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Abstract 
 

In this paper, the effect of internal heat generation has been studied in a functionally graded (FG) thick hollow 

cylinder in context with thermosensitive thermoelastic properties. Initially, the cylinder is kept at reference 

temperature and the radial boundary surface under consideration dissipates heat by convection according to 

Newton’s law of cooling, heat flux is applied at the lower surface, while the upper surface is insulated. The heat 

conduction equation due to internal heat generation is solved by integral transform technique and Kirchhoff’s 

variable transformation is used to deal with the nonlinearity of the heat conduction equation. A mathematical model 

has been constructed for a nonhomogeneous material in which the material properties are assumed to be dependent 

on both temperature and spatial variable z. A ceramic-metal-based FG material is considered in which alumina is 

selected as ceramic and nickel as metal. The results obtained are illustrated graphically. 
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1. Introduction 

Materials with changing composition, microstructure, 

or porosity across the volume of the material are referred 

to as the functionally graded materials (FGMs). FGMs are 

designed with changing properties over the volume of the 

bulk material, with the aim of performing a set of specified 

functions. The concept of FGM is to make a composite 

material by varying the microstructure from one material 

to another material with a specific gradient. This enables 

the material to have the best of both materials. Thermally 

sensitive materials are capable to alter the state or release 

significant amounts of energy during melting process, 

solidification or sublimation. These materials absorb 

energy during the heating process when the phase change 

takes place and in case of cooling process energy can be 

transferred to the environment while returning to the initial 

phase. Therefore, the study of thermosensitivity is 

extremely important for the determination of the 

temperature distribution and thermal stresses of cylindrical 

structures made of FGMs. 

Tang, Hata, Noda et al. [1-4,7] obtained the solution of 

thermal-stress distribution in a nonhomogeneous medium 

and discussed thermoelastic problems in materials with 

temperature dependent properties in various solids. 

Popovych et al. [5,6] constructed solutions of heat-

conduction problems for thermosensitive bodies with 

convective heat transfer using analytical-numerical 

methods. Miyamoto et al. and Mahamood et al. [8,16] 

briefly explained the design, processing and applications 

of FGMs. Awaji et al. [9] presented a numerical technique 

for analyzing one-dimensional transient temperature and 

stress distributions in a stress-relief-type plate of 

functionally graded ceramic-metal based FGMs. Kawasaki 

and Watanabe [10] evaluated Thermal fracture behavior of 

metal/ceramic FGMs by a well controlled burner heating 

method using a H2/O2 combustion flame. Al-Hajri and 

Kalla [11] developed a new integral transform involving a 

combination of Bessel’s function as a kernel to solve some 

mixed boundary value problems in infinite and semi-

infinite cylinders with radiation type boundary conditions. 

Kushnir, Guo [12,13,15] studied the thermal stresses of a 

thin functionally graded material (FGM) cylindrical shell 

subjected to a thermal shock. Kedar and Deshmukh [14] 

studied the temperature distribution of a thick circular 

plate. Sharma et al. [17] studied finite element analysis of 

thermoelastic stresses, displacements and strains in a thin 

circular functionally graded material (FGM) disk subjected 

to thermal loads. Moosaie, Nikolarakis, Eraslan, Raocha 

[18,19,20,22] studied thermoelastic problems on circular 

bodies. Manthena et al. [21,23,24,28,30,31] developed 

mathematical models of thermoelasticity for rectangular 

plates and hollow circular cylinders. Bhad, Surana, 

Tripathi, Köbler [25,26,27,29] studied thermal stresses in 

elliptical and cylindrical bodies. 

In ample of cases, it was observed that, the heat 

production in solids have lead to various technical 

problems during mechanical applications in which heat is 

generated and rapidly transferred from their surface. 

Temperature dependent FGMs are ideal for reducing the 

mismatch in the thermo-mechanical properties in metal–

ceramic bonding that help to prevent debonding. FGMs 

have wide applications where extraordinary mechanical, 

thermal, and chemical properties are required which must 

be able to sustain severe working environments. These 
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potential future application areas include applications, 

where the structural and the engineering uses require a 

combination of incompatible functions, such as hardness 

and toughness. Most of the authors mentioned above, have 

studied heat conduction and its associated thermal stresses 

for a medium with temperature dependent and independent 

material properties. However, it is observed that thermal 

effects due to internal heat generation with instantaneous 

point heat source have not been analyzed till date. 

In this paper, we have extended our own work 

Manthena and Kedar [31] by considering internal heat 

generation in the heat conduction equation and studied a 

transient thermoelastic problem of a thick hollow cylinder, 

occupying the space defined as 
hzbra  0,

, 

subjected to instantaneous point heat source. All the 

material properties except Poisson’s ratio are assumed to 

be dependent on both temperature and spatial variablez. 

The heat conduction equation is solved by introducing 

Kirchhoff’s variable transformation and transient state 

solution is obtained in the form of Bessel’s and 

trigonometric functions. 

 

2. Statement of the Problem 

The temperature and spatial variable dependent 

transient heat conduction equation with internal heat 

generation of a FG thick hollow cylinder is 
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The initial and boundary conditions are  

 

hz
z

T

ztrf
z

T
Tzk

brtzfTT
r

T
Tzk

artzfTT
r

T
Tzk

tTT























at,0

0at,),(),(

at),,()(),(

   at),,()(),(

0at,

2

102

101

0





 

(2) 

 

where k(z,T) and C(z,T) are the thermal conductivity 

and specific heat capacity, which are dependent on 

temperature and spatial variablez, g(r, z, t) is the internal 

heat generation, T0 is the temperature of the surrounding 

medium, and 21,   are the heat transfer coefficients. 

The strain displacement relations and equilibrium 

conditions are given by Hata [2] 
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Figure 1. Geometrical representation of the problem. 

 

The stress-strain relations with temperature dependent 

material properties are 

 

zrzr

T

zzzz

T

T

rrrr

TzG

TTzTzTz

TzTzG

TTzTzTz

TzTzG

TTzTzTz

TzTzG

















),(2

),()),(2),(3(

),(),(2

),()),(2),(3(

),(),(2

),()),(2),(3(

),(),(2















 

(5) 

where zzrr   ,, are the strain components 

)( zzrr    , ),( TzG  is the shear modulus, 

),( Tz  and ),( Tz  are Lame’s constants, ),( Tz
T

  is 

the coefficient of thermal expansion. For the sake of 

brevity, the shear modulus ),( TzG , coefficient of thermal 

expansion ),( Tz
T

  and Lame’s constant ),( Tz  and 

),( Tz  are assumed as 
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where 0000 ,and, G  are the reference values of  shear 

modulus, coefficient of thermal expansion and Lame’s 

constant respectively,   is the inhomogeneity parameter. 

Using Eqs. (3), (5), (6) in Eq. (4), the displacement 

equations of equilibrium are obtained as 
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where 
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The solution of Eq. (5) without body forces can be 

expressed by the Goodier's thermoelastic displacement 

potential  and the Boussinesq harmonic functions  and 

 as 
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in which the three functions  ,,  must satisfy the 

conditions 
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in which Michell’s function M  must satisfy the condition  

022  M  (13) 

Now by using Eq. (12) in Eq. (5), the results for 

stresses are obtained as 
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The boundary conditions on the traction free surface stress 

functions are  
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3. Solution of the Problem 

Following Noda [3], the thermal conductivity ),( Tzk  

and specific heat capacity ),( TzC are taken as 
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Using Eq.(16) and intruding the Kirchhoff’s variable 

following Popovych et al. [6, 12, 15, 22] 
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The initial and boundary conditions (2) become 
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For the sake of brevity, we take 
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Here ),,( tzrg  represents an instantaneous point heat 

source at the point ),( 00 zzrr  of strength 0Q , ),(1 tzf  

and ),(2 trf  represent exponentially varying point heat at 

the points ),(),,( 00 zzbrzzar   and 

)0,( 0  zrr  of strengths 1Q  and 2Q  respectively.    

Using the transform given by Al-Hajri and Kalla [11] 

to solve the Eq. (18) over the variable r , we obtain 
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The initial and boundary conditions (19) become 
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where 
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Here )( rqM n is the kernel of the transformation given by       
 

)()],(),([

)()],(),([)(

021

021

rqYbqAaqA

rqJbqBaqBrqM

nnn

nnnn








 

 

in which 
 

)()(),(

,;2,11

;)()(),(

0011

0011

rqYqrqYrqB

barn

rqJqrqJrqA

nnnnnn

nnnnnn













 
 

Here 0J  and 0Y  are Bessel’s function of first and 

second kind, respectively, nq  are the positive roots of the 

transcendental equation  
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Applying finite Fourier Cosine transform on Eq. (21) 

over the variable z , we obtain 
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The initial condition is 
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Here )(* 0z  is the Heaviside Theta function 
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Applying Laplace transform and its inverse on Eq. (24) by 

using the initial condition given in Eq. (25), we obtain 
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Applying inverse Fourier Cosine transform on Eq. (26), we 

get 
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Applying inverse transform given by Al-Hajri and Kalla 

[11] on the above Eq. (27), we obtain 
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where 
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Applying variable inverse transformation from   to T  

[see Appendix A], the temperature distribution in Eq. (28) 

becomes 
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where 
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Using the solution of heat conduction Eq. (1) given by 

Eq. (29), the solution for the Goodier’s thermoelastic 

displacement potential   from Eq. (10) is obtained as 
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We assume the Michell’s function M so as to satisfy 

Eq. (13) as 
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where nC  and nD  are constants. 

Using the values of   and M  in Eq. (12), the 

displacement components are obtained as 
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where a comma denotes differentiation with respect to the 

following variable.  

Using Eqs. (32) and (33) in Eq. (14), the components 

of stresses in the homogeneous (by taking 0  ) 

as well as nonhomogeneous case (by taking 0 

) can be obtained. Also by using, the traction free 

conditions given by Eq. (15) the constants nC and nD  are 

determined (using Mathematica software). 

 

4. Numerical Results and Discussion 

Following [9], we consider a model of a ceramic-

metal-based FGM, in which alumina is selected as the 

ceramic and nickel as the metal. 

 

Table 1. Thermo-mechanical properties of alumina and 

nickel at room temperature. 
 

Property Alumina 

(Ceramic) 

Nickel 

(Metal) 

Thermal conductivity 

k ]W/cmK[  
0.282 0.901 

Specific heat capacity 

C ]J/gK[  
0.78 0.44 

Shear modulus G

]N/cm[ 2  
6104.12   6106.7   

Thermal expansion 

coefficient  

 ]K/10[ 6  

5.4 14.0 

Poisson’s ratio   0.23 0.31 

 

Mathematica software is used for numerical 

computations and the following nondimensional 

parameters are used: 
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with parameters ,cm1,cm2,cm1  hba and 

surrounding temperature .3200 KT o  

 

  



 
207 / Vol. 21 (No. 4)   Int. Centre for Applied Thermodynamics (ICAT) 

                             Homogeneous                                                   Nonhomogeneous 

 
Figure 2. Variation of dimensionless temperature along axial direction. 

 
Figure 3. Variation of dimensionless radial stress along axial direction. 

 
Figure 4. Variation of dimensionless tangential stress along axial direction. 

 
Figure 5. Variation of dimensionless axial stress along axial direction. 

 
Figure 6. Variation of dimensionless shear stress along axial direction. 
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Figure 7. Variation of dimensionless temperature along axial direction for different time. 

 
Figure 8. Variation of dimensionless radial stress along axial direction for different time. 

 
Figure 9. Variation of dimensionless tangential stress along axial direction for different time. 

 
Figure 10. Variation of dimensionless axial stress along axial direction for different time. 

 

Figure 11. Variation of dimensionless shear stress along axial direction for different time.
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The above figures 2-11 on the left are plotted for 

homogeneous hollow cylinder (i.e. taking ,0,,   so 

that the material properties become independent of 

temperature and spatial variable), whereas the figures on 

the right are plotted for nonhomogeneous hollow cylinder 

(i.e. taking ,0,,   so that the material properties 

become dependent of temperature and spatial variable). 

Figure 2 shows the variation of dimensionless 

temperature along axial direction for different values of 

2,5.1,2.1 . In both the homogeneous and 

nonhomogeneous cases, it is seen that there is some 

temperature at the lower surface of the cylinder due to the 

application of varying point heat. The absolute value of 

temperature is slowly decreasing towards the upper surface 

of the cylinder. The magnitude of temperature is low for 

the nonhomogeneous case as compared to that of 

homogeneous case.  

Figure 3 shows the variation of dimensionless radial 

stress along axial direction for different values of 

8.1,2.1 . In the homogeneous case, the radial stress is 

compressive throughout the cylinder. In the 

nonhomogeneous case, the radial stress is compressive 

throughout the cylinder. Its magnitude is decreasing near 

the lower surface till ,1.0  while suddenly increasing in 

the region 25.01.0   . 

Figure 4 shows the variation of dimensionless 

tangential stress along axial direction for different values 

of 8.1,2.1 . In the homogeneous case, the radial stress 

is compressive throughout the cylinder. Its magnitude is 

decreasing till 7.0  and increasing towards the upper 

surface. In the nonhomogeneous case, the tangential stress 

is tensile throughout the cylinder except in the region 

17.0   , where it is compressive.  

Figure 5 shows the variation of dimensionless axial 

stress along axial direction for different values of  . In 

both the homogeneous and nonhomogeneous cases, the 

nature of the graph is sinusoidal. In the homogeneous case, 

the axial stress is compressive throughout the cylinder. Its 

magnitude is decreeing till the central region and 

increasing towards the upper surface. In the 

nonhomogeneous case, the axial stress is compressive in 

the region 65.00   , while tensile in the region 

.165.0    

Figure 6 shows the variation of dimensionless shear 

stress along axial direction for different values of   . In 

the homogeneous case, the shear stress is compressive near 

the lower surface, whereas tensile in the region remaining 

region of the cylinder. In the nonhomogeneous case, the 

shear stress is tensile throughout the cylinder, except near 

the upper surface where it is compressive. Its magnitude is 

more or less steady till ,6.0 while sudden increase near 

the upper surface is seen and peak value is attained at 

85.0 . 

Figure 7 shows the variation of dimensionless 

temperature along axial direction for different values 

dimensionless time  . In both the homogeneous and 

nonhomogeneous cases, it is seen that the absolute value of 

temperature is slowly decreasing from the lower towards 

the upper surface of the cylinder. Also with increase in 

time, the magnitude of temperature is increasing. 

Figures 8 and 9 respectively shows the variation of 

dimensionless radial stress and tangential stress along axial 

direction for different values dimensionless time  . As the 

time increases, it is seen that the stresses are decreasing.   

Figures 10 and 11 respectively shows the variation of 

dimensionless axial stress and shear stress along axial 

direction for different values dimensionless time  . The 

axial stress is compressive throughout the cylinder in both 

homogeneous and nonhomogeneous cases and its 

magnitude is decreasing with increase in time. In the 

homogenous case, the shear stress is compressive in the 

region 7.00  , while tensile towards the upper surface. 

Whereas in the nonhomogeneous case it is tensile from the 

lower surface towards the middle portion, while 

compressive towards the upper surface.   
 
5. Validation of the Results 

In this paper, a mathematical model has been prepared 

by taking temperature and spatial variable dependent 

material properties and temperature distribution and its 

corresponding thermal stress distributions are obtained.  

Following Manthena and Kedar [31], let us consider 

the following initial and boundary conditions: 

 

 
Figure 12. Variation of dimensionless temperature along radial direction. 
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Figure 13. Variation of dimensionless temperature along axial direction. 
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where 
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The solution of heat conduction Eq. (1) with 

,0),,( tzrg  subjected to conditions (34) on applying the 

transform given by Al-Hajri and Kalla [11] and Laplace 

transform, is 
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The following Figures (12) and (13) represent the 

temperature distribution obtained in Eq.(35) in both 

homogeneous (Left) and nonhomogenous (Right) cases. 

Hence, as a limiting case if we consider conditions (34) 

and the heat conduction Eq.(1) without internal heat 

generation, the temperature distribution and its graph 

obtained so well agrees with our paper [31].  

 

6. Conclusions 

In this study, the temperature distribution of a thick 

hollow cylinder with instantaneous point heat source has 

been determined with temperature and spatial variable 

dependent material properties. The thermoelastic behavior 

of an FGM model has been discussed. Numerical 

computations are carried out for ceramic-metal-based 

FGM, in which alumina is selected as ceramic and nickel 

as metal. Notable effects on the behavior of unsteady state 

temperature distribution is seen in the results due to 

thermally sensitive thermoelastic properties. During the 

investigation, it is seen that the magnitude of temperature 

distribution and all stresses is low for the nonhomogeneous 

case (FGM model) as compared to that of homogeneous 

case. Since the heating at inner curved surface 

exponentially varies with time, the temperature distribution 

increases as time increases, but the nature of temperature 

distribution remains nearly same and the same is 

happening with other thermoelastic quantities. Due to 

internal heat generation, it is observed that high 

compressive radial stress is developed in the lower part of 

the cylinder. Axial stress is tensile towards the outer 

surface. The proposed mathematical model may be useful 

in the chemical and physical characterization of materials, 

the kinetics of reactions, the thermodynamic properties and 

phase equilibria of systems, the development of new 

processing methods, and ultimately, the use of materials in 

advanced technology applications at high temperatures. 

 

Appendix A 

The volume fraction distribution of metal obeying 

simple power law with exponent  is given as Awaji et al. 

[11]  
 

0for1)(  zzfm                                              (A1) 
 

where )(zfm  is the local volume fraction of metal in a 

functionally graded  material and   is a parameter that 

describes the volume fraction of metal.  

The thermal conductivity of the functionally graded 

material is expressed using the thermal conductivities of 

metals mk  and of ceramics ck  with the volume fractions 

of metals )(zfm , and ceramics, )(1 zfm  as follows:  
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Inverse Transformation: We substitute equation (A2) in 

Eq.(18) to obtain the inverse transformation of Eq.(18) as 
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Following Noda [3], we assume the thermal 

conductivity of the hollow cylinder as )exp()( 0 TkTk 

Hence, Eq. (A4) becomes 
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Using Eq.(A5) in Eq.(28), we obtain 
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We use the following logarithmic expansion 
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We observe that mtzrF )],,([ given in Eq.(A7) 

converges to zero as m  tends to infinity. In addition, the 

truncation error in Eq.(A8) is observed as .10037.4 5  

Hence, for the sake of brevity, neglecting the terms 

with order more than one, we obtain: 
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Hence Eq. (A6) becomes      
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