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Some generalizations of the class of analytic
functions with respect to k-symmetric points

Syed Zakar Hussain Bukhari˚, Mohsan Raza :;and Maryam Nazir §

Abstract

In this article, we introduce a new class Mk
s rα, β, λs which generalizes

the various classes of analytic functions with respect to k-symmetric
points. Naturally, the class Mk

s rα, β, λs combines the classes Sks pα, βq
and Cks pα, βq. We also study the coefficient estimates and obtain some
inequalities related to the coefficients of functions in these classes. We
develop the integral representation, inclusions and convolution condi-
tions for the functions in the class Mk

s rα, β, λs.

Keywords: Convex functions, Starlike functions, Symmetric points, subordina-
tion.
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1. Introduction and preliminaries
Let A be the class of functions f of the form

(1.1) f pzq “ z `
8
ÿ

n“2

anz
n,

which are analytic in the open unit disc E “ tz : |z| ă 1u. A function f is said to be
subordinate to a function g written as f ă g , if there exists a schawarz function w with
w p0q “ 0 and |w pzq| ă 1 such that f pzq “ g pw pzqq . In particular if g is univalent in
E, then f p0q “ g p0q and f pEq Ă g pEq .

The classes of starlike and convex univalent functions are defined as

˚Department of Mathematics, Mirpur University of Science and Technology, Mirpur AJ&K.
Email : fatmi@must.edu.pk

:Department of Mathematics, Government College University Faisalabad, Pakistan.
Email : mohsan976@yahoo.com

;Corresponding Author.
§Department of Mathematics, Mirpur University of Science and Technology, Mirpur AJ&K.
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S˚ “

"

f : f P A and Re
zf 1pzq

fpzq
ą 0, z P E

*

,

C “

#

f : f P Aand Re

`

zf 1pzq
˘1

f 1pzq
ą 0, z P E

+

.

A function which is analytic in the open unit disc E is said to be starlike with respect to
the symmetric point if it satisfies

Re
pzf 1pzqq

fpzq ´ fp´zq
ą 0, z P E.

The class S˚s of starlike functions with respect to symmetric points was introduced and
studied by Sakaguchi, see [5]. The class Sks rα, βs consists of functions f P S satisfying
the inequality

ˇ

ˇ

ˇ

ˇ

2zf 1pzq

fkpzq
´ 1

ˇ

ˇ

ˇ

ˇ

ă β

ˇ

ˇ

ˇ

ˇ

2αzf 1pzq

fkpzq
` 1

ˇ

ˇ

ˇ

ˇ

for 0 ď α ď 1, 0 ď β ď 1, z P E,

where fk is defined as

(1.2) fkpzq “
1

k

k´1
ÿ

m“0

κ´mfpκmzq

with κk “ 1 and k ě 1 a fixed positive integer. Similarly the class}Cks rα, βs is defined
by:

Cks rα, βs “

"

f P S and

ˇ

ˇ

ˇ

ˇ

pzf 1pzqq1

f 1kpzq
´ 1

ˇ

ˇ

ˇ

ˇ

ă β

ˇ

ˇ

ˇ

ˇ

α pzf 1pzqq1

f 1kpzq
` 1

ˇ

ˇ

ˇ

ˇ

*

,

where 0 ď α ď 1, 0 ă β ď 1 and fk is given in (1.2) . The classes
Sks rα, βs and Cks rα, βs were defined by Wang [8] and Gao and Zhou [2]
respectively. These classes are further studied in [7, 9]. Keeping in view
the above mentioned classes, we define the following subclass of analytic
function with respect to k-symmetric point.

1.1. Definition. A function f P S is in the class Mk
s rα, β, λs if it satisfies

the following condition:

(1.3)
ˇ

ˇ

ˇ

ˇ

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
´ 1

ˇ

ˇ

ˇ

ˇ

ă β

ˇ

ˇ

ˇ

ˇ

α

„

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq



` 1

ˇ

ˇ

ˇ

ˇ

,

where fk is defined by p1.2q, 0 ď α ď 1, 0 ă β ď 1, k ě 1 a fixed positive
integer, λ P R and z P E.

where fk is defined by ( 1.2), 0 ď α ď 1, 0 ă β ď 1, k ě 1 a fixed
positive integer, λ P and z P E.
Special Cases

piq. For k “ 2, the classMk
s rα, β, λs reduces to the classM rα, β, λs consisting
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of univalent functions which satisfy the condition:
ˇ

ˇ

ˇ

ˇ

p1´ λq
zf 1pzq

fpzq
` λ

pzf 1pzqq1

f 1pzq
´ 1

ˇ

ˇ

ˇ

ˇ

ă β

ˇ

ˇ

ˇ

ˇ

α

„

p1´ λq
zf 1pzq

fpzq
` λ

pzf 1pzqq1

f 1pzq



` 1

ˇ

ˇ

ˇ

ˇ

,

where 0 ď α ď 1, 0 ă β ď 1, k ě 1, λ P R and z P E.
piiq. For λ “ 1, the class Mk

s rα, β, λs yields the class Cks pα, βq introduced
and studied by Wang [8].
piiiq. When λ “ 0, the class Mk

s rα, β, λs produces the class Sks pα, βq stud-
ied by Gao and Zhou [2].
pivq. For k “ 2, λ “ 1, we obtain the class Cs pα, βq.
pvq. Taking k “ 2, λ “ 0, Mk

s rα, β, λs reduces to the class S˚s pα, βq , see [6].
pviq. For k “ 2, λ “ 0, α “ β “ 1, Mk

s rα, β, λs reduces to the class S˚s [5].

In the following, we have some useful lemmas.

1.2. Lemma. [1] Suppose that the function ϕ is convex univalent in E with
ϕ p0q “ 1 and

Re pβϕ pzq ` γq ą 0 for β, γ P C, z P E.

If p is analytic in E with p p0q “ 1, then

ppzq `
zp1pzq

βppzq ` γ
ă ϕ pzq implies p pzq ă ϕ pzq , z P E.

1.3. Lemma. [4] Let β, γ P C and ϕ be a convex, univalent function with

Re pβϕ pzq ` γq ą 0, z P E.

Also let h P A : h pzq ă ϕ pzq. If p P P and

p pzq `
zp1 pzq

βh pzq ` γ
ă ϕ, then p pzq ă ϕ pzq .

1.4. Lemma. [6] Let G be analytic in E and let

(1.4)
ˇ

ˇ

ˇ

ˇ

1´Gpzq

1` ηGpzq

ˇ

ˇ

ˇ

ˇ

ă δ

z P E, 0 ď η ď 1, 0 ă δ ď 1 with Gp0q “ 1. Then

(1.5) Gpzq “
1´ zϕpzq

1` ηzϕpzq
,

where ϕ is analytic in E and |ϕpzq| ď δ for z P E. Conversely any function
G given by (1.5) is analytic in E and satisfies (1.4).

1.5. Lemma. [3] Let F be analytic and convex in E. If f, g P A and
f, g ă F. Then

σf ` p1´ σq g ă F, 0 ď σ ď 1.
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2. Main Results

2.1. Theorem. Let Fkpzq “ p1´λq
zf 1pzq
fkpzq

`λ pzf
1pzqq1

f 1kpzq
, λ P R, k ě 1, f and fk

defined by (1.1) and 1.2 respectively. Then Fkpzq “ 1`
ř8
j“2 cjz

j´1`... P P

for cj “ rp1´ λp1´ jqqj ` pp1´ λqj ` λ´ p1` jqq djs aj , where cj ď 2.

Proof. Here we let

(2.1) Fkpzq “ p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
.

It can easily follows from (1.2) that

fkpzq “
1

k

k´1
ÿ

m“0

κ´mfpκmzq “
1

k

k´1
ÿ

m“0

κ´m
«

κmz `
8
ÿ

j“2

aj pκmzqj
ff

“ z `
8
ÿ

l“2

apl´1qk`1z
pl´1qk`1 “ z `

8
ÿ

j“2

ajdjz
j ,(2.2)

where dj “ 1
k

k´1
ř

m“0
κpj´1qm “

"

1, j “ pl ´ 1qk ` 1
0, j ‰ pl ´ 1qk ` 1

*

,κk “ 1. On com-

bining ( 2.1) and ( 2.2) , we have

Fkpzq “
p1´ λqzf 1pzqf 1kpzq ` λpf

1pzq ` zf2pzqqqfkpzq

fkpzqf
1
kpzq

“

p1´ λqpz `
8
ř

j“2
jajz

jqp1`
8
ř

j“2
jajdjz

j´1q ` λp1`
8
ř

j“2
j2ajz

j´1qpz `
8
ř

j“2
ajdjz

jq

pz `
8
ř

j“2
ajdjzjqp1`

8
ř

j“2
jajdjzj´1q

“

1`
8
ř

j“2

”

pp1´ λ` jλq jaj ` p1´ λqjajdj ` λajdjq z
j´1 ` j2a2jdjz

2j´2
ı

1`
8
ř

j“2

”

p1` jq ajdjzj´1 ` ja2jdjz
2j´2

ı

“

«

1`
8
ÿ

j“2

“

pp1´ λ` jλq jaj ` p1´ λqjajdj ` λajdjq z
j´1 ` j2a2jdjz

2j´2
‰

ff

ˆ

«

1´
8
ÿ

j“2

“

p1` jq ajdjz
j´1 ` ja2jdjz

2j´2
‰

` ...

ff

“ 1`
8
ÿ

j“2

rp1´ λ` jλq j ` pp1´ λqj ` λ´ p1` jqq djs ajz
j´1 ` ...

“ 1`
8
ÿ

j“2

cjz
j´1 ` ....
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Thus Fkpzq “ 1`
8
ř

j“2
cjz

j´1 ` ... P P,

where cj “ rp1´ λ` jλq j ` pp1´ λqj ` λ´ p1` jqq djs aj such that |cj | ď
2.

2.2. Theorem. Let 0 ď α ď 1, 0 ă β ď 1, k ě 1, λ P R, and z P E. Then
the function f PMk

s rα, β, λs if and only if

(2.3) p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
ă

1` βz

1´ αβz
,

where fk is given in (1.2).

Proof. Let f PMk
s rα, β, λs. Then from p1.3q, we have

ˇ

ˇ

ˇ

ˇ

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
´ 1

ˇ

ˇ

ˇ

ˇ

ă β

ˇ

ˇ

ˇ

ˇ

α

„

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq



` 1

ˇ

ˇ

ˇ

ˇ

.

Taking Fk as defined in ( 2.1) we write

|Fkpzq ´ 1|2 ă β2 |αFkpzq ` 1|2

or
`

1´ α2β2
˘

|Fkpzq|
2
´ 2p1` αβ2qReFkpzq ă β2 ´ 1.

If α ‰ 1 or β ‰ 1, then we have

|Fkpzq|
2
´2

ˆ

1` αβ2

1´ α2β2

˙

ReFkpzq`

ˆ

1` αβ2

1´ α2β2

˙2

ă
β2 ´ 1

1´ α2β2
`

ˆ

1` αβ2

1´ α2β2

˙2

or
ˇ

ˇ

ˇ

ˇ

Fkpzq ´
1` αβ2

1´ α2β2

ˇ

ˇ

ˇ

ˇ

2

ă
β2p1` αq2
`

1´ α2β2
˘2 .

This represents the disk with center at 1`αβ2

1´α2β2 and radius βp1`αq

p1´α2β2q
. Also

the function ωpzq ă ϕpzq “ 1`βz
1´αβz maps the unit disk onto the disk

ˇ

ˇ

ˇ

ˇ

ω ´
1` αβ2

1´ α2β2

ˇ

ˇ

ˇ

ˇ

ă
βp1` αq
`

1´ α2β2
˘ .

From here we notice that, FkpEq Ă ϕpEq, Fkp0q “ ϕp0q and ϕ is univalent
in E. Therefore, we write

Fkpzq ă ϕpzq “
1` βz

1´ αβz
.

Conversely, let Fkpzq ă
1`βz
1´αβz . Then using subordination, we have

(2.4) Fkpzq “
1` βω pzq

1´ αβω pzq
,
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where ω P Ω. From ( 2.4), we write

|Fkpzq ´ 1| “

ˇ

ˇ

ˇ

ˇ

1` βω pzq

1´ αβω pzq
´ 1

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

1` βω pzq ´ 1` αβω pzq

1´ αβω pzq

ˇ

ˇ

ˇ

ˇ

(2.5) |Fkpzq ´ 1| “ β

ˇ

ˇ

ˇ

ˇ

p1` αqω pzq

1´ αβω pzq

ˇ

ˇ

ˇ

ˇ

.

Also

(2.6) |αFkpzq ` 1| “

ˇ

ˇ

ˇ

ˇ

α` αβω pzq

1´ αβω pzq
` 1

ˇ

ˇ

ˇ

ˇ

ă β

ˇ

ˇ

ˇ

ˇ

p1` αq

1´ αβω pzq

ˇ

ˇ

ˇ

ˇ

.

Using (2.5) in (2.6) , we have

|Fkpzq ´ 1| ă β |αFkpzq ` 1| , where |ω pzq| ă 1 for all z P E.

This implies that
ˇ

ˇ

ˇ

ˇ

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
´ 1

ˇ

ˇ

ˇ

ˇ

ă β

ˇ

ˇ

ˇ

ˇ

α

„

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq



` 1

ˇ

ˇ

ˇ

ˇ

.

Hence, f PMk
s rα, β, λs.

2.3. Theorem. Let f P Mk
s rα, β, λs. Then fk P Msrα, β, λs and also fk P

Sks pα, βq .

Proof. Let f PMk
s rα, β, λs. Then by Theorem 2.2, we have

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
ă

1` βz

1´ αβz
,

where 0 ď α ď 1, 0 ă β ď 1, k ě 1 (is fixed positive integer), λ P R and
fk is defined by (1.2). Now using subordination, we write

(2.7) p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
“

1` βωpzq

1´ αβωpzq
, ωp0q “ 0 and |ωpzq| ă 1.

On replacing z by κmz, where m “ 0, 1, 2, ..., k ´ 1 and κk “ 1 in (2.7) ,
we have

(2.8) p1´λq
κmzf 1pκmzq
fkpκmzq

`λ
f 1pκmzq ` κmzf2pκmzq

f 1kpκmzq
“

1` βω pκmzq
1´ αβω pκmzq

.

From (1.2), we write fkpκmzq “ κmfkpzq and f 1kpκmzq “ f 1kpzq. These
results along with (2.8) yield

p1´λq
κmzf 1pκmzq
κmfkpzq

`λ
f 1pκmzq ` κmzf2pκmzq

f 1kpzq
“

1` βω pκmzq
1´ αβω pκmzq

.
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Taking summation from m “ 0 to k ´ 1, we write

p1´ λq
1

k

k´1
ÿ

m“0

κmzf 1pκmzq
κmfkpzq

`
λ

f 1kpzq
p
1

k

k´1
ÿ

m“0

f 1pκmzq `
1

k

k´1
ÿ

m“0

κmzf2pκmzqq

“
1

k

k´1
ÿ

m“0

ˆ

1` βω pκmzq
1´ αβω pκmzq

˙

or

p1´ λq
zf 1kpzq

fkpzq
` λ

pzf 1kpzqq
1

f 1kpzq
“

1

k

k´1
ÿ

m“0

ˆ

1` βω pκmzq
1´ αβω pκmzq

˙

or

p1´ λq
zf 1kpzq

fkpzq
` λ

pzf 1kpzqq
1

f 1kpzq
“

1

k

k´1
ÿ

m“0

ˆ

1` βω pκmzq
1´ αβω pκmzq

˙

P P rα, βs,

where P rα, βs is a convex set and containing function ppzq ă
1`βz
1´αβz . This

implies that

p1´ λq
zf 1kpzq

fkpzq
` λ

pzf 1kpzqq
1

f 1kpzq
ă

1` βz

1´ αβz
,

which implies that fk P Msrα, β, λs. Now, let hpzq “
zf 1kpzq

fkpzq
. After some

manipulation, we have

(2.9) p1´ λq
zf 1kpzq

fkpzq
` λ

pzf 1kpzqq
1

f 1kpzq
“ h pzq ` λ

zh1 pzq

h pzq
.

This implies that

h pzq ` λ
zh1 pzq

h pzq
ă

1` βz

1´ αβz
.

Using Lemma 1.2, we obtain

(2.10) h pzq ă
1` βz

1´ αβz
.

Hence, fk P Sks pα, βq .

2.4. Theorem. Let 0 ď α ď 1, 0 ă β ď 1, k ě 2 (fixed positive
integer), λ ą 0. Then Mk

s pα, β, λq Ă Sks pα, βq Ă S.

Proof. For f PMk
s rα, β, λs , we have

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
ă

1` βz

1´ αβz
.

Now, we let

p pzq “
zf 1pzq

fkpzq
andhpzq “

zf 1kpzq

fkpzq
,
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where, h and p satisfy the conditions described in Lemma 1.3. Therefore

(2.11) p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
“ p pzq ` λ

zp1 pzq

h pzq
ă

1` βz

1´ αβz
.

By using ( 2.10) ,(2.11) and Lemma 1.3, we obtain

p pzq “
zf 1pzq

fkpzq
ă

1` βz

1´ αβz
,

which implies that , f P Spkqs pα, βq Ă S or Mk
s pα, β, λq Ă S

pkq
s pα, βq Ă S.

2.5. Theorem. Let 0 ď α ď 1 and 0 ă β ď 1, 0 ď λ1 ă λ2. Then
Mk
s rα, β, λ2s ĂMk

s rα, β, λ1s.

Proof. Suppose that f PMk
s rα, β, λ2s. Then by Theorem 2.2, we have

h1 pzq “ p1´ λ2q
zf 1pzq

fkpzq
` λ2

pzf 1pzqq1

f 1kpzq
ă

1` βz

1´ αβz
.

Also from Theorem 2.4, we write

h2 pzq “
zf 1pzq

fkpzq
ă

1` βz

1´ αβz
.

Now

p1´ λ1q
zf 1pzq

fkpzq
` λ1

pzf 1pzqq1

f 1kpzq
“

ˆ

1´
λ1
λ2

˙

zf 1pzq

fkpzq
`
λ1
λ2

"

p1´ λ2q
zf 1pzq

fkpzq
` λ2

pzf 1pzqq1

f 1kpzq

*

“

ˆ

1´
λ1
λ2

˙

h2 pzq `
λ1
λ2
h1 pzq

Since 1`βz
1´αβz is convex set, therefore by using Lemma 1.5 we get the required

result.

2.6. Theorem. Let f PMk
s rα, β, λs. Then

fkpzq “

»

—

–

1

λ

ż z

0

1

u

$

&

%

u. exp
k´1
ÿ

m“0

u
ż

0

p1` αqβω ptq

t pk ´ αβω ptqq
dt

,

.

-

1
λ

du

fi

ffi

fl

λ

,

where ω P Ω. For λ “ 0,

fpzq “

ż z

0

fkpλq

λ

1` βω pλq

1´ αβω pλq
dλ.

Proof. Let f PMk
s rα, β, λs. Then from Theorem 2.2, we have

p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
ă

1` βz

1´ αβz
.
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Using subordination, we obtain

(2.12) p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
“

1` βω pzq

1´ αβω pzq
,

where ω is analytic in E with ωp0q “ 0 and |ωpzq| ă 1. Now replacing z
by κmz, where m “ 0, 1, 2..., k ´ 1, κk “ 1, using p1.2q with fkpκmzq “
κmfkpzq and f 1kpκmzq “ f 1kpzq and then taking summation form “ 0, 1, 2..., k´
1 in (2.12), we obtain

1´ λ

k

#

k´1
ÿ

m“0

κmzf 1pκmzq
κmfkpzq

+

`
λ

k

1

f 1kpzq

#

k´1
ÿ

m“0

f 1pκmzq `
k´1
ÿ

m“0

κmzf2pκmzq

+

“

1` β
k

k´1
ř

m“0
ω pκmzq

1´ αβ
k

k´1
ř

m“0
ω pκmzq

.

This implies that

p1´λq
zf 1kpzq

fkpzq
`λ
pzf 1kpzqq

1

f 1kpzq
“

˜

k ` β
k´1
ÿ

m“0

ω pκmzq

¸

{

˜

k ´ αβ
k´1
ÿ

m“0

ω pκmzq

¸

or

p1´λq
zf 1kpzq

fkpzq
`λ
pzf 1kpzqq

1

f 1kpzq
´

1

z
“

˜

p1` αqβ
k´1
ÿ

m“0

ω pκmzq

¸

{z

˜

k ´ αβ
k´1
ÿ

m“0

ω pκmzq

¸

.

Integrating from 0 to z, we write

log

#

pfkpzqq
p1´λqpzf 1kpzqq

λ

z

+

“

z
ż

0

p1` αqβ
k´1
ř

m“0
ω pκmζq

ζpk ´ αβ
k´1
ř

m“0
ω pκmζqq

dζ

or

(2.13)
„

zf 1kpzq

fkpzq

λ

fkpzq “ z exp
k´1
ÿ

m“0

z
ż

0

p1` αqβω pκmζq
ζ pk ´ αβω pκmζqq

dζ.

Let

(2.14) Fkpzq “

„

zf 1kpzq

fkpzq

λ

fkpzq, Fkp0q “ 0, F 1kp0q “ 1.

Since fk is λ-convex and if λ is not an integer, then we can select a suitable
branch, so that Fk is analytic in E. Logarithmic differentiation of (2.14)
yields

zF 1kpzq

Fkpzq
“ p1´ λq

zf 1kpzq

fkpzq
` λ

pzf 1kpzqq
1

f 1kpzq
.
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Hence, Fk is starlike in E. Now we solve (2.14) for fk by assuming that
λ ‰ 0. (The case when λ “ 0 gives Fkpzq “ fkpzq). Formal manipulations
leads to the solution

(2.15) fkpzq “

«

1

λ

ż z

0

rFkpζqs
1
λ

ζ
dζ

ffλ

.

By using (2.13) and (2.15), we have
„

zf 1kpzq

fkpzq

λ

fkpzq “ z. exp
k´1
ÿ

m“0

z
ż

0

p1` αqβω pκmζq
ζ pk ´ αβω pκmζqq

dζ,

which implies that

fkpzq “

»

—

–

1

λ

ż z

0

1

u

»

–u. exp

$

&

%

k´1
ÿ

m“0

u
ż

0

p1` αqβω ptq

t pk ´ αβω ptqq
dt

,

.

-

fi

fl

1
λ

du

fi

ffi

fl

λ

.

This is the required integral representation for fk when f PMk
s rα, β, λs. It

can be easily verified that for λ “ 0,

fpzq “

ż z

0

fkpλq

λ

1` βω pλq

1´ αβω pλq
dλ.

2.7. Theorem. Let f PMk
s rα, β, λs. Then we have

fpzq “

ż z

0

1` c

λ rfkpλqs
c

κmλ
ż

0

rfkptqs
c f 1kptq

1` βω ptq

1´ αβω ptq
dtdλ,

where fk is given in p1.2q, c “ 1
λ ´ 1 : λ ‰ 0 and ω is analytic in E with

ωp0q “ 0 and |ωpzq| ă 1. If λ “ 0, then we have

fpzq “

ż z

0

fkpλq

λ

1` βω pλq

1´ αβω pλq
dλ.

Proof. Let f PMk
s rα, β, λs. Then

(2.16) p1´ λq
zf 1pzq

fkpzq
` λ

pzf 1pzqq1

f 1kpzq
“

1` βω pzq

1´ αβω pzq
,

where ω P Ω. Multiplying both sides of (2.16) by λ´1 rfkpzqsc f 1kpzq, where
c “ 1

λ ´ 1 : λ ‰ 0, we get

(2.17)

czf 1pzq rfkpzqs
c´1 f 1kpzq`rfkpzqs

c
pzf 1pzqq1 “ p1`cq rfkpzqs

c f 1kpzq
1` βω pzq

1´ αβω pzq
.
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The left hand side of (2.17) is the exact differential of zf 1pzq rfkpzqsc . On
integrating both sides of (2.17), we obtain

f 1pzq “
1` c

z rfkpzqs
c

ż z

0
rfkpζqs

c f 1kpζq
1` βω pζq

1´ αβω pζq
dζ

or

f 1pzq “
1` c

z rfkpzqs
c

ż κmz

0
rfkptqs

c f 1kptq
1` βω ptq

1´ αβω ptq
dt.

This implies that

fpzq “

ż z

0

1` c

λ rfkpλqs
c

κmλ
ż

0

rfkptqs
c f 1kptq

1` βω ptq

1´ αβω ptq
dtdλ.

If λ “ 0, then we have

f 1pzq “
fkpzq

z

1` βω pzq

1´ αβω pzq
,

which implies that

fpzq “

ż z

0

fkpλq

λ

1` βω pλq

1´ αβω pλq
dλ.

2.8. Theorem. Let f PMk
s rα, β, λs. Then

1

z

"

f pzq ˚

ˆ

z

p1´ zq2
´

1` βejθ

p1´ αβejθq
h pzq

˙*

‰ 0,

where 0 ď θ ď 2π, 0 ď α ď 1, 0 ă β ď 1, λ ą 0 and z P E.

Proof. Let f PMk
s pα, β, λq. Then by using Theorem 2.3, we have

f P Spkqs pα, βq,

which implies that for 0 ď θ ď 2π, we write

zf 1pzq

fkpzq
ă

1` βz

1´ αβz

or

zf 1pzq

fkpzq
‰

1` βejθ

1´ αβejθ
.

Therefore

(2.18)
1

z

"

zf 1pzq ´

ˆ

1` βejθ

1´ αβejθ

˙

fkpzq

*

‰ 0.
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For zf 1pzq “ f pzq ˚ z
p1´zq2

and fkpzq “ z `
8
ř

j“0
ajcjz

j “ pf ˚ hq pzq, the

inequality (2.18) yields

1

z

"

f pzq ˚
z

p1´ zq2
´

ˆ

1` βejθ

1´ αβejθ

˙

pf ˚ hq pzq

*

‰ 0

or

1

z

"

f pzq ˚
z

p1´ zq2
´

ˆ

1` βejθ

1´ αβejθ

˙

pf ˚ hq pzq

*

‰ 0

or

1

z

"

f pzq ˚

ˆ

z

p1´ zq2
´

1` βejθ

p1´ αβejθq
h pzq

˙*

‰ 0.

2.9. Theorem. Let fpzq “ z`
8
ř

j“2
ajz

j . If for 0 ď α ď 1, 0 ă β ď 1, k ě 1,

and λ ě 0, we have

(2.19)
8
ÿ

j“2
j‰lk`1

χ pα, β, λ, jq j |aj |`
8
ÿ

j“1

χ1 pα, β, λ, j, kq |ajk`1|`
8
ÿ

j“1

χ2 pα, β, λ, j, kq |ajk`1|
2
ă β p1` αq´2

where χ1pα, β, λ, j, k “ tp1´ λq pjk ` 1q ` λu p1´ αβq ` p1´ βq p2` jkq,
χ pα, β, λ, jq “ pp1´ λq`λjq p1´ αβqm and
χ2 pα, β, λ, j, kq “ tp1´ αβq pjk ` 1q ` p1´ βqu pjk` 1q . Then f PMk

s rα, β, λs.

Proof. Let fpzq “ z`
8
ř

j“2
ajz

j and fk be given in p1.2q for z P E. Then, we

have

M “
ˇ

ˇp1´ λqzf 1pzqf 1kpzq ` λpzf
1pzqq1fkpzq ´ fkpzqf

1
kpzq

ˇ

ˇ´(2.20)

β
ˇ

ˇαpp1´ λqzf 1pzqf 1kpzq ` λpzf
1pzqq1fkpzqq ` fkpzqf

1
kpzq

ˇ

ˇ .

Also for κk “ 1 and k ą 1,

(2.21)

fkpzq “
1

k

k´1
ÿ

m“0

κ´mfpκmzq “ z`
8
ÿ

j“2

ajdjz
j , where dj “

"

1, j “ pl ´ 1qk ` 1
0, j ‰ pl ´ 1qk ` 1

*
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From ( 2.20) , ( 2.21) and for |z| “ r ă 1, we have

M ď p1´ λq p1´ αβq
ˇ

ˇzf 1pzqf 1kpzq
ˇ

ˇ` λ p1´ αβq
ˇ

ˇpzf 1pzqq1fkpzq
ˇ

ˇ` p1´ βq
ˇ

ˇfkpzqf
1
kpzq

ˇ

ˇ

ă p1´ λq p1´ αβq ` λ p1´ αβq ` p1´ βq

`p1´ λq p1´ αβq
8
ÿ

j“2

j |aj | ` λ p1´ αβq
8
ÿ

j“2

j2 |aj |

`p1´ λq p1´ αβq
8
ÿ

j“2

j |ajdj | ` λ p1´ αβq
8
ÿ

j“2

|ajdj | ` p1´ βq
8
ÿ

j“2

p1` jq |ajdj |

`p1´ λq p1´ αβq
8
ÿ

j“2

j2 |aj | |ajdj | ` λ p1´ αβq
8
ÿ

j“2

j2 |aj | |ajdj | ` p1´ βq
8
ÿ

j“2

j |ajdj |
2

or

M ă 2´ β pα` 1q `
8
ÿ

j“2
j‰lk`1

`

p1´ λq p1´ αβq j ` λ p1´ αβq j2
˘

|aj | `

8
ÿ

j“1

ptp1´ λq pjk ` 1q ` λu p1´ αβq ` p1´ βq p2` jkqq |ajk`1| `

8
ÿ

j“1

trp1´ αβq pjk ` 1q ` p1´ βqs pjk ` 1qu |ajk`1|
2 .

For M ă 0, we obtain ( 2.19) . Hence, f PMk
s rα, β, λs.

2.10. Theorem. Let f and fk be defined by p1.1q and p1.2q. Suppose that
f PMk

s rα, β, λs and Fk is given by (2.1). Then

|p1` pj ´ 1qλq ajdj ´ pλj ` p1´ λqq jaj |
2

ă β |α` 1|2 ` β

j´1
ÿ

k“2

r

´

α2p1´ λq2 |1` dk|
2
` α2λ2 |k|2 ` 2αp1´ λq |1` |dk||αλ |k|

¯

|kak|s

`2β

j´1
ÿ

k“2

pαp1´ λq |1` dk| ` αλ |k|q |αλ` 1` k| |dk| |ak|

`

j´1
ÿ

k“2

rβ
´

|αk ` dk|
2
|k|2 ` |αλ` 1` k|2

¯

´

j´1
ÿ

k“2

|1` pk ´ 1qλ|2s |ak|
2
|dk|

2

`

j´1
ÿ

k“2

|λk ` p1´ λq|2 |k|2 |ak|
2
´ 2

j´1
ÿ

k“2

|1` pk ´ 1qλ| |λk ` p1´ λq| |k| |ak|
2
|dk|s.

For the proof of this theorem, we use Lemma 1.4, p1.2q and follow the same
lines as in Theorem 2.9.
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Fixed points of ordered F -contractions
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Abstract

In his recent paper, Wardowski [16] introduced the concept of F -
contraction, which is a proper generalization of ordinary contraction on
a complete metric space. Then, some generalizations of F -contractions
including multivalued case are obtained in [2, 4, 7, 13]. In this paper,
by considering both F -contractions and fixed point result on ordered
metric spaces, we introduce a new concept of ordered F -contraction on
ordered metric space. Then, we give a fixed point theorem for such
mapping. To support our result, we give an example showing that our
main theorem is applicable, but both results of Ran and Reurings [12]
and Wardowski [16] are not.
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1. Introduction and preliminaries
Recently, combining the ideas of Tarski’s fixed point theorem on ordered sets and

Banach fixed point theorem on a complete metric space, Ran and Reurings [12] obtained
a fixed point result on an ordered complete metric space as follows:
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1.1. Theorem. Let (X,�) be an ordered set and d be a metric on X such that (X, d)
is a complete metric space. Let T : X → X be a continuous and nondecreasing mapping
such that there exists L ∈ [0, 1) with

(1.1) d(Tx, Ty) ≤ Ld(x, y) for all x, y ∈ X with x � y.

If there exists x0 ∈ X such that x0 � Tx0, then T has a fixed point.

In this theorem, the usual contraction of Banach fixed point principle is weakened but
at the expense that the operator is monotone. Then many fixed point theorists such as
Abbas et al. [1], Agarwal et al. [3], Ćirić et al. [5], Kumam et al. [6], Nashine and Altun
[8] and O’Regan and Petruşel [11] focused on this interesting result and obtained a lot
of generalizations and variants. For example, taking the regularity of the space, which
will be define thereinafter, instead of continuity of T, Nieto [9] obtained a parallel result.
There are several applications of the theorems in this direction to linear and nonlinear
matrix equations, differential equations and integral equations (See for example [10, 12]).

On the other hand, in 2012, one of the most popular fixed point theorem on a complete
metric space is given by Wardowski [16]. For this, he introduced the concept of F -
contraction, which is a proper generalization of ordinary contraction. For the sake of
completeness we recall this concept. Let F be the set of all functions F : (0,∞) → R
satisfying the following conditions:

(F1) F is strictly increasing, i.e., for all α, β ∈ (0,∞) such that α < β, F (α) < F (β),
(F2) for each sequence {an} of positive numbers,

lim
n→∞

an = 0 if and only if lim
n→∞

F (an) = −∞,

(F3) there exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.

Some examples of the functions belonging F are F1(α) = lnα, F2(α) = α + lnα,
F3(α) = − 1√

α
and F4(α) = ln

(
α2 + α

)
.

1.2. Definition ([16]). Let (X, d) be a metric space and T : X → X be a mapping.
Then T is said to be an F -contraction if F ∈ F and there exists τ > 0 such that

(1.2) ∀x, y ∈ X [d(Tx, Ty) > 0⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y))].

If we take F (α) = lnα in Definition 1.2, the inequality (1.2) turns to

d(Tx, Ty) ≤ e−τd(x, y), for all x, y ∈ X,Tx 6= Ty.

It is clear that for x, y ∈ X such that Tx = Ty, the inequality d(Tx, Ty) ≤ e−τd(x, y)
also holds. Therefore T is an ordinary contraction with contractive constant L = e−τ .
Therefore every ordinary contraction is also F -contraction, but the converse may not be
true as shown in the Example 2.5 of [16]. If we choose F (α) = α + lnα, the inequality
(1.2) turns to

d(Tx, Ty)

d(x, y)
ed(Tx,Ty)−d(x,y) ≤ e−τ , for all x, y ∈ X,Tx 6= Ty.

In addition, Wardowski concluded that every F -contraction T is a contractive mapping,
i.e.,

d(Tx, Ty) < d(x, y), for all x, y ∈ X,Tx 6= Ty.

Thus, every F -contraction is a continuous map. Also, Wardowski concluded that if
F1, F2 ∈ F with F1(α) ≤ F2(α) for all α > 0 and G = F2 − F1 is nondecreasing, then
every F1-contraction T is an F2-contraction.

The following theorem is main result of Wardowski [16];
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1.3. Theorem. Let (X, d) be a complete metric space and let T : X → X be an F -
contraction. Then T has a unique fixed point in X.

Considering Theorem 1.3, some extensions and generalizations are obtained in [2, 4, 7,
13, 14, 15]. The aim of this paper is to introduce the concept of ordered F -contractions
on ordered metric space, by taking into account the ideas of Wardowski [16] and Ran
and Reurings [12].

2. The results
Let (X,�) be an ordered set and d be a metric on X, then we will say that the tripled

(X,�, d) is an ordered metric space. If (X, d) is complete, then (X,�, d) will be called
ordered complete metric space. We will say that X is regular, if the ordered metric space
(X,�, d) provides the following condition:{

If {xn} ⊂ X is a non-decreasing sequence with xn → x in X,
then xn � x for all n.

2.1. Definition. Let (X,�, d) be an ordered metric space and T : X → X be a mapping.
Let

Y = {(x, y) ∈ X ×X : x � y, d(Tx, Ty) > 0}.

We say that T is an ordered F -contraction if F ∈ F and there exists τ > 0 such that

(2.1) ∀(x, y) ∈ Y ⇒ τ + F (d(Tx, Ty)) ≤ F (d(x, y)).

2.2. Theorem. Let (X,�, d) be an ordered complete metric space and T : X → X be
an ordered F -contraction. Let T is nondecreasing mapping and there exists x0 ∈ X such
that x0 � Tx0. If T is continuous or X is regular, then T has a fixed point.

Proof. Let x0 ∈ X be as mentioned in the hypotheses. We define a sequence {xn} in
X such that xn = Txn−1 = Tnx0 for all n ∈ N. If there exists n0 ∈ N for which
xn0 = xn0+1, then xn0 is a fixed point of T and so the proof is completed. Thus, suppose
that for every n ∈ N, xn+1 6= xn. Since x0 � Tx0 and T is nondecreasing, we obtain

x0 � x1 � x2 � · · · � xn � · · · .

Now, since xn � xn+1 and d(Txn, Txn−1) > 0 for every n ∈ N, then (xn, xn+1) ∈ Y , and
so, we can use the inequality (2.1) for the consecutive terms of {xn}, then we have

(2.2) F (d(xn+1, xn)) = F (d(Txn, Txn−1)) ≤ F (d(xn, xn−1))− τ.

Denote γn = d(xn, xn+1) for n ∈ N. Then, from (2.2) we obtain

(2.3) F (γn) ≤ F (γn−1)− τ ≤ F (γn−2)− 2τ ≤ · · · ≤ F (γ0)− nτ.

From (2.3), we get limn→∞ F (γn) = −∞. Thus, from (F2), we have

lim
n→∞

γn = 0.

From (F3), there exists k ∈ (0, 1) such that

lim
n→∞

γknF (γn) = 0.

By (2.2), the following holds for all n ∈ N

(2.4) γknF (γn)− γknF (γ0) ≤ −γknnτ ≤ 0.

Letting n→∞ in (2.4), we obtain that

(2.5) lim
n→∞

nγkn = 0.
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From (2.5), there exits n1 ∈ N such that nγkn ≤ 1 for all n ≥ n1. So, we have

(2.6) γn ≤
1

n1/k
,

for all n ≥ n1. In order to show that {xn} is a Cauchy sequence consider m,n ∈ N such
that m > n ≥ n1. Using the triangular inequality for the metric and from (2.6), we have

d(xn, xm) ≤ d(xn, xn+1) + d(xn+1, xn+2) + · · ·+ d(xm−1, xm)

= γn + γn+1 + · · ·+ γm−1

=

m−1∑
i=n

γi

≤
∞∑
i=n

γi

≤
∞∑
i=n

1

i1/k
.

Passing to limit n → ∞, we get d(xn, xm) → 0. This yields that {xn} is a Cauchy
sequence in X. Since X is complete, the sequence {xn} converges to some point z ∈ X.

Now, if T is continuous, then we have

z = lim
n→∞

xn+1 = lim
n→∞

Txn = T lim
n→∞

xn = Tz

and so z is a fixed point of T .
Now suppose X is regular, then xn � z for all n ∈ N. We will consider the following

two cases:
Case 1. If there exists n0 ∈ N for which xn0 = z, then we obtain

Tz = Txn0 = xn0+1 � z.

Also, since xn0 � xn0+1, then z � Tz and thus, z = Tz.
Case 2. Now, suppose that xn 6= z for every n ∈ N and d(z, Tz) > 0. Since

limn→∞ xn = z, then there exists n1 ∈ N such that d(xn+1, T z) > 0 and d(xn, z) <
d(z,Tz)

2
for all n ≥ n1. Note that in this case (xn, z) ∈ Y . Therefore, by considering (F1),

we have, for n ≥ n1,

τ + F (d(Txn, T z)) ≤ F (d(xn, z)) ≤ F (
d(z, Tz)

2
),

which yields

(2.7) d(xn+1, T z) ≤
d(z, Tz)

2
.

Taking limit as n→∞, we deduce that

d(z, Tz) ≤ d(z, Tz)

2
,

a contradiction. Therefore, we conclude that d(z, Tz) = 0, i.e. z = Tz. �

2.3. Example. Let A = { 1
n2 : n ∈ N} ∪ {0}, B = {2, 3} and X = A ∪ B. Define an

order relation � on X as

x � y ⇔ [x = y or x, y ∈ A with x ≤ y] ,
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where ≤ is usual order. Obviously, (X,�, d) is ordered complete metric space with the
usual metric d. Let T : X → X be given by

Tx =


1

(n+1)2
, x = 1

n2

x , x ∈ {0, 2, 3}
.

It is easy to see that T is nondecreasing. Also, for x0 = 0 we have x0 � Tx0.
On the other side, taking F with

F (α) =


lnα√
α

, 0 < α < e2

α− e2 + 2
e

, α ≥ e2
.

It is easy to see that the conditions (F1), (F2) and (F3) (for k = 2
3
) are satisfied. We

claim that T is an ordered F -contraction with τ = ln 2. To see this, let us consider the
following calculations:

It is obvious that

Y = {(x, y) ∈ X ×X : x � y, d(Tx, Ty) > 0}
= {(x, y) ∈ X ×X : x, y ∈ A and x < y}.

Therefore, to see (2.1), it is sufficient to show that

(2.8)

∀(x, y) ∈ Y ⇒ ln 2 + F (d(Tx, Ty)) ≤ F (d(x, y))

⇔ x, y ∈ A and x < y ⇒ d(Tx, Ty)
1√

d(Tx,Ty) d(x, y)
− 1√

d(x,y) ≤ 1
2

⇔ x, y ∈ A and x < y ⇒ |Tx− Ty|
1√

|Tx−Ty| |x− y|
− 1√
|x−y| ≤ 1

2
.

Using Example 5 of [7], we can see that (2.8) is true. Also, T is continuous (and X is
regular). Therefore, all conditions of Theorem 2.2 are satisfied, and so, T has a fixed
point in X.

On the other hand, since 0 � 1
n2 for all n ∈ N and

sup
n∈N

d(T0, T 1
n2 )

d(0, 1
n2 )

= sup
n∈N

n2

(n+ 1)2
= 1,

then Theorem 1.1 , which is main result of [12], is not applicable to this example. Again,
since

d(T2, T3) = d(2, 3) = 1,

then for all F ∈ F and τ > 0 we have

τ + F (d(T2, T3)) > F (d(2, 3)).

Therefore, Theorem 1.3, which is main result of [16], is not applicable to this example.

2.4. Remark. In Theorem 2.2, if we assume the following condition:

(2.9) every pair of elements has a lower bound and upper bound,

then, the fixed point of T is unique. To see this, it is sufficient to show that for every
x ∈ X,

lim
n→∞

Tnx = z,

where z is the fixed point of T such that

z = lim
n→∞

Tnx0.
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For this we will consider the following cases: Let x ∈ X and x0 be as in Theorem 2.2.
Case 1. If x � x0 or x0 � x, then Tnx � Tnx0 or Tnx0 � Tnx for all n ∈ N. If

Tn0x = Tn0x0 for some n0 ∈ N, then Tnx→ z. Now let Tnx0 6= Tnx for all n ∈ N, then
d(Tnx0, T

nx) > 0 and so (Tnx0, T
nx) ∈ Y for all n ∈ N. Therefore from (2.1), we have

F (d(Tnx0, T
nx)) ≤ F (d(Tn−1x0, T

n−1x))− τ
≤ F (d(Tn−2x0, T

n−2x))− 2τ

...
≤ F (d(x0, x))− nτ.(2.10)

Taking into account (F2), from (2.10) we have limn→∞ d(T
nx0, T

nx) = 0, and so,
limn→∞ T

nx0 = limn→∞ T
nx = z.

Case 2. If x � x0 or x0 � x, then from (2.9), there exist x1, x2 ∈ X such that

x2 � x � x1 and x2 � x0 � x1.

Therefore, as in the Case 1, we can show that

lim
n→∞

Tnx1 = lim
n→∞

Tnx2 = lim
n→∞

Tnx = lim
n→∞

Tnx0 = z.

2.5. Remark. As we can see in the Example 2.3, if the condition (2.9) is not satisfied,
then the fixed point of T may not be unique.

Acknowledgment. The authors are grateful to the referees because their suggestions
contributed to improve the paper.
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Abstract
This paper studies the existence of symmetric positive solutions for a
second order nonlinear semipositone boundary value problem with in-
tegral boundary conditions by applying the Krasnoselskii fixed point
theorem. Emphasis is put on the fact that the nonlinear term f may
take negative value. An example is presented to demonstrate the ap-
plication of our main result.
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1. Introduction
We will be concerned with proving the existence of at least one symmetric posi-

tive solution to the semipositone second order nonlinear boundary value problem on a
symmetric time scale T given by

[g(t)u4(t)]∇ + λf(t, u(t)) = 0, t ∈ (a, b),(1.1)

αu(a)− β lim
t→a+

g(t)u4(t) =

∫ b

a

h1(s)u(s)∇s,(1.2)

αu(b) + β lim
t→b−

g(t)u4(t) =

∫ b

a

h2(s)u(s)∇s,(1.3)

where λ > 0 is a parameter, α, β > 0, ∇-differentiable function g ∈ C([a, b], (0,∞))
is symmetric on [a, b], h1, h2 ∈ L1([a, b]) is nonnegative, symmetric on [a, b] and the
continuous function f : [a, b]× [0,∞)→ R satisfies f(b+ a− t, u) = f(t, u).
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A class of boundary value problems with integral boundary conditions arise naturally
in thermal condition problems [4], semiconductor problems [7], and hydrodynamic prob-
lems [5]. Such problems include two, three and multi-point boundary conditions and
have recently been investigated by many authors [3, 6, 8, 9].

The present work is motivated by recent paper [3]. In this paper, Boucherif considered
the following second order boundary value problem with integral boundary conditions

x′′(t) = f(t, x(t)), 0 < t < 1,(1.4)

x(0)− cx′(0) =

∫ 1

0

g0(s)x(s)ds,(1.5)

x(1)− dx′(1) =

∫ 1

0

g1(s)x(s)ds,(1.6)

where f : [0, 1]×R→ R is continuous, g0, g1 : [0, 1]→ [0,∞) are continuous and positive,
c and d are nonnegative real parameters. The author established some excellent results
for the existence of positive solutions to problem (1.4) − (1.6) by using the fixed point
theorem in cones.

Throughout this paper T is a symmetric time scale with a, b are points in T. By an
interval (a, b), we always mean the intersection of the real interval (a, b) with the given
time scale, that is (a, b)∩T. Other types of intervals are defined similarly. For the details
of basic notions connected to time scales we refer to [1, 2].

Now, we present some symmetric definition.

1.1. Definition. A time scale T is said to be symmetric if for any given t ∈ T, we have
b+ a− t ∈ T.

1.2. Definition. A function u : T → R is said to be symmetric on T if for any given
t ∈ T, u(t) = u(b+ a− t).

2. The Preliminary Lemmas
In this section we collect some preliminary results that will be used in subsequent

section.
Throughout the paper we will assume that the following conditions are satisfied:

(H1) α, β > 0,
(H2) ∇-differentiable function g ∈ C([a, b], (0,∞)) is symmetric on [a, b],
(H3) the continuous function f : [a, b]× [0,∞)→ R is semipositone, i.e., f(t, u) needn’t
be positive for all (t, u) ∈ [a, b]× [0,∞) and f(., u) is symmetric on [a, b] for all u ≥ 0,
(H4) h1, h2 ∈ L1([a, b]) is nonnegative, symmetric on [a, b] and A > 0, where A =

µ + (β −K)v1 − βv2, K =
µ

α
, µ = 2αβ + α2

∫ b

a

∆r

g(r)
, v1 =

∫ b

a

h1(τ)∇τ , v2 =∫ b

a

h2(τ)∇τ .

The lemmas in this section are based on the boundary value problem

−[g(t)u4(t)]∇ = p(t), t ∈ (a, b)(2.1)

with boundary conditions (1.2)− (1.3).
To prove the main result, we will employ following lemmas.

2.1. Lemma. Let (H1), (H2) hold and A 6= 0. Then for any p ∈ C([a, b]), the boundary
value problem (2.1)− (1.2)− (1.3) has a unique solution u given by
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u(t) =

∫ b

a

H(t, s)p(s)∇s,

where

H(t, s) = G(t, s) +B1

∫ b

a

G(s, τ)h1(τ)∇τ +B2

∫ b

a

G(s, τ)h2(τ)∇τ(2.2)

G(t, s) =
1

µ


(β + α

∫ s

a

∆r

g(r)
)(β + α

∫ b

t

∆r

g(r)
), a ≤ s ≤ t ≤ b,

(β + α

∫ t

a

∆r

g(r)
)(β + α

∫ b

s

∆r

g(r)
), a ≤ t ≤ s ≤ b,

(2.3)

where µ = 2αβ + α2

∫ b

a

∆r

g(r)
, B1 =

K − β
A

,B2 =
β

A
.

2.2. Lemma. Assume that (H1), (H2) and (H4) hold. Then we have
(i) H(t, s) > 0, G(t, s) > 0, for t, s ∈ [a, b],
(ii) H(b+ a− t, b+ a− s) = H(t, s), G(b+ a− t, b+ a− s) = G(t, s), for t, s ∈ [a, b],

(iii)
1

µ
β2γ ≤ H(t, s) ≤ H(s, s) ≤ 1

µ
γD and

1

µ
β2 ≤ G(t, s) ≤ G(s, s) ≤ 1

µ
D, for

t, s ∈ [a, b],

where D = (β + α

∫ b

a

∆r

g(r)
)2, γ = 1 +B1v1 +B2v2.

Proof. It is clear that (i) hold. Now we prove that (ii) and (iii) hold. First, we consider
(ii). If t ≤ s, then b+ a− t ≥ b+ a− s. Using (2.3) and the assumption (H2), we get

G(b+ a− t, b+ a− s) =
1

µ
(β + α

∫ b+a−s

a

∆r

g(r)
)(β + α

∫ b

b+a−t

∆r

g(r)
)

=
1

µ
(β + α

∫ s

b

∆(b+ a− r)
g(b+ a− r) )(β + α

∫ a

t

∆(b+ a− r)
g(b+ a− r) )

=
1

µ
(β + α

∫ b

s

∆r

g(r)
)(β + α

∫ t

a

∆r

g(r)
) = G(t, s).

Similarly, we can prove that G(b+ a− t, b+ a− s) = G(t, s), for s ≤ t. Thus we have
G(b+ a− t, b+ a− s) = G(t, s), for t, s ∈ [a, b]. Now by (2.2), for t, s ∈ [a, b], we have

H(b+ a− t, b+ a− s) = G(b+ a− t, b+ a− s) +B1

∫ b

a

G(b+ a− s, τ)h1(τ)∇τ

+B2

∫ b

a

G(b+ a− s, τ)h2(τ)∇τ

= G(t, s)+B1

∫ a

b

G(b+a−s, b+a−τ)h1(b+a−τ)∇(b+a−τ)

+B2

∫ a

b

G(b+ a− s, b+ a− τ)h2(b+ a− τ)∇(b+ a− τ)

= G(t, s) +B1

∫ b

a

G(s, τ)h1(τ)∇τ +B2

∫ b

a

G(s, τ)h2(τ)∇τ

= H(t, s).

So (ii) is established. Now we show that (iii) holds. In fact, if t ≤ s, from (2.3) and
the assumption (H2), then we get



26

G(t, s) =
1

µ
(β + α

∫ t

a

∆r

g(r)
)(β + α

∫ b

s

∆r

g(r)
) ≤ 1

µ
(β + α

∫ s

a

∆r

g(r)
)(β + α

∫ b

s

∆r

g(r)
)

= G(s, s)

≤ 1

µ
(β + α

∫ b

a

∆r

g(r)
)(β + α

∫ b

a

∆r

g(r)
) =

1

µ
(β + α

∫ b

a

∆r

g(r)
)2 =

1

µ
D.

Similarly, we can prove that G(t, s) ≤ G(s, s) ≤ 1

µ
D for s ≤ t.

Therefore G(t, s) ≤ G(s, s) ≤ 1

µ
D, for t, s ∈ [a, b]. And then, by (2.2), we have

H(t, s) = G(t, s) +B1

∫ b

a

G(s, τ)h1(τ)∇τ +B2

∫ b

a

G(s, τ)h2(τ)∇τ

≤ G(s, s) +B1

∫ b

a

G(τ, τ)h1(τ)∇τ +B2

∫ b

a

G(τ, τ)h2(τ)∇τ

≤ 1

µ
D +

1

µ
DB1

∫ b

a

h1(τ)∇τ +
1

µ
DB2

∫ b

a

h2(τ)∇τ =
1

µ
D(1 +B1v1 +B2v2)

=
1

µ
Dγ.

On the other hand, for t, s ∈ [a, b], we have

G(t, s) ≥ 1

µ
(β + α

∫ a

a

∆r

g(r)
)(β + α

∫ b

b

∆r

g(r)
) =

1

µ
β2.

And then, we get

H(t, s) = G(t, s) +B1

∫ b

a

G(s, τ)h1(τ)∇τ +B2

∫ b

a

G(s, τ)h2(τ)∇τ

≥ 1

µ
β2 +

1

µ
β2B1

∫ b

a

h1(τ)∇τ +
1

µ
β2B2

∫ b

a

h2(τ)∇τ =
1

µ
β2γ.

Thus for t, s ∈ [a, b], we have

1

µ
β2γ ≤ H(t, s) ≤ H(s, s) ≤ 1

µ
γD and

1

µ
β2 ≤ G(t, s) ≤ G(s, s) ≤ 1

µ
D.

This completes the proof.

2.3. Lemma. Let w be the unique positive solution of the boundary value problem

[g(t)u4(t)]∇ + 1 = 0(2.4)

with the boundary condition (1.2)− (1.3). Then,

w(t) ≤ Cδ, t ∈ [a, b],

where

δ =
β2

D
, C =

b− a
µβ2

D2γ(2.5)

Proof. Using Lemma 2.2, for all t ∈ [a, b], we have
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w(t) =

∫ b

a

H(t, s)∇s ≤ 1

µ
γD

∫ b

a

∇s = Cδ.

The proof is complete.

Let E denote the Banach space C[a, b] with the norm ‖u‖ = max
t∈[a,b]

|u(t)|. Define the

cone P ⊂ E by P = {u ∈ E : u(t) is symmetric and u(t) ≥ δ‖u‖ for t ∈ [a, b]}.

To obtain the a positive solution of BVP (1.1)−(1.3), the following fixed point theorem
is essential.

2.4. Theorem. Let E = (E, ‖.‖) be a Banach space, and let P ⊂ E be a cone in B.
Assume Ω1,Ω2 are bounded open subsets of E with 0 ∈ Ω1,Ω1 ⊂ Ω2, and let
S : P ∩ (Ω2\Ω1)→ P

be a continuous and completely continuous operator such that, either
(a) ‖Su‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Su‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω2, or
(b) ‖Su‖ ≥ ‖u‖, u ∈ P ∩ ∂Ω1, and ‖Su‖ ≤ ‖u‖, u ∈ P ∩ ∂Ω2.

Then S has a fixed point in P ∩ (Ω2\Ω1).

3. Main Results
In this section, we apply the Krasnoselskii fixed point theorem to obtain the exis-

tence of at least one symmetric positive solution for the nonlinear boundary value problem
(1.1)− (1.3).

The main result of this paper is following:

3.1. Theorem. Let (H1)− (H4) hold. Assume that
(C1) There exists a constant M > 0 such that f(t, u) ≥ −M for all (t, u) ∈ [a, b] ×

[0,∞),
(C2) There exist t1, t2 ∈ (a, b) such that

lim
u→∞

f(t, u)

u
=∞

uniformly on [t1, t2],
(C3) r is a given positive real number and the parameter λ satisfies

0 < λ ≤ η := min{ r

M1‖w‖
,

r

2MC
}(3.1)

where M1 = max{f(t, u) +M : (t, u) ∈ [a, b]× [0, r]}.
Then the boundary value problem (1.1) − (1.3) has at least one symmetric positive

solution u such that ‖u‖ ≥ r

2
.

Proof. Let x(t) = λMw(t), where w is the unique solution of the boundary value problem
(2.4)− (1.2)− (1.3).
We shall show that the following boundary value problem

[g(t)y4(t)]∇ + λF (t, y(t)− x(t)) = 0, t ∈ (a, b),(3.2)

αy(a)− β lim
t→a+

g(t)y4(t) =

∫ b

a

h1(s)y(s)∇s,(3.3)

αy(b) + β lim
t→b−

g(t)y4(t) =

∫ b

a

h2(s)y(s)∇s,(3.4)

where
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F (t, z) =

{
f(t, z) +M, z ≥ 0,
f(t, 0) +M, z ≤ 0,

has at least one positive solution. Thereafter we shall obtain at least one positive solution
for the boundary value problem (1.1)− (1.3).

It is well known that the existence of positive solution to the boundary value problem
(3.2) − (3.4) is equivalent to the existence of fixed point of the operator S. So we shall
seek a fixed point of S in our cone P where the operator S : E → E is defined by

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s, t ∈ [a, b].

First, it is obvious that S is continuous and completely continuous.
Now we shall prove that S(P ) ⊆ P . Let y ∈ P . Then, using Lemma 2.2, we get for

t ∈ [a, b],

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s ≤ λ

µ
γD

∫ b

a

F (s, y(s)− x(s))∇s,

and so

‖Sy‖ ≤ λ

µ
γD

∫ b

a

F (s, y(s)− x(s))∇s.(3.5)

Now, using Lemma 2.2 and (3.5), we obtain for t ∈ [a, b],

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s ≥ λ

µ
β2γ

∫ b

a

F (s, y(s)− x(s))∇s

=
λ

µ
δγD

∫ b

a

F (s, y(s)− x(s))∇s ≥ δ‖Sy‖.

On the other hand, noticing y(t), x(t) and f(t, u) are symmetric on [a, b], we have

Sy(b+ a− t) = λ

∫ b

a

H(b+ a− t, s)F (s, y(s)− x(s))∇s

= λ

∫ b

a

H(b+ a− t, s)(f(s, y(s)− x(s)) +M)∇s

= λ

∫ a

b

H(b+ a− t, b+ a− s)(f(s, (y−x)(b+ a− s)) +M)∇(b+ a− s)

= λ

∫ b

a

H(t, s)(f(s, (y − x)(s)) +M)∇s

= λ

∫ b

a

H(t, s)F (s, (y − x)(s))∇s = Sy(t)

Therefore Sy is symmetric.
So, we get S(P ) ⊆ P .

Let Ω1 = {y ∈ E : ‖y‖ < r}. We shall prove that ‖Sy‖ ≤ ‖y‖ for y ∈ P ∩ ∂Ω1. If
y ∈ P ∩ ∂Ω1, then ‖y‖ = r. By definition and (3.1), we find for t ∈ [a, b],

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s ≤ λM1

∫ b

a

H(t, s)∇s ≤ λM1‖w‖ ≤ r.
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Therefore, we get ‖Sy‖ ≤ r = ‖y‖ for y ∈ P ∩ ∂Ω1.

Let K be a positive real number such that

1

2
λK(t2 − t1)δ

1

µ
β2γ > 1.(3.6)

In view of (C2), there exists N > 0 such that for all z ≥ N and t ∈ [t1, t2],

F (t, z) = f(t, z) +M ≥ Kz(3.7)

Now, set

R = r +
2N

δ
.(3.8)

Let Ω2 = {y ∈ E : ‖y‖ < R}. We shall prove that ‖Sy‖ ≥ ‖y‖ for y ∈ P ∩ ∂Ω2. If
y ∈ P ∩ ∂Ω2, then ‖y‖ = R. So from Lemma 2.3 and the fact that y ∈ P , we get for
t ∈ [a, b],

x(t) = λMw(t) ≤ λMCδ ≤ λMC
y(t)

R
.

This implies for t ∈ [a, b],

y(t)− x(t) ≥ (1− λMC

R
)y(t) ≥ (1− λMC

R
)δR,

and, from (3.1) and (3.8), we get for t ∈ [t1, t2],

y(t)− x(t) ≥ 1

2
Rδ ≥ N.(3.9)

Thus, by (3.7) and (3.9), we see that for t ∈ [t1, t2],

F (t, y(t)− x(t)) ≥ K(y(t)− x(t)) ≥ 1

2
KRδ.(3.10)

Considering Lemma 2.2 and (3.10), we get for t ∈ [a, b],

Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s ≥ λ 1

µ
β2γ

∫ t2

t1

F (s, y(s)− x(s))∇s

≥ 1

2µ
λKRδβ2γ

∫ t2

t1

∇s

and so by (3.6),

‖Sy‖ ≥ 1

2µ
λKR(t2 − t1)δβ2γ ≥ R.

Therefore, we get ‖Sy‖ ≥ R = ‖y‖ for y ∈ P ∩ ∂Ω2.

Then it follows from Theorem 2.1 that S has a fixed point y ∈ P such that

r ≤ ‖y‖ ≤ R.(3.11)

Moreover, using (3.1), (3.11) and Lemma 2.3, we obtain for t ∈ [a, b],



30

y(t) ≥ δ‖y‖ ≥ rδ ≥ 2λMCδ ≥ 2λMw(t) = 2x(t).(3.12)

Hence,
u(t) = y(t)− x(t) ≥ 0, t ∈ [a, b].

On the other hand, u(t) is symmetric on [a, b] since y and x are symmetric.
Now, we shall prove that u is a positive solution of the boundary value problem (1.1)−
(1.3). Since y is a fixed point of the operator S,

Sy(t) = y(t), t ∈ [a, b],
or

y(t) = Sy(t) = λ

∫ b

a

H(t, s)F (s, y(s)− x(s))∇s

= λ

∫ b

a

H(t, s)(f(s, y(s)− x(s)) +M)∇s

Noticing that,

w(t) =

∫ b

a

H(t, s)∇s

we have for t ∈ [a, b],

y(t) = λ

∫ b

a

H(t, s)f(s, y(s)− x(s))∇s+ λMw(t),

or

y(t)− x(t) = λ

∫ b

a

H(t, s)f(s, y(s)− x(s))∇s,

and hence

u(t) = λ

∫ b

a

H(t, s)f(s, u(s))∇s.

This shows that u is a symmetric positive solution of the boundary value problem of
(1.1)− (1.3). In addition, from (3.11) and (3.12), it follows that

‖u‖ ≥ ‖y‖
2
≥ r

2
.

3.2. Example. Let T = Z. Consider the following boundary value problem

[
100

t2 + 1
u4(t)]∇ + λ(beu cos2 t− t2) = 0, t ∈ (−3, 3),(3.13)

25u(−3)− 5 lim
t→−3+

100

t2 + 1
u4(t) =

∫ 3

−3

u(s) cosh s∇s,(3.14)

25u(3) + 5 lim
t→3−

100

t2 + 1
u4(t) =

∫ 3

−3

u(s) cosh s∇s,(3.15)

where b > 0, α = 25, β = 5, h1(t) = h2(t) = cosh t, g(t) =
100

t2 + 1
, f(t, u(t)) = beu cos2 t−

t2. It is obvious that f satisfies the conditions (C2) and (H3).
Now we shall obtain the constants M and M1. Clearly, for all (t, u) ∈ [−3, 3]× [0,∞),

we get
f(t, u) = beu cos2 t− t2 ≥ −t2 ≥ −9 and so we can choose the constant M = 9.
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M1 = max
(t,u)∈[−3,3]×[0,r]

beu cos2 t− t2 +M = ber +M .

It follows from a direct calculation that

v1 = v2 =

∫ 3

−3

h1(s)∇s ∼= 21.5, µ = 2αβ + α2

∫ 3

−3

∆r

g(r)
∼= 406.2,

D = (β + α
∫ 3

−3

∆r

g(r)
)2 ∼= 126.6, A = µ+ (β −K)v1 − βv2 ∼= 56, 87,

B1 =
K − β
A

∼= 0.198, B2 =
β

A
∼= 0.088, γ = 1 +B1v1 +B2v2 ∼= 7.15,

C =
6

µβ2
D2γ ∼= 67.71.

Then by Theorem 3.1, we see that the boundary value problem (3.13) − (3.15) has
at least one symmetric positive solution u such that ‖u‖ ≥ r

2
for any λ ∈ (0, η] where

η := min{ r

M1‖w‖
,

r

2MC
}, r is a given positive number and w is the unique positive

solution of the boundary value problem [
100

t2 + 1
u4(t)]∇ + 1 = 0 with the boundary

condition (3.14)− (3.15).
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On norm-preserving isomorphisms of Lp(µ,H)
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Abstract
Given an arbitrary positive measure space (X,A, µ) and a Hilbert space
H. In this article we give a new proof for the characterization theorem
of the surjective linear isometries of the space Lp(µ,H) (for 1 ≤ p <
∞, p 6= 2) which is essentially different from the existing one, and
depends on the p-projections of Lp(µ,H). We generalize the known
characterization of the p-projections of Lp(µ,H) for σ-finite measure to
the arbitrary case. They are proved to be the multiplication operations
by the characteristic functions of the locally measurable sets, or that of
the clopen (closed-open) subsets of the hyperstonean space the measure
µ determines.
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linear isometries.
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1. Introduction
The isometric theory of Banach spaces still fascinates some mathematicians. One of

the main problems in this area is to characterize the linear isometries on or between these
spaces. It might seem to be relatively easy at first glance but, generally speaking, it is
indeed very difficult a problem to solve. It would be very unrealistic to expect that there
might be a complete solution of this problem. However, for some subclasses there has
been a great progress in that direction. For instance, the surjective isometries of C(X)
or Lp type classical Banach spaces this problem is solved completely, but the case of into
isometries is still far from being settled.

Let (X,A, µ) be a positive measure space and H a Hilbert space. For any 1 ≤ p <∞,
p 6= 2, the Bochner space Lp(X,A, µ;H) will be denoted by Lp(µ,H), if there is no
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ambiguity about the underlying measurable space. For definitions and properties of
these spaces we refer to [6].

A regular set isomorphisms on A, defined modulo null sets, means a mapping on A to
A with (i) ϕ(A′) = ϕX \ϕA for every A in A, where A′ denotes the complement of A, (ii)
ϕ(
⋃
An) =

⋃
ϕAn for any sequence 〈An〉 in A mutually disjoint sets, and (iii) µ(ϕA) = 0

if, and only if, µ(A) = 0. Any such mapping defines a function Φ on the set of measurable
functions which we call the induced map. It is characterized by Φ(χAe) = χϕAe, A ∈ A,
e ∈ H, whereχA denotes the characteristic function of A (see [7, pp. 453-454]).

The characterization of the surjective linear isometries of Lp spaces was started by
Banach [1] for the Lebesgue measure λ on the closed interval [0, 1]. He proved that for
every linear isometry T of Lp(λ), 1 ≤ p < ∞, p 6= 2, there exists a measurable function
σ of [0, 1] such that for f ∈ Lp(λ)

(Tf)(x) = h(x)f(σ(x)) a.e. on [0, 1].

If φ is the regular set isomorphism defined by φ(A) = σ−1(A) on the Borel algebra of
[0, 1], then the above representation becomes

(1.1) (Tf)(x) = h(x)Φ(f)(x)) a.e. on [0, 1].

In [11], Lamperti proves that for any σ-finite measure space (Ω,A, µ), the linear isome-
tries of Lp(µ) onto itself, 1 ≤ p < ∞, p 6= 2, are indeed of the above form (1) except
that the isomorphism φ of the σ-algebra A, need not be defined by a point mapping.
Moreover, if the measure ν is defined by ν(A) = µ[φ−1(A)], A ∈ A, then

(1.2) |h(x)|p = dν/dµ a.e. on Ω.

In [3], Cambern generalizes this result to the Bochner spaces. He proves that if
(Ω,A, µ) is a σ-finite measure space and H is a separable Hilbert space, then for any
linear isometry of Lp(µ,H) onto itself, 1 ≤ p <∞, p 6= 2, in addition to the maps h and
Φ in Lamperti’s characterization now there also exists a weakly measurable operator-
valued function U defined on X, where Ux = U(x) is an isometry of H onto itself for
almost all x ∈ X, such that for F ∈ Lp(µ,H),

(1.3) (Tf)(x) = Ux(h(x)Φ(F )(x)) a.e. on X.

In [9], Greim and Jamison obtain the same representation for an arbitrary Hilbert
space, but the measure is still σ-finite.

In [5] this characterization is extended to perfect measures. In view of the fact that
any arbitrary measure space can be replaced by a perfect one without disturbing the Lp

spaces for 1 ≤ p < ∞, perhaps possibly enlarging the L∞ space [4], for Hilbert spaces
the above result is then the most general result one can get for the surjective isometries.

The purpose of this article is two-fold. Our first goal is to obtain a complete description
of the p-projections of Lp(µ,H) (which is known if µ is σ-finite). We will prove that a
p-projection of Lp(µ,H) is the characteristic function of a locally measurable set (i.e. its
intersection with every set of finite measure is measurable), and of a measurable set if
µ is decomposable, in particular perfect. (For the definition of a decomposable measure
see [10, p.317].) Our second goal is to use this result to give a second proof for the
characterization of the isometries of Lp(µ,H) which is fundamentally different from the
one given in [5], and we shall also demonstrate that in order to prove this characterization
theorem one does not have to replace the given measure space by a perfect one, but this
will be possible after we characterize the so-called pseudocharacteristic functions on the
σ-rign of all σ-finite measurable sets.
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2. Norm-Preserving Isomorphisms of Lp(µ,H)

Let us recall that a compact Hausdorff space X is called extremally disconnected if
the closure of every open subset is open, and a nonnegative extended real-valued Borel
measure µ¶ on X is called perfect if

(i) every nonempty open set contains a clopen set with finite positive measure,
(ii) every nowhere dense Borel set has measure zero (equivalently, every closed set

with empty interior has measure zero).
A perfect measure space (X,B, µ) will mean that X is an extremally disconnected

Hausdorff space, B is the Borel algebra on X and µ is a perfect measure. A hyperstonean
space is an extremally disconnected compact Hausdorff space on which there is a perfect
Borel measure.

Let F be a Banach space, and 1 ≤ p <∞, p 6= 2. A linear mapping P on F is said to
be a p-projection if P 2 = P and

‖x‖p = ‖Px‖p + ‖x− Px‖p for all x ∈ F.

The set Pp(F ) of p-projections on F is a complete Boolean algebra and its Stonean space
is hyperstonean [2, pp.11, 25-26].

Given a measure space (S,A, µ) and 1 ≤ p < ∞, p 6= 2. For any measurable set A,
the mapping f −→ fχA, f ∈ Lp(µ,H), is a p-projection on Lp(µ,H), and if µ is σ-finite
the converse is also true [8, pp.124-126].

In this section we shall fix a perfect measure space (Ω,B, µ) which may be assumed
to have the property that every locally null set is actually null and show that the p-
projections on the Bochner space Lp(µ,H), 1 ≤ p <∞, p 6= 2, are of the above form.

Any Borel subset B of Ω is equivalent to a clopen subset of Ω in the sense that there
exists a clopen subset U of Ω such that B4U = (B \U)∪ (U \B) is locally null [2, p.31].
Thus any characteristic function χA, with A measurable, equals a.e. to the characteristic
function of a clopen set.

2.1. Theorem. For any clopen subset B of Ω, the function χB : f −→ fχB is a p-
projection on Lp(µ,H), and conversely, every p-projection on Lp(µ,H) is of this form.

Proof. Property (i) of µ, together with an application of Zorn’s lemma, can be used to
prove that there exists a disjoint family {Ωi : i ∈ I} of clopen subsets of Ω with positive
finite measure such that their union is dense in Ω. Therefore, the closed set Ω \ ∪

i
Ωi has

measure zero. From this it follows that

Lp(µ,H) =
∑
i

⊕ Lp(Ωi, H), (p-direct sum).

Now let P be a p-projection on Lp(µ,H). Then by a theorem in [2, p.20], for each i ∈ I
there exists a p-projection Pi on the Banach subspace Lp(Ωi, H) of Lp(µ,H) such that
P =

∑
i

⊕ Pi (direct sum), that is, P (f) =
∑
i

Pi(fi) for all f ∈ Lp(µ,H) where each

fi = fχΩi .
Since for each i, µ is finite on Ωi, Pi = χBi for some clopen subset Bi contained in Ωi.

Hence P =
∑
i

⊕Pi =
∑
i

⊕χBi = χB , where B = cl(∪Bi). This completes the proof. �

Throughout the section, T will denote a fixed surjective linear isometry on L1(µ,H).

2.2. Theorem. (i) For each measurable set A, the mapping P = TχAT
−1 is a p-

projection on Lp(µ,H).

¶All measures throughout this paper will be nonnegative.
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(ii) The mapping ϕ defined on the Boolean algebra K(Ω) by the equation TχAT−1 =
χϕA is an isomorphism of K(Ω) onto itself. Moreover, for any sequence {An} in K(Ω),
ϕ(
∨
n

An) =
∨
n

ϕ(An) (i.e., ϕ(cl(
⋃
n

An)) = cl(
⋃
n

ϕ(An)).

Proof. (i) Obviously P 2 = P and since T−1 is also an isometry and χA is a p-projection,
for each f in Lp(µ,H) we have

‖Pf‖p + ‖f − Pf‖p =
∥∥TχAT−1f

∥∥p +
∥∥TT−1f − TχAT−1f

∥∥p
=
∥∥χAT−1f

∥∥p ∥∥T−1f − χAT−1f
∥∥p

=
∥∥T−1f

∥∥p
= ‖f‖p .

This completes the proof of (i).
(ii) Let B be a clopen subset of Ω, then, T−1χBT , being a p-projection, equals χA for

some A in K(Ω). Therefore χBT = TχA which means that B = ϕA, hence ϕ maps K(Ω)
onto itself.

Now let A,B be any two sets in K(Ω). Then

TχA∩B = T (χAχB) = χϕBTχA = χϕAχϕBT = χϕA∩ϕBT

which implies that ϕ(A ∩B) = ϕA ∩ ϕB.
Next we show that ϕ(A ∪B) = ϕA ∪ ϕB. First let us assume that A ∩B = ∅. Then,

TχA∪B = T (χA + χB) = (χϕA + χϕB)T = χϕA∪ϕBT

from which it follows that ϕ(A ∪B) = ϕA ∪ ϕB as claimed.
Now let A,B be any two sets in K(Ω), then by the preceding result,

ϕ(A ∪B) = [ϕ(A \B) ∪ ϕ(A ∩B)] ∪ [ϕ(A ∩B) ∪ ϕ(B \A)]

= ϕA ∪ ϕB.

For the last claim in the theorem, let {An} be a sequence in K(Ω). first let us assume that
they are mutually disjoint. Let A =

⋃
n

An and for each n, Bn =
⋃

i≥n+1

Ai. Then
⋂
n

Bn = ∅

and for f ∈ Lp(µ,H), for each n we have∥∥∥∥∥χ(t)
A f(t)−

n∑
i=1

χ
(t)
Ai
f(t)

∥∥∥∥∥
p

= χBn(t) ‖f(t)‖p ≤ ‖f(t)‖p

for all t in Ω, and since ‖f(t)‖p is integrable, by the dominated convergence theorem [10,
p.172] we obtain

lim
n

∥∥∥∥∥χA −
n∑
i=1

χAif

∥∥∥∥∥
p

= lim
n

∫
Ω

χBn(.) ‖f(.)‖p dµ = 0

which means that χAf =
∞∑
i=1

χAif in Lp(µ,H).

From this, it follows that the series
∑
i=1

χAi converges pointwise to χA (as operators

on Lp(µ,H)). Similarly, the series
∑
i

ϕAi converges pointwise to the operator χ⋃
i
Ai
.

Therefore, since each open set and its closure differ by a null set,

TχclA = TχA = T (
∑
n

χAn) =
∑
n

TχAn

=
∑
n

(χϕAnT ) = (χ⋃
n
ϕAn)T = (χcl⋃

n
ϕAn)T
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which implies that

(2.1) ϕ(clA) = cl(
⋃
n

ϕAn).

Now let {An} be any sequence in K(Ω) and define C1 = A1, Cn = An \
n−1⋃
i=1

for all n ≥ 2.

Then, Cn ’s are mutually disjoint and
⋃
n

Cn =
⋃
n

An, and since ϕ maps disjoint sets to

disjoint set and Cn ⊂ An, ∀n, it follows that

(2.2)
⋃
n

ϕ(Cn) ⊂
⋃
n

ϕ(An)

On the other hand, since An ⊂
n⋃
i=1

Ci we have ϕAn ⊂
n⋃
i=1

ϕCi ⊂
∞⋃
i=1

ϕCi ∀n, therefore⋃
n

ϕAn ⊂
⋃
n

ϕCn. Combining this inclusion with (5) we obtain

(2.3)
∞⋃
n=1

ϕAn =

∞⋃
n=1

ϕCn.

Hence from (4) and (6) one obtains

ϕ(clA) = ϕ(cl
⋃
n

An) = ϕ(cl
⋃
n

Cn) = cl(
⋃
n

ϕCn)

= cl(
⋃
n

ϕCn)

as claimed. This completes the proof of the theorem. �

An element f of Lp(µ,H) is an equivalence class rather than a function. The support
of each function in this class is equivalent to the same clopen set which we shall call the
support of f and denote it by supp(f).

The following lemmas will be needed for our next theorem.

2.3. Lemma. For each f ∈ Lp(µ,H), ϕ(supp f) =supp(Tf).

Proof. Fix f ∈ Lp(µ,H), and let A =supp(f), S =supp(Tf). Since Tf = T (χAf) =
χϕATf we conclude that S ⊂ ϕA. Now let B ⊂ ϕA \ S be any clopen set with finite
measure, and let u ∈ H, u 6= 0. Then there exists a function g in Lp(µ,H) such that Tg =
χBu. Since χBu and Tf have disjoint supports and T−1 maps functions with disjoint
supports to functions with disjoint supports [3, p.12] g and f have disjoint supports.
Thus, since A and supp(g) are disjoint

0 = T (χAg) = χϕATg = χϕAχBu = χBu

which means that B = ∅. Hence S = ϕA, proving our lemma. �

2.4. Corollary. Each Yi = ϕΩi is σ-finite.

2.5. Lemma. For each i ∈ I, let Yi = ϕΩi, and Y =
⋃
i

Yi. Then

(i) Y ′ is a closed null set and T maps Lp(Ωi, H) onto Lp(Yi, H);
(ii) ϕ maps clopen sets in Ωi onto clopen sets in Yi.

Proof. For f ∈ Lp(Ωi, H),

supp(Tf) = ϕ(supp(f)) ⊂ ϕ(Ωi) = Yi

which shows that for each i, T maps Lp(Ωi, H) into Lp(Yi, H).
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Since the sets Yi are mutually disjoint,

Lp(Y,H) =
∑
i

⊕ Lp(Yi, H).

Thus, T maps Lp(µ,H) =
∑
i

⊕ Lp(Ωi, H) onto Lp(Y,H), which implies that Y ′ is a

closed null set, and that T maps Lp(Ωi, H) onto Lp(Yi, H) for all i ∈ I. This completes
the proof of (i).

For (ii) we fix i ∈ I and show that each clopen set Bi in Yi is the image under ϕ of a
clopen set in Ωi. Fix a clopen set B ⊂ Yi and let u ∈ H, u 6= 0. Then, there exists an f
in Lp(Ωi, H) such that Tf = χBu. By Lemma 2.3,

ϕ(supp(f)) = supp(Tf) = suppχBu = B,

proving (ii). �

We can show very easily that, for each i ∈ I, the mapping µ◦ϕ−1 is countably additive
on the algebra of all clopen subsets of Yi; that is, for any sequence {Bn} of mutually
disjoint clopen subsets of Yi whose union is also a clopen subset of Yi,

µ ◦ ϕ−1(
⋃
Bn) =

∑
n

µ ◦ ϕ−1(Bn)

Thus, since Yi is σ-finite, µ ◦ϕ−1 extends uniquely to a perfect regular Borel measure on
the Borel algebra of Yi [12, p. 120]. We will denote this extension also by µ ◦ϕ−1. Then
we define a measure ν and A by

ν(A) =
∑
i

µ ◦ ϕ−1(A ∩ Ωi), A ∈ A.

We have completed almost all but few details of the proof of the following theorem:

2.6. Theorem. There exists a locally strongly measurable operator-valued function U
and a measurable scalar-valued function h on Ω such that for each x ∈ Ω, Ux = U(x) is
an isometry of H onto itself and that for every f in Lp(µ,H),

(Tf)(x) = Ux(h(x)Φ(f)(x)) a.e. on Ω

where Φ is the isomorphism of Lp(µ,H) onto itself induced by ϕ. Moreover,

|h|p =
dν

dµ
,

(the Radon-Nikodým derivative). Conversely, every mapping of the above form is an
isometry of Lp(µ,H) onto itself.

Proof. For each i ∈ I, by a theorem of Greim and Jamison [9, p.513], there exists a
strongly measurable function U (i) from Yi into the set of linear surjective isometries of
H and a scalar function hi on Yi such that for every f in Lp(Ωi, H),

(Tf)(y) = U (i)
y (hi(y)Φ(f)(y)) a.e. on Yi

and furthermore,

|hi|p =
d(µ ◦ ϕ−1)

dµi

where µi denotes the restriction of µ to A(Yi).
Each measurable set A is equivalent to a unique clopen set Ac, and so, we may extend

ϕ to a regular set isomorphism from A onto itself, defined modulo null sets, by the
equation

ϕ(A) = ϕ(Ac), A ∈ A
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Since for each i ∈ I, ϕ maps A(Ωi) (the trace of A on Ωi), isomorphically (modulo null
sets) onto A(Yi), the induced mapping Φ is an isomorphism of Lp(Ωi, H) onto Lp(Yi, H).

Now we let U =
∑
i

U (i), h =
∑
i

hi on Y , and on Y ′ we let Uy = I (the identity operator

on H) and h(y) = 1. Obviously U is locally strongly measurable, h is measurable, and
for each f in Lp(µ,H),

(Tf)(x) = Ux(h(x)Φ(f)(x))

a.e. on Ω, and furthermore,

|h|p =
dν

dµ
.

This completes the proof of our theorem. �

3. The Case of Nonperfect Measures
In the proof of Theorem 1, the isomorphism ϕ on K(Ω) played a crucial role, and it

was constructed by the help of the p-projections on Lp(µ,H) which were characterized
as the characteristic functions of the sets in K(Ω).

In this section, instead of a perfect measure space we will work with an arbitrary
measure space (X,A, µ), and prove that a similar construction is possible.

Let Aσ denote the Boolean ring of σ-finite measurable sets, (two sets A,B are regarded
to be the same if their symmetric difference A4 B = (A \ B) ∪ (B \ A) is locally null,
i.e., its intersection with every set in Aσ has measure zero), with the ring operations
U + V = U 4 V and U.V = U ∩ V.

Following [2] we shall call a function γ : Aσ −→ Aσ a pseudocharacteristic function
(PCF) if γ(AB) = Aγ(B) = Bγ(A) for all A,B in Aσ. Clearly, for each A ∈ A, the
mapping γA : B −→ B ∩ A, B ∈ Aσ is a PCF on Aσ, but examples show that the
converse is not always true. However, as we shall see soon that something very close to
this is true.

It is known that if 1 ≤ p < ∞, p 6= 2, and γ is a PCF on Aσ then the mapping
P : f −→ fχγ(S(f)) is a p-projection on the Lp-space Lp(µ) of scalar-valued measurable
functions, where s(f) =supp(f); and conversely, every p-projection on Lp(µ) is of this
form [2, p.58]. Greim [8] generalizes this result to Lp(µ,H) for σ-finite µ, that is, he
proves that a mapping P on Lp(µ,H) is a p-projection if and only if P = χA for some
measurable set A.

In this section the above mentioned representations for the p-projections on Lp(µ)
and Lp(µ,H) (with µ σ-finite), will be generalized to the p-projections on Lp(µ,H) for
arbitrary µ. For this we will need the following:

3.1. Proposition. Let γ be a PCF on Aσ(defined modulo null sets). Then
(i) γ(C) ⊂ γ(B) ⊂ B for all B,C in Aσ and C ⊂ B. In particular γ(∅) = ∅,
(ii) for any sequence {Bn} in Aσ

γ(
⋃
n

Bn) =
⋃
n

γ(Bn) and γ(
⋂
n

Bn) =
⋂
n

γ(Bn),

consequently γ maps disjoint sets to disjoint sets, and
(iii) γ(B \ C) = γ(B) \ γ(C) for any B, C in Aσ.

Proof. The proof of (i) is trivial.
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(ii) Let {Bn} be a sequence in Aσ, B =
⋃
n

Bn. Then, γ(Bn) = γ(B) ∩ Bn for all n,

therefore,

γ(
⋂
n

Bn) = γ(B) ∩ (
⋂
n

Bn) =
⋂
n

[γ(B) ∩Bn] =
⋂
n

γ(Bn).

(iii) Let A = γ(B ∪ C), then since E ⊂ F implies that γ(E) = E ∩ γ(F ),

γ(B \ C) = γ((B \ C) ∩ (B ∩ C)) = (B \ C) ∩ γ(B ∪ C)

= (B \ C) ∩A = (B ∩A) \ (C ∩A) = γ(B) \ γ(C).

This completes the proof. �

We will call two measurable sets µ-disjoint if their intersection has measure zero.
One can apply Zorn’s lemma to show that in any measure space there exists a maximal
family of mutually µ-disjoint measurable sets with strictly positive finite measure. Any
such family will be called a µ-decomposition for the measure space.

Let {Fi : i ∈ I} be a µ-decomposition for the measure space (X,A, µ). Then, it can
be shown very easily that every σ-finite measurable set is contained a.e. in the union of
a countable subfamily of {Fi : i ∈ I} .

Given an arbitrary measure space (X,A, µ).We may and will assume that the measure
space is complete in the sense that every subset of a null set is measurable (i.e., if A ∈ A,
µ(A) = 0 then every subset of A is also in A).

3.2. Theorem. (i) Let γ be a PCF on Aσ. Then there exists a locally measurable subset
Y of X such that

γ(B) = B ∩ Y for all B ∈ Aσ,

(ii) For each locally measurable subset Y of X the mapping Eγ defined by

Eγ(f) = fχγ(S(f)), f ∈ Lp(µ,H)

is an p-projection on Lp(µ,H), where S(f) =supp(f) and γ(B) = B∩Y ; and conversely,
every p-projection on Lp(µ,H) is of this form.

Proof. Let {Fi : i ∈ I} be a µ-decomposition of the measure space (X,A, µ), and let B
be a σ-finite set. Then, there exist indices i1, i2, . . . in I such that B ⊂ Fi1 ∪Fi2 ∪ . . .a.e.
Let X1 =

⋃
k

Fik , B1 = B ∩ X1, B0 = B ∩ (X \ X1), and for each i ∈ I let Yi = γ(Fi),

Y =
⋃
i

Yi and Z = γ(X1). Since B0 is null, γ(B0) is null. Therefore,

γ(B) = γ(B1) ∪ γ(B0) = γ(B1 ∩X1) ∪ γ(B0)

= B1 ∩ Z a.e.
= B ∩ Z a.e.

Now, for each i, B ∩ (Yi \ Z) = B ∩ γ(Fi \X1) ⊂ B ∩ (Fi \X1) ⊂ B ∩ γ(X \X1) = B0,
and taking union over i, we obtain B ∩ (Y \ Z) ⊂ B0, so B ∩ (Y \ Z) is null, and since
Y ⊃ Z we have

γ(B) = (B ∩ Z) ∪ (B ∩ (Y \ Z)) a.e.
= B ∩ Y a.e.

which proves (i).
(ii) Now let E be a p-projection on Lp(µ). Then ∃ a PCF γ on Aσ such that

(3.1) E(f) = fχγ(S(f)), f ∈ L1(µ)
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and then by the first part of the theorem, there is a locally measurable set Y such that
γ(B) = B ∩ Y for all B ∈ Aσ.

Now, (7) becomes

E(f) = fχγ(S(f)) = fχS(f)∩Y = fχY for all f ∈ L1(µ).

Generalization of this result to the Bochner space Lp(µ,H) is routine. This completes
the proof of the theorem. �

3.3. Corollary. For each Lp-projection P there exists a locally measurable set Y such
that

(3.2) P (f) = fχY , f ∈ Lp(µ,H),

and conversely, for each locally measurable set Y , the mapping P defined by (8) is an
Lp-projection.

Clearly the correspondence between the Lp-projections and the locally measurable
sets is one-to-one modulo locally null sets.

Now, as in Section 2, using the above characterization of the Lp-projections we can
define a set isomorphisms ϕ from the σ-algebra Mι of all locally measurable sets onto
itself defined modulo locally null sets.

3.4. Remark. A natural question is whether or not the characterization obtained for
the linear isometries of the Bochner space Lp(µ,H) onto itself, 1 ≤ p <∞, p 6= 2, holds,
should a Banach space replace H as the range space. In general, the answer is in the
negative; however, Sourour [13, p.31] was able to replace H by a suitable Banach space.
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1. Introduction
In 1955, Stečkin [14] obtained the following one-side inequality for the tangent function

(1.1)
tanx

x
>

4/π

π − 2x
, 0 < x < π/2

where the constant 4/π is the best possible.

Later in 1978, Becker and Stark [2] presented the following double inequality

(1.2)
8

π2 − 4x2
<

tanx

x
<

π2

π2 − 4x2
, 0 < x < π/2

which is a generalization of the Stečkin’s inequality (1.1).
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In 2003, C.-P. Chen and F. Qi [3] established a double inequality for remainder rn(x) =
tanx − Sn(x), where Sn(x) is the nth partial sum of the power series of tanx. Their
double inequality can be reformulated as [16]:

1.1. Theorem. For 0 < x < π/2 and n ∈ N, we have

(1.3)
22(n+1)(22(n+1) − 1)|B2n+2|

(2n+ 2)!
x2n tanx < tanx− Sn(x) <

(
2

π

)2n

x2n tanx,

where

(1.4) Sn(x) =

n∑
i=1

22i(22i − 1)|Bi|
(2i)!

x2i−1

and Bj’s are the Bernoulli numbers.

The inequality (1.3) for n = 1 and 0 < x < 3
2

√
5(π2−8)

38
will give us a refinement of the

left-hand side of the Becker-Stark inequality (1.2). Also, the inequality (1.3) for n = 2 is
better than the Djokovic inequality [8]

x+
1

3
x3 < tanx < x+

4

9
x3, 0 < x < π/6.

In 2010, Zhu and Hua [17] established the following general refinement of the Becker-
Stark inequality

1.2. Theorem. Let 0 < x < π/2 and a natural number n ≥ 0. Then

(1.5)
P2n(x) + αnx

2n+2

π2 − 4x2
<

tanx

x
<
P2n(x) + βnx

2n+2

π2 − 4x2
,

where P2n(x) =
∑n
i=0 aix

2i and

ai = π2 | B2i+2 |
22(i+1)(22(i+1) − 1)

(2i+ 2)!
− 4 | B2i |

22i(22i − 1)

(2i)!
, i = 0, 1, 2, ... .

Furthermore, αn = 8−P2n(π/2)

(π/2)2n+2 and βn = αn+1 are the best constants in (1.5).

In 2012, Zhao, Luo, Guo and Qi [16] showed that the double inequalities (1.3) and (1.5)
are not included in each other, reorganized the proof of (1.3) by using the usual definition
of Bernoulli numbers and corrected some errors on [12]. Moreover, they propose a sharp
double inequality as a conjecture. In this paper we will prove this conjecture. Further
interesting generalizations and applications about inequalities of the tangent function
can be found in [4]-[6], [9], [10], [15], [18]-[20] and the references therein.

In our present investigation, we will apply the following monotone form of L’Hôpital’s
rule [1] (see also, [7], [11], [13] ).

1.3. Theorem. Let −∞ < a < b < ∞, and let f, g : [a, b] → R be continuous on [a, b],
differentiable on (a, b). Let g′(x) 6= 0 on (a, b). If f ′(x)/g′(x) is increasing (decreasing)
on (a, b), then so are

(1.6)
f(x)− f(a)
g(x)− g(a) and

f(x)− f(b)
g(x)− g(b) .

If f ′(x)/g′(x) is strictly monotone, then the monotonicity in the conclusion is also strict.
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2. Main Results.
Consider the following two functions for n ∈ N and x ∈

(
0, π

2

)
(2.1) Mn(x) =

tanx

Sn(x)

[
1−

(
2x

π

)2n
]

and

(2.2) hn(x) =
tanx− Sn(x)
x2n tanx

.

Then

(2.3)
1

Mn(x)
=

1− x2nhn(x)
1− (2/π)2nx2n

.

Let

fn(x) =

{
1− x2nhn(x) 0 < x ≤ π/2,
1 x = 0

and
gn(x) = 1− (2/π)2nx2n, 0 ≤ x ≤ π/2.

The functions fn, gn :
[
0, π

2

]
→ R are continuous on

[
0, π

2

]
, differentiable on

(
0, π

2

)
. Also,

g′n(x) = −2n(2/π)2nx2n−1 6= 0 on
(
0, π

2

)
. Now, consider the function

Gn(x) =
f ′n(x)

g′n(x)
= (π/2)2n

[ x
2n
h′n(x) + hn(x)

]
,

then

G′n(x) =
(π/2)2n

2n

[
(2n+ 1)h′n(x) + xh′′n(x)

]
.

But the function hn(x) is absolutely monotonic on
(
0, π

2

)
[16], that is

(hn(x))
(i) ≥ 0, ∀ i ∈ N; x ∈

(
0,
π

2

)
.

Then
G′n(x) > 0, x ∈

(
0,
π

2

)
and hence the function Gn =

f ′n
g′n

is increasing function on
(
0, π

2

)
. Using Theorem 1.3, we

get that
fn(x)− fn(π/2)
gn(x)− gn(π/2)

is also increasing on
(
0, π

2

)
. But fn(π/2) = gn(π/2) = 0 and hence 1

Mn(x)
= fn(x)

gn(x)
is

increasing on
(
0, π

2

)
. Then Mn(x) is decreasing on

(
0, π

2

)
. Then

lim
x→π

2
−
Mn(x) < Mn(x) < lim

x→0+
Mn(x).

Using

lim
x→0+

Mn(x) = lim
x→0+

tanx

Sn(x)
= lim
x→0+

tanx/x

1 +
∑n
i=2

22i(22i−1)|Bi|
(2i)!

x2(i−1)
= 1

and

lim
x→π

2
−
Mn(x) =

1

Sn(π/2)
lim

x→π
2
−

1−
(
2x
π

)2n
cotx

=
4n/π

Sn(π/2)
,

we get the following result
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2.1. Theorem ([16], Conjecture 1). For 0 < x < π/2 and n ∈ N, we have

(2.4)
4n/π

Sn(π/2)
<

tanx

Sn(x)

[
1−

(
2x

π

)2n
]
< 1.

Furthermore, 1 and 4n/π
Sn(π/2)

are the best possible constants in (2.4).

2.2. Remark. If we set n = 1 in the inequality (2.4), then we obtain the inequality (1.2)
and hence the inequality (2.4) is an extension of Becker-Stark inequality (1.2).

Now we will study the concavity of the functionMn(x). Let us recall that, a function
ϕ is concave if every chord lies below the graph of ϕ. Let yn(x) be the line segment with
the endpoints (0, 1) and

(
π
2
, 4n/π
Sn(π/2)

)
. Then

yn(x) =

[
4n/π

Sn(π/2)
− 1

]
2x

π
+ 1, 0 ≤ x ≤ π/2

and let

Hn(x) =


1 x = 0,
Mn(x) 0 < x < π/2,

4n/π
Sn(π/2)

x = π/2.

The functions Hn, yn :
[
0, π

2

]
→ R are continuous on

[
0, π

2

]
, differentiable on

(
0, π

2

)
.

Also, y′n(x) =
[

4n/π
Sn(π/2)

− 1
]
6= 0 ∀x. Now consider the function

Tn(x) =
H ′n(x)

y′n(x)
=

π

2
(

4n/π
Sn(π/2)

− 1
)H ′n(x).

If we assume that H ′′n(x) > 0, then we get Tn(x) is decreasing function. Using Theorem
1.3, we get that

F (x) =
Hn(x)−Hn(0)
yn(x)− yn(0)

=
Hn(x)− 1

yn(x)− 1

is also decreasing function on
(
0, π

2

)
. But

lim
x→0+

F (x) = lim
x→0+

π

2
(

4n/π
Sn(π/2)

− 1
)H ′n(x) = 0

and

lim
x→π

2
−
F (x) =

Hn(π/2)− 1

yn(π/2)− 1
= 1,

which is a contradiction since F (x) is decreasing. Then we get the following result

2.3. Lemma ([16], Conjecture 1). For 0 < x < π/2 and n ∈ N, the function

(2.5) Mn(x) =
tanx

Sn(x)

[
1−

(
2x

π

)2n
]

is concave.
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3. Comparison of Theorems 1.1 and 2.1.
The inequalities in Theorems 1.1 and 1.2 are not included in each other [16]. Now, we

will compare the Theorems 1.1 and 2.1 .

The inequality (1.3) can be rewritten in the form

(3.1)
1

1−
(

22(n+1)(22(n+1)−1)|B2(n+1)|
(2n+2)!

)
x2n

<
tanx

Sn(x)
<

1

1−
(
2
π

)2n
x2n

and the inequality (2.4) can be rewritten in the form

(3.2)
4n

πSn(π/2)
(
1−

(
2
π

)2n
x2n
) < tanx

Sn(x)
<

1

1−
(
2
π

)2n
x2n

.

So, the two inequalities (3.1) and (3.2) have the same upper bound. To compare the
lower bounds of (3.1) and (3.2), take n = 1, 2, 3 in the left-hand side of (3.1), to obtain

n = 1 L1(x) =
1

1− x2
3

n = 2 L2(x) =
1

1− 2x4

15

n = 3 L3(x) =
1

1− 17x6

315

and set n = 1, 2, 3 in the left-hand side of (3.2), to get

n = 1 K1(x) =
8

π2(1− 4x2

π2 )

n = 2 K2(x) =
8

π(π/2+π3/24)
(
1− 16x4

π4

)
n = 3 K3(x) =

12

π(π/2+π3/24+π5/240)
(
1− 64x6

π6

) .
Then

L1(x) > K1(x) if 0 < x < 1
2

√
3(π2 − 8)

L1(x) < K1(x) if 1
2

√
3(π2 − 8) < x < π/2

L2(x) > K2(x) if 0 < x < 1
2

4

√
5(−192π2+12π4+π6)

3(20−π2)

L2(x) < K2(x) if 1
2

4

√
5(−192π2+12π4+π6)

3(20−π2)
< x < π/2

L3(x) > K3(x) if 0 < x < 1
2

6

√
7(−2880π4+120π6+10π8+π10)

10(84+7π2−π4)

L3(x) < K3(x) if 1
2

6

√
7(−2880π4+120π6+10π8+π10)

10(84+7π2−π4)
< x < π/2.

Hence, the lower bounds of (3.1) and (3.2) are not included in each other. Also, we can
conclude that inequality (3.1) is better than inequality (3.2) near the origin and that
inequality (3.2) is better than inequality (3.1) near π/2.
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In this paper we investigate generalized derivations satisfying certain
differential identities on Jordan ideals of rings with involution and dis-
cuss related results. Moreover, we provide examples to show that the
assumed restriction cannot be relaxed.
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1. Introduction
Throughout this paper, R will represent an associative ring with center Z(R). Recall

that R is 2-torsion free if 2x = 0 yields x = 0. The ring R is prime if aRb = 0 implies a = 0
or b = 0. An additive map ∗ : R −→ R is an involution if (xy)∗ = y∗x∗ and (x∗)∗ = x
for all x, y ∈ R. If R admits an involution ∗, then R is ∗-prime if aRb = aRb∗ = 0 forces
a = 0 or b = 0. It is straightforward to check that a ∗-prime ring is necessarily semiprime,
that is xRx = 0 forces x = 0. Furthermore, every prime ring having an involution ∗ is
∗-prime, but the converse need not be true in general. For example, if Ro denotes the
opposite ring of a prime ring R, then R × Ro equipped with the exchange involution
∗ex, defined by ∗ex(x, y) = (y, x), is ∗ex-prime but not prime. This example shows that
every prime ring can be injected in a ∗-prime ring and from this point of view ∗-prime
rings constitute a more general class of prime rings.
In all that follows Sa∗(R) = {x ∈ R : x∗ = ±x} will denote the set of symmetric
and skew-symmetric elements of R. We will write for all x, y ∈ R, [x, y] = xy − yx and
x ◦ y = xy + yx for the commutator and anticommutator, respectively. An additive sub-
group U of R is a Lie ideal if [x, r] ∈ U for all x ∈ U and r ∈ R. An additive subgroup
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J of R is a Jordan ideal if x ◦ r ∈ J for all x ∈ J and r ∈ R. Moreover, if J∗ = J , then
J is called a ∗-Jordan ideal. We shall use without explicit mention the fact that if J is
a Jordan ideal of R, then 2[R,R]J ⊆ J and 2J [R,R] ⊆ J ([7], Lemma 1). Moreover,
From [1] we have 4jRj ⊂ J, 4j2R ⊂ J and 4Rj2 ⊂ J for all j ∈ J. An additive mapping
d : R −→ R is a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. Many results
in literature indicate how the global structure of a ring R is often tightly connected to
the behavior of derivations defined on R. More recently several authors consider simi-
lar situation in the case the derivation d is replaced by a generalized derivation. More
specifically an additive map F : R −→ R is a generalized derivation if there exists a
derivation d such that F (xy) = F (x)y + xd(y) for all x, y ∈ R. Basic examples of gen-
eralized derivations are the usual derivations on R and left R-module mappings from
R into itself. Generalized derivations have been primarily studied on operator algebras.
Therefore any investigation from the algebraic point of view might be interesting (see for
example [2] and [8]).
Recently many authors have studied commutativity of prime and semiprime rings ad-
mitting suitably constrained additive mappings, as automorphisms, derivations, skew
derivations and generalized derivations acting on appropriate subsets of the rings. More-
over, many of obtained results extend other ones proven previously just for the action of
the considered mapping on the whole ring. In this paper we continue the line of investi-
gation regarding the study of commutativity for rings with involution satisfying certain
differential identities involving generalized derivations acting on Jordan ideals.

2. Differential commutator identities
In 2002 Rehman [9] established that if a 2-torsion free prime ring admits a general-

ized derivation F associated with a nonzero derivation such that F

(
[x, y]

)
= [x, y] (or

F

(
[x, y]

)
= −[x, y]) for all x, y in a nonzero square closed Lie ideal U , then U ⊂ Z(R).

Quadri et al. [8], without 2-torsion freeness hypothesis, proved that a prime ring must be
commutative if it admits a generalized derivation F , associated with a nonzero deriva-

tion, such that F

(
[x, y]

)
= [x, y] (or F

(
[x, y]

)
= −[x, y]) for all x, y in a nonzero

ideal I. Motivated by the above results, in this section we explore the commutativity of
a ∗-prime ring R in which the generalized derivation F satisfies similar identities on a
∗-Jordan ideal. We shall conclude this section with an application of our results which
extend results of [8] and [9] to Jordan ideals with the additional assumption that the ring
R be 2-torsion free.

We begin with the following known results which will be used extensively to prove our
theorems.

1. Lemma. ([3], Lemma 2) Let R be a 2-torsion free ∗-prime ring and J a nonzero
∗-Jordan ideal of R. If aJb = a∗Jb = 0 (or aJb = aJb∗ = 0), then a = 0 or b = 0.

2. Lemma. ([5], Lemma 3) Let R be a 2-torsion free ∗-prime ring and J a nonzero
∗-Jordan ideal. If d is a derivation such that d(x2) = 0 for all x ∈ J , then d = 0.

3. Lemma. Let R be a 2-torsion free ∗-prime ring and J a nonzero ∗-Jordan ideal of
R. If R admits a nonzero derivation d such that [[r, s], y]Jd(y2) = 0 for all r, s ∈ R and
y ∈ J, then J ∩ Z(R) 6= {0}.

Proof. Assume that J ∩ Z(R) = {0}. We have

(2.1) [[r, s], y]Jd(y2) = 0 for all y ∈ J, r, s ∈ R.
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Let y ∈ J ∩ Sa∗(R); then (2.1) implies that

[[r, s], y]∗Jd(y2) = 0

and combining this equation with (2.1), then Lemma 1 yields that either d(y2) = 0 or
[[r, s], y] = 0. Suppose

(2.2) [[r, s], y] = 0 for all r, s ∈ R.

Substituting sy for s in (2.2) we get

0 = [[r, sy], y] = s[[r, y], y] + [s, y][r, y] + [[r, s], y]y

and employing (2.2) we find that

(2.3) [s, y][r, y] = 0 for all r, s ∈ R.

Replacing r by rs in (2.3) we get [s, y]r[s, y] = 0 and thus

(2.4) [s, y]R[s, y] = 0 for all s ∈ R.

In view of semi-primeness of R, equation (2.4) assures that y ∈ Z(R) and thus y = 0.
Accordingly

(2.5) d(y2) = 0 for all y ∈ J ∩ Sa∗(R).

Let y ∈ J , as y∗−y, y∗+y ∈ J∩Sa∗(R), then (2.5) forces d(y2) = −d((y∗)2). Substituting
y∗ for y in (2.1) we obtain

[[r, s], y∗]Jd(y2) = 0 for all r, s ∈ R.

In particular,
[[r∗, s∗], y∗]Jd(y2) = 0 for all r, s ∈ R

which implies that

(2.6) [[r, s], y]∗Jd(y2) = 0 for all y ∈ J, r, s ∈ R.

Combining (2.1) and (2.6), we conclude that d(y2) = 0 or [[r, s], y] = 0 which, as above,
leads to d(y2) = 0. Consequently,

d(y2) = 0 for all y ∈ J

and Lemma 2 assures that d = 0 which contradicts our hypothesis. �

1. Theorem. Let R be a 2-torsion free ∗-prime ring and J be a nonzero ∗-Jordan ideal
of R. If R admits a generalized derivation F associated with a nonzero derivation d such

that F
(
[x, y]

))
= [x, y] for all x, y ∈ J, then R is commutative.

Proof. Assume that

(2.7) F

(
[x, y]

)
= [x, y] for all x, y ∈ J.

Replacing x by 4xy2 in (2.7) we get F
(
[x, y]y2

)
= [x, y]y2 and thus

(2.8) [x, y]d(y2) = 0 for all x, y ∈ J.

Substituting 2[r, s]x for x in (2.8), where r, s ∈ R, we find that [[r, s], y]xd(y2) = 0 and
therefore

(2.9) [[r, s], y]Jd(y2) = 0 for all y ∈ J and r, s ∈ R.
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In view of (2.9), application of Lemma 3 assures that J ∩ Z(R) 6= {0}. Replacing x by
4x2u in (2.7), where 0 6= u ∈ J ∩ Z(R), we get

(2.10) F

(
[2x2, y]u

)
= [2x2, y]u for all x, y ∈ J.

Using (2.7), equation (2.10) yields [x2, y]d(u) = 0 and thus

(2.11) [x2, y]Jd(u) = 0 for all x, y ∈ J.

Since J is a ∗-ideal, (2.11) forces

(2.12) [x2, y]∗Jd(u) = 0 for all x, y ∈ J.

Combining (2.11) and (2.12), Lemma 1 yields d(u) = 0 or [x2, y] = 0 for all x, y ∈ J.
If [x2, y] = 0 for all x, y ∈ J, then R is commutative by proof of Theorem 3 in [4].

If d(u) = 0, then replacing x by 4ru2 in (2.7) we obtain F

(
[r, y]u2

)
= [r, y]u2 and thus(

F ([r, y])− [r, y]

)
u2 = 0.

Accordingly

(2.13)
(
F

(
[r, y]

)
− [r, y]

)
Ju2 = 0 for all y ∈ J, r ∈ R.

As 0 6= u∗ ∈ J ∩ Z(R), then a similar reasoning as above leads to

(2.14)
(
F

(
[r, y]

)
− [r, y]

)
J(u2)∗ = 0 for all y ∈ J, r ∈ R.

In view of Lemma 1, (2.13) together with (2.14) forces

(2.15) F

(
[r, y]

)
= [r, y] for all y ∈ J and r ∈ R.

Substituting ry for r in (2.15) we get

(2.16) [r, y]d(y) = 0 for all y ∈ J and r ∈ R.

Replacing r by rs in (2.16), where s ∈ R, we obtain [r, y]sd(y) = 0 so that

(2.17) [r, y]Rd(y) = 0 for all y ∈ J and r ∈ R.

Once again using the proof of Theorem 3 in [4], from equation (2.17) it follows that R is
commutative. �

As an application of Theorem 1, the following theorem extends ([9], Theorem 3.3) and
([8], Theorem 2.1 ) to Jordan ideals.

2. Theorem. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of
R. If R admits a generalized derivation F associated with a nonzero derivation d such

that F
(
[x, y]

)
= [x, y] for all x, y ∈ J, then R is commutative.

Proof. Assume that F is a generalized derivation associated to a nonzero derivation d

such that F

(
[x, y]

)
= [x, y], for all x, y ∈ J. Let D be the additive mapping defined

on R = R × R0 by D(x, y) = (d(x), 0) and F(x, y) = (F (x), y). Clearly, D is a nonzero
derivation of R and F is a generalized derivation associated with D. Moreover, if we set

J = J×J, then J is a ∗ex-Jordan ideal of R and F

(
[x, y]

)
= [x, y] for all x, y ∈ J. Since R
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is a ∗ex-prime ring, in view of Theorem 1 we deduce that R is commutative and a fortiori
R is commutative. �

A slight modification in the proof of Theorem 1 yields the following result.

3. Theorem. Let R be a 2-torsion free ∗-prime ring and J be a nonzero ∗-Jordan ideal
of R. If R admits a generalized derivation F associated with a nonzero derivation d such

that F
(
[x, y]

)
= −[x, y] for all x, y ∈ J, then R is commutative.

Reasoning as in the proof of Theorem 2, where F(x, y) = (F (x),−y), and using Theorem
3 we extend ([9], Theorem 3.4) and ([8], Theorem 2.2 ) to Jordan ideals as follows.

4. Theorem. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of
R. If R admits a generalized derivation F associated with a nonzero derivation d such

that F
(
[x, y]

)
= −[x, y] for all x, y ∈ J, then R is commutative.

3. Differential anticommutator identities
It is natural to ask what can we say about the commutativity of R if the commutator in

the preceding section is replaced by anticommutator. In this section, we have investigated
this problem and proved that the commutativity cannot be characterized by the same
conditions on anticommutator.

5. Theorem. Let R be a 2-torsion free ∗-prime ring and J be a nonzero ∗-Jordan ideal
of R. If R admits a generalized derivation F associated with a derivation d such that
F (x ◦ y) = x ◦ y for all x, y ∈ J, then d = 0 and F is the identity map.

Proof. Assume that

(3.1) F (x ◦ y) = x ◦ y for all x, y ∈ J.

Replacing y by 4yx2 in (3.1) we find that

(3.2) (x ◦ y)d(x2) = 0 for all x, y ∈ J.

Substituting 2[r, s]y for y in (3.2), where r, s ∈ R, we obtain (x ◦ (2[r, s]y))d(x2) = 0 and
thus [x, [r, s]]yd(x2) = 0. Hence

(3.3) [x, [r, s]]Jd(x2) = 0 for all x ∈ J and r, s ∈ R.

In view of Lemma 3, equation (3.3) assures that d = 0 or J ∩ Z(R) 6= 0.
If there exists 0 6= u ∈ J ∩ Z(R), then replacing y by 4u2y in (3.1), we get

(3.4) F (2u2(x ◦ y)) = 2u2(x ◦ y) for all x, y ∈ J.

Since by assumption of the theorem F (2u2) = F (u ◦ u) = 2u2, then (3.4) leads to

(3.5) u2d(x ◦ y) = 0 for all x, y ∈ J.

Using the fact that u ∈ Z(R), from (3.5) it follows that

(3.6) u2Jd(x ◦ y) = 0 for all x, y ∈ J.

As 0 6= u∗ ∈ J ∩ Z(R), a similar reasoning as above yields

(3.7) (u2)∗Jd(x ◦ y) = 0 for all x, y ∈ J.

We claim that u2 6= 0. For contradiction assume that u2 = 0, then uRu = 0. Since R is
semiprime u = 0. This is a contradiction. Thus u2 6= 0.
Now if we combine (3.6) and (3.7) and apply Lemma 1, we conclude that

d(x ◦ y) = 0 for all x, y ∈ J
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and a fortiori

(3.8) d(x2) = 0 for all x ∈ J.

In light of Lemma 2, equation (3.8) forces d = 0 hence F is a left multiplier.
From F (x ◦ y) = x ◦ y it then follows (F (x) − x)y = −(F (y) − y)x and replacing y by
y ◦ z where z ∈ J we get

(3.9) (F (x)− x)(y ◦ z) = 0 for all x, y, z ∈ J.

Replacing z by 2z[r, s] in (3.9) where r, s ∈ R we obtain

(3.10) (F (x)− x)J [y, [r, s]] = (F (x)− x)J

(
[y, [r, s]]

)∗

= 0 for all x, y ∈ J, r, s ∈ R.

Thus, according to Lemma 1, either F (x) = x for all x ∈ J or [y, [r, s]] = 0 for all y ∈ J
and r, s ∈ R.
Assume that [y, [r, s]] = 0 for all y ∈ J and r, s ∈ R, hence as in (2.2) this implies that

[s, y]R[s, y] = 0 for all y ∈ J, s ∈ R.

and the semi-primeness of R forces [s, y] = 0 so that J ⊆ Z(R). Therefore [[6], Lemma
3] assures that R is a commutative ring in which case, as F is a left multiplier, equation
(3.1) implies that F (x)y = xy.
In conclusion, in either case (3.1) becomes

(3.11) (F (x)− x)y = 0 for all x, y ∈ J

in such a way that F (x) = x for all x ∈ J. Let r ∈ R and x ∈ J , from F (x ◦ r) = x ◦ r it
follows that

xr + rx = F (xr + rx)

= F (x)r + F (r)x

= xr + F (r)x

so that
(F (r)− r)x = 0 for all r ∈ R, x ∈ J

and therefore F (r) = r for all r ∈ R. Hence F is the identity map. �

Using similar arguments as used in the proof of Theorem 2, application of Theorem
5 yields the following result which extends ([9], Theorem 3.7) and ([8], Theorem 2.3) to
Jordan ideals in the case of a 2-torsion free ring.

6. Theorem. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal of R. If
R admits a generalized derivation associated with a derivation d such that F (x◦y) = x◦y
for all x, y ∈ J, then d = 0 and F is the identity map.

Reasoning as in proof of Theorem 5, we can prove the following.

7. Theorem. Let R be a 2-torsion free ∗-prime ring and J be a nonzero ∗-Jordan ideal
of R. If R admits a generalized derivation F associated with a derivation d such that
F (x ◦ y) = − x ◦ y for all x, y ∈ J, then d = 0 and (−F ) is the identity map.

Similarly, application of Theorem 7 yields the following result which improves ([9], The-
orem 3.8) and ([8], Theorem 2.4).

8. Theorem. Let R be a 2-torsion free prime ring and J be a nonzero Jordan ideal
of R. If R admits a generalized derivation F associated with a derivation d such that
F (x ◦ y) = −x ◦ y for all x, y ∈ J, then d = 0 and (−F ) is the identity map.
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1. Example. LetR =

{(
a b
0 c

)
| a, b, c ∈ R

}
and consider F

(
a b
0 c

)
=

(
a 2b
0 0

)
.

It is straightforward to verify that F is a generalized derivation associated with the non

zero derivation d defined by d

(
a b
0 c

)
=

(
0 b
0 0

)
.Moreover, if we set

(
a b
0 c

)∗

=(
c −b
0 a

)
, then R is a non ∗-prime ring. Furthermore, it is easy to verify that

J =

{(
0 a
0 0

)
| a ∈ R

}
is a nonzero ∗-Jordan ideal of R such that

F (A ◦B) = A ◦B, F (A ◦B) = −A ◦B, F [A,B] = [A,B], F [A,B] = −[A,B]

for al A,B ∈ R. Hence in theorems 1, 3, 5, 7 the ∗-primeness hypothesis is crucial.

References
[1] R. Awtar, Lie and Jordan structure in prime rings with derivations, Proc. Amer. Math. Soc.

41 (1973), 67-74.
[2] B. Hvala, Generalized derivations in rings, Comm. Algebra 26 (1998), 1147-1166.
[3] L. Oukhtite, On Jordan ideals and derivations in rings with involution, Comment. Math.

Univ. Carolin. 51 (2010), no. 3, 389-395.
[4] L. Oukhtite and A. Mamouni, Derivations satisfying certain algebraic identities on Jordan

ideals, Arab. J. Math. 1 (2012), no. 3, 341-346.
[5] L. Oukhtite and A. Mamouni, Generalized derivations centralizing on Jordan ideals of rings

with involution, Turkish J. Math. 38 (2014), no. 2, 225-232.
[6] L. Oukhtite, Posner’s Second Theorem for Jordan ideals in rings with involution, Expo.

Math., 29 (4), 415-419 (2011).
[7] S. M. A. Zaidi, M. Ashraf, and S. Ali, On Jordan ideals and left (θ, θ)-derivations in prime

rings, Int. J. Math. Math. Sci. 2004 (2004), no. 37-40, 1957-1964.
[8] M. A. Quadri, M. S. Khan and N. Rehman, Generalized derivations and commutativity of

prime rings, Indian J. Pure Appl. Math. 34 (2003), no. 9, 1393-1396.
[9] N. Rehman, On commutativity of rings with generalized derivations, Math. J. Okayama Univ.

44 (2002), 43-49.





Hacettepe Journal of Mathematics and Statistics
Volume 45 (1) (2016), 57 – 67

Some properties of AFG and CTF rings

Lixin Mao∗

Abstract
R is said to be a right AFG ring if the right annihilator of every
nonempty subset of R is a finitely generated right ideal. R is called
a right CTF ring if every cyclic torsionless right R-module embeds in a
free module. In this paper, we first give new characterizations of AFG
rings and study some closure properties of AFG rings. Then we explore
the intimate relationships between AFG rings and CTF rings.
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1. Introduction
In [19], we introduced the concept of AFG rings, which is a generalization of Noe-

therian rings. R is said to be a right AFG ring in case the right annihilator of every
nonempty subset of R is a finitely generated right ideal, equivalently, every cyclic torsion-
less right R-module is finitely presented, where a right R-module M is called torsionless
ifM embeds in a direct product of copies of RR. The concept of AFG rings is very useful
in ring theory. For more details about AFG rings, we refer the reader to [19, 20, 21].

In this paper, we gave some new characterizations of AFG rings and further study
some properties of AFG rings, such as closure properties under finite direct products,
quotients and localizations. On the other hand, we explore the intimate connections
between AFG rings and CTF rings, where a ring R is called right CTF [27] if every
cyclic torsionless right R-module embeds in a free module.

The layout of the paper is as follows:
Section 2 is devoted to AFG rings. We first prove that R is a right AFG ring if

and only if the dual module HomR(M,R) of any cyclic torsionless left R-module M is
finitely generated if and only if every cyclic torsionless left R-module has a projective
preenvelope. It is also shown that R is a right AFG ring if R is a left singly injective left
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CF ring. Next we discuss the closure properties of AFG rings. We prove that: (1) R
and S are right AFG rings if and only if R × S is a right AFG ring. (2) If R is a right
AFG ring and I is an ideal which is a right annihilator in R, then R/I is a right AFG
ring. (3) If R is a commutative AFG ring and S a multiplicative subset of R without
zero-divisors, then S−1R is also an AFG ring. Finally we give some examples to clarify
the relationships among AFG rings, AC rings, Π-coherent rings and pseudo-coherent
rings.

In Section 3, we deal with some properties of CTF rings. For example, it is shown
that R is a right CTF ring if the dual module of every cyclic torsionless right R-module
is H-finitely generated, and the converse holds if R is a left f -injective ring. Furthermore,
we explore the close connections between AFG rings and CTF rings. We prove that:
(1) If R is a left AFG ring, then R is a right CTF ring. (2) If R is a right CTF right
pseudo-coherent ring, then R is a right AFG ring. (3) R is a left AFG ring if and only
if R is a right CTF ring and lr(S) is a finitely generated left ideal for any finite subset
S of R. (4) R is a two-sided AFG two-sided singly injective ring if and only if R is a
two-sided CTF two-sided FP -injective ring.

Throughout this paper, R is an associative ring with identity and all modules are
unitary. MR (resp. RM) denotes a right (resp. left) R-module. For an R-module M , the
dual module HomR(M,R) is denoted by M∗ and the character module M+ is defined
by M+ = HomZ(M,Q/Z). E(M) denotes the injective envelope of M . MI (resp. M (I))
stands for the direct product (resp. direct sum) of copies of M indexed by a set I. For
a subset X of R, the right (resp. left) annihilator of X in R is denoted by r(X) (resp.
l(X)). We refer to [1, 9, 15, 16, 24, 26] for all undefined notions in this article.

2. AFG rings
In [19], the author gave some characterizations of AFG rings. For example, R is a

right AFG ring if and only if the dual module M∗ of any cyclic left R-module M is
finitely generated if and only if every cyclic left R-module has a projective preenvelope.
The following theorem gives an improvement of the above result.

Recall that that a homomorphism f : M → P is called a projective preenvelope of
a left R-module M [9] if P is projective, and for any homomorphism g from M to any
projective left R-module P ′, there exists h : P → P ′ such that g = hf .

We also recall a right R-module M is FP -injective (or absolutely pure) [25, 17] if
Ext1R(N,M) = 0 for any finitely presented right R-module N . M is called A-injective
[18] if Ext1R(R/I,M) = 0 for any right annihilator I in R.

2.1. Theorem. The following are equivalent for a ring R:

(1) R is a right AFG ring.
(2) The dual module M∗ of any cyclic torsionless left R-module M is finitely gener-

ated.
(3) For any cyclic torsionless left R-module A and x ∈ A, the additive subgroup

HA,x = {f(x) : f ∈ HomR(A,R)} of R is a finitely generated right ideal.
(4) Every cyclic torsionless left R-module has a projective preenvelope.
(5) Every FP -injective right R-module is A-injective.

Proof. (1) ⇒ (2) and (1) ⇒ (4) are obvious by [19, Theorem 2.3].
(2) ⇒ (1) Let I be any right annihilator in R. Then the exact sequence

0→ I
i→ RR

f→ R/I → 0
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of right R-modules yields the exact sequence of left R-modules

0→ (R/I)∗
f∗→ (RR)∗

i∗→ I∗.

Let B = im(i∗). Then we get the exact sequence

0→ (R/I)∗
f∗→ (RR)∗ → B → 0,

which gives rise to the exactness of the sequence

0→ B∗ → (RR)∗∗ → (R/I)∗∗.

By [24, Exercise 2.7, p.27], there exists φ : I → B∗ such that the following diagram with
exact rows commutes.

0 // I //

φ

��

RR

σR

��

// R/I //

σR/I

��

0

0 // B∗ // (RR)∗∗ // (R/I)∗∗.

Since σR/I is a monomorphism, I ∼= B∗ by the Five Lemma. Note that I∗ is torsionless
by [1, Proposition 20.14], so B is a cyclic torsionless left R-module. Thus I ∼= B∗ is
finitely generated by (2), which implies that R is a right AFG ring.

(2) ⇒ (3) Let A be any cyclic torsionless left R-module and x ∈ A. Then there exist
f1, f2, · · · , fn ∈ A∗ such that

A∗ = f1R+ f2R+ · · ·+ fnR.

So HA,x =
n∑
k=1

fk(x)R is a finitely generated right ideal.

(3) ⇒ (2) Let A = Rx be a cyclic torsionless left R-module. Define a right R-
homomorphism β : A∗ → HA,x via f 7→ f(x). It is clear that β is an isomorphism. Thus
A∗ is a finitely generated right R-module by (3).

(4) ⇒ (2) Let M be a cyclic torsionless left R-module. Then M has a projective
preenvelope f : M → P . We may choose P to be finitely generated since M is cyclic. So
we get the exact sequence P ∗ →M∗ → 0. Thus M∗ is finitely generated.

(1) ⇒ (5) is clear.
(5) ⇒ (1) Let M be a cyclic torsionless right R-module. Then Ext1R(M,N) = 0 for

any FP -injective right R-module N by (5). Therefore M is finitely presented by [8], and
so R is a right AFG ring. �

Now we investigate AFG rings in terms of singly projective, singly injective and singly
flat modules.

Recall that a left R-module M is singly projective [2] in case for any cyclic submodule
N of M , the inclusion map N →M factors through a free module.

According to [22], a left R-module M (resp. right R-module N) is called singly in-
jective (resp. singly flat) if Ext1R(F/C,M) = 0 (resp. TorR1 (N,F/C) = 0) for any cyclic
submodule C of any finitely generated free left R-module F . R is called a left singly
injective ring if RR is a singly injective left R-module.

Recall that R is a left CF ring [13] if every cyclic left R-module embeds in a free
module.

2.2. Proposition. The following are true:
(1) R is a left singly injective ring if and only if every singly projective left R-module

is singly injective.
(2) R is a left CF ring if and only if every singly injective left R-module is singly

projective.
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(3) If R is a left singly injective left CF ring, then R is a right AFG ring.

Proof. (1) “⇒ ” Let M be a singly projective left R-module. For any cyclic submodule
C of any finitely generated free left R-module F and any homomorphism f : C → M ,
there exist a finitely generated free left R-module G, g : C → G and h : G → M such
that f = hg. Note that G is singly injective, and so there exists ϕ : F → G such that
ϕλ = g, where λ : C → F is the inclusion. Hence (hϕ)λ = hg = f . Thus M is singly
injective.

“⇐ ” is clear.
(2) “⇒ ” Let M be a singly injective left R-module. For any cyclic submodule N of

M , there exists a monomorphism γ : N → Rn, n ∈ N. Thus there is θ : Rn → M such
that ι = θγ, where ι : N →M is the inclusion. So M is singly projective.

“⇐ ” is obvious by [19, Lemma 3.6].
(3) Let {Mi}i∈I be a family of singly projective left R-modules. Then each Mi is

singly injective by (1) and so MI
i is singly injective. Thus MI

i is singly projective by (2).
Hence R is a right AFG ring by [19, Theorem 2.3]. �

It is known that any singly projective R-module is singly flat for any ring R by [22,
Lemma 2.4] and any singly flat R-module is singly projective for any commutative domain
R by [22, Corollary 2.6]. Here we have the following result.

2.3. Proposition. The following are equivalent for a ring R:
(1) R is right AFG and every singly flat left R-module is singly projective.
(2) N+ is singly projective for every singly injective right R-module N .
(3) M++ is singly projective for every singly flat left R-module M .

Proof. (1) ⇒ (2) Since R is right AFG, N+ is singly flat by [22, Theorem 2.10] for any
singly injective right R-module N . So N+ is singly projective by (1).

(2) ⇒ (3) Let M be a singly flat left R-module. Then M+ is singly injective by [22,
Lemma 2.4]. So M++ is singly projective by (2).

(3)⇒ (1) Let {Mi}i∈I be a family of singly projective left R-modules, then the pure
exact sequence

0→ (M+
i )(I) → (M+

i )I

induces the split exact sequence

((M+
i )I)+ → ((M+

i )(I))+ → 0.

Thus ((M+
i )(I))+ is isomorphic to a direct summand of ((M+

i )I)+. Note that

((M+
i )(I))+ ∼= (M++

i )I , ((M+
i )I)+ ∼= (M

(I)
i )++.

Thus (M++
i )I is singly projective since (M

(I)
i )++ is singly projective by (3). Also MI

i is
a pure submodule of (M++

i )I by [6, Lemma 1(2)]. Hence MI
i is singly projective by [2,

Proposition 14], and so R is right AFG by [19, Theorem 2.3].
On the other hand, let M be any singly flat left R-module, then M++ is singly

projective by (3). Note thatM is a pure submodule ofM++, and soM is singly projective
by [2, Proposition 14]. �

Recall that R is a left dual ring if every left ideal is a left annihilator in R, equivalently,
every cyclic left R-module is torsionless.

2.4. Theorem. The following are equivalent for a ring R:
(1) R is a right AFG left dual ring.
(2) R is a right AFG ring and the injective envelope of every simple left R-module

is singly projective.
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(3) R is a right AFG ring and the injective envelope of every finitely cogenerated
left R-module is singly projective.

(4) R is a right AFG ring and (RR)+ is singly projective.
(5) Every cyclic left R-module has a projective preenvelope which is a monomor-

phism.

Proof. (1)⇒ (5) holds by [19, Theorem 3.7].
(5)⇒ (4) R is a right AFG ring by [19, Theorem 2.3]. Let N be a cyclic submodule of

(RR)+. Since N embeds in Rn, n ∈ N and (RR)+ is injective, the inclusion N → (RR)+

factors through Rn. So (RR)+ is singly projective.
(4)⇒ (2) Let M be a simple left R-module. Then there is a monomorphism E(M)→

((RR)+)I . So E(M) is isomorphic to a direct summand of ((RR)+)I . Since ((RR)+)I is
singly projective by [19, Theorem 2.3], E(M) is singly projective.

(2)⇒ (1) Let N be a cyclic left R-module. It is enough to show that for any 0 6= m ∈
N , there exists f : N → R such that f(m) 6= 0. In fact, there is a maximal submodule
K of Rm, and so Rm/K is simple. Let ι : Rm → N and i : Rm/K → E(Rm/K)
be the inclusions, and π : Rm → Rm/K be the natural map. Then there exists j :
N → E(Rm/K) such that jι = iπ. So j(m) = jι(m) = iπ(m) 6= 0. On the other
hand, since E(Rm/K) is singly projective by (2), there exist n ∈ N, g : N → Rn and
h : Rn → E(Rm/K) such that j = hg. Therefore g(m) = (x1, x2, · · · , xn) 6= 0. Let
xi 6= 0 and pi : Rn → R be the ith projection. Then pig(m) 6= 0. So N is torsionless.
Thus R is a left dual ring.

(2)⇔ (3) By [15, Theorem 9.4.3], a left R-module N is finitely cogenerated if and only
if E(N) = E(S1)⊕E(S2)⊕ · · ·⊕E(Sn), where S1, S2, · · · , Sn are simple left R-modules.
So (2)⇔ (3) follows. �

Next we discuss the closure properties of AFG rings.

2.5. Theorem. R and S are right AFG rings if and only if R×S is a right AFG ring.

Proof. “ ⇒ ” Let M be a cyclic torsionless right (R × S)-module. Then M has a
unique decomposition that M = A ⊕ B, where A = M(R, 0) is a right R-module and
B = M(0, S) is a right S-module via xr = x(r, 0) for x ∈ A, r ∈ R, and ys = y(0, s) for
y ∈ B, s ∈ S. It is easy to verify that A is a cyclic torsionless right R-module and B is a
cyclic torsionless right S-module. Thus A is a finitely presented right R-module and B
is a finitely presented right S-module by hypothesis. So there exist two exact sequences
P1 → P0 → A → 0 of right R-modules and Q1 → Q0 → B → 0 of right S-modules,
where each Pi is a finitely generated projective right R-module, and each Qi is a finitely
generated projective right S-module.

Regarding the above exact sequences as exact sequences of right (R×S)-modules, we
have an exact sequence of right (R× S)-modules

P1 ⊕Q1 → P0 ⊕Q0 → A⊕B → 0.

Note that each Pi ⊕ Qi is a finitely generated projective right (R × S)-module. So
M = A ⊕ B is a finitely presented right (R × S)-module. Thus R × S is a right AFG
ring.

“ ⇐ ” Let M be a cyclic torsionless right R-module. Note that M may be regarded
as a cyclic torsionless right (R × S)-module, so M is a finitely presented right (R × S)-
module by hypothesis. Thus there exists an exact sequence P1 → P0 → M → 0 of right
(R× S)-modules, where each Pi is a finitely generated projective right (R× S)-module.
Let Pi = Ai ⊕ Bi, where Ai is a right R-module and Bi is a right S-module, i = 0, 1.
Then we have the exact sequence A1 → A0 →M → 0 of right R-modules. Note that each
Ai is a finitely generated projective right (R× S)-module, and so is a finitely generated
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projective right R-module, whence M is a finitely presented right R-module. Thus R is
a right AFG ring. Similarly S is a right AFG ring. �

2.6. Proposition. Let R be a right AFG ring and I be an ideal which is a right anni-
hilator in R. Then R/I is also a right AFG ring.

Proof. Let MR/I be a cyclic torsionless right R/I-module. Then MR is clearly a cyclic
right R-module. Note that R/I is a torsionless right R-module since I is a right annihi-
lator in R. Thus MR is also a torsionless right R-module. So MR is a finitely presented
right R-module, i.e., there is an exact sequence of right R-modules

Rn → Rm →MR → 0.

Then we get the exact sequence of right R/I-modules

Rn ⊗R R/I → Rm ⊗R R/I →M ⊗R R/I → 0,

which yields the exact sequence of right R/I-modules

(R/I)n → (R/I)m → MR/I → 0.

Hence MR/I is a finitely presented right R/I-module. It follows that R/I is a right AFG
ring. �

2.7. Theorem. Let R be a commutative AFG ring. If S is a multiplicative subset of R
without zero-divisors, then S−1R is also an AFG ring.

Proof. Let M be a cyclic S−1R-module. Then there exists a cyclic R-submodule N of
M such that S−1N = M . Since S contains no zero-divisors, we get the exact sequence
of R-modules

0→ R→ S−1R→ S−1R/R→ 0,

which induces the exact sequence

0→ HomR(N,R)→ HomR(N,S−1R)→ HomR(N,S−1R/R).

On the other hand, there exists an exact sequence R → N → 0, which induces the
exact sequence

0→ HomR(N,S−1R/R)→ HomR(R,S−1R/R) ∼= S−1R/R.

Since S−1(S−1R/R) = 0, we have S−1(HomR(N,S−1R/R)) = 0. Thus

HomS−1R(M,S−1R) ∼= HomS−1R(S−1R⊗R N,S−1R)

∼= HomR(N,S−1R) ∼= S−1HomR(N,S−1R) ∼= S−1HomR(N,R).

Since HomR(N,R) is a finitely generated R-module by [19, Theorem 2.3], we have
HomS−1R(M,S−1R) is a finitely generated S−1R-module. So R/I is an AFG ring by
[19, Theorem 2.3] again. �

At the end of this section, we consider several rings related to AFG rings.
Recall that R is said to be a right AC ring [18] if the right annihilator of each nonempty

subset of R is a cyclic right ideal. R is called a right Π-coherent ring [4] in case every
finitely generated torsionless right R-module is finitely presented. R is called a right
coherent ring [5] if every finitely generated right ideal is finitely presented. R is called
a right pseudo-coherent ring [3] if the right annihilator of each finite subset of R is a
finitely generated right ideal.

Obviously, we have the following implications:
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right Π− coherent rings

��

+3 right coherent rings

��
right AC rings +3 right AFG rings +3 right pseudo− coherent rings.

But these are not generally reversible as shown by the following examples.

2.8. Example. Let F be a field with an isomorphism x 7→ x̄ from F to a subfield F̄ 6= F .
Let R denote the right F -space on a basis {1, c} where c2 = 0 and cx = x̄c for all x ∈ F .
Then by [3, Example] or [28, Example 2.7], R is right Artinian, and so is right AFG.
But R is not right AC. Otherwise, suppose that R is a right AC ring. Let t 6= 0 be
an element of the Jacobson radical J = Rc = Fc, then J ⊆ r(t) 6= R. Since R is local,
J = r(t). Thus J = aR and so a = bc for some b ∈ R. Note that b is a unit since b 6∈ J .
So cR = b−1aR = b−1J = J = Fc. But cR = F̄ c, and so F̄ c = Fc, which contradicts the
fact that F̄ 6= F .

In fact, we have the following result.

2.9. Proposition. R is a right AC ring if and only if R is a right AFG ring and rl(S)
is a cyclic right ideal for any finite subset S of R.

Proof. “⇐ ” Let r(T ) be a right annihilator in R for T ⊆ R. Then r(T ) = a1R+ a2R+
· · ·+ anR. By [1, Proposition 2.15], we have

r(T ) = rl(r(T )) = rl{a1, a2, · · · , an}

is a cyclic right ideal of R. So R is a right AC ring.
“⇒ ” is trivial. �

2.10. Example. Let F be a field and R the subring of FN consisting of “sequences"
(a1, a2, · · · ) ∈ FN that are eventually constant. Then R is a commutative von Neumann
regular ring (see [16, Example 7.54]) and so is pseudo-coherent.

Let ei ∈ R denote the ith unit vector (0, · · · , 1, 0, · · · ) and S = {e1, e3, e5, · · · }. Then
r(S) consists of sequences (a1, a2, · · · ) that are eventually zero and such that an = 0 for
n odd. Clearly, r(S) is not a finitely generated ideal of R. Thus R is not an AFG ring.

Björk proved that R is a right AFG ring if R is a right pseudo-coherent left perfect
ring (see [3, Proposition 4.3]).

2.11. Example. Let x, y1, y2, · · · be indeterminates over a field K, S = K[x, yi] and
R = K[x2, x3, yi, xyi]. Then R is a subring of the commutative domain S. Hence R is
also a commutative domain, and so is an AFG ring. But R is not a Π-coherent ring (see
[12, p.110]).

It is known that R is a right Π-coherent ring if and only if every n × n matrix ring
Mn(R) (n ≥ 1) is a right AFG ring (see [20, Corollary 2.5]). Although being right
Π-coherent ring is Morita invariant, it is false for right AFG rings.

3. CTF rings
In [27], Xue introduced the concept of right CTF rings. He called a ring R right

CTF if every cyclic torsionless right R-module embeds in a free module. This concept
is a generalization of right FGTF rings introduced by Faith [11]. Recall that a ring R
is right FGTF if every finitely generated torsionless right R-module embeds in a free
module.

3.1. Lemma. The following are true:
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(1) R is a right CTF ring if and only if every right annihilator in R is a right
annihilator of a finite subset of R.

(2) A ring R is right FGTF if and only if every n× n matrix ring Mn(R) is right
CTF for every n ≥ 1.

Proof. (1) “ ⇒ ” Let I be a right annihilator in R. Then there is a monomorphism
f : R/I → Rn, n ∈ N. Put f(1) = (a1, a2, · · · , an). It is easy to check that I =
r{a1, a2, · · · , an}.

“ ⇐ ” Let I be a right annihilator in R. Then I = r{b1, b2, · · · , bn} by hypothesis.
Define g : R/I → Rn by

g(r) = (b1r, b2r, · · · , bnr).
It is easy to verify that g is a monomorphism. So R is a right CTF ring.

(2) follows from (1) and [11, Theorem 1.1]. �

3.2. Remark. (1) Although being right FGTF is Morita invariant, being right CTF is
not Morita invariant by Lemma 3.1(2).

(2) If R has the a.c.c. on left annihilators, then R is a right CTF ring by Lemma
3.1(1) and [10, Corollary 2].

(3) Clearly, any right CF ring is right CTF . But the converse is not true in general.

3.3. Example. Let k be a division ring and Vk be a right k-vector space of infinite
dimension. Let R = End(Vk). Then R is a right self-injective von Neumann regular ring
but not semisimple Artinian (see [16, Example 3.74B]). Note that R is a Baer ring, so R
is a right CTF ring. Clearly R is not a right CF ring.

In fact, we have the following easy observation.

3.4. Proposition. R is a right CF ring if and only if R is a right CTF right dual ring.

Recall that a left R-moduleM is H-finitely generated [7] if there is a finitely generated
submodule N of M such that (M/N)∗ = 0.
R is called a left f-injective ring if Ext1R(R/I,R) = 0 for any finitely generated left

ideal I.

3.5. Theorem. If the dual module of every cyclic torsionless right R-module is H-finitely
generated, then R is a right CTF ring. The converse holds if R is a left f-injective ring.

Proof. Let M be a cyclic torsionless right R-module. Then there exists a finitely gener-
ated submodule N of M∗ such that (M∗/N)∗ = 0 by hypothesis.

Let N = Rf1 +Rf2 + · · ·+Rfn. Define α : M → Rn by

α(x) = (f1(x), f2(x), · · · , fn(x)), x ∈M.

We next prove that α is a monomorphism.
Let α(x) = 0, define β : M∗/N → R by

β(g) = g(x), g ∈M∗.
It is easy to check that β is well defined, and so β = 0. Thus x ∈

⋂
g∈M∗ ker(g). Since

M is torsionless, we have x = 0. So α is a monomorphism and hence R is a right CTF
ring.

Conversely, suppose that R is a right CTF ring and R is left f -injective. For any cyclic
torsionless right R-module M , there exists an exact sequence 0 → M

γ→ Rn → L → 0.
Let πi : Rn → R be the ith projection, ϕi = πiγ ∈M∗ and N = Rϕ1 +Rϕ2 + · · ·+Rϕn.
We claim that (M∗/N)∗ = 0. Otherwise, if there exists 0 6= ξ ∈ (M∗/N)∗, then there
exists θ ∈ M∗ such that ξ(θ) 6= 0. Write λ : N → Rθ + N and ι : Rθ + N → M∗ to be
the inclusions. Since M is cyclic, there is an exact sequence R ρ→M → 0, which induces
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the exact sequence 0→ M∗
ρ∗→ R∗. Since R is a left f -injective ring, the exact sequence

0 → N
ρ∗ιλ→ R∗ induces the exact sequence R∗∗ λ∗ι∗ρ∗∗→ N∗ → 0. Thus λ∗ι∗σMρ =

λ∗ι∗ρ∗∗σR is epic, and so λ∗ι∗σM is epic. We next show that λ∗ι∗σM is also monic. In
fact, if λ∗ι∗σM (x) = 0, then σM (x)ιλ = 0, and so σM (x)ιλ(ϕi) = 0, i = 1, 2, · · · , n. Thus
ϕi(x) = 0, and so γ(x) = 0. Since γ is monic, x = 0. Hence λ∗ι∗σM is an isomorphism.

Similarly, the exact sequence 0→ Rθ+N
ρ∗ι→ R∗ induces the exact sequence R∗∗ ι

∗ρ∗∗→
(Rθ+N)∗ → 0. Then ι∗σMρ = ι∗ρ∗∗σR is an epimorphism. So ι∗σM is an epimorphism.
Also ι∗σM is a monomorphism. Thus ι∗σM is an isomorphism. Hence λ∗ : (Rθ+N)∗ →
N∗ is an isomorphism. Note that the exact sequence

0→ N
λ→ Rθ +N → (Rθ +N)/N → 0

induces the exact sequence

0→ ((Rθ +N)/N)∗ → (Rθ +N)∗
λ∗
→ N∗.

So ((Rθ + N)/N)∗ = 0. But ξ|(Rθ+N)/N 6= 0, a contradiction. Thus (M∗/N)∗ = 0.
Therefore M∗ is H-finitely generated. �

3.6. Corollary. R is a quasi-Frobenius ring if and only if R is a two-sided dual ring and
the dual module of every cyclic right R-module is H-finitely generated.

Proof. It follows from Theorem 3.5 and [13, Theorem 2.1]. �

Next we consider the relationships between AFG rings and CTF rings.

3.7. Lemma. The following are true:
(1) If R is a left AFG ring, then R is a right CTF ring.
(2) If R is a right CTF right pseudo-coherent ring, then R is a right AFG ring.

Proof. (1) By Theorem 2.1, the dual module of every cyclic torsionless right R-module is
finitely generated and so is H-finitely generated. Thus R is a right CTF ring by Theorem
3.5.

(2) is clear by Lemma 3.1(1). �

In general, a right or left CTF ring need not be a left AFG ring.

3.8. Example. LetK be a field with a subfield L such that dimLK =∞, and there exists
a field isomorphism ϕ : K → L (for instance, K = Q(x1, x2, x3, · · · ), L = Q(x2, x3, · · · )).
Let R = K ×K with multiplication

(x, y)(x′, y′) = (xx′, ϕ(x)y′ + yx′), x, y, x′, y′ ∈ K.
Then it is easy to see that R has exactly three right ideals: 0, R and (0,K). Therefore R
has the a.c.c and the d.c.c on right annihilators and so has the a.c.c. on left annihilators.
Thus R is a two-sided CTF ring by Remark 3.2(2).

On the other hand, let a = (0, 1) ∈ R. Then l(a) is not finitely generated (see [16,
Example 4.46 (e)]). Thus R is not a left AFG ring.

However we have the following result.

3.9. Proposition. Let R be a two-sided pseudo-coherent ring. Then the following are
equivalent:

(1) R is a left AFG ring.
(2) R is a right AFG ring.
(3) R is a left CTF ring.
(4) R is a right CTF ring.
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Proof. (1) ⇒ (4) and (2) ⇒ (3) follow from Lemma 3.7(1).
(4) ⇒ (2) and (3) ⇒ (1) hold by Lemma 3.7(2). �

3.10. Corollary. The following are true for a ring R:
(1) R is a two-sided AFG ring if and only if R is a two-sided CTF two-sided pseudo-

coherent ring.
(2) R is a two-sided Π-coherent ring if and only if R is a two-sided FGTF two-sided

coherent ring.

Proof. (1) is an immediate consequence of Proposition 3.9.
(2) follows from (1), Lemma 3.1(2) and [20, Corollary 2.5]. �

Recall that R is a right FP -injective ring if RR is an FP -injective right R-module.
Clearly, any right FP -injective ring is right singly injective.

3.11. Proposition. The following are true:
(1) R is a left AFG ring if and only if R is a right CTF ring and lr(S) is a finitely

generated left ideal for any finite subset S of R.
(2) A right singly injective ring R is left AFG if and only if R is right CTF .
(3) [27, Corollary 3.4] A right FP -injective ring R is left Π-coherent if and only if

R is right FGTF .

Proof. (1) By Lemma 3.7(1), it is enough to show the sufficiency.
Let l(T ) be a left annihilator in R for T ⊆ R. By Lemma 3.1(1), rl(T ) = r(S) for

a finite subset S of R. So by [1, Proposition 2.15], l(T ) = lrl(T ) = lr(S) is a finitely
generated left ideal. Hence R is a left AFG ring.

(2) For any finite subset S = {r1, r2, · · · , rn} of R, Rr1 +Rr2 + · · ·+Rrn = l(T ) for
some T ⊆ R by [22, Proposition 2.8] since R is a right singly injective ring. So

lr(S) = lr(Rr1 +Rr2 + · · ·+Rrn) = lrl(T ) = l(T )

is a finitely generated left ideal. Thus the result holds by (1).
(3) By [23, Theorem 5.41 and Corollary 5.42], R is a right FP -injective ring if and

only if every n × n matrix ring Mn(R) is right singly injective for every n ≥ 1. So (3)
follows from (2), Lemma 3.1(2) and [20, Corollary 2.5]. �

3.12. Corollary. The following are equivalent for a ring R:
(1) R is a two-sided AFG two-sided singly injective ring.
(2) R is a two-sided AFG two-sided FP -injective ring.
(3) R is a two-sided CTF two-sided FP -injective ring.

Proof. (1) ⇒ (2) We first prove that R is a right coherent ring. Let I and J be two
finitely generated right ideals of R. Then I = r(X) and J = r(Y ) for some finitely
generated left ideals X and Y of R by [22, Proposition 2.8] and Proposition 3.11. Thus
I ∩ J = r(X + Y ) is finitely generated. Also r(a) is finitely generated for any a ∈ R. So
R is a right coherent ring by [5, Theorem 2.2].

On the other hand, l(I ∩ J) = l(r(X) ∩ r(Y )) = l(r(X + Y )) = X + Y = l(I) + l(J).
Thus R is a right f -injective ring by [14, Theorem 1]. So R is a right FP -injective ring
by [25, Lemma 3.1]. Similarly, R is a left FP -injective ring.

(2) ⇒ (3)⇒ (1) follow from Proposition 3.11. �
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Comparison of near sets by means of a chain of
features
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Abstract

If the number of features of objects in a perceptual system, is large,
then the objects can be known better and comparable. In this paper
basically, we form a chain of feature sets that describe objects and then
by means of this chain of feature sets, we investigate the nearness of
sets and near sets in a perceptual system.
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1. Introduction
Near sets were introduced by J.F. Peters [11], which are indeed a form of generalization

of rough sets proposed by Z. Pawlak [6]. The algebraic properties of near sets are de-
scribed in [9]. Recent work has considered near soft sets [20], soft nearness approximation
spaces [4], near groups [3], isometries in proximity spaces [18], and applications of near
sets [17,19]. The fundamental idea of near set theory is object description and classifica-
tion according to perceptual knowledge. It is supposed that perceptual knowledge about
objects is always given with respect to probe functions, i.e., real-valued functions which
represent features of a physical object. Some well known examples of probe functions are
the colour, size or weight of an object [1,2,9-16,21].
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2. Preliminiaries
In this section, we present the basic definitions of near set theory [9,11]. More detailed

explanations related to near sets and rough sets can be found in [1,2,9-16,21] and [5-8],
respectively.

2.1. Definition. [9] (Perceptual Object) A perceptual object is something perceivable
that has its origin in the physical world.

2.2. Definition. [9] (Probe Function) A probe function is a real-valued function rep-
resenting a feature of a perceptual object.Simple examples of probe functions are the
colour, size or weight of an object.

2.3. Definition. [9] (Perceptual System) A perceptual system 〈O,F 〉 consists of a
non-empty set O of sample perceptual objects and a non-empty set F of real-valued
functions φ ∈ F such that φ : O → R.

2.4. Definition. [9] (Object Description) Let 〈O,F 〉 be a perceptual system, and let
B ⊆ F be a set of probe functions. Then, the description of a perceptual object x ∈ O
is a feature vector given by

φB(x) = (φ1(x), φ2(x), ..., φi(x), ..., φl(x))
where l is the length of the vector φB , and each φi(x) in φB(x) is a probe function

value that is part of the description of the object x ∈ O .

2.5. Definition. [2, 6] (Indiscernibility relation) Let 〈O,F 〉 be a perceptual system.
For every B ⊆ F the indiscernibility relation ∼B is defined as follows:

∼B= {(x, y) ∈ O ×O | ∀φi ∈ B,φi (x) = φi (y)} .

If B = {φ} for some φ ∈ F , instead of ∼{φ} we write ∼φ .
The indiscernibility relation ∼B is an equivalence relation on object descriptions.

2.6. Lemma. [9] Let 〈O,F 〉 be a perceptual system. For every B ⊆ F ,

∼B=
⋂
φ∈B
∼φ .

2.7. Definition. (Equivalence Class) Let 〈O,F 〉 be a perceptual system and let x ∈ O
. For a set B ⊆ F an equivalence class is defined as x�∼B = {y ∈ O | y ∼B x} .

2.8. Definition. (Quotient Set)Let 〈O,F 〉 be a perceptual system.For a set B ⊆ F a
quotient set is defined as

O�∼B = {x�∼B | x ∈ O} .

2.9. Definition. [9] Let 〈O,F 〉 be a perceptual system. Then∏
(O,F ) :=

⋃
B⊆F

O�∼B ,

i.e.,
∏

(O,F ) is the family of equivalence classes of all indiscernibility relations deter-
mined by a perceptual information system 〈O,F 〉 .

2.10. Definition. [9] (Nearness relation). Let 〈O,F 〉 be a perceptual system and let
X,Y ⊆ O. A set X is near to a set Y within the perceptual system 〈O,F 〉 (X 1F Y ) iff
there are F1, F2 ⊆ F and f ∈ F and there are A ∈ O�∼F1

, B ∈ O�∼F2
, C ∈ O�∼f such

that A ⊆ X,B ⊆ Y ve A,B ⊆ C.If a perceptual system is understood, then we say
briefly that a set X is near to a set Y .
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2.11. Definition. [9] (Perceptual near sets) Let 〈O,F 〉 be a perceptual system and let
X ⊆ O. A set X is a perceptual near set iff there is Y ⊆ O such that X 1F Y . The
family of near sets of a perceptual system 〈O,F 〉 is denoted by NearF (O) .

2.12. Example. Let 〈O,F 〉 be a perceptual system such that O = {x1, x2, ..., x6} ,
F = {φ1, φ2} , φ1 (x1) = φ1 (x2) = φ1 (x3) , φ1 (x4) = φ1 (x5) = φ1 (x6) , φ1 (x1) 6= φ1 (x4)
and φ2 (x1) = φ2 (x2) , φ2 (x3) = φ2 (x4) , φ2 (x5) = φ2 (x6) ,φ2 (x1) 6= φ2 (x4) 6= φ2 (x5) .

Thus O�∼φ1 = {{x1, x2, x3} , {x4, x5, x6}} , O�∼φ2 = {{x1, x2} , {x3, x4} , {x5, x6}} ,
O�∼{φ1,φ2}

= {{x1, x2} , {x3} , {x4} , {x5, x6}} .
Let X = {x1, x2, x3, x5} , Y = {x2, x4, x5, x6} .Thus there are A = {x4} ∈ O�∼{φ1,φ2}

,

B = {x5, x6} ∈ O�∼φ2C = (A ∪B) ∈ O�∼φ1 such that A ⊆ X,B ⊆ Y. Therefore
X 1F Y.

2.13. Proposition. [9] Let 〈O,F 〉 be a perceptual system, B ⊆ F and x�∼B ∈ O�∼B ,
where |x�∼B | ≥ 2. All elements belonging to a class x�∼Bare near each other.

2.14. Proposition. [9] Let 〈O,F 〉 be a perceptual system. For any B ⊆ F , every
equivalence class of an indiscernibility relation ∼B is a near set .

3. Some New Properties of Near Sets
In this section, we give some new propositions which are related to some propositions

in [9].

3.1. Proposition. [9] Let 〈O,F 〉 be a perceptual system. For every X ⊆ O, the following
conditions are equivalent:

(1) X ∈ NearF (O) ,
(2) there is A ∈

∏
(O,F ) such that A ⊆ X,

(3) there is A ∈ O�∼F such that A ⊆ X .

3.2. Proposition. Let 〈O,F 〉 be a perceptual system and X,Y ⊆ O . Then

X 1F Y ⇒ X,Y ∈ NearF (O) .

Proof. Let X 1F Y. From Definition 2.11, there are A,B ∈
∏

(O,F ) such that A ⊆
X,B ⊆ Y.Thus, from Proposition 3.1, X,Y ∈ NearF (O) . �

3.3. Remark. From Proposition 3.2, two near sets may not be near to each other. We
can see this in the following example.

3.4. Example. Let 〈O,F 〉 be a perceptual system such that O = {x1, x2, ..., x6} ,for
simplicity F = (φ) and φ (x2) =φ (x3) , φ (x4) = φ (x5) = φ (x6) , φ (x1) 6= φ (x2) 6=
φ (x4) .ThusO�∼φ = {{x1} , {x2, x3} , {x4, x5, x6}} . LetX = {x1, x2} , Y = {x2, x3, x6} .There
are A = {x1} ∈ O�∼φ, B = {x2, x3} ∈ O�∼φ such that A ⊆ X,B ⊆ Y, so X,Y ∈
NearF (O) . But there is no C ∈ O�∼φ such that A,B ⊆ C.Therefore X and Y are not
near to each other.

3.5. Proposition. [9] Let 〈O,F 〉 be a perceptual system and X,Y ⊆ O . Then

X,Y ∈ NearF (O) ⇒ X ∪ Y ∈ NearF (O) ,
i.e., the family of near sets of a perceptual system 〈O,F 〉 is closed for the union of

sets.

3.6. Proposition. Let 〈O,F 〉 be a perceptual system and X,Y ⊆ O . Then

X 1F Y ⇒ X ∪ Y ∈ NearF (O) .

Proof. It is clear from Proposition 3.2 and Proposition 3.5 . �
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3.7. Proposition. [9] Let 〈O,F 〉 be a . Then

X ∈
∏

(O,F ) ⇒ X 1F X,
i.e., the relation 1F is reflexive within the family

∏
(O,F ) .

3.8. Proposition. Let 〈O,F 〉 be a perceptual system. Then

X 1F X ⇔ there is A ∈
∏

(O,F ) such that A ⊆ X.
That is, a set X ⊆ O to be near to itself need not be a equivalence class or need not

be a union of equivalence classes. But at least it has to contain an equivalence class.

Proof. It is clear. �

3.9. Proposition. [9] Let 〈O,F 〉 be a perceptual system . For any X,Y ⊆ O, if there is
A ∈

∏
(O,F ) such that A ⊆ X ∩ Y , then X 1F Y.

3.10. Proposition. Let 〈O,F 〉 be a perceptual system and let X,Y ⊆ O and F is a
singleton set. Then

X 1F Y ⇔ there is A ∈
∏

(O,F ) such that A ⊆ X ∩ Y.

Proof. It is enough to prove the implication (⇒). From Definition 2.10, there are A ∈
O�∼F , B ∈ O�∼F , C ∈ O�∼F such that A ⊆ X,B ⊆ Y and A,B ⊆ C. Since F is a
singleton set and A,B ⊆ C, then A = B = C. Therefore A ⊆ X ∩ Y. �

3.11. Proposition. [9] Let 〈O,F 〉 be a perceptual system and let X,Y, Z ⊆ O. Then
the following conditions hold:

(1) X 1F Y &Y ⊆ Z ⇒ X 1F Z,
(2) X ⊆ Y & X 1F Z ⇒ Y 1F Z .

3.12. Proposition. Let 〈O,F 〉 be a perceptual system and A1, A2, B1, B2 ⊆ O.Then the
following conditions hold:

(1) A1 1F A2 &B1 1F B2 ⇒ (A1 ∪B1) 1F (A2 ∪B2) or (A1 ∪B2) 1F (A2 ∪B1) ,
(2) (A1 ∩A2) 1F (B1 ∩B2)⇒ A1 1F B1 or A1 1F B2 or A2 1F B1 or A2 1F B2.

Proof. Let 〈O,F 〉 be a perceptual system and let A1, A2, B1, B2 ⊆ O.
Case ( 1). Let A1 1F A2 and B1 1F B2. So A1 1F A2 , A2 ⊆ A2 ∪ B2 and

B1 1F B2, B2 ⊆ (A2 ∪B2) then from Proposition 3.11 (1) A1 1F (A2 ∪B2) and B1 1F

(A2 ∪B2) . Since A1 1F (A2 ∪B2) and B1 1F (A2 ∪B2), (A1 ∪B1) 1F (A2 ∪B2) .
Similarly it can be shown that (A1 ∪B2) 1F (A2 ∪B1).

Case ( 2). Let (A1 ∩A2) 1F (B1 ∩B2) . Since (A1 ∩A2) ⊆ A1 and from Proposition
3.11 (2) A1 1F (B1 ∩B2) . Since A1 1F (B1 ∩B2) and from Proposition 3.11 (1), then
A1 1F B1. Similarly it can be shown that A2 1F B1 or A2 1F B1 or A2 1F B2. �

The fact that the reverse of the implication reversed in Proposition 3.12 (1) does not
hold is shown by example . Similarly it can be shown that the Proposition 3.12 (2) does
not hold always.

3.13. Example. Let 〈O,F 〉 be a perceptual system such that O = {x1, x2, ..., x8} ,so
O�∼F = {{x1, x2, x3} , {x4, x5} , {x6, x7, x8}} .LetA1 = {x2, x3, x4} , A2 = {x1, x2, x3, x5} ,
B1 = {x1, x3, x4, x7} , B2 = {x2, x4, x6, x8} ,so A1 ∪ B1 = {x1, x2, x3, x4, x7} and A2 ∪
B2 = {x1, x2, x3, x4, x5, x6, x8} . Since {x1, x2, x3} ∈O�∼F and {x1, x2, x3} ⊆ A1∪B1, A2∪
B2 A1 ∪ B1 1F A2 ∪ B2.But there is no X�∼F ∈ O�∼F , Y�∼F ∈ O�∼F , Z�∼F ∈
O�∼F such that X�∼F ⊆ A1, Y�∼F ⊆ A2 and X,Y ⊆ Z. Therefore, from Definition
2.10, A1 and A2 are not near to each other. For same reason, B1 and B2 are not near to
each other.
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4. Chain of Features, Nearness and Near Sets
In this section basically, a nested chain of probe functions (features) is formed and cor-

responding indiscernibility relation, nearness relation and near sets in 〈O,F 〉 perceptual
system are investigated.

4.1. Definition. Let 〈O,F 〉 be a perceptual system. Then∏
(O,∼F ) := {∼B | B ⊆ F} ,

i.e.
∏

(O,∼F ) is the family of indiscernibility relations of all probe functions deter-
mined by a perceptual information system 〈O,F 〉 .

4.2. Lemma. Let 〈O,F 〉 be a perceptual system,
∏

(O,F ) is the family of equivalence
classes of all indiscernibility relations and

∏
(O,∼F ) is the family of indiscernibility

relations of all probe functions. Then for all B ⊆ F, the function

f :
∏

(O,∼F )→
∏

(O,F )
∼B 7→ O�∼B

is one-to-one and onto.

4.3. Proposition. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} .
Then for all Bi ⊆ F , 1 ≤ j, i ≤ n,

Bj ⊆ Bi ⇔ ∼Bi⊆ ∼Bj .

Proof. Let Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Since
⋂

φ∈Bj
∼φ⊆

⋂
φ∈Bi

∼φ and, from Lemma

2.6, ∼Bi⊆∼Bj . �

4.4. Corollary. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} . Then
for all Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n ,

∼Bi⊆∼Bj⇔ ∩
φ∈Bi

∼φ⊆ ∩
φ∈Bj

∼φ .

4.5. Proposition. Let 〈O,F 〉 be a perceptual system , F = Bn = {φ1, φ2, ..., φn} and
Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Then

∼Bi⊆∼Bj ⇒ For all A ∈ O�∼Bi there is a unique C ∈ O�∼Bj such
that A ⊆ C .

Proof. Let∼Bi⊆∼Bj , x ∈ O,A = x�∼Bi and C = x�∼Bj .Since ∼Bi⊆∼Bj , then x�∼Bi ⊆
x�∼Bj . �

4.6. Proposition. Let 〈O,F 〉 be a perceptual system , X ⊆ O,F = Bn = {φ1, φ2, ..., φn}
and Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Then the following conditions hold:

(1)
∏(

O,∼Bj
)
⊆
∏

(O,∼Bi) ,
(2)

∏
(O,Bj) ⊆

∏
(O,Bi) .

Proof. Let 〈O,F 〉 be a perceptual system , X ⊆ O, F = Bn = {φ1, φ2, ..., φn} and
Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n .

(1) Since B ⊆ Bj then B ⊆ Bi . Thus from Definition 4.1
∏(

O,∼Bj
)
⊆
∏

(O,∼Bi) .
(2) Since Bj ⊆ Bi, from Definition 2.9

∏
(O,Bj) ⊆

∏
(O,Bi) . �

4.7. Proposition. Let 〈O,F 〉 be a perceptual system , F = Bn = {φ1, φ2, ..., φn} and
Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Then

NearBj (O) ⊆ NearBi (O) .
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Proof. LetX ⊆ O andX ∈ NearBj (O) . SinceX ∈ NearBj (O) there is A ∈
∏(

O,∼Bj
)

such that A ⊆ X. From Proposition 4.6 (1) A ∈
∏

(O,∼Bi) . Therefore X ∈ NearBi (O) .
�

The fact that the reverse of the implication reversed in Proposition 4.7 does not hold.
We can see this in the next example.

4.8. Example. Let 〈O,F 〉 be perceptual system in Example 2.12. ThusO = {x1, x2, ..., x6} ,
F = {φ1, φ2} . Recall also that O�∼φ1 = {{x1, x2, x3} , {x4, x5, x6}} , O�∼φ2 = {{x1, x2}
, {x3, x4} , {x5, x6} , O�∼{φ1,φ2}

= {{x1, x2} , {x3} , {x4} , {x5, x6}} . Let X ⊆ O , B1, B2

⊆ F be defined as: X = {x1, x2, x4} , B1 = {φ1} , B2 = {φ1, φ2} . Since {x1, x2} ∈
O�∼{φ1,φ2}

and {x1, x2} ⊆ X, then X ∈ NearB2 (O) . But there is no A ∈ O�∼φ1 such
that A ⊆ X, therefore X /∈ NearB1 (O) .

4.9. Proposition. Let 〈O,F 〉 be a perceptual system ,F = Bn = {φ1, φ2, ..., φn} , X, Y ⊆
O and Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n .Then

X 1Bj
Y ⇒ X 1Bi

Y.

Proof. Let X 1Bj
Y. From Definition 2.10 there are A,B,C ∈

∏
(O,Bj) such that

A ⊆ X,B ⊆ Y and A,B ⊆ C. Since A,B,C ∈
∏

(O,Bj) , then from Proposition 4.6 (2)
A,B,C ∈

∏
(O,Bi) . Again from Definition 2.10, X 1

Bi

Y. �

4.10. Definition. Let 〈O,F 〉 be a perceptual system ,X,Y ⊆ O,F = Bn = {φ1, φ2, ..., φn}
and Bi ⊆ F. Then the expression

X 1∼
Bi

Y means that: A set X is near to a set Y within the perceptual system
〈O,F 〉 only for the ∼Bi relation.

4.11. Proposition. Let 〈O,F 〉 be a perceptual system , X,Y ⊆ O,F = Bn = {φ1, φ2, ..., φn}
and Bi ⊆ F ,Bj ⊆ Bi, 1 ≤ j, i ≤ n . Then

X 1∼
Bj

Y ⇒ X 1∼
Bi

Y.

Proof. Let X 1∼
Bj

Y. From Proposition 3.10 and Proposition 3.1, respectively, then
X ∩Y ∈ NearBj (O) . Thus from Proposition 4.7, X ∩Y ∈ NearBi (O) . Therefore, from
Proposition 3.10, then X 1∼

Bi
Y. �

4.12. Example. Let 〈O,F 〉 be perceptual system in the Example 2.12. Recall also that
O�∼φ2 = {{x1, x2} , {x3, x4} , {x5, x6}} , O�∼{φ1,φ2}

= {{x1, x2} , {x3} , {x4} , {x5, x6}} .
Let sets X,Y ⊆ O , B1, B2 ⊆ F be defined as: X = {x2, x3, x4} , Y = {x3, x4, x6} B1 =
{φ2} , B2 = {φ1, φ2} . Since {x3, x4} ∈ O�∼{φ2}

and {x3, x4} ⊆ X,Y then X 1∼
B1

Y.

Since {x4} ∈ O�∼{φ1,φ2}
and {x4} ⊆ {x3, x4} ⊆ X,Y then X 1∼

B2
Y.

4.13. Definition. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} .

(4.1) B1 ⊆ B2 ⊆ ... ⊆ Bn
Then the ascending subsets (4.1) is called as a chain of probe function sets or briefly

a feature sets chain.
From Proposition 4.6, we can give following proposition.

4.14. Proposition. Let 〈O,F 〉 be a perceptual system , F = Bn = {φ1, φ2, ..., φn} and
B1 ⊆ B2 ⊆ ... ⊆ Bn be a feature chain. Then the followings hold:
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(1)
∏

(O,∼B1) ⊆
∏

(O,∼B2) ⊆ ... ⊆
∏

(O,∼F )
(2)

∏
(O,B1) ⊆

∏
(O,B2) ⊆ ... ⊆

∏
(O,F ) .

4.15. Definition. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} .

(4.2) 1B1⊆1B2⊆ ... ⊆1F
The relation (4.2) corresponding to (4.1) is called as chain of a perceptual nearness or

briefly nearness chain.
From Proposition 4.7 and Proposition 4.9 we can give following proposition.

4.16. Proposition. Let 〈O,F 〉 be a perceptual system ,F = Bn = {φ1, φ2, ..., φn} , X, Y ⊆
O and 1B1⊆1B2⊆ ... ⊆1F a nearness chain .Then the following conditions hold:

(1) X 1B1 Y ⇒ X 1B2 Y ⇒ ...⇒ X 1F Y
(2) NearB1 (O) ⊆ NearB2 (O) ⊆ ... ⊆ NearF (O) .

4.17. Definition. Let 〈O,F 〉 be a perceptual system and F = Bn = {φ1, φ2, ..., φn} .

(4.3) ∼F⊆∼Bn−1⊆ ... ⊆∼B1

The relation (4.3) corresponding to (4.1) is called a chain of indiscernibility relations
or briefly indiscernibility chain.

4.18. Remark. By using Definition 4.15 and Definition 4.17, we obtain 1∼B1
⊆1∼B2

⊆
... ⊆1∼F . In fact, more than one indiscernibility chain can be formed. We can imagine
this indiscernibility chain as a tree, i.e., a branching model which is formed by trunk,
branch, thinner branch and so on, respectively. So we get a tree which has n features in
the trunk and 1 feature in the thinnest branch.

From Proposition 4.11 we can give following proposition.

4.19. Proposition. Let 〈O,F 〉 be a perceptual system , X,Y ⊆ O,F = Bn = {φ1, φ2, ..., φn}
and 1∼B1

⊆1∼B2
⊆ ... ⊆1∼F nearness chain .Then ,

X 1∼B1
Y ⊆ X 1∼B2

Y ⊆ ... ⊆ X 1∼F Y.

4.20. Remark. There is a nuance between X 1F Y and X 1∼F Y . X 1∼F Y implies
that the sets X and Y near to each other with respect to only the ∼F indiscernebility
relation in 〈O,F 〉 perceptual system. However, X 1F Y implies that the sets X and Y
near to each other by means of Definition 2.10.
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Abstract
In this paper, we introduce a new approach on fractional integration,
which generalizes the Riemann-Liouville fractional integral. We prove
some properties for this new approach. We also establish some new
integral inequalities using this new fractional integration.
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1. Introduction
Fractional calculus and its widely application have recently been paid more and more

attentions. For more recent development on fractional calculus, we refer the reader to
[7, 12, 15, 16, 19]. There are several known forms of the fractional integrals of which two
have been studied extensively for their applications [5, 10, 11, 14, 21]. The first is the
Riemann-Liouville fractional integral of α ≥ 0 for a continuous function f on [a, b] which
is defined by

Jαa f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1 f(t)dt, α ≥ 0, a < x ≤ b.
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This integral is motivated by the well known Cauchy formula:∫ x

a

dt1

∫ t1

a

dt2...

∫ tn−1

a

f(tn)dtn =
1

Γ(n)

∫ x

a

(x− t)n−1 f(t)dt, n ∈ N∗.

The second is the Hadamard fractional integral introduced by Hadamard [9]. It is given
by:

Jαa f(x) =
1

Γ(α)

∫ x

a

(
log

x

t

)α−1

f(t)
dt

t
, α > 0, x > a.

The Hadamard integral is based on the generalization of the integral∫ x

a

dt1
t1

∫ t1

a

dt2
t2
...

∫ tn−1

a

f(tn)

tn
dtn =

1

Γ(α)

1

Γ(α)

∫ x

a

(
log

x

t

)n−1

f(t)
dt

t

for n ∈ N∗.
In [10], Katugampola gave a new fractional integration which generalizes both the Riemann-
Liouville and Hadamard fractional integrals into a single form. This generalization is
based on the observation that, for n ∈ N∗,∫ x

a

ts1dt1

∫ t1

a

ts2dt2...

∫ tn−1

a

tsnf(tn)dtn =
(s+ 1)1−n

Γ(α)

∫ x

a

(
xs+1 − ts+1)n−1

tsf(t)dt,

which gives the following fractional version

sJαa f(x) =
(s+ 1)1−n

Γ(α)

∫ x

a

(
xs+1 − ts+1)α−1

tsf(t)dt,

where α and s 6= −1 are real numbers.
Recently, in [6], Diaz and Pariguan have defined new functions called k-gamma and k-
beta functions and the Pochhammer k-symbol that is respectively generalization of the
classical gamma and beta functions and the classical Pochhammer symbol:

Γk(x) = lim
n→∞

n!kn(nk)
x
k
−1

(x)n,k
, k > 0,

where (x)n,k is the Pochhammer k-symbol for factorial function. It has been shown that

the Mellin transform of the exponential function e−
tk

k is the k-gamma function, explicitly
given by

Γk(x) =

∫ ∞
0

tx−1e−
tk

k dt, x > 0.

Clearly, Γ(x) = lim
k→1

Γk(x), Γk(x) = k
x
k
−1Γ(x

k
) and Γk(x + k) = xΓk(x). Furthermore,

k-beta function is defined as follows

Bk(x, y) =
1

k

∫ 1

0

t
x
k
−1(1− t)

y
k
−1dt,

so that Bk(x, y) = 1
k
B(x

k
, y
k

) and Bk(x, y) = Γk(x)Γk(y)
Γk(x+y)

.

Later, under the above definitions, in [13], Mubeen and Habibullah have introduced the
k-fractional integral of the Riemann-Liouville type as follows:

kJ
αf(x) =

1

kΓk(α)

∫ x

0

(x− t)
α
k
−1 f(t)dt, α > 0, x > 0.

Note that when k → 1, then it reduces to the classical Riemann-liouville fractional
integral.
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2. (k, s)-Riemann-Liouville fractional integral
In this section, we present the (k, s) fractional integration which generalizes all of the

above Riemann-Liouville fractional integrals as follows:

2.1. Definition. Let f be a continuous function on on a the finite real interval [a, b].
Then (k, s)-Riemann-Liouville fractional integral of f of order α > 0 is defined by:

(2.1) s
kJ

α
a f(x) :=

(s+ 1)1−α
k

kΓk(α)

∫ x

a

(
xs+1 − ts+1)αk−1

tsf(t)dt, x ∈ [a, b],

where k > 0, s ∈ R\{−1}.

In the following theorem, we prove that the (k, s) fractional integral is well defined:

2.2. Theorem. Let f ∈ L1[a, b], s ∈ R\{−1} and k > 0. Then s
kJ

α
a f(x) exists for any

x ∈ [a, b], α > 0.

Proof. Let ∆ := [a, b]× [a, b] and P : ∆→ R ; P (x, t) =
[(
xs+1 − ts+1

)α
k
−1
ts
]
. It clear

to see that P = P+ + P−, where

P+(x, t) :=

{ (
xs+1 − ts+1

)α
k
−1
ts , a ≤ t ≤ x ≤ b

0 , a ≤ x ≤ t ≤ b

and

P−(x, t) :=

{ (
ts+1 − xs+1

)α
k
−1
xs , a ≤ t ≤ x ≤ b

0 , a ≤ x ≤ t ≤ b.

Since P is measurable on ∆, then we can write∫ b

a

P (x, t)dt =

∫ x

a

P (x, t)dt =

∫ x

a

(
xs+1 − ts+1)αk−1

tsdt =
k

α

(
xs+1 − as+1)αk .

By using the repeated integral, we obtain∫ b

a

(∫ b

a

P (x, t) |f(x)| dt
)
dx =

∫ b

a

|f(x)|
(∫ b

a

P (x, t)dt

)
dx

=
k

α

∫ b

a

(
xs+1 − as+1)αk |f(x)| dx

≤ k

α

(
bs+1 − as+1)αk ∫ b

a

|f(x)| dx.

That is ∫ b

a

(∫ b

a

P (x, t) |f(x)| dt
)
dx =

∫ b

a

|f(x)|
(∫ b

a

P (x, t)dt

)
dx

≤ k

α

(
bs+1 − as+1)αk ‖f(x)‖L1[a,b] <∞.

Therefore, the function Q : ∆ → R; Q(x, t) := P (x, t)f(x) is integrable over ∆ by
Tonelli’s theorem. Hence, by Fubini’s theorem

∫ b
a
P (x, t)f(x)dx is an integrable function

on [a, b], as a function of t ∈ [a, b]. That is, s
kJ

α
a f(x) exists. �

Now, we prove the commutativity and the semigroup properties of the (k, s)-Riemann-
Liouville fractional integral. We have:
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2.3. Theorem. Let f be continuous on [a, b], k > 0 and s ∈ R\{−1}. Then,

s
kJ

α
a

[
s
kJ

β
a f(x)

]
= s

kJ
α+β
a f(x) = s

kJ
β
a [ skJ

α
a f(x)] ,

for all α > 0, β > 0, x ∈ [a, b].

Proof. Thanks to Definition 1 and by Dirichlet’s formula, we have

s
kJ

α
a

[
s
kJ

β
a f(x)

]
=

(s+ 1)1−α
k

kΓk(α)

∫ x

a

(
xs+1 − ts+1)αk−1

ts skJ
β
a f(t)dt

= (s+1)
1−α

k

kΓk(α)

∫ x
a

(
xs+1 − ts+1

)α
k
−1
ts
[

(s+1)
1− β

k

kΓk(β)

∫ t
a

(
ts+1 − τs+1

) β
k
−1
τsf(τ)dτ

]
dt

= (s+1)
1−α

k

kΓk(α)

∫ x
a

(
xs+1 − ts+1

)α
k
−1
ts
[

(s+1)
1− β

k

kΓk(β)

∫ t
a

(
ts+1 − τs+1

) β
k
−1
τsf(τ)dτ

]
dt.

That is

(2.2)

s
kJ

α
a

[
s
kJ

β
a f(x)

]
=

(s+ 1)2−α+β
k

k2Γk(α)Γk(β)

∫ x

a

τsf(τ)

[∫ x

τ

(
xs+1 − ts+1)αk−1

ts
(
ts+1 − τs+1) βk−1

dt

]
dτ.

Using the change of variable y =
(
ts+1 − τs+1

)
/
(
xs+1 − τs+1

)
, we can write

(2.3) ∫ x

τ

(
xs+1 − ts+1)αk−1 (

ts+1 − τs+1) βk−1
tsdt =

(xs+1−τs+1)
α+β
k
−1

s+1

∫ 1

0
(1− y)

α
k
−1y

β
k
−1dy

=
(xs+1−τs+1)

α+β
k
−1

s+1

∫ 1

0
(1− y)

α
k
−1y

β
k
−1dy =

(xs+1−τs+1)
α+β
k
−1

s+1
kBk(α, β).

According to the k-beta function and by (2.2) and (2.3), we obtain

s
kJ

α
a

[
s
kJ

β
a f(x)

]
=

(s+ 1)1−α+β
k

kΓk(α+ β)

∫ x

a

(
xs+1 − τs+1)α+β

k
−1
τsf(τ)dτ

= s
kJ

α+β
a f(x).

This completes the proof of the Theorem 2.3. �

2.4. Theorem. Let α, β > 0, k > 0 and s ∈ R\{−1}. Then, we have

(2.4) s
kJ

α
a

[ (
xs+1 − as+1) βk−1

]
=

Γk(β)

(s+ 1)
α
k Γk(α+ β)

(
xs+1 − as+1)α+β

k
−1
,

where Γk denotes the k-gamma function.
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Proof. By Definition 1 and using the change of variable y =
(
xs+1 − ts+1

)
/
(
xs+1 − as+1

)
;x ∈

]a, b], we get

s
kJ

α
a

[ (
xs+1 − as+1) βk−1

]
=

(s+ 1)1−α
k

kΓk(α)

∫ x

a

(
xs+1 − ts+1)αk−1

ts
(
ts+1 − as+1)α+β

k
−1
dt

=
(s+ 1)−

α
k
(
xs+1 − as+1

)α+β
k
−1

kΓk(α)

∫ 1

0

(1− y)
α
k
−1y

β
k
−1dy

=

(
xs+1 − as+1

)α+β
k
−1

(s+ 1)
α
k Γk(α)

Bk(α, β).

The case a = x is trivial. The proof of Theorem 2.4 is complete. �

2.5. Remark. (i :) Taking s = 0, k > 0 in (2.4), we obtain

(2.5) kJ
α
a

[
(x− a)

β
k
−1
]

=
Γk(β)

Γk(α+ β)
(x− a)

α+β
k
−1 .

(ii :) The formula (2.4) for s = 0, k = 1 becomes

Jαa

[
(x− a)β−1

]
=

Γ(β)

Γ(α+ β)
(x− a)α+β−1 .

2.6. Corollary. Let k > 0 and s ∈ R\{−1}. Then the formula

(2.6) s
kJ

α
a (1) =

1

(s+ 1)
α
k Γk(α+ k)

(
xs+1 − as+1)αk−2

is valid for any α > 0.

2.7. Remark. (a :) For s = 0, k > 0 in (2.6), we get

(2.7) kJ
α
a (1) =

1

Γk(α+ k)
(x− a)

α
k
−2 .

(b :) For s = 0, k = 1 we have

Jαa (1) =
1

Γ(α+ 1)
(x− a)α−2 .

3. Some new (k, s)-Riemann-Liouville fractional integral inequal-
ities
Chebyshev inequalities can be represented in (k, s)-fractional integral forms as follows:

3.1. Theorem. Let f and g be two synchronous on [0,∞). Then for all t > a ≥ 0, α >
0, β > 0, the following inequalities for (k, s)-fractional integrals hold:

(3.1) s
kJ

α
a fg(t) ≥ 1

Jαa (1)
s
kJ

α
a f(t) s

kJ
α
a g(t)

(3.2) s
kJ

α
a fg(t) s

kJ
β
a (1) + s

kJ
β
a fg(t) s

kJ
α
a (1) ≥ s

kJ
α
a f(t) s

kJ
β
a g(t) + s

kJ
α
a g(t) s

kJ
β
a f(t).

Proof. Since the functions f and g are synchronous on [0,∞), then for all x, y ≥ 0, we
have

(f (x)− f(y)) (g (x)− g(y)) ≥ 0.

Therefore

(3.3) f (x) g (x) + f (y) g (y) ≥ f (x) g (y) + f (y) g (x) .
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Multiplying both sides of (3.3) by (s+1)
1−α

k

kΓk(α)

(
ts+1 − xs+1

)α
k
−1
xs, then integrating the

resulting inequality with respect to x over (a, t), we obtain

(s+ 1)1−α
k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsf (x) g (x) dx

+
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsf (y) g (y) dx

≥ (s+ 1)1−α
k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsf (x) g (y) dx

+
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsf (y) g (x) dx,

i.e.

(3.4) s
kJ

α
a fg(t) + f (y) g (y) s

kJ
α
a (1) ≥ g (y) s

kJ
α
a f(t) + f (y) s

kJ
α
a g(t).

Multiplying both sides of (3.3) by (s+1)
1−α

k

kΓk(α)

(
ts+1 − ys+1

)α
k
−1
ys, then integrating the

resulting inequality with respect to y over (a, t), we obtain

s
kJ

α
a fg(t)

(s+ 1)1−α
k

kΓk(α)

∫ t

a

(
ts+1 − ys+1)αk−1

ysdy

+ s
kJ

α
a (1)

(s+ 1)1−α
k

kΓk(α)

∫ t

a

(
ts+1 − ys+1)αk−1

ysf (y) g (y) dy

≥ s
kJ

α
a f(t)

(s+ 1)1−α
k

kΓk(α)

∫ t

a

(
ts+1 − ys+1)αk−1

ysg(y)dy

+ s
kJ

α
a g(t)

(s+ 1)1−α
k

kΓk(α)

∫ t

a

(
ts+1 − ys+1)αk−1

ysf (y) dy,

that is

s
kJ

α
a fg(t) ≥ 1

Jαa (1)
s
kJ

α
a f(t) skJ

α
a g(t).

The first inequality is thus proved.

Multiplying both sides of (3.3) by (s+1)
1− β

k

kΓk(α)

(
ts+1 − ys+1

) β
k
−1
ys, then integrating the

resulting inequality with respect to y over (a, t), we obtain

s
kJ

α
a fg(t)

(s+ 1)1− β
k

kΓk(α)

∫ t

a

(
ts+1 − ys+1) βk−1

ysdy

+ s
kJ

α
a (1)

(s+ 1)1− β
k

kΓk(α)

∫ t

a

(
ts+1 − ys+1) βk−1

ysf (y) g (y) dy

≥ s
kJ

α
a f(t)

(s+ 1)1− β
k

kΓk(α)

∫ t

a

(
ts+1 − ys+1) βk−1

ysg(y)dy

+ s
kJ

α
a g(t)

(s+ 1)1− β
k

kΓk(α)

∫ t

a

(
ts+1 − ys+1) βk−1

ysf (y) dy,
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that is

s
kJ

α
a fg(t) skJ

β
a (1) + s

kJ
β
a fg(t) skJ

α
a (1) ≥ s

kJ
α
a f(t) skJ

β
a g(t) + s

kJ
α
a g(t) skJ

β
a f(t)

and the second inequality is proved. The proof is completed. �

3.2. Theorem. Let f and g be two synchronous on [0,∞), h ≥ 0. Then for all t > a ≥
0, α > 0, β > 0, the following inequalities hold:

1

(s+ 1)
β
k Γk(β + k)

(
ts+1 − as+1) βk−2 s

kJ
α
a fgh(t)

+
1

(s+ 1)
α
k Γk(α+ k)

(
ts+1 − as+1)αk−2 s

kJ
β
a fgh(t)

≥ s
kJ

α
a fh(t) s

kJ
β
a g(t) + s

kJ
α
a gh(t) s

kJ
β
a f(t)− s

kJ
α
a h(t) s

kJ
β
a fg(t)− s

kJ
α
a fg(t) s

kJ
β
a h(t)

+ s
kJ

α
a f(t) s

kJ
β
a gh(t) + s

kJ
α
a g(t) s

kJ
β
a fh(t).

Proof. Since the functions f and g are synchronous on [0,∞) and h ≥ 0, then for all
x, y ≥ 0, we have

(f (x)− f(y)) (g (x)− g(y)) (h (x) + h (y)) ≥ 0.

Hence,

f (x) g (x)h (x) + f (y) g (y)h (y)(3.5)

≥ f (x) g (y)h (x) + f (y) g (x)h (x)− f (y) g (y)h (x)

−f (x) g (x)h (y) + f (x) g (y)h (y) + f (y) g (x)h (y) .
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Multiplying both sides of (3.5) by (s+1)
1−α

k

kΓk(α)

(
ts+1 − xs+1

)α
k
−1
xs, then integrating the

resulting inequality with respect to x over (a, t), we obtain

(s+ 1)1−α
k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsf (x) g (x)h (x) dx

+f (y) g (y)h (y)
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsdx

≥ g (y)
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsf (x)h (x) dx

+f (y)
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsg (x)h (x) dx

−f (y) g (y)
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsh (x) dx

−h (y)
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsf (x) g (x) dx

+g (y)h (y)
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsf (x) dx

+f (y)h (y)
(s+ 1)1−α

k

kΓk(α)

∫ t

a

(
ts+1 − xs+1)αk−1

xsg (x) dx.

That is

s
kJ

α
a fgh(t) + f (y) g (y)h(y) skJ

α
a (1)(3.6)

≥ g (y) s
kJ

α
a fh(t) + f (y) s

kJ
α
a gh(t)− f (y) g (y) s

kJ
α
a h(t)− h(y) skJ

α
a fg(t)

+g (y)h (y) s
kJ

α
a f(t) + f (y)h (y) s

kJ
α
a g(t).
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Multiplying both sides of (3.6) by (s+1)
1− β

k

kΓk(β)

(
ts+1 − ys+1

) β
k
−1
ys, then integrating the

resulting inequality with respect to y over (a, t), we obtain

s
kJ

α
a fgh(t)

(s+ 1)1− β
k

kΓk(β)

∫ t

a

(
ts+1 − ys+1) βk−1

ysdy

+s
kJ

α
a (1)

(s+ 1)1− β
k

kΓk(β)

∫ t

a

(
ts+1 − ys+1) βk−1

ysf (y) g (y)h(y)dy

≥ s
kJ

α
a fh(t)

(s+ 1)1− β
k

kΓk(β)

∫ t

a

(
ts+1 − ys+1) βk−1

ysg (y) dy

+ s
kJ

α
a gh(t)

(s+ 1)1− β
k

kΓk(β)

∫ t

a

(
ts+1 − ys+1) βk−1

ysf (y) dy

− s
kJ

α
a h(t)

(s+ 1)1− β
k

kΓk(β)

∫ t

a

(
ts+1 − ys+1) βk−1

ysf (y) g (y) dy

− s
kJ

α
a fg(t)

(s+ 1)1− β
k

kΓk(β)

∫ t

a

(
ts+1 − ys+1) βk−1

ysh(y)dy

+ s
kJ

α
a f(t)

(s+ 1)1− β
k

kΓk(β)

∫ t

a

(
ts+1 − ys+1) βk−1

ysg (y)h (y) dy

+ s
kJ

α
a g(t)

(s+ 1)1− β
k

kΓk(β)

∫ t

a

(
ts+1 − ys+1) βk−1

ysf (y)h (y) dy.

Consequently,

s
kJ

α
a fgh(t)skJ

β
a (1) +s

k J
α
a (1)skJ

β
a fgh(t) ≥ s

kJ
α
a fh(t) skJ

β
a g(t) + s

kJ
α
a gh(t) skJ

β
a f(t)

− s
kJ

α
a h(t) skJ

β
a fg(t)− s

kJ
α
a fg(t) skJ

β
a h(t)

+ s
kJ

α
a f(t) skJ

β
a gh(t) + s

kJ
α
a g(t) skJ

β
a fh(t).

The proof is thus complete. �

3.3. Corollary. Let f and g be two synchronous on [0,∞), h ≥ 0. Then for all t > a ≥
0, α > 0, the following inequalities hold:

1

(s+ 1)
α
k Γk(α+ k)

(
ts+1 − as+1)αk−2 s

kJ
α
a fgh(t)

≥ s
kJ

α
a fh(t) s

kJ
α
a g(t) + s

kJ
α
a gh(t) s

kJ
α
a f(t)− s

kJ
α
a h(t) s

kJ
α
a fg(t).

3.4. Theorem. Let f, g and h be three monotonic functions defined on [0,∞) satisfying
the following

(f (x)− f(y)) (g (x)− g(y)) (h (x)− h (y)) ≥ 0



86

for all x, y ∈ [a, t] . Then for all t > a ≥ 0, α > 0, β > 0, the following inequalities are
valid:

1

(s+ 1)
β
k Γk(β + k)

(
ts+1 − as+1) βk−2 s

kJ
α
a fgh(t)

− 1

(s+ 1)
α
k Γk(α+ k)

(
ts+1 − as+1)αk−2 s

kJ
β
a fgh(t)

≥ s
kJ

α
a fh(t) s

kJ
β
a g(t) + s

kJ
α
a gh(t) s

kJ
β
a f(t)− s

kJ
α
a h(t) s

kJ
β
a fg(t) + s

kJ
α
a fg(t) s

kJ
β
a h(t)

−skJαa f(t) s
kJ

β
a gh(t)− s

kJ
α
a g(t) s

kJ
β
a fh(t).

Proof. We use the same arguments as in the proof of Theorem 3.2. �

3.5. Theorem. Let f and g be two functions on [0,∞). Then for all t > a ≥ 0, α >
0, β > 0, the following inequalities for (k, s)-fractional integrals hold:

1

(s+ 1)
β
k Γk(β + k)

(
ts+1 − as+1) βk−2 s

kJ
α
a f

2(t)(3.7)

+
1

(s+ 1)
α
k Γk(α+ k)

(
ts+1 − as+1)αk−2 s

kJ
β
a g

2(t)

≥ 2 s
kJ

α
a f(t) s

kJ
β
a g(t)

(3.8) s
kJ

α
a f

2(t) s
kJ

β
a g

2(t) + s
kJ

β
a f

2(t) s
kJ

α
a g

2(t) ≥ 2 s
kJ

α
a fg(t) s

kJ
β
a fg(t).

Proof. Since

(f(x)− g(y))2 ≥ 0,

then, we have

(3.9) f2(x) + g2(y) ≥ 2f(x)g(y).

Multiplying both sides of (3.9) by (s+1)
1−α

k

kΓk(α)

(
ts+1 − xs+1

)α
k
−1
xs and (s+1)

1− β
k

kΓk(β)

(
ts+1 − ys+1

) β
k
−1
ys,

then integrating the resulting inequality with respect to x and y over (a, t) respectively,
we obtain (3.7).

On the other hand, since

(f(x)g(y)− f(y)g(x))2 ≥ 0,

then, with the same arguments as before, we obtain (3.8). �

3.6. Corollary. Let f and g be two functions on [0,∞), then for all t > a ≥ 0, α > 0,
the following inequalities are valid:

1

(s+ 1)
α
k Γk(α+ k)

(
ts+1 − as+1)αk−2

[
s
kJ

α
a f

2(t) + s
kJ

β
a g

2(t)
]

≥ 2 s
kJ

α
a f(t) s

kJ
α
a g(t)

s
kJ

α
a f

2(t) s
kJ

α
a g

2(t) ≥ [skJ
α
a fg(t)]2 .

3.7. Theorem. Let f : R→ R with:

f̄(x) :=

∫ x

a

tsf(t)dt, x > a ≥ 0, s ∈ R\{−1}.
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Then, for α ≥ k > 0 we have:

s
kJ

α
a f(x) =

1

k
s
kJ

α−k
a f̄(x)

Proof. By definition of the (k, s)-fractional integral and by using Dirichlet’s formula, we
have

s
kJ

α
a f̄(x) =

(s+ 1)1−α
k

kΓk(α)

∫ x

a

(
xs+1 − ts+1)αk−1

ts
∫ t

a

usf(u)dudt

=
(s+ 1)1−α

k

kΓk(α)

∫ x

a

usf(u)

∫ x

u

(
xs+1 − ts+1)αk−1

tsdtdu

=
(s+ 1)−

α
k

Γk(α+ k)

∫ x

a

(
xs+1 − us+1)αk usf(u)du

= k s
kJ

α+k
a f(x).

This completes the proof of Theorem 3.7. �

We give the generalized Cauchy-Buniakovsky-Schwarz inequality as follows:

3.8. Lemma. Let f, g, h : [a, b]→ (0,∞) be three functions 0 ≤ a < b. Then

(3.10) (∫ b

a

gm(t)hx(t)f(t)dt

)(∫ b

a

gn(t)hy(t)f(t)dt

)
≥
(∫ b

a

g
m+n

2 (t)h
x+y
2 (t)f(t)dt

)2

,

where m,n, x, y arbitrary real numbers.

Proof. ∫ b

a

√gm(t)hx(t)f(t)

√∫ b

a

gn(t)hy(t)f(t)dt−
√
gn(t)hy(t)f(t)

√∫ b

a

gm(t)hx(t)f(t)dt

2

dt ≥ 0

∫ b

a

[
gm(t)hx(t)f(t)

∫ b

a

gn(t)hy(t)f(t)dt+ gn(t)hy(t)f(t)

∫ b

a

gm(t)hx(t)f(t)dt

−2 g
m+n

2 (t)h
x+y
2 (t)f(t)

√∫ b

a

gm(t)hx(t)f(t)dt

√∫ b

a

gn(t)hy(t)f(t)dt

 dt
≥ 0

2

(∫ b

a

gm(t)hx(t)f(t)dt

)(∫ b

a

gn(t)hy(t)f(t)dt

)

≥ 2

(∫ b

a

g
m+n

2 (t)h
x+y
2 (t)f(t)dt

)√∫ b

a

gm(t)hx(t)f(t)dt

√∫ b

a

gn(t)hy(t)f(t)dt

which gives the desired inequality. �

3.9. Theorem. Let f ∈ L1[a, b]. Then

(3.11)
(
s
kJ

m(α
k
−1)+1

a fr(x)
)(

s
kJ

n(α
k
−1)+1

a fp(x)
)
≥
(
s
kJ

m+n
2

(α
k
−1)+1

a f
r+p
2 (x)

)2

,

for k,m, n, r, p > 0 and α > 1.
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Proof. By taking g(t) =
(
xs+1 − ts+1

)α
k
−1
, f(t) = ts(s+1)

1−α
k

kΓk(α)
and h(t) = f(t) in (3.10),

we obtain(
(s+ 1)1−α

k

kΓk(α)

∫ x

a

(
xs+1 − ts+1)m(α

k
−1)

tsfr(t)dt

)(
(s+ 1)1−α

k

kΓk(α)

∫ x

a

(
xs+1 − ts+1)n(α

k
−1)

tsfp(t)dt

)

≥
(

(s+ 1)1−α
k

kΓk(α)

∫ x

a

(
xs+1 − ts+1)m+n

2
(α
k
−1)

tsf
r+p
2 (t)dt

)2

which can be written as (3.11). �

3.10. Remark. For k = 1 in (3.11), we get the following inequalities:(
Jm(α−1)+1
a fr(x)

)(
kJ

n(α−1)+1
a fs(x)

)
≥
(
kJ

m+n
2

(α−1)+1
a f

r+s
2 (x)

)2

.
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In this comment we will demonstrate that one of the main formulas
given in Ref. [1] is incorrect.
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1. Introduction and motivation
It is well known that for a class of orthogonal polynomials {Pn(x)}n≥0 the so-called

“generating functions” of this class are an useful tool for their study. A generating function
is a function F (x, t), analytic for some set D ⊂ C2, so that

F (x, t) =

∞∑
n=0

αnPn(x)t
n, (x, t) ∈ D.

For example, F (x, t) = exp 2xt− t2 is the generating function for Hermite polynomials
{Hn(x)}n≥0 because we can write:

F (x, t) = exp
(
2xt− t2

)
=

∞∑
n=0

1

n!
Hn(x)t

n, ∀(x, t) ∈ C2.

The extension to the matrix framework for the classical families of Jacobi [3], Her-
mite [2], Gegenbauer [4], Laguerre [5] and Chebyshev [6] polynomials was made in recent
years, and properties and applications of different classes for these matrix polynomials
have been studied in several papers [7, 8, 10, 11, 9].

∗Departamento de Matemática Aplicada. Universitat Politècnica de València. Spain Email:
vsoler@dma.upv.es
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In the matrix case, the importance of the generating function is similar to the scalar
case, taking into account the possible spectral restrictions (for a matrix A ∈ CN×N we
will denote by σ(A) the spectrum of the matrix σ(A) = {z; z is a eigenvalue of A}). For
example:

• Laguerre matrix polynomials. If A is a matrix in CN×N such that −k /∈
σ(A) for every integer k > 0, and λ is a complex number with Re(λ) > 0, the
generating function [5] is given by:

(1− t)−(A+I) exp

(
−λxt
1− t

)
=

∞∑
n=0

L(A,λ)
n (x)tn,∀ x, t ∈ C, |t| < 1.

• Hermite matrix polynomials. If A is a matrix in CN×N such that Re(z) >
0,∀z ∈ σ(A), the generating function [2] is given by

ext
√
A−t2I =

∞∑
n=0

1

n!
Hn(x,A)t

n , (x, t) ∈ R2

2. The detected mistake. An illustrative example
Recently, in Ref.[1], a generating matrix function for Chebyshev matrix polynomials

of the second kind is presented. In theorem 2.1 of [1, p.27], the following formula (2.1)
is established:

∞∑
n=0

Un(x,A)t
n =

(
I −
√
2Axt+ t2I

)−1

, |t| < 1, |x| < 1, (2.1)

where I denotes the identity matrix of order N , matrix A ∈ CN×N satisfies Re(λ) > 0 for
all eigenvalue λ ∈ σ(A) and

∥∥∥√A∥∥∥ < 1/
√
2. This formula (2.1) turns out to be the key

for the development of the properties mentioned in the paper [1]. However, we will see
that formula (2.1) is incorrect. For this, we only need to show that the matrix function(
I −
√
2Axt+ t2I

)
, regarded as a entire function of the complex variables x and t, is

singular for some values of x and t under the previous hypotheses. For example, we
consider N = 2, and the matrix

A =

(
3
16

+ i
4

0
0 1

4

)
∈ C2×2,

where i2 = −1. Obviously, σ(A) =
{

3
16

+ i
4
, 1
4

}
and A satisfies condition Re(λ) > 0 for

all eigenvalue λ ∈ σ(A). It is easy to prove that

√
A =

(
1
2
+ i

4
0

0 1
2

)
,

which evidently satisfies
√
A
√
A = A, and condition

∥∥∥√A∥∥∥ =
√
5/4 ≈ 0.559017 <

1/
√
2 ≈ 0.707107 holds.

It is easy to compute

√
2A =

(
1√
2
+ i

2
√
2

0

0 1√
2

)
,

which evidently satisfies
√
2A
√
2A = 2A, and then one gets:
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I2×2 −
√
2Axt+ t2I2×2 =

(
1 + t2 − tx√

2
− txi

2
√
2

0

0 1 + t2 − tx√
2

)
.

Taking, for example, the values

x =
1

2
, t =

1

16

(
−
√
−250 + 8i+ (2 + i)

√
2
)
≈ 0.160967− 0.89995i,

this choices meet the restrictions outlined (|x| = 1
2
< 1, |t| = 0.914232 < 1), but the

term 1 + t2 − tx√
2
− txi

2
√
2

is zero and matrix I2×2 −
√
2Axt + t2I2×2 has a column of

zeros, thus is singular. Thus (2.1) is meaningless. ‡

Therefore, I ask the authors of Ref. [1] to clarify the domain of choice for the variables
x, t in formula (2.1) in order to guarantee the validity of the remaining formulas which
are derived from (2.1) and used in the remainder of the aforementioned paper.
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Of course, the choice of these values are not unique. For example, taking the values

x = 2i

√
2

8 +
√
2
, t = −i

(√
9 +
√
2− 1√

8 +
√
2

)
,

this choices satisfies the restrictions outlined (|x| = 0.921835 < 1, |t| = 0.725853 < 1), but
1 + t2 − tx√

2
= 0 and then matrix function I2×2 −

√
2Axt+ t2I2×2 is singular.
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We call a ring R an EGE-ring if for each I �R, which is generated by
a subset of right semicentral idempotents there exists an idempotent e
such that r(I) = eR. The class EGE includes quasi-Baer, semiperfect
rings (hence all local rings) and rings with a complete set of orthogonal
primitive idempotents (hence all Noetherian rings) and is closed under
direct product, full and upper triangular matrix rings, polynomial ex-
tensions (including formal power series, Laurent polynomials, and Lau-
rent series) and is Morita invariant. Also we call R an AE-ring if for
each I �R, there exists a subset S ⊆ Sr(R) such that r(I) = r(RSR).
The class AE includes the principally quasi-Baer ring and is closed
under direct products, full and upper triangular matrix rings and is
Morita invariant. For a semiprime ring R, it is shown that R is an
EGE (resp., AE)-ring if and only if the closure of any union of clopen
subsets of Spec(R) is open (resp., Spec(R) is an EZ-space).

Keywords: Quasi-Baer ring, AE-ring, EGE-ring, Spec(R), Semicentral idem-
potent, EZ-space.
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1. Introduction
Throughout this paper, R denotes an associative ring with identity. In this paper,

we introduce and investigate the concept of EGE (resp., AE)-ring. We call R an EGE
(resp., AE)-ring, if for any ideal I of R which I = RSR, S ⊆ Sr(R) (resp., any ideal I
of R) there exists an idempotent e ∈ R (resp., a subset S ⊆ Sr(R)) such that r(I) = eR
(resp., r(I) = r(RSR)), where r(I) (resp., l(J)) denotes the right annihilator (resp., left
annihilator) of I.

In Section 2, we show that any quasi-Baer ring and any ring with a complete set of
right (left) triangulating idempotents are EGE-ring. Hence semiperfect rings (hence all
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local rings) and rings with a complete set of orthogonal primitive idempotents (hence
all Noetherian rings) are EGE-ring. We also show that any principally quasi-Baer-ring
(hence, biregular rings) is an AE-ring. We provide examples of EGE (resp., AE)-rings
which are not quasi-Baer (resp., principally quasi-Baer )-ring.

In Section 3, we consider the closure of the class of EGE (resp., AE)-ring with respect
to various ring extensions including matrix, and polynomial extension (including formal
power series, Laurent polynomials, and Laurent series). In Theorem 3.3, we obtain a
characterization of semicentral idempotents in Mn(R) (resp., Tn(R)). The EGE (resp.,
AE) property is shown to be Morita invariant in Theorem 3.6.

Topological equivalency of semiprime EGE (resp., AE)-ring is the focus of Section 4.
In Theorem 4.2, we show that a semiprime ring R is an EGE (resp., AE)-ring if and
only if the closure of any union of clopen subsets of Spec(R) (i.e., the space of prime
ideals of R), is open (resp., Spec(R) is an EZ-space).

Let ∅ 6= X ⊆ R. Then X ≤ R and X � R denote that X is a right ideal and X is
an ideal respectively. For any subset S of R, l(S) and r(S) denote the left annihilator
and the right annihilator of S in R. The ring of n-by-n (upper triangular) matrices over
R is denoted by Mn(R) (Tn(R)). We use R[x], R[[x]], R[x, x−1] and R[[x, x−1]] for the
ring of polynomials over R, the ring of formal power series over R, the skew Laurent
polynomial ring over R, and the skew Laurent series ring over R, respectively. A ring
R is called (quasi-)Baer if the left annihilator of every (ideal) nonempty subset of R is
generated , as a left ideal, by an idempotent. The (quasi-)Baer conditions are left -right
symmetric. It is well known that R is a quasi-Baer if and only if Mn(R) is quasi-Baer if
and only if Tn(R) is a quasi-Baer ring (see [2], [7], [8], [13] and [18]). An idempotent e of
a ring R is called left (resp., right) semicentral if ae = eae (resp., ea = eae) for all a ∈ R.
It can be easily checked that an idempotent e of R is left (resp., right) semicentral if
and only if eR (resp., Re) is an ideal. Also note that an idempotent e is left semicentral
if and only if 1 − e is right semicentral. See [3] and [5], for more detailed account of
semicentral idempotents. Thus for a left (resp., right) ideal I of a ring R, if l(I) = Re
(resp., r(I) = eR) with an idempotent e, then e is right (resp., left) semicentral, since
Re (resp., eR) is an ideal. Thus for a left (resp., right) ideal I of a quasi-Baer ring R
with l(I) = Re (resp. r(I) = eR) for some idempotent e ∈ R, it follows that e is a
right (resp., left) semicentral idempotent. We use Sl(R) (Sr(R)) to denote the set of left
(right) semicentrel idempotents of R. For an idempotent e of R if Sr(R) = {0, e}, then
e is called semicentral reduced. If 1 is semicentral reduced, then we say R is semicentral
reduced.

2. Preliminary results and examples
2.1. Definition. We call R an EGE-ring, if for each ideal I = RSR, S ⊆ Sr(R), there
exists an idempotent e such that r(I) = eR. Since for each S ⊆ Sr(R), r(RSR) =
r(RS) = r(SR) = r(S), R is an EGE-ring if and only if for each S ⊆ Sr(R), there exists
an idempotent e such that r(S) = eR.

2.2. Definition. We call R an AE-ring, if for any ideal I of R there exists a subset
S ⊆ Sr(R) such that r(I) = r(RSR) = r(S). We know that I is equivalent to J if and
only if r(I) = r(J). Then R is an AE-ring if an only if every ideal of R is equivalent to
one which is generated by a subset of right semicentral idempotents.

2.3. Lemma. Let e1 and e2 be two right semicentral idempotents.

(i) e1e2 is a right semicentral idempotent.
(ii) (e1 + e2 − e1e2) is a right semicentral idempotent.
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(iii) If S ⊆ Sr(R) is finite, then there is a right semicentral idempotent e such that
RSR = ReR =< e >.

Proof. (i) By hypothesis, for any r ∈ R we have, e1e2r = e1e2re2 = e1e2re1e2. On the
other hand, (e1e2)2 = e1e2e1e2 = e1e

2
2 = e1e2. Hence e1e2 ∈ Sr(R).

(ii) The routine calculation shows that (e1 + e2 − e1e2)2 = (e1 + e2 − e1e2), and by
hypothesis, for any r ∈ R we have, (e1+e2−e1e2)r = e1r+e2r−e1e2r = e1re1+e2re2−
e1e2re2 = (e1 + e2 − e1e2)r(e1 + e2 − e1e2). Hence (e1 + e2 − e1e2) ∈ Sr(R).

(iii) We use induction. If S = {e1, e2}, then we have < e1, e2 >=< e1 + e2 − e1e2 >.
By (ii), e1 + e2 − e1e2 ∈ Sr(R). Now let the statement is true for |S| = n and let S =
{e1, ..., en, en+1}. Then we have < S >=< {e1, ..., en} > + < en+1 >. By hypothesis,
there is a right semicentral idempotent f such that < {e1, ..., en} >=< f >. Hence
< S >=< f + en+1 − fen+1 >, where by (ii), we have e = f + en+1 − fen+1 ∈ Sr(R).�

Recall that an ordered set {b1, ..., bn} of nonzero distinct idempotents in R is called a
set of right triangulating idempotents of R if all the following hold:

(i) 1 = b1 + ...+ bn;
(ii) b1 ∈ Sr(R); and
(iii) bk+1 ∈ Sr(ckRck+1), where 1 = 1− (b1 + ...+ bk), for 1 ≤ k ≤ n.

Similarly is defined a set of left triangulating idempotents of R using (i), b1 ∈ Sl(R) and
bk+1 ∈ Sl(ckRck). From part (iii) of the above definition, a set of right (left) triangulating
idempotents is a set of pairwise orthogonal idempotents.

A set {b1, ..., bn} of right (left) triangulating idempotents of R is said to be complete
if each bi is also semicentral reduced (see [11]).

2.4. Proposition. The following statements hold.
(i) Any ring R with finite triangulating dimension (equivalently, R has a complete

set of right (left)triangulating idempotents) is an EGE-ring.
(ii) A ring R is quasi-Baer if and only if R is EGE and AE.

Proof. (i) By [5, Theorem 2.9], R has a complete set of right traingulating idempotents
if and only if {Rb : b ∈ Sr(R)} is finite. Now let I = RSR be an ideal of R and
S ⊆ Sr(R). Then we have r(I) = r(RS) = r({Rb : b ∈ S}). But {Rb : b ∈ S} is finite
say {Rb1, ..., Rbn}. Hence r(I) = r({Rb1, ..., Rbn}) = r({b1, ..., bn}). By Lemma 2.3,
there exists a right semicentral idempotent e such that r(I) = r({b1, ..., bn}) = r(eR) =
r(Re) = (1− e)R. Thus R is an EGE-ring.

(ii) By definition, any quasi-Baer ring is an EGE-ring. If I is an ideal of a quasi-Baer
ring R, then there is e ∈ Sl(R) such that r(I) = eR = r(R(1 − e)). On the other hand
for each S ⊆ Sr(R) we have r(RS) = r(SR) = r(RSR), hence r(I) = r(RSR), where
S = {1 − e}, and S ⊆ Sr(R). Hence R is an AE-ring. Conversely, let I � R. Then
by hypothesis, there exists a subset S ⊆ Sr(R) such that r(I) = r(RSR). Again by
hypothesis, there is an idempotent e such that r(RSR) = eR. Thus r(I) = eR. �

2.5. Example. By Proposition 2.4, all of the rings mentioned in Proposition 2.14 of [5],
are EGE-rings. Note that this list includes semiperfect rings (hence all local rings, left or
right artinian rings) and rings with a complete set of orthogonal primitive idempotents
(hence all Noetherian rings) and many more rings.

Recall that, a ring R is right (resp., left) principally quasi-Baer (or simply right (resp.,
left) pq-Baer) if the right (resp., left) annihilator of a principally right (resp/ left) ideal
is generated (as a right (resp., left) ideal) by an idempotent (see [9]).

2.6. Proposition. The following statements hold.
(i) R is an EGE ring if and only if for each I �R, which is generated by a subset

S ⊆ Sl(R), we have l(I) = Re, for some idempotent e ∈ R.
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(ii) R is an AE-ring if and only if for each a ∈ R there exists a subset Sa ⊆ Sr(R)
such that r(RaR) = r(aR) = r(Sa).

(iii) Every right principally quasi-Baer ring is an AE-ring.

Proof. (i) Let I = RSR, where S ⊆ Sl(R). Take J = RKR, K = {1− s : s ∈ S}. Then
K ⊆ Sr(R). By hypothesis and Lemma 2.3, there is e ∈ Sl(R) such that r(J) = r(KR) =
r(RK) = eR. Hence for each s ∈ S, (1− s)e = 0, so e = se. Therefore Re = SRe. This
implies that l(RSR) = l(RS) = l(SR) = l(SRe) = l(Re) = l(eR) = R(1 − e). Similarly
we can get the converse.

(ii) By definition, ⇒ is evident.
⇐ Now let I � R. We have r(I) =

⋂
a∈I r(RaR). By hypothesis, for each a ∈ R

there exists Sa ⊆ Sr(R) such that r(RaR) = r(RSaR). Hence r(I) =
⋂
a∈I r(RSaR) =

r(R(
⋃
a∈I Sa)R).

(iii) Let a ∈ R. Then there is an idempotent e ∈ R such that r(RaR) = r(aR) =
eR = r(R(1−e)) = r((1−e)R) = r(R(1−e)R). We know that 1−e is a right semicentral
idempotent. By (ii), R is an AE-ring.

A ring R is called biregular if every principal ideal of R is generated by a central
idempotent of R (see [8]). Note that a biregular ring is pq-Baer. Hence any biregular
ring is an AE-ring.

Recall from [20] that a topological space X is an EZ-space if for every open subset A
of X there exists a collection {Aα : α ∈ S} of clopen (i.e., sets that are simultaneously
closed and open) subsets of X such that clXA = clX(

⋃
α∈S Aα). We denote by C(X),

the ring of all real-valued continuous functions on a completely regular Hausdorff space
X. For any f ∈ C(X), Z(f) = {x ∈ X : f(x) = 0} is called a zero-set. A topological
space X is called extremally disconnected (resp., basically disconnected), if the interior
of any open set (resp., the interior of any zero-set) is closed. Clearly any extremally
disconnected space is an EZ-space, but there exist EZ-spaces which are not extremally
disconnected (resp., basically disconnected) (see [20]). It is clear that a subset A of X
is clopen if and only if A = Z(f) for some idempotent f ∈ C(X). For terminology and
notations, the reader is referred to [15] and [14]. For any subset A of X we denote by
intA the interior of A (i.e., the largest open subset of X contained in A).

In the following, we provide examples of commutative AE and non-commutative EGE
rings which are not quasi-Baer. We need the following lemma which is Corollary 2.2 in
[1].

2.7. Lemma. For f, g ∈ C(X), r(f) = r(g) if and only if intZ(f) = intZ(g).

2.8. Example. By [20, Theorem 3.7], C(X) is an AE-ring if and only if X is an EZ-
space. On the other hand by [1], we have C(X) is a pq-Baer ring if and only if X is a
basically disconnected space. So, if X is an EZ-space which is not basically disconnected
space (e.g., [20, Example 3.4]), then C(X) is an AE-ring but is not a pq-Baer ring. By
Proposition 2.4 (ii), C(X) is not an EGE-ring.

2.9. Example. The ring R =

(
Z Z2

0 Z2

)
= {

(
n a
0 b

)
: n ∈ Z, a, b ∈ Z2} has a finite

number of right semicentral idempotents. By Proposition 2.4, R is an EGE-ring. But

R is not a quasi-Baer ring. If I =

(
0 Z2

0 Z2

)
, then we have l(I) =

(
2Z 0
0 0

)
, which does

not contain any idempotent. By Proposition 2.4 (ii), R is not an AE-ring.

2.10. Theorem. Let R =
∏
x∈X Rx be a direct product of rings.

(i) R is an EGE-ring if and only if each Rx is an EGE ring.
(ii) R is an AE-ring if and only if each Rx is an AE ring.
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Proof. (i) Assume that R is an EGE-ring. Choose x ∈ X. Let Ix�Rx and Ix =< Kx >,
where Kx ⊆ Sr(Rx) and hx : Rx → R be the canonical homomorphism. Then hx(Ix)�R,
hx(Ix) =< hx(Kx) > and hx(Kx) ⊆ Sr(R). So there exists an idempotent e ∈ R such
that r(hx(Ix)) = eR. Let πx : R → Rx denote the canonical projection homomorphism.
Then πx(e) is an idempotent in Rx and r(Ix) = πx(e)Rx.

Conversely, assume that Rx is an EGE-ring for all x ∈ X. Let I �R and I =< K >,
K ⊆ Sr(R). Then Ix = πx(I) =< πx(K) >=< Kx >. It is easy to see that Kx ⊆ Sr(R)
for each x ∈ X. Hence there exists an idempotent ex ∈ Rx such that r(Ix) = exRx for
each x ∈ X. Let e = (ex)x∈X . Then e is an idempotent in R and r(I) = eR.

(ii) Let R be an AE-ring. For x ∈ X, suppose that ax ∈ Rx. Then there is a ∈ R such
that πx(a) = ax. By hypothesis, there exists S ⊆ Sr(R) such that r(RaR) = r(RSR).
Now we can see that r(RxaxRx) = r(RxSxRx), where Sx = πx(S) ⊆ Sr(Rx). By
Proposition 2.6, Rx is an AE-ring. Conversely, suppose that a ∈ R. Then πx(a) =
ax ∈ Rx for each x ∈ X. By hypothesis, for each x ∈ X there exists Sx ⊆ Sr(Rx)
such that r(RxaxRx) = r(RxSxRx). Now let S =

∏
x∈X Sx. Then S ⊆ Sr(R) and

r(RaR) = r(RSR). By Proposition 2.6, R is an AE-ring. �

3. Extensions of EGE and AE-rings
In this section, we investigate the behavior of the EGE (rep., AE)-ring property with

respect to various ring extensions including matrix, polynomial, and formal power series.
Also semicentral idempotents in Mn(R) (resp., Tn(R)) are investigated.

The following Lemma is Lemma 3.1 in [4].

3.1. Lemma. Let R be a ring and S = Mn(R).
(i) Then J � S if and only if J = Mn(I), for some I �R.
(ii) If I �R, then rS(Mn(I)) = Mn(rR(I)).

3.2. Lemma. The following statements hold.
(i) If R is an EGE-ring and e is an idempotent, then eRe is an EGE-ring.
(ii) If R is an AE-ring and e is an idempotent, then eRe is an AE-ring.

Proof. (i) Let I � eRe and I = eReKeRe, where K ⊆ Sr(eRe). For each exe ∈ K
and r ∈ R, we have (exe)(re) = (exe)(ere) = (exe)(ere)(exe) = (exe)(re)(exe). So
K ⊆ Sr(Re). Now let J = ReKRe. Then J � Re. By hypothesis and Theorem 2.10,
Re is an EGE-ring, hence there is an idempotent f ∈ Re such that rRe(J) = fRe.
Now we claim that reRe(I) = (ef)(eRe). For see this, let exe ∈ reRe(eReKeRe). Then
we have exe ∈ reRe(eKRe) = reRe(ReKRe), so xe ∈ rRe(ReKRe). This says that
reRe(I) ⊆ (ef)(eRe). Therefore xe = fse for some s ∈ R. But f = fe, so exe =
(ef)(ere). On the other hand we have f ∈ rRe(ReKRe). This implies that Ief = 0, thus
(ef)(eRe) ⊆ reRe(I).

(ii) Assume that I � eRe. Then I ≤ Re. By hypothesis and Theorem 2.10, Re
is an AE-ring. Hence there exists S ⊆ Sr(Re) such that rRe(I) = rRe(ReSRe). We
have eSe(eRe)eSe = eS(Re) = eSReS = eS(eRe)eS and for each s ∈ S, (es)2 =
eses = es2 = es. This shows that eS = eSe ⊆ Sr(eRe). Now we claim that reRe(I) =
reRe(eRe(eSe)eRe) = reRe(eReSRe). Let exe ∈ reRe(I). Then Iexe = Ixe = 0. So xe ∈
rRe(I) = rRe(ReSRe). Therefore ReSRexe = 0. This implies that exe ∈ reRe(ReSRe) ⊆
reRe(eReSRe). Now suppose that exe ∈ reRe(eReSRe). Then exe ∈ reRe(eSRe) =
reRe(ReSRe). Hence xe ∈ rRe(ReSRe) = rRe(I). Thus Iexe = Ixe = 0. This shows
that exe ∈ reRe(I). �

In the following Theorem, we characterize semicentral idempotents in Mn(R) and
Tn(R).
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3.3. Theorem. The following statements hold.
(i) A = [aij ] ∈ Sr(Mn(R)) if and only if we have;

(a) a11 ∈ Sr(R).
(b) aij = aija11 for all 1 ≤ i, j ≤ n.
(c) For each 1 ≤ i ≤ n, a11aii = a11 and a11aij = 0 for all 1 ≤ j 6= i ≤ n.

(ii) A = [aij ] ∈ Sr(Tn(R)) if and only if we have;
(d) For each 1 ≤ i ≤ n, aii ∈ Sr(R).
(e) For each 1 ≤ i ≤ n, aki = akiaii for all 1 ≤ k ≤ i and aiiaij = 0 for all

i < j ≤ n.

Proof. (i)⇒ First we show that (a) holds. Suppose that r ∈ R. Consider B = [bij ],
where b11 = r, and bij = 0 for all i 6= 1, j 6= 1. Then by hypothesis, ABA = AB. This
implies that a11ra11 = a11r, so a11 ∈ Sr(R).

(b) Let B = [bij ], where bj1 = 1 and bik = 0 for each i 6= j and k 6= 1. By hypothesis,
ABA = AB, so we have aija11 = aij for all 1 ≤ i, j ≤ n.

(c) For fixed i, consider B = [bij ], where b1i = 1 and other entries are zero. Then
ABA = AB implies that a11aii = a11 and a11aij = 0 for all 1 ≤ j 6= i ≤ n.

(i)⇐ a11 ∈ Sr(R) implies that D = [dij ] ∈ Sr(Mn(R)), where dii = a11 and other
entries are zero. On the other hand, by (b) and (c), we can see that A = AD andDA = D.
Hence, for B ∈Mn(R) we have ABA = ADBA = ADBDA = ADBD = ADB = AB.
Therefore A ∈ Sr(Mn(R).

(ii)⇒ (d) The proof of this part is analogous to that of part (a).
(e) For B = [bij ], where bii = 1 and other entries are zero. We have ABA = AB.

Therefore aki = akiaii for all 1 ≤ k ≤ i and aiiaij = 0 for all i < j ≤ n.
(ii)⇐ If aii ∈ Sr(R), then D = [dij ] ∈ Sr(Tn(R)), where dii = aii and other entries

are zero. On the other hand, by (e), we can see that A = AD and DA = D. Hence for
B ∈ Tn(R), we have ABA = ADBA = ADBDA = ADBD = ADB = AB. Therefore
A ∈ Sr(Tn(R). �

3.4. Lemma. If J �Mn(R) and J =< S >, where S ⊆ Sr(Mn(R)), then there is I �R
generated by a subset of right semicentral idempotents of R such that J =Mn(I).

Proof. By argument of [16, Theorem 3.1], J = Mn(I), where I is the set of all (1, 1)-
entries of matrices in J . Now let S11 be the set of all (1, 1)-entries of matrices in S. By
Theorem 3.3, S11 ⊆ Sr(R), and we can see that I = RS11R. �

3.5. Proposition. The following statements hold.
(i) R is an EGE-ring if and only if Mn(R) is an EGE-ring.
(ii) R is an AE-ring if and only if Mn(R) is an AE-ring.

Proof. (i) Let J be an ideal ofMn(R) and J =< S >, where S ⊆ Sr(Mn(R)). By Lemma
3.4, there exists I � R, where I =< S1 > for some S1 ⊆ Sr(R) and J = Mn(I). By
Lemma 3.1 and hypothesis, we have r(J) = Mn(r(I)) = Mn(eR) for some idempotent
e in R. Hence r(J) = EMn(R), where in matrix E for each 1 ≤ i ≤ n, Eii = e and
Eij = 0 for all i 6= j. Conversely, we have EMn(R)E ' R, where in matrix E, E11 = 1
and for each i 6= 1 and j 6= 1, Eij = 0. Now by Lemma 3.2, R is an EGE-ring.

(ii) Let J be an ideal of Mn(R). By Lemma 3.1, there is an ideal I of R such that J =
Mn(I), and r(J) = r(Mn(I)) = Mn(r(I)). By hypothesis, there exists S ⊆ Sr(R) such
that r(I) = r(RSR). Hence r(J) = Mn(r(RSR)) = r(Mn(RSR)). On the other hand,
we can see that Mn(RSR) = Mn(R)Dn(S)Mn(R), where Dn(S) is the set of diagonal
matrices over S, and Dn(S) ⊆ Sr(Mn(R)). Thus r(J) = r(Mn(R)Dn(S)Mn(R)).
Conversely, by Lemma 3.2, it is obvious. �

3.6. Theorem. The following statements hold.
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(i) The EGE property is a Morita invariant.
(ii) The AE property is a Morita invariant.

Proof. These results are consequences of Lemma 3.2, Proposition 3.5 and [17, Corollary
18.35]. �

3.7. Theorem. The following statements hold.

(i) R is an EGE-ring if and only if Tn(R) is an EGE-ring.
(ii) R is an AE-ring if and only if Tn(R) is an AE-ring.

Proof. (i)⇐ Assume that Tn(R) is an EGE-ring. Then we have ETn(R)E ' R, where
in matrix E, E11 = 1 and other entries are zero. Now by Lemma 3.2, R is an EGE-ring.

(i)⇒ Let I be an ideal of Tn(R) which is generated by S = {Aα : α ∈ K} ⊆
Sr(Tn(R)). By Theorem 3.3, for each α ∈ K and 1 ≤ i ≤ n, we have (aii)α ∈ Sr(R),
where (aii)α is the (i, i)-th, entries in Aα. Now for each 1 ≤ i ≤ n, let Ji be the
ideal generated by {(aii)α : α ∈ K} in R. By hypothesis, for each 1 ≤ i ≤ n there
is an idempotent ei ∈ R such that r(Ji) = eiR. We claim that r(I) = ETn(R) where
for each 1 ≤ i ≤ n, Eii = ei and Eij = 0, for all i 6= j. By Theorem 3.3, we can
see that; for each α ∈ K there exists a diagonal matrix Dα such that Aα = AαDα,
where (Dα)ii = (Aα)ii. So, for each α ∈ K we have AαE = AαDαE = 0. Now let
A ∈ I. Then we have A =

∑n
i=1BiAiCi, where Ai ∈ S and Bi, Ci ∈ Tn(R). Therefore

AE = (
∑n
i=1BiAiCi)E =

∑n
i=1BiAiCiAiE = 0. Hence E ∈ r(I).

Now suppose that B ∈ r(I) and x ∈ Ji =< (aii)α : α ∈ S >. Then A ∈ I where
aii = x and other entries are zero. So we have

AB =



0 0 . . . 0
. . . . . .
. . . . . .
. . . . . .

xbi1 xbi2 . . . xbin
. . . . . .
. . . . . .
. . . . . .
0 0 . . . 0


n×n

= 0.

This equality implies that bij ∈ rR < (aii)α : α ∈ S > for each 1 ≤ j ≤ n. Hence for
fixed i and each 1 ≤ j ≤ n there is rij ∈ R such that bij = eirij . Therefore we have

B =


e1r11 e1r12 . . . e1r1n
0 e2r22 . . . e2r2n
. . . . . .
. . . . . .
. . . . . .
0 0 . . . enrnn


n×n

= E ×


r11 r12 . . . r1n
0 r22 . . . r2n
. . . . . .
. . . . . .
. . . . . .
0 0 . . . rnn


n×n

.

Thus B ∈ ETn(R).
(ii) Let I � Tn(R). Then

I =


I11 I12 . . . I1n
0 I22 . . . I2n
. . . . . .
. . . . . .
. . . . . .
0 0 . . . Inn

 ,
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where each Iij � R, Iij = {0} for all i > j, Iij ⊆ Iik for all k ≥ j, and Ihj ⊆ Iij for all
h ≥ i. Therefore

rTn(R)(I) =


rR(I11) rR(I11) . . . rR(I11)

0 rR(I12) . . . rR(I12)
. . . . . .
. . . . . .
. . . . . .
0 0 . . . rR(I1n)

 .

By hypothesis, for each 1 ≤ i, j ≤ n, there exists Sij ⊆ Sr(R) such that rR(Iij) = rR(Sij).
This implies that

rTn(R)(I) = rTn(R)(


S11 0 0 . . 0
0 S12 0 . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . S1n

).

On the other hand, it is easy to see that


S11 0 0 . . 0
0 S12 0 . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . S1n

 ⊆ Sr(Tn(R)). So

we are done. �
We need the following lemma which is Lemma 1.7 in [10].

3.8. Lemma. For a ring R, let T be R[x, x−1] or R[[x, x−1]]. If e(x) ∈ Sr(T ) then
e0 ∈ Sr(R) where e0 is the constant term of e(x). Moreover, Te(x) = Te0.

Also we need the following lemma which is Proposition 3 in [12].

3.9. Lemma. Let e(x) =
∑∞
i=0 eix

i. Then e(x) ∈ Sl(R[[x]]) if and only if
(i) e0 ∈ Sl(R).;
(ii) e0rei = rei and eire0 = 0, for all r ∈ R, i = 1, 2, ...;
(iii)

∑
i+j=k
i,j≥1

eirej = 0, for all r ∈ R and k ≥ 2.

3.10. Theorem. Let R be a ring and X an arbitrary nonempty set of not necessarily
commuting indeterminates. Then the following conditions are equivalent:

(i) R is EGE;
(ii) R[X] is EGE;
(iii) R[[X]] is EGE;
(iv) R[x, x−1] is EGE;
(v) R[[x, x−1]] is EGE.

Proof. We will prove the equivalency of (i) and (iv). The equivalency of other cases
can be shown similarly, by Lemmas 3.8, 3.9 and [6, Proposition 2.4(iv)]. (i)⇒(iv), let
T = R[x, x−1] and I = TST , where S ⊆ Sr(T ). Let S0 be the set of all constant
elements of S. Then by Lemma 3.8, S0 ⊆ Sr(R) and RS0R is an ideal of R. By
hypothesis, there exists an idempotent e ∈ R such that rR(RS0R) = eR. Now we claim
that rT (TST ) = rT (S) = eT . Assume that e(x) ∈ S. Then e0 ∈ S0, where e0 is the
constant term of e(x). By Lemma 3.8, we have e(x) = e(x)e0, so e(x)e = e(x)e0e = 0.
This implies that eT ⊆ rT (S). Now let g(x) ∈ rT (S). For each f0 ∈ S0, there exists
f(x) ∈ S such that f0 is the constant term of f(x). By Lemma 3.8, we have f0 = f0f(x).
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Therefore f0g(x) = f0f(x)g(x) = 0. Thus f0gi = 0, where gi is the i-th coefficient in
g(x). Hence gi ∈ rR(S0) = eR. This shows that g(x) ∈ eT .

(iv)⇒(i), let T = R[x, x−1] and I = RSR, where S ⊆ Sr(R). Then rT (TST ) = e(x)T
for some idempotent e(x) ∈ T . Since Se(x) = 0, it follows that Se0 = 0 and hence
e0 ∈ rR(S) = rR(I), where e0 is the constant term of e(x). Conversely, suppose that
b ∈ rR(I). Then b ∈ rT (TST ) and hence b = e(x)b. Thus b = e0b ∈ e0R. Therefore
rR(I) = e0R. Since e(x) ∈ Sr(T ), it follows that e0 is an idempotent in R by Lemma
3.8. Therefore R is an EGE-ring.

4. Semiprime EGE (resp., AE)-ring
In this section, we show that for a semiprime ring R, the EGE- condition (resp.,

AE-condition) is equivalent to the closure of any union of clopen subsets of Spec(R) is
clopen (resp., Spec(R) is an EZ-space).

For any a ∈ R, let supp(a) = {P ∈Spec(R): a /∈ P}. Shin [19, Lemma 3.1] proved
that for any R, {supp(a) : a ∈ R} forms a basis of open sets on Spec(R). This topology
is called hull-kernel topology. We mean of V (I) is the set of P ∈ Spec(R), where I ⊆ P .
We use V (I)(V (a)) to denote the set of P ∈ Spec(R), where I ⊆ P (a ∈ P ). Note that
V (I) =

⋂
a∈I V (a) (resp., supp(I) = Spec(R) \ V (I)) and V (a) = Spec(R) \ supp(a).

For an open subset A of Spec(R), suppose that OA = {a ∈ R : A ⊆ V (a)}. We can see
that OA =

⋂
P∈A P and V (OA) = clA, where clA is the cluster points of A in Spec(R).

4.1. Lemma. Let R be a semiprime ring.

(i) For any a ∈ R, and any ideal I of R, supp(a) ∩ supp(I) = supp(Ia).
(ii) If I and J are two ideals of R, then r(I) ⊆ r(J) if and only if intV (I) ⊆ intV (J).
(iii) A ⊆ Spec(R) is a clopen subset if and only if there exists a central idempotent

e ∈ R such that A = V (e) = supp(1− e).
(iv) For open subsets A,B of Spec(R), OA = OB if and only if clB = clA.
(v) For any ideal I of R, r(I) = Osupp(I).

Proof. For the proof of (i), (ii) and (iii) see [4, Lemma 4.2].
(iv) If OA = OB , then clA = V (OA) = V (OB) = clB. On the other hand for any

subset A of Spec(R) we have OclA = OA, so clA = clB implies that OA = OB .
(v) If x ∈ r(I), then ax = 0, for all a ∈ I, so supp(I) ⊆ V (r). This shows that

x ∈ Osupp(I). Now x ∈ Osupp(I), implies that supp(I) ⊆ V (x). By (i), supp(Ix) =
supp(I) ∩ supp(x) = ∅, so Ix = 0. This shows that x ∈ r(I). �

Note that if A is a subset of a topological space X, then X \ intA = cl(X \A).

4.2. Theorem. Let R be a semiprime ring.

(i) R is an EGE-ring if and only if the closure of any union of clopen subsets of
X = Spec(R) is clopen.

(ii) R is an AE-ring if and only if X = Spec(R) is an EZ-space.

Proof. (i) For each α ∈ S, let Aα be a clopen subset of X. Then by Lemma 4.1, for each
α ∈ S there exists a central idempoten eα ∈ R (since in a semiprime ring R semicentral
idempotents are central) such that Aα = Supp(eα). Now let I =< eα : α ∈ S >. By
hypothesis, there is an idempotent e ∈ R such that r(I) = eR = r(R(1 − e)). Now by
lemma 4.1, intV (I) = V (1− e). Therefore we have cl(

⋃
α∈S Aα) = cl(

⋃
α∈S supp(eα)) =

X \ int(
⋂
α∈S V (eα)) = X \ intV (I) = X \ V (1− e) = supp(1− e). Hence cl(

⋃
α∈S Aα)

is open.
Conversely, let I =< eα : α ∈ S >, where for each α ∈ S, eα is a right semicentral

idempotent (hence a central idempotent). Then K = {V (eα) : α ∈ S} is a subset of
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clopen subsets of X. By hypothesis, intV (I) is a clopen subset, because we have,

cl(
⋃
α∈S

V (1− eα)) = X \ int(
⋂
α∈S

V (eα)) = X \ intV (I).

Hence by Lemma 4.1, there is an idempotent e ∈ R such that intV (I) = V (e) = V (Re).
Again by Lemma 4.1, r(I) = r(Re) = (1− e)R. Thus R is an EGE-ring.

(ii) Let A be an open subset of Spec(R). Then there exists a subset K of R such
that A = supp[K]. Now suppose that I be the ideal generated by K in R. Then by
hypothesis and Lemma 4.1, there exists a subset E of central idempotents of R such
that OA = r(I) = r(RER) = Osupp[E]. Therefore, by Lemma 4.1, we have cl(A) =
cl(supp[E]). Conversely, let I be an ideal of R. Then we have supp(I) is an open subset
of Spec(R). By hypothesis, there exists a collection {Aα : α ∈ S} of clopen subsets of
Spec(R) such that cl(supp(I)) = cl(

⋃
α∈S Aα). By Lemma 4.1, for each α ∈ S there exists

an idempotent eα such that Aα = supp(eα). Therefore, cl(supp(I)) = cl(
⋃
α∈S supp(eα)).

Again by Lemma 4.1, we have r(I) = r(RER) = r(E) where E = {eα : α ∈ S}. �
Recall that a ring R is a right SA-ring if for each I, J � R there exists K � R such

that r(I) + r(J) = r(K) (see [4]). By [4, Theorem 4.4], a semiprime ring R is a right
SA-ring if and only if the space of prime ideals of R is an extremally disconnected space
if and only if R is a quasi-Baer ring. Hence by Proposition 2.4, R is a right SA if and
only if R is EGE and AE.

ACKNOWLEDGEMENTS

The author wishes to thank the referee for her/his thorough reading of this paper and
her/his comments which led to a much improved paper. The author also would like to
thank Professor Gary F. Birkenmeier for his encouragement and discussion on this paper,
particularly for suggestion which led to an improvement of Proposition 2.4.

References
[1] Azarpanah, F and Karamzadeh, O.A. S. Algebraic characterization of some disconnected

spaces, Ital. J. Pure Appl. Math. 12, 155–168, 2002.
[2] Berberian, S.K. Baer∗-rings, Springer Berlin, (1972).
[3] Birkenmeier, G.F. Idempotents and completely semiprime ideals, Commun. Algebra. 11,

567–580, 1983.
[4] Birkenmeier, G.F. Ghirati, M and Taherifar, A. When is a sum of annihilator ideals an

annihilator ideal? Commun. Algebra. 43, 2690-2702, 2015.
[5] Birkenmeier, G.F. Heatherly, H.E. Kim, J.Y and Park, J.K. Triangular matrix representa-

tions, Journal of Algebra 230, 558–595, 2000.
[6] Birkenmeier, G.F. and Huang, F.-K. Annihilator conditions on polynomials, Commun. Al-

gebra, 29, 2097–2112, 2001.
[7] Birkenmeier, G.F. Kim, J.Y and Park, J.K. A sheaf representation of quasi-Baer rings,

Journal of Pure and Applied Algebra. 146, 209–223, 2000.
[8] Birkenmeier, G.F. Kim , J.Y and Park, J.K. Quasi-Baer ring extensions and biregular rings,

Bull. AUSTRAL. Math. Soc. 16, 39–52, 2000.
[9] Birkenmeier, G.F. Kim , J.Y and Park, J.K. Principally Quasi-Baer Rings, Commun. Al-

gebra, 29, 639–660, 2001.
[10] Birkenmeier, G.F. Kim , J.Y and Park, J.K. Polynomial extensions of Baer and quasi-Baer

rings, Journal of Pure and Applied Algebra, 159, 25–42, 2001.
[11] Birkenmeier, G.F. Kim , J.Y and Park, J.K. Triangular matrix representations of semipri-

mary rings, Journal of Algebra and Its Applications 1(2), 123–131, 2002.
[12] Cheng, Y and Huang, F.K. A note on extensions of principally quasi-baer rings, Taiwanese

journal of mathematics. 12(7), 1721–1731, 2008.
[13] Clark, V. Twisted matrix units semigroup algebra, Duke math. J. 34, 417–424, 1967.
[14] Engelking, R. General Topology, PWN-Polish Sci. Publ, (1977).



105

[15] Gillman, L and Jerison, M. Rings of Continuous Functions, Springer, (1976).
[16] Lam, T.Y. A First Course in Non-Commutative Rings, New York. Springer (1991).
[17] Lam, T.Y. Lecture on Modules and Rings, Springer, New York (1999).
[18] Pollinigher, A and Zaks, A. On Baer and quasi-Baer rings, Duke math. J. 37, 127–138,

1970.
[19] Shin, G. Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer.

Math. Soc. 184, 43–60, 1973.
[20] Taherifar, A. Some new classes of topological spaces and annihilator ideals, Topol. Appl.

165, 84–97, 2014.





Hacettepe Journal of Mathematics and Statistics
Volume 45 (1) (2016), 107 – 120

⊕-supplemented modules relative to an ideal

Rachid Tribak∗, Yahya Talebi†, Ali Reza Moniri Hamzekolaee‡ and Samira Asgari§

Abstract
Let I be an ideal of a ring R and let M be a left R-module. A submodule L of
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In Section 2, we study some special cases of submodules N of a module M for which N �δ M

is equivalent to N �M .
In Section 3, we introduce the notion of I-⊕-supplemented R-modules, where I is an ideal of R.

A module M will be called I-⊕-supplemented if for every submodule N of M , there exists a direct
summand K of M such that M = N +K, N ∩K ⊆ IK and N ∩K �δ K. We shall compare this
notion with the concept of ⊕-supplemented modules. Indecomposable I-⊕-supplemented modules
are characterized.

Section 4 is devoted to the study of some factor modules of an I-⊕-supplemented module. Among
other results, it is shown that if M is a direct sum of two hollow I-⊕-supplemented modules, then
any direct summand of M is I-⊕-supplemented.

In Section 5, our main results (Theorems 5.4 and 5.13) describe the structure of I-⊕-supplemented
modules over Dedekind domains. It is also shown that over a Dedekind domain R, an R-module M
is ⊕-δ-supplemented if and only if M is ⊕-supplemented.

2. Some properties of δ-small submodules

We begin with some results presenting some elementary properties of δ-small submodules which
will be used in the sequel.

2.1. Lemma. ([19, Lemma 1.2]) Let N be a submodule of a moduleM . The following are equivalent:
(i) N is δ-small in M ;
(ii) If X +N = M , then M = X ⊕ Y for a projective semisimple submodule Y with Y ≤ N .

2.2. Lemma. (See [19, Lemma 1.3])
(i) Let N and K be submodules of a module M with K ⊆ N . If N �δ M , then K �δ M .
(ii) Let M and M ′ be two modules. If L �δ M and f : M → M ′ is a homomorphism, then

f(L)�δ M
′. In particular, if K �δ M ≤M ′, then K �δ M

′.
(iii) If N and L are submodules of a module M , then N + L�δ M if and only if N �δ M and

L�δ M .
(iv) Let M1 and M2 be two submodules of a module M such that M = M1 ⊕M2. Let K1 ≤M1

and K2 ≤M2. Then K1 ⊕K2 �δ M1 ⊕M2 if and only if K1 �δ M1 and K2 �δ M2.

Let N be a submodule of a module M . Recall that N is said to be DM in M (or N decomposes
M) if there is a direct summand D of M such that D ≤ N and M = D+X, whenever N +X = M

for a submodule X of M (see [1, Definition 3.1]). Clearly, the following implications hold:

(N �M) ⇒ (N �δ M) ⇒ (N is DM in M).

Next, we exhibit some conditions under which N �δ M is equivalent to N �M .

2.3. Proposition. Let N be a proper submodule of an indecomposable module M . Then N is DM
in M if and only if N �δ M if and only if N �M .

Proof. Assume that N is DM inM . Let X be a submodule ofM such thatM = N+X. Then there
exists a direct summand D ofM such that D ≤ N andM = D+X. SinceM is indecomposable and
N 6= M , we have D = 0 and X = M . Therefore, N �M . The rest of the proof is immediate. �

The next result was inspired by [16, Proposition 2.3(1)].

2.4. Proposition. Let N be a submodule of a moduleM . Then N �M if and only if N ⊆ Rad(M)

and N �δ M .

Proof. It is enough to prove the sufficiency. Let X be a submodule of M such that M = N + X.
Since N �δ M , there exists a projective semisimple submodule P ≤ N such that M = P ⊕ X.
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Assume that P 6= 0. Then P has a simple direct summand S. Since S ⊆ Rad(M), S �M . Hence
S = 0, a contradiction. Thus, P = 0. It follows that N �M . �

The following result is a direct consequence of Proposition 2.4.

2.5. Corollary. Let M be a module with Rad(M) = M and let N be a submodule of M . Then
N �δ M if and only if N �M .

Let M be a module over a commutative integral domain R. Let T (M) denote the set of all
elements x ∈ M for which there exists a nonzero element r ∈ R such that rx = 0. It is well
known that T (M) is a submodule of M . This submodule is called the torsion submodule of M .
If T (M) = M , then the module M is said to be a torsion module. The module M is said to be
torsion-free if T (M) = 0.

2.6. Proposition. Assume that R is a commutative integral domain. Let M be an R-module and
N a submodule of M such that N ⊆ T (M). Then N �δ M if and only if N �M .

Proof. Assume that N �δ M . Let X be a submodule of M such that N + X = M . Then there
exists a projective submodule P ≤ N such that P ⊕X = M . Since P is projective, P is isomorphic
to a direct summand of a free R-module. Hence, P is torsion-free. But P is a torsion module as
P ⊆ N . Then P = 0 and X = M . It follows that N �M . The converse is obvious. �

Let N and K be submodules of a module M . Recall that K is said to be a supplement of N in
M if N +K = M and N ∩K � K. Let M = ⊕i∈IMi be a decomposition of the module M . The
next example shows that, in general, if L = ⊕i∈ILi is a submodule of M such that Li �δ Mi for
each i ∈ I, then L need not be δ-small in M .

2.7. Example. Let R be a discrete valuation ring with maximal ideal m. Let M = ⊕∞i=1R/m
i.

By [20, p. 48 The second corollary of Lemma 2.1], Rad(M) does not have a supplement in M .
Therefore, Rad(M) = ⊕∞i=1m/m

i is not small in M . Applying Proposition 2.6, it follows that
Rad(M) is not δ-small in M . On the other hand, it is clear that for each i ≥ 1, m/mi � R/mi.

2.8. Proposition. Let M = ⊕i∈IMi be a decomposition of a module M . Assume that for every
submodule N ≤ M , we have N = ⊕i∈I(N ∩Mi). For each i, let Li be a submodule of Mi. The
following statements are equivalent:

(i) Li �δ Mi for every i ∈ I;
(ii) L = ⊕i∈ILi �δ M .

Proof. (i) ⇒ (ii) Let X be a submodule of M such that M = X + L. By hypothesis, X =

⊕i∈I(X ∩Mi). So, (X ∩Mi) +Li = Mi for every i ∈ I. By assumption, for every i ∈ I, there exists
a semisimple projective submodule Pi of Li such that (X ∩Mi) ⊕ Pi = Mi (see Lemma 2.1). Let
P = ⊕i∈IPi. Then X⊕P = M . Note that P is a semisimple projective submodule of L. Therefore,
L�δ M .

(ii) ⇒ (i) By Lemma 2.2(iv). �

3. I-⊕-supplemented modules

Recall that a module M is called ⊕-supplemented (⊕-δ-supplemented) if for every submodule
N ≤ M , there exists a direct summand K of M such that N + K = M and N ∩ K � K

(N ∩K �δ K).
Recall that a ring R is said to be semilocal provided R/J(R) is a semisimple ring.
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3.1. Proposition. Let M be a module over a semilocal ring R. Then M is ⊕-supplemented if and
only if for every submodule N ≤M , there exists a direct summand K of M such that M = N +K,
N ∩K ⊆ J(R)K and N ∩K �δ K.

Proof. By Proposition 2.4 and [2, Corollary 15.18]. �

Motivated by the last proposition, we introduce the following notion:

3.2. Definition. Let M be an R-module and let I be an ideal of R. We say that M is I-⊕-
supplemented, provided for every submodule N of M , there exists a direct summand K of M such
that M = N +K, N ∩K ⊆ IK and N ∩K �δ K.

In this section we investigate some properties of I-⊕-supplemented modules.

3.3. Remark. (i) It is clear that for every ideal I of R, every I-⊕-supplemented module is ⊕-δ-
supplemented.

(ii) Let M be an R-module. If I is an ideal of R such that IM = 0, then M is I-⊕-supplemented
if and only if M is semisimple.

Let M be an R-module. As in [19], let δ(M) denote the sum of all δ-small submodules of
M . In the next proposition we provide a condition under which a ⊕-δ-supplemented module is
I-⊕-supplemented. To prove this result, we need the following elementary lemma.

3.4. Lemma. Let M be an R-module and let I be an ideal of R. If K is a direct summand of M ,
then we have IK = K ∩ IM .

Proof. Let K′ be a submodule of M such that M = K ⊕ K′. Then IM = IK ⊕ IK′. Hence
K ∩ IM = IK. �

3.5. Proposition. Let M be an R-module and let I be an ideal of R such that δ(M) ⊆ IM . Then
M is I-⊕-supplemented if and only if M is ⊕-δ-supplemented.

Proof. The necessity is clear. Conversely, suppose that M is ⊕-δ-supplemented. Let N be a
submodule of M . Then there exists a direct summand K of M such that M = N + K and
N ∩K �δ K. Note that IK = K ∩ IM by Lemma 3.4. Since δ(M) ⊆ IM , we have

N ∩K ⊆ δ(K) ⊆ K ∩ δ(M) ⊆ K ∩ IM = IK.

Therefore M is I-⊕-supplemented. This completes the proof. �

Recall that a nonzero module M is called hollow if every proper submodule is small in M . The
module M is called local if it has a proper submodule which contains all other proper submodules.
Note that the largest proper submodule of a local module M is Rad(M). It is well known that
every hollow module is ⊕-supplemented.

3.6. Example. (i) It is clear that every semisimple module is I-⊕-supplemented for any ideal I of
R.

(ii) Let p be a prime integer. It is well known that the Z-module Z(p∞) is hollow and injective.
It is easily seen that Z(p∞) is I-⊕-supplemented for every nonzero ideal I of Z, but Z(p∞) is not
0-⊕-supplemented.

(iii) It is easy to see that every ⊕-δ-supplemented module (in particular, every ⊕-supplemented
module) is R-⊕-supplemented (see Proposition 3.5).

3.7. Proposition. Let M be an indecomposable R-module and let I be an ideal of R. The following
conditions are equivalent:

(i) M is I-⊕-supplemented;
(ii) M is hollow with IM = M or IM = Rad(M).
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Proof. (i)⇒ (ii) Let N be a proper submodule ofM . By hypothesis, there exists a direct summand
K of M such that N + K = M , N ∩K ⊆ IK and N ∩K �δ K. Since M is indecomposable, we
have K = M . Hence, N ⊆ IM and N �δ M . By Proposition 2.3, we have N �M . Thus, M is a
hollow module. Moreover, note that if IM 6= M , then IM contains all other proper submodules of
M . Hence M is a local module and IM = Rad(M).

(ii)⇒ (i) Let N be a proper submodule ofM . Then N+M = M , N ∩M = N ⊆ Rad(M) ⊆ IM
and N ∩M = N �δ M . Therefore, M is I-⊕-supplemented. �

It follows from Proposition 3.7 that if I is an ideal of R, then every indecomposable I-⊕-
supplemented R-module is ⊕-supplemented. Next, we present some examples of ⊕-supplemented
modules which are not I-⊕-supplemented for an ideal I of R.

3.8. Example. (i) Let p and q be two different prime integers. Consider the local Z-module M =

Z/Zp3. We have Rad(M) = Zp/Zp3. Let I1 = Zp, I2 = Zq and I3 = Zp2. Then I1M = Rad(M),
I2M = M and I3M = Zp2/Zp3. By Proposition 3.7, M is Ii-⊕-supplemented for each i = 1, 2, but
not I3-⊕-supplemented. On the other hand, it is clear that M is ⊕-supplemented.

(ii) Let R be a discrete valuation ring with maximal ideal m. It is well known that the R-module

RR is ⊕-supplemented. Let I be an ideal of R. From Proposition 3.7 it follows that RR is I-⊕-
supplemented if and only if I = m or I = R. Therefore, the module RR is not m3-⊕-supplemented.

3.9. Proposition. Let I be an ideal of R and let M be an R-module.
(i) Assume that for every submodule N ≤ M , there exists a submodule K ≤ M such that

M = N +K and N ∩K ⊆ IM . Then M/IM is semisimple.
(ii) If M is an I-⊕-supplemented R-module, then M/IM is semisimple.

Proof. (i) Let N be a submodule ofM such that IM ⊆ N . By assumption, there exists a submodule
K of M such that N + K = M and N ∩K ⊆ IM . Thus, (N/IM) + [(K + IM)/IM ] = M/IM .
Clearly, we have N ∩ (K + IM) = IM . So, N/IM is a direct summand of M/IM . This completes
the proof.

(ii) follows from (i). �

3.10. Proposition. Let M be a module.
(i) IfM is ⊕-δ-supplemented, thenM = M1⊕M2 such that Rad(M1)�M1 and Rad(M2) = M2.
(ii) If M is I-⊕-supplemented, then M = M1 ⊕M2 such that Rad(M1) ⊆ IM1, Rad(M1)�M1

and Rad(M2) = M2.

Proof. (i) Since M is ⊕-δ-supplemented, there exist submodules M1 and M2 of M such that M =

M1⊕M2, Rad(M)+M1 = M and Rad(M)∩M1 �δ M1. Note that Rad(M) = Rad(M1)⊕Rad(M2).
Then M1 ⊕Rad(M2) = M and (Rad(M) ∩M1)⊕Rad(M2) = Rad(M). Therefore Rad(M2) = M2

and Rad(M) ∩ M1 = Rad(M1). Moreover, we have Rad(M1) � M1 by Proposition 2.4. This
completes the proof.

(ii) This follows by the same method as in (i) and adding the fact that Rad(M)∩M1 ⊆ IM1. �

Combining Proposition 3.10(ii) and [2, Proposition 5.20(1)], we get the following result.

3.11. Corollary. If M is an I-⊕-supplemented module with Rad(M)�M , then Rad(M) ⊆ IM .

From the last corollary, we conclude that if I is an ideal of a left perfect ring R and M is an
I-⊕-supplemented R-module, then Rad(M) ⊆ IM (see [2, Remark 28.5(3)]).

An R-module M is said to be δ-local if δ(M) �δ M and δ(M) is a maximal submodule of M
(see [4, Definition 3.1]). Next, we give an example of an R-⊕-supplemented module which is not
⊕-supplemented.
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3.12. Example. Let F = Z/Z2 and let A = FN be the ring of sequences over F , whose operations
are pointwise multiplication and pointwise addition. Let R ⊆ A be the subring generated by 1A

(the unit element of A) and all sequences that have only a finite number of nonzero entries. It is
shown in [4, p. 318] that the ring R is not semilocal and the R-module RR is δ-local. Applying [15,
Proposition 3.1], it is easily seen that RR is an R-⊕-supplemented module. On the other hand, since
the ring R is not semilocal, it is not semiperfect. Hence, the R-module RR is not ⊕-supplemented
by [12, Corollary 4.42].

Next, we present conditions under which an I-⊕-supplemented R-module is ⊕-supplemented.

3.13. Proposition. Let M be an R-module with Rad(M) = M . Then M is ⊕-δ-supplemented if
and only if M is ⊕-supplemented.

Proof. As Rad(M) = M , we have Rad(K) = K for every direct summand K of M . The result
follows from Corollary 2.5. �

3.14. Proposition. Assume that R is a commutative integral domain and let M be a torsion
R-module. Then M is ⊕-δ-supplemented if and only if M is ⊕-supplemented.

Proof. This follows from Proposition 2.6. �

3.15. Proposition. Let I be an ideal of R and let M be an I-⊕-supplemented R-module. If
IM ⊆ Rad(M), then M is ⊕-supplemented.

Proof. Let N be a submodule of M . By hypothesis, there exists a direct summand K of M
such that M = N + K, N ∩ K ⊆ IK and N ∩ K �δ K. Since IM ⊆ Rad(M), we have
IK = K ∩ IM ⊆ K ∩ Rad(M) = Rad(K) by Lemma 3.4 and [5, 20.4(7)]. So N ∩ K � K by
Proposition 2.4. It follows that M is ⊕-supplemented. �

3.16. Corollary. Let I be an ideal of R and let M be an I-⊕-supplemented R-module. Assume
that one of the following conditions is satisfied:

(i) I ⊆ J(R), or
(ii) R is a local ring and I 6= R, or
(iii) Rad(M) = M , or
(iv) R is a commutative integral domain and M is a torsion R-module.

Then M is ⊕-supplemented.

Proof. (i) follows from [2, Corollary 15.18] and Proposition 3.15.
(ii) follows from (i).
(iii) follows easily from Proposition 3.13.
(iv) is obvious by Proposition 3.14. �

Next, we focus on when a ⊕-supplemented R-module is I-⊕-supplemented for an ideal I of R.

3.17. Proposition. Let I be an ideal of R and let M be a ⊕-supplemented R-module such that
Rad(M) ⊆ IM . Then M is I-⊕-supplemented.

Proof. Let N be a submodule of M . Then there exists a direct summand K of M such that
M = N +K and N ∩K � K. Thus, N ∩K �δ K. Moreover, we have IK = K ∩ IM by Lemma
3.4. Since Rad(M) ⊆ IM , it follows that

Rad(K) ⊆ K ∩Rad(M) ⊆ K ∩ IM = IK.

Hence, N ∩K ⊆ IK. Therefore M is I-⊕-supplemented. This completes the proof. �

The next corollary is a direct consequence of Proposition 3.17.
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3.18. Corollary. Let M be a ⊕-supplemented module such that IM = M . Then M is I-⊕-
supplemented.

3.19. Corollary. Let m be a maximal ideal of a commutative ring R and let M be an R-module.
Assume that I is an ideal of R such that IM = mM . If M is a ⊕-supplemented R-module, then M
is I-⊕-supplemented.

Proof. Note that Rad(M) ⊆ mM by [7, Lemma 3]. The result follows from Proposition 3.17. �

Let R be a commutative integral domain. An R-module M is called divisible in case rM = M

for each nonzero element r ∈ R.

3.20. Corollary. Let M be a divisible module over a commutative integral domain R. If M is
⊕-supplemented, then M is I-⊕-supplemented for every nonzero ideal I of R.

Proof. This follows from Corollary 3.18. �

Recall that a ring R is called a left good ring if Rad(M) = J(R)M for every R-module M (see
[18, 23.7]).

3.21. Corollary. Let M be an R-module. Suppose further that either
(i) R is a left good ring, or
(ii) M is a projective module.

Then M is ⊕-supplemented if and only if M is J(R)-⊕-supplemented.

Proof. Note that Rad(M) = J(R)M by [2, Proposition 17.10]. The result follows from Propositions
3.15 and 3.17. �

Combining Lemma 2.2 and the application of the same reasoning of [10, Proposition 3] to I-⊕-
supplemented modules, we obtain the following theorem.

3.22. Theorem. Let I be an ideal of R. Then any finite direct sum of I-⊕-supplemented R-modules
is I-⊕-supplemented.

The next example shows that, in general, a direct sum of I-⊕-supplemented modules is not
I-⊕-supplemented.

3.23. Example. Let p be a prime integer. Consider the Z-module M = ⊕∞i=1Z/Zpi. Clearly, M
is a torsion module. By [12, Propositions A.7 and A.8], M is not ⊕-supplemented. Therefore M is
not (Zp)-⊕-supplemented by Corollary 3.16. On the other hand, note that for every i ≥ 1, Z/Zpi

is a (Zp)-⊕-supplemented Z-module by Proposition 3.7.

The next result deals with a special case of a family of ⊕-δ-supplemented (I-⊕-supplemented)
modules (Mλ)λ∈Λ for which M = ⊕λ∈ΛMλ is ⊕-δ-supplemented (I-⊕-supplemented).

3.24. Proposition. Let I be an ideal of R and let M = ⊕λ∈ΛMλ be a direct sum of submodules
Mλ (λ ∈ Λ) such that for every submodule N of M , we have N = ⊕λ∈Λ(N ∩Mλ). Assume that
Mλ is ⊕-δ-supplemented (I-⊕-supplemented) for every λ ∈ Λ. Then M is ⊕-δ-supplemented (I-⊕-
supplemented).

Proof. Let N be a submodule of M . Then N = ⊕λ∈Λ(N ∩Mλ). For every λ ∈ Λ, there exists a
direct summand Kλ of Mλ such that (N ∩Mλ) +Kλ = Mλ, (N ∩Kλ ⊆ IKλ) and N ∩Kλ �δ Kλ.
Set K = ⊕λ∈ΛKλ. Clearly, K is a direct summand of M and N +K = M . Also, we have (N ∩K =

⊕λ∈Λ(N ∩Kλ) ⊆ IK) and N ∩K �δ K by Proposition 2.8. This proves the proposition. �
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4. Homomorphic images of I-⊕-supplemented modules

We begin this section by an example showing that the I-⊕-supplemented property does not
always transfer from a module to each of its factor modules.

4.1. Example. Let F be a field. Consider the local ring R = F [x2, x3]/(x4) and let m be the
maximal ideal of R. Let n be an integer with n ≥ 2 and let M = R(n). By Proposition 3.7
and Theorem 3.22, M is m-⊕-supplemented. Note that R is an artinian local ring which is not
a principal ideal ring (see [3, Example on p. 91]). So, there exists a submodule K of M such
that the factor module M/K is not ⊕-supplemented by [11, Example 2.2]. Therefore M/K is not
m-⊕-supplemented by Corollary 3.16.

Next, we show that under some conditions, a factor module of an I-⊕-supplemented module is
I-⊕-supplemented.

Recall that a submodule N of a module M is called fully invariant if f(N) ⊆ N for every
endomorphism f of M . A module M is called distributive if (A+B) ∩ C = (A ∩ C) + (B ∩ C) for
all submodules A, B, C of M (or equivalently, (A∩B) +C = (A+C)∩ (B+C) for all submodules
A, B, C of M).

Analysis similar to the proofs of [6, Theorems 4.7 and 4.8] yields the following result. We give
the first part of its proof for completeness.

4.2. Proposition. Let I be an ideal of R and let M be an I-⊕-supplemented module.
(i) Let X ≤ M be a submodule such that for every direct summand K of M , (X + K)/X is a

direct summand of M/X. Then M/X is I-⊕-supplemented.
(ii) Let X ≤ M be a submodule such that for every decomposition M = M1 ⊕ M2, we have

X = (X ∩M1)⊕ (X ∩M2). Then M/X is I-⊕-supplemented.
(iii) If X is a fully invariant submodule of M , then M/X is I-⊕-supplemented.
(iv) If M is a distributive module, then M/X is I-⊕-supplemented for every submodule X of M .

Proof. (i) Let N be a submodule of M such that X ⊆ N . Since M is I-⊕-supplemented, there
exists a direct summand K of M such that N +K = M , N ∩K ⊆ IK and N ∩K �δ K. Therefore
(N/X)+((X+K)/X) = M/X and (N/X)∩ ((K+X)/X) = (X+(N ∩K))/X ⊆ ((X+IK)/X) ⊆
I((X + K)/X). Consider the natural epimorphism π : K → (X + K)/X. Since N ∩K �δ K, we
have π(N ∩K) = (X + (N ∩K))/X �δ (X +K)/X by Lemma 2.2(ii). Note that by assumption,
(X +K)/X is a direct summand of M/X. It follows that M/X is I-⊕-supplemented.

(ii), (iii) and (iv) These are consequences of (i). �

The next proposition was inspired by [11, Proposition 2.5].

4.3. Proposition. Let M be an R-module and let I be an ideal of R. Let K be a fully invariant
direct summand of M . Then the following assertions are equivalent:

(i) M is I-⊕-supplemented;
(ii) K and M/K are I-⊕-supplemented.

Proof. (i) ⇒ (ii) Let L be a submodule of K. By hypothesis, there exist submodules A and B

of M such that M = A ⊕ B, M = A + L, A ∩ L ⊆ IA and A ∩ L �δ A. Clearly, we have
K = (A ∩ K) + L. Since K is fully invariant in M , we have K = (A ∩ K) ⊕ (B ∩ K). Hence,
A ∩K is a direct summand of M . Thus I(A ∩K) = (A ∩K) ∩ IM by Lemma 3.4. It follows that
(A ∩ K) ∩ L = A ∩ L ⊆ (A ∩ K) ∩ IM = I(A ∩ K). Since A ∩ L �δ A and A ∩ K is a direct
summand of A, we have A ∩ L �δ A ∩K by Lemma 2.2(iv). Therefore, K is I-⊕-supplemented.
Moreover, M/K is I-⊕-supplemented by Proposition 4.2(iii).

(ii) ⇒ (i) This follows from Theorem 3.22. �
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Let I be an ideal of R. An R-moduleM is called completely I-⊕-supplemented (⊕-supplemented)
if every direct summand of M is I-⊕-supplemented (⊕-supplemented). Clearly, semisimple modules
are completely I-⊕-supplemented. Also, every I-⊕-supplemented hollow module is completely I-⊕-
supplemented. The next result provides another example of completely I-⊕-supplemented modules.

Recall that a module M is said to have finite hollow dimension n ∈ N if there exists a small
epimorphism from M to a direct sum of n hollow modules. We denote this by h.dim(M) = n. It is
well known that a module M is hollow if and only if h.dim(M) = 1 (see [5, p. 47 and p. 49]).

4.4. Proposition. Let M = H1 ⊕H2 be a direct sum of hollow submodules H1 and H2. Then the
following statements are equivalent:

(i) H1 and H2 are I-⊕-supplemented modules;
(ii) The module M is completely I-⊕-supplemented.

Proof. (i) ⇒ (ii) Let L be a nonzero direct summand of M . If L = M , then L is I-⊕-supplemented
by Theorem 3.22. Assume that L 6= M . Let K be a submodule of M such that M = L ⊕K. By
[5, 5.4(1)], h.dim(M) = 2 = h.dim(L) + h.dim(K). It follows that h.dim(L) = 1 and hence L is a
hollow module. Let us prove that L is I-⊕-supplemented. To see this, it suffices to show that IL = L

or IL = Rad(L) by Proposition 3.7. Since M is I-⊕-supplemented, M/IM ∼= (L/IL) ⊕ (K/IK)

is semisimple by Proposition 3.9. As L is a hollow module, L/IL = 0 or L/IL is simple. Hence
L = IL or L is a local module with maximal submodule IL. So IL = L or IL = Rad(L), as
required.

(ii) ⇒ (i) This is immediate. �

5. Modules over Dedekind domains

Our purpose in this section is to determine the structure of all I-⊕-supplemented modules and
all ⊕-δ-supplemented modules over Dedekind domains.

5.1. Proposition. Let R be a Dedekind domain which is not a field. Then the following assertions
are equivalent for an injective R-module M :

(i) M is ⊕-supplemented;
(ii) M is I-⊕-supplemented for every nonzero ideal I of R;
(iii) M is I-⊕-supplemented for some nonzero ideal I of R;
(iv) M is ⊕-δ-supplemented.

Proof. (i) ⇒ (ii) This follows from Corollary 3.20 since the module M is divisible.
(ii) ⇒ (iii) and (iii) ⇒ (iv) These are obvious.
(iv) ⇒ (i) Since R is a Dedekind domain which is not a field and M is an injective R-module,

we have Rad(M) = M . The result follows from Proposition 3.13. �

Let R be a Dedekind domain which is not a field. If M is an R-module, we will denote the sum
of all divisible (injective) submodules of M by d(M). It is well known that d(M) is an injective
R-module. Also, note that if f is an endomorphism of M , then f(d(M)) is isomorphic to a factor
module of d(M). So, f(d(M)) is injective as R is a Dedekind domain. Therefore, f(d(M)) ⊆ d(M).
It follows that d(M) is a fully invariant submodule of M .

5.2. Proposition. Let R be a Dedekind domain which is not a field. Let I be an ideal of R and
let M be an R-module. Then the following are equivalent:

(i) M is ⊕-δ-supplemented (I-⊕-supplemented);
(ii) M can be written as M = M1 ⊕M2 such that M1 is injective, Rad(M2) � M2 and both of

M1 and M2 are ⊕-δ-supplemented (I-⊕-supplemented) modules.
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Proof. (i) ⇒ (ii) Let M1 = d(M) and let M2 be a submodule of M such that M = M1 ⊕M2.
Note that M2 has no submodules X with Rad(X) = X. Since M is ⊕-δ-supplemented (I-⊕-
supplemented), M1 and M2 are ⊕-δ-supplemented (I-⊕-supplemented) by [14, Theorem 2.5] and
Proposition 4.3. Moreover, we have Rad(M2)�M2 by Proposition 3.10.

(ii) ⇒ (i) This follows by [14, Theorem 2.2] and Theorem 3.22. �

Next, we restrict our investigations about ⊕-δ-supplemented modules and I-⊕-supplemented
modules to the case of modules over discrete valuation rings.

5.3. Proposition. Let M be a module over a discrete valuation ring R and let I be an ideal of
R. Then M is ⊕-δ-supplemented if and only if M is ⊕-supplemented. In particular, every I-⊕-
supplemented R-module is ⊕-supplemented.

Proof. Assume that M is ⊕-δ-supplemented. By Proposition 5.2, M = M1 ⊕M2 is a direct sum
of a ⊕-δ-supplemented injective submodule M1 and a submodule M2 with Rad(M2) � M2. By
Proposition 5.1, M1 is ⊕-supplemented. In addition, M2 is ⊕-supplemented by [20, Lemma 2.1]
and [12, Proposition A.7]. Therefore, M is ⊕-supplemented by [8, Theorem 1.4]. The converse is
immediate.

The remaining assertion is obvious. �

Let P be a nonzero prime ideal of a Dedekind domain R and let n be a nonzero natural number.
We will use the notation BP (1, . . . , n) to denote the direct sum of arbitrarily many copies of R/P ,
R/P 2, . . . , R/Pn.

The next result provides a structure theorem for modules over a discrete valuation ring.

5.4. Theorem. Assume that R is a discrete valuation ring with maximal ideal m, quotient field K
and Q = K/R. Let I be an ideal of R and let M be an R-module.
(1) If I = m or I = R, then the following are equivalent:

(i) M is I-⊕-supplemented;
(ii) M is ⊕-δ-supplemented;
(iii) M is ⊕-supplemented;
(iv) M ∼= Ra ⊕Kb ⊕Qc ⊕Bm(1, . . . , n) for some natural numbers a, b, c and n.

(2) If I 6∈ {m,R}, then the following are equivalent:
(i) M is I-⊕-supplemented;
(ii) M ∼= Kb ⊕Qc ⊕ (R/m)(Λ) for some natural numbers b and c and an index set Λ.

Proof. (1) (i) ⇔ (iii) By Corollaries 3.18 and 3.19 and Proposition 5.3.
(ii) ⇔ (iii) By Proposition 5.3.
(iii) ⇔ (iv) This follows from [12, Proposition A.7].
(2) (i) ⇒ (ii) Assume that M is I-⊕-supplemented. By Proposition 5.3, M is ⊕-supplemented.

Applying [12, Proposition A.7], M ∼= Ra ⊕ Kb ⊕ Qc ⊕ Bm(1, . . . , n) for some natural numbers a,
b, c and n. Since M/IM is semisimple (see Proposition 3.9) and I 6∈ {m,R}, we have a = 0 and
for each 1 ≤ i ≤ n, R/(I + mi) is semisimple. So, for each 1 ≤ i ≤ n, we have I + mi = m or
I +mi = R. Therefore n = 1 because I ⊆ m2. It follows that Bm(1, . . . , n) = Bm(1) is semisimple,
completing the proof.

(ii) ⇒ (i) Note that Kb ⊕ Qc is an injective ⊕-supplemented module by [12, Proposition A.7].
The result follows from Propositions 5.1 and 5.2. �

5.5. Remark. Let R be a discrete valuation ring with maximal ideal m, quotient field K and
Q = K/R. Let I be an ideal of R.
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(i) Assume that I 6∈ {m,R}. Theorem 5.4(2) and [12, Proposition A.7] provide many examples
of ⊕-supplemented R-modules which are not I-⊕-supplemented.

(ii) Note that [11, Corollary 4.5] shows that every ⊕-supplemented R-module is completely ⊕-
supplemented.

Case 1. Assume that I ∈ {m,R}. Then every I-⊕-supplemented R-module is completely I-⊕-
supplemented by Theorem 5.4.

Case 2. Suppose that I 6∈ {m,R}. Let M be an I-⊕-supplemented R-module. Then M =

Kb ⊕ Qc ⊕ (R/m)(Λ) for some natural numbers b and c and an index set Λ. Let N and L be
submodules of M such that M = N ⊕ L and let d(M) be the sum of all injective submodules of
M . It is clear that d(M) = d(N) ⊕ d(L) = Kb ⊕ Qc. Then, d(N) ∼= Kb′ ⊕ Qc

′
for some natural

numbers b′ and c′ by [2, Corollary 12.7 and Lemma 25.4]. Therefore, d(N) is I-⊕-supplemented by
Theorem 5.4. In addition, we have (R/m)(Λ) ∼= M/d(M) ∼= (N/d(N))⊕ (L/d(L)). Hence, N/d(N)

is semisimple. Thus, N/d(N) is I-⊕-supplemented. Since d(N) is a direct summand of N , N is
I-⊕-supplemented by Theorem 3.22. Consequently, M is completely I-⊕-supplemented.

Let L be a submodule of a module M . A submodule K ≤ M is called a δ-supplement of N in
M if M = L + K and L ∩K �δ K. The module M is called δ-supplemented if every submodule
has a δ-supplement in M .

Our next goal is to describe ⊕-δ-supplemented modules and I-⊕-supplemented modules over a
nonlocal Dedekind domain R. The next proposition shows that every torsion-free δ-supplemented
R-module is injective. First we prove the following lemma.

5.6. Lemma. Let L be a proper submodule of a module M such that M/L is a cyclic module.
(i) If K is a δ-supplement of L in M , then K = P ⊕ Rx, where P is a semisimple projective

submodule of L ∩K and x ∈ K. In this case, Rx is a δ-supplement of L in M .
(ii) If L has a δ-supplement that is a direct summand of M , then L has a cyclic δ-supplement

that is a direct summand of M .

Proof. (i) By assumption, we have L+K = M and L∩K �δ K. Thus,M/L ∼= K/(L∩K) is cyclic.
Let x ∈ K such that K = (L ∩K) + Rx. Since L ∩K �δ K, there exists a semisimple projective
submodule P of L ∩K such that K = P ⊕Rx by Lemma 2.1. Note that L ∩K = L ∩ (P ⊕Rx) =

P ⊕ (L∩Rx)�δ P ⊕Rx. By Lemma 2.2(iv), we have P �δ P and L∩Rx�δ Rx. Therefore P is
a semisimple projective module by [15, Lemma 2.9]. Also, note that L + Rx = M . It follows that
Rx is a δ-supplement of L in M .

(ii) follows from (i). �

5.7. Proposition. Assume that R is a Dedekind domain which is not local. Let K denote the
quotient field of R. If M is a δ-supplemented R-module, then M/T (M) ∼= K(Λ) for some index set
Λ.

Proof. Assume thatM has a maximal submodule L such that T (M) ⊆ L. SinceM is δ-supplemented,
there exists a cyclic submodule W of M such that M = L+W and L∩W �δ W (see Lemma 5.6).
Let A be an ideal of R such that W ∼= R/A. Since W is not contained in L, W is not a torsion
module. So A = 0 and W ∼= RR. Thus, W is an indecomposable R-module. Hence L∩W �W by
Proposition 2.3. Since W/(L ∩W ) ∼= M/L, we conclude that W is a local submodule of M . This
contradicts the fact that R is not a local ring. It follows that Rad(M/T (M)) = M/T (M). Hence,
the module M/T (M) is injective. So there exists an index set Λ such that M/T (M) ∼= K(Λ) by [9,
Lemma 2.1]. �

5.8. Proposition. Assume that R is a Dedekind domain which is not local. If M is a ⊕-δ-
supplemented R-module with Rad(M)�M , then M is a torsion module.
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Proof. SinceM is ⊕-δ-supplemented, there exist submodules A and B ofM such thatM = A⊕B =

T (M) + B and T (M) ∩ B �δ B. Since T (M) = T (A) ⊕ T (B), we have M = T (A) ⊕ B and
T (M) = T (A) ⊕ (T (M) ∩ B). Hence T (A) = A and T (B) = T (M) ∩ B. So, T (B) �δ B. By
Proposition 2.6, we have T (B) � B. Note that M/T (M) ∼= B/T (B) is divisible by Proposition
5.7. It follows that for every nonzero element r ∈ R, we have rB + T (B) = B. So, rB = B for
every 0 6= r ∈ R. This implies that B is a divisible module, that is, Rad(B) = B (see [9, Lemma
2.1]). But Rad(B) � B since Rad(M) � M . Then B = 0 and M = A is a torsion module, as
required. �

5.9. Proposition. Assume that R is a nonlocal Dedekind domain. If M is a ⊕-δ-supplemented
R-module, then M is a torsion module.

Proof. By Proposition 5.2, M = M1⊕M2 is a direct sum of ⊕-δ-supplemented submodules M1 and
M2 such that Rad(M1) = M1 and Rad(M2)�M2. By Proposition 5.1, M1 is ⊕-supplemented. So,
M1 is a torsion module by [12, Proposition A.8]. Moreover, M2 is a torsion module by Proposition
5.8. Therefore M is a torsion module, as required. �

5.10. Corollary. Assume that R is a nonlocal Dedekind domain. An R-moduleM is ⊕-δ-supplemented
if and only if M is ⊕-supplemented.

Proof. This follows easily from Propositions 3.14 and 5.9. �

5.11. Remark. Combining Proposition 5.3, Corollary 5.10 and [12, Propositions A.7 and A.8], we
obtain the structure of ⊕-δ-supplemented modules over Dedekind domains.

5.12. Lemma. Assume that R is a Dedekind domain which is not local. Let P be a maximal ideal
of R and let i be a nonzero natural number. Then:

(i) I + P = P if and only if I ⊆ P .
(ii) If i ≥ 2, then I + P i = P if and only if I ⊆ P and I 6⊆ P 2.
(iii) I + P i = R if and only if I 6⊆ P .

Proof. (i) and (iii) are immediate.
(ii) (⇒) This is obvious.
(⇐) By hypothesis, we have I = PI ′, where I ′ is an ideal of R which is not contained in P (see

[13, Theorem 6.14]). Since I ′ + P (i−1) = R, we see that PI ′ + P i = P . Hence, I + P i = P . �

Let M be a module over a Dedekind domain R and let P be a nonzero prime ideal of R. We will
denote by MP the set {x ∈ M | Pnx = 0 for some integer n ≥ 0} which is called the P -primary
component of M . Note that if M is a torsion R-module, then M is a direct sum of its P -primary
components. Let K be the quotient field of R. We will denote by R(P∞) the P -primary component
of the torsion R-module K/R. It is well known that R(P∞) is a hollow module (see [9, Lemma
2.4]).

The next result describes the structure of I-⊕-supplemented modules over nonlocal Dedekind
domains. Recall that a module M is 0-⊕-supplemented if and only if M is semisimple (see Remark
3.3(ii)).

5.13. Theorem. Assume that R is a nonlocal Dedekind domain. Let I be a nonzero ideal of R.
Then the following assertions are equivalent for an R-module M :

(i) M is I-⊕-supplemented;
(ii) M is torsion and every P -primary component of M is I-⊕-supplemented;
(iii) M is torsion and for every nonzero prime ideal P of R, there exist natural numbers a and

n such that MP
∼= (R(P∞))a ⊕BP (1, . . . , n) with n = 1 if I ⊆ P 2.
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Proof. (i) ⇔ (ii) It is well known that for every nonzero prime ideal P of R, MP is a fully invariant
submodule of M . The result follows from Propositions 3.24, 4.3 and 5.9.

(ii) ⇒ (iii) Let P be a nonzero prime ideal of R. Since MP is I-⊕-supplemented, MP is ⊕-
supplemented by Corollary 5.10. Thus, there exist natural numbers a and n such that MP

∼=
(R(P∞))a ⊕ BP (1, . . . , n) by [12, Propositions A.7 and A.8]. Let 1 ≤ i ≤ n. Since M/IM is
semisimple (see Proposition 3.9), (R/P i)/((I + P i)/P i) ∼= R/(I + P i) is semisimple. As R/P i is a
local R-module, we have I+P i = R or I+P i = P . Note that if I ⊆ P 2 and i ≥ 2, then I+P i ⊆ P 2.
In this case we have I + P i 6= R and I + P i 6= P . This shows that I ⊆ P 2 forces n = 1.

(iii)⇒ (ii) Let P be a nonzero prime ideal ofR. Note thatMP and (R(P∞))a are⊕-supplemented
by [12, Propositions A.7 and A.8]. We divide the rest of the proof into three cases:

Case 1. Assume that I ⊆ P 2. By hypothesis, n = 1. Therefore BP (1, . . . , n) = BP (1) is
semisimple. HenceMP

∼= (R(P∞))a⊕BP (1) is I-⊕-supplemented (see Proposition 5.1 and Theorem
3.22).

Case 2. Suppose that I 6⊆ P 2 and I 6⊆ P . Then, IMP = MP by Lemma 5.12(iii). Therefore,
MP is I-⊕-supplemented by Corollary 3.18.

Case 3. Assume that I 6⊆ P 2 and I ⊆ P . In this case we have IMP = PMP by Lemma 5.12.
Applying Corollary 3.19, we conclude that MP is I-⊕-supplemented. This completes the proof. �

5.14. Remark. Let I be an ideal of a nonlocal Dedekind domain R. Using Theorem 5.13, [17,
Theorem 1] and an analysis similar to that in Remark 5.5, we conclude that every I-⊕-supplemented
R-module is completely I-⊕-supplemented.
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Abstract
In this paper we use methods from the theory of differential subordi-
nations to study the linear combination azf ′′(z) + bf ′(z) + c f(z)

z
and

give sharp bounds over the module, the argument and the real part of
αf ′(z) + β f(z)
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1. Introduction and preliminaries
Let H(D) denote the class of all analytic functions in the open unit disk D = {z ∈

C : |z| < 1} and let A be the subclass of H(D) consisting of those functions that are
normalized with the condition f(0) = f ′(0)− 1 = 0. The functions of A that are one-to-
one are called normalized univalent functions (for details see [4]).

A significant part of the theory of univalent functions deals with results over simple
expressions of a function f ∈ A and its derivatives, such as

zf ′′(z), f ′(z) and
f(z)

z
,

and a small part of such results are presented in [6] and [2].
In this paper we will study the differential operator I(a, b, c) : A→ H(D) given by

I(a, b, c)[f ](z) := azf ′′(z) + bf ′(z) + c
f(z)

z
,
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which is a linear combination of the above three expressions zf ′′(z), f ′(z) and f(z)/z.
Our results will provide simple sufficient conditions over the module, the argument and
the real part of I(a, b, c)[f ] that imply (in most of the cases) sharp bound of the module,
the argument and the real part of another differential operator J(α, β) : A→ H(D), given
by

J(α, β)[f ](z) := αf ′(z) + β
f(z)

z
.

Special choice of the parameters a, b and c leads to numerous known results, and we
remind some of them:

(i) the special case a = c = 0 and b = 1 brings results over the class of functions of
bounded turning [11, 12, 13];

(ii) the case a = 1 and b = c = 0 was studied in [9];
(iii) the case b = 1 and c = 0 was studied in [10];
(iv) the case a = b = 1 and c = 0 was studied in [3] and [1].
The sharpness of the results given in this paper closes, and in some cases improves

and closes the related problems.
For our study we will use some methods from the theory of differential subordinations.

Now we will recall the basic definitions and notion from this theory, that we need to use
in our proofs. Valuable references on this topic may be found in [2] and [6].

If f and g are two analytic functions in the unit disk D, then we say that f is subor-
dinate to g, written f(z) ≺ g(z), if there exists a Schwarz function w (i.e. w is analytic
in D with w(0) = 0 and |w(z)| < 1, z ∈ D) such that f(z) = g(w(z)) for all z ∈ D.
In particular, if g is univalent in D, then f(z) ≺ g(z) if and only if f(0) = g(0) and
f(D) ⊆ g(D).

The general theory of differential subordinations was introduced by Miller and Mocanu
in [7] and [8]. Namely, if φ : C2 → C is analytic in a domain D ⊂ C, if h is univalent in
D, and if p is analytic in D with (p(z), zp′(z)) ∈ D for all z ∈ D, then p is said to satisfy
a first-order differential subordination if

(1.1) φ(p(z), zp′(z)) ≺ h(z).

A univalent function q is said to be a dominant of the differential subordination (1.1)
if p(z) ≺ q(z) for all the functions p satisfying (1.1). If q̃ is a dominant of (1.1) and
q̃(z) ≺ q(z) for all dominants of (1.1), then we say that q̃ is the best dominant of the
differential subordination (1.1).

To prove our main results we will use the following well-known lemmas from the theory
of first-order differential subordinations:

1.1. Lemma. [8] Let q be univalent in the unit disk D, and let θ and φ be analytic in a
domain D containing q(D), with φ(w) 6= 0 for all w ∈ q(D). Set Q(z) = zq′(z)φ(q(z)),
h(z) = θ(q(z)) +Q(z), and suppose that

(i) Q is starlike in the unit disk D, and
(ii) Re zh′(z)

Q(z)
= Re

[
θ′(q(z))
φ(q(z))

+ zQ′(z)
Q(z)

]
> 0, z ∈ D.

If p is analytic in D, with p(0) = q(0), p(D) ⊆ D and

(1.2) θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)) = h(z),

then p(z) ≺ q(z), and q is the best dominant of (1.2).

1.2. Lemma. [7, page 11] Let n ≥ 0 be an integer and let γ ∈ C, with Re γ > −n. If
f(z) =

∑
m≥n

amz
m is analytic in D and F is defined by

F (z) =
1

zγ

∫ z

0

f(ζ)ζγ−1dζ =

∫ 1

0

f(tz)tγ−1dt,
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then F (z) =
∑
m≥n

amz
m

m+γ
is analytic in D.

Now, by using Lemma 1.1 and Lemma 1.2 we will prove

1.3. Lemma. Let α, β, γ ∈ C with Re γ > −2, and let q be a univalent function in the
unit disk D, with q(0) = α+ β, satisfying

(1.3) Re

[
1 +

zq′′(z)

q′(z)

]
> max{0,−1− Re γ}, z ∈ D.

(i) If f ∈ A, then

(1.4) I(α, α+ β + αγ, βγ)[f ](z) ≺ zq′(z) + (1 + γ)q(z) =: h(z),

implies that

(1.5) J(α, β)[f ](z) ≺ q(z).
(ii) Moreover, if we suppose, in addition, that

Re
β

α
> −2, if αβ 6= 0,

then the implication given in (i) is sharp. The extremal function f∗ ∈ A that
satisfies the subordination (1.4) such that J(α, β)[f∗] = q, is given by

f∗(z) =



zq(z)

β
, if α = 0 and β 6= 0,

z +
∑
m≥1

q(m)(0)

(m+ 1)!α
zm+1, if α 6= 0 and β = 0,

z +
∑
m≥1

q(m)(0)

m!

zm+1

β + (m+ 1)α
, if αβ 6= 0 and Re β

α
> −2.

Proof. (i) Let define functions θ(w) = (1 + γ)w and φ(w) = 1, w ∈ C, that are analytic
in the domain D = C which contains q(D), and φ(w) 6= 0 for all w ∈ q(D). Further,
the condition (1.3) implies that for the functions Q(z) = zq′(z)φ(q(z)) = zq′(z) and
h(z) = θ(q(z)) +Q(z) = (1 + γ)q(z) + zq′(z) we have

Re
zQ′(z)

Q(z)
= Re

[
1 +

zq′′(z)

q′(z)

]
> 0, z ∈ D,

and

Re
zh′(z)

Q(z)
= Re

[
2 + γ +

zq′′(z)

q′(z)

]
= 1 + Re γ + Re

[
1 +

zq′′(z)

q′(z)

]
> 0, z ∈ D.

So, the conditions (i) and (ii) from Lemma 1.1 hold, and moreover, the function h is
close-to-convex, hence univalent in D (see [5]).

Let now choose p(z) = J(α, β)[f ](z) = αf ′(z)+β f(z)
z

. Then, the function p is analytic
in D, with p(0) = q(0) = α+ β, and p(D) ⊆ D = C. Finally, bearing in mind that

I(α, α+ β + αγ, βγ)[f ](z) = zp′(z) + (1 + γ)p(z),

we obtain that the subordinations (1.2) and (1.4) are equivalent, and the conclusion
follows immediately from Lemma 1.1.

(ii) We will prove the second part of our lemma by showing that the differential
equation

(1.6) αf ′(z) + β
f(z)

z
= q(z)

has a solution f∗ ∈ A, whenever the assumptions (a) and (b) hold. For this purpose we
will divide the analysis in three different cases.
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Case 1. If α = 0 and β 6= 0, since q(0) = α+ β = β, it follows that the equation (1.6)
has solution f∗(z) = zq(z)

β
∈ A.

Case 2. If α 6= 0 and β = 0, then (1.6) has the analytic solution

f∗(z) =
1

α

∫ z

0

q(ζ)dζ = z +
∑
m≥1

q(m)(0)

(m+ 1)!α
zm+1,

and since q(0) = α+ β = α the above function f∗ belongs to A.
Case 3. Now let analyse the more complex case, assuming that αβ 6= 0. The equation

(1.6) is equivalent to

(1.7) f(z) +
1

Γ
zf ′(z) = H(z), where Γ :=

β

α
and H(z) :=

zq(z)

β
.

It is easy to see that

H(z) =
∑
m≥1

amz
m, z ∈ D, where am =

q(m−1)(0)

(m− 1)!β
.

Since the function q is univalent in D, and thus q′(z) 6= 0 for all z ∈ D, it follows that
the second coefficient of the above power expansion of H does not vanish, i.e. q′(0)

β
6= 0.

Further, according to Lemma 1.2, the differential equation (1.7) has the analytic
solution

(1.8) f∗(z) =
Γ

zΓ

∫ z

0

H(ζ)ζΓ−1dζ =
1

αzβ/α

∫ z

0

q(ζ)ζβ/αdζ, z ∈ D,

whenever Re Γ > −n
This means that the solution (1.8) of the differential equation (1.6) is analytic in D if

we assume that

Re Γ = Re
β

α
> −2.

Hence, the solution (1.8) of the differential equation (1.6) is an analytic function in D,
and has the form

f∗(z) = z +
∑
m≥1

q(m)(0)

m!

zm+1

β + (m+ 1)α
, z ∈ D,

that is f∗ ∈ A. �

2. Results over the module
In this section we study the module of I(a, b, c)[f ] and receive sharp information about

the module of J(α, β)[f ].

2.1. Theorem. Let α, β, γ ∈ C with β + 2α 6= 0, Re γ > −2, and let δ > 0. If f ∈ A,
then

(2.1)
∣∣∣ I(α, α+ β + αγ, βγ)[f ](z)− (1 + γ)(α+ β)

∣∣∣ < δ, z ∈ D,

implies

(2.2)
∣∣∣ J(α, β)[f ](z)− (α+ β)

∣∣∣ < ∆ = ∆(γ, δ) :=
δ

|2 + γ| , z ∈ D.

This implication is sharp, and the extremal function is

(2.3) f∗(z) = z +
δ

(2 + γ)(β + 2α)
z2.
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Proof. If we denote q(z) = α + β + δ
2+γ

z, z ∈ D, then we have 1 + zq′′(z)
q′(z) = 1, meaning

that (1.3) from Lemma 1.3 holds because of the assumption Re γ > −2. Further, the
function h defined in (1.4) will be

h(z) = (1 + γ)(α+ β) + δz, z ∈ D,

hence the subordination (1.4) is equivalent to (2.1). Therefore, (2.2) follows directly from
Lemma 1.3 and the definition of subordination, while a simple computation shows that
f∗ given by (2.3) is the extremal function. �

If we consider in the above theorem the special case α = −β = 1, then we obtain the
first part, while for β = 1− α we obtain the second part of the next corollary:

2.2. Corollary. Let δ > 0 and γ ∈ C, with Re γ > −2.

(i) If f ∈ A, then ∣∣∣∣zf ′′(z) + γf ′(z)− γ f(z)

z

∣∣∣∣ < δ, z ∈ D,

implies ∣∣∣∣f ′(z)− f(z)

z

∣∣∣∣ < ∆ = ∆(γ, δ), z ∈ D.

This implication is sharp, and the extremal function is f∗(z) = z + δ
2+γ

z2.
(ii) Assuming that α ∈ C \ {−1}, if f ∈ A, then∣∣∣∣αzf ′′(z) + (1 + αγ)f ′(z) + (1− α)γ

f(z)

z
− (1 + γ)

∣∣∣∣ < δ, z ∈ D,

implies ∣∣∣∣αf ′(z) + (1− α)
f(z)

z
− 1

∣∣∣∣ < ∆ = ∆(γ, δ), z ∈ D.

This implication is sharp, and the extremal function is f∗(z) = z+ δ
(2+γ)(α+1)

z2.

3. Results over the argument and the real part
In this section we study the argument of the I(α, α + β + αγ, βγ)[f ] and obtain a

result for the argument of J(α, β)[f ]. As an interesting consequence, we receive the
corresponding result over the real parts of these operators.

3.1. Theorem. Let α, β ∈ C and γ, λ ∈ R, such that α+ β > λ, γ ≥ −1, and also let
θ ∈ (0, 1].

(i) If f ∈ A, then

(3.1)
∣∣∣ arg

[
I(α, α+ β + αγ, βγ)[f ](z)− (1 + γ)λ

]∣∣∣ < ∆, z ∈ D,

where

∆ = ∆(θ, γ) :=


θπ
2

+ arctan θ
1+γ

, if γ > −1,

(θ+1)π
2

, if γ = −1

implies

(3.2)
∣∣∣ arg J(α, β)[f ](z)− λ

∣∣∣ < θπ

2
, z ∈ D.
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(ii) Moreover, for the special case γ = −1, if we suppose, in addition, that

Re
β

α
> −2, if αβ 6= 0,

then the implication given in (i) is sharp.

Proof. The assumption α + β > λ, with λ ∈ R, holds if and only if Imα = − Imβ and
Reα+ Reβ > λ.

Let consider the function q(z) =
(

1+z
1−z

)θ
(Reα+ Reβ − λ) + λ, z ∈ D, where the

power is taken to its principal value. It follows that q(0) = Reα+ Reβ,

1 +
zq′′(z)

q′(z)
=: H(z) = −1 +

2(1 + θz)

1− z2
, z ∈ D,

hence
H(eiϕ) = i

θ + cosϕ

sinϕ
, ϕ ∈ (−π, 0) ∪ (0, π).

Since H(0) = 1, we deduce ReH(z) > 0, z ∈ D, and from q′(0) = 2θ (Reα+ Reβ − λ) 6=
0 we conclude that q is a convex (univalent) function in D.

Thus, the initial assumptions of Lemma 1.3 are satisfied. The proof will be completed
if we show that the inequality (3.1) implies the subordination (1.4), and the subordination
(1.5) is equivalent to the inequality (3.2).

The function h defined in the subordination (1.4) has the form

h(z) = zq′(z) + (1 + γ)q(z) = (Reα+ Reβ − λ)

(
1 + z

1− z

)θ (
2θz

1− z2
+ 1 + γ

)
+ (1 + γ)λ.

Even more, since (h(z)− h(0)) /h′(0) is a close-to-convex (normalized) function in D, it
follows that the function h is univalent.

Now, for z = eiϕ and ϕ ∈ (−π, 0) ∪ (0, π), using the fact that α+ β > λ we get

arg
[
h(eiϕ)− (1 + γ)λ

]
= arg

[(
1+eiϕ

1−eiϕ

)θ (
2θeiϕ

1−e2iϕ + 1 + γ
)]

= arg
[(
i cot ϕ

2

)θ ( iθ
sinϕ

+ 1 + γ
)]
,

hence

(3.3) arg
[
h(eiϕ)− (1 + γ)λ

]
= θ arg

(
i cot

ϕ

2

)
+ arg

(
iθ

sinϕ
+ 1 + γ

)
.

We will discuss now the following two cases.
Case 1. If γ > −1, from the relation (3.3) we easily deduce that

arg
[
h(eiϕ)− (1 + γ)λ

]
≥ θπ

2
+ arctan

θ

1 + γ
, if ϕ ∈ (0, π),

and

arg
[
h(eiϕ)− (1 + γ)λ

]
≤ −

(
θπ

2
+ arctan

θ

1 + γ

)
, if ϕ ∈ (−π, 0),

which implies∣∣∣ arg
[
h(eiϕ)− (1 + γ)λ

] ∣∣∣ ≥ θπ

2
+ arctan

θ

1 + γ
, for ϕ ∈ (−π, 0) ∪ (0, π).

These inequalities, combined with the fact that h(0) = (Reα+Reβ)(1+γ) > (1+γ)λ
and the fact that h is univalent in D, leads to the conclusion that

(3.4) Ω :=

{
w ∈ C : |arg [w − (1 + γ)λ]| < θπ

2
+ arctan

θ

1 + γ

}
⊂ h(D),
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and from (3.3) we may see that∣∣∣arg
[
h(eiϕ)− (1 + γ)λ

]∣∣∣ =
θπ

2
+ arctan

θ

1 + γ
⇔ ϕ ∈

{
−π

2
,
π

2

}
,

hence Ω 6= h(D).
The assumption (3.1) is equivalent to I(α, α + β + αγ, βγ)[f ](D) ⊂ Ω, and according

to (3.4) this inclusion implies I(α, α + β + αγ, βγ)[f ](D) ⊂ h(D). Using the fact that
I(α, α+ β + αγ, βγ)[f ](0) = h(0) = (Reα+ Reβ) (1 + γ), this inclusion is equivalent to
the subordination (1.4), and by Lemma 1.3 if follows that J(α, β)[f ](z) ≺ q(z), which is
equivalent to our conclusion (3.2).

Case 2. If γ = −1, from the relation (3.3) we similarly deduce that the conclusion is
even stronger, that is

h(D) =

{
w ∈ C : | argw| < (θ + 1)π

2

}
.

In this case, the assumption (3.1) is equivalent to I(α, α+ β + αγ, βγ)[f ](D) = h(D),
and from I(α, α+β+αγ, βγ)[f ](0) = h(0) = (Reα+ Reβ) (1 + γ), the previous equality
between the two sets is equivalent to the subordination (1.4). Thus, from Lemma 1.3 it
follows that J(α, β)[f ](z) ≺ q(z), which is equivalent to our conclusion (3.2).

Notice that, for γ = −1 the result is sharp. That’s because the assumption (3.1) is
equivalent to the subordination (1.4), while in the case γ > −1 the assumption (3.1) is
stronger than (1.4). �

By specifying values of some of the parameters in Theorem 3.1 we receive the next
results:

3.2. Corollary. Let α, β ∈ C and γ, λ ∈ R, such that α+ β > λ, γ ≥ −1.
(i) If f ∈ A, then

Re

[
αzf ′′(z) + (α+ β + αγ)f ′(z) + βγ

f(z)

z

]
> (1 + γ)λ, z ∈ D,

implies

Re

[
αf ′(z) + β

f(z)

z

]
> λ, z ∈ D.

Moreover, for the special case γ = −1, if we suppose, in addition, that

(a) Re
β

α
> −2, if αβ 6= 0,

then the implication given in (i) is sharp.
(ii) Assuming that λ < 0, if f ∈ A, then

Re

[
zf ′′(z) + γf ′(z)− γ f(z)

z

]
> (1 + γ)λ, z ∈ D,

implies

Re

[
f ′(z)− f(z)

z

]
> λ, z ∈ D.

Moreover, for the special case γ = −1 the implication given in (ii) is sharp.
(iii) Assuming that and λ < 1, if f ∈ A, then

Re

[
αzf ′′(z) + (1 + αγ)f ′(z) + (1− α)γ

f(z)

z

]
> (1 + γ)λ, z ∈ D,

implies

Re

[
αf ′(z) + (1− α)

f(z)

z

]
> λ, z ∈ D.
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Moreover, for the special case γ = −1, if we suppose, in addition, that

(a′)

∣∣∣∣α+
1

2

∣∣∣∣ > 1

2
if α /∈ {0; 1},

then the implication given in (iii) is sharp.

Proof. The implication (i) follows directly from Theorem 3.1 for θ = 1 having in mind
that π

2
+arctan 1

1+γ
> π

2
. The implication (iii) follows from (i) if we choose α+β = 1, and

in that case the assumption (a) is equivalent to (a’). The implication (ii) was obtained
from (i) for the special case α = −β = 1. �

3.3. Remark. Taking α = 1 and β = γ = 0 in Corollary 3.2(i), we receive that for λ < 1
and f ∈ A the following implication holds:

(3.5) Re[zf ′′(z) + f ′(z)] > λ, z ∈ D⇒ Re f ′(z) > λ, z ∈ D.
This improves the result given in Theorem 1(a) from [1] where it was proven that

(3.6) Re[zf ′′(z) + f ′(z)] > λ, z ∈ D⇒ Re f ′(z) > 1 + 2(1− λ)(log 2− 1), z ∈ D.
Implication (3.5) is stronger than the implication (3.6), since for λ < 1 we have

1 + 2(1− λ)(log 2− 1) < λ.
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Abstract
Let M be a left module over a ring R and I an ideal of R. M is
called an I-supplemented module (finitely I-supplemented module) if
for every submodule (finitely generated submodule ) X of M , there is
a submodule Y of M such that X + Y = M , X ∩ Y ⊆ IY and X ∩ Y
is PSD in Y . This definition generalizes supplemented modules and
δ-supplemented modules. We characterize I-semiregular, I-semiperfect
and I-perfect rings which are defined by Yousif and Zhou [12] using
I-supplemented modules. Some well known results are obtained as
corollaries.
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1. Introduction and Preliminaries
It is well known that supplemented modules play an important role in characterizing
semiperfect, semiregular and perfect rings. Recently, some authors had worked with
various extensions of these rings (see for examples [1, 6, 7, 12, 13]). As generalizations
of semiregular rings, semiperfect rings and perfect rings, the notions of I-semiregular
rings, I-semiperfect rings and I-perfect rings were introduced by Yousif and Zhou [12].
Our purposes of this paper is to chracterize I-semiregular rings, I-semiperfect rings and
I-perfect rings by defining I-supplemented modules.

Let R be a ring and I an ideal of R, M a module and S ≤ M . S is called small in
M (notation S �M) if M 6= S + T for any proper submodule T of M . M is said to be
singular if M = Z(M), where Z(M) = {x ∈ M : lR(x) is essential in RR}. As a proper
generalization of small submodules, the concept of δ-small submodules was introduced
by Zhou[13]. N is said to be δ-small in M if, whenever N + X = M , M/X singular,
we have X = M . δ(M) = RejM (℘) = ∩{N ≤ M | M/N ∈ ℘} , where ℘ be the class
of all singular simple modules. Let N,L ≤ M . N is called a supplement of L in M if

∗Department of Applied Mathematics, Lanzhou University of Technology Lanzhou 730050,
P. R. China.
Email : ydwang@lut.cn, djwu@lut.cn
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N + L = M and N is minimal with respect to this property. Equivalently, M = N + L
and N ∩L� N . M is called supplemented if every submodule of M has a supplement in
M . M is said to be lifting if for any submodule N of M , there exists a direct summand
K of M such that K ≤ N and N/K � M/K, equivalently, for every submodule N of
M , M has a decomposition with M = M1 ⊕M2, M1 ≤ N and M2 ∩ N is small in M2.
N is called a δ-supplement [4] of L if M = N + L and N ∩ L �δ N . M is called a
δ-supplemented module if every submodule of M has a δ-supplement. M is said to be
δ-lifting [4] if for any submodule N of M , there exists a direct summand K of M such
that K ≤ N and N/K �δ M/K, equivalently, for every submodule N of M , M has a
decomposition with M = M1 ⊕M2, M1 ≤ N and M2 ∩ N is δ-small in M2. M is (δ-)
semiregular [10] if for any cyclic submodule N ofM , there is a decompositionM = P⊕Q
such that P ≤ N and N ∩ Q is a (δ-) small submodule of Q. An element m of M is
called I-semiregular [1] if there exists a decompositionM = P ⊕Q where P is projective,
P ⊆ Rm and Rm ∩ Q ⊆ IM . M is called an I-semiregular module if every element of
M is I-semiregular. R is called I-semiregular if RR is an I-semiregular module. Note
that I-semiregular rings are left-right symmetric and R is (δ−) semiregular if and only if
R is (δ(RR)−) J(R)-semiregular. M is called (δ)-semiperfect [7] if every factor module
of M has a projective (δ-)cover. M is called an I-semiperfect module [7] if for every
submodule K of M , there is a decomposition M = A ⊕ B such that A is projective,
A ⊆ K and K ∩ B ⊆ IM . R is called I-semiperfect if RR is an I-semiperfect module.
Note that R is (δ−) semiperfect if and only if R is (δ(RR)−) J(R)-semiperfect. R is
called a left I-perfect ring [12] if, for any submodule X of a projective module P , X has
a decomposition X = A ⊕ B where A is a direct summand of P and B ⊆ IP . By [7,
Proposition 2.1], R is a left I-perfect ring if and only if every projective module is an
I-semiperfect module. For other standard definitions we refer to [2, 3, 11].

In this note all rings are associative with identity and all modules are unital left
modules unless specified otherwise. Let R be a ring and M a module. We use Rad(M),
Soc(M), Z(M) to indicate the Jacobson radical, the socle, the singular submodule of M
respectively. J(R) is the radical of R and I is an ideal of R.

2. PSD submodules and I-supplemented modules
In this section, we give some properties of PSD submodules and use PSD submodules

to define (finitely) I-supplemented modules and I-lifting modules which are generaliza-
tions of some well-known supplemented modules and lifting modules. Some properties of
I-supplemented modules are discussed. We begin this section with the following defini-
tions.

2.1. Definition. Let I be an ideal of R and N ≤ M . N is PSD in M if there exists a
projective summand S of M such that S ≤ N and M = S ⊕X whenever N + X = M
for any submodule X ≤M . M is PSD for I if any submodule of IM is PSD in M . R is
a left PSD ring for I if any finitely generated free left R-module is PSD for I.

2.2. Lemma. Let M and N be modules.

(1) If K is PSD in M and f : M → N is an epimorphism, then f(K) is PSD in N .
(2) If L ≤ N ≤M and L is PSD in N , then L is PSD in M .
(3) If L ≤ N ≤M and N is PSD in M , then L is PSD in M .
(4) Let M = M1 ⊕M2. If N1 is PSD in M1 and N2 is PSD in M2, then N1 ⊕N2 is

PSD in M .
(5) Let N be a direct summand of M and A ≤ N . Then A is PSD in M if and only

if A is PSD in N .
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Proof. (1) Let f(K) + L = N with L ≤ N . Then K + f−1(L) = M . Since K is PSD in
M , there is a projective summand H of M with H ≤ K such that H ⊕ f−1(L) = M . So
f(H)⊕ L = N, f(H) ⊆ f(K). It is easy to see that f(H) ∼= H is projective.

(2) Let M = L + X with X ≤ M . Then N = L + (N ∩ X). Since L is PSD in N ,
there is a projective summand H of N with H ≤ L such that N = H ⊕ (N ∩ X), and
hence L = H ⊕ (L ∩X). So M = H ⊕X.

(3) Let M = L+K with K ≤M , then M = N +K. Since N is PSD in M , there is a
projective summand H of M with H ≤ N such that M = H ⊕K, and hence M/K ∼= H
is projective. Thus the natural epimorphism f : L→ M/K splits and Kerf = L ∩K is
a direct summand of L. Write L = (L ∩K)⊕Q with Q ≤ L, we have M = Q⊕K. The
rest is obvious.

(4) LetM = N1⊕N2+L with L ≤M . Since N1 is PSD inM1, N1 is PSD inM . Thus
there is a projective summand S1 of M with S1 ⊆ N1 such that M = S1 ⊕ (N2 + L).
Similarly, there exists a projective summand S2 of M with S2 ⊆ N2 such that M =
S1 ⊕ S2 ⊕ L. The rest is obvious.

(5) “ ⇒ ” Since N is a direct summand of M , M = N ⊕ K for some submodule
K ≤ M . Suppose that N = A + X with X ≤ N , then M = A + (X ⊕ K). Since
A is PSD in M , there is a projective direct summand Y of M such that Y ≤ A and
M = Y ⊕X ⊕K, and hence N = N ∩M = X ⊕ Y .

“⇐ ” Let M = A+L with L ≤M . Then N = N ∩M = A+N ∩L. Since A is PSD
in N , there is a projective summand K of N with K ≤ A such that N = K ⊕ (N ∩ L).
It is easy to see that K ∩L = 0. Next we only show that M = K +L. Let m ∈M , then
m = a + l, a ∈ A, l ∈ L. Since a = k + s, k ∈ K, s ∈ N ∩ L, m = k + s + l. Note that
s+ l ∈ L, so m ∈ K + L, and hence M = K + L, as required.

�

2.3. Proposition. Let M be a module and N ≤M .
(1) N �M if and only if N ⊆ Rad(M), N is PSD in M .
(2) N �δ M if and only if N ⊆ δ(M), N is PSD in M .

Proof. (1) “⇒ ” is clear.
“ ⇐ ” Let M = N + L with L ≤ M . Since N is PSD in M , there is a projective

summand H ofM with H ⊆ N ⊆ Rad(M) such thatM = H⊕L. So Rad(H)⊕Rad(L) =
Rad(M) = H ⊕ Rad(L). Thus Rad(H) = H. Since H is projective, H = 0, and hence
L = M .

(2) “⇒ ” is clear by [13, Lemma 1.2].
“ ⇐ ” Let M = N + L with L ≤ M . Since N is PSD in M , there is a projective

summand H ofM with H ⊆ N ⊆ δ(M) such thatM = H⊕L. So δ(H)⊕δ(L) = δ(M) =
H ⊕ δ(L). Thus δ(H) = H. Since H is projective, H is semisimple by [7, Proposition
2.13]. Thus N �δ M by [13, Lemma 1.2].

�

2.4. Corollary. Let M be a module. Then
(1) M is (δ-) supplemented if and only if for every submodule X of M , there is a

submodule Y of M such that X + Y = M , X ∩ Y ⊆ (δ(Y )) Rad(Y ) and X ∩ Y
is PSD in Y .

(2) M is (δ-) lifting if and only if for every submodule X of M , there is a decompo-
sition M = A⊕B such that A ⊆ X and X ∩B ⊆ (δ(B)) Rad(B) and X ∩B is
PSD in B.

2.5. Definition. Let R be a ring and I an ideal of R, M a module. M is called an
I-supplemented module (finitely I-supplemented module) if for every submodule (finitely
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generated submodule ) X of M , there is a submodule Y of M such that X + Y = M ,
X ∩ Y ⊆ IY and X ∩ Y is PSD in Y . In this case, we call Y is an I-supplement of
X in M . M is called I-lifting if for every submodule X of M , there is a decomposition
M = A⊕B such that A ⊆ X and X ∩B ⊆ IB and X ∩B is PSD in B.

2.6. Example. It is easy to see that a module M is 0-supplemented if and only if M is
semisimple, and so the supplemented module Z(p∞) is not 0-supplemented, where p is a
prime integer. However, Z(p∞) is I-supplemented for every nonzero ideal I of Z.

2.7. Theorem. Consider the following statements for a module M .
(1) M is a J(R)-supplemented module (a δ(RR)-supplemented module, respec-

tively).
(2) M is a supplemented module ( a δ-supplemented module, respectively).

Then “(1) ⇒ (2)”, “(2) ⇒ (1)” if M is projective or R satisfies J(R)M = Rad(M)
(δ(RR)M = δ(M)) for any module M over R.

Proof. “(1)⇒ (2)” By Proposition 2.3.
“(2) ⇒ (1)” Let M be a supplemented module. Then for every submodule X of

M , there is a submodule Y of M such that X + Y = M and X ∩ Y � Y . Since M
is projective, Y is a direct summand of M , and hence Y is projective. It is clear that
X∩Y ⊆ Rad(Y ) = J(R)Y and X∩Y is PSD in Y . (LetM be a δ-supplemented module.
Since M is projective, M is δ-lifting. Thus for every submodule X of M , there is a direct
summand Y of M such that M = X + Y and X ∩ Y �δ Y . The rest is obvious.) When
R satisfies J(R)M = Rad(M) (δ(RR)M = δ(M)) for any module M over R, the proof is
similar.

�

Similar to the proof of Theorem 2.7, we have the following.

2.8. Theorem. Consider the following statements for a module M .
(1) M is a finitely J(R)-supplemented module (a finitely δ(RR)-supplemented mod-

ule, respectively).
(2) M is a finitely supplemented module ( a finitely δ-supplemented module, respec-

tively).
Then “(1) ⇒ (2)”, “(2) ⇒ (1)” if M is projective or R satisfies J(R)M = Rad(M)
(δ(RR)M = δ(M)) for any module M over R.

2.9. Theorem. Consider the following statements for a module M .
(1) M is a J(R)-lifting module (a δ(RR)-lifting module, respectively).
(2) M is a lifting module ( a δ-lifting module, respectively).

Then “(1) ⇒ (2)”, “(2) ⇒ (1)” if M is projective or R satisfies J(R)M = Rad(M)
(δ(RR)M = δ(M)) for any module M over R.

We know that if a ring R is left (δ−)semiperfect ring, then (δ(RR)M = δ(M))
J(R)M = Rad(M) for any module M over R. So “(1) ⇔ (2)” in Theorem 2.7, 2.8
and 2.9 if R is left (δ−)semiperfect ring.

2.10. Lemma. Let M be a module and K,L,H ≤M . If K is an I-supplement of L in
M , L is an I-supplement of H in M , then L is an I-supplement of K in M .

Proof. Let M = K + L = L + H with K ∩ L ⊆ IK,L ∩ H ⊆ IL and K ∩ L be PSD
in K, L ∩ H be PSD in L. We only show that K ∩ L ⊆ IL and K ∩ L is PSD in L.
It is easy to see that K ∩ L ⊆ IK ∩ L. Let l = Σni=1piki ∈ IK ∩ L, pi ∈ I, ki ∈ K
and ki = l′i + hi(i = 1, 2, · · ·, n), l′i ∈ L, hi ∈ H. Since L ∩ H ⊆ IL, l ∈ IL, and hence
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K ∩ L ⊆ IL. Next, we shall prove that K ∩ L is PSD in L. Let K ∩ L + X = L with
X ≤ L, then M = L + H = K ∩ L + X + H. Since K ∩ L is PSD in K, K ∩ L is PSD
in M by Lemma 2.2. Thus there is a projective summand Y of M with Y ⊆ K ∩L such
that M = Y ⊕ (X + H). Since L = L ∩M = L ∩ (Y ⊕ (X + H)) = Y ⊕ (X + L ∩H)
and L ∩H is PSD in L, there is a projective summand Y ′ of L with Y ′ ⊆ L ∩H such
that L = Y ⊕ X ⊕ Y ′. Since L/X ∼= Y ⊕ Y ′ is projective, the natural epimorphism
f : K ∩L→ L/X splits, and hence Kerf = K ∩X is a direct summand of K ∩L. Write
K ∩ L = (K ∩X)⊕Q,Q ≤ K ∩ L. So L = Q⊕X, as required.

�

2.11. Lemma. Let M be a π-projective module. If N and K are I-supplement of each
other in M , then N ∩K is projective. If in addition M is projective, then N and K are
projective.

Proof. Let f : N ⊕K → N +K = M with (n, k) 7→ n+k for n ∈ N, k ∈ K. Since M is a
π-projective module, f splits, and so Kerf = {(n,−n)|n ∈ N ∩K} is a direct summand
of N ⊕K. Write N ⊕K = Kerf ⊕ U,U ∼= M . Since N ∩K is PSD in N and K, Kerf
is PSD in N ⊕K by Lemma 2.2. Thus there is a projective summand Y of N ⊕K with
Y ⊆ Kerf such that N ⊕ K = Y ⊕ U , so Y = Kerf ∼= N ∩ K is projective. If M is
projective, Y ⊕ U is projective. So N and K are projective. �

Recall that a pair (P, f) is called a projective I-cover of M [9] if P is projective, f is
an epimorphism from P to M such that Kerf ≤ IP , and Kerf is PSD in P .

We end this section with the following lemma.

2.12. Lemma. Let M = A + B. If M/A has a projective I-cover, then B contains an
I-supplement of A.

Proof. Let π : B →M/A be the canonical homomorphism and f : P →M/A a projective
I-cover. Since P is projective, there is a homomorphism g : P → B such that πg = f .
Thus M = A + g(P ) and A ∩ g(P ) = g(Kerf). Since Kerf ⊆ IP and Kerf is PSD
in P , A ∩ g(P ) ⊆ Ig(P ) and A ∩ g(P ) is PSD in g(P ) by Lemma 2.2. So g(P ) is an
I-supplement of A contained in B. �

3. Characterizations of I-semiregular, I-semiperfect and I-perfect
rings in terms of I-supplemented modules
We shall characterize I-semiregular rings, I-semiperfect rings and I-perfect rings by

I-supplemented modules in this section. We begin this section with the following.

3.1. Theorem. Let R be a ring and I an ideal of R, P a projective module. Consider
the following conditions:

(1) P is an I-supplemented module.
(2) P is an I-semiperfect module.

Then (1)⇒ (2), and (2)⇒ (1) if P is PSD for I.

Proof. “(1)⇒ (2)” Let P be an I-supplemented module and N ≤ P . Then there exists
X ≤ P such that P = N +X, N ∩X ⊆ IX and N ∩X is PSD in X. Let π : P → P/N
and π |X : X → P/N be the canonical epimorphisms. Since P is projective, there is
a homomorphism g : P → X such that π |X g = π. We have P = g(P ) + N and
X = g(P ) + N ∩X. Since N ∩X is PSD in X, there is a projective summand Y of X
with Y ⊆ N ∩X such that X = g(P ) ⊕ Y . It is easy to verify that g(P ) ∩N ⊆ Ig(P ).
Since g(P )∩N ⊆ N ∩X and N ∩X is PSD in X, g(P )∩N is PSD in X by Lemma 2.2,
and so g(P ) ∩N is PSD in g(P ) by Lemma 2.2. Thus g(P ) is an I-supplement of N in
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P . Since P is an I-supplemented module, g(P ) has an I-supplement Q in P . Thus g(P )
is also an I-supplement of Q in P by Lemma 2.10, and so g(P ) is projective by Lemma
2.11. Since g(P )∩N ⊆ Ig(P ) and g(P )∩N is PSD in g(P ), the canonical epimorphism
g(P ) → P/N is a projective I-cover of P/N . So P is an I-semiperfect module by [9,
Lemma 2.9].

“(2) ⇒ (1)” Let P be an I-semiperfect module, then for every submodule X of P ,
there is a decomposition P = A⊕ Y such that A is projective, A ⊆ X and X ∩ Y ⊆ IP .
Thus P = X + Y , X ∩ Y ⊆ IY . Since P is PSD for I, X ∩ Y is PSD in Y by Lemma
2.2, as desired.

�

By Theorem 3.1, we know that if a module M is projective and PSD for I, then M is
an I-supplemented module if and only ifM is I-lifting if and only ifM is an I-semiperfect
module.

3.2. Corollary. Let M be a projective module with Rad(M) � M (δ(M) �δ M).
Then M is a (δ-)supplemented module if and only if M is a (δ-)semiperfect module if
and only if M is a (δ-)lifting module.

3.3. Theorem. Let I be an ideal of R. Consider the following conditions:
(1) Every finitely generated R-module is I-supplemented.
(2) Every finitely generated projective R-module is I-supplemented.
(3) Every finitely generated projective R-module is I-lifting.
(4) RR is I-lifting.
(5) RR is I-supplemented.
(6) R is I-semiperfect.

Then (1) ⇒ (2) ⇒ (5) ⇒ (6) and (3) ⇒ (4) ⇒ (5) hold; if R is a left PSD ring for I,
(2)⇒ (3) and (6)⇒ (1) also hold.

Proof. “(1)⇒ (2)⇒ (5)” and “(3)⇒ (4)⇒ (5)” are clear.
“(5)⇒ (6)” By Theorem 3.1.
If R is a left PSD ring for I, then (2)⇒ (3) is obvious by Theorem 3.1 and [9, Corollary

2.4].
“(6) ⇒ (1)” Let M be a finitely generated module and N ≤ M . Then M = N + M

and M/N has a projective I-cover by [9, Theorem 2.13], so M contains an I-supplement
of N by Lemma 2.12. Hence M is I-supplemented. �

Let I = J(R) or δ(RR) in Theorem 3.3, since R is a left PSD ring for I and R is (δ−)
semiperfect if and only if (δ(RR)−)J(R)-semiperfect , we use Theorem 2.7 and Theorem
2.9 to obtain the following.

3.4. Corollary. ([5, Theorem 4.41]) The following statements are equivalent for a ring
R.

(1) R is semiperfect.
(2) Every finitely generated R-module is supplemented.
(3) Every finitely generated projective R-module is supplemented.
(4) Every finitely generated projective R-module is lifting.
(5) RR is lifting.
(6) RR is supplemented.

3.5. Corollary. ([4, Theorem 3.3]) The following statements are equivalent for a ring
R.

(1) R is δ-semiperfect.
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(2) Every finitely generated R-module is δ-supplemented.
(3) Every finitely generated projective R-module is δ-supplemented.
(4) Every finitely generated projective R-module is δ-lifting.
(5) RR is δ-lifting.
(6) RR is δ-supplemented.

Since if R is Z(RR)-semiregular, then Z(RR) = J(R) ⊆ δ(RR) by [1, Theorem 3.2],
and so R is a left PSD ring for Z(RR). Thus we have the following result.

3.6. Corollary. The following statements are equivalent for a ring R.
(1) R is Z(RR)-semiperfect.
(2) Every finitely generated R-module is Z(RR)-supplemented.
(3) Every finitely generated projective R-module is Z(RR)-supplemented.
(4) Every finitely generated projective R-module is Z(RR)-lifting.
(5) RR is Z(RR)-lifting.
(6) RR is Z(RR)-supplemented.

Let M be a projective module, then Soc(M) = Soc(RR)M . So if I ≤ Soc(RR), then
IM ⊆ Soc(M), and hence R is a left PSD ring for I. Thus we have

3.7. Corollary. The following statements are equivalent for a ring R.
(1) R is Soc(RR)-semiperfect.
(2) Every finitely generated R-module is Soc(RR)-supplemented.
(3) Every finitely generated projective R-module is Soc(RR)-supplemented.
(4) Every finitely generated projective R-module is Soc(RR)-lifting.
(5) RR is Soc(RR)-lifting.
(6) RR is Soc(RR)-supplemented.

3.8. Theorem. Let R be a left PSD ring and I an ideal of R. Then R is an I-semiregular
ring if and only if RR is a finitely I-supplemented module if and only if RR is a finitely
I-supplemented module.

Proof. Similar to Theorem 3.3. �

3.9. Corollary. ([8, Proposition 19.1]) The following statements are equivalent for a
ring R.

(1) R is semiregular.
(2) RR is a finitely supplemented module.
(3) RR is a finitely supplemented module.

3.10. Corollary. The following statements are equivalent for a ring R.
(1) R is δ-semiregular.
(2) RR is a finitely δ-supplemented module.
(3) RR is a finitely δ-supplemented module.

3.11. Corollary. A ring R is Soc(RR)-semiregular if and only if RR is a finitely Soc(RR)-
supplemented module if and only if RR is a finitely Soc(RR)-supplemented module.

3.12. Corollary. A ring R is Z(RR)-semiregular if and only if RR is a finitely Z(RR)-
supplemented module if and only if RR is a finitely Z(RR)-supplemented module.

Next we use I-supplemented modules to characterize I-perfect rings.

3.13. Definition. A ring R is called a strongly left PSD ring for I if any projective left
R-module is PSD for I.
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3.14. Example. It is easy to verify that a ringR is perfect if and only ifR is a semiperfect
ring and a strongly PSD ring for J(R). Let R = Z(p) (integers localized at the prime p).
It is well known that R is a commutative, semiperfect ring that is not perfect, and so R
is a PSD ring for J(R) that is not a strongly PSD ring for J(R) (Since if R is a strongly
PSD ring for J(R), then R is perfect. This is a contradiction.).

3.15. Theorem. Let I be an ideal of R. Consider the following conditions:
(1) Every R-module is I-supplemented.
(2) Every projective R-module is I-supplemented.
(3) Every projective R-module is I-lifting.
(4) Every free R-module is I-lifting.
(5) Every free R-module is I-supplemented.
(6) R is left I-perfect.

Then (1) ⇒ (2) ⇒ (5) ⇒ (6) and (3) ⇒ (4) ⇒ (5) hold; if R is a strongly left PSD ring
for I, (2)⇒ (3) and (6)⇒ (1) also hold.

Proof. “(1)⇒ (2)⇒ (5)” and “(3)⇒ (4)⇒ (5)” are clear.
“(5)⇒ (6)” By Theorem 3.1.
When R is a strongly left PSD ring for I, “(2)⇒ (3)” is obvious.
“(6)⇒ (1)” LetM be a module. Then there is a free module F such that η : F →M is

epic. Since F is I-semiperfect, there is a decomposition F = F1⊕F2 such that F1 ⊆ Kerη
and F2 ∩Kerη ⊆ IF2. Since F is PSD for I, F2 ∩Kerη is PSD in F . By Lemma 2.2,
F2 ∩ Kerη is PSD in F2, so η|F2 : F2 → M is a projective I-cover of M . Thus we
prove that an arbitrary module has a projective I-cover, and so for N ≤M , M/N has a
projective I-cover. The rest follows by Lemma 2.12. �

Let I = J(R) or δ(RR) in Theorem 3.15. Since R is (δ−)perfect if and only if R
is (δ(RR)−) J(R)-perfect and if a ring R is (δ−)perfect, then for every module M ,
(δ(M) �δ M) Rad(M) � M , R is a strongly left PSD ring for I. So we have the
following.

3.16. Corollary. ([5, Theorem 4.41])The following statements are equivalent for a ring
R.

(1) R is left perfect.
(2) Every R-module is supplemented.
(3) Every projective R-module is supplemented.
(4) Every projective R-module is lifting.
(5) Every free R-module is lifting.
(6) Every free R-module is supplemented.

3.17. Corollary. ([4, Theorem 3.4]) The following statements are equivalent for a ring
R.

(1) R is left δ-perfect.
(2) Every R-module is δ-supplemented.
(3) Every projective R-module is δ-supplemented.
(4) Every projective R-module is δ-lifting.
(5) Every free R-module is δ-lifting.
(6) Every free R-module is δ-supplemented.

Since if I ≤ Soc(RR), then R is a strongly left PSD ring for I, and hence we have

3.18. Corollary. The following statements are equivalent for a ring R.
(1) R is left Soc(RR)-perfect.



137

(2) Every R-module is Soc(RR)-supplemented.
(3) Every projective R-module is Soc(RR)-supplemented.
(4) Every projective R-module is Soc(RR)-lifting.
(5) Every free R-module is Soc(RR)-lifting.
(6) Every free R-module is Soc(RR)-supplemented.

Since if R is Z(RR)-perfect, then Z(RR) = J(R) ⊆ δ(RR) by [1, Theorem 3.2], and
so we have the following result.

3.19. Corollary. The following statements are equivalent for a ring R.
(1) R is left Z(RR)-perfect.
(2) Every R-module is Z(RR)-supplemented.
(3) Every projective R-module is Z(RR)-supplemented.
(4) Every projective R-module is Z(RR)-lifting.
(5) Every free R-module is Z(RR)-lifting.
(6) Every free R-module is Z(RR)-supplemented.
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1. Introduction
Let R be an associative ring, and let R-Proj, R-Flat, and R-GProj be the subcategory

of projective, flat, and Gorenstein projective R-modules in R-Mod, the category of left
R-modules. If A is one of the above categories then we use C(A) to denote the category
of complexes of R-modules in A. The category K(A) is the homotopy category which
has the same objects as C(A), and the morphisms are homotopy equivalence classes
of morphisms of complexes. It was shown in [15] and [16] that both the inclusions
K(R-Proj) → K(R-Flat) and K(R-Flat) → K(R-Mod) have right adjoints. Recently,
Diego Bravo, Edgar E. Enochs et. al in [5] showed that some adjoints to inclusion functors
may exist if they were given complete cotorsion pairs in the category of complexes. The
paper is motivated by the above work to show:

1.1. Theorem. Let R be any ring. Then every complex G ∈ C(R-GProj) has a special
C(R-Proj)-preenvelope.

∗Department of Mathematics, Lanzhou Jiaotong University, Lanzhou 730070, P. R. China.
Email : yanggang@mail.lzjtu.cn
†Department of Mathematics, Northwest Normal University, Lanzhou 730070, P. R. China

Email : rwemail@163.com



140

Now suppose that R is quasi-Frobenius. It is well known that the subcategory R-GProj
is in fact R-Mod. Then the categories C(R-GProj) and C(R-Mod) are the same, and
so Theorem 1.1 says that any complex admits a special C(R-Proj)-preenvelope. It is
natural to ask whether every complex adimits a special DG-projective preenvelope since
the class of DG-projective complexes is contained in C(R-Proj)? We find that the answer
is negative in general. In fact, every complex adimits a special DG-projective preenvelope
if and only if R has global dimension 0.

Note that the inclusion K(R-Proj)→ K(R-Mod) always has a right adjoint ([5, The-
orem 4.7]). We are inspired to consider whether there exists a left adjoint to it, and we
show the following main result which is based on Theorem 1.1.

1.2. Theorem. Let R be any ring. Then the inclusion K(R-Proj)→ K(R-GProj) has a
left adjoint.

2. Preliminaries
Let Ω be a subcategory of an abelian category A, andM is an object of A. A morphism

f : M → Q is called an Ω-preenvelope of M , if Q ∈ Ω and the sequence Hom(Q,Q′) →
Hom(M,Q′) → 0 is exact for any Q′ ∈ Ω. If moreover, g ◦ f = f implies that g is an
automorphism whenever g ∈ End(Q), then f is called an Ω-envelope. An Ω-preenvelope
f : M → Q of M is said to be special, if f is injective and Ext1(Coker(f), Q′) = 0 for
any Q′ ∈ Ω. An Ω-precover, an Ω-cover and a special Ω-precover Q → M are defined
dually. See [9, 11] for detail.

Auslander and Reiten [2] and Auslander and Smalφ [3] use the terminology left and
right approximations and minimal left and right approximations for preenvolpes, precov-
ers, envelopes and covers.

A complex X of R-modules is a sequence · · · → Xi+1

δXi+1−−−→ Xi
δXi−−→ Xi−1 → · · · of

R-modules and R-homomorphisms such that δXi δXi+1 = 0 for all i ∈ Z. A complex X is
said to be acyclic (exact) if Im(δXi+1) = Ker(δXi ) for all i ∈ Z. A complex X is said to
be bounded above if Xi = 0 holds for i � 0, bounded below if Xi = 0 holds for i � 0,
and bounded if it is bounded above and below, i.e. Xi = 0 holds for |i| � 0. Let X be
a complex and let m be an integer. The m-fold shift of X is the complex ΣmX given by
(ΣmX)i = Xi−m and δΣmX

i = (−1)mδXi−m. Usually, Σ1X is denoted simply by ΣX.

Let X and Y be two complexes. We will let HomR(X,Y ) denote the complex of Z-
modules with mth component HomR(X,Y )m =

∏
i∈Z HomR(Xi, Yi+m) and differential

(δ(g))i = δYi+mgi−(−1)mgi−1δ
X
i for g = (gi)i∈Z ∈

∏
i∈Z HomR(Xi, Yi+m). By a morphism

f : X → Y we mean a sequence fi : Xi → Yi such that δYi fi = fi−1δ
X
i for all i ∈ Z. The

mapping cone Cone(f) of a morphism f : X → Y is defined as Cone(f)i = Yi ⊕ Xi−1

with δCone(f)
i =

(
δYi fi−1

0 −δXi−1

)
.

If M is an R-module then we denote the complex · · · → 0 → M → 0 → · · · with M
in the mth degree by Sm(M), and denote the complex · · · → 0→ M

Id−→ M → 0→ · · ·
with M in the m− 1 and mth degrees by Dm(M). Usually, S0(M) is denoted simply by
M . We use Hom(X,Y ) to present the group of all morphisms from X to Y . Recall that
a complex P is projective if the functor Hom(P,−) is exact. Equivalently, P is projective
if and only if P is acyclic and Im(Pi+1 → Pi) is a projective R-module for each i ∈ Z.
For example, if M is a projective R-module then each complex Dm(M) is projective.
A injective complex is defined dually. Thus C(R-Mod), the category of complexes of
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R-modules, has enough projectives and injectives, we can compute right derived functors
Exti(X,Y ) of Hom(−,−).

2.1. Definition. ([8]) We call an acyclic complex P = · · · −→ P2 −→ P1 −→ P0 −→ P−1 −→
P−2 −→ · · · with all Pi projective a complete projective resolution of an R-module M , if
M ∼= Ker(P0 → P−1), and HomR(P,N) is acyclic for any projective R-module N . An R-
module M is called Gorenstein projective, if there exists a complete projective resolution
of M .

The dual notions are those of a complete injective resolution and a Gorenstein injective
R-module.

2.2. Remark. (1) The subcategory R-GProj is projectively resolving, that is, R-GProj
contains R-Proj, and F ∈ R-GProj if and only if H ∈ R-GProj for any exact sequence
0→ F → H → G→ 0 with G ∈ R-GProj ([12, Theorem 2.5]).

(2) An R-module M ∈ R-GProj with finite projective dimension is projective ([12,
Proposition 2.7]).

3. The existence of C(R-Proj)-preenvelopes

In this section, we focus on C(R-Proj)-preenvelopes of special complexes over general
associative rings. We begin with the following

3.1. Lemma. Assume that the following diagram of complexes with exact rows

0 // A

µ

��

f // B
g //

ν

��

C //

ω

��

0

0 // X
p // Y

q // Z // 0

is commutative. Then the sequence

0 // Cone(µ)

 p 0
0 Σf


// Cone(ν)

 q 0
0 Σg


// Cone(ω) // 0

is exact.

Proof. It can be checked by standard computation. �

3.2. Lemma. Let G ∈ C(R-GProj) be acyclic and bounded above. If HomR(G,A) is
acyclic for any projective R-module A then Ext1(G,P ) = 0 for any P ∈ C(R-Proj).

Proof. See [13, Lemma 3.1]. �

3.3. Definition. Let X be a complex and let m be an integer. The hard truncation
above of X at m, denoted X6m, is the complex

X6m = 0→ Xm
δXm−−→ Xm−1

δXm−1−−−−→ Xm−2 → · · · .
Similarly, the hard truncation below of X at m, denoted X>m, is the complex

X>m = · · · → Xm+2

δXm+2−−−→ Xm+1

δXm+1−−−→ Xm → 0.

3.4. Lemma. Let G ∈ C(R-GProj) be bounded above. Then there is an exact sequence
0→ G→ P → C → 0 such that P ∈ C(R-Proj) and C ∈ C(R-GProj) are both bounded
above, C is acyclic, and HomR(C,A) is acyclic for any projective R-module A.
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Proof. Assume without loss of generality that G =: 0 → G0 → G−1 → G−2 → · · · is a
complex of Gorenstein projective R-modules with G0 in the 0th degree. If for each n > 0,
we let G(n) = G>−n, the hard truncation below of G at −n, then {(G(n), αmn)|m > n >
0} forms a inverse system in C(R-Mod) and G = lim←−G(n), where αmn : G(m) → G(n)
is a natural projection for any m > n.

We will show by induction on n. For n = 0, since G0 is Gorenstein projective, there
exists an exact sequence 0→ G0

f−→ P0 → P−1 → P−2 → · · · with each Pi projective and
it remains exact after applying the functor HomR(−, A) for any projective R-module A.
Let P (0) =: 0→ P0 → P−1 → P−2 → · · · , and consider the following monomorphism of
complexes φ(0) : G(0)→ P (0).

G(0)

��

0 // G0

f

��

// 0

��

// 0

��

// · · ·

P (0) 0 // P0
// P−1

// P−2
// · · ·

Let C(0) = Coker(φ(0)), that is C(0) =: 0 → G′0 → P−1 → P−2 → · · · with G′0 =
Coker(f). Clearly, P (0) ∈ C(R-Proj) and C(0) ∈ C(R-GProj) are both bounded above,
C(0) is acyclic, and HomR(C(0), A) is acyclic for any projective R-module A.

Now for n > 0, suppose that there is a monomorphism φ(n) : G(n)→ P (n) as follows.

G(n)

��

0 // G0

f0

��

// G−1

f−1

��

// · · · // G−n

f−n

��

// 0

��

// · · ·

P (n) 0 // P0
δ0 // P−1

δ−1 // · · · // P−n
δ−n // P−n−1

// · · ·

Where P (n) ∈ C(R-Proj) and C(n) = Coker(φ(n)) ∈ C(R-GProj) are both bounded
above, C(n) is acyclic, and HomR(C(n), A) is acyclic for any projective R-module A.

Let G(n + 1) =: 0 → G0
d0−→ G−1

d−1−−→ · · · → G−n
d−n−−−→ G−n−1 → 0 → · · · , and let

0 → G−n−1
g−→ Q−n−1 → Q−n−2 → Q−n−3 → · · · be an exact sequence with each Qi

projective and it remains exact after applying the functor HomR(−, A) for any projective
R-module A. We denoted by Q the complex 0 → Q−n−1 → Q−n−2 → Q−n−3 → · · ·
with Q−n−1 in the (−n − 1)th degree. By the above proof, we have a monomorphism
ι : S−n−1(G−n−1)→ Q such that Coker(ι) ∈ C(R-GProj) is acyclic and bounded above,
and also HomR(Coker(ι), A) is acyclic for any projective R-module A.

Let µ : Σ−1G(n)→ S−n−1(G−n−1) be the following morphism

Σ−1G(n)

��

0 // G0

��

−d0 // · · · // G−n+1

��

// G−n

d−n

��

// 0

��

// · · ·

S−n−1(G−n−1) 0 // 0 // · · · // 0 // G−n−1
// 0 // · · · .

Note that the sequence 0 → Σ−1G(n) → Σ−1P (n) → Σ−1C(n) → 0 is exact. Then it
follows from Lemma 3.2 that the sequence

0→ Hom(Σ−1C(n), Q)→ Hom(Σ−1P (n), Q)→ Hom(Σ−1G(n), Q)→ Ext1(Σ−1C(n), Q) = 0
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is exact, and so there exits a morphism ν : Σ−1P (n) −→ Q such that the following
diagram commutes.

Σ−1G(n)

µ

��

Σ−1φ(n) // Σ−1P (n)

ν

��
S−n−1(G−n−1)

ι // Q

Thus there exists a morphism ω : Σ−1C(n)→ Coker(ι) such that the following diagram
with exact rows commutes.

0 // Σ−1G(n)

µ

��

Σ−1φ(n) // Σ−1P (n) //

ν

��

Σ−1C(n) //

ω

��

0

0 // S−n−1(G−n−1)
ι // Q // Coker(ι) // 0

By lemma 3.1, the sequence

0 // Cone(µ) // Cone(ν) // Cone(ω) // 0

is exact. Note that G(n+ 1) = Cone(µ). If we put P (n+ 1) = Cone(ν) and C(n+ 1) =
Cone(ω) then we have an exact sequence

0 // G(n+ 1)
φ(n+1)// P (n+ 1) // C(n+ 1) // 0 .

On one hand, exactness of the sequence

0 // Q // P (n+ 1) // P (n) // 0

implies that P (n + 1) ∈ C(R-Proj) is bounded above since P (n) ∈ C(R-Proj) and Q ∈
C(R-Proj) are so, and P (n+1)−k = P (n)−k for 0 6 k 6 n. On the other hand, exactness
of the sequence

0 // Coker(ι) // C(n+ 1) // C(n) // 0

implies that C(n+1) ∈ C(R-GProj) is bounded above and acyclic with HomR(C(n+1), A)
acyclic for any projective R-module A since Coker(ι) and C(n) are so. Clearly, one has
C(n+ 1)−k = C(n)−k for 0 6 k 6 n.

Note that every morphism G(n+ 1)→ G(n) is surjective. By [9, Theorem 1.5.13], the
sequence

0 // G = lim←−G(n)
lim←−φ(n)

// lim←−P (n) // lim←−C(n) // 0

is exact. Let P = lim←−P (n), and C = lim←−C(n). Then P−k = lim←−P (n)−k = P (k)−k for
any k > 0 and P−k = 0 for any k 6 −1, C−k = lim←−C(n)−k = C(k)−k for any k > 0

and C−k = 0 for any k 6 −1. Thus one can check easily that P ∈ C(R-Proj) and
C ∈ C(R-GProj) are bounded above, C is acyclic, and also HomR(C,A) is acyclic for
any projective R-module A. �

Now we give the following main result which contains Theorem 1.1.

3.5. Theorem. Every complex G ∈ C(R-GProj) has a special C(R-Proj)-preenvelope
η : G→ P with Coker(η) ∈ C(R-GProj) acyclic.
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Proof. If we write G(n) = G6n for each n > 0 then we get that ((G(n)), (αmn))n>0 is a
direct system in C(R-Mod) and lim−→G(n) = G, where αmn : G(m) → G(n) is a natural
injection for any m 6 n.

By Lemma 3.4, there exists an exact sequence 0 → G(0)
η0−→ P (0) → C(0) → 0

such that P (0) ∈ C(R-Proj) and C(0) ∈ C(R-GProj) are both bounded above, C(0) is
acyclic, and HomR(C(0), A) is acyclic for any projective R-module A. It follows from
lemma 3.2 that Ext1(C(0), Q) = 0 for any Q ∈ C(R-Proj). Thus the monomorphism
η0 : G(0) → P (0) is a special C(R-Proj)-preenvelope of G(0). Consider the push-out
diagram of morphisms η0 : G(0)→ P (0) and α01 : G(0)→ G(1)

0

��

0

��
0 // G(0)

α01

��

η0 // P (0)

λ0

��

// C(0) // 0

0 // G(1)

��

µ0 // U

��

// C(0) // 0

S1(G1)

��

S1(G1)

��
0 0

Clearly, U ∈ C(R-GProj) is bounded above since P (0) and S1(G1) are so. By Lemma
3.4 again, we get that there exists an exact sequence 0 → U

ν−→ P (1) → L(1) → 0
such that P (1) ∈ C(R-Proj) and L(1) ∈ C(R-GProj) are both bounded above, and L(1)
and HomR(L(1), A) are acyclic for any projective R-module A. Consider the push-out
diagram of morphisms U → C(0) and ν : U → P (1)

0

��

0

��
0 // G(1)

µ0 // U

ν

��

// C(0)

��

// 0

0 // G(1) // P (1)

��

// V

��

// 0

L(1)

��

L(1)

��
0 0

The exactness of the rightmost column implies that V ∈ C(R-GProj) is bounded above,
V is acyclic, and HomR(V,A) is acyclic for any projective R-module A. It follows from
Lemma 3.2 that the monomorphism η1 = νµ0 : G(1) → P (1) is a special C(R-Proj)-
preenvelope of G(1). Let C(1) = V , and β01 = νλ0. Therefore we get, by the construction
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above, a commutative diagram with exact rows and columns.

0

��

0

��

0

��
0 // G(0)

α01

��

η0 // P (0)

β01

��

// C(0)

γ01

��

// 0

0 // G(1)

��

η1 // P (1)

��

// C(1)

��

// 0

0 // S1(G1)

��

// N(1)

��

// L(1)

��

// 0

0 0 0

Since it is easily seen from the lower row of the above diagram that N(1) ∈ C(R-GProj),
and the middle column that N(1)i has finitely projective dimension for each i ∈ Z, we
get by Remark 2.2 that N(1) ∈ C(R-Proj).

If we continue this process, then we get a commutative diagram with exact rows as
follows

0 // G(0)

α01

��

η0 // P (0)

β01

��

// C(0)

γ01

��

// 0

0 // G(1)

α12

��

η1 // P (1)

β12

��

// C(1)

γ12

��

// 0

0 // G(2)

α23 ��

η2 // P (2)

β23 ��

// C(2)

γ23 ��

// 0

...
...

...

where each row 0 // G(n)
ηn // P (n) // C(n) // 0 satisfies that P (n) ∈

C(R-Proj) and C(n) ∈ C(R-GProj) are both bounded above, C(n) is acyclic, and
HomR(C(n), A) is acyclic for any projective R-module A. In particular, by Lemma
3.2, the monomorphism ηn : G(n) → P (n) is a special C(R-Proj)-preenvelope of G(n)

for each n > 0. Also each row 0 // G(n)
ηn // P (n) // C(n) // 0 has the
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property that the following diagram with exact rows and columns is commutative.

0

��

0

��

0

��
0 // G(n)

αn,n+1

��

ηn // P (n)

βn,n+1

��

// C(n)

γn,n+1

��

// 0

0 // G(n+ 1)

��

ηn+1 // P (n+ 1)

��

// C(n+ 1)

��

// 0

0 // Sn+1(Gn+1)

��

// N(n+ 1)

��

// L(n+ 1)

��

// 0

0 0 0

Where N(n + 1) ∈ C(R-Proj) and L(n + 1) ∈ C(R-GProj) are both bounded above,
L(n + 1) is acyclic, HomR(L(n + 1), A) is acyclic for any projective R-module A and
for each n > 0. By Lemma 3.2, one has Ext1(L(n + 1), Q) = 0 for any Q ∈ C(R-Proj)
and for each n > 0. Clearly, ((P (n)), (βmn))n>0 forms a continuous direct systems of
monomorphisms in C(R-Proj) such that Coker(βn,n+1) = N(n+ 1) ∈ C(R-Proj), and we
have lim−→P (n) ∈ C(R-Proj) since C(R-Proj) is closed under direct transfinite extension.
Again since ((C(n)), (γmn))n>0 forms a continuous direct systems of monomorphisms in
C(R-GProj) such that Coker(γn,n+1) = L(n+ 1) ∈ C(R-GProj), we get that lim−→C(n) ∈
C(R-GProj) since R-GProj is closed under direct transfinite extension [7, Theorem 3.2].
Note that each C(n) is acyclic and the class of acyclic complexes is a left side of a cotorsion
pair [10], we get that lim−→C(n) is acyclic by [6, Theorem 1.2]. In fact, the monomorphism
η : lim−→G(n) → lim−→P (n), η = lim−→ηn, is a special C(R-Proj)-preenvelope of lim−→G(n) = G.
To show this we need only to prove Ext1(lim−→C(n), Q) = 0 for any Q ∈ C(R-Proj), but the
latter is easily seen by [6, Theorem 1.5] and by the above construction. This completes
the proof. �

3.6. Remark. The above special C(R-Proj)-preenvelope η : G→ P of G is a homology
isomorphism since η is monomorphic and Coker(η) is acyclic.

Recall from [4] that a complex P is called DG-projective if each Pi is projective and
if HomR(P,E) is an acyclic complex of abelian groups for any acyclic complex E. Let
R be a quasi-Frobenius ring, that is, An R-module M is projective if and only if it is
injective. Then it is easily seen by Theorem 3.5 that every complex of left R-modules has
a special C(R-Proj) preenvelope since every left R-module is Gorenstein projective, so it
is natural to ask whether every complex of left R-modules has a special DG-projective
preenvelope, and we have the following result.

3.7. Proposition. Let R be a quasi-Frobenius ring. Then every complex of R-modules
has a special DG-projective preenvelope of and only if l.gl.dim(R) = 0.

Proof. For the necessity. Suppose l.gl.dim(R) > 0 and let M be a non-projective R-
module. If S0(M)→ P is a special DG-projective preenvelope (which is injective), then
there is an induced morphism S0(M) → P60. Since the sequence 0 → P60 → P →
P>1 → 0 is exact and P>1 and P are DG-projective, it follows that the subcomplex
P60 is DG-projective. Thus one can check easily that S0(M)→ P60 is a DG-projective
preenvelope of S0(M). In fact, let K0 = Coker(M → P0). Then Ext1(X,T ) = 0 for
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any DG-projective complex T since S0(M)→ P is a special DG-projective preenvelope,
where X = Coker(S0(M) → P ) =: · · · → P2 → P1

0−→ K0 → P−1 → P−2 → · · · . But it
is easily seen that K =: 0→ K0 → P−1 → P−2 → · · · is a direct summand of X, and so
Ext1(K,T ) = 0 for any DG-projective complex T . This shows that S0(M) → P60 is a
special DG-projective preenvelope of S0(M).

Let 0 → M → Q0 → Q−1 → Q−2 → · · · be a right minimal projective (injective)
resolution of M , that is to say, M → Q0 and each L−i+1 → Q−i are projective envelopes
of M and L−i+1 for i > 0, respectively, where L0 = Coker(M → Q0), and L−i =
Coker(L−i+1 → Q−i). Denote the complex 0 → L0 → Q−1 → Q−2 → · · · by L with
L0 in the 0th degree. Then we have a morphism S0(M) → S0(Q0) with S0(Q0) DG-
projective. Thus there is a commutative diagram

S0(M) // P60

��
S0(M) // S0(Q0)

In particular, its commutative square frame in the 0th degree implies that there exists a
morphism of R-modules K0 → L0 such that the following diagram with the bottom row
exact is commutative.

0 // M // P0

��

// K0
//

��

0

0 // M // Q0
// L0

// 0

Now consider the diagram

K

��

0 // K0

��

// P−1

��

// P−2

��

// · · ·

S0(L0) 0 // L0
// 0 // 0 // · · ·

L>−1

OO

0 // L0
// Q−1

OO

// 0

OO

// · · ·

Since the subcomplex 0 → Q−1 → 0 of 0 → L0 → Q−1 → 0 is DG-projective and since
Ext1(K,T ) = 0 for any DG-projective complex T , we can lift the morphism K → S0(L0)
to a morphism K → L>−1. Then consider the morphism K → L>−1 and the exact
sequence 0 → S−2(Q−2) → L>−2 → L>−1 → 0, for the same reason, we can lift the
morphism K → L>−1 to a morphism K → L>−2. Repeating the procedure, we see that
there is a commutative diagram

K

��

0 // K0

��

// P−1

��

// P−2

��

// P−3

��

// · · ·

L 0 // L0
// Q−1

// Q−2
// Q−3

// · · ·

On the other hand, since 0 → M → Q0 → Q−1 → Q−2 → · · · is a right minimal
projective (injective) resolution of M , there exist morphisms Qi → Pi such that the
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diagram

0 // M // Q0

��

// Q−1

��

// Q−2

��

// Q−3

��

// · · ·

0 // M // P0
// P−1

// P−2
// P−3

// · · ·

is commutative, this induces a commutative diagram

L

��

0 // L0

��

// Q−1

��

// Q−2

��

// Q−3

��

// · · ·

K 0 // K0
// P−1

// P−2
// P−3

// · · ·

.

But 0 → L0 → Q−1 → Q−2 → · · · is a minimal projective resolution of L0, so one can
check easily that L is isomorphic to a direct summand of K, and so 0→ Q−1 → Q−2 →
Q−3 → · · · is a direct summand of P6−1. It follows that P6−1 is DG-projective since
S0(P0) and P60 in the exact sequence 0 → P6−1 → P60 → S0(P0) → 0 are so, hence
0 → Q−1 → Q−2 → Q−3 → · · · is DG-projective and of course then 0 → Q0 → Q−1 →
Q−2 → · · · is DG-projective. Now assembling the (left) projective resolution · · · →
Q2 → Q1 → M → 0 and the complex 0 → M → Q0 → Q−1 → Q−2 → · · · , one gets
an exact sequence 0 → Q60 → Q → Q>1 → 0 with Q60 and Q>1 DG-projective, where
Q =: · · · → Q2 → Q1 → Q0 → Q−1 → Q−2 → · · · . Thus Q is clearly DG-projective. But
this complex is acyclic, and so it is a projective complex by [10, Proposition 3.7]. This
contradicts to the fact that M is a non-projective R-module. Hence l.gl.dim(R) = 0.

The sufficiency is trivial. �

4. Adjoints to inclusion functors
We have mentioned in the introduction that the inclusion K(R-Proj) → K(R-Mod)

always has a right adjoint ([5, Theorem 4.7]). We are inspired to consider whether there
exists a left adjoint to it in this section.

4.1. Definition. Let D be a triangulated category, and let C be a full subcategory of
D. The subcategory is said to be thick if it is a triangulated subcategory, and if every
direct summand of any object of C is in C.

The following result is dual to [16, Proposition 1.4], we give its proof for completeness.

4.2. Proposition. Let T be a triangulated category, and S a thick subcategory of T.
Assume further that

(1) Every object T ∈ T admits an S-preenvelope.
(2) Every idempotent in T splits.

Then the inclusion ρ : S→ T has a left adjoint.

Proof. Let T be an object in T. In the following we will show that there exists a morphism
g : T → S with S ∈ S such that every other morphism T → S with S ∈ S must factor
uniquely through g. Firstly, we choose an S-preenvelope f : T → S̃ which must exist by
hypothesis, every morphism T → S, S ∈ S clearly factors through f , but not necessarily
uniquely. We will show next that we can choose a direct summand S of S̃ for which the
factorization is unique.

Complete f : T → S̃ to a triangle T
f // S̃ a // X // ΣT and then choose

an S-preenvelope b : X → S′. Again complete ba : S̃ → S′ to a triangle
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S′′
c // S̃ ba // S′ // ΣS′′ and then we get a morphism of triangles:

T

d

��

f // S̃

1

��

a // X

b

��

// ΣT

Σd

��
S′′

c // S̃ ba // S′ // ΣS′′

(∗)

We get that S′′ ∈ S since S̃ and S′ are in the thick subcategory S. Since f is an S-
preenvelope, the morphism d : T → S′′ can be factored as d = c̃f with c̃ a morphism

S̃ → S′′. Now let e = cc̃ : S̃ → S̃ be the composite S̃
c̃ // S′′ c // S̃ . Then the

diagram (∗) implies that f = cd = cc̃f = ef . To obtain the desired summand S of S̃, we
need the following more steps.

• If the composite T
f // S̃

ρ // S vanishes for some morphism ρ : S̃ → S

with S ∈ S, then so does the composite S̃
e // S̃

ρ // S .
Let ρ satisfy ρf = 0 as above. Then we have the following morphism of triangles:

T

0

��

f // S̃

ρ

��

a // X

a′

��

// ΣT

0

��
0 // S = // S // Σ0

This shows ρ = a′a. Since b : X → S′ is an S-preenvelope of X, there exists a morphism
b′ : S′ → S such that a′ = b′b. Thus by the diagram (∗) we get that ρe = a′ae = b′bae =
b′bacc̃ = b′(bac)c̃ = 0.

• Note that f = ef , i.e., (1 − e)f = 0, it follows from above that the morphism
e : S̃ → S̃ is an idempotent, that is, e2 = e.

By the hypothesis that any idempotent in T splits, the morphism e : S̃ → S̃ has a

factorization S̃
u // S v // S̃ with uv being the identity 1S : S → S. We get that S

must belong to S since it is a direct summand of S̃ and the subcategory S is thick. Now
we assert:

• Let e = vu be a splitting as above, and g : T → S be the composite T
f // S̃ u // S .

Then g has the property that any morphism T → S, S ∈ S factors uniquely
through g.

It remains to show the last assertion. Suppose that we are given a morphism h :

T → S with S ∈ S. Because f : T → S̃ is an S-preenvelope the map h must factor as

T
f // S̃ σ // S . Now observe

h = σf = σef = σvuf = (σv)(uf) = (σv)g,

and we have factored h through g. It remains to show the uniqueness. Suppose τ : S → S
is such that the composite τg = τuf vanishes. By above proof we have τue = 0. Note
that e = vu, we have τuvu = 0, and of cause τuvuv = 0. But uv = 1, we conclude that
τ = 0, as desired. �

The categories K(R-Proj), K(R-GProj) and K(R-Mod) have coproducts, hence idem-
potents split by [14, Proposition 1.6.8]. It is clear that K(R-Proj) is a thick subcategory
of either K(R-GProj) or K(R-Mod). Now we give the main result in this section.

4.3. Theorem. Let R be any ring. Then the inclusion K(R-Proj)→ K(R-GProj) has a
left adjoint.
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Proof. It follows from Proposition 4.2 and Theorem 3.5. �

4.4. Corollary. Let R be any ring. Then the composition functor JĨ : K(R-GProj)→
K(R-Mod) has a right adjoint, where I : K(R-Proj)→ K(R-GProj) and J : K(R-Proj)→
K(R-Mod) are the inclusions, and Ĩ is a left adjoint to I.

Proof. By [5, Theorem 4.7], the inclusion J : K(R-Proj)→ K(R-Mod) has a right adjoint
Ĵ . Since we have isomorphisms for any G ∈ K(R-GProj) and M ∈ K(R-Mod)

HomK(R-Mod)(JĨG,M) ∼= HomK(R-Proj)(ĨG, ĴM) ∼= HomK(R-GProj)(G, IĴM),

it follows that IĴ is a right adjoint to JĨ : K(R-GProj)→ K(R-Mod). �

At the end of this section we give adjoints to inclusion functors over special rings.

4.5. Proposition. IfR is left perfect and right coherent, then the inclusions of K(R-Proj),
into either of the categories K(R-GProj) and K(R-Mod), have left adjoints.

Proof. By [1, Proposition 3.5], a ring R is left perfect and right coherent if and only if
every left R-module has a projective preenvelope. Thus it follows from [17, Theorem
4.2] that every complex in K(R-GProj) or K(R-Mod) admits a K(R-Proj)-preenvelope
since every flat R-module is projective under the hypothesis. Now the result follows from
Proposition 4.2. �
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Abstract
Outliers and multi-collinearity often have large influence in the
model/variable selection process in linear regression analysis. To in-
vestigate this combined problem of multi-collinearity and outliers, we
studied and compared Liu-type S (liuS-estimators) and Liu-type Least
Trimmed Squares (liuLTS) estimators as robust model selection crite-
ria. Therefore, the main goal of this study is to select subsets of inde-
pendent variables which explain dependent variables in the presence of
multi-collinearity, outliers and possible departures from the normality
assumption of the error distribution in regression analysis using these
models.
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1. Introduction
Traditional variable selection methods are based on classical estimators and tests

which depend on normality assumption of errors. Even though many robust alternatives
to the traditional model selection methods have been offered in the past 30 years, the
associated variable selection problem has been somewhat neglected. For instance, in re-
gression analysis, Mallows’s Cp (Mallows, 1973) is a powerful selection procedure. But,
since the Cp statistics is based on least squares estimation, it is very sensitive to outliers
and other departures from the normality assumption on the error distribution. The need
for robust selection procedures is obvious, because using Mallow’s Cp variable selection
method cannot estimate and select parameters robustly. Ronchetti (1985) and Ronchetti
et. al. (1997) proposed and investigated the properties of a robust version of Akaike’s
Information Criterion (AIC). Hampel (1983) suggested a modified version of it. Hurvich
and Tsai(1990) compared several model selection procedures for L1 regression. Ronchetti
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and Staudte (1994) proposed a robust version of Mallows’s Cp. Sommer and Huggins
(1996) proposed a robust Tp criterion based on Wald Statistics.

Consider the linear regression model

(1) Y = Xβ+ ε

where Y is an n × 1 response vector; X is an n × p full rank matrix of predictors; β is
an p vector of unknown parameters; ε, is an error vector with mean 0 and variance σ2I.
For convenience, it is assumed that the X variables are standardized so that X

′
X has

the form of correlation matrix.

Multi-collinearity and outliers are two main problems in regression methods. To cope
with multi-collinearity, some techniques are proposed. Ridge regression estimator is
one of the most widely used estimators to overcome multi-collinearity. Ridge regression
estimator is defined as

(2) β̂r(k) = (X
′
X + kI)−1X

′
Xβ̂OLS

where k > 0 is the shrinkage parameter. Since β̂R(k) is sensitive to outliers in the y-
direction, an alternative robust ridge M-estimator has been proposed by Sivapulle (1991).
Since β̂R(k) is a complicated function of k, Liu (1993) proposes a new biased estimator
for β. Liu estimator

(3) β̂L(d) = (X
′
X + I)−1(X

′
X + dI)β̂OLS

is obtained by shrinking the ordinary least squares (OLS) estimator using the matrix
(X

′
X+I)−1(X

′
X+dI) Where 0 < d < 1 is a shrinking parameter. Since OLS is used in

Liu estimator, the presence of outliers in y direction may affect β̂L(d). To overcome this
problem, Arslan and Billor (2000) proposed an alternative class of Liu-type M-estimators
(LM) which is defined as:

(4) β̂LM (d) = (X
′
X + I)−1(X

′
X + dI)β̂M

LM estimator is obtained by shrinking an M-estimator (β̂M ) instead of the OLS esti-
mator using the matrix (X

′
X + I)−1(X

′
X + dI). The main objective of this proposed

estimator is to decrease the effects of the simultaneous occurrence of multicollinearity
and outliers in the data set.

Let λ1 ≥ λ2 ≥ . . . λp be the eigenvalues ofXX
′
and q1, q2, . . . , qp be the corresponding

eigenvectors. Let Λ = diag(λ1, λ2, . . . , λp) and P = (q1, q2, . . . , qp) such that X
′
X =

PΛP
′
. The regression model can be written in the canonical form by

Y = β01 +Cα+ ε

where C = XP and α = P
′
β.

Then, the LM-estimator of α, α̂LM (d), becomes

(5) α̂LM (d) = (Λ + I)−1(Λ + dI)α̂M

This estimator is resistant to the combined problem of multicollinearity and outliers in
the y direction (Arslan and Billor, 2000).

In order to obtain α̂LM (d) we used the robust choice of d given in equation (5). Robust
d value is

(6) d̂M = 1− Â2

[ p∑
i=1

1

λi(λi + 1)
/

p∑
i=1

ˆαMi
2

(λi + 1)2

]
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where Â2 is

(7) Â2 = s2(n− p)−1
n∑
i=1

[
Ψ(ri/s)

]2
/
[ 1

n

n∑
i=1

[
Ψ

′
(ri/s)

]]2
(Arslan and Billor, 2000).

2. Model Selection Estimators
2.1. Robust Cp Criteria.

Mallow’s Cp (Mallows, 1973) is a powerful technique for model selection in regression.
Since the Cp is based on OLS estimation, it is sensitive to outliers and other departures
from the normality assumption on the error distribution.
Ronchetti and Staudte (1994) define a robust version of Cp as follows:

(8) RCp =
Wp

σ̂2
− (Up − Vp)

where Wp =
∑
i

ŵ2
i r

2
i =

∑
i

ŵ2
i (yi − ŷi)2, wi is a weight for i. th observation, and σ̂2 is a

robust and consistent estimator of σ̂ in the full model given by σ̂2 = Wfull/Ufull. Wfull,
is the weighted residual sum of squares for full model. The constants Up =

∑
i

var(ŵiri)

and Vp =
∑
i

var(ŵix
T
i (β̂p − β)) are computed assuming that the subsets are correct and

σ = 1.
In robust Cp (RCP) criterion used by Ronchetti and Staudte (1994), Up-Vp value is
constant for all models. In our study, the value of Up-Vp changes according to each subset.
Moreover, Ronchetti and Staudte (1994) have used weighting least squares (WLS) while
computing the estimates. However, we use Huber-type estimation and Huber weights,
instead of WLS. So, Up-Vp is

(9) Up − Vp ∼ nE‖η‖2 − 2tr(NM−1) + tr(LM−1QM−1)

(see Ronchetti and Staudte,1994).
where E‖η‖2 =

∑
1≤i≤n

η2(xi, εi), N = E[η2η
′
xx

′
] and L = E[w

′
ε(w

′
ε+ 4w)xx

′
].

Mallows’s Cp and RCP are useful tools for model selection in regression. However, they
have several disadvantages. First they are difficult to generalize to the situations where
residuals are less defined. Second, they are computer intensive and their computation,
particularly in robust version, can be time consuming as they require fitting of all sub-
models (Sommer and Huggins, 1996). Sommer and Huggins (1996) proposed a flexible
easily generalized alternative based on the Wald test (see, Wald, 1994) which requires
computation of estimates only from the full model. Models, with values of RCP close to
Vp or smaller than VP, will be preferred to others.

2.2. Robust Tp criteria.

A robust version of Tp (RTp), based on generalized M-estimators of the regression pa-
rameters, is defined by

(10) RTp = β̂
′
2Σ−1

22 β̂2 − k + 2p

where Σn is the covariance matrix,

Σn =

[
Σ11 Σ12

Σ21 Σ22

]
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and

β̂ = (β̂1, β̂2) = (X
′
V X)−1X

′
V Y ,

and k and p are dimensions of full model and submodel, respectively, β̂1 = (β0, β1, . . . , βp−1)

and β̂2 = (βp, . . . , βk−1) (Hampel et all,1986 ). If submodel P is correct, the value of
RTp should be close to p (Sommer and Huggins, 1996).

2.3. S and LTS estimators.

Rousseeuw and Yohai (1984) proposed S-estimator which is another high breakdown
point estimator having the same asymptotic properties as the M-estimator and used in
model selection in linear regression analysis. It has a higher statistical efficiency than
LTS estimation even though S and LTS estimates share the same breakdown value. The
S-estimator minimizes the sample S-scale of the fitted residuals, while the LTS estimator
minimizes the sample root mean square error. To obtain a high breakdown point estima-
tor, which is also

√
n-consistent and asymptotically normal, was the motivation for the

S-estimators. The ρ is considered to be a quadratic function. Let k = EΦ[ρ] where Φ is
the standard normal distribution. For any given sample {r1, r2, . . . , rn} of residuals, an
M-estimate of scale σ(r1, r2, . . . , rn) is the solution to

ave{ρ(ri/σ)}
where ave denotes the arithmetic mean over i = 1, 2, . . . , n. For each value of β, the
dispersion of the residuals ri = yi − xTi β can be calculated using the upper equation .
Then, the S-estimator β̂ of β be defined as

argmin
β
σ(r1(β), r2(β), . . . , rn(β))

and the final scale estimate is σ̂ = σ(r1(β̂), r2(β̂), . . . , rn(β̂)).
The least trimmed squares (LTS) estimate proposed by Rousseeuw (1984) is defined as
the p-vector

Θ̂LTS = argmin
Θ
QLTS(Θ)

where

QLTS(Θ) =

h∑
i=1

r2
(i)

r2
(1) ≤ r2

(2) ≤ · · · ≤ r2
(n) are the ordered squared residuals r2

i = (yi − xTi Θ), i = 1, . . . , n,
and h is defined in range n

2
+ 1 ≤ h ≤ 3n+p+1

4
.

2.4. Suggested Model Selection Method.

In this study, in order to compute RCP and RTP criteria, we propose to use α̂S and
α̂LTS instead of α̂M in equation (5), leading to

(11) α̂pr(dM ) = α̂S(dM ) = (Λ + I)−1(Λ + d̂MI)α̂S

and

α̂pr(dM ) = α̂LTS(dM ) = (Λ + I)−1(Λ + d̂MI)α̂LTS

Consequently these estimators are used in (12) and (13) to estimate parameters β̂Liu.S
and β̂Liu.LTS that are used in the calculation of selection criteria RCP and RTP.

(12) β̂Liu.S = P
′
α̂S(dM )

(13) β̂Liu.LTS = P
′
α̂LTS(dM )
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where P = (q1, q2, . . . , qp) is the eigenvector matrix, such that XX
′

= PΛP
′
.

In addition, we propose to use S estimator and LTS (least trimmed square) estimator
in (12) for the calculation of selection criteria RCP and RTP, given in (8) and (10),
respectively. In this way, β̂ for Vp in (8) and β̂ in (10) are obtained by using S estimator
(β̂Liu.S), LTS estimator (β̂Liu.LTS). Equation (12) and Equation (13) are referred as
robust Liu-S and robust Liu-LTS estimator, respectively.

2.5. Simulation Study.

In this section, a simulation study was performed to investigate and compare the robust
variables selection criteria using S and LTS estimators. First, five independent variables
were generated from Uniform distribution (−1, 1). The data were obtained according
to the M1 = β = (5, 3,

√
6, 0, 0) and M2 = β = (2

√
5, 4,
√

3, 1, 0) models. These pa-
rameters were obtained by considering β

′
β/σ2 (non-central signal-to-noise parameter)

and φ =
∑
i

V
′
j β/

√∑
j

β2
i

∑
ij

V 2
ij criteria and also used by Gunst and Mason(1977) and

Erar(1982). In order to search of the effects of multicolinearity and outlier together over
the robust selection criteria, a powerful linear dependency structure and a divergent-
value were formed in the data sets between the x1 and x4; x2 and x3 variables in these
models. Moreover, robust-d value is used in the robust Liu.M, robust Liu.S and robust
Liu.LTS estimators, which are given equation 12-13. These estimators are used for com-
putation of robust Tp (RTP) selection criteria based on Wald tests and robust Cp (RCP).

Furthermore, another goal of this simulation study is to see the results of RCP and RTP
selection criteria with liu-S and liu-LTS estimators and to compare the results of RCP
and RTP selection criteria with Liu and robust Liu.M estimators used in the previous
studies (Çetin, 2009).

In order to obtain the percentages of subsets of criteria, a program was coded by using
S-Plus function in this study. The results of the two models are given in the tables below.
The numbers in these tables are shown how many times each subset is selected.

Table 1 shows that, the RTP, which is calculated by using both Liu.S and Liu. LTS
estimators selects the real model which includes x1, x2, x3, with a proportion of %82 in
a hundred repetitions, and it picked optional models x1, x2, x3, x4 and x1, x2 ,x3, x5
respectively in the proportions of %100 and %98. However, RCP criteria which is calcu-
lated by Liu.S and Liu.LTS estimators do not determine any subsets. On the contrary to
RCP criteria calculated by Liu estimator gives better results than RTP criteria (Çetin,
2009).

As it can be seen from Table 2, RCP and RTP, both Liu.S and Liu.LTS estimators
give the same results in case of multicollinearity. However, RTP criteria tend to choose
multivariable models more often.

Table 3 gives the results under the assumption of multicollinearity and outliers together.
RCP criteria do not work well when both the multicollinearity and outliers are present
in the data. RTP criteria results are similar to those given in Table 2.

If we investigate Table 4,5 and 6, we can say that the results are similar to the result of
model 1. Thus, we can say that Liu.s estimators with RCP and RTP criteria do not show
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Table 1. Proportions of subsets order selected by criteria without out-
lier and multicollinearity for M1 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P

X1 0 0 0 0
X2 0 0 0 0
X3 0 0 0 0
X4 0 0 0 0
X5 0 0 0 0
X1 x2 12 0 14 0
X1 x3 0 0 0 0
X1 x4 0 0 0 0
X1 x5 0 0 0 0
X2 x3 0 0 0 0
X2 x4 0 0 0 0
X2 x5 0 0 0 0
X3 x4 0 0 0 0
X3 x5 0 0 0 0
X4 x5 0 0 0 0
X1 x2 x3 8 82 6 86
X1 x2 x4 2 0 0 0
X1 x2 x5 0 0 0 0
X1 x3 x4 2 0 1 0
x1 x3 x5 0 0 0 0
x1 x4 x5 5 0 1 0
x2 x3 x4 0 0 1 0
x2 x3 x5 0 0 0 0
x2 x4 x5 0 0 0 0
x3 x4 x5 0 0 0 0
x1 x2 x3 x4 0 100 0 100
x1 x2 x3 x5 0 98 0 99
x1 x2 x4 x5 6 0 0 0
x1 x3 x4 x5 0 0 0 0
x2 x3 x4 x5 11 0 16 0

any improvements. Liu.lts estimators with RCP and RTP criteria show better results.
Under multi-collinearity condition, RTP and RCP criteria selected the true model (1234)
but RTP tend to select other four variable models as well. Moreover, Liu.S and Liu.lts
estimators with RCP and RTP criteria did not perform well under outliers and multi-
collinearity.
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Table 2. Proportions of subsets order selected by criteria in case of
multicollinearity for M1 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P

x1 0 3 1 4
x2 28 0 23 0
x3 0 0 0 0
x4 0 0 1 0
x5 0 0 0 0
x1 x2 58 21 42 25
x1 x3 76 22 57 24
x1 x4 0 7 0 5
x1 x5 0 33 1 31
x2 x3 32 1 10 1
x2 x4 78 0 59 2
x2 x5 49 1 41 1
x3 x4 36 1 32 1
x3 x5 3 1 6 1
x4 x5 0 7 0 5
x1 x2 x3 52 72 46 43
x1 x2 x4 7 87 25 83
x1 x2 x5 77 73 70 45
x1 x3 x4 57 93 44 91
x1 x3 x5 83 74 72 45
x1 x4 x5 11 78 45 63
x2 x3 x4 84 91 63 90
x2 x3 x5 75 10 66 5
x2 x4 x5 80 88 75 90
x3 x4 x5 87 100 73 100
x1 x2 x3 x4 5 95 5 96
x1 x2 x3 x5 7 62 3 32
x1 x2 x4 x5 1 90 4 92
x1 x3 x4 x5 0 100 0 100
x2 x3 x4 x5 0 100 0 100
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Table 3. Proportions of subsets order selected by criteria in case of
multicollinearity and outliers for M1 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P

x1 4 0 3 1
x2 10 0 13 0
x3 3 0 3 0
x4 2 2 6 2
x5 1 0 6 0
x1 x2 10 1 20 2
x1 x3 11 1 13 2
x1 x4 20 4 18 9
x1 x5 13 1 11 1
x2 x3 3 0 9 0
x2 x4 13 11 16 11
x2 x5 3 0 16 0
x3 x4 10 11 13 12
x3 x5 11 0 24 0
x4 x5 10 7 19 9
x1 x2 x3 11 9 8 4
x1 x2 x4 14 75 24 64
x1 x2 x5 10 10 8 4
x1 x3 x4 18 78 31 66
x1 x3 x5 8 10 8 4
x1 x4 x5 18 62 20 40
x2 x3 x4 3 79 3 68
x2 x3 x5 1 0 3 1
x2 x4 x5 4 99 3 93
x3 x4 x5 1 100 0 100
x1 x2 x3 x4 1 76 0 66
x1 x2 x3 x5 7 14 5 5
x1 x2 x4 x5 1 97 4 91
x1 x3 x4 x5 1 100 4 100
x2 x3 x4 x5 4 100 5 100
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Table 4. Proportions of subsets order selected by criteria without out-
lier and multicollinearity for M2 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P
x1 33 0 9 1
x2 23 0 0 0
x3 28 0 0 0
x4 45 0 0 0
x5 7 0 2 0
x1 x2 9 0 24 0
x1 x3 8 48 7 0
x1 x4 6 0 5 0
x1 x5 8 0 1 0
x2 x3 9 0 1 0
x2 x4 10 0 3 0
x2 x5 0 0 5 0
x3 x4 9 0 1 0
x3 x5 3 0 1 0
x4 x5 6 0 2 0
x1 x2 x3 9 56 100 67
x1 x2 x4 2 0 0 2
x1 x2 x5 10 0 2 1
x1 x3 x4 8 53 4 2
x1 x3 x5 8 49 1 1
x1 x4 x5 2 0 0 1
x2 x3 x4 93 0 0 1
x2 x3 x5 6 0 0 2
x2 x4 x5 93 0 0 1
x3 x4 x5 1 0 4 3
x1 x2 x3 x4 43 60 85 100
x1 x2 x3 x5 41 35 0 22
x1 x2 x4 x5 60 0 1 12
x1 x3 x4 x5 72 71 1 1
x2 x3 x4 x5 82 0 1 1
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Table 5. Proportions of subsets order selected by criteria in case of
multicollinearity for M2 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P
x1 53 73 9 1
x2 43 0 43 1
x3 66 0 10 2
x4 45 0 11 1
x5 3 0 0 3
x1 x2 10 31 12 2
x1 x3 10 37 51 2
x1 x4 19 50 10 5
x1 x5 18 33 15 3
x2 x3 9 13 10 1
x2 x4 12 10 59 2
x2 x5 17 12 46 2
x3 x4 9 9 36 10
x3 x5 3 11 9 14
x4 x5 6 17 7 15
x1 x2 x3 100 73 100 56
x1 x2 x4 2 91 51 81
x1 x2 x5 10 73 87 25
x1 x3 x4 89 97 85 29
x1 x3 x5 83 73 98 13
x1 x4 x5 100 87 98 26
x2 x3 x4 93 96 99 39
x2 x3 x5 60 23 56 7
x2 x4 x5 93 97 78 19
x3 x4 x5 50 85 73 32
x1 x2 x3 x4 58 100 85 99
x1 x2 x3 x5 41 68 78 3
x1 x2 x4 x5 50 100 80 12
x1 x3 x4 x5 72 100 80 10
x2 x3 x4 x5 67 100 78 10
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Table 6. Proportions of subsets order selected by criteria in case of
multicollinearity and outliers for M2 model

With robust Liu.S estimators With robust Liu.LTS estimators
subsets RCP < VP RTP < P RCP < VP RTP < P
x1 62 53 8 3
x2 45 20 23 4
x3 68 20 10 20
x4 45 10 10 15
x5 31 10 9 3
x1 x2 10 28 7 2
x1 x3 10 33 7 5
x1 x4 31 52 11 10
x1 x5 36 31 10 3
x2 x3 19 23 14 5
x2 x4 21 10 34 9
x2 x5 17 17 46 6
x3 x4 39 19 54 11
x3 x5 1 11 7 20
x4 x5 13 17 7 15
x1 x2 x3 100 56 23 15
x1 x2 x4 100 100 78 88
x1 x2 x5 100 73 89 25
x1 x3 x4 99 54 62 29
x1 x3 x5 83 53 72 13
x1 x4 x5 100 100 85 46
x2 x3 x4 93 99 66 49
x2 x3 x5 60 20 72 37
x2 x4 x5 93 97 72 99
x3 x4 x5 50 100 72 100
x1 x2 x3 x4 75 100 83 45
x1 x2 x3 x5 79 93 72 5
x1 x2 x4 x5 64 100 74 100
x1 x3 x4 x5 79 100 86 100
x2 x3 x4 x5 89 100 77 100
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3. Conclusion

RTP criteria with Liu.S and Liu.LTS estimators propose the best performance in case
of the absence of any violation in the model assumptions. Despite the absence of any
distortion in the assumptions, RCP criteria does not select the true model. Under the
presence of outliers and multicollinearity, both RTP and RCP with Liu.S and Liu.LTS
estimators do not work well. However, RCP criteria with Liu estimator showed better
results (Çetin, 2009).
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1. Introduction
There are different ways to allow the voters to express their preferences on a set of

candidates. In some voting systems, each voter selects some candidates and ranks them
from most to least. Among these systems, the well-known procedures to obtain a social
ranking or a winning candidate are scoring rules, where fixed scores are assigned to the
different ranks. In this way, the score obtained by each candidate is the weighted sum of
the scores receives in different places. The plurality rule (the winner candidate is the one
who receives more votes in the first place), the Borda rule (the weight assigned to the first
place equals to number of candidates and to the second place is one less than the first
place and so on) are the best known instances of scoring rules. In spite of the Borda rule
has interesting properties in relation to other scoring rules [5], but the utilization of a fixed
scoring vector has weak point that a candidate that is not the winner with the scoring
vector imposed initially could be so if another scoring is used. To avoid this problem,
Cook and Kress [7] suggested evaluating each candidate with the most favorable scoring
vector for him/her. With this purpose, they introduced Data Envelopment Analysis
(DEA) in this context. DEA determines the most favorable weights for each candidate.
Different candidates utilize different sets of weights to calculate their total scores, which
are referred to as the best relative total scores and are all restricted to be less than or equal
to one. The candidate with the biggest relative total score of unity is said to be efficient
candidate and may be considered as a winner. The principal drawback of this method
is very often leads to more than one candidate to be efficient candidate. We can judge
that the set of efficient candidates is the top group of candidates, but cannot single out
only one winner among them. To avoid this weakness, Cook and Kress [7], proposed to
maximize the gap between consecutive weights of the scoring vector. However, Green et
al. [15] noticed two important drawbacks of the previous procedure. The first one is that
the choice of the intensify functions used in their model is not obvious, and that choice
determines the winner. The second one is that for an important class of discrimination
intensity functions the previous procedure is equivalent to imposing a common set of
scores on all candidates. Therefore, when Cook and Kress’s model is used with this class
of discrimination intensity functions, the aim pursued by these authors (evaluating each
candidate with the most favourable scoring vector for him/her) is not reached.

Due to the drawbacks mentioned above, other procedures to discriminate efficient
candidates have appeared in the literature. Green et al. [15] proposed to use the cross-
evaluation method, introduced by Sexton et al. [32] to discriminate efficient candidates.
Hashimoto [18] used the DEA exclusion method (see Andersen and Petersen [4]) to Cook
and Kress’s model. Hashimoto’s model is useful to discriminate efficient candidates, but
it is unstable with respect to inefficient candidates too. Noguchi et al. [28] criticized the
choice of discrimination intensity functions in Green et al.’s model. In their model, the
weight assigned to a certain rank may be zero and, consequently, the votes granted to that
rank are not considered. Furthermore, the weights corresponding to two different ranks
may be equal and, therefore, the rank votes lose their meaning. To avoid the previous
drawbacks, Noguchi et al. [28] gave a strong ordering constraint condition on weights.
Besides the previous condition on the scoring vectors, Noguchi et al. [28] introduced
two other modifications in the model of Green et al. [15]. On the one hand, in the
cross-evaluation matrix each candidate utilizes the same scoring vector to evaluate each
of the remaining candidates. However, Noguchi et al.’s model maintains the problems
of Green et al.’s model. Obata and Ishii [29] proposed another model that does not
use any information about inefficient candidates. To obtain a fair approach, they used
weight vectors of the same size, by normalizing the most favorable weight vectors. But it
presents other drawbacks. In their model it is necessary to determine the norm and the
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discrimination intensity functions to use. If these functions are zero and the L∞-norm is
used, the winning candidate coincides with the one obtained by means of a scoring rule.
If L∞-norm is replaced by L1-norm, the outcome could be considered unfair by some
candidates. Foroghi and Tamiz [13] and Foroghi et al. [12] extended and simplified their
model with fewer constraints and also used it for ranking inefficient as well as efficient
candidates. Llamazares and Pena [26] analyzed the principal ranking methods proposed
in the literature to discriminate efficient candidates and by solving several examples
showed that none of the previous proposed procedures was fully convincing. In fact,
although all the previous methods do not require predetermine the weights subjectively,
some of them have a serious drawback: the relative order between two candidates may
be altered when the number of first, second, . . ., kth ranks obtained by other candidates
changes, although there is not any variation in the number of first, second, . . . , kth
ranks obtained by both candidates. Thus, Llamazares and Pena [26] proposed a model
that allows each candidate to be evaluated with the most favorable weighting vector for
him/her and avoids the mentioned drawback. Moreover, in some cases, they found a
closed expression for the score assigned with their model to each candidate.

Wang and Chin [39] discriminated efficient candidates by considering their least rela-
tive total scores. But the least relative total scores and the best relative total scores are
not measured within the same range. The obtained conclusion was not persuasive. They
also proposed a model in which the total scores are measured within an interval. The
upper bound of the interval was set to be one, but they failed to determine the value of
the lower bound for the interval. After that, Wang et al. [40] proposed a method to rank
multiple efficient candidates, which often happens in DEA method, by comparing the
least relative total scores for each efficient candidate with the best and the least relative
total scores measured in the same range.

Wang et al. [42] proposed three new models to assess the weights associated with
different ranking places in preference voting and aggregation. Two of them are linear
programming models which determine a common set of weights for all the candidates
considered and the other is a non-linear programming model that determines the most
favorable weights for each candidate. Hadi-Vencheh and Mokhtarian [16] presented three
counter examples to show that the three new models developed by Wang et al. [42] for
preference voting and aggregation may produce a zero weight for the last ranking place
and may sometimes identify two candidates as the winner in some specific situations.
After that, Wang et al. [43] presented two modified linear programming models for pref-
erence voting and aggregation to avoid the zero weight for the last ranking place. In ad-
dition, Hadi-Vencheh [17] proposed two improved DEA models to determine the weights
of ranking places that each of them can lead to a stable full ranking for all the candidates
considered and avoid the mentioned shortcoming. Wu et al. [45] considered a preferential
voting system using DEA game cross efficiency model, in which each candidate is viewed
as a player that seeks to maximize its own efficiency, under the condition that the cross
efficiencies of each of other DMU’s does not deteriorate. Jahanshaloo et al. [22] reviewed
ranked voting data and its analysis with DEA and proposed a model based on the rank-
ing of units using common weights. Their model gives one common set of weights that is
the most favorable for determining the absolute efficiency of all candidates at the same
time. Bystricky [6] investigated different approaches to weighted voting systems based on
preferential positions. In addition, other models have appeared in the literature in order
to deal with this kind of problems [1, 3, 8, 9, 10, 11, 19, 20, 21, 25, 31, 33, 34, 36, 37, 38].

However, all previous models are based on Cook and Kress’s model in which the votes
of all voters have equal importance and there is no preference among them. In this paper
we generalize the existing models to overcome this shortcoming. In fact, in our proposed
model voters are classified into several categories with different importance levels that the
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vote of a higher category may have a greater importance than that of the lower category.
Our main contribution in this paper will be the simplification of the model of Wu [44]
(first proposed by Wang and Luo [41]) in DEA efficiency assessment for an overall ranking
of candidates. We introduce two models that the first model evaluates candidates from
the viewpoint of the best possible preference score and the second model evaluates them
from the perspective of the worst possible preference score. The two distinctive scores
are combined to form a comprehensive index such that an overall ranking for all the
candidates can be obtained.

The rest of this paper is organized as follows. Section 2 gives the traditional voting
model proposed by Cook and Kress [7] considering all of voters are in one category. Sec-
tion 3 gives our model to determine efficient candidates by classifying voters into several
groups with different importance levels. Section 4 extends the existing ranking method
to discriminate the efficient candidates in terms of our proposed model assumptions. In
Section 5 we illustrate our new methodology with two numerical examples. This paper
is concluded in Section 6.

2. Ranked voting data
In this section we consider ranked voting data such that each voter select m candidate

from n ( n ≥ m ) candidates {A1, A1, . . . , An } and rank them from top to the place m,
each place associated with a relative important weight uri (i = 1, 2, . . . ,m). In this way,

the score obtained by the candidate Ar is zr =
m∑
i=1

uri y
r
i where yri is the number vote of

place i that candidate Ar occupies and (ur1, u
r
2, . . . , u

r
m) is the scoring vector used.

2.1. Remark. In the DEA framework, many voting models are based on that of Cook
and Kress [7], where the input variables uri (i = 1, 2, . . . ,m) are the weights, and these
values are real numbers. Thus, the DEA models applied to find these weights as the
relative importance of each place are not integer models.

Cook and Kress [7] suggested evaluating each candidate with the most favorable scor-
ing vector for him/her based on DEA models. Their DEA/assurance region (DEA/AR)
model is as follows:

(2.1)

z∗p = max
m∑
i=1

upi y
p
i

s.t.
m∑
i=1

upi y
r
i ≤ 1, r = 1, · · · , n,

upi − upi+1 ≥ d(i, ε), i = 1, · · · ,m− 1,
upm ≥ d(m, ε),

In the above model, d(., ε) is called the discrimination intensity function that is non-
negative and monotonically increasing in a non-negative ε and satisfies d(., 0) = 0. The
last constraints in (2.1) are called the assurance region constraints and ensure that the
votes of the higher place has a greater importance that of the lower place. The model
(2.1) is solved for each candidate p (p = 1, . . . , n). The resulting score z∗p is the preference
score of the candidate p. This score is used to rank of all candidates in a voting system
that assumes that the votes of all voters have the same importance and there is no
preference between them.

In this next section, we extend model (2.1) for situations that voters are classified into
several categories with different importance levels in which the vote of a higher category
may have a greater importance than that of the lower category.
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3. An extended model
In this section, we introduce a new approach to allow the voters to express their

preferences on a set of candidates by classifying voters into several groups with different
importance levels. Suppose that in a ranked voting system, voters are classified into k
distinct categories. The voters of each category, select m candidates among n ( n ≥ m )
candidates {A1, A1, . . . , An } and rank them from top to the place m. Let yrij be the
votes of the candidate r being ranked in the place i from the category j. In evaluating
of the candidate r, each place is associated with a relative importance weight uri (i =
1, 2, . . . ,m) and each category is associated with a relative importance weight vrj (j =

1, 2, . . . , k). The preference score of candidate r in the place i is equal to
k∑
j=1

vrj y
r
ij . Thus,

the total preference score of candidate r will be zr =
m∑
i=1

(uri
k∑
j=1

vrj y
r
ij) =

m∑
i=1

k∑
j=1

uri v
r
j y
r
ij .

It should be noted that if all categories have the same relative importance weights,

then the preference score of candidate r in the place i will be
k∑
j=1

yrij , that is exactly the

number of votes in place i received by candidate r. In this case, the preference score
of candidate r is equal to the one which assumes voters are in one category. Thus, this
value indicates the real score of each candidate.

However to obtain a total ranking of candidates, we require the weight vectors ur =
( ur1, . . . , u

r
m) and vr = ( vr1, . . . , v

r
k) satisfy the following conditions:

(3.1) uri − uri+1 ≥ d(i, ε), i = 1, · · · ,m− 1

urm ≥ d(m, ε)

(3.2) vrj − vrj+1 ≥ d(j, ε), j = 1, · · · , k − 1

vrk ≥ d(k, ε)
It needs to point out that the constraints (3.1) are introduced in order that the vote of
the higher place may have a greater importance than that of the lower place. In a similar
way, the constraints (3.2) are introduced in order that the vote of voters in a higher
category has a greater importance than that in a lower category. Hence, the following
non-linear model evaluates candidate p with the most favorable weight vectors:

(3.3)

z∗p = max
m∑
i=1

k∑
j=1

upi v
p
j y

p
ij

s.t.
m∑
i=1

k∑
j=1

upi v
p
j y

r
ij ≤ 1, r = 1, 2, . . . , n,

upi − u
p
i+1 ≥ d(i, ε), i = 1, · · · ,m− 1

upm ≥ d(m, ε)
vpj − v

p
j+1 ≥ d(j, ε), j = 1, · · · , k − 1

vpm ≥ d(m, ε)

To transform the non-linear model (3.3) into an equivalent linear model, let

(3.4) wpij = upi v
p
j , i = 1, 2, . . . ,m , j = 1, 2, . . . , k.

Now, we should change the constraint of (3.1) and (3.2) in terms of new transfor-
mations such that the priority among places and categories preserves. To this end, we
multiply the constraints of (3.1) and (3.2) by vrj (j = 1, 2, . . . , k) and uri (i = 1, 2, . . . ,m),
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from the right and left, respectively. Thus, we have:

uri v
r
j − uri+1v

r
j ≥ d( i, ε), i = 1, · · · ,m− 1, j = 1, 2, · · · , k

urmv
r
j ≥ d(m, ε), j = 1, 2, · · · , k

uri v
r
j − uri vrj+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m

uri v
r
k ≥ d(k, ε), i = 1, · · · ,m

Thus, we have:

(3.5) wrij − wri+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, 2, · · · , k
wrmj ≥ d(m, ε), j = 1, 2, · · · , k

(3.6) wrij − wri,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wrik ≥ d(k, ε), i = 1, · · · ,m

By substituting (3.4)-(3.5) into model (3.3), the following linear model is obtained:

(3.7)

z∗p = max
m∑
i=1

k∑
j=1

wpij y
p
ij

s.t.
m∑
i=1

k∑
j=1

wpij y
r
ij ≤ 1, r = 1, 2, . . . , n,

wpij − w
p
i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k

wpmj ≥ d(m, ε), j = 1, · · · , k
wpij − w

p
i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m

wpik ≥ d(m, ε), i = 1, · · · ,m
In the next section, we introduce two virtual candidates called virtual best candidate

(VBC) and virtual worst candidate (VWC) into voting system. The resultant voting
models are referred to as the voting system with VBC and VWC candidates, respec-
tively. The first system evaluates candidates from the viewpoint of the best possible
preference score and the second system evaluates them from the perspective of the worst
possible preference score. The two distinctive scores are combined to form a comprehen-
sive index called the relative closeness (RC) to the VBC just like the well-known TOPSIS
approach in multiple attribute decision making (MADM). The RC index is then used as
the evidence of overall scores of each candidate, based on which an overall ranking for
all the candidates can be obtained.

4. Voting systems with VBC and VWC
In this section we give some models so that a voting analysis based on TOPSIS idea

can be performed. To do this, we first explore the concepts of virtual best candidate
(VBC) and virtual worst candidate (VWC).

4.1. Definition. The virtual best candidate (VBC) is a virtual candidate that receives
the most votes in each place among all candidates.

It needs to point out that the VBC may not exist in the voting. But he/she receives
the most votes in each place among all n candidates. According to the above definition,
we denote by Y maxi = (ymaxi1 , . . . , ymaxik ) the number votes of VBC in place i, in which
the votes of each category in this place are determined by ymaxij = maxr{yrij} . In fact,
VBC receives the most votes in each place and each category among all candidates and
will be ranked in first place in any condition.

4.2. Definition. The virtual worst candidate (VWC) is a virtual candidate that receives
the least votes in each place among all candidates.
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It is also important to note that the VWC may not exist in the voting. But he/she
receives the least votes in each place among all n candidates. According to the above
definition, we denote by Y mini = (ymini1 , . . . , yminik ) the number votes of VWC in place i,
in which the votes of each category in this place are determined by yminij = minr{yrij} . In
fact, VBC receives the least votes in each place and each category among all candidates
and will be ranked in last place in any condition.

It is obvious that the VBC should be able to achieve the highest/best preference score.
The best preference score of VBC denoted as φ∗ is determined by the following model:

(4.1)

φ∗V BC = max
m∑
i=1

k∑
j=1

wV BCij ymaxij

s.t.
m∑
i=1

k∑
j=1

wV BCij yrij ≤ 1, r = 1, 2, . . . , n,

wV BCij − wV BCi+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k
wV BCmj ≥ d(m, ε), j = 1, · · · , k

wV BCij − wV BCi,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wV BCik ≥ d(m, ε), i = 1, · · · ,m

Since the above linear programming model (4.1) may have multiple optima, we utilize
the following linear programming model to determine the best preference score of candi-
date p under the condition that the best possible preference score of the VBC remains
unchanged:

(4.2)

z∗p = max
m∑
i=1

k∑
j=1

wpij y
p
ij

s.t.
m∑
i=1

k∑
j=1

wV BCij ymaxij = φ∗V BC

m∑
i=1

k∑
j=1

wpij y
r
ij ≤ 1, r = 1, 2, . . . , n,

wpij − w
p
i+1,j ≥ d( i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k

wpmj ≥ d( m, ε), j = 1, · · · , k
wpij − w

p
i,j+1 ≥ d( j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m

wpmj ≥ d( m, ε), i = 1, · · · ,m

Similar to that in Wu [44], the following model is proposed to compute the worst
possible preference score of the VWC:

(4.3)

ϕ∗V BC = min
m∑
i=1

k∑
j=1

wVWC
ij yminij

s.t.
m∑
i=1

k∑
j=1

wV BCij ymaxij ≥ γ, γ ∈ [1, φ∗V BC ]

m∑
i=1

k∑
j=1

wVWC
ij yrij ≤ 1, r = 1, 2, . . . , n,

wVWC
ij − wVWC

i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k
wVWC
mj ≥ d(m, ε), j = 1, · · · , k

wVWC
ij − wVWC

i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wVWC
ik ≥ d(m, ε), i = 1, · · · ,m
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Model (4.3) aims to minimize the preference score of the VWC while at the same time
keeping the preference score of the VBC no less than an appropriate parameter γ, which
might be selected in a range from one and the maximal possible value. Although we note
that the selection of the value of γ is flexible, we will prove by the Theorem 1 in the case
ofγ = 1, the model (4.3) is equivalent to the following model (see also Theorem 1 in [44]):

(4.4)

ϕ∗V BC = min
m∑
i=1

k∑
j=1

wVWC
ij yminij

s.t.
m∑
i=1

k∑
j=1

wV BCij ymaxij = 1

wVWC
ij − wVWC

i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k
wVWC
mj ≥ d(m, ε), j = 1, · · · , k

wVWC
ij − wVWC

i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wVWC
ik ≥ d(m, ε), i = 1, · · · ,m

4.3. Theorem. For γ = 1 model (4.3) and model (4.4) are equivalent.

Proof. Consider the following model in the case of γ = 1:

(4.5)

ϕ∗V BC = min
m∑
i=1

k∑
j=1

wVWC
ij yminij

s.t.
m∑
i=1

k∑
j=1

wV BCij ymaxij ≥ 1

m∑
i=1

k∑
j=1

wVWC
ij yrij ≤ 1, r = 1, 2, . . . , n,

wVWC
ij − wVWC

i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k
wVWC
mj ≥ d(m, ε), j = 1, · · · , k

wVWC
ij − wVWC

i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m
wVWC
ik ≥ d(m, ε), i = 1, · · · ,m

Assume that w∗,V WC
ij to be optimal weight of model (4.5). We prove that

m∑
i=1

k∑
j=1

w∗,V WC
ij ymaxij = 1. Assume not, i.e.

m∑
i=1

k∑
j=1

w∗,V WC
ij ymaxij = q > 1 and

m∑
i=1

k∑
j=1

w∗,V WC
ij yrij ≤ 1(r = 1, 2, . . . , n). Now set

w∗∗,V WC
ij =

w
∗,V WC
ij

q
.

Thus we have
m∑
i=1

k∑
j=1

w∗∗,V WC
ij yrij <

m∑
i=1

k∑
j=1

w∗,V WC
ij yrij ≤ 1(r = 1, 2, . . . , n) and

m∑
i=1

k∑
j=1

w∗∗,V WC
ij ymaxij = 1. So, we have another feasible solution w∗∗,V WC

ij with which

the obtained value of objective function
∑m
i=1

k∑
j=1

w∗∗,V WC
ij yminij is less than the assumed

optimal value
m∑
i=1

k∑
j=1

w∗,V WC
ij yminij . This is a contradiction and hence the first constraint

is constantly binding in any optimal solution.

Since we have
m∑
i=1

k∑
j=1

w∗,V WC
ij ymaxij = 1 it follows that

m∑
i=1

k∑
j=1

wVWC
ij yrij ≤

m∑
i=1

k∑
j=1

w∗,V WC
ij ymaxij = 1. Hence the constraints

m∑
i=1

k∑
j=1

wVWC
ij yrij ≤
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1 (r = 1, 2, . . . , n) are redundant and can be removed from model (4.5). This completes
the proof. �

Following the same logic as before, given the worst efficiency of the VWC, the following
linear programming model can be used to determine the worst possible preference score
of candidate p under the condition that the worst possible preference score of the VWC
stays unchanged:

(4.6)

ϕ∗p = min
m∑
i=1

k∑
j=1

wpij y
p
ij

s.t.
m∑
i=1

k∑
j=1

wV BCij yminij = ϕ∗VWC

m∑
i=1

k∑
j=1

wpij y
r
ij ≤ 1, r = 1, 2, . . . , n,

wpij − w
p
i+1,j ≥ d(i, ε), i = 1, · · · ,m− 1, j = 1, · · · , k

wpmj ≥ d(m, ε), j = 1, · · · , k
wpij − w

p
i,j+1 ≥ d(j, ε), j = 1, · · · , k − 1, i = 1, · · · ,m

wpik ≥ d(m, ε), i = 1, · · · ,m

From the above discussion it is known that voting models (4.1) and (4.2) measure
the best possible preference scores of VBC and the n real candidates based on VBC,
while voting models (4.4)and (4.6) measure the worst possible preference scores of VWC
and the n real candidates based on VWC. These two distinctive efficiency assessments
may lead to quite different conclusions. Therefore, there is a need to consider them
together to give an overall assessment of each candidate. In order to do so, we use
the following relative closeness (RC) (Wang and Luo [41]), which is widely used in the
TOPSIS approach, a well-known MADM methodology.

(4.7) RCp =
(ϕ∗p − ϕ

∗
VWC)

(ϕ∗p − ϕ∗VWC) + (φ∗V BC − φ∗p)

It is obvious that the bigger difference between ϕ∗pand ϕ∗VWC and the smaller difference
between φ∗WBC and φ∗p mean the better performance of candidate p. So, the bigger RCp
value, the better the performance of candidate p. Since the RC index integrates both
the best and the worst possible preference scores of each candidate, it thus provides an
overall assessment for each candidate, based on which an overall ranking for the n real
candidates can be easily obtained.

We are in a position to give the following algorithm for overall ranking of candidates:

Step 1. Solve the problems (4.1) for the VBC to obtain the optimal weights W ∗V BC
and preference score φ∗V BC , solve the problem (4.2) to compute the φ∗p, p =
1, 2, . . . , n.

Step 2. Solve the problems (4.4) for the VWC to obtain the optimal weights W ∗VWCand
preference score ϕ∗VWC , solve the problem (4.6) to compute the φ∗p, p = 1, 2, . . . , n.

Step 3. Calculate the relative closeness RCp of candidate p using (4.7).
Step 4. Select the winner candidate q according to RC∗q = max1≤p≤nRCp.

In this paper, it is assumed dj (i, ε) = εdi and di (j, ε) = εdj , in which ε is a sufficiently
small positive value and, di and dj are the preferred values corresponding to gap i of
places and gap j of categories, respectively. Without loss of the generality, throughout
this paper, we assume di = dj = 1. We note that the choice of discriminating function
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Table 1. Votes received by six candidates

Candidates First Place Second Place Third Place Fourth Place
A1 3 3 4 3
A2 4 5 5 2
A3 6 2 3 2
A4 6 2 2 6
A5 0 4 3 4
A6 1 4 3 3
V BC 6 5 5 6
VWC 0 2 2 2

Table 2. The preference scores for the six candidates

The best score The least score RC Rank

Candidates ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001
A1 0.8091875 0.81246687 0.032 0.00032 0.03433845 0.00035543 4 4
A2 1 1 0.043 0.00043 0.07699472 0.00082606 1 1
A3 0.8196875 0.81257188 0.038 0.00038 0.04498756 0.0004621 3 3
A4 0.1 1 0.04 0.0004 0.07006569 0.00074618 2 2
A5 0.6758125 0.68738313 0.022 0.00022 0.01416807 0.00014542 6 6
A6 0.6803125 0.68742813 0.025 0.000025 0.01845772 0.00018904 5 5

and also values of ε may be influences the results of models and it is the decision maker
concern.

5. Numerical examples
In this section, we consider two numerical examples using the proposed method to

illustrate its applications and show its capability in expressing preferences of voters on a
set of candidates.

5.1. Example. We will examine the example taken from Cook and Kress [7], in which
20 voters are asked to rank 4 out of 6 candidates A1 ∼ A6 on a ballot. The votes each
candidate receives are shown in Table 1. Also the virtual candidates VBC and VWC are
defined in the last two rows of Table 1. Using model (4.1), we obtain the best preference
score of VBC as φ∗V BC = 1.371625, and φ∗V BC = 1.37496625 for the values of ε : ε = 0.001
and ε = 0.00001, respectively. In a similar way, using model (4.4) we obtain the worst
preference score of VWC as ϕ∗VWC = 0.012 and ϕ∗VWC = 0.00012 for the values of
ε : ε = 0.001 and ε = 0.00001, respectively. Based upon the optimal weights of models
(4.2) and (4.6) we can calculate the best preference score and the worst preference score
of each candidate as documented in Table 2. In this case, the final overall ranking order
can be achieved using the systematic RC index, whose values for the six candidates are
presented in Table 2 for the values of ε : ε = 0.001 and ε = 0.00001. From Table 2, the
full rank of candidates is as A2 � A4 � A3 � A1 � A6 � A5.

Now, suppose the voters classify into two distinct categories (C1 and C2) that the
vote of the first category has a greater importance than that of the second category. In
this case, the voters of each category are asked to rank 4 out 6 previous candidates on
a ballot. The votes each candidate receives from each category are presented in Table 3.
In addition the virtual candidates VBC and VWC are defined in this table.

Using model (4.1), the best preference scores of VBC are obtained as φ∗V BC =
1.93931579, and φ∗V BC = 1.94728789 for the values of ε : ε = 0.001 and ε = 0.00001,
respectively. In addition, using model (4.4) we obtain the worst preference score of VWC
as ϕ∗VWC = 0.014 and ϕ∗VWC = 0.00014 for the values of ε : ε = 0.001 and ε = 0.00001,
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Table 3. Votes received by six candidates from two categories

First Place Second Place Third Place Fourth Place

Candidates C 1 C 2 C 1 C 2 C 1 C 2 C 1 C 2
A1 2 1 1 2 1 3 2 1
A2 1 3 1 4 3 2 2 0
A3 3 3 1 1 1 2 1 1
A4 1 5 1 1 1 1 1 5
A5 0 0 3 1 1 2 1 3
A6 1 0 1 3 1 2 1 2
V BC 3 5 3 4 3 3 2 3
VWC 0 0 1 1 1 2 1 0

Table 4. The preference scores for the six candidates based our approach

The best score The least score RC Rank

Candidates ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001
A1 0.91647368 0.92100684 0.038 0.00038 0.02292609 0.0002338 4 4
A2 1 1 0.05 0.0005 0.03691112 0.00037989 1 1
A3 1 1 0.044 0.00044 0.03094967 0.00031659 2 2
A4 0.994 0.99994 0.044 0.00044 0.03075927 0.00031657 3 3
A5 0.80610526 0.81569263 0.027 0.00027 0.01134172 0.00011487 5 5
A6 0.73057895 0.73677947 0.029 0.00029 0.01225754 0.0001239 6 6

respectively. Based upon the optimal weights of models (4.2) and (4.6) we can determine
the best preference score and the worst preference score of each candidate as documented
in Table 4. Thus, the final overall ranking order can be obtained using the systematic
RC index, whose values for the six candidates are presented in Table 4 for the values
of ε : ε = 0.001 and ε = 0.00001. From Table 4, the full rank of candidates is as
A2 � A3 � A4 � A1 � A6 � A5. As can be seen from Table 4, our model also identifies
the candidate A2 as the first winner when ε = 0.001 and ε = 0.00001. Moreover, by
considering the systematic RC index of candidates A3 and A4, we see the candidate A3

is more efficient than the candidate A4. That is, in our opinion the candidate A3 is the
second winner and the candidate A4 is the third winner. Thus, there is a different in
rank of second and third winner candidate comparing with models that assume all votes
have a same importance. In fact, the ability to identify efficient candidates based on our
approach is stronger than the previous approach.

5.2. Example. We will examine the example taken from Wang et al. [40], in which
155 voters are asked to rank 4 out of 10 candidates A ∼ J on a ballot. The votes each
candidate receives are shown in Table 5. In addition, the virtual candidates VBC and
VWC are defined in the last two rows of Table 5.

The model (4.1) gives the best preference score of VBC as φ∗V BC = 1.28020626,
and φ∗V BC = 1.28314864 under two different values of ε = 0.001 and ε = 0.00001,
respectively. In a similar way, model (4.4) gives the worst preference score of VWC as
ϕ∗VWC = 0.54628571 and ϕ∗VWC = 0.53582 when ε takes 0.001 and 0.00001, respectively.
Based upon the optimal weights of models (4.2) and (4.6) we can calculate the best
preference score and the worst preference score of each candidate as reported in Table 6.
Thus, the total ranking order can be determined using the systematic RC index, whose
values for the ten candidates are given in Table 6 when ε takes 0.001 and 0.00001. From
Table 6, the full rank of candidates is as G � A � E � I � J � C � B � H � D � F .
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Table 5. Votes received by ten candidates

Candidates First Place Second Place Third Place Fourth Place
A 20 14 13 11
B 14 16 16 17
C 14 14 19 21
D 14 13 22 11
E 19 14 12 19
F 14 13 9 11
G 18 17 15 9
H 14 13 20 20
I 14 20 15 20
J 14 21 14 16
V BC 20 21 22 21
VWC 14 13 9 9

Table 6. The preference scores for ten candidates

The best score The least score RC Rank

Candidates ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001
A 0.99414793 0.99408349 0.69328571 0.67479 0.33944619 0.3246696 2 2
B 0.93709298 0.93911734 0.57728571 0.53613 0.0828626 0.00090027 7 7
C 0.97228487 0.97712775 0.58128571 0.53617 0.10206421 0.00114241 6 6
D 0.94033136 0.94668142 0.57428571 0.5361 0.07611283 0.00083148 9 9
E 1 1 0.67957143 0.65501 0.32234172 0.29624299 3 3
F 0.76114455 0.7599445 0.54828571 0.53584 0.00383832 0.00003822 10 10
G 1 1 0.7075102 0.68896286 0.36523167 0.35101041 1 1
H 0.9654328 0.97120124 0.57928571 0.53615 0.09488936 0.00105675 8 8
I 1 1 0.59028571 0.53626 0.13571607 0.00155154 4 4
J 0.97759172 0.97634396 0.58728571 0.53623 0.11931975 0.00133457 5 5

Table 7. Votes received by six candidates from two categories

First Place Second Place Third Place Fourth Place

Candidates C 1 C 2 C 3 C 1 C 2 C 3 C 1 C 2 C 3 C 1 C 2 C 3
A 5 11 4 5 8 1 4 4 5 2 2 7
B 2 9 3 4 9 3 4 8 4 4 11 2
C 2 12 0 3 8 3 11 4 4 5 10 6
D 3 7 4 4 2 7 5 10 7 7 2 2
E 1 13 5 12 1 1 3 1 8 13 2 4
F 1 13 0 3 4 6 2 4 3 2 2 7
G 5 1 12 1 1 15 13 1 1 1 7 1
H 1 4 9 3 1 9 5 11 4 5 5 10
I 1 2 11 5 2 13 3 3 9 16 3 1
J 2 2 10 7 5 9 1 2 11 4 11 1
V BC 5 13 12 12 9 15 13 11 11 16 11 10
VWC 1 1 0 1 1 1 1 1 1 1 2 1

Now we suppose the 155 voters are divided into three categories (C1, C2 and C3)
based on their priorities and proficiencies. The votes each candidate receives from each
category are shown in Table 7. Also the virtual candidates VBC and VWC are defined
in this table.
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Table 8. The preference scores for the ten candidates based on our approach

The best score The least score RC Rank

Candidates ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001 ε = 0.001 ε = 0.00001
A 1 1 0.327 0.20127 0.19162271 0.11214341 1 1
B 0.96464852 0.96810428 0.26055556 0.09060556 0.143802 0.02125852 8 6
C 1 1 0.28533333 0.13485333 0.1647688 0.06008753 3 3
D 0.94407853 0.95292174 0.27133333 0.13471333 0.14863913 0.05757814 5 4
E 0.9702937 0.06859667 0.25966667 0.96515685 0.14384231 0.0016434 6 8
F 0.71743712 0.06800667 0.20066667 0.71535221 0.08401168 0.00090331 10 10
G 0.99470197 1 0.26766667 0.11817667 0.15218444 0.04604364 4 5
H 0.966497831 0.98307375 0.23566667 0.06835667 0.12680534 0.00144938 9 9
I 1 1 0.25466667 0.06854667 0.14383597 0.00165028 7 7
J 1 1 0.28933333 0.13489333 0.16742395 0.06012072 2 2

Using model (4.1), the best preference scores of VBC are obtained as φ∗V BC =
2.04761608, and φ∗V BC = 2.06472518 for the values of ε : ε = 0.001 and ε = 0.00001,
respectively. In addition, using model (4.4) we obtain the worst preference score of VWC
as ϕ∗VWC = 0.07866667 and ϕ∗VWC = 0.06678667 for the values of ε : ε = 0.001 and
ε = 0.00001, respectively. Based upon the optimal weights of models (4.2) and (4.6) we
can determine the best preference score and the worst preference score of each candidate
as documented in Table 8. Then, the final overall ranking order can be obtained using
the systematic RC index, whose values for the ten candidates are presented in Table 8
for the values of ε : ε = 0.001 and ε = 0.00001. From Table 8, when ε takes 0.001, the
full rank of candidates is obtained as A � J � C � G � D � E � I � B � H � F .

As can be seen from Table 8, there is a different in total rank based on our approach
comparing with that approach which assumes all votes have equal importance. Our
method identifies the candidates A as the first winner and the candidate G as the forth
winner while that approach identifies the candidate A as the second winner and the
candidate G as the first winner. However, different from that approach, our approach
considers the priority of voters and so the votes in a higher category have more importance
than that in a lower category. Thus, the preference scores are measured in a persuasive
way.

It is necessary to notice that as we discussed in the end of Section 4, the value of ε
may be influences the order of candidates. This point has been illustrated in Example
5.2. From Table 8, when ε : ε = 0.001 and ε = 0.00001, candidate B is the eighth winner
and sixth winner, candidate D is the fifth winner and fourth winner, candidate E is the
sixth winner and eighth winner and candidate D is the fourth winner and fifth winner,
respectively. This means that there is a small difference in the rank of candidates B,
D, E and G when ε varies. However, as can be seen from Table 8, candidates A, C, F,
H, I and G should take the first place, the third place, the tenth place, the ninth place,
the seventh place and the second place, respectively under the both values of ε. This
is, based on two different values of ε : ε = 0.001 and ε = 0.00001, candidates A and F
should be the first winner and the last winner, respectively.

6. Conclusion
It is often necessary in decision making framework to rank a group of candidates in

voting systems. In ranked voting systems, each voter selects a subset of candidates and
rank them from most to least preferred and hence the score obtained by each candidate
is the weighted sum of the scores receives in different places. The principal drawback of
such scoring rules is that they assume the votes of all voters have equal importance and
there is no preference among them. In this paper, we generalized the existing scoring
rules to overcome the mentioned drawback. The ability to identify efficient candidates
of our approach is stronger than the existing scoring rules. We also introduced two
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models that the first model evaluated candidates from the viewpoint of the best possible
preference score and the second model evaluated them from the perspective of the worst
possible preference score. The two distinctive scores have been combined to form a
comprehensive index such that an overall ranking for all the candidates can be obtained.
Finally we illustrated our method with two examples. In addition, the extension of some
other ranking methods to rank of decision making units in DEA framework such as the
proposed approach by Golam Abri et al. [14] can be interesting for ranking of efficient
candidates in voting systems as a research work.

In our opinion, we feel that there are many other ranking methods in DEA and should
be considered for voting systems later on. Some of these methods are discussed below.

(1) Ramazani-Tarkhorani et al. [30] obtained a common set of weights (CSW) to
create the best efficiency score of a group composed of efficient units in DEA.
Development of their method for ranking of efficient candidates in voting systems
may also produce interesting results.

(2) Jahanshaloo et al. [23] defined an ideal line determined a CSW for efficient
units in DEA and then a new efficiency score obtained and ranked them with
it. In the second method, they introduced a special line and then compared all
efficient units with it and ranked them. Extending of these two methods can be
effective for ranking of effective candidates in voting systems.

(3) Jahanshaloo et al. [24] presented a new super-efficient method to rank all
decision-making units using the TOPSIS method. Development of this method
for ranking of all candidates in voting systems may also give interesting results.

(4) Amirteimoori and Kordrostami [3] proposed a super-efficiency DEA model to
discriminate the performance of efficient decision making units. How to apply
this model to develop a more general model with sound mathematical properties
in ranking of efficient candidates is a direction for future research.
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Abstract
This article discusses the estimation of Weibull distribution parame-
ters based on hybrid censored data under constant-stress partially ac-
celerated test model. Two estimation methods; maximum likelihood
(ML) and percentile bootstrap (PB) are used to make statistical in-
ference on the Weibull distribution parameters and the acceleration
factor. The mean square errors of the estimators are calculated to
evaluate their performances through a Monte Carlo simulation study.
Moreover, the confidence intervals lengths (CILs) and their associated
coverage probabilities (CPs) are obtained. Finally, to demonstrate the
proposed methodology, an arithmetic example is given.

Keywords: Statistics; reliability; percentile bootstrap; confidence interval; cov-
erage rate; hybrid censoring; mean square error.

2000 AMS Classification: 62N01, 62N05.

Received : 16.09.2014 Accepted : 28.01.2015 Doi : 10.15672/HJMS.20157211089

1. Introduction
The ordinary life testing methods of high reliability products usually need a long period

to gain sufficient failure data required to do inferences. So, to perform reliability analysis,
accelerated life tests (ALTs) are the most common ways to measure such products’ life.
Under such test settings, products are tested at higher-than-usual levels of stress to induce
failures rapidly and economically. Applying ALTs depends on a life-stress relationship.
The parameters of life can be estimated via this relationship by using the failure data
obtained under accelerated conditions. However, in some cases such a relationship can’t
be known or assumed. Thus, ALTs can’t be applied and the partially accelerated life
tests (PALTs) come to be a good appliance to implement the needed life tests.
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The stress can be used in different techniques, frequently applied techniques are
constant-stress and step-stress. Under step-stress PALTs, a test unit is first run at use
condition and, if it does not fail for a definite time, then it is run at accelerated condition
until failure happens or the observation is stopped. But the constant-stress PALTs run
each unit at either use condition or accelerated condition only, i.e. each unit is run at
a constant-stress level until the test is finished. Accelerated stresses include higher than
normal temperature, power, pressure, load, etc., for more details see Nelson [28].

In this article, we deal with hybrid censored constant-stress PALTs when the lifetime
of test unit follows Weibull distribution. PALTs have been considered under Type-I and
Type-II censoring schemes by numerous authors, for example, see Goel [18], DeGroot and
Goel [12], Bhattcharyya and Soejoeti [9], Bai and Chung [7], Bai et al. [8], Abdel-Ghaly
et al. [1], Abdel-Ghaly et al. [2], Abdel-Ghaly et al. [3], Abdel-Ghani [4], Abdel-Ghani
[5], Ismail [21], Aly and Ismail [6], Ismail and Sarhan [25], Ismail et al. [20] and Ismail
[23].

In general, accelerated tests are frequently ended before all items fail. The estimates
from the censored data are less precise than those from complete data. However, this is
more than offset by the reduced test time and cost. The most used censoring schemes
are Type-I and Type-II censoring. Consider n units placed on life test. In traditional
Type-I censoring, the experiment lasts up to a pre-specified time C1. Any failures that
happen after that time are not witnessed. The end point C1 of the experiment is sup-
posed to be s-independent of the failure times. But in traditional Type-II censoring, the
experimenter finishes the experiment after a pre-identified number of units R ≤ n fail.
In this situation, only the lowest lifetimes are noticed. In Type-I censoring, the num-
ber of failures witnessed is random and the endpoint of the experiment is fixed. But in
failure-censoring R is fixed and the termination time is random. Several previous works
have considered the reliability analysis using the traditional time- and failure- censoring
schemes under different life distributions, for more details one can see Cohen [11].

Concerning hybrid censoring scheme it can be applied as follows. Consider a life testing
experiment in which n units are placed on test concurrently. Failure times are noticed and
the test is finished either at a pre-specified time C1 or based on a pre-determined number
R of failures acquired by a time; say C2 whichever is happened first. Such a combination
of Type-I and Type-II censoring schemes is identified as hybrid censoring scheme. So,
sampling according to the hybrid censoring scheme is finished atmin (C1, C2). It is noted
that the traditional time- and failure- censoring schemes can be found as special cases of
hybrid censoring scheme by taking R = n and C1 =∞, respectively. The most important
benefit of applying hybrid censoring scheme is that it preserves the probable experiment
time and cost. Several authors have discussed the statistical inference problem about
the parameters for sampling schemes Type-I and Type-II censoring. In this work the
estimation of parameters is studied under constant-stress partially accelerated life tests
(CSPALTs) with hybrid censored data supposing Weibull distribution. It is also supposed
that the failed items are not exchanged.

Although the hybrid censoring scheme is applicable, most of preceding works under
PALTs were studied using the usual time- and failure- censoring schemes and no con-
sideration has been provided in examining hybrid censored data. All papers prepared
under hybrid censoring were correlated with ordinary or fully accelerated tests, see, for
example, Fairbanks et al. [17], Draper and Guttman [14], Chen and Bhattacharyya [10],
Ebrahimi [15], Gupta and Kundu [19], Kundu [26], Xie [31], Park and Balakrishnan [29]
and Zhang et al. [32]. Recently, only two papers made by Ismail [22] and Ismail [24]
have considered the hybrid censoring scheme under step-stress PALTs.

The rest of the paper is structured as follows. In Section 2 the model and the hybrid
censored data are designated. The maximum likelihood (ML) and percentile bootstrap
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(PB) estimations of the CSPALTs model parameters are considered in Section 3. Section
4 covers the simulation results. Section 5 presents an illustrative example. Conclusion is
yielded in Section 6.

2. Model description
In this study, it is assumed that the lifetime of a test unit sayX under normal condition

has Weibull distribution with probability density function (PDF) given by

f(x;β, η) =
β

η
(
x

η
)β−1e−(x/η)β , x > 0, β > 0, η > 0,(2.1)

In fact, Weibull distribution has high flexibility compared to other distributions. Its
failure rate function can be increasing, decreasing and constant according to the value of
the shape parameter. For more information, see Dimitri [13].

The survival function of this distribution is given by

R(x) = e−(x/η)β ,(2.2)

.
The matching failure rate function is

h(x) =
β

η
(
x

η
)β−1.(2.3)

Constant-stress PALTs can be processed according to the following steps and assump-
tions.

(1) n1 units randomly selected among n test units sampled are assigned to run under
normal stress and n2 (= n− n1) items are allotted to run under severe stress.

(2) Each item is tested until the censoring times C1 or C2 is realized whichever is
smaller or the item fails.

(3) The lifetimes Xi, i = 1, ..., n1 of units consigned to normal (use) stress, are i.i.d.
r.v.’s.

(4) The lifetimes Yj , j = 1, ..., n2 of units assigned to severe stress, are i.i.d r.v.’s.
Now, for a unit subjected to accelerated condition, the PDF of its lifetime say Y is

provided by

f(y;λ, β, η) =
λβ

η
(
λy

η
)β−1e−(λy/η)β , y > 0, λ > 1, β > 0, η > 0,(2.4)

where Y = λ−1X and λ is the acceleration factor.

Because the test in Type-I censoring is finished when a pre-specified time C 1 is at-
tained and in failure-censoring the test is ended based on a pre-defined number R of
failures gained by a time C 2; say. Accordingly, the failure times x(??)≤...≤ x(nu)≤ C 1

(or C 2) and y(??)≤...≤ y(na)≤ C 1 (or C 2) are ordered failure times at use and acceler-
ated conditions respectively, where nu (< n1) and na (< n2) are the numbers of items
failed at use and accelerated conditions, respectively.

Under hybrid censoring scheme, supposing that R and C 1 are predetermined, we can
observe the following data.
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If C 1 < C 2, the sample is x(??)≤...≤ x(nu)≤ C 1 and y(??)≤...≤ y(na)≤ C 1.

If not, the sample is x(??)≤...≤ x(nu)≤ C 2 and y(??)≤...≤ y(na)≤ C 2.

3. Estimation process
Here, the maximum likelihood estimates (MLEs) of the CSPALTs model parameters

under hybrid censoring as well as their confidence limits are considered.

3.1. ML point estimation. Now, let us define the indicator functions: δui ≡ I(Xi
≤ C 1 (or C 2)) and δaj ≡ I(Yj ≤ C 1 (or C 2)). Then the total likelihood function for
(x1;δu1, . . . , xn1;δun1, y1;δa1, . . . , yn2;δan2) under CSPALTs is given by

L(x, y|λ, β, η) =

n1∏
i=1

Lui(xi, δui|β, η) .

n2∏
j=1

Laj(yj , δaj |λ, β, η)

=

n1∏
i=1

[
β

η

(
xi
η

)β−1

exp{− (xi/η)β}]δui [exp{− (Cδ1R1 Cδ2R2 /η)β}]δ̄ui

×
n2∏
j=1

[
λβ

η

(
λyj
η

)β−1

exp{− (λyj/η)β}]δaj [exp{− (λ Cδ1R1 Cδ2R2 /η)β}]δ̄aj ,

(3.1)

where,
Lui and Lai denote the contributions of the items i, i = 1, . . . , n1 and j, j = 1, . . . , n2

to the total likelihood function under use and accelerated conditions, respectively; and
δ̄ui = 1− δui, δ̄aj = 1− δaj , δ1R=1 if C 2 > C 1 and 0 otherwise, and δ2R=1 if C 2 <

C 1 and 0 otherwise.

The value of η̂ can be found by

η̂ =

{
ψ

nu + na

} 1
β̂

,(3.2)

where

ψ =
∑n1
i=1 δui x

β
i +λ

β +
∑n2
j=1 δaj y

β
j + (Cδ1R1 Cδ2R2 )

β
(n1−nu)+(λ Cδ1R1 Cδ2R2 )

β
(n2−na) .

Now, we have two ML non-linear equations which can be extracted as follows.

na β̂

λ̂
− [

(nu + na) β̂ λ̂
β̂−1

ψ
] [

n2∑
j=1

δaj y
β̂
j + (Cδ1R1 Cδ2R2 )

β̂
(n2−na)] = 0,(3.3)

nu + na

β̂
+

n1∑
i=1

δui lnxi +

n2∑
j=1

δaj ln yj − (nu + na) ln

(
ψ

nu + na

)1/β̂

+na ln λ̂ + β̂

(
nu + na

ψ

)1/β̂

= 0.(3.4)
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From equation (3.3), the value of λ̂ is easily determined by the following formula.

λ̂ =

 na[
∑n1
i=1 δui x

β̂
i + (Cδ1R1 Cδ2R2 )

β̂
(n1−nu)]

nu [
∑n2
j=1 δaj y

β̂
j + (Cδ1R1 Cδ2R2 )

β̂
(n2−na) ]


1
β̂

.(3.5)

After substituting for λ̂, the equation (3.4) can be expressed by

nu +na

β̂
+

n1∑
i=1

δui lnxi +

n2∑
j=1

δaj ln yj

−nu
∑n1
i=1 δui x

β̂
i ln xi + (Cδ1R1 Cδ2R2 )

β̂
(n1−nu) ln (Cδ1R1 Cδ2R2 )∑n1

i=1 δui x
β̂
i + (Cδ1R1 Cδ2R2 )

β̂
(n1−nu)

−na
∑n2
j=1 δaj y

β̂
j ln yj + (Cδ1R1 Cδ2R2 )

β̂
(n2−na) ln (Cδ1R1 Cδ2R2 )∑n2

j=1 δaj y
β̂
j + (Cδ1R1 Cδ2R2 )

β̂
(n2−na)

= 0.(3.6)

To get the value of β̂, the Newton-Raphson method is utilized to solve the non-linear
equation (3.6), numerically. Consequently, based on the value of β̂, the values of η̂ and
λ̂ can be simply determined from (3.2) and (3.5) respectively.

3.2. ML interval estimation. In this subsection, the approximate confidence bounds
of the parameters are obtained based on the asymptotic distribution of the MLEs of
the elements of the vector of unknown parameters Ω = (β, η, λ). It is known that the
asymptotic distribution of the MLEs of Ω is given by; see Miller [27],

((β̂−β), (η̂−η), (λ̂− λ))→ N (0, I−1(β, η, λ))

where I−1(β, η, λ) is the variance-covariance matrix of the unknown parameters Ω =
(β, η, λ). The elements of the 3 × 3 matrix I−1 , Iij (β, η, λ), i, j = 1, 2, 3 ; can be
approximated by Iij(β̂, η̂, λ̂), where

Iij(Ω̂) = − ∂
2lnL(Ω)
∂Ωi∂Ωj

|Ω=Ω̂

Thus, the approximate 100(1 - γ)% two sided confidence intervals of β, η and λ are,
respectively, yielded by

±Zγ/2
√

I−1
11 (β̂, η̂, λ̂), η̂ ± Zγ/2

√
I−1
22 (β̂, η̂, λ̂) and λ̂± Zγ/2

√
I−1
33 (β̂, η̂, λ̂).

where Zγ/2 is the upper (γ/2)th percentile of a standard normal distribution.

3.3. Percentile bootstrap estimation. In this section, we use a parametric bootstrap
method to construct CIs for the unknown parameters β, η and λ. The bootstrap is a
re-sampling technique for statistical inference. It is frequently used to estimate CIs. Also,
it can be used to estimate bias and variance of an estimator. It has the advantage of
computational ease especially for large sample sizes. We present the percentile bootstrap
CIs (PBCIs) proposed by Efron [16]. The following steps can be proceeded to obtain
bootstrap samples for the proposed method.
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(1) Using the original hybrid censored sample, x(??)≤...≤ x(nu)≤ C 1 and y(??)≤...≤
y(na)≤ C 1 if C 1 < C 2 or x(??)≤...≤ x(nu)≤ C 2 and y(??)≤...≤ y(na)≤ C 2 if C 2

< C 1, obtain β̂, η̂ and λ̂.
(2) Using the values of n1 and n2, generate two independent samples of sizes n1 and n2

from Weibull distribution, x∗ = (x∗1 < x∗2 < ... < x∗n1
) and y∗ = (y∗1 < y∗2 < ... < y∗n2

).
(3) As in step 1 based on x∗ and y∗ compute the bootstrap sample estimates of β̂, η̂ and λ̂

say, β̂∗, η̂∗ and λ̂∗.
(4) Repeat the above steps 2 and 3 N (=10,000) times representing N different bootstrap

samples.
(5) Arrange all β̂∗, η̂∗ and λ̂∗in an ascending order to obtain the bootstrap sample ϕ̂∗[1]

` , ϕ̂
∗[2]
` ,

..., ϕ̂
∗[N ]
` , `= 1, 2, 3, where ϕ∗

1 = β∗, ϕ∗
2 = η∗ and ϕ∗

3 = λ∗.

To obtain PBCIs, let G(z) = P (ϕ̂∗
` ≤ z) be CDF of ϕ̂∗

` . Define ϕ̂∗
`boot = G−1(z) for

given z. The approximate bootstrap100(1− γ)%CI of ϕ̂∗
` is given by

(∗`boot(
γ
2

), ϕ̂∗
`boot(1− γ

2
)).

4. Simulation studies
In this section simulation studies are made to evaluate the performances of the MLEs

in terms of their mean square errors (MSEs) for various choices of n, R and C1 values.
Also, the 95 % asymptotic confidence bounds based on the asymptotic distribution of the
MLEs are constructed and their lengths are computed and presented with the associated
coverage probabilities (CPs). For different hybrid censored data sets, the average values
of the MSEs, confidence interval lengths (CILs) and CPs are calculated using 10,000
replications and the results are given in Tables 1-6. In each Table, the odd rows repre-
sent the results of the ML estimation for β, η and λ, respectively, while the even ones
denote the results of the percentile bootstrap estimation (between brackets) for the three
parameters respectively.

From Tables 1-6 some notes can be discovered concerning the two approaches as
follows.

(1) For fixed n and R, the MSEs decrease as C 1 increases.
(2) For fixed n and C 1, the MSEs decrease as R increases.
(3) For fixed R and C 1, the MSEs decrease as n increases.
(4) For fixed R and C 1, the CILs decrease as n increases.
(5) For fixed n and C 1, the CILs decrease as R increases.
(6) For fixed n and R, the CILs decrease as C 1 increases.

Also, we observed that the computed CPs of the confidence bounds for each parameter
are very close to the nominal level as n increases. The same pattern is noticed as R or
C 1 increases. That is, the procedure is successfully working.

Now, when we compare between the two methods of estimation, it is observed that
for relatively small and moderate sample sizes, percentile bootstrap method works better
than the ML method. It provides smaller MSEs, narrower CILs with closest CPs to the
nominal level. The method of bootstrap is recommended to use even for large samples
for computational ease and high precision.

Moreover, point and 95 % confidence interval estimations for the survival function at
mission times 3, 5, 7 and 10 are obtained using the two methods of estimation. The
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estimations of the true survival are calculated via the following expressions:

(x)=exp{− (x/η̂)β̂}, for items run under use condition,

or

(y)=exp{− (λ̂y/η̂)β̂}, for items run under accelerated condition.

As Soliman [30] shows, "estimation of the reliability function of some equipment is
one of the main problems of reliability theory. In most practical applications and life-
test experiments, the distributions with positive domain, e.g., Weibull, Burr-XII, Pareto,
Beta, and Rayleigh, are quite appropriate models".

The estimation results of the true survival function are introduced in Tables 7 and
8. It can be observed that the percentile bootstrap method gives reliability estimations
better than the ML method.



188

Table 1: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 1.5, η

= 2 and λ = 2.5 when C 1 = 20 and n = 25 (n1=12, n2=13).
R = 10 R = 15 R = 20
0.038, 1.235, 0.947
(0.026), (1.127), (0.948)
0.047, 1.786, 0.945
(0.031), (1.514), (0.946)
0.054, 1.911, 0.943
(0.041), (1.817), (0.944)

0.017, 0.992, 0.948
(0.014), (0.842), (0.949)
0.023, 1.415, 0.946
(0.018), (1.217), (0.947)
0.037, 1.549, 0.944
(0.031), (1.311),(0.946)

0.007, 0.851, 0.952
(0.004), (0.762), (0.951)
0.012, 1.194, 0.948
(0.009), (0.988), (0949)
0.029, 1.352, 0.946
(0.018), (1.132), (0.948)

Table 2: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 1.5, η

= 2 and λ = 2.5 when C 1 = 20 and n = 35 (n1=17, n2=18).
R = 15 R = 20 R = 25
0.011, 0.715, 0.953
(0.008), (0.689), (0.951)
0.019, 1.218, 0.947
(0.015), (1.115), (0.948)
0.033, 1.355, 0.945
(0.026), (1.172), (0.947)

0.006, 0.661, 0.950
(0.004), (0.541), (0.950)
0.011, 0.907, 0.949
(0.007), (0.833), (0.950)
0.021, 1.141, 0.948
(0.013), (0.917), (0.949)

0.002, 0.526, 0.950
(0.001), (0.418), (0.950)
0.007, 0.789, 0.951
(0.003), (0.640), (0.950)
0.013, 0.911, 0.951
(0.009), (0.763), (0.950)

Table 3: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 0.5, η

= 0.7 and λ = 3 when C 1 = 30 and n = 25 (n1=12, n2=13).
R = 10 R = 15 R = 20
0.021, 1.015, 0.948
(0.016), (0.985), (0.949)
0.032, 1.487, 0.946
(0.024), (1.311), (0.948)
0.041, 1.802, 0.945
(0.036), (1.587), (0.947)

0.015, 0.910, 0.949
(0.011), (0.852), (0.950)
0.019, 1.321, 0.947
(0.0014), (1.103), (0.949)
0.027, 1.463, 0.945
(0.021), (1.298), (0.947)

0.005, 0.754, 0.951
(0.003), (0.669), (0.950)
0.011, 0.988, 0.952
(0.005), (0.901), (0.951)
0.018, 1.076, 0.954
(0.0012), (0.992), (0.952)
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Table 4: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 0.5, η

= 0.7 and λ = 3 when C 1 = 30 and n = 35 (n1=17, n2=18).
R = 15 R = 20 R = 25
0.006, 0.411, 0.950
(0.004), (0.392), (0.950)
0.010, 0.762, 0.949
(0.007), (0.611), (0.949)
0.024, 1.117, 0.948
(0.019), (0.996), (0.949)

0.004, 0.286, 0.950
(0.002), (0.203), (0.950)
0.007, 0.531, 0.951
(0.004), (0.498), (0.950)
0.012, 0.820, 0.952
(0.008), (0.758), (0.951)

0.001, 0.197, 0.950
(0.002), (0.163), (0.950) 0.003,
0.312, 0.951
(0.002), (0.277), (0.950)
0.008, 0.524, 0.951
(0.005), (0.469), (0.950)

Table 5: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 1.5, η

= 0.7 and λ = 3 when C 1 = 35 and n = 50 (n1=20, n2=30).
R = 15 R = 20 R = 25
0.003, 0.397, 0.950
(0.002), (0.364), (0.950)
0.007, 0.748, 0.949
(0.006), (0.711), (0.950)
0.019, 1.001, 0.949
(0.014), (0.964), (0.950)

0.002, 0.254, 0.950
(0.001), (0.226), (0.950)
0.005, 0.503, 0.950
(0.003), (0.489), (0.950) 0.007,
0.611, 0.950
(0.004), (0.522), (0.950)

0.001, 0.182, 0.950
(0.001), (0.165), (0.950) 0.002,
0.292, 0.950
(0.001), (0.203), (0.950) 0.003,
0.479, 0.950
(0.002), (0.445), (0.950)

Table 6: The results of MSEs, CILs and CPs using the methods of ML and percentile
bootstrap (between brackets), respectively, with true parameter values set at β = 0.5, η

= 0.7 and λ = 3 when C 1 = 35 and n = 50 (n1=20, n2=30).
R = 15 R = 20 R = 25
0.004, 0.402, 0.950
(0.003), (0.387), (0.950)
0.008, 0.751, 0.949
(0.006), (0.620), (0.950)
0.020, 1.004, 0.949
(0.016), (0.981), (0.950)

0.003, 0.261, 0.950
(0.002), (0.207), (0.950)
0.006, 0.508, 0.950
(0.004), (0.433), (0.950) 0.009,
0.627, 0.951
(0.004), (0.489), (0.950)

0.001, 0.182, 0.950
(0.001), (0.147), (0.950) 0.003,
0.304, 0.950
(0.002), (0.287), (0.950) 0.004,
0.481, 0.950
(0.003), (0.423), (0.950)



190

Table 7: Average values of point and interval estimations for the survival function at
different mission times 3, 5, 7 and 10 according to the methods of ML and percentile

bootstrap (between brackets), respectively, with true parameter values set at β = 1.5, η
= 0.7 and λ = 3 when C 1 = 35 and n = 50 (n1=20, n2=30).

R = 15 R = 20 R = 25
0.746, 0.688, 0.879
(0.797), (0.708, 0.893)
0.731, 0.678, 0.864
(0.782), (0.711, 0.883)
0.694, 0.647, 0.822
(0.741), (0.683, 0.852)
0.658, 0.625, 0.794
(0.719), (0.667, 0.814)

0.767, 0.722, 0.896
(0.812), (0.742, 0.898)
0.752, 0. 694, 0.887
(0.801), (0.734, 0.883)
0.746, 0.688, 0.873
(0.789), (0.723, 0.876)
0.728, 0.671, 0.868
(0.763), (0.692, 0.871)

0.782, 0.744, 0.920
(0.831), (0.758, 0.932)
0.771, 0.721, 0.895
(0.822), (0.744, 0.912)
0.766, 0.706, 0.889
(0.804), (0.723, 0.896)
0.748, 0.697, 0.874
(0.781), (0.711, 0.883)

Table 8: Average values of point and interval estimations for the survival function at
different mission times 3, 5, 7 and 10 according to the methods of ML and percentile

bootstrap (between brackets), respectively, with true parameter values set at β = 0.5, η
= 0.7 and λ = 3 when C 1 = 35 and n = 50 (n1=20, n2=30).

R = 15 R = 20 R = 25
0.741, 0.682, 0.873
(0.789), (0.702, 0.882)
0.728, 0.673, 0.859
(0.776), (0.694, 0.871)
0.685, 0.638, 0.804
(0.733), (0.675, 0.838)
0.643, 0.611, 0.781
(0.692), (0.642, 0.798)

0.760, 0.704, 0.882
(0.802), (0.728, 0.891)
0.747, 0. 694, 0.870
(0.788), (0.709, 0.879)
0.738, 0.676, 0.856
(0.778), (0.687, 0.864)
0.713, 0.664, 0.843
(0.748), (0.663, 0.832)

0.773, 0.728, 0.887
(0.825), (0.746, 0.904)
0.762, 0.694, 0.877
(0.815), (0.738, 0.894)
0.743, 0.682, 0.863
(0.791), (0.692, 0.871)
0.728, 0.672, 0.841
(0.767), (0.687, 0.849)

5. A demonstrative example
To demonstrate the proposed methodology, a demonstrative example via hybrid cen-

sored data set from Weibull distribution is considered. We use n = 75 (n1=25, n2=50),
β = 2, η = 2.5 and λ = 3 when C 1 = 40 and R = 20. The number of failures observed at
use and accelerated conditions are nu=11 and na=39, respectively, with censored items
nc=25. The MSEs associated with the MLEs of the parameters β, η and λ are 0.002,
0.003 and 0.005, respectively, while those associated with the percentile bootstrap esti-
mation are respectively 0.001, 0.002 and 0.004. In addition, a 95% CILs of the model
parameters β, η and λ using the two approaches ML and PB are 0.241, 0.462, 0.581 and
0.212, 0.409, 0.523, respectively. Moreover, the CPs associated with ML and PB are
respectively 0.948, 0.947, 0.949 and 0.950, 0.951, 0.950. Finally, the point and interval
estimations for the survival function at a mission time 6 according to the methods of
ML and PB (between brackets) are, respectively, 0.749, 0.691, 0.883 and (0.795), (0.734,
0.887).

6. Conclusion
In this article, the likelihood and percentile bootstrap estimation methods has been

applied to the CSPALTS model parameters assuming Weibull distribution under hybrid
censoring. The performance of the estimators has been examined in terms of their MSEs
via simulation studies for the two methods of estimation. Also, the CILs of the model
parameters have been obtained as well as their CPs. It is observed that for small and
moderate sample sizes, percentile bootstrap method works better than the approximate
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method. It provides smaller MSEs, narrower CILs with closest CPs to the nominal level.
The method of bootstrap is recommended to use even for large samples for computational
ease and high precision. Finally, an illustrative example has been given.
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Probability for transition of business cycle and
pricing of options with correlated credit risk
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Abstract
In this paper we propose the transition probability of business cycle
for the pricing of options with credit risk. In order to describe busi-
ness cycles of markets, the regime switching model is considered. We
provide the probability density functions of the occupation time of the
high volatility regime via Laplace transforms. Using these functions we
derive the analytic valuation formulae for options with correlated credit
risk and business cycle. We also illustrate the important properties of
options with numerical graphs.
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1. Introduction
In this paper we study the business cycle model for valuing options with credit risk.

It is assumed that the financial event occurs at some time in the market. This should
lead to the transition of volatilities of both the underlying stock and the option issuer’s
asset. The financial events are often modeled by the regime switching model to capture
the changes of the market environment by the unanticipated events (see, e.g., Hamilton
[8], Bollen [2], Buffington and Ellott [4], Boyle and Draviam [3], Zhang et al. [15], Zhu
et al. [16], Elliott et al. [7]). Based on this approach, we model the business cycle by a
continuous-time two-state regime switching.

The traditional option pricing based on Black-Scholes model [1] has been used the
assumption that options have no default risk. However, there exists the default risk of
the option writers in the over-the-counter (OTC) markets. OTC markets have grown
rapidly in size in recent years. That is, in the OTC markets, the counterparty default
risk is very important and should be considered for pricing of options.

∗Department of Mathematical Sciences, Seoul National University, Seoul 151-747, Republic
of Korea, Email: geonwoo@snu.ac.kr
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Johnson and Stulz [10] proposed the valuation of options with credit risk, which is
called Vulnerable option. In their model, the options depend on the liabilities of the option
issuers. If the default of the counterparty occurs at the maturity, the option holder takes
all assets of the counterparty. Their model also considers the correlation between the
option issuer’s asset and the underlying asset. Klein [11] developed the result of Johnson
and Stulz [10] by allowing for the proportional recovery of nominal claims in default.
Klein and Inglis [12] dealt with options with credit risk employing the stochastic interest
model of Vasicek [14]. Hui et al. [9] extended a vulnerable option valuation model that
incorporates a stochastic default barrier which reflects the expected leverage level of the
option issuer. Chang and Hung [5] provided analytic formulae to evaluate vulnerable
American options under the assumptions of Klein’s model. In the recent study, Shiu.
et al [13] proposed a closed-form approximation for valuing European basket warrants
with credit risk. However, none of the studies consider options with credit risk under the
varying market environment.

The rest of the paper is organized as follows. Section 2 presents the business cycle
modeling by using regime switching. In particular, we provide the probability density
function of the occupation time of high volatility in a given time period. Section 3 gives
the formulae for the arbitrage-free price of options with credit risk as integral under
our model. Finally, we provide the numerical examples with various graphs to show the
properties of option prices in section 4.

2. The model
We assume that a given filtered complete probability space (Ω,F, {Ft} ,Q) satisfies

the usual conditions, where Q presents a risk neutral measure‡ and the filtration {Ft} is
generated by Brownian motions and two independent Poisson point processes. Based on
the settings of Klein [11], we model the correlated evolutions of the option issuer’s asset
value process Vt and the underlying stock process St as the following:

dSt = rStdt+ σ1(t)StdW
1
t ,(2.1)

dVt = rVtdt+ σ2(t)VtdW
2
t ,(2.2)

where r is a riskless interest rate, σi(t), (i = 1, 2) are the time-varying volatilities of each
process and W i

t , (i = 1, 2) are standard Brownian motions under a risk neutral measure
Q with correlation ρ. Here, we model the business cycle by the volatilities with two
regimes.

We refer to two regimes as the high volatility and the low volatility. The high volatility
region presents the economic contraction period when the market is stressed by some
financial event. On the other hands, the low volatility region presents the economic
expansion period, where the market has the stable economic environment. For modeling
these, we assume that σ1(t) and σ2(t) are governed by two independent Poisson point
processes P1 and P0 with a two state continuous-time Markov chain.

Let P1 and P0 be two independent Poisson point processes with intensity λ1 and λ0,
respectively. If we are in the high regime, issuer’s asset’s volatility is σ1 + δ1. We observe
the high volatility Poisson point processes P1. If we get a signal from this high volatility
point processes, issuer’s asset’s volatility is changed from σ1 + δ1 to σ1. If we are in the
low regime, issuer’s asset’s volatility is σ1. We observe the low volatility Poisson point
processes P0. If we get a signal from this low volatility point processes, issuer’s asset’s
volatility is changed from σ1 to σ1 + δ1. Surely, the volatility σ2(t) of underlying stock is

‡Elliott et al. [6] show the existence of an equivalent martingale measure in the regime
switching model. So, we can get the risk-neutral valuation under our model.
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affected by the same Poisson point processes as well. By P0 and P1, the volatility σ2(t)
moves between σ2 and σ2 + δ2.

Let Ut be the occupation time in the high regime from 0 to option’s maturity T . Then
it is defined by

Ut :=

∫ t

0

ε(s)ds(2.3)

with ε(t) =

{
0 Economic expansion regime (σi(t) = σi),
1 Economic contraction regime (σi(t) = σi + δi),

i = 1, 2,

where ε(t) is the random variable with two regimes 0 (= Low volatility) and 1 (=
High volatility). The following Proposition gives the probability density function of Ut
conditioned on ε(0).

2.1. Proposition. For a given time T , the probability density functions of Ut conditioned
on ε(0) are given by

P (Ut = u|ε(0) = 1) := f1(u;T ) = e−λ1T δ0(T − u) + λ1e
−(λ1−λ0)u−λ0T

×[0F1(2;λ0λ1u(T − u))λ0u+ 0F1(1;λ0λ1u(T − u))], 0 < u < T(2.4)

P (Ut = u|ε(0) = 0) := f0(u;T ) = e−λ0T δ0(u) + λ0e
−(λ1−λ0)u−λ0T

×[0F1(1;λ0λ1u(T − u)) + 0F1(1;λ0λ1u(T − u))λ1 − λ1], 0 < u < T(2.5)

where 0F1(a; z) is the generalized hypergeometric function defined by

0F1(a; z) =

∞∑
n=0

1

(a)n

zn

n!
,

with the rising factorial (a)0 = 1 and (a)n = a(a+ 1) · · · (a+ n− 1). And

δx(y) :=

{
1, if x = y,
0, if x 6= y.

Proof. Let fj(u;T ) be the probability density function of Ut over [0, T ]. Then, by the
Laplace transform,

mj(r;T ) := E[e−rUT |ε(0) = j] = Lr(fj(·;T )).(2.6)

We also consider the two cases τj > T and τj < T , where τj is the random time of the
leaving state j satisfying P (τj > t) = e−λjt for each state j ∈ {0, 1}. We then have

m1(r;T ) = e−rT e−λ1T +

∫ T

0

e−λ1uλ1m0(r;T − u)e−rudu,(2.7)

m0(r;T ) = e−λ0T +

∫ T

0

e−λ0uλ0m1(r;T − u)du.(2.8)

Taking the Laplace transform of the above equations gives

m̂j(r; s) := Ls(mj(r; ·)) = Ls[Lr(fj(·;T ))(r; ·)].(2.9)

Then we have

m̂1(r; s) =
s+ λ0 + λ1

rs+ rλ0 + s2 + sλ1 + sλ0
,(2.10)

m̂0(r; s) =
r + s+ λ0 + λ1

rs+ rλ0 + s2 + sλ1 + sλ0
.(2.11)
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The equation (2.10) is equal to∫ ∞
0

e−rx
s+ λ0 + λ1

s+ λ0
e
− s(s+λ0+λ1)

s+λ0
x
dx

=

∫ ∞
0

e−rxe−(s+λ1)x

(
1 +

λ1

s+ λ0

) ∞∑
n=0

(
λ0λ1x

s+ λ0

)n
1

n!
dx

=

∫ ∞
0

e−rx
∫ ∞
0

e−sye−λ1x

×

(
δx(y) +

∞∑
n=1

(xλ0λ1)ne−λ0(y−x)(y − x)n−1

n!(n− 1)!
1{x<y}

)
dydx

+

∫ ∞
0

e−rx
∫ ∞
0

e−sye−λ1x
∞∑
n=0

λ1(xλ0λ1)ne−λ0(y−x)(y − x)n

n!n!
1{x<y}dydx

=

∫ ∞
0

e−rx
∫ ∞
0

e−sy
(
e−λ1xδx(y) + λ1e

−(λ1−λ0)x−λ0y

× [0F1(2;λ0λ1x(y − x))λ0x+ 0F1(1;λ0λ1x(y − x))]1{x<y}
)
dydx.

Substituting (u, T ) for (x, y) yields the equation (2.4). Similarly, from the equation
(2.11), we have∫ ∞

0

e−rx
(
δ0(x)

s+ λ0
+
λ0(s+ λ0 + λ1)

(s+ λ0)2
e
− s(s+λ0+λ1)

s+λ0
x
dx

)
dx

=

∫ ∞
0

e−rxδ0(x)

∫ ∞
0

e−sye−λ0ydydx

+

∫ ∞
0

e−rx
∫ ∞
0

e−sye−λ1x
∞∑
n=0

λ0(xλ0λ1)ne−λ0(y−x)(y − x)n

n!n!
1{x<y}dydx

+

∫ ∞
0

e−rx
∫ ∞
0

e−sye−λ1x

×

(
∞∑
n=0

λ0λ1(xλ0λ1)ne−λ0(y−x)(y − x)n

n!n!
− λ0λ1e

−λ0(y−x)

)
1{x<y}dydx

=

∫ ∞
0

e−rx
∫ ∞
0

e−sy
(
e−λ0yδ0(x) + λ0e

−(λ1−λ0)x−λ0y[0F1(1;λ0λ1x(y − x))

+0F1(1;λ0λ1x(y − x))λ1 − λ1]1{x<y}
)
dydx.

In a same way, substituting (u, T ) for (x, y) in above equation completes the proof. �

For given Ut = u we also can obtain the following solutions of equation (2.1) and
equation (2.2), respectively,

St = S0e
(rt− 1

2
η1(u,t)+

∫ t
0 σ1(s)dW

1
s ), Vt = V0e

(rt− 1
2
η2(u,t)+

∫ t
0 σ2(s)dW

2
s ),(2.12)

where ηi(u, t) = σ2
i t+ (2σiδi + δ2i )u, i = 1, 2.

In order to handle the above processes, we need to verify the properties of

J1(t) :=

∫ t

0

σ1(s)dW 1
s , J2(t) :=

∫ t

0

σi(s)dW
2
s .

If Ut is known, we can find the properties of Ji(t), (i = 1, 2). The results are presented
by the following lemmas.

2.2. Lemma. Conditioned on Ut = u ≤ t, Ji(t) has the normal distribution with mean
0 and variance ηi(u, t), for each i ∈ {1, 2}.
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Proof. Let us consider the decomposition of J1(t) as

J1(t) = δ1

∫ t

0

ε(s)dW 1
s + σ1W

1
t := δ1X1(t) + σ1W

1
t .

For some k, kε(t) is a bounded simple function. So, the Novikov condition ofE[e
1
2

∫ t
0 (kε(s))2ds]

is satisfied and e
∫ t
0 kε(s)dW

1
s−

u2

2

∫ t
0 ε(s)

2ds is a martingale for given Ut = u. Therefore,

E[e
∫ t
0 kε(s)dW

1
s−

k2

2

∫ t
0 ε(s)

2ds|Ut = u] = E[e
∫ t
0 kε(s)dW

1
s−

k2

2
u|Ut = u]

= E[ekX1(t)− k
2

2
u|Ut = u] = 1.

For given Ut = u, since E[ekX1(t)] = e
k2

2
u, X1(t) has the normal distribution with mean

0 and variance u. We also can calculate the covariance of X1(t) and W 1
t as following:

E[X1(t)W 1
t

∣∣∣Ut = u]

= E

[
lim
n→∞

n∑
k=1

∫ kt/n

(k−1)t/n

1{ε(s)=1,
(k−1)t
n
≤s≤ kt

n
}dW

1
sW

1
t

∣∣∣Ut = u

]

= lim
n→∞

E


 ∑
ε(s)=1,

(k−1)t
n
≤s≤ kt

n

W 1
kt
n
−W 1

(k−1)t
n

W 1
t

∣∣∣Ut = u


= lim

n→∞
E


 ∑
ε(s)=1,

(k−1)t
n
≤s≤ kt

n

W 1
kt
n
W 1
t


−

 ∑
ε(s)=1,

(k−1)t
n
≤s≤ kt

n

W 1
(k−1)t
n

W 1
t

∣∣∣Ut = u


= lim

n→∞
E

 ∑
ε(s)=1,

(k−1)t
n
≤s≤ kt

n

t

n

∣∣∣Ut = u


= E

[
lim
n→∞

n∑
k=1

t

n
1{ε(s)=1,

(k−1)t
n
≤s≤ kt

n
}

∣∣∣Ut = u

]
= u.

Hence, for given Ut = u, J1(t) has the normal distribution with mean 0 and variance
σ2
1t + (2σ1δ1 + δ21)u. In a same way, J2(t) has the the normal distribution with mean 0

and variance σ2
2t+ (2σ2δ2 + δ22)u as well. �

2.3. Lemma. Conditioned on Ut = u ≤ t, the correlation of J1(t) and J2(t) is given by

ρ12(u, t) =
[(σ1δ2 + σ2δ1 + δ1δ2)u+ σ1σ2t]ρ√

η1(u, t)η2(u, t)
.

Proof. From the decomposition in Lemma 2.2 and dW 1
t dW

2
t = ρdt, the covariance J1(t)

and J2(t) is given by

Cov(J1(t), J2(t)) = E[(δ1X1(t) + σ1W
1
t )(δ2X2(t) + σ2W

2
t )
∣∣Ut = u]

= δ1δ2E[X1(t)X2(t)
∣∣Ut = u] + σ1δ2E[W 1

t X2(t)
∣∣Ut = u]

+δ1σ2E[X1(t)W 2
t

∣∣Ut = u] + σ1σ2E[W 1
tW

2
t

∣∣Ut = u]

= δ1δ2ρu+ σ1δ2ρu+ δ1σ2ρu+ σ1σ2ρt.
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Therefore, the correlation of J1(t) and J2(t) is obtained by Lemma 2.2. �

3. Valuation of options with correlated credit risk
In this section we provide the formula of the European call option with credit risk in

a business cycle environment. As in Klein [11], we assume that if default or bankruptcy
of the option issuer occurs, the option issuer’s asset is immediately liquidated and the
scrap value at T is (1− α)VTD

−1(ST −K)+, where D is a constant value of the option
issuer’s liabilities and α is a constant showing the ratio of bankruptcy costs of the issuer’s
asset. We also assume that the option issuer declare default only if VT < D. Then, from
the equation (2.12), the discounted expected value of the call option with maturity T is
given by

C(T ) = e−rTEQ[(ST −K)+1{VT≥D} + (1− α)VTD
−1(ST −K)+1{VT<D}],(3.1)

where K is the strike price and 0 ≤ α ≤ 1. From this equation, we now provide the valu-
ation formula for a option with credit risk and business cycle by applying the Girsanov’s
theorem repeatedly.

For notational simplicity, we rewrite notations as

η1(u) := η1(u, T ), η2(u) := η2(u, T ), ρ̂(u) := ρ12(u, T ), δT := (1− α)VTD
−1.

3.1. Proposition. Let Cj be the arbitrage free price of a call option with credit risk and
initial state j (j = 0, 1). Then, the value Cj(T ) at time 0 of the option with maturity T
is given by

Cj(T ) =

∫ T

0

v(u)fj(u;T )du+ δ0(j)e−λ0T v(0) + δ1(j)e−λ1T v(T ),(3.2)

where fj(u;T ) (j = 0, 1) is defined in Proposition 1. And

v(u) = S0Φ2(a1(u), a2(u), ρ̂(u))−Ke−rTΦ2(b1(u), b2(u), ρ̂(u))

+S0δ0e
rT+ρ̂(u)

√
η1(u)η2(u)Φ2(c1(u), c2(u),−ρ̂(u))−Kδ0Φ2(d1(u), d2(u),−ρ̂(u)),

where Φ2 is the bivariate standard normal cumulative density function and

a1(u) =
ln(S0/K) + rT + 1

2
η1(u)√

η1(u)
,

a2(u) =
ln(V0/D) + rT − 1

2
η2(u) + ρ̂(u)

√
η1(u)η2(u)√

η2(u)
,

b1(u) =
ln(S0/K) + rT − 1

2
η1(u)√

η1(u)
,

b2(u) =
ln(V0/D) + rT − 1

2
η2(u)√

η2(u)
,

c1(u) =
ln(S0/K) + rT + 1

2
η1(u) + ρ̂(u)

√
η1(u)η2(u)√

η1(u)
,

c2(u) = −
ln(V0/D) + rT + 1

2
η2(u) + ρ̂(u)

√
η1(u)η2(u)√

η2(u)
,

d1(u) =
ln(S0/K) + rT − 1

2
η1(u) + ρ̂(u)

√
η1(u)η2(u)√

η1(u)
,

d2(u) = −
ln(V0/D) + rT + 1

2
η2(u)√

η2(u)
.
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Proof. From equation (3.1), the credit-risky call option value Cj(T ) at time 0 with ma-
turity T and an initial state j is given by

Cj(T ) = e−rTEQ[EQ[(ST −K)+1{VT≥D} + δT (ST −K)+1{VT<D}|Ut = u]]

= e−rT
∫ T

0

EQ[(ST −K)+(1{VT≥D} + δT 1{VT<D})|Ut = u]fj(u;T )du

+δ0(j)e−(r+λ0)TEQ[(ST −K)+(1{VT≥D} + δT 1{VT<D})|Ut = 0]

+δ1(j)e−(r+λ1)TEQ[(ST −K)+(1{VT≥D} + δT 1{VT<D})|Ut = T ].(3.3)

Let us consider the first term of the equation (3.3). For a fixed u, the conditional
expectation in the integral is divided into four terms as

e−rTEQ[(ST −K)+(1{VT≥D} + δT 1{VT<D})|Ut = u]

= e−rTEQ[ST 1{ST>K,VT≥D}|UT = u]− e−rTEQ[K1{ST>K,VT≥D}
∣∣UT = u]

+e−rTEQ[ST δT 1{ST>K}1{VT<D}|UT = u]− e−rTEQ[KδT 1{ST>K,VT<D}|UT = u]

:= I1 − I2 + I3 − I4.

Under the measure Q, the first term I1 can be expressed as

I1 =

∫ ∞
−∞

∫ ∞
−∞

S0e
− 1

2
η1(u)+

√
η1(u)z11{ST>K}1{VT≥D}

× 1

2π
√

1− ρ̂(u)
e
− 1

2(1−ρ̂(u)) (z
2
1−2ρ̂(u)z1z2+z

2
2)dz1dz2,(3.4)

where z1 = J1
T /
√
η1(u) and z2 = J2

T /
√
η2(u) are the standard normal variables with

correlation ρ̂(u). Then, by the change of variables with z̃1 = z1 −
√
η1(u), z̃2 = z2 −

ρ̂(u)
√
η1(u), we have

I1 =

∫ ∞
−∞

∫ ∞
−∞

S01{ST>K}1{VT≥D}(3.5)

× 1

2π
√

1− ρ̂(u)
e
− 1

2(1−ρ̂(u)) (z̃
2
1−2ρ̂(u)z̃1z̃2+z̃

2
2)dz̃1dz̃2.

Let Q̃ be the new equivalent probability measure defined by

dQ̃

dQ
= exp

(∫ T

0

θ(s)dWs −
1

2

∫ T

0

|θ(s)|2ds
)
,(3.6)

where W is vector in R2 and θ(s) = (σ1(s), ρ̂(u)σ1(s)). Then, by Girsanov’s theorem,

(
dW̃ 1

t

dW̃ 2
t

)
=

(
dW 1

t

dW 2
t

)
− θ(t)dt

is a R2-valued standard Brownian motion under the equivalent measure Q̃.
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We consider the equation (3.5) under the measure Q̃. Then, by applying Lemma 2.2
and Lemma 2.3, we have

I1 = EQ̃[S01{ST>K,VT>D}
∣∣UT = u]

= S0P̃
(
S0e

(rT− 1
2
η1(u)+

∫ T
0 σ1(s)dW

1
s ) > K,V0e

(rT− 1
2
η2(u)+

∫ T
0 σ2(s)dW

2
s ) > D

)
= S0P̃

(
J̃1
T > −

(
ln
S0

K
+ rT +

1

2
η1(u)

)
,

J̃2
T > −

(
ln
V0

D
+ rT − 1

2
η2(u) + ρ̂(u)

√
η1(u)η2(u)

))
= S0Φ2(a1(u), a2(u), ρ̂(u)).(3.7)

where J̃1
T =

∫ T
0
σ1(s)dW̃ 1

s and J̃2
T =

∫ T
0
σ1(s)dW̃ 2

s .
In a similar way, without the change of measure, I2 can be found.
For the evaluation I3, we change the variables as z̃1 = z1 −

√
η1(u) − ρ̂(u)

√
η2(u),

z̃2 = z2 −
√
η2(u)− ρ̂(u)

√
η1(u). And, define the equivalent measure by

dQ̃
dQ

= exp
(∫ T

0
θ(s)dWs − 1

2

∫ T
0
|θ(s)|2ds

)
, where θ(s) = (σ1(s) + ρ̂(u)σ2(s), σ2(s) +

ρ̂(u)σ1(s)). Then, by Girsanov’s theorem, we have

I3 = EQ̃[erTS0δ0e
ρ̂(u)
√
η1(u)η2(u)1{ST>K,VT<D}

∣∣UT = u]

= erTS0δ0e
ρ̂(u)
√
η1(u)η2(u)

×P̃
(
J̃T1 > −

(
ln
S0

K
+ rT +

1

2
η1(u) + ρ̂(u)

√
η1(u)η2(u)

)
,

J̃T2 >

(
ln
V0

D
+ rT +

1

2
η2(u) + ρ̂(u)

√
η1(u)η2(u)

))
= S0δ0e

rT+ρ̂(u)
√
η1(u)η2(u)Φ2(c1(u), c2(u),−ρ̂(u)).(3.8)

Again from the Radon-Nikodym derivative (3.6) that allows the change of probabil-
ity measure, we change the measure with θ(s) = (ρ̂(u)σ2(s), σ2(s))T . Then, under an
equivalent measure Q̃, I4 is evaluated as

I4 = Kδ0E
Q̃[1{ST>K,VT<D}

∣∣UT = u]

= Kδ0Φ2(d1(u), d2(u),−ρ̂(u)).(3.9)

Also one can obtain the second term and the third term of the equation (3.3) from above
results. This completes the proof. �

In a similar way, the following Proposition provides the price of the put option with
credit risk.

3.2. Proposition. Let Pj be the arbitrage free price of a put option with credit risk and
initial state j (j = 0, 1). Then, the value Pj(T ) at time 0 of the option with maturity T
is given by

Pj(T ) =

∫ T

0

v(u)fj(u;T )du+ δ0(j)e−λ0T v(0) + δ1(j)e−λ1T v(T ),(3.10)

where

v(u) = −S0Φ2(−a1(u), a2(u),−ρ̂(u)) +Ke−rTΦ2(−b1(u), b2(u),−ρ̂(u))

−S0δ0e
rT+ρ̂(u)

√
η1(u)η2(u)Φ2(−c1(u), c2(u), ρ̂(u)) +Kδ0Φ2(−d1(u), d2(u), ρ̂(u)).

Here, all parameters are given in Proposition 3.1.
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4. Numerical example
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Figure 1. Vulnerable call value for different moneyness (S0/K) and ε(0)
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Figure 2. Vulnerable call value for different debt ratio (D/V0) and ε(0)

In the previous section, we provide the option formulae represented as a integral form
under our model. In order to calculate these option formulae, we employ the Gauss-
Legendre quadrature as a numerical approximation method. Based on the values reported
by Boyle and Draviam [3] and Klein and Inglis [12], we use the following parameters unless
stated otherwise: S0 = K = 40, V0 = 100, D = 90, r = 0.05, T = 1, α = 0.25, ρ = 0, σ1 =
σ2 = 0.15, δ1 = δ2 = 0.1, , λ0 = λ1 = 1 and ε(0) = 0.

Fig. 1 illustrates how the prices of vulnerable call option for two initial states change
with the moneyness (S0/K). We can observe that the option with ε(0) = 0 procedure
higher prices than the option with ε(0) = 1 in high moneyness region as expected.
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Figure 3. Vulnerable call value for different debt ratio (D/V0) and ρ
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Figure 4. Vulnerable call value for different δ1 and ρ

Fig. 2 and Fig. 3 illustrate how the prices change when the debt ratio (D/V0) vary.
Fig. 2 shows decreasing trends of prices for different initial states. Here, the option with
ε(0) = 0 has always lower prices than the option with ε(0) = 1. We also can see that the
negative correlation ρ between underlying asset and firm value processes leads to lower
option prices in Fig. 3.

Fig. 4 and Fig. 5 illustrate the the sensitivities of the options with respect to the
shock sizes δi, (i = 1, 2) of the volatilities and the correlation. Both Fig. 4 and Fig. 5
show increasing trends of the option prices with respect to the correlation ρ. In Fig. 4,
the shock size δ1 of the underlying asset also leads to an increasing trend. In contrast, an
decreasing trend of the option values with respect to the shock size δ2 of the firm value
process is found in Fig. 5. In addition, for a negative ρ, we can see a sharp decreasing of
the option values.
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Figure 5. Vulnerable call value for different δ2 and ρ
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Figure 6. Vulnerable call value for different λ1 and λ2

Finally, Fig. 6 illustrates how the option values have the contrary trends with respect
to intensities. Consequently, these results show the changes of the option values when
the intensities vary by business cycle.
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Abstract
This paper suggests difference-cum-ratio and exponential type estima-
tors of population mean using first or third quartiles and mean of aux-
iliary variable under median ranked set sampling scheme and we have
extended our study in double sampling scheme when the population pa-
rameters are unknown. The bias and mean square error of estimators
are derived by theoretically both of sampling designs. Empirical stud-
ies have been done to demonstrate the efficiency of proposed estimators
over the existing estimators. We have found that difference-cum-ratio
estimator is always more efficient than regression estimator and both
of the estimators are considerable efficient than existing estimators.
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1. Introduction
The ranked set sampling (RSS) is conducted by selecting n random samples from the

population of size n units each, and ranking each unit within each set with respect to
variable of interest. Then an actual measurement is taken of the unit with the smallest
rank from the first sample. From the second sample an actual measurement is taken from
the second smallest rank, and the procedure is continued until the unit with the largest
rank is chosen for actual measurement from the n-th sample. Median ranked set sampling
(MRSS) as proposed by Muttlak [10] can be formed by selecting n random samples of
size n units from the population and rank the units within each sample with respect to
variable of interest. Many authors developed and modified this sampling scheme such
as Al-Saleh and Al-Omari[2], Jemain and Al-Omari[4] and Jemain et al.[5], Ozturk and
Jafari Jozani[11] etc. Recently Al-Omari[1] has introduced modified ratio estimators
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in median ranked set sampling. In sampling theory some authors such as Singh and
Solanki[12, 13], Singh et al.[14, 15] and Solanki et al.[16] etc. proposed estimators for
population parameters using auxiliary information. Bahl and Tuteja [3], Yadav et al.
[18], Koyuncu and Kadilar[7], Koyuncu[8], Koyuncu et al.[9] studied the exponential
estimators to get more efficient estimators than ratio and regression estimators. In this
paper following Koyuncu [8], we have suggested two new estimators of population mean
under Al-Omari[1] median ranked set sampling scheme, extended our results to double
sampling and we have found that the suggested estimators are considerable efficient than
classical ratio estimator and Al-Omari[1] estimator.

Simple Random Sampling Design
Let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) be a bivariate random sample with pdf f(x, y), means
µx, µy, variances σ2

x, σ2
y and correlation coefficient ρxy. Assume that the ranking is

performed on the auxiliary variable X to estimate the mean of the variable of interest
Y . Let (X11, Y11), (X12, Y12), . . . , (Xnn, Ynn) be n independent bivariate random samples
each of size n. In this sampling design Al-Omari [1] defined following estimators

µ̂Y SRS1 = ȳSRS(
µx + q1
x̄SRS + q1

), µ̂Y SRS3 = ȳSRS(
µx + q3
x̄SRS + q3

)

where q1 and q3 are first and third quartiles of X , respectively.x̄SRS , ȳSRS are sample
means of X and Y . Al-Omari [1] rewrite estimators as:

(1.1) µ̂Y SRSk = ȳSRS(
µx + qk
x̄SRS + qk

)

where µ̂Y SRSk represent µ̂Y SRS1 and µ̂Y SRS3 for values of (k = 1, 3) . The expression
for MSE of µ̂Y SRSk is as follows:

(1.2) MSE(µ̂Y SRSk) = λσ2
y + λσ2

x(
µ2
y

(µx + qk)2
− 2β

µy
(µx + qk)

)

where λ = 1/n, β = ρxyσy/σx.

Median Ranked Set Sampling Design
For the sake of brevity we follow Al-Omari [1]’ sampling design and notations. Median

ranked set sampling design can be described as in the following steps:

(1) Select n random samples each of size n bivariate units from the population of
interest.

(2) The units within each sample are ranked by visual inspection or any other cost
free method with respect to a variable of interest.

(3) If n is odd, select the ((n + 1)/2) th-smallest ranked unit X together with the
associated Y from each set, i.e., the median of each set. If n is even, from the
first n/2 sets select the (n/2)th ranked unit X together with the associated Y
and from the other sets select the ((n + 2)/2) th ranked unit X together with
the associated Y .

(4) The whole process can be repeated m times if needed to obtain a sample of size
nm units.

Let (Xi(1), Yi[1]), (Xi(2), Yi[2]), . . . , (Xi(n), Yi[n]) be the order statistics ofXi1, Xi2, . . . , Xin
and the judgement order of Yi1, Yi2, . . . , Yin (i = 1, 2, . . . , n), where () and [] indicate that
the ranking of X is perfect and ranking of Y has errors. For odd and even sample sizes
the units measured using MRSS are denoted by MRSSO and MRSSE, respectively. For
odd sample size let (X

1(n+1
2

)
, Y

1[n+1
2

]
), (X

2(n+1
2

)
, Y

2[n+1
2

]
), . . . , (X

n(n+1
2

)
, Y
n[n+1

2
]
) denote
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the observed units by MRSSO. x̄MRSSO = 1
n

n∑
i=1

X
i(n+1

2
)
and ȳMRSSO = 1

n

n∑
i=1

X
i[n+1

2
]

be the sample mean of X and Y respectively.
For even sample size let (X1(n

2
), Y1[n

2
]), (X2(n

2
), Y2[n

2
]), . . . , (Xn

2
(n
2
), Yn

2
[n
2
]),

(Xn+2
2

(n+2
2

)
, Yn+2

2
[n+2

2
]
), (Xn+4

2
(n+2

2
)
, Yn+4

2
[n+2

2
]
), . . . , (Xn(n

2
), Yn[n

2
]) denote the observed

units by MRSSE. x̄MRSSE = 1
n

(

n
2∑
i=1

Xi(n
2
) +

n∑
i=n+2

2

X
i(n+2

2
)
) and ȳMRSSE = 1

n
(

n
2∑
i=1

Yi[n
2
] +

n∑
i=n+2

2

Y
i[n+2

2
]
) be the sample mean of X and Y respectively.

To obtain the bias and the mean square error (MSE), let us define

ε0(j) =
ȳMRSS(j) − µy

µy
, ε1(j) =

x̄MRSS(j) − µx
µx

, ε2(j) =
syx(j) − σyx(j)

σyx(j)
,

ε3(j) =
s2x(j) − σ2

x(j)

σ2
x(j)

where j = (E,O) denote the sample size even or odd. If sample size n is odd we can
write

E(ε20(O)) =
1

nµ2
y

σ2

y[n+1
2

]
, E(ε21(O)) =

1

nµ2
x

σ2

x(n+1
2

)
,

E(ε0(O)ε1(O)) =
1

nµxµy
σ
xy[n+1

2
]

If sample size n is even we can write

E(ε20(E)) =
1

2nµ2
y

(σ2
y[n

2
] + σ2

y[n+2
2

]
), E(ε21(E)) =

1

2nµ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
),

E(ε0(E)ε1(E)) =
1

2nµxµy
(σyx[n

2
] + σ

yx[n+2
2

]
)

(i) Al-Omari(2012) estimator The estimator of population mean proposed by Al-
Omari[1] as

µ̂YMRRS1 = ȳMRSS(
µx + q1

x̄MRSS + q1
), µ̂YMRRS3 = ȳMRSS(

µx + q3
x̄MRSS + q3

)

For odd and even sample sizes the estimator can be rewritten as

(1.3) µ̂YMRSSk = ȳMRSS(j)(
µx + qk

x̄MRSS(j) + qk
)

To the first degree of approximation the Bias and MSE of µ̂YMRRSk are respectively
given by

(1.4) Bias(µ̂YMRSS(j)) ∼=


µyψ

nµx
(ψ 1

µx
σ
x(n+1

2
)2
− 1

µy
σ
xy[n+1

2
]
) if n is odd

µyψ

2nµx
(ψ 1

µx
(σ2
x(n

2
) + σ2

x(n+2
2

)
)

− 1
µy

(σxy[n
2
] + σ

xy[n+2
2

]
)) if n is even
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(1.5)

MSE(µ̂YMRSS(j)) ∼=



1
n

(
µ2
y

(µx+qk)
2 σ

2

x(n+1
2

)
+ σ2

y[n+1
2

]

−2
µy

(µx+qk)
σ
xy[n+1

2
]
) if n is odd

1
2n

(
µ2
y

(µx+qk)
2 (σ2

x(n
2
) + σ2

x(n+2
2

)
)+

(σ2
y[n

2
] + σ2

y[n+2
2

]
)− 2

µy
(µx+qk)

(σxy[n
2
] + σ

xy[n+2
2

]
)) if n is even

where ψ = µx
µx+qk

.
(ii) Adapted Regression estimator We can define regression type estimator in

median ranked set sampling given by

(1.6) yreg(j) = yMRSS(j) + byx(j)(µx − xMRSS(j))

where

bxy(j) ∼=


ρ
xy[n+1

2
]
s
y[n+1

2
]

s
x(n+1

2
)

if n is odd
(ρxy[n

2
]+ρxy[n+2

2
]
)(sy[n

2
]+sy[n+2

2
]
)

(sx(n
2

)+sx(n+2
2

)
)

if n is even

s
xy[n+1

2
]

= ρ
xy[n+1

2
]
s
x(n+1

2
)
s
y[n+1

2
]

(sxy[n
2
] + s

xy[n+2
2

]
) = (ρxy[n

2
] + ρ

xy[n+2
2

]
)(sx(n

2
) + s

x(n+2
2

)
)(sy[n

2
] + s

y[n+2
2

]
)

(1.7) MSE(yreg(j))
∼=

{
1
n
σ2

y[n+1
2

]
(1− ρ2

xy[n+1
2

]
) if n is odd

1
2n

(σ2
y[n

2
] + σ2

y[n+2
2

]
)(1− (ρ2

xy[n+1
2

]
+ ρ2

xy[n+2
2

]
)) if n is even

2. Suggested estimators in median ranked set sampling
Following Koyuncu [8], we propose difference-cum-ratio estimator estimating the pop-

ulation mean of the study variable in median ranked set sampling as follows:

(2.1) yNk(M) = [k1(j)yMRSS(j) + k2(j)(µx − xMRSS(j))](
µx + qk

xMRSS(j) + qk
)

where k1(j) and k2(j) are determined so as to minimize the MSE of yNk(M) . Expressing
yNk(M) in terms of ε(j)’s up to the second degree and extracting µy both sides we have

(2.2)
yNk(M) − µy =(k1(j) − 1)µy + k1(j)µyε0(j) − k2(j)µxε1(j) − k1(j)µyψε1(j)

+ k1(j)µyψε0(j)ε1(j) + k2(j)µxψε
2
1(j) + k1(j)µyψ

2ε21(j)

Taking expectation in equation in (2.2), we obtain

(2.3)
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Bias(yNk(M))
∼=



(k1(O) − 1)µy − k1(O)µyψ
1

nµyµx
σ
xy[n+1

2
]
+ (k2(O)µxψ

+k1(O)µyψ
2) 1
nµ2
x
σ2

x(n+1
2

)
if n is odd

(k1(E) − 1)µy − k1(E)µyψ
1

2nµyµx
(σxy[n

2
] + σ

xy[n+2
2

]
)

+(k2(E)µxψ + k1(E)µyψ
2) 1

2nµ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
) if n is even

Squaring both sides in (2.2), then taking expectation, we obtain the MSE of the
estimator yNk(M), as given by

(2.4) MSEmin(yNk(M))
∼=



(1− ψ2

nµ2
x
σ2

x(n+1
2

)
)

× MSE(yreg(O))

1− ψ2

nµ2x
σ2

x(n+1
2

)
+ 1
µ2y
MSE(yreg(O))

if n is odd

(1− ψ2

nµ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
)

× MSE(yreg(E))

1− ψ2

2nµ2x
(σ2
x(n

2
)
+σ2

x(n+2
2

)
)+ 1

µ2y
MSE(yreg(E))

if n is even

The optimum values of k1(j) and k2(j) for odd and even sample sizes are given respec-
tively

k∗1(O) =
1− ψ2

nµ2
x
σ2

x(n+1
2

)

1− ψ2

nµ2
x
σ2

x(n+1
2

)
) + 1

µ2
y
MSE(yreg(O))

k∗1(E) =
1− ψ2

2nµ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
)

1− ψ2

2nµ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
) + 1

µ2
y
MSE(yreg(E))

k∗2(O) =
µy
µx

(ψ +
( 1
µyµx

σ
xy[n+1

2
]
− 2ψ 1

µ2
x
σ2

x(n+1
2

)
)(1− ψ2

nµ2
x
σ2

x(n+1
2

)
)

1
µ2
x
σ2

x(n+1
2

)
((1− ψ2

nµ2
x
σ2

x(n+1
2

)
) + 1

µ2
y
MSE(yreg(O))

)

k∗2(E) =
µy
µx

(ψ+
( 1
µyµx

(σxy[n
2
] + σ

xy[n+2
2

]
)− 2ψ 1

µ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
))(1− ψ2

2nµ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
))

1
µ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
)((1− ψ2

2nµ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
)) + 1

µ2
y
MSE(yreg(E))

)

Note that the optimum choice of the constants involve unknown parameters. These
quantities can be guessed quite accurately through pilot sample survey or sample data
or experience gathered in due course of time as mentioned in Upadhyaya and Singh[17],
and Koyuncu and Kadilar[6].

Secondly following exponential estimator is proposed:

(2.5) yKk(M) = [w1(j)yMRSS(j) + w2(j)(
xMRSS(j)

µx
)γ ]exp(

µx − xMRSS(j)

µx − xMRSS(j) + 2qk
)

where w1(j) and w2(j) are determined so as to minimize the MSE of yKk(M).Expressing
yKk(M) in terms of εj ’s up to the second degree and extracting µy both sides, we have

(2.6)
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yKk(M) − µy ={w1(j)µy − µy + w1(j)µyε0(j) + w2(j) + w2(j)γε1(j) + w2(j)
γ(γ − 1)

2
ε21(j)

− 1

2
w1(j)ψµyε1(j) −

1

2
w1(j)ψµyε0(j)ε1(j) −

1

2
w2(j)ψε1(j)

− 1

2
w2(j)ψγε

2
1(j) +

3

8
w1(j)ψ

2µyε
2
1(j) +

3

8
w2(j)ψ

2ε21(j)}

Taking expectation in equation in (2.6), we obtain

(2.7)

Bias(yKk(M))
∼=



w1(O)µy − µy + w2(O) −
w1(O)ψ

2nµx
σ
xy[n+1

2
]

+(
w2(O)

2
(−ψγ + 3

4
ψ2 + γ(γ − 1))

+ 3
8
w1(O)ψ

2µy) 1
nµ2
x
σ2

x(n+1
2

)
if n is odd

w1(E)µy − µy + w2(E) −
w1(E)ψ

4nµx
(σxy[n

2
] + σ

xy[n+2
2

]
)

+(
w2(E)

2
(−ψγ + 3

4
ψ2 + γ(γ − 1))

+ 3
8
w1(E)ψ

2µy) 1
2nµ2

x
(σ2
x(n

2
) + σ2

x(n+2
2

)
) if n is even

Squaring both sides in (2.6), then taking expectation, we obtain the MSE of the
estimator yKk(M) , as given by

(2.8)

MSE(yKk(M)) = µ2
y+w2

1(j)µ
2
y+Aj+w

2
2(j)Bj+w1(j)µ

2
y+Dj+w2(j)µy+Gj+w1(j)w2(j)µyFj

where

A(j) = 1 + E(ε20(j)) + ψ2E(ε21(j))− 2ψE(ε0(j)ε1(j))

B(j) = 1 + (γ2 + ψ2 + γ(γ − 1)− 2γψ)E(ε21(j))

D(j) = −2 + ψE(ε0(j)ε1(j))−
3

4
ψ2E(ε21(j))

G(j) = −2 + (ψγ − γ(γ − 1)− 3

4
ψ2)E(ε21(j))

F(j) = 2 + (γ(γ − 1)− 2γψ + 2ψ2)E(ε21(j)) + 2(γ − ψ)E(ε0(j)ε1(j))

Minimization of (2.8) with respect to w1(j) and w2(j) yields its optimum value when

(2.9) w1(j) =
F(j)G(j) − 2B(j)D(j)

4B(j)A(j) − F 2
(j)

, w2(j) = µy
D(j)F(j) − 2A(j)G(j)

4B(j)A(j) − F 2
(j)

Substituting optimum values of w1(j) and w2(j) in (2.9), we get minimum MSE of
yKk(M) as

(2.10) MSEmin(yKk(M)) = µ2
y[1−

B(j)D
2
(j) +A(j)G

2
(j) −D(j)F(j)G(j)

4B(j)A(j) − F 2
(j)

]
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3. Theoretical comparison
Firstly, we compare the MSE of proposed difference-cum-ratio estimator yKk(M) with

the MSE of regression estimator yReg(O) when sample size is odd.

MSEmin(yNk(M)) < MSE(yReg(O))

(1− ψ2

nµ2
x

σ2

x(n+1
2

)
)

MSE(yreg(O))

1− ψ2

nµ2
x
σ2

x(n+1
2

)
+ 1

µ2
y
MSE(yreg(O))

< MSE(yReg(O))

(3.1) 0 <
1

µ2
y

MSE(yReg(O))

From (3.1), we can conclude that yNk(M) is always more efficient that yReg(O).
Secondly, we compare the suggested exponential estimator yNk(M) with the regression
estimator yReg(E) when sample size n is even.

MSEmin(yNk(M)) < MSE(yReg(E))

(1− ψ2

nµ2
x

(σ2
x(n

2
)+σ

2

x(n+2
2

)
)

MSE(yreg(E))

1− ψ2

2nµ2
x

(σ2
x(n

2
) + σ2

x(n+2
2

)
) + 1

µ2
y
MSE(yreg(E))

< MSE(yReg(E))

(3.2) 0 <
1

µ2
y

MSE(yReg(E))

From (3.2), we can conclude that yNk(M) is always more efficient than regression
estimator.

4. Estimation of population mean when µx is unknown
In practice, when the population mean of auxiliary variable is unknown, double sam-

pling method can be used to estimate µx. In this section we assume that mean of auxiliary
variable is unavailable. Thus following the procedure outlined in Al-Omari[1], in SRS, a
large sample of size n

′
is selected to estimate µx. Then a sub sample of size n

′′
is selected

from the target population in order to study the characteristic variable Y . In MRSS,
simple random sampling is used at first phase and median ranked set sampling is used
at second phase where n

′
= n2 and n

′′
= n. Let x

′

SRS(j) and x
′

MRSS(j) be the unbiased
sample means of µx obtained using SRS and MRSS, respectively. Al-Omari [1] defined
following estimator in double sampling

(4.1) µ̂
′
Y SRSk = ȳSRS(

x
′
SRS + qk
xSRS + qk

)

In order to obtain the bias and mean square of the estimator in (4.1), let us define

e0 =
ySRS − µy

µy
, e1 =

xSRS − µx
µx

, e
′
1 =

x
′
SRS − µx
µx

.

Using these notations, the expectations are defined as E(e0) = E(e1) = E(e1)
′

E(e20) =
1

n′′
σ2
y

µ2
y

, E(e21) =
1

n′′
σ2
x

µ2
x

, E(e
′2
1 ) =

1

n′
σ2
x

µ2
x

, E(e0e1) =
1

n′′
σyx
µxµy

,
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E(e1e
′
1) =

1

n′
σ2
x

µ2
x

, E(e0e
′
1) =

1

n′
σyx
µxµy

.

Applying the same procedure for double sampling the bias and MSE of µ̂
′
Y SRSk are

obtained respectively as,

(4.2) Bias(µ̂
′
Y SRSk) = (

1

n′′
− 1

n′
)(

µy
(µx + qk)2

σ2
x −

1

µx + qk
σyx)

(4.3) MSE(µ̂
′
Y SRSk) =

1

n′′
σ2
y + (

1

n′′
− 1

n′
)σ2
x(

µ2
y

(µx + qk)2
− 2β

µy
µx + qk

)

Secondly Al-Omari [1] defined following estimator in double sampling

(4.4) µ̂
′
YMRSSk = yMRSS(j)(

x
′

MRSS(j) + qk

xMRSS(j) + qk
)

To obtain the bias and the MSE, let us define

δ0(j) =
yMRSS(j) − µy

µy
, δ1(j) =

xMRSS(j) − µx
µx

, δ1(j)′ =
x
′

MRSS(j) − µx
µx

.

such that E(δ0(j)) = E(δ1(j)) = E(δ
′

1(j)) where (j) = O,E represents the sample size
is odd or even. If sample size n

′′
is odd we can write

E(δ20(O)) =
1

n′′

σ2

y[n+1
2

]

µ2
y

, E(δ21(O)) =
1

n′′

σ2

x(n+1
2

)

µ2
x

, E(δ0(O)δ1(O)) =
1

n′′

σ2

xy[n+1
2

]

µxµy
,

E(δ
′2
1(O)) =

1

n′

σ2

x(n+1
2

)

µ2
x

, E(δ0(O)δ
′

1(O)) =
1

n′
σ
xy(n+1

2
)

µxµy
, E(δ1(O)δ

′

1(O)) =
1

n′

σ2

x(n+1
2

)

µ2
x

.

If sample size n
′′
is even we can write

E(δ20(E)) =
1

2n′′

σ2
y[n

2
] + σ2

y[n+2
2

]

µ2
y

, E(δ21(E)) =
1

2n′′

σ2
x(n

2
) + σ2

x(n+2
2

)

µ2
x

,

E(δ0(E)δ1(E)) =
1

2n′′
σyx[n

2
] + σ

yx[n+2
2

]

µxµy
, E(δ21(E)) =

1

2n′′

σ2
x(n

2
) + σ2

x(n+2
2

)

µ2
x

,

E(δ0(E)δ
′
1(E)) =

1

2n′
σyx[n

2
] + σ

yx[n+2
2

]

µxµy
, E(δ1(E)δ

′
1(E)) =

1

2n′

σ2
x(n

2
) + σ2

x(n+2
2

)

µ2
x

.

Using the defined expectations the bias and MSE of µ̂
′
YMRSS(j) are obtained respec-

tively as,

(4.5) Bias(µ̂
′
YMRSS(j)) ∼=


µyψ

µx
( 1

n
′′ − 1

n
′ )(ψ

1
µx
σ
x(n+1

2
)2
− 1

µy
σ
xy[n+1

2
]
) if n is odd

µyψ

2µx
( 1

n
′′ − 1

n
′ )(ψ

1
µx

(σ2
x(n

2
) + σ2

x(n+2
2

)
)

− 1
µy

(σxy[n
2
] + σ

xy[n+2
2

]
)) if n is even
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(4.6)

MSE(µ̂
′
YMRSS(j)) ∼=



1

n
′′ σ

2

y[n+1
2

]
+ ( 1

n
′′ − 1

n
′ )

µ2
y

(µx+qk)
2 σ

2

x(n+1
2

)

−2( 1

n
′′ − 1

n
′ )

µy
(µx+qk)

σ
xy[n+1

2
]

if n is odd

1
2
[ 1

n
′′ (σ

2
y[n

2
] + σ2

y[n+2
2

]
) + ( 1

n
′′ − 1

n
′ )

µ2
y

(µx+qk)
2 (σ2

x(n
2
) + σ2

x(n+2
2

)
)

−2( 1

n
′′ − 1

n
′ )

µy
(µx+qk)

(σxy[n
2
] + σ

xy[n+2
2

]
)] if n is even

We have suggested new double sampling estimators as follows:

(4.7) y
′

reg(j) = yMRSS(j) + byx(j)(x
′
MRSS(j) − xMRSS(j))

The MSE of y
′

reg(j) is obtained as,

(4.8)

MSE(yreg(j))
∼=

{
σ2

y[n+1
2

]
( 1

n
′′ − ( 1

n
′′ − 1

n
′ )ρ

2

xy[n+1
2

]
) if n is odd

1
2
(σ2
y[n

2
] + σ2

y[n+2
2

]
)[ 1

n
′′ − ( 1

n
′′ − 1

n
′ )(ρ

2

xy[n+1
2

]
+ ρ2

xy[n+2
2

]
)] if n is even

In double sampling our suggested estimator can be defined as

(4.9) y
′

Nk(M) = [k1(j)yMRSS(j) + k2(j)(x
′

MRSS(j) − xMRSS(j))](
x
′

MRSS(j) + qk

xMRSS(j) + qk
)

The bias and MSE of y
′

Nk(M) are obtained respectively as,

(4.10)

Bias(y
′

Nk(M))
∼=



(k1(O) − 1)µy − k1(O)µyψ
1

µyµx
( 1

n
′′ − 1

n
′ )σxy[n+1

2
]

+(k2(O)µxψ + k1(O)µyψ
2)( 1

n
′′ − 1

n
′ )

1
µ2
x
σ2

x(n+1
2

)
if n is odd

(k1(E) − 1)µy − k1(E)µyψ
1

2µyµx
( 1

n
′′ − 1

n
′ )(σxy[n

2
] + σ

xy[n+2
2

]
)

+(k2(E)µxψ + k1(E)µyψ
2) 1

2µ2
x

( 1

n
′′ − 1

n
′ )(σ

2
x(n

2
) + σ2

x(n+2
2

)
) if n is even

(4.11)

MSEmin(y
′

Nk(M))
∼=



(1− ψ2

µ2
x

( 1

n
′′ − 1

n
′ )σ

2

x(n+1
2

)
)

×
MSE(y

′
reg(O))

1−ψ2

µ2x
( 1

n
′′ − 1

n
′ )σ

2

x(n+1
2

)
+ 1
µ2y
MSE(y

′
reg(O)

)
if n is odd

(1− ψ2

µ2
x

( 1

n
′′ − 1

n
′ )(σ

2
x(n

2
) + σ2

x(n+2
2

)
))

×
MSE(y

′
reg(E))

1− ψ2

2µ2x
( 1

n
′′ − 1

n
′ )(σ

2
x(n

2
)
+σ2

x(n+2
2

)
)+ 1

µ2y
MSE(y

′
reg(E)

)
if n is even

Our second estimator can be defined as in double sampling

(4.12) y
′

Kk(M) = [w1(j)yMRSS(j) +w2(j)(
xMRSS(j)

x
′
MRSS(j)

)γ ]exp(
x
′
MRSS(j) − xMRSS(j)

xMRSS(j) + xMRSS(j) + 2qk
)
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The bias and MSE of y
′

Kk(M) are obtained respectively as,

(4.13)

Bias(y
′

Kk(M))
∼=



w1(O)µy − µy + w2(O) −
w1(O)ψ

2µx
( 1

n
′′ − 1

n
′ )σxy[n+1

2
]

+(
w2(O)

2
(−ψγ + 3

4
ψ2 + γ(γ − 1))

+ 3
8
w1(O)ψ

2µy) 1
µ2
x

( 1

n
′′ − 1

n
′ )σ

2

x(n+1
2

)
if n is odd

w1(E)µy − µy + w2(E) −
w1(E)ψ

4µx
( 1

n
′′ − 1

n
′ )(σxy[n

2
] + σ

xy[n+2
2

]
)

+(
w2(E)

2
(−ψγ + 3

4
ψ2 + γ(γ − 1))

+ 3
8
w1(E)ψ

2µy) 1
2µ2
x

( 1

n
′′ − 1

n
′ )(σ

2
x(n

2
) + σ2

x(n+2
2

)
) if n is even

(4.14) MSEmin(y
′

Kk(M)) = µ2
y[1−

B
′
(j)D

′2
(j) +A

′
(j)G

′2
(j) −D

′
(j)F

′
(j)G

′
(j)

4B
′
(j)A

′
(j) − F

′2
(j)

]

A
′

(j) = 1 +E(δ20(j)) +ψ2E(δ21(j))−ψ2E(δ
′2
1(j))−2ψE(δ0(j)δ1(j)) + 2ψE(δ0(j)δ

′

1(j))

B
′

(j) = 1 + (γ2 + ψ2 + γ(γ − 1)− 2γψ)(E(δ21(j))− E(δ
′2
1(j)))

D
′

(j) = −2 + ψE(δ0(j)δ1(j))− ψE(δ0(j)δ
′

1(j))−
3

4
ψ2E(δ21(j)) +

3

4
ψ2E(δ

′2
1(j))

G
′
(j) = −2 + (ψγ − γ(γ − 1)− 3

4
ψ2)(E(δ21(j))− E(δ

′2
1(j)))

F
′

(j) = 2+(γ(γ−1)−2γψ+2ψ2)(E(δ21(j))−E(δ
′2
1(j)))+2(γ−ψ)(E(δ0(j)δ1(j))−E(δ0(j)δ

′

1(j)))

5. Simulation study
In this section, we conducted a simulation study to investigate the properties of

proposed estimators. . In the simulation study, we consider finite populations of size
N = 10000 generated from a bivariate normal distribution N(µx, µy, σ

2
x, σ

2
y, ρxy). The

samples were generated from a bivariate normal distribution using mvrnorm function in
R programme. In the simulation, we considered µx = 2, µy = 4, σ2

x = σ2
y = 1 and dif-

ferent values of ρxy. We have computed mean square errors (MSEs) and percent relative
efficiencies (PREs) of estimators with respect to µ̂Y SRSk for n = 3, 4, 5, 6 on the basis of
60.000 replications using qk and displayed in Table1 and Table4. When the mean of aux-
iliary variable is unknown, we used double sampling method to estimate µx and we have
calculated MSEs and PREs of estimators given in (4.1)-(4.14). Findings are summarized
in Table5 and Table8.

It is observed from all tables, suggested difference-cum-ratio and exponential type
estimator performs better than Al-Omari[1] estimator. We can conclude that difference-
cum-ratio estimator gives always more efficient results than regression estimator as shown
in theoretical comparison section. When we compare difference-cum-ratio and exponen-
tial type estimator we can say that exponential type estimator performs better even with
the low correlation data sets.
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6. Conclusion
In this paper we have suggested difference-cum-ratio and exponential type estimator in

median ranked set sampling and extended our result to double sampling. We have found
that difference-cum-ratio estimator is always more efficient than regression estimator and
exponential type is better than difference-cum-ratio estimator. Both of the estimators
are considerable efficient than Al-Omari[1] estimator.

Acknowledgement I’m thankful to learned referees for their constructive comments.
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Table 1. Mean Square Error (MSE) and the Percent Relative Ef-
ficiency (PRE) of estimators with respect to µ̂Y SRS1 for using n =
3, 4, 5, 6 and q1 with positive correlation

Correlation Estimator n=3 n=4 n=5 n=6
0.02716 0.01918 0.01473 0.01200

ρ = 0.99 µ̂Y SRS1 100.00 100.00 100.00 100.00
0.01467 0.00602 0.00657 0.00331

µ̂Y RSS1(M) 185.20 318.43 224.29 362.87
0.01134 0.00441 0.00611 0.00276

µ̂K1(M) 239.49 435.31 241.05 435.66
0.00628* 0.00236* 0.00334* 0.00148*

µ̂N1(M) 432.73* 812.15* 440.79* 811.72*
0.20222 0.14713 0.11344 0.09326

ρ = 0.80 µ̂Y SRS1 100.00 100.00 100.00 100.00
0.12239 0.05059 0.05039 0.02702

µ̂Y RSS1(M) 165.23 290.84 225.11 345.12
0.07085* 0.03298* 0.02971* 0.01706*

µ̂K1(M) 285.43* 446.14* 381.86* 546.66*
0.07993 0.0344 0.03402 0.01845

µ̂N1(M) 253.00 427.70 333.44 505.59
0.29675 0.21575 0.16607 0.13646

ρ = 0.70 µ̂Y SRS1 100.00 100.00 100.00 100.00
0.16636 0.07052 0.06580 0.03650

µ̂Y RSS1(M) 178.39 305.96 252.36 373.84
0.07411* 0.03588* 0.02998* 0.01799*

µ̂K1(M) 400.41* 601.30* 553.97* 758.65*
0.10245 0.04585 0.04203 0.0238

µ̂N1(M) 289.67 470.60 395.13 573.36
0.47919 0.34640 0.26697 0.22066

ρ = 0.50 µ̂Y SRS1 100.00 100.00 100.00 100.00
0.23938 0.10748 0.09296 0.05362

µ̂Y RSS1(M) 200.18 322.29 287.17 411.51
0.07394* 0.03637* 0.02849* 0.01778*

µ̂K1(M) 648.06* 952.42* 936.95* 1240.76*
0.13382 0.06211 0.05219 0.03109

µ̂N1(M) 358.10 557.71 511.54 709.69
MSE of Estimators
PRE of Estimators
*represent most efficient
estimator (having minimum MSE and maximum PRE)



Table 2. (MSE) and (PRE) of estimators with respect to µ̂Y SRS1 for
using n = 3, 4, 5, 6 and q1 with negative correlation

Correlation Estimator n=3 n=4 n=5 n=6
2.09657 1.45252 1.10811 0.89932

ρ = −0.99 µ̂Y SRS1 100.00 100.00 100.00 100.00
0.79973 0.37209 0.28960 0.17612

µ̂Y RSS1(M) 262.16 390.36 382.63 510.64
0.00147* 0.00059* 0.00077* 0.00036*

µ̂K1(M) 142202.83* 246394.52* 143164.56* 249205.74*
0.00629 0.00236 0.00336 0.00148

µ̂N1(M) 33324.11 61423.61 33018.28 60570.96
185.513 129.121 0.98902 0.80473

ρ = −0.80 µ̂Y SRS1 100.00 100.00 100.00 100.00
0.67687 0.32443 0.24210 0.15124

µ̂Y RSS1(M) 274.07 398.00 408.52 532.10
0.01921* 0.00829* 0.00842* 0.00454*

µ̂K1(M) 9656.02* 15573.14* 11751.25* 17726.36*
0.08075 0.03444 0.03443 0.01860

µ̂N1(M) 2297.51 3749.26 2872.41 4327.54
1.74465 1.21628 0.93268 0.75966

ρ = −0.70 µ̂Y SRS1 100.00 100.00 100.00 100.00
0.63102 0.30480 0.22639 0.14191

µ̂Y RSS1(M) 276.48 399.04 411.98 535.31
0.02617* 0.01163* 0.01102* 0.00617*

µ̂K1(M) 6666.34* 10458.08* 8460.68* 12320.69*
0.10380 0.04589 0.04257 0.02395

µ̂N1(M) 1680.71 2650.18 2191.01 3172.07
1.51489 1.06044 0.81509 0.66543

ρ = −0.70 µ̂Y SRS1 100.00 100.00 100.00 100.00
0.55071 0.26779 0.19972 0.12511

µ̂Y RSS1(M) 275.08 396.00 408.12 531.87
0.03780* 0.01755* 0.01524* 0.00894*

µ̂K1(M) 4007.48* 6041.93* 5349.97* 7445.09*
0.13334 0.06210 0.05245 0.03112

µ̂N1(M) 1136.13 1707.74 1554.05 2138.37
MSE of Estimators
PRE of Estimators
*represent most efficient
estimator (having minimum MSE and maximum PRE)



Table 3. (MSE) and (PRE) of estimators with respect to µ̂Y SRS3 for
using n = 3, 4, 5, 6 and q3 with positive correlation

Correlation Estimator n=3 n=4 n=5 n=6
0.01302 0.00963 0.00751 0.00625

ρ = 0.99 µ̂Y SRS3 100.00 100.00 100.00 100.00
0.00833 0.00351 0.00402 0.00198

µ̂Y RSS3(M) 156.24 274.21 186.70 315.51
0.01403 0.00545 0.00761 0.00342

µ̂K3(M) 92.82 176.83 98.71 182.94
0.00613* 0.00233* 0.00331* 0.00147*

µ̂N3(M) 212.37* 412.55* 227.00* 425.46*
0.12348 0.09280 0.07286 0.06073

ρ = 0.80 µ̂Y SRS3 100.00 100.00 100.00 100.00
0.08088 0.03462 0.03474 0.01869

µ̂Y RSS3(M) 152.68 268.03 209.72 324.98
0.08867 0.04142 0.03733 0.02146

µ̂K3(M) 139.26 224.05 195.20 283.03
0.07802* 0.03400* 0.03371* 0.01834*

µ̂N3(M) 158.27* 272.91* 216.14* 331.24*
0.18311 0.13745 0.10786 0.08983

ρ = 0.70 µ̂Y SRS3 100.00 100.00 100.00 100.00
0.11056 0.04855 0.04559 0.02540

µY RSS3(M) 165.62 283.15 236.59 353.62
0.09278* 0.04508* 0.03768* 0.02264*

µ̂K3(M) 197.35* 304.93* 286.25* 396.84*
0.10004 0.04533 0.04166 0.02366

µ̂N3(M) 183.04 303.22 258.89 379.64
0.30341 0.22668 0.17871 0.14877

ρ = 0.50 µ̂Y SRS3 100.00 100.00 100.00 100.00
0.16198 0.07396 0.06427 0.03738

µY RSS3(M) 187.32 306.48 278.08 398.02
0.09301* 0.04591* 0.03596* 0.02248*

µ̂K3(M) 326.21* 493.78* 496.96* 661.91*
0.13094 0.06145 0.05165 0.03088

µ̂N3(M) 231.71 368.88 345.98 481.71
MSE of Estimators
PRE of Estimators
*represent most efficient
estimator (having minimum MSE and maximum PRE)



Table 4. (MSE) and (PRE) of estimators with respect to µ̂Y SRS3 for
using n = 3, 4, 5, 6 and q3 with negative correlation

Correlation Estimator n=3 n=4 n=5 n=6
1.27876 0.92691 0.72344 0.59704

ρ = −0.99 µ̂Y SRS3 100.00 100.00 100.00 100.00
0.53198 0.25563 0.19968 0.12260

µY RSS3(M) 240.38 362.59 362.30 486.98
0.00170* 0.00066* 0.00092* 0.00041*

µ̂K3(M) 75346.28* 140653.13* 78496.62* 143988.13*
0.00615 0.00234 0.00332 0.00147

µ̂N3(M) 20801.50 39655.80 21769.81 40491.47
1.14487 0.83140 0.65053 0.53757

ρ = −0.80 µ̂Y SRS3 100.00 100.00 100.00 100.00
0.45347 0.22367 0.16751 0.10561

µY RSS3(M) 252.47 371.70 388.35 508.99
0.02409* 0.01038* 0.01056* 0.00568*

µ̂K3(M) 4751.97* 8012.21* 6162.50* 9461.94*
0.07899 0.03406 0.03409 0.01847

µ̂N3(M) 1449.33 2440.67 1908.53 2910.45
1.07804 0.78365 0.61373 0.50746

ρ = −0.70 µ̂Y SRS3 100.00 100.00 100.00 100.00
0.42290 0.21001 0.15654 0.0990

µY RSS3(M) 254.92 373.14 392.05 512.48
0.03289* 0.01460* 0.01386* 0.00774*

µ̂K3(M) 3277.86* 5366.87* 4429.80* 6557.28*
0.10158 0.0454 0.04214 0.02379

µ̂N3(M) 1061.33 1726.09 1456.49 2133.32
0.94135 0.68590 0.53818 0.44554

ρ = −0.50 µ̂Y SRS3 100.00 100.00 100.00 100.00
0.37019 0.18468 0.13816 0.08733

µY RSS3(M) 254.29 371.40 389.52 510.17
0.04753* 0.02208* 0.01917* 0.01124*

µ̂K3(M) 1980.46* 3106.64* 2807.53* 3963.50*
0.13054 0.06144 0.05192 0.03091

µ̂N3(M) 721.10 1116.30 1036.59 1441.34
MSE of Estimators
PRE of Estimators
*represent most efficient
estimator (having minimum MSE and maximum PRE)



Table 5. (MSE) and (PRE) of estimators with respect to µ̂
′
Y SRS1 for

using n = 3, 4, 5, 6 and q1 with positive correlation

Correlation Estimator n=3 n=4 n=5 n=6
0.17912 0.11756 0.08670 0.06762

ρ = 0.99 µ̂
′
Y SRS1 100.00 100.00 100.00 100.00

0.23023 0.11654 0.08777 0.05530
µ̂
′

Y RSS1(M) 77.80 100.87 98.78 122.27
0.13146* 0.06466* 0.05121* 0.03149*

µ̂
′

K1(M) 136.26* 181.81* 169.30* 214.73*
0.13819 0.06916 0.05378 0.03343

µ̂
′
N1(M) 129.62 169.98 161.21 202.28

0.23888 0.16633 0.12742 0.10244
ρ = 0.80 µ̂

′
Y SRS1 100.00 100.00 100.00 100.00

0.28069 0.13827 0.10670 0.06626
µ̂
′

Y RSS1(M) 85.10 120.30 119.42 154.60
0.09576* 0.04582* 0.03806* 0.02298*

µ̂
′

K1(M) 249.45* 363.05* 334.76* 445.74*
0.15289 0.07387 0.05938 0.03623

µ̂
′

N1(M) 156.25 225.17 214.58 282.76
0.30028 0.21632 0.16904 0.13807

ρ = 0.70 µ̂
′
Y SRS1 100.00 100.00 100.00 100.00

0.32584 0.15892 0.12276 0.07609
µ̂
′

Y RSS1(M) 92.16 136.12 137.70 181.46
0.08211* 0.03926* 0.03228* 0.01962*

µ̂
′

K1(M) 365.69* 551.02* 523.62* 703.64*
0.16068 0.07666 0.06180 0.03760

µ̂
′
N1(M) 186.87 282.19 273.51 367.23

0.42384 0.31654 0.25222 0.20933
ρ = 0.50 µ̂

′
Y SRS1 100.00 100.00 100.00 100.00

0.40172 0.19537 0.14864 0.09282
µ̂
′

Y RSS1(M) 105.51 162.02 169.69 225.52
0.07532* 0.03651* 0.02847* 0.01773*

µ̂
′

K1(M) 562.73* 867.00* 885.88* 1180.43*
0.16669 0.07933 0.06271 0.03849

µ̂
′

N1(M) 254.27 399.03 402.20 543.81
MSE of Estimators
PRE of Estimators
*represent most efficient
estimator (having minimum MSE and maximum PRE)



Table 6. (MSE) and (PRE) of estimators with respect to µ̂
′
Y SRS1 for

using n = 3, 4, 5, 6 and q1 with negative correlation

Correlation Estimator n=3 n=4 n=5 n=6
1.44310 1.12785 0.90938 0.76770

ρ = −0.99 µ̂
′
Y SRS1 100.00 100.00 100.00 100.00

0.97002 0.46323 0.34803 0.21602
µ̂
′

Y RSS1(M) 148.77 243.48 261.29 355.38
0.03720* 0.01674* 0.01039* 0.00668*

µ̂
′

K1(M) 3879.01* 6736.19* 8751.86* 11490.33*
0.14743 0.07198 0.04646 0.03019

µ̂
′

N1(M) 978.84 1566.82 1957.45 2542.77
1.30377 1.02123 0.82264 0.69395

ρ = −0.80 µ̂
′
Y SRS1 100.00 100.00 100.00 100.00

0.85105 0.41594 0.30128 0.19141
µ̂
′

Y RSS1(M) 153.20 245.52 273.05 362.54
0.05221* 0.02310* 0.01720* 0.01023*

µ̂
′

K1(M) 2497.40* 4421.60* 4783.49* 6785.34*
0.17864 0.08184 0.06264 0.03715

µ̂
′
N1(M) 729.85 1247.78 1313.19 1868.15

1.23136 0.96516 0.77731 0.65554
ρ = −0.70 µ̂

′
Y SRS1 100.00 100.00 100.00 100.00

0.80362 0.39541 0.28511 0.18167
µ̂
′

Y RSS1(M) 153.23 244.09 272.64 360.85
0.05748* 0.02561* 0.01925* 0.01148*

µ̂
′

K1(M) 2142.34* 3769.17* 4037.59* 5711.08*
0.18225 0.08339 0.06404 0.03800

µ̂
′

N1(M) 675.63 1157.41 1213.80 1725.34
1.09266 0.85687 0.68971 0.58123

ρ = −0.50 µ̂
′
Y SRS1 100.00 100.00 100.00 100.00

0.72687 0.36005 0.25968 0.16548
µ̂
′

Y RSS1(M) 150.32 237.99 265.60 351.23
0.06490* 0.02952* 0.02212* 0.01334*

µ̂
′

K1(M) 1683.64* 2902.88* 3117.84* 4357.02*
0.18003 0.08347 0.06318 0.03790

µ̂
′

N1(M) 606.94 1026.53 1091.65 1533.57
MSE of Estimators
PRE of Estimators
*represent most efficient
estimator (having minimum MSE and maximum PRE)



Table 7. (MSE) and (PRE) of estimators with respect to µ̂
′
Y SRS3 for

using n = 3, 4, 5, 6 and q3 with positive correlation

Correlation Estimator n=3 n=4 n=5 n=6
0.15538 0.09851 0.07115 0.05438

ρ = 0.99 µ̂
′
Y SRS3 100.00 100.00 100.00 100.00

0.12748 0.06367 0.04988 0.03089
µ̂
′

Y RSS3(M) 121.88 154.74 142.64 176.06
0.17019 0.08280 0.06496 0.03992

µ̂
′

K3(M) 91.30 118.97 109.54 136.23
0.13735* 0.06895* 0.05361* 0.03335*

µ̂
′
N3(M) 113.12* 142.89* 132.73* 163.03*

0.19485 0.13146 0.09912 0.07844
ρ = 0.80 µ̂

′
Y SRS3 100.00 100.00 100.00 100.00

0.1619 0.07880 0.06320 0.03863
µ̂
′

Y RSS3(M) 120.35 166.82 156.85 203.06
0.12187* 0.05821* 0.04810* 0.02907*

µ̂
′

K3(M) 159.88* 225.85* 206.12* 269.90*
0.15044 0.07315 0.05893 0.03602

µ̂
′

N3(M) 129.49 179.72 168.20 217.79
0.23451 0.16460 0.12719 0.10263

ρ = 0.70 µ̂
′
Y SRS3 100.00 100.00 100.00 100.00

0.19195 0.09286 0.07424 0.04542
µ̂
′

Y RSS3(M) 122.17 177.25 171.33 225.96
0.10334* 0.04963* 0.04074* 0.02481*

µ̂
′

K3(M) 226.93* 331.64* 312.17* 413.65*
0.15691 0.07548 0.06112 0.03727

µ̂
′
N3(M) 149.45 218.09 208.10 275.39

0.31428 0.23118 0.18340 0.15113
ρ = 0.50 µ̂

′
Y SRS3 100.00 100.00 100.00 100.00

0.24300 0.11807 0.09222 0.05714
µ̂
′

Y RSS3(M) 129.33 195.81 198.88 264.49
0.09368* 0.04586* 0.03586* 0.02239*

µ̂
′

K3(M) 335.49* 504.12* 511.49* 675.08*
0.16062 0.07734 0.06163 0.03795

µ̂
′

N3(M) 195.66 298.92 297.59 398.21
MSE of Estimators
PRE of Estimators
*represent most efficient
estimator (having minimum MSE and maximum PRE)



Table 8. (MSE) and (PRE) of estimators with respect to µ̂
′
Y SRS3 for

using n = 3, 4, 5, 6 and q3 with negative correlation

Correlation Estimator n=3 n=4 n=5 n=6
0.94752 0.75264 0.61419 0.52321

ρ = −0.99 µ̂
′
Y SRS3 100.00 100.00 100.00 100.00

0.61739 0.30211 0.22966 0.14311
µ̂
′

Y RSS3(M) 153.47 249.13 267.43 365.60
0.04589* 0.02095* 0.01306* 0.00842*

µ̂
′

K3(M) 2064.80* 3592.77* 4702.58* 6210.80*
0.12644 0.06595 0.04363 0.02890

µ̂
′
N3(M) 749.41 1141.31 1407.83 1810.45

0.86080 0.68349 0.55685 0.47373
ρ = −0.80 µ̂

′
Y SRS3 100.00 100.00 100.00 100.00

0.53886 0.26999 0.19753 0.12600
µ̂
′

Y RSS3(M) 159.74 253.16 281.91 375.98
0.06459* 0.02887* 0.02161* 0.01287*

µ̂
′

K3(M) 1332.75* 2367.33* 2576.97* 3679.86*
0.15788 0.07594 0.05979 0.03588

µ̂
′

N3(M) 545.22 900.09 931.41 1320.44
0.81723 0.64837 0.52778 0.44872

ρ = −0.70 µ̂
′
Y SRS3 100.00 100.00 100.00 100.00

0.50841 0.25640 0.18668 0.11944
µ̂
′

Y RSS3(M) 160.74 252.88 282.73 375.70
0.07105* 0.03197* 0.02416* 0.01443*

µ̂
′

K3(M) 1150.18* 2028.15* 2184.89* 3110.24*
0.16234 0.07770 0.06130 0.03678

µ̂
′
N3(M) 503.39 834.49 860.94 1219.90

0.72804 0.57617 0.46805 0.39735
ρ = −0.50 µ̂

′
Y SRS3 100.00 100.00 100.00 100.00

0.45513 0.23094 0.16833 0.10766
µ̂
′

Y RSS3(M) 159.96 249.48 278.05 369.07
0.08034* 0.03691* 0.02780* 0.01679*

µ̂
′

K3(M) 906.17* 1560.89* 1683.76* 2366.03*
0.16199 0.07824 0.06071 0.03680

µ̂
′

N3(M) 449.44 736.37 770.97 1079.70
MSE of Estimators
PRE of Estimators
*represent most efficient
estimator (having minimum MSE and maximum PRE)
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Abstract

In this article, we introduce an extended Dagum distribution, named as
transmuted Dagum distribution which can be used for income distribu-
tion, actuarial, survival and reliability analysis. The main motivation
for generalizing the standard distribution is to provide more flexible
distribution to model a variety of data. The extended distribution
has been expressed using quadratic rank transmutation map and its
tractable properties like moments, moment generating, quantile, relia-
bility and hazard functions are derived. The transmuted Dagum model
provides the broader range of hazard behavior than the Dagum model.
The densities of its order statistics, generalized TL-moments with its
special cases are also studied. The parameters of the new model are es-
timated by maximum likelihood using Newton-Raphson approach and
the information matrix and confidence intervals are also obtained. To
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1. Introduction
Dagum distribution is widely used for modeling a wide range of data in several fields.

It is very worthwhile for analyzing income distribution, actuarial, metrological data and
equally preferable for survival analysis. Moreover, it is considered to be the most suitable
choice as compared to other three parameter distributions in several cases. It belongs
to the generalized Beta distribution and is generated from generalized Beta-II by con-
sidering a shape parameter one and referred as inverse Burr distribution. Dagum [5]
and Fattorini and Lemmi [13] derived the Dagum distribution independently. Dagum [7]
studied the income and income related data by Dagum distributions. Dagum [6] also fit-
ted this distribution on 1978 family incomes data for the United States and proved that
its performance is the best among all the models. Bordley, McDonald, and Mantrala
[4] also studied the United States family income data by probability distributions along
with the Dagum distribution. Bandourian, McDonald, and Turley [2] revealed after the
study of 23 countries’ income data, the Dagum distribution is the best among the two
and three parameter distributions. Quintano and Dagostino [21] studied single-person
income distribution of European countries data and found that the Dagum distribution
performs better to model the each country data separately. Perez and Alaiz [20] analyzed
the personal income data of Spain by Dagum distribution. Alwan, Baharum, and Hassan
[1] tried more than fifty distributions to model the reliability of the electrical distribution
system and finally the Dagum distribution was considered as the best choice. We have
cited very few studies but various other related studies also confirm the better perfor-
mance of the Dagum distribution. Recently Dagum distribution is found to be quite
useful and popular in modeling the skewed data.
Domma, Giordano and Zenga [11] and Domma [8] estimated the parameters of Dagum
distribution with censored samples and the right-truncated Dagum distribution by max-
imum likelihood estimation. McGarvey, et al [17] studied the estimation and skewness
test for the Dagum distribution. Shahzad and Asghar [22] estimated the parameter of
this distribution by TL-moments. Oluyede and Rajasooriya [18] introduced the Mc-
Dagum distribution. Oluyede and Ye [19] presented the class of weighted Dagum and
related distributions and Domma and Condino [9] proposed the five parameter beta-
Dagum distribution. In this study, we present the transmuted Dagum distribution that
is the extension of the Dagum distribution.
Rest of the paper is organized as follows. Section 2 is about the quadratic rank transmu-
tation map, mathematical derivation of the probability density function (pdf) and prob-
ability distribution function (cdf) of transmuted Dagum distribution with their graphical
presentation. In section 3, rth moment and moment generating function are derived and
the expression for the coefficient of variation, skewness and kurtosis are also reported.
Section 4 is about the quantile function, median and random number generating pro-
cess for transmuted Dagum distribution. Reliability function, hazard function and their
mathematical and graphical presentation are given in Section 5. Section 6 is related to
order statistics: the lowest, highest and joint order densities of transmuted Dagum distri-
bution are specified. Section 7 contains the generalized TL-moments and its special cases,
such as L-moments, TL-moments, LL-moments, and LH-moments. Methodology for pa-
rameter estimation, Newton-Raphson algorithm for maximum likelihood is discussed in
Section 8. To compare the suitability of transmuted Dagum distribution with its related
distributions, rainfall data is selected and its goodness of fit on empirical data is tested
by using likelihood function, AIC, AICC, BIC, KS test, LR test and PP-plots in section
9.
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2. Transmuted Dagum Distribution
A random variable follows the transmuted distribution, if it satisfies the following

relationship that is proposed by Shaw et al. [24] named as quadratic rank transmutation
map

(2.1) F (y) = G(y)
[
(1 + λ)− λG(y)

]
Where G(y) is the cdf of the parent distribution and λ is the additional parameter that is
called transmuted parameter. Due to the transmuted parameter the distribution becomes
more flexible distribution to model even the complex data sets.
The pdf of the Dagum (parent) distribution is as

(2.2) g(y;α, β, ρ) =
αρyαρ−1

βαρ
(
1 + (y/β)α

)ρ+1 , 0 ≤ x ≤ ∞; α, β, ρ > 0

and its cdf is as

(2.3) G(y;α, β, ρ) =
(
1 + (y/β)−α

)−ρ
.

Where α and ρ are the shape parameters, β is the scale parameter and all the three
parameters are positive. Now substituting the (2.3) in (2.1), we obtained the cdf of the
transmuted Dagum distribution in the following form

(2.4) F (y;α, β, ρ, λ) =
(
1 + (y/β)−α

)−ρ
[1 + λ− λ

(
1 + (y/β)−α

)−ρ
],

and its respective pdf of transmuted Dagum distribution is given by

(2.5) f(y;α, β, ρ, λ) =
αρy2αρ−1

[
(1 + λ)

(
1 + (y/β)−α

)ρ − 2λ
]

β2αρ
(
1 + (y/β)α

)2ρ+1 .

The parameter λ has the support −1 ≤ y ≤ 1 and simply taking λ = 0 in above pdf and
cdf, transmuted distribution reduces to the parent distribution. Dagum distribution due
to quadratic rank transmutation map becomes more flexible. The shapes of this density
and distribution function assuming various combinations of parameters are illustrated in
the Figure 1 and Figure 2, respectively.

3. Moments and moments ratio
In this section, main statistical properties such as rth moments, mean, variance, and

moment generating function for transmuted Dagum distribution are derived and dis-
cussed.

3.1. Theorem. Let the random variable Y follows the transmuted Dagum distribution,
then its rth moment has the following form

(3.1) E(Y r) = βrΓ
(

1− r

α

)[ (1 + λ)Γ(ρ+ r
α

)

Γ(ρ)
−
λΓ(2ρ+ r

α
)

Γ(2ρ)

]
.

Proof. Let the rth moments is given by

m
′
r = E(Y r) =

∫ ∞
0

αρy2αρ+r−1
[
(1 + λ)

(
1 + (y/β)−α

)ρ − 2λ
]

β2αρ
(
1 + (y/β)α

)2ρ+1 dy

=

∫ ∞
0

αρy2αρ+r−1(1 + λ)
(
1 + (y/β)−α

)ρ
β2αρ

(
1 + (y/β)α

)2ρ+1 dy −
∫ ∞
0

2λαρy2αρ+r−1

β2αρ
(
1 + (y/β)α

)2ρ+1 dy
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For convenience substitute x = (y/β)α, hence

m
′
r = βr(1 + λ)

∫ ∞
0

xρ+r/α−1(1 + x)−(ρ+1)dx− 2αρβr
∫ ∞
0

xρ+r/α−1(1 + x)−(ρ+1)dx

= βr
[
(1 + λ)B

(
ρ+

r

α
, 1− r

α

)
− λB

(
2ρ+

r

α
, 1− r

α

)]
,

where B(., .) is the beta type-II function, defined by

B(θ1, θ2) =

∫ ∞
0

zθ1(1 + z)−(θ1+θ2)dz; θ1, θ2 > 0

after one step simplification, we obtain the result given in (3.1).
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Figure 1. The pdf’s of various transmuted Dagum distributions for
values of parameters: a) α = 3.0[0.5]5.5; b) β = 2.0[0.25]3.25; c) ρ =
0.5, 0.75, 1.0[1.0]4.0; d) λ = -1.0[0.4]1.0 with solid, dashed, dotted,
dotdash and longdash lines, respectively.

In particular, by setting r = 1 and r = 2 in (3.1), we obtain mean and varianc (σ2)
by taking usual steps

(3.2) E(Y ) = βΓ
(

1− 1

α

)[ (1 + λ)Γ(ρ+ 1
α

)

Γ(ρ)
−
λΓ(2ρ+ 1

α
)

Γ(2ρ)

]
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and

(3.3) σ2 = β2Γ
(

1− 2

α

)[
(1 + λ)P12 − λP22

]
− β2

[
Γ
(

1− 1

α

)]2[
(1 + λ)P11 − λP21

]
,

where Pir = Γ(iρ+ r
α

)/Γ(iρ).
The following expression can be used to obtain the moment ratios for transmuted Dagum
distribution such as Cofficient of vartiation (CV ), Skewness (Sk) and Kurtosis (Kr) using
m
′
r(r = 1, 2, 3, 4).

CV =
σ

m′1
,

Sk =
m′3 − 2m′2m

′
1 + 2 (m′1)

3

σ3
,

Kr =
m′4 − 4m′3m

′
1 + 6m′2 (m′1)

2 − 3 (m′1)
4

σ4
.
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Figure 2. The cdf’s of various transmuted Dagum distributions for
values of parameters: a) α = 3.0[0.5]5.5; b) β = 2.0[0.25]3.25; c) ρ =
0.5, 0.75, 1.0[1.0]4.0; d) λ = -1.0[0.4]1.0 with solid, dashed, dotted,
dotdash and longdash lines, respectively.
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3.2. Theorem. The moment generating function of Y , My(t) when random variable
follows the transmuted Dagum distribution is

(3.4) My(t) =

∞∑
r=0

trβΓ(1− 1/α)

r!

[
(1 + λ)P11 − λP21

]
Proof. Let the moment generating function for Y is given by

MY (t) = E(ety) =

∫ ∞
0

etyf(y)dy

=

∫ ∞
0

(
1 + ty +

t2y2

2!
+ ...+

tnyn

n!
+ ...

)
f(y)dy

=

∞∑
r=0

trE (Y r)

r!

=

∞∑
r=0

trβΓ(1− 1/α)

r!

[
(1 + λ)P11 − λP21

]
.

4. Quantile function and random number generation
Hyndman and Fan [16] defined the quantile function for any distribution is in the form

(4.1) Q(q) = F−1(q) = inf{y : F (y) > q} 0 < q < 1,

where F (y) is the distribution function. Quantile function divides the ordered data into
q equal sized portions. The smallest and largest value of the ordered data corresponds
to probability 0 and 1, respectively. The qth quantile of transmuted Dagum distribution
is obtained using (2.4) and (4.1) is given as

(4.2) Q(q) = β
[(1 + λ+

√
(1 + λ)2 − 4λq

2q

)1/ρ
− 1
]1/α

.

Median is the 50th percentile, hence median of transmuted Dagum distribution is ob-
tained from (4.2) as below

Median = β
[(

1 + λ+
√

1 + λ2
)1/ρ

− 1
]1/α

.

The expression (4.2) can also be used to find the tertiles, quartiles, quintiles, sextiles,
deciles, percentiles and permilles. To generate the random numbers for the transmuted
Dagum distribution, let suppose that the U is the standard uniform variate in (4.2) rather
than q. Then the random variable

(4.3) y = β
[(1 + λ+

√
(1 + λ)2 − 4λu

2u

)1/ρ
− 1
]1/α

follows the transmuted Dagum distribution. Now (4.3) is ready to generate the random
number for the distribution, taking α, β, ρ and λ known.

5. Reliability analysis
The reliability function R(t) gives the probability of surviving of an item at least

reach the age of t time. The cdf F (t) and reliability function are reverse of each other as
R(t) + F (t) = 1. The reliability function for transmuted Dugam distribution is given by

R(t) = P (T > t) =

∫ ∞
t

f(t)dt = 1− F (t)

= 1 +
(
1 + (t/β)−α

)−2ρ
[
λ− (1 + λ)

(
1 + (t/β)−α

)ρ]
.
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With various choices of parametric values the Figure 3 illustrates the reliability function
pattern of transmuted Dagum distribution.
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Figure 3. The various shapes of reliability function of transmuted
Dagum distribution.

An important property of a random variable is the hazard function, it measure the
inclination towards failure rate. The probability approaches to failure increases as the
value of the hazard function increase. Mathematically, the hazard function and the
hazard function of transmuted Dagum distribution is defined as

h(t) =
f(t)

1− F (t)
=
f(t)

R(t)

=
αρt2αρ−1

[
(1 + λ)

(
1 + (t/β)−α

)ρ − 2λ
]

β2αρ
(
1 + (t/β)α

)2ρ+1
[
1 +

(
1 + (t/β)−α

)−2ρ[
λ− (λ+ 1)

(
1 + (t/β)−α

)ρ]] .
The hazard function of the transmuted Dagum distribution is attractively flexible.

Therefore, it is useful and suitable for the real life situations. As in the case of trans-
muted Dagum distribution when λ = 0 is the Dagum distribution. Domma [10] and
Domma, Giordano and Zenga [11] using Glaser’s theorem [14] proved the proposition of
the hazard function of the Dagum distribution. So taking these propositions and Glaser’s
theorem [14], we concentrate on the additional parameter λ and find out the following
four behaviour of the hazard function on the combinations of parameters.

(1) The hazard function of transmuted Dagum distribution is decreasing if
(a) ρ = 2/α− 1, α < 2, β > 0 and -1≤ λ ≤1.
(b) αρ = 1, ρ < 2/α− 1, α < 1, β > 0 and -1≤ λ ≤1
(c) α < 1, ρ(α−1, 2/α− 1), β > 0 and -1≤ λ ≤1

(2) It is upside down bathtub (increasing-decreasing) if
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Figure 4. The behaviour of the hazard rate function of the transmuted
Dagum distributions for various parameters values such as : a) λ =
-1.0[0.5]1.0; b) λ = -1.0[0.5]1.0; c) β = 0.75[0.25]1.75, λ = -0.8[0.1]-
0.4; d) β = 0.75[0.25]1.75, λ = -0.2[0.2]0.8 with solid, dashed, dotted,
dotdash and longdash lines, respectively.

(a) αρ > 1, ρ 6= 2/α− 1, β > 0 and -1≤ λ ≤1
(b) αρ = 1, ρ > 2/α− 1, α > 1, β > 0 and -1≤ λ ≤1

(3) It is bathtub and upside down bathtub if
(a) α ∈ (1, 3), ρ ∈

(
3−α
α+1

, 2
α
− 1
)
, β > 0 and -1≤ λ < -0.4

(b) α ≥ 3, ρ ∈
(

2
α
− 1
)
, β > 0 and -1≤ λ < -0.4

(4) It is upside down bathtub if
(a) α ∈ (1, 3), ρ ∈

(
3−α
α+1

, 2
α
− 1
)
, β > 0 and -0.4≤ λ ≤1

(b) α ≥ 3, ρ ∈
(

2
α
− 1
)
, β > 0 and -0.4≤ λ ≤1

The graphical pesentation of the behaviour of the hazard rate function for transmuted
Dagum distribution is sketched in Figure 4 for various choices of parametric values.
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6. Order statistics of transmuted Dagum distribution
In probability statistics the distribution of extremes (smallest and/or largest), median

and joint order statistics are the most important functions of a random variable. This is
only the order statistics that help us to study the peaks of the data to understand the
pattern of the extremes. Mathematically the order statistics is defined as, let Y1, Y2, ..., Yn
be any real valued random variables and its ordered values denoted as Y(1) ≤ Y(2) ≤ ... ≤
Y(n) then the values Y(1), Y(2), ..., Y(n) are the order statistics of random variable .
The density of the nth ordered statistics, that follows the transmuted Dagum distribution
is derived in the following form

f(n)(y(n)) = n[F (y(n))]
n−1f(y(n))

=
nαρβα

yα+1
(n)

[
(1 + λ)

(
1 +

(y(n)
β

)−α)
− 2λ)

] n−1∑
j=0

(
n− 1
j

)
× (−λ)j(1 + λ)n−j−1

(
1 +

(y(n)
β

)−α)−ρ(n+j+1)−1

.

Let suppose that the smallest values also follows the transmuted Dagum distribution,
then the denity of the smallest order statistic, is obtained as

f(1)(y(1)) = n[1− F (y(1))]
n−1f(y(1))

=
nαρβα

yα+1
(1)

[
(1 + λ)

(
1 +

(y(1)
β

)−α)
− 2λ)

] n−1∑
i=0

i∑
j=0

(
i
j

)(
n− 1
i

)
× (−1)i+j(−λ)j(1 + λ)i−j

(
1 +

(y(1)
β

)−α)−ρ(i+j+1)−1

.

Generally the pdf of the rth order statistics is given by

f(r)(y(r)) =
n!

(r − 1)!(n− r)! [F (y(r))]
r−1[1− F (y(r))]

n−rf(y(r))

=
n!αρβαy

−(α+1)

(r)

(r − 1)!(n− r)!

[
(1 + λ)

(
1 +

(y(r)
β

)−α)
− 2λ)

] n−r∑
i=0

r+i−1∑
j=0

(
r + i− 1

j

)

×
(
n− r
i

)
(−1)i+j(λ)j(1 + λ)r+i−j−1

(
1 +

(y(r)
β

)−α)−ρ(r+i+j+1)−1

.

Sometimes interest is in the joint pdf such as to find the joint breaking strength of
certain equipment, for the transmuted Dagum distribution the pdf of Y(r) and Y(s), when
1 ≤ r < s ≤ n is obtained as

f(r,s)(u, v) =
n!

(r − 1)!(s− r − 1)!(n− s)! [F (u)]r−1[F (v)− F (u)]s−r−1

× [1− F (v)]n−sf(u)f(v)

=
n!

(r − 1)!(s− r − 1)!(n− s)!

(αβρ
uv

)2[
(1 + λ)

(
1 +

(u
β

)−α)
− 2λ)

]
×

S∑
i=0

s−r−1∑
j=0

n−s∑
k=0

r+j−1∑
l=0

(
r + j − 1

l

)(
n− s
k

)(
s− r − 1

j

)(
S
j

)
× (−1)i+j+k+l(λ)i+l(1 + λ)r+i+j−1

(
1 +

(u
β

)−α)−ρ(r+i+j+1)−1

×
(

1 +
( v
β

)−α)−ρ(S+i+2)−1

,
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where S = s+ k − r − j − 1.

7. Generalized TL-moments of transmuted Dagum distribution
Hosking [15] introduced the L-moments and now these moments are frequently used for

extreme value analysis. Elamir and Seheult [12] extended these moments and presented
the TL-moments. These moments based on the order statistics used to describe the shape
of the probability distribution by evaluating all descriptive statistics including parameter
estimation and hypothesis testing. The rth generalized TL-moments with s smallest and
t largest trimming is defined as follows

(7.1) T (s,t)
r = r−1

r−1∑
k=0

(−1)k
(
r − 1
k

)
E (Yr+s−k:r+s+t) ,

where T
(s,t)
r is a linear function of the expectations of the order statistics and r =

1, 2, ...; t, s = 0, 1, 2....
The expression for the expected value of the (r+ s− k)th order statistics of the random
sample of size (r + s+ t) is as

(7.2) E (Yr+s−k:r+s+t) = C

∫ ∞
0

[F (y)]r+s−k−1 [1− F (y)]t+k dF (y).

where C = (r+s+t)!
(r+s−k−1)!(t+k)!

and F is the cdf of the transmuted Dagum distribution, and

by substitute expression (7.1) into expression (7.2), we obtain T (s,t)
r as

T (s,t)
r =

r−1∑
k=0

(
r − 1
k

)
C

r
(−1)k

∫ ∞
0

[F (y)]r+s−k−1 [1− F (y)]t+k dF (y)

Having the cdf and pdf of transmuted Dagum distribution the generalized TL-moments
is given by

T (s,t)
r =

βρ

r

r−1∑
k=0

t+k∑
i=0

s+r−k+i−1∑
j=0

(
s+ r − k + i− 1

j

)(
t+ k
i

)

×
(
r − 1
k

)
C(−1)i+j+kλj(1 + λ)I+s−1Γ(1− 1/α)

×
[
(1 + λ)

Γ[ρ(I + s) + 1/α]

Γ[ρ(I + s) + 1]
− 2λ

Γ[ρ(I + s+ 1) + 1/α]

Γ[ρ(I + s+ 1) + 1]

]
,(7.3)

where I = r − k + i+ j.
This expression of the generalized TL-moments used to obtain its special cases such
as L-moments, TL-moments, LH-moments and LL-moments. First two TL-moments
T

(s,t)
1 and T

(s,t)
2 are used to calculate the location and dispersion of the data, respec-

tively. The ratio of TL-moments T (s,t)
CV = T

(s,t)
2

/
T

(s,t)
1 , T (s,t)

Sk = T
(s,t)
3

/
T

(s,t)
2 and T (s,t)

Kr =

T
(s,t)
4

/
λ
(s,t)
2 are the coefficient of variation, skewness and kurtosis characteristic of the

probability distribution, respectively.
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7.1. The TL-moments (s = t = 1). Generally it is possible to trim any number of
smallest and largest values from the ordered observation. As a special case, if only one
extreme value from both sides (s = t = 1) are trimmed then expression (7.3) becomes
the rth TL-moments and we get

T (1)
r =

r−1∑
k=0

k+1∑
i=0

r−k+i∑
j=0

(
r − k + i

j

)(
k + 1
i

)(
r − 1
k

)
(r + 2)!Γ(1− 1/α)βρ

r(r − k)!(k + 1)!

× (−1)i+j+kλj(1 + λ)I
[
(1 + λ)

Γ[ρ(I + 1) + 1/α]

Γ[ρ(I + 1) + 1]
− 2λ

Γ[ρ(I + 2) + 1/α]

Γ[ρ(I + 2) + 1]

]
.

7.2. The L-moments (s = t = 0). When none of the observation is trimmed from
the ordered sample, the TL-moments reduced to L-moments and basically L-moments
and related moments are due the Hosking [15] methodology. The rth L-moments of
transmuted Dagum distribution is as

T (0)
r =

r−1∑
k=0

k∑
i=0

r−k+i−1∑
j=0

(
r − k + i− 1

j

)(
k
i

)(
r − 1
k

)
(r)!Γ(1− 1/α)βρ

r(r − k − 1)!(k)!

× (−1)i+j+kλj(1 + λ)I−1
[
(1 + λ)

Γ[ρ(I) + 1/α]

Γ[ρ(I) + 1]
− 2λ

Γ[ρ(I + 1) + 1/α]

Γ[ρ(I + 1) + 1]

]
.

7.3. The LL-moments (s = 0, t = t). LL-moments progressively reflect the character-
istics of the lower part of distribution. Bayazit and Onoz [3] introduced these moments
and later it became the special case of the TL-moments, when s = 0 and t = t. Following
is the LL-moments

T (0,t)
r =

r−1∑
k=0

t+k∑
i=0

r−k+i−1∑
j=0

(
r − k + i− 1

j

)(
t+ k
i

)(
r − 1
k

)
× (r + t)!βρ

r(r − k − 1)!(t+ k)!
(−1)i+j+kλj(1 + λ)I−1Γ(1− 1/α)

×
[
(1 + λ)

Γ[ρ(I) + 1/α]

Γ[ρ(I) + 1]
− 2λ

Γ[ρ(I + 1) + 1/α]

Γ[ρ(I + 1) + 1]

]
.

7.4. The LH-moments (s = s, t = 0). LH moments proposed by Wang [26], these
moments describe the upper part of the data more precisely. These moments give more
weight to the larger values and the theoretical LH-moments for the transmuted Dagum
distribution are defined as

T (s,0)
r =

r−1∑
k=0

k∑
i=0

r+s−k+i−1∑
j=0

(
r + s− k + i− 1

j

)(
k
i

)(
r − 1
k

)
× (r + t)!βρ

r(r − k − 1)!(t+ k)!
(−1)i+j+kλj(1 + λ)I−1Γ(1− 1/α)

×
[
(1 + λ)

Γ[ρ(I + s) + 1/α]

Γ[ρ(I + s) + 1]
− 2λ

Γ[ρ(I + s+ 1) + 1/α]

Γ[ρ(I + s+ 1) + 1]

]
.

8. Parameter estimation
In this section, interest is to estimate the parameters of transmuted Dagum distri-

bution by maximum likelihood estimation. Let Y1, Y2, ..., Yn be i.i.d random variables
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of transmuted Dagum distribution of size n. Then the sample likelihood function and
log-likelihood function for this distribution are obtained as follows

L(x; .) =
αρ

β2αρ

n∏
i=1

y2αρ−1
i

(
1 + (yi/β)α

)2ρ+1[
(1 + λ)

(
1 + (yi/β)−α

)ρ − 2λ
]

(8.1)

and

`(x; .) = n lnα+ n ln ρ− 2nαρ lnβ − (2αρ+ 1)

n∑
i=1

ln
(
1 + (yi/β)α

)
+ (2αρ+ 1)

n∑
i=1

ln yi +

n∑
i=1

ln
[
(1 + λ)

(
1 + (yi/β)−α

)ρ − 2λ
]
,(8.2)

respectively.
To find the parameter estimates, now we take the first order derivatives of (8.2) with
respect to parameter (α, β, ρ and λ) and equating them equal to zero, respectively,

n

α
− 2nρ lnβ + 2ρ

n∑
i=1

ln yi − (2ρ+ 1)

n∑
i=1

(yi/β)α ln(yi/β)(
1 + (yi/β)α

)
− ρ(1 + λ)

n∑
i=1

(yi/β)−α
(
1 + (yi/β)−α

)ρ−1
ln(yi/β)[

(1 + λ)
(
1 + (yi/β)−α

)ρ − 2λ
] = 0,

− 2nαρ

β
+ α(2ρ+ 1)

n∑
i=1

yi(yi/β)α−1

β2
(
1 + (yi/β)α

)
− αλ(1 + λ)

n∑
i=1

(yi/β)−α
(
1 + (yi/β)−α

)ρ−1
ln(yi/β)[

(1 + λ)
(
1 + (yi/β)−α

)ρ − 2λ
] = 0,

n

ρ
− 2nα lnβ − 2

n∑
i=1

ln
(
1 + (yi/β)α

)
+ (1 + λ)

n∑
i=1

(
1 + (yi/β)−α

)ρ
ln
(
1 + (yi/β)−α

)[
(1 + λ)

(
1 + (yi/β)−α

)ρ − 2λ
] = 0,

n∑
i=1

(
1 + (yi/β)−α

)ρ − 2[
(1 + λ)

(
1 + (yi/β)−α

)ρ − 2λ
] = 0.

The exact solution to derive the estimator for unknown parameters is not possible, so
the estimates (α̂, β̂, ρ̂, λ̂)′ are obtained by solving the above four nonlinear equations si-
multaneously. This solution of nonlinear system is easier by Newton-Raphson approach.
The Newton-Raphson approach used the jth element of the gradient and the (j, k)th
elements of the Hessian matrix and these elements are gj = ∂`(θ)/∂θj and Hjk =
∂2`(θ)/∂θj∂θk, respectively, whereas j, k =1,2,3,4, due to the four parameters of trans-
muted Dagum distribution. The information matrix, I(θ) = Ijk(θ) = −E(Hjk) and then
its inverse of matrix I(θ)−1 provides the variances and covariances, diagonal and off di-
agonal entries, respectively. Asymptotically these estimates of parameters approaches to
normality and the z-score are approximately standard normal, which can be used to find
the 100(1− r)% two sided confidence interval for α, β, ρ and λ.
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9. Application
In this section, the performance of the transmuted Dagum distribution is compared

with Dagum distribution and some other related distributions. Monthly maximum pre-
cipitation data of Islamabad city is considered for the comparison. Islamabad is the
capital city of the Pakistan. The geographical location of this city has Latitude 33.71
and Longitude 73.07 with humid subtropical climate and has five seasons. This area re-
ceives heavy rainfall during monsoon season. The data of monthly precipitation retrieved
from the Regional Meteorological Center (RMC) Lahore and from Pakistan Metrological
Department (PMD) Islamabad. The length of data is 640 recorded from January 1954
to December 2013 excluding some unobserved or unreported months and the summary
statistics are given in Table 1 and Table 3.

Table 1. Summary Statistics for monthly maximum precipitation
data of the Islamabad, Pakistan.

Length Average Minimum Maximum Q1 Median Q3 S.D
640 86.25 0.10 641.00 20.35 49.90 101.90 94.98

In order to compare the transmuted Dagum and its related distribution, we consider
criteria like log-likelihood (`), Akaike information criterion (AIC), Akaike information
corrected criterion (AICC), Bayesian information criteria (BIC) and Kolmogoro-Smirnov
(KS) goodness of fit test for the data sets. The better distribution have corresponds to
smaller `, AIC, AICC , BIC and KS values. Where

AIC=2k-2`,
AICC=AIC+2k(k + 1)/(n− k − 1),

BIC=2`+k log(n)

and
KS= max

i≤i≤n
[F (Yi)− (i− 1)/n, i/n− F (Yi)].

Here k is the number of parameters in each distribution, and n is the sample size.
It is better to test the superiority of the transmuted Dagum distribution over the Dagum
distribution before analyzing the data. We employed the likelihood ratio (LR) statistic
for this purpose. To perform this test the maximized restricted and unrestricted log-
likelihoods can be computed under the null and alternative hypothesis
H0 : λ = 0 (restricted, Dagum model is true for the data set)
versus
H1 : λ 6= 0 (unrestricted, transmuted Dagum model is true for the data set).
The LR statistic for testing the hypothesis is computed by ω = 2(`(θ̂0) − `(θ̂1)), where
θ̂0 and θ̂1 are the maximum likelihood estimates under H0 and H1, respectively. The LR
statistic is asymptotically distributed as chi-square (χ2

v,r). The computed value of LR
statistic under the hypothesis is ω =22.74. We may observe that the ω > χ2

1,0.05(3.84),
so we reject the null hypothesis and found that the transmuted Dagum model is best for
the data set.
Variance covariance matrix of the MLEs under the transmuted Dagum distribution is
obtained as

I(θ̂)−1 =


0.0407 2.7555 −0.0097 0.0094
2.7555 1360.2 −0.5489 13.361
−0.0097 −0.5489 0.0028 0.0004
0.0094 13.361 0.0004 0.4924

 .
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Table 2. Estimated parameters of the transmuted Dagum and related
distributions.

Model Estimates `(., y) AIC AICC BIC KS
α̂ = 2.2198

Transmuted β̂ = 132.94 3452.71 6913.42 6913.48 6931.27 0.0280
Dagum ρ̂ = 0.3981

λ̂ = 0.3565

α̂ = 2.1302

Dagum β̂ = 105.49 3464.08 6934.16 6934.20 6947.544 0.1646
ρ̂ = 0.5827

Transmuted â = 0.1000

Pareto b̂ = 0.2374 4002.16 8010.32 8010.36 8023.70 0.3332
λ̂ = −0.962

Pareto â = 0.1000 4177.59 8361.18 8361.19 8368.10 0.4245
b̂ = 0.1657

Fisk â = 1.3577 3476.16 6958.32 6956.32 6965.24 0.9718
b̂ = 46.452

Inverse â = 31.223 3508.12 7020.24 7020.25 7029.16 0.1209
Lomax b̂ = 1.3335

Thus, the variances of the ML estimates are, var(α̂) = 0.2019, var(β̂) = 36.8808,
var(ρ) = 0.0527 and var(λ̂) = 0.3863. Therefore, confidence interval for α, β, ρ and
λ are [1.8240, 2.6156], [60.657, 205.23], [0.2946, 0.5015] and [-0.4007, 1.1136], respec-
tively.
The results in Table 2 indicates that the proposed transmuted Dagum distribution fits
well as it has the smallest `(., y) , AIC, AICC and BIC as compared to the Dagum distri-
bution and the others considered distributions. The KS goodness fit test is employed to
evaluate the best fitted model for the precipitation data. The calculated value of this test
is 0.0280, whereas the tabled critical two-tailed values at 0.05 and 0.01 significance levels
are 0.0538 and 0.0644, respectively. According to Sheskin [25], if the value of KS statistic
is greater or equal to the critical value then the null hypothesis should be rejected. Thus
the null hypothesis cannot be rejected for the transmuted Dagum distribution as the
value of the KS-test is not greater or equal to the critical values.
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Figure 5. Empirical, fitted transmuted Dagum and Dagum cdf of the
data set with maximum distance highlight.
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Figure 6. PP plots for fitted transmuted Dagum distribution.
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Figure 7. PP plots for fitted Dagum distribution

Both empirical cdf and PP-plots also indicate that the transmuted Dagum distribution
is better than its competitor Dagum distribution to model the rainfall data. As trans-
muted Dagum distribution exactly follow the empirical pattern of the data and more
closest view showed in circle in Figure 5 and similarly in PP-plot the transmuted Dagum
distribution lies almost perfectly on the 45o line. So we conclude that the transmuted
Dagum distribution fulfills all the goodness of fit criteria for the data set.
TL-moments evaluate the basic characteristics of data in a better way and show the true
picture of the data. First and second moments show the average value and variation in
data, respectively. Consistency, symmetry and peakness evaluated by the coefficient of
variation CV , Sk and Kr using the 2nd, 3rd and 4th moments. These moments and
coefficients are calculated and reported in the Table 3 using Islamabad precipitation data
set.

Table 3. Moments and moment ratios for monthly maximum precip-
itation data of the Islamabad, Pakistan

Model Moments L-moments TL-moments LL-moments LH-moments
1st 86.2486 86.2486 114.8730 68.2673 104.2290
2nd 45730.1 17.9811 24.3523 34.9539 7.9823
3rd -2.15×106 -28.6242 -15.3700 -4.0121 -34.1535
4th -4.24×108 -22.6061 -16.8617 -16.4118 -11.8458
CV 2.4794 0.2085 0.2120 0.5120 0.0765
Sk -1.1691 -1.5919 -0.6311 -0.4115 -4.2786
Kr 1.4962 -1.2572 -0.6924 -0.4695 -1.4840
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10. Conclusion
The transmuted Dagum distribution proposed in this study, is the generalization of

the Dagum distribution. This distribution is quite flexible and its application diversities
increased due to the fourth transmuted parameter as compared to the standard Dagum
distribution. To show the flexibility of new density the plots of the pdf, cdf, reliabil-
ity function and hazard functions are presented. We derived moments and other basic
properties of the proposed distribution. The densities of the lowest, highest, rth order
statistics, the joint density of the two order statistics and TL-moments are also stud-
ied. The parameter estimation is obtained by the maximum likelihood estimation via
Newton-Raphson approach. To evaluate its worth five goodness of fit criterion are con-
sidered for the selection of most appropriate model among transmuted Dagum, Dagum,
transmuted Pareto, Pareto, Fisk and inverse Lomax. On all of these criteria, the results
of the application show that transmuted Dagum distribution is superior to the Dagum
distribution and other related distribution. Finally, we hope that the proposed model will
serve better in income distribution, actuarial, meteorological and survival data analysis.
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1. Introduction
A suitable generalized lifetime model is often of interest in the analysis of survival

data, as it can provide insight into characteristics of failure times and hazard functions
that may not be available with classical models. Four distributions (exponential, Pareto,
power and Weibull) are of interest and very attractive in lifetime literature due to their
simplicity, easiness and flexible features to model various types of data in different fields.
The power function distribution (PFD) is a flexible lifetime model which can be obtained
from the Pareto model by using a simple transformation Y = X−1 [19] and it is also a
special case of the beta distribution. Meniconi and Barry [36] discussed the application
of the PFD along with other lifetime models, and concluded that the PFD is better than
the Weibull, log-normal and exponential models to measure the reliability of electronic
components. The PFD can be used to fit the distribution of certain likelihood ratios in
statistical tests. If the likelihood ratio (LR) is based on n iid random variables, it is often
found that a useful goodness-of-fit can be obtained by letting (likelihood ratio)2/n to
have a PFD (see [6]). For introduction and statistical properties of the PFD, the reader
is referred to Johnson et al. [23, 24], Balakrishnan and Nevzorov [13], Kleiber and Kotz
[29] and Forbes et al. [21]. The estimation of its parameters is discussed in detail by
[55, 56, 9]. The estimation of the sample size for parameter estimation is addressed by
Kapadia [26]. Ali et al. [8] derived the UMVUE of the mean and the right-tail probability
of the PFD. Ali and Woo [6] and Ali et al. [7] provided inference on reliability and the
ratio of variates in the PFD. Sinha et al. [51] proposed a preliminary test estimator for
a scale parameter of the PFD.

From a Bayesian point of view, the PFD can be used as a prior when there is limited
sample information, and especially in cases where the relationship between the variables
is known but the data is scarce (possibly due to high cost of collection). The PFD can also
be used as prior distribution for the binomial proportion. Saleem et al. [45] performed
Bayesian analysis of the mixture of PFDs using complete and censored samples. Rehman
et al. [41] used Bayes estimation and conjugate prior for the PFD. Kifayat et al. [28]
analyzed this distribution in the Bayesian context using informative and non-informative
priors. Zarrin et al. [57] discussed the reliability estimation and Bayesian analysis of the
system reliability of the PFD.

Several authors have reported characterization of the PFD based on order statistics
and records. Rider [44] first derived the distribution of the product and ratio of the or-
der statistics. Govindarajulu [22] gave the characterization of the exponential and PFD.
Exact explicit expression for the single and the product moments of order statistics are
obtained by Malik [31]. Ahsanullah [2] defined necessary and sufficient conditions based
on PFD order statistics. Kabir and Ahsanullah [25] estimated the location and scale of
the PFD using linear function of order statistics. Balakrishnan and Joshi [12] derived
some recurrence relations for the single and the product moments of order statistics.
Moothathu [38, 39] gave characterizations of the PFD through Lorenz curve. The esti-
mation of the PFD parameters based on record values is studied by Ahsanullah [3]. Saran
and Singh [47] developed recurrence relations for the marginal and generating functions
of generalized order statistics. Saran and Pandey [46] estimated the parameters of the
PFD and proposed a characterization based on kth record values. The characterization
based on the lower generalized order statistics is given in Ahsanullah [4], and Mbah and
Ahsanullah [34]. Chang [16] suggested other characterization by independence of records
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values. Athar and Faizan [10] derived some recurrence relations for single and prod-
uct moments of lower generalized order statistics. Tavangar [53] gave a characterization
based on dual generalized order statistics. Bhatt [14] proposed a characterization based
on any arbitrary non-constant function. Recently, Azedine [11] derived single and double
moments of the lower record values, and also established recurrence relations for these
single and double moments.

Different versions of the PFD are reported in the literature. Some of them are sum-
marized in Table 1, where Π(x) denotes its cumulative distribution function (cdf) and
π(x) denotes its probability probability function (pdf).

Table 1: Some versions of the PFD.

S.No./Ref. Π(x) π(x) Range of variable Parameters
1./ [11] xα αxα−1 0 < x < 1 α > 0

2./ [5] (x/λ)α αλ−α xα−1 0 < x < λ α > 0

3./ [18] (xβ)α αβα xα−1 0 < x < β−1 α, β > 0

4./ [10] (x/θ)α+1 (α+ 1) θ−(α+1) xα 0 < x < θ α > −1, θ > 0

5./ [47] 1− (1− x)δ δ (1− x)δ−1 0 < x < 1 δ > 0

6./ [52]
[
x−θ
σ

]ν
ν
σ

[
x−θ
σ

]ν−1

θ < x < σ + θ ν, σ > 0

7./ [46] 1−
[
β−x
β−α

]γ
γ

β−α

[
β−x
β−α

]γ−1

α < x < β γ > 0

8./ [6] x[
σ

1−σ ]
[

σ
1−σ

]
x[

σ
1−σ ]−1 0 < x < 1 0 < σ < 1

A random variable Z has the PFD or the generalized uniform distribution (GUD) [40]
with two positive parameters α and β, if its cdf is given by

(1.1) G(x) =
[x
α

]β
, 0 < x < α,

where α is the scale (threshold) parameter and β is the shape parameter. The pdf
corresponding to (1.1) reduces to

(1.2) g(x) =

[
β

α

] [x
α

]β−1

, 0 < x < α,

The distribution (1.1) has the following special cases:
(i) if α = 1, the PFD reduces to standard power distribution,
(ii) if α = 1 and β = 1, it reduces to standard uniform distribution,
(iii) if β = 1, it gives the rectangular distribution [31, 25],
(iv) if β = 2, it refers to triangular distribution [31, 25],
(v) if β = 3, it refers to J-shaped distribution [31, 25],
(vi) if α = 1 and Y = X−1, then Y ∼Pareto(0, β) [21],
(vii) if α = 1 and Y = − log X, then Y ∼Exponential(β−1) [21],
(viii) if α = 1 and Y = − log(Xβ − 1), then Y ∼Logistic(0, 1) [21],

(ix) if α = 1 and Y = [− log(Xβ)]1/γ , then Y ∼Weibull(0, γ) [21],
(x) if α = 1 and Y = − log[−b logX], then Y ∼Gumbel(0, 1) [21],
(xi) if α = 1 and Y = −b [X1/X2], then Y ∼Laplace(0, 1) [21].
Henceforth, let Z be a random variable having the PFD with parameters α and β,

say Z ∼PFD(α, β). Then, the quantile function (qf) is G−1(u) = αu1/β (for 0 < u < 1).
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The survival function (sf) G(x), hazard rate function (hrf) τ(x), reversed hazard rate
function (rhrf) r(x), cumulative hazard rate function (chrf) V (x) and odd ratio (OR)
G(x)/G(x) of Z are given by G(x) = 1− (x/α)β = αβ−xβ

αβ
, τ(x) = β xβ−1

αβ−xβ , r(x) = (β/x) ,

V (x) = − log
[
1− (x/α)β

]
and OR = xβ

αβ−xβ , respectively.
The nth moment of Z comes from (1.2) as

(1.3) E(Zn) =
αn β

β + n
.

The mean and variance of Z are

E(Z) = [αβ/(β + 1)]

and
V ar(Z) =

{
βα2/[(β + 2)(β + 1)2]

}
,

respectively.
The moment generating function (mgf) of Z becomes

(1.4) MZ(t) =
β
[
Γ(β)− Γ(β,−t α)

]
(−t)β αβ , t < 0,

where Γ(a; bx) = ba
∫∞
x
wa−1 e−bwdw for a > 0 and b > 0 and Γ(·; ·) is the complemen-

tary gamma function.
The nth incomplete moment of Z can be expressed as

(1.5) m(n,Z)(x) =
β

αβ
xβ+n

β + n
.

In this paper, we propose an extension of the PFD called the Weibull power function
(for short “WPF”) distribution based on the Weibull-G class of distributions defined
by Bourguignon et al. [15]. Zagrafos and Balakrishnan [58] pioneered a versatile and
flexible gamma-G class of distributions based on Stacy’s generalized gamma model and
record value theory. More recently, Bourguignon et al. [15] proposed the Weibull-G
class of distributions influenced by the gamma-G class. Let G(x; Θ) and g(x; Θ) denote
the cumulative and density functions of a baseline model with parameter vector Θ and
consider the Weibull cdf πW (x) = 1 − e−a x

b

(for x > 0) with scale parameter a >
0 and shape parameter b > 0. Bourguignon et al. [15] replaced the argument x by
G(x; Θ)/G(x; Θ), where G(x; Θ) = 1 − G(x; Θ), and defined the cdf of their class, say
Weibull-G(a, b,Θ), by

(1.6) F (x) = F (x; a, b,Θ) = a b

∫ [
G(x;Θ)

G(x;Θ)

]
0

xb−1 e−ax
b

dx = 1− e
−a
[
G(x;Θ)

G(x;Θ)

]b
, x ∈ <.

The Weibull-G class density function becomes

(1.7) f(x) = f(x; a, b,Θ) = a b g(x; Θ)

[
G(x; Θ)b−1

G(x; Θ)b+1

]
e
−a
[
G(x;Θ)

G(x;Θ)

]b
.

If b = 1, it corresponds to the exponential-G class. An interpretation of equation (1.6)
can be given as follows. Let Y be the lifetime variable having a parent G distribution.
Then, the odds that an individual will die at time x is G(x; Θ)/G(x; Θ). We are inter-
ested in modeling the randomness of the odds of death using an appropriate parametric
distribution, say F (x). So, we can write

F (x) = Pr(X ≤ x) = F
[G(x; Θ)

G(x; Θ)

]
.



249

The paper unfolds as follows. In Section 2, we define a new bathtub shaped model
called theWeibull-power function (WPF) distribution and discuss the shapes of its density
and hrf. In Section 3, some of its statistical properties are investigated. In Section 4,
Rényi and Shannon entropies are derived and the reliability is determined in Section 5.
The density of the order statistics is obtained in Section 6. The model parameters are
estimated by maximum likelihood and a simulation study is performed in Section 7. In
Section 8, a bivariate extension of the new family is introduced. Applications to two
real data sets illustrate the performance of the new model in Section 9. The paper is
concluded in Section 10.

2. Model definition
Inserting (1.1) in equation (1.6) gives the WPF cdf as

(2.1) F (x) = F (x; a, b, α, β) = 1− e
−a
[

xβ

αβ−xβ

]b
, 0 < x < α, a, b, α, β > 0.

The pdf corresponding to (2.1) is given by

(2.2) f(x) = f(x; a, b, α, β) =
a b β αβ xβ b−1

(αβ − xβ)b+1
e
−a
[

xβ

αβ−xβ

]b
.

Henceforth, let X ∼WPF(a, b, α, β) be a random variable having pdf (2.2). The sf, hrf,
rhrf and chrf of X are given by

S(x) = S(x; a, b, α, β) = e
−a
[

xβ

αβ−xβ

]b
,(2.3)

τ(x) = h(x; a, b, α, β) =
a b β αβxβ b−1

(αβ − xβ)b+1
,

r(x) = r(x; a, b, α, β) =
a b β αβxβ b−1

(αβ − xβ)b+1

e
−a
[

xβ

αβ−xβ

]b
[

1− e
−a
[

xβ

αβ−xβ

]b]
and

V (x) = V (x; a, b, α, β) = a
[ xβ

αβ − xβ
]b
,

respectively.
Figures 1 and 2 display some plots of the pdf and hrf of X for some parameter values.
Figure 1 indicates that the WPF pdf has various shapes such as symmetric, right-skewed,
left-skewed, reversed-J, S, M and bathtub. Also, Figure 2 indicates that the WPF hrf
can have bathtub-shaped, J and U shapes.

Lemma 2.1 provides some relations of the WPF distribution with the Weibull and
exponential distributions.

2.1. Lemma. (Transformation): (a) If a random variable Y follows the Weibull dis-
tribution with shape parameter b and scale parameter a, then the random variable X =

α
[

Y
1+Y

]1/β
has the WPF(a, b, α, β) distribution.

(b) If a random variable Y follows the exponential distribution, then the random variable

X = α
[

Y 1/b

1+Y 1/b

]1/β
has the WPF(a, b, α, β) distribution.
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Figure 1. Plots of the WPF pdf for some parameters.
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Figure 2. Plots of the hazard rate for some parameters.

2.1. Shape and asymptotics. The critical points of the density of X are the roots of
the equation

bβ − 1

x
+
β(b+ 1)xβ−1

αβ − xβ − a b β αβxβ b−1

(αβ − xβ)b+1
= 0.(2.4)

The first derivative of the hrf of X is given by

τ ′(x) =
xbβ−2

{
(β + 1)xβ + (b β − 1)αβ

}
(αβ − xβ)b+2

.(2.5)

The limiting behavior of the pdf and hrf of X are given in the following lemma.

2.2. Lemma. The limits of the pdf and hrf of X when x→ α− are 0 and +∞. Further,
the limits of the pdf and hrf of X when x→ 0 are given by

lim
x→0+

f(x) =



+∞ for b β < 1;

a
α

for b β = 1;

0 for b β > 1.
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lim
x→0+

τ(x) =



+∞ for b β < 1;

a
α

for b β = 1;

0 for b β > 1.

The mode of the hrf of X is at x = 0 when β b ≥ 1 and it occurs at x = α
[
1−bβ
1+β

] 1
β

when bβ < 1.

2.3. Theorem. The hrf of X is increasing when b β ≥ 1 and is bathtub when b β < 1.

3. Mathematical properties
Established algebraic expansions to determine some mathematical properties of the

WPF distribution can be more efficient than computing those directly by numerical
integration of (2.2), which can be prone to rounding off errors among others. Despite the
fact that the cdf and pdf of the WPF distribution require mathematical functions that
are widely available in modern statistical packages, frequently analytical and numerical
derivations take advantage of certain expansions for its pdf.

3.1. Quantile function. The quantile function (qf) of X follows by inverting (2.1) as

(3.1) Q(u) = α

 [−1
a

log(1− u)
] 1
b

1 +
[−1
a

log(1− u)
] 1
b

 1
β

.

So, the simulation of the WPF random variable is straightforward. If U is a uniform
variate on the unit interval (0, 1), then the random variable X = Q(U) has pdf (2.2).

The analysis of the variability of the the skewness and kurtosis on the shape parameters
α and b can be investigated based on quantile measures. The shortcomings of the classical
kurtosis measure are well-known. The Bowley skewness [27] based on quartiles is given
by

B =
Q(3/4) +Q(1/4)− 2Q(2/4)

Q(3/4)−Q(1/4)
.

The Moors kurtosis [37] based on octiles is given by

M =
Q(3/8)−Q(1/8) +Q(7/8)−Q(5/8)

Q(6/8)−Q(2/8)
.

These measures are less sensitive to outliers and they exist even for distributions without
moments. In Figure 3, we plot the measures B and M for the WPF distribution. The
plots indicate the variability of these measures on the shape parameters β.

3.2. Useful expansion. We use the exponential power series and the expansion[
1−G(x; Θ)

]−b
=

∞∑
k=0

pkG(x; Θ)k,

where pk = Γ(b+ k)/[k! Γ(b)]. After some algebra, we can easily obtain

F (x) = F (x; a, b, α, β) =
∑
j,k≥0
j+k≥1

wj,kH(x;α, βj,k),(3.2)
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Figure 3. Skewness (a) and kurtosis (b) plots for WPF distribution
based on quantiles.

where wj,k = (−a)j pk/j!, βj,k = (jb+ k)β and H(x;α, βj,k) is the cdf of the PFD with
scale parameter α and shape parameter βj,k. Let Zj,k be the random variable with cdf
H(x;α, βj,k). By simple differentiation, we can express the pdf of X as

f(x) = f(x; a, b, α, β) =
∑
j,k≥0
j+k≥1

wj,k h(x;α, βj,k),(3.3)

where h(x;α, βj,k) is the pdf of Zj,k. Equation (3.3) reveals that the WPF distribution
is a mixture of PFDs with the same scale parameter α and different shape parameters.
Thus, some WPF mathematical properties can be obtained from those corresponding
properties of the PFD.

3.3. Ordinary and incomplete moments. The nth moment of X, say µ′n can be
expressed from (1.3) and (3.3) as

µ′n = αn
∑
j,k≥0
j+k≥1

βj,k wj,k
βj,k + n

.(3.4)

Setting n = 1 in (3.4), we obtain the mean µ′1 = E(X). The central moments (µn)
and cumulants (κn) of X are obtained from equation (3.4) as

µn =

n∑
k=0

{
n

k

}
(−1)k µ′k1 µ′n−k and κn = µ′n −

n−1∑
k=1

{
n− 1

k − 1

}
κk µ

′
n−k,

respectively, where κ1 = µ′1 and the notation{
n

k

}
is used to denote the binomial coefficient.

Thus, κ2 = µ′2−µ′21 , κ3 = µ′3−3µ′2µ
′
1 + 2µ′31 , κ4 = µ′4−4µ′3µ

′
1−3µ′22 + 12µ′2µ

′2
1 −6µ′41 ,

etc. The skewness and kurtosis can be calculated from the third and fourth standardized
cumulants as γ1 = κ3/κ

3/2
2 and γ2 = κ4/κ

2
2. They are also important to derive Edgeworth

expansions for the cdf and pdf of the standardized sum and sample mean of iid random
variables having the WPF distribution.
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The nth incomplete moment of X can be determined from (1.5) and (3.3)

m(n,X)(x) =
∑
j,k≥0
j+k≥1

βj,k

αβj,k
xβj,k+n

βj,k + n
.(3.5)

The main application of the first incomplete moment refers to the Bonferroni and Lorenz
curves. These curves are very useful in several fields. For a given probability π, they are
defined by B(π) = m1(q)/(π µ′1) and L(π) = m(1,X)(q)/µ

′
1, respectively, where m(1,X)(q)

comes from (3.5) with r = 1 and q = Q(π) is determined from (3.1).

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a = 2  β = 2

π

B
(π

)

b = 0.5  β = 3.5
b = 1.5  β = 1.9
b = 0.4  β = 4
b = 0.2  β = 7

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

a = 2  β = 2

π

L(
π)

b = 0.5  β = 3.5
b = 1.5  β = 1.9
b = 0.4  β = 4
b = 0.2  β = 7

(a) (b)

Figure 4. Plots of the Bonferroni curve (a) and Lorenz curve (b) for
the WPF model.

The amount of scatter in a population is measured to some extent by the totality of
deviations from the mean and median defined by δ1 =

∫∞
0
|x − µ′1| f(x)dx and δ2(x) =∫∞

0
|x − M | f(x)dx, respectively, where µ′1 = E(X) is the mean and M = Q(0.5) is

the median. These measures can be expressed as δ1 = 2µ′1 F (µ′1) − 2m(1,X)(µ
′
1) and

δ2 = µ′1 − 2m(1,X)(M), where F (µ′1) is given by (2.1) and m(1,X)(x) comes from (3.5)
with n = 1.

Further applications of the first incomplete moment are related to the mean resid-
ual life and mean waiting time given by s(x; a, b, α, β) = [1 − m(1,X)(x)]/S(x) − t and
µ(x; a, b, α, β) = t − [m(1,X)(x)/F (x)], respectively, where S(x) = 1 − F (x) is obtained
from (2.1).

3.4. Moment generating function. We obtain the moment generating function (mgf)
MX(t) of X from (3.3) as

M(t) =
∑
j,k≥0
j+k≥1

wj,k

∫ α

0

etx h(x;α, βj,k) dx.

Based on (1.4), M(t) can be expressed as

M(t) =
∑
j,k≥0
j+k≥1

wj,k βj,k

(−t)βj,k αβj,k
[
Γ(βj,k)− Γ(βj,k;−tα)

]
,

which is the main result of this section.



254

4. Entropies
An entropy is a measure of variation or uncertainty of a random variable X. Two

popular entropy measures are the Rényi [43] and Shannon [49].
The Rényi entropy of a random variable X with pdf f(x) is defined as

IR(γ) =
1

1− γ log

[∫ ∞
0

fγ(x) dx

]
,

for γ > 0 and γ 6= 1.
The Shannon entropy of X is defined by E {− log [f(X)]}. It is the special case of the

Rényi entropy when γ ↑ 1. Direct calculation yields

E {− log [f(X)]} = − log(a b β αβ) + (1− β) E {log(X)}

+ (b+ 1) E
[

log(αβ −Xβ)
]

+ aE
[ Xβ

αβ −Xβ

]b
.

First, we define and compute

A(a1, a2, a3;α, β, b) =

∫ α

0

xa1

(αβ − xβ)a2
e
−a3

[
xβ

αβ−xβ

]b
dx.(4.1)

Using the power series and the generalized binomial expansion, and after some algebraic
manipulations, we obtain

A(a1, a2, a3;α, β, b) =

∞∑
i,j=0

(−1)i+j ai3 α
a1−β a2

[a1 + β b i+ β j + 1] i!

{
−a2 − b i

j

}
.

4.1. Proposition. Let X be a random variable with pdf (2.2), then

E {log(X)} = a b β αβ
∂

∂t
A(bβ + t− 1, b+ 1, a;α, β, b) |t=0,

E
[

log(αβ −Xβ)
]

= a b β αβ
∂

∂t
A(bβ − 1, b+ 1− t, a;α, β, b) |t=0,

E
[{ Xβ

αβ −Xβ

}b]
= a b β αβA(2bβ − 1, 2b+ 1, a;α, β, b).

The simplest formula for the entropy of X is given by

E {− log[f(X)]} = − log(a b β αβ)

+ (1− β)a b β αβ
∂

∂t
A(bβ + t− 1, b+ 1, a;α, β, b) |t=0

+ (b+ 1)a b β αβ
∂

∂t
A(bβ − 1, b+ 1− t, a;α, β, b) |t=0

+ a2 b β αβ A(2bβ − 1, 2b+ 1, a;α, β, b).

After some algebraic developments, the Rényi entropy IR(γ) reduces to

(4.2) IR(γ) =
γ

1− γ log
[
a b β αβ

]
+

1

1− γ log
{
A
[
γ(β b− 1), γ(b+ 1), aγ;α, β, b

]}
.

5. Reliability
Let X1 and X2 be two continuous and independent WPF random variables with

cdfs F1(x) and F2(x) and pdfs f1(x) and f2(x), respectively. The reliability parameter
R = P (X1 < X2) is defined by

R = P (X1 < X2) =

∫ α2

0

P (X1 ≤ X2|X2 = x) fX2(x)dx,(5.1)

where X1 ∼WPF(a1, b1, α1, β1) and X2 ∼WPF(a2, b2, α2, θ2).
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After some algebra, we obtain

R =
∑

j,k,r,s≥0
j+k≥1,r+s≥1

w
(1)
j,k w

(2)
r,s

∫ α2

0

H(x;α1, β
(1)
j,k )h(x;α2, β

(2)
r,s )dx

=
∑

j,k,r,s≥0
j+k≥1,r+s≥1

w
(1)
j,k w

(2)
r,s

(b2r + s)

α2β2

[α2

α1

] b1j+k
β1

[ b1j + k

β1
+
b2r + s

β2

]−1

,

where w(1)
j,k = wj,k|a=a1,b=b1,β=β1 and w(2)

r,s = wr,s|a=a2,b=b2,β=β2 .

6. Order statistics
Here, we give the density of the ith order statistic Xi:n, fi:n(x) say, in a random

sample of size n from the WPF distribution. It is well known that (for i = 1, . . . , n)

(6.1) fi:n(x) =
n!

(i− 1)!(n− i!) f(x)F i−1(x) {1− F (x)}n−i .

Using the binomial expansion, we can rewrite fi:n(x) as

(6.2) fi:n(x) =
n!

(i− 1)!(n− i!) f(x)

n−i∑
j=0

(−1)j
{
n− i
j

}
F (x)i+j−1.

Using (2.2) in (6.2) to compute F (x)i+j−1, we obtain

fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
j=0

j+i−1∑
k=0

(−1)j+k
{
n− i
j

}{
j + i− 1

k

}
︸ ︷︷ ︸

tj,k

× a b β αβ xβ b−1

(αβ − xβ)b+1
e
−a(1+k)

[
xβ

αβ−xβ

]b
.

The rth moment of Xi:n can be obtained as

E (Xr
i:n) =

n−i∑
j=0

j+i−1∑
k=0

tj,k A(β b− 1, b+ 1, a+ k;α, β),(6.3)

where

tj,k =
(−1)j+k n!

(i− 1)!(n− i)!

{
n− i
j

}{
j + i− 1

k

}
.

After some algebra, the Rényi entropy of Xi:n becomes

IR,Xi:n(γ) =
γ

1− γ log

[
n! a b β αβ

(i− 1)!(n− i)!

]
+

1

1− γ log
[ ∞∑
j,k=0

k∑
r=0

t∗j,k,r A(γ(β b− 1), γ(b+ 1), a(γ + r);α, β, b)
]
,

where

t∗j,k,r = (−1)j+k
{
γ(n− 1)

j

}{
γ(i− 1) + j

k

}
.
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7. Estimation
Here, we determine the maximum likelihood estimates (MLEs) of the model parame-

ters of the new family from complete samples only. Let x1, . . . , xn be observed values from
the WPF distribution with parameters in Θ = (a, b, β). Then, the total log-likelihood
function for Θ is given by

`n = `n(Θ) = n log
[
a b β αβ

]
+ (β b− 1)

n∑
i=1

log(xi)

− (b+ 1)

n∑
i=1

log
(
αβ − xβi

)
− a

n∑
i=1

[ xβi
αβ − xβi

]b
.(7.1)

The log-likelihood function can be maximized either directly by using the SAS (PROC
NLMIXED) or the Ox (sub-routine MaxBFGS) program (see [20]), R-language [42] or
by solving the nonlinear likelihood equations obtained by differentiating (7.1).

The α is known and we estimate it from the sample maxima. The components of the
score function Un(Θ) = (∂`n/∂a, ∂`n/∂b, ∂`n/∂β)> are given by

∂`n
∂a

=
n

a
−

n∑
i=1

[ xβi
αβ − xβi

]b
∂`n
∂b

=
n

b
+ β

n∑
i=1

log(xi)−
n∑
i=1

log
[
αβ − xβi

]
− a

n∑
i=1

[ xβi
αβ − xβi

]b
log
[ xβi
αβ − xβi

]
and

∂`n
∂β

=
n

β
+ n log(α) + b

n∑
i=1

log(xi)− (b+ 1)

n∑
i=1

[αβ log(α)− xβi log(xi)

αβ − xβi

]
− a bαβ

n∑
i=1

[ xbβi log(xi
α

)

(αβ − xβi )b+1

]
.

Setting these equations to zero and solving them simultaneously yields the MLEs of
the three parameters. For interval estimation of the model parameters, we require the
3 × 3 observed information matrix J(Θ) = {Urs} (for r, s = a, b, β), whose elements
are listed in Appendix A. Under standard regularity conditions, the multivariate normal
N3(0, J(Θ̂)−1) distribution can be used to construct approximate confidence intervals for
the model parameters. Here, J(Θ̂) is the total observed information matrix evaluated at
Θ̂. Then, the 100(1 − γ)% confidence intervals for a, b and β are given by â ± zα∗/2 ×√
var(â), b̂± zα∗/2×

√
var(b̂) and β̂± zα∗/2×

√
var(β̂), respectively, where the var(·)’s

denote the diagonal elements of J(Θ̂)−1 corresponding to the model parameters, and
zα∗/2 is the quantile (1− α∗/2) of the standard normal distribution.

7.1. Simulation study. To evaluate the performance of the MLEs of the WPF param-
eters, a simulation study is conducted for a total of twelve parameter combinations and
the process in each case is repeated 200 times. Two different sample sizes n = 100 and
300 are considered. The MLEs of the parameters and their standard errors are listed in
Table 2. In this simulation study, we take α = 1. The figures in Table 2 indicate that
the MLEs perform well for estimating the model parameters. Further, as the sample size
increases, the biases and standard errors of the estimates decrease.
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Table 2: MLEs and standard standard errors for some parameter values

Sample size Actual values Estimated values Standard errors

n a b β ã b̃ β̃ ã b̃ β̃

100 0.5 0.5 1.0 0.5124 0.5064 1.5287 0.0138 0.0057 0.0405
0.5 1.0 1.0 0.5928 1.0106 1.1023 0.0361 0.0137 0.0474
0.5 1.5 2.0 0.6161 1.4959 2.1283 0.0399 0.0147 0.0669
1.0 1.5 2.0 1.5224 1.4887 2.3224 0.1386 0.0287 0.1187
1.5 1.5 2.0 1.8829 1.5294 2.1325 0.1543 0.0310 0.0973
2.0 1.0 1.0 2.1982 1.0293 1.0834 0.1271 0.0240 0.0511
2.0 0.5 1.0 1.9921 0.5208 1.0109 0.0525 0.0103 0.0328
2.0 0.5 2.0 1.9807 0.5220 2.0032 0.0509 0.0102 0.0627
2.0 0.5 1.5 1.9977 0.5248 1.5256 0.0539 0.0107 0.0561
2.0 0.5 0.5 1.9794 0.5145 0.5048 0.0475 0.0097 0.0152
2.0 1.5 0.5 2.7821 1.5288 0.5672 0.2529 0.0380 0.0320
2.0 2.0 0.5 2.8568 2.0116 0.5274 0.2984 0.0350 0.0226

300 0.5 0.5 1.0 0.4999 0.5038 1.5155 0.0046 0.0019 0.0139
0.5 1.0 1.0 0.5301 1.0040 1.0341 0.0105 0.0041 0.0134
0.5 1.5 2.0 0.6161 1.4959 2.1283 0.0230 0.0085 0.0386
1.0 1.5 2.0 1.1401 1.5086 2.0540 0.0454 0.0108 0.0404
1.5 1.5 2.0 1.6533 1.5198 2.0340 0.0565 0.0120 0.0363
1.0 1.0 2.0 1.9977 1.0140 1.0006 0.0384 0.0076 0.0138
2.0 0.5 1.0 1.9912 0.5088 1.0122 0.0178 0.0038 0.0118
2.0 0.5 2.0 2.0012 0.5066 2.0139 0.0160 0.0033 0.0191
2.0 0.5 1.5 2.0412 0.4921 1.5583 0.0153 0.0029 0.0137
2.0 0.5 0.5 2.0110 0.5018 0.5062 0.0170 0.0033 0.0052
2.0 1.5 0.5 2.1140 1.5159 0.5039 0.0722 0.0117 0.0086
2.0 2.0 0.5 2.7353 2.0066 0.5251 0.1319 0.0184 0.0113

8. Bivariate extension
Here, we propose an extension of the WPF model using the results of Marshall and

Olkin [33].

8.1. Theorem. Let X1 ∼WPF(a1, b, α, β), X2 ∼WPF(a2, b, α, β)) and X3 ∼WPF(a1, b, α, β)
be independent random variables.

Let X = min {X1, X3} and Y = min {X2, X3}. Then, the cdf of the bivariate random
variable (X,Y ) is given by

FX,Y (x, y) =1− e
−a1

[
xβ

αβ−xβ

]b
−a2

[
yβ

αβ−yβ

]b
−a3

[
zβ

αβ−zβ

]b
,

where z = max {x, y}.



258

The marginal cdf’s are given by

FX(x) = 1− e
−(a1+a3)

[
xβ

αβ−xβ

]b
and

FY (y) = 1− e
−(a2+a3)

[
yβ

αβ−yβ

]b
.

The pdf of (X,Y ) is given in the Corollary.

8.2. Corollary. Let X and Y defined as in Theorem 8.1,

fX,Y (x, y) =



fWPF(x ; a1, b, α, β) fWPF(y ; a2 + a3, b, α, β), for x < y;

fWPF(x ; a1 + a3, b, α, β) fWPF(y ; a2, b, α, β), for x > y;

a3
a1 + a2 + a3

fWPF(x ; a1 + a2 + a3, b, α, β), for x = y.

The marginal pdf’s are given by

fX(x) =
(a1 + a3) b β αβxβ b−1

(αβ − xβ)b+1
e
−a
[

xβ

αβ−xβ

]b
and

fY (y) =
(a2 + a3) b β αβyβ b−1

(αβ − yβ)b+1
e
−a
[

yβ

αβ−yβ

]b
.

9. Applications
In this section, we provide two application to real data in order to illustrate the

importance of the WPF distribution. The MLEs of the parameters are determined for
the WPF and four other models, and seven goodness-of-fit statistics are computed for
checking the adequacy of the all five fitted models.

9.1. Data set 1: Aarset data. The first real data set refers to the failure times of 50
items put under a life test. This data set is well-known to exhibit bathtub behavior of the
hrf. Aarset [1] first reported these data set which has been analyzed by many authors.
The data are: 0.1, 0.2, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 3.0, 6.0, 7.0, 11.0, 12.0, 18.0, 18.0, 18.0,
18.0, 18.0, 21.0, 32.0, 36.0, 40.0, 45.0, 45.0, 47.0, 50.0, 55.0, 60.0, 63.0, 63.0, 67.0, 67.0,
67.0, 67.0, 72.0, 75.0, 79.0, 82.0, 82.0, 83.0, 84.0, 84.0, 84.0, 85.0, 85.0, 85.0. 85.0. 85.0.
86.0. 86.0.

9.2. Data set 2: Device failure times data. The second real data set refers to 30
devices failure times given in Table 15.1 by Meeker and Escobar [35]. The data are: 275,
13, 147, 23, 181, 30, 65, 10, 300, 173, 106, 300, 300, 212, 300, 300, 300, 2, 261, 293, 88,
247, 28, 143, 300, 23, 300, 80, 245, 266.

We fit the WPF model and other competitive models to both data sets. The other fit-
ted models are: the additive Weibull (AddW) [54], modified-Weibull (MW) [30], Sarhan-
Zaindin modified Weibull (SZMW) [48] and beta-modified Weibull (BMW) [50]. Their
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associated densities are given by:

AddW : fAddW (x;α, β, θ, γ) =
(
α θ xθ−1 + β γ xγ−1

)
e−αx

θ−β xγ , x > 0,

α, β, θ, γ > 0,

MW : fMW (x;β, γ, λ) = β (γ + λx) xγ−1 eλx e−β x
γ ,eλ x , x > 0, β, γ, λ > 0,

SZMW : fSZMW (x;α, β, γ) =
(
α+ β xγ−1

)
e−αx−β x

γ

, x > 0, α, β, γ > 0,

BMW : fBMW (x; a, b, α, β, λ) = 1
B(a,b)

α (β + λx) xβ−1 eλx e−α b x
β

×
(

1− e−αx
βeλx

)a−1

, x > 0, a, b, α, β, λ > 0.

The required computations are carried out using a script of the R-language [42], the
AdequacyModel, written by Pedro Rafael Diniz Marinho, Cícero Rafael Barros Dias
and Marcelo Bourguignon [32] which is freely available. In AdequacyModel package,
there exists many maximization algorithms like NR (Newton-Raphson), BFGS (Broyden-
Fletcher-Goldfarb-Shanno), BHHH(Berndt-Hall-Hall-Hausman), SANN (Simulated-Annealing),
NM (Nelder-Mead) and Limited-Memory quasi-Newton code for Bound-constrained op-
timization (L-BFGS-B). But here, the MLEs are computed using LBFGS-B method.

The measures of goodness of fit including the log-likelihood function evaluated at the
MLEs (ˆ̀), Akaike information criterion (AIC), consistent Akaike information criterion
(CAIC), Hannan-Quinn information criterion (HQIC), Bayesian information criterion
(BIC), Anderson-Darling (A∗) and Cramér–von Mises (W ∗) to compare the fitted models.
The statistics W ∗ and A∗ are well-defined by Chen and Balakrishnan [17]. In general,
the smaller the values of these statistics, the better the fit to the data.

Tables 3 and 5 list the MLEs and their corresponding standard errors (in parentheses)
of the model parameters. The numerical values of the statistics ˆ̀, AIC, CAIC, BIC,
HQIC, W ∗ and A∗ are listed in Tables 4 and 6.

Table 3: MLEs and their standard errors (in parentheses) for Aarset data.

Distribution a b α β θ γ λ

WPF 0.7347 0.3367 86.0 1.4898 - - -
(0.2096) (0.0567) - (0.4879) - - -

AddW - - 0.0020 0.0892 1.5164 0.3454 -
- - (0.0003) (0.0424) (0.0523) (0.1125) -

MW - - - 0.0624 - 0.3550 0.0233
- - - (0.0266) - (0.1126) (0.0048)

SZMW - - 0.0186 0.0405 - 0.3735 -
- - (0.0038) (0.0311) - (0.1886) -

BMW 0.2589 0.1525 0.0034 1.0819 - - 0.0401
(0.0704) (0.0834) (0.0015) (0.2928) - - (0.0122)
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Table 4: The statistics ˆ̀, AIC, CAIC, BIC, HQIC, A∗ and W ∗ for Aarset data.

Distribution ˆ̀ AIC CAIC BIC HQIC A∗ W ∗

WPF 205.1732 416.3464 416.8681 422.0824 418.5307 0.380 0.046
AddW 234.2362 476.4725 477.3614 484.1206 479.3849 2.174 0.343
MW 227.1552 460.3105 460.8322 466.0465 462.4948 1.604 0.234
SZMW 239.4842 484.9684 485.4901 490.7045 487.1527 2.799 0.454
BMW 222.0914 454.1827 455.5464 463.7429 457.8233 1.276 0.169

Table 5: MLEs and their standard errors (in parentheses) for Aarset data.

Distribution a b α β θ γ λ

WPF 0.7723 0.24487 300.0 2.8736 - - -

(0.2519) (0.0553) - (1.1351) - - -

AddW - - 3.4823E-03 1.0000E-10 1.0936 1.2045E-10 -

- - (1.3515E-03) (1.1991E-06) (7.6001E-02) (9.2675E-11) -

MW - - - 0.0313 - 0.3054 0.0081

- - - (0.0240) - (0.1678) (0.0020)

SZMW - - 5.6560E-03 1.1789E-05 - 7.5972E-03 -

- - (1.0088E-03) (1.1222E-05) - (3.0831E-06) -

BMW 0.3846 0.1832 0.0029 0.8382 - - 0.0110

(0.1443) (0.1305) (0.0012) (0.2770) - - (0.0045)

Table 6: The statistics ˆ̀, AIC, CAIC, BIC, HQIC, A∗ and W ∗ for device failure times
data.

Distribution ˆ̀ AIC CAIC BIC HQIC A∗ W ∗

WPF 152.5768 311.1535 312.0766 315.3571 312.4983 0.750 0.082
AddW 184.7103 377.4206 379.0206 383.0254 379.2136 1.872 0.314
MW 178.3303 362.6606 363.5837 366.8642 364.0054 1.396 0.207
SZMW 185.2905 376.5810 377.5041 380.7846 377.9258 1.906 0.321
BMW 175.7578 361.5157 364.0157 368.5216 363.7569 1.262 0.182

In Tables 4 and 6, we compare the WPF model with the WPF, AddW, MW, SZMW
and BMW models. We note that the WPF model gives the lowest values for the ˆ̀, AIC,
CAIC, BIC, HQIC, A∗ and W ∗ statistics for both data sets among the fitted models.
So, the WPF model could be chosen as the best model. The histogram of the data sets,
and plots the estimated densities and Kaplan-Meier are displayed in Figures 5 and 6. It
is clear from Tables 4 and 6 and Figures 5 and 6 that the WPF model provides the best
fits to the histogram of these two data sets.

10. Concluding remarks
Many new lifetime distributions have been constructed in recent years with a view for

better applications in various fields. They usually arise from an adequate transformation
of a very-known model. In this paper, we propose a new lifetime model, the Weibull-
power function (WPF) distribution, by applying the Weibull-G generator pioneered by
Bourguignon et al. [15] to the classical power function distribution. We study some of its
structural properties including an expansion for the density function and explicit expres-
sions for the ordinary and incomplete moments, generating function, mean deviations,
quantile function, entropies, reliability and order statistics. The maximum likelihood
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method is employed for estimating the model parameters and a simulation study is pre-
sented. The WPF model is fitted to two real data sets to illustrate the usefulness of the
distribution. It provides consistently a better fit than other competing models. Finally,
we hope that the proposed model will attract wider applications in reliability engineer-
ing, survival and lifetime data, mortality study and insurance, hydrology, social sciences,
economics, among others.

x

D
en

si
ty

0 20 40 60 80

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5 WPF

AddW
MW
SZMW
BMW

0 20 40 60 80
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

Kaplan−Meier
WPF
AddW
MW
SZMW
BMW

(a) Estimated pdfs (b) Estimated sfs

Figure 5. Plots of the estimated pdfs and sfs for the WPF, AddW,
MW, SZMW and BMW models for the data set 1.
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Figure 6. Plots of the estimated pdfs and sfs for the WPF, AddW,
MW, SZMW and BMW models for the data set 2.
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Appendix A
The elements of the 3×3 observed information matrix J(Θ) = {Urs} (for r, s = a, b, β)

are given by

Uaa = − n

a2
,

Uab = −
n∑
i=1

[
xβi

αβ − xβi

]b
log

[
xβi

αβ − xβi

]
,

Uaβ = −b αβ
n∑
i=1

xb βi log (xi/α)(
αβ − xβi

)b+1

 ,
Ubb = − n

b2
− a

n∑
i=1

[
xβi

αβ − xβi

]b {
log

[
xβi

αβ − xβi

]}2

,

Ubβ =

n∑
i=1

log xi −
n∑
i=1

[
αβ logα− xβi log xi

αβ − xβi

]

−aαβ
n∑
i=1

[
xb βi log (xi/α)

(αβ − xβi )b+1

] [
1 + b log(xβi /(α

β − xβi ))
]
,

Uββ = − n

β2
− (b+ 1)

n∑
i=1

[(
αβ − xβi

) {
αβ (log α)2 − xβi (log xi)

2
}

(αβ − xβi )2

−(αβ log α− xβi log xi)
2

]

−a bαβ
n∑
i=1

(αβ − xβi )b
[(

αβ − xβi
)
xbβi {b log xi + log α} log (xi/α)

(αβ − xβi )2(b+1)

−
(b+ 1)αβxbβi log (xi/α)

(
αβ log α− xβi log xi

)
(αβ − xβi )2(b+1)

]
.
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Abstract
Our interest is in estimating the stress-strength reliability Pr(X > Y )
based on lower record values when X and Y are two independent but
not identically distributed Burr type X random variables. The maxi-
mum likelihood estimator, Bayes and empirical Bayes estimators using
Lindleys approximations, are obtained and their properties are stud-
ied. The exact confidence interval, as well as the Bayesian credible sets
are obtained. Two examples are presented in order to illustrate the
inferences discussed in the previous sections. A Monte Carlo simula-
tion study is conducted to investigate and compare the performance of
different types of estimators presented in this paper and to compare
them with some bootstrap intervals.
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1. Introduction
The problem of estimating R = P (X > Y ) arises in the context of mechanical relia-

bility of a system with strength X and stress Y and R is chosen as a measure of system
reliability. The system fails if and only if, at any time the applied stress is grater than
its strength. This type of reliability model is known as the stress-strength model. This
problem also arises in situations where X and Y represent lifetimes of two devices and
one wants to estimate the probability that one fails before the other. For example, in
biometrical studies, the random variable X may represent the remaining lifetime of a pa-
tient treated with a certain drug while Y represent the remaining lifetime when treated
by another drug. The estimation of stress-strength reliability is very common in the
statistical literature. The reader is referred to Kotz et al. [1] for other applications and
motivations for the study of the stress-strength reliability.
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Record values arise naturally many real life applications involving data relating to
meteorology, hydrology, sports and life-tests. In industry and reliability studies, many
products may fail under stress. For example, a wooden beam breaks when sufficient
perpendicular force is applied to it, an electronic component ceases to function in an
environment of too high temperature, and a battery dies under the stress of time. But the
precise breaking stress or failure point varies even among identical items. Hence, in such
experiments, measurements may be made sequentially and only values larger (or smaller)
than all previous ones are recorded. Data of this type are called record data. Thus, the
number of measurements made is considerably smaller than the complete sample size.
This measurement saving can be important when the measurements of these experiments
are costly if the entire sample was destroyed.

Let {Xi, i ≥ 1} be a sequence of independent and identically distributed (iid) random
variables with an absolutely continuous cumulative distribution function (cdf) F (x) and
probability density function (pdf) f(x). An observation Xj is called an upper record if
its value exceeds all previous observations, i.e. Xj is an upper record if Xj > Xi for
every i < j. An analogous definition can be given for lower records. Records were first
introduced and studied by Chandler [2]. Interested readers may refer to the book by
Arnold et al. [3] and the references contained therein.

Burr [4] introduced twelve different forms of cumulative distribution functions for
modeling lifetime data or survival data. Among those twelve distribution functions, Burr
type X and Burr type XII received the maximum attention. Several aspects of the Burr
type X distribution were studied by Sartawi and Abu-Salih [5], Jaheen [6] and Raqab [7].
The cumulative distribution function (cdf) and the probability density function (pdf) of
the Burr type X distribution with shape parameter θ, which will be denoted by Burr(θ),
are respectively as follows,

(1.1) F (x) =
(

1− e−x
2
)θ
, x > 0, θ > 0,

(1.2) f(x) = 2θxe−x
2
(

1− e−x
2
)θ−1

, x > 0, θ > 0.

The problem of estimating the stress-strength reliability in the Burr type X distribution
was considered by Ahmad et al. [8] and Surles and Padgett [9]. Kim and Chung [10]
discussed Bayesian estimation of stress-strength reliability from Burr type X model con-
taining spurious observations. We consider the problem of point and interval estimating
the stress-strength reliability in the Burr type X distribution based on lower record val-
ues. The problem of interval estimating the stress-strength reliability based on record
values was considered by Baklizi [11] for the generalized exponential distribution.

The rest of this paper is organized as follows: In Section 2, we discussed likelihood
inference for the stress-strength reliability, while in Section 3 we considered Bayesian
inference. In Section 4, we presented two numerical examples. A Monte Carlo simulation
study is described in Section 5. Finally conclusion of the paper is provided in section 6.

2. Likelihood inference
Let X and Y be independent random variables from the Burr type X distribution

with the parameters θ1 and θ2 respectively. Let R = Pr(X > Y ) be the stress-strength
reliability. then,

R =

∫ ∞
0

∫ ∞
y

2θ1xe
−x2
(

1− e−x
2
)θ1−1

2θ2ye
−y2
(

1− e−y
2
)θ2−1

dxdy =
θ1

θ1 + θ2
.

Our interest is in estimating R based on lower record values on both variables. Let
r
∼

= (r1, ..., rn) be a set of lower records from Burr(θ1) and let s
∼

= (s1, ..., sm) be an
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independent set of lower records from Burr(θ2). The likelihood functions are given by
(Ahsanullah [12]),

L(θ1| r
∼

) = f(rn)

n−1∏
i=1

(
f(ri)

F (ri)

)
, 0 < rn < ... < r1 <∞,

(2.1) L(θ2| s
∼

) = g(sm)

m−1∏
i=1

(
g(si)

G(si)

)
, 0 < sm < ... < s1 <∞.

where f and F are the pdf and cdf of X ∼ Burr(θ1) respectively and g and G are the
pdf and cdf of Y ∼ Burr(θ2) respectively. Substituting f , F , g and G in the likelihood
functions and using Equation(2.1), we obtain

L(θ1| r
∼

) = (2θ1)n
(

1− e−r
2
n

)θ1 n∏
i=1

(
rie
−r2i

1− e−r2i

)
,

(2.2) L(θ2| s
∼

) = (2θ2)m
(

1− e−s
2
m

)θ2 m∏
i=1

(
sie
−s2i

1− e−s2i

)
.

It can be shown that the maximum likelihood estimators (MLE) of θ1 and θ2 based on
the lower record values are

(2.3) θ̂1 = − n

ln(1− e−r2n)
, θ̂2 = − m

ln(1− e−s2m)
.

Therefore using the invariance properties of the maximum likelihood estimation, the MLE
of R is given by

R̂ =
θ̂1

θ̂1 + θ̂2
.

To study the distribution of R̂ we need the distributions of θ̂1 and θ̂2. Consider first
θ̂1 = − n

ln(1−e−r2n )
, the pdf of the nth lower record value Rn is given by (Ahsanullah [12]),

(2.4)
fRn(rn) = 1

(n−1)!
f(rn)[− lnF (rn)]n−1

=
2θn1

(n−1)!
rne
−r2n

(
1− e−r

2
n

)θ1−1(
− ln

(
1− e−r

2
n

))n−1

, 0 < rn <∞.

Consequently, the pdf of Z1 = θ̂1 is given by,

(2.5) fZ1(z1) =
(nθ1)n

(n− 1)!zn+1
1

exp

(
−nθ1
z1

)
, z1 > 0.

This is recognized as the inverted gamma distribution, i.e., Z1 ∼ IGamma(n, nθ1).
Similarly, the pdf of Z2 = θ̂2 is given by,

(2.6) fZ2(z2) =
(mθ2)m

(m− 1)!zm+1
2

exp

(
−mθ2

z2

)
, z2 > 0.

Thus Z2 ∼ IGamma(m,mθ2). Therefore we can find the pdf of

R̂ =
θ̂1

θ̂1 + θ̂2
=

Z1

Z1 + Z2
=

1

1 + Z2
Z1

.

Consider Z2/Z1. Note that, by the properties of the inverted gamma distribution and its
relation with the gamma distribution we have (nθ1/Z1) ∼ Gamma(n, 1) and (nθ2/Z2) ∼
Gamma(m, 1). Hence (2nθ1/Z1) ∼ χ2

2n and (2mθ2/Z2) ∼ χ2
2m. Note that, by the

independence of two random quantities we have
(2nθ1/2nZ1)

(2mθ2/2mZ2)
=
θ1Z2

θ2Z1
∼ F(2n,2m).
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Hence, (Z2/Z1) = (θ2/θ1)F(2n,2m), has a scaled F distribution. It follows that the distri-
bution of R̂ is that of 1

1+(θ2/θ1)F(2n,2m)
which can be obtained using simple transformation

techniques. This fact can be used to construct the following (1−α)% confidence interval
for R,

(2.7)

((
1 +

z2
z1Fα/2,2n,2m

)−1

,

(
1 +

z2
z1F1−α/2,2n,2m

)−1
)
.

3. Bayesian inference
Consider the likelihood functions of θ1 and θ2 based on the two sets of lower record

values from the Burr type X distribution mentioned in Equation (2.2). We have

(3.1) L(θ1| r
∼

) ∝ θn1 e−θ1ν1(rn), L(θ2| s
∼

) ∝ θm2 e−θ2ν2(sm)

where ν1(rn) = − ln(1 − e−r
2
n) and ν2(sm) = − ln(1 − e−s

2
m). These suggest that the

conjugate family of prior distributions for θ1 and θ2 is the Gamma family of probability
distributions,

(3.2) π(θ1) =
γδ11 θδ1−1

1 e−γ1θ1

Γ(δ1)
, θ1 > 0 and π(θ2) =

γδ22 θδ2−1
2 e−γ2θ2

Γ(δ2)
, θ2 > 0

where δ1, γ1, δ2 and γ2 are the parameters of the prior distributions of θ1 and θ2 re-
spectively. It can be shown that (θ1| r

∼
) ∼ Gamma (n+ δ1, γ1 + ν1(rn)) and (θ2| s

∼
) ∼

Gamma (m+ δ2, γ2 + ν2(sm)). Since the priors θ1 and θ2 are independent, then, using
standard transformation techniques and after some manipulations, the posterior pdf of
R will be

(3.3) fR(r) = C
rn+δ1−1(1− r)m+δ2−1

[r(γ1 + ν1(rn)) + (1− r)(γ2 + ν2(sm))]n+m+δ1+δ2
, 0 < r < 1

where

C =
Γ(n+m+ δ1 + δ2)

Γ(n+ δ1)Γ(m+ δ2)
(γ1 + ν1(rn))n+δ1(γ2 + ν2(sm))m+δ2 .

The Bayes estimator under squared error loss is the mean of this posterior distribution
which can not be computed analytically. Alternatively, using the approximate method of
Lindley [13], it can be seen that the approximate Bayes estimator of R, say R̃B , relative
to squared error loss function is

(3.4) R̃B = R̃

(
1 +

(1− R̃)
2

n+ δ1 − 1
− R̃(1− R̃)

m+ δ2 − 1

)

where R̃ = θ̃1
θ̃1+θ̃2

and

θ̃1 =

(
n+ δ1 − 1

γ1 + ν1(rn)

)
, θ̃2 =

(
m+ δ2 − 1

γ2 + ν2(sm)

)
are the mode of the posterior densitys θ1 and θ2 respectively. On the other hand, it
follows from the posterior density θ1 and θ2 that 2(γ1 + ν1(rn))(θ1| r

∼
) ∼ χ2

2(n+δ1)
and

2(γ2+ν2(sm))(θ2| s
∼

) ∼ χ2
2(m+δ2)

. It follows that π(R| r
∼
, s
∼

), the posterior distribution ofR

is equal to that of (1 +AW )−1, where W ∼ F2(m+δ2),2(n+δ1) and A = (m+δ2)(γ1+ν1(rn))
(n+δ1)(γ2+ν2(sm))

.
Therefore a Bayesian (1− α)% confidence interval for R is given by,

(3.5)
(
(AF1−α/2,2(m+δ2),2(n+δ1) + 1)−1, (AFα/2,2(m+δ2),2(n+δ1) + 1)−1) .
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The case of a noninformative prior can be treated similarly. We consider Jeffereys prior
that say, π(θ1) ∝

√
|I(θ1)| where I(θ1) is the Fisher information. This suggest that prior

densitys for θ1 and θ2 are proportional to 1
θ1

and 1
θ2

respectively. Using direct argu-
ments one can show that (θ1| r

∼
) ∼ Gamma (n, ν1(rn)) and (θ2| s

∼
) ∼ Gamma (m, ν2(sm)).

Therefore, it can be seen that the approximate Bayes estimator of R under the Jeffreys
prior density, say R̃JB , relative to squared error loss function is

(3.6) R̃JB = R̃

(
1 +

(1− R̃)
2

n− 1
− R̃(1− R̃)

m− 1

)

where R̃ = θ̃1
θ̃1+θ̃2

and

θ̃1 =

(
n− 1

ν1(rn)

)
, θ̃2 =

(
m− 1

ν2(sm)

)
.

Furthermore, it follows that the posterior distribution ofR is equal to that of (1 + mν1(rn)
nν2(sm)

W )−1

where W ∼ F2m,2n. Therefore a Bayesian (1−α)% confidence interval for R is given by,

(3.7)

((
mν1(rn)

nν2(sm)
F1−α/2,2m,2n + 1

)−1

,

(
mν1(rn)

nν2(sm)
Fα/2,2m,2n + 1

)−1
)
.

Now consider the case when the parameters of prior distributions are themselves un-
known. We consider the conjugate prior distributions for θ1 and θ2 above when the
parameters γ1 and γ2 are unknown. In the empirical Bayes model, we must estimate
them. In order to, we calculate the marginal distribution of lower records, with densitys

m(r
∼
|γ1) =

∫
fR
∼

(r
∼
|θ1)π(θ1|γ1)dθ1, 0 < rn < ... < r1 <∞,

m(s
∼
|γ2) =

∫
fS
∼

(s
∼
|θ2)π(θ2|γ2)dθ2, 0 < sm < ... < s1 <∞.

Using Equations (2.2) and (3.2), we obtain

m(r
∼
|γ1) =

Γ(n+ δ1)2nγδ11
Γ(δ1)(γ1 + ν1(rn))n+δ1

n∏
i=1

(
rie
−r2i

1− e−r2i

)
,

(3.8) m(s
∼
|γ2) =

Γ(m+ δ2)2mγδ22
Γ(δ2)(γ2 + ν2(sm))m+δ2

m∏
i=1

(
sie
−s2i

1− e−s2i

)
.

It can be shown that the maximum likelihood estimators (MLE) of γ1 and γ2 based on
the marginal distributions (3.8) are

(3.9) γ̂1 =
δ1ν1(rn)

n
, γ̂2 =

δ2ν2(sm)

m
.

Substituting γ̂1 and γ̂2 into Equation (3.4), the approximate empirical Bayes estimator
of R, say R̃EB , relative to squared error loss function is given by,

(3.10) R̃EB = R̃∗
(

1 +
(1− R̃∗)2

n+ δ1 − 1
− R̃∗(1− R̃∗)
m+ δ2 − 1

)

where R̃∗ =
θ̃∗1

θ̃∗1+θ̃∗2
and

θ̃∗1 =

(
n+ δ1 − 1

ν1(rn)
(
1 + δ1

n

)) , θ̃∗2 =

(
m+ δ2 − 1

ν2(sm)
(
1 + δ2

m

))
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Furthermore, it can be shown that (θ1| r
∼
, γ̂1) ∼ Gamma(n + δ1, (1 + δ1

n
)ν1(rn)) and

(θ2| s
∼
, γ̂2) ∼ Gamma(m + δ2, (1 + δ2

m
)ν2(sm)). It follows that π(R| r

∼
, γ̂1, s

∼
, γ̂2), the em-

pirical posterior distribution of R is equal to that of (1 + mν1(rn)
nν2(sm)

W )−1 where W ∼
F2(m+δ2),2(n+δ1). Therefore a Bayesian (1− α)% confidence interval for R is given by,

(3.11)

((
mν1(rn)

nν2(sm)
F1−α/2,2(m+δ2),2(n+δ1) + 1

)−1

,

(
mν1(rn)

nν2(sm)
Fα/2,2(m+δ2),2(n+δ1) + 1

)−1
)
.

The construction of highest posterior density (HPD) regions requires finding the set
I = {θ : π(θ| r

∼
, s
∼

) ≥ kα} , where kα is the largest constant such that Pr(θ ∈ I) ≥ 1− α.
This often requires numerical optimization techniques. Chen and Shao [14] presented a
simple Monte Carlo technique to approximate the HPD region.

4. Illustrative examples
In this section, two numerical examples are presented to illustrate the inferences dis-

cussed in the previous sections.

Example 4.1 (Real Data Set). We consider a data analysis for two data sets reported
by Bennett and Filliben [15]. They have reported minority electron mobility for p-type
Ga1−xAlxAs with seven different values of mole fraction. We use two data sets related
to the mole fractions 0.25 and 0.30. These data are given as follows:

Data Set 1 (belongs to mole fraction 0.25): 3.051, 2.779, 2.604, 2.371, 2.214, 2.045, 1.715,
1.525, 1.296, 1.154, 1.016, 0.7948, 0.7007, 0.6292, 0.6175, 0.6449, 0.8881, 1.115, 1.397,
1.506, 1.528.

Data Set 2 (belongs to mole fraction 0.30): 2.658, 2.434, 2.288, 2.092, 1.959, 1.814, 1.530,
1.366, 1.165, 1.041, 0.9198, 0.7241, 0.6403, 0.576, 0.5647, 0.5873, 0.8013, 1.002, 1.250,
1.347, 1.368.

We fit the Burr type X distribution to the two data sets separately. We used the
Kolmogorov-Smirnov (K-S) tests for each data set to fit the Burr type X model. It
is observed that for data sets 1 and 2, the K-S distances are 0.2453 and 0.2026 with
the corresponding p-values 0.1395 and 0.3110, respectively. Therefore, it is clear that
Burr type X model fits well to both the data sets. Moreover, we plot the empirical
distribution functions and the fitted distribution functions in Figure 1. This figure show
that the empirical and fitted models are very close for each data set.

For the above data, we observe that the first 15 values for both the data sets are the
lower record values and the smallest records, rn and sm, are equal to 0.6175 and 0.5647,
respectively. Therefore, we obtain the MLEs of θ1 and θ2 as, 13.0576 and 11.5551, re-
spectively. Thus, the MLE of R becomes R̂ = 0.5305. The corresponding 95% confidence
interval based on Equation (2.7) is equal to (0.3527,0.7009). To obtain Bayes estimates,
we assume δ1 = δ2 = 3 and γ1 = γ2 = 2 in Equation (3.4). We obtain θ̃1 = 5.3990,
θ̃2 = 5.15440 and R̃ = 0.5116. Therefore, the approximate Bayes estimator of R becomes
R̃B = 0.5113. The corresponding Bayesian 95% confidence interval based on Equation
(3.5) is equal to (0.3504,0.6704). So, the approximate Bayes estimator of R based on
Equation (3.6) becomes R̃JB = 0.5294 and the corresponding Bayesian 95% confidence
interval based on Equation (3.7) is equal to (0.3527,0.7009). Finally, using Equation
(3.10), we obtain θ̃∗1 = 12.3322, θ̃∗2 = 10.9131 and R̃∗ = 0.5305. Therefore, the ap-
proximate empirical Bayes estimator of R becomes R̃EB = 0.5269. The corresponding
Bayesian 95% confidence interval based on Equation (3.11) is equal to (0.3678,0.6869).
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Figure 1. The empirical distribution function (dashed) and fitted dis-
tribution function for Data Sets 1 and 2.

Example 4.2 (Simulated Data). We simulate 6 lower record values from Burr(1.5) and
8 lower record values from Burr(2.5). Therefore, RExact = 0.375. The data has been
truncated after four decimal places and it has been presented below. The r

∼
lower record

values are

1.2483, 1.0473, 0.6649, 0.2187, 0.1846, 0.0730,

and the corresponding s
∼
lower record values are

1.4244, 0.5154, 0.4293, 0.3531, 0.2727, 0.2266, 0.1173, 0.0942.

Based on the above data, we obtain the MLEs of θ1 and θ2 as, 1.1456 and 1.6916,
respectively. Therefore, the MLE of R becomes R̂ = 0.4037. The corresponding 95%
confidence interval based on Equation (2.7) is equal to (0.1768,0.6617). Letting δ1 =

δ2 = 2 and γ1 = γ2 = 4 in Equation (3.4), we obtain θ̃1 = 0.7578, θ̃2 = 1.0310 and
R̃ = 0.4236. Therefore, the approximate Bayes estimator of R becomes R̃B = 0.4321.
The corresponding Bayesian 95% confidence interval based on Equation (3.5) is equal
to (0.2199,0.6582). So, the approximate Bayes estimator of R based on Equation (3.6)
becomes R̃JB = 0.4077 and the corresponding Bayesian 95% confidence interval based
on Equation (3.7) is equal to (0.1768,0.6617). Finally, using Equation (3.10), we obtain
θ̃∗1 = 1.0024, θ̃∗2 = 1.5224 and R̃∗ = 0.3970. Therefore, the approximate empirical Bayes
estimator of R becomes R̃EB = 0.4070. The corresponding Bayesian 95% confidence
interval based on Equation (3.11) is equal to (0.2016,0.6329).

5. A simulation study
In this section, a simulation study is conducted to investigate the performance of

different types of estimators presented in this paper and to compare them with some
bootstrap intervals. It is important here to note that all inference procedures in this
paper depend only on the smallest records, rn and sm. In the simulation design we used
all combinations of n = 5, 10, 15 andm = 5, 10, 15. We used θ1 = 1 and R = 0.1, 0.25, 0.5.
The value of θ2 is determined by the choice of θ1 and R. In Bayesian simulation, we used
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Table 1. Simulated biases and mean squared errors (in parentheses)
of the estimators

n m R ML Bayes J.Bayes E.Bayes

5 5 0/1 0.0149(0.0050) 0.2724(0.0765) 0.0320(0.0063) 0.0247(0.0057)
5 5 0/25 0.0211(0.0162) 0.1633(0.0296) 0.0390(0.0157) 0.0313(0.0158)
5 5 0/5 0.0027(0.0234) 0.0013(0.0050) 0.0025(0.0192) 0.0026(0.0210)
5 10 0/1 0.0179(0.0040) 0.1858(0.0363) 0.0252(0.0044) 0.0234(0.0043)
5 10 0/25 0.0260(0.0129) 0.0990(0.0125) 0.0311(0.0120) 0.0303(0.0124)
5 10 0/5 0.0158(0.0191) -0.0212(0.0056) 0.0057(0.0163) 0.0103(0.0173)
5 15 0/1 0.0176(0.0039) 0.1377(0.0205) 0.0218(0.0040) 0.0212(0.0040)
5 15 0/25 0.0238(0.0115) 0.0636(0.0065) 0.0245(0.0105) 0.0253(0.0109)
5 15 0/5 0.0173(0.0166) -0.0326(0.0057) 0.0035(0.0143) 0.0094(0.0151)
10 5 0/1 0.0055(0.0025) 0.2931(0.0880) 0.0229(0.0035) 0.0156(0.0030)
10 5 0/25 0.0071(0.0104) 0.1844(0.0369) 0.0292(0.0108) 0.0201(0.0105)
10 5 0/5 -0.0076(0.0183) 0.0254(0.0056) 0.0020(0.0158) -0.0024(0.0166)
10 10 0/1 0.0071(0.0019) 0.2028(0.0429) 0.0150(0.0022) 0.0130(0.0021)
10 10 0/25 0.0120(0.0069) 0.1193(0.0169) 0.0212(0.0070) 0.0189(0.0069)
10 10 0/5 -0.0012(0.0122) -0.0007(0.0049) -0.0012(0.0111) -0.0012(0.0114)
10 15 0/1 0.0079(0.0018) 0.1531(0.0251) 0.0128(0.0019) 0.0120(0.0019)
10 15 0/25 0.0108(0.0061) 0.0831(0.0095) 0.0154(0.0060) 0.0148(0.0060)
10 15 0/5 0.0022(0.0097) -0.0118(0.0045) -0.0014(0.0090) -0.0001(0.0091)
15 5 0/1 0.0035(0.0022) 0.3020(0.0932) 0.0210(0.0031) 0.0137(0.0027)
15 5 0/25 0.0024(0.0092) 0.1944(0.0405) 0.0260(0.0098) 0.0164(0.0094)
15 5 0/5 -0.0171(0.0165) 0.0333(0.0057) -0.0033(0.0143) -0.0092(0.0150)
15 10 0/1 0.0058(0.0015) 0.2115(0.0464) 0.0139(0.0018) 0.0119(0.0017)
15 10 0/25 0.0051(0.0061) 0.1267(0.0188) 0.0157(0.0062) 0.0130(0.0062)
15 10 0/5 -0.0023(0.0101) 0.0119(0.0047) 0.0013(0.0093) 0.0001(0.0095)
15 15 0/1 0.0053(0.0012) 0.1609(0.0273) 0.0105(0.0014) 0.0096(0.0014)
15 15 0/25 0.0067(0.0046) 0.0921(0.0109) 0.0128(0.0047) 0.0117(0.0047)
15 15 0/5 -0.0005(0.0081) -0.0003(0.0042) -0.0005(0.0076) -0.0005(0.0076)

δ1 = δ2 = 3 and γ1 = γ2 = 5 where it is needed. All the results are based on 2000
replications.

First, we compare the performance of point estimators of R in terms of their biases
and mean squared errors (MSEs). In order to, we compute the average biases and mean
squared errors (MSEs) as

Bias =
1

2000

2000∑
i=1

(R̂i −R), MSE =
1

2000

2000∑
i=1

(R̂i −R)
2

where R̂ can be each of the maximum likelihood estimator and the approximate Bayes
estimators based on Equations (3.4), (3.6) and (3.10). The results are reported in Table
1.

Next, a simulation study is conducted to investigate and compare the performance of
the confidence intervals presented in this paper and some bootstrap intervals in terms
of their coverage probability and expected length. There are several bootstrap based
intervals discussed in the literature (Efron and Tibshirani [16]). Since all inferences in
this paper depend only on the smallest records, therefore we shall use the parametric
bootstrap based on the marginal distribution of Rn as given in Equation (2.4). In follows
we describe the bootstrapping procedure:
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1) Calculate θ̂1, θ̂2 and R̂, the maximum likelihood estimators of θ1, θ2 and R based
on rn and sm.

2) Generate r∗n from the distribution given in Equation (2.4) with θ1 replaced by θ̂1
and generate s∗m similarly.

3) Calculate θ̂∗1 , θ̂∗2 and R̂∗ using the r∗n and s∗m obtained in step 2.
4) Repeat steps 2 and 3, B times to obtain R̂∗1, ..., R̂∗B .
Then we can calculate the following bootstrap intervals;
Normal Interval: The simplest (1− α) bootstrap interval is the Normal interval

(R̂− z1−α/2 ˆseboot, R̂+ z1−α/2 ˆseboot)

where ˆseboot is the bootstrap estimate of the standard error based on R̂∗1, ..., R̂∗B .
Basic Pivotal Interval: The (1− α) bootstrap basic pivotal confidence interval is

(2R̂− r̂∗(1−α/2)B , 2R̂− r̂∗(α/2)B)

where r̂∗β is the β quantile of R̂∗1, ..., R̂∗B .
Percentile Interval: The (1− α) bootstrap percentile interval is defined by

(r̂∗(1−α/2)B , r̂
∗
(1−α/2)B)

that is, just use the α/2 and 1− α/2 quantiles of the bootstrap sample.
Interested readers may refer to DiCiccio and Efron [17] and the references contained

therein to observe more details.
For each generated pair of samples we calculated the following intervals;
1) ML: The interval based on the MLE given in Equation (2.7).
2) Bayes: The interval based on the Bayes estimator given in Equation (3.5).
3) J.B: The interval based on the Bayes estimator given in Equation (3.7).
4) E.B: The interval based on the empirical Bayes estimator given in Equation (3.11).
5) Norm: The normal interval.
6) Basic: The basic pivotal interval.
7) Perc: The percentile interval.
The empirical coverage probability and expected lengths of intervals are obtained by

using the 2000 replications. For bootstrap intervals we used 1000 bootstrap samples.
The results of our simulations for confidence level (1 − α) = 0.95 and 0.90 are given in
Tables 2 and 3 respectively.

6. Conclusion and discussion
Based on simulation results in Table 1, we observe that the biases and the mean

squared errors (MSEs) of the estimators are very close, especially for larger sample sizes.
It appears that the performance of the MLE and the approximate Bayes estimators
based on Equations (3.6) and (3.10) is almost the same in terms of their biases and
mean squared errors (MSEs) but the MLE has the better performance for small values
of R. Furthermore, the approximate Bayes estimators based on Equations (3.4) has the
weak performance specially for small values of R. Hence, between the point estimators
presented in this paper, we recommend to use the MLE.

Based on simulation results in Tables 2 and 3, it appears that the length of the
intervals is maximized when R = 0.5 and gets shorter and shorter as we move away
to the extremes. Increasing the sample size on either variable also results in shorter
intervals. The performance of the both basic pivotal interval and percentile interval is
similar in terms of expected length but in terms of coverage rate percentile interval has
the better performance. The percentile interval appears to be the best among bootstrap
intervals. The interval based on the MLE and the interval based on the Bayes estimator
given in Equation (3.7) appears to perform almost as well as the percentile interval. The
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interval based on the Bayes estimator given in Equation (3.5) has the low coverage rate
and the long expected length for small values of R since it is dependent on γ1 and γ2
values. Furthermore, the interval based on the empirical Bayes estimator has the shortest
expected length between the other intervals but it has the low coverage rate. It appears
that the intervals based on the MLE, the Bayes estimator given in Equation (3.7) and
percentile interval simultaneously has the short expected length and very good coverage
rate in comparison with the other intervals. Hence, we recommend to use this confidence
intervals in all.
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Abstract

In recent years, based on jointly modeling the mean and variance,
double regression models are widely used in practice. In order to as-
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els(SMMEDRMs) is considered, in which we model the variance of the
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1. Introduction
Many different approaches have been suggested to the problem of flexibly modeling

of the mean. In statistical literature, compared with that of the mean, modeling of the
variance has often been neglected. In many applications, particularly in the econometric
area and industrial quality improvement experiments, modeling the variance will be of
direct interest in its own right, to identify the source of variability in the observations,
such as Taguchi-type experiments for robust design. On the other hand, modeling the
variance itself may be of scientific interest. Thus, modeling of the variance can be as
important as that of the mean. Furthermore, it is well known that efficient estimation
of mean parameters in regression depends on correct modeling of the variance. The
loss of efficiency may be substantial using constant variance models when the variance is
varying. In addition, modeling of the variance is also necessary to obtain correct standard
errors and confidence intervals, as well as for many other applications such as prediction
and so on. Recently, the joint mean and variance models have been receiving a lot of
attention. For example, Aitkin [1] provided maximum likelihood (ML) estimation for a
joint mean and variance model and applied it to the commonly cited Minitab tree data.
Xie et al. [22] investigated the score tests for homogeneity of a scalar parameter and a
skewness parameter in skew-normal nonlinear regression models, which are included in
the variance. Wu and Li [21] proposed a unified variable selection procedure which can
simultaneously select significant variables in mean and dispersion models of the inverse
Gaussian distribution. Zhao et al. [25] considered the issue of variable selection for beta
regression models with varying dispersion, in which both the mean and the dispersion
depend upon predictor variables. Wu [20] investigated the simultaneous variable selection
in joint location and scale models of the skew-t-normal distribution when the dataset
under consideration involves heavy tail and asymmetric outcomes. The similar works
can be also seen from [12, 13, 24] and so on. On the other hand, semiparametric mixed
models are useful extensions to linear mixed models and provide a flexible framework for
analyzing longitudinal data. Many authors have studied semiparametric mixed models
for longitudinal data (e.g., Ni et al. [15]). But, there is little work about the case in
which the variance is additionally modelled. Therefore, in this paper we are interested
in jointly modelling mean and variance of semiparametric mixed models.

Bayesian inference for the semiparametric mixed-effects models and the joint mean
and variance models have also receiving a lot of attention in recent years. For example,
Cepeda and Gamerman [2] summarized the Bayesian approach for modeling variance
heterogeneity in normal regression analysis. Chen [3] proposed a fully Bayesian infer-
ence for semiparametric mixed-effects models of zero-inflated count data based on a data
augmentation scheme that reflects both random effects of covariates and mixture of zero-
inflated distribution. Chen and Tang [4] developed a Bayesian procedure for analyzing
semiparametric reproductive dispersion mixed-effects models on the basis of P-spline es-
timates of nonparametric components. Lin and Wang [14] presented a fully Bayesian
approach to multivariate regression models whose mean vector and scale covariance ma-
trix are modelled jointly for analyzing longitudinal data. Tang and Duan [18] proposed a
semiparametric Bayesian approach to generalized partial linear mixed models for longi-
tudinal data. Xu and Zhang [23] proposed a fully Bayesian inference for semiparametric
joint mean and variance models on the basis of B-spline approximations of nonparamet-
ric components. However, to the best of our knowledge, there is little work done for
Bayesian analysis of semiparametric mixed-effects double regression models with longi-
tudinal data, in which we model the variance of the mixed effects directly as a function
of the explanatory variables.
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On the other hand, various methods are available for fitting the semiparametric mod-
els, such as, the kernel smoothing method and the spline method. See for example,[5,
19, 26] and so on. Recently, the B-spline method is widely used to fit semiparametric
models because of its advantages. Firstly, it does not need to estimate the nonparametric
component of model point by point, that is, instead of concerning the local quality, the
global quality is taken into consideration, which lead to the reduction of the computa-
tional complexity. Secondly, there are no boundary effects so that the splines can fit
polynomial data exactly. Thirdly, the B-spline base functions have bounded supports
and are numerically stable (Schumaker [17]).

Therefore, in this paper we extend the Bayesian methodology proposed in [2, 23]
to fit semiparametric mixed-effects double regression models. Hence, a semiparametric
Bayesian approach to SMMEDRMs is developed based on the B-spline approximation
of nonparametric function and the hybrid algorithm combining the Gibbs sampler and
Metropolis-Hastings algorithm in this article.

The outline of the paper is as follows. In Section 2 we first describe semiparametric
mixed-effects double regression models. A Bayesian procedure based on a data aug-
mentation scheme, Gibbs sampler and the Metropolis-Hastings algorithm for obtaining
estimates is developed in Section 3. The full conditional distributions for implementing
the sampling-based methods are also derived. To illustrate the proposed methodology,
results obtained from some simulation studies are presented in Section 4. We further
illustrate the proposed methodology through an analysis of the CD4 data in Section 5.
The article is concluded with a brief discussion in Section 6.

2. Semiparametric Mixed-Effects Double Regression Models
Suppose that there are n independent subjects and the ith subject has mi repeated

measurements. Specifically, denote the response vector Yi = (Yi1, · · · , Yimi)T for the
ith subject, i = 1, · · · , n, which are observed at time ti = (ti1, · · · , timi)T . We assume
that the response is normally distributed as Yij |(Xij , vi, tij) ∼ N(µij , σ

2). Here, the
superscript T denotes the transposed of a vector (or matrix).

In this paper we consider

(2.1)


µij = XT

ijβ + vi + g(tij),
i = 1, 2, · · · , n,
j = 1, 2, · · · ,mi,

where tij is a univariate observed covariate, g(·) is an unknown smooth function in
the mean model, vi is a random effect with vi ∼ N(0, σ2

i ). Furthermore, if we have
variance heterogeneity of the random effect, it is convenient to assume an explicit variance
modeling related to some explanatory variables, that is:

(2.2) σ2
i = h(Zi, γ),

where Zi = (Zi1, · · · , Ziq)T is the observation of explanatory variables associated with
the variance of vi and γ = (γ1, · · · , γq)T is a q × 1 vector of regression coefficients in
the variance model. Furthermore, we let Z = (Z1, Z2, · · · , Zn)T . In addition, h(·, ·) >
0 is a known function. Here two specific forms of h(·, ·) are usually taken to model
varying variance: (i) log-linear model: h(Zi, γ) = exp(

∑q
j=1 Zijγj); (ii) power product

model: h(Zi, γ) =
∏q
j=1 Z

γj
ij = exp(

∑q
j=1 γj logZij). Of course, (ii) requires that the

Zij is strictly positive, while no such restriction is needed for (i). In practice, one may
make a choice of the variance weight h(·, ·), even a choice of the explanatory variables
Zi, according to the domain knowledge or modeling convenience. Therefore, in this
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article we consider the following semiparametric mixed-effects double regression models
(SMMEDRMs):

(2.3)



Yij = XT
ijβ + vi + g(tij) + εij ,

εij ∼ N(0, σ2),
vi|Zi ∼ N(0, σ2

i ),
σ2
i = h(Zi, γ),
i = 1, 2, · · · , n,
j = 1, 2, · · · ,mi,

based on the independent observations (Yij , Xij , Zi, tij), i = 1, 2, · · · , n, j = 1, 2, · · · ,mi.

3. Bayesian Analysis of SMMEDRMs
3.1. B-splines for the Nonparametric Function. Without loss of generality, we
assume that the covariate tij is valued on [0, 1]. Let T = (tT1 , t

T
2 , · · · , tTn )T . From the

model (2.3), we obtain the likelihood function

(3.1)

L(β, γ, φ2, v|Y,X,Z, T ) =

n∏
i=1

{
f(vi|Zi, γ)

mi∏
j=1

f(Yij |Xij , vi, tij , β)

}

∝
{

n∏
i=1

σi

}−1

(φ2)
N
2 exp

{
−φ

2

2

n∑
i=1

mi∑
j=1

(Yij −XT
ijβ − vi − g(tij))

2 −
n∑
i=1

v2i
2σ2
i

}
,

where φ2 = 1/σ2, N =
n∑
i=1

mi, v = (v1, · · · , vn)T , Y = (Y T1 , · · · , Y Tn )T , X = (XT
1 , · · · , XT

n )T ,

Xi = (Xi1, · · · , Ximi)T .
Since g(·) is nonparametric, (3.1) is not yet ready for optimization. So, we first use

B-splines to approximate the nonparametric function g(·). Any computational algorithm
developed for generalized linear models (GLM) can be used for fitting a semiparametric
extension of GLM, since one can treat a nonparametric function as a linear function with
the basis functions as covariates. For simplicity, let 0 = s0 < s1 < · · · < skn < skn+1 = 1
be a partition of the interval [0, 1]. Using {si} as the internal knots, we have K = kn+M
normalized B-spline basis functions of order M that form a basis for the linear spline
space. Selection of knots is generally an important aspect of spline smoothing. In this
paper, similar to He et al. [10], the number of internal knots is taken to be the integer
part of N1/5. Thus g(t) is approximated by πT (t)α , where π(t) = (π1(t), ..., πK(t))T is
the vector of basis functions and α ∈ RK . With this notation, the mean model in (2.3)
can be linearized as

(3.2) µij = xTijβ + vi + πT (tij)α.

Hence, based on (3.2), the likelihood function (3.1) can be rewritten as follows:
(3.3)

L(β, α, γ, φ2, v|Y,X,Z, T ) =

n∏
i=1

{
f(vi|Zi, γ)

mi∏
j=1

f(Yij |Xij , vi, tij , β)

}

∝
{

n∏
i=1

σi

}−1

(φ2)
N
2 exp

{
−φ

2

2

n∑
i=1

mi∑
j=1

(Yij −XT
ijβ − vi − πT (tij)α)2 −

n∑
i=1

v2i
2σ2
i

}
.

3.2. Prior Density of Parameters. To implement a Bayesian approach to estimate
the parameters of the models (2.3), we need to specify a prior distribution for the param-
eters involved. For simplicity, we suppose that β, α and γ are independent and normally
distributed in prior as β|φ2 ∼ N(β0, φ

−2bβ), α ∼ N(α0, τ
2IK) and γ ∼ N(γ0, Bγ), where
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the hyperparameters β0, α0, γ0, bβ and Bγ are assumed known, and τ2 is assumed to be
distributed as Gamma(aτ , bτ ) with density function

p(τ2|aτ , bτ ) ∝ (τ2)aτ−1 exp
(
−bττ2

)
,

where aτ and bτ are known positive constants. In addition, we also suppose that φ2 is
distributed in prior as Gamma(aφ2 , bφ2), where aφ2 and bφ2 are known positive constants.

3.3. Gibbs Sampling and Conditional Distribution. Let θ = (β, α, γ, φ2), Bi =
(π(ti1), · · · , π(timi))

T and B = (BT1 , · · · , BTn )T . Based on (3.3), we can sample from joint
posterior distribution p(θ, v|Y,X,Z, T ) by Gibbs sampling along the following process.

Step 1. Setting initial values of parameters as θ(0) = (β(0), α(0), γ(0), φ2(0)).

Step 2. Based on θ(l) = (β(l), α(l), γ(l), φ2(l)), compute Σ(l) = diag{h(Z1, γ
(l)),

· · · , h(Zn, γ
(l))}, ṽ(l)i = v

(l)
i

⊗
1mi and ṽ

(l) = ((ṽ
(l)
1 )T , · · · , (ṽ(l)n )T )T .

Step 3. Based on θ(l) = (β(l), α(l), γ(l), φ2(l)), sample θ(l+1) = (β(l+1), α(l+1),

γ(l+1), φ2(l+1)
), v(l+1) and τ2(l+1) as follows:

• Sampling φ2(l+1):
(3.4)

p(φ2|Y,X, v, β, γ, α) ≈ (φ2)
N+p

2
+a

φ2
−1

exp

{
− φ2

[
1

2
(Y −Xβ(l) − ṽ(l) −Bα(l))T

(Y −Xβ(l) − ṽ(l) −Bα(l)) + 1
2
(β(l) − β0)T (β(l) − β0) + bφ2

]}
.

• Sampling τ2(l+1):

(3.5) p(τ2|α) ∝ (τ2)−
K
2
−aτ−1 exp

{
− (α(l) − α0)T (α(l) − α0) + 2bτ

2τ2

}
.

• Sampling α(l+1):

(3.6) p(α|Y,X,Z, T, β, γ, τ2, φ2) ∝ exp

{
−1

2
(α− α∗

0)T b∗α
−1

(α− α∗
0)

}
,

where α∗
0 = b∗α(τ2(l+1)−1

IKα0 + φ2(l+1)
BT (Y −Xβ(l) − ṽ(l))) and b∗α = (τ2(l+1)−1

IK +

φ2(l+1)
BTB)−1, IK is the identity matrix.

• Sampling β(l+1):

(3.7) p(β|Y,X,Z, T, α, γ, φ2) ∝ exp

{
−1

2
(β − β∗

0 )T b∗β
−1

(β − β∗
0 )

}
,

where β∗
0 = b∗β((φ−2(l+1)

bβ)−1β0+φ2(l+1)
XT (Y−ṽ(l)−Bα(l+1))) and b∗β = ((φ−2(l+1)

bβ)−1+

φ2(l+1)
XTX)−1.

• Sampling v(l+1):

(3.8)

p(v|Y,X, T, Z, β, γ, φ2) ∝ exp

{
− φ2(l+1)

2

n∑
i=1

mi∑
j=1

(Yij −XT
ijβ

(l+1)

−π(tij)
Tα(l+1) − vi)2 −

n∑
i=1

v2i

2σ
2(l)
i

}
,

where σ2(l)
i = h(Zi, γ

(l)).
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• Sampling γ(l+1):

(3.9)

p(γ|Y,X,Z, β, φ2) ∝ |Σ1|−
1
2 exp

{
−1

2
v(l+1)TΣ1v

(l+1) − 1

2
(γ − γ0)TB−1

γ (γ − γ0)

}
.

Here, Σ1 = diag{h(Z1, γ), · · · , h(Zn, γ)}.

Step 4. Repeating Steps 2 and 3.

Then, we can generate sample series (β(t), α(t), γ(t), φ2(t), τ2
(t)

), t = 1, 2, · · · by the
above program. It is easily seen from (3.4), (3.5), (3.6) and (3.7) that conditional distribu-
tions p(τ2|α), p(α|Y,X,Z, T, β, γ, τ2, φ2), p(β|Y,X,Z, T, α, γ, φ2) and p(φ2|Y,X, T, v, β, γ, α)
are some familiar distributions, such as the Gamma and normal distributions. Sampling
observations from these standard distributions is straightforward and fast. But condi-
tional distributions p(v|Y,X,Z, T, β, γ, φ2) and p(γ|Y,X,Z, β, φ2) are some unfamiliar
and rather complicated, thus drawing observations from the distributions are rather dif-
ficult. Hence, the commonly used Metropolis-Hastings algorithm is employed to sample
observations from them. To this end, we choose normal distribution N(v(l), σ2

vΩ−1
v ) and

N(γ(l), σ2
γΩ−1

γ ) as the proposal distribution [11, 16], where σ2
v and σ2

γ are chosen such
that the average acceptance rate is about between 0.25 and 0.45 (Gelman et al. [8]), and
take

Ωv = E

(
−∂

2 log p(v|Y,X, T, Z, β(l+1), γ(l), φ2(l+1)
)

∂v∂vT

)
,

Ωγ = E

(
−∂

2 log p(γ|Y,X,Z, β(l+1), φ2(l+1)
)

∂γ∂γT

)
.

The Metropolis-Hastings algorithm is implemented as follows: at the (l + 1)th itera-
tion with the current value v(l), γ(l), new candidates v∗ and γ∗ are generated from
N(v(l), σ2

vΩ−1
v ), N(γ(l), σ2

γΩ−1
γ ) and are accepted respectively with probability

min

{
1,

p(v∗|Y,X,Z, β, γ, φ2)

p(v(l)|Y,X,Z, β, γ, φ2)

}
and

min

{
1,

p(γ∗|Y,X,Z, β, φ2)

p(γ(l)|Y,X,Z, β, φ2)

}
.

3.4. Bayesian Inference. Observations generated from the above proposed computa-
tional procedure are used to obtain Bayesian estimates of parameters β, α, γ and φ2 and
their standard deviations.

Let {θ(j) = (β(j), α(j), γ(j), φ2(j)) : j = 1, 2, · · · , J} be the observations of (β, α, γ, φ2)
generated from the joint conditional distribution p(β, α, γ, φ2|Y,X,Z, T ) via the proposed
hybrid algorithm. The Bayesian estimates of β, α, γ and φ2 are given as:

β̂ =
1

J

J∑
j=1

β(j), α̂ =
1

J

J∑
j=1

α(j),

γ̂ =
1

J

J∑
j=1

γ(j), φ̂2 =
1

J

J∑
j=1

φ2(j).

As is shown by Geyer [9], θ̂ = (β̂, α̂, γ̂, φ̂2) is a consistent estimate of the correspond-
ing posterior mean vector as J goes to infinity. Similarly, a consistent estimate of the
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posterior covariance matrix Var(θ|Y,X,Z, T ) can be obtained via the sample covariance
matrix of the observations {θ(j) : j = 1, 2, · · · , J}, that is

V̂ar(θ|Y,X,Z, T ) = (J − 1)−1
J∑
j=1

(θ(j) − θ̂)(θ(j) − θ̂)T .

Thus, the posterior standard deviations for the components can be obtained from the
diagonal elements of the matrix.

4. Simulation Studies
In this section, some simulation studies are used to illustrate various aspects of the

proposed Bayesian method. In the following simulations, σ2 = 0.5 and the structure
of the mean model is µij = XT

ijβ + vi + 0.5 sin(2πtij), i = 1, 2, · · · , n, j = 1, 2, · · · ,m,
where m = 4, tij follows uniform distribution U(0, 1), Xij is a 3× 1 vector with elements
independently sampled from normal distribution N(0, 1), and β = (1,−0.8, 1)T . The
structure of the variance model of the random effect vi will be taken to be different
models in the following examples.

To investigate sensitivity of Bayesian estimates to prior inputs, we consider the fol-
lowing three types of hyperparameter values for unknown parameters β, α, γ, τ2, φ2:

Type I: β0 = (1,−0.8, 1)T , bβ = I3,γ0 = (1,−0.5)T , Bγ = I2, aτ = 1, bτ = 1, aφ2 =
1, bφ2 = 1. This can be regarded as a situation with good prior information.

Type II: β0 = 1.5× (1,−0.8, 1)T , bβ = I3,γ0 = 1.5× (1,−0.5)T , Bγ = I2, aτ = 1, bτ =
1, aφ2 = 1, bφ2 = 1. This can be regarded as a situation with inaccurate prior information.

Type III: β0 = (0, 0, 0)T , bβ = I3,γ0 = (0, 0)T , Bγ = I2, aτ = 1, bτ = 1, aφ2 =
1, bφ2 = 1. These hyperparameter values represent a situation with noninformative prior
information.

For the above various settings, the preceding proposed hybrid algorithm combining the
Gibbs sampler and the Metropolis-Hastings algorithm is used to evaluate the Bayesian
estimates of unknown parameters and the smoothing function. In the following simula-
tions, we use the cubic B-splines. Different sample sizes are employed in the simulations
to show the effect of sample sizes. For each setting, 100 replications are carried out.
For each data set generated in a replication, the convergence of the MCMC sampler is
checked by estimated potential scale reduction (EPSR) value [7], and we observe that
in all runs, the EPSR values are less than 1.2 after 4000 iterations. Observations are
collected after 4000 iterations with J = 4000 in producing the Bayesian estimates for
each replication.

4.1. Example 1: Comparisons for different prior inputs and sample sizes. In
this example, we take the log-linear model as the structure of the variance model of the
random effect vi,

log(σ2
i ) = ZTi γ, i = 1, 2, · · · , n

with γ = (1,−0.5)T and Zi is a 2 × 1 vector with elements generated randomly from
normal distribution N(0, 1), n is the sample size ranging from n=30, 50, 100, 150. The
summary of the simulation results for parameters is presented in Tables 1 and 2. To
investigate accuracy of estimate of function g(t), we plot the true value of function g(t)
against its estimates for three types of prior inputs under different sample sizes in Figures
1-4.
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Table 1. Bayesian estimates of parameters under different priors when n = 30
and n = 50 in Example 1

n = 30 n = 50
Type Parameters BIAS RMS SD BIAS RMS SD
I β1 0.0103 0.0769 0.0748 0.0028 0.0553 0.0577

β2 0.0041 0.0693 0.0743 0.0028 0.0542 0.0577
β3 0.0100 0.0731 0.0743 0.0055 0.0559 0.0573
γ1 0.0711 0.3301 0.3532 0.0093 0.2727 0.2649
γ2 0.0154 0.3218 0.3520 0.0141 0.2160 0.2576
σ2 0.0058 0.0704 0.0769 0.0065 0.0553 0.0588

II β1 0.0002 0.0799 0.0747 0.0037 0.0660 0.0579
β2 0.0019 0.0752 0.0749 0.0029 0.0627 0.0585
β3 0.0102 0.0717 0.0741 0.0038 0.0606 0.0579
γ1 0.0744 0.3294 0.3448 0.0227 0.2620 0.2727
γ2 0.0271 0.3318 0.3453 0.0526 0.2770 0.2641
σ2 0.0028 0.0695 0.0764 0.0107 0.0603 0.0595

III β1 0.0181 0.0708 0.0775 0.0009 0.0613 0.0578
β2 0.0163 0.0778 0.0765 0.0029 0.0481 0.0581
β3 0.0139 0.0786 0.0778 0.0053 0.0567 0.0580
γ1 0.1190 0.3099 0.3403 0.0139 0.2387 0.2518
γ2 0.0358 0.2739 0.3264 0.0132 0.2323 0.2467
σ2 0.0409 0.0851 0.0818 0.0194 0.0595 0.0605
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Figure 1. The average of the estimates versus the true value of g(t) under three priors
in Example 1: type I (left panel), type II (middle panel) and type III( right panel) when
n = 30.
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Figure 2. The average of the estimates versus the true value of g(t) under three priors
in Example 1: type I (left panel), type II (middle panel) and type III( right panel) when
n = 50.

Table 2. Bayesian estimates of parameters under different priors when n = 100
and n = 150 in Example 1

n = 100 n = 150
Type Parameters BIAS RMS SD BIAS RMS SD
I β1 0.0028 0.0394 0.0398 0.0019 0.0349 0.0323

β2 0.0005 0.0393 0.0398 0.0017 0.0340 0.0325
β3 0.0005 0.0394 0.0393 0.0012 0.0346 0.0323
γ1 0.0074 0.2050 0.1809 0.0290 0.1384 0.1449
γ2 0.0059 0.1642 0.1723 0.0057 0.1465 0.1394
σ2 0.0026 0.0405 0.0403 0.0036 0.0324 0.0332

II β1 0.0012 0.0450 0.0400 0.0005 0.0341 0.0323
β2 0.0055 0.0368 0.0398 0.0013 0.0319 0.0324
β3 0.0001 0.0389 0.0398 0.0014 0.0351 0.0323
γ1 0.0016 0.1507 0.1743 0.0281 0.1449 0.1434
γ2 0.0303 0.1777 0.1729 0.0113 0.1583 0.1366
σ2 0.0037 0.0409 0.0409 0.0020 0.0302 0.0328

III β1 0.0002 0.0379 0.0402 0.0036 0.0345 0.0322
β2 0.0008 0.0427 0.0401 0.0009 0.0323 0.0326
β3 0.0000 0.0398 0.0399 0.0028 0.0348 0.0323
γ1 0.0587 0.1764 0.1729 0.0018 0.1398 0.1400
γ2 0.0318 0.1857 0.1734 0.0016 0.1531 0.1367
σ2 0.0089 0.0380 0.0414 0.0060 0.0302 0.0332
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Figure 3. The average of the estimates versus the true value of g(t) under three priors
in Example 1: type I (left panel), type II (middle panel) and type III (right panel) when
n = 100.
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Figure 4. The average of the estimates versus the true value of g(t) under three priors
in Example 1: type I (left panel), type II (middle panel) and type III (right panel) when
n = 150.

In Tables 1 and 2, “BIAS" denotes the absolute difference between the true value
and the average of the Bayesian estimates of the parameters based on 100 replications,
“SD" denotes the average of the estimated posterior standard deviation obtained from
the formula in Section 3.4, and “RMS" denotes the root of mean square errors of the
Bayesian estimates based on 100 replications. From Tables 1-2, we can make the following
observations:

(i) the Bayesian estimates are reasonably accurate regardless of prior inputs in the
sense of bias values of the estimates and their RMS values and SD values;

(ii) the estimates are mild sensitive to prior inputs for smaller sample size, but the
infection clear away rapidly as the sample size goes large;

(iii) the estimates become better as the sample size increases, especially for the esti-
mates of the parameters in the variance model.

Examination of Figures 1-4 shows that the shapes of the estimated nonparametric
function are very close to the corresponding true line regardless of prior inputs. All in
all, all the above findings show that the preceding proposed estimation procedures can
well recover the true information in SMMEDRMs.
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4.2. Example 2: Comparisons for different prior inputs and the different
number of internal knots. To investigate the sensitivity of the Bayesian estimate for
g(t) to the selection of the number of internal knots, we consider the other two different
choices of K in this example, i.e. K1 = bK0/1.5c and K2 = b1.5K0c, where K0 is the
optimal number of interior knots and buc denotes the largest integer not greater than
u. To save space, here we only present the results of Bayesian estimates in Table 3 and
Figures 5-6 for n = 50 under different choices of K.

Table 3. Bayesian estimates of parameters for different choices ofK when n = 50
in Example 2

(n = 50,K1) (n = 50,K2)
Type Parameters BIAS RMS SD BIAS RMS SD
I β1 0.0091 0.0543 0.0572 0.0031 0.0606 0.0575

β2 0.0054 0.0612 0.0572 0.0022 0.0612 0.0573
β3 0.0001 0.0570 0.0577 0.0030 0.0522 0.0572
γ1 0.0198 0.2432 0.2624 0.0314 0.2589 0.2631
γ2 0.0145 0.2677 0.2579 0.0244 0.2377 0.2509
σ2 0.0102 0.0605 0.0598 0.0053 0.0643 0.0589

II β1 0.0052 0.0551 0.0570 0.0161 0.0566 0.0572
β2 0.0117 0.0523 0.0576 0.0020 0.0585 0.0573
β3 0.0023 0.0608 0.0567 0.0003 0.0540 0.0575
γ1 0.0719 0.2630 0.2681 0.0913 0.2571 0.2711
γ2 0.0467 0.2382 0.2529 0.0398 0.2303 0.2565
σ2 0.0077 0.0674 0.0586 0.0016 0.0590 0.0587

III β1 0.0092 0.0578 0.0585 0.0030 0.0568 0.0581
β2 0.0121 0.0575 0.0580 0.0042 0.0584 0.0581
β3 0.0014 0.0566 0.0586 0.0024 0.0524 0.0585
γ1 0.0476 0.2737 0.2540 0.0669 0.2323 0.2510
γ2 0.0267 0.2554 0.2634 0.0643 0.2392 0.2507
σ2 0.0249 0.0589 0.0610 0.0190 0.0624 0.0604
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Figure 5. The average of the estimates versus the true value of g(t) under three priors
in Example 2: type I (left panel), type II (middle panel) and type III (right panel) for
n = 50 and K1.



290

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

g
(t

)

 

 
the true function
the estimated function

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

g
(t

)

 

 
the true function
the estimated function

0 0.2 0.4 0.6 0.8 1
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

t

g
(t

)

 

 
the true function
the estimated function

Figure 6. The average of the estimates versus the true value of g(t) under three priors
in Example 2: type I (left panel), type II (middle panel) and type III (right panel) for
n = 50 and K2.

By viewing Table 3 and comparing the results with Tables 1-2, we can see that the
Bayesian estimates are reasonably accurate regardless of the values of K in the sense of
their SD values and RMS values. From Figures 5-6, we can obtain that the shapes of the
estimated nonparametric function are very similar to those in Figure 2. Therefore, the
Bayesian estimates for parameter estimates and the nonparametric function g(t) are not
very sensitive to the selection of the number of internal knots.

4.3. Example 3: Comparisons for different prior inputs and different variance
model. To investigate the sensitivity of the proposed Bayesian method to the structure
of the variance model in SMMEDRMs, we consider the other common structure of the
variance model of the random effect vi (i.e. power product model), which can be defined
as

σ2
i =

q∏
j=1

Z
γj
ij

with γ = (1,−0.5)T and Zi is a 2 × 1 vector with elements generated randomly from
uniform distribution U(0, 2). The simulation results for the parameters and the nonpara-
metric function are reported in Table 4 and Figures 7-8.

The results in Table 4 show that with using power product model as the variance
structure, which is different with the variance model in example 1, the proposed Bayesian
method also has the desired performance, which is substantively similar to the results in
example 1.

In addition, to consider the effect of variance structure misspecification on parameter
estimates, here we do some simulations with n=50 and n=100 under Type I. The main
measurements for comparison are differences between the fitted mean parameters β̂ and
the true mean parameters β, the fitted variances σ̂2

i (i = 1, 2, · · · , n) to the true variances
σ2
i (i = 1, 2, · · · , n), and the fitted error variance σ̂2 to the true error variance σ2. In

particular, we define three relative errors:

RERR(β̂) =

∣∣∣∣∣∣∣∣
p∑
j=1

(β̂j − βj)

p∑
j=1

βj

∣∣∣∣∣∣∣∣ ;RERR(σ̂2
i ) =

∣∣∣∣∣∣∣∣
n∑
i=1

(σ̂2
i − σ2

i )

n∑
i=1

σ2
i

∣∣∣∣∣∣∣∣ ;RERR(σ̂2) =

∣∣∣∣ σ̂2 − σ2

σ2

∣∣∣∣ .
Here variance structure misspecification means we use the variance structure in example
1 to model the variance of random effect. The results are reported in Table 5. From Table
5 we can find that when the true variance structure follows power product model, the
errors in estimating β̂, σ̂2

i and σ̂2 increase when incorrectly modeling the variance using
log-linear model. However, for this simulation study, variance model misspecification
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seems to affect the fitted results not larger, especially for the mean parameters and the
error variance.

Table 4. Bayesian estimates of parameters under different priors in Example 3

n = 50 n = 100
Type Parameters BIAS RMS SD BIAS RMS SD
I β1 0.0005 0.0566 0.0579 0.0025 0.0411 0.0399

β2 0.0029 0.0530 0.0572 0.0014 0.0431 0.0395
β3 0.0000 0.0494 0.0576 0.0055 0.0421 0.0398
γ1 0.0614 0.3186 0.3712 0.0368 0.2915 0.2398
γ2 0.0287 0.2471 0.2383 0.0001 0.1540 0.1611
σ2 0.0071 0.0592 0.0587 0.0021 0.0487 0.0405

II β1 0.0024 0.0572 0.0580 0.0004 0.0411 0.0399
β2 0.0063 0.0539 0.0574 0.0017 0.0432 0.0396
β3 0.0033 0.0494 0.0576 0.0067 0.0402 0.0398
γ1 0.1226 0.3470 0.3748 0.0722 0.3187 0.2375
γ2 0.0507 0.2515 0.2422 0.0062 0.1550 0.1623
σ2 0.0116 0.0597 0.0593 0.0032 0.0483 0.0405

III β1 0.0042 0.0589 0.0585 0.0050 0.0432 0.0405
β2 0.0005 0.0563 0.0580 0.0110 0.0469 0.0402
β3 0.0085 0.0512 0.0583 0.0068 0.0479 0.0401
γ1 0.0583 0.2874 0.3503 0.0493 0.2521 0.2416
γ2 0.0130 0.2423 0.2365 0.0663 0.1766 0.1581
σ2 0.0221 0.0627 0.0606 0.0154 0.0462 0.0416
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Figure 7. The average of the estimates versus the true value of g(t) under three priors
in Example 3: type I (left panel), type II (middle panel) and type III( right panel) when
n = 50.
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Figure 8. The average of the estimates versus the true value of g(t) under three priors
in Example 3: type I (left panel), type II (middle panel) and type III (right panel) when
n = 100.

Table 5. Average of relative errors using different variance structures and sample
size under Type I in Example 3

n = 50 n = 100

correct specification RERR(β̂) 0.0048 0.0013
RERR(σ̂2

i ) 0.9226 0.6868
RERR(σ̂2) 0.0068 0.0003

misspecification RERR(β̂) 0.0067 0.0024
RERR(σ̂2

i ) 2.4665 1.3371
RERR(σ̂2) 0.0069 0.0007

5. Application to Real Data
In this section, we illustrate the proposed method through analysis of a data set from

the MultiCenter AIDS Cohort study. The dataset contains the human immunodeficiency
virus (HIV) status of 283 homosexual men who were infected with HIV during a follow-up
period between 1984 and 1991. This dataset has been used by many authors to illustrate
semiparametric linear regression models, such as [6, 26]. The objective of their analysis
is to describe the trend of the mean CD4 percentage depletion over time and evaluate the
effects of smoking, the pre-HIV infection CD4 percentage, and age at HIV infection on
the mean CD4 percentage after infection. This motivates us to use the semiparametric
models for this dataset.

Let Y be the individual’s CD4 percentage, X1 be the smoking status:(1 for a smoker
and 0 for a nonsmoker), X2 be the centered age at HIV infection, X3 be the centered
preCD4 percentage. To model jointly the mean for the CD4 cell data and the variance
of random effect in the model, we use the following semiparametric mixed-effects double
regression models:

Yij = β1X1ij + β2X2ij + β3X3ij + vi + g(tij) + εij ,
εij ∼ N(0, σ2),
vi ∼ N(0, σ2

i ),
log(σ2

i ) = γ1Z1i + γ2Z2i,
i = 1, 2, · · · , 283,

where Z1 = X1, Z2 = X3, g(t), the baseline CD4 percentage, represents the mean CD4
percentage t years after the infection.
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The preceding proposed hybrid algorithm is used to obtain Bayesian estimates of β’s,
γ’s and σ2, where we use noninformative prior information for all unknown parameters. In
the Metropolis-Hastings algorithm, we set σ2

γ = 1.8 and σ2
v = 0.015 in their corresponding

proposal distributions, which give approximate acceptance rates 43.76% and 31.37%.
To test the convergence of the algorithm, plot of the EPSR values for all the unknown
parameters against iterations is presented in Figure 9, which indicates that the algorithm
converges about 5000 iterations because EPSR values of all unknown parameters are
less than 1.2 about 5000 iterations. We calculate Bayesian estimates (EST), standard
deviation estimates (SD) of the Bayesian estimates of β’s, γ’s and σ2. Results are given in
Table 6, which indicate that X3 has significant impact on the mean of Y and is somehow
consistent with the results of variable selection seen in Fan and Li [6]. In addition, the
curve of the estimated baseline function is shown in Figure 10. From Figure 10, we find
that the mean baseline CD4 percentage decreases very quickly at the beginning of HIV
infection, and the rate of decrease somewhat slows down four years after infection. The
findings basically agree with that which was discovered by the local linear fitting method
of Fan and Li [6].

Table 6. The real example: Bayesian estimates and their standard deviations

Parameter EST SD
β1 0.4431 0.5775
β2 -0.1955 0.2648
β3 3.2706 0.2696
γ1 2.0399 0.3593
γ2 2.3333 0.2186
σ2 80.9993 2.7830
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Figure 9. EPSR values of all parameters against iterations in the real example
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Figure 10. Application to AIDS data. The Bayesian estimate of the mean CD4 percent-
age g(t). The solid line represents the estimated function.

6. Conclusion and Discussion
In this article, based on jointly modeling the mean and variance, we propose semi-

parametric mixed-effects double regression models, in which we model the variance of
the mixed effects directly as a function of the explanatory variables. Then we extend
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the Bayesian methodology proposed in [2, 23] to fit SMMEDRMs. A fully Bayesian ap-
proach is developed to analyze this models via B-spline estimate of the nonparametric
part by combining the Gibbs sampler and Metropolis-Hastings algorithm. Some simu-
lation studies and a real data are used to show the efficiency of the proposed Bayesian
approach. The results show that the developed Bayesian method is highly efficient and
computationally fast. A possible extension of the current model is being considered when
covariates are missing under different missingness mechanisms.
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