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ON A COMBINATORIAL STRONG LAW OF LARGE
NUMBERS

Andrei N. Frolov *
Dept. of Mathematics and Mechanics,

St. Petersburg State University,
Universitetskii prosp. 28, Stary Peterhof, St. Petersburg, Russia

Abstract: We derive strong laws of large numbers for combinatorial sums
∑
iXniπn(i), where ‖Xnij‖

are n × n matrices of random variables with finite fourth moments and (πn(1), . . . , πn(n)) are uniformly
distributed random permutations of 1, . . . , n independent with X’s. We do not assume the independence of
X’s, but this case is included as well. Examples are discussed.
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1. Introduction
Let {‖Xnij‖ni,j=1}∞n=2 be a sequence of matrices of random variables and {πn}∞n=2 be a sequence

of random permutations of 1,2, . . . , n. Put

Sn =

n∑
i=1

Xniπn(i)

for all n> 2, where πn = (πn(1), πn(2), . . . , πn(n)). Sums Sn are called the combinatorial sums.
If distributions of centered and normalized combinatorial sums converge weakly to the normal

law, then one says that a combinatorial central limit theorem (CLT) holds true. If centered and
normalized combinatorial sums converge almost surely (a.s.) to a constant, then one says that a
combinatorial strong law of large numbers (SLLN) holds. Replacing strong convergence by conver-
gence in probability, one arrives at a combinatorial weak law of large numbers (WLLN).

One cannot construct an interesting theory without additional assumptions on type of depen-
dence of X’s and πn and their distributions. We follow a general line in which X’s and πn are
independent and πn has the uniform distribution.

Assume that for every n, components of ‖Xnij‖ are independent, matrix ‖Xnij‖ni,j=1 and per-
mutation πn are independent and πn has the uniform distribution on the set of permutations of
1,2, . . . , n. Moreover, we also assume that EXnij = cnij and

n∑
j=1

cnij = 0,
n∑
i=1

cnij = 0,

for all 1 6 i, j 6 n and n. In results for combinatorial sums, the last condition provides that
combinatorial sums Sn are centered at zero. Indeed,

EXniπn(i) =
1

n

n∑
j=1

cnij = 0.
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If σ2
nij =DXnij =EX2

nij − (EXnij)
2

for all 16 i, j 6 n and n> 2, then we have

Bn =DSn =
1

n− 1

n∑
i,j=1

c2nij +
1

n

n∑
i,j=1

σ2
nij,

for all n. Hence, the norming sequence in combinatorial CLT is
√
Bn.

One can easy derive sufficient conditions for the combinatorial CLT from Esseen inequalities
which give bounds for the accuracy of the normal approximation of distributions of Sn/

√
Bn.

One can find such inequalities in von Bahr [1], Ho and Chen [2], Botlthausen [3], Goldstein [4],
Neammanee and Suntornchost [5], Neammanee and Rattanawong [6], Chen and Fang [7] for X’s
with finite third moments. Earlier asymptotic results on combinatorial CLT may be found in
references therein. Frolov [8,9] derived generalizations of Esseen bounds for combinatorial sums to
the cases of finite moments of order 2 + δ, δ ∈ (0,1] and infinite variations. Moderate deviations for
combinatorial sums have been investigated in Frolov [10]. Esseen bounds for combinatorial random
sums may be found in Frolov [11].

Together with CLT and large deviations, SLLN plays an important role in probability and statis-
tics. In this paper, we derive the combinatorial SLLN. Note that properties of combinatorial sums
Sn for independent X’s are quite different from those of sums of independent random variables.
First, combinatorial sums are sums of dependent random variables. Second, many summands of
Sn and Sn+1 can be different even when ‖Xnij‖ is a sub-matrix of ‖Xn+1,i,j‖ with Xnij =Xn+1,i,j

for all 1 6 i, j 6 n. This is the result of randomness of permutations πn. It follows that we have
no monotonicity of combinatorial sums for positive X’s. Remember that monotonicity of sums of
positive i.i.d. random variables are essentially used in the proof of the Kolmogorov SLLN. We also
have no analogues of results on convergence of series of independent random variables. Moreover,
we will not assume the independence of X’s. This reduces our possibilities to prove strong limit
theorems for combinatorial sums. Therefore, we obtain bounds for forth moments of combinatorial
sums and apply the Borel–Cantelli lemma.

2. Combinatorial SLLN
Let {‖Xnij‖ni,j=1}∞n=2 be a sequence of matrices of random variables with EXnij = cnij for all

1 6 i, j 6 n and n> 2 and {πn}∞n=2 be a sequence of random permutations of 1,2, . . . , n. Assume
that for every n> 2, relation

cni. =
n∑
j=1

cnij = 0, cn.j =
n∑
i=1

cnij = 0, for all 1 6 i, j 6 n, (2.1)

holds, πn has the uniform distribution on the set of permutations of 1,2, . . . , n and ‖Xnij‖ and πn
are independent. For all n> 2, put

Sn =

n∑
i=1

Xniπn(i),

where πn = (πn(1), πn(2), . . . , πn(n)) .
Note that if condition (2.1) is not satisfied, then one can center X’s as follows. Put

X ′nij =Xnij −
1

n
cni.−

1

n
cn.j +

1

n2
cn.., where cn.. =

n∑
i,j=1

cnij.

It is not difficult to check that condition (2.1) holds with EX ′nij instead of cnij.
The next result is the combinatorial SLLN.
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Theorem 1. Suppose that the above assumptions hold and EX4
nij <∞ for all i, j and n. For

every n, put Cn = max
16i,j6n

EX4
nij and Mn = max

16i64
{mni}, where

mn1 = max
16i 6=j 6=k 6=l6n

{|
∑

p 6=q 6=r 6=s

(EXnipXnjqXnkrXnls− cnipcnjqcnkrcnls)|},

mn2 = max
16i 6=j 6=k6n

{|
∑
p 6=q 6=r

(EX2
nipXnjqXnkr−EX2

nipcnjqcnkr)|},

mn3 = max
16i 6=j6n

{|
∑
p 6=q

(EX2
nipX

2
njq −EX2

nipEX
2
njq)|},

mn4 = max
16i 6=j6n

{|
∑
p 6=q

(EX3
nipXnjq −EX3

nipcnjq)|}.

Let {bn}∞n=2 be a sequence of positive constants. Assume that the series
∑

n(Cnn
2 +Mn)b−4n con-

verges.
Then

Sn
bn
→ 0 a.s. (2.2)

Proof. For all natural n and k, denote (n)k = n(n− 1) · . . . · (n− k+ 1).
Put ξi =Xniπn(i) for 1 6 i6 n. We have

ES4
n =

n∑
i=1

Eξ4i + 4
∑
i6=j

Eξ3i ξj + 3
∑
i 6=j

Eξ2i ξ
2
j + 6

∑
i6=j 6=k

Eξ2i ξjξk +
∑

i6=j 6=k 6=l

Eξiξjξkξl, (2.3)

where 16 i, j, k, l6 n in the last four sums. Since X’s and πn are independent and πn is uniformly
distributed, we get

Eξiξjξkξl =
1

(n)4

∑
p 6=q 6=r 6=s

EXnipXnjqXnkrXnls.

Hence,

|Eξiξjξkξl|6
1

(n)4
Mn +

1

(n)4
|T0|, where T0 =

∑
p 6=q 6=r 6=s

cnipcnjqcnkrcnls.

It is clear that

T0 =
n∑
p=1

∑
q:q 6=p

∑
r:r 6=p,q

∑
s:s 6=p,q,r

cnipcnjqcnkrcnls.

By condition (2.1), we have ∑
s:s6=p,q,r

cnls =−(cnlp + cnlq + cnlr).

It follows that

T0 =−
n∑
p=1

∑
q:q 6=p

∑
r:r 6=p,q

cnipcnjqcnkr (cnlp + cnlq + cnlr)

=−
n∑
p=1

∑
q:q 6=p

cnipcnjq (cnlp + cnlq)
∑

r:r 6=p,q

cnkr−
n∑
p=1

∑
q:q 6=p

cnipcnjq
∑

r:r 6=p,q

cnkrcnlr =−T1−T2
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for all i 6= j 6= k 6= l. Using again condition (2.1), we have

T1 =−
n∑
p=1

∑
q:q 6=p

cnipcnjq (cnlp + cnlq) (cnkp + cnkq) .

By the Lyapunov inequality, it follows that |cnij|6 (E|Xnij|4)1/4 6C1/4
n . It yields that

|T1|6 4n2Cn.

Furthermore,

T2 =
n∑
p=1

∑
q:q 6=p

cnipcnjq

(
n∑
r=1

cnkrcnlr− (cnkpcnlp + cnkqcnlq)

)

=

(
n∑
r=1

cnkrcnlr

)
n∑
p=1

cnip
∑
q:q 6=p

cnjq −
n∑
p=1

∑
q:q 6=p

cnipcnjq(cnkpcnlp + cnkqcnlq)

=−

(
n∑
r=1

cnkrcnlr

)
n∑
p=1

cnipcnjp−
n∑
p=1

∑
q:q 6=p

cnipcnjq(cnkpcnlp + cnkqcnlq).

In the last equality, we have applied condition (2.1). Using again inequalities |cnij|6C1/4
n , we get

|T2|6 3n2Cn.

Therefore, for all i 6= j 6= k 6= l, inequalities

|Eξiξjξkξl|6
1

(n)4
(7n2Cn +Mn) (2.4)

hold. For all i 6= j 6= k, we have

Eξ2i ξjξk =
1

(n)3

∑
p 6=q 6=r

EX2
nipXnjqXnkr

and

|Eξ2i ξjξk|6
1

(n)3
Mn +

1

(n)3
|T3|, where T3 =

1

(n)3

∑
p 6=q 6=r

EX2
nipcnjqcnkr.

We get by condition (2.1) that

T3 =
1

(n)3

n∑
p=1

∑
q:q 6=p

EX2
nipcnjq

∑
r:r 6=p,q

cnkr =− 1

(n)3

n∑
p=1

∑
q:q 6=p

EX2
nipcnjq (cnkp + cnkq) .

Since EX2
nij 6 (EX4

nij)
1/2 6

√
Cn and |cnij|6C1/4

n for all i and j, the latter implies that

|Eξ2i ξjξk|6
1

(n)3
(2n2Cn +Mn) (2.5)

for all i 6= j 6= k.
For all i 6= j, we get

Eξ2i ξ
2
j =

1

(n)2

∑
p 6=q

EX2
nipX

2
njq, Eξ3i ξj =

1

(n)2

∑
p 6=q

EX3
nipXnjq,



Frolov: On a combinatorial strong law of large numbers
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and

Eξ2i ξ
2
j 6

1

(n)2
Mn +

1

(n)2

∑
p 6=q

EX2
nipEX

2
njq,

|Eξ3i ξj|6
1

(n)2
Mn +

1

(n)2

∑
p 6=q

EX3
nipEXnjq.

Applying inequalities |cnij|6C1/4
n , EX2

nij 6
√
Cn and |EX3

nij|6 (EX4
nij)

4/3 6
√
Cn for all i and j,

we have

Eξ2i ξ
2
j 6

1

(n)2
(n2Cn +Mn), |Eξ3i ξj|6

1

(n)2
(n2Cn +Mn), (2.6)

for all i 6= j.
Finally, for every i, we get

Eξ4i =
1

n

n∑
p=1

EX4
nip 6Cn. (2.7)

Substituting bounds (2.4)–(2.7) in equality (2.3), we have

ES4
n 6 nCn + (4 + 3 + 12 + 7)n2Cn + 4Mn 6 27(n2Cn +Mn).

It follows that

∞∑
n=1

P (|Sn|> εbn) 6
∞∑
n=1

ES4
n

ε4b4n
6 27

∞∑
n=1

n2Cn +Mn

ε4b4n
<∞

for all ε > 0. By the Borel–Cantelly lemma, we obtain

Sn
bn
→ 0 a.s.

Note that
∑

nDSnb
−2
n <∞ is a sufficient condition for relation (2.2). For independent X’s,

Mn = 0 and, using formula for DSn from Section 1, we see that DSn has an order n in various
partial cases. So, if bn = n, the last series always diverges while the series from Theorem 1 can
converge. For example, the latter holds for bounded (uniformly over n) random variables.
Remark 1. One can find further conditions sufficient for combinatorial SLLN by applications

of bounds for ES2k
n with k> 3 which may be derived in the same way as before.

Condition (2.1) is symmetric relatively to rows and columns of matrices of means. Substituting
in (2.3) the formulae for the expectations, we can interchange sums over numbers of rows and
columns. Further, we can apply the second equality in (2.1) instead of the first one. Hence, we
arrive at the next remark.
Remark 2. In Theorem 1, one can interchange indices in maxima and sums in the definitions

of mn1, . . . ,mn4.
Theorem 1 yields the following result.

Corollary 1. If the conditions of Theorem 1 hold and series
∑

n(n2Cn +Mn)n−4p converges
for some p > 0, then

Sn
np
→ 0 a.s.
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Note that if the series from Corollary 1 diverges, then its conclusion can fail. Indeed, let {ηn}
be a sequence of independent random variables such that P (ηn = np) = P (η =−np) = 1/2 for all
n. Put Xnij = ηi for all i, j and n. Then Cn =Eη4n = n4p, Mn = 0 and

Sn = η1 + η2 + · · ·+ ηn.

Assuming that n−pSn→ 0 a.s., we have

ηn
np

=
Sn
np
− Sn−1

(n− 1)p
· (n− 1)p

np
→ 0 a.s.

that contradicts to relation P (n−pηn = 1) = 1/2 for all n.
It is clear that Mn = 0 provided every quadruple of different elements of matrices ‖Xnij‖ is a set

of independent random variables. Moreover, Mn = 0 when rows of ‖Xnij‖ are independent while
elements of one row may be dependent.

These conditions are much more less than mutual independence, but it is useful to have an
example with positive Mn.

To this end, we consider matrices ‖Xnij‖ with m-dependent rows, where m is a fixed natural
number. The latter means that i-th and k-th rows are independent when |i− k| >m. (The case
m= 0 correspond to independence.) At the same time, we do not assume that random variables of
one rows are independent.

Note that there is a simple way to construct such matrix. Take matrix ‖Xnij‖ of independent
random variables and replace every even row by previous odd ones. Then rows will be 1-dependent.
The construction for m> 1 follows the same pattern.

For simplicity, put m= 1 and assume that Cn = C for all n. It is clear, that all items of sums
in the definitions of mni are bounded by 2C and many of them equal to zero by independence of
”far” rows. The number of zero items in mn1 is bounded from below by n(n− 2)(n− 4)(n− 6).
Hence, the number of non-zero items is less than (n)4−n(n− 2)(n− 4)(n− 6) =O(n3) as n→∞.
It follows that mn1 =O(n3) as n→∞. Maxima mn2, mn3 and mn4 have the same or smaller order.
So, the series in Theorem 1 converges provided series

∑
n n

3b−4n converges. By Theorem 1, we have

Sn
n(lnn)q

→ 0 a.s.

for all q > 1/4.
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Kozubowski 2003 and has more flexibility properties in terms of skewness, kurtosis, unimodality or bimodal-
ity. We also derive expressions for characteristic function, trigonometric moments, coefficients of skewness
and kurtosis. We analyzed two popular datasets from the literature to show the good modeling ability of
the WFSL distribution.
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1. Introduction

Circular or directional data is encountered in various fields of science such as meteorology,
astronomy, medicine, biology, geology, physics and sociology. The first studies on the modeling of
directional data are very old. The book ”Statistics for Circular Data” written by Mardia 1972 can
be regarded as the first work in this area. Other important works on this subject can be listed
as ”Statistical Analysis of Circular Data” [4], ”Directional statistics” [10], ”Topics in Circular
Statistics” [7]. In the following years, many authors have proposed models and statistical methods
for the analysis of circular data.
The von Mises distribution, also known as the circular normal or the Tikhonov distribution, is one

of the principal symmetric distributions on the circle. However, most of the classical models such as
Von-Mises, cardioid and wrapped Cauchy are symmetric-unimodal distributions and rarely applied
in practice, since circular data is very often asymmetric and multimodal. Therefore, several new
unimodal/multimodal circular distributions are capable modeling symmetry as well as asymmetry
has been proposed, for example asymmetric Laplace distribution [5], nonnegative trigonometric
sums distribution [3], asymmetric version of the von Mises distribution [13] and stereographic
extreme–value distribution [12].
In recent years, studies on obtaining circular models have generally focused on wrapping linear

probability models on a circle. In the literature, there are many wrapped models obtained by various
well-known linear distributions. Pewsey 2000 obtained the wrapped skew normal distribution by
using the Azzalini’s skew normal distribution 1985. Jammalamadaka and Kozlowski 2004 studied
the circular distributions obtained by exponential and Laplace distributions. Rao et al 2007 derived
new circular models by wrapping the lognormal, logistic, Weibull, and extreme-value distributions.
In a previous paper [14] we introduced the flexible skew Laplace (FSL) distribution. This distri-

bution is a member of skew-symmetric distribution family, and that means it has a pdf form that
h(x) = 2f (x)F (g (x)) where f and F are the pdf and cdf of Laplace distribution and

g (x) =
(
λ1x+λ3x

3
) (

1+λ2x
2
)− 1

2 , λ1, λ3 ∈R, λ2 ≥ 0. (1.1)

*Corresponding author. E-mail address: a.yilmaz@kku.edu.tr
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We showed that, this distribution has remarkable flexibility properties in data modelling via con-

tained parameters such as unimodality-bimodality, skewness or kurtosis. In this paper, the wrapped

version of the flexible skew Laplace distribution will be presented.

2. Definition

A well-known approach to obtain circular distributions is wrapping method. In this approach,

a known distribution is taken on the real line and wrapped around a unit circle. Namely, taking

a real random variable (say Y ) and wrapping it around the circle by transformation Y (mod 2π).

The new random variable Y (mod 2π) can be named as the corresponding wrapped version of Y

and has a probability density function (pdf) form that

fY (mod 2π) (θ) =
∞∑

r=−∞

fY (θ+2πr) ,

where fY is the pdf of random variable Y .

Let Y be a FSL (μ,σ,λ1, λ2, λ3) random variable, i.e. has a pdf

fY (y;υ) =
1

2σ
e−

|y−μ|
σ

⎡⎢⎣1+ sgn

⎛⎝λ1 (y−μ)+ λ3
σ2 (y−μ)

3√
σ2 +λ2 (y−μ)

2

⎞⎠
⎛⎜⎝1− e

−

∣∣∣∣∣∣
λ1(y−μ)+

λ3
σ2 (y−μ)3

(σ2+λ2(y−μ)2)
0.5

∣∣∣∣∣∣
⎞⎟⎠
⎤⎥⎦ ,

where υ= (μ,σ,λ1, λ2, λ3) . Then the corresponding circular random variable is defined as

Θ= Y (mod 2π),

and has the density

fΘ (θ;υ) =
1

2σ

[
e−

|θ−μ|
σ +

e
θ−μ
σ + e

μ−θ
σ

e
2π
σ − 1

+A (θ, υ)

]
(2.1)

where

A (θ, υ) =
∞∑

r=−∞

e−
|θrμ|
σ sgng

(
θrμ
σ

)(
1− e

−

∣∣∣∣g( θrμ
σ

)∣∣∣∣
)
,

and 0 ≤ θ < 2π, θrμ = θ + 2πr − μ. The parameters μ ∈ R location, σ > 0 scale parameter and

λ1, λ3 ∈ R, λ2 ≥ 0 are shape parameters. The random variable Θ having wrapped flexible skew

Laplace distribution is denoted by Θ∼WFSL (μ,σ,λ1, λ2, λ3). Illustrations of the pdf of WFSL
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distribution for several values of parameters are shown in Figure 1.
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Figure 1. The pdf of WFSL distribution for several values of parameters.

The following sections of this article are organized as follows: In Section 3 we give the characteristic

function of wrapped flexible skew Laplace distribution and some moments properties, i.e. location,

dispersion, skewness and kurtosis. We also provide some results of limiting cases of parameters,

and a simulation study in this section. In last section we will analyze two popular datasets from

the literature.

3. Basic Properties

In this section, we obtain the equations for characteristic function, trigonometric moments,

location, dispersion and coefficients of skewness and kurtosis. We also provide some properties and

relations with other known distributions.

3.1. Trigonometric Moments

The characteristic function defines the entire probability distribution in the circular models as

well as in the models defined on the real line. Note that, since the random variables with such

distributions are periodic, have the same distribution when shifted by 2π. So if we consider Θ
dist
=

Θ+2π, it must be

ϕΘ(p) =E(eipΘ) =E(eip(Θ+2π)) = eip2πϕΘ(p).

Hence p must be an integer. The value of the characteristic function at an integer p is called the

pth trigonometric moment of Θ. One can also write pth trigonometric moments in terms of αp and

βp

ϕp =ϕΘ(p) = αp + iβp, p= 0,±1,±2, . . . .
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56 İSTATİSTİK: Journal of the Turkish Statistical Association 11(3), pp. 53–64, c© 2018 İstatistik

where αp is pth cosine moment and defined as αp =E(cospΘ), βp is pth sine moment and defined
as βp =E(sinpΘ). In order to obtain pth cosine and sine moments of WFSL (μ,σ,λ1, λ2, λ3) dis-
tribution, we define two signum functions

∇=

{
sgn (λ1) , if λ1λ3 < 0

0 , if λ1λ3 ≥ 0
and Δ=

⎧⎨⎩
0 , if λ1 = 0 and λ3 = 0

sgn (λ3) , if λ1 = 0 and λ3 �= 0
sgn (λ1) , if λ1 �= 0

,

and quantities

Cp =
1

2σ

2π∫
0

cospθ

∞∑
r=−∞

e−|θrμσ−1| sgng (θrμσ−1
)
e−|g(θrμσ−1)|dθ

and

Sp =
1

2σ

2π∫
0

sinpθ

∞∑
r=−∞

e−|θrμσ−1| sgng (θrμσ−1
)
e−|g(θrμσ−1)|dθ.

It follows that the pth cosine and sine moments are

αp =
cospμ+2∇e−k sin (pμ) ξp

p2σ2 +1
− Δpσ sinpμ

p2σ2 +1
−Δ2Cp, (3.1)

βp =
sinpμ− 2∇e−k cos (pμ) ξp

p2σ2 +1
+

Δpσ cospμ

p2σ2 +1
−Δ2Sp, (3.2)

where

ξp = sinkpσ+ pσ coskpσ,

and

k=

{(−λ1λ
−1
3

)0.5
, if λ1λ3 < 0

0 , if λ1λ3 ≥ 0
.

Using these trigonometric values, an alternative representation for the density of Θ can be written
as

fΘ (θ;υ) =
1

2π
− 1

π

∞∑
p=1

⎧⎪⎨⎪⎩
(

2∇e−k sinp(θ−μ)ξp
p2σ2+1

)
− cosp(θ−μ)+Δpσ sinp(θ−μ)

p2σ2+1

+Δ2 (Cp cospθ+Sp sinpθ)

⎫⎪⎬⎪⎭ .

Thus, the first two trigonometric moments of WFSL (0,1, λ1, λ2, λ3) are

ϕ1 =
1+ iΔ

2
−∇ie−k [cosk+sink]− iΔ2S1,

ϕ2 =
1+2iΔ

5
− 2

5
∇ie−k [2 cos 2k+sin2k]− iΔ2S2.

Since the clear analytical form of both Cp and Sp cannot be found, they need to be evaluated
numerically. However, the following two lemmas provide the values of Cp and Sp in some special
cases of parameters.

Lemma 1. When μ= 0 for each integer p,
(a) Cp = 0.
(b) Sp = 0 when Δ=0.
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Proof. (a) When Δ= 0, it is immediate g (θr0σ
−1) = 0 and thus Cp = 0. When Δ �= 0, denote

Λ(θ) =
∞∑

r=−∞

e−| θ−π+2πr
σ | sgng (θr0σ−1

)
e−|g(θr0σ−1)|.

It’s easy to see Λ(θ) is an odd function, i.e. Λ (θ)+Λ(−θ) = 0, θ ∈ (−π,π) . One can rewrite

Cp =
1

2σ

2π∫
0

cospθ
∞∑

r=−∞

e−| θ+2πr
σ | sgng (θr0σ−1

)
e−|g(θr0σ−1)|dθ

=
(−1)

p

2σ

π∫
−π

Λ(θ) cospθdθ= 0.

(b) Proof is clear since g (θr0σ
−1) = 0 for Δ= 0.

Lemma 2. For each integer p,
(a) When λ1 →∞ or λ3 →∞, Cp = 0 and Sp = 0.
(b) When ∇= 0 and λ2 →∞,

Cp =−Δpσ sinpμ

p2σ2 +1
and Sp =

Δpσ cospμ

p2σ2 +1
.

Proof. (a) Let’s just consider λ3 →∞

lim
λ3→∞

Cp = lim
λ3→∞

1

2σ

2π∫
0

cospθ
∞∑

r=−∞

e−|θrμσ−1| sgng (θrμσ−1
)
e−|g(θrμσ−1)|dθ

=
1

2σ

2π∫
0

cospθ
∞∑

r=−∞

[
e−|θrμσ−1|

{
lim

λ3→∞
sgng

(
θrμσ

−1
)
e−|g(θrμσ−1)|

}]
dθ

= 0.

The situation is the same for λ1 →∞ or λ1 →∞, λ3 →∞ and the proof is similar for Sp.

(b) Just consider Cp since the proof is similar for Sp. While λ2 →∞, e−|g(θrμσ−1)| tends to 1.
Thus,

lim
λ2→∞

Cp =
1

2σ

2π∫
0

cospθ lim
λ2→∞

∞∑
r=−∞

e−|θrμσ−1| sgng (θrμσ−1
)
e−|g(θrμσ−1)|dθ

=
1

2σ

⎡⎣ 2π∫
0

cospθ lim
λ2→∞

∞∑
r=−∞

e−|θrμσ−1| sgng (θrμσ−1
)⎤⎦

=− (Δpσ sinpμ)
(
p2σ2 +1

)−1
.

3.2. Location and Dispersion

Resultant vector length and direction for pth trigonometric moment of a circular distribution
are

ρp =
√

α2
p +β2

p and μp = atan
(
αpβ

−1
p

)
(3.3)



Yilmaz: Wrapped Flexible Skew Laplace Distribution
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respectively, where atan (.) is quadrant inverse tangent function and defined as

atan (y/x) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
tan−1 (x/y) , y > 0, x≥ 0

π/2 , y= 0, x > 0
tan−1 (x/y)+π , y < 0
tan−1 (x/y)+ 2π , y≥ 0, x < 0

undefined , y= 0, x= 0

.

The pth trigonometric moment can be expressed in ϕp = ρpe
iμp and has a special meaning for p= 1.

The values of ρ1 and μ1 obtained from (3.3) are called the angular concentration and the mean

direction, respectively. Mean direction of WFSL (0, σ,λ1, λ2, λ3) distribution is

μ1 = atan
[(
σΔ−Δ2S1

(
1+σ2

)− 2∇e−k [sinkσ+σ coskσ]
)−1

]
(3.4)

= atan
[(
σΔ−Δ2S1

(
1+σ2

)− 2∇e−kξ1
)−1

]
.

The mean direction vector gives information about the mean of the distribution as an analogy

of the mean in the linear models. The length of this vector is a measure of its dispersion around

the mean and corresponds to the usual standard deviation or variance in linear models. Square of

angular concentration for WFSL distribution is

ρ21 =
∇2

ς
ξ21
(
4e−2k

)
+

∇
ς
ξ1
(
4Δe−k

) (
ΔS1 −σ+σ2ΔS1

)
+

1

ς

(
ΔS1

(
σ2 +1

) (
ΔS1 − 2σ+σ2ΔS1

)
+σ2Δ2 +1

)
,

or with value of μ1

ρ1 =−Δ2S1 sinμ1 +
Δσ sinμ1

σ2 +1
− 2∇e−kξ1 sinμ1

σ2 +1
+

cosμ1

σ2 +1
(3.5)

=

[
Δ

σ

σ2 +1
−Δ2S1 −∇2e−kξ1

σ2 +1

]
sinμ1 +

cosμ1

σ2 +1
,

where ς = σ4 +2σ2 +1.

Corollary 1. When μ= 0 and Δ=0, ϕp = (p2σ2 +1)
−1

eipμ, for each integer p. Hence, μ1 = μ
and ρ1 = (σ2 +1)

−1
for WFSL (μ,σ,0, λ2,0) distribution.

Corollary 2. When λ1 →∞ or λ3 →∞, μ1 tends to [μ+atan (σ)]mod(2π) and ρ1 tends to

(σ2 +1)
−0.5

for WFSL (μ,σ,λ1, λ2, λ3) distribution.

Corollary 3. When λ2 → ∞, μ1 tends to μ and ρ1 tends to (σ2 +1)
−1

for

WFSL (μ,σ,λ1, λ2, λ3) distribution.

It is clear that 0≤ ρ1 ≤ 1 and tends to maximum value when the concentration increases around

the mean. The effect of μ and σ parameters on the angular concentration and the mean direction
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of the Θ random variable are shown in Figure 2. If Θ is rotated by θ0 degrees, the value of angular
concentration does not change but mean direction is shifted by θ0.
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Figure 2. Amount of concentration and average direction change.

Another circular dispersion measure is the circular variance and defined as V = 1− ρ1. Using
(3.4) and (3.5), the circular variance of WFSL (0, σ,λ1, λ2, λ3) is

V = 1−β1 sinμ1 −α1 cosμ1 (3.6)

= 1+S1 sinμ1Δ
2 − Δσ sinμ1

σ2 +1
+

2∇e−kξ1 sinμ1

σ2 +1
− cosμ1

σ2 +1
.

Circular variance is interpreted as the opposite of angular concentration. That is, the circular
variance decreases while the concentration around the mean direction increases and vice versa. In
Figure 3, it can be seen (σ,V ) plots for different λ1, λ2, λ3 values (μ= 0). In generally, according to
Figure 3 it can be said that the circular variance increases with the increase of σ. When λ1λ3 ≥ 0,
the circular variance decreases with increasing λ1 or λ3 and increases with λ2. But this is only valid
for some values of σ when λ1λ3 < 0.
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Figure 3. (σ,V ) plots for different λ1, λ2, λ3 values (μ= 0).

3.3. Skewness and Kurtosis

In a circular model, the pth central cosine moment and sine moments are ᾱp =E [cosp (θ−μ1)]
and β̄p =E [sinp (θ−μ1)] respectively. Both of coefficients kurtosis and skewness are obtained using
the second central moment and aren’t affected by parameter μ. So, it is enough to calculate both
coefficients according to μ= 0. Thus,

ᾱ2 =E [cos 2 (θ−μ1)] (3.7)
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=

[
Δ

2σ

4σ2 +1
−Δ2S2 −∇ 2e−kξ2

4σ2 +1

]
sin2μ1 +

cos2μ1

4σ2 +1

and

β̄2 =E [sin 2 (θ−μ1)] (3.8)

=

[
Δ

2σ

4σ2 +1
−Δ2S2 −∇ 2e−kξ2

4σ2 +1

]
cos2μ1 − sin2μ1

4σ2 +1
.

As a measure of asymmetry, skewness coefficient of a circular distribution is calculated by γ1 =
β̄2V

−3/2 [9]. Using the values of (3.6) and (3.8) the skewness of WFSL distribution is

γ1 =
(Δ2σ−Δ2S2 (4σ

2 +1)− 2∇e−kξ2) cos 2μ1 − sin2μ1

(4σ2 +1)V 3/2
.

If the distribution is symmetric and unimodal, the skewness coefficient will be zero.

Corollary 4. WFSL (μ,σ,0, λ2,0) is unimodal and symmetric about μ. From Corollary 2

mean direction is μ1 = 0, when μ= λ1 = λ3 = 0, since Δ=∇= 0 and μ1 = 0, γ1 = 0.

Kurtosis of a circular distribution is γ2 = (ᾱ2 − ρ41) (1− ρ1)
−2

[9]. Using the given values (3.5),
(3.6) and (3.7) kurtosis of WFSL (0, σ,λ1, λ2, λ3) is

γ2 =
(Δ2σ−Δ2S2 (4σ

2 +1)− 2∇e−kξ2) sin2μ1 +cos2μ1 − (4σ2 +1)ρ41
(4σ2 +1)V 2

.

Corollary 5. Kurtosis of WFSL (μ,σ,0, λ2,0) is γ2 = (σ4 +4σ2 +6) (4σ2 +1)
−1

(σ2 +1)
−2

.

3.4. Some Propositions

In this section, we provide some properties related to the introduced distribution and the rela-
tionships with other distributions.

Proposition 1. WFSL (0, σ,0, λ2,0)
dist
= WL (σ−1,1) where WL (λ,κ) denotes the wrapped

Laplace distribution [5].

Proof. Let denote ϕWFSL
p and ϕWL

p are characteristic functions of WFSL (0, σ,0, λ2,0) and
WL (σ−1,1) respectively. When λ1 = 0, λ3 = 0 and μ = 0, it’s easy to see for each integer p,
ϕWFSL

p =ϕWL
p = (p2σ2 +1)

−1
.

Proposition 2. Let WE (λ) denotes the wrapped exponential distribution and WL (λ) denotes
the wrapped Laplace distribution [5].

(a) limλ1→∞WFSL (0, σ,λ1, λ2, λ3)
dist
= WE (σ−1) .

(b) limλ3→∞WFSL (0, σ,λ1, λ2, λ3)
dist
= WE (σ−1) .

(c) limλ∗→∞WFSL (0, σ,λ∗, λ2, λ
∗)

dist
= WE (σ−1) .

(d) limλ2→∞WFSL (0, σ,λ1, λ2, λ3)
dist
= WL (σ−1,1) .

Proof. (a) The characteristic function of WE (σ−1) distribution is

ϕWE
p = (1+ ipσ)

(
p2σ2 +1

)−1
.

Using Lemma 3a pth cosine moment of WFSL (0, σ,λ1, λ2, λ3) is

αp =
(
p2σ2 +1

)−1
,
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when λ1 →∞. If λ3 < 0, e−k tends to 0 otherwise ∇= 0. So in both cases pth sine moment will be
equal to

βp = pσ
(
p2σ2 +1

)−1
.

Thus

ϕWFSL
p =ϕWE

p = (1+ ipσ)
(
p2σ2 +1

)−1
.

(b) In a similar way, when λ3 tends to ∞, αp tends to

αp =
(
p2σ2 +1

)−1
.

If λ1 < 0, e−k tends to 1, ∇=Δ=−1 and ξp → pσ. Otherwise if λ1 > 0, ∇ equals to 0. So in both
cases

βp = pσ
(
p2σ2 +1

)−1
.

(c) Proof is clear, since ∇= 0 when λ1 and λ3 tends to ∞.
(d) When λ2 →∞, from Lemma 3b and (3.1) it can be seen immediately that αp = (p2σ2 +1)

−1

and

βp =−pσΔ(1−Δ)(1+Δ)

p2σ2 +1
= 0,

for all cases of Δ. Thus

ϕWFSL
p = αp =

(
p2σ2 +1

)−1
=ϕWL

p .

Proposition 3. Θ∼WFSL (0, σ,λ1, λ2, λ3)⇔−Θ∼WFSL (0, σ,−λ1, λ2,−λ3) .

Proof. Let’s use gλ1,λ2,λ3
(x) notation instead of g (x) notation in equation (1.1). It’s easy to

see

g−λ1,λ2,−λ3
(x) = gλ1,λ2,λ3

(−x) =−gλ1,λ2,λ3
(x) .

Thus,

A (θ,μ,σ,−λ1, λ2,−λ3) =A (−θ,μ,σ,λ1, λ2, λ3)

and

fΘ (θ; 0, σ,−λ1, λ2,−λ3) = fΘ (−θ; 0, σ,λ1, λ2, λ3) .

Corollary 6. Mean direction of −Θ∼WFSL (0, σ,−λ1, λ2,−λ3) is 2π−μ1, where μ1 is the

mean direction of Θ∼WFSL (0, σ,λ1, λ2, λ3) .

Proposition 4. Let X and Y be independent Laplace (η) random variables. Define the random

variable Θ as

Θ= {X|Y < g (X)} (mod2π)

where g (.) defined as (1.1). Then Θ∼WFSL (0, η, λ1, λ2, λ3) .

Proof. Proof is clear since X|Y < g (X)∼ FSL (η,λ1, λ2, λ3) [14].

Corollary 7. {−X|Y > g (X)} (mod2π)∼WFSL (0, η, λ1, λ2, λ3) .

Corollary 8. Θ= [IX − (1− I)X] (mod2π)∼WFSL (0, η, λ1, λ2, λ3) where

I =

{
1 , Y < g (X)
0 , Y ≥ g (X)

.
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3.5. Simulation

The result of last proposition can be used to generate random numbers from WFSL distribution.
The following algorithm is based on this result and generates n random numbers.

Step 1. Generate n× 1 random vectors X ∼Laplace (1) and Y ∼Laplace (1) .

Step 2. Calculate g (X) = (λ1X +λ3X
3) (1+λ2X

2)
−0.5

.
Step 3. Calculate T = [Y < g (X)]X − [Y ≥ g (X)]X.
Step 4. Calculate Z = [μ+σT ] (mod2π) .

Obtaining clear forms of maximum likelihood (ml) estimators is an insurmountable problem
because of complex likelihood function. Therefore, likelihood function must be maximized by an
iterative method. In this simulation study we used Matlab’s mle function to obtain ml estimates of
parameters. We ran the above algorithm 100 times for different values of n and μ= 0.79, σ = 1.5,
λ1 = 3, λ2 = 3 and λ3 =−5. The bias and MSE(in parentheses) values of the parameters calculated
with the ml estimates obtained in each step, are shown in Table 1.

Table 1. Average values of bias and MSE (in parentheses) of parameters.

n μ̂ σ̂ λ̂1 λ̂2 λ̂3

100 0.1187(0.0113) 0.0067(0.0388) 0.4875(3.0552) 0.2682(11.491) -1.3720(19.436)

250 0.0006(0.0032) 0.0029(0.0200) 0.2574(1.0001) 0.7384(7.7087) -0.5679(4.9759)

500 0.0070(0.0017) -0.0134(0.0113) 0.0164(0.3399) 0.2394(5.7541) -0.0891(1.6226)

1000 0.0034(0.0009) -0.0030(0.0049) 0.0105(0.1427) 0.0440(1.6380) -0.0269(0.7009)

From Table 1 it can be seen that, as the sample size increases, the bias and MSE values of param-
eters decrease to zero.

4. Application to Real Data

In order to demonstrate the modelling behavior of the WFSL distribution, we will analyze two
popular data sets from the literature. Both data sets in this section have been discussed in many
studies and used for fitting the distributions proposed by the authors. Table 2 shows estimates of
the parameters, estimated average direction and resultant length. We also provide maximized log
likelihood value (L), Akaike information criterion (AIC), Bayesian information criterion (BIC) and
Watson’s U 2 (W2) value in the same table.

Table 2. Summary of fits for the turtle data and ant data.
Turtle Data Ant Data

Estimates Estimates

μ̂ 1.7104 -L 107.7552 μ̂ 3.67 -L 128.936
σ̂ 1.1761 AIC 225.5104 σ̂ 0.92 AIC 267.8722

λ̂1 −3.029 BIC 237.1641 λ̂1 −2033 BIC 280.8980

λ̂2 0.0127 W2 0.0375 λ̂2 2.86E6 W2 0.2050

λ̂3 1.1393 λ̂3 280.5
Mean Direction 1.09(∼ 62.6

◦
) Mean Direction 3.15(∼ 180.63

◦
)

Res. Lenght 0.5146 Res. Lenght 0.6209

Turtle Data: The first dataset in this section refers to the orientations of 76 turtles after laying
eggs [7]. Left panel of Figure 4 represents the circular data plot over rose diagram and fitted
WFSL distribution. The arrow and its length represents the sample mean resultant vector m1 and
resultant length r1, respectively. Calculated sample statistics are a1 = 0.2166, b1 = 0.4474, m1 =
1.12 (∼ 64.2◦) and r1 = 0.4971. Maximum likelihood estimation of parameters are obtained by
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maximizing the likelihood function in Matlab via mle function. In order to avoid localmaxima,
parameter intervals have been kept as wide as possible. The maximum likelihood estimates are
seen in Table 2.
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Figure 4. Plots for turtle data. Circular data plot, fitted circular
pdf and rose diagram (left), linear histogram and fitted pdf (right).

This dataset was recently used by Joshi and Jose 2018 as an application of the wrapped Lindley
(WL) distribution. The authors reported the AIC value for WL distribution is 243.29, BIC value
is 243.75 and maximized log likelihood value is 119.71. In the same study, the AIC value for the
wrapped exponential distribution is 243.29, the BIC is 245.63 and maximized log likelihood value
is 120.65. Yilmaz and Biçer 2018 modeled this data set using the transmuted version of wrapped
exponential (TWE) distribution and they obtained the AIC, W2 and maximized log likelihood
value values as 239.89, 0.25 and 117.95, respectively. Also, Fernandez-Duran 2004 used this data
set as an application for non-negative trigonometric sums (NNTS) distribution and obtained the
lowest AIC value is 225.94. Based on the AIC, BIC, maximized log likelihood and W2 statistics
values reported by these authors, the WFSL distribution gives better fit to turtle data than the
mentioned alternatives.
Ant Data: The second data set consist of the directions chosen by 100 ants which have been

analyzed by Fisher 1995 with the aim of fitting a von Mises distribution. Ants were placed into an
arena one by one, and the directions they chose relative to an evenly illuminated black light source
placed at 180◦ were recorded. Calculated sample statistics are a1 =−0.6091, b1 =−0.0334, m1 =
3.1964 (∼ 183.14◦) and r1 = 0.6101. The maximum likelihood estimates obtained via Matlab are
seen in Table 2.
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Figure 5. Plots for ant data. Circular data plot, fitted circular
pdf and rose diagram (left), linear histogram and fitted pdf (right).

Fisher concludes that the von Mises distribution is not a suitable model for this data. The AIC
and BIC values for this model was equal to 288.24 and 293.4, respectively. Fernandez-Duran 2004
reported the AIC values as 276.64 for the NNTS distribution, 276.84 for the skewed wrapped
Laplace and 275.74 for the symmetric wrapped Laplace distribution. Based on the AIC and BIC
values reported by these authors, the WFSL distribution gives better fit to ant data than the
mentioned alternatives.
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64 İSTATİSTİK: Journal of the Turkish Statistical Association 11(3), pp. 53–64, c© 2018 İstatistik

5. Conclusion

In this study, wrapped version of the flexible skew Laplace (FSL) distribution is introduced. The
proposed distribution inherits the flexibility properties of FSL distribution. We also discussed char-
acteristic function, trigonometric moments, location, dispersion and coefficients of skewness and
kurtosis of proposed distribution. As we mentioned about, it is not possible to find explicit forms of
maximum likelihood (ML) estimators of parameters. However, as can also be seen from many stud-
ies in recent years, this problem can be overcome with the help of computer softwares. Therefore,
in last section, the mle function of Matlab used for obtaining the estimation of the parameters.
Based on the AIC, BIC, maximized log likelihood and W2 statistics values, the results showed that
the proposed model is better fits to these datasets than the recently published wrapped Lindley
distribution [8], transmuted wrapped exponential distribution [15] and non-negative trigonometric
sums distribution [3].
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Abstract: In this work, we introduce a new xgamma-Poisson lifetime model called the quasi xgamma-
Poisson distribution. Some of its mathematical properties are derived. The proposed model can be motivated
with a physical motivation by compounding the quasi xgamma construction with the truncated Poisson
distribution. The quasi xgamma-Poisson model also motivated by the wide use of the xgamma distribution
in many applied areas as well as for the fact that the new generalization provides more flexibility to analyze
real data. We discuss the maximum likelihood estimation of the quasi xgamma-Poisson model parameters.
An application to illustrate that the proposed quasi xgamma-Poisson model provides consistently better fit
than the other competitive models.
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1. Introduction

When the lifetime data present a bathtub shaped hazard rate function, such as human mortality
and machine life cycles, practical problems generally require a wider range of possibilities in the
medium risk. Researchers in the last years developed various extensions and modified forms of
the xgamma distribution to obtain more flexible models with different number of parameters. A
state-of-the-art survey on the class of such distributions can be found in Sen et al. (2016) and
Sen and Chandra (2017). The xgamma distribution with its delegate structural and distributional
properties serves as a potential survival model among the other popular lifetime models in the
literature, more details can be seen in Sen et al. (2018). Recently, Sen et al. (2017) have introduced
and studied a weighted version of xgamma distribution along with its length biased version for
modeling time-to-event data sets. The quasi xgamma distribution, a two-parameter extension or
generalization of xgamma distribution, shows superiority over many more life distributions when
applied to real life survival and/or reliability data set.
In this present investigation, our aim is to introduce and study a three parameter extension of

quasi xgamma distribution for modeling lifetime data. This extension is proposed by mixing quasi
xgamma and zero-truncated Poisson distributions similarly Lindley-Poisson distribution (Gui et

*Corresponding author. E-mail address: mcagatay@artvin.edu.tr or mustafacagataykorkmaz@gmail.com
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66 İSTATİSTİK: Journal of the Turkish Statistical Association 11(3), pp. 65–76, c© 2018 İstatistik

al., 2014). We can interpret the proposed model as follows: A situation where failure of a unit
or system (be it mechanical or biological) occurs due to the presence of some unknown number
of initial defects of similar kind. If we assume these unknown number of initial defects follow a
zero-truncated Poisson distribution and their respective lives follow a quasi xgamma distribution,
then the first failure distribution leads to what we call quasi xgamma-Poisson distribution. we aim,
in this article, sythesis of the proposed model, its essential properties, method of estimating model
parameters and real life application of the model.
The rest of the article is organized as follows. The proposed distribution is synthesized in Sec-

tion 2. Different properties, such as, survival function, hazard rate function, moments and related
measures, distributions of extreme order statistics and stochastic ordering, are discussed and stud-
ied in Section 3 and in its deliberate subsections. In Section 4, method of maximum likelihood is
proposed for estimating the unknown parameters of the proposed distribution. Algorithm of a sim-
ulation is proposed along with a simulation study in Section 5. Section 6 deals with an application
of the model with a real data illustration and comparison. Finally, Section 7 concludes.

2. Synthesis

If Y is a random variable (rv) following quasi xgamma (QXG) model with parameters α and θ
(Sen and Chandra, 2017), then it has pdf as

f(y) =
θ

(1+α)

(
α+

1

2
θ2y2

)
e−θy|(y>0,α,θ>0). (2.1)

Let us denote it by Y ∼QXG(α, θ), corresponding cdf is given by

F (y) = 1−
(
1+α+ θy+ 1

2
θ2y2

)
(1+α)

e−θy|(y>0,α,θ>0).

The new xgamma-Poisson distribution can be synthesized as follows:
Suppose that the life of a unit (be it mechanical or biological) fails due to the presence of M (an
unknown number) initial defects for some kind. Let Y1, Y2, . . . , YM denote the lives of the initial
defects, then the life of the unit, say X, can be expressed as

X =Min{Y1, Y2, . . . , YM}.

Suppose that the lives of the initial defects, Y1, Y2, . . . , YM , follow identically and independently
distributed (i.i.d) QXG(α, θ) and the number of initial defects M follows a zero-truncated Poisson
distribution with parameter λ. Then, the probability mass function (pmf) of M is

Pr(M =m|λ>0,m=1,2,...) = p(m) =
λme−λ

m! (1− e−λ)
=

λm

m! (−1+ eλ)
.

Assuming that the rvs Yi(i = 1,2, . . . ,M) and M are independent, the conditional density of X
given M =m is

f(x|m) =
mθ

(
1
2
θ2x2+α

) (
1
2
θ2x2 + θx+α+1

)−1+m

(1+α)memθy
|(x>0).

Then, the marginal pdf of X can be obtained as

f(x) =
∞∑

m=1

f(x|m)p(m)
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=
∞∑

m=1

mθ
(1+α)−m

(
1
2
θ2x2+α

)
e−mθy(

1
2
θ2x2 + θx+α+1

)1−m .
λm

m! (−1+ eλ)

=
λθe−θx

(
1
2
θ2x2+α

)
(−1+ eλ) (1+α)

∞∑
m=1

λ−1+m

(
1
2
θ2x2 + θx+α+1

)−1+m

(1+α)−1+m(−1+m)!eθ(−1+m)x

=
λθ

(
1
2
θ2x2+α

)
(−1+ eλ) (1+α)

exp

[
λ
(
1
2
θ2x2 + θx+α+1

)
(1+α)eθx

− θx

]
|(x>0,α,θ,λ>0).

2.1. The quasi xgamma-Poisson distribution

We have the following definition for the new distribution obtained from the above synthesis:
Definition 1. An absolutely continuous rv X will be said to follow quasi xgamma-Poisson

(QXGP) distribution with parameters α, θ and λ if its pdf is of the form

f(x) =K(α, θ,λ)

(
1

2
θ2x2+α

)
e

λe−θx(1+α+θx+1
2 θ2x2)

(1+α)
−θx

, x > 0, α, θ,λ > 0, (2.2)

where K(α, θ,λ) = λθ
(eλ−1)(1+α)

, a function of α, θ and λ.

We denote it by X ∼QXGP (α, θ,λ).
Special cases:

(i) When α= θ in (2.2), we obtain a new family of probability distributions, can be termed as
xgamma-Poisson (XGP) distribution, with the following pdf:

f1(x) =K1(θ,λ)

(
1+

θ

2
x2

)
e

λe−θx(1+θ+θx+1
2 θ2x2)

(1+θ)
−θx

, x > 0, θ, λ > 0,

where K1(θ,λ) =
λθ2

(−1+eλ)(1+θ)
, a function of θ and λ.

We can denote it by X ∼XGP (θ,λ).
(ii) While λ→ 0 in (2.2), the QXG model is obtained.
(iii) When α= θ and λ→ 0 in (2.2), we obtain xgamma distribution with parameter θ (see for

more details Sen et al., 2016).
The pdf curves for different values of α, θ and λ are shown in Figure 1.
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(a) α= 0.5, and varying θ and λ. (b) α= 1.0, and varying θ and λ.

(c) α= 3.0, and varying θ and λ. (d) α= 5.0, and varying θ and λ.

Figure 1. The pdf curves of QXGP distribution for various values of α, θ and λ.

3. Properties

The cdf of QXGP (α, θ,λ) is obtained as

F (x) =
eλ − e

λe−θx(1+α+θx+1
2 θ2x2)

(1+α)

eλ − 1
|(x>0). (3.1)

The corresponding survival function (or reliability function) is given by

S(x) =
e

λe−θx( 1
2 θ2x2+θx+α+1)
(1+α) − 1

eλ − 1
|(x>0).

The failure rate function (or hazard rate function(hrf)) is, then, derived as

h(x) =
f(x)

S(x)
=

λθ
(
1
2
θ2x2+α

)
e

λe−θx( 1
2 θ2x2+θx+α+1)
(1+α)

−θx

(1+α)

[
e

λe−θx( 1
2 θ2x2+θx+α+1)
(1+α) − 1

] |(x>0).

The failure rate curves for different values of α, θ and λ are shown in Figure 2.

3.1. Moments and related measures

When X ∼QXGP (α, θ,λ), the kth raw moment of X is given by

μ
′

k = k

∫ ∞

0

xk−1S(x)dx

=
k

eλ − 1

∫ ∞

0

xk−1

[
e

λe−θx( 1
2 θ2x2+θx+α+1)
(1+α) − 1

]
dx |(k=1,2,··· ). (3.2)

μk’s can not expressed in a closed form and hence numerical integration can be applied to fine the
mean and other important related measures. The jth order central moment can be obtained by the
following relationship.

μj =E[(X −μ)
j
] =

j∑
r=0

(
j

r

)
μr

′(−μ)j−r |( j=2,3,...),
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(a) α= 0.5, and varying θ and λ. (b) α= 1.0, and varying θ and λ.

(c) α= 3.0, and varying θ and λ. (d) α= 5.0, and varying θ and λ.

Figure 2. Failure rate curves of QXGP distribution for various values of α, θ and λ.

where μ=E(X).
With above formula, the skewness and kurtosis coefficients are respectively given by

√
β1 =

√
μ2
3

μ3
2

and β2 =
μ4

μ2
2

.

The values for mean, variance,
√
β1 and β2 for selected values of α, θ and λ are shown in Table 1.

We note that for fixed values of α and λ, the values of
√
β1 and β2 do not depend on varying θ.

3.2. Asymptotic distributions of order statistics

Let X1,X2, . . . ,Xn−1,Xn be a random sample (rs) of size n from QXGP (α, θ,λ), then by the
central limit theorem, the mean (X1 + X2 + . . . + Xn)/n approaches to normal distribution as
n→∞.
Sometimes one might be interested in the asymptotics of the extreme order statistics. Let us denote:

X1:n =Min{X1,X2, . . . ,Xn} := Smallest order statistic

and
Xn:n =Max{X1,X2, . . . ,Xn} := Largest order statistic.

These extreme order statistics represent the lives of series and parallel systems respectively and
have important applications in reliability engineering and system sciences. We have the following
theorem on the distributions of extreme order statistics.

Theorem 1. If Xn:n and X1:n denote, respectively, the largest and smallest order statistics

from QXGP (α, θ,λ), then
(1) limn→∞Pr(Xn:n ≤ tbn) = e−t−1

, t > 0 | [F−1
(
1− 1

n

)
= bn

]
.
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Table 1. Mean, variance, coefficients of skewness and kurtosis for different values of parameters

(α, θ,λ) μ V ar(X)
√
β1 β2

(0.5,0.5,0.5) 4.1906 11.764 1.3027 5.3126

(1.0,0.5,0.5) 3.5504 10.795 1.5115 5.9875

(2.0,0.5,0.5) 2.9321 9.0414 1.8055 7.3156

(5.0,0.5,0.5) 2.3348 6.5830 2.1681 9.5956

(0.5,0.5,1.0) 3.7410 10.523 1.4526 5.9288

(0.5,0.5,2.0) 2.9497 7.9725 1.7761 7.6041

(0.5,0.5,5.0) 1.5026 2.7438 2.5810 14.719

(0.5,1.0,0.5) 2.0953 2.9409 1.3027 5.3126

(0.5,2.0,0.5) 1.0476 0.7352 1.3027 5.3126

(0.5,5.0,0.5) 0.4190 0.1176 1.3027 5.3126

(0.5,0.05,1.0) 37.410 1052.3 1.4526 5.9288

(1.0,5.0,0.5) 0.3550 0.1079 1.5115 5.9875

(5.0,5.0,5.0) 0.0654 0.0092 4.9895 42.528

(2) limn→∞Pr(X1:n ≤ b∗nt) = 1− e−t, t > 0 | [F−1
(
1
n

)
= b∗n

]
.

Proof. We apply the following asymptotic results (see Arnold et al., 2008) for X1:n and Xn:n.
(1) For the largest order statistic Xn:n, we have

lim
n→∞

Pr(Xn:n ≤ an + bnt) = e−t−d

, t > 0, c > 0 (Fréchet type),

where an = 0 and bn = F−1(1− 1/n) iff F−1(1) =∞ and ∃ a constant d> 0 such that,

lim
x→∞

1−F (xt)

1−F (x)
− t−d.

From the cdf of QXGP (α, θ,λ) distribution as given in (3.1), letting F (x) = 1, we can easily see
that F−1(1) =∞ and

lim
x→∞

1−F (xt)

1−F (x)
− t−1.

Therefore, we obtain d= 1, an = 0 and bn = F−1(1− 1/n).
(2) For the smallest order statistic X1:n, we have

lim
n→∞

Pr(X1:n ≤ a∗
n + b∗nt) = 1− e−tc , t > 0, c > 0 (Weibull type),

where a∗
n = F−1(0) and b∗n = F−1(1/n)−F−1(0) iff F−1(0) is finite,

lim
ε→0+

F (F−1(0)+ εt)

F (F−1(0)+ ε)
= tc ∀ t > 0, c > 0.

Letting F (x) = 0 we see that F−1(0) = 0 and finite. Moreover,

lim
ε→0+

F (0+ εt)

F (0+ ε)
= t.

Finally, we have c= 1, a∗
n = 0 and b∗n = F−1(1/n).

Hence the proof is completed.
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3.3. Stochastic ordering

For a positive continuous rv, stochastic ordering is an important tool for judging the comparative
behavior. Let us denote the pdf, cdf, hrf amd mean residual life function (mrl) of a positive contin-
uous rv X by fX(·), FX(·), hX(·) and mX(·), respectively, and those of another positive continuous
rv Y by fY (·), FY (·), hY (·) and mY (·), respectively. We recall some basic definitions.
Definition 2. A rv X is said to be smaller than a rv Y in the
(i) The stochastic order (X ≤(sto) Y ) if FX(x)≥ FY (x), ∀ x.
(ii) The hazard rate order (X ≤(hro) Y ) if hX(x)≥ hY (x), ∀ x.
(iii) The mean residual life order (X ≤(mrlo) Y ) if mX(x)≤mY (x), ∀ x.

(iv) The ikelihood ratio order (X ≤(lro) Y ) if fX (x)

fY (x)
decreases in x.

The below given implications (see Shaked and Shanthikumar, 1994) are well justified:[
X ≤(lro) Y

]⇒ [
X ≤(hro) Y

]⇒ [X ≤mrl Y ] and
[
X ≤(hro) Y

]⇒ [
X ≤(sto) Y

]
(3.3)

The following theorem shows that the QXGP distributions are ordered with respect to different
stochastic orderings.

Theorem 2. Let X ∼QXGP (α, θ,λ1) and Y ∼QXGP (α, θ,λ2). If λ1 >λ2 then
[
X ≤(lro) Y

]
and

[
X ≤(hro) Y

]
,
[
X ≤(mrlo) Y

]
,
[
X ≤(sto) Y

]
.

Proof. For any x> 0, the ratio of the densities is given by

g(x) =
fX(x)

fY (x)
=

λ1 (e
λ2 − 1)

λ2 (eλ1 − 1)
exp

⎧⎨⎩(λ1 −λ2)e
−θx

(
1+α+ θx+ θ2

2
x2
)

(1+α)

⎫⎬⎭
Taking derivative with respect to x, we have

g′(x) =−
θλ1(λ1 −λ2) (e

λ2 − 1) e−θx
(
α+ θ2

2
x2
)

λ2 (eλ1 − 1) (1+α)
exp

⎧⎨⎩(λ1 −λ2)e
−θx

(
1+α+ θx+ θ2

2
x2
)

(1+α)

⎫⎬⎭
Now, g′(x)< 0 if λ1 >λ2 and hence X ≤lr Y if λ1 >λ2. The other orderings are immediate by (3.3).
Hence the proof is completed.

4. Maximum likelihood estimation (MLE)

Let x1, x2, . . . , xn be a rs from the QXGP. Let ϕ=(α, θ,λ)T be the parameter vector. Then, the
log likelihood (LL) function for ϕ, say � (ϕ) = �,

� = −n log (1+α)+n log θ+n logλ−n log(eλ − 1)

+
n∑

i=1

log

(
1

2
θ2x2+α

)
+

n∑
i=1

[
λe−θxi

(
1+α+ θxi +

1
2
θ2x2

i

)
(1+α)

− θxi

]
. (4.1)

Equation (10) can be maximized directly via some sub-routine in any packet programs. The score
vector components, say U (ϕ) = ∂


∂ϕ
= (Uα,Uθ,Uλ)

T
, are given by λ

Uα =− n

1+α
+

n∑
i=1

(
1

2
θ2x2

i+α

)−1

−λ
n∑

i=1

e−θxi
θxi +

1
2
θ2x2

i

(1+α)2
,

Uθ =
n

θ
+

n∑
i=1

θx2
i

1
2
θ2x2+α

−
n∑

i=1

[
e−θxi

(1+α)

(
αxi +

1

2
θ2x3

i

)
+xi

]
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and

Uλ =
n

λ
− neλ

eλ − 1
+

n∑
i=1

e−θxi
(
1+α+ θxi +

1
2
θ2x2

i

)
(1+α)

.

Setting Uα = Uθ = Uλ = 0 and solving them simultaneously we get the MLE ϕ̂ = (α̂, θ̂, λ̂)T of
ϕ = (α, θ,λ)T . The likelihood ratio (LR) statistic can be used for comparing the QXGP model
with XGP model, which is equivalently to test H0 : α = θ. For this situaiton, the LR statistic is
computed with w = 2[�(α̂, θ̂, λ̂)− �(θ̃, λ̃)], where (α̂, θ̂, λ̂) are the unrestricted MLEs and (θ̃, λ̃) are
the restricted estimates under H0. The statistic w is asymptotically (as n → ∞) distributed as
χ2
υ, where υ is difference of two parameter vectors of nested models. For example, υ= 1 for above

hypothesis test.

5. Simulation study

We can generate a random data from the QXGP (α, θ,λ) distribution using the following simu-
lation algorithm:
1. Generate M ∼ zero-truncated Poisson (λ);
2. Generate Ui ∼ uniform [Uni(0,1)] , i= 1,2, . . . ,M ;
3. Generate Vi ∼ exponential [Exp(θ)] , i= 1,2, . . . ,M ;
4. Generate Wi ∼ gamma [Gam(3, θ)] , i= 1,2, . . . ,M ;
5. If Ui ≤ α/(1+α), then set Yi = Vi, otherwise, set Yi =Wi, i= 1,2, . . . ,M ;
6. Set X =min(Y1, Y2, . . . , YM), then X is the required sample.
Here, we give the simulation study based on graphical results to see performance of the maximum

likelihood estimations of parameters. We generate N = 1000 samples of sizes n = 20,21, . . . ,250
from QXGP model with the true parameters values α= 2.2, θ = 1 and λ= 0.5. Random numbers
procedure has been obtained by using inverse of QXGP cdf. We obtain the empirical mean (em),
standard deviations (sd), bias and mean square error (MSE) of the MLEs for this simulation study.
The empirical bias and MSE are calculated by (for h= α, θ,λ)

B̂iash =
1
N

∑N

i=1

(
ĥi −h

)
and

M̂SEh =
1
N

∑N

i=1

(
ĥi −h

)2

,

respectively. All results and estimations have been calculated by optim-CG routine in the R pro-
gramme. We give results of this simulation study in Figure 3. This Figure shows that that when
the sample size (n) increases, all estimated means approach to true parameter value as well as
empirical biases approach to 0. The sds and MSEs also decrease in all the cases, while sample size
increases.



Sen et al.: Quasi Xgamma-Poisson Distribution
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Figure 3. The empirical means, sds, biases and MSEs of the estimated parameters versus n

6. Application with real data illustration

We illustrate the flexibility of the QXGP model on the real data set. We also compare this model
with the QXG model, XGP model, XG model, exponential Poisson (EP) model (see Kuş (2007)),
exponentiated Weibull (EW) model (see Mudholkar and Srivasta (1993)), Weibull Poisson (WP)
model (see Lu and Shi (2012)), exponentiated exponential (EE) model (see Gupta and Kundu
(1999)) and exponentiated Nadarajah-Haghighi (ENH) model (see Lemonte (2013)) under the
estimated log-likelihood values �̂, Akaike Information Criteria (AIC), corrected Akaike information
criterion (CAIC), Cramer von Mises (W ∗) and Anderson-Darling (A∗) goodness of-fit statistics
for all distribution models. We note that The AIC and CAIC are by given by AIC = −2�̂ +
2p andCAIC =−2�̂+2pn (n− k− 1)

−1
, where p is the number of the estimated model parameters

and n is sample size. The W ∗ and A∗ statistics have been described as

W ∗ =
∑n

i=1

(
F̂
(
x(i)

)− i− 0.5

n

)2

+
1

12n

and

A∗ =−
∑n

i=1

2i− 1

n

[
ln F̂

(
x(i)

)
+ ln ˆ̄F

(
x(n+1−i)

)]−n

by Evans et al. (2008). Also, one may see Chen and Balakrishnan (1995) for W ∗ and A∗ in detail.
It can be seen as the best model which has the smaller the values of the AIC, CAIC, W ∗ and
A∗ statistics and the larger the values of �̂. The real data set is the stress-rupture life of kevlar
49/epoxy strands which are subjected to constant sustained pressure at the 90% stress level until
all had failed. This data set was studied by Andrews and Herzberg (1985), Cooray and Ananda
(2008), and Paraniaba et al. (2013).

In the applications, the information about the hazard shape can help in selecting a par-
ticular model. For this aim, a device called the total time on test (TTT) plot (Aarset,
1987) is useful. The TTT plot is obtained by plotting T

(
r
n

)
against r/n where T

(
r
n

)
=
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i=1 y(i) +(−r+n)y(r)
]
/
∑n

i=1 y(i) |(r=1,...,n) and yi are the order statistics of the sample. It is
convex shape for decreasing hrf and is concave shape for increasing hrf. The TTT plot for the kevlar
data in Figure 4 deals with convex-concave-convex shaped. That is it has a firstly bathtub-shaped
then decreasing shaped on the other words down-and-up shaped failure rate function. The MLEs

0.0 0.2 0.4 0.6 0.8 1.0

0.0
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i/n

T(
i/n

)

Figure 4. TTT plot for the kevlar data

of all models parameters, their standard erros, AIC, CAIC, W ∗ and A∗ statistics are listed in Table
2 for data set. Table 2 shows that the QXGP model could be chosen as the best model among the
fitted models under the AIC, CAIC, HQIC, and W ∗ statistics. We note that to show the likelihood
equations have a unique solution, we plot the profiles of the LL of α, θ and λ in Figure 5. The WP
model is better than QXGP model according to A∗ statistics. In this case, the WP model can be
choose as the best model.
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Figure 5. The profile of the LL function plots

The plots of the fitted densities, cdfs and hrfs of all models are displayed in Figure 6. These plots
also shows that the QXGP model provides the good fit to these data compared to the other models.
The fitted hrf shape both QXGP and WP models have firstly bathtub-shaped then decreasing
shaped (convex-concave-convex).
A comparison of the proposed distribution with some of its sub-models using LR statistics is

performed in Table 3. Table 3 shows that QXGP model provides a better representation of the
data than the their sub-model based on the LR test at the 6% significance level. Hence, we reject
all H0 hypotheses in favour of the QXGP model.
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Table 2. MLEs, standard erros of the estimates (in parentheses), �̂, AIC, CAIC, A∗ and W ∗ statistics for the
applications models

Model α̂ θ̂ λ̂ −�̂ AIC CAIC A∗ W ∗

QXGP 0.3065 1.0051 4.4307 101.1425 208.2849 208.5324 0.9527 0.1168

(0.1099) (0.2652) (1.7112)

QXG 1.9343 1.6408 104.0904 212.1807 212.1807 1.0947 0.1397

(2.0215) (0.4662)

XGP 1.4839 0.6804 103.7876 211.5751 211.6976 1.0761 0.1673

(0.3296) (0.9887)

XG 1.6978 104.1007 210.2015 210.2419 1.0916 0.1322

(0.1248)

EP 0.9340 0.1720 103.4497 210.8994 211.0218 1.2332 0.1742

(0.1963) (0.7079)

WP 0.8059 1.4042 -1.2719 102.3688 210.7376 210.9851 0.9303 0.1514

(0.1273) (0.3703) (1.0984)

ENH 1.0717 0.7860 0.8473 102.7904 211.5808 211.82834 0.9633 0.1668

(0.3093) (0.4094) (0.1308)

EW 0.7929 0.8210 1.0604 102.7872 211.5743 211.8218 0.9554 0.1648

(0.2873) (0.2654) (0.2400)

EE 0.8660 0.8883 102.8200 209.6369 209.7624 1.0215 0.1812

(0.1097) (0.1201)
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Figure 6. Fitted pdfs, cdfs and hrfs for data set

Table 3. LR statistics for data set

Model Hypothesis Test statistics p-value
QXGP vs XGP H0 : α= θ & H1 : H0 false 5.2902 0.0214
QXGP vs QXG H0 : λ= 0 & H1 : H0 false 5.8958 0.0151
QXGP vs XG H0 : α= θ,λ= 0 & H1 : H0 false 5.9164 0.0520
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7. Conclusions

In this paper, we propose a new three-parameter xgamma-Poisson model, called the quasi
xgamma-Poisson (QXGP) distribution, which extends the xgamma-Poisson (XGP), QXG and
xgamma distributions . In fact, the QXGP model is motivated by the wide use of the xgamma
distribution in many applied areas and also for the fact that the new generalization provides more
flexibility to analyze real data. We discuss the MLE of the model parameters. An applications illus-
trate that the proposed model provides consistently better fit than the other competitive models
like QXG, XGP, XG, EW, EE, EP, WP and ENH models.
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