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ENTROPY EXCHANGE AND ENTANGLEMENT IN THE
JAYNES-CUMMINGS MODEL WITH TRANSIENT EFFECTS

HÜNKAR KAYHAN

Abstract. In this paper, we investigate the dynamics of entropy exchange and
entanglement in the atom-field interaction by the Jaynes-Cummings model in
the presence of the transient effects considered for the case of linear sweep. We
find that the transient effects do not influence the entropy exchange between
the atom and the field. As the strength of these effects increases, the oscil-
lations of the entropy change and entanglement speed up. The entanglement
behaves chaotically as the transient effects become stronger

Introduction

Cavity Quantum Electrodynamics (CQE) keeps an important place in quantum
optics and attracts much attention [1, 2, 3]. Perhaps, the simplest model of CQE
is the Jaynes-Cummings Model (JCM) [4]. The model describes the system of
a two-level atom interacting with a quantized mode of an optical cavity, with or
without the presence of light. In spite of its simplicity, the JCM reveals important
properties of light such as the discreteness of field states [1, 5]. The model is open
to some extensions to consider additional effects. Some of the extensions are initial
conditions [6], dissipation and damping [7, 8, 9], multilevel atoms and multiple
atoms [10] and multi-mode description of the field [11]. Another extension of the
JCM is incorporation of the transient effects considered for the linear sweep as
studied by Joshi and Lawande [12]. Experimentally, this extension can describe an
atom entering a cavity subjecting to a very slow shift or a sudden jump of the electric
field. Linear sweep model was considered elsewhere [13, 14]. We previously studied
the influence of the transient effects on the dynamics of entanglement between a
JCM atom and an isolated atom [15]. We showed that the entanglement sudden
death can be controlled by these transient effects. Transient effects has also been
studied elsewhere [16, 17].
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Boukobza and Tannor [18] studied the JCM for the mixed states of field and atom
and showed that there is an entropy exchange between the field and the atom. The
entropy exchange dynamics in the atom-field interactions was studied extensively
elsewhere [19, 20, 21, 22, 23, 24].
In this paper, we use the model in Ref. [12] to study the dynamical properties of

entropy correlations and entanglement in the atom-field interaction in the presence
of the transient effects. We show that the transient effects do not influence the
dynamical behavior of entropy exchange between the atom and the field. As the
strength of these effects increases, the oscillations of the entropy change and entan-
glement speed up. The entanglement behaves chaotically as the transient effects
become stronger.

System and Solution

The Hamiltonian of the system with the resonance between the atomic transition
and the field frequencies is (~ = 1) [4]

H = ωSz + ωa†a+ g(S+a+ S−a
†) (1)

where S± and Sz are spin-1/2 atomic operators, a and a† are the field annihilation
and creation operators and also g is the coupling coeffi cient between the atom and
the field. In order to incorporate the transient effects, the coupling coeffi cient g is
modified as [12]

g(t) = gf(t) (2)

where the function f(t) describes the linear sweep. f(t) contains the two limiting
cases which correspond to sudden jump and adiabatic variation. The cavity-mode
quantized field is switched on by a linear ramp described by this function. It is
defined as

f(t) = kt/T for 0 ≤ t ≤ T
0 otherwise

As the value of k increases over a fixed time interval T from small values to large
values, the strength of the interaction changes from adiabatic variation to sudden
jump.
The atom is initially taken in a mixed state

ρa(0) = Pe|e〉〈e|+ Pg|g〉〈g| (3)

with Pe + Pg = 1 and 0 ≤ Pe, Pg ≤ 1 and the field is initially taken in a thermal
state

ρf (0) =
∑
n=0

Pn|n〉〈n| (4)

whose probability distribution Pn is given by

Pn =
1

(1 + 〈n〉) (
〈n〉

1 + 〈n〉 )
n (5)
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where 〈n〉 is the initial mean photon number in the cavity. So, the initial state of
the total system which is a product state, becomes

ρfa(0) = ρf (0)⊗ ρa(0) = Pe
∑
n=0

Pn|ne〉〈ne|+ Pg
∑
n=0

Pn|ng〉〈ng| (6)

where |ne〉 = |n〉⊗|e〉 and |ng〉 = |n〉⊗|g〉. The Hamiltonian operator of our system
is time-dependent due to the coupling g(t), but the Hamiltonians at different times
commute. Then, time-evolution of the total system is obtained by

ρfa(t) = exp[−i
∫ t

0

H(t́)dt́)]ρfa(0) exp[i

∫ t

0

H(t́)dt́] (7)

Then, we obtain

ρfa(t) = Pe
∑
n

Pn[cos2(cn+1(t))|ne〉〈ne|+ i sin(cn+1(t)) cos(cn+1(t))|ne〉〈n+ 1g|

−i sin(cn+1(t)) cos(cn+1(t))|n+ 1g〉〈ne|+ sin2(cn+1(t))|n+ 1g〉〈n+ 1g|]
+Pg

∑
n

Pn[cos2(cn(t))|ng〉〈ng|+ i sin(cn(t)) cos(cn(t))|ng〉〈n− 1e|

−i sin(cn(t)) cos(cn(t))|n− 1e〉〈ng|+ sin2(cn(t))|n− 1e〉〈n− 1e|] (8)

where cn(t) = g
√
nkt

2

2T . The density matrix of the atom (and the field) can be found
by tracing out ρfa(t) over the degree of freedom of the field (and the atom). The
atomic density matrix becomes

ρa(t) = {Pe
∑
n

Pn cos2(cn+1(t)) + Pg
∑
n

Pn+1 sin2(cn+1(t))}|e〉〈e|

+{Pg
∑
n

Pn cos2(cn(t)) + Pe
∑
n

Pn−1 sin2(cn(t))}|g〉〈g| (9)

The elements of the density matrix of the field becomes

ρfnn(t) = Pe{Pn cos2(cn+1(t)) + Pn−1 sin2(cn(t))}+

Pg{Pn cos2(cn(t)) + Pn+1 sin2(cn+1(t))} (10)

Results

We now numerically investigate the entropy correlations and the entanglement
between the atom and the field by the figures. (In these, we assume that g = 1.)
For our computations, we truncate the series when

∑
n=0 Pn ≈ 1 [18]. For the

entropy correlations, we compute the von-Neumann entropy of the atom and the
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field subsystems. The entropy of a system is defined as

S = −
∑
i

λi log λi (11)

where λis are the non-zero eigenvalues of the relevant density matrix. The entropy
change (∆S = S(t)−S(0)) for the atom and for the field can be computed by using
their density matrices described in Eqs. (9) and (10).

Figs. (1)-(5) show the time-evolution of entropy changes of the atom and the
field and their entanglement in the presence of the transient effects. Numerically,
k = 0.5 may describe an adiabatic variation and k = 8.0 may describe a sudden
jump in the interaction. As we move from the adiabatic variation case to the sudden
jump case (the value of k increases), the periodic evolution of entropy changes and
entanglement speeds up. In Fig. (1), the atom is in the excited state and the field
is in a weakly excited thermal state with the average photon number 〈n〉 = 0.1.
The entropy changes of the atom and the field fluctuate together and so they are
correlated. When the atom is taken to be in the ground state as shown in Fig. (2),
the sum of the atom and field entropy changes is quasi-conserved. Their entropy
relations are anti-correlated. There is an entropy exchange between the atom and
the field, although the exchange is not complete. When the atomic state is close to
ground state (Pg = 0.9), there is an almost complete entropy exchange, as shown
in Fig. (3). The sum of the atom and field entropy changes is almost completely
conserved. The transient effects do not have any influence on the behavior of the
entropy exchange between the atomic and the field states. The sum of the entropy
changes of the atom and the field is approximately zero in the presence of the
transient effects.
For the entanglement properties of the system, we calculate a lower bound on

concurrence (LBC) such that the joint state of the atom-field system 2 ⊗ ∞ is
projected onto 2⊗ 2 systems by means of the projection operator

Πn = (|g〉〈g|+ |e〉〈e|)⊗ (|n〉〈n|+ |n+ 1〉〈n+ 1|) (12)

The resulting density operator is

ρn(t) =
1

Tn(t)
Πnρ

fa(t)Πn (13)

where Tn(t) = Tr(Πnρ
fa(t)Πn) denotes the probability of obtaining ρn(t) which is a

sub-state with the dimension 2⊗2. For the 2⊗2 systems, the degree of entanglement
can be quantified by the Wootters’concurrence [25]. Concurrence varies from 0 for
the separable states to 1 for the maximally entangled states. Entanglement of
the total system can be quantified by averaging over the entanglement of all the
sub-states of the system [26]

C(t) =

∑
n Tn(t)Cn(t)∑

n Tn(t)
(14)
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Figure 1. Entropy change ∆S for the atom (solid line) and for
the field (dot line) as a function of time t. Pe = 1, 〈n〉 = 0.1 and
T = 30. (a) k = 0.5 (b) k = 2.0 (c) k = 8.0.
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Figure 2. Entropy change ∆S for the atom (solid line), for the
field (dot line) and for their sum (dash-dot line) as a function of
time t. Pg = 1, 〈n〉 = 0.1 and T = 30. (a) k = 0.5 (b) k = 2.0
(c) k = 8.0.
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Figure 3. Entropy change ∆S for the atom (solid line), for the
field (dot line) and for their sum (dash-dot line) as a function of
time t. Pg = 0.9, 〈n〉 = 0.1, T = 30 and k = 1.0.

where Cn(t) is the concurrence of sub-state ρn(t).
Fig. (4) shows the time-evolution of the entanglement of the system for Pe = 1. It

is obvious that the time-elapsed for the collapse and recovery of the entanglement is
long around the beginning of the interaction and then shortens, as time passes. Also,
there is a time interval (around t ≈ 15) at which the amplitude of the oscillations
are relatively suppressed. So, there is some chaos at these instants of time in the
interaction. We now calculate the time-average of the concurrence to see more
clearly this chaotic influence of the transient effects on the entanglement. We
compute it as

Cav =

∫ T
0
C(t)dt

T
(15)

where we take T = 30 and take the integral numerically.
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Figure 4. Concurrence C as a function of time t. Pe = 1, 〈n〉 =
0.1 and T = 30. (a) k = 0.5 (b) k = 2.0 (c) k = 8.0.
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Figure 5. Average Concurrence Cav as a function of the parame-
ter of the transient effects k. Pe = 1, 〈n〉 = 0.1 and T = 30.

Fig. (5) shows the evolution of the time-averaged entanglement as a function
the parameter of the transient effects. It is clear that the average entanglement
fluctuates chaotically with the parameter k. There are unexpectedly considerable
sharp rises and falls at some values of k. What we normally expect is the certain
monotonic increase of the average entanglement with the parameter k. Apart from
these random fluctuations, the higher values of k, the higher magnitude of the
entanglement, as expected.

Conclusion

In summary, we have examined the dynamics of the entropy changes and the
entanglement in the atom-field interaction by the Jaynes-Cummings model in the
presence of the transient effects. We have showed that the transient effects do
not influence the dynamical behavior of entropy exchange between the atom and
the field. As the strength of these effects increases, the oscillations of the entropy
change and entanglement speed up. The entanglement behaves chaotically as the
transient effects become stronger.
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[3] İmamoǧlu, A., S. E. Harris, Opt. Lett. 14, 1344 (1989).
[4] Jaynes, E. T., F. W. Cummings, Proc. IEEE 51, 89 (1962).
[5] Cummings, F. W., Phys. Rev. 140, A1051 (1965).
[6] Kuklinski J. R. and J. L. Madajczyk, Phys. Rev. A 37, 3175 (1988).
[7] Gea-Banacloche, J., Phys. Rev. A 47, 2221 (1993).
[8] Rodriguez-Lara B. M. and H. Moya Cessa, Phys. Rev. A 71, 023811 (2005).
[9] Kundu, A., Theor. Math. Phys 144, 975 (2005).
[10] Hussin V. and L. M. Nieto, J. Math. Phys. 46, 122102 (2005).
[11] Shore B. W., and P. L. Knight, J. Mod. Opt. 40, 1195 (1993).
[12] Joshi, A., S. V. Lawande, Phys. Rev. A 48, 2276 (1993).
[13] Agarwal G. S., and S. Arun Kumar, Phys. Rev. Lett. 67, 3665 (1991).
[14] Graham, R., J. Mod. Opt. 34, 873 (1987).
[15] Kayhan, H., Commun. Theor. Phys. 56, 487 (2011).
[16] Hu Y.-H. and Y.-G. Tan, Phys. Scr. 89, 075103 (2014).
[17] Hu Y.-H. and Y.-G. Tan, Commun. Theor. Phys. 62, 49 (2014).
[18] Boukobza, E., D. J. Tannor, Phys. Rev. A 71, 063821 (2005).
[19] Yan, X.-Q., B. Shao, J. Zou, Chaos, Solitons & Fractals 37, 835 (2008).
[20] Zhang, J., B. Shao, J. Zou, Commun. Theor. Phys. 49, 1463 (2008).
[21] Zhang, Y.-Q., L. Tan, Z.-H. Zhu, Z.-Z. Xiong, L.-W. Liu, Chin. Phys. B 19, 024210 (2010).
[22] Guo, J.-L. Y.-B. Sun, Z.-D. Li, Opt. Commun. 284, 896 (2011).
[23] Yan X.-Q. and Y.-G. Lü, Commun. Theor. Phys. 57, 209 (2012).
[24] Yan, X.-Q., Chaos, Solitons & Fractals 45, 1309 (2012).
[25] Wootters, W. K., Phys. Rev. Lett. 80, 2245 (1998).
[26] Rendell R. W. and A. K. Rajagopal, Phys. Rev. A 67, 062110 (2003).

Current address : Hünkar Kayhan: Department of Physics, Abant Izzet Baysal University,
Bolu-14280, Turkey

E-mail address : hunkar_k@ibu.edu.tr
ORCID: http://orcid.org/0000-0001-6340-8933



             Available online: March 24, 2018 

 
 

 

Commun.Fac.Sci.Univ.Ank.Series A2-A3 

Volume 60, Number 1, Pages 11-20(2018)  

DOI: 10.1501/commua1-2_0000000107  

ISSN 1303-6009 E-ISSN 2618-6462 
http://communications.science.ankara.edu.tr/index.php?series=A2A3 
 

 

 

 

 Received by the editors:  November  11, 2017; Accepted: January 20, 2018. 

Key word and phrases: Crime prediction, Data mining, Social media, Sentiment analysis, Socio-Factor. 

 
© 2018 Ankara University 

 Communications Faculty of Sciences University of Ankara Series A2-A3: Physical Sciences and Engineering 

 

 

CRIME PREDICTION USING SOCIAL SENTIMENT AND SOCIO-FACTOR 

 

SAKIRIN TAM AND Ö. ÖZGÜR TANRIÖVER 
 

 
Abstract. Crime prediction becomes very important trend and a key technique in 

crime analysis to identify the optimal patrol strategy for police department. Many 
researchers have found number of techniques and solutions to analyze crime, using 
data mining techniques. These studies can help to speed up and computerize the 

process of crime analysis processes.  However, the pattern of crime is flexible, it always 
changes and grows. With social media, user posts and discusses event publicly. These 

textual data of every user has contextual information of user’s daily activities. These 
posts generate unstructured data that can be used for data prediction. As shown by 
previous research, twitter sentiment enable to predict crime in Chicago, United States. 

However, existed model on crime prediction was incorporating the use of socio factors. 
Therefore, the study aims to model crime prediction using social media content with 

additional socio-factors. The research approach is consisted of a combination of 
sentiment analysis from Twitter and social-factors with Kernel Density Estimation. 
Lexicon-base methods will be applied for sentiment analysis, and the model evaluation 

is measured with the help of logistic regression.  

 

 

1. Introduction 

 
Over the last decade, the exponential of social media development allows users to 

publish and access information and idea freely around the globe. With ease and 

effective use of social media, the number of Twitter users is grown from 140 million 

user with 340 million tweets or messages in 2012 [1] to 313 million users and 1 billion 

tweets or actively post on twitter [2]. Recent researches show that Twitter can be 

used for decision support as an ideal data source; users publicly discuss and distribute 

topics, emotions and events in real time with precise and valuable information called 

hashtag. Hashtag contains hidden information that can detect events and trend of 

topic [3]. As result, many researches used Twitter as predictive analytic data source 

to predict large-scale events in natural disaster [4], election [5] and crime [1] [6]. 
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Crime detection and prediction become very important trend and a key technique in 

crime analysis to identify the optimal patrol strategy for police department. Many 

researches have found number of techniques and solutions to analyze crime, using 

data mining techniques. These studies can help to speed up and computerize the 

process of crime analysis processes. However the pattern of crime is not static, it 

always change and growth [7].  

 

With social media, users post and discuss event publicly. These textual data of every 

user’s post has contextual information of user’s daily activities. These posts generate 

unstructured data that can be used for crime prediction. Previous researches had 

shown that twitter sentiment enable to predict crime in Chicago, United States. 

However, existed models on crime prediction present only sentiment analysis on 

twitter content with Kernel Density Estimation of historical crime. The models are 

lack of applying socio factors. In contrast, crime prediction model will produce more 

significant if socio-factor is added to sentiment analysis and KDEs.  

 

Therefore, the study aims to fulfill the gap mention above by considering socio-factor 

especially gender, age and education level to be significantly influent factor that could 

lead a person commit crime. The paper is structured as follows: Section 2 discusses 

related work. Selection 3 discuses the development of prediction model. Section 4 

presents model evaluation, and section 5 is the conclusion.   

 

 

2. Related study 

 

2.1. Crime Prediction  

 

Hot-spot maps are a traditional method of analyzing and visualizing the distribution 

of crimes across space and time [8]. Relevant techniques include Kernel Density 

Estimation (KDE), which fits a two-dimensional spatial probability density function 

to a historical crime record. This approach allows the analyst to rapidly visualize 

areas with historically high crime concentrations. Future crimes often occur in the 

vicinity of past crimes; therefore making hot-spot maps is a valuable crime prediction 

tool. KDEs are a model that has been applied for crime detection base on history of 

crime data. It displays higher risk in area for higher density of crime. KDEs consist 

of ArcGIS, MapInfo, R, and CrimeStat III that is applicable for crime hotspot 

detection. To improve the performance of crime detection and prediction, KDEs 

recently use spatial, temporal, and social media data [9][1][10]. 
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More advanced techniques like self-exciting point process models also capture the 

spatiotemporal clustering of criminal events [11]. These techniques are useful but 

carry specific limitations. First, they are locally descriptive, meaning that a hot-spot 

model for one geographic area cannot be used to characterize a different geographic 

area. Second, they require historical crime data for the area of interest, meaning they 

cannot be constructed for areas that lack such data. Third, they do not consider the 

rich social media landscape of an area when analyzing crime patterns. 

 

Researchers have addressed the first two limitations of hot-spot maps by projecting 

the criminal point process into a feature space that describes each point in terms of 

its proximity to, for example, local roadways and police headquarters [12]. This space 

is then modeled using simple techniques such as generalized additive models or 

logistic regression. The benefits of this approach are clear: it can simultaneously 

consider a wide variety of historical and spatial variables when making predictions; 

furthermore, predictions can be made for geographic areas that lack historical crime 

records, so long as the areas are associated with the requisite spatial information 

(e.g., locations of roadways and police headquarters). The third limitation of 

traditional hot-spot maps; the lack of consideration for social media has been our 

objective in our research. 

 

 

2.2. Prediction via social media using sentiment analysis 

 

In a forthcoming survey of social-media-based predictive modeling, Kalampokis et al. 

identify seven application areas represented by 52 published articles [13]. As shown, 

researchers have attempted to use social media to predict or detect disease outbreaks 

[14], election results [15], macroeconomic processes (including crime) [16], box office 

performance of movies [17], natural phenomena such as earthquakes [18], product 

sales [19], and financial markets [20]. These researches primarily use the technique of 

sentiment analysis. Researchers employ semantic analysis on the contextual contents 

of each tweet and draw the predictive response of the selected group of people.  

 

A primary difference between nearly all of these studies and the present research 

concerns spatial resolution. Whereas processes like disease outbreaks and election 

results can be addressed at a spatial resolution that covers an entire city with a single 

prediction, criminal processes can vary dramatically between individual city blocks. 

The work by Wang et al. comes closest to the present research by using tweets drawn 

from local news agencies [16]. The authors found preliminary evidence that such 

tweets can be used to predict hit-and-run vehicular accidents and breaking-and 

entering crimes; however, their study did not address several key aspects of social-

media-based crime prediction. First, they used tweets solely from hand-selected news 
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agencies. These tweets, being written by professional journalists, were relatively easy 

to process using current text analysis techniques; however, this was done at the 

expense of ignoring hundreds of thousands of potentially important messages. Second, 

the tweets used by Wang et al. were not associated with GPS location information, 

which is often attached to Twitter messages and indicates the user's location when 

posting the message. Thus, the authors were unable to explore deeper issues 

concerning the geographic origin of Twitter messages and the correlation between 

message origin and criminal processes. Third, the authors only investigated two of 

the many crime types tracked by police organizations, and they did not compare 

their models with traditional hot-spot maps. 

 

In our study, we addressed these limitations. We applied sentiment analysis to 

evaluate the polarity of tweets. We also integrated socio-economic factors into the 

model with sentiment polarity and historical crime record as explanatory variables. 

Taking full advantage of all these features, we are able to develop more accurate 

prediction on future crime incidents. 

 

 

3. Prediction model 

 

To construct crime model, Frist, we define training set of crime density, data from 

twitter and data of socio-factors. These data contain location where crime is occurred 

(latitude and longitude) within a specific training window (for example: 1January 

2018 – 31 January 2018). The location of spatial points are designed whether they 

have crime or not within 200qm. Therefore, a city of training set is divided into 

multitude of smaller region with length of 200qm. All crime points are then assigned 

to small sectors (neighborhoods). At this step we have a binary classifiers to 

determine crime and non-crime point. Second, we collect data from twitter with a 

specific latitude/longitude and training window as mention above. The data contain 

two parts; first tweet post and second socio factor-that we can derive from user 

profile such as gender, age and employment status.  Tweet will be computed to find 

polarity score of sentiment analysis. Last, we combine socio-factor, tweet polarity 

score with crime density. Let us have variable as following: 

 

Response Variable 

Xt(p) = Crime or non-crime point (0 is non-crime and 1 is crime point)  

 

Explanatory variable 

Explanatory variable 

f1(p) = Density of past crime 

f2(p) = Tweet polarity score (-1 to 1) 
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f3(p) = Trend of polarity score 

f4(p) = Gender 

f5(p) = Age 

f6(p) = Employment status 

 

 

3.1. Historical crime density f1(p) 

 

To calculate historical density of a particular type of crime (for example theft crime) 

at p point, let take f1(p) be Kernel Density Estimation (KDE) at point p: 

 

f1(p) = k(p,h) =
1

𝑃ℎ
∑ 𝐾𝑘

𝑗=1 (
‖𝑝−𝑝𝑗‖

ℎ
)                               (1) 

 

From Eq.(1), we have p is the point that we need to calculate the crime density, set 

h to be parameter (or bandwidth) to control the smoothness of density, P is total 

number of a crime (theft crime from the example) that occur in the city, set j to 

index a single point of crime, K is the function of density (we can use standard 

normal density function), ||.|| is the Euclidean norm, pj is the actual point of crime 

(theft) in the city. To help calculation of k(p,h), we can use ks packaged in R 

software, and we can also use Hpi function to get values of h. 

 

 

3.2. Information messages from Twitter f2(p) 

 

Messages from Twitter will be collected within a specific latitude/longitude and 

training window of time. At this point, the spatial sectors (neighborhood) lay down 

to 1000 x 1000 meter. Within defined spatial sectors (neighborhood) above, we are 

able to find polarity score of sentiment base on given tweet message from users in 

each sector. Polarity function and Sentiment Lexicon Dictionary will be used to 

perform for this purpose.  

 

Once we find sentiment polarity, we then find sentiment trend in each neighborhood, 

because it intuitively cause higher risk of crime. To measure sentiment trend, let take 

f3(p) as trend of polarity score, Xi is the percentage of change between previews k of 

period’s polarity and today’s polarity is: 

 

𝑉𝑖 = ∑ (
𝑝𝑖−𝑗−𝑝𝑗

𝑝𝑗
)𝑘

𝑗=1                                           (2) 

 

If the period is changed over 10%, we get sum of the change for f3(p) as follows: 
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=𝑇𝑖 = ∑ {𝑣 ∈ 𝑉𝑖: 𝑣 > 10% ∪ 𝑣 < 10%}𝑣                            (3) 

 

If the value of T is positive, the polarity of preview period is greater than polarity of 

current period. And if T is negative, the polarity of current period is greater than 

preview period.    

 

 

3.3. Logistic Regression 

 

In order to predict future crime that may occur, we define Xt+1(p) to determine 

whether crime will occur in p neighborhood on the next day. Full form of logistic 

regression is shown in Eq.(4). 

 

 𝑙𝑜𝑔 {
𝑃𝑟[𝑥𝑡+1(𝑝)=1]

1−𝑃𝑟[𝑥𝑡+1(𝑝)=1]
} =  𝛽0 + 𝛽1𝑓𝑡,1(𝑝) + ⋯ + 𝛽6𝑓𝑡,6(𝑝)             (4) 

 

 (𝛽0 … 𝛽6) can be calculated by using maximum likelihood function of historical 

crime (for example theft crime). 

 

Our objective is to develop a model to predict crime incident using Twitter sentiment 

polarity, socio-factor on KDE model. We first estimate historical crime density on 

each neighborhood p at time t using KDE as mention in Eq.(1). We then calculate 

polarity of tweets and its trend at each neighborhood p as mention in Eq.(2) and 

Eq.(3). Logistic regression model is then performing density estimation, feature from 

Twitter and socio-factor to forecast the probability of crime incident on next day 

t+1 in each point. 

 

4. Model evaluation 

 

To measure the performance of logistic regression, we use surveillance plots. 

Surveillance plots measures a crime as percentage of capture on y-axis of prediction 

window per percentage captured area for a particular crime prediction. If the value 

of sentiment polarity is increasing, the higher rate a crime could be occurred. The 

function of capture crime and captured area is written as: 

 

% Area Surveilled  = x%= 
∑   𝐴𝑖

𝑠
𝑖=1

∑   𝐴𝑖
𝑛
𝑖=1

                       (5) 

% Crime Captured  = y%= 
∑   𝐶𝑖

𝑠
𝑖=1

∑   𝐶𝑖
𝑛
𝑖=1

                      (6) 
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where {An} is the capture area sorted by point p, {ci} is the capture crime with 

captured area, and s is the number of capture area. From this equation, we derive 

function of surveillance curve (AUC) as: 

 

AUC = ∫ 𝑦(𝐴) ∗ 𝑥′(𝐴)𝑑𝐴
∞

−∞
                                                   (7) 

 

Meaning that, in order to evaluate prediction model we use AUC of prediction 

performance then compare with benchmarked logistic regression model. 

 

5. Conclusion 

 

In this paper we have presented the model development of crime prediction using 

sentimental contents, socio-factor with crime density estimation. Few researches 

have explained the correlation between crime and sentiment and none has taken 

into account these together in model construction. Therefore, this research fulfills 

this gab. However, this research present only initial model development, we are 

planning to further improve it with real training data set. 
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CONTROL OF COLLECTIVE BURSTING IN SMALL HODGKIN-
HUXLEY NEURON CLUSTERS 

 

 

SERGEY BORISENOK, ÖNDER ÇATMABACAK, AND ZEYNEP ÜNAL 

 

 

 
Abstract. The speed gradient-based control algorithm for tracking the membrane 
potential of Hodgkin-Huxley neurons is applied to their small clusters modeling the 

basic features of an epileptiform dynamics. One of the neurons plays a role of control 
element detecting the temporal hyper-synchronization among its network companions 
and switching their bursting behavior to resting. The ‘toy’ model proposed in the 

paper can serve as an algorithmic basement for developing special control elements at 
the scale of one or few cells that may work autonomously and are able to detect and 

suppress epileptic behavior in the networks of real biological neurons.  

 

 

1. Introduction 

 
Epilepsy is a disease involving changes at multiple different spatial and temporal 

scales and, therefore, demands for its modeling such a basic neuron mathematical 

element that possesses many degrees of freedom, like Hodgkin-Huxley (HH) neurons 

[1]. The chains of many HH neurons in the epileptiform regime demonstrate good 

agreement with animal in vivo recordings [2,3]. The 

synchronization/desynchronization of the cell behavior in the neural networks is the 

sufficient phenomenon for the understanding the mechanism of epilepsy [4,5]. Modern 

neuroscience demonstrates a great progress in study of the collective chaotic regimes 

of biological neurons, but its mathematical modeling still needs a sufficient 

improvement [6]. The Hodgkin-Huxley’s system covers some possible scenarios of the 

appearance of the collective bursting: ion channel mutations and fluctuations in 

concentration gradient of ions from inside to outside the axon [7].  

  

Recently we’ve developed the efficient algorithm to track an arbitrary dynamical 

regime in a single HH neuron controlled by an external electrical signal [8]. Here 

Fradkov’s speed gradient feedback [9] is applied to suppress the collective bursting 
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in the small clusters of Hodgkin-Huxley neurons via the driving action potentials in 

the neural axons. Our tracking algorithm allows to detect the hyper-synchronized 

dynamics in the cluster and to transfer the behavior of some selected neurons from 

the collective bursting to the resting.  

  

The control is performed with the single element of the cluster via the feedback to 

its bursting companions. The proposed algorithm can be used efficiently for studying, 

detecting and suppressing the epileptiform behavior [7] of spiking and bursting in the 

models for biological neuronal networks. 

  

 

2. Speed gradient feedback control for hodgkin-huxley neurons 

 

To model the basic element of the neural cluster we use here the Hodkin-Huxley 

(HH) model proposed in [1]. The k-th neuron in the population is described by the 

dynamical set of ordinary differential equations: 

 

3 4
( ) ( ) ( ) ( ) ;

( ) (1 ) ( ) ;

( ) (1 ) ( ) ;

( ) (1 ) ( ) .

k

M Na k k k Na K k k K Cl k Cl k

k

m k k m k k

k

n k k n k k

k

h k k h k k

dv
C g m h v E g n v E g v E I t

dt

dm
v m v m

dt

dn
v n v n

dt

dh
v h v h

dt

 

 

 

           

    

    

    

      (2.1) 

 

Here vk(t) stands for the action potential of the axon, mk(t), nk(t), hk(t) are its 

membrane gate variables. The summary current Ik(t) entering the k-th cell plays a 

role of an external signal stimulating spiking or bursting dynamics of the neuron. 

αm,n,h, βm,n,h are fenomenologically found functions related to the membrane gate 

probabilities and given by [1]:  
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                  (2.2) 

 

 

 

 

 

 

The set of constants in (2.1) includes the potentials ENa (equilibrium potential at 

which the net flow of Na ions is zero), EK (equilibrium potential at which the net 

flow of K ions is zero), ECl (equilibrium potential at which leakage is zero) in mV, 

the membrane capacitance CM and the conductivities gNa (sodium channel 

conductivity), gK (potassium channel conductivity), gCl (leakage channel 

conductivity) in mS/cm2: 

 

.36.10;3.0

;12;36

;115;120







ClCl

KK

NaNa

Eg

Eg

Eg

                                                      (2.3) 

 

The link element transfers the electrical stimulation from the axon of (k –1)-th 

neuron to the input of k-th neuron via synapses, dendrites and soma of the k-th cell. 

We use the gain model:  

 

1 rest
( ) [ ( ) ] ; const 0,
k k
I t v t v 


                                     (2.4) 

 

where the reference rest potential of an HH neuron is given by [1]:  
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The algorithm for tracking the membrane potential v(t) in a single neuron have been 

developed in [8]. For a single element tracking provides the reproduction of an 

arbitrary target function v*(t) by the potential v(t) via the designing the control 

current ISG(t). To do it, let’s define the scalar target (goal) function of the HH 

neuron as: 

                                    

 
2

*

1
( ) ( ) .

2
G v t v t                                    (2.6) 

 

The speed gradient algorithm [9] defines the gradient control in the space of the 

control signal. In the case of single neuron it is reduced to the partial derivative: 

 

 .)(
SG 














dt

dG

I
tI                                    (2.7) 

 

Here   is a positive constant. For the HH model (2.1) the algorithm (2.7) implies [8]: 

 

.)]()([)(
*SG
tvtv

C
tI

M


                             (2.8) 

 

Together with the dynamical set (2.1)-(2.4) Eq.(2.8) forms the control model for the 

HH cluster. 

 

 

3. Control model of the epileptiform suppression 

 

In this paper we introduce a basic ‘toy’ model for the epileptiform suppression. Let’s 

consider the sub-cluster of three HH neurons, see the configuration on Figure 1. 
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Figure 1. Basic model for an epileptiform suppression in the cluster of three 

Hodgkin-Huxley neurons. 

 

 

Here the neurons 1 and 2 are involved into the collective bursting stimulated by the 

currents Iinput1 and Iinput 2 coming from other companion cells in the neural 

population. The neuron 3 is a monitoring element providing the switch on and off 

for the algorithm of suppression. It plays two roles. First, it detects the over-

synchronization of the signals coming from the neurons 1 and 2 through the input 

currents I13 and I23 (sure, the neurons 1 and 2 may also stimulate other neurons in 

the bigger cluster, they are not shown on Figure 1). Second, if the neuron 3 observes 

the over-synchronization in a certain interval of time, it triggers the control algorithm 

of the suppression through the feedback loop to the neuron 2 by the current I32. The 

control current Icontrol reflects the inner degree of freedom for the neuron 3. Thus, 

this element works as an automat driving the neuron 2 from the bursting regime to 

the resting if and only if it detects its over-synchronization with the neuron 1. 

 

The basic cluster configuration on Figure 1 can be written in the form of coupled 

differential equations of (2.1)-type: 
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             (3.1) 

 

with the synaptic links: 
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                                       (3.2) 

 

Here we use our method of ‘back spread’ algorithmic goal: the real control signal is 

passing from the neuron 3 to the neuron 2, while the algorithmic definition of the 

goal follows the opposite direction, from 2 to 3, see Eqs.(3.5)-(3.7) below.  

 

First, we apply SG algorithm (2.8) to the neuron 3: 

 

.)]()([)(
*33control
tvtvtI                                 (3.3) 

 

The goal v3* of the tracking potential in the neuron 3 is defined as the inverse 

function to (2.4): 

 

.
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)( rest
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*3 v
tI
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                                        (3.4) 

 

The control current Icontrol entering the neuron 3 is given also in the SG form (2.8): 
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  ,])([)()()(
22313*31 rest

vtvtItItI                     (3.5) 

 

where ∆ stands for the smooth model of delta-function: 
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                   (3.6) 

 

The factor ∆ in (3.5) switches on the control algorithm only for the synchronized 

currents I13 and I23, and in the case of their time over-synchronization, i.e. only in 

the period of their epileptiform dynamics, leads the neuron 2 to the stabilization at 

the rest membrane potential. 

 

This algorithm can be easily extended for a larger number of collective bursting 

neurons and their feedback links in the population. 

 

 

4. Numerical simulations 

 

For the purpose of numerical simulations the following set of parameters has been 

chosen: 

 

.1.0;1;50;10;50;50
2input1input

 dCII
M

                (4.1) 

 

The results of the simulation are presented on Figure 2. 
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Figure 2. The neuron membrane potentials v1 (blue dashed line), v2 (red solid line) 

and v3 (green dash-dotted line) vs time. 

 

On the Figure 2 one can see that after the beginning instability at the scale t = 2 

the potential v2 is suppressed approximately in two times to compare with the 

bursting potential v1. This result seems to be very good for such a simple control 

model. When the collectively synchronized bursting is starting to growth (closed to 

t = 10), the control mechanism is switching on to drive the potential of the neuron 

2 far away from the synchronization. The same is happen when t = 12. 

 

Sure, the presented algorithm reflects only the basic features of the bursting 

suppression. The ‘toy’ control (3.5)-(3.6) needs to be sufficiently improved for the 

better detecting the chaotic hyper-synchronization in the clusters and feating more 

flexible details of the neuron dynamics. 

 

 

5. Conclusions 

 

The control algorithm developed in [8] for tracking the membrane potential of a 

single Hodgkin-Huxley neuron can be applied to a small configuration of HH elements 

modeling the basic features of an epileptiform dynamics. In this population one of 

the neurons plays a role of control element detecting the temporal hyper-

synchronization among its network companions and switching on the feedback signal 
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that it sends to some selected neurons in the population to drive them off the 

epileptiform regime.  

 

The ‘toy’ model proposed in the paper can serve as an algorithmic basement for 

developing special control elements at the scale of one or few cells that may work 

autonomously and are able to detect and suppress epileptic behavior in the networks 

of real biological neurons. 
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CELL OUTAGE DETECTION IN LTE-A CELLULAR SYSTEMS USING 

NEURAL NETWORKS 

 

 
HASAN TAHSİN OĞUZ  AND AYKUT KALAYCIOĞLU 

 

 
Abstract. Self-organizing networks (SONs) are considered as one of the key features 

for automation of network management in new generation of mobile communications. 
The upcoming fifth generation (5G) mobile networks are likely to offer new challenges 
for SON solutions. In SON structure, self-healing is an outstanding task which comes 

along with Cell Outage Detection (COD) and Cell Outage Compensation (COC). 
This study investigates the detection of cell outages by means of the metrics generated 

in the User Equipment (UE) with the help of pattern recognition methods such as 
Neural Networks, Logistic Regression and k-Means algorithms. Based on the metrics 
like Signal to Interference Noise Ratio (SINR), Reference Signal Received Quality 

(RSRQ), and Channel Quality Indicator (CQI), large amount of data is processed 
with supervised and unsupervised algorithms for the purpose of classifying outages 

and possible degradations. Our results suggest that in 79.74% of the simulation cases, 
Neural Network structure was able to identify the correct state of the cells whether 
it is outage or not with a true positive rate of 87.61% and a true negative rate of 

71.87% whereas Logistic Regression gave a success rate of 78.73%, true positive rate 
of 88.15%, and true negative rate of 69.3%. As a future work, more sophisticated 

state-of-the-art deep learning mechanisms can lead us to much more successful results 
in cell outage detection.   

 

 

1. Introduction 

 
Next generation 5G systems is supposed to bring in ultra-dense deployments for the 

purpose of attaining more capacity, higher rates, ultra-low latency, massive 

connectivity and lower energy consumption. For better network maintenance, Third-

Generation Partnership Project (3GPP) has already set forth the concept of Self 

Organizing Networks (SON) which involves Self-Configuration, Self-Optimization 

and Self-Healing. Cell Outage Detection is the first primary step for Self-Healing 

feature of the future 5G Self Organizing Networks. Hardware or software failures or 

external failures such as power supply or network connectivity are the main causes 

for outages. Cell outage is defined as a state of the eNodeB where all or most of the 

User Equipment (UEs) in the cell are unable to establish or keep its radio 
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connectivity with the result of reduction in capacity and coverage gaps. Especially 

in the existence of dense deployments, outages may not be detected for hours or even 

days. Traditionally, detection outages may require site visits, drive tests and manual 

analysis of the alarms generated on the Operations and Support Systems (OSS) which 

makes outage detection costly [1]. 

 

Cell Outage Detection (COD) is basically a binary classification problem to detect 

the degraded cell among healthy ones by making use of some UE statistics reported 

to the eNodeB. Future 5G mobile networks are supposed to handle COD 

autonomously. Therefore, detection algorithms employed on the Operations and 

Support System (OSS) should online monitor the UE statistics continuously and 

process the data measured on the UEs as suggested by 3GPP releases [2].  

 

In previous studies, algorithms based on the spatial correlations among users have 

been used in cell outage detection [3]. Handover statistics were also employed on 

COD analysis [4]. In [5] COD has been handled via employing neighbor cell list 

reports and detecting outage cells by looking at the changes in the topology generated 

by visibility graphs. In [6], Channel Quality Indicator (CQI) based composite 

hypothesis has been utilized for outage detection. Machine learning has also been 

popular in outage detection. In [7] and [8], clustering algorithms and Bayesian 

Networks have been conducted for COD respectively. Hidden Markov Models 

(HMM), as another well-known classifier, was also studied in COD by training the 

data regarding healthy cells and outage cells for predicting the outage status of the 

eNodeBs [9]. K-Nearest Neighbors method has been conducted in [10] for COD in 

multi-tier networks. In [11], alternative to machine learning procedures, an anomaly 

detection method based on processing of big data emerged from Key Performance 

Indicators (KPI) has been introduced.   

 

In this study, feed forward Multilayer Perceptron (MLP) type artificial Neural 

Networks are used for detection of cell outages in a network of eNodeBs. Neural 

Networks (NN) is one of the novel pattern recognition tools that have been used on 

many areas so far. Thereby, we employed supervised NN for the investigation of 

outage patterns based on the metrics measured on UEs placed in the cell. In this 

study we have used the metrics SINR, CQI and RSRQ as the input for the NN 

structure by training the system at the beginning and then applying the test data. 

 

The rest of the paper is organized as follows. In Section 2 the metrics and parameters 

for outage detection are briefly discussed. In Section 3, the details of the artificial 

Neural Network application and training scheme are introduced. Section 4 presents 

the results in a comparative manner along with other classification methods like 
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Logistic Regression and k-Means algorithms. Finally, we conclude the paper in 

Section 5. 

 

 

2. Algorithm Description 

 

The eNodeBs in the cellular wireless systems in this study are considered to be in 

two states as healthy and outage. Outage cells and healthy cells are assumed to 

radiate with a power of 0 dBm and 46 dBm respectively. Due to some reasons such 

as hardware or software failures, external power supply problems or even 

misconfiguration, and etc., when the output power of the eNodeB degrades, the cell 

goes into outage state. However service providers generally cannot realize these types 

of state changes very quickly and efficiently. Making use of the measured UE data 

related to received signal strength, which are also reported to eNodeBs, the outage 

state might be detected by use of artificial neural networks which have been 

employed in many fields so far. Therefore, feed forward artificial neural networks are 

preferred in this study for COD. 

 

Feed forward neural networks are used in this study. Feed forward networks consist 

of series of neuron layers. The first layer has a connection from the network input. 

Each subsequent layer of neurons has a connection from the previous layer. The 

output layer is the last layer of the structure and the layers other than the output 

layer are hidden layers. Feed forward networks are suitable for mapping any finite-

input finite-output problems. In our case some KPIs (Key Performance Indicator) 

are chosen as the input to the network and the output is the Boolean data regarding 

the outage. 

 
Figure 1. Structure of a feed-forward network 

 

In feed forward neural networks data is fed into the network from input layer. The 

output is computed according to the equation (1). In equation (1), X, W, Y, and T 

are the input, weight, output and threshold matrices, respectively. Besides, denoted 

both in equation (1) and (2), f is the activation function.  
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𝑌 = 𝑓(𝑊 × 𝑋 − 𝑇)                                      (1) 

𝑓(𝑋) =  
1

1+𝑒𝑋                                          (2) 

 

In this scheme, a weight adjustment process takes place in such a way that the 

weights are updated in every iteration until the desired output is achieved with an 

error of less than a threshold with the error fed back layer by layer. The adjustment 

of the weights is the training process for the neural network to accomplish the 

learning goal. 

 

2.1. Detection Parameters 

 

For the purpose of Cell Outage Detection we made use of some KPIs within Artificial 

Neural Networks (ANNs). The KPIs are collected from several sources like User 

Equipment, eNodeBs and Operation Support Systems. The combination of KPIs may 

provide critical information for accurate detection of a possible degradation on the 

cellular system. We have selected SINR, CQI and RSRQ as the parameters to work 

on. SINR is basically the signal to interference plus noise ratio of a UE. CQI is the 

channel quality indicator carrying information about the channel quality of the 

communication link. Third metric reference signal received quality (RSRQ), as the 

name implies, indicates the received quality of the reference signal. RSRQ is used for 

handover decisions and cell re-selection. In this study we made use of these three 

metrics measured on the UEs. With these parameters from the UEs being the inputs 

for the Neural Network, we trained the network and then tested the network for 

healthy and outage cases. 

 

2.2. Training and Detection Procedure 

 

Prior to detecting the outages, Neural Network structure should be trained so as to 

learn the patterns on healthy and outage states. For every UE on the site, the three 

parameters (SINR, CQI, and RSRQ) are collected for healthy and outage cases so 

that an input data of three features are provided. The input data matrix is fed into 

a feed-forward back propagation Neural Network. After training the net, test data 

regarding the outage and healthy cases are fed into the Neural Network structure as 

inputs and the resulting success is measured accordingly. The data structure input 

to the Neural Network is shown in Figure 2. Assuming M number of UEs on the site 

there is an input data matrix of dimension Mx3 and there is also a state matrix 

which have binary values either 1 or 0 indicating an outage or not, respectively. 
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Figure 2. The structure of the input data 

 

 

3. Simulation Environment 

 

The KPI parameters in the input matrix are generated via Vienna LTE-A Simulator 

on MATLAB, which is a well-known downlink system level simulator for LTE/LTE-

A networks [12]. In the simulations we employed eNodeBs with hexagonal geometry 

using 7 cells with one ring around the one in the middle, shown in Figure 3. We have 

assigned a total of 700 UEs with 100 UEs for each eNodeB and we used only the 

parameters of UEs belonging to the cell in the middle for the purpose of attaining 

more realistic KPIs with thorough interference effects. The radiating power of the 

healthy and outage cells were determined as 46 dBm and 0 dBm, respectively.  

 

According to the simulation scenario, the power of the healthy cell degrades from 46 

dBm to 0 dBm. To generate the training data, the three KPI parameters are recorded 

for both healthy and outage states. For testing procedure, the same simulations with 

UEs on different random locations but the eNodeBs in their original places are 

operated so that the KPI parameters are generated. The resulting KPI parameters 

are tested with the formerly trained Neural Network. The parameters of the 

simulations are given in Table 1. In the simulation environment, we planned an urban 

type environment with an inter-cellular distance of 500 meters. 20 transmission time 
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interval (TTI) of simulation time was considered as suitable because it is sufficient 

for the radio access network parameters to settle down to their stable values. 

 

Table 1. Simulation Parameters 

Parameters Values 

Cellular Layout 7 eNodeBs  

BS Tx Power for healthy cells 46 dBm 

BS Tx Power for outage cell 0 dBm 

Path Loss Model TS36942 urban 

Number of UEs per cell 100 

UEs’ mobility Uniformly random distributed, random 

walk model with constant speed 

Channel Bandwidth 5 MHz 

Inter eNodeB Distance 500 m 

Simulation Duration 20 TTI 

 

 
Figure 3. Hexagonal Cellular Structure with one ring around the center cell  

 

 

4. RESULTS 

 

Training process of the Neural Network starts with random initializations of the 

weights. For this reason the iterations may converge to local optima and may end 

with slight differences in terms of adjusted weights. Therefore the procedure of 
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training the net, testing the data and computing the success rate is repeated 50 times 

so that an overall average success rate is reached. At the end of simulations the 

success rate of detecting an outage has come out to be 79.74%. Classification 

Performance of Neural Networks is also given in Table 2. In the Neural Network 

structure 10 neurons are employed and 10-fold cross validation is applied on the 

classification process. For comparison purposes, Logistic Regression and K-Means 

Algorithms were also applied.  Binary Logistic Regression (LR) is one of the well-

known pattern recognition methods used in binary classification problems. It is 

basically a regression process where the regression coefficients are computed by 

employing multi-dimensional training data within a least squares error approach and 

the output is generated by using the exponential operation on computed coefficients 

along with the data to be tested. The overall success rate for Logistic Regression was 

78.73% and contingency table is given in Table 3. (True Positive (TP) Rate = 

88.15%, True Negative (TN) Rate = 69.3%, False Positive (FP) Rate = 28.13% and 

False Negative (FN) Rate = 13.39%). On the other hand, K-Means algorithm which 

is an unsupervised clustering method, was also applied on the test data. Due to 

unsupervised nature of K-Means Algorithm, the overall success rate was limited to 

66.8%. 

 

Table 2. Classification Analysis of Neural Networks (Contingency Table) 

 Real Outage Cases Real Healthy Cases 

Classified as outage TP Rate = 87.61% FP Rate = 28.13% 

Classified as healthy FN Rate = 13.39% TN Rate = 71.87% 

 

 

Table 3. Classification Analysis of Logistic Regression (Contingency Table) 

 Real Outage Cases Real Healthy Cases 

Classified as outage TP Rate = 88.15% FP Rate = 30.7% 

Classified as healthy FN Rate = 11.85% TN Rate = 69.3% 

 

 

In cellular systems with dense deployment, the detection rates of the outages may 

further be improved by employing larger training data because as training sets 

increase there may be more information available to the classification algorithm [13]. 

Moreover employing more powerful machine learning mechanisms such as state-of-

the-art deep learning architectures may also improve the detection performance.  
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5. CONCLUSION 

 

In this study we have classified the eNodeBs into two categories as healthy and 

outage. We have applied artificial Neural Networks, a novel method for pattern 

recognition purposes, on the three KPI parameters (SINR, CQI and RSRQ) of the 

UEs reported periodically to the eNodeBs. Our proposed classification method has 

an outage prediction accuracy of 79.74% and success rate with Logistic Regression 

was computed as 78.73%. Having larger training datasets and employing more 

efficient methods like state-of-the-art deep learning architectures can further increase 

accuracy. Our study conducted Neural Network approaches on outage detection with 

cellular structures having eNodeBs. Therefore this study should be enhanced by 

employing other pattern recognition/classification methods such as Support Vector 

Machines, Hidden Markov Models and Deep Learning Structures along with ultra-

dense multi-tier network structures (femto, micro, pico cells) that are likely to take 

place in future 5G systems. 
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COMPUTATIONAL BIFURCATION ANALYSIS TO FIND DYNAMIC 

TRANSITIONS OF THE CORTICOTROPH MODEL 
 

 

SEVGİ ŞENGÜL AYAN AND AHMET KURT 

 

 
Abstract. The corticotroph model is a 7th order nonlinear differential equation 

system derived for representing the action potential dynamics of corticotrophs; one 

of the endocrine cells that is responsible for stress regulation. Here we use 

numerical continuation methods to perform bifurcation analysis since controlling 

bifurcations in the hormonal dynamics may bring some new insights in the 

treatment of stress related disorders. We study the bifurcation structure of the 

system as a function of the BK-channel dynamic parameters and the all maximal 

conductances. We identify the regions of bistability and bifurcations that shape the 

transitions between resting, bursting and spiking behaviors, and which lead to the 

appearance of bursting which is directly connected to stress regulation. 

Furthermore, we find that there are two routes to bursting, one is the experimentally 

observed BK-channel dynamics and the other is Ca2+ channel conductance only. 

Finally, we discuss how some of the described bifurcations affect dynamic behavior 

and can be tested experimentally. 
 

1. Introduction 
 

Systems of ordinary differential equations (ODEs) have a great impact on 

understanding the many biological systems, like electrically excitable cells ([1], [2]), 

growth dynamics [3] or chemical reaction networks [4]. Another approach for such 

systems is stochastic approach [5] but when it comes to numerical simulations of 

large nonlinear models and parameter estimation, ODE-based models offer a variety 

of analysis methods [6]. Another important property of ODE models for biological 

models are, we can observe very different dynamics for different sets of parameters 

such as stable/unstable equilibriums, limit cycles, periodic or chaotic orbits. A 

challenging part in developing and analyzing such models is to understand how 

parameters of the model affect features of its such dynamics. Numerical solution of 
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these models with hand tuning of parameters is a first approach to predict the 

system’s behavior and effects on solutions [7]. But trusting the modeler’s intuition 

by manual inspection of the equations is not a suitable approach for non–trivial 

systems. At this point we need a more powerful approach to see the specific behavior, 

and how this depends on parameter values. 

 

Excitable electric activity is observed to many biological systems; such as some 

isolated or coupled neurons, hormone secretion, muscle contraction or heart cells. 

This activity plays an essential role for the function of the cell as well as for its 

communication with neighboring cells. From a dynamical system point of view, a 

slight perturbation of the single stable stationary state by changing related parameter 

would lead to a large and long-lasting shift away from stationary point before the 

system asymptotically returning to equilibrium. Performing numerical continuation 

methods to perform bifurcation analysis is often a powerful way to analyses the 

properties of such systems, since it predicts what kind of behavior occurs where in 

parameter space ([7], [8]). Bifurcation analysis start with computing all equilibrium 

and periodic solutions of the system along with information about the stability of 

these solutions. Bifurcation diagrams are created later from the curves of equilibrium 

solutions as one of the parameters is varied while all other parameters are held fixed. 

To generate an entire family of bifurcation diagrams, this procedure can be repeated 

for all important parameters as a variable. 

 

In this paper we focus on the analysis of CRH/AVP bursting in corticotroph cells of 

the pituitary using the mathematical model that author defined in the previous work 

[2]. These cells are responsible for the neuroendocrine response to stress as an 

integral component of the hypothalamic–pituitary–adrenal (HPA) axis. 

Corticotrophs display mostly single spike activity under basal conditions that 

transition to complex bursting behaviors upon stimulation by the CRH and AVP, 

however the underlying mechanisms controlling bursting in terms of dynamical 

system viewpoint are unknown. Similar bursting behavior that we describe for 

corticotrophs is known to occur in a variety of other cell types as well. For instance, 

Morris and Lecar [9] modeled the complex firing patterns in barnacle giant muscle 

fibers, for pacemaker neurons burst patterns are shown by Pant and Kim [10], 

bursting patterns in discharging cold fibers of the cat are investigated by Braun et al. 
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[11]. But biophysical mechanism underlying the bursting behavior vary significantly 

from cell type to cell type. 

 

To this aim, we use mathematical modeling, numerical simulations and dynamical 

systems theory approaches to investigate the dynamic behavior of the corticotroph 

system. Parameter regimes for spiking and bursting activity are not investigated 

before, a detailed mathematical analysis of the dynamical regimes of the model has 

not performed yet. We study the bifurcation structure of the system as a function of 

conductances and parameters responsible for bursting. We identify the bifurcations 

that shape the transitions between resting, bursting and spiking behaviors which lead 

to the appearance of bursting after the stimulation with CRH. Insights gained from 

these analyses helped us to understand how the activity changes arise and whether 

there is other parameter set that can cause bursting for corticotrophs. These insights 

will provide us measurable results with experiments. Due to the complexity of the 

model, a great deal of extra insight can be gained by analyzing how some of the 

many other parameters shape the dynamical landscape of the model. Traditionally 

this has been used to isolate computationally important variables, responsible for 

bursting, given the difficulty of teasing apart the system experimentally. 

 

 
2. The Corticotroph Model 

 
 As the basis for our bifurcation analysis, we will use the following model 

suggested by the author without the noise term [2]; 

 

𝐶𝑚

𝑑𝑉

𝑑𝑡
= −(𝐼𝐶𝑎 + 𝐼𝐾−𝑑𝑟 + 𝐼𝐵𝐾−𝑛𝑒𝑎𝑟 + 𝐼𝐵𝐾−𝑓𝑎𝑟 + 𝐼𝐾−𝑖𝑟 + 𝐼𝑁𝑆)              (2.1) 

𝐼𝐶𝑎(𝑉) = 𝑔𝐶𝑎𝑚∞(𝑉)(𝑉 − 𝑉𝐶𝑎)                                                    (2.2) 

𝐼𝐾−𝑑𝑟(𝑉) = 𝑔𝐾𝑛(𝑉 − 𝑉𝐾)                                                         (2.3) 

𝐼𝐾−𝑖𝑟 (𝑉) =  𝑔𝐾−𝑖𝑟𝑟∞(𝑉)(𝑉 − 𝑉𝐾)                                                  (2.4) 

𝐼𝐵𝐾−𝑓𝑎𝑟(𝑉, 𝑐)  =  𝑔𝐵𝐾−𝑓𝑎𝑟𝑏𝑘𝑓(𝑉 − 𝑉𝐾)                                             (2.5) 
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𝐼𝐵𝐾−𝑛𝑒𝑎𝑟(𝑉, 𝑐𝑑𝑜𝑚)  =  𝑔𝐵𝐾−𝑛𝑒𝑎𝑟𝑏𝑘𝑛(𝑉 − 𝑉𝐾)                                          (2.6) 

𝐼𝑁𝑆(𝑉) = 𝑔𝑁𝑆(𝑉 − 𝑉𝑁𝑆)                                                             (2.7) 

𝑑𝑛

𝑑𝑡
=

𝑛∞(𝑉) − 𝑛

𝜏𝑛
                                                                  (2.8) 

𝑥∞(𝑉) =
1

1 + 𝑒
(
𝑣𝑥−𝑉

𝑠𝑥
)

,        𝑥 = 𝑛, 𝑚, 𝑟                                               (2.9) 

𝑑𝑏𝑘𝑛

𝑑𝑡
=

𝑏𝑘𝑛∞
(𝑉, 𝑐𝐷𝑂𝑀) − 𝑏𝑘𝑛

𝜏𝑏𝑘𝑛

                                                  (2.10) 

𝑑𝑏𝑘𝑓

𝑑𝑡
=

𝑏𝑘𝑓∞
(𝑉, 𝑐) − 𝑏𝑘𝑓

𝜏𝑏𝑘𝑓

                                                      (2.11) 

𝑏𝑘𝑛∞
(𝑉, 𝑐𝐷𝑂𝑀) =

1

1 + exp
−(𝑉 − 𝑉𝑏𝑘−𝑛𝑒𝑎𝑟(𝑐𝐷𝑂𝑀))

𝑘𝑏𝑘

                              (2.12) 

𝑏𝑘𝑓∞
(𝑉, 𝑐) =

1

1 + exp
− (𝑉 − 𝑉𝑏𝑘−𝑓𝑎𝑟(𝑐))

𝑘𝑏𝑘

                                          (2.13) 

𝑉𝐵𝐾−𝑛𝑒𝑎𝑟(𝑐𝐷𝑂𝑀) = 𝑉𝐵𝐾0
− 𝑘𝑠ℎ𝑖𝑓𝑡 ln 

𝑐𝐷𝑂𝑀

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

                                    (2.14) 

𝑉𝐵𝐾−𝑓𝑎𝑟(𝑐) = 𝑉𝐵𝐾0
− 𝑘𝑠ℎ𝑖𝑓𝑡 ln

𝑐

𝑘𝐶𝑎𝐵𝐾−𝑓𝑎𝑟

                                            (2.15) 

𝑐𝐷𝑂𝑀 = −𝐴𝐼𝐶𝑎−𝐿(𝑉)                                                              (2.16) 

𝑑𝑐

𝑑𝑡
= −𝑓(𝛼𝐼𝐶𝑎 + 𝑘𝑐𝑐)                                                              (2.17) 
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There are six ionic currents in the model, ICaL is the high voltage activated L-type 

Ca2+ current, IKdr is the rapidly activated delayed rectifier K+ current, IBK-near is the 

large-conductance, voltage and Ca2+-activated K+ channels located near Ca2+ 

channels and respond to Ca2+ in microdomains. IBK-far channels are located away from 

Ca2+ channels and respond to the mean cytosolic Ca2+ concentration. IKir is the inward 

rectifier K+ current that activates under hyperpolarization. Also, Ins in the model is a 

current produced by non-selective-cation channels. n is the gating variable for the 

activation of IKdr current. 𝑥∞(𝑉) shows the steady-state functions. 

 

The gating variables for the near and far populations of BK channels with the 

equilibrium functions are shown with the bkn and bkf equations. Here Cadom is the 

free Ca2+ concentration in a microdomain and c is the mean free cytosolic Ca2+ 

concentration. 

 

Table 1. Parameter values 

Parameters Values Parameter Value 

gCa−L 1.8 nS (basal), 

2.2 nS (CRH) 

kCaBK−near
 18 μM (basal), 6 

μM (CRH) 

gNS 0.1 nS (basal), 

0.2 nS (AVP) 

kCaBK−far
 0.6 μM 

gK 8.2 nS kbk 1 mV 

gK−ir 1 nS sm 10 

gBK−near 2 nS sn 10 

gBK−far 1 nS sr -1 

VCa 60 mV VBK0
 0.1 mV 

VNS -10 mV kshift 20 

VK -75 mV A 0.15 

𝑣r -60 mV 𝑘𝑐 0.12 μM 
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𝑣m -20 mV f 0.01 

𝑣n -5 mV 𝛼 0.0015 

τbkn
 20 ms (basal), 4 

ms (CRH) 

σN 5 pA 

τbkf
 4 ms Cm 6 nF 

 

 

Bifurcation and continuation analysis was conducted in PyDSTool, PYTHON based 

tool for simulating and analyzing dynamical systems. One and two-parameter 

bifurcation diagrams were constructed using AUTO within PyDSTool [12]. 

 
3. Results 

 

We can apply numerical continuation to each rate constants and dynamic parameters 

for currents to determine which oscillations appear or disappear and how these 

transitions between a stable and unstable steady state happens ([13], [14], [15], [16], 

[17]). But experimentally making these changes mostly impossible. In the original 

paper [2], authors saw that making the BK-near channels similar to BK-far channels 

by reducing the time constant and right-shifting its activation curve was sufficient to 

convert spiking to bursting without the need to make any other changes but how this 

transition happens is unknown. Also, with the dynamic clamp study, it has been 

shown that BK-near channel conductance induces bursting in pituitary cells [18]. 

Given the difficulty of teasing apart the system experimentally, understanding the 

dynamic mechanisms behind these transitions and responsible parameters are 

important because this will give us the reason for the changes after stress hormone 

regulation. These shifts in excitability is regulated by two hormones CRH and AVP 

that cause corticotrophs to respond differently to various stressors. Figure 1 shows 

an example of the temporal variations of the voltage 𝑉 as obtained by simulating the 

cell model under conditions where it exhibits a characteristic spiking (Fig. 1a) and 

bursting (Fig. 1b) dynamics after the stimulation with CRH/AVP.  Understanding 

the dynamic mechanisms under these shifts between resting, spiking and bursting is 

important because these results will give us applicable predictions on stress 
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regulation. Therefore, we begin by investigating the changes between spiking and 

bursting behavior for the experimentally observed parameters in section 3.1 first and 

then we will analyze the transitions between resting, spiking and possible bursting 

states in section 3.2 with all conductances using bifurcation analysis. 

 

 

 
Figure 1. Spiking and bursting patterns of the corticotroph model respectively. Parameter 

differences are as follows: Spiking (𝜏𝑏𝑘𝑛
= 20, 𝑔𝑁𝑆 = 0.1, 𝑔𝐶𝑎 = 1.8, 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

= 18), 

Bursting (𝜏𝑏𝑘𝑛
= 4, 𝑔𝑁𝑆 = 0.2, 𝑔𝐶𝑎 = 2.2, 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

= 6). 

 

3.1 Bifurcation analysis for bursting parameters 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 and 𝜏𝑏𝑘𝑛

 

 

In order to investigate the contribution of BK-channel dynamics to the overall 

dynamics and characterize bifurcation types in the model, BK-far and BK-near 

conductances (𝑔𝐵𝐾−𝑛𝑒𝑎𝑟 and 𝑔𝐵𝐾−𝑓𝑎𝑟) are investigated first but no bifurcation is 

observed. That means that BK channel conductances are not responsible for the 

bursting but the parameters for the channel dynamics are. Moreover, two important 

parameters responsible for bursting are: time constant of the BK-near channel 𝜏𝑏𝑘𝑛
 

and activation parameter 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 values, during spiking and bursting regime are 

examined separately.  
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3.1.1 Bifurcation for the BK-channel activation curve parameter ‘𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
’ 

during spiking regime 

 

We start our analysis of the bifurcation structure for spiking regime, the parameter 

values used here are: 𝜏𝑏𝑘𝑛
= 20, 𝑔𝑁𝑆 = 0.1, 𝑔𝐶𝑎 = 1.8. Fig. 2 shows the bifurcation 

diagram of the spiking regime (a) and some voltage traces with different values of 

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
. There are two Hopf bifurcations, two saddle-node bifurcations and one 

saddle node on periodic orbit bifurcations as a result of numerical continuation with 

respect to 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 parameters. For the small values of 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

 parameter, the 

bottom branch of the steady states are stable nodes and the stability lost with the first 

saddle-bode bifurcation (SN1) at 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.039949 leading to a branch of 

saddles which again turns around at another saddle-node bifurcation (SN2) 

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.03, before regaining stability again via a subcritical Hopf 

bifurcation. Subthreshold oscillations (Fig. 2b blue dashed line) start at subcritical 

Hopf point H1 at 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.39944 where unstable steady states turn into stable 

ones with the rise of unstable periodic branch and ends with supercritical Hopf 

bifurcation point H2 at 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.1434 where these stable steady states lost 

their stability. Here at saddle-node bifurcation of periodic solutions (SNP) at 

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 0.179, unstable periodic orbits also become stable ones. Here the 

branch of stable periodic spiking solutions emanating from the H2 grows in 

amplitude and period with increasing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 parameter. Subthreshold 

oscillations grow in amplitude and become regular spiking that can be seen in Fig. 

2b (orange line). This suggests that for the slow activation of 𝑏𝑘𝑛𝑒𝑎𝑟 channels 

(𝜏𝑏𝑘𝑛
= 20), shifting activation curve right or left by changing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

 does not 

have any physiological role as promoting bursting, instead it only increases the 

frequency of spiking.  
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Figure 2. Bifurcation analysis for BKnear-activation curve parameter kCaBK−near

 during 

spiking regime. a) Bifurcation diagram with kCaBK−near
 as the bifurcation parameter. Stable 

nodes (black line), unstable nodes or saddles (black dashed line), stable periodic orbit 

(magenta line), unstable periodic orbit (magenta dashed line), bifurcation points (red and blue 

dots). SN1 saddle node bifurcation 1, SN2 saddle node bifurcation 2, H1 subcritical hopf 

bifurcation, H2 supercritical hopf bifurcation, SNP saddle-node on periodics bifurcation. b) 

Representative traces of voltage at different values of kCaBK−near
. 

 

3.1.2 Bursting regime and bifurcation for the BK-channel activation curve 

parameter ‘𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
’ 

 

The bifurcation diagram, when 𝜏𝑏𝑘𝑛
= 4 and using 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟

 again as the 

bifurcation parameter, is qualitatively different than when 𝜏𝑏𝑘𝑛
= 20 (Fig. 3). 

Saddle-node bifurcations appear the same way and H1 point still rise a subcritical 

hopf bifurcation but there is a homoclinic bifurcation (HC) now just after the hopf 

point (Fig. 3b). Oscillations starting here ends with hyperpolarized resting state and 

with increasing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 parameter means that shifting the half activation of BK-

near channel to the right makes hyperpolarized state rises to higher voltages (Fig. 

3c). At H2, supercritical hopf bifurcation starts with periodic branches open to right 

now and stable periodic branches turn to unstable periodic branches at period 

doubling bifurcation (PD) (Fig. 3a). There is a fast spiking between this area (Fig. 

3c). For further increasing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
, spike doubling behaviour transitions to 

bursting as a result of CRH effect as in original model (Fig. 3d). Firstly, number of 

spikes per burst decreases (Fig. 3e,f) and then the bursting dynamics ends in a 
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different type of process, referred to as a homoclinic bifurcation. Finally, the periodic 

solutions disappear via a homoclinic bifurcation (HC) at 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
= 10.612 

which the period is infinitely large. In the interval of coexisting stable solutions, the 

stable manifold of the saddle point defines the boundary of the basins of attraction 

for the stable node and limit cycle solutions. The basin of attraction for a stable 

solution represents the set of initial conditions from which trajectories 

asymptotically approach the solution. When the limit cycle for increasing values of 

𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 hits its basin of attraction, another limit cycle appears through period 

doubling bifurcation. The characteristic slowing down of the spiking dynamics as 

the system approaches the end of the bursting phase observed as in Fig. 3e. The 

coordinates (𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
, V) of the bifurcation points are as follows: H1 (0.032, -

58.57), SN1 (0.04, -62.5), SN2 (0.03, -60.2), HC1 (0.03, [-56.84, -61,75]), H2 (1.16, 

-32.26), PD (5.33, [-7.07, -43.72]), HC2 (10.6, [-3.19, -36.3]). As can be seen here, 

bursting arises due to the rapid rate of BK channel activation since we decrease the 

𝜏𝑏𝑘𝑛
 from 20 to 4 and our bifurcation analysis shows that this transition is happening 

with the period doubling bifurcation. 

 

3.1.3 Varying 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 and 𝜏𝑏𝑘𝑛

 simultaneously: codimension-2 analysis 

 

As stated while 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 can induce bursting itself, 𝜏𝑏𝑘𝑛

 may not be able to induce 

bursting by itself. The natural cause of action is thus to investigate what happens as 

these 2 parameters are varied simultaneously. Due to the complexity of the system, 

an analytic codimension analysis is impossible. Therefore, a numerical codimension 

2 analysis will be enough to see the dynamics once we change both parameters 

simultaneously. If we vary two parameters, the curves of Hopf bifurcation is given 

below. We can see there is no oscillatory region between the Hopf points. Bursting 

regime stays after H2 point and Hopf points getting away from each other with 

increasing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
. In Fig. 4 we can see clearly that time dependency of the 

activation of BK channel alone cannot induce bursting and Hopf bifurcation is not 

responsible for characterizing the route to bursting. 
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Figure 3. Bifurcation analysis for BKnear-activation curve parameter kCaBK−near

 during 

bursting regime. a,b) Bifurcation diagram with kCaBK−near
 as the bifurcation parameter. 

Stable nodes (black line), unstable nodes or saddles (black dashed line), stable periodic orbit 

(magenta line), unstable periodic orbit (magenta dashed line), bifurcation points (red and blue 

dots). SN1 saddle node bifurcation 1, SN2 saddle node bifurcation 2, H1 subcritical hopf 

bifurcation, H2 supercritical hopf bifurcation, HC1 homoclinic bifurcation 1, HC2 

homoclinic bifurcation 2 and PD period doubling bifurcation. c,d,e,f) Representative traces 

of voltage at different values of kCaBK−near
. 

 

3.2 Dependence of model cell behavior on conductances  

 

3.2.1 Non-selective cation conductance 𝒈𝒏𝒔  

 

Duncan et al. [2] showed that increasing the non-selective cation channel 

conductance (𝑔𝑛𝑠) only increases spike frequency as a result of AHP effect. Here we 

examine the bifurcation diagram with respect to 𝑔𝑛𝑠 to see how cell is differing 
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stabilities according to changing non-selective cation current. Also, it is known that 

𝐶𝑎2+ dependent non-selective cation channel may induce bursting in different cells 

([19], [20]). The bifurcation diagram using 𝑔𝑛𝑠 as the initial bifurcation parameter is 

formed an s-shaped curve of steady states and a curve of periodic orbits (Fig. 5a). 

 
Figure 4. Two-parameter bifurcation diagram for 𝜏𝑏𝑘𝑛

 vs. 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
. 

The lower branch of the s-curve consists of stable nodes which correspond to the 

hyperpolarized resting state of the cell. Stability is lost via saddle-node bifurcation 

at (𝑔𝑛𝑠,V) = (0.099, -62.652), and gives rise to a branch of saddles, which forms the 

middle and part of the upper branches of the s-curve. From the Fig. 5a, the periodic 

solutions appearing for low 𝑔𝑛𝑠 via a saddle-node on an invariant circle (SNIC) 

bifurcation and cell shows regular spiking here (Fig. 5b orange line). The saddle-

node bifurcation of equilibrium solutions corresponding to this value of 𝑔𝑛𝑠 is that 

saddle-node point. This branch of saddles is regaining stability at the supercritical 

hopf bifurcation at (𝑔𝑛𝑠, V) = (1.047, -19.97). Here, periodic branches disappear and 

for increasing 𝑔𝑛𝑠 there remains a branch of stable nodes, corresponding to a 

depolarized resting state at around -20mV (Fig. 5c orange dashed line).  

 

Indeed, increasing the maximal conductance of non-selective cation channel only 

increases frequency first (Fig. 5c blue line), then regular spikes turns to subthreshold 

oscillations and does not induce bursting and cell is either hyperpolarized or 
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depolarized state otherwise. As a result, increasing the non-selective cation 

conductance did not initiate that transition to bursting for corticotroph cells, but 

increased burst frequency and decrease amplitude. 

 
Figure 5. Bifurcation analysis for non-selective cation conductance gns. a) Bifurcation 

diagram with gns as the bifurcation parameter. Stable nodes (black line), unstable nodes or 

saddles (black dashed line), stable periodic orbit (magenta line), unstable periodic orbit 

(magenta dashed line), bifurcation points (red and blue dots). SN1 saddle node bifurcation 1, 

SN2 saddle node bifurcation 2, H1 supercritical hopf bifurcation, HC homoclinic bifurcation. 

b,c) Representative traces of voltage at different values of gns. 
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Figure 6. Bifurcation analysis for L-type Ca current conductance 𝑔𝐶𝑎. a) Bifurcation 

diagram with 𝑔𝐶𝑎 as the bifurcation parameter. Stable nodes (black line), unstable nodes or 

saddles (black dashed line), stable periodic orbit (magenta line), unstable periodic orbit 

(magenta dashed line), bifurcation points (red and blue dots). H1 supercritical hopf 

bifurcation, H2 subcritical hopf bifurcation, HC1 homoclinic bifurcation 1, HC2 homoclinic 

bifurcation 2, PD period doubling bifurcation. b,c,d,e,f) Representative traces of voltage at 

different values of 𝑔𝐶𝑎.  

 

3.2.2 L-Type Ca2+-current conductance 𝑔𝐶𝑎 

 

The possibility of other ionic current to generate the bursting activity is examined by 

changing the L-type 𝐶𝑎2+ current conductance 𝑔𝐶𝑎. Fig. 6 shows the one-parameter  
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bifurcation diagram where 𝑔𝐶𝑎 is the bifurcation parameter. For the lower values of 

𝑔𝐶𝑎,  only one stable equilibrium point corresponding to the resting potential exists. 

When 𝑔𝐶𝑎 is increased to 0.519, stability is lost via supercritical hopf bifurcation 

(H1) and stable periodic orbits decreases the hyperpolarized resting state with 

increasing 𝑔𝐶𝑎. Spiking starts with a creation of periodic orbits at homoclinic 

bifurcation (HC2) at 𝑔𝐶𝑎 = 1.77 before regaining stability at the subcritical hopf 

bifurcation (H2) at 𝑔𝐶𝑎 = 4.06 and switch spiking to bursting activity at this point. 

Bursting due to the 𝐶𝑎2+ channel was the unexpected and unseen results from the 

experiments. Our bifurcation analysis revealed another link to bursting for 

corticotroph cells that can be tested experimentally. Also, we observe another nice 

dynamic here. A period doubling bifurcation is associated with the loss of stability 

of these periodic solutions. In addition, we observe spike adding cascade at this 

point. As the bifurcation parameter 𝑔𝐶𝑎 increase, the number of spikes per burst 

grows incrementally until bursting transforms into depolarized state (Fig. 6bcdef). 

For increasing 𝑔𝐶𝑎 there remains a branch of stable nodes, corresponding to a 

depolarized resting state of around -10mV. The 𝑔𝐶𝑎 values of the bifurcation points 

are as follows: H1 (0.519), HC1 (0.52), HC2 (1.77), H2 (4.065), PD (4.21).  

 

Here when we look at the voltage traces, spiking starts at the homoclinic point around 

𝑔𝐶𝑎 = 1.8, and before that it is in hyperpolarized state around -65mV. The periodic 

branches that starts from H1 only decreases the resting state from -40mV to -65mV. 

 

3.2.3 Delayed-rectifier potassium conductance 𝑔𝐾 

 

The potential role of delayed rectifier K+ channels in electrical activity was examined 

in various pituitary cells. In GH3 cells, inhibition of this channel increases the 

duration of the AP [21] and the amplitude of the spontaneous [Ca2+] transients [22] 

but in frog melanotrophs, the delayed rectifier K+ conductance, leads to inhibition of 

electrical activity [23]. In rat lactotrophs, on the other hand, does not alter the pattern 

of AP firing [21]. For the corticotrophs, we examine here with the bifurcation 

analysis using 𝑔𝐾 as the initial bifurcation parameter with different steady states and 

a curve of periodic orbits. When we look at the z-shaped curve in Fig. 7a, the lower 
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values of 𝑔𝐾 consists of stable nodes which correspond to the depolarized resting 

state of the cell. Stability is lost via a subcritical hopf bifurcation (H3) at (𝑔𝐾,V) = 

(4.512, -12.810) and cell starts to spike at this point (Fig. 7c). Unstable periodic 

orbits of subcritical hopf bifurcation gains stability with bautin bifurcation also 

known as degenerate hopf bifurcation at B1 point that corresponds to saddle-node 

bifurcation of periodic orbits (Fig. 7b) 

 
Figure 7: Bifurcation analysis for delayed rectifier K+ current conductance 𝑔𝐾. a) Bifurcation 

diagram with 𝑔𝐾 as the bifurcation parameter. Stable nodes (black line), unstable nodes or 

saddles (black dashed line), stable periodic orbit (magenta line), unstable periodic orbit 

(magenta dashed line), bifurcation points (red and blue dots). SN1 saddle node bifurcation 1, 

SN2 saddle node bifurcation 2, H1 subcritical hopf bifurcation 1, H2 supercritical hopf 

bifurcation 2, H3 subcritical hopf bifurcation 3, HC1 homoclinic bifurcation 1, HC2 
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homoclinic bifurcation 2, B1 Bautin bifurcation 1, B2 Bautin bifurcation 2, NS Neimark-

Sacker bifurcation. b,c) Representative traces of voltage at different values of 𝑔𝐾. 

In neural networks, bursting can be observed near bautin bifurcation [24] but in our 

system parameter region is small and this branch of stable orbits lost stability around 

at another bifurcation point, neimark-sacker bifurcation just after B1. For increasing 

𝑔𝐾 , there remains a branch of stable nodes corresponding to a spiking state until it 

vanishes with SNIC bifurcation at around 𝑔𝐾 = 9.455. From the Fig. 7a, the periodic 

solutions disappearing via a saddle-node on an invariant circle (SNIC) bifurcation. 

The saddle-node bifurcation of equilibrium solutions corresponding to this value of 

𝑔𝐾 is that saddle-node point and cell goes in to hyperpolarized state after this point 

(Fig. 7c orange dashed line).  

 

The z-shaped curve of steady-states create different periodic orbits here. The lower 

branch of the z-curve consists of stable nodes which correspond to the 

hyperpolarized resting state of the cell and middle unstable steady states turns to 

stable ones with the creation of unstable periodic orbits with 2 more hopf 

bifurcations, with one supercritical and the other is subcritical ones. Stable periodic 

orbits here lost their stability with another bautin bifurcation at B2 just after H2 point. 

Here again parameter region is so small between H2 and B2 and K+ conductance 

values are so big for real cell. As a result, cell stays in hyperpolarized state in that 

region.  

 

3.2.4 Inward-rectifier Potassium conductance 𝑔𝐾−𝑖𝑟 

 

To complete the full bifurcation analysis in terms of the conductances, lastly, we 

change inward-rectifier potassium current conductance 𝑔𝐾−𝑖𝑟 while others are intact. 

We know that 𝐾𝑖𝑟 channels play important roles in the control of resting membrane 

potential and inhibition of spontaneous electrical activity in pituitary cells [25]. The 

bifurcation diagram, using 𝑔𝐾−𝑖𝑟 as the bifurcation parameter, is shown in Fig. 8a. 

The bottom branch of this curve consists of stable nodes, representing the 

hyperpolarized resting state. There is a saddle-node bifurcation at 𝑔𝐾−𝑖𝑟 = 0.694 

and regular spiking occurs before this point (Fig. 8b). For further increasing 𝑔𝐾−𝑖𝑟, 

firstly spiking slows down (Fig. 8c blue line) and cell turns into hyperpolarized 
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resting state (Fig. 8c orange dashed line) means that it does not have enough 𝐶𝑎2+ 

to fire the action potential anymore. As we can see here, inward rectifier K+ channel 

does not promote bursting for corticotroph cells instead decrease in frequency of 

spiking and spiking to resting state transfer can be achieved with 𝐾 − 𝑖𝑟 channel. 

 

 

 
Figure 8. Bifurcation analysis for inward rectifier K+ current conductance 𝑔𝐾−𝑖𝑟 . a) 

Bifurcation diagram with 𝑔𝐾−𝑖𝑟 as the bifurcation parameter. Stable nodes (black line), 

unstable nodes or saddles (black dashed line), SN saddle node bifurcation. b,c) 

Representative traces of voltage at different values of 𝑔𝐾−𝑖𝑟 . 
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4. Discussion 

 

4.1 Spiking Dynamics 

 

The corticotroph model that the author defined in the previous work is used for the 

numerical bifurcation analysis to understand the dynamics under the transition 

between resting, spiking and bursting behavior. We show that corticotroph cells turn 

from silent phase to spiking phase with different bifurcation structures with the 

dynamic parameters of BK-channel dynamics (𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
) that is experimentally 

observed before and conductances. As 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 is increased subthreshold 

oscillations emerge in the model at subcritical Hopf point. Subthreshold oscillations 

grow in amplitude and become regular spiking through saddle-node bifurcation of 

periodic solutions bifurcation. We observe that cell does not turn back to resting with 

the activation parameter of BK-channels.  

 

The analysis shows that increasing 𝑔𝑛𝑠, 𝑔𝐾 and 𝑔𝐾−𝑖𝑟 channel conductances shifts 

cell from resting to spiking through hopf bifurcations and rheobases are formed from 

saddle-node bifurcations. Here while increasing 𝑔𝑛𝑠 turns the cell into depolarized 

state, increasing 𝑔𝐾 and 𝑔𝐾−𝑖𝑟 conductances shift the cell into hyperpolarized state. 

As a result of our bifurcation analysis with L-type Ca2+ current conductance 𝑔𝐶𝑎, 

spiking starts with a creation of periodic orbits at homoclinic bifurcation, not hopf 

bifurcation as the other conductances. But the most important result was this spiking 

phase does not turn to resting instead we observe bursting behavior as explained in 

4.2. 

 

4.2 Bursting Dynamics 

 

Given the importance of bursting activity in excitable cells, it is important to identify 

the key mechanisms underlying it. Experimental findings have shown that the 

intrinsic bursting of corticotroph cells is driven by BK- channels. But what kind of 

dynamic changes happens during the bursting was unknown. In this study we 

observed that BK channel conductances does not promote any dynamic changes for 
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the cell instead shifting activation curve by 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 parameter was responsible 

together with activation time parameter 𝜏𝑏𝑘𝑛
 when BK-near channel dynamics was 

fast. During the slow activation of BK-near channels (𝜏𝑏𝑘𝑛
= 20), shifting activation 

curve right or left by changing 𝑘𝐶𝑎𝐵𝐾−𝑛𝑒𝑎𝑟
 does not have any physiological role as 

promoting bursting, instead it only increases the frequency of spiking.  

 

As can be seen here, first bursting arises due to the rapid rate of BK channel 

activation since we decrease the 𝜏𝑏𝑘𝑛
 from 20 to 4 and transition is happening with 

the period doubling bifurcation and ends with homoclinic bifurcation. So, in our 

system the Hopf bifurcation is not relevant for characterizing the route to bursting 

but period doubling and homoclinic bifurcations are. Period-doubling bifurcation to 

chaos were discovered in spontaneous firings of Onchidium pacemaker neurons [26] 

before. In our system, the actual route depends on the relative location of the full-

system’s fixed point with respect to a homoclinic bifurcation. Stress regulation due 

to BK-channel is also observed experimentally [2] and in our study, we showed how 

this transition happens. But unexpected result is observed with L-type Ca2+ current. 

Hopf bifurcation that turns cell into spiking for other conductances in the model, for 

increasing 𝑔𝐶𝑎 turns the cell into bursting phase this time. The bifurcation analysis 

conducted here revealed another link to stress regulation through Ca2+ channel alone 

and this can give us an experimentally tested prediction from the model [27,28] and 

computational analysis.  

 

5. Conclusion 

 

Bifurcation analysis with numerical continuation algorithm is applied to the 

considered model in order to examine its dynamical states. Characterizing the 

bifurcation structure for BK-channel parameters and conductances in corticotroph 

model to investigate the spiking and bursting regime in the system provides insight 

about the parameter dependence of the model dynamics. We have identified various 

routes from resting to spiking to bursting including Hopf bifurcations, SNIC or 

homoclinic bifurcations, period doubling and spike adding cascades. Also, our work 

shows that dynamical systems theory provides an efficient tool for examination of 
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self-regulation of a full model of the neuroendocrine system. The results of our 

computational investigations may be used as a lead for designing experiments. 
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