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Abstract
This paper deals with the numerical solutions of one dimensional time dependent cou-
pled Burgers’ equation with suitable initial and boundary conditions by using Chebyshev
wavelets in collaboration with a collocation method. The proposed method converts cou-
pled Burgers’ equations into system of algebraic equations by aid of the Chebyshev wavelets
and their integrals which can be solved easily with a solver. Benchmarking of the proposed
method with exact solution and other known methods already exist in the literature is
made by three test problems. The feasibility of the proposed method is demonstrated by
test problems and indicates that the proposed method gives accurate results in short cpu
times. Computer simulations show that the proposed method is computationally cheap,
fast and quite good even in the case of less number of collocation points.

Mathematics Subject Classification (2010). 35Q35, 65M70
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equation, nonlinear phenomena, numerical solution

1. Introduction
We consider the Coupled Burgers’ problem

ut − uxx + ηuux + α(u.v)x = 0, x ∈ [0, 1], t ∈ [0, T ] (1.1)
vt − vxx + ξvvx + β(u.v)x = 0, x ∈ [0, 1], t ∈ [0, T ] (1.2)

with the initial conditions

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), x ∈ [a, b]
and the boundary conditions

u(0, t) = f1(t), u(1, t) = f2(t), t ∈ [0, T ]
v(0, t) = g1(t), v(1, t) = g2(t), t ∈ [0, T ]
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where η, ξ are real constants and α, β are arbitrary constants depend on system parame-
ters such as Peclet number, Stokes velocity of particles due to gravity and the Brownian
diffusivity [30]. u(x, t) and v(x, t) are the velocity components to be determined; ψi, fi
and gi (i = 1, 2) are the known functions; uux is the nonlinear convection term, ut is
unsteady term and uxx is diffusion term.

Coupled Burgers’ equation was first derived by Esipov [12] which is a simple model
of sedimentation or evolution of scaled volume concentrations of two kinds of particles in
fluid suspensions or colloids, under the effect of gravity [30]. This equation has been solved
by various approaches such as; Khater et al. [21] used the Chebyshev spectral collocation
method to solve the equation and M. Dehghan et al. [11] applied Adomian–Pade technique
for solving the coupled Burgers equations and more recently Kutluay and Ucar [23] solved
coupled Burgers’ equation by using the Galerkin quadratic B-spline method. In order to
solve Eqs. (1.1), (1.2) Mittal and Arora [28] used a cubic B-spline collocation scheme.
Rashid and Ismail [34] have used Fourier Pseudospectral method to solve the equation
numerically. Srivastava et al. [42] obtained numerical solutions of the Eqs.(1.1), (1.2) by
implicit finite-difference method. Zhang et al. [37] applied local discontinuous Galerkin
method to solve coupled Burgers’ equations. Siraj-ul-Islam et al. [17] solved coupled
Burgers’ equation by mesh free interpolation method. Kelleci and Yıldırım [20] have
solved the equation by combining homotopy perturbation and Pade techniques and Inan et
al. [16] have applied Bäcklund transformation to the Eqs.(1.1), (1.2). In the studies [22,29],
coupled Burgers’ equations are solved by Haar wavelet method. Rashid et al. have solved
the coupled viscous Burgers’ equation by Chebyshev–Legendre Pseudo-Spectral method
in [33].

Kaya [19] obtained the exact solution of the equation by Adomian Decomposition
method and Soliman [41] used a modified extended tanh-function method to obtain its
exact solution. Abdou and Soliman [2] used Variational iteration method to solve the
coupled viscous Burgers’ equation.

The wavelet methods were first applied for solving differential equations at the beginning
of 1990s. Until now a vast number of papers devoted to this topic. In most cases the
wavelet coefficients were calculated by the Galerkin or collocation method. But there is
a drawback in these methods since we have to evaluate integrals of some combinations of
the wavelet functions (connection coefficients). This is a very sophisticated problem, since
for most wavelet families we do not have an explicit form for these integrals [25]. Due
to these facts, researchers have focused on more simple wavelets such as Haar wavelets,
Legendre wavelets and Chebyshev wavelets for obtaining numerical solutions of differential
and integral equations. There are a lot of studies on application of Haar wavelets in
solving differential and integral equations numerically [6,7,9,18,22,24,26,27,29,31,32,40].
Nowadays, Legendre and Chebyshev wavelets are studied by many researchers [3, 4, 8, 13,
14, 35, 36, 38,39, 44–47]. In this paper we propose a Chebyhev wavelet method for solving
coupled Burgers’ equations numerically.

The outline of this paper is as follows. In Section 2, preliminaries about Chebyshev
wavelets are given. In section 3, we show how to use Chebyshev wavelet method for solving
coupled Burgers’ equation. In Section 4, proposed method tested by three examples,
obtained numerical results tabulated and numerical solutions depicted graphically. Finally
we conclude the paper in Section 5.

2. Preliminaries and notations
In this section, we give some necessary definitions and mathematical preliminaries of

Chebyshev wavelets.
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2.1. Chebyshev wavelets
Wavelets constitute a family of functions which are generated from dilation and translation
of a single function which is called as mother wavelet ψ(x). If the dilation parameter a and
the translation parameter b vary continuously we have the following family of continuous
wavelets [10]:

ψa,b(x) = |a|−1/2ψ

(
x− b
a

)
,

where a, b ∈ R and a 6= 0. Chebyshev wavelets ψnm = ψ(k, n,m, x) defined as follows:

ψnm(x) =

γm 2(k−1)/2
√
π

Tm
(
2kx− 2n+ 1

)
, n−1

2k−1 ≤ x < n
2k−1

0, else
(2.1)

where

γm =
{√

2, m = 0
2, m = 1, 2, ...

and m = 0, 1, ...,M − 1. Here n = 1, 2, ..., 2k−1, k can take any positive integer, m is the
degree of Chebyshev polynomials of first kind and x is the normalized time. Tm(x) are
Chebyshev polynomials of the first kind of degree m and satisfy the following recursive
formula:

T0(x) = 1,T1(x) = x, Tm+1(x) = 2xTm(x)− Tm−1(x).

which are orthogonal with respect to the weight function ω(x) = 1/
√

1− x2.We should re-
mind that Chebyshev wavelets are orthogonal with respect to the weight function ωn(x) =
ω(2kx− 2n+ 1).

2.2. Function approximation
Any function u(x) ∈ L2

ω[0, 1) can be expanded into Chebyshev wavelets as follows:

u(x) =
∞∑
n=1

∞∑
m=0

cnmψnm(x). (2.2)

Here wavelet coefficients are cnm = 〈u(x), ψnm(x)〉 , where 〈., .〉 represents the inner prod-
uct with respect to ωn(x).
In practice, one needs the truncated version of the Eq. (2.2), namely:

u(x) =
2k−1∑
n=1

M−1∑
m=0

cnmψnm(x) = CTΨ(x), (2.3)

where C and Ψ(x) are 2k−1M × 1 matrices given as

C = [c10, c11, ..., c1(M−1), c20, c21, ..., c2(M−1), ...,

c2k−10, c2k−11, ..., c2k−1(M−1)]T ,
Ψ(x) = [ψ10(x), ψ11(x), ..., ψ(x)1(M−1), ψ20(x), ψ21(x), ..., ψ(x)2(M−1), ...,

ψ2k−10(x), ψ2k−11(x), ..., ψ(x)2k−1(M−1)].T

Convergence analysis of Chebyshev wavelets is given in [3, 45].
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2.3. Integrals of Chebyshev wavelets [8]
We denote the first integral of the Eq. (2.1) as pnm(x) =

∫ x
0 ψnm(s)ds and the second

integral of the Eq. (2.1) as qnm(x) =
∫ x

0 pnm(s)ds. The first integral pnm(x) is given for
m = 0, m = 1 and m > 1 as follows:

pn0(x) =



0 0 ≤ x < n− 1
2k−1

γ0
2−(k−1)/2−1
√
π

[T1 (t) + T0 (t)] , n− 1
2k−1 ≤ x <

n

2k−1

γ0
2−(k−1)/2
√
π

T0 (t) , n

2k−1 ≤ x < 1

pn1(x) =


0 0 ≤ x < n− 1

2k−1

γ1
2−(k−1)/2−3
√
π

[T2 (t)− T0 (t)] , n− 1
2k−1 ≤ x <

n

2k−1

0, n

2k−1 ≤ x < 1

pnm(x) =


0 0 ≤ x < n− 1

2k−1

γm
2−(k−1)/2−2
√
π

[
Tm+1 (t)− (−1)m+1

m+ 1 − Tm−1 (t)− (−1)m−1

m− 1

]
,

n− 1
2k−1 ≤ x <

n

2k−1

γm
2−(k−1)/2−2
√
π

,
n

2k−1 ≤ x < 1

where t = 2kx − 2n + 1. The second integral qnm(x) is given for m = 0, m = 1, m = 2
and m > 2 as follows:

qn0(x) =



0 0 ≤ x < n− 1
2k−1

γ0
2−3(k−1)/2−4
√
π

[T2 (t) + 4T1(t) + 3T0 (t)] , n− 1
2k−1 ≤ x <

n

2k−1

γ0
2−(k−1)/2
√
π

( 1
2k + x− n

2k−1

)
,

n

2k−1 ≤ x < 1

qn1(x) =



0 0 ≤ x < n− 1
2k−1

γ1
2−3(k−1)/2−4
√
π

[
T3 (t)

6 − 3T1 (t)
2 − 4T0 (t)

3

]
,

n− 1
2k−1 ≤ x <

n

2k−1

γ1
2−3(k−1)/2−1

−3
√
π

,
n

2k−1 ≤ x < 1

qn2(x) =


0 0 ≤ x < n− 1

2k−1

γ2
2−3(k−1)/2−3

√
π

[
T4 (t)− 1

24 − T2 (t)− 1
3 − 2T1 (t)

3 − 2T0 (t)
3

]
,

n− 1
2k−1 ≤ x <

n

2k−1

γ2
2−(k−1)/2

−3
√
π

( 1
2k

+ x− n

2k−1

)
,

n

2k−1 ≤ x < 1
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qnm(x) =



0 0 ≤ x < n− 1
2k−1

γm
2−3(k−1)/2−3

√
π



Tm+2 (t)− (−1)m+2

2(m+ 1)(m+ 2) − Tm (t)− (−1)m

2(m+ 1)m

−Tm (t)− (−1)m

2m(m− 1)

+Tm−2 (t)− (−1)m−2

2(m− 1)(m− 2) +

(1 + T1(t))
[

(−1)m−1

m− 1 − (−1)m+1

m+1

]


,

n− 1
2k−1 ≤ x <

n

2k−1

γm
2−3(k−1)/2−3

√
π



1− (−1)m+2

2(m+ 1)(m+ 2) −
1− (−1)m

2(m+ 1)m −
1− (−1)m

2m(m− 1)

+ 1− (−1)m−2

2(m− 1)(m− 2) + 2
[

(−1)m−1

m− 1 − (−1)m+1

m+ 1

]
+2k

(
x− n

2k−1

)[1− (−1)m+1

m+ 1 − 1− (−1)m−1

m− 1

]

 ,
n

2k−1 ≤ x < 1

where t = 2kx− 2n+ 1. We will use these integrals in solution procedure later.

3. Method of solution for coupled Burgers’ equation
Consider the equations (1.1), (1.2) with the initial conditions

u(x, 0) = ψ1(x), v(x, 0) = ψ2(x), x ∈ [0, 1]

and the boundary conditions

u(0, t) = f1(t), u(1, t) = f2(t), t ∈ [0, T ]
v(0, t) = g1(t), v(1, t) = g2(t), t ∈ [0, T ]

Let us divide the interval [0, T ] into N equal parts of length ∆t = T/N and denote
ts = (s − 1)∆t, s = 1, 2, ..., N . In order to use the Chebyshev integrals given in the
previous section we expand the highest derivatives that appeared in the Eqs. (1.1) and
(1.2) into Chebyshev wavelets. Therefore assume that u̇′′(x, t) and v̇′′(x, t) can be expanded
in terms of Chebyshev wavelets as

u̇′′(x, t) =
2k−1∑
n=1

M−1∑
m=0

cnmψnm(x) (3.1)

v̇′′(x, t) =
2k−1∑
n=1

M−1∑
m=0

dnmψnm(x) (3.2)

where . and ′ means differentiation with respect to t and x, respectively, the row vectors
cnm and dnm are constants in the sub-interval t ∈ [ts, ts+1]. We discretize u(x, t) below,
same procedure can be applied to v(x, t).
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Integrating equation (3.1) with respect to t from ts to t and twice with respect to x from
0 to x, we have following equations:

u′′(x, t) =(t− ts)
2k−1∑
n=1

M−1∑
m=0

cnmψnm(x) + u′′(x, ts), (3.3)

u′(x, t) =(t− ts)
2k−1∑
n=1

M−1∑
m=0

cnmpnm(x) + u′(x, ts)− u′(0, ts) + u′(0, t), (3.4)

u(x, t) =(t− ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(x) + u(x, ts)− u(0, ts)

+ x
[
u′(0, t)− u′(0, ts)

]
+ u(0, t), (3.5)

u̇(x, t) =
2k−1∑
n=1

M−1∑
m=0

cnmqnm(x) + u̇(0, t) + xu̇′(0, t). (3.6)

By using boundary conditions, we obtain

u(0, t) = f1(t), u(0, ts) = f1(ts), u̇(0, ts) = f ′1(ts)
u(1, t) = f2(t), u(1, ts) = f2(ts), u̇(1, ts) = f ′2(ts)

At x = 1 in the formulae (3.5) and (3.6) and by using conditions, we have

u′(0, t)− u′(0, ts) =− (t− ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(1) + f2(t)

− f2(ts) + f1(ts)− f1(t) (3.7)

u̇′(0, t) =−
2k−1∑
n=1

M−1∑
m=0

cnmqnm(1)− f ′1(t) + f ′2(t). (3.8)

Substituting (3.7) and (3.8) into (3.4)-(3.6) and discretizing the results by assuming x→ xl
and t→ ts+1 we obtain

u′′(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmψnm(xl) + u′′(xl, ts), (3.9)

u′(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmpnm(xl) + u′(xl, ts)

− (ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(1) + f2(ts+1)

− f2(ts) + f1(ts)− f1(ts+1), (3.10)
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u(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(xl) + u(xl, ts)

+ f1(ts+1)− f1(ts)

+ xl

−(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

cnmqnm(1)


+ xl [f2(ts+1)− f2(ts) + f1(ts)− f1(ts+1)] , (3.11)

u̇(xl, ts+1) =
2k−1∑
n=1

M−1∑
m=0

cnmqnm(xl) + f ′1(ts+1)

+ xl

− 2k−1∑
n=1

M−1∑
m=0

cnmqnm(1)− f ′1(ts+1) + f ′2(ts+1)

 . (3.12)

Similarly we obtain

v′′(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmψnm(xl) + v′′(xl, ts), (3.13)

v′(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmpnm(xl) + v′(xl, ts)

− (ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmqnm(1)

+ g2(ts+1)− g2(ts) + g1(ts)− g1(ts+1), (3.14)

v(xl, ts+1) =(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmqnm(xl) + v(xl, ts) + g1(ts+1)− g1(ts)

+ xl

−(ts+1 − ts)
2k−1∑
n=1

M−1∑
m=0

dnmqnm(1)


+ xl [g2(ts+1)− g2(ts) + g1(ts)− g1(ts+1)] , (3.15)

v̇(xl, ts+1) =
2k−1∑
n=1

M−1∑
m=0

dnmqnm(xl) + g′1(ts+1)

+ xl

− 2k−1∑
n=1

M−1∑
m=0

dnmqnm(1)− g′1(ts+1) + g′2(ts+1)

 . (3.16)

for v(x, t). Based on the Eqs. (3.9)-(3.12) and (3.13)-(3.16) we will use following equations.

u̇(xl, ts+1) = u′′(xl, ts+1)− ηu(xl, ts)u′(xl, ts)− α [u(xl, ts)v(xl, ts)]x
v̇(xl, ts+1) = v′′(xl, ts+1)− ξv(xl, ts)v′(xl, ts)− β [u(xl, ts)v(xl, ts)]x (3.17)
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Now by substituting (3.9)-(3.12) and (3.13)-(3.16) into (3.17) we obtain
2k−1∑
n=1

M−1∑
m=0

cnm [qnm(xl)− xlqnm(1)−∆tψnm(xl)] = u′′(xl, ts)− ηu(xl, ts)u′(xl, ts)

− α [u(xl, ts)v(xl, ts)]x − f
′
1(ts+1)

+ xl
[
f ′1(ts+1)− f ′2(ts+1)

]
2k−1∑
n=1

M−1∑
m=0

dnm [qnm(xl)− xlqnm(1)−∆tψnm(xl)] = v′′(xl, ts)− ηv(xl, ts)v′(xl, ts)

− α [u(xl, ts)v(xl, ts)]x − g
′
1(ts+1)

+ xl
[
g′1(ts+1)− g′2(ts+1)

]
(3.18)

where ∆t = ts+1 − ts. From the system (3.18) the wavelet coefficients cnm and dnm can
be successively calculated. This computation starts with the following initial values.

u(xl, 0) = ψ1(xl), v(xl, 0) = ψ2(xl),
u′(xl, 0) = ψ′1(xl), v′(xl, 0) = ψ′2(xl),
u′′(xl, 0) = ψ′′1(xl), v′′(xl, 0) = ψ′′2(xl).

We collocate x at xl = (l− 0.5)/m′, l = 1, 2, ...,m′ collocation points where m′ = 2k−1M.

4. Numerical results and discussion
To show the performance of suggested method as compared with the exact solution we

are going to use the norms L2 and L∞ defined by

L2 =

√√√√∑m′
i=1 |uexact

i − unum
i |2∑m′

i=1 |uexact
i |2

,

L∞ = max
i

∣∣∣uexact
i − unum

i

∣∣∣ .
We have executed our computations on Intel Core i5-2410M 2.3Ghz and 4GB (667Mhz)
of RAM with the codes implemented in free software package GNU Octave and Python
programming language. Graphical outputs were generated by Matplotlib package [15].

4.1. Problem 1.
We firstly consider the coupled Burgers’ equation (1.1), (1.2) for α = β = 5

2 and η = ξ =
−2, [1]. So we have

ut − uxx − 2uux + 5
2(u.v)x = 0,

vt − vxx − 2vvx + 5
2(u.v)x = 0.

The exact solution of the coupled system for x ∈ [0, 1], is

u(x, t) = v(x, t) = λ

[
1− tanh

(3
2λ (40(x− 0.5)− 3λt)

)]
,

boundary conditions and initial conditions are determined from the exact solution and λ is
an arbitrary constant. This problem has large gradients moving rightward with constant
velocity. In Table 1, we show the obtained results for various values of λ. It can be seen
from the Table 1 that by increasing the number of collocation points one can achieve more
accurate results. On the other hand as time grows errors get larger. Measured cpu times
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are also given in Table 1 which are quite small. In Fig. 1, we plot the numerical solution
for λ = 0.05, 0.1 0.4, 0.8 and ∆t = 0.005 at t = 3 and t = 5. We see that for greater
values of λ, large gradient regions occur in the solution. The present method is capable
of analyzing the large gradient regions that occur in the solution which is an indicator
of the efficiency of a numerical method according to the Vasilyev and Paolucci [43] and
Basdevant et al. [5].
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Figure 1. Numerical solution of problem 1 for λ = 0.05, 0.10.4, 0.8 and ∆t = 0.01
at t = 1 with m′ = 128.

Table 1. Errors for various values of parameters of problem 1.

k = 5, M = 4, m′ = 64 k = 6, M = 4, m′ = 128 k = 7, M = 4, m′ = 256
t = 3 t = 5 t = 3 t = 5 t = 3 t = 5

λ = 0.1
L2 8.5052e-6 1.2956e-5 8.4321e-6 1.2802e-5 8.4272e-6 1.2792e-5
L∞ 2.7482e-6 4.2070e-6 2.7140e-6 4.1204e-6 2.7133e-6 4.1136e-6

λ = 0.8
L2 1.0348e-2 1.3720e-2 1.1782e-3 1.3820e-3 7.6982e-4 7.0642e-4
L∞ 7.7311e-2 1.1248e-1 9.5027e-3 1.2746e-2 7.0736e-3 7.0315e-3

Cpu time 0.458 0.796 0.963 1.505 2.633 4.081

4.2. Problem 2.
We consider the coupled Burgers’ equation (1.1), (1.2) for η = ξ = −2 so that equations
(1.1), (1.2) take the following form:

ut − uxx − 2uux + α(u.v)x = 0,
vt − vxx − 2vvx + β(u.v)x = 0.



10 Ö. Oruç, F. Bulut, A. Esen

The exact solution of this equation is given in [41]

u(x, t) = a0 (1− tanh(A(20(x− 0.5)− 2At)))

v(x, t) = a0

((2β − 1
2α− 1

)
− tanh(A(20(x− 0.5)− 2At))

)
where

a0 = 0.05, A = 1
2a0

(4αβ − 1
2α− 1

)
and x ∈ [0, 1]. The initial and boundary conditions are taken from the exact solution.
In Table 2, we tabulated and compared the obtained results from the present method
with Chebyshev spectral collocation method [21], cubic B-spline collocation method [28],
Galerkin quadratic B-spline finite element method [23] and Fourier pseudospectral method
[34]. We take k = 4, M = 2 and ∆t = 0.01. It can be seen from the Table 2, the L∞
error norm obtained by the present method is smaller than those obtained by the existing
methods and even for the small number of collocation points one can achieve the accuracy
of the existing methods in the literature. In Table 3, we compare the L∞ error norms
for α = 0.1, β = 0.3, k = 4, M = 2 and ∆t = 0.001 with the ones obtained by Haar
wavelet method [22]. The superiority of the present method over Haar wavelet method in
the sense of accuracy is clearly seen from Table 3. The numerical solutions at t = 1, are
shown in Fig. 2 for k = 4, M = 2 and ∆t = 0.01.
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Table 3. Comparison of error norms for α = 0.1, β = 0.3 and ∆t = 0.001 at
various time levels for Problem 2.

L∞(u) L∞(v) Cpu times
t Present Haar Present Haar for the

m′ = 16 N = 64 m′ = 16 N = 64 present method
0.5 4.1638e-5 5.675e-5 2.1915e-5 3.679e-5 0.2089
2 1.6239e-4 2.085e-4 7.9455e-5 1.359e-4 0.8045
3 2.3962e-4 3.006e-4 1.1427e-4 2.049e-4 1.2080

0.0 0.2 0.4 0.6 0.8 1.0
x

0.035

0.040

0.045

0.050

0.055

0.060

0.065

U
(x
,t
)

Numerical

Exact

0.0 0.2 0.4 0.6 0.8 1.0
x

0.010

0.015

0.020

0.025

0.030

0.035

0.040

V
(x
,t
)

Numerical

Exact

Figure 2. Numerical solutions of problem 2 for α = 0.1, β = 0.3, ∆t = 0.01 at t = 1.

4.3. Problem 3.
Lastly we consider the coupled Burgers’ equation (1.1), (1.2) for α = β = 1 and η = ξ = −2
so that equations (1.1), (1.2) take the following form:

ut − uxx − 2uux + (u.v)x = 0,
vt − vxx − 2vvx + (u.v)x = 0.

The exact solution is u(x, t) = v(x, t) = e−t sin(2π(x − 0.5)), x ∈ [0, 1]. The initial and
boundary conditions are taken from the exact solution. Comparison of the error norms at
each time for k = 6, M = 2 and ∆t = 0.001 is given in Table 4. The obtained results by the
present method are in good agreement with Haar wavelet method [29] and are better than
Finite element method [23]. The physical behavior of numerical solutions for α = β = 1
and η = ξ = −2 between t = 0 and t = 2 and for α = 3, β = 2 and η = 1, ξ = −2 between
t = 0 and t = 1.5 are depicted with contour forms in Fig. 3 and Fig. (4) respectively.
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Figure 3. Numerical solution u(x, t) of problem 3 for ∆t = 0.025, m′ = 64,
α = β = 1 and η = ξ = −2.
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Figure 4. Numerical solution v(x, t) of problem 3 for ∆t = 0.025, m′ = 64,
α = 3, β = 2 and η = 1, ξ = −2.

Table 4. Comparisons of error norms for ∆t = 0.001 at different times for problem 3.

Kutluay [23] Mittal [29] Present method Cpu Time
(100 partitions) (64 partitions) (64 partitions) of Present
L2 L∞ L2 L∞ L2 L∞ Method

t = 0.01 1.876e-4 1.986e-5 4.9971e-6 5.0040e-6 0.048
t = 0.1 1.396e-4 3.984e-4 1.943e-4 1.382e-5 5.0122e-5 4.9327e-5 0.119
t = 0.5 2.473e-4 2.869e-4 2.232e-4 2.119e-5 2.1336e-4 1.4195e-4 0.385
t = 1 3.530e-4 1.786e-4 2.676e-4 1.552e-5 2.5548e-4 9.8263e-5 0.712
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5. Conclusion
In this paper Chebyshev wavelet method is used to get numerical solutions of one di-

mensional coupled Burgers’ equation. In the solution procedure, the highest derivatives
that appeared in the equations are expanded into Chebyshev wavelets and with aid of
the integrals of Chebyshev wavelets the considered partial differential equations are con-
verted to algebraic system of equations. The proposed method is tested by three examples
and obtained results are compared with the exact solution and with those existed in the
literature such as Finite element method, Haar wavelet method and Spectral methods.
The comparisons show that the present method is quite satisfactory and competitive with
other methods. We can give the highlights of the present method as follows:

• The present method can handle boundary conditions easily.
• Computer simulations show that the proposed method is computationally cheap,
fast and gives accurate results even in the case of a small number of collocation
points.
• The computer implementation of the proposed method is simple and straightfor-
ward.
• The present method can also be used for similar partial differential equations from
different branches of science and engineering with suitable modifications.
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Abstract
Let X be a Tychonoff space, Y an equiconnected space and C(X,Y ) be the set of all
continuous functions from X to Y . In this paper, we provide a criterion for the coincidence
of set open and uniform topologies on C(X,Y ) when these topologies are defined by a
family α consisting of Y -compact subsets of X. For a subspace Z of a topological space
X, we also study the continuity and the openness of the restriction map πZ : C(X,Y )→
C(Z, Y ) when both C(X,Y ) and C(Z, Y ) are endowed with the set open topology.
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1. Introduction
Let X,Y be topological spaces and C(X,Y ) be the set of all continuous functions from

X to Y . The set C(X,Y ) has a number of classical topologies; among them the topology
of uniform convergence and the set open topology. Since their introduction by Arens and
Dugundji [1], set open topologies have been studied and the comparison between them
and the topology of uniform convergence have been considered by many authors (see, for
example, [4, 7, 9, 10]).

In [4], Bouchair and Kelaiaia have established a criterion for the coincidence of the set
open topology and the topology of uniform convergence on C(X,Y ) defined on a family
α of compact subsets of X. They also have studied the comparison between some set
open topologies on C(X,Y ) for various families α. In this paper we continue the study
of the comparison between these topologies in the case when α is a family consisting of
Y -compact sets and give a criterion for their coincidence.

One of the most useful tools normally used for studying function spaces is the concept
of restriction map. If Z is a subspace of a topological space X, then the restriction map
πZ : C(X,Y )→ C(Z, Y ) is defined by πZ(f) = f|Z for any f ∈ C(X,Y ). The properties of
the restriction map πZ : C(X,R)→ C(Z,R), when both C(X,R) and C(Z,R) are endowed
with the topology of the pointwise convergence, have been studied by Arhangel’skii in
∗Corresponding Author.
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[2, 3]. In the present paper, we give a criteria for the continuity and for the openness of
the restriction map in the case when Y is an equiconnected topological space and C(X,Y )
and C(Z, Y ) are equipped with the set open topology.

Our paper is organized as follows. In Section 3, we prove that the set open and uniform
topologies on C(X,Y ) coincide if and only if α is a functional refinement family. Section 4
is devoted to compare the spaces Cα(X,Y ) and Cβ(X,Y ) for two given families α and β of
Y -compact subsets of X. In Section 5, we consider, for a subspace Z of a topological space
X, the restriction map πZ : Cα(X,Y ) → Cβ(Z, Y ) and we give necessary and sufficient
condition for the continuity and for the openness of the restriction map in the framework
of set open topology. We prove that, if α is a functional refinement family consisting
of closed Y -compact subsets of X and β is a family of closed Y -compact subsets of Z,
then πZ is continuous if and only if the quadruplet (β, α,X, Y ) satisfies the property (P ).
We also show that, if α and β are two admissible families of compact subsets of X and
Z respectively, then πZ : Cα(X,Y ) → Cβ(Z, Y ) is open onto its image if and only if β
approximates α|Z .

2. Definitions and preliminaries
Throughout this paper, X is a Tychonoff space, Y is an equiconnected topological space,

C(X,Y ) is the set of all continuous functions from X to Y , and α is always a nonempty
family of subsets of X. The set open topology on C(X,Y ) has a subbase consisting of all
sets of the form [A, V ] = {f ∈ C (X) : f (A) ⊆ V }, where A ∈ α and V is an open subset
of Y, and the function space C(X,Y ) endowed with this topology is denoted by Cα (X,Y ) .
If V is not arbitrary but is restricted to some collection B of open subsets of Y , then we
denote by CB

α (X,Y ) the corresponding function space.
For a metric space (Y, ρ), the topology of uniform convergence on members of α has as

base at each point f ∈ C(X,Y ) the family of all sets of the form

< f,A, ε >= {g ∈ C(X,Y ) : sup
x∈A

ρ(f(x), g(x)) < ε},

where A ∈ α and ε > 0. The space C(X,Y ) having the topology of uniform convergence
on α is denoted by Cα,u(X,Y ).

The symbols ∅ and N will stand for the empty set and the positive integers, respectively.
We denote by R the real numbers with the usual topology. The complement and the closure
of a subset A in X is denoted by Ac and A, respectively. If A ⊆ X, the restriction of a
function f ∈ C(X,Y ) to the set A is denoted by f|A. Let Z be a subspace of X, then α|Z
denotes the family {A ∩ Z : A ∈ α}.

Let β be a nonempty family of subsets of X. We say that α refines β if every member
of α is contained in some member of β. We say that β approximates α provided that for
every A ∈ α and every open neighborhood U of A in X, there exist B1, ..., Bn ∈ β such
that A ⊆ B1 ∪ B2 ∪ ... ∪ Bn ⊆ U . A family α is said to be admissible if for every A ∈ α
and every finite sequence U1, ..., Un of open subsets of X such that A ⊆

n
∪
i=1
Ui, there exists

a finite sequence A1, ..., Am of members of α which refines U1, ..., Un and whose union
contains A. For example, the family of all compact sets as well as the family of all finite
sets in a topological space is an admissible family.

A topological space Y is said to be equiconnected [6] if there exists a continuous map
Ψ : Y × Y × [0, 1]→ Y such that Ψ(x, y, 0) = x, Ψ(x, y, 1) = y , and Ψ(x, x, t) = x for all
x, y ∈ Y and t ∈ [0, 1]. The map Ψ is called an equiconnecting function. A subset V of an
equiconnected space Y is called a Ψ-convex subset of Y if Ψ(V, V, [0, 1]) ⊆ V . It is a known
fact that any topological vector space or any convex subset of any topological vector space
is an equiconnected space, and any equiconnected space is a pathwise connected space.
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For topological space X and Y , we write X = Y (X ≤ Y ) to mean that X and Y have
the same underlying set and the topology on Y is the same to ( finer than or equal to )
the topology on X.

Definition 2.1. ([10]). Let A ⊆ X and let Y be an arbitrary topological space. For a
fixed natural number n, we will say that A is Y n-compact if, for any continuous function
f ∈ C(X,Y n), the set f(A) is compact in Y n.

We would like to mention that there are Y -compact sets which are not closed. Indeed,
it is proved in [10, Example 1] that if X is the set of all ordinals that are less than or equal
to ω1 and Y = R, then the subset of all countable ordinals from X is R-compact but it is
not closed in X. It was proved also that there are closed sets that are not Y -compact, see
[10, Example 4]. So in our comparison of topologies on C(X,Y ) we consider the family
α in the class of closed and Y -compact sets. Notice that, in the case when A = X and
Y = R, the R-compactness of the set A coincides with the pseudocompactness of the space
X.

Definition 2.2. ([11]). A space Y is called cub−space (or quadra- space) if for any
x ∈ Y × Y there are a continuous map f from Y × Y to Y and a point y ∈ Y such that
f−1(y) = x.

For example, any Tychonoff space with Gδ-diagonal containing a nontrivial path or a
zero-dimensional space with Gδ-diagonal containing a nontrivial convergent sequence is a
cub-space. Also a pathwise connected metric space is a cub−space.

Proposition 2.3. Let X be a topological space, and (Y, ρ) be a pathwise connected metric
space. If A is an Y -compact subset of X and n is a natural number, then A is also an
Y n-compact subset of X.

Proof. For the proof see Proposition 2.2 in [11]. �

The following lemma will be useful in the sequel which is a particular case of the
Proposition 2.4 in [11].

Lemma 2.4. Let X be a topological space and (Y, ρ) be a pathwise connected metric
space. Then the intersection of an Y -compact subset of X and the inverse image, by any
continuous function from X to Y , of any closed subset of Y is Y -compact.

Proof. Let A ⊆ X be an Y -compact set, F a closed subset of Y, and g ∈ C(X,Y ).
We will show that A ∩ g−1(F ) is Y -compact. Take an arbitrary element f of C(X,Y )
and prove that f(A ∩ g−1(F )) is compact in Y 2. Define the function h : X → Y 2 by
h(x) = (f(x), g(x)), for every x ∈ X. It is clear that the function h is continuous. By
Proposition 2.3, the set h(A) is compact in Y 2. Consider the set T = Y × F . We claim
that h(A∩g−1(F )) = h(A)∩T . Indeed, if z ∈ h(A∩g−1(F )), then z ∈ h(A). On the other
hand, there exists a point x ∈ A ∩ g−1(F ) such that z = h(x) = (f(x), g(x)). Therefore
z ∈ T . Conversely, let y ∈ h(A)∩T . Then, y = h(x) = (f(x), g(x)) for some x ∈ A. Since
y ∈ T , we have x ∈ g−1(F ). Therefore, x ∈ A ∩ g−1(F ) and y ∈ h(A ∩ g−1(F )). Thus,
h(A ∩ g−1(F )) = h(A) ∩ T which is compact as the intersection of the compact set h(A)
with the closed set T . To finish the proof of the lemma it suffices to see that f(A∩g−1(F ))
is the projection of the set h(A ∩ g−1(F )) on T . �

We give the following definition.

Definition 2.5. A family α of subsets of X is called a functional refinement if for every
A ∈ α, every finite sequence U1, ..., Un of open subsets of Y , and every f ∈ C(X,Y ) such
that A ⊆

n
∪
i=1
f−1(Ui), there exists a finite sequence A1, ..., Am of members of α which

refines f−1(U1), ..., f−1(Un) and whose union contains A.
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It is clear that every admissible family is a functional refinement family.

Proposition 2.6. Let X be a topological space, and (Y, ρ) be a metric space. Then, the
family of all Y -compact subsets of X is a functional refinement family.

Proof. Let A ⊆ X be an Y -compact set, {U1, ..., Un} a finite sequence of open subsets
of Y , and f ∈ C(X,Y ) such that A ⊆

n
∪
i=1
f−1(Ui). For every y ∈ f(A), there exist

iy ∈ {1, ..., n} and εy > 0 such that B(y, εy) ⊆ Uiy , where B(y, εy) is the open ball with
center y and radius εy. Then the family {B(y, εy) : y ∈ f(A)} is an open covering of
f(A). From this covering, let us choose a finite subcover

{
B(yj , εyj )

}m
j=1

and for each

j = 1, ...,m, let us choose some iyj such that B(yj , εyj ) ⊆ Uiyj . By Lemma 2.4, the set
Aj = f−1

(
B(yj , εyj )

)
∩ A is Y -compact, for each j. Therefore, the family A1, ..., Am of

Y -compact subsets of X covers A and refines f−1(U1), ..., f−1(Un) . Hence, the family of
all Y -compact subsets of X is a functional refinement. �

3. Coincidence of set open and uniform topologies
In this section, we study necessary and sufficient condition for the coincidence of the

set open topology and the uniform topology on C(X,Y ) in the case when the family α
consists of closed Y -compact sets. We first give subbase for the space Cα(X,Y ) that help
us to study the comparison of these topologies.

Theorem 3.1. Let α be a functional refinement family consisting of Y -compact subsets
of X and B be an arbitrary base for Y . Then, the family

{[A, V ] : A ∈ α, V ∈ B}
is a subbase for the space Cα(X,Y ).

Proof. Let f ∈ C(X,Y ) and take a subbasic open neighborhood [K,U ] of f in Cα(X,Y ),
where K ∈ α and U open in Y . The open set U will be written as the union of some
subfamily {Vi : i ∈ I} of B which covers f(K). Since f(K) is compact, there exists
n ∈ N∗ such that f(K) ⊆

n
∪
i=1
Vi. Since α is a functional refinement, there exists a sequence

Ki, ....,Km of members of α which refines
{
f−1(Vi) : i = 1, ..., n

}
and whose union contains

K. For each j ∈ {1, ...,m}, let us choose ij ∈ {1, ..., n} such that Ki ⊆ f−1(Vij ). It is easy
to see that f ∈

m
∩
j=1

[
Kj , Vij

]
⊆ [K,U ] . �

The following result was obtained in [11, Theorem 3.3].

Theorem 3.2. For every Hausdorff space X and any uniform cub-space (Y,U) the topology
on C(X,Y ) induced by the uniformity Û|α of uniform convergence on the saturation family
α coincides with the set open topology on C(X,Y ), where Y has the topology induced by
U.

Because every equiconnected metric space is a cub-space, the following result follows
immediately from the above theorem.

Theorem 3.3. Let X be a topological space, and (Y, ρ) be an equiconnected metric space. If
α is a functional refinement family consisting of Y -compact subsets of X, then Cα(X,Y ) =
Cα,u(X,Y ).

Corollary 3.4. Let X be a topological space, and (Y, ρ) be an equiconnected metric space.
If α is a family consisting of Y -compact subsets of X which contains all Y -compact subsets
of its elements, then Cα(X,Y ) = Cα,u(X,Y ).
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We will now give a necessary and sufficient condition for which CB
α (X,Y ) = Cα,u(X,Y ).

To this end, we will introduce, for a family α of subsets of X, the following family
α1 =

{
A′/A′ is Y -compact subset of X and ∃A ∈ α : A′ ⊆ A

}
.

Proposition 2.6 leads us to the following corollary.

Corollary 3.5. If α is a family of Y -compact subsets of X, then the family α1 is always
a functional refinement family.

We give a definition.

Definition 3.6. Let X and Y be two topological spaces. Let α and β be two families
of subsets of X. We will say that the quadruplet (α, β,X, Y ) satisfies the property (P )
provided that for every A ∈ α, every open subset U in Y , and every f ∈ C(X,Y ) such
that A ⊆ f−1(U) , there exist B1, ..., Bn ∈ β with A ⊆

n
∪
i=1
Bi ⊆ f−1(U).

From the above definition, we observe that if a family β approximates α then (α, β,X, Y )
satisfies the property (P ).

Lemma 3.7. Let α be a family of Y -compact subsets of X. Then α is a functional
refinement if and only if the quadruplet (α1, α,X, Y ) satisfies the property (P ).

Proof. Suppose that α is a functional refinement family. We will show that (α1, α,X, Y )
satisfies the property (P ). Let A′ ∈ α1, U be an open subset of Y and f ∈ C(X,Y ) such
that A′ ⊆ f−1 (U). Let A ∈ α, with A′ ⊆ A. If A ⊆ f−1 (U) the proof is finished. If
A * f−1 (U); then the family

{
f−1(f(A′)c), f−1(U)

}
is an open cover of A. Since α is a

functional refinement family, there exists a finite sequence A1, ..., An of elements of α which
refines

{
f−1(f(A′)c), f−1(U)

}
and whose union contains A. Put I =

{
i : Ai ⊆ f−1 (U)

}
.

It is clear that A′ ⊆ ∪
i∈I
Ai ⊆ f−1(U).

Conversely, suppose that (α1, α,X, Y ) satisfies the property (P ). Let A ∈ α, {U1, ..., Un}
a finite family of open subsets of Y and let f ∈ C(X,Y ) such that A ⊆

n
∪
i=1
f−1(Ui).

From Proposition 2.6, there exists a finite sequence A1, ..., Am of Y -compact subsets of
X which refines {f−1(U1), ..., f−1(Un)} and whose union contains A. We set A′

j = Aj ∩
A for each 1 ≤ j ≤ m. Then the subfamily {A′

1, ..., A
′
m} of α1 covers A and refines

f−1(U1), ..., f−1(Un). For each j = 1, ...,m, let us choose some ij such that A′
j ⊆ f−1(Uij ).

By our hypothesis there is, for every j = 1, ...,m, a finite family Aj = {Aj1, ..., Ajmj} of

members of α, such that A′
j ⊆

mj⋃
k=1

Ajk ⊆ f−1(Uij ). Put A =
m
∪
i=1

Ai. This is a finite family of

elements of α which covers A and refines f−1(U1), ..., f−1(Un). Therefore α is a functional
refinement family. �

Corollary 3.8. For any family α of Y -compact subsets of X, we have Cα(X,Y ) ≤
Cα1(X,Y ) = Cα1,u(X,Y ) = Cα,u(X,Y ).

Let α = {A : A ∈ α}. We have the following result.

Proposition 3.9. Let X be a topological space, and (Y, ρ) be a metric space. For any
family α of Y -compact subsets of X, we have Cα,u(X,Y ) = Cα,u(X,Y ).

Proof. Let us prove that Cα,u(X,Y ) = Cα,u(X,Y ). Let A ∈ α, ε > 0 and f ∈ C(X,Y ). As
A ⊆ A, we have

〈
f,A, ε

〉
⊆ 〈f,A, ε〉 , then Cα,u(X,Y ) ≤ Cα,u(X,Y ). Let

〈
f,A, ε

〉
be an

open subbasic set of Cα,u(X,Y ). Let us show that
〈
f,A, ε3

〉
⊆
〈
f,A, ε

〉
. Let g ∈

〈
f,A, ε3

〉
and x be an arbitrary point of the set A. Since g and f are continuous, then for every
ε > 0, there exists a point yε ∈ A such that ρ (f(x), f(yε)) < ε

3 and δ (g(x), g(yε)) < ε
3
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( this is possible, since f−1(B(f(x), ε3)) ∩ g−1(B(g(x), ε3) is a neighborhood of the point
x and x ∈ A ). Hence ρ (f(x), g(x)) ≤ ρ (f(x), f(y)) + ρ (f(y), g(y)) + ρ (g(x), g(y)) < ε;
therefore Cα,u(X,Y ) ≤ Cα,u(X,Y ). �

Theorem 3.10. Let X be a topological space, and (Y, ρ) be an equiconnected metric space
with a bounded metric ρ and having a base B consisting of Ψ−convex sets. Let α be a
family of closed Y -compact subsets of X. Then CB

α (X,Y ) = Cα,u(X,Y ) if and only if α
is a functional refinement family.

Proof. If α is a functional refinement family, then by Theorems 3.1 and 3.3 we have
CB
α (X,Y ) = Cα(X,Y ) = Cα,u(X,Y ). Conversely, suppose that CB

α (X,Y ) = Cα,u(X,Y )
and let us show that α is a functional refinement family. From Lemma 3.7 it suffices to
prove that (α1, α,X, Y ) satisfies the property (P ). Let A′ ∈ α1, f ∈ C(X,Y ) and let U
be an open subset in Y such that A′ ⊆ f−1(U). Since f(A′) is compact, there exists a
continuous function g : Y → [0, 1] such that g(f(A′)) = {1} and g(U c) = {0}. Take a
nontrivial path p in Y with p(0) 6= p(1), and put h = p ◦ g ◦ f . Since the topologies of the
spaces Cα1,u(X,Y ) and Cα,u(X,Y ) coincide, the set 〈h,A′, ε〉 , where ε is strictly inferior
to the distance between p(0) and p(1) in Y , is an open neighborhood of h in Cα,u(X,Y ).
Moreover, since CB

α (X,Y ) = Cα,u(X,Y ) there exist A1, ..., An ∈ α and V1, ..., Vn ∈ B such
that

h ∈
n
∩
i=1

[Ai, Vi] ⊆
〈
h,A′, ε

〉
.

Equiconnectedness of Y leads us, by [12, Corollary 1], to the fact that A′ ⊆
n
∪
i=1
Ai. We

set I =
{
i : Ai ⊆ f−1(U)

}
. By the same argument as in [4, Theorem 3], it follows that

A′ ⊆ ∪
i∈I
Ai. This means that (α1, α,X, Y ) satisfies the property (P ), and so the family α

is a functional refinement. �

Corollary 3.11. Let X be a topological space, and (Y, ρ) be an equiconnected metric space
with a bounded metric ρ and having a base B consisting of Ψ−convex sets. Let α be a
family of closed Y -compact subsets of X. Then CB

α (X,Y ) = Cα1(X,Y ) if and only if α is
a functional refinement family.

4. Comparison of Cα(X, Y ) and Cβ(X, Y )
In this section, we are going to compare the topologies of Cα(X,Y ) and Cβ(X,Y ) when

α and β are two families of Y -compact subsets of X.

Theorem 4.1. Let α and β be two families of subsets of X. If (α, β,X, Y ) satisfies the
property (P ), then Cα(X,Y ) ≤ Cβ(X,Y ).

Proof. The proof is the same of [4, Theorem 5]. �

Theorem 4.2. Let α and β be two families of closed Y -compact subsets of X, and Y
be an equiconnected topological space having a base B consisting of Ψ-convex sets. If
Cα(X,Y ) ≤ CB

β (X,Y ), then the quadruplet (α, β,X, Y ) satisfies the property (P ).

Proof. Let A ∈ α, V an open subset in Y and f ∈ C(X,Y ) such that A ⊆ f−1(V ).
Since f(A) is compact in Y , there exists a continuous function g : Y → [0, 1] such that
g(f(A)) = {0} and g(V c) = {1} ; Let p : [0, 1]→ Y be a path in Y with p(0) 6= p(1), and
let h = p ◦ g ◦ f . Let W ∈ B which contains the point p(0) and does not contain p(1).
Then [A,W ] is an open neighborhood of h in CB

α (X,Y ). Since the topology of CB
β (X,Y )

is finer than the topology of Cα(X,Y ) , there exist B1, ..., Bn ∈ β and V1, ..., Vn ∈ B such
that

h ∈
n
∩
i=1

[Bi, Vi] ⊆ [A,W ] .
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We have then A ⊆
n
∪
i=1
Bi. Put I =

{
i : Bi ⊆ f−1(V )

}
. As in the proof of Theorem 3.10,

we obtain that A ⊆ ∪
i∈I
Bi and hence (α, β,X, Y ) satisfies the property (P ). �

Corollary 4.3. Let α and β be two families consisting of closed Y -compact subsets of X,
and Y be an equiconnected topological space having a base B consisting of Ψ-convex sets. If
β is a functional refinement family, then Cα(X,Y ) ≤ Cβ(X,Y ) if and only if (α, β,X, Y )
satisfies the property (P ).

5. Restriction map
In this section, we use the results obtained above to study and generalize some results

due to Arhangel’skii about the properties of the so-called restriction map on function
spaces. Let Z be a subspace of a topological space X. The restriction map πZ : C(X,Y )→
C(Z, Y ) is defined by πZ(f) = f|Z for any f ∈ C(X,Y ). We begin by examining the
continuity of πZ . The following result is stated in [3].

Proposition 5.1. [3, Proposition 1] Let X,Y be topological spaces, and Z be a subspace
of X. Let α be a network in X and β be a network in Z. If β ⊂ α, then the restriction
map πZ : Cα(X,Y )→ Cβ(Z, Y ) is continuous.

Proposition 5.1 can be strengthened as follows.

Proposition 5.2. Let X,Y be topological spaces, and Z be a subspace of X. Let α be
a family of subsets of X and β be a family of subsets of Z. If (β, α,X, Y ) satisfies the
property (P ), then πZ : Cα(X,Y )→ Cβ(Z, Y ) is continuous.

Proof. Let f ∈ C(X,Y ) and [B, V ] be an open neighborhood of f|Z in Cβ(Z, Y ), where
B ∈ β and V open in Y . Then B ⊆ f−1(V ). Since (β, α,X, Y ) satisfies the property (P ),
there exist A1, ..., An ∈ α such that B ⊆

n
∪
i=1
Ai ⊆ f−1(V ). Thus

n
∩
i=1

[Ai, V ] is an open

neighborhood of f in Cα(X,Y ). It is easy to see that πZ(
n
∩
i=1

[Ai, Vi]) ⊆ [B, V ]. Therefore
πZ is continuous. �

Proposition 5.3. Let X,Y be topological spaces, and Z be a subspace of X. Let α be
a family of subsets of X and β be a family of subsets of Z. If Z is dense in X and
(β, α,X, Y ) satisfies the property (P ), then πZ : Cα(X,Y )→ πZ(Cα(X,Y )) is a bijective
continuous map, i.e. a condensation.

Proof. Let f and g be distinct elements in C(X,Y ). The continuity of the functions f
and g and the fact that Z = X imply that f|Z 6= g|Z . Hence πZ(f) 6= πZ(g). This means
that πZ is one-to-one. By Proposition 5.2, πZ is continuous. �

Corollary 5.4. Let X,Y be topological spaces, and Z be a subspace of X. Let α be a
family of subsets of X and β be a family of subsets of Z. If α approximates β, then
πZ : Cα(X,Y )→ Cβ(Z, Y ) is continuous.

Let B ⊆ Z ⊆ X and V ⊆ Y . Recall that [B, V ] = {f ∈ C(X,Y ) : f(B) ⊆ V }; let us
denote by [B, V ]Z = {f ∈ C(Z, Y ) : f(B) ⊆ V }. For the converse of Theorem 5.2, we
have the following.

Proposition 5.5. Let X be topological space, Y an equiconnected topological space having
a base B consisting of Ψ-convex sets, and Z be a subspace of X. Let α be a functional
refinement family consisting of closed Y -compact subsets of X and β be a family of closed
Y -compact subsets of Z. If πZ : Cα(X,Y ) → Cβ(Z, Y ) is continuous, then (β, α,X, Y )
satisfies the property (P ).
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Proof. By Corollary 4.3, it suffices to show that Cβ(X,Y ) ≤ Cα(X,Y ). Let f ∈ Cβ(X,Y )
and [B, V ] be an open neighborhood of it in Cβ(X,Y ), where B ∈ β and V open in Y .
Then πZ(f) = f|Z ∈ [B, V ]Z . The continuity of πZ leads to the existence of A1, ..., An ∈ α
and open subsets V1, ..., Vn of Y such that

f ∈
n
∩
i=1

[Ai, Vi] ⊆ [B, V ].

Hence Cβ(X,Y ) ≤ Cα(X,Y ), and so (β, α,X, Y ) satisfies the property (P ). �

Now, to find out when πZ is open we first recall the following result obtained by
Arhangel’skii [2, Proposition 3] for the topology of poinwise convergence in the case Y = R.

Theorem 5.6. If Z is a closed subset od X, then πZ maps the space Cp(X) openly onto
the subspace πZ(Cp(X)) of Cp(Z).

In order to study the openness of the restriction map when C(X,Y ) and C(Z, Y ) are
equipped with set open topologies, we will need the following lemmas.

Lemma 5.7. Let X be a topological space, and Y be an equiconnected space. Let K be
compact subset of X, F be closed subset of X, and let f : X → Y be a continuous function
such that f(K ∩ F ) ⊆ V , where V is an open Ψ-convex subset of Y . Then there exists a
continuous function f1 : X → Y such that f1(K) ⊆ V and f1|F = f|F .

Proof. We observe that V is pathwise connected. Let p : [0, 1] → V be a path in
V . Put K1 = K ∩ f−1(V c) which is compact. Let g : X → [0, 1] be a continuous
function such that g(F ) = {1} and g(K1) = {0}. Define the function f1 : X → Y by
f1(z) = Ψ(p ◦ g(z), f(z), g(z)) for each z ∈ X. It is clear that f1 is continuous, and one
can easily verify that f1|F = f|F and f1(K) ⊆ V . �

Lemma 5.8. Let X be a topological space, Y an equiconnected space with equiconnecting
function Ψ, Z a subspace of X, α a family of compact subsets of X with A ∩ Z = A ∩ Z
for each A ∈ α and let g ∈ C(Z, Y ) be a function continuously extendable over X. Let
A1, ..., An ∈ α, and V1, ..., Vn are Ψ-convex open subsets of Y such that g(Ai ∩ Z) ⊆ Vi
for each i = 1, ..., n. Then there exists a continuous extension g′ : X → Y of g such that
g′(Ai) ⊆ Vi for each i = 1, ..., n.

Proof. We proceed by recurrence. Let g ∈ C(Z, Y ), A ∈ α and V be an open Ψ-convex
subset of Y with g(A ∩ Z) ⊆ V . By applying Lemma 5.7 with F = Z and K = A, we
obtain a continuous extension g′ of g over X with g′(A) ⊆ V .

Suppose that the property is true up to n. We show that it remains true for n+ 1; let
A1, ..., An+1 ∈ α, and V1, ..., Vn+1 are Ψ-convex open subsets of Y such that g(Ai∩Z) ⊆ Vi
for each i = 1, ..., n+1, and let us show the existence of a continuous extension g′ ∈ C(X,Y )
of g such that g′(Ai) ⊆ Vi for each i = 1, ..., n. By our assumption, we have g((Ai∩An+1)∩
Z) ⊆ Vi ∩ Vn+1, for each i = 1, ..., n. Then the family {A1 ∩ An+1, ..., An ∩ An+1} verifies
(Ai ∩ An+1) ∩ Z = (Ai ∩ An+1) ∩ Z for each i = 1, ..., n. Therefore, by the recurrence
hypothesis, we find a function g′

1 ∈ C(X,Y ) extending g and such that g′
1(Ai ∩ An+1) ⊆

Vi ∩ Vn+1, for each i = 1, ..., n. We set X1 = X ∪ (
⋃n
i=1(Ai ∩ An+1)). Clearly we have

Ai ∩X1 = Ai ∩X1 and g′
1(Ai ∩X1) ⊆ Vi for each i = 1, ..., n. Applying Lemma 5.7 once

again for F = X1 and K = An+1, we get an extension g′
2 ∈ C(X,Y ) of g′

1|X1
such that

g
′
2(An+1) ⊆ Vn+1. We observe that g′

2(Ai ∩ An+1) ⊆ Vi, for each i. Again we put X2 =
X1 ∪An+1. Then, we have, for each i = 1, ..., n, Ai ∩X2 = Ai ∩X2 and g′

2(Ai ∩X2) ⊆ Vi.
By the recurrence hypothesis, there exists g′

3 ∈ C(X,Y ) which extending g′

2|X2
such that

g
′
3(Ai) ⊆ Vi, for each i = 1, ..., n, and we have g′

3(An+1) = g
′
2(An+1) ⊆ Vn+1. Whence

g′ = g
′
3 is our required function. �
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Lemma 5.9. Let X be a topological space, Z a subspace of X, α and β are two families
of compact subsets of X and Z, respectively. If β approximates α|Z , then A ∩ Z = A ∩ Z
for each A ∈ α.

Proof. Suppose that there exists A ∈ α such that A ∩ (Z \ Z) 6= ∅. Let x ∈ A ∩ (Z \ Z).
Then there is no member of β for which x belongs. Therefore A∩Z does not contained in
any finite union of members of β; this contradicts the fact that β approximates α|Z . �

Theorem 5.10. Let X be a topological space, Z a subspace of X, and Y is an equicon-
nected space with a base B consisting of Ψ-convex sets. Let α be an admissible family of
compact subsets of X and β be a family of compact subsets of Z. If β approximates α|Z ,
then πZ is an open map from Cα (X,Y ) onto the subspace πZ(Cα (X,Y )) of Cβ (Z, Y ).

Proof. Let ∩ni=1 [Ai, Vi], where A1, ..., An ∈ α and V1, ..., Vn ∈ B, be a basic open subset
of Cα (X,Y ) and f ∈ πZ (∩ni=1 [Ai, Vi]) . Let f ′ ∈ C(X,Y ) be an extension of f over X
such that f ′ ∈ ∩ni=1 [Ai, Vi] . Since β approximates α|Z , there exists, for each i = 1, ..., n, a
finite subfamily βi of β such that

Ai ∩ Z ⊆
⋃
{B : B ∈ βi} ⊆ f−1 (Vi) .

Then

f ∈

 n⋂
i=1

⋂
B∈βi

[B, Vi]

⋂πZ (C (X,Y )) = W.

We have W ⊆ πZ (∩ni=1 [Ai, Vi]) . Indeed, let g ∈W. Because g(
⋃
{B : B ∈ βi}) ⊆ Vi, then

g(Ai ∩ Z) ⊆ Vi for every i = 1, ..., n. Also, from Lemma 5.9, we have A ∩ Z = A ∩ Z
for each A ∈ α. Then, by Lemma 5.8, there exists a function g′ ∈ C(X,Y ) which agrees
with g on Z and belongs to ∩ni=1 [Ai, Vi] . We have then g ∈ πZ (∩ni=1 [Ai, Vi]) . Therefore
W ⊆ πZ (∩ni=1 [Ai, Vi]) , which means that πZ : Cα (X,Y )→ πZ(Cα (X,Y )) is open. �

Lemma 5.11. Let X be a topological space, Z a subspace of X, and α, β are two fam-
ilies of compact subsets of X and Z, respectively. Let Y be an equiconnected T1-space,
with equiconnecting function Ψ. If πZ is an open map from Cα (X,Y ) onto the subspace
πZ(Cα (X,Y )) of Cβ (Z, Y ), then A ∩ Z = A ∩ Z for each A ∈ α.

Proof. Suppose that there exists A ∈ α such that A∩(Z \Z) 6= ∅. Let x ∈ A∩(Z \Z). Let
p : [0, 1]→ Y be a path in Y with p(0) 6= p(1) and put V = Y \{p(0)}. Let f ∈ πZ([A, V ]),
then we have f = f ′|Z for some f ′ ∈ [A, V ]. Since πZ : Cα (X,Y )→ πZ(Cα (X,Y )) is open,
there exist B1, ..., Bn ∈ β and V1, ..., Vn open subsets in Y such that

f ∈ (
n⋂
i=1

[Bi, Vi]) ∩ πZ (C (X,Y )) ⊆ πZ ([A, V ]) .

Since x ∈ A∩ (Z \Z), we have x /∈ ∪ni=1Bi. Complete regularity of X gives us a continuous
function h : X → [0, 1] such that h(x) = 0 and h(∪ni=1Bi) = {1}. Consider the function
h1 : X → Y defined by h1(z) = Ψ(p ◦ h(z), f ′(z), h(z)) for each z ∈ X. It is clear
that h1 is continuous, h1(∪ni=1Bi) ⊆ V and h1(x) = p(0) /∈ V. So h1|Z ∈ (

n⋂
i=1

[Bi, Vi]) ∩

πZ (C (X,Y )) and h1 does not belong to [A, V ]. Assume that h1|Z admits another extension
h2 ∈ C(X,Y ). By continuity we have h1|Z̄ = h2|Z̄ . Thus h1(x) = h2(x) /∈ V , and so
h2 /∈ [A, V ]. This leads that no continuous extension of h1|Z over X belongs to [A, V ],

which contradicts the fact that (
n⋂
i=1

[Bi, Vi])∩πZ (C (X,Y )) ⊆ πZ ([A, V ]). Hence, we have

A ∩ Z = A ∩ Z for every A ∈ α. �
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Theorem 5.12. Let X be a topological space, Z a subspace of X, and Y is an equiconnected
T1-space with a base B consisting of Ψ-convex sets.Let α be a family of compact subsets
of X and β an admissible family of compact subsets of Z. If πZ is an open map from
Cα (X,Y ) onto the subspace πZ(Cα (X,Y )) of Cβ (Z, Y ), then β approximates α|Z .

Proof. Notice first that, from Lemma 5.11, we have A ∩ Z = A ∩ Z for every A ∈ α.
Furthermore, Cβ (Z, Y ) = CB

β (Z, Y ) because β is a functional refinement family. Let
A ∈ α, G an open subset of Z with A ∩ Z = A ∩ Z ⊆ G. let G1 be an open subset in X
with G1 ∩ Z = G. Now the subset G2 = G1 ∪

(
X\Z

)
, which is open in X, contains A

and verifies G2 ∩ Z = G1 ∩ Z = G. Let f : X → [0, 1] be a continuous function such that
f (A) = {1} and f (X\G2) = {0} . Let V = Y \ {p(0)}, where p is a path in Y , and put
g = p ◦ f . Then g−1(V ) ⊆ G2. Thus g−1

|Z (V ) ⊆ G. Consider in Cα (X,Y ) the subbasic
open subset [A, V ]. We have then g ∈ [A, V ] . Thus πZ (g) = g|Z belongs to πZ ([A, V ])
which is open in πZ (C (X,Y )) , by our assumption. Therefore, there exist B1, ..., Bn ∈ β
and open sets V1, ..., Vn ∈ B such that

g|Z ∈ (∩ni=1 [Bi, Vi]) ∩ πZ (C (X,Y )) ⊆ πZ ([A, V ]) .

By the same reasoning as in the proof of Lemma 5.11, we obtain that A ∩ Z = A ∩ Z ⊆
∪ni=1Bi. To continue our proof we will introduce the following notation. By B1 we denote
a subset B ⊆ X , and by B0 its complementary in X, i.e., Bc. Let I = {1, ..., n} and
define the following set

4 =

(δ1, δ2, ..., δn) ∈ {0, 1}n \ {(0, ..., 0)} :

⋂
i∈I
Bδi
i

 ∩ (A ∩ Z) 6= φ

 .
We have then

A ∩ Z = A ∩ Z ⊆
⋃{

n⋂
i=1

Bδi
i / (δ1, ..., δn) ∈ 4

}
.

Fixing an element (δ1, ..., δn) in 4 and let us show that
⋂
δi=1 Vi ⊆ V . Assume the

contrary. Let y0 ∈
⋂
δi=1 Vi \ V . Let x0 ∈

(⋂
i∈IB

δi
i

)
∩ (A ∩ Z), then x0 /∈ (

⋃
δi=0Bi)

and g(x0) ∈
⋂
δi=1 Vi. By continuity of g and the fact that x0 /∈ (∪δi=0Bi), we can take an

open neighborhood U of x0 such that g(U) ⊆
⋂
δi=1 Vi and U ∩ (

⋃
δi=0Bi) = ∅. Consider a

continuous function ϕ : X → [0, 1] such that ϕ(x0) = 0 and ϕ(U c) = {1}, and 0 ≤ ϕ(x) ≤ 1
for all x ∈ X. Then the function h : X → Y defined by h(x) = Ψ(y0, g(x), ϕ(x)), for all
x ∈ X, is continuous and h|Z does not belong to πZ ([A, V ]) because h(x0) = y0. But h|Z ∈
(∩ni=1 [Bi, Vi]) ∩ πZ (C (X,Y )) . In fact, if x ∈ Bi ∩ U then h(x) = Ψ(y0, g(x), ϕ(x)) ∈ Vi,
because Vi is Ψ-convex subset, for each 1 ≤ i ≤ n. If x ∈ Bi \U, then h(x) = g(x) ∈ Vi for
each i with 1 ≤ i ≤ n. This gives us a contradiction, so we have

⋂
δi=1 Vi ⊆ V. Moreover,

since
⋂
i∈IB

δi
i ⊆

⋂
δi=1Bi and A ⊆

⋃{⋂
i∈IB

δi
i / (δi) ∈ 4

}
we obtain that

A ∩ Z ⊆
⋃ ⋂

δi=1
Bi / (δi) ∈ 4

 ⊆ f−1
|Z (V ) .

Moreover, the admissibility of β gives us, by [4, Lemma 1] , that for each (δi) ∈ 4, there
exist β(δi) finite subfamily of β such that⋂

δi=1
Bi ⊆

⋃{
B : B ∈ β(δi)

}
⊆ f−1
|Z (V ) .

Hence
A ∩ Z = A ∩ Z ⊆

⋃
(δi)∈4

(
⋃

B∈β(δi)

B) ⊆ f−1
|Z (V ) ⊆ G.
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Thus, we have β approximates α|Z . �

Corollary 5.13. Let X be a topological space, Z a subspace of X, and Y is an equicon-
nected T1-space with a base B consisting of Ψ-convex sets.Let α be an admissible family
of compact subsets of X and β an admissible family of compact subsets of Z. Then πZ is
an open map from Cα (X,Y ) onto the subspace πZ(Cα (X,Y )) of Cβ (Z, Y ) if and only if
β approximates α|Z .
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Abstract
As a generalization of conformal holomorphic submersions and conformal anti-invariant
submersions, we introduce a new conformal submersion from almost Hermitian manifolds
onto Riemannian manifolds, namely conformal slant submersions. We give examples and
find necessary and sufficient conditions for such maps to be harmonic morphism. We also
investigate the geometry of foliations which are arisen from the definition of a conformal
submersion and obtain a decomposition theorem on the total space of a conformal slant
submersion. Moreover, we find necessary and sufficient conditions of a conformal slant
submersion to be totally geodesic.
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1. Introduction
A submanifold of a complex manifold is a complex (invariant) submanifold if the tan-

gent space of the submanifold at each point is invariant with respect to the almost complex
structure of the Kähler manifold. Besides complex submanifolds of a complex manifold,
there is another important class of submanifolds called totally real submanifolds. A totally
real submanifold of a complex manifold is a submanifold of such that the almost complex
structure of ambient manifold carries the tangent space of the submanifold at each point
into its normal space. Many authors have studied totally real submanifolds in various
ambient manifolds and many interesting results were obtained, see ([45], page: 199) for a
survey on all these results. As a generalization of holomorphic and totally real submani-
folds, slant submanifolds were introduced by Chen in [13]. We recall that the submanifold
M is called slant [14] if for any p ∈M and any X ∈ TpM, the angle between JX and TpM
is a constant θ(X) ∈ [0, π2 ], i.e, it does not depend on the choice of p ∈M and X ∈ TpM.
It follows that invariant and totally real immersions are slant immersions with slant angle
θ = 0 and θ = π

2 respectively.

On the other hand, Riemannian submersions between Riemannian manifolds were stud-
ied by O’Neill [37] and Gray [25]. Since then Riemannian submersions have been an ef-
fective tool to obtain new manifolds and compare certain manifolds within differential
∗Corresponding Author.
Email addresses: mehmetakifakyol@bingol.edu.tr (M.A. Akyol), bayram.sahin@ege.edu.tr (B. Şahin)
Received: 20.06.2017; Accepted: 03.08.2017
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geometry, see [8], [12] and [21]. It is also known that Riemannian submersions have many
applications in different areas such as Kaluza-Klein theory [22], [10], statistical machine
learning processes [46], medical imaging [36], statistical analysis on manifolds [9] and the
theory of robotics [3]. As analogue of holomorphic submanifolds, holomorphic submersions
were introduced by Watson [44] in seventies by using the notion of almost complex map.
This notion has been extended to other manifolds, see [21] for holomorphic submersions
and their extensions to other manifolds. Although holomorphic submersions have been
studied widely, however this research area is still an active research area, see a recent
paper [43]. The main property of such maps is that the horizontal distribution and the
vertical distribution of holomorphic submersions are invariant with respect to the almost
complex map of the total manifold. Thus holomorphic submersions include only those
submersions whose vertical distribution is invariant under the almost complex structure
of the total manifold. Therefore, the second author of the present paper considered a
new submersion defined on an almost Hermitian manifold such that the vertical distri-
bution is anti-invariant with respect to almost complex structure [41]. He showed that
such submersions have rich geometric properties and they are useful for investigating the
geometry of the total space. This new class of submersions called anti-invariant submer-
sions can be seen as an analogue of totally real submanifolds in the submersion theory.
As a generalization of anti-invariant submersions, slant submersions were defined in [42]
and it is shown that such maps are useful for obtaining new conditions for harmonicity,
see also [4,5,7,18–20,24,28–32,34,35,38] and [40] for new submersions in other total spaces.

As a generalization of Riemannian submersions, horizontally conformal submersions
are defined as follows [6]: Suppose that (M, gM ) and (B, gB) are Riemannian manifolds
and F : M −→ B is a smooth submersion, then F is called a horizontally conformal
submersion, if there is a positive function λ such that

λ2gM (X,Y ) = gB(F∗X,F∗Y )

for every X,Y ∈ Γ((kerF∗)⊥). It is obvious that every Riemannian submersion is a par-
ticular horizontally conformal submersion with λ = 1. One can see that Riemannian
submersions are very special maps comparing with conformal submersions. We note that
horizontally conformal submersions are special horizontally conformal maps which were
introduced independently by Fuglede [23] and Ishihara [33]. We also note that a hori-
zontally conformal submersion F : M −→ B is said to be horizontally homothetic if the
gradient of its dilation λ is vertical, i.e.,

H(gradλ) = 0 (1.1)

at p ∈M , where H is the projection on the horizontal space (kerF∗)⊥. Although confor-
mal maps do not preserve distance between points contrary to isometries, they preserve
angles between vector fields. This property enables one to transfer certain properties of a
manifold to another manifold by deforming such properties.

As a generalization of holomorphic submersions, conformal holomorphic submersions
were studied by Gudmundsson and Wood [27]. They obtained necessary and sufficient
conditions for conformal holomorphic submersions to be a harmonic morphism, see also
[15–17] for the harmonicity of conformal holomorphic submersions.

Recently, we introduced conformal anti-invariant submersions [2] from almost Hermitian
manifolds onto Riemannian manifolds, as a generalization of anti-invariant submersions,
and investigated the geometry of such submersions. (see also: [1]) We showed that the
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geometry of such submersions are different from their counterparts anti-invariant sub-
mersions and semi-invariant submersions. In this paper, we study conformal slant sub-
mersions as a generalization of both conformal holomorphic submersions and conformal
anti-invariant submersions and investigate the geometry of the total space and the base
space for the existence of such submersions.

The paper is organized as follows. In the second section, we present the basic informa-
tion needed for this paper. In section 3, we give definition of conformal slant submersions
from almost Hermitian manifolds onto Riemannian manifolds, provide examples and give
a sufficient condition for conformal slant submersions to be harmonic. We also investigate
the geometry of leaves of (kerF∗)⊥ and (kerF∗). Moreover we obtain a decomposition
theorem on the total space of a conformal slant submersion. Finally, we give necessary
and sufficient conditions for a conformal slant submersion to be totally geodesic.

2. Preliminaries
In this section, we define almost Hermitian manifolds, recall the notion of (horizontally)

conformal submersions between Riemannian manifolds and give a brief review of basic facts
of (horizontally) conformal submersions.

Let (M, gM ) be an almost Hermitian manifold. This means [45] thatM admits a tensor
field J of type (1,1) on M such that, ∀X,Y ∈ Γ(TM), we have

J2 = −I, gM (X,Y ) = gM (JX, JY ). (2.1)

An almost Hermitian manifold M is called Kähler manifold if

(∇XJ)Y = 0, ∀X,Y ∈ Γ(TM), (2.2)

where ∇ is the Levi-Civita connection on M . Conformal submersions belong to a wide
class of conformal maps that we are going to recall their definition, but we will not study
such maps in this paper.

Definition 2.1. ([6]). Let ϕ : (Mm, g) −→ (Nn, h) be a smooth map between Riemann-
ian manifolds, and let x ∈ M . Then ϕ is called horizontally weakly conformal or semi
conformal at x if either

(i) dϕx = 0, or
(ii) dϕx maps the horizontal space Hx = (ker(dϕx))⊥ conformally onto Tϕ(x)N , i.e.,

dϕx is surjective and there exists a number Λ(x) 6= 0 such that

h(dϕxX, dϕxY ) = Λ(x)g(X,Y ) (X,Y ∈ Hx). (2.3)

We shall call a point x of type (i) in Definition 2.1 critical point. Also we shall call a
point of type (ii) a regular point. At a critical point, dϕx has rank 0; at a regular point,
dϕx has rank n and ϕ is submersion. The number Λ(x) is called the square dilation (of ϕ
at x); it is necessarily non-negative; its square root λ(x) =

√
Λ(x) is called the dilation (of

ϕ at x). The map ϕ is called horizontally weakly conformal or semi conformal (on M) if
it is horizontally weakly conformal at every point of M . It is clear that if ϕ has no critical
points, then we call it a (horizontally) conformal submersion.

Next, we recall the following definition from [26]. Let π : M −→ N be a submersion. A
vector field E onM is said to be projectable if there exists a vector field Ě on N , such that
dπ(Ex) = Ěπ(x) for all x ∈ M . In this case E and Ě are called π− related. A horizontal
vector field Y on (M, g) is called basic, if it is projectable. It is well known fact, that if Ž
is a vector field on N , then there exists a unique basic vector field Z on M , such that Z
and Ž are π− related. The vector field Z is called the horizontal lift of Ž.
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The fundamental tensors of a submersion were introduced in [37]. They play a similar
role to that of the second fundamental form of an immersion. More precisely, O’Neill’s
tensors T and A defined for vector fields E,F on M by

AEF = V∇HEHF + H∇HEVF, TEF = H∇VEVF + V∇VEHF (2.4)
where V and H are the vertical and horizontal projections (see [21]). On the other hand,
from (2.4), we have

∇VW = TVW + ∇̂VW (2.5)
∇VX = H∇VX + TVX (2.6)
∇XY = H∇XY +AXY (2.7)

for X,Y ∈ Γ((kerF∗)⊥) and V,W ∈ Γ(kerF∗), where ∇̂VW = V∇VW . If X is basic, then
H∇VX = AXV . It is easily seen that for x ∈M , X ∈ Hx and Vx the linear operators TV ,
AX : TxM −→ TxM are skew-symmetric. We see that the restriction of T to the vertical
distribution T |V×V is exactly the second fundamental form of the fibres of π. Since TV is
skew-symmetric we get: π has totally geodesic fibres if and only if T ≡ 0. For the special
case when π is horizontally conformal we have the following:

Proposition 2.2. ([26]). Let π : (Mm, g) −→ (Nn, h) be a horizontally conformal sub-
mersion with dilation λ and X,Y be horizontal vectors, then

AXY = 1
2{V[X,Y ]− λ2g(X,Y )gradV( 1

λ2 )}. (2.8)

We now recall the notion of harmonic maps between Riemannian manifolds. Let
(M, gM ) and (N, gN ) be Riemannian manifolds and suppose that ϕ : M −→ N is a
smooth map between them. Then the differential ϕ∗ of ϕ can be viewed a section of the
bundle Hom(TM,ϕ−1TN) −→M , where ϕ−1TN is the pullback bundle which has fibres
(ϕ−1TN)p = Tϕ(p)N , p ∈ M . Hom(TM,ϕ−1TN) has a connection ∇ induced from the
Levi-Civita connection ∇M and the pullback connection. Then the second fundamental
form of ϕ is given by

(∇ϕ∗)(X,Y ) = ∇ϕXϕ∗(Y )− ϕ∗(∇MX Y ) (2.9)
for X,Y ∈ Γ(TM), where ∇ϕ is the pullback connection. It is known that the second
fundamental form is symmetric. A smooth map ϕ : (M, gM ) −→ (N, gN ) is said to be
harmonic if trace(∇ϕ∗) = 0. On the other hand, the tension field of ϕ is the section τ(ϕ)
of Γ(ϕ−1TN) defined by

τ(ϕ) = divϕ∗ =
m∑
i=1

(∇ϕ∗)(ei, ei), (2.10)

where {e1, ..., em} is an orthonormal frame on M . Then it follows that ϕ is harmonic if
and only if τ(ϕ) = 0, for details, see [6]. Now, we recall the following lemma from [6].

Lemma 2.3. Suppose that ϕ : M −→ N is a horizontally conformal submersion. Then,
for any horizontal vector fields X,Y and vertical fields V,W we have

(i) ∇dϕ(X,Y ) = X(lnλ)dϕ(Y ) + Y (lnλ)dϕ(X)− g(X,Y )dϕ(gradlnλ);
(ii) ∇dϕ(V,W ) = −dϕ(AV

VW );
(iii) ∇dϕ(X,V ) = −dϕ(∇MX V ) = dϕ((AH)∗XV )).

Here (AH)∗X is the adjoint of AH
X characterized by

〈(AH)∗XE,F 〉 = 〈E,AH
XF 〉 (E,F ∈ Γ(TM)).

Let gB be a Riemannian metric tensor on the manifold B = B1 × B2 and assume that
the canonical foliations DB1 and DB2 intersect perpendicularly everywhere. Then gB is
the metric tensor of a usual product of Riemannian manifolds if and only if DB1 and DB2
are totally geodesic foliations [39].
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3. Conformal Slant submersions
In this section, we define conformal slant submersions from an almost Hermitian mani-

fold onto a Riemannian manifold, investigate the effect of the existence of conformal slant
submersions on the source manifold and the target manifold. But we first present the
following notion.

Definition 3.1. Let F be a horizontally conformal submersion from an almost Hermitian
manifold (M1, g1, J1) onto a Riemannian manifold (M2, g2). If for any non-zero vector
X ∈ Γ(kerF∗p); p ∈M1, the angle θ(X) between JX and the space (kerF∗p) is a constant,
i.e. it is independent of the choice of the point p ∈M1 and choice of the tangent vector X
in (kerF∗p), then we say that F is a conformal slant submersion. In this case, the angle θ
is called the slant angle of the conformal slant submersion.

We note that it is known that the distribution kerF∗ is integrable. In fact, its leaves
are F−1(q), q ∈ M2, i.e., fibers. Thus it follows from above definition that the fibres of a
conformal slant submersion are slant submanifolds of M1, for slant submanifolds, see [13].
We now give some examples of conformal slant submersions.

Example 3.2. Every Hermitian submersion from an almost Hermitian manifold onto an
almost Hermitian manifold is a conformal slant submersion with λ = 1 and θ = 0.

Example 3.3. Every conformal anti-invariant submersion from an almost Hermitian man-
ifold to a Riemannian manifold is a conformal slant submersion with λ = 1 and θ = π

2 .

Example 3.4. Every slant submersion from an almost Hermitian manifold onto Riemann-
ian manifold is a conformal slant submersion with λ = 1.

A conformal slant submersion is said to be proper if it is neither Hermitian nor conformal
anti- invariant submersion. We now present two examples of a proper conformal slant
submersion. We denote by Jα the compatible almost complex structure on R4 defined by

Jα(a, b, c, d) = (cosα)(−c,−d, a, b) + (sinα)(−b, a, d,−c), 0 < α ≤ π

2
Example 3.5. Consider the following submersion given by

F : R4 −→ R2

(x1, x2, x3, x4) (ex1 sin x2, e
x1 cosx2),

where x2 ∈ R− {k π2 , kπ}, k ∈ Z. Then it follows that

kerF∗ = span{V1 = ∂x3, V2 = ∂x4}

and

(kerF∗)⊥ = span{X1 = ex1 sin x2∂x1 + ex1 cosx2∂x2,

X2 = ex1 cosx2∂x1 − ex1 sin x2∂x2}.

Then by direct computations for any 0 < θ ≤ π
2 , F is a slant submersion with slant angle

θ. On the other hand,

F∗X1 = (ex1)2∂y1, F∗X2 = (ex1)2∂y2.

Hence, we have

g2(F∗X1, F∗X1) = (ex1)2g1(X1, X1), g2(F∗X2, F∗X2) = (ex1)2g1(X2, X2),

where g1 and g2 denote the standard metrics (inner products) of R4 and R2. Thus F is a
conformal slant submersion with λ = ex1 .
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Example 3.6. Let F be a submersion defined by

F : R4 −→ R2

(x1, x2, x3, x4) (cosh x1 sin x3, sinh x1 cosx3),

where x3 ∈ R− {k π2 , kπ}, k ∈ Z. Then it follows that

kerF∗ = span{V1 = ∂x2, V2 = ∂x4}

and

(kerF∗)⊥ = span{X1 = sinh x1 sin x3∂x1 + cosh x1 cosx3∂x2,

X2 = cosh x1 cosx3∂x1 − sinh x1 sin x3∂x2}.

Then by direct computations for any 0 < θ ≤ π
2 , F is a slant submersion with slant angle

θ. On the other hand,

F∗X1 = (sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3)∂y1

and
F∗X2 = (sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3)∂y2.

Hence, we have

g2(F∗X1, F∗X1) = (sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3)g1(X1, X1)

and
g2(F∗X2, F∗X2) = (sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3)g1(X2, X2),

where g1 and g2 denote the standard metrics (inner products) of R4 and R2. Thus F is a
conformal slant submersion with λ2 = sinh2 x1 sin2 x3 + cosh2 x1 cos2 x3.

Let F be a conformal slant submersion from an almost Hermitian manifold (M1, g1, J)
onto a Riemannian manifold (M2, g2). Then for U ∈ Γ(kerF∗), we write

JU = φU + ωU (3.1)

where φU and ωU are vertical and horizontal parts of JU. Also for X ∈ Γ((kerF∗)⊥), we
have

JX = BX + CX, (3.2)
where BX and CX are vertical and horizontal components. Using (2.5), (2.6), (3.1) and
(3.2) we obtain

(∇Uω)V = CTUV − TUφV (3.3)

(∇Uφ)V = BTUV − TUωV, (3.4)
where ∇ is the Levi-Civita connection on M1 and

(∇Uω)V = H∇UωV − ω∇̂UV

(∇Uφ)V = ∇̂UφV − φ∇̂UV
for U, V ∈ Γ(kerF∗). Let F be a proper conformal slant submersion from an almost
Hermitian manifold (M1, g1, J) onto a Riemannian manifold (M2, g2), then we say that
ω is parallel with respect to the Levi-Civita connection ∇ on (kerF∗) if its covariant
derivative with respect to ∇ vanishes, i.e., we have

(∇Uω)V = ∇UωV − φ∇̂UV

for U, V ∈ Γ(kerF∗). The proof of the following result is exactly same with slant immer-
sions (see [11] and [13]), therefore we omit its proof.
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Theorem 3.7. Let F be a conformal slant submersion from an almost Hermitian manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then F is a proper conformal slant
submersion if and only if there exists a constant λ1 ∈ [−1, 0] such that

φ2U = λ1U

for U ∈ Γ(kerF∗). If F is a proper conformal slant submersion, then λ1 = − cos2 θ.

By using above theorem, it is easy to see the following lemma.

Lemma 3.8. Let F be a proper conformal slant submersion from an almost Hermitian
manifold (M1, g1, J1) onto a Riemannian manifold (M2, g2) with slant angle θ. Then, for
any U, V ∈ Γ(kerF∗), we have

g1(φU, φV ) = cos2 θg1(U, V ), (3.5)
and

g1(ωU, ωV ) = sin2 θg1(U, V ). (3.6)

We now denote complementary distribution of ω(kerF∗) in (kerF∗)⊥ by µ. The proof
of the following result is exactly same with slant submersion (see [42]), therefore we omit
its proof.

Proposition 3.9. Let F be a proper conformal slant submersion from an almost Hermitian
manifold (M1, g1, J1) onto a Riemannian manifold (M2, g2). Then µ is invariant with
respect to J1.

Corollary 3.10. Let F be a proper conformal slant submersion from an almost Hermitian
manifold (Mm

1 , g1, J1) onto a Riemannian manifold (Mn
2 , g2). Let

{e1, ..., em−n}
be a local orthonormal basis of (kerF∗), then {csc θωe1, ..., csc θωem−n} is a local orthonor-
mal basis of ω(kerF∗).

Proof. It will be enough to show that g1(csc θωei, csc θωej) = δij , for any i, j ∈ {1, ..., m−n2 }.
By using (3.6), we have

g1(csc θωei, cscθωej) = csc2 θ sin2 θg1(ei, ej) = δij ,

which proves the assertion. �

We note that above Proposition 3.9 tells that the distributions µ and (kerF∗)⊕ω(kerF∗)
are even dimensional. In fact it implies that the distribution (kerF∗) is even dimensional.
More precisely, we have the following result whose proof is similar to the above corollary.

Lemma 3.11. Let F be a proper conformal slant submersion from an almost Hermit-
ian manifold (Mm

1 , g1, J1) onto a Riemannian manifold (Mn
2 , g2). If e1, e2, ..., em−n

2
are

orthogonal unit vector fields in (kerF∗), then
{e1, sec θφe1, e2, sec θφe2, ..., em−n

2
, sec θφem−n

2
}

is a local orthonormal basis of (kerF∗).

Let F be a proper conformal slant submersion from an almost Hermitian manifold
(M2n

1 , g1, J1) onto a Riemannian manifold (Mn
2 , g2). As in the case of slant immersions,

we call such an orthonormal frame
{e1, sec θφe1, e2, sec θφe2, ..., en, sec θφen, csc θωe1, csc θωe2, ..., csc θωen}

an adapted slant frame for conformal slant submersions. In the sequel, we show that the
conformal slant submersion puts some restrictions on the dimensions of the distributions
and the base manifold.
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Proposition 3.12. Let F be a proper conformal slant submersion from an almost Hermit-
ian manifold (Mm

1 , g1, J1) onto a Riemannian manifold (Mn
2 , g2). Then dim(µ) = 2n−m.

If µ = 0, then n = m
2 .

Proof. First note that dim(kerF∗) = m− n. Thus using Corollary 3.10, we have
dim((kerF∗)⊕ ω(kerF∗)) = 2(m− n). Since M1 is m− dimensional, we get
dim(µ) = 2n−m. Second assertion is clear. �

We now check the harmonicity of conformal slant submersions. But we first give a
preparatory lemma.
Lemma 3.13. Let F be a proper conformal slant submersion from a Kähler manifold onto
a Riemannian manifold. If ω is parallel with respect to ∇ on (kerF∗), then we have

TφUφU = − cos2 θTUU (3.7)
for U ∈ Γ(kerF∗).
Proof. If ω is parallel, then from (3.3) we have CTUV = TUφV for U, V ∈ Γ(kerF∗).
Interchanging the role of U and V, we get CTV U = TV φU. Thus we have

CTUV − CTV U = TUφV − TV φU.
Since T is symmetric, we derive

TUφV = TV φU. (3.8)
Then substituting V by φU we get TUφ2U = TφUφU. Finally using Theorem 3.7 we obtain
(3.7). �

Theorem 3.14. Let F : (M2(m+r)
1 , g1, J1) −→ (Mm+2r

2 , g2) be a conformal slant sub-
mersion, where (M1, g1, J1) is a Kähler manifold and (M2, g2) is a Riemannian manifold.
Then the tension field τ of F is

τ(F ) = − 1
m
F∗
(
Teiei + sec2 θTφei

φei
)

+
( 2
λ2 − (m+ 2r)

)
F∗(gradlnλ). (3.9)

Proof. Let {e1, ..., em, sec θφe1, ..., sec θφem, csc θωe1, ..., csc θωem, µ1, ..., µr, J1µ1, ..., J1µr}
be orthonormal basis of Γ(TM1) such that {e1, ..., em, sec θφe1, ..., sec θφem} be orthonor-
mal basis of Γ(kerF∗),
{csc θωe1, ..., csc θωem} be orthonormal basis of Γ(ω(kerF∗)) and {µ1, ..., µr, J1µ1, ..., J1µr}
be orthonormal basis of Γ(µ). Then the trace of second fundamental form (restriction to
kerF∗ × kerF∗) is given by

tracekerF∗∇F∗ =
m∑
i=1

(∇F∗)(ei, ei) + (∇F∗)(sec θφei, sec θφei)

=
m∑
i=1

(∇F∗)(ei, ei) + sec2 θ(∇F∗)(φei, φei).

Then using (2.9) we obtain

tracekerF∗∇F∗ = − 1
m
F∗(Teiei)−

1
m
F∗(sec2 θTφei

φei)

= − 1
m
F∗(Teiei + sec2 θTφei

φei). (3.10)

In a similar way, we have

trace(kerF∗)⊥∇F∗ =
m∑
i=1

(∇F∗)(csc θωei, csc θωei) +
2r∑
i=1

(∇F∗)(µi, µi)

= csc2 θ
m∑
i=1

(∇F∗)(ωei, ωei) +
2r∑
i=1

(∇F∗)(µi, µi).
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Using Lemma 2.3 we arrive at

trace(kerF∗)⊥∇F∗ = csc2 θ
m∑
i=1
{ωei(lnλ)F∗ωei + ωei(lnλ)F∗ωei

− g1(ωei, ωei)F∗(gradlnλ)}

+
2r∑
i=1
{µi(lnλ)F∗µi + µi(lnλ)F∗µi − g1(µi, µi)F∗(gradlnλ)}

= csc2 θ
m∑
i=1

2g1(Hgradlnλ, ωei)F∗ωei

− csc2 θg1(ωei, ωei)F∗(gradlnλ)

+
2r∑
i=1

2g1(Hgradlnλ, µi)F∗µi − 2rF∗(gradlnλ).

Since F is a conformal slant submersion, we derive

trace(kerF∗)⊥∇F∗ = csc2 θ
m∑
i=1

2
λ2 g2(F∗(gradlnλ), F∗ωei)F∗ωei

+
2r∑
i=1

2
λ2 g2(F∗(gradlnλ), F∗µi)F∗µi − (m+ 2r)F∗(gradlnλ)

= 2
λ2F∗(gradlnλ)− (m+ 2r)F∗(gradlnλ)

=
( 2
λ2 − (m+ 2r)

)
F∗(gradlnλ). (3.11)

Then proof follows from (3.10) and (3.11). �

We note that for any C2 real valued function f defined on an open subset of a Riemann-
ian manifold M , the equation 4f = 0 is called Laplace’s equation and solutions are called
harmonic functions on U . Let F : M −→ N be a smooth map between Riemannian man-
ifolds. Then F is called harmonic morphism if, for every harmonic function f : V −→ R
defined an open subset V of N with F−1(V ) non-empty, the composition f ◦F is harmonic
on F−1(V ). It is known that a smooth map F : M −→ N between Riemannian mani-
folds is a harmonic morphism if and only if F is both harmonic and horizontally weakly
conformal [23] and [33]. Thus from Theorem 3.14 we deduce the following result.

Theorem 3.15. Let F : (M2(m+r)
1 , g1, J1) −→ (Mm+2r

2 , g2) be a conformal slant sub-
mersion such that 2

(m+2r) 6= λ2 where (M1, g1, J1) is a Kähler manifold and (M2, g2) is a
Riemannian manifold. Then any two conditions below imply the third:

(i) F is a harmonic morphism
(ii) ω is parallel with respect to ∇ on (kerF∗)
(iii) F is a horizontally homotetic map.

We also have the following result.

Corollary 3.16. Let F be a conformal slant submersion from a Kähler manifold
(M2(m+r)

1 , g1, J1) to a Riemannian manifold (Mm+2r
2 , g2). If 2

(m+2r) = λ2 then F is har-
monic morphism if and only if ω is parallel with respect to ∇ on (kerF∗).

Remark 3.17. By arguing as in [6, Proposition 3.5.1, Theorem 4.5.4], one can see that
Theorem 3.15 and Corollary 3.16 are also valid for a horizontally weakly conformal map.
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We note that if 2
(m+2r) = λ2 is satisfied, then F is certainly horizontally homothetic.

We now study the integrability of the distribution (kerF∗)⊥ and then we investigate the
geometry of leaves of (kerF∗)⊥ and (kerF∗).We note that it is known that the distribution
kerF∗ is integrable.

Theorem 3.18. Let F be a proper conformal slant submersion from a Kähler mani-
fold (M1, g1, J1) onto a Riemannian manifold (M2, g2). Then the following assertions are
equivalent to each other;

(i) (kerF∗)⊥ is integrable,
(ii) 1

λ2 {g2(∇FY F∗CX −∇FXF∗CY, F∗ωV )− g2(∇FY F∗X −∇FXF∗Y, F∗ωφV )}

= g1(AXBY −AYBX
− CY (lnλ)X + CX(lnλ)Y
− 2g1(CX,Y ) lnλ, ωV )

for X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗), using (2.1), (2.2) and (3.1) we have

g1([X,Y ], V )=−g1(∇XY, JφV )+g1(∇XJY, ωV )+g1(∇YX, JφV )−g1(∇Y JX, ωV ).

Then by using (3.2), we get

g1([X,Y ], V ) = −g1(∇XY, φ2V )− g1(∇XY, ωφV ) + g1(∇XBY, ωV )
+ g1(∇XCY, ωV )
+ g1(∇YX,φ2V ) + g1(∇YX,ωφV )− g1(∇YBX,ωV )
− g1(∇Y CX,ωV ).

Since F is a conformal submersion, using (2.7), Theorem 3.7 and Lemma 2.3 we arrive at

g1([X,Y ], V ) = cos2 θg1([X,Y ], V ) + g1(AXBY −AYBX,ωV )

+ 1
λ2 g2((∇F∗)(X,Y ), F∗ωφV )

− 1
λ2 g2(∇FXF∗Y, F∗ωφV )− g1(gradlnλ,X)g1(CY, ωV )− g1(gradlnλ,CY )g1(X,ωV )

+g1(X,CY )g1(gradlnλ, ωV ) + 1
λ2 g2(∇FXF∗CY, F∗ωV )− 1

λ2 g2((∇F∗)(Y,X), F∗ωφV )

+ 1
λ2 g2(∇FY F∗X,F∗ωφV ) + g1(gradlnλ, Y )g1(CX,ωV ) + g1(gradlnλ,CX)g1(Y, ωV )

−g1(Y,CX)g1(gradlnλ, ωV )− 1
λ2 g2(∇FY F∗CX,F∗ωV ).

Since ∇F∗ is symmetric, we have

sin2 θg1([X,Y ], V ) = g1(AXBY −AYBX − CY (lnλ)X + CX(lnλ)Y
− 2g1(CX,Y ) lnλ, ωV )

+ 1
λ2 {g2(∇FY F∗X −∇FXF∗Y, F∗ωφV )

− g2(∇FY F∗CX −∇FXF∗CY, F∗ωV )}

which proves assertion. �

From Theorem 3.18, we deduce the following which shows that a conformal slant sub-
mersion with integrable (kerF∗)⊥ turns out to be a horizontally homothetic submersion.
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Theorem 3.19. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then any two conditions below imply
the three;

(i) (kerF∗)⊥ is integrable
(ii) F is horizontally homotetic.
(iii) 1

λ2 {g2(∇FY F∗CX −∇FXF∗CY, F∗ωV )− g2(∇FY F∗X −∇FXF∗Y, F∗ωφV )}

= g1(AXBY −AYBX,ωV )
for X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(kerF∗), from Theorem 3.18, we have
sin2 θg1([X,Y ], V ) = g1(AXBY −AYBX − CY (lnλ)X + CX(lnλ)Y

− 2g1(CX,Y ) lnλ, ωV )

+ 1
λ2 {g2(∇FY F∗X −∇FXF∗Y, F∗ωφV )

− g2(∇FY F∗CX −∇FXF∗CY, F∗ωV )}.
Now, if we have (i) and (iii), then we arrive at

−g1(Hgrad lnλ,CY )g1(X,ωV ) + g1(Hgrad lnλ,CX)g1(Y, ωV )
−2g1(CX,Y )g1(Hgrad lnλ, ωV ) = 0. (3.12)

Now, taking Y = JV in (3.12) for V ∈ Γ(kerF∗), we get
g1(Hgrad lnλ,CX)g1(ωV, ωV ) = 0.

Hence λ is a constant on Γ(µ). On the other hand, taking Y = CX in (3.12) for X ∈ Γ(µ),
we derive

−g1(Hgrad lnλ,C2X)g1(X,ωV ) + g1(Hgrad lnλ,CX)g1(CX,ωV )
−2g1(CX,CX)g1(Hgrad lnλ, ωV ) = 0,

hence, we arrive at
g1(CX,CX)g1(Hgrad lnλ, ωV ) = 0.

From above equation, λ is a constant on Γ(ω(kerF∗)). Similarly, one can obtain the other
assertions. �

Theorem 3.20. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then the distribution (kerF∗)⊥ defines
a totally geodesic foliation on M1 if and only if

1
λ2 {g2(∇FXF∗Y, F∗ωφV )−g2(∇FXF∗CY, F∗ωV )} = g1(AXBY, ωV )

+ g1(gradlnλ,X)g1(Y, ωφV )
+ g1(gradlnλ, Y )g1(X,ωφV )
− g1(X,Y )g1(gradlnλ, ωφV )
− g1(gradlnλ,X)g1(CY, ωV )
− g1(gradlnλ,CY )g1(X,ωV )
+ g1(X,CY )g1(gradlnλ, ωV )

for X,Y ∈ Γ((kerF∗)⊥), V ∈ Γ(kerF∗).

Proof. For X,Y ∈ Γ((kerF∗)⊥) and V ∈ Γ(kerF∗), using (2.1), (2.2), (3.1) and (3.2) we
have
g1(∇XY, V ) = −g1(∇XY, φ2V )− g1(∇XY, ωφV ) + g1(∇XBY, ωV ) + g1(∇XCY, ωV ).
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Since F is a conformal submersion, using (2.7), Theorem 3.7 and Lemma 2.3 we arrive at
g1(∇XY, V ) = cos2 θg1(∇XY, V ) + g1(AXBY, ωV ) + g1(gradlnλ,X)g1(Y, ωφV )

+ g1(gradlnλ, Y )g1(X,ωφV )− g1(X,Y )g1(gradlnλ, ωφV )

− 1
λ2 g2(∇FXF∗Y, F∗ωφV )

− g1(gradlnλ,X)g1(CY, ωV )− g1(gradlnλ,CY )g1(X,ωV )

+ g1(X,CY )g1(gradlnλ, ωV ) + 1
λ2 g2(∇FXF∗CY, F∗ωV ).

Hence we have
sin2 θg1(∇XY, V ) = g1(AXBY, ωV ) + g1(gradlnλ,X)g1(Y, ωφV )

+ g1(gradlnλ, Y )g1(X,ωφV )
− g1(X,Y )g1(gradlnλ, ωφV )− g1(gradlnλ,X)g1(CY, ωV )
− g1(gradlnλ,CY )g1(X,ωV ) + g1(X,CY )g1(gradlnλ, ωV )

− 1
λ2 {g2(∇FXF∗Y, F∗ωφV )− g2(∇FXF∗CY, F∗ωV )}

which proves assertion. �

In a similar way we have the following.

Theorem 3.21. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then the distribution (kerF∗) defines
a totally geodesic foliation on M1 if and only if

1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z)− g2(∇FωV F∗ωU,F∗JCZ)} = g1(AωV φU

+ g1(ωU, ωV )grad lnλ, JCZ)
+ g1(TUBZ, ωV )

for U, V ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥).

From Theorem 3.21, we deduce that:

Theorem 3.22. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then any two conditions below imply
the three:

(i) kerF∗ defines a totally geodesic foliation on M1.
(ii) λ is a constant on Γ(µ).
(iii) 1

λ2 {g2((∇F∗)(U, ωφV ), F∗Z)−g2(∇FωV F∗ωU,F∗JCZ)} = g1(AωV φU, JCZ)+g1(TUBZ, ωV )
for U, V ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥).

Proof. For U, V ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥), from Theorem 3.21, we have
sin2 θg1(∇UV,Z)=g1(TUωV,BZ)−g1(AωV φU, JCZ)

− g1(ωV, ωU)g1(Hgradlnλ, JCZ)

+ 1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z)− g2(∇FωV F∗ωU,F∗JCZ)}.

Now, if we have (i) and (iii), then we get
g1(ωV, ωU)g1(Hgradlnλ, JCZ) = 0.

From above equation, λ is a constant on Γ(µ). Similarly, one can obtain the other asser-
tions. �

From Theorem 3.20 and Theorem 3.21 we have the following result.
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Corollary 3.23. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then M1 is a locally product Riemann-
ian manifold if and only if

1
λ2 {g2(∇FXF∗Y, F∗ωφV )− g2(∇FXF∗CY, F∗ωV )} = g1(AXBY, ωV )

+ g1(gradlnλ,X)g1(Y, ωφV )
+ g1(gradlnλ, Y )g1(X,ωφV )
− g1(X,Y )g1(gradlnλ, ωφV )
− g1(gradlnλ,X)g1(CY, ωV )
− g1(gradlnλ,CY )g1(X,ωV )
+ g1(X,CY )g1(gradlnλ, ωV )

and

1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z)− g2(∇FωV F∗ωU,F∗JCZ)} = g1(AωV φU

+ g1(ωU, ωV )grad lnλ, JCZ)
+ g1(TUBZ, ωV )

for X,Y, Z ∈ Γ((kerF∗)⊥) and U, V ∈ Γ(kerF∗).

Finally we obtain necessary and sufficient condition for a conformal slant submersion
to be totally geodesic. We recall that a differentiable map F between two Riemannian
manifolds is called totally geodesic if

(∇F∗)(X,Y ) = 0 ∀X,Y ∈ Γ(TM).

A geometric interpretation of a totally geodesic map is that it maps every geodesic in the
total manifold into a geodesic in the base manifold in proportion to arc lengths.

Theorem 3.24. Let F be a proper conformal slant submersion from a Kähler manifold
(M1, g1, J1) onto a Riemannian manifold (M2, g2). Then F is a totally geodesic map if
and only if

(i) 1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z)−g2(∇FωV F∗ωU,F∗JCZ)} = g1(AωV φU, JCZ)+g1(TUωV,BZ),

(ii) 1
λ2 {g2((∇F∗)(U, ωBX), F∗Y )+g2((∇F∗)(U,CX), F∗CY )} = g1(TUφBX,Y )−g1(TUCX,BY ),

(iii) F is a horizontally homothetic map

for U, V ∈ Γ(kerF∗) and X,Y, Z ∈ Γ((kerF∗)⊥).

Proof. (i) For U, V ∈ Γ(kerF∗) and Z ∈ Γ((kerF∗)⊥), using (2.1), (2.2), (3.1), (3.2 and
Lemma 2.3 we have

1
λ2 g2((∇F∗)(U, V ), F∗Z) = g1(∇Uφ2V,Z) + g1(∇UωφV,Z)

− g1(∇UωV,BZ)− g1(∇UωV,CZ)
= g1(∇Uφ2V,Z) + g1(∇UωφV,Z)
− g1(∇UωV,BZ) + g1(∇ωV JU, JCZ).
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Using (2.5), Theorem 3.7 and Lemma 2.3 we arrive at
1
λ2 g2((∇F∗)(U, V ), F∗Z) = − cos2 θg1(∇UV,Z)− g1(TUωV,BZ) + g1(AωV φU, JCZ)

− 1
λ2 g2((∇F∗)(U, ωφV ), F∗Z)− g1(grad lnλ, ωV )g1(ωU, JCZ)

− g1(grad lnλ, ωU)g1(ωV, JCZ) + g1(ωV, ωU)g1(gradlnλ, JCZ)

+ 1
λ2 g2(∇FωV F∗ωU,F∗JCZ).

Hence we have

sin2 θ
1
λ2 g2((∇F∗)(U, V ), F∗Z) = g1(AωV φU, JCZ)− g1(ωV, ωU)g1(gradlnλ, JCZ)

− g1(TUωV,BZ)

+ 1
λ2 {g2((∇F∗)(U, ωφV ), F∗Z) + g2(∇FωV F∗ωU,F∗JCZ)}.

(ii) For X,Y ∈ Γ((kerF∗)⊥) and U ∈ Γ(kerF∗), in a similar way
1
λ2 g2((∇F∗)(U,X), F∗Y ) = g1(∇UφBX,Y ) + g1(∇UωBX,Y )

− g1(∇UCX,BY )− g1(∇UCX,CY ).

Using also (2.5), Theorem 3.7 and Lemma 2.3 we arrive at
1
λ2 g2((∇F∗)(U,X), F∗Y ) = g1(TUφBX,Y ) + 1

λ2 g2(F∗(∇UωBX), F∗Y )

− g1(TUCX,BY )− 1
λ2 g2(F∗(∇UCX), F∗CY )

= g1(TUφBX,Y ) + 1
λ2 g2(−(∇F∗)(U, ωBX) +∇FUωBX,F∗Y )

− g1(TUCX,BY )− 1
λ2 g2(−(∇F∗)(U,CX) +∇FUCX,F∗CY )

= g1(TUφBX,Y )− g1(TUCX,BY )

+ 1
λ2 {g2((∇F∗)(U,CX), F∗CY )− g2((∇F∗)(U, ωBX), F∗Y ).

(iii) For X,Y ∈ Γ(µ), from Lemma 2.3, we have

(∇F∗)(X,Y ) = X(lnλ)F∗Y + Y (lnλ)F∗X − g1(X,Y )F∗(gradlnλ).

From above equation, taking Y = JX for X ∈ Γ(µ) we obtain

(∇F∗)(X, JX) = X(lnλ)F∗JX + JX(lnλ)F∗X − g1(X, JX)F∗(gradlnλ)
= X(lnλ)F∗JX + JX(lnλ)F∗X.

If (∇F∗)(X, JX) = 0, we obtain

X(lnλ)F∗JX + JX(lnλ)F∗X = 0. (3.13)

Taking inner product in (3.13) with F∗JX we have

g1(gradlnλ,X)g2(F∗JX,F∗JX) + g1(gradlnλ,X)g2(F∗X,F∗JX) = 0.

From above equation, it follows that λ is a constant on Γ(µ). In a similar way, for U, V ∈
Γ(kerF∗), using Lemma 2.3 we have

(∇F∗)(ωU, ωV ) = ωU(lnλ)F∗ωV + ωV (lnλ)F∗ωU − g1(ωU, ωV )F∗(gradlnλ).
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From above equation, taking V = U we obtain

(∇F∗)(ωU, ωU) = ωU(lnλ)F∗ωU + ωU(lnλ)F∗ωU − g1(ωU, ωU)F∗(gradlnλ)
= 2ωU(lnλ)F∗ωU − g1(ωU, ωU)F∗(gradlnλ). (3.14)

Taking inner product in (3.14) with F∗ωU and since F is a conformal submersion, we
derive

2g1(gradlnλ, ωU)g2(F∗ωU,F∗ωU)− g1(ωU, ωU)g2(F∗(gradlnλ), F∗ωU) = 0.

From above equation, it follows that λ is a constant on Γ(ω(kerF∗)). Thus λ is a constant
on Γ((kerF∗)⊥). On the other hand, if F is a horizontally homothetic map, it is obvious
that (∇F∗)(X,Y ) = 0. Thus proof is complete. �
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Abstract
The link between ordered sets and hyperstructures is one of the classical areas of research
in the hyperstructure theory. In this paper we focus on EL–hyperstructures, i.e. a class
of hyperstructures constructed from quasi-ordered semigroups. In our paper we link this
concept to the concept of a composition hyperring, a recent hyperstructure generalization
of the classical notion of a composition ring.
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1. Introduction
Since the times of elementary algebra, the scope of this mathematical discipline has

widened considerably. Already in 1930s, a step from the study of single-valued structures
to the study of multi-valued structures was made. This new creation, the hyperstructure
theory, has since then grown to a fully established branch of algebra with numerous far-
reaching applications in geometry, graph-theory, coding theory, medicine, number theory,
physics, chemistry, etc. For basic introduction to the theory and applications see [9, 11].

Two important multi-valued analogues of classical topics of algebra intersect in this
paper: the study of ordered sets and their connection to hyperstructures and the study of
ring-like hyperstructures.

The ordered sets have been in the focus of attention of the hyperstructure theory since
works of Nieminen, Corsini, Rosenberg, Krasner, Mittas, Davvaz, Leoreanu or Chvalina
of 1960s to 1990s. Notice that one of the first chapters of [9], a canonical book of the
hyperstructure theory, is dedicated to ordered sets. Selected reading on some aspects of
the topic includes also works such as [3,4,8,16]. Furthermore, Heidari and Davvaz [16] have
recently introduced the notion of partially ordered semihypergroups, i.e. have transferred
the concept of partially ordered semigroups to hyperstructures.

Krasner [20] introduced the notion of the hyperfield and then hyperring in order to ap-
proximate a local field of positive characteristic by a system of local fields of characteristic
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zero. The additive part of this hyperring was a special hypergroup while the multiplica-
tive part was a semigroup. Constructions of these structures can be found in [19, 22, 28].
While studying polynomials over Krasner’s hyperrings, Mittas [27] introduced superrings,
in which both parts, additive and multiplicative, were hyperstructures. G. Massouros,
approching the theory of languages and automata from the point of view of hypercom-
positional algebra, was led to the introduction of the concepts of hyperringoid and join
hyperring [23, 24]. Also, Vougiouklis [33] generalizing Mitas’ superring introduced hyper-
rings in the general sense. Some recent papers on the topic include [2, 7, 13, 26] and a
book [11].

Motivated by the study of properties of the hyperring of polynomials [18], Cristea and
Jančić-Rašović in [10] introduced the concept of composition hyperring as a multi-valued
generalisation of an older concept of the composition ring introduced in [1]. Notice that
as regards single-valued rings, composition leads to interesting applications in rings of
polynomials, power series or in the field of rational functions. In [12], the concept of
composition is used to construct composition (m, n, k)–hyperrings.

In this paper we study composition, suggested by Cristea and Jančić-Rašović, in EL–
hyperstructures, i.e. in a class of hyperstructures constructed from quasi-ordered semi-
groups. The authors of [10] define the composition hyperoperation in hyperrings in the
general case of [32], i.e. in multivalued systems (R, +, ·), where (R, +) is a hypergroup,
(R, ·) is a semihypergroup and the multiplication is distributive with respect to the addi-
tion. In our paper we partly broaden this environment by suggesting implications also for
cases of (R, +) being a semihypergroup (making use of results achieved in [30]).

2. EL–hyperstructures: construction and use
There exist numerous constructions of hyperstructures from given single-valued alge-

braic structures. The concept of EL–hyperstructures was coined by Chvalina in [4] and
explored in e.g. [15, 29, 31]. The construction is based on validity of a rather simple and
straightforward Lemma 2.1. However, when looking for examples of EL–hyperstructures,
the simplicity and straightforwardness disappear. Naturally, there are obvious intuitive
face-value examples such as (N, +,≤) or (P(S),∩,⊆). EL-hyperstructures have also been
used in papers such as [5, 6, 14] or Sections 8.3 and 8.4 of book [11] in the context of
quasi-ordered semigroups such that the nature of their elements and the operation and
ordering follow from the application task. In this respect also notice [21], where EL–hyper-
structures have been used to construct a class of Hv–matrices. Finally, there is another
layer of possible uses: Suppose that we have a set of elements, properties of which can be
described by means of numerical values (such as length, cardinality, number of elements of
a sequence, etc.). Since number domains with a suitably chosen operation and the natural
ordering with respect to size often form quasi-ordered semigroups, Lemma 2.1 presents a
natural way of constructing (associative and commutative) hyperstructures out of them.
In this paper we intentionally demonstrate our results using the simplest possible exam-
ples. For a deeper insight and less obvious and straightforward uses of the construction
see the above mentioned references.

Further on we work with principal ends (hence EL which stands for “Ends lemma"),
i.e. for an arbitrary a ∈ (S,≤) we set [a)≤ = {x ∈ S; a ≤ x}.

Lemma 2.1. ([4], Theorem 1.3 & Theorem 1.4, pp. 146–147). Let (S, ·,≤) be a partially
ordered semigroup. The binary hyperoperation ∗ : S × S → P∗(S) defined by

a ∗ b = [a · b)≤ (2.1)

is associative. The semihypergroup (S, ∗) is commutative if and only if the semigroup (S, ·)
is commutative. Furthermore, the following conditions are equivalent:
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10: For any pair (a, b) ∈ S2 there exists a pair (c, c′) ∈ S2 such that b · c ≤ a and
c′ · b ≤ a.

20: The associated semihypergroup (S, ∗) is a hypergroup.

Remark 2.2. If (S, ·,≤) is a partially ordered group, then if we take c = b−1 · a and c′ =
a · b−1, then condition 10 is valid. Therefore, if (S, ·,≤) is a partially ordered group, then
its associated hyperstructure is a hypergroup. In fact, it is a transposition hypergroup, i.e.
our reasoning results in transposition hyperrings, which can suggest another line of further
research. For the use of transposition axiom in hypercompositional structures see [25].
Cases of (S, ·) not being a group yet resulting in a hypergroup (S, ∗) are discussed in
[31]. It can also be easily verified that we can assume quasi-ordered structures instead
of partially ordered ones in Lemma 2.1 (however, beware that in this case commutativity
of the hyperoperation does not imply commutativity of the single-valued operation). For
details see e.g. [29].

3. Basic notions and concepts, notation
Throughout the paper we work with the following definitions and concepts. By a hy-

perring in the general sense and by a semihyperring in the general sense we mean systems
(R, +, ·) discussed e.g. in [33].

Definition 3.1. ([33], p. 21, included as plain text) (R, +, ·) is a hyperring in the general
sense if (R, +) is a hypergroup, (·) is associative hyperoperation and the distributive law
x(y + z) ⊆ xy + xz, (x + y)z ⊆ xz + yz is satisfied for every x, y, z of R. [. . .] (R, +, ·) will
be called semihyperring if (+), (·) are associative hyperoperations, where (·) is distributive
with respect to (+). The rest of definitions are analogous. If the equality in the distributive
law is valid, then the hyperring is called strong or good.

By a hyperring and by a semihyperring we mean a good hyperring, or a good semihyper-
ring in the sense of Definition 3.1, respectively. Notice that this means that our concept
of hyperring is the same as the concept used in [10, 18, 32] yet it permits a generalisation
in the sense of inclusions.

Composition hyperrings were introduced in [10] as a special class of hyperrings with one
additional property.

Definition 3.2. ([10], Def. 3.1) A composition hyperring is an algebraic structure (R, +, ·, ◦),
where (R, +, ·) is a commutative hyperring and the hyperoperation ◦ satisfies the following
properties, for any x, y, z ∈ R:

(1) (x + y) ◦ z = x ◦ z + y ◦ z
(2) (x · y) ◦ z = (x ◦ z) · (y ◦ z)
(3) x ◦ (y ◦ z) = (x ◦ y) ◦ z.

The binary hyperoperation ◦ having the previous properties is called the composition
hyperoperation of the hyperring (R, +, ·).

To be consistent with the background and reasoning of [1, 10] we further on deal with
commutative hyperoperations and composition property only. Notice that in the construc-
tion using Lemma 2.1 commutativity of the single-valued operation implies commutativity
of the hyperoperation and antisymmetry of ≤ turns this implication into equivalence. If
x ◦ y is a one-element set for all x, y ∈ R, we will speak about an operation rather than a
hyperoperation even though it will have to be at certain point applied in an element-wise
manner on sets (see below in e.g. (5.7) Theorem 5.10). Throughout the paper we will be in-
terested in the composition (hyper)operation in various types of hyperstructures (R, +, ·)
– not only in hyperrings but also in hyperrings in the general sense, semihyperrings or
semihyperrings in the general sense.
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Since we construct hyperoperations from single-valued operations on the same set, we
have to alter the standard notation of hyperoperations in ring-like hyperstructures. Thus
in our context the symbols + and · will be reserved for single-valued operations and the
hyperoperations will be denoted by ⊕ and •. The hyperoperations will be constructed
from single-valued quasi-ordered semigroups using Lemma 2.1, i.e. for all x, y ∈ R, where
(R, +,≤) and (R, ·,≤) are quasi-ordered semigroups, we define

a⊕ b = [a + b)≤ = {x ∈ R; a + b ≤ x} (3.1)
and

a • b = [a · b)≤ = {y ∈ R; a · b ≤ y} (3.2)
and get hyperstructures (R,⊕, •) which we then study. Since (R,⊕) and (R, •) are EL–
hyperstructures, it is possible to apply results achieved in [29–31] and immediately state
further properties of both (R,⊕), (R, •) and (R,⊕, •).

4. EL–hyperstructures with two hyperoperations
First we show the variety of EL–hyperstructures with two hyperoperations which can

be obtained using hyperoperations (3.1) and (3.2). Thus the following lemma, included in
[30] as Theorems 5.2, 5.4 and 5.5., bounds the area of our future considerations.

Lemma 4.1. Let (R, +,≤) and (R, ·,≤) be quasi-ordered semigroups and ⊕, • hyperop-
erations defined by (3.1) and (3.2) respectively. Furthermore, let · distribute over + from
both left and right.

(1) (R,⊕, •) is a semihyperring in the general sense.
(2) If (R, +) is a group or if (R,⊕) is a hypergroup, then (R,⊕, •) is a hyperring in

the general sense.
(3) If (R, ·) is a group, then (R,⊕, •) is a semihyperring.
(4) If (R, +) is a group with neutral element 0 and (R\{0}, ·) is a group, then (R,⊕, •)

is a hyperring.

Proof. The proof is included in [30] and is based on use of [30], Lemma 4.1, Lemma 4.4,
which discuss distributivity, and Remark 4.8, which discusses the role of the absorbing
element of the single-valued ring-like structures. Since Lemma 4.1 is important in the
context of this paper and not including at least a sketch of its proof would not be correct,
we include the main idea of the proof here.

First we show that, for all a, b, c ∈ R, where (R, +,≤) and (R, ·,≤) are quasi-ordered
semigroups, there is

a · (b + c) = a · b + a · c ⇒ a • (b⊕ c) ⊆ a • b⊕ a • c (4.1)
(a + b) · c = a · c + b · c ⇒ (a⊕ b) • c ⊆ a • c⊕ b • c

This is done in the usual way of rewriting both sides of the inclusions using (3.1) and (3.2)
and then proving that an arbitrary element from one side of the inclusion is included in
the other one.

If we now suppose that (R, ·,≤) is a quasi-ordered group, then with the help of inverse
elements we are able to prove the opposite inclusions, i.e.

a · (b + c) = a · b + a · c ⇒ a • (b⊕ c) ⊇ a • b⊕ a • c (4.2)
(a + b) · c = a · c + b · c ⇒ (a⊕ b) • c ⊇ a • c⊕ b • c

for all a, b, c ∈ R.
To complete the proof we need to discuss the role of the potentially existing absorbing

elements. Suppose a = 0 (or c = 0 in the second inclusion) in (4.1). We get [0)≤ ⊆⋃
x,y∈[0)≤

[x + y)≤ for a = 0 or {0} ⊆ [0)≤ for c = 0. Since the relation ≤ is reflexive, this
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obviously holds and does not cause any problems. If we suppose a = 0 (or c = 0) in (4.2),
we get that ⋃

x,y∈[0)≤

[x + y)≤ ⊆
⋃

h∈[b+c)≤

[0 · h)≤ = [0)≤.

However x, y ∈ [0)≤ means that 0 ≤ x, 0 ≤ y, i.e. 0 = 0 + 0 ≤ x + y, i.e.⋃
x,y∈[0)≤

[x + y)≤ = [0)≤,

i.e. we get equality [0)≤ = [0)≤. If in the second inclusion c = 0, then we get the same
equality [0)≤ = [0)≤.

Thus we have shown the respective parts on distributivity. The rest follows from
Lemma 2.1 and definitions of the respective ring-like hyperstructures. �

Remark 4.2. Notice that [31] discusses conditions under which Lemma 2.1 applied on
a quasi-ordered semigroup which is not a group constructs a hypergroup. In this respect
Lemma 4.1, item 2, could be made stronger – see Example 4.3. The same holds for
analogous situations, e.g. below in Theorem 6.2.

Example 4.3. Regard an arbitrary set S and its power set P(S). The operations ∩, ∪ of
set intersection and set union are associative, thus (P(S),∩) and (P(S),∪) are semigroups.
The relation ⊆ on P(S) is obviously reflexive and transitive and for arbitrary A, B, C ∈
P(S) such that A ⊆ B there is A ∩ C ⊆ B ∩ C and A ∪ C ⊆ B ∪ C. Thus if we define
hyperoperations ⊕, • for arbitrary A, B ∈ P(S) by

A⊕B = [A ∪B)≤ = {X ∈ P(S); A ∪B ⊆ X} (4.3)
and

A •B = [A ∩B)≤ = {Y ∈ P(S); A ∩B ⊆ Y }, (4.4)
we get semihypergroups (P(S),⊕) and (P(S), •). Moreover, as set intersection is distribu-
tive with respect to set union, (P(S),⊕, •) is a semihyperring in the general sense.

5. The composition hyperoperation in various EL–ring-like hyperstruc-
tures
In this section we study the potential and limitations of hyperstructures suggested in

Section 4 with respect to the composition hyperoperation (or operation). Since the hy-
perstructures are constructed from single-valued structures, we concentrate on properties
of the hyperstructures which follow from properties of the single-valued structures.

In the text below notice the precise meaning of symbols ⊕ and •. When applied on
single elements, they are used in the meanings (3.1) and (3.2) respectively. However, for
all sets A, B ⊆ R there is

A⊕B =
⋃

a∈A
b∈B

[a + b)≤ =
⋃

a∈A
b∈B

{x ∈ R; a + b ≤ x} (5.1)

and
A •B =

⋃
a∈A
b∈B

[a · b)≤ =
⋃

a∈A
b∈B

{y ∈ R; a · b ≤ y}. (5.2)

First of all we discuss a rather trivial case of constant composition.

Definition 5.1. If there is x◦y = r◦s for an arbitrary quadruple of elements x, y, r, s ∈ R,
we call the composition operation (hyperoperation) ◦, defined in Definition 3.2, constant
composition operation (hyperoperation).

The following theorem holds for all types of hyperstructures discussed in Lemma 4.1.
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Theorem 5.2. Let (R,⊕, •) be a semihyperring in the general sense constructed in Lemma 4.1
from idempotent quasi-ordered semigroups (R, +,≤) and (R, ·,≤). Consider r ∈ R arbi-
trary. Then ◦ defined by

a ◦ b = [r)≤ (5.3)
for all a, b ∈ R, is a constant composition hyperoperation on (R,⊕, •). It is a constant
operation if ≤ is antisymmetric and r is the greatest element of (R,≤).

Proof. In the⊕, • notation, the left-hand side of Definition 3.2, property 1, reads (x⊕y)◦z.
This is

[x + y)≤ ◦ z =
⋃

number of elements
of [x+y)≤ –times

[r)≤ = [r)≤.

The right-hand side reads (x ◦ z)⊕ (y ◦ z), which is

[r)≤ + [r)≤ =
⋃

a,b∈[r)≤

[a + b)≤ =
⋃
r≤a
r≤b

[a + b)≤.

Since r ≤ a, r ≤ b implies r+r ≤ a+b and the relation ≤ is reflexive, there is [r)≤+[r)≤ =
[r + r)≤. For idempotent + there is r + r = r, i.e. [r)≤ + [r)≤ = [r)≤.

The same reasoning can be applied on property 2 of Definition 3.2. Property 3 holds
obviously. Finally, if r is the greatest element of (R,≤), then [r)≤ = {r}, thus we can
speak about an operation instead of a hyperoperation. �

Example 5.3. If we continue with Example 4.3, where the semihyperring in the general
sense of the power set P(S) is discussed, and define

A ◦B = [R)⊆ = {T ∈ P(S); R ⊆ T}

for an arbitrary pair of A, B ∈ P(S), we get a constant composition hyperoperation on
P(S). If R = S, then ◦ becomes a constant composition operation.

Theorem 5.2 obviously does not hold when operations + or · are non-idempotent. Not
even one of the inclusions holds because neither r ∈ [r + r)≤ nor r + r ∈ [r)≤ in a general
case. Yet for all types of hyperstructures discussed in Lemma 4.1 we might prove the
following.

Theorem 5.4. Let (R,⊕, •) be a semihyperring in the general sense constructed in Lemma 4.1
from partially ordered semigroups (R, +,≤) and (R, ·,≤). If they exist, denote es the neu-
tral element of (R, +) and ep the neutral element of (R, ·).

(1) If simultaneously ep ≤ ep + ep and es ≤ es · es, then ◦min e defined by

a ◦min e b = [min{es, ep})≤ (5.4)

for all a, b ∈ R, is a constant composition hyperoperation on (R,⊕, •).
(2) If simultaneously ep + ep ≤ ep and es · es ≤ es, then ◦max e defined by

a ◦max e b = [max{es, ep})≤ (5.5)

for all a, b ∈ R, is a constant composition hyperoperation on (R,⊕, •).

Before proving the theorem, agree that, if the elements es, ep are incomparable, then
since the minimum does not exist, we set a ◦min e b = ∅. Moreover, if only es exists, then
we set min{es, ep} = es (and the same for ep). And make the similar agreement for the
maxima.

Proof. We will prove the theorem for ◦min e only. The proof for ◦max e is analogous.
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In the ⊕, • notation the left-hand-side of Definition 3.2, property 1, reads (x ⊕ y) ◦ z.
This is

[x + y)≤ ◦min e z =
⋃

number of elements
of [x+y)≤–times

[min{es, ep})≤

= [min{es, ep})≤
while the right-hand side, which reads (x ◦ z)⊕ (y ◦ z), is

[min{es, ep})≤ + [min{es, ep})≤ =
⋃

min{es,ep}≤a

min{es,ep}≤b

[a + b)≤.

Now the following cases are possible:
es ≤ ep: : This means that min{es, ep} = es; the left-hand side is [es)≤ while the

right-hand side is
⋃

es≤a
es≤b

[a + b)≤ = [es + es)≤ = [es)≤, i.e. the same.

ep < es: : This means that min{es, ep} = ep; the left-hand side is [ep)≤ while the right
hand side is

⋃
ep≤a

ep≤b

[a+b)≤ = [ep+ep)≤. Suppose now an arbitrary x ∈ [ep)≤, i.e. such

x ∈ R that ep ≤ x. Since we assume that ep < es, there is also ep +ep < x+es = x,
i.e. x ∈ [ep + ep)≤. If on the other hand we suppose an arbitrary x ∈ [ep + ep)≤,
i.e. ep + ep ≤ x, then on condition assumed in the theorem, i.e. ep ≤ ep + ep,
there is from transitivity that ep ≤ x, which means that x ∈ [ep)≤. Altogether
[ep)≤ = [ep + ep)≤.

If neither es nor ep exists or if es and ep are incomparable, we end up with ∅ = ∅. If only
es exists, we get the same as when es ≤ ep. If only ep exists, we get the same as when
ep < es.

The proof of Definition 3.2 property 2, is completely analogous. The proof of property 3
is obvious. �

Example 5.5. Since (Z, +,≤), where ≤ is the natural ordering of integers, is a partially
ordered group, (Z, ·,≤) a partially ordered semigroup and es = 0, ep = 1, the hyperoper-
ation ◦ defined for all a, b ∈ Z by a ◦ b = [0)≤ is an example of a constant composition
hyperoperation on the hyperring in the general sense (Z,⊕, •), where ⊕ and • are de-
fined by (3.1) and (3.2) respectively, in a context when the single-valued operations +, ·
are non-idempotent. The conditions of Theorem 5.4 obviously hold since 1 ≤ 1 + 1 and
0 ≤ 0 · 0.

The constant compositions are rather trivial and degenerated cases yet even there the
limits of applying the composition property in the context of the “Ends lemma", i.e. on
hyperoperations based on the sets of the [a)≤ type, can be seen. It is rather difficult
to achieve equality in properties 1 and 2 since the addition (or multiplication) on the
left-hand side is applied on elements while on the right-hand side it is (in a general case)
applied on sets – and this is done in a context where neither a ∈ [a + a)≤ nor a + a ∈ [a)≤
holds generally.

Let us therefore adjust the composition hyperoperation defined in Definition 3.2 to suit
EL–hyperstructures better. In order to keep notation uniform with Definition 3.2 we use
symbols +, · for the hyperoperations even though below we are going to use Definition 5.6
only in context of hyperoperations ⊕, •.

In the following definition we speak of “semihyperrings in the general sense". This is
because they are the weakest of hyperstructures discussed in Lemma 4.1. Thus we make
sure that the future considerations are valid for all types of relevant hyperstructures.
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Definition 5.6. A binary operation (hyperoperation) on a semihyperring in the general
sense (R, +, ·), where + and · are hyperoperations on R, is called a left weak composition
operation (hyperoperation) and denoted ◦lw if, for all x, y, z ∈ R,

(1) (x + y) ◦lw z ⊆ (x ◦lw z) + (y ◦lw z)
(2) (x · y) ◦lw z ⊆ (x ◦lw z) · (y ◦lw z)
(3) x ◦lw (y ◦lw z) = (x ◦lw y) ◦lw z.

or the right weak composition operation (hyperoperation) and denoted ◦rw if, for all
x, y, z ∈ R:

(1) (x ◦rw z) + (y ◦rw z) ⊆ (x + y) ◦rw z
(2) (x ◦rw z) · (y ◦rw z) ⊆ (x · y) ◦rw z
(3) x ◦rw (y ◦rw z) = (x ◦rw y) ◦rw z.

The hyperstructure (R, +, ·, ◦W ) (regardless of type) is called a weak composition hy-
perstructure (i.e. weak composition semihyperring / weak composition hyperring / etc.)
regardless of whether ◦W = ◦lw or ◦W = ◦rw or whether ◦W is single– or multi–valued.

Chvalina has in [3,4] and subsequent papers introduced and studied the concept of quasi-
order hypergroups, which has been studied by a number of authors since. In the following
theorem we not only give necessary conditions for the existence of a left (right) weak
composition hyperoperation but also establish a link between quasi-order hypergroups
and EL–hyperstructures by defining the composition hyperoperation by a◦b = [a)≤∪ [b)≤
for all a, b ∈ R, i.e. by a condition used when testing whether a hypergroupoid (H, ◦) is
a quasi-order hypergroup. (For details see e.g.[9], chapter 3, §1). Notice that thanks to
reflexivity of relation ≤ the set [a)≤ ∪ [b)≤ has for a 6= b always at least two elements.
Theorem 5.7. Let (R,⊕, •) be a semihyperring in the general sense constructed in Lemma 4.1
from quasi-ordered semigroups (R, +,≤) and (R, ·,≤). If, for all r ∈ R, there is r + r ≤ r
and r · r ≤ r, then there exists a left weak composition hyperoperation ◦lw on (R,⊕, •).
Proof. Define a ◦lw b = [a)≤ ∪ [b)≤ for all a, b ∈ R. In this context the left-hand side of
property 1 of Definition 5.6 is

[x + y)≤ ◦lw z =
⋃

x+y≤a

[a)≤ ∪ [z)≤ = [x + y)≤ ∪ [z)≤

while the right-hand side is
(x ◦lw z)⊕ (y ◦lw z) = ([x)≤ ∪ [z)≤)⊕ ([y)≤ ∪ [z)≤)

=
⋃

a∈[x)≤∪[z)≤
b∈[y)≤∪[z)≤

[a + b)≤,

i.e. (x ◦lw z) ⊕ (y ◦lw z) = {d ∈ R; a + b ≤ d; (x ≤ a or z ≤ a) and (y ≤ b or z ≤ b)}.
Suppose an arbitrary c ∈ [x + y)≤ ◦lw z. There are two options: c ∈ [x + y)≤ or c ∈ [z)≤.
If c ∈ [x + y)≤, then obviously c ∈ (x ◦lw z) ⊕ (y ◦lw z) because a ∈ [x)≤, b ∈ [y)≤, i.e.
x ≤ a, y ≤ b implies x + y ≤ a + b which thanks to transitivity of ≤ means that x + y ≤ c
which is what we suppose. If c ∈ [z)≤, i.e. z ≤ c, then if we suppose that z + z ≤ z, we
get from transitivity of ≤ that z + z ≤ c. Yet this is on the right-hand side the case of
a ∈ [z)≤, b ∈ [z)≤, i.e. z + z ≤ a + b.

The proof of property 2 is analogous, the proof of property 3 is obvious. �

Corollary 5.8. If (R, +,≤) and (R, ·,≤) are idempotent quasi-ordered semigroups, then
there always exists a left weak composition hyperoperation ◦lw on (R,⊕, •). The same
holds if r + r ≤ r for all r ∈ R and (R, ·,≤) is an idempotent quasi-ordered semigroup or
if r · r ≤ r for all r ∈ R and (R, +,≤) is an idempotent quasi-ordered semigroup.
Proof. Conditions r + r ≤ r, r · r ≤ r included in Theorem 5.7 in this case turn into
r ≤ r. However, since the relation ≤ is reflexive, they hold trivially. �
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Remark 5.9. If both (R, +,≤) and (R, ·,≤) are quasi-ordered groups, then simultaneous
validity of r + r ≤ r and r · r ≤ r for all r ∈ R is equivalent to the fact that r ≤ es and
r ≤ ep, where es and ep are neutral elements of (R, +) and (R, ·) respectively. Thus es and
ep are the greatest elements of (R,≤), which means that for groups (R, +,≤) and (R, ·,≤)
validity of the conditions in Theorem 3 implies that es = ep.

Theorem 5.10. There exists a right weak composition operation ◦rw on all types of hy-
perstructures (R,⊕, •) discussed in Lemma 4.1 which are constructed from a quasi-ordered
semigroup (R, +,≤) and a commutative idempotent quasi-ordered semigroup (R, ·,≤).

Proof. For arbitrary A, B ⊆ R denote

A ◦rw B = {a · b; a ∈ A, b ∈ B}, (5.6)

where · is the single-valued product of (R, ·,≤). One-element sets A, B will be represented
by the elements themselves, i.e. {a} ◦rw {b} = a · b, which will allow us to write

a ◦rw b = a · b (5.7)

for all a, b ∈ R.
Now in property 1 of Definition 5.6 we get on the left-hand side, which reads (x ◦rw

z) ⊕ (y ◦rw z), the set [x · z + y · z)≤ which thanks to distributivity of the single-valued
structure (R, +, ·) is [(x + y) · z)≤. On the right-hand side, which reads (x⊕ y) ◦rw z, we
get [x + y)≤ ◦rw z, which equals

⋃
x+y≤s

{s · z}. Yet since the relation ≤ is reflexive, there is

x + y ≤ x + y and [(x + y) · z)≤ ⊆
⋃

x+y≤s
{s · z}.

In property 2 of Definition 5.6 we get that (thanks to commutativity and idempotency)

(x ◦rw z) • (y ◦rw z) = (x · z) • (y · z) = [x · z · y · z)≤
= [x · y · z · z)≤ = [x · y · z)≤.

On the left-hand side we get that [x · y)≤ ◦rw z =
⋃

x·y≤r
{r · z}. Thus thanks to reflexivity

of the relation ≤ property 2 holds.
In property 3 of Definition 5.6 there is x ◦rw (y ◦rw z) = x ◦rw (y · z) = x · y · z and

(x ◦rw y) ◦rw z = (x · y) ◦rw z = x · y · z. �

Example 5.11. If we continue with Example 4.3 and define

A ◦lw B = [A)⊆ ∪ [B)⊆ = {R ∈ P(S); A ⊆ R or B ⊆ R}

for all A, B ∈ P(S), then since both set intersection and set union are idempotent, the
above defines a left weak composition hyperoperation on (P(S),⊕, •), i.e. (P(S),⊕, •, ◦lw)
is a weak composition semihyperring in the general sense.

Example 5.12. If we continue with Example 4.3 and define A ◦rw B = A ∩ B for all
A, B ∈ P(S), then since the set intersection is both commutative and idempotent (and
distributive with respect to set union), this defines a weak composition operation on
(P(S),⊕, •), i.e. that (P(S),⊕, •,∩) is a weak composition semihyperring in the general
sense.

Examples 5.13 and 5.14 are partly motivated by the classical interval binary hyperop-
eration on a linearly ordered group discussed e.g. in [17] and defined by

a ∗ b = [min{a, b})≤ ∩ (max{a, b}]≤
= {x ∈ G; min{a, b} ≤ x ≤ max{a, b}}

for all a, b ∈ G.
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Example 5.13. Regard the ordered semiring of natural numbers, i.e. a distributive
structure (N, +, ·), where (N, +) and (N, ·) are semigroups and ≤ is the usual ordering of
natural numbers with the smallest element 1. Obviously (N, +,≤) and (N, ·,≤) are quasi-
ordered semigroups, which enables us to construct semihypergroups (N,⊕) and (N, •) using
(3.1) and (3.2) respectively. Thus we get a semihyperring in the general sense (N,⊕, •).

For arbitrary a, b ∈ N define

a ◦rw b = [max{a, b})≤. (5.8)

Obviously, the maximum always exists and a◦rw b is never empty or a one-element set. In
the proof of Theorem 6.2 we will show that (5.8) is a weak composition hyperoperation on
(N,⊕, •), or rather on every set where there hold implications used in Theorem 6.2, such
that it is different from the hyperoperation considered in the proof of Theorem 5.10.

Example 5.14. One can easily show that when changing in (5.8) max{a, b} to min{a, b},
we get another weak composition hyperoperation on (N,⊕, •).

6. Existence theorems
Using Lemma 4.1, results of section 5 might be summed up as follows. Notice that

definitions of composition hyperstructures are analogies of Definition 3.2, only the carrier
hyperstructure is different.

Theorem 6.1. Let (R, +,≤) and (R, ·,≤) be quasi-ordered semigroups and (R,⊕), (R, •)
their associated EL–hyperstructures constructed using (3.1) and (3.2) respectively. Fur-
thermore, let · distribute over + from both left and right.

(1) If operations + and · are idempotent, then there exists a composition hyperoperation
◦ on (R,⊕, •) such that (R,⊕, •, ◦) is a composition semihyperring in the general
sense.

(2) The same holds if (R, +) or (R, ·) are monoids with neutral elements es, ep respec-
tively, and either ep ≤ ep + ep, es ≤ es · es or ep + ep ≤ ep, es · es ≤ es.

(3) If (R, +) is a group or (R,⊕) is a hypergroup, then in 1 and 2 (R,⊕, •, ◦) is a
composition hyperring in the general sense.

(4) If (R, ·) is a group, then in 1 and 2 (R,⊕, •, ◦) is a composition semihyperring.
(5) If (R, +) is a group with neutral element 0 and (R \ {0}, ·) is a group, then in 1

and 2 (R,⊕, •, ◦) is a composition hyperring.

Proof. Follows immediately from Lemma 4.1, Theorem 5.2 and Theorem 5.4. �

Analogous theorems can be formulated for weak composition hyperstructures using
Theorem 5.7, Corollary 5.8 or Theorem 5.10. Or – which is more important – imme-
diately after finding suitable (weak) composition operations (hyperoperations) in some
special contexts. An example of this is the following case of linearly ordered commutative
semigroups used in Example 5.13 or Example 5.14.

Theorem 6.2. Let (R,⊕) and (R, •) be two semihypergroups constructed from linearly
ordered commutative semigroups (R, +,≤) and (R, ·,≤) by (3.1) and (3.2) respectively.
Furthermore, let · distribute over + from both left and right. If implications a + a ≤ b⇒
a ≤ b and a · a ≤ b ⇒ a ≤ b hold for all a, b ∈ R, then there exists a weak composition
hyperoperation ◦rw on R such that (R,⊕, •, ◦rw) becomes a weak composition semihyperring
in the general sense.

Proof. The fact that (R,⊕, •) is a semihyperring follows from Lemma 4.1. The weak
composition hyperoperation in question will be (5.8).

Suppose arbitrary x, y, z ∈ R. First we discuss the meaning of property 1 of Defi-
nition 5.6 based on definitions of ⊕ and ◦rw. In our notation the left-hand side reads
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(x ◦rw z)⊕ (y ◦rw z). This is

[max{x, z})≤ ⊕ [max{y, z})≤ =
⋃

a∈[max{x,z})≤
b∈[max{y,z})≤

[a + b)≤

=
⋃

max{x,z}≤a
max{y,z}≤b

[a + b)≤,

which results in the following four cases based on the relations between x, y and z. Notice
that reasoning in cases C) and D) is analogous to reasoning in case B).

A) x ≤ z, y ≤ z: In this case max{x, z} = z, max{y, z} = z and moreover x + y ≤
z + z. Thus ⋃

max{x,z}≤a
max{y,z}≤b

[a + b)≤ =
⋃
z≤a
z≤b

[a + b)≤ =

= {c ∈ R; a + b ≤ c; z ≤ a, z ≤ b}.
At the same time conditions z ≤ a, z ≤ b result in z + z ≤ a + b and from
transitivity of ≤ we get that z + z ≤ c. Finally

(x ◦rw z)⊕ (y ◦rw z) = {c ∈ R; x + y ≤ c} =
= {c ∈ R; z + z ≤ c}. (6.1)

B) x ≤ z, z ≤ y: In this case max{x, z} = z, max{y, z} = y and moreover from
transitivity of ≤ there is x ≤ y. Thus⋃

max{x,z}≤a
max{y,z}≤b

[a + b)≤ =
⋃
z≤a
y≤b

[a + b)≤ =

= {c ∈ R; a + b ≤ c; z ≤ a, y ≤ b}.
At the same time conditions z ≤ a, y ≤ b result in z + y ≤ a + b and from
transitivity of ≤ we get that z + y ≤ c. Finally

(x ◦rw z)⊕ (y ◦rw z) = {c ∈ R; z + y ≤ c}. (6.2)
C) z ≤ x, y ≤ z: This results in (x ◦rw z)⊕ (y ◦rw z) = {c ∈ R; x + z ≤ c}.
D) z ≤ x, z ≤ y: This results in

(x ◦rw z)⊕ (y ◦rw z) = {c ∈ R; x + y ≤ c} = {c ∈ R; z + z ≤ c}
The right-hand side of property 1 of Definition 5.6 reads (x⊕y)◦rw z. Based on definitions
of ⊕ and ◦rw this is

[x + y)≤ ◦rw z =
⋃

r∈[x+y)≤

[max{r, z})≤ =
⋃

x+y≤r

[max{r, z})≤.

However, in our case this is the same as [max{x + y, z})≤, which is
{d ∈ R; max{x + y, z} ≤ d}. (6.3)

Now we verify the inclusion in property 1 of Definition 5.6. Suppose an arbitrary c ∈
(x ◦rw z)⊕ (y ◦rw z) and let us find out whether c ∈ (x⊕ y) ◦rw z. We have to test each of
the cases A−D.

ad A: The element c is such that z + z ≤ c, x + y ≤ c and at the same time x ≤ z,
y ≤ z. Thus
(1) if max{x + y, z} = x + y, then (6.3) turns into {d ∈ R; x + y ≤ d}. Thus

c ∈ (x⊕ y) ◦rw z obviously holds.
(2) if max{x + y, z} = z, then (6.3) turns into {d ∈ R; z ≤ d} and we have to

show that z ≤ c. Yet since z + z ≤ c, there is – thanks to the assumption of
the theorem – also z ≤ c and c ∈ (x⊕ y) ◦rw z.
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ad B: The element c is such that z +y ≤ c and at the same time x ≤ z, z ≤ y. Thus
(1) if max{x + y, z} = x + y, then (6.3) turns into {d ∈ R; x + y ≤ d}. Since

x ≤ z, there is x + y ≤ z + y and from transitivity we get that x + y ≤ c.
Thus c ∈ (x⊕ y) ◦rw z.

(2) if max{x + y, z} = z, then (6.3) turns into {d ∈ R; z ≤ d} and we have to
show that z ≤ c. Since z ≤ y, there is z + z ≤ z + y and from transitivity
of ≤, there is z + z ≤ c. Yet this means – thanks to the assumption of the
theorem – that z ≤ c and c ∈ (x⊕ y) ◦rw z.

ad C: The element c is such that x+z ≤ c and at the same time z ≤ x, y ≤ z. Thus
(1) if max{x+y, z} = x+y, then (6.3) turns into {d ∈ R; x+y ≤ d} and we have

to show that x + y ≤ c. Suppose on contrary that c < x + y. Since y ≤ z,
there is c < x+z. Yet since simultaneously x+z ≤ c, we get from transitivity
that c < c which is impossible. Thus x + y ≤ c and c ∈ (x⊕ y) ◦rw z.

(2) if max{x + y, z} = z, then (6.3) turns into {d ∈ R; z ≤ d} and we have to
show that z ≤ c. Since z ≤ x, there is z + z ≤ x + z and from transitivity of
≤, there is z + z ≤ c. Yet this – thanks to the assumption of the theorem –
means that z ≤ c and c ∈ (x⊕ y) ◦rw z.

ad D: The element c is such that x + y ≤ c, z + z ≤ c and at the same time z ≤ x,
z ≤ y. Thus
(1) if max{x + y, z} = x + y, then (6.3) turns into {d ∈ R; x + y ≤ d} and

we have to show that x + y ≤ c. Yet this is one of our assumptions. Thus
c ∈ (x⊕ y) ◦rw z holds trivially.

(2) if max{x + y, z} = z, then (6.3) turns into {d ∈ R; z ≤ d} and we have to
show that z ≤ c. Yet since z + z ≤ c, there is also – thanks to the assumption
of the theorem – that z ≤ c and c ∈ (x⊕ y) ◦rw z.

Thus we have verified validity of property 1 of Definition 5.6. The proof of property 2
is completely analogous.

Verifying property 3 is rather straightforward. The left-hand side x ◦rw (y ◦rw z) is

x ◦rw [max{y, z})≤ =
⋃

r∈[max{y,z})≤

[max{x, r})≤

=
⋃

max{y,z}≤r

[max{x, r})≤

while the right-hand side (x ◦rw y) ◦rw z is

[max{x, y})≤ ◦rw z =
⋃

s∈[max{x,y})≤

[max{s, z})≤

=
⋃

max{x,y}≤s

[max{s, z})≤.

Yet since the relation ≤ is reflexive, i.e. max{y, z} ≤ max{y, z}, max{x, y} ≤ max{x, y},
both sides equal [max{x, y, z})≤.

Thus finally (5.8) is a weak composition hyperoperation on (R,⊕, •) with the assumed
properties. �

Remark 6.3. Notice that as regards number domains, the implications used in Theo-
rem 6.2 which obviously hold in N or Z, do not hold for other number domains. The
transition to Q or R is not possible as e.g. 0.1 · 0.1 ≤ 0.02 yet 0.1 6≤ 0.02. Notice that if
we expanded Example 5.13 to R = R+ or considered this in the theorem, then e.g. in case
C2 of the proof the conditions would not hold for multiplication and x = 0.1, y = 0.02,
z = 0.1. Naturally, we could expand Theorem 6.2 by including analogies of parts 4 and 5
of Theorem 6.1.
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Abstract
In this paper, by using Green’s functions for second order differential equations, we estab-
lish new Lyapunov-type inequalities for third order linear differential equations with two
points boundary conditions. By using such inequalities, we obtain sharp lower bounds for
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1. Introduction
In [15], Lyapunov obtained the following remarkable result: If q ∈ C

(
[0,∞),R+) and

y(t) is a nontrivial solution of
y′′ + q (t) y = 0 (1.1)

with Dirichlet boundary condition
y (a) = y (b) = 0 (1.2)

where a, b ∈ R with a < b, and y (t) 6≡ 0 for t ∈ (a, b), then the following inequality
4

b− a
≤
∫ b

a
q (s) ds (1.3)

holds. The inequality (1.3) is the best possible in the sense that if the constant 4 in the left
hand side of (1.3) is replaced by any larger constant, then there exists an example of (1.1)
for which (1.3) no longer holds (see [12, p. 345], [14, p. 267]). The inequality (1.3) provides
a lower bound for the distance between two consecutive zeros of y. Furthermore, this result
has found many applications in areas like eigenvalue problems, stability, oscillation theory,
disconjugacy, etc. Since then, there have been several results to generalize the above linear
equation in many directions [1–19]. Before stating many efforts, it is worth to the mention
following work.
∗Corresponding Author.
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By using Green’s function, Hartman [12] obtained the generalized inequality as follows:
If q ∈ C ([0,∞),R) and y(t) is a nontrivial solution on (a, b) for problem (1.1)-(1.2), then

1 ≤
∫ b

a

(s− a) (b− s)
b− a

q+ (s) ds (1.4)

holds, where q+ (t) = max {q (t) , 0}. It is easy to see that the functionM(t) = (t− a) (b− t)
takes the maximum value at a+ b

2 , i.e.

M(t) ≤ max
a≤ t ≤b

M (t) = M

(
a+ b

2

)
=
(
b− a

2

)2
. (1.5)

Thus, from (1.5), the inequality (1.4) is a natural generalization of the inequality (1.3).
In this paper, we prove new Lyapunov-type inequalities for third order linear differential

equation of the form
y′′′ + q (t) y = 0, (1.6)

where q ∈ C (R,R) and y (t) is a real solution of (1.6) satisfying the following linearly
independent two-point boundary conditions

Y1 (y) := γ11y (a) + γ12y
′ (a) + γ13y (b) + γ14y

′ (b) = 0
Y2 (y) := γ21y (a) + γ22y

′ (a) + γ23y (b) + γ24y
′ (b) = 0

Y3 (y) := y′′ (a) + y′′ (b) = 0
(1.7)

or 
Y4 (y) := γ11y

′ (a) + γ12y
′′ (a) + γ13y

′ (b) + γ14y
′′ (b) = 0

Y5 (y) := γ21y
′ (a) + γ22y

′′ (a) + γ23y
′ (b) + γ24y

′′ (b) = 0
Y6 (y) := y (a) + y (b) = 0

(1.8)

where a, b ∈ R with a < b, and y (t) 6≡ 0 for t ∈ (a, b).
Now, we present Green’s functions to be used in the proofs of our main results. Assume

that y (t) is a nontrivial solution of (1.1) satisfying the linearly independent two-point
boundary conditions Y1 (y) = Y2 (y) = 0. Thus, this condition implies that, of six deter-
minants contained in the matrix[

γ11 γ12 γ13 γ14
γ21 γ22 γ23 γ24

]
, (1.9)

not all are zero. Therefore, either∣∣∣∣ γ11 γ12
γ21 γ22

∣∣∣∣ 6= 0 or
∣∣∣∣ γ13 γ14
γ23 γ24

∣∣∣∣ 6= 0 (1.10)

or else [13, p. 216]. We know that the solution of (1.1) satisfying Y1 (y) = Y2 (y) = 0 is
given by

y (t) =
∫ b

a
G1 (t, s) y′′ (s) ds (1.11)

with Green’s function

G1 (t, s) =


A1 (s)B2 (t)−A2 (s)B1 (t)

C
+ t− s ; a ≤ s ≤ t

A1 (s)B2 (t)−A2 (s)B1 (t)
C

; t ≤ s ≤ b
(1.12)

where
γ11 + γ13 6= 0, (1.13)

Ai (t) = (b− t) γi3 + γi4, (1.14)
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Bi (t) = (t− a) (γi1 + γi3)− (γi2 + (b− a) γi3 + γi4) (1.15)
for i = 1, 2, and

C =
∣∣∣∣γ11 + γ13 γ12 + γ13 (b− a) + γ14
γ21 + γ23 γ22 + γ23 (b− a) + γ24

∣∣∣∣ (1.16)

(See the proof of the following Lemma 2.1 for the construction of the Green’s function
(1.12)). We also know that non-homogeneous linear boundary value problem y′′ (t) = g (t)
satisfying Y1 (y) = Y2 (y) = 0 has only the trivial solution under the condition

D (Y ) =
∣∣∣∣Y1 (y1) Y1 (y2)
Y2 (y1) Y2 (y2)

∣∣∣∣ 6= 0, (1.17)

where y1(t) = 1 and y2(t) = t are the solutions of the corresponding homogeneous linear
equation. Thus, we have the following condition

D (Y ) =
∣∣∣∣γ11 + γ13 γ11a+ γ12 + γ13b+ γ14
γ21 + γ23 γ21a+ γ22 + γ23b+ γ24

∣∣∣∣ 6= 0 (1.18)

instead of (1.17). It is clear that D (Y ) = C. Here we note that the condition (1.18)
is also valid for the problem (1.6) with the two-point boundary conditions (1.7) or (1.8).
We also know that if the problem (1.1) satisfying Y1 (y) = Y2 (y) = 0 is well posed (if, in
other words, the problem (1.1) satisfying Y1 (y) = Y2 (y) = 0 has only the trivial solution
y (t) ≡ 0), then it has a unique Green’s function.

It is easy to see that under the condition∣∣∣∣γ11 γ12
γ21 γ22

∣∣∣∣ =
∣∣∣∣γ13 γ14
γ23 γ24

∣∣∣∣ , (1.19)

the Green’s function G1 (t, s) is symmetric, that is, G1 (t, s) = G1 (s, t) for t, s ∈ [a, b] .
Moreover, we know that this symmetry is a result of self-adjoint of the equation (1.1)
satisfying Y1 (y) = Y2 (y) = 0 [13, p. 215]. Thus, if the condition (1.19) holds, then we
have

y (t) =
∫ b

a
G (t, s) y′′ (s) ds, (1.20)

where

G (t, s) =


A1 (t)B2 (s)−A2 (t)B1 (s)

C
; a ≤ s ≤ t

A1 (s)B2 (t)−A2 (s)B1 (t)
C

; t ≤ s ≤ b
(1.21)

is a symmetrized Green’s function instead of (1.12). Therefore, in this paper, by using the
symmetrized Green’s function (1.21) for the equation (1.1) satisfying Y1 (y) = Y2 (y) = 0
under the condition (1.19), we prove new Lyapunov-type inequalities for third order linear
differential equation (1.6) with the two-point boundary conditions (1.7) or (1.8). By
using such inequalities, we obtain sharp lower bounds for the eigenvalues of corresponding
equations.

2. Main results
We state some important lemmas which we will be used in the proofs of our main

results. In the following first lemma, we construct Green’s function for the second order
nonhomogeneous differential equation

y′′ = g (t) (2.1)
with two-point boundary conditions Y1 (y) = Y2 (y) = 0.
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Lemma 2.1. If y (t) is a solution of (2.1) satisfying Y1 (y) = Y2 (y) = 0, then the integral
equation (1.11) holds.

Proof. Integrating Eq. (2.1) from a to t to find y, we get

y′ (t) = d1 +
∫ t

a
g (s) ds (2.2)

and

y (t) = d0 + d1 (t− a) +
∫ t

a
(t− s) g (s) ds, (2.3)

where d0 and d1 are arbitrary constants. Thus, the general solution of (2.1) is (2.3). Now,
by using the boundary conditions Y1 (y) = Y2 (y) = 0, we can find the constants d0 and
d1. Thus, we have

d1 =
∫ b

a

(γ11 + γ13)A2 (s)− (γ21 + γ23)A1 (s)
C

g (s) ds (2.4)

and

d0 = −
∫ b

a

[
(γ12+(b−a)γ13+γ14)[(γ11+γ13)A2(s)−(γ21+γ23)A1(s)]+CA1(s)

C(γ11+γ13)

]
g (s) ds, (2.5)

where Ai (t), i = 1, 2, and C are given in (1.14) and (1.16), respectively. Substituting the
constants d0 and d1 in the general solution (2.3), we get

y (t) =
∫ t

a

[
A1 (s)B2 (t)−A2 (s)B1 (t)

C
+ t− s

]
g (s) ds+∫ b

t

A1 (s)B2 (t)−A2 (s)B1 (t)
C

g (s) ds. (2.6)

This completes the proof. �

Lemma 2.2. Let (1.19) hold. If y (t) is a solution of (1.6) satisfying the two-point bound-
ary conditions (1.8), then the following inequality

|y (t)| ≤
∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds (2.7)

holds, where

G (t) = 1
2

∫ b

a
|G (u, t)| du (2.8)

and G (t, s) is given in (1.21).

Proof. Assume that y (t) is a solution of (1.6) satisfying Y4 (y) = Y5 (y) = Y6 (y) = 0. It
is easy to see that, by using Y4 (y) = Y5 (y) = 0 and proceeding as in the proof of Lemma
2.1, we have

y′ (t) =
∫ b

a
G (t, s) y′′′ (s) ds, (2.9)

where G (t, s) is the Green’s function (1.21). Integrating (2.9) from a to t, we get

y (t) = y (a) +
∫ t

a

(∫ b

a
G (u, s) y′′′ (s) ds

)
du. (2.10)

Similarly, integrating (2.9) from t to b, we get

y (t) = y (b) +
∫ b

t

(
−
∫ b

a
G (u, s) y′′′ (s) ds

)
du. (2.11)
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Adding (2.10) and (2.11), and by using Y6 (y) = 0, we have

y (t) = 1
2

{∫ t

a

(∫ b

a
G (u, s) y′′′ (s) ds

)
du+

∫ b

t

(
−
∫ b

a
G (u, s) y′′′ (s) ds

)
du

}
.

(2.12)
By taking the absolute value of (2.12), we obtain

|y (t)| ≤ 1
2

∫ b

a

(∫ b

a
|G (u, s)|

∣∣y′′′ (s)∣∣ ds) du (2.13)

and hence

|y (t)| ≤ 1
2

∫ b

a

∣∣y′′′ (s)∣∣ (∫ b

a
|G (u, s)| du

)
ds, (2.14)

where

G (u, s) =


A1 (u)B2 (s)−A2 (u)B1 (s)

C
; s ≤ u ≤ b

A1 (s)B2 (u)−A2 (s)B1 (u)
C

; a ≤ u ≤ s.
(2.15)

Therefore, we have the inequality (2.7). This completes the proof. �

By using the inequality (2.7), we have the following result which is an useful tool to
determine a lower bound of distance between a and b points of solution of the equation
(1.6) under the boundary conditions (1.8).

Theorem 2.3. Let (1.19) hold. If y(t) is a nontrivial solution of (1.6) satisfying the
two-point boundary conditions (1.8), then the following Lyapunov-type inequality

1 ≤
∫ b

a
G (s) |q (s)| ds (2.16)

holds, where G (t) is given in (2.8).

Proof. Assume that y(t) is a solution of (1.6) satisfying Y4 (y) = Y5 (y) = Y6 (y) = 0 and
y is not identically zero on (a, b). From (1.6) and (2.7), we get∣∣y′′′ (t)∣∣ = |q (t)| |y (t)| ≤ |q (t)|

∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds. (2.17)

Multiplying both sides of (2.17) by G (t) and integrating from a to b, we get∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds ≤ ∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds ∫ b

a
G (s) |q (s)| ds. (2.18)

Next, we prove that

0 <
∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds. (2.19)

If (2.19) is not true, then we have∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds = 0. (2.20)

From (2.7), we get

|y (t)| ≤
∫ b

a
G (s)

∣∣y′′′ (s)∣∣ ds = 0. (2.21)

It follows from (2.21) that y(t) ≡ 0 for t ∈ (a, b), which contradicts with (1.8) since
y (t) 6= 0 for all t ∈ (a, b). Thus, by using (2.19) in (2.18), we get the inequality (2.16). �
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Now, we give another main result for the equation (1.6) under the boundary conditions
(1.7).

Theorem 2.4. Let (1.19) hold. If y(t) is a nontrivial solution of (1.6) satisfying the
two-point boundary conditions (1.7), then the following Lyapunov-type inequality

1 ≤ G0

∫ b

a
|q (s)| ds (2.22)

holds, where G0 = 1
2
∫ b
a |G (t0, s)| ds and |y(t0)| = max{|y(t)| : a ≤ t ≤ b}.

Proof. Assume that y(t) is a solution of (1.6) satisfying Y1 (y) = Y2 (y) = Y3 (y) = 0 and
y is not identically zero on (a, b). By integrating y′′′ (t) from a to t, we get

y′′ (t) = y′′ (a) +
∫ t

a
y′′′ (s) ds. (2.23)

Similarly, by integrating y′′′ (t) from t to b, we have

y′′ (t) = y′′ (b)−
∫ b

t
y′′′ (s) ds. (2.24)

Adding the inequalities (2.23) and (2.24), and by using Y3 (y) = 0, we have

2y′′ (t) =
∫ t

a
y′′′ (s) ds−

∫ b

t
y′′′ (s) ds. (2.25)

By taking the absolute value of (2.25), we obtain∣∣y′′ (t)∣∣ ≤ 1
2

∫ b

a

∣∣y′′′ (s)∣∣ ds. (2.26)

Next, pick t0 ∈ (a, b) so that |y(t0)| = max{|y(t)| : a ≤ t ≤ b}. From (1.20), (2.26), and
(1.6), we get

|y (t0)| ≤
∫ b

a
|G (t0, s)|

∣∣y′′ (s)∣∣ ds
≤ 1

2

∫ b

a
|G (t0, s)| ds

∫ b

a

∣∣y′′′ (s)∣∣ ds (2.27)

= G0

∫ b

a
|q (s)| |y (s)| ds

≤ G0 |y (t0)|
∫ b

a
|q (s)| ds. (2.28)

Dividing both sides by |y(t0)|, we get the inequality (2.22). �

Remark 2.5. To the best of our knowledge, the inequality (2.16) (or (2.22)) is new
Lyapunov-type inequality for third order linear differential equation (1.6) under the two-
point boundary conditions (1.8) (or (1.7)).

It is easy to see that since

G (t) = 1
2

∫ b

a
|G (u, t)| du ≤

∼
C (t)
2 |C| , (2.29)

where
∼
C (t) =

∼
A1 (t)

∫ t

a

∼
B2 (u) du+

∼
A2 (t)

∫ t

a

∼
B1 (u) du

+
∼
B2 (t)

∫ b

t

∼
A1 (u) du+

∼
B1 (t)

∫ b

t

∼
A2 (u) du, (2.30)
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∼
Ai (t) = (b− t) |γi3|+ |γi4| , (2.31)

and
∼
Bi (t) = (|γi1|+ |γi3|) (t− a) + |γi2|+ |γi3| (b− a) + |γi4| (2.32)

for i = 1, 2, we have the following result from Theorem 2.3 and hence the proof is omitted.

Corollary 2.6. Let (1.19) hold. If y(t) is a nontrivial solution of (1.6) satisfying the
two-point boundary conditions (1.8), then the following Lyapunov-type inequality

1 ≤
∫ b

a

∼
C (s)
2 |C| |q (s)| ds (2.33)

holds, where C and
∼
C (t) are given in (1.16) and (2.30), respectively.

Remark 2.7. Note that if we take γ11 = γ13 = γ23 = 1, γ21 = −1, and γi2 = γi4 = 0 for
i = 1, 2 in (1.8), we have

8 ≤
∫ b

a
(b− s) (b− 4a+ 3s) |q (s)| ds (2.34)

from (2.33), and hence

6
(b− a)2 ≤

∫ b

a
|q (s)| ds. (2.35)

Now, we give another result for the equation (1.6) by using the following inequality

|G (t, s)| ≤
∼
A1 (s)

∼
B2 (s) +

∼
A2 (s)

∼
B1 (s)

|C|
(2.36)

obtained by taking the absolute value of (1.21). Thus, we have the following result from
Theorem 2.4 and hence the proof is omitted.

Corollary 2.8. Let (1.19) hold. If y(t) is a nontrivial solution of (1.6) satisfying the
two-point boundary conditions (1.7), then the following Lyapunov-type inequality

1 ≤
∫ b

a

∼
A1 (s)

∼
B2 (s) +

∼
A2 (s)

∼
B1 (s)

2 |C| ds

∫ b

a
|q (s)| ds (2.37)

holds, where C,
∼
Ai (t),

∼
Bi (t), i = 1, 2, are given in (1.16), (2.31), (2.32), respectively.

Now, we give an application of the obtained Lyapunov-type inequalities for the following
eigenvalue problem

y′′′ + λk (t) y = 0 (2.38)

under the boundary conditions (1.7). Thus, if there exists a nontrivial solution y (t) of
linear homogeneous problem (2.38), then we have

2 |C|∫ b
a

( ∼
A1 (s)

∼
B2 (s) +

∼
A2 (s)

∼
B1 (s)

)
ds
∫ b
a |k (s)| ds

≤ |λ| , (2.39)

where C,
∼
Ai (t),

∼
Bi (t), i = 1, 2, are given in (1.16), (2.31), (2.32), respectively.
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Abstract
In this work we give sufficient conditions for a ring R to be quasi-Frobenius, such as R being
left artinian and the class of injective cogenerators of R-Mod being closed under projective
covers. We prove that R is a division ring if and only if R is a domain and the class of
left free R-modules is closed under injective hulls. We obtain some characterizations of
artinian principal ideal rings. We characterize the rings for which left cyclic modules
coincide with left cocyclic R-modules. Finally, we obtain characterizations of left artinian
and left coartinian rings.
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1. Introduction
In [1] and [3] the authors obtained characterizations of artinian principal ideal rings

using big lattices of classes of modules closed under certain closure properties. Also,
in [4] the authors deal with rings over which all injective hulls of left simple modules are
noetherian. These rings are called left coartinian rings. In this work we further investigate
these notions, among others.

In the sequel, R denotes an associative ring with identity and R-Mod denotes the
category of left unitary R-modules, to which all “modules" and “R-modules" will belong,
unless otherwise specified. A left uniserial ring will be a ring whose left ideals are linearly
ordered. By “QF" we mean “quasi-Frobenius". Also, “N ≤e M" will stand for “N is
essential in M".
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2. Artinian principal ideal rings
Recall that an artinian principal ideal ring is a left and right artinian, left and right

principal ideal ring.

Definition 2.1. We will say that RM is a paraprojective module if RM embeds in RN
whenever RM is an epimorphic image of RN . Dually, we say that RM is a parainjective
module if RM is quotient of each module RN in which RM embeds.

Theorem 2.2. The following statements are equivalent for a ring R.
1) R is an artinian principal ideal ring.
2) Every class of R-modules closed under submodules and direct sums is also closed

under quotients.
3) Every class of R-modules closed under quotients and direct products is also closed

under submodules.
4) There exists an epimorphism P �M precisely when there exists a monomorphism

M � P for each R-module M and for each projective R-module P .
5) R is left noetherian, and every cyclic R-module C is parainjective.

Proof. 1)⇒ 2), 3), 4) and 5) They follow from [3, Theorem 38].
4) ⇒ 1) For each module M there exists an epimorphism R(X) � M for some set X.

Hence, by hypothesis there exists a monomorphismM � R(X). Therefore, by [6, Corollary
24.15], R is a QF ring. Now, let us take a left ideal I of R. By hypothesis, there exists an
epimorphism R� I. Thus, I = Rx for some x ∈ I. Then, R is a left principal ideal ring.
Therefore, by [5, Sec. 4, Theorem 1], R is an artinian principal ideal ring.

2)⇒ 1) Consider the class of modules

C = {M | there exists a monomorphismM � R(X) for some setX}.
It is clear that C is closed under submodules and direct sums. Then, by hypothesis, C is
closed under quotients. Also, R(X) ∈ C for each set X, so C = R-Mod. Then for each
module M , there exists a monomorphism M � R(X) for some set X, so, by [6, Corollary
24.15], R is a QF ring. Let I be any two sided ideal of R. It is straightforward to verify
that the ring R/I also satisfies 2). It follows that R/I is QF. By [6, P. 217], R is an
artinian principal ideal ring.

3) ⇒ 1) Let E be a minimal injective cogenerator. Consider the class of modules
C = {M | there exists an epimorphism EX � M for some set X}. It is clear that C
is closed under quotients and direct products. By hypothesis, C is then closed under
submodules. Of course, EX ∈ C for each set X. But, for each module M , there exists a
monomorphism M � EX for some set X. Then, C = R-Mod. So, for each projective
module P , there exists an epimorphism EX � P , so that P is a direct summand of EX .
Therefore, P is an injective module. Thus, R is a QF ring. Moreover, as the ring R/I
also satisfies 3), R/I is a QF ring for each two sided ideal I of R. Then, by [6, P. 217], R
is an artinian principal ideal ring.

5) ⇒ 1) As there exists a monomorphism R � E(R), by hypothesis there exists an
epimorphism E(R) � R, so R is left self-injective and left noetherian. Therefore, R is a
QF ring. As the ring R/I also satisfies 5), R/I is a QF ring for each two sided ideal I of
R. Then, R is an artinian principal ideal ring. �

Theorem 2.3. Let R be an artinian principal ideal ring. Then the following conditions
are equivalent for an R-module M .

1) M is finitely generated.
2) M is finitely cogenerated.
3) M is artinian.
4) M is noetherian.
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Proof. 4)⇒ 1) and 3)⇒ 2) They are clear.
1)⇒ 4) This is true over every left noetherian ring.
2) ⇒ 3) Consider the class of modules C = {M | M is finitely cogenerated}, which is

closed under submodules. By hypothesis and [3, Theorem 38] the class C is closed under
quotients, so M is artinian for each M ∈ C .

4) ⇒ 2) By hypothesis R is left semiartinian, so that soc(M) ≤e M for each non
zero module M . If M is noetherian, then soc(M) is finitely generated, so M is finitely
cogenerated.

3) ⇒ 1) For this part, we will use freely [3, Theorem 38]. If M is artinian, then M
is finitely cogenerated. Thus soc(M) ≤e M and soc(M) is finitely generated. Therefore
E(soc(M)) = E(M) and soc(M) =

n⊕
i=1
Si with Si a simple module for each i ∈ {1, . . . , n}.

Thus, E(M) = E(soc(M)) = E(
n⊕
i=1
Si) =

n⊕
i=1
E(Si). We claim that each E(Si) is cyclic.

Indeed, take any simple S. By hypothesis, there exists a monomorphism S � R. More-
over, since every artinian principal ideal ring is QF and thus left self-injective, there exists
a monomorphism E(S) � R. Then there exists an epimorphism R � E(S). Therefore,
E(S) is cyclic, as we claim. Thus E(M) is finitely generated, and as the class of finitely
generated modules is closed under submodules by hypothesis, M is finitely generated. �

Recall that an R-module M is cocyclic if M contains an essential simple submodule.

Theorem 2.4. The classes of non-zero cyclic R-modules and of cocyclic R-modules coin-
cide if and only if R is a left uniserial artinian principal ideal ring.

Proof. ⇒] Let us first prove that R must be left artinian. This is equivalent to every
quotient of RR being finitely cogenerated. By the hypothesis, all we need to prove is that
every cocyclic module is finitely cogenerated. Take then any cocyclic M . There is some
simple S ≤e M . It follows that soc(M) = S. Thus, M has a finitely generated essential
socle, a condition well-known to be equivalent to M being finitely cogenerated.

We now show that R is left self-injective. Suppose otherwise, that is, that R � E(R).
The hypothesis gives that RR is cocyclic, so there is some simple S ≤e R. Hence, E(R) =
E(S), which is obviously cocyclic. Using the hypothesis, we get that E(R) is cyclic, so
that there is an epimorphism R

f
� E(R). Consider the following commutative diagram,

where i and j are inclusion maps.
f−1(R)

f�f−1(R)
����

� � i // R

f
����

=

R �
�

6=
j // E(R)

Note that if i were surjective, j would also be so. Thus, f−1(R) � R. Now we may
construct another level of the diagram. Let us write f� for appropriate restrictions of f .

f−1(f−1(R))

f� ����

� � // f−1(R)

f�
����

=

f−1(R)

f�
����

� � i

6=
// R

f
����

=

R �
�

6=
j // E(R)
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As above, the newest inclusion must be proper. Continuing in this manner, we obtain
an infinite descending chain R  f−1(R)  f−1(f−1(R))  . . ., contradicting that RR is
artinian.

Now, R being left artinian and left self-injective is equivalent to R being QF. Take
any two-sided ideal I. It is straightforward to verify (using that cocyclic modules are
precisely those modules having simple essential submodules) that the ring R/I satisfies
the hypothesis, i.e. that an arbitrary R/I-module is cyclic if and only if it is cocyclic. It
follows that for each two-sided ideal I of R, R/I is QF. But, according to [6, P. 217], this
is equivalent to R being an artinian principal ideal ring.

(One can prove directly that R is a left principal ideal ring. Indeed, take some non-
zero left ideal I. By the hypothesis, it suffices to show that I is cocyclic. Note that the
hypothesis gives some simple S ≤e R. Also, as RR is artinian, there is some simple T ≤ I.
But then T ≤ R, so necessarily S = T . And of course, S ≤ I ≤ R implies that S ≤e I.
This establishes that R is a left principal ideal ring. As we have already shown R to be
QF, [5, Sec. 4, Theorem 1] grants that R is an artinian principal ideal ring.)

As every nonzero quotient of R is cocyclic, then every nonzero quotient of R is uniform.
Therefore by [7, Proposition 2.7] R is left uniserial.
⇐] Take any non-zero cyclic module, say R/I for some left ideal I � R. The submodule

lattice of R/I is isomorphic to [I,R], which is a chain. As RR is artinian, then there exists
I ′ minimal such that I � I ′ ≤ R. Linearity ensures that I ′ is essential in [I,R]. Therefore,
I ′/I is an essential simple submodule of R/I, proving its cocyclicity.

Conversely, let M be a cocyclic module. There is some simple S ≤e M . Also, since RR
is artinian, there is some simple T ≤ R. From the hypothesis on linearity it follows that
R must be local and thus left local, so that S ∼= T . Now, any artinian principal ideal ring
is in particular QF and then in particular left self-injective, so we may extend S ∼= T ↪→ R
to a mapping M → R, which is monic due to the fact that S ≤e M . The situation is
depicted below.

S
��

∼=
����

� �

e
// M
��

���
�
�
�
�
�
�
�
�

=

T
� _

��

R

Thus, M is isomorphic to some left ideal of R, which by hypothesis is principal, i.e.,
cyclic. �

Lemma 2.5. If every semisimple R-module M is parainjective and paraprojective, then
R = R1 ×R2, where R1 is a semisimple ring and R2 is a finite direct product of left local
left artinian rings with all simple modules singular.

Proof. By [2, Theorem 4.7] R is a finite direct product of left local, left and right perfect
rings. Thus, R is a left semiartinian ring. Let Rx be a cyclic module. Then soc(Rx) ≤e Rx
and there exists an epimorphism Rx � soc(Rx) by hypothesis, so soc(Rx) is finitely
generated. Therefore, Rx is a finitely cogenerated module. Then R is a left artinian ring.

Now, if M is a projective semisimple R-module, there exists an epimorphism E(M) �
M by hypothesis. Then M is injective. Analogously, if M is a semisimple injective R-
module, M is projective. Thus, M is projective if and only if M is injective, for each
semisimple R-module M .

Write R = R1 × · · · × Rn, where each Ri is a left local, left and right perfect ring.
Let 1 ≤ i ≤ n. Note that Ri is left artinian (either because R is left artinian or because
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Ri satisfies the hypothesis on R), that soc(Ri) ≤e Ri (Ri being left semiartinian), that
soc(Ri) is a direct sum of copies of Si (where Ri-simp = {Si}) and is precisely the Si-socle
of R, and that for each M ∈ Ri-Mod, M is projective (respectively, injective) if and only
if it is a projective (respectively, injective) R-module. We claim that Si is projective if
and only if Ri is a semisimple ring. Sufficiency is clear, because over any semisimple ring
every module is projective. Conversely, suppose that Si is projective. Then so is soc(Ri),
which is thus injective. but this makes soc(Ri) an essential direct summand of Ri, whence
soc(Ri) = Ri. This proves the claim.

Set ISS = {i ∈ {1, . . . , n} | Ri is semisimple}, and put RI =
∏

i∈ISS

Ri (which is the

projective socle of R), and RII =
∏

i∈{1,...,n}\ISS

Ri. Then R = RI ×RII , RI is a semisimple

ring and RII is a finite direct product of left local artinian rings over each of which all
simple modules are singular. �

Observe that the hypothesis of Lema 2.5 holds also for R/I for each two sided ideal I
of R.

Recall that a ring R is called left quasi-duo if each maximal left ideal is two sided.

Remark 2.6. For a ring R the following conditions are equivalent.
(1) R is a left quasi-duo ring.
(2) For each simple R-module S, and for all x ∈ S, (0 : x) is a two-sided ideal of R.

Theorem 2.7. For a left quasi-duo ring R, if every semisimple R-module is parainjective
and paraprojective, then R is a finite direct product of left local left artinian rings and for
each left ideal I of the factor ring Ri, I = rad(Ri)m for some m ∈ N.

Proof. Consider the decomposition supplied by [2, Theorem 4.7]. Let R be a factor
ring. Note that R inherits the current hypotheses. Then, there exists an epimorphism
R → soc(R), so Rx = soc(R) = S1 ⊕ S2 ⊕ · · · ⊕ Sn, where Si is a simple module ∀i ∈
{1, . . . , n}. Write x = x1 + x2 + · · · + xn, where each xi ∈ Si\{0}. It is clear that
(0 : x) ⊆ (0 : xi), ∀i ∈ {1, . . . , n}. Let j ∈ {2, . . . , n}. Since R is left local, there is an
isomorphism fj : S1 → Sj . As Sj = Rfj(x1), there is rj ∈ R such that xj = rjfj(x1).
Then, x = x1 + r2f2(x1) + · · · + rnfn(x1). Note that, for 2 ≤ j ≤ n, (0 : x1)Rfj(x1) = 0
because (0 : x1) is a two sided ideal by hypothesis and Remark 2.6. Thus, (0 : x) = (0 : x1).
Then, Rx ∼= Rx1. Therefore, Rx = soc(R) is a simple module.

As established in the proof of Lemma 2.5, R is a left artinian ring, so that rad(R)
is nilpotent. Let us prove by induction on the nilpotency index that for each left ideal
I of R, I = rad(R)m for some m ∈ N. If n = 1, then rad(R) = 0. Since R is left
artinian, it is semilocal, so in this case it is semisimple and thus a division ring, so that
the only two left ideals are 0 = rad(R) and R = rad(R)0. Let us suppose that n > 1 is the
nilpotency index. As rad(R)n = 0, rad(R)n−1 6= 0 is annhilated by rad(R), so rad(R)n−1 is
a semisimple module (again by semilocality). Then, rad(R)n−1 ⊆ soc(R), but soc(R) is a
simple module, so that rad(R)n−1 = soc(R). Let I be a left ideal of R. Note that, R being
left artinian and having a simple socle, soc(R) ≤ I. Then R/soc(R) = R/(rad(R)n−1) is a
ring with the same hypothesis of R whose radical has nilpotency index n− 1. Therefore,
I/soc(R) = rad(R)m/soc(R) and by the Correspondence Theorem I = rad(R)m, for some
m ∈ N. �

Theorem 2.8. For a commutative ring R the following statements are equivalent.
(1) Every semisimple R-module is parainjective and paraprojective.
(2) R is a finite direct product of uniserial artinian principal ideal rings.

Proof. 1)⇒ 2) Let R be any of the factor rings in the decomposition supplied by Theorem
2.7. We know that, for each ideal I of R, there exists m ∈ N such that I = rad(R)m. In
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the proof of Theorem 2.7, we showed that if rad(R) = 0, then R must be a division ring,
and thus in particular an uniserial artinian principal ideal ring. Suppose then that there
is x ∈ rad(R) but x /∈ rad(R)2. Then rad(R)2 < Rx ≤ rad(R). Thus, rad(R) = Rx.
Then by an induction argument rad(R)m = Rxm,∀m ∈ N. Now we prove that R is a
self-injective ring. Consider the following diagram:

Rxn

f
��

� � i // R

R

where f : Rxn → R is any homomorphism and i : Rxn ↪→ R is the inclusion. Then
f(Rxn) = Rxm with m ≥ n. Put f(xn) = rxm. Consider the homomorphism h : R → R
such that h(s) = s(rxm−n),∀s ∈ R. Thus, for t ∈ R, (hi)(txn) = h(i(txn)) = h(txn) =
txn(rxm−n) = trxm = f(txn). Therefore, R is self-injective. As was established in the
proof of Lemma 2.5, R is artinian. Then R is a QF-ring, Thus, by [5, Sec. 4, Theorem 1],
R is an artinian principal ideal ring.

2)⇒ 1) Follows by [3, Theorem 38]. �

3. Coartinian, conoetherian and quasi-Frobenius rings
The ring R is said to be left coartinian if for every S ∈ R-simp, E(S) is noetherian.

Proposition 3.1. Let R be a ring.
1) R is left artinian if and only if every finitely generated R-module is finitely cogen-

erated.
2) R is left coartinian if and only if every finitely cogenerated R-module is finitely

generated.

Proof. 1) Suppose that R is left artinian and take some finitely generated M ∈ R-Mod.
As R is left noetherian, soc(M), being a submodule of M , is also finitely generated. Also,
R being left semiartinian implies that soc(M) ≤e M . Therefore,M is finitely cogenerated.

Conversely, suppose that every finitely generated module is finitely cogenerated. Any
quotient of RR, being cyclic, is by hypothesis finitely cogenerated. Thus, RR is artinian.

2) Suppose that R is left coartinian and take some finitely cogenerated M ∈ R-Mod.

Then, there are some simple S1, . . . , Sn such that
n⊕
i=1

Si = soc(M) ≤e M . But then

E(M) = E(soc(M)) =
n⊕
i=1

E(Si) is, by hypothesis, noetherian, so that its submodule M

is finitely generated.
Conversely, suppose that every finitely cogenerated module is finitely generated. For

every S ∈ R-simp, any submodule of E(S), being finitely cogenerated, is by hypothesis
finitely generated. Thus, E(S) is noetherian. �

A ring R is called left conoetherian if for every S ∈ R-simp, E(S) is artinian. Accord-
ingly, let us call R left strongly conoetherian if every indecomposable† injective R-module
is artinian.

Theorem 3.2. Let R be a ring. The following statements are equivalent.
1) R is left artinian and left coartinian.
2) The classes of finitely generated and of finitely cogenerated R-modules coincide.

†By “indecomposable" we mean “directly indecomposable".
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3) R is left noetherian and left strongly conoetherian.

Proof. 1)⇔ 2) Direct from Proposition 3.1.
1)⇒ 3) Suppose that 1) holds. Of course, every left artinian ring is left noetherian. Let

E ∈ R-Mod be injective and indecomposable. Since R is artinian, there is some simple
S such that E = E(S). Then, as R is left coartinian, E is noetherian, and in particular
finitely generated. But over a left artinian ring, every finitely generated module is artinian.
Therefore, 3) holds.

3) ⇒ 1) Suppose now that 3) holds. Since R is left noetherian, in order to prove that
it is left artinian it suffices to show that it is left semiartinian. Take then some non-zero
M ∈ R-Mod. As is well-known, left noetherian rings are characterized by the fact that
over them, every injective module is a direct sum of indecomposable modules. We can
apply this to E(M) and then use the fact that R is left strongly conoetherian to obtain
some simple S ≤ E(M). Then, by simplicity, S ≤M .

Let now S ∈ R-simp. Let us write J = rad(R). We have already established that R
is left artinian, so J is nilpotent. Then there is a least n ∈ N such that JnE(S) = 0.
(Of course, n > 0.) Observe that both of Jn−1E(S) and Jn−2E(S)/Jn−1E(S) are artinian
and semisimple. Indeed, they are subquotients of E(S), an artinian module, and they are
annihilated by J , i.e. they are R/J-modules (since R is left artinian, it is semilocal). Thus,
Jn−1E(S) and Jn−2E(S)/Jn−1E(S) are noetherian, so that the short exact sequence

0→ Jn−1E(S)→ Jn−2E(S)→ Jn−2E(S)/Jn−1E(S)→ 0
shows that Jn−2E(S) is noetherian. Next, we use

0→ Jn−2E(S)→ Jn−3E(S)→ Jn−3E(S)/Jn−2E(S)→ 0
to show that Jn−3E(S) is noetherian, and so on. At the n-th step, we obtain that E(S)
is noetherian. �

Theorem 3.3. Let R be a ring. The following conditions are equivalent.
1) R is a domain‡ and the class of free R-modules is closed under taking injective

hulls.
2) R is a division ring.

Proof. 1)⇒ 2) We claim that every free module is injective. Consider R(X) for some set
X. Suppose first that |X| > |R|. By hypothesis, E(R(X)) = R(Y ) for some set Y , so that
|R(X)| ≤ |R(Y )|. Let us verify that |X| ≤ |Y |.

In case both of R(X) and R(Y ) are infinite, we have that
max{|R|, |Y |} = |R(Y )| ≥ |R(X)| = max{|R|, |X|} = |X| > |R|,

so that it must happen that max{|R|, |Y |} = |Y |. Thus, |X| ≤ |Y |.
In case both of R(X) and R(Y ) are finite, we have that

|R||X| = |R(X)| ≤ |R(Y )| = |R||Y |,
so that necessarily |X| ≤ |Y |.

Lastly, in case R(X) is finite and R(Y ) is infinite, we must have that |R| and |X| are
finite, and thus that |Y | is infinite (seeing as, for any set A, R(A) is finite if and only if R
and A are finite).

Thus, we always have that |R| < |X| ≤ |Y |.
Let us write {δy}y∈Y for the canonical basis of R(Y ) §. Since R(X) ↪→e R

(Y ), for each
y ∈ Y there is an ry ∈ R such that 0 6= ryδy ∈ R(X). By the hypothesis on R, the set

‡That is, every product of non-zero elements of R is non-zero.
§That is, for y ∈ Y , δy : Y → R is such that δy : z 7→

{
1 if z = y
0 if z 6= y

, although any basis will do.
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{ryδy}y∈Y is linearly independent. Thus, the submodule of R(X) spanned by {ryδy}y∈Y is
a free module. Therefore,

R(Y ) ∼= R({ryδy}y∈Y ) ∼= 〈{ryδy}y∈Y 〉 ≤ R(X),

so that |R(Y )| ≤ |R(X)|. As we already had the reverse inequality, we obtain that |R(X)| =
|R(Y )|. This cardinality may or may not be finite, but it is now easy to show that, in any
case, |X| = |Y |. This implies that R(X) ∼= R(Y ), whence R(X) is injective.

Now, in case |X| ≤ |R|, simply take some set Z such that |Z| > |R| and note that
R(X) embeds as a direct summand in R(Z), which, by the above argument, is injective.
Therefore, the claim is proved.

Since every projective module is a direct summand of a free module, every projective
module is injective. This condition is well-known to be equivalent to R being QF. Therefore
R is a left artinian domain; thus, there exists a minimal left ideal Rx, which is isomorphic
to R. Therefore R is a division ring.

2)⇒ 1) It is clear. �

Theorem 3.4. Suppose that R is left artinian and that the class of injective cogenerators
of R-Mod is closed under taking projective covers. Then R is a QF ring.

Proof. Take some injective cogenerator of R-Mod, and let P stand for its projective
cover, which exists because R is left perfect. By hypothesis, P is a projective and injective
cogenerator. Let S ∈ R-simp. As S is cogenerated by P , by simplicity S embeds in P ,
so that E(S) embeds in P as a direct summand, which makes it projective. Also observe
that, over any artinian ring, any injective indecomposable module E is the injective hull
of some simple S ≤ E.

Let M ∈ R-Mod be injective. As R is left noetherian, M is a direct sum of injective
indecomposable modules. By the above remark, M is a direct sum of injective hulls
of simple modules, which we know are projective. Therefore, every injective module is
projective. This condition is well-known to be equivalent to R being QF. �
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1. Introduction
In 1976, Caristi [8] proved the following fixed point theorem on a complete metric space,

which is one of the most important generalization of famous Banach contraction principle
and is equivalent the Ekeland’s variational principle [13].

Let T is a self-mapping of a complete metric space (X, d) such that there is a lower
semi continuous function ϕ from X into [0,∞) satisfying

d(x, Tx) ≤ ϕ(x)− ϕ(Tx)
for all x ∈ X, then T has a fixed point.

In this theorem, saying that ϕ is lower semi continuous at x if for any sequence {xn} ⊂
X, we have lim xn = x implies ϕ(x) ≤ lim inf ϕ(xn).

Several authors have obtained various extensions and generalizations of Caristi’s the-
orem by considering Caristi type mappings on many different spaces. For example,
[1–7,9, 23–25,27,28,30,31,33,38,40], and others.

In this paper, we extend the results in [7] to fuzzy metric spaces.
Several notions of fuzzy metric spaces have been introduced and discussed in different

directions by many mathematicians, see [10, 14, 29, 34, 39]. In particular, Kramosil and
Michalek [34] introduced and studied the notion of fuzzy metric space which is closely
related to a class of probabilistic metric spaces. In [15,17] George and Veeramani modified
the concept of fuzzy metric space of Kramosil and Michalek, and obtained a Hausdorff
and first countable topology on the modified fuzzy metric space. In [16,20], it was proved
that the topology induced by a fuzzy metric space in George and Veeramani’s sense is
metrizable. Grabiec [18] obtained a fuzzy version of the Banach contraction principle
∗Corresponding Author.
Email addresses: hakankarayilan@trakya.edu.tr (H. Karayılan), mtelci@trakya.edu.tr (M. Telci)
Received: 21.04.2017; Accepted: 11.09.2017
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in fuzzy metric spaces in Kramosil and Michalek’s sense, and since then many author
[11,12,22,26,32,35,41,42] have proved fixed point theorems in fuzzy metric spaces in the
sense of Kramosil and Michalek and George and Veeramani, using one of the two different
types of completeness in Grabiec’s sense [18] or George and Veeramani’s sense [15].

In [36] Miheţ defined a concept weaker than convergence called p-convergence and
proved a fixed point theorem for fuzzy contractive mappings. Then, in [19] Gregori et
al. introduced the concept of p-Cauchy sequence and showed that p-Cauchy sequence and
Cauchy sequence are two different concepts even in principal fuzzy metric spaces and they
also defined the concept p-completeness.

In this paper, we consider (X,M, ∗) fuzzy metric space in George and Veeramani’s sense
and prove some fixed point theorems for Caristi type mappings orbitally p-complete fuzzy
metric spaces.

2. Preliminaries
In this section, we give some known basic notion of fuzzy metric space in the sense

of George and Veeramani. Throughout this paper, we denote by N the set of positive
integers.

Definition 2.1 ([39]). A binary operation ∗ : [0, 1]× [0, 1]→ [0, 1] is a continuous t-norm
if satisfies the following conditions:

(i) ∗ is associative and commutative,
(ii) ∗ is continuous,
(iii) a ∗ 1 = a for every a ∈ [0, 1],
(iv) a ∗ b ≤ c ∗ d if a ≤ c and b ≤ d for all a, b, c, d ∈ [0, 1].

Definition 2.2 ([15]). The 3-tuple (X,M, ∗) is said to be a fuzzy metric space if X is an
arbitrary set, ∗ is a continuous t-norm andM is a fuzzy set on X×X× (0,+∞) satisfying
the following conditions, for all x, y, z ∈ X and t, s > 0:

(i) M(x, y, t) > 0,
(ii) M(x, y, t) = 1 iff x = y,
(iii) M(x, y, t) = M(y, x, t),
(iv) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s),
(v) M(x, y, ·) : (0,+∞)→ (0, 1] is continuous.
If (X,M, ∗) is a fuzzy metric space, we will say that (M, ∗) is a fuzzy metric on X. If

we replace (iv) by
(vi) M(x, y, t) ∗M(y, z, s) ≤M(x, z,max{t, s}),

then 3-tuple (X,M, ∗) is called a non-Archimedean fuzzy metric space. Since (vi) implies
(iv) then each non-Archimedean fuzzy metric space is a fuzzy metric space.

Example 2.3. Let (X, d) be a metric space. Denote by a.b the usual multiplication for
all a, b ∈ [0, 1], and let Md be the function defined on X ×X × (0,+∞) by

Md(x, y, t) = t

t+ d(x, y) .

Then (X,Md, ·) is a fuzzy metric space called standard fuzzy metric space and (Md, ·) is
called the standard fuzzy metric of d (see [15]).

George and Veeramani proved in [15] that ever fuzzy metric (M, ∗) on X generates a
topology τM on X which has as a base the family of sets of the form

{B(x, r, t) : x ∈ X, 0 < r < 1, t > 0},
where

B(x, r, t) = {y ∈ X : M(x, y, t) > 1− r}
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for all r ∈ (0, 1) and t > 0. They proved also that (X, τM ) is a Hausdorff first countable
topological space.

Definition 2.4 ([21]). A fuzzy metric M on X is said to be stationary if M does not
depend on t, i.e. if for each x, y ∈ X, the function Mx,y(t) = M(x, y, t) is constant. In
this case we write M(x, y) instead of M(x, y, t).

Theorem 2.5 ([15]). A sequence {xn} in a fuzzy metric space (X,M, ∗) converges to x
if and only if M(xn, x, t)→ 1 as n→ +∞.

The following definition was given by Miheţ.

Definition 2.6 ([36]). A sequence {xn} in a fuzzy metric space (X,M, ∗) is called p-
convergent to x0 ∈ X (we write xn →p x0) if limnM(xn, x0, t0) = 1 for some t0 > 0.

If {xn} is p-convergent to x0, then
(1) {xn} in X has at most one limit.
(2) Every subsequence of {xn} is also convergent and has the same limit as the whole

sequence, see [36].
Note that {xn} is convergent to x0 if and only if {xn} is p-convergent to x0 for all t > 0,

see [19].
In [36] the author gave an example that there exist p-convergent but not convergent

sequences.

Definition 2.7 ([18]). A sequence {xn} in a fuzzy metric space (X,M, ∗) is G-Cauchy
sequence iff limn→∞M(xn+p, xn, t) = 1 for all t > 0 and p ∈ N. A fuzzy metric space
(X,M, ∗) is G-complete if every G-Cauchy sequence is convergent in X.

Definition 2.8 ([15]). A sequence {xn} in a fuzzy metric space (X,M, ∗) is Cauchy
sequence iff for each ε ∈ (0, 1) and each t > 0, there exists n0 ∈ N such thatM(xn, xm, t) >
1−ε for all n,m ≥ n0. A fuzzy metric space (X,M, ∗) is complete if every Cauchy sequence
is convergent in X.

In [19] Gregori et al. gave the following definition of Cauchyness and completeness in a
natural way from the p-convergence concept.

Definition 2.9 ([19]). A sequence {xn} in a fuzzy metric space (X,M, ∗) is called p-
Cauchy if there exists t0 > 0 such that for each ε ∈ (0, 1) there exists n0 ∈ N such that
M(xn, xm, t0) > 1 − ε for all n,m ≥ n0, or equivalently limn,m→∞M(xn, xm, t0) = 1 for
some t0 > 0. A fuzzy metric space (X,M, ∗) is p-complete if every p-Cauchy sequence in
X is p-convergent to some point of X.

Note that {xn} is a Cauchy sequence if and only if {xn} is p-Cauchy for all t > 0 and,
obviously, p-convergent sequences are p-Cauchy.
p-completeness and completeness are equivalent concepts in stationary fuzzy metrics,

see [19].

Remark 2.10 ([19]). Let (X,Md, ∗) be a standard fuzzy metric space as in Example 2.3.
Then (X,Md, ∗) is p-complete if and only if the metric space (X, d) is complete.

Definition 2.11 ([12]). Let (X,M, ∗) be a fuzzy metric space. The fuzzy metric M is
triangular if it satisfies the condition

1
M(x, y, t) − 1 ≤ 1

M(x, z, t) − 1 + 1
M(z, y, t) − 1

for every x, y, z ∈ X and every t > 0.

Note that every standard fuzzy metric (Md, ·) is triangular.
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Theorem 2.12 ([37]). Let (X,M, ∗) be a fuzzy metric space. Then M is a continuous
function on X ×X × (0,+∞).

Definition 2.13. Let (X,M, ∗) be a fuzzy metric space and T : X → X a mapping. The
set OT (x,∞) = {x, Tx, T 2x, . . . } is called the orbit of x. If for an x ∈ X, every p-Cauchy
sequence in OT (x,∞) is p-converges to a point in X, then the fuzzy metric space (X,M, ∗)
is said to be (x, T )-orbitally p-complete.

Definition 2.14. Let (X,M, ∗) be a fuzzy metric space and T : X → X a mapping. A
real-valued function G : X × (0,+∞)→ [0,∞) is said to be (x, T )- orbitally p-weak lower
semi-continuous (p-w.l.s.c.) at u iff {xn} is a sequence in OT (x,∞) and

xn →p u implies G(u, t0) ≤ lim
n→∞

supG(xn, t0)

for some t0 > 0. That is, G(., t0) is p-w.l.s.c on X in Ćirić’s sense, see [9].

3. Main results
In this section, we state and prove our main results in orbitally p-complete fuzzy metric

spaces. Now, we give the first main result as follows.

Theorem 3.1. Let (X,M, ∗) be a fuzzy metric space with M is triangular, T : X → X
and Φ : X × (0,+∞)→ [0,∞). Suppose there exist x ∈ X and t0 > 0 such that (X,M, ∗)
is (x, T )-orbitally p-complete, and

1
M(y, Ty, t0) − 1 ≤ Φ(y, t0)− Φ(Ty, t0) (3.1)

for all y ∈ OT (x,∞). Then:
(i) Tnx→p x

′ exists,
(ii) 1

M(T nx,x′,t0) − 1 ≤ Φ(Tnx, t0),
(iii) Tx′ = x′ if and only if G(z, t0) = 1

M(z,T z,t0) − 1 is (x, T )-orbitally p-w.l.s.c. at x′,
(iv) 1

M(T nx,x,t0) − 1 ≤ Φ(x, t0) and 1
M(x′,x,t0) − 1 ≤ Φ(x, t0).

Proof. (i) Using inequality (3.1) we have

Sn =
n∑

i=0

( 1
M(T ix, T i+1x, t0) − 1

)
≤

n∑
i=0

[
Φ(T ix, t0)− Φ(T i+1x, t0)

]
= Φ(x, t0)− Φ(Tn+1x, t0) ≤ Φ(x, t0)

for n = 0, 1, 2, . . .. Therefore, {Sn} is bounded from above and also non-decreasing and so
convergent.

Let m > n. Since M is triangular, we have

1
M(Tnx, Tmx, t0) − 1 ≤

m−1∑
k=n

( 1
M(T kx, T k+1x, t0) − 1

)
(3.2)

Since {Sn} is convergent, for every 1 > ε > 0, we can choose a sufficiently large N ∈ N
such that

∞∑
k=n

( 1
M(T kx, T k+1x, t0) − 1

)
< ε

for all n ≥ N . Thus, we get from inequality (3.2) that

1
M(Tnx, Tmx, t0) − 1 ≤

m−1∑
k=n

( 1
M(T kx, T k+1x, t0) − 1

)
< ε
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and so
1

M(Tnx, Tmx, t0) < 1 + ε.

Since 1− ε2 < 1, it follows that

M(Tnx, Tmx, t0) > 1
1 + ε

= 1− ε
1− ε2 > 1− ε

for all n,m ≥ N . Hence, {Tnx} is a p-Cauchy sequence in OT (x,∞). Since (X,M, ∗) is
(x, T )- orbitally p-complete, Tnx→p x

′ ∈ X exists.

(ii) Let m > n. Using inequalities (3.1) and (3.2) we have

1
M(Tnx, Tmx, t0) − 1 ≤

m−1∑
k=n

( 1
M(T kx, T k+1x, t0) − 1

)
≤

m−1∑
k=n

[Φ(T kx, t0)− Φ(T k+1x, t0)]

= Φ(Tnx, t0)− Φ(Tmx, t0) ≤ Φ(Tnx, t0).
Letting m tend to infinity, we have from (i) and Theorem 2.12

1
M(Tnx, x′, t0) − 1 ≤ Φ(Tnx, t0).

(iii) Assume that Tx′ = x′ and {xn} is a sequence in OT (x,∞) with xn →p x
′. Then

G(x′, t0) = 1
M(x′, Tx′, t0) − 1 = 0 ≤ lim sup

( 1
M(x′n, Tx′n, t0) − 1

)
= lim supG(xn, t0),

and so G is (x, T )-orbitally p-w.l.s.c. at x′.

Now let xn = Tnx and G is (x, T )-orbitally p-w.l.s.c. at x′. Then from (i) we have

0 ≤ 1
M(x′, Tx′, t0) − 1 = G(x′, t0) ≤ lim supG(Tnx, t0)

= lim sup
( 1
M(Tnx, Tn+1x, t0) − 1

)
= 0

which implies 1
M(x′,T x′,t0) − 1 = 0. Thus M(x′, Tx′, t0) = 1 and so Tx′ = x′.

(iv) We first of all prove by induction that

1
M(Tnx, x, t0) − 1 ≤

n−1∑
k=0

( 1
M(T kx, T k+1x, t0) − 1

)
(3.3)

for all n = 1, 2, 3, . . . .
Inequality (3.3) is trivial when n = 1 and so we will assume that inequality (3.3) holds

for n− 1. Since M is triangular, it follows from inequality (3.1) we have
1

M(Tnx, x, t0) − 1 ≤ 1
M(Tnx, Tn−1x, t0) − 1 + 1

M(Tn−1x, x, t0) − 1

≤
n−2∑
k=0

( 1
M(T kx, T k+1x, t0) − 1

)
+ 1
M(Tnx, Tn−1x, t0) − 1

=
n−1∑
k=0

( 1
M(T kx, T k+1x, t0) − 1

)
.
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It therefore follows by induction that inequality (3.3) holds.
Using inequalities (3.1) and (3.3) we have

1
M(Tnx, x, t0) − 1 ≤

n−1∑
k=0

( 1
M(T kx, T k+1x, t0) − 1

)
≤

n−1∑
k=0

[
Φ(T kx, t0)− Φ(T k+1x, t0)

]
= Φ(x, t0)− Φ(Tnx, t0) ≤ Φ(x, t0).

Letting n tend to infinity we have
1

M(x′, x, t0) − 1 ≤ Φ(x, t0).

�

Corollary 3.2. Let (X,M, ∗) be a fuzzy metric space with M is triangular and T be a
self-mapping of X. Suppose there exist x ∈ X and t0 > 0 such that (X,M, ∗) is (x, T )-
orbitally p-complete, and

1
M(Ty, T 2y, t0) − 1 ≤ k

( 1
M(y, Ty, t0) − 1

)
(3.4)

for all y ∈ OT (x,∞). Then:
(i) Tnx→p x

′ exists,
(ii) 1

M(T nx,x′,t0) − 1 ≤ kn(1− k)−1( 1
M(x,T x,t0) − 1

)
,

(iii) Tx′ = x′ if and only if G(z, t0) = 1
M(z,T z,t0) − 1 is (x, T )-orbitally p-w.l.s.c. at x′,

(iv) 1
M(T nx,x,t0) − 1 ≤ 1

1−k

( 1
M(x,T x,t0) − 1

)
, 1

M(x′,x,t0) − 1 ≤ 1
1−k

( 1
M(x,T x,t0) − 1

)
.

Proof. Put Φ(y, t) = (1 − k)−1( 1
M(y,T y,t) − 1

)
for y ∈ OT (x,∞). Let y = Tnx in (3.4).

Then we have,
1

M(Tn+1x, Tn+2x, t0) − 1 ≤ k
( 1
M(Tnx, Tn+1x, t0) − 1

)
and ( 1

M(Tnx, Tn+1x, t0) − 1
)
− k

( 1
M(Tnx, Tn+1x, t0) − 1

)
≤

( 1
M(Tnx, Tn+1x, t0) − 1

)
−
( 1
M(Tn+1x, Tn+2x, t0) − 1

)
and so

1
M(Tnx, Tn+1x, t0) − 1 ≤

(1− k)−1
[( 1
M(Tnx, Tn+1x, t0) − 1

)
−
( 1
M(Tn+1x, Tn+2x, t0) − 1

)]
.

Thus, we get
1

M(y, Ty, t0) − 1 ≤ Φ(y, t0)− Φ(Ty, t0)

so (i), (iii) and (iv) are immediate from Theorem 3.1.
Using inequality (3.4) we have

1
M(Tnx, Tn+1x, t0) − 1 ≤ kn( 1

M(x, Tx, t0) − 1
)



Caristi type fixed point theorems in fuzzy metric spaces 81

and then from Theorem 3.1 (ii) we get
1

M(Tnx, x′, t0) − 1 ≤ Φ(Tnx, t0)

= (1− k)−1( 1
M(Tnx, Tn+1x, t0) − 1

)
≤ kn(1− k)−1( 1

M(x, Tx, t0) − 1
)

and this gives (ii). �

In the following theorem, we will show that if (M, ∗) is non-Archimedean fuzzy metric,
where the continuous t-norm is defined as a ∗ b = min{a, b} for all a, b ∈ [0, 1], then (i)
and (iii) of Theorem 3.1 can be obtained without the triangular property of M .

Theorem 3.3. Let (X,M, ∗) be a non-Archimedean fuzzy metric space, where the con-
tinuous t- norm is defined as a ∗ b = min{a, b} for all a, b ∈ [0, 1]. Let T : X → X and
Φ : X × (0,+∞) → [0,∞). Suppose there exist x ∈ X and t0 > 0 such that (X,M, ∗)
is (x, T )- orbitally p-complete, and satisfying the inequality (3.1) for all y ∈ OT (x,∞).
Then:

(i) Tnx→p x
′ exists,

(ii) Tx′ = x′ if and only if G(z, t) = 1
M(z,T z,t0) − 1 is (x, T )-orbitally p-w.l.s.c. at x′.

Proof. (i) Using the same procedure as in the proof of Theorem 3.1, we obtain that

Sn =
n∑

i=0

( 1
M(T ix, T i+1x, t0) − 1

)
is convergent. Therefore we have
∞∑

n=0

( 1
M(Tnx, Tn+1x, t0) − 1

)
<∞ and so lim

n→∞

( 1
M(Tnx, Tn+1x, t0) − 1

)
= 0

Thus, limn→∞M(Tnx, Tn+1x, t0) = 1. Hence for 0 < ε < 1, there exists n0 ∈ N such that
M(Tnx, Tn+1x, t0) > 1 − ε for all n > n0. Let n0 < n < m. Using (vi) of Definition 2.2,
we have

M
(
Tnx, Tmx, t0

)
≥

m−n︷ ︸︸ ︷
M
(
Tnx, Tn+1x, t0

)
∗ · · · ∗M

(
Tm−1, Tmx, t0

)
= min

{
M
(
Tnx, Tn+1x, t0

)
, . . . ,M

(
Tm−1x, Tmx, t0

)}
> 1− ε

and so the sequence
{
Tnx

}
is a p-Cauchy sequence in OT (x,∞). Since (X,M, ∗) is (x, T )-

orbitally p-complete, Tnx→p x
′ exists.

Using the same procedure as in the proof of Theorem 3.1 (iii), we obtain (ii). �

Similarly, using the same procedure as in the proof of Corollary 3.2 (i) and (iii), we
obtain the following result.

Corollary 3.4. Let (X,M, ∗) be a non-Archimedean fuzzy metric space, where the con-
tinuous t- norm is defined as a∗b = min{a, b} for all a, b ∈ [0, 1]. Let T be a self- mapping
of X. Suppose there exists an x ∈ X such that (X,M, ∗) is (x, T )- orbitally complete, and
satisfying the inequality (3.4), for all y ∈ OT (x,∞). Then:

(i) Tnx→p x
′ exists,

(ii) Tx′ = x′ if and only if G(z, t) = 1
M(z,T z,t0) − 1 is (x, T )-orbitally p-w.l.s.c. at x′.
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If we replace non-Archimedean fuzzy metric by stationary fuzzy metric in the Theorem
3.3, then using the same procedure as in the proof of Theorem 3.3 and Corollary 3.2 we
obtain the following results.

Theorem 3.5. Let (X,M, ∗) be a stationary fuzzy metric space, where the continuous t-
norm is defined as a∗b = min{a, b} for all a, b ∈ [0, 1]. Let T : X → X and Φ : X → [0,∞).
Suppose there exists an x ∈ X such that (X,M, ∗) is (x, T )- orbitally p-complete, and

1
M(y, Ty) − 1 ≤ Φ(y)− Φ(Ty)

for all y ∈ OT (x,∞). Then:
(i) Tnx→p x

′ exists,
(ii) Tx′ = x′ if and only if G(z) = 1

M(z,T z) − 1 is (x, T )-orbitally p-w.l.s.c. at x′.

Corollary 3.6. Let (X,M, ∗) be a stationary fuzzy metric space, where the continuous
t-norm is defined as a ∗ b = min{a, b} for all a, b ∈ [0, 1]. Let T be a self- mapping of X.
Suppose there exists an x ∈ X such that (X,M, ∗) is (x, T )- orbitally p-complete, and

1
M(Ty, T 2y) − 1 ≤ k

( 1
M(y, Ty) − 1

)
for all y ∈ OT (x,∞). Then:

(i) Tnx→p x
′ exists,

(ii) Tx′ = x′ if and only if G(z) = 1
M(z,T z) − 1 is (x, T )-orbitally p-w.l.s.c. at x′.

Note that Theorem 3.5 and Corollary 3.6 are true for complete fuzzy metric spaces since
p-completeness and completeness are equivalent concepts in stationary fuzzy metrics.

The following theorem is slight generalization of Theorem 3 in [7].

Theorem 3.7 ([7]). Let (X, d) be a metric space, T : X → X and ϕ : X → [0,∞).
Suppose there exists an x ∈ X such that

d(y, Ty) ≤ ϕ(y)− ϕ(Ty) (3.5)
for all y ∈ OT (x,∞), and (X, d) is (x, T )- orbitally complete. Then:

(i) limn→∞ T
nx = x′ exists,

(ii) d(Tnx, x′) ≤ ϕ(Tnx),
(iii) Tx′ = x′ if and only if F (z) = d(z, Tz) is (x, T )-orbitally w.l.s.c. at x′,
(iv) d(Tnx, x) ≤ ϕ(x) and d(x′, x) ≤ ϕ(x).

Proof. We consider the (Md, .) standard fuzzy metric induced by d on X as in Exam-
ple 2.3. By Remark 2.10 (X,Md, ∗) is (x, T )- orbitally p-complete since (X, d) orbitally
complete. Also (Md, .) is triangular.

Since Md(x, y, t) = t
t+d(x,y) , we have d(x, y) = t

Md(x,y,t) − t for all x, y ∈ X and t > 0.
Define Φ(x, t0) = 1

t0
ϕ(x) for all x ∈ X. Then from inequality (3.5) we have

t0
Md(y, Ty, t0) − t0 ≤ t0(Φ(y, t0)− Φ(Ty, t0))

and so
1

Md(y, Ty, t0) − 1 ≤ Φ(y, t0)− Φ(Ty, t0).

Thus T satisfies inequality (3.1) of Theorem 3.1.

(i) From Theorem 3.1 (i) we have Tnx →p x
′ exists and so limn→∞ T

nx = x′ (in the
metric space).
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(ii) From Theorem 3.1 (ii) we have

1
M(Tnx, x′, t0) − 1 ≤ Φ(Tnx, t0),

and so
1
t0

t0+d(T xx,x′)
− 1 = t0 + d(Tnx, x′)− t0

t0
= d(Tnx, x′)

t0
≤ 1
t0
ϕ(Tnx).

Thus d(Tnx, x′) ≤ ϕ(Tnx).

(iii) From Theorem 3.1 (iii) we have

1
Md(x, Tx, t0) − 1 = d(x, Tx)

t0
.

If G(x, t0) = 1
Md(x,T x,t0) −1 is (x, T ) orbitally p-w.l.s.c. at x′, then t0G(x, t0) = d(x, Tx)

is (x, T )- orbitally w.l.s.c. at x′ too. Thus (iii) follows from Theorem 3.1 (iii).

(iv) From Theorem 3.1 (iv) we have

1
Md(Tnx, x, t0) − 1 ≤ Φ(x, t0) and so d(Tnx, x′)

t0
≤ 1
t0
ϕ(x).

Thus d(Tnx, x) ≤ ϕ(x). Similarly 1
Md(x′,x,t0) − 1 ≤ Φ(x, t0) and so d(x′, x) ≤ ϕ(x). �

By considering the (Md, .) standard fuzzy metric induced by d on X in Corollary 3.2
we obtain the following corollary.

Corollary 3.8 ([7]). Let (X, d) be a metric space and T be a self mapping of X. Suppose
there exists an x ∈ X such that

d(Ty, T 2y) ≤ d(y, Ty)

for all y ∈ OT (x,∞), and (X, d) is (x, T )- orbitally complete. Then:
(i) limn→∞ T

nx = x′ exists,
(ii) d(Tnx, x′) ≤ ϕ(Tnx),
(iii) Tx′ = x′ if and only if F (z) = d(z, Tz) is (x, T )-orbitally w.l.s.c. at x′,
(iv) d(Tnx, x) ≤ ϕ(x) and d(x′, x) ≤ ϕ(x).

4. Some examples
We finally give some examples which illustrate our results.

Example 4.1. Let X = [0,∞), a ∗ b = min{a, b} for all a, b ∈ [0, 1] and let

M(x, y, t) = t

t+ |x− y| ,

for all x, y ∈ X, t > 0, then (X, ∗) is triangular. Define T : X → X by

T (x) =
{
x/2 if 0 ≤ x < 1,
x+ 1 if 1 ≤ x <∞

for all x ∈ X.
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If we take 0 ≤ x0 < 1, then OT (x0,∞) = {x0, x0/2, x0/22, . . . , x0/2n−1, . . . } for n =
1, 2, . . . and so (X,M, ∗) is (x0, T )- orbitally p-complete. Also define Φ(x, t) = x and put
t0 = 1. Then for all y ∈ OT (x0,∞) we have

1
M(y, Ty, t0) − 1 = 1

1
1+|y−T y|

− 1 = |y − Ty|

=
∣∣∣ x0
2n−1 −

x0
2n

∣∣∣ = x0
2n

= Φ(y, t0)− Φ(Ty, t0).

Moreover,

G(z, t0) = 1
M(z, Tz, t0) − 1 = |z − Tz| =

{
z/2 if 0 ≤ z < 1,
1 if 1 ≤ z <∞

is (x0, T )-orbitally p-w.l.s.c. at x = 0.
All the conditions of Theorem 3.1 are therefore satisfied and x = 0 is a fixed point of

T .

Example 4.2. Let X = (0,∞), a ∗ b = min{a, b} for all a, b ∈ [0, 1] and let

M(x, y, t) = t

t+ |x− y| ,

for all x, y ∈ X, t > 0. Define T : X → X by

T (x) =
{
x/2 if 0 < x < 1,
1 if 1 ≤ x <∞

for all x ∈ X.
If we take 0 < x0 < 1, then OT (x0,∞) = {x0, x0/2, x0/22, . . . , x0/2n−1, . . . } for n =

1, 2, . . . . But (X,M, ∗) is not (x0, T )- orbitally p-complete.
Now we take 1 ≤ x0 < ∞. Then OT (x0,∞) = {x0, 1, 1, 1, . . . }. Thus (X,M, ∗) is

(x0, T )- orbitally p-complete.
Define Φ(x, t) = x and put t0 = 1. Then for y = x0 6= 1 we have

1
M(y, Ty, t0) − 1 = |y − Ty| = |x0 − 1| = x0 − 1 = Φ(y, t0)− Φ(Ty, t0).

Also inequality (3.1) is satisfied for y = 1. Moreover,

G(z, t0) = 1
M(z, Tz, t0) − 1 = |z − Tz| =

{
z/2 if 0 < z < 1,
z − 1 if 1 ≤ z <∞

is (x0, T )-orbitally p-w.l.s.c. at x = 1.
All the conditions of Theorem 3.1 are therefore satisfied and x = 1 is a fixed point of

T .

Example 4.3. Let X = [0,∞), a ∗ b = min{a, b} for all a, b ∈ [0, 1] and let

M(x, y, t) =
{

1
1+max{x,y} , if x 6= y,
1 if x = y,

for all x, y ∈ X, t > 0. (X,M, ∗) is non-Archimedean fuzzy metric space. Define T : X →
X by T (x) = x/2 for all x ∈ X.

If we take x0 = 1, then OT (1,∞) = {1, 1/2, 1/22, . . . , 1/2n−1, . . . } for n = 1, 2, . . .
and so (X,M, ∗) is (1, T )- orbitally p-complete. Also define Φ(x, t) = 2x. Then for all
y ∈ OT (1,∞) we have

1
M(y, Ty, t0) − 1 = y = 1

2n−1 = 2
2n−1 −

2
2n

= Φ(y, t0)− Φ(Ty, t0).

Moreover, G(z, t0) =
{
z, if z 6= Tz,
0 if z = Tz

is (1, T )-orbitally p-w.l.s.c. at x = 0.
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All the conditions of Theorem 3.3 are therefore satisfied and x = 0 is a fixed point of
T .
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Abstract
The estimation of the modulus of algebraic polynomials on the boundary contour with
weight function, having some singularities, with respect to the their quasinorm, on the
weighted Lebesgue space was studied in this current work.
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1. Introduction
Let C be a complex plane, and C := C ∪ {∞} ; G ⊂ C be the bounded Jordan region,

with 0 ∈ G and the boundary L := ∂G be a closed Jordan curve, Ω := C \ G = extL. Let
℘n denotes the class of arbitrary algebraic polynomials Pn(z) of degree at most n ∈ N :=
{1, 2, ...} .

Let 0 < p ≤ ∞. For a rectifiable Jordan curve L, we denote

‖Pn‖Lp : = ‖Pn‖Lp(h,L) :=

∫
L

h(z) |Pn(z)|p |dz|

1/p

, 0 < p <∞;

‖Pn‖L∞ : = ‖Pn‖L∞(1,L) := max
z∈L
|Pn(z)| , p =∞.

Clearly, ‖·‖Lp is the quasinorm (i.e. a norm for 1 ≤ p ≤ ∞ and a p−norm for 0 < p < 1).
Denoted by w = Φ(z), the univalent conformal mapping of Ω onto ∆ := {w : |w| > 1} with

normalization Φ(∞) =∞, limz→∞
Φ(z)
z > 0 and Ψ := Φ−1. For t ≥ 1 we set

Lt := {z : |Φ(z)| = t} , L1 ≡ L, Gt := intLt, Ωt := extLt.
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Let {zj}mj=1 be a fixed system of distinct points on curve L which is located in the
positive direction. For some fixed R0, 1 < R0 < ∞, and z ∈ GR0 , consider a so-called
generalized Jacobi weight function h (z) being defined as follows

h(z) := h0(z)
m∏
j=1
|z − zj |γj , (1.1)

where γj > −1, for all j = 1, 2, ...,m, and h0 is uniformly separated from zero in GR0 , i.e.
there exists a constant c0 := c0(GR0) > 0 such that for all z ∈ GR0

h0(z) ≥ c0 > 0.

In many areas, we often need to study the following inequality

‖Pn‖Lq(h,L) ≤ cµn(L, h, p, q) ‖Pn‖Lp(h,L) , 0 < p < q ≤ ∞, (1.2)

where c = c(G, p, q) > 0 is the constant, independent from n, Pn, and µn(L, h, p, q)→∞,
n → ∞, depending on the geometrical properties of curve L and weight function h in
the neighborhood of the points {zj}mj=1. In particular, it was studied the behavior of the
|Pn(z)| on L (q = ∞), where the boundary curve L and weight function h having some
singularity on the L. First result of the (1.2)-type, in case of h(z) ≡ 1 and L = {z : |z| = 1}
for 0 < p < ∞ was found in [13]. The other results, similar to (1.2), for the sufficiently
smooth curve, were obtained in [25] (h(z) ≡ 1), and in [27] (h(z) 6= 1). The estimations
of the (1.2)-type for 0 < p < ∞ and for h(z) ≡ 1 when L is a rectifiable Jordan curve
were investigated in [16], [17], [19, pp.122-133], [23], [26] and for h(z) 6= 1- in [10, Theorem
6], [1, 2, 4–8] and others, respectively. More references regarding the inequality of the
(1.2)-type can also be found cited above and in Milovanovic et al. [18, Sect.5.3].

Let a rectifiable Jordan curve L has a natural parametrization z = z(s), 0 ≤ s ≤ l :=
mesL. It is said that L ∈ C(1, λ), 0 < λ < 1, if z(s) is continuously differentiable and
z′(s) ∈ Lipλ. Let L belongs to C(1, λ) everywhere except for a single point z1 ∈ L, i.e.
the derivative z′(s) satisfies the Lipschitz condition on the [0, l] and z(0) = z(l) = z1, but
z′(0) 6= z′(l). It is assumed that L has a corner at z1 with exterior angle ν1π, 0 < ν1 ≤ 2,
and denoted the set of such curves by C(1, λ, ν1).

In [28], this problem was investigated in case p = 2 for orthonormal on the curve of
L ∈ C(1, λ, ν1) polynomials Qn(z) with the weight function h defined in (1.1) and can be
shown that the condition of "pay off" singularity curve and weight function at the points
z1 can be given as (1 + γ1) ν1 = 1. In [28], the case, where (1 + γ1) ν1 6= 1 was investigated
by the author. It is shown, that if the singularity of a curve and weight function at the
points z1 satisfy the following condition

(1 + γ1) ν1 < 1, (1.3)

then for |Qn(z)| , the following estimation is true

|Qn(z)| ≤ c(L)
(
ns1 + |z − z1|σ1

√
n
)
, z ∈ L, (1.4)

where

s1 = 1
2 (1 + γ1) ν1, σ1 = 1

2

( 1
ν1
− 1− γ1

)
,

and c(L) > 0 is the constant independent on n.
In this work, the estimations of the (1.2)-type, in particular (1.4)-type for more general

curves of the complex plane were studied and the analog of the estimate (1.4) under the
condition (1.3) was obtained.
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2. Definitions and main results
Throughout this paper, c, c0,c1, c2, ... are positive and ε0, ε1, ε2, ... are sufficiently small

positive constants (generally, different in different relations), depending on G in general
and on parameters inessential for the argument. Otherwise, such dependence will be
explicitly stated.

Without loss of generality, the number R0 in the definition of the weight function,
R0 = 2 can be taken. Otherwise, the number n can be chosen as n ≥

[
ε0

R0−1

]
, where ε0,

0 < ε0 < 1, some fixed small constant.
For any k ≥ 0 and m > k, notation i = k,m means i = k, k + 1, ...,m.
Before go any further, some definitions and the notations are needed to be given. Let

z = ψ(w) be the univalent conformal mapping of B := {w : |w| < 1} onto the G normalized
by ψ(0) = 0, ψ′(0) > 0.

By [21, pp.286-294], it is said that, a bounded Jordan region G is called a κ -quasidisk,
0 ≤ κ < 1, if any conformal mapping ψ can be extended to a K -quasiconformal, K = 1+κ

1−κ ,

homeomorphism of the plane C on the plane C. In that case, the curve L := ∂G is called a
κ -quasicircle. The region G (curve L) is called a quasidisk (quasicircle), if it is κ-quasidisk
(κ -quasicircle) for some 0 ≤ κ < 1.

We denote the class of κ -quasicircle by Q(κ), 0 ≤ κ < 1, and say that L ∈ Q, if
L ∈ Q(κ), for some 0 ≤ κ < 1.

It is well-known that, the quasicircle may not even be locally rectifiable [14, p.104].

Definition 2.1. We say that L ∈ Q̃, 0 ≤ κ < 1, if L is a quasicircle and rectifiable.
Definition 2.2. We say that L ∈ Qα, 0 < α ≤ 1 , if L is a quasicircle and Φ ∈ Lipα,
z ∈ Ω.

We note that the class Qα is sufficiently wide. A detailed information on this and the
related topics are contained in [15], [22], [30] (see also the references cited therein). We
consider only some cases:
Remark 2.3. a) If L = ∂G is a Dini-smooth curve [22, p.48], then L ∈ Q1.

b)If L = ∂G is a piecewise Dini-smooth curve and largest exterior angle at L has opening
απ, 0 < α ≤ 1, [22, p.52], then L ∈ Qα.

c)If L = ∂G is a smooth curve having continuous tangent line, then L ∈ Qα for all
0 < α < 1.

d) If L is quasismooth (in the sense of Lavrentiev), that is, for every pair z1, z2 ∈
L, s(z1, z2) represents the smallest of the lengths of the arcs joining z1 to z2 on L, there
exists a constant c > 1 such that s(z1, z2) ≤ c |z1 − z2| , then Φ ∈ Lipα for α =
1
2(1− 1

π arcsin 1
c )
−1 [30].

e) If L is ”c-quasiconformal" (see, for example, [15]), then Φ ∈ Lip α for α =
π

2(π−arcsin 1
c
) . Also, if L is an asymptotic conformal curve, then Φ ∈ Lip α for all 0 <

α < 1 [15].

Definition 2.4. We say that L ∈ Q̃α, 0 < α ≤ 1 , if L ∈ Qα and L is rectifiable.
In this case the following can be had:

Theorem A. ([20]) Let p > 0. Suppose that L ∈ Q̃α, for some 0 < α ≤ 1 and h(z) defined
as in (1.1) with γj = 0, for all j = 1,m. Then, for any Pn ∈ ℘n, n ∈ N, there exists
c1 = c1(L, p) > 0 such that

‖Pn‖L∞ ≤ c1 ‖Pn‖Lp(h0,L)

 n
1
αp , 1

2 ≤ α ≤ 1,
n
δ
p , 0 < α < 1

2 ,
(2.1)

where δ = δ(L), δ ∈ [1, 2] , is a certain number.



90 P. Özkartepe and F.G. Abdullayev

Therefore, according to 2.3, α can be calculated in the right parts of estimation (2.1)
for each case, respectively.

Now, we assume that the weight function h have "singularity" at the points {zi}mi=1 ,
i.e., γi 6= 0 for all i = 1,m. In this case, the following "local" (at the points {zi}mi=1 ∈ L)
estimation is holds:

Theorem 2.5. Let p > 0. Suppose that L ∈ Q̃α, for some 1
2 ≤ α ≤ 1 and h(z) defined

as in (1.1). Then, for any γi > −1, i = 1,m, and Pn ∈ ℘n, n ∈ N, there exists c2 =
c2(L, p, γi, α) > 0 such that

|Pn(zi)| ≤ c2n
γi+1
αp ‖Pn‖Lp(h,L) . (2.2)

The inequality (2.2) is sharp. For the polynomial P ∗n(z) = 1+z+ ...+zn, h∗(z) = h0(z),
h∗∗(z) = |z − 1|γ , γ > 0, L := {z : |z| = 1} and any n ∈ N, there exists c3 = c3(h∗, p) > 0
, c′3 = c′3(h∗∗, p) > 0 such that

a) ‖P ∗n‖L∞ ≥ c3n
1
p ‖P ∗n‖Lp(h∗, L) , p > 1;

b) ‖P ∗n‖L∞ ≥ c′3n
γ+1
p ‖P ∗n‖Lp(h∗∗, L) , p > γ + 1.

Let’s introduce the special "singular" points on the curve L and then lets give the
following definition. For δ > 0 and z ∈ C, let us set B(z, δ) := {ζ : |ζ − z| < δ} , Ω(z, δ) :=
Ω∩ B(z, δ).

Definition 2.6. We say that L ∈ Qα,β1,...,βm , 0 < βi ≤ α ≤ 1, i = 1,m, if
i) for every sequence non-crossing in pairs circles {D(ζi, δi)}mi=1 restriction of the func-

tion Φ on Ω(ζi, δi) belongs to Lipβi (Φ |Ω(ζi, δi) ∈ Lipβi), and restriction

Φ
∣∣∣∣∣Ω\

m⋃
i=1

Ω(ζi, δi) ∈ Lipα,

ii) there exists a sequence non-crossing in pairs circles {D(ζi, δ∗i )}
m
i=1 , such that ∀ i = 1,m,

δ∗i > δi and ∀ξ, z ∈ Ω(ζi, δ∗i ), z 6= ζi 6= ξ is fulfilled estimation

|Φ(z)− Φ(ξ)| ≤ ki(z, ξ) |z − ξ|α , (2.3)

where
ki(z, ξ) = ci max

(
|ξ − ζi|βi−α ; |z − ζi|βi−α

)
,

and ci are independed on z and ξ.

Definition 2.7. We say that L ∈ Q̃α,β1,...,βm , 0 < βi ≤ α ≤ 1, i = 1,m , if L ∈
Qα,β1,...,βm , 0 < βi ≤ α ≤ 1, i = 1,m and L = ∂G is rectifiable.

It is clear that, from Definition 2.6 (2.7), each region L ∈ Q̃α,β1,...,βm , 0 < βi ≤ α ≤
1, i = 1,m , may have the "singularity"at the points {ζi}mi=1 ∈ L. If the region L does
not have such "singularity", i.e. if βi = α, for all i = 1,m, then, it can be written as
G ∈ Q̃α, 0 < α ≤ 1.

Throughout this work, we will assume that the points {zi}mi=1 ∈ L defined in (1.1), and
{ζi}mi=1 ∈ L defined in Definitions 2.6, and 2.7 are coincide. Without loss of generality,
the points {zi}mi=1 ordered in the positive direction on the curve L.

We assume that the curve L has "singularity" on the boundary points {zi}mi=1, i.e.,
βi 6= α, for all i = 1,m, and the weight function h has "singularity" at the same points,
i.e., γi 6= 0 for some i = 1,m. In [20], the following result was shown:
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Theorem B. Let p > 0. Suppose that L ∈ Q̃α,β1,...,βm , for some 1
2 ≤ βi ≤ α ≤ 1, i = 1,m

and h(z) defined as in (1.1) and

γi + 1 = βi
α
, (2.4)

for each points {zi}mi=1. Then, for any Pn ∈ ℘n, n ∈ N, there exists c4 = c4(L, p, γi, α) > 0
such that

‖Pn‖L∞ ≤ c4n
1
αp ‖Pn‖Lp(h,L) . (2.5)

In comparisons of Theorem B and Theorem 2.5, it is seen that, if interference conditions
(2.4) are satisfied for any "singular" points {zi}mi=1 of the weight function and the curve L,
then the growth rate of the polynomials Pn(z) on L does not depend on whether or not
the weight function h(z) and the curve L.

Now, assume that the equality (2.4) does not hold for each singular points {zi}mi=1. Let
us suppose

γi + 1 6= βi
α
, (2.6)

for each singular point {zi}mi=1 . In the present paper the case is investigated

γi + 1 < βi
α
.

For simplicity of our next calculations, will be taken as i = 1 .

Theorem 2.8. Let p > 0. Suppose that G ∈ Q̃α,β1 , for some 1
2 ≤ β1 ≤ α ≤ 1; h(z) defined

by (1.1) and

γ1 + 1 < β1
α
. (2.7)

Then, for every z ∈ L and Pn ∈ ℘n, n ∈ N, there exists c5 = c5(L, p, γ1, β1, α) > 0, such
that

|Pn(z)| ≤ c5(ns1 + |z − z1|σ1 n1/pα) ‖Pn‖Lp(h,L) , (2.8)
and

|Pn(z1)| ≤ c6n
γ1+1
pβ1 ‖Pn‖Lp(h,L) , (2.9)

where
s1 = 1 + γ1

pβ1
, σ1 = β1

2α −
1 + γ1

2 . (2.10)

Since α ≥ β1, (2.7) will be satisfied when −1 < γ1 < 0. So, from (2.8) it can be seen
that, the order of the height of Pn in point z1 and points z ∈ L, z 6= z1, where h(z)→∞
and curve L not having singularity, acts itself identically. Thus, the conditions (2.7) can
be called "algebraic pole" conditions of the order λ1 = 1− α

β1
(1 + γ1).

In case, if L and h(z) have of two singular points, it can be written as
|Pn(z)| ≤ c7(|z − z1|σ1 ns2 + |z − z2|σ2 ns1 (2.11)

+ |z − z1|σ1 |z − z2|σ2 n1/pα) ‖Pn‖Lp(h,L) , z ∈ L,
where si, σi, i = 1, 2, defined as in (2.10), for i = 1 and analogously for i = 2, respectively.

Theorem 2.8 is also correct if the curve L has at point z1 algebraic pole and at points
{zk}, k ≥ 2, singularity, in which satisfying the interference conditions (2.4).

Corollary 2.9. If L ∈ C(1, λ, ν1), then L ∈ Q̃α,β1 for α = 1 (2.3) and β1 = 1
ν1

[15].
Consequently, if the condition

(γ1 + 1) ν1 < 1
satisfies on the point z1, then, for p = 2, from (2.8) and (2.10), we have

|Pn(z)| ≤
(
c6n

s1 + c7 |z − z1|σ1
√
n
)
‖Pn‖L2(h,L) , (2.12)
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where
s1 = 1

2 (1 + γ1) ν1, σ1 = 1
2

( 1
ν1
− 1− γ1

)
. (2.13)

For Pn ≡ Qn, estimation (2.12) coincides from the result by P.K. Suetin in [28, Theorem
2]. Therefore, the Theorem 2.8 generalizes the result in [28, Th2] for 1 ≤ ν1 ≤ 2 and
extends this result to the more general curves of the complex plane.

3. Some auxiliary results
For a > 0 and b > 0, we will use the notations “a � b” (order inequality), if a ≤ cb

and “a � b” are equivalent to c1a ≤ b ≤ c2a for some constants c, c1, c2 (independent of
a and b), respectively.

The following definitions of the K-quasiconformal curves are well-known (see, for ex-
ample, [9], [14, p.97] and [24]).
Definition 3.1. The Jordan arc (or curve) L is called K−quasiconformal (K ≥ 1), if
there is a K−quasiconformal mapping f of the region D ⊃ L in such that f(L) is a line
segment (or circle).

Let F (L) denotes the set of all sense preserving plane homeomorphisms f of the region
D ⊃ L such that f(L) is a line segment (or circle) and lets define

KL := inf {K(f) : f ∈ F (L)} ,
where K(f) is the maximal dilatation of a such mapping f. L is a quasiconformal curve,
if KL <∞, and L is a K−quasiconformal curve, if KL ≤ K.
Remark 3.2. It is well-known that if we are not interested in the coefficients of quasicon-
formality of the curve, then the definitions of "quasicircle" and "quasiconformal curve" are
identical whereas, if we are also interested in the coefficients of quasiconformality of the
given curve, then a consideration is taken if the curve L is K−quasiconformal; therefore,
it is κ−quasicircle with κ = K2−1

K2+1 .
Following of the Remark 3.2, the both terms will be used for simplicity, depending on

the situation.
For z ∈ C and M ⊂ C, we set ρ(z,M) = dist(z,M) := inf {|z − ζ| : ζ ∈M} .

Lemma 3.3. [3] Let L be a K−quasiconformal curve, z1 ∈ L, z2, z3 ∈ Ω ∩ {z : |z − z1| �
ρ(z1, Lr0)}; wj = Φ(zj), j = 1, 2, 3. Then,

a) The statements |z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| are equivalent. So
statements |z1 − z2| � |z1 − z3| and |w1 − w2| � |w1 − w3| also are equivalent.

b) If |z1 − z2| � |z1 − z3| , then∣∣∣∣w1 − w3
w1 − w2

∣∣∣∣ε � ∣∣∣∣z1 − z3
z1 − z2

∣∣∣∣ � ∣∣∣∣w1 − w3
w1 − w2

∣∣∣∣c ,
where ε < 1, c > 1, 0 < r0 < 1 are the constants depending on G and Lr0 :=
{z = ψ(w) : |w| = r0} .

Lemma 3.4. Let G ∈ Q(κ) for some 0 ≤ κ < 1. Then,
|Ψ(w1)−Ψ(w2)| � |w1 − w2|1+κ ,

for all w1, w2 ∈ ∆.
This fact follows from [21, p.287, Lemma 9.9] and estimation for the Ψ′ (see, for example,

[11, Th.2.8]): ∣∣Ψ′(τ)
∣∣ � ρ(Ψ (τ) , L)

|τ | − 1 . (3.1)

Let {zj}mj=1 be the fixed system of the points on L and the weight function h (z) defined
as (1.1).
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Lemma 3.5. [8] Let L be a rectifiable Jordan curve and h(z) is defined as in (1.1). Then,
for arbitrary Pn(z) ∈ ℘n, any R > 1 and n ∈ N, we have

‖Pn‖Lp(h,LR) ≤ R
n+ 1+γ∗

p ‖Pn‖Lp(h,L) , p > 0. (3.2)

Remark 3.6. In case of h(z) ≡ 1, the estimation (3.2) has been proved in [12].

4. Proofs of theorems
4.1. Proof of Theorem 2.5
Proof. Suppose that L ∈ Q̃α, for some 1

2 ≤ α ≤ 1, i = 1,m be given and h(z) is defined
as in (1.1). Let w = ϕR(z) be the univalent conformal mapping of GR, R > 1, onto the
B, normalized by ϕR(0) = 0, ϕ′R(0) > 0, and let {ξj} , 1 ≤ j ≤ m ≤ n, be zeros of Pn(z)
lying on GR. Let

Bm,R(z) :=
m∏
j=1

Bj,R(z) =
m∏
j=1

ϕR(z)− ϕR(ξj)
1− ϕR(ξj)ϕR(z)

, (4.1)

denotes the Blashke function with respect to zeros {ξj} , 1 ≤ j ≤ m ≤ n, of Pn(z). Clearly,
|Bm,R(z)| ≡ 1, z ∈ LR, (4.2)

and
|Bm,R(z)| < 1, z ∈ GR. (4.3)

For any p > 0 and z ∈ GR, let us set:

Tn (z) :=
[
Pn (z)
Bm,R(z)

]p/2
. (4.4)

The function Tn (z) is analytic in GR and continuous on GR, not having zeros in GR. We
take an arbitrary continuous branch of the Tn (z) and we maintain the same designation
for this branch. Then, the Cauchy integral representation for the Tn (z) in GR gives

Tn (z) = 1
2πi

∫
LR

Tn (ζ) dζ

ζ − z
, z ∈ GR, (4.5)

and then
Tn (zj) = 1

2πi

∫
LR

Tn (ζ) dζ

ζ − zj
.

Now, let z ∈ L. Multiplying the numerator and the denominator of the integrand by
h1/2(ζ), according to the Hölder inequality, from (4.2) and (4.3), we obtain:

|Pn (zj)| ≤
( 1

2π

) 2
p

∫
LR

h(ζ) |Pn(ζ)|p |dζ|


1/p

(4.6)

×


∫
LR

|dζ|
m∏
j=1
|ζ − zj |2+γj


1/p

=:
( 1

2π

) 2
p

Jn,1 × Jn,2,

where

Jn,1 := ‖Pn‖Lp(h,LR) , Jn,2 :=


∫
LR

|dζ|
m∏
j=1
|ζ − zj |2+γj


1/p

.
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Then, from Lemma 3.5, for the each points {zj}mj=1 ∈ L, we have:

|Pn (zj)| � ‖Pn‖Lp · (Jn,2)1/p . (4.7)

To estimate the integral Jn,2, we introduce

wj := Φ(zj), ϕj := argwj , Lj := L ∩ Ωj
, LjR := LR ∩ Ωj

, j = 1,m,

where Ωj := Ψ(∆′j)

∆′1 : =
{
t = Reiθ : R > 1, ϕm + ϕ1

2 ≤ θ < ϕ1 + ϕ2
2

}
,

∆′m : =
{
t = Reiθ : R > 1, ϕm−1 + ϕm

2 ≤ θ < ϕm + ϕ1
2

}
,

and, for j = 2,m− 1

∆′j :=
{
t = Reiθ : R > 1, ϕj−1 + ϕj

2 ≤ θ < ϕj + ϕj+1
2

}
.

Since the points {zj}mj=1 ∈ L are distinct, we get:

(Jn,2)p =
m∑
i=1

∫
LiR

|dζ|
m∏
j=1
|ζ − zj |2+γj

�
m∑
i=1

∫
LiR

|dζ|
|ζ − zi|2+γi =:

m∑
i=1

J in,2, (4.8)

where
J in,2 :=

∫
LiR

|dζ|
|ζ − zi|2+γi , i = 1,m. (4.9)

It remains to estimate the integrals J in,2 for each i = 1,m. For the simplicity of our next
calculations, we assume that

m = 1; R = 1 + ε0
n
. (4.10)

Let the numbers δ1, δ
∗
1 , 0 < δ1 < δ∗1 < δ0 < diam G, are chosen from the Definition 2.6.

By denoting
l1R,1 := L1

R ∩ Ω(z1, δ1), l1R,2 := L1
R\l1R,1, F 1

R,i := Φ(l1R,i), i = 1, 2,

from (4.9), we get

J1
n,2 :=

∫
L1
R

|dζ|
|ζ − z1|2+γ1

=
∫
l1R,1

|dζ|
|ζ − z1|2+γ1

+
∫
l1R,2

|dζ|
|ζ − z1|2+γ1

. (4.11)

Then, by applying Lemma 3.3, we have:∫
l1R,1

|dζ|
|ζ − z1|2+γ1

=
∫

Φ(l1R,1)

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w1)|2+γ1 (|τ | − 1)

(4.12)

�
∫

Φ(l1R,1)

|dτ |
|Ψ(τ)−Ψ(w1)|1+γ1 (|τ | − 1)

� n

∫
Φ(l1R,1)

|dτ |

|τ − w1|
γ1+1
α

� n
γ1+1
α ,

∫
l1R,2

|dζ|
|ζ − z1|2+γ1

� (δ1)2+γ1mesl1R,1 � 1. (4.13)
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Then from (4.11)-(4.13), we get:

J1
n,2 � n

γ1+1
α . (4.14)

By combining (4.7)-(4.14), we obtain:

|Pn (z1)| � n
γ1+1
pα ‖Pn‖Lp ,

and, according to (4.10), the proof is completed. �

4.2. Proof of Theorem 2.8
Proof. Suppose that L ∈ Q̃α,β1 , for some 1

2 ≤ β1 ≤ α ≤ 1, be given and h(z) defined as
in (1.1). Let the functions Bm,R(z) and TR(z) be constructed as in the beginning to the
proof of Theorem 2.5 by (4.1)- (4.4). By taking the arbitrary fixed branch of TR (z), for
any z ∈ GR from (4.5), we get:

Tn (z)− Tn(z1) = 1
2πi

∫
LR

Tn (ζ)
[ 1
ζ − z

− 1
ζ − z1

]
dζ,

= 1
2πi

∫
LR

[
Pn (ζ)
Bm,R(ζ)

]p/2 [
z − z1

(ζ − z) (ζ − z1)

]
dζ.

For arbitrary z ∈ L, z 6= z1, multiplying both sides of the equality by (z − z1)−σ1 , we
obtain: ∣∣∣∣Tn (z)− Tn(z1)

(z − z1)σ1

∣∣∣∣ ≤ 1
2π

∫
LR

|Pn (ζ)|
p/2
∣∣∣∣∣ (z − z1)1−σ1

(ζ − z) (ζ − z1)

∣∣∣∣∣ |dζ| ,
since |Bm,R(ζ)| = 1, for ζ ∈ LR. By multiplying the numerator and the denominator of
the integrand via h1/2(ζ) and by applying the Hölder inequality, we obtain:

∣∣∣∣Tn (z)− Tn(z1)
(z − z1)σ1

∣∣∣∣ ≤ 1
2π

∫
LR

h(ζ) |Pn(ζ)|p |dζ|


1/2

×

∫
LR

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|


1/2

=: 1
2π (Jn,1 × Jn,2)1/2 ,

where

Jn,1 : =
∫
LR

h(ζ) |Pn(ζ)|p |dζ| = ‖Pn‖pLp(h,LR) , (4.15)

Jn,2 : =
∫
LR

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ| .

Then, for z ∈ L, from Lemma 3.5, we have:∣∣∣∣Tn (z)− Tn(z1)
(z − z1)σ1

∣∣∣∣ � ‖Pn‖ p2Lp · (Jn,2)1/2 , z ∈ L\ {z1} .

From (4.4), we obtain:∣∣∣∣∣ Pn (z)
Bm,R(z)

∣∣∣∣∣
p/2

≤ c9

∣∣∣∣∣ Pn (z1)
Bm,R(z1)

∣∣∣∣∣
p/2

+ c10 ‖Pn‖
p
2
Lp
· (Jn,2)1/2 . (4.16)
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According to well-known inequalities [29, p.121]
|A+B|p ≤ 2p−1(|A|p + |B|p), p > 1, (4.17)
|A+B|p ≤ |A|p + |B|p , 0 < p ≤ 1, A > 0, B > 0,

from (4.16), we obtain:

|Pn (z)| ≤ c11

∣∣∣∣∣ Bm,R(z)
Bm,R(z1)

∣∣∣∣∣ |Pn (z1)|+ c12 ‖Pn‖Lp · (Jn,2)1/p . (4.18)

Since |Bm,R(z)| < 1, for z ∈ L and |Bm,R(ζ)| = 1, for ζ ∈ LR, then there exists ε1,where
0 < ε1 < 1, in such that the following is fulfilled:

|Bm,R(z1)| > 1− ε1. (4.19)
Then, from (4.18) and (4.19), for each z ∈ L\ {z1} , we have

|Pn (z)| ≤ c13 |Pn (z1)|+ c12 ‖Pn‖Lp · (Jn,2)1/p , p > 0. (4.20)

By the Theorem 2.5, the estimation for |Pn (z1)| is known.Therefore, finding of an estima-
tion of Jn,2

Jn,2 =
∫
LR

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ| .

is needed for completion. We set:
L1
R,1 : = L1

R ∩ Ω(z1, δ1), L1
R,2 := L1

R ∩ (Ω(z1, δ
∗
1)\Ω(z1, δ1)),

L1
R,3 : = LR\(L1

R,1 ∪ L1
R,2); F 1

R,j := Φ(L1
R,j),

L1
1 : = L1 ∩D(z1, δ1), L1

2 := L1 ∩ (D(z1, δ
∗
1)\D(z1, δ1)),

L1
3 : = L\(L1

1 ∪ L1
2); F 1

i := Φ(L1
i ), i = 1, 2, 3,

then, from (4.15), we get:

Jn,2 =
3∑
i=1

Jn,2(L1
R,i), (4.21)

where
Jn,2(l) :=

∫
l

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ| , (4.22)

for l ⊂ L. There are two possible cases: the point z may lie on L1 or L2. Suppose first, z
∈ L1. If z ∈ L1

i , then w ∈ F 1
i , for i = 1, 2, 3. Consider the individual cases:

1) Let z ∈ L1
1.

1.1) By applying (4.17), we have:

Jn,2(L1
R,1) =

∫
L1
R,1

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ| (4.23)

�
∫

L1
R,1

[|ζ − z|+ |ζ − z1|]2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|

=
∫

L1
R,1

|dζ|
|ζ − z|2σ1 |ζ − z1|2+γ1

+
∫

L1
R,1

|dζ|
|ζ − z|2 |ζ − z1|2σ1+γ1

.

Lets
L1,1
R,j : =

{
ζ ∈ L1

R,j : |ζ − z1| ≥ |ζ − z|
}
,

L1,2
R,j : = L1

R,j\L
1,1
R,j , F

1,i
R,j := Φ(1,i

R,j), i, j = 1, 2.



The uniform and pointwise estimates for polynomials... 97

Then, from (4.23), we get:

Jn,2(L1
R,1) �

∫
L1,1
R,2

|dζ|
|ζ − z|2σ1+2+γ1

+
∫

L1,2
R,2

|dζ|
|ζ − z1|2σ1+2+γ1

�
∫

F 1,1
R,2

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2σ1+2+γ1 (|τ | − 1)

(4.24)

+
∫

F 1,2
R,2

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2σ1+2+γ1 (|τ | − 1)

� n

∫
F 1,1
R,1

|dτ |

|τ − w|
2σ1+1+γ1

β1

+ n

∫
F 1,2
R,1

|dτ |

|τ − w|
2σ1+1+γ1

β1

� n · n
2σ1+1+γ1

β1
−1 + n · n

2σ1+1+γ1
β1

−1 � n
2σ1+1+γ1

β1 .

1.2) For any ζ ∈ L1
R,2 and z ∈ L1

1 , |ζ − z1| ≥ δ1 and by Definition 2.6, we obtain:

|ζ − z|α � max
{
|ζ − z1|α−β1 ; |z − z1|α−β1

}
|w − τ |

= |ζ − z1|α−β1 |w − τ | ≥ δα−β1
1 |w − τ | � |w − τ | .

Then, for this case we get:

Jn,2(L1
R,2) =

∫
L1
R,2

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|

�
∫

L1
R,2

[|ζ − z|+ |ζ − z1|]2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ| (4.25)

=
∫

L1
R,2

|dζ|
|ζ − z|2σ1 |ζ − z1|2+γ1

+
∫

L1
R,2

|dζ|
|ζ − z|2 |ζ − z1|2σ1+γ1

≤ 1
δ2+γ1

1

∫
L1
R,2

|dζ|
|ζ − z|2σ1

+ 1
δ2σ1+γ1

1

∫
L1
R,2

|dζ|
|ζ − z|2

�
∫

F 1
R,2

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2σ1 (|τ | − 1)

+
∫

F 1
R,2

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2 (|τ | − 1)

� n

∫
F 1,1
R,1

|dτ |

|τ − w|
2σ1−1
α

+ n

∫
F 1,2
R,1

|dτ |

|τ − w|
1
α

� n · n
2σ1−1
α
−1 + n · n

1
α
−1 � n

1
α .
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1.3) For any ζ ∈ L1
R,3 and z ∈ L1

1, |ζ − z1| ≥ δ∗1 and |ζ − z| ≥ δ∗1 − δ1. Then, we have

Jn,2(L1
R,3) =

∫
L1
R,3

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ| (4.26)

≤ (diamGR)2−2σ1mesL

(δ∗1 − δ1)2−2σ1 (δ∗1)2 � 1.

2) Let z ∈ L1
2.

2.1) According to |ζ − z1| < |z − z1| , by Definition 2.6, we obtain:

|ζ − z|α � max
{
|ζ − z1|α−β1 ; |z − z1|α−β1

}
|w − τ |

= |z − z1|α−β1 |w − τ | ≥ δα−β1
1 |w − τ | � |w − τ | .

Then, we get:

Jn,2(L1
R,1) =

∫
L1
R,1

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|

�
∫

L1
R,1

[|ζ − z|+ |ζ − z1|]2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|

=
∫

L1
R,1

|dζ|
|ζ − z|2σ1 |ζ − z1|2+γ1

+
∫

L1
R,1

|dζ|
|ζ − z|2 |ζ − z1|2σ1+γ1

�
∫

L1,1
R,1

|dζ|
|ζ − z|2σ1+2+γ1

+
∫

L1,2
R,1

|dζ|
|ζ − z1|2σ1+2+γ1

�
∫

F 1,1
R,2

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2σ1+2+γ1 (|τ | − 1)

+
∫

F 1,2
R,2

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w1)|2σ1+2+γ1 (|τ | − 1)

� n

∫
F 1,1
R,1

|dτ |

|τ − w|
2σ1+1+γ1

α

+ n

∫
F 1,2
R,1

|dτ |

|τ − w1|
2σ1+1+γ1

β1

� n · n
2σ1+1+γ1

α
−1 + n · n

2σ1+1+γ1
β1

−1 � n
2σ1+1+γ1

β1 .

Therefore, in this case we have

Jn,2(L1
R,1) � n

2σ1+1+γ1
β1 . (4.27)

2.2) For any ζ ∈ L1
R,2 and z ∈ L1

2 , |ζ − z1| ≥ δ1 and analogously to the case 1.2), in this
case from Definition 2.6, we obtain

|ζ − z|α � max
{
|ζ − z1|α−β1 ; |z − z1|α−β1

}
|w − τ |

≥ δα−β1
1 |w − τ | � |w − τ | ,

and then,

Jn,2(L1
R,2) =

∫
L1
R,1

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|
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� (δ∗1)2−2σ1

(δ1)2+γ1

∫
L1
R,1

|dζ|
|ζ − z|2

(4.28)

�
∫

F 1
R,2

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2 (|τ | − 1)

� n
∫

F 1
R,2

|dτ |
|Ψ(τ)−Ψ(w)|

� n

∫
F 1
R,2

|dτ |
|τ − w|

1
α

� n
1
α .

2.3) For any ζ ∈ L1
R,3 and z ∈ L1

2, |ζ − z1| ≥ δ∗1 and |ζ − z| ≥ δ∗1 − δ1. Then, we have:

Jn,2(L1
R,3) =

∫
L1
R,3

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|

� (δ∗1)2−2σ1

(δ1)2+γ1

∫
L1
R,3

|dζ|
|ζ − z|2

�
∫

L1
R,3

|dζ|
|ζ − z|2

(4.29)

�
∫

F 1
R,3

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2 (|τ | − 1)

� n
∫

F 1
R,3

|dτ |
|Ψ(τ)−Ψ(w)|

� n

∫
F 1
R,3

|dτ |
|τ − w|

1
α

� n
1
α .

3) Let z ∈ L1
3.

3.1) Analogously to previous cases, we get:

Jn,2(L1
R,1) =

∫
L1
R,1

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|

≤

(
2diamG

)2−2σ1

(δ∗1 − δ1)2

∫
L1
R,1

|dζ|
|ζ − z1|2+γ1

(4.30)

�
∫

F 1
R,1

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2+γ1 (|τ | − 1)

� n

∫
F 1
R,1

|dτ |

|τ − w|
2+γ1
β1

� n
2+γ1
β1 .

3.2) Since, from Definition 2.6,

|ζ − z|α � max
{
|ζ − z1|α−β1 ; |z − z1|α−β1

}
|w − τ |

≥ δα−β1
1

∣∣w′ − τ ∣∣ � |w − τ | ,
then, we have:

Jn,2(L1
R,2) =

∫
L1
R,2

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|
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≤ (δ∗1)2−2σ1

(δ1)2+γ1

∫
L1
R,2

|dζ|
|ζ − z|2

(4.31)

�
∫

F 1
R,2

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2 (|τ | − 1)

� n
∫

F 1
R,2

|dτ |
|Ψ(τ)−Ψ(w)|

� n

∫
F 1
R,2

|dτ |
|τ − w|

1
α

� n
1
α .

3.3) Also, we get:

Jn,2(L1
R,3) =

∫
L1
R,3

|z − z1|2−2σ1

|ζ − z|2 |ζ − z1|2+γ1
|dζ|

≤ (δ∗1)−2σ1−γl
∫

L1
R,3

|dζ|
|ζ − z|2

(4.32)

�
∫

F 1
R,3

ρ(Ψ(τ), L) |dτ |
|Ψ(τ)−Ψ(w)|2 (|τ | − 1)

� n
∫

F 1
R,3

|dτ |
|Ψ(τ)−Ψ(w)|

� n

∫
F 1
R,3

|dτ |
|τ − w|

1
α

� n
1
α .

By combining the estimations of (4.18), (4.20)-(4.32), finally we obtain:

|Pn (z)| ≤ c13 |Pn (z1)|+ c12 ‖Pn‖Lp · n
1
αp , p > 0.

and, then the proof of (2.8) is completed.
The estimation of (2.9) follows from the Theorem 2.5 for α = β1. �

Acknowledgment. This work is supported by TUBITAK under Project No: 115F652.

References
[1] F.G. Abdullayev, On the some properties on orthogonal polynomials over the regions

of complex plane 1. Ukr. Math. J. 52 (12), 1807-1817, 2000.
[2] F.G. Abdullayev, On the interference of the weight boundary contour orthogonal poly-

nomials over the region, J. of Comp. Anal. and Appl. 6 (1), 31-42, 2004.
[3] F.G. Abdullayev and V.V. Andrievskii, On the orthogonal polynomials in the domains

with K-quasiconformal boundary, Izv. Akad. Nauk Azerb. SSR., Ser. FTM, 1, 3-7,
1983.

[4] F.G. Abdullayev and C.D. Gün, On the behavior of the algebraic polynomials in
regions with piecewise smooth boundary without cusps, Ann. Polon. Math. 111, 39-58,
2014.

[5] F.G. Abdullayev and N.P. Özkartepe, On the Behavior of the Algebraic Polynomial
in Unbounded Regions with Piecewise Dini -Smooth Boundary, Ukr. Math. J., 66 (5),
579-597, 2014.

[6] F.G. Abdullayev and N.P. Özkartepe, On the growth of algebraic polynomials in the
whole complex plane, J. Korean Math. Soc. 52 (4) 699-725, 2015.

[7] F.G. Abdullayev and N.P. Özkartepe, Uniform and pointwise polynomial inequalities
in regions with cusps in the weighted Lebesgue space, Jaen J. Approx. 7 (2), 231-261,
2015.



The uniform and pointwise estimates for polynomials... 101

[8] F.G. Abdullayev, N.P. Özkartepe, C.D. Gün, Uniform and pointwise polynomial in-
equalities in regions without cusps in the weighted Lebesgue space, Bulletin of Tbilisi
ICMC 18 (1), 146-167, 2014.

[9] L. Ahlfors, Lectures on Quasiconformal Mappings, Princeton, NJ: Van Nostrand,
1966.

[10] V.V. Andrievskii, Weighted Polynomial Inequalities in the Complex Plane, J. Approx.
Theory 164(9), 1165-1183, 2012.

[11] V.V. Andrievskii, V.I. Belyi, and V.K. Dzyadyk, Conformal invariants in constructive
theory of functions of complex plane, Atlanta: World Federation Publ.Com., 1995.

[12] E. Hille, G. Szegö, and J.D. Tamarkin, On some generalization of a theorem of A.
Markoff, Duke Math. 3, 729-739, 1937.

[13] D. Jackson, Certain problems on closest approximations, Bull. Amer. Math. Soc. 39,
889-906, 1933.

[14] O. Lehto and K.I. Virtanen, Quasiconformal Mapping in the Plane, Springer Verlag,
Berlin, 1973.

[15] F.D. Lesley, Hölder continuity of conformal mappings at the boundary via the strip
method, Indiana Univ. Math. J. 31, 341-354, 1982.

[16] D.I. Mamedhanov, Inequalities of S.M.Nikol’skii type for polynomials in the complex
variable on curves, Soviet Math. Dokl. 15, 34-37, 1974.

[17] D.I. Mamedhanov, On Nikol’skii-type inequalities with new characteristic, Dokl.
Math. 82, 882-883, 2010.

[18] G.V. Milovanovic, D.S. Mitrinovic, and Th.M. Rassias, Topics in Polynomials: Ex-
tremal Problems, Inequalities, Zeros, World Scientific, Singapore, 1994.

[19] S.M. Nikol’skii, Approximation of Function of Several Variable and Imbeding Theo-
rems, Springer-Verlag, New-York, 1975.

[20] N.P. Özkartepe and F.G. Abdullayev, Interference of the weight and boundary contour
for algebraic polynomials in the weighted Lebesgue spaces I, Ukr. Math. J. 68(10),
1574-1590, 2017.

[21] Ch. Pommerenke, Univalent Functions, Göttingen, Vandenhoeck & Ruprecht, 1975.
[22] Ch. Pommerenke, Boundary Behavior of Conformal Maps, Springer-Verlag, Berlin,

1992.
[23] I. Pritsker, Comparing Norms of Polynomials in One and Several Variables, J. Math.

Anal. Appl. 216, 685-695, 1997.
[24] S. Rickman, Characterisation of quasiconformal arcs, Ann. Acad. Sci. Fenn., Ser. A,

Mathematica 395, 30 p, 1966.
[25] G. Szegö and A. Zigmund , On certain mean values of polynomials, J. Anal. Math.

3, 225-244, 1954.
[26] P.K. Suetin, The ordinally comparison of various norms of polynomials in the com-

plex domain, Matematicheskie zapiski Uralskogo Gos. Universiteta 5 (4), 1966 (in
Russian).

[27] P.K. Suetin, Main properties of the orthogonal polynomials along a circle, Uspekhi
Math. Nauk 21 (2 (128)), 41-88, 1966.

[28] P.K. Suetin, On some estimates of the orthogonal polynomials with singularities weight
and contour, Sib. Math. J VIII (3), 1070-1078, 1967 (in Russian).

[29] J.L. Walsh, Interpolation and Approximation by Rational Functions in the Complex
Domain, AMS, 1960.

[30] S.E. Warschawski, On differentiability at the boundary in conformal mapping, Proc.
Amer. Math. Soc., 12, 614-620, 1961.



Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 48 (1) (2019), 102 – 111
DOI : 10.15672/HJMS.2018.616

A note on the embedding properties
of p-subgroups in finite groups

Boru Zhang, Xiuyun Guo∗

Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China

Abstract
In this note, we prove that a finite group G is p-supersolvable if and only if there exists
a power d of p with p2 ≤ d < |P | such that H ∩ Op(G∗p) is normal in Op(G) for all
non-cyclic normal subgroups H of P with |H| = d, where P is a Sylow p-subgroup of G.
Moreover, we also prove that either lp(G) ≤ 1 and rp(G) ≤ 2 or else |P ∩ Op(G)| > d if
there exists a power d of p with 1 ≤ d < |P | such that H ∩ Op(G∗p2) is normal in Op(G)
for all non-meta-cyclic normal subgroups H of P with |H| = d.

Mathematics Subject Classification (2010). 20D10, 20D20, 20D40

Keywords. Finite p-group of maximal class, p-supersolvable group, meta-cyclic p-group

1. Introduction
All groups considered in this note are finite. We use conventional notions and notation,

as in [9].
It is quite interesting to investigate the structure of a group by using some kind of

the embedding properties of subgroups and many interesting results have been given (for
example, see [1, 6, 8, 13]). Recently, Guo and Isaacs [6] proved the following theorem by
using the embedding condition “H ∩Op(G) �Op(G)”.
Theorem 1.1. ([6, Theorem B]). Let P ∈ Sylp(G), and let d be a power of p such that
1 ≤ d < |P |. Assume that H ∩ Op(G) � Op(G) for all subgroups H � P with |H| = d.
Then either G is p-supersolvable or else |P ∩Op(G)| > d.

An interesting idea of [6] is that in the hypothesis of the theorem only the normal
subgroups of order d are considered, not necessarily the family of all subgroups of order d.
Recall that a subgroup H of a group G is said to be S-semipermutable in G (see [12]) if
H permutes with all Sylow q-subgroups of G for the primes q not dividing |H|. Ballester-
Bolinches etc in their paper [1] proved an analogous result, but they only assume that
H ∩Op(G) are S-semipermutable in Op(G) instead of assuming that these subgroups are
normal in Op(G).
Theorem 1.2. ([1, Theorem 2]). Let P ∈ Sylp(G), and let d be a power of p such that
1 ≤ d < |P |. Assume that H ∩ Op(G) is S-semipermutable in G for all subgroups H � P
with |H| = d. Then either G is p-supersolvable or else |P ∩Op(G)| > d.
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More recently, Yu in his paper [13] use the subgroup G∗p of a group G, and consider the
embedding condition Op(G∗p) ∩H � Op(G) to prove the following result, where G∗p is the
unique smallest normal subgroup of a group G for which the corresponding factor group
is abelian of exponent dividing p− 1.

Theorem 1.3. ([13, Theorem 2]). Let P ∈ Sylp(G), and let d be a power of p such that
1 ≤ d < |P |. Then G is p-supersolvable if and only if |P ∩Op(G∗p)| ≤ d and H ∩Op(G∗p)�
Op(G) for all subgroups H � P with |H| = d.

Remark 2.3 and Example 2.4 in [13] show that it is better to use the embedding condition
Op(G∗p)∩H�Op(G) to investigate the p-supersolvability of groups. On the other hand, in
all of the above results all normal subgroups of order d in P are considered. So we wonder
whether we may reduce the number of normal subgroups of order d in P?

In fact, we have the following results.

Theorem 1.4. Let P ∈ Sylp(G), and let d be a power of p such that p2 ≤ d < |P |. Then
G is p-supersolvable if and only if |P ∩ Op(G∗p)| ≤ d and H ∩ Op(G∗p) � Op(G) for all
non-cyclic subgroups H � P with |H| = d.

Theorem 1.5. Let p be a prime dividing the order of a group G of odd order, let d be
a power of p such that 1 ≤ d < |P | and P ∈ Sylp(G) with |P | > d. And suppose that
H ∩ Op(G∗p2) � Op(G) for all non-meta-cyclic normal subgroups H in P with | H |= d.
Then either p-length lp(G) ≤ 1 and p-rank rp(G) ≤ 2 or else |P ∩Op(G∗p2)| > d, where G∗p2

is the unique smallest normal subgroup of the group G for which the corresponding factor
group is abelian of exponent diving p2 − 1.

We should notice that we assume d ≥ p2 in Theorem 1.4. In fact, if p = 2 and d = 2 ,
then the result is still true. Since |P∩Op(G∗p)| ≤ 2, it follows from Burnside Theorem[9, IV,
2.8] that Op(G∗p) is 2-nilpotent, and thus G∗p is 2-nilpotent. Hence G is 2-supersolvable.
However, the result is not true if p is odd prime and d = p in Theorem 1.4. In fact, let
D be a non-abelian simple group such that Sylow p-subgroups of D are cyclic of order p,
and let G = D × C with a cyclic group C of order p. Clearly, G∗p = G and H ∩ Op(G∗p)
is normal in Op(G) for every non-cyclic normal subgroup H of P of order d, where P is a
Sylow p-subgroup. But |P ∩Op(G∗p)| = p and G is not p-supersolvable.

We also notice that the hypothesis “G is an odd order group” in Theorem 1.5 can not
be removed. In fact, let D be a non-abelian simple group such that Sylow p-subgroups
of D are cyclic of order pm(d ≥ pm ≥ 1), and let G = D × C with a cyclic group
C of order pn(n ≥ 1). Clearly, H ∩ Op(G∗p2) is normal in Op(G) for every non-meta-
cyclic normal subgroup H of P of order d, where P is a Sylow p-subgroup of G. But
|P ∩Op(G∗p2)| = pm ≤ d and G is not p-solvable.

Furthermore, the following example tells us that G may not be p-supersolvable if G
satisfies the hypotheses in Theorem 1.5. Let p be an odd prime with p 6= 2k − 1 for all
positive integer k. Write P = 〈a〉×〈b〉 ' C2

pn . So Aut(Ω1(P )) ' GL(2, p) and there exists
a cyclic subgroup T of order p2−1 in Aut(Ω1(P )). Note that p+1 is not a power of 2, then
we can choose an automorphism α ∈ T with order q such that q|p + 1 and q 6= 2. Now,
considering the surjective homomorphism φ : Aut(P ) → Aut(Ω1(P )); we can choose an
automorphism α of P such that φ(α) = α. Write the semidirect product G = P o〈α〉, it is
clear that H ∩Op(G∗p2) is normal in Op(G) for every non-meta-cyclic normal subgroup H
of P of order d = pm (m < 2n). Now we prove that G is not p-supersolvable. If the action
of α on Ω1(P ) = 〈a1〉 × 〈b1〉 ' C2

p is reducible, then it follows from p 6= q and Maschke’s
Theorem that 〈a1〉, 〈b1〉 are α-invariant. It follows from g.c.d.(p+1, p−1) = 2 that q - p−1,
and therefore α acts trivially on both 〈a〉 and 〈b〉, that is, α acts trivially on Ω1(P ), a
contradiction. Hence α acts irreducibly on Ω1(P ), implying that α acts irreducibly on
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Ω1(P ). Then we have Ω1(P ) ' C2
p is a minimal normal subgroup of G and so rp(G) = 2.

It follows that G is not p-supersolvable.

2. Preliminary results
In this section we list some basic and known results which will be used in our proofs.

Definition 2.1. ([7, Definition 1.9]). Let p be prime. A group G is said to be a CS(p, n)-
group if G is a p-group with a characteristic series

1 = G0 < G1 < · · · < Gm = G

such that |Gi/Gi−1| ≤ pn for all i ≥ 1.

It is clear that meta-cyclic p-groups and p-groups of maximal class are both CS(p, 2)-
groups.

Lemma 2.2. ([3, Lemma 1.4]). Let p be a prime, let P be a p-group and let d be a power
of p such that p2 ≤ d < |P |. Let N � P , where |N | ≥ d, and suppose that every normal
subgroup of P that has order d and is contained in N is cyclic. Then N is cyclic, dihedral,
semidihedral or generalized quaternion.

Lemma 2.3. ([2, Lemma 2.4]). Let P � G, where P is a p-group. Also, let N ≤ G be
a p-subgroup with |N | ≤ |P | and N 6≤ P . Then N < PN , and every subgroup H with
N < H ≤ NP is non-cyclic.

Lemma 2.4. ([8, Lemma 2.5]). If a group P of order 2n > 23 has a subgroup M of order
2n−1 of maximal class, then either P is of maximal class or P/P ′ ' C3

2 , and P ′ is cyclic.

Lemma 2.5. ([3, Exercise 1(b), p.114]). Let P be dihedral, semidihedral or generalized
quaternion, then P has the only one normal subgroup N of order 2a for every 1 < 2a <
|P |/2 and N is cyclic.

Lemma 2.6. ([4, Corollary 69.5]). Let p be an odd prime and d be a power of p such
that d ≥ p3, and let N be a normal subgroup of a p-group P with |N | ≥ d. If every
normal subgroup of P that has order d and is contained in N is meta-cyclic, then N is a
meta-cyclic group or a 3-group of maximal group.

Lemma 2.7. Let p be a odd prime, and let P be a meta-cyclic p-group or a 3-group of
maximal class. If N is normal in P , then Ω1(N) . Cp×Cp or N is a 3-group of maximal
class.

Proof. If P is meta-cyclic, then Ω1(N) . Cp × Cp. Now assume that P is a 3-group of
maximal class. It follows from [3, Exercise 9.1] that N is a 3-group of maximal class or
absolutely regular, where a p-group N is absolutely regular if |G/01(G)| < pp (see [3, List
of definitions and notations]). If N is absolutely regular, then |Ω1(N)| = |N/01(N)| ≤ 32,
and thus Ω1(N) . Cp × Cp by [3, Lemma 1.4]. �

Lemma 2.8. Let p be a prime and d be a power of p such that p3 ≤ d, and let P be a
p-group. Also, let N and P1 be normal subgroups of P with N . Cp × Cp and N < P1.
If P1 contains a non-meta-cyclic normal subgroup of order d of P , then there exists a
non-meta-cyclic normal subgroup H of order d of P such that N < H ≤ P1.

Proof. Let H1 be a non-meta-cyclic normal subgroup of order d of P with H1 ≤ P1. If
N 6≤ H1, then |N ∩H1| = 1 or p by N . Cp × Cp, that is, |N : N ∩H1| = p2 or p. First,
we assume that |N : N ∩H1| = p. Since N ∩H1 is normal in P , there exists a maximal
subgroupM of H1 such thatM�P and N∩H1 ≤M , and so H = NM is normal in P and
|H| = d. Noting that H1 is non-meta-cyclic, we have that M is non-cyclic. It follows from
N 6≤ M and N . C2

p that Ω1(H) > Ω1(M) ≥ p2. Thus H is non-meta-cyclic by Lemma
2.7 and H ≤ P1. Now assume that |N : N ∩ H1| = p2 and take a subgroup M1 of H1
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with |M1| = d/p2 and M1 � P . Then H = NM1 is a normal subgroup of P with |H| = d.
Noticing that N ' Cp × Cp and N ∩M = 1, we see |Ω1(H)| ≥ |Ω1(N)||Ω1(M)| ≥ p3.
Hence H is non-meta-cyclic by Lemma 2.7, as we wanted. �

Lemma 2.9. ([7, Lemma 2.2]). Let P be a p-group. If P has a meta-cyclic maximal
subgroup and P is not isomorphic to C3

p , then P is a CS(p, 2)-group.

Lemma 2.10. ([7, Lemma 3.2]). Let an odd order group A act on a CS(p, 2)-group P .
Then P is centralized by Op(A∗p2).

Lemma 2.11. Let G be a group and let p be a prime of |G|. If G∗p2 is p-nilpotent, then
G is p-solvable with lp(G) ≤ 1 and rp(G) ≤ 2.

Proof. Since G∗p2 is p-nilpotent, G is p-solvable of lp(G) ≤ 1. We see G has a chief series

1 = K0 < · · · < H0 = Op(G∗p2) < H1 < · · · < Hn = G∗p2 < · · · < G

Noticing that Op(G∗p2) ≤ CG(Hi+1/Hi) (0 ≤ i ≤ n − 1), we have AG(Hi+1/Hi) '
G/CG(Hi+1/Hi) ∈ DpUp2−1, where Dp is the formation consisting of all p-groups and
Up2−1 is the formation consisting of all abelian groups with exponent dividing p2 − 1.
Since Op(AG(Hi+1/Hi)) = 1 by [5, A, Lemma 13.6], it follows that AG(Hi+1/Hi) ∈ Up2−1,
and so AG(Hi+1/Hi) is abelian with exponent dividing p2 − 1.

Write |Hi+1/Hi| = pm. By the faithful and irreducible action of the abelian group
AG(Hi+1/Hi) onHi+1/Hi, we see that AG(Hi+1/Hi) is cyclic andm is the smallest positive
integer such that |AG(Hi+1/Hi)| divides pm − 1 by [9, II, Lemma 3.10], and thus m ≤ 2
since the exponent of AG(Hi+1/Hi) divides p2 − 1. Then rp(G) ≤ 2. �

3. Proof of Theorem 1.4
Lemma 3.1. Let p be a prime, and let P ∈ Sylp(G), where G is a group. If P is a cyclic
group, then either G is p-supersolvable or else P ∩Op(G∗p) = P .

Proof. Without loss of generality, we assume P ∩Op(G∗p) < P . If P ∩Op(G∗p) = 1, then
G∗p is a p-nilpotent, and thus G is p-supersolvable. So 1 < P ∩Op(G∗p) < P , then it follows
from [11, Theorem 2.1] that G is p-supersolvable. �

Proof of Theorem 1.4. Note that G is p-supersolvable if and only if G∗p is p-nilpotent,
and so we only need to prove the sufficient. Now assume that G is a counterexample of
minimal order. Then G is not p-supersolvable. In particular, G∗p is not p-nilpotent, and
therefore N = P ∩Op(G∗p) > 1. For convenience, we write

H = {H � P | H is a non-cyclic subgroup with |H| = d}
and

Y = {Y < ·P | N 6≤ Y }.
It is easy to see that H ∩Op(G∗p) �G for all H ∈ H. We proceed in a number of steps to
derive a contradiction.

Step 1. P is not cyclic, dihedral, semidihedral or generalized quaternion.
If P is cyclic, then, by Lemma 3.1, G is p-supersolvable, a contradiction. Now assume

that P is dihedral, semidihedral or generalized quaternion. If N is a cyclic subgroup, then
it follows from Burnside’s theorem [9, IV, 2.8] and p = 2 that Op(G∗p) is 2-nilpotent, and
thus G∗p is 2-nilpotent, a contradiction. Thus, by Lemma 2.5, we may assume that N is a
non-cyclic maximal subgroup of P and |N | = d. In this case P = D2n(n ≥ 3), Q2n(n ≥ 4)
or SD2n , and thus there exists a non-cyclic maximal subgroup N1 of P such that N 6≤ N1.
For convenience, we write M1 = N ∩N1 and have

M1 = N ∩Op(G∗p) ∩N1 ∩Op(G∗p) �G.
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Since |P : M1| = 22, M1 is cyclic by Lemma 2.5. It follows that Op(G∗p) is 2-supersolvable
and therefore Op(G∗p) is 2-nilpotent. Hence G∗p is 2-nilpotent, a contradiction.

Step 2. H 6= φ.
Suppose not, that is , all normal subgroups of P with order d are cyclic. Now by Lemma

2.2, P is cyclic, dihedral, semidihedral or generalized quaternion, in contradiction to Step
1.

Step 3. Op′(G∗p) = 1.
Write D = Op′(G∗p) and G = G/D, and note that Op(G∗p) = Op(G∗p) by [13, Lemma

2.9]. It follows from Dedekind’s lemma that Op(G∗p)∩DH = D(Op(G∗p)∩H) for H ∈ H. In
addition, both D and Op(G∗p)∩H are normalized by Op(G), we see that Op(G) normalizes
Op(G∗p)∩DH, or equivalently, Op(G) normalizes Op(G∗p)∩H. Since PD∩Op(G∗p) = D(P ∩
U) = DN and |N | ≤ d, we see that |P ∩ Op(G∗p)| ≤ d. Then G satisfies the hypotheses,
and therefore G is p-supersolvable. It is clear that the subgroups of G corresponding to
the members of H are exactly the subgroups H for H ∈ H. Hence G is p-supersolvable.
Futhermore, we see that G is p-supersolvable, which is a contradiction. So we conclude
that D = 1.

Step 4. N is normal in G. In fact, G is p-solvable and P �G.
Since H ∩Op(G∗p)�Op(G) for H ∈ H and Op(G∗p) ≤ Op(G), we see that H ∩Op(G∗p)�

Op(G∗p) for H ∈ H. Then G∗p satisfies the hypotheses of [8, Theorem 3.2], and thus G∗p is p-
supersolvable. Hence G is p-solvable. Noticing that Op′(G∗p) = 1 and G∗p is p-supersolvable,
we have P �G∗p by [9, VI, 6.6]. Then it follows from P ∈ Sylp(G∗p) and G∗p �G that P is
normal in G. So N = P ∩Op(G∗p) is normal in G by Op(G∗p) �G.

Step 5. There exists a maximal subgroup Y ∈ Y with L = N ∩ Y is not normal in G
and L is cyclic.

If N ≤ Φ(P ), then it follows from Tate’s theorem [9, IV, 4.7] that Op(G∗p) is p-nilpotent,
and therefore G∗p is p-nilpotent, a contradiction. Thus there exists a maximal subgroup Y
of P with N 6≤ Y .

Next we prove that there exists Y ∈ Y such that L = N ∩Y is not normal in G. If not,
then L = N∩Y is normal in G and |N : L| = p for all Y ∈ Y. So G∗p ≤ CG(N/L). Noticing
that N/L is a normal Sylow p-subgroup of Op(G∗p)/L, we see N/L ≤ Z(Op(G∗p)/L), and
therefore Op(G∗p)/L is p-nilpotent by Burnside’s theorem [9, IV, 2.6]. Hence Op(Op(G∗p)) <
Op(G∗p), a contradiction.

Finally, we prove that L is cyclic. If L is non-cyclic, then there exists H ∈ H such that
L < H ≤ Y . So

L = H ∩ L = H ∩ Y ∩N = H ∩N = H ∩ P ∩Op(G∗p) = H ∩Op(G∗p) �G,

which is a contradiction.
Step 6. Y is a cyclic, dihedral, semidihedral or generalized quaternion group.
Let Y and L be as in Step 5. If there exists a subgroup S in Y such that S ∈ H, then,

since |L| < |N | ≤ d = |S|, there exists H ∈ H such that L < H ≤ LS ≤ Y by Lemma 2.3.
In this case, we have

L = H ∩ L = H ∩ Y ∩N = H ∩N = H ∩ P ∩Op(G∗p) = H ∩Op(G∗p) �G,

in contradiction to Step 5. So every normal subgroup of P that has order d and is contained
in Y is cyclic. By Lemma 2.2, the Step 6 is true.

Step 7. The final contradictions.
If Y is a cyclic maximal subgroup of P , then it follows from [2, Lemma 2.1(b)] and Step

1 that Op(G∗p) acts trivially on P , and therefore G∗p is p-nilpotent, a contradiction. Now
assume that Y is a dihedral, semidihedral or generalized quaternion group. If |Y | = d,
then Y ∈ H, and therefore L = N ∩ Y = P ∩Op(G∗p) ∩ Y is normal in G, in contradiction
to Step 5. The remaining case is |Y | > d. In this case, since Y is of maximal class, we see
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that |Y : Y ′| = 22. Furthermore, by |Y | > d ≥ |N | and |N : L| = 2, we see that L ≤ Y ′

by Lemma 2.5. It follows from Lemma 2.4 that P ′ is cyclic, and therefore L ≤ Y ′ ≤ P ′ is
normal in G by P �G, in contradiction to Step 5, which is the final contradiction. So the
proof is complete. �

Now we present some application of Theorem 1.4.

Lemma 3.2. Let P ∈ Sylp(G) with |P | > p3. If P has exactly one non-cyclic maximal
subgroup M and M �G∗p, then G is p-supersolvable.

Proof. It is easy to see that the hypotheses are inherited by G/Op′(G∗p) and PG∗p , so we
can assume that Op′(G∗p) = 1. If PG∗p < G, then PG∗p is p-supersolvable by induction. It
follows from Op′(G∗p) = 1 and [9, VI, 6.6] that P is normal in PG∗p , and thus P = PG∗p .
And since G∗p � G and P ∈ Sylp(G∗), we see that P � G. Noticing that there exists a
cyclic maximal subgroup in P , we see, by [2, Lemma 2.1], that Op(G∗p) acts trivially on
P . Thus G∗p is p-nilpotent, and therefore G is p-supersolvable. Now we can assume that
PG∗p = G, and in particular, G∗p = G. Then it follows from [8, Lemma 4.1] that G is
p-supersolvable. �

Lemma 3.3. Let a Sylow p-subgroup P of G be a non-cyclic subgroup with |P | > p3. If
every non-cyclic maximal subgroup of P is normal in G∗p, then G is p-supersolvable.

Proof. By Lemma 3.2, we can assume that P has two distinct non-cyclic maximal sub-
groups. Then P is normal in G∗p. In addition, G∗p is normal in G and P ∈ Sylp(G∗p). Thus
P is normal in G. Since |P | > p3, we see, by [2, Theorem A], that Op(G∗p) acts trivially
on P . Then G∗p is p-nilpotent, and therefore G is p-supersolvable. �

Corollary 3.4. Let P be a non-cyclic Sylow p-subgroup of G with |P | > p3, and suppose
for every non-cyclic maximal subgroup H of P that H ∩ Op(G∗p) � Op(G). Then G is
p-supersolvable.

Proof. Assume that G is not p-supersolvable. Applying Theorem 1.4 with d = |P |/p, we
deduce that Op(G∗p) = G∗p, and thus every non-cyclic maximal subgroup of P is normal in
G∗p. It follows from Lemma 3.3 that G is p-supersolvable, a contradiction. �

Corollary 3.5. Let p be an odd prime and P ∈ Sylp(G), where P is non-cyclic. Let d
be a power of p such that p2 ≤ d < |P |, and let H be the set of all non-cyclic normal
subgroups H of P with |H| = d. Assume that H ∩ Op(G∗p) � Op(G) for all H ∈ H. If
NG(H) is p-supersolvable for all H ∈ H, then G is p-supersolvable.

Proof. If |P ∩ Op(G∗p)| ≤ d, then G is p-supersolvable by Theorem 1.4. Now we can
assume that |P ∩Op(G∗p)| > d. In this case, if there exists H ∈ H such that H ≤ Op(G∗p),
then H �Op(G), and thus H �POp(G) = G. Hence G = NG(H) is p-supersolvable. Now
we may assume that N = P ∩ Op(G∗p) is cyclic by Lemma 2.2. Let L be a subgroup of
N with order d/p. Since P is non-cyclic, there exists H ∈ H such that L ≤ H by Lemma
2.2 and [8, Lemma 2.4], and thus L = N ∩H. Noticing that L = N ∩H = H ∩Op(G∗p) is
normal in Op(G), we have that L is normal in G. It follows from [11, Theorem 2.1] that
Op(G∗p) is p-supersolvable, and therefore N �Op(G∗p). In addition, Op(G∗p) is normal in G
and N ∈ Sylp(Op(G∗p)). Then N is normal in G. Hence, by [2, lemma 2.1] , Op(G∗p) acts
trivially on N . Furthermore, we see that G∗p is p-nilpotent and G is p-supersolvable. The
proof of the corollary is complete. �

4. Proof of Theorem 1.5
Lemma 4.1. Let G be a group of odd order and P be a Sylow p-subgroup of G. If P is a
meta-cyclic group or 3-group of maximal class, then lp(G) ≤ 1 and rp(G) ≤ 2.
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Proof. we proceed by induction on |G|. It is easy to see that the hypotheses are inherited
by G/Op′(G). So we assume that Op′(G) = 1. Then Op(G) 6= 1 since G is p-solvable. By
Lemma 2.7, we see that Op(G) is a 3-group of maximal class or Ω1(Op(G)) . Cp ×Cp. If
Op(G) is of maximal class, then Op(G) is a CS(p, 2)-group. Hence Op(G∗p2) acts trivially
on Op(G) by Lemma 2.10. It follows from Hall-Higman lemma [10, Theorem 3.21] that
Op(G∗p2) ≤ CG(Op(G)) ≤ Op(G), and thus G∗p2 is p-group. Furthermore, by Lemma 2.11,
lp(G) ≤ 1 and rp(G) ≤ 2. Now we assume that Ω1(Op(G)) . Cp × Cp. It follows from
Lemma 2.10 that Op(G∗p2) act trivially on Ω1(Op(G)), and thus Op(G∗p2) act trivial on
Op(G) by [9, IV, 5.12]. So lp(G) ≤ 1 and rp(G) ≤ 2 by using the arguments above. �

Proof of Theorem 1.5. Suppose that G is a counterexample of minimal order. Then
|P ∩ Op(G∗p2)| ≤ d and lp(G) 6≤ 1 or rp(G) 6≤ 2. By Lemma 2.11, we see that G∗p2 is not
p-nilpotent, and N = P ∩Op(G∗p2) > 1. For convenience, we write

H1 = {H � P | H is a non-meta-cyclic subgroup with |H| = d}
and

Y = {Y < ·P | N 6≤ Y }.
It is easy to see H ∩ Op(G∗p2) � G for all H ∈ H1. We proceed in a number of steps to
derive a contradiction.

Step 1. Op′(G) = 1.
Write D = Op′(G) and G = G/D. We argue that G satisfies the hypotheses of the the-

orem. The subgroups of G corresponding to the members of H1 are exactly the subgroups
H for H ∈ H1, and since Op(G) = Op(G) and Op(G∗p2) = Op(G∗p2), we must show that
Op(G) normalizes Op(G∗p2) ∩H. On the other hand, Op(G∗p2) ∩H = (Op(G∗p2 ∩H)D/D
by [13, Lemma 2.8]. Then Op(G) normalizes Op(G∗p2)∩H. Since D and Op(G∗p2)∩H are
normalized by Op(G), this shows that G satisfies the hypotheses, as claimed.

If D > 1, then lp(G) 6≤ 1 or rp(G) 6≤ 2, and thus |P ∩ Op(G∗p2)| > d by the minimality
of G. Hence |PD ∩ Op(G∗p2)| > d|D|. Since PD ∩ U = D(P ∩ Op(G∗p2)) = DN , we see
that | N |> d, which is a contradiction with |N | ≤ d. So we conclude that D = 1.

Step 2. d ≥ p3.
If d ≤ p2, then |N | ≤ p2. Since G is an odd order group, we see that G is p-solvable.

Then it follows from [9, VI, 6.6] that lp(Op(G∗p2)) ≤ 1. In addition, Op′(G∗p2) = 1 since
Op′(G) = 1. Thus N�Op(G∗p2), and therefore N�G. It follows that Op(G∗p2) acts trivially
on N by Lemma 2.10, and so Op(G∗p2) is p-nilpotent by Burnside’s theorem [9, IV, 2.6].
Hence G∗p2 is p-nilpotent, a contradiction.

Step 3. H1 6= ∅.
Suppose not, that is, all subgroups of P with order d are meta-cyclic. Now by Lemma

2.6, P is a meta-cyclic group or a 3-group of maximal class. Then it follows form Step 2
and Lemma 4.1 that lp(G) ≤ 1 and rp(G) ≤ 2, a contradiction.

Step 4. N is non-meta-cyclic and is normal in G.
Suppose that N is meta-cyclic, that is, N is a cyclic group or a meta-cyclic group

with d(N) = 2, where d(N) is a minimal number of generators of N . If N is cyclic,
and let A be a subgroup of N with order p, then A is normal in P by N � P , and
therefore there exists H ∈ H1 such that A ≤ H by Lemma 2.8 and H ∩ N 6= 1. Hence,
by H ∩ N = H ∩ P ∩ Op(G∗p2) � G and [11, Theorem 2.1], Op(G∗p2) is p-supersovable.
Furthermore, it follows from Op′(G) = 1 and [9, VI, 6.6] that N is normal in Op(G∗p2). By
Lemma 2.9 and 2.10, we see that Op(G∗p2) centralizes N , and thus Op(G∗p2) is p-nilpotent
and G∗p2 is p-nilpotent, a contradiction. Now we assume that N is a metacyclic subgroup
of P with d(G) = 2. Then Ω1(N) ' Cp×Cp, and thus, by Lemma 2.8, there exists H ∈ H1

such that Ω1(N) ⊆ H and H∩N 6= 1. Hence T = H∩N = H∩P ∩Op(G∗p2)�G. Noticing



A note on the embedding properties of p-subgroups in finite groups 109

that Ω1(N) = Ω1(T ) char T , we have that Ω1(N) is normal in G, and therefore Op(G∗p2)
centralizes Ω1(N) by Lemma 2.10. Since p is odd, we see that Op(G∗p2) centralizes N by
[9, IV, 5.12]. Then Op(G∗p2) is p-nilpotent by Burnside’s Theorem [9, IV, 2.6], and thus
G∗p2 is p-nilpotent, a contradiction.

Hence N is non-meta-cyclic, and thus there exists H ∈ H1 such that N ⊆ H. We see
N = N ∩H = Op(G∗p2) ∩ P ∩H �G.

Step 5. There exists a maximal subgroup Y ∈ Y such that N 6≤ Y .
If N ≤ Φ(P ), then it follows from Tate’s theorem [9, IV, 4.7] that Op(G∗p2) is p-nilpotent,

and therefore G∗p2 is p-nilpotent, a contradiction. Thus there exists a maximal subgroup
Y of P with N 6≤ Y .

Step 6. For any Y ∈ Y, L = N ∩ Y is not normal in G and L is meta-cyclic.
First, we prove that L = N ∩ Y is not normal in G for any Y ∈ Y. If not, then

there exists Y ∈ Y such that L = N ∩ Y � G. Since |N : L| = p for all Y ∈ Y,
G∗p2 ≤ CG(N/L). In addition, N/L is a normal Sylow p-subgroup of Op(G∗p2)/L, then
N/L ≤ Z(Op(G∗p2)/L), and therefore Op(G∗p2)/L is p-nilpotent by Burnside’s theorem
[9, IV, 2.6]. Hence Op(Op(G∗p2)) < Op(G∗p2), a contradiction.

Next, we prove that L is meta-cyclic. If L is non-meta-cyclic, then there exists H ∈ H1

such that L < H ≤ Y . So
L = H ∩ L = H ∩ Y ∩N = H ∩N = H ∩ P ∩Op(G∗p2) = H ∩Op(G∗p2) �G,

which is a contradiction.
Step 7. N ' Cp × Cp × Cp.
If not, then, since L is a meta-cyclic maximal subgroup of N , we see that N is a

CS(p, 2)-group by Lemma 2.9, and thus N is centralized by Op(G∗p2) by Lemma 2.10.
Hence G∗p2 is p-nilpotent, a contradiction.

Step 8. The final contradiction.
It is easy to see that G∗p2/N is p-nilpotent. If N ≤ Φ(G), then G∗p2 is p-nilpotent, a

contradiction. Hence there exists a maximal subgroup M of G such that N 6≤ M . It is
easy to see that N is a minimal normal subgroup of G. If not, there is nothing to be
proved. Then G = NM and N ∩M = 1. It follows that P = N(P ∩M) by Dedekind’s
lemma. For convenience, write S = P ∩M . Noticing that there exists a maximal subgroup
P1 of P such that S ≤ P1 and N 6≤ P1. Write K = N ∩P1 is normal in P and K ' Cp×Cp

by Step 7. If there exists H1 ∈ H1 such that H1 ≤ P1, then, by Lemma 2.8, there exists
H ∈ H1 such that K ≤ H ≤ P1, and thus K = N ∩P1∩H = H ∩Op(G∗p2)�G, which con-
tradicts Step 6. Then it follows from Lemma 2.6 and Lemma 4.1 that P1 is a meta-cyclic
group of d(P1) = 2 or a 3-group of maximal class. If P1 is meta-cyclic of d(P1) = 2, then
Ω1(P1) ' Cp × Cp, and therefore Ω1(S) ≤ Ω1(P1) = K ≤ N . In addition, we know that
Ω1(S) ≤ S ≤M and N ∩M = 1. Then Ω1(S) = 1, and thus S = 1. Hence N = P , which
is a contradiction with |N | ≤ d < |P |. Now we assume that P1 is a 3-group of maximal
class. Since p3 = |N | ≤ d < |P |, we see that |P1| ≥ p3. If |P1| ≥ 34, then K ≤ Φ(P1) by
[3, Exercise 9.1.]. It follows from Dedekind’s lemma that P1 = (P1 ∩ N)S and P1 = S,
which is a contradiction with P = NS > P . Now we assume that |P1| = 33 and |P | = 34.
Then it follows from p3 = |N | ≤ d < |P | = p4 that d = p3. Hence P1 ∈ H1. Furthermore,
we see that K = N ∩ P1 = P1 ∩Op(G∗p2) �G, which is a contradiction with Step 6. This
final contradiction completes the proof. �

Now we may present some applications of Theorem 1.5.

Lemma 4.2. Let G be a group of odd order and P ∈ Sylp(G) with |P | > p4. If P
has exactly one non-meta-cyclic maximal subgroup M and M � G, then lp(G) ≤ 1 and
rp(G) ≤ 2.
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Proof. We proceed by induction on |G|. It is clear that the hypotheses are inherited by
G/Op′(G) and PG, so we can assume that Op′(G) = 1. If PG < G, then lp(PG) = 1
by induction. In addition, Op′(G) = 1, then P is normal in PG. Since PG � G and
P ∈ Sylp(PG), we see P = PG � G. Notice that P has a meta-cyclic maximal subgroup
and |P | > p4. Then P is a CS(p, 2)-group by Lemma 2.11, and thus P is centralized
by Op(G∗p2) by Lemma 2.10. Then it follows from Burnside’s theorem [9, IV, 2.6] that
Op(G∗p2) is p-nilpotent. Hence G∗p2 is p-nilpotent, and therefore lp(G) ≤ 1 and rp(G) ≤ 2
by Lemma 2.11.

Now we can assume that PG = G, and in particular, G∗p2 = G. Applying Theorem 1.5,
we may assume that d = |P |/p and |P ∩Op(G∗p2)| > d, and therefore Op(G∗p2) = G∗p2 . Since
M is the unique non-meta-cyclic maximal subgroup of P , we see thatM has a meta-cyclic
maximal subgroup by [7, Lemma 2.3]. On the other hand, M is a CS(p, 2)-group since
|M | > p3. Then, by Lemma 2.10, Op(G∗p2) = G acts trivially on M . Thus P is abelian
and P ' Cpm × Cp × Cp(m ≥ 3). Let N = NG(P ). We see that N/P acts on the P and
centralizes M . It follows from Fitting’s lemma[10, Lemma 4.28] and P ' Cpm × Cp × Cp

that the action of N/P on P is trivial, and therefore P ≤ Z(N). So G is p-nilpotent by
Burnside’s theorem [9, IV, 2.6], and thus lp(G) ≤ 1 and rp(G) ≤ 2 by Lemma 2.11. �

Lemma 4.3. Let G be a group of odd order, and let P be a Sylow p-subgroup of G with
|P | > p4. If every non-meta-cyclic maximal subgroup of P is normal in G, then lp(G) ≤ 1
and rp(G) ≤ 2.

Proof. We proceed by induction on |G|. It is easy to see that the hypotheses are inherited
by G/Op′(G). so we can assume that Op′(G) = 1. It follows from Lemma 2.6 and 4.1 that
P has a non-meta-cyclic maximal subgroup. By Lemma 4.2, we can assume that P has
two distinct non-meta-cyclic maximal subgroups, and therefore P is normal in G. Since
|P | > p4, Op(G∗p2) acts trivially on P by [7, Theorem A]. Hence G∗p2 is p-nilpotent, and
thus lp(G) ≤ 1 and rp(G) ≤ 2. �

Corollary 4.4. Let G be an odd order group and P be a Sylow p-subgroup of G with
|P | > p4, and suppose for every non-cyclic maximal subgroup H of P that H ∩ U � U ,
where U = Op(G). Then lp(G) ≤ 1 and rp(G) ≤ 2.

Proof. Applying Theorem 1.5 with d = |P |/p, we deduce that Op(G∗p2) = G∗p2 , and thus
every non-cyclic maximal subgroup of P is normal in G. It follows from Lemma 4.3 that
lp(G) ≤ 1 and rp(G) ≤ 2, a contradiction. �
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Abstract
A sustainable fuzzy economic production quantity (SFEPQ) inventory model is formulated
by introducing the concept of fuzzy differential equation (FDE) due to dynamic behavior of
the production-demand system. Generalized Hukuhara (gH) differentiability proceedure
is applied to solve FDE. Since the demand parameter is taken as trapezoidal type-2 fuzzy
number, to get corresponding defuzzified values, first critical value (CV)-based reduction
method is applied on demand function to transfer into type-1 fuzzy variable which turns
to hexagonal fuzzy number in form. After that α-cut of a hexagonal fuzzy number is used
to find the upper and lower value of demand. To apply the α-cut operation on FDE, we
divided the interval [0,1] into two sub-intervals [0,0.5] and [0.5,1] and gH-differentiation
is applied on this sub-intervals. The objective of this paper is to maximize the profit
and simultaneously minimize the carbon emission cost occurring due to the process of
inventory management. Finally, the non-linear objective functions are solved by using of
multi-objective genetic algorithm and sensitivity analyses on various parameters are also
performed in numerically and graphically.
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1. Introduction
Nowadays, many countries have implemented various carbon emission taxes as a part of

damage to the environment caused by industry on the inventory process. Therefore, it is a
challenge for every manufacturing company or organizations to reduce the carbon emission
cost on waste management, excess energy use and obsolescence management by producing
sustainable products as well as maintain the profit which motivates the researchers to
apply carbon emission factors in their models.
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Due to the complex environment during the business management, some critical pa-
rameters in the inventory problem are always treated as uncertain variables to meet the
practical situations. For instance, if one needs to make a decision on inventory manage-
ment for the next month, the demand and other relevant costs related to inventory are
often required to be estimated by professional judgments or probability statistics because
of no precise prior information. But, representing demand parameter for an inventory
control problem by fuzzy set is considered difficult since it can be determined from many
expert’s opinion in different ways, and sometimes it is tough to determine the exact mem-
bership function. In these cases, each expert’s opinion is a membership function of type-1
fuzzy set and thus, this membership function again becomes fuzzy. The final opinion of
all experts is expressed by a type-2 fuzzy set (T2 FS).

Also, when the behavior of a dynamical system is not certain, i.e. when the production
and demand are fuzzy, the governing differential equation is called fuzzy differential equa-
tion (FDE) of instantaneous state of inventory level and the parameters are characterized
by a fuzzy number. Hence, we take the demand parameter as trapezoidal type-2 fuzzy
number. In case of a T2 FS, complete defuzzification process consists of two parts-type
reduction and defuzzification. Type reduction is a procedure by which a T2 FS is trans-
formed to the corresponding T1 FS, known as type reduced set (TRS). The TRS is then
easily defuzzified to a crisp value. Using CV-base reduction method we defuzzified the
type-2 fuzzy amount.

The major contribution of this research can be stated as follows:
(i) A profit maximization and carbon emission cost minimization multi-objective partially
backlogging fuzzy economic production quantity model is developed where the demand
function is taken as trapezoidal type-2 fuzzy variable.
(ii) Fuzzy differential equation proposed by Kandel and Byatt [13] is considered because
of the dynamic nature of the system.
(iii) Generalized Hukuhara (gH) derivative approach proposed by Stefanini and Bede [33]
is used to solve the fuzzy differential equation.
(iv) Critical value (CV) -based reduction method is used for trapezoidal type-2 fuzzy
variable which become hexagonal fuzzy number in form and α-cut of hexagonal fuzzy
number is used to get the corresponding crisp value of demand.
(v) Multi-objective genetic algorithm is used to get the corresponding lower and upper
bound of profit and carbon emission cost of the non-linear objective function.

2. Literature survey
In the literature, it is found that Stock et al. [34] showed that transport and warehouse

operations generate large amounts of carbon emission. Hovelaque and Bironneau [11]
formulated a carbon constrained integrated economic order quantity (EOQ) model which
maximizes a retailer’s profit and minimizes carbon emission cost. They investigated the
link between inventory policy, total carbon emission and both price and environmental
dependent demands. Kazemi et al. [14] formulated an economic order quantity models
for items with imperfect quality considering the effect of emission. Battini et al. [3]
constructed a new model on sustainable economic order quantity (SEOQ) considering
ordering and holding cost of inventory and obsolescence costs and also considered emissions
of obsolescence cost for transportation problem. Jonas et al. [12] discussed about the
uncertainty present in the greenhouse gas and formulated a fuzzy model in greenhouse gas
inventory. Recently, Aljazzar et al. [1] formulated a strategy to reduce carbon emissions
from supply chains.

One of the first economic production quantity (EPQ) models with fuzzy parameters was
developed by Lee and Yao [17]. In a similar paper, Chang [6] applied the methodology in
Lee and Yao [17] and analyzed a condition that the production quantity is a triangular
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fuzzy number (TFN). He deducted that fuzzy and crisp approaches lead to the same
result in the investigated model. Another identical research was treated by Lin and Yao
[18] who assumed that production quantity is a trapezoidal fuzzy number (TPFN). In
this direction, Shekarian et al. [27], [28],[30],[31] formulated different fuzzy EOQ/EPQ
models considering different holding costs for imperfect quality items with backorders and
rework for a single stage system. Soni et al. [32] formulated a fuzzy inventory model with
demand uncertainty and learning in a continuous process. Sadeghi et al. [25] proposed a
two-tuned metaheuristics approach for a fuzzy random EPQ problem with shortage and
redundancy allocation. The readers could read the extensive survey paper by Shekarian
et al. [29] on fuzzy inventory models. All the above investigations assumed the fuzzy
parameters/ variables to be of type-1 fuzzy set (T1 FS). T2 FSs are extensions of T1 FSs
was first introduced by Zadeh [38], [39]. The membership grade of a T2 FS is a fuzzy
number with a support bounded by the interval [0, 1]. The logical operations of T2 FS
were explored by Mizumoto and Tanaka [22] and Dubois and Prade [8]. Many authors e.g.,
[19], [26], [35] contributed a large number of theoretical research works on the property
of T2 FS and the applications of T2 FS on operations research e.g., [15], [16], [21]. There
are several method for type reduction. Qin et al. [23] introduced three kinds of reduction
methods called optimistic CV, pessimistic CV and CV reduction methods for T2 FVs
based on critical values (CVs) of regular FVs. α-cut and the extension principle forms
a methodology for extending mathematical concepts from crisp sets to fuzzy sets. These
have been applied to many operations and have also been extended to interval valued fuzzy
sets. Dubois and Prade [8] has defined fuzzy number as a fuzzy subset of the real line. So
far, fuzzy numbers like TFN, TPFN, Hexagonal fuzzy number [24] have been introduced
with its membership functions. These numbers have got many applications in practical
field and many operations were performed using fuzzy numbers.

The presence of fuzzy demand as well as fuzzy production rate leads to FDE of instan-
taneous state of inventory level. Till now, FDE is less used to solve fuzzy inventory models
though the topics on FDE have been rapidly growing in the recent years. The first impetus
on solving FDE was made by Kandel and Byatt [13]. Furthermore, different approaches
have been made by several authors to solve FDE [2], [9]. In the FDE, all derivatives are
deliberated as either Hukuhara or generalized derivatives. The Hukuhara differentiability
[5] has a deficiency that the solution turns fuzzifier as time goes on. Bede [4] exhibited
that a large class of Boundary Value Problems (BVPs) has no solution if the Hukuhara
derivative is applied. To remove this difficulty, the concept of a generalized derivative was
developed and fuzzy differential equations were smeared using this concept. Stefanini and
Bede [33] introduced the concept of generalization of the Hukuhara difference for compact
convex set, introduced generalized Hukuhara differentiability for fuzzy valued function and
they displayed that, this concept of differentiability have relationships with weakly gener-
alized differentiability and strongly generalized differentiability. Villamizar-Roa et al. [36]
studied the existence and uniqueness of solution for fuzzy differential equation problems
in the setting of a generalized Hukuhara derivative. Guchhait et al. [10] formulated a
fuzzy production inventory model using fuzzy differential equation and the corresponding
inventory costs and components are calculated using fuzzy Riemann integration. Trade
credit financing is one of the central features in supply chain management. In real life
situations retailer offers trade credit to his/her customers to boost the demand. This real
phenomenon is depicted in our present model. Also, Majumder et al. [20] formulated a
fuzzy production inventory model with partial trade credit and solve in fuzzy environment
via Generalized Hukuhara derivative approach.

Some papers of the above literature survey and our proposed model are summarized
and presented in Table 1.

The rest of the paper is organized as follows: In Section 3, we define all the preliminary
concepts relating to fuzzy sets. Section 4, discusses various notations and assumptions.
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Authors Crisp Fuzzy EOQ EPQ Carbon FDE T2FS gH-differentiability
emission

Hovelaque and Bironneau [11] X X X
Battini et al. [3] X X X
Jonas et al. [12] X X

Villamizar-Roa et al. [36] X X X
Guchhait et al. [10] X X X
Majumder et al. [20] X X X X
Shekarian et al. [30] X X X
Kazemi et al. [14] X X X
Proposed Model X X X X X X

Table 1. Contribution of Different Authors

section 5 is about mathematical formulation of the model. In section 6, we discuss about
the solution procedure for solving multi-objective non-linear problems. In Section 7 real
life numerical data and solutions are represented. Discussion on the solution are presented
in section 8. Finally brief conclusions and future research work are drawn in section 9.

3. Preliminaries
3.1. Type-1 Fuzzy set (T1FS) [38]:

A fuzzy set Ã is defined by Ã = {(x, µÃ(x)) : x ∈ A,µÃ(x) ∈ [0, 1]}. In the pair
(x,µÃ(x)) the first element x belong to the classical set A, the second element µÃ(x),
belong to the interval [0,1], called Membership function.

3.2. Type-2 Fuzzy Set (T2FS) [38]:
Type-2 fuzzy set Ã defined on a universe of discourse X, which is denoted as Ã ⊆ X, is

a set of pairs {x, µÃ(x)}, where x an element of a fuzzy set is, and its grade of membership
{µÃ(x)} in the fuzzy set Ã is a type-1 fuzzy set defined in the interval Jx ⊂ [0, 1], i.e. A
T2 FS Ã is defined as

Ã = {((x, u), µÃ(x, u)) : ∀x ∈ X, Jx ⊂ [0, 1]}, (3.1)
where 0 ≤ µÃ(x, u) ≤ 1 is the type-2 membership function.

3.3. Regular fuzzy variable (RFV) [8]:
For a possibility space (ϕ, p, Pos), a regular fuzzy variable ξ̃ is defined as a measurable

map from ϕ to [0, 1] in the sense that for every t ∈ [0, 1], one has {γ ∈ ϕ | ξ̃(γ) ≤ t} ∈ p. A

discrete RFV is represented as ξ̃ ∼
(

r1, r2 · · · rn
µ1, µ2 · · ·µn

)
where ri ∈ [0, 1] and µi > 0,∀i and

maxi(µi) = 1.
If ξ̃ = (r1, r2, r3, r4) with 0 ≤ r1 < r2 < r3 < r4 ≤ 1, then ξ̃ is called a trapezoidal RFV.

Example 3.1. Let us take Ã{(x, µÃ(x)) : x ∈ X} where X = 3, 6, 9 and the primary
memberships of the points 3, 6, 9 are given by J3 = 0.4, 0.8, 0.9, J6 = 0.3, 0.7, 0.8, 0.9 and
J9 = 0.2, 0.7, 1.0 respectively. Then the secondary grade of the point 3 is

µÃ(3) = µÃ(3, u) = (0.5/0.4) + (0.7/0.8) + (0.3/0.9) ∼
(

0.4 0.8 0.9
0.5 0.7 0.3

)
That means, µÃ(3, 0.4) = 0.5, µÃ(3, 0.8) = 0.7, µÃ(3, 0.9) = 0.3.
More specifically µÃ(3, 0.4) = 0.5 means that the membership grade which is named as
secondary membership grade that the point 3 has the primary membership 0.4 is 0.5.

So Ã considers on the value 3 with membership grade
(

0.4 0.8 0.9
0.5 0.7 0.3

)
, which is a RFV.
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3.4. Critical values (CVs) for RFVs [23]
Qin et al. [23] introduced three kinds of critical values (CVs). Let ξ̃ be a RFV. Then,

I. The optimistic CV of ξ̃, denoted by CV ∗[ξ̃] is given by,

CV ∗[ξ̃] = sup
α∈[0,1]

[α ∧ Pos(ξ̃ ≥ α)] (3.2)

II. The pessimistic CV of ξ̃, denoted by CV∗[ξ̃] is given by,

CV∗[ξ̃] = sup
α∈[0,1]

[α ∧Nec(ξ̃ ≥ α)] (3.3)

III. The CV of ξ̃, denoted by CV [ξ̃] is given by,

CV [ξ̃] = sup
α∈[0,1]

[α ∧ Cr(ξ̃ ≥ α)] (3.4)

Example 3.2. Let ξ̃ be a discrete RFV define as ξ ∼
(

0.3 0.5 0.8 0.9
0.1 0.9 0.6 0.3

)
Then we can find out that,

Pos(ξ̃ ≥ α) =


0, if α ≤ 0.2
0.9, if 0.2 < α ≤ 0.5
0.6, if 0.5 < α ≤ 0.8
0.3, if 0.8 < α ≤ 1.0

Nec(ξ̃ ≥ α) =


0.9, if α ≤ 0.3
0.1, if 0.3 < α ≤ 0.5
0.4, if 0.5 < α ≤ 0.8
0.7, if 0.8 < α ≤ 1.0

and

Cr(ξ̃ ≥ α) =


0.9, if α ≤ 0.3
0.5, if 0.3 < α ≤ 0.5
0.5, if 0.5 < α ≤ 0.8
0.5, if 0.8 < α ≤ 1.0

Then by the definitions of CVs, from (3.2)-(3.4), we have

CV ∗[ξ̃] = sup
α∈[0,1]

[α ∧ Pos(ξ̃ ≥ α)]

= sup
α∈[0,0.2]

[α ∧ 0] ∨ sup
α∈(0.2,0.5]

[α ∧ 0.9] ∨ sup
α∈(0.5,0.8]

[α ∧ 0.6] ∨ sup
α∈[0.8,1]

(α ∧ 0.3]

= 0 ∨ 0.5 ∨ 0.6 ∨ 0.3
= 0.6

CV∗[ξ̃] = sup
α∈[0,1]

[α ∧Nec(ξ̃ ≥ α)]

= sup
α∈[0,0.3]

[α ∧ 0.9] ∨ sup
α∈(0.3,0.5]

[α ∧ 0.1] ∨ sup
α∈(0.5,0.8]

[α ∧ 0.4] ∨ sup
α∈(0.8,1]

[α ∧ 0.7]

= 0 ∨ 0.1 ∨ 0.4 ∨ 0.7
= 0.7

and
CV [ξ̃] = sup

α∈[0,1]
[α ∧ Cr(ξ̃ ≥ α)]

= sup
α∈[0,0.3]

[α ∧ 0.9] ∨ sup
α∈(0.3,0.5]

[α ∧ 0.5] ∨ sup
α∈(0.5,0.8]

[α ∧ 0.5] ∨ sup
α∈(0.8,1]

[α ∧ 0.5]

= 0 ∨ 0.5 ∨ 0.5 ∨ 0.5
= 0.5
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3.5. Critical values (CVs) of trapezoidal RFVs [23]
The following theorems introduced the critical values (CVs) of trapezoidal RFVs.

Theorem 3.3. (Qin et al. [23]) Let ξ̃ = (r1, r2, r3, r4) be a trapezoidal RFV. Then we
have,

(1) The optimistic CV of ξ̃ is CV ∗[ξ̃] = r4
(1+r4−r3) .

(2) The pessimistic CV of ξ̃ is CV∗[ξ̃] = r2
(1+r2−r1) .

(3) The CV of ξ̃ is CV [ξ̃] =


2r2−r1

1+2(r2−r1) , if r2 ≥ 1
2

1
2 , if r2 ≤ 1

2 < r3
r4

1+2(r4−r3) , if r3 ≤ 1
2

Example 3.4. Let ξ̃ = (0.3, 0.4, 0.8, 0.9) be a trapezoidal RFV. Then according to the
theorem 3.3 we have,

CV ∗[ξ̃] = 9
11 , CV∗[ξ̃] = 4

11 , CV [ξ̃] = 1
2 .

3.6. Proposed CV based defuzification for trapezoidal type-2 fuzzy vari-
able

According to Chen et al. [7] for a trapezoidal type-2 fuzzy variable ξ̃ = (r1, r2, r3, r4; θl, θr),
where ri ∈ R,∀i and θl, θr ∈ [0, 1] are the two parameters that characterize the degree of
uncertainty that ξ̃ takes a value say x and the corresponding secondary possibility distri-
bution function µ̃ξ̃(x) is given by,
For any x ∈ [r1, r2],

µ̃ξ̃(x) =
(
x− r1
r2 − r1

−θlmin
{
x− r1
r2 − r1

,
r2 − x
r2 − r1

}
,
x− r1
r2 − r1

,
x− r1
r2 − r1

+θrmin
{
x− r1
r2 − r1

,
r2 − x
r2 − r1

})
for x ∈ (r2, r3), µ̃ξ̃(x) = 1̃ and

µ̃ξ̃(x) =
(
r4 − x
r4 − r3

−θlmin
{
r4 − x
r4 − r3

,
x− r3
r4 − r3

}
,
r4 − x
r4 − r3

,
r4 − x
r4 − r3

+θrmin
{
r4 − x
r4 − r3

,
x− r3
r4 − r3

})
For any x ∈ [r3, r4].

Theorem 3.5. Let ξ̃ = (r1, r2, r3, r4; θl, θr) be a type -2 trapezoidal fuzzy variable. Then
we have,

I. Using the optimistic CV reduction method, the reduction ξ1 of ξ̃ has the following
possibility distribution,

µξ1(x) =



(1+θr)(x−r1)
r2−r1+θr(x−r1) , if x ∈

[
r1,

r1+r2
2

]
(1−θr)x−r1+θrr2
r2−r1+θr(r2−x) , if x ∈

(
r1+r2

2 , r2

]
1̃, ifx ∈ (r2, r3)

(1+θr)(r4−x)
r4−r3+θr(r4−x) , if x ∈

(
r3,

r3+r4
2

]
(−1+θr)x−θrr3+r4
r4−r3+θr(x−r4) , if x ∈

(
r3+r4

2 , r4

]
.

(3.5)
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II. Using the pessimistic CV reduction method, the reduction ξ2 of ξ̃ has the following
possibility distribution,

µξ2(x) =



(x−r1)
r2−r1+θl(x−r1) , if x ∈

[
r1,

r1+r2
2

]
(x−r1)

r2−r1+θl(r1−x) , if x ∈
(
r1+r2

2 , r2

]
1̃, ifx ∈ (r2, r3)

(r4−x)
r4−r3+θl(x−r3) , if x ∈

(
r3,

r3+r4
2

]
(r4−x)

r4−r3+θl(r4−x) , if x ∈
(
r3+r4

2 , r4

]
.

(3.6)

III. Using the CV reduction method, the reduction ξ3 of ξ̃ has the following possibility
distribution,

µξ3(x) =



(1+θr)(x−r1)
r2−r1+2θr(x−r1) , if x ∈

[
r1,

r1+r2
2

]
(1−θl)x+θlr2−r1
r2−r1+2θl(r2−x) , if x ∈

(
r1+r2

2 , r2

]
1̃, ifx ∈ (r2, r3)
(−1+θl)x−θlr3+r4
r4−r3+2θl(x−r3) , if x ∈

(
r3,

r3+r4
2

]
(1+θr)(r4−x)

r4−r3+2θr(r4−x) , if x ∈
(
r3+r4

2 , r4

]
.

(3.7)

From the above theorem we can conclude that when the reduction of trapezoidal type-2
fuzzy variable is made by optimistic CV-reduction method, the possibility distribution
function is constructed by use of θr and similarly for construction of pessimistic CV-
reduction of trapezoidal type-2 fuzzy variable θl is use. But in case of CV-reduction of
trapezoidal type-2 fuzzy variable both θl and θr are used. Thus, CV-reduction gives more
accurate normal value rather than optimistic or pessimistic CV-reduction. Therefore, we
take CV-reduction method for our future calculation.

3.7. Fuzzy number [37]
A fuzzy number is an extension of a regular number in the sense that it does not refer to

one single value but rather than a connected set of possible values. Thus, a fuzzy number
is a fuzzy set like u : R −→ I = [0, 1] which satisfies

(1) u is upper semi-continuous.
(2) u(x) = 0 outside the interval [c, d].
(3) There are real numbers a,b such c ≤ a ≤ b ≤ d and

(i) u(x) is monotonic increasing on [c, a],
(ii)u(x) is monotonic decreasing on [b, d],
(iii)u(x) = 1 , a ≤ x ≤ b.

3.8. Hexagonal fuzzy number [24]
A fuzzy number Ãh is called a hexagonal fuzzy number, denoted by Ãh = (a1, a2, a3, a4, a5, a6)

where a1, a2, a3, a4, a5, a6 are real numbers and its membership function µÃh(x) is given
below
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µÃh(x) =



0, if x < a1
1
2 [ x−a1
a2−a1

], if a1 ≤ x ≤ a2
1
2 + 1

2 [ x−a2
a3−a2

], if a2 ≤ x ≤ a3
1, if a3 ≤ x ≤ a4
1− 1

2 [ x−a4
a5−a4

], if a4 ≤ x ≤ a5
1
2 [ a5−x
a5−a4

], if a5 ≤ x ≤ a6
0, if x > a6

Remark: In other words, a hexagonal fuzzy number Ãh is an ordered quadruple
(P1(u), Q1(v), Q2(v), P2(u)), for u ∈ [0, 0.5) and v ∈ [0.5, 1) where,

(1) P1(u) = 1
2 [ u−a1
a2−a1

] is a bounded continuous non-decreasing function over [0,0.5).
(2) Q1(v) = 1

2 + 1
2 [ v−a2
a3−a2

] is a bounded continuous non-decreasing function over [0.5,1].
(3) Q2(v) = 1− 1

2 [ v−a4
a5−a4

] is a bounded continuous non-decreasing function over [0.5,1].
(4) P2(u) = 1

2 [ a6−u
a6−a5

] is a bounded continuous non-decreasing function over [0,0.5).

3.9. α-cut of fuzzy set [37]
The α-level set (or interval of confidence at level α or α-cut) of the fuzzy set Ã of X

is a crisp set Aα that contains all the elements of X that have membership values greater
than or equal to α, i.e. Ã = {x : µÃ(x) ≥ α, x ∈ X,α ∈ [0, 1]}.
In case of hexagonal fuzzy number Ãh = (a1, a2, a3, a4, a5, a6), the α-cut of Ãh is defined
as
Aα = {x ∈ X : µÃh(x) ≥ x}

=
{

[P1(α), P2(α)] for α ∈ [0, 0.5]
[Q1(α), Q2(α)] for α ∈ [0.5, 1]

3.10. α-cut operations [37]:
If we get crisp interval by α-cut operations interval Aα shall be obtained as follows, for

all α ∈ [0, 1]
Consider, Q1(x) = α
1
2 + 1

2 [ x−a2
a3−a2

] = α

Hence, Q1(α) = 2α(a3 − a2) + 2a2 − a3
Similarly, Q2(x) = α, Q2(α) = 2a5 − a4 − 2α(a5 − a4), P1(α) = 2α(a2 − a1) + a1
P2(α) = a6 − 2α(a6 − a5)
Hence,

Aα =
{

[2α(a2 − a1) + a1, a6 − 2α(a6 − a5)] for α ∈ [0, 0.5]
[2α(a3 − a2) + 2a2 − a3, 2a5 − a4 − 2α(a5 − a4)] for α ∈ [0.5, 1]

3.11. α-cut operation on reduction of a trapezoidal type-2 fuzzy variable
A trapezoidal type-2 fuzzy fuzzy variable is defined as ξ̃ = (r1, r2, r3, r4; θl, θr), then we

have already discussed about reduction method of trapezoidal type-2 fuzzy variable by
optimistic CV , pessimistic CV and CV reduction.
Now according to the definition of α-cut [37], we have the following α-cuts of the reduc-
tions of ξ̃
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I. Using the optimistic CV reduction method,

ξ1L(α) =


(1+θr)r1+(r2−r1−θrr1)α

(1+θr)−θrα , if 0 ≤ α ≤ 0.5
(r1−θrr1)+(r2−r1−θrr2)α

(1−θr)+θrα , if 0.5 < α ≤ 1
(3.8)

ξ1R(α) =


(r4−θrr3)−(r4−r3−θrr3)α

(1−θr)−θrα , if 0.5 ≤ α ≤ 1
(1+θr)r4−(r4−r3+θrr4)α

(1+θr)−θrα , if 0 ≤ α ≤ 0.5
(3.9)

II. Using the pessimistic CV reduction method,

ξ2L(α) =
{

r1+(r2−r1−θrr1)α
1−θlα , if 0 ≤ α ≤ 0.5

r1+(r2−r1+θrr2)α
1+θlα , if 0.5 < α ≤ 1

(3.10)

ξ2R(α) =
{

r4−(r4−r3−θlr2)α
1+θlα , if 0.5 ≤ α ≤ 1

r4−(r4−r3+θlr4)α
1−θlα , if 0 ≤ α < 0.5

(3.11)

III. Using the CV reduction method,

ξ3L(α) =


(1+θr)r1+(r2−r1−2θrr1)α

(1+θr)−2θrα , if 0 ≤ α ≤ 0.5
(r1−θlr2)+(r2−r1−θlr2)α

(1−θl)+2θlα , if 0.5 < α ≤ 1
(3.12)

ξ3R(α) =


(r4−θlr3)+(r4−r3−2θlr3)α

(1−θl)+2θlα , if 0.5 ≤ α ≤ 1
(1+θr)r4−(r4−r3+2θrr4)α

(1+θr)−2θrα , if 0 ≤ α < 0.5
(3.13)

By CV reduction method, membership function of type two fuzzy variable ξ̃ = (r1, r2, r3, r4; θl, θr)
reduces to membership function of type one variable which is just like a hexagonal fuzzy
number. Therefore α-cut of ξ̃ is[
ξ̃
]
α

=
{

[P1(α), P2(α)] for α ∈ [0, 0.5]
[Q1(α), Q2(α)] for α ∈ [0.5, 1]

where,
P1(α) = (1+θr)r1+(r2−r1−2θrr1)α

(1+θr)−2θrα , P2(α) = (1+θr)r4−(r4−r3+2θrr4)α
(1+θr)−2θrα

Q1(α) = (r1−θlr2)+(r2−r1−θlr2)α
(1−θl)+2θlα , Q2(α) = (r4−θlr3)+(r4−r3−2θlr3)α

(1−θl)+2θlα

4. Notations and assumptions
To formulate the mathematical model for the proposed inventory system, the following

notations and assumptions are made.

4.1. Notation
Decision Variables:

M : Permissible delay period (time) for the retailer offered by the wholesaler, M > 0.
N : Permissible delay period (time) for the customer offered by the retailer, 0 < N < M .
T : Business period i.e., time period for the cycle of the system, T > 0.
Parameters:

C3 = Fixed set-up cost ($ /set up).
Cs = Unit selling price ($ /unit).
C
′
s = Scrap price per unit ($ /unit).

p = Unit production cost ($ /unit).
α
′ = Obsolescence rate of inventory (percent).
b
′ = Required space for each unit of product (m3/unit).
a
′ = The weight of the obsolescence product stored in the warehouse (ton/m3).
Cb = Backordering cost per unit quantity per unit of time ($ /unit/time).
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Cmc = The emission cost of carbon for manufacturing each unit ($ /m3).
Coc = Average disposal,waste collection and emission cost for inventory obsolescence ($
/m3).
Ch = Holding cost per unit item per unit time ($ /unit).
Chc = Average emission cost of carbon for holding inventory ($ /m3).
ip = Rate of interest per year per unit to be paid for the unsold inventory after the credit
period M, ip > 0 ($ /year/unit).
ie = Rate of interest per year per unit to be earned from the revenue sold till the time
horizon T ($ /year/unit) (ie < ip).

4.2. Assumptions
The model is developed with the following assumptions.
(1) Production system involves only one non-deteriorating item.
(2) Shortages are allowed with partial backordering.
(3) D, rate of demand depends on the production price and stock i.e.,

D(p, q) =
{
p−ε(ã+ bq) if q > 0
ãp−ε if q ≤ 0

Where ã = (r1, r2, r3, r4, θl, θr) is a trapezoidal type two fuzzy number and 0 <
ε < 1 , r1, r2, r3, r4 > 0 , 0 < θl, θr < 1 and b is any positive real number.

(4) K, rate of production is linearly demand dependent i.e., of the form K = µD and
µ > 1

(5) Rate of earning interest by the retailer is lesser than the rate of interest paid to
the wholesaler by the retailer, i.e. ie < ip.

(6) Credit period offered by the retailer is smaller than that offered by the wholesaler,
i.e. N < M .

(7) Customer maintains the trade credit policy offered by the retailer.

5. Mathematical formulation of the model
Let the retailer fails to fulfill the demand initially and hence shortages arise from time

t = 0 to the time t = t1 and maximum shortage level Qs occur at t = t1. After that
production process starts to backlog the shortage quantities with partial backordering
process and at time t = t2 the shortage level reaches to zero. In the mean time inventory
accumulates upto time t = t3 of amount Qm. At that time production process being stop
and the accumulated inventory declines to meet up the customers demand and reaches to
zero at time T .
The governing differential equations of the stock level at any instant t for this model is
given by

dq

dt
=


−D 0 ≤ t ≤ t1
K −D t1 ≤ t ≤ t2
K −D t2 ≤ t ≤ t3
−D t3 ≤ t ≤ T

With the boundary conditions, q(0) = q(t2) = q(T ) = 0
Bede and Gal [4] applied fuzzy number valued function in fuzzy differential equation and
hence, the above equation can be rewritten in fuzzy form

dq̃

dt
=


−ã� p−ε 0 ≤ t ≤ t1
(µ− 1)� ã� p−ε t1 ≤ t ≤ t2
(µ− 1)� p−ε � (ã+ b� q̃) t2 ≤ t ≤ t3
−p−ε � (ã+ b� q̃) t3 ≤ t ≤ T

For using CV based reduction method for trapezoidal type-2 fuzzy number, we divided the
interval for α ∈ [0, 1] into two sub-intervals like α ∈ [0, 0.5] and α ∈ [0.5, 1] as discussed
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in preliminaries. Also Stefanini and Bede [33] shows that any general interval differential
equation can be formulated via generalized Hukuhara (gH) derivative in terms of system
of ordinary differential equations.
Now, the Generalized Hukuhara derivative [33] of a fuzzy valued function f : [a, b] 7−→ R
at t0 is defined as

f
′(t0) = lim

h→0

f(t0 + h)ΘgHf(t0)
h

In parametric form we say that f(t) is gH-(i) differentiable at t0 if

[f ′(t0)]α = [f ′L(t0, α), f ′R(t0, α)] (5.1)
Also, f(t) is gH-(ii) differentiable at t0 if

[f ′(t0)]α = [f ′R(t0, α), f ′L(t0, α)] (5.2)
Depending upon the value of α two possibility aries
(i) α ∈ [0, 0.5]
(ii) α ∈ [0.5, 1]

If α ∈ [0,0.5], then the above equation takes the form

[dqL
dt

,
dqR
dt

] =


−[aL, aR]� p−ε 0 ≤ t ≤ t1
(µ− 1)� [aL, aR]� p−ε t1 ≤ t ≤ t2
(µ− 1)� p−ε([aL, aR] + b� [qL, qR]) t2 ≤ t ≤ t3
−p−ε([aL, aR] + b� [qL, qR]) t3 ≤ t ≤ T

(5.3)

Therefore two cases arise
Case 1: gH-(i) differentiable
Case 2: gH-(ii) differentiable

Case-1: Therefore, solving the above system via gH-(i) differentiable is equivalent to
solve the corresponding simultaneous system (see [33])

dqL
dt

=


−aRp−ε 0 ≤ t ≤ t1
(µ− 1)aLp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aL + bqL) t2 ≤ t ≤ t3
−p−ε(aR + bqR) t3 ≤ t ≤ T

dqR
dt

=


−aLp−ε 0 ≤ t ≤ t1
(µ− 1)aRp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aR + bqR) t2 ≤ t ≤ t3
−p−ε(aL + bqL) t3 ≤ t ≤ T

After solving using the boundary conditions, q(0) = q(t2) = q(T ) = 0, we get

qL(t) =


−aRp−εt 0 ≤ t ≤ t1
(µ− 1)aLp−ε(t− t2) t1 ≤ t ≤ t2
aL
b [ex(t−t2) − 1] t2 ≤ t ≤ t3
−aR

b [ey(T−t) − 1] t3 ≤ t ≤ T

(5.4)

qR(t) =


−aLp−εt 0 ≤ t ≤ t1
(µ− 1)aRp−ε(t− t2) t1 ≤ t ≤ t2
aR
b [ex(t−t2) − 1] t2 ≤ t ≤ t3
−aL

b [ey(T−t) − 1] t3 ≤ t ≤ T

(5.5)

where, x = b(µ− 1)p−ε and y = bp−ε
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aL(α) = (1 + θr)r1 + (r2 − r1 − 2θrr1)α
(1 + θr)− 2θrα

aR(α) = (1 + θr)r4 − (r4 − r3 + 2θrr4)α
(1 + θr)− 2θrα

Similarly, to find the lower and upper limit of inventory accumulated upto time t = t3 is
given by the condition
(Qm)L = aL

b [ex(t3−t2) − 1] = −aR
b [ey(T−t3) − 1]

(Qm)U = aR
b [ex(t3−t2) − 1] = −aL

b [ey(T−t3) − 1]
Now, the inventory related costs are as follows
Total obsolescence cost of inventory
TOCL = α

′(Cs −C
′
s)
[ ∫ t3

t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= α

′(Cs −C
′
s)
[
aL
b {

1
x(ex(t3−t2) − 1)− (t3 −

t2)}+ aR
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
TOCR = α

′(Cs−C
′
s)
[ ∫ t3

t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= α

′(Cs−C
′
s)
[
aR
b {

1
x(ex(t3−t2)− 1)− (t3−

t2)}+ aL
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
Total cost of emission of inventory obsolescence
TEOL = α

′
a
′
Coc

[ ∫ t3
t2
qL(t)dt +

∫ T
t3
qL(t)dt

]
= α

′
a
′
Coc

[
aL
b {

1
x(ex(t3−t2) − 1) − (t3 − t2)} +

aR
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
TEOR = α

′
a
′
Coc

[ ∫ t3
t2
qR(t)dt +

∫ T
t3
qR(t)dt

]
= α

′
a
′
Coc

[
aR
b {

1
x(ex(t3−t2) − 1) − (t3 − t2)} +

aL
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
Total backordering cost
TBCL = Cb

[ ∫ t1
0 qL(t)dt+

∫ t2
t1
qL(t)dt

]
= −Cb

2

[
aRp

−εt21 + (µ− 1)aLp−ε(t1 − t2)2
]

TBCR = Cb
[ ∫ t1

0 qR(t)dt+
∫ t2
t1
qR(t)dt

]
= −Cb

2

[
aLp

−εt21 + (µ− 1)aRp−ε(t1 − t2)2
]

Total goodwill loss for back-order is
TGCL = Cg

[ ∫ t1
0 qL(t)dt+

∫ t2
t1
qL(t)dt

]
= −Cg

2

[
aRp

−εt21 + (µ− 1)aLp−ε(t1 − t2)2
]

TGCR = Cg
[ ∫ t1

0 qL(t)dt+
∫ t2
t1
qL(t)dt

]
= −Cg

2

[
aLp

−εt21 + (µ− 1)aRp−ε(t1 − t2)2
]

Total holding cost
THCL =

∫ t3
t2
ChqL(t)dt+

∫ T
t3
ChqL(t)dt = Ch

[
aL
b {

1
x(ex(t3−t2) − 1)− (t3 − t2)}+ aR

b {
1
y (1−

ey(T−t3)) + (T − t3)}
]

THCR =
∫ t3
t2
ChqR(t)dt+

∫ T
t3
ChqR(t)dt = Ch

[
aR
b {

1
x(ex(t3−t2) − 1)− (t3 − t2)}+ aL

b {
1
y (1−

ey(T−t3)) + (T − t3)}
]

Total emission cost of carbon for holding inventory
TEHL = Chcb

′
[ ∫ t3

t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= Chcb

′
[
aL
b {

1
x(ex(t3−t2)−1)−(t3−t2)}+ aR

b {
1
y (1−

ey(T−t3)) + (T − t3)}
]

TEHR = Chcb
′
[ ∫ t3

t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= Chcb

′
[
aR
b {

1
x(ex(t3−t2)−1)−(t3−t2)}+ aL

b {
1
y (1−

ey(T−t3)) + (T − t3)}
]

Total set-up cost= C3
Total revenue earned
TREL = cS

[
µaLp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aL+bqL)dt

]
= cS

[
µaLp

−ε(t2−t1)+µp−εaLe−xt2
∫ t3
t2
extdt

]
= cSµaLp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]
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TRER = cS
[
µaRp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aR+bqR)dt

]
= cS

[
µaRp

−ε(t2−t1)+µp−εaRe−xt2
∫ t3
t2
extdt

]
= cSµaRp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

Total Production cost
TPCL = p

[
µaLp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aL+bqL)dt

]
= p

[
µaLp

−ε(t2−t1)+µp−εaLe−xt2
∫ t3
t2
extdt

]
= pµaLp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

TPCR = p
[
µaRp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aR+bqR)dt

]
= p

[
µaRp

−ε(t2−t1)+µp−εaRe−xt2
∫ t3
t2
extdt

]
= pµaRp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

The emission cost of carbon for manufacturing total units
TEPL = cmc

[
µaLp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aL+bqL)dt

]
= cmc

[
µaLp

−ε(t2−t1)+µp−εaLe−xt2
∫ t3
t2
extdt

]
= cmcµaLp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

TEPR = cmc
[
µaRp

−ε(t2−t1)+µ
∫ t3
t2
p−ε(aR+bqR)dt

]
= cmc

[
µaRp

−ε(t2−t1)+µp−εaRe−xt2
∫ t3
t2
extdt

]
= cmcµaRp

−ε[t2 − t1 + 1
x(ex(t3−t2) − 1)]

Therefore three sub-cases arise depending upon the values of changing time periods.

Sub-case 1.1: 0 ≤ t1 ≤ N ≤M ≤ t2 ≤ t3 ≤ T
In this case if the amount is paid within M by the retailer, then there is no interest
payable. Otherwise, the retailer will pay for the rest of the inventory. Hence, the total
amount of interest paid and interest earned by the retailer is calculated.

Hence, total interest paid
TIPL = pip

[ ∫ t2
M (1 + T − t2)qL(t)dt+

∫ t3
t2

(1 + T − t3)qL(t)dt+
∫ T
t3
qL(t)dt

]
= pip

[
1
2(1 + T − t2)(µ− 1)aLp−ε(t2 −M)2 + (1 + T − t3)aLb {

1
x(ex(t3−t2) − 1)− (t3 − t2)}+

aR
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
TIPR = pip

[ ∫ t2
M (1 + T − t2)qR(t)dt+

∫ t3
t2

(1 + T − t3)qR(t)dt+
∫ T
t3
qR(t)dt

]
TIPR = Cpip

[
1
2(1 +T − t2)(µ− 1)aRp−ε(t2−M)2 + (1 +T − t3)aRb {

1
x(ex(t3−t2)− 1)− (t3−

t2)}+ aL
b {

1
y (1− ey(T−t3)) + (T − t3)}

]
And, total interest earned

TIEL = Csie
[
(T − N)

∫N
t1
DL(p, q)dt + (1 + T − M)

∫M
N DL(p, q)(M − t)dt + (1 + T −

t2)
∫ t2
M DL(p, q)(t2 − t)dt+ (1 + T − t3)

∫ t3
t2
DL(p, q)(t3 − t)dt+

∫ T
t3
DL(p, q)(T − t)dt

]
= CsieaLp

−ε
[
(T −N)(N−t1)+ 1

2(1+T −M)(M−N)2 + 1
2(1+T −t2)(t2−M)2 +p−ε{aL−

aR(ey(T−t3) − 1)}
]

TIER = Csie
[
(T − N)

∫N
t1
DR(p, q)dt + (1 + T −M)

∫M
N DR(p, q)(M − t)dt + (1 + T −

t2)
∫ t2
M DR(p, q)(t2 − t)dt+ (1 + T − t3)

∫ t3
t2
DR(p, q)(t3 − t)dt+

∫ T
t3
DR(p, q)(T − t)dt

]
= CsieaLp

−ε
[
(T −N)(N−t1)+ 1

2(1+T −M)(M−N)2 + 1
2(1+T −t2)(t2−M)2 +p−ε{aL−

aR(ey(T−t3) − 1)}
]
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Sub-case 1.2: 0 ≤ t1 ≤ t2 ≤ N ≤M ≤ t3 ≤ T
In this case the total amount of interest paid and interest earned by the retailer is calcu-
lated.

Hence, total interest paid
TIPL = pip

[ ∫ t3
M (1 + T − t3)qL(t)dt+

∫ T
t3
qL(t)dt

]
= pip

[
(1 + T − t3)aLb {

1
x(ex(t3−M) − 1)− (t3 −M)}+ aR

b {
1
y (1− ey(T−t3)) + (T − t3)}

]
TIPL = pip

[ ∫ t3
M (1 + T − t3)qR(t)dt+

∫ T
t3
qR(t)dt

]
= pip

[
(1 + T − t3)aRb {

1
x(ex(t3−M) − 1)− (t3 −M)}+ aL

b {
1
y (1− ey(T−t3)) + (T − t3)}

]
Total interest earned

TIEL = Csie
[
(T−t2)

∫ t2
t1
DL(p, q)dt+(T−N)

∫N
t2
DL(p, q)dt+(1+T−t3)

∫ t3
N DL(p, q)(t3−

t)dt+ (1 + T −M)
∫M
t3
DL(p, q)(M − t)dt+

∫ T
M DL(p, q)(T − t)dt

]
= CsieaLp

−ε
[
(T − t2)(t2− t1) + (T −N)aLx (ex(N−t2)− 1) + 1

2(1 +T − t3)(t3−N)2 + 1
2(1 +

T −M)(M − t3)2 + p−ε{aL − aR(ey(T−t3) − 1)}
]

TIER = Csie
[
(T−t2)

∫ t2
t1
DR(p, q)dt+(T−N)

∫N
t2
DR(p, q)dt+(1+T−t3)

∫ t3
N DR(p, q)(t3−

t)dt+ (1 + T −M)
∫M
t3
DR(p, q)(M − t)dt+

∫ T
M DR(p, q)(T − t)dt

]
= CsieaRp

−ε
[
(T − t2)(t2− t1) + (T −N)aLx (ex(N−t2)− 1) + 1

2(1 +T − t3)(t3−N)2 + 1
2(1 +

T −M)(M − t3)2 + p−ε{aR − aL(ey(T−t3) − 1)}
]

Sub-case 1.3: 0 ≤ t1 ≤ t2 ≤ N ≤ t3 ≤ T ≤M
In this case interest payable by the retailer is zero, i.e., TIPL = TIPR = 0
But, interest earned by the retailer is given by
TIEL = Csie

[
(M−t2)

∫ t2
t1
DL(p, q)dt+(M−N)

∫N
t2
DL(p, q)dt+(1+M−t3)

∫ t3
N DL(p, q)(t3−

t)dt+ (1 +M − T )
∫ T
t3
DL(p, q)(T − t)dt

]
= CsieaLp

−ε
[
(M − t2)(t2− t1) + (M −N)(N − t1) + 1

2(1 +M − t3)(t3−N)2 + 1
2(1 +M −

T )(T − t3)2 + {aL − aR(ey(T−t3) − 1)}
]

TIER = Csie
[
(M−t2)

∫ t2
t1
DR(p, q)dt+(M−N)

∫N
t2
DR(p, q)dt+(1+M−t3)

∫ t3
N DR(p, q)(t3−

t)dt+ (1 +M − T )
∫ T
t3
DR(p, q)(T − t)dt

]
= CsieaRp

−ε
[
(M − t2)(t2− t1) + (M −N)(N − t1) + 1

2(1 +M − t3)(t3−N)2 + 1
2(1 +M −

T )(T − t3)2 + {aR − aL(ey(T−t3) − 1)}
]

Here, a carbon emissions integrated fuzzy EPQ model with type-2 fuzzy variable is
considered, where the objectives are maximizing the profit and minimizing various carbon
emission costs associated with inventory management. By using gH-differentiability, we
get a range for profit and a range of emission rather than an exact value of profit and
emission, which is more realistic in practical value. Hence, the objective functions are
defined as follows:
Max Profit (TP ) = 1

T [TRE + TIE − TPC − THC − TOC − TIP − TBC − TGC −C3](19)

Min Carbon Emission Cost (TE) = TEO + TEH + TEP (20)
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On taking α-cut over the total profit and emission per unit time is a interval crisp set and
is defined by
TP = [TPL, TPR] where, (21)
TPL = 1

T [TREL + TIEL − TPCL − THCL − TOCL − TIPL − TBCL − TGCL − C3]
TPR = 1

T [TRER + TIER − TPCR − THCR − TOCR − TIPR − TBCR − TGCR − C3]
And, TE = [TEL, TER] where, (22)
TEL = TEOL + TEHL + TEPL
TER = TEOR + TEHR + TEPR, when 0 ≤ α ≤ 0.5

Case-2: If α ∈ [0, 0.5], then on taking the α-cut of fuzzy differential equation reduces
to interval fuzzy differential equation via gH-(ii) differentiability

[dqL
dt

,
dqR
dt

] =


−[aL, aR]� p−ε 0 ≤ t ≤ t1
(µ− 1)� [aL, aR]� p−ε t1 ≤ t ≤ t2
(µ− 1)� p−ε([aL, aR] + b� [qL, qR]) t2 ≤ t ≤ t3
−p−ε([aL, aR] + b� [qL, qR]) t3 ≤ t ≤ T (23)

Thus the above system is equivalent to

dqL
dt

=


−aLp−ε 0 ≤ t ≤ t1
(µ− 1)aRp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aR + bqR) t2 ≤ t ≤ t3
−p−ε(aL + bqL) t3 ≤ t ≤ T

dqR
dt

=


−aRp−ε 0 ≤ t ≤ t1
(µ− 1)aLp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aL + bqL) t2 ≤ t ≤ t3
−p−ε(aR + bqR) t3 ≤ t ≤ T

After solving using the boundary conditions, q(0) = q(t2) = q(T ) = 0 and q(t2) = Qm, we
get

qL(t) =


−aLp−εt 0 ≤ t ≤ t1
(µ− 1)aRp−ε(t− t2) t1 ≤ t ≤ t2
c1e

bkt + c2e
−bkt − aL

b t2 ≤ t ≤ t3
k1e

r2t + k2e
−r2t + aL

b t3 ≤ t ≤ T (24)

qR(t) =


−aRp−εt 0 ≤ t ≤ t1
(µ− 1)aLp−ε(t− t2) t1 ≤ t ≤ t2
c1e

bkt − c2e
−bkt − aR

b t2 ≤ t ≤ t3
−k1e

r2t + k2e
−r2t + aR

b t3 ≤ t ≤ T (25)
Where k = (µ− 1)p−ε, r2 = −bp−ε

c1 = 1
e2bkt3 − e2bkt2 [(Qm + aL

b
)ebkt3 − aL

b
ebkt2 ]

c2 = aL
b
ebkt2 − 1

e2bk(t3−t2) [(Qm + aL
b

)ebkt3 − aL
b
ebkt2 ]

k1 = aR − aL
2b e−c2T

k2 = −aL + aR
2b ec2T

aL(α) = (1 + θr)r1 + (r2 − r1 − 2θrr1)α
(1 + θr)− 2θrα

aR(α) = (1 + θr)r4 − (r4 − r3 + 2θrr4)α
(1 + θr)− 2θrα

Various costs related to the above system are
Total obsolescence cost of inventory
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TOCL = α
′(Cs − C

′
s)
[ ∫ t3

t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= α

′(Cs − C
′
s)
[ ∫ t3

t2
[c1e

bkt + c2e
−bkt − aL

b ]dt+
∫ T
t3

[k1e
r2t + k2e

−r2t + aL
b ]dt

]
= α

′(Cs − C
′
s)
[
c1
bk (ebkt3 − ebkt2) − c2

bk (e−bkt3 − e−bkt2) − aL
b (t3 − t2) + k1

r2
(er2T − er2t3) −

k2
r2

(e−r2T − e−r2t3) + aL
b (T − t3)

]
TOCR = α

′(Cs − C
′
s)
[ ∫ t3

t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= α

′(Cs − C
′
s)
[ ∫ t3

t2
[c1e

bkt − c2e
−bkt − aR

b ]dt+
∫ T
t3

[−k1e
r2t + k2e

−r2t + aR
b ]dt

]
= α

′(Cs − C
′
s)
[
c1
bk (ebkt3 − ebkt2) + c2

bk (e−bkt3 − e−bkt2) − aR
b (t3 − t2) − k1

r2
(er2T − er2t3) −

k2
r2

(e−r2T − e−r2t3) + aR
b (T − t3)

]
Total cost of emission of inventory obsolescence
TEOL = α

′
a
′
Coc

[ ∫ t3
t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= α

′
a
′
Coc

[ ∫ t3
t2

[c1e
bkt + c2e

−bkt − aL
b ]dt+

∫ T
t3

[k1e
r2t + k2e

−r2t + aL
b ]dt

]
= α

′
a
′
Coc

[
c1
bk (ebkt3−ebkt2)− c2

bk (e−bkt3−e−bkt2)− aL
b (t3− t2)+ k1

r2
(er2T −er2t3)− k2

r2
(e−r2T −

e−r2t3) + aL
b (T − t3)

]
TEOR = α

′
a
′
Coc

[ ∫ t3
t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= α

′
a
′
Coc

[ ∫ t3
t2

[c1e
bkt − c2e

−bkt − aR
b ]dt+

∫ T
t3

[−k1e
r2t + k2e

−r2t + aR
b ]dt

]
= α

′
a
′
Coc

[
c1
bk (ebkt3−ebkt2)+ c2

bk (e−bkt3−e−bkt2)− aR
b (t3− t2)− k1

r2
(er2T −er2t3)− k2

r2
(e−r2T −

e−r2t3) + aR
b (T − t3)

]
Total backordering cost
TBCL = Cb

[ ∫ t1
0 qL(t)dt+

∫ t2
t1
qL(t)dt

]
= cb[−1

2aLp
−εt21 − 1

2(µ− 1)aRp−ε(t2 − t1)2]

TBCR = Cb
[ ∫ t1

0 qR(t)dt+
∫ t2
t1
qR(t)dt

]
= cb[−1

2aRp
−εt21 − 1

2(µ− 1)aLp−ε(t2 − t1)2]
Total goodwill loss for back-order is
TGCL = Cg

[ ∫ t1
0 qL(t)dt+

∫ t2
t1
qL(t)dt

]
= cg[−1

2aLp
−εt21 − 1

2(µ− 1)aRp−ε(t2 − t1)2]

TGCR = Cg
[ ∫ t1

0 qR(t)dt+
∫ t2
t1
qR(t)dt

]
= cg[−1

2aRp
−εt21 − 1

2(µ− 1)aLp−ε(t2 − t1)2]
Total holding cost
THCL =

∫ t3
t2
ChqL(t)dt+

∫ T
t3
ChqL(t)dt

= Ch
[
c1
bk (ebkt3 − ebkt2) − c2

bk (e−bkt3 − e−bkt2) − aL
b (t3 − t2) + k1

r2
(er2T − er2t3) − k2

r2
(e−r2T −

e−r2t3) + aL
b (T − t3)

]
THCR =

∫ t3
t2
ChqR(t)dt+

∫ T
t3
ChqR(t)dt

= Ch
[
c1
bk (ebkt3 − ebkt2) + c2

bk (e−bkt3 − e−bkt2) − aR
b (t3 − t2) − k1

r2
(er2T − er2t3) − k2

r2
(e−r2T −

e−r2t3) + aR
b (T − t3)

]
Total emission cost of carbon for holding inventory
TEHL = Chcb

′
[ ∫ t3

t2
qL(t)dt+

∫ T
t3
qL(t)dt

]
= Chcb

′
[
c1
bk (ebkt3 − ebkt2)− c2

bk (e−bkt3 − e−bkt2)− aL
b (t3− t2) + k1

r2
(er2T − er2t3)− k2

r2
(e−r2T −

e−r2t3) + aL
b (T − t3)

]
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TEHR = Chcb
′
[ ∫ t3

t2
qR(t)dt+

∫ T
t3
qR(t)dt

]
= Chcb

′
[
c1
bk (ebkt3 − ebkt2) + c2

bk (e−bkt3 − e−bkt2)− aR
b (t3− t2)− k1

r2
(er2T − er2t3)− k2

r2
(e−r2T −

e−r2t3) + aR
b (T − t3)

]
Total set-up cost= C3
Total revenue earned
TREL = cS [µaLp−ε(t2 − t1) + µ

∫ t3
t2
p−ε(aL + bqL)dt]

= cS [µaLp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2)− c2(e−bkt3 − e−bkt2)}]

TRER = cS [µaRp−ε(t2 − t1) + µ
∫ t3
t2
p−ε(aR + bqR)dt]

= cS [µaRp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2) + c2(e−bkt3 − e−bkt2)}]
Total Production cost
TPCL = p[µaLp−ε(t2 − t1) + µ

∫ t3
t2
p−ε(aL + bqL)dt]

= p[µaLp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2)− c2(e−bkt3 − e−bkt2)}]

TPCR = p[µaRp−ε(t2 − t1) + µ
∫ t3
t2
p−ε(aR + bqR)dt]

= p[µaRp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2) + c2(e−bkt3 − e−bkt2)}]
The emission cost of carbon for manufacturing total units
TEPL = cmc[µaLp−ε(t2 − t1) + µ

∫ t3
t2
p−ε(aL + bqL)dt]

= cmc[µaLp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2)− c2(e−bkt3 − e−bkt2)}]

TEPR = cmc[µaRp−ε(t2 − t1) + µ
∫ t3
t2
p−ε(aR + bqR)dt]

= cmc[µaRp−ε(t2 − t1) + µp−ε

k {c1(ebkt3 − ebkt2) + c2(e−bkt3 − e−bkt2)}]
Therefore three sub-cases may arise depending upon the values of changing time periods.

Sub-case 2.1: 0 ≤ t1 ≤ N ≤M ≤ t2 ≤ t3 ≤ T
In this case if the amount is paid within M by the retailer, then there is no interest
payable. Otherwise, the retailer will pay for the rest of the inventory. In this case the
total amount of interest paid and interest earned by the retailer is calculated.
Hence, total interest paid
TIPL = pip[

∫ t2
M (1 + T − t2)qL(t)dt+

∫ t3
t2

(1 + T − t3)qL(t)dt+
∫ T
t3
qL(t)dt]

= pip
[

1
2(1 + T − t2)(µ − 1)aLp−ε(t2 −M)2 + (1 + T − t3){ c1

bk (ebkt3 − ebkt2) − c2
bk (e−bkt3 −

e−bkt2)− aL
b (t3 − t2)}+ k1

r2
(er2T − er2t3)− k2

r2
(e−r2T − e−r2t3) + aL

b (T − t3)
]

TIPR = pip[
∫ t2
M (1 + T − t2)qR(t)dt+

∫ t3
t2

(1 + T − t3)qR(t)dt+
∫ T
t3
qR(t)dt]

TIPR = pip
[

1
2(1+T −t2)(µ−1)aRp−ε(t2−M)2 +(1+T −t3){ c1

bk (ebkt3−ebkt2)+ c2
bk (e−bkt3−

e−bkt2)− aR
b (t3 − t2)} − k1

r2
(er2T − er2t3)− k2

r2
(e−r2T − e−r2t3) + aR

b (T − t3)]

And, total interest earned
TIEL = Csie[(T − N)

∫N
t1
DL(p, q)dt + (1 + T −M)

∫M
N DL(p, q)(M − t)dt + (1 + T −

t2)
∫ t2
M DL(p, q)(t2 − t)dt+ (1 + T − t3)

∫ t3
t2
DL(p, q)(t3 − t)dt+

∫ T
t3
DL(p, q)(T − t)dt]

= Csie
[
(T −N)aLp−ε(N − t1) + 1

2(1 +T −M)aLp−ε(M −N)2 + 1
2(1 +T − t2)aLp−ε(t2−

M)2+p−εt3b(1+T−t3){ c1
bk (ebkt3−ebkt2)− c2

bk (e−bkt3−e−bkt2)}−p−εb(1+T−t3){ 1
bk (t3ebkt3−

t2e
bkt2)− 1

b2k2 (ebkt3 − ebkt2)}+ T{ bk1
r2

(er2T − er2t3)− bk2
r2

(e−r2T − e−r2t3) + 2aL(T − t3)} −
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bk1{ 1
r2

(Ter2T − t3e
r2t3) − 1

r2
2
(er2T − er2t3)} − bk2{− 1

r2
(Te−r2T − t3e

−r2t3) − 1
r2

2
(e−r2T −

e−r2t3)} − 2aL(T − t3)
]

TIER = Csie[(T −N)
∫N
t1
DR(p, q)dt + (1 + T −M)

∫M
N DR(p, q)(M − t)dt + (1 + T −

t2)
∫ t2
M DR(p, q)(t2 − t)dt+ (1 + T − t3)

∫ t3
t2
DR(p, q)(t3 − t)dt+

∫ T
t3
DR(p, q)(T − t)dt]

= Csie
[
(T −N)aRp−ε(N − t1)+ 1

2(1+T −M)aRp−ε(M −N)2 + 1
2(1+T − t2)aRp−ε(t2−

M)2+p−εt3b(1+T−t3){ c1
bk (ebkt3−ebkt2)+ c2

bk (e−bkt3−e−bkt2)}−p−εb(1+T−t3){ 1
bk (t3ebkt3−

t2e
bkt2)− 1

b2k2 (ebkt3 − ebkt2)}+T{ bk1
r2

(er2T − er2t3)− bk2
r2

(e−r2T − e−r2t3) + 2aR(T − t3)}}+
bk1{ 1

r2
(Ter2T − t3e

r2t3) − 1
r2

2
(er2T − er2t3)} − bk2{− 1

r2
(Te−r2T − t3e

−r2t3) − 1
r2

2
(e−r2T −

e−r2t3)} − 2aL(T − t3)
]

Sub-case 2.2: 0 ≤ t1 ≤ t2 ≤ N ≤M ≤ t3 ≤ T
In this case the total amount of interest paid and interest earned by the retailer is calcu-
lated.

Hence, total interest paid
TIPL = pip[

∫ t3
M (1 + T − t3)qL(t)dt+

∫ T
t3
qL(t)dt]

= pip
[
(1+T − t3){ c1

bk (ebkt3−ebkM )− c2
bk (e−bkt3−e−bkM )− aL

b (t3−M)}+ k1
r2

(er2T −er2t3)−
k2
r2

(e−r2T − e−r2t3) + aL
b (T − t3)

]
TIPR = pip[

∫ t3
M (1 + T − t3)qR(t)dt+

∫ T
t3
qR(t)dt]

= pip
[
(1+T − t3){ c1

bk (ebkt3−ebkM )+ c2
bk (e−bkt3−e−bkM )− aR

b (t3−M)}− k1
r2

(er2T −er2t3)−
k2
r2

(e−r2T − e−r2t3) + aR
b (T − t3)

]
Total interest earned

TIEL = Csie[(T−t2)
∫ t2
t1
DL(p, q)dt+(1+T−t3)

∫ t3
t2
DL(p, q)(t3−t)dt+

∫ T
t3
DL(p, q)(T−t)dt]

= Csie
[
aLp

−ε(T − t2)(t2 − t1) + (1 + T − t3)p−εbt3{ c1
k (ebkt3 − ebkt2) − c2

k (e−bkt3 −
e−bkt2)}−p−ε(1+T − t3)[c1b{ 1

bk (t3ebkt3− t2ebkt2)− 1
b2k2 (ebkt3−ebkt2)}−c2b{− 1

bk (t3e−bkt3−
t2e
−bkt2) − 1

b2k2 (e−bkt3 − e−bkt2)}] + T{−k1
r2

(er2T − er2t3) − k2
r2

(e−r2T − e−r2t3) + 2aR
b (T −

t3)}−k1{− 1
r2

(Ter2T − t3er2t3)+ 1
r2

2
(er2T −er2t3)}−k2{− 1

r2
(Te−r2T − t3e−r2t3)− 1

r2
2
(e−r2T −

e−r2t3)− aR
b (T 2 − t23)}

]
TIER = Csie[(T−t2)

∫ t2
t1
DR(p, q)dt+(1+T−t3)

∫ t3
t2
DR(p, q)(t3−t)dt+

∫ T
t3
DR(p, q)(T−

t)dt]

= Csie
[
aRp

−ε(T − t2)(t2 − t1) + (1 + T − t3)p−εbt3{ c1
k (ebkt3 − ebkt2) + c2

k (e−bkt3 −
e−bkt2)}−p−ε(1+T − t3)[c1b{ 1

bk (t3ebkt3− t2ebkt2)− 1
b2k2 (ebkt3−ebkt2)}+c2b{− 1

bk (t3e−bkt3−
t2e
−bkt2) − 1

b2k2 (e−bkt3 − e−bkt2)}] + T{k1
r2

(er2T − er2t3) − k2
r2

(e−r2T − e−r2t3) + 2aR
b (T −

t3)}+k1{− 1
r2

(Ter2T − t3er2t3)+ 1
r2

2
(er2T −er2t3)}−k2{− 1

r2
(Te−r2T − t3e−r2t3)− 1

r2
2
(e−r2T −

e−r2t3)− aR
b (T 2 − t23)}

]
Sub-case 2.3: 0 ≤ t1 ≤ t2 ≤ N ≤ t3 ≤ T ≤M

In this case interest payable by the retailer is zero, i.e., TIPL = TIPR = 0
But, interest earned by the retailer is given by
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TIEL = Csie
[
(M − t2)

∫ t2
t1
DL(p, q)dt+ (M −N)

∫N
t2
DL(p, q)dt

+(1 +M − t3)
∫ t3
N DL(p, q)(t3 − t)dt+ (1 +M − T )

∫ T
t3
DL(p, q)(T − t)dt

]
= Csiep

−ε
[
aL(M − t2)(t2− t1) + b(M −N){ c1

bk (ebkN −ebkt2)− c2
bk (e−bkN −e−bkt2)}+ (1+

M − t3)t3{ c1
bk (ebkt3 − ebkN )− c2

bk (e−bkt3 − e−bkN )}+ (1 +M − t3)[c1{ 1
bk (t3ebkt3 −NebkN )−

1
b2k2 (ebkt3 − ebkN )} + c2{− 1

bk (t3e−bkt3 − Ne−bkN ) − 1
b2k2 (e−bkt3 − e−bkN )}] + (1 + M −

T )T{ bk1
r2

(er2T − er2t3)− bk2
r2

(e−r2T − e−r2t3) + 2aL(T − t3)} − (1 +M − T )[bk1{ 1
r2

(Ter2T −
t3e

r2t3)− 1
r2

2
(er2T−er2t3)}+bk2{− 1

r2
(Te−r2T−t3e−r2t3)− 1

r2
2
(e−r2T−e−r2t3)}+aL(T 2−t23)]

]
TIER = Csie

[
(M − t2)

∫ t2
t1
DR(p, q)dt+ (M −N)

∫N
t2
DR(p, q)dt

+(1 +M − t3)
∫ t3
N DR(p, q)(t3 − t)dt+ (1 +M − T )

∫ T
t3
DR(p, q)(T − t)dt

]
= Csiep

−ε
[
aR(M − t2)(t2− t1)+ b(M −N){ c1

bk (ebkN −ebkt2)+ c2
bk (e−bkN −e−bkt2)}+(1+

M − t3)t3{ c1
bk (ebkt3 − ebkN ) + c2

bk (e−bkt3 − e−bkN )}+ (1 +M − t3)[c1{ 1
bk (t3ebkt3 −NebkN )−

1
b2k2 (ebkt3 − ebkN )} − c2{− 1

bk (t3e−bkt3 − Ne−bkN ) − 1
b2k2 (e−bkt3 − e−bkN )}] + (1 + M −

T )T{− bk1
r2

(er2T −er2t3)− bk2
r2

(e−r2T −e−r2t3)+2aR(T −t3)}−(1+M−T )[−bk1{ 1
r2

(Ter2T −
t3e

r2t3)− 1
r2

2
(er2T−er2t3)}+bk2{− 1

r2
(Te−r2T−t3e−r2t3)− 1

r2
2
(e−r2T−e−r2t3)}+aR(T 2−t23)]

]
In this case also the objective functions are defined as follows:

Max Profit

(TP ) = 1
T

[TRE + TIE − TPC − THC − TOC − TIP − TBC − TGC − C3] (26)

Min Emission (TE) = TEO + TEH + TEP (27)
On taking α-cut over the total profit and emission per unit time is a crisp interval and is
defined by
TP = [TPL, TPR] where, (28)
TPL = 1

T [TREL + TIEL − TPCL − THCL − TOCL − TIPL − TBCL − TGCL − C3]
TPR = 1

T [TRER + TIER − TPCR − THCR − TOCR − TIPR − TBCR − TGCR − C3]
And, TE = [TEL, TER] where, (29)
TEL = TEOL + TEHL + TEPL
TER = TEOR + TEHR + TEPR, when 0 ≤ α ≤ 0.5
Again, if α ∈ [0.5, 1], then the system of interval fuzzy differential equation is given by

[dqL
dt

,
dqR
dt

] =


−[aL, aR]� p−ε 0 ≤ t ≤ t1
(µ− 1)� [aL, aR]� p−ε t1 ≤ t ≤ t2
(µ− 1)� p−ε([aL, aR] + b� [qL, qR]) t2 ≤ t ≤ t3
−p−ε([aL, aR] + b� [qL, qR]) t3 ≤ t ≤ T (30)

Therefore two cases arise
Case 1: gH-(i) differentiability
Case 2: gH-(ii) differentiability
In case 1: gH-(i) differentiability, the above system reduces to

dqL
dt

=


−aRp−ε 0 ≤ t ≤ t1
(µ− 1)aLp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aL + bqL) t2 ≤ t ≤ t3
−p−ε(aR + bqR) t3 ≤ t ≤ T
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dqR
dt

=


−aLp−ε 0 ≤ t ≤ t1
(µ− 1)aRp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aR + bqR) t2 ≤ t ≤ t3
−p−ε(aL + bqL) t3 ≤ t ≤ T

After solving using the boundary conditions, q(0) = q(t2) = q(T ) = 0, we get

qL(t) =


−aRp−εt 0 ≤ t ≤ t1
(µ− 1)aLp−ε(t− t2) t1 ≤ t ≤ t2
aL
b [ex(t−t2) − 1] t2 ≤ t ≤ t3
−aR

b [ey(T−t) − 1] t3 ≤ t ≤ T (31)

qR(t) =


−aLp−εt 0 ≤ t ≤ t1
(µ− 1)aRp−ε(t− t2) t1 ≤ t ≤ t2
aR
b [ex(t−t2) − 1] t2 ≤ t ≤ t3
−aL

b [ey(T−t) − 1] t3 ≤ t ≤ T (32)
where, x = b(µ− 1)p−ε and y = bp−ε

aL(α) = (r1 − θlr2) + (r2 − r1 − θlr2)α
(1− θl) + 2θlα

,

aR(α) = (r4 − θlr3) + (r4 − r3 − 2θlr3)α
(1− θl) + 2θlα

In this case all the relevant costs and total interest earned and payable are same as the
previous case 1 when α ∈ [0, 0.5] but the values of aL(α) and aR(α) are different from the
previous case 1. In this case

aL(α) = (r1 − θlr2) + (r2 − r1 − θlr2)α
(1− θl) + 2θlα

,

aR(α) = (r4 − θlr3) + (r4 − r3 − 2θlr3)α
(1− θl) + 2θlα

Here the objective function for α ∈ [0.5, 1] have the same expression as previous Case
1 where α ∈ [0, 0.5] with different values of aL(α) and aR(α)
In case 2: gH-(ii) differentiability, the above system reduces to

dqL
dt

=


−aLp−ε 0 ≤ t ≤ t1
(µ− 1)aRp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aR + bqR) t2 ≤ t ≤ t3
−p−ε(aL + bqL) t3 ≤ t ≤ T

dqR
dt

=


−aRp−ε 0 ≤ t ≤ t1
(µ− 1)aLp−ε t1 ≤ t ≤ t2
(µ− 1)p−ε(aL + bqL) t2 ≤ t ≤ t3
−p−ε(aR + bqR) t3 ≤ t ≤ T

After solving using the boundary conditions, q(0) = q(t2) = q(T ) = 0 and q(t2) = Qm,
we get

qL(t) =


−aLp−εt 0 ≤ t ≤ t1
(µ− 1)aRp−ε(t− t2) t1 ≤ t ≤ t2
c1e

bkt + c2e
−bkt − aL

b t2 ≤ t ≤ t3
k1e

r2t + k2e
−r2t + aL

b t3 ≤ t ≤ T (33)



132 B. K. Debnath, P. Majumder, U. K. Bera

qR(t) =


−aRp−εt 0 ≤ t ≤ t1
(µ− 1)aLp−ε(t− t2) t1 ≤ t ≤ t2
c1e

bkt − c2e
−bkt − aR

b t2 ≤ t ≤ t3
−k1e

r2t + k2e
−r2t + aR

b t3 ≤ t ≤ T (34)
Where k = (µ− 1)p−ε r2 = −bp−ε

c1 = 1
e2bkt3 − e2bkt2 [(Qm + aL

b
)ebkt3 − aL

b
ebkt2 ]

c2 = aL
b
ebkt2 − 1

e2bk(t3−t2) [(Qm + aL
b

)ebkt3 − aL
b
ebkt2 ]

k1 = aR − aL
2b e−c2T

k2 = −aL + aR
2b ec2T

aL(α) = (r1 − θlr2) + (r2 − r1 − θlr2)α
(1− θl) + 2θlα

,

aR(α) = (r4 − θlr3) + (r4 − r3 − 2θlr3)α
(1− θl) + 2θlα

In this case also all the relevant costs and total interest earned and payable are same as
the previous case 2 when α ∈ [0, 0.5] but the values of aL(α) and aR(α) are different from
the previous case 2. In this case

Z aL(α) = (r1 − θlr2) + (r2 − r1 − θlr2)α
(1− θl) + 2θlα

,

aR(α) = (r4 − θlr3) + (r4 − r3 − 2θlr3)α
(1− θl) + 2θlα

Here the objective function for α ∈ [0.5, 1] have the same expression as previous Case
2 where α ∈ [0, 0.5] with different values of aL(α) and aR(α)

6. Solution procedure for solving multi-objective non-linear problem
The foregoing discussion provides a methodology for converting interval valued fuzzy

differential equation into system of ordinary differential equation via generalized Hukuhara
derivative approach. The α-cut on the profit function and the emission function leads to a
system of objective functions which have been solved by multi-objective genetic algorithm.
As the developed problem arise so many parameters and handle this problem with classical
methods will be very critical. Hence we applied the meta-heuristic multi-objective genetic
algorithm method.

Multi-objective genetic algorithm
Genetic algorithm (GA) is a heuristic search algorithm used in computing to find true or
approximate solutions in optimization which mimics the process of natural genetics i.e.,
survival of the fittest. It has five phases i.e., initial population, fitness function, selection,
crossover, mutation. Parents are selected according to their fitness values. The better
chromosomes have more chances to be selected. In this method, a few good chromosomes
are used for creating new offspring in every iteration. Then some bad chromosomes are
removed and the new offspring is placed in their places. The rest of population migrates
to the next generation without going through the selection process. A multi-objective
optimization problem involves a number of objective functions which are to be either min-
imized or maximized. As in a single-objective optimization problem, the multi-objective
optimization problem may contain a number of constraints which have feasible solution
(including all optimal solutions) to be satisfy. Since objectives can be either minimized or
maximized, the multi-objective optimization problem in its general form can be written
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as

Minimize/Maximize f(x) = {f1(x), f2(x), f3(x), ......., fk(x)}
x = {x1, x2, x3, ....., xz}
subject to:
g(x) ≥ 0
h(x) = 0
xl ≤ x ≤ xu
Where f is a vector comprising of k objective functions and x is a vector comprising of
z solutions. g and h are vectors corresponding to inequality and equality constraints re-
spectively. The lower bound and upper bound of the vector x is xl and xu. The solutions
of a multi-objective optimization problem are known as pareto optimal solutions.

Figure 1. Graphical representation of procedure of GA

7. Real life numerical data and estimation to type-2 fuzzy data
“TATA Motors Limited" a well famous Indian multinational automotive manufactur-

ing company manufactures passengers cars, trucks, vans, buses, sports car, construction
equipment etc. The demands of these items from the suppliers are not fixed in every
month. A group of managements decisions over the demand of these items are fuzzy in
nature and the final decisions by chief production manager over the expert’s decision is
taken as type-2 fuzzy variable, more precisely trapezoidal type-2 fuzzy variable. Also, the
company have to pay carbon emission cost due to the emission creates for obsolescence
products, production units and to hold the manufacturing products. We have collected
the data for January, 2017 and the corresponding input values in reduced and approximate
form are given values.
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Let Cs = 45 $/unit, µ = 1.8, p = $30 Chc = 7 $/m3, b
′ = 0.5m3/unit, α

′ =
0.05, C

′
s = 20 $/unit, C3 = 25 $/unit, Coc = 5 $/ton, ip = 0.61, ie = 1.75, α =

0.3 (when α ∈ [0, 0.5]), α = 0.7 (when α ∈ [0.5, 1]), b = 0.8 ε = 0.7 Cmc = 3 $/unit, Ch =
6 $/m3, Cb = 1.02 $/m3 a

′ = 0.8 ton/unit, (r1, r2, r3, r4, θl, θr) = (10, 12, 14, 16, 0.5, 0.3)

Table-2: Optimization results for different sub cases for type-2 fuzzy demand
by using Multi-objective Genetic algorithm

Different cases sub cases T M N [TPL, TPR] [TEL, TER]
α ∈ [0, 0.5] Case 1 1.1 1.2567 0.8257 0.6758 [213.91, 368.08] [106.82, 171.12]

1.2 1.3459 0.9256 0.7584 [433.67, 597.31] [213.56, 297.65]
1.3 1.1346 1.5682 0.8496 [609.68, 779.84] [305.57, 387.69]

Case 2 2.1 1.1438 0.8391 0.7143 [232.58, 378.37] [118.64, 185.97]
2.2 1.2337 0.9123 0.7852 [445.72, 605.38] [221.37, 307.82]
2.3 1.3258 1.7235 1.1324 [618.67, 796.57] [312.67, 396.78]

α ∈ (0.5, 1] Case 1 1.1 1.3457 0.8472 0.7523 [198.78, 275.86] [118.23, 185.79]
1.2 1.5676 0.8472 0.7523 [412.37, 576.28] [227.52, 307.64]
1.3 1.1256 1.4328 0.9726 [582.57, 680.19] [331.24, 415.28]

Case 2 2.1 1.058 0.7581 0.7058 [223.81, 353.57] [127.64, 196.67]
2.2 1.123 0.7638 0.7253 [432.35, 575.83] [231.58, 316.97]
2.3 1.321 1.873 1.0357 [608.67, 721.64] [327.67, 409.61]

Table-3: Effects of unit selling price Cs on profit function via gH-(i)
differentiability of different sub cases of Case 1 for type-2 fuzzy demand

when α ∈ (0, 0.5]
Cs($) Sub-case 1.1 Sub-case 1.2 Sub-case 1.3

[TPL, TPR] [TPL, TPR] [TPL, TPR]
45 [213.91,368.08] [433.67,597.31] [609.68,779.84]
47 [237.81,381.15] [457.28,605.35] [602.13,797.23]
49 [251.26,398.57] [478.63,621.46] [641.25,809.15]
51 [273.43,418.93] [493.54,639.56] [657.81,822.21]
53 [287.19,429.35] [506.23,652.21] [662.23,832.32]
55 [293.25,444.61] [517.41,667.82] [671.82,843.67]
57 [302.61,459.82] [529.35,679.81] [682.56,857.67]

Table-4: Effects of unit purchasing cost p on profit function via gH-(ii)
differentiabi- lity of different sub cases of Case 2 for type-2 fuzzy demand

when α ∈ (0, 0.5]
p($) Sub-case 2.1 Sub-case 2.2 Sub-case 2.3

[TPL, TPR] [TPL, TPR] [TPL, TPR]
30 [232.58,378.37] [445.72,605.38] [618.67,796.57]
32 [227.64,369.87] [438.79,591.25] [611.52,787.23]
34 [221.23,362.51] [432.81,583.71] [603.15,779.14]
36 [218.21,356.10] [426.75,575.23] [596.45,769.23]
38 [211.37,349.58] [420.12,562.14] [589.64,761.42]
40 [202.51,341.78] [413.25,557.69] [581.23,756.21]
42 [196.25,335.62] [402.72,551.13] [571.51,749.17]
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Table-5: Effects of unit obsolescence rate α′ on emission function via gH-(i)
differentiability of different sub cases of Case 1 for type-2 fuzzy demand

when α ∈ (0.5, 1]
α
′ Sub-case 1.1 Sub-case 1.2 Sub-case 1.3

[TEL, TER] [TEL, TER] [TEL, TER]
0.05 [118.23,185.97] [227.52,307.64] [331.24,415.28]
0.10 [123.19,192.25] [233.67,315.19] [338.75,423.18]
0.15 [129.20,198.75] [237.15,322.50] [343.16,429.11]
0.20 [136.49,207.26] [242.62,329.23] [349.21,436.07]
0.25 [142.15,211.27] [249.13,337.19] [356.16,442.18]
0.30 [149.35,220.05] [256.27,342.56] [361.23,451.95]
0.35 [156.07,227.18] [261.81,347.25] [369.09,459.67]

Table-6: Effects of weight of obsolescence product a′ on emission function via
gH-(ii) differentiability of different sub cases of Case 2 for type-2 fuzzy

demand when α ∈ (0.5, 1]
a
′ Sub-case 2.1 Sub-case 2.2 Sub-case 2.3

[TEL, TER] [TEL, TER] [TEL, TER]
0.8 [127.64,196.67] [231.58,316.97] [327.67,409.61]
1.0 [131.25,201.25] [237.05,321.84] [334.25,416.87]
1.2 [136.71,212.08] [239.17,329.15] [339.51,421.75]
1.4 [141.81,216.25] [244.23,336.91] [343.61,429.82]
1.6 [146.34,218.31] [249.71,341.28] [349.71,437.71]
1.8 [153.81,225.83] [255.82,346.17] [356.82,442.82]
2.0 [157.35,231.19] [261.09,351.25] [360.08,446.72]

Figure 2. Effect of set-up cost on profit function for sub-case 2.3 when α ∈ [0, 0.5]
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Figure 3. Effect of emission cost of carbon on emission function for sub-case 1.1
when α ∈ [0, 0.5]

8. Discussion
Table 2 describes the optimal results for the profit function and the emission function

in interval form and concluded that when the credit period of retailer is greater than
total cycle time T via gH-(i) differentiability, the profit is maximum, i.e. [609.68, 779.84]
and minimum emission is calculated as [106.82, 171.12] for sub-case 1.1 when α ∈ [0, 0.5].
When the profit and emission is calculated via gH-(ii) differentiability, we also observe that
as the credit period of retailer is greater than total cycle time T, the profit is maximum,
i.e. [618.67, 796.57] and minimum emission is calculated as [118.64, 185.97] for sub-case
2.1 when α ∈ [0, 0.5]. As one can easily observed from Table 2 that the same scenario is
depicted for α ∈ [0.5, 1]. In this case sub-case 2.3 gives the maximum profit, i.e. [608.67,
721.64]. We can also conclude that in case of sub-case 1.1, the emission cost is minimum,
i.e. [106.82, 171.12] when α ∈ [0, 0.5]. We observe the effect of unit selling price (Cs)
on profit function and can conclude that with the increase of unit selling price, the profit
function is also increasing as depicted in Table 3. Table 4 analyses the effect of unit
purchasing cost (p) on profit function via gH-(ii) differentiability when α ∈ [0, 0.5] and
observe that with the increase of unit purchasing cost the total profit of each sub-case is
decrease. Table 5 shows that if the unit obsolescence rate α′ is increase for type 2 fuzzy
demand over time for α ∈ [0.5, 1] corresponding cost of emission is also increase. From
Table 6 it observed that with the increasing values of weight of obsolescence product a′,
total emission cost for each sub-cases are also increased. With the increase of set-up cost,
the profit function is decreasing as depicted in Figure 2 when α ∈ [0, 0.5]. We can observe
from Figure 3 that the total emission cost is increasing as the emission cost of carbon is
increasing.

9. Conclusions and future research work:
The present analyses of the model specifically introduce the concept of type-2 fuzzy

variable can be taken as a key factor for a decision maker (DM) engaged with the demand
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unit. Demand of an item in market is always fluctuating and in this present model this
fluctuation is measured by trapezoidal type-2 fuzzy variable. The present model illustrated
a new direction in the field of inventory modeling applying the adventure of Mathematics.
The DM is able to take more appropriate precise decisions with the help of present analyses.

In this paper, some useful ideas are presented to deal with inventory control problem
with type-2 fuzzy parameters. Along with the main contributions discussed in introduc-
tion some more aspects are as follows.
1. CV based reduction method proposed by Qin et al. [23] is discussed and successfully
applied to the proposed model to find the total profit function and emission function.
2. According to literature survey for the first time in a single mathematical formulation,
we introduced an economic production quantity model with demand depends on the pro-
duction price and stock in fuzzy environment where demand is taken as trapezoidal type-2
fuzzy number. With the use of CV based reduction method and α-cut of hexagonal fuzzy
number the proposed model is solved to find maximum profit and minimum cost of emis-
sion of carbon.
3. Some new real life based important facts are provided and discussed in this paper,
which will help in developing the business management.
As a future work the presented models can be extended to different types of inventory
problems including price discounts, quantity discounts, taking selling price, ordering cost
as triangular fuzzy number, intuitonistic number, triangular type-2 fuzzy number, gamma
type-2 fuzzy number, Gaussian type-2 fuzzy number etc .

As it is assumed that the unit selling price is greater than the unit purchasing price, the
retailer must have sufficient amounts before the end of business period and to pay the dues
to the wholesaler some time before the end of the total cycle and in this situation, he will
have to pay less interest to the wholesaler. Moreover, the retailer can earn more interest
after that time up to the end of the business period. This new approach to calculate
the interest earned by the retailer may also apply in this model and the result can be
compared with the conventional approach also. The concept of immediate part payment
and the delay-payment for the rest can also allowed by the wholesaler for an item over
a finite planning horizon or random planning horizon In addition, against an immediate
part payment (variable) to the wholesaler, there is a provision for (i) borrowing money
from a money lending source and (ii) earning some relaxation on credit period from the
wholesaler. The models can also be developed with respect to the retailer for maximum
profit. We can also extend the current model for partial trade credit i.e. supplier offers
partial trade credit to retailer and retailer offers full trade credit to customers.
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In this paper, we define the pullback crossed modules in the category of racks that are
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1. Introduction
A rack R is a set equipped with a non-associative binary operation satisfying:

(x C y) C z = (x C z) C (y C z)
for all x, y, z ∈ R, and one additional property of this binary operation. Moreover, a
rack is called “quandle” if it further satisfies x C x = x, for all x ∈ R. These total
quandle axioms are related to the Reidemeister moves of knot diagrams, and this yields a
connection between knot theory and the theory of quandles (hence racks) [9]. Racks have
been variously studied under plenty of names and a variety of terminology in literature.
They are called automorphic sets [1], crystals [8], left distributive left quasigroups [10]
and racks (as a modification of wrack) [4]. The most important example of racks comes
from the conjugation in a group G where g C h = h−1gh, for all g, h ∈ G. This property
yields a functor Conj : Grp→ Rack from the category of groups to the category of racks.
Moreover, there exists an adjunction [7] between these two categories with:

HomGrp
(
As(X),G

) ∼= HomRack
(
X,Conj(G)

)
,

where the functor As: Rack→ Grp is left adjoint to the functor Conj.
A crossed module of groups [11] G = (∂ : E → G, ·) is defined by a group homomorphism

∂ : E → G, together with a (right) group action of G on E satisfying the Peiffer relations,
i.e. ∂(e · g) = g−1∂(e) g and f · ∂(e) = e−1f e, for all e, f ∈ E and g ∈ G. Crossed
modules of racks [5] generalize the notion of crossed modules of groups satisfying two
parallel Peiffer conditions. An interesting result of this notion is the functors As and Conj
preserving the crossed module structures, see [5]. Therefore, we can also consider them
as the (induced) functors between the category of crossed modules of groups XGrp and
∗Corresponding Author.
Email addresses: kadiremir86@gmail.com (K. Emir), hgulsun@ogu.edu.tr (H. Gülsün Akay)
Received: 20.12.2016; Accepted: 11.10.2017
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the category of crossed modules of racks XRack, denoted by As? and Conj? respectively.
Then, the previous adjunction leads to the following extended adjunction:

HomXGrp
(
As?(X),G

) ∼= HomXRack
(
X,Conj?(G)

)
.

Consequently, one can say that the functor Conj? preserves limits and As? preserves col-
imits.

Crossed modules of groups or racks, which have the same fixed codomain A will be
called crossedA modules, and lead to full subcategories of the corresponding categories.
We denote these categories by XGrpA and XRackA, respectively.

Pullback crossed modules in the category of groups are introduced in [3] which is derived
originally from [2]. Explicitly, let φ : S → R be a fixed group homomorphism and ∂ : P →
R be a crossed module. Let A be the pullback in the category of groups with the diagram:

A
β //

∂∗

��

P

∂

��
S

φ
// R

Then, S acts on A ⊂ P × S by the rule as =
(
(βa)φs , s−1 (∂a) s

)
for all s ∈ S and a ∈ A

that makes ∂∗ : A → S a crossed module and (β, φ) a crossed module morphism. This
morphism is universal for morphisms from crossedR modules to crossedS modules that
induce φ : S → R. Writing A = φ∗P we obtain a functor φ∗ : XGrpR → XGrpS which is
called restriction that is left adjoint to the induced functor introduced in [3].

In this paper, we construct the pullback crossed modules in the category of racks that
will generalize the pullback crossed modules of groups. Furthermore, we see that the
functor Conj? preserves the pullback crossed module structure in the sense of the following
commutative diagram:

XGrpR

φ∗

��

Conj? // XRackR

φ∗

��
XGrpS Conj?

// XRackS

for any arbitrary but fixed group homomorphism φ : S → R.

2. Preliminaries
We recall some notions from [5,7] that will be used in the sequel.

2.1. Category of racks
Definition 2.1. A (right) rack R is a set equipped with a (right) binary operation satis-
fying the following conditions:

• for each a, b ∈ R, there is a unique c ∈ R such that:

c C a = b,

• for all a, b, c ∈ R, we have:

(a C b) C c = (a C c) C (b C c) .
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A pointed rack is a rack R with an element 1 ∈ R such that (for all a ∈ R):

1 C a = 1 and a C 1 = a.

From now on, all racks will be pointed.

Let R,S be two racks. A rack homomorphism is a map f : R→ S such that:

f (a C b) = f (a) C f (b) and f (1) = 1,

for all a, b ∈ R. Thus we have the category of racks denoted by Rack. Alternatively, for
a point of view on racks where the two right and left rack operations are treated on an
equal basis, see [6].

Examples:

1) Given a group G, there exists a rack structure on G where the binary operation is:

g C h = h−1gh,

for all g, h ∈ G. This rack is called the conjugation rack of G, from which we get the
functor:

Conj : Grp→ Rack.

2) The core rack on a group G is defined by:

g C h = hg−1h,

for all g, h ∈ G; however this construction is not functorial.

3) Let P,R be two racks, we have a rack structure on P ×R defined by:

(p, r) C
(
p′, r′

)
=

(
p C p′, r C r′

)
,

which is also the product object in the category of racks.

2.2. Rack action
Definition 2.2. Let R be a rack and X be a set. We say that X is an R-set when there
are bijections (·r) : X → X for all r ∈ R such that:

(x · r) · r′ =
(
x · r′

)
·
(
r C r′

)
, (2.1)

for all x ∈ X and r, r′ ∈ R.

Definition 2.3. Let R be a rack and X be an R-set. The hemi-semi-direct product
X oR ⊂ X ×R is the rack defined by:

(x, r) C
(
x′, r′

)
=

(
x · r′, r C r′

)
,

for all x, x′ ∈ X and r, r′ ∈ R.

Remark that x′ disappears in the hemi-semi direct operation which is the main technical
difference from the semi-direct product of groups and causes various problems when we
deal with it.

Definition 2.4. Let R,S be two racks. We say that S acts on R by automorphisms when
there is a (right) action of S on R and:

(r C r′) · s = (r · s) C (r′ · s) (2.2)

for all s ∈ S and r, r′ ∈ R.
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2.3. Crossed modules of racks
Definition 2.5. A crossed module of racks (R,S, ∂) is a rack homomorphism ∂ : R → S
together with a (right) rack action of S on R such that following two Peiffer relations hold
(for all r, r′ ∈ R and s ∈ S):

X1) ∂ (r · s) = ∂ (r) C s,
X2) r · ∂ (r′) = r C r′.

If (R,S, ∂) and (R′, S′, ∂′) are two crossed module of racks, a crossed module morphism:

(f1, f0) : (R,S, ∂)→
(
R′, S′, ∂′

)
is a tuple which consists of rack homomorphisms f1 : R→ R′, f0 : S → S′ such that:

• ∂′f1 = f0 ∂,
• f1 (r · s) = f1 (r) · f0 (s),

for all r ∈ R, s ∈ S. Thus we get the category of crossed modules of racks, denoted by
XRack.

Examples:

1) Let N ⊂ R be a normal subrack of R (i.e. n C r ∈ N for all n ∈ N, r ∈ R). The
inclusion map N → R is a crossed module (inclusion crossed module) where the action is
defined by the main rack operation.

2) Let µ : M → N be a crossed module of groups. We obtain a crossed module of racks
by passing to the associated conjugation racks of M and N .

3. Fiber product of racks
Definition 3.1. Let α : P → R and β : S → R be two rack homomorphisms. The fiber
product P ×R S is the subrack of the rack P × S defined by:

P ×R S = {(p, s) | α (p) = β (s)} .

From the categorical point of view, the fiber product is the equalizer of the parallel rack
homomorphisms:

P × S
α◦π1 //
β◦π2

// R .

Proposition 3.2. Let (P,R, α) and (S,R, β) be two crossed modules of racks. The map
∂ : P ×R S → R given by:

∂(p, s) = α(p) = β(s)
yields a crossed module (P ×R S,R, ∂) with the (right) rack action:

(P ×R S)×R → P ×R S
((p, s) , r) 7→ (p, s) · r = (p · r, s · r)

Proof. The action of R is well-defined, i.e. it preserves P ×R S. This follows directly
from α(p) C r = β(s) C r. Moreover, it satisfies the conditions (2.1) and (2.2) since:

((p, s) · r) · r′ = (p · r, s · r) · r′

=
(
(p · r) · r′, (s · r) · r′

)
=

((
p · r′

)
·
(
r C r′

)
,
(
s · r′

)
·
(
r C r′

))
=

((
p · r′

)
,
(
s · r′

))
·
(
r C r′

)
=

(
(p, s) · r′

)
·
(
r C r′

)
,
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and (
(p, s) C

(
p′, s′

))
· r =

(
p C p′, s C s′

)
· r

=
((
p C p′

)
· r,

(
s C s′

)
· r

)
=

(
(p · r) C

(
p′ · r

)
, (s · r) C

(
s′ · r

))
= ((p · r) , (s · r)) C

((
p′ · r

)
,
(
s′ · r

))
= ((p, s) · r) C

((
p′, s′

)
· r

)
,

for all (p, s) , (p′, s′) ∈ P ×R S and r, r′ ∈ R.

Also the map ∂ : P ×R S → R is a rack homomorphism since:

∂
(
(p, s) C

(
p′, s′

))
= ∂

(
p C p′, s C s′

)
= α

(
p C p′

)
= α (p) C α

(
p′

)
= ∂ (p, s) C ∂

(
p′, s′

)
.

Finally (P ×R S,R, ∂) is a crossed module of racks since:
X1)

∂ ((p, s) · r) = ∂ (p · r, s · r)
= α (p · r)
= α (p) C r (∵ X1 condition of α)
= ∂ (p, s) C r,

X2)

(p, s) · ∂
(
p′, s′

)
= (p, s) · α

(
p′

)
=

(
p · α

(
p′

)
, s · α

(
p′

))
=

(
p · α

(
p′

)
, s · β

(
s′

))
(∵ α(p′) = β(s′))

=
(
p C p′, s C s′

)
(∵ X2 condition of α, β)

= (p, s) C
(
p′, s′

)
,

for all (p, s) , (p′, s′) ∈ P ×R S and r ∈ R. �

4. Pullback crossed modules in the category of racks
4.1. Idea

Suppose that we have a crossed module of racks (P,R, ∂) and a rack homomorphism
φ : S → R. The pullback crossed module of racks:

φ∗(P,R, ∂) = (φ∗(P ), S, ∂∗)

is a crossed module of racks satisfying the following universal property:

For a given crossed module morphism of racks:

(f, φ) : (X,S, µ)→ (P,R, ∂)

there exists a unique crossed module morphism:

(f∗, idS) : (X,S, µ)→ (φ∗(P ), S, ∂∗)
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which makes the following diagram commutative:

(X,S, µ)

(f,φ)

��

(f∗,idS)

tth h h h h h h h h h h h h h h

(φ∗(P ), S, ∂∗)
(φ′,φ)

// (P,R, ∂)

Remark 4.1. In other words, the previous definition can be seen as a pullback of rack
homomorphisms:

X

µ

��

f //

f∗

""

P

∂

��

φ∗(P )
φ′

<<xxxxxxx

∂∗||xx
xx
xx
x

S
φ

// R

(4.1)

where the arrows φ, φ′ have crossed module structures. It is clear that pullback crossed
modules are not the pullback objects in the category XRack.

4.2. Construction
Let (P,R, ∂) be a crossed module and let φ : S → R be a rack homomorphism. Define

φ∗(P ) = P ×RS and ∂∗ : φ∗(P )→ S by ∂∗ (p, s) = s. Then ∂∗ turns into a crossed module
where the action of S on φ∗(P ) is defined by:

φ∗(P )× S → φ∗(P )
((p, s) , s′) 7→ (p, s) · s′ = (p · φ (s′) , s C s′)

First of all, the action given above is well-defined, i.e. it preserves the set φ∗(P ), which
follows directly from ∂(p) C φ(s′) = φ(s) C φ(s′). Moreover, ∂∗ is a rack homomorphism
since:

∂∗
(
(p, s) C

(
p′, s′

))
= ∂∗

(
p C p′, s C s′

)
= s C s′

= ∂∗ (p, s) C ∂∗
(
p′, s′

)
,

for all (p, s) , (p′, s′) ∈ φ∗(P ). Furthermore the action conditions are satisfied since:(
(p, s) · s′

)
· s′′ =

(
p · φ

(
s′

)
, s C s′

)
· s′′

=
((
p · φ

(
s′

))
· φ

(
s′′

)
,
(
s C s′

)
C s′′

)
=

((
p · φ

(
s′′

))
·
(
φ

(
s′

)
C φ

(
s′′

))
,
(
s C s′′

)
C

(
s′ C s′′

))
=

((
p · φ

(
s′′

))
· φ

(
s′ C s′′

)
,
(
s C s′′

)
C

(
s′ C s′′

))
=

(
p · φ

(
s′′

)
, s C s′′

)
·
(
s′ C s′′

)
=

(
(p, s) · s′′

)
·
(
s′ C s′′

)
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and (
(p, s) C

(
p′, s′

))
· s′′ =

(
p C p′, s C s′

)
· s′′

=
((
p C p′

)
· φ

(
s′′

)
,
(
s C s′

)
C s′′

)
=

((
p · φ

(
s′′

)
C p′ · φ

(
s′′

))
,
(
s C s′′

)
C

(
s′ C s′′

))
=

(
p · φ

(
s′′

)
,
(
s C s′′

))
C

(
p′ · φ

(
s′′

)
,
(
s′ C s′′

))
=

(
(p, s) · s′′

)
C

((
p′, s′

)
· s′′

)
for all (p, s) , (p′, s′) ∈ φ∗(P ) and s′′ ∈ S.

Finally ∂∗ is a crossed module:
X1)

∂∗
(
(p, s) · s′

)
= ∂∗

(
p · φ

(
s′

)
, s C s′

)
= s C s′

= ∂∗ (p, s) C s′

X2)

(p, s) · ∂∗
(
p′, s′

)
= (p, s) · s′

=
(
p · φ

(
s′

)
, s C s′

)
=

(
p · ∂

(
p′

)
, s C s′

)
(∵ ∂

(
p′

)
= φ

(
s′

)
)

=
(
p C p′, s C s′

)
(∵ X2 condition of ∂)

= (p, s) C
(
p′, s′

)
for all (p, s) , (p′, s′) ∈ φ∗(P ).

Furthermore, this construction satisfies the universal property. To state it, we need the
crossed module morphism: (

φ′, φ
)

: (φ∗(P ), S, ∂∗)→ (P,R, ∂)

where φ′ : φ∗(P )→ P is given by φ′ (p, s) = p.

Suppose that (X,S, µ) is an arbitrary crossed module with a crossed module morphism:

(f, φ) : (X,S, µ)→ (P,R, ∂)

We need to prove that there exists a unique crossed module morphism:

(f∗, idS) : (X,S, µ)→ (φ∗(P ), S, ∂∗)

such that: (
φ′, φ

)
(f∗, idS) = (f, φ) .

Define f∗ : X → φ∗(P ) by f∗(x) = (f (x) , µ (x)), for all x ∈ X. Then the tuple (f∗, idS)
becomes a crossed module morphism, since (for all s ∈ S and x ∈ X):

f∗ (x · s) = (f (x · s) , µ (x · s))
= (f (x) · φ (s) , µ (x · s)) (∵ (f, φ) crossed module morphism)
= (f (x) · φ (s) , µ (x) C s) (∵ X1 condition of µ)
= (f (x) , µ (x)) · s
= f∗(x) · idS (s)
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and
∂∗f∗(x) = ∂∗ (f (x) , µ (x))

= µ (x)
= idS µ (x) .

Finally the diagram (4.1) commutes, since (for all x ∈ X):
∂∗f∗(x) = ∂∗ (f (x) , µ (x))

= µ (x)
φ′f∗(x) = φ′ (f (x) , µ (x))

= f (x)
and also φ∂∗ = ∂ φ′ by the definition of φ∗(P ).

Let (f ′, idS) : (X,S, µ) → (φ∗(P ), S, ∂∗) be a crossed module morphism of racks with
the same property as (f∗, idS). Define p and s by f ′ (x) = (p, s). Then we get:

φ′f ′ (x) = f (x)⇔ φ′ (p, s) = f (x)⇔ p = f (x)
∂∗f ′ (x) = µ (x)⇔ ∂∗ (p, s) = µ (x)⇔ s = µ (x)

leading to:
f ′ (x) = (p, s) = (f (x) , µ (x)) = f∗(x)

which implies that (f∗, idS) is unique and completes the construction.

Definition 4.2. Let us fix a rack R as a codomain for all crossed modules and construct
the related category which is the full subcategory of XRack. These kinds of crossed
modules will be called as crossedR modules and denote the corresponding category by
XRackR.

Corollary 4.3. As a consequence of the pullback crossed module structure in the category
of racks, we have the functor:

φ∗ : XRackR → XRackS.

Example 4.4. Let ∂ : N → R be an inclusion crossed module and φ : S → R be a rack
homomorphism. Then the pullback crossed module is defined by:

φ∗ (N) = {(n, s) | ∂ (n) = φ (s) , n ∈ N , s ∈ S}
∼= {s ∈ S | φ (s) = n, n ∈ N}
= φ−1 (N)

with the following commutative diagram:

φ−1 (N) φ′ //

∂∗

��

N

∂

��
S

φ
// R

where the preimage φ−1 (N) is a normal subrack of S.

It follows that:

Example 4.5. If N = {1} and R is a rack, then:
φ∗ ({1}) ∼= {s ∈ S | φ (s) = 1} = kerφ.

Thus (kerφ, S, ∂∗) is a pullback crossed module which implies kerφ is a normal subrack.
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Corollary 4.6. The kernel of a rack homomorphism is a particular case of a pullback
crossed module.

Example 4.7. If N = R and φ is surjective, then:
φ∗ (R) = R× S.

5. Functorial approach
Let R be a rack. The associated group As(R) is the quotient of the free group F (R) by

the normal subgroup generated by the elements y−1x−1y(x C y) for all x, y ∈ R, see [7].
This property leads to the functor:

As: Rack→ Grp,
which is left adjoint to the functor Conj.

The major property of these functors is; they both preserve the crossed module structure
that is proven in [5]. Consequently:

Corollary 5.1. We have the functors:
As? : XRack→ XGrp Conj? : XGrp→ XRack,

which are induced by As and Conj, respectively.

Theorem 5.2. There exists an adjunction between the categories of crossed modules of
racks and of crossed modules of groups:

HomXGrp
(
As?(X),G

) ∼= HomXRack
(
X,Conj?(G)

)
, (5.1)

which is induced by
HomGrp

(
As(X),G

) ∼= HomRack
(
X,Conj(G)

)
. (5.2)

Proof. Let X be a rack and G be a group. We know from [7] that; for a given rack homo-
morphism f : X → Conj(G), there exists a unique group homomorphism f] : As(X) → G
such that the following diagram commutes:

X

f

��

µ // As(X)

f]

��
Conj(G) id // G

where µ is the natural map. This diagram leads to (5.1).
One level further, let X be a crossed module of racks and G be a crossed module of

groups. Given a crossed module morphism of racks (f, g) : X → Conj?(G), there exists a
unique crossed module morphism of groups (f], g]) : As?(X) → G such that the following
diagram commutes:

X

(f,g)

��

(µ,µ) // As?(X)

(f],g])

��
Conj?(G)

(id,id)
// G

which induces two forms of (4.1) based on rack homomorphisms f, g and proves the ad-
junction (5.2). �

As another main outcome of the paper, we have the following:
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Theorem 5.3. We have the following commutative diagram:

XGrpR

φ∗

��

Conj? // XRackR

φ∗

��
XGrpS Conj?

// XRackS

Proof. It follows at once from the known fact that, Conj preserves limits and As preserves
colimits since the adjunction (5.2), see also Remark 4.1. �
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Abstract
Recently, Wardowski in [Fixed points of a new type of contractive mappings in complete
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the present paper, we proved a related fixed point theorem with F -contraction mappings
on two complete metric spaces.

Mathematics Subject Classification (2010). 54H25, 47H10

Keywords. fixed point, F -Contractions, complete metric space

1. Introduction and preliminaries
The Banach contraction mapping principle is one of the pivotal results of analysis. It is

widely considered as the source of metric fixed point theory and its significance lies in its
vast applicability in a number of branches of mathematics. There are a lot of generalization
of Banach contraction mapping principle in the literature. One of a different way of this
generalization is to consider two metric space. In 1981, Fisher defined related fixed points
of mappings on two metric spaces and obtained some related fixed point theorems. Let
(X, d) and (Y, ρ) be two metric space, T : X → Y and S : Y → X be two mappings. If
there exist x ∈ X and y ∈ Y such that Tx = y and Sy = x, then the pair of (T, S) is said
to be has related fixed points. Thereafter many authors obtained some related fixed point
theorems (see [1, 3–5,10]).

In 1994, Namdeo et al. [9] proved the following:

Theorem 1.1. Let (X, d) and (Y, ρ) be two complete metric spaces, T : X → Y and
S : Y → X mappings satisfying the following equations:

d(Sy, STx) ≤ cφ(x, y)
ρ(Tx, TSy) ≤ cψ(x, y)
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for all x ∈ X and y ∈ Y for which

g(x, y) 6= 0 6= h(x, y)

where 0 ≤ c < 1

φ(x, y) = f(x, y)
g(x, y) , ψ(x, y) = f(x, y)

h(x, y) (1.1)

and

f(x, y) = max{d(x, Sy)ρ(y, Tx), d(x, STx)ρ(y, TSy), d(Sy, STx)ρ(y, Tx)}
g(x, y) = max{d(x, STx), ρ(y, TSy), d(x, Sy)}
h(x, y) = max{d(x, STx), ρ(y, TSy), ρ(y, Tx)}.

Then, ST has a unique fixed point z ∈ X and TS has a unique fixed point w ∈ Y. Further,
Tz = w and Sw = z.

In this paper, by taking into account the recent proof technique, which is first used by
Wardowski [16], we will present a related fixed point result for two single valued mappings
on two complete metric spaces. For the sake of completeness, we consider the following
notion due to [16].

Let F be the set of all functions F : (0,∞)→ R satisfying the following:
(F1) F is stricly increasing, that is for all α, β ∈ (0,∞) such that α < β, F (α) < F (β);
(F2) For each sequence {αn}n∈N of positive numbers lim

n→∞
αn = 0 if and only if

lim
n→∞

F (αn) = −∞;
(F3) There exists k ∈ (0, 1) such that lim

α→0+
αkF (α) = 0.

Some examples of the functions belonging to F are F1(α) = lnα, F2(α) = α + lnα,
F3(α) = − 1√

α
and F4(α) = ln

(
α2 + α

)
.

Definition 1.2 ([16]). Let (X, d) be a metric space and T : X → X be a mapping.
Then, we say that T is an F -contraction if F ∈ F and there exists τ > 0 such that

∀x, y ∈ X [d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))]. (1.2)

If we take F (α) = lnα in Definition 1.2, the inequality (1.2) turns to

d(Tx, Ty) ≤ e−τd(x, y), for all x, y ∈ X,Tx 6= Ty. (1.3)

It is clear that for x, y ∈ X such that Tx = Ty, the inequality d(Tx, Ty) ≤ e−τd(x, y)
also holds. Thus T is a Banach contraction with contractive constant L = e−τ . Therefore,
every Banach contraction is also F -contraction, but the converse may not be true as shown
in the Example 2.5 of [16]. If we choose some different functions from F in (1.2), we can
obtain some new as well as existing contractive conditions. In addition, Wardowski showed
that every F -contraction T is a contractive mapping, i.e.,

d(Tx, Ty) < d(x, y), for all x, y ∈ X,Tx 6= Ty.

Thus, every F -contraction is a continuous map. We can find some important properties
about F -contractions in [2, 6–8, 11–15, 17]. In the light of these informations, we can see
that the following theorem is a proper generalization of Banach Contraction Principle.

Theorem 1.3 ([16]). Let (X, d) be a complete metric space and T : X → X be an F -
contraction. Then, T has a unique fixed point.
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2. Main result
In this section, we present a new kind of related fixed point theorems using the concept

of F -contraction.

Theorem 2.1. Let (X, d) and (Y, ρ) be two complete metric spaces, T : X → Y and
S : Y → X be two mappings. Suppose that there exist F ∈ F and τ > 0 such that

d(Sy, STx) > 0⇒ τ + F (d(Sy, STx)) ≤ F (φ(x, y)) (2.1)
ρ(Tx, TSy) > 0⇒ τ + F (ρ(Tx, TSy)) ≤ F (ψ(x, y)) (2.2)

hold for all x ∈ X and y ∈ Y for which

g(x, y) 6= 0 6= h(x, y),

where φ and ψ are as in Theorem 1.1. Then, ST has a unique fixed point z ∈ X and TS
has a unique fixed point w ∈ Y. Further, Tz = w and Sw = z.

Proof. Let x ∈ X be an arbitrary point. Define sequences {xn} ⊂ X and {yn} ⊂ Y by

(ST )nx = xn, T (ST )n−1x = yn

and define αn = d(xn, xn+1) and βn = ρ(yn, yn+1), n = 1, 2, 3, ...
If there exist n0 ∈ N for which xn0+1 = xn0 or yn0+1 = yn0 then the proof is finished.

Indeed, if xn0+1 = xn0 , then (ST )n0+1x = (ST )n0x and so (ST )(ST )n0x = (ST )n0x.
Therefore, (ST )n0x := z is a fixed point of ST . Also, if xn0+1 = xn0 , then Txn0+1 = Txn0
and so T (ST )n0+1x = T (ST )n0x or equivalently we have

TST (ST )n0x = T (ST )n0x.

Therefore, T (ST )n0x := w is a fixed point TS. In this case we have Tz = w and Sw = z.
Similar result can be obtained when yn0+1 = yn0 for some n0.

Now suppose that xn 6= xn+1 and yn 6= yn+1 for every n ∈ N. Applying inequality (2.1)
we get

d(xn, xn+1) = d(Syn, STxn) > 0
so we can write

F (d(Syn, STxn)) ≤ F (φ(xn, yn))− τ
from which it follows that

F (αn) ≤ F (βn)− τ. (2.3)
Applying inequality (2.2) we get

ρ(yn, yn+1) = ρ(Txn−1, TSyn) > 0

so we can write
F (ρ(Txn−1, TSyn)) ≤ F (ψ(xn−1, yn))− τ

from which it follows that
F (βn) ≤ F (αn−1)− τ. (2.4)

From (2.3) and (2.4) we get

F (αn) ≤ F (βn)− τ
≤ F (αn−1)− 2τ
≤

...
≤ F (α0)− 2nτ
≤ F (β0)− (2n+ 1)τ (2.5)
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for all n ∈ N. From (2.5) we obtain lim
n→∞

F (αn) = −∞ and with (F2) we get

lim
n→∞

αn = 0. (2.6)

Similarly, we get lim
n→∞

F (βn) = −∞ from (2.4) and with (F2) we find

lim
n→∞

βn = 0. (2.7)

From (F3) there exist k ∈ (0, 1) such that
lim
n→∞

αknF (αn) = 0 and lim
n→∞

βknF (βn) = 0. (2.8)

By (2.5) the following holds for all n ∈ N

αknF (αn) ≤ αkn[F (αn−1)− 2τ ]
≤

...
≤ αkn[F (α0)− 2nτ ]

and so
αknF (αn)− αknF (α0) ≤ −2αknnτ ≤ 0. (2.9)

Letting n→∞ in (2.9), using (2.6) and (2.8) we obtain
lim
n→∞

αknn = 0 (2.10)

Similarly by (2.5) we get
βknF (βn)− βknF (β) ≤ −βkn(2n+ 1)τ ≤ 0. (2.11)

Letting n→∞ in (2.11), using (2.7) and (2.8) we obtain
lim
n→∞

(2n+ 1)βkn = lim
n→∞

nβkn = 0. (2.12)

Now let us observe that from (2.10) there exist n1 ∈ N such that nαkn ≤ 1 for all n ≥ n1
and from (2.12) there exist n2 ∈ N such that nβkn ≤ 1 for all n ≥ n2. Let n0 = max{n1, n2},
then we have for all n > n0

αkn ≤
1
n

and βkn ≤
1
n
. (2.13)

In order to show that {xn} and {yn} are Cauchy sequences consider m,n ∈ N such that
m > n > n0. From (2.13) and triangular inequality, we write

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + ...+ d(xm−1, xm)

<
∞∑
i=n

αi

≤
∞∑
i=n

1
i

1
k

and
ρ(yn, ym) ≤ ρ(yn, yn+1) + ρ(yn+1, yn+2) + ...+ ρ(ym−1, ym)

<
∞∑
i=n

βi

≤
∞∑
i=n

1
i

1
k

.

From the convergence of the serie
∞∑
i=1

1
i

1
k

we receive that {xn} and {yn} are Cauchy se-
quences with limits z ∈ X and w ∈ Y respectively.
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Now, suppose z 6= STz and w 6= TSw. The following two cases arise:
Case 1. Let z = Sw and w = Tz. Then, w = TSw and z = STz, which is a

contradiction.
Case 2. Let z 6= Sw or w 6= Tz. If z 6= Sw, then there exists a subsequence {xn(k)}

of {xn} such that d(Sw, xn(k)) > 0 for all k ∈ N. Therefore, applying inequality (2.1) we
have

F (d(Sw, STxn(k))) ≤ F (φ(xn(k), w))− τ (2.14)

where φ(xn(k), w) =
f(xn(k), w)
g(xn(k), w) . Since

lim
n→∞

g(xn(k), w) = lim
n→∞

max{d(xn(k), xn(k)+1), ρ(w, TSw), d(xn(k), Sw)} > 0

and

lim
n→∞

f(xn(k), w) = lim
n→∞

max


d(xn(k), Sw)ρ(w, Txn(k)),
d(xn(k), STxn(k))ρ(w, TSw),
d(Sw, STxn(k))ρ(w, Txn(k))


= lim

n→∞
max


d(xn(k), Sw)ρ(w, yn(k)+1),
d(xn(k), xn(k)+1)ρ(w, TSw),
d(Sw, xn(k)+1)ρ(w, yn(k))


= 0

we get limn→∞ φ(xn(k), w) = 0. Therefore, from (2.14) and (F2) we have
lim
n→∞

d(Sw, STxn(k)) = 0

and so Sw = z, which is a contradiction. If w 6= Tz, then similar contradiction can be
occur.

Therefore, either z = STz or w = TSw. If z = STz, then z is a fixed point of ST and
Tz is a fixed point of TS. Similarly, if w = TSw, then w is a fixed point of TS and Sw is
a fixed point of ST .

To prove uniqueness, suppose that z and z′ are two fixed points of ST. Then, since

φ(z′, T z) = f(z′, T z)
g(z′, T z) = ρ(Tz, Tz′)

and
ψ(z′, T z) = f(z′, T z)

h(z′, T z) = d(z, z′),

it follows from inequality (2.1) and (2.2) that
F (d(STz, STz′)) ≤ F (φ(z′, T z))− τ

= F (ρ(Tz, Tz′))− τ
≤ F (ψ(z, Tz′))− 2τ
= F (d(z, z′))− 2τ,

which is a contradiction. Therefore, ST (similarly TS) has a unique fixed point in X. �

We can obtain the following corollaries.

Corollary 2.2. Theorem 1.1 is immediate from Theorem 2.1.

Proof. The proof is clear, by taking F (α) = lnα in Theorem 2.1. �

Corollary 2.3. Let (X, d) be a complete metric space and T : X → X be a mapping.
Suppose that there exist F ∈ F and τ > 0 such that

d(Ty, T 2x) > 0⇒ τ + F (d(Ty, T 2x)) ≤ F (φ(x, y))
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holds for all x, y ∈ X for which max{d(x, T 2x), d(y, T 2y), d(x, Ty)} > 0, where

φ(x, y) = max{d(x, Ty)d(y, Tx), d(x, T 2x)d(y, T 2y), d(Ty, T 2x)d(y, Tx)}
max{d(x, T 2x), d(y, T 2y), d(x, Ty)} .

Then, T has a unique fixed point.

Proof. Take X = Y , d = ρ and T = S in Theorem 2.1. �

Corollary 2.4. Let (X, d) be a complete metric space and T : X → X be a mapping.
Suppose that there exist F ∈ F and τ > 0 such that

d(y, Tx) > 0⇒ τ + F (d(y, Tx)) ≤ F (φ(x, y))
d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (ψ(x, y))

hold for all x, y ∈ X for which
g(x, y) 6= 0 6= h(x, y),

where
φ(x, y) = f(x, y)

g(x, y) , ψ(x, y) = f(x, y)
h(x, y)

and
f(x, y) = max{d(x, y)d(y, Tx), d(x, Tx)d(y, Ty), d2(y, Tx)}
g(x, y) = max{d(x, Tx), d(y, Ty), d(x, y)}
h(x, y) = max{d(x, Tx), d(y, Ty), d(y, Tx)}.

Then, T has a unique fixed point.

Proof. Take X = Y , d = ρ and S = I (the identity mapping) in Theorem 2.1. �

Example 2.5. Let X = Q and Y = I, where Q is the set of rational numbers and I is
the set of irrational numbers. Consider the discrete metric d on X, and a metric defined
by

ρ(x, y) =


0 , x = y

1 + |x− y| , x 6= y

on Y . Then, it is clear that (X, d) and (Y, ρ) are complete metric spaces. Define two
mappings T : X → Y by Tx =

√
2 and S : Y → X by Sy = 0. Then, for all x ∈ X and

y ∈ Y , we have
d(Sy, STx) = 0 = ρ(Tx, TSy).

This shows that the conditions (2.1) and (2.2) are satisfied for all F ∈ F and τ > 0.
Therefore, by Theorem 2.1, ST has a unique fixed point z ∈ X and TS has a unique fixed
point w ∈ Y. Further, Tz = w and Sw = z.
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1. Introduction
Fractional differential equations is the area of concentration of recent research and there

has been significant progress in this area. However, the concept of fractional derivative
is as old as differential equations. L’ Hospital in 1695 wrote a letter to Leibniz related
to his generalization of differentiation and raised the question about fractional derivative.
Nowadays the fractional order differential equations has proved to be the most valuable
tools in the modeling of many phenomena in various fields of science and engineering.
Indeed, we can find many applications in electromagnetic, control, electrochemistry etc.
(see[5–8]). For more details on this area, one can see the monograph of Kilbas et al. [14],
I. Podulbny [23], Miller and Ross [17], Li et al. [15, 16], Rehman et al. [25] , Chen et al.
[1–4], Saeed [27] and the references therein.

Over last three decades, the stability theory for functional equations developed and it
got popularity so quickly. It started in 1940, when the stability of functional equations were
originally raised by Ulam at Wisconsin University. The problem posed by Ulam was the
following: “Under what conditions does there exist an additive mapping near an approxi-
mately additive mapping”? (for more details see [29]). The first answer to the question of
Ulam [9] was given by Hyers in 1941 in the case of Banach spaces. Thereafter, this type
of stability is called the Ulam-Hyers stability. In 1978, Rassias [24] provided a remarkable
generalization of the Ulam-Hyers stability of mappings by considering variables.
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Subsequently, a large number of mathematicians took these two types of stabilities, the
Ulam-Hyers stability and the Ulam-Hyers-Rassias stability to carry on their researches and
the study of this area has grown to be one of the central and most essential subjects in the
mathematical analysis area. For more details on the recent advances on the Ulam-Hyers
stability and the Ulam-Hyers-Rassias stability of differential equations, one can see the
monographs [10, 11] and the research papers [12, 13, 18–21, 26, 28, 30, 32–35]. However, to
the best of our knowledge, most of the authors discuss the stability for implicit functions
but in our paper we take neutral functions and as far as we know Ulam’s type stability
results for a class of nonlinear neutral functional differential equations involving Caputo
fractional derivatives have not been investigated yet. Wherefore, motivated by the above
articles, we have discussed Ulam-Hyers stability for initial value problems of fractional
differential equations with delay

cDγ
0x(t) = f(t, xt,cDδ

0xt), t ∈ I,
x(t) = ψ(t), t ∈ [−τ, 0]
x(0) = x0, x

′(0) = x1.

where cDγ
0 and cDδ

0 are Caputo derivatives with I = [0, 1], 1 < γ < 2, 0 < δ < 1, and
x0, x1 are real constants, f : [0, 1]× Cτ × Cτ −→ R and ψ : [−τ, 0] −→ R are continuous,
we denote Cτ the Banach space of all continuous functions φ : [−τ, 1]→ R, endowed with
the maximum norm ||φ|| = max{|φ(s)|;−τ ≤ s ≤ 1}. If x : [−τ, 1] → R, then for any
t ∈ I, and xt ∈ Cτ we denote xt by xt(θ) = x(t+ θ), for θ ∈ [−τ, 0], τ > 0.

The paper is arranged as follows: In Section 2 we review some basic definitions and
lemmas used throughout this paper. In the third section we establish Ulam-Hyers stabil-
ity, Ulam-Hyers-Rassias stability, Generalized Ulam-Hyers-Rassias stability for the above
initial value problem and in the last section an example is given to show the applicability
of our results.

2. Preliminaries
This part includes some basic definitions and results used throughout this paper.

Definition 2.1. [14] The Gamma function is defined as,

Γ(γ) =
∫ ∞

0
e−ttγ−1dt, γ > 0.

One of the basic property of Gamma function is that it satisfies the following functional
equation: Γ(γ + 1) = γΓ(γ).
Definition 2.2. [14] The fractional integral for a function f with lower limit t0 and order
γ can be defined as

Iγt f(t) = 1
Γ(γ)

∫ t

t0

f(s)
(t− s)1−γ ds, γ > 0, t > t0.

where Γ is the Gamma function, and right hand side is point-wise defined on R+.
Definition 2.3. [14] The left Caputo fractional derivative of order γ is given by

cDγ
t f(t) = 1

Γ(n− γ)

∫ t

a

f (n)(s)
(t− s)γ+1−nds.

where n = [γ] + 1 ([γ] stands for the bracket function of γ). Here we define one of the
important property of Caputo derivative as the composition of the fractional integration
operator Iγt with the fractional differentiation operator cDγ

t . Let γ > 0, n = [γ] + 1 and
let fn−γ(t) =c Dn−γ

t f(t) then if f ∈ Cn[a, b] then

Iγt
cDγ

t f(t) = f(t)−
n−1∑
k=0

f (k)(a)
k! (t− a)k.
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Lemma 2.4. (Gronwall lemma)[22] Let µ, ν ∈ C([0, 1],R+). Suppose that µ is increas-
ing. If x ∈ C([0, 1],R+) is a solution to the inequality

x(t) ≤ µ(t) +
∫ t

0
ν(s)x(s)ds, t ∈ [0, 1],

then
x(t) ≤ µ(t) exp

(∫ t

0
ν(s)ds

)
, t ∈ [0, 1].

Definition 2.5. [22] Let (X, d) be a metric space. An operator A : X → X is a Picard
operator if there exists u∗ ∈ X such that

(i) FA = {u∗} where FA = {µ ∈ X : A(µ) = µ} is the fixed point set of A.
(ii) The sequence (An(µ0))n∈N converges to u∗ for all µ0 ∈ X.

Definition 2.6. [22] Let (X, d,≤) be an ordered metric space. An operator A : X → X
is an increasing Picard operator FA = µ∗, then for µ ∈ X, µ ≤ A(µ) ⇒ µ ≤ µ∗ while
µ ≥ A(µ)⇒ µ ≥ µ∗.

3. Stability
In this section, we will discuss Ulam-Hyers stability, Ulam-Hyers-Rassias stability and

Generalized Ulam-Hyers-Rassias stability for a class of fractional neutral differential equa-
tions. Let ε be a positive real number, T : X → X is a continuous operator and
f : [0, 1] × Cτ × Cτ → R is a continuous function, we consider the following differen-
tial equation 

cDγ
0x(t) = f(t, xt,cDδ

0xt), t ∈ [0, 1],
x(t) = ψ(t), t ∈ [−τ, 0],
x(0) = x0, x

′(0) = x1.
(3.1)

For equation (3.1), for some ε > 0, φ ∈ C([−τ, 1],R+), we focus on the following inequali-
ties:

|cDγ
0y(t)− f(t, yt,cDδ

0yt)| ≤ ε, t ∈ [0, 1]. (3.2)

|cDγ
0y(t)− f(t, yt,cDδ

0yt)| ≤ φ(t), t ∈ [0, 1]. (3.3)

|cDγ
0y(t)− f(t, yt,cDδ

0yt)| ≤ εφ(t), t ∈ [0, 1]. (3.4)

Definition 3.1. [31] Equation(3.1) is Ulam-Hyers stable if there exists a positive real
number c1 such that for each positive ε and for every solution y ∈ C1([−τ, 1],R) of (3.2)
there exists a solution x ∈ C1([−τ, 1],R) of (3.1) with |y(t)− x(t)| ≤ c1ε, t ∈ [−τ, 1].

Definition 3.2. [31] Equation(3.1) is Generalized Ulam-Hyers-Rassias stable with respect
to φ if there exists c1φ > 0 such that for each solution y ∈ C1([−τ, 1],R) to (3.3) there
exists a solution x ∈ C1([−τ, 1],R) to (3.1) with |y(t)− x(t)| ≤ c1φφ(t), t ∈ [−τ, 1].

Definition 3.3. [31] Equation(3.1) is Ulam-Hyers-Rassias stable with respect to φ if there
exists c1φ > 0 such that for each solution y ∈ C1([−τ, 1],R) to (3.4) there exists a solution
x ∈ C1([−τ, 1],R) to (3.1) with |y(t)− x(t)| ≤ c1φεφ(t), t ∈ [−τ, 1].

Remark 3.4. A solution of differential equation is stable (asymptotically stable) if it
attracts all other solutions with sufficiently close initial values.

On the other hand, in Hyers-Ulam stability, we compare solution of given differential
equation with the solution of differential inequality. We say solution of differential equation
is stable if it stays close to solution of differential inequality.

Hyers-Ulam stability may not imply the asymptotic stability.
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Remark 3.5. [31] A function y ∈ C1([0, 1],R) is a solution of the inequality (3.2) if and
only if there exist h ∈ C1([0, 1],R) such that

(i) |h(t)| ≤ ε, t ∈ [0, 1],
(ii) cDγ

0y(t) = f(t, yt,cDδ
0yt) + h(t), t ∈ [0, 1].

Also a function y ∈ C1([0, 1],R) is a solution of the inequality (3.3) if and only if there
exist h̃ ∈ C1([0, 1],R) such that

(i) |h̃(t)| ≤ φ(t), t ∈ [0, 1],
(ii) cDγ

0y(t) = f(t, yt,cDδ
0yt) + h̃(t), t ∈ [0, 1].

Similarly for (3.4) there exist a function g ∈ C1([0, 1],R) such that
(i) |g(t)| ≤ εφ(t), t ∈ [0, 1],
(ii) cDγ

0y(t) = f(t, yt,cDδ
0yt) + g(t), t ∈ [0, 1].

Remark 3.6. Let 1 < γ < 2 and 0 < δ < 1 if y ∈ C1([0, 1],R) is a solution of inequality
(3.2) then y is a solution of the following inequality∣∣∣∣y(t)− y(0)− y′(0)t− 1

Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds
∣∣∣∣ ≤ tγε

Γ(γ + 1) , t ∈ [0, 1].

From Remark(3.5) we have
cDγ

0y(t) = f(t, yt,cDδ
0yt) + h(t).

Then

y(t)− y(0)− y′(0)t = 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds

+ 1
Γ(γ)

∫ t

0
(t− s)γ−1h(s)ds.

Therefore∣∣∣∣y(t)− y(0)− y′(0)t− 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds
∣∣∣∣ ≤ 1

Γ(γ)
tγε

γ

≤ tγε

Γ(γ + 1) .

If y ∈ C1([0, 1],R) is a solution of inequality (3.4) then y is a solution of the following
inequality ∣∣∣∣y(t)− y(0)− y′(0)t − 1

Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds
∣∣∣∣

≤ 1
Γ(γ)

∫ t

0
(t− s)γ−1φ(s)ds, t ∈ [0, 1].

And for inequality (3.4)∣∣∣∣y(t)− y(0)− y′(0)t − 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds
∣∣∣∣

≤ ε

Γ(γ)

∫ t

0
(t− s)γ−1φ(s)ds, t ∈ [0, 1].

In the following theorems we will prove the Ulam-Hyers stability, Generalized Ulam-
Hyers-Rassias stability and Ulam-Hyers-Rassias stability for equation(3.1) on the interval
I = [0, 1].

Theorem 3.7. Suppose that
(a) f ∈ C(I × R2,R), |cDδ

0x(t)| ≤ 1
Γ(2−δ) |x(t)|;
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(b) there exists Q > 0 such that for every t ∈ [0, 1], µi, νi ∈ R, i = 1, 2

|f(t, µ1, µ2)− f(t, ν1, ν2)| ≤ Q
2∑
i=1
|µi − νi|,

and Q
Γ(γ) [ 1

γ + 1
Γ(2−δ) ] = k < 1. Then

(i) Problem (3.1) has a unique solution in C1([−τ, 1],R) ∩ C1([0, 1],R).
(ii) Equation (3.1) is Ulam-Hyers stable.

Proof. (i) Under the condition (a), (3.1) is equivalent to the integral equation

x(t) =
{
x0 + x1t+ 1

Γ(γ)
∫ t

0(t− s)γ−1f(s, xs,cDδ
0xs)ds, t ∈ [0, 1]

ψ(t), t ∈ [−τ, 0].

Let X = {x ∈ C[−τ, 1];cDδ
0x ∈ C1[−τ, 1]} with ||x|| = max

t∈I
|x(t)| + max

t∈I
|cDδ

0x(t)|, here
C[−τ, 1] and C1[−τ, 1] are denoted as continuous and continuously differentiable sets and
T : X → X be given by

Tx(t) =
{
x0 + x1t+ 1

Γ(γ)
∫ t

0(t− s)γ−1f(s, xs,cDδ
0xs)ds, t ∈ [0, 1]

ψ(t), t ∈ [−τ, 0].

Here we will show that T is a contraction on X.
|Tx(t)− Ty(t)| = 0, x, y ∈ C([−τ, 1],R), t ∈ [−τ, 0]. And for t ∈ [0, 1], by using

max
0≤s≤t

|xs − ys| = max
0≤s≤t

|x(s+ θ)− y(s+ θ)|

= max
θ≤s+θ≤t+θ

|x(s+ θ)− y(s+ θ)|

≤ max
−τ≤s̄≤t

|x(s̄)− y(s̄)|,where s+ θ = s̄, and − τ ≤ θ < 0

≤ max
−τ≤s̄≤1

|x(s̄)− y(s̄)|

= ||x− y||.

Thus

|Tx(t)− Ty(t)|

≤ 1
Γ(γ)

∣∣∣∣ ∫ t

0
(t− s)γ−1f(s, xs,cDδ

0xs)ds−
∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds
∣∣∣∣

≤ Q

Γ(γ)

∫ t

0
(t− s)γ−1

(
|xs − ys|+ |cDδ

0xs −c Dδ
0ys|

)
ds

≤ Q

Γ(γ)

(
max
0≤s≤t

|xs − ys|+ max
0≤s≤t

|cDδ
0xs −c Dδ

0ys|
)∫ t

0
(t− s)γ−1ds

≤ Q

Γ(γ + 1)

(
max
−τ≤s̄≤1

|x(s̄)− y(s̄)|+c Dδ
0 max
−τ≤s̄≤1

|x(s̄)− y(s̄)|
)

≤ Q

Γ(γ + 1)

(
||x− y||+c Dδ

0||x− y||
)

≤ Q

Γ(γ + 1) ||x− y||.
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Also

|DδTx(t)−DδTy(t)|

≤ 1
Γ(1− δ)

∣∣∣∣ ∫ t

0
(t− s)−δ

(
γ − 1
Γ(γ)

∫ t

0
(t− s)γ−2f(s, xs,cDδ

0xs)ds

−γ − 1
Γ(γ)

∫ t

0
(t− s)γ−2f(s, ys,cDδ

0ys)ds
)
ds

∣∣∣∣
≤ Q

Γ(1− δ)Γ(γ)

∫ t

0
(t− s)−δds||x− y||

≤ Q

Γ(2− δ)Γ(γ) ||x− y||.

So,

||Tx− Ty|| ≤ Q

Γ(γ + 1) ||x− y||+
Q

Γ(2− δ)Γ(γ) ||x− y||

≤ Q

Γ(γ) [ 1
γ

+ 1
Γ(2− δ) ]||x− y||.

Therefore ||Tx(t) − Ty(t)|| ≤ k||x − y||. Hence by Banach contraction principle T is a
contraction.

(ii) Let y ∈ C1([0, 1],R) be the solution of (3.2), let us denote by x ∈ C1([0, 1],R) the
unique solution of equation(3.1) i.e


cDγ

0x(t) = f(t, xt,cDδ
0xt), t ∈ [0, 1],

x(t) = y(t), t ∈ [−τ, 0],
x(0) = x0, x

′(0) = x1.

then we have

x(t) = x(0) + x′(0)t+ 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, xs,cDδ

0xs)ds

= y(0) + y′(0)t+ 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, xs,cDδ

0xs)ds.

We can see that |y(t)− x(t)| = 0 for t ∈ [−τ, 0]. For t ∈ [0, 1] we have
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|y(t)− x(t)|

≤
∣∣∣∣y(t)− y(0)− y′(0)t− 1

Γ(γ)

∫ t

0
(t− s)γ−1f(s, xs,cDδ

0xs)ds
∣∣∣∣

≤
∣∣∣∣y(t)− y(0)− y′(0)t− 1

Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds

+ 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds

− 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, xs,cDδ

0xs)ds
∣∣∣∣

≤ tγε

Γ(γ + 1) + 1
Γ(γ)

∫ t

0
(t− s)γ−1∣∣f(s, ys,cDδ

0ys)

−f(s, xs,cDδ
0xs)

∣∣ds.
Using (b)

≤ tγε

Γ(γ + 1) + Q

Γ(γ)

∫ t

0
(t− s)γ−1

(
|ys − xs|+ |cDδ

0ys −c Dδ
0xs|

)
ds

≤ tγε

Γ(γ + 1) + Q

Γ(γ)

(∫ t

0
(t− s)γ−1|ys − xs|ds

+
∫ t

0
(t− s)γ−1|cDδ

0ys −c Dδ
0xs|ds

)
.

(3.5)

According to the last inequality for µ ∈ C([−τ, 1],R+). We consider the operator
A : C([−τ, 1],R+)→ C([−τ, 1],R+) defined by

Aµ(t) =


0, t ∈ [−τ, 0],
tγε

Γ(γ+1) + Q
Γ(γ)

∫ t
0(t− s)γ−1µsds

+ Q
Γ(γ)

∫ t
0(t− s)γ−1cDδ

0µsds, t ∈ [0, 1].

For proving A is a Picard operator, we prove that A is a contraction.

|Aµ(t)−Aν(t)|

≤ Q

Γ(γ)

(∫ t

0
(t− s)γ−1|µs − νs|ds+

∫ t

0
(t− s)γ−1|cDδ

0µs −c Dδ
0νs|ds

)
≤ Qtγ

γΓ(γ)

(
max
0≤s≤t

|µs − νs|+ max
0≤s≤t

|cDδ
0µs −c Dδ

0νs|
)

≤ Q

Γ(γ + 1) ||µ− ν||.
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And

|DδAµ(t)−DδAν(t)|

≤ 1
Γ(1− δ)

[ ∫ t

0
(t− s)−δ

(
Q(γ − 1)

Γ(γ)

∫ t

0
(t− s)γ−2|µs − νs|ds

)
ds

+
∫ t

0
(t− s)−δ

(
Q(γ − 1)

Γ(γ)

∫ t

0
(t− s)γ−2|cDδ

0µs −c Dδ
0νs|ds

)
ds

]
≤ Q(γ − 1)

Γ(1− δ)(γ − 1)Γ(γ) ||µ− ν||
∫ t

0
(t− s)−δds

≤ Q

Γ(2− δ)Γ(γ) ||µ− ν||.

So

||A(µ)−A(ν)|| ≤
[

Q

Γ(γ + 1) + Q

Γ(2− δ)Γ(γ)

]
||µ− ν||

≤ Q

Γ(γ) [ 1
γ

+ 1
Γ(2− δ) ]||µ− ν||.

for all µ, ν ∈ C([−τ, 1],R+). Therefore ||A(µ) − A(ν)|| ≤ k||µ − ν|| for all µ, ν ∈
C([−τ, 1],R+). Hence A is a contraction with respect to the norm on X. By applying the
Banach contraction principle, we can say that A is a Picard operator and FA = {µ∗}, then

u∗(t) ≤ tγε

Γ(γ + 1) + Q

Γ(γ)

∫ t

0
(t− s)γ−1u∗sds+ Q

Γ(γ)

∫ t

0
(t− s)γ−1cDδ

0u
∗
sds.

The solution u∗(t) is increasing and cDδ
0u
∗ > 0, also

u∗(t) ≤ tγε

Γ(γ + 1) + Q

Γ(γ)

∫ t

0
(t− s)γ−1u∗(s)ds

+ Q

Γ(γ)Γ(2− δ)

∫ t

0
(t− s)γ−1u∗(s)ds

u∗(t) ≤ tγε

Γ(γ + 1) + Q

Γ(γ)

(
1 + 1

Γ(2− δ)

)∫ t

0
(t− s)γ−1u∗(s)ds.

therefore by using Gronwall lemma, we can say that

u∗(t) ≤ tγε

Γ(γ + 1) exp Q

Γ(γ)

(
1 + 1

Γ(2− δ)

)∫ t

0
(t− s)γ−1ds, t ∈ [0, 1]

≤ ε

Γ(γ + 1) exp Q

Γ(γ + 1)

(
1 + 1

Γ(2− δ)

)
u∗(t) ≤ c1ε, where c1 = 1

Γ(γ + 1) exp Q

Γ(γ + 1)

(
1 + 1

Γ(2− δ)

)
.

So particularly, from (3.5) if u = |y − x|, then u(t) ≤ Au(t) and by applying the abstract
Gronwall lemma we get u(t) ≤ u∗(t). Thus it follows

|y(t)− x(t)| ≤ c1ε, t ∈ [−τ, 1].

Hence equation (3.1) is Ulam-Hyers stable. �
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Theorem 3.8. If

(a) f ∈ C(I × R2,R), h̃ ∈ C1([0, 1],R) . |h̃(t)| ≤ φ(t), h̃ > 0;

(b) there exists Qf ∈ L1([0, 1],R+) such that for all t ∈ [0, 1], µi, νi ∈ R, i = 1, 2

|f(t, µ1, µ2)− f(t, ν1, ν2)| ≤ Qf (t)
2∑
i=1
|µi − νi|.

(c) the function φ ∈ C([0, 1],R+) is an increasing function and there exists λφ > 0
such that

1
Γ(γ)

∫ t

0
(t− s)γ−1φ(s)ds ≤ λφφ(t); for all t ∈ [0, 1].

Then equation (3.1) has a unique solution in C1([−τ, 1],R)∩C1([0, 1],R) which is gener-
alized Ulam-Hyers-Rassias stable with respect to φ.

Proof. The proof follows the same steps as in Theorem (3.7). Let
y ∈ C1([−τ, 1],R) ∩ C1([0, 1],R) be a solution to (3.3) then by previous theorem x ∈
C1([−τ, 1),R) ∩ C1([0, 1],R) is a unique solution to the Cauchy problem

cDγ
0x(t) = f(t, xt,cDδ

0xt), t ∈ [0, 1],
x(t) = y(t), t ∈ [−τ, 0],
x(0) = x0, x

′(0) = x1.

So

x(t) =
{
x(0) + x′(0)t+ 1

Γ(γ)
∫ t

0(t− s)γ−1f(s, xs,cDδ
0xs)ds, t ∈ [0, 1]

y(t). t ∈ [−τ, 0].

Remarks (3.5) and (3.6) imply∣∣∣∣y(t)− y(0)− y′(0)t − 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds
∣∣∣∣

≤ 1
Γ(γ)

∫ t

0
(t− s)γ−1φ(s)ds

≤ λφφ(t), t ∈ [0, 1].

From Theorem (3.7) we can see that |y(t)−x(t)| = 0, for t ∈ [−τ, 0]. For t ∈ [0, 1] we have

|y(t)− x(t)|

≤
∣∣∣∣y(t)− y(0)− y′(0)t− 1

Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds

+ 1
Γ(γ)

∫ t

0
(t− s)γ−1f(s, ys,cDδ

0ys)ds−
1

Γ(γ)

∫ t

0
(t− s)γ−1f(s, xs,cDδ

0xs)ds
∣∣∣∣

≤ λφφ(t) + 1
Γ(γ)

∫ t

0
(t− s)γ−1∣∣f(s, ys,cDδ

0ys)− f(s, xs,cDδ
0xs)

∣∣ds
≤ λφφ(t) + 1

Γ(γ)

∫ t

0
(t− s)γ−1Qf (s)|ys − xs|ds

+ 1
Γ(γ)

∫ t

0
(t− s)γ−1Qf (s)|cDδ

0ys −c Dδ
0xs|ds.
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From the proof of Theorem (3.7) it follows that

|y(t)− x(t)| ≤ λφφ(t) exp Qf (s)
Γ(γ + 1)

(
1 + 1

Γ(2− δ)

)
(t)γ , t ∈ [0, 1]

≤ c1φφ(t), where c1φ = λφ exp Qf (s)
Γ(γ + 1)

(
1 + 1

Γ(2− δ)

)
.

Hence equation (3.1) is generalized Ulam-Hyers-Rassias stable. �

Theorem 3.9. Suppose that

(a) f ∈ C(I × R2,R), g ∈ C1([0, 1],R) , |g(t)| ≤ εφ(t), g > 0;

(b) there exists lf > 0 such that for all t ∈ [0, 1], µi, νi ∈ R, i = 1, 2

|f(t, µ1, µ2)− f(t, ν1, ν2)| ≤ lf
2∑
i=1
|µi − νi|

with lf
Γ(γ) [ 1

γ + 1
Γ(2−δ) ] < 1.

(c) the function φ ∈ C([0, 1],R+) is an increasing function there exists λφ > 0 such
that

ε

Γ(γ)

∫ t

0
(t− s)γ−1φ(s)ds ≤ λφφ(t); for all t ∈ [0, 1].

Then equation (3.1) has a unique solution in C1([−τ, 1],R) ∩ C1([0, 1],R) and is Ulam-
Hyers-Rassias stable with respect to φ.

Proof. Following the same steps as in Theorems (3.7) and (3.8), we can find both the
results, i.e here we will get

|y(t)− x(t)|

≤ ελφφ(t) + lf
Γ(γ)

∫ t

0
(t− s)γ−1|ys − xs|ds

+ lf
Γ(γ)

∫ t

0
(t− s)γ−1|cDδ

0ys −c Dδ
0xs|ds

≤ ελφφ(t) exp lf
Γ(γ + 1)

(
1 + 1

Γ(2− δ)

)
(t)γ , t ∈ [0, 1]

≤ c1φεφ(t), where c1φ = λφ exp lf
Γ(γ + 1)

(
1 + 1

Γ(2− δ)

)
.

So equation (3.1) is Ulam-Hyers-Rassias stable. �

4. Examples
In this section, we present an example to explain the applicability of main results.

Example 4.1. Consider the initial value problem
D

3
2
0 x(t) = Ax(t) +Bx(t− 0.1) + CD

1
2
0 x(t− 0.1), t ∈ [0, 1]

x(t) = 0.2, t ∈ [−0.1, 0],
x(0) = x′(0) = 0.

(4.1)

and the inequalities

|D
3
2
0 y(t)−Ay(t)−By(t− 0.1)− CD

1
2
0 y(t− 0.1)| ≤ ε1, t ∈ [0, 1], (4.2)

|D
3
2
0 y(t)−Ay(t)−By(t− 0.1)− CD

1
2
0 y(t− 0.1)| ≤ φ(t), t ∈ [0, 1], (4.3)
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|D
3
2
0 y(t)−Ay(t)−By(t− 0.1)− CD

1
2
0 y(t− 0.1)| ≤ ε1φ(t), t ∈ [0, 1], (4.4)

where A = 1
9 , B = 1

9 , C = 1
9 . For proving that equation (4.1) is Ulam-Hyers stable, we

take the conditions as in Theorem (3.7) i.e a function y ∈ C1([0, 1],R) is a solution of the
inequality (3.6) if and only if there exists h ∈ C1([0, 1],R) such that{

|h(t)| ≤ ε1, t ∈ [0, 1],
D

3
2
0 y(t) = Ay(t) +By(t− 0.1) + CD

1
2
0 y(t− 0.1) + h(t), t ∈ [0, 1].

(4.5)

Here γ = 3
2 , δ = 1

2 , and Q = 1
3 also Q

Γ(γ) [ 1
γ + 1

Γ(2−δ) ] ≈ 0.6752 < 1. Furthermore all the
assumptions of Theorem (3.7) are satisfied, thus problem (4.1) has a unique solution and
is Ulam-Hyers stable with

|y(t)− x(t)| ≤ c1ε, t ∈ [−0.1, 1].
where c1 ≈ 1.2823 > 0.

Remark 4.2. If we replace equation(4.5) by the inequality
|h̃(t)| ≤ φ(t), t ∈ [0, 1],

D
3
2
0 y(t) = Ay(t) +By(t− 0.1) + CD

1
2
0 y(t− 0.1) + h̃(t), t ∈ [0, 1].

By repeating the same process as in above example one can easily verify the main results
of Theorem (3.8). Similarly replace ε by εφ(t) and h(t) by g(t) we can get the results for
Theorem (3.9).

5. Conclusions
We present some new results about stability of a class of fractional neutral differential

equations with Caputo fractional derivative by using Picard operator. We discuss the
Ulam-Hyers stability, Ulam-Hyers-Rassias stability and Generalized Ulam-Hyers-Rassias
stability, which maybe provide a new way for the researchers to discuss such interesting
problems in the mathematical analysis area.

The current concepts have significant applications since it means that if we are studying
Hyers-Ulam-Rassias stable (or Hyers-Ulam stable) system then one does not have to reach
the exact solution. We just need to get a function which satisfies a suitable approximation
inequality. In other words, Hyers-Ulam-Rassias stability (or Hyers-Ulam stability) guaran-
tees that there exists a close exact solution. This is altogether useful in many applications
where finding the exact solution is quite difficult such as optimization, numerical analysis,
biology and economics. It also helps, if the stochastic effects are small, to use deterministic
model to approximate a stochastic one.
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Abstract
In this paper, we study the second-order half-linear delay differential equation of the form(

r(t)
(
y′(t)

)α)′ + q(t)yα(τ(t)) = 0. (E)
We establish new oscillation criteria for (E), which improve a number of related ones in
the literature. Our approach essentially involves establishing sharper estimates for the
positive solutions of (E) than those presented in known works and a comparison principle
with first-order delay differential inequalities. We illustrate the improvement over the
known results by applying and comparing our method with the other known methods on
the particular example of Euler-type equations.
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1. Introduction
Consider the second-order half-linear delay differential equation of the form(

r(t)
(
y′(t)

)α)′ + q(t)yα(τ(t)) = 0, t ≥ t0 > 0. (E)

Throughout the paper, it is assumed that the following conditions hold:
(i) α > 0 is a quotient of odd positive integers;

(ii) τ ∈ C1([t0,∞)), τ ′(t) > 0, τ(t) ≤ t and lim
t→∞

τ(t) =∞;
(iii) q ∈ C([t0,∞)) is nonnegative and does not vanish identically on any half line of

the form [t∗,∞);
(iv) r ∈ C1([t0,∞)) is positive and satisfies

R(t, t0) :=
∫ t

t0
r−1/α(s)ds→∞ as t→∞.
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Under the solution of equation (E) we mean a function y ∈ C([ta,∞),R) with ta = τ(tb),
for some tb ≥ t0, which has the property r (y′)α ∈ C1([ta,∞),R) and satisfies (E) on [tb,∞).
We consider only those solutions of (E) which exist on some half-line [tb,∞) and satisfy
the condition sup{|x(t)| : tc ≤ t <∞} > 0 for any tc ≥ tb.

As is customary, a solution y(t) of (E) is said to be oscillatory if it is neither eventually
positive nor eventually negative. Otherwise, it is said to be nonoscillatory. The equation
itself is termed oscillatory if all its solutions oscillate.

The problem of establishing oscillation criteria for differential equations with deviating
arguments has been a very active research area over the past decades and several references
and reviews of known results can be found in the monographs by Agarwal et al. [1–4],
Došlý and Řehák [6] and Győri and Ladas [11].

The oscillation problem for (E) and its particular cases (or its generalizations on
dynamic, neutral, nonlinear equations, etc.) has been studied extensively, see, e.g.,
[5, 7, 8, 12,15–18,20–26] and the references therein.

One of the basic techniques in oscillation theory is to acquire criteria by comparing
the given differential equation with first-order delay differential equations or inequalities,
whose oscillatory behavior is known in advance.

The first results in this direction for second-order delay equations were given by Ko-
platadze [15] in 1986 and Wei [22] in 1988, who proved that the equation

y′′(t) + q(t)y(τ(t)) = 0 (1.1)

is oscillatory if

lim inf
t→∞

∫ t

τ(t)
q(s)τ(s)ds > 1

e . (1.2)

In 2000, Koplatadze, Kvinikadze and Stavroulakis [14, Theorem 1] presented an improved
oscillation criterion for (1.1), namely,

lim inf
t→∞

∫ t

τ(t)

(
τ(s) +

∫ τ(s)

t0
ξτ(ξ)q(ξ)dξ

)
ds > 1

e . (1.3)

In 1995, Kusano and Wang [16, Theorem 2] used a variant of the Mahfoud’s comparison
principle [19] with the ordinary second-order differential equation((

x′(t)
)α)′ + q(τ−1(t))

τ ′ (τ−1(t))x
α(t) = 0

and proved that (E) is oscillatory if

lim inf
t→∞

Rα(τ(t), t0)
∫ ∞
t

q(s)ds > αα

(α+ 1)α+1 . (1.4)

Condition (1.4) extends the well-known Hille’s criterion

lim inf
t→∞

t

∫ ∞
t

q(s)ds > 1
4 (1.5)

for a linear ordinary differential equation

y′′(t) + q(t)y(t) = 0.

The most oscillation results for (E) existing in the literature use the Riccati transfor-
mation to reduce the second-order equation to a first-order Riccati inequality.

In 2006, Sun and Meng [20, Theorem 2.1] improved the oscillation result of Džurina
and Stavroulakis [8] by employing the Riccati transformation

ω(t) = Rα(τ(t), t0)r(t) (y′(t))α

yα(τ(t)) , (1.6)
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which led to the following criterion for (E) to be oscillatory:∫ ∞
t0

(
Rα(τ(t), t0)q(t)−

(
α

α+ 1

)α+1 τ ′(t)
R(τ(t), t0)r1/α(τ(t))

)
dt =∞. (1.7)

Similar conditions to (1.7) have been obtained in a number of papers, see, for instance,
[9, 10, 21, 23, 24] and the references cited therein. It is useful to note (see the proof of
Theorem 2.5 below), that we can get Hille-type condition from (1.7).

Despite the fact that the above-mentioned oscillation results were proven by different
techniques, they all have in common that their strength depends on sharpness of the
estimates for nonoscillatory, say positive solutions of (E).

The purpose of this article is to further study the oscillatory behavior of solutions of
(E) and to obtain new criteria which improve the known ones mentioned above. Our
approach is essentially based on establishing sharper estimates for positive solutions of
(E) than those used in the known works [8–10,14,16,20–24], using an iterative technique,
and a comparison principle with first-order delay differential inequalities. If, in some
iteration step, the comparison result fails to apply, we are able to improve (in delay case
only) conditions of (1.7)-type.

The effectiveness of our results is illustrated by means of various examples.

2. Main results
As is customary, we state here that all the functional inequalities considered through

the rest of the paper are assumed to hold eventually, that is, they are satisfied for all t
large enough.

For a clear and compact presentation of our results, we will adopt the following notation
to be used in the whole paper. Let the number ρ be defined by

ρ := lim inf
t→∞

∫ t

τ(t)
q(s)Rα(τ(s), t0)ds,

and λ(η) be the smaller positive root of the transcendental equation
λ = eηλ, 0 < η ≤ 1/e.

Also, let us define the sequence of constants ρk as follows: set
ρ1 := ρ

and, for ρi ∈ (0, 1/e], i ∈ N, let

ρi+1 := lim inf
t→∞

∫ t

τ(t)
q(s)Rαi (τ(s), t0)ds,

where
Ri(t, t0) = R(t, t0) + λ(ρi)

α

∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds.

We start by stating a simple, but useful result for the first-order delay differential
inequality

x′(t) + q(t)x(τ(t)) ≤ 0, t ≥ t0, (2.1)
where τ and q are assumed to satisfy (ii) and (iii), respectively.

Lemma 2.1. Let the number k be defined by

k := lim inf
t→∞

∫ t

τ(t)
q(s)ds.

Suppose that k > 0 and (2.1) has an eventually positive solution. Then k ≤ 1/e and

lim inf
t→∞

x(τ(t))
x(t) ≥ λ(k).
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Proof. The proof is almost the same as that given for the corresponding delay differential
equation (see [13, Lemma 1]), hence we omit it. �

Lemma 2.2. Suppose that ρ > 0 and (E) has an eventually positive solution. Then
ρ ≤ 1/e and

lim inf
t→∞

r(τ(t)) (y′(τ(t)))α

r(t) (y′(t))α ≥ λ(ρ). (2.2)

Proof. Pick t1 ∈ [t0,∞) so that y(τ(t)) > 0 on [t1,∞). Since y(t) is a positive solution
of (E), we have (

r(t)
(
y′(t)

)α)′ = −q(t)yα(τ(t)) ≤ 0
on [t1,∞), which means that r(t) (y′(t))α is eventually nonincreasing and does not change
its sign.

We claim that r(t) (y′(t))α > 0 on [t1,∞). Indeed, for the sake of contradiction, assume
that r(t) (y′(t))α < 0 on [t1,∞). Then there exists a t′1 ≥ t1 such that

r(t)
(
y′(t)

)α ≤ r(t′1)
(
y′(t′1)

)α := c < 0 on [t′1,∞).

Integrating the above inequality from t′1 to t and taking (iv) into account, we have

y(t) ≤ y(t′1) + c1/α
∫ t

t′1

r−1/α(s)ds→ −∞ as t→∞,

which contradicts the fact that y(t) is a positive solution of (E). Thus, we have

y(t) > 0, r(t)
(
y′(t)

)α
> 0,

(
r(t)

(
y′(t)

)α)′ ≤ 0 on [t1,∞).

Since r1/α(t)y′(t) is nonincreasing, there exists a finite limit

lim
t→∞

r1/α(t)y′(t) = ` ≥ 0.

If we assume ` > 0, then r1/α(t)y′(t) ≥ ` > 0 and y(t) ≥ `R(t, t1) > 0 on [t1,∞). Noting
that ρ > 0, we have that ∫ ∞

t0
q(s)Rα(τ(s), t0)ds =∞.

Integrating (E) from t1 to t yields

r(t1)
(
y′(t1)

)α ≥ `α ∫ t

t1
q(s)Rα(τ(s), t1)ds→∞ as t→∞.

This contradiction implies that

lim
t→∞

r1/α(t)y′(t) = 0. (2.3)

On the other hand, it is obvious that

r1/α(s)y′(s) ≥ r1/α(t)y′(t) for every s ∈ [t1, t] .

Therefore,

y(t) = y(t1) +
∫ t

t1
r−1/α(s)r1/α(s)y′(s)ds

≥ y(t1) + r1/α(t)y′(t)R(t, t1)

= y(t1)− r1/α(t)y′(t)R(t1, t0) + r1/α(t)y′(t)R(t, t0).

(2.4)

Combining (2.3) and (2.4), we have

y(t) > r1/α(t)y′(t)R(t, t0) on [t2,∞), (2.5)
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for some t2 ∈ [t1,∞) large enough. Using (2.5) in (E), it is easy to see that x(t) :=
r(t) (y′(t))α is a positive solution of the first-order delay differential inequality

x′(t) + q(t)Rα(τ(t), t0)x(τ(t)) < 0. (2.6)

To complete the proof, it suffices to apply Lemma 2.1 to (2.6). �

Application of Lemma 2.2 allows us to obtain various important oscillation results.
Theorem 2.3 below is a simple generalization of (1.2) for a half-linear differential equa-
tion, while Theorems 2.4 and 2.5 essentially improve the known criteria (1.7) and (1.4),
respectively.

Theorem 2.3. If ρ > 1/e, then (E) is oscillatory.

Theorem 2.4. Assume that 0 < ρ ≤ 1/e. If

lim sup
t→∞

∫ t

t0

(
Rα(τ(s), t0)q(s)

−
(

α

α+ 1

)α+1 1
(λ(ρ)− ε)

τ ′(s)
R(τ(s), t0)r1/α(τ(s))

)
ds =∞

(2.7)

for some ε > 0, then (E) is oscillatory.

Proof. Suppose to the contrary that (E) has a nonoscillatory solution y(t) on [t0,∞).
Without loss of generality, we can assume that there exists a t1 ≥ t0 such that y(t) > 0
and y(τ(t)) > 0 on [t1,∞). Define ω(t) as in (1.6), i.e.,

ω(t) = Rα(τ(t), t0)r(t) (y′(t))α

yα(τ(t)) . (2.8)

We see that ω > 0 for t ≥ t1. Differentiating (2.8) and using (E), we get

ω′(t) = ατ ′(t)Rα−1(τ(t), t0)
r1/α(τ(t))

r(t) (y′(t))α

yα(τ(t)) −Rα(τ(t), t0)(r(t) (y′(t))α)′

yα(τ(t))

−Rα(τ(t), t0)αr(t) (y′(t))α y′(τ(t))τ ′(t)
yα+1(τ(t))

= ατ ′(t)
R(τ(t), t0)r1/α(τ(t))

ω(t)−Rα(τ(t), t0)q(t)

−Rα(τ(t), t0)αr(t) (y′(t))α y′(τ(t))τ ′(t)
yα+1(τ(t)) .

(2.9)

Lemma 2.2 implies that, for each ε > 0, there is t2 ∈ [t1,∞) large enough such that

y′(τ(t)) ≥
(

(λ(ρ)− ε) r(t)
r(τ(t))

)1/α
y′(t), on [t2,∞). (2.10)

Combining (2.8)−(2.10), we obtain

ω′(t) ≤ ατ ′(t)
R(τ(t), t0)r1/α(τ(t))

ω(t)−Rα(τ(t), t0)q(t)

− ατ ′(t)
(

λ(ρ)− ε
Rα(τ(t), t0)r(τ(t))

)1/α
ω(α+1)/α(t).

(2.11)

Using the inequality

Au−Bu(α+1)/α ≤ αα

(α+ 1)α+1
Aα+1

Bα
, A ≥ 0, B > 0, u ≥ 0
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with

A := ατ ′(t)
R(τ(t), t0)r1/α(τ(t))

and B := ατ ′(t)
(

λ(ρ)− ε
Rα(τ(t), t0)r(τ(t))

)1/α

in (2.11), we obtain

w′(t) ≤ −Rα(τ(t), t0)q(t) +
(

α

α+ 1

)α+1 1
λ(ρ)− ε

τ ′(t)
R(τ(t), t0)r1/α(τ(t))

.

Integrating the above inequality from t2 to t, we arrive at∫ t

t2

(
Rα(τ(s), t0)q(s)−

(
α

α+ 1

)α+1 1
λ(ρ)− ε

τ ′(s)
R(τ(s), t0)r1/α(τ(s))

)
ds

≤ ω(t2)− ω(t) ≤ ω(t2),
which contradicts (2.7) as t→∞. The proof is complete. �

Theorem 2.5. Assume that 0 < ρ ≤ 1/e. If

lim inf
t→∞

Rα(τ(t), t0)
∫ ∞
t

q(s)ds > 1
λ(ρ)

αα

(α+ 1)α+1 , (2.12)

then (E) is oscillatory.

Proof. It suffices to prove that (2.12) implies (2.7). If we admit that (2.7) fails, then for
all ε̃ > 0 there exists a t1 ∈ [t0,∞) such that for any t ≥ t1,∫ ∞

t

(
Rα(τ(s), t0)q(s)− 1

λ(ρ)− ε

(
α

α+ 1

)α+1 τ ′(s)
R(τ(s), t0)r1/α(τ(s))

)
ds < ε̃.

Since R(τ(t), t0) is increasing, it is easy to see that
Rα(τ(t), t0)×

×
∫ ∞
t

(
q(s)− 1

λ(ρ)− ε

(
α

α+ 1

)α+1 τ ′(s)
Rα+1(τ(s), t0)r1/α(τ(s))

)
ds < ε̃,

or
Rα(τ(t), t0)

∫ ∞
t

(
q(s) + 1

λ(ρ)− ε
αα

(α+ 1)α+1

( 1
Rα(τ(s), t0)

)′)
ds < ε̃.

Hence,
Rα(τ(t), t0)

∫ ∞
t

q(s)ds < ε̃+ 1
λ(ρ)− ε

αα

(α+ 1)α+1

for all ε̃ > 0, which contradicts (2.12). The proof is complete. �

Lemma 2.6. Suppose that ρ > 0 and (E) has an eventually positive solution. Then, for
any k ∈ N, 0 < ρk ≤ 1/e and

lim inf
t→∞

r(τ(t)) (y′(τ(t)))α

r(t) (y′(t))α ≥ λ(ρk). (2.13)

Proof. By Lemma 2.2, it is clear that the statement holds for k = 1, i.e., ρ1 ≤ 1/e and,
for each ε > 0, there is t2 ∈ [t1,∞) such that

r(τ(t)) (y′(τ(t)))α

r(t) (y′(t))α ≥ λ(ρ1)− ε, on [t2,∞). (2.14)

Now, employing the chain rule(
r(t)

(
y′(t)

)α)′ = α
(
r1/αy′(t)

)α−1 (
r1/αy′(t)

)′
in the equality (

y(t)− r1/α(t)y′(t)R(t, t0)
)′

= −R(t, t0)
(
r1/αy′(t)

)′
,
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we get (
y(t)− r1/α(t)y′(t)R(t, t0)

)′
= − 1

α
R(t, t0)

(
r1/αy′(t)

)1−α (
r(t)

(
y′(t)

)α)′
,

which, by virtue of (E), becomes(
y(t)− r1/α(t)y′(t)R(t, t0)

)′
= 1
α
R(t, t0)

(
r1/αy′(t)

)1−α
q(t)yα(τ(t)). (2.15)

Integrating (2.15) from t2 to t yields to

φ(t) = φ(t2) + 1
α

∫ t

t2
R(s, t0)

(
r1/αy′(s)

)1−α
q(s)yα(τ(s))ds, (2.16)

where we set φ(t) = y(t) − r1/α(t)y′(t)R(t, t0). It is clear from (2.5) that φ(t) is positive
on [t2,∞). Now, using (2.5) and (2.14) in (2.16), we arrive at

φ(t) ≥ φ(t2) + 1
α

∫ t

t2
R(s, t0)

(
r1/α(s)y′(s)

)1−α
×

× q(s)r(τ(s))
(
y′(τ(s))

)α
Rα(τ(s), t0)ds

≥ φ(t2) + λ(ρ1)− ε
α

∫ t

t2
R(s, t0)

(
r1/α(s)y′(s)

)1−α
×

× q(s)r(s)
(
y′(s)

)α
Rα(τ(s), t0)ds

= φ(t2) + λ(ρ1)− ε
α

∫ t

t2
R(s, t0)Rα(τ(s), t0)r1/α(s)y′(s)q(s)ds.

Using the nondecreasing character of r(t) (y′(t))α in the latter inequality, we obtain

φ(t) ≥ φ(t2) + λ(ρ1)− ε
α

r1/α(t)y′(t)
∫ t

t2
R(s, t0)Rα(τ(s), t0)q(s)ds

= φ(t2)− λ(ρ1)− ε
α

r1/α(t)y′(t)
∫ t2

t0
R(s, t0)Rα(τ(s), t0)q(s)ds

+ λ(ρ1)− ε
α

r1/α(t)y′(t)
∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds.

(2.17)

By virtue of (2.3) and the positivity of φ, we have

φ(t) > λ(ρ1)− ε
α

r1/α(t)y′(t)
∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds on [t3,∞), (2.18)

for some t3 ∈ [t2,∞) large enough. Hence,

y(t) > r1/α(t)y′(t)
(
R(t, t0) + λ(ρ1)− ε

α

∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds

)
(2.19)

or
y(t) > r1/α(t)y′(t)R1(t, t0, ε) on [t3,∞), (2.20)

where
R1(t, t0, ε) = R(t, t0) + λ(ρ1)− ε

α

∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds.

Using (2.20) in (E), we see that x(t) := r(t) (y′(t))α is a positive solution of the first-order
delay differential inequality

x′(t) +Rα1 (τ(t), t0, ε)q(t)x(τ(t)) < 0. (2.21)
Applying Lemma 2.1 to (2.21), it is clear that the conclusion holds for k = 2, that is,
ρ2 ≤ 1/e and, for each ε > 0, there is t4 ∈ [t1,∞) such that

r(τ(t)) (y′(τ(t)))α

r(t) (y′(t))α ≥ λ(ρ2)− ε, on [t4,∞). (2.22)
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Repeating the above process with (2.5) being replaced by (2.20), one can show that
y(t) > r1/α(t)y′(t)R2(t, t0, ε) on [t5,∞), (2.23)

for some t5 ∈ [t4,∞), where

R2(t, t0, ε) = R(t, t0) + λ(ρ2)− ε
α

∫ t

t0
R(s, t0)Rα(τ(s), t0)q(s)ds.

Using (2.20) in (E) and applying Lemma 2.1 to a resulting inequality, we see that the
Lemma conclusion holds for k = 3. By induction, it is not hard to show that the same
conclusion holds for any k ∈ N. The proof is complete. �

Using Lemma 2.6 instead of Lemma 2.2, we are ready to improve Theorems 2.3−2.5.
Since the proofs are the same, we omit them.

Theorem 2.7. If ρk > 1/e for some k ∈ N, then (E) is oscillatory.

Theorem 2.8. Assume that 0 < ρi ≤ 1/e, i = 1, 2, . . . , k, for some k ∈ N. If

lim sup
t→∞

∫ t

t0

(
Rα(τ(s), t0)q(s)

−
(

α

α+ 1

)α+1 1
(λ(ρk)− ε)

τ ′(s)
R(τ(s), t0)r1/α(τ(s))

)
ds =∞

(2.24)

for some ε > 0, then (E) is oscillatory.

Theorem 2.9. Assume that 0 < ρi ≤ 1/e, i = 1, 2, . . . , k, for some k ∈ N. If

lim inf
t→∞

Rα(τ(t), t0)
∫ ∞
t

q(s)ds > 1
λ(ρk)

αα

(α+ 1)α+1 , (2.25)

then (E) is oscillatory.

Finally, we give an example to illustrate the efficiency of our results.

Example 2.10. Consider the second-order delay differential equation of the Euler type:((
y′(t)

)α)′ + q0
tα+1 y

α(mt) = 0, t ≥ 1, (2.26)

where α is a quotient of odd positives integers, q0 > 0, m ∈ (0, 1).
Note that the known condition (1.7) (or (1.4)) requires

q0m
α >

αα

(α+ 1)α+1 (2.27)

for (2.26) to be oscillatory.
By Theorem 2.3, we have that Eq. (2.26) is oscillatory if

ρ := q0m
α ln 1

m
>

1
e . (2.28)

Now consider the case that (2.28) fails, that is, if ρ ≤ 1/e. By Theorem 2.4 (or Theorem
2.5), we deduce that (2.26) is oscillatory if

q0m
α >

1
λ(ρ)

αα

(α+ 1)α+1 . (2.29)

Since λ(ρ) ∈ [1, e), our result improves (2.27).
Next, let us illustrate how Theorems 2.7 and 2.8 apply when both condition (2.28) and

(2.29) fail. By Theorem 2.7, equation (2.26) is oscillatory if, for some k ∈ N,

ρk >
1
e , (2.30)

where
ρ1 := ρ



178 G. E. Chatzarakis, I. Jadlovská

and, for ρi ∈ (0, 1/e], i ∈ N,

ρi+1 := q0m
α
(

1 + λ(ρi)
α

mαq0

)α
ln 1
m
, i ∈ N.

If, in kth iteration step, condition (2.30) fails, then, by Theorem 2.8 (or Theorem 2.9), we
have that (2.26) is oscillatory if

q0m
α >

1
λ(ρk)

αα

(α+ 1)α+1 . (2.31)

Now, let us consider a particular case of (2.26), namely,((
y′(t)

)3)′ + 11
t4
y3(0.2t) = 0. (2.32)

Note that condition (2.27) is not applicable, since 0.088 ≯ 0.105469. Using the definition
of ρk, we get ρ1 = 0.141631 ≯ 1/e, ρ2 = 0.156883 ≯ 1/e. Then condition (2.31) with k = 2
gives 0.106376 > 0.105469. Hence, by Theorem 2.8, (2.32) is oscillatory.

Finally, we consider another particular case of (2.26), namely,((
y′(t)

)1/3
)′

+ 0.4
t4/3 y

1/3(0.4t) = 0. (2.33)

Note that condition (2.27) is not applicable, since 0.294723 ≯ 0.47247. Using the definition
of ρk, we get ρ1 = 0.270052 ≯ 1/e, ρ2 = 0.357776 ≯ 1/e, ρ3 = 0.386561 > 1/e. Thus,
condition (2.30) is satisfied for k = 3, and by Theorem 2.7, we conclude that (2.33) is
oscillatory.

We remark that none of the oscillation criteria presented in [8–10,14,16, 20–24] can be
applied to equation (2.32) or (2.33).

Remark 2.11. The results presented in this paper strongly depend on the properties of
first-order delay differential equations. An interesting problem for further research is to
establish different iterative techniques for testing oscillations in (E) independently on the
constant 1/e.
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Abstract
Many studies have investigated the lattice of fuzzy substructures of algebraic structures
such as groups and rings. In this study, we prove that the lattice of L-ideals of a ring
is distributive if and only if the lattice of its ideals is distributive, for an infinitely ∨-
distributive lattice L.
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1. Introduction
The lattice-theoretic aspects of algebraic substructures and L-algebraic substructures

have been a topic of discussion in the literature for quite some time. It follows as a con-
sequence of the subdirect product theorem formulated by Professor Tom Head in [9] that
the properties of the lattice of algebraic substructures and that of corresponding fuzzy al-
gebraic substructures are almost identical. However before the emergence of the subdirect
product theorem, the modularity of the lattice of fuzzy normal subgroups of a group and
the modularity of the lattice of fuzzy ideals of a ring have been established in [1–5,10,17].

The distributivity constitutes a very powerful property of a lattice. On the other hand,
Tarnauceanu [15] worked on finite groups and proved that a group is cyclic iff its lattice
of fuzzy subgroups is distributive. Majumdar and Sultana [13] proved that the lattice of
fuzzy ideals of a ring is distributive. However, Kumar [12] has obtained just the opposite
of this result. Also Zhang and Meng [18] gave a counter example for the result of Ma-
jumdar and Sultana. Recently in [11] the modularity of L-ideals of a ring is established,
where the subdirect product theorem of Tom Head does not apply. Finally, the lattice of
L-fuzzy extended ideals is studied in [7]. We ask: is the lattice of all L-ideals of a ring
distributive whose lattice of all ideals is distributive? This paper will answer the question
for an infinitely ∨-distributive lattice. In this paper, we propose an analogous connection
between the lattice of L-ideals and the lattice of ideals of a ring. We first describe some
properties of the lattice of L-ideals that are tools to obtain some results. Using these
results, we prove that the lattice of L-ideals is distributive when the lattice of ideals is
distributive for an infinitely ∨-distributive lattice L.
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2. Preliminaries
In this section, we briefly recall some basic concepts of lattices, L-subsets and rings.

Throughout this paper, L is a completely lattice with the least element 0 and the greatest
element 1. For every family {bi | i ∈ ∆}, we can popularize some operations such as∨

i∈∆
bi = sup{bi | i ∈ ∆},

∧
i∈∆

bi = inf{bi | i ∈ ∆}.

A complete lattice L is called infinitely ∨-distributive lattice if for all α ∈ L and ∆ ⊆ L,

α ∧ (
∨
β∈∆

β) =
∨
β∈∆

(α ∧ β).

For a nonempty set X, an L-subset is any function from X into L, which is introduced
by Goguen [8] as a generalization of the notion of Zadeh’s fuzzy subset [16]. The class of
L-subsets of X will be denoted by F (X,L). In particular, if L = [0, 1], it is appropriate to
replace fuzzy subset with L-subset. In this case the set of all fuzzy subsets of X is denoted
by F (X). Let µ and ν be L-subsets of X. We say that µ is contained in ν if µ(x) ≤ ν(x)
for every x ∈ X, denoted µ ≤ ν. Then ≤ is a partial ordering on F (X,L).

For each α ∈ L, we define the level subset

µα = {x ∈ X | α ≤ µ(x)}
Let µi (i ∈ ∆) be an L-subset of X. Define the intersection as follows:

(
⋂
i∈∆ µi)(x) =

∧
i∈∆ µi(x)

for all x ∈ X. The characteristic function of a set A ⊆ X is denoted by 1A.
Throughout this paper, R stands for a commutative ring with identity. I(R) stands for

all ideals of R, is a complete lattice with respect to set inclusion, called the ideals lattice of
R. Note that I(R) has initial element {0} and final element R, and its binary operations
∧,∨ are defined by I ∧ J = I ∩ J and I ∨ J = I + J , for all I, J ∈ I(R). I(R) may not be
a distributive lattice. For example, let R = Z× Z, Z is the ring of integers, we define the
operations as follows:

(a, b) + (c, d) = (a+ c, b+ d) and (a, b) · (c, d) = (0, 0)
for any (a, b), (c, d) ∈ Z× Z. Then (R,+, ·) form a ring with zero (0, 0).

{(x, x) | x ∈ Z} ∩ ((Z× {0}) + ({0} × Z)) = {(x, x) | x ∈ Z},
whereas

({(x, x) | x ∈ Z} ∩ (Z× {0})) + ({(x, x) | x ∈ Z} ∩ ({0} × Z)) = {(0, 0)}.
The further knowledge about lattices and rings required in this paper can be found in
[6, 14].

3. L-ideals
In this section, we investigate the lattice structure of L-ideals of a ring R.

Definition 3.1. [14] Let µ be an L-subset in a ring R. Then µ is called an L-ideal of R if
µ(x− y) ≥ µ(x) ∧ µ(y) and µ(xy) ≥ µ(x) ∨ µ(y)

for all x, y ∈ R. The family of all L-ideals is denoted by FI(R,L). In particular, when
L = [0, 1], an L-ideal of R is referred to as a fuzzy ideal of R. The family of all fuzzy
ideals is denoted by FI(R).

The following lemma easly obtained from Proposition 2.2.[17].



182 D. Bayrak, S. Yamak

Lemma 3.2. Let µ ∈ F (R,L). Then µ is an L-ideal of R iff µα = ∅ or µα is a classical
ideal of R, for any α ∈ L.

Theorem 3.3. [11] Let µi (i ∈ ∆) be an L-ideal of a ring R. Then
⋂
i∈∆ µi is an L-ideal

of R.

By the Theorem 3.3., we immediately get the next corollary.

Corollary 3.4. FI(R,L) is a complete lattice under the ordering of L-set inclusion such
that

∧
i∈∆ µi =

⋂
i∈∆ µi for all µi ∈ FI(R,L) (i ∈ ∆).

Lemma 3.5. [2] Let A,B be subsets of R. Then
(1) A is an ideal of R if and only if 1A is an L-ideal of R,
(2) If A,B are ideals of R, then 1A ∨ 1B = 1A+B and 1A ∧ 1B = 1A∩B.
(3) {1A | A is an ideal of R} is a sublattice of FI(R,L)

4. The distributivity of FI(R, L)
In this section we will investigate some conditions related to distributivity of the lattice

of L-ideals of a ring R.

Definition 4.1. Let µ and ν be L-subsets of a ring R. Define µ⊕ ν as follows:

(µ⊕ ν)(x) = µ(x) ∨ ν(x) ∨
∨

x=y+z
µ(y) ∧ ν(z)

for all x ∈ R.

Lemma 4.2. Let L be an infinitely ∨-distributive lattice and µ, ν ∈ FI(L,R). Then
µ ∨ ν = µ⊕ ν.

Proof. Let x, y ∈ R. Then

µ⊕ ν(x) ∧ µ⊕ ν(y)
= [µ(x) ∨ ν(x) ∨ (

∨
x=a+b

µ(a) ∧ ν(b))] ∧ [µ(y) ∨ ν(y) ∨ (
∨

y=c+d
µ(c) ∧ ν(d))]

= [(µ(x) ∨ ν(x)) ∧ (µ(y) ∨ ν(y))] ∨ [(µ(x) ∨ ν(x)) ∧ (
∨

y=c+d
µ(c) ∧ ν(d))]

∨[(µ(y) ∨ ν(y)) ∧ (
∨

x=a+b
µ(a) ∧ ν(b))] ∨ [(

∨
y=c+d

µ(c) ∧ ν(d)) ∧ (
∨

x=a+b
µ(a) ∧ ν(b))]

= (µ(x) ∧ µ(y)) ∨ (µ(x) ∧ ν(y)) ∨ (ν(x) ∧ µ(y)) ∨ (ν(x) ∧ ν(y))
∨(

∨
y=c+d

µ(x) ∧ µ(c) ∧ ν(d)) ∨ (
∨

y=c+d
ν(x) ∧ µ(c) ∧ ν(d)) ∨ (

∨
x=a+b

µ(a) ∧ ν(b) ∧ µ(y))

∨(
∨

x=a+b
µ(a) ∧ ν(b) ∧ ν(y)) ∨ (

∨
x = a + b
y = c + d

µ(a) ∧ ν(b) ∧ µ(c) ∧ ν(d))

≤ µ(x+ y) ∨ ν(x+ y) ∨ (µ(x) ∧ ν(y)) ∨ (µ(y) ∧ ν(x)) ∨ (
∨

y=c+d
µ(x+ c) ∧ ν(d))

∨(
∨

y=c+d
µ(c) ∧ ν(d+ x)) ∨ (

∨
x=a+b

µ(a+ y) ∧ ν(b))

∨(
∨

x=a+b
µ(a) ∧ ν(b+ y)) ∨ (

∨
x = a + b
y = c + d

µ(a+ c) ∧ ν(b+ d))

≤ µ(x+ y) ∨ ν(x+ y) ∨ (
∨

x+y=u+v
µ(u) ∧ ν(v))

= µ⊕ ν(x+ y)
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Hence µ⊕ ν(x) ∧ µ⊕ ν(y) ≤ µ⊕ ν(x+ y).

µ⊕ ν(−x) = µ(−x) ∨ ν(−x) ∨ (
∨

−x=a+b
µ(a) ∧ ν(b))

= µ(−x) ∨ ν(−x) ∨ (
∨

x=(−a)+(−b)
µ(−(−a)) ∧ ν(−(−b))

≤ µ(x) ∨ ν(x) ∨ (
∨

x=u+v
µ(u) ∧ ν(v))]

= µ⊕ ν(x)
Hence µ⊕ ν(−x) ≤ µ⊕ ν(x).

µ⊕ ν(x) = µ(x) ∨ ν(x) ∨ (
∨

x=a+b
µ(a) ∧ ν(b))

≤ µ(xy) ∨ ν(xy) ∨ (
∨

x=a+b
µ(ay) ∧ ν(by))

≤ µ(xy) ∨ ν(xy) ∨ (
∨

xy=u+v
µ(u) ∧ ν(v))]

= µ⊕ ν(xy)
Similarly, we have µ⊕ν(y) ≤ µ⊕ν(xy). Thus µ⊕ν ∈ FI(R,L). It is clear that µ ≤ µ⊕ν
and ν ≤ µ⊕ ν.
Let θ ∈ FI(R,L) such that µ ≤ θ and ν ≤ θ. Then

µ(a) ∧ ν(b) ≤ θ(a) ∧ θ(b) ≤ θ(a+ b) = θ(x)
for all x = a+b. By the definition of µ⊕ν, it folows that µ⊕ν ≤ θ. Hence µ∨ν = µ⊕ν �

The following theorem gives the main results of this section.

Theorem 4.3. If L is an infinitely ∨-distributive lattice, then the following conditions are
equivalent:

(1) I(R) is a distributive lattice,
(2) FI(R,L) is a distributive lattice.

Proof. (2)⇒ (1) By Lemma 3.5, it is clear.
(1) ⇒ (2) Let µ, ν, θ ∈ FI(R). Since the distributive inequality is valid for every lattice,
we have

(µ ∧ ν) ∨ (µ ∧ θ) ≤ µ ∧ (ν ∨ θ).
And by Lemma 4.2 and Corollary 3.4,

(µ ∧ (ν ∨ θ))(x) = (µ ∧ (ν ⊕ θ))(x)
= µ(x) ∧ [ν(x) ∨ θ(x) ∨ (

∨
x=a+b

ν(a) ∧ θ(b))]

= (µ(x) ∧ ν(x)) ∨ (µ(x) ∧ θ(x)) ∨ (
∨

x=a+b
ν(a) ∧ θ(b) ∧ µ(x))

Let λ = ν(a) ∧ θ(b) ∧ µ(x) for some a, b ∈ R such that x = a+ b
Thus we have x ∈ µλ, a ∈ νλ, b ∈ θλ. Then x ∈ µλ ∩ (νλ + θλ). Due to distributivity of
I(R),

x ∈ (µλ ∩ νλ) + (µλ ∩ θλ).
It follows that there exist u, v ∈ R such that x = u+ v,

u ∈ µλ ∩ νλ and v ∈ µλ ∩ θλ.
Thus we have λ ≤ µ(u), λ ≤ ν(u), λ ≤ µ(v), λ ≤ θ(v). Hence,

λ ≤ (µ ∧ ν)(u) ∧ (µ ∧ θ)(v).
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Now it follows that
λ ≤

∨
x=u+v

(µ ∧ ν)(u) ∧ (µ ∧ θ)(v).

Hence we obtain ∨
x=a+b

ν(a) ∧ θ(b) ∧ µ(x) ≤
∨

x=u+v
(µ ∧ ν)(u) ∧ (µ ∧ θ)(v).

Therefore,
(µ ∧ (ν ∨ θ))(x) = (µ(x) ∧ ν(x)) ∨ (µ(x) ∧ θ(x)) ∨ (

∨
x=a+b

ν(a) ∧ θ(b) ∧ µ(x))

≤ (µ ∧ ν)(x) ∨ (µ ∧ θ)(x) ∨ (
∨

x=u+v
(µ ∧ ν)(u) ∧ (µ ∧ θ)(v))

= ((µ ∧ ν)⊕ (µ ∧ θ))(x)
= (µ ∧ ν) ∨ (µ ∧ θ)(x).

and the proof is completed. �

By the Theorem 4.3, we immediately get the next corollary.

Corollary 4.4. I(R) is a distributive lattice if and only if FI(R) is a distributive lattice.

5. Conclusion
Many researches studied the lattice structure (distributive or modular) of fuzzy algebraic

substructures. In future work, the same results could also be studied under a t-norm
operation on L. Also, we will try to expose some classes of algebra whose lattices of
L-subalgebras constitute distributive lattice.
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1. Introduction
Entwined modules were introduced by Brzeziński and Majid [2,3], which contained the

Long modules, Yetter-Drinfeld modules and Doi-Koppinen modules, etc. So it is very
important to study entwined module. As a generalization of entwined modules, Hom-
entwined modules were defined by Karacuha [14] as special examples of Hom-corings.

As we know, braided monoidal categories are special categories, whose importance is
that the “braiding” structures provide a class of solutions to quantum Yang-Baxter equa-
tions. Thus constructing a class of braided monoidal categories is an interesting job.
Caenepeel et al. studied how the category of Doi-Hopf modules can be made into a
braided monoidal category [5], which have been generalized to entwined modules and
Doi-Hom-Hopf modules [13,17].

The definition of the normal basis for extension associated to a Hopf algebra was intro-
duced by Kreimer and Takeuchi [15]. Using this notion, Doi and Takeuchi [11] character-
ized H-Galois extensions with normal basis in terms of H-cleft extensions. This result can
be extended for Hopf algebras living in symmetric closed categories [12]. A more general
formulation in the context of (weak)entwining structures can be found in [1, 3].

The main goal of this paper shall discuss how to make the category of Hom-entwined
modules into a monoidal category, and introduce a definition of cleft extension for Hom-
entwining structures and with it to obtain a general cleft extension theory. In Section
3, we construct a monoidal category of Hom-etwined modules and give the sufficient and
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necessary conditions making the monoidal category into a braided category. In Section
4, we introduce the notion of (C, γ)-Hom-cleft extension (AcoC , α|AcoC ) ↪→ (A,α), being
(A,α) a Hom-algebra, (C, γ) a Hom-coalgebra and AcoC a sub-Hom-algebra of A. We
prove that if (A,α) is a (C, γ)-Hom-cleft extension, then there is an isomorphism of Hom-
algebras between (A,α) and a crossed product Hom-algebra of AcoC and C.

2. Preliminaries
Throughout this paper, k will be a field. More knowledge about monoidal Hom-

(co)algebra, monoidal Hopf Hom-algebra, Hom-entwined modules, etc. can be found in
[4, 6–10, 13, 14, 16, 18–24]. Let M = (M,⊗, k, a, l, r) be the monoidal category of vector
spaces over k. We can construct a new monoidal category H(M) whose objects are or-
dered pairs (M,µ) with M ∈ M and µ ∈ Aut(M) and morphisms f : (M,µ) → (N, ν)
are morphisms f : M → N in M satisfying ν ◦ f = f ◦ µ. The monoidal structure is
given by (M,µ)⊗ (N, ν) = (M ⊗N,µ⊗ ν) and (k, idk). All monoidal Hom-structures are
objects in the tensor category H̃(M) = (H(M),⊗, (k, idk), ã, l̃, r̃) introduced in [4] with
the associativity and unit constraints given by

ãM,N,C((m⊗ n)⊗ p) = µ(m)⊗ (n⊗ γ−1(c)),

l̃(x⊗m) = r̃(m⊗ x) = xµ(m),
for (M,µ), (N, ν) and (C, γ). The category H̃(M) is termed Hom-category associated to
M.

2.1. Monoidal Hom-algebra
Recall from [4] that a monoidal Hom-algebra is an object (A,α) ∈ H̃(M) together with

a linear map mA : A⊗A→ A, mA(a⊗ b) = ab and an element 1 ∈ A such that

α(ab) = α(a)α(b), α(a)(bc) = (ab)α(c), (2.1)

α(1) = 1, a1 = α(a) = 1a, (2.2)
for all a, b, c ∈ A.

A right (A,α)-Hom-module consists of an object (M,µ) ∈ H̃(M) together with a linear
map ψ : M ⊗A→M,ψ(m⊗ a) = ma satisfying the following conditions:

µ(m)(ab) = (ma)α(b),m1 = µ(m), (2.3)

for all m ∈M and a, b ∈ A. For ψ to be a morphism in H̃(M) means

µ(ma) = µ(m)α(a). (2.4)

We call that ψ is a right Hom-action of (A,α) on (M,µ).
Let (M,µ) and (M ′, µ′) be two right (A,α)-Hom-modules. We call a morphism f :

M → M ′ right (A,α)-linear, if f ◦ µ = µ ◦ f and f(ma) = f(m)a. MA denotes the
category of all right (A,α)-Hom-modules.

2.2. Monoidal Hom-coalgebras
Recall from [4] that a monoidal Hom-coalgebra is an object (C, γ) ∈ H̃(M) together

with two linear maps ∆C : C → C⊗C, ∆C(c) = c1⊗c2 (summation implicitly understood)
and εC : C → k such that

γ−1(c1)⊗∆C(c2) = c11 ⊗ (c12 ⊗ γ−1(c2)),∆C(γ(c)) = γ(c1)⊗ γ(c2), (2.5)

εC(γ(c)) = εC(c), c1εC(c2) = γ−1(c) = εC(c1)c2, (2.6)
for all c ∈ C.
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A right (C, γ)-Hom-comodule consists of an object (M,µ) ∈ H̃(M) together with a
linear map ρM : M → M ⊗ C, ρM (m) = m[0] ⊗m[1] (summation implicitly understood)
satisfying the following conditions:

µ−1(m[0])⊗∆(m[1]) = m[0][0] ⊗ (m[0][1] ⊗ γ−1(m[1])), (2.7)

m[0]εC(m[1]) = γ−1(m), (2.8)

µ(m)[0] ⊗ µ(m)[1] = µ(m[0])⊗ γ(m[1]), (2.9)

for all m ∈M . We call that ρM is a right Hom-coaction of (A,α) on (M,µ).
Let (M,µ) and (M ′, µ′) be two right (C, γ)-Hom-comodules. We call a morphism f :

M →M ′ right (A,α)-colinear, if f ◦µ = µ ◦ f and f(m)[0]⊗ f(m)[1] = f(m[0])⊗m[1]. MC

denotes the category of all right (C, γ)-Hom-comodules.

2.3. Monoidal Hom-Hopf algebra
A monoidal Hom-bialgebra H = (H,β,mH , 1,∆H , εH) is a bialgebra in the category

H̃(M). This means that (H,β,mH , 1) is a monoidal Hom-algebra and (H,β,∆H , εH) is
a monoidal Hom-coalgebra such that ∆H and εH are Hom-algebra maps, that is, for any
h, g ∈ H,

∆H(hg) = ∆H(h)∆H(g),∆H(1) = 1⊗ 1, (2.10)

εH(hg) = εH(h)εH(g), εH(1) = 1. (2.11)
A monoidal Hom-bialgebra (H,β) is called a monoidal Hom-Hopf algebra, if there exists

a morphism (called the antipode) S : H → H in H̃(M) such that

S(h1)h2 = εH(h)1 = h1S(h2), (2.12)

for all h ∈ H.

2.4. Hom-Doi-Koppinen datum
Let (H,β) be a monoidal Hom-bialgebra. Recall from [14] that a right (H,β)-Hom-

comodule algebra (A,α) is a monoidal Hom-algebra and a right (H,β)-Hom-comodule
with a Hom-coaction ρA such that ρA is a Hom-algebra morphism, i.e., for any a, a′ ∈ A,

(aa′)[0] ⊗ (aa′)[1] = a[0]a
′
[0] ⊗ a[1]a

′
[1], (2.13)

ρA(1) = 1⊗ 1, ρA ◦ α = (α⊗ β) ◦ ρA. (2.14)
A right (H,β)-Hom-module coalgebra (C, γ) is a monoidal Hom-coalgebra and a right

(H,β)-Hom-module such that, for any c ∈ C and h ∈ H,

(ch)1 ⊗ (ch)2 = c1h1 ⊗ c2h2, (2.15)

εC(ch) = εC(c)εH(h), γ(ch) = γ(c)β(h). (2.16)
A Hom-Doi-Koppinen datum is a triple [(H,β), (A,α), (C, γ)], where (H,β) is a monoidal

Hom-Hopf algebra, (A,α) a right (H,β)-Hom-comodule algebra and (C, γ) a left (H,β)-
Hom-module coalgebra. A Doi-Koppinen Hom-Hopf module (M,µ) is a left (A,α)-Hom-
module which is also a right (C, γ)-Hom-comodule with the coaction structure ρM such
that

ρM (ma) = m[0]a[0] ⊗m[1]a[1],

for all m ∈M and a ∈ A.
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2.5. Hom-entwining structure
A (right-right) Hom-entwining structure is a [(A,α), (C, γ)]ψ consisting of a monoidal

Hom-algebra (A,α), a monoidal Hom-coalgebra (C, γ) and a linear map ψ : C⊗A→ A⊗C
in H̃(M) satisfying the following conditions, for all a, a′ ∈ A, c ∈ C,

(aa′)ψ ⊗ γ(c)ψ = aψa
′
Ψ ⊗ γ(cψΨ), (2.17)

α−1(aψ)⊗ cψ1 ⊗ cψ2 = α−1(a)ψΨ ⊗ c1
Ψ ⊗ c2

ψ, (2.18)

1Aψ ⊗ cψ = 1A ⊗ c, (2.19)

aψεC(cψ) = aεC(c). (2.20)
Here we use the following notation ψ(c⊗ a) = aψ ⊗ cψ for the so-called entwining map ψ.
ψ ∈ H̃(M) means that the relation

α(a)ψ ⊗ γ(c)ψ = α(aψ)⊗ γ(cψ). (2.21)

If the map ψ occurs more than once in the same expression, then we use different sub-
and superscripts: ψ,Ψ, ψ1, ψ2, · · · .

Given a Hom-entwining structure [(A,α), (C, γ)]ψ. A right-right [(A,α), (C, γ)]ψ-entwined
Hom-module is an object (M,µ) in H̃(M) is a right (A,α)-Hom-module, and a right (C, γ)-
Hom-comodule with coaction ρM : M →M ⊗C, m 7→ m[0]⊗m[1] satisfying the condition,
for any m ∈M,a ∈ A,

ρM (ma) = m[0]α
−1(a)ψ ⊗ γ(m[1]

ψ).

We use M̃C
A(ψ) to denote the category of [(A,α), (C, γ)]ψ-entwined Hom-modules together

with the morphisms in which are both right (A,α)-linear and right (C, γ)-colinear.

3. Braiding on the Hom-category of Hom-entwined modules
Definition 3.1. We call [(A,α), (C, γ)]ψ a momoidal Hom-entwining datum, if [(A,α), (C,
γ)]ψ is a Hom-entwining structure and A and C are monoidal Hom-bialgebras with the
additional compatibility relations, for all a ∈ A and c, c′ ∈ C,

a1ψ ⊗ a2Ψ ⊗ cψc′Ψ = ∆A(aψ)⊗ (cc′)ψ, (3.1)

εA(a)1C = εA(aψ)1ψC . (3.2)

Proposition 3.2. Let [(A,α), (C, γ)]ψ be a momoidal Hom-entwining structure. Then the
tensor product of two Hom-entwined modules (M,µ) and (N, ν) is again a Hom-entwined
module (M ⊗N,µ⊗ ν) with the structure maps given by

ρM⊗N (m⊗ n) = m[0] ⊗ n[0] ⊗m[1]n[1], (3.3)

(m⊗ n)a = ma1 ⊗ na2, (3.4)
for all m ∈M,n ∈ N and a ∈ A. Thus the category M̃C

A(ψ) is a Hom-category.

Proof. We show that (M ⊗N,µ⊗ ν) is a Hom-entwined module. For all m ∈M,n ∈ N
and a ∈ A, we have

ρM⊗N ((m⊗ n)a) = (ma1)[0] ⊗ (na2)[0] ⊗ (ma1)[1](na2)[1]

= m[0]α
−1(a1)ψ ⊗ n[0]α

−1(a2)Ψ ⊗ γ(m[1]
ψ)γ(n[1]

Ψ)
= m[0]α

−1(a)1ψ ⊗ n[0]α
−1(a)2Ψ ⊗ γ(m[1]

ψn[1]
Ψ)

= m[0]α
−1(a)ψ1 ⊗ n[0]α

−1(a)ψ2 ⊗ γ((m[1]n[1])ψ)(by(3.1))
= (m[0] ⊗ n[0])α−1(a)ψ ⊗ γ((m[1]n[1])ψ).
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Thus (M⊗N,µ⊗ν) is an object of M̃C
A(ψ). Let (M,µ), (N, ν) and (W, ς) be Hom-entwined

modules. The isomorphisms
ãM,N,W : (M ⊗N)⊗W →M ⊗ (N ⊗W )

(m⊗ n)⊗ w 7→ µ(m)⊗ (ν(n)⊗ ς−1(w)),

r̃M : M ⊗ k →M,m⊗ x 7→ xµ(m),

l̃M : k ⊗M →M,x⊗m 7→ xµ(m),
obviously satisfy the pentagon axiom and the triangle axiom. We observe that (k, id) is
an object of M̃C

A(ψ) via the trivial (A,α)-Hom-action and (C, γ)-Hom-coaction given by
xa = εA(a)x and ρk = x ⊗ 1C . It is clear that (k, id) is a unit object of M̃C

A(ψ). Hence
M̃C
A(ψ) is a Hom-category. �

Let [(A,α), (C, γ)]ψ be a momoidal Hom-entwining datum. We know that a braiding
on M̃C

A(ψ) is a natural family of isomorphisms
tM,N : M ⊗N → N ⊗M

in M̃C
A(ψ) such that, for all (M,µ), (N, ν) and (W, ς),

(idN ⊗ tM,W ) ◦ ãN,M,W ◦ (tM,N ⊗ idW ) ◦ ã−1
M,N,W = ãN,W,M ◦ tM,N⊗W , (3.5)

ã−1
P,M,N ◦ tM,P ⊗ idN ◦ ã−1

M,P,N ◦ idM ⊗ tN,P ◦ ãM,N,P = tM⊗N,P . (3.6)
Consider a map Q : C⊗C → A⊗A in H̃(M) with twisted convolution inverse R. We use

the following notations Q(c⊗d) = Q1(c⊗d)⊗Q2(c⊗d) and R(c⊗d) = R1(c⊗d)⊗R2(c⊗d),
for all c, d ∈ C. Thus we have

Q1(c2 ⊗ d2)R1(c1 ⊗ d1)⊗Q2(c2 ⊗ d2)R2(c1 ⊗ d1) = εC(c)1A ⊗ εC(d)1A, (3.7)
R1(c2 ⊗ d2)Q1(c1 ⊗ d1)⊗R2(c2 ⊗ d2)Q2(c1 ⊗ d1) = εC(c)1A ⊗ εC(d)1A. (3.8)

Consider two Hom-entwined modules (M,µ) and (N, ν), we define
tM,N : M ⊗N → N ⊗M,m⊗ n 7→ (n[0] ⊗m[0])Q(n[1] ⊗m[1]),

for all m ∈M,n ∈ N . It follows from (3.7) and (3.8) that tM,N is bijective.

Example 3.3. Let [(A,α), (C, γ)]ψ a Hom-entwining structure. The (A ⊗ C,α ⊗ γ) can
become a Hom-entwined module with the right (A,α)-Hom-action and right (C, γ)-Hom-
coaction given by

(a⊗ c)b = aα−1(b)⊗ γ(c), (3.9)
ρA⊗C(a⊗ c) = (α−1(a)ψ ⊗ c1)⊗ γ(c2

ψ), (3.10)
for all a ∈ A and c ∈ C.

Proof. It is straightforward to check that (A ⊗ C,α ⊗ γ) is a right (A,α)-Hom-module.
Here we shall check that (A⊗ C,α⊗ γ) is also a right (C, γ)-Hom-comodule. In fact, for
a ∈ A and c ∈ C,

(α−1 ⊗ γ−1)((a⊗ c)[0])⊗∆C((a⊗ c)[1])
= α−1(α−1(a)ψ)⊗ γ−1(c1)⊗ (γ(c2

ψ
1)⊗ γ(c2

ψ
2))

= α−2(a)ψΨ ⊗ γ−1(c1)⊗ (γ(c21
Ψ)⊗ γ(c22

ψ))
= α−1(α−1(a)ψΨ)⊗ γ−1(c1)⊗ (γ(c21)Ψ ⊗ γ(c22)ψ)
= α−1(α−1(a)ψΨ)⊗ c11 ⊗ (γ(c12)Ψ ⊗ c2

ψ)
= α−1(α−1(a)ψ)Ψ ⊗ c11 ⊗ (γ(c12

Ψ)⊗ c2
ψ)

= (a⊗ c)[0][0] ⊗ ((a⊗ c)[0][1] ⊗ γ−1((a⊗ c)[1])),
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which proves that (2.7) holds. The other conditions can be checked straightforwardly. The
compatibility can be proved as follows: for a, b ∈ A, c ∈ C,

ρA⊗C((b⊗ c)a) = ρA⊗C(bα−1(a)⊗ γ(c))
= (α−1(bα−1(a))ψ ⊗ γ(c1))⊗ γ(γ(c2)ψ)
= ((α−1(b)α−2(a))ψ ⊗ γ(c1))⊗ γ(γ(c2)ψ)
= (α−1(b)ψα−2(a)Ψ ⊗ γ(c1))⊗ γ(γ(c2

ψΨ))
= (α−1(b)ψα−1(α−1(a)Ψ)⊗ γ(c1))⊗ γ(γ(c2

ψ)Ψ)
= (α−1(b)ψ ⊗ c1)α−1(a)Ψ ⊗ γ(γ(c2

ψ)Ψ)

as desired. �

Lemma 3.4. With notations as above, the map tM,N is right (A,α)-linear for all Hom-
entwined modules (M,µ) and (N, ν) if and only if

(b2ψ ⊗ b1Ψ)Q(c′ψ ⊗ cΨ) = Q(c′ ⊗ c)∆A(b), (3.11)

for all b ∈ A and c, c′ ∈ C.

Proof. Suppose that tA⊗C,A⊗C is (A,α)-linear. Then, for a, a′, b ∈ A and c, c′ ∈ C, we
have

tA⊗C,A⊗C(((a⊗ c)⊗ (a′ ⊗ c′))b) = tA⊗C,A⊗C((a⊗ c)⊗ (a′ ⊗ c′))b. (3.12)
Since

LHS = tA⊗C,A⊗C((a⊗ c)b1 ⊗ (a′ ⊗ c′)b2)
= tA⊗C,A⊗C((aα−1(b1)⊗ γ(c))⊗ (a′α−1(b2)⊗ γ(c′)))
= (α−1(a′α−1(b2))ψ ⊗ γ(c′)1)Q1(γ(γ(c′)2

ψ)⊗ γ(γ(c)2
Ψ))

⊗ (α−1(aα−1(b1))Ψ ⊗ γ(c)1)Q2(γ(γ(c′)2
ψ)⊗ γ(γ(c)2

Ψ))
= (α−1(a′α−1(b2))ψα−1(Q1(γ(γ(c′)2

ψ)⊗ γ(γ(c)2
Ψ)))⊗ γ(γ(c′)1))

⊗ (α−1(aα−1(b1))Ψα
−1(Q2(γ(γ(c′)2

ψ)⊗ γ(γ(c)2
Ψ)))⊗ γ(γ(c)1))

and

RHS = (((α−1(a′)ψ ⊗ c′1)⊗ (α−1(a)Ψ ⊗ c1))Q(γ(c′2ψ)⊗ γ(c2
Ψ)))b

= ((α−1(a′)ψ ⊗ c′1)Q1(γ(c′2ψ)⊗ γ(c2
Ψ)))b1

⊗ ((α−1(a)Ψ ⊗ c1)Q2(γ(c′2ψ)⊗ γ(c2
Ψ)))b2

= ((α−1(a′)ψα−1(Q1(γ(c′2ψ)⊗ γ(c2
Ψ))))α−1(b1)⊗ γ2(c′1))

⊗ ((α−1(a)Ψα
−1(Q2(γ(c′2ψ)⊗ γ(c2

Ψ))))α−1(b2)⊗ γ2(c1)),

we have

(α−1(a′α−1(b2))ψα−1(Q1(γ(γ(c′)2
ψ)⊗ γ(γ(c)2

Ψ)))⊗ γ(γ(c′)1))
⊗ (α−1(aα−1(b1))Ψα

−1(Q2(γ(γ(c′)2
ψ)⊗ γ(γ(c)2

Ψ)))⊗ γ(γ(c)1))
= ((α−1(a′)ψα−1(Q1(γ(c′2ψ)⊗ γ(c2

Ψ))))α−1(b1)⊗ γ2(c′1))
⊗ ((α−1(a)Ψα

−1(Q2(γ(c′2ψ)⊗ γ(c2
Ψ))))α−1(b2)⊗ γ2(c1)).

By taking a = a′ = 1A in the above equality and then applying idA ⊗ εC ⊗ idA ⊗ εC to
both sides, we can get

(b2ψ ⊗ b1Ψ)Q(c′ψ ⊗ cΨ) = Q(c′ ⊗ c)∆A(b). (3.13)



192 C. Quanguo, W. Dingguo

Conversely, suppose that (3.11) holds, and consider two Hom-entwined modules (M,µ)
and (N, ν). For all m ∈M,n ∈ N and a ∈ A, we have

tM,N ((m⊗ n)a) = tM,N (ma1 ⊗ na2)
= ((na2)[0] ⊗ (ma1)[0])Q((na2)[1] ⊗ (ma1)[1])
= (n[0]α

−1(a2)ψ ⊗m[0]α
−1(a1)Ψ)Q(γ(n[1]

ψ)⊗ γ(m[1]
Ψ))

= (n[0]α
−1(a)2ψ ⊗m[0]α

−1(a)1Ψ)Q(γ(n[1]
ψ)⊗ γ(m[1]

Ψ))
= ν(n[0])α−1(a2ψQ

1(γ(n[1])ψ ⊗ γ(m[1])Ψ))
⊗ µ(m[0])α−1(a1ΨQ

2(γ(n[1])ψ ⊗ γ(m[1])Ψ))
= ν(n[0])α−1(Q1(γ(n[1])⊗ γ(m[1]))a1)
⊗ µ(m[0])α−1(Q2(γ(n[1])⊗ γ(m[1]))a2)

= (n[0]α
−1(Q1(γ(n[1])⊗ γ(m[1]))))a1

⊗ (m[0]α
−1(Q2(γ(n[1])⊗ γ(m[1]))))a2

= (n[0]Q
1(n[1] ⊗m[1]))a1 ⊗ (m[0]Q

2(n[1] ⊗m[1]))a2

= tM,N (m⊗ n)a,

which follows that tM,N is (A,α)-linear. �

Lemma 3.5. With notations as above, the map tM,N is right (C, γ)-colinear for all Hom-
entwined modules (M,µ) and (N, ν) if and only if

Q1(c′2 ⊗ c2)ψ ⊗Q2(c′2 ⊗ c2)Ψ ⊗ c′1ψc1
Ψ = Q1(c′1 ⊗ c1)⊗Q2(c′1 ⊗ c1)⊗ c2c

′
2, (3.14)

for all c, c′ ∈ C.

Proof. Suppose that tA⊗C,A⊗C is (C, γ)-colinear. Then, for c, c′ ∈ C, we have

(α−1(Q1(γ(c′2)⊗ γ(c2))ψ)⊗ γ(c′11))
⊗ (α−1(Q2(γ(c′2)⊗ γ(c2))Ψ)⊗ γ(c11))⊗ γ2(c′12)ψγ2(c12)Ψ

= (Q1(γ(c′12)⊗ γ(c12))⊗ γ(c′11))⊗ (Q2(γ(c′12)⊗ γ(c12))⊗ γ(c11))⊗ γ(c2)γ(c′2).

Applying idA ⊗ εC ⊗ idA ⊗ εC ⊗ idC to both sides, we can have (3.14).
Conversely, assume that (3.14) holds. Take two Hom-entwined modules (M,µ) and

(N, ν). Then, for m ∈M, and n ∈ N , we have
ρM⊗N (tM,N (m⊗ n))
= ρM⊗N ((n[0] ⊗m[0])Q(n[1] ⊗m[1]))
= (n[0][0]α

−1(Q1(n[1] ⊗m[1]))ψ
⊗m[0][0]α

−1(Q2(n[1] ⊗m[1]))Ψ)⊗ γ(n[0][1]
ψ)γ(m[0][1]

Ψ)
= (ν−1(n[0])α−1(Q1(γ(n[1]2)⊗ γ(m[1]2)))ψ
⊗ µ−1(m[0])α−1(Q2(γ(n[1]2)⊗ γ(m[1]2)))Ψ)⊗ γ(n[1]1

ψ)γ(m[1]1
Ψ)

= ((ν−1(n[0])α−1(Q1(γ(n[1])2 ⊗ γ(m[1])2)ψ))
⊗ (µ−1(m[0])α−1(Q2(γ(n[1])2 ⊗ γ(m[1])2))Ψ))⊗ γ(n[1])1

ψγ(m[1])1
Ψ

= ((ν−1(n[0])α−1(Q1(γ(n[1]1)⊗ γ(m[1]1))))
⊗ (µ−1(m[0])α−1(Q2(γ(n[1]1)⊗ γ(m[1]1)))))⊗ γ(m[1]2)γ(n[1]2)

= (n[0][0]α
−1(Q1(γ(n[0][1])⊗ γ(m[0][1])))

⊗ (m[0][0]α
−1(Q2(γ(n[0][1])⊗ γ(m[0][1])))))⊗m[1]n[1]
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= ((n[0][0]Q
1(n[0][1] ⊗m[0][1]))⊗ (m[0][0]Q

2(n[0][1] ⊗m[0][1])))⊗m[1]n[1]

= (tM,N ⊗ idC)(ρM⊗N ((m⊗ n))),

which follows that (tM,N ) is (C, γ)-colinear. �

Lemma 3.6. With notations as above, (3.5) holds for all Hom entwined modules (M,µ),
(N, ν) and (W, ς) if and only if

(∆A ⊗ idA)Q(c′c′′ ⊗ c) = Q1(c′ ⊗ c2)⊗Q1(c′′ ⊗ c1
ψ)⊗Q2(c′ ⊗ c2)ψQ2(c′′ ⊗ c1

ψ), (3.15)

for all c, c′, c′′ ∈ C.

Proof. Suppose that (3.5) holds. We takeM = N = W = (A⊗C,α⊗γ). For c, c′, c′′ ∈ C,
on the one hand, we have

(idN ⊗ tM,W ) ◦ ãN,M,W ◦ (tM,N ⊗ idW ) ◦ ã−1
M,N,W ((1⊗ c)⊗ ((1⊗ c′)⊗ (1⊗ c′′)))

= (α(Q1(γ(c′2)⊗ c2))⊗ γ2(c′1))⊗ ((Q1(γ(c′′2)⊗ γ(c12
ψ))⊗ γ(c′′1))

⊗ α−1(Q2(γ(c′2)⊗ c2)ψQ2(γ(c′′2)⊗ γ(c12
ψ)))⊗ γ(c11))

= (α(Q1(γ(c′2)⊗ γ(c22)))⊗ γ2(c′1))⊗ ((Q1(γ(c′′2)⊗ γ(c21
ψ))⊗ γ(c′′1))

⊗ α−1(Q2(γ(c′2)⊗ γ(c22))ψQ2(γ(c′′2)⊗ γ(c21
ψ)))⊗ c1).

On the other hand,

ãN,W,M ◦ tM,N⊗W ((1⊗ c)⊗ ((1⊗ c′)⊗ (1⊗ c′′)))
= α(Q1(γ(c′2c′′2)⊗ γ(c2))1)⊗ γ2(c′1)
⊗ ((Q1(γ(c′2c′′2)⊗ γ(c2))2 ⊗ γ(c′′1))⊗ (α−1(Q2(γ(c′2c′′2)⊗ γ(c2)))⊗ c1))

= (α(Q1(γ(c′2)⊗ γ(c22)))⊗ γ2(c′1))⊗ ((Q1(γ(c′′2)⊗ γ(c21
ψ))⊗ γ(c′′1))

⊗ α−1(Q2(γ(c′2)⊗ γ(c22))ψQ2(γ(c′′2)⊗ γ(c21
ψ)))⊗ c1).

Applying idA ⊗ εC ⊗ idA ⊗ εC ⊗⊗idA ⊗ εC to both sides, we get (3.15).
Conversely, if (3.15) holds. Let (M,µ), (N, ν) and (W, ς) be Hom-entwined modules.

We easily compute that

(idN ⊗ tM,W ) ◦ ãN,M,W ◦ (tM,N ⊗ idW ) ◦ ã−1
M,N,W (m⊗ (n⊗ w))

= ν(n[0])α(Q1(n[1] ⊗ γ−1(m[1])))⊗ (w[0]Q
1(w[1] ⊗ γ((µ−1(m[0])[1])ψ))

⊗ (µ−1(m[0])[0]α
−1(Q2(n[1] ⊗ γ−1(m[1])))ψ)Q2(w[1] ⊗ γ((µ−1(m[0])[1])ψ)))

= ν(n[0])α(Q1(n[1] ⊗ γ−1(m[1])))⊗ (w[0]Q
1(w[1] ⊗ γ((γ−1(m[0][1])ψ)))

⊗ (µ−1(m[0][0])α−1(Q2(n[1] ⊗ γ−1(m[1])))ψ)Q2(w[1] ⊗ γ((γ−1(m[0][1])ψ))))
= ν(n[0])α(Q1(n[1] ⊗ γ−1(m[1])))⊗ (w[0]Q

1(w[1] ⊗ (m[0][1])ψ)
⊗ (µ−1(m[0][0])α−1(Q2(n[1] ⊗ γ−1(m[1]))ψ))Q2(w[1] ⊗ (m[0][1])ψ))

= ν(n[0])α(Q1(n[1] ⊗m[1]2))⊗ (w[0]Q
1(w[1] ⊗ (m[1]1)ψ)

⊗ (µ−2(m[0])α−1(Q2(n[1] ⊗m[1]2)ψ))Q2(w[1] ⊗ (m[1]1)ψ))
= ν(n[0])α(Q1(n[1] ⊗m[1]2))⊗ (w[0]Q

1(w[1] ⊗ (m[1]1)ψ)
⊗ µ−1(m[0])(α−1(Q2(n[1] ⊗m[1]2)ψ)α−1(Q2(w[1] ⊗ (m[1]1)ψ))))

= ãN,W,M ◦ tM,N⊗W (m⊗ (n⊗ w)),

which proves that (3.5) holds. �

The proof of The next lemma is similar to the proof of Lemma 3.6, so we omit it.
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Lemma 3.7. With notations as above, (3.6) holds for all Hom entwined modules (M,µ),
(N, ν) and (W, ς) if and only if

(idA ⊗∆A)Q(c⊗ c′c′′) = Q1(c2 ⊗ c′′)ψQ1(c1
ψ ⊗ c′)⊗Q2(c1

ψ ⊗ c′)⊗Q2(c2 ⊗ c′′), (3.16)

for all c, c′, c′′ ∈ C.

We summarize our results as follows:

Theorem 3.8. Let [(A,α), (C, γ)]ψ a monoidal Hom-entwining datum, and Q : C ⊗C →
A⊗A a twisted convolution invertible map in H̃(M). Then the family of maps

tM,N : M ⊗N → N ⊗M,m⊗ n 7→ (n[0] ⊗m[0])Q(n[1] ⊗m[1])

defines a braiding on the category of Hom-entwined modules M̃C
A(ψ) if and only if Q

satisfies Equations (3.11) and (3.14)-(3.16).

Now, we shall apply Theorem 3.8 to Doi-Koppinen Hom-Hopf modules. Given a Hom-
Doi-Koppinen datum [(H,β), (A,α), (C, γ)], we have a Hom-entwining datum [(A,α), (C,
γ)]ψ with ψ given by

ψ : C ⊗A→ A⊗ C, c⊗ a 7→ α(a[0])⊗ γ−1(c)a[1] = aψ ⊗ cψ. (3.17)

The Hom-category M̃C
A(ψ) of Hom-entwined modules associated to the induced Hom-

entwining datum [(A,α), (C, γ)]ψ is denoted by M̃(H)CA.
A Hom-Doi-Koppinen datum [(H,β), (A,α), (C, γ)] is called a monoidal Hom-Doi-Koppinen

datum, if it satisfies the following condition,

a1[0] ⊗ a2[0] ⊗ (ca1[1])(c′a2[1]) = a[0]1 ⊗ a[0]2 ⊗ (cc′)a[1], (3.18)

for all a ∈ A and c ∈ C.
From Theorem 3.8, we have the following result.

Corollary 3.9. Let [(H,β), (A,α), (C, γ)] be a monoidal Hom-Doi-Koppinen datum, and
Q : C ⊗ C → A ⊗ A a twisted convolution invertible map in H̃(M). Then the family of
maps

tM,N : M ⊗N → N ⊗M,m⊗ n 7→ (n[0] ⊗m[0])Q(n[1] ⊗m[1])

defines a braiding on the category of Doi-Koppinen Hom-Hopf modules M̃(H)CA if and only
if Q satisfies the following equations, for any b ∈ A and c, c′, c′′ ∈ C,

(1) (α(b2[0])⊗ α(b1[0]))Q(c′b2[1] ⊗ cb1[1]) = Q(γ(c′)⊗ γ(c))∆A(b),
(2)

α(Q1(c′2 ⊗ c2)[0])⊗ α(Q2(c′2 ⊗ c2)[0])
⊗ (γ−1(c′1)Q1(c′2 ⊗ c2)[1])(γ−1(c1)Q2(c′2 ⊗ c2)[1])

=Q1(c′1 ⊗ c1)⊗Q2(c′1 ⊗ c1)⊗ c2c
′
2,

(3)

(∆A ⊗ idA)Q(c′c′′ ⊗ c) = Q1(c′ ⊗ c2)⊗Q1(c′′ ⊗ γ−1(c1)Q2(c′ ⊗ c2)[1])
⊗ α(Q2(c′ ⊗ c2)[0])Q2(c′′ ⊗ γ−1(c1)Q2(c′ ⊗ c2)[1]),

(4)

(idA ⊗∆A)Q(c⊗ c′c′′) = α(Q1(c2 ⊗ c′′)[0])Q1(γ−1(c1)Q1(c2 ⊗ c′′)[1] ⊗ c′)
⊗Q2(γ−1(c1)Q1(c2 ⊗ c′′)[1] ⊗ c′)⊗Q2(c2 ⊗ c′′).
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4. Hom-coalgebra cleft extensions for Hom-entwining structures

Let (A,α) be a object of M̃C
A(ψ) with the Hom-coaction ρA. For (M,µ) ∈ M̃C

A(ψ), The
Hom-invariants of C on M are the set

M coC = {m ∈M |ρM (m) = µ−2(m)1[0] ⊗ γ(1[1])}.

Specially, we have AcoC = {a ∈ A|ρA(a) = α−2(a)1[0] ⊗ γ(1[1])}. For m ∈M coC , it follows
that µ(a) ∈M coC . We use µ|McoC for denoting the restriction map of µ on M coC .

Lemma 4.1. For (A,α), (M,µ) in M̃C
A(ψ), we have

(1) (AcoC , α|AcoC , 1) is a Hom-algebra.
(2) (M coC , µ|McoC ) is a right (AcoC , α|AcoC )-Hom-module.

Proof. Straightforward. �

Let us put HomC(C,A) consisting of right (C, γ)-colinear morphisms f : C → A, that
is, f(c)[0] ⊗ f(c)[1] = f(c[0])⊗ c[1], for c ∈ C and f ◦ γ = α ◦ f .

Lemma 4.2. HomC(C,A) is an associative algebra with the unit εC1A and multiplication
(f ∗ g)(c) = f(c1)g(c2),

for f, g ∈ HomC(C,A) and c ∈ C.

Proof. Straightforward. �

By Reg(C,A) we denote the set of morphisms ω ∈ HomC(C,A) which are invertible
under the convolution ∗ in Lemma 4.2.

Definition 4.3. We say that (AcoC , α|AcoC ) ↪→ (A,α) is a (C, γ)-Hom-cleft extension, if
there exists a morphism ω ∈ Reg(C,A).

Proposition 4.4. If (AcoC , α|AcoC ) ↪→ (A,α) is a (C, γ)-Hom-cleft extension, we have

ω−1(c2)ψ ⊗ c1
ψ = α−2(ω−1(c))1[0] ⊗ γ(1[1]), (4.1)

for all c ∈ C.

Proof. Since (A,α) ∈ M̃C
A(ψ), the Hom-coaction can be written as ρA(a) = 1[0]α

−2(a)ψ⊗
γ(1[1]

ψ). Then we have, for any c ∈ C,
εC(c)α(1[0])⊗ 1[1]

= 1[0]ψ(1[1] ⊗ ω(c1)ω−1(c2))
= 1[0](ω(c1)ω−1(c2))ψ ⊗ 1[1]

ψ

= α(1[0])(ω(c1)ω−1(c2))ψ ⊗ γ(1[1])ψ

= α(1[0])(ω(c1)ψω−1(c2)Ψ)⊗ γ(1[1]
ψΨ)

= (1[0]ω(c1)ψ)α(ω−1(c2)Ψ)⊗ γ(1[1]
ψΨ)

= α2(ω(c1)[0])α(ω−1(c2)Ψ)⊗ γ(γ(ω(c1)[1])Ψ)
= α2(ω(c11))α(ω−1(c2)Ψ)⊗ γ(γ(c12)Ψ)
= α(ω(c1))α(ω−1(γ(c2)2)Ψ)⊗ γ(γ(c2)1

Ψ),
which implies that Eq (4.1) holds. �

Lemma 4.5. Assume that (AcoC , α|AcoC ) ↪→ (A,α) is a (C, γ)-Hom-cleft extension via ω
and (M,µ) ∈ M̃C

A(ψ). Then, for any m ∈ M , m[0]ω
−1(m[1]) ∈ M coC . As a consequence,

if M = A, we have a[0]ω
−1(a[1]) ∈ AcoC
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Proof. We compute

ρM (m[0]ω
−1(m[1]))

= m[0][0]α
−1(ω−1(m[1]))ψ ⊗ γ(m[0][1]

ψ)
= µ−1(m[0])α−1(ω−1(γ(m[1]2)))ψ ⊗ γ(m[1]1

ψ)
= µ−1(m[0])α−1(ω−1(γ(m[1])2)ψ)⊗ (γ(m[1])1)ψ

= µ−1(m[0])(α−2(ω−1(m[1]))α−1(1[0]))⊗ γ(1[1])
= (µ−2(m[0])α−2(ω−1(m[1])))1[0] ⊗ γ(1[1])
= µ−2(m[0]ω

−1(m[1]))1[0] ⊗ γ(1[1]).

Hence m[0]ω
−1(m[1]) ∈M coC . �

Theorem 4.6. Suppose that (AcoC , α|AcoC ) ↪→ (A,α) is a (C, γ)-Hom-cleft extension via
ω. For (M,µ) ∈ M̃C

A(ψ), then (M,µ) ∼= (M coC ⊗ C, µ|McoC ⊗ γ) as right (C, γ)-Hom-
comodules, where the (C, γ)-Hom-coaction on (M coC ⊗ C, µ|McoC ⊗ γ) is

ρMcoC⊗C(m⊗ c) = (µ−1(m)⊗ c1)⊗ γ(c2).

In particular, if we consider M = A, we have (A,α) ∼= (AcoC⊗C,α|AcoC ⊗γ) as both right
(C, γ)-Hom-comodules and left (AcoC , α|AcoC )-Hom-modules, where the (AcoC , α|AcoC )-Hom-
action on AcoC ⊗ C defined by b · (a⊗ c) = α−1(b)a⊗ γ(c), for all a, b ∈ AcoC and c ∈ C.

Proof. We define ΘM : (M coC ⊗ C, µ|McoC ⊗ γ) → (M,µ) by ΘM (m ⊗ c) = mω(c) and
ΩM : (M,µ)→ (M coC⊗C, µ|McoC⊗γ) by ΩM (m) = m[0][0]ω

−1(m[0][1])⊗m[1]. Form ∈M ,
we have

ΘM ◦ ΩM (m) = (m[0][0]ω
−1(m[0][1]))ω(m[1])

= (µ−1(m[0])ω−1(m[1]1))ω(γ(m[1]2))
= (µ−1(m[0])ω−1(m[1]1))α(ω(m[1]2))
= m[0](ω−1(m[1]1)ω(m[1]2))
= m[0]εC(m[1])1A = m,

which follows that ΘM ◦ ΩM = id. Next, we check that ΩM ◦ΘM = id holds. In fact, for
any m ∈M coC and c ∈ C, we compute

ΩM ◦ΘM (m⊗ c)
= (mω(c))[0][0]ω

−1((mω(c))[0][1])⊗ (mω(c))[1]

= (m[0][0]α
−1(α−1(ω(c))ψ)Ψ)ω−1(γ(m[0][1]

Ψ))⊗ γ(m[1]
ψ)

= (m[0][0]α
−1(α−1(ω(c))ψΨ))ω−1(γ(m[0][1])Ψ)⊗ γ(m[1]

ψ)
= (µ−1(m[0])α−1(α−1(ω(c))ψΨ))ω−1(γ(m[1])1

Ψ)⊗ γ(γ(m[1])2
ψ)

= (µ−1(µ−2(m)1[0])α−1(α−1(ω(c))ψΨ))ω−1(γ2(1[1])1
Ψ)⊗ γ(γ2(1[1])2

ψ)
= (µ−2(m)(α−1(1[0])α−2(α−1(ω(c)ψΨ))))ω−1(γ2(1[1])1

Ψ)⊗ γ(γ2(1[1])2
ψ)

= (µ−2(m)(α−1(1[0])α−3(ω(c)ψ)))ω−1(γ2(1[1])ψ1)⊗ γ(γ2(1[1])ψ2)
= (µ−2(m)α−3(1[0]ω(c)ψ))ω−1(1[1]

ψ
1)⊗ γ(1[1]

ψ
2)

= (µ−2(m)α−1(ω(c)[0]))ω−1(γ(ω(c)[1])1)⊗ γ(γ(ω(c)[1])2)
= (µ−2(m)α−1(ω(c1)))ω−1(γ(c2)1)⊗ γ(γ(c2)2)
= (µ−2(m)α−1(ω(c1)))ω−1(γ(c21))⊗ γ(γ(c22))
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= (µ−2(m)ω(c11))ω−1(γ(c12))⊗ γ(c2)
= µ−1(m)(ω(c11)ω−1(c12))⊗ γ(c2)
= µ−1(m)1A ⊗ c
= m⊗ c,

as desired. �

Let (AcoC , α|AcoC ) ↪→ (A,α) be a (C, γ)-Hom-cleft extension via ω. From Theorem
4.6, we have that ΩA is an isomorphism of monoidal Hom-algebras, where the monoidal
Hom-algebra structure on AcoC ⊗ C can be induced by ΩA:

1AcoC×C = ΩA(1A), m̃AcoC×C = ΩA ◦mA ◦ (Ω−1
A ⊗ Ω−1

A ).

The induced monoidal Hom-algebras on AcoC⊗C is called a crossed product Hom-algebra
of AcoC and C, and denoted by AcoC n C.

Next, we can obtain m̃AcoC×C in other way. First, we need some preliminary results.

Lemma 4.7. Suppose that (AcoC , α|AcoC ) ↪→ (A,α) is a (C, γ)-Hom-cleft extension via ω.
We define a morphism $ : C ⊗A→ A by

$(c, a) = (ω(c1)α−1(a)ψ)ω−1(γ(c2
ψ)).

Then ρA($(c, a)) ∈ AcoC , for all c ∈ C and a ∈ A.

Proof. For if c ∈ C, a ∈ A, then

ρA($(c, a)) = α(ω(c1))[0]α
−1(α−1(a)ψω−1(c2

ψ))Ψ ⊗ γ(α(ω(c1))[1]
Ψ)

= α(ω(c1)[0])α−1(α−1(a)ψω−1(c2
ψ))Ψ ⊗ γ(γ(ω(c1)[1])Ψ)

= α(ω(c1)[0])α−1(α−1(a)ψω−1(c2
ψ))Ψ ⊗ γ(γ(ω(c1)[1])Ψ)

= α(ω(c1)[0])α−1((α−1(a)ψω−1(c2
ψ))Ψ)⊗ γ(γ(ω(c1)[1]))Ψ

= α(ω(c1)[0])α−1(α−1(a)ψΨω
−1(c2

ψ)Ψ′)⊗ γ(γ(ω(c1)[1])ΨΨ′)

= α(ω(c11))α−1(α−1(a)ψΨω
−1(c2

ψ)Ψ′)⊗ γ(γ(c12)ΨΨ′)

= ω(c1)α−1(α−1(a)ψΨω
−1(γ(c2)2

ψ)Ψ′)⊗ γ(γ(c2)1
ΨΨ′)

= ω(c1)α−1(α−1(aψ)ω−1(γ(c2)ψ2)Ψ′)⊗ γ(γ(c2)ψ1
Ψ′)

= ω(c1)α−1(α−1(aψ)(α−2(ω−1(γ(c2)ψ)1[0])))⊗ γ(γ(1[1]))
= (α−1(ω(c1))α−3(aψω−1(γ(c2)ψ)))1[0] ⊗ γ(1[1])
= ((α−2(ω(c1))α−3(aψ))α−2(ω−1(γ(c2)ψ)))1[0] ⊗ γ(1[1])
= α−2((ω(c1)α−1(aψ))ω−1(γ(c2)ψ))1[0] ⊗ γ(1[1])

= α−2((ω(c1)α−1(a)ψ)ω−1(γ(cψ2 )))1[0] ⊗ γ(1[1]).

Thus $(c, a) ∈ AcoC . �

Now, we construct a morphism Λ as follows:

Λ : C ⊗A→ A⊗ C, Λ(c⊗ d) = $(c1 ⊗ α−1(ω(d))ψ)⊗ γ(c2
ψ).

By Lemma 4.7, we have Λ(c⊗d) ∈ AcoC⊗C. Using Λ, we define a multiplication mAcoC⊗C
on AcoC ⊗ C by

mAcoC⊗C =(mA ⊗ idC) ◦ (mA ⊗ Λ ◦ (idC ⊗ ω)) ◦ ãA,A,C⊗C
◦ (idC ⊗ ãA,C,C) ◦ (idC ⊗ Λ⊗ idC) ◦ (idA ⊗ ã−1

C,A,C) ◦ ãA,C,A⊗C .
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Concretely,
(a⊗ c)(b⊗ d) =(α−1(a)((α−2(ω(c1))α−2(α−1(b)ψ))ω−1(c2

ψ
1)))

× ((ω(γ(c2
ψ
21))α−2(ω(d)Ψ))ω−1(γ3(c2

ψ
22)Ψ

1))⊗ γ5(c2
ψ
22)Ψ

2.

Proposition 4.8. Suppose that (AcoC , α|AcoC ) ↪→ (A,α) is a (C, γ)-Hom-cleft extension
via ω. Then mAcoC⊗C = m̃AcoC⊗C .

Proof. It suffice to prove that mAcoC×C = ΩA ◦mA ◦ (Ω−1
A ⊗Ω−1

A ) holds. Indeed, for any
a, b ∈ A and c, d ∈ C, we have

Ω−1
A ◦mAcoC⊗C((a⊗ c)⊗ (b⊗ d))
=((α−1(a)((α−2(ω(c1)α−1(b)ψ)ω−1(c2

ψ
1))))

× ((ω(γ(c2
ψ
21))α−2(ω(d)Ψ))ω−1(γ3(c2

ψ
22)Ψ

1)))ω(γ5(c2
ψ
22)Ψ

2)
=(a((α−1(ω(c1)α−1(b)ψ)α(ω−1(c2

ψ
1)))))

× (((ω(γ(c2
ψ
21))α−2(ω(d)Ψ))ω−1(γ3(c2

ψ
22)Ψ

1))ω(γ4(c2
ψ
22)Ψ

2))
=(a((α−1(ω(c1)α−1(b)ψ)α(ω−1(c2

ψ
1)))))

× ((α(ω(γ(c2
ψ
21)))α−1(ω(d)Ψ))(ω−1(γ3(c2

ψ
22)Ψ

1)ω(γ3(c2
ψ
22)Ψ

2)))
=(a((α−1(ω(c1)α−1(b)ψ)α(ω−1(c2

ψ
1)))))(α2(ω(c2

ψ
2)ω(d)))

=α(a)((α−1(ω(c1)α−1(b)ψ)α(ω−1(c2
ψ
1)))(α(ω(c2

ψ
2))α−1(ω(d))))

=α(a)((ω(c1)α−1(b)ψ)(α(ω−1(c2
ψ
1))(ω(c2

ψ
2)α−2(ω(d)))))

=α(a)((ω(c1)α−1(b)ψ)((ω−1(c2
ψ
1)ω(c2

ψ
2))α−1(ω(d))))

=α(a)((ω(γ−1(c))α−1(b))ω(d))
=α(a)(ω(c)(α−1(b)α−1(ω(d))))
=(aω(c))(bω(d))
=mA ◦ (Ω−1

A ⊗ Ω−1
A )((a⊗ c)⊗ (b⊗ d)).

Thus we gain the desired result. �
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Two classes of risk model with di�usion and
multiple thresholds: the discounted dividends
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Abstract

In this paper, we consider the present value of total dividends until ruin
in a perturbed risk model with two independent classes of risks under
multiple thresholds, in which both of the two inter-claim times have
phase-type distributions. We obtain the integro-di�erential equations
for the moment-generating function and the rth moment of discounted
dividend payments. Explicit expressions for the expectation of dis-
counted dividend payments are derived if the two classes claim amount
distributions both belong to the rational family.
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1. Introduction

The discounted sum of dividend payments until ruin is an important quantity in
assessing the quality of a dividend barrier strategy in insurance risk theory, which has
been studied in some papers and books, see e.g. [1], [3], [5], [8], [10], [13].

Recently, some researchers consider the ruin measures for a risk model involving two
independent classes of risks in the actuarial literature. Among them, [11] considered the
expected discounted penalty functions by assuming that the two claim number processes
are independent Poisson and generalized Erlang(2) processes. [15] supposed that the
claim number processes are independent Poisson and generalized Erlang(n) processes,
respectively, in which the Laplace transforms of the expected discounted penalty functions
are obtained. As an extension to these papers, [7] investigated the same ruin measures
in the risk model with two classes of renewal risk processes by assuming that both of the
two claim number processes have phase-type inter-claim times.
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There is a particular attention in considering risk models with multi-threshold divi-
dend strategies. For instance, [12] discussed the Gerber-Shiu expected discounted penalty
function in the compound Poisson risk model with multiple thresholds. [14] extended the
corresponding results to a Sparre Andersen model with generalized Erlang(n)-distributed
inter-claim times. In insurance risk models with multiple thresholds, the premium rate is
a step function of the insurer's surplus. The premium policy is e�ective when the insurer
intend to keep a �xed retention ratio on its revenues and pays bonuses as an incentive to
its policyholders.

[9] investigated the discounted penalty function for two classes of risk processes with
di�usion and multiple thresholds, where both of the two claim number processes have
phase-type inter-claim times. It is natural to ask for the results on the discounted sum
of dividend payments until ruin for a corresponding risk model. The rest of the paper is
structured as follows. Section 2 describes the risk model. In Section 3, we derive systems
of integro-di�erential equations for the moment generating function. In Section 4, integro-
di�erential equations for the moments of discounted dividend payments are obtained.
Section 5 presents the main results and derives explicit expressions for the expectation of
discounted dividend payments when two classes claim amount distributions both belong
to the rational family. Section 6 gives a numerical example.

2. Notation and model description

The surplus process R(t) perturbed by di�usion satis�es

(2.1) R(t) = u+ ct− S(t) + σB(t), t ≥ 0,

where u ≥ 0 is the initial surplus, c denotes the insurer's premium income per unit time,
{B(t); t ≥ 0} is a standard Brownian motion and σ > 0 is the dispersion parameter, and
the aggregate-claim process {S(t) : t ≥ 0} is de�ned by

S(t) =

N1(t)∑
i=1

Xi +

N2(t)∑
i=1

Yi, t ≥ 0,

where {X1, X2, · · · } and {Y1, Y2, · · · } are independent and identically distributed (i.i.d.)
positive random variables representing the successive individual claim amounts from
the �rst and the second class, respectively. The random variables {X1, X2, · · · } are
assumed to have common cumulative distribution function F (x) = 1 − F̄ (x), x ≥ 0,
with probability density function f(x) = F ′(x), of which the Laplace transform is

f̃(s) =
∫∞
0
e−sxf(x)dx, s ∈ C, C denotes the complex space. Similarly, common cu-

mulative distribution function, density function and the Laplace transform of the den-
sity function of {Y1, Y2, · · · } are given by G(x) = 1 − Ḡ(x), x ≥ 0, g(x) = G′(x) and
g̃(s) =

∫∞
0
e−sxg(x)dx. The renewal processes {N1(t); t ≥ 0} and {N2(t); t ≥ 0} denote

the number of claims up to time t caused by the �rst and the second class of claim
respectively, and are de�ned as follows.

N1(t) = sup{n : T1 + T2 + · · ·+ Tn ≤ t},

N2(t) = sup{n : V1 + V2 + · · ·+ Vn ≤ t},
where the i.i.d. interclaim times {T1, T2, · · · } have common cumulative distribution func-
tion K1(t), t ≥ 0 and density function k1(x) = K′1(x), and {V1, V2, · · · } have common
cumulative distribution function K2(t), t ≥ 0 and density function k2(x) = K′2(x).

In addition, we suppose that {X1, X2, · · · }, {Y1, Y2, · · · }, {N1(t); t ≥ 0}, {N2(t); t ≥ 0}
and {B(t); t ≥ 0} are mutually independent, and c > E(X1)/E(T1) + E(Y1)/E(V1),
providing a positive safety loading factor.
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Under the multi-threshold risk model, there are L thresholds 0 = d0 < d1 < · · · <
dL−1 < dL = ∞ such that when the surplus is between the thresholds dl−1 and dl,
dividends are paid continuously at a constant rate ηl ≥ 0. Furthermore, we assume
η1 = 0, namely, when the surplus is below the level d1, no dividends are paid, and ηl > 0
for l = 2, 3, · · · , L. Correspondingly, let cl denote the premium rate when dl−1 ≤ u < dl,
thus, the net premium rate after dividend payments is cl+1 = c1 − ηl+1 ≥ 0. Thus the
surplus process {R(t); t ≥ 0} can be expressed as

(2.2) dR(t) = cldt+ σdB(t)− dS(t), dl−1 ≤ R(t) < dl.

The time of (ultimate) ruin is de�ned as T = inf{t|R(t) ≤ 0}, where T =∞ if R(t) > 0
for all t ≥ 0. The probability of ruin is ψ(u) = Pr(T <∞).

Denote by D(t) the cumulative amount of dividends paid out up to time t and δ > 0

the force of interest, then D =
∫ T
0
e−δtdD(t) is the present value of all dividends until

ruin time T . In the following text, we turn to the moment generating function under
multiple thresholds,

M(u, y) = E[eyD|R(0) = u]

(for those values of y where it exists) and the rth moment

W (u, r) = E[Dr|R(0) = u], r ∈ N.

Note that W (u, 0) ≡ 1. We will always assume that M(u, y) and W (u, r) are su�ciently
smooth functions in u and y, respectively.

Throughout the text of the paper, all bold-faced letters represent either vectors or
matrices and all vectors are column vectors. We assume that the distribution K1(t) of
the inter-claim time random variable T1 is phase-type with representation (α>,A,a),
where α> = (α1, α2, · · · , αn), with αi ≥ 0,

∑n
i=1 αi = 1, A = (aij)

n
i,j=1 is an n × n

matrix with aii < 0, aij ≥ 0, for i 6= j,
∑n
j=1 aij ≤ 0, for any i = 1, 2, · · · , n, and

a = (a1, a2, · · · , an)> with a = −Aen, where x> denotes the transpose of x and en
denotes a column vector of length n with all elements being one. Following [2], we have
K1(t) = 1−α>eAten, k1(t) = α>eAta, t ≥ 0, and

(2.3) k̃1(s) =

∫ ∞
0

e−stk1(t)dt = α>(sI−A)−1a.

By the de�nition of phase-type distributions, each of the inter-claim times Ti, i = 1, 2, · · · ,
corresponds to the time to absorption in a terminating continuous-time Markov Chain,

say, I
(i)
t with n transient states {E1, E2, · · · , En} and one absorbing state E0.

The distribution K2(t) of the inter-claim time random variable V1 is phase-type with
representation (β>,B,b), where β> = (β1, β2, · · · , βm), B = (bij)

m
i,j=1 is an m × m

matrix, b = (b1, b2, · · · , bm)> with b = −Bem. Then we have K2(t) = 1 − β>eBtem,
k2(t) = β>eBtb, t ≥ 0, and k̃2(s) =

∫∞
0
e−stk2(t)dt = β>(sI−B)−1b. J

(i)
t denotes the

terminating continuous-time Markov Chain of Vi, i = 1, 2, · · · , with m transient states
{F1, F2, · · · , Fm} and one absorbing state F0.

Now, we construct a two-dimensional Markov process {(I(t), J(t)); t ≥ 0} by piecing

the {I(i)t ; i = 1, 2, · · · } and {J(i)
t ; i = 1, 2, · · · } together,

I(t) = {I(1)t }, 0 ≤ t < T1, I(t) = {I(2)t−T1
}, T1 ≤ t < T1 + T2, · · · ,

J(t) = {J(1)
t }, 0 ≤ t < V1, J(t) = {J(2)

t−V1
}, V1 ≤ t < V1 + V2, · · · .

So {(I(t), J(t)); t ≥ 0} is the underlying state process with states {(E1, F1) , (E2, F1), · · · ,
(En, F1), (E1, F2), (E2, F2), · · · , (En, F2), · · · , (E1, Fm), (E2, Fm), · · · , (En, Fm)}, initial
distribution γ = β ⊗α, where ⊗ denotes the Kronecker product of two matrices.
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For k = 1, 2; i = 1, 2, · · · , n; j = 1, 2, · · · ,m, let M (k)(u, y) denote the moment gener-

ating function of D if the ruin is caused by a claim from class k and R(0) = u. M
(k)
ij (u, y)

denotes the moment generating function of D when the ruin is caused by a claim from

class k and initial state (I
(1)
0 , J

(1)
0 ) = (Ei, Fj), then the moment generating function can

be written as

(2.4) M (k)(u, y) = γ>M(k)(u, y),

where M(k)(u, y) ≡
(
M

(k)
11 (u, y),M

(k)
21 (u, y), · · · ,M (k)

n1 (u, y), M
(k)
12 (u, y), M

(k)
22 (u, y), · · · ,

M
(k)
n2 (u, y), · · · , M (k)

1m (u, y),M
(k)
2m (u, y), · · · ,M (k)

nm(u, y)
)>

. Thus

(2.5) M(u, y) = γ>M(u, y) = γ>[M(1)(u, y) + M(2)(u, y)].

Wij(u, r) denotes the rth moment of D if (I
(1)
0 , J

(1)
0 ) = (Ei, Fj), then the moment can

be computed by

(2.6) W (u, r) = γ>W(u, r),

where W(u, r) ≡ (W11(u, r), W21(u, r), · · · ,Wn1(u, r), W12(u, r), W22(u, r), · · · , Wn2(u, r),

· · · , W1m(u, r),W2m(u, r), · · · ,Wnm(u, r))>.

3. The moment generating function

Let ∂·
∂u

and ∂·
∂y

denote the di�erentiation operators with respect to (w.r.t.) u and y,

respectively.

3.1. Theorem. The vectors M(k)(u, y), dl−1 ≤ u < dl, l = 1, 2, . . . , L, k = 1, 2 satisfy
the following partial integro-di�erential system, respectively,

(3.1)

(
σ2

2
∂2

∂u2 + cl
∂
∂u
− yδ ∂

∂y
+ yηl

)
M(1)(u, y) + Im×m ⊗AM(1)(u, y)+

B⊗ In×nM(1)(u, y) + Im×m ⊗ (aα>)
∫ u
0

M(1)(u− x, y)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(1)(u− x, y)g(x)dx+ (em ⊗ a)F̄ (u) = 0,

and

(3.2)

(
σ2

2
∂2

∂u2 + cl
∂
∂u
− yδ ∂

∂y
+ yηl

)
M(2)(u, y) + Im×m ⊗AM(2)(u, y)+

B⊗ In×nM(2)(u, y) + Im×m ⊗ (aα>)
∫ u
0

M(2)(u− x, y)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(2)(u− x, y)g(x)dx+ (b⊗ en)Ḡ(u) = 0,

where In×n denotes the n × n identity matrix, 0 denotes a column vector of length mn
with all elements being 0. F̄ (u) =

∫∞
u
f(x)dx and Ḡ(u) =

∫∞
u
g(x)dx.

Proof. Taking into account an in�nitesimal time interval (0, dt) for dl−1 ≤ u < dl, l =
1, 2, . . . , L, there are four possible events regarding to the occurrence of the claim and
change of the environment: (1) no claim arrival and no change of state; (2) a claim arrival
but no change of state; (3) a change of state but no claim arrival; (4) two or more events
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occur. Using the total expectation formula, yields

(3.3)

M
(1)
ij (u, y)

= eyηldt
{

(1 + aiidt)(1 + bjjdt)E[M
(1)
ij (u+ cldt+ σB(dt), ye−δdt)]

+(1 + bjjdt)
n∑

k=1,k 6=i
(aikdt)E[M

(1)
kj (u+ cldt+ σB(dt), ye−δdt)]

+(1 + aiidt)
m∑

h=1,h6=j
(bjhdt)E[M

(1)
ih (u+ cldt+ σB(dt), ye−δdt)]

+(1 + bjjdt)(aidt)

×E
[
n∑
s=1

αs
∫ u+cldt+σB(dt)

0
M

(1)
sj (u+ cldt+ σB(dt)− x, ye−δdt)f(x)dx

+
∫∞
u+cldt+σB(dt)

f(x)dx
]

+ (1 + aiidt)(bjdt)

× E

[
m∑
r=1

βr
∫ u+cldt+σB(dt)

0
M

(1)
ir (u+ cldt+ σB(dt)− x, ye−δdt)g(x)dx

]}
+o(dt).

By the aid of Taylor expansion, we have

(3.4)

E[M
(1)
ij (u+ cldt+ σB(dt), ye−δdt)]

= M
(1)
ij (u, y) + cldt

∂M
(1)
ij (u,y)

∂u
+ y(e−δdt − 1)

∂M
(1)
ij (u,y)

∂y

+σ2

2
dt
∂2M

(1)
ij (u,y)

∂u2 + o(dt).

Substituting (3.4) into (3.3), after some careful calculations, it follows that

(3.5)

(
σ2

2
∂2

∂u2 + cl
∂
∂u
− yδ ∂

∂y
+ yηl

)
M

(1)
ij (u, y) +

n∑
k=1

aikM
(1)
kj (u, y)+

m∑
h=1

bjhM
(1)
ih (u, y) + ai

(
n∑
s=1

αs
∫ u
0
M

(1)
sj (u− x, y)f(x)dx+

∫∞
u
f(x)dx

)
+bj

m∑
r=1

βr
∫ u
0
M

(1)
ir (u− x, y)g(x)dx = 0.

Rewriting (3.5) in matrix form, we conclude (3.1). By similar arguments, we can obtain
(3.2). �

4. The moments of discounted dividend payments

4.1. Theorem. The vector W(u, r), dl−1 ≤ u < dl, l = 1, 2, . . . , L, satis�es the following
integro-di�erential system,

(4.1)

(
σ2

2
d2

du2 + cl
d
du
− rδ

)
W(u, r) + rηlW(u, r − 1) + Im×m ⊗AW(u, r)+

B⊗ In×nW(u, r) + Im×m ⊗ (aα>)
∫ u
0

W(u− x, r)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

W(u− x, r)g(x)dx = 0,

with boundary conditions

(4.2) W(u, r)|u=0 = 0, W(u, r)|
u=d−

l
= W(u, r)|

u=d+
l
,

and

(4.3)
dW(u, r)

du

∣∣∣∣
u=d−

l

=
dW(u, r)

du

∣∣∣∣
u=d+

l

.
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Proof. Adding (3.1) to (3.2) and noting that M(u, y) = M(1)(u, y) + M(2)(u, y), which
results in

(4.4)

(
σ2

2
∂2

∂u2 + cl
∂
∂u
− yδ ∂

∂y
+ yηl

)
M(u, y) + Im×m ⊗AM(u, y)+

B⊗ In×nM(u, y) + Im×m ⊗ (aα>)
∫ u
0

M(u− x, y)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(u− x, y)g(x)dx+ (em ⊗ a)F̄ (u)
+(b⊗ en)Ḡ(u) = 0.

Since W (u, r) = E[Dr|R(0) = u], we have the following representation

(4.5) M(u, y) = emn +

∞∑
r=1

yr

r!
W(u, r).

Substituting (4.5) into (4.4) and equating the coe�cients of yr(r ∈ N). Then by virtue of
a = −Aen and b = −Bem. Further, Im×m ⊗Aemn = −Im×m ⊗ (aα>)emn= −em ⊗ a
and B⊗ In×nemn = −(bβ>)⊗ In×nemn = −b⊗ en. Hence, we achieve (4.1).

When u = 0, ruin is immediate and no dividends are paid. That is to say W(u, r)|u=0 =
0. Utilizing the continuity of W(u, r) and thanks to [16], we have the boundary condi-
tions (4.2) and (4.3). �

4.2. Remark. We assume that m = 1 and G(0) = 1, from Eq.(4.1), which yields

(4.6)

(
σ2

2
d2

du2 + cl
d
du
− rδ

)
W(u, r) + rηlW(u, r − 1)

+ AW(u, r) + (aα>)
∫ u
0

W(u− x, r)f(x)dx = 0,

where dl−1 ≤ u < dl, l = 1, 2, . . . , L. Furthermore, when L = 2 and the distribution K1(t)
is a generalized Erlang(n) distribution, we recover Theorem 4.1 in [5] from (4.6), which
consider the perturbed renewal risk model with a threshold dividend strategy.

5. The expectation of discounted dividend payments

In what follows, we consider the case r = 1 for W(u, r), the expectation of discounted
dividend payments. For notational convenience, let W(u) ≡ W(u, 1). From Theorem
4.1, we have for dl−1 ≤ u < dl, l = 1, 2, . . . , L, that

(5.1)

(
σ2

2
d2

du2 + cl
d
du
− δ
)

W(u) + ηlemn + Im×m ⊗AW(u)+

B⊗ In×nW(u) + Im×m ⊗ (aα>)
∫ u
0

W(u− x)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

W(u− x)g(x)dx = 0,

and with boundary conditions W(u)|u=0 = 0, W(u)|
u=d−

l
= W(u)|

u=d+
l
, dW(u)

du

∣∣∣
u=d−

l

= dW(u)
du

∣∣∣
u=d+

l

.

5.1. Laplace transforms. Motivating by [12], we relax the constraint dl−1 ≤ u < dl
in (5.1) and consider the case of u ≥ dl−1. Let Wl(u), u ≥ dl−1, l = 1, · · · , L be the
solutions of the following non-homogeneous integro-di�erential equations:

(5.2)

(
σ2

2
d2

du2 + cl
d
du
− δ
)

Wl(u) + Im×m ⊗AWl(u) + B⊗ In×nWl(u)+

Im×m ⊗ (aα>)
[∫ u−dl−1

0
Wl(u− x)f(x)dx+

∫ u
u−dl−1

W(u− x)f(x)dx
]

+(bβ>)⊗ In×n
[∫ u−dl−1

0
Wl(u− x)g(x)dx+

∫ u
u−dl−1

W(u− x)g(x)dx
]

+ηlemn = 0, u ≥ dl−1.
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From the theory of di�erential equations, it follows that

(5.3) W(u) = Wl(u) +

mn∑
j=1

kljΘlj(u), dl−1 ≤ u < dl,

where klj is constant coe�cient for each l and j, and Θlj(u), j = 1, 2, · · · ,mn, are mn
linearly independent solutions to the associated homogeneous integro-di�erential equa-
tions

(5.4)

(
σ2

2
d2

du2 + cl
d
du
− δ
)

Θl(u) + Im×m ⊗AΘl(u)+

B⊗ In×nΘl(u) + Im×m ⊗ (aα>)
∫ u−dl−1

0
Θl(u− x)f(x)dx+

(bβ>)⊗ In×n
∫ u−dl−1

0
Θl(u− x)g(x)dx = 0, u ≥ dl−1.

5.1. Remark. When u → ∞, ruin does not happen all the time and dividends are
always paid at a constant rate ηL. So we have limu→∞W(u) = ηL

δ
emn. We can found

that ηL
δ

emn are really particular solutions of (5.2). It follows from the general theory of
di�erential equations that

(5.5) W(u) =
ηL
δ

emn +

mn∑
j=1

kLjΘLj(u), u ≥ dL−1,

Taking a change of variables z = u− dl−1 and Φl(z) ≡Wl(u) = Wl(z + dl−1), then
we obtain from (5.2),

(5.6)

(
σ2

2
d2

dz2
+ cl

d
dz
− δ
)

Φl(z) + Im×m ⊗AΦl(z)+

B⊗ In×nΦl(z) + Im×m ⊗ (aα>)
∫ z
0

Φl(z − x)f(x)dx+

(bβ>)⊗ In×n
∫ z
0

Φl(z − x)g(x)dx+ Γl(z) = 0, z ≥ 0,

where

(5.7)
Γl(z) = Im×m ⊗ (aα>)

∫ dl−1

0
W(x)f(z + dl−1 − x)dx

+(bβ>)⊗ In×n
∫ dl−1

0
W(x)g(z + dl−1 − x)dx+ ηlemn.

Next de�ne the following Laplace transforms: Φ̃l(s) =
∫∞
0
e−sxΦl(x)dx, Γ̃l(s) =∫∞

0
e−sxΓl(x)dx. Taking Laplace transforms on both sides of (5.6) and rearranging, we

have

(5.8)

[(
σ2

2
s2 + cls− δ

)
Imn×mn + Im×m ⊗A + B⊗ In×n+

Im×m ⊗ (aα>)f̃(s) + (bβ>)⊗ In×ng̃(s)
]
Φ̃l(s) =

σ2

2
Φ′l(0) + pl(s)Φl(0)− Γ̃l(s),

where pl(s) = σ2

2
s+ cl, Φl(0) = Wl(dl−1),Φ′l(0) = W′

l(dl−1).

Let Ll(s) =
(
σ2

2
s2 + cls− δ

)
Imn×mn+ Im×m⊗A+B⊗ In×n+ Im×m⊗ (aα>)f̃(s)+

(bβ>) ⊗ In×ng̃(s), and Ll
∗(s) is the adjoint of matrix Ll(s) for l = 1, 2, · · · , L. Thus,

when det[Ll(s)] 6= 0, we get from (5.8)

(5.9) Φ̃l(s) =
Ll
∗(s)

det[Ll(s)]

(
σ2

2
Φ′l(0) + pl(s)Φl(0)− Γ̃l(s)

)
.

For a given l the generalized Lundberg's equations det[Ll(s)] = 0 has exactlymn roots
in the right half of the complex plane when δ > 0, see e.g. [7] for details. We denote them
by ρl1, ρl2, · · · , ρl,mn respectively, and for simplicity, we assume that they are di�erent
from each other.
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Divided di�erence plays an important role in the present paper. Now we recall di-
vided di�erences of a matrix L(s) w.r.t. distinct numbers r1, r2, · · · , which are de�ned
recursively as follows:

L[r1, s] =
L(s)− L(r1)

s− r1
, L[r1, r2, s] =

L[r1, s]− L[r1, r2]

s− r2
,

and so on.
Since each element of Φ̃l(s) is �nite for all <(s) > 0, ρl1, ρl2, · · · , ρl,mn are also roots

of numerator in (5.9). Utilizing a similar technique to Theorem 4.2 in [7], we obtain from
(5.9) the following theorem.

5.2. Theorem. The Laplace transforms of Φl(y) for l = 1, 2, · · · , L are represented by

(5.10)

Φ̃l(s) =
mn∏
j=1

(s−ρlj)

det[Ll(s)]

{
Ll
∗[ρl1, · · · , ρl,mn, s]

(
σ2

2
Φ′l(0) + pl(s)Φl(0)− Γ̃l(s)

)
+

Ll
∗[ρl1, · · · , ρl,mn]σ

2

2
Φl(0)−

mn∑
i=1

Ll
∗[ρl1, · · · , ρli]Γ̃l[ρli, · · · , ρl,mn, s]

}
.

5.2. The homogeneous integro-di�erential equations. The solutions to the asso-
ciated homogeneous integro-di�erential equations (5.4) are uniquely determined by the
initial conditions Θl(dl−1) and Θ′l(dl−1). In the following, we apply Laplace transforms
to �nd the solutions of (5.4).

let z = u− dl−1 and Ξl(z) ≡ Θl(u) = Θl(z + dl−1), l = 1, 2, · · · , L, then (5.4) can be
rewritten as

(5.11)

(
σ2

2
d2

dz2
+ cl

d
dz
− δ
)

Ξl(z) + Im×m ⊗AΞl(z)+

B⊗ In×nΞl(z) + Im×m ⊗ (aα>)
∫ z
0

Ξl(z − x)f(x)dx+

(bβ>)⊗ In×n
∫ z
0

Ξl(z − x)g(x)dx = 0, z ≥ 0.

Taking Laplace transforms on both sides of (5.11) yields

(5.12)

[(
σ2

2
s2 + cls− δ

)
Imn×mn + Im×m ⊗A + B⊗ In×n+

Im×m ⊗ (aα>)f̃(s) + (bβ>)⊗ In×ng̃(s)
]
Ξ̃l(s) = σ2

2
Ξ′l(0) + pl(s)Ξl(0),

where Ξ̃l(s) =
∫∞
0
e−sxΞl(x)dx. Then, we have

(5.13) Ξ̃l(s) =
Ll
∗(s)

det[Ll(s)]

(
σ2

2
Ξ′l(0) + pl(s)Ξl(0)

)
.

Since Θl(dl−1) = Ξl(0),Θ′l(dl−1) = Ξ′l(0), invert (5.13) leads to

(5.14) Θl(u) = L
−1

{
Ll
∗(s)

det[Ll(s)]

(
σ2

2
Θ′l(dl−1) + pl(s)Θl(dl−1)

)}
, u ≥ dl−1.

5.3. Claim sizes with rational Laplace transform. Let us now restrict the further
analysis to the case of the claim amount distributions F (x) and G(x) both with rational
Laplace transforms, that is,

f̃(s) =
qm1−1(s)

qm1(s)
, g̃(s) =

rm2−1(s)

rm2(s)
, m1,m2 ∈ N+,

where qm1−1(s), rm2−1(s) are polynomials of degreem1−1 andm2−1 or less, respectively,
while qm1(s) and rm2(s) are polynomials of degree m1 and m2 with only negative roots,
and satisfy qm1−1(0) = qm1(0), rm2−1(0) = rm2(0). Without loss of generality, we assume
that qm1(s) and rm2(s) have leading coe�cient 1. This wide class of distributions includes
the Erlang, Coxian and phase-type distributions, and also the mixtures of these.
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Multiplying both numerator and denominator of (5.13) by h(s), where
h(s) = [qm1(s)rm2(s)]mn. We get for l = 1, 2, · · · , L that

(5.15) Ξ̃l(s) =
Ll
∗(s)

h(s)det[Ll(s)]

(
h(s)

σ2

2
Ξ′l(0) + h(s)pl(s)Ξl(0)

)
.

It is obvious that the factor h(s)det[Ll(s)] of the denominator is a polynomial of de-
gree mn(m1 + m2 + 2) with leading coe�cient (σ2/2)mn. Therefore, the equation
h(s)det[Ll(s)] = 0 has mn(m1 + m2 + 2) roots on the complex plane. We can factorize
h(s)det[Ll(s)] as follows

(5.16) h(s)det[Ll(s)] =

(
σ2

2

)mn mn∏
j=1

(s− ρlj)
mn(m1+m2+1)∏

j=1

(s+Rlj),

where Rlj for each l and j has positive real part and we assume that all of them are
distinct from each other.

Since pl(s) with degree 1, the numerator Ll
∗(s)

(
h(s)σ

2

2
Ξ′l(0) + h(s)pl(s)Ξl(0)

)
in

(5.15) is a polynomial with degree less than mn(m1 +m2 + 2) for each l. By the partial
fraction decomposition, we get

(5.17) Ξ̃l(s) =

mn∑
j=1

ϑlj
s− ρlj

+

mn(m1+m2+1)∑
j=1

χlj
s+Rlj

, s ∈ C,

where ϑlj , for j = 1, 2, · · · ,mn, and χlj , for j = 1, 2, · · · ,mn(m1 + m2 + 1), are the
coe�cient matrices de�ned respectively by

(5.18) ϑlj = −
Ll
∗(ρlj)

(
h(ρlj)

σ2

2
Ξ′l(0) + h(ρlj)pl(ρlj)Ξl(0)

)
(σ

2

2
)mn

[
mn(m1+m2+1)∏

k=1

(Rlk + ρlj)

][
mn∏

i=1,i 6=j
(ρli − ρlj)

] ,
and

(5.19) χlj =
Ll
∗(−Rlj)

(
h(−Rlj)σ

2

2
Ξ′l(0) + h(−Rlj)pl(−Rlj)Ξl(0)

)
(σ

2

2
)mn

[
mn∏
k=1

(ρlk +Rlj)

] [
mn(m1+m2+1)∏

i=1,i 6=j
(Rli −Rlj)

] .

Inverting (5.17) yields

(5.20) Ξl(z) =

mn∑
j=1

ϑlje
ρljz +

mn(m1+m2+1)∑
j=1

χlje
−Rljz, z ≥ 0.

To conclude, we have

5.3. Theorem. If the claim-size distributions F (x) and G(x) both belong to the rational
family, then the solutions of the associated homogeneous integro-di�erential equations
(5.4) are given by

Θl(u) =
mn∑
j=1

ϑlje
ρlj(u−dl−1) +

mn(m1+m2+1)∑
j=1

χlje
−Rlj(u−dl−1),

(5.21) u ≥ dl−1, l = 1, 2, · · · , L,
where ϑlj and χlj are given by (5.18) and (5.19), respectively.
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Next, we turn to derive the expressions of Wl(u), for l = 1, 2, · · · , L. For this purpose,
multiplying both numerator and denominator of (5.10) by h(s), by virtue of (5.16) and

then canceling the same factor
mn∏
j=1

(s− ρlj), we derive from (5.10) that

(5.22)

Φ̃l(s) = 1(
σ2

2

)mn mn(m1+m2+)∏
j=1

(s+Rlj)

×

{
h(s)Ll

∗[ρl1, · · · , ρl,mn, s]
(
σ2

2
Φ′l(0)− Γ̃l(s)

)
+

h(s)Ll
∗[ρl1, · · · , ρl,mn, s]pl(s)Φl(0) + h(s)Ll

∗[ρl1, · · · , ρl,mn]σ
2

2
Φl(0)

− h(s)
mn∑
i=1

Ll
∗[ρl1, · · · , ρli]Γ̃l[ρli, · · · , ρl,mn, s]

}
.

Thanks to [9], which can be rewritten as

(5.23)

Φ̃l(s) = 1(
σ2

2

)mn mn(m1+m2+1)∑
j=1

1
s+Rlj

{
Qlj

(
σ2

2
Φ′l(0)− Γ̃l(s)

)
+ HljΦl(0)

+ Dlj

(
Ll
∗[ρl1, · · · , ρl,mn]σ

2

2
Φl(0)−

mn∑
i=1

Ll
∗[ρl1, · · · , ρli]Γ̃l[ρli, · · · , ρl,mn, s]

)}
.

where Qij , Dij and Hij are given respectively by

(5.24) Qlj =
h(−Rlj)Ll∗[ρl1, · · · , ρl,mn,−Rlj ]

mn(m1+m2+1)∏
i=1,i 6=j

(Rli −Rlj)
, Dlj =

h(−Rlj)
mn(m1+m2+1)∏

i=1,i 6=j
(Rli −Rlj)

,

and

(5.25) Hlj =
h(−Rlj)Ll∗[ρl1, · · · , ρl,mn,−Rlj ]pl(−Rlj)

mn(m1+m2+1)∏
i=1,i 6=j

(Rli −Rlj)
.

In order to obtain the Laplace inverses of (5.23), we recall the operator Tr for a real-

valued integrable function f(x) de�ned by Trf(x) =
∫∞
x
e−r(u−x)f(u)du, r ∈ C, x ≥ 0.

For properties of the operator Tr, see [4]. Now, we extend the de�nition of operator
Tr for a real-valued integrable function to a matrix function w.r.t. a complex number
r. If each element is a real-valued integrable function of x in matrix Ψ(x), we de�ne

TrΨ(x) =
∫∞
x
e−r(u−x)Ψ(u)du, r ∈ C, x ≥ 0, and it is easy to see that

Tr1Tr2Ψ(x) = Tr2Tr1Ψ(x) =
Tr1Ψ(x)− Tr2Ψ(x)

r1 − r2
, r1 6= r2 ∈ C, x ≥ 0.

Furthermore, from [6], we can get the Laplace inverse of Ψ̃[r1, r2, · · · , rn, s] as follows

(5.26) L
−1
(
Ψ̃[r1, r2, · · · , rn, s]

)
= (−1)n

(
n∏
i=1

Tri

)
Ψ(x).

Using (5.26) and inverting (5.23), which results in

(5.27)

Φl(z) = 1(
σ2

2

)mn mn(m1+m2+1)∑
j=1

{(
σ2

2
QljΦ

′
l(0) + HljΦl(0)

)
e−Rljz

+ σ2

2
DljLl

∗[ρl1, · · · , ρl,mn]Φl(0)e−Rljz − e−Rljz ? [QljΓl(z)

− Dlj
mn∑
i=1

Ll
∗[ρl1, · · · , ρli](−1)mn−i

(
mn∏
j=i

Tρlj

)
Γl(z)

]}
, z ≥ 0,

where ? represents the convolution operator.
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Since Φl(z) = Wl(u) = Wl(z + dl−1), we can obtain the following theorem from
(5.27).

5.4. Theorem. If the claim-size distributions F (x) and G(x) both belong to the rational
family, for l = 1, 2, · · · , L, when u ≥ dl−1, the solutions of the equations (5.2) are given
by

(5.28)

Wl(u) =

1(
σ2

2

)mn mn(m1+m2+1)∑
j=1

{(
σ2

2
QljW

′
l(dl−1) + HljWl(dl−1)

)
e−Rlj(u−dl−1)

+σ2

2
DljLl

∗[ρl1, · · · , ρl,mn]Wl(dl−1)e−Rlj(u−dl−1)

−e−Rlj(u−dl−1) ? [QljΓl(u− dl−1)

− Dlj
mn∑
i=1

Ll
∗[ρl1, · · · , ρli](−1)mn−i

(
mn∏
j=i

Tρlj

)
Γl(u− dl−1)

]}
,

where Qlj, Dlj and Hlj are given by (5.24), (5.25), respectively.

5.5. Remark. Let l = 1 in (5.28), we have

(5.29) W1(u) =
1(

σ2

2

)mn−1

mn(m1+m2+1)∑
j=1

Q1jW
′
1(0)e−R1ju, u ≥ 0.

Obviously, W(u) = W1(u) for 0 ≤ u < d1. By virtue of W′
r(u) = rWr−1(u). Thus,

when r = 1, W′(u) = emn, that is, W′(dl−1) = emn, l = 2, 3, · · · , L. So, di�erentiating
(5.29) w.r.t. u and letting u = d1, we can determine W′

1(0). Thus, W(u), 0 ≤ u < d1
can be obtain.

6. Numerical illustrations

We now illustrate an application of the main conclusions in this paper with a numerical
example. We suppose that the claim amounts from class 1 and class 2 have density
functions, respectively,

f(x) = µ1e
−µ1x, µ1 > 0, x > 0, g(y) = µ2e

−µ2y, µ2 > 0, y > 0.

Hence, the Laplace transforms f̃(s) = µ1
s+µ1

, g̃(s) = µ2
s+µ2

. The inter-claim times from

class 1 occur following a Poisson process with parameter λ, i.e. α = (1),A = (−λ),a =
(λ), and inter-claim times from class 2 occur following a phase-type distribution with the
following parameters: β = (1/2, 1/2)>,B = diag(−λ1,−λ2),b = (λ1, λ2)>. In addition,
we assume that the multi-threshold layers L = 2 with 0 = d0 < d1 < d2 = ∞. So, we
have h(s) = [(s+ µ1)(s+ µ2)]2 and Ll(s), l = 1, 2 are given by(

κ(s)− λ1 + λµ1
s+µ1

+ λ1µ2
2(s+µ2)

λ1µ2
2(s+µ2)

λ2µ2
2(s+µ2)

κ(s)− λ2 + λµ1
s+µ1

+ λ2µ2
2(s+µ2)

)
,

where κ(s) = σ2

2
s2 + cls − δ − λ. Let µ1 = 1, µ2 = 2, λ = 2, λ1 = 1, λ2 = 3, σ = 1, δ =

0.01, d1 = 2, c1 = 2 and c2 = 1.5. So, η2 = 0.5, and the positive security loading conditions
are satis�ed. Under this hypothesis, the solutions of h(s)det[L1(s)] = 0 are −R11 =
−6.0539,−R12 = −5.3665,−R13 = −2.0000,−R14 = −1.5891,−R15 = −0.5883,−R16 =
−0.0127, ρ11 = 0.3244, ρ12 = 1.2861, and the solutions of h(s)det[L2(s)] = 0 are −R21 =
−5.3915,−R22 = −4.6356,−R23 = −2.0000,−R24 = −1.5608,−R25 = −0.5600,−R26 =
−0.0079, ρ21 = 0.6041, ρ22 = 1.5517.
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Di�erentiating (5.29) w.r.t. u, then letting u = d1 and using W′(d1) = emn, we have
W′

1(0) = (90.7431, 97.5835)>. Substituting the value of W′
1(0) into (5.29) and noting

that the root s = −2.0000 is Singular, we have the expression of W(u) for 0 ≤ u < 2,

(6.1)

W(u) =

(
−56.9599 48.0343 −0.0078 −6.5895 15.5229
−85.1765 78.8988 −1.2463 −6.0170 13.5409

)
e−6.0539u

e−5.3665u

e−1.5891u

e−0.5883u

e−0.0127u

 .

Letting the initial conditions Ξ′2(0) = (1, 0)>,Ξ2(0) = (0, 1)> and Ξ′2(0) = (0, 1)>,
Ξ2(0) = (1, 0)>, respectively, by virtue of the asymptotic behaviour of W(u), u ≥ 2, we
get the following two linearly independent solutions from (5.21) when u ≥ 2,

Θ21(u) =

(
6.5218 −2.9357 −0.0069 −0.0053 −1.4173
59.4285 1.1493 −0.0164 0.0118 −1.4228

)
e−5.3915(u−2)

e−4.6356(u−2)

e−1.5608(u−2)

e−0.5600(u−2)

e−0.0079(u−2)

 ,

Θ22(u) =

(
2.1362 21.4218 −0.0057 −0.0046 −3.4694
19.4654 −8.3868 −0.0135 0.0103 −3.4830

)
e−5.3915(u−2)

e−4.6356(u−2)

e−1.5608(u−2)

e−0.5600(u−2)

e−0.0079(u−2)

 .

Combining (5.5) with (6.1) and utilizing the boundary condition
W(u)|

u=d−1
= W(u)|

u=d+1
, then solving the linear equations, we have k21 = −0.4243, k22 =

−1.7921. Thus, we obtain W(u), u ≥ 2,

(6.2)

W(u) =

(
50
50

)
+

(
−6.5956 −37.1448 0.0131 0.0105 6.8190
−60.1005 14.5425 0.0312 −0.0235 6.8457

)
e−5.3915(u−2)

e−4.6356(u−2)

e−1.5608(u−2)

e−0.5600(u−2)

e−0.0079(u−2)

 .

Last, since γ = β ⊗α = (1/2, 1/2)>, we can obtain W (u) by W (u) = γ>W(u), viz,

(6.3) W (u) =


−71.0682e−6.0539u + 63.4665e−5.3665u − 0.6271e−1.5891u

−6.3033e−0.5883u + 14.5319e−0.0127u, 0 ≤ u < 2,

50− 33.3481e−5.3915(u−2) − 11.3011e−4.6356(u−2)

+0.0222e−1.5608(u−2) − 0.0065e−0.5600(u−2)

+6.8323e−0.0079(u−2), u ≥ 2.
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Variable selection for high dimensional partially
linear varying coe�cient errors-in-variables models

Zhaoliang Wang∗† and Liugen Xue‡

Abstract

In this paper, we consider variable selection procedure for the high
dimensional partially linear varying coe�cient models where the para-
metric part covariates are measured with additive errors. The penalized
bias-corrected pro�le least squares estimators are conducted, and their
asymptotic properties are also studied under some regularity condi-
tions. The rate of convergence and the asymptotic normality of the
resulting estimates are established. We further demonstrate that, with
proper choices of the penalty functions and the regularization parame-
ter, the resulting estimates perform asymptotically as well as an oracle
property. Choice of smoothing parameters is also discussed. Finite
sample performance of the proposed variable selection procedures is
assessed by Monte Carlo simulation studies.
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1. Introduction

With the development of applied sciences, semiparametric regression models have been
well researched and popularly used for their �exibility and interpretability. [16] present
diverse semiparametric regression models along with their inference procedures and appli-
cations. Of particular interests to us in this paper is the partially linear varying coe�cient
(PLVC) model. Let {(Yi, Xi, Zi, Ti), i = 1, . . . , n} be an iid copies of (Y,X,Z, T ), where
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Y is a scalar response variable and (X,Z, T ) ∈ Rp × Rq × R is its associated regressors.
The PLVC models take the form

(1.1) Yi = X>i β + Z>i α(Ti) + εi,

where β = (β1, . . . , βp)
> is a p-dimensional vector of unknown parameters, α(·) =

(α1(·), . . . , αq(·))> is an q-dimensional vector of unknown coe�cient functions, and εi's
are iid model error with E(εi|Xi, Zi, Ti) = 0. In this model, the dependence of α(·) on
T implies a special kind of interaction between the covariate Z and T . Due to the curse
of dimensionality, we assume, for simplicity, that T is univariate. This model presents a
novel and general structure, which indeed covers many well-studied, important semipara-
metric regression models, e.g. linear model, partially linear model and varying coe�cient
model.

Model (1.1) has been studied by many authors recently. Examples include but are
not limited to [1, 26, 13, 12, 10, 3, 23]. An essential assumption in their papers is
that all data can be observed directly. However, measurement error data are often
encountered in many �elds, including engineering, economics, biomedical sciences and
epidemiology. Simply ignoring measurement errors, known as the naive method, will
result in biased estimators. There is a long standing literature on statistical modeling
subject to measurement errors. Comprehensive reviews can be found in [2, 7]. PLVC
models have been used to study measurements with errors, see, for instance, [21, 8, 20,
19, 6].

Concerns about model bias often prompt us to build models that contain many vari-
ables, especially when the sample size becomes large. A reasonable way to capture such
a tendency is to consider the situation where the dimension of the parameter increases
along with the sample size. On the other hand, to enhance predictability and to select
signi�cant variables is practically interesting, but is always a tricky task for data analysis.
When the number of covariates is large, traditional variable selection methods such as
stepwise regression and best subset selection is computationally infeasible and statistical
properties of the estimators are di�cult to analyze, as argued in [14], this is part of
the reason why penalization based method (e.g., Lasso [17], Elastic net [28], Adaptive
Lasso [27], SCAD [4], MCP [22], among others) has gained popularity in recent years.
There has been much work on variable selection for semiparametric regression models.
In particular, examples for �xed dimensional PLVC models include [25, 24, 11, 18] and
references therein.

In these studies, however, high dimensional vector X, variable selection in X and
measurement error problem were not considered at the same time. The goal of this
paper intends to develop an uni�ed estimation and variable selection method for high
dimensional PLVC errors-in-variables models. To be precise, we allow p → ∞ as the
sample size n → ∞ and denote it by pn whenever necessary, but q is a �xed and �nite
integer in (1.1). In addition, the covariate X is measured with additive errors, while Z
and T are errors free. More speci�c, we cannot observe Xi but we can observe Wi with

(1.2) Wi = Xi + Ui,

and Ui's are iid measurement error, which is independent of (Xi, Zi, Ti, εi), and has
mean zero and the known covariance Cov(Ui) = ΣU (for simplicity). If ΣU is unknown,
its estimation usually requires multiple observations of W or instrumental variables, see
[15] for details. We term (1.1) and (1.2) with PLVCE models. To our best knowledge,
variable selection for PLVCE models with high dimension has not been systematically
studied yet.
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We propose penalized bias-corrected pro�le least squares estimator and systematically
study the asymptotic properties of the estimators. It is worth pointing out that theo-
retic results in this paper provide explicit results on the asymptotic properties under the
setting in which both the dimension of the true non-zero components of β and the total
length of β tend to in�nity as n goes to in�nity. This resonates with the perspective that
a more complex statistical model can be �t when more data are collected. The issue of
a diverging number of parameters has also been considered in [5] in the context of pe-
nalized likelihood. This advances the results in current literature, where estimation and
inference are studied only for �xed �nite dimensional parameters for measurement error
models. We demonstrate how the convergence rate of the resulting estimator depends
on the regularization parameter. Furthermore, with a proper choice of the regularization
parameters and the penalty function, we show that this variable selection procedure is
consistent, and the regularized estimators of the regression coe�cients have oracle prop-
erty. This indicates that the penalized estimators work as well as if the subset of true
zero coe�cients were already known. In addition, we address issues of practical imple-
mentation of the proposed methodology. Monte-Carlo simulation studies are conducted
to assess �nite sample performance.

The rest of this paper is organized as follows. A variable selection procedure for
PLVCE models is proposed in Section 2, assumptions and the asymptotic properties of the
proposed estimators are given in this section. We give the computational algorithms and
discuss the selections of tuning parameters in Section 3. In Section 4, some simulations
are conducted to illustrate the performance of our methodology. Given in Section 5 are
conclusions. All technical proofs are relegated to Section 6.

Notation: The gradient and hessian matrix of a function f(x) are denoted by ∇f(x)
and ∇2f(x) respectively. We write ‖f‖2 and ‖f‖∞ for the L2 and sup norm of a function

f , respectively. The Lq norm of a p-vector v is de�ned as ‖v‖q = (
∑p
j=1 |vj |

q)1/q for

q ≥ 1 with ‖v‖∞ = max1≤j≤p |vj |, and ‖v‖0 = |supp(v)| where supp(v) = {j : vj 6= 0}
and |S| is the cardinality of a set S. LetMi·,M·j andMij be the ith row, jth column and
(i, j) entry of the matrix M , respectively. Let ‖M‖q = sup‖v‖q=1 ‖Mv‖q be the matrix

Lq operator norm. We use ‖ · ‖ as a shorthand for ‖ · ‖2. We use c and C to denote
generic positive constants that may vary from place to place. Moreover, the operator
P−→ denotes convergence in probability, and

D−→ denotes convergence in distribution.

2. Methods and results

2.1. Penalized bias-corrected pro�le least squares estimator. As in [3], if Xi is
observable we can apply the pro�le least squares estimation to estimate the parametric
component and apply the local polynomial estimation to estimate the nonparametric
component. Pro�le least squares is a useful approach and will be showed to be semi-
parametrically e�cient for model (1.1). When εi ∼ N(0, σ2), the approach becomes
pro�le likelihood estimation. For the paper to be self-contained, we summarize the main
ingredients as follows. If β is known, (1.1) can be written as

(2.1) Yi −X>i β = Z>i α(Ti) + εi,

which can be treated as a varying coe�cient model. Thus, we may apply a local linear
regression technique to estimate the varying coe�cient functions {αj(·), j = 1, . . . , q}.
For T in a small neighbourhood of t, approximate each αj(t) by αj(T ) ≈ αj(t)+α′j(t)(T−
t), j = 1, . . . , q. This leads to the following weighted local least-squares problem: �nd
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αj(t), α
′
j(t) to minimize

(2.2)
n∑
i=1

[
Yi −X>i β −

q∑
j=1

Zij
{
αj(t) + α′j(t)(Ti − t)

}]2

Kh(Ti − t),

where Kh(·) = K(·/h)/h, K(·) is a kernel function and h is a bandwidth.
For the sake of descriptive convenience, we denote Y = (Y1, . . . , Yn)>, write X, Z, ε

in a similar fashion. Let ωt = diag{Kh(T1 − t), . . . ,Kh(Tn − t)} and

Dt =

(
Z1 · · · Zn

T1−t
h
Z1 · · · Tn−t

h
Zn

)>
.

It is easy to show that the minimizers of (2.2) are given by

(α̃(t)>, hα̃′(t)>)> = {D>t ωtDt}−1D>t ωt(Y −Xβ).

This solutions depend on β implicitly. Then we can estimate α(t), when β is given, by

(2.3) α̃(t;β) = (Iq×q, 0q×q){D>t ωtDt}−1D>t ωt(Y −Xβ),

where Iq×q denote the q by q identity matrix, and 0q×q denote a q by q matrix of zeros.
Substituting α̃(t;β) into model (2.1), we can obtain the pro�le least square estimator of
β by the following regression problem

(2.4) β̃ = arg min
β

1

2

n∑
i=1

(Yi −X>i β − Z>i α̃(Ti;β))2

Moreover, plug β̃ into (2.3), the estimators of α(t) can be obtained, see [3] for details.
However, in our case, Xi cannot be exactly observed. If one ignores the measurement

error and replaces Xi by Wi in (2.4), one can show that the resulting estimator is incon-
sistent. By the correction for attenuation technique as in [21], the bias-corrected pro�le
least squares estimator of β can be de�ned by minimizing

(2.5) L̂n(β) =
1

2

n∑
i=1

(Yi −W>i β − Z>i α̂(Ti, β))2 − n

2
β>ΣUβ,

where α̂(Ti, β) is obtained by replace X with W in the right hand side of (2.3). The sec-
ond term is included to correct the bias in the squared loss function due to measurement
error.

In high dimensional data analysis, to perform variable selection and estimation simul-
taneously, based on (2.5) we propose the penalized bias-corrected pro�le least squares
function de�ned as

(2.6) Q̂n(β) = L̂n(β) + n

pn∑
j=1

pλ(|βj |),

where pλ(·) is a prespeci�ed penalty function with a tuning parameter λ, which may
be chosen by a data-driven method. It is worth noting that the penalty functions and
the tuning parameters are not necessarily the same for all coe�cients. For instance, we
want to keep important variables in the �nal model, and therefore we should not penalize
their coe�cients. For ease of presentation, we assume that the penalty functions and the
regularization parameters are the same for all coe�cients in this paper.

The choice of the penalty functions has been studied in [4] in depth. A property of
(2.6) is that with a proper choice of penalty functions, such as the SCAD and Lasso
penalty, the resulting estimate contains some exact zero coe�cients. This is equivalent
to excluding the corresponding variables from the �nal selected model, thus variable

selection is achieved at the same time as parameter estimation. Solving for β̂ from (2.6)
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gives the estimate of β. Moreover, the fact that E(Yi − X>i β|Ti) = E(Yi − W>i β|Ti)
suggests us to estimate α(·) by

(2.7) α̂(t) = (Iq×q, 0q×q){D>t ωtDt}−1D>t ωt(Y −W β̂).

2.2. Asymptotic properties. In this subsection we consider the large sampling prop-
erties of the proposed estimator. For convenience of notation, we assume the true value
β∗ = (β∗>I , β∗>II )>, where β∗I consists of all nonzero components of β∗ and β∗II = 0. Let
sn denote the dimension of β∗I . Furthermore, denote

B = (p′λn
(|β∗1 |)sign(β∗1 ), . . . , p′λn

(|β∗sn |)sign(β∗sn))> and

Σλn = diag{p′′λn
(|β∗1 |), . . . , p′′λn

(|β∗sn |)},

where we write λ as λn to emphasize its dependence on the sample size n. To give the
asymptotic results, here are regularity conditions required.

(C1) The random variable T has a bounded support T. Its density function fT (t) is
Lipschitz continuous and bounded away from 0 on T.

(C2) The q × q matrix E(ZZ>|T ) is nonsingular for each T ∈ T. E(XX>|T ),
E(ZZ>|T ) and E(XZ>|T ) are all Lipschitz continuous.

(C3) There is an κ > 2 such that E‖X‖2κ < ∞, E‖Z‖2κ < ∞, E‖ε‖2κ < ∞ and
E‖U‖2κ <∞, and for some δ < 2− κ−1 there is n2δ−1h→∞ as n→∞.

(C4) All of the coe�cient functions {αj(·), j = 1, . . . , q} are Lipschitz continuous and
have continuous second order derivatives on T.

(C5) The function K(·) is a symmetric density function with compact support and
the bandwidth h satis�es nh8 → 0 and nh2/(logn)2 →∞ as n→∞.

(C6) min{|β∗j |, j = 1, . . . , sn}/λn →∞ as n→∞.
(C7) There exist constant c and C such that 0 < c < Λmin(Σ1) < Λmax(Σ1) < C <∞

for all n, where Λmin(M) and Λmax(M) denote respectively the smallest and largest
eigenvalues of symmetric matrix M .

(P1) Let an = max1≤j≤pn{p′λn
(|β∗j |), β∗j 6= 0} and bn = max1≤j≤pn{p′′λn

(|β∗j |), β∗j 6=
0}. Assume that an = O(n−1/2) and bn → 0 as n→∞. In addition, there exist constants
c and C such that, when θ1, θ2 ≥ cλn, |p′′λn

(θ1)− p′′λn
(θ2)| ≤ C|θ1 − θ2|.

(P2) lim infn→∞ lim infθ→0+ p′λn
(θ)/λn > 0.

These conditions, while a little bit lengthy at �rst look, are actually quite mild and
may be further relaxed. Conditions (C1)�(C5) are also used by [3]. Conditions (C6)�
(C7) and (P1)�(P2) are adopted from [5], see [5] for details. Condition (C6) gives the
rate at which the penalized estimator can distinguish nonvanishing parameters from 0,
which is necessary for obtaining the oracle property. In the �nite-parameter situation
this condition is implicitly assumed, and is in fact stronger than that imposed here.
Condition (C7) assumes that the Σ1 is positive de�nite and its eigenvalues are uniformly
bounded. Conditions (P1)�(P2) are regularity conditions on penalty function.

The following theorem demonstrates that the convergence rate for the penalized bias-
corrected estimator depends on the penalty function and the regularization parameter
λn through an.

2.1. Theorem. (Existence) Suppose the penalty function satis�es condition (P1). Under
regularity conditions (C1)�(C5), if λn → 0 and p4

n/n→ 0 as n→∞, then with probability

tending to 1, there is a local minimizer β̂ of (2.6) such that ‖β̂−β∗‖ = OP {
√
pn(n−1/2 +

an)}.

The proof of this theorem is given in Section 6. As it can be seen from the statement
of Theorem 2.1, it requires that λn and the penalty function must be chosen such that
an = O(n−1/2) to achieve

√
n/pn convergence rate (or

√
n convergence rate for �nite and
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�xed p). For the L1 penalty, an = λn. Thus, the
√
n/pn convergence rate requires that

λn = O(n−1/2). This requirement will make it di�cult to choose λn in practice. However,
if condition (C6) is satis�ed, it is clear that an = 0 as when n is large enough for the SCAD

penalty. Thus, the resulting estimator is
√
n/pn consistent, and no requirements are

imposed on the convergence rate of λn. Note that the optimal bandwidth h = O(n−1/5)

is included in Theorem 2.1. Hence
√
n/pn-consistency is achieved without the need of

undersmoothing of the nonparametric component.

2.2. Theorem. (Oracle property). Suppose the penalty function satis�es conditions

(P1)�(P2). Under regularity conditions (C1)�(C7), if λn → 0, p5
n/n→ 0 and

√
n/pnλn →

∞ as n → ∞, then with probability tending to 1, the
√
n/pn-consistent local minimizer

β̂ = (β̂>I , β̂
>
II)
> in Theorem 2.1 must satisfy: (i) (Sparsity) β̂II = 0; (ii)(Asymptotic

normality) Let An be a determinstic l×sn matrix with l �xed and AnA
>
n → G, a positive

de�nite matrix. Then

√
nAnΣ

−1/2
2I {Σ1I + Σλn}[β̂I − β

∗
I + {Σ1I + Σλn}

−1B]
D−→ N(0l, G),

where Σ1I and Σ2I are the top left-hand sn × sn submatrix of Σ1 and Σ2, respectively.

Theorem 2.2 is proved in Section 6. It is easy to see that sparsity and asymptotic
normality are still valid when the number of parameter diverges in PLVCE models. For
some penalty functions, including the SCAD penalty, B and Σλn are zero when n is
large enough. Hence the results in Theorem 2.2 imply that the proposed procedure has

the celebrated oracle property, i.e., β̂II = 0 and
√
nAnΣ

−1/2
2I Σ1I(β̂I − β∗I )

D−→ N(0l, G).
On the other hand, the Lq penalty, q ≥ 1, cannot simultaneously satisfy the conditions

λn = OP (n−1/2) and
√
n/pnλn → ∞ as n → ∞. These penalty functions cannot

produce estimators with the oracle property. The Lq penalty, q < 1, may satisfy these
two conditions at same time, but the bias term in Theorem 2.2(ii) cannot be ignored.

To make statistical inference on β∗I , we need to estimate the standard error of the

estimator of β̂I . The standard errors for estimated parameters can be obtained directly
because we are estimating parameters and selecting variables at the same time. From
Theorem 2.2, we can further approximate the estimation variance of the resulting esti-
mator by the sandwich formula. Namely

(2.8)
1

n
{Σ̂1I + Σλn(β̂I)}−1Σ̂2I{Σ̂1I + Σλn(β̂I)}−1,

where Σ̂1I , a consistent estimate of Σ1I , is de�ned as

Σ̂1I =
1

n
∇2L̂nI(β̂I) =

1

n

n∑
i=1

(
WIi +

∂α̂(Ti; β̂I)

∂βI
Zi

)⊗2

− ΣUI ,

and Σ̂2I = Cov(∇L̂nI(β̂I)) is given by

1

n

n∑
i=1

{
(Yi −W>Ii β̂I − Z>i α̂(Ti; β̂I))(WIi +

∂α̂(Ti; β̂I)

∂βI
Zi) + ΣUI β̂I

}⊗2

,

furthermore, Σλn(β̂I) is obtained by replacing β∗I by β̂I in Σλn .
The consistency of the proposed sandwich formula can be shown by using similar

techniques as in [5]. The accuracy of this sandwich formula will be tested in our simulation
studies.
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3. Issues in practical implementation

In this section, we present a computational algorithm for obtaining the estimator and
selection methods for the tuning parameters.

3.1. Computational algorithm. Since some penalty functions such as the SCAD
penalty and Lq, 0 ≤ q ≤ 1 penalty are singular at the origin, it is challenging to minimize
the penalized bias-corrected least squares function of (2.6). Following the idea of [4],
we apply iterative algorithm based on the local quadratic approximation (LQA) of the
penalty function. More speci�cally, suppose that at the kth step of the iteration, we

obtain the value β̂(k) that is close to the true value β∗. If β̂
(k)
j is very close to 0, then

set β̂
(k+1)
j = 0, and exclude the corresponding covariate from the model. Otherwise, an

approximation of the penalty function at value β̂
(k)
j can be given by

pλ(|βj |) ≈ pλ(|β̂(k)
j |) +

1

2

p′λ(|β̂(k)
j |)

|β̂(k)
j |

(β2
j − β̂

(k)2
j ),

Consequently, with a slight abuse of notation, removing irrelevant terms we undate the
estimate of β repeatedly until convergence with

(3.1) β(k+1) = arg min
β

{
L̂n(β) +

n

2
β>ΣLQA

λn
(β̂(k))β

}
,

where ΣLQA
λn

(β̂(k)) = diag{p′λn
(|β̂(k)

1 |)/|β̂
(k)
1 |, . . . , p′λn

(|β̂(k)
pn |)/|β̂

(k)
pn |}. Hence, the foregoing

discussion leads to the following iterating algorithm:

Step 1. Given an initial estimate β̂(0).

Step 2. Update β̂(1) by (3.1).

Step 3. Set β̂(0) = β̂(1). Iterate Step 1 and 2 until convergence, and denote the �nal

estimator β̂.
In the initialization step, the initial estimators do not a�ect the degree of sparsity

of the solution and the accuracy of the �nal estimator, but they will a�ect the speed
of convergence of our iterative algorithm. In the following simulations, we obtain an
initial estimator using a bias-corrected ordinary least-squares method based on (2.5).
The simulation results show that such a choice is workable. During the iterations, to
avoid numerical instability we need to keep track of zero coe�cients and modify the

penalty terms accordingly once |β̂(0)
j | drops below a certain threshold ε (ε = 10−4 in our

implementation). Speci�cally, in Step 2, if |β̂(0)
j | < ε, then set β̂

(1)
j = 0, delete the jth

component of the covariates from the iteration.

3.2. Tuning parameters selection. To implement the proposed method, the band-
width h and the tuning parameters λn in the penalty functions should be chosen. It is
desirable to have automatic, data-driven methods to select h and λn.

Bandwidth selection. Condition (C5) reveal the rate of h. Any bandwidths with this

rate lead to the same limiting distribution for β̂. Therefore, the bandwidth selection can
be done in a standard routine. For simple calculation, the bandwidth h is taken to be
h = 0.5n−1/5 in this paper, which we �nd to work satisfactorily in a variety of setting.
We also conduct a sensitivity analysis by shifting bandwidths around the selected values,
and found that the results are stable. Thus, the simulation results are not sensitive to
the choice of h within certain range.

Regularization parameters selection. Here, given h, we use the "leave one sample out"
method to select the tuning parameter λn. This method has been widely applied in
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practice. The cross-validation score for λn is de�ned as

(3.2) CV(λn) =

n∑
i=1

(Yi −W>i β̂−i − Z>i α̂−i(Ti))2 −
n∑
i=1

(β̂−i)>ΣU β̂
−i

where β̂−i is the solution based on (2.6) after deleting the ith observation, and α̂−i(Ti)

is the estimator de�ned in (2.7) with β̂ replaced by β̂−i. The CV tuning parameter λCV
n

is selected to minimize (3.2), that is, λCV
n = arg minλn CV(λn).

We also can use any other appropriate selection method to select the tuning parameters
such as GCV, AIC and BIC. However, the de�nition of the degrees of freedom for the
e�ective parameters in our variable selection procedure poses great challenges. Then,
it is inconvenient to use such selection criteria for our variable selection procedure. In
addition, from our simulation experience, we found that the CV method used in this
paper works well. Further study of the asymptotic property of the proposed tuning
parameter selection is needed, but it is outside the scope of this paper.

4. Simulation studies

In this section we corroborate our theoretical results with numerical experiments on
synthetic data examples. That is, we conduct simulations to evaluate the �nite sample
performance of the proposed methods. We focus on only the SCAD penalty and referred
to the proposed procedure as CSCAD. The CSCAD is compared with four alternative pro-
cedures as follows. The �rst is the naive penalized procedures with a direct replacement
of X by W ignoring measurement error (NSCAD). The second is the estimators with con-
sidering measurement errors, but not penalized for complexity (Full). As a benchmark,
two oracle methods in which the nonzero subset of slope β were known are implemented.
In particular, the �rst (Oracle1) serves as the gold standard, in which X can be observed.
The second (Oracle2) is another type, in which using W based on bias-corrected due to
measurement errors.

We simulate data from model (1.1) and (1.2) with q = 2 and pn = b1.8n1/3c where
bkc denote the largest integer not greater than k, in which α1(t) = 2 sin(2πt) and α2(t) =
16t(1− t)− 2, and β = (2,−1.5, 4, 0, . . . , 0)>. Thus the �rst sn = 3 regression variables

were signi�cant, but the remaining were not. The rate pn = b1.8n1/3c is not the same as
presented in the theorems in Section 2, but we use this to show the capability of handling
a higher rate of parameters growth for proposed method. The index variable T is sampled
uniformly on [0, 1]. The covariates (X,Z) are taken from multivariate normal distribution

Npn+q(0,Σ). We consider Toeplitz convariance matrices Σij = %|i−j|, in which both
independent (% = 0) and correlated cases (% = 0.5) are taken into account. Y is generated
according to the model, where noise term ε ∼ N(0, σ2), and two di�erent value σ2 = 0.5
and 1, which represent strong and weak signal-to-noise ratios, were considered. Moreover,
we assume that measurement error U ∼ N(0, σ2

UIpn), where we take σU = 0.2 and 0.4
to represent di�erent level of measurement errors. We perform 1000 simulations for all
con�gurations with sample size n = 100 and n = 400 respectively. In all simulations, as
a commonly adopted strategy we use the Epanechnikov kernel function K(t) = 0.75(1−
t2)+.

To assess the performance of di�erent methods, we adopt the following criteria. For

model error, the performance of estimator β̂ will be assessed by using the generalized
mean square error (GMSE), de�ned as

GMSE = (β̂ − β∗)>(EWW> − ΣU )(β̂ − β∗).
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Table 1. Simulation results with di�erent methods for σ2 = 1 over
1000 repetitions

σU = 0.2 σU = 0.5
% Method True C IC GMSE RASE True C IC GMSE RASE

(n, pn) = (100, 8)

0 CSCAD 99.9 5.000 0.001 0.072 0.556 91.0 4.970 0.063 0.546 1.030
NSCAD 99.6 5.000 0.004 0.100 0.550 80.0 5.000 0.205 1.377 0.897
Full 0.00 0.020 0.000 0.188 0.571 0.00 0.016 0.000 1.060 1.107
Oracle1 100 5 0 0.033 0.551 100 5 0 0.033 0.950
Oracle2 100 5 0 0.071 0.556 100 5 0 0.399 1.018

0.5 CSCAD 99.6 5.000 0.004 0.076 0.621 69.3 4.447 0.078 2.051 1.448
NSCAD 88.7 5.000 0.114 0.244 0.622 1.70 4.999 1.112 2.071 0.985
Full 0.00 0.008 0.000 0.202 0.647 0.00 0.006 0.000 2.801 1.638
Oracle1 100 5 0 0.033 0.614 100 5 0 0.035 1.075
Oracle2 100 5 0 0.071 0.620 100 5 0 0.607 1.220

(n, pn) = (400, 13)

0 CSCAD 100 10.00 0.000 0.015 0.274 99.9 10.00 0.001 0.072 0.469
NSCAD 100 10.00 0.000 0.046 0.271 97.7 10.00 0.023 0.982 0.430
Full 0.0 0.12 0.000 0.067 0.277 0.0 0.055 0.000 0.300 0.481
Oracle1 100 10 0 0.008 0.273 100 10 0 0.007 0.463
Oracle2 100 10 0 0.015 0.274 100 10 0 0.071 0.469

0.5 CSCAD 99.9 9.999 0.000 0.016 0.314 99.2 10.00 0.009 0.099 0.548
NSCAD 98.7 10.00 0.013 0.085 0.310 0.0 10.00 1.008 1.873 0.475
Full 0.0 0.090 0.000 0.073 0.321 0.0 0.032 0.000 0.384 0.589
Oracle1 100 10 0 0.007 0.313 100 10 0 0.007 0.534
Oracle2 100 10 0 0.016 0.314 100 10 0 0.087 0.548

The performance of estimator α̂(·) will be assessed by using the square root of average
errors (RASE)

RASE =

N−1
grid

Ngrid∑
k=1

‖α̂(tk)− α(tk)‖2


1/2

,

over Ngrid = 200 grid points {tk}. Table 1 presents the mean of GMSE and RASE over
the 1000 simulations. For the selected model, the model complexity is summarized in
terms of the number of zero coe�cients for the parametric components, as also reported
in Table 1. In Table 1, the column labeled �C" is the average numbers of zero coe�cients
correctly estimated to be zero, and the column labeled �IC" depicts the average numbers
of nonzero coe�cients erroneously set to zero. Furthermore, the column labeled �True"
is the proportion of times the true model is exactly identi�ed.

From Table 1, we can make the following observations: (i) The performances of both
CSCAD and NSCAD procedures become better in terms of model error and model complex-
ity as the level of measurement error decreases. (ii) Both variable selection procedures
perform very similarly when the level of measurement error is small. However, when
the level of measurement error is large, the performance of CSCAD is signi�cantly better
than that of NSCAD. The latter cannot eliminate some unimportant variables and gives
larger model errors. This implies that the estimators based on the NSCAD procedure are
biased. (iii) In addition, as expected, the performance of the Oracle1 procedure is best
in all cases in terms of model error. Furthermore, the performance of CSCAD becomes
increasingly closer to that based on the Oracle2 procedure as the level of measurement
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error decreases or % decreases. (iv) As the sample size increases, the performance of all
methods becomes better. To save space the simulation results, for others settings with
σ2 = 0.5, are not showed here. The above conclusions can also be drawn similarly except
now all approaches perform better than they done when σ2 = 1 as presented in Table
1. These �ndings imply that the model selection result based on the CSCAD approach is
satisfactory and the selected model is very close to the true model in terms of nonzero
coe�cients.

Table 2. Bias and standard deviations of estimators for σ2 = 1, σU =
0.5 and % = 0.5

β̂1 β̂2 β̂3

Method Bias SD SDE(sd(SDE)) Bias SD SDE(sd(SDE)) Bias SD SDE(sd(SDE))

(n, pn) = (100, 8)

CSCAD 0.769 3.689 0.687(2.701) 1.378 9.414 0.973(4.749) 1.532 13.419 0.823(3.894)
NSCAD 0.875 0.492 0.251(0.063) 1.471 0.178 0.263(0.049) 1.215 0.252 0.228(0.033)
Oracle1 0.101 0.127 0.119(0.049) 1.111 0.139 0.139(0.146) 0.100 0.126 0.121(0.084)
Oracle2 0.430 0.532 0.785(6.753) 0.597 0.678 1.364(4.364) 0.521 0.585 0.837(8.114)
Full 0.847 3.695 1.091(7.934) 1.534 9.477 1.784(8.565) 1.806 13.476 1.211(9.255)

(n, pn) = (400, 13)

CSCAD 0.162 0.200 0.193(0.023) 0.212 0.282 0.241(0.039) 0.180 0.217 0.206(0.026)
NSCAD 0.758 0.145 0.117(0.021) 1.500 0.000 0.125(0.010) 1.253 0.101 0.111(0.008)
Oracle1 0.046 0.058 0.058(0.004) 0.055 0.068 0.064(0.004) 0.050 0.063 0.058(0.004)
Oracle2 0.159 0.193 0.194(0.023) 0.204 0.249 0.243(0.045) 0.177 0.211 0.207(0.026)
Full 0.181 0.208 0.200(0.025) 0.249 0.277 0.249(0.044) 0.263 0.280 0.215(0.030)

We now verify the consistency of the estimators and test the accuracy the standard
error formula. Table 2 displays the bias (columns labeled Bias) and sample standard
deviation (columns labeled SD) of the estimates for three nonzero coe�cients, over 1000
simulations. These can be regard as the true standard errors and compared with 1000
estimated standard errors. The 1000 estimated standard errors by using the sandwich
formula are summarized by their mean (columns labeled SDE) and the sample standard
deviations (sd(SDE)). The accuracy gets better when n increases. We omit here the
results for other con�gurations, only for case σ2 = 1, σU = 0.5 and % = 0.5. Overall, the
estimators are consistent and the sandwich formula works well.

5. Discussion

In this paper, we have proposed a variable selection procedure for the high dimensional
PLVCE models. Our method extends the variable selection procedure to the setting, in
which high dimension, measurement error, semiparametric models are considered at the
same time. We have shown that the proposed method is consistent in variable selections,
and the estimators of the regression coe�cients have oracle property. Simulation studies
indicate that the proposed method seems rather encouraging. To conclude this article,
we would like to discuss some interesting topics for future study. Firstly, in this paper,
we assume that the covariance matrix of measurement errors is known. However, it is
usually unknown in many applications. If the covariance matrix is unknown, the vari-
able selection procedure proposed by this paper will not work any more unless repeated
measurements of the data are available. As a future research topic, it is interest to con-
sider the variable selection for the high dimensional PLVCE models when the covariance
matrix of measurement errors is unknown. Secondly, it is interesting to perform variable
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selection for pn � n. Variable selection for large pn, small n setting is a very active
research topic. However, it is challenging to extend the existing procedures for large pn,
small n problems to measurement error data. The details will also be further investigated
in the future.

6. Proofs

In order to prove the main results, we �rst introduce several lemmas. Let µk =∫
tkK(t)dt, νk =

∫
tkK2(t)dt, cn = h2 + [log(1/h)/nh]1/2. Set Ψ(T1) = E(X1Z

>
1 |T1),

Υ(T1) = E(Z1Z
>
1 |T1) and Ξ(T1;β) = E[Z1(Y1 − X>1 β)|T1]. Furthermore, denote by

α(t;β) the 'least favorable curve' of the nonparametric function α(t), which is de�ned as

(6.1) α(t;β) = arg min
η

E[(Yi −W>i β − Z>i η)2|Ti = t] = Υ−1(t)Ξ(t;β),

and letQn(β) = Ln(β)++n
∑pn
j=1 pλ(|βj |), where 2Ln(β) =

∑n
i=1(Yi−W>i β−Z>i α(Ti;β))2

−nβ>ΣUβ. Apparently, α(t;β∗) = α∗(t) and ∂α(t;β)
∂β

= Ψ(t)Υ−1(t) is a pn by q matrix.

The following Lemma 6.1 can be found in [3].

6.1. Lemma. Let (Xi, Yi), i = 1, . . . , n be be i.i.d. random vectors, where the Yi are
scale random variables. Further assume that E|y|κ < ∞ and supx

∫
|y|κf(x, y)dy < ∞,

where f denotes the joint density of (X,Y ). Let K be a bounded positive function with

a bounded support, satisfying a Lipschitz condition. Given that n2δ−1h → ∞ for some
δ < 1− κ−1, then

sup
x

∣∣∣∣∣ 1n
n∑
i=1

{
Kh(Xi − x)Yi − E[Kh(Xi − x)Yi]

}∣∣∣∣∣ = OP

({
log(1/h)

nh

}1/2
)
.

6.2. Lemma. Under regularity conditions (C1)�(C5), the following holds uniformly in
t ∈ T,

α̂(t;β)− α(t;β) = OP (cn),

∂α̂(t;β)

∂βk
− ∂α(t;β)

∂βk
= OP (cn), for k = 1, . . . , pn.

Proof. From Lemma 6.1, we have that

1

n
D>t ωtDt =

1

n

n∑
i=1

(
ZiZ

>
i ZiZ

>
i
Ti−t
h

ZiZ
>
i
Ti−t
h

ZiZ
>
i (Ti−t

h
)2

)
Kh(Ti − t)

=

(
1 0
0 µ2

)
⊗Υ(t)fT (t){1 +OP (cn)} and

1

n
D>t ωt(Y −Wβ) =

1

n

n∑
i=1

(
Zi(Yi −W>i β)

Zi(Yi −W>i β)Ti−t
h

)
Kh(Ti − t)

=

(
1
0

)
⊗ Ξ(t;β)fT (t){1 +OP (cn)}

hold uniformly in t ∈ T. Here the symbol ⊗ represent the Kronecker product between
matrices. Hence, invoking equation (6.1) and α̂(t;β) in Section 2, the �rst conclusion
follows. The second assertion can get similarly. �

6.3. Lemma. Under regularity conditions (C1)-(C5), if pκn/n → 0 for κ > 5/4, h =
O(n−ς) with (4κ)−1 < ς < 1− κ−1, then for any β,

n−1/2‖∇L̂n(β)−∇Ln(β)‖ = oP (1).
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Proof. Invoking Lemma 6.2, the column vector n−1/2(∇L̂n(β) − ∇Ln(β)) has the kth
component equals

1√
n

n∑
i=1

{
(Yi −W>i β − Z>i α̂(Ti;β))(−Wik −

∂α̂(Ti;β)

∂βk
Zi)

− (Yi −W>i β − Z>i α(Ti;β))(−Wik −
∂α(Ti;β)

∂βk
Zi)
}

=
1√
n

n∑
i=1

{
(Yi −W>i β − Z>i α(Ti;β))

∂α(Ti;β)

∂βk
Zi + Z>i α(Ti;β)Wik

}
OP (cn)

=OP (cn).

Hence we have shown

n−1/2‖∇L̂n(β)−∇Ln(β)‖ = OP (
√
pncn) = oP (1),

and the proof is complete. �

6.4. Lemma. Under the conditions of Theorem 1, we have

[n−1/2∇>Ln(β∗)](Σ2)−1[n−1/2∇Ln(β∗)]− pn√
2pn

D−→ N(0, 1),

where Σ2 = E[(εi − U>i β∗)(Ψ(Ti)Υ
−1(Ti)Zi −Xi) − ΣUβ

∗]⊗2. In addition, ∇Ln(β∗) =

OP (
√
npn). Likewise, the results above hold also by Ln(β∗) replaced with L̂n(β∗).

Proof. From (6.1), we get the following formulas E[Zi(Yi−X>i β−Z>i α(Ti;β))|Ti = t] = 0

and E[XiZ
>
i + ∂α(Ti;β)

∂β
ZiZ

>
i |Ti = t] = 0. Then E[∇Ln(β)] = 0 follows. Direct calculation

yields

∇Ln(β) =

n∑
i=1

(Yi −W>i β − Z>i α(Ti;β))(Ψ(Ti)Υ
−1(Ti)Zi −Wi)− nΣUβ.

Thus,

1√
n
∇Ln(β∗) =

1√
n

n∑
i=1

{
(εi − U>i β∗)(Ψ(Ti)Υ

−1(Ti)Zi −Wi)− ΣUβ
∗
}
.

By applying the martingale central limit theorem as given in [9], we can easily obtain
the �rst part. The second part follows from Lemma 6.3. �

6.5. Lemma. Under regularity conditions C1�C5, and p4/n = o(1),

‖ 1

n
∇2Ln(β)− Σ1‖ = oP (p−1

n ),

‖ 1

n
∇2L̂n(β)− Σ1‖ = oP (p−1

n ) +OP (pncn),

where Σ1 = E(X1X
>
1 )− E{Ψ(T1)Υ−1(T1)Ψ>(T1)}.

Proof. Direct calculation yields n−1∇2Ln(β) = n−1∑n
i=1(Wi −Ψ(Ti)Υ

−1(Ti)Zi) (Wi −
Ψ(Ti)Υ

−1(Ti)Zi)
> − ΣU . Then E[n−1∇2Ln(β)] = E{E[(Wi − Ψ(Ti)Υ

−1(Ti)Zi) (Wi −
Ψ(Ti)Υ

−1(Ti)Zi)
>|Ti]} − ΣU = Σ1. The �rst conclusion follows from

Ep2
n‖

1

n
∇2Ln(β)− Σ1‖2 = p2

nE

pn∑
j,k=1

{
1

n
∇2Ln(β)− Σ1

}2

jk

= O

(
p4
n

n

)
= o(1).
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From this, triangle inequality immediately gives the second conclusion if we can show
that

(6.2) ‖ 1

n
∇2L̂n(β)− 1

n
∇2Ln(β)‖ = OP (pncn).

To this end, for k = 1, . . . , pn,

n−1 ∂

∂βk
(∇L̂n(β)−∇Ln(β))

=n−1 ∂

∂βk

n∑
i=1

{
(Yi −W>i β − Z>i α̂(Ti;β))(−Wi −

∂α̂(Ti;β)

∂β
Zi)

−(Yi −W>i β − Z>i α(Ti;β))(−Wi −
∂α(Ti;β)

∂β
Zi)

}
=n−1

n∑
i=1

{
(Wik +

∂α̂(Ti;β)

∂βk
Zi)(Wi +

∂α̂(Ti;β)

∂β
Zi)

−(Wik +
∂α(Ti;β)

∂βk
Zi)(Wi +

∂α(Ti;β)

∂β
Zi)

}
=OP (

√
pncn)

where the last line follows from Lemma 6.2. Hence (6.2) follows and the proof completes.
�

Proof of Theorem 2.1. Let ϑn =
√
pn(n−1/2 +an) and set ‖v‖ = C, where C is a large

enough constant. Our aim is to show that for any given ε > 0 there is a large constant
C such that, for large n we have

(6.3) Pr

{
inf
‖v‖=C

Q̂n(β∗ + ϑnv) > Q̂n(β∗)

}
≥ 1− ε.

This implies that with probability tending to 1 there is a local minimizer β̂ in the ball

{β∗ + ϑnv : ‖v‖ ≤ C} such that ‖β̂ − β∗‖ = OP (ϑn).

Let ∆n(v) = Q̂n(β∗ + ϑnv) − Q̂n(β∗). Recall that the �rst sn components of β∗ are
nonzero, and pλ(·) is nonnegative and pλ(0) = 0. By the Taylor expansion and the fact

that L̂n(β) is quadratic, we have

∆n(v) ≥ L̂n(β∗ + ϑnv)− L̂n(β∗) + n

sn∑
j=1

{pλ(|β∗j + ϑnvj |)− pλ(|β∗j |)}

≥ ϑnv>∇L̂n(β∗) +
1

2
ϑ2
nv
>∇2L̂n(β∗)v

+

sn∑
j=1

nϑnp
′
λ(|β∗j |)sign(β∗j )vj +

1

2

sn∑
j=1

nϑ2
np
′′
λ(|β∗j |)v2

j {1 + o(1)}

4
= D1 +D2 +D3 +D4.

By Lemma 6.4 and
√
pn ≤

√
nϑn, we get

|D1| = |ϑnv>∇L̂n(β∗)| ≤ ϑn‖∇L̂n(β∗)‖‖v‖

≤ OP (ϑn
√
npn)‖v‖ ≤ OP (nϑ2

n)‖v‖
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Next we consider D2, An application of Lemma 6.5 yields that

D2 =
1

2
ϑ2
nv
>∇2L̂n(β∗)v =

1

2
nϑ2

nv
>[

1

n
∇2L̂n(β∗)− Σ1]v +

1

2
nϑ2

nv
>Σ1v

=
1

2
nϑ2

nv
>Σ1v + oP (1)nϑ2

n‖v‖2.

With regard to D3 and D4, for
√
snan ≤

√
sn(n−1/2 + an) ≤ ϑn, we have

|D3| ≤
sn∑
j=1

∣∣nϑnp′λ(|β∗j |)sign(β∗j )vj
∣∣

≤ nϑnan
sn∑
j=1

|vj | ≤ nϑnan
√
sn‖v‖ ≤ nϑ2

n‖v‖, and

|D4| =
1

2

sn∑
j=1

nϑ2
np
′′
λ(|β∗j |)v2

j {1 + o(1)} ≤ bnnϑ2
n‖v‖2.

Therefore, under the condition (P1), by allowing C to be large enough, all terms D1,
D3, D4 are dominated by D2, which is positive. This proves (6.3) and completes the
proof. �

Proof of Theorem 2.2. Let ζn = C
√
pn/n. It is su�cient to show that with probability

tending to 1 as n → ∞, for any β satisfying ‖β − β∗‖ = OP (
√
pn/n) we have, for

j = sn + 1, . . . , pn,

(6.4)
∂Q̂n(β)

∂βj
< 0 for βj ∈ (−ζn, 0) and

∂Q̂n(β)

∂βj
> 0 for βj ∈ (0, ζn).

By Taylor expansion and the fact that L̂n(β) is quadratic in β, we get

∂Q̂n(β)

∂βj
=
∂L̂n(β)

∂βj
+ np′λ(|βj |)sign(βj)

=
∂L̂n(β∗)

∂βj
+

pn∑
k=1

∂2L̂n(β∗)

∂βj∂βk
(βk − β∗k) + np′λ(|βj |)sign(βj)

4
= J1 + J2 + J3.

Next, we consider J1, J2. Invoking Lemma 6.4, we have

J1 = OP (
√
n) = OP (

√
npn).

The term J2 can be written as J2 =
∑pn
k=1

{
∂2L̂n(β∗)
∂βj∂βk

− nΣ1,jk

}
(βk−β∗k)+n

∑pn
k=1 Σ1,jk(βk−

β∗k)
4
= J21 + J22. Using the Cauchy-Schwarz inequality and ‖β − β∗‖ = OP (

√
pn/n), we

have

|J22| ≤ n
pn∑
k=1

|Σ1,jk(βk − β∗k)| ≤ nOP (
√
pn/n)

[
pn∑
k=1

(Σ1,jk)2

]1/2

.

As the eigenvalues of Σ1 are bounded according to condition (C7), we have
∑pn
k=1(Σ1)2

jk

= O(1). This entails that J22 = OP (
√
npn). For J21, applying the Cauchy-Schwarz

inequality,

|J21| ≤ ‖β − β∗‖

[
pn∑
k=1

{
∂2L̂n(β∗)

∂βj∂βk
− nΣ1,jk

}2]1/2

.
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By a standard argument from condition (C7), we have[
pn∑
k=1

{
∂2Ln(β∗)

∂βj∂βk
− nΣ1,jk

}2
]1/2

= OP (n).

Then J21 = OP (
√
npn) follows form ‖β̂ − β∗‖ = OP (

√
pn/n). Now we have

J2 = OP (
√
npn).

Hence we have

∂Q̂n(β)

∂βj
= nλ

{
p′λ(|βj |)

λ
sign(βj) +OP

(√
pn/n

λ

)}
.

Because of
√
pn/n/λ → 0 and (P2), the sign of βj completely determines the sign of

∂Q̂n(β)/∂βj . Then (6.4) follows from the continuity of ∂Q̂n(β)/∂βj . Combining with

the result of Theorem 2.1, there is a
√
n/pn-consistent local minimizer β̂ of Q̂n(β) and

β̂ has the form (β̂>I , 0
>)>, i.e. part (i) holds.

Now we prove part (ii). As shown in Theorem 2.1, we let λn be su�ciently small so

that an = o(n−1/2), then β̂ is
√
n/pn consistent. By part (i), each component of β̂I stays

away from zero for a su�ciently large sample size n because β∗I is away from zero. At

the same time, β̂II = 0 with probability tending to 1. As a consequence, the estimate β̂I
based on the penalized estimation are necessarily the solution of the following estimation
equation

(6.5) ∇L̂nI(β̂I) + nP ′λ(|β̂I |) = 0

where P ′λ(|β̂I |) is a sn-vector whose jth element is p′λ(|β̂j |)sign(β̂j). Applying a Taylor
expansion to (6.5) and re-arranging the resulting terms, we have

(Σ1I + Σλn)(β̂I − β∗I ) + P ′λ(|β∗I |) = − 1

n
∇LnI(β∗I ) +R1 +R2

where R1 = −
[

1
n
∇2L̂nI(β

∗
I ) + P ′′λ (|β̃I |)− Σ1I − Σλn

]
(β̂I−β∗I ) and R2 = 1

n
∇LnI (β∗I )−

1
n
∇L̂nI(β∗I ). By Lemma 6.5 and Cauchy-Schwarz inequality, ‖R1‖ = oP ((npn)−1/2) +

OP (
√
p3
n/ncn) = oP (n−1/2). By Lemma 6.3, we have R2 = oP (n−1/2). Hence, we have

√
nAnΣ

−1/2
2I {Σ1I + Σλ}{(β̂I − β∗I ) + {Σ1I + Σλ}−1B}

=− 1√
n
AnΣ

−1/2
2I ∇LnI(β∗I ) + oP (1),

Since ‖AnΣ
−1/2
2I ‖ = O(1) by conditions of this theorem.

Next, we verify the Lindeberg-Feller Central Limit Theorem for the last term above.
Let

ψni =
1√
n
AnΣ

−1/2
2I ∇LnIi(β∗I ), i = 1, . . . , n,

where ∇LnIi(β∗I ) =
{

(Yi −W>Iiβ∗I − Z>i α(Ti;β
∗
I ))(WIi + ∂α(Ti;β̂I )

∂βI
) + ΣUIβ

∗
I

}
. For any

ε > 0,

n∑
i=1

E‖ψni‖2I{‖ψni‖ > ε} = nE‖ψn1‖2I{‖ψn1‖ > ε}

≤ n{E‖ψn1‖4}1/2{Pr(‖ψn1‖ > ε)}1/2.
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Using Chebyshev's inequality, we have Pr(‖ψn1‖ > ε) ≤ E‖ψn1‖2
ε2

=
E‖AnΣ

−1/2
2I

∇LnIi(β
∗
I )‖2

nε2
= O(n−1) and E‖ψn1‖4 = E(ψ>niψni)

2 ≤ 1
n2 Λ2

max(AnA
>
n )

Λ2
max(Σ−1

2I )E‖∇L>nIi(β∗I ) ∇LnIi(β∗I )‖2 = O(
s2n
n2 ), by condition (C7). Hence, we get

n∑
i=1

E‖ψni‖2I{‖ψni‖ > ε} = O(n
sn
n

1√
n

) = o(1).

Also, note that Eψni = 0 and

n∑
i=1

Cov(ψni) = nCov(ψn1) = Cov(AnΣ
−1/2
2I ∇LnIi(β∗I )) = AnA

>
n → G.

From the foregoing argument, ψni satis�es the conditions of the Lindeberg-Feller central
limit theorem, then we complete the proof of part (ii). �
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models with diverging number of parameters
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Abstract

This article is concerned with the calibration of the empirical likeli-
hood for semiparametric varying-coe�cient partially linear models with
diverging number of parameters. However, there is always substan-
tial lack-of-�t, when the empirical likelihood ratio is calibrated by a
bias-corrected empirical likelihood, producing tests with type I errors
much larger than nominal levels. So we consider an e�ective calibration
method and study the asymptotic behavior of this bias-corrected em-
pirical likelihood ratio function. Some simulation studies are conducted
to illustrate our approach.
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1. Introduction

Consider the following semiparametric varying-coe�cient partially linear models

(1.1) Y = XTα(U) + ZTβ + ε

where α(·) = (α1(·), ..., αq(·))T is a q-dimensional vector of unknown regression functions,
β = (β1, ..., βp)

T is a p-dimensional of unknown regression coe�cients, and ε is an inde-
pendent random error with E(ε|X,Z,U) = 0 almost surely. Without loss of generality,
we assume that the variable U is de�ned on the unit interval [0, 1].

As the extension of the usual linear regression model and partially linear regression
model, semiparametric varying-coe�cient partially linear model (1.1) has attracted great
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research interest. For example, Fan and Huang [4] proposed a pro�le-kernel inference and
established the asymptotic normality of the pro�le least-square estimator for this model.
You and Zhou [16] studied the model (1.1) using the empirical likelihood method when
p is �xed. When dimensionality p of the parameters tends to in�nity as the sample size
n→∞, this generalized varying-coe�cient partially linear model was considered by Lam
and Fan [7]. More relevant works on the varying-coe�cient partially linear model can be
found in Huang and Zhang [6], Li et al. [8] and references therein.

Empirical likelihood method has taken much attention in literatures since it was in-
troduced and developed by Owen [10,11]. One of the motivation is that the empir-
ical likelihood-based con�dence regions not only have natural shape and respect the
range of the parameter, but also have the advantages of studentising automatically. In
many cases, empirical likelihood-based con�dence regions are shown to be Bartlett cor-
rectable(DiCiccio et al. [3], Chen and Cui [1]). Owen [12] and Xue and Zhu [15] are
fairly comprehensive references.

However, in practical application, there is always lack-of-�t for the asymptotic nor-
mality distribution of empirical likelihood ratio with expectation p and variance 2p when
we refer to the coverage probability, especially when p/n is not small. We �nd that this is
mainly due to the underestimation of the expectation and variance of the empirical like-
lihood ratio, producing tests with type I errors much larger than the nominal level. And
this inspires us to look for an e�ective estimation of the expectation and variance. Liu et
al. [9] proposed a new method which is �tted for the calibration of empirical likelihood
for high-dimensional data. Through the calibration of the expectation and variance of
the empirical likelihood for the population mean, they got a considerable improvements
for the coverage probabilities. Guo et al. [5] considered this calibration method for high-
dimensional data in linear models and discussed the asymptotic behavior of the empirical
likelihood ratio function in random and �xed design cases, respectively. Recently, Li et
al. [8] showed that under some conditions, the bias-correction empirical likelihood for
the semiparametric varying-coe�cient partially linear models is asymptotic normal.

Taking these issues into account, in this paper, we consider a new calibration of empir-
ical likelihood for semiparametric varying-coe�cient partially linear models with diverg-
ing number of parameters and investigate the asymptotic behavior of this bias-corrected
empirical likelihood ratio function. Numerical studies show that this new calibration
method will have a great improvement.

The rest of this paper is organized as follows. In Section 2, we introduce the bias-
corrected empirical likelihood(BCEL) for semiparametric varying-coe�cient partially lin-
ear models. A new calibration of bias-corrected empirical likelihood is given in Section 3.
In Section 4, some simulations are carried out to assess the performance of the proposed
method. Technical proofs are stated in Section 5.

2. Bias-corrected Empirical Likelihood

Let (Yi;X
T
i , Z

T
i , Ui, 1 ≤ i ≤ n) be an independent identically distributed(i.i.d) random

sample which come from the model (1.1) with the β and Zi having the dimension p→∞
as n→∞. Then for any given β, we get

(2.1) Yi − ZTi β = XT
i α(Ui) + εi

Following Fan and Huang [4], we apply a local linear regression technique to estimate
the varying-coe�cient functions αj(·), j = 1, ..., q. For v in a small neighborhood of u,
one can approximate αj(v) by

(2.2) αj(v) ≈ αj(u) + α′j(u)(v − u) ≡ aj + bj(v − u) j = 1, ..., q
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This leads to the following weighted local least squares problem: �nd {(aj , bj), j =
1, ..., q} to minimize

(2.3)
n∑
i=1

{Yi −XT
i (a+ b(Ui − u))− ZTi β}2Kh(Ui − u)

where K(·) is a kernel function, h is a bandwidth and Kh(·) = Kh(·/h)/h.
The solution of problem (2.3) is

(2.4) α̂(u, β) = (Iq, Oq)(D
T
uWuDu)−1DT

uWu(Y − Z∗β)

where Iq denotes a q-dimensional identity matrix, Oq is the q × q matrix with all the
entries being 0 and Let

Du =

 XT
1

U1−u
h

XT
1

...
...

XT
n

Un−u
h

XT
n

 , Z∗ = (Z1, . . . , Zn) =

 Z11 . . . Z1p

...
. . .

...
Zn1 . . . Znp


Y = (Y1, . . . , Yn), Wu = diag(Kh(U1 − u), . . . ,Kh(Un − u))

and

µ(u) = (E(XXT|U = u))−1E(XZ|U = u)

So we can write the auxiliary random vectors as follows

(2.5) η̂i(β) = (Zi − µ̂T(Ui)Xi)(Yi −XT
i µ̂(Ui, β)− ZT

i β)

where µ̂(u) = (Ê(XiX
T
i |Ui = u))−1Ê(XiZ

T
i |Ui = u) is the estimator ofµ(u).

E(XiX
T
i |Ui = u) and E(XiZ

T
i |Ui = u) can be estimated easily by using the kernel

smoothing method. For convenience, we can also de�ne the estimator ofXT
i µ(Ui) directly

as follows

(2.6) XT
i µ̂(Ui) =

n∑
k=1

SikZk

where Sik is the (i, k)-th element of the smoothing matrix S, which depends only on the
observations {(Ui, Xi), i = 1, . . . , n}, with

S =

 (XT
1 , O)(DT

u1
Wu1Du1)−1DT

u1
Wu1

...
(XT

n , O)(DT
un
WunDun)−1DT

un
Wun


Thus, the bias-corrected auxiliary random vectors can be expressed as

(2.7) η̂i(β) = (Zi − µ̂T(Ui)Xi)(Yi −XT
i µ̂(Ui, β)− ZT

i β) , Ẑi(Ŷi − βTẐi)

where Ẑi = Zi −
∑n
k=1 SikZk, Ŷi = Yi −

∑n
k=1 SikYk.

Therefore, a bias-corrected empirical log-likelihood ratio is de�ned as

(2.8) ln(β) = −2 max

{
n∑
i=1

log(nωi)

∣∣∣∣ωi ≥ 0,

n∑
i=1

ωi = 1,

n∑
i=1

ωiη̂i(β) = 0

}
By the Lagrange multiplier method, we can obtain

(2.9) ln(β) = 2

n∑
i=1

log(1 + λT η̂i(β))
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where λ = λ(β) is determined by

(2.10)
1

n

n∑
i=1

η̂i(β)

1 + λT η̂i(β)
= 0

According to Qin and Lawless [13], if α(u) is given and p is �xed, under some con-
ditions, ln(β) is asymptotically χ2 with p degree of freedom, which is a non-parametric
version of Wilks' theorem. And when the number of p grows with the sample size n, Li
et al. [8] showed that under some conditions, the conclusion below is valid.

(2.11)
ln(β0)− p√

2p

d−→ N(0, 1), as n→∞

where β0 is the true value of the parameter vector β.

3. A new Calibration method for BCEL

When testing hypotheses with the BCEL method, we would calculate the critical
values based on normal approximation (2.11). However, these critical values often deviate
from the true ones when p/n is not small. We �nd that this awkward fact is mainly due
to the large di�erence between the true expectation and variance pair (En, Vn) of ln(β0)
and (p, 2p). And our simulation also indicates that this method is not good. We know
that the foundation of using (2.11) to calibrate the BCEL are that ln(β0) is close to
Kn = n¯̂ηT

nΣ−1 ¯̂ηn, and that E(Kn) = p, V ar(Kn) ≈ 2p. But in practice, we always
use the moment estimation of Kn, which is, Tn = n¯̂ηT

nS
−1
n

¯̂ηn, whose expectation and
variance are denoted as (Ên1, V̂n1), for statistical inference and it can always get a better

approximation to ln(β0). But when (En, Vn) deviates from (p, 2p) or (Ên1, V̂n1), these
calibration methods do not work any more.

We expect that replacing (p, 2p) with (Ên2, V̂n2), the expectation and variance of
Tnc(see (3.2)), in (2.11), will improve the performance of the usual normal calibration.
Let

f(λ) = 2

n∑
i=1

log(1 + λTη̂i(β))

Obviously, ln(β0) = supλ f(λ) = f(λ∗), and λ∗ is the maximum point of f(λ). By
second-order Taylor expansion, we have

(3.1) f(λ) ≈ g1(λ) = 2

n∑
i=1

{
λTη̂i −

1

2
(λTη̂i)

2

}
provided λTη̂i's are small. So an approximation of ln(β0) is

ln(β0) ≈ sup
λ
f(λ) = sup

λ
g1(S−1

n
¯̂ηn) = Tn

However, in the case of moderate n and large p, this approximation may not work
any more. The remainder of each Taylor expansion in (3.1) is under control only for
λTη̂i ∈ (−1, 1). We �nd in our simulation that when p/n is not small, some of λT η̂i's are
greater than 1 with a large probability. Note that when

x ∈ (−1, 1), log(1 + x) ≈ x− x2

2

while if

x > 1, log(1 + x) > log(2) > x− x2

2
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Therefore, roughly we have f(λ) ≥ g1(λ) in the neighborhood of 0. This �nding also
restrict us to approximate ln(β0) by two terms Taylor expansion, because Taylor expan-
sion of (3.1) would deviate from ln(β0) if more terms are extracted and some of λ∗η̂i are
not small.

To reduce the approximation error of g1(λ), we add a high-order term (λTη̂i)
2 to g1(λ).

Intuitively g2(λ) = g1(λ) + (λTη̂i)
2 is the better approximate to f(λ). So is supλ g2(λ)

to ln(β0) = supλ f(λ). It can be veri�ed

(3.2) sup
λ
g2(λ) = n¯̂ηT

nS
−1
nc

¯̂ηn = Tnc

with

Snc =
1

n

n∑
i=1

(η̂i − ¯̂ηn)(η̂i − ¯̂ηn)T

The following theorem establishes the asymptotic behavior of ln(β0)− Tnc.

3.1. Theorem. Under Conditions (C1) − (C9) in Section 5, if p3+4/(k−2)/n → 0, for
k ≥ 4, then we have

(ln(β0)− Tnc)/p
1
2 = op(1)

This theorem implies that using Tnc to approximate ln(β0) is equivalent to using Kn

or Tn from the asymptotic viewpoints. However, these approximations exhibit quite
di�erent �nite-sample behaviors, especially when p/n is not small. Based on some sim-
ulations, we �nd that Tnc is amazingly close to ln(β0) regardless of the choices of (n, p)

in the sense that (ln(β0) − Tnc)/p
1
2 = op(1) is always pretty small. To appreciate this,

Fig.1 shows the scatter plots of 200 simulated values of (ln(β0), Tn) and (ln(β0), Tnc) for
the model(4.1) with the εi ∼ N(0, 1). We choose p=10, 16 for n=200. From Fig.1, we
can see that the value of (ln(β0), Tnc) are always around the line y = x, but Tn tends to
under-approximate ln(β0). See Sect.4 for more analysis and comparison.

Given the foregoing discussion and evidence, we expect that the expectation and
variance of Tnc are good approximations of En and Vn, respectively. Let (Ên2, V̂n2) be
the moment estimation of (En, Vn). We may calculate critical values according to

(3.3) ln(β0)−An/
√
Bn

d−→ N(0, 1)

where (An, Bn) could be chosen as (p, 2p) or (Êni, V̂ni)(i = 1, 2). We will show that the

method based on (Ên2, V̂n2) is the best. Hence, it is our �nal recommendation.

4. Numerical Analysis

Here we report a simulation study designed to evaluate the performance of the pro-
posed calibration method of BCEL. Throughout this section, we use the Epanechnikow
kernel K(u) = 0.75(1 − u2)+, and use the "leave-one-out" cross-validation method to
select the optimal bandwidth hopt.

Consider the following semiparametric varying-coe�cient partially linear model

(4.1) Yi = Xi
Tα(Ui) + ZT

i β + εi, i = 1, . . . , n

In our simulations, β = [0.5, 0.3,−0.5, 1, 0.1,−0.25, 0, . . . , 0]T, the covariate Ui is uni-
formly distributed on [0, 1], the nonparametric component α(u) = (α1(u), α2(u))T with
α1(u) = 4 + sin(2πu), α2(u) = 2u(1 − u), Xi = (Xi1, Xi2)T with Xi1 = 1 and Xi2 ∼
N(0, 1), the covariates Zi is a p-dimensional normal random vector with mean zero and

covariance matrix (σij) with σij = 0.5|i−j|.
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Fig.1. Scatter plots of n simulated values (ln(β0), Tn) (triangles),
(ln(β0), Tnc) (circles) for the model (4.1) with (a) n=200 and p=10,
(b) n=200 and p=16. The solid line is y = x.

4.1. Simulation I. For this simulation, we evaluate the asymptotic normality of BCEL
ratio using the following methods. The proposed method is based on the calibrated ln(β0)
with the sample mean and variance of Tnc obtained from 500 Bootstrap samples for each
simulation data set(denoted as MEL). The normal calibration is based on the calibrated
ln(β0) with the sample mean and variance of Tn obtained from 500 Bootstrap samples for
each simulation data set(denoted as SEL). And the standard normal calibration is base
on the calibrated ln(β0) with (An, Bn) = (p, 2p)(denoted as STEL). Through QQ-plots,
we will demonstrate the advantages of MEL in di�erent growth rates of p for each sample
size. Here we only consider the case of noise εi ∼ N(0, 1).

We draw 1000 random samples of size 200, 400 or 600 from model (4.1). For com-

parison, we here take the dimensionality of the parametric component as p = [cn1/3].
By assigning c = 1.8, 2.8 and 3.8, the corresponding dimensions p = 10, 16 and 22 for
n = 200; p = 13, 20 and 27 for n = 400; p = 15, 23 and 32 for n = 600. The results are
reported in Fig.2.

From Fig 2., we can observe from the QQ-plots that the MEL outperforms better than
SEL and STEL as n increases or p decreases. Therefore, the MEL can be regarded as a
reasonable alternative for the calibration of the BCEL in practice.



236

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,10)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,10)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,10)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,16)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,16)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,16)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,22)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,22)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(200,22)

Normal quantile

B
C

E
L
 q

u
a
n

ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,13)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,13)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,13)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,20)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,20)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,20)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,27)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,27)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(400,27)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,15)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,15)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,15)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,23)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,23)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4

(n,p)=(600,23)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4
(n,p)=(600,32)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4
(n,p)=(600,32)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

−2 −1 0 1 2 3 4

−
2

0
1

2
3

4
(n,p)=(600,32)

Normal quantile

B
C

E
L
 q

u
a
n
ti
le

Fig.2. Normal QQ-plots of the BCEL ratio with εi ∼ N(0, 1) :
MEL(black and − ◦ −), SEL(red and ·� ·), STEL(blue and − · ∗ · −)

4.2. Simulation II. In this simulation, We draw 1000 random samples of size 200, 400
and 600, respectively. The choice of (n, p) is the same as Simulation I. As for noise, two
error distributions were chosen: (i) the standard normal distribution; (ii) the chi-square
distribution with freedom 3.

In this simulation, we will compare four calibration methods for the BCEL. Besides
the MEL, SEL and STEL methods mentioned in Section 4.1, there also consider the
ordinary χ2

p calibration(denoted as OEL). Talbes 1 and 2 report the coverage probability
comparison for constructing con�dence region on parameter β with nominal level 0.95.

It can be concluded from Tables 1 and 2 that the empirical coverage probabilities
based on MEL are higher than that based on OEL, STEL and SEL. Especially for the
case of n = 600, p = 15 and εi ∼ N(0, 1), the coverage probabilities of MEL is closed to
the nominal level. Thus the calibration method of MEL is a good alternative. We can
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Table 1. Coverage percentages for model (4.1) with the εi ∼ N(0, 1)

n p MEL OEL SEL STEL Ên1 V̂n1 Ên2 V̂n2

200 10 0.920 0.838 0.846 0.854 10.67 19.15 11.69 25.80
16 0.838 0.726 0.756 0.750 17.23 26.81 19.04 37.04
22 0.764 0.552 0.593 0.615 23.46 38.75 26.79 56.09

400 13 0.937 0.899 0.910 0.914 13.24 26.39 13.81 29.77
20 0.925 0.846 0.864 0.842 20.42 31.33 21.94 53.69
27 0.841 0.741 0.777 0.789 27.98 51.72 30.24 58.93

600 15 0.936 0.898 0.904 0.911 15.36 29.69 15.62 37.41
23 0.921 0.873 0.893 0.899 23.98 42.90 24.10 50.65
32 0.896 0.836 0.872 0.849 32.88 54.57 34.72 64.91

Table 2. Coverage percentages for model (4.1) with the εi ∼ χ2
3

n p MEL OEL SEL STEL Ên1 V̂n1 Ên2 V̂n2

200 10 0.863 0.796 0.810 0.821 11.01 17.60 11.38 22.29
16 0.803 0.694 0.721 0.698 16.73 25.31 18.27 34.76
22 0.755 0.576 0.610 0.599 23.32 33.63 26.08 57.37

400 13 0.908 0.878 0.889 0.866 13.34 20.50 14.05 27.17
20 0.844 0.772 0.798 0.763 20.45 31.61 22.07 41.41
27 0.828 0.692 0.728 0.720 27.68 47.28 29.80 61.13

600 15 0.916 0.868 0.888 0.878 15.46 26.70 16.08 33.56
23 0.890 0.852 0.869 0.871 23.83 43.75 24.62 47.74
32 0.839 0.745 0.785 0.776 33.07 53.54 34.60 64.03

also observed from Table 1 and Table 2 that the MEL has improving coverage accuracy
along with the increasing sample size. However, when the dimension p increases, the
coverage probabilities of both MEL, OEL, STEL and SEL decrease. When n = 200 and
p = 22, the performances of OEL, SEL and STEL are unacceptable. In comparison, our
proposed method, MEL, can always attain the desired coverage percent and outperform
the other three methods. The advantages get more remarkable when n decreases or p
increases.

5. Proof of main results

Throughout the paper, we denote γ1(A) ≤ · · · ≤ γp(A) as the eigenvalues and tr(A)
as the trace operator of a matrix A. To derive our main results, the following conditions
required to be made.

(C1) The random variable U has a compact support Ω. The density function fU (u) of
the U has a continuous second derivative and is uniformly bounded away from zero.
(C2) The q × q matrix E(XXT|U = u) is non-singular for each U ∈ Ω. Furthermore,

E(XXT|U = u)
−1

and E(XZ|U = u) are all Lipschitz continuous and each element of

E(XXT |U = u)
−1

and E(XZ|U = u) is bounded.
(C3) {αi(·), i = 1, . . . , q} has continuous second derivatives in u ∈ Ω.
(C4) The kernel K(·) is bounded symmetric density function with bounded support.
(C5) The bandwidth h satis�es that nh6 → 0 and nh3/(log(n))3 →∞.

(C6) Σ = E[ε2(Z − µT(U)X)(Z − µT(U)X)
T

] is a positive de�nite matrix with all the
eigenvalues being uniformly bounded away from zero and in�nity.
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(C7) For some integer k ≥ 4, E(‖ Xε ‖k) <∞, E(‖ X ‖k) <∞, E(‖ ε ‖k) <∞.
(C8) Let η = ε(Z − µT(U)X), and ηj be the j-th component of η, j = 1 . . . p. For k of
condition (C7), there is a positive constant c such that

E(‖ η√p ‖k) < c,E(‖ ZXT/
√
p ‖k) < c,E(‖ µ(U)XXT/

√
p ‖k) < c

and

1

p

p∑
l1=1

E(| ηl1 |(‖ ZX
T/
√
p ‖4 + ‖ µ(U)XXT/

√
p ‖4)) < c

.
(C9) max1≤l1,l2,l3≤pE(ηl1ηl2ηl3)2 is bounded, where ηli are the components of η.

In order to prove the main results, we introduce the following notations. Simple
calculation yields that

(5.1) η̂i(β) = ηi(β) +
3∑
k=1

Mi,k =: ηi(β) +Ri

where

ηi(β) = (Zi − µT(Ui)Xi)(Yi −XT
i α(Ui)− ZT

i β) = (Zi − µT(Ui)Xi)εi

Mi,1 = (Zi − µT(Ui)Xi)X
T
i (α(Ui)− α̂(Ui, β))

Mi,2 = (µ(Ui)− µ̂(Ui))
TXiεi

Mi,3 = [(µ(Ui)− µ̂(Ui))
TXi][X

T
i (α(Ui)− α̂(Ui, β))]

5.1. Lemma. Suppose that Conditions (C1)-(C5) hold. If h → 0 and nh → ∞ as

n→∞, then letting cn = { logn
nh
}1/2 + h2 and dn = { logn

nh
}1/2,

sup
u∈Ω

1

n

n∑
i=1

Kh(Ui − u)

(
Ui − u
h

)l
Xijεi = Op(dn)

sup
u∈Ω

∣∣∣∣ 1n
n∑
i=1

Kh(Ui − u)

(
Ui − u
h

)l
Xij1Xij2 − f(u)µ1Γj1j2(u)

∣∣∣∣ = Op(cn)

sup
u∈Ω

∣∣∣∣ 1n
n∑
i=1

Kh(Ui − u)

(
Ui − u
h

)l
XijZik − f(u)φjk(u)

∣∣∣∣ = Op(cn)

where j1, j2, j = 1, . . . , q, k = 1, . . . , p, l = 0, 1, 2, 4, Γj1j2(u) is the (j1, j2)-th the element

of Γ(u) and φjk(u) is the (j, k)-th element of φ(u).

We refer to Xia and Li [14] for details.

5.2. Lemma. Under the Conditions of Lemma 5.1, we have,

(5.2) ‖ α̂(u, β)− α(u) ‖= Op(cn)

and

(5.3) max
1≤j≤q

sup
u∈Ω
| α̂j(u, β)− αj(u) |= Op(cn)

holds uniformly in u ∈ Ω, the support of U .

Proof. We �rst give the proof of (5.2). Let

Sn,l =

n∑
i=1

Kh(Ui − u)XiX
T
i

(
Ui − u
h

)l
, l = 0, 1, 2
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Then, we can rewrite

DT
uWuDu =

(
Sn,0 Sn,1
Sn,1 Sn,2

)
The elements of the above matrix are in the form of a kernel regression. From Lemma
5.1 and some simple calculation, we have

(5.4) Sn,l = nf(u)µlΓ(u)(1 +Op(cn))

holds uniformly in u ∈ Ω. So

(5.5) α̂(u, β) = [nf(u)Γ(u)]−1
n∑
i=1

Kh(Ui − u)Xi{XT
i α(Ui) + εi}+Op(cn)

Applying Lemma 5.1 and (5.4), we can easily get

(5.6)
1

n

n∑
i=1

Kh(Ui − u)XiX
T
i α(Ui) = f(u)Γ(u)α(u){1 +Op(cn)}

and

(5.7)
1

n

n∑
i=1

Kh(Ui − u)Xiεi = op(1)

holds uniformly in u ∈ Ω. From (5.5)-(5.7), α̂(u, β) = α(u) + Op(cn) holds uniformly in
u ∈ Ω. This completes the proof of (5.2).

By the similar method of Xia and Li [14], we can conclude the result (5.3), so we omit
the details here. �

5.3. Lemma. Under the Conditions of Lemma 5.1, we have∣∣∣∣∣∣∣∣ 1√
n

n∑
i=1

Ri

∣∣∣∣∣∣∣∣ = Op(n
1/2p1/2c2n)

where Ri =
∑3
k=1 Mi,k can be found in (5.1).

The proof of Lemma 5.3 is similar as that of Lemma B.3 in Li et al. [5].

5.4. Lemma. Under conditions (C1)-(C8), we have

(5.8) tr[(Snc − Σ)2] = Op(p
2(c4n + 1/n))

Proof. From the de�nition of ηi and Snc, we can get

Snc − Σ =
1

n

n∑
i=1

ηiη
T
i +

1

n

n∑
i=1

(Riη
T
i + ηiR

T
i +RiR

T
i )− ¯̂ηn ¯̂η

T
n = J1 + J2 + J3

It is easy to see that

tr[(Snc − Σ)2] =tr[(J1 + J2 + J3)2] ≤ 4tr[(J1)2] + 4tr[(J2)2] + 2tr[(J3)2]

=I1 + I2 + I3

Thus, we know that

I1 = Op(p/n
2), I2 = Op(p

2c4n)

For I3, �rst we can get ¯̂ηn = Op(
√
p/n), then

I3 = tr[(¯̂ηn ¯̂η
T
n )2] = Op(p

3/n2) =
p

n
Op(p

2/n) = Op(p
2/n)

Therefore, we have

tr[(Snc − Σ)2] = I1 + I2 + I3 = Op(p
2/n) +Op(p

2c4n) +Op(p
2/n) = Op(p

2(c4n + 1/n))

The proof is complete. �
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5.5. Lemma. Under conditions (C1)-(C8), if p3+4/(k−2)/n→ 0, we have

(5.9) n

{(
1

n

n∑
i=1

η̂i

)T

(S−1
nc − Σ−1)

(
1

n

n∑
i=1

η̂i

)}
= op(p

1/2)

Proof. Let D̂n = Σ−1/2SncΣ
−1/2− Ip, similar arguments used in the proof of Lemma 6

in Chen et al. [2] yield

S−1
nc − Σ−1 =Σ−1/2(Σ1/2S−1

n Σ1/2 − Ip)Σ−1/2

=Σ−1/2[−D̂n + D̂2
n + D̂2

n{Σ1/2S−1
n Σ1/2 − Ip}]Σ−1/2

Note that

tr((Snc − Σ)2) =tr((Σ1/2(Σ−1/2SnΣ−1/2 − Ip)Σ1/2)2)

=tr(D̂nΣD̂nΣ)

≥γ2
1(Σ)tr(D̂2

n)

By Lemma 5.4 , we have

tr(D̂2
n) ≤ 1

γ2
1(Σ)

tr((Snc − Σ)2) = Op(p
2(c4n + 1/n))

Thus, we have

(5.10)

tr(S−1
nc − Σ−1)2 ≤ 2tr{Σ−2(−D̂n + D̂2

n)2}+ 2tr{D̂4
n(S−1

nc − Σ−1)2}

≤ 2tr{Σ−2(−D̂n + D̂2
n)2}+ 2[trD̂2

n]2tr{(S−1
nc − Σ−1)2}

= 2tr{Σ−2(−D̂n + D̂2
n)2}+ op(tr{(S−1

nc − Σ−1)2})

= op(p
2(c4n + 1/n))

Then

(5.11)

∥∥∥∥∥ 1

n

n∑
i=1

η̂T
i

∥∥∥∥∥ = Op(
√
p/n)

This together with p3+4/(k−2)/n→ 0, c2n = o(1/
√
n) and condition (C5), we can obtain

n

{(
1

n

n∑
i=1

η̂i

)T

(S−1
nc − Σ−1)

(
1

n

n∑
i=1

η̂i

)}
≤ n

∥∥∥∥∥ 1

n

n∑
i=1

η̂T
i

∥∥∥∥∥
2√

tr(S−1
nc − Σ−1)2

= op(p
2(c2n + 1/

√
n))

= op(p
1/2)

The proof is �nished. �

Proof of Theorem 3.1 Applying the Taylor expansion to (2.9) and invoking Lemmas
5.3-5.5, we obtain that

ln(β0) = 2

n∑
i=1

log(1 + λTη̂i(β)) =n
{

¯̂η
T
nΣ−1 ¯̂ηn

}
+ op(p1/2)

=n
{

¯̂η
T
n (Σ−1 − S−1

nc )¯̂ηn

}
+ n

{
¯̂η
T
nS
−1
nc

¯̂ηn

}
+ op(p1/2)

From Lemma 5.4, we have

n
{

¯̂η
T
n (Σ−1 − S−1

nc )¯̂ηn

}
= op(p1/2)
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So

ln(β0) − Tnc

p1/2
=
n
{

¯̂ηT
n(Σ−1 − S−1

nc )¯̂ηn
}

+ n
{

¯̂η
T
nS
−1
nc

¯̂ηn

}
+ op(p1/2) − n

{
¯̂η
T
nS
−1
nc

¯̂ηn

}
p1/2

=
n
{

¯̂η
T
n (Σ−1 − S−1

nc )¯̂ηn

}
p1/2

=op(1)

The proof is complete. �
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The logratio methodology widely used in compositional data analysis
is not applicable when some components have rounded zeros. There
are many univariate and multivariate methods that have been used
to deal with rounded zeros. However, both of them have restrictions:
the univariate methods replaced the rounded zeros only using the in-
formation of the corresponding component; the multivariate methods
need to assume the distribution of transformed data. When the form
of the distribution function is unknown, a multivariate nonparametric
replacement approach is proposed in this paper. The proposed method
uses conditional expected value based on isometric logratio coordinates
to replace rounded zeros, in which the conditional density is estimated
through multivariate Gauss kernel function. The permutation invari-
ance and invariance under change of orthonormal basis are also pre-
sented. Simulation studies show that the proposed method has better
performance than previous methods as the percentage of rounded zeros
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1. Introduction

Compositional data, or compositions, are vectors in which all components are positive
real numbers and carry only relative information [1]. These vectors can be represented
as proportions using closure operation, that is, they multiplied by the appropriate scal-
ing factors. Two vectors are compositional equivalent if they can be expressed in the
same proportion, thus compositions can be viewed as equivalence classes, in which all
vectors convey the same compositional information [18]. This type of data often occurs
in geosciences, biosciences, economics and many other disciplines [1, 16, 18].

Compositional data provide information only about the relative magnitudes of the
components, the logratio methodology plays a key role in compositional data analysis.
Three logratio transformations including additive logratio (alr) transformation [1], cen-
tered logratio (clr) transformation [1] and isometric logratio (ilr) transformation [6] were
proposed. The relationship between alr transformation and clr transformation is well
known [1], and ilr transformation can be represented by means of alr transformation or
clr transformation [6]. Because the alr transformation is non-isometric, and the clr trans-
formation results in singular covariance matrix, the ilr transformation which can avoid
the above drawbacks is suggested. The logratio transformations transform compositional
data to coordinates in real space. However, zeros may exist in some components, thus
the logratio transformations fail.

There are three kinds of zeros in compositional data set: rounded zeros, count zeros
and essential zeros [9]. In this paper, we are interested in the rounded zero which is not
true zero and results from the existence of value below a threshold. When the threshold
is rounding-o� error, the component is present in a very small quantity and rounded to
zero; when the threshold is detection limit, the value below the detection limit cannot be
observed and is commonly reported as zero. There are many classic methods in rounded
zeros problem. Aitchison proposed the additive replacement strategy [1], but the ratios
of components having no rounded zeros are not preserved, later the multiplicative re-
placement strategy [8] was proposed. Instead of replacing rounded zeros in a component
by a �xed value, the multiplicative lognormal replacement method [13] allowing for ran-
dom imputation was suggested. The multivariate method is the modi�ed EM algorithm
[15, 12], which assumed that the alr coordinates follow multivariate normal distribution.
Later the robust modi�ed EM algorithm working on ilr coordinates [10] was introduced.
In addition, there are other algorithms, for example, the multiplicative Kaplan-Meier
method [14] was proposed, which is a univariate method. The implementations of all
these methods discussed above are available in the R package zCompositions [14].

The previous univariate methods replace rounded zeros based on the data of the
corresponding component and perform poorly when the proportion of rounded zeros
is high. The multivariate methods for rounded zeros usually rely on the underlying
assumption of multivariate normality in the space of coordinates. Furthermore, the
modi�ed EM algorithm based on alr coordinates requires that at least one component
has no rounded zeros. To avoid these disadvantages, a new multivariate nonparametric
replacement method based on multivariate Gauss kernel density estimation is proposed
in this paper. To illustrate the performance of proposed method compared with the
existing methods, this method is applied to both simulation and example analysis.

The rest of this paper is organized as follows. Some basic concepts about composi-
tional data are reviewed in Section 2. In Section 3, the proposed approach is presented.
Simulation study and real example are given in Section 4 to verify the e�ectiveness and
usefulness of proposed method. Section 5 concludes this paper.
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2. Preliminaries

Let x = [x1, x2, · · · , xD] be a row vector denoting a D-part composition represented
with constant sum k, its sample space is the simplex SD [1] de�ned as

S
D =

{
x = [x1, x2, · · · , xD]

∣∣∣∣∣xi > 0, i = 1, 2, · · · , D;

D∑
i=1

xi = k

}
,

where the constant k is an arbitrary positive real number and is usually 1 or 100 depending
on the units of measurement. The simplex is a Euclidean vector space structure [1, 17,
3] when de�ning inner product with its related norm and Aitchison distance [2]. The
distance between two compositions x and y ∈ SD is

da(x,y) =

(
D∑
i=1

(
ln

xi
gm(x)

− ln
yi

gm(x)

)2
)1/2

,

where da(·, ·) stands for the Aitchison distance in SD, and gm(x) denotes the geometric
mean of the parts of x.

The ilr transformation [6] assigns coordinates with respect to the given orthonor-
mal basis {e1, e2, · · · , eD−1} of the simplex SD. An orthonormal basis can be obtained
through sequential binary partition of parts of a composition [5]. Following the reference
[5], we can construct a (D − 1)×D matrix Ψ in which rows are

(2.1) ψi =

√
D − i

D − i+ 1

0, · · · , 0, 1,− 1

D − i , · · · ,−
1

D − i︸ ︷︷ ︸
D−i

 , i = 1, 2, · · · , D − 1,

respectively. An orthonormal basis can be obtained through ei = C(exp ψi) (i =
1, 2, · · · , D − 1), where C is the closure operation. Thus the composition x ∈ SD is
transformed to ilr coordinates z = ilr(x) = [z1, z2, · · · , zD−1] ∈ RD−1, where

(2.2) zi =

√
D − i

D − i+ 1
ln

xi

D−i

√
D∏

j=i+1

xj

, i = 1, 2, · · · , D − 1.

The ilr coordinates guarantee the invariance of distance, that is, da(x,y) = d(ilr(x),
ilr(y)), where d(·, ·) is the Euclidean distance in real space. The inverse mapping of any
real-valued vector z ∈ RD−1 to the original composition x is then given by

(2.3)



x1 = exp

{√
D−1
D

z1

}
,

xi = exp

{
−
i−1∑
j=1

1√
(D−j+1)(D−j)

zj +
√

D−i
D−i+1

zi

}
, i = 2, · · · , D − 1,

xD = exp

{
−
D−1∑
j=1

1√
(D−j+1)(D−j)

zj

}
.

The compositions can be viewed as equivalence classes, therefore the obtained composi-
tion x can be represented as constant sum vectors.
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For any random composition x = [x1, x2, · · · , xD], the measure of dispersion is the
variation matrix [1] de�ned as

(2.4) T = [tij ]D×D, tij = Var

(
ln
xi
xj

)
,

where the element in variation matrix is the logratio variance for any two parts i and j
of a D-part composition x.

3. Kernel density replacement approach

Consider a random composition x = [x1, x2, · · · , xD], the sample data set is X with
n compositions and D-part, that is

X = [xij ]n×D =


x11 x12 · · · x1D
x21 x22 · · · x2D
...

...
. . .

...
xn1 xn2 · · · xnD

 .

Suppose that the compositional data set X has rounded zeros, the corresponding thresh-
old matrix is denoted as E = [eij ]n×D, where eij is the threshold of xij . Let Rj ⊂
{1, 2, · · · , n} be the row indices referring to the rounded zeros of the jth component
(j ∈ {1, 2, · · · , D}), then Oj = {1, 2, · · · , n}\Rj refers to the remaining row indices of
the jth component, that is, Rj = {i : i ∈ {1, 2, · · · , n}, xij ≤ eij}, Oj = {i : i ∈
{1, 2, · · · , n}, xij > eij}.

Firstly, we initialize the rounded zeros by multiplicative replacement strategy in which
the rounded zero is equal to 65% of the threshold [8], thus X denotes the replaced
data set. Denote the ilr coordinates in Equation (2.2) of random composition x as
z = ilr(x) = [z1, z2, · · · , zD−1] = [z1, z−1], where z−1 refers to the remaining components
of z except for the �rst component. Then initialized data set X is transformed to real
data set Z = [zij ]n×(D−1), where each row in Z is the ilr coordinates of the corresponding
composition in X. For the element ei1 in threshold set E, the ilr transformation of
rounded zero xi1 < ei1 can result in the the unknown value zi1 less than ψi1, where

ψi1 =

√
D − 1

D
ln

ei1

D−1

√
D∏
j=2

xij

.

In the proposed approach, the unknown data zi1 (i ∈ R1) is imputed by conditional
expected value

(3.1) E(z1|z−1 = zi,−1, z1 < ψi1) =

∫ ψi1

−∞ z1f(z1|z−1 = zi,−1)dz1∫ ψi1

−∞ f(z1|z−1 = zi,−1)dz1
,

where zi,−1 is the ith row of Z except for the �rst column, the conditional density function
f(z1|z−1 = zi,−1) can be calculated as follows

(3.2) f(z1|z−1 = zi,−1) =
f(z1, z−1 = zi,−1)

f(z−1 = zi,−1)
=

f(z1, z−1 = zi,−1)∫ +∞
−∞ f(z1, z−1 = zi,−1)dz1

.

Regardless the distribution of multivariate random variable z, the density function
f(z1, z−1 = zi,−1) can be estimated by multivariate Gauss kernel density [4]. In this



246

paper, the same bandwidth h is applied to di�erent coordinate direction, thus

f̂(z1, z−1 = zi,−1)

=
1

n(
√

2πh)D−1

n∑
k=1

exp

{
−1

2

(z1 − zk1
h

)2
−1

2

(zi,−1 − zk,−1

h

)(zi,−1 − zk,−1

h

)T}
=

1

n(
√

2πh)D−1

n∑
k=1

exp

{
−1

2

(z1 − zk1
h

)2
− 1

2h2
d2(zi,−1, zk,−1)

}
.(3.3)

The bandwidth h is given by h = σ
(

4
n(D+1)

) 1
D+3

[20], where σ2 = 1
D−1

D−1∑
j=1

Var(zj) =

1
D−1

tr(Var(z)), tr represents the trace of matrix Var(z).

It follows from Equation (3.2) and Equation (3.3) that

f̂(z1|z−1 = zi,−1)

=

n∑
k=1

exp
{
− 1

2

(
z1−zk1

h

)2}
exp

{
− 1

2h2 d
2(zi,−1, zk,−1)

}
n∑
k=1

exp
{
− 1

2h2
d2(zi,−1, zk,−1)

} ∫ +∞
−∞ exp

{
− 1

2

(
z1−zk1

h

)2}
dz1

=

n∑
k=1

exp
{
− 1

2

(
z1−zk1

h

)2}
exp

{
− 1

2h2 d
2(zi,−1, zk,−1)

}
n∑
k=1

√
2πh exp

{
− 1

2h2 d2(zi,−1, zk,−1)
} ,(3.4)

By conditional density function in Equation (3.4), Equation (3.1) can be expressed as

(3.5)

n∑
k=1

exp
{
− 1

2h2 d
2(zi,−1, zk,−1)

} ∫ ψi1

−∞ z1 exp
{
− 1

2

(
z1−zk1

h

)2}
dz1

n∑
k=1

exp
{
− 1

2h2 d2(zi,−1, zk,−1)
} ∫ ψi1

−∞ exp
{
− 1

2

(
z1−zk1

h

)2}
dz1

.

Since ∫ ψi1

−∞
exp

{
−1

2

(z1 − zk1
h

)2}
dz1 =

√
2πhΦ

(
ψi1 − zk1

h

)
and ∫ ψi1

−∞
z1 exp

{
−1

2

(z1 − zk1
h

)2}
dz1

=

∫ ψi1

−∞
(z1 − zk1) exp

{
−1

2

(z1 − zk1
h

)2}
dz1 + zk1

∫ ψi1

−∞
exp

{
−1

2

(z1 − zk1
h

)2}
dz1

=
√

2πh

(
−hφ

(
ψi1 − zk1

h

)
+ zk1Φ

(
ψi1 − zk1

h

))
,

where φ(·) and Φ(·) are the density and distribution function of the standard normal
distribution, respectively. Thus Equation (3.5) can be simpli�ed as

E(z1|z−1 = zi,−1, z1 < ψi1) =
n∑
k=1

(
−hφ

(
ψi1−zk1

h

)
+ zk1Φ

(
ψi1−zk1

h

))
exp

{
− 1

2h2 d
2(zi,−1, zk,−1)

}
n∑
k=1

Φ
(
ψi1−zk1

h

)
exp

{
− 1

2h2 d2(zi,−1, zk,−1)
} .(3.6)
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Hence, the unknown data zi1 is imputed by Equation (3.6). For the ilr coordinates in
Equation (2.2), since d(zi,−1, zk,−1)= da(xi,−1,xk,−1), the imputed value zi1 is related
with the Aitchison distance between subcompositions xi,−1 and xk,−1, where xi,−1 and
xk,−1 denote the remaining components of compositions xi and xk except for the �rst
component, respectively.

3.1. Property. The imputed value E(z1|z−1 = zi,−1, z1 < ψi1) in Equation (3.6) has

the following properties:

(1) It is below the threshold, that is, E(z1|z−1 = zi,−1, z1 < ψi1) < ψi1.
(2) It is unchanged when the remaining components of x except for the �rst compo-

nent are arbitrarily permuted.

(3) It is invariant under change of orthonormal basis {e2, e3, · · · , eD−1}.

Property 3.1 is quite obvious. It follows from z = xΨT that tr(Var(z)) = tr(Var(xΨT ))
= tr(ΨVar(x)ΨT ) = tr(Var(x)ΨTΨ) = tr(Var(x)GD) [18], where GD = ID − 1

D
JD, ID

is a identity matrix, JD is a matrix of units. Therefore all the underlaying elements
(d(zi,−1, zk,−1), h, zk1 and ψi1) are invariant by permutation and change of basis, thus
the imputed value in Equation (3.6) is unchanged.

Property 3.1 (2) and (3) point out that E(z1|z−1 = zi,−1, z1 < ψi1) satis�es per-
mutation invariance and invariance under change of orthonormal basis, but E(zl|z−l =
zi,−l, zl < ψil) (l = 2, · · · , D − 1) may not satisfy these two properties, for example,
zkl may changed when the remaining components of x except for the lth component
are arbitrarily permuted. To replace the rounded zeros in the lth component of x, we

de�ne the permuted composition x(l) = [x
(l)
1 , x

(l)
2 , · · · , x(l)l , x

(l)
l+1, · · · , x

(l)
D ] = [xl, x1, · · · ,

xl−1, xl+1, · · · , xD]. The ilr coordinates are denoted as z(l) = ilr(x(l)) = [z
(l)
1 , z

(l)
2 , · · · ,

z
(l)
D−1] = [z

(l)
1 , z

(l)
−1], the corresponding ilr data set is Z(l) = [z

(l)
ij ]n×(D−1). According to

Equation (3.6), the unknown data z
(l)
i1 (i ∈ Rl) resulting from the rounded zero in the

ith row and the lth component of X can be imputed by

E(z
(l)
1 |z

(l)
−1 = z

(l)
i,−1, z

(l)
1 < ψ

(l)
i1 ) =

n∑
k=1

(
−hφ

(
ψ

(l)
i1 −z

(l)
k1

h

)
+ z

(l)
k1Φ

(
ψ

(l)
i1 −z

(l)
k1

h

))
exp

{
− 1

2h2 d
2(z

(l)
i,−1, z

(l)
k,−1)

}
n∑
k=1

Φ

(
ψ

(l)
i1 −z

(l)
k1

h

)
exp

{
− 1

2h2
d2(z

(l)
i,−1, z

(l)
k,−1)

} ,(3.7)

where ψ
(l)
i1 =

√
D−1
D

ln eil

D−1

√√√√ D∏
j=2

x
(l)
ij

.

The speci�c steps of the proposed method, similar to the modi�ed EM algorithm
based on ilr coordinates [10], are as follows:

Step 1: Sort the parts of compositional data set according to the number of
rounded zeros of each part. The ilr coordinates in Equation (2.2) is used in
the proposed method, the �rst component is only included in the �rst ilr coor-
dinate. In order to reduce the error, the component with more zeros should be
put in the �rst column. Without loss of generality, assume that the parts are
already sorted, i.e. |R1| ≥ |R2| ≥ · · · ≥ |RD|, where |Rj | denotes the number of
elements of Rj (j = 1, 2, · · · , D).

Step 2: Initialize the rounded zeros by multiplicative replacement strategy.
Step 3: Set l = 1.

Step 4: Replace the unknown data z
(l)
i1 (i ∈ Rl) using Equation (3.7).

Step 5: Inverse the every row of updated data set using Equation (2.3).
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Step 6: Carry out Steps 4-5 for each l = 2, 3, · · · |C|, where C = {j : j ∈
{1, 2, · · · , D}, |Rj | 6= 0} is the index set of parts containing at least one rounded
zero.

Step 7: Repeat Steps 3-6 until the Euclidean distance between the variation ma-
trix of compositional data set from the present and the previous iteration is
smaller than a certain boundary.

Step 8: Sort the parts of replaced compositional data set in the original order.

If the data set X = [xij ]n×D is closed to a constant, then the replaced data set

is X̂ = [x̂ij ]n×D obtained from the above algorithm, otherwise, we should rescale the
replaced value x̂ij using the expression [14]

(3.8) x̂∗ij = x̂ij
xik
x̂ik

, j ∈ C, i ∈ Rj ,

where x̂∗ij is the rescaled value, xik is the originally observed element in the ith row and

kth column of compositional data set X, x̂ik is the corresponding replaced value in X̂.

4. Simulation and Example

In this section we present simulation study and real example in order to illustrate the
good performance of proposed method (multK), which is compared with the multiplica-
tive replacement strategy (multR), the multiplicative Kaplan-Meier method (multKM),
the multiplicative lognormal replacement method (multLN), the modi�ed EM algorithm
working on alr coordinates (alrEM) and the robust modi�ed EM algorithm working on ilr
coordinates (ilrEM). Given the original compositional data set X which has no rounded
zeros, we set the value below the threshold as zero, the replaced compositional data set
is denoted as X∗. We consider two measures of distortion, standardized residual sum of
squares (STRESS) [8] and relative di�erence in variation matrix (RDVM) [13]. Denote
the variation matrix in Equation (2.4) of original data set X and imputed data set X∗

as T = [tij ]D×D and T∗ = [t∗ij ]D×D, the two measures STRESS and RDVM are de�ned
as

STRESS =

∑
i<j(da(xi,xj)− da(x∗i ,x

∗
j ))

2∑
i<j d

2
a(xi,xj)

,

and

RDVM =
1

2|C|D − |C|2
∑
i,j∈C

|t∗ij − tij |
tij

,

respectively, where xi is the ith row of data set X. The two measures STRESS and
RDVM represent the distance di�erence and variation di�erence, respectively.

4.1. Simulation Study. In this subsection, several simulation studies were conducted.
We �rst simulated real data set with sample size 300 from multivariate normal distri-
bution N4(µ,Σ), then the compositional data set X can be obtained through ilr-inverse
transformation in Equation (2.3). Suppose that the rounded zero is resulting from value
below the detection limit, and the detection limits of same part-di�erent compositions
are the same, so the detection limit set is denoted as a vector, that is, E = [e1, e2, · · · , e5],
where ej (j = 1, 2, · · · 5) is the αj quantile of the jth component in X.

We set mean µ = [−2,−1.5,−1,−0.3] and covariance matrix Σ = [ρ|i−j|]4×4. To
describe di�erent levels of correlations among the components, take ρ = 0.3, 0.5, 0.7 and
0.9. Ten situations of detection limit set are conducted, where α1, α2, α3, α4 range from
0.05 to 0.5 by 0.05, 0.04 to 0.4 by 0.04, 0.03 to 0.3 by 0.03, 0.02 to 0.2 by 0.02, respectively,
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(a) ρ = 0.3.
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(b) ρ = 0.5.

Figure 1. Two measures of distortion STRESS and RDVM for six
methods (multR, multKM, multLN, ilrEM, alrEM, multK) under ten
situations of detection limit set when ρ = 0.3 (a) and ρ = 0.5 (b).

and α5 = 0. Set each data in the jth component smaller than ej (j = 1, 2, 3, 4) to a zero
value, then the percentage of rounded zeros in the �rst four components approximately
range from 5% to 50% by 5%, 4% to 40% by 4%, 3% to 30% by 3%, 2% to 20% by 2%,
respectively, and the last component has no rounded zeros, therefore the corresponding
percentage of rounded zeros in compositional data set approximately ranges from 2.8%
to 28% by 2.8%.

We run 100 Monte Carlo simulations for each setting described above. The perfor-
mance comparisons among previous methods and proposed method with varying per-
centage of rounded zeros corresponding to situations are showed in Figure 1 and Figure
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(a) ρ = 0.7.
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Figure 2. Two measures of distortion STRESS and RDVM for six
methods (multR, multKM, multLN, ilrEM, alrEM, multK) under ten
situations of detection limit set when ρ = 0.7 (a) and ρ = 0.9 (b).

2. The values in Figure 1 and Figure 2 are the average STRESS or RDVM of 100 simula-
tions. Figure 1(a) and Figure 1(b) depict the trends in two performance measures under
ten situations of detection limit set when ρ = 0.3 and 0.5. It can be seen from Figure 1(a)
and Figure 1(b) that the ilrEM and alrEM have smaller STRESS and RDVM than those
of multR, however, the STRESS and RDVM of multKM and multLN are greater than
those of multR. Moreover, when the percentage of rounded zeros increases, the STRESS
value of multK is lower than those of previous methods. The multK method performs
worse than previous methods in the measure RDVM when ρ = 0.3, whereas it performs
better under some situations when ρ = 0.5. Figure 2 shows the trends in two measures
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among di�erent methods when ρ = 0.7 and 0.9. From Figure 2(a) and Figure 2(b), we
see that the multK method outperforms the other methods in two measures STRESS and
RDVM. The STRESS value of ilrEM is very close to that of multR, while ilrEM performs
worse than multR in measure RDVM. To sum up, when the percentage of rounded zeros
increases, the proposed method has better performance than other methods in the two
measures STRESS and RDVM.

4.2. Real example. The proposed method discussed in the previous section will be
applied to the moss data from the Kola project available in the R package StatDA [7] and
compared with the previous methods (multR, multKM, multLN, ilrEM and alrEM). The
moss data set consists of more than 50 chemical elements and 594 observations. We focus
on the 7-part subcomposition [Al, Ca, Fe, K, Mg, Na, Si] denoted as compositional data
set U = [u1,u2, · · · ,u7] with constant sum 100%, which has no rounded zeros. Similar
to the simulation analysis, we give the detection limit set, the value below detection limit
is set as zero. The aim of this study is to replace rounded zeros using di�erent methods.

Suppose that the components u1,u3,u6 and u7 have rounded zeros. Eight situations
of detection limit set are given in Table 1 in which ej (j = 1, 3, 6, 7) is the detection limit
of the jth component. Table 1 also gives the percentages of rounded zeros of components
u1,u3,u6,u7 and the total percentage of rounded zeros of compositional data set U.
Table 2 gives the computed results of STRESS and RDVM for six methods (multR,
multKM, multLN, ilrEM, alrEM, multK) under eight situations. According to Table 2,
we can �nd that the proposed method has smaller STRESS value than those of other
methods except the �rst two situations, and the RDVM value of proposed method for
each situation is always smaller than other methods. In addition, multR performs better
than ilrEM and alrEM as the percentage of rounded zeros increases, of which alrEM has
larger STRESS and RDVM than ilrEM. This is because that the ilrEM and alrEM all
assume the distribution of compositional data set. In fact, compositional data set U
departures from normal distribution on the simplex [11], which is tested using the energy
test [19] or the test based on SVD including the marginal univariate tests, the bivariate
tests and radius tests [21]. Because the ilrEM is a robust method, which performs better
than alrEM. These results suggest that the proposed method is superior to the others in
the case of moss data set.
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Table 1. Eight situations of detection limit set for compositional data
set U. The value in parentheses is the percentage of rounded zeros of
the corresponding component. The last column ZR represents the total
percentage of rounded zeros of the corresponding situation (Unit: %).

situation e1 e3 e6 e7 ZR

1 1.39(14.14) 1.41(13.97) 0.41(14.65) 1.41(14.31) 8.15
2 1.51(18.86) 1.56(18.69) 0.46(19.53) 1.55(19.19) 10.89
3 1.63(23.57) 1.72(23.23) 0.51(24.41) 1.68(23.91) 13.59
4 1.76(28.28) 1.85(27.95) 0.56(29.29) 1.76(28.62) 16.31
5 1.84(33.00) 1.96(32.49) 0.60(34.18) 1.86(33.50) 19.02
6 1.93(37.71) 2.04(37.21) 0.66(39.06) 1.98(38.22) 21.74
7 2.01(42.42) 2.22(41.75) 0.72(43.94) 2.05(42.93) 24.43
8 2.12(47.14) 2.38(46.46) 0.78(48.82) 2.13(47.81) 27.18

Table 2. Two evaluation indexes STRESS and RDVM of methods
(multR, multKM, multLN, ilrEM, alrEM, multK) for compositional
data set U under eight situations of detection limit set.

situation multR multKM multLN ilrEM alrEM multK

STRESS

1 0.0179 0.0317 0.0166 0.0148 0.0158 0.0159
2 0.0216 0.0426 0.0213 0.0182 0.0212 0.0189
3 0.0244 0.0567 0.0275 0.0222 0.0260 0.0218
4 0.0283 0.0706 0.0348 0.0265 0.0336 0.0257
5 0.0328 0.0833 0.0422 0.0312 0.0444 0.0302
6 0.0372 0.0994 0.0518 0.0372 0.0592 0.0358
7 0.0425 0.1185 0.0638 0.0468 0.0737 0.0421
8 0.0494 0.1382 0.0774 0.0613 0.1042 0.0493

RDVM

1 0.0623 0.1626 0.0645 0.0478 0.0465 0.0389
2 0.0671 0.2033 0.0864 0.0544 0.0679 0.0396
3 0.0551 0.2475 0.1165 0.0724 0.0839 0.0401
4 0.0538 0.2849 0.1423 0.0863 0.1025 0.0376
5 0.0576 0.3161 0.1653 0.0979 0.1442 0.0425
6 0.0688 0.3513 0.1959 0.1292 0.1988 0.0630
7 0.0821 0.3891 0.2311 0.1771 0.2532 0.0793
8 0.0954 0.4252 0.2681 0.2376 0.3568 0.0950

5. Conclusions

The logratio transformations do not applies when compositional data have zeros. In
this paper, a nonparametric method based on the multivariate Gauss kernel density es-
timation is suggested to deal with the rounded zeros. Because the clr coordinates add
to zero, the ilr coordinates are applied in the proposed method. Under the ilr coor-
dinates in Equation (2.2), the multivariate Gauss kernel function is related with the
Aitchison distance between subcompositions. In the simulation study and real example,
the proposed method is compared with the multiplicative replacement strategy, the mul-
tiplicative Kaplan-Meier method, the multiplicative lognormal replacement method, the
modi�ed EM algorithm based on alr coordinates and the robust modi�ed EM algorithm
based on ilr coordinates. The results in simulation study show that the proposed method
presents a good performance in comparison with other methods in the two measures
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STRESS and RDVM as the percentage of rounded zeros increases. Furthermore, in the
real example, the performance of proposed method is obvious. The feature of our frame-
work is that the proposed method works when the distribution function form is unknown.
Future work will be dedicated to the study of bandwidth matrix in multivariate kernel
function.
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The problem of estimating quantile vector θ˜ = (θ1, θ2) of two normal

populations, under the assumption that the means (µis) are equal has
been considered. Here θi = µ + ησi, i = 1, 2, denotes the pth quantile
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the c.d.f. of a standard normal random variable. The loss function is
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quantile vector θ˜. Further, classes of equivariant estimators have been
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1. Introduction

Let X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be independent random samples

drawn from two normal populations N(µ, σ2
1) and N(µ, σ2

2) respectively. Here the com-
mon mean µ, and the variances σ2

1 , σ
2
2 are unknown. The pth quantile of the �rst and

second populations are θ1 = µ + ησ1 and θ2 = µ + ησ2 respectively where η = Φ−1(p);
0 < p < 1. Here Φ(.) denotes the cumulative distribution function of a standard normal
random variable. The problem is to estimate the quantile vector θ˜ = (θ1, θ2) with respect
to the sum of the quadratic losses given by,

L(d˜, θ˜) =

2∑
i=1

(di − θi
σi

)2

,(1.1)

where d˜ = (d1, d2) is an estimator of θ˜ = (θ1, θ2).
The problem of estimation of quantiles has attracted several researchers in the recent

past due to its real life applications. For example, quantiles of exponential populations
are widely used in the study of reliability, life testing, survival analysis and some related
areas. We refer to Keating and Tripathi [7] and Saleh [16] for some applications of
exponential quantiles.

We note that, in the literature most of the results on quantile estimation are for a
single parameter, θ = µ + ησ, whereas the current work is for simultaneous estimation
of a vector θ˜ = (θ1, θ2) of two quantiles. Probably, Zidek [21] was the �rst to consider
the estimation of quantile of normal population with respect to a quadratic loss function.
Zidek [21, 22] proved that the best a�ne equivariant estimator of the quantile θ = µ+ησ is
inadmissible if |η| is chosen very large. Rukhin [14] derived a class of minimax estimators
for quantile θ, each of which improves upon the best equivariant estimator. For some
decision theoretic results on estimation of quantiles of an exponential population one may
refer to Rukhin [15] and the references therein.

Some study also has been done in estimating the quantile θ1, when two or more pop-
ulations are available from normal populations. Kumar and Tripathy [9] considered the
estimation of θ1 = µ + ησ1 under a quadratic loss function using a decision theoretic
approach. Exploiting the information available for the common mean, they could obtain
improved estimators for quantiles θ1. They also derived some inadmissibility conditions
for estimators belonging to equivariant classes. A similar type of results have been ob-
tained by Sharma and Kumar [17] in the case of exponential populations while estimating
the quantile θ1 of the �rst population.

The problem under consideration has its importance in the sense that it uses the
information available for estimating a common mean. The problem of estimating the
common mean of normal populations is an age old problem and has its origin in the
study of recovery of inter-block information in balance incomplete block designs. In the
literature, this problem is also referred as Meta-Analysis, where samples (data) from
multiple sources are combined with a common objective. One may refer to Vazquez
et al. [20] for application of Meta-Analysis in clinical trials. For a detailed review on
inference on common mean of two or more normal populations one may refer to Moore
and Krishnamoorthy [11], Lin and Lee [10], Chang and Pal [5], Tripathy and Kumar [18]
and the references therein.

It should be noted that, the underlying model has been considered previously by
Kumar and Tripathy [9], and estimated the �rst component θ1. We in this paper, con-
sider the simultaneous estimation of quantiles, that is, the vector θ˜ = (θ1, θ2), which
is important from theoretical as well as application point of view. For some results on
simultaneous estimation of location and scale parameters with application we refer to
Bai and Durairajan [2], Alexander and Chandrasekar [1] and Tsukuma [19]. The rest
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of our work is organized as follows. In Section 2, we derive a basic result which helps
in constructing improved estimators for quantile vector θ˜. In Section 3, we derive a�ne
and location equivariant estimators. Su�cient conditions for improving estimators in
the class have been obtained. In the process, two complete class results proved. An
extensive simulation study has been done in order to numerically compare the relative
risk performances of various proposed estimators in Section 4. We conclude with some
practical examples in Section 5.

2. A General Result and Some Improved Estimators

In this section we discuss the model and prove a general result which will be handy
in constructing some good estimators for the quantile vector θ˜ = (θ1, θ2).

Suppose X˜ = (X1, X2, . . . , Xm) and Y˜ = (Y1, Y2, . . . , Yn) be independent random

samples taken from two normal populations N(µ, σ2
1) and N(µ, σ2

2) respectively. Here
the parameters µ, σ2

1 and σ2
2 are unknown. Our aim is to estimate the vector θ˜ = (θ1, θ2),

where θi = µ+ησi, (η 6= 0 and i = 1, 2) with respect to the loss function (1.1). Obviously,
θi is the p

th quantile of the ith population that is, η = Φ−1(p), (0 < p < 1) where Φ(.) is
the cumulative distributive function of a standard normal random variable. A minimal
su�cient statistic for this problem is (X̄, Ȳ , S2

1 , S
2
2) where

X̄ =
1

m

m∑
i=1

Xi, Ȳ =
1

n

n∑
j=1

Yj , S
2
1 =

m∑
i=1

(Xi − X̄)2 and S2
2 =

n∑
j=1

(Yj − Ȳ )2.

It is well known that the maximum likelihood estimator (MLE) for µ, is not obtain-
able in a closed form (see Pal et al. [12]). Also the minimal su�cient statistics for
this problem are not complete, hence the usual approaches to �nd uniformly minimum
variance unbiased estimator (UMVUE) for individual quantile do not work as ancillary
statistics may carry relevant information for the parameter of interest. Therefore, it is
not known if a UMVUE exists or not, and it is di�cult to �nd even if one exists. Further,
it is known that when we have only one population (say X˜ ) the best a�ne equivariant

estimator for estimating quantile θ1 = µ + ησ1 is minimax (see Kiefer [8]). When we
have both the populations X˜ and Y˜ the problem of estimating the �rst component θ1

has been considered by Kumar and Tripathy [9]. Following their arguments, a natural
way to construct improved estimators for θ˜ is to combine the improved estimators for
the common mean and the improved estimators for the respective standard deviations.
Hence we �rst propose a basic estimator for θ˜ as,

d˜ = (d1, d2), where di = X̄ + cSi, i = 1, 2.

Let us de�ne

cm+n =
η
√

2

m+ n− 2

[
Γ(m

2
)

Γ(m−1
2

)
+

Γ(n
2

)

Γ(n−1
2

)

]
.(2.1)

2.1. Theorem. If we estimate the quantiles θ˜ by d˜ = (X̄ + cS1, X̄ + cS2) with respect to

the loss function (1.1), then the value of c for which the risk is minimum is found to be
cm+n.

Let us denote d˜X = (X̄ + cm+nS1, X̄ + cm+nS2). Next, we give a general result which

in parallel to Theorem 2.1 of Kumar and Tripathy [9] that valid for estimating only θ1.

2.2. Theorem. Suppose d˜M = (dM , dM ) be an estimator for µ˜ = (µ, µ), and d˜S =

(dS1 , dS2) be an estimator for σ˜ = (σ1, σ2). Consider d˜Q = (dQ1, dQ2) = d˜M + ηd˜S as an
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estimator for θ˜. Further, assume that given dS1 , and dS2 , dM is conditionally unbiased
for µ, that is

E(dM |dS1) = E(dM |dS2) = µ,(2.2)

then,

E(dQ1 − θ1)2 + E(dQ2 − θ2)2 = 2E(dM − µ)2 + η2{E(dS1 − σ1)2

+E(dS2 − σ2)2}.(2.3)

Proof. The proof is similar to the arguments used in proving Theorem 2.1 of Kumar and
Tripathy [9], hence omitted. �

2.3. Remark. It is easy to observe that, condition (2.3) will satisfy if we choose dM to
be an unbiased estimator for µ and both dS1 and dS2 are independent of dM . For example
we may take dM = X̄ and dS1 = S1, dS2 = S2.

2.4. Remark. As a consequence of Theorem 2.2, to construct a good estimator for θ˜,it is su�cient to have a good estimator for µ and/or a good estimator for σ1 or/and a
good estimator for σ2.

2.5. Remark. Let dM = dφ, where dφ = φ(S1, S2)X̄+(1−φ(S1, S2))Ȳ be any unbiased
estimator for µ, and dS1 = cS1/η, dS2 = cS2/η (η 6= 0), it is easy to see that, the
condition of Theorem 2.2 satis�es and we prove the following result.

2.6. Theorem. Let dφ = φ(S1, S2)X̄+(1−φ(S1, S2))Ȳ be an estimator for the common
mean µ. Consider the estimator d˜φ(c) = (dφ+cS1, dφ+cS2) for estimating quantile vector

θ˜. Then d˜φ(c) has smaller risk than d˜ with respect to the sum of quadratic loss (1.1) if

and only if dφ has smaller risk than X̄. Further, d˜φ(c) has minimum risk with respect to

the loss (1.1) when c = cm+n.

We note that, the minimizing choice of c is cm+n which is symmetric in both m and
n. One may construct an estimator for the quantile θ˜ using Ȳ for the common mean. Let

us denote d˜∗ = (Ȳ + cS1, Ȳ + cS2). The results of Theorem 2.6 will remain true if we
replace d˜ by d˜∗. Hence we have the following remark.

2.7. Remark. Let dφ = φ(S1, S2)X̄ + (1−φ(S1, S2))Ȳ be an estimator for the common
mean µ. Consider the estimator d˜φ(c) = (dφ + cS1, dφ + cS2) for estimating quantile

vector θ˜. Then d˜φ(c) has smaller risk than d˜∗ with respect to the sum of quadratic loss

(1.1) if and only if dφ has smaller risk than Ȳ . Further, d˜φ(c) has minimum risk with

respect to the loss (1.1) when c = cm+n. Let us denote d˜Y = (Ȳ + cm+nS1, Ȳ + cm+nS2).

2.8. Remark. Following Theorem 2.6, one can easily construct good estimators for θ˜ by
replacing X̄ in d˜X or Ȳ in d˜Y by any improved estimator of the form dφ for the common
mean µ.

Following the above remarks and Theorem 2.2, we propose the following estimators
for θ˜ which have smaller risk than d˜X or/and d˜Y under certain conditions on the sample
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sizes.

d˜GM = (µ̂GM + cm+nS1, µ̂GM + cm+nS2),

d˜GD = (µ̂GD + cm+nS1, µ̂GD + cm+nS2),

d˜KS = (µ̂KS + cm+nS1, µ̂KS + cm+nS2),

d˜CS = (µ̂CS + cm+nS1, µ̂CS + cm+nS2),

d˜MK = (µ̂MK + cm+nS1, µ̂MK + cm+nS2),

d˜TK = (µ̂TK + cm+nS1, µ̂TK + cm+nS2),

d˜BC1 = (µ̂BC1 + cm+nS1, µ̂BC1 + cm+nS2),

d˜BC2 = (µ̂BC2 + cm+nS1, µ̂BC2 + cm+nS2).

Here we denote µ̂GM = mX̄+nȲ
m+n

, µ̂TK =
√
m bn−1S2X̄+

√
n bm−1S1Ȳ√

m bn−1S2+
√
n bm−1S1

, and µ̂GD, µ̂KS , µ̂BC1,

µ̂BC2, µ̂CS , µ̂MK , are estimators for the common mean µ, as de�ned in Tripathy and
Kumar [18]. Although the closed form of the MLE of µ is not available, one can obtain
it numerically by solving a system of three equations in three unknowns. Let us denote
µ̂ML as the MLE of the common mean. Using this estimator for the common mean we
propose an estimator for the quantile vector θ˜ as,

d˜ML = (µ̂ML + cm+nS1, µ̂ML + cm+nS2).

All these estimators belong to the class d˜φ(cm+n) and will be compared numerically in
Section 4.

2.9. Theorem. Let the estimators d˜X , d˜Y , d˜GD, d˜KS , d˜BC1, d˜BC2, and d˜CS as de�ned

above for estimating θ˜. The loss function be taken as the sum of the quadratic losses (1.1).

(i) The estimator d˜GD performs better than both d˜X and d˜Y if and only if m,n ≥ 11.

(ii) The estimator d˜KS performs better than both d˜X and d˜Y if and only if (m −
7)(n− 7) ≥ 16.

(iii) The estimator d˜BC1 performs better than d˜X if and only if m ≥ 2, n ≥ 3 and

for 0 < b1 < bmax(m,n).
(iv) The estimator d˜BC2 performs better than d˜X if and only if m ≥ 2, n ≥ 6 and

for 0 < b2 < bmax(m,n− 3).
(v) The estimator d˜CS performs better than d˜X if m = n ≥ 7.

Here b1, b2 and bmax(m,n) are as de�ned in Kumar and Tripathy [9].

Proof. The proof of (i)-(v) can be done by using Theorem 2.6 and the arguments given
in the proof of Theorem 2.4 in Kumar and Tripathy [9]. �

2.10. Remark. The estimator d˜MK uses the estimator proposed by Moore and Krish-

namoorthy [11] that uses the estimates of standard deviation instead of variance. Their
estimator does not improve upon X̄ uniformly. The estimator d˜TK proposed by Tripathy

and Kumar [18], also does not improve upon X̄ uniformly. As our numerical results shows
(in Section 4), these two estimators perform quite well for moderate values of σ2/σ1 > 0
and also they are good competitor of each other.

3. Inadmissibility Results for Equivariant Estimators

In this section, we introduce the concept of invariance to the problem of simultaneous
estimation of quantiles of two normal populations and derive classes of a�ne and location
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equivariant estimators. Further su�cient conditions for improving estimators in these
classes have been derived. Consequently some complete class results are also proved.

Consider the group GA = {ga,b : ga,b(x) = ax+ b, a > 0, b ∈ R} of a�ne transforma-
tions. Under the transformation, X̄ → aX̄ + b, Ȳ → aȲ + b, S2

i → a2S2
i , µ → aµ + b,

σ2
i → a2σ2

i , and θ˜ → aθ˜+ be˜, where e˜ = (1, 1) and θ˜ = (θ1, θ2), θi = µ + ησi, i = 1, 2.
The problem considered is invariant if we choose the loss function as the sum of a�ne
invariant loss functions (1.1). Based on the su�cient statistics (X̄, Ȳ , S2

1 , S
2
2) the form

of an a�ne equivariant estimator for estimating the vector θ˜ is obtained as,

(d1(X̄, Ȳ , S2
1 , S

2
2), d2(X̄, Ȳ , S2

1 , S
2
2)) = (X̄ + S1Ψ1(T1, T2), X̄ + S1Ψ2(T1, T2))

= (dΨ1 , dΨ2)

= d˜Ψ˜ say,(3.1)

where T1 = Ȳ−X̄
S1

and T2 =
S2
2

S2
1
.

Denote M1 = min(t1, 0), and M2 = max(t1, 0). Let us de�ne the following functions
for any a�ne equivariant estimator d˜Ψ˜.

Ψ˜0 = (min(max(Ψ1,M1),M2),min(max(Ψ2,M1),M2))(3.2)

Ψ˜1 = (max{M1 + ηbm+n,Ψ1},max{M1 + ηbm+n

√
t2,Ψ2}),(3.3)

Ψ˜2 = (min{M2 + ηbm+n,Ψ1},min{M2 + ηbm+n

√
t2,Ψ2}).(3.4)

Next we prove the following inadmissibility result for a�ne equivariant estimators.

3.1. Theorem. Let d˜Ψ˜ be an a�ne equivariant estimator of the form (3.1) of a quantile

vector θ˜, and the loss function be the sum of quadratic loss (1.1) or the sum of squared er-

rors. Let the functions Ψ˜0, Ψ˜1 and Ψ˜2 be de�ned as in (3.2), (3.3) and (3.4) respectively.

Let α˜ = (µ, σ2
1 , σ

2
2).

(i) When η = 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜0 if Pα˜(Ψ˜0 6= Ψ˜) > 0 for some

choices of α˜.
(ii) When η > 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜1 if Pα˜(Ψ˜1 6= Ψ˜) > 0 for some

choices of α˜.
(iii) When η < 0, the estimator d˜Ψ˜ is improved by d˜Ψ˜2 if (Ψ˜2 6= Ψ˜) > 0 for some

choices of α˜.
Proof. To prove this theorem we use a result due to Brewster and Zidek [3]. Consider
the conditional risk function of d˜Ψ˜ given T˜ = (T1, T2) :

R((d˜Ψ˜, θ˜)|T˜) = E{L(d˜Ψ˜, θ˜)|T˜}
=

1

σ2
1

E{(X̄ + S1Ψ1(T˜)− µ− ησ1)2|T˜ = t˜}
+

1

σ2
2

E{(X̄ + S1Ψ2(T˜)− µ− ησ2)2|T˜ = t˜}.(3.5)

The above risk function (3.5) is a sum of two convex functions in Ψ1 and Ψ2, which is a
convex function. The minimizing choices of Ψ1(t˜) and Ψ2(t˜), are obtained respectively
as,

Ψ1(t˜) = −
E{(X̄ − µ)S1|T˜}

E(S2
1 |T˜)

+ ησ1

E(S1|T˜)

E(S2
1 |T˜)
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and

Ψ2(t˜) = −
E{(X̄ − µ)S1|T˜}

E(S2
1 |T˜)

+ ησ2

E(S1|T˜)

E(S2
1 |T˜)

.

Using the conditional expectations derived in Kumar and Tripathy [9], the minimizing
choices for Ψ1(t˜) and Ψ2(t˜) are simpli�ed and are given by

Ψ1(t˜, ρ) =
t1

1 + ρ
+ ηbm+n

√
λ(3.6)

and

Ψ2(t˜, ρ) =
t1

1 + ρ
+ ηbm+n

√
nρ

m

√
λ.(3.7)

Here λ =
mt21
1+ρ

+ mt2
nρ

+ 1, bm+n =
Γ( m+n

2
)

√
2Γ( m+n+1

2
)
and ρ =

mσ2
2

nσ2
1
.

In order to prove the theorem, we need to �nd the in�mum and supremum values of
Ψ1(t˜, ρ) and Ψ2(t˜, ρ) with respect to ρ > 0, for all values of η and t˜. After analyzing the

terms Ψ1(t˜, ρ) and Ψ2(t˜, ρ), for separate values of η, we have the following cases:

(i) When η = 0, and t1 ∈ R,

inf
ρ

Ψ1(t˜, ρ) = M1 and sup
ρ

Ψ1(t˜, ρ) = M2

inf
ρ

Ψ2(t˜, ρ) = M1 and sup
ρ

Ψ2(t˜, ρ) = M2.(3.8)

(ii) When η > 0, and t1 ∈ R, we have

inf
ρ

Ψ1(t˜, ρ) ≥M1 + ηbm+n (equality holds if t1 > 0)

and sup
ρ

Ψ1(t˜, ρ) = +∞

inf
ρ

Ψ2(t˜, ρ) ≥M1 + ηbm+n

√
t2(equality holds if t1 < 0)

and sup
ρ

Ψ2(t˜, ρ) = +∞.(3.9)

(iii) When η < 0, t1 ∈ R, we have

sup
ρ

Ψ1(t˜, ρ) ≤M2 + ηbm+n (equality holds if t1 < 0)

and inf
ρ

Ψ1(t˜, ρ) = −∞

sup
ρ

Ψ2(t˜, ρ) ≤M2 + ηbm+n

√
t2 (equality holds if t1 > 0)

and inf
ρ

Ψ2(t˜, ρ) = −∞.(3.10)

Utilizing the expressions (3.8)-(3.10), for η = 0, η > 0 and η < 0, respectively, for an
a�ne equivariant estimator d˜Ψ˜ = (dΨ1 , dΨ2), we can easily de�ne the functions Ψ˜0, Ψ˜1,

Ψ˜2 as in (3.2)-(3.4) respectively. An application of orbit-by-orbit improvement technique

for improving equivariant estimators of Brewster and Zidek [3], proves the theorem. �

3.2. Remark. The above theorem is basically a complete class result. It tells that for
an equivariant estimator of the form (3.1),

(i) if Pα˜({Ψ1 ∈ [min(T1, 0),max(T1, 0)]c}
⋃
{Ψ2 ∈ [min(T1, 0), max(T1, 0)]c}) > 0,

then the estimator d˜Ψ˜ is improved by d˜Ψ˜0 , when η = 0.

(ii) if P ({Ψ1 < min(T1, 0) + ηbm+n}
⋃
{Ψ2 < min(T1, 0) + ηbm+n

√
T2}) > 0, then

the estimator d˜Ψ˜1 will improve upon d˜Ψ˜, when η > 0,
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(iii) if P ({Ψ1 > max(T1, 0) + ηbm+n}
⋃
{Ψ2 > max(T1, 0) + ηbm+n

√
T2}) > 0, then

the estimator d˜Ψ˜2 will improve upon d˜Ψ˜ when η < 0.

Here [a, b]c stands for complement of the interval [a, b] in R.

3.3. Remark. All the estimators discussed in Section 2 (except d˜ML whose closed form

does not exist), belong to the class (3.1). But it has been seen that for none of these
estimators, the choices of Ψ1 and Ψ2 satisfy the above conditions in Remark 3.2. So
the estimators considered can not be improved by using Theorem 3.1, but they form a
complete class. The result we write as a theorem below.

3.4. Theorem. Let the loss function be (1.1).

(i) The class of estimators {d˜Ψ˜ : Ψ1 ∈ [min(T1, 0),max(T1, 0)] and Ψ2 ∈ [min(T1, 0),

max(T1, 0)]} is complete for η = 0.
(ii) The class of estimators {d˜Ψ˜ : Ψ1 > min(T1, 0) + ηbm+n and Ψ2 > min(T1, 0)

+ηbm+n

√
T2} is complete for η > 0.

(ii) The class of estimators {d˜Ψ˜ : Ψ1 < max(T1, 0) + ηbm+n and Ψ2 < max(T1, 0)

+ηbm+n

√
T2} is complete for η < 0.

Next, we consider a smaller group of transformations and hence a larger class of
estimators for estimating the vector θ˜. Consider the groupGL = {gc : gc(x) = c+x, c ∈ R}
of location transformations. Under the transformation, X̄ → X̄+c, Ȳ → Ȳ +c, S2

i → S2
i ,

µ→ µ+ c, σi → σi, θi = µ+ ησi → θi + c where i = 1, 2.
The estimation problem is invariant if we take the loss function as the sum of squared

error losses (1.1), and the form of a location equivariant estimator for estimating the
vector θ˜ based on the su�cient statistics (X̄, Ȳ , S2

1 , S
2
2), is obtained as

d˜ψ˜ = (X̄ + ψ1(U˜), X̄ + ψ2(U˜)),(3.11)

where U˜ = (T, S2
1 , S

2
2) and T = Ȳ − X̄.

Let us denote N1 = min(t, 0) and N2 = max(t, 0). For a location equivariant estimator
d˜ψ˜, de�ne the functions ψ˜0, ψ˜1 and ψ˜2 as,

ψ˜0(u˜) = (min(max(ψ1, N1), N2),min(max(ψ2, N1), N2))(3.12)

ψ˜1(u˜) = (max{N1, ψ1},max{N1, ψ2}),(3.13)

ψ˜2(u˜) = (min{N2, ψ1},min{N2, ψ2}).(3.14)

Next, we prove a theorem regarding inadmissibility of location equivariant estimators.

3.5. Theorem. Let d˜ψ˜ be a location equivariant estimator of the quantile θ˜ and the

loss function be the sum of quadratic losses (1.1) or the sum of squared error. Let the
functions ψ˜0, ψ˜1 and ψ˜2 be de�ned as in (3.12), (3.13) and (3.14) respectively.

(i) When η = 0, the estimator d˜ψ˜ is improved by d˜ψ˜0 if Pα˜(ψ˜0 6= ψ˜) > 0 for some

choices of α˜.
(ii) When η > 0, the estimator d˜ψ˜ is improved by d˜ψ˜1 if Pα˜(ψ˜1 6= ψ˜) > 0 for some

choices of α˜.
(iii) When η < 0, the estimator d˜ψ˜ is improved by d˜ψ˜2 if Pα˜(ψ˜2 6= ψ˜) > 0 for some

choices of α˜.
Proof. The proof is similar to the arguments used in proving Theorem 3.1. The details
of the proof is omitted. �
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3.6. Remark. Similar to Theorem 3.1 above Theorem 3.5 is also a complete class result.
It tells that for an estimator of the form (3.11),

(i) if P ({ψ1 ∈ [min(T, 0),max(T, 0)]c}
⋃
{ψ2 ∈ [min(T, 0),max(T, 0)]c}) > 0 then

the estimator d˜ψ˜ is improved by d˜ψ˜0 , when η = 0,

(ii) if P ({ψ1 < min(T, 0)}
⋃
{ψ2 < min(T, 0)}) > 0, then the estimator d˜ψ˜1 will

improve upon d˜ψ˜, for η > 0, and

(iii) if P ({ψ1 > max(T, 0)}
⋃
{ψ2 > max(T, 0)}) > 0, then the estimator d˜ψ˜2 will

improve upon d˜ψ˜ when η < 0.

3.7. Remark. All the estimators discussed in Section 2 (except d˜ML whose closed form

does not exist), belong to the class (3.11). But it has also been seen that for none of
these estimators the choices of ψ1 and ψ2 satisfy the above conditions in Remark 3.6. So
the estimators considered can not be improved by using Theorem 3.5, but they form a
complete class. This we write as a theorem.

3.8. Theorem. Let the loss function be (1.1).

(i) The class of estimators {d˜ψ˜ : ψ1 ∈ [min(T, 0),max(T, 0)] and ψ2 ∈ [min(T,

0),max(T, 0)]} is complete for η = 0.
(ii) The class of estimators {d˜ψ˜ : ψ1 > min(T, 0) and ψ2 > min(T, 0)} is complete

for η > 0.
(ii) The class of estimators {d˜ψ˜ : ψ1 < max(T, 0) and ψ2 < max(T, 0)} is complete

for η < 0.

4. Numerical Comparisons

In the previous sections we have derived several estimators for the quantile vector
θ˜ such as d˜X , d˜Y , d˜GD, d˜GM , d˜KS , d˜BC1, d˜BC2, d˜CS , d˜MK , d˜TK , and d˜ML. We have

also shown that these well structured estimators, except d˜ML, belong to the class (3.1)

and (3.11). It seems quite di�cult to compare the risk values of all these estimators
analytically. But for practical purposes, one needs the estimator to be used. Taking
the advantages of computational resources, we in this section compare numerically the
simulated risk values of all these estimators which may be handy for practical purposes.
For evaluating the risk function, we use the loss function (1.1). For numerical comparison
purpose, we have generated 20,000 random samples X˜ of sizes m and 20,000 random
samples Y˜ of sizes n from normal populations with equal mean and di�erent variances. It
can be easily checked that all the risks values are functions of τ = σ2

σ1
> 0, for �xed values

of m, n and |η|. The approximate value of π is taken to be 3.1416. We have computed
the risk values of all the estimators taking various choices of τ and the sample sizes.
However, for illustration purpose we present the risk values for some selected choices of τ
and m, n.We also observe that when the values of τ increase from 0 to∞ the risk values
converge for all the estimators except d˜GM and d˜Y . As the sample sizes increases the risk

values of all the estimators decrease for �xed |η|. Further, the risk values increase as η
increases for �xed values of τ and sample sizes. If we choose the value of b1 and b2 near
0 the estimators d˜BC1 and d˜BC2 tends to d˜X . Also if we choose the value of b2 near 1 the

estimator d˜BC2 tends to d˜GD. So for numerical comparison a convenient choice would

be an intermediate value which we take as 1
2
bmax. The value of bmax(m,n) have been

taken from the tabulated values given in Brown and Cohen [4]. We also note that, when
the sample sizes are equal the estimator d˜GD becomes same as d˜KS and d˜MK becomes

same as d˜TK .When the sample sizes are unequal the estimator d˜CS is not de�ned, so for



264

unequal sample sizes we do not include it for numerical comparison purpose. A massive
simulation study has been conducted separately for the cases m = n, m > n and m < n.
The simulated risk values have been plotted against τ for all the estimators in Figure 1
and Figure 2. In Figure 1 the sample sizes have been taken as equal, whereas in Figure 2,
the simulated risk values have been plotted for unequal sample sizes. In Figures 1, and
2 we label X, Y , GM , GD, KS, BC1, BC2, CS, MK, TK and ML for the estimators
d˜X , d˜Y , d˜GM , d˜GD, d˜KS , d˜BC1, d˜BC2, d˜CS , d˜MK , d˜TK d˜ML respectively. In Tables 1-3,
we have presented the simulated values of the percentage of relative risk improvement of
all the estimators with respect to d˜X , which are de�ned as

PR1 =
(

1−
Risk(d˜Y )

Risk(d˜X)

)
× 100, PR2 =

(
1−

Risk(d˜GM )

Risk(d˜X)

)
× 100,

PR3 =
(

1−
Risk(d˜GD)

Risk(d˜X)

)
× 100, PR4 =

(
1−

Risk(d˜KS)

Risk(d˜X)

)
× 100,

PR5 =
(

1−
Risk(d˜BC1)

Risk(d˜X)

)
× 100, PR6 =

(
1−

Risk(d˜BC2)

Risk(d˜X)

)
× 100,

PR7 =
(

1−
Risk(d˜CS)

Risk(d˜X)

)
× 100, PR8 =

(
1−

Risk(d˜MK)

Risk(d˜X)

)
× 100,

PR9 =
(

1−
Risk(d˜TK)

Risk(d˜X)

)
× 100, PR10 =

(
1−

Risk(d˜ML)

Risk(d˜X)

)
× 100.

The following observations can be made from the Tables 1-3 and the Figures 1-2 as
well as from our simulation study. For illustration purpose, we have presented the risk
functions only for the case η = 1.960.
Case 1: m = n.

(i) Figure 1 represents the risk values of all the estimators for the equal sample sizes
and η = 1.960. In Figure 1, (a)-(c) it represents the risk values for sample sizes
small to moderate that is (6,6), (8,8) and (12,12) whereas (d)-(f) the sample sizes
are taken as moderate to large (20,20), (30,30) and (40,40). It has been noticed
that the risk values of the estimators d˜X , d˜BC1, d˜BC2 and d˜CS decreasing as τ

increases from 0 to ∞. The estimator d˜GD �rst increases and attains maximum

value then decreases. The estimators d˜GM , and d˜MK �rst decrease attains mini-

mum (in the neighborhood of τ = 1) then increases. The estimator d˜Y increases

as τ varies from 0 to ∞. It has also been noticed that all the estimators (except
d˜GM and d˜Y ) converge to the estimator d˜X which is true as these estimators are
consistent.

(ii) The percentage of relative risk performances of all the estimators with respect
to d˜X decrease as τ varies from 0 to ∞. Let us �rst consider the case of small

sample sizes (m,n ≤ 10). For small values of τ (τ < 0.25) the estimators d˜Y
and d˜ML has the maximum percentage of relative risk improvement and it is

seen near to 98.88%. For moderate values of τ (0.75 < τ < 2.5) the estimators
d˜GM and d˜MK compete each other however when τ = 1, the estimator d˜GMhas the maximum percentage of relative risk improvement and it is seen near to
15.68%. For large values of τ, the estimator d˜BC1 has the maximum percentage
of relative risk improvement.

Consider the case of moderate sample sizes (12 ≤ m,n ≤ 20). For small
values of τ, the estimator d˜ML has the best performance and the percentage

of relative risk improvement is seen near to 89.78%. For moderate values of τ
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(0.75 < τ < 2.5) the estimators d˜MK and d˜GD perform equally well, however

for τ = 1, the estimator d˜GM has the maximum percentage of relative risk

performances. For large values of τ, (τ > 3.5) the estimators d˜BC1 and d˜ML

compete with each other.
Consider the case of large sample sizes (m,n ≥ 30). For small values of τ

the estimators d˜ML and d˜GD compete with each other and the percentage of

relative risk performance has been noticed near to 90.40%. For moderate values
of τ (0.75 < τ < 2.5,) the estimators d˜GD, d˜ML and d˜MK compete with each

other, however for τ = 1, the estimator d˜GM has the best performance. For large

values of τ, the estimators d˜BC1 and d˜BC2 compete with d˜ML.

Case 2: m < n.

(i) Figure 2, ((a), (c) and (e)) represents the risk values of all the estimators for
η = 1.960 and the sample sizes (4,10), (12,20) and (30,40). The risk values of
the estimators d˜X , is decreasing as τ increases. The risk values of d˜GD, d˜KSincrease and attains maximum then decrease as τ increases. The risk values of
all the estimators converge to the risk of d˜X except d˜Y and d˜GM .(ii) Consider the small sample sizes (m,n ≤ 10). For small values of τ < 0.25, the
estimator d˜Y and d˜ML compete with each other and the percentage of relative

risk improvement is seen near to 98.88%. For moderate values of τ (0.75 <
τ < 3,) the estimators d˜TK and d˜GM compete each other, however for τ =

1, the estimator d˜GM has the best performance. For large values of τ (τ >

3.0,) the estimator d˜BC1 performs the best and the percentage of relative risk
performance.

Consider the case of moderate sample sizes (12 ≤ m,n ≤ 20). For small values
of τ the estimator d˜ML has the maximum percentage of relative risk performance

and it is seen near to 98.88%. For moderate values of τ (0.75 < τ < 3) the
estimators d˜TK , d˜MK and d˜KS compete each other, however for τ = 1, d˜GM has

the best performance. For large values of τ (τ > 3) the estimator d˜BC1 has the
maximum percentage of relative risk improvement.

Consider the case of large sample sizes (m,n ≥ 30). For small values of
τ (τ ≤ 0.25), the estimators d˜KS , d˜GD and d˜ML compete each other. For

moderate values of τ (0.25 < τ < 3.) the estimators d˜GD, d˜KS , d˜TK , d˜MK and

d˜ML compete each other. For large values of τ the estimators d˜ML and d˜BC1

compete each other.

Case-3: m > n.

(i) Figure 2, ((b), (d) and (f)) represent the risk values of all the estimators for
η = 1.960 and for the sample sizes (10,4), (20,12) and (40,30). The risk values
of d˜X is decreasing as τ increases. The risk values of d˜GD, d˜KS , d˜BC1 and d˜BC2

decrease as τ increases. The risk values of estimators d˜GM , and d˜Y �rst decrease
attains minimum then increase with respect to τ.

(ii) Consider the case of small sample sizes (m,n ≤ 10). For small values of τ (τ ≤
0.25) the estimator d˜ML has maximum percentage of relative risk performance

and it is noticed near to 97.7%, for moderate values of τ (0.75 < τ < 2.0) the
estimators d˜TK and d˜GM compete each other, however for τ = 1, the estimator

d˜GM has the best performance. For large values of τ, (τ > 3) the estimator d˜BC1

has the best performance.
Consider the case of moderate sample sizes (12 ≤ m,n ≤ 20). For small values

of τ (τ < 0.25) the estimator d˜ML has the best performance, for moderate values
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of τ (0.75 ≤ τ < 2.0), the estimator d˜KS and d˜GD compete each other. For τ = 1

the estimator d˜GM performs the best. For large values of τ the estimator d˜BC1

and d˜ML compete each other.

Consider the case of large sample sizes (m,n ≥ 30). For small values of τ the
estimators d˜ML has the maximum percentage of risk improvement, for moderate

values of τ the estimators d˜ML, d˜GD, d˜KS , d˜TK , and d˜MK compete each other.

However for τ = 1 the estimator d˜GM has the best performance. For large values

of τ the estimators d˜ML, d˜GD, d˜BC1, d˜BC2 and d˜KS perform equally well.

On the basis of the above discussion and observations the following recommendations
may be done for the use of the estimators.

(i) We conclude from the above discussion that, none of the estimators completely
dominate others in terms of the risk function for the full range of the parameters.

(ii) When the sample sizes are small that is m,n ≤ 10, the estimators d˜ML and

d˜Y can be used if τ is near to 0. For values of τ in the neighborhood of 1, the

estimators d˜MK and d˜TK may be used, however for τ = 1, that is, when the

variances are of the two populations are same, the estimator d˜GM should be

used. For large values of τ we recommend to use d˜BC1.

(iii) When the sample sizes are from moderate to large the estimators d˜ML, d˜GD,
or d˜KS may be used if τ is near to 0, however for moderate values of τ we

recommend to use either of the estimators d˜GD, d˜KS , d˜MK , d˜TK , or d˜ML. For

values of τ = 1, the estimator d˜GM is strongly recommended to use. For large

values of τ, the estimators d˜ML, d˜BC1, or d˜BC2 may be used.

(iv) A similar type of observations have been made for other combinations of sample
sizes and η.
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Table 1: Percentage of Relative Risk Improvements of Various Estimators of
Normal Quantiles with η = 1.960, (m,n) = (8, 8), (12, 12), (20, 20), (40, 40)

τ ↓ PR1 PR2 PR3 PR5 PR6 PR7 PR8 PR10

98.72 74.20 98.72 55.40 53.86 30.17 98.46 98.73
0.05 98.76 74.20 98.76 70.66 75.75 63.20 98.52 98.76

98.76 74.19 98.76 83.70 88.49 84.65 98.54 98.76
98.80 74.22 98.80 92.81 94.90 95.05 98.58 98.80

89.50 68.21 89.45 50.46 48.60 27.28 88.06 89.50
0.15 89.73 68.29 89.74 64.02 68.62 57.31 88.45 89.76

89.75 68.39 89.79 76.20 80.40 76.96 88.59 89.79
90.16 68.66 90.20 84.69 86.62 86.77 89.05 90.20

75.29 59.03 75.28 42.83 40.68 22.89 73.34 75.43
0.25 75.77 59.25 75.89 54.65 57.81 48.33 73.97 75.93

76.07 59.45 76.28 64.74 68.12 65.22 74.43 76.29
76.32 59.75 76.57 71.96 73.48 73.62 74.77 76.58

40.53 36.89 41.99 24.76 22.66 12.60 41.28 41.92
0.50 41.25 37.75 43.22 31.97 33.03 27.52 42.35 43.21

41.60 38.23 44.02 37.94 39.44 37.74 43.01 44.03
41.79 38.54 44.60 42.16 42.88 42.95 43.48 44.60

17.86 24.31 23.92 15.07 13.37 07.07 24.71 23.45
0.75 18.06 24.87 25.04 19.29 19.57 15.87 25.52 24.77

17.79 24.86 25.47 22.42 22.99 21.74 25.63 25.40
17.45 25.02 25.81 24.66 24.94 24.90 25.81 25.79

-0.86 15.68 13.55 09.61 08.38 04.16 15.01 12.70
1.00 -0.18 16.58 15.10 12.37 12.39 09.65 16.14 14.64

01.15 17.20 16.38 14.65 14.93 13.72 16.98 16.24
00.56 16.99 16.51 15.83 15.97 15.76 16.85 16.48

-15.31 10.10 08.78 06.77 05.86 02.75 10.05 07.96
1.25 -17.90 09.50 09.08 08.06 08.01 06.04 09.81 08.69

-16.36 10.49 10.32 09.62 09.72 08.80 10.81 10.18
-16.82 10.67 11.02 10.71 10.78 10.60 11.17 10.97

-31.46 04.87 05.88 05.07 04.33 01.97 06.51 05.19
1.50 -32.18 04.77 06.44 06.00 05.87 04.38 06.62 06.29

-34.66 04.40 06.96 06.76 06.80 06.21 06.68 06.88
-34.23 05.07 08.09 07.90 07.92 07.80 07.54 08.08

-67.82 -5.69 02.45 02.94 02.54 01.13 01.45 02.30
2.00 -70.73 -6.03 03.48 03.54 03.47 02.61 01.95 03.46

-69.55 -4.90 04.53 04.35 04.37 03.99 03.00 04.51
-72.31 -5.85 04.57 04.52 04.53 04.48 02.63 04.57

-116.05 -18.14 01.11 01.89 01.68 00.77 -1.87 01.24
2.50 -115.39 -17.45 02.27 02.46 02.40 01.82 -0.84 02.38

-120.07 -18.71 02.59 02.68 02.66 02.47 -1.00 02.68
-119.29 -18.49 02.74 02.78 02.77 02.75 -0.81 02.76

-169.15 -31.75 00.49 01.45 01.21 00.57 -4.27 01.09
3.00 -170.01 -31.47 01.27 01.56 01.57 01.22 -3.49 01.42

-172.46 -31.42 02.11 02.12 02.09 01.93 -2.55 02.17
-176.39 -32.49 02.20 02.17 02.17 02.14 -2.59 02.20

-293.23 -61.96 00.38 00.88 00.78 00.36 -6.55 00.80
4.00 -304.09 -65.67 00.48 00.81 00.82 00.66 -7.06 00.68

-311.09 -66.74 01.19 01.20 01.19 01.10 -6.02 01.23
-319.53 -69.42 01.03 01.06 01.06 01.05 -6.51 01.05
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Table 2: Percentage of Relative Risk Improvements of Various Estimators of
Normal Quantiles with η = 1.960, (m,n) = (4, 10), (12, 20), (30, 40)

τ PR1 PR2 PR3 PR4 PR5 PR6 PR8 PR9 PR10

98.74 90.72 98.72 98.74 48.01 53.65 98.51 98.53 98.74
0.05 98.69 84.86 98.69 98.69 79.81 83.67 98.53 98.54 98.69

98.67 80.62 98.67 98.67 91.94 93.71 98.50 98.50 98.67

89.99 82.96 89.77 89.92 43.60 48.41 88.72 88.83 89.98
0.15 89.34 77.33 89.35 89.35 72.34 75.63 88.45 88.46 89.36

89.21 73.63 89.24 89.24 83.16 84.76 88.31 88.31 89.24

76.50 71.03 75.95 76.33 36.96 40.55 74.39 74.57 76.48
0.25 75.22 66.08 75.27 75.28 61.08 63.67 73.81 73.84 75.30

74.94 62.96 75.07 75.07 69.93 71.23 73.52 73.53 75.08

46.57 44.83 45.59 46.46 22.71 23.98 44.43 44.65 46.53
0.50 43.61 41.04 44.23 44.28 36.01 37.19 42.89 42.93 44.31

42.16 39.03 43.48 43.49 40.56 41.16 42.17 42.17 43.50

29.00 29.96 28.53 29.48 14.74 15.03 28.38 28.58 28.88
0.75 24.71 27.02 27.10 27.17 22.40 22.85 26.75 26.77 27.11

20.91 25.07 25.53 25.53 24.10 24.37 25.31 25.32 25.52

18.38 21.72 19.56 20.22 10.59 10.54 20.24 20.38 19.29
1.00 11.35 18.16 17.45 17.48 14.86 15.01 17.78 17.79 17.36

07.2 17.09 16.77 16.77 15.93 16.05 16.96 16.96 16.74

09.62 15.57 13.89 14.02 07.97 07.77 15.03 15.12 13.32
1.25 02.77 13.30 12.91 12.93 11.06 11.09 13.50 13.51 12.74

-4.45 11.25 11.45 11.45 11.02 11.02 11.77 11.77 11.41

03.39 11.56 10.57 10.33 06.29 06.10 12.03 12.07 09.84
1.50 -8.37 07.64 09.18 09.15 08.16 08.13 09.66 09.65 08.99

-15.42 06.25 08.30 08.29 07.98 07.99 08.34 08.33 08.27

-13.23 01.65 05.59 03.91 04.05 03.82 06.86 06.78 04.87
2.00 -29.23 -1.70 05.12 05.03 04.86 04.83 05.06 05.03 05.00

-44.68 -4.36 04.66 04.64 04.65 04.64 03.58 03.57 04.65

-29.19 -6.74 03.43 00.82 02.96 02.77 04.27 04.11 02.86
2.50 -54.92 -12.23 03.36 03.25 03.32 03.29 02.20 02.15 03.32

-73.59 -14.60 02.94 02.93 02.98 02.97 00.74 00.73 02.95

-49.24 -17.00 02.39 -0.89 02.31 02.15 02.43 02.18 01.92
3.00 -87.01 -25.22 02.26 02.13 02.37 02.34 -0.28 -0.36 02.31

-110.99 -26.79 02.34 02.33 02.34 02.31 -0.94 -0.96 02.36

-76.25 -31.59 00.89 -3.42 01.63 01.51 -0.37 -0.76 00.76
3.50 -120.65 -38.15 01.77 01.66 01.85 01.83 -1.67 -1.76 01.82

-159.48 -43.07 01.61 01.59 01.63 01.64 -3.08 -3.10 01.62

-83.63 -34.56 01.41 -2.41 01.64 01.53 00.17 -0.21 01.22
3.75 -138.71 -45.64 01.33 01.21 01.49 01.47 -2.67 -2.77 01.41

-181.46 -49.60 01.60 01.59 01.59 01.58 -3.22 -3.25 01.61

-99.21 -42.8 00.90 -3.31 01.42 01.31 -0.97 -1.42 00.81
4.00 -157.38 -53.73 00.97 00.86 01.18 01.16 -3.7 -3.80 01.08

-199.50 -55.59 01.39 01.39 01.38 01.37 -3.54 -3.57 01.40
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Table 3: Percentage of Relative Risk Improvements of Various Estimators of
Normal Quantiles with η = 1.960, (m,n) = (10, 4), (20, 12), (40, 30)

τ PR1 PR2 PR3 PR4 PR5 PR6 PR8 PR9 PR10

96.66 47.61 96.65 96.61 31.74 06.15 96.10 96.04 96.66
0.05 97.65 59.62 97.65 97.65 73.60 76.84 97.28 97.28 97.65

98.16 66.31 98.16 98.16 90.21 93.39 97.90 97.89 98.16

74.93 38.57 74.89 73.82 25.03 04.75 73.28 73.07 75.01
0.15 81.95 51.36 82.00 81.98 62.19 64.41 80.44 80.41 82.01

85.51 58.82 85.58 85.57 78.61 81.31 84.22 84.21 85.58

51.02 28.76 51.30 49.01 17.79 03.27 50.24 50.00 51.33
0.25 60.73 40.31 61.25 61.21 46.87 48.12 59.58 59.54 61.27

66.65 47.91 67.08 67.08 61.81 63.78 65.37 65.36 67.09

11.92 13.43 17.02 15.51 07.06 01.24 18.18 18.11 16.37
0.50 23.63 21.38 27.08 26.99 21.28 21.32 26.88 26.85 27.00

30.09 27.26 33.27 33.26 30.78 31.58 32.56 32.55 33.27

-7.17 07.28 05.65 05.53 03.32 00.57 07.09 07.16 04.80
0.75 01.51 12.33 12.52 12.51 10.49 10.37 13.11 13.11 12.31

07.33 16.57 17.34 17.34 16.42 16.67 17.52 17.52 17.31

-22.64 04.15 01.39 02.30 01.87 00.34 02.23 02.41 01.16
1.00 -13.11 07.75 06.84 06.88 06.14 05.98 07.26 07.27 06.68

-9.14 10.03 09.55 09.55 09.27 09.34 09.76 09.77 09.52

-37.14 01.91 -0.45 00.84 01.11 00.21 -0.44 -0.18 -0.40
1.25 -27.24 04.17 04.00 04.06 03.82 03.70 03.75 03.78 03.96

-21.59 06.40 06.57 06.58 06.36 06.38 06.46 06.46 06.55

-50.31 00.63 -0.75 00.55 00.87 00.17 -1.31 -1.01 -0.17
1.50 -42.87 00.85 02.20 02.30 02.41 02.32 01.18 01.23 02.27

-38.20 02.26 04.45 04.46 04.37 04.39 03.55 03.56 04.45

-89.75 -3.66 -2.23 -0.43 00.41 00.09 -4.51 -4.06 -0.24
2.00 -77.46 -4.60 01.17 01.26 01.41 01.33 -1.18 -1.11 01.33

-72.94 -5.01 02.44 02.45 02.46 02.45 00.30 00.31 02.46

-130.42 -7.14 -2.33 -0.55 00.26 00.06 -5.74 -5.21 -0.18
2.50 -125.44 -11.86 00.60 00.68 00.85 00.81 -3.25 -3.16 00.78

-115.91 -13.22 1.64 01.65 01.64 01.63 -1.63 -1.61 01.66

-190.10 -12.31 -2.55 -0.66 00.13 00.03 -7.50 -6.85 -0.24
3.00 -175.49 -19.09 00.36 00.42 00.56 00.53 -4.33 -4.23 00.50

-162.38 -21.35 01.32 01.32 01.29 01.28 -2.49 -2.47 01.32

-250.22 -17.03 -2.10 -0.49 00.10 00.03 -8.03 -7.31 -0.17
3.50 -234.56 -27.38 00.29 00.34 00.43 00.42 -5.11 -5.00 00.40

-225.80 -34.25 00.75 00.76 00.78 00.77 -4.54 -4.51 00.78

-285.75 -19.42 -1.88 -0.42 00.16 00.04 -7.97 -7.23 00.06
3.75 -264.67 -31.69 00.20 00.25 00.36 00.33 -5.41 -5.30 00.32

-264.47 -41.68 00.55 00.56 00.59 00.60 -5.42 -5.39 00.57

-328.00 -23.98 -2.36 -0.77 00.08 00.02 -9.20 -8.41 -0.09
4.00 -296.86 -35.41 00.37 00.40 00.44 00.40 -5.16 -5.04 00.45

-296.24 -47.50 00.50 00.51 00.53 00.53 -5.68 -5.65 00.52

5. Concluding Remarks and Illustrative Examples

We note here that, in the literature most of the results on estimation of quantiles
are for a single parameter θ = µ+ησ either using one or more populations. In this
article, we consider the simultaneous estimation of the quantile vector θ˜ = (θ1, θ2)
which is important from an application point of view. The loss function is taken as
the sum of the quadratic loss functions. It should be noted that, Kumar and Tri-
pathy [9] considered this model and estimated the �rst component θ1 with respect



270

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

1.40

1.45

1.50

R
is

k 
V

a
lu

e
s

Values of 

 X
 Y
 GM
 GD
 BC1
 BC2
 CS
 MK
 ML

(m,n)=(6,6)
(a)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.60
0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15
1.20
1.25
1.30
1.35
1.40
1.45
1.50

R
is

k 
V

a
lu

e
s

Values of 

 X
 Y
 GM
 GD
 BC1
 BC2
 CS
 MK
 ML

(m,n)=(8,8) (b)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

R
is

k 
V

a
lu

e
s

Values of  

 X
 Y
 GM
 GD
 BC1
 BC2
 CS
 MK
 ML

(m,n)=(12,12)

(c)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

R
is

k 
V

a
lu

e
s 

Values of  

 X
 Y
 GM
 GD
 BC1
 BC2
 CS
 MK
 ML

(m,n)=(20,20)
(d)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.350

0.375

0.400

R
is

k 
V

a
lu

e
s

Values of 

 X
 Y
 GM
 GD
 BC1
 BC2
 CS
 MK
 ML

(m,n)=(30, 30)

(e)

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

R
is

k 
V

a
lu

e
s

Values of  

 X
 Y
 GM
 GD
 BC1
 BC2
 CS
 MK
 ML

(m,n)=(40,40)

(f)

Figure 1. Comparison of risk values of various estimators for quantile
vector (θ1, θ2) when η = 1.960 and the sample sizes are equal
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Figure 2. Comparison of risk values of various estimators for quantile
vector (θ1, θ2) when η = 1.960 and the sample sizes are unequal
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to a quadratic loss function. We have implemented the Brewster and Zidek [3]
technique to the case of estimating a vector parameter, which is interesting. Fur-
ther we have proposed some new estimators such as the d˜Y , d˜GM , and d˜ML which
was not considered by them. First, we derived su�cient conditions for improving
equivariant estimators and in the process some complete class results obtained.
We have constructed some improved estimators using one of our result obtained
in Section 2. However, the analytical comparison of these estimators is not possi-
ble. We have conducted a detailed simulation study to numerically compare these
estimators which can be used in practice. Our conclusions regarding the use of
the estimators are completely based on the simulation study as no analytical com-
parison is possible among all the estimators. It will be interesting to generalize
the results to the case of k ≥ 3 normal populations, where proving inadmissibility
of these estimators will be challenging. Below we present some examples where
our model �ts well and also compute the estimates for practical purposes. In the
examples below we have taken the value of η = 1.960 for convenient.

5.1. Example. We consider the example discussed in Hines et al. [6], (p. 290).
Suppose a manufacturer of video display units produces two micro circuit designs
design A and design B. He wants to test whether the two design produce same
current �ow. The summarized data for design A are given by m = 15, x̄ = 24.2,
s21 = 10 where as the data for design B are given by n = 10, ȳ = 23.9, s22 = 20.
It is also given that both the data follow normal distributions with a common
mean. The experimental conditions ensures that the variances are unequal. This
is a situation where our model will be very much useful. The several estimators
for quantiles are calculated as d˜X = (25.97, 26.71), d˜Y = (25.67, 26.41), d˜GM =

(25.85, 26.59), d˜GD = (25.92, 26.65), d˜KS = (25.92, 26.66), d˜BC1 = (25.97, 26.71),

d˜BC2 = (25.94, 26.68), d˜MK = (25.88, 26.61), d˜TK = (25.88, 26.61) and d˜ML =
(25.92, 26.65). If the variances of both the data set di�er signi�cantly we may use
either the estimator d˜GD, d˜ML, or d˜BC1. If the variances di�er marginally we may

use either d˜KS , or d˜MK .

5.2. Example. Rohatgi and Saleh [13], (p.515) discussed one example regard-
ing the mean life time (in hours) of light bulbs. Suppose a random sample of
9 bulbs has sample mean 1309 hours with standard deviation of 420 hours. A
second sample of 16 bulbs chosen from a di�erent batch has sample mean 1205
hours and standard deviation 390 hours. A two sample t-test fails to reject the
hypothesis that the means are equal. This is a situation where our model will be
useful. Suppose we want to know the life time of both the bulbs at any instant
of time then we can use our estimators. The various estimators are calculated
as d˜X = (1543.45, 1526.70), d˜Y = (1439.45, 1422.70), d˜GM = (1476.89, 1460.14),

d˜GD = (1460.82, 1444.08), d˜KS = (1458.47, 1441.73), d˜BC1 = (1501.44, 1484.69),

d˜BC2 = (1498.38, 1481.64), d˜MK = (1474.51, 1457.77), d˜TK = (1474.18, 1457.43)

and d˜ML = (1457.08, 1440.33). Also a F-test fails to reject the hypothesis that the

population variances are equal. In this situation we recommend to use either d˜TK ,

or d˜MK .
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1. Introduction

The theory of queues has wide applications in the �eld of health-care management
system. The study of queuing systems in hospitals has often been concerned with the
busy period and waiting time, because they play a very signi�cant role there. A queuing
system is normally described by the patient's entry into a queue, who are then served at
a service point by the server (doctor), after which they leave the queue.

Dhar et al.[9] studied the comparison between single and multiple Markovian queuing
model in an outpatient department. Also Mahanta et al.[13] proposed a single server
queueing model for severe diseases especially in outpatient department. Further consider
the in�nite server queues with time-varying arrival and departure pattern when the pa-
rameters are varying with time derive by Dhar et al.[16].

Order statistics are widely used in applications of statistical models and inference.
Both describes random variables which are arranged in order of magnitude. According to
Aleem [1], usually the ordered values of independent and identically distributed samples
arranged in ascending order of magnitude are known as order statistics. The simplest and
most important function of order statistics is the sample cumulative distribution function
Fn(x). Suppose X1, X2, . . . , Xn are n jointly distributed random variables. Arranging
the X's in increasing order of magnitude, X1:n, X2:n, . . . , Xn:n are said to be smallest,
second smallest and largest order statistics. Thus X1:n < X2:n, . . . , < Xn:n. Arnold et al.
[2] and David and Nagaraja [7] studied order statistics and functions of these statistics
as it plays an important role in wide range of theoretical and practical problems such as
characterizations of probability distributions and goodness of �t test, entropy estimation,
analysis of censored samples, reliability analysis, quality control and strength of materi-
als. Order statistics arise naturally in many real-life applications involving data relating
to life testing studies proved by Shawky[10]. Aleem [1] reported that methods of inter-
pretation based on order statistics are most e�cient and are used extensively because of
robustness and parsimonious nature. The sample mean and standard deviation provide
e�cient estimators of the corresponding population parameter under the assumption of
normality, but sample range is simpler to use than the sample standard deviation in
statistical quality control and the sample median and its deviation furnish more robust
estimators when the population have long tail. Extreme (largest and smallest) values
statistics, which is an o�spring of order statistics, has its importance in hydrology, aero-
nautics, oceanography, material strength, signal processing and meteorology. Moments
of order statistics also plays an important role in the area of quality control testing and
reliability. According to David and Nagaraja [8] moments of order statistics can be used
to measure the failure rate of reliability and to predict the failure of future events.

A recursive procedure for computing the moments of the busy period for the single-
server model can be found in Tarabia [12]. Limit theorems are proved by investigating
the extreme values of the maximum queue length, the waiting time and virtual waiting
time for di�erent queue models in literature. Serfozo [14] discussed the asymptotic be-
havior of the maximum value of birth-death processes over large time intervals. Serfozo's
results concerned the transient and recurrent birth-death processes and related M/M/c
queues. Asmuseen[4] introduced a survey of the present state of extreme value theory
for queues and focused on the regenerative properties of queuing systems, which reduced
the problem to study the tail of the maximum of the queuing process X(t) during a
regenerative cycle, where X(t) is in discrete or continuous time. Artalejo et al.[3] pre-
sented an e�cient algorithm for computing the distribution for the maximum number of
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customers in orbit and in the system during a busy period for the M/M/c retrial queue.
The main idea of their algorithm is to reduce the computation of the distribution of the
maximum customer number in orbit by computing certain absorption probabilities. For
more details of extreme value in queues by Park [15].

In this paper, we studied the maximum and minimum service and waiting time respec-
tively, of the patients who su�er from severe disease especially in public hospital. Here
we considered one of the leading public hospitals of the region, viz. Pandu P.H.C/F.R.U,
Guwahati where it was observed that there was a heavy �ow of patients throughout the
day. Data was collected from Hospital( viz. outpatient department) and from other allied
sources. The current chapter will have utility for various practical problems for which
the distributions of order statistics play a role and the queuing theory implicit to the
health related problems.

2. Formulation of the problem

LetX1, X2, . . . , Xn be a random sample from a continuous population with probability
density function φ(x) and cumulative distribution function Φ(x) and X1:n, X2:n, . . . , Xn:n
be the order statistics obtained by arranging the random sample in increasing order of
magnitude. Then according to David and Nagaraja [7] the probability density function
of the ith order statistics Xi:n, 1 < i < n is given by

(2.1) φi:n(x) =
n!

(i− 1)!(n− i)! [Φ(x)]i−1[1− Φ(x)]n−if(x),−∞ < x <∞

The probability density functions of smallest and largest order statistics are given by
Arnold et al.[2] as

(2.2) φ1:n = n[1− Φ(x)]n−1φ(x),−∞ < x <∞

and

(2.3) φn:n = n[Φ(x)]n−1φ(x),−∞ < x <∞

respectively. According to Arnold et al.[2] the cumulative density functions of smallest
and largest order statistics are given as

(2.4) Φ1:n = 1− [1− Φ(x)]n,−∞ < x <∞

and

(2.5) Φn:n = [Φ(x)]n,−∞ < x <∞

respectively.
The pth order moment for the ith order statistics is also given by Arnold et al.[2] as

µ
′
(r : n) =

∫ ∞
−∞

xpφr:n(x)dx

=
n!

(i− 1)!(n− i)!

∫ ∞
−∞

xp[Φ(x)]i−1[1− Φ(x)]n−i

φ(x)dx, −∞ < x <∞(2.6)

Assuming u = Xi:n and v = Xj:n as the ith and jth order statistics, 1 < i < j < n from
n independent random variable each with probability density function φ(x), the joint
density function of u = Xi:n and v = Xj:n is given by Arnold at el. [2], as

φ(u, v : n) = c
′
(i, j, n)[Φ(u)]i−1[Φ(v)− Φ(u)]i−j−1[1− Φ(v)]n−j

φ(v)φ(u),−∞ < u < v <∞(2.7)
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where c
′
(i, j, n) = n!

(i−1)!(i−j−1)!(n−i)!
David and Nagaraja [7], has given the probability density function of double moment as

µ
′
p,q(i, j : n) =

n!

(i− 1)!(i− j − 1)(n− j)!∫ ∫
0<u<v<∞

upvqdudv, −∞ < x <∞(2.8)

Arnold at el.[2] de�ned the sample range as Wn = Xn:n −X1:n and

φwn(w) = n(n− 1)∫ ∞
−∞

[Φ(x1 + w)− Φ(x1)]n−2φ(x1)φ(x1 + w)dx1, 0 < w <∞(2.9)

Percentage points of distributions are the most fundamental tools used in test of hy-
pothesis to take decision about various situations of the population based on sample
observations and also used to express the di�erence of risks of probabilities. The per-
centile points are the point on the measurement scale below which a speci�ed percentage
of score falls. In many applications involving these distributions percentage points are
required. Bagui[5] de�ned the percentage points depends on the evaluation of the inverse
probability function. In general, percentile points of the distributions have been obtained
using approximation, interpolation formula, quadrature formula and by simulation. Ac-
cording to White [11] the pth percentile equation of distribution is given as∫ χ

0

φ(x)dx = p(2.10)

where p denotes level of signi�cance.
The pth percentile equation of smallest and largest order statistics are given as

(2.11) Φ1:n =

∫ χ

0

Φ1:ndx = 1− [1− Φ(x)]n = p

and

(2.12) Φn:n =

∫ χ

0

Φn:ndx = [Φ(x)]n = p

Let X1:n, X2:n, . . . , Xn:n be the order statistics of a random variables X1, X2, . . . , Xn.
Also let Ti:n = Xi:n − Xi−1:n, i = 1, 2, 3, . . . , n , where Ti represents the di�erence
between each arrival into the system(inter-arrival) of the order statistics Xi:n and Xi−1:n.
Then the random variables T1, T2, . . . , Tn are called the inter-arrival time between the
successive order statistics X1:n, X2:n, . . . , Xn:n.
Here we consider the sample range R which is denoted by

(2.13) R =

n∑
i=2

Ti:n

Moreover, this can be used to construct the interval for the corresponding patients.

2.1. Theorem. Let T1, T2, . . . , Tn be the random sample of size n from a continuous

distribution with cumulative density function Φ and the probability density function φ.
Then the joint distribution of order statistics is given by

(2.14) ΦTi(t) = 1−
∫ ∞
−∞

(i− 1)

(
n

i− 1

)
Φ

(i−2)
X (y) 1− ΦX(x+ t)(n−i+1)φX(x) dx
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Proof. We know that,

ΦTi(t) = P (Ti ≤ t))
= P (X(i) −X(i−1) ≤ t)
= P (X(i) ≤ X(i−1) + t)(2.15)

Let w be the region bounded by X(i) ≤ X(i−1) and X(i) ≤ X(i−1) + t.
From equation (2.15),

ΦTi(t) =

∫ ∫
w

φTi,Ti−1(x, y) dx dy

=

∫ ∞
−∞

∫ x+t

x

n!φX(x)φX(y)

(i− 2)! (n− i)! [1− ΦX(y)](n−i) Φ
(i−2)
X (y)

[ΦX(y)− ΦX(x)]i−i+1−1 dx dy

=

∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i)! Φ
(i−2)
X (y)

(∫ x+t

x

φX(y) [1− ΦX(y)](n−i) dy

)
dx

=

∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i)! Φ
(i−2)
X (y)

∣∣∣∣−[1− ΦX(y)](n−i+1)

(n− i+ 1)

∣∣∣∣x+t
x

dx

=

∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i+ 1)!
Φ

(i−2)
X (y)[

−1− ΦX(x+ t)(n−i+1) + 1− ΦX(x)](n−i+1)
]
dx

=

∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i+ 1)!
Φ

(i−2)
X (y) 1− ΦX(x)](n−i+1) dx

−
∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i+ 1)!
Φ

(i−2)
X (y) 1− ΦX(x+ t)(n−i+1) dx

by using equation (2.15), since it is the integral of the (i − 1)th order statistics over
(−∞,∞)

ΦTi(t) = 1−
∫ ∞
−∞

n!φX(x)

(i− 2)! (n− i+ 1)!
Φ

(i−2)
X (y) 1− ΦX(x+ t)(n−i+1) dx

= 1−
∫ ∞
−∞

(i− 1)

(
n

i− 1

)
Φ

(i−2)
X (y) 1− ΦX(x+ t)(n−i+1)φX(x) dx

�

2.2. Corollary. Let i = 1 and i = n in Theorem 2.1

ΦT1(t) = P (T1 ≤ t)
= P (X(1) ≤ t)
= 1 − [1− Φ(t)]n

2.3. Theorem. Let X(1), X(2), . . . , X(n) denote the order statistics of a random sample

of size n from a continuous distribution with probability density function φX(x) and a

cumulative density function ΦX(x). Then the probability density function of the jth order

statistics is given by

(2.16) φX(j)
(x) =

n!φX(x)

(j − 1)! (n− j)! Φ
(j−1)
X (x) 1− ΦX(x)(n−j)

Proof. Proof of the theorem 2.3 given in Artalejo et al.[3]. �
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2.4. Corollary. Let ΦTn(t) = X(n) −X(n−1) , 0 < t <∞. Then

P (Tn ≤ t) = 1 −
∫∞
−∞ n (n− 1)Φ

(n−2)
X (y) 1− ΦX(x+ t)φX(x) dx

3. Order statistics for waiting time distribution

When a patient wait for service, the two most important characteristics that arises are
(i) time spent in the queue and(ii) time spent in the system. Considering the system is in
equilibrium, let Tq and T be the amount of time a customer spends in queue and in the
system, respectively. However, the waiting time for service (Tq) of an arriving customer
is the amount of time required to serve the customers already in the system. The total
time in system T is Tq + service time. When there are n customers in the system, since
service times are exponential with parameter µ, the total service time of n customers is
Erlang with probability density

(3.1) φn(x) = e−µx
µnxn−1

(n− 1)!

Let Fq(t) = P (Tq ≤ t) be the distribution function of the waiting time Tq. Here
Φq(0) = P (Tq = 0) = P (Q = 0) = 1 − ρ. It is noted that because of the memoryless
property of the exponential distribution, the remaining service time of the customer in
service is also exponential with the same parameter µ.
Let dΦq(t) = P (t < Tq ≤ t+ dt), for t > 0, we have

dΦq(t) =

∞∑
n=1

pne
−µt µ

ntn−1

(n− 1)!
dt

= (1− ρ)

∞∑
n=1

ρne−µt
µntn−1

(n− 1)!
dt

After simpli�cation it is given by

= µρ(1− ρ)e−µ(1−ρ)tdt(3.2)

Because of the discontinuity at 0 in the distribution of Tq, we get

Φq(t) = P (Tq = 0) +

∫ t

0

dΦq(t)

= 1− ρe−µ(1−ρ)t,(3.3)

The probability density function of the waiting time in the queue is given by Medhi [17]

wq(t) =

{
(1− ρ), t = 0

µρ(1− ρ) e−µ(1−ρ)t, t > 0

The probability density function of the waiting time in the system is given by Bhat[6]

w(x) = µ(1− ρ)e−µ(1−ρ)x, x ≥ 0

which is a exponential distribution with parameter µ(1− ρ)

3.1. Derivation of ith order statistics for waiting time distribution. If X1, X2,
. . . , Xn is a random sample from a continuous population with probability density func-
tion φ(x) and cumulative distribution function Φ(x) and X1:n, X2:n, . . . , Xn:n are the
order statistics obtained by arranging the random sample in increasing order of mag-
nitude, then the probability density function of the ith order statistics Xi:n for waiting
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time distribution using (2.3), 1 < i < n is given by

φi:nw(x) =
n!

(i− 1)!(n− i)! [1− ρe
−µ(1−ρ)x]i−1

[1− (1− ρe−µ(1−ρ)x)]n−ie−µx
µnxn−1

(n− 1)!

Using binomial expression, the probability density function of ith order statisticsXi:n, (1 <
i < n) for waiting time distribution reduces to

φi:nw(x) =
n!

(i− 1)!(n− i)!

i−1∑
r=0

(
i− 1

r

)
(−1)rρre−µ(1−ρ)

r

ρn−ie−µ(1−ρ)x(n−i)+µx
µnxn−1

(n− 1)!

=
n!

(i− 1)!(n− i)!ρ
r+n−i µn

(n− 1)!

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
e−iρµxxn−1

= C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
e−iρµxxn−1, x > 0, µ > 0(3.4)

where

C(n, r, i) =
n!

(i− 1)!(n− i)!ρ
r+n−i µn

(n− 1)!

We observe that

i−1∑
r=0

(
i− 1

r

)
(−1)rρre−µ(1−ρ)

r
= [1− ρe−µ(1−ρ)x]i−1

The cdf of ith order statistics Xi:n, 1 < i < n for waiting time distribution is obtained as

Φi:nw(x) = C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
∫ x

0

e−iρµxxn−1dx

= C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
∞∑
j=o

(−iρµ)j

j!

xn

n
, x > 0, µ > 0

3.2. Derivation of extreme order statistics. The probability density functions of
smallest and largest order statistics can be obtained from equation (3.4) by putting i =
1 and i = n respectively. The probability density functions of smallest and largest order
statistics for waiting time distribution are obtained as

φ1:nw(x) = ne−µ(1−ρ)
r
e−ρµxxn−1, x > 0, µ > 0(3.5)

and

φn:nw(x) = n

n−1∑
r=0

(
n− 1

r

)
(−1)re−µ(1−ρ)

r
e−nρµxxn−1, x > 0, µ > 0(3.6)

respectively.
The cumulative density functions of smallest and largest order statistics for waiting time
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distribution can be obtained using expression (2.4) and (2.5) as

Φ1:nw(x) = ne−µ(1−ρ)
r
e−ρµxxn−1, 0 < x <∞(3.7)

Φn:nw(x) = 1− n
n∑
r=0

(
n

r

)
(−1)re−µ(1−ρ)

r
e−nρµxxn−1, 0 < x <∞(3.8)

3.3. Moments and recurrence relations of ith order statistics for waiting time

distribution. Let X(1), X(2), . . . , X(n) be independent and identically distributed ran-
dom sample of size n from a continuous distribution with probability density function
φX(x) and a cumulative density function ΦX(x) from Waiting time distribution. From
the probability density function of ith order statistics for waiting time distribution the
pth order moment can be written as

µp
′
(i : n) =

n!

(i− 1)!(n− i)!
µn

(n− 1)!

∫ ∞
0

xn+p−1[1− ρe−µ(1−ρ)x]i−1

[1− (1− ρe−µ(1−ρ)x)]n−ie−µxdx

= C(n, i)

∫ ∞
0

xn+p−1[1− ρe−µ(1−ρ)x]i−1

[1− (1− ρe−µ(1−ρ)x)]n−ie−µxdx(3.9)

Here we applied the binomial expression in (3.9), we get

µp
′
(i : n) = C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
∫ ∞
0

e−iρµxxn+p−1dx

= C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r γ(n+ p)

(iµρ)n+p

putting i = n, we get the highest order moment which is given by

µp
′
(n : n) =

n−1∑
r=0

(
n− 1

r

)
(−1)re−µ(1−ρ)

r γ(n+ p)

(nµρ)n+p

The recurrence relation for moments of ith order statistics is given by

µp+1

′
(i : n) =

n−1∑
r=0

(
n− 1

r

)
(−1)re−µ(1−ρ)

r γ(n+ p+ 1)

(nµρ)n+p+1

=⇒ iµρµp+1

′
(i : n) = µp

′
(i : n)(3.10)

3.4. Mode for waiting time distribution. The modal value equation of the ith order
statistics is

C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r δ

δx

[
e−iρµxxn−1

]
= 0

=⇒ C(n, r, i)

i−1∑
r=0

(
i− 1

r

)
(−1)re−µ(1−ρ)

r
e−iρµxxn−2(n− 1− iρµ) = 0

3.5. Joint distribution of two order statistics for waiting time distribution.

Let X(1), X(2), . . . , X(n) denote the order statistics of a random sample of size n from a
continuous distribution with probability density function φX(x) and a cumulative density
function ΦX(x). Let us assume that u = Xi:n and v = Xi:n as i

th and jth order statistics,
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(1 < i < j < n) from a random sample of size n, each with probability density function
φX(x). The joint density function of u = Xi:n and v = Xi:n is as follows

φw(u, v;n) =
n!

(i− 1)!(j − i− 1)!(n− j)! [Φ(xr)]
r−1[Φ(xs)− Φ(xr)]

j−i−1

[1− Φ(xs)]
n−jφ(xr)φ(xs)

=
n!

(i− 1)!(j − i− 1)!(n− j)! [1− ρe
−µ(1−ρ)u]i−1

[ρe−µ(1−ρ)u − ρe−µ(1−ρ)v]j−i−1[ρe−µ(1−ρ)v]n−j

e−µu
µnun−1

(n− 1)!
e−µv

µnvn−1

(n− 1)!
(3.11)

Using Binomial expansion on (3.11), we get

= C
′
(i, j;n)γ2

j−i−1∑
α=0

n−j∑
β=0

(
j − i− 1

α

)(
n− j
β

)
(−1)α+β(ρe−µ(1−ρ)v)j−i−1+α+β

[ρe−µ(1−ρ)u]α+i−1e−µ(u+v)un−1vn−1, u, v > 0, µ > 0

where

C
′
(i, j;n) =

n!

(i− 1)!(j − i− 1)!(n− j)! and γ =
µn

(n− 1)!

4. Derivation of distribution of sample range for waiting time dis-

tribution

Let the sample range of the waiting time distribution be de�ned as

R = X(n) −X(1)

Also, let

X(n) = x and X(1) = y ⇒ u = x and⇒ v = y − u⇒ y = u+ v

J =

∣∣∣∣ δxδu δx
δv

δy
δu

δy
δv

∣∣∣∣ =

∣∣∣∣1 0
1 1

∣∣∣∣ = 1

Now using the joint distribution of order statistics

g(u, v) =
n!

(1− 1)! (n− 1− 1)! (n− n)!
Φ1−1 [Φ(u+ v)− Φ(u)]n−2

[1− Φ(u+ v)]n−nφ(u) φ(u+ v)

=
n!

(n− 2)!
[Φ(u+ v)− Φ(u)]n−2φ(u) φ(u+ v)
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g1(v) =

∫
g(u, v) du

=

∫ ∞
−∞

n(n− 1) Φ(u+ v)− Φ(u)]n−2φ(u) φ(u+ v)

=

∫ ∞
0

n(n− 1)
[
ρ [1− e−µ(1−ρ)(u+v)]− ρ [1− e−µ(1−ρ)v]

]n−2

du

µρ(1− ρ) e−µ(1−ρ)u µρ(1− ρ) e−µ(1−ρ)(u+v)

=

∫ ∞
0

n(n− 1)
[
ρ [e−µ(1−ρ)u − e−µ(1−ρ)(u+v)]

]n−2

µρ(1− ρ) e−µ(1−ρ)(2u+v) du

=

∫ ∞
0

n(n− 1) [e−µ(1−ρ)u]n−2
[
ρ [1− e−µ(1−ρv)]

]n−2

µρ(1− ρ) e−µ(1−ρ)(2u+v) du

= n(n− 1) µρ(1− ρ) e−µ(1−ρ)v
[
ρ [1− e−µ(1−ρv)]

]n−2

∫ ∞
0

[e−µ(1−ρ)nu]du

= n(n− 1) µρ(1− ρ) e−µ(1−ρ)v
[
ρ [1− e−µ(1−ρv)]

]n−2

∣∣∣∣ e−µ(1−ρ)nu−µ(1− ρ)n

∣∣∣∣∞
0

du

= ρn (n− 1) ρ(1− ρ) e−µ(1−ρ)v
[
ρ [1− e−µ(1−ρv)]

]n−2

Therefore the range of the distribution of the waiting time is

P (R = v) = ρn (n− 1) ρ(1− ρ) e−µ(1−ρ)v[
ρ [1− e−µ(1−ρv)]

]n−2

, −∞ < v <∞(4.1)

4.1. Theorem. Let X(1), X(2), . . . , X(n) denote the order statistics of a random sample

of size n from a continuous distribution with probability density function φX(x) and a

cumulative density function ΦX(x). Then the probability density function of the range of

the waiting time distribution in the system is

P (R = s) = (n− 1) ρ(1− ρ) e−µ(1−ρ)v[
ρ [1− e−µ(1−ρv)]

]n−2

,−∞ < v <∞(4.2)

Proof. As stated as same in equation (4.1). �

5. Derivation of response time distribution

Percentiles are frequently used as indicators of performance in both the public and
private hospitals. Percentiles provide information about how a patient or thing relates to
a larger group. Relative measures of this type are often extremely valuable to researchers
employing statistical techniques.
The formula of the mean response time is given by
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Mean number in the system = Arrival rate × mean response time i.e.,

E(n) = λE(r)

=⇒ F (r) =
E(n)

λ
=

(
ρ

1− ρ

)
1

λ
=

1
µ

1− ρ(5.1)

The cumulative distribution function of the response time is given as

(5.2) F (r) = 1− e−rµ(1−ρ)

The response time is exponentially distributed and qth percentile is

F (r) =
q

100
=⇒ 1− e−rµ(1−ρ) =

q

100

=⇒ rq =
1

µ(1− ρ)
ln

(
100

100− q

)
(5.3)

The cumulative distribution function of the waiting time is

(5.4) F (w) = 1− ρe−wµ(1−ρ)

This is a truncated exponential distribution and its qth percentile is given by

(5.5) wq =
1

µ(1− ρ)
ln

(
100ρ

100− q

)
The above formula is applied only if q is greater than 100(1−ρ) and all lower percentiles
are zero.

(5.6) wq = max

{
0,
E(w)

ρ
ln

(
100ρ

100− q

)}

6. Distribution of sample median

When the sample size is odd, then the probability density function of the sample
median is given by

φ(x) =
(2n+ 1)

m!2
[Φ(z)]n[1− Φ(z)]nφ(z)

=
(2n+ 1)

n!2
[1− ρe−µ(1−ρ)z]n[ρe−µ(1−ρ)z]ne−µz

µnzn−1

(n− 1)!

= C(n, γ)

r∑
s=0

(−1)se−µ(s+r)zs+r−1

When the sample size is even, then the probability density function of the sample median
is as follows

φ(x, y) =
(2n)

(n− 1)!
[Φ(x)]n−1[1− Φ(y)]n−1φ(x)φ(y)

=
(2n)

(n− 1)!
[1− ρe−µ(1−ρ)x]n−1[ρe−µ(1−ρ)y]n−1e−µx

µnxn−1

(n− 1)!
e−µy

µnyn−1

(n− 1)!

=
(2n)

(n− 1)!
[1− ρe−µ(1−ρ)x]n−1[ρe−µ(1−ρ)y]n−1e−µ(x+y)

µnxn−1

(n− 1)!

µnyn−1

(n− 1)!

= C(n, γ)

r∑
s=0

(−1)se−µ(x+y)(xy)n−1(6.1)
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7. Results

Here we evaluate the minimum and maximum waiting time of the patients who are
in the queue. The table below gives the minimum number of patients in the system and
queue for given number of servers during each interval and it is clear that for both the
queue and the system, the waiting time drops measurably from 1st to 5th server, after
which the drop is trivial. Hence it is concluded that the maximum and minimum number
of patients decrease gradually with the increasing number of servers.

Table 1. The maximum and minimum number of patients served and
waiting in the system

Server Xn(W ) X1(Wq) R

1 5 4.16667 0.83333
2 2.72727 2.27273 0.1388
3 1.82817 1.37363 0.023148
4 1.37125 0.931446 0.003858
5 1.09697 0.671899 0.000643
6 0.914135 0.168631 0.0001071
7 0.783545 0.108038 2.97687E-6
8 0.685602 0.0704791 4.96145E-7
9 0.609424 0.0465906 8.26908E-8
10 0.548481 0.0311082 1.37818E-8

The percentage points of response and waiting times in the system have been pre-
sented in Table(2), Table(3), Table(4) and Table(5). From the tables of percentage
points of response time in the system, it is clear that for �xed values of p ( p =
0.25, 0.50, 0.75, 0.90, 0.95, 0.99 ) and µ. Percentage points remain same as µ increases.
On the other hand percentage points decreases as µ increases. Further, the range of
smallest and largest order statistics of waiting time distribution and has been presented
in Table(1). For chosen values of the parameters and n di�erent values of rq have been
obtained for di�erent signi�cant levels.
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Table 2. This table contains percentage of response time in the system
when µ = 1

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

2 0.00250 0.00501 0.00753 0.00904 0.00955 0.00995
3 0.00125 0.00251 0.00376 0.00452 0.00477 0.00497
4 0.00083 0.00167 0.00251 0.00301 0.00318 0.00332
5 0.00063 0.00125 0.00188 0.00226 0.00239 0.00249
6 0.00050 0.00100 0.00151 0.00181 0.00191 0.00199
7 0.00042 0.00084 0.00125 0.00151 0.00159 0.00166
8 0.00036 0.00072 0.00108 0.00129 0.00136 0.00142
9 0.00031 0.00063 0.00094 0.00113 0.00119 0.00124
10 0.00028 0.00056 0.00084 0.00100 0.00106 0.00111
11 0.00025 0.00050 0.00075 0.00090 0.00095 0.00099
12 0.00023 0.00046 0.00068 0.00082 0.00087 0.00090
13 0.00021 0.00042 0.0006 3 0.00075 0.00080 0.00083
14 0.00019 0.00039 0.00058 0.00070 0.00073 0.00077
15 0.00018 0.00036 0.00054 0.00065 0.00068 0.00071
16 0.00017 0.00033 0.00050 0.00060 0.00064 0.00066
17 0.00016 0.00031 0.00047 0.00057 0.00060 0.00062
18 0.00015 0.00029 0.00044 0.00053 0.00056 0.00059
19 0.00014 0.00028 0.00042 0.00050 0.00053 0.00055
20 0.00013 0.00026 0.00040 0.00048 0.00050 0.00052

Table 3. This table contains percentage of response time in the system
when µ = 2

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

3 0.00250 0.00501 0.00753 0.00904 0.00955 0.00995
4 0.00125 0.00251 0.00376 0.00452 0.00477 0.00497
5 0.00083 0.00167 0.00251 0.00301 0.00318 0.00332
6 0.00063 0.00125 0.00188 0.00226 0.00239 0.00249
7 0.00050 0.00100 0.00151 0.00181 0.00191 0.00199
8 0.00042 0.00084 0.00125 0.00151 0.00159 0.00166
9 0.00036 0.00072 0.00108 0.00129 0.00136 0.00142
10 0.00031 0.00063 0.00094 0.00113 0.00119 0.00124
11 0.00028 0.00056 0.00084 0.00100 0.00106 0.00111
12 0.00025 0.00050 0.00075 0.00090 0.00095 0.00099
13 0.00023 0.00046 0.00068 0.00082 0.00087 0.00090
14 0.00021 0.00042 0.00063 0.00075 0.00080 0.00083
15 0.00019 0.00039 0.00058 0.00070 0.00073 0.00077
16 0.00018 0.00036 0.00054 0.00065 0.00068 0.00071
17 0.00017 0.00033 0.00050 0.00060 0.00064 0.00066
18 0.00016 0.00031 0.00047 0.00057 0.00060 0.00062
19 0.00015 0.00029 0.00044 0.00053 0.00056 0.00059
20 0.00014 0.00028 0.00042 0.00050 0.00053 0.00055
21 0.00013 0.00026 0.00040 0.00048 0.00050 0.00052
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Table 4. This table contains percentage of waiting time in the system
when µ = 1

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

2 0.690644 0.688135 0.685619 0.684106 0.683602 0.683198
3 0.548055 0.5468 0.545542 0.544786 0.544533 0.544331
4 0.461264 0.460427 0.459589 0.459085 0.458916 0.458782
5 0.401734 0.401106 0.400477 0.400099 0.399973 0.399872
6 0.357851 0.357349 0.356846 0.356544 0.356443 0.356362
7 0.323901 0.323483 0.323064 0.322812 0.322727 0.32266
8 0.296705 0.296347 0.295988 0.295772 0.295699 0.295642
9 0.27434 0.274027 0.273712 0.273523 0.27346 0.273409
10 0.255565 0.255286 0.255006 0.254838 0.254782 0.254737
11 0.239539 0.239288 0.239037 0.238885 0.238835 0.238795
12 0.225673 0.225445 0.225216 0.225079 0.225033 0.224996
13 0.213537 0.213328 0.213118 0.212992 0.21295 0.212917
14 0.202812 0.202619 0.202425 0.202309 0.20227 0.202239
15 0.193253 0.193074 0.192894 0.192786 0.19275 0.192721
16 0.184672 0.184505 0.184337 0.184237 0.184203 0.184176
17 0.176919 0.176763 0.176605 0.176511 0.176479 0.176454
18 0.169875 0.169727 0.169579 0.16949 0.16946 0.169437
19 0.163441 0.163301 0.163162 0.163078 0.16305 0.163027
20 0.157538 0.157406 0.157274 0.157194 0.157168 0.157146

Table 5. This table contains percentage of waiting time in the system
when µ = 2

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

3 0.40296198 0.40045257 0.39793684 0.39642436 0.3959197 0.39551578
4 0.34532203 0.34406732 0.34280946 0.34205322 0.34180088 0.34159892
5 0.30459587 0.3037594 0.30292082 0.30241666 0.30224844 0.3021138
6 0.27402729 0.27339994 0.27277101 0.27239289 0.27226672 0.27216574
7 0.25005197 0.24955009 0.24904694 0.24874444 0.24864351 0.24856273
8 0.23063187 0.23021364 0.22979435 0.22954227 0.22945816 0.22939084
9 0.21451061 0.21415212 0.21379273 0.21357666 0.21350457 0.21344687
10 0.20086685 0.20055317 0.20023871 0.20004965 0.19998656 0.19993607
11 0.18913833 0.18885951 0.18857998 0.18841193 0.18835585 0.18831097
12 0.17892563 0.17867469 0.17842312 0.17827187 0.17822141 0.17818101
13 0.16993628 0.16970815 0.16947945 0.16934195 0.16929607 0.16925935
14 0.16195058 0.16174147 0.16153182 0.16140578 0.16136373 0.16133007
15 0.15479999 0.15460696 0.15441344 0.1542971 0.15425828 0.15422721
16 0.14835274 0.1481735 0.14799381 0.14788577 0.14784972 0.14782087
17 0.1425042 0.14233691 0.14216919 0.14206836 0.14203472 0.14200779
18 0.13717009 0.13701325 0.13685602 0.13676149 0.13672995 0.1367047
19 0.13228169 0.13213407 0.13198609 0.13189712 0.13186743 0.13184367
20 0.12778233 0.12764292 0.12750316 0.12741913 0.12739109 0.12736865
21 0.12362485 0.12349277 0.12336037 0.12328076 0.1232542 0.12323294
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Table 6. This table contains percentage of waiting time in the system
when µ = 3

q

λ 0.25 0.50 0.75 0.90 0.95 0.99

4 0.28517894 0.28266953 0.28015381 0.27864133 0.27813666 0.27773274
5 0.25416125 0.25290654 0.25164868 0.25089244 0.25064011 0.25043815
6 0.23021468 0.22937821 0.22853964 0.22803548 0.22786726 0.22773262
7 0.21119868 0.21057133 0.2099424 0.20956428 0.20943811 0.20933713
8 0.19566522 0.19516334 0.1946602 0.1943577 0.19425677 0.19417598
9 0.18268486 0.18226662 0.18184734 0.18159526 0.18151115 0.18144383
10 0.17163852 0.17128004 0.17092065 0.17070458 0.17063248 0.17057478
11 0.16209748 0.16178381 0.16146934 0.16128028 0.1612172 0.16116671
12 0.15375458 0.15347576 0.15319623 0.15302818 0.15297211 0.15292723
13 0.14638339 0.14613245 0.14588088 0.14572963 0.14567917 0.14563877
14 0.1398129 0.13958477 0.13935607 0.13921857 0.13917269 0.13913597
15 0.13391123 0.13370211 0.13349247 0.13336643 0.13332437 0.13329072
17 0.12857487 0.12838184 0.12818832 0.12807198 0.12803316 0.12800208
18 0.12372128 0.12354204 0.12336234 0.12325431 0.12321826 0.12318941
19 0.11928376 0.11911646 0.11894875 0.11884791 0.11881427 0.11878734
20 0.11520772 0.11505088 0.11489365 0.11479912 0.11476758 0.11474233
21 0.11144805 0.11130044 0.11115245 0.11106348 0.1110338 0.11101004
22 0.10796706 0.10782764 0.10768788 0.10760386 0.10757582 0.10755338

8. Conclusion

The obtained results show that the expected value of the maximum and minimum
number of patients decreases gradually with the increasing number of servers. Besides,
it is mentioned that the system will be almost empty after the 10th server. That is, the
patient will get the service as soon as she or he arrive and will leave the system before the
next arrival. This solution accords with the fact that the service rate is greater than the
arrival rate. The range of the waiting time R decreases gradually to zero as the number
of servers increases.
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Strong uniform consistency of a kernel conditional
quantile estimator for censored and associated data
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Abstract

In survival or reliability studies, it is common to deal with data which
are not only incomplete but weakly dependent too. Random right-
censoring and random left-truncation are two common forms of such
data when they are neither independent nor strongly mixing but rather
associated. In this paper, we focus on kernel estimation of the con-
ditional quantile function of a strictly stationary associated random
variable T given a d-dimensional vector of covariates X, under random
right-censoring. As main results, we establish a strong uniform consis-
tency rate for the estimator. Then the �nite sample performance of the
estimator is illustrated on a simulation study.
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1. Introduction

Let {Tn, n ≥ 1} be a strictly stationary sequence of associated random variables (rv's)
of interest having an unknown absolutely continuous distribution function (df) FT . This
variable can be considered as a lifetime under biomedical studies. The major character-
istic of survival time is the incompleteness.
In survival analysis especially in medical studies, we meet random censorship models
which are one of the fundamental assumptions in the theory of survival analysis. Ran-
dom right censoring is a well-known phenomenon which may be present when observing
lifetime data. The lifetime variable may not be completely observable if the patient is
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still alive at the end of study or is dead for another reason or because of some depar-
tures of patients from the testing experimentation. Hence, the available data provide
partial information. In this case, the variable of interest T is subject to right censoring
by another non-negative rv C. In the sequel, we assume that the censoring lifetimes are
independent and identically distributed (iid) and possess an unknown Lipschitz df G. We
take in consideration the presence of a strictly stationary and associated covariate X tak-
ing values in Rd. Under this model, the observable sequence is {(Yi, δi,Xi), 1 ≤ i ≤ n},
with Yi = min(Ti, Ci), δi = 1{Ti≤Ci} and where 1A denotes the indicator function of the
event A.
As usual with random censoring, we assume that the censoring times {Ci, 1 ≤ i ≤ n} are
independent of {(Xi, Ti), 1 ≤ i ≤ n}. This means that the censoring mechanism does not
depend on the occurring event. Such a condition ensures the identi�ability of the model.
It is well known that the conditional df F (·|x) of (T |X = x) is de�ned by

F (t|x) =
1

l(x)

∫ t

−∞
f(x, z)dz =:

F1(x, t)

l(x)
,

where f(., .) is the joint probability density function (pdf) of (X, T ), l(.) is the marginal
pdf of X and F1(x, .) is the �rst derivative of the joint df F (x, .) with respect to x.
The conditional pdf will be denoted by f(.|x). Then, for all �xed p ∈ (0, 1), the p-th
conditional quantile of T given X = x is de�ned by

(1.1) ξp(x) := inf{t, F (t|x) ≥ p}.

Hence, to get a nonparametric conditional quantile estimator, we clearly have to estimate
F1(x, t) by the mean of an unbiased kernel estimator and l(x) is estimated by the famous
kernel type estimator.
There has been various researches relating to the quantile estimator in view of its inter-
esting properties. The estimator under consideration is renowned for its good description
of the data (see Chaudhuri et al. [6]) and attracted interest of several authors.
In the complete framework, Samanta [25] established the strong convergence and the
asymptotic normality of the kernel conditional quantile in the iid case. Bhattacharya
and Gangopadhyay [2] gave a Bahadur-type representation of the conditional quantile
and asymptotic models. Moreover, Mehra et al. [16] and Xiang [27] gave the almost
sure convergence of a kernel type conditional quantile estimator and its asymptotic nor-
mality. Honda [12] treated the uniform convergence and asymptotic normality of the
conditional quantile using local polynomial �tting approach while Abberger [1] studied
quantile smoothing in �nancial time series.
On the same subject matter and under censoring, Dabrowska [7] established a Bahadur
type representation of the quantile regression estimator. Besides, Qin and Wu [24] stated
the asymptotic normality of an estimator for a conditional quantile when some auxiliary
information is available using the empirical likelihood method and a linear �tting.
The strong representation of the conditional quantile estimator under right censoring
and strong mixing condition was stated by Ould Saïd and Sadki [22] while Ould Saïd
[20] established its strong uniform convergence rate in the iid case. Recently, Liang and
de Uña-Álvarez [15] assessed its strong uniform consistency and asymptotic normality in
the α-mixing setting.
Two kinds of dependency are widely used in the literature: mixing (Doukhan [8]) and
association (Esary et al. [8]). These two concepts are not completely dissociated (see
Doukhan and Louhichi [9]). In fact, we can �nd sequences that are associated but not
mixing, associated and mixing, and mixing but not associated. The main advantage of
the concept of association compared to mixing is that the conditions of limit theorems are
easier to verify: indeed, a covariance is much easier to compute than a mixing coe�cient.
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Recall that a set of �nite family of rv's (T1, . . . , Tn) are said to be associated if for all
non-decreasing functions Ψ1, Ψ2

Cov(Ψ1(T1, . . . , Tn),Ψ2(T1, . . . , Tn)) ≥ 0,

whenever the covariance exists. An in�nite family of rv's is associated if any �nite
sub-family is a set of associated rv's and any independent sequence is associated. In
classical statistical inference, the observed rv's of interest are generally assumed to be
iid. However, it is more common to have dependent variables in some real life situations.
Dependent variables are present in several backgrounds such as medicine, biology and
social sciences. Associated rv's are of considerable interest when dealing with reliability
problems, percolation theory and some models in statistical mechanics.
The notion of association was �rstly introduced by Esary et al. [11] mainly for an
application in reliability. For more details on the subject we refer the reader to the
monographs by Bulinski and Shashkin [3], Oliveira [19] and Prakasa Rao [23].
As far as we know, the problem of drawing nonparametric inference about the conditional
quantile function under associated-censored model is not available and this motivates
the study we consider here. So, the present paper deals with the almost sure uniform
convergence with a rate of the estimator de�ned in (2.4). The paper is structured as
follows: the expression of the studied estimator is presented in Section 2. Section 3
gathers the needed assumptions with some comments. A Simulation study is given in
Section 4 while the last section includes the proofs of the main and some auxiliary results.

2. Notations and estimators

Recall that in the complete data case (no censoring), the traditional kernel estimator
of F (t|x) is given by

(2.1) Fn(t|x) =

n∑
i=1

ωin(x)1{Yi≤t},

where ωin(.) are measurable functions. These functions called weights were introduced
by Nadaraya-Watson in the context of the kernel regression and de�ned by

ωin(x) =

Kd

(
x−Xi

hn,1

)
n∑
j=1

Kd

(
x−Xj

hn,1

) =

1

nhdn,1
Kd

(
x−Xi

hn,1

)
ln(x)

,

with the convention 0|0 = 0. Here Kd is a kernel function on Rd whereas hn,1 is a positive
sequence of bandwidths tending to 0 along with n and ln(.) is the Parzen-Rosenblatt
kernel estimator of l(.).
In the sequel, we will make use of the Inverse-Probability-of-Censoring Weighted (IPCW)
idea of Koul et al. [14] to de�ne the weights we will use after, that is

(2.2) ωin(x) =
1

nhdn,1

δi

G(Yi)ln(x)
Kd

(
x−Xi

hn,1

)
.

It is well known that under right censoring model, the classical empirical distribution
does not estimate consistently the df's FT and G. Therefore, Kaplan and Meier [13]
proposed consistent estimators FT,n and Gn for FT and G, respectively, de�ned by

FT,n(t) = 1−
n∏
i=1

[
1−

δ(i)
n− i+ 1

]1{Y(i)≤t}
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and

Gn(t) = 1−
n∏
i=1

[
1−

1− δ(i)
n− i+ 1

]1{Y(i)≤t}
,

where Y(1), Y(2), . . . , Y(n) are the order statistics of Y1, Y2, . . . , Yn and δ(i) is the concomi-
tant of Y(i).
The Kaplan-Meier estimator was studied in depth by many authors. For more details we
refer to Stute and Wang [26] for the iid case, Cai [4] under α-mixing condition and Cai
and Roussas [5] in the association setting.
Recall that, using the weights de�ned in (2.2), Ould Saïd [20] established a strong uni-
form consistency rate for the estimator in (2.1) in the iid case and d=1. The smoothed
version of Fn(·|·), namely

(2.3) Fn(t|x) =:
F1,n(x, t)

ln(x)
=

1

nhdn,1

n∑
i=1

δi

Gn(Yi)
Kd

(
x−Xi

hn,1

)
H

(
t− Yi
hn,2

)
1

nhdn,1

n∑
i=1

Kd

(
x−Xi

hn,1

) ,

was also considered and studied (strong consistency and asymptotic normality) in the iid
case by Ould Saïd and Sadki [21]. Here, the bandwidth hn,2 is not necessarily equal to
hn,1 and they will be denoted by h1 := hn,1 and h2 := hn,2.
Note that the estimator in (2.3) is an adapted version of that of Yu and Jones [28] to the
censoring case. Originally, this smooth estimate for complete data (without the IPCW

δi
Gn(Yi)

), was proposed and discussed by the last authors mainly to avoid the crossing
problem which occurs when using an indicator function instead of a continuous df.
It follows that, in view of (2.3), a natural estimator of (1.1) can be computed by

(2.4) ξp,n(x) = inf{t, Fn(t|x) ≥ p}.

To argue our main results, the following auxiliary pseudo-estimator will be of a great
bene�t in proving our results

(2.5) F̃n(t|x) =:
F̃1,n(x, t)

ln(x)
=

1

nhd1

n∑
i=1

δi

G(Yi)
Kd

(
x−Xi

h1

)
H

(
t− Yi
h2

)
1

nhd1

n∑
i=1

Kd

(
x−Xi

h1

) .

Note that (2.5) can not be computed since G(·) is assumed to be unknown.

3. Assumptions and main results

In the sequel, c stands for a positive constant taking di�erent values and τ will denote
a positive real number satisfying τ < τF < τG where, for any dfW , τW := sup{y;W (y) <
1}. De�ne Ω0 = {x ∈ Rd/l(x) ≥ m0 := infx l(x) > 0} and let Ω and C be compact sets
included in Ω0 and [0, τ ], respectively. The main results will be stated using the following
assumptions:

A1. The bandwidths h1 and h2 satisfy
(i) h1 → 0, nh2α+d(1−α)

1 → +∞ and log5 n

nhd1
→ 0 as n→ +∞,

(ii) h2 → 0 and nhd1h2 → +∞ as n→ +∞;
A2. The kernel Kd is a bounded pdf, compactly supported and satis�es:

(i) Kd is Hölder continuous of order α ∈ (0, 1),
(ii)

∫
Rd ujKd(u)du = 0, for all j = 1, ..., d, where u = (u1, ..., ud)

>;
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A3. The functionH in (2.3) is of class C1. Furthermore, its derivativeH(1) is assumed
to be compactly supported and satis�es the properties of a second order kernel;

A4. The marginal density l(.) is bounded and twice di�erentiable with:

sup
x∈Ω

∣∣∣∣∣ ∂kl(x)

∂xi∂x
k−1
j

(x)

∣∣∣∣∣ <∞ for i, j = 1, . . . , d and k = 1, 2 ;

A5. The joint pdf f(., .) is bounded and twice continuously di�erentiable;
A6. The joint pdf li,j(., .) of (Xi,Xj) is bounded;
A7. The joint pdf f(., ., ., .) of (Xi, Yi,Xj , Yj) is bounded;
A8. Let us de�ne Λij as follows:

Λij :=

d∑
k=1

d∑
l=1

Cov(Xk
i , X

l
j) + 2

d∑
k=1

Cov(Xk
i , Yj) + Cov(Yi, Yj),

with Xk
i the k-th component of Xi, such that for all j ≥ 1 and r > 0

sup
i:|j−i|≥r

Λij =: ρ(r) ≤ γ0e
−γr, for all γ0, γ > 0;

A9. The function ς(x) =
∫
R

1

G(v)
f(x, v)dv is bounded, continuously di�erentiable

and sup
x∈Ω

∣∣∣∣ ∂ς∂xi (x)

∣∣∣∣ <∞ for i = 1, ..., d.

3.1. Remark. Assumption A1 gives a classical choice of the bandwidths in functional
estimation. For the sake of simplicity, many authors consider that h1 = h2 which is not
justi�ed in general. Note that the condition A1 (ii) implies the �rst condition in A1 (i)
if d ≥ 2. For d = 1, the comparison is not straightforward and depends upon the order of
magnitude of h2 with respect to hα1 . Assumption A2 is quite usual in kernel estimation.
Assumptions A3-A7 are classical in nonparametric estimation under dependency while
A8 is used for covariance calculation under association structure. Furthermore, this
assumption gives a progressive trend to asymptotic independence of "past" and "future".
Finally, Assumption A9 is mainly technical.

The �rst result establishes the rate of convergence of the �uctuation term, that is∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣. This will be done by applying a Bernstein-type inequal-

ity stated by Doukhan and Neumann [10] for weakly dependent rv's. The next result
in Theorem 3.3 states a uniform almost sure convergence rate of Fn(t|x) toward F (t|x),
which will be stated with the help of Theorem 3.2. Then, as an immediate result, the
asymptotic behaviour of the kernel conditional quantile estimator will be deduced as
presented in Corollary 3.4.

3.2. Theorem. Suppose that assumptions A1-A5 and A7-A9 hold and for n large

enough, we have

(3.1) sup
x∈Ω

sup
t∈C

∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣ = O

(√
logn

nhd1

)
, a.s.

3.3. Theorem. Under the assumptions of Theorem 3.2 and A6, for n large enough we

have

sup
x∈Ω

sup
t∈C
|Fn(t|x)− F (t|x)| = O

{
(h2

1 + h2
2) + n−θ +

√
logn

nhd1

}
, a.s.

with 0 < θ < γ/(2γ + 9 + 3/2κ) for any κ > 0.



295

3.4. Corollary. Under the assumptions of Theorem 3.3, and for each �xed p ∈ (0, 1)
and x ∈ Ω, if inf

x∈Ω
f(ξp(x)|x) > 0, then for n large enough, we have

sup
x∈Ω
|ξp,n(x)− ξp(x)| = O

{
(h2

1 + h2
2) + n−θ +

√
logn

nhd1

}
, a.s.

3.5. Remark. The uniform positiveness condition on the conditional density in Corol-
lary 3.4 ensures the uniform uniqueness of the conditional quantile. Hence ∀ε > 0, ∃β >
0, ∀ηp : Ω→ R,

sup
x∈Ω
|ξp(x)− ηp(x)| ≥ ε⇒ sup

x∈Ω
|F (ξp(x)|x)− F (ηp(x)|x)| ≥ β.

3.6. Remark. We point out that the rate in Corollary 3.4 depends upon the parameter
θ pertaining to the association dependence. In addition, remark that for γ large enough,
the parameter θ approaches its upper bound (θ=1/2) and then, the covariances become
negligible which in turn permits to compare our rate with those stated in the iid and
strong mixing cases.

4. Simulation study

4.1. Description of the models. This part is established with the intention of giving
the behaviour of the conditional quantile estimator. For this purpose, we only consider
the cases of the conditional mean (p = 1/2) and the one dimensional covariate (d = 1)
. The simulation is conducted for di�erent sample sizes and censoring rates (CR). The
performance of our estimator is quanti�ed via the Global Mean Square Error (GMSE).
The simulated data are obtained as follows:

• Generate (n+ 1) iid rv's Zi from gamma distribution (Zi ∼ Γ(5, 0.5));

• Generate n iid rv's εi from normal distribution (εi ∼ N(0, 0.01));

• Given Zi, generate an n associated sequence (Xi, Ti) as follows:
a) Linear case{
Xi = exp(Zi−1 + Zi−2)/2;

Ti = 3Xi/2 + 0.45 εi.

b) Nonlinear case{
Xi = exp(Zi−1 + Zi−2)/2,

Ti = log(3Xi/2) + 0.45 εi,

• Generate n iid rv's Ci from exponential distribution (Ci ∼ exp(λ)). The param-
eter λ is adjusted according to the CR′s values;

• Keep the observed data
{

(Yi := min{Ti, Ci}), Xi, (δi := 1{Ti≤Ci})
}
.

4.1. Remark. In computing the estimators, we use the standardized normal df and a
Gaussian kernel for H and K, respectively.

In order to attenuate the boundary e�ect, we will use optimal local bandwidths. To do
so, we �rst assume that h1 = h2 =: h, and this bandwidth sweeps the interval [0.05, 0.8].
For each model, the process above is repeated B = 300 times with �xed values of n
and CR. Thus, we compute the conditional quantile estimator along a grid of points in
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[1.5, 4]. At the end of the process, we keep the optimal local bandwidth which minimizes
the estimating errors by means of the MSE (Mean Square Error) criterion, and then we
quantify the GMSE. The formula calculating the GMSE is

GMSE =
1

uB

u∑
`=1

B∑
k=1

[ξp,n,k(x`)− ξp(x`)]2 ,

where ξp,n,k(x`) is the value of ξp,n(x`) at iteration k and u is the number of equidistant
points x` belonging to [1.5, 4].
To illustrate visually the quality of �t, we will plot the conditional quantile estimator
ξp,n(x`) versus ξp(x`).

4.2. Simulation results.

4.2.1. Linear case: Note that under this model, the rv X follows Γ(10, 0.5) and the
conditional rv (T |X = x) follows N(3x/2, 0.0045).
To show how is the in�uence of the censoring rate and the sample size on the quality of
�t, we draw curves for di�erent sample sizes n = 50, 100 and 300 and CR = 40%, 25%
and 10% as illustrated by Figures 1, 2 and 3. The corresponding errors with respect to
the GMSE are summarized in Table 1.

Table 1. Values of GMSE for ξp,n with p = 0.5

Linear case n = 50 n = 100 n = 300

CR = 10% 0.0637 0.0245 0.0069
CR = 25% 0.1591 0.0586 0.0113
CR = 40% 0.2465 0.1059 0.0128

4.2. Remark. From Table 1 and the graphs plotted for the linear case, we remark that
the quality of �t seems to increase when the CR decreases. The curves reveal also that
boundary e�ects on the right side tend to diminish for large values of n. Of course, the
performance is quite acceptable when n = 50 and becomes more visible for n = 300.
It means that the in�uence of the CR on the quality of �t becomes more and more
insigni�cant along with n.
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Figure 1. Linear case: n = 50 and CR = 40, 25 and 10, respectively
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Figure 2. Linear case: n = 100 and CR = 40, 25 and 10, respectively
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Figure 3. Linear case: n = 300 and CR = 40, 25 and 10, respectively

4.2.2. Non-linear case: Note that the rv (T |X = x) follows N(log(3x/2), 0.0045) and
the choice of the log function permits to preserve the association property by monotonic-
ity.
For the rest we proceed as for the linear case. The GMSE′s are summarized in Table 2
and the quality of �t is illustrated through Figures 4,5 and 6.

Table 2. Values of GMSE for ξp,n(.) with p = 0.5

Non-linear case n = 50 n = 100 n = 300

CR = 10% 24× 10−3 15× 10−3 5.54× 10−4

CR = 25% 69× 10−3 25× 10−3 8.23× 10−4

CR = 40% 11× 10−2 51× 10−3 16× 10−3

4.3. Remark. From Table 2 and the graphs, we observe that the estimator behaves
similarly as for the linear case. The quality of �t becomes better along with the sample
size which means that the behavior of the estimator remains correct even for large values
of CR.
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Figure 4. Non linear case: n = 50 and CR = 40, 25 and 10, respectively
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Figure 5. Non linear case: n = 100 and CR = 40, 25 and 10, respectively
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Figure 6. Non linear case: n = 300 and CR = 40, 25 and 10, respectively

5. Auxiliary results and proofs

For notational convenience, let us de�ne

∆i(x, t) =
δi

G(Yi)
Kd

(
x−Xi

h1

)
H

(
t− Yi
h2

)
− E

[
δ1

G(Y1)
Kd

(
x−X1

h1

)
H

(
t− Y1

h2

)]
,

for all i = 1, ..., n. It is easily seen that

(5.1) F̃1,n(x, t)− E
[
F̃1,n(x, t)

]
=

1

nhd1

n∑
i=1

∆i(x, t).

The items of the following proposition are similar to the conditions of Theorem 1 in
Doukhan and Neumann [10]. Once the conditions are met, it becomes possible to use an
exponential inequality to prove Theorem 3.2 related to the �uctuation term.

5.1. Proposition. Let ∆1(x, t), ∆2(x, t),..., ∆n(x, t) be de�ned as above. Then, there

exist constantsM , L1, L2, µ ≥ 0, λ ≥ 0 and a non-decreasing sequence of real coe�cients

(Υ(n))n≥0 so that for all p-tuples (s1, ..., sp) and all q-tuples (v1, ..., vq) with 1 ≤ s1 ≤
... ≤ sp ≤ v1 ≤ ... ≤ vq ≤ n, we have

a) Cov

( sp∏
i=s1

∆i(x, t),

vq∏
j=v1

∆j(x, t)

)
≤ cp+qhd1h

2
d+1
2 pqΥ(v1 − sp),

b)
∞∑
s=0

(s+ 1)k0Υ(s) ≤ L1L
k0
2 (k0!)µ,∀k0 ≥ 0,
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c) E
[
|∆i(x, t)|k0

]
≤ (k0!)λMk0 .

Proof. Proof of Proposition 5.1 To prove the �rst item of Proposition 5.1, we need
the following lemma:

5.2. Lemma. Under assumptions A2, A5, A7 and A8, we have

i) Cov

( sp∏
i=s1

∆i(x, t),

vq∏
j=v1

∆j(x, t)

)
=: C1 ≤ cp+qh−2

1 h−2
2 pqρ(v1 − sp),

ii) Cov

( sp∏
i=s1

∆i(x, t),

vq∏
j=v1

∆j(x, t)

)
=: C2 ≤ cp+qh2d

1 h
2
2.

Proof. Exploiting the de�nition 5.1, p.88 in Bulinski & Shashkin [3], we recall that the
partial Lipschitz constants are de�ned as follows

(5.2) Lipi(Φm) =

sup
z1,...,zm
zi 6=z

′
i
,z
′
i
∈R

|Φm(z1, ..., zi−1, zi, zi+1, ..., zm)− Φm(z1, ..., zi−1, z
′
i, zi+1, ..., zm)|

|zi − z′i|
,

where Φm : Rm → R and Lip(Φm) denotes the Lipschitz continuity modulus of Φm, viz

Lip(Φm) = sup
x6=y

|Φm(x)− Φm(y)|
‖x− y‖1

,

with ‖(z1, ..., zn)‖1 = |z1|+ ...+ |zn|.
To prove part (i) in Lemma 5.2, we use Theorem 5.3, p.89 in (Bulinski and Shashkin [3]).
Firstly, we set

Φp =:

sp∏
i=s1

∆i and Φq =:

vq∏
j=v1

∆j .

Then, using the fact that Kd, H and G are Lipschitz functions, we have

Cov(Φp,Φq) ≤
sp∑
i=s1

vq∑
j=v1

Lipi(Φp)Lipj(Φq)Λij ,

The de�nition in (5.2) leads to

Lipi(Φp) ≤
M0

h1h2

(
2

G(τ)

)p
‖Kd‖p−1

∞

and

Lipj(Φq) ≤
M0

h1h2

(
2

G(τ)

)q
‖Kd‖q−1

∞ ,

where M0 = max

{
h2Lip(K) ‖K‖d−1

∞ , h1

(
Lip(H) + h2

Lip(G)

G(τ)

)
‖Kd‖∞

}
.

Note that the partial Lipschitz constants are obtained as follows

Lipi(Φp) ≤ M0

h1h2

(
2

G(τ)

)p−1

‖Kd‖p−1
∞

1

G(τ)

≤ M0

h1h2

(
2

G(τ)

)p
‖Kd‖p−1

∞ .



302

If Assumption A8 holds, by stationarity we get

Cov(Φp,Φq) ≤ M2
0

h2
1h

2
2

(
2

G(τ)

)p+q
‖Kd‖p+q−2

∞

sp∑
i=s1

vq∑
j=v1

Λij

≤ cp+q

h2
1h

2
2

pq ρ(v1 − sp).

This achieves the proof of (i). In order to prove the second part of Lemma 5.2, we need
to calculate the covariance term as shown hereafter by using the fact that

E [δiδj |Ti, Tj ] = E
[
1{Ti≤Ci}1{Tj≤Cj}|Ti, Tj

]
= G(Ti)G(Tj).

We also use the following simpli�ed notations

Kd,x,i := Kd

(
x−Xi

h1

)
and Ht,i := H

(
t− Yi
h2

)
.

Indeed, we have

Cov(∆i(x, t),∆j(x, t))

= E
[

δiδj

G(Yi)G(Yj)
Kd,x,iHt,iKd,x,jHt,j

]
−E

[
δi

G(Yi)
Kd,x,iHt,i

]
× E

[
δj

G(Yj)
Kd,x,jHt,j

]
= E

[
Kd,x,iKd,x,j E

(
δiδj

G(Yi)G(Yj)
Ht,iHt,j |Xi,Xj

)]
− E

[
Kd,x,i E

(
δi

G(Yi)
Ht,i|Xi

)]
× E

[
Kd,x,j E

(
δj

G(Yj)
Ht,j |Xj

)]
= E

[
Kd,x,iKd,x,j E

(
Ht,iHt,j

E [δiδj |Ti, Tj ]
G(Ti)G(Tj)

|Xi,Xj

)]
− E

[
Kd,x,i E

(
Ht,i

E [δi|Ti] |Xi

G(Ti)

)]
E
[
Kd,x,j E

(
Ht,j

E [δj |Tj ]
G(Tj)

|Xj

)]
.

Then, we get

|Cov(∆i(x, t),∆j(x, t))|

≤
∣∣∣∣∫

R2d×R2

Kd

(
x− u
h1

)
H

(
t− s
h2

)
Kd

(
x− r
h1

)
H

(
t− v
h2

)
× f(u, s, r, v)dudsdrdv|

+

∣∣∣∣∫
Rd+1

Kd

(
x− u
h1

)
H

(
t− s
h2

)
f(u, s)duds

×
∫
Rd+1

Kd

(
x− r
h1

)
H

(
t− v
h2

)
f(r, v)drdv

∣∣∣∣ .
Moreover, under assumptions A2, A5 and A7, using a change of variables we get

|Cov(∆i(x, t),∆j(x, t))| = O(h2d
1 h

2
2).(5.3)

Finally, the second part of Lemma 5.2 follows by simple algebra. �
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We need some auxiliary notations to set up the proof of Proposition 5.1. Impose

Υ(.) = ρ
d

2d+2 (.) and use the upper bounds of Lemma 5.2, namely

C
d

2d+2
1 ≤ c

(p+q)d
2d+2 h

−2d
2d+2
1 h

−2d
2d+2
2 (pq)

d
2d+2 ρ

d
2d+2 (v1 − sp),(5.4)

C
d+2
2d+2
2 ≤ c(p+q)

d+2
2d+2 h

2d(d+2)
2d+2

1 h
2(d+2)
2d+2

2 .(5.5)

Combining (5.4) and (5.5), we get

C
d

2d+2
1 C

d+2
2d+2
2 ≤ cp+qhd1h

2
d+1
2 (pq)

d
2d+2 ρ

d
2d+2 (v1 − sp)

≤ cp+qhd1h
2
d+1
2 pq Υ(v1 − sp).

This inequality concludes the proof of part (a) of Proposition 5.1. Next, under Assump-
tion A8 and choosing λ = 0, µ = 1, L1 = L2 = 1

1−e
−γd
2d+2

, the proofs of the results in (b)

and (c) are similar to those used in proving Proposition 8 in (Doukhan and Neumann
[10]), then we omit them. The proof of Proposition 5.1 is complete. �

Proof. Proof of Theorem 3.2 In order to set up the uniform asymptotic expression

of the �uctuation term
∣∣∣F̃1,n(x, t)− E

[
F̃1,n(x, t)

]∣∣∣, we apply the triangular inequality

and classical techniques to cover compacts. So, Ω can be covered by a �nite number dx,n
of balls Bk(xk, a

d
n) centred at xk = (xk,1, ..., xk,d) and C is split into dt,n subintervals

J1, ..., Jdt,n of lengths bn, centred at t`. In other words, for all x ∈ Ω, t ∈ C, there exist
integers k ∈ {1, ..., dx,n} and ` ∈ {1, ..., dt,n} such that ‖x− xk‖ ≤ adn and |t− t`| ≤ bn,

with adn =
(
n−1h2α+d

1

)1/2α
and bn =

(
nhd1

)−1/2
h2. Then, as Ω and C are bounded, let

m1 and m2 be positive constants satisfying dx,nadn ≤ m1 and dt,nbn ≤ m2.

5.3. Remark. In proving our results we will use Lemma 5.4 stated in Menni and Tat-
achak [17] (see their Lemma 3 ) which governs a strong uniform consistency rate of the
kernel estimator ln(.). We recall it hereinafter without proof.

5.4. Lemma. Under assumptions A1, A2, A4, A6 and A8, for n large enough we

have

sup
x∈Ω
|ln(x)− l(x)| = O

(
max

{√
logn

nhd1
, h2

1

})
a.s.

Next, using basic arguments, the left hand side in (3.1) is upper bounded as follows

sup
x∈Ω

sup
t∈C

∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣ ≤ I1n + I ′1n + I2n + I ′2n + I3n,

with

I1n = max
1≤k≤dx,n

sup
x∈Bk

sup
t∈C

∣∣∣F̃1,n(x, t)− F̃1,n(xk, t)
∣∣∣ ,

I ′1n = max
1≤k≤dx,n

sup
x∈Bk

sup
t∈C

∣∣∣ E [F̃1,n(xk, t)
]
− E

[
F̃1,n(x, t)

]∣∣∣ ,
I2n = max

1≤k≤dx,n
max

1≤`≤dt,n
sup
t∈J`

∣∣∣F̃1,n(xk, t)− F̃1,n(xk, t`)
∣∣∣ ,

I ′2n = max
1≤k≤dx,n

max
1≤`≤dt,n

sup
t∈J`

∣∣∣ E [F̃1,n(xk, t`)
]
− E

[
F̃1,n(xk, t)

]∣∣∣ ,
I3n = max

1≤k≤dx,n
max

1≤`≤dt,n

∣∣∣F̃1,n(xk, t`)− E
[
F̃1,n(xk, t`)

]



304

Concerning I1n and I ′1n, we apply the SLLN for associated sequences (see Newman [18])
and Assumption A2(i). We obtain

∣∣∣F̃1,n(x, t)− F̃1,n(xk, t)
∣∣∣

=

∣∣∣∣∣ 1

nhd1

n∑
i=1

δi

G(Yi)
H

(
t− Yi
h2

)[
Kd

(
x−Xi

h1

)
−Kd

(
xk −Xi

h1

)]∣∣∣∣∣
≤ c

hd1 G(τ)

‖x− xk‖α

hα1

1

n

n∑
i=1

δi

≤ c

G(τ)

adαn

hd+α1

1

n

n∑
i=1

δi

= O

(
1√
nhd1

)
.(5.6)

To treat the terms I2n and I ′2n, we use Assumption A3 and Lemma 5.4. We get

∣∣∣F̃1,n(xk, t)− F̃1,n(xk, t`)
∣∣∣

=

∣∣∣∣∣ 1

nhd1

n∑
i=1

δi

G(Yi)
Kd

(
xk −Xi

h1

)[
H

(
t− Yi
h2

)
−H

(
t` − Yi
h2

)]∣∣∣∣∣
≤ c

G(τ)

|t− t`|
h2

1

nhd1

n∑
i=1

Kd

(
xk −Xi

h1

)
≤ c

G(τ)

bn
h2
ln(xk)

= O

(
1√
nhd1

)
.(5.7)

We can focus now on upper bounding the term I3n. To do so, we apply an exponen-
tial inequality adapted to associated sequences (see, Theorem 1, p.19 in Doukhan and
Neumann [10]). Indeed, for all ε > 0, we have

(5.8) P

(
n∑
i=1

∆i(xk, t`) ≥ ε

)
≤ exp

(
− ε2/2

An +B
1/(µ+λ+2)
n ε(2µ+2λ+3)/(µ+λ+2)

)
,

where An is any number greater than σ2
n and

σ2
n :=

(
n∑
i=1

∆i(xk, t`)

)
,

(5.9) Bn = 2cL2 max

24+µ+λcnhd1h
2
d+1
2 L1

An
, 1

 .
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Firstly, we have to calculate σ2
n. Indeed σ

2
n = (nhd1)2Var

(
F̃1,n(xk, t`)

)
.

On the other hand, we have

(nhd1)2Var
(
F̃1,n(xk, t`)

)
= nVar

(
δ1

G(Y1)
Kd,xk,1Htl,1

(
t` − Y1

h2

))
+

n∑
i=1

n∑
j=1
j 6=i

Cov

(
δi

G(Yi)
Kd,xk,iHtl,i,

δj

G(Yj)
Kd,xk,jHtl,j

)
=: V + S.

Firstly, let us focus on V .

V = nE
[

δ1

G(Y1)2
K2
d

(
xk −X1

h1

)
H2

(
t` − Y1

h2

)]
− nE2

[
δ1

G(Y1)
Kd

(
xk −X1

h1

)
H

(
t` − Y1

h2

)]
=: n(D1 −D2).

Concerning D1, we use classical conditional expectation techniques. So, under assump-
tions A1(i), A2 and A9, a change of variable and a Taylor expansion around xk, we
get

D1 = E
[
K2
d

(
xk −X1

h1

)
E
[
E
[

δ1

G(Y1)2
H2

(
t` − Y1

h2

)
|T1

]
|X1

]]
=

∫
Rd
K2
d

(
xk − u
h1

)
E
[
H2

(
t` − T1

h2

)
1

G(T1)
|X1 = u

]
l(u)du

≤
∫
Rd
K2
d

(
xk − u
h1

)∫
R

1

G(v)
f(u, v)dvdu, because H(.) is a df;

= hd1

∫
Rd
K2
d(z)ς(xk − zh1)dz

= hd1

∫
Rd
ς(xk)K2

d(z)dz− hd+1
1

∫
Rd
K2
d(z)

[
z1
∂ς(x∗k)

∂xk,1
+ · · ·+ zd

∂ς(x∗k)

∂xk,d

]
dz

= O(hd1).

Here x∗k is between xk − zh1 and xk. Again, to upper bound D2 we work similarly as
before. Indeed, using a change of variable, Taylor expansion and assumptions A1(i), A2
and A4, we get

D2 = E2

[
Kd

(
xk −X1

h1

)
E
[
E
[

δ1

G(Y1)
H

(
t` − Y1

h2

)
|T1

]
|X1

]]
= O(h2d

1 ).

Consequently, we get

V = O(nhd1).

Secondly, to evaluate S, we �rst de�ne

B1 = {(i, j); 1 ≤ |i− j| ≤ ηn} and B2 = {(i, j); ηn + 1 ≤ |i− j| ≤ n− 1},
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where ηn = o(n). Then, we have

S =

n∑
i=1

∑
B1

Cov

(
δi

G(Yi)
Kd,xk,iHtl,i,

δj

G(Yj)
Kd,xk,jHtl,j

)

+

n∑
i=1

∑
B2

Cov

(
δi

G(Yi)
Kd,xk,iHtl,i,

δj

G(Yj)
Kd,xk,jHtl,j

)
= : S1 + S2.

From (5.3), it is clear that

S1 = nηnO(h2d
1 h

2
2) = O(nηnh

2d
1 h

2
2).(5.10)

Next, the term S2 will be upper bounded by remaking that result a) in Proposition 5.1
and Assumption A8 permit to write

S2 ≤
n∑
i=1

∑
B2

c2hd1h
2
d+1
2 ρ

d
2d+2 (|i− j|)

≤ nc2hd1h
2
d+1
2

∑
B2

γ
d

2d+2
0 e−

γ|i−j|d
2d+2

≤ nc2hd1h
2
d+1
2

∫ n

ηn

e−
γud
2d+2 du

= O

(
nhd1h

2
d+1
2 e−

γηnd
2d+2

)
.(5.11)

So, under Assumption A1 and taking ηn = O(hν1−d1 hν2−1
2 ) with 0 < ν1 < d and 0 <

ν2 < 1, the bounds in (5.10) and (5.11) become of order o(nhd1h2) and o(nhd1h
2
d+1
2 ),

respectively. Consequently

σ2
n = V + S = O(nhd1) + o(nhd1h

2
d+1
2 ) = O(nhd1).

Thereby, we get An = O(nhd1). Next, from (5.9) and choosing µ, λ, L1 and L2 as those
in the proof of Proposition 5.1, we get Bn = O(1).
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Regarding I3n, in view of (5.1), (5.8) and letting ε = ε0

√
logn

nhd1
, we have

P
(

max
1≤k≤dx,n

max
1≤`≤dt,n

∣∣∣F̃1,n(xk, t`)− E
[
F̃1,n(xk, t`)

]∣∣∣ ≥ ε)
= P

(
max

1≤k≤dx,n
max

1≤`≤dt,n

∣∣∣∣∣
n∑
i=1

∆i(xk, t`)

∣∣∣∣∣ ≥ nhd1ε
)

≤
dx,n∑
k=1

dt,n∑
`=1

P

(∣∣∣∣∣
n∑
i=1

∆i(xk, t`)

∣∣∣∣∣ ≥ nhd1ε
)

≤ 2dx,ndt,n exp

 −(nhd1)2 ε
2
0
2

logn

nhd1

cnhd1 + ε
5/3
0 (nhd1)5/3

(
logn

nhd1

)5/6


≤ 2

m1

adn

m2

bn
exp

 − ε
2
0
2

logn

c+ ε
5/3
0

(
logn5

nhd1

)1/6


≤ c

(
n−1h2α+d

1

)−1/2α (
nhd1

)1/2

h−1
2 n−cε

2
0

= c
(
nh

2α+d(1−α)
1

)−1/2α

(nh2)−1n−cε
2
0+ 1

α
+ 3

2 .(5.12)

So, under Assumption A1 and taking ε2
0 >

1
c

(
1
α

+ 5
2

)
, the term in (5.12) is the general

term of a convergent series. Then, we have

∑
n≥1

P

(
max

1≤k≤dx,n
max

1≤`≤dt,n

∣∣∣F̃1,n(xk, t`)− E
[
F̃1,n(xk, t`)

]∣∣∣ ≥ ε0

√
logn

nhd1

)
<∞.

Applying the lemma of Borel-Cantelli, we obtain that

(5.13) I3n = O

(√
logn

nhd1

)
.

Involving (5.6), (5.7) and (5.13), we deduce that

sup
x∈Ω

sup
t∈C

∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣ = O

(√
logn

nhd1

)
.

The proof of Theorem 3.2 is achieved. �

Proof. Proof of Theorem 3.3 First, observe that

sup
x∈Ω

sup
t∈C
|Fn(t|x)− F (t|x)| ≤ 1

inf
x∈Ω

(ln(x))

{
sup
x∈Ω

sup
t∈C

∣∣∣ E [F̃1,n(x, t)
]
− F1(x, t)

∣∣∣
+ sup
x∈Ω

sup
t∈C

∣∣∣F1,n(x, t)− F̃1,n(x, t)
∣∣∣

+ sup
x∈Ω

sup
t∈C

∣∣∣F̃1,n(x, t)− E
[
F̃1,n(x, t)

]∣∣∣
+m−1

0 sup
x∈Ω

sup
t∈C

F1(x, t) sup
x∈Ω
|ln(x)− l(x)|

}
.
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As m0 := infx l(x), it is easily seen that

1

ln(x)
≤ 1

l(x)− |ln(x)− l(x)|

≤ 1

m0 − sup
x∈Ω
|ln(x)− l(x)| .

This allows to write

sup
x∈Ω

sup
t∈C
|Fn(t|x)− F (t|x)|

≤ 1

m0 − sup
x∈Ω
|ln(x)− l(x)|

{
ϑ1 + ϑ2 + ϑ3 + ϑ4m

−1
0 sup

x∈Ω
sup
t∈C

F1(x, t)

}
.

As for the term ϑ3, it has been bounded in Theorem 3.2. The following lemmas establish
respectively the result of ϑ1, ϑ2. Then we apply Lemma 5.4 for ϑ4.
The bias term ϑ1 will be stated in Lemma 5.5 by using conditional expectation techniques
and a Taylor expansion up to order 2 while Lemma 5.6 deals with bounding ϑ2.

5.5. Lemma. Under assumptions A1, A2, A3 and A5, for n large enough we have

sup
x∈Ω

sup
t∈C

∣∣∣ E [F̃1,n(x, t)
]
− F1(x, t)

∣∣∣ = O(h2
1 + h2

2), a.s.

Proof. The following proof does not depend on the dependence structure.

E
[
F̃1,n(x, t)

]
=

1

hd1
E
[

δ1

G(Y1)
Kd

(
x−X1

h1

)
H

(
t− Y1

h2

)]
=

1

hd1
E
[
Kd

(
x−X1

h1

)
E
[

δ1

G(Y1)
H

(
t− Y1

h2

)
|X1

]]
.

We use integration by parts, a change of variable and Assumption A3, then we have

E
[

δ1

G(Y1)
H

(
t− Y1

h2

)
|X1

]
= E

[
E
[

δ1

G(Y1)
H

(
t− Y1

h2

)
|T1

]
|X1

]
= E

[
1

G(T1)
H

(
t− T1

h2

)
E
[
1{C1≥T1}

]
|X1

]
= E

[
H

(
t− T1

h2

)
|X1

]
=

∫
R
H

(
t− y
h2

)
f(y|X1)dy

=

∫
R
H(1)(z)F (t− zh2|X1)dz.

Again, by a change of variable we get

E
[
F̃1,n(x, t)

]
=

1

hd1
E
[
Kd

(
x−X1

h1

)∫
R
H(1)(z)F (t− zh2|X1)dz

]
=

∫
Rd

1

hd1
Kd

(
x− u
h1

)∫
R
H(1)(z)F (t− zh2|X1 = u)l(u)dudz

=

∫
Rd

∫
R

1

hd1
Kd

(
x− u
h1

)
H(1)(z)F1(u, t− zh2)dudz

=

∫
Rd

∫
R
Kd(r)H

(1)(z)F1(x− rh1, t− zh2)drdz.
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Then, expanding F1(x− rh1, t− zh2) up to order 2 around (x, t) gives

F1(x− rh1, t− zh2) = F1(x, t)

−h1

[
r1
∂F1(x, t)

∂x1
+ · · ·+ rd

∂F1(x, t)

∂xd

]
− h2

[
z
∂F1(x, t)

∂t

]

+
h2

1

2

r2
1
∂2F1(x∗, t∗)

∂x2
1

+ · · ·+ r2
d
∂2F1(x∗, t∗)

∂x2
d

+ 2
∑
i,j;i 6=j

rirj
∂2F1(x∗, t∗)

∂xi∂xj


+
h2

2

2

[
z2 ∂

2F1(x∗, t∗)

∂t2

]
+ h1h2

[
r1z

∂2F1(x∗, t∗)

∂x1∂t
+ · · ·+ rdz

∂2F1(x∗, t∗)

∂xd∂t

]
.

Here, (x∗, t∗) lies between (x − rh1, t − zh2) and (x, t). Finally, assumptions A1, A2,
A3 and A5 entail

sup
x∈Ω

sup
t∈C

∣∣∣ E [F̃1,n(x, t)
]
− F1(x, t)

∣∣∣ ≤ c(h2
1 + h2

2).

This provides the desired result. �

5.6. Lemma. Under assumptions A2, A4 and A8, for n large enough, we have

sup
x∈Ω

sup
t∈C

∣∣∣F1,n(x, t)− F̃1,n(x, t)
∣∣∣ = o

(
n−θ

)
, a.s.

Proof. Firstly, we have

|F1,n(x, t)− F̃1,n(x, t)|

=

∣∣∣∣∣ 1

nhd1

n∑
i=1

δiKd

(
x−Xi

h1

)
H

(
t− Yi
h2

)(
1

Gn(Yi)
− 1

G(Yi)

)∣∣∣∣∣
≤ 1

nhd1

n∑
i=1

Kd

(
x−Xi

h1

)
H

(
t− Yi
h2

) ∣∣∣∣ 1

Gn(Yi)
− 1

G(Yi)

∣∣∣∣
≤ ln(x)

Gn(τ)G(τ)
sup
t∈C

∣∣Gn(t)−G(t)
∣∣ .

Then, following Theorem 1.4 in Cai and Roussas [5] and for n large enough, we easily
get

(5.14) sup
t∈C

∣∣Gn(t)−G(t)
∣∣ = o

(
n−θ

)
, a.s.

Recall that 0 < θ < γ/(2γ+ 9 + 3/2κ) for any real κ > 0 and γ is referred in Assumption
A8. Hence, Lemma 5.4 and (5.14) end the proof of Lemma 5.6. �

To end the proof of Theorem 3.3, it su�ces to apply Lemma 5.4 for ϑ4. �

The last step consists in proving the result on the behavior of the conditional quantile
estimator ξp,n(x), stated in Corollary 3.4.

Proof. Proof of Corollary 3.4 It su�ces to use the following triangular inequality
jointly with basic arguments. Let x ∈ Ω, then we have

|F (ξp,n(x)|x)− F (ξp(x)|x)| ≤ |Fn(ξp,n(x)|x)− F (ξp,n(x)|x)|
+ |Fn(ξp,n(x)|x)− F (ξp(x)|x)|
≤ 2 sup

t∈C
|Fn(t|x)− F (t|x)|.(5.15)
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So, the �rst part of Corollary 3.4 is straightforwardly deduced from Theorem 3.3. And,
a Taylor expansion of F (ξp,n|x) in the neighborhood of ξp(x) permits to get

F (ξp,n(x)|x)− F (ξp(x)|x) = (ξp,n(x)− ξp(x))f(ξ∗p(x)|x),

where ξ∗p(·) is between ξp(·) and ξp,n(·). Thus from (5.15), we obtain

sup
x∈Ω
|ξp,n(x)− ξp(x)|f(ξ∗p(x)|x) ≤ 2 sup

x∈Ω
sup
t∈C
|Fn(t|x)− F (t|x)|.

Note that if the condition in Corollary 3.4 is not checked, one has to consider a higher
order-Taylor expansion. Finally, the desired result follows immediately from Assumption
A5 and Theorem 3.3. �
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1. Introduction

Data envelopment analysis (DEA) is one of the popular and growing methods in evalu-
ating the relative e�ciency of a set of similar decision making units (DMUs). In practice,
DEA performs in the presence of multi-inputs variables and multi-outputs to evaluate
e�ciency using a model originally proposed by Charnes et al. [1]. Later, extended DEA
models were applied in di�erent contexts (see Cook and Seiford[7]). Initial DEA meth-
ods measured the e�ciency of systems without any attention to the internal structure
of system operations. DEA has many applications for interpreting the productivity of
complex economical and engineering systems (Ebrahimnejad et al. [8, 9], Ebrahimnejad
and Bagerzadeh [10], Mottaghi et al. [15], Hatami-Marbini et al. [11], Tavana et al. [19])

Over time, researchers had more attention to system operation analysis in order to
�nd the causes of system ine�ciency. The �rst study with a two-stage network structure
using DEA was reported by Charnes et al. [2], examining matters related to employment
in the army. This two-stage network model was then used by many researchers, such as
Lovell et al. [14], Seiford and Zhu [17] and Sexton and Lewis [18].

In recent years, several models have been proposed to improve e�ciency measurement
in two-stage network systems. Wang et al. [21] introduced a two-stage method with vari-
able returns to scale (VRS), which in each stage considered variables independently and
provided intermediate products. Rho and An [16] considered slack variables in a model
that provided assessment of DMUs with weak e�ciency. Kao and Hwang [12] examined
the possibility of decomposition in the system's overall e�ciency by considering interme-
diate products' weights. Tone and Tsutsui [20], using a production possibility set (PPS),
introduced models based on the slack variable, and Chen et al. [5] provided a new method
for determining e�cient projections for ine�cient DMUs. Although the main contribu-
tions of these models were improvement in measuring e�ciency in a two-stage network
structure, but they have many problems. For example, Chen et al. [6] reported some
of the limitations in e�ciency measurement related to the di�erent behaviors occurring
in the stages due to using intermediate products. Furthermore, Chen et al. [6] exam-
ined the determination of projection, e�cient frontiers, and divisional e�ciency become
challenges in network DEA models. In all these methods, intermediate products were
considered in the �rst stage as outputs and in the second stage as inputs with free dispos-
ability. Therefore, considering intermediate products with two di�erent roles is caused
problems within the system. In this study, we are going to have a uniform behavior with
the intermediate products, when they are applied as inputs (consumer) of the second
stage and outputs (products) of the �rst stage. For this purpose, we introduce a set of
separated properties for every stage of the two-stage network, including consideration of
the convex hull of the intermediate products. Models based upon this new production
possibility set are presented to calculate the overall e�ciency and projections. Finally,
the new network DEA model is compared with similar methods in evaluating how well
they addressed two-stage network limitations.

The rest of the paper is organized into several sections. In Section (2), a brief review
of some systems with a two-stage network structure is presented. In Section (3), some
properties regarding two-stage network DEA with convex intermediate products are ex-
plored, and TCHI is established by accepting these principals. Section (4) presents a new
model to compute the overall e�ciency score in the proposed PPS. Section (5) explored
models determined by the divisional e�ciency in TCHI . In Section (6), we propose a
method is proposed to improve ine�cient DMUs and to calculate frontier projections in
TCHI . Some examples are illustrated in Section (7). Finally, Section (8), including the
main conclusions as well as some interesting future research lines, ends the paper.
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2. Two-stage network

Consider Figure 1 that represents a two-stage network structure for each of a set of n
DMUs.

Figure 1. Two-stage process.

We apply Kao and Hwang's model [12] to explain the main concepts. For eachDMU j (j =
1, 2, · · · ,n) ,in the �rst stage, inputs xij , (i = 1, 2, · · · ,m) is used to produce a set of
D, intermediate products, zdj , (d = 1, 2, · · · ,D), and in the second stage all outputs
of the �rst stage, namely, zdj , (d = 1, 2, · · · ,D) is used to produce the �nal outputs
yrj , (r = 1, 2, · · · , s). In what follows x = (x1, · · · , xm) ∈ Rm

+ , z = (z1, · · · , zd) ∈
RD

+ , y = (y1, · · · , ys) ∈ Rs
+, represent the input vector, intermediate products vector,

and output vector, respectively.
In conventional models of DEA, two di�erent methods are commonly used to evaluate

the e�ciency of two-stage systems. The �rst method calculated e�ciency of each division
based upon the application of the de�nition of relative e�ciency in a set of DMUs, and
the multiplier-based network DEA models are derived according to this method. In the
second method, the production possibility set is used for measuring e�ciency of each
division, and the envelopment models are derived with a two-stage network structure.
Network DEA pitfalls were represented by applying di�erent concepts of e�ciency in
these two di�erent methods. A brief review of these two methods appears in the following
subsections.

2.1. The multiplier models with two-stage network structure. The multiplier-
based network models are generally applied to calculate overall and divisional e�ciency.
Of course, one of the limitations of the network DEA models is that the divisional ef-
�ciency envelopment models are infeasible in some cases. Kao and Hwang [12], under
constant returns to scale (CRS) assumption, calculated stages' e�ciency scores sepa-
rately, then considering a series relationship between stages, they obtained an overall
e�ciency score by the products of each stages' e�ciency. One notable point in their
method is that the weights related to intermediate products are equal in both stages
(wd; d = 1, · · · , D).

Kao and Hwang [12] proposed the following linear programming (LP) model to eval-
uate the overall e�ciency measure for DMUo :

Eo = max

s∑
r=1

uryro

s.t.

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0 j = 1, · · · , n

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0 j = 1, · · · , n
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m∑
i=1

vixio = 1

vi ≥ 0, ur ≥ 0, wd ≥ 0, i = 1, · · · ,m; r = 1, · · · , s; d = 1, · · · , D(2.1)

In model (2.1), u ∈ Rs
+, v ∈ Rm

+ and w ∈ RD
+ are the associated unknown weights

of the output, input and intermediate products, respectively. Kao and Hwang [13] also
provided a method for calculating the overall e�ciency score of DMUo under VRS.
They introduced following models for calculating the divisional e�ciency scores.

T 1
o = max

D∑
d=1

ẃdzdo − ẃ0

s.t.

m∑
i=1

vixio = 1

Eo

m∑
i=1

vixio −
s∑

r=1

uryro = 0

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0 j = 1, · · · , n

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0 j = 1, · · · , n

D∑
d=1

ẃdzdj − ẃ0 −
m∑
i=1

vixij ≤ 0 j = 1, · · · , n

ur, vi, wp, ẃp ≥ ε
ẃ0free in sign(2.2)

T 2
o = max

s∑
r=1

uryro

s.t.

D∑
d=1

ẃdzdo + ẃ0 = 1

Eo

m∑
i=1

vixio −
s∑

r=1

uryro = 0

s∑
r=1

uryrj −
D∑

d=1

wdzdj ≤ 0 j = 1, · · · , n

D∑
d=1

wdzdj −
m∑
i=1

vixij ≤ 0 j = 1, · · · , n

s∑
r=1

uryrj −
D∑

d=1

ẃdzdj − ẃ0 ≤ 0 j = 1, · · · , n

ur, vi, wp, ẃp ≥ ε
ẃ0 free in sign(2.3)

Hence, Eo is the overall e�ciency score under CRS calculated from model (2.1). Model
(2.2) computes the input-oriented technical e�ciency score of the �rst step and model
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(2.3) evaluates the output-oriented e�ciency score of the second stage for DMUo. The
overall e�ciency score of DMUo, under VRS, is obtained via the products of the stages'
e�ciency scores.

Chen et al. [3] calculated the overall e�ciency in a two-stage system by use of speci�c
weights in the objective function. They proposed the following model to compute the
VRS's overall e�ciency in a two-stage system, when DMUo is under evaluation:

max

D∑
d=1

wdzdo + u1 +

s∑
r=1

uryro + u2

s.t.

s∑
r=1

uryrj −
D∑

d=1

wdzdj + u2 ≤ 0 j = 1, · · · , n

D∑
d=1

wdzdj −
m∑
i=1

vixij + u1 ≤ 0 j = 1, · · · , n

m∑
i=1

vixio +

D∑
d=1

wdzdo = 1

vi ≥ 0, ur ≥ 0, wd ≥ 0, i = 1, · · · ,m; r = 1, · · · , s; d = 1, · · · , D

u1, u2
free in sign(2.4)

As can be seen form Model (2.4), intermediate products' weights are considered the same
in both stages of the proposed model.

2.2. Envelopment models with two-stage network structure. DEA models with
network structures are used for determining projections on the e�ciency frontier. Chen
et al. [4] introduced a radial version of the envelopment-based network model to compute
the input-oriented CRS overall e�ciency for DMUo as follows:

min θ

s.t.

n∑
j=1

λjxij ≤ θxio, i = 1, 2, · · · ,m

n∑
j=1

λjzdj ≥ z̃do, d = 1, 2, · · · , D

n∑
j=1

µjzdj ≤ z̃do, d = 1, 2, · · · , D

n∑
j=1

µjyrj ≥ yro, r = 1, 2, · · · , s

λj ≥ 0 , µj ≥ 0 j = 1, 2, · · · , n
z̃do ≥ 0 d = 1, 2, · · · , D(2.5)

Model (2.5), is equivalent to the dual of Model (2.1). In Model (2.5), the intermediate
products are treated as free links.

Chen et al. [5] applied redundant constraints of Model (2.5), such as z̃do ≥ 0(d =
1, 2, · · · , D) in Model (2.5) as unrestricted variables, i.e. z̃do(d = 1, 2, · · · , D) are free
in sing. Therefore, in the dual model, both constraints of intermediate products cor-
responding to these free variables considered as equal constraints. For reformulating
Model (2.5) under the assumption of VRS, it is enough to add the convexity constraints

(
∑N

j=1 µj =
∑N

j=1 λj = 1) to model (2.5).
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Tone and Tsutsui [20] introduced slacks-based network DEA models by using produc-
tion possibility set. They explored several models based upon the intermediate products
as both �xed links and free links. A version of the input-oriented envelopment-based
network model, where the intermediate products referred to as free link cases can be
modeled as follows:

max

m∑
i=1

s−i
xio

s.t.

n∑
j=1

λjxij + s−i = xio, i = 1, · · · ,m

n∑
j=1

λjzdj ≥ z̃do, d = 1, · · · , D

n∑
j=1

µjzdj ≤ z̃do, d = 1, · · · , D

n∑
j=1

µjyrj − s+r = yro, r = 1, · · · , s

λj ≥ 0 , µj ≥ 0, j = 1, · · · , n
z̃do ≥ 0 , d = 1, · · · , D(2.6)

In general, two di�erent behaviors with intermediate products in most models of a two-
stage network can be considered one of their most signi�cant problems while minimum
attention has been paid to them. These methods by assigning the same weight variables
to the intermediate products in two stages of the multiplier-based network models (for
example, wd; d = 1, . . . , D) impose uniform shadow prices to the system and so they have
limitations or have less �exibility.

By changing the direction of inequality in the corresponding constraints of intermedi-
ate products in the envelopment network models, the model provides the possibility of
disposability, which is consumed in the next stage. Therefore, models manage the prob-
lem from the outside. In the next section, we examine the impact of uniform behavior
on these products for calculating overall e�ciency and projections.

3. Two-stage network DEA with convex intermediate products

In this section, we propose separate axioms for each stage in a two-stage network
structure. Using these axioms, we form a new production possibility set for a two-
stage network DEA with convex intermediate products. In addition, some of the related
properties are also presented.

We postulate the following axioms for the production possibility set of the �rst stage:

A1 . The observed activities (xj , zj), (j = 1, 2, · · · , n) belong to T1.
A2 . Any convex combination of activities in T1 belongs to T1.
A3 .For an activity (x, z), in T1, any semi positive activity (x, z) with x ≥ x is

included in T1.

Thus, we de�ne the production possibility set T1 that satis�esA1-A3 as follows:

T1 = {(x, z) :
∑
j

λjxj ≤ x,
∑
j

λjzj = z,
∑
j

λj = 1, λj ≥ 0; j = 1, · · · , n}(3.1)

In PPS T1, the variable λ ∈ Rn is the vector of intensity variables of the �rst stage.
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3.1. Theorem. Technologyof the �rst stage, T1, which is de�ned in set (3.1) is the

minimal set that contains all observations and satis�es the axioms of strong disposability

of inputs and convexity.

The proof of Theorem (3.1) is given in the Appendix.
For the PPS of the second stage, we postulate the following axioms:

B1 . The observed activities (zj , yj), (j = 1, 2, · · · , n) belong to T2.
B2 . Any convex combination of activities in T2 belongs to T2.
B3 . For an activity (z, y), in T2, any semi positive activity (z, y) with y ≥ y is

included in T2.

Then, we de�ne the production possibility set T2 that satis�es B1-B3 as follows:

T2 = {(z, y) :
∑
j

µjzj = z,
∑
j

µjyj ≥ y,
∑
j

µj = 1, µj ≥ 0; j = 1, · · · , n}(3.2)

In PPS T2, the variables µ ∈ Rn denote the intensity levels of the DMUs for the second
stage.

3.2. Theorem. The second stage technology T2 de�ned in (3.2) is the minimal set that

contains all observations and satis�es the axioms of strong disposability of outputs and

convexity.

The proof of Theorem (3.2) is similar to the proof of Theorem (3.1) and is omitted.
According to the proposed axioms for each stage, and under the assumption of VRS,

we de�ne the overall production possibility set for the two-stage network with convex
intermediate products as follows:

TCHI =

{
(x, z, y) :

∑
j

λjxj ≤ x,
∑
j

λjzj = z,
∑
j

µjzj = z,

∑
j

µjyj ≥ y,
∑
j

µj = 1,
∑
j

λj = 1 , λj ≥ 0 ,

µj ≥ 0 , j = 1, . . . , n

}
(3.3)

In fact, notation CHI represents the convex hull of intermediate products.
Note that the intermediate products in TCHI are examined by two separate sets of

λ ∈ Rn and µ ∈ Rn, and thus λ determines the relation between inputs and intermediate
products and µ determines the relation between intermediate products and outputs.

The main di�erence of the technology expressed in (3.3) from the conventional tech-
nology of the two-stage network is that the former allows the free disposability for the
intermediate products.

In the above technology, the produced output ratio in the �rst stage is equal to
the consumed input ratio to the second stage. Therefore, access to resources became
restricted, and the produced possibility set generated by technology set (3.3) becomes a
subset of the traditional two-stage network production possibility set.

Here, we present an illustrative example to compare the overall e�ciency frontier
and each stage of the two-stage system, using e�ciency frontier conventional technology
under the condition of CRS and VRS.

3.3. Example. Consider a system that includes four DMUs. Each DMU has one input,
one output, and one intermediate measure. The data set is given in Table 1.

Now, we can show the overall production technology, and PPS of each stage of the
two-stage structure as seen in Figure 2, Figure 3, and Figure 4.
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Table 1. Data set of example (3.3)

DMU x z y

A 1 2 4

B 2 1 1

C 5 4 2

D 2 2 2

Figure 2. E�cient frontier generated by T1.

Figure 3. E�cient frontier generated by T2.

In Figure 2, the red lines show the production frontier of stage 1 ( T1 ). Note that the
e�ciency frontier has been expanded by the convex hull of observations and the strong
disposability in inputs.

In Figure 3, the red lines show the production frontier of stage 2 ( T2 ), in which the
frontier points are obtained with the convex hull of observations and the strong dispos-
ability axiom in outputs. The blue lines and black dotted lines on both Figures 2 and
3 represent the e�ciency frontier, under the assumptions of CRS and VRS, respectively.
Clearly, the production possibility set with the convex hull in intermediate products is a
subset of the production possibility set under the assumption of both CRS and VRS.

Figure 4 illustrate the tridimensional network technology showing the convex hull in
intermediate products.

4. Introducing a model to determine overall e�ciency in TCHI

In this section, we present a new network DEA model to calculate the overall e�ciency
in TCHI . To do this, we �rst consider an input-oriented model.
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Figure 4. E�cient frontier generated by TCHI .

The new network model suggested to evaluate the overall e�ciency of DMUo in
TCHI is given as follows:

θo = min θ

s.t.

n∑
j=1

λjxij ≤ θxio i = 1, · · · ,m

n∑
j=1

λjzdj = zdo d = 1, · · · , D

n∑
j=1

µjzdj = zdo d = 1, · · · , D

n∑
j=1

µjyrj ≥ yro r = 1, · · · , s

n∑
j=1

µj =

n∑
j=1

λj = 1

λj ≥ 0 , µj ≥ 0 j = 1, · · · , n(4.1)

Model (4.1) is similar to the VRS two-stage network model of Chen et al. [4] given
in model (2.5),with the di�erence that in the above model the constraints related to
intermediate products are considered in a convex set of intermediate data. In fact,
outputs of the �rst stage are exactly equal to the inputs of the second stage and the
overall e�ciency of DMUo is evaluated into a set of �xed intermediate products. It can
be seen that model (4.1) is always feasible, and 0 < θ∗o ≤ 1.

4.1. De�nition (Input-oriented overall e�ciency). The under evaluation DMUo is said
to be overall input-e�cient with intermediate convex products, if the optimal value of
model (4.1) is equal to one; namely θ∗o = 1.
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In order to describe model (4.1), we can rewrite it to evaluate the overall e�ciency
score for DMUB given in example 3.3 as follows:

θBo = min θ

s.t. λ1 + 2λ2 + 5λ3 + 2λ4 ≤ 2θ

2λ1 + λ2 + 4λ3 + 2λ4 = 1

λ1 + λ2 + λ3 + λ4 = 1

2µ1 + µ2 + 4µ3 + 2µ4 = 1

4µ1 + µ2 + 2µ3 + 2µ4 ≥ 1

µ1 + µ2 + µ3 + µ4 = 1

λj ≥ 0, µj ≥ 0 j = 1, . . . , 4

By solving this model, the optimal overall e�ciency score for DMUB is achieved as
θB∗
o = 1.
Similarly, the new model can evaluate the overall e�ciency scores for the input-

oriented units in Example 3.3. The results of this calculation are reported in Table
2.

Table 2. Overall e�ciency scores for four DMUs in example 3.3

DMU A B C D

θ∗oθ
∗
oθ
∗
o 1 1 1 0.5

Thus, DMUs A, B, and C are e�cient. Note that the obtained scores for overall e�ciency
were in keeping with the level of intermediate products computed at the level zo.

If we allow intermediate products in model (4.1) to change the convex hull, then further
improvements in the optimal solution would be possible. We expressed this improvement
in Section 6 as free intermediate products.

The dual of Model (4.1) (multiplier formation) can be presented as follows:

max

s∑
r=1

uryro +

D∑
d=1

w1
dzdo −

D∑
d=1

w2
dzdo + u0 + v0

s.t.

D∑
d=1

w1
dzdj −

m∑
i=1

vixij + v0 ≤ 0 j = 1, . . . , n

s∑
r=1

uryrj −
D∑

d=1

w2
dzdj + u0 ≤ 0 j = 1, . . . , n

m∑
i=1

vixio = 1

vi ≥ 0, ur ≥ 0 m; r = 1, · · · , s

u0, v0, w
2 , w1

free in sign(4.2)

In Model (4.2) w1 and w2 denote the weights of the intermediate products in the �rst
stage and second stage, respectively, and v0, u0, u , v denotes unknown weights. It is
trivial that the objective function value of this model is less than or equal to 1.
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Model (4.2) can be rewritten as following fractional model:

max

∑s
r=1 uryro +

∑D
d=1 ( w1

d−w2
d) zdo + u0 + v

0∑m
i=1 vixio = 1

s.t.

∑D
d=1 w

1
dzdj + v0∑m

i=1 vixio = 1
≤ 1 j = 1, · · · , n∑s

r=1 uryrj + u0∑D
d=1 w

2
dzdj

≤ 1 j = 1, · · · , n

vi ≥ 0, ur ≥ 0 i = 1, · · · ,m; r = 1, · · · , s

u0, v0, w
2, w1

free in sign(4.3)

The �rst and second sets of constraints in Model (4.3) show the relative e�ciency of
input-oriented units for DMUo in the �rst stage and the second stage, respectively. It
should be noted that in the objective function of Model (4.3), the value (w1−w2) in the
numerator gives two di�erent roles for zo. If this value is non-negative, the performance
of zo as output is more e�ective; otherwise, it is used as input.

By considering equal sign in the constraints related to intermediate products of Model
(4.1), the dual variables corresponding to these constraints, namely w1 and w2 have no
restriction signs. This means that the intermediate values can be measured with positive,
negative, or even zero amounts. Thus, the system is allowed to measure intermediate
products with di�erent patterns, without considering their input or output roles. There-
fore, the new model does not restrict the pricing of intermediate products.

However, in model (2.1), proposed by Kao and Hwang [12], which is equivalent to the
dual of model (2.5) ([4]), same non-negative weights are assigned to two intermediate
products constraints. Therefore, the obtained values of the intermediate products in
model (2.1) had less �exible and imposed targeted pricing methods on the system. In
fact, model (4.2) is somewhat similar to model (2.4) ([3]), with the di�erence that in model
(2.4) the same positive weights are assigned to the intermediate products and considering
predetermined weights by the decision-maker in model (2.4) are caused di�erences in the
constraints of the normalized equations of these two models.

It should be noted that model (4.1) can also be used to assess the overall e�ciency in
output-oriented units. The di�erence is that we should replace the minimum contraction
in inputs with the maximum expansion in outputs.

5. Divisional metricconverterProductID0000019Fe�ciency in TCHI

For calculating the divisional e�ciency, we use the production possibility sets (3.1)
and (3.2). The e�ciency scores in input-oriented units for DMUo in the �rst stage, and
its dual model can be computed by the following models:

θ1 = min θ

s.t.

n∑
j=1

λjxij ≤ θxio i = 1, · · · ,m

n∑
j=1

λjzdj = zdo d = 1, · · · , D

n∑
j=1

λj = 1 λj ≥ 0 j = 1, · · · , n(5.1)
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D1 = max

D∑
d=1

w1
dzdo+v0

s.t.

D∑
d=1

w1
dzdj −

m∑
i=1

vixij + v0 ≤ 0 j = 1, . . . , n

m∑
i=1

vixio = 1

vi ≥ 0 i = 1, . . . , m

v0 , w
1
free in sign(5.2)

In addition, the e�ciency scores for input-oriented units in the second stage can be
obtained by the following models which are dual of each other:

θ2 = min θ

s.t.

n∑
j=1

µjzdj = θzdo d = 1, · · · , D

n∑
j=1

µjyrj ≥ yro r = 1, · · · , s

n∑
j=1

µj = 1

µj ≥ 0 j = 1, · · · , n(5.3)

D2 = max

s∑
r=1

uryro + u0

s.t.

s∑
r=1

uryrj −
D∑

d=1

w2
dzdj + u0 ≤ 0 j = 1, . . . , n

D∑
d=1

w2
dzdo = 1

ur ≥ 0 r = 1, . . . , s

u0, w
2 free in sign(5.4)

The interpretation of the models (5.3) and (5.4) are similar to standard models of DEA.
The only di�erence is using the equality restriction in the output constraints of the �rst
step of model (5.1) and in the input constraints of model (5.3). The dual variables
corresponding to these constraints are free in sign, but the objective function values of
models (5.1) and (5.3) are between zero and one, so based on the duality theorem, the
problem is always bounded.

In general, input-based (output-based) models with a two-stage network structure
given based on the concept of convex hull in intermediate products do not give informa-
tion about divisional e�ciency. This challenge may be due to using �xed intermediate
products, or not using the optimal intermediate products in computation of the divi-
sional e�ciency. Indeed, the e�ciency score of the �rst stage may represent the overall
e�ciency score.
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6. Frontier projection in TCHI

In this section we introduce a new network DEA model that gives the e�cient pro-
jection of ine�cient DMUs.

Note that according to the multiplier-based network DEA models, it is not possible
to determine the e�ciency frontier or the frontier projection of units under assessment.
Thus, it is not possible to determine the amount of saving in inputs while keeping the
current outputs and also to determine the amount of maximum increased outputs with
�xed input values.

Chen et al. [5] expressed that the resulting projections of the dual model (2.1) fail on
the e�ciency frontier. Therefore, they proposed model (2.5), which is equivalent to the
dual of model (2.1). The key point of their model was to modify data of frontier projec-
tions with proper adjustments to the intermediate products. They replaced constraints
related to intermediate measures in dual of model (2.1) with two sets of constraints, so
that the right side of both constraints were replaced with a set of non-negative variables
( z̃do ). This model not also provides the frontier projections for ine�cient DMUs, but
also gives an overall e�ciency score.

In order to determine the frontier projections in TCHI , we replace the amounts on the
right side in both intermediate products constraints in model (4.1) with a set of the same
non-negative variables. In this case we propose the following linear programming model:

min θ

s.t.

n∑
j=1

λjxij ≤ θxio i = 1, · · · ,m

n∑
j=1

λjzdj = z̃do d = 1, · · · , D

n∑
j=1

µjzdj = z̃do d = 1, · · · , D

n∑
j=1

µjyrj ≥ yro r = 1, · · · , s

n∑
j=1

µj =

n∑
j=1

λj = 1

λj , µj ≥ 0 j = 1, · · · , n
z̃do ≥ 0 d = 1, · · · , D(6.1)

Note that in the Model (6.1), z̃do denotes an unknown variable. It indicates an optimal
amount of intermediate products, produced in the �rst stage and consumed in the second
stage. The projection point for DMUo is given based upon optimal solution ofModel
(6.1) as (θ∗xio z̃

∗
do, yro).

6.1. Theorem. The projection point for unit under assessment by model (6.1) is overall
input-oriented e�cient with convex intermediateproducts.

The proof of Theorem (6.1) appears in the Appendix.
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The dual of model (6.1) can be expressed as follows:

max

s∑
r=1

uryro + u0 + v0

s.t.

D∑
d=1

w1
dzdj −

m∑
i=1

vixij + v0 ≤ 0 j = 1, · · · , n

s∑
r=1

uryrj −
D∑

d=1

w2
dzdj + u0 ≤ 0 j = 1, · · · , n

m∑
i=1

vixio = 1

D∑
d=1

w1
d −

D∑
d=1

w2
d ≥ 0

vi ≥ 0, ur ≥ 0 i = 1, · · · ,m; r = 1, · · · , s

u0, v0, w
2, w1

free in sign(6.2)

The fractional program of model (6.2) can be expressed as:

max

∑s
r=1 uryro + u0 + v0∑m

i=1 vixio

s.t.

∑D
d=1 w

1
dzdj + v0∑m

i=1 vixij
≤ 1 j = 1, . . . , n∑s

r=1 uryrj + u0∑D
d=1 w

2
dzdj

≤ 1 j = 1, · · · , n

D∑
d=1

w1
d −

D∑
d=1

w2
d ≥ 0

vi ≥ 0, ur ≥ 0 i = 1, · · · , m; r = 1, · · · , s

u0, v0, w
2, w1

free in sign(6.3)

Here, z̃do imposes the third set of constraints (
∑D

d=1 w
1
d−
∑D

d=1 w
2
d ≥ 0) to model (6.3).

Note that these constraints are not redundant. This means that the cost of intermediate
products considered as inputs is smaller or equal than to the cost when the same products
were considered as outputs.

In fact, the problem is optimized in such a way that the price of providing intermediate
products in the second stage equals, at most, to the price of selling the same product in
the �rst stage.

7. Illustrative examples

In this section, the suggested models are used to assess overall and divisional e�ciency
scores and to determine frontier projections. In addition, we compare the �ndings of this
study with some other two-stage network models.

First, we consider the data given in Table 1 and solve the models (6.1) and (2.5),which
were proposed by Chen et al. [5], under the assumption of VRS. Then, using the results,
we calculate the frontier projection units. The results are reported in Table 3.

The results show that the frontier projections determined by model (6.1) are ex-
actly the same those obtained by model (2.5). In addition, when calculating the overall
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e�ciency score of model (4.1) for DMUB , due to applying the restriction on the inter-
mediate products, this unit is e�cient. However, with permission to change the convex
hull of the intermediate products in model (6.1) the possibility of further abatement is
created in inputs. Therefore, DMUB is ine�cient under the model (6.1).

Table 3. Frontier projection results for four units in example 3.3

DMU

MODEL (6.1) MODEL (2.5)

θ∗x z̃∗ y θ∗x z̃∗ y

A 1 2 4 1 2 4

B 1 2 1 1 2 1

C 1 2 2 1 2 2

D 1 2 2 1 2 2

To examine divisional e�ciency scores in Example 3.3, we use Models (5.2) and (5.4).
To compare results, we solve the proposed models by Kao and Hwang [13], under VRS
assumption. The results are reported in Tables 4 and 5.

As can be seen in Tables 4 and 5, the e�ciency scores of �rst stage given by the model
proposed in this study are greater than or equal to those obtained based on the model
proposed by Kao and Hwang [13].

Table 4. E�ciency scores of four units in �rst stage for example 3.3

DMU MODEL (5.2) MODEL (2.2)

A 1 1

B 1 0.5

C 1 1

D 0.5 0.5
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Table 5. E�ciency scores of four units in second stage for Example 3.3

DMU MODEL (5.4) MODEL (2.3)

A 1 1

B 1 1

C 0.33333 0.5

D 0.666667 0.5

7.1. Example. In this example, we evaluate the overall e�ciency and divisional e�-
ciency for a two-stage system using 12 DMUs. Two inputs, three intermediate products,
and two outputs using hypothetical values are used in this evaluation. The data set is
shown in Table 6.

Table 6. Data set of Example 7.1

DMU x1 x2 z1 z2 z3 y1 y2

1 61 5 3 12 4 10 75

2 14 23 15 21 90 3 42

3 25 10 6 50 12 6 6

4 8 4 41 3 6 7 18

5 53 20 18 14 55 90 10

6 22 70 19 9 11 1 12

7 17 55 40 20 15 30 14

8 33 82 91 16 8 25 16

9 25 45 6 10 78 7 38

10 66 19 16 1 10 66 20

11 21 64 9 8 15 22 42

12 30 75 70 12 9 36 18

The calculated overall and divisional e�ciency scores of the units using models (4.1),
(5.2), and (5.4) are reported in Table 7. The overall e�ciency scores in most units are the
same and are equal to one. Therefore, most units are e�cient and lie on the VRS frontier,
when they are evaluated by the new network model. These results are not surprising, as
the production possibility set with the convex hull in intermediate products is limited.
Signi�cantly, the results shown in Table 7 revealed the equality of the overall e�ciency
scores with the e�ciency scores for the �rst stage.
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Table 7. Overall and divisional e�ciency scores results in Example 7.1

DMU Overall stage 1 stage 2

1 1 1 1

2 1 1 1

3 1 1 1

4 1 1 1

5 0.7860 0.7860 1

6 0.9077 0.9077 0.6491

7 1 1 0.4292

8 1 1 1

9 1 1 1

10 1 1 1

11 1 1 0.9346

12 0.7816 0.7816 0.9346

By using the optimal solution for model (6.1) for DMUo, the computed e�cient
projection of (θ∗xio, z̃

∗
do, yro) revealed the improved activity shown in Table 8. Clearly,

with the allowable change inthe convex hull of intermediate products, the possibility of
further improvement is created in the units.

Table 8. Frontier projection results in Example 7.1

DMU θ∗x1 θ∗x2 z̃∗1 z̃∗2 z̃∗3 y1 y2

1 61 5 3 12 4 10 75

2 10.48 17.22 35.87 9.88 6.87 3 42

3 10 4 41 3 6 6 6

4 8 4 41 3 6 7 18

5 41.65 15.72 18 14 55 90 10

6 7.98 25.41 41 3 6 1 12

7 8.48 27.44 39.73 4.22 7.67 30 14

8 8.38 20.82 40.01 3.95 7.31 25 16

9 10.07 18.13 36.72 8.73 6.73 7 38

10 30.03 8.645 23.70 7.75 24.70 66 20

11 10.62 32.38 35.56 10.30 6.93 22 42

12 8.61 21.52 39.40 4.54 8.11 36 18

8. Conclusion

Conventional DEA models with a two-stage network structure utilizing intermediate
products, have di�erent behaviors that this duality could impose limiting conditions on
the pricing system. In this paper, we proposed uniform behavior using these intermediate
products. For this purpose, we introduced a new overall production possibility set under
the assumption of VRS, considering the convex hull of intermediate products. In addition,
we proposed a network DEA model to assess the overall e�ciency score and frontier
projections. Then, we explained that the use of equality constraints in the intermediate
product models decreased disposability, but due to considering separate and free variables
in sign, or w1 and w2 within the dual models, the system allowed to price the intermediate
products using di�erent methods. Therefore, the proposed method is more �exible than



329

conventional DEA models in a two-stage network structure. On the other hand, z̃do, in
assessment of the model for frontier projections shows more compatibility with production
assumptions. The main reason is that the model is optimized in such a way that the price
of providing intermediate products in the second stage equals, at most, the price of selling
the same product in the �rst stage. We examined the assessment methods for divisional
e�ciency in TCHI , and explored that an assessment of divisional e�ciency was not
possible, because the e�ciency of the �rst stage may represent the overall e�ciency.
Some illustrative examples were then applied to explain and compare the results of the
approach presented here with those obtained by other methods.

Appendix

8.1. Theorem. The �rst stage technology or T1, which is de�ned in set (3.1) is the

minimal set that contains all observations and satis�es the axioms of strong disposability

of inputs and convexity.

Proof. Assume technology T satis�es the axioms (A1)-(A3). We show that T1 ⊆ T .
Namely, if activity (x1, z1) ∈ T1 satis�es (A2) and (A3) with some vectors λ ∈ RN

+ then
(x1, z1) ∈ T . Let,

(x1, z1) ∈ T1, ∃λ1, · · · , λn ,
∑
j

λj = 1 :

{
x1 ≥

∑
j λjxj

z1 =
∑

j λjzj

Since T, satisfy (A1) then for any (xj , zj) ∈ T, j = 1, · · · , N . Also, T satis�es (A2) then
we have :∑

j

λj(xj , zj) ∈ T ⇒

(∑
j

λjxj ,
∑
j

λjzj

)
∈ T,

∑
j

λj = 1.

Finally, T must satisfy the strong disposability in inputs then, (x1, z1) ∈ T . Then, the
proof is completed. �

8.2. Theorem. The projection point for units under assessment given model (6.1) is

overall input-e�cient with intermediate convex products.

Proof. The e�ciency of projection point obtained forDMUo based on model (6.1) namely
(θ∗xio, z̃

∗
do, yro), is evaluated by solving model (4.1).

We have :

min θ̂

s. t. (θ̂ (θ∗xio) , z̃∗o , yo) ∈ TCHI

We claim, θ̂∗ = 1. Suppose not and let, θ̂∗ < 1, (contrary hypothesis). Thus ,

∃λ̂ ≥ 0, 1λ̂ = 1, µ̂ ≥ 0, 1µ̂ = 1→


∑

j λ̂jxj ≤ θ̂ (θ∗xo)∑
j λ̂jzj = z̃∗o =

∑N
j=1 λ

∗
jzj∑

j µ̂jzj = z̃∗o =
∑N

j=1 µ
∗
jzj∑

j µ̂jyj ≥ yo

Then (θ̂θ∗, λ̂, µ̂), is a feasible solution of model (4.1).

On the other hand according to contrary hypothesis we have θ̂∗θ∗ < θ∗. However, θ∗

is part of an optimal solution and this is inconsistent with the optimality of θ∗. Thus,

θ̂∗ = 1 and the proof is completed. �
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1. Introduction

Kies distribution was introduced by [19], in connection with the study of breaking
strength of glass. Since then, a little work has taken place related to this distribution
in di�erent �eld of science and technology. An important characteristic of the Kies
distribution is that its hazard function is decreasing, increasing and bathtub shaped where
Weibull models are inappropriate. [21] considered a special case of the Kies distribution,
which they termed as "`reduced Kies distribution"' and its probability density function
(pdf) and cumulative density function (CDF) are given by

f(x;β) = βxβ−1(1− x)−β−1 e−(
x

1−x )
β

, 0 < x < 1, β > 0(1.1)

and

F (x;β) = 1− e−(
x

1−x )
β

, 0 < x < 1, β > 0.(1.2)

This distribution can be viewed as a functional form of the Weibull distribution with
shape parameter β and it can be useful for modeling data sets with increasing and bathtub
shaped hazard rate functions. Simple probability distributions generally do not exhibit
bathtub-shaped failure rate, including Weibull, gamma, and log-normal. In most cases,
bathtub shaped hazard functions have at least two parameters, whereas reduced Kies
distribution has only one parameter which exhibit both increasing and bathtub shaped
hazard rate. [21] observed that RKD(β) is a better model compared to the Weibull as
well as its extended models such as beta Weibull distribution, beta generalised Weibull
distribution etc. Interested readers may refer to [22] and [23] for an excellent exposure
to the Kies distribution.

In case of complete data, it is necessary to continue the experiment until the last
item/product failed. Very often, one may �nd that quite a number of items have very
long lifetimes and the experiment continues for a very long period of time so much so that
the results may no longer be of any interest or use. In such situations, it may be desirable
to terminate the test prior to failure of all items under test. When test is discontinued
prior to failure of all items, resulting observations will be called the censored sample.
There exist various types of censored samples including Type-II, progressive Type-II,
progressive �rst-failure censored samples and record values etc.

In this paper, we consider a more general censoring scheme called the progressive type-
II right censoring scheme. Progressive type II right censoring is a useful scheme in which
a speci�c fraction of individuals at risk may be removed from the experiment at each of
several ordered failure times. There is a large body of literature dealing with progressive
type II right censoring. For example, see [8], [10], [9] and [25] and the references therein.
A Type-II progressively censored scheme can be expressed as: Suppose that n units are
put on life test at time 0 and the experimenter decides before hand the quantity m, the
number of failures to be observed. Now at the time of �rst failure, R1 units are randomly
removed from the remaining n− 1 surviving units. At the second failure, R2 units from
the remaining n− 2−R1 units are randomly removed. The test continues until the m-th
failure. At this time, all remaining Rm = n−m−R1−R2−. . .−Rm−1 units are removed.
In this censoring scheme, Ri and m are previously �xed. The resulting m ordered values,
that are obtained as a consequence of this type of censoring are appropriately referred
to as progressive Type-II censored ordered statistics. Note that, if R1 = R2 = . . . =
Rm−1 = 0, so that Rm = n − m, this scheme reduces to conventional type II right
censoring scheme. Also note that if R1 = R2 = . . . = Rm = 0, so that m = n, the
progressively type II censoring scheme reduces to the case of no censoring (ordinary
order statistics).
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Now in the view of (1.1) and (1.2), we have

f(x) = β

∞∑
p=0

(β + 1)p x
β+p−1

p!
[1− F (x)],(1.3)

where (e)k = e(e+1) · · · (e+k−1) denotes the ascending factorial. This equation will be
exploited in order to derive some recurrence relations for the single and product moments
of progressive Type-II right censored order statistics from the reduced Kies distribution.
If the life times of an item are based on an absolutely continuous distribution function
F (x) with probability density function f(x), the joint probability density function of the
progressively censored failure times X1:m:n, X2:m:n, · · · , Xm:m:n, is given by (see [8]).

fX1:m:n,X2:m:n,...,Xm:m:n(x1, x2, · · · , xm)

= A(n,m− 1)

m∏
i=0

f(xi)[1− F (xi)]
Ri

−∞ < x1 < x2 < · · · < xm <∞,(1.4)

where

A(n,m− 1)

= n(n−R1 − 1) · · · (n−R1 −R2 − · · · −Rm−1 −m+ 1).(1.5)

Let X1, X2, · · · , Xn be a random sample from the reduced kies distribution with pdf
and cdf given in (1.1) and (1.2) respectively. The corresponding progressive type-II right
censored order statistics with censoring scheme (R1, R2, · · ·Rm), m ≤ n will be

X
(R1,R2,··· ,Rm)
1:m:n , X

(R1,R2,··· ,Rm)
2:m:n , · · · , X(R1,R2,··· ,Rm)

m:m:n .

The single moments of the progressive type-II right censored order statistics can be
written as follows (see, [8]),

µ
(R1,R2,··· ,Rm)(k)

i:m:n = E
[
x
(R1,R2,··· ,Rm)(k)

i:m:n

]
= A(n,m− 1)

∫ ∫
· · ·
∫
0<x1<x2<···<xm<∞

xki f(x1)

× [1− F (x1]
R1f(x2)[1− F (x2]

R2f(x3)[1− F (x3]
R3 · · · f(xm)

× [1− F (xm]Rmdx2dx3 · · · dxm,(1.6)

where f(.) and F (.) are given respectively in (1.1), (1.2), and A(n,m − 1) as de�ned in
(1.5). When k = 1, the superscript in the notation of the mean of the progressive type-II
right censored order statistics may be omitted without any confusion.
Recurrence relations for single and product moments for any continuous distribution
can be used to compute all means and variances of a distribution. Many authors have
obtained the recurrence relation for progressively type-II right censored order statistics
for di�erent distributions, see for example [15], [26], [29], [18], [3], [2], [30], [4], [1], [5],
[6], [7], [16], [17] , [11], [28], [24], [12], [13], [14], [20] and the reference cited in.

The motivation of the paper is three fold: �rst, we derive recurrence relations for the
single and product moments of the corresponding progressive Type-II right censored or-
der statistics. These recurrence relations will allow one for the recursive computation of
these moments for all sample sizes and all possible censoring schemes, second is to obtain
the maximum likelihood estimators and con�dence intervals of the unknown parameter
of the model and third is to obtain the Bayes estimator under the symmetric and asym-
metric loss functions using gamma prior for the shape parameter and two-sided Bayes
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probability interval (TBPI) and the highest posterior density (HPD) credible intervals.
The uniqueness of this study comes from the fact that we provide explicit expressions
for single and product moments using progressive type-II right censored order statistics
along with parameter estimation using frequentist and Bayes.

The outline of this note is as follows: Recurrence relations for single moments of pro-
gressive type-II right censored order statistics from RKD are given in section 2. Further,
section 3 describes the recurrence relations for product moments of progressive type-II
right censored order statistics from RKD. The recurrence algorithm is carried out in
section 4. In Section 5, we introduce the maximum likelihood estimation of the un-
known parameter along with approximate con�dence interval. In Section 6, We consider
Bayesian estimation of the unknown parameter along with two-sided Bayes probability
interval (TBPI) and the highest posterior density (HPD) credible intervals. A Monte
Carlo simulation study is presented in Section 7 to evaluate the performances of the
estimation method discussed in Sections 5 and 6. Then, in Section 8, we illustrate the
methodology developed in this manuscript and the usefulness of the RKD based on pro-
gressive type-II right censored order statistics using a real data example. Finally, some
concluding remarks are provided in Section 9.

2. Recurrence relation for single moments

In this section, we establish several new recurrence relations satis�ed by the single
moments of progressive type-II right censored order statistics from the reduced Kies
distribution. These recurrence relations may be used to compute the means and variances
of reduced Kies distribution based on progressive type-II right censored order statistics
for all sample sizes n and all censoring schemes (R1, R2, · · · , Rm), m ≤ n.

2.1. Theorem. For 2 ≤ m ≤ n and k ≥ 0,

µ
(R1,R2,··· ,Rm)(k)

1:m:n = β

∞∑
p=0

(β + 1)p
p!(k + β + p)

{
(n−R1 − 1)µ

(R1+1+R2,··· ,Rm)(k+β+p)

1:m−1:n

+ (1 +R1)µ
(R1,R2,··· ,Rm)(k+β+p)

1:m:n

}
.(2.1)

Proof. From equations (1.5) and (1.6), we have

µ
(R1,R2,··· ,Rm)(k)

1:m:n = A(n,m− 1)

∫ ∫
· · ·
∫
0<x1<x2<···<xm<∞

× L(x2)f(x2)[1− F (x2]
R2f(x3)[1− F (x3]

R3 · · · f(xm)

× [1− F (xm]Rmdx2dx3 · · · dxm,(2.2)

where

L(x2) =

∫ x2

0

xk1f(x1)[1− F (x1]
R1dx1

=

∫ x2

0

xk1

{
β

∞∑
p=0

(β + 1)p x
β+p−1

p!
[1− F (x1]

}
[1− F (x1)]

R1dx1

= β

∞∑
p=0

(β + 1)p
p!

∫ x2

0

xk+β+p−1
1 [1− F (x1)]

R1+1dx1.(2.3)
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Integrating (2.3) by parts, we get after simpli�cation

= β

∞∑
p=0

(β + 1)p
p! (k + β + p)

{
[1− F (x2)]

R1+1xk+β+p2 + (R1 + 1)

∫ x2

0

xk+β+p1

× [1− F (x1)]
R1f(x1)dx1

}
.(2.4)

Substituting the value of L(x2) from (2.4) in (2.2) and using (1.6), we have

µ
(R1,R2,··· ,Rm)(k)

1:m:n = β

∞∑
p=0

(β + 1)p
p! (k + β + p)

{∫ ∫
· · ·
∫
xk+β+p2 (1− F (x2))

R1+1f(x2)

× (1− F (x2))
R2 · · · f(xm)(1− F (xm))Rm

+ (1 +R1)µ
(R1,R2,··· ,Rm)(k+β+p)

1:m:n

}

= β

∞∑
p=0

(β + 1)p
p! (k + β + p)

{
(n−R1 − 1)µ

(R1+1+R2,··· ,Rm)(k+β+p)

1:m−1:n

+ (1 +R1)µ
(R1,R2,··· ,Rm)(k+β+p)

1:m:n

}
,

rearranging the above equation gives the required result in (2.1). �

2.2. Theorem. For m = 1, n = 1, 2, · · · and k ≥ 0,

µ
(n−1)(k)

1:1:n = nβ

∞∑
p=0

(β + 1)p
p! (k + β + p)

µ
(n−1)(k+β+p)

1:1:n .(2.5)

Proof. Similar to the proof of Theorem 2.1. �

2.3. Remark. We may use the fact that the �rst progressive Type-II right censored
order statistics is the same as the �rst usual order statistic from a sample of size n,
regardless of the censoring scheme employed.

2.4. Theorem. For 2 ≤ i ≤ m− 1, m ≤ n and k ≥ 0,

µ
(R1,R2,··· ,Rm)(k)

i:m:n = β

∞∑
p=0

(β + 1)p
p! (k + β + p)

{
(n−R1 −R2 − · · · −Ri − i)

× µ
(R1,R2,··· ,Ri−1,Ri+Ri+1+1,Ri+2,··· ,Rm)(k+β+p)

i:m−1:n

+ (1 +Ri)µ
(R1,R2,··· ,Rm)(k+β+p)

i:m:n

− (n−R1 −R2 − · · · −Ri−1 − i+ 1)

× µ
(R1,R2,··· ,Ri−2,Ri−1+Ri+1,Ri+1,··· ,Rm)(k+β+p)

i−1:m−1:n

}
.(2.6)

Proof. Similar to the proof of Theorem 2.1. �

2.5. Theorem. For 2 ≤ m ≤ n, and k ≥ 0,

µ(R1,R2,··· ,Rm)(k)

m:m:n = β (1 +Rm)

∞∑
p=0

(β + 1)p
p! (k + β + p)

{
µ(R1,R2,··· ,Rm)(k+β+p)

m:m:n

− µ
(R1,R2,··· ,Rm−2,Rm−1+Rm+1,Ri+1,··· ,Rm)(k+β+p)

m−1:m−1:n

}
.(2.7)

Proof. Similar to the proof of Theorem 2.1. �
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2.6. Remark. Using these recurrence relations, we can obtain all the single moments of
all progressive Type-II right censored order statistics for all sample sizes and censoring
schemes (R1, R2, · · · , Rm) in a sample recursive manner.

Deductions: For the special case R1 = R2 = · · · = Rm = 0 so that m = n in which
the progressive censored order statistics become the usual order statistics X1:n, X2:n, · · · ,
Xn:n, then
(i) From Eq. (2.1): For k ≥ 0,we get

µ
(k)
1:n = β

∞∑
p=0

(β + 1)p
p! (k + β + p)

{
µk1:n + (n− 1)µ

(1,0,0,··· ,0)(k+β+p)
1:n−1:n

}
.(2.8)

(ii) From Eq. (2.6): For k ≥ 0, we get

µ
(k)
i:n = β

∞∑
p=0

(β + 1)p
p! (k + β + p)

{
µ
(k+β+p)
i:n + (n− i)µ(k+β+p)

i:n

− (n− i+ 1)µ
(k+β+p)
i−1:n

}
.(2.9)

3. Recurrence relation for product moments

In this section, we establish some recurrence relations for product moments of the
progressive type-II right censored order statistics from the reduced Kies distribution.
The (i, j)th product moment of the progressive type-II right censored order statistics can
be written as

µ
(R1,R2,··· ,Rm)
i,j:m:n = E

[
x
(R1,R2,··· ,Rm)
i:m:n x

(R1,R2,··· ,Rm)
j:m:n

]
= A(n,m− 1)

∫ ∫
...

∫
0<x1<x2<···<xm<∞

xixjf(x1)[1− F (x1)]
R1

× f(x2)[1− F (x2)]
R2 · · · f(xm)[1− F (xm)]Rmdx1dx2dx3 · · · dxm,(3.1)

where f(.) and F (.) are given respectively in (1.1) and (1.2) and A(n,m − 1) is de�ned
in (1.5).

3.1. Theorem. For 1 ≤ i < j ≤ m− 1 and m ≤ n,

µ
(R1,R2,··· ,Rm)
i:m:n = β(Rj + 1)

∞∑
p=0

(β + 1)p
p! (β + p)

{
µ
(R1,R2,··· ,Rm)(1, β+p)

i,j:m:n

+ (n−R1 − 1− · · · −Rj − j)

× µ
(R1,R2,··· ,Rj−1,Rj+Rj+1+1,···Rm)(1,β+p)

i,j:m−1:n

− (n−R1 − 1− · · · −Rj−1 − j + 1)

× µ
(R1,R2,··· ,Rj−1+Rj+1,··· ,Rm)(1,β+p)

i,j−1:m−1:n

}
.(3.2)

Proof. Using (1.3) and (1.6), we have

µ
(R1,R2,··· ,Rm)
i:m:n = A(n,m− 1)

∫ ∫
· · ·
∫
0<x1<···<xj−1<xj+1<···<xm<∞

×

{∫ xj+1

xj−1

β

∞∑
p=0

(β + 1)p
p!

xβ+p−1
j [1− F (xj)]

Rj+1dxj

}
xif(x1)

× [1− F (x1]
R1 · · · f(xj−1)[1− F (xj−1]

Rj−1f(xj+1)[1− F (xj+1]
Rj+1

× · · · f(xm)[1− F (xm]Rmdx1dx2 · · · dxj−1dxj+1 · · · dxm.(3.3)
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Integrating the innermost integral by parts, we obtain

β

∞∑
p=0

(β + 1)p
p!

∫ xj+1

xj−1

xβ+p−1[1− F (xj)]
Rj+1dxj

= β

∞∑
p=0

(β + 1)p
p! (β + p)

{
xβ+pj+1 [1− F (xj+1)]

1+Rj

−xβ+pj−1 [1− F (xj−1)]
1+Rj + (1 +Rj)

×
∫ xj+1

xj−1

[1− F (xj)]
Rjf(xj)x

β+p
j dxj

}
,

which, when substituted into equation (3.3) and using (3.1), we have

µ
(R1,R2,··· ,Rm)
i:m:n = β

∞∑
p=0

(β + 1)p
p! (β + p)

{
(n−R1 − 1− · · · −Rj − j)

× µ
(R1,R2,··· ,Rj−1,Rj+Rj+1+1,···Rm)(1, β+p)

i,j:m−1:n

− (n−R1 − 1− · · · −Rj−1 − j + 1)

× µ
(R1,R2,··· ,Rj−1+Rj+1,··· ,Rm)(1, β+p)

i,j−1:m−1:n

+ (Rj + 1)µ
(R1,R2,··· ,Rm)(1, β+p)

i,j:m:n

}
.

Upon rearrangement of this equation, we obtain the relation in (3.2). �

3.2. Theorem. For 1 ≤ i ≤ m− 1 and m ≤ n,

µ
(R1,R2,··· ,Rm)
i:m:n = β

∞∑
p=0

(β + 1)p
p! (β + p)

{
(Rm + 1)µ

(R1,R2,··· ,Rm)(1, β+p)

i,m:m:n

(n−R1 − 1− · · · −Rm−1 −m+ 1)

× µ
(R1,R2,··· ,Rm−1+Rm+1,··· ,Rm)(1, k+p)

i,m−1:m−1:n

}
.(3.4)

Proof. Similar to the proof of Theorem 3.1. �

3.3. Remark. Using these recurrence relations, we can obtain all the product moments
of progressive type-II right censored order statistics for all sample sizes and censoring
schemes (R1, R1, · · · , Rm).

4. Recursive algorithm

Using the recurrence relations established in Sections 2 and 3, the means and variances
of all progressive type-II right censored order statistics from the reduced Kies distribution
can be readily computed as follows:
All the �rst and second order moments with m = 1 for all sample sizes n can be obtained
by setting k = 0 in equation (2.5) and then again setting k = 1 in the same equation. Next

using equation (2.1), we can determine all the moments of the form µ
(R1,R2)
1,2:n , n = 2, 3 · · · ,

which can in turn be used again with equation (2.1), to determine all moments of the

form µ
(R1,R2)

2

1,2:n , n = 2, 3 · · · . Equation (2.7) can then be used to obtain µ
(R1,R2)
2,2:n for

all R1, R2 and n ≥ 2 and these values can be used to obtain all moments of the form

µ
(R1,R2)

2

1,2:n by using equation (2.7) again. Equation (2.1) can now be used again to obtain

µ
(R1,R2,R3)
1,3:n , µ

(R1,R2,R3)
2

1,3:n for all n, R1, R2 and R3 and equation (2.7)can be used next to

obtain all moments of the form µ
(R1,R2,R3)
2,3:n , µ

(R1,R2,R3)
2

2,3:n . Finally, equation (2.7) can be
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used to obtain all moments of the form µ
(R1,R2,R3)
3,3:n , µ

(R1,R2,R3)
2

3,3:n .
This process can be continued until all desired �rst and second order moments and hence
all variances are obtained.

Table 1. Means of progressively Type-II right censored order statistics.

β = 2
m ↓ n ↓ Scheme Mean
5 2 (0,3) 0.041723 0.072175
5 2 (3,0) 0.041723 0.250621
8 2 (6,0) 0.021305 0.196329
8 2 (0,6) 0.021305 0.032634
10 2 (8,0) 0.018253 0.172537
10 2 (0,8) 0.018253 0.047385
12 2 (10,0) 0.013252 0.177032
12 2 (0,10) 0.013252 0.039572
15 2 (13,0) 0.021425 0.172439
15 2 (0,13) 0.021425 0.036125
18 2 (16,0) 0.016234 0.169932
18 2 (0,16) 0.016234 0.029620
20 2 (18,0) 0.011772 0.175931
20 2 (0,18) 0.011772 0.023972
5 3 (2,0,0) 0.041720 0.113935 0.278143
5 3 (0,0,2) 0.041720 0.075434 0.276428
8 3 (5,0,0) 0.029243 0.096352 0.306950
8 3 (0,0,5) 0.029243 0.040270 0.071275
10 3 (7,0,0) 0.016306 0.099054 0.343772
10 3 (0,0,7) 0.016306 0.041004 0.062801
12 3 (9,0,0) 0.023762 0.091843 0.254153
12 3 (0,0,9) 0.023762 0.034956 0.063072
15 3 (12,0,0) 0.021934 0.088032 0.262183
15 3 (0,0,12) 0.021934 0.031835 0.041152
18 3 (15,0,0) 0.012201 0.091148 0.260841
18 3 (0,0,15) 0.012201 0.028103 0.036110
20 3 (17,0,0) 0.009083 0.090581 0.249481
20 3 (0,0,17) 0.009083 0.024065 0.038214
5 4 (1,0,0,0) 0.041042 0.090662 0.168825 0.410550
5 4 (0,0,0,1) 0.041042 0.071167 0.124023 0.201833
8 4 (4,0,0,0) 0.023810 0.073911 0.205070 0.301149
8 4 (0,0,0,4) 0.023810 0.052061 0.074052 0.099701
10 4 (6,0,0,0) 0.016113 0.071152 0.140319 0.290661
10 4 (0,0,0,6) 0.016113 0.043860 0.061734 0.081195
12 4 (8,0,0,0) 0.013762 0.073054 0.142933 0.294821
12 4 (0,0,0,8) 0.013762 0.039928 0.053028 0.063427
15 4 (11,0,0,0) 0.031830 0.073663 0.147430 0.290271
15 4 (0,0,0,11) 0.031830 0.031846 0.042835 0.050728
18 4 (14,0,0,0) 0.015221 0.062283 0.145327 0.311052
18 4 (0,0,0,14) 0.015221 0.024201 0.034028 0.040475
20 4 (16,0,0,0) 0.009117 0.057631 0.132802 0.283144
20 4 (0,0,0,16) 0.009117 0.024240 0.030329 0.047301
5 5 (0,0,0,0,0) 0.051683 0.070176 0.129787 0.211832 0.403193
8 5 (3,0,0,0,0) 0.027094 0.063837 0.199263 0.199330 0.398422
8 5 (0,0,0,0,3) 0.027094 0.051054 0.074056 0.104373 0.158304
10 5 (5,0,0,0,0) 0.017884 0.061539 0.154028 0.197502 0.379529
10 5 (0,0,0,0,5) 0.017884 0.043805 0.063183 0.081104 0.103304
12 5 (7,0,0,0,0) 0.020523 0.063056 0.212178 0.193653 0.472983
12 5 (0,0,0,0,7) 0.020523 0.038402 0.050117 0.063062 0.084025
15 5 (10,0,0,0,0) 0.020311 0.057324 0.103851 0.190437 0.411947
15 5 (0,0,0,0,10) 0.020311 0.039542 0.046210 0.051183 0.063826
18 5 (13,0,0,0,0) 0.009104 0.050284 0.108204 0.180852 0.415738
18 5 (0,0,0,0,13) 0.009104 0.021095 0.038431 0.049627 0.050642
20 5 (15,0,0,0,0) 0.008630 0.056418 0.108432 0.186549 0.485429
20 5 (0,0,0,0,15) 0.008630 0.039843 0.038754 0.047652 0.087434
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Table 2. Means of progressively Type-II right censored order statistics.

β = 4

m ↓ n ↓ Scheme Mean

5 2 (0,3) 0.052113 0.213631
5 2 (3,0) 0.052113 0.310047
8 2 (6,0) 0.030174 0.301174
8 2 (0,6) 0.030174 0.069876
10 2 (8,0) 0.031010 0.301632
10 2 (0,8) 0.031010 0.051042
12 2 (10,0) 0.021273 0.314250
12 2 (0,10) 0.021273 0.051634
15 2 (13,0) 0.021225 0.302284
15 2 (0,13) 0.021225 0.041229
18 2 (16,0) 0.020318 0.280847
18 2 (0,16) 0.020318 0.031054
20 2 (18,0) 0.019134 0.341186
20 2 (0,18) 0.019134 0.032832
5 3 (2,0,0) 0.049102 0.210431 0.401152
5 3 (0,0,2) 0.049102 0.201043 0.210116
8 3 (5,0,0) 0.031028 0.191050 0.401432
8 3 (0,0,5) 0.031028 0.069032 0.190320
10 3 (7,0,0) 0.029875 0.178320 0.3956375
10 3 (0,0,7) 0.029875 0.051023 0.0988527
12 3 (9,0,0) 0.021029 0.149025 0.3783066
12 3 (0,0,9) 0.021029 0.054193 0.0710345
15 3 (12,0,0) 0.017843 0.139852 0.3698548
15 3 (0,0,12) 0.017843 0.039985 0.0501142
18 3 (15,0,0) 0.014325 0.129984 0.360012
18 3 (0,0,15) 0.014325 0.029959 0.042073
20 3 (17,0,0) 0.013062 0.125080 0.345211
20 3 (0,0,17) 0.013062 0.024643 0.039853
5 4 (1,0,0,0) 0.048104 0.132273 0.241104 0.498623
5 4 (0,0,0,1) 0.048104 0.119984 0.198953 0.311032
8 4 (4,0,0,0) 0.030218 0.112260 0.238421 0.468432
8 4 (0,0,0,4) 0.030218 0.069852 0.140542 0.150436
10 4 (6,0,0,0) 0.029844 0.108873 0.22062 0.450417
10 4 (0,0,0,6) 0.029844 0.058426 0.080113 0.128421
12 4 (8,0,0,0) 0.020115 0.097431 0.226542 0.449853
12 4 (0,0,0,8) 0.020115 0.041854 0.072104 0.090438
15 4 (11,0,0,0) 0.016420 0.093852 0.215490 0.440462
15 4 (0,0,0,11) 0.016420 0.032052 0.050842 0.070114
18 4 (14,0,0,0) 0.013054 0.090114 0.210113 0.439912
18 4 (0,0,0,14) 0.013054 0.027043 0.041032 0.057083
20 4 (16,0,0,0) 0.012056 0.089215 0.205890 0.436782
20 4 (0,0,0,16) 0.012056 0.024054 0.037852 0.051201
5 5 (0,0,0,0,0) 0.047134 0.110895 0.191013 0.310532 0.531052
8 5 (3,0,0,0,0) 0.029042 0.087552 0.172728 0.283820 0.521684
8 5 (0,0,0,0,3) 0.029042 0.062845 0.110405 0.145656 0.213482
10 5 (5,0,0,0,0) 0.024020 0.081095 0.167046 0.282608 0.514021
10 5 (0,0,0,0,5) 0.024020 0.049720 0.078632 0.120676 0.158226
12 5 (7,0,0,0,0) 0.020132 0.078010 0.163101 0.278743 0.510045
12 5 (0,0,0,0,7) 0.020132 0.041201 0.064322 0.090221 0.127035
15 5 (10,0,0,0,0) 0.016310 0.074135 0.160236 0.274888 0.506021
15 5 (0,0,0,0,10) 0.016310 0.032830 0.050623 0.070108 0.091026
18 5 (13,0,0,0,0) 0.013741 0.071565 0.156662 0.264530 0.503621
18 5 (0,0,0,0,13) 0.013741 0.027345 0.041801 0.057221 0.073743
20 5 (15,0,0,0,0) 0.012454 0.070280 0.155381 0.271032 0.502336
20 5 (0,0,0,0,15) 0.012454 0.024628 0.037478 0.051084 0.065541
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Table 3. Variances of progressively Type-II right censored order statistics.

β = 2

m ↓ n ↓ Scheme Variance

5 2 (0,3) 0.011030 0.006372
5 2 (3,0) 0.011030 0.054530
8 2 (6,0) 0.000724 0.063226
8 2 (0,6) 0.000724 0.002816
10 2 (8,0) 0.000624 0.055025
10 2 (0,8) 0.000624 0.001284
12 2 (10,0) 0.000460 0.054761
12 2 (0,10) 0.000460 0.000821
15 2 (13,0) 0.000326 0.054628
15 2 (0,13) 0.000326 0.000521
18 2 (16,0) 0.000254 0.054554
18 2 (0,16) 0.000254 0.000361
20 2 (18,0) 0.000232 0.054524
20 2 (0,18) 0.000232 0.000292
5 3 (2,0,0) 0.003040 0.016404 0.070105
5 3 (0,0,2) 0.003040 0.005572 0.012217
8 3 (5,0,0) 0.000845 0.015101 0.068601
8 3 (0,0,5) 0.000845 0.002016 0.003502
10 3 (7,0,0) 0.000624 0.014801 0.068201
10 3 (0,0,7) 0.000624 0.001284 0.002120
12 3 (9,0,0) 0.000460 0.014635 0.068137
12 3 (0,0,9) 0.000460 0.000821 0.001437
15 3 (12,0,0) 0.000326 0.014502 0.068013
15 3 (0,0,12) 0.000326 0.000521 0.000836
18 3 (15,0,0) 0.000254 0.014531 0.068130
18 3 (0,0,15) 0.000254 0.000361 0.000562
20 3 (17,0,0) 0.000242 0.014418 0.068120
20 3 (0,0,17) 0.000242 0.000292 0.000436
5 4 (1,0,0,0) 0.003012 0.008173 0.022348 0.075850
5 4 (0,0,0,1) 0.003031 0.005572 0.012317 0.025712
8 4 (4,0,0,0) 0.000924 0.006960 0.022133 0.075435
8 4 (0,0,0,4) 0.000924 0.002016 0.003502 0.005643
10 4 (6,0,0,0) 0.000624 0.006368 0.020743 0.074245
10 4 (0,0,0,6) 0.000624 0.001204 0.002120 0.003212
12 4 (8,0,0,0) 0.000460 0.006514 0.021472 0.075170
12 4 (0,0,0,8) 0.000460 0.000824 0.001437 0.002118
15 4 (11,0,0,0) 0.000326 0.006271 0.020446 0.074148
15 4 (0,0,0,11) 0.000326 0.000520 0.000836 0.001207
18 4 (14,0,0,0) 0.000254 0.006218 0.020374 0.073875
18 4 (0,0,0,14) 0.000254 0.000361 0.000561 0.000816
20 4 (16,0,0,0) 0.000232 0.006167 0.020342 0.073843
20 4 (0,0,0,16) 0.000232 0.000372 0.000456 0.000641
5 5 (0,0,0,0,0) 0.003130 0.005572 0.012031 0.025712 0.079204
8 5 (3,0,0,0,0) 0.000924 0.004281 0.011013 0.024319 0.076112
8 5 (0,0,0,0,3) 0.000924 0.002016 0.003512 0.005643 0.008986
10 5 (5,0,0,0,0) 0.000624 0.004056 0.010801 0.025076 0.078511
10 5 (0,0,0,0,5) 0.000624 0.001284 0.002210 0.003212 0.004718
12 5 (7,0,0,0,0) 0.000860 0.003804 0.009748 0.024124 0.077425
12 5 (0,0,0,0,7) 0.000860 0.000822 0.001437 0.002108 0.002938
15 5 (10,0,0,0,0) 0.000326 0.003672 0.009615 0.023920 0.077311
15 5 (0,0,0,0,10) 0.000326 0.000521 0.000836 0.001217 0.001730
18 5 (13,0,0,0,0) 0.000254 0.003617 0.009542 0.023917 0.077221
18 5 (0,0,0,0,13) 0.000254 0.000361 0.000571 0.000806 0.001158
20 5 (15,0,0,0,0) 0.000234 0.003566 0.009511 0.023686 0.077187
20 5 (0,0,0,0,15) 0.000234 0.000290 0.000456 0.000641 0.000852
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Table 4. Variances of progressively Type-II right censored order statistics.

β = 4

m ↓ n ↓ Scheme Variance

5 2 (0,3) 0.005102 0.011251
5 2 (3,0) 0.005102 0.113001
8 2 (6,0) 0.002453 0.110560
8 2 (0,6) 0.002453 0.003716
10 2 (8,0) 0.002101 0.110162
10 2 (0,8) 0.002101 0.002325
12 2 (10,0) 0.000784 0.110702
12 2 (0,10) 0.000784 0.001611
15 2 (13,0) 0.000533 0.110441
15 2 (0,13) 0.000533 0.001144
18 2 (16,0) 0.000407 0.110303
18 2 (0,16) 0.000407 0.000664
20 2 (18,0) 0.000340 0.110245
20 2 (0,18) 0.000340 0.000536
5 3 (2,0,0) 0.005103 0.030213 0.130125
5 3 (0,0,2) 0.005103 0.011150 0.022372
8 3 (5,0,0) 0.001652 0.027480 0.135586
8 3 (0,0,5) 0.001652 0.003716 0.006474
10 3 (7,0,0) 0.002103 0.027016 0.135022
10 3 (0,0,7) 0.002103 0.002325 0.003901
12 3 (9,0,0) 0.000784 0.026610 0.134616
12 3 (0,0,9) 0.000784 0.001611 0.002612
15 3 (12,0,0) 0.000533 0.026360 0.134466
15 3 (0,0,12) 0.000533 0.000964 0.001537
18 3 (15,0,0) 0.000407 0.026224 0.134330
18 3 (0,0,15) 0.000407 0.000664 0.001135
20 3 (17,0,0) 0.000340 0.026165 0.134271
20 3 (0,0,17) 0.000340 0.000536 0.000845
5 4 (1,0,0,0) 0.005113 0.016016 0.041042 0.151148
5 4 (0,0,0,1) 0.005113 0.011151 0.022272 0.047320
8 4 (4,0,0,0) 0.002453 0.013576 0.038602 0.146708
8 4 (0,0,0,4) 0.002453 0.003706 0.006476 0.011281
10 4 (6,0,0,0) 0.002110 0.013012 0.038041 0.146145
10 4 (0,0,0,6) 0.002110 0.002325 0.003901 0.005933
12 4 (8,0,0,0) 0.000784 0.012707 0.037733 0.145840
12 4 (0,0,0,8) 0.000784 0.001611 0.002612 0.003848
15 4 (11,0,0,0) 0.000533 0.013456 0.037483 0.145611
15 4 (0,0,0,11) 0.000533 0.000964 0.001637 0.002342
18 4 (14,0,0,0) 0.000417 0.012321 0.037347 0.145453
18 4 (0,0,0,14) 0.000417 0.000664 0.001135 0.001581
20 4 (16,0,0,0) 0.000341 0.012362 0.037288 0.145414
20 4 (0,0,0,16) 0.000341 0.000536 0.000845 0.001271
5 5 (0,0,0,0,0) 0.005113 0.011251 0.022372 0.047321 0.155405
8 5 (3,0,0,0,0) 0.002453 0.007911 0.019832 0.044860 0.153065
8 5 (0,0,0,0,3) 0.002453 0.003716 0.006476 0.011281 0.017537
10 5 (5,0,0,0,0) 0.002110 0.007435 0.021260 0.045205 0.161301
10 5 (0,0,0,0,5) 0.002110 0.002325 0.003911 0.005933 0.008733
12 5 (7,0,0,0,0) 0.000788 0.007041 0.019163 0.044121 0.152126
12 5 (0,0,0,0,7) 0.000788 0.001611 0.002612 0.003848 0.005412
15 5 (10,0,0,0,0) 0.000533 0.006812 0.018713 0.043740 0.151845
15 5 (0,0,0,0,10) 0.000533 0.000964 0.001637 0.002332 0.003161
18 5 (13,0,0,0,0) 0.000417 0.006654 0.018577 0.043613 0.151710
18 5 (0,0,0,0,13) 0.000417 0.000664 0.001135 0.001581 0.002111
20 5 (15,0,0,0,0) 0.000341 0.006641 0.018518 0.043545 0.151651
20 5 (0,0,0,0,15) 0.000341 0.000536 0.000845 0.001271 0.001662
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5. Parameter Estimation under Progressive Type - II Censored

Order Statistics

5.1. Maximum Likelihood Method. Let X1:m:n, X2:m:n, . . . , Xm:m:n be a pro-
gressively Type-II censored sample from RKD(β) with (R1, R2, . . . , Rm) being the
progressive censoring scheme. The likelihood function based on the progressive censored
sample is given by

fX1:m:n,X2:m:n...Xm:m:n (x1, x2, . . . , xm)

= A (n,m− 1)
∏m

i=1
f (xi) [1− F (xi)]

Ri .(5.1)

where f(x) and F (x) are given respectively by eqns. (1.1) and (1.2). Substituting eqns.
(1.1) and (1.2) into eqn. (5.1), the likelihood function is

L (x|β) = A (n,m− 1)
∏m

i=1

{
βxβ−1

i (1− xi)−β−1 e
−
(

xi
1−xi

)β}
×

[
e
−
(

xi
1−xi

)β]Ri
.(5.2)

The log of likelihood function is

lnL (x|β) = C +m lnβ + (β − 1)
∑m

i=1
ln (xi)− (β + 1)

∑m

i=1
ln (1− xi)

−
∑m

i=1
(1 +Ri)

( xi
1− xi

)β
,(5.3)

where C = ln {A (n,m− 1)} . Upon di�erentiating (5.3) with respect to β and equating
to zero, the resulting equation must be satis�ed to obtain MLE of β. The equation is
given by

∂ lnL (x|β)
∂β

=
m

β
+
∑m

i=1
ln (xi)

−
∑m

i=1
ln (1− xi)−

∑m

i=1
(1 +Ri)

(
xi

1− xi

)β
ln

(
xi

1− xi

)
= 0.(5.4)

Using large sample approximation, the asymptotic distribution of theMLE is [
√
n(β̂−

β)] → N(0, I−1(β)), where I−1(β), is the inverse of the observed information matrix of
the unknown parameter. The element of the observed information matrix is

∂2 lnL (x|β)
∂β2

=
−m
β2
−
∑m

i=1
(1 +Ri)

(
xi

1− xi

)β
ln2

(
xi

1− xi

)
.

The approximate 100(1− τ)% con�dence intervals of the parameters β is

β̂ ± zτ/2
√
var(β̂),

where var(β̂) is obtained from I−1(β) and zτ/2 is the upper (τ/2)th percentile of the
standard normal distribution.

5.2. Bayesian Estimation. This section discusses the Bayes procedure to derive the
point and interval estimates of the parameter β based on progressively Type-II censored
data . In our Bayesian analysis, we have assumed three types of loss functions. In this
article, the proposed prior for the parameters β is considered as

g(β) ∝ βa−1e−bβ ; β, a, b > 0.



344

The posterior distribution of β is obtained after simpli�cation as

(5.5) π(β|x) = 1

J1
βm+a−1e

−
[
bβ+

∑m
i=1(1+Ri)

(
xi

1−xi

)β]∏m

i=1
xβ−1
i (1− xi)−β−1.

where

(5.6) J1 =

∫ ∞
0

βm+a−1e
−
[
bβ+

∑m
i=1(1+Ri)

(
xi

1−xi

)β]∏m

i=1
xβ−1
i (1− xi)−β−1dβ.

We use three di�erent loss functions to obtain the Bayes estimate of the unknown
parameter β.
1- The �rst loss function is the symmetric squared error (SE) loss function. Using SE

loss function, the Bayes estimate of the parameter β, denoted by β̃SE , is the posterior
mean.
2- The second loss function is the asymmetric LINEX loss function proposed by Varian
(1975). Under LINEX loss function, the Bayes estimate of the parameter β, denoted by

β̃LINEX is given by

(5.7) β̃LINEX = −1

v
lnE(e−vβ),

where v 6= 0 is constant.
3- The third loss function is the asymmetric general entropy (GE) loss function. The

Bayes estimate of the parameter β, denoted by β̃GE , in given by

(5.8) β̃GE = [E(β−c)]−1/c,

where c is the shape parameter of the loss function, provided that E(β−c) exists.
From (5.8) and using the squared error loss function, the Bayes estimator of β is given
by

(5.9) β̃SE =
1

J1

∫ ∞
0

βm+ae
−
[
bβ+

∑m
i=1(1+Ri)

(
xi

1−xi

)β]∏m

i=1
xβ−1
i (1− xi)−β−1dβ.

Similarlyy, from (5.8) and (5.10), the Bayes estimator of β under LINEX loss function is
given by

β̃LINEX = − 1

υ
ln

[
1

J1

∫ ∞
0

βm+a−1e
−
[
υβ+bβ+

∑m
i=1(1+Ri)

(
xi

1−xi

)β]

×
∏m

i=1
xβ−1
i (1− xi)−β−1dβ

]
.(5.10)

Using (5.8) and (5.11), the Bayes estimator of β under GE loss function is given by

β̃GE =

[
1

J1

∫ ∞
0

βm+a−c−1e
−
[
bβ+

∑m
i=1(1+Ri)

(
xi

1−xi

)β]

×
∏m

i=1
xβ−1
i (1− xi)−β−1dβ

]−1/c

.(5.11)

The Bayesian method of interval estimation is more straightforward than the classical
method of con�dence intervals. Once the posterior distribution of β has been obtained,
a symmetric 100(1 − τ)% two-sided Bayes probability interval (TBPI) of β, denoted by
[βL, βU ], can be obtained by solving the following two equations (see [27], page 208-209).∫ βL

0

π(θ|x)dβ =
τ

2
,

∫ ∞
βU

π(β|x)dβ =
τ

2
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for the limits βL and βU . Now we compute the highest posterior density (HPD) credible
intervals for β . Since π(β|x) is unimodal, the corresponding 100(1 − γ)% HPD cred-

ible interval [Hβ
L, H

β
U ] can be obtained from the simultaneous solution of the following

equations

(5.12) P (Hβ
L < β < Hβ

U ] =

∫ H
β
U

H
β
L

π(β|x)dβ = 1− γ,

and

(5.13) π(Hβ
L|x) = π(Hβ

U |x).

6. Simulation Study

In this section, a simulation study is conducted to study the behaviour of the ML and
Bayes estimates under the di�erent loss function by considering (n,m) = (30, 5), (30, 10),
(45, 5), (45, 15), (60, 10) and (60, 20) and di�erent values of the parameter β, where β =
1.5, 3 in all the cases. We have obtained the ML and Bayes estimates by using the
following progressive censoring schemes

• Scheme 1: R1 = · · · = Rm = n−m
m

.
• Scheme 2: R1 = · · · = Rm−1 = 1 and Rm = n− 2m+ 1.
• Scheme 3: R1 = · · · = Rm−1 = 0 and Rm = n−m.

We use the algorithm introduced by [4] to generate progressively censored reduced Kies
samples. We consider three types of priors to obtain the Bayes estimates, Prior 0:a =
b = c = d = 0, which describes the case of non-informative prior. We use Prior 0 to
obtain the Bayes estimates for the two values of the parameter β. Prior 1:a = 3, b = 2 to
obtain the Bayes estimates for β = 1.5 and Prior 2:a = 1.5, b = 0.5 to obtain the Bayes
estimates when β = 3. It is to be noted that, prior 1 and prior 2 describe the case of
informative prior. In each setting, we obtain the MLEs and Bayes estimates under SE,
LINEX (υ = 0.5) and GE (c = 0.5) loss functions. The process is replicated 1000 times.
The average values of the estimates, mean squared errors (MSEs), con�dence/ credible
interval lengths and coverage probabilities are obtained and tabulated.

The average values of the estimates and the corresponding MSEs are displayed in
Table 5 for β = 1.5 and in Table 7 for β = 3. The average con�dence/ credible interval
lengths and the corresponding coverage probabilities are presented in Table 6 for β = 1.5
and in Table 8 for β = 3. From Tables 5-8, it is to be noted that the Bayes estimates
under SE loss function under Prior 0 is quite close to the MLEs. In terms of MSEs and
con�dence/credible interval lengths, the Bayes estimates using the informative priors (i.e.
Prior 1 and Prior 2) perform better than those based on the non-informative prior (Prior
0) and the MLEs for two parameter values of β. The Bayes estimates under LINEX
loss function have the smallest MSEs for all cases when β = 3, and in some cases when
β = 1.5. For �xed n, when the number of observed failure m increases, the MSEs and the
con�dence/credible interval lengths decreases in all cases. Comparing the three censoring
schemes, it is clear that the MSEs, con�dence/credible interval lengths are smaller for
Scheme 1 than Schemes 2 and 3.

7. Real Data Analysis

In this section we analyze a real data set given by [31] and also studied by [23]. The
original data consists of 40 observations and it describes the strength of a kind of glass,
which were measured by three-point �exural method. From the complete data set, we
generate three progressively censored samples from n = 40 and m = 10 according to the
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Table 5. Average values of di�erent estimators and the corresponding
MSEs (in parentheses) for β = 1.5.

ML Estimate Bayes Estimates (Prior 0) Bayes Estimates (Prior 1)

(n,m) Scheme SE LINEX GE SE LINEX GE

(30,5) 1 1.565(0.134) 1.561(0.132) 1.529(0.119) 1.502(0.119) 1.543(0.093) 1.517(0.085) 1.507(0.085)
2 1.565(0.136) 1.562(0.135) 1.529(0.121) 1.501(0.121) 1.544(0.094) 1.517(0.086) 1.508(0.086)
3 1.559(0.147) 1.567(0.149) 1.531(0.133) 1.500(0.133) 1.545(0.099) 1.515(0.091) 1.512(0.091)

(30,10) 1 1.591(0.139) 1.579(0.135) 1.548(0.120) 1.521(0.119) 1.560(0.095) 1.534(0.086) 1.511(0.085)
2 1.586(0.137) 1.579(0.135) 1.548(0.121) 1.520(0.119) 1.559(0.095) 1.534(0.086) 1.509(0.086)
3 1.579(0.132) 1.576(0.131) 1.546(0.117) 1.519(0.117) 1.558(0.093) 1.532(0.084) 1.509(0.084)

(45,5) 1 1.539(0.091) 1.545(0.093) 1.524(0.086) 1.503(0.086) 1.535(0.072) 1.515(0.068) 1.503(0.068)
2 1.539(0.093) 1.546(0.094) 1.524(0.087) 1.503(0.087) 1.536(0.073) 1.515(0.069) 1.504(0.069)
3 1.539(0.106) 1.552(0.108) 1.526(0.099) 1.504(0.099) 1.538(0.081) 1.516(0.075) 1.504(0.075)

(45,15) 1 1.561(0.099) 1.553(0.098) 1.533(0.091) 1.515(0.091) 1.543(0.077) 1.526(0.072) 1.511(0.072)
2 1.557(0.100) 1.553(0.099) 1.532(0.092) 1.514(0.092) 1.544(0.078) 1.525(0.073) 1.508(0.072)
3 1.549(0.092) 1.547(0.092) 1.528(0.085) 1.511(0.085) 1.538(0.073) 1.520(0.069) 1.505(0.070)

(60,10) 1 1.555(0.071) 1.552(0.071) 1.539(0.068) 1.528(0.068) 1.546(0.059) 1.532(0.057) 1.521(0.058)
2 1.556(0.073) 1.554(0.073) 1.539(0.068) 1.524(0.067) 1.547(0.062) 1.533(0.059) 1.521(0.061)
3 1.557(0.081) 1.560(0.082) 1.543(0.076) 1.527(0.075) 1.552(0.067) 1.535(0.063) 1.522(0.067)

(60,20) 1 1.541(0.059) 1.534(0.059) 1.521(0.055) 1.507(0.055) 1.529(0.050) 1.515(0.048) 1.504(0.047)
2 1.539(0.061) 1.536(0.061) 1.522(0.059) 1.509(0.059) 1.531(0.053) 1.517(0.049) 1.505(0.051)
3 1.539(0.062) 1.538(0.061) 1.521(0.059) 1.510(0.061) 1.533(0.053) 1.519(0.051) 1.508(0.053)

Table 6. Average con�dence interval/credible interval lengths and the
coverage percentages (in parentheses) for β = 1.5.

(n,m) Scheme Approximate Symmetric Credible Interval HPD Interval

Prior 0 Prior 1 Prior 0 Prior 1

(30,5) 1 1.3212(93.70) 1.3468(95.30) 1.2455(97.20) 1.3803(94.90) 1.2653(96.80)
2 1.3362(93.60) 1.3586(95.10) 1.2586(97.10) 1.3929(95.00) 1.2772(96.60)
3 1.4082(93.30) 1.4359(94.90) 1.3167(97.10) 1.4653(95.30) 1.3296(96.50)

(30,10) 1 1.2860(93.00) 1.3187(94.40) 1.2089(97.00) 1.3231(94.90) 1.1930(95.70)
2 1.3016(93.00) 1.3321(95.00) 1.2277(96.60) 1.3391(94.70) 1.2270(96.20)
3 1.2846(93.40) 1.3092(94.70) 1.2154(96.10) 1.3431(94.80) 1.2312(96.10)

(45,5) 1 1.1211(94.40) 1.0581(95.00) 1.0208(95.90) 1.0857(92.70) 1.0848(95.40)
2 1.1291(94.40) 1.0694(94.90) 1.0245(95.90) 1.1609(94.30) 1.0920(95.40)
3 1.2092(94.50) 1.1273(94.70) 1.0667(96.00) 1.2417(94.20) 1.1566(95.70)

(45,15) 1 1.0509(92.70) 0.8137(94.00) 0.9453(95.20) 1.0652(96.40) 1.0129(97.00)
2 1.0660(92.50) 1.0433(94.40) 0.9671(94.80) 1.0799(96.20) 1.0266(96.80)
3 1.0496(92.90) 1.0269(94.50) 0.9640(95.30) 1.0881(95.90) 1.0351(96.90)

(60,10) 1 0.9263(93.50) 0.8173(94.80) 0.8526(95.10) 0.9388(94.00) 0.9022(94.30)
2 0.9377(93.30) 0.9261(94.80) 0.8967(95.40) 0.9507(94.20) 0.9132(94.30)
3 0.9912(93.20) 1.0175(94.90) 0.9486(95.80) 1.0083(93.90) 0.9630(94.40)

(60,20) 1 0.9069(94.20) 0.8713(95.60) 0.8707(96.60) 0.9287(94.00) 0.8974(95.30)
2 0.9211(93.90) 0.8881(95.10) 0.8705(96.10) 0.9451(94.50) 0.9096(95.30)
3 0.9083(93.20) 0.8473(95.00) 0.8108(95.80) 0.9590(93.50) 0.9151(95.30)

three censoring schemes discussed in section (6). The generated progressively censored
samples are given in the following table

Scheme Censored data

1 0.477, 0.502, 0.524, 0.525, 0.529, 0.538, 0.546, 0.555, 0.611, 0.624
2 0.477, 0.502, 0.524, 0.525, 0.529, 0.538, 0.539, 0.546, 0.575, 0.600
3 0.477, 0.502, 0.524, 0.525, 0.529, 0.538, 0.539, 0.546, 0.547, 0.549

The MLE and Bayes estimates and the corresponding con�dence/ credible intervals
are reported in Tables 9 and 10, respectively. The Bayes estimates under SE, LINEX
and GE loss functions are obtained based on a non-informative prior, because we have no
information about the unknown parameter β. Figure 1 display the posterior distribution
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Table 7. Average values of di�erent estimators and the corresponding
MSEs (in parentheses) for β = 3.

ML Estimate Bayes Estimates (Prior 0) Bayes Estimates (Prior 2)

(n,m) Scheme SE LINEX GE SE LINEX GE

(30,5) 1 3.166(0.558) 3.159(0.555) 3.033(0.449) 3.039(0.492) 3.137(0.458) 3.023(0.378) 3.026(0.409)
2 3.167(0.573) 3.163(0.571) 3.034(0.461) 3.039(0.505) 3.139(0.469) 3.022(0.386) 3.026(0.419)
3 3.168(0.647) 3.183(0.657) 3.039(0.517) 3.047(0.575) 3.153(0.525) 3.024(0.424) 3.029(0.465)

(30,10) 1 3.142(0.529) 3.117(0.514) 3.000(0.421) 3.004(0.463) 3.100(0.423) 2.992(0.353) 2.996(0.383)
2 3.134(0.523) 3.120(0.515) 3.000(0.421) 3.004(0.463) 3.102(0.423) 2.992(0.352) 2.994(0.383)
3 3.119(0.465) 3.113(0.460) 2.997(0.383) 3.001(0.416) 3.096(0.387) 2.989(0.327) 2.992(0.353)

(45,5) 1 3.095(0.399) 3.108(0.406) 3.019(0.351) 3.025(0.377) 3.097(0.356) 3.012(0.309) 3.014(0.334)
2 3.096(0.405) 3.109(0.411) 3.021(0.355) 3.023(0.381) 3.097(0.361) 3.013(0.314) 3.014(0.336)
3 3.102(0.465) 3.127(0.478) 3.025(0.403) 3.029(0.435) 3.109(0.408) 3.015(0.349) 3.020(0.375)

(45,15) 1 3.091(0.316) 3.075(0.311) 2.999(0.275) 2.999(0.294) 3.068(0.277) 2.996(0.247) 2.995(0.263)
2 3.084(0.319) 3.074(0.316) 2.997(0.279) 2.999(0.295) 3.068(0.282) 2.992(0.251) 2.995(0.268)
3 3.074(0.302) 3.070(0.301) 2.995(0.267) 2.996(0.282) 3.025(0.397) 2.991(0.241) 2.993(0.254)

(60,10) 1 3.111(0.289) 3.108(0.299) 3.049(0.265) 3.048(0.294) 3.102(0.273) 3.044(0.244) 3.044(0.274)
2 3.113(0.297) 3.109(0.299) 3.051(0.267) 3.065(0.418) 3.104(0.272) 3.045(0.246) 3.051(0.276)
3 3.113(0.326) 3.122(0.330) 3.050(0.290) 3.054(0.313) 3.111(0.298) 3.047(0.265) 3.052(0.288)

(60,20) 1 3.089(0.236) 3.075(0.236) 3.022(0.213) 3.024(0.232) 3.068(0.223) 3.018(0.198) 3.021(0.221)
2 3.086(0.244) 3.081(0.246) 3.020(0.220) 3.024(0.249) 3.077(0.226) 3.017(0.205) 3.022(0.236)
3 3.080(0.242) 3.078(0.243) 3.021(0.218) 3.021(0.229) 3.072(0.222) 3.018(0.202) 3.021(0.213)

Table 8. Average con�dence interval/credible interval lengths and the
coverage percentages (in parentheses) for β = 3.

(n,m) Scheme Approximate Symmetric Credible Interval HPD Interval

Prior 0 Prior 2 Prior 0 Prior 2

(30,5) 1 2.6396(93.00) 3.1169(95.30) 2.4761(97.00) 3.1710(95.10) 2.9930(95.80)
2 2.6696(93.00) 3.0261(95.10) 2.4920(96.60) 3.1894(95.30) 3.0440(95.80)
3 2.8161(92.70) 3.4086(94.60) 2.7255(96.00) 3.3785(95.90) 3.0588(95.90)

(30,10) 1 2.5681(94.00) 3.0935(95.90) 2.2692(96.80) 2.7698(95.90) 2.5529(96.20)
2 2.6016(94.00) 3.1084(96.30) 2.3806(97.00) 2.7716(95.90) 2.6959(96.10)
3 2.5697(93.90) 2.9045(96.20) 2.5833(97.10) 2.7845(95.60) 2.7456(96.00)

(45,5) 1 2.2436(93.80) 2.6012(94.20) 1.5559(94.50) 2.2890(96.10) 2.2578(96.80)
2 2.2591(93.60) 2.6268(94.20) 1.6068(94.60) 2.3033(96.10) 2.3044(96.70)
3 2.4147(93.50) 2.9079(94.60) 2.0136(95.20) 2.4747(96.60) 2.3717(96.70)

(45,15) 1 2.0987(94.90) 2.2901(96.20) 1.6122(95.90) 2.1663(95.20) 2.0994(95.90)
2 2.1296(94.50) 2.3078(96.20) 1.6767(95.60) 2.5561(95.80) 2.1478(96.50)
3 2.1004(94.80) 2.2467(96.60) 1.7197(96.30) 2.6493(96.50) 2.2090(96.90)

(60,10) 1 1.8536(93.40) 2.0157(94.10) 1.3082(93.10) 2.0682(94.70) 1.8823(95.30)
2 1.8766(93.30) 2.1079(93.90) 1.1414(93.00) 2.0808(95.00) 2.0128(95.40)
3 1.9843(93.20) 2.2553(94.50) 1.3480(93.70) 2.1085(95.00) 2.0843(95.40)

(60,20) 1 1.8142(93.80) 1.9073(95.50) 1.2506(93.20) 1.8319(95.90) 1.7980(96.10)
2 1.8419(93.80) 1.9539(95.10) 1.4656(93.70) 1.8590(96.20) 1.8238(96.30)
3 1.8146(93.60) 1.9355(95.00) 2.9850(94.10) 1.8595(96.10) 1.8355(96.70)

of β for di�erent censoring schemes. From Table 10 and Figure 1, it is observed that
the symmetric and HDP intervals are coincide because the posterior distribution of β is
approximately symmetric.

Table 9. MLE and Bayes Estimates and the corresponding inter-
val/credible intervals (in parentheses) of β.

Scheme MLE Bayes (SE) Bayes (LINEX) Bayes (GE)

Complete 1.3447 1.3326 1.3283 1.3227
1 1.1403 1.1117 1.0904 1.0513
2 0.7621 0.7617 0.7519 0.7154
3 1.2731 1.2501 1.2205 1.1748
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Table 10. The approximate con�dence /symmetric and HPD intervals of β.

Scheme MLE Symmetric Credible Interval HPD Interval

Complete (1.1055, 1.5839) (1.0763, 1.5909) (1.0756, 1.5901)
1 (0.5137, 1.7669) (0.5968, 1.7097) (0.5600, 1.6898)
2 (0.2714, 1.2528) (0.3875, 1.1860) (0.4073, 1.0785)
3 (0.6987, 1.8475) (0.6439,1.9976) (0.6022, 1.9383)

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Posterior of Beta

β

P
os

te
rio

r 
of

 B
et

a

Complete Sample
Scheme 1
Scheme 2
Scheme 3

Figure 1. Posterior distribution of β for di�erent censoring schemes
of [31] data.

Figure 1 shows the e�ect of censoring schemes on the shape of the posterior distribution
of β. It can be seen that the shape of posterior distribution of β based on scheme 2 shows
a shift towards the right more than that of complete sample and other censoring schemes.
Also, it can be is observed from Table 9 that the estimate of β using scheme 2 is the
lowest when compared with the complete sample and the other censoring schemes.

8. Concluding Remarks.

In this paper, we have provided explicit expressions and recurrence relations for single
and product moments of progressively type-II censored samples of the reduced Kies
distribution. We also characterized the distribution by means of recurrence relation. In
addition, estimation of unknown parameter of the Reduced Kies distribution has been
considered. We have compared the MLEs and di�erent Bayes estimators with respect
to the mean squared errors. We have also compared the asymptotic con�dence intervals
with the two-sided Bayes probability intervals and HPDI obtained from the posterior
distribution functions. The simulation study shows that Bayes estimates performs better
than the MLEs with regard to mean squared errors. The two-sided Bayes probability
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intervals are also of shorter length with competitive coverage percentages of the true
parameter than the con�dence intervals. Using a real data set, we demonstrated that
proposed Bayes estimators perform better than MLE.
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