 

consumers in an economic system are examples of components. The elements (components) have certain 

characteristics or attributes and these attributes have numerical or logical values. Among the elements, 

relationships exist and consequently the elements are interacting. The state of a system is determined by 

the numerical or logical values of the attributes of the system elements (Oyamakin and Chukwu, 2015). 

Experimenting on the state of a system with a model over time is termed simulation (Kansal et al., 2000).  

  In this study, an alternative nonlinear growth models called the hyperbolic and logarithmic 

monomolecular, Logistic and Gompertz were introduced and compared with the classical 

monomolecular (Brody,1945), Logistic (Ricker, 1979) and Gompertz models (Winsor, 1932) which are 

widely used. 

Monomolecular Model 

         Since the origin of the monomolecular growth model suggested that the growth is directly 

proportional to the difference of the maximum sustainable constant A and the growth, this growth 

model starts the following differential equation: 

 
∂y

∂x
= 𝑟(𝐴 − 𝑦)                                                  (1) 

 

where y is the value of growth, x is time, r is the proportion about growth, A is maximum sustainable 

growth  

This differential equation produces a model of the following form: 

 

y = 𝐴(1 − 𝑏𝑒−𝑟𝑥)                                           (2) 

where b is a constant  

The monomolecular model in equation 2 is found the following operations: 

Separating the variables in equation 1 we get: 

dy

A−y
= 𝑟𝑑𝑥      

Integrating both sides we get: 

− ln(𝐴 − 𝑦) = 𝑟𝑥 + 𝐶1      

ln(𝐴 − 𝑦)−1 = 𝑟𝑥 + 𝐶1      

where 𝐶1 is constant 

Taking the exponential of both sides we get: 

(𝐴 − 𝑦)−1 = 𝐵𝑒𝑟𝑥 
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1

𝐴 − 𝑦
= 𝐵𝑒𝑟𝑥 

where 𝐵 = 𝑒𝐶1 

Multiply both sides by A-y we get: 

1 = 𝐴𝐵𝑒𝑟𝑥 − 𝑦𝐵𝑒𝑟𝑥 

𝑦𝐵𝑒𝑟𝑥 = 𝐴𝐵𝑒𝑟𝑥 − 1 

Divide by B𝑒𝑟𝑥 we get monomolecular model as 

𝑦 = 𝐴(1 − 𝑏𝑒−𝑟𝑥)                                                                                                                               

where b=(AB)-1 

 

Logistic Model 

The origin of the logistic growth model is described by the following equation:  

 
∂y

∂x
= 𝑟𝑦 (1 −

𝑦

𝐴
)                                                    (3)                      

where y is the value of growth, x is time, r is the proportion about growth, A is maximum sustainable 

growth  

This differential equation produces the model called logistic model in equation 4: 

 

y =
𝐴

1+𝑏𝑒−𝑟𝑥                                                       (4) 

where b is a constant  

The logistic model in equation 4 is found the following operations: 

Separating the variables in equation 3 we get: 

Ady

y(A−y)
= 𝑟𝑑𝑥      

Integrating both sides we get: 

∫
Ady

y(A−y)
= ∫ 𝑟𝑑𝑥      

∫(
1

𝑦
+

1

𝐴−𝑦
)𝑑𝑦 = ∫ 𝑟𝑑𝑥      

ln (𝑦) − ln(𝐴 − 𝑦) = 𝑟𝑥 + 𝐶1      

ln (
𝐴−𝑦

𝑦
) = −𝑟𝑥 − 𝐶1       

where 𝐶1 is constant 

Taking the exponential of both sides we get: 

𝐴 − 𝑦

𝑦
= 𝑏𝑒−𝑟𝑥 

𝐴

𝑦
− 1 = 𝑏𝑒−𝑟𝑥 

where 𝑏 = 𝑒−𝐶1 
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After this we get: 

𝐴

𝑦
= 𝑏𝑒−𝑟𝑥 + 1 

and then get the logistic model as 

𝑦 =
𝐴

1 + 𝑏𝑒−𝑟𝑥
                                                                                                                                        

Gompertz Model 

The origin of the Gompertz growth model is described by the following equation:  

 
∂y

∂x
= 𝑟𝑦𝑙𝑛(

𝐴

𝑦
)                                                        (5) 

 

where y is the value of growth, x is time, r is the proportion about growth, A is maximum sustainable 

growth  

This differential equation produces the model called the Gompertz model in equation 6: 

 

y = 𝐴𝑒−𝑏𝑒−𝑟𝑥
                                                   (6) 

where b is a constant  

The Gompertz model in equation 6 is found the following operations: 

Separating the variables in equation 5 we get: 

dy

yln(
𝐴

𝑦
)

= 𝑟𝑑𝑥      

Integrating both sides we get: 

∫
dy

yln(
𝐴

𝑦
)

= ∫ 𝑟𝑑𝑥     

If we say u = ln (
𝐴

𝑦
)    𝑎𝑛𝑑  𝑑𝑢 =

−
𝐴

𝑦2

𝐴

𝑦

𝑑𝑦 =
−𝑑𝑦

𝑦
, then we can get 

− ∫
du

u
= ∫ 𝑟𝑑𝑥     

and 

−𝑙𝑛𝑢 = 𝑟𝑥 + 𝐶2 

Taking the exponential of both sides we get: 

𝑢 = 𝑏𝑒−𝑟𝑥 

ln (
𝐴

𝑦
) = 𝑏𝑒−𝑟𝑥 

where 𝑏 = 𝑒−𝐶2 

Again taking the exponential of both sides we get: 

𝐴

𝑦
= 𝑒𝑏𝑒−𝑟𝑥

 

and then get the Gompertz model as 

y = 𝐴𝑒−𝑏𝑒−𝑟𝑥
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MATERIALS AND METHODS 

Materials 

Two different data sets were used in this study. The first one is the mean fork length 

measurements of female and male flathead trout (Salmo platycephalus). The second one is the length 

of the eucalyptus plant. 

  In this study, the mean fork length measurements of the flathead trout (Salmo platycephalus), 

which is listed in the IUCN red list of threatened species, which were sampled from the Zamanti Stream 

of Seyhan River were used (Kara et al., 2011). For the presentation of the models, the measurements of 

the fork lengths (cm) in the age-structured female and male of S. platycephalus from Zamanti Stream of 

the River Seyhan in Table 1 in their articles were used in this study in Table 1. 

 

Table 1. Observed mean fork lengths of S. platycephalus According to the Gender 

Sex/Age (year) 1 2 3 4 5 6 7 8 9 10 

Female 13.68 18.03 21.63 25.55 28.29 30.85 33.37 36.03 38.30 40.0 

Male 15.15 18.72 20.91 25.11 27.97 30.88 33.13 35.94 37.04 39.20 

 

 

In this study, the data taken from the tree, E. Camaldulensis Dehn. were used for the growth model 

in Table 2. The data set was taken from the study of Yıldızbakan (2015). 

 

 Table 2. The height growth value of the trees (E. Camaldulensis Dehn) according to year  

Methods 

The hyperbolic functions have similar names to the trigonometric functions, but they are defined 

in terms of the exponential function (Oyamakin and Chukwu, 2015).  

Thus the hyperbolic sine function and its inverse provide an alternative method for evaluating: 

∫
1

√1 + 𝑥2
𝑑𝑥                                                        (7) 

say x=sinh(u) and then dx=cosh(u) du 

∫
1

√1 + 𝑥2
𝑑𝑥 = arcsinh(𝑥) + 𝐶3                           (8) 

where 𝐶3  is constant 

Also say x=tanu , (
−𝜋

2
< 𝑢 <

𝜋

2
)  dx=(1+tan2u)du 

∫
1

√1 + 𝑥2
𝑑𝑥 = 𝑙𝑛 |𝑥 + √1 + 𝑥2| + 𝐶4           (9) 

where 𝐶4  is constant 

From equations 8 and 9, we get: 

arcsinh(𝑥) = 𝑙𝑛 |𝑥 + √1 + 𝑥2| + 𝐶4 − 𝐶3    (10) 

for all x. Evaluating both sides of this equality at x=0, we get 

0 = arcsinh(0) = 𝑙𝑛|1| + 𝐶3 − 𝐶2   

 

The height growth value of the trees (E. Camaldulensis Dehn) 

Planting Age (year)  0 1 2 3 4 5 6 7 8 9 

Height  Growth  (m)  0.41 3.23 7.45 11.41 14.83 18.11 18.95 19.69 21.50 23.40 
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So  𝐶4 − 𝐶3 = 0       and  

arcsinh(𝑥) = 𝑙𝑛 |𝑥 + √1 + 𝑥2|                      (11) 

for all x. Since the hyperbolic sine function is defined in terms of the exponential function, we should 

not find it surprising that the inverse hyperbolic sine function may be expressed in terms of the natural 

logarithm function (Oyamakin and Chukwu, 2015).   

Hyperbolic and Logarithmic Monomolecular Growth Model 

The origin of the hyperbolic and logarithmic monomolecular growth models suggested that in 

addition to constant r in the original monomolecular model and the term  

 

𝑑 

√1 + 𝑥2
 

 

which is multiplied by the difference of the maximum sustainable constant A and the growth is added 

where d is proportion about the hyperbolic and logarithmic monomolecular growth, respectively. 

And so the hyperbolic and logarithmic monomolecular growth models start the following differential 

equation: 

 
∂y

∂x
= (𝑟 +

𝑑

√1+𝑥2
)(𝐴 − 𝑦)                               (12) 

 

This differential equation produces two types of models in equation 13 and equation 14, respectively: 

 

y = 𝐴(1 − 𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥))                       (13) 

y = 𝐴(1 − 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)
−𝑑

)             (14) 

The hyperbolic and logarithmic monomolecular models in equation 13 and equation 14 are found the 

following operations, respectively: 

Separating the variables in equation 12 we get: 
dy

A−y
= (𝑟 +

𝑑

√1+𝑥2
)𝑑𝑥      

Integrating both sides we get: 

− ln(𝐴 − 𝑦) = 𝑟𝑥 + 𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) + 𝐶5      

ln(𝐴 − 𝑦)−1 = 𝑟𝑥 + 𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) + 𝐶5       (15) 

and  

− ln(𝐴 − 𝑦) = 𝑟𝑥 + 𝑑𝑙𝑛(𝑥 + √1 + 𝑥2) + 𝐶5 

ln(𝐴 − 𝑦)−1 = 𝑟𝑥 + 𝑑𝑙𝑛(𝑥 + √1 + 𝑥2) + 𝐶5    (16) 

where 𝐶5 is constant 

Taking the exponential of both sides of equation 15 and equation 16, respectively we get: 

(𝐴 − 𝑦)−1 = 𝐵𝑒𝑟𝑥+𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) 
1

𝐴−𝑦
= 𝐵𝑒𝑟𝑥+𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)                                  (17) 

and 

(𝐴 − 𝑦)−1 = 𝐵𝑒𝑟𝑥+𝑑𝑙𝑛(𝑥+√1+𝑥2) 
1

𝐴−𝑦
= 𝐵𝑒𝑟𝑥(𝑥 + √1 + 𝑥2)𝑑                           (18) 
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respectively where 𝐵 = 𝑒𝐶5 

Multiply both sides of equation 17 and equation 18 by (A-y), respectively we get: 

1 = 𝐴𝐵𝑒𝑟𝑥+𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) − 𝑦𝐵𝑒𝑟𝑥+𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) 

𝑦𝐵𝑒𝑟𝑥+𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) = 𝐴𝐵𝑒𝑟𝑥+𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) − 1    (19) 

and  

1 = 𝐴𝐵𝑒𝑟𝑥(𝑥 + √1 + 𝑥2)𝑑 − 𝑦𝐵𝑒𝑟𝑥(𝑥 + √1 + 𝑥2)𝑑 

𝑦𝐵𝑒𝑟𝑥(𝑥 + √1 + 𝑥2)𝑑 = 𝐴𝐵𝑒𝑟𝑥(𝑥 + √1 + 𝑥2)𝑑 − 1        (20) 

respectively. 

Divide equation 19 and equation 20 by B𝑒𝑟𝑥+𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) and 𝑒𝑟𝑥(𝑥 + √1 + 𝑥2)𝑑 , respectively we get 

the hyperbolic and logarithmic monomolecular models as 

𝑦 = 𝐴(1 − 𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥))                                                                                                                               

and  

y = 𝐴(1 − 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)−𝑑 

respectively where b=(AB)-1 

 

Hyperbolic and Logarithmic Logistic Growth Model 

The origin of the hyperbolic and logarithmic logistic growth models suggested that in addition to 

constant r in the original logistic model and the term  

 

𝑑

√1 + 𝑥2
 

which is multiplied by the multiplication of the difference of the maximum sustainable constant A and 

the growth and the division of the growth and the maximum sustainable constant A   is added where d 

is proportion about hyperbolic and logarithmic logistic growth. 

 

And so the hyperbolic and logarithmic logistic growth models start the following differential 

equation: 

 
∂y

∂x
= (𝑟 +

𝑑

√1+𝑥2
)

𝑦

𝐴
(𝐴 − 𝑦)                              (21)      

 

This differential equation produces two types of models in equation 22 and equation 23, respectively: 

 

𝑦 =
𝐴

1 + 𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)
                               (22) 

𝑦 =
𝐴

1 + 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)−𝑑
                    (23) 

The hyperbolic and logarithmic logistic growth models in equation 22 and equation 23 are found the 

following operations, respectively: 

Separating variables in equation 21 we get: 
Ady

y(A−y)
= (𝑟 +

𝑑

√1+𝑥2
)𝑑𝑥      
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Integrating both sides we get: 

∫
Ady

y(A − y)
= ∫(𝑟 +

𝑑

√1 + 𝑥2
)𝑑𝑥 

ln (𝑦) − ln(𝐴 − 𝑦) = 𝑟𝑥 + 𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) + 𝐶6      

ln (
𝐴−𝑦

𝑦
) = −𝑟𝑥 − 𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) − 𝐶6         (24) 

and 

ln (𝑦) − ln(𝐴 − 𝑦) = 𝑟𝑥 + 𝑑𝑙𝑛(𝑥 + √1 + 𝑥2) + 𝐶6      

ln (
𝐴−𝑦

𝑦
) = −𝑟𝑥 − 𝑑𝑙𝑛(𝑥 + √1 + 𝑥2) − 𝐶6         (25) 

where 𝐶6 is constant 

Taking the exponential of both sides of equation 24 and equation 25, respectively we get: 

𝐴 − 𝑦

𝑦
= 𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) 

𝐴

𝑦
− 1 = 𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)                             (26) 

and 

𝐴 − 𝑦

𝑦
= 𝑏𝑒−𝑟𝑥−𝑑𝑙𝑛(𝑥+√1+𝑥2) 

𝐴

𝑦
− 1 = 𝑏𝑒−𝑟𝑥−𝑑𝑙𝑛(𝑥+√1+𝑥2)                          (27) 

respectively where 𝑏 = 𝑒−𝐶5 

After this we get: 

𝐴

𝑦
= 𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) + 1 

and  

𝐴

𝑦
= 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)−𝑑 + 1 

And then get the hyperbolic and logarithmic logistic growth models as 

𝑦 =
𝐴

1+𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)                                                                                                                               

and  

𝑦 =
𝐴

1 + 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)−𝑑
 

respectively. 

Hyperbolic and Logarithmic Gompertz Growth Model 

The origin of the hyperbolic and logarithmic Gompertz growth models suggested that in addition to 

constant r in the original Gompertz model and the term  

 

𝑑

√1 + 𝑥2
 

which is multiplied by the multiplication of the logarithm of the division of the maximum sustainable 

constant A and the growth and the growth is added where d is proportion about the hyperbolic and 

logarithmic Gompertz growth. 
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And so the hyperbolic and logarithmic Gompertz growth models start the following differential 

equation: 

 
∂y

∂x
= (𝑟 +

𝑑

√1+𝑥2
 )𝑦𝑙𝑛(

𝐴

𝑦
)                                  (28) 

                 

This differential equation produces two types of models in equation 29 and equation 30, respectively: 

 

𝑦 = 𝐴𝑒−𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)
                                     (29) 

and  

𝑦 = 𝐴𝑒−𝑏𝑒−𝑟𝑥(𝑥+√1+𝑥2)−𝑑
                                (30) 

The hyperbolic and logarithmic Gompertz growth model in equation 29 and equation 30 are found the 

following operations, respectively: 

Separating the variables in equation 28 we get: 
dy

yln(
𝐴

𝑦
)

= (𝑟 +
𝑑

√1+𝑥2
)𝑑𝑥      

Integrating both sides we get: 

∫
Ady

yln(
𝐴

𝑦
)

= ∫(𝑟 +
𝑑

√1+𝑥2
)𝑑𝑥                             (31) 

Solving these integrals in equation 31 we get 

ln (
𝐴

𝑦
) = 𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)                            (32) 

and 

ln (
𝐴

𝑦
) = 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)−𝑑                   (33) 

where b is constant 

Taking the exponential of both sides of equation 32 and equation 33, respectively we get: 

𝐴

𝑦
= 𝑒𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)

 

and  

𝐴

𝑦
= 𝑒𝑏𝑒

−𝑟𝑥(𝑥+√1+𝑥2)
−𝑑

 

respectively and then get the hyperbolic and logarithmic Gompertz growth models as 

𝑦 = 𝐴𝑒−𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)
 

and 

𝑦 = 𝐴𝑒−𝑏𝑒−𝑟𝑥(𝑥+√1+𝑥2)−𝑑
     

respectively. 

RESULTS AND DISCUSSION 

Since the hyperbolic and logarithmic growth models in this study are exactly same models, the 

parameters and the results of known model selection criteria such as error sum of squares (SSE), and 

coefficient of determination (𝑅2)  of them are exactly same.  

By using the Tables 1 and 2 of these two sets of data, in Tables 3 and 5 the parameters of 

Monomolecular, Logistic and Gompertz growth models and their hyperbolic and logarithmic growth 

models are calculated. All calculations were made with the maple package program.  
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To make a comparison; error sum of squares, and coefficient of determination are used from 

known model selection criteria. Calculations made are tabulated. 

Table 1 shows the mean fork length measurements of female and male flathead trout (Salmo 

platycephalus).  While the model parameters calculated according to these values are given in Table 3, 

the error sum of squares and determination coefficients of the models calculated are given in Table 4. 

Tables 3 and Table 4 are calculated according to the values in Table 1.  

 

Table 3 Calculated the Model Parameters According to the Gender 

 

 

 

 

 

Female 

MODELS EQATION A b r d 

Monomolecular y =𝐴(1 − be−rx) 58.876 0.844 0.097 - 

Hyperbolic Monomolecular y =𝐴(1 − be−rx−darcsinh(x)) 66.714 0.875 0.070 0.030 

Logarithmic Monomolecular y = 𝐴(1 − 𝑏𝑒−𝑟𝑥 (𝑥 + √1 + 𝑥2)
−𝑑

) 66.714 0.875 0.070 0.030 

Logistic y=
A

1+b𝑒−𝑟𝑥 
 44.050 -2.815 0.322 - 

Hyperbolic Logistic y=
A

1+b𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) 
 60.095 5.863 0.093 0.511 

Logarithmic Logistic 
𝑦 =

𝐴

1 + 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)−𝑑
 

60.095 5.863 0.093 0.511 

Gompertz y =A𝑒−𝑏𝑒−𝑟𝑥
 47.833 1.504 0.210 - 

Hyperbolic Gompertz y =A𝑒−𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)
 61.128 1.968 0.093 0.203 

Logarithmic Gompertz 𝑦 = 𝐴𝑒−𝑏𝑒−𝑟𝑥(𝑥+√1+𝑥2)−𝑑
 61.128 1.968 0.093 0.203 

 

 

 

 

Male 

Monomolecular y =𝐴(1 − be−rx) 62.948 0.827 0.079 - 

Hyperbolic Monomolecular y =𝐴(1 − be−rx−darcsinh(x)) 49.642 0.726 0.162 -0.130 

Logarithmic Monomolecular y = 𝐴(1 − 𝑏𝑒−𝑟𝑥 (𝑥 + √1 + 𝑥2)
−𝑑

) 49.642 0.726 0.162 -0.130 

Logistic  y=
A

1+b𝑒−𝑟𝑥 
 44.192 2.547 0.295 - 

Hyperbolic Logistic y=
A

1+b𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) 
 44.413 2.598 0.287 0.019 

Logarithmic Logistic 
𝑦 =

𝐴

1 + 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)−𝑑
 

44.413 2.598 0.287 0.019 

Gompertz y =A𝑒−𝑏𝑒−𝑟𝑥
 48.748 1.417 0.187 - 

Hyperbolic Gompertz y =A𝑒−𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)
 46.165 1.282 0.233 -0.098 

Logarithmic Gompertz 𝑦 = 𝐴𝑒−𝑏𝑒−𝑟𝑥(𝑥+√1+𝑥2)−𝑑
 46.165 1.282 0.233 -0.098 

 

According to Table 4, the hyperbolic and logarithmic models of the models used in this study has 

approximately the same least error sum of squares and the highest determination coefficient. Therefore, 

it can be said that the most suitable models for the data set are the hyperbolic and logarithmic ones. 

Table 2 shows the growth values of the eucalyptus plant as a whole.  While the model parameters 

calculated according to these values are given in Table 5, the error sum of squares and the determination 

coefficients of the models calculated are given in Table 6. 

 Table 5 and Table 6 are calculated according to the values in Table 2. 
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Table 4 Error Sum of Squares and Determination Coefficients of the Models Calculated 

 

 

MODELS 

Female Male 

Error Sum 

Squares 

Determination Coefficients 

of the models (𝑹𝟐) 

Error Sum 

Squares 

Determination Coefficients 

of the models (𝑹𝟐) 

Monomolecular 0.368 0.9995 1.774 0.9971 

Hyperbolic Monomolecular 0.303 0.9996 1.154 0.9981 

Logarithmic Monomolecular 0.303 0.9996 1.154 0.9981 

Logistic 2.284 0.9967 1.089 0.9982 

Hyperbolic Logistic 0.301 0.9996 1.087 0.9982 

Logarithmic Logistic 0.301 0.9996 1.087 0.9982 

Gompertz 1.059 0.9985 1.222 0.9980 

Hyperbolic Gompertz 0.305 0.9996 1.090 0.9982 

Logarithmic Gompertz 0.305 0.9996 1.090 0.9982 

 

Table 5 Model Parameters Calculated  

MODELS EQATION A b r d 

Monomolecular y =𝐴(1 − be−rx) 29.999 1.014 0.166 - 

Hyperbolic Monomolecular y =𝐴(1 − be−rx−darcsinh(x)) 24.609 0.986 0.357 -0.253 

Logarithmic Monomolecular y = 𝐴(1 − 𝑏𝑒−𝑟𝑥 (𝑥 + √1 + 𝑥2)
−𝑑

) 24.609 0.986 0.357 -0.253 

Logistic y=
A

1+b𝑒−𝑟𝑥 
 21.887 10.685 0.781 - 

Hyperbolic Logistic y=
A

1+b𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥) 
 29.104 39.955 -0.061 1.894 

Logarithmic Logistic 𝑦 =
𝐴

1 + 𝑏𝑒−𝑟𝑥(𝑥 + √1 + 𝑥2)−𝑑
 29.104 39.955 -0.061 1.894 

Gompertz y =A𝑒−𝑏𝑒−𝑟𝑥
 23.071 3.118 0.488 - 

Hyperbolic Gompertz y =A𝑒−𝑏𝑒−𝑟𝑥−𝑑𝑎𝑟𝑐𝑠𝑖𝑛ℎ(𝑥)
 30.054 4.926 0.062 0.804 

Logarithmic Gompertz 𝑦 = 𝐴𝑒−𝑏𝑒−𝑟𝑥(𝑥+√1+𝑥2)−𝑑
 30.054 4.926 0.062 0.804 

 

It is seen in Table 6 that the model with the lowest sum of error squares and the highest 

determination coefficient is the hyperbolic Gompertz growth model.   

Table 6 Error Sum of Squares and Determination Coefficients of the Models Calculated 

MODELS Error Sum Squares Determination Coefficients of the models (𝑹𝟐) 

Monomolecular 5.266 0.9908 

Hyperbolic Monomolecular 2.608 0.9954 

Logarithmic Monomolecular 2.608 0.9954 

Logistic 8.713 0.9847 

Hyperbolic Logistic 2.417 0.9958 

Logarithmic Logistic 2.417 0.9958 

Gompertz 3.917 0.9931 

Hyperbolic Gompertz 2.301 0.9960 

Logarithmic Gompertz 2.301 0.9960 
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CONCLUSION 

In this study, three different sigmoidal growth models, which are frequently found in scientific 

studies, and their hyperbolic growth models have been used. These models have been applied to two 

different data sets. It has been determined which model is suitable according to the known model 

selection criteria. It is shown that the results are compatible with each other. It is shown that the 

appropriate models for both sets of data are their hyperbolic and Logarithmic ones according to the 

model selection criteria used in this study. That’s instead of the growth models used in this study, the 

use of their hyperbolic and Logarithmic growth models provided the least error sum of squares and the 

maximal determination coefficients for two data sets. In other words, hyperbolic and Logarithmic growth 

models have the lowest sum of error squares and the highest determination coefficient according to their 

classical growth models. In addition, the lowest sum of error squares and the highest determination 

coefficient of hyperbolic and Logarithmic growth models are the same. Therefore, the researchers can 

use their hyperbolic and Logarithmic growth models in addition to the growth models for getting better 

results. In this study, instead of comparing the models with each other, hyperbolic and logarithmic 

models were compared with the same model. In addition, for the other growth models not used in this 

study, their hyperbolic and logarithmic growth models can be investigated for getting the best model 

choice. 
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