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On M-term approximations of the Nikol’skii -
Besov class

G. Akishev ∗

Abstract
In this paper, we consider a Lebesgue space with a mixed norm of
periodic functions of many variables. We obtain the exact estimation
of the best M-term approximations of Nikol’skii’s and Besov’s classes
in the Lebesgue space with the mixed norm.
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1. Introduction
Let x = (x1, ..., xm) ∈ Tm = [0, 2π)m and pj ∈ [1,+∞), j = 1, ...,m. Lp̄(Tm) denotes

the space of Lebesgue measureable functions f(x̄) defined on Rm, which have 2π period
with respect to each variable such that

‖f‖p̄ =

[∫ 2π

0

[
· · ·
[∫ 2π

0

|f(x̄)|p1dx1

] p2
p1

· · ·
] pm
pm−1

dxm

] 1
pm

< +∞,

where p = (p1, ..., pm) , 1 ≤ pj < +∞, j = 1, ...,m (see [18], p. 128, [4], p. 54). In the
case p1 = ... = pm = p, we write Lp(Tm).

Any function f ∈ L1 (Tm) = L (Tm) can be expanded to the Fourier series∑
n∈Zm

an (f) ei〈n,x〉,

where {an(f)} are Fourier coefficients of a function f ∈ L1 (Tm) with respect to a multiple
trigonometric system {ei〈n,x〉}n̄∈Zm and Zm is the space of points in Rm with integer
coordinates.

For a function f ∈ L(Tm) and a number s ∈ Z+ = N ∪ {0}, let us introduce the
notation

δ0(f, x̄) = a0(f)

∗Department of Mathematics and Information Technology, Karaganda State University, Uni-
versytetskaya 28 , 100028, Karaganda , Kazakhstan;
Email : akishev_g@mail.ru
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and
δs(f, x) =

∑
n∈ρ(s)

an(f)ei〈n,x〉,

where 〈ȳ, x̄〉 =
m∑
j=1

yjxj and

ρ(s) =

{
k = (k1, ..., km) ∈ Zm : [2s−1] ≤ max

j=1,...,m
|kj | < 2s

}
,

where [a] is the integer part of the number a.
Let us consider Nikol’skii’s and Besov’s classes ([4, 7, 18]). Let 1 < pj < +∞,

j = 1, ...,m, 1 ≤ θ ≤ ∞, r > 0, and

Hr
p =

{
f ∈ Lp (Tm) : sup

s∈Z+

2sr ‖δs(f)‖p̄ ≤ 1

}
,

Brp̄,θ =
{
f ∈ Lp(Tm) :

(∑
s∈Z+

2srθ ‖δs(f)‖θp̄
) 1
θ ≤ 1

}
.

It is known that for 1 ≤ θ ≤ θ1 ≤ ∞ the following holds

Brp̄,1 ⊂ Brp̄,θ ⊂ Brp̄,θ1 ⊂ B
r
p̄,∞ = Hr

p̄ .

Let f ∈ Lp̄(Tm) and
{
k̄(j)

}M
j=1

be a system of vectors k̄(j) = (k
(j)
1 , ..., k

(j)
m ) with

integer coordinates. Consider the quantity

eM (f)p̄ = inf
k̄(j),bj

∥∥∥∥∥f −
M∑
j=1

bje
i〈k̄(j),x̄〉

∥∥∥∥∥
p̄

,

where bj is an arbitrary number. The quantity eM (f)p̄ is called the best M -term ap-
proximation of a function f ∈ Lp̄(Tm). For a given class F ⊂ Lp̄(Tm) let

eM (F )p̄ = sup
f∈F

eM (f)p̄ .

The best M -term approximation was defined by S.B. Stechkin [22]. Estimations of M -
term approximations of different classes were provided by R.S. Ismagilov [13], E.S. Be-
linsky [6], V.E. Maiorov [17], B.S. Kashin [14], R. DeVore [8], V.N. Temlyakov [23],
A.S. Romanyuk [19], Dinh Dung [10], D.B. Bazarkhanov [5], L. Duan [11], M. Hansen
and W. Sickel [12], S.A. Stasyuk [20, 21], and others (see bibliography in [1], [2], [8], [21],
[23]).

For the case p1 = ... = pm = p and q1 = ... = qm = q, R.A. De Vore and
V.N. Temlyakov [9] proved the following theorem.

1.1. Theorem. (see [9]). Let 1 ≤ p, q, θ ≤ ∞, r(p, q) = m
(

1
p
− 1

q

)
+

if 1 ≤ p ≤ q ≤ 2

or 1 ≤ q ≤ p < ∞ and r(p, q) = max
{
m
p
, m

2

}
in other cases. Then, for r > r(p, q), the

following relation holds

eM (Brp,θ)q �M
− r
m

+
(

1
p
−max

{
1
q
, 1
2

})
+ ,

where a+ = max {a; 0} .

Moreover, in the case of m
(

1
p
− 1

q

)
< r < m

p
and 1 < p ≤ 2 < q < ∞, S.A. Stasyuk

[20, 21] proved that eM (Brp,θ)q �M
− q

2

(
r
m
−
(

1
p
− 1
q

))
.

The main goal of the present paper is to find the order of the quantity eM (F )q̄ for
the class F = Brp̄,θ.
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Let us denote by C(p, q, r, y) positive quantities, which depend on the parameters in
the parentheses, such that the parameters, in general, are distinct in distinct formulas.
A (y) � B (y) means that there are positive numbers C1 and C2 such that C1 · A (y) ≤
B (y) ≤ C2 ·A (y).

To prove the main results, we need the following auxiliary results.

1.2. Theorem. (see [24]). Let n̄ = (n1, ..., nm), nj ∈ N, j = 1, ...,m, and

Tn̄(x̄) =
∑

|kj |≤nj ,j=1,...,m

ck̄e
i〈k̄,x̄〉.

Then, for 1 ≤ pj < qj ≤ ∞, j = 1, ...m, the following inequality holds

‖Tn̄‖q̄ ≤ 2m
m∏
j=1

n
1
pj
− 1
qj

j ‖Tn̄‖p̄ .

1.3. Theorem. (see [16]). Let p ∈ (1,∞). Then there exist positive constants C1(p)
and C2(p) such that for each function f ∈ Lp(Tm) the following estimation is valid

C1(p)‖f‖p ≤
∥∥∥( ∞∑

s=0

|δs(f)|2
) 1

2
∥∥∥
p
≤ C2(p)‖f‖p.

Let ΩM be a set containing no more than M vectors k̄ = (k1, ..., km) with integer
coordinates and P (ΩM , x̄) be any trigonometric polynomial, which consists of harmonics
with “indices“ in ΩM .

1.4. Lemma. (see [2]). Let 2 < qj < +∞ and j = 1, ...,m. Then, for any trigonometric
polynomial P (ΩN ) and for any natural number M < N , there exists a trigonometric
polynomial P (ΩM ) such that the following estimation holds

‖P (ΩN )− P (ΩM )‖q̄ ≤ C1(NM−1)
1
2 ‖P (ΩN )‖2,

and, moreover, ΩM ⊂ ΩN .

2. Main results
Let us prove the main results.

2.1. Theorem. Let p̄ = (p1, ..., pm), q̄ = (q1, ..., qm), 1 < pj ≤ 2 < qj < ∞, and
1 ≤ θ ≤ ∞.

1. If
m∑
j=1

(
1
pj
− 1

qj

)
< r <

m∑
j=1

1
pj

, then

eM
(
Brp̄,θ

)
q̄
�M

−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
.

2. If r =
m∑
j=1

1
pj

, then

eM
(
Brp̄,θ

)
q̄
�M−

1
2 (log(1 +M))1− 1

θ .

3. If r >
m∑
j=1

1
pj

, then

eM
(
Brp̄,θ

)
q̄
�M

− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))
.
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Proof. Firstly, we are going to consider the upper bound in the first item. Taking
into account the inclusion Brp̄,θ ⊂ Hr

p̄ , 1 ≤ θ < +∞, it suffices to prove it for the class
Hr
p̄ .
Let 1 ≤ pj < qj < ∞ and N be the set of natural numbers. For a number M ∈ N

choose a natural number n such that 2nm < M ≤ 2(n+1)m. For a function f ∈ Hr
p̄ , it is

known that

f(x̄) =

∞∑
s=0

δs(f, x̄)

and

‖δs(f)‖p̄ ≤ 2−sr, 1 < pj <∞, j = 1, ...,m.

We will seek an approximation polynomial P (ΩM , x̄) in the form

P (ΩM , x̄) =

n−1∑
s=0

δs(f, x̄) +
∑

n≤s<αn

P (ΩNs , x̄), (1)

where the polynomials P (ΩNs , x̄) will be constructed for each δs(f, x̄) in accordance with
Lemma 1.4 and the number α > 1 will be chosen during the construction.

Let
m∑
j=1

( 1
pj
− 1

qj
) < r <

m∑
j=1

1
pj
. Suppose

Ns =
[
2nm2

s

(
m∑
j=1

1
pj
−r
)

2
−nα

(
m∑
j=1

1
pj
−r
)]

+ 1,

where [y] is the integer part of the number y.
Now we are going to show that the polynomials (1) have no more than M harmonics

(in terms of order). By the definition of the number Ns, we have

n−1∑
s=0

]{k̄ = (k1, ..., km) : [2s−1] ≤ max
j=1,...,m

|kj | < 2s}+
∑

n≤s<αn

Ns ≤ C2nm+

+
∑

n≤s<αn

2nm2
s

(
m∑
j=1

1
pj
−r
)

2
−nα

(
m∑
j=1

1
pj
−r
)

+ 1

 ≤ C2nm + (α− 1)n ≤ C2nm �M,

where ]A denotes the number of elements in the set A.
Next, by the property of the norm, we have

‖f − P (ΩM )‖q̄ ≤ C

∥∥∥∥∥∥
∑

n≤s<αn

(δs(f)− P (ΩNs))

∥∥∥∥∥∥
q̄

+

+

∥∥∥∥∥∥
∑

αn≤s<+∞

δs(f)

∥∥∥∥∥∥
q̄

= J1(n) + J2(n). (2)

Let us estimate J2(n). Applying the inequality of different metrics for trigonometric
polynomials (Theorem 1.2), we can obtain

J2(n) ≤
∑

αn≤s<+∞

‖δs(f)‖q̄ ≤ C
∑

αn≤s<+∞

2
s
m∑
j=1

(
1
pj
− 1
qj

)
‖δs(f)‖p̄.
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Therefore, taking into account f ∈ Hr
p̄ and

m∑
j=1

( 1
pj
− 1

qj
) < r, we get

J2(n) ≤ C
∑

αn≤s<+∞

2
−s
(
r−

m∑
j=1

(
1
pj
− 1
qj

))
≤ C2

−nα
(
r−

m∑
j=1

(
1
pj
− 1
qj

))
. (3)

Let us estimate J1(n). Using the property of the norm, Lemma 1.4 and the inequality of
different metrics (Theorem 1.2), we get

J1(n) ≤
∑

n≤s<αn

‖δs(f)− P (ΩNs)‖q̄ ≤ C
∑

n≤s<αn

(
N−1
s 2sm

) 1
2 ‖δs(f)‖2 ≤

≤ C
∑

n≤s<αn

(
N−1
s 2sm

) 1
2 2

s
m∑
j=1

(
1
pj
− 1

2

)
‖δs(f)‖p̄ ≤

≤ C
∑

n≤s<αn

N
− 1

2
s 2

s
m∑
j=1

1
pj 2−sr ≤

≤ C2−
nm
2 2

nα
2

(
m∑
j=1

1
pj
−r
) ∑
n≤s<αn

2
s

(
m∑
j=1

1
pj
−r
)

1
2 ≤ C2−

nm
2 2

nα
2

(
m∑
j=1

1
pj
−r
)
. (4)

Suppose α = m

(
2
m∑
j=1

1
qj

)−1

. Then, from the inequality (4), we get

J1(n) ≤ C2
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
�M

−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
. (5)

For α = m

(
2
m∑
j=1

1
qj

)−1

, using the inequality (3) and taking into account 2nm �M , we

obtain

J2(n) ≤ CM
−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
. (6)

By (5) and (6), we get from the inequality (2) the following

‖f − P (ΩM ) ‖q̄ ≤ CM
−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
,

for any function f ∈ Hr
p̄ in the case of

m∑
j=1

( 1
pj
− 1

qj
) < r <

m∑
j=1

1
pj
.

From the inclusion Brp̄,θ ⊂ Hr
p̄ and the definition of the M -term approximation, it

follows that

eM
(
Brp̄,θ

)
q̄
≤ CM

−
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))

in the case of
m∑
j=1

( 1
pj
− 1

qj
) < r <

m∑
j=1

1
pj
.

Let us consider the lower bound. We will use the well-known formula (see [19], p. 79)

eM (f)q̄ = inf
ΩM

sup
P∈L⊥

M
,‖P‖q̄′≤1

∣∣∣∣∫
Tm

f(x̄)P̄ (x̄)dx̄

∣∣∣∣ , (7)

where q̄′ = (q1
′, ..., qm

′), 1
qj

+ 1
qj ′

= 1, j = 1, ...,m, and L⊥M is the set of functions that
are orthogonal to the subspace of trigonometric polynomials with harmonics in the set
ΩM .
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Consider the function

Fq̄,n(x̄) =
∑

max
j=1,...,m

|kj |≤2

nm
2

m∑
j=1

1
qj

−1
ei〈k̄,x̄〉.

Let ΩM be a set of M vectors with integer coordinates. Suppose

g(x̄) = Fq̄,n(x̄)−
∗∑

k̄∈ΩM

ei〈k̄,x̄〉,

where the sum
∗∑

k̄∈ΩM

contains those terms in the function Fq̄,n(x̄) with indices only in

ΩM . By the inequality (see [18], p. 88)

‖
∑

max
j=1,...,m

|kj |≤2l

ei〈k̄,x̄〉‖p̄ ≤ C2
l
m∑
j=1

(1− 1
pj

)

(8)

and Perseval’s equality for 1 < qj
′ < 2, j = 1, ...,m, we obtain

‖g‖q̄′ ≤ ‖Fq̄,n‖q̄′ + (2π)

m∑
j=1

( 1
qj
− 1

2
)

‖
∗∑

k̄∈ΩM

ei〈k̄,x̄〉‖2 ≤ C(2
nm
2 +M

1
2 ) ≤ C2

nm
2 . (9)

Now we consider the function

P1(x̄) = C22(−nm2 )g(x̄). (10)

Then (9) implies that the function P1 satisfies the assumptions of the formula (7) for
some constant C2 > 0.

Consider the function

f1(x̄) = C32
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
−1

))
Fq̄,n(x̄). (11)

By the inequality (8), we get
∞∑
s=0

2sr ‖δs (f1)‖p̄ ≤

≤ C2
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
−1

))
[
nm

(
2
m∑
j=1

1
qj

)−1]
∑
s=0

2sr2
s
m∑
j=1

(
1− 1

pj

)
≤ C3.

Hence C−1
3 f1 ∈ Brp̄,1.

For the functions (10) and (11), we have, by the formula (7), the following

eM (f1)q̄ ≥ inf
ΩM

∣∣∣∣∫
Tm

f1 (x̄) P̄1 (x̄) dx̄

∣∣∣∣ ≥
≥ C2

−nm
(

2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
−1

))
2−

nm
2
(
‖Fq̄,n‖22 −M

)
≥

≥ C2
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
. (12)

Hence, it follows from (12) by the inclusion Brp̄,1 ⊂ Brp̄,θ that

eM (f1)q̄ ≥ C2
−nm

(
2
m∑
j=1

1
qj

)−1(
r−

m∑
j=1

(
1
pj
− 1
qj

))
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in the case of
m∑
j=1

( 1
pj
− 1

qj
) < r <

m∑
j=1

1
pj
. So we have proved the first item.

Now we consider the case r =
m∑
j=1

1
pj
. Let f ∈ Brp̄,θ. Suppose α = m

(
2
m∑
j=1

1
qj

)−1

and
Ns =

[
2nmn

1
θ
−1 ‖δs(f)‖p̄ 2sr

]
+ 1.

Then, by definition of the numbers Ns and Holder’s inequality, we obtain
n−1∑
s=0

]{k̄ = (k1, ..., km) : [2s−1] ≤ max
j=1,...,m

|kj | < 2s}+
∑

n≤s<αn

Ns ≤

≤ C2nm + (α− 1)n+ 2nmn
1
θ
−1((α− 1)n)

1
θ′

(
∞∑
s=0

‖δs(f)‖θp̄ 2srθ
) 1
θ

≤ C2nm �M.

Suppose β = max{q1, ..., qm}. Then

J1(n) =

∥∥∥∥∥∥
∑

n≤s<αn

(δs(f)− P (ΩNs))

∥∥∥∥∥∥
q̄

≤ C

∥∥∥∥∥∥
∑

n≤s<αn

(δs(f)− P (ΩNs))

∥∥∥∥∥∥
β

.

Next, by Theorem 1.3, we have

J1(n) ≤ C

∥∥∥∥∥∥∥
 ∑
n≤s<αn

|δs(f)− P (ΩNs)|
2

 1
2

∥∥∥∥∥∥∥
β

.

Since β > 2, then by applying the property of the norm, Lemma 1.4 and the inequality
of different metrics for trigonometric polynomials (see Theorem 1.2), we obtain

J1(n) ≤

 ∑
n≤s<αn

‖δs(f)− P (ΩNs)‖
2
β

 1
2

≤ C

 ∑
n≤s<αn

N−1
s 2sm ‖δs(f)‖22

 1
2

≤

≤ C

 ∑
n≤s<αn

N−1
s 2sm2

2s
m∑
j=1

( 1
pj
− 1

2
)

‖δs(f)‖2p̄

 1
2

. (13)

Next, since r =
m∑
j=1

1
pj
, we have, by the definition of the numbersNs and using Holder’s

inequality, the following

J1(n) ≤ C(2−nmn1− 1
θ )

1
2

 ∑
n≤s<αn

2sr ‖δs(f)‖p̄

 1
2

≤

≤ C(2−nmn1− 1
θ )

1
2

 ∑
n≤s<αn

2srθ ‖δs(f)‖θp̄

 1
2θ
 ∑
n≤s<αn

1

 1
2

(1− 1
θ

)

≤ C2−
nm
2 n1− 1

θ �M−
1
2 (log(1 +M))1− 1

θ .

Thus,
J1(n) ≤ CM−

1
2 (log(1 +M))1− 1

θ (14)

in the case of r =
m∑
j=1

1
pj
.
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To estimate J2(n), we apply Holder’s inequality, and taking into account r =
m∑
j=1

1
pj

and α = m

(
2
m∑
j=1

1
qj

)−1

, we obtain

J2(n) ≤ C
∑

nα≤s<+∞

2
s
m∑
j=1

( 1
pj
− 1
qj

)

‖δs(f)‖p̄ ≤ (15)

≤ C

(
∞∑
s=0

2srθ ‖δs(f)‖θp̄

) 1
θ

 ∑
nα≤s<+∞

2
−sθ′

m∑
j=1

1
qj

 1
θ′

≤ C2
−nα

m∑
j=1

1
qj = C2−

nm
2 �M−

1
2 .

By (14) and (15), the inequality (2) implies that

‖f − P (ΩM )‖q̄ ≤ CM−
1
2 (log(1 +M))1− 1

θ

in the case of r =
m∑
j=1

1
pj
. It proves the upper bound estimation in the second item.

Let r >
m∑
j=1

1
pj
. Suppose

Ns =
[
2
n

(
r−

m∑
j=1

(
1
pj
−1

))
2
−s
(
r−

m∑
j=1

1
pj

)]
+ 1.

Then
n−1∑
s=0

]{k̄ = (k1, ..., km) : [2s−1] ≤ max
j=1,...,m

|kj | < 2s}+
∑

n≤s<αn

Ns ≤

≤ C2nm + (α− 1)n ≤ C2nm ≤ CM.

If f ∈ Hr
p̄ , then, by using the definition of the numbers Ns and r >

m∑
j=1

1
pj
, we obtain

from (13) the following

J1(n) ≤

 ∑
n≤s<αn

N−1
s 2sm2

2s
m∑
j=1

(
1
pj
− 1

2

)
‖δs(f)‖2p̄

 1
2

≤

≤ C2
−n

2

(
r−

m∑
j=1

(
1
pj
−1

)) ∑
n≤s<αn

2
−s
(
r−

m∑
j=1

1
pj

)
1
2

≤ C2
−n
(
r+

m∑
j=1

(
1
2
− 1
pj

))
.

Thus,

J1(n) ≤ CM
− 1
m

(
r+

m∑
j=1

( 1
2
− 1
pj

)

)
(16)

in the case of r >
m∑
j=1

1
pj
.

To estimate J2(n), we suppose α =

(
r +

m∑
j=1

(
1
2
− 1

pj

))(
r +

m∑
j=1

(
1
qj
− 1

pj

))−1

and

get

J2(n) ≤ C
∑

nα≤s<∞

2
−s
(
r+

m∑
j=1

(
1
pj
− 1
qj

))
≤ C2

−n
(
r+

m∑
j=1

(
1
2
− 1
pj

))
≤

≤ CM
− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))
(17)
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for a function f ∈ Hr
p̄ . By (16) and (17), it follows from (2) that

‖f − P (ΩM ) ‖q̄ ≤ CM
− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))

for any function f ∈ Hr
p̄ in the case of r >

m∑
j=1

1
pj
.

It follows from Brp̄,θ ⊂ Hr
p̄ that

eM
(
Brp̄,θ

)
q̄
≤ eM

(
Hr
p̄

)
q̄
≤ CM

− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))

in the case of r >
m∑
j=1

1
pj
. It proves the upper bound estimation in the item 3.

Let us consider the lower bound estimation in the case of r =
m∑
j=1

1
pj
. Consider the

function

g1(x̄) =

n∑
s=1

∑
k̄∈ρ(s)

m∏
j=1

k−1
j cos kjxj . (18)

Then

δs(g1, x̄) =
∑
k̄∈ρ(s)

m∏
j=1

k−1
j cos kjxj .

It is known that for a function ds(x̄) =
∑

k̄∈ρ(s)

m∏
j=1

cos kjxj the following relation holds

‖ds‖p̄ � 2
s
m∑
j=1

(1− 1
pj

)

, 1 < pj < +∞, j = 1, ...,m.

Therefore, by the Marcinkiewicz theorem on multipliers (see [18]), we have

‖δs(g1)‖p̄ ≤ C2−sm‖ds‖p̄ ≤ C2
−s

m∑
j=1

1
pj .

Hence, since r =
m∑
j=1

1
pj
, we obtain

(
∞∑
s=0

2srθ ‖δs(g1)‖θp̄

) 1
θ

≤ C1n
1
θ .

Therefore, the function f2(x̄) = C−1
1 n−

1
θ g1(x̄) belongs to the class Brp̄,θ, 1 < pj < +∞,

j = 1, ...,m.
Now, we are going to construct a function P1, which satisfies the conditions of the

formula (7). Let

v1(x̄) =

n∑
s=1

∑
k̄∈ρ(s)

m∏
j=1

cos kjxj

and ΩM be an arbitrary set of M vectors k̄ = (k1, ..., km) with integer coordinates.
Consider the function

u1(x̄) =

∗∑
k̄∈ΩM

m∏
j=1

cos kjxj

which contains only those terms in (18) with indices in ΩM . Suppose w1(x̄) = v1(x̄) −
u1(x̄). Then, since 1 < qj

′ < 2, j = 1, ...,m, we obtain, by Perseval’s equality, the
following

‖w1‖q̄′ ≤ ‖v1‖q̄′ + ‖u1‖2 ≤ ‖v1‖q̄′ + CM
1
2 .
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By the property of the norm and the estimation of the norm of the Dirichlet kernel in
the Lebesgue space, we have

‖v1‖q̄′ ≤
n∑
s=1

‖δs(v1)‖q̄′ ≤

≤ C
n∑
s=1

2
s
m∑
j=1

(
1− 1

qj
′

)
≤ C2

n
m∑
j=1

1
qj .

Therefore, taking into account 1
qj
< 1

2
, j = 1, ...,m, we get

‖w1‖q̄′ ≤ C(2
nm
2 +M

1
2 ) ≤ C22

nm
2 .

Hence, the function
P1(x̄) = C−1

2 2−
nm
2 w1(x̄)

satisfies the conditions of the formula (7). Then, by substituting the functions f2 and P1

into (7) and by orthogonality of the trigonometric system, we obtain

eM (f2)q̄ ≥ C
∑

n1≤s<n

∑
k̄∈ρ(s)

m∏
j=1

k−1
j 2−

nm
2 n−

1
θ ≥

≥ C(ln 2)m
∑

n1≤s<n

2−
nm
2 n−

1
θ = C(ln 2)m2−

nm
2 n−

1
θ (n− n1) ≥

≥ C(ln 2)m2−
nm
2 n1− 1

θ �M−
1
2 (log(1 +M))1− 1

θ ,

where n1 is a natural number such that n1 ≤ n
2
.

So, for the function f2 ∈ Brp̄,θ, it has been proved that

eM (f2)q̄ ≥ CM
− 1

2 (log(1 +M))1− 1
θ

in the case of r =
m∑
j=1

1
pj
. Hence

eM
(
Brp̄,θ

)
q̄
≥ CM−

1
2 (log(1 +M))1− 1

θ

in the case of r =
m∑
j=1

1
pj
. It proves the lower bound estimation in the second item.

Let us prove the lower bound estimation for the case r >
m∑
j=1

1
pj
. Since in this case an

upper bound estimation of the quantity eM
(
Brp̄,θ

)
q̄
does not depend on θ and Brp̄,1 ⊂ Brp̄,θ,

1 < θ ≤ +∞, it suffices to prove the lower bound estimation for Brp̄,1.
For a number M ∈ N, we choose a natural number n such that 2nm < M ≤ 2(n+1)m

and 2M ≤ ]ρ(n), where ]ρ(n) denotes the number of elements in the set ρ(n).
Consider the following function

f3(x̄) = 2
−n
(
r+

m∑
j=1

(
1− 1

pj

)) ∑
k̄∈ρ(n)

ei〈k̄,x̄〉.

Then ‖δs(f3)‖p̄ = 0 provided s 6= n and

‖δn(f3)‖p̄ = 2
−n
(
r+

m∑
j=1

(
1− 1

pj

))
m∏
j=1

∥∥∥ 2n−1∑
kj=2n−1

eikjxj
∥∥∥
pj

.
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By the estimation of the norm of the Dirichlet kernel (see [18], p. 181), we have∥∥∥ 2n−1∑
kj=2n−1

eikjxj
∥∥∥
pj

≤ C2
n(1− 1

pj
)
,

for pj ∈ (1,∞), j = 1, ...,m. Therefore

‖δn(f3)‖p̄ ≤ C2−nr.

Hence
∞∑
s=0

2sr ‖δs(f3)‖p̄ ≤ C3,

i.e. the function C−1
3 f3 ∈ Brp̄,1. Next, we consider the functions

v2(x̄) =
∑

k̄∈ρ(n)

ei〈k̄,x̄〉

and
u2(x̄) =

∑
k̄∈ρ(n)∩ΩM

ei〈k̄,x̄〉.

Suppose w2(x̄) = v2(x̄)− u2(x̄). By Perseval’s equality,

‖u2‖2 ≤M
1
2 , ‖v2‖2 ≤ C2

nm
2 .

From these relations, we obtain, by the properties of the norm, the following

‖w2‖2 ≤ ‖v2‖2 + ‖u2‖2 ≤ C42
nm
2 .

Therefore, the function P2(x̄) = C−1
4 2−

nm
2 w2(x̄) satisfies the conditions of the formula

(7). Since 2 < qj <∞, j = 1, ...,m, we have eM (f3)2 ≤ CeM (f3)q̄. Now, by the formula
(7), we get

eM (f3)q̄ ≥ CeM (f3)2 ≥

≥ C inf
ΩM

∫
Tm

f3(x̄)P̄2(x̄)dx̄ =

= C−1
2 2−

nm
2 2
−n
(
r+

m∑
j=1

(
1− 1

pj

))
inf
ΩM

[]ρ(n)− ] (ρ(n) ∩ ΩM )] ≥

≥ C2−
nm
2 2
−n
(
r+

m∑
j=1

(
1− 1

pj

))
[]ρ(n)−M ] ≥

≥ C2−
nm
2 2
−n
(
r+

m∑
j=1

(
1− 1

pj

))
[]ρ(n)− ]ρ(n)

2
] ≥

≥ C2−
nm
2 2
−n
(
r−

m∑
j=1

1
pj

)
.

It follows from the relation 2nm �M that

eM (f3)q̄ ≥ CM
− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))

in the case of r >
m∑
j=1

1
pj

for the function C−1
3 f3 ∈ Brp̄,1. Hence

eM
(
Brp̄,1

)
q̄
≥ CM

− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))
.
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Therefore,

eM
(
Brp̄,θ

)
q̄
≥ CM

− 1
m

(
r+

m∑
j=1

(
1
2
− 1
pj

))

in the case of r >
m∑
j=1

1
pj
. So Theorem 2.1 has been proved.

2.2. Theorem. Let p̄ = (p1, ..., pm), q̄ = (q1, ..., qm), 1 < pj < qj ≤ 2, and 1 ≤ θ ≤ +∞.

If r >
m∑
j=1

( 1
pj
− 1

qj
), then

eM
(
Brp̄,θ

)
q̄
�M

− 1
m

(
r−

m∑
j=1

(
1
pj
− 1
qj

))
.

Proof. For a number M ∈ N, we choose a natural number n such that M � 2nm. By
the inequality of distinct metrics (see Theorem 1.2) and by Holder’s inequality, we have

‖f −
n∑
s=0

δs(f)‖q̄ ≤
∞∑
s=n

‖δs(f)‖q̄ ≤

≤
[ ∞∑
s=0

2srθ‖δs(f)‖θq̄
] 1
θ
[ ∞∑
s=n

2
sθ′
(
r−

m∑
j=1

(
1
pj
− 1
qj

))] 1
θ′ ≤

≤ C2
n

(
r−

m∑
j=1

(
1
pj
− 1
qj

))
≤ CM

− 1
m

(
r−

m∑
j=1

(
1
pj
− 1
qj

))

for f ∈ Brp̄,θ, 1
θ

+ 1

θ
′ = 1. Therefore

eM (f)q̄ ≤ ‖f −
n∑
s=0

δs(f)‖q̄ ≤ CM
− 1
m

(
r−

m∑
j=1

(
1
pj
− 1
qj

))
.

Hence

eM
(
Brp̄,θ

)
q̄
≤ CM

− 1
m

(
r−

m∑
j=1

(
1
pj
− 1
qj

))
.

It proves the upper bound estimation.
For the lower bound estimation, let us consider the function

f4(x̄) = n
−r+

m∑
j=1

(
1
pj
−1

)
Vn(x̄),

where Vn(x̄) is a multiple of the Valle-Poisson sum.
Next, following the proof in [9] (pp. 46-47) and applying Theorem 1.2, we obtain the

lower bound estimation of the quantity eM
(
Brp̄,θ

)
q̄
.

2.3. Theorem. Let p̄ = (p1, ..., pm), q̄ = (q1, ..., qm), 2 ≤ pj < qj <∞, j = 1, ...,m, and
1 ≤ θ ≤ +∞. If r > m

2
, then

eM
(
Brp̄,θ

)
q̄
�M−

r
m .

Proof. By the inclusion Brp̄,θ ⊂ Br2̄,θ ⊂ H
r
2 , we have

eM
(
Brp̄,θ

)
q̄
≤ eM

(
Br2,θ

)
q̄
≤ eM (Hr

2 )q̄ .

By Theorem 2.1,
eM (Hr

2 )q̄ ≤ CM
− r
m ,

for pj = 2, j = 1, ...,m. Hence

eM
(
Brp̄,θ

)
q̄
≤ CM−

r
m .

It proves the upper bound estimation.
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Let us consider the lower bound estimation. Consider Rudin-Shapiro’s polynomial
(see [15], p. 155) of the type

Rs(x) =

2s∑
s=2s−1

εke
ikx, x ∈ [0, 2π], εk = ±1.

It is known that ‖Rs‖∞ = max
x∈[0,2π]

|Rs(x)| ≤ C2
s
2 (see [15], p. 155). For a given number

M choose a number n such that M � 2nm. Now we consider the function

f5(x̄) = 2−n(m
2

+r)
n∑
s=1

m∏
1

Rs(xj).

Then, by the continuity, we have f5 ∈ Lp̄(Tm) and

∞∑
s=0

2sθr‖δs(f5)‖θp̄ = 2−n(m
2

+r)
n∑
s=1

2sθr‖
m∏
1

Rs(xj)‖θp̄ ≤

≤ 2−n(m
2

+r)
n∑
s=1

2s(
m
2

+r)θ ≤ C5.

Hence, the function C−1
5 f5 ∈ Brp̄,θ. Now, we construct a function P (x̄), which satisfies

the conditions in the formula (7). Suppose

v3(x̄) =

n∑
s=1

m∏
1

Rs(xj), u3(x̄) =

∗∑
s

m∏
1

Rs(xj),

where the sign ∗ means that the polynomial u3(x̄) contains only those harmonics of v3,
which have indices in ΩM . Suppose w3(x̄) = v3(x̄)−u3(x̄). Then, since 1 < qj

′ =
qj
qj−1

<

2, j = 1, ...,m, we have the following (by Perseval’s equality)

‖w3‖q̄′ ≤ ‖w3‖2 ≤ C12
nm
2 .

Therefore, for the function P3(x̄) = C−1
1 2−

nm
2 w3(x̄) the inequality ‖P3‖q̄′ ≤ 1 holds.

Now, using the formula (7), we obtain

eM
(
Brp̄,θ

)
q̄
≥ eM (f3)q̄ ≥ 2−n(m

2
+r)2−

nm
2 (2nm −M) ≥ C2−n(m+r)2nm ≥ CM−

r
m .

So

eM
(
Brp̄,θ

)
q̄
≥ CM−

r
m .

It proves Theorem 2.3.
Remark. In the case pj = p, qj = q, j = 1, ...,m, and r > m( 1

p
− 1

q
), the results of

R.A. DeVore and V.N. Temlyakov [9] follow from Theorem 2.1 - 2.3. If 1 < p ≤ 2 < q <∞
and m( 1

p
− 1

q
) < r ≤ m

p
, the results of S.A. Stasyuk [20, 21] follow from the first and

second items of Theorem 2.1. Theorem 2.1 - 2.3 were announced in [3].
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nonlinear integro-partial differential equations in terms of the two vari-
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plementing a collocation method in combination with two dimensional
operational matrices of Jacobi polynomials is introduced to approxi-
mate the solution of some integro–partial differential equations with
initial or boundary conditions. Also, it is shown that the resulted ap-
proximate solution is the best approximation for the considered prob-
lem. The main advantage is to derive the Jacobi operational matrices
of integration and product to achieve the best approximation of the
two dimensional integro–differential equations. Numerical results are
given to confirm the reliability of the proposed method for solving these
equations.

Keywords: Best approximation, Collocation method, Integro–partial differential
equations, Operational matrix, Shifted Jacobi polynomials.

2000 AMS Classification: 47B36, 14R15, 39B05, 65D15, 15B99, 65R20, 45K005,
47G10, 34K28.

Received : 18.11.2014 Accepted : 17.02.2015 Doi : 10.15672/HJMS.20164513116

∗Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh
Ardabili, Ardabil,Iran,
Email: borhani@uma.ac.ir
†Corresponding Author.
‡Department of Mathematics, Faculty of Mathematical Sciences, University of Mohaghegh

Ardabili, Ardabil,Iran,
Email: kh.sadri@uma.ac.ir



312

1. Introduction
Finding the analytical solutions of functional equations has been devoted attention of

mathematicians’s interest in recent years. Several methods are proposed to achieve this
purpose, such as [7, 8, 9, 10, 11, 13]. Many problems in theoretical physics and other
sciences lead to integro–partial differential equations. In order to solve these equations,
several numerical methods have been proposed such as [21, 22, 25, 26, 28, 29]. The
solutions of this kind of equations are often quite complicated. For this reason in many
cases, it is required to obtain the approximate solutions. For example the Jacobi collo-
cation method has been applied to solve various differential equations, [3, 14, 15, 17, 18,
19, 20, 23]. Also, Bhrawy and et al have presented a new Legendre spectral collocation
method for fractional Burgers equations, [6]. In [16], authors have used Jacobi–Gauss–
Lobatto collocation method for the numerical solution of 1 + 1 nonlinear Schrödinger
equation. Also, Bhrawy in [1] has presented an pseudospectral approximation based on
Jacobi polynomials for generalized Zakharov system. Two spectral tau algorithms based
on Jacobi polynomials have been applied to solve multi–term time–space fractional par-
tial differential equations and time fractional diffusion–Wave equations, [4, 5]. Bhrawy
and et al have been presented two different collocation scheme for both temporal and
spatial discriminations of mobile–immobile advection–dispersion model (TVFO–MIAD
model), [2]. Borhanifar and Sadri have utilized a Jacobi operational collocation method
for systems of two dimensional integral equations, [12].

In this paper, the Jacobi polynomials are used as a basis function for solving linear
and nonlinear integro–partial differential equations, the numerical solution, u(x, y), is
approximated in terms of two variables Jacobi polynomials as x, y ∈ [0, 1]. In order
to realize this aim, the shifted Jacobi polynomials together the collocation technique are
used. The Jacobi operational matrices of the integration and product are constructed on
the interval [0, 1]. The main aim is to improve Jacobi operational matrices to the spec-
tral solution of partial integro-differential equations. For solving the resulted algebraic
system, the (N + 1) roots of one variable Jacobi polynomials P (α,β)

N+ 1(x) and P
(α,β)
N+ 1(y)

are considered in the x, y−directions. The domain of two dimensional is represented by a
tensor product points {xi}Ni= 0 and {yj}Nj= 0 which are roots of P (α,β)

N+ 1(x) and P (α,β)
N+ 1(y).

Each the equations of the algebraic system is collocated in the resulted tensor points
{(xi, yj)}Ni,j= 0 and is given linear or nonlinear systems of algebraic equations which can
be solved using the well–known Newtons iterative method. Thus, the Jacobi coefficients
are obtained and the approximate solution is determined.

The remainder of this paper is organized as follows: The Jacobi polynomials, some of
their properties and one dimensional operational matrix of integration are introduced in
Section 2. Afterwards, some properties of two variables Jacobi polynomials are stated and
the operational matrices of integration and product will be extended to two dimensional
case in Section 3. In Section 4, the existence and uniqueness of the best approxima-
tion are studied and an error estimator is introduced. Section 5 is devoted to applying
two dimensional Jacobi operational matrices for solving the partial integro–differential
equations. For this purpose, four examples are presented. A conclusion is presented in
Section 6.

2. Jacobi polynomials and their operational matrix of integration
The well–known Jacobi polynomials are defined on the interval z ∈ [−1, 1], constitute

an orthogonal system with respect to the weight function w(α,β)(z) = (1− z)α (1 + z)β ,



313

and can be determined with the following recurrence formula:

(2.1)
P

(α,β)
i+ 1 (z) = A(α, β, i) P

(α,β)
i (z) + z B(α, β, i) P

(α,β)
i (z)−D(α, β, i) P

(α,β)
i− 1 (z),

i = 1, 2, ...,

where

A(α, β, i) =
(2 i+ α+ β + 1)(α2 − β2)

2(i+ 1)(i+ α+ β + 1)(2 i+ α+ β)
,

B(α, β, i) =
(2 i+ α+ β + 2)(2 i+ α+ β + 1)

2(i+ 1)(i+ α+ β + 1)
,

D(α, β, i) =
(i+ α)(i+ β)(2 i+ α+ β + 2)

(i+ 1)(i+ α+ β + 1)(2 i+ α+ β)
,

and

P
(α,β)
0 (z) = 1, P

(α,β)
1 (z) =

α+ β + 2

2
z +

α− β
2

.

The orthogonality condition of Jacobi polynomials is∫ 1

−1

P
(α,β)
j (z) P

(α,β)
k (z) w(α,β)(z) dz = hk δjk,

where

hk =
2α+β+1Γ(k + α+ 1)Γ(k + β + 1)

(2k + α+ β + 1)k! Γ(k + α+ β + 1)
.

The analytic form of Jacobi polynomials is given by, [27],

P
(α,β)
i (z) =

i∑
k=0

(−1)(i−k)Γ(i+ β + 1)Γ(i+ k + α+ β + 1)

Γ(k + β + 1)Γ(i+ α+ β + 1) (i− k)! k!
(
1 + z

2
)k,

i = 0, 1, ... .

For practical use of Jacobi polynomials on the interval x ∈ [0, 1], it is necessary to
shift the defining domain by means of the following change variable:

z = 2 x− 1, x ∈ [0, 1]

The shifted Jacobi polynomials are generated from the three-term recurrence relation

(2.2)

P
(α,β)
i+1 (x) = A(α, β, i) P

(α,β)
i (x) + (2 x− 1) B(α, β, i) P

(α,β)
i (x)

−D(α, β, i) P
(α,β)
i−1 (x), i = 1, 2, ...,

P
(α,β)
0 (x) = 1, P

(α,β)
1 (x) =

(α+ β + 2)(2 x− 1)

2
+
α− β

2
.

The orthogonality condition and weight function are respectively,∫ 1

0

P
(α,β)
i (x) P

(α,β)
j (x) w(α,β)(x) dx = θi δij ,

where

θi =
Γ(i+ α+ 1)Γ(i+ β + 1)

(2i+ α+ β + 1) i! Γ(i+ α+ β + 1)
,

and

w(α,β)(x) = (1− x)α xβ , x ∈ [0, 1].
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Also, the analytic form of shifted Jacobi polynomials will be as follows, [27],

(2.3)
P

(α,β)
i (x) =

i∑
k=0

(−1)(i−k)Γ(i+ β + 1)Γ(i+ k + α+ β + 1) xk

Γ(k + β + 1) Γ(i+ α+ β + 1) (i− k)! k!
,

i = 0, 1, ... .

A continuous function u(x), square integrable in [0, 1], can be expressed in terms of
shifted Jacobi polynomials as

(2.4) u(x) =

∞∑
j=0

Cj P
(α,β)
j (x),

where the coefficients Cj are given by

Cj =
1

θj

∫ 1

0

u(x) P
(α,β)
j (x) w(α,β)(x) dx, j = 0, 1, ... .

In practice, only the first (N + 1)−terms shifted Jacobi polynomials are considered.
Therefore, one has

(2.5) uN (x) =

N∑
j=0

Cj P
(α,β)
j (x) = ΦT (x) C = CT Φ(x),

where the vectors C and Φ(x) are given by

(2.6) C = [C0, C1, ..., CN ]T , Φ(x) = [P
(α,β)
0 (x), P

(α,β)
1 (x), ..., P

(α,β)
N (x)]T .

Some other properties of the shifted Jacobi polynomials are presented as follows.

(1) P
(α,β)
i (0) = (−1)i

(
i+ α
i

)
,

(2)
di

dxi
P (α,β)
n (x) =

Γ(n+ α+ β + i+ 1)

Γ(n+ α+ β + 1)
P

(α+i,β+i)
n−i (x).

2.1. Lemma. The shifted Jacobi polynomial P (α,β)
i (x) can be obtained in the form of:

P
(α,β)
i (x) =

i∑
k=0

γ
(i)
k xk,

where γ(i)
k are

γ
(i)
k = (−1)i−k

(
i+ k + α+ β

k

)(
i+ α
i− k

)
.

Proof. γ(i)
k can be obtained as,

γ
(i)
k =

1

k!

dk

dxk
P

(α,β)
i (x) |x=0 .

Now, using properties (1) and (2), the lemma can be proved. �

2.2. Lemma. If p > β − 1, then∫ 1

0

xp−β P (α,β)
n (x) w(α,β)(x) dx =

n∑
l=0

(−1)n−lΓ(n+ β + 1) Γ(n+ l + α+ β + 1) Γ(p+ l + 1) Γ(α+ 1)

Γ(l + β + 1) Γ(n+ α+ β + 1) Γ(p+ l + α+ 2) (n− l)! l! .
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Proof. For p− β < n one has∫ 1

0

xp−β P (α,β)
n (x) w(α,β)(x) dx = 0.

Hence, we suppose p − β ≥ n. From analytic form of shifted Jacobi polynomials, (2.3),
one has∫ 1

0

xp−β P (α,β)
n (x) w(α,β)(x) dx =

n∑
l=0

(−1)n−lΓ(n+ β + 1) Γ(n+ l + α+ β + 1)

Γ(l + β + 1) Γ(n+ α+ β + 1) (n− l)! l! B(p+ l + 1, α+ 1)

=

n∑
l=0

(−1)n−lΓ(n+ β + 1) Γ(n+ l + α+ β + 1) Γ(p+ l + 1) Γ(α+ 1)

Γ(l + β + 1) Γ(n+ α+ β + 1) Γ(p+ l + α+ 2) (n− l)! l! ,

where B(s, t) is the Beta function and is defined as

B(s, t) =

∫ 1

0

vs−1(1− v)t−1dv =
Γ(s) Γ(t)

Γ(s+ t)
.

�

2.3. Lemma. If P (α,β)
j (x) and P (α,β)

k (x) are j−th and k−th shifted Jacobi polynomials,
respectively, then the product of P (α,β)

j (x) and P (α,β)
k (x) can be written as

Q
(α,β)
j+k (x) =

j+k∑
r=0

λ(j,k)
r xr.

Proof. Defining the Q(α,β)
j+k (x) = P

(α,β)
j (x) P

(α,β)
k (x) as a polynomial of degree j+k that

can be written as

Q
(α,β)
j+k (x) = (

j∑
m=0

γ(j)
m xm) (

k∑
n=0

γ(k)
n xn) =

j+k∑
r=0

λ(j,k)
r xr.

The relation between coefficients λ(j,k)
n with coefficients γ(j)

m and γ(k)
m will be as follows.

If j ≥ k :

(2.7)

r = 0, 1, ..., j + k,
if r > j then

λ
(j,k)
r =

∑k
l=r−j γ

(j)
r−l γ

(k)
l ,

else
r1 = min{r, k},
λ

(j,k)
r =

∑r1
l=0 γ

(j)
r−l γ

(k)
l ,

end.

If j < k :

(2.8)

r = 0, 1, ..., j + k,
if r ≤ j then

r1 = min{r, j},
λ

(j,k)
r =

∑r1
l=0 γ

(j)
r−l γ

(k)
l ,

else
r2 = min{r, k},
λ

(j,k)
r =

∑r2
l=r−j γ

(j)
r−l γ

(k)
l ,

end.



316

Thus, the coefficients λ(j,k)
r is determined. �

2.4. Lemma. If P (α,β)
i (x), P (α,β)

j (x) and P (α,β)
k (x) are i−, j− and k−th shifted Jacobi

polynomials, respectively, then∫ 1

0

P
(α,β)
i (x) P

(α,β)
j (x) P

(α,β)
k (x) w(α,β)(x) dx =

j+k∑
n=0

i∑
l=0

(−1)i−lλ
(j,k)
n Γ(i+ β + 1) Γ(i+ l + α+ β + 1) Γ(n+ l + β + 1) Γ(α+ 1)

Γ(l + β + 1) Γ(i+ α+ β + 1) Γ(n+ l + α+ β + 2) (i− l)! l! ,

where λ(j,k)
n has been introduced in Lemma 2.3.

Proof. Assuming that P (α,β)
j (x) P

(α,β)
k (x) = Q

(α,β)
j+k (x). Using of (2.3), Lemmas 2.2 and

2.3 leads to∫ 1

0

P
(α,β)
i (x) P

(α,β)
j (x) P

(α,β)
k (x) w(α,β)(x) dx =∫ 1

0

P
(α,β)
i (x) Q

(α,β)
j+k (x) w(α,β)(x) dx

=

j+k∑
n=0

λ(j,k)
n

∫ 1

0

xn P
(α,β)
i (x) w(α,β)(x) dx

=

j+k∑
n=0

i∑
l=0

(−1)i−lΓ(i+ β + 1) Γ(i+ l + α+ β + 1)

Γ(l + β + 1) Γ(i+ α+ β + 1) (i− l)! l! B(n+ l + β + 1, α+ 1),

Thus, desirable result is obtained. �

In performing arithmetic and other operations on the Jacobi bases, we frequently
encounter the integration of the vector Φ(x) defined in (2.6) which is called the operational
matrix of the integration. Hence, the matrix relations must be obtained. In this section,
this operational matrix will be derived, then it will be extended to two dimensional case
in next section. To this end, some useful lemmas and theorems are stated.

2.5. Theorem. Let Φ(x) be shifted Jacobi vector in (2.6). Then∫ x

0

Φ(t) dt ' P Φ(x),

where P is the (N + 1)× (N + 1) operational matrix of the integration and is defined by:

P =


Ω(0, 0) Ω(0, 1) . . . Ω(0, N)
Ω(1, 0) Ω(1, 1) . . . Ω(1, N)

...
...

. . .
...

Ω(N, 0) Ω(N, 1) . . . Ω(N,N)

 ,
where

(2.9) Ω(i, j) =

i∑
l=0

ωijl, i, j = 0, 1, ..., N,
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and ωijl are given by

ωijl =
(−1)i−l Γ(i+ β + 1) Γ(i+ l + α+ β + 1)

Γ(l + β + 1) Γ(i+ α+ β + 1) (l + 1)! (i− l)!

×
j∑

k=0

(−1)j−k Γ(j + k + α+ β + 1) Γ(j + β + 1) Γ(k + l + β + 2) Γ(α+ 1)

θj Γ(k + β + 1) Γ(j + α+ β + 1) Γ(k + l + α+ β + 3) k! (j − k)!
,

i, j = 0, 1, ..., N, l = 0, 1, ..., i.

Proof. Integrating the analytical form of P (α,β)
i (x), i.e. (2.3), from 0 to x leads to

(2.10)
∫ x

0

P
(α,β)
i (t) dt =

i∑
l=0

(−1)i−l Γ(i+ β + 1) Γ(i+ l + α+ β + 1) xl+1

Γ(l + β + 1) Γ(i+ α+ β + 1) (l + 1)! (i− l)! .

Now, one can approximate xl+1 in terms of shifted Jacobi polynomials as

xl+1 =

N∑
k=0

al,j P
(α,β)
j (x),

where

al,j =
1

θj

∫ 1

0

xl+1 P
(α,β)
j (x) w(α,β)(x) dx.

But according to Lemma 2.2 one has,∫ 1

0

xl+1 P
(α,β)
j (x) w(α,β)(x) dx =

j∑
k=0

(−1)(j−k) Γ(j + k + α+ β + 1) Γ(j + β + 1) Γ(k + l + β + 2) Γ(α+ 1)

Γ(k + β + 1) Γ(j + α+ β + 1) Γ(k + l + α+ β + 3) k! (j − k)!
.

Therefore, (2.10) will be as follows:

(2.11)

∫ x

0

P
(α,β)
i (t) dt =

N∑
j=0

{ i∑
l=0

(−1)i−l Γ(i+ β + 1) Γ(i+ l + α+ β + 1)

Γ(l + β + 1) Γ(i+ α+ β + 1) (l + 1)! (i− l)!

×
j∑

k=0

(−1)j−k Γ(j + k + α+ β + 1) Γ(j + β + 1) Γ(k + l + β + 2)

θj Γ(k + β + 1) Γ(j + α+ β + 1) Γ(k + l + α+ β + 3) (j − k)! (k)!

}
× P

(α,β)
j (x)

=

N∑
j=0

Ω(i, j) P
(α,β)
j (x).

where Ω(i, j) are given in (2.9). Accordingly, rewriting (2.11) as a vector form gives∫ x

0

P
(α,β)
i (t) dt = [Ω(i, 0),Ω(i, 1), ...,Ω(i,N)] Φ(x), i = 0, 1, .., N.

This leads to the desired result. �

3. Two variables Jacobi polynomials and their operational matri-
ces
Now in this section, two variables Jacobi polynomials can be defined by means of one

variable Jacobi polynomials as follows:
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3.1. Definition. Let {P (α,β)
n (x)}∞n=0 be the sequence of one variable shifted Jacobi

polynomials on D = [0, 1]. Two variables Jacobi polynomials, {P (α,β)
m,n (x, y)}∞m,n=0 are

defined on D2 = [0, 1]× [0, 1] as:

(3.1) P (α,β)
m,n (x, y) = P (α,β)

m (x) P (α,β)
n (y), (x, y) ∈ D2.

The family {P (α,β)
m,n (x, y)}∞m,n=0 is orthogonal with weighted function

w(α,β)(x, y) = w(α,β)(x) w(α,β)(y) on D2 and forms a basis for L2(D2).

3.2. Theorem. The basis {P (α,β)
m,n (x, y)}∞m,n=0 is orthogonal on D2.

Proof. One has∫ 1

0

∫ 1

0

P (α,β)
m,n (x, y) P

(α,β)
k,l (x, y) w(α,β)(x, y) dxdy =∫ 1

0

P (α,β)
m (x)P

(α,β)
k (x)w(α,β)(x) dx

×
∫ 1

0

P (α,β)
n (y)P

(α,β)
l (y) w(α,β)(y) dy

=

{
θm θn, (m,n) = (k, l),
0, (m,n) 6= (k, l) or m 6= k or n 6= l.

�

Similar to one variable case, a two variables continuous function u(x, y) defined over
D2 may be expanded by the two variables Jacobi polynomials as:

(3.2) u(x, y) =

∞∑
i=0

∞∑
j=0

Cij P
(α,β)
i,j (x, y),

where the Jacobi coefficients, Cij , are obtained as:

Cij =
1

θiθj

∫ 1

0

∫ 1

0

P
(α,β)
i,j (x, y) u(x, y) w(α,β)(x, y) dxdy.

If the infinite series in (3.2) is truncated up to their (N + 1)−terms in terms of both two
variables x and y then it can be written as:

(3.3) u(x, y) ' uN (x, y) =

N∑
i=0

N∑
j=0

Cij P
(α,β)
i,j (x, y) = ΦT (x, y) C,

where C and Φ(x, y) are Jacobi coefficients and Jacobi polynomials vectors, respectively:

(3.4)

C = [C00, C01, ..., C0N , C10, ..., C1N , ..., CN1, ..., CNN ]T ,

Φ(x, y) = [P
(α,β)
0,0 (x, y), P

(α,β)
0,1 (x, y), ..., P

(α,β)
0,N (x, y), P

(α,β)
1,0 (x, y),

..., P
(α,β)
1,N (x, y), ..., P

(α,β)
N,0 (x, y), ..., P

(α,β)
N,N (x, y)]T .

A function of four variables, k(x, y, t, s), on D4 may be approximated based on Jacobi
operational matrix as:

k(x, y, t, s) ' ΦT (x, y) K Φ(t, s),

where Φ(x, y) is two variables Jacobi vector defined by (3.4) andK is a (N+1)2×(N+1)2

known matrix. Before proceeding, let us represent the partial series (3.3) as following
form:

(3.5) SN (x, y) =

M∑
i=0

di Q
(α,β)
i (x, y),
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where

di = Crs, Qi(x, y) = P (α,β)
r,s (x, y),

r = b i

N + 1
c, s = i− r(N + 1), M = (N + 1)2 − 1.

Hence, one has∫ 1

0

∫ 1

0

Q
(α,β)
k (x, y) Q

(α,β)
l (x, y) w(α,β)(x, y) dxdy =∫ 1

0

P
(α,β)

b k
N+1

c
(x) P

(α,β)

b l
N+1

c
(x) w(α,β)(x) dx

×
∫ 1

0

P
(α,β)

k−b k
N+1

c(N+1)
(y) P

(α,β)

l−b l
N+1

c(N+1)
(y) w(α,β)(y) dy

= θb k
N+1

c θk−b k
N+1

c(N+1) = θr θs, r = b k

N + 1
c, s = k − r(N + 1).

3.3. Remark. The relation (3.5) can be rewritten as:

(3.6) SN (x, y) =

M∑
i=0

ωi R
(α,β)
i (x, y),

where

ωi = di
√
θrθs, R

(α,β)
i (x, y) =

Q
(α,β)
i (x, y)√
θrθs

, r = b i

N + 1
c, s = i− r(N + 1).

This shows the sequence {R(α,β)
i (x, y)}Mi=0 is orthonormal. That is∫ 1

0

∫ 1

0

R
(α,β)
k (x, y) R

(α,β)
l (x, y) w(α,β)(x, y) dxdy =

{
1, k = l,
0, otherwise

Now, the two dimensional operational matrices of integration in x and y−direction
are defined by following theorem:

3.4. Theorem. If P is the operational matrix in one dimensional case then the opera-
tional matrices of integration in x and y−direction are defined as follows.

a)

∫ x

0

Φ(t, y) dt ' Px Φ(x, y) = (P ⊗ I) Φ(x, y),

b)

∫ y

0

Φ(x, s) ds ' Py Φ(x, y) = (I ⊗ P ) Φ(x, y),

where Px and Py are (N + 1)2 × (N + 1)2 operational matrices of integration in the
directions x and y, respectively, I is (N + 1)× (N + 1) identity matrix and ⊗ denotes the
Kronecker product and is defined for two arbitrary matrices A and B as A⊗B = (aijB).

Proof. a) Suppose rj be jth row of matrix P . One has∫ x

0

P
(α,β)
j (t) dt = rTj Φ(x).

Also, noting the definition of the vector Φ(x, y) one has

(3.7)
Φ(x, y) = [P

(α,β)
0 (x)P

(α,β)
0 (y), ..., P

(α,β)
0 (x)P

(α,β)
N (y),

..., P
(α,β)
N (x)P

(α,β)
0 (y), ..., P

(α,β)
N (x)P

(α,β)
N (y)]T .
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Integrating of (3.7) from 0 to x yields∫ x

0

Φ(t, y)dt = [P
(α,β)
0 (y)

∫ x

0

P
(α,β)
0 (t)dt, ..., P

(α,β)
N (y)

∫ x

0

P
(α,β)
0 (t)dt,

..., P
(α,β)
N (y)

∫ x

0

P
(α,β)
N (t)dt]T

= [r0.Φ(x) P
(α,β)
0 (y), ..., r0.Φ(x) P

(α,β)
N (y), ..., rN .Φ(x) P

(α,β)
0 (y),

..., rN .Φ(x) P
(α,β)
N (y)]T

= [r0 [P
(α,β)
0 (x) P

(α,β)
0 (y), ..., P

(α,β)
N (x) P

(α,β)
0 (y)],

..., rN [P
(α,β)
0 (x) P

(α,β)
N (y), ..., P

(α,β)
N (x) P

(α,β)
N (y)]]T

=



P00 0 . . . 0 P01 0 . . . 0 . . . P0N 0 . . . 0
0 P00 . . . 0 0 P01 . . . 0 . . . 0 P0N . . . 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . . 0
0 0 . . . P00 0 0 . . . P01 . . . 0 0 . . . P0N

...
...

...
PN0 0 . . . 0 PN1 0 . . . 0 . . . PNN 0 . . . 0

0 PN0 . . . 0 0 PN1 . . . 0 . . . 0 PNN . . . 0
...

...
. . .

...
...

...
. . .

...
. . .

...
...

. . .
...

0 0 . . . PN0 0 0 . . . PN1 . . . 0 0 . . . PNN



×



P
(α,β)
0 (x) P

(α,β)
0 (y)

P
(α,β)
0 (x) P

(α,β)
1 (y)

...
P

(α,β)
0 (x) P

(α,β)
N (y)

...
P

(α,β)
N (x) P

(α,β)
0 (y)

P
(α,β)
N (x) P

(α,β)
1 (y)

...
P

(α,β)
N (x) P

(α,β)
N (y)



=


P00I P01I . . . P0NI
P10I P11I . . . P1NI
...

...
. . .

...
PN0I PN1I . . . PNNI



P

(α,β)
0 (x) Φ(y)

P
(α,β)
1 (x) Φ(y)

...
P

(α,β)
N (x) Φ(y)


= (P ⊗ I)Φ(x, y).

Where Pij denotes (i, j)−th entry of the matrix P . The case (b) is proven similarly. �

The following property of the product of two vectors Φ(x, y) and ΦT (x, y) will also be
used.

(3.8) Φ(x, y) ΦT (x, y) C ' C̃ Φ(x, y),

where C and C̃ are a (N + 1)2 × 1 vector and a (N + 1)2 × (N + 1)2 operational matrix
of product, respectively.



321

3.5. Theorem. The entries of the matrix C̃, in (3.8), are computed as:

C̃m(N+1)+n,k(N+1)+l =
1

θkθl

N∑
r=0

N∑
s=0

Crs qmrk qnsl, m, n, k, l = 0, 1, ..., N.

Proof. The left side of equality (3.8) is as follows:

Φ(x, y) ΦT (x, y) C =


∑N
r=0

∑N
s=0 Crs P

(α,β)
0,0 (x, y) P

(α,β)
r,s (x, y)∑N

r=0

∑N
s=0 Crs P

(α,β)
0,1 (x, y) P

(α,β)
r,s (x, y)

...∑N
r=0

∑N
s=0 Crs P

(α,β)
N,N (x, y) P

(α,β)
r,s (x, y)

 .
Consider the (p+ 1)th row of above vector. One puts

(3.9) P
(α,β)
i,j (x, y) P (α,β)

r,s (x, y) =

N∑
k=0

N∑
l=0

ukl P
(α,β)
k,l (x, y),

Multiplying both sides of (3.9) by P
(α,β)
m,n (x, y), m, n = 0, 1, ..., N, and integrating the

result from 0 to 1 yields:∫ 1

0

∫ 1

0

P
(α,β)
i,j (x, y) P (α,β)

r,s (x, y) P (α,β)
m,n (x, y) w(α,β)(x, y) dxdy =

N∑
k=0

N∑
l=0

ukl

∫ 1

0

∫ 1

0

P
(α,β)
k,l (x, y) P (α,β)

m,n (x, y) w(α,β)(x, y) dxdy

= umn θm θn.

Therefore,

umn =
1

θm θn

∫ 1

0

P
(α,β)
i (x) P (α,β)

r (x) P (α,β)
m (x) w(α,β)(x)dx

×
∫ 1

0

P
(α,β)
j (y) P (α,β)

s (y) P (α,β)
n (y) w(α,β)(y) dy.

Now suppose
∫ 1

0
P

(α,β)
i (x) P

(α,β)
r (x) P

(α,β)
m (x) w(α,β)(x) dx = qirm. one gets

umn =
qirm qjsn
θm θn

.

Substituting umn into (3.9) one has:

P
(α,β)
i,j (x, y) P (α,β)

r,s (x, y) =

N∑
k=0

N∑
l=0

qirm qjsn
θm θn

P
(α,β)
k,l (x, y),

Hence each component in the left side of relation (3.8) will be as follows:
N∑
k=0

N∑
l=0

{ N∑
r=0

N∑
s=0

Crs qmrk qnsl
θkθl

}
P

(α,β)
k,l (x, y)

=

N∑
k=0

N∑
l=0

C̃m(N+1)+n,k(N+1)+l P
(α,β)
k,l (x, y),

m, n = 0, 1, .., N.

Thus, the desirable result is obtained. �

The Next theorem presents the general formula approximating the nonlinear term
vr(x, y) us(x, y) which may appear in nonlinear equations.



322

3.6. Theorem. If c and υ are the (N + 1)2 vectors, c̃ and υ̃ are the (N + 1)2 × (N + 1)
operational matrices of the product such that

u(x, y) ' ΦT (x, y) c = cT Φ(x, y), v(x, y) ' ΦT (x, y) υ = υT Φ(x, y),

Φ(x, y) ΦT (x, y) c ' c̃ Φ(x, y)

and Φ(x, y) ΦT (x, y) υ ' υ̃ Φ(x, y), then the following proposition is hold:

vr(x, y) us(x, y) ' υT (υ̃)r−1 B̃s−1 Φ(x, y), Bs−1 = (c̃T )s−1 c,

r, s = 1, 2, ... .

Proof. One has

u2(x, y) ' (ΦT (x, y) c)2 = cT Φ(x, y) ΦT (x, y) c ' cT c̃ Φ(x, y),

So, by use of induction, us(x, y) will be approximated as

us(x, y) ' cT (c̃)s−1 Φ(x, y), s = 1, 2, ... .

To similar way, vr(x, y) is approximated as

vr(x, y) ' υT (υ̃)r−1 Φ(x, y), r = 1, 2, ... .

By using the expressed relations and induction is easily seen,

vr(x, y) us(x, y) ' υT (υ̃)r−1 B̃s−1 Φ(x, y), Bs−1 = (c̃T )s−1 c,

r, s = 1, 2, ... .

�

4. Best approximation and Convergence analysis
In this section, the theorems on existence and uniqueness of best approximation,

convergence analysis and error estimation of the proposed method are provided. For this
reason, first the space PM is considered as follows:

4.1. Definition. The set of all the linear combinations of R(α,β)
0 (x, y), R

(α,β)
1 (x, y),

..., R
(α,β)
M (x, y), which M = (N + 1)2 − 1, is represented by PM . On the other hand,

(4.1) PM = span {R(α,β)
0 (x, y), R

(α,β)
1 (x, y), ..., R

(α,β)
M (x, y)},

where two variables orthonormal polynomials R(α,β)
i (x, y) are introduced by (3.6).

The following lemma is useful to prove the convexity and completeness properties of
space PM .

4.2. Lemma. There is a number η > 0 such that for every choice of scalars α0, α1, ..., αM
one has

‖ α0 R
(α,β)
0 (x, y) + α1 R

(α,β)
1 (x, y) + ...+ αM R

(α,β)
M (x, y) ‖ ≥

η (| α0 | + | α1 | +...+ | αM |).

Proof. See [24]. �

4.3. Theorem. The space PM , defined by (4.1), is convex and complete.
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Proof. Suppose v1(x, y) and v2(x, y) ∈ PM . One has for 0 < λ < 1

λ v1(x, y) + (1− λ) v2(x, y) =

M∑
i=0

(λ ω1
i + (1− λ) ω2

i ) R
(α,β)
i (x, y) ∈ PM .

This shows that PM is convex.
For proving the completeness property, let us consider Cauchy sequence

{wn(x, y)}∞n=0 ∈ PM .

Then each wn(x, y) is a unique representation of the form

wn(x, y) =

M∑
i=0

λ
(n)
i R

(α,β)
i (x, y).

Since {wn(x, y)}∞n=0 is a Cauchy sequence, for every ε > 0 there is a N ′ such that
‖ wm(x, y) − wn(x, y) ‖< ε where m,n > N ′. From this and Lemma 4.2, one has for
η > 0

ε >‖ wm(x, y)− wn(x, y) ‖ = ‖
M∑
i=0

(λ
(m)
i − λ(n)

i ) R
(α,β)
i (x, y) ‖ ≥ η

M∑
i=0

| λ(m)
i − λ(n)

i | .

Division by η > 0 gives

| λ(m)
i − λ(n)

i | ≤
M∑
i=0

| λ(m)
i − λ(n)

i | < ε

η
,

This shows that each of the M + 1 sequences {λ(n)
i }

∞
n=0, i = 0, 1, ...,M, is Cauchy in R.

Hence it converges. Let λi denotes the limit. Using this M + 1 limits λ0, λ1, ..., λM , one
defines

w̄(x, y) =

M∑
i=0

λi R
(α,β)
i (x, y).

Clearly, w̄(x, y) ∈ PM . Furthermore,

‖ wn(x, y)− w̄(x, y) ‖ = ‖
M∑
i=0

(λ
(n)
i − λi) R(α,β)

i (x, y) ‖

≤
M∑
i=0

| λ(n)
i − λi | ‖ R(α,β)

i (x, y) ‖ .

On the right, λ(n)
i → λi. Hence ‖ wn(x, y) − w̄(x, y) ‖→ 0, that is, wn(x, y) → w̄(x, y).

This shows that {wn(x, y)}∞n=0 is convergent in PM , and the completeness of PM is
proven. �

4.4. Theorem. For every given continuous function u(x, y) there exists a unique uM (x, y) ∈
PM such that

δ = inf
ũ∈PM

‖ u(x, y)− ũ(x, y) ‖ = ‖ u(x, y)− uM (x, y) ‖ .

Proof. Existence. By the definition of an infimum, there is a sequence {wn(x, y)}∞n=0 in
PM such that δn → δ where δn = ‖ u(x, y)−wn(x, y) ‖. We show that {wn(x, y)}∞n=0 is
Cauchy. Writing vn(x, y) = u(x, y)− wn(x, y), one has ‖ vn(x, y) ‖ = δn and

‖ vm(x, y) + vn(x, y) ‖ = 2 ‖ 1

2
(wm(x, y) + wn(x, y))− u(x, y) ‖ ≥ 2 δ,
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because PM is convex, so that 1
2
(wm(x, y) + wn(x, y)) ∈ PM . Furthermore, one has

vm(x, y)− vn(x, y) = wn(x, y)− wm(x, y). Hence by the parallelogram equality

‖ wn(x, y)− wm(x, y) ‖2 =‖ vm(x, y)− vn(x, y) ‖2

= − ‖ vm(x, y) + vn(x, y) ‖2

+ 2 (‖ vm(x, y) ‖2 + ‖ vn(x, y) ‖2)

≤ −(2 δ)2 + 2(δ2
m + δ2

n) < ε2.

This implies that {wn(x, y)}∞n=0 is Cauchy. Since PM is complete, {wn(x, y)}∞n=0

converges, say, wn(x, y) → w̄(x, y) ∈ PM . Since w̄(x, y) ∈ PM , one has ‖ u(x, y) −
w̄(x, y) ‖≥ δ. Also,

‖ u(x, y)− w̄(x, y) ‖ ≤‖ u(x, y)− wn(x, y) ‖ + ‖ wn(x, y)− w̄(x, y) ‖
= δn+ ‖ wn(x, y)− w̄(x, y) ‖→ δ.

This shows that ‖ u(x, y)− w̄(x, y) ‖= δ.
Uniqueness. Let us assume that w̄(x, y) ∈ PM and w0(x, y) ∈ PM both satisfy

‖ u(x, y)− w̄(x, y) ‖= δ, ‖ u(x, y)− w0(x, y) ‖= δ.

By the parallelogram equality,

‖ w̄(x, y)− w0(x, y) ‖2 =‖ (w̄(x, y)− u(x, y))− (w0(x, y)− u(x, y)) ‖2

= 2 ‖ w̄(x, y)− u(x, y) ‖2 +2 ‖ w0(x, y)− u(x, y) ‖2

− ‖ w̄(x, y)− u(x, y)) + (w0(x, y)− u(x, y)) ‖2

= 4 δ2 − 4 ‖ 1

2
(w̄(x, y) + w0(x, y))− u(x, y) ‖2 ≤ 0,

because 1
2
(w̄(x, y) + w0(x, y)) ∈ PM . So that w̄(x, y) = w0(x, y).

Orthogonality. We assume there be a 0 6= w1(x, y) ∈ PM such that

(z(x, y), w1(x, y)) = γ 6= 0

where z(x, y) = u(x, y) − w̄(x, y) and (., .) denotes the inner product. Furthermore, for
any scalar η,

‖ z(x, y)− η w1(x, y) ‖2 = (z(x, y)− η w1(x, y), z(x, y)− η w1(x, y))

=‖ z(x, y) ‖2 −η̄ γ − η (γ̄ − η̄ ‖ w1(x, y) ‖2),

Choosing η̄ = γ̄
‖w1(x,y)‖2 yields

‖ z(x, y)− η w1(x, y) ‖2=‖ z(x, y) ‖2 − γ̄

‖ w1(x, y) ‖2 = δ2 − γ̄

‖ w1(x, y) ‖2 ≥ δ
2,

But this is impossible because one has ‖ z(x, y)− η w1(x, y) ‖ ≥ δ by the definition of δ.
Hence the assumption can not be hold. So (z(x, y), ũ(x, y)) = 0, ∀ ũ(x, y) ∈ PM .

Now it is shown that w̄(x, y) = uM (x, y). It was proven that w̄(x, y) is the best
approximation for u(x, y). So,

∀j, j = 0, 1, ..,M, (u(x, y)− w̄(x, y), Rj(x, y)) = 0,

where two variables polynomials R(α,β)
i (x, y) are introduced by (3.6). One has from this

point,
(w̄(x, y)− uM (x, y), Rj(x, y)) = (u(x, y)− (u(x, y)− w̄(x, y))− uM (x, y), Rj(x, y))

= (u(x, y), Rj(x, y))− (u(x, y)− w̄(x, y), Rj(x, y))

− (uM (x, y), Rj(x, y))

= ωj − ωj = 0, j = 0, 1, ...,M,
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Therefore w̄(x, y) − uM (x, y) = 0. This shows that uM (x, y) = w̄(x, y) and proof is
completed. �

Two following theorems state the decaying of the Jacobi coefficients and the conver-
gence of the best approximation.

4.5. Theorem. The Jacobi coefficients ωi, introduced by (3.6), decay when the number
of the terms of the partial sum of the series solution, N , increases.

Proof. Employing the ωi and the properties of the orthogonality of Ri(x, y), we have∫ 1

0

∫ 1

0

SM (x, y) u(x, y) w(α,β)(x, y) dxdy =

M∑
i=0

ωi

∫ 1

0

∫ 1

0

Ri(x, y) u(x, y) w(α,β)(x, y) dxdy

=

M∑
i=0

ω2
i .

If u2(x, y) w(α,β)(x, y) as well as u(x, y) w(α,β)(x, y) is integrable, then∫ 1

0

∫ 1

0

[u(x, y)−SM (x, y)]2 w(α,β)(x, y) dxdy =∫ 1

0

∫ 1

0

u2(x, y) w(α,β)(x, y) dxdy

− 2

∫ 1

0

∫ 1

0

u(x, y) SM (x, y) w(α,β)(x, y) dxdy

+

∫ 1

0

∫ 1

0

S2
M (x, y) w(α,β)(x, y) dxdy

=

∫ 1

0

∫ 1

0

u2(x, y) w(α,β)(x, y) dxdy −
M∑
i=0

ω2
i .

Therefore,

M∑
i=0

ω2
i ≤

∫ 1

0

∫ 1

0

u2(x, y) w(α,β)(x, y) dxdy, ∀N ∈ N,

Consequently
∑∞
i=0 ω

2
i is convergent and limi→∞ ωi = 0. �

Theorem 4.5 states the given function u(x, y) may be approximated using only the
finite numbers of two variables Jacobi polynomials.

4.6. Theorem. The series solution (3.3) converges towards u(x, y) in (3.2).

Proof. Consider the relation (3.6) and define the sequence partial sums

{SM (x, y)}∞M=0

as follows,

SM (x, y) =

M∑
i=0

ωi Ri(x, y).
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Let suppose that the SM (x, y) and SL(x, y) are partial sums with M > L. It is going to
prove that {SM (x, y)}∞M=0 is a Cauchy sequence in PM . For this purpose, it is worked
out as follows:

‖
M∑

i=L+1

ωi Ri(x, y) ‖2 = (

M∑
i=L+1

ωi Ri(x, y),

M∑
j=L+1

ωj Rj(x, y))

=

M∑
i=L+1

M∑
j=L+1

ωi ω̄j(Ri(x, y), Rj(x, y))

=

M∑
i=L+1

| ωi |2 .

That is ‖ SM (x, y) − SL(x, y) ‖2=
∑M
i=L+1 | ωi |

2. From Bessel inequality
∑∞
i=0 | ωi |

2

is convergent and hence ‖ SM (x, y) − SL(x, y) ‖2 ≤ ε2. This shows {SM (x, y)}∞M=0 is a
Cauchy sequence. Since PM is complete one has SM (x, y) → S(x, y) ∈ PM . We show
S(x, y) = u(x, y):

(S(x, y)− u(x, y), Rj(x, y)) = (S(x, y), Rj(x, y))− (u(x, y), Rj(x, y))

= ( lim
M→∞

SM (x, y), Rj(x, y))− (u(x, y), Rj(x, y))

= lim
M→∞

(SM (x, y), Rj(x, y))− (u(x, y), Rj(x, y))

= ωj − ωj = 0,

⇒ S(x, y)− u(x, y) = 0, j = 0, 1, ...,M.

Hence,

S(x, y) =

∞∑
i=0

ωi Ri(x, y) =

∞∑
i=0

∞∑
j=0

Cij P
(α,β)
i (x) P

(α,β)
j (y) = u(x, y).

�

Whenever the solution of a problem is not known, specially in nonlinear phenomena,
an error estimator is needed as an essential component of the computational algorithm.
To this end, an error estimator for the proposed method is presented in this section.

For simplicity, discussed equations are written in the operator form

(4.2) Du(x, y) = f(x, y)

where D is a integro–partial differential operator. Define the error function as

eN (x, y) = u(x, y)− uN (x, y).

Substituting uN (x, y) into given equations yields

(4.3) DuN (x, y) = f(x, y) +HN (x, y),

where HN (x, y) is a perturbation term. Subtracting (4.3) from (4.2) gives

DeN (x, y) = −HN (x, y).

Now, it can be proceeded by the same way as the basic problem is solved to get the
estimation eN,M (x, y) to the error function eN (x, y). Note the stated approximations are
also substituted in the conditions of the given problem. Subsequently, the conditions of
new problem will be homogeneous.
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5. Numerical results
In this section, four examples are given to certify the efficiency and accuracy of the

proposed method where the maximum absolute and estimate errors are reported for dif-
ferent values of parameters α and β. Also, the absolute and estimate errors are computed
at some arbitrary selected points.

5.1. Example. Consider the following linear Volterra–Fredholm integro–partial differ-
ential equation.

(5.1) uxx(x, y) + sin(xy) u(x, y) = xy sin(xy)− 1

6
y3 +

∫ y

0

∫ 1

0

ts ut(t, s) dtds,

with the following conditions,

(5.2) ux(0, y) = y, u(0, y) = 0.

The exact solution of this problem is u(x, y) = xy. First, let us consider the following
approximation,

(5.3) uxx(x, y) ' ΦT (x, y) C.

Integrating (5.3) with respect to x from 0 to x, one gets the following approximation for
ux(x, y).

(5.4) ux(x, y) ' ΦT (x, y) PTx C + ux(0, y) ' ΦT (x, y) PTx C + ΦT (x, y) V,

where ux(0, y) is approximated by ΦT (x, y) V which V is a (N + 1) × 1 known vec-
tor. Again, integrating (5.4) with respect to x from 0 to x, one obtains the following
approximation for u(x, y),

(5.5) u(x, y) ' ΦT (x, y) (PTx )2 C + ΦT (x, y) PTx V.

In order to approximate the integral part in the (5.1), the kernel ts is approximated as
follows:

(5.6) ts ' ΦT (x, y) K Φ(t, s),

where K is a (N + 1)2 × (N + 1)2 known matrix and is determined by inner product.
Now, the integral part in (5.1) is approximated as:

(5.7)

∫ y

0

∫ 1

0

ts ut(t, s) dtds '
∫ y

0

∫ 1

0

ΦT (x, y) K Φ(t, s) {ΦT (t, s) PTx C

+ ΦT (t, s) V } dtds

' ΦT (x, y) K{Ṽ + B̃}Py A,

where Ṽ is operational matrix of product and its entries are determined in terms of the
components of the vector V , B̃ is operational matrix of product corresponding to vector
B = PTx C, and A =

∫ 1

0
Φ(t, y) dt. Substituting the approximations (5.3)-(5.7) into (5.1),

leads to the following linear algebraic equation.

(5.8)
ΦT (x, y) C + sin(xy) ΦT (x, y) {(PTx )2 C + PTx V }

− ΦT (x, y) K{Ṽ + B̃}Py A− xy sin(xy) +
1

6
y3 = 0.

Setting N = 3 and using the roots of P (α,β)
4 (x) and P (α,β)

4 (y) in the x and y−directions,
(5.8) is collocated in 16 inner tensor points for different values of parameters α and β.
Hereby, the (5.8) reduces the problem to solve a system of linear algebraic equations and
unknown coefficients are obtained for some values of parameters α and β. Table 1 shows
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the maximum absolute and estimate errors of the approximate solutions for different
values of α and β. Table 2 displays different values of the exact and approximate solutions
in points (x, y) = (0.1i, 0.1i), (i = 1, 2, ..., 10) for α = β = −1/4. As can be seen from
Tables the results of the solutions obtained by Jacobi polynomials method are almost
the same as the results of the exact solutions.

Table 1. Maximum absolute and estimate errors of Example 5.1 for different values α and β
(α, β) ErrorAbs ErrorEst (α, β) ErrorAbs ErrorEst

(0, 0) 5.2715× 10−21 4.7132× 10−21 ( 1
4
, 1
4

) 4.9562× 10−20 3.8921× 10−21

(1, 1) 2.4802× 10−20 2.2000× 10−20 (− 1
4
,− 1

4
) 5.0940× 10−19 2.2476× 10−19

(2, 2) 5.3375× 10−20 3.8880× 10−21 ( 3
4
, 3
4

) 9.8549× 10−19 4.8000× 10−19

( 1
2
, 1
2

) 1.5140× 10−21 1.5829× 10−21 ( 1
10
, 1
10

) 1.3500× 10−19 3.8930× 10−21

Table 2. Maximum absolute and estimate errors of Example 5.1 for various values of α = β = − 1
4

(xi, yi) Exact value Approximate value ErrorAbs ErrorEst

(0.1, 0.1) 0.01 0.0099999999999999999918 8.20× 10−21 1.6649× 10−21

(0.2, 0.2 0.04 0.040000000000000000004 4.00× 10−21 4.7592× 10−21

(0.3, 0.3) 0.09 0.090000000000000000008 8.00× 10−21 6.7477× 10−21

(0.4, 0.4) 0.16 0.16000000000000000000 8.00× 10−21 5.2854× 10−21

(0.5, 0.5) 0.25 0.25000000000000000001 1.00× 10−20 61.9554× 10−21

(0.6, 0.6) 0.36 0.35999999999999999999 1.00× 10−20 1.7448× 10−20

(0.7, 0.7) 0.49 0.49000000000000000000 0.00 04.3963× 10−20

(0.8, 0.8) 0.64 0.64000000000000000000 0.00 8.4713× 10−20

(0.9, 0.9) 0.84 0.81000000000000000002 2.00× 10−20 1.4349× 10−19

(1, 1) 1.00 1.0000000000000000001 1.00× 10−19 2.2476× 10−19

5.2. Example. Consider the following linear Volterra integro–partial differential equa-
tion.

(5.9) ux(x, y) + uy(x, y) = −1 + exp(x) + exp(y) + exp(x+ y) +

∫ x

0

∫ y

0

u(t, s) ds dt,

with the conditions u(x, 0) = exp(x) and u(0, y) = exp(y). The exact solution of this
problem is u(x, y) = exp(x+ y). Let us consider the following approximation,

(5.10) uxy(x, y) ' ΦT (x, y) C.

Integrating (5.10) with respect to y from 0 to y, one obtains the following approximation
for ux(x, y).

(5.11) ux(x, y) ' ΦT (x, y) PTy C + ux(x, 0) ' ΦT (x, y) PTy C + ΦT (x, y) V1.

Now, integrating (5.10) with respect to x from 0 to x, one gets the following approxima-
tion for uy(x, y) as follows:

(5.12) uy(x, y) ' ΦT (x, y) PTx C + uy(0, y) ' ΦT (x, y) PTx C + ΦT (x, y) V2.

Also, by integrating the relation (5.11) with respect to x from 0 to x an approximation
yields for u(x, y) as follows:

(5.13)
u(x, y) ' ΦT (x, y) PTx PTy C + ΦT (x, y) PTx V1 + u(0, y)

' ΦT (x, y) PTx PTy C + ΦT (x, y) PTx V1 + ΦT (x, y) V1.

The kernel is approximated as follows:

(5.14) 1 ' ΦT (x, y) K Φ(t, s).
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Now, the integral part in (5.9) is approximated as:

(5.15)

∫ x

0

∫ y

0

u(t, s) dtds '
∫ y

0

∫ 1

0

ΦT (x, y) K Φ(t, s) ΦT (x, y)

{
PTx PTy C

+ PTx V1 + V1

}
dsdt

' ΦT (x, y) K Ã Py Px Φ(x, y),

where Ã is operational matrix of product corresponding to vector A = PTx PTy C+PTx V1+
V1. Substituting the approximations (5.11)-(5.15) into (5.9), leads to the following linear
algebraic equation.

(5.16)
ΦT (x, y) PTy C + ΦT (x, y) V1 + ΦT (x, y) PTx C + ΦT (x, y) V2

− ΦT (x, y) K Ã Py Px Φ(x, y) + 1− ex − ey − ex+y = 0.

Setting N = 7 and using the roots of P (α,β)
8 (x) and P (α,β)

8 (y) in the x and y−directions,
(5.16) is collocated in 64 inner tensor points for different values of parameters α and β.
Hereby, the (5.16) reduces the problem to solve a system of linear algebraic equations
and unknown coefficients are obtained for some values of parameters α and β. Table
3 displays the maximum absolute and estimate errors of the approximate solutions for
different values of α and β. Table 4 shows different values of the exact and approximate
solutions in points (x, y) = (0.2i, 0.2i), (i = 1, 2, ..., 5) for α = β = 1 and N = 4, 7, 8. It
can be observed from Table 4 that the errors decrease as N increases. Also,

Table 3. Maximum absolute and estimate errors of Example 5.2 for N = 7 and various values of α and β
(α, β) ErrorAbs ErrorEst

(0, 0) 1.7484× 10−8 8.5474× 10−9

( 1
2
, 1
2

) 3.1164× 10−8 1.4839× 10−8

(1, 1) 4.6983× 10−8 2.0999× 10−8

(− 1
4
,− 1

4
) 8.2454× 10−8 4.8751× 10−8

( 1
4
, 1
4

) 2.4007× 10−8 1.1603× 10−8

Table 4. Comparison of the exact and approximate solutions of Example 5.2 for N = 4, 7, 8 and α = β = 1
(xi, yi) uExact Error(u4) Error(u7) u8(x, y) Error(u8)

(0.2, 0.2) 1.49182469764 2.7289× 10−5 1.6429× 10−9 1.49182469766 2.2390× 10−11

(0.4, 0.4) 2.22554092849 3.3508× 10−5 4.1350× 10−10 2.22554092853 3.5908× 10−11

(0.6, 0.6) 3.32011692274 3.2674× 10−5 3.5768× 10−10 3.32011692270 3.8762× 10−11

(0.8, 0.8) 4.95303242440 5.6798× 10−5 3.0065× 10−9 4.95303242437 2.7025× 10−11

(1, 1) 7.38905609893 5.8038× 10−4 4.6983× 10−8 7.38905609744 1.4893× 10−9

5.3. Example. Consider the following nonlinear system of Fredholm integro–partial
differential equation.

(5.17)
{
u(x, y)− v(x, y) +

∫ 1

0
u(t, y) vt(t, y) dt = f1(x, y),

v(x, y) + 3u(x, y)−
∫ 1

0
ut(t, y) v(t, y) dt = f2(x, y),

where f1(x, y) = x2 cos(y) − y sin(x) − y cos(y) (sin(1) − 2 cos(1)) and f2(x, y) =
y sin(x) + 3 x2 cos(y)− 2 y cos(y) (sin(1)− cos(1)) with boundary conditions u(0, y) =
0 and v(0, y) = 0. The exact solutions of this problem are u(x, y) = x2 cos(y) and
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v(x, y) = y sin(x). The following approximations are used for N = 5,

ux(x, y) ' ΦT (x, y) C1, u(x, y) ' ΦT (x, y) PTx C1 vx(x, y) ' ΦT (x, y) C2,

v(x, y) ' ΦT (x, y) PTx C2 1 ' ΦT (x, y) K Φ(t, y),

u(t, y) vt(t, y) ' AT Φ(t, y) ΦT (t, y) C2 ' AT C̃2 Φ(t, y) = ΦT (t, y) C̃2
T
A,

ut(t, y) v(t, y) ' CT1 Φ(t, y) ΦT (t, y) B ' CT1 B̃ Φ(t, y) = ΦT (t, y) B̃T C1,∫ 1

0

u(t, y) vt(t, y) dt ' Φ(x, y) K E C̃2
T
A,∫ 1

0

ut(t, y) v(t, y) dt ' Φ(x, y) K E B̃T C1,

where A = PTx C1, B = PTx C2, C̃2 and B̃ are the operational matrices of product
corresponding to the vectors C2 and B, and E is the following matrix:

E =

∫ 1

0

Φ(t, y) ΦT (t, y) dt.

Note for approximating the nonlinear terms u(t, y) vt(t, y) and ut(t, y) v(t, y) has been
used the Theorem 3.6. Substituting above approximations into system (5.17), leads to
the following nonlinear system of algebraic equations.

(5.18)

{
ΦT (x, y) PTx C1 − ΦT (x, y) PTx C2 + Φ(x, y) K E C̃2

T
A = f1(x, y),

ΦT (x, y) PTx C2 + 3 ΦT (x, y) PTx C1 − Φ(x, y) K E B̃T C1 = f2(x, y),

Setting N = 5 and using the roots of P (α,β)
6 (x) and P (α,β)

6 (y) in the x and y−directions,
each equation of the system (5.18) is collocated in 36 inner tensor points for different
values of parameters α and β. Hereby, the system (5.18) reduces the problem to solve
a system of nonlinear algebraic equations and 72 unknown coefficients are obtained for
some values of parameters α and β by using Newton iterative method. Table 5 shows
different values of the exact and approximate solutions in points (x, y) = (0.1i, 0.1i), (i =
1, 2, ..., 10) for α = β = 1

2
. Also, in Figure 1 the exact and approximate solutions are

compared for the case α = β = 0. Also, the absolute errors functions obtained by the
proposed method are displayed in Figure 1 for α = β = 0.

Table 5. Comparison of the exact and approximate solutions of Example 5.3 for N = 5 and α = β = 1
2

(xi, yi) uExact u5(x, y) ErrorAbs vExact v5(x, y) ErrorAbs

(0.1, 0.1) 0.00995004 0.00995002 2.0419× 10−8 0.00998334 0.00998326e 7.8601× 10−8

(0.2, 0.2) 0.03920266e 0.03920263 2.6117× 10−8 0.03973387 0.03973376 1.0216× 10−7

(0.3, 0.3) 0.08598028e 0.08598027 1.2031× 10−8 0.08865606 0.08865595 1.14× 10−7

(0.4, 0.4) 0.14736975 0.14736970 5.6500× 10−8 0.15576734 0.15576711 2.2310× 10−7

(0.5, 0.5) 0.21939564 0.21939551 1.2727× 10−7 0.23971277 0.23971243 3.3863× 10−7

(0.6, 0.6) 0.29712082 0.29712075 7.1500× 10−8 0.33878548 0.33878517 3.1259× 10−7

(0.7, 0.7) 0.37477267 0.37477277 9.8920× 10−8 0.45095238 0.45095218 2.0102× 10−7

(0.8, 0.8) 0.44589229 0.445892296 2.2183× 10−9 0.57388487 0.57388456 3.1067× 10−7

(0.9, 0.9) .50350407 0.50350365 4.1437× 10−7 0.70499422 0.70499360 6.1633× 10−7

(1, 1) 0.54030231 0.54030426 1.9550× 10−6 0.84147098 0.84147191 9.2444× 10−7

5.4. Example. Consider the following nonlinear system Volterra integro–partial differ-
ential equation.

(5.19)


uy(x, y) + v(x, y)−

∫ y
0

∫ x
0
t sin(s) (u2(t, s)− v2(t, s)) dtds = f1(x, y),

uy(x, y) + vy(x, y) + u(x, y)−
∫ y

0

∫ x
0
t cos(s) (u(t, s)− vs(t, s)) dtds =

f2(x, y),
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Figure 1. Comparison of the exact and approximate solutions and
their error functions for α = β = 0 in Example 5.3: Plots of (a) u5(x, y),
(b) v5(x, y), (c) error function of u(x, y), (d) error function of v(x, y)

where f1(x, y) = 1
12

(1 + 2 cos3(y) − 3 cos(y)) x4 and f2(x, y) = x (2 cos(y) − sin(y))
with the conditions u(x, 0) = x and v(x, 0) = 0. The exact solutions of this problem are
u(x, y) = x cos(y) and v(x, y) = x sin(y). The following approximations are used for
N = 5,

uy(x, y) ' ΦT (x, y) C1, vy(x, y) ' ΦT (x, y) C2,

u(x, y) ' ΦT (x, y) PTy C1 + u(x, 0) ' ΦT (x, y) PTy C1 + ΦT (x, y) V,

v(x, y) ' ΦT (x, y) PTy C2, t sin(s) ' ΦT (x, y) K1 ΦT (t, s),

t cos(s) ' ΦT (x, y) K2 ΦT (t, s),

u2(x, y) ' AT1 Φ(x, y) ΦT (x, y) A1 ' AT1 Ã1 Φ(x, y) = ΦT (x, y) B1,

v2(x, y) ' AT2 Φ(x, y) ΦT (x, y) A2 ' AT2 Ã2 Φ(x, y) = ΦT (x, y) B2,∫ y

0

∫ x

0

t sin(s) (u2(t, s)− v2(t, s)) dtds ' ΦT (x, y) K1 (B̃1 − B̃2) Px Py Φ(x, y),∫ y

0

∫ x

0

t cos(s) (u(t, s)− vs(t, s)) dtds ' ΦT (x, y) K2 (Ã1 − C̃2) Px Py Φ(x, y),
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Figure 2. Comparison of the exact and approximate solutions and
their error functions for α = β = 0 in Example 5.4: Plots of (a) u5(x, y),
(b) v5(x, y), (c) error function of u(x, y), (d) error function of v(x, y)

where K1 and K2 are known matrices, A1 = PTy C1 + V, A2 = PTy C2, B1 = AT1 Ã1

and B2 = AT2 Ã2. Substituting above approximations into system (5.19), leads to the
following nonlinear system of the algebraic equations.

(5.20)


ΦT (x, y) C1 + ΦT (x, y) PTy C2 − ΦT (x, y) K1 (B̃1 − B̃2)
Px Py Φ(x, y) = f1(x, y),

ΦT (x, y) C1 + ΦT (x, y) C2 + ΦT (x, y) (PTy C1 + V )− ΦT (x, y) PTy C2

−ΦT (x, y) K2 (Ã1 − C̃2) Px Py Φ(x, y) = f2(x, y).

Setting N = 5 and using the roots of P (α,β)
6 (x) and P (α,β)

6 (y) in the x and y−directions,
each equation of the system (5.20) is collocated in 36 inner tensor points for different
values of parameters α and β. Hereby, the system (5.20) reduces the problem to solve
a system of nonlinear algebraic equations and 72 unknown coefficients are obtained for
α = β = 0 by using Newton iterative method. In Figure 2 the exact and approximate
solutions are compared for the case α = β = 0 and the absolute and estimate errors
functions obtained by the proposed method are also displayed in Figure 2 for α = β = 0.
The exact and approximate solutions and their error functions are seen in Figure 3 for
various values of y = 0.2, 0.4, 0.5, 0.7, 0.9.
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Figure 3. (a) Comparison of the u(x, y) and u6(x, y), (b) Com-
parison of the v(x, y) and v6(x, y), (c) Plots of absolute error func-
tion u(x, y), (d) Plots of absolute error function v(x, y) for y =
0.2, 0.4, 0.5, 0.7, 0.9 of Example 5.4.

6. Conclusion
In this paper, a computational method based on the generalized collocation method

was presented for solving some of linear and nonlinear integro-partial differential equa-
tions in terms of two variable Jacobi polynomials, by converting them to a linear or
nonlinear system of algebraic equations. The illustrative examples with the satisfactory
results were achieved to demonstrate the application of this method. The results indicate
the proposed approach can be regarded as the simple approach and those are applica-
ble to the numerical solution of these type of equations. It is predicted that the Jacobi
collocation method will be a powerful tools for investigating approximate solutions and
even analytic to linear and nonlinear functional equations. For numerical purposes the
computer programmes have been written in Maple 13.

Acknowledgment
The authors are deeply grateful to the referee for his careful reading and helpful

suggestions on the paper which have improved the paper.



334

References
[1] Bhrawy, A. H. An efficient Jacobi pseudospectral approximation for nonlinear complex gen-

eralized Zakharov system, Appl. Math. Comput. 247, 30–46, 2014.
[2] Bhrawy, A. H., Abdelkawy, M. A., Zaky, M. A., and Baleanu, D. Numerical simulation

of time variable fractional order mobile-immobile advection-dispersion model, Rom. Rep.
Phys. 67 (3), 773–791, 2016.

[3] Bhrawy, A. H., Alofi, A. S., and Ezz–Eldien, S. S. A quadrature tau method for fractional
differential equations with variable coefficients, Appl. Math. Lett. 24, 2146–2152, 2011.

[4] Bhrawy, A. H.,Doha, E. H., Baleanu, D., and Ezz–Eldien, S. S. A spectral tau algorithm
based on Jacobi operational matrix for numerical solution of time fractional diffusion–wave
equations, J. Comput. Phys. 293, Issue C, 142–156, 2015.

[5] Bhrawy, A. H. and Zaky, M. A. A method based on the Jacobi tau approximation for solving
multi–term time–space fractional partial differential equations, J. Comput. Phys. 281, 876–
895, 2015.

[6] Bhrawy, A. H., Zaky, M. A., and Baleanu, D. New Numerical Approximations for Space–
Time Fractional Burgers’ Equations via a Legendre Spectral–Collocation Method, Rom. Rep.
Phys. 67 (2), 340–349, 2015.

[7] Borhanifar, A. and Abazari, R. Exact solutions for nonlinear Schrödinger equations by
differential transformation method, App. Math. Computing. 35 (1), 37–51, 2011.

[8] Borhanifar, A., Jafari, H., and Karimi, S. A. New solitary wave solutions for the bad boussi-
nesq and good boussinesq equations, Numer. Meth. part. Diff. Equ. 25, 1231–1237, 2009.

[9] Borhanifar, A. and Kabir, M. M. New periodic and soliton solutions by application of appli-
cation of exp–function method for nonlinear evolution equation, Comput. Appl. Math. 229,
158–167, 2009.

[10] Borhanifar, A., Kabir, M. M., and Vahdat, M. New periodic and soliton wave solutions for
the generalized zakharov system and (2 + 1)–dimensional nizhnik-novikov-veselov system,
Chaos. Solit. Fract. 42, 1646–1654, 2009.

[11] Borhanifar, A. and Sadri, Kh. A new operational approach for numerical solution of gener-
alized functional integro–differential equations, J. Comput. Appl. Math. 279, 80–96, 2015.

[12] Borhanifar, A. and Sadri, Kh. Numerical solution for systems of two dimensional integral
equations by using Jacobi operational collocation method, Sohag. J. Math. 1, 15–26, 2014.

[13] Borhanifar, A. and zamiri, A. Application of (G
′

G
)−expansion method for the Zhiber–Shabat

equation and other related equations, Math. Comput. Model. 54, 2109–2116, 2011.
[14] Doha, E. H., Abd-Elhameed, W. M., and Youssri, Y. H. Efficient spectral–Petrov–Galerkin

methods for the integrated forms of third–and fifth–order elliptic differential equations using
general parameters generalized Jacobi polynomials, Appl. Math. Comput. 218, 7727–7740,
2012.

[15] Doha, E. H. and Bhrawy, A. H. An efficient direct solver for multi dimensional elliptic
Robin boundary value problems using a Legendre spectral–Galerkin method, Comput. Math.
Appl. 64 (4), 558– 571, 2012.

[16] Doha, E. H., Bhrawy, A. H., Abdelkawy, M. A., and Van Gorder, R. A. Jacobi–Gauss–
Lobatto collocation method for the numerical solution of 1 + 1 nonlinear Schrödinger equa-
tions, J. Comput. Phys. 261, 244–255, 2014.

[17] Doha, E. H., Bhrawy, A. H., and Ezz–Eldien, S. S. A new Jacobi operational matrix: An
application for solving fractional differential equations, Appl. Math. Model., 36 (10), 4931–
4943, 2012.

[18] Doha, E. H., Bhrawy, A. H., and Ezz-Eldien, S. S. Efficient Chebyshev spectral methods for
solving multi–term fractional orders differential equations, Appl. Math. Model. 35, 5662–
5672, 2011.

[19] Doha, E. H., Bhrawy, A. H., and Hafez, R. M. A Jacobi–Jacobi dual–Petrov–Galerkin method
for third–and fifth–order differential equations, Math. Com. Model. 2011; 53, 1820–1832,
2011.

[20] Doha, E. H., Bhrawy, A. H., and Hafez, R. M. On Shifted Jacobi Spectral Method For High–
Order Multi–Point Boundary Value Problems, Commun. Nonlin. Sci Numer. Simulat. 17
(10), 3802–3810, 2012.



335

[21] Guezane-Lakoud, A., Bendjazia, N., and Khaldi, R. Galerkin method applied to telegraph
integro-differential equation with a weighted integral condition, Bound. Val. Prob. 102, 1–12,
2013.

[22] Hosseini, S. M. and Shahmorad, S. Numerical solution of a class of integro–differential
equations by the Tau method with an error estimation, Appl. Math. Comput. 136, 559–570,
2003.

[23] Karimi Vanani, S. and Aminataei, A. Tau approximate solution of fractional partial differ-
ential equations, Comput. Math. Appl. 62, 1075–1083, 2011.

[24] Kreyszig, E. Introduction Functional Analysis with Applications (USA: Wiley, 1978).
[25] Luo, M., Xu, D., Li, L., and Yang, X. Quasi wavelet based on numerical method for Volterra

integro–differential equations on unbounded spatial domains, J. Appl. Math. Comput. 227,
509–517, 2014.

[26] Ma, J. Finite element methods for partial Volterra integro–differential equations on two–
dimensional unbounded spatial domains, Appl. Math. Comput. 186, 598–609, 2007.

[27] Szegö, G. Orthogonal Polynomials (American Mathematical Society, Providence, Rhode
Island, 1939).

[28] Tari, A., Rahimi, M. Y., Shahmorad, S., and Talati, F. Development of the Tau Method for
the Numerical Solution of Two–dimensional Linear Volterra Integro-differential Equations,
Compu. Meth. Appl. Math. 9, 421–435, 2009.

[29] Tari, A. and Shahmorad, S. Differential transform method for the system of two dimensional
nonlinear Volterra integro–differential equations, J. Comput. Math. Appl. 61, 2621–2629,
2011.





Hacettepe Journal of Mathematics and Statistics
Volume 45 (2) (2016), 337 – 342

On conditions for univalence of some integral
operators

Daniel Breaz∗ and Virgil Pescar†

Abstract
In this paper, we obtain new univalence conditions for the integral
operators F[|δ|](z) and G[|δ|](z) of analytic functions defined in the open
unit disk.
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1. Introduction

Let A denote the class of functions of the form f(z) = z+a2z
2+ ... which are analytic

in the open unit disc U = {z : |z| < 1}. Further, by S we shall denote the class of all
functions in A which are univalent in U.

Pescar [7], has obtained the following univalence criteria

1.1 Theorem. [7]Let γ ∈ C, f ∈ S, f(z) = z + a2z
2 + ....

If ∣∣∣∣zf ′(z)− f(z)zf(z)

∣∣∣∣ ≤ 1, ∀ z ∈ U

and

|γ| ≤ 1

max
|z|≤1

[(
1− |z|2

)
· |z| · |z|+|a2|

1+|a2||z|

] ,
then

Fγ(z) =

z∫
0

(
f(t)

t

)γ
dt
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is in the class S.

1.2 Theorem. [7]Let α, β, γ ∈ C, f ∈ S, f(z) = z + a2z
2 + ....

If ∣∣∣∣zf ′(z)− f(z)zf(z)

∣∣∣∣ ≤ 1, ∀ z ∈ U,

Reβ ≥ Reα > 0

and

|γ| ≤ 1

max
|z|≤1

[
1−|z|2Reα

Reα
· |z| · |z|+|a2|

1+|a2||z|

] ,
then

Gβ,γ(z) =

β z∫
0

tβ−1

(
f(t)

t

)γ
dt

 1
β

is in the class S.

We define the next two integral operators

F[|δ|](z) =

z∫
0

(
f1(t)

t

)α1

· ... ·
(
f[|δ|](t)

t

)α[|δ|]

dt,

where δ ∈ C, |δ| /∈ [0, 1), αi ∈ C, fi ∈ A, i = 1, [|δ|], α1 · ... · α[|δ|] = δ and

G[|γ|](z) =

γ z∫
0

tγ−1

(
f1(t)

t

)α1

· ... ·
(
f[|γ|](t)

t

)α[|γ|]

dt

 1
γ

,

γ ∈ C, |γ| /∈ [0, 1), αi ∈ C, fi ∈ A, i = 1, [|γ|], α1 · ... · α[|γ|] = γ.
In this paper, we obtain new univalence conditions for the integral operators F[|δ|](z)

and G[|δ|](z).

2. Preliminary results

In order to derive our main results, we have to recall here the following lemmas:
2.1 Lemma. [2]If the function f is regular in unit disk U, f(z) = z + a2z

2 + ... and(
1− |z|2

) ∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then the function f is univalent in U.
2.2 Lemma. [5]Let α be a complex number, Reα > 0 and f(z) = z + a2z

2 + ... be a
regular function in U. If

1− |z|2Reα

Reα

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1,

for all z ∈ U, then for any complex number β, Reβ ≥ Reα, the function

Fβ(z) =

β z∫
0

tβ−1f ′(t)dt

 1
β

is in the class S.
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2.3 Lemma. [3]If the function g is regular in U and |g(z)| < 1 in U, then for all
ξ ∈ U, the following inequalities hold∣∣∣∣∣ g(ξ)− g(z)1− g(z)g(ξ)

∣∣∣∣∣ ≤
∣∣∣∣ ξ − z1− zξ

∣∣∣∣ (2.1)
and ∣∣g′(z)∣∣ ≤ 1− |g(z)|2

1− |z|2
,

the equalities hold in the case g(z) = ε z+u
1+uz

, where |ε| = 1 and |u| < 1.
2.4 Remark. [3] For z = 0, from inequality (2.1) we obtain for every ξ ∈ U,∣∣∣∣∣ g(ξ)− g(0)1− g(0)g(ξ)

∣∣∣∣∣ ≤ |ξ|
and hence,

|g(ξ)| ≤ |ξ|+ |g(0)|
1 + g(0)g(ξ)

.

Considering g(0) = a and ξ = z, then

|g(z)| ≤ |z|+ |a|
1 + |a| |z| ,

for all z ∈ U.

3. Main results

3.1 Theorem.Let M > 1, δ ∈ C, |δ| /∈ [0, 1), αi ∈ C, for i = 1, [|δ|] and α1 · ... ·α[|δ|] =

δ. If fi ∈ A, fi(z) = z + ai2z
2 + ..., for i = 1, [|δ|] and∣∣∣∣zf ′i(z)− fi(z)zfi(z)

∣∣∣∣ ≤ 1, ∀i = 1, [|δ|], z ∈ U, (3.1)

|α1|+ ...+
∣∣α[|δ|]

∣∣∣∣α1 · ... · α[|δ|]
∣∣ ≤M, (3.2)

∣∣α1 · ... · α[|δ|]
∣∣ ≤ 1

M max
|z|≤1

[(
1− |z|2

)
· |z| · |z|+|c|

1+|c||z|

] , (3.3)
where

|c| =

∣∣∣α1a
1
2 + ...+ α[|δ|]a

[|δ|]
2

∣∣∣
M
∣∣α1 · ... · α[|δ|]

∣∣ ,

then

F[|δ|](z) =

z∫
0

(
f1(t)

t

)α1

· ... ·
(
f[|δ|](t)

t

)α[|δ|]

dt

is in the class S.
Proof. We have fi ∈ A, for all i = 1, [|δ|] and fi(z)

z
6= 0, for all i = 1, [|δ|].

Let g be the function g(z) =
(
f1(z)
z

)α1

· ... ·
(
f[|δ|](z)

z

)α[|δ|]
, z ∈ U. We have g(0) = 1.

Consider the function

h(z) =
1

M
∣∣α1 · ... · α[|δ|]

∣∣ · F ′′[|δ|](z)F ′[|δ|](z)
, z ∈ U.
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The function h(z) has the form:

h(z) =
1

M
∣∣α1 · ... · α[|δ|]

∣∣ [|δ|]∑
i=1

αi
zf ′i(z)− fi(z)

zfi(z)
.

Also,

h(0) =
1

M
∣∣α1 · ... · α[|δ|]

∣∣ [|δ|]∑
i=1

αia
i
2.

By using the relations (3.1) and (3.2) we obtain that |h(z)| < 1 and

|h(0)| =

∣∣∣α1a
1
2 + ...+ α[|δ|]a

[|δ|]
2

∣∣∣
M
∣∣α1 · ... · α[|δ|]

∣∣ = |c| .

Applying Remark 2.4 for the function h we obtain

1

M
∣∣α1 · ... · α[|δ|]

∣∣ ·
∣∣∣∣∣F
′′
[|δ|](z)

F ′[|δ|](z)

∣∣∣∣∣ ≤ |z|+ |c|
1 + |c| |z| ,∀z ∈ U

and ∣∣∣∣∣(1− |z|2) · z · F
′′
[|δ|](z)

F ′[|δ|](z)

∣∣∣∣∣ ≤M ∣∣α1 · ... · α[|δ|]
∣∣ (1− |z|2)·|z|· |z|+ |c|

1 + |c| |z| , ∀z ∈ U.(3.4)

Consider the function H : [0, 1]→ R defined by

H(x) = (1− x2)x x+ |c|
1 + |c|x ; x = |z| .

We have

H

(
1

2

)
=

3

8
· 1 + 2 |c|
2 + |c| > 0⇒ max

x∈[0,1]
H(x) > 0.

Using this result and from (3.4) we have:∣∣∣∣∣(1− |z|2) · z · F
′′
[|δ|](z)

F ′[|δ|](z)

∣∣∣∣∣ ≤M ∣∣α1 · ... · α[|δ|]
∣∣·max
|z|<1

[(
1− |z|2

)
· |z| · |z|+ |c|

1 + |c| |z|

]
, ∀z ∈ U.(3.5)

Applying the condition (3.3) in the form (3.5) we obtain that

(
1− |z|2

)
·

∣∣∣∣∣z · F
′′
[|δ|](z)

F ′[|δ|](z)

∣∣∣∣∣ ≤ 1, ∀z ∈ U,

and from Lemma 2.1 we obtain that F[|δ|] ∈ S.

3.2 Theorem. Let M > 1, γ, δ ∈ C, |γ| /∈ [0, 1), αi ∈ C, for i = 1, [|γ|], α1 · ... ·αn =

[|γ|]. If fi ∈ A, fi(z) = z + ai2z
2 + ..., for i = 1, [|γ|] and∣∣∣∣zf ′i(z)− fi(z)zfi(z)

∣∣∣∣ ≤ 1, ∀i = 1, [|γ|], z ∈ U, (3.6)
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|α1|+ ...+
∣∣α[|γ|]

∣∣∣∣α1 · ... · α[|γ|]
∣∣ ≤M, (3.7)

Reγ ≥ Reδ > 0,∣∣α1 · ... · α[|γ|]
∣∣ ≤ 1

M max
|z|≤1

[(
1− |z|2

)
· |z| · |z|+|c|

1+|c||z|

] , (3.8)
where

|c| =

∣∣∣α1a
1
2 + ...+ α[|γ|]a

[|γ|]
2

∣∣∣
M
∣∣α1 · ... · α[|γ|]

∣∣ ,

then

G[|γ|](z) =

γ z∫
0

tγ−1

(
f1(t)

t

)α1

· ... ·
(
f[|γ|](t)

t

)α[|γ|]

dt

 1
γ

is in the class S.
Proof. We consider the function

h(z) =

z∫
0

(
f1(t)

t

)α1

· ... ·
(
f[|γ|](t)

t

)α[|γ|]

dt.

Define the function

p(z) =
1

M
∣∣α1 · ... · α[|γ|]

∣∣ · h′′(z)h′(z)
, z ∈ U.

The function p(z) has the form:

p(z) =
1

M
∣∣α1 · ... · α[|γ|]

∣∣ [|γ|]∑
i=1

αi
zf ′i(z)− fi(z)

zfi(z)
.

By using the relations (3.6) and (3.7) we obtain |p(z)| < 1 and

|p(0)| =

∣∣∣α1a
1
2 + ...+ α[|γ|]a

[|γ|]
2

∣∣∣
M
∣∣α1 · ... · α[|γ|]

∣∣ = |c| .

Applying Remark 2.4 for the function h we obtain

1

M
∣∣α1 · ... · α[|γ|]

∣∣ ·
∣∣∣∣h′′(z)h′(z)

∣∣∣∣ ≤ |z|+ |c|
1 + |c| |z| , ∀z ∈ U

and ∣∣∣∣∣1− |z|2Reδ

Reδ
· z · h

′′(z)

h′(z)

∣∣∣∣∣ ≤M ∣∣α1 · ... · α[|γ|]
∣∣ 1− |z|2Reδ

Reδ
·|z|· |z|+ |c|

1 + |c| |z| ,∀z ∈ U.(3.9)

Consider the function Q : [0, 1]→ R defined by

Q(x) =
1− x2Reδ

Reδ
· x · x+ |c|

1 + |c|x ; x = |z| .

We have Q
(
1
2

)
> 0⇒ max

x∈[0,1]
Q(x) > 0.
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Using this result in (3.9), we have:

1− |z|2Reδ

Reδ

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤M ∣∣α1 · ... · α[|γ|]
∣∣·max
|z|<1

[
1− |z|2Reδ

Reδ
· |z| · |z|+ |c|

1 + |c| |z|

]
,∀z ∈ U.(3.10)

Applying the condition (3.8) in the relation (3.10), we obtain that

1− |z|2Reδ

Reδ

∣∣∣∣zh′′(z)h′(z)

∣∣∣∣ ≤ 1, ∀z ∈ U

and from Lemma 2.2, we obtain that G[|γ|] ∈ S.
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Semiprime and weakly compressible modules
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Abstract
An R-moduleM is called semiprime (resp. weakly compressible) if it is
cogenerated by each of its essential submodules (resp. HomR(M,N)N
is nonzero for every 0 6= N ≤ MR). We carry out a study of weakly
compressible (semiprime) modules and show that there exist semiprime
modules which are not weakly compressible. Weakly compressible mod-
ules with enough critical submodules are characterized in different ways.
For certain rings R, including prime hereditary Noetherian rings, it
is proved that MR is weakly compressible (resp. semiprime) if and
only if M ∈ Cog(Soc(M) ⊕ R) and M/Soc(M) ∈ Cog(R) (resp. M ∈
Cog(Soc(M)⊕R)). These considerations settle two questions, namely
Qu 1, and Qu 2, in [6, p 92].

Keywords: Krull dimension, semiprime module, singular semi-Artinian ring,
weakly compressible module.
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1. Introduction
Throughout this paper rings will have a nonzero identity, modules will be right and

unitary. In [2], a module MR is called prime if HomR(M,K)N 6= 0 for all nonzero sub-
modules K,N ≤MR and it is shown that MR is prime if and only if it is cogenerated by
each of its nonzero submodules. A semiprime notion for modules is then obtained in [4]
by setting K = N in the above definition of prime modules. These semiprime modules
are precisely weakly compressible modules in the sense of [1]; see for example Theorem 2.5
below. Following [6], a module MR is called weakly compressible if HomR(M,N)N 6= 0
for all nonzero N ≤MR. We also call MR semiprime if every essential submodule of MR

cogenerates MR. In this paper, prime module means the prime module in the sense of
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[2]; see [11, Sections 13, 14] for an excellent reference on the subject. Weakly compress-
ible modules have applied in different situations. For example, in the study of weakly
semisimple modules [12] and modules which have semiprime right Goldie endomorphism
rings [3, Theorem 2.6]. They have also been appeared in the Cohen-Fishman’s question
about the semiprimeness of the smash product A#H when H is a semisimple Hopf alge-
bra and A is a semiprime H-module algebra. In [6, Corollary 7.6] for certain semisimple
Hopf algebra H, it is shown that A#H is a semiprime ring if and only if the A#H-module
A is weakly compressible.
In the present work, we carry out a study of weakly compressible (semiprime) modules
and show that there are semiprime modules which are not weakly compressible (Exam-
ples and Remarks 2.8). Weakly compressible modules with enough critical submodules
are characterized in different ways (Theorems 3.4 and 3.7). For certain rings R, includ-
ing prime hereditary Noetherian rings, it is shown that MR is weakly compressible (resp.
semiprime) if and only if M ∈ Cog(Soc(M)⊕R) and M/Soc(M) ∈ Cog(R) (resp. M ∈
Cog(Soc(M) ⊕ R)). Furthermore, if R is a PID then MR is weakly compressible if and
only if M/Soc(M) ∈ Cog(R) (Corollary 4.6). These considerations settle two questions,
namely Qu 1, and qu 2, in [6, p 92] where it is asked whether there exists a weakly com-
pressible module M which is not a subdirect product of prime modules. Such a module
M cannot satisfy the conditions of Theorem 3.4 or 3.7 or 4.1 because of Remark 4.2. Any
unexplained terminology and all the basic results on rings and modules that are used in
the sequel can be found in [5] and [7].

2. General properties of weakly compressible modules
In this section, we investigate weakly compressible (semiprime) modules over any ring

and show that semiprime modules are not necessarily weakly compressible. We give a
characterization of weakly compressible modules and using this we state our main results
in the next sections. Let M be an R-module and N be a submodule of MR. We say
that M is N -weakly compressible if for each nonzero submodule K of N , there exists an
R-homomorphism f : M → K such that f(K) 6= 0. Thus MR is weakly compressible if
and only if M is M -weakly compressible if and only if M is N -weakly compressible for
any 0 6= N ≤MR. We use the notation N ≤ess M to denote N is an essential submodule
of M . Also, if X and Y are R-modules, then ∩{ker f | f : XR → YR} is denoted by
Rej(X,Y ). The module X is cogenerated by Y (write X ∈ Cog(Y )) if Rej(X,Y ) = 0. In
the following, some properties of weakly compressible (semiprime) modules are collected.

2.1. Lemma. (a) Let M be a semiprime R-module. If N is either an essential or fully
invariant submodule of MR, then N is a semiprime R-module.
(b) The class of weakly compressible modules is closed under co-products and taking sub-
modules.
(c) The class of semiprime modules is closed under products and co-products.
(d) Let Λ be a non-empty set. Then MR is semiprime if and only if M (Λ)

R is so.
(e) Every weakly compressible module is semiprime.
(f) Let M be a nonzero R-module and M1,M2 be submodules of MR such that there is
no nonzero R-module X which embeds in M1 and M2. Then M is (M1 ⊕M2)-weakly
compressible if and only if M is Mi-weakly compressible for i = 1, 2.
(g) If MR is semiprime then annR(M) is a semiprime ideal of R.
(h) MR is weakly compressible (resp. semiprime) if and only if MR/I is weakly compress-
ible (resp. semiprime) where MI = 0 and I B R.
(i) If MR is weakly compressible and N is a fully invariant closed submodule of MR, then
M/N is a weakly compressible R-module.
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Proof. (a) If N ≤ess MR, then it is easy to see that NR is semiprime. Let N be a fully
invariant of MR and K ≤ess N . There exists a submodule L of MR such that N ∩L = 0
and N ⊕ L ≤ess M . Thus K ⊕ L ≤ess M . By our assumption M ∈ Cog(K ⊕ L). Hence
there exists an injective homomorphism θ : M → KI ⊕ LI for some set I. Since N
is fully invariant of MR, it is easy to see πθ(N) = 0, where π : KI ⊕ LI → LI is the
natural projection. It follows that θ(N), and hence N embeds in KI , proving that NR
is semiprime.
(b) We only prove the co-product case. Let {Mi}i∈I be a family of weakly compressible
R-modules and N be any nonzero submodule of ⊕i∈IMi. It is easy to verify that there
exists subset J of I such that the canonical projection π : ⊕i∈IMi → ⊕j∈JMj =: W
is one to one on N and π(N) ∩ Mj 6= 0 for each j ∈ J ; see also [9, Lemma 2.1].
Because Mj is weakly compressible for each j ∈ J , there are homomorphisms fj ∈
HomR(Mj , π(N)∩Mj) such that fj(π(N)∩Mj) 6= 0. Now let f =

∑
j∈J fj : W → π(N)

and θ = π−1fπ. Then θ : M → N such that θ|N 6= 0, as desired.
(c) Let N be an essential submodule of product

∏
i∈IMi where each Mi is a semiprime

module (the co-product case has a similar proof). Note that for each i ∈ I we have
(N ∩Mi) ≤ess Mi. Thus by our assumption, Mi ∈ Cog (N) for each i ∈ I. It follows
that

∏
i∈IMi ∈ Cog(N).

(d) The necessity follows by part (c). Conversely, let M (Λ) be semiprime and N ≤ess M .
Then N (Λ) ≤ess M (Λ). Thus M (Λ) ∈ Cog(N (Λ)). This shows that M ∈ Cog(N), as
desired.
(e) This is obtained by [6, Theorem 5.1(b)].
(f) Just note that if N is a nonzero submodule of M1 ⊕M2, then by our assumption,
either N ∩M1 6= 0 or N ∩M2 6= 0.
(g) This follows by [6, Proposition 5.5(viii)].
(h) This has a routine argument.
(i) Let N be a fully invariant closed submodule of MR. By [5, Proposition 6.32], there
exists K ≤ MR such that N is a complement to K in M . It follows that K ⊕ N/N is
an essential submodule of M/N . Hence, it is enough to show that M/N is (K ⊕N/N)-
weakly compressible. Now let (x + N) ∈ (K ⊕ N/N) for some nonzero element x ∈ K.
Since MR is weakly compressible, there exists a homomorphism f : M → xR such that
f(x) 6= 0. We have f(N) = 0 because N is a fully invariant submodule of M . Thus f
induces a homomorphism f̄ : M/N → xR ⊕N/N such that f̄(x+N) 6= 0. The proof is
complete. �

An R-module M is called torsionless if it is cogenerated by R. The following result
may be already in the literature, but we cannot spot it, we give a proof for the sake of
the reader.

2.2. Proposition. Every torsionless module over a semiprime ring is weakly compress-
ible.

Proof. Let R be a semiprime ring and M be an R-submodule of RI for some set I.
Suppose that N is a nonzero submodule of M . Thus πi(N) 6= 0 for some i ∈ I, where
πi is the canonical projection from RI to R. Since R is a semiprime ring, (πi(N))2 6= 0.
Hence there exists x ∈ N such that xπi(N) 6= 0. Now let f = ιxπ where πi|M = π and
ιx : R→ xR is left multiplication by x. Then f : M → N is a homomorphism such that
f(N) 6= 0, proving that MR is weakly compressible. �

2.3. Corollary. Let R be a ring and {Ii}i∈A be a family of semiprime ideals in R. Then
⊕i∈A(R/Ii)

Λi is a weakly compressible R-module, where each Λi is a set.

Proof. This follows by Proposition 2.2 and Lemma 2.1(b),(h). �
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2.4. Lemma. Every nonsingular R-module M contains an essential submodule isomor-
phic to ⊕iIi where each Ii is a right ideal of R.

Proof. Let x be any nonzero element ofMR. Then annR(x) is not an essential right ideal
of R by our assumption on MR. Thus there exists a nonzero right ideal Ix of R such
that annR(x) ∩ Ix = 0. Note that Ix ' xIx. Therefore every nonzero submodule of M
contains a nonzero submodule that is isomorphic to a right ideal of R. Now suppose that
Ω = {N ≤MR| there is I ≤ RR such that I ' N}. If {Nλ}λ∈Λ is a maximal independent
family of submodules in Ω, then by what we have already proved, ⊕λ∈ΛNλ is an essential
submodule of MR. �

In [6, Theorem 5.1], it is shown that an R-module M is weakly compressible if and
only if HomR(M,N)2 6= 0 for all nonzero N ≤ M if and only if N∩ Rej(M,N) = 0
for any nonzero N ≤ MR. In the following we give more equivalent conditions for a
nonzero module M to be weakly compressible. We should note that in [1], a module MR

is called “weakly compressible" if for every 0 6= N ≤ MR there exists f ∈ HomR(M,N)
with f2 6= 0. Such a module M is clearly weakly compressible (in the sense of [6]), but
we have been unable to find in the literature a proof to show the converse is true. A
proof of this is given below for completeness. Recall that for any R-module M the set
{m ∈M | annR(m) ≤ess RR} is denoted by Z(M).

2.5. Theorem. The following conditions are equivalent for a nonzero R-module M .
(a) MR is weakly compressible.
(b) For every nonzero N ≤M , there exists f ∈ HomR(M,N) such that f2 6= 0.
(c) N 6↪→ Rej(M,N), for every nonzero N ≤MR.
(d) M1 6↪→ Rej(M,M2) for all nonzero isomorphic R-modules M1 and M2.
(e) There exists an essential submodule N of MR such that M is N-weakly compressible.
(f) There exists submodule N of MR such that M is N-weakly compressible and M/N is
weakly compressible.
(g) There exists a semiprime ideal I of R such that MI = 0 and M is Rej(M,R/I)-
weakly compressible.
(h) M is Z(M)-weakly compressible and M/Z2(M) ∈ Cog(R/I) for some semiprime
ideal I ⊆ annR(M).

Proof. (a)⇒ (b). Let N be a nonzero submodule ofMR and for every f ∈ HomR(M,N),
f2 = 0. It is easy to verify that fg = −gf for all f, g ∈ HomR(M,N) (note that
(f + g)2 = 0). By (a), there exist f ∈ HomR(M,N) and g ∈ HomR(M, f(M)) such that
f(N) 6= 0 and g(f(M)) 6= 0. Since gf = −fg, we have fg 6= 0. If follows that f2(M) 6= 0
because g(M) ⊆ f(M). This contradicts our assumption.
(b) ⇒ (c). Let N be any nonzero submodule of MR. Suppose that there exists an injec-
tive homomorphism θ : N → Rej(M,N). Since N ' θ(N), Rej(M, θ(N)) = Rej(M,N).
Hence, if f ∈ HomR(M, θ(N)) then Imf ⊆ Rej(M, θ(N)). This shows that f2 = 0 for
every f ∈ HomR(M, θ(N)). This contradicts (b).
(c) ⇒ (d). Just note that if M1 ↪→ Rej(M,M2), then M1 is isomorphic to a submodule
N of M such that N ↪→ Rej(M,N).
(d) ⇒ (a), (a) ⇔ (e) and (a) ⇒ (f) are clear.
(a)⇒ (g). This is hold because annR(M) is a semiprime ideal of R by Lemma 2.1.
(g) ⇒ (f). Let N = Rej(M,R/I). Then M/N ∈ Cog(R/I). Now apply Proposition 2.2
and Lemma 2.1(h).
(f) ⇒ (a). Suppose (f) holds and K is a nonzero submodule of MR. We shall show that
there exists g ∈ HomR(M,K) with g(K) 6= 0. Now if K ∩N 6= 0, then we are done by
our assumption on N . If K ∩N = 0, then consider the submodule (N ⊕K)/N of M/N .
Since M/N is weakly compressible, we can deduce such g exists.
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(a) ⇒ (h). First note that for any R-module M , we have M/Z2(M) is a nonsingular
R-module. Let I = annR(M). Thus M/Z2(M) ∈ Cog(R/I) by Lemmas 2.1(i) and 2.4,
the proof is complete.
(h) ⇒ (f). Since Z(M) ≤ess Z2(M), it is clear that MR is also Z2(M)-weakly compress-
ible. The result is now obtained by Proposition 2.2. �

2.6. Corollary. (a) If R is a right self injective ring, then MR is weakly compressible if
and only if MR is Z(M)-weakly compressible.
(b) If R is a right V-ring (i.e., simple R-modules are injective) and M/Soc(M) is a
weakly compressible R-module, then MR is weakly compressible.

Proof. (a) Let R be a right self injective ring. For the sufficiency, let N be complement to
Z(M) inMR. By Theorem 2.5(e), we shall show thatM is Z(M)⊕N -weakly compressible.
Since R is right self injective, every nonsingular cyclic R-module is isomorphic to a direct
summand of RR and hence it is an injective R-module. It follows that M is N -weakly
compressible. The proof is now completed by Lemma 2.1(f). The converse is clear.
(b) By Theorem 2.5(f). �

2.7. Proposition. The following statements hold for an extending module MR.
(a) MR is weakly compressible if and only if Z2(M) and M/Z2(M) are weakly compress-
ible R-modules.
(b) If Soc(RR) ≤ess RR, then MR is semiprime if and only if Z2(M) and M/Z2(M) are
semiprime R-modules.

Proof. Let N = Z2(M). Since M is extending, it is known that M ' N ⊕M/N .
(a) Apply Theorem 2.5(f) and note that N is weakly compressible if and only if M is
N -weakly compressible.
(b) Since Soc(RR) ≤ess RR, it is easy to verify that Z(V Λ) = (Z(V))Λ for any R-module V
and any set Λ. Now let MR be semiprime. By Lemma 2.1(a), NR is semiprime. Suppose
that K/N ≤ess M/N . Then K ≤ess M and so there exists an injective homomorphism
θ : M → KΛ. Define α : M/N → KΛ/NΛ by α(m + N) = θ(m) + NΛ. Clearly α
is a homomorphism. If α(m + N) = 0 then θ(m) = {nλ}λ∈Λ ∈ NΛ. For each λ, we
have nλJλ ⊆ Z(M) where Jλ ≤ess RR. Thus θ(mJ) ⊆ (Z(M))Λ where ∩λJλ = J . By
our assumption on R, J ≤ess RR and θ(mJ) ⊆ Z(KΛ). It follows that mJ ⊆ Z(M)
because θ is one to one. Hence m ∈ N , proving that α is injective and so M/N is weakly
compressible. �

For every module MR the intersection of all maximal submodule of M is denoted by
Rad(M). If M does not have maximal submodules, we put Rad(M) = M .

2.8. Examples and Remarks. (a) There are modules N such that Rad(N) = 0 but N
is not semiprime. Let P be the set of all prime integer numbers and p ∈ P . Consider the
Z-module N = {m/pn | m,n ∈ Z, n ≥ 1}. Then for each q ∈ P \ {p}, qN is a maximal
submodule of NZ. To see this, note that qN 6= N and suppose that K is any submodule
of NZ such that qN ( K and m/pt ∈ K \ qN . Hence (m, q) = 1. Also, if a/pr ∈ K
for some r ≥ 1 and (a, q) = 1, then 1/pr ∈ K. It follows that 1/pn ∈ K for all n ≥ 1
(take n ≥ t or n ≤ t). Therefore K = N and so qN is a maximal submodule. Clearly⋂
q 6=p qN = 0 and hence Rad (N) = 0. Now if NZ is semiprime, then HomZ(N,Z) 6= 0

and since N is uniform, we must have N ↪→ Z, contradiction.

(b) A direct summand of a semiprime module is not necessarily a semiprime module.
Assume that P and N are as stated in (a). Let W = ⊕p∈PZp and L = W ⊕ N . We
show that LZ is semiprime. Since

⋂
q 6=p qN = 0, N ∈ Cog(W ). Thus from Soc(L) = W ,



348

we have L ∈ Cog(Soc(L)). It follows that L is semiprime as a Z-module because every
essential submodule of L contains Soc(L).

(c) Lemma 2.1(b) and part (b) show that the Z-module L in (b) is semiprime which is
not weakly compressible. Furthermore, let R be a commutative regular ring which is not
semi-Artinian (for example R =

∏
Z2). Since R is a regular ring, Rad(M) = 0 for all

R-modules. Hence every R-module embeds in a semiprime R-module by Lemma 2.1(c).
On the other hand, since R is not semi-Artinian, there exists an R-moduleM which is not
weakly compressible by [10, Corollary 3.5]. Now if M embeds in a semiprime R-module
L, then L is not weakly compressible by Lemma 2.1(b).

(d) The condition (h) in Theorem 2.5 shows that the study of weakly compressible mod-
ules can be reduced to the study of such modules when they are either singular or non-
singular; see Proposition 2.7. However we shall note that, in general, the condition M
is Z(M)-weakly compressible is stronger than Z(M) is a weakly compressible R-module.

For example, if R =

[
Z 0
Z2 Z2

]
, then Z(RR) =

[
0 0
Z2 0

]
=: I. Thus IR is weakly

compressible, but R is not I-weakly compressible because HomR(R, I)(I) = 0.

(e) In view of the condition (c) in Theorem 2.5, we note that the condition N ↪→
Rej(M,N) is weaker than N ⊆ Rej(M,N). For if we consider I as left ideal in R,

then I '
[

0 0
0 Z2

]
=: J as left R-modules and Rej(R, J) = l.annR(J) =

[
Z 0
Z2 0

]
.

Hence J ↪→ Rej(R, J), but J 6⊆ Rej(R, J).

In the following nonsingular weakly compressible modules are characterized and some
corollaries are given. For certain moduleMR, the condition (c) of Theorem 2.5 is reduced
to the ideals of R; see below.

2.9. Proposition. Let M be a module over a semiprime ring R and Z(Rej(M,R)) = 0.
Then the following statements are equivalent.
(a) MR is weakly compressible.
(b) For all nonzero right ideal I of R, I 6↪→ Rej(M, I).
(c) M ∈ Cog(R).

Proof. (a) ⇒ (b). By Theorem 2.5(c).
(b)⇒ (c). If Rej(M,R) is nonzero then by Lemma 2.4, I ↪→ Rej(M,R) for some nonzero
right ideal I of R. It follows that I ↪→ Rej(M, I), a contradiction. Therefore Rej(M,R) =
0 and so (c) holds.
(c) ⇒ (a). By Proposition 2.2. �

2.10. Corollary. Let M be a nonsingular R-module. Then MR is weakly compressible
if and only if there exists a semiprime ideal I ⊆ annR(M) such that M ∈ Cog(R/I).

Proof. Note that Z(MR/I) ⊆ Z(MR), for any ideal I of R. The result is now obtained by
Proposition 2.9. �

A ring R is called right (left) duo ring if every right(left) ideal of R is two sided.

2.11. Corollary. Let M be a faithful module over a right(left) duo ring R. Then MR is
weakly compressible if and only if MR is Z(M)-weakly compressible, M/Z(M) ∈ Cog(R)
and R is a semiprime ring.
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Proof. It is easy to verify that every semiprime right(left) duo ring must be reduced
and hence it is a nonsingular ring [5, Lemma 7.8]. Thus Z(M) = Z2(M). Suppose now
M is weakly compressible, then R must be a semiprime ring because MR is faithful.
Also M/Z(M) is weakly compressible by Lemma 2.1(i), and so M/Z(M) ∈ Cog(R) by
Proposition 2.9. The converse is obtained by Theorem 2.5(h). �

3. Weakly compressible modules with enough critical submodules
We are now going to investigate semiprime and weakly compressible modules over

rings with Krull dimensions. Let M be an R-module. Following [7, Chapter 6], the Krull
dimension of MR, will be denoted by K.dim(M). Modules with Krull dimensions are
known to have finite uniform dimensions [7, Lemma 6.2.6]. Let α ≥ 0 be an ordinal
number. A module MR is called α-critical if K.dim(M) = α and K.dim(M/N) < α for
every nonzero submodule N of MR. A module is then called critical if it is β-critical for
some ordinal number β. The submodule

⋂
{ K ≤ MR | M/K is α-critical } is denoted

by Jα(M).

3.1. Lemma. Let M be a semiprime R-module, T be any nonzero submodule of M .
If there exist submodules W and N of M such that N ∈ Cog(T ), T /∈ Cog(W ) and
(N ⊕W ) ≤ess M , then T * Rej(M,T ).

Proof. Since MR is semiprime, there exists an injective homomorphism f : M → NA ⊕
WA for some set A. Since T /∈ Cog(W ), πf(T ) 6= 0, where π : NA⊕WA → NA is natural
projection. By our assumption, NA ∈ Cog(T ). Hence there exists a homomorphism
ϕ : NA → T such that ϕπf(T ) 6= 0, proving that T * Rej(M,T ). �

The following lemma is needed. That is just obtained by the definition of critical
submodules.

3.2. Lemma. Let U and V be critical R-modules and f : U → V be a nonzero homo-
morphism. Then either Kerf = 0 or K.dim(V ) < K.dim(U).

We say that a module MR has enough critical submodules if every nonzero submodule
has a nonzero submodule with Krull dimension (note, modules with Krull dimension have
critical submodules).

3.3. Lemma. Suppose that MR has enough critical submodules and α = Min{K.
dim(N) | 0 6= N ≤MR}. If MR is semiprime, then N * Rej(M,N) for every submodule
N ≤MR with K.dim(N) = α.

Proof. Let N ≤ MR and K.dim(N) = α. By [7, Lemma 6.2.10], there exists a critical
submodule T ≤ N . By choosing of α, T is α-critical. Let Λ = {T

′
≤MR| T

′
∈ Cog(T )},

{Ti
′
}i∈I be a maximal independent family of elements in Λ and N ′ = ⊕i∈ITi

′
. SinceMR

has enough critical submodules, N ′ ⊕W ≤ess MR where W is a direct sum of critical
submodules. Therefore by Lemma 3.2, T /∈ Cog(W ) and so T * Rej(M,T ) by Lemma
3.1. The proof is complete. �

A module MR is called compressible if it embeds in every submodule of M . By
Lemma 3.2 critical weakly compressible modules are compressible.

3.4. Theorem. Suppose that MR has enough critical submodules and β = Sup{K.
dim(N) | N is a critical submodule ofMR}. Then the following statements are equivalent.
(a) MR is semiprime module and Jβ(M) = 0.
(b) MR embeds in a product of β-critical compressible submodules of MR.
(c) MR embeds in a product of β-critical compressible R-modules.
Furthermore, each of the above conditions implies that MR is weakly compressible.
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Proof. (a) ⇒ (b). We first show that every critical submodule of MR is β-critical. Let
C be any critical submodule of MR. By our assumption, C * Jβ(M). It follows that
there exists a homomorphism f from MR to a β-critical module TR such that f(C) 6= 0.
By Lemma 3.2, f is one to one on C. Thus CR is β-critical, as desired. Now since MR

has enough critical submodules, β = Min{K.dim(N) | 0 6= N ≤ MR}. Therefore MR is
weakly compressible by Lemma 3.3. Hence, every critical submodule ofMR is also weakly
compressible as well as compressible. The proof is now complete because M contains an
essential submodule that is a direct sum of β-critical compressible submodules.
(b) ⇒ (c). This is clear.
(c) ⇒ (a). It is easy to see that Jβ(M) = 0. As we see in the proof of (a) ⇒ (b), for
every critical submodule C of MR there exist a β-critical compressible R-module T and
homomorphism α : M → T such that α is one to one on C. Since now TR is compressible,
there exists an injective homomorphism f : T → C. Thus fα(C) 6= 0, proving that C *
Rej(M,C). It follows that MR is weakly compressible, hence semiprime. �

3.5. Remark. Let R = Z, M = Z2 ⊕ Z and β be as stated in Theorem 3.4. Then MR

is weakly compressible and β = 1, but Jβ(M) 6= 0 because M /∈ Cog(R).

3.6. Lemma. Suppose thatM is an R-module, {Vi}i∈I is a family of nonzero submodules
of MR, {Wj}j∈J is a family of R-modules and the following conditions (a), (b) hold,
(a) For every nonzero submodule N of MR, there exists Vi ⊆ N for some i ∈ I.
(b) For every i ∈ I, there exist j ∈ J and homomorphism f : M → Wj such that
Kerf ∩ Vi = 0.
If MR has finite uniform dimension, then there exists a finite subset A of J such that
MR embeds in ⊕j∈AWj.

Proof. Let Λ = {u.dim(Kerf) | f ∈ HomR(M,⊕j∈AWj) and A is a finite set }. By
hypothesis Λ is a nonempty set. Let n be the smallest element in Λ, and f : M → ⊕j∈AWj

such that u.dim(Kerf) = n. Let K = Kerf . If K 6= 0, then by (a), there exists i ∈ I such
that Vi ⊆ K and by (b) there exists a homomorphism g : M →Wt such that Kerg∩Vi = 0
for some t ∈ J . Now, define h : M → ⊕j∈AWj ⊕Wt by h(m) = (f(m), g(m)) for all
m ∈ M . It is clear that Kerh = K ∩ Kerg. Since Kerh ∩ Vi = 0, Kerh is not essential
submodule of K. Hence u.dim( Kerh) < u.dim( Kerf). This contradicts the choice of f .
Therefore K = 0 and so M embeds in ⊕j∈AWj , as desired. �

3.7. Theorem. The following statements are equivalent for a nonzero module MR.
(a) MR is weakly compressible with finite uniform dimension and Z(M) has Krull dimen-
sion.
(b) MR is weakly compressible with finite uniform dimension and Z(M) has enough crit-
ical submodules.
(c) MR embeds in a finite direct sum ⊕iWi of cyclic compressible submodules of MR such
that each Wi is either uniform nonsingular or critical singular.
(d)MR embeds inW⊕V such thatWR and VR are weakly compressible, W is nonsingular
with finite uniform dimension and V is singular with Krull dimension.

Proof. (a) ⇒ (b) and (c) ⇒ (d) are clear. (d) ⇒ (a) is obtained by Lemma 2.1(b) and
the fact that modules with Krull dimensions have finite uniform dimensions. We shall
show that (b) ⇒ (c).
Apply Lemma 3.6 for {Vi}ß∈I = {Wj}æ∈J=I = {C ≤MR | C is either uniform nonsingu-
lar or critical singular}. By our hypothesis, the condition (a) of Lemma 3.6 holds. Note
that every endomorphism of the above submodules C is either injective or zero (Lemma
3.2). Hence, by the weakly compressible condition on M , we have the submodules C
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are compressible and the condition (b) of Lemma 3.6 holds. The proof is now complete
because any compressible module embeds in each of its cyclic submodule. �

3.8. Corollary. The following statements are equivalent for a nonzero module MR.
(a) MR is weakly compressible with Krull dimension.
(b) MR is weakly compressible with finite uniform dimension and it has enough critical
submodules.
(c) MR embeds in a finite direct sum of critical compressible submodules of MR.
(d) MR embeds in a finite direct sum of critical compressible R-modules.

Proof. This follows by Theorem 3.7. �

The following result is a consequence of Theorem 3.7 which should be compared with
Corollary 2.10.

3.9. Corollary. If MR is a nonsingular weakly compressible module with finite uniform
dimension, then MR embeds in a finitely generated free R-module.

Proof. Note that every nonsingular compressible R-module embeds in R (Lemma 2.4).
Thus the result is obtained by Theorem 3.7(c). �

4. Weakly compressible modules over singular semi-Artinian rings
In [8, Main Theorem], it is shown that a Z-module M is weakly compressible if and

only if Z(M) is semisimple and M/Z(M) is torsionless. We conclude the paper with a
characterization of weakly compressible (semiprime) modules over certain rings including
prime hereditary Noetherian rings. If R is a hereditary Noetherian ring, then by [7,
Proposition 5.4.5], every nonzero singular R-module has a nonzero socle. We call such
rings R right singular semi-Artinian.

4.1. Theorem. Suppose that R is a right singular semi-Artinian ring, MR is nonzero
and MI = 0 for some ideal I of R. If MR is semiprime then M ∈ Cog(Soc(M)⊕R/I).
The converse holds if I is a prime ideal of R.

Proof. Since R/I is also a right singular semi-Artinian ring, we can suppose that I = 0.
Let MR be semiprime and Soc(Z(M))⊕K ≤ess MR where K ≤MR. By our assumption
on R, we have Z(K) = 0. Thus M ∈ Cog(Soc(M)⊕R) by Lemma 2.4.
Conversely, assume that M ∈ Cog(Soc(M) ⊕ R) and R is a prime ring. Let N be any
essential submodule of MR. We have Soc(Z(N)) ⊕ L ≤ess N such that L ' ⊕i∈IIi
where each Ii is a right ideal of R. Since Soc(M) lies in any essential submodule of
MR, we deduce from the hypothesis that M ∈ Cog(Soc(N)⊕ L⊕R). Now Rej(R,L) =
annR(L) = 0 because R is prime ring. It follows that R ∈ Cog(L) and hence M ∈
Cog(N), proving that MR is semiprime. �

4.2. Remark. Let R be any ring andM be a nonzero R-module. ThenMR is a subdirect
product of prime modules if and only if M is cogenerated by prime modules. Now let
MR be a weakly compressible R-module and A = annR(M). Note that R/A is subdirect
product of prime R-modules. Therefore if MR satisfies the conditions of Theorem 3.4 or
3.7 or 4.1, then M is cogenerated by prime modules and hence it is a subdirect product
of prime R-modules. This gives a partially answer to the open problem 1 of [6].

4.3. Proposition. Let MR be semiprime and L ≤ MR. Then the following statements
hold.
(a) If Soc(L) is finitely generated then Soc(L) is a direct summand of M . In particular,
if M has acc on direct summands, then Soc(M) is a direct summand of M .
(b) If every cyclic submodules of L has a finitely generated socle then Soc(L) is a closed
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submodule of M .
(c) M is Soc(M)-weakly compressible and Soc(M)∩ Rad(M) = 0 .

Proof. (a) Suppose that the length of Soc(L) = n. Let T1 be a simple submodule
of LR, N =

∑
{T ′ ≤ MR | T ′ ' T1} and W be a complement to N in M . Then

T1 /∈Cog(W ) and so by Lemma 3.1, T1 * Rej(M,T1). Hence there exists a nonzero
homomorphism f : M → T1 such that f(T1) 6= 0. Clearly Ker(f) is a maximal submodule
of MR. It follows that M = T1 ⊕ A1 where A1 ker f , and hence L = T1 ⊕ (L ∩ A1). If
Soc(L ∩ A1) = 0, then Soc(L) = T1 and we are done. If not, consider the simple
submodule T2 of L∩A1. Again we deduce that T2 is a direct summand of M and hence
of A1. Thus M = T1 ⊕ T2 ⊕A2 for some A2 ≤M and L = T1 ⊕ T2 ⊕ (L∩A2). Continue
to obtain T1 ⊕ T2 ⊕ ...⊕ Tn is a direct summand of MR, as desired. The last statement
is now clear.
(b) If Soc(L) ≤ess C and x ∈ C ≤ L, then Soc(xR) ≤ess xR. Hence by our assumption
and (a), we must have xR = Soc(xR) ⊆ Soc(L). It follows that Soc(L) = C.
(c) This is obtained by (a) and the fact that every nonzero cyclic submodule in Rad(M)
is a small submodule of M and so cannot be a direct summand. �

4.4. Lemma. Suppose S and R are two rings, T = R⊕ S and M be a T -module. Then
M = K ⊕L where K and L are modules over R and S respectively. In this case, Z(MT )
= Z(KR)⊕ Z(LS) and Soc(MT ) = Soc(KR)⊕ Soc(LS).

Proof. Just note that if M is a T -module then M = Me1 ⊕Me2 where e1 = 1R and
e2 = 1S are central orthogonal idempotents in T such that e1S = e2R = 0. Clearly Me1

and Me2 are naturally R-module and S-module respectively. �

4.5. Theorem. Suppose thatM is a nonzero R-module andMI = 0 for some semiprime
ideal I of R. If M ∈ Cog(Soc(M)⊕R/I) and M/Soc(M) ∈ Cog(R/I), then MR is weakly
compressible. The converse holds if R is a right singular semi-Artinian ring such that
every cyclic R-module has a finitely generated socle or acc on direct summands.

Proof. We may suppose that I = 0. Let N = Soc(M). By Proposition 2.2, M/N is a
weakly compressible R-module. Hence by Theorem 2.5(f), we need to show that M is
N -weakly compressible. Assume that S is a simple submodule of M , and by hypothesis
let θ : M ↪→ (N ⊕ R)Λ =: L for some set Λ. Then πλθ(S) is nonzero for some canonical
projection πλ (λ ∈ Λ) on L. Let U = πλθ(S) and note that U ' S. Since now any
minimal right ideal in a semiprime ring R is a direct summand of RR, we deduce that
there exists R-homomorphism f : M → U such that f(S) 6= 0. It follows S 6⊆ Rej(M,S),
as desired.
Conversely, suppose that R satisfies the above hypothesis andMR is weakly compressible.
By Theorem 4.1, M ∈ Cog(Soc(M)⊕R). It remains to show that M/Soc(M) ∈ Cog(R).
Since R is assumed to be a semiprime ring, Soc(RR) is a direct summand of R by
Proposition 4.3(a). It follows that R ' A ⊕ B where A is a semisimple ring and B is a
ring with zero socle. By Lemma 4.4, M = K ⊕ L and Soc(M) = K⊕ Soc(L). Thus it is
enough to show that L/ Soc(L) ∈ Cog(B). Now L is a weakly compressible B-module.
Since B is a right singular semi-Artinian ring, Z(L) has an essential socle, and since
Soc(BB) = 0, every simple B-module is singular. Thus Soc(L) ≤ess Z(L). On the other
hand, if C is a cyclic submodule LB , then an application of Proposition 4.3(a) for CB
shows that Soc(C) is a direct summand of C. Hence Soc(C) is cyclic. It follows that
Soc(L) is a closed submodule of L by Proposition 4.3(b). Therefore Soc(L) = Z(L) =
Z2(L). The proof is now completed by Lemma 2.1(i). �
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4.6. Corollary. Let R be a prime right singular semi-Artinian ring such that cyclic R-
modules have finite uniform dimensions. Then the following statements hold for MR.
(a) M ∈ Cog(Soc(M) ⊕ R) and M/Soc(M) ∈ Cog(R) if and only if MR is weakly
compressible.
(b) M ∈ Cog(Soc(M)⊕R) if and only if MR is semiprime.
(c) If MR is semiprime, then either MR is semisimple or Z(M) = Soc(M).
(d) Furthermore, if R is a PID then M/Soc(M) ∈ Cog(R) if and only if MR is weakly
compressible.

Proof. (a) and (b). These follow from Theorems 4.1 and 4.5.
(c). By Proposition 4.3(a), Soc(RR) is a direct summand of R. Since now R is a prime
ring, R is semisimple or Soc(RR) = 0. If R is a semisimple ring then MR is semisimple.
In case Soc(RR) = 0, as we see in the proof of Theorem 4.5, Z(M) = Soc(M).
(d) The sufficiency holds by part (a). Conversely, let N = Soc(M) and M/N ∈ Cog(R).
It follows that Z(M) ⊆ N and M/N is weakly compressible. Thus we need to show that
M is N -weakly compressible. Let S be a simple submodule of MR and P = annR(S).
Let P = pR for some prime element p ∈ R. If 0 6= x ∈ S ⊆ MP , then x = mp for
some m ∈ M and so p2R ⊆ annR(m) ( pR. Hence p2R = annR(m). This implies that
mR ⊆ N , a contradiction. Therefore, S ∩MP = 0. Since now M/MP ' S(Λ) for some
set Λ, we can deduce that S * Rej(M,S). The proof is complete. �
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On the rescaled Riemannian metric of
Cheeger-Gromoll type on the cotangent bundle
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Abstract
Let (M, g) be an n−dimensional Riemannian manifold and T ∗M be
its cotangent bundle equipped with a Riemannian metric of Cheeger-
Gromoll type which rescale the horizontal part by a positive differen-
tiable function. The main purpose of the present paper is to discuss
curvature properties of T ∗M and construct almost paracomplex Norden
structures on T ∗M. We investigate conditions for these structures to
be para-Kähler (paraholomorphic) and quasi-para-Kähler. Also, some
properties of almost paracomplex Norden structures in context of al-
most product Riemannian manifolds are presented.
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1. Introduction
Geometric structures on bundles have been object of much study since the middle of

the last century. The natural lifts of the metric g, from a Riemannian manifold (M, g)
to its tangent or cotangent bundles, induce new (pseudo) Riemannian structures, with
interesting geometric properties. Maybe the best known Riemannian metric Sg on the
tangent bundle over Riemannian manifold (M, g) is that introduced by Sasaki in 1958
(see [25]), but in most cases the study of some geometric properties of the tangent bundle
endowed with this metric led to the flatness of the base manifold. The metric Sg is called
the Sasaki metric. The Sasaki metric Sg has been extensively studied by several authors
and in many different contexts. Another Riemannian metric on the tangent bundle TM
defined by E. Musso and F. Tricerri [14] is the Cheeger-Gromoll metric CGg. The metric
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was defined by J. Cheeger and D. Gromoll [3]; yet, E. Musso and F. Tricerri wrote down
its expression, constructed it in a more ”comprehensible” way, and gave it the name. In
[30], B. V. Zayatuev introduced a Riemannian metric Sg on the tangent bundle TM
given by

Sg
(
HX,H Y

)
= fg (X,Y ) ,

Sg
(
HX,V Y

)
= Sg

(
VX,H Y

)
= 0,

Sg
(
VX,V Y

)
= g (X,Y ) ,

where f > 0, f ∈ C∞(M). For f = 1, it follows that Sg = Sg. The metric Sg is called
the rescaled Sasaki metric. The authors studied the rescaled Sasaki type metric on the
cotangent bundle T ∗M over Riemannian manifold (M, g) (see [8]). Also, for rescaled
Riemannian metrics on orthonormal frame bundles, see [11].

Let M2k be a 2k-dimensional differentiable manifold endowed with an almost (para)
complex structure ϕ and a pseudo-Riemannian metric g of signature (k, k) such that
g(ϕX, Y ) = g(X,ϕY ) for arbitrary vector fields X and Y on M2k, i.e. g is pure with
respect to ϕ. The metric g is called Norden metric. Norden metrics are also referred to as
anti-Hermitian metrics or B-metrics. They present extensive application in mathematics
as well as in theoretical physics. Many authors considered almost (para)complex Norden
structures on the tangent, cotangent and tensor bundles [5, 7, 16, 17, 18, 19, 20, 22, 23].

In this paper, firstly, we present curvature tensor of the rescaled Cheeger-Gromoll
type metric CGgf . Secondly, we get the conditions under which the cotangent bun-
dle endowed with some paracomplex structures and the rescaled Riemannian metric of
Cheeger-Gromoll type CGgf is a paraholomorphic Norden manifold. Finally, for an al-
most paracomplex manifold to be an specialized almost product manifold, we give some
results related to Riemannian almost product structures on the cotangent bundle.

Throughout this paper, all manifolds, tensor fields and connections are always assumed
to be differentiable of class C∞. Also, we denote by =pq(M) the set of all tensor fields of
type (p, q) on M , and by =pq(T ∗M) the corresponding set on the cotangent bundle T ∗M .
The Einstein summation convention is used, the range of the indices i, j, s being always
{1, 2, ..., n}.

2. Preliminaries
The cotangent bundle of a smooth n−dimensional Riemannian manifold may be en-

dowed with a structure of 2n−dimensional smooth manifold, induced by the structure on
the base manifold. If (M, g) is a smooth Riemannian manifold of dimension n, we denote
its cotangent bundle by π : T ∗M →M. A system of local coordinates

(
U, xi

)
, i = 1, ..., n

in M induces on T ∗M a system of local coordinates
(
π−1 (U) , xi, xi = pi

)
, i = n+ i =

n + 1, ..., 2n, where xi = pi is the components of covectors p in each cotangent space
T ∗xM, x ∈ U with respect to the natural coframe

{
dxi
}
.

Let X = Xi ∂
∂xi

and ω = ωidx
i be the local expressions in U of a vector field X and

a covector (1-form) field ω on M , respectively. Then the vertical lift V ω of ω and the
horizontal lift HX of X are given, with respect to the induced coordinates, by

(2.1) V ω = ωi∂i,

and

(2.2) HX = Xi∂i + phΓhijX
j∂i,
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where ∂i = ∂
∂xi

, ∂i = ∂

∂xi
and Γhij are the coefficients of the Levi-Civita connection ∇ of

g.
Let T ∗M be the cotangent bundle of a Riemannian manifold (M, g). If the local

expression of the metric g is g = gijdx
i ⊗ dxj , then the inverse of the metric g is g−1 =

gij∂i⊗ ∂j , where gij are the entries of the inverse matrix of gij , i.e. gijgjk = δik. We
define r2 = g−1 (p, p) = gijpipj and put α = 1 + r2. Then the rescaled Riemannian
metric of Cheeger-Gromoll type CGgf is defined on T ∗M by the following three equations
at (x, p) ∈ T ∗M

(2.3) CGgf
(
V ω, V θ

)
=

1

α
(g−1 (ω, θ) + g−1 (ω, p) g−1 (θ, p)),

(2.4) CGgf
(
V ω,HY

)
= 0,

(2.5) CGgf
(
HX,HY

)
= fg (X,Y )

for any X,Y ∈ =1
0(T ∗M) and ω, θ ∈ =0

1(T ∗M), where f > 0, f ∈ C∞(M), g−1 (ω, θ) =
gijωiθj .

The Lie bracket operation of vertical and horizontal vector fields on T ∗M is given by
the formulas

(2.6)


[
HX,H Y

]
= H [X,Y ] +V (p ◦R(X,Y ))[

HX,V ω
]

= V (∇Xω)[
V θ,V ω

]
= 0

for any X, Y ∈ =1
0(M) and θ, ω ∈ =0

1(M), where R is the Riemannian curvature of g
defined by R (X,Y ) = [∇X ,∇Y ]−∇[X,Y ] (for details, see [28], p. 238, p. 277).

With the connection ∇ of g on M , we can introduce on each induced coordinate
neighborhood π−1(U) of T ∗M a frame field which allows the tensor calculus to be effi-
ciently done. The adapted frame on π−1(U) of T ∗M consist of the following 2n linearly
independent vector fields:

(2.7)
{
Ej = ∂j + psΓ

s
hj∂h,

Ej = ∂j .

We can write the adapted frame as {Eα} =
{
Ej , Ej

}
. The indices α, β, γ, ... = 1, ..., 2n

indicate the indices with respect to the adapted frame. By the straightforward calcula-
tions, we have the lemma below.

2.1. Lemma. The Lie brackets of the adapted frame of T ∗M satisfy the following iden-
tities:

[Ei, Ej ] = psR
s

ijl El,[
Ei, Ej

]
= ΓjilEl,[

Ei, Ej
]

= 0

where R s
ijl denote the components of the curvature tensor R of (M, g) ([28], p. 290).

Using (2.1), (2.2) and (2.7), we have

(2.8) V ω =

(
0
ωj

)
and

(2.9) HX =

(
Xj

0

)
with respect to the adapted frame {Eα} (for details, see [28]).
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3. The curvature tensor of the rescaled Riemannian metric of
Cheeger-Gromoll type
From the equations (2.3)-(2.5), by virtue of (2.8) and (2.9), the rescaled Cheeger-

Gromoll type metric CGgf has components with respect to the adapted frame {Eα}:

(3.1) CGgf = diag

(
fgij ,

1

α
(gij + gisgtjpspt)

)
.

For the Levi-Civita connection of the rescaled Cheeger-Gromoll type metric CGgf we
give the next theorem.

3.1. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bundle
equipped with the rescaled Cheeger-Gromoll type metric CGgf . Then the corresponding
Levi-Civita connection ∇̃ satisfies the followings:

(3.2)



i) ∇̃EiEj = {Γlij + fAlij}El +
1

2
psR

s
ijl El,

ii) ∇̃EiEj =
1

2fα
psR

l js
. i . El − ΓjilEl,

iii) ∇̃EiEj =
1

2fα
psR

l is
. j . El,

iv) ∇̃EiEj = {−1
α

(piδjl + pjδil ) + α+1
α2 g

ijpl + 1
α2 p

ipjpl}El
with respect to the adapted frame, where fAhji is a tensor field of type (1, 2) defined by
fAhji = 1

f
(fjδ

h
i + fiδ

h
j − fm. gji) and pi = gitpt, Rk. j .is = gktgimR s

tjm.

Proof. The connection ∇̃ is characterized by the Koszul formula:

2CGgf (∇̃X̃ Ỹ , Z̃) = X̃(CGgf (Ỹ , Z̃)) + Ỹ (CGgf (Z̃, X̃))− Z̃(CGgf (X̃, Ỹ ))

−CGgf (X̃, [Ỹ , Z̃]) + CGgf (Ỹ , [Z̃, X̃]) + CGgf (Z̃, [X̃, Ỹ ])

for all vector fields X̃, Ỹ and Z̃ on T ∗M . One can verify the Koszul formula for pairs X̃ =

Ei, Ei and Ỹ = Ej , Ej and Z̃ = Ek, Ek. In calculations, the formulas (2.7), Lemma 2.1
and the first Bianchi identity for R should be applied. We omit standard calculations. �

Let X̃, Ỹ ∈ =1
0(T ∗M). Then the covariant derivative ∇̃Ỹ X̃ has components

∇̃Ỹ X̃
α = Ỹ γEγX̃

α + Γ̃αγβX̃
β Ỹ γ

with respect to the adapted frame {Eα}. Using (2.7), (2.8), (2.9) and (3.2), we have the
following proposition.

3.2. Proposition. Let (M, g) be a Riemannian manifold and ∇̃ be the Levi-Civita con-
nection of the cotangent bundle T ∗M equipped with the rescaled Cheeger-Gromoll type
metric CGgf . Then

i) ∇̃HX
HY = H

(
∇XY +f A(X,Y )

)
+ 1

2
V (p ◦R (X,Y )) ,

ii) ∇̃HX
V θ = 1

2fα
H
(
p
(
g−1 ◦R ( , X) θ̃

))
+V (∇Xθ) ,

iii) ∇̃V ω
HY = 1

2fα
H
(
p
(
g−1 ◦R ( ,Y ) ω̃

))
,

iv) ∇̃V ω
V θ = − 1

α

(
CGg

(
V ω, γδ

)
V θ + CGgf

(
V θ, γδ

)
V ω
)

+α+1
α

CGgf
(
V ω, V θ

)
γδ − 1

α
CGgf

(
V ω, γδ

)
CGg

f

(
V θ, γδ

)
γδ

for all X,Y ∈ =1
0 (M), ω, θ ∈ =0

1 (M), where ω̃ = g−1 ◦ω ∈ =1
0 (M) , R ( ,X) ω̃ ∈ =1

1 (M) ,
g−1 ◦ R ( ,X) ω̃ ∈ =1

0 (M), R and γδ denote respectively the curvature tensor of ∇ and
the canonical or Liouville vector field on T ∗M with the local expression γδ = piEi (for
f = 1, see [1]).
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The Riemannian curvature tensor R̃ of T ∗M with the rescaled Cheeger-Gromoll type
metric CGgf is obtained from the well-known formula

R̃
(
X̃, Ỹ

)
Z̃ = ∇̃X̃∇̃Ỹ Z̃ − ∇̃Ỹ ∇̃X̃ Z̃ − ∇̃[X̃,Ỹ ]Z̃

for all X̃, Ỹ , Z̃ ∈ =1
0(T ∗M). Then from Lemma 2.1 and Theorem 3.1, we get the following

proposition.

3.3. Proposition. The components of the curvature tensor R̃ of the cotangent bundle
T ∗M with the rescaled Cheeger-Gromoll type metric CGgf are given as follows:

R̃(El, Ei)Ej = {R m
lij −

1

2fα
ptpaR

a
lih R

m
. j

h
.
t+

1

4fα
ptpa(Rm. l

h
.
tR a

ijh −Rm. ih. tR a
ljh )

+∇l(Amij )−∇i(Amlj ) +AmlhA
h
ij −AmihAhlj)}Em

+{ 1

2f
pt(∇lR t

ijm −∇iR t
ljm)+

1

2
pt(R

t
lhmA

h
ij −R t

ihmA
h
lj)}Em̄,

R̃(E l̄, Ei)Ej = { −1

2fα
pa∇iRm. jl.a+

1

2fα
pa(Rm. h

l
.
aA

h

ij −R
h
. j
l
.
aA

m

ih +
fi
f
Rm. j

l
.
a)}Em

+{1

2
R l
ijm −

1

4fα
ptpaR

t
ihmR

h
. j
l
.
a− 1

2α
pap

lR a
ijm −

α+ 1

2α2
papmRij

l
.
a}Em̄,

R̃(El, Ei)Ej = { 1

2fα
pa∇lRm. ji.a +

1

2fα
pa(Rh. j

i
.
a Amlh −Rm. hi.aA

h

lj −
fl
f
Rm. j

i
.
a)}Em

+{−1

2
R i
ljm −

1

4fα
ptpaR

a
lhmR

h
. j
i
.
t+

1

2α
pap

iR a
ljm −

α+ 1

2α2
papmRlj

i
.
a}Em̄,

R̃(E l̄, Ei)Ej = { 1

4f2α2
ptpa(Rm. h

l
.
aRh. j

i
.
t −Rm. hi.aRh. j l.t)+

1

fα
Rm. j

i
.
l)

+
1

fα2
pa(piRm. j

l
.
a−plRm. ji.a}Em,

R̃(El, Ei)Ej̄ = { 1

2fα
pa(∇lRm. ij. a −∇iRm. lj. a)+

1

2fα
pa(Rh. i

j
.
aA

m

lh −R
h
. l
j
.
aA

m

ih

−fl
f
Rm. i

j
.
a+

fi
f
Rm. l

j
.
a)}Em + {R j

ilm +
1

4fα
ptpa(R t

lhmR
h
. i
j
.
a

−R a
ihmR

h
. l
j
.
t)+

1

α
pap

jR a
l im −

α+ 1

α2
papmRli

j
.
a}Em̄,

R̃(E l̄, Ei)Ej̄ = { 1

2fα
Rm. i

j
.
l+

1

2fα2
pa(plRm. i

j
.
a+piRm. i

l
.
a)+

1

4f2α2
paptR

m
. h

l
.
aRh. i

j
.
t}Em,

R̃(El, Ei)Ej̄ = { −1

2fα
Rm. l

ji
. +

1

2fα2
pa(piRm. l

j
.
a+pjRm. l

i
.
a)− 1

4f2α2
paptR

m
. h

i
.
aRh. l

j
.
t}Em,

R̃(E l̄, Ei)Ej̄ = {α
2 + α+ 1

α3
(gijδlm − gjlδim) +

α+ 2

α3
(gljpipm − gijplpm)

+
α− 1

α3
(δimp

lpj − δlmpipj)}Em̄
with respect to the adapted frame {Eα} (for f = 1, see [1]).

4. Para-Kähler (or paraholomorphic) Norden structures on T ∗M

An almost paracomplex manifold is an almost product manifold (M2k, ϕ), ϕ2 = id,
ϕ 6= ±id, such that the two eigenbundles T+M2k and T−M2k associated to the two
eigenvalues +1 and -1 of ϕ, respectively, have the same rank. Note that the dimension
of an almost paracomplex manifold is necessarily even. An almost paracomplex Norden
manifold (M2k, ϕ, g) is defined to be a real differentiable manifold M2k endowed with
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an almost paracomplex structure ϕ and a Riemannian metric g satisfying Nordenian
property (or purity condition)

g(ϕX, Y ) = g(X,ϕY )

for anyX,Y ∈ =1
0(M2k). The almost paracomplex Norden manifold (M2k, ϕ, g) is called a

paraholomorphic Norden manifold (or a para-Kähler-Norden manifold) such that∇ϕ = 0,
where ∇ is the Levi-Civita connection of g. Also note that ∇ϕ = 0 is equivalent to
paraholomorphy of the metric g [21], i.e Φϕg = 0, where Φϕ is the Tachibana operator
[27]:

(Φϕg)(X,Y, Z) = (ϕX)(g(Y,Z))−X(g(ϕY,Z))

+ g((LY ϕ)X,Z) + g(Y, (LZϕ)X)

for any X,Y, Z ∈ =1
0(M2k).

V. Cruceanu defined in [4] an almost paracomplex structure on T ∗M as follows:

(4.1)
{
J(HX) = −HX,
J(V ω) =V ω

for any X ∈ =1
0 (M) and ω ∈ =0

1 (M). One can easily check that the metric CGgf is
pure with respect to the almost paracomplex structure J . Hence we state the following
theorem.

4.1. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the paracomplex
structure J . Then the triplet (T ∗M,J,CG gf ) is an almost paracomplex Norden manifold.

We now give conditions for the rescaled Cheeger-Gromoll type metric CGgf to be
paraholomorphic with respect to the almost paracomplex structure J . Using definition
of the rescaled Cheeger-Gromoll type metric CGgf and the almost paracomplex structure
J and by using the fact that V ωV (g−1(θ, σ)) = 0 and HXV (fg(Y,Z)) = V (X(fg(Y,Z)))
we calculate

(ΦJ
CGgf )(X̃, Ỹ , Z̃) = (JX̃)(CGgf (Ỹ , Z̃))− X̃(CGgf (JỸ , Z̃))

+ CGgf ((LỸ J)X̃, Z̃) + CGgf (Ỹ , (LZ̃J)X̃)

for all X̃, Ỹ , Z̃ ∈ =1
0(T ∗M). For pairs X̃ =H X,V ω, Ỹ =H Y,V θ and Z̃ =H Z, V σ, we

get

(ΦJ
CGgf )(HX, V θ,HZ) = 2CGgf (V θ,V (p ◦R(X,Z)),(4.2)

(ΦJ
CGgf )(HX,HY, V σ) = 2CGgf (V (p ◦R(X,Y ),V σ)

and the others are zero. Therefore, we have the following result.

4.2. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the paracomplex
structure J . Then the triplet

(
T ∗M,J,CGgf

)
is a para-Kähler-Norden (paraholomorphic

Norden) manifold if and only if (M, g) is flat.

4.3. Remark. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bundle
equipped with the rescaled Cheeger-Gromoll type metric CGgf . The diagonal lift Dγ of
γ ∈ =1

1(M) to T ∗M is defined by the formulas
DγHX = H(γX),
DγV ω = −V (ω ◦ γ)
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for any X ∈ =1
0 (M) and ω ∈ =0

1 (M). The diagonal lift DI of the identity tensor field
I ∈ =1

1(M) has the following properties
DIHX = HX
DIV ω = −V ω

and satisfies (DI)2 = IT∗M . Thus, DI is an almost paracomplex structure. Also,
the rescaled Cheeger-Gromoll type metric CGgf is pure with respect to DI, i.e. the
triplet

(
T ∗M,D I,CGgf

)
is an almost paracomplex Norden manifold. Finally, by using

Φ−operator, we can say that the rescaled Cheeger-Gromoll type metric CGgf is para-
holomorphic with respect to DI if and only if (M, g) is flat.

The following remark follows directly from Proposition 3.3.

4.4. Remark. Let (M, g) be a flat Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf . Then the cotangent
bundle

(
T ∗M,CGgf

)
is unflat.

As is known, the almost paracomplex Norden structure is a specialized Riemannian
almost product structure on a Riemannian manifold. The theory of Riemannian almost
product structures was initiated by K. Yano in [29]. The classification of Riemannian
almost-product structure with respect to their covariant derivatives is described by A.M.
Naveira in [15]. This is the analogue of the classification of almost Hermitian structures
by A. Gray and L. Hervella in [10]. Having in mind these results, M. Staikova and K.
Gribachev obtained a classification of the Riemannian almost product structures, for
which the trace vanishes (see [26]). There are lots of physical applications involving a
Riemannian almost product manifold. Now we shall give some applications for almost
paracomplex Norden structures in context of almost product Riemannian manifolds.

4.1. Let us recall almost product Riemannian manifolds. If an n-dimensional Riemann-
ian manifold M , endowed with a Riemannian metric g, admits a non-trivial tensor field
F of type (1.1) such that

F 2 = I

and

g(FX, Y ) = g(X,FY )

for all X,Y ∈ =1
0(M), then F is called an almost product structure and (M,F, g) is called

an almost product Riemannian manifold. An almost product Riemannian manifold with
integrable almost product F is called a locally product Riemannian manifold. It is known
that the integrability of an almost product structure F is equivalent to the vanishing of
the Nijenhuis tensor NF given by

NF (X,Y ) = [FX,FY ]− F [FX, Y ]− F [X,FY ] + [X,Y ]

for all X,Y ∈ =1
0(M). If F is covariantly constant with respect to the Levi-Civita

connection ∇ of g which is equivalent to ΦF g = 0, then (M,F, g) is called a locally
decomposable Riemannian manifold.

Now consider the almost product structure J defined by (4.1) and the Levi-Civita
connection ∇̃ given by Proposition 3.1. We define a tensor field S̃ of type (1, 2) on T ∗M
by

S̃(X̃, Ỹ ) =
1

2
{(∇̃JỸ J)X̃ + J((∇̃Ỹ J)X̃)− J((∇̃X̃J)Ỹ )}

for all X̃, Ỹ ∈ =1
0(T ∗M). Then the linear connection

(4.3) ∇X̃ Ỹ = ∇̃X̃ Ỹ − S̃(X̃, Ỹ )
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is an almost product connection on T ∗M (for almost product connection, see [12]).

4.5. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost product
structure J . Then the almost product connection ∇ constructed by the Levi-Civita connec-
tion ∇̃ of the rescaled Cheeger-Gromoll type metric CGgf and the almost product structure
J is as follows:

(4.4)



i) ∇ H
HX Y = H(∇XY ) +H (fA(X,Y )),

ii) ∇ V
HX θ = V (∇Xθ),

iii) ∇ H
V ω Y =

3

2fα
H
(
p
(
g−1 ◦R ( ,Y ) ω̃

))
,

iv) ∇ V
V ω θ = − 1

α

(
CGg

(
V ω, γδ

)
V θ + CGgf

(
V θ, γδ

)
V ω
)

+α+1
α

CGg
f

(
V ω, V θ

)
γδ − 1

α
CGg

f

(
V ω, γδ

)
× CGgf

(
V θ, γδ

)
γδ.

Denoting by T the torsion tensor of ∇, we have from (4.1), (4.3) and (4.4)

T (V ω,V θ) = 0,

T (V ω,H Y ) =
3

2fα
H (p (g−1 ◦R ( ,Y ) ω̃

))
,

T (HX,H Y ) = −V (p ◦R(X,Y )).

Hence we have the theorem below.

4.6. Theorem. Let (M, g) be a Riemannian manifold and let T ∗M be its cotangent
bundle. Then the almost product connection ∇ constructed by the Levi-Civita connection
∇̃ of the rescaled Cheeger-Gromoll type metric CGgf and the almost product structure J
is symmetric if and only if (M, g) is flat.

As is well-known, if there exists a symmetric almost product connection on M then
the almost product structure J is integrable [12]. The converse is also true [6]. Thus we
get the following conclusion.

4.7. Corollary. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bundle
equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost product
structure J . Then the triplet (T ∗M,J,CG gf ) is a locally product Riemannian manifold if
and only if (M, g) is flat.

Similarly, let us consider the almost product structure DI and the Levi-Civita con-
nection ∇̃ of the rescaled Cheeger-Gromoll type metric CGgf . Another almost product
connection can be constructed.

If J is covariantly constant with respect to the Levi-Civita connection ∇̃ of the
rescaled Cheeger-Gromoll type metric CGgf which is equivalent to Φ CG

J gf = 0, then
(T ∗M,J,CG gf ) is called a locally decomposable Riemannian manifold. In view of Theo-
rem 4.2, we have the following.

4.8. Corollary. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bun-
dle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost product
structure J . Then the triplet (T ∗M,J,CG gf ) is a locally decomposable Riemannian man-
ifold if and only if (M, g) is flat.

4.2. Let (M2k, ϕ, g) be a non-integrable almost paracomplex manifold with a Norden
metric. An almost paracomplex Norden manifold (M2k, ϕ, g) is a quasi-para-Kähler–
Norden manifold, if σ

X,Y,Z
g((∇Xϕ)Y,Z) = 0, where σ is the cyclic sum by three argu-

ments [13]. In [24], the authors proved that σ
X,Y,Z

g((∇Xϕ)Y,Z) = 0 is equivalent to
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σ
X,Y,Z

(Φϕg)(X,Y, Z) = 0. We compute

A(X̃, Ỹ , Z̃) = σ
X̃,Ỹ ,Z̃

(ΦJ
CGgf )(X̃, Ỹ , Z̃)

for all X̃, Ỹ , Z̃ ∈ =1
0(T ∗M). By means of (4.2), we have A(X̃, Ỹ , Z̃) = 0 for all X̃, Ỹ , Z̃ ∈

=1
0(T ∗M). Hence we state the following theorem.

4.9. Theorem. Let (M, g) be a Riemannian manifold and T ∗M be its cotangent bundle
equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost paracomplex
structure J defined by (4.1). Then the triplet (T ∗M,J,CG gf ) is a quasi-para-Kähler–
Norden manifold.

O. Gil-Medrano and A.M. Naveira proved that both distributions of the almost prod-
uct structure on the Riemannian manifold (M,ϕ, g) are totally geodesic if and only if
σ

X,Y,Z
g((∇Xϕ)Y,Z) = 0 for any X,Y, Z ∈ =1

0(M) [9]. As a consequence of Theorem 4.9,

we have the following.

4.10. Corollary. Both distributions of the almost product Riemannian manifold (T ∗M,
J,CG gf ) are totally geodesic.

4.3. Let F be an almost product structure and ∇ be a linear connection on an n-
dimensional Riemannian manifold M. The product conjugate connection ∇(F ) of ∇ is
defined by

∇(F )
X Y = F (∇XFY )

for all X,Y ∈ =1
0(M). If (M,F, g) is an almost product Riemannian manifold, then

(∇(F )
X g)(FY, FZ) = (∇Xg)(Y,Z), i.e. ∇ is a metric connection with respect to g if and

only if ∇(F ) is so. From this, we can say that if ∇ is the Levi-Civita connection of g,
then ∇(F ) is a metric connection with respect to g [2].

By the almost product structure J defined by (4.1) and the Levi-Civita connection ∇̃
given by Proposition 3.1, we write the product conjugate connection ∇̃(J) of ∇̃ as follows:

∇̃(J)

X̃
Ỹ = J(∇̃X̃JỸ )

for all X̃, Ỹ ∈ =1
0(T ∗M). Also note that ∇̃(J) is a metric connection of the rescaled

Cheeger-Gromoll type metric CGgf . The standart calculations give the following theorem.

4.11. Theorem. Let (M, g) be a Riemannian manifold and let T ∗M be its cotangent
bundle equipped with the rescaled Cheeger-Gromoll type metric CGgf and the almost prod-
uct structure J. Then the product conjugate connection (or metric connection) ∇̃(J) is as
follows:

i) ∇̃HX
HY = H

(
∇XY +f A(X,Y )

)
− 1

2
V (p ◦R (X,Y )) ,

ii) ∇̃HX
V θ = − 1

2fα
H
(
p
(
g−1 ◦R ( , X) θ̃

))
+V (∇Xθ) ,

iii) ∇̃V ω
HY = 1

2fα
H
(
p
(
g−1 ◦R ( ,Y ) ω̃

))
,

iv) ∇̃V ω
V θ = − 1

α

(
CGg

(
V ω, γδ

)
V θ + CGgf

(
V θ, γδ

)
V ω
)

+α+1
α

CGgf
(
V ω, V θ

)
γδ − 1

α
CGgf

(
V ω, γδ

)
CGg

f

(
V θ, γδ

)
γδ.

The relationship between curvature tensors R∇ and R∇(F ) of the connections ∇ and
∇(F ) is as follows: R∇(F )(X,Y, Z) = F (R∇(X,Y, FZ) for all X,Y, Z ∈ =1

0(M) [2]. By
means of the almost product structure J defined by (4.1) and Proposition 3.3, from
R̃∇̃(J)(X̃, Ỹ , Z̃) = J(R̃∇̃(X̃, Ỹ , JZ̃), components of the curvature tensor R̃∇̃(J) of the
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product conjugate connection (or metric connection) ∇̃(J) can easily be computed. Fi-
nally, using the almost product structure DI, another metric connection of the rescaled
Cheeger-Gromoll type metric CGgf can be constructed.

Acknowledgement. The authors are thankful to the anonymous referees for the valu-
able suggestions towards the improvement of this manuscript.
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1. Introduction
We consider the following initial boundary value problem

(1.1) utt − α∆u− β∆ut − γ∆utt = f(u)

(1.2) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(1.3) u = 0, x ∈ ∂Ω, t > 0,

where Ω ⊂ Rn is bounded region with smooth boundary ∂Ω; α,β and γ are positive
constants. f(u) is a given nonlinear function which satisfies

(1.4) f ∈ C1 (R) ,
∣∣f ′ (u)

∣∣ ≤ c (1 + |u|p−1) , p ≥ 1, (n− 2) p ≤ n
and

(1.5) lim sup
u→∞

f (u)

u
< αλ1

where λ1 is the first eigenvalue of the Laplace operator with the homogeneous Dirichlet
boundary condition.

Continuous dependence of solutions on coefficients of equations is a type of structural
stability, which reflects the effect of small changes in coefficients of equations on the
solutions. Many results of this type can be found in [1].
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In [2], authors studied asymptotic behaviour of solution to initial value problem of
fourth order wave equation with dispersive and dissipative terms by taking coefficients
α = β = γ = 1 in (1). They proved that the global strong solution of the problem decays
to zero exponentially as t→∞. The authors Guo-wang Chen and Chang-Shun Hou, in
article [3], studied the following initial value problem for a class of fourth order nonlinear
wave equations,

vtt − a1vxx − a2vxxt − a3vxxtt = f(vx)x , x ∈ R, t > 0

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ R
where a1, a2, a3 are positive constants. They gave also the blow up results for this prob-
lem.

In [4], Shang studied the initial boundary value problem

(1’) utt −∆u−∆ut −∆utt = f(u), x ∈ Ω, t > 0

(2’) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω

(3’) u = 0, x ∈ ∂Ω, t > 0,

Under the assumptions that n = 1, 2, 3; f ∈ C1, f ′(u) is bounded above and satisfies
(i) |f ′(u)| ≤ A |u|p + B, 0 < p < ∞ if n = 2; 0 < p ≤ 2

n−2
if n = 3;ui(x) ∈

H2 (Ω) ∩ H1
0 (Ω) (i = 0, 1), it was proven that problem (1’)-(3’) admits unique global

strong solution u such that ∀T > 0, u ∈W 2,∞ (0, T ;H2 (Ω) ∩H1
0 (Ω)

)
.

In [5], problem (1’)-(3’) were studied again for all n ≥ 1. By supposing that f ∈ C1

and f ′(u) is bounded above satisfying (ii)|f ′(u)| ≤ A |u|p + B, 0 < p < ∞ if n =
2; 0 < p ≤ 4

n−2
if n ≥ 3, ui(x) ∈ H2 (Ω) ∩ H1

0 (Ω) (i = 0, 1), it was proven that
problem (1’)-(3’) admits unique global strong solution u such that for all T > 0, u ∈
W 2,∞ (0, T ;H2 (Ω) ∩H1

0 (Ω)
)
.

In [6], authors studied the spatial behavior of a coupled system of wave-plate type .
They got the alternative results of Phragmen-Lindelof type in terms of an area measure
of the amplitude in question based on a first-order differential inequality. They also got
the spatial decay estimates based on a second-order differential inequality.

The aim of this paper is to prove the continuous dependence of solutions to the problem
(1)-(3) on coefficients α, β and γ.

Throughout this paper , we use the notation ‖.‖p for the norm in LP (Ω). We use ‖.‖
instead of ‖.‖2.

2. A Priori Estimates
In this section, we obtain a priori estimates for the problem (1)-(3).

2.1. Theorem. Assume that the conditions (4) and (5) hold. Then for u0, u1 ∈ H1
0 (Ω)

the solution u of problem (1)-(3) satisfies the following estimates:

(2.1) ‖∇u‖2 + ‖∇ut‖2 ≤ D1

and

(2.2)
t∫

0

‖∇uss‖2 ds ≤ D2t

for any t > 0. Here D1 > 0 and D2 > 0 depend on initial data and the parameters of
(1).
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Proof. First, by taking the inner product of (1) by ut in L2(Ω) and integrating by
parts, we get

(2.3)
d

dt

1

2
‖ut‖2 +

α

2
‖∇u‖2 +

γ

2
‖∇ut‖2 −

∫
Ω

F (u)dx

+ β ‖∇ut‖2 = 0

and

(2.4) E(t) ≤ E(0)

where F (u) =
u∫
0

f (s) ds and E(t) = 1
2
‖ut‖2 + α

2
‖∇u‖2 + γ

2
‖∇ut‖2 −

∫
Ω

F (u)dx. From

(5) and definition of limsup we obtain

(2.5) F (u) ≤ c+
αλ1

2
u2 − ε

2
u2

Using (10) and Poincare’s inequality from (9) we find (6).
Next we multiply (1) by utt in L2(Ω) to get

(2.6)
d

dt

β

2
‖∇ut‖2 + γ ‖∇utt‖2 + ‖utt‖2 + α

∫
Ω

∇u∇uttdx =

∫
Ω

f(u)uttdx

Using Cauchy-Schwarz inequality, ε-Cauchy inequality and from (4), we take,

(2.7) (γ − ε

2
) ‖∇utt‖2 +

d

dt

β

2
‖∇ut‖2 ≤ c2 +

|α|2

2ε
‖∇u‖2 +

c21
2

∫
Ω

|u|2p dx

where c1, c2 are constants and ε is sufficiently small and positive. Using Sobolev inequality
and (6) we have

(2.8)
∫
Ω

|u|2p dx = ‖u‖2p2p ≤ c3 ‖∇u‖
2p ≤ c4

where c3 is a Sobolev constant and c4 = c4(α, γ, u0, u1). From (12) and (13) we obtain

(2.9) (γ − ε

2
) ‖∇utt‖2 +

d

dt

β

2
‖∇ut‖2 ≤ c5

where c5 depends on initial data and the parameters of (1). Now, we integrate (14) from
(0,t), then we obtain

(2.10)
t∫

0

‖∇uss‖2 ds ≤ c6t

where c6 depends on initial data and the parameters of (1). Hence, (7) follows from (15).

3. Continuous Dependence on the Coefficients
In this section, we prove that the solution of the problem (1)-(3) depends continuously

on the coefficients α, β and γ in H1(Ω).
We consider the problem

(3.1) utt − α1∆u− β1∆ut − γ1∆utt = f(u)

(3.2) u(x, 0) = 0, ut(x, 0) = 0

(3.3) u|∂Ω = 0

and

(3.4) vtt − α2∆v − β2∆vt − γ2∆vtt = f(v)
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(3.5) v(x, 0) = 0, vt(x, 0) = 0

(3.6) v|∂Ω = 0

Let us define the difference variables w, α, β and γ by w=u-v, α = α1−α2 , β = β1−β2

and γ = γ1 − γ2 then w satisfy the following the initial boundary value problem:

(3.7) wtt − α1∆w − α∆v − β1∆wt − β∆vt − γ1∆wtt − γ∆vtt = f(u)− f(v)

(3.8) w(x, 0) = 0, wt(x, 0) = 0

(3.9) w|∂Ω = 0

The main result of this section is the following theorem.

3.1. Theorem. Let w be the solution of the problem (22)-(24). If

(3.10) |f(u)− f(v)| ≤ c7
(
1 + |u|p−1 + |v|p−1) |u− v|

holds, then w satisfies the estimate

‖wt‖2 + ‖∇w‖2 + ‖∇wt‖2 ≤ eMtK
[
(α1 − α2)2 + (β1 − β2)2 + (γ1 − γ2)2] t

where M and K are positive constants depending on initial data and the parameters of
(1).

Proof. Let us take the inner product of (22) with wt in L2(Ω); we have

d

dt

[
1

2
‖wt‖2 +

α1

2
‖∇w‖2 +

γ1

2
‖∇wt‖2

]
+ β1 ‖∇wt‖2 +

(3.11) α

∫
Ω

∇v∇wtdx+ β

∫
Ω

∇vt∇wtdx+ γ

∫
Ω

∇vtt∇wtdx =

∫
Ω

|f(u)− f(v)|wtdx

From (26) we obtain
d

dt
E1(t) + β1 ‖∇wt‖2 ≤ |α| ‖∇wt‖ ‖∇v‖+ |β| ‖∇wt‖ ‖∇vt‖+

(3.12) |γ| ‖∇wt‖ ‖∇vtt‖+

∫
Ω

|f(u)− f(v)|wtdx

where E1(t) = 1
2
‖wt‖2 + α1

2
‖∇w‖2 + γ1

2
‖∇wt‖2.

Using the Holder, Sobolev, Cauchy-Schwarz inequalities and (25) we obtain the estimate∫
Ω

|f(u)− f(v)|wtdx ≤ c7
∫
Ω

(
1 + |u|p−1 + |v|p−1) |w|wtdx

≤ c8
(
1 + ‖∇u‖p−1 + ‖∇v‖p−1) ‖w‖ 2n

n−2
‖wt‖

(3.13) ≤ C
(
‖∇w‖2 + ‖wt‖2

)
where c7, c8 are constants and C = C(c7, c8).Using Cauchy-Schwarz inequality and (28),
from (27), we get

d

dt
E1(t) + (β1 − ε) ‖∇wt‖2 ≤

3

4ε
|α|2 ‖∇v‖2 +

3

4ε
|β|2 ‖∇vt‖2 +

(3.14)
3

4ε
|γ|2 ‖∇vtt‖2 + c9

(
‖∇w‖2 + ‖wt‖2

)
and from (29) we can write

(3.15)
d

dt
E1(t) ≤ 3

4ε

(
|α|2 ‖∇v‖2 + |β|2 ‖∇vt‖2 + |γ|2 ‖∇vtt‖2

)
+ME1(t)

where M = 2C(1+α1)
α1

. Applying Gronwall’s inequality with (6) and (7), we get

(3.16) E1(t) ≤ eMtK
(
|α|2 + |β|2 + |γ|2

)
t
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Hence proof is completed.
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Null controllability of heat equation with switching
controls under Robin’s boundary condition
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Abstract
In this paper, we consider the null controllability of 1-d heat equation
endowed with Robin’s boundary conditions, when the operator − d2

dx2

has positive eigenvalues and try to find sufficient conditions for build-
ing switching controls. In [1], the author developed a first analysis of
this problem with Dirichlet’s boundary conditions and obtain sufficient
conditions for switching controls. We firstly consider 1-d heat system
endowed with two controls. Then we try to build switching control
strategies guaranteeing that, at each instant of time, only one control
is activated.
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switching control.
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1. Introduction
First of all, we define the general problem of controllability in PDEs. Meanly, it

consists in investigating whether the solution of the PDE can be driven to a given final
target by means of a control. More precisely, the controllability problem may be defined
as follows. Consider an evolution system with given a time interval t ∈ (0, T ), initial
and final states. We try to find a suitable control such that the solution matches both
the initial state at time t = 0 and the final one at time t = T . This is a type of
exact controllability problem. There are other type of controllability problems beside
that exact one. For instance, when the final target is achieved to zero, then the system
is null controllable or when the set of reachable states (set of final targets) is dense
in the space where the evolution system is satisfied, then the system is approximate
controllable. These different concepts coincide in finite dimensional space. Because, in
finite-dimensional space the only close affine dense subspace is the whole space itself.
But this is no longer the case in the context of PDE. Indeed, in infinite- dimensional

∗Department of Mathematics, Middle East Technical University, Ankara/Turkey.
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spaces we can easily find strict dense subspaces, while in finite-dimension they do not
exist. These are classical problems in control theory and there is a large literature on the
topic. We refer for instance to the book by Lee and Marcus [8] for an introduction in
the context of finite-dimensional systems. We also refer to the survey article by Russell
[5], the articles by Zuazua [3, 4] and to the SIAM Review article and the book of Lions
[6, 7] for an introduction to the controllability of PDE, also referred to as Distributed
Parameter Systems.

This paper deals with some of new results in null controllability of 1-d heat equation
with switching controls under Robin’s boundary condition. We firstly consider the 1-d
heat equation endowed with two boundary controls and lumped controls under Robin’s
boundary condition, when the operator − d2

dx2
has positive eigenvalues respectively, and

then we will obtain sufficient conditions for building switching controls. To do this
we introduce a new functional based on the adjoint system whose minimizers yield the
switching controls. We show that, due to the time analyticity of solutions, under suitable
conditions on the location of the controllers, switching control strategies exist in the 1-d
heat equation under Robin’s boundary condition.

2. Boundary Controls
Consider the heat equation in the space interval (0, 1) with two controls located at

the extremes x = 0, 1 and satisfying Robin’s boundary condition (RBC)

(2.1)


yt − yxx = 0, 0 < x < 1, 0 < t < T,

yx(0, t)− a0y(0, t) = u0(t), 0 < t < T,

yx(1, t) + a1y(1, t) = u1(t), 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1.

We consider the problem of null controllability. More precisely, given an initial datum
y0 ∈ L2(0, 1) we look for controls u0(t), u1(t) ∈ L2(0, T ) such that y(x, T ) = 0 and
satisfying switching property

(2.2) u0(t)u1(t) = 0, a.e. t ∈ (0, T ).

It is worth to mention the fact that whenever a system is controllable, the control can
be constructed by minimizing a suitable quadratic functional defined on the class of so-
lutions of the adjoint system (see e.g. [1], [3], [4]).

For ϕ0 in L2(0, 1), we consider the solution ϕ : [0, 1] × [0, T ] → C([0, T ], L2(0, 1)), of
the following backward Cauchy linear problem†

(2.3)


ϕt + ϕxx = 0, 0 < x < 1, 0 < t < T,

ϕx(0, t)− a0ϕ(0, t) = 0, 0 < t < T,

ϕx(1, t) + a1ϕ(1, t) = 0, 0 < t < T,

ϕ(x, T ) = ϕ0(x), 0 < x < 1.

This linear system is called the adjoint system corresponding to the 1-d heat equation
with Robin’s boundary condition. We know that (see e.g. [2]) the Fourier representation
of solutions of the adjoint system with positive eigenvalues are of the form:

(2.4) ϕ(x, t) =
∑
k≥1

βke
µ2
k(t−T )ωk(x)

†The class of solutions ϕ of backward Cauchy linear problem is class of smoother functions.
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where

(2.5) ωk(x) = cosµkx+
a0
µk

sinµkx.

Now, for obtaining switching controls, we consider the following quadratic functional
(see, e.g. [1]),

(2.6) Jαs (ϕ
0) =

1

2

∫ T

0

max
{
|ϕ(0, t)|2, |αϕ(1, t)|2

}
dt+

∫ 1

0

y0(x)ϕ(x, 0)dx

where α ∈ R and minimize (2.6) over the class H of initial data given by

H = {ϕ0 :

∫ T

0

[
|ϕ(0, t)|2 + |ϕ(1, t)|2

]
dt <∞}

where ϕ(x, t) is the solution of the adjoint system (2.3) associated to the final state ϕ0.
This space endowed with the canonical norm

||ϕ0||H =
[ ∫ T

0

|ϕ(0, t)|2 + |ϕ(1, t)|2dt
] 1

2
.

constitutes a Hilbert space. Let us analyse the positivity of the norm ||ϕ0||H in space H.
Here we will use (2.4), (2.5) as a Fourier representation of the solution of (2.3). Therefore
we have

(2.7)
∫ T

0

|ϕ(0, t)|2 + |ϕ(1, t)|2dt ≥
∫ T

0

|ϕ(0, t)|2dt =
∫ T

0

∣∣∣∑
k≥1

βke
µ2
k(t−T )

∣∣∣2dt
Observe that

||ϕ(x, 0)||2L2(0,1) =

∫ 1

0

ϕ2(x, 0)dx =

∫ 1

0

∣∣∣∑
k≥1

βke
−µ2

kTωk(x)
∣∣∣2dx

≤ C
∑
k≥1

β2
ke
−2k2T(2.8)

where C > 0, which is independent from {βk}k≥1.
Now, we will give very important lemma on families of real exponentials. This lemma is
known as estimates on families of real exponentials (see, e.g. [1],[4]).

2.1. Lemma. In our case, it is guaranteed that∫ T

0

∣∣∣∑
k≥1

βke
k2(t−T )

∣∣∣2dt ≥ c1∑
k≥1

e−2k2Tβ2
k

for suitable positive constants c1 > 0 which is independent from {βk}k≥1.

By using Lemma 2.1 in (2.7) and comparing with inequality (2.8), we will have the
following observability inequality:

(2.9) ||ϕ(x, 0)||2L2(0,1) ≤ Ĉ
∫ T

0

|ϕ(0, t)|2 + |ϕ(1, t)|2dt

for positive constant Ĉ > 0 which is independent from {βk}k≥1.
The functional Jαs : H −→ R is well defined, continuous, and strictly convex.‡ For
checking the coercivity property, one should prove that

lim
||ϕ0||

L2(0,1)
→∞

Jαs (ϕ
0)

||ϕ0||L2(0,1)

≥ ε.

‡This comes from the observability inequality (2.9)
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For this to be true, the unique continuation property of the adjoint system (2.3) suffices
(see e.g. [1]). Namely,

(2.10) µ{t ∈ (0, T ) : |ϕ(0, t)| = |ϕ(1, t)|} > 0⇒ ϕ ≡ 0.

2.2. Lemma. Assume that

(2.11) |α| 6=
[µ2

k + a21
µ2
k + a20

] 1
2
, ∀k ≥ 1,

holds. Then, (2.10) satisfy for solution of the adjoint system (2.3).

Proof. Firstly, assume that µ{t ∈ (0, T ) : |ϕ(0, t)| = |ϕ(1, t)|} > 0. We show that under
the assumption of (2.11), we have ϕ ≡ 0. We know that (see e.g. [2]) positive eigenvalues
{µk}k≥1 of adjoint system (2.3) satisfy eigenvalue equation:

(2.12) tan(µk) =
(a0 + a1)µk
µ2
k − a0a1

and also we would have

(k − 1)π < µk < kπ and lim
k→∞

µk − (k − 1)π = 0, (k = 1, 2, 3, 4, ...).

Now assume that µ(I) > 0, using again the Fourier representation of solution (2.4) of
(2.3), we have

ϕ(0, t)± αϕ(1, t) =
∑
k≥1

βke
µ2
k(t−T )(1± α(cosµk +

a0
µk

sinµk)).

The function ϕ(0, t) ± αϕ(1, t) is time analytic for t ≤ T . Consequently, if they vanish
for a set of time instants of positive measure, then they vanish for all t ≤ T . It is then
easy to see, by multiplying above identity by the real exponentials e−η

2(t−T ) successively,
starting from η = 1 and taking limits as t→ −∞ that

βk(1± α(cosµk +
a0
µk

sinµk)) = 0, ∀k ≥ 1.

To conclude that βk = 0 for all k ≥ 1, it is sufficient to have that

(2.13) 1± α(cosµk +
a0
µk

sinµk) 6= 0

Assume the converse of (2.13), then we have

α(cosµk +
a0
µk

sinµk)± 1 = 0 ⇐⇒ [α(cosµk +
a0
µk

sinµk)]
2 = 1

⇐⇒ α2(1 + 2
a0
µk

tanµk +
a20
µ2
k

tan2 µk) = 1 + tan2 µk

Now using eigenvalue equation (2.12) and after some simplification, finally we obtain the
following

α2(µ2
k + a20) = (µ2

k + a21).

Therefore to obtain the unique continuation property, it is suffice to assume that

|α| 6=
[µ2

k + a21
µ2
k + a20

] 1
2
, ∀k ≥ 1.

�
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Therefore, by using Lemma 2.2, we have that Jαs admits an unique minimizer ϕ̂0 ∈ H.
As a result, by using variational approach, we find our switching controls:

u0(t) = −ϕ̂(0, t)1S0 , u1(t) = α2ϕ̂(1, t)1S1 for t ∈ (0, T )(2.14)

where

S0 = {t ∈ (0, T ) : |ϕ(0, t)| > |αϕ(1, t)|}
S1 = {t ∈ (0, T ) : |αϕ(1, t)| > |ϕ(0, t)|}.

At the end, we obtain the following new result

2.3. Theorem. Given 1-d heat equation (2.1) under Robin’s boundary condition, when
the operator − d2

dx2
has positive eigenvalues, to obtain null controls that satisfying switching

property (2.2), it is sufficient to assume that α satisfies the following relation

|α| 6=
[µ2

k + a21
µ2
k + a20

] 1
2
, ∀k ≥ 1.

3. Lumped Controls
Let f0(x) and f1(x) be control profiles in L2(0, 1). Consider the following heat equation

(3.1)


yt − yxx = u0(t)f0(x) + u1(t)f1(x), 0 < x < 1, 0 < t < T,

yx(0, t)− a0y(0, t) = 0, 0 < t < T,

yx(1, t) + a1y(1, t) = 0, 0 < t < T,

y(x, 0) = y0(x), 0 < x < 1.

Here, we would consider the same problem, i.e., given an initial datum y0 ∈ L2(0, 1)
we are looking for controls u0(t), u1(t) ∈ L2(0, T ) such that null controllability of heat
equation holds, i.e, y(x, T ) = 0 and switching condition satisfies:

(3.2) u0(t)u1(t) = 0, a.e. t ∈ (0, T )

The null control of 1-d heat equation may be computed by minimizing the quadratic
functional (see e.g. [1]),

Ĵs(ϕ
0) =

1

2

∫ T

0

max
[∣∣∣ ∫ 1

0

f0(x)ϕ(x, t)dx
∣∣∣2, ∣∣∣ ∫ 1

0

f1(x)ϕ(x, t)dx
∣∣∣2]dt

–
∫ T

0

y0(x)ϕ(x, 0)dx

over the class H̃ of initial data given by

H̃ = {ϕ0 :

∫ T

0

[∣∣∣ ∫ 1

0

f0(x)ϕ(x, t)dx
∣∣∣2 + ∣∣∣ ∫ 1

0

f1(x)ϕ(x, t)dx
∣∣∣2]dt <∞}

which endowed with the canonical norm

||ϕ0||2
H̃

=

∫ T

0

[∣∣∣ ∫ 1

0

f0(x)ϕ(x, t)dx
∣∣∣2 + ∣∣∣ ∫ 1

0

f1(x)ϕ(x, t)dx
∣∣∣2]dt

At first, we will show that || · ||H̃ actually defines norm on H̃. For this, it is enough to
show the positivity of || · ||H̃. Observe that

||ϕ0||2
H̃

=

∫ T

0

[∣∣∣∑
k≥1

βke
µ2
k(t−T )f0,k

∣∣∣2 + ∣∣∣∑
k≥1

βke
µ2
k(tT )f1,k

∣∣∣2]dt
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where

f0(x) =
∑
k≥1

f0,kωk(x), f1(x) =
∑
k≥1

f1,kωk(x),

and using Lemma 2.1, we then get the following weighted observability inequality

(3.3) ||ϕ0||2
H̃
≥ c1

∑
k≥1

e−2µ2
kT
[
|f0,k|2 + |f1,k|2

]
β2
k

where positive constant c1 is independent from {βk}k≥1.

In addition, since (3.1) is well posed, the functional Ĵ(ϕ0) is obviously continuous in H̃,
the convexity (strictly) of Ĵ(ϕ0) comes from the weighted observability inequality (3.3).
As we know that (see e.g. [3]) null controllability in time T implies (finite) approximate
controllability in time T . This comes form the fact that all the range of the semi-group
generated by the heat equation is reachable. Therefore, we first prove the approximate
controllability of the heat system in time T under some conditions. For this, we will con-
struct the new functional very similar with previous one Ĵs and with the same coercivity
property, allows building approximate controllers: for any ε > 0 and any y1 ∈ L2(0, 1)

Ĵε(ϕ
0) =

1

2

∫ T

0

max
[∣∣∣ ∫ 1

0

f0(x)ϕdx
∣∣∣2, ∣∣∣ ∫ 1

0

f1(x)ϕdx
∣∣∣2]dt

+ ε||(I − πE)ϕ0||L2(0,1) +

∫ 1

0

ϕ0y1dx−
∫ 1

0

y0(x)ϕ(x, 0)dx

where E is finite dimensional subspace of L2(0, 1) and πE denotes the ortogonal projection
from L2(0, 1) over E.

Our aim is to build approximate lumped controls that satisfy switching property (3.2).
In other words, given ε > 0, we try to find (finite) approximate controls uε0 and uε1 such
that the solution yε of heat equation satisfies the condition

||yε(x, T )||L2(0,1) ≤ ε.

3.1. Lemma. Assume that the following unique continuation property

(3.4) µ
{
t ∈ (0, T ) :

∣∣∣ ∫ 1

0

f0(x)ϕ(x, t)dx
∣∣∣ = ∣∣∣ ∫ 1

0

f1(x)ϕ(x, t)dx
∣∣∣} > 0⇒ ϕ ≡ 0.

holds. Then the heat system (3.1) is approximate controllable.

For the proof of Lemma 3.1, one should first prove that the functional Ĵε is coercive in
H̃ which directly comes from the assumption (3.4) and at the end, by using variational
approach, one could easily get approximate controls for (3.1) (see e.g. [3]). Therefore,
from Lemma 3.1, to get approximate controls, we should prove (3.4). Using (2.4), we
have ∫ 1

0

f0(x)ϕ(x, t)dx±
∫ 1

0

f1(x)ϕ(x, t)dx =
∑
k≥1

βke
µ2
k(t−T )(f1,k ± f0,k).

The function
∫ 1

0
ϕ(x, t)(f0(x) ± f1(x))dx is time analytic for t ≤ T . Consequently, if

they vanish for a set of time instants of positive measure, then they vanish for all t ≤ T .
It is then easy to see, by multiplying above identity by the real exponentials e−η

2(t−T )

successively, starting from η = 1 and taking limits as t→ −∞, that

βk(f1,k ± f0,k) = 0, ∀k ≥ 1.

To conclude that βk = 0 for all k ≥ 1, it is sufficient to assume that

(3.5) f1,k ± f0,k 6= 0 ∀k ≥ 1.
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Therefore under the condition (3.5), our functional Ĵε admits an unique minimizer ϕ̂0 ∈
H̃. For every ε > 0, by using variational approach, we will obtain approximate switching
controls. We would like to say that for each ε > 0, we must have the fact that uε0(t) and
uε1(t) are uniformly bounded in L2(0, T ). But under the condition on Fourier coefficients
of the initial datum y0

(3.6)
∑
k≥1

e2µ
2
kT

|f1,k|2 + |f2,k|2
|y0k|2 <∞

being satisfied, by using weighted observability inequality (3.3) one could easily prove
that uε0(t) and uε1(t) are uniformly bounded in L2(0, T ). Hence at the end, by using
variational approach we obtain the following switching controls

u0(t) = −
∫ 1

0

f0(x)ϕ̂(x, t)dx, u1(t) = 0, in S0(3.7)

u1(t) = −
∫ 1

0

f1(x)ϕ̂(x, t)dx, u0(t) = 0, in S1(3.8)

where

S0 = {t ∈ (0, T ) :
∣∣∣ ∫ 1

0

f0(x)ϕ̂(x, t)dx
∣∣∣ > ∣∣∣ ∫ 1

0

f1(x)ϕ̂(x, t)dx
∣∣∣}

S1 = {t ∈ (0, T ) :
∣∣∣ ∫ 1

0

f1(x)ϕ̂(x, t)dx
∣∣∣ > ∣∣∣ ∫ 1

0

f0(x)ϕ̂(x, t)dx
∣∣∣}.

In conclusion, we obtain the following new result

3.2. Theorem. Assume that f0(x) and f1(x) are two control profiles in L2(0, 1) and
their Fourier coefficients satisfying (3.5). Let Fourier coefficients of the initial datum y0

satisfy (3.6). Then, for all T > 0, there exist switching controls (3.7) and (3.8) satisfying
our switching condition (3.2) and solution of (3.1) satisfies

y(x, T ) = 0,

i.e, null controllability is satisfied.

Acknowledgements. The author wishes to thank anonymous referee for inspiring
comments.
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1. Introduction
Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers and

a, b ∈ I with a < b. The following double inequality is well known in the literature as
Hermite-Hadamard integral inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫
a

f(x)dx ≤ f(a) + f(b)

2
.

The class of (α,m)-convex functions was first introduced In [8], and it is defined as
follows:

1.1. Definition. The function f : [0, b]→ R, b > 0, is said to be (α,m)-convex where
(α,m) ∈ [0, 1]2, if we have

f (tx+m(1− t)y) ≤ tαf(x) +m(1− tα)f(y)

for all x, y ∈ [0, b] and t ∈ [0, 1].
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It can be easily that for (α,m) ∈ {(0, 0), (α, 0), (1, 0), (1,m), (1, 1), (α, 1)} one obtains
the following classes of functions: increasing, α-starshaped, starshaped, m-convex, con-
vex, α-convex.

Denote by Kα
m(b) the set of all (α,m)-convex functions on [0, b] for which

f(0) ≤ 0. For recent results and generalizations concerning (α,m)-convex functions
(see [2, 4, 5, 6, 8, 9, 10, 11, 12] ).

In [7], the author gave definition of harmonically convex functions and established
some Hermite-Hadamard type inequalities for harmonically convex functions as follows:

1.2. Definition. Let I ⊂ R\ {0} be a real interval. A function f : I → R is said to be
harmonically convex, if

(1.2) f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.2) is reversed, then f is said to be
harmonically concave.

1.3. Theorem. Let f : I ⊂ R\ {0} → R be a harmonically convex function and a, b ∈ I
with a < b. If f ∈ L[a, b] then the following inequalities hold

(1.3) f

(
2ab

a+ b

)
≤ ab

b− a

b∫
a

f(x)

x2
dx ≤ f(a) + f(b)

2
.

The above inequalities are sharp.

1.4. Theorem. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with
a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q ≥ 1, then∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣(1.4)

≤ ab (b− a)

2
λ
1− 1

q

1

[
λ2

∣∣f ′ (a)
∣∣q + λ3

∣∣f ′ (b)∣∣q] 1
q ,

where

λ1 =
1

ab
− 2

(b− a)2
ln

(
(a+ b)2

4ab

)
,

λ2 =
−1

b (b− a)
+

3a+ b

(b− a)3
ln

(
(a+ b)2

4ab

)
,

λ3 =
1

a (b− a)
− 3b+ a

(b− a)3
ln

(
(a+ b)2

4ab

)
= λ1 − λ2.

1.5. Theorem. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with
a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q > 1, 1

p
+ 1
q

= 1, then∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣(1.5)

≤ ab (b− a)

2

(
1

p+ 1

) 1
p (
µ1

∣∣f ′ (a)
∣∣q + µ2

∣∣f ′ (b)∣∣q) 1
q ,
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where

µ1 =

[
a2−2q + b1−2q [(b− a) (1− 2q)− a]

]
2 (b− a)2 (1− q) (1− 2q)

,

µ2 =

[
b2−2q − a1−2q [(b− a) (1− 2q) + b]

]
2 (b− a)2 (1− q) (1− 2q)

.

In [7], the author gave the following identity for differentiable functions.

1.6. Lemma. Let f : I ⊂ R\ {0} → R be a differentiable function on I◦ and a, b ∈ I
with a < b. If f ′ ∈ L[a, b] then

f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

=
ab (b− a)

2

1∫
0

1− 2t

(tb+ (1− t)a)2
f ′
(

ab

tb+ (1− t)a

)
dt.

The main purpose of this paper is to introduce the concept of harmonically (α,m)-
convex functions and establish some new Hermite-Hadamard type inequalities for these
classes of functions.

2. Main Results
2.1. Definition. The function f : (0, b∗] → R, b∗ > 0, is said to be harmonically
(α,m)-convex, where α ∈ [0, 1] and m ∈ (0, 1], if

(2.1) f

(
mxy

mty + (1− t)x

)
= f

((
t

x
+

1− t
my

)−1
)
≤ tαf(x) +m(1− tα)f(y)

for all x, y ∈ (0, b∗] and t ∈ [0, 1]. If the inequality in (2.1) is reversed, then f is said to
be harmonically (α,m)-concave.

2.2. Remark. When m = α = 1, the harmonically (α,m)-convex (concave) function
defined in Definition 2.1 becomes a harmonically convex (concave) function defined in
[7]. Thus, every harmonically convex (concave) function is also harmonically (1, 1)-convex
(concave) function.

The following proposition is obvious.

2.3. Proposition. Let f : (0, b∗]→ R be a function.
a) if f is (α,m)-convex and nondecreasing function then f is harmonically (α,m)-

convex.
b) if f is harmonically (α,m)-convex and nonincreasing function then f is (α,m)-

convex.

Proof. For all t ∈ [0, 1], m ∈ (0, 1] and x, y ∈ (0, b∗] we have

t(1− t) (x−my)2 ≥ 0,

then the following inequality holds

(2.2)
mxy

mty + (1− t)x ≤ tx+m(1− t)y.

By the inequality (2.2), the proof is completed. �

2.4. Remark. According to Proposition 2.3, every nondecreasing s-convex function in
the first sense (or (s, 1)-convex function) is also harmonically (s, 1)-convex function.
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2.5. Example. Let s ∈ (0, 1], then the function f : (0,∞) → R, f(x) = xs is a
nondecreasing s-convex function in the first sense [3]. According to the above Remark,
f is also harmonically (s, 1)-convex function.

The following result of the Hermite-Hadamard type holds.

2.6. Theorem. Let f : (0,∞) → R be a harmonically (α,m)-convex function with
α ∈ [0, 1] and m ∈ (0, 1]. If 0 < a < b <∞ and f ∈ L[a, b], then one has the inequality

(2.3)
ab

b− a

b∫
a

f(x)

x2
dx ≤ min

{
f(a) + αmf( b

m
)

α+ 1
,
f(b) + αmf( a

m
)

α+ 1

}
.

Proof. Since f : (0,∞) → R is a harmonically (α,m)-convex function, we have, for all
x, y ∈ I

f

(
xy

ty + (1− t)x

)
= f

(
m y
m
x

tm y
m

+ (1− t)x

)
≤ tαf(x) +m(1− tα)f(

y

m
)

which gives:

f

(
ab

tb+ (1− t)a

)
≤ tαf(a) +m(1− tα)f(

b

m
)

and

f

(
ab

ta+ (1− t)b

)
≤ tαf(b) +m(1− tα)f(

a

m
)

for all t ∈ [0, 1]. Integrating on [0, 1] we obtain
1∫

0

f

(
ab

tb+ (1− t)a

)
dt ≤

f(a) + αmf( b
m

)

α+ 1

and
1∫

0

f

(
ab

ta+ (1− t)b

)
dt ≤

f(b) + αmf( a
m

)

α+ 1
.

However,
1∫

0

f

(
ab

tb+ (1− t)a

)
dt =

1∫
0

f

(
ab

ta+ (1− t)b

)
dt =

ab

b− a

b∫
a

f(x)

x2
dx

and the inequality (2.3) is obtained. �

2.7. Remark. If we take α = m = 1 in Theorem 2.6, then inequality (2.3) becomes the
right-hand side of inequality (1.3).

2.8. Corollary. If we take m = 1 in Theorem 2.6, then we get

(2.4)
ab

b− a

b∫
a

f(x)

x2
dx ≤ min

{
f(a) + αf(b)

α+ 1
,
f(b) + αf(a)

α+ 1

}
2.9. Theorem. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦, a, b/m ∈ I◦
with a < b, m ∈ (0, 1] and f ′ ∈ L[a, b]. If |f ′|q is harmonically (α,m)-convex on [a, b/m]
for q ≥ 1, with α ∈ [0, 1], then∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
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≤ ab (b− a)

22−1/q

[
λ(α, q; a, b)

∣∣f ′ (a)
∣∣q +mµ(α, q; a, b)

∣∣f ′ (b/m)
∣∣q] 1

q ,

where

λ(α, q; a, b) =
β (1, α+ 2)

b2q
.2F1

(
2q, 1;α+ 3; 1− a

b

)
−β (2, α+ 1)

b2q
.2F1

(
2q, 2;α+ 3; 1− a

b

)
+

22q−αβ (2, α+ 1)

(a+ b)2q
.2F1

(
2q, 2;α+ 3; 1− 2a

a+ b

)
,

µ(α, q; a, b) = λ(0, q; a, b)− λ(α, q; a, b),

β is Euler Beta function defined by

β (x, y) =
Γ(x)Γ(y)

Γ(x+ y)
=

1∫
0

tx−1 (1− t)y−1 dt, x, y > 0,

and 2F1 is hypergeometric function defined by

2F1 (a, b; c; z) =
1

β (b, c− b)

1∫
0

tb−1 (1− t)c−b−1 (1− zt)−a dt, c > b > 0, |z| < 1

(see [1]).

Proof. From Lemma 1.6 and using the power mean inequality, we have∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

2

1∫
0

∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ ∣∣∣∣f ′( ab

tb+ (1− t)a

)∣∣∣∣ dt
≤ ab (b− a)

2

 1∫
0

|1− 2t| dt

1− 1
q

×

 1∫
0

|1− 2t|
(tb+ (1− t)a)2q

∣∣∣∣f ′( ab

tb+ (1− t)a

)∣∣∣∣q dt


1
q

.

Hence, by harmonically (α,m)-convexity of |f ′|q on [a, b/m],we have∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

2

(
1

2

)1− 1
q

 1∫
0

|1− 2t|
[
tα |f ′ (a)|q +m(1− tα) |f ′ (b/m)|q

]
(tb+ (1− t)a)2q

dt


1
q

≤ ab (b− a)

22−1/q

[
λ(α, q; a, b)

∣∣f ′ (a)
∣∣q +m (λ(0, q; a, b)− λ(α, q; a, b))

∣∣f ′ (b/m)
∣∣q] 1

q .
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It is easily check that

1∫
0

|1− 2t| tα

(tb+ (1− t)a)2q
dt = 2

1/2∫
0

(1− 2t) tα

(tb+ (1− t)a)2q
dt−

1∫
0

(1− 2t) tα

(tb+ (1− t)a)2q
dt

=
β (1, α+ 2)

b2q
.2F1

(
2q, 1;α+ 3; 1− a

b

)
− β (2, α+ 1)

b2q
.2F1

(
2q, 2;α+ 3; 1− a

b

)
+

22q−αβ (2, α+ 1)

(a+ b)2q
.2F1

(
2q, 2;α+ 3; 1− 2a

a+ b

)
= λ(α, q; a, b),

1∫
0

|1− 2t| (1− tα)

(tb+ (1− t)a)2q
dt = λ(0, q; a, b)− λ(α, q; a, b).

This completes the proof. �

If we take α = m = 1 in Theorem 2.9 then we get the following a new corrollary for
harmonically convex functions:

2.10. Corollary. Let f : I ⊂ (0,∞) → R be a differentiable function on I◦, a, b ∈ I◦
with a < b and f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q ≥ 1 then∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

22−1/q

[
λ(1, q; a, b)

∣∣f ′ (a)
∣∣q + µ(1, q; a, b)

∣∣f ′ (b/m)
∣∣q] 1

q .

2.11. Corollary. If we take m = 1 in Theorem 2.9 then we get

(2.5)

∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

22−1/q

[
λ(α, q; a, b)

∣∣f ′ (a)
∣∣q + µ(α, q; a, b)

∣∣f ′ (b)∣∣q] 1
q .

2.12. Theorem. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b/m ∈ I◦
with a < b, m ∈ (0, 1] and f ′ ∈ L[a, b]. If |f ′|q is harmonically (α,m)-convex on [a, b/m]
for q ≥ 1, with α ∈ [0, 1] , then

(2.6)

∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣ ≤ ab (b− a)

2

×λ1− 1
q (0, q; a, b)

[
λ(α, 1; a, b)

∣∣f ′ (a)
∣∣q +mµ(α, 1; a, b)

∣∣f ′ (b/m)
∣∣q] 1

q ,

where λ and µ is defined as in Theorem 2.9.
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Proof. From Lemma 1.6, power mean inequality and the harmonically (α,m)-convexity
of |f ′|q on [a, b/m],we have,

∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

2

1∫
0

∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ ∣∣∣∣f ′( ab

tb+ (1− t)a

)∣∣∣∣ dt
≤ ab (b− a)

2

 1∫
0

∣∣∣∣ 1− 2t

(tb+ (1− t)a)2

∣∣∣∣ dt
1− 1

q

×

 1∫
0

|1− 2t|
[
tα |f ′ (a)|q +m(1− tα) |f ′ (b/m)|q

]
(tb+ (1− t)a)2

dt


1
q

≤ ab (b− a)

2
λ
1− 1

q (0, q; a, b)
[
λ(α, 1; a, b)

∣∣f ′ (a)
∣∣q +mµ(α, 1; a, b)

∣∣f ′ (b/m)
∣∣q] 1

q .

�

2.13. Remark. If we take α = m = 1 in Theorem 2.12 then inequality (2.6) becomes
inequality (1.4) of Theorem 1.4.

2.14. Corollary. If we take m = 1 in Theorem 2.12 then we get

(2.7)

∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣ ≤ ab (b− a)

2

×λ1− 1
q (0, q; a, b)

[
λ(α, 1; a, b)

∣∣f ′ (a)
∣∣q + µ(α, 1; a, b)

∣∣f ′ (b)∣∣q] 1
q ,

2.15. Theorem. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b/m ∈ I◦
with a < b, m ∈ (0, 1] , and f ′ ∈ L[a, b]. If |f ′|q is harmonically (α,m)-convex on [a, b/m]
for q > 1, 1

p
+ 1

q
= 1, with α ∈ [0, 1] , then

(2.8)

∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣ ≤ ab (b− a)

2

(
1

p+ 1

) 1
p

×
(
ν(α, q; a, b)

∣∣f ′ (a)
∣∣q +m(ν(0, q; a, b)− ν(α, q; a, b))

∣∣f ′ (b/m)
∣∣q) 1

q

where

ν(α, q; a, b) =
β (1, α+ 1)

b2q
.2F1

(
2q, 1;α+ 2; 1− a

b

)
.
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Proof. From Lemma 1.6, Hölder’s inequality and the harmonically (α,m)-convexity of
|f ′|q on [a, b/m],we have,∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣
≤ ab (b− a)

2

 1∫
0

|1− 2t|p dt


1
p

×

 1∫
0

1

(tb+ (1− t)a)2q

∣∣∣∣f ′( ab

tb+ (1− t)a

)∣∣∣∣q dt


1
q

≤ ab (b− a)

2

(
1

p+ 1

) 1
p

×

 1∫
0

tα |f ′ (a)|q +m(1− tα) |f ′ (b/m)|q

(tb+ (1− t)a)2q
dt


1
q

≤ ab (b− a)

2

(
1

p+ 1

) 1
p

×
(
ν(α, q; a, b)

∣∣f ′ (a)
∣∣q +m(ν(0, q; a, b)− ν(α, q; a, b))

∣∣f ′ (b/m)
∣∣q) 1

q ,

where an easy calculation gives
1∫

0

tα

(tb+ (1− t)a)2q
dt

=
β (1, α+ 1)

b2q
.2F1

(
2q, 1;α+ 2; 1− a

b

)
= ν(α, q; a, b)

and
1∫

0

1− tα

(tb+ (1− t)a)2q
dt

= ν(0, q; a, b)− ν(α, q; a, b).

This completes the proof. �

2.16. Remark. If we take α = m = 1 in Theorem 2.15 then inequality (2.8) becomes
inequality (1.5) of Theorem 1.5.

2.17. Corollary. If we take m = 1 in Theorem 2.15 then we get

(2.9)

∣∣∣∣∣∣f(a) + f(b)

2
− ab

b− a

b∫
a

f(x)

x2
dx

∣∣∣∣∣∣ ≤ ab (b− a)

2

(
1

p+ 1

) 1
p

×
(
ν(α, q; a, b)

∣∣f ′ (a)
∣∣q + (ν(0, q; a, b)− ν(α, q; a, b))

∣∣f ′ (b)∣∣q) 1
q .
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3. Some applications for special means
Let us recall the following special means of two nonnegative number a, b with b > a :

(1) The weighted arithmetic mean

Aα (a, b) := αa+ (1− α)b, α ∈ [0, 1] .

(2) The arithmetic mean

A = A (a, b) :=
a+ b

2
.

(3) The geometric mean

G = G (a, b) :=
√
ab.

(4) The harmonic mean

H = H (a, b) :=
2ab

a+ b
.

(5) The p-Logarithmic mean

Lp = Lp (a, b) :=

(
bp+1 − ap+1

(p+ 1)(b− a)

) 1
p

, p ∈ R\ {−1, 0} .

3.1. Proposition. Let 0 < a < b. Then we have the following inequality

G2Lα−2
α−2 ≤ min

{
A1/(α+1) (aα, bα) , A1/(α+1) (bα, aα)

}
.

Proof. The assertion follows from the inequality (2.4) in Corollary 2.8, for
f : (0,∞)→ R, f(x) = xα, 0 < α < 1. �

3.2. Proposition. Let 0 < a < b, q ≥ 1 and 0 < α < 1. Then we have the following
inequality∣∣∣A(aαq +1

, b
α
q
+1
)
−G2L

α
q
−1

α
q
−1

∣∣∣
≤ ab (b− a) (α+ q)

q22−1/q
[λ(α, q; a, b)aα + µ(α, q; a, b)bα]

1
q .

Proof. The assertion follows from the inequality (2.5) in Corollary 2.11, for
f : (0,∞)→ R, f(x) = x

α
q
+1
/
(
α
q

+ 1
)
. �

3.3. Proposition. Let 0 < a < b, q ≥ 1 and 0 < α < 1. Then we have the following
inequality∣∣∣A(aαq +1

, b
α
q
+1
)
−G2L

α
q
−1

α
q
−1

∣∣∣
≤ ab (b− a) (α+ q)

2q
λ
1− 1

q (0, q; a, b) [λ(α, 1; a, b)aα + µ(α, 1; a, b)bα]
1
q ,

Proof. The assertion follows from the inequality (2.7) in Corollary 2.14, for
f : (0,∞)→ R, f(x) = x

α
q
+1
/
(
α
q

+ 1
)
. �

3.4. Proposition. Let 0 < a < b, q > 1, 1/p + 1/q = 1 and 0 < α < 1. Then we have
the following inequality∣∣∣A(aαq +1

, b
α
q
+1
)
−G2L

α
q
−1

α
q
−1

∣∣∣
≤ ab (b− a) (α+ q)

2q

(
1

p+ 1

) 1
p

(ν(α, q; a, b)aα + (ν(0, q; a, b)− ν(α, q; a, b))bα)
1
q .
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Proof. The assertion follows from the inequality (2.9) in Corollary 2.17, for
f : (0,∞)→ R, f(x) = x

α
q
+1
/
(
α
q

+ 1
)
. �
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Abstract
In this article, we establish some new existence results on positive so-
lutions of a boundary value problem of coupled systems of nonlinear
multi-term fractional differential equations. Our analysis rely on the
well known fixed point theorems. Numerical examples are given to
illustrate the main theorems.
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1. Introduction
Fractional differential systems have many applications in modeling of physical and

chemical processes and in engineering and have been of great interest recently. In its
turn, mathematical aspects of studies on fractional differential systems were discussed by
many authors, see the text book [6, 13] and papers [1, 7, 9, 11, 14, 15, 16, 20, 21, 22, 23].

In [20], the author studied the existence of positive solutions (continuous on [0, 1]) of
the following (n − 1, 1)-type conjugate boundary value problem for the coupled system
of the fractional differential equations

(1.1)


Dα

0+u+ λf(t, v) = 0, 0 < t < 1, λ > 0,
Dα

0+v + λg(t, u) = 0,

u(i)(0) = v(i)(0) = 0, 0 ≤ i ≤ n− 2,
u(1) = v(1) = 0,
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where λ is a parameter, α ∈ (n − 1, n] is a real number and n ≥ 3, and Dα
0+ is the

Riemann-Liouville′s fractional derivative, and f, g are continuous and semipositone.
In [9], the author studied the system of fractional boundary value problems of the

form

(1.2)


Dα

0+u(t) + λa(t)f(u(t), v(t)) = 0, t ∈ (0, 1),

Dβ

0+v(t) + µb(t)g(u(t), v(t)) = 0, t ∈ (0, 1),

u(i)(0) = 0, i = 0, 1, 2, · · · , n− 2, Dγ

0+u(1) = 0, 1 < γ < n− 2,

v(i)(0) = 0, i = 0, 1, 2, · · · , n− 2, Dγ

0+v(1) = 0, 1 < γ < n− 2,

where D0+ is the Riemann-Liouville fractional derivative, n − 1 < α, β < n for n > 3
and n ∈ N , a and b are continuous on [0, 1], f and g continuous functions defined on
R2. Sufficient conditions for the existence of at least one positive solution (continuous
on [0, 1]) of BVP(1.2) were obtained.

In known literature, Dα
0+u(t) + f(t, u(t)) = 0 is known as a single term equation. In

certain cases, we find equations containing more than one differential terms. A classical
example is the so-called Bagley Torvik equation

AD2
0+y(x) +BD

3
2

0+y(x) + Cy(x) = f(x),

where A,B,C are constants and f is a given function. This equation arises from for
example the modelling of motion of a rigid plate immersed in a Newtonian fluid. It was
originally proposed in [18]. Another example for an application of equations with more
than one fractional derivatives is the Basset equation

AD1
0+y(x) + bDn

0+y(x) + cy(x) = f(x), y(0) = y0,

where 0 < n < 1. This equation is most frequently, but not exclusively, used with n = 1
2
.

It describes the forces that occur when a spherical object sinks in a (relatively dense)
incompressible viscous fluid, see [4, 12].

In [17], Su investigated the existence of positive solutions (continuous on [0, 1]) of the
following boundary value problem of nonlinear multi-term fractional differential system

(1.3)


Dα

0+u+ f(t, v(t), Dp

0+v(t)) = 0, 0 < t < 1,

Dβ
0+v + g(t, u(t), Dq

0+u(t)) = 0, 0 < t < 1,
u(0) = 0, u(1) = 0, v(0) = 0, v(1) = 0,

where α, β ∈ (1, 2), D0+ is the Riemann-Liouville’s fractional derivative, 0 < p < β − 1,
0 < q < α − 1, γηα−1 < 1 and γηβ−1 < 1, f, g : [0, 1] × R+ × R → R are continuous
functions.

In [21], authors studied the existence of multiple positive solutions (continuous on
[0, 1]) of the following boundary value problem of N-dimension nonlinear fractional dif-
ferential system

(1.4)


Dα1

0+u1 + f1(t, u2(t), Dµ1

0+u2(t)) = 0, 0 < t < 1,
· · · · · · · · · ,
D
αN−1
0+ uN−1 + fN−1(t, uN (t), DµN

0+ uN (t)) = 0, 0 < t < 1,
DαN

0+ uN + fN (t, u1(t), DµN
0+ u1(t)) = 0, 0 < t < 1,

u1(0) = · · · = uN (0) = 0, u1(1) = · · · = uN (1) = 0,

where αi ∈ (1, 2), D0+ is the Riemann-Liouville’s fractional derivative, 0 < µi−1 < αi−1
with µ0 = µN , fi :; [0, 1]× R+ × R→ R(i = 1, 2, · · · , N) are continuous functions.

In [1], the authors investigated the existence of positive solutions (continuous on [0, 1])
of the following boundary value problem of nonlinear multi-term fractional differential
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system

(1.5)


Dα

0+u+ f(t, v(t), Dp

0+v(t)) = 0, 0 < t < 1,

Dβ
0+v + g(t, u(t), Dq

0+u(t)) = 0, 0 < t < 1,
u(0) = 0, u(1) = γu(η),
v(0) = 0, v(1) = γv(η),

where α, β ∈ (1, 2), D0+ is the Riemann-Liouville’s fractional derivative, 0 < p ≤ β − 1,
0 < q ≤ α − 1, γηα−1 < 1 and γηβ−1 < 1, f, g : [0, 1] × R+ × R → R are continuous
functions.

In [24], authors studied the existence of solutions of the following four-point coupled
boundary value problem for nonlinear fractional differential equation

(1.6)


Dα

0+u = f(t, u(t), Dα−1
0+ u(t), v(t), Dβ−1

0+ v(t)), 0 < t < 1,

Dβ
0+v = g(t, u(t), Dα−1

0+ u(t), v(t), Dβ−1

0+ v(t)), 0 < t < 1,

I2−α
0+ u(0) = 0, u(1) = av(ξ), I2−β

0+ v(0) = 0, v(1) = bu(η),

where 1 < α, β < 2, D∗0+ and I∗0+ are the standard Riemann-Liouville differentiation and
integration, f, g : [0, 1] × R4 → R are continuous functions, a, b ∈ R, ξ, η ∈ (0, 1) with
abξβ−1ηα−1 = 1.

In [8], the existence of positive solutions of the following four-point boundary value
problem of multi-term fractional differential system

(1.7)


Dα

0+u = f(t, v(t), Dm
0+v(t)), 0 < t < 1,

Dβ
0+v = g(t, u(t), Dn

0+u(t)), 0 < t < 1,
u(0) = γu(ξ), u(1) = δu(η), v(0) = γv(ξ), v(1) = δv(η),

was studied, where 1 < α, β < 2, 0 < m ≤ β − 1, 0 < n ≤ α − 1, γ > 0, δ > 0, 0 < ξ <
η < 1, D∗0+ is the standard Riemann-Liouville differentiation, f, g : [0, 1] × R4 → R are
continuous functions and the following assumption (A):

max{δηα−1, δηα−2} < 1, max{δηβ−1, δηβ−2} < 1,

max{γξα−1, γξα−2} < 1, max{γξβ−1, γξβ−2} < 1.

In [2], Ahmad and Sivasundaram considered the existence and uniqueness of solutions
for the following four-point nonlocal boundary value problem of nonlinear fractional
integro-differential equation{

cDq
0+x(t) = f(t, x(t), (φx)(t), (ψx(t)), 0 < t < 1,

x′(0) + αx(η1) = 0, bx′(1) + x(η2) = 0,

where 1 < q ≤ 2, a, b ∈ [0, 1], 0 < η1 ≤ η2 < 1, cDq

0+ is the Caputo’s fractional derivative,
f : [0, 1]×X ×X ×X → X is continuous, for γ, δ : [0, 1]× [0, 1]→ [0,+∞) with

(φx)(t) =
t∫

0

γ(t, s)x(s)ds, (ψx)(t) =
1∫
0

δ(t, s)x(s)ds.

We remark that the boundary conditions x′(0) + αx(η1) = 0, bx′(1) + x(η2) = 0 arise in
the study of heat flow problems involving a bar of unit length with two controllers at
t = 0 and t = 1 adding or removing heat according to the temperatures detected by two
sensors at t = η1 and t = η2.

We note firstly that the existence of positive solutions of BVP(1.7) has not been
concerned in known papers when the assumption (A) does not hold. Secondly, to guar-
antee the solvability of BVP(1.3) and BVP(1.5) in [1], the assumptions imposed on the
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nonlinearities are as follows:
|f(t, x, y)| ≤ a(t) + ε1|x|ρ1 + ε2|y|ρ2 , ε1, ε2 > 0, 0 < ρ1, ρ2 < 1,

|g(t, x, y)| ≤ b(t) + δ1|x|σ1 + δ2|y|σ2 , δ1, δ2 > 0, 0 < σ1, σ2 < 1.

While in [17], another assumptions imposed on f, g are as follows:

|f(t, x, y)| ≤ ε1|x|ρ1 + ε2|y|ρ2 , ε1, ε2 > 0, ρ1, ρ2 > 1,

|g(t, x, y)| ≤ δ1|x|σ1 + δ2|y|σ2 , δ1, δ2 > 0, σ1, σ2 > 1.

By carefully checking Example 3.1 in [17], one finds that the solution obtained may be
the zero solution. This fact makes these papers far from perfect. Thirdly, it is easy to
show that the following problem

D
7
3

0+x(t) = −t−
1
2 (1− t)−

5
4 , lim

t→0
t

2
3 x(t) = 0, x(1) = 0

has a continuous solution on [0, 1]

x(t) = −
t∫

0

(t−s)
4
3

Γ(7/3)
s−

1
2 (1− s)−

5
4 ds+ t

4
3

1∫
0

(1−s)
1
12

Γ(7/3)
s−

1
2 ds,

while t−
1
2 (1− t)−

5
4 is not measurable on (0, 1). Hence it is interesting to investigate the

solvability of mentioned problems with non-Caratheodory functions.
Motivated by above mentioned papers, we discuss the existence of solutions of the

following boundary value problem of the multi-term fractional differential system

(1.8)



Dα
0+u(t) + p(t)f(t, v(t), Dn

0+v(t)) = 0, t ∈ (0, 1),

Dβ

0+v(t) + q(t)g(t, u(t), Dm
0+u(t)) = 0, t ∈ (0, 1),

lim
t→0

t2−αu(t)− au(ξ) =
1∫
0

φ1(t, v(t), Dn
0+v(t))dt,

u(1)− bu(η) =
1∫
0

ψ1(t, v(t), Dn
0+v(t))dt,

lim
t→0

t2−βv(t)− cv(ξ) =
1∫
0

φ2(t, u(t), Dm
0+u(t))dt,

v(1)− dv(η) =
1∫
0

ψ2(t, u(t), Dm
0+u(t))dt,

where
(i) 1 < α, β ≤ 2, 0 < m ≤ α − 1 and 0 < n ≤ β − 1, D∗0+ is the standard Riemann-

Liouville differentiation of order ∗ > 0,
(ii) 0 < ξ ≤ η < 1 and a, b, c, d ≥ 0,
(iii) R denote the set of real numbers and R+ the set of nonnegative real numbers,

p, q : (0, 1)→ R+, p satisfies that there exist numbers k1, l1 such that k1 > −1, α−m+
l1 > 0, 2 + k1 + l1 > 0 and |p(t)| < tk1(1 − t)l1 for t ∈ (0, 1), q satisfies that there exist
numbers k2, l2 such that k2 > −1, β−n+ l2 > 0, 2 + k2 + l2 > 0 and |q(t)| < tk2(1− t)l2
for t ∈ (0, 1), with p(t) 6≡ 0 and q(t) 6≡ 0 on (0, 1),

(iv) f, φ1, ψ1 : (0, 1)×R+ ×R→ R+ are (n, β)−Caratheory functions and g, φ2, ψ2 :
(0, 1)×R+×R→ R+ is a (m,α)−Caratheory functions with f(t, 0, 0) 6≡ 0 and g(t, 0, 0) 6≡
0 on (0, 1).

We obtain the results on positive solutions of BVP(1.8) by using Schauder’s fixed point
theorem in Banach spaces. A pair of functions (x, y) is called a solution of BVP(1.8) if
x, y ∈ C0(0, 1] and x, y satisfy all equations in (1.8). A pair of functions (x, y) is called
a positive solution of BVP(1.8) if x, y ∈ C0(0, 1] are positive on (0, 1] and x, y satisfy all
equations in (1.8).
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The salient features of the present study are as follows:
(a) the fractional differential equations in (1.8) are multi-term ones and their non-

linearities depend on the lower order fractional derivatives with order greater than α− 1
and β − 1;

(b) instead of the condition u(0) = 0, v(0) = 0 we consider integral boundary condi-
tions which are more suitable as Dα

0+x(t) = 0 with α ∈ (1, 2) implies x(t) = ctα−1 +dtα−2

and obviously x is not continuous at t = 0 while lim
t→0+

t2−αx(t) exists;

(c) BVP(1.8) is a generalized form of known ones in references, the positive solutions
of BVP(1.8) obtained are unbounded (discontinuous at t = 0) which are different from
those ones (continuous on [0,1]) in [1, 21, 20, 9];

(d) since p, q may be un-measurable on (0, 1), p(t)f(t, x, y) and q(t)g(t, x, y) may be
non-Caratheodory functions (see Example 4.1 in which the nonlinearities are

t−
1
10 (1− t)−

21
20 f(t, v(t), D

17
20

0+v(t)), t−
1
10 (1− t)−

23
20 g(t, u(t), D

4
5

0+u(t))

with
f(t, u, v) = t2 + b1tu

ε1 + a1tv
δ1 , a1, b1 ≥ 0, ε1, δ1 > 0,

g(t, u, v) = t5 + b2tu
σ1 + a2tv

γ1 , a2, b2 ≥ 0, σ1, γ1 > 0).

It is easy to see that both t−
1
10 (1 − t)−

21
20 and t−

1
10 (1 − t)−

23
20 are not measurable on

(0, 1). Our results are new and are well illustrated with an example.
(e) The Green’s function G(t, s) for the problem −Dα

0+x(t)) = 0, lim
t→0+

t2−αx(t) −
ax(ξ) = 0, x(1) − bx(η) = 0 is obtained. We proved that G(t, s) ≥ 0 under some as-
sumptions which are more weaker than (A) in [8] and actually generalize Lemma 2.2 in
([10] J. Math. Anal. Appl. 305 (2005) 253-276) for problem −x′′(t) = 0, x(0)− ax(ξ) =
x(1)− bx(η) = 0. See Lemma 2.9.

The remainder of this paper is arranged as follows: in Section 2, we present preliminary
results; in Section 3, the main result is presented; and two examples are given in Section
4 to illustrate the main result.

2. Preliminary results
For the convenience of readers, we present here the necessary definitions from fixed

point theory and fractional calculus theory.

2.1. Definition. Let X be a Banach space. An operator T : X → X is completely
continuous if it is continuous and maps bounded sets into relatively compact sets [3].

2.2. Definition. The Riemann-Liouville fractional integral of order α > 0 of a function
f : (0,+∞) → R is given by Iα0+f(t) = 1

Γ(α)

∫ t
0

(t− s)α−1f(s)ds, provided that the
right-hand side exists [13].

2.3. Definition. The Riemann-Liouville fractional derivative of order α > 0 of a contin-
uous function f : (0,+∞) → R is given by Dα

0+f(t) = dn

dtn

∫ t
0

(t−s)n−α−1f(s)
Γ(n−α)

ds, where
n− 1 ≤ α < n, provided that the right-hand side exists [13].

2.4. Definition. h : (0, 1) × R × R → R is called a (m,α)−Carathédory function if it
satisfies

(i) t→ h
(
t, tα−2x, t2+m−αy

)
is measurable on (0, 1) for all (x, y) ∈ R2,

(ii) (x, y)→ h
(
t, tα−2x, t2+m−αy

)
is continuous for a.e. t ∈ (0, 1),

(iii) for each r > 0, there exists nonnegative function φr ∈ L1(0, 1) such that |u|, |v| ≤
r imply

∣∣h (t, tα−2x, t2+m−αy
)∣∣ ≤ φr(t), a.e., t ∈ (0, 1).
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2.5. Lemma. Let n− 1 ≤ α < n, u ∈ C0(0, b)
⋂
L1(0, b) with b > 0. Then

Dα
0+I

α
0+u(t) = u(t), Iα0+D

α
0+u(t) = u(t) + C1t

α−1 + C2t
α−2 + · · ·+ Cnt

α−n,

where Ci ∈ R, i = 1, 2, . . . n [13].

Choose

X =

x : (0, 1]→ R
x, Dm

0+x ∈ C0(0, 1]
the following limits exist

lim
t→0

t2−αx(t), lim
t→0

t2+m−αDm
0+x(t)


with the norm

||x|| = ‖x‖X = max

{
sup
t∈(0,1]

t2−α|x(t)|, sup
t∈(0,1]

t2+m−α|Dm
0+x(t)|

}

for x ∈ X. It is easy to show that X is a real Banach space.
Choose

Y =

y : (0, 1]→ R
y, Dn

0+y ∈ C0(0, 1]
the following limits exist

lim
t→0

t2−βy(t), lim
t→0

t2+n−βDn
0+y(t)


with the norm

||y|| = ‖y‖Y = max

{
sup
t∈(0,1]

t2−β |y(t)|, sup
t∈(0,1]

t2+n−β |Dn
0+y(t)|

}

for y ∈ Y . It is easy to show that Y is a real Banach space.
Thus, (X × Y, || · ||) is Banach space with the norm defined by

||(x, y)|| = max{||x|| = ||x||X , ||y|| = ||y||Y } for (x, y) ∈ X × Y.

For ease expression, we denote Fm,x(t) = F (t, x(t), Dm
0+x(t)) for a function x : (0, 1]→

R, a number m and a function F : (0, 1)× R2 → R.
Denote

(2.1)

µ1 = aξα−1, υ1 = 1− aξα−2, ω1 = 1− bηα−1, λ1 = 1− bηα−2,
∆ = µ1λ1 + υ1ω1,

µ2 = cξβ−1, υ2 = 1− cξβ−2, ω2 = 1− dηβ−1, λ2 = 1− dηβ−2,
∇ = µ2λ2 + υ2ω2.

2.6. Lemma. Suppose that ∆ 6= 0 and
(B0) h ∈ C0(0, 1) and there exist k > −1 and l ≤ 0 such that 2 + l + k > 0 and

|h(t)| ≤ tk(1− t)l for all t ∈ (0, 1).
Then x ∈ X is a solution of problem

(2.2)


Dαx(t) + h(t) = 0, 0 < t < 1,
lim
t→0

t2−αx(t)− ax(ξ) = M,

x(1)− bx(η) = N
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if and only if x ∈ X satisfies

(2.3)

x(t) = υ1t
α−1+µ1t

α−2

∆
N + ω1t

α−2−λ1t
α−1

∆
M

−
∫ t

0

(t−s)α−1

Γ(α)
h(s)ds+ υ1t

α−1+µ1t
α−2

∆

1∫
0

(1−s)α−1

Γ(α)
h(s)ds

− bυ1t
α−1+bµ1t

α−2

∆

η∫
0

(η−s)α−1

Γ(α)
h(s)ds+ aλ1t

α−1−aω1t
α−2

∆

ξ∫
0

(ξ−s)α−1

Γ(α)
h(s)ds.

Proof. From (B0), we have

t2−α
∣∣∣∣ t∫
0

(t−s)α−1

Γ(α)
h(s)ds

∣∣∣∣ ≤ t2−α t∫
0

(t−s)α−1

Γ(α)
sk(1− s)lds

≤ t2−α
t∫

0

(t−s)α+l−1

Γ(α)
skds = tα+l+k

∫
01 (1−w)α+l−1

Γ(α)
wkdw

= t2+l+k B(α+l,k+1)
Γ(α)

→ 0 as t→ 0.

Suppose that x ∈ X is a solution of (2.2). Lemma 2.5 implies that there exist ci(i = 1, 2)
such that

(2.4) x(t) = −
t∫

0

(t−s)α−1

Γ(α)
h(s)ds+ c1t

α−1 + c2t
α−2.

One sees from the boundary conditions in (2.2) that

µ1c1 − υ1c2 = −M + a
ξ∫
0

(ξ−s)α−1

Γ(α)
h(s)ds,

ω1c1 + λ1c2 = N +
1∫
0

(1−s)α−1

Γ(α)
h(s)ds− b

η∫
0

(η−s)α−1

Γ(α)
h(s)ds.

It follows that

c1 = 1
∆

[
υ1N − λ1M + υ1

1∫
0

(1−s)α−1

Γ(α)
h(s)ds

−bυ1

η∫
0

(η−s)α−1

Γ(α)
h(s)ds+ aλ1

ξ∫
0

(ξ−s)α−1

Γ(α)
h(s)ds

]
,

c2 = 1
∆

[
µ1N + ω1M + µ1

1∫
0

(1−s)α−1

Γ(α)
h(s)ds

−bµ1

η∫
0

(η−s)α−1

Γ(α)
h(s)ds− aω1

ξ∫
0

(ξ−s)α−1

Γ(α)
h(s)ds

]
.

Substitute c1, c2 into (2.4), we get (2.3).
On the other hand, if x ∈ X satisfies (2.3), we can show that x ∈ X is a solution of

BVP(2.2). The proof is completed. �
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2.7. Lemma. Suppose that ∇ 6= 0 and (B0) holds. Then y ∈ Y is a solution of problem

(2.5)


Dβy(t) + h(t) = 0, 0 < t < 1,

lim
t→0

t2−βy(t)− cy(ξ) = M,

y(1)− dy(η) = N

if and only if y ∈ Y satisfies

(2.6)

y(t) = υ2t
β−1+µ2t

β−2

∇ N + ω2t
β−2−λ2t

β−1

∇ M

−
∫ t

0

(t−s)β−1

Γ(β)
h(s)ds+ υ2t

β−1+µ2t
β−2

∇

1∫
0

(1−s)β−1

Γ(β)
h(s)ds

− dλ2t
β−1+dµ2t

β−2

∇

η∫
0

(η−s)β−1

Γ(β)
h(s)ds+ cλ2t

β−1−cω2t
β−2

∇

ξ∫
0

(ξ−s)β−1

Γ(β)
h(s)ds.

Proof. The proof is similar to that of Lemma 2.6 and is omitted. �

Define the operator T on X × Y by T (x, y)(t) = ((T1y)(t), (T2x)(t)) with

(T1y)(t) = υ1t
α−1+µ1t

α−2

∆

1∫
0

ψ1n,y(s)ds+ ω1t
α−2−λ1t

α−1

∆

1∫
0

φ1n,y(s)ds

−
∫ t

0

(t−s)α−1

Γ(α)
p(s)fn,y(s)ds+ υ1t

α−1+µ1t
α−2

∆

1∫
0

(1−s)α−1

Γ(α)
p(s)fn,y(s)ds

− bυ1t
α−1+bµ1t

α−2

∆

η∫
0

(η−s)α−1

Γ(α)
p(s)fn,x(s)ds

+aλ1t
α−1−aω1t

α−2

∆

ξ∫
0

(ξ−s)α−1

Γ(α)
p(s)fn,y(s)ds

and

(T2x)(t) = υ2t
β−1+µ2t

β−2

∇

1∫
0

ψ2m,x(s)ds+ ω2t
β−2−λ2t

β−1

∇

1∫
0

φ2m,x(s)ds

−
∫ t

0

(t−s)β−1

Γ(β)
q(s)gm,x(s)ds+ υ2t

β−1+µ2t
β−2

∇

1∫
0

(1−s)β−1

Γ(β)
q(s)gm,x(s)ds

− dυ2t
β−1+dµ2t

β−2

∇

η∫
0

(η−s)β−1

Γ(β)
q(s)gm,x(s)ds

+ cλ2t
β−1−cω2t

β−2

∇

ξ∫
0

(ξ−s)β−1

Γ(β)
q(s)gm,x(s)ds

for (x, y) ∈ X × Y .
By Lemmas 2.6 and 2.7, we have that (x, y) ∈ X × Y is a solution of BVP(1.8) if and

only if (x, y) ∈ X × Y is a fixed point of T .

2.8. Lemma. Suppose that (i)-(iv) defined in Section 1 hold, ∆ 6= 0 and ∇ 6= 0. Then
T : X × Y → X × Y is completely continuous.
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Proof. If 0 < m ≤ α− 1 and 0 < n ≤ β − 1, we take

t2−α(T1y)(t)|t=0 = lim
t→0

t2−α(T1y)(t),

t2+m−αDm
0+(T1y)(t)|t=0 = lim

t→0
t2+m−αDm

0+(T1y)(t),

t2−β(T2x)(t)|t=0 = lim
t→0

t2−β(T2x)(t),

t2+n−βDn
0+(T2x)(t)|t=0 = lim

t→0
t2+n−βDn

0+(T2x)(t),

then t2−α(T1y)(t), t2+m−αDm
0+(T1y)(t) and t2−β(T2x)(t), t2+n−βDn

0+(T2x)(t) are contin-
uous on [0, 1] for each (x, y) ∈ X×Y . It is easy to show that T is completely continuous,
we refer similar proofs to [1]. The proof is complete. �

Now, we rewrite

(T (x, y))(t) = ((T1y)(t), (T2x)(t))

=

(
υ1t

α−1+µ1t
α−2

∆

1∫
0

ψ1n,y(s)ds+ ω1t
α−2−λ1t

α−1

∆

1∫
0

φ1n,y(s)ds

+
1∫
0

G(t, s)p(s)fn,y(s)ds,

υ2t
β−1+µ2t

β−2

∇

1∫
0

ψ2m,x(s)ds+ ω2t
β−2−λ2t

β−1

∇

1∫
0

φ2m,x(s)ds+
1∫
0

H(t, s)gm,x(s)ds

)
.

Here

G(t, s) = 1
Γ(α)∆



(υ1t
α−1 + µ1t

α−2)(1− s)α−1

+(λ1at
α−1 − ω1at

α−2)(ξ − s)α−1

−(υ1bt
α−1 + bµ1t

α−2)(η − s)α−1

− (µ1λ1 + ω1υ1) (t− s)α−1,

0 ≤ s ≤ min{t, ξ},

(υ1t
α−1 + µ1t

α−2)(1− s)α−1

−(υ1bt
α−1 + bµ1t

α−2)(η − s)α−1

− (µ1λ1 + ω1υ1) (t− s)α−1,
ξ < s ≤ min{t, η},

(υ1t
α−1 + µ1t

α−2)(1− s)α−1

−(υ1bt
α−1 + bµ1t

α−2)(η − s)α−1,
max{t, ξ} < s ≤ η,

(υ1t
α−1 + µ1t

α−2)(1− s)α−1

+(λ1at
α−1 − ω1at

α−2)(ξ − s)α−1

−(υ1bt
α−1 + bµ1t

α−2)(η − s)α−1,
t < s ≤ ξ,

(υ1t
α−1 + µ1t

α−2)(1− s)α−1

− (µ1λ1 + ω1υ1) (t− s)α−1,
η < s ≤ t,

(υ1t
α−1 + µ1t

α−2)(1− s)α−1,max{η, t} < s ≤ 1,
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and

H(t, s) = 1
Γ(β)∇



(υ2t
β−1 + µ2t

β−2)(1− s)β−1

+(λ2ct
β−1 − ω2ct

β−2)(ξ − s)β−1

− (µ2λ2 + ω2υ2) (t− s)β−1,

0 ≤ s ≤ min{t, ξ},

(υ2t
β−1 + µ2t

β−2)(1− s)β−1

−(υ2dt
β−1 + dµ2t

β−2)(η − s)β−1

− (µ2λ2 + ω2υ2) (t− s)β−1,

ξ < s ≤ min{t, η},

(υ2t
β−1 + µ2t

β−2)(1− s)β−1

−(υ2dt
β−1 + dµ2t

β−2)(η − s)β−1,
max{t, ξ} < s ≤ η,

(υ2t
β−1 + µ2t

β−2)(1− s)β−1

+(λ2ct
β−1 − ω2ct

β−2)(ξ − s)β−1

−(υ2dt
β−1 + dµ2t

β−2)(η − s)β−1,

t < s ≤ ξ,

(υ2t
β−1 + µ2t

β−2)(1− s)β−1

− (µ2λ2 + ω2υ2) (t− s)β−1,
η < s ≤ t,

(υ2t
β−1 + µ2t

β−2)(1− s)β−1,max{η, t} < s ≤ 1,

2.9. Lemma. Suppose that

∆ > 0, 0 ≤ a < 1
ξα−2(1−ξ) , 0 ≤ b < 1

ηα−1 ,

∇ > 0, 0 ≤ c < 1
ξβ−2(1−ξ) , 0 ≤ d < 1

ηβ−1 .

Then

(2.7) G(t, s) ≥ 0 for all t, s ∈ (0, 1), H(t, s) ≥ 0 for all t, s ∈ (0, 1).

Proof. By the definitions of G, we consider six cases:
Case 1. 0 ≤ s ≤ min{t, ξ}. Firstly, from bηα−1 < 1 and 0 ≤ a ≤ 1

ξα−2(1−ξ) , we have

ω1t
α−1 − λ1t

α−2 = tα−2[t− 1 + bηα−2[η − t]
≤ 0, η ≤ t,

= tα−2
[
t− 1 + bηα−1 η−t

η

]
< tα−2

[
t− 1 + η−t

η

]
= t− 1 + 1− t

η
≤ 0, η > t,

ν1t
α−1 + bµ1t

α−2 = tα−2[t− aξα−2t+ aξα−1]
≥ 0, aξα−2 ≤ 1,

≥ 1− aξα−2 + aξα−1 > 0, aξα−2 > 1.



401

It is easy to show that (t− s)α−1 ≤ tα−1(1− s)α−1 for all 0 ≤ s ≤ t. Then

−41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1 + (aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1

−(bν1t
α−1 + bµ1t

α−2)(η − s)α−1

≥
[
−41t

α−1 + (ν1t
α−1 + µ1t

α−2) + (aω1t
α−1 − aλ1t

α−2)ξα−1

−(bν1t
α−1 + bµ1t

α−2)ηα−1
]

(1− s)α−1

=
[
−aξα−1(1− bηα−2)tα−1 − (1− aξα−2)(1− bηα−1)tα−1

+((1− aξα−2)tα−1 + aξα−1tα−2) + (a(1− bηα−2)tα−1 − a(1− bηα−1)tα−2)ξα−1

−(b(1− aξα−2)tα−1 + abξα−1tα−2)ηα−1
]

(1− s)α−1 = 0.

Case 2. max{t, η} < s ≤ 1. We note that 0 ≤ a ≤ 1
ξα−2(1−ξ) . Then

ν1t
α−1 + µ1t

α−2 = tα−1 − aξα−2tα−1 + aξα−1tα−2 = tα−2[(1− aξα−2)t+ aξα−1]
= tα−1 + aξα−2tα−2(ξ − t) ≥ 0, ξ ≥ t,

≥ 0, ξ < t, aξα−2 ≤ 1,

≥ tα−2[1− aξα−2 + aξα−1] ≥ 0, ξ < t, aξα−2 > 1.

Case 3. η < s ≤ t. From (t− s)α−1 ≤ tα−1(1− s)α−1, we have

−41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

= −41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

+(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1 − (bν1t
α−1 + bµ1t

α−2)(η − s)α−1

−(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1 + (bν1t
α−1 + bµ1t

α−2)(η − s)α−1

≥ −41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

+(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1 − (bν1t
α−1 + bµ1t

α−2)(η − s)α−1 ≥ 0.

Case 4. ξ < s ≤ t. We have

−41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

−(bν1t
α−1 + bµ1t

α−2)(η − s)α−1

= −41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

+(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1 − (bν1t
α−1 + bµ1t

α−2)(η − s)α−1

+41(t− s)α−1 + (bν1t
α−1 + bµ1t

α−2)(η − s)α−1

≥ −41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

+(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1 − (bν1t
α−1 + bµ1t

α−2)(η − s)α−1 ≥ 0.
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Case 5. t < s ≤ ξ. We have

(ν1t
α−1 + µ1t

α−2)(1− s)α−1 + (aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1

−(bν1t
α−1 + bµ1t

α−2)(η − s)α−1

= −41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

+(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1

−(bν1t
α−1 + bµ1t

α−2)(η − s)α−1 +41(t− s)α−1

≥ −41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

+(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1

−(bν1t
α−1 + bµ1t

α−2)(η − s)α−1 ≥ 0.

Case 6. max{t, ξ} < s ≤ η. We have

(ν1t
α−1 + µ1t

α−2)(1− s)α−1 − (bν1t
α−1 + bµ1t

α−2)(η − s)α−1

= −41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

+(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1

−(bν1t
α−1 + bµ1t

α−2)(η − s)α−1 +41(t− s)α−1

−(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1

≥ −41(t− s)α−1 + (ν1t
α−1 + µ1t

α−2)(1− s)α−1

+(aω1t
α−1 − aλ1t

α−2)(ξ − s)α−1

−(bν1t
α−1 + bµ1t

α−2)(η − s)α−1 ≥ 0.

We know by the definition of G that G(t, s) ≥ 0 for all t, s ∈ (0, 1). Similarly we can
prove that H(t, s) ≥ 0 for all t, s ∈ (0, 1) The proof is completed. �

3. Main results
In this section, we prove existence result on solutions of BVP(1.8). Let µi, υi, ωi, λi

(i = 1, 2) and ∆,∇ be defined by (2.1). For Φ ∈ L1(0, 1), denote ||Φ||1 =
∫ 1

0
|Φ(s)|ds.

The following assumption will be used in the main theorem.
(B1) there exist nonnegative constants bi, ai(i = 1, 2), Bi, Ai, Ci, Di(i = 1, 2) and

ε1, δi, γi, σi (i = 1, 2), Φi,Ψi,Φi0,Ψi0 ∈ L1(0, 1)(i = 1, 2) and bounded functions Φ,Ψ
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such that

∣∣f (t, u
t2−β

, v
t2+n−β

)
− Φ(t)

∣∣ ≤ b1|u|ε1 + a1|v|δ1 , t ∈ (0, 1), u, v ∈ R,∣∣g (t, u
t2−α ,

v
t2+m−α

)
−Ψ(t)

∣∣ ≤ b2|u|σ1 + a2|v|γ1 , t ∈ (0, 1), u, v ∈ R,∣∣φ1

(
t, u
t2−β

, v
t2+n−β

)
− Φ10(t)

∣∣ ≤ Φ1(t)[B1|u|ε1 +A1|v|δ1 , t ∈ (0, 1), u, v ∈ R,∣∣ψ1

(
t, u
t2−β

, v
t2+n−β

)
−Ψ10(t)

∣∣ ≤ Ψ1(t)[C1|u|ε1 +D1|v|δ1 ], t ∈ (0, 1), u, v ∈ R,∣∣φ2

(
t, u
t2−α ,

v
t2+m−α

)
− Φ20(t)

∣∣ ≤ Φ2(t)[B2|u|σ1 +A2|v|γ1 ], t ∈ (0, 1), u, v ∈ R,∣∣ψ2

(
t, u
t2−α ,

v
t2+m−α

)
−Ψ20(t)

∣∣ ≤ Ψ2(t)[C2|u|σ1 +D2|v|γ1 ], t ∈ (0, 1), u, v ∈ R.

For ease expression, denote

Φ(t) = (1−aξα−2)tα−1+aξα−1tα−2

∆

1∫
0

Ψ10(s)ds

+ (1−bηα−1)tα−2−(1−bηα−2)tα−1

∆

1∫
0

Φ10(s)ds

−
∫ t

0

(t−s)α−1

Γ(α)
p(s)Φ(s)ds+ (1−aξα−2)tα−1+aξα−1tα−2

∆

1∫
0

(1−s)α−1

Γ(α)
p(s)Φ(s)ds

− b(1−aξ
α−2)tα−1+abξα−1tα−2

∆

η∫
0

(η−s)α−1

Γ(α)
p(s)Φ(s)ds

+a(1−bηα−2)tα−1−a(1−bηα−1)tα−2

∆

ξ∫
0

(ξ−s)α−1

Γ(α)
p(s)Φ(s))ds

Ψ(t) = (1−cξβ−2)tβ−1+cξβ−1tβ−2

∇

1∫
0

Ψ20(s)ds

+ (1−dηβ−1)tβ−2−(1−dηβ−2)tβ−1

∇

1∫
0

Φ20(s)ds

−
∫ t

0

(t−s)β−1

Γ(β)
q(s)Ψ(s)ds+ (1−cξβ−2)tβ−1+cξβ−1tβ−2

∇

1∫
0

(1−s)β−1

Γ(β)
q(s)Ψ(s)ds

− d(1−cξ
β−2)tβ−1+cdξβ−1tβ−2

∇

η∫
0

(η−s)β−1

Γ(β)
q(s)Ψ(s)ds

+ c(1−dηβ−2)tβ−1−c(1−dηβ−1)tβ−2

∇

ξ∫
0

(ξ−s)β−1

Γ(β)
q(s)Ψ(s)ds,
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M1 = max
{
υ1+µ1

∆
||Ψ1||1C1 + ω1+λ1

∆
||Φ1||1B1

+b1
[∆+(1+b)(υ1+µ1)+a(λ1+ω1)]B(α+l1,k1+1)

Γ(α)∆
,

υ1
Γ(α)

Γ(α−m)
+µ1

Γ(α−1)
Γ(α−m−1)

∆
||Ψ1||1C1 +

ω1
Γ(α−1)

Γ(α−m−1)
+λ1

Γ(α)
Γ(α−m)

∆
||Φ1||1B1

+a1

[
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

|Γ(α−m−1)|+
(
bυ1

Γ(α)
Γ(α−m)

+bµ1
Γ(α−1)

|Γ(α−m−1)|

)
ηα+k1+l1

]
B(α−m+l1,k1+1)

Γ(α)∆

+ b1

(
aλ1

Γ(α)
Γ(α−m)

+aω1
Γ(α−1)

|Γ(α−m−1)|

)
ξα+k1+l1B(α−m+l1,k1+1)

Γ(α)∆
+ b1B(α−m+l1,k1+1)

Γ(α−m)

}

N1 = max
{
υ1+µ1

∆
||Ψ1||1D1 + ω1+λ1

∆
||Φ1||1A1

+a1
[∆+(1+b)(υ1+µ1)+a(λ1+ω1)]B(α+l1,k1+1)

Γ(α)∆
,

υ1
Γ(α)

Γ(α−m)
+µ1

Γ(α−1)
|Γ(α−m−1)|

∆
||Ψ1||1D1 +

ω1
Γ(α−1)

|Γ(α−m−1)|+λ1
Γ(α)

Γ(α−m)

∆
||Φ1||1A1

+b1

[
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

|Γ(α−m−1)|+
(
bυ1

Γ(α)
Γ(α−m)

+bµ1
Γ(α−1)

|Γ(α−m−1)|

)
ηα+k1+l1

]
B(α−m+l1,k1+1)

Γ(α)∆

+ a1

(
aλ1

Γ(α)
Γ(α−m)

+aω1
Γ(α−1)

|Γ(α−m−1)|

)
ξα+k1+l1B(α−m+l1,k1+1)

Γ(α)∆
+ a1B(α−m+l1,k1+1)

Γ(α−m)

}
,

M2 = max
{
υ2+µ2
∇ ||Ψ2||1C2 + ω2+λ2

∇ ||Φ2||1B2

+b2
[∇+(1+d)(υ2+µ2)+c(λ2+ω2)]B(β+l2,k2+1)

Γ(β)∇ ,

υ2
Γ(β)

Γ(β−n)
+µ2

Γ(β−1)
|Γ(β−n−1)|

∇ ||Ψ2||1C2 +
ω2

Γ(β−1)
|Γ(β−m−1)|+λ2

Γ(β)
Γ(β−n)

∇ ||Φ2||1B2

+a2

[
υ2

Γ(β)
Γ(β−n)

+µ2
Γ(β−1)

|Γ(β−n−1)|+
(
dυ2

Γ(β)
Γ(β−n)

+dµ2
Γ(β−1)

|Γ(β−n−1)|

)
ηβ+k2+l2

]
B(β−n+l2,k2+1)

Γ(β)∇

+ b2

(
cλ2

Γ(β)
Γ(β−n)

+cω2
Γ(β−1)

|Γ(β−n−1)|

)
ξβ+k2+l2B(β−n+l2,k2+1)

Γ(β)∇ + b2B(β−n+l2,k2+1)
Γ(β−n)

}
and

N2 = max
{
υ2+µ2
∇ ||Ψ2||1D2 + ω2+λ2

∇ ||Φ2||1A2

+a2
[∇+(1+d)(υ2+µ2)+c(λ2+ω2)]B(β+l2,k2+1)

Γ(β)∇ ,

υ2
Γ(β)

Γ(β−n)
+µ2

Γ(β−1)
|Γ(β−n−1)|

∇ ||Ψ2||1D2 +
ω2

Γ(β−1)
|Γ(β−n−1)|+λ2

Γ(β)
Γ(β−n)

∇ ||Φ2||1A2

+b2

[
υ2

Γ(β)
Γ(β−n)

+µ2
Γ(β−1)

|Γ(β−n−1)|+
(
dυ2

Γ(β)
Γ(β−n)

+dµ2
Γ(β−1)

|Γ(β−n−1)|

)
ηβ+k2+l2

]
B(β−n+l2,k2+1)

Γ(β)∇

+ a2

(
cλ2

Γ(β)
Γ(β−n)

+cω2
Γ(β−1)

|Γ(β−n−1)|

)
ξβ+k2+l2B(β−n+l2,k2+1)

Γ(β)∇ + a2B(β−n+l2,k2+1)
Γ(β−n)

}
.
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Denote
M = M1 +N1, N = M2 +N2,

Φ0 = max{||Φ||1, 1}, Ψ0 = max{||Ψ||1, 1},

τ = max{ε1, δ1}, σ = max{σ1, γ1}.

3.1. Theorem. Suppose that ∆ > 0,∇ > 0, bηα−1 ≤ 1, dξα−1 ≤ 1, (i)-(iv) defined in
Section 1 and (B1) hold. Then BVP(1.8) has at least one positive solution if one of the
followings is satisfied:

(I) τσ < 1

(II) τσ = 1 with NM1/σ < 1 or MN1/τ < 1
(III) τσ > 1 with

M(τσ−1)τσ[MΨ0+Φ0]τσ−1

(τσ−1)τσ
≤ 1

Nσ
or N(τσ−1)τσ[NΦ0+Ψ0]τσ−1

(τσ−1)τσ
≤ 1

Mτ .

Proof. From Lemmas 2.6 and 2.7, we know that (x, y) is a solution of BVP(1.8) if and
only if (x, y) is a fixed point of T . From Lemma 2.8, T : X × Y → X × Y is completely
continuous. By Lemma 2.9 and (i)-(iv), (x, y) is a positive solution of BVP(1.8) if and
only if (x, y) is a fixed point of T .

To get a fixed point of T , we apply the Schauder’s fixed point theorem. We should
define an closed convex bounded subset Ω of E such that T (Ω) ⊆ Ω.

It is easy to see that Φ ∈ X,Ψ ∈ Y . For r1 > 0, r2 > 0, denote Ω = {(x, y) ∈ E :

||x− Φ|| ≤ r1, ||y −Ψ|| ≤ r2}. For (x, y) ∈ Ω, we get

(3.1) ||x|| ≤ ||x− Φ||+ ||Φ|| ≤ r1 + ||Φ||, ||y|| ≤ ||y −Ψ||+ ||Ψ|| ≤ r2 + ||Ψ||.

Furthermore, we have∣∣f (t, y(t), Dn
0+y(t)

)
− Φ(t)

∣∣ ≤ b1|t2−βy(t)|ε1 + a1|t2+n−βDn
0+y(t)|δ1 ,∣∣g (t, x(t), Dm

0+x(t)
)
−Ψ(t)

∣∣ ≤ b2|t2−αx(t)|σ1 + a2|t2+m−αDm
0+x(t)|γ1 , ,∣∣φ1

(
t, y(t), Dn

0+y(t)
)
− Φ10(t)

∣∣ ≤ Φ1(t)[B1|t2−βy(t)|ε1 +A1|t2+n−βDn
0+y(t)|δ1 ,∣∣ψ1

(
t, y(t), Dn

0+y(t)
)
−Ψ10(t)

∣∣ ≤ Ψ1(t)[C1|t2−βy(t)|ε1 +D1|t2+n−βDn
0+y(t)|δ1 ]∣∣φ2

(
t, x(t), Dm

0+x(t)
)
− Φ20(t)

∣∣ ≤ Φ2(t)[B2|t2−αx(t)|σ1 +A2|t2+m−αDm
0+x(t)|γ1 ],∣∣ψ2

(
t, x(t), Dm

0+x(t)
)
−Ψ20(t)

∣∣ ≤ Ψ2(t)[C2|t2−αx(t)|σ1 +D2|t2+m−αDm
0+x(t)|γ1 ]

hold for all t ∈ (0, 1). It follows that∣∣f (t, y(t), Dn
0+y(t)

)
− Φ(t)

∣∣ ≤ b1||y||ε1 + a1||y||δ1 , t ∈ (0, 1),∣∣g (t, x(t), Dm
0+x(t)

)
−Ψ(t)

∣∣ ≤ b2||x||σ1 + a2||x||γ1 , t ∈ (0, 1),∣∣φ1

(
t, y(t), Dn

0+y(t)
)
− Φ10(t)

∣∣ ≤ Φ1(t)[B1||y||ε1 +A1||y||δ1 ], t ∈ (0, 1),∣∣ψ1

(
t, y(t), Dn

0+y(t)
)
−Ψ10(t)

∣∣ ≤ Ψ1(t)[C1||y||ε1 +D1||y||δ1 ], t ∈ (0, 1),∣∣φ2

(
t, x(t), Dm

0+x(t)
)
− Φ20(t)

∣∣ ≤ Φ2(t)[B2||x||σ1 +A2||x||γ1 ], t ∈ (0, 1),∣∣ψ2

(
t, x(t), Dm

0+x(t)
)
−Ψ20(t)

∣∣ ≤ Ψ2(t)[C2||x||σ1 +D2||x||γ1 ], t ∈ (0, 1).
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By the definition of T , we have

t2−α|(T1y)(t)− Φ(t)|

≤ υ1+µ1
∆
||Ψ1||1[C1||y||ε1 +D1||y||δ1 ] + ω1+λ1

∆
||Φ1||1[B1||y||ε1 +A1||y||δ1 ]

+t2−α
∫ t

0

(t−s)α−1

Γ(α)
sk1(1− s)l1ds[b1||y||ε1 + a1||y||δ1 ]

+υ1+µ1
∆

1∫
0

(1−s)α−1

Γ(α)
sk1(1− s)l1ds[b1||y||ε1 + a1||y||δ1 ]

+ bυ1+bµ1
∆

η∫
0

(η−s)α−1

Γ(α)
sk1(1− s)l1ds[b1||y||ε1 + a1||y||δ1 ]

+aλ1+aω1
∆

ξ∫
0

(ξ−s)α−1

Γ(α)
sk1(1− s)l1ds[b1||y||ε1 + a1||y||δ1 ]

≤
(
υ1+µ1

∆
||Ψ1||1C1 + ω1+λ1

∆
||Φ1||1B1

+b1
[∆+(1+b)(υ1+µ1)+a(λ1+ω1)]B(α+l1,k1+1)

Γ(α)∆

)
||y||ε1

+
(
υ1+µ1

∆
||Ψ1||1D1 + ω1+λ1

∆
||Φ1||1A1

+a1
[∆+(1+b)(υ1+µ1)+a(λ1+ω1)]B(α+l1,k1+1)

Γ(α)∆

)
||y||δ1



407

and similarly we get

t2+m−α|Dm
0+(T1y)(t)−Dm

0+Φ(t)|

≤
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

Γ(α−m−1)

∆
||Ψ1||1[C1||y||ε1 +D1||y||δ1 ]

+
ω1

Γ(α−1)
Γ(α−m−1)

+λ1
Γ(α)

Γ(α−m)

∆
||Φ1||1[B1||y||ε1 +A1||y||δ1 ]

+t2+m−α ∫ t
0

(t−s)α−m−1

Γ(α−m)
sk1(1− s)l1ds[b1||y||ε1 + a1||y||δ1

+
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

|Γ(α−m−1)|
∆

1∫
0

(1−s)α−1

Γ(α)
sk1(1− s)l1ds[b1||y||ε1 + a1||y||δ1

+
bυ1

Γ(α)
Γ(α−m)

+bµ1
Γ(α−1)

|Γ(α−m−1)|
∆

η∫
0

(η−s)α−1

Γ(α)
sk1(1− s)l1ds[b1||y||ε1 + a1||y||δ1

+
aλ1

Γ(α)
Γ(α−m)

+aω1
Γ(α−1)

|Γ(α−m−1)|
∆

ξ∫
0

(ξ−s)α−1

Γ(α)
sk1(1− s)l1ds[b1||y||ε1 + a1||y||δ1

≤
(
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

Γ(α−m−1)

∆
||Ψ1||1C1 +

ω1
Γ(α−1)

Γ(α−m−1)
+λ1

Γ(α)
Γ(α−m)

∆
||Φ1||1B1

+ b1B(α−m+l1,k1+1)
Γ(α−m)

+a1

[
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

|Γ(α−m−1)|+
(
bυ1

Γ(α)
Γ(α−m)

+bµ1
Γ(α−1)

|Γ(α−m−1)|

)
ηα+k1+l1

]
B(α−m+l1,k1+1)

Γ(α)∆

+ b1

(
aλ1

Γ(α)
Γ(α−m)

+aω1
Γ(α−1)

|Γ(α−m−1)|

)
ξα+k1+l1B(α−m+l1,k1+1)

Γ(α)∆

)
||y||ε1

+

(
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

Γ(α−m−1)

∆
||Ψ1||1D1 +

ω1
Γ(α−1)

Γ(α−m−1)
+λ1

Γ(α)
Γ(α−m)

∆
||Φ1||1A1

+a1B(α−m+l1,k1+1)
Γ(α−m)

+b1

[
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

|Γ(α−m−1)|+
(
bυ1

Γ(α)
Γ(α−m)

+bµ1
Γ(α−1)

|Γ(α−m−1)|

)
ηα+k1+l1

]
B(α−m+l1,k1+1)

Γ(α)∆

+ a1

(
aλ1

Γ(α)
Γ(α−m)

+aω1
Γ(α−1)

|Γ(α−m−1)|

)
ξα+k1+l1B(α−m+l1,k1+1)

Γ(α)∆

)
||y||δ1 .

We get

||T1y − Φ|| ≤M1(r2 + ||Ψ||1)ε1 +N1[r2 + ||Ψ||1]δ1 ≤M [r2 + Ψ0]τ .

Similarly we get

||T2x−Ψ|| ≤M2[r1 + ||Φ||]σ1 +N2[+[r1 + ||Φ||]γ1 ≤ N [r1 + Φ0]σ.

If there exists r1, r2 > 0 such that

(3.2) M [r2 + Ψ0]τ ≤ r1, N [r1 + Φ0]σ ≤ r2,
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we let Ω = {(x, y) ∈ E : ||x − Φ1|| ≤ r1, ||y − Φ2|| ≤ r2}, then we get T (Ω) ⊂ Ω. Hence
the Schauder’s fixed point theorem implies that T has a fixed point (x, y) ∈ Ω. So (x, y)
is a solution of BVP(1.8).

Now we will prove that (3.2) has positive solution r1, r2 > 0. We transform (3.2) to
the following inequalities:

r2 ≤
(
r1
M
−Ψ0

)1/σ
, r1 ≤

(
r2
N
− Φ0

)1/τ
.

Hence we get
N(r1 + Φ0)τ ≤ r2 ≤

(
r1
M
−Ψ0

)1/σ
or

M(r2 + Ψ0)σ ≤ r1 ≤
(
r2
N
− Φ0

)1/τ
.

Case (i) στ < 1.
It is easy to see that there exists r1 > 0 sufficiently large such that N(r1 + Φ0)τ ≤(

r1
M
−Ψ0

)1/σ. Then we can choose r2 satisfying N(r1 + Φ0)τ ≤ r2 ≤
(
r1
M
−Ψ0

)1/σ.
Hence (3.2) has positive solution r1 > 0, r2 > 0. We choose Ω = {(x, y) ∈ E :

||x−Φ|| ≤ r1, ||y −Ψ|| ≤ r2}. Then we get T (Ω) ⊂ Ω. Hence the Schauder’s fixed point
theorem implies that T has a fixed point (x, y) ∈ Ω. So (x, y) is a positive solution of
BVP(1.8).

Case (ii) στ = 1.
If NM1/σ < 1, then

lim
r→+∞

N(r1+Φ0)τ

( r1M −Ψ0)1/σ = NM1/σ < 1.

So there exists r1 > 0 sufficiently large such that N(r1 + Φ0)τ ≤
(
r1
M
−Ψ0

)1/σ. Then we
can choose r2 satisfying N(r1 + Φ0)τ ≤ r2 ≤

(
r1
M
−Ψ0

)1/σ.
If MN1/τ < 1, then there exists r2 > 0 sufficiently large such that M(r2 + Ψ0)σ ≤(

r2
N
− Φ0

)1/τ . Then we can choose r1 satisfying M(r2 + Ψ0)σ ≤ r1 ≤
(
r2
N
− Φ0

)1/τ .
Hence (3.2) has positive solution r1 > 0, r2 > 0. We choose Ω = {(x, y) ∈ E :

||x−Φ|| ≤ r1, ||y −Ψ|| ≤ r2}. Then we get T (Ω) ⊂ Ω. Hence the Schauder’s fixed point
theorem implies that T has a fixed point (x, y) ∈ Ω. So (x, y) is a positive solution of
BVP(1.8).

Case (iii) στ > 1.
If

M(τσ−1)τσ[MΨ0+Φ0]τσ−1

(τσ−1)τσ
≤ 1

Nσ
,

then let r1 = τσMΨ0+Φ0
τσ−1

. It is easy to see that N(r1 + Φ0)τ ≤
(
r1
M
−Ψ0

)1/σ. Then we

can choose r2 satisfying N(r1 + Φ0)τ ≤ r2 ≤
(
r1
M
−Ψ0

)1/σ.
If

N(τσ−1)τσ[NΦ0+Ψ0]τσ−1

(τσ−1)τσ
≤ 1

Mτ ,

then let r2 = τσNΦ0+Ψ0
τσ−1

. It is easy to see that M(r2 + Ψ0)σ ≤
(
r2
N
− Φ0

)1/τ . Then we

can choose r1 satisfying M(r2 + Ψ0)σ ≤ r1 ≤
(
r2
N
− Φ0

)1/τ .
Hence (3.2) has positive solution r1 > 0, r2 > 0. We choose Ω = {(x, y) ∈ E :

||x−Φ|| ≤ r1, ||y −Ψ|| ≤ r2}. Then we get T (Ω) ⊂ Ω. Hence the Schauder’s fixed point
theorem implies that T has a fixed point (x, y) ∈ Ω. So (x, y) is a positive solution of
BVP(1.8).

The proof of Theorem 3.1 is complete. �
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3.2. Remark. If (B1) holds with max{ε1, δ1}max{σ1, γ1} ≥ 1, it is easy to see that
all known results in [1, 17] can not be applied to establish existence results for solu-
tions of BVP(1.8). It is easy to see that limM = limN = 0 for sufficiently small
ai, bi, Ci, Di, Ai, Bi(i = 1, 2). Then

NM1/σ < 1, MN1/τ < 1,

M(τσ−1)τσ[MΨ0+Φ0]τσ−1

(τσ−1)τσ
≤ 1

Nσ
and N(τσ−1)τσ[NΦ0+Ψ0]τσ−1

(τσ−1)τσ
≤ 1

Mτ .

hold for sufficiently small ai, bi, Ci, Di, Ai, Bi(i = 1, 2). From Theorem 3.1, BVP(1.8) has
at least one solution for στ < 1, and for sufficiently small ai, bi, Ci, Di, Ai, Bi(i = 1, 2)
when στ ≥ 1.

4. Numerical examples
In this section, we present two examples for the illustration of our main result (The-

orem 3.1).

4.1. Example. We consider the following boundary value problem

(4.1)



D
19
10

0+u(t) + t−
1
10 (1− t)−

21
20 f(t, v(t), D

13
20

0+v(t)) = 0, t ∈ (0, 1),

D
39
20

0+v(t) + t−
1
10 (1− t)−

23
20 g(t, u(t), D

4
5

0+u(t)) = 0, t ∈ (0, 1),

lim
t→0

t
1
5 u(t)− 1

2
u(1/2) = 0,

u(1)− 1
2
u(3/4) = 0,

lim
t→0

t
1
9 v(t)− 1

2
v(1/2) = 0.

v(1)− 1
2
v(3/4) = 0,

Then
(i) BVP(4.1) has at least one positive solution if there exists a constant H > 0 such

that
|f(t, u, v)− t2| ≤ H, t ∈ (0, 1), u, v ∈ R,

|g(t, u, v)− t5| ≤ H, t ∈ (0, 1), u, v ∈ R.
(ii) BVP(4.1) has at least one positive solution if

|f(t, u, v)− t2| ≤ b1t
ε1
20 uε1 , b1 ≥ 0, ε1 > 0,

|g(t, u, v)− t5| ≤ b2t
σ1
10 uσ1 , b2 ≥ 0, σ1 > 0

and one of the followings holds:
(a) ε1σ1 < 1;
(b) ε1σ1 = 1 with (38.1089b1)1/σ134.0678b2 < 1 or 38.1089b1(34.0678b2)1/τ1 < 1
(c) ε1σ1 > 1 with

38.1089b1(ε1σ1−1)ε1σ1[38.1089b1Ψ0+Φ0]ε1σ1−1

(ε1σ1−1)ε1σ1 (34.0678b2)σ1 ≤ 1

or
34.0678b2(ε1σ1−1)ε1σ1[34.0678b2Φ0+Ψ0]ε1σ1−1

(ε1σ1−1)ε1σ1 (38.1089b1)ε1 ≤ 1.

(iii) BVP(4.1) has at least one positive solution if

f(t, u, v) = t2 + b1t
ε1
20 uε1 + a1t

7δ1
10 vδ1 , a1, b1 ≥ 0, ε1, δ1 > 0,

g(t, u, v) = t5 + b2t
σ1
10 uσ1 + a2t

9γ1
10 vγ1 , a2, b2 ≥ 0, σ1, γ1 > 0.

with ai, bi(i = 1, 2) sufficiently small.
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Proof. Corresponding to BVP(1.8), we have α = 19
10
, β = 39

20
, m = 4

5
and n = 13

20
,

ξ = 1
2
, η = 3

4
, a = b = c = d = 1

2
and φi(t, u, v) = ψi(t, u, v) ≡ 0(i = 1, 2) and

p(t) = t−
1
10 (1− t)−

21
20 , q(t) = t−

1
10 (1− t)−

23
20 .

It is easy to see that (i)-(iv) hold with k1 = − 1
10

= k2, and l1 = − 21
20
, l2 = − 23

20
. One

sees that k1 > −1, α−m+ l1 > 0, 2+k1 + l1 > 0, k2 > −1, β−n+ l2 > 0, 2+k2 + l2 > 0.
One sees that both p and q are not integrable on (0, 1). Hence (i)-(iv) defined in Section
1 hold.

By direct calculation using Matlab7, we find that

µ1 = 1
2

(
1
2

) 9
10 ≈ 0.2679, υ1 = 1− 1

2
10
√

2 ≈ 0.0670,

ω1 = 1− 1
2

(
3
4

) 9
10 ≈ 0.6141, λ1 = 1− 1

2
10
√

2 ≈ 0.4641,

µ2 = 1
2

(
1
2

) 19
20 ≈ 0.2588, υ2 = 1− 1

2
20
√

2 ≈ 0.4828,

ω2 = 1− 1
2

(
3
4

) 19
20 ≈ 0.6196, λ2 = 1− 1

2
20
√

2 ≈ 0.4824,

∆ = 1
2

(
1
2

) 9
10
(
1− 1

2
10
√

2
)

+
(
1− 1

2
10
√

2
) (

1− 1
2

(
3
4

) 9
10

)
≈ 0.4093,

∇ = 1
2

(
1
2

) 19
20
(
1− 1

2
20
√

2
)

+
(
1− 1

2
20
√

2
) (

1− 1
2

(
3
4

) 19
20

)
≈ 0.4237.

Hence ∆ > 0,∇ > 0, bηα−1 ≤ 1, dξα−1 ≤ 1.
Choose Φ(t) = t2, Ψ(t) = t5. By direct computation, we find that

t
1
10 |Φ(t)| = t

1
10

∣∣∣∣− ∫ t0 (t−s)
9
10

Γ(19/10)
s

19
10 (1− s)−

21
20 ds+ ν1t

9
10 +µ1t

− 1
10

∆
B(17/20,29/10)

Γ(19/10)

− ν1t
9
10 +µ1t

− 1
10

2∆

3/4∫
0

( 3
4
−s)

9
10

Γ(19/10)
s

19
10 (1− s)−

21
20 ds

+λ1t
9
10−ω1t

− 1
10

2∆

1/2∫
0

( 1
2
−s)

9
10

Γ(19/10)
s

19
10 (1− s)−

21
20 ds

∣∣∣∣∣
≤
(
1 + 3

2
ν1+µ1

∆
+ 1

2
λ1+ω1

∆

) B(17/20,29/10)
Γ(19/10)

≈ 2.3895,

t
1
20 |Ψ(t)| = t

1
20

∣∣∣∣− ∫ t0 (t−s)
19
20

Γ(39/20)
s

49
10 (1− s)−

23
20 ds+ ν2t

19
20 +µ2t

− 1
20

∇
B(4/5,59/10)

Γ(39/20)

− ν2t
19
20 +µ2t

− 1
20

2∇

3/4∫
0

( 3
4
−s)

19
20

Γ(39/20)
s

49
10 (1− s)−

23
20 ds

+λ2t
19
20−ω2t

− 1
20

2∇

1/2∫
0

( 1
2
−s)

19
20

Γ(39/20)
s

49
10 (1− s)−

23
20 ds

∣∣∣∣∣
≤
(
1 + 3

2
ν2+µ2
∇ + 1

2
λ2+ω2
∇

) B(4/5,59/10)
Γ(39/20)

≈ 1.4335,
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and

t
9
10 |D

4
5

0+Φ(t)| = t
9
10

∣∣∣∣− ∫ t0 (t−s)
1
10

Γ(11/10)
s

19
10 (1− s)−

21
20 ds

+
ν1

Γ(19/10)
Γ(11/10)

t
1
10 +µ1

Γ(9/10)
Γ(1/10)

t
− 9

10

∆
B(17/20,29/10)

Γ(19/10)

−
ν1

Γ(19/10)
Γ(11/10)

t
1
10 +µ1

Γ(9/10)
Γ(1/10)

t
− 9

10

2∆

3/4∫
0

( 3
4
−s)

9
10

Γ(19/10)
s

19
10 (1− s)−

21
20 ds

+
λ1

Γ(19/10)
Γ(11/10)

t
1
10−ω1

Γ(9/10)
Γ(1/10)

t
− 9

10

2∆

1/2∫
0

( 1
2
−s)

9
10

Γ(19/10)
s

19
10 (1− s)−

21
20 ds

∣∣∣∣∣
≤ B(1/20,29/10)

Γ(11/10)
+

(
3
2

ν1
Γ(19/10)
Γ(11/10)

+µ1
Γ(9/10)
Γ(1/10)

∆
+ 1

2

λ1
Γ(19/10)
Γ(11/10)

+ω1
Γ(9/10)
Γ(1/10)

∆

)
B(17/20,29/10)

Γ(19/10)

≈ 20.7609,

t
7
10 |D

13
20

0+ Ψ(t)| = t
7
10

∣∣∣∣− ∫ t0 (t−s)
3
10

Γ(13/10)
s

49
10 (1− s)−

23
20 ds

+
ν2

Γ(39/20)
Γ(13)

t
3
10 +µ2

Γ(19/20)
Γ(3/10)

t
− 7

10

∇
B(4/5,59/10)

Γ(39/20)

−
ν2

Γ(39/20)
Γ(13)

t
3
10 +µ2

Γ(19/20)
Γ(3/10)

t
− 7

10

2∇

3/4∫
0

( 3
4
−s)

19
20

Γ(39/20)
s

49
10 (1− s)−

23
20 ds

+
λ2

Γ(39/20)
Γ(13/10)

t
3
10−ω2

Γ(19/20)
Γ(3/10)

t
− 7

10

2∇

1/2∫
0

( 1
2
−s)

19
20

Γ(39/20)
s

49
10 (1− s)−

23
20 ds

∣∣∣∣∣
≤ B(3/20,59/10)

Γ(13/10)
+

(
3
2

ν2
Γ(39/20)
Γ(13/10)

+µ2
Γ(19/20)
Γ(3/10)

∇ + 1
2

λ2
Γ(39/20)
Γ(13/10)

+ω2
Γ(19/20)
Γ(3/10)

∇

)
B(4/5,59/10)

Γ(39/20)

≈ 6.2585.

It is easy to see by calculation that

||Φ|| = max

{
sup
t∈(0,1]

t
1
10 |Φ(t)|, sup

t∈(0,1]

t
9
10 |D

4
5

0+Φ(t)|

}
≤ 20.7609,

||Ψ|| = max

{
sup
t∈(0,1]

t
1
20 |Ψ(t)|, sup

t∈(0,1]

t
7
10 |D

13
20

0+ Ψ(t)|

}
≤ 6.2585.

One sees that (B1) holds with Ai = Bi = Ci = Di = 0(i = 1, 2), Φi0(t) = Ψi0(t) = 0(i =
1, 2), Φi(t) = Ψi(t) = 0(i = 1, 2), Φ(t) = t2,Ψ(t) = t5.
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Furthermore, we have

M1 = max
{
b1

[∆+(1+b)(υ1+µ1)+a(λ1+ω1)]B(α+l1,k1+1)
Γ(α)∆

,

b1B(α−m+l1,k1+1)
Γ(α−m)

+a1

[
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

|Γ(α−m−1)|+
(
bυ1

Γ(α)
Γ(α−m)

+bµ1
Γ(α−1)

|Γ(α−m−1)|

)
ηα+k1+l1

]
B(α−m+l1,k1+1)

Γ(α)∆

+ b1

(
aλ1

Γ(α)
Γ(α−m)

+aω1
Γ(α−1)

|Γ(α−m−1)|

)
ξα+k1+l1B(α−m+l1,k1+1)

Γ(α)∆

}

≤ b1
(

[∆+(1+b)(υ1+µ1)+a(λ1+ω1)]B(α+l1,k1+1)
Γ(α)∆

+ B(α−m+l1,k1+1)
Γ(α−m)

+

(
aλ1

Γ(α)
Γ(α−m)

+aω1
Γ(α−1)

|Γ(α−m−1)|

)
ξα+k1+l1B(α−m+l1,k1+1)

Γ(α)∆

)

+a1

[
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

|Γ(α−m−1)|+
(
bυ1

Γ(α)
Γ(α−m)

+bµ1
Γ(α−1)

|Γ(α−m−1)|

)
ηα+k1+l1

]
B(α−m+l1,k1+1)

Γ(α)∆

≤ a1

[
0.0670

Γ(19/10)
Γ(11/10)

+0.2679
Γ(9/10)
Γ(1/10)

+
(

0.0670
2

Γ(19/10)
Γ(11/10)

+ 0.2679
2

Γ(9/10)
Γ(1/10)

)
( 3

4 )
3
4

]
B(1/20,9/10)

0.4093Γ(19/10)

+b1
(

[0.4093+ 3
2

(0.0670+0.2679)+ 1
2

(0.4641+0.6141)]B(17/20,9/10)

0.4093Γ(19/10)
+ B(1/20,9/10)

Γ(11/10)

+

(
0.4641

2
Γ(19/10)
Γ(11/10)

+ 0.6141
2

Γ(9/10)
|Γ(1/10)|

)
( 1

2 )
3
4 B(1/20,9/10)

0.4093Γ(19/10)

)
≈ 6.9793a1 + 31.0850b1,

and

N1 = max
{
a1

[∆+(1+b)(υ1+µ1)+a(λ1+ω1)]B(α+l1,k1+1)
Γ(α)∆

,

a1B(α−m+l1,k1+1)
Γ(α−m)

+b1

[
υ1

Γ(α)
Γ(α−m)

+µ1
Γ(α−1)

|Γ(α−m−1)|+
(
bυ1

Γ(α)
Γ(α−m)

+bµ1
Γ(α−1)

|Γ(α−m−1)|

)
ηα+k1+l1

]
B(α−m+l1,k1+1)

Γ(α)∆

+ a1

(
aλ1

Γ(α)
Γ(α−m)

+aω1
Γ(α−1)

|Γ(α−m−1)|

)
ξα+k1+l1B(α−m+l1,k1+1)

Γ(α)∆

}

≤ b1

[
0.0670

Γ(19/10)
Γ(11/10)

+0.2679
Γ(9/10)
Γ(1/10)

+
(

0.0670
2

Γ(19/10)
Γ(11/10)

+ 0.2679
2

Γ(9/10)
Γ(1/10)

)
( 3

4 )
3
4

]
B(1/20,9/10)

0.4093Γ(19/10)

+a1

(
[0.4093+ 3

2
(0.0670+0.2679)+ 1

2
(0.4641+0.6141)]B(17/20,9/10)

0.4093Γ(19/10)
+ B(1/20,9/10)

Γ(11/10)

+

(
0.4641

2
Γ(19/10)
Γ(11/10)

+ 0.6141
2

Γ(9/10)
Γ(1/10)|

)
( 1

2 )
3
4 B(1/20,9/10)

0.4093Γ(19/10)

)
≈ 34.1691a1 + 7.0239b1,
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M2 ≤ a2

[
0.4828

Γ(39/20)
Γ(13/10)

+0.2588
Γ(19/20)
Γ(3/10)

+
(

0.4828
2

Γ(39/20)
Γ(13/10)

+ 0.2588
2

Γ(19/20)
Γ(3/10)

)
( 3

4 )
7
10

]
B(3/20,9/10)

0.4237Γ(39/20)

+b2
(

[0.4237+ 3
2

(0.4828+0.2588)+ 1
2

(0.4824+0.6196)]B(4/5,9/10)

0.4237Γ(39/20)
+ B(3/10,9/10)

0.4237Γ(13/10)

+

(
0.4824

2
Γ(39/20)
Γ(13//10)

+ 0.6196
2

Γ(19/20)
Γ(3/10)

)
( 1

2 )
7
10 B(3/20,9/10)

0.4237Γ(39/20)

)
≈ 14.2808a2 + 19.7870b2,

and

N2 ≤ b2

[
0.4828

Γ(39/20)
Γ(13/10)

+0.2588
Γ(19/20)
Γ(3/10)

+
(

0.4828
2

Γ(39/20)
Γ(13/10)

+ 0.2588
2

Γ(19/20)
Γ(3/10)

)
( 3

4 )
7
10

]
B(3/20,9/10)

0.4237Γ(39/20)

+a2

(
[0.4237+ 3

2
(0.4828+0.2588)+ 1

2
(0.4824+0.6196)]B(4/5,9/10)

0.4237Γ(39/20)
+ B(13/20,9/10)

Γ(13/10)

+

(
0.4828

2
Γ(39/20)
Γ(13/10)

+ 0.6196
2

Γ(19/20)
Γ(3/10)

)
( 1

2 )
7
10 B(3//20,9/10)

0.4237Γ(39/20)

)
≈ 12.4878a2 + 14.2808b2.

So
M = M1 +N1 ≤ 41.1484a1 + 38.1089b1, N = M2 +N2 ≤ 26.7686a2 + 34.0678b2,

Φ0 = max{||Φ||1, 1} ≤ 20.7609, Ψ0 = max{||Ψ||1, 1} ≤ 6.2585,

τ = max{ε1, δ1}, σ = max{σ1, γ1}.

(i) If there exists a constant H > 0 such that

|f(t, u, v)− t2| ≤ H, t ∈ (0, 1), u, v ∈ R,

|g(t, u, v)− t5| ≤ H, t ∈ (0, 1), u, v ∈ R,

then we can choose ε1 = δ1 = σ1 = γ1 = 0. So τσ = 0 < 1. Then (i) in Theorem 3.1
implies that BVP(4.1) has at least one positive solution.

(ii) If there exist constants b1, b2 ≥ 0 and ε1, σ1 > 0 such that

|f(t, u, v)− t2| ≤ b1t
ε1
20 uε1 ,

|g(t, u, v)− t5| ≤ b2t
σ1
10 uσ1 ,

we can choose δ1 = γ1 = 0, a1 = a2 = 0. Theorem 3.1 implies that BVP(4.1) has at least
one solution if one of the followings holds:

(a) ε1σ1 < 1;
(b) ε1σ1 = 1 with (38.1089b1)1/σ134.0678b2 < 1 or 38.1089b1(34.0678b2)1/τ1 < 1
(c) ε1σ1 > 1 with

38.1089b1(ε1σ1−1)ε1σ1[238.5046b1+20.7069]ε1σ1−1

(ε1σ1−1)ε1σ1 (34.0678b2)σ1 ≤ 1

or
34.0678b2(ε1σ1−1)ε1σ1[707.2782b2+6.2585]ε1σ1−1

(ε1σ1−1)ε1σ1 (38.1089b1)ε1 ≤ 1.

(iii) If

f(t, u, v) = t2 + b1t
ε1
20 uε1 + a1t

7δ1
10 vδ1 , a1, b1 ≥ 0, ε1, δ1 > 0,

g(t, u, v) = t5 + b2t
σ1
10 uσ1 + a2t

9γ1
10 vγ1 , a2, b2 ≥ 0, σ1, γ1 > 0,
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then Theorem 3.1 implies that BVP(4.1) has at least one positive solution if one of the
followings holds:

(a) τσ < 1

(b) τσ = 1 with 926.7686a2+34.0678b2)(41.1484a1+38.1089b1)1/σ < 1 or (41.1484a1+

38.1089b1)926.7686a2 + 34.0678b2)1/τ < 1
(c) τσ > 1 with

(41.1484a1+38.1089b1)(τσ−1)τσ[6.2585(41.1484a1+38.1089b1)+20.7690]τσ−1

(τσ−1)τσ

≤ 1
926.7686a2+34.0678b2)σ

or (26.7686a2+34.0678b2)(τσ−1)τσ[20.7690(26.7686a2+34.0678b2)+6.2585]τσ−1

(τσ−1)τσ

≤ 1
(41.1484a1+38.1089b1)τ

.

�

4.2. Remark. Since both p and q are not measurable on (0, 1), we know that all known
results in [1, 17] can not be applied to establish existence results for solutions of BVP(4.1).
Hence Theorem 3.1 fills a gap not covered by [1, 17].

4.3. Example. We consider the following boundary value problem

(4.2)



D
19
10

0+u(t) + t−
1
2 (1− t)−

1
5 f(t, v(t), D

39
40

0+v(t)) = 0, t ∈ (0, 1),

D
39
20

0+v(t) + t−
1
2 (1− t)

1
10 g(t, u(t), D

19
20

0+u(t)) = 0, t ∈ (0, 1),

lim
t→0

t
1
5 u(t)− 1

2
u(1/2) = 0,

u(1)− 1
2
u(3/4) = 0,

lim
t→0

t
1
9 v(t)− 1

2
v(1/2) = 0,

v(1)− 1
2
v(3/4) = 0,

where
f(t, u, v) = t2 + b1tu

ε1 + a1tv
δ1 , 1, b1 ≥ 0, ε1, δ1 > 0,

g(t, u, v) = 4t5 + b2tu
σ1 + a2tv

γ1 , a2, b2 ≥ 0, σ1, γ1 > 0.

Then BVP(4.2) has at least one positive solution for sufficiently small ai, bi(i = 1, 2).

Proof. Corresponding to BVP(1.8), we have α = 19
10
, β = 39

20
, m = 19

20
and n = 39

40
,

a = b = c = d = 1
2
and φi(t, u, v) = ψi(t, u, v) ≡ 0(i = 1, 2) and p(t) = t−

1
2 (1 − t)−

6
5 ,

q(t) = t−
1
2 (1− t)

10
9 .

It is easy to see that (i)-(iv) hold with k1 = − 1
10

= k2, and l1 = − 1
5
, l2 = − 1

10
. One

sees that k1 > −1, α−m+ l1 > 0, 2+k1 + l1 > 0, k2 > −1, β−n+ l2 > 0, 2+k2 + l2 > 0.
One sees m > α− 1, n > β − 1.

Then Theorem 3.1 implies that BVP(4.2) has at least one positive solution if one of
the followings is satisfied:

(I) τσ < 1
(II) τσ ≥ 1 for sufficiently small ai, bi(i = 1, 2). �
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Abstract
In this paper using some new dynamic inequalities we present some
oscillation results for higher order dynamic equation{

rn−1(t) φαn−1

[
(rn−2(t)(...(r1(t)φα1 [x∆(t)])∆...)∆)∆

]}∆

+p (t)φγ (x (g (t))) = 0,

on an unbounded time scale T. Some new oscillation criteria are ob-
tained using comparison techniques. Some applications illustrating our
results are included.
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1. Introduction
This paper considers the oscillatory behavior of the higher order dynamic equation

(1.1) {
rn−1(t) φαn−1

[
(rn−2(t)(...(r1(t)φα1 [x∆(t)])∆...)∆)∆

]}∆

+p (t)φγ (x (g (t))) = 0,

on an unbounded time scale T, where φα(u) := |u|α−1 u, γ, αi > 0, i = 1, 2, . . . , n−1, ri,
i = 1, 2, . . . , n−1, are positive rd-continuous functions on T, p is a positive rd-continuous
function on T, and g : T→ T is a rd-continuous function such that limt→∞ g(t) =∞.
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We recall that a solution x of equation (1.1) is said to be nonoscillatory if there exists
t0 ∈ T such that x(t)x(σ(t)) > 0 for all t ∈ [t0,∞)T; otherwise, it is said to be oscillatory.
Equation (1.1) is said to be oscillatory if all its solutions are oscillatory.

In the literature many papers discuss the behavior of solutions for certain classes of
dynamic equations; we refer the reader to [1, 3, 5, 9, 11, 12, 13, 15, 18, 19, 20, 21, 23,
24, 25, 26, 27, 29] and the references cited therein. In particular these papers present
oscillatory criteria and asymptotic behavior for first, second and third order dynamic
equations on time scales and some interesting results were obtained for special cases of
(1.1); see [10, 14, 16, 17, 28].

The aim of this paper is to present some new criteria for equation (1.1) . Our approach
is to reduce the problem so that specific oscillation results for first, second and third order
dynamic equations can be used for the arbitrary higher order case.

The paper will have four sections. In section 2, we state and prove some new dynamic
inequalities. Section 3 uses comparison ideas to discuss (1.1). The last section illustrates
the main results of our paper.

The theory of time scales was introduced by Stefan Hilger in his Ph. D. Thesis in 1988
in order to unify continuous and discrete analysis, see [22]. A time scale T is an arbitrary
closed subset of the reals, and the cases when this time scale is equal to the reals or to the
integers represent the classical theories of differential and of difference equations. Many
other interesting time scales exist, and they give rise to many applications (see [6]). This
new theory of these so-called “dynamic equations” not only unifies the corresponding
theories for the differential equations and difference equations cases, but it also extends
these classical cases to cases “in between”. That is, we are able to treat the so-called
q−difference equations when T =qN0 := {qn : n ∈ N0 for q > 1} and can be applied to
different types of time scales like T =hN, T = N2 and T = Tn the set of the harmonic
numbers. The books on the subject of time scales by Bohner and Peterson [6], [7]
summarizes and organizes much of time scale calculus.

For completeness, we recall some concepts on time scales. For t ∈ T, we define the
forward and backward jump operators σ : T→ T and ρ : T→ T by

σ (t) = inf {s ∈ T : s > t} , ρ (t) = sup {s ∈ T : s < t} ,
where inf ∅ := supT and sup ∅ = inf T, where ∅ denotes the empty set. A point t ∈ T,
t > inf T, is said to be left-dense if ρ (t) = t, right-dense if t < supT and σ (t) = t,
left-scattered if ρ (t) < t and right-scattered if σ (t) > t. A function h : T→ R is said to
be right-dense continuous (rd-continuous) provided that h is continuous at right-dense
points and at left-dense points in T, left-hand limits exist and are finite. The set of all
such rd-continuous functions is denoted by Crd (T). Let f : T→ R and let t ∈ T. If there
exists a number α ∈ R such that for all ε > 0 there exists a neighborhood U of t such
that

|f (σ(t))− f(s)− α (σ(t)− s)| ≤ ε |σ(t)− s| for all s ∈ U,
then f is said to be differentiable at t, and we call α the delta derivative of f at t and
denote it by f∆(t).

2. Dynamic Inequalities
In this section we state and prove some dynamic inequalities which will be used in the

next section. Throughout this paper, we let

x ∈ C1
rd([t0,∞)T,R) for some t0 ∈ [0,∞)T,

and

x[i] ∈ C1
rd([t0,∞)T,R), i = 1, ..., n,
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where

(2.1) x[i](t) := ri(t) φαi

[(
x[i−1](t)

)∆
]

with rn = αn = 1 and x[0] = x,

and φαi(u) := |u|αi−1 u, αi > 0, i = 1, . . . , n−1, are constants, and ri ∈ Crd([t0,∞)T,(0,∞))
i = 1, ..., n− 1, such that

(2.2)
∫ ∞
t0

r
−1/αi
i (s)∆s =∞, i = 1, ..., n− 1.

2.1. Lemma. Let

(2.3) x(t) > 0 and x[n](t) < 0

eventually. Then there exists an integer m ∈ {0, . . . , n} with m+ n odd such that

(2.4) x[k](t) > 0 for k = 0, . . . ,m,

and

(2.5) (−1)m+k x[k](t) > 0 for k = m, ..., n,

eventually.

Proof. Let

(2.6) x(t) > 0 and x[n](t) < 0 for t ∈ [t0,∞)T.

This implies that x[i](t), i = 1, ..., n − 1, are eventually monotone and hence are of one
sign. There are two possibilities:

(a) x[k](t) and x[k−1](t) have opposite signs eventually for k = 1, . . . , n; or
(b) there exists a largest m ∈ {1, . . . , n} such that x[m](t)x[m−1](t) > 0 eventually.

If (a) holds, then (2.4) and (2.5) hold with m = 0 (note that for this case from (2.6)
n must be odd).

Assume that (b) holds with x[m](t) < 0 and x[m−1](t) < 0 for t ≥ t1, where t1 ∈
[t0,∞)T. Then

x[m−2](t) = x[m−2](t1) +

∫ t

t1

φ−1
αm−1

[
x[m−1] (s)

]
r
−1/αm−1
m−1 (s) ∆s

< x[m−2](t1) + φ−1
αm−1

[
x[m−1] (t1)

] ∫ t

t1

r
−1/αm−1
m−1 (s) ∆s.

From (2.2) with i = m − 1, limt→∞ x
[m−2](t) = −∞. Hence x[m−2](t) < 0 eventually.

By the same reasoning we see that x[k](t) < 0 eventually for k = m − 2, . . . , 0. This
contradicts the assumption that x(t) is eventually positive.

Assume that (b) holds with x[m](t) > 0 and x[m−1](t) > 0 eventually. Using an
argument similar to the above, we see that x[k](t) > 0 eventually for k = m − 2, . . . , 0.
Therefore, (2.4) and (2.5) hold with this m (From (2.5) (with k = n) we find that m+ n
is an odd number). �

Let

α[h, k] :=

{
αh · · ·αk h ≤ k,
1, h > k,
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and for a fixed m ∈ {0, . . . , n− 1} and an integer k ∈ {m, ..., n− 1} , define the functions
Ri,j(v, u), j = 0, ..., k by the recurrence formula:

Rk,j(v, u) :=


1, j = 0,∫ v
u

[
Rk,j−1(v,s)

rk−j+1(s)

]1/αk−j+1

∆s, j = 1, ..., k −m+ 1,∫ v
u

[
Rk,j−1(s,u)

rk−j+1(s)

]1/αk−j+1

∆s, j = k −m+ 2, ..., k.

2.2. Lemma. Assume that (2.2) and (2.3) hold and m ∈ {0, . . . , n} is given in Lemma
2.1 such that (2.4) and (2.5) hold for t ≥ t1 ∈ [t0,∞)T. Then the following hold for
v ≥ u ∈ [t1,∞)T :

(a) for j = m, . . . , k,

(2.7) (−1)m+j x[j](u) ≥ (−1)m+kφ−1
α[j+1,k]

(
x[k] (v)

)
Rk,k−j(v, u);

(b) if m ≥ 1, then for j = 0, ...,m− 1,

(2.8) x[j](v) ≥ (−1)m+kφ−1
α[j+1,k]

(
x[k] (v)

)
Rk,k−j(v, u),

where k ∈ {m, ..., n− 1} .

Proof. (a) From (2.5), we have that (−1)m+kx[k], k = m, ..., n−1, are positive, decreasing
on [t1,∞)T. This shows that (2.7) holds for j = k. Then for v ≥ u ∈ [t1,∞)T,

(−1)m+kx[k](u) ≥ (−1)m+kx[k] (v)

= (−1)m+kφ−1
α[k+1,k]

(
x[k] (v)

)
Rk,0(v, u),

which implies

(−1)m+k
(
x[k−1](u)

)∆

≥ (−1)m+kφ−1
α[k,k]

(
x[k] (v)

)(Rk,0(v, u)

rk (u)

)1/αk

.

Replacing u by s in the above inequality and then integrating it from u to v ∈ [u,∞)T,
we obtain that

(−1)m+k x[k−1](v)− (−1)m+k x[k−1](u)

≥ (−1)m+kφ−1
α[k,k]

(
x[k] (v)

)∫ v

u

(
Rk,0(v, s)

rk (s)

)1/αk

∆s

= (−1)m+kφ−1
α[k,k]

(
x[k] (v)

)
Rk,1(v, u).

From (2.5), we obtain

(−1)m+k−1 x[k−1](u) ≥ (−1)m+k x[k−1](v)− (−1)m+k x[k−1](u)

≥ (−1)m+kφ−1
α[k,k]

(
x[k] (v)

)
Rk,1(v, u).

This shows that (2.7) holds for j = k − 1. Assume that (2.7) holds for some j ∈
{m+ 1, . . . , k − 1}. Then for v ≥ u ∈ [t1,∞)T,

(−1)m+j x[j](u) ≥ (−1)m+kφ−1
α[j+1,k]

(
x[k] (v)

)
Rk,k−j(v, u),

which implies

(−1)m+j
(
x[j−1](u)

)∆

≥ (−1)m+kφ−1
α[j,k]

(
x[k] (v)

)(Rk,k−j(v, u)

rj (u)

)1/αj

.
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Replacing u by s in the above inequality and then integrating it from u to v ∈ [u,∞)T,
we have

(−1)m+j x[j−1](v)− (−1)m+j x[j−1](u)

≥ (−1)m+kφ−1
α[j,k]

(
x[k] (v)

)∫ v

u

(
Rk,k−j(v, s)

rj (s)

)1/αj

∆s

= (−1)m+kφ−1
α[j,k]

(
x[k] (v)

)
Rk,k−j+1(v, u).

Then from (2.5), we have

(−1)m+j−1 x[j−1](u) ≥ (−1)m+kφ−1
α[j,k]

(
x[k] (v)

)
Rk,k−j+1(v, u).

This shows that (2.7) holds for j−1. By induction, (2.7) holds for all j = m,m+1, . . . , k.

(b) From Part (a) we have that for j = m

x[m](u) ≥ (−1)m+kφ−1
α[m+1,k]

(
x[k] (v)

)
Rk,k−m(v, u),

which implies

(
x[m−1](u)

)∆

≥ (−1)m+kφ−1
α[m,k]

(
x[k] (v)

)(Rk,k−m(v, u)

rm(u)

)1/αm

.

Replacing u by s in the above inequality and then integrating it from u to v ∈ [u,∞)T,
we have

x[m−1](v) ≥ x[m−1](v)− x[m−1](u)

≥ (−1)m+kφ−1
α[m,k]

(
x[k] (v)

)∫ v

u

(
Rk,k−m(v, s)

rm(s)

)1/αm

∆s

= (−1)m+kφ−1
α[m,k]

(
x[k] (v)

)
Rk,k−m+1(v, u).

This shows that (2.8) holds for j = m − 1. Assume that (2.8) holds for some j ∈
{1, . . . ,m− 1}. Then for v ≥ u ∈ [t1,∞)T,(

x[j−1](v)
)∆

≥ (−1)m+kφ−1
α[j,k]

(
x[k] (v)

)(Rk,k−j(v, u)

rj (v)

)1/αj

.

Replacing v by s in the above inequality and then integrating it from u to v ∈ [u,∞)T,
we have

x[j−1](v) ≥ x[j−1](v)− x[j−1](u)

≥
∫ v

u

(−1)m+kφ−1
α[j,k]

(
x[k] (s)

)(Rk,k−j(s, u)

rj (s)

)1/αj

∆s

≥ (−1)m+kφ−1
α[j,k]

(
x[k] (v)

)∫ v

u

(
Rk,k−j(s, u)

rj (s)

)1/αj

∆s

= (−1)m+k−1φ−1
α[j,k]

(
x[k] (v)

)
Rk,k−j+1(v, u).

This shows that (2.8) holds for j − 1. By induction, (2.8) holds for all j = 0, 1, . . . ,m−
1. �
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3. Main Results
In this section we consider the asymptotic behavior of solutions of the nth-order

nonlinear dynamic equation (1.1). From (2.1), Eq. (1.1) can be written as

(3.1) x[n](t) + p (t)φγ (x (g (t))) = 0.

3.1. Theorem. Assume that n ∈ 2N and (2.2) holds. If for an integer k ∈ {m, ..., n− 1},

(3.2)

(−1)m+k{rnφαn [(rn−1(...(rk+1φαk+1 [z∆])∆...)∆)∆]}(t)

+Pk (t)φγ/α[1,k](z(g(t))) ≤ 0,

where for sufficiently large T ∈ [t0,∞)T, Pk(t) := p (t)Rγk,k(g(t), T ), has no eventually
positive solution, then every solution of Eq. (3.1) is oscillatory.

Proof. Assume that Eq. (3.1) has a nonoscillatory solution x(t). Then without loss of
generality, assume that x (g (t)) > 0 on [t0,∞)T. From (3.1), we have that for t ∈ [t0,∞)T,

x[n](t) = −p (t)φγ (x (g (t))) < 0.

This implies that x[i](t), i = 1, 2, ..., n− 1, are eventually monotone and hence are of one
sign. It follows from Lemma 2.1 that there exists an odd integer m ∈ {1, . . . , n} such
that (2.4) and (2.5) hold for t ≥ t1 ∈ [t0,∞)T. From Lemma 2.2, Part (b) with j = 0, we
get for v ≥ u ∈ [t1,∞)T,

x(v) ≥ (−1)m+kφ−1
α[1,k]

(
x[k] (v)

)
Rk,k(v, u).

Setting v = g(t) and u = t1 gives

x(g(t)) ≥ (−1)m+kφ−1
α[1,k]

(
x[k] (g(t))

)
Rk,k(g(t), t1).

Therefore (3.1) becomes

−x[n](t) = p (t)φγ (x (g (t)))

≥ p (t)Rγk,k(g(t), t1) φγ/α[1,k]

(
(−1)m+kx[k] (g(t))

)
= Pk (t) φγ/α[1,k]

(
(−1)m+kx[k] (g(t))

)
,

or

(−1)m+k{rnφαn [(rn−1(...(rk+1φαk+1 [z∆])∆...)∆)∆]}(t)

+Pk (t)φγ/α[1,k](z(g(t))) ≤ 0,

where z(t) := (−1)m+kx[k] (t) > 0, for an integer k ∈ {m, ..., n− 1}. Thus (3.2) has an
eventually positive solution, a contradiction. �

3.2. Theorem. Assume that n ∈ 2N − 1 and (2.2) holds. If (3.2) for an integer k ∈
{m, ..., n− 1} has no eventually positive solution and there is a function τ such that
g(t) ≤ τ(t) on [t0,∞)T and

(3.3) (−1)k{rnφαn [(rn−1(...(rk+1φαk+1 [z∆])∆...)∆)∆]}(t)

+Qk(t)φγ/α[1,k](z(τ(t))) ≤ 0,

for an integer k ∈ {0, ..., n− 1} , where Qk(t) := p (t)Rγk,k(τ(t), g(t)), has no eventually
positive solution, then every solution of Eq. (3.1) is oscillatory.
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Proof. Assume that Eq. (3.1) has a nonoscillatory solution x(t). Then without loss of
generality, assume that x (g (t)) > 0 on [t0,∞)T. From (3.1), we have that for t ∈ [t0,∞)T,

(3.4) x[n](t) = −p (t)φγ (x (g (t))) < 0.

This implies that x[i](t), i = 1, 2, ..., n− 1, are eventually monotone and hence are of one
sign. It follows from Lemma 2.1 that there exists an even integer m ∈ {0, . . . , n} such
that (2.4) and (2.5) hold for t ≥ t1 ∈ [t0,∞)T.

(i) Assume that m ≥ 1. Then the same argument as in the proof of Theorem 3.1 leads
to a contradiction.

(ii) Assume that m = 0. From Lemma 2.2, Part (a) with j = m = 0, we get for
v ≥ u ∈ [t1,∞)T,

x(u) ≥ (−1)kφ−1
α[1,k]

(
x[k] (v)

)
Rk,k(v, u).

Setting u = g(t) and v = τ(t) gives

x(g(t)) ≥ φ−1
α[1,k]

(
(−1)kx[k] (τ(t))

)
Rk,k(τ(t), g(t)).

Therefore (3.1) becomes

−x[n](t) = p (t)φγ (x (g (t)))

≥ p (t)Rγk,k(τ(t), g(t))φγ/α[1,k]

(
(−1)kx[k] (τ(t))

)
= Qk(t)φγ/α[1,k]

(
(−1)kx[k] (τ(t))

)
,

or

(−1)k{rnφαn [(rn−1(...(rk+1φαk+1 [z∆])∆...)∆)∆]}(t)

+Qk(t)φγ/α[1,k](z(τ(t))) ≤ 0,

where z(t) := (−1)kx[k](t) > 0, for an integer k ∈ {0, ..., n− 1}. Thus (3.3) has an
eventually positive solution, a contradiction. �

For further discussion, we introduce the following notation: For any t ∈ T, define

pj(t) :=


p (t) , j = 0,[

1

rn−j(t)

∫∞
t
pj−1(s)∆s

]1/αn−j

, j = 1, 2, . . ., n− 1,

provided that the improper integrals involved are convergent.

3.3. Theorem. Assume that n ∈ 2N− 1, (2.2) and

(3.5)
∫ ∞
t0

pn−1(s)∆s =∞,

hold. If (3.2) for an integer k ∈ {m, ..., n− 1} has no eventually positive solution, then
every solution of Eq. (3.1) is oscillatory or tends to zero eventually.

Proof. Assume that Eq. (3.1) has a nonoscillatory solution x(t). Then without loss of
generality, assume that x (g (t)) > 0 on [t0,∞)T. It follows from Lemma 2.1 and Theorem
3.2 that there exists an odd integer m ∈ {1, . . . , n} such that (2.4) and (2.5) hold for
t ≥ t1 ∈ [t0,∞)T.

(i) Assume that m ≥ 1. Then the same argument as in the proof of Theorem 3.1 leads
to a contradiction.
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(ii) Assume that m = 0. Since x∆ < 0 eventually, then limt→∞ x(t) = l ≥ 0. Assume
that l > 0. Then

x(t), x(g(t)) > l1 for t ≥ t2 ∈ [t1,∞)T.

Integrating (3.1) from t to v ∈ [t,∞)T and using (2.5) we get that

x[n−1](t) ≥ −x[n−1](v) + x[n−1](t)

=

∫ v

t

p (s)φγ (x (g (s))) ∆s ≥ c
∫ v

t

p (s) ∆s.

By taking limits as v →∞ we have

x[n−1](t) ≥ c
∫ ∞
t

p (s) ∆s = c

∫ ∞
t

p0 (s) ∆s.

Thus

(3.6)
(
x[n−2](t)

)∆

≥ c1/αn−1

[
1

rn−1(t)

∫ ∞
t

p0 (s) ∆s

]1/αn−1

= c1/αn−1 p1(t).

Integrating the inequality (3.6) from t to v ∈ [t,∞)T and then taking limits as v → ∞
and using the fact x[n−2] < 0 eventually, we get

−x[n−2](t) ≥ c1/αn−1

∫ ∞
t

p1(s)∆s

= c1/α[n−1,n−1]

∫ ∞
t

p1(s)∆s.

Continuing this process, we get

−x[1](t) ≥ c1/α[2,n−1]

∫ ∞
t

pn−2(s)∆s,

which implies

−x∆(t) > c1/α[1,n−1]

[
1

r1(t)

∫ ∞
t

pn−2(s)∆s

]1/α1

= c1/α[1,n−1]pn−1(t).

Again, integrating the above inequality from t2 to t ∈ [t2,∞)T and noting that x > 0
eventually, we get

x(t2)− x(t) ≥ c1/α[1,n−1]

∫ t

t2

pn−1(s)∆s.

Using (3.5), we have limt→∞ x(t) = −∞, which contradicts the fact that x > 0 on
[t2,∞)T. Therefore limt→∞ x(t) = 0. This completes the proof. �

4. Applications
As direct consequences of Theorems 3.1, 3.2 and 3.3, we obtain the following compar-

ison criteria for Eq. (3.1) when k = n− 1.

4.1. Corollary. Assume that (2.2) holds and the first order dynamic inequality

(4.1) z∆(t) + Pn−1 (t)φγ/α[1,n−1](z(g(t))) ≤ 0,

where for sufficiently large T ∈ [t0,∞)T, Pn−1(t) := p (t)Rγn−1,n−1(g(t), T ), has no even-
tually positive solution.

(i) If n ∈ 2N, then every solution of Eq. (3.1) is oscillatory.
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(ii) If n ∈ 2N− 1 and the first order dynamic inequality

(4.2) z∆(t) +Qn−1(t)φγ/α[1,n−1](z(τ(t))) ≤ 0,

where Qn(t) := p (t)Rγn−1,n−1(τ(t), g(t)), has no eventually positive solution,
then every solution of Eq. (3.1) is oscillatory.

4.2. Corollary. Assume that (2.2) holds and the first order dynamic inequality (4.1)
has no eventually positive solution.

(i) If n ∈ 2N, then every solution of Eq. (3.1) is oscillatory.
(ii) If n ∈ 2N− 1 and (3.5) holds, then every solution of Eq. (3.1) is oscillatory or

tends to zero eventually.

Using the main results of [29, 5] we get the following oscillation criteria of Eq. (3.1).

4.3. Corollary. Let γ = α [1, n− 1] , and g(t) < t and τ(t) < t on [t0,∞)T. Assume
that (2.2) holds and

(4.3) lim sup
t→∞

sup
λ∈E1

{λ e−λPn−1(t, g(t))} < 1,

where

E1 = {λ : λ > 0, 1− λ Pn−1(t)µ(t) > 0, t ∈ T}.

(i) If n ∈ 2N, then every solution of Eq. (3.1) is oscillatory.
(ii) If n ∈ 2N− 1 and

lim sup
t→∞

sup
λ∈E2

{λ e−λQn−1(t, τ(t))} < 1,

where

E2 = {λ : λ > 0, 1− λ Qn−1(t)µ(t) > 0, t ∈ T},

then every solution of Eq. (3.1) is oscillatory.

4.4. Corollary. Let γ = α [1, n− 1] , and g(t) < t and τ(t) < t on [t0,∞)T. Assume
that (2.2) and (4.3) hold.

(i) If n ∈ 2N, then every solution of Eq. (3.1) is oscillatory.
(ii) If n ∈ 2N− 1 and (3.5) holds, then every solution of Eq. (3.1) is oscillatory or

tends to zero eventually.

4.5. Corollary. Let T = R, γ = α [1, n− 1] , and g(t) < t and τ(t) < t on [t0,∞).
Assume that (2.2) holds and

(4.4) lim inf
t→∞

∫ t

g(t)

Pn−1(s)ds >
1

e
,

(i) If n ∈ 2N, then every solution of Eq. (3.1) is oscillatory.
(ii) If n ∈ 2N− 1 and

lim inf
t→∞

∫ t

τ(t)

Qn−1(s)ds >
1

e

then every solution of Eq. (3.1) is oscillatory.

4.6. Corollary. Let T = R, γ = α [1, n− 1] , and g(t) < t and τ(t) < t on [t0,∞).
Assume that (2.2) and (4.4) hold.

(i) If n ∈ 2N, then every solution of Eq. (3.1) is oscillatory.
(ii) If n ∈ 2N− 1 and (3.5) holds, then every solution of Eq. (3.1) is oscillatory or

tends to zero eventually.
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4.7. Corollary. Let T = Z, γ = α [1, n− 1] , and g(n) = τ(n) = n − k for n ∈ Z and
k ∈ N. Assume that (2.2) holds and

(4.5) lim inf
t→∞

n−1∑
i=n−k

Pn−1(i) >

(
k

k + 1

)k+1

,

(i) If n ∈ 2N, then every solution of Eq. (3.1) is oscillatory.
(ii) If n ∈ 2N− 1 and

n−1∑
i=n−k

Qn−1(i) >

(
k

k + 1

)k+1

,

then every solution of Eq. (3.1) is oscillatory.

4.8. Corollary. Let T = Z, γ = α [1, n− 1] , and g(n) = τ(n) = n − k for n ∈ Z and
k ∈ N. Assume that (2.2) and (4.5) hold.

(i) If n ∈ 2N, then every solution of Eq. (3.1) is oscillatory.
(ii) If n ∈ 2N− 1 and (3.5) holds, then every solution of Eq. (3.1) is oscillatory or

tends to zero eventually.

4.9. Remark. (1) For more oscillation criteria, see [4, 5, 8, 29].
(2) When n = 3, the result in Corollary 4.3 is related to a problem posed in [3, Remark

3.3] when τ (t) < t for t ≥ t0 ∈ T.
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1. Introduction
The Fibonacci numbers Fn are defined by F0 = 0, F1 = 1, and for n ≥ 2, Fn+1 =

Fn + Fn−1. Since the introduction of these numbers, different generalizations have been
formulated and were extensively studied. In fact, several books were written solely to
study the properties of Fibonacci numbers (see for instance [5] and [21]). In a book by
T. Koshy [11], any sequences Gn, where G1 = a,G2 = b, and Gn = Gn−1 +Gn−2, n ≥ 3
is called the generalized Fibonacci sequence (GFS). In [10], A. F. Horadam defined a
second-order linear recurrence sequence {Wn} by the recurrence relation

W0 = a, W1 = b, Wn+1 = rWn + sWn−1, (n ≥ 2).

The sequence {Wn} can be viewed easily as a certain generalization of {Fn}. It is now
known in literature as Horadam’s sequence. For a good survey paper regarding Horadam
numbers, we refer the readers to [12] (see also [13] for a survey update and extensions).
The nth Horadam number Wn with initial conditions W0 = 0 and W1 = 1 can be
represented by the following Binet’s formula:

Wn(0, 1; r, s) =
αn − βn

α− β , (n ≥ 2)

where α and β are the roots of the quadratic equation x2 − rx − s = 0, i.e. α =
(r +

√
r2 + 4s)/2 and β = (r −

√
r2 + 4s).

In [15], the author presented a formula for solving the missing terms of {Wn} given
its first term and last term. Another generalization of Fibonacci numbers is the so-called
Fibonacci polynomials (see [1] and [4] and the references therein). Recently, Fibonacci
numbers were involved in the study of difference and differential equations. Particularly,
in [20], D. T. Tollu, Y. Yazlik, and N. Taskara investigated the solutions of two special
types of the Riccati difference equation

xn+1 =
1

1 + xn
and yn+1 =

1

−1 + yn
such that their solutions are associated with Fibonacci numbers. Another interesting
investigation, which involves the Fibonnaci numbers, is presented in [6] where A. Hakami
found an application of Fibonacci numbers in the study of continued fractions. This
work of Hakami has been recently generalized, to some extent, by the author in [17].
Meanwhile, the author and J. B. Bacani consider in [2] the system

xn+1 =
q

p+ xνn
and yn+1 =

q

−p+ yνn
(p, q ∈ R+ and ν ∈ N)

as a generalization of Tollu et al.’s work [20]. One particular result established in [2] is
the solution form of the above system. In fact, it was shown that every solution of the
system, for any arbitrary given set of initial values, is expressible in terms of Horadam
numbers. In an earlier paper, the author [16], studied homogeneous differential equations
of the form

w(2k)(x) = rw(k)(x) + sw(x),

where r, s ∈ R+ and w(k) is the kth derivative of w with respect to x. Intriguingly, it was
found that the differential equation has some sort of connection with Horadam numbers.

Other papers dealing with problems involving Fibonacci numbers are what follows. In
[7], J. S. Han, H. S. Kim and J. Neggers studied the Fibonacci norm of positive integers,
and in [8], they studied Fibonacci sequences in groupoids. Han, Kim, and Neggers also
introduced the concept of Fibonacci functions with Fibonacci numbers in [9] which were
later on extended by B. Sroysang [19] to Fibonacci functions with period k. In [19], the
following generalization of Fibonacci functions was presented.
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1.1. Definition ([19]). Let k ∈ N. A function f : R → R is called a Fibonacci function
with period k if it satisfies the equation

(1.1) f(x+ 2k) = f(x+ k) + f(x), ∀x ∈ R.

Properties of Fibonacci functions with period k were also presented in [19]. As further
generalization of these functions, we define a second-order linear recurrent function with
period k as follows:

1.2. Definition. Let k be a positive integer, and r and s be non-negative real numbers.
A function w : R → R is said to be a second-order linear recurrent function with period
k if it satisfies the equation

(1.2) w(x+ 2k) = rw(x+ k) + sw(x), ∀x ∈ R.
We say that w is a complete second-order linear recurrent function if for any arbitrary r
and s, w satisfies (1.2), otherwise it is called conditional.

Now, throughout the rest of this paper, we shall refer to a real-valued function w
satisfying equation (1.2) as a recurrent function of order k instead of using the term
second-order linear recurrent function with period k for convenience.

Definition (1.2) provides a further generalization of Fibonacci functions with Fibonacci
numbers [9] and Fibonacci functions with period k [19]. Our main contribution includes
a proof of the following open problems posed by Sroysang [19] (which is in fact a proof
of a more general case of the problem):

1.3. Conjecture. If f is a Fibonacci function with period k, then f(x + k)/f(x) → φ
as x→∞.

1.4. Conjecture. If f is a Fibonacci function with period k, then f(x+ k)/f(x)→ −φ
as x→∞.

Here φ denotes the well-known golden ratio, i.e. φ = (1 +
√
5)/2 = 1.6180339 . . ..

Now the rest of the paper is organized as follows: in Section 2 and Section 3, we give
examples and basic properties of recurrent functions with period k and odd recurrent
functions with period k, respectively. In Section 4, we develop the notion of these types
of recurrent functions using the concept of f -even and f -odd functions discussed in [9].
In Section 5, we study the products of these functions and finally, in Section 6, we
investigate the quotients of these functions. The proofs of conjectures (1.3) and (1.4) are
also presented in the last section.

2. Recurrent functions with period k

In this section we present some properties of recurrent functions with period k. We
begin by defining what we call Pell and Jacobsthal functions. If in equation (1.2), r = 2
and s = 1 (resp. r = 1 and s = 2), then we call such function a Pell (resp. Jacobsthal)
function. That is, for a given natural number k, a Pell function p with period k satisfies

(2.1) p(x+ 2k) = 2p(x+ k) + p(x), ∀x ∈ R,
and a Jacobsthal function j with period k satisfies

(2.2) j(x+ 2k) = j(x+ k) + 2j(x), ∀x ∈ R.

2.1. Example. Let α > 0, k ∈ N, and w(x) = αx/k be a recurrent function with period
k. Substituting w in (1.2), we have

α(x/k)+2 = rα(x/k)+1 + sαx/k, ∀x ∈ R.

So α2 − rα− s = 0 whose roots are α1,2 = (r ±
√
r2 + 4s)/2. Thus, w(x) = αx/k.
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The following are special cases of the previous example.

(1) If (r, s) = (1, 1), then the function f(x) := φx/k is an example of a Fibonacci
function with period k.

(2) If (r, s) = (2, 1), then p(x) := σx/k, where σ = 1 +
√
2 is the well known silver

ratio, is an example of a Pell function with period k.
(3) If (r, s) = (1, 2), then the function j(x) := 2x/k is an example of a Jacobsthal

function with period k.

2.2. Remark. Clearly, the functions f, p, and j are conditional. Also, any non-zero
constant function is conditional but only for positive real numbers r and s such that
r + s = 1. On the other hand, the function w(x) ≡ 0 is an example of a complete type.
It can be verified directly that any scalar multiple of a recurrent function with period k
is again a recurrent function with period k. Furthermore, if a differentiable function w
is a recurrent function with period k then so is its derivative w′.

2.3. Proposition. Let k ∈ N and w : R → R be a recurrent function with period k.
Define gt(x) = w(x+ t) for all x ∈ R, where t ∈ R. Then gt is also a recurrent function
with period k.

2.4. Corollary ([19]). Let k ∈ N and f : R → R be a Fibonacci function with period k.
Define gt(x) = f(x+ t) for all x ∈ R, where t ∈ R. Then, gt is also a Fibonacci function
with period k.

2.5. Example. Let k ∈ N and t ∈ R. Define gt : R→ R by

(2.3) gt(x) = α(x+t)/k, ∀x ∈ R,

then gt is a recurrent function with period k.

As special cases of the previous example, we have the following:

(1) if (r, s) = (1, 1), then we have gt(x) := f(x+ t) = φ(x+t)/k, a Fibonacci function
with period k,

(2) if (r, s) = (2, 1), then we have gt(x) := p(x+ t) = σ(x+t)/k, a Pell function with
period k,

(3) if (r, s) = (1, 2), then we have gt(x) := j(x+ t) = 2(x+t)/k, a Jacobsthal function
with period k.

2.6. Theorem. Let w be a recurrent function with period k and {Wn(0, 1; r, s)}, or
simply {Wn}, be a Horadam sequence with initial conditions W0 = 0 and W1 = 1. Then,

(2.4) w(x+ nk) =Wnw(x+ k) + sWn−1w(x), ∀x ∈ R, n ∈ N.

Proof. The proof is by induction on n. First, we note that α+ β = r, α− β =
√
r2 + 4s,

and αβ = −s. We see that the formula obviously holds for n = 1, 2. So we assume (2.4)
holds for n and n+ 1 for some natural number n ≥ 2. Then,

w(x+ (n+ 2)k) = rw(x+ (n+ 1)k) + sw(x+ nk)

= r (Wn+1w(x+ k) + sWnw(x))

+ s (Wnw(x+ k) + sWn−1w(x))

= (rWn+1 + sWn)w(x+ k) + s (rWn + sWn−1)w(x)

=Wn+2w(x+ k) + sWn+1w(x), ∀x ∈ R, n ∈ N.

By induction principle, conclusion follows. �
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2.7. Corollary. Let w be a recurrent function with period k and let {Wn} be the sequence
of Horadam numbers. Then, αn = αWn+sWn−1 for any x ∈ R and n ∈ N. In particular,
for r = s = 1, we have φn = φFn+Fn−1, where Fn is the nth Fibonacci number, for any
x ∈ R and n ∈ N.

Proof. From Example (2.1) we saw that w(x) = αx/k is a recurrent function with period
k, so it satisfies equation (2.4), i.e.

α(x+nk)/k = w(x+ nk) =Wnw(x+ k) + sWn−1w(x)

= α(x+k)/kWn + sWn−1α
x/k, ∀x ∈ R, n ∈ N.

Upon simplifying, we get

αn = αWn + sWn−1, ∀n ∈ N,

as desired. Letting r = s = 1 in α = (r +
√
r2 + 4s)/2 we get φn = φFn + Fn−1. �

2.8. Corollary ([19]). Let f be a Fibonacci function with period k and let {Fn} be the
sequence of Fibonacci numbers. Then, f(x+nk) = Fnf(x+k)+Fn−1f(x) for any x ∈ R
and n ∈ N.

Similar results can be obtained easily for Pell and Jacobsthal functions.

3. Odd recurrent functions with period k

Here we discuss the notion of odd recurrent functions with period k formally defined
as follows:

3.1. Definition. Let k ∈ N. A function w : R → R is said to be an odd recurrent
functions with period k if

(3.1) w(x+ 2k) = −rw(x+ k) + sw(x), ∀x ∈ R.

In particular, a function is an odd Fibonacci, odd Pell, and odd Jacobsthal function
if it satisfies equation (3.1) with (r, s) = (1, 1), (2, 1), and (1, 2), respectively.

3.2. Example. Let k ∈ N, α̃ > 0, and w(x) = α̃x/k be an odd recurrent function with
period k. Then, α̃ = (−p +

√
p2 + 4q)/2 = qα−1. So the function w(x) =

(
qα−1

)x/k is
an odd recurrent function.

Similar to what we remarked for recurrent functions with period k, if a differen-
tiable function w is an odd recurrent function with period k then so is its derivative
w′. Furthermore, any function defined by gt = w(x + t), where w satisfies (3.1) and
t ∈ R, is an odd recurrent function with period k. For example, the function defined by
gt(x) = α̃(x+t)/k is an odd recurrent function with period k. Of course, the functions
gt(x) := f(x+t) = φ−(x+t)/k and gt(x) := p(x+t) = σ−(x+t)/k are also an odd Fibonacci
and odd Pell function, respectively.

3.3. Theorem. Let w : R → R be an odd recurrent function with period k, and let
{W−n} = {(−1)n+1Wn(0, 1; r, s)}, i.e.

(3.2) W−(n+1) = −rW−n + sW−n+1, ∀n ∈ N.

Then, for all n ∈ N and x ∈ R, we have

(3.3) w(x+ nk) =W−nw(x+ k) + sW−n+1w(x).

The above theorem can be proven similarly as in Theorem 4.9 and we leave this to
the reader.
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3.4. Corollary. Let w be an odd recurrent function with period k and let {W−n} =
{(−1)n+1Wn}, where Wn is the nth Horadam number. Then, α̃n = α̃W−n+ sW−n+1 for
any x ∈ R and n ∈ N. In particular, for r = 2 and s = 1, we have σ−n = σ−1Pn+Pn−1,
where Pn is the nth Pell number, for any x ∈ R and n ∈ N.

3.5. Corollary ([19]). Let f : R→ R be an odd Fibonacci function with period k, and let
{F−n} = {(−1)n+1Fn} be a sequence of numbers where Fn is the nth Fibonacci number,
i.e.

(3.4) F−(n+1) = −F−n + F−n+1, ∀n ∈ N.

Then, for all n ∈ N and x ∈ R, we have

(3.5) f(x+ nk) = F−nf(x+ k) + F−n+1f(x).

Similar results can be formulated easily for Pell and Jacobsthal functions. Now we
develop the concept of recurrent functions with period k using f -even and f -odd functions
with period k.

4. f-even and f-odd functions with period k

We start-off this section with the following definition.

4.1. Definition (cf. [19]). Let k ∈ N and ϕ : R → R be such that if ϕh ≡ 0, where
h : R → R is continuous, then h ≡ 0. The map ϕ is said to be an f -even function with
period k (resp. f -odd) function with period k if ϕ(x+k) = ϕ(x) (resp. ϕ(x+k) = −ϕ(x))
for any x ∈ R.

By the above definition, we can see immediately that there is no f -even and f -odd
Fibonacci function except possibly when the function is the zero function. In fact, in
general, a function w : R → R satisfying equation (1.2) is an f -even recurrent function
with period k if and only if r+ s = 1 or w(x) ≡ 0 for all x ∈ R. Similarly, w is an f -odd
recurrent function with period k if and only if B −A = 1 or w ≡ 0 for all x ∈ R.

We first discuss f -even functions.

4.2. Example. Let ϕ(x) = cos (πx) for all x ∈ R and let h : R → R be a continuous
function such that (ϕh)(x) = 0. For any x /∈ π

2
Z, we have ϕ(x) 6= 0, so h(x) = 0. Since

R\π
2
Z is dense in R and h is a continuous function, h(x) = 0. Now, let k be an even

natural number and x ∈ R. Then,

ϕ(x+ k) = cos(π(x+ k)) = cos(πx) cos(kπ)− sin(πx) sin(kπ) = cos(πx) = ϕ(x).

Hence, ϕ(x) = cos (πx) is an f -even function.

In [19], we have seen that ϕ(x) = x− bxc is also an example of f -even functions.

4.3. Theorem. Let k ∈ N and ϕ : R → R be an f-even function with period k and let
w : R→ R be a continuous function. Then, w is a recurrent function with period k if and
only if ϕw is a recurrent function with period k.

Proof. For the necessity part, we assume that w is a recurrent function with period k
satisfying equation (1.2) with r, s ∈ R+. Then, for any x ∈ R we have

ϕ(x+ 2k)w(x+ 2k) = ϕ(x+ k)[rw(x+ k) + sw(x)]

= rϕ(x+ k)w(x+ k) + sϕ(x+ k)w(x)

= rϕ(x+ k)w(x+ k) + s(ϕw)(x).

Hence, the product ϕw is a recurrent function with period k.
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Now, for the sufficiency part, we assume that ϕw is a recurrent function with period
k satisfying equation (1.2) with r, s ∈ R+. Let x ∈ R. Then,

ϕ(x+ k)w(x+ 2k) = ϕ(x+ 2k)w(x+ 2k) = (ϕw)(x+ 2k)

= p(ϕw)(x+ k) + q(ϕw)(x)

= rϕ(x+ k)w(x+ k) + s(ϕw)(x)

= rϕ(x+ k)w(x+ k) + sϕ(x+ k)w(x)

= ϕ(x+ k)[rw(x+ k) + sw(x)].

Thus, w(x+2k) = rw(x+k)+ sw(x), and this shows that w is a recurrent function with
period k. This completes the proof of the theorem. �

4.4. Corollary. Let k ∈ N and ϕ : R → R be an f-even function with period k and let
g : R → R be a continuous function. Then, g is a Fibonacci (resp. Pell and Jacobsthal)
function with period k if and only if ϕg is a Fibonacci (resp. Pell and Jacobsthal) function
with period k.

4.5. Example. Let k ∈ N and define ϕ(x) = cos(πx) and γ(x) = x−bxc. Note that ϕ and
γ are examples of f -even functions. Furthermore, recall that the function w(x) = αx/k

is a recurrent function with period k. Then, for all x ∈ R, the products

(4.1) (ϕw)(x) = cos(πx)αx/k

and

(4.2) (γw)(x) = (x− bxc)αx/k

are both examples of recurrent functions with period k. Specifically, if (r, s) = (2, 1),
then (ϕp)(x) = cos(πx)σx/k and (γp)(x) = (x − bxc)σx/k are both Pell functions with
period k.

4.6. Example. Let k ∈ N and define

ϕ(x) =


1, for x ∈ Q;

−1, otherwise.

Hence, ϕ(x + k) = ϕ(x) for any x ∈ R. Also, if ϕh ≡ 0, then h ≡ 0 whether or not
h is continuous. Thus, ϕ is an f -even function with period k. We know that w(x) =

(x− bxc)αx/k is a recurrent function with period k. So, by Theorem 4.3, the mapping
defined by

(ϕw)(x) =


(x− bxc)αx/k, for x ∈ Q;

(bxc − x)αx/k, otherwise,

is also a recurrent function. Specifically, if (r, s) = (1, 2), then w(x) = 2x/k (x− bxc). So
we have,

(ϕw)(x) =


2x/k (x− bxc) , for x ∈ Q;

2x/k (bxc − x) , otherwise,

a Jacobsthal function with period k.

4.7. Theorem. Let k ∈ N, ϕ : R → R be an f-even function with period k, and let
w : R→ R be a continuous function. Then, w is an odd recurrent function with period k
if and only if ϕw is an odd recurrent function with period k.
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We omit the proof since it is similar on how we prove Theorem 4.3.

4.8. Example. Let k be an even natural number and consider the f -even functions ϕ and
γ. In Example (3.2), we saw that w(x) = α̃x/k is an odd recurrent function with period k.
Then, for all x ∈ R, the functions (ϕw)(x) = cos(πx)α̃x/k and (γw)(x) = (x− bxc)α̃x/k
are both odd recurrent functions with period k.

We now discuss f -odd functions. Recall that if ϕ : R→ R such that for ϕh ≡ 0 and h
is continuous, we have h ≡ 0. The map ϕ is said to be an f -odd function with period k if
ϕ(x+ k) = −ϕ(x) for all x ∈ R. We have seen in [19] that ϕ(x) = sin(πx) is an example
of f -odd function.

4.9. Theorem. Let k ∈ N, ϕ : R → R be an f-odd function with period k, and let
w : R→ R be a continuous function. Then, w is a recurrent function with period k if and
only if ϕw is an odd recurrent function with period k.

Again, we leave the proof to the reader.

4.10. Example. Let k be any odd natural number. Define ϕ(x) = sin(πx) and w(x) =
α̃x/k for all x ∈ R. Hence, (ϕw)(x) = α̃x/k sin(πx). We have seen in our discussion that
ϕ is an f -odd function with period k and w is an odd recurrent function with period k.
Hence, by Theorem 4.9, the product ϕw is a recurrent function with period k. We have
the following examples for specific values of r and s.

(1) If (r, s) = (1, 1), then (ϕf)(x) = sin(πx) (φ− 1)x/k is a Fibonacci function with
period k.

(2) If (r, s) = (2, 1), then (ϕp)(x) = sin(πx) (σ − 2)x/k is a Pell function with period
k.

(3) If (r, s) = (1, 2), then (ϕj)(x) = sin(πx) is a Jacobsthal function with period k.

5. Products of recurrent functions with period k

In this section, we give conditions so that whenever g and h are any two recurrent
functions with period k in R, their product forms another recurrent function with period
k.

5.1. Theorem. Let k ∈ N and g and h be two recurrent functions with period k satisfying

g(x+ 2k) = Ag(x+ k) +Bg(x), ∀x ∈ R,(5.1)

h(x+ 2k) = Uh(x+ k) + V h(x), ∀x ∈ R,(5.2)

respectively, where A,B,U , and V are non-negative real numbers. Suppose the following
conditions are satisfied:

(C1) A = AU, B = BV, AV = BU ,
(C2) g is an f-even function and h is an f-odd function.

Then, w(x) := (gh)(x) forms another recurrent function with period k satisfying the
equation

(5.3) w(x+ 2k) = Aw(x+ k) + Bw(x), ∀x ∈ R.

Proof. The proof is straightforward. Suppose g and h are two recurrent functions with
period k (k ∈ N) satisfying equations (5.1) and (5.2), respectively. Furthermore, we
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suppose that conditions (C1) and (C2) are satisfied. Then,

w(x+ 2k) = (gh)(x+ 2k) = [Ag(x+ k) +Bg(x)][Uh(x+ k) + V h(x)]

= Aw(x+ k) + Bw(x) + [AV g(x+ k)h(x) +BUg(x)h(x+ k)]

= Aw(x+ k) + Bw(x) +AV g(x)[h(x) + h(x+ k)]

= Aw(x+ k) + Bw(x), ∀x ∈ R,

proving the theorem. �

5.2. Example. Let k be an odd natural number and t ∈ R+. Define g(x) = x − bxc
and let A = t/(2t + 1) and B = (t + 1)/(2t + 1). Furthermore, define h(x) = sin(πx)
and U = V − 1 = t. We claim that w(x) := (gh)(x) is a recurrent function with period
k satisfying the following equation:

(5.4) w(x+ 2k) = Aw(x+ 1) +Bw(x), ∀x ∈ R,

where A = AU and B = BV . We know that g(x) = x − bxc and h(x) = sin(πx) are
examples of f -even and f -odd functions with period k, respectively. We first show that
g satisfies the equation

(5.5) g(x+ 2k) =
t

2t+ 1
g(x+ k) +

t+ 1

2t+ 1
g(x) ∀x ∈ R,

and then show that h satisfies

(5.6) h(x+ 2k) = th(x+ k) + (t+ 1)h(x), ∀x ∈ R.

We have,

g(x+ 2k) = x+ 2k − bx+ 2kc = x− bxc =
(

t

2t+ 1
+

t+ 1

2t+ 1

)
(x− bxc)

=
t

2t+ 1
(x+ 1− bx+ 1c) + t+ 1

2t+ 1
(x+ 1− bx+ 1c)

=
t

2t+ 1
g(x+ 1) +

t+ 1

2t+ 1
g(x), ∀x ∈ R.

and

h(x+ 2k) = sin(π(x+ 2k)) = sin(πx) cos(2kπ)

= −t sin(πx) + (t+ 1) sin(πx)

= t sin(πx) cos(kπ) + (t+ 1) sin(πx)

= t sin(π(x+ k)) + (t+ 1) sin(πx)

= th(x+ k) + (t+ 1)h(x), ∀x ∈ R.

Obviously, AV = BU . By Theorem 5.1, it follows that w(x) = (gh)(x) is a recurrent
function with period k satisfying equation (5.4).

5.3. Corollary. Let g and h be two recurrent functions with period k satisfying equations
(5.1) and (5.2), respectively. Suppose conditions (C1) and (C2) are satisfied, then w(x) :=
(gh)(x) is never a Fibonacci function with period k except possibly when g ≡ 0 or h ≡ 0
for all x ∈ R.

Proof. Let g and h be two functions satisfying equations (5.1) and (5.2), respectively and
suppose that conditions (C1) and (C2) are satisfied. Hence,

g(x+ k) = g(x+ 2k) = Ag(x+ k) +Bg(x)

= (A+B)g(x+ k), ∀x ∈ R,
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and

h(x+ k) = h(x+ 2k) = Uh(x+ k) + V h(x)

= (U − V )h(x+ k), ∀x ∈ R.

It follows that A+B = 1 and U − V = 1. Since AV = BU , we have AV = (1−B)V =
(1 + V )B = BU which implies that B = V/(2V + 1). Letting V = t ∈ R+ we get the
following equations:

g(x+ 2k) = (t+ 1)(2t+ 1)−1g(x+ k) + t(2t+ 1)−1g(x),(5.7)

h(x+ 2k) = (t+ 1)h(x+ k) + th(x).(5.8)

Hence,

w(x+ 2k) = g(x+ 2k)h(x+ 2k)

=

(
t+ 1

2t+ 1
g(x+ k) +

t

2t+ 1
g(x)

)
((t+ 1)h(x+ k) + th(x))

=
(t+ 1)2

2t+ 1
w(x+ k) +

t2

2t+ 1
w(x) +

t(t+ 1)

2t+ 1
g(x) (h(x+ k) + h(x))

=
(t+ 1)2

2t+ 1
w(x+ k) +

t2

2t+ 1
w(x)

= Aw(x+ k) + Bw(x), ∀x ∈ R.

Suppose w is a Fibonacci function. Then, A = B = 1. This is impossible since

(t+ 1)2

2t+ 1
=

t2

2t+ 1
+ 1 = 2 > 1 =

t2

2t+ 1
.

This proves the theorem. �

5.4. Corollary. Let g and h be two recurrent functions satisfying equation (5.1) and
(5.2), respectively. Suppose that AU = 2, BV = 1, AV = BU and condition (C2) is
satisfied. Then, w(x) := (gh)(x) is a Pell function.

Proof. The proof follows a similar argument used in the proof of Corollary 5.3 so we omit
it. �

5.5. Example. In the proof of Corollary 5.3 we have seen that the product of equations
(5.7) and (5.8) forms a recurrent function provided they satisfy conditions (C1) and
(C2). If we set A = 2 and B = 1, then we obtain a Pell function provided we could find
a positive real number t such that t2 − 2t− 1 = 0. The solution to this equation is given
by t = 1±

√
2, so we choose t = 1 +

√
2 ∈ R+. Hence, equations (5.7) and (5.8) become

(5.9) g(x+ 2k) =

(
σ + 1

2σ + 1

)
g(x+ k) +

(
σ

2σ + 1

)
g(x)

and

(5.10) h(x+ 2k) = (σ + 1)h(x+ k) + σh(x),

respectively. Now, our goal is to find functions g and h satisfying condition (C2). We
can choose g(x) = x − bxc and h(x) = sin(πx), and one can check that these equations
satisfy equations (5.9) and (5.10). Thus, by Corollary 5.8, w(x) = (x− bxc) sin(πx) is a
Pell function.

5.6. Corollary. Let g and h be any two recurrent functions with period k satisfying equa-
tion (5.1) and (5.2), respectively, such that AU = 1, BV = 2, AV = BU and condition
(C2) is satisfied. Then, w(x) := (gh)(x) is a Jacobsthal function.
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5.7. Example. In Example (5.2), we have seen that the function defined by w(x) :=
(gh)(x) = (x−bxc) sin(πx) is a recurrent function with period k satisfying equation (5.4).
If we set A and B to be in the set of natural numbers such that B = A+1, then we have
the following

g(x+ 2k) = θ(2θ + 1)−1g(x+ k) + (θ + 1)(2θ + 1)−1g(x), ∀x ∈ R,
h(x+ 2k) = θh(x+ k) + (θ + 1)h(x), ∀x ∈ R,
w(x+ 2k) = Aw(x+ k) + (A+ 1)w(x), ∀x ∈ R,

where θ = A+
√

A(A+ 1). If we let A = 1, then we obtain the following equations,

g(x+ 2k) = σ(2σ + 1)−1g(x+ k) + (σ + 1)(2σ + 1)−1g(x), ∀x ∈ R,(5.11)

h(x+ 2k) = σh(x+ k) + (σ + 1)h(x), ∀x ∈ R,(5.12)

w(x+ 2k) = w(x+ k) + 2w(x), ∀x ∈ R,(5.13)

where σ = 1 +
√
2 is the well known silver ratio. Suprisingly, equation (5.13)appears to

be a Jacobsthal function. Since g and h are f -even and f -odd functions, respectively,
we see that the function defined by w(x) := (gh)(x) = (x − bxc) sin(πx) with g and h
satisfying equation (5.11)and (5.12) is indeed a Jacobsthal function by Corollary 5.6.

5.8. Theorem. Let g be a recurrent function with period k (k ∈ N) and h be an odd
recurrent function, also, with period k satisfying

g(x+ 2k) = Ag(x+ k) +Bg(x), ∀x ∈ R,(5.14)

h(x+ 2k) = −Uh(x+ k) + V h(x), ∀x ∈ R,(5.15)

respectively, where A,B,U , and V are non-negative real numbers. Suppose condition
(C1) is satisfied and

(C3) g and h are both f-even functions, or
(C4) g and h are both f-odd functions.

Then, w(x) := (gh)(x) is an odd recurrent function with period k satisfying the equation

(5.16) w(x+ 2k) = −Aw(x+ k) + Bw(x).

Proof. The proof is similar to the proof of Theorem 5.1 so we omit it. �

5.9. Example. Let k be an even natural number and t ∈ R+. Consider the functions
g(x) = x− bxc satisfying equation (5.7) and h(x) = cos(πx). We show that h is an odd
recurrent function with period k satisfying the equation

(5.17) h(x+ 2k) = −th(x+ k) + (t+ 1)h(x).

We have,

h(x+ 2k) = cos(π(x+ 2k)) = cos(πx) cos(2kπ)

= −t cos(πx) + (t+ 1) cos(πx)

= −t cos(πx) cos(kπ) + (t+ 1) cos(πx)

= −t cos(π(x+ k)) + (t+ 1) cos(πx)

= −th(x+ k) + (t+ 1)h(x), ∀x ∈ R.

Clearly, AV = BU . Since g and h are both f -even functions, then by Theorem 5.8,
w(x) := (x − bxc) cos(πx) is an odd recurrent function with period k satisfying the
equation given by

(5.18) w(x+ 2k) = −
(

t2

2t+ 1

)
w(x+ k) +

(
(t+ 1)2

2t+ 1

)
w(x), ∀x ∈ R.
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5.10. Example. Let k ∈ N and A,B,U, V ∈ R+. Consider f -odd functions g and h
satisfying equations (5.14) and (5.15), respectively. Then we have

g(x+ 2k) = Ag(x+ k) +Bg(x) = (A−B)g(x+ k)

= (B −A)g(x+ 2k)

and

h(x+ 2k) = −Uh(x+ k) + V h(x) = −(U + V )h(x+ k)

= (U + V )h(x+ 2k).

These imply that B − A = 1 and U + V = 1. If AV = BU , then AV = (B − 1)V =
(1− V )B = BU , which implies that B = V/(2V − 1). Hence, we have the following:

g(x+ 2k) = (1− V )(2V − 1)−1g(x+ k) + V (2V − 1)−1g(x),(5.19)

h(x+ 2k) = −(1− V )h(x+ k) + V h(x).(5.20)

Since A ∈ R+, we get w(x) := (gh)(x) satisfying the equation

(5.21) w(x+ 2k) = −
(
(1− V )2

2V − 1

)
w(x+ k) +

(
V 2

2V − 1

)
w(x), ∀x ∈ R,

is an odd recurrent function with period k if and only if V ∈
(
1
2
, 1
]
.

5.11. Corollary. Let g be a recurrent function with period k and h be an odd recurrent
function, also, with period k satisfying equations (5.14) and (5.15). Suppose conditions
(C1), and (C3) or (C4) are satisfied. Then, w(x) := (gh)(x) is never an odd Fibonacci
nor an odd Pell function with period k except possibly when g ≡ 0 or h ≡ 0 for all x ∈ R.

F

5.12. Corollary. Let g(x) be a recurrent function with period k and h be an odd recurrent
function, also, with period k satisfying equations (5.14) and (5.15). Suppose AU =
1, BV = 2, AV = BU , and the functions g and h satisfies condition (C3) or (C4), then
w(x) := (gh)(x) is an odd Jacobsthal function with period k.

We leave the verification of Corollary 5.11 and Corollary 5.12 to the reader.

5.13. Example. Let k be an even natural number, t ∈ R+. Consider the functions
g(x) = x − bxc and h(x) = cos(πx). We note that g and h are both f -even functions.
We claim that if these two functions satisfy the following equations

(5.22) g(x+ 2k) =

(
σ

2σ + 1

)
g(x+ k) +

(
σ + 1

2σ + 1

)
g(x), ∀x ∈ R,

and

(5.23) h(x+ 2k) = −σh(x+ k) + (σ + 1)h(x), ∀x ∈ R,

respectively, where σ is the silver ratio, then the product w(x) := (gh)(x) = (x −
bxc) cos(πx) forms an odd Jacobsthal function with period k which satisfies the equation

w(x+ 2k) = −
(

σ2

2σ + 1

)
w(x+ k) +

(
(σ + 1)2

2σ + 1

)
w(x)

= −w(x+ k) + 2w(x), ∀x ∈ R.

We know that g satisfies equation (5.22) from Example (5.2). Hence, we only need to
show that h(x) = cos(πx) satisfies equation (5.23). In fact, we have shown this already
in Example (5.9). Thus, by Corollary 5.12, w(x) = (x − bxc) cos(πx) is indeed an odd
Jacobsthal function with period k.
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5.14. Example. In Example (5.10), we have seen that for any arbitrary f -odd functions
g and h satisfying equations (5.19) and (5.20) with U ∈

[
0, 1

2
, 0
)
, the product w(x) :=

(gh)(x) is an odd recurrent function with period k. If we let V = 3 − σ ∈
(
1
2
, 1
]
, where

σ is the silver ratio, then the functions g and h satisfying the following equations

g(x+ 2k) =

(
σ − 2

5− 2σ

)
g(x+ k) +

(
3− σ
5− 2σ

)
g(x), ∀x ∈ R,

h(x+ 2k) = −(σ − 2)h(x+ k) + (3− σ)h(x), ∀x ∈ R.

whose product is given by w(x) := (gh)(x) satisfying the equation

(5.24) w(x+ 2k) = −
(
(σ − 2)2

5− 2σ

)
w(x+ k) +

(
(3− σ)2

5− 2σ

)
w(x), ∀x ∈ R,

is an odd Jacobsthal function with period k by Corollary 5.12.

5.15. Theorem. Let g and h be two functions satisfying equation (5.1) and (5.2), respec-
tively. Suppose A = AU,B = BV,AV = −BU , and condition (C3) or (C4) is satisfied,
then w(x) := (gh)(x) is a recurrent function with period k satisfying equation (5.16).

Proof. The proof is similar to the proof of Theorem 5.1 so we omit it. �

5.16. Corollary. Let g and h be two functions satisfying equation (5.1) and (5.2), re-
spectively. Suppose A = AU,B = BV,AV = −BU , and condition (C3) or (C4) is
satisfied, then, w(x) := (gh)(x) si never a (or an odd) Fibonacci nor a (or an odd) Pell
function with period k except possibly when g ≡ 0 or h ≡ 0 for all x ∈ R. Moreover, if
A = 1,B = 2, and g and h are both f-odd functions, then w is a Jacobsthal function with
period k.

Proof. Let g and h be two functions satisfying equation (5.1) and (5.2), respectively.
Suppose A = AU,B = BV,AV = −BU , and g and h are both f -even functions, then we
have the following:

g(x+ 2k) = Ag(x+ k) +Bg(x) = (A+B)g(x+ k)

= (A+B)g(x+ 2k), ∀x ∈ R,

and

h(x+ 2k) = Uh(x+ k) + V h(x) = (U + V )h(x+ k)

= (U + V )h(x+ 2k), ∀x ∈ R.

These imply that A + B = U + V = 1. Since AV = −BU , we get B = V/(2V − 1).
Hence,

g(x+ 2k) = (V − 1)(2V − 1)−1g(x+ k) + V (2V − 1)−1g(x), ∀x ∈ R,
h(x+ 2k) = (1− V )h(x+ k) + V h(x), ∀x ∈ R.

By assumption, A ∈ R+, then w(x) := (gh)(x) satisfying the equation

w(x+ 2k) = −
(
(1− V )2

2V − 1

)
w(x+ k) +

(
V 2

2V − 1

)
w(x), ∀x ∈ R,

is a recurrent function with period k if and only if V ∈
[
0, 1

2

)
. Now, suppose that w is a

Fibonacci function with period k, then

(5.25)
V 2

2V − 1
= 1 > 0 >

−V 2 + 2V − 1

2V − 1
= − (1− V )2

2V − 1
.

So, it is impossible that w is a (or an odd) Fibonacci function with period k. Furthermore,
it can also be seen in (5.25) that w cannot be a (nor an odd) Pell function with period
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k. Similarly, suppose w is a Jacobsthal function with period k, then V 2/(2V − 1) = 2,
which implies that

− (1− V )2

2V − 1
=
−V 2 + 2V − 1

2V − 1
= −1, or equivalently V = 2±

√
2.

But V ∈
[
0, 1

2

)
, thus w cannot be a (nor an odd) Jacobsthal function with period k. On

the other hand, if g and h are both f -odd functions, then we have

g(x+ 2k) = Ag(x+ k) +Bg(x) = (A−B)g(x+ k)

= (B −A)g(x+ 2k), ∀x ∈ R,

and

h(x+ 2k) = Uh(x+ k) + V h(x) = (U − V )h(x+ k)

= (V − U)h(x+ 2k), ∀x ∈ R.

These imply that B − A = V − U = 1. Since AV = −BU , we obtain B = V/(2V − 1).
Hence,

g(x+ 2k) =

(
1− V
2V − 1

)
g(x+ k) +

(
V

2V − 1

)
g(x),

h(x+ 2k) = (V − 1)h(x+ k) + V h(x).

Because A ∈ R+, then w(x) := (gh)(x) satisfying the equation

(5.26) w(x+ 2k) = −
(
(1− V )2

2V − 1

)
w(x+ k) +

(
V 2

2V − 1

)
w(x), ∀x ∈ R,

is a recurrent function with period k if and only if V ∈
(
1
2
, 1
]
. It can easily be verified

that there is no value for V ∈
(
1
2
, 1
]
such that equation (5.26) is a Fibonacci or a Pell

function with period k. However, we can find a value for V ∈
(
1
2
, 1
]
such that (5.26) is

a Jacobsthal function. In particular, we can choose V = 3− σ ∈
(
1
2
, 1
]
so that we have

g(x+ 2k) =

(
σ − 2

5− 2σ

)
g(x+ k) +

(
3− σ
5− 2σ

)
g(x),(5.27)

h(x+ 2k) = (2− σ)h(x+ k) + (3− σ)h(x).(5.28)

Equations (5.27) and (5.28) imply that

w(x+ 2k) = −
(
(σ − 2)2

5− 2σ

)
w(x+ k) +

(
(3− σ)2

5− 2σ

)
w(x)

= −w(x+ k) + 2w(x), ∀x ∈ R,

is a Jacobsthal function with period k. This verifies the corollary. �

5.17. Theorem. Let g and h be any two functions satisfying

g(x+ 2k) = −Ag(x+ k) +Bg(x),

h(x+ 2k) = −Uh(x+ k) + V h(x),

respectively, where A,B,U , and V are non-negative real numbers. Suppose that condi-
tion (C1) is satisfied, and g is an f-even function whereas h is an f-odd function, then
w(x) := (gh)(x) forms another recurrent function with period k satisfying equation (5.3).
Furthermore, if A = AU,B = BV,AV = −BU , and condition (C3) or (C4) is satisfied
then, w(x) := (gh)(x) is also a recurrent function with period k satisfying equation (5.3).
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6. Quotients of recurrent functions
Here we discuss the limit of the quotients of recurrent functions with period k and

provide proofs to two conjecture of Sroysang [19].

6.1. Theorem. Let k ∈ N and w : R → R be a recurrent function with period k. Then,
the limit of the quotient w(x+ k)/w(x) exists.

Proof. Let k, n ∈ N, r, s ∈ R+, and consider the quotient Q(x) := w(x+ k)/w(x), where
w is a recurrent function with period k. Then, we have two possibilities: (i) Q(x) < 0,
and (ii) Q(x) > 0. First, suppose that Q(x) < 0 then (WLOG), u := w(x) > 0 and
v := w(x+ k) < 0. Hence,

w(x+ 2k) = −rw(x+ k) + sw(x)

= −rv + su,

w(x+ 3k) = rw(x+ 2k)− sw(x+ k) = r(−rv + su)− sv

= −(r2 + s)v + rsu,

w(x+ 4k) = rw(x+ 3k) + sw(x+ 2k) = r(−(r2 + s)v + rsu) + s(−rv + su)

= −(r3 + 2rs)v + s(r2 + s)u

...

w(x+ nk) = −Wnv + sWn−1u, ∀n ∈ N,

where Wn is the nth Horadam number with initial conditions W0 = 0 and W1 = 1. Let
x′ ∈ R. Then, we could find x ∈ R and n ∈ Z such that x′ = x+ nk. So we have

(6.1)
w(x′ + k)

w(x′)
=
w(x+ (n+ 1)k)

w(x+ nk)
=
−Wn+1v + sWnu

−Wnv + sWn−1u
=
−vWn+1

Wn
+ su

−v + su
Wn−1

Wn

.

Since x→∞ as n→∞, then letting n→∞ equation (6.1) we get

lim
x→∞

w(x′ + k)

w(x′)
= lim
n→∞

−vWn+1

Wn
+ qu

−v + qu
Wn−1

Wn

=
−v
(
limn→∞

Wn+1

Wn

)
+ qu

−v + qu
(
limn→∞

Wn−1

Wn

) .
Note that β =

r−
√
r2+4s

2
∈ (−1, 0). So limn→∞ β

n = 0. Thus,

lim
x→∞

w(x′ + k)

w(x′)
=
−αv + su

−v + α−1su
= α,

since limn→∞
Wn+1

Wn
= limn→∞

αn+1−βn+1

αn−βn = α. On the other hand, suppose (WLOG),
w(x) and w(x + k) are both positive and x � k. We can express w(x + k)/w(x) as
w(2n+δ+k)/w(2n+δ) since any non-negative real number x can be written as x = δ+2n
for some δ ∈ R and n ∈ N. Now, we claim that

lim
n→∞

w(2n+ δ + k)

w(2n+ δ)
= α.
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We show this by expressing both sides in terms of continued fractions. For the LHS, we
have

w(2n+ k + δ)

w(2n+ δ)
=
pw(2n+ δ) + qw(2n+ δ − k)

w(2n+ δ)
= r + s

w(2n+ δ − k)
w(2n+ δ)

= r + s
1

r + s
w(2n+ δ − 2k)

w(2n+ δ − k)

= r + s
1

r + s
1

r + s
w(2n+ δ − 3k)

w(2n+ δ − 2k)

...

= r + s
1

r + s
1

r + s
1

r + s
1

. . . + sw(2n+δ−(2n−1)k)
w(2n+δ−2(n−1)k)

.

Hence,

(6.2)
w(2n+ δ + k)

w(2n+ δ)
= r + s

1

r + s
1

r + s
1

. . . + sw(2n+δ−(2n−1)k)
w(2n+δ−2(n−1)k)

.

For the RHS, we have α = r + (−r +
√
r2 + 4s)/2 = r + s/α. Thus, we have

α = r + s
1

r + s
1

r + s
1

r + s
1

. . .

.

Now, taking the limit of equation (6.2) as n→∞, we get

lim
x→∞

Q(x) = lim
n→∞

w(2n+ δ + k)

w(2n+ δ)
= r + s

1

r + s
1

r + s
1

. . .

= α.

This proves the theorem. �

6.2. Corollary. Let k ∈ N. If f , (resp. p and j) is a Fibonacci (resp. Pell function and
Jacobsthal) function with period k, then the limit of the quotient f(x + 1)/f(x), (resp.
p(x+ 1)/p(x) and j(x+ 1)/j(x)) exists.

6.3. Corollary. Let k ∈ N and let w be a recurrent function with period k, then
limx→∞ w(x + k)/w(x) = α. In particular, if f (resp. p and j) is a Fibonacci (resp.
Pell, and Jacobsthal) function with period k, then limx→∞ f(x + k)/f(x) = φ (resp.
limx→∞ p(x+ k)/p(x) = σ and limx→∞ j(x+ k)/j(x) = 2).
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Proof. Let n, k ∈ N and suppose that the quotient w(x + k)/w(x) is positive. Further-
more, assume (WLOG) that w(x) and w(x+ k) are both positive, then

(6.3)
w(x+ (n+ 1)k)

w(x+ nk)
=
Wn+1w(x+ k) + sWnw(x)

Wnw(x+ k) + sWn−1w(x)
=

Wn+1

Wn
w(x+ k) + sw(x)

w(x+ k) +
Wn−1

Wn
sw(x)

.

Letting n→∞ in equation (6.3), we get

lim
n→∞

w(x+ (n+ 1)k)

w(x+ nk)
= α.

If, on the other hand, w(x + k)/w(x) is negative and suppose that (WLOG) w(x) > 0
and w(x + k) < 0 then, by the proof of Theorem 6.1, we see that limx→∞ w(x + (n +
1)k)/w(x+ nk) = α. This proves the corollary. �

6.4. Remark. In [19, Conjecture 25], Sroysang conjectured that if f is a fibonacci
function with period k, then limx→∞ f(x+k)/f(x) = φ. Indeed, this is true by Corollary
6.3.

Sroysang’s second conjecture found in [19, Conjecture 26] is also true as stated in the
following results.

6.5. Theorem. Let k ∈ N and w := R→ R be an odd recurrent function with period k.
Then, the limit of the quotient w(x+ k)/w(x) exists.

6.6. Corollary. Let k ∈ N. If f , (resp. p and j) is an odd Fibonacci (resp. odd
Pell function and odd Jacobsthal) function with period k, then the limit of the quotient
f(x+ 1)/f(x), (resp. p(x+ 1)/p(x) and j(x+ 1)/j(x)) exists.

6.7. Corollary. Let k ∈ N and let w be an odd recurrent function with period k, then
limx→∞ w(x+k)/w(x) = −α. In particular, if f (resp. p and j) is an odd Fibonacci (resp.
odd Pell, and odd Jacobsthal) function with period k, then limx→∞ f(x + k)/f(x) = −φ
(resp. limx→∞ p(x+ k)/p(x) = −σ and limx→∞ j(x+ k)/j(x) = −2).

We omit the proof of these results since they can be proven in a similar fashion as in
Theorem 6.1 and Corollary 6.3.

7. Summary
We were able to extend successfully the notion of Fibonacci functions [9] and Fibonacci

functions with period k [19] by characterizing the concept of second-order linear recurrent
functions with period k. We were also able to confirm the conjectures of Sroysang in [19]
by proving a more general result about the asymptotic growth rate of Fibonacci functions
with period k. In our next investigation [18], we will revisit Sroysang’s conjecture and
provide another proof using the results presented in [20] by Tollu et al. together with
the concept of Cauchy sequences.
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This paper defines generalizations of paracompactness on generalized
topological spaces (GTS) and establishes that paracompactness, near
paracompactness and several other paracompact-like properties follow
as special cases, by choosing the GT suitably. Also, the generalizations
of locally finite and closure preserving collections in a GTS, have been
studied, pointing out their interrelations. Finally, it has been observed
that the celebrated theorem of E.Michael in the context of regular para-
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1. Introduction & Preliminaries
Paracompactness [2] is a very natural and perhaps the most successful generalization

of compactness. Various eminent mathematicians of different times have studied several
stronger as well as weaker forms of paracompactness, the most widely investigated one
being near paracompactness [5]. The main purpose of this paper is to define a gener-
alization of paracompactness on generalized topological spaces (GTS) which is a wider
framework than topological spaces; and establish that by choosing the GT suitably para-
compactness as well as near paracompactness follow as special cases. Also, it has been
observed that by suitably choosing the generalized topology one may think of various
paracompact-like spaces other than the two mentioned above.
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In section 2, we introduce a closure operator γµ on a GTS (X,µ) and find certain rela-
tionships among the generalized closure operator on (X,µ) and the newly defined one.
We have also generalized and studied local finite and closure preserving collections of sets
with respect to the GT µ and the operator γµ.
In section 3, we define and investigate generalization of paracompactness which we have
called µ-paracompactness and gµ-paracompactness. The celebrated theorem of E.Michael
in the context of regular paracompact spaces follow as a corollary to a result achieved in
this paper for more general setting what we have called γµ-regular gµ-paracompact GTS.
Let X be a nonempty set and µ be a collection of subsets of X (i.e. µ ⊆ P(X)). µ is
called a generalized topology (briefly GT) [1] on X iff φ ∈ µ and Gλ ∈ µ for λ ∈ Λ(6= φ)
implies ∪λ∈ΛGλ ∈ µ. The pair (X,µ) is called a generalized topological space (briefly
GTS). The elements of µ are called µ-open sets and their complements are called µ-closed
sets. The generalized closure of a subset S of X, denoted by cµ(S), is the intersection of
all µ-closed sets containing S. The set of all µ-open sets containing an element x ∈ X
is denoted by µ(x). The set of all open, δ-open [7] and θ-open [7], subsets of X are
denoted respectively by τ(X) ( or τ), ∆(X) (or ∆) and Θ(X) (or Θ). In what follows
we shall denote the set of all natural numbers, integers and real numbers respectively by
N,Z and R.

2. Generalized local finite and Generalized closure preserving col-
lection
Before generalizing locally finite and closure preserving collections we introduce a new

operater on a GTS (X,µ) and show that such operator actually give rise to a topology
on X.

2.1. Definition. Let (X,µ) be a GTS. Then for each x ∈ X we define
µ∗(x) = {∩ni=1Wi : Wi ∈ µ(x), ∀ i = 1, 2, · · · , n;n ∈ N}

2.1. Remark. For any x ∈ X, µ(x) ⊆ µ∗(x) and µ∗(x) is closed under finite intersection.

2.2. Definition. Let (X,µ) be a GTS. Then γµ-closure of a subset S of X, denoted by
γµ(S) is defined by
γµ(S) = {x ∈ X : V ∩ S 6= φ for all V ∈ µ∗(x)}

The table below shows that how γµ-closure operator unifies several closure type oper-
ator.

µ γµ
P (X) identity operator
τ closure operator
∆ δ-closure operator [7]
Θ θ-closure operator [7]

In a GTS (X,µ) γµ-closure operator satisfies the following properties (i) γµ(φ) = φ, (ii)
S ⊆ X ⇒ S ⊆ γµ(S) ⊆ cµ(S) and γµ(γµ(S)) = γµ(S), (iii) A ⊆ B ⊆ X ⇒ γµ(A) ⊆
γµ(B) and γµ(A∪B) = γµ(A)∪ γµ(B). Clearly γµ is a closure operator on X and hence
give rise to a topology on X, denoted by µ∗ and given by µ∗ = {S ⊆ X : γµ(X\S) =
X\S}. The elements of µ∗ are called µ∗-open sets and the complements are called µ∗-
closed sets. In fact for every x ∈ X, W ∈ µ∗(x) is a -open set. From now we may call
the elements of µ∗(x) the open neighbourhoods of x.
In particular, if µ itself is a topology on X then µ = µ∗. Otherwise µ∗ is finer than GT
µ.
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2.1. Example. Let us consider the set X = {a, b, c}. Then µ = {φ, {a, b}, {a, c}, X} is
clearly a GT on X. Let S = {b, c}. Now for any V ∈ µ(a), V ∩S 6= φ i.e. a ∈ cµ(S), but
a /∈ S. So cµ(S) 6= S. Therefore S is not a µ-closed set. Again if we take V1 = {a, b} and
V2 = {a, c} then (V1 ∩ V2) ∩ S = φ. i.e. a /∈ γµ(S). This implies that S = γµ(S) (using
S ⊆ γµ(S) and X = {a, b, c}). Therefore S is a µ∗-closed set.

With the help of µ-open and µ∗-open sets we generalize the known concepts of local
finite and closure preserving collections.

2.3. Definition. A family U = {Uα : α ∈ A} of sets in a GTS (X,µ) is called
(i) µ-locally finite (resp. gµ-locally finite) if for each x ∈ X there exists V ∈ µ(x) (resp.
V ∈ µ∗(x)) such that V intersects at most finitely many members of U i.e. V ∩ Uα 6= φ
for at most finitely many indices α.
(ii) µ-closure preserving (resp. γµ-closure preserving ) if for any subcollection V of U ,
cµ[∪{V : V ∈ V}] = ∪{cµV : V ∈ V} (resp. γµ[∪{V : V ∈ V}] = ∪{γµV : V ∈ V}).

In general, every µ-locally finite family on a GTS (X,µ) is a gµ-locally finite family
but not conversely.

2.2. Example. Let X = Z. Then µ = {A ⊆ Z : A is infinite } ∪ {φ} forms a GT on X.
Let us construct In = {x ∈ X : x ≥ n}, n ∈ N and Jn = {x ∈ X : x ≤ −n}, n ∈ N. Now
consider the family U = {In} ∪ {Jn}. Then for any x ∈ X,V ∈ µ(x) intersects infinitely
many members of U. Therefore U is not a µ-locally finite family. Again for any x ∈ X
if we take V1 = {y ∈ X : y ≥ x} and V2 = {y ∈ X : y ≤ x} then V1, V2 ∈ µ(x) and
V1 ∩V2(= {x}) ∈ µ∗(x). If x > 0 then V1 ∩V2 intersects only I1, I2, · · · , Ix. If x < 0 then
V1 ∩ V2 intersects only J1, J2, · · · , Jx. If x = 0 then V1 ∩ V2 intersects no members of U.
It follows that U is a gµ-locally finite family.

But when we take µ as τ then both coincide with locally finite [2]. Moreover, when we
take µ as τ then both of µ-closure preserving and γµ-closure preserving property coincide
with closure preserving.

2.1. Theorem. If U = {Uα : α ∈ A} is a µ-locally finite (resp. gµ-locally finite) family
on a GTS (X,µ). Then
(i) any subcollection of U is also µ-locally finite (resp.gµ-locally finite).
(ii) cµU = {cµ(U) : U ∈ U} (resp. γµU = {γµ(U) : U ∈ U}) is also µ-locally finite (resp.
gµ-locally finite).

Proof. (i) Straightforward.
(ii) Let x ∈ X. Then since U = {Uα : α ∈ A} is µ-locally finite (resp. gµ-locally finite),
there exists V ∈ µ(x) (resp. V ∈ µ∗(x)) such that V ∩ Uα 6= φ for at most finitely many
α’s. Now we show that V ∩ cµ(Uα) 6= φ (resp. V ∩γµ(Uα) 6= φ) for at most finitely many
α’s. Let y ∈ V , then V ∈ µ(y) (resp. V ∈ µ∗(y)) is such that V intersects at most finitely
many Uα’s. From the definition of cµ(Uα) (resp. γµ(Uα)), y ∈ cµ(Uα) (resp. γµ(Uα)) for
at most finitely many Uα’s. This implies that V ∩ cµ(Uα) 6= φ (resp. V ∩ γµ(Uα) 6= φ)
for at most finitely many α’s, as desired. �

2.2. Theorem. If U = {Uα : α ∈ A} is a gµ-locally finite family on a GTS (X,µ), then
U is γµ-closure preserving.

Proof. Let B be any subcollection of U. We show that γµ[∪{B : B ∈ B}] = ∪{γµ(B) :
B ∈ B}. Since γµ(B) ⊆ γµ[∪{B : B ∈ B}] for all B ∈ B, ∪{γµ(B) : B ∈ B} ⊆ γµ[∪{B :
B ∈ B}]. Next let x /∈ ∪{γµ(B) : B ∈ B} Since B is a subcollection of a gµ-locally finite
collection U, B is also gµ-locally finite and so there exists V ∈ µ∗(x) such that V intersects
at most finitely many members of B, say B1, B2, · · · , Bn. Again since x /∈ ∪{γµ(B) : B ∈
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B}, x /∈ γµ(Bi) for i = 1, 2, · · · , n and so there exist Wi ∈ µ∗(x) for i = 1, 2, · · · , n such
that Wi ∩Bi = φ. Let W = V ∩W1 ∩W2 ∩ · · · ∩Wn. Since V,W1,W2, · · · ,Wn ∈ µ∗(x),
W ∈ µ∗(x). So we have W ∈ µ∗(x) such that W ∩ [∪{B : B ∈ B}] = φ. This implies that
x /∈ γµ[∪{B : B ∈ B}]. Therefore γµ[∪{B : B ∈ B}] ⊆ ∪{γµ(B) : B ∈ B}, consequently
γµ[∪{B : B ∈ B}] = ∪{γµ(B) : B ∈ B}. �

2.1. Corollary. The arbitrary union of µ∗-closed sets from a gµ-locally finite family in
a GTS (X,µ) is also µ∗-closed.

Let (X,µ) be a GTS. Then a family U = {Uα : α ∈ Λ} on X is said to be a covering of
X if X = ∪α∈ΛUα. Moreover, if each Uα is µ-open (resp. µ-closed, µ∗-open, µ∗-closed)
then U is called µ-open (resp. µ-closed, µ∗-open, µ∗-closed) covering of X.
Let U and V be two covering of X, then V is said to be subcovering of U if each member
of V is also a member of U. Moreover if V contains finite (resp. countable) number of
members, then V is called finite (resp. countable) subcovering of U.
Let (X,µ) be a GTS. Then a family U = {Uα : α ∈ Λ} on X is said to be a point finite
covering of X if for each x ∈ X, there exists at most finitely many indices α ∈ Λ such
that x ∈ Aα. Moreover, if each member of U is µ-open then U is called point finite µ-open
covering of X.
Let (X,µ) be a GTS. Let U and V be two covering of X, then V is said to refine (or be
a refinement of ) U if for each V ∈ V there exists U ∈ U such that V ⊆ U . We write
V ≺ U. If W ≺ U and W ≺ V then W is called common refinement of U and V.

2.2. Remark. Each subcovering of a covering is a refinement of that covering.

2.3. Theorem. Let (X,µ) be a GTS. Let A = {Aα : α ∈ A} and B = {Bβ : β ∈ B} be
two covering of X. Then

(1) A ∧B = {Aα ∩Bβ : (α, β) ∈ A×B} is a covering of X, refining both A and B.
Furthermore if both A and B are µ-locally finite (resp.gµ-locally finite), so also
is A ∧ B.

(2) any common refinement of A and B is also a refinement of A ∧ B.

Proof. Straightforward. �

2.4. Definition. Let (X,µ) be a GTS. A refinement {Bβ : β ∈ B} of {Aα : α ∈ A} is
called a precise refinement if A = B and Bα ⊆ Aα, for each α.

2.4. Theorem. Let (X,µ) be a GTS. If a covering {Aα : α ∈ A} of X has a µ-locally
finite (resp. gµ-locally finite) refinement {Bβ : β ∈ B} that covers X, then it has a
precise µ-locally finite (resp. gµ-locally finite) refinement {Cα : α ∈ A} that covers X.
Furthermore, if each Bβ is µ-open then each Cα can be chosen to be µ-open also.

Proof. Define a map φ : B → A by assigning each β ∈ B to some α ∈ A such that
Bβ ⊆ Aα. For each α, let Cα = ∪{Bβ : φ(β) = α}, some Cα may be empty. Clearly
Cα ⊆ Aα for each α i.e {Cα : α ∈ A} is a refinement of {Aα : α ∈ A}. Also since
{Bβ : β ∈ B} is a covering of X, each Bβ appears somewhere {Cα : α ∈ A} and so
{Cα : α ∈ A} is a covering of X. Again since {Bβ : β ∈ B} is µ-locally finite (resp.
gµ-locally finite), for each x ∈ X there exists V ∈ µ(x) (resp.V ∈ µ∗(x)) such that V
intersects at most finitely many Bβ ’s and consequently finitely many Cα’s. This implies
that {Cα : α ∈ A} is µ-locally finite (resp. gµ-locally finite). Hence the first part follows.
For the second part, if each Bβ is µ-open then clearly each Cα is also µ-open. �

2.3. Remark. In the above theorem µ-locally finite (resp. gµ-locally finite) can be
replaced by point finite.
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2.5. Theorem. Let {Eα : α ∈ Λ} be any family of sets on a GTS (X,µ) and {Bβ : β ∈
B} be any gµ-locally finite µ∗-closed covering of X. If each Bβ intersects at most finitely
many sets Eα, then each Eα is contained in a µ∗-open set U(Eα) such that the family
{U(Eα) : α ∈ Λ} is gµ-locally finite.

Proof. For each α define U(Eα) = X\ ∪ {Bβ : Bβ ∩ Eα = φ}. Since, {Bβ}is gµ-locally
finite family of µ∗-closed sets U(Eα) is µ∗-open (since, ∪{Bβ : Bβ ∩ Eα = φ} is µ∗-
closed, by corollary 2.1). Also Eα ⊆ U(Eα) (since, x /∈ U(Eα) ⇒ ∃ x ∈ Bβ0 for some
β0 ∈ B such that Bβ0 ∩ Eα = φ. Again x ∈ Bβ0 and Bβ0 ∩ Eα = φ ⇒ x /∈ Eα. i.e.
x /∈ U(Eα)⇒ x /∈ Eα).
We now prove that {U(Eα) : α ∈ A} is gµ-locally finite. Since, {Bβ : β ∈ B} is gµ-
locally finite, for any given x ∈ X there exists V ∈ µ∗(x) such that V intersects at most
finitely many Bβ ’s say Bβ1 , Bβ2 , ..., Bβn . Obviously V contained in ∪ni=1Bβi , as {Bβ}
forms a covering of X. Since Bβ ∩ U(Eα) 6= φ iff Bβ ∩ Eα 6= φ ( since, Bβ ∩ Eα 6= φ iff
Bβ * ∪{Bβ : Bβ ∩Eα = φ} iff Bβ ∩ (X\∪ {Bβ : Bβ ∩Eα = φ}) 6= φ iff Bβ ∩U(Eα) 6= φ)
and each Bβi , i = 1, 2, · · · , n intersects at most finitely many Eα, ∪ni=1Bβi intersects
at most finitely many U(Eα). Thus we have V ∈ µ∗(x) such that V intersects at most
finitely many U(Eα) (since,V ⊆ ∪ni=1Bβi) and so {U(Eα) : α ∈ Λ} is gµ-locally finite. �

2.2. Corollary. Let {Eα : α ∈ Λ} be any family of sets on a GTS (X,µ) with µ = µ∗

and {Bβ : β ∈ B} be any µ-locally finite µ-closed covering of X. If each Bβ intersects at
most finitely many sets Eα, then each Eα is contained in a µ-open set U(Eα) such that
the family {U(Eα) : α ∈ Λ} is µ-locally finite.

3. µ-paracompactness and gµ-paracompactness
In this section we define generalized paracompactness to unify the existing concept of

paracompact and nearly paracompact spaces. We see that many more paracompact-like
properties may also be obtained by choosing the generalized topology suitably.

3.1. Definition. A GTS (X,µ) is said to be µ-paracompact (resp. gµ-paracompact) if
every µ-open covering of X has a µ-locally finite (resp. gµ-locally finite) µ-open refine-
ment that covers X.

3.1. Remark. gµ-paracompactness is a generalization of µ-paracompactness, since every
µ-paracompact GTS is a gµ-paracompact GTS, but not conversely in general. If we take
µ as τ then both µ-paracompact and gµ-paracompact coincide with paracompact. If we
take µ as ∆ then both coincide with nearly paracompact.

3.2. Definition. A GTS (X,µ) is said to be µ-compact [6] (resp. µ-Lindelöf) if every
µ-open covering of X has a finite (resp. countable ) subcovering.

3.2. Remark. In general, every µ-compact GTS (X,µ) is µ-Lindelöf , but not con-
versely.

3.1. Theorem. Let (X,µ) be a GTS. If (X,µ) is µ-compact then it is also µ-paracompact.

Proof. Straightforward. �

The converse of above theorem is not true in general, which follows from the following
example:

3.1. Example. Let X = Z, µ= discrete topology on X. then {{n} : n ∈ Z} is a µ-open
covering of X which has no finite subcover but every µ-open cover of X has a µ-locally
finite µ-open refinement {{n} : n ∈ Z} that covers X (since, {{n} : n ∈ Z} is a refinment
of every µ-open cover of X).
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3.3. Definition. [3] Let (X,µ) be a GTS. Then (X,µ) is said to be µ-regular if for any
x ∈ X and a µ-closed set F not containing x, there exist two disjoint µ-open sets U and
V such that x ∈ U and F ⊆ V .

3.4. Definition. Let (X,µ) be a GTS. Then (X,µ) is said to be γµ-regular if for any
x ∈ X and a µ-open set U containing x, there exists a µ-open set V contaning x such
that γµ(V ) ⊆ U .

3.2. Theorem. Let (X,µ) be a GTS. If (X,µ) is µ-regular then it is also γµ-regular.

Proof. Straightforward. �

The converse is not neccesarily true. This is observed in the following example:

3.2. Example. Let X = {a, b, c} and µ = {φ, {a, b}, {b, c}, {c, a}, X}. Then µ be a GT
on X. Here cµ(U) = X and γµ(U) = U for every µ-open set containing x ∈ X. It is easy
to check that X is γµ-regular but not µ-regular.

3.3. Theorem. For any γµ-regular GTS (X,µ), (1)⇒ (2)⇒ (3)⇒ (4) hold, where
(1) (X,µ) is gµ-paracompact.
(2) Every µ-open cover of X has a µ-open refinement that covers X and can be decom-
posed into at most countable collection of gµ-locally finite families of µ-open sets.
(3) Each µ-open cover of X has a gµ-locally finite refinement that cover X.
(4) Each µ-open cover of X has a µ∗-closed gµ-locally finite refinement that covers X.

Proof. (1)⇒ (2) Straightforward.
(2)⇒ (3) Let {Uβ : β ∈ B} be any µ-open covering of X. By (2) there exists an µ-open
covering {Vn,α : (n, α) ∈ N × A}, which is a refinement of {Uβ : β ∈ B}, where for each
n0 ∈ N, the family {Vn0,α : α ∈ A} is gµ-locally finite (not necessarily a covering). For
each n ∈ N, let Wn = ∪αVn,α, then {Wn, n ∈ N} is a µ-open covering of X. For each
i ∈ N define Ai = Wi\ ∪i−1

j=1 Wj . We now show that {Ai} is a gµ-locally finite covering
of X. For each x ∈ X, let Wi0 is the first member of {Wn, n ∈ N} such that x ∈ Wi0 .
Then it is clear that x ∈ Ai0 , hence {Ai} is a covering of X. Again Wi0 ∩ Ai = φ for
each i > i0 i.e. we have Wi0 ∈ µ(x) ⊆ µ∗(x) such that Wi0 intersects at most finitely
many members of {Ai}. Hence {Ai} is gµ-locally finite.
We now show that K = {An ∩ Vn,α : (n, α) ∈ N × A} is gµ-locally finite refinement of
{Uβ : β ∈ B} that covers X. For any An ∩ Vn,α ∈ K, since {Vn,α : (n, α) ∈ N × A} is
a refinement of {Uβ : β ∈ B} there exists Uβ such that An ∩ Vn,α ⊆ Vn,α ⊆ Uβ . Hence
K is a refinement of {Uβ : β ∈ B}. Again K is obviously a covering of X (since for
x ∈ X, ∃ An such that x ∈ An ⇒ x ∈ Wn = ∪αVn,α ⇒ x ∈ Vn,α0 for some α0 ∈ A i.e.
x ∈ An ∩ Vn,α0 for some (n, α0) ∈ N × A ). Next let x ∈ X. Then since {An : n ∈ N}
is gµ-locally finite, there exists W ∈ µ∗(x) such that W intersects at most finitely many
member of {An : n ∈ N} say, An1 , An2 , · · · , Anr . Again since {Vnj ,α : α ∈ A}, ( for
j = 1, 2, · · · , r) is gµ-locally finite we have Wnj ∈ µ∗(x), ( for j = 1, 2, · · · , r) such that
Wnj intersects atmost finitely many Vnj ,α’s. Let V = W ∩Wn1 ∩Wn2 · · · ∩Wnr then
since W,Wnj ∈ µ∗(x), V ∈ µ∗(x). So we have V ∈ µ∗(x) such that V intersects at
most finitely many member of K. Hence K is gµ-locally finite. Thus K is the required
gµ-locally finite refinement of {Uβ : β ∈ B} that covers X.
(3) ⇒ (4) Let U be a µ-open covering of X. With each y ∈ X, associate a definite
Uy ∈ U containing it and then since X is γµ-regular, there exists a µ-open set Vy such
that y ∈ Vy ⊆ γµ(Vy) ⊆ Uy. The family {Vy : y ∈ X} is then a µ-open covering and by
(2) and theorem 2.4 it has a precise gµ-locally finite refinement {Ay : y ∈ X}. Since
{γµ(Ay) : y ∈ X} is also gµ-locally finite (by theorem 2.1) and γµ(Ay) ⊆ γµ(Vy) ⊆ Uy
for each y, {γµ(Ay) : y ∈ X} is the desired refinement. �
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3.3. Remark. For a gµ-regular GTS (X,µ), if we take µ as µ∗ then all the conditions (1)
- (4) stated in the above theorem become equivalent. We have already proved (1)⇒(2),
(2)⇒(3) and (3)⇒(4). So if we show (4)⇒(1) then our purpose will be fulfilled.

3.4. Theorem. For any γµ-regular GTS (X,µ) with µ = µ∗, if each µ-open cover of X
has a µ∗-closed gµ-locally finite refinement that covers X then (X,µ) is gµ-paracompact.

Proof. Let U be any µ-open covering of X and ξ be any µ∗-closed gµ-locally finite re-
finement of it. Since µ = µ∗, ξ is a µ-closed µ-locally finite refinement. Then for each
x ∈ X, there exists a µ-open set Vx containing x such that Vx intersects at most finitely
many sets E of ξ. Using the µ-open covering {Vx : x ∈ X}, by given hypothesis we get a
µ∗-closed gµ-locally finite and hence a µ-closed µ-locally finite refinement B that covers
X. Since each B of B intersects at most finitely many sets E of ξ it follows from that
we can enlarge each E to an µ-open set G(E) such that {G(E)} is µ-locally finite (by
corollary 2.2). Associating with each E a single set U(E) ∈ U containing E, it is evident
that {G(E) ∩ U(E)} is an µ-open µ-locally finite refiinement of U. �

If we consider a regular topological space (X, τ) and choose in particular the GT as
τ then from theorem 3.3 and theorem 3.4 we obtain E.Michael’s theorem. On the
other hand, if µ = δ-open sets of (X, τ) then we obtain a characterization parallel to
E.Michael’s theorem for almost regular nearly paracompact spaces [4].
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6(21)(1969), 3 − 16.
[6] R.Shen, Remarks on Products of generalized topology, Acta Math Hunger.,

124(4)(2009), 363 − 369.
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Abstract
In this paper, for a second order sublinear dynamic equation with a
damping term we will study the lower bounds of the distance between
zeros of a solution and/or its derivatives and then establish some new
criteria for disconjugacy and disfocality. Our results present a slight
improvement to some results proved in the litrature. As a special case
when T = R, for a second order linear differential equation, we get some
results proved by Brown and Harris as a consequence of our results. The
results will be proved by employing the time scales Hölder inequality,
the time scales chain rule and some new dynamic Opial-type inequalities
designed and proved for this purpose.
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1. Introduction
In this paper, we will study the distribution of zeros of solutions of the second-order

sublinear dynamic equation with a damping term

(1.1)
(
r (t)

(
y∆ (t)

)β)∆

+ p(t)
(
y∆ (t)

)β
+ q(t) (yσ (t))β = 0, on [a, b]T ,

on an arbitrary time scale T, where 0 < β ≤ 1 is a quotient of odd positive integers, r, p
and q are real rd−continuous functions defined on T with r(t) > 0. In particular, we will
find the lower bounds of the distance between zeros of a solution and/or its derivatives
and prove several results related to the problems:
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(i) obtain lower bounds for the spacing b − a where y is a solution of (1.1) and
satisfies
y(a) = y∆ (b) = 0, or y∆ (a) = y (b) = 0,

(ii) obtain lower bounds for the spacing between consecutive zeros of solutions of
(1.1).

By a solution of (1.1) on an interval I, we mean a nontrivial real-valued function
y ∈ Crd(I), which has the property that r (t) y∆ (t) ∈ C1

rd(I) and satisfies (1.1) on I. We
say that a solution y of (1.1) has a generalized zero at t if y (t) = 0 and has a generalized
zero in (t, σ(t)) in case y (t) yσ (t) < 0 and µ(t) > 0. Equation (1.1) is disconjugate on the
interval [a, b]T, if there is no nontrivial solution of (1.1) with two (or more) generalized
zeros in [a, b]T. The solution y (t) of (1.1) is said to be oscillatory if it is neither eventually
positive nor eventually negative, otherwise it is oscillatory. We say that (1.1) is right
disfocal (left disfocal) on [a, b]T if the solutions of (1.1) such that y∆ (a) = 0 (y∆ (b) = 0)
have no generalized zeros in [a, b]T. We refer the reader to the book [28] for more details
about oscillation and nonoscillation theory of dynamic equations on time scales.

We note that, equation (1.1) in its general form covers several different types of differ-
ential and difference equations depending on the choice of the time scale T. For example,
when T = R, we have σ(t) = t, µ(t) = 0, x∆(t) = x

′
(t) and (1.1) becomes the second-

order sublinear differential equation

(1.2) (r(t)(x
′
(t))β)

′
+ p(t)(x

′
(t))β + q(t)xβ(t) = 0.

When T = Z, we have σ(t) = t+ 1, µ(t) = 1, x∆(t) = ∆x(t) = x(t+ 1)− x(t) and (1.1)
becomes the second-order difference equation

(1.3) ∆(r(t) (∆x(t))β) + p(t) (∆x(t))β + q(t)xβ(t+ 1)) = 0.

We present in the sequel some of the results that serve and motivate the contents on this
paper. The well known existence results in the literature for disconjugacy is due to C.
de la Vallée Poussin [22]. He considered the general nth order linear differential equation

(1.4) x(n) + p0(t)x(n−1) + · · ·+ pn−1(t)x = 0,

where the coefficients pi are real continuous functions on an interval I = [a, b] , and proved
that if |pi(t)| ≤ qi on I and the inequality

(1.5)
n∑
i=1

qi (b− a)i

i!
≤ 1,

holds, then (1.4) is disconjugate (that is every nontrivial solution of (1.4) has less than
n zeros on I, multiple zeros being counted according to their multiplicity).

Lyapunov [17] investigated the best known existence result in the literature for the
second order differential equation

(1.6) x
′′

(t) + q(t)x(t) = 0, t ∈ (a, b) ,

and proved that if x(t) is a solution of (1.6) with x(a) = x(b) = 0 and q(t) is a continuous
and nonnegative function on the closed interval [a, b], then

(1.7)
b∫
a

q(t)dt >
4

b− a .

The constant 4 is the best possible and cannot be replaced by a larger number. The
inverse of (1.7) gives a sufficient condition for disconjugacy of (1.6). The Lyapunov in-
equality is very important and has been extended extensively in the study of various
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properties of ordinary differential equations, for example bounds for eigenvalues, oscilla-
tion theory, stability criteria for periodic differential equations, and estimates for intervals
of disconjugacy.

Since the appearance of Lyapunov’s fundamental paper, there are many improvements
and generalizations of (1.7) in several papers and different conditions for the disconjugacy,
for the second order differential equation (1.2) and its special cases, have been investigated
by many authors. We refer the reader to the papers [12, 16, 19, 21, 30, 32]. A literature
review of continuous and discrete Lyapunov-type inequalities and their applications can
be found in the survey articles by Brown and Hinton [6], Cheng [8] and Tiryaki [31]
and the references cited therein. Hartman in [11, Chap. XI] generalized the classical
Lyapunov inequality for the second order linear differential equation

(1.8)
(
r(t)x

′
(t)
)′

+ q(t)x(t) = 0, r(t) > 0,

and proved that if x(a) = x(b) = 0, then

(1.9)
∫ b

a

q+(s)ds ≥ 4∫ b
a
r−1(s)ds

,

where q+(t) = max{0, q(t)} is the nonnegative part of q(t).
Cohn [9] and Kwong [14] proved that if x(t) is a solution of (1.6) with x(a) = x

′
(c) = 0,

then
c∫
a

(t− a) q(t)dt > 1,

and similarly if x(t) is a solution of (1.6) with x
′
(c) = x(b) = 0, then

b∫
c

(b− t) q(t)dt > 1.

Harris and Kong [10] proved that if x(t) is a solution of (1.6) with x(a) = x
′
(b) = 0, then

(1.10) (b− a) sup
a≤t≤b

∣∣∣∣∣∣
b∫
t

q(s)∆s

∣∣∣∣∣∣ > 1,

and if instead x
′
(a) = x (b) = 0, then

(1.11) (b− a) sup
a≤t≤b

∣∣∣∣∣∣
t∫
a

q(s)∆s

∣∣∣∣∣∣ > 1.

Brown and Hinton [7] proved that if x(t) is a solution of (1.6) with x(a) = x
′
(b) = 0,

then

(1.12) 2

b∫
a

Q2
1(t)(t− a)dt > 1,

where Q1(t) =
∫ b
t
q(s)ds. If instead x

′
(a) = x (b) = 0, then

(1.13) 2

b∫
a

Q2
2(t)(b− t)dt > 1,
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where Q2(t) =
t∫
a

q(s)ds.

In [29] the author considered the equation (1.2) when β = 1 and established some
criteria for disconjugacy and disfocality of solutions in an interval I = [a, b] ⊂ R. He also
applied Hardy and Wirtinger type inequalities and established an explicit formula for the
lower bound of the first eigenvalue of the eigenvalue problem

(1.14) −
(
x
′
(t)
)′
− p(t)x

′
(t) + q(t)x(t) = λx(t), x(a) = x(b) = 0.

For the study of dynamic equations on time scales, Bohner et al. [5] considered the
dynamic equation

(1.15) x∆∆ (t) + q(t)xσ (t) = 0,

and proved a new Lyapunov dynamic inequality on a time scale T, where q(t) is a positive
rd-continuous function defined on T. Saker [24], employed some new dynamic Opial type
inequalities and established new Lyapunov type inequalities for the equation

(1.16)
(
r (t)x∆ (t)

)∆

+ q(t)xσ (t) = 0, on [a, b]T ,

where r; q are rd-continuous functions satisfy the conditions∫ b

a

1

r(t)
∆t <∞, and

∫ b

a

q(t)∆t <∞.

For more results related to these results, we refer the reader to the papers by Karpuz
[13] and Saker [23, 27] and the references cited therein.

Following this trend and to develop the study of oscillation of second-order sublinear
dynamic equations on time scales, we will prove several results related to the problems
(i) − (ii). The rest of the paper is divided into three sections: In Section 2, we present
some basic concepts of the time scales calculus and present some dynamic Opial-type
inequalities, which are also interesting results in their own right, that will be used in
the proof of our main results. In Section 3, we first prove some new generalizations of
Opial’s inequality on an arbitrary time scale T, then we will employ these inequalities to
prove several results related to the problems (i)− (ii) above. In Section 4, we will discuss
some special cases of the results. The results yield some conditions for disfocality and
disconjugacy for equation (1.1).

2. Preliminaries and Some Opial’s Inequalities
In this section, we briefly give some essentials of time scales calculus which are neces-

sary for our results, then we present some dynamic Opial-type inequalities on an arbitrary
time scale T.

A time scale T is an arbitrary nonempty closed subset of the real numbers R. We
assume throughout that T has the topology that it inherits from the standard topology
on the real numbers R. The forward jump operator and the backward jump operator are
defined by: σ(t) := inf{s ∈ T : s > t}, ρ(t) := sup{s ∈ T : s < t}, where sup ∅ = inf T. A
point t ∈ T, is said to be left–dense if ρ(t) = t and t > inf T, is right–dense if σ(t) = t,
is left–scattered if ρ(t) < t and right–scattered if σ(t) > t. A function g : T → R is said
to be right–dense continuous (rd–continuous) provided g is continuous at right–dense
points and at left–dense points in T, left hand limits exist and are finite. The set of all
such rd–continuous functions is denoted by Crd(T). We denote by C(n)

rd (T) the space of
all functions f ∈ Crd(T) such that f∆i ∈ Crd(T) for i = 0, 1, 2, ..., n for n ∈ N.

The graininess function µ for a time scale T is defined by µ(t) := σ(t)− t ≥ 0, and for
any function f : T→ R the notation fσ(t) denotes f(σ(t)). We assume that supT =∞,



459

and define the time scale interval [a, b]T by [a, b]T := [a, b] ∩ T. The three most popular
examples of calculus on time scales are differential calculus, difference calculus, and
quantum calculus, i.e., when T = R, T = N and T = qN0 = {qt : t ∈ N0} where q > 1. For
more details of time scale analysis we refer the reader to the two books by Bohner and
Peterson [2], [3] which summarize and organize much of the time scale calculus. In this
paper, we will refer to the (delta) integral which we can define as follows. If G∆(t) = g(t),
then the Cauchy (delta) integral of g is defined by

∫ t
a
g(s)∆s := G(t) − G(a). It can be

shown (see [2]) that if g ∈ Crd(T), then the Cauchy integral G(t) :=
∫ t
t0
g(s)∆s exists,

t0 ∈ T, and satisfies G∆(t) = g(t), t ∈ T. A simple consequence of Keller’s chain rule [2,
Theorem 1.90] is given by

(2.1) (xγ(t))∆ = γ

1∫
0

[hxσ(t) + (1− h)x(t)]γ−1 dh x∆(t),

and the integration by parts formula on time scales is given by

(2.2)
∫ b

a

u(t)v∆(t)∆t = [u(t)v(t)]ba −
∫ b

a

u∆(t)vσ(t)∆t.

The Hölder inequality, see [2, Theorem 6.13], on time scales is given by

(2.3)
∫ b

a

|f(t)g(t)|∆t ≤
[∫ b

a

|f(t)|γ∆t

] 1
γ
[∫ b

a

|g(t)|ν∆t

] 1
ν

,

where a, b ∈ T and f, g ∈ Crd(I,R), γ > 1 and 1
γ

+ 1
ν

= 1. Throughout the paper, we
will assume that the functions in the statements of the theorems are nonnegative and
rd-continuous functions and the integrals are assumed to exist.

For completeness, in the following, we recall some of the Opial-type inequalities that
serve and motivate the contents of the paper.

In 1960 Opial [20] published an inequality involving integrals of a function and its
derivative. Since the discovery of Opial’s inequality much work has been done, and
many papers which deal with new proofs, various generalizations, extensions and their
discrete analogues have been also proved in the literature. The discrete analogy of Opial’s
inequality has been proved in [15]. In [4] the authors extended the Opial inequality to
an arbitrary time scale T and proved that if y : [0, h]T → R is delta differentiable with
y(0) = 0, then

(2.4)
∫ h

0

|y(x) + yσ(x)|
∣∣∣y∆(x)

∣∣∣∆x ≤ h ∫ h

0

∣∣∣y∆(x)
∣∣∣2 ∆x.

They also proved that if r and q are positive rd-continuous functions on [0, h]T,
∫ h

0
∆x
r(x)

<

∞, q nonincreasing and y : [0, h]T → R is delta differentiable with y(0) = 0, then

(2.5)
∫ h

0

qσ(x)
∣∣∣(y(x) + yσ(x)) y∆(x)

∣∣∣∆x ≤ ∫ h

0

∆x

r(x)

∫ h

0

r(t)q(x)
∣∣∣y∆(x)

∣∣∣2 ∆x.

In [24] the author proved that if y : [a, τ ]T → R is delta differentiable with y(a) = 0, then

(2.6)
∫ τ

a

s(x) |y(x) + yσ(x)|
∣∣∣y∆(x)

∣∣∣∆x ≤ K1(a, τ)

∫ τ

a

r(x)
∣∣∣y∆(x)

∣∣∣2 ∆x,

where s ∈ Crd([a, τ ]T,R) and r be a positive rd-continuous function on (a, τ)T such that∫ τ
a
r−1(t)∆t <∞, and

K1(a, τ) =
√

2

(∫ τ

a

s2(x)

r(x)

(∫ x

a

∆t

r(t)

)
∆x

) 1
2

+ sup
a≤x≤τ

(
µ(x)

|s(x)|
r(x)

)
.
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In [26] the author generalized (2.6) and proved that if y : [a, τ ]T → R is delta differentiable
with y(a) = 0, then

(2.7)
∫ τ

a

s(x)|y(x) + yσ(x)|λ|y∆(x)|δ∆x ≤ H1(a, τ)

∫ τ

a

r(x)|y∆(x)|λ+δ∆x,

where r, s be nonnegative rd-continuous functions on [a, τ ]T such that
∫ τ
a
r
−1

λ+δ−1 (t)∆t <
∞, λ, δ be positive real numbers such that λ ≥ 1 and

H1(a, τ) : = 2λ−1 sup
a≤x≤τ

(
µλ(x)

s(x)

r(x)

)
+ 22λ−1

(
δ

λ+ δ

) δ
λ+δ

×

(∫ τ

a

(s(x))
λ+δ
λ

(r(x))
δ
λ

(∫ x

a

r
−1

λ+δ−1 (t)∆t

)λ+δ−1

∆x

) λ
λ+δ

.

In [25] the author proved that if y : [a, τ ]T → R+ is delta differentiable with y(a) = 0,
then

(2.8)
∫ τ

a

s(x)|y(x) + yσ(x)|p|y∆(x)|q∆x ≤ K2(a, τ)

∫ τ

a

r(x)|y∆(x)|p+q∆x,

where p, q > 0 such that p ≤ 1, p + q > 1, r, s be nonnegative rd-continuous functions
such that

∫ τ
a
r
−1

p+q−1 (t)∆t <∞ and

K2(a, τ) : = sup
a≤x≤τ

(
µp(x)

s(x)

r(x)

)
+ 2p

(
q

p+ q

) q
p+q

(2.9)

×

(∫ τ

a

(s(x))
p+q
p

(r(x))
q
p

(∫ x

a

r
−1

p+q−1 (t)∆t

)p+q−1

∆x

) p
p+q

.

If [a, τ ]T is replaced by [τ, b]T, then we get the following result

(2.10)
∫ b

τ

s(x)|y(x) + yσ(x)|p|y∆(x)|q∆x ≤ K3(τ, b)

∫ b

τ

r(x)|y∆(x)|p+q∆x,

where

K3(τ, b) : = sup
τ≤x≤b

(
µp(x)

s(x)

r(x)

)
+ 2p

(
q

p+ q

) q
p+q

(2.11)

×

(∫ b

τ

(s(x))
p+q
p

(r(x))
q
p

(∫ b

x

r
−1

p+q−1 (t)∆t

)p+q−1

∆x

) p
p+q

.

We assume that there exists τ ∈ (a, b) which is the unique solution of the equation

(2.12) K(p, q) = K2(a, τ) = K3(τ, b) <∞,

where K2(a, τ) and K3(τ, b) are defined as in (2.9) and (2.11). Combining (2.8) and
(2.10), we get

(2.13)
∫ b

a

s(x)|y(x) + yσ(x)|p|y∆(x)|q∆x ≤ K(p, q)

∫ b

a

r(x)|y∆(x)|p+q∆x,

where y : [a, b]T → R is delta differentiable with y(a) = 0 = y(b),
∫ b
a
r
−1

p+q−1 (t)∆t < ∞
and K(p, q) is defined as in (2.12).
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3. Main results
In this section, we prove some new Opial-type inequalities on a time scale T and apply

these new inequalities on the second-order sublinear dynamic equation (1.1) to obtain
some new Lyapunov-type inequalities related to problems (i) − (ii). Throughout the
rest of the paper, we will assume that the functions in the statements of the theorems
are nonnegative and rd-continuous functions and the integrals considered are assumed to
exist.

3.1. New Opial-type inequalities. Now, we will prove some new Opial type inequal-
ities that will be needed in the proofs of our main results.

3.1. Theorem. Let T be a time scale with a, τ ∈ T and λ, δ be positive real numbers
such that λ ≤ 1, λ+ δ > 1, and let r, s be nonnegative rd-continuous functions on (a, τ)T

such that
∫ τ
a
r
−1

λ+δ−1 (t)∆t < ∞. If y : [a, τ ]T → R is delta differentiable with y(a) = 0,
then

(3.1)
∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x ≤ H1(a, τ, λ, δ)

∫ τ

a

r(x)|y∆(x)|λ+δ∆x,

where

H1(a, τ, λ, δ) : =

(
δ

λ+ δ

) δ
λ+δ

(∫ τ

a

(s(x))
λ+δ
λ

(r(x))
δ
λ

(∫ x

a

r
−1

λ+δ−1 (t)∆t

)λ+δ−1

∆x

) λ
λ+δ

+ sup
a≤x≤τ

(
µλ(x)

s(x)

r(x)

)
,(3.2)

Proof. Since r is nonnegative on (a, τ)T, it follows from the Hölder inequality with f(t) =
1

(r(t))
1

λ+δ
, g(t) = (r(t))

1
λ+δ |y∆(t)|, γ = λ+δ

λ+δ−1
and β = λ+ δ, that

|y(x)| ≤
∫ x

a

|y∆(t)|∆t =

∫ x

a

1

(r(t))
1

λ+δ

(r(t))
1

λ+δ |y∆(t)|∆t

≤

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ+δ−1
λ+δ (∫ x

a

r(t)|y∆(t)|λ+δ∆t

) 1
λ+δ

.

Then, for a ≤ x ≤ τ, we can write

(3.3) |y(x)|λ ≤

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ(λ+δ−1
λ+δ

)(∫ x

a

r(t)|y∆(t)|λ+δ∆t

) λ
λ+δ

.

Now, since yσ = y + µy∆, by applying inequality (see [18], page 500)

(3.4) 2r−1 |ar + br| ≤ |a+ b|r ≤ |ar + br| , for 0 ≤ r ≤ 1,

we have that

(3.5) |yσ|λ = |y + µy∆|λ ≤ |y|λ + µλ|y∆|λ.

Setting

(3.6) z(x) :=

∫ x

a

r(t)|y∆(t)|λ+δ∆t,

we see that z(a) = 0, and

(3.7) z∆(x) = r(x)|y∆(x)|λ+δ > 0.
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This gives that

(3.8) |y∆(x)|λ+δ =
z∆(x)

r(x)
and |y∆(x)|δ =

(
z∆(x)

r(x)

) δ
λ+δ

.

Thus since s is nonnegative on (a, τ)T, we get from (3.3), (3.5) and (3.8) that

s(x)|yσ(x)|λ|y∆(x)|δ ≤ s(x)|y|λ|y∆(x)|δ + s(x)µλ|y∆|λ+δ

≤ s(x)

(
1

r(x)

) δ
λ+δ

×

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ(λ+δ−1
λ+δ

)

×(z(x))
λ
λ+δ (z∆(x))

δ
λ+δ + s(x)µλ(x)

(
z∆(x)

r(x)

)
.

This implies that

∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x

≤
∫ τ

a

s(x)

(
1

r(x)

) δ
λ+δ

×

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ(λ+δ−1
λ+δ

)

×(z(x))
λ
λ+δ (z∆(x))

δ
λ+δ ∆x+

∫ τ

a

(
µλ
s(x)

r(x)

)
z∆(x)∆(x).

≤
∫ τ

a

s(x)

(
1

r(x)

) δ
λ+δ

×

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)λ(λ+δ−1
λ+δ

)

×(z(x))
λ
λ+δ (z∆(x))

δ
λ+δ ∆x+ sup

a≤x≤τ

(
µλ
s(x)

r(x)

)∫ τ

a

z∆(x)∆(x).(3.9)

Applying the Hölder inequality (2.3) with indices (λ+ δ) /λ and (λ+ δ) /δ, we have

∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x

≤

∫ τ

a

s(x)
λ+δ
λ

(
1

r(x)

) δ
λ

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)(λ+δ−1)

∆x

 λ
λ+δ

×
(∫ τ

a

z
λ
δ (x)z∆(x)∆x

) δ
λ+δ

+ sup
a≤x≤τ

(
µλ
s(x)

r(x)

)∫ τ

a

z∆(x)∆(x).(3.10)

From (3.7), and the chain rule (2.1), we get that

(3.11) z
λ
δ (x)z∆(x) ≤ δ

λ+ δ

(
z
λ+δ
δ (x)

)∆

.
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Substituting (3.11) into (3.10) and using the fact that z(a) = 0, we obtain∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x

≤

∫ τ

a

s(x)
λ+δ
λ

(
1

r(x)

) δ
λ

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)(λ+δ−1)

∆x

 λ
λ+δ

×
(

δ

λ+ δ

) δ
λ+δ

(∫ τ

a

(
z
λ+δ
δ (x)

)∆

∆t

) δ
λ+δ

+ sup
a≤x≤τ

(
µλ
s(x)

r(x)

)∫ τ

a

z∆(x)∆(x)

=

∫ τ

a

s(x)
λ+δ
λ

(
1

r(x)

) δ
λ

(∫ x

a

1

(r(t))
1

λ+δ−1

∆t

)(λ+δ−1)

∆x

 λ
λ+δ

×
(

δ

λ+ δ

) δ
λ+δ

z(τ) + sup
a≤x≤τ

(
µλ
s(x)

r(x)

)
z(τ).

Using (3.6), we have from the last inequality that∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x ≤ H1(a, τ, λ, δ)

∫ τ

a

r(x)|y∆(x)|λ+δ∆x,

which is the required inequality (3.1) with (3.2). This completes the proof. �

Next, we will just state the following theorem, since its proof is the same as that of
Theorem 3.1, with [a, τ ]T replaced by [τ, b]T.

3.2. Theorem. Let T be a time scale with τ, b ∈ T and λ, δ be positive real numbers such
that λ ≤ 1, λ+ δ > 1, and let r, s be nonnegative rd-continuous functions on (τ, b)T such
that

∫ b
τ
r
−1

λ+δ−1 (t)∆t <∞. If y : [τ, b]T → R is delta differentiable with y(b) = 0, then

(3.12)
∫ b

τ

s(x)|yσ(x)|λ|y∆(x)|δ∆x ≤ H2(τ, b, λ, δ)

∫ b

τ

r(x)|y∆(x)|λ+δ∆x,

where

H2(τ, b, λ, δ) =

(
δ

λ+ δ

) δ
λ+δ

(∫ b

τ

(s(x))
λ+δ
λ

(r(x))
δ
λ

(∫ b

x

r
−1

λ+δ−1 (t)∆t

)λ+δ−1

∆x

) λ
λ+δ

+ sup
τ≤x≤b

(
µλ(x)

s(x)

r(x)

)
.(3.13)

In the following, we assume that there exists τ ∈ (a, b)T which is the unique solution
of the equation

(3.14) H(a, b) = H1(a, τ, λ, δ) = H2(τ, b, λ, δ) <∞,

where H1(a, τ, λ, δ) and H2(τ, b, λ, δ) are defined as in Theorems 3.1 and 3.2. Note that
since ∫ b

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x =

∫ τ

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x

+

∫ b

τ

s(x)|yσ(x)|λ|y∆(x)|δ∆x,

then the proof of the following theorem is just a combination of Theorems 3.1 and 3.2
and so, we remove it.
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3.3. Theorem. Let T be a time scale with a, b ∈ T and λ, δ be positive real numbers such
that λ ≤ 1, λ+ δ > 1, and let r, s be nonnegative rd-continuous functions on (a, b)T such
that

∫ b
a
r
−1

λ+δ−1 (t)∆t < ∞. If y : [a, b]T → R is delta differentiable with y(a) = 0 = y(b),
then

(3.15)
∫ b

a

s(x)|yσ(x)|λ|y∆(x)|δ∆x ≤ H(a, b)

∫ b

a

r(x)|y∆(x)|λ+δ∆x,

where H(a, b) is defined as in (3.14).

3.2. New Lyapunov Inequalities. Now, we are ready to prove the results related to
problems (i)− (ii). For simplicity, we set the following notations:

K1(a, b, β) := sup
a≤t≤b

(
µβ(t)

Q1(t)

r(t)

)
+2β

(
1

β + 1

) 1
β+1

 b∫
a

|Q1(t)|
β+1
β

r
1
β (t)

R1(t)∆t


β
β+1

,

H1(a, b, β) :=

(
β

β + 1

) β
β+1

(∫ b

a

(p(t))β+1

(r(t))β
R1(t)∆t

) 1
1+β

+ sup
a≤t≤b

(
µ(t)

p(t)

r(t)

)
,

where Q1(t) =
b∫
t

q(s)∆s and R1(t) =
(∫ t

a
r
− 1
β (θ)∆θ

)β
,

K2(a, b, β) := sup
a≤t≤b

(
µβ(t)

Q2(t)

r(t)

)
+2β

(
1

β + 1

) 1
β+1

 b∫
a

|Q2(t)|
β+1
β

r
1
β (t)

R2(t)∆t


β
β+1

,

and

H2(a, b, β) :=

(
β

β + 1

) β
β+1

(∫ b

a

(p(t))β+1

(r(t))β
R2(t)∆t

) 1
1+β

+ sup
a≤t≤b

(
µ(t)

p(t)

r(t)

)
,

where Q2(t) =
t∫
a

q(s)∆s and R2(t) =
(∫ b

t
r
− 1
β (θ)∆θ

)β
.

3.4. Theorem. Assume that y is a nontrivial solution of (1.1). If y(a) = y∆(b) = 0,
then

(3.16) 21−βK1(a, b, β) +H1(a, b, β) ≥ 1.

Proof. Without loss of generality, we may assume that y(t) > 0 in [a, b]T. Multiplying
(1.1) by yσ and integrating by parts (see 2.2), we get

b∫
a

(
r (t)

(
y∆ (t)

)β)∆

yσ (t) ∆t+

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t

= r (t)
(
y∆ (t)

)β
y (t)

∣∣∣∣b
a

−
b∫
a

r (t)
(
y∆ (t)

)β+1

∆t+

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t

= −
b∫
a

q(t) (yσ (t))β+1 ∆t.
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Using the assumptions that y(a) = y∆(b) = 0 and Q(t) =
b∫
t

q(s)∆s, we have

(3.17)
b∫
a

r (t)
(
y∆ (t)

)β+1

∆t =

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t−

b∫
a

Q∆(t) (yσ (t))β+1 ∆t.

Integrating by parts the term
b∫
a

Q∆(t) (yσ (t))β+1 ∆t, and using the facts that y(a) = 0 =

Q(b), we obtain

(3.18)
b∫
a

r (t)
(
y∆ (t)

)β+1

∆t =

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t+

b∫
a

Q(t)
(
yβ+1 (t)

)∆

∆t.

Applying the chain rule formula (2.1) and the inequality (3.4), we see that∣∣∣∣(yβ+1 (t)
)∆
∣∣∣∣ ≤ (β + 1)

1∫
0

|hyσ (t) + (1− h) y (t)|β dh
∣∣∣y∆ (t)

∣∣∣
≤ 21−β |yσ (t) + y (t)|β

∣∣∣y∆ (t)
∣∣∣ .(3.19)

This and (3.18) imply that
b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t ≤
b∫
a

|p(t)| |yσ (t)|
∣∣∣y∆ (t)

∣∣∣β ∆t

+21−β
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣∣y∆ (t)

∣∣∣∆t.(3.20)

Applying the inequality (2.7) on the integral
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣y∆ (t)

∣∣∆t, with
s = Q, p = β, and q = 1, we have

(3.21)
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣∣y∆ (t)

∣∣∣∆t ≤ K1(a, b, β)

b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t.

Applying the inequality (3.1) on the integral
b∫
a

|p(t)| |yσ (t)|
∣∣y∆ (t)

∣∣β ∆t with s = p, λ =

1, and δ = β, we obtain

(3.22)
∫ b

a

p(t)|yσ(t)||y∆(t)|β∆t ≤ H1(a, b, β)

∫ b

a

r(t)|y∆(t)|β+1∆t.

Substituting (3.21) and (3.22) into (3.20), we get
b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t ≤ 21−βK1(a, b, β)

b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t

+H1(a, b, β)

∫ b

a

r(t)|y∆(t)|β+1∆t.(3.23)

Then, we have from (3.23) after cancelling the term
b∫
a

r (t)
∣∣y∆ (t)

∣∣β+1
∆t, the desired

inequality (3.16). The proof is complete. �
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3.5. Remark. Theorem 3.4 gives us a condition for right disfocality of (1.1). In partic-
ular, if

21−βK1(a, b, β) +H1(a, b, β) < 1,

then (1.1) is right disfocal in [a, b]T. This means that there is no nontrivial solution of
(1.1) in [a, b]T satisfies y(a) = y∆(b) = 0.

3.6. Theorem. Assume that y is a nontrivial solution of (1.1). If y∆(a) = y(b) = 0,
then

(3.24) 21−βK2(a, b, β) +H2(a, b, β) ≥ 1.

Proof. The proof of (3.24) is similar to (3.16) by employing Opial-type inequalities (2.8)
and (3.12) instead of (2.7) and (3.1). The proof is complete. �

3.7. Remark. Theorem 3.6 gives us a condition for left disfocality of (1.1). In particular,
if

21−βK2(a, b, β) +H2(a, b, β) < 1.

then (1.1) is left disfocal in [a, b]T. This means that there is no nontrivial solution of
(1.1) in [a, b]T satisfies y∆(a) = y(b) = 0.

In the following, we employ inequalities (2.13) and (3.15) to determine the lower bound
for the distance between consecutive zeros of a solution of (1.1).

3.8. Theorem. Assume that Q∆(t) = q(t) and y is a nontrivial solution of (1.1). If
y(a) = y(b) = 0, then

(3.25) 21−βK(a, b) +H(a, b) ≥ 1,

where K(a, b) and H(a, b) are defined as in (2.12) and (3.14), respectively.

Proof. Multiplying (1.1) by yσ and integrating by parts, we get that

(3.26)
b∫
a

r (t)
(
y∆ (t)

)β+1

∆t =

b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t−

b∫
a

Q∆(t) (yσ (t))β+1 ∆t.

Using the facts that y(a) = 0 = y(b), we obtain

b∫
a

r (t)
(
y∆ (t)

)β+1

∆t ≤
b∫
a

p(t)
(
y∆ (t)

)β
yσ (t) ∆t

+21−β
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣∣y∆ (t)

∣∣∣∆t.(3.27)

Applying the inequality (2.13) on the integral
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣y∆ (t)

∣∣∆t, with
s = |Q| , λ = β, δ = 1, we have that

(3.28)
b∫
a

|Q(t)| |yσ (t) + y (t)|β
∣∣∣y∆ (t)

∣∣∣∆t ≤ K(a, b)

b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t,
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where K(a, b) is defined as in (2.12). Applying the inequality (3.15) on the integral
b∫
a

|p(t)| |yσ (t)|
∣∣y∆ (t)

∣∣β ∆t with s = p, λ = 1, δ = β, we have that

(3.29)
∫ b

a

p(t)|yσ(t)||y∆(t)|β∆t ≤ H(a, b)

∫ b

a

r(t)|y∆(t)|β+1∆t,

where H(a, b) is defined as in (3.14). Substituting (3.28) and (3.29) into (3.27), we get
that

(3.30)
b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t ≤ 21−βK(a, b)

b∫
a

r (t)
∣∣∣y∆ (t)

∣∣∣β+1

∆t+H(a, b)

∫ b

a

r(t)|y∆(t)|β+1∆t.

Then, we have from (3.30) after cancelling the term
b∫
a

r (t)
∣∣y∆ (t)

∣∣β+1
∆t, that

21−βK(a, b) +H(a, b) ≥ 1,

which is the desired inequality (3.25). The proof is complete. �

3.9. Remark. Theorem 3.8 gives us a condition for disconjugacy of (1.1). In particular,
if

K(a, b) +H(a, b) < 1,

then (1.1) is disconjugate in [a, b]T. This means that there is no nontrivial solution of
(1.1) in [a, b]T satisfies y(a) = y(b) = 0.

4. Applications
In Theorem 3.4 if β = 1, then we have the following result, which improves the ob-

tained result in [23, Corollary 2.2] by removing the additional constant c in the conditions.

4.1. Corollary. Assume that y is a nontrivial solution of (1.1). If y(a) = y∆(b) = 0,
then

(4.1) sup
a≤t≤b

1

r(t)
[p(t)µ(t) +Q1(t)µ(t)] +

√
2

 b∫
a

|Q1(t)|2

r(t)
R1(t)∆t


1
2

+
1√
2

(∫ b

a

p2(t)

r(t)
R1(t)∆t

) 1
2

≥ 1,

where Q1(t) =
b∫
t

q(s)∆s and R1(t) =
∫ t
a

∆τ
r(τ)

. If y∆(a) = y(b) = 0, then

(4.2) sup
a≤t≤b

1

r(t)
[p(t)µ(t) +Q2(t)µ(t)] +

√
2

 b∫
a

|Q2(t)|2

r(t)
R2(t)∆t


1
2

+
1√
2

(∫ b

a

p2(t)

r(t)
R2(t)∆t

) 1
2

≥ 1,

where Q2(t) =
t∫
a

q(s)∆s and R2(t) =
∫ b
t

∆τ
r(τ)

.
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As a special case of Theorem 3.4, when r(t) = 1, we obtain the following result, which
improves the result that is obtained in [23, Corollary 2.1] by removing the additional
constant c in the obtained results.

4.2. Corollary. Assume that y is a nontrivial solution of (1.1). If y(a) = y∆(b) = 0,
then

sup
a≤t≤b

[
µ(t)p(t) + 21−βµβ(t)Q(t)

]
+

2

(β + 1)
1

β+1

 b∫
a

|Q(t)|
β+1
β (τ − a)β ∆t


β
β+1

+

(
β

β + 1

) β
β+1

(∫ b

a

|p(t)|β+1 (τ − a)β ∆t

) 1
1+β

≥ 1,

where Q(t) =
b∫
t

q(s)∆s. If y∆(a) = y(b) = 0, then

sup
a≤t≤b

[
µ(t)p(t) + 21−βµβ(t)Q(t)

]
+

2

(β + 1)
1

β+1

 b∫
a

|Q(t)|
β+1
β (b− τ)β ∆t


β
β+1

+

(
β

β + 1

) β
β+1

(∫ b

a

|p(t)|β+1 (b− τ)β ∆t

) 1
1+β

≥ 1,

where Q(t) =
t∫
a

q(s)∆s.

As a special case of Corollary 4.1, when p(t) = 0, we have the following results.

4.3. Corollary. Assume that y is a nontrivial solution of (1.16). If y(a) = y∆(b) = 0,
then

(4.3) sup
a≤t≤b

1

r(t)
Q1(t)µ(t) +

√
2

 b∫
a

|Q1(t)|2

r(t)
R1(t)∆t


1
2

≥ 1,

where Q1(t) =
∫ b
t
q(s)∆s and R1(t) =

∫ t
a

∆τ
r(τ)

. If instead y∆(a) = y(b) = 0, then

(4.4) sup
a≤t≤b

1

r(t)
Q1(t)µ(t) +

√
2

 b∫
a

|Q1(t)|2

r(t)
R2(t)∆t


1
2

≥ 1,

where Q2(t) =
t∫
a

q(s)∆s and R2(t) =
∫ b
t

∆τ
r(τ)

.

Using the maximum of |Q1(t)| on [a, b]T in Corollary 4.3, we get the following results.

4.4. Corollary. Assume that y is a nontrivial solution of (1.16). If y(a) = y∆(b) = 0,
then

(4.5) sup
a≤t≤b

1

r(t)

∣∣∣∣∫ b

t

q(s)∆s

∣∣∣∣µ(t) +
√

2 max
a≤t≤b

∣∣∣∣∫ b

t

q(s)∆s

∣∣∣∣
 b∫
a

R1(t)

r(t)
∆t


1
2

≥ 1,

where R1(t) =
∫ t
a

∆τ
r(τ)

. If instead y∆(a) = y(b) = 0, then

(4.6) sup
a≤t≤b

1

r(t)

∣∣∣∣∣∣
t∫
a

q(s)∆s

∣∣∣∣∣∣µ(t) +
√

2 max
a≤t≤b

∣∣∣∣∣∣
t∫
a

q(s)∆s

∣∣∣∣∣∣
 b∫
a

R2(t)

r(t)
∆t


1
2

≥ 1,
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where R2(t) =
∫ b
t

∆τ
r(τ)

.

As a special case when T = R, β = 1, r(t) = 1 and p(t) = 0, then yσ(t) = y(t) and
equation (1.1) becomes

(4.7) y
′′

(t) + q(t)y(t) = 0.

Now, the results in Corollary 4.3 reduce to the following results obtained by Brown and
Hinton [7].

4.5. Corollary. Assume that y is a solution of the equation (4.7). If y (a) = y
′
(b) = 0,

then

(4.8) 2

b∫
a

Q2
1(t)(t− a)dt > 1,

where Q1(t) =
∫ b
t
q(s)ds. If instead y

′
(α) = y (β) = 0, then

(4.9) 2

b∫
a

Q2
2(t)(b− t)dt > 1,

where Q2(t) =
t∫
a

q(s)ds.

As a special case of Corollary 4.4 for the second order differential equation (4.7), we
get the following results due to Harris and Kong [10].

4.6. Corollary. Assume that y is a solution of the equation (4.7). If y (a) = y
′
(b) = 0,

then

(4.10) (b− a) sup
a≤t≤b

∣∣∣∣∣∣
b∫
t

q(s)∆s

∣∣∣∣∣∣ > 1.

If instead y
′
(α) = y (β) = 0, then

(4.11) (b− a) sup
a≤t≤b

∣∣∣∣∣∣
t∫
a

q(s)∆s

∣∣∣∣∣∣ > 1.

Using the maximum of |Q| and |p| on [a, b]T we have from Corollary 4.2 the following
results for the second order difference equation

(4.12) ∆((∆y(t))β + p(t) (∆y(t))β + q(t)yβ(t+ 1)) = 0,

where 0 < β ≤ 1 is a quotient of odd positive integers.

4.7. Corollary. Assume that y is a nontrivial solution of (4.12). If y(a) = ∆y(b) = 0,
then [

max
a≤τ≤b

|p(t)|+ 21−β max
a≤τ≤b

∣∣∣∣∣
b−1∑
s=t

q(s)∆s

∣∣∣∣∣
]

+
2(b− a)β

(β + 1)
max
a≤τ≤b

∣∣∣∣∣
b−1∑
s=t

q(s)∆s

∣∣∣∣∣
+
β

β
β+1

β + 1
(b− a) max

a≤τ≤b
|p(t)| ≥ 1.
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If ∆y(a) = y(b) = 0, then[
max
a≤τ≤b

|p(t)|+ 21−β max
a≤τ≤b

∣∣∣∣∣
t−1∑
s=a

q(s)∆s

∣∣∣∣∣
]

+
2(b− a)β

(β + 1)
max
a≤τ≤b

∣∣∣∣∣
t−1∑
s=a

q(s)∆s

∣∣∣∣∣
+
β

β
β+1

β + 1
(b− a) max

a≤τ≤b
|p(t)| ≥ 1.
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Abstract
In 1909 Borel has proved that “Almost all of the sequences of 0’s and 1’s

are Cesàro summable to
1

2
". Then Hill has generalized Borel’s result

to two dimensional matrices. In this paper we investigate the Borel
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1. Introduction
The summability of sequences of 0’s and 1’s has been studied by various authors ([1],

[3], [6], [7], [8], [10]). In 1909 Borel proved that “Almost all of the sequences of 0’s and

1’s are Cesàro summable to
1

2
". Then Hill [6] has generalized Borel’s result to general

matrices. We say that the matrix has the Borel property, if a matrix sums almost all

of the sequences of 0’s and 1’s to
1

2
. Establishing a one-to-one correspondence between

the interval (0, 1] and the collection of all sequences of 0’s and 1’s, Hill has given some
necessary conditions and also some sufficient conditions for matrices to have the Borel
property in [6], [7]. This property has also been examined in [5], [8].

In the present paper we investigate the Borel property for 4-dimensional matrices.
In particular we exhibit some necessary and some sufficient conditions for 4-dimensional
matrices to have the Borel property.

We first recall some basic notations and results related to double sequences.
A double sequence s = (sij) is said to be Pringsheim convergent (i.e., it is convergent

in Pringsheim’s sense) to L if for every ε > 0 there exists an N ∈ N such that |sij − L| < ε
whenever i, j ≥ N ([2], [11]). In this case L is called the Pringsheim limit of s.

Throughout the paper when there is no confusion, convergence means the Pringsheim
convergence.

∗Ankara University Faculty of Science Department of Mathematics Tandoğan 06100 Ankara
Turkey, Email: emretas86@hotmail.com
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Let X denote the set of all double sequences of 0’s and 1’s, that is

X = {x = (xjk) : xjk ∈ {0, 1} for each j, k ∈ N} .
Let < be the smallest σ-algebra of subsets of the set X which contains all sets of the
form

{x = (xjk) ∈ X : xj1k1 = a1, ..., xjnkn = an}
where each ai ∈ {0, 1} and the pairs {(jiki)}ni=1 are pairwise distinct.

There exists a unique probability measure P on the set <, such that

P ({x = (xjk) ∈ X : xj1k1 = a1, ..., xjnkn = an}) =
1

2n

for all choices of n and all pairwise disjoint pairs {(jiki)}ni=1, and all choices of a1, ..., an.
Recall that the functions rjk (x) = 2xjk− 1, for x ∈ X, are the Rademacher functions

(see [4]).
Four dimensional Cesàro matrix (C, 1, 1) =

(
cnmjk

)
is defined by

cnmjk =

{
1
nm

, 1 ≤ j ≤ n and 1 ≤ k ≤ m
0 , otherwise.

It is known that the (C, 1, 1) matrix is an RH regular, i.e., it sums every bounded
convergent sequence to the same limit.

An element x of X is said to be normal ([4]) if for each ε > 0 there is a natural

number Nε such that for n,m ≥ Nε we have

∣∣∣∣∣∣ 1
nm

∑
j≤n
k≤m

xjk − 1
2

∣∣∣∣∣∣ < ε. Let η denote the set

of all elements x in X that are normal. This means that normal elements are (C, 1, 1)-
summable to 1

2
. It is also proved in [4] that P (η) = 1. So (C, 1, 1) method has the Borel

property.
It would be appropriate to recall the definition of bounded regularity.

1.1. Definition. Let A =
(
anmjk

)
be a 4-dimensional matrix. If the limit

lim
n,m→∞

∞,∞∑
j,k=1,1

anmjk sjk = L

exists, the double sequence (sjk) is called A-summable to L and denoted by sjk → L
(A). A matrix A =

(
anmjk

)
is bounded regular if every bounded and convergent sequence

s = (sjk) is A-summable to the same limit and A-means are also bounded [9]. The next
corollary characterizes bounded regular matrices.

1.2. Proposition. A =
(
anmjk

)
is bounded regular if and only if

(i) lim
n,m→∞

anmjk = 0, (j, k = 1, 2, ...)

(ii) lim
n,m→∞

∞,∞∑
j,k=1,1

anmjk = 1,

(iii) lim
n,m→∞

∞∑
k=1

∣∣anmjk ∣∣ = 0, (j = 1, 2, ...)

(iv) lim
n,m→∞

∞∑
j=1

∣∣anmjk ∣∣ = 0, (k = 1, 2, ...)

(v)

∞,∞∑
j,k=1,1

∣∣anmjk ∣∣ ≤ C <∞, (m,n = 1, 2, ...).
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These conditions were first established by Robison [12].

2. The Borel Property
This section is devoted to the Borel property for 4-dimensional matrices.

2.1. Theorem. If A =
(
anmjk

)
has the Borel property, then the

∞,∞∑
j,k=1,1

anmjk series con-

verges for each n,m and tends to 1 as n,m→∞.

Proof. Since A has the Borel property, for almost all x ∈ X, we obtain

lim
n,m→∞

∞,∞∑
j,k=1,1

anmjk xjk = 1
2
. Indeed P (E) = 1 where

E =

{
x = (xjk) ∈ X : (Ax)nm →

1

2

}
.

Let us define x = (x̄jk) by

x̄jk =

{
0 , xjk = 1
1 , xjk = 0

.

Let Y = E ∩ η and Y = {(xjk) : xjk ∈ Y }. We get Y = E ∩ η. Since the mapping
(xjk)→ (xjk) preserves P measure, we obtain P

(
Y
)

= 1. So Y ∩ Y 6= ∅. If x = (xjk) ∈
Y ∩ Y , then x ∈ E, x ∈ η and x ∈ E, x ∈ η. Since x, x ∈ E, it follows that

∞,∞∑
j,k=1,1

anmjk xjk +

∞,∞∑
j,k=1,1

anmjk xjk =

∞,∞∑
j,k=1,1

anmjk → 1 (n,m→∞) .

This completes the proof. �

2.2. Theorem. If A =
(
anmjk

)
has the Borel property, then we have

∞,∞∑
j,k=1,1

(
anmjk

)2
<∞

for each n,m ∈ N.

Proof. Let rjk (x) = 2xjk − 1 be the Rademacher functions for double sequences. We
have

∞,∞∑
j,k=1,1

anmjk xjk =
1

2

∞,∞∑
j,k=1,1

anmjk +
1

2

∞,∞∑
j,k=1,1

anmjk rjk (x) .

SinceA has the Borel property and it follows from Teorem 2.1 that the series
∞,∞∑
j,k=1,1

anmjk rjk (x)

converges for each n,m ∈ N and almost all x ∈ X. Furthermore we obtain lim
n,m

∞,∞∑
j,k=1,1

anmjk rjk (x) =

0 for almost all x ∈ X. So

 ∞,∞∑
j,k=1,1

anmjk rjk (x)

 is convergent uniformly on a set D with
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positive measure for each n,m ∈ N with respect to x. Hence for each n,m ∈ N and for
every ε > 0, there exists N1, N2 ∈ N such that for p, µ > N1 and q, ν > N2∣∣∣∣∣∣

p,q∑
j,k=1,1

anmjk rjk (x)−
µ,ν∑

j,k=1,1

anmjk rjk (x)

∣∣∣∣∣∣ < ε.

From the last inequality we immediately get

ε2P (D) >

∫
D

 ∑
E[µ,p;ν,q]

anmjk rjk (x)

2

dP (x)(2.1)

= P (D)
∑

E[µ,p;ν,q]

(
anmjk

)2
+R

where

E [µ, p; ν, q] = {(j, k) : µ < j ≤ p or ν < k ≤ q} ,

R = 2
∑

I[µ,p;ν,q]

anmj1k1a
nm
j2k2

∫
D

rj1k1 (x) rj2k2 (x) dP (x)

and I [µ, p; ν, q] = E [µ, p; ν, q] ∩ {(j, k) : j1 6= j2 or k1 6= k2}. On the other hand using
the Hölder inequality, we obtain

|R| ≤ 2

 ∑
I[µ,p;ν,q]

(
anmj1k1a

nm
j2k2

)2
1
2
 ∑
I[µ,p;ν,q]

∫
D

rj1k1 (x) rj2k2 (x) dP (x)

2
1
2

.

Let v2j1k1j2k2 =

(∫
D

rj1k1 (x) rj2k2 (x) dP (x)

)2

. From the Bessel inequality, we get

∑
1 ≤ j1 < j2 <∞
1 ≤ k1 < k2 <∞

v2j1k1j2k2 ≤
∫
X

(χD (x))2 dP (x) = P (D) .

For sufficiently large p, q, µ and ν, we have ∑
I[µ,p;ν,q]

v2j1k1j2k2


1
2

≤ P (D)

4
.

Hence we obtain

|R| ≤ P (D)

2

 ∑
I[µ,p;ν,q]

(
anmj1k1a

nm
j2k2

)2
1
2

≤ P (D)

2

 ∑
E[µ,p;ν,q]

(
anmj1k1a

nm
j2k2

)2
1
2

≤ P (D)

2

∑
E[µ,p;ν,q]

(
anmj1k1

)2 .
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From (2.1) and last inequality, it follows that

ε2P (D) > P (D)
∑

E[µ,p;ν,q]

(
anmjk

)2 − P (D)

2

∑
E[µ,p;ν,q]

(
anmjk

)2
=
P (D)

2

∑
E[µ,p;ν,q]

(
anmjk

)2 .
Also since P (D) > 0, we obtain

∑
E[µ,p;ν,q]

(
anmjk

)2
< 2ε2. So for each n,m ∈ N, the series

∞,∞∑
j,k=1,1

(
anmjk

)2 is convergent. Hence we obtain the result. �

2.3. Theorem. If A =
(
anmjk

)
has the Borel property and satisfies (v), we have

(2.2)
∞,∞∑
j,k=1,1

(
anmjk

)2
= o (1) , (n,m→∞) .

Proof. Let σnm (x) =

∞,∞∑
j,k=1,1

anmjk rjk (x). Using the equality

σ2
nm (x) =

 ∞,∞∑
j,k=1,1

anmjk rjk (x)

 ∞,∞∑
j,k=1,1

anmjk rjk (x)


and (v), we can easily obtain

∣∣σ2
nm (x)

∣∣ ≤ ∞,∞∑
j,k=1,1

∣∣anmjk ∣∣ ∞,∞∑
j,k=1,1

∣∣anmjk ∣∣ <∞
and hence

σ2
nm (x) =

∑
1 ≤ j1, j2 ≤ ∞
1 ≤ k1, k2 ≤ ∞

anmj1k1a
nm
j2k2rj1k1 (x) rj2k2 (x)

is convergent uniformly almost everywhere. So we have∫
X

σ2
nm (x) dP (x) =

∑
1 ≤ j1, j2 ≤ ∞
1 ≤ k1, k2 ≤ ∞

anmj1k1a
nm
j2k2

∫
X

rj1k1 (x) rj2k2 (x) dP (x)(2.3)

=

∞,∞∑
j,k=1,1

(
anmjk

)2 .
Since A has the Borel property, the uniformly bounded sequence (σnm (x)) converges
to 0 for almost all x. From (2.3) and the Lebesgue convergence theorem, it follows that

lim
n,m→∞

∞,∞∑
j,k=1,1

(
anmjk

)2
= 0. This completes the proof. �
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Now let us give sufficient conditions for the Borel property. First we consider the
following sets

D0 (A) =
{
x ∈ X : (Ax)nm diverges

}
,

D1 (A) =
{
x ∈ X : (Ax)nm converges

}
,

D2 (A) =

{
x ∈ X : (Ax)nm →

1

2
(n,m→∞)

}
.

We examine the relationship between these sets in the sense of P -measure.

2.4. Theorem. Let A =
(
anmjk

)
be a 4-dimensional bounded regular matrix. The sets

D1 (A) and D2 (A) have the same measure and the value is either 0 or 1.

Proof. Choose an arbitrary x ∈ D1 (A) (or D2 (A)). Let x̂ be a sequence obtained by
altering a finite term of x. We have the following equality

∞,∞∑
j,k=1,1

anmjk x̂jk =

j0,k0∑
j,k=1,1

anmjk x̂jk +
∑

j>j0 veya k>k0

anmjk x̂jk

=

j0,k0∑
j,k=1,1

anmjk x̂jk +
∑

j>j0 veya k>k0

anmjk xjk.

From Proposition 1.2 (i), it follows x̂ ∈ D1 (A) (or D2 (A)). Hence the sets D1 (A)
and D2 (A) are homogeneous [14]. Since homogeneous sets have measure 0 or 1 and
D2 (A) ⊂ D1 (A), the proof will be completed if P (D1 (A)) = 1 implies P (D2 (A)) = 1.
On the other hand we have

(2.4) lim
n,m

∞,∞∑
j,k=1,1

anmjk xjk = lim
n,m

1

2

∞,∞∑
j,k=1,1

anmjk + lim
n,m

1

2

∞,∞∑
j,k=1,1

anmjk rjk (x)

where rjk (x) = 2xjk − 1. If we choose x ∈ D1 (A), we get lim
n,m

∞,∞∑
j,k=1,1

anmjk rjk (x) = h (x)

for almost all x ∈ X. From (v), interchanging integral and sum we have∫
X

h (x) dx =

∫
X

lim
n,m

∞,∞∑
j,k=1,1

anmjk rjk (x)

 dP (x)

= lim
n,m

∫
X

 ∞,∞∑
j,k=1,1

anmjk rjk (x)

 dP (x)

= lim
n,m

∞,∞∑
j,k=1,1

anmjk

∫
X

rjk (x) dP (x)

 = 0.

Hence we have h (x) = 0 for almost all x ∈ X. Also since first part of the right hand side
of (2.4) is 1

2
we get x ∈ D2 (A). This completes the proof. �

2.5. Corollary. Let A =
(
anmjk

)
be a 4-dimensional bounded regular matrix. The set

D0 (A) has measure 0 or 1.

2.6. Corollary. If A =
(
anmjk

)
is a 4-dimensional bounded regular matrix sums almost

all sequences of 0’s and 1’s, then the matrix has the Borel property.
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2.7. Theorem. Let A =
(
anmjk

)
be a 4-dimensional matrix. If P (D1 (A)) = 1, then we

have

pnm =

∞,∞∑
j,k=1,1

anmjk converges for each n,m and lim
n,m

pnm = p exists,

Anm =

∞,∞∑
j,k=1,1

(
anmjk

)2
<∞ for each n,m.

The proof of the theorem is similar to those of Theorems 2.1 and 2.2, and therefore
is omitted.

2.8. Lemma. If A satisfies condition (v), then we have

(2.5)
∫
X

|ψnm (x)|2r dP (x) ≤ (2r)!

2rr!
(Anm)r

where r is a positive integer, ψnm (x) =

∞,∞∑
j,k=1,1

anmjk rjk (x) and Anm =

∞,∞∑
j,k=1,1

(
anmjk

)2.
The proof can be proved using Lemma 1 of [13].

2.9. Theorem. If A =
(
anmjk

)
satisfies (ii), (v) and the series

(2.6)
∞,∞∑

n,m=1,1

 ∞,∞∑
j,k=1,1

(
anmjk

)2r

converges for some r > 0, then A has the Borel property.

Proof. To complete the proof it is sufficient to show that

(2.7)
∞,∞∑
j,k=1,1

anmjk xjk =
1

2

∞,∞∑
j,k=1,1

anmjk +
1

2

∞,∞∑
j,k=1,1

anmjk rjk (x)

the limit of the right hand side of (2.7) equals 1
2
for almost all x ∈ X. From Lemma 2.8,

the inequality (2.5) holds for every positive integer r. On the other hand since the series
in (2.6) converges for some r > 0, we easily get

∞,∞∑
n,m=1,1

∫
X

|ψnm (x)|2r dP (x) <∞.

Using the Beppo-Levi theorem, we have
∞,∞∑

n,m=1,1

|ψnm (x)|2r < ∞ for almost all x ∈ X.

Hence we obtain for almost all x ∈ X that

lim
n,m→∞

ψnm (x) = 0.

This completes the proof. �

It is shown in [4] that the 4-dimensional Cesàro matrix method (C, 1, 1) has the Borel
property. We can also deduce this result from Theorem 2.9. We have already observed
that (2.2) is a necessary condition for the Borel property. We raise the question whether
the converse of Theorem 2.3 is true. The answer is no as the following example shows.

Since a 4-dimensional matrix can be considered as a matrix of infinite matrices, we
can look at every entry as a matrix.
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Consider the 4-dimensional Cesàro matrix, (C, 1, 1) =
(
cnmjk

)
. Now we construct a

4-dimensional matrix A =
(
anmjk

)
as follows:

Shift the every column to the right in every possible order as the number of nonzero
elements.

For example since there exist two possible order, we have

(
a11jk
)

=

 1 0 0 ...
0 0 0 ...
...

 ,
(
a12jk
)

=

 0 1 0 ...
0 0 0 ...
...

 .

(
a13jk
)

=

 1
2

1
2

0 0 ...
0 0 0 0 ...
...

 , (
a14jk
)

=

 1
2

0 1
2

0 ...
0 0 0 0 ...
...

 ...

(
a17jk
)

=

 0 1
2

1
2

0 ...
0 0 0 0 ...
...

 , (
a18jk
)

=

 0 0 1
2

1
2

0 ...
0 0 0 0 0 ...
...


in the above we have six possible orders. Now let us obtain

(
a21jk
)
, ... ,

(
a26jk
)
.

(
a21jk
)

=


1
2

0 ...
1
2

0 ...
0 0 ...
...

 ,
(
a22jk
)

=


1
2

0 0 ...
0 1

2
0 ...

0 0 0 ...
...

 ,...,
(
a26jk
)

=


0 0 0 ...
1
2

1
2

0 ...
0 0 0 ...
...

 .

Continuing this procedure we can construct the matrix A.
Observe that the matrix A constructed above satisfies the condition (2.2).
Now let us consider the sequence {xjk} having (ηµ+ p) times 1 ve (ηµ− p) times 0

in the rectangle (η, 2µ).
In the case of p = 0, an element of the matrix A which consists of 0’s and 1

ηµ
’s sums

the sequence {xjk} to 0 and the another one sums to 1. Let these terms be (n0,m0) and
(n1,m1) respectively.

If
(
an0,m0
j,k

)
containing

1

ηµ
’s, such that all the 0’s of the sequence in the rectangle (η, 2µ)

correspond with
1

ηµ
’s, we have

∑
j,k

an0,m0
j,k xjk = 0.

Also if
(
an1,m1
j,k

)
containing

1

ηµ
’s, such that all the 1’s of the sequence in the rectangle

(η, 2µ) correspond with
1

ηµ
’s, we have

∑
j,k

an1,m1
j,k xjk = 1.

In the case of p > 0 there is an entry
(
an0,m0
j,k

)
containing

1

ηµ
’s, such that all the 1’s of

the sequence in the rectangle (η, 2µ) correspond with
1

ηµ
’s, we have

∑
j,k

an0,m0
j,k xjk = 1.
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Also there is another entry
(
an1,m1
j,k

)
containing

1

ηµ
’s, such that all the 0’s of the sequence

in the rectangle (η, 2µ) correspond with
1

ηµ
’s, we have∑

j,k

an1,m1
j,k xjk =

p

ηµ
.

In the case of p < 0 there is an entry
(
an0,m0
j,k

)
containing

1

ηµ
’s, such that all the 0’s of

the sequence in the rectangle (η, 2µ) correspond with
1

ηµ
’s, we have∑

j,k

an0,m0
j,k xjk = 0.

Also there is another entry
(
an1,m1
j,k

)
containing

1

ηµ
’s, such that all the 1’s of the sequence

in the rectangle (η, 2µ) correspond with
1

ηµ
’s, we have∑

j,k

an1,m1
j,k xjk = 1 +

p

ηµ
.

In any cases above, the oscillation of the sum
∑

an,mj,k xjk in the inner matrix containing
1
ηµ

’s is at least 1− |p|
ηµ

. In order that {xjk} is A-summable we necessarrily have |p|
ηµ
→ 1,

as η, µ→∞.
Since almost all double sequences of 0’s and 1’s is (C, 1, 1)-summable to 1

2
, the set

of sequences which |p|
ηµ

tends to 1 has P -measure 1. From this it follows that the set of
sequences for which |p|

ηµ
tends to 1 is of P -measure 0. Therefore, A does not have the

Borel property. That is condition (2.2) can not be sufficient.
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Numerical computation and properties of the two
dimensional exponential integrals
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Abstract
In this paper, we investigate problem of convergence of the two-
dimensional exponential integral (TDEI) functions arising in the study
of the radiative transfer in a multi-dimensional medium. In our study,
generalized exponential integral function’s ( GEIF ) are expressed with
double improper integrals as given in the original expression. Then we
study the properties and asymptotic behaviour of the TDEI functions.
We also give numerical computations of the values of TDEI functions.
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1. Introduction
The two-dimensional exponential integral (TDEI) functions play an important role in

various fields of theoretical physics, quantum chemistry, theory of transport process, the-
ory of fluid flow and theory of radiative transfer in a multi-dimensional medium [6], [7],
[11]-[13], [19], [22]. The TDEI functions are especially useful for the study of anisotropic
scattering in a two-dimensional medium with a scattering phase function [12], [13], [22].
Breig and Crosbie derived a series expansion and recurrence relations suitable for numer-
ical computation of the one-dimensional exponential integral functions [7]. It is shown
that the absorption of solar radiation by the earth’s atmosphere is given in terms of
first-order exponential integral function. The fundamental integral equation of the ra-
diative transfer of two-dimensional planar media with anisotropic scattering was derived
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by Crosbie and Dougherty [11]. Note that the TDEI functions are the kernel of that
integral equation. The TDEI functions play an important role in the investigation of
the two-dimensional radiative transfer in an absorbing-emitting cylindrical medium and
determination of the radiative flux [12]. The generalized exponential integral functions
are studied in [1]-[5], [10], [17]. In [2] GEIF ’s are expressed with the single integrals. In
our study, GEIF ’s are expressed with double improper integrals as given in the original
expression . This depends on the truth that the uniform convergence of integrals gives
more precise results. Also in [2] GEIF ’s are given In terms of Bessel functions, in the
form of series. This GEIF ’s approximation gives ruder results compared to ours. This
study uses a different methodology from [1], [2], [10], [17] and results are achieved with
higher accuracy. The TDEI functions examined in this work are defined as

(1.1) εn (τ , β) =
τn−1

2π

∞∫
−∞

∞∫
−∞

[exp (−r) /rn+1] exp (−iβx) dxdy

where r2 = x2 + y2 + τ2 and n = 1, 2, ... .
Note that the TDEI functions are two-dimensional analogs of the exponential integral
functions [14].

(1.2) En (τ) =

∞∫
1

t−n exp (−τt) dt,

n = 1, 2, ... . The exponential integral function (1.2) plays an important role in various
fields of theoretical physics, quantum chemistry and theory of transport process [8], [9],
[16], [20], [21].
Many properties of the TDEI functions depend on the uniform convergence of the im-
proper integral (1.1). In this paper, we study the problem of convergence of the TDEI
functions εn (τ , β). We also investigate the properties, asymptotic behaviour and numer-
ical computation of the TDEI functions.

2. Uniform convergence
Let us consider the improper integral

(2.1)
∞∫
−∞

∞∫
−∞

f (τ , β, x, y) dxdy

where (τ , β) ∈ D ⊂ R2.

2.1. Definition. [18]. Integral (2.1) is said to be uniformly convergent with respect to
(τ , β) ∈ D if it is convergent for all (τ , β) and if, given any ε > 0, there is a sufficiently
large number R0 independent of (τ , β) and such that for any R satisfying the inequality
R > R0 there holds the inequality∣∣∣∣∣∣∣

∫ ∫
R2−ωR

f (τ , β, x, y) dxdy

∣∣∣∣∣∣∣ < ε

where ωR is the ball of radius R with centre of the origin.

2.2. Theorem. [18]. If for the function f (τ , β, x, y) in question there holds the inequality

|f (τ , β, x, y)| ≤ ϕ (x, y) , (τ , β) ∈ D
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and the improper integral
∞∫
−∞

∞∫
−∞

ϕ (x, y) dxdy

is convergent then integral (2.1) convergences uniformly with respect to (τ , β) on D.

For all ε > 0 we define the domain

D (ε) = { (τ , β) ∈ Ω, τ ∈ [ε,∞) , β ∈ (−∞,∞) },

where

Ω = { (τ , β) ∈ R2, τ ∈ [0,∞) , β ∈ (−∞,∞) }.

2.3. Theorem. i) The two-dimensional exponential integral function εn (τ , β) is uni-
formly convergent with respect to (τ , β) on D (ε) .
ii) The function εn (τ , β) is nonuniformly convergent with respect to (τ , β) on Ω.

Proof. i)

εn (τ , β) =
τn−1

2π

∞∫
−∞

∞∫
−∞

[exp (−r) /rn+1] exp (−iβx) dxdy

where r2 = x2 + y2 + τ2.
If we define

g (τ , β, x, y) =

[
exp

(
−
√
x2 + y2 + τ2

)
/
(√

x2 + y2 + τ2
)n+1

]
exp (−iβx)

then

εn (τ , β) =
τn−1

2π

∞∫
−∞

∞∫
−∞

g (τ , β, x, y) dxdy.

For all ε > 0 we have

|g (τ , β, x, y)| ≤ exp
(
−
√
x2 + y2 + ε2

)
/εn
√
x2 + y2 + ε2

and
∞∫
−∞

∞∫
−∞

exp
(
−
√
x2 + y2 + ε2

)
/εn
√
x2 + y2 + ε2dxdy

= 2πε−n exp (−ε) <∞.

So from the Theorem 2.1 we find that the function εn (τ , β) is uniformly convergent with
respect to (τ , β) on D (ε).
ii) For all (τ , β) ∈ Ω we have

εn (τ , β) =
τn−1

2π

∞∫
−∞

∞∫
−∞

[exp (−r) /rn+1] exp (−iβx) dxdy

> −τ
n−1

2π

∞∫
−∞

∞∫
−∞

exp (−r) /rn+1dxdy.
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Let us consider
∞∫
−∞

∞∫
−∞

ϕ (τ , x, y) /rn+1dxdy

where ϕ (τ , x, y) = exp (−r) .
ϕ (τ , 0, 0) = exp (−τ) > 0. Then there is a ball ω with centre at the origin and radius so
small that |ϕ (τ , x, y)| > |ϕ(τ,0,0)|

2
= exp(−τ)

2
> 0 on that ball.

Therefore∣∣∣∣∣∣
∫ ∫
ω

ϕ (τ , x, y) /rn+1dxdy

∣∣∣∣∣∣ =

∫ ∫
ω

|ϕ (τ , x, y)| /rn+1dxdy

>
exp (−τ)

2

∫ ∫
ω

1/rn+1dxdy →∞ for τ → 0

Therefore the function εn (τ , β) is nonuniformly convergent with respect to (τ , β) on Ω.

3. Properties of the TDEI function
Let G ∈ Rm and D ∈ Rn where Rm and Rn denote m-dimensional and n-dimensional

spaces, respectively.
We shall consider an integral of the form

(3.1) F (ξ) =

∫
D

f (ξ, η) dη (ξ ∈ G)

taken over an unbounded domain D such that it has the point at infinity as its only
singularity for any ξ ∈ G.

3.1. Theorem. [18]. If the function f (ξ, η) is continuous on

G×D := {ξ ∈ G, η ∈ D}

and if the integral (3.1) is uniformly convergent with respect to ξ on G, then the function

F (ξ) =

∫
D

f (ξ, η) dη

is a continuous function with respect to ξ on G and for all ξ0 ∈ G

lim
ξ→ξ0

∫
D

f (ξ, η) dη =

∫
D

lim
ξ→ξ0

f (ξ, η) dη.

3.2. Theorem. [18]. If the conditions of Theorem 3.1 hold then the function F (ξ) can
be integrated with respect to ξ on G under the integral sign, that is∫

G

F (ξ) dξ =

∫
G

dξ

∫
D

f (ξ, η) dη =

∫
D

dη

∫
G

f (ξ, η) dξ.

3.3. Theorem. The function εn (τ , β) is continuous with respect to (τ , β) on D (ε) .
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Proof. Let (τ0, β0) is any point of D (ε). In view of Theorems 2.2 and 3.1 we get

lim
τ→τ0
β→β0

εn (τ , β) = lim
τ→τ0
β→β0

τn−1

2π

∞∫
−∞

∞∫
−∞

[exp (−r) /rn+1] exp (−iβx) dxdy

=
τn−1
0

2π

∞∫
−∞

∞∫
−∞

lim
τ→τ0
β→β0

[exp (−r) /rn+1] exp (−iβx) dxdy

=
τn−1
0

2π

∞∫
−∞

∞∫
−∞

exp
(
−
√
x2 + y2 + τ20

)
(√

x2 + y2 + τ20

)n+1 exp (−iβ0x) dxdy

= εn (τ0, β0) .

Therefore the function εn (τ , β) is continuous on D (ε) .

3.4. Theorem. [18]. If ξ is a scalar variable running through a closed interval [a, b] and
the function f (ξ, η) is continuous together with its partial derivative ∂f

∂ξ
on [a, b]×D and

if integral (3.1) is convergent while the integral

F1 (ξ) =

∫
D

∂f

∂ξ
f (ξ, η) dη

is uniformly convergent with respect to ξ ∈ [a, b] then F
′
(ξ) = F1 (ξ) , that is

∂f

∂ξ

∫
D

f (ξ, η) dη =

∫
D

∂f

∂ξ
f (ξ, η) dη.

3.5. Definition. [23]. Suppose f : R −→ C is a locally integrable function on R.
The function

f̂ (β) :=
1√
2π

∫
R

f (x) exp (−iβx) dx

is called Fourier transform of the function f.

3.6. Theorem. [18]. If f ∈ L = L (R) , then f̂ ,as bounded continuous functions, possess
the property

lim
|β|→∞

f̂ (β) = 0

3.7. Theorem. εn (τ , β) satisfies the following asymptotic equations:

(3.2) εn (τ , β) = o (1) , (τ , β) ∈ D (ε) , τ →∞.

(3.3) εn (τ , β) = o (1) , (τ , β) ∈ D (ε) , β → ±∞.

(3.4) εn (τ , β) = En (τ) + o (1) , (τ , β) ∈ D (ε) , β →∞.
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Proof. Using Theorem 2.2 and 3.1, we obtain that, for all (τ , β) ∈ D (ε)

lim
τ→∞

εn (τ , β) = lim
τ→∞

τn−1

2π

∞∫
−∞

∞∫
−∞

[exp (−r) /rn+1] exp (−iβx) dxdy

< lim
τ→∞

1

2π

∞∫
−∞

∞∫
−∞

[
exp

(
−
√
x2 + y2 + τ2

)
/τ2
]

exp (−iβx) dxdy

=
1

2π

∞∫
−∞

∞∫
−∞

lim
τ→∞

[
exp

(
−
√
x2 + y2 + τ2

)
/τ2
]

exp (−iβx) dxdy

= 0

(3.2) holds.
Let us prove (3.3)

εn (τ , β) =
τn−1

2π

∞∫
−∞

∞∫
−∞

[exp (−r) /rn+1] exp (−iβx) dxdy

<
τn−1

√
2π

∞∫
−∞

 1√
2π

∞∫
−∞

[
exp

(
−
√
x2 + τ2

)
/
(√

x2 + τ2
)n+1

]
exp (−iβx) dx

 dy

=
τn−1

√
2π

∞∫
−∞

 1√
2π

∞∫
−∞

f (τ , x) exp (−iβx) dx

 dy

where

f (τ , x) = exp
(
−
√
x2 + τ2

)
/
(√

x2 + τ2
)n+1

.

Then from the Definition 3.1 we get

(3.5) εn (τ , β) =
τn−1

√
2π

∞∫
−∞

f̂ (τ , β) dy

and due to the following expression
∞∫
−∞

|f (τ , x)| dx =

∞∫
−∞

exp
(
−
√
x2 + τ2

)
/
(√

x2 + τ2
)n+1

dx

< 2 exp (−τ)

∞∫
τ

1/un
√
u2 − τ2du <∞,

f ∈ L (R) by virtue of Theorem 3.5

(3.6) lim
|β|→∞

f̂ (τ , β) = 0.

From the Theorem 2.2, 3.1 and (3.5), (3.6) we get

lim
|β|→∞

εn (τ , β) =
τn−1

√
2π

∞∫
−∞

lim
|β|→∞

f̂ (τ , β) dy

= 0,

i.e., (3.3) holds.
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According to Theorem 2.2, 3.1 we obtain,

lim
β→0

εn (τ , β) = lim
β→0

τn−1

2π

∞∫
−∞

∞∫
−∞

[exp (−r) /rn+1] exp (−iβx) dxdy

=
τn−1

2π

∞∫
−∞

∞∫
−∞

[
exp (−r) /rn+1] lim

β→0
exp (−iβx) dxdy

=
τn−1

2π

∞∫
−∞

∞∫
−∞

exp (−r) /rn+1dxdy

=
τn−1

2π

∞∫
−∞

∞∫
−∞

∞∫
1

exp (−tr) /rndtdxdy

=
τn−1

2π

∞∫
−∞

∞∫
−∞

φ (τ , x, y) dxdy

where

φ (τ , x, y) =

∞∫
1

exp (−tr) /rndt.

It is clear that last integral is uniformly convergent with respect to (τ , x, y) on the domain{
τ ∈ [ε,∞) , (x, y) ∈ R2

}
.

So making use of the Theorem 3.2 we have

lim
β→0

εn (τ , β) =
τn−1

2π

∞∫
1

∞∫
−∞

∞∫
−∞

(t− 1)n−n exp (−tr) /rndxdydt

using the Theorem 2.2, 3.4 and (n-1) times integration by parts yield

lim
β→0

εn (τ , β) =
τn−1

(n− 1)!

1

2π

∞∫
1

(t− 1)n−1

∞∫
−∞

∞∫
−∞

exp(−tr)/rdxdydt

=
τn−1

(n− 1)!

∞∫
1

(t− 1)n−1 exp(−τt)/tdt.(3.7)

The last term can be written in the following form
∞∫
1

(t− 1)n−1 exp (−τt) /tdt =

∞∫
1

(t− 1)n−2 exp (−τt) dt−
∞∫
1

(t− 1)n−3 exp (−tτ) dt

+

∞∫
1

(t− 1)n−4 exp (−tτ) dt

−...+ (−1)n+1

∞∫
1

(t− 1) exp (−tτ) dt

+ (−1)n
∞∫
1

(t− 1) exp (−tτ) /tdt.
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If we use integration by parts for all term we get
∞∫
1

(t− 1)n−1 exp (−τt) /tdt = [
(n− 2)!

τn−1
− (n− 3)!

τn−2
+

(n− 4)!

τn−3

−...+ (−1)n
2!

τ3
+ (−1)n−1 1!

τ2
+ (−1)n

0!

τ
] exp (−τ)

+ (−1)n−1

∞∫
1

exp (−τt) /tdt(3.8)

By means of integration by parts for the right-hand side of (3.8) then

(−1)n−1

∞∫
1

exp (−tτ) /tdt = (−1)n−1 [
0!

τ
− 1!

τ2
+

2!

τ3
− ...+ (−1)n

(n− 4)!

τn−3

+ (−1)n−1 (n− 3)!

τn−2
+ (−1)n

(n− 2)!

τn−1
] exp (−τ)

+
(n− 1)!

τn−1

∞∫
1

exp (−tτ) /tndt label3.9(3.9)

substitution of (3.9) into (3.8) gives

(3.10)
∞∫
1

(t− 1)n−1 exp (−τt) /tdt = (n− 1)!/τn−1

∞∫
1

exp (−τt) /tndt

considering the substitution of (3.10) into (3.7) gives

lim
β→0

εn (τ , β) =

∞∫
1

exp (−τt) /tndt

= En (τ) .

4. Numerical Computation
The numerical computation of TDEI functions have been studied by several authors.

Those computation methods consist asymptotic or binomial series for TDEI function
which include mass computatious [6]-[9], [11]- [16], [18]-[23]. On the basis of the uniform
convergence of εn (τ , β), obtained in this paper we constructed a new simple and an
accurate algorithm for the calculation of TDEI function even in a modarate PC. The
computations were performed for large values of parameters τ and β. In this paper
the TDEI functions were calculated on the Mathematica 8.0 international mathematical
software. The comparative examples of computer calculatious for the TDEI functions
are given in Tables 1-4. As can be seen from tables, our computational results are in
agreement with literature [7]. Also from Tables 1-4 we see that the calculation results
of the TDEI functions show good rate of convergence in the range of parameters τ ∈[
10−3, 1

]
and β ∈ [1, 20] .
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τ β = 1 β = 2 β = 5 β = 10 β = 20

0.001
A = 6.143314628912719

+iE − 1
B = 6.1433

A = 5.850334088713723
−i9.375391894121577E − 10

B = 5.8503

A = 5.216596350515581
−i6.184411880623505E − 17

B = 5.2166

A = 4.622405662773734
+i4.417437057588218E − 18

B = 4.6224

A = 3.979468204969179
+i9.718361526694078E − 17

B = 3.9795

0.005
A = 4.537901067889449

+i1.766974823035287E − 17
B = 4.5379

A = 4.245006981521351
+iE − 1
B = 4.2450

A = 3.6118092517793587
−i1.018351544013959E − 10

B = 3.6118

A = 3.0192768074691063
+i9.055745968055847E − 17

B = 3.0193

A = 2.381847868201705
+i1.987846675914698E − 17

B = 2.3818

0.01
A = 3.849813982491566

i− 3.837162415267503E − 11
B = 3.8498

A = 3.557142202395409
−i4.966478929026777E − 13

B = 3.5571

A = 2.9252964348968837
−i2.298302965135789E − 11

B = 2.9253

A = 2.3367504277586297
−i1.558030050211364E − 12

B = 2.3368

A = 1.7117877639753523
−i3.533949646070574E − 17

B = 1.7118

0.025
A = 2.9488329356872187

+i1.553338671316446E − 10
B = 2.9488

A = 2.657383190971331
+i1.993293375806704E − 12

B = 2.6574

A = 2.0326700716719333
−9.81770526868218E − 12

B = 2.0327

A = 1.4637881869087266
−i1.071335664531752E − 11

B = 1.4638

A = 8.941114707500399E − 1
−i5.300924469105861E − 17

B = 8.9411E − 1

0.05
A = 2.281453068639485

−i5.300924469105861E − 17
B = 2.2815

A = 1.9933445935560798
+i1.046233699931526E − 10

B = 1.9933

A = 1.3870213973918706
−i1.026298209581762E − 11

B = 1.3870

A = 8.639169226626785E − 1
−i4.310311171953727E − 12

B = 8.6392E − 1

A = 4.026457744554906E − 1
−i2.696189610344371E − 22

B = 4.0265E − 1

0.1
A = 1.64017231138455

+iE − 1
B = 1.6402

A = 1.3617758308830468
+i7.0578181485961E − 12

B = 1.3618

A = 8.043034952598128E − 1
−i1.985758332545723E − 12

B = 8.0430E − 1

A = 3.8435848086903923E − 1
+i8.28269448297791E − 17

B = 3.8436E − 1

A = 1.0713555332477835E − 1
+i6.092564529322131E − 12

B = 1.0714E − 1

0.5
A = 4.2370709749072205E − 1

+iE − 1
B = 4.2371E − 1

A = 2.5067102641438316E − 1
+iE − 1

B = 2.5067E − 1

A = 4.630293776083369E − 2
+iE − 1

B = 4.6303E − 2

A = 3.0239699124587406E − 3
+i1.224674029569061E − 16

B = 3.0240E − 3

A = 1.552042299070299E − 5
+iE − 1

B = 1.5520E − 5

1
A = 1.3554692860259693E − 1

+iE − 1
B = 1.3555E − 1

A = 5.351461855900747E − 2
+iE − 1

B = 5.3515E − 2

A = 2.3951848541335623E − 3
+iE − 1

B = 2.3952E − 3

A = 1.3321816513904781E − 5
+i7.07480153754363E − 18

B = 1.3322E − 5

A = 4.719616145834231E − 10
−i9.101430204813521E − 16

B = 4.7196E − 10

Table 1. Value of ε1 (τ , β)
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0.001
A = 9.924434723782973E − 1
+i1.413579858428229E − 19

B = 9.9244E − 1

A = 9.919160966891798E − 1
+iE − 1

B = 9.9192E − 1

A = 9.896973641980313E − 1
−i4.915307297290383E − 10

B = 9.8970E − 1

A = 9.853780518462402E − 1
+i1.413579858428229E − 19

B = 9.8538E − 1

A = 9.761947163307825E − 1
+i6.069070914791562E − 11

B = 9.7619E − 1

0.005
A = 9.702643422545342E − 1
+i2.208718528794109E − 20

B = 9.7026E − 1

A = 9.676568670129494E − 1
+i1.413579858428229E − 18

B = 9.6766E − 1

A = 9.567681149630682E − 1
+i7.112741170587211E − 11

B = 9.5677E − 1

A = 9.35895855570027E − 1
−7.619368247065852E − 11

B = 9.3590E − 1

A = 8.928151526927118E − 1
−3.180554681463517E − 18

B = 8.9282E − 1

0.01
A = 9.474592559549745E − 1
−i4.586072717261649E − 15

B = 9.4746E − 1

A = 9.423160462390637E − 1
+i3.533949646070575E − 18

B = 9.4232E − 1

A = 9.210350252606401E − 1
+i3.577803230650029E − 12

B = 9.2104E − 1

A = 8.810187337876387E − 1
+i2.827159716856459E − 18

B = 8.8102E − 1

A = 8.014083467390319E − 1
−i1.464519149540784E − 11

B = 8.0141E − 1

0.025
A = 8.915415485850164E − 1
+i4.417437057588218E − 19

B = 8.9154E − 1

A = 8.791975192541199E − 1
+i3.639194635321662E − 13

B = 8.7920E − 1

A = 8.294982431226492E − 1
+i1.435944127455608E − 12

B = 8.2950E − 1

A = 7.412356049804204E − 1
−i2.8175139356756E − 13

B = 7.4124E − 1

A = 5.837991466302784E − 1
+i1.250068888192043E − 12

B = 5.8380E − 1

0.05
A = 8.176587748648632E − 1
+i2.255574835843579E − 13

B = 8.1766E − 1

A = 7.945528161372075E − 1
+i1.766974823035287E − 18

B = 7.9455E − 1

A = 7.056034194084425E − 1
−i8.834874115176437E − 18

B = 7.0560E − 1

A = 5.618241448033833E − 1
+i4.594134539891746E − 17

B = 5.6182E − 1

A = 3.472878771358602E − 1
−i1.943672305338816E − 17

B = 3.4729E − 1

0.1
A = 7.041062167438795E − 1
−i7.496678717427851E − 13

B = 7.0411E − 1

A = 6.634519064258186E − 1
−i3.909705677063143E − 12

B = 6.6345E − 1

A = 5.201241100703188E − 1
+i1.855323564187051E − 17

B = 5.2012E − 1

A = 3.27613339905977E − 1
+i1.060184893821172E − 17

B = 3.2761E − 1

A = 1.2428402294804283E − 1
+iE − 1

B = 1.2428E − 1

0.5
A = 2.812151426498713E − 1

+iE − 1
B = 2.8122E − 1

A = 2.015863821445704E − 1
+iE − 1

B = 2.0159E − 1

A = 5.496848551136895E − 2
+iE − 1

B = 5.4968E − 2

A = 5.0600102554520555E − 3
−i3.224667578916283E − 15

B = 5.0600E − 3

A = 3.7076101127100064E − 5
+iE − 1

B = 3.7076E − 5

1
A = 1.0756980583160117E − 1

+iE − 1
B = 1.0757E − 1

A = 5.336330710138579E − 2
+iE − 1

B = 5.3363E − 2

A = 3.7075424200455013E − 3
+iE − 1

B = 3.7075E − 3

A = 2.9869304279352523E − 5
−i5.866908592109352E − 19

B = 2.9869E − 5

A = 1.538334495203213E − 9
−i2.63033517911171E − 18

B = 1.5383E − 9

Table 2. Value of ε2 (τ , β)
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τ β = 1 β = 2 β = 5 β = 10 β = 20

0.001
A = 4.990024511109741E − 1
−i2.261727773485167E − 21

B = 4.9900E − 1

A = 4.989982320156957E − 1
−i1.776096495894175E − 12

B = 4.9900E − 1

A = 4.989706876695545E − 1
−i2.714073328182201E − 19

B = 4.9897E − 1

A = 4.9888175736258644E − 1
−i1.442151075825898E − 9

B = 4.9888E − 1

A = 4.9856897323705635E − 1
+i5.790023100122029E − 19

B = 4.9857E − 1

0.005
A = 4.950516902549029E − 1
−i2.544443745170813E − 19

B = 4.9505E − 1

A = 4.949762046326981E − 1
−i1.90159059838535E − 13

B = 4.9498E − 1

A = 4.9449751991327523E − 1
+i2.261727773485167E − 19

B = 4.9450E − 1

A = 4.930242429216283E − 1
−i1.133479574912619E − 13

B = 4.9302E − 1

A = 4.8819820352499177E − 1
−i7.237528875152536E − 18

B = 4.8820E − 1

0.01
A = 4.9018922746454213E − 1
+i4.229134084646993E − 15

B = 4.9019E − 1

A = 4.899385430768269E − 1
+i8.469661622952918E − 15

B = 4.8994E − 1

A = 4.883821102053627E − 1
+i1.809382218788134E − 18

B = 4.8838E − 1

A = 4.837637107484798E − 1
+iE − 1

B = 4.8376E − 1

A = 4.69496901043039E − 1
−i1.970457721187423E − 12

B = 4.6950E − 1

0.025
A = 4.760365743919093E − 1
+i8.834874115176437E − 20

B = 4.7604E − 1

A = 4.748853995162321E − 1
−i6.626155586382327E − 19

B = 4.7489E − 1

A = 4.6805408708589463E − 1
+i2.827159716856459E − 18

B = 4.6805E − 1

A = 4.4938184179542284E − 1
−i3.180554681463517E − 18

B = 4.4938E − 1

A = 3.9923273619928473E − 1
+2.216955693995738E − 12

B = 3.9923E − 1

0.05
A = 4.536942695174573E − 1
+i4.28843815505793E − 12

B = 4.5369E − 1

A = 4.5029816049684535E − 1
−i8.607344654558792E − 12

B = 4.5030E − 1

A = 4.313003524176357E − 1
+i6.523616104772877E − 13

B = 4.3130E − 1

A = 3.849140185306733E − 1
+i1.711286844512507E − 13

B = 3.8491E − 1

A = 2.8307826133448905E − 1
+i1.753696007240177E − 12

B = 2.8308E − 1

0.1
A = 4.129052504262309E − 1
+i2.260774994155964E − 11

B = 4.1291E − 1

A = 4.0381514638243077E − 1
−i1.210519571178468E − 11

B = 4.0382E − 1

A = 3.5787773372208315E − 1
+iE − 1

B = 3.5788E − 1

A = 2.662095412797268E − 1
+iE − 1

B = 2.6621E − 1

A = 1.2689054916664513E − 1
+iE − 1

B = 1.2689E − 1

0.5
A = 2.0269794527722496E − 1

+iE − 1
B = 2.0270E − 1

A = 1.6215841061428077E − 1
+iE − 1

B = 1.6216E − 1

A = 5.843514756064822E − 2
+iE − 1

B = 5.8435E − 2

A = 7.175956423511752E − 3
−i5.978291420340211E − 15

B = 7.1760E − 3

A = 7.267195676212158E − 5
+iE − 1

B = 7.2672E − 5

1
A = 8.726359085360859E − 2

+iE − 1
B = 8.7264E − 2

A = 5.059279476996788E − 2
+iE − 1

B = 5.0593E − 2

A = 4.997178810918784E − 3
+i1.104359264397054E − 18

B = 4.9972E − 3

A = 5.5981429368903135E − 5
−i3.337882737606331E − 19

B = 5.5981E − 5

A = 4.09183571344698E − 9
+iE − 1

B = 4.0918E − 9

Table 3. Value of ε3 (τ , β)
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0.001 3.3283365604269766E − 1
+4.632018480097623E − 21

3.328331613610311E − 1
−i1.852807392039049E − 20

3.3282970307744514E − 1
+i3.705614784078098E − 20

3.328173992319921E − 1
−i5.123697977723025E − 14

3.327684851036903E − 1
+i1.02120053559172E − 9

0.005 3.3084168843793876E − 1
−i6.33283776575847E − 20

3.308297036009815E − 1
+i6.436868196427692E − 14

3.3074636124698376E − 1
+iE − 1

3.3045341230211234E − 1
+i3.047532523055772E − 10

3.2932152187417696E − 1
+i6.712438193978458E − 13

0.01 3.283668166582222E − 1
+i2.334533695204764E − 14

3.2832041450482136E − 1
−i4.668935305507558E − 14

3.279999313606849E − 1
+i7.237528875152537E − 19

3.2689163817018646E − 1
−i7.437146200877148E − 11

3.2275697847261525E − 1
−i5.587372291617758E − 17

0.025 3.2104319438498374E − 1
+i1.467757187226319E − 12

3.207762091456098E − 1
−i1.130863886742583E − 18

3.18970362083023E − 1
−i2.261727773485167E − 18

3.130302814359257E − 1
−i2.705897472175359E − 12

2.9309972611874663E − 1
+i4.099130355815903E − 11

0.05 3.0917216818702864E − 1
+i2.915508458008224E − 19

3.0822192734798826E − 1
+i3.220960448136829E − 13

3.02023610866854E − 1
+i2.261727773485167E − 18

2.832990350153646E − 1
+i6.43233237426568E − 13

2.3065645383776914E − 1
−i9.830608248932432E − 13

0.1 2.866606684383088E − 1
+i3.486063214786459E − 13

2.835510053837311E − 1
+i7.067899292141149E − 20

2.6473792976651495E − 1
−i1.953758586363162E − 12

2.1692835774847108E − 1
−i5.654319433712919E − 18

1.2200667108444715E − 1
+iE − 1

0.5 1.5579006769776246E − 1
+iE − 1

1.3293249152133196E − 1
+iE − 1

5.86308991984218E − 2
+iE − 1

9.188975045090655E − 3
−i1.104359264397054E − 18

1.2516086082822907E − 4
+iE − 1

1 7.252504637283796E − 2
+iE − 1

4.690751377329581E − 2
+iE − 1

6.173857960619937E − 3
−i5.521796321985272E − 19

9.31476402535588E − 5
+i9.518492990879253E − 18

9.484194215269618E − 9
−i2.229293299158516E − 21

Table 4. Value of ε4 (τ , β)
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Optimal stop-loss reinsurance: a dependence
analysis
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Abstract
The stop-loss reinsurance is one of the most important reinsurance con-
tracts in the insurance market. From the insurer point of view, it
presents an interesting property: it is optimal if the criterion of min-
imizing the variance of the cost of the insurer is used. The aim of
the paper is to contribute to the analysis of the stop-loss contract in
one period from the point of view of the insurer and the reinsurer.
Firstly, the influence of the parameters of the reinsurance contract on
the correlation coefficient between the cost of the insurer and the cost
of the reinsurer is studied. Secondly, the optimal stop-loss contract is
obtained if the criterion used is the maximization of the joint survival
probability of the insurer and the reinsurer in one period.
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1. Introduction
An insurance company may decide to sign a reinsurance contract either to assume

greater risks or to protect the company. This reinsurance contract transfers part of the
risks assumed by the insurer to the reinsurer in exchange of giving also a part of the
premiums received from policyholders. Yet, reinsurance is the most important decision
that an insurance company has to consider in order to reduce its underwriting risk.
Two large groups of reinsurance contracts can be distinguished: the proportional and
the non-proportional reinsurance. The proportional reinsurance includes two kinds of
reinsurance known as quota-share and surplus. In the former, all the risks are transferred
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in the same proportion, while in the latter the proportion may vary. As regards the non-
proportional reinsurance, the stop-loss and excess-loss contracts stand out. In both cases,
the reinsurance offers protection when the aggregate claims exceed a certain agreed level.

The stop-loss reinsurance has been widely studied in the actuarial literature. The
actuarial literature on the optimal reinsurance can be classified using as a criterion who
takes the decision. A first group may include the works that focus on the insurer point
of view and then try to maximize/minimize some measure of the risk of the insurer
if he/she signs a reinsurance contract. In a second group we include the papers that
search for strategies that are beneficial to the two parts that participate in the contract.
Borch, [7], states that “These considerations should remind us that there are two parties
to a reinsurance contract, and that this parties have conflicting interests. The optimal
contract must then appear as a reasonable compromise between these interests. To me
the most promising line of research seems to be the study of contracts, which in different
ways can be said to be optimal from the point of view of both parties”. Nonetheless, most
of the papers on optimal reinsurance have only considered the insurer point of view.

In the first group, a secondary criterion for classification could be the function that is
maximized or minimized. Within this literature we find, for instance, the maximization
of the expected utility of the insurer’s wealth after reinsurance, the minimization of the
probability of ruin in the short and in the long run and the minimization of the variance of
the retained risk ([46]). Borch [6] (reproduced in [8]) proved that the stop-loss contract is
the “most efficient” contract because, for a given net premium, it maximizes the reduction
of the variance in the claim distribution of the ceding company. Daykin et al. [17], Gajek
et al. [24], and Kaluszka [38] follow a similar line of research.

Gerber [27] uses the expected profit of the insurer in one period as a measure of the
profitability, and the adjustment coefficient (closely connected with the probability of
ruin) as a measure of security. He assumes normality and considers excess-loss, stop-
loss and proportional contracts. Van Wouwe et al. [47] determine the optimal level of
excess-loss reinsurance in the case that the ultimate ruin probability is taken as stability
criterion. The insurer’s survival probability is also considered in [40] and [29], and more
recently in [43], [44], [25], [39], [13] and [41]. Guerra and Centeno[28] obtain an optimal
reinsurance policy by maximizing the insurer’s expected utility.

Several authors have used other kind of measures to find the optimal strategy. Van
Heerwaarden et al. [46] use, as optimality criterion, the minimization of the retained risk
with respect to the stop-loss order. In turn, Hoøjgaard and Taksar [30] find the optimal
proportional dynamic strategy that maximizes the return function of the insurer. And in
[31], the previous analysis is extended to include transactions costs. Azcue and Muler [2]
consider also a dynamic choice of both the reinsurance policy and the dividend distribu-
tion strategy that maximizes the cumulative expected discounted dividend payouts. In
[9], [11], [45] and [15] the optimization of a reinsurance contract under the value-at-risk
and conditional tail expectation risk measures is conducted. Similarly, Zhu et al. [50]
investigate optimal reinsurance strategies for an insurer with multiple lines of business
using the multivariate lower-orthant Value-at-Risk. Centeno and Simões [14] provide a
good summary of the classical results on optimal reinsurance and a more detailed analysis
of recent results (2000-2009).

Balbás et al. [4] use a general risk measure that includes every deviation measure,
every expectation bounded risk measure, and most of the coherent, convex or consistent
risk measures as particular cases. In [3] the previous analysis is extended to cases where
the statistical distribution of claims is not totally known, generating uncertain or am-
biguous frameworks. Following the modern studies about distortion risk measures, Cui
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et al. [16], Zheng and Cui [48], Zheng et al. [49] and Assa [1] use them to find the optimal
reinsurance.

In spite of the above comment of Borch [7], the consideration of the interest of both
the insurer and the reinsurer has not been really developed until recently. Borch [6]
can be considered the first author in adopting this approach to the optimal reinsurance
problem. He considers the minimization of the total variance risk for an stop-loss contract.
Hürlimann [32] retakes this question and, in [33], obtains also optimal solutions under
the total variance risk measure for a partial stop-loss contract.

Cai et al. [10] study the sufficient and necessary conditions for the existence of the
optimal reinsurance retentions for the quota-share reinsurance and the stop-loss reinsur-
ance under the expected value reinsurance premium principle, considering as objective
function the joint survival probability and the joint profitable probability. For the joint
survival probability, in [23], an extension for a combination of quota-share and stop-loss
reinsurance contracts is found.

Ignatov et al. [34] and Kaishev and Dimitrova ([37] and [22]) use a different approach
to joint optimality criteria. In [34] and [37], they find the parameters of the reinsurance
contract that maximize the joint survival probability, when the premiums of the insurer
and the reinsurer are fixed, for an excess of loss risk model when the number of claims fol-
lows a Poisson process. Salcedo-Sanz et al. [41] solve also this question using evolutionary
and swarm intelligence techniques. In [37] the previous analysis is extended to include an
optimal split of the premium income between the insurer and the reinsurer, given fixed
retention and limiting levels. These two optimization problems are applied, with some
numerical examples, to the stop-loss contract over a fixed horizon in [12]. Other optimal
problems are added by Dimitrova and Kaishev [22], for an excess-loss, and by Castañer et
al. [12], for an stop-loss. In [22], the authors propose a Markowitz type efficient frontier
solution to the problem of optimally setting the parameters of reinsurance, so that for
a given level of the probability of joint survival the expected profits of the two parties
are maximized. Finally, in [12], the optimal split of the total initial reserves between the
insurer and the reinsurer that maximizes the joint survival probability is considered.

The objective of this work is to contribute to the analysis of the optimal stop-loss
reinsurance in one period, from the joint point of view of the insurer and the reinsurer.
The contributions of this paper to the optimal reinsurance can be summarized as follows.
First, using total variance risk measure, we add the analysis of the optimal reinsurance for
an stop-loss contract with maximum, to the known solutions for the standard stop-loss ([6]
and [32]) or the partial standard stop-loss ([33]). We also include the possibility of using
the maximization of the correlation coefficient between the insurer’s and reinsurer’s losses.
Second, we consider the maximization of the joint survival probability in one period in
an stop-loss with and without maximum, and using the same hypothesis with respect to
premiums as in Kaishev and Dimitrova ([37] and [22]), we obtain the optimal parameters
of the stop-loss. In addition, in line with [37], we use as a criterion for the calculation of
the reinsurer’s premiums the maximization of the joint survival probability, given as fixed
both the values of the parameters of the reinsurance contract and the initial values of
the reserves of the insurer and the reinsurer. In fact, then, we propose a different way of
calculating the stop-loss premium that considers not only the losses for the reinsurer, but
all the other factors (loss and premium of the insurer and initial capitals of insurer and
reinsurer). The solution of these two optimization problems related to the joint survival
probability in one period for the stop-loss reinsurance are arguably the main findings of
this paper.

The paper is organized as follows. Section 2 analyzes the expression of the covariance
and the correlation coefficient and the specific expressions for different distributions of
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the total cost, considering a stop-loss reinsurance with priority d with and without a
maximum m. In Section 3, we find the optimal reinsurance stop-loss if the criterion is
the maximization of the variance reduction due to reinsurance. In Section 4, we introduce
the probability of joint survival as a measure for the solvency for a reinsurance contract
with priority d and reinsurance with d and m. In Section 5, the problem of finding the
optimal reinsurance stop-loss if the criterion is the maximization of the joint survival
probability is solved. In addition, a number of examples are presented. Section 6 closes
the paper offering some final conclusions and remarks.

2. Covariance and correlation between the cost of the insurer and
the cost of the reinsurer
In the stop-loss reinsurance contract with priority d > 0 the random variable (r.v.)

total cost of claims in one period, S, is split between the cost of the insurer, SI, and the
cost of the reinsurer, SR, with S = SI+SR, SR = max {S − d, 0} and SI = min {S, d}.
The distribution functions of these two r.v., FSI(s) = P [SI ≤ s] and FSR(s) = P [SR ≤
s], can be calculated from the distribution function of S, FS(s) = P [S ≤ s],

(2.1) FSI(s) =

{
FS(s) if s < d,
1 if s ≥ d,

(2.2) FSR(s) = FS(s+ d).

The reinsurer can calculate the reinsurance premium with several premium principles.
Most of these principles are based on the expectation of the total cost assumed by the
reinsurer ([21]). For instance, the net premium principle establishes that the premium is
equal to the expectation of the cost. In the actuarial literature, the premium of an stop-
loss contract calculated with the net premium principle is called the stop-loss premium.
Let us define π(d) = E[SR] as the stop-loss premium in a reinsurance stop-loss contract
with priority d.

The r.v. cost of the reinsurer SR has the following two ordinary moments§:

(2.3) α1(SR) = E[SR] =

∫ ∞
d

(s− d)fS(s)ds =

∫ ∞
d

(1− FS(s))ds,

α2(SR) =

∫ ∞
d

(s− d)2fS(s)ds = 2

∫ ∞
d

(s− d)(1− FS(s))ds.

Hence, the variance is

(2.4) V [SR] = α2(SR)− α2
1(SR) = E[SR](−2d− E[SR]) + 2

∫ ∞
d

s(1− FS(s))ds.

The expectation and the variance of the insurer cost SI can be calculated from those of
S and SR, so:

α1(SI) = E[SI] = E [min(S, d)] = E [S]− E[SR],

V [SI] = V [S]− V [SR]− 2Cov [SI, SR] ,

§In order to obtain the expressions for the first two moments of the cost of the reinsurer, it
is necessary to take into account that −fS(s)ds = d(1 − FS(s)) and then apply integration by
parts.
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being

Cov [SI, SR] =

∫ ∞
d

d(s− d)fS(s)ds− E [SR] (E [S]− E [SR])

= E[SR] (d− E [S] + E[SR]) .(2.5)

The correlation coefficient between SI and SR is

(2.6) r(SI, SR) =
Cov [SI, SR]√

V [SR] (V [S]− V [SR]− 2Cov [SI, SR])
.

In addition to the marginal analysis of the cost of the insurer and the reinsurer, we
are interested in the bivariate r.v. (SI, SR). In a stop-loss reinsurance contract with
priority d, the joint distribution function of the costs of the insurer and the reinsurer in
one period is

(2.7) P [SI ≤ x, SR ≤ y] =

{
P [S ≤ x] if x < d,
P [S ≤ y + d] if x ≥ d > 0.

This r.v. (SI, SR) is comonotone ([20]) because SI and SR are increasing functions of
the risk S. Then, there is a perfect positive dependence between the two marginal r.v.
SI and SR and it is granted that the two parts that participate in the exchange of risk
(the insurer and the reinsurer) increase their cost when the underlying risk increases.
Hence, the correlation coefficient between SI and SR is the maximal one that can be
attained between two random variables with the same marginal distributions, but it is
not equal to one (this would be the case if one variable could be calculated as a linear
function of the other, e.g. in proportional reinsurance)([18]). So, for a fixed d, r(SI, SR)
is the maximal one, but it is less than one in absolute value.

The stop-loss reinsurance contract can include a priority d and a maximum m, m >
d > 0. In this case,

SR(d,m) = min {m− d,max {S − d, 0}} ,

SI(d,m) = min {S, d}+ max {S −m, 0} .

The distribution functions of these two r.v. are

(2.8) FSI(d,m)(s) =

{
FS(s) if s < d,
FS(s+m− d) if s ≥ d

and

(2.9) FSR(d,m)(s) =

{
FS(s+ d) if s < m− d,
1 if s ≥ m− d.

Let π(d,m) = E[SR(d,m)] be the stop-loss premium, that is the reinsurance premium
calculated with the net premium principle. It can be calculated from the premiums of a
stop-loss reinsurance with priorities d and m, π(d,m) = π(d)− π(m).
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The second ordinary moment α2(SR(d,m)), is

α2(SR(d,m)) =

∫ m

d

(s− d)2fS(s)ds+

∫ ∞
m

(m− d)2fS(s)ds

=

∫ ∞
d

(s−d)2fS(s)ds−
∫ ∞
m

(s−d)2fS(s)ds+

∫ ∞
m

(m−d)2fS(s)ds

= α2(SR(d))−
∫ ∞
m

((s− d)2 − (m− d)2)fS(s)ds

= α2(SR(d))− α2(SR(m))− 2(m− d)π(m),

where the last equality follows taking into account that (s− d)2− (m− d)2 = (s−m)2 +
2(s−m)(m− d).
Hence, the variance V [SR(d,m)], is:

V [SR(d,m)] = α2(SR(d,m))− α1(SR(d,m))2

= α2(SR(d))− α2(SR(m))− 2(m− d)π(m)− (π(d)− π(m))2

= V [SR(d)]− V [SR(m)] + 2π(m)(π(d) + d− π(m)−m).

The covariance between the costs of the insurer and the reinsurer is:

Cov [SI(d,m), SR(d,m)] =

∫ m

d

d(s−d)fS(s)ds+

∫ ∞
m

(m−d)(s−m+d)fS(s)ds

=

∫ ∞
d

d(s− d)fS(s)ds

−
∫ ∞
m

(d(s− d)− (m− d)(s−m+ d))fS(s)ds

= Cov [SI(d), SR(d)]−
∫ ∞
m

((s−m)(2d−m))fS(s)ds

= Cov [SI(d), SR(d)]− (2d−m)π(m),(2.10)

where the last but one equality follows taking into account that d(s− d)− (m− d)(s−
m+ d) = (s−m)(2d−m).
So, in order to calculate the expectation and the variance of the costs of the insurer
and the reinsurer, and the covariance if the stop-loss has a maximum, we only need the
expressions of a stop-loss without maximum.

The distribution function of the bivariate r.v. (SI(d,m), SR(d,m)) is

(2.11) P [SI(d,m)≤x, SR(d,m)≤y]=


P [S≤x] if x<d,
P [S≤d] if x≥d and y=0,
P [S≤y+d] if x≥d and 0<y<m−d,
P [S≤m] if x=d and y≥m−d,
P [S≤x+m−d] if x>d and y≥m−d.

Throughout the paper, we use three approximations for the total cost in a period:
gamma with two parameters, translated gamma and normal. The gamma distribution
deserves special attention. It has been used in its version of two or three parameters to
approximate the distribution of the total cost in a period as an alternative to the exact
calculation through convolutions and to other approximations. In several papers ([5], [42],
[26]), the accuracy of the translated gamma approximation and the rest of approximations
has been quantified. In this sense, [35] uses the translated gamma approximation for the
calculation of the stop-loss premium. In order to be self contained and to clarify the
formulas that we use, we include in Section 2.1 a summary of the (translated) gamma
distribution. Next, we indicate the explicit expressions of π(d), Cov [SI, SR] and V [SR],
which allow us calculating the coefficient of correlation for three different distributions
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or approximations for the total cost in a period: gamma with two parameters, translated
gamma and normal. As it is a simple calculation, we do not include the processes for
obtaining these expressions.

2.1. Statistical summary. The gamma distribution with three parameters (or Pearson
Type III) is also known as the translated gamma distribution, with one of its parameters
interpreted as follows. If X ∼ Ga(α, β, γ), with α > 0, β > 0 and γ ∈ <, its density
function is

(2.12) fX(x) =
(x− γ)α−1e

−(x−γ)
β

βαΓ(α)
, x > γ,

being γ, precisely, the parameter of translation. If γ = 0, the gamma distribution with
two parameters is obtained, X ∼ Ga(α, β) with α > 0 and β > 0. The standard form of
the distribution is obtained if, in addition, β = 1. Then, X ∼ Ga(α), with α > 0.

The gamma distribution with three parameters can be calculated through a gamma
distribution with two or with one parameter (the standard form). Let X ∼ Ga(α, β, γ),
if Y = (X − γ)/β, then, Y ∼ Ga(α), and also, X = Y β + γ. If Z = X − γ, then,
Z ∼ Ga(α, β), and the next relations are met,

X = Z + γ, Y =
Z

β
.

Recall that the moments and measures of X, Y and Z, are related as shown in Table 1.

Table 1. Some characteristics of the gamma distribution

Y ∼ Ga(α) Z ∼ Ga(α, β) X ∼ Ga(α, β, γ)

Mean µ1 α αβ αβ + γ
Variance µ2 α αβ2 αβ2

µ3 2α 2αβ3 2αβ3

Skewness γ1 2√
α

2√
α

2√
α

The parameters of X ∼ Ga(α, β, γ), can be estimated by the moments’ method:

(2.13) α̂ =
4

γ2
1(X)

, β̂ =
µ3(X)

2µ2(X)
, γ̂ = E [X]− α̂β̂.

Taking into account Table 1, a variable X ∼ Ga(α, β, γ), also meets the next relationship
with the variable Y ∼ Ga(α) (if the parameter α is estimated through the asymmetry of
X, as in (2.13)),

X = µ1(X) + µ0.5
2 (X)

Y − α√
α

.

Then,

P [X ≤ x] = P

[
µ1(X) + µ0.5

2 (X)
Y − α√

α
≤ x

]
= P

[
Y ≤ α+

√
α
x− µ1(X)

µ0.5
2 (X)

]
= Ga

(
α+
√
α
x− µ1(X)

µ0.5
2 (X)

;α

)
,(2.14)

being Ga(y;α) = P [Y ≤ y] with Y ∼ Ga(α). Or alternatively,

P [X ≤ x] = P [Z + γ ≤ x] = P [Z ≤ x− γ]

= Ga(x− γ;α, β),(2.15)
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being Ga(z;α, β) = P [Z ≤ z] with Z ∼ Ga(α, β).

2.2. Gamma distribution (with two parameters). Assume S ∼ Ga(α, β), with
α > 0 and β > 0. The density function and the distribution function are, respectively,

fS(s) =
sα−1e

− s
β

βαΓ(α)
, s > 0,

FS(s) = Ga(s;α, β), s > 0.

Hence, in this case we have

π(d) = αβ (1−Ga(d;α+ 1, β))− d (1−Ga(d;α, β)) ,

Cov [SI, SR] = [αβ (1−Ga(d;α+ 1, β))− d (1−Ga(d;α, β))]

× [−αβGa(d;α+ 1, β) + d Ga(d;α, β)]

and

V [SR] = π(d) (−2d− π(d))− d2 (1−Ga(d;α, β))

+ (α+ 1)αβ2 (1−Ga(d;α+ 2, β)) .

2.3. Translated gamma distribution. Assume S ∼ Ga(α, β, γ), with α > 0, β > 0
and γ ∈ <. The density function and the distribution function are, respectively,

fS(s) =
(s− γ)α−1e

− s−γ
β

βαΓ(α)
, s > γ,

FS(s) = Ga(s;α, β, γ), s > γ.

For the translated gamma approximation for the distribution of the total cost, we
obtain two equivalent expressions for the stop-loss premium depending on the formula
used, (2.14) or (2.15). First, from (2.14) we have,

(2.16) π(d) = E [(S − d)+] ≈ µ0.5
2 (S)√
α

[
d′f(d′;α) + (α− d′)(1−Ga(d′;α))

]
,

being d′ = α +
√
α
(
d−µ1(S)

µ0.5
2 (S)

)
and f(d′;α), the density function of Y ∼ Ga(α) in d′.

Second, from (2.15) we have,

π(d) = E [(S − d)+] ≈ αβ (1−Ga(d− γ;α+ 1, β))

− (d− γ)(1−Ga(d− γ;α, β)),(2.17)

Expression (2.16) can be found in [35] as a particular case of the ordinary moments of
the cost of the reinsurer.

From (2.4), (2.5) and (2.17) the Cov[SI, SR] can be easily calculated, and the expres-
sion of the variance of SR is

V [SR] = π(d) (−2d− π(d)) + 2αβγ (1−Ga(d− γ;α+ 1, β))

+ (α+ 1)αβ2 (1−Ga(d− γ;α+ 2, β))+ (γ2 − d2) (1−Ga(d− γ;α, β)) .

2.4. Normal distribution. Assume S ∼ N(µ, σ), with µ = E [S] and σ2 = V [S] > 0.
The density and distribution functions are, respectively, in terms of the distribution of
N(0, 1),

fS(s) =
1

σ
√

2π
e
−(s−µ)2

2σ2 ,

FS(s) = Φ
(s− µ

σ

)
,
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and then,

π(d) = σφ

(
d− µ
σ

)
+ (µ− d)

(
1− Φ

(
d− µ
σ

))
,

Cov [SI, SR] =

[
σφ

(
d− µ
σ

)
+ (µ− d)

(
1− Φ

(
d− µ
σ

))]
×

[
σφ

(
d− µ
σ

)
− (µ− d)

(
Φ

(
d− µ
σ

))]
and

V [SR] = −σ(d− µ)φ

(
d− µ
σ

)
− π(d)2 +

(
(µ− d)2 + σ2)(1− Φ

(
d− µ
σ

))
.

3. Optimal reinsurance if the criterion is the maximization of the
variance reduction
Following [8], we can choose as measures of risk the variance or the probability of

ruin. These two measures have different properties, and correspond to a different idea.
If we use the variance we exclusively focus on the randomness of the cost of claims and
we disregard the premiums (and then the security loadings) and the initial reserves of
the insurer and the reinsurer. These two factors can be also taken into account if we use
the probability of ruin as an alternative risk measure.

If our objective is to find an optimal contract, we can not only rely on the insurer’s
risk measure. We have to keep in mind Borch’s statement that there are two parties
to a reinsurance contract, and that these parties have conflicting interests. The optimal
contract must then appear as a reasonable compromise between the interest of the insurer
and the reinsurer and thus, it has to be found undertaking a joint analysis of this two
parties.

In this section we perform a first analysis of the optimal reinsurance choosing the
variance as measure of risk and maximizing the variance reduction defined as the differ-
ence between the variance of the loss and the sum of the variance of the insurer and the
reinsurer, V [S] − (V [SI(d)] + V [SR(d)]) or V [S] − (V [SI(d,m)] + V [SR(d,m)]) if the
contract includes a maximum m. By definition, in the first case this difference equals
2Cov[SI(d), SR(d)], and in the second case equals 2Cov[SI(d,m), SR(d,m)]. Then, we
choose the reinsurance parameters as those that maximize the covariance between the
costs of the insurer and the reinsurer.

We consider first a stop-loss reinsurance contract with priority d > 0. The maximiza-
tion program, from (2.5), is

max
d

π(d) (d− E[S] + π(d)) subject to 0 < d.(3.1)

As the covariance is a continuous function of d and the limits when d tends to 0 and
to infinity are zero, the covariance has a maximum for at least one finite, positive value
of d ([8]).

3.1. Proposition. The optimal point of program (3.1) is a value of d such that the
following conditions are fulfilled:

π(d) (2FS(d)− 1) + (d− E[S]) (FS(d)− 1) = 0,

π(d) <
2FS(d) (1− FS(d))2

fS(d)
,

d >0.
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Proof. The first order condition of optimality is

[π(d) (d− E[S] + π(d))]′ = 0.

Considering that π(d) =
∫∞
d

(1− FS(s)) ds, this condition is

π(d)FS(d) + (FS(d)− 1) (d− E[S] + π(d))(3.2)

= π(d) (2FS(d)− 1) + (d− E[S]) (FS(d)− 1) = 0.

The second order condition for the maximization is

[π(d) (d− E[S] + π(d))]′′ = fS(d) (d− E[S] + π(d))(3.3)

+ (FS(d)− 1) 2fS(d) < 0.

Isolating (d− E[S] + π(d)) from (3.2) and substituting in (3.3), the condition

π(d) <
2FS(d) (1− FS(d))2

fS(d)

is obtained. �

3.2. Corollary. If S has a symmetric density function, d = E[S] is the only finite point
that fulfils condition (3.2).

Proof. If S has a symmetric density function, FS(E[S]) = 0.5, then (3.2) is fulfilled if
and only if d = E[S]. �

Note: An equivalent expression to (3.2) can be found in Borch (1974) as well as the value
of d that fulfils this condition when S follows an exponential distribution.

As an alternative, instead of maximizing the variance reduction in absolute value, we
could apply the criterion of maximizing the coefficient of correlation. In this case, the
conditions that must fulfil the optimal point are complex but easy to obtain. In order to
be concise we only include in the paper (without proof) the necessary conditions.

3.3. Proposition. The optimal point of program

max
d

r(SI, SR) =
Cov [SI, SR]√
V [SR]V [SI]

subject to 0 < d(3.4)

fulfil the necessary condition

2
Cov[SI, SR]′

Cov[SI, SR]
=
V [SI]′

V [SI]
+
V [SR]′

V [SR]
,

being

Cov[SI, SR]′ = π(d) (2FS(d)− 1) + (d− E[S]) (FS(d)− 1) ,

V [SI]′ = −2 (FS(d)− 1) (d− E[S] + π(d)) ,

V [SR]′ = −2π(d)FS(d).

3.4. Example. We assume that the total cost of a period has the following character-
istics: E [S] = 1, V [S] = 2 and skewness γ1(S) = 3√

2
. In Table 2 we show the maximum

points and the maximum values of the covariance and the coefficient of correlation that
are obtained using the gamma, the translated gamma and the normal approximations.
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Table 2. Optimal points and maximum values of covariance and cor-
relation coefficient. Stop-loss contract

d∗ Cov[SI(d∗), SR(d∗)] d∗ r[SI(d∗), SR(d∗)]

gamma 2.19654 0.326122 1.3598 0.499926
translated gamma 1.89158 0.324196 1.27352 0.490588
normal 1 0.31831 1 0.466942

If the stop-loss reinsurance contract has also a maximum m, the maximization pro-
gram, from (2.10) is

max
d,m

π(d) (d− E[S] + π(d))− (2d−m)π(m) subject to 0 < d < m(3.5)

3.5. Proposition. The optimal point of program (3.5) is a value of (d,m) ∈ <2
+ such

that the following conditions are fulfilled:

π(d)FS(d) + (FS(d)− 1) (d− E[S] + π(d))− 2π(m) = 0,

π(m)− (2d−m) (FS(d)− 1) = 0,

fS(d) (2π(d) + d− E[S]) + 2FS(d) (FS(d)− 1) < 0,

fS(d) (2π(d) + d− E[S]) + 2FS(d) (FS(d)− 1) <
4(FS(m)− 1)2

mfS(m) + 2 (FS(m)− 1)
,

0 <d < m.

Proof. The first order condition of optimality is


∂[π(d)(d−E[S]+π(d))−(2d−m)π(m)]

∂d
= 0,

∂[π(d)(d−E[S]+π(d))−(2d−m)π(m)]
∂m

= 0.

Considering that π(d) =
∫∞
d

(1− FS(s)) ds, this condition is


π(d)FS(d) + (FS(d)− 1) (d− E[S] + π(d))− 2π(m) = 0,

π(m)− (2d−m) (FS(d)− 1) = 0.

The inequalities are obtained applying the second order condition for a maximum. �
Using the values of Example 3.4, we numerically show that there is no solution of the

program (3.5), although with the normal distribution the point (d,m) = (2.38, 3.63) is a
local optimum that fulfils the conditions included in Proposition 3.5. For illustration, in
Figure 1, the covariance for the normal distribution is plotted.
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Figure 1. Covariance between the costs of the insurer and the rein-
surer with a normal distribution

4. Survival probabilities in one period
The survival probability is one of the most important measures of the solvency of

an insurer/reinsurer. The survival probability in one period of an insurer considering
only the underwriting risk, can be calculated knowing the distribution of the cost of
the insurer, the reserves at the beginning of the period and the premium earned by the
insurer to cover the insured risk. If a stop-loss reinsurance contract is agreed, the survival
probability of the insurer is obviously different and needs to be calculated again with the
new parameters; but, as in this case, if the payment of the claims depends on the two
parts, the joint survival probability of insurer and reinsurer is also a quantity of interest.

Let PT > 0 be the premium earned by the insurer in the period; let PR > 0 be the
reinsurer’s premium; let uI ≥ 0 and uR ≥ 0 be the initial reserves of the insurer and
the reinsurer, respectively. It is then possible to incorporate in the model an economic
constraint: the reinsurer’s premium must be less than the premium earned by the insurer
in the period, 0 < PR < PT .

The survival probability is in fact a particular case of a family of probabilities regarding
the technical result at the end of the period. Let ϕ(u, P, α) be the probability that the
technical result (initial capital (u) plus earned premiums (P ) minus aggregated claims
(S)) of an insurer is greater or equal to α,

ϕ(u, P, α) = P [u+ P − S ≥ α] .

The technical result has a natural maximum value, u+P , that is attained when no claims
occur during the period. As ϕ(u, P, α) = 0 for α > u+ P , and ϕ(u, P, α) = 1 for α < 0,
we can consider that 0 ≤ α ≤ u+ P .

Survival probability φ(·) is a particular case of ϕ(·) that is obtained considering α = 0.

4.1. Stop-loss reinsurance with priority d. Probabilities regarding the technical
result of the insurer, ϕI(uI, d, PR, PT, α), are

ϕI(uI, d, PR, PT, α) = P [uI + PT − PR− SI ≥ α]

= P [SI ≤ uI + PT − PR− α]

= FSI(uI + PT − PR− α)

and from (2.1),

(4.1) ϕI(uI, d, PR, PT, α) =

{
FS(uI + PT − PR− α) if uI + PT − PR− α < d,
1 if uI + PT − PR− α ≥ d.
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The probabilities regarding the technical result of the reinsurer, φR(uR, d, PR, α), are

ϕR(uR, d, PR, α) = P [uR+ PR− SR− α ≥ 0] = P [SR ≤ uR+ PR− α]

= FSR(uR+ PR− α)

and from (2.2),

(4.2) ϕR(uR, d, PR, α) = FS(uR+ PR+ d− α).

The joint probabilities regarding the technical result of both the insurer and the
reinsurer, ϕI,R(uI, uR, d, PR, PT, α1, α2), are

ϕI,R(uI, uR, d, PR, PT, α1, α2)

= P [SI ≤ uI + PT − PR− α1, SR ≤ uR+ PR− α2]

and from (2.7),

ϕI,R(uI, uR, d, PR, PT, α1, α2)(4.3)

=

{
FS(uI + PT − PR− α1) if uI + PT − PR− α1 < d,
FS(uR+ PR+ d− α2) if uI + PT − PR− α1 ≥ d.

The joint survival probability of the insurer and the reinsurer φI,R(uI, uR, d, PR, PT )
is obtained when both α1 and α2 are equal to zero,

φI,R(uI, uR, d, PR, PT ) = ϕI,R(uI, uR, d, PR, PT, 0, 0).

4.2. Stop-loss reinsurance with priority d and maximum m. The joint probabil-
ities of the insurer, ϕI(uI, d,m, PR, PT, α), are

ϕI(uI, d,m, PR, PT, α) = FSI(d,m)(uI + PT − PR− α)

and from (2.8)

ϕI(uI, d,m, PR, PT, α)

=

{
FS(uI + PT − PR− α) if uI + PT − PR− α < d,
FS(uI + PT − PR− α+m− d) if uI + PT − PR− α ≥ d.

The joint probabilities of the reinsurer, ϕR(uR, d,m, PR, α), are

ϕR(uR, d,m, PR, α) = FSR(d,m)(uR+ PR− α)

and from (2.9)

ϕR(uR, d,m, PR, α)

=

{
FS(uR+ PR+ d− α) if uR+ PR− α < m− d,
1 if uR+ PR− α ≥ m− d.

The joint probabilities of the insurer and the reinsurer are

ϕI,R(uI, uR, d,m, PR, PT, α1, α2)

= P [SI ≤ uI + PT − PR− α1, SR ≤ uR+ PR− α2]
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and from (2.11)

ϕI,R(uI, uR, d,m, PR, PT, α1, α2)(4.4)

=


FS(uI+PT−PR−α1) if uI+PT−PR−α1<d,

FS(d) if uI+PT−PR−α1≥d and uR+PR−α2=0,

FS(uR+PR+d−α2) if uI+PT−PR−α1≥d and 0<uR+PR−α2<m−d,

FS(m) if uI+PT−PR−α1=d and uR+PR−α2≥m−d,

FS(uI+PT−PR−α1+m−d) if uI+PT−PR−α1>d and uR+PR−α2≥m−d.

The joint survival probability of the insurer and the reinsurer is obtained when both
α1 and α2 are equal to zero,

φI,R(uI, uR, d,m, PR, PT ) = ϕI,R(uI, uR, d,m, PR, PT, 0, 0).

5. Optimal joint survival probability in one period
In this section, we are interested in solving two different optimization problems related

with the joint survival probability of the insurer and the reinsurer in one period.

In the first optimization problem, the reinsurance premium is fixed (as it is the total
premium PT ) and so are the initial values of the reserves of the insurer and the reinsurer.
In addition, the parameters of the reinsurance maximize the joint survival probability.
This probability is a function of the parameters of the reinsurance, d or d and m. Propo-
sitions 5.1 and 5.7 solve this problem. In this case, the insurer has a fixed amount of
money available to purchase the reinsurance protection and we look for the most efficient
stop-loss contract since it offers the lowest risk (measured by the joint probability of ruin)
for this given value of the reinsurer premium. This idea of finding the parameters of the
reinsurance contract that maximize the joint survival probability when the premiums
of the insurer and the reinsurer are fixed, can also be found in [37] and [22], where the
authors consider an excess of loss risk model when the number of claims follows a Poisson
process. The assumptions of our model are totally different but, in Proposition 5.1 and
5.7 we consider the same maximization problem.

It is usually considered that PR is a function of the parameters of the stop-loss
reinsurance (d,m) and the total cost S. In that instance, the reinsurer would apply for
the calculation of the premium some of the usual criteria, for instance, the expected
value, variance and standard deviation principles (for more details see [36]). We adopt as
a criterion for the calculation of the reinsurer’s premiums the maximization of the joint
survival probability, given as fixed both the values of the parameters of the reinsurance
contract and the initial values of the reserves of the insurer and the reinsurer. Then,
in the second optimization problem, the joint survival probability is considered to be a
function of the reinsurance premium, PR. Propositions 5.5 and 5.9 tackle this problem.

5.1. Proposition. In a stop-loss reinsurance with priority d, the program

max
d

φI,R(uI, uR, d, PR, PT ) subject to 0 < d

has as a maximum value φ∗I,R(uI, uR, PR, PT ) = FS (uI + uR+ PT ), being the optimal
point d∗(uI, uR, PR, PT ) = uI + PT − PR.

Proof. The joint survival probability to be maximized, (4.3), is a step function built
with the distribution function of the total cost. Since FS(x) is increasing in x and
uI + PT − PR < d < uR + PR + d, for all d > uI + PT − PR, FS(uI + PT −
PR) ≤ FS(uR+ PR+ uI + PT − PR) = FS(uR+ uI + PT ), then it is immediate that
φ∗I,R(uI, uR, PR, PT ) is attained at d∗(uI, uR, PR, PT ) = uI + PT − PR. �
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5.2. Remark (Proposition 5.1). In Figure 2, we plot the two-step function indicating
the argument of the distribution function of the total cost in (4.3), as a function of d.

Figure 2. the argument of the distribution function of the total cost
in (4.3) as a function of d

5.3. Remark (Proposition 5.1). For this optimal reinsurance, in which the maximum
joint survival probability of the insurer and the reinsurer is obtained, the individual
survival probability of the insurer (4.1) is φI(uI, uI + PT − PR,PR, PT ) = 1, whereas
the individual survival probability of the reinsurer (4.2) is φR(uR, uI+PT −PR,PR) =
FS(uI + uR + PT ) = φ∗I,R(uI, uR, PR, PT ). Hence, the insurer, with this optimal
reinsurance, increases his/her individual survival probability (compared to the absence
of reinsurance) in (1− P [S ≤ uI + PT ]) > 0.

5.4. Remark (Proposition 5.1). If the initial capitals of the insurer and the reinsurer
are zero, then the maximum joint survival probability is obtained when the priority d is
equal to the net premium of the insurer.

5.5. Proposition. In a stop-loss reinsurance with priority d, the program

max
PR

φI,R(uI, uR, d, PR, PT ) subject to 0 < PR < PT

only provides a solution if uI < d < uI+PT, being in that case the maximum value
φ∗I,R (uI, uR, d, PT ) = FS (uI + uR+ PT ), which is reached for PR∗(uI, uR, d, PT ) =
uI + PT − d.

Proof. It is developed in a similar way as in Proposition 5.1. Since FS(x) is increasing
in x, if d ∈ (uI, uI + PT ), for all 0 < PR ≤ uI + PT − d, FS(uR+ uI + PT − d+ d) =
FS(uR+uI+PT ) ≥ FS(uR+PR+d) and for all uI+PT−d < PR < PT , FS(uI+uR+
PT ) > FS(uI + PT − PR). If d > uI + PT , for all 0 < PR < PT , FS(uI + PT − PR)
does not have a maximum. If d < uI, for all 0 < PR < PT , FS(uR+ PR+ d) does not
have a maximum. Then, the program provides a solution only if uI < d < uI + PT and
φ∗I,R(uI, uR, d, PT ) is attained at PR∗(uI, uR, d, PT ) = uI + PT − d. �

5.6. Remark (Proposition 5.5). In Figure 3, we plot the two-step function indicating
the argument of the distribution function of the total in (4.3), as a function of PR when
uI < d < uI + PT .
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Figure 3. The argument of the distribution function of the total cost
in (4.3) as a function of PR when uI < d < uI + PT

5.7. Proposition. In a stop-loss reinsurance with priority d and maximum m, the
program

max
(d,m)

φI,R(uI, uR, d,m, PR, PT ) subject to 0 < d < m

has a maximum value φ∗I,R(uI, uR, PR, PT ) = FS (uI + uR+ PT ). This maximum is
attained at the non-convex set

{
(d,m) ∈ <2

+ | d ≤ uI + PT − PR and m = uR+ PR+ d
}

∪
{

(d,m) ∈ <2
+ | d = uI + PT − PR and m > uR+ PR+ d

}
Proof. The joint survival probability to be maximized now is (4.4), a piecewise function

built with the distribution function of the total cost. Since FS(x) is increasing in x, for
all (d,m) ∈ <2

+ such that d ≤ uI+PT −PR and m > uR+PR+d, FS(uR+PR+d) ≤
FS(uR + PR + uI + PT − PR) = FS(uR + uI + PT ). For all (d,m) ∈ <2

+ such that
d < uI +PT −PR and m ≤ uR+PR+ d, FS(uI +PT −PR+m− d) ≤ FS(uI +PT −
PR + uR + PR) = FS(uI + uR + PT ). Taking into account that FS(uI + uR + PT ) >
FS(uI + PT − PR), the proof is completed. �

5.8. Remark (Proposition 5.7). In Figure 4, we plot the step function indicating the
argument of the distribution function of the total cost in (4.4) as a function of d andm and
its level curves. For PT = 1, PR = 0.4 and uI = uR = 0, the maximum value is 1 and
the set of optimal points are {d ≤ 0.6 and m = 0.4 + d} ∪ {d = 0.6 and m > 0.4 + d}.
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Figure 4. The argument of the distribution function of the total cost
in (4.4) as a function of d and m (right graph) and its level curves (left
graph) (for PT = 1, PR = 0.4 and uI = uR = 0)

5.9. Proposition. In a stop-loss reinsurance with priority d and maximum m, the
program

max
PR

φI,R(uI, uR, d,m, PR, PT ) subject to 0 < PR < PT

only provides solutions if one of the two following conditions is fulfilled: uI < d< uI+
PT and m≥uI+uR+PT (first condition) or m<uI+uR+PT and PT+uR>m−d>uR
(second condition).

In that case, the maximum value is φ∗I,R(uI, uR, d,m, PT ) = FS (uI + uR+ PT ),
being the optimal premiums of the reinsurer

PR∗(uI, uR, d,m, PT ) =

{
uI+PT−d if uI<d<uI+PT and m≥uI + uR+ PT,
m−d−uR if m<uI+uR+PT and PT+uR>m−d>uR.

Proof. Taking into account (4.4) and that 0 < PR < PT , lets first consider the case
that d ∈ (uI, uI + PT ). If uI + PT − d < m − d − uR, for all 0 < PR ≤ uI + PT − d,
FS(uR+uI+PT−d+d) = FS(uR+uI+PT ) ≥ FS(uR+PR+d) and for all uI+PT−d <
PR < PT , FS(uI + uR+ PT ) > FS(uI + PT − PR). If uI + PT − d = m− d− uR, for
all 0 < PR ≤ uI + PT − d, FS(m) = FS(uI + uR+ PT ) > FS(uR+ PR+ d) and for all
uI + PT − d < PR < PT , FS(uI + uR+ PT ) > FS(uI + PT − PR).

Secondly, lets consider that (m−d) ∈ (uR, uR+PT ) and uI+PT −d > m−d−uR,
for all 0 < PR ≤ m−d−uR, FS(uI+PT −m+d+uR+m−d) = FS(uI+PT +uR) >
FS(uR + PR + d) and for all PR > m − d − uR, FS(uI + uR + PT ) > FS(uI + PT −
PR+m− d) > FS(uI + PT − PR).

It is then easy to demonstrate that for all the other possibles values of d and m, the
maximum does not exist. �

5.10. Remark (Proposition 5.9). In Figure 5, the argument of the distribution function
of the total cost in (4.4) is plotted as a function of PR for the values d andm for which the
joint survival probability has a maximum. It can be divided into three cases depending
on whether uI + PT − d is less, equal or greater than m− d− uR.
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Figure 5. The argument of the distribution function of the total cost
in (4.4) as a function of PR when uI + PT − d Q m − d − uR. The
graph on the left considers uI + PT − d < m − d − uR; the graph on
the middle considers uI + PT − d = m− d− uR and the graph on the
right considers uI + PT − d > m− d− uR.

From Propositions 5.1, 5.5, 5.7 and 5.9, the maximum joint survival probability (con-
sidering the constraints), when it exists, is equal to

FS (uI + uR+ PT ) .

From the first definition of ruin in a bivariate risk process ([12]), the joint survival prob-
ability equals to the minimum between the survival probability of the insurer and the
survival probability of the reinsurer, and this is also true at the optimal points. Then, at
the optimal points, the survival probability of the insurer or the reinsurer must be equal
to FS (uI + uR+ PT ), and the other must be greater than this value. Table 3 includes
the values of the survival probability of the insurer and the reinsurer at the points that
maximize the joint survival probability.

Table 3. φI and φR at the optimal points for the different optimization
problems

ΦI ΦR
d∗ = uI + PT − PR (Prop. 5.1) 1 FS(uI + uR+ PT )

PR∗ = uI + PT − d,
if uI < d < uI + PT (Prop. 5.5)

1 FS(uI + uR+ PT )

{
(d,m) ∈ <2

+ | d ≤ uI + PT − PR and m = uR+ PR+ d
}

(Prop. 5.7) FS(uI + uR+ PT ) 1

{
(d,m) ∈ <2

+ | d = uI + PT − PR and m > uR+ PR+ d
}

(Prop. 5.7)
FS(m),

m > uI + uR+ PT
FS(uI + uR+ PT )

PR∗ = uI + PT − d,
if uI<d<uI+PT and m≥uI+uR+ PT (Prop. 5.9)

FS(m),
m > uI + uR+ PT

FS(uI + uR+ PT )

PR∗ = m− d− uR,
if m<uI+uR+PT and PT+uR>m−d>uR (Prop. 5.9)

FS(uI + uR+ PT ) 1
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5.11. Example. Using the data for the total cost in Example 3.4, assume first that a
stop-loss contract with priority d is agreed and that the initial reserves of the insurer
and the reinsurer are zero. The premium fixed by the insurer is 1.8 (so if the criterion
is the expected value, the security loading applied by the insurer is 80%). The premium
earned by the reinsurer is fixed and equal to PR = 0.5, ..., 1.5. In Table 4, we calculate
the priority that maximizes the joint survival probability, using Proposition 5.1, and
the difference between the premium earned by the reinsurer and the expectation of its
cost, PR − E [SR(d∗)], if the gamma (G), the translated gamma (TG) or the normal
approximations (N), are used. In Table 4, we also include the net security premium for
the insurer, that is given by 1.8 − PR − E [SI(d∗)]. These two quantities included in
Table 4, permit us to calculate the security loading of the reinsurer and the insurer (for
the insurer it is the net loading) included in the optimal strategy. These security loadings
are shown in Table 5. In Table 6, we calculate the maximal joint survival probability
(that equals to the survival probability of the reinsurer (Remark 5.3)), and the increase
in the survival probability of the insurer if the optimal reinsurance is agreed, when the
gamma, the translated gamma or the normal approximations, are used.

Table 4. Priority, security premium for the reinsurer and net security
premium for the insurer if the joint survival probability is maximized
for several fixed reinsurer’s premiums

PR− E [SR(d∗)] 1.8− PR− E [SI(d∗)]
PR d∗ G TG N G TG N

0.5 1.3 0.1013 0.0820 0.0732 0.6987 0.7180 0.7268
0.6 1.2 0.1750 0.1518 0.1302 0.6250 0.6482 0.6698
0.7 1.1 0.2466 0.2195 0.1844 0.5534 0.5805 0.6156
0.8 1 0.3161 0.2847 0.2358 0.4839 0.5153 0.5642
0.9 0.9 0.3831 0.3474 0.2844 0.4169 0.4526 0.5156
1 0.8 0.4474 0.4072 0.3302 0.3526 0.3928 0.4698

1.1 0.7 0.5087 0.4641 0.3732 0.2913 0.3359 0.4268
1.2 0.6 0.5667 0.5178 0.4134 0.2333 0.2822 0.3866
1.3 0.5 0.6209 0.5679 0.4509 0.1791 0.2321 0.3491
1.4 0.4 0.6706 0.6143 0.4858 0.1294 0.1857 0.3142
1.5 0.3 0.7151 0.6565 0.5181 0.0849 0.1435 0.2819

Table 5. Security loadings of the insurer and the reinsurer if the joint
survival probability is maximized for several fixed reinsurer’s premiums

100(PR−E[SR(d∗)])
E[SR(d∗)]

100(1.8−PR−E[SI(d∗)])
E[SI(d∗)]

PR d∗ G TG N G TG N

0.5 1.3 25.42 19.61 17.14 116.18 123.38 126.81
0.6 1.2 41.17 33.88 27.71 108.70 117.50 126.34
0.7 1.1 54.40 45.67 35.76 101.24 111.76 127.08
0.8 1 65.31 55.25 41.80 93.78 106.31 129.46
0.9 0.9 74.11 62.85 46.20 86.31 101.18 134.13
1 0.8 80.97 68.70 49.29 78.81 96.44 142.29

1.1 0.7 86.04 72.99 51.34 71.26 92.24 156.26
1.2 0.6 89.49 75.89 52.55 63.61 88.82 181.17
1.3 0.5 91.42 77.57 53.11 55.83 86.63 231.32
1.4 0.4 91.94 78.18 53.14 47.82 86.69 366.30
1.5 0.3 91.12 77.83 52.76 39.44 91.69 1559.80
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Table 6. Maximal joint survival probability and the increase in the
survival probability of the insurer

G TG N

φ∗I,R = φR = FS(1.8) 0.8202875 0.7955186 0.7141962
1− P [S ≤ 1.8] 0.1797125 0.2044814 0.2858038

As it is reflected in Table 6, obviously, the maximal joint survival probability (φ∗I,R =
φR = FS(1.8)) and the increase in the survival probability of the insurer due to the
optimal reinsurance (1 − P [S ≤ 1.8]), is always the same and is independent of the
specific optimal combination of the reinsurer’s premium and priority. Hence, from the
point of view of the joint survival probability, the reinsurer survival probability and the
insurer survival probability, all the alternative combinations of the reinsurer’s premium
and priority included in Table 5 are indifferent. The differences in the security loading
applied by the reinsurer and the net security loading of the insurer do not modify the
optimal survival probabilities.

Assume now that the insurer and the reinsurer have positive initial reserves, and
that the reinsurer’s premium is 0.5 and the total premium is 1.8. From Proposition 5.1,
the optimal priority is d∗ = uI + 1.3, and the maximum joint survival probability is
FS(uI + uR + 1.8) = φ∗I,R. Table 7 includes the optimal priority and the maximum
joint survival probability for several combinations of initial capitals, using the translated
gamma approximation.

Table 7. d∗ and φ∗I,R as functions of initial capitals, for PR = 0.5 and
PT = 1.8

uI/uR 0.25 0.5 0.75 1

0.25 d∗ 1.55 1.55 1.55 1.55
φ∗I,R 0.855824 0.8788329 0.8981223 0.9143059

0.5 d∗ 1.8 1.8 1.8 1.8
φ∗I,R 0.8788329 0.8981223 0.9143059 0.9278928

0.75 d∗ 2.05 2.05 2.05 2.05
φ∗I,R 0.8981223 0.9143059 0.9278928 0.9393062

1 d∗ 2.3 2.3 2.3 2.3
φ∗I,R 0.9143059 0.9278928 0.9393062 0.9488984

Table 7 shows that when different combinations of initial capitals are considered for
a specific uI, the optimal priority does not vary if uR is increased. This result is due
to the fact that d∗ does not depend on the initial capital of the reinsurer. However, the
joint survival probability does change with increasing values.

6. Concluding remarks
In the stop-loss reinsurance contract, the cost of the claims of both the insurer and

the reinsurer are related. This work contributes to the analysis of the optimal stop-loss
reinsurance in one period, from the joint point of view of the insurer and the reinsurer
and then, incorporating the aforementioned relation.

Several optimal problems with two different objective functions are studied. First,
using the total variance risk measure, we analyze the optimal reinsurance parameters
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(retention and maximum) that maximize the covariance (and also the coefficient of cor-
relation) between the cost of the claims of the insurer and the reinsurer. Second, two
optimal problems with the same objective function, the joint survival probability of the
insurer and the reinsurer in one period, are solved. The maximum joint survival probabil-
ity always exists if the reinsurance premium is fixed, and is equal to the probability that
the total cost is less than, or equal, to the sum of the total premium and the two initial
capitals. This maximum is attained for a unique value of the priority or for a non-convex
set of priority and maximum if the reinsurance contract includes a maximum. If we con-
sider that the parameters of the reinsurance contract are fixed, the optimal reinsurance
premium and the maximum joint survival probability do not always exist, and in case
they exist, the maximum is exactly the same as in the first problem. These findings can
be of great help for the insurer and reinsurer in their decision making process.
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Abstract

We propose a data driven test to identify first order positive Markovian
dependence in a Bernoulli sequence, based on a combination of two runs
tests: a well known runs test for the same purpose conditional on the
numbers of ones in the sequence, and a modified runs test independent
of the number of ones. We give analytic expressions for the exact
distribution of the modified runs test statistic and for its power; also
we built an algorithm to calculate it explicitly. To compare the power of
the tests, we calculated these for some values of the proportion of ones
and the success probability. We show that there are some intervals
for the success probability in which the new runs test surpasses the
power of the conditional test, and that the data driven test improves
the power of the two runs tests, when they are considered separately.
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1. Introduction
Since the pioneering work performed by [1], in which he calculated the power of a test

for randomness based on the total number of runs conditioned on the number of successes
in a binary sequence versus the first order Markovian dependence alternative, many other
works have appeared. For instance, one year later [2] calculated the conditional distri-
bution of the longest success run for a second order Markovian dependence alternative.
Later [3] studied the power of the conditional David’s test with a parametrization of the
transition probabilities. [4] used the total number of runs conditioned on the number of
symbols of each type for pattern sequences and calculated critical values for the distribu-
tion of the number of runs conditioned on the number of symbols of each type for pattern
sequences for randomness tests. [5] proposed a randomness test for the Markovian first
order alternative based on the length of the longest run and developed methods of com-
puting the probability of the occurrence of a given success-failure run as a function of
the composition of the run, the number n of trials and the probabilities of the possible
outcomes at each trial. [6] used the total number of success runs of length greater than k
and the total number of success runs of length k as test statistics to test the randomness
hypotheses versus three alternatives: First order Markov-dependence, non-systematic
unimodal and bimodal clustering and cyclical clustering. By a Monte Carlo study they
compared the powers of their tests with the power of two known tests; some based on the
total number of success (or failure) runs and others based on the length of the longest
success run, and they found that the test based on the number of overlapping success
runs of length k is slightly less sensitive than its competitors for success probabilities near
to 1. [7] studied a randomness test based on the conditional distribution of the sum of
the exact lengths of runs of length greater than k successes. They found that when the
type I error must be kept low (α = 0.01), their test is more powerful than a test based on
the number of runs of exact length k, for the first order Markov-dependence alternative.

Many other researchers have focused their research to calculate explicit expressions for
the distributions of runs statistics in many contexts; for example, [5], [8], [9], [10], [11],
[12], [13], [14], [15], [16], [17], [18].

We propose a data driven test to identify first order positive Markovian dependence in a
Bernoulli sequence, based on a combination of two runs tests: the well known Barton and
David’s runs test, conditional on the number of ones in the sequence, for the Markovian
alternative, and an extension of this test to an unconditional test (on the number of
ones). We give analytic expressions for the exact distribution of the original and of the
extended runs test statistic and for its power; we built an algorithm and we developed
the R code to calculated it explicitly. To compare the power of the tests, we calculate
the exact powers of both tests for some values of the proportion of ones and the success
probability. We found intervals for the success probability for which the unconditional
runs test surpasses the power of the conditional test, and we show by calculating the
powers, that the data driven test optimizes the power of the two runs tests, when they
are considered separately. Finally, as a bonus product, we developed an algorithm and
implemented it in R code to solve a polynomial with matrix coefficients, to find explicitly
the distribution of the Markov-Binomial Distribution.
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2. Two Runs Tests for Markovian Dependence
Let η1 , . . . , ηN be a two state Markov chain and let p be the success probability such
that:

P (ηt = 1) = p, P (ηt = 0) = 1− p, 0 < p < 1 for t = 1, 2, . . . , N,

and stationary transition probabilities ([3]):

P11 = P (ηt = 1 | ηt−1 = 1) = (1− θ)p+ θ,

P10 = P (ηt = 0 | ηt−1 = 1) = (1− θ)(1− p),
P01 = P (ηt = 1 | ηt−1 = 0) = (1− θ)p,
P00 = P (ηt = 0 | ηt−1 = 0) = 1− (1− θ)p,

(2.1)

where θ is the coefficient of correlation between ηt−1 and ηt for t = 2, 3, . . . , N.

Although Barton and David gave the bounds ±1 for θ, they can be improved as follows:

From (2.1), the following is true:

0 ≤ (1− θ)p+ θ ≤ 1 or 0 ≤ (1− θ)(1− p) ≤ 1 implies − p

1− p ≤ θ ≤ 1,

0 ≤ (1− θ)p ≤ 1 or 0 ≤ 1− (1− θ)p ≤ 1 implies − 1− p
p
≤ θ ≤ 1.

(2.2)

Now from (2.2) we conclude:

for p = 1/2 it follows that − 1 ≤ θ ≤ 1,

for 0 < p < 1/2 it follows that − p

1− p ≤ θ ≤ 1,

and for 1/2 < p < 1 it follows that − 1− p
p
≤ θ ≤ 1.

(2.3)

The conditions (2.3) on θ are represented graphically in Figure 1.

2.1. The Barton-David Test. From now on, we will consider the following test prob-
lem:

H0 : θ = 0 against H1 : θ > 0 (positive Markovian dependence)

Let m be the fixed number of ones (successes), n = N−m the number of zeros (failures),
and let Rm be the total number of runs in η1 , . . . , ηN . [3] gave a conditional (on m)
runs test based on Rm, which rejects H0 in favor of the positive Markovian alternative
for few runs. The critical region was justified as follows: under H0, θ = 0 holds true
and hence η1 , . . . , ηN is a Bernoulli sequence of independent and identically distributed
(i.i.d.) random variables; under H1, either θ > 0 (positive dependence), which implies
P11 > P01 or P00 > P10, and then we expect few runs.

Let ζ =
∑N
t=1 ηt be a random variable denoting the number of ones in the sequence

η1 . . . , ηN . [3] gave the following expressions for:
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Figure 1. Relation between p and θ

a) the null distribution of Rm

(2.4) P0(Rm = r | ζ = m) =


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−1)(
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if r is odd.

b) the power of the conditional Rm test

(2.5) Pθ (Rm = r | ζ = m) =


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S

1
1−θ

(m−1
r
2
−1

)(n−1
r
2
−1

) ( p(1−p)(1−θ)2
(p(1−θ)+θ)(1−p(1−θ))

) r
2 if r is even,

1
S

( m−1
r−1
2
−1

)( n−1
r−1
2
−1

)
1

(p(1−θ)+θ)(1−p(1−θ))×(
−2p(1− p)− θ(p2 + (1− p)2) + Np(1−p(1−θ))+nθ(1−2p)

r−1
2

)
×(

p(1−p)(1−θ)2
(p(1−θ)+θ)(1−p(1−θ))

) r−1
2 if r is odd,

where
S =

n∑
k=1

[
p(1− p)(1− θ)2

(p(1− θ) + θ)(1− p(1− θ))

]k (m− 1

k − 1

)(n− 1

k − 1

)
[
θ(1− θ)k + (1− θ)

[
Np(1− p) + θ(Np2 + n(1− 2p))

]
k(1− θ)(p(1− θ) + θ)(1− p(1− θ))

]
.

2.2. A Modified Runs Test. The conditional Rm test in (2.4) can be modified as fo-
llows: as we noted above, under H0, η1 , . . . , ηN is an i.i.d. Bernoulli sequence and hence
ζ is Binomial distributed with parameters N and p = P (ηt = 1), for t = 1, . . . , N . Now
let R be the total number of runs, without taking into account the number of ones in the
sequence η1 . . . , ηN . The modified R test rejects H0 in favor of the positive Markovian
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dependence alternative for few runs, with the same arguments as for the Rm test, but
now the reject region must be calculated from the unconditional distribution of R, by
means of the theorem of total probabilities, as follows:

P0(R = r) =

N∑
m=0

P0(Rm = r | ζ = m)

(
N

m

)
pm(1− p)N−m,

for r = 1, . . . , N , where the conditional distribution of Rm is calculated as in (2.4).

2.2.1. The Power of the Modified R Test. We obtain the distribution of the R, under
the Markovian alternative H1 as follows:

(2.6) Pθ (R = r) =

N∑
m=0

Pθ (Rm = r | ζ = m)Pθ (ζ = m),

for r = 1, . . . , N , where Pθ (Rm = r | ζ = m) is given in (2.5), and Pθ (ζ = m) under H1 is
calculated by means of the probability generating function (pgf) of the Markov-Binomial
Distribution ([19]) as a function of the dummy variable s:

GN (s) =
(
ps 1 − p

)( ((1 − θ)p+ θ)s (1 − θ)(1 − p)
(1 − θ)ps 1 − (1 − θ)p

)N−1 (
1
1

)
=

(
ps 1 − p

)
A
N−1

(
1
1

)
,

(2.7)

N = 1, 2, . . . , for 0 ≤ s ≤ 1, where A =
(

((1 − θ)p+ θ)s (1 − θ)(1 − p)
(1 − θ)ps 1 − (1 − θ)p

)
.

2.2.2. Algorithm to Calculate the Markov-Binomial Distribution Explicitly. To calculate
the power of the R test in (2.6), we need to extract the coefficients of s in the pgf (2.7) of
the Markov-Binomial Distribution, which contains the probability distribution of ζ. For
this, the following algorithm is useful:

(2.8)

AN−1 =

(
((1− θ)p+ θ)s (1− θ)(1− p)

(1− θ)ps 1− (1− θ)p

)N−1

=

(
c111 s+ c112 s2 + · · ·+ c11N−1 s

N−1 c120 + c121 s+ · · ·+ c12N−2 s
N−2

c211 s+ c212 s2 + · · ·+ c21N−1 s
N−1 c220 + c221 s+ · · ·+ c22N−2 s

N−2

)
=

(
c111 0
c211 0

)
s+

(
c112 0
c212 0

)
s2 + · · ·+

(
c11N−1 0

c21N−1 0

)
sN−1+(

0 c120
0 c220

)
+

(
0 c121
0 c221

)
s+ · · ·+

(
0 c12N−2

0 c22N−2

)
sN−2

=

(
0 c120
0 c220

)
+

(
c111 c121
c211 c221

)
s+

· · ·+
(

c11N−2 c12N−2

c21N−2 c22N−2

)
sN−2 +

(
c11N−1 0

c21N−1 0

)
sN−1

= C(0) + C(1)s+ · · ·+ C(N−2)sN−2 + C(N−1)sN−1

=

N−1∑
m=0

C(m)sm,

where C(m) are matrices with the role of coefficients of the polynomial in s.



526

For example, for N = 3 the coefficients of the polynomial can be calculated as follows:
let A be the transition matrix whose first column is multiplied by the auxiliary variable
s. Then the power of the matrix in (2.7) can be written as:

A2 =

(
((1− θ)p+ θ)s (1− θ)(1− p)

(1− θ)ps 1− (1− θ)p

)2

=

(
c111 s+ c112 s2 c120 + c121 s

c211 s+ c212 s2 c220 + c221 s

)
=

(
0 c120
0 c220

)
+

(
c111 c121
c211 c221

)
s+

(
c112 0

c212 0

)
s2

= C(0) + C(1)s+ C(2)s2,

where
c120 = (1− (1− θ)p)(1− θ)(1− p)

c220 = (1− (1− θ)p)2

c111 = (1− θ)2(1− p)p

c211 = (1− (1− θ)p)(1− θ)p

c112 = ((1− θ)p+ θ)2

c212 = ((1− θ)p+ θ)(1− θ)p

c121 = ((1− θ)p+ θ)(1− θ)(1− p)

c221 = (1− θ)2(1− p)p

Using the polynomial expression for the power of the matrix A introduced in (2.8), the
pgf of ζ can be expressed as:

GN (s) =
(
ps 1− p

) [N−1∑
m=0

C(m)sm

](
1
1

)

= {
(
p 0

)
s+

(
0 1− p

)
}
[
N−1∑
m=0

C(m)sm

](
1
1

)

=
(
p 0

) N∑
m=1

C(m−1)sm
(

1

1

)
+
(

0 1− p
) [N−1∑

m=0

C(m)sm

](
1

1

)

=
(
p 0

) [N−1∑
m=1

C(m−1)sm + C(N−1)sN

](
1

1

)
+(2.9)

(
0 1− p

) [
C(0) +

N−1∑
m=1

C(m)sm

](
1
1

)

=
(
p 0

)
C(N−1)

(
1

1

)
sN+

N−1∑
m=1

[(
p 0

)
C(m−1)

(
1
1

)
+
(

0 1− p
)
C(m)

(
1
1

)]
sm+

(
0 1− p

)
C(0)

(
1

1

)
.

2.2.3. Algorithm to calculate the coefficients C(m). To obtain the coefficients C(m),m =
0, . . . , N in (2.9) we have to decompose the matrix A as follows:

A =

(
((1− θ)p+ θ)s (1− θ)(1− p)

(1− θ)ps 1− (1− θ)p

)
=(

0 (1− θ)(1− p)
0 1− (1− θ)p

)
+

(
((1− θ)p+ θ) 0

(1− θ)p 0

)
s = U + V s.
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All summands of the (N − 1)-th power of A can be generated by iterating the following
binomial expression:

AN−1 = (U + V s)N−1

= (UU . . . U)︸ ︷︷ ︸(
N−1

0

)
summands

+(UU . . . UV + UU . . . V U + · · ·+ V U . . . UU)︸ ︷︷ ︸(
N−1

1

)
summands

s+

(UUU . . . UV V + UU . . . V UV + · · ·+ V V U . . . UUU)︸ ︷︷ ︸(
N−1

2

)
summands

s2 + · · ·+(2.10)

(UV . . . V V + V U . . . V V + · · ·+ V V . . . V U)︸ ︷︷ ︸(
N−1
N−2

)
summands

sN−2 + (V V . . . V )︸ ︷︷ ︸(
N−1
N−1

)
summands

sN−1.

Comparing the coefficients in (2.8) and (2.10) we obtain:

C(0) = UU . . . U︸ ︷︷ ︸(
N−1

0

)
summands

C(1) = UU . . . UV + UU . . . V U + · · ·+ V U . . . UU︸ ︷︷ ︸(
N−1

1

)
summands

C(2) = UUU . . . UV V + UU . . . V UV + · · ·+ V V U . . . UUU︸ ︷︷ ︸(
N−1

2

)
summands

...

C(N−2) = V V . . . V U + V V . . . UV + · · ·+ UV . . . V V︸ ︷︷ ︸(
N−1
N−2

)
summands

C(N−1) = V V . . . V︸ ︷︷ ︸(
N−1
N−1

)
summands

Note that m in C(m) corresponds to the number of times that the matrix V is in the
products and it is also the number of ones in the sample. In order to generate all
summands, we can iterate over all binary numbers with N bits:
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

U U U . . . U U U

U U U . . . U U V

U U U . . . U V U
...

V U U . . . U U U

U U U . . . U V V
U U U . . . V U V

...
V V U . . . U U U

...
...

...

V V V . . . V V U
V V V . . . V U V

...
U V V . . . V V V

V V V . . . V V V


2N×(N−1)

7−→



0 0 0 . . . 0 0 0

0 0 0 . . . 0 0 1

0 0 0 . . . 0 1 0
...

1 0 0 . . . 0 0 0

0 0 0 . . . 0 1 1

0 0 0 . . . 1 0 1
...

1 1 0 . . . 0 0 0

...
...

...

1 1 1 . . . 1 1 0

1 1 1 . . . 1 0 1
...

0 1 1 . . . 1 1 1

1 1 1 . . . 1 1 1


2N×(N−1)

The first row in the second matrix indicates that in C(0) the matrix U must be multi-
plied (N − 1) times. The following

(
N−1

1

)
rows indicate that for C(1) there are

(
N−1

1

)
summands, each one of them containing the product of (N − 2) Us and one V , and so
on. These iterations are helpful to identify the summands to calculate C(m).

2.2.4. Algorithm to Calculate the Power of the Rm Test and of the Modified R Test.
To compare the power of the modified R test with the power of the Rm test, we will
calculate it explicitly for some values of θ, p, m and N with the following algorithm:

(1) Calculate the conditional probability distribution of Rm under the alternative
as in (2.5), the probability distribution of R under the alternative as in (2.6),
and the probability distribution of ζ using (2.9):

(a) P (ζ = N) =
(
p 0

)
C(N−1)

(
1

1

)
.

(b) P (ζ = m) =

[(
p 0

)
C(m−1)

(
1

1

)
+
(

0 1− p
)
C(m)

(
1
1

)]
, form =

1, . . . , N − 1

(c) P (ζ = 0) =
(

0 1− p
)
C(0)

(
1

1

)
where the matrix C(m) for m = 0, . . . , (N − 1), is calculated with the algorithm
2.2.3.

(2) Calculate the conditional cumulative distributions of Rm and of R under the
alternative.

(3) Fix significance level α = 0.05 and find critical values cm and c such that
P0(Rm ≤ cm | ζ = m) ≤ α, and P0(R ≤ c) ≤ α respectively.

(4) Randomize the Rm and R tests such that for 0 < γ < 1 and 0 < γ′ < 1

α = P0(Rm ≤ cm | ζ = m) + γ P0(cm < Rm ≤ cm + 1 | ζ = m)
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and

α = P0(R ≤ c) + γ′ P0(c < R ≤ c+ 1)

(5) Calculate the power of the randomized Rm and R tests as follows:

πRm (θ) = Pθ (Rm ≤ cm | ζ = m) + γ Pθ (cm < Rm ≤ cm + 1 | ζ = m).

and

πR(θ) = Pθ (R ≤ c) + γ′ Pθ (c < R ≤ c+ 1).

respectively.

3. A Comparative Power Study and Main Results
We calculated the exact power of the R and Rm tests explicitly, for sample sizes§

N = 7(1)22, 30, 40, 50, for p = 0.1(0.05)0.9 and for θ = 0(0.05)0.9. The Rm test was
compared with the R test for each value of p, for each N and each m. We have not
included the extreme cases m = 0 and m = N because for these the power of the Rm
test is zero.

We show the main results for N = 10(10)50, for θ = 0(0.1)0.9 and for some number
of ones in the observed sequence obtained as percents ([N(10%)] and [N(20%)]) of the
sample size, to find typical patterns of the powers of the compared tests¶. They are in
Tables 1 to 15, ordered as follows: Tables 1, 4, 7, 10 and 13 contain the powers of the R
test. The other tables are for the Rm test distinguished by the number of ones.

To facilitate the reading of the tables, we built three dimensional graphic illustrations,
each containing five graphics denoted by π(p, θ) for each combination of p and θ and the
five sample sizes considered. Intersections of the red lines are powers of the R test and
the blue ones are powers of the Rm test for fixed values of m.

All figures and all graphics show that the powers of the R test increase with θ as ex-
pected, that the powers increase faster for values of p around 0.5 and that the speed of
increase is lower when p tends to zero or to one. The power of the Rm test shows small
decreases for values of p around 0.5.

In Figure 4, for example, with 10% ones in the observed sequence, for success probabili-
ties p between 0.3 and 0.7, and for sample sizes N = 10(10)50, it can be noted that the
R test is more powerful than the Rm test. We specially note that for N = 10, the same
result occurs in a bit larger interval for 0.2 ≤ p ≤ 0.8, as can be verified in Tables 1
and 2, with some exceptions for values of θ less than or equal to 0.5, where the power of
the Rm test is greater than the power of the R test. The same situation occurs for the
powers showed in figure 5 for 20% ones, but now it holds for a smaller interval of values
of p: 0.4 ≤ p ≤ 0.6.

In general, the interval of values of p for which the power of the R test overtakes the
power of the Rm test is smaller when m increases up to 50% ones, the case in which the
power of the Rm test overtakes the power of the R test for all values of p. From 50% to

§N = a(step)b, c, d, . . . means that N goes from a to b, jumping a “step” each time, and after
value b, taking values c,d,. . .
¶All these calculations of this section are available on the web page

http://www.docentes.unal.edu.co/jacorzos/docs/, document: WebPotencia_R_R_m.pdf.
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100% ones, the interval of values of p for which the R test overtakes the Rm test increases.

For a fixed percent of ones, it can be observed that the length of the interval of values
of p in which the power of the R test overtakes the power of the Rm test tends to be
constant, for all compared sample sizes. It can be noted that the R test seems to be more
powerful than the Rm test because the larger the correlation between observations, the
fewer and larger are the runs.

In Tables 1, 4, 7, 10 and 13 we can see that the power of the R test increases with N
around p = 1/2. On the other hand, the power of the Rm test increases with N and with
m around N/2 when N is even, around (N − 1)/2 and (N + 1)/2 when N is odd ‖.

Although these types of Markov chains could seem rare, we highlight the conditions under
which they can occur. In Figure 2, side (a), we see that P11 increases with θ and p, whilst
P01 decreases with θ and increases with p. Moreover, in part (b) we see that P00 increases
with θ and decreases with p, whilst P10 decreases with both θ and p. We can also see in
part (a), that when θ increases it holds true that P11 > P01, and P11 tends to be much
larger than P01 when θ tends to one, and that implies few runs and large runs of ones.
In part (b), the situation is analogous, but with the zeros instead of the ones.

Figure 2. Positive association: (a) Transition Probabilities P11 (red)
and P01(green), (b) Transition Probabilities P00 (red) and P10(green)

A Data Driven Test. As we said, the power of the R test is greater than the power of
the Rm test for some intervals of values of the success probability p and for some values
of m. This suggests the following selection process of the appropriate test for a fixed
level α = 0.05:

(1) Calculate the number of ones m in the observed sequence.
(2) Estimate the success probability p, by means of the [20] estimator∗∗ p̂ = 1

N

∑N
i=1 xi.

(3) Choose the data driven test as follows (see Figure 3):

‖See list of tables justifying this comments in our web page, in the cited document.
∗∗Although p̂ is the old well known plug-in estimator of p given by [21], we reference [20]

because he shows, among other things, that the maximum likelihood estimator for (p̂, θ̂) obtained
under Markovian dependence, is strongly consistent for (p, θ).
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Select the R test if:

• p̂ ∈ [0.25, 0.75] and m ∈ (0%N, 13%N) ∪ (87%N, 100%N)
• p̂ ∈ [0.30, 0.70] and m ∈ [13%N, 17%N) ∪ (83%N, 87%N ]

• p̂ ∈ [0.35, 0.65] and m ∈ [17%N, 23%N) ∪ (77%N, 83%N ]

• p̂ ∈ [0.40, 0.60] and m ∈ [23%N, 33%N) ∪ (67%N, 77%N ]
• p̂ ∈ [0.45, 0.55] and m ∈ [33%N, 43%N) ∪ (57%N, 67%N ]

• p̂ = 0.50 and m ∈ [43%N, 57%N ]

Select the Rm test otherwise.

Figure 3. Regions to choose between R and Rm Tests

4. Example
A first order homogeneous Markov Chain (fohMC) can be used to describe the behav-

ior of a buyer as follows††: a buyer at a supermarket A switches to buying in a super-
market B on her/his next shopping trip with probability λ > 0, while she/he switches to
supermarket A with probability β > 0 when her/his last shopping was in supermarket B.

To verify the Markovian assumption of the behavior of the buyer, we simulated first
order homogeneous Markov Chains using the Metropolis Hasting Algorithm, for some
values of the success probability p and the correlation between successive observations
θ. These combinations of values p and θ give values of the transition probabilities λ, β
which indicate how Markovian the behavior of the buyer is.

††Adapted from [22]
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For each combination of (p,θ), p, θ = 0.1(0.1)0.9, we simulate 1000 fohMC and we select
those with not all zeros and not all ones, because such stable buyers are not interesting.
For the remaining fohMC, we calculate the proportion of rejections of the null hypothesis,
and the ratio (1−λ)/β to find the conditions for which the fohMC is a good assumption
for the behavior of the consumer.

The results are in Table 16 for N = 20. It can be seen that the empirical powers of the
test increase up to 87% for p = 0.4 and θ = 0.9. It can be noted also that the ratio
p00/p10 = (1− λ)/β grows also with θ, as expected.

The fact that the larger the values of the ratio (1 − λ)/β, the greater the empirical
power of the runs test, indicates that the behavior of the consumer tends to be most
Markovian when the probability of continuing shopping in supermarket A is larger than
the probability of switching to supermarket B.

5. Conclusions and Discussion
We have discovered regions of values of m and p where the R test is more powerful than
the Rm test, and we have included additional information about p and m to the test
statistic, to produce a data driven test which covers the complete p × m region, and
improves the power of the test.

The power of the R test increases with N and especially around p = 1/2, while the power
of the Rm test increases with N and with m around N/2, for N even or (N − 1)/2 and
(N + 1)/2 for N odd.

Although the proposed data driven test includes information about the length of the runs
without being explicit (few runs implies long runs in most cases), a way to improve the
power of the test could be to include the length of the runs explicitly, and to use the
results of [15] or of [23] about the distribution of the longest runs test.

Acknowledgements: We are thankful to the statistician Gustavo Romero for develop-
ing the R code for the algorithm to obtain the coefficients of the pgf.
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Appendix A. Figures of the Power of the Proposed Test

N=10 and m=1 N=20 and m=2

N=30 and m=3 N=40 and m=4

N=50 and m=5

Figure 4. πR(p, θ) (red) vs. πRm (p, θ) (blue) for N = 10, 20, 30, 40, 50
with 10% ones
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N=10 and m=2 N=20 and m=4

N=30 and m=6 N=40 and m=8

N=50 and m=10

Figure 5. πR(p, θ) (red) vs. πRm (p, θ) (blue) for N = 10, 20, 30, 40, 50
with 20% ones
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Appendix B. Tables of the Power of the Proposed Test

Table 1. Power of the R Test, N=10

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0552 0.0624 0.0729 0.0815 0.0866 0.0815 0.0729 0.0624 0.0552
0.20 0.0609 0.0776 0.1047 0.1274 0.1404 0.1274 0.1047 0.0776 0.0609
0.30 0.0672 0.0959 0.1480 0.1918 0.2148 0.1918 0.1480 0.0959 0.0672
0.40 0.0740 0.1182 0.2059 0.2780 0.3116 0.2780 0.2059 0.1182 0.0740
0.50 0.0814 0.1453 0.2821 0.3879 0.4305 0.3879 0.2821 0.1453 0.0814
0.60 0.0896 0.1788 0.3797 0.5205 0.5671 0.5205 0.3797 0.1788 0.0896
0.70 0.0990 0.2213 0.5016 0.6692 0.7120 0.6692 0.5016 0.2213 0.0990
0.80 0.1100 0.2774 0.6485 0.8196 0.8495 0.8196 0.6485 0.2774 0.1100
0.90 0.1240 0.3546 0.8176 0.9447 0.9560 0.9447 0.8176 0.3546 0.1240

Table 2. Power of the Rm Test, N=10 and m=1

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0548 0.0554 0.0562 0.0571 0.0585 0.0605 0.0638 0.0700 0.0864
0.20 0.0605 0.0618 0.0633 0.0654 0.0682 0.0722 0.0786 0.0900 0.1167
0.30 0.0674 0.0694 0.0718 0.0750 0.0793 0.0853 0.0944 0.1100 0.1423
0.40 0.0758 0.0786 0.0820 0.0864 0.0921 0.1000 0.1115 0.1300 0.1643
0.50 0.0864 0.0900 0.0944 0.1000 0.1071 0.1167 0.1300 0.1500 0.1833
0.60 0.1000 0.1045 0.1100 0.1167 0.1250 0.1357 0.1500 0.1700 0.2000
0.70 0.1183 0.1237 0.1300 0.1375 0.1466 0.1577 0.1717 0.1900 0.2147
0.80 0.1441 0.1500 0.1567 0.1643 0.1731 0.1833 0.1955 0.2100 0.2278
0.90 0.1833 0.1885 0.1940 0.2000 0.2065 0.2136 0.2214 0.2300 0.2395

Table 3. Power of the Rm Test, N=10 and m=2

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0983 0.0816 0.0763 0.0745 0.0749 0.0773 0.0827 0.0947 0.1307
0.20 0.1496 0.1216 0.1114 0.1083 0.1096 0.1153 0.1276 0.1540 0.2255
0.30 0.2042 0.1707 0.1573 0.1535 0.1564 0.1664 0.1869 0.2281 0.3271
0.40 0.2628 0.2298 0.2158 0.2127 0.2183 0.2334 0.2623 0.3165 0.4316
0.50 0.3272 0.3001 0.2887 0.2882 0.2976 0.3182 0.3547 0.4178 0.5361
0.60 0.4008 0.3834 0.3779 0.3822 0.3964 0.4222 0.4637 0.5296 0.6386
0.70 0.4891 0.4836 0.4862 0.4967 0.5158 0.5450 0.5875 0.6484 0.7374
0.80 0.6020 0.6078 0.6184 0.6343 0.6561 0.6848 0.7219 0.7696 0.8312
0.90 0.7586 0.7701 0.7837 0.7994 0.8174 0.8380 0.8616 0.8884 0.9190

Table 4. Power of the R Test, N=20

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0617 0.0736 0.0871 0.1091 0.1091 0.1049 0.0871 0.0736 0.0617
0.20 0.0759 0.1068 0.1451 0.2086 0.2086 0.1971 0.1451 0.1068 0.0759
0.30 0.0932 0.1528 0.2305 0.3525 0.3525 0.3323 0.2305 0.1528 0.0932
0.40 0.1142 0.2155 0.3482 0.5299 0.5299 0.5034 0.3482 0.2155 0.1142
0.50 0.1397 0.2994 0.4971 0.7126 0.7126 0.6861 0.4971 0.2994 0.1397
0.60 0.1704 0.4097 0.6650 0.8635 0.8635 0.8440 0.6650 0.4097 0.1704
0.70 0.2076 0.5504 0.8255 0.9565 0.9565 0.9470 0.8255 0.5504 0.2076
0.80 0.2531 0.7205 0.9428 0.9933 0.9933 0.9909 0.9428 0.7205 0.2531
0.90 0.3126 0.8988 0.9940 0.9998 0.9998 0.9997 0.9940 0.8988 0.3126
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Table 5. Power of the Rm Test, N=20 and m=2

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1025 0.0815 0.0747 0.0715 0.0717 0.0725 0.0759 0.0840 0.1092
0.20 0.1631 0.1223 0.1079 0.1010 0.1017 0.1035 0.1112 0.1292 0.1818
0.30 0.2302 0.1739 0.1520 0.1412 0.1426 0.1457 0.1587 0.1880 0.2674
0.40 0.3017 0.2372 0.2094 0.1954 0.1979 0.2027 0.2217 0.2627 0.3649
0.50 0.3750 0.3121 0.2819 0.2668 0.2712 0.2780 0.3033 0.3552 0.4723
0.60 0.4489 0.3973 0.3703 0.3582 0.3659 0.3748 0.4062 0.4658 0.5862
0.70 0.5252 0.4922 0.4747 0.4713 0.4838 0.4951 0.5309 0.5925 0.7018
0.80 0.6119 0.6004 0.5971 0.6073 0.6254 0.6385 0.6750 0.7299 0.8133
0.90 0.7351 0.7414 0.7511 0.7728 0.7929 0.8049 0.8334 0.8694 0.9146

Table 6. Power of the Rm Test, N=20 and m=4

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1496 0.1073 0.0940 0.0879 0.0883 0.0898 0.0961 0.1116 0.1614
0.20 0.2784 0.1912 0.1608 0.1463 0.1475 0.1511 0.1667 0.2034 0.3089
0.30 0.4211 0.3014 0.2544 0.2309 0.2333 0.2396 0.2659 0.3244 0.4702
0.40 0.5656 0.4338 0.3754 0.3449 0.3489 0.3579 0.3938 0.4679 0.6265
0.50 0.7011 0.5794 0.5191 0.4866 0.4922 0.5030 0.5439 0.6213 0.7631
0.60 0.8178 0.7244 0.6735 0.6456 0.6522 0.6629 0.7010 0.7668 0.8700
0.70 0.9078 0.8516 0.8185 0.8007 0.8068 0.8151 0.8425 0.8852 0.9426
0.80 0.9665 0.9437 0.9297 0.9229 0.9267 0.9310 0.9439 0.9619 0.9827
0.90 0.9945 0.9908 0.9885 0.9878 0.9888 0.9897 0.9920 0.9949 0.9979

Table 7. Power of the R Test, N=30

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0689 0.0826 0.1025 0.1294 0.1294 0.1229 0.1025 0.0826 0.0689
0.20 0.0946 0.1322 0.1922 0.2724 0.2724 0.2537 0.1922 0.1322 0.0946
0.30 0.1294 0.2048 0.3280 0.4739 0.4739 0.4425 0.3280 0.2048 0.1294
0.40 0.1765 0.3058 0.5055 0.6918 0.6918 0.6564 0.5055 0.3058 0.1765
0.50 0.2398 0.4380 0.6985 0.8661 0.8661 0.8395 0.6985 0.4380 0.2398
0.60 0.3249 0.5972 0.8625 0.9623 0.9623 0.9500 0.8625 0.5972 0.3249
0.70 0.4388 0.7666 0.9610 0.9946 0.9946 0.9917 0.9610 0.7666 0.4388
0.80 0.5907 0.9114 0.9954 0.9998 0.9998 0.9996 0.9954 0.9114 0.5907
0.90 0.7892 0.9889 0.9999 1.0000 1.0000 1.0000 0.9999 0.9889 0.7892

Table 8. Power of the Rm Test, N=30 and m=3

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1127 0.0878 0.0802 0.0772 0.0782 0.0796 0.0851 0.0979 0.1389
0.20 0.1959 0.1420 0.1245 0.1177 0.1204 0.1239 0.1375 0.1685 0.2597
0.30 0.3011 0.2174 0.1884 0.1771 0.1822 0.1886 0.2127 0.2649 0.4016
0.40 0.4271 0.3185 0.2779 0.2619 0.2701 0.2799 0.3155 0.3877 0.5518
0.50 0.5677 0.4474 0.3980 0.3784 0.3897 0.4027 0.4477 0.5322 0.6964
0.60 0.7110 0.5994 0.5485 0.5283 0.5415 0.5561 0.6040 0.6861 0.8215
0.70 0.8395 0.7587 0.7176 0.7013 0.7138 0.7267 0.7670 0.8292 0.9156
0.80 0.9356 0.8963 0.8746 0.8665 0.8747 0.8825 0.9052 0.9365 0.9728
0.90 0.9881 0.9802 0.9757 0.9746 0.9770 0.9790 0.9842 0.9904 0.9964
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Table 9. Power of the Rm Test, N=30 and m=6

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.2050 0.1341 0.1128 0.1028 0.1029 0.1047 0.1132 0.1348 0.2057
0.20 0.4221 0.2709 0.2181 0.1918 0.1919 0.1965 0.2182 0.2705 0.4183
0.30 0.6386 0.4498 0.3688 0.3247 0.3245 0.3321 0.3673 0.4461 0.6295
0.40 0.8099 0.6417 0.5515 0.4966 0.4958 0.5053 0.5476 0.6345 0.7992
0.50 0.9193 0.8091 0.7349 0.6837 0.6824 0.6912 0.7294 0.8008 0.9112
0.60 0.9744 0.9235 0.8806 0.8468 0.8455 0.8512 0.8758 0.9175 0.9703
0.70 0.9947 0.9801 0.9650 0.9511 0.9504 0.9527 0.9625 0.9777 0.9935
0.80 0.9995 0.9976 0.9952 0.9927 0.9925 0.9930 0.9947 0.9972 0.9993
0.90 1.0000 1.0000 0.9999 0.9998 0.9998 0.9998 0.9999 0.9999 1.0000

Table 10. Power of the R Test, N=40

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0715 0.0910 0.1138 0.1403 0.1531 0.1403 0.1138 0.0910 0.0715
0.20 0.1013 0.1576 0.2285 0.3099 0.3464 0.3099 0.2285 0.1576 0.1013
0.30 0.1421 0.2579 0.4014 0.5442 0.5986 0.5442 0.4014 0.2579 0.1421
0.40 0.1975 0.3965 0.6126 0.7743 0.8221 0.7743 0.6126 0.3965 0.1975
0.50 0.2716 0.5674 0.8100 0.9259 0.9499 0.9259 0.8100 0.5674 0.2716
0.60 0.3690 0.7476 0.9394 0.9866 0.9926 0.9866 0.9394 0.7476 0.3690
0.70 0.4947 0.8971 0.9904 0.9990 0.9996 0.9990 0.9904 0.8971 0.4947
0.80 0.6532 0.9793 0.9996 1.0000 1.0000 1.0000 0.9996 0.9793 0.6532
0.90 0.8446 0.9993 1.0000 1.0000 1.0000 1.0000 1.0000 0.9993 0.8446

Table 11. Power of the Rm Test, N=40 and m=4

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1372 0.1003 0.0893 0.0854 0.0851 0.0878 0.0947 0.1111 0.1637
0.20 0.2647 0.1787 0.1514 0.1414 0.1404 0.1471 0.1644 0.2040 0.3185
0.30 0.4234 0.2912 0.2441 0.2261 0.2241 0.2357 0.2654 0.3300 0.4907
0.40 0.5949 0.4375 0.3727 0.3464 0.3429 0.3592 0.4003 0.4831 0.6574
0.50 0.7548 0.6064 0.5344 0.5026 0.4978 0.5165 0.5625 0.6479 0.7988
0.60 0.8798 0.7728 0.7108 0.6807 0.6753 0.6920 0.7323 0.8007 0.9024
0.70 0.9572 0.9039 0.8667 0.8466 0.8422 0.8526 0.8774 0.9160 0.9646
0.80 0.9912 0.9767 0.9646 0.9572 0.9552 0.9587 0.9671 0.9792 0.9924
0.90 0.9995 0.9984 0.9974 0.9967 0.9965 0.9968 0.9975 0.9985 0.9995

Table 12. Power of the Rm Test, N=40 and m=8

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.2286 0.1478 0.1239 0.1149 0.1131 0.1172 0.1293 0.1592 0.2579
0.20 0.4804 0.3124 0.2530 0.2296 0.2250 0.2359 0.2675 0.3407 0.5350
0.30 0.7150 0.5226 0.4364 0.3993 0.3918 0.4098 0.4594 0.5615 0.7663
0.40 0.8769 0.7300 0.6450 0.6041 0.5957 0.6163 0.6696 0.7651 0.9079
0.50 0.9606 0.8847 0.8278 0.7969 0.7903 0.8066 0.8457 0.9057 0.9731
0.60 0.9916 0.9670 0.9433 0.9287 0.9254 0.9335 0.9513 0.9748 0.9947
0.70 0.9990 0.9949 0.9899 0.9863 0.9855 0.9876 0.9917 0.9964 0.9994
0.80 1.0000 0.9997 0.9994 0.9991 0.9991 0.9992 0.9995 0.9998 1.0000
0.90 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 13. Power of the R Test, N=50

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.0766 0.0992 0.1249 0.1678 0.1678 0.1565 0.1249 0.0992 0.0766
0.20 0.1156 0.1831 0.2645 0.3936 0.3936 0.3618 0.2645 0.1831 0.1156
0.30 0.1716 0.3118 0.4708 0.6719 0.6719 0.6292 0.4708 0.3118 0.1716
0.40 0.2499 0.4846 0.7018 0.8841 0.8841 0.8539 0.7018 0.4846 0.2499
0.50 0.3559 0.6800 0.8839 0.9773 0.9773 0.9668 0.8839 0.6800 0.3559
0.60 0.4926 0.8535 0.9743 0.9981 0.9981 0.9966 0.9743 0.8535 0.4926
0.70 0.6568 0.9603 0.9977 1.0000 1.0000 0.9999 0.9977 0.9603 0.6568
0.80 0.8304 0.9961 1.0000 1.0000 1.0000 1.0000 1.0000 0.9961 0.8304
0.90 0.9659 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9659

Table 14. Power of the Rm Test, N=50 and m=5

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.1703 0.1159 0.0995 0.0918 0.0919 0.0933 0.1000 0.1167 0.1715
0.20 0.3459 0.2221 0.1808 0.1606 0.1607 0.1643 0.1813 0.2225 0.3438
0.30 0.5451 0.3706 0.3020 0.2660 0.2659 0.2722 0.3013 0.3682 0.5366
0.40 0.7298 0.5494 0.4629 0.4131 0.4125 0.4210 0.4598 0.5426 0.7166
0.50 0.8697 0.7303 0.6472 0.5934 0.5921 0.6011 0.6413 0.7202 0.8569
0.60 0.9530 0.8766 0.8192 0.7767 0.7750 0.7820 0.8125 0.8672 0.9449
0.70 0.9891 0.9632 0.9386 0.9173 0.9161 0.9195 0.9342 0.9581 0.9861
0.80 0.9988 0.9949 0.9902 0.9854 0.9850 0.9858 0.9890 0.9938 0.9983
0.90 1.0000 0.9999 0.9997 0.9996 0.9996 0.9996 0.9997 0.9998 1.0000

Table 15. Power of the Rm Test, N=50 and m=10

θ p=0.10 p =0.20 p=0.30 p=0.40 p=0.50 p=0.60 p=0.70 p=0.80 p=0.90

0.00 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500 0.0500
0.10 0.2674 0.1660 0.1357 0.1241 0.1210 0.1246 0.1371 0.1690 0.2761
0.20 0.5604 0.3630 0.2890 0.2584 0.2503 0.2602 0.2933 0.3717 0.5787
0.30 0.7963 0.5992 0.4998 0.4536 0.4410 0.4569 0.5071 0.6121 0.8142
0.40 0.9293 0.8048 0.7195 0.6740 0.6610 0.6781 0.7279 0.8169 0.9397
0.50 0.9828 0.9326 0.8862 0.8575 0.8490 0.8608 0.8923 0.9396 0.9865
0.60 0.9974 0.9857 0.9713 0.9609 0.9577 0.9624 0.9738 0.9880 0.9982
0.70 0.9998 0.9986 0.9966 0.9949 0.9944 0.9952 0.9970 0.9989 0.9999
0.80 1.0000 1.0000 0.9999 0.9998 0.9998 0.9998 0.9999 1.0000 1.0000
0.90 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Appendix C. Results of the Example

Table 16. Estimated power π (first entry for each value of p) and
Ratio (1− λ)/β second entry for the same value of p), for the simulate
Markov Chains

θ

N=20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1
0.04 0.08 0.19 0.25 0.38 0.49 0.61 0.73 0.78

1.12 1.28 1.48 1.74 2.11 2.67 3.59 5.44 11

0.2
0.05 0.11 0.19 0.30 0.42 0.55 0.63 0.77 0.84

1.14 1.31 1.54 1.83 2.25 2.88 3.92 6 12.25

0.3
0.06 0.12 0.21 0.35 0.47 0.61 0.74 0.78 0.85

1.16 1.36 1.61 1.95 2.43 3.14 4.33 6.71 13.86

0.4
0.06 0.14 0.20 0.39 0.51 0.67 0.75 0.82 0.87

1.19 1.42 1.71 2.11 2.67 3.5 4.89 7.67 16

p 0.5
0.06 0.12 0.24 0.37 0.50 0.67 0.75 0.83 0.84

1.22 1.5 1.86 2.33 3 4 5.67 9 19

0.6
0.08 0.13 0.21 0.35 0.52 0.68 0.76 0.82 0.85

1.28 1.63 2.07 2.67 3.5 4.75 6.83 11 23.5

0.7
0.06 0.13 0.23 0.32 0.51 0.58 0.73 0.78 0.83

1.37 1.83 2.43 3.22 4.33 6 8.78 14.33 31

0.8
0.04 0.11 0.21 0.30 0.43 0.58 0.66 0.76 0.81

1.56 2.25 3.14 4.33 6 8.5 12.67 21 46

0.9
0.05 0.08 0.16 0.23 0.35 0.51 0.58 0.69 0.81

2.11 3.5 5.29 7.67 11 16 24.33 41 91
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1. Introduction
Models with orthogonal block structure, OBS, are mixed models with the family

ν =
{∑m

j=1 γjQj ; γ ∈ Rm+
}
, of variance-covariance matrices where the Q1, ...,Qm are

pairwise orthogonal orthogonal projection matrices, POOPM, summing to the identity
matrix, In. These designs were introduced by [15] and [16], and continue to play an
important part in the theory of randomized block designs, see for instance [1] and [2].
Refer to [9] and [18] for historical developments of the mixed model. The inference
for these models is centered on the estimation of treatment contrasts, see [10]. These
estimators are obtained from the orthogonal projections of the observation vector, Y , on
the strata which are the range spaces 51, ...,5m, of the Q1, ...,Qm. Namely the problem
of obtaining estimators from more than one strata has been dealt in detail. Then the
weights to be given to each strata have to be estimated, see again [10].
We intend to follow a different approach using commutative Jordan algebras, CJA, to
study the algebraic structure of these models. CJA are useful in discussing the algebraic
structures of the models in a way that is convenient for deriving estimators both of
variance components and estimable vectors through the introduction of sub-vectors. For
our purpose it is convenient to write the mixed model as

(1.1) Y =

w∑
i=0

Xiβi,

where β0 is fixed and β1, ...,βw are random independent with null mean vectors and cross
covariance matrices as well variance-covariance matrices θ1Ig1 , ..., θmIgw . This formula-
tion enables an easy characterization of mixed models with OBS. Then when matrices
M i = XiX

′
i, i = 1, ..., w, commute they generate, as we will see, the CJA A(M). This

is the smallest CJA of symmetric matrices that contains M = {M1, ...,Mw}. We re-
call, see [12], that these algebras are linear subspaces constituted by symmetric matrices
and containing their squares. We will show that when matrices of M commute and
constitute a basis for A(M) the models has OBS. Then we may use the sub-models
Y j = AjY , j = 1, ...,m, to obtain estimators for estimable vectors that are BLUE what-
ever the variance components. Following [21] we say that this estimators are uniformly
BLUE, UBLUE. They are quite distinct from the ones for contrasts which are weighted
means with estimated weights. Now no weight estimation is required and all estimable
vectors may be treated as an unified approach. We point out that estimable contrasts
are uni-dimensional estimable vectors so we have a widening of the class of estimable pa-
rameters and results that does not depend on weight and, as we shall see, have optimal
properties.

Moreover we also obtain, using the sub-models, estimators for variance components
which, when quasi-normality is assumed, also have optimal properties.

The role played by the CJA rests on the obtention of the sub-models which have
variance-covariance matrices γjIgj , with gj = rank(Qj), j = 1, ...,m. The homoscedas-
ticity of these sub-vectors leads to optimal estimators derived from each strata. Then the
cross covariance matrices, 6 Σ(Y j ;Y

′
j), are null which are the combinations of estimators

derived from different sub-vectors. We will also consider a special class of models with
OBS, the commutative orthogonal block structure, COBS, in which T , the orthogonal
projection matrix on the space Ω spanned by the mean vector commutes with the ma-
trices in principal basis of a CJA A, pb(A). Then, whatever the γ1, ..., γm, the matrix T
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will commute with

(1.2) V =

m∑
j=1

γjQj ,

which, see [23], ensures that whatever the estimable vector ψ it’s least square estimator,
LSE, is the Best linear unbiased estimator, BLUE. We will say, see [21], that models
with COBS have LSE that are UBLUE and show that, for theses models, the LSE are
identical with the estimators we obtained for the general case of models with OBS.

2. Commutative Jordan Algebras

We already refer the importance of CJA in these models. We now point out that, see
[17], the matrices of M commute if and only if they are diagonalized by the same orthog-
onal matrix P . Then M will be contained in the CJA A(P ) constituted by the matrices
diagonalized by P , thus M is contained in a CJA if and only if it’s matrices commute.
Since intersecting CJA gives a CJA, the intersection A(M) of all CJA containing M will
be the least CJA containing M, so we say that it is generated by M.

[19] showed that any CJA, A, has an unique basis, the pb(A) of A, constituted by
POOPM. As stated by [5], Jordan algebras are used to present normal orthogonal models
in a canonical form. Moreover:

(1) any family of POOPM is the principal basis of the CJA constituted by their
linear combination;

(2) any orthogonal projection matrix, OPM, belonging to a CJA, A, will be sum of
matrices in pb(A);

(3) if the matrices in pb(A1) are some of matrices in pb(A2) we have A1 ⊂ A2.
We recall that the product of two symmetric matrices is symmetric if they commute,
then the product of two OPM that commute will be an OPM since it is symmetric and
it is idempotent.

Given an OPM K that commutes with the matrices of K = {K1, ...,Km} = pb(A),
the non null matricesKKj andKcKj , j = 1, ...,m, withKc = In−K, will be POOPM
thus constituting the principal basis of a CJA, A. We can order the matrices in pb(A) so
that the first are products by K of matrices in pb(A) and the last m− z will be products
by Kc also of matrices in pb(A). Clearly we have A ⊂ A. Those pairs of CJA appear
in the theory of models with COBS. Models with this structure was also studied in [11],
[5], [6] and [8]. A is now the CJA with principal basis Q = {Q1, ...,Qm} when ν(∇) is
the family of variance-covariance matrices and T playing the part of K.

Let µ = X0β0 be the mean vector of the model. WithQ = {Q1, ...,Qm} = pb(A(M))
let the row vectors of Aj constitute an orthonormal basis for the range space of Qj ,
R(Qj), j = 1, ...,m, we have

(2.1)
{
AjA

>
j = Igj , j = 1, ...,m

A>j Aj = Qj , j = 1, ...,m
,

with gj = rank(Qj), j = 1, ...,m. Let us take X0,j = AjX0 and represent by P j ,
j = 1, ...,m, and P c

j , j = 1, ...,m, the OPM on Ωj = R(X0,j) and it’s orthogonal
complement Ω⊥j , j = 1, ...,m.

2.1. Lemma. If the model has COBS we have TQj 6= 0n×n if and only if X0,j 6= 0gj×k,
assuming X0 to be n× k, j=1,...,m.

Proof. We have TQj = 0n×n if and only if R(TQj) = {0n}, so, if the model has
COBS, R(TQj) = R(QjT ) = QjR(T ) = QjR(X0) = A>j AjR(X) = A>j R(AjX) =

A>j R(X0,j) and, since the column vectors of A>j are linearly independent, R(TQj) =
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A>j R(Xj) = {0n} if and only if R(X0,j) = {0n} which is equivalent to X0,j = 0gj×k,
j = 1, ...,m.

2.2. Corollary. If the model has COBS we have TQj 6= 0n×n if and only if P j 6= 0gj×gj ,
j = 1, ...,m.

2.3. Corollary. If the model has COBS we have TQj 6= 0n×n if and only if Q̄j =

A>j P jAj 6= 0n×n, j = 1, ...,m.

Proof. A>j P jAj = (A>j P j)(A
>
j P j)

> so, see [20],

rank(XjP jAj) = rank(A>j P j), j = 1, ...,m.

Now the column vectors of A>j are linearly independent so A>j P jAj = 0n×n. This is
rank(A>j P j) = rank(A>j P jAj) = 0 if and only if P j = 0gj×gj , j = 1, ...,m. Thus,
according to Corollary 2.2, TQj 6= 0n×n only when Q̄j 6= 0n×n.

2.4. Corollary. If the model has COBS we can order the TQ1, ...,TQm and the

Q̄1, ..., Q̄m

to have TQj 6= 0n×n [Q̄j 6= 0n×n], if and only if j ≤ z.

2.5. Proposition. If the model has COBS we have TQj = Q̄j, j = 1, ..., z.

Proof. Since TQj [Q̄j ], j = 1, ..., z, are symmetric and idempotent matrices they are
OPM. So we have only to show that R(TQj) = R(Q̄j), j = 1, ..., z. Now

rank(A>j P j) = rank(A>j P jP jAj) = rank(A>j P jAj) = rank(Q̄j), j = 1, ..., z,

so that

R(Q̄j) = R(A>j P jAj) = R(A>j P j), j = 1, ..., z,

since the first is a subspace of the last set with the same dimension.
Besides this

R(QjTQj) = R(QjT ) = QjR(T ) = QR(X) =

= A>j AjR(X) = A>j R(AjX) = A>j R(Xj) = A>j R(P j) = R(A>j P j) = R(Q̄j),

j = 1, ...,m, which establish the thesis.

2.6. Corollary. Putting T c = In − T and Q̄•j = A>j P
c
jAj, j = z + 1, ...,m, when the

model has COBS we have T cQj = Q̄•j , j = z + 1, ...,m.

Proof. According to Corollary 2.4 we have T cQj = Qj −TQj = Qj , j = z+ 1, ...,m,
as well as A>j P c

jAj = A>j Aj −A>j P jAj = Qj − Q̄j = Qj , j = z+ 1, ...,m, so the thesis
is established.

2.7. Corollary. When the model has COBS the CJA with principal basis
{TQ1, ...,TQz,T

cQz+1, ...,T
cQm} and {Q̄1, ..., Q̄z, Q̄

•
z+1, ..., Q̄

•
m} are identical.

Proof. The result follows from Corollary 2.6 and Proposition 2.5.

2.8. Corollary. If the model has COBS we have T =
∑z
j=1A

>
j P jAj.

Proof. We have T =
∑z
j=1 TQj so the thesis follows from Proposition 2.5.



545

3. Mixed Models

We now characterize mixed models with OBS and COBS. If the matrices of M =
{M1, ...,Mw} commute they will generate a CJA, A(M), as we saw in Section 2. With

Q = {Q1, ...,Qm} = pb(A(M)) we have M i =

m∑
j=1

bi,jQj , i = 1, ..., w, putting B = [bi,j ]

and ψi = {j : bi,j 6= 0}, i = 1, .., w, it is easy to see that the OPM on R(M i) = R(Xi)

is
∑
j∈ψi

Qj . Moreover the OPM on R(

w∑
i=1

M i) = R([X1...Xw]) will be
m∑
j=1

Qj . Thus we

have R([X1...Xw]) = Rn if and only if In =

m∑
j=1

Qj , which is, as we saw, one of the

requirements on the POOPM that appear on the variance-covariance matrices of models
with OBS. The mixed models will have variance-covariance matrices

(3.1) V (θ) =

w∑
i=1

θiM i =

w∑
i=1

θi(

m∑
j=1

bi,jQj) =

m∑
j=1

γjQj ,

where γj =

w∑
i=1

bi,jθi, j = 1, ...,m, so γ ∈ R(B>)+, with ∇+ the family of vectors of

sub-space ∇ with non-negative components.
For the variance-covariance matrices of the model to be all the positive semi-definite

matrices given by linear combination of Q1, ...,Qm we have to have

R(B>) = Rm,
this is matrix B must be invertible which occur when and only when M is a basis for
A(M). Then, see [4], the family M will be perfect. We now establish

3.1. Proposition. The mixed model enjoys OBS when M is a perfect family and

R([X1...Xw] = Rw.

Proof. When R([X1...Xw]) = Rw but M is not perfect we can always complete it
adding some random effect terms to the model. We then restrict ourselves to perfect M
families.
Going over to models with COBS we establish

3.2. Proposition. T commutes with the matrices of M if and only if it commutes with
matrices of Q.

Proof. If T commutes with the matrices of M, the matrices of

Mo = {T ,M1, ...,Mw}
commute so they will generate a CJA A(Mo) that containsMo, then containing T , and
the matrices of Q that will commute. Inversely if T commutes with the matrices of Q it
commutes with matrices of M since M i =

∑m
j=1 bi,jQj , i = 1, ..., w.

3.3. Corollary. If a model has OBS and T commutes with the matrices of M it has
COBS.

4. Estimation

In this section we will use the sub-models Y j = AjY , j = 1, ...,m to obtain estimators
for estimable vectors. Taking µj = Ajµ, j = 1, ...,m, where µj = 0gj , j = z+ 1, ...,m, a
model with generalized OBS, GOBS, has the homoscedastic partition Y =

∑m
j=1A

>
j Y j
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where the Y 1, ...,Y m have mean vectors µ1, ...,µm, and variance-covariance matrices
γ1Ig1 , ..., γmIgm .

Now ψ = Gβ is estimable, see for instance [13], if and only if G = UX0, so that
ψ = Uµ =

∑z
j=1U jµj =

∑z
j=1ψj with U j = UA>j and ψj = U jµj , j = 1, ..., z. Now

we establish

4.1. Proposition. ψ̃ =
∑z
j=1 ψ̃j , with ψ̃j = U jP jY j, j = 1, ..., z, is an unbiased

estimator of ψ, and if ψ∗ =
∑z
j=1ψ

∗
j with ψ∗j = W jY j is another unbiased estimator

of ψ, j = 1, ..., z, ψ∗ is an unbiased estimator of ψ, with6 Σ(ψ̃) ≤6 Σ(ψ∗) where ≤ indicates
that 6 Σ(ψ∗)−6 Σ(ψ̃) is positive semi-definite.

Proof. Since the mean vector of P jY j is P jµj = µj , j = 1, ..., z, ψ∗ is an unbiased
estimator of ψ and it is well known that6 Σ(ψ̃j) ≤6 Σ(ψ∗j ), j = 1, ..., z. Now the Y 1, ...,Y m

have null variance-covariance matrices, so

(4.1)

{
6 Σ(ψ̃) =

∑z
j=1U j6 Σ(ψ̃j)U

>
j =

∑z
j=16 Σ(ψ̃j)

6 Σ(ψ∗) =
∑z
j=1U j6 Σ(ψ∗j )U

>
j =

∑z
j=16 Σ(ψ∗j )

and U j6 Σ(ψ̃j)U
>
j ≤ U j6 Σ(ψ∗j )U

>
j , j = 1, ..., z.

4.2. Proposition. When the model has COBS the ψ̃ are LSE.

Proof. Since the models enjoys COBS we have T =
∑z
j=1A

>
j P jAj and ψ̃ =∑z

j=1 ψ̃j =
∑z
j=1U jP jY j = U

(∑z
j=1A

>
j P jAj

)
Y = UTY = Uµ̃, with µ̃ the LSE

of µ, so the thesis is established.
This result is interesting since in COBS the LSE are UBLUE, being BLUE whatever

θ, see [23]. Thus we validate the above proposition showing that our "sub-optimal esti-
mator" is "optimal" when the model enjoys COBS. In the previous phrase "sub-optimal"
must be taken in the sense of Proposition 4.1 and "optimal" in the sense of the LSE being
UBLUE.

Let us put qj = rank(P c
j), j = 1, ...,m, as well as D = {j; qj>0}, and

(4.2) γ̃j =
Y >j P

c
jY j

qj
, j ∈ D.

It is also well known that, if γ∗j = I>j W jY j , j ∈ D is a quadratic unbiased estimator
of γj , j ∈ D, we have var(γ̃j) ≤ var(γ∗j ), j ∈ D. Let us get the following Proposition.
We leave out its proof which can be seen in [17], page 395.

4.3. Proposition. If Y is quasi-normal we have

(4.3) var

∑
j∈D

cj γ̃j

 ≤ var
∑
j∈D

cjγ
∗
j

 .

5. An application

The mixed model

Y =

w∑
i=0

Xiβi,

where β0 is fixed and the β1, ...,βw are random independent vectors with null mean
vector and variance-covariance matrices σ2

1Ig1 , ..., σ
2
wIgw have GOBS, see for instance

[14], when the matrices M i = XiX
>
i , i = 1, ..., w commute.

Namely these matrices will belong to a CJA A, with pb(A) = {Q1, ...,Qm}, so that
M i =

∑m
j=1 bi,jQj , i = 1, ..., w. Note that to consider an extension of OBS we can replace
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ν by ν(∇) =
{∑m

j=1 γjQj ; γ ∈ ∇+

}
, where ∇+ is the family of vectors belonging to

subspace ∇ with non negative components. Then the model will have GOBS. This
application is itself an extension of the one given, see [7], [3] and [14], for models with
COBS, and the identity of the two algebras for models with COBS enables us to carry
out an unified treatment for models with GOBS.

These models have variance-covariance matrices

(5.1) V (σ2) =

w∑
i=1

σ2
iM i =

m∑
j=1

γjQj ,

with γj =
∑w
i=1 bi,jσ

2
i , j = 1, ...,m so that now we have γ ∈ R(B>)+, where B = [bi,j ].

We point out that for V (σ2
1) = V (σ2

2) implying σ2
1 = σ2

2 the matrices M1, ...,Mw

have to be linearly independent. Then the row vectors of B that are the column vectors
of B>, are linearly independent and we have σ2 = B>

+
γ, where A+ indicates MOORE-

PENROSE inverse of matrix A. Then, if Y is quasi-normal we may apply Proposition
4.3.

6. Final Remarks

Least squares estimators, LSE, have been widely used due to this algebraic structure
and to having minimum variance.covariance matrices, under general conditions, whatever
the variance components.
Following [21] we may say that, then, the LSE are UBLUE. Now these conditions rest
on T commuting with the variance-covariance matrices of the model.
We showed that this commutativity condition was not necessary thus extending the
class of models for which we have UBLUE for estimable vectors.We also showed that
those UBLUE are LSE when the commutativity condition holds. Thus our results may
be considered as an extension of the well known results on UBLUE that are LSE, for
instance see [22] and [23].
Besides this we obtain an optimal result for estimators of linear combinations

∑m
j=1 cjγj .

We point out that in mixed models such as those considered in the application we have
σ2 = (B>)+γ so we can apply that result to the components of σ̃2 = (B>)+γ̃ whenever
Y is quasi normal.
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Abstract
In this paper, we propose a robust variable selection to estimate and se-
lect relevant covariates for the finite mixture of linear regression models
by assuming that the error terms follow a Laplace distribution to the
data after trimming the high leverage points. We introduce a revised
Expectation-maximization (EM) algorithm for numerical computation.
Simulation studies indicate that the proposed method is robust to both
the high leverage points and outliers in the y-direction, and can obtain
a consistent variable selection in the case of outliers or heavy-tail error
distribution. Finally, we apply the proposed methodology to analyze a
real data.
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1. Introduction
Finite mixture of linear regression (FMLR) models provide a very important statistical

tool to fit the unobserved heterogeneous relationships. They are extensively used in many
research fields, e.g., marketing and social sciences [29, 25], machine learning [12, 13]. A
comprehensive review of finite mixture models was given in [20]. It is well-known that
the traditional maximum likelihood estimator (MLE) for mixture linear regression models
works well when the error term follows a normal distribution. However, the normality
based MLE is not robust to outliers in the datasets.

Many robust methodologies were proposed and widely studied for mixture linear re-
gression models in the literature. For instance, [18] and [24] introduced the weighted
MLE. [21] proposed the trimmed likelihood estimator. [1] proposed a modified Expectation-
maximization (EM)-algorithm by replacing the least squares criterion with a robust
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criteria in the M step. [30] and [26] proposed a robust estimation procedure based a
t-distribution and a Laplace distribution, respectively.

In many practical applications, there are many covariates involved in the FMLR mod-
els. Nevertheless, the number of important ones is usually relatively small. In fact, the
problem of variable selection in a FMLR model has received much attention recently.
For example, [28] used Akaike information criterion (AIC) and Bayesian information cri-
terion (BIC) to study model choice issues for a class of Poisson mixture models. [15]
introduced a penalized likelihood approach for variable selection in FMLR models based
on some well-known families such as Gaussian, Poisson, and Binomial distributions, and
developed an EM algorithm for numerical computations. [17] proposed a mixture regres-
sion LASSO (MR-LASSO) method to penalize both regression coefficients and mixture
components simultaneously. [14] gave an overview of the new feature selection methods
in FMLR models. [16] studied the issue of variable selection in FMLR models when the
number of parameters in the model can increase with the sample size. [5] proposed a pe-
nalized likelihood approach to simultaneously select important fixed and random effects
in the finite mixtures of linear mixed-effects models. It is very important to note that
many of those methods are closely related to the traditional MLE method.

To the best of our knowledge, the robust feature selection for FMLR models has
not been well studied. In the linear regression models, the least absolute deviation
(LAD)estimator is very important when the error terms follow a heavy-tailed distribu-
tion, and has the desired robust properties. In fact, the maximum-likelihood estimator of
the regression parameters given a Laplace distributed regression errors is LAD estimator.
[26] applied the LAD estimator to a class of FMLR models. In this article, we propose a
robust variable selection procedure based on the LAD estimator for FMLR models, and
introduce a revised EM-type algorithm for numerical computation. Simulation studies
show that the proposed method is robust and can obtain a consistent variable selection
when there are outliers in the datasets or the error term follows a heavy-tailed distri-
bution. In addition, the proposed robust variable selection approach works comparably
to the traditional penalized likelihood-based method when there are no outliers and the
error is normal.

The rest of this paper is organized as follows. In Section 2, we propose a robust
variable selection for FMLR models, and introduce a revised EM-algorithm for numerical
computation. In Section 3, numerical simulations and a real data analysis are conducted
to compare the performance of the proposed method with the existing method. We
conclude with some remarks in Section 4.

2. Methodology
Let Z be a latent class variable with P (Z = i|X = x) = πi, i = 1, · · · ,m, where x is

a q-dimensional vector. Given Z = i, suppose that the response Y depends on X in a
linear way

Y = XTβi + σiεi,

where βi is an unknown q-dimensional vectors of regression parameters, σi is an unknown
positive scalar, and εi is a random error with density fi(·) and mean 0, and is independent
of X. Then, the density Y given X is

(2.1) g(y|x,θ) =

m∑
i=1

πi
1

σi
fi

(
y − xTβi

σi

)
,

where θ = (π1,β1, σ1, · · · , πm,βm, σm)T .
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Suppose that Dn = {(X1, Y1), · · · , (Xn, Yn)} are random observations from the model
(2.1). The log-likelihood function is

`n(θ) =

n∑
j=1

log

[
m∑
i=1

πi
1

σi
fi

(
Yj −XT

j βi

σi

)]
.

The MLE of θ is obtained by maximizing the log likelihood function `n(θ).
To simultaneously estimate and select relevant covariates, [6] proposed a unified ap-

proach via penalized likelihood. A penalized log-likelihood function is defined as follows:

(2.2) ˜̀
n(θ) = `n(θ)−

m∑
i=1

πi

{
q∑

k=1

pni(βik)

}
,

where pni(βik) is nonnegative and nondecreasing functions in |βik|. Although there are
many methods to deal with the problem of feature selection in finite mixture of linear
regression models in the literature, many of those methods are closely related to the least
squares method. It is well-known that the least squares estimator is very sensitive to
the outliers in the dataset. Next, we will study the robust variable selection for finite
mixture of regression models. Similar to the idea proposed by [26], we consider the
density function fi of error term follows a Laplace density function with mean 0 and
scale parameter 1/

√
2. Then, (2.2) can be written as

(2.3) ˆ̀
n(θ) =

n∑
j=1

log

[
m∑
i=1

πi√
2σi

exp

(
−
√

2|Yj −XT
j βi|

σi

)]
−

m∑
i=1

πi

{
q∑

k=1

pni(βik)

}
.

[26] pointed out that the EM algorithm based on the Laplace distribution is robust
against outliers along the y-direction, but not for the high leverage points. Therefore, in
order to obtain a robust variable selection for both the high leverage points and outliers
in the y-direction, we consider a trimmed version of the new method by fitting the new
model to the data after trimming the high leverage points. Let X = (X1, · · · ,Xn)T . For
each covariate Xj , we first compute a robust Mahalanobis distance

MDj = (Xj −m(X))C(X)T (Xj −m(X)),

where m(X) and C(X) are robust estimates of location and scatter for X, respectively.
In the literature, there are many robust location and scatter estimators. Those estima-

tors include M-estimator [19], Stahel-Donoho (SD) estimators [27, 4], minimum volume
ellipsoid (MVE) [22], S-estimators [3], and minimum covariance determinant (MCD)
estimators [2]. Due to the availability of fast MCD algorithm [23], we employ MCD
estimators to calculate a robust Mahalanobis distance in this paper. Denote

ωj =

{
1, if MDj ≤ χ2

q,0.975,
0, otherwise.

With such a weight function, the high leverage points are discarded. Then, by taking
an adaptive LASSO for the penalty function, the proposed robust variable selection
estimator is defined by maximizing the following objective function

(2.4) ¯̀
n(θ) =

n∑
j=1

ωj log

[
m∑
i=1

πi√
2σi

exp

(
−
√

2|Yj −XT
j βi|

σi

)]
−

m∑
i=1

πi

{
q∑

k=1

λik
|βik|
|β̂ik|

}
,

where β̂ik is the unpenalized estimator for β in (2.4).
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2.1. The revised EM algorithm for robust variable selection. If j-th observation
(Xj , Yj) is from i-th component, we denote Rij = 1, i = 1, · · · ,m, j = 1, · · · , n, otherwise,
Rij = 0. Assume the complete data set {(Xj , Yj , Rij), i = 1, · · · ,m, j = 1, · · · , n} is
observed, then, (2.4) can be written as

¯̀
n(θ)

=

n∑
j=1

ωj

m∑
i=1

Rij log

[
πi√
2σi

exp

(
−
√

2|Yj −XT
j βi|

σi

)]
−

m∑
i=1

πi

{
q∑

k=1

λik
|βik|
|β̂ik|

}

=

n∑
j=1

m∑
i=1

ωjRij log πi −
n∑

j=1

m∑
i=1

ωjRij log(
√

2σi)−
n∑

j=1

m∑
i=1

ωjRij

√
2|Yj −XT

j βi|
σi

−
m∑
i=1

πi

{
q∑

k=1

λik
|βik|
|β̂ik|

}
.

In the following, we introduce the revised EM algorithm to maximize ¯̀
n(θ) iteratively.

(1) Choose an initial value for θ, denote θ(0).
(2) E-Step. Given the data Dn and θ(k), we compute the conditional expectation

of the function ¯̀
n(θ) with respect to Rij . The conditional expectation is given

as follows:

(2.5)

Q(θ;θ(k)) =

n∑
j=1

ωj

m∑
i=1

κ
(k)
ij log πi −

n∑
j=1

ωj

m∑
i=1

κ
(k)
ij log(

√
2σi)

−
n∑

j=1

ωj

m∑
i=1

κ
(k)
ij

√
2|Yj −XT

j βi|
σi

−
m∑
i=1

πi

{
q∑

k=1

λik
|βik|
|β̂ik|

}
.

where

κ
(k)
ij = E[Rij |Dn,θ

(k)] =
π
(k)
i σ

(k)−1
i exp{−|Yj −XT

j β
(k)
i |/σ

(k)
i }∑m

i=1 π
(k)
i σ

(k)−1
i exp{−|Yj −XT

j β
(k)
i |/σ

(k)
i }

.

(3) M-step. The M step on the (k+1)-th iteration maximizes Q(θ;θ(k)) with respect
to θ. In the usual EM algorithm, the mixing proportions are updated by

π
(k+1)
i =

∑n
j=1 ωjκ

(k)
ij∑n

j=1 ωj
, i = 1, · · · ,m,

which maximize the leading term of Q(θ;θ(k)). This works well in our simula-
tions.

In the following, we consider that the πk are constant in Q(θ;θ(k)), and
maximize Q(θ;θ(k)) with respect to the other parameters. Since the objective
function Q(θ;θ(k)) is not smooth, we maximize the following objective function
by the local quadratic approximation [6, 10],

(2.6)

n∑
j=1

ωj

m∑
i=1

κ
(k)
ij log πi −

1

2

n∑
j=1

ωj

m∑
i=1

κ
(k)
ij log(2σ2

i )

−
n∑

j=1

ωj

m∑
i=1

κ
(k)
ij

√
2(Yj −XT

j βi)
2

σ2
i

σ
(k)
i

|Yj −XT
j β

(k)
i |

−
m∑
i=1

πi

{
q∑

k=1

λik
β2
ik

|β̂ik||β(k)
ik |

}
.
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Then, the regression coefficients are updated by solving the following equa-
tions

(2.7)

n∑
j=1

ωjκ
(k)
ij

∂

∂βit

[√
2(Yj −XT

j βi)
2

(σ
(k)
i )2

σ
(k)
i

|Yj −XT
j β

(k)
i |

]

+
∂

∂βit

[
πi

{
λit

β2
it

|β̂it||β(k)
it |

}]
= 0,

where i = 1, · · · ,m, and t = 1, · · · , q.
The dispersion parameters are updated by the following expression

(2.8) σ
2(k+1)
i =

2∑n
j=1 ωjκ

(k)
ij

n∑
j=1

ωjκ
(k)
ij

√
2(Yj −XT

j β
(k+1)
i )2σ

(k)
i

|Yj −XT
j β

(k)
i |

, i = 1, · · · ,m.

(4) Repeat steps 2, 3 until convergence.
Remark 2.1 The above proposed revised EM-algorithm involves in an initial estimator,
we select a robust estimation proposed by [26] for the unpenalized FMLR models as an
initial estimator, that is, by maximizing the following objective function,

n∑
j=1

log

[
m∑
i=1

πi√
2σi

exp

(
−
√

2|Yj −XT
j βi|

σi

)]
.

Remark 2.2 To avoid numerical instability of the proposed algorithm due to very small
values in the denominator of (2.7) and (2.8), as suggested by [10], we replace |β(k)

it | and
|Yj −XT

j β
(k)
i | by |β

(k)
it | + ε and |Yj −XT

j β
(k)
i | + ε for a given small value ε > 0. In this

paper, we take ε = 10−6.

3. Simulation and Application
3.1. Simulation study. In this section, we will evaluate the finite sample performance
of proposed method via simulation studies. To compare the proposed approach with some
existing methods, we generate the sample data (X1, Y1), · · · , (Xn, Yn) from the following
two-component mixture regression models,

Yi =

{
XT

i β1 + ε1, if Z = 1,
XT

i β2 + ε2, if Z = 2,
i = 1, · · · , n(3.1)

with P (Z = 1) = α, P (Z = 2) = 1 − α, α = 0.4. We also simulate α = 0.25; the
outcomes are similar, and thus we do not report the corresponding results here. The
sparse regression parameters are

β1 = (0, · · · , 0,−2.5,−1.5)T ,

β2 = (0, · · · , 0,−2.5, 1.5)T ,

where β1 and β2 have eight zero elements. Covariate Xi follows a multi-normal distribu-
tion N(0,Σ), where the (i, j)-th element of Σ is ρ|i−j|, ρ = 0.5. The error terms ε1 and ε2
are independent and identically distributed random variables. To study the robustness
of proposed method, we consider the following four settings:
(1) The error terms follow a standard normal distribution, N(0, 1);
(2) The error terms follow a Student’s t-distribution with 2 degrees of freedom, t2;
(3) The error terms follow a 5% contaminated normal distribution, CN0.05 = 0.95N(0, 1)+
0.05N(10, 202);
(4) The error terms follow a standard normal distribution with 5% high leverage outliers
being X1 = (50, · · · , 50)T , and Y = 100.
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For each setting, we simulate 200 data sets from model (3.1) with sample sizes
of n = 200, 400, and compare the performance of proposed method (MixregL-MCD)
with the penalized likelihood approach (MixregL-ALASSO) [15] and the oracle estima-
tor based on the Laplace error to the data after trimming the high leverage points
based on a robust Mahalanobis distance with the MCD estimators. To measure the
finite sample performance, we report the proportions of correctly estimated zero coef-
ficients (specificity: S1) and correctly estimated non-zero coefficients (sensitivity: S2),
and the component-wise median empirical mean squared errors (MEMSE) of the es-
timators β̂k, k = 1, 2. According to [15] and [17], we consider the tuning parameter
λik = log(n) × {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7}. In simulation studies, the finite sample
performance of λik = log(n) × 0.2 is slightly better than that of others. Therefore, we
take λik = log(n)× 0.2 in all simulation studies and real data applications. Clearly, the
choice of tuning parameter is a very important issue, however, we shall not address the
problem of how to find the optimal tuning parameter, and will consider the choice of
tuning parameter as future work. The simulation results are given in Table 1-4.

From Table 1, we find that when the true distribution of error term is normal and there
are no outliers in the dataset, both S1 and S2 are around 1 for all three methods. The
MEMSE of both methods is close to that of oracle estimator. When there are outliers in
the datasets or the error term follows a heavy-tailed distribution, the simulation results
clearly show from Table 2 to Table 4 that the proposed method works much better than
the MixregL-ALASSO. S1 and S2 of the proposed method are higher than those of the
MixregL-ALASSO, and our proposed approach has smaller MEMSE than the MixregL-
ALASSO. In addition, the performance of proposed method is closer to that of the oracle
estimator as the sample size n increases.

Based on the above findings, the proposed method is not sensitive to outliers in the
dataset, and has the overall best performance. Thus, we recommend the use of proposed
method in practical applications.

In the above simulations, we assume that the number of mixture components is
known. However, the order m needs to be estimated based on the dataset in some
applications. There are many methods to choose the order m in the literature, e.g.,
cross-validation (CV), generalized cross-validation (GCV), Akaike information criterion
(AIC), and bayesian information criterion (BIC). In this paper, we select the order m by
minimizing a following BIC-score

BIC(m) = −2ln(θ̄m) + S log(n),

where θ̄m is the maximizer of the proposed objective function for a mixture regression
model with the order m, and S is the number of nonzero of the estimator θ̄m.

In the following, we will use simulation studies to illustrate how to select the order.
A total of 300 data sets with sample sizes n = 400 are generated according to the second
setting with true m = 2. The simulation result is shown in Figure 1. We can see from
Figure 1 that the BIC performs well to select the true order.

3.2. Real data application. In this section, we will apply the proposed methodology
to analyze the baseball salaries dataset, which can be downloaded from

www.amstat.org/publications/jse.
This dataset contains 337 observations. Of interest are to study the relationships between
the salary (measured in thousands of dollars) and the following 16 covariates: batting
average (X1), on-base percentage (X2), runs (X3), hits (X4), doubles (X5), triples (X6),
home runs (X7), runs batted in (X8), walks (X9), strikeouts (X10), stolen bases(X11) , er-
rors (X12), free agency eligibility (X13), free agent in 1991/2 (X14), arbitration eligibility
(X15), and arbitration in 1991/2 (X16). X13, X14, X15, X16 are indicators.
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Table 1. Simulation results for the first setting
n Method S1 S2 MEMSE

β1 MixregL-ALASSO 0.9850 1.0000 0.0087
MixregL-MCD 1.0000 0.9950 0.0054

200 Oracle 1.0000 1.0000 0.0052
β2 MixregL-ALASSO 0.9863 1.0000 0.0027

MixregL-MCD 1.0000 1.0000 0.0043
Oracle 1.0000 1.0000 0.0038

β1 MixregL-ALASSO 0.9950 1.0000 0.0047
MixregL-MCD 1.0000 1.0000 0.0038

400 Oracle 1.0000 1.0000 0.0033
β2 MixregL-ALASSO 1.0000 1.0000 0.0016

MixregL-MCD 1.0000 1.0000 0.0021
Oracle 1.0000 1.0000 0.0016

Table 2. Simulation results for the second setting
n Method S1 S2 MEMSE

β1 MixregL-ALASSO 0.6925 0.7750 0.2260
MixregL-MCD 1.0000 0.9850 0.0096

200 Oracle 1.0000 1.0000 0.0075
β2 MixregL-ALASSO 0.6775 0.9450 0.0398

MixregL-MCD 1.0000 0.9900 0.0043
Oracle 1.0000 1.0000 0.0038

β1 MixregL-ALASSO 0.8288 0.7100 0.2317
MixregL-MCD 1.0000 1.0000 0.0055

400 Oracle 1.0000 1.0000 0.0039
β2 MixregL-ALASSO 0.8363 0.9500 0.1001

MixregL-MCD 1.0000 1.0000 0.0026
Oracle 1.0000 1.0000 0.0019

Table 3. Simulation results for the third setting
n Method S1 S2 MEMSE

β1 MixregL-ALASSO 0.8550 0.7600 0.3095
MixregL-MCD 1.0000 0.9200 0.0097

200 Oracle 1.0000 1.0000 0.0065
β2 MixregL-ALASSO 0.8838 0.8750 0.1749

MixregL-MCD 1.0000 0.9750 0.0064
Oracle 1.0000 1.0000 0.0039

β1 MixregL-ALASSO 0.7512 0.7850 0.3382
MixregL-MCD 1.0000 0.9450 0.0051

400 Oracle 1.0000 1.0000 0.0048
β2 MixregL-ALASSO 0.8275 0.9300 0.1486

MixregL-MCD 1.0000 0.9750 0.0052
Oracle 1.0000 1.0000 0.0048

We plot a histogram of home runs and stolen bases in Figure 2. Figure 2 indicates that
there are unusual points in the dataset. According to the suggestion proposed by [15], we
apply the MixregL-ALASSO and MixregL-MCD with m = 2 to deal with this dataset.
The results are summarized in Table 5. From Table 5, we find that the MixregL-ALASSO
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Table 4. Simulation results for the fourth setting
n Method S1 S2 MEMSE

β1 MixregL-ALASSO 0.2350 0.9450 0.7180
MixregL-MCD 1.0000 0.9900 0.0055

200 Oracle 1.0000 1.0000 0.0041
β2 MixregL-ALASSO 0.3188 1.0000 0.1766

MixregL-MCD 1.0000 1.0000 0.0030
Oracle 1.0000 1.0000 0.0021

β1 MixregL-ALASSO 0.1075 0.9750 0.6932
MixregL-MCD 1.0000 1.0000 0.0033

400 Oracle 1.0000 1.0000 0.0031
β2 MixregL-ALASSO 0.1862 1.0000 0.1420

MixregL-MCD 1.0000 1.0000 0.0014
Oracle 1.0000 1.0000 0.0011

obtains more significant explanatory variables than the MixregL-MCD. However, our
proposed method should give the more reasonable model when there are outliers in the
dataset.

Table 5. Estimated regression coefficients from the baseball salaries dataset

Method
MixregL-ALASSO MixregL-MCD

Variable Component 1 Component 2 Component 1 Component 2
X1 6.5864 0.0011 0 0
X2 10.677 15.388 16.742 19.816
X3 0 0 0 0
X4 0 0.0026 0 0
X5 0 0 0 0
X6 0 0 0 0
X7 0 -0.0005 0 0
X8 0.0063 0.0058 0 0
X9 -0.0067 -0.0104 0 0
X10 0.0053 0.0066 0 0
X11 0 0 0 0
X12 0 0.0002 0 0
X13 1.7160 1.6827 2.1480 0
X14 -0.0084 -0.0012 0 0
X15 1.4961 1.4833 1.6340 0
X16 0 -0.0001 0 0

4. Discussion
In this article, we proposed a robust variable selection by assuming that the error terms

follow a Laplace distribution for FMLR models. We used the revised EM-algorithm to
solve the proposed optimization problem. The merits of proposed methodology were
illustrated via the simulation studies. According to our simulation studies, the proposed
method was robust and possessed a consistent variable selection when there were outliers
or the error distribution was heavy-tail.
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Figure 1. Order selection results based on BIC for the FMLR models
with true order m = 2

As a variable selection procedure, it is very desirable to enjoy the oracle proper-
ties. Therefore, it warrants further effort to investigate the asymptotic properties for
the proposed method. Meanwhile, it is very interesting to extent our methodology to
nonparametric mixture of regression models [8], a class of semiparametric mixtures of
regression models [11, 9], and mixture of gaussian processes [7].
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Figure 2. Histogram of home runs (a) and stolen bases (b).
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Abstract
A modification to Welch test statistic is proposed to test the equality
of population means of various groups under a Weibull distribution.
The proposed test statistic is simple and corresponds to the standard
Welch test statistic in which the maximum likelihood mean and vari-
ance estimators are replaced with robust estimators based on quantile,
quantile least square and repeated median. The influence function and
breakdown point of these robust estimators are obtained to show their
robustness properties. In the simulation study, various experimental
designs are considered to evaluate the performance of proposed modi-
fied Welch classical ANOVA tests in terms of the type I-errors studies
via simulation study.
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1. Introduction
Analysis of variance (ANOVA) is one of the most used model which can be seen in
many fields such as medicine, engineering, agriculture, education, psychology, sociology
and biology to investigate the source of the variations. In general, the main interest
is in testing the homogeneity of group means using the classical ANOVA which uses
F-test statistic. One-way ANOVA is based on assumptions that the normality of the
observations and the homogeneity of group variances. If the assumptions of normality
and homogeneity of variances are invalid and also outliers are present, classical ANOVA
does not give accurate results. Therefore, test statistics based on robust methods should
be used instead of the classical ANOVA.
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The one-way ANOVA under the violation of assumptions has been studied extensively.
To deal with non-normal data and/or heteroscedastic variances across groups, many
alternatives such as Q, Welch, Brown-Forsythe and Modified Brown-Forsythe tests have
been developed instead of classical ANOVA. The statistic Q has been extensively studied
by many authors under a variety of assumptions. It is one of the most commonly used
test statistic for homogeneity at population means in meta-analysis, see for example [5],
[12]. [3] showed that under the null hypothesis Q asymptotically follows a Chi-Square
distribution. [7] and [13] derived improved approximations to the distribution of Q
under the null hypothesis; these approximations are more accurate for small sample sizes
of groups. [9] extended the methods of Welch to find approximate distributions to Q
under alternative hypotheses. [9] provide approximations for the non-null distributions
of their weighted statistics which are found to be useful in obtaining approximations
to the power of the Welch test. A number of authors have discussed extensions of the
Welch methods based on the use of robust estimators for the population location and
scale parameters. Notable among these are the efforts of [14], [15], and the references
contained there in. [10] consider three common robust estimators: Huber’s proposal two
estimator of location and scale, Hampel’s M-estimator of location with scale estimated
by the median absolute deviation (MAD), and the trimmed mean with scale estimated
by the Winsorized standard deviation.

One of the important assumptions of ANOVA is normality. However, in the applica-
tion this assumption does not work for the real life data modeled by the exponential,
Weibull or lognormal distributions especially in reliability, engineering and life science
field. The characteristics of these distributions can be explained by Weibull distribution
which is also known as Extreme Value Type III minimum distribution. This has made
it extremely popular among reliability engineering, biology and medicine. This distri-
bution is the most commonly used distribution for modeling reliability data, because it
represents a wide range of asymmetric distributions. Moreover, ANOVA cannot handle
censored or interval data because of the non-normality. The simplest possible lifetime
distribution is exponential distribution. However, its constant hazard rate is improper
and unrealistic in many cases. Gamma distribution is another candidate distribution for
lifetimes. Nevertheless, distribution function or survival function of gamma distribution
cannot be expressed in a closed form if the shape parameter is not an integer. Since it
is in terms of an incomplete gamma function, one needs to obtain the distribution func-
tion, survival function or the hazard rate by numerical integration. This makes gamma
distribution little bit unpopular compared to the Weibull distribution, which has a nice
distribution function, survival function and hazard function [6]. The Weibull distribution
was introduced by the Swedish physicist Weibull (1951). He claimed that his distribution
applied to a wide range of problems and illustrated this point with seven examples rang-
ing from the strength of steel to the height of adult males in the British Isles [1]. It has
been used in many different fields like material science, engineering, physics, chemistry,
meteorology,medicine, pharmacy, quality control, biology, geology, geography, economics
and business.

This paper proposes a modified Welch test statistic to test the equality of population
means of groups by utilizing robust estimators for the means and variances of Weibull
distribution with outlier, and evaluates the performance of modified test in terms of the
type I-errors via simulation study. The modified test statistic is called robust Welch
(RW ) test statistic. Since it is obtained by using robust mean and variance estimators
based on quantile (Q), quantile least square (QLS) and repeated median (Rmed) instead
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of maximum likelihood. The influence function (IF ) and breakdown point (BP ) of ro-
bust estimators of mean and variance are obtained to show their robustness properties.
The behavior of the developed robust test statistic is examined by Monte-Carlo simula-
tion study. In the simulation study, various experimental designs are considered such as
balanced and unbalanced sample sizes for k=3,6 groups with homogeneous and hetero-
geneous variances. The type I errors of the improved robust test statistic and classical
ANOVA under the Weibull distribution are obtained.

The remainder of the paper is organized as follows. Section 2 introduces robust modified
Welch test statistics. Section 3 gives explicit robust estimators of the mean and variance
of Weibull distribution. The most important robustness measures are IF and BP that
are derived in Section 4. To show the performance of the considered test statistic, a
simulation study and the results are presented in Section 5. The last section summarizes
the conclusions of the study.

2. Robust Welch Test Statistic
The Welch test statistic was proposed by [13] as following:

(2.1) W =
q̂w
k − 1

{1 +
2(k − 2)Â

k2 − 1
}−1.

where

Â =

k∑
i=1

[
1− (ŵi/

k∑
j=1

ŵj)

]2
/vi(2.2)

qw ≡
k∑
i=1

ŵi(µ̂i − µ̂w)2(2.3)

and vi = ni−1 is the degrees of freedom for i. sample. In (2.2) and (2.3), µ̂i is maximum
likelihood estimator of the mean for each sample, σ̂2

i is the maximum likelihood estimator
of variance and ŵi ≡ ni/σ̂

2
i is the estimator of weights based on variance estimator. If

the appropriate weights are known, the value of estimation is

(2.4) µ̂w =

k∑
i=1

ŵiµ̂i/

k∑
i=1

ŵi.

The Welch test statistic has approximately Fk−1,vw distribution with k − 1,
vw = (k2−1)

3Â
degrees of freedom [13].

In this study, a modification to the Welch test statistic is proposed under a Weibull
distribution. The test statistic is simple and corresponds to the standard Welch test
statistic in which the maximum likelihood mean and variance estimators are replaced
with robust estimators based on Q, QLS and Rmed. So the robust Welch test statistic
is given by

(2.5) RW =
q̂rw
k − 1

{1 +
2(k − 2)Âr
k2 − 1

}−1.
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where

Âr =

k∑
i=1

[
1− (ŵri/

k∑
j=1

ŵrj)

]2
/vi(2.6)

qrw ≡
k∑
i=1

ŵri(µ̂ri − µ̂rw)2(2.7)

and vi = ni − 1 is the degrees of freedom for i. sample.

In (2.7), µ̂ri is robust estimator of mean for each sample, σ̂2
ri is robust estimator of

variance and ŵri ≡ ni/σ̂2
ri is the robust estimator of weights based on variance estimator.

If the appropriate weights are known, the value of robust estimation are

(2.8) µ̂rw =

k∑
i=1

ŵriµ̂ri/

k∑
i=1

ŵri.

In (2.7) and (2.8), µ̂ri and σ̂2
ri are the robust Q, QLS and Rmed estimators of mean and

variance for Weibull distribution.

The robust Welch test statistic has approximately Fk−1,vrw distribution with k − 1,
vrw = (k2−1)

3Âr
degrees of freedom.

3. Robust Estimators of Weibull Distribution
The estimations of mean and variance of Weibull distribution are a basic subject of the
paper. The density function f(x;λ, β) = β

λ
(x/λ)β−1 exp[−(x/λ)β ], x, λ, β > 0. The

parameter λ is called a scale parameter. The parameter β is the shape parameter.
The mean and variance of a Weibull random variable are the functions of the shape β
and scale λ parameters can be expressed as E(X) = λΓ(1 + 1/β) and V ar(X) =
λ2[Γ(1 + 2/β)− Γ2(1 + 1/β)]. We consider robust estimators which were proposed by
[2] to achieve the robust estimates of the mean and variance of this distribution. The
estimators proposed by [2] are robust to outliers, but they have the additional advantage
of being an explicit function of the data.

In this study we restrict our attention to estimators that have the following set of prop-
erties: an explicit formula; a 50% breakdown point and a bounded IF . We propose the
robust estimators of mean and variance by considering robust estimators based on Q,
QLS and Rmed. We also derive their IF s and their breakdown points. The proposed
estimators for mean and variance all have a high breakdown point and bounded IF .

In the following Section 3.1 and Section 3.2, quantile and regression estimators are given
for robust mean and variance estimators of Weibull distribution.

3.1. Quantile-estimators. The quantile estimators of mean and variance for Weibull
distribution are given by

µ̂WQ = λ̂QΓ(1 + 1/β̂Q),

σ̂WQ = λ̂2
Q[Γ(1 + 2/β̂Q)− Γ2(1 + 1/β̂Q)](3.1)

where [2] proposed the quantile estimators of shape and scale parameter
β̂Q = 1

log(q̂α2/q̂α1 )
log log(1−α2)

log(1−α1)
, and λ̂Q = q̂α/[− log(1− α)]1/β̂Q .
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3.2. Regression estimators. The quantiles of the general log-Weibull distribution in
G−1
λ,β(α) = β−1 log(− log(1−α))+log λ are linearly related to the quantiles of the standard

log-Weibull distribution, with intercept b0 = log λ and slope b1 = 1/β. Replacing the
theoretical quantiles with their empirical counterparts yields a linear regression equation
yi = b0 + b1zi + εi where yi = log q̂i/(n+1) and zi = G−1(i/(n + 1)). [2] considered two
robust and explicit regression estimators for b1 and b0: the Quantile Least Squares and
the Repeated Median estimators. The corresponding estimates of scale and shape of the
Weibull distribution were then directly given by λ̂ = exp(b̂0) and β̂ = 1/b̂1.

Quantile Least Square: The QLS estimators of mean and variance of Weibull distri-
bution are given by

µ̂WQLS = λ̂QLSΓ(1 + 1/β̂QLS)

σ̂WQLS = λ̂2
QLS[Γ(1 + 2/β̂QLS)− Γ2(1 + 1/β̂QLS)](3.2)

where the QLS estimators of shape and scale parameters proposed by [2] :
λ̂QLS = exp(b̂0QLS) and β̂QLS = 1/b̂1QLS where b̂0QLS and b̂1QLS are QLS regression
estimators for b0 and b1 ( for details see [2]).

Repeated Median: The Rmed estimators of mean and variance of Weibull distribution
are given by

µ̂WRmed = λ̂RmedΓ(1 + 1/β̂Rmed)

σ̂WRmed = λ̂2
Rmed[Γ(1 + 2/β̂Rmed)− Γ2(1 + 1/β̂Rmed)](3.3)

where the Rmed estimators of shape and scale parameters were proposed by [2]: λ̂Rmed =

exp(b̂0Rmed) and β̂Rmed = 1/b̂1Rmed where b̂0Rmed and b̂1Rmed are Rmed regression
estimators for b0 and b1 ( for details see [2]).

4. Robustness of estimators
Robustness of estimators can be measured in different ways. The most important ro-
bustness measures are IF and BP of the estimators. In this study we derive IF and
BP for the proposed estimators of mean and variance for Weibull distribution. The IF
acts like the first derivative of functional defined on empirical distributions which we
evaluate at the estimator. IF should be bounded to be robust. The breakdown point is
a global robustness measure which describes how many percent gross errors are still tol-
erated before increasingly offensive outliers force our estimator to wander off to infinity.
In next Section 4.1 and Section 4.2 we derive their IF and then their breakdown points,
respectively.

4.1. IF s for Proposed Robust Estimators. IF gives price information about how
to respond to a small amount of distortion at any point. Naturally, the estimators are
very sensitive form of the distribution F , too much affected by deterioration in small
quantities.

The statistical functionals corresponding with the mean and variance robust estimators
are given by

µRE(F ) = λRE(F )Γ(1 + 1/βRE(F ))(4.1)

σRE(F ) = λ2
RE(F )[Γ(1 + 2/βRE(F ))− Γ2(1 + 1/βRE(F ))].(4.2)
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The IF of the functional µRE at the Weibull distribution Fλ,β in (4.1) is given by

IF (x0;µRE, Fλ,β) =
∂

∂ε
(µRE(Fε))|ε=0

= Γ(1 + 1/β̂RE)

(
IF (x0;λRE, Fλ,β)

− λ̂RE

β̂2
RE

ψ(1 + 1/β̂RE)IF (x0;βRE, Fλ,β)

)
.(4.3)

The IF of the functional σRE at the Weibull distribution Fλ,β in (4.2) is given by

IF (x0;σRE, Fλ,β) =
∂

∂ε
(σRE(Fε))|ε=0

= 2λ̂REIF (x0;λRE, Fλ,β)[Γ(1 + 2/β̂RE)− Γ(1 + 1/β̂RE)2]

+ 2
λ̂2

RE

β̂2
RE

IF (x0;βRE, Fλ,β)

[
− ψ(1 + 2/β̂RE)Γ(1 + 2/β̂RE)

+ Γ(1 + 1/β̂RE)2ψ(1 + 1/β̂RE)

]
.(4.4)

where β̂RE and λ̂RE are the shape and scale robust Q, QLS and Rmed estimators of
Weibull parameters. For IF s IF (x0;λRE) and IF (x0;βRE) in (4.3) and (4.4), see [2].

The IF s for the classic and robust estimators of mean and variance are pictured in Figure
1. It is seen that while the IF of least square (LS) estimator is unbounded function, the
IF s for robust estimators are bounded. It should be considered that the IF s of quantile
mean and variance estimator are step functions. As a result we can say that the proposed
estimators are B-robust which means that their IF s are bounded.

4.2. Breakdown Points of Proposed Robust Estimators. The breakdown point
of an estimator is the proportion of incorrect observations an estimator can handle before
given an arbitrarily large result. The higher the breakdown point of an estimator, the
more robust it is. Instinctively, we can understand that a breakdown point can not exceed
%50 because if more than half of the observations are contaminated, it is not possible
to distinguish between the underlying distribution and the contaminating distribution.
Therefore, the maximum breakdown point is 0.5 and there are estimators which achieve
such a breakdown point.

The breakdown points of robust estimators were examined earlier in the previous studies
examined by some authors: For linear regression parameters least square estimators: α
and repeated median estimators: %50. For shape and scale estimators based on Q, QLS,
Rmedmethods : [2]. To characterize the robustness of the proposed estimators, we derive
their BP , defined as the smallest proportion of observations (for n→∞) that needs to be
replaced with arbitrary values in order for the estimation of λ or β to be arbitrarily close
to zero (implosion) or infinity (explosion). To define the breakdown point of the mean
and variance we consider the BP of shape and scale estimators of Weibull distribution.

The BP of the mean estimator for Weibull distribution is given by

(4.5) ε∗n(µ, Fn) = min{ε+n (µ, Fn), ε−n (µ, Fn)},
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Figure 1. IF of the mean and variance estimators of Weibull Distribution

In 4.5 the explosion BP is

(4.6) ε+n (µ, Fn) = min{m
n
,m ∈ 1, . . . , n| sup

F ′n

M(µ(F ′n)) =∞}.
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We get supF ′nM(µ(F ′n)) = ∞, if λ → ∞ or γ(1 + 1/β) → ∞. For λ → ∞ the
BP is ε+(λ, F ). For γ(1 + 1/β) → ∞, if β = −1,−1/2,−1/3,−1/4. In this condition
there is no BP since β is not going to infinity or zero. Therefore the explosion BP is
ε+(µ, F ) = (ε+(λ, F )).

In 4.5 the implosion BP is

(4.7) ε−n (µ, Fn) = min{m
n
,m ∈ 1, . . . , n| inf

F ′n
M(µ(F ′n)) = 0}.

We get infF ′nM(µ(F ′n)) = 0, if λ→ 0 or γ(1 + 1/β)→ 0, ε+(β, F ). For λ→ 0 the BP is
ε−(λ, F ). For γ(1 + 1/β)→ 0, ε+(β, F ): if β →∞ , γ(1 + 1/β) = 1/βγ(1/β)→ 0. So for
β →∞ the BP is ε+(β, F ). The implosion BP is ε−(µ, F ) = (ε−(λ, F ), ε+(β, F )). As a
result the BP of the mean estimator is given by

ε∗n(µ, Fn) = min{ε+n (µ, Fn), ε−n (µ, Fn)}
= min{ε+(λ, F ), ε−(λ, F ), ε+(β, F )}

The BP of variance estimator of Weibull distribution is given by

(4.8) ε∗n(σ, Fn) = min{ε+n (σ, Fn), ε−n (σ, Fn)}.

In 4.8 the explosion BP is ε+n (σ, Fn) = min{m
n
,m ∈ 1, . . . , n| supF ′nM(σ(F ′n)) =∞}We

get supF ′nM(σ(F ′n)) = ∞,if λ → ∞ or γ(1 + 2/β̂) − γ(1 + 1/β̂) > 0. For λ → ∞ can
be obtained if (ε+n (λ, F )). For γ(1 + 2/β̂) − γ(1 + 1/β̂) > 0 can be obtained if β > 0.
So the BP is ε+n (β, F ). Therefore the explosion BP of variance estimator is obtained
ε+(σ, F ) = (ε+(λ, F ), ε+(β, F )).

In 4.8 the implosion BP is ε+n (σ, Fn) = min{m
n
,m ∈ 1, . . . , n| infF ′nM(σ(F ′n)) = 0}

We get infF ′nM(σ(F ′n)) = 0, if λ → 0 or β → ∞. For λ → 0, the BP is ε−(λ, F ). For
β →∞ the BP isε+(β, F ). Therefore the implosion BP of variance estimator is obtained
ε−(σ, F ) = (ε−(λ, F ), ε+(β, F )).

As a result the BP of variance estimator is given by

ε∗n(σ, Fn) = min{ε+n (σ, Fn), ε−n (σ, Fn)}
= min{ε+(λ, F ), ε+(β, F ), ε−(λ, F )}

Asymptotic BP s for the robust estimators of mean and variance of Weibull distribution
are given by Table 1.

Table 1. Asymptotic BP for the robust estimators for mean and vari-
ance of Weibull distribution

Method ε∗(µ) ε∗(σ)

Q
min(α, 1− α, α1, α2 − α1) α 6= 1− e−1

min(α, 1− α) α = 1− e−1
min(α, 1− α, α1, α2 − α1) α 6= 1− e−1

min(α, 1− α, α2 − α1) α = 1− e−1

QLS min(α, 1− 2α) min(α, 1− 2α)
Rmed %50 %50
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5. Simulation Study
The behavior of the robust Welch test statistic is examined according to all three methods
with 10,000 repetitions. The type I errors of proposed test statistic is obtained according
to robust methods by considering various experimental designs. At the end of the simu-
lation study robust test statistic will be compared in terms of the type I errors, and the
comments will be made for experimental designs.

Since the mean and variance of Weibull distribution are functions of the shape and
scale parameters, the creation of different combinations depends only on the parameters
of the distribution. When scale parameter is one and shape parameter takes different
values, the mean and variance do not change much. However, when the scale parameter
value is changed, the mean and variance change a lot. Therefore, to generate different
experimental design a scale parameter is fixed, it takes λ = 1 with different values of
shape parameter. For example when the shape parameter β is equal to one, then this
distribution reduces to the exponential distribution. A model that results in values
of probability prob{y ≥ E(y)} substantially greater or smaller than 0.5 is hardly of
any practical interest. For the values of β less than 1.2, prob{y ≥ E(y)} < 0.4 [11].
Moreover, [4] argue that in most applications where a Weibull distribution is applicable
β is greater than one. For these reasons, we consider values of β ≥ 1.5. In the simulation
study, the value of the shape parameters are selected as in Table 2 with respect to the
different experimental designs which we want to create. In this table for equal means,
homogeneous variances A1, B1 are used for balanced sample size, C1, D1 are used for
unbalanced sample size. For unequal means, heterogenous variances A2, B2 are used for
balanced sample size and C2, D2 are used for unbalanced sample size. As we mentioned
before to generate data with equal means + homogeneous variances and unequal means
+ heterogenous variances, we just change the shape parameter of Weibull distribution.

Table 2. Experimental designs for k=3 and k=6

k = 3 k = 6

A1 ni 5 5 5 5 5 5 5 5 5
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

A2 ni 5 5 5 5 5 5 5 5 5
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

B1 ni 10 10 10 10 10 10 10 10 10
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

B2 ni 10 10 10 10 10 10 10 10 10
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

C1 ni 5 10 15 5 10 15 5 10 15
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

C2 ni 5 10 15 5 10 15 5 10 15
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5

D1 ni 10 20 30 10 20 30 10 20 30
β 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5

D2 ni 10 20 30 10 20 30 10 20 30
β 1.5 2 2.5 1.5 2 2.5 1.5 2 2.5
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In the simulation study the reference distribution is W (1, β) whose characteristic is men-
tioned in Table 2. By using the proposed estimators Q, QLS and Rmed, the type I errors
of the robust test statistic and classical ANOVA are obtained with 10,000 repetitions at
the significance level of 5%. For quantile methods, α = 30% is taken. Four different
models are discussed below to test the behaviors of the test statistic, when the model is
deteriorated and in the presence of outliers:

• Model 1: Clean sample ( Reference distribution W (1, β)),
• Model 2: Dixon model ( n-1 observations from W (1, β) , 1 observation from
W (2, β)),

• Model 3: Mixture model ( 0.80W (1, β) + 0.20 W (2, β/2)),
• Model 4: Contaminated model ( 0.80 W (1, β) + 0.20(100 Uniform(0,1))).

We obtain τ =
∑M
i=1 FHi>FTi

M
∗ 100 value with respect the classical ANOVA and RW

test statistics with 10,000 repetitions. In this equation FHi indicates the calculated
test statistic and FTi indicates the F table value at the significance of 5% for the ith
simulation, so desirable value of τ is to be close τ ∼= 5.
By considering combinations of the above-mentioned trial simulation study, the type I
errors of test statistic based on three methods is obtained and the results (type I error
* 100=τ ) are given. The robust test statistic will be compared in terms of type I errors
and the comments in detail for each trial will be made.

The results of τ values for experimental designs with equal means and homogeneous
variances are given in Table 3 for k = 3. While the classical ANOVA does not deteriorate
for clean model (model 1), it badly deteriorates for contaminated model especially for
unbalanced sample size. As seen from this table, the results of Q methods are not good.
The type I errors of RW test statistic based on Rmed methods are desired level especially
for experimental design C1 and D1. RW test statistic based on QLS method can be an
alternative only for experimental design C1.

Table 3. The τ values for k=3, Equal means, homogeneous variances

RE Model A1 B1 C1 D1
F RW F RW F RW F RW

Q

1 4.80 6.71 5.16 11.8 6.36 11.03 6.37 14.37
2 3.90 10.55 4.27 13.22 5.53 15.99 6.17 17.68
3 3.10 9.27 3.61 10.80 4.54 12.98 5.40 15.55
4 1.60 9.70 0.60 13.90 28.85 11.19 83.61 15.75

QLS

1 5.14 6.91 5.08 14.45 6.23 7.93 6.79 18.42
2 3.75 2.45 4.23 5.38 5.32 7.89 6.21 8.20
3 3.11 3.85 3.61 10.40 4.44 5.45 5.58 15.89
4 1.60 9.70 0.08 18.99 29.85 5.87 82.85 14.91

Rmed

1 4.53 8.96 4.86 6.07 6.64 13.91 6.19 7.00
2 3.89 7.08 4.46 5.66 5.02 6.86 5.90 7.72
3 3.26 5.90 3.63 4.43 4.76 6.22 5.37 4.93
4 0.14 4.51 0.04 4.93 30.25 3.79 82.50 4.88

The results of τ values for experimental designs with non-equal means and heterogenous
variance are given in Table 4 for k = 3. For unbalanced sample size classical ANOVA is
deteriorate for all methods. Only the RW test statistic based on Rmed has good per-
formance for contaminated model. But RW test statistic does not work for other robust
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Table 4. The τ values for k=3, unequal means, heterogenous variances

RE Model A2 B2 C2 D2
F RW F RW F RW F RW

Q

1 5.30 7.21 6.35 10.92 12.32 12.46 12.39 14.62
2 4.74 12.35 4.95 14.32 11.35 18.35 12.05 18.65
3 3.73 11.35 4.07 12.91 9.21 16.71 9.83 16.35
4 0.16 9.70 0.06 13.56 32.66 11.37 83.47 14.96

QLS

1 5.52 8.44 5.20 15.99 12.13 16.71 12.55 18.78
2 4.60 3.76 4.85 5.81 9.04 13.21 12.05 8.93
3 3.90 5.19 4.05 12.87 8.75 14.08 10.22 17.25
4 0.17 4.89 0.05 12.91 31.96 12.41 83.74 14.43

Rmed

1 5.89 8.54 5.47 6.61 12.20 9.33 12.63 7.19
2 4.74 8.23 5.38 5.95 11.25 10.17 12.08 7.98
3 4.12 6.22 4.41 4.68 8.78 7.77 9.31 8.00
4 0.15 4.04 0.04 4.29 32.09 4.20 83.37 5.11

methods. For clean, and very few corrupted samples the Type I error level of classical
ANOVA is considerably good since the variances are homogeneous for D1 experimental
design. However for contaminated model classical ANOVA is deteriorated badly.

The results of τ values for experimental designs with equal means and homogeneous
variances are given in Table 5 for k = 6. As seen from the results, the RW test statistic
based on Rmed robust method works well for mixture and contaminated model in only
A2 and B2 experimental designs, but the other robust methods do not work.

Table 5. The τ values for k=6, Equal means, homogeneous variances

RE Model A1 B1 C1 D1
F RW F RW F RW F RW

Q

1 4.70 10.61 4.92 16.91 5.89 17.73 6.13 23.98
2 3.90 10.55 4.03 24.89 4.72 27.97 5.43 23.12
3 3.20 20.47 3.74 22.02 4.07 24.93 4.60 26.45
4 0.9 22.12 0.77 24.45 61.31 24.07 86.55 28.09

QLS

1 6.03 17.21 4.74 29.80 13.00 35.22 5.65 33.07
2 3.97 5.15 4.25 9.31 4.53 34.30 5.14 13.73
3 3.28 9.22 3.28 24.20 4.13 26.12 4.17 28.91
4 0.13 11.47 0.95 14.19 60.99 28.44 85.85 30.00

Rmed

1 5.10 25.22 5.10 9.50 5.67 27.70 6.18 10.71
2 3.65 15.03 4.34 9.69 4.96 12.59 5.07 10.65
3 3.10 11.98 3.39 6.73 4.55 21.27 4.34 7.20
4 0.14 10.33 0.94 7.10 61.50 7.81 85.69 7.70

The results of τ values for experimental designs with non-equal means and heterogenous
variance are given in Table 6 for k = 6. As you see, we can conclude the results for
contaminated model for (k = 6) such as that the RW test statistic only based on Rmed
robust method gives desirable results.
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To sum up all results, we can say that in the case of contamination proposed robust
Welch test statistic can be used for (k = 3). When the number of group is small, for
contaminated models the Type I errors of RW test statistic has good performance. The
number of group is small Rmed according to the methods of RW test statistic Type
I errors is desirable. The number of group grows, RW test statistic has undergone
distortion.

Table 6. The τ values for k=6, unequal means, heterogenous variances

RE Model A2 B2 C2 D1
F RW F RW F RW F RW

Q

1 5.94 11.72 5.50 30.62 12.73 19.55 13.12 22.71
2 4.52 24.98 5.24 29.98 11.25 31.71 12.01 29.81
3 3.41 22.49 4.09 22.43 9.09 27.71 9.48 26.61
4 0.90 22.12 0.81 24.45 62.43 24.71 86.52 27.93

QLS

1 4.67 20.41 6.12 31.18 13.00 30.06 13.04 31.90
2 4.53 6.81 5.07 9.81 11.31 13.87 12.10 12.71
3 3.37 12.73 3.60 26.59 8.47 26.54 9.77 29.36
4 0.14 10.97 1.13 27.83 62.78 23.09 86.80 26.67

Rmed

1 5.24 16.41 6.07 10.22 12.61 13.52 12.96 10.31
2 4.38 16.28 4.93 9.65 10.73 15.45 11.90 11.38
3 3.62 13.25 3.55 7.71 8.97 11.64 9.27 10.28
4 0.18 9.46 0.91 6.37 62.51 8.78 86.41 6.69

6. Conclusion
The purpose of this study is to develop test statistic for one-way ANOVA by using robust
methods under Weibull distribution with outlier. For this purpose, we propose the robust
estimators for mean and variance of Weibull distribution. We also derive not only their
BP but also their IF s. The proposed estimators for mean and variance all have a high
BP and bounded IF . RW test statistic is obtained by using the estimators based on
Q, QLS and Rmed. The behavior of the modified robust test statistic is examined by
simulation study.

In the simulation study, using various experimental designs, type I errors of the improved
robust test statistic and classical ANOVA under Weibull distribution are obtained with
respect to three different robust estimators. Balanced and unbalanced sample sizes for
k=3,6 groups with homogeneous and heterogeneous variances are considered. Then the
simulation results show up: For unbalanced sample size classical ANOVA is deteriorated.
When the number of groups is small (k = 3), the RW test statistic based on Rmed and
QLS methods performance is not deteriorated badly. When the number of groups is
increasing, especially for contaminated models the proposed RW test based on Rmed
method gives desirable results. The RW test statistic based on Rmed has the best
performance for all experimental design especially in contaminated models, while the
RW test statistic based on Q does not work. QLS method can be used as an alternative
to Rmed method.
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1. Introduction
The concept of Ranked set sampling (RSS) was first introduced by McIntyre (1952) as

a process of improving the precision of the sample mean as an estimator of the population
mean. Ranked set sampling as described in McIntyre (1952) is applicable whenever
ranking of a set of sampling units can be done easily by a judgement method (for a
detailed discussion on the theory and applications of ranked set sampling see, Chen et
al., (2004)). Ranking by judgement method is not recommendable if the judgement
method is too crude and is not powerful for ranking by discriminating the units of a
moderately large sample. In certain situations, one may prefer exact measurement of
some easily measurable variable associated with the study variable rather than ranking
the units by a crude judgement method. Suppose the variable of interest say Y , is difficult
or much expensive to measure, but an auxiliary variable X correlated with Y is readily
measurable and can be ordered exactly. In this case as an alternative to McIntyre (1952)
method of RSS, Stokes (1977) used an auxiliary variable for the ranking of the sampling
units. If Xr(r) is the observation measured on the auxiliary variable X from the unit
chosen from the rth set then we write Yr[r] to denote the corresponding measurement
made on the study variable Y on this unit, then Yr[r], r = 1, 2, ..., n, form the ranked set
sample. Clearly Yr[r] is the concomitant of the rth order statistic arising from the rth
sample.

Chacko and Thomas (2008) assumed a Morgenstern type bivariate exponential distri-
bution (MTBED) corresponding to bivariate random variable (X,Y ), where X denote
the auxiliary variable and Y denote the study variable with probability density function
(pdf) as

fXY (x, y) =
e

−x
θ1 e

−y
θ2

θ1θ2
[1 + α(1− 2e

−x
θ1 )(1− 2e

−y
θ2 )];(1.1)

x > 0, y > 0, θ1 > 0, θ2 > 0,−1 ≤ α ≤ 1.

Stokes (1995) has considered the estimation of parameters of location-scale family of
distributions using RSS. Lam et al. (1994, 1995) have obtained the best linear unbi-
ased estimators (BLUEs) of location and scale parameters of exponential distribution
and logistic distribution. The Fisher information contained in RSS have been discussed
by Chen (2000) and Chen and Bai (2000). Stokes (1980) has considered the method of
estimation of correlation coefficient of bivariate normal distribution using RSS. Modarres
and Zheng (2004) have considered the problem of estimation of dependence parameter us-
ing RSS. Robust estimate of correlation coefficient for bivariate normal distribution have
been developed by Zheng and Modarres (2006). Stokes (1977) has suggested the ranked
set sample mean as an estimator for the mean of the study variate Y , when an auxiliary
variable X is used for ranking the sample units, under the assumption that (X,Y ) follows
a bivariate normal distribution. Barnett and Moore (1997) have improved the estimator
of Stokes (1977) by deriving the BLUE of the mean of the study variate Y , based on
ranked set sample obtained on the study variate Y . Al-Saleh and Al-Kadiri (2000) have
extended first the usual concept of RSS to double stage ranked set sampling (DSRSS)
with an objective of increasing the precision of certain estimators of the population when
compared with those obtained based on usual RSS or using random sampling. Al-Saleh
and Al-Omari (2002) have further extended DSRSS to multistage ranked set sampling
(MSRSS) and shown that there is increase in the precision of estimators obtained based
on MSRSS when compared with those based on usual RSS and DSRSS. Al-Saleh (2004)
has considered the steady-state RSS.
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The remaining plan of the paper is given as follows: In section 2 we have discussed a
brief discussion on Chacko and Thomas (2008) estimators in MTBED using RSS. Section
3 dealt with some minimum mean squared error (MMSE) estimators on the lines of Searls
(1964), Singh et al. (1973) and Searls and Intarapanich (1990) along with their properties.
In section 4 we have proposed some shrinkage estimators of the parameter θ2 in MTBED
on the lines of Jani (1991) and Kourouklis (1994). We have also obtained their biases
and mean squared errors (MSEs) and shown theoretically that the shrinkage estimators
are superior estimate of θ2 as compared to Chacko and Thomas (2008) estimators and
MMSE estimators. In section 5 we have computed the relative efficiencies of different
estimators numerically to evaluate their performance. Section 6 concludes the paper with
final comments.

2. Chacko and Thomas (2008) estimators based on ranked set
sampling (RSS) in Morgenstern type bivariate exponential dis-
tribution (MTBED)
Let (X,Y ) be a bivariate random variable which follows a MTBED with pdf defined

by (1.1). Let Xr(r) be the observation measured on the auxiliary variate X in the rth
unit of the RSS and let Yr[r] be the measurement made on the Y variate of the same
unit,r = 1, 2, ..., n. Then clearly Yr[r] is distributed as the concomitant of rth order
statistic of a random sample of size n arising from (1.1). By using the expressions for
means and variances of concomitants of order statistics arising from MTBED obtained
by Scaria and Nair (1999), the mean and variance of Yr[r] for −1 ≤ α ≤ 1 are given as

E[Yr[r]] = θ2

[
1− α

2

(
n− 2r + 1

n+ 1

)]
= θ2ξr(say).(2.1)

V ar[Yr[r]] = θ2
2

[
1− α

2

(
n− 2r + 1

n+ 1

)
− α2

4

(
n− 2r + 1

n+ 1

)2]
= θ2

2δr(say).(2.2)

Chacko and Thomas (2008) shows ranked set sample mean as

t1 = θ∗2 =
1

n

n∑
r=1

Yr[r],(2.3)

is an unbiased estimator of θ2 and its variance is given by

V ar(t1) =
θ2

2

n

[
1− α2

4n

n∑
r=1

(
n− 2r + 1

n+ 1
)2

]
= θ2

2V1,(2.4)

where V1 = 1
n

[
1− α2

4n

∑n
r=1(n−2r+1

n+1
)2

]
.

Chacko and Thomas (2008) further provided a better estimator of θ2 than that of θ∗2 by
deriving the BLUE θ̂2 of θ2 provided the parameter α is known as

t2 = θ̂2 =

∑n
r=1( ξr

δr
)Yr[r]∑n

r=1(
ξ2r
δr

)
,(2.5)

and

V ar(t2) =
θ2

2∑n
r=1(

ξ2r
δr

)
= θ2

2V2,(2.6)
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where V2 = 1∑n
r=1(

ξ2r
δr

)
.

Chacko and Thomas (2008) further obtained BLUE based on single stage unbalanced
RSS as

t3 = θ̂
n(1)
2 =

1

nξn

n∑
i=1

Y[n]i,(2.7)

and

V ar(t3) =
θ2

2δn
n[1 + α

2
](ξn)2

= θ2
2V3,(2.8)

where V3 = δn
n(ξn)2

.

Chacko and Thomas (2008) also shows BLUE based on single stage unbalanced steady-
state RSS as

t4 = θ̂
n(∞)
2 =

1

n[1 + α
2

]

n∑
i=1

Y∞n[i],(2.9)

and

V ar(t4) =
θ2

2[1 + α
2
− α2

4
]

n[1 + α
2

]2
= θ2

2V4,(2.10)

where V4 =

[
1+α

2
−α

2

4

]
n
[
1+α

2

]2 .

3. Minimum mean squared error (MMSE) estimators of the pa-
rameter θ2

The MMSE estimator of the parameter θ2 based on t′is, i = 1, 2, 3, 4 are

Tim =
ti

(1 + Vi)
,(3.1)

in the class of estimators Ti = Aiti , where A′is are suitably chosen constants such that
the MSE of T ′i s are minimum.
The biases and MSEs of T ′ims are respectively given by

B(Tim) = −θ2

(
Vi

(1 + Vi)

)
,(3.2)

MSE(Tim) = θ2
2

(
Vi

(1 + Vi)

)
.(3.3)

From (2.4), (2.6), (2.8), (2.10) and (3.3) we have that

V ar(ti)−MSE(Tim) =
θ2

2V
2
i

(1 + Vi)
> 0, i = 1, 2, 3, 4, .(3.4)

which shows that T ′ims, i = 1, 2, 3, 4 are always superior to the Chacko and Thomas (2008)
corresponding estimators t′is, i = 1, 2, 3, 4 .
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4. Suggested class of estimators using θ20 as a prior information
about θ2

Inserting t′is, i = 1, 2, 3, 4 in place of sample mean X̄ based on simple random sampling
(SRS) in Jani’s (1991) class of estimators, we define a class of shrinkage estimators of
the parameter θ2

Ti(p) = θ20 + k(p)(ti − θ20), i = 1, 2, 3, 4,(4.1)

which is based on ranked set sampling in MTBED, where k(p) = Γ(n−p)
npΓ(n−2p)

, p being a
non-zero real number.
The biases and MSEs of Ti(p)′s are respectively given by

B(Ti(p)) = θ2φ(1− k(p))(4.2)

MSE(Ti(p)) = θ2
2[k2

(p)(φ
2 + Vi)− 2φ2k(p) + φ2],(4.3)

where φ = ( θ20
θ2
− 1) = (λ− 1) with λ = ( θ20

θ2
).

We now state the following theorems.
Theorem 1 The proposed estimator Ti(p)′s, i = 1, 2, 3, 4 are better than the correspond-
ing unbiased estimators ti′s, i = 1, 2, 3, 4 if

k(p) < 1,
θ20

1 +
√

(1+kp)Vi
(1−kp)

< θ2 <
θ20

1−
√

(1+kp)Vi
(1−kp)

.(4.4)

Proof
From (2.4),(2.6),(2.8),(2.10) and (4.3) we have that
MSE(Ti(p))− V ar(ti) = θ2

2(1− k(p))[φ
2(1− k(p))− Vi(1 + k(p))] < 0,

if
1− k(p) > 0, φ2 <

(1+kp)Vi
(1−kp)

,

or k(p) < 1,−
√

(1+kp)Vi
(1−kp)

< φ <
√

(1+kp)Vi
(1−kp)

,
or

k(p) < 1,

(
1−

√
(1 + kp)Vi
(1− kp)

)
< λ =

(
θ20

θ2

)
< (1 +

√
(1 + kp)Vi
(1− kp)

)
,(4.5)

or k(p) < 1, θ2

(
1−

√
(1+kp)Vi
(1−kp)

)
< θ20 < θ2

(
1 +

√
(1+kp)Vi
(1−kp)

)
,

or k(p) < 1, θ20

1+

√
(1+kp)Vi
(1−kp)

< θ2 <
θ20

1−
√

(1+kp)Vi
(1−kp)

.

Theorem 2 The proposed estimator Ti(p)′s, i = 1, 2, 3, 4 are better than the correspond-
ing MMSE estimators Tim′s, i = 1, 2, 3, 4 if

θ20

1 +

√
Vi

(
1−k2

(p)
(1+Vi)

)
(1+Vi)(1−kp)2

< θ2 <
θ20

1−

√
Vi

(
1−k2

(p)
(1+Vi)

)
(1+Vi)(1−kp)2

.(4.6)

Proof
From (3.3) and (4.3) we have that
MSE(Tim)−MSE(Ti(p)) = θ2

2(1 + Vi)
−1[Vi

(
1− k2

(p)(1 + Vi)
)

− φ2(1 + Vi)(1− k(p))
2] > 0,

if

φ2 <
Vi

(
1−k2(p)(1+Vi)

)
(1+Vi)(1−kp)2

,

or −

√
Vi

(
1−k2

(p)
(1+Vi)

)
(1+Vi)(1−kp)2

< φ <

√
Vi

(
1−k2

(p)
(1+Vi)

)
(1+Vi)(1−kp)2

,
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or (
1−

√
Vi
(
1− k2

(p)(1 + Vi)
)

(1 + Vi)(1− kp)2

)
< λ <

(
1 +

√
Vi
(
1− k2

(p)(1 + Vi)
)

(1 + Vi)(1− kp)2

)
,(4.7)

or θ2

(
1−

√
Vi

(
1−k2

(p)
(1+Vi)

)
(1+Vi)(1−kp)2

)
< θ20 < θ2

(
1 +

√
Vi

(
1−k2

(p)
(1+Vi)

)
(1+Vi)(1−kp)2

)
,

or k(p) < 1, θ20(
1+

√√√√Vi

(
1−k2

(p)
(1+Vi)

)
(1+Vi)(1−kp)2

) < θ2 <
θ20(

1−

√√√√Vi

(
1−k2

(p)
(1+Vi)

)
(1+Vi)(1−kp)2

) .
It can be easily seen that the proposed shrinkage estimators Ti(p)′s, i = 1, 2, 3, 4 are bet-
ter than the corresponding usual estimators ti′s, i = 1, 2, 3, 4 and corresponding MMSE
estimators Tim′s, i = 1, 2, 3, 4 for a wider range of θ2 . The member of the class of es-
timators Ti(p)′s, i = 1, 2, 3, 4 have smaller MSE than ti′s, i = 1, 2, 3, 4 for all (n, α) and
for θ2 in the neighborhood of θ20 . Largest range of dominance of λ is obtained when
p = −1 with the resulting estimators Ti(−1) = θ20 + k(−1)(ti − θ20) (see Table 3). Thus
Ti(−1) = θ20 +k(−1)(ti−θ20) are better than ti′s no matter how much θ20 underestimates
θ2 . Roughly speaking, p′s with small absolute values give wider neighborhoods of dom-
inance of Ti(p)′s over ti′s (see Tables 5-6).

Remark: If we have a situation with α unknown, we introduce an estimator (mo-
ment type) for α as follows. For MTBED the correlation coefficient between the two
variables is given by ρ = α

4
. If r is the sample correlation coefficient between Xi(i) and

Yi[i], i = 1, 2, ..., n then the moment type estimator for α is obtained by equating with the
population correlation coefficient ρ and is obtained as [see, Chacko and Thomas (2008)]:

α̂ =


−1 if r < (−1/4)

4r if (−1/4) ≤ r ≤ (1/4).

1 if r > (1/4)

5. Relative efficiency
As we have seen on computer screen that the MMSE estimator T4m has the smallest

MSE among the estimators Tim′s, i = 1, 2, 3, 4 , therefore we have made the comparison
of the proposed shrinkage estimators with that of T4m. For this purpose we have com-
puted the relative efficiencies of various suggested shrinkage estimators to the MMSE
estimator T4m by using following formulae:
e1 = RE(T1(p), T4m) = V4

(1+V4)[k2
(p)

(φ2+V1)−2φ2k(p)+φ
2]

;

e2 = RE(T2(p), T4m) = V4

(1+V4)[k2
(p)

(φ2+V2)−2φ2k(p)+φ
2]

;

e3 = RE(T3(p), T4m) = V4

(1+V4)[k2
(p)

(φ2+V3)−2φ2k(p)+φ
2]

;

e4 = RE(T4(p), T4m) = V4

(1+V4)[k2
(p)

(φ2+V4)−2φ2k(p)+φ
2]
.

The values of ei′s, i = 1, 2, 3, 4 for n = 5(5)20, p = ±1,±2, α = 0.25(0.25)1.00 and differ-
ent values of λ are shown in Table 1.

It is observed from Table 1 that for fixed (n, α, |p|) , the values of ei′s, i = 1, 2, 3, 4
increase as λ increases up to 1, while it decreases if λ goes beyond 1. When the value of
λ is ’unity’ (i.e. the guessed value θ20 coincides with the true value θ2 ), the higher gain
in efficiency is seen which is expected too. Also higher gain in efficiency is obtained when
sample size n is small. In general the higher gain in efficiency are observed by using T4(p)

over T4m for all values of (n, α, |p|, λ) . It follows that T4(p) is the best estimator among
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the estimators Tim′s, i = 1, 2, 3, 4 .

Tables 2-3 depicts the ranges of λ in which the suggested shrinkage estimators Ti(p)′s, i =
1, 2, 3, 4 are better than the corresponding usual unbiased estimators ti′s, i = 1, 2, 3, 4 and
the corresponding MMSE estimators Tim′s, i = 1, 2, 3, 4 .

Tables 2-3 show that the proposed shrinkage estimators Ti(p)′s, i = 1, 2, 3, 4 are better
than the corresponding usual unbiased estimators ti′s, i = 1, 2, 3, 4 and the corresponding
MMSE estimators Tim′s, i = 1, 2, 3, 4 for considerable ranges of λ .

It is further observed from Tables 2-3 that, although the class of estimators Ti(−1)
′s, i =

1, 2, 3, 4 ; has the largest range of dominance, it offers smallest improvement compared
with other competitors. The estimator Ti(2)

′s, i = 1, 2, 3, 4 and Ti(−2)
′s, i = 1, 2, 3, 4 ;

offer large saving in MSE over , MMSE estimator T4m but in a rather small range of λ
. Thus it is interesting to mention that there is enough scope of selecting the suggested
value θ20 of θ2 to obtain better estimators which are useful in practice.

6. Conclusion
In this paper we have suggested some MMSE estimators and improved shrinkage esti-

mators based on Chacko and Thomas (2008) estimators of the scale parameter θ2 involved
in (1.1) using ranked set sampling. We have obtained the expressions for biases and mean
squared errors of the proposed estimators. It has been shown that the suggested estima-
tors based on prior or guessed value θ20 are more efficient than those estimators including
Chacko and Thomas (2008) estimators which do not utilize the guessed value θ20 , for a
considerable range of the scale parameter θ2 . Thus our recommendation is to use the
suggested estimators in practice.
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1.1317
0.50

0.9213
0.9224

1.0640
1.1894

0.9121
0.9132

1.0518
1.1741

0.8856
0.8866

1.0167
1.1306

0.75
0.8151

0.8165
0.9626

1.1955
0.8068

0.8081
0.9511

1.1777
0.7828

0.7841
0.9179

1.1273
1.00

0.7218
0.7285

0.8495
1.2012

0.7141
0.7208

0.8390
1.1802

0.6922
0.6984

0.8088
1.1215
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lT

ab
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1
:
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fo
r
p

=
2

n
α

λ
=

1
.0

0
λ

=
1
.2

0
an

d
λ

=
0
.8

0
λ

=
1
.4

0
an

d
λ

=
0
.6

0

e 1
e 2

e 3
e 4

e 1
e 2

e 3
e 4

e 1
e 2

e 3
e 4

5
0.
25

11
6.
93
70

11
6.
94
03

12
5.
43
78

13
2.
94
38

4.
24
57

4.
24
58

4.
25
62

4.
26
44

1.
09
11

1.
09
11

1.
09
18

1.
09
24

0.
50

10
4.
53
35

10
4.
54
52

11
7.
46
51

13
5.
63
37

3.
75
72

3.
75
72

3.
77
21

3.
78
84

0.
96
53

0.
96
53

0.
96
63

0.
96
74

0.
75

93
.1
42
8

93
.2
15
0

10
7.
41
92

13
8.
20
36

3.
29
09

3.
29
10

3.
30
64

3.
32
92

0.
84
51

0.
84
51

0.
84
61

0.
84
76

1.
00

82
.7
20
6

82
.9
79
3

96
.1
53
8

14
0.
62
50

2.
85
19

2.
85
22

2.
86
57

2.
89
29

0.
73
19

0.
73
19

0.
73
28

0.
73
46

10
0.
25

4.
58
82

4.
58
70

4.
98
85

5.
21
21

2.
59
79

2.
59
76

2.
72
16

2.
78
68

1.
12
89

1.
12
88

1.
15
16

1.
16
31

0.
50

4.
07
35

4.
07
33

4.
66
12

5.
26
85

2.
29
36

2.
29
35

2.
46
89

2.
62
94

0.
99
25

0.
99
25

1.
02
40

1.
05
06

0.
75

3.
61
29

3.
61
91

4.
23
53

5.
32
15

2.
01
48

2.
01
67

2.
19
46

2.
45
42

0.
86
58

0.
86
62

0.
89
74

0.
93
80

1.
00

3.
20
20

3.
22
21

3.
75
79

5.
37
06

1.
76
06

1.
76
67

1.
91
66

2.
26
31

0.
74
91

0.
75
02

0.
77
59

0.
82
72

15
0.
25

2.
41
72

2.
41
58

2.
64
09

2.
74
51

1.
86
05

1.
85
97

1.
99
03

2.
04
89

1.
10
03

1.
10
01

1.
14
45

1.
16
36

0.
50

2.
14
07

2.
14
24

2.
46
46

2.
76
54

1.
64
24

1.
64
34

1.
82
67

1.
98
68

0.
96
71

0.
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75

1.
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82

1.
07
71

0.
75

1.
89
56

1.
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2.
23
33

2.
78
43

1.
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64

1.
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87

1.
63
50

1.
91
21

0.
84
54

0.
84
62

0.
90
65

0.
98
57

1.
00

1.
67
89

1.
69
28

1.
97
46

2.
80
17

1.
27
07

1.
27
86

1.
43
31

1.
82
39

0.
73
48

0.
73
74

0.
78
63

0.
89
10

20
0.
25

1.
82
46

1.
82
33

1.
99
85

2.
07
18

1.
54
89

1.
54
80

1.
67
24

1.
72
35

1.
06
58

1.
06
53

1.
12
28

1.
14
56

0.
50

1.
61
38

1.
61
57

1.
86
38

2.
08
35

1.
36
70

1.
36
84

1.
54
22

1.
68
96

0.
93
71

0.
93
77

1.
01
62

1.
07
82

0.
75

1.
42
79

1.
43
03

1.
68
63

2.
09
43

1.
20
50

1.
20
66

1.
38
39

1.
64
73

0.
82
06

0.
82
14

0.
89
99

1.
00
42

1.
00

1.
26
43

1.
27
62

1.
48
81

2.
10
42

1.
06
10

1.
06
94

1.
21
43

1.
59
54

0.
71
57

0.
71
95

0.
78
24

0.
92
47



T
ab

le
2
:T
he

R
anges

of
λ
in

w
hich

the
suggested

shrinkage
estim

ators
T
′i(p

) s,i
=

1
,2
,3
,4

are
better

than
the

corresponding
usual

unbiased
estim

ators
t ′i s,i

=
1
,2
,3
,4

given
by

C
hacko

and
T
hom

as
(2008):

n
α

p
=
−

2
p

=
−

1

t
1

t
2

t
3

t
4

t
1

t
2

t
3

t
4

5
0.25

(0.33,1.67)
(0.33,1.67)

(0.36,1.64)
(0.38,1.62)

(0,2.48)
(0,2.48)

(0,2.43)
(0,2.39)

0.50
(0.34,1.66)

(0.34,1.66)
(0.38,1.62)

(0.42,1.58)
(0,2.47)

(0,2.47)
(0,2.39)

(0,2.29)
0.75

(0.34,1.66)
(0.34,1.66)

(0.39,1.61)
(0.46,1.54)

(0,2.46)
(0,2.46)

(0,2.36)
(0,2.20)

1.00
(0.35,1.65)

(0.35,1.65)
(0.40,1.60)

(0.50,1.50)
(0,2.44)

(0,2.44)
(0,2.34)

(0,2.11)
10

0.25
(0.40,1.60)

(0.40,1.60)
(0.42,1.58)

(0.44,1.56)
(0,2.45)

(0,2.45)
(0,2.39)

(0,2.36)
0.50

(0.40,1.60)
(0.40,1.60)

(0.44,1.56)
(0.47,1.53)

(0,2.44)
(0,2.44)

(0,2.34)
(0,2.26)

0.75
(0.41,1.59)

(0.41,1.59)
(0.45,1.55)

(0.51,1.49)
(0,2.42)

(0,2.42)
(0,2.31)

(0,2.17)
1.00

(0.42,1.58)
(0.42,1.58)

(0.46,1.54)
(0.55,1.45)

(0,2.40)
(0,2.39)

(0,2.29)
(0,2.08)

15
0.25

(0.42,1.58)
(0.42,1.58)

(0.45,1.55)
(0.46,1.54)

(0,2.43)
(0,2.43)

(0,2.37)
(0,2.35)

0.50
(0.42,1.58)

(0.43,1.57)
(0.46,1.54)

(0.49,1.51)
(0,2.42)

(0,2.42)
(0,2.33)

(0,2.25)
0.75

(0.43,1.57)
(0.43,1.57)

(0.48,1.52)
(0.53,1.47)

(0,2.41)
(0,2.41)

(0,2.30)
(0,2.16)

1.00
(0.44,1.56)

(0.44,1.56)
(0.48,1.52)

(0.57,1.43)
(0,2.38)

(0,2.38)
(0,2.28)

(0,2.07)
20

0.25
(0.43,1.57)

(0.43,1.57)
(0.46,1.54)

(0.47,1.53)
(0,2.43)

(0,2.43)
(0,2.36)

(0,2.34)
0.50

(0.44,1.56)
(0.44,1.56)

(0.48,1.52)
(0.50,1.50)

(0,2.42)
(0,2.42)

(0,2.32)
(0,2.25)

0.75
(0.44,1.56)

(0.44,1.56)
(0.49,1.51)

(0.54,1.46)
(0,2.40)

(0,2.40)
(0,2.29)

(0,2.16)
1.00

(0.45,1.55)
(0.46,1.54)

(0.50,1.50)
(0.58,1.42)

(0,2.38)
(0,2.37)

(0,2.27)
(0,2.07)
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α
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=
1

p
=

2

t 1
t 2

t 3
t 4

t 1
t 2

t 3
t 4

5
0.
25

(0
.1
1,
1.
89
)

(0
.1
1,
1.
89
)

(0
.1
4,
1.
86
)

(0
.1
6,
1.
84
)

(0
.5
2,
1.
48
)

(0
.5
2,
1.
48
)

(0
.5
3,
1.
47
)

(0
.5
5,
1.
45
)

0.
50

(0
.1
1,
1.
89
)

(0
.1
1,
1.
89
)

(0
.1
6,
1.
84
)

(0
.2
2,
1.
78
)

(0
.5
2,
1.
48
)

(0
.5
2,
1.
48
)

(0
.5
5,
1.
45
)

(0
.5
8,
1.
42
)

0.
75

(0
.1
2,
1.
88
)

(0
.1
2,
1.
88
)

(0
.1
8,
1.
82
)

(0
.2
8,
1.
72
)

(0
.5
2,
1.
48
)

(0
.5
2,
1.
48
)

(0
.5
6,
1.
44
)

(0
.6
1,
1.
39
)

1.
00

(0
.1
3,
1.
87
)

(0
.1
3,
1.
87
)

(0
.1
9,
1.
81
)

(0
.3
3,
1.
67
)

(0
.5
3,
1.
47
)

(0
.5
3,
1.
47
)

(0
.5
6,
1.
44
)

(0
.6
4,
1.
36
)

10
0.
25

(0
.0
5,
1.
95
)

(0
.0
5,
1.
95
)

(0
.0
9,
1.
91
)

(0
.1
1,
1.
89
)

(0
.5
1,
1.
49
)

(0
.5
1,
1.
49
)

(0
.5
3,
1.
47
)

(0
.5
4,
1.
46
)

0.
50

(0
.0
6,
1.
94
)

(0
.0
6,
1.
94
)

(0
.1
2,
1.
88
)

(0
.1
7,
1.
83
)

(0
.5
1,
1.
49
)

(0
.5
1,
1.
49
)

(0
.5
4,
1.
46
)

(0
.5
7,
1.
43
)

0.
75

(0
.0
7,
1.
93
)

(0
.0
7,
1.
93
)

(0
.1
4,
1.
86
)

(0
.2
3,
1.
77
)

(0
.5
2,
1.
49
)

(0
.5
2,
1.
48
)

(0
.5
5,
1.
45
)

(0
.6
0,
1.
40
)

1.
00

(0
.0
8,
1.
92
)

(0
.0
9,
1.
91
)

(0
.1
5,
1.
85
)

(0
.2
9,
1.
71
)

(0
.5
2,
1.
48
)

(0
.5
2,
1.
48
)

(0
.5
6,
1.
44
)

(0
.6
3,
1.
37
)

15
0.
25

(0
.0
4,
1.
96
)

(0
.0
4,
1.
96
)

(0
.0
8,
1.
92
)

(0
.1
0,
1.
90
)

(0
.5
0,
1.
50
)

(0
.5
0,
1.
50
)

(0
.5
2,
1.
48
)

(0
.5
3,
1.
47
)

0.
50

(0
.0
4,
1.
96
)

(0
.0
4,
1.
96
)

(0
.1
1,
1.
89
)

(0
.1
6,
1.
84
)

(0
.5
0,
1.
50
)

(0
.5
0,
1.
50
)

(0
.5
3,
1.
47
)

(0
.5
6,
1.
44
)

0.
75

(0
.0
5,
1.
95
)

(0
.0
5,
1.
95
)

(0
.1
3,
1.
87
)

(0
.2
2,
1.
78
)

(0
.5
1,
1.
50
)

(0
.5
1,
1.
49
)

(0
.5
4,
1.
46
)

(0
.5
9,
1.
41
)

1.
00

(0
.0
7,
1.
93
)

(0
.0
7,
1.
93
)

(0
.1
4,
1.
86
)

(0
.2
8,
1.
72
)

(0
.5
1,
1.
49
)

(0
.5
1,
1.
49
)

(0
.5
5,
1.
45
)

(0
.6
2,
1.
38
)

20
0.
25

(0
.0
3,
1.
97
)

(0
.0
3,
1.
97
)

(0
.0
7,
1.
93
)

(0
.0
9,
1.
91
)

(0
.4
9,
1.
51
)

(0
.4
9,
1.
51
)

(0
.5
1,
1.
49
)

(0
.5
2,
1.
48
)

0.
50

(0
.0
3,
1.
97
)

(0
.0
4,
1.
96
)

(0
.1
0,
1.
90
)

(0
.1
5,
1.
85
)

(0
.4
9,
1.
51
)

(0
.4
9,
1.
51
)

(0
.5
3,
1.
47
)

(0
.5
5,
1.
45
)

0.
75

(0
.0
5,
1.
95
)

(0
.0
5,
1.
95
)

(0
.1
2,
1.
88
)

(0
.2
1,
1.
79
)

(0
.5
0,
1.
50
)

(0
.5
0,
1.
50
)

(0
.5
4,
1.
46
)

(0
.5
9,
1.
41
)

1.
00

(0
.0
6,
1.
94
)

(0
.0
7,
1.
93
)

(0
.1
4,
1.
86
)

(0
.2
7,
1.
73
)

(0
.5
1,
1.
49
)

(0
.5
1,
1.
49
)

(0
.5
5,
1.
45
)

(0
.6
2,
1.
38
)



T
ab

le
3
:T
he

R
anges

of
λ
in

w
hich

the
suggested

shrinkage
estim

ators
T
′i(p

) s,i
=

1
,2
,3
,4

are
better

than
the

corresponding
M
M
SE

estim
ators

T
′im
s,i

=
1
,2
,3
,4:

n
α

p
=
−

2
p

=
−

1

T
1
m

T
2
m

T
3
m

T
4
m

T
1
m

T
2
m

T
3
m

T
4
m

5
0.25

(0.36,1.64)
(0.36,1.64)

(0.35,1.65)
(0.35,1.65)

(0,2)
(0,2)

(0,2.03)
(0,2.06)

0.50
(0.36,1.64)

(0.36,1.64)
(0.35,1.65)

(0.34,1.66)
(0,2)

(0,2)
(0,2.05)

(0,2.11)
0.75

(0.36,1.64)
(0.36,1.64)

(0.36,1.64)
(0.34,1.66)

(0,2)
(0,2)

(0,2.06)
(0,2.15)

1.00
(0.37,1.63)

(0.37,1.63)
(0.36,1.64)

(0.34,1.66)
(0,2)

(0,2)
(0,2.06)

(0,2.18)
10

0.25
(0.38,1.62)

(0.38,1.62)
(0.38,1.62)

(0.37,1.63)
(0,2)

(0,2)
(0,2.04)

(0,2.06)
0.50

(0.38,1.62)
(0.38,1.62)

(0.38,1.62)
(0.37,1.63)

(0,2)
(0,2)

(0,2.06)
(0,2.11)

0.75
(0.39,1.61)

(0.39,1.61)
(0.38,1.62)

(0.37,1.63)
(0,2)

(0,2)
(0,2.07)

(0,2.14)
1.00

(0.40,1.60)
(0.40,1.60)

(0.39,1.61)
(0.38,1.62)

(0,2)
(0,2)

(0,2.06)
(0,2.17)

15
0.25

(0.39,1.61)
(0.39,1.61)

(0.38,1.62)
(0.38,1.62)

(0,2)
(0,2)

(0,2.04)
(0,2.06)

0.50
(0.39,1.61)

(0.39,1.61)
(0.38,1.62)

(0.38,1.62)
(0,2)

(0,2)
(0,2.06)

(0,2.10)
0.75

(0.40,1.60)
(0.40,1.60)

(0.39,1.61)
(0.38,1.62)

(0,2)
(0,2)

(0,2.07)
(0,2.14)

1.00
(0.41,1.59)

(0.40,1.60)
(0.40,1.60)

(0.39,1.61)
(0,2)

(0,2)
(0,2.06)

(0,2.16)
20

0.25
(0.39,1.61)

(0.39,1.61)
(0.39,1.61)

(0.39,1.61)
(0,2)

(0,2)
(0,2.04)

(0,2.06)
0.50

(0.39,1.61)
(0.39,1.61)

(0.39,1.61)
(0.38,1.62)

(0,2)
(0,2)

(0,2.06)
(0,2.10)

0.75
(0.40,1.60)

(0.40,1.60)
(0.39,1.61)

(0.39,1.61)
(0,2)

(0,2)
(0,2.07)

(0,2.14)
1.00

(0.41,1.59)
(0.41,1.59)

(0.40,1.60)
(0.39,1.61)

(0,2)
(0,2)

(0,2.06)
(0,2.16)



T
ab
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3
:
C
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:
n

α
p

=
1

p
=

2

T
1
m

T
2
m

T
3
m

T
4
m

T
1
m

T
2
m

T
3
m

T
4
m

5
0.
25

(0
.2
3,
1.
77
)

(0
.2
3,
1.
77
)

(0
.2
2,
1.
78
)

(0
.2
2,
1.
78
)

(0
.5
6,
1.
44
)

(0
.5
6,
1.
44
)

(0
.5
6,
1.
44
)

(0
.5
5,
1.
45
)

0.
50

(0
.2
3,
1.
77
)

(0
.2
3,
1.
77
)

(0
.2
2,
1.
78
)

(0
.2
1,
1.
79
)

(0
.5
6,
1.
44
)

(0
.5
6,
1.
44
)

(0
.5
6,
1.
44
)

(0
.5
5,
1.
45
)

0.
75

(0
.2
4,
1.
76
)

(0
.2
4,
1.
76
)

(0
.2
2,
1.
78
)

(0
.2
0,
1.
80
)

(0
.5
6,
1.
44
)

(0
.5
6,
1.
44
)

(0
.5
6,
1.
44
)

(0
.5
5,
1.
45
)

1.
00

(0
.2
5,
1.
75
)

(0
.2
5,
1.
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Abstract
In this paper, we have suggested a new randomized response model
and its properties have been studied. The proposed model is found
to be more efficient than the randomized response models studied by
Bar – Lev et al. (2004) and Eichhorn and Hayre (1983). The relative
efficiency of the proposed model has been studied with respect to the
Bar – Lev et al.’s (2004) and Eichhorn and Hayre’s (1983) models.
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1. Introduction

Warner (1965) introduced a randomized response (RR) model to estimate a population
proportion for sensitive attribute such as homosexuality, drug addiction or induced abor-
tion. Greenberg et al. (1971) further made an extension of RR technique for quantitative
variables. The RR technique has spawned a vast literature which has been reviewed by
Fox and Tracy (1986), Chaudhuri and Mukerjee (1988) and scheers (1992). Some more
developments are: Kerkvliet (1994), Gupta and Thornton (2002), Singh and Mathur
(2005), Bar – Lev et al. (2005), Odumade and Singh (2009), Chaudhuri and Christofides
(2013), Singh and Tarray (2013, 2014, 2015), Hussain et al (2015), Tarray and Singh

∗School of Studies in Statistics, Vikram University Ujjain - M.P. - India-456010,
†Department of Computer Science and Engineering, Islamic University of Science and Tech-

nology – Awantipora – Pulwama – Kashmir – India – 192122,
Email: tanveerstat@gmail.com Corresponding Author.



594

(2015) and Tarray et al. (2015) etc. Eichhorn and Hayre (1983) suggested a multi-
plicative model to collect information on sensitive quantitative variables like income, tax
evasion, amount of drug used etc. For more examples, the reader is referred to Ahsan-
ullah and Eichhorn (1988). According to Eichhorn and Hayre (1983), each respondent
in the sample is requested to report the scrambled response Zi = SYi, where Yi is the
real value of the sensitive quantitative variable, and S is the scrambling variable whose
distribution is assumed to be known. In other words E(S) = θ andV (S) = γ2 are as-
sumed to be known and positive, where E and V denote the expected value and variance
over the randomization device. Then an estimator of the population mean µy under the
simple random sampling with replacement (SRSWR) due to Eichhorn and Hayre (1983)
is given by:

(1.1) µ̂Y (EH) =
1

n

n∑
i=1

Zi
θ

with variance

(1.2) V (µ̂Y (EH)) =
µ2
Y

n
[C2
y + C2

γ(1 + C2
y)],

where C2
γ =

γ2

θ2
and Cy =

σy
µY

.We shall now discuss a randomized response model studied

by Bar – Lev et al. (2004), say the BBB model. The distribution of the responses is
given by:

(1.3) Zi = YiS with probability (1− P )
Yi with probability P .

In other words, each respondent is requested to rotate a spinner unobserved by the
interviewer, and if the spinner stops in the shaded area, then he/she is requested to
report the real response on the sensitive variable, say Yi; and if the spinner stops in the
non shaded area, then the respondent is required to report the scrambled response, say
YiS, where S is the scrambled variable. Let P be the radial non shaded area of the
spinner as shown in Figure 1.
An unbiased estimator of the population mean Y is given by:

(1.4) µ̂Y (BBB) =
1

n[(1− P )θ + P ]

n∑
i=1

Zi

with variance under SRSWR sampling given by

(1.5) V [µ̂Y (BBB)] =
µ2
Y

n
[C2
y + (1 + C2

y)C2
P ],

where

(1.6) C2
P =

(1− P )θ2(1 + C2
γ) + P

[(1− P )θ + P ]2
− 1.

When the coefficient of variation Cy of the study variable is known, Searls (1964) was
the first to consider the problem of estimating the population mean µy in the absence of
scrambled responses. Later on, with known coefficient of variation CY of the study vari-
able Y various authors including Khan (1967), Govindarajulu and Sahai (1972), Gleser
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Figure 1. Bar - lev, Bobovitch and Boukai (2004; BBB) ran-
domized response device

and Healy (1976), Sen (1979), Tripathi et al. (1983) and Singh and Katiyar (1988) have
considered the problem of estimating the population mean µY of the study variable Y .
Sen (1978) was first to use the moments ratios of the study variable Y in estimating
the population mean µY . Upadhyaya and Singh (1984) have considered the problem
of estimating the population mean µY using moments ratios. Singh and Mathur (2005)
and Hussain et al. (2013) have used the coefficient of variation CY of the study variable
Y at the estimation stage in presence of scrambled responses. Singh and Chen (2009)
have used the higher order moments of the scrambling variable at the estimation stage
for estimating the proportion of a potentially sensitive attribute in survey sampling.
In this paper we have suggested a new randomized response model and its properties
are studied. It has been shown that the resulting (optimum) randomized response model
depends on the moments ratios such as Cγ (coefficient of variation), β1(S) (coefficient
of skewness) and β2(S) (coefficient of kurtosis) of the scrambling variable S. We have
proved the superiority of the proposed randomized response model over Eichhorn and
Hayre (1983) and Bar – Lev et al. (2004) randomized response models both theoretically
and empirically.

2. Suggested Randomized Response model

In the proposed randomized response model, we request an individual to rotate a spinner
as shown in Figure 2.
In the proposed randomized response model, the distribution of the response is given by

Zi = Yi[(1− k)S +Kθ(
S − θ
γ

)2] with probability (1− P )

Yi with probability P
.

The reported response Zi can also be expressed as
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(2.1) Zi = Yi[(1− k)S +KθS∗2] with probability (1− P )
Yi with probability P .

Figure 2. Spinner of the proposed randomized response model

where k is assumed known constant [see Odumade and Singh (2009)] and S∗ =
(S − θ)
γ

is the standardized scrambling variable.
In other words, each respondent is requested to rotate a spinner unobserved by the in-
terviewer, and if the spinner stops in the shaded area, then the respondent is requested
to report the real response on the sensitive variable, say Yi; and if the spinner stops in
the non shaded area, then the respondent is required to report the scrambled response,
say Yi[(1− k)S+KθS∗2]. Let P be the proportion of the shaded area of the spinner and
(1− P ) be the non shaded area of the spinner as shown in Figure 2.
For estimating the population mean µY of the real response on the sensitive quantitative
variable Y , a simple random and with replacement sample (SRSWR) of n respondents
is selected from the population. Then , we have the following theorem.
Theorem 2.1 An unbiased estimator of the population mean µY is given by

(2.2) µ̂Y =
Z̄

[(1− P )θ + P ]

Proof- We have from (2.1),
E(Zi) = µY [(1− P )θ + P ]
Hence, the proposed estimator for µY , based on a random sample of the randomized

response; Z1, Z2, ..., Zn is µ̂Y (HT ) =
Z̄

[(1− P )θ + P ]
is unbiased estimator of the popula-

tion mean µY . Thus the theorem is proved.
The variance of the proposed estimator µ̂Y (HT ) is given in the following theorem.
Theorem 2.2 The variance of µ̂Y (HT ) is given by

V (µ̂Y (HT )) =
µ2
Y

n

[
C2
y + (1 + C2

y)

{
C2
P+

(1− P )θ2[k2(∆(S) + (
√
β1(S)− Cγ)2)− 2kCγ(Cγ −

√
β1(S)]

[P + θ(1− P )]2

}]
(2.3)

where ∆(S) = [β2(S)− β1(S)− 1], β2(S) =
µ4(S)

γ4
, β1(S) =

µ2
3(S)

γ6
,

µ3(S) = E(S − θ)3 and µ4(S) = E(S − θ)4.
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Proof-

(2.4) V (µ̂Y (HT )) = V (Z̄) =
V (Zi)

n[P + θ(1− P )]2

The variance of Zi is obtained as follows:
V (Zi)=E(Z2

i )− (E(Zi))
2

=(1− p)E[(1− k)2S2 + θ2k2S∗4 + 2k(1− k)θSS∗2]

E(Y 2
i ) + PE(Y 2

i )− (E(Zi))
2

=µ2
Y [(1 + C2

y)[P + (1− P )θ2(1 + C2
γ)] + (1 + C2

y)θ2(1− P )

[k2(β2(S)− 2Cγ
√
β1(S) + C2

γ − 1)− 2kCγ(Cγ −
√
β1(S))

− (P + θ(1− P ))2]


Thus, the variance of µ̂Y (HT )is given by

V (µ̂Y (HT )) =
µ2
Y

n
[C2
y + (1 + C2

y)[C2
P

+
(1− P )θ2[k2[∆(S) + (Cγ −

√
β1(S))2]− 2kCγ(Cγ −

√
β1(S))]

[P + θ(1− P )]2
]

which proves the theorem.
Theorem 2.3 The optimum value of k and the minimum variance of µ̂Y (HT ) are respec-
tively given by

(2.5) kopt =
Cγ(Cγ −

√
β1(S))

[∆(S) + (Cγ −
√
β1(S))2]

and

min.V (µ̂Y (HT )) =
µ2
Y

n
[C2
y + (1 + C2

y)C2
P−

(1 + C2
y)θ2(1− P )C2

γ(Cγ −
√
β1(S))2

[∆(S) + (Cγ −
√
β1(S))2](P + θ(1− P ))2

](2.6)

(2.7) min.V (µ̂Y (HT )) = V (µ̂Y (BBB))−
µ2
Y (1 + C2

y)θ2(1− P )C2
γ(Cγ −

√
β1(S))2

n[∆(S) + (Cγ −
√
β1(S))2](P + θ(1− P ))2

where V (µ̂Y (BBB)) is given by (1.5).
proof - Differentiating (2.3) with respect to k and equating to zero, we get the optimum
value of k as

kopt =
Cγ(Cγ −

√
β1(S))

[∆(S) + (Cγ −
√
β1(S))2]

Substitution of kopt in (2.3) yields the minimum variance of µ̂Y (HT ) as given in (2.6) (or
(2.7)).
This completes the proof of the theorem.
Now substituting the value of kopt in place of k in (2.1) we get the distribution of the
responses as

Taking expectation of(2.8), we have
E(Zoi) = µY [P + θ(1− P )].



598

(2.8) Zoi = Yi[(1− kopt)S +KoptθS
∗2] with probability (1− P )

Yi with probability P .

Thus the unbiased estimator of the population mean µy based on Zoi is given by

(2.9) µ̂Y (HTO) =
Z̄o

[(1− P )θ + P ]
=

n∑
i=1

Z̄oi
n

[(1− P )θ + P ]

it can be easily shown that the variance of µ̂Y (HTO) is:

(2.10) V (µ̂Y (HTO)) = min.V (µ̂Y (HT ))

where min.V (µ̂Y (HT )) is given by (2.6) (or(2.7)).
It is well known that β2(S) > β1(S) + 1 [Kendal and Stuart (1969)]. Hence the optimum
estimator µ̂Y (HTO) is always more efficient than the Bar – Lev et al.’s (2004) estimator
µ̂Y (BBB) except for population with

√
β1(S) = Cγ for which µ̂Y (HTO) is as efficient as

µ̂Y (BBB) .

3. Efficiency Comparison

(i) Comparison of the proposed optimum estimator µ̂Y (HTO) (i.e. when the
scalar ‘k′ coincides exactly with that of optimum value kopt of the scalar k)
with Bar – Lev et al.’s (2004) estimatorµ̂Y (BBB) .
From (1.5) and (2.7), we have

V (µ̂Y (BBB))−min.V (µ̂Y (HT ))[= V (µ̂Y (HTO))] =

µ2
Y (1 + C2

y)θ2(1− P )C2
γ(Cγ −

√
β1(S))2

n[∆(S) + (Cγ −
√
β1(S))2](P + θ(1− P ))2

> 0(3.1)

which clearly shows that the proposed optimum estimator µ̂Y (HTO) is better than the
estimatorµ̂Y (BBB) due to Bar – Lev et al. (2004).
Bar – Lev et al. (2004) have proved that for all Pε(0, 1):

(3.2) V (µ̂Y = Ȳ ) < V (µ̂Y (BBB)) < V (µ̂Y (EH)).

If the distribution of scrambling variables S satisfies

(3.3) 0 < θ <
2θ2(1 + C2

γ)

[1 + θ2(1 + C2
γ)]

where

µ̂Y = Ȳ =

n∑
i=1

Yi

n
.

Thus, under the condition (3.3) and (3.1) we have the following inequality:

(3.4) V (µ̂Y (HTO)) < V (µ̂Y (BBB)) < V (µ̂Y (EH)).



599

It follows from (3.4) that the proposed optimum estimator µ̂Y (HTO) is more efficient
than the Eichhorn and Hayre (1983) estimator µ̂Y (EH) as long as the condition (3.3) is
satisfied.
(ii) Comparison of the proposed estimator µ̂Y (HT ) with Bar – Lev et al.’s
(2004) estimatorµ̂Y (BBB) when the value of k does not coincide exactly with
its optimum value kopt in (2.5).
From (1.5) and (2.3), we have

(3.5) V (µ̂Y (HT )) = V (µ̂Y (BBB)) +
µ2
Y (1 + C2

y)θ2(1− P )

n(P + θ(1− P ))2
[k2A− 2kB],

where
A = [∆(S) + (

√
β1(S)− Cγ)2] and B = Cγ(Cγ −

√
β1(S))

We note that

V (µ̂Y (HT ))− V (µ̂Y (BBB)) =
µ2
Y (1 + C2

y)θ2(1− P )

n(P + θ(1− P ))2
[k2A− 2kB]

which is negative if

k2A− 2kB < 0

i.e. if

(3.6) |k − kopt| < |kopt|

i.e. if

(3.7) either0 < k < 2koptor2kopt < k < 0

or equivalently,

(3.8) min.(0, 2kopt) < k < max.(0, 2kopt),

where kopt =
B

A
Thus, the proposed estimator proposed estimator (µ̂Y (HT )) is more efficient than Bar –
Lev et al.’s (2004) estimator (µ̂Y (BBB)) as long as the condition (3.8) is satisfied.
Now, in the following sections we shall discuss our general results in the context of normal
and waiting time distributions.

4. Normal Distribution

Let the scrambling variable S have a normal distribution with mean θ and variance γ2

i.e.S ∼ N(θ, γ2) . For this distribution
√
β1(S) = 0 and

√
β2(S) = 3 ⇒ ∆(S) = 2.Thus

the optimum value of kopt in (2.5) and the minimum variance (or the variance of the
optimum estimator µ̂Y (HTO) in (2.6)(or(2.7)) respectively reduce to:

(4.1) kopt =
C2
γ

(2 + C2
γ)

and

(4.2) min.V (µ̂Y (HT )) =
µ2
y

n
[C2
y+(1+C2

y)C2
P−

(1 + C2
y)θ2(1− P )C4

γ

(2 + C2
γ)(P + θ(1− P ))2

] = V (µ̂Y (HTO))
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Here µ̂Y (HTO) is defined by

(4.3) µ̂Y (HTO) =

n∑
i=1

Z∗oi

n

where Z∗oi is defined by

(4.4) Z∗oi = Yi[
2S

(2 + C2
γ)

+
θC2

γS
∗2

(2 + C2
γ)

] with probability (1− P )

Yi with probability P .

It is interesting to note that the optimum µ̂Y (HTO) in (4.3) can be used in practice as
the coefficient of variation Cγ is known without error.

5. Numerical Illustration using Normal Distribution

To judge the merit of the suggested optimum estimator over Eichhorn and Hayre (1983)
estimator µ̂Y (EH) and the Bar – Lev et al. (2004) estimator µ̂Y (BBB) , we have computed
the percent relative efficiency (PRE) of the optimum estimator µ̂Y (HTO) with respect to
the estimators µ̂Y (BBB) and µ̂Y (EH) by using the formulae:

(5.1) PRE(µ̂Y (HTO), µ̂Y (EH)) =
[C2
y + C2

γ(1 + C2
y)]

[C2
y + C2

P (1 + C2
y)−A1]

× 100.

(5.2) PRE(µ̂Y (HTO), µ̂Y (BBB)) =
[C2
y + C2

P (1 + C2
y)]

[C2
y + C2

P (1 + C2
y)−A1]

× 100.

for different values of Cy, Cγ , P, θ,
where

(5.3) A1 =
[(1 + C2

y)θ2(1− P )C4
γ ]

[2 + C2
γ [P + θ(1− P )]2]

× 100.

Findings are displayed in Tables 1 and 2; and the graphical representation is also given
in Figure 3.
The values of PRE(µ̂Y (HTO), µ̂Y (EH)) and PRE(µ̂Y (HTO), µ̂Y (BBB)) are much greater
than 100 as shown by Tables 1 and 2. It follows that the proposed optimum estimator
µ̂Y (HTO) is more efficient than Eichhorn and Hayre’s (1983) estimator µ̂Y (EH) and Bar
– Lev et al.’s (2004) estimator µ̂Y (BBB) with considerable gain in efficiency. These facts
can be also seen from Figure 3. Thus, based on our numerical results, the use of the
proposed estimator µ̂Y (HTO) is recommended for its use in practice.
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Figure 3. Graphical representation of the suggested optimum
estimator over Eichhorn and Hayre (1983) estimator µ̂Y (EH)

and the Bar – Lev et al. (2004) estimator µ̂Y (BBB).

6. Waiting Time Distribution

We consider the population, where scrambling variable S follows the waiting time distri-
bution (or distribution of intervals between events in a Poisson process) for which

(6.1) f(s) = 1− exp(− s
θ

), 0 ≤ s ≤∝, θ > 0

so that

(6.2) dF (s) = exp(− s
θ

)
ds

θ

and E(S) = θ, V (S) = θ2, µ3(S) = 2θ3 and µ4(S) = 9θ4

where Cγ = 1,
√
β1(S) = 2, β2(S) = 9,∆(S) = 4. Hence, substituting the values of Cγ ,√

β1(S), β2(S)and∆(S)in(2.5)and(2.6), we have

(6.3) kopt = −1

5
,

and

(6.4) min.V (µ̂Y (HT )) =
µ2
y

n
[C2
y + (1 + C2

y)C2
P −

(1 + C2
y)θ2(1− P )

5(P + θ(1− P ))2
] = V (µ̂Y (HTO))

Here the optimum estimator µ̂Y (HTO) is defined by

(6.5) µ̂Y (HTO) =

n∑
i=1

Z∗∗oi

n
where Z∗∗oi is defined by

with S∗ =
(S − θ)

θ
.
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(6.6) Z∗∗oi = Yi[
6

5
S − 1

5
θS∗2] with probability (1− P )

Yi with probability P .

Thus in this case we note that the optimum estimatorµ̂Y (HTO) in (6.5) depends on the
known quantity θ only.

7. Numerical Illustration using Waiting Time Distribution

To have the tangible idea about the performance of the envisaged optimum estimator
µ̂Y (HTO) over Eichhorn and Hayre (1983) estimator µ̂Y (EH) and the Bar – Lev et al.
(2004) estimator µ̂Y (BBB) , we have computed the percent relative efficiency (PRE) of
the optimum estimator µ̂Y (HTO) with respect to the estimators µ̂Y (BBB) and µ̂Y (EH) by
using the formulae:

(7.1) PRE(µ̂Y (HTO), µ̂Y (EH)) =
[C2
y + C2

γ(1 + C2
y)]

[C2
y + C2

P (1 + C2
y)−A2]

× 100.

(7.2) PRE(µ̂Y (HTO), µ̂Y (BBB)) =
[C2
y + C2

P (1 + C2
y)]

[C2
y + C2

P (1 + C2
y)−A2]

× 100.

for different values of Cy, Cγ , P, θ,
where

(7.3) A2 =
[(1 + C2

y)θ2(1− P )

[5[P + θ(1− P )]2]
× 100.

Findings are displayed in Tables 3 and 4; and the graphical representation is also given
in Figure 4.
Tables 3 and 4 demonstrate that the values of the percent relative efficiency are greater
than 100 for all parameter values tabled. This shows the superiority of the optimum
estimator µ̂Y (HTO) over than Eichhorn and Hayre’s (1983) estimator µ̂Y (EH) and Bar –
Lev et al.’s (2004) estimator µ̂Y (BBB) . Graphical representation in Figure 4 also depicts
the similar inference. Thus, based on our numerical illustrations, our recommendation is
to prefer the proposed estimator µ̂Y (HTO) in practice.

8. Discussion

In this article, we have suggested a new randomized response model and its properties
are studied. It has been shown that the resulting (optimum) randomized response model
depends on the moments ratios of the scrambling variable S. We have proved the supe-
riority of the proposed randomized response model over Eichhorn and Hayre (1983) and
Bar – Lev et al.’s (2004) randomized response models both theoretically and empirically.
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Figure 4. Graphical representation of the suggested optimum
estimator over Eichhorn and Hayre (1983) estimator µ̂Y (EH)

and the Bar – Lev et al. (2004) estimator µ̂Y (BBB).
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Table 1. The PRE(µ̂Y (HTO), µ̂Y (EH))

θ P Cγ Cy PRE

20.00 0.10 5.00 0.10 1166.50
40.00 0.10 5.55 0.25 1378.32
60.00 0.10 6.00 0.50 1505.49
80.00 0.10 6.50 0.75 1649.02
20.00 0.20 5.00 0.10 1005.22
40.00 0.20 5.55 0.25 1181.50
60.00 0.20 6.00 0.50 1298.17
80.00 0.20 6.50 0.75 1432.54
20.00 0.30 5.00 0.10 857.59
40.00 0.30 5.55 0.25 1000.69
60.00 0.30 6.00 0.50 1104.65
80.00 0.30 6.50 0.75 1227.07
20.00 0.40 5.00 0.10 722.02
40.00 0.40 5.55 0.25 834.03
60.00 0.40 6.00 0.50 923.61
80.00 0.40 6.50 0.75 1031.80
20.00 0.50 5.00 0.10 597.20
40.00 0.50 5.55 0.25 679.95
60.00 0.50 6.00 0.50 753.89
80.00 0.50 6.50 0.75 845.99
20.00 0.60 5.00 0.10 482.12
40.00 0.60 5.55 0.25 537.15
60.00 0.60 6.00 0.50 594.50
80.00 0.60 6.50 0.75 668.99
20.00 0.70 5.00 0.10 376.14
40.00 0.70 5.55 0.25 404.56
60.00 0.70 6.00 0.50 444.59
80.00 0.70 6.50 0.75 500.24
20.00 0.80 5.00 0.10 279.54
40.00 0.80 5.55 0.25 281.53
60.00 0.80 6.00 0.50 303.54
80.00 0.80 6.50 0.75 339.30
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Table 2. The PRE(µ̂Y (HTO), µ̂Y (BBB))

θ P Cγ Cy PRE

20.00 0.10 5.00 0.10 1286.41
40.00 0.10 5.55 0.25 1527.41
60.00 0.10 6.00 0.50 1670.15
80.00 0.10 6.50 0.75 1829.85
20.00 0.20 5.00 0.10 1234.45
40.00 0.20 5.55 0.25 1467.05
60.00 0.20 6.00 0.50 1616.15
80.00 0.20 6.50 0.75 1784.75
20.00 0.30 5.00 0.10 1186.85
40.00 0.30 5.55 0.25 1411.58
60.00 0.30 6.00 0.50 1565.74
80.00 0.30 6.50 0.75 1714.95
20.00 0.40 5.00 0.10 11.43.09
40.00 0.40 5.55 0.25 1360.44
60.00 0.40 6.00 0.50 1518.57
80.00 0.40 6.50 0.75 1701.27
20.00 0.50 5.00 0.10 1102.71
40.00 0.50 5.55 0.25 1313.14
60.00 0.50 6.00 0.50 1474.34
80.00 0.50 6.50 0.75 1662.55
20.00 0.60 5.00 0.10 1065.34
40.00 0.60 5.55 0.25 1269.25
60.00 0.60 6.00 0.50 1432.78
80.00 0.60 6.50 0.75 1625.65
20.00 0.70 5.00 0.10 1030.65
40.00 0.70 5.55 0.25 1228.42
60.00 0.70 6.00 0.50 1393.65
80.00 0.70 6.50 0.75 1590.44
20.00 0.80 5.00 0.10 998.36
40.00 0.80 5.55 0.25 1190.34
60.00 0.80 6.00 0.50 1356.73
80.00 0.80 6.50 0.75 1556.80
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Table 3. The PRE(µ̂Y (HTO), µ̂Y (EH))

θ P Cγ Cy PRE

20.00 0.05 0.40 0.10 1112.83
40.00 0.05 0.50 0.25 191.56
60.00 0.05 0.60 0.50 133.67
80.00 0.05 0.70 0.75 118.70
20.00 0.06 0.40 0.10 683.47
40.00 0.06 0.50 0.25 179.20
60.00 0.06 0.60 0.50 129.80
80.00 0.06 0.70 0.75 116.41
20.00 0.07 0.40 0.10 490.56
40.00 0.07 0.50 0.25 168.14
60.00 0.07 0.60 0.50 126.07
80.00 0.07 0.70 0.75 114.17
20.00 0.08 0.40 0.10 380.96
40.00 0.08 0.50 0.25 158.18
60.00 0.08 0.60 0.50 122.47
80.00 0.08 0.70 0.75 111.97
20.00 0.09 0.40 0.10 310.27
40.00 0.09 0.50 0.25 149.15
60.00 0.09 0.60 0.50 119.01
80.00 0.09 0.70 0.75 109.80
20.00 0.10 0.40 0.10 260.91
40.00 0.10 0.50 0.25 140.94
60.00 0.10 0.60 0.50 115.66
80.00 0.10 0.70 0.75 107.68
20.00 0.11 0.40 0.10 224.48
40.00 0.11 0.50 0.25 133.44
60.00 0.11 0.60 0.50 112.44
80.00 0.11 0.70 0.75 105.59
20.00 0.12 0.40 0.10 196.49
40.00 0.12 0.50 0.25 126.56
60.00 0.12 0.60 0.50 109.32
80.00 0.12 0.70 0.75 103.54
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Table 4. The PRE(µ̂Y (HTO), µ̂Y (BBB))

θ P Cγ Cy PRE

20.00 0.05 0.40 0.10 1471.69
40.00 0.05 0.50 0.25 230.24
60.00 0.05 0.60 0.50 150.17
80.00 0.05 0.70 0.75 129.36
20.00 0.06 0.40 0.10 950.47
40.00 0.06 0.50 0.25 223.07
60.00 0.06 0.60 0.50 149.21
80.00 0.06 0.70 0.75 129.09
20.00 0.07 0.40 0.10 716.29
40.00 0.07 0.50 0.25 216.65
60.00 0.07 0.60 0.50 148.29
80.00 0.07 0.70 0.75 128.83
20.00 0.08 0.40 0.10 583.23
40.00 0.08 0.50 0.25 210.86
60.00 0.08 0.60 0.50 147.41
80.00 0.08 0.70 0.75 128.57
20.00 0.09 0.40 0.10 497.42
40.00 0.09 0.50 0.25 205.62
60.00 0.09 0.60 0.50 146.55
80.00 0.09 0.70 0.75 128.32
20.00 0.10 0.40 0.10 437.49
40.00 0.10 0.50 0.25 200.86
60.00 0.10 0.60 0.50 145.73
80.00 0.10 0.70 0.75 128.07
20.00 0.11 0.40 0.10 393.27
40.00 0.11 0.50 0.25 196.50
60.00 0.11 0.60 0.50 144.93
80.00 0.11 0.70 0.75 127.83
20.00 0.12 0.40 0.10 359.30
40.00 0.12 0.50 0.25 192.51
60.00 0.12 0.60 0.50 144.17
80.00 0.12 0.70 0.75 127.59
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1. Introduction
The Exponential distribution, because of its memory-less property, has many real life

applications in testing lifetimes of objects where lifetimes do not depend upon their ages.
There are many electronic devices whose failure rate does not depend on their ages,
therefore, the Exponential distribution is suitable to model the lifetimes. Generally, in
lifetime modeling, population is supposed to be composed of more than one subpopu-
lations mixed by unknown mixing proportions. In our study, we take the data from a
population which is characterized by three different members of the Exponential family
of distributions. McCullagh (1994) derived some conditions under which quadratic and
polynomial Exponential models can be generated as mixtures of the Exponential models.
Raqab and Ahsanullah (2001) discussed the location and scale parameters of generalized
Exponential distribution based on order statistic. Hebert and Scariano (2005) compared
the location estimators for the Exponential mixtures under Pitman’s measure of close-
ness. Ali et al. (2005) studied the Bayes estimators of the Exponential distribution
and Abu-Taleb et al. (2007) presented the Bayesian estimation of lifetime parameters of
Exponential distributions when survival time and censoring time are both exponentially
distributed.

The use of mixture models in situations where data are given only for overall mixture
distributions is known as direct application of the mixture models. Li (1983) and Li
and Sedransk (1982, 1988) discussed different features of mixture models and defined
two types of mixture models. The mixture of the probability density functions from the
same family is known as type-I mixture model and type-II mixture model is defined as a
mixture of density functions from several families. In this study, the direct application of
mixture model (with the unknown component and mixing proportion parameters of the
3-component mixture of Exponential distributions) is considered under type-I mixture
modeling.

Due to the development of advanced computational facilities, researchers are now
able to find the Bayes estimates, infer and predict about complex systems such as mix-
ture models. With the provision of these computational facilities, the Bayesian tech-
nique to analyze a 3-component mixture model has developed the interest among many
researchers. The posterior distribution, which is obtained when prior information is
combined with likelihood, is the workbench of Bayesian inference. Thus, the prior in-
formation, a subjective assessment by an expert before the data are actually gathered,
is very important and necessary for Bayesian inference.In this study, the Bayesian anal-
ysis of a 3-component mixture of Exponential distributions using the non-informative
(uniform and Jeffreys’) priors and the informative prior (IP) under squared error loss
function (SELF), precautionary loss function (PLF) and DeGroot loss function (DLF) is
considered.

There are many fields such as engineering, biological sciences, physical sciences and
social sciences where mixture models have been used quite effectively. Most of the re-
searchers worked on the Bayesian analysis of 2-component mixture models. For example,
Sinha (1998) used the Bayesian counterpart of the maximum likelihood estimates of the
2-component mixture model considered by Mendenhall and Hader (1958). Saleem and
Aslam (2008) discussed the use of the informative and the non-informative priors for
Bayesian analysis of the 2-component mixture of Rayleigh distributions. Saleem et al.
(2010) presented the Bayesian analysis of the 2-component mixture of Power distribu-
tions using the complete and censored data. Kazmi et al. (2012) developed the Bayesian
analysis for the 2-component mixture of Maxwell distributions.
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In real life applications, most of the times, it is not suitable to continue the testing
procedure until failure of the last object under testing. In such situations, censored sam-
ples are observed. Censoring is an important and valuable aspect of lifetime applications.
A valuable account on censoring is given in Romeu (2004), Gijbels (2010) and Kalbfleisch
and Prentice (2011). In this paper, an ordinary type-I right censoring is used with fixed
life-test termination time for all objects.

The rest of the paper is organized as follows. In Section 2, the 3-component mixture
of Exponential distributions is presented. Posterior distributions using the uniform prior
(UP), the Jeffreys’ prior (JP) and the informative prior (IP) are derived in Section
3. The Bayes estimators and posterior risks using the UP, the JP and the IP under
SELF, PLF and DLF are presented in Sections 4, 5 and 6, respectively. The elicitation
of hyperparameters is described in Section 7. The limiting expressions are derived in
Section 8. A simulation study and real data example are discussed in Sections 9 and 10,
respectively. Finally, the conclusion of the study is given in Section 11.

2. 3-component mixture of exponential distributions
If X is exponentially distributed with parameter θm, its probability density function

is given as:

(2.1) fm (x; θm) = θm exp (−θm x) , x ≥ 0, θm> 0, m = 1, 2, 3.

According to Barger (2006) and Strelec and Stehlk (2012), a finite 3-component mixture
of Exponential distributions with unknown mixing proportions p1 and p2 is defined as:

(2.2) f (x) = p1 f1 (x) + p2 f2 (x) + (1− p1 − p2) f3 (x) , p1, p2 ≥ 0, p1 + p2 ≤ 1

f (x; θ1, θ2, θ3, p1, p2) = p1 θ1 exp (−θ1 x) + p2 θ2 exp (−θ2 x)

+ (1− p1 − p2) θ3 exp (−θ3 x)(2.3)

As cumulative distribution function of the random variable X is given by:

(2.4) Fm (x) = 1− exp (−θm x) , m = 1, 2, 3,

the cumulative distribution function of 3-component mixture distribution is defined as:

(2.5) F (x) = p1 F1 (x) + p2 F2 (x) + (1− p1 − p2) F3 (x)

(2.6) F (x) = 1− p1 exp (−θ1 x)− p2 exp (−θ2 x)− (1− p1 − p2) exp (−θ3 x)

3. The posterior distribution using the UP, the JP and the IP
The posterior distributions of parameters given data x are derived using the UP, the

JP and the IP.

3.1. The likelihood function. Suppose n units are used in a life testing experiment
with the 3-component mixture modeling. Let r out of n units fail before fixed test termi-
nation time t and the remaining n− r units are still working. According to Mendenhall
and Hader (1958), there are many practical situations in which the failing objects can be
pointed out easily as subset of subpopulation-1, subpopulation-2or subpopulation-3. Out
of r units, suppose r1, r2 and r3 units belong to subpopulation-1, subpopulation-2 and
subpopulation-3,respectively,such that r = r1 + r2 + r3. Now, define xlk, 0 < xlk ≤ t, as
the failure time of k th (k = 1, 2, · · · , rl) unit belong to l th (l = 1, 2, 3) subpopulation.
Thus, the likelihood function of the 3-component mixture model for the random sample
vector x is given as(cf. Everitt and Hand, 1981):
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L (ψ |x ) ∝

{
r1∏
k=1

p1 f1 (x1k)

}{
r2∏
k=1

p2 f2 (x2k)

}{
r3∏
k=1

(1− p1 − p2) f3 (x3k)

}
{1− F (t)}n−r(3.1)

L (ψ |x ) ∝ θr11 θr22 θr33

[
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)

exp

{
−θ1

(
nt− rt− it+

r1∑
k=1

x1k

)}

exp

{
−θ2

(
it− jt+

r2∑
k=1

x2k

)}
exp

{
−θ3

(
jt+

r3∑
k=1

x3k

)}
pn−r−i+r11 pi−j+r22 (1− p1 − p2)j+r3

]
,(3.2)

where ψ = (θ1, θ2, θ3, p1, p2) and x= (x11, ..., x1r1 , x21, ..., x2r2 , x31, ..., x3r3).

3.2. The posterior distribution using the UP. When no or little prior information
is given, usually, the non-informative prior is assumed to be the UP. Bayes (1763), de
Laplace (1820) and Geisser (1984) proposed that one may take the UP for the unknown
parameters ψ = (θ1, θ2, θ3, p1, p2). Following Bayes (1763), de Laplace (1820) and
Geisser (1984), UPs over the intervals (0, ∞) and (0, 1) are taken for the parameters (
θ1, θ2 and θ3 ) of Exponential distributions and for the mixing proportions ( p1 and p2 ),
respectively. With these settings, joint prior distribution of the parameters θ1, θ2, θ3, p1

and p2, as defined by Saleem (2010), is given by:

(3.3) π1 (ψ) ∝ 1; θ1, θ2, θ3 > 0, p1, p2 ≥ 0, p1 + p2 ≤ 1.

The joint posterior distribution of parameters θ1, θ2, θ3, p1 and p2 given data x, using
the UP is defined as:

(3.4) g1 (ψ |x ) =
L (ψ |x )π1 (ψ)∫

ψ
L (ψ |x )π1 (ψ) dψ

g1 (ψ |x ) =
1

E1θ
1−A11
1 θ1−A21

2 θ1−A31
3

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
exp (−B11θ1)×

exp (−B21θ2) exp (−B31θ3) pA01−1
1 pB01−1

2 (1− p1 − p2)C01−1,(3.5)

where A11 = r1 + 1, A21 = r2 + 1, A31 = r3 + 1, B11 = nt − rt − it +
∑r1
k=1 x1k,

B21 = it− jt+
∑r2
k=1 x2k, B31 = jt+

∑r3
k=1 x3k, A01 = n− r − i+ r1 + 1, B01 = i− j +

r2 + 1, C01 = j + r3 + 1, E1 = Γ (A11) Γ (A21) Γ (A31)
∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i
j

)
×

B (A01, B01, C01) B−A11
11 B−A21

21 B−A31
31 .

3.3. The posterior distribution using the JP. According to Jeffreys’ (1946, 1961),
Bernardo (1979) and Berger (1985), the JP is defined as p (θm) ∝

√
|I (θm)|, m =

1, 2, 3, where I (θm) = −E
[
∂2f(x|θm )

∂θ2m

]
is the Fisher’s information matrix. The prior

distributions of the mixing proportions p1 and p2 are again taken to be the uniform on
over the interval (0, 1). The joint prior distribution of parameters θ1, θ2, θ3, p1 and p2

is (cf. Sinha, 1998) given by:

(3.6) π2 (ψ) ∝ 1

θ1 θ2 θ3
, θ1, θ2, θ3 > 0, p1, p2 ≥ 0, p1 + p2 ≤ 1
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The joint posterior distribution of parameters θ1, θ2, θ3, p1 and p2 given data x, using
the JP is:

(3.7) g2 (ψ |x ) =
L (ψ |x )π2 (ψ)∫

ψ
L (ψ |x )π2 (ψ) dψ

g2 (ψ |x ) =

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
exp (−B12θ1)

E2θ
1−A12
1 θ1−A22

2 θ1−A32
3

×

exp (−B22θ2) exp (−B32θ3) pA02−1
1 pB02−1

2 (1− p1 − p2)C02−1,(3.8)

where A12 = r1, A22 = r2, A32 = r3, B12 = nt − rt − it +
∑r1
k=1 x1k, B22 = it − jt +∑r2

k=1 x2k, B32 = jt+
∑r3
k=1 x3k, A02 = n−r−i+r1+1, B02 = i−j+r2+1, C02 = j+r3+1,

E2 = Γ (A12) Γ (A22) Γ (A32)
∑n−r
i=0

∑i
j=0

(
n− r
i

)(
i

j

)
× B (A02, B02, C02) B−A12

12 B−A22
22 B−A32

32 .

3.4. The posterior distribution using the IP. As an informative prior distribution,
we take Gamma distribution for component parameters θ1, θ2, θ3 and bivariate beta
distribution for proportion parameters p1, p2, i.e.

(3.9) π4 (θ1; a1, b1) =
ba11

Γ (a1)
θa1−1

1 exp (−b1 θ1) , θ1 > 0, a1, b1 > 0

(3.10) π5 (θ2; a2, b2) =
ba22

Γ (a2)
θa2−1

2 exp (−b2 θ2) , θ2 > 0, a2, b2 > 0

(3.11) π6 (θ3; a3, b3) =
ba33

Γ (a3)
θa3−1

3 exp (−b3 θ3) , θ3 > 0, a3, b3 > 0

(3.12) π7 (p1, p2; a, b, c) =
1

B (a, b, c)
pa−1

1 pb−1
2 (1− p1 − p2)c−1 ,

p1, p2 ≥ 0, p1 + p2 ≤ 1, a, b, c > 0.
So, the joint prior distribution of parameters θ1, θ2, θ3, p1 and p2 using the IP is

(3.13) π3 (ψ) ∝ θa1−1
1 exp (−b1θ1) θa2−1

2 exp (−b2θ2) θa3−1
3 ×

exp (−b3θ3) pa−1
1 pb−1

2 (1− p1 − p2)c−1

The joint posterior distribution of parameters θ1, θ2, θ3, p1 and p2 given data x, using
the IP is:

(3.14) g3 (ψ |x ) =
L (ψ |x )π3 (ψ)∫

ψ
L (ψ |x )π3 (ψ) dψ

g3 (ψ |x ) =

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
exp (−B13θ1) exp (−B23θ2)

E3θ
1−A13
1 θ1−A23

2 θ1−A33
3

×

exp (−B33θ3) pA03−1
1 pB03−1

2 (1− p1 − p2)C03−1,(3.15)

where A13 = r1 + a1, A23 = r2 + a2, A33 = r3 + a3, B13 = nt− rt− it+
∑r1
k=1 x1k + b1,

B23 = it− jt+
∑r2
k=1 x2k + b2, B33 = jt+

∑r3
k=1 x3k + b3, A03 = n− r− i+ r1 + a,B03 =

i − j + r2 + b, C03 = j + r3 + c, E3 = Γ (A13) Γ (A23) Γ (A33)
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B (A03, B03, C03) B−A13
13 B−A23

23 B−A33
33 .
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4. The Bayes estimators and posterior risks using the UP, the JP
and IP under SELF
If L (θ, d) is a loss function then the expected value of the loss function for a given deci-

sion with respect to the posterior distribution is posterior risk function and if d̂ is a Bayes
estimator then ρ

(
d̂
)
is called posterior risk and is given by ρ

(
d̂
)

= Eθ|x

{
L
(
θ, d̂

)}
.

The SELF is suggested by Legendre (1806) and is defined as: L (θ, d) = (θ−d)2. The
Bayes estimator and posterior risk under SELF are: d̂ = Eθ|x (θ) and ρ

(
d̂
)

= Eθ|x
(
θ2
)
−{

Eθ|x (θ)
}2, respectively. So, the Bayes estimators and posterior risks using the UP, the

JP and IP for parameters θ1, θ2, θ3, p1 and p2 under SELF are obtained with their
respective marginal posterior distributions as given below:

θ̂1v =
Γ (A1v + 1) Γ (A2v) Γ (A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i
j

)
×

(4.1) B
−(A1v+1)
1v B−A2v

2v B−A3v
3v B (A0v, C0v) B (B0v, A0v + C0v)

θ̂2v =
Γ (A1v) Γ (A2v + 1) Γ (A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i
j

)
×

(4.2) B−A1v
1v B

−(A2v+1)
2v B−A3v

3v B (A0v, C0v) B (B0v, A0v + C0v)

θ̂3v =
Γ (A1v) Γ (A2v) Γ (A3v + 1)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i
j

)
×

(4.3) B−A1v
1v B−A2v

2v B
−(A3v+1)
3v B (A0v, C0v) B (B0v, A0v + C0v)

p̂1v =
Γ (A1v) Γ (A2v) Γ (A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i
j

)
×

(4.4) B−A1v
1v B−A2v

2v B−A3v
3v B (B0v, C0v) B (A0v + 1, B0v + C0v)

p̂2v =
Γ (A1v) Γ (A2v) Γ (A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i
j

)
×

(4.5) B−A1v
1v B−A2v

2v B−A3v
3v B (A0v, C0v) B (B0v + 1, A0v + C0v)

ρ
(
θ̂1v

)
=

Γ (A1v + 2) Γ (A2v) Γ (A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B
−(A1v+2)
1v B−A2v

2v B−A3v
3v B (A0v, C0v)B (B0v, A0v + C0v)−

(4.6)


Γ(A1v+1)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B
−(A1v+1)
1v B−A2v

2v B−A3v
3v B (A0v, C0v)B (B0v, A0v + C0v)


2

ρ
(
θ̂2v

)
=

Γ (A1v) Γ (A2v + 2) Γ (A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B

−(A2v+2)
2v B−A3v

3v B (A0v, C0v)B (B0v, A0v + C0v)−

(4.7)


Γ(A1v)Γ(A2v+1)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B

−(A2v+1)
2v B−A3v

3v B (A0v, C0v)B (B0v, A0v + C0v)


2
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ρ
(
θ̂3v

)
=

Γ (A1v) Γ (A2v) Γ (A3v + 2)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B
−(A3v+2)
3v B (A0v, C0v)B (B0v, A0v + C0v)−

(4.8)


Γ(A1v)Γ(A2v)Γ(A3v+1)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B
−(A3v+1)
3v B (A0v, C0v)B (B0v, A0v + C0v)


2

ρ (p̂1v) =
Γ (A1v) Γ (A2v) Γ (A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B−A3v
3v B (B0v, C0v)B (A0v + 2, B0v + C0v)−

(4.9)


Γ(A1v)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B−A3v
3v B (B0v, C0v)B (A0v + 1, B0v + C0v)


2

ρ (p̂2v) =
Γ (A1v) Γ (A2v) Γ (A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B−A3v
3v B (A0v, C0v)B (B0v + 2, A0v + C0v)−

(4.10)


Γ(A1v)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B−A3v
3v B (A0v, C0v)B (B0v + 1, A0v + C0v)


2

,

where v = 1 for the UP, v = 2 for the JP and v = 3 for the IP.

5. The Bayes estimators and posterior risks using the UP, the JP
and IP under PLF
Norstrom (1996) discussed an asymmetric PLF and a special case of general class of

PLFs is L (θ, d) = (θ−d)2
d

. The Bayes estimator and posterior risk are: d̂ =
{
Eθ|x

(
θ2
)} 1

2

and ρ
(
d̂
)

= 2
{
Eθ|x

(
θ2
)} 1

2 − 2Eθ|x (θ), respectively. The respective marginal posterior
distributions yield the Bayes estimators and posterior risks using the UP, the JP and the
IP for parameters θ1, θ2, θ3, p1 and p2 under PLF as:

(5.1) θ̂1v =


Γ(A1v+2)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B
−(A1v+2)
1v B−A2v

2v B−A3v
3v B (A0v, C0v)B (B0v, A0v + C0v)


1
2

(5.2) θ̂2v =


Γ(A1v)Γ(A2v+2)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B

−(A2v+2)
2v B−A3v

3v B (A0v, C0v)B (B0v, A0v + C0v)


1
2

(5.3) θ̂3v =


Γ(A1v)Γ(A2v)Γ(A3v+2)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B
−(A3v+2)
3v B (A0v, C0v)B (B0v, A0v + C0v)


1
2

(5.4) p̂1v =


Γ(A1v)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B−A3v
3v B (B0v, C0v)B (A0v + 2, B0v + C0v)


1
2
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(5.5) p̂2v =


Γ(A1v)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
×

B−A1v
1v B−A2v

2v B−A3v
3v B (A0v, C0v)B (B0v + 2, A0v + C0v)


1
2

(5.6)

ρ
(
θ̂1v

)
= 2


Γ(A1v+2)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−(A1v+2)
1v ×

B−A2v
2v B−A3v

3v B (A0v, C0v)B (B0v, A0v + C0v)


1
2

− 2


Γ(A1v+1)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−(A1v+1)
1v ×

B−A2v
2v B−A3v

3v B (A0v, C0v)B (B0v, A0v + C0v)



(5.7)

ρ
(
θ̂2v

)
= 2


Γ(A1v)Γ(A2v+2)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B−A1v

1v ×

B
−(A2v+2)
2v B−A3v

3v B (A0v, C0v)B (B0v, A0v + C0v)


1
2

− 2


Γ(A1v)Γ(A2v+1)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B−A1v

1v ×

B
−(A2v+1)
2v B−A3v

3v B (A0v, C0v)B (B0v, A0v + C0v)



(5.8)

ρ
(
θ̂3v

)
= 2


Γ(A1v)Γ(A2v)Γ(A3v+2)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B−A1v

1v ×

B−A2v
2v B

−(A3v+2)
3v B (A0v, C0v)B (B0v, A0v + C0v)


1
2

− 2


Γ(A1v)Γ(A2v)Γ(A3v+1)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B−A1v

1v ×

B−A2v
2v B

−(A3v+1)
3v B (A0v, C0v)B (B0v, A0v + C0v)



(5.9)

ρ (p̂1v) = 2


Γ(A1v)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B−A1v

1v ×

B−A2v
2v B−A3v

3v B (B0v, C0v)B (A0v + 2, B0v + C0v)


1
2

− 2


Γ(A1v)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B−A1v

1v ×

B−A2v
2v B−A3v

3v B (B0v, C0v)B (A0v + 1, B0v + C0v)



(5.10)

ρ (p̂2v) = 2


Γ(A1v)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B−A1v

1v ×

B−A2v
2v B−A3v

3v B (A0v, C0v)B (B0v + 2, A0v + C0v)


1
2

− 2


Γ(A1v)Γ(A2v)Γ(A3v)

Ev

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B−A1v

1v ×

B−A2v
2v B−A3v

3v B (A0v, C0v)B (B0v + 1, A0v + C0v)


6. The Bayes estimators and posterior risks using the UP, the JP

and the IP under DLF
DeGroot (2005) introduced the asymmetric loss function, L (θ, d) =

(
θ−d
d

)2, known
as DLF.The Bayes estimator and its posterior risk under DLF are: d̂ =

Eθ|x (θ2)
Eθ|x (θ)

and
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ρ
(
d̂
)

= 1− {Eθ|x (θ)}2
Eθ|x (θ2)

, respectively. The Bayes estimators and posterior risks using the

UP, the JP and the IP for parameters θ1, θ2, θ3, p1 and p2 under DLF are:

(6.1)

θ̂1v = Γ(A1v+2)Γ(A2v)Γ(A3v)
Γ(A1v+1)Γ(A2v)Γ(A3v)

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−(A1v+2)
1v B

−A2v
2v B

−A3v
3v B(A0v,C0v)B(B0v,A0v+C0v)

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−(A1v+1)
1v B

−A2v
2v B

−A3v
3v B(A0v,C0v)B(B0v,A0v+C0v)

(6.2)

θ̂2v = Γ(A1v)Γ(A2v+2)Γ(A3v)
Γ(A1v)Γ(A2v+1)Γ(A3v)

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−(A2v+2)
2v B

−A3v
3v B(A0v,C0v)B(B0v,A0v+C0v)

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−(A2v+1)
2v B

−A3v
3v B(A0v,C0v)B(B0v,A0v+C0v)

(6.3)

θ̂3v = Γ(A1v)Γ(A2v)Γ(A3v+2)
Γ(A1v)Γ(A2v)Γ(A3v+1)

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−(A3v+2)
3v B(A0v,C0v)B(B0v,A0v+C0v)

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−(A3v+1)
3v B(A0v,C0v)B(B0v,A0v+C0v)

(6.4)

p̂1v = Γ(A1v)Γ(A2v)Γ(A3v)
Γ(A1v)Γ(A2v)Γ(A3v)

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−A3v
3v B(B0v,C0v)B(A0v+2,B0v+C0v)

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−A3v
3v B(B0v,C0v)B(A0v+1,B0v+C0v)

(6.5)

p̂2v = Γ(A1v)Γ(A2v)Γ(A3v)
Γ(A1v)Γ(A2v)Γ(A3v)

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−A3v
3v B(A0v,C0v)B(B0v+2,A0v+C0v)

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−A3v
3v B(A0v,C0v)B(B0v+1,A0v+C0v)

(6.6)

ρ
(
θ̂1v

)
= 1− {Γ(A1v+1)Γ(A2v)Γ(A3v)}2

EvΓ(A1v+2)Γ(A2v)Γ(A3v)
×

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−(A1v+1)
1v B

−A2v
2v B

−A3v
3v B(A0v,C0v)B(B0v,A0v+C0v)


2

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−(A1v+2)
1v B

−A2v
2v B

−A3v
3v B(A0v,C0v)B(B0v,A0v+C0v)

(6.7)

ρ
(
θ̂2v

)
= 1− {Γ(A1v)Γ(A2v+1)Γ(A3v)}2

EvΓ(A1v)Γ(A2v+2)Γ(A3v)
×

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−(A2v+1)
2v B

−A3v
3v B(A0v,C0v)B(B0v,A0v+C0v)


2

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−(A2v+2)
2v B

−A3v
3v B(A0v,C0v)B(B0v,A0v+C0v)
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(6.8)

ρ
(
θ̂3v

)
= 1− {Γ(A1v)Γ(A2v)Γ(A3v+1)}2

EvΓ(A1v)Γ(A2v)Γ(A3v+2)
×

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−(A3v+1)
3v B(A0v,C0v)B(B0v,A0v+C0v)


2

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−(A3v+2)
3v B(A0v,C0v)B(B0v,A0v+C0v)

(6.9)

ρ (p̂1v) = 1− {Γ(A1v)Γ(A2v)Γ(A3v)}2
EvΓ(A1v)Γ(A2v)Γ(A3v)

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−A3v
3v B(B0v,C0v)B(A0v+1,B0v+C02)


2

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−A3v
3v B(B0v,C0v)B(A0v+2,B0v+C02)

(6.10)

ρ (p̂2v) = 1− {Γ(A1v)Γ(A2v)Γ(A3v)}2
EvΓ(A1v)Γ(A2v)Γ(A3v)

×
n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−A3v
3v B(A0v,C0v)B(B0v+1,A0v+C0v)


2

n−r∑
i=0

i∑
j=0

(
n− r
i

)(
i

j

)
B
−A1v
1v B

−A2v
2v B

−A3v
3v B(A0v,C0v)B(B0v+2,A0v+C0v)

.

7. Elicitation of hyperparameters
Elicitation is a tool used to quantify a person’s belief and knowledge about the param-

eter(s) of interest. In Bayesian perspective, elicitation, most often, arises as a method for
specifying the prior distribution of the random parameter(s). Elicitation is simply the
quantification of prior knowledge about the random parameter(s) so that this can then be
combined with the likelihood to obtain posterior distribution for further statistical anal-
ysis. Elicitation has remained a challenging problem for the statistician.Authors who
have discussed this problem include Kadane et al. (1980), Birch and Bartollucci (1983),
Chaloner and Duncan (1983), Gavasakar (1988), Al-Awadhi and Gartwaite (1998), Aslam
(2003), Hahn (2006), Saleem and Aslam (2008) and references cited therein. In this study,
we adopted a method based on predictive probabilities, given by Aslam (2003).

For eliciting the hyperparameters, prior predictive distribution (PPD) is used. The
PPD for a random variable X is:

(7.1) p (x) =

∫
ψ

p (x |ψ )π3 (ψ) dψ

(7.2) p (x) =
1

(a+ b+ c)

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
.

We choose the prior predictive probabilities, satisfying the laws of probability, to elicit
the hyperparameters of the prior density. By following these laws of probability, some
minor inconsistencies may arise which are expected to be ignorable. Using the prior
predictive distribution given in (7.2) we consider nine intervals (0, 1), (1, 2), (2, 3), (3,
4), (4, 5), (5, 6), (6, 7), (7, 8) and (8, 9) with probabilities 0.57, 0.20, 0.10, 0.05, 0.02,
0.015, 0.01, 0.005 and 0.003, respectively, given as expert opinion. The following nine
equations are derived from the given information using the (7.2) as:

(7.3)
1

(a+ b+ c)

∫ 1

0

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.57
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(7.4)
1

(a+ b+ c)

∫ 2

1

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.20

(7.5)
1

(a+ b+ c)

∫ 3

2

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.10

(7.6)
1

(a+ b+ c)

∫ 4

3

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.05

(7.7)
1

(a+ b+ c)

∫ 5

4

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.02

(7.8)
1

(a+ b+ c)

∫ 6

5

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.015

(7.9)
1

(a+ b+ c)

∫ 7

6

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.01

(7.10)
1

(a+ b+ c)

∫ 8

7

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.005

(7.11)
1

(a+ b+ c)

∫ 9

8

[
a a1 b

a1
1

(b1 + x)a1+1 +
b a2 b

a2
2

(b2 + x)a2+1 +
c a3 b

a3
3

(b3 + x)a3+1

]
dx = 0.003

The above nine equations (7.3-7.11) are solved simultaneously by using Mathematica
software for eliciting the hyperparameters (a1, b1, a2, b2, a3, b3, a, b, c). Through this
criteria, the values of the hyperparameters are obtained as (3.8330, 3.7310, 3.3570, 3.1360,
2.9030, 2.7330, 3.0280, 0.6995, 2.7350).

8. The limiting expressions
When t tends to ∞, r tends to n and rl tends to nl, l = 1, 2, 3, then all the values

which are censored become uncensored in our analysis. So, the information contained in
the sample is increased. Consequently, the posterior risks of the Bayes estimates diminish.
The efficiency of the Bayes estimates is increased because all the values are incorporated
in our sample. The limiting (complete sample) expressions for Bayes estimators and
posterior risks using the UP, the JP and the IP under SELF, PLF and DLF are given in
the Tables 1-6.

Table 1. Limiting Expressions for the Bayes Estimators as t → ∞
using the UP, the JP and the IP under SELF

Bayes Estimators
Parameters UP JP IP

θ1
n1+1∑n1
k=1

x1k

n1∑n1
k=1

x1k

n1+a1∑n1
k=1

x1k+b1

θ2
n2+1∑n2
k=1

x2k

n2∑n2
k=1

x2k

n2+a2∑n2
k=1

x2k+b2

θ3
n3+1∑n3
k=1

x3k

n3∑n3
k=1

x3k

n3+a3∑n3
k=1

x3k+b3

p1
n1+1
n+3

n1+1
n+3

n1+a
n+a+b+c

p2
n2+1
n+3

n2+1
n+3

n2+b
n+a+b+c
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Table 2. Limiting Expressions for the Posterior Risks as t→∞ using
the UP, the JP and the IP under SELF

Posterior Risks
Parameters UP JP IP

θ1
n1+1

(
∑n1
k=1

x1k)
2

n1

(
∑n1
k=1

x1k)
2

n1+a1

(
∑n1
k=1

x1k+b1)2

θ2
n2+1

(
∑n2
k=1

x2k)
2

n2

(
∑n2
k=1

x2k)
2

n2+a2

(
∑n2
k=1

x2k+b2)2

θ3
n3+1

(
∑n3
k=1

x3k)
2

n3

(
∑n3
k=1

x3k)
2

n3+a3

(
∑n3
k=1

x3k+b3)2

p1
(n1+1)(n2+n3+2)

(n+3)2(n+4)

(n1+1)(n2+n3+2)

(n+3)2(n+4)

(n1+a)(n2+n3+b+c)

(n+a+b+c)2(n+a+b+c+1)

p2
(n2+1)(n1+n3+2)

(n+3)2(n+4)

(n2+1)(n1+n3+2)

(n+3)2(n+4)

(n2+b)(n1+n3+a+c)

(n+a+b+c)2(n+a+b+c+1)

Table 3. Limiting expressions for the Bayes estimators as t → ∞
using the UP, the JP and the IP under PLF

Bayes Estimators
Parameters UP JP IP

θ1
(n1+1)1/2(n1+2)1/2

(
∑n1
k=1

x1k)
1/2

(n1)1/2(n1+1)1/2

(
∑n1
k=1

x1k)
1/2

(n1+a1)1/2(n1+a1+1)1/2

(
∑n1
k=1

x1k+b1)1/2

θ2
(n2+1)1/2(n2+2)1/2

(
∑n2
k=1

x2k)
1/2

(n2)1/2(n2+1)1/2

(
∑n2
k=1

x2k)
1/2

(n2+a2)1/2(n2+a2+1)1/2

(
∑n2
k=1

x2k+b2)1/2

θ3
(n3+1)1/2(n3+2)1/2

(
∑n3
k=1

x3k)
1/2

(n3)1/2(n3+1)1/2

(
∑n3
k=1

x3k)
1/2

(n3+a3)1/2(n3+a3+1)1/2

(
∑n3
k=1

x3k+b3)1/2

p1
(n1+1)1/2(n1+2)1/2

(n+3)1/2(n+4)1/2
(n1+1)1/2(n1+2)1/2

(n+3)1/2(n+4)1/2
(n1+a)1/2(n1+a+1)1/2

(n+a+b+c)1/2(n+a+b+c+1)1/2

p2
(n2+1)1/2(n2+2)1/2

(n+3)1/2(n+4)1/2
(n2+1)1/2(n2+2)1/2

(n+3)1/2(n+4)1/2
(n2+b)1/2(n2+b+1)1/2

(n+a+b+c)1/2(n+a+b+c+1)1/2

Table 4. Limiting expressions for the posterior risks as t→∞ using
the UP, the JP and the IP under PLF

Posterior Risks
Parameters UP JP IP

θ1
2(n1+1)∑n1
k=1

x1k

{
(n1+2)1/2

(n1+1)1/2
− 1
}

2n1∑n1
k=1

x1k

{
(n1+1)1/2

(n1)1/2
− 1
}

2(n1+a1)

(
∑n1
k=1

x1k+b1)

{
(n1+a1+1)1/2

(n1+a1)1/2
− 1
}

θ2
2(n2+1)∑n2
k=1

x2k

{
(n2+2)1/2

(n2+1)1/2
− 1
}

2n2∑n2
k=1

x2k

{
(n2+1)1/2

(n2)1/2
− 1
}

2(n2+a2)

(
∑n2
k=1

x2k+b2)

{
(n2+a2+1)1/2

(n2+a2)1/2
− 1
}

θ3
2(n3+1)∑n3
k=1

x3k

{
(n3+2)1/2

(n3+1)1/2
− 1
}

2n3∑n3
k=1

x3k

{
(n3+1)1/2

(n3)1/2
− 1
}

2(n3+a3)

(
∑n3
k=1

x3k+b3)

{
(n3+a3+1)1/2

(n3+a3)1/2
− 1
}

p1
2(n1+1)
(n+3)


(n1+2)1/2

(n1+1)1/2

(n+4)1/2

(n+3)1/2

− 1

 2(n1+1)
(n+3)


(n1+2)1/2

(n1+1)1/2

(n+4)1/2

(n+3)1/2

− 1

 2(n1+a)
(n+a+b+c)


(n1+a+1)1/2

(n1+a)1/2

(n+a+b+c+1)1/2

(n+a+b+c)1/2

− 1


p2

2(n2+1)
(n+3)


(n2+2)1/2

(n2+1)1/2

(n+4)1/2

(n+3)1/2

− 1

 2(n2+1)
(n+3)


(n2+2)1/2

(n2+1)1/2

(n+4)1/2

(n+3)1/2

− 1

 2(n2+b)
(n+a+b+c)


(n2+b+1)1/2

(n2+b)1/2

(n+a+b+c+1)1/2

(n+a+b+c)1/2

− 1


9. Simulation study

Simulation study is a flexible methodology to illustrate the properties of the Bayes
estimates of the 3-component mixture of Exponential distributions using the UP, the JP
and the IP under SELF, PLF and DLF in terms of different sample sizes and test ter-
mination times. The samples of different sizes n = 30, 100, 200 are generated from the
3-component mixture of Exponential distributions for each choice of the vector of the pa-
rameters (θ1, θ2, θ3, p1, p2) = {(4, 3, 2, 0.5, 0.3) , (3, 3, 3, 0.4, 0.4) , (2, 3, 4, 0.3, 0.5)}.
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Table 5. Limiting expressions for the Bayes estimators as t → ∞
using the UP, the JP and the IP under DLF

Parameters Bayes Estimators
UP JP IP

θ1
n1+2∑n1
k=1

x1k

n1+1∑n1
k=1

x1k

n1+a1+1∑n1
k=1

x1k+b1

θ2
n2+2∑n2
k=1

x2k

n2+1∑n2
k=1

x2k

n2+a2+1∑n2
k=1

x2k+b2

θ3
n3+2∑n3
k=1

x3k

n3+1∑n3
k=1

x3k

n3+a3+1∑n3
k=1

x3k+b3

p1
n1+2
n+4

n1+2
n+4

n1+a+1
n+a+b+c+1

p2
n2+2
n+4

n2+2
n+4

n2+b+1
n+a+b+c+1

Table 6. Limiting expressions for the posterior risks as t→∞ using
the UP, the JP and the IP under DLF

Posterior Risks
Parameters UP JP IP

θ1
1

n1+2
1

n1+1
1

n1+a1+1

θ2
1

n2+2
1

n2+1
1

n2+a2+1

θ3
1

n3+2
1

n3+1
1

n3+a3+1

p1
(n2+n3+2)

(n1+2)(n+3)
(n2+n3+2)

(n1+2)(n+3)
(n2+n3+b+c)

(n1+a+1)(n+a+b+c)

p2
(n1+n3+2)

(n2+2)(n+3)
(n1+n3+2)

(n2+2)(n+3)
(n1+n3+a+c)

(n2+b+1)(n+a+b+c)

The simulation is repeated 1000 times and the results are then averaged. Sample of
sizes p1n, p2n and (1− p1 − p2)n are chosen randomly from first component density
f1 (x; θ1), second component density f2 (x; θ2) and third component density f3 (x; θ3),
respectively. To check the impact of test termination time on Bayes estimates, we es-
timate the parameters of the 3-component mixture of Exponential distributions based
on a sample censored at fixed test termination times t = 0.5, 0.8. The observations
which are greater than test termination time t are taken as censored. Only failures can
be considered as members of subpopulation-1, subpopulation-2 or subpopulation-3 of
the 3-component mixture of Exponential distributions. For the sake of brevity, simu-
lated results only for n = 30, 100, 200 and (θ1, θ2, θ3, p1, p2) = (4, 3, 2, 0.5, 0.3) are pre-
sented in the Tables 8-10 (see appendix). The simulated results for (θ1, θ2, θ3, p1, p2) =
{(3, 3, 3, 0.4, 0.4) , (2, 3, 4, 0.3, 0.5)} are available with the first author and can be
obtained on demand.

From Tables 8-10 (see appendix), it can be seen that differences of Bayes estimates
of component and proportion parameters from assumed parameters reduce with an in-
crease in sample size at different test termination times and same is the case with large
test termination time as compared to small test termination time for different sample
sizes.Also, if θ1 > θ2 > θ3 and p1 > p2, first and second component parameters and sec-
ond proportion parameter using the IP under SELF, PLF and DLF are under-estimated
but third component and first proportion parameters are over-estimated at different sam-
ple sizes and test termination times with a few exceptions.By using the IP under SELF,
PLF and DLF, three component parameters and second proportion parameter are under-
estimated, however,first proportion parameter is over-estimated with a few exceptions in
case of θ1 = θ2 = θ3 and p1 = p2. Also, if θ1 < θ2 < θ3 and p1 < p2, third component
and second proportion parameters using the IP under SELF, PLF and DLF are under-
estimated but there is a mixed pattern (over-estimation or under-estimation) for first and
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second component and first proportion parameters using the IP. Similarly, the component
parameters using the UP and the JP under SELF, PLF and DLF are over-estimated but
there is a mix pattern (under-estimation or over-estimation) for proportion parameters
using the UP and the JP under SELF, PLF and DLF at different sample sizes and test
termination times.

It is, also, clear from the Tables 8-10 that for a fixed test termination time, the
posterior risks of the Bayes estimates, using the UP, the JP and the IP under SELF,
PLF and DLF, reduce with an increase in sample size. On the other hand, for all priors,
loss functions and sample sizes considered in this study, posterior risks decrease with an
increase in test termination time.The posterior risks using the IP are smaller than the
posterior risks using the UP and the JP for different sample sizes and test termination
times.Also, the posterior risks using the JP are smaller than that using the UP for
different sample sizes and test termination times. It is also observed that in estimating
the component parameters θ1, θ2 and θ3, posterior risks are smaller under DLF than
under SELF and PLF at different sample sizes and test termination times considered in
this study. However, for estimating the mixing proportions, SELF yields smaller posterior
risks than SELF and DLF, at different sample sizes and test termination times. Thus,
DLF is more suitable for estimating component parameters and SELF is a preferable
choice for estimating proportion parameters p1 and p2.

10. Real data example
Davis (1952) reported a mixture data on lifetimes (in thousand hours) of many compo-

nents used in aircraft sets. To illustrate the proposed methodology, we take the data on
three components, namely, Transmitter Tube, Combination of Transformers and Combi-
nation of Relays. It is unknown that which component (Tubes, Transformers and Relays)
fails until a failure (of a radar set) occurs at or before the test termination time t = 0.4.
The total number of tests are conducted 702 times.For test termination time t = 0.4, the
data are summarized as below. n = 702, r1 = 310, r2 = 148, r3 = 181, r = 639, n−r =
63,

∑r1
k=1 x1k = 36.875,

∑r2
k=1 x2k = 22.90,

∑r3
k=1 x3k = 19.125. Since n − r = 63, we

have almost 9 percent censored sample. Thus, this is a type-I right censored data. Bayes
estimates and their posterior risks using the UP, the JP and the IP under SELF, PLF
and DLF are showcased in Table 7 given below.

From the Table 10, it is noticed that results obtained through real data are compatible
with simulation results, however, there are some exceptions which can be attributed to
using large data set. The Table 10also reveals that the performance of the IP is best. In
addition, results are relatively more precise under the JP than the UP.It is also observed
that DLF (SELF) performance better than PLF and SELF (PLF and DLF) for estimating
component (proportion) parameters.

11. Conclusion
The importance and application of the 3-component mixture models in real life prob-

lems is undeniable.An extensive simulation study is performed to compare and highlight
some important and interesting properties of the Bayes estimates of a 3-component mix-
ture of Exponential distributions using the UP, the JP and the IP under SELF, PLF
and DLF. The simulation results revealed that an increase in sample size and/or test
termination time produced improved (in terms of closeness)and reliable (in terms of pos-
terior risk) Bayes estimates. It is concluded that with an increase in sample size and/or
test termination time, the posterior risks decrease.To estimate component as well as pro-
portion parameters, priors can be ordered with respect to their performance as: IP <
JP < UP. The ordering of loss functions depends upon the parameters being estimated.
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Table 7. Bayes estimates (BEs) and posterior risks (PRs) using the
UP, the JP and the IP under SELF, PLF and DLF with Davis (1952)
mixture data

Prior Loss Function θ̂1 θ̂2 θ̂3 p̂1 p̂2

UP SELF BE 6.916945 4.026699 8.372263 0.470263 0.262025
PR 0.288346 0.194104 0.639500 0.000426 0.000360

PLF BE 6.937758 4.050730 8.410368 0.470716 0.262711
PR 0.041624 0.048061 0.076210 0.000905 0.001371

DLF BE 6.958632 4.074904 8.448647 0.471169 0.263398
PR 0.005991 0.011830 0.009041 0.001922 0.005212

JP SELF BE 6.900167 3.999295 8.313222 0.470132 0.262032
PR 0.286064 0.191420 0.635543 0.000425 0.000359

PLF BE 6.920864 4.023155 8.351360 0.470584 0.262716
PR 0.041396 0.047721 0.076275 0.000903 0.001368

DLF BE 6.941624 4.047158 8.389672 0.471036 0.263402
PR 0.005972 0.011826 0.009112 0.001919 0.005201

IP SELF BE 6.339530 3.948387 7.209497 0.473607 0.253837
PR 0.212304 0.168152 0.469845 0.000416 0.000341

PLF BE 6.356253 3.969624 7.242009 0.474045 0.254509
PR 0.033445 0.042473 0.065024 0.000878 0.001343

DLF BE 6.373019 3.990975 7.274667 0.474485 0.255182
PR 0.005255 0.010671 0.008958 0.001850 0.005271

Specifically, for estimating component parameters, ordering of loss functions is: DLF <
PLF < SELF, while it changes to SELF < PLF < DLF when proportion parameters
are being estimated. The results obtained through real data coincide with the simulated
results. Finally,it can be concluded that for a Bayesian analysis of mixture data, the
IP paired with SELF and the IP paired with DLF are preferable choices for estimating
proportion and component parameters, respectively.
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Appendix

Table 8. Bayes Estimates (BEs) and Posterior Risks (PRs) of 3-
Component Mixture of an Exponential Distribution using the UP under
SELF, PLF and DLF with θ1 = 4, θ2 = 3, θ3 = 2, p1 = 0.5, p2 = 0.3
and t = 0.5, 0.8

t n Loss Functions θ̂1 θ̂2 θ̂3 p̂1 p̂2

0.5 30 SELF BE 5.03127 4.81717 14.4058 0.493360 0.305990
PR 3.78733 7.04383 393.721 0.010409 0.009351

PLF BE 5.18096 5.34651 7.10057 0.506304 0.321826
PR 0.65794 1.14487 2.26392 0.021169 0.030100

DLF BE 5.69559 6.08516 32.9960 0.517202 0.336103
PR 0.12627 0.21448 0.31318 0.042015 0.094862

100 SELF BE 4.32408 3.48119 3.18176 0.501051 0.306898
PR 1.06177 1.47960 2.49490 0.004021 0.003927

PLF BE 4.43269 3.75565 3.47246 0.505030 0.311397
PR 0.23514 0.39934 0.66400 0.008038 0.012548

DLF BE 4.51580 3.99458 3.89480 0.510777 0.317893
PR 0.05348 0.10395 0.18747 0.015990 0.039946

200 SELF BE 4.15969 3.30336 2.65355 0.500567 0.304289
PR 0.54772 0.77122 1.06800 0.002233 0.002223

PLF BE 4.18300 3.38534 2.92080 0.504513 0.307870
PR 0.12781 0.22162 0.37151 0.004457 0.007263

DLF BE 4.29189 3.53659 3.03098 0.506274 0.309894
PR 0.03027 0.06450 0.12266 0.008705 0.023440

0.8 30 SELF BE 4.60708 4.06730 3.95910 0.491784 0.305857
PR 2.06164 3.05704 6.71197 0.008108 0.007047

PLF BE 4.78976 4.41100 4.44132 0.499841 0.317388
PR 0.41090 0.64347 1.02895 0.016344 0.022641

DLF BE 5.04824 4.71186 4.92032 0.50771 0.328947
PR 0.08470 0.14425 0.21952 0.032500 0.070789

100 SELF BE 4.19187 3.34385 2.65896 0.498415 0.303129
PR 0.57004 0.73496 0.89049 0.002707 0.002426

PLF BE 4.27433 3.41190 2.72112 0.499986 0.307765
PR 0.13347 0.20684 0.29326 0.005432 0.007970

DLF BE 4.34097 3.53208 2.93405 0.503415 0.311406
PR 0.03143 0.06083 0.10652 0.010834 0.025890

200 SELF BE 4.08408 3.13722 2.34034 0.499107 0.302543
PR 0.28609 0.35794 0.38474 0.001398 0.001282

PLF BE 4.14270 3.17768 2.43561 0.500479 0.305603
PR 0.06892 0.10915 0.15321 0.002780 0.004201

DLF BE 4.13182 3.26269 2.52608 0.502583 0.306298
PR 0.01687 0.03470 0.06245 0.005568 0.013850



627

Table 9. Bayes Estimates (BEs) and Posterior Risks (PRs) of 3-
Component Mixture of an Exponential Distribution using the JP under
SELF, PLF and DLF with θ1 = 4, θ2 = 3, θ3 = 2, p1 = 0.5, p2 = 0.3
and t = 0.5, 0.8

t n Loss Functions θ̂1 θ̂2 θ̂3 p̂1 p̂2

0.5 30 SELF BE 4.68438 4.14788 4.14810 0.486255 0.307003
PR 3.28607 5.84447 112.213 0.010047 0.009113

PLF BE 5.06787 4.50278 4.97240 0.492724 0.320652
PR 0.63799 1.05847 2.13408 0.020695 0.029650

DLF BE 5.43172 5.13024 11.0016 0.505493 0.336744
PR 0.12292 0.22330 0.37228 0.041414 0.090771

100 SELF BE 4.28903 3.44976 2.65577 0.496809 0.303804
PR 1.00298 1.45326 1.90329 0.003884 0.003721

PLF BE 4.38009 3.58409 3.01029 0.503270 0.309635
PR 0.22362 0.37814 0.60703 0.007759 0.012199

DLF BE 4.48458 3.75851 3.37003 0.504503 0.316679
PR 0.05133 0.10363 0.19409 0.015604 0.039164

200 SELF BE 4.17641 3.21003 2.41831 0.497047 0.303295
PR 0.53203 0.72122 0.90182 0.002145 0.002173

PLF BE 4.19861 3.37741 2.64199 0.502472 0.305365
PR 0.12219 0.21241 0.33145 0.004263 0.006915

DLF BE 4.25922 3.47091 2.83717 0.503951 0.310409
PR 0.02966 0.06356 0.12632 0.008578 0.022924

0.8 30 SELF BE 4.39979 3.52249 3.04594 0.486904 0.306358
PR 1.94160 2.57549 4.29295 0.008017 0.007075

PLF BE 4.60389 3.91436 3.79902 0.495912 0.316711
PR 0.40382 0.62240 0.98201 0.016328 0.022631

DLF BE 4.82216 4.34275 3.93999 0.504094 0.327098
PR 0.08604 0.15228 0.25101 0.032569 0.070579

100 SELF BE 4.13305 3.21866 2.38451 0.498135 0.302131
PR 0.55222 0.69769 0.76144 0.002695 0.002421

PLF BE 4.20130 3.26838 2.54904 0.499784 0.307532
PR 0.13079 0.20230 0.28690 0.005401 0.007958

DLF BE 4.22792 3.43384 2.74990 0.502684 0.310692
PR 0.03143 0.06125 0.10953 0.010812 0.025775

200 SELF BE 4.06307 3.10621 2.24022 0.498726 0.302046
PR 0.28071 0.35039 0.35378 0.001388 0.001271

PLF BE 4.09626 3.13286 2.34996 0.499902 0.305688
PR 0.06796 0.10693 0.14942 0.002775 0.004169

DLF BE 4.14565 3.22203 2.39826 0.501271 0.306324
PR 0.01668 0.03474 0.06291 0.005545 0.013783
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Table 10. Bayes Estimates (BEs) and Posterior Risks (PRs) of 3-
Component Mixture of an Exponential Distribution using the IP under
SELF, PLF and DLF with θ1 = 4, θ2 = 3, θ3 = 2, p1 = 0.5, p2 = 0.3
and t = 0.5, 0.8

t n Loss Functions θ̂1 θ̂2 θ̂3 p̂1 p̂2

0.5 30 SELF BE 2.33666 1.99205 1.56456 0.516529 0.253366
PR 0.38446 0.44742 0.42467 0.008301 0.006275

PLF BE 2.40593 2.12002 1.67158 0.52332 0.269693
PR 0.16074 0.21795 0.26020 0.016032 0.024229

DLF BE 2.50499 2.22293 1.82387 0.530591 0.282341
PR 0.06619 0.10097 0.15199 0.030634 0.089499

100 SELF BE 3.12388 2.56172 1.92370 0.513419 0.284786
PR 0.32993 0.38752 0.37916 0.003298 0.002739

PLF BE 3.17347 2.64326 2.03329 0.518166 0.288056
PR 0.10266 0.14824 0.18994 0.006375 0.009540

DLF BE 3.23605 2.73451 2.14476 0.520769 0.295013
PR 0.03215 0.05510 0.09357 0.012292 0.032628

200 SELF BE 3.47498 2.77357 2.06363 0.511406 0.292558
PR 0.25846 0.30721 0.31254 0.001865 0.001619

PLF BE 3.49013 2.80368 2.16324 0.512843 0.295125
PR 0.07334 0.10910 0.14811 0.003661 0.005535

DLF BE 3.54183 2.88947 2.22229 0.514936 0.297619
PR 0.02086 0.03829 0.06791 0.007115 0.018739

0.8 30 SELF BE 2.41149 2.03909 1.63540 0.505104 0.263843
PR 0.37034 0.41121 0.40135 0.007235 0.005650

PLF BE 2.50768 2.14343 1.76339 0.51284 0.27436
PR 0.15051 0.19540 0.23654 0.014208 0.021037

DLF BE 2.59032 2.26105 1.88480 0.519925 0.284365
PR 0.05938 0.08976 0.13082 0.027575 0.070114

100 SELF BE 3.21605 2.57804 1.93565 0.504645 0.288391
PR 0.27556 0.30674 0.29392 0.002599 0.002186

PLF BE 3.26907 2.61318 2.02791 0.508064 0.293030
PR 0.08505 0.11580 0.14777 0.005135 0.007558

DLF BE 3.33053 2.77935 2.14013 0.510514 0.296837
PR 0.02567 0.04355 0.07129 0.010059 0.025568

200 SELF BE 3.53859 2.78925 2.06133 0.504253 0.295431
PR 0.18994 0.21303 0.20664 0.001364 0.001188

PLF BE 3.57238 2.82378 2.10400 0.505779 0.296186
PR 0.05289 0.07625 0.09668 0.002695 0.004006

DLF BE 3.58655 2.89477 2.13775 0.507708 0.298415
PR 0.01471 0.02687 0.04567 0.005307 0.013426
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1. Introduction
Broadly speaking, there has been an increased interest in defining new generators

for univariate continuous families of distributions by introducing one or more additional
shape parameter(s) to the baseline distribution. This induction of parameter(s) has been
proved useful in exploring tail properties and also for improving the goodness-of-fit of
the family under study. The well-known generators are the following: beta-G by Eugene
et al. [18], Kumaraswamy-G (Kw-G) by Cordeiro and de Castro [12], McDonald-G (Mc-
G) by Alexander et al. [1], gamma-G type 1 by Zografos and Balakrishanan [29] and
Amini et al. [7], gamma-G type 2 by Ristić and Balakrishanan [26] and Amini et al.
[7], odd exponentiated generalized (odd exp-G) by Cordeiro et al. [14], transformed-
transformer (T-X) (Weibull-X and gamma-X) by Alzaatreh et al. [4], exponentiated T-X
by Alzaghal et al. [6], odd Weibull-G by Bourguignon et al. [8], exponentiated half-
logistic by Cordeiro et al. [11], T-X{Y}-quantile based approach by Aljarrah et al. [3],
T-R{Y} by Alzaatreh et al. [5], Lomax-G by Cordeiro et al. [15], logistic-X by Tahir et
al. [28] and Kumaraswamy odd log-logistic-G by Alizadeh et al. [2].

Let r(t) be the probability density function (pdf) of a random variable T ∈ [a, b] for
−∞ < a < b <∞ and let F (x) be the cumulative distribution function (cdf) of a random
variable X such that the link function W (·) : [0, 1] −→ [a, b] satisfies the two conditions:
(i) W (·) is differentiable and monotonically non-decreasing, and (ii) W (0) → a and
W (1) → b. If the interval [a, b] is half-open or open, we replace W (0) and/or W (1) for
limt→0+ W ( t ) → a and limt→1− W ( t ) → b.

Recently, Alzaatreh et al. [4] defined the T-X family of distributions by

(1.1) F (x) =

∫ W [G(x)]

a

r(t) dt,

where W [G(x)] satisfies the conditions (i) and (ii). If T ∈ (0,∞), X is a continuous
random variable and W [G(x)] = − log[1 −G(x)], then the pdf corresponding to (1.1) is
given by

(1.2) f(x) =
g(x)

1−G(x)
r(− log[1−G(x)]) = hg(x) r[Hg(x)],

where hg(x) and Hg(x) are the hazard and cumulative hazard functions associated to
g(x), respectively.

The Weibull distribution is one of the most popular and widely used model for failure
time in life-testing and reliability theory. However, a drawback of this distribution as far
as lifetime analysis is concerned is the monotonic behaviour of its hazard date function
(hrf). In real life applications, empirical hazard rate curves often exhibit non-monotonic
shapes such as a bathtub, upside-down bathtub (unimodal) and others. So, there is a gen-
uine desire to search for some generalizations or modifications of the Weibull distribution
that can provide more flexibility in lifetime modeling.

If a random variable T has the Weibull distribution with scale parameter α > 0 and
shape parameter β > 0, then its cdf and pdf are, respectively, given by

FW (t) = 1− e−αt
β

, t > 0

and

(1.3) fW (t) = αβ tβ−1 e−αt
β

, t > 0.

In the recent literature, four Weibull based generators have appeared, namely: the
beta Weibull-G by Cordeiro et al. [16], the Weibull-X by Alzaatreh et al. [4], the
Weibull-G by Bourguignon et al. [8] and the exponentiated Weibull-X by Alzaghal et al.
[6].
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If r(t) follows (1.3) and setting W [G(x)] = − log[1 − G(x)] in (1.1), Alzaatreh et al.
[4] defined the cdf of the Weibull-X family by

(1.4) F (x) = αβ

∫ − log[1−G(x)]

0

xβ−1 e−αx
β

dt = 1− e−α{− log[1−G(x)]}β .

The pdf corresponding to (1.4) is

(1.5) f(x) = αβ
g(x)

1−G(x)
e−α(− log[1−G(x)])β {− log[1−G(x)]}β−1 .

Zagrafos and Balakrishnan [29] pioneered a versatile and flexible gamma-G class of
distributions based on Stacy’s generalized gamma distribution and record value theory.
More recently, Bourguignon et al. [8] proposed the Weibull-G family of distributions
influenced by the Zografos-Balakrishnan-G class. Bourguignon et al. [8] replaced the
argument x by G(x; Θ)/G(x; Θ), where G(x; Θ) = 1 − G(x; Θ), and defined the cdf of
their class (for α > 0 and β > 0), say Weibull-G(α, β,Θ), by

(1.6) F (x;α, β,Θ) = αβ

∫ [
G(x;Θ)

G(x;Θ)

]
0

xβ−1 e−αx
β

dx = 1− e
−α
[
G(x;Θ)

G(x;Θ)

]β
, x ∈ <.

The Weibull-G family density function becomes

(1.7) f(x;α, β,Θ) = αβ g(x; Θ)

[
G(x; Θ)β−1

G(x; Θ)β+1

]
e
−α
[
G(x;Θ)

G(x;Θ)

]β
,

where G(x; Θ) and g(x; Θ) are the cdf and pdf of any baseline distribution that depend
on a parameter vector Θ.

In this paper, we propose a class of distributions called the new Weibull-G (“NWG” for
short) family, which is flexible because of the hazard rate shapes: constant, increasing,
decreasing, bathtub, upside-down bathtub, J, reversed-J and S. The paper unfolds as
follows. In Section 2, we define the new family. Six special models are presented in
Section 3. The forms of the density and hazard rate functions are described analytically
in Section 4. In Section 5, we obtain explicit expressions for the quantile function (qf),
ordinary and incomplete moments, generating function and entropies. In Sections 6
and 7, we investigate the order statistics and the reliability. Section 8 refers to some
characterizations of the NWG family. In Section 9, the parameters of the new family
are estimated by the method of maximum likelihood. In Section 10, we illustrate its
performance by means of two applications to real data sets. The paper is concluded in
Section 11.

2. The new family
In equation (1.1), let a = 0, r(t) be as in (1.3) and W [G(x)] = − log[G(x; ξ)]. Then,

we define the cdf of the NWG family by

(2.1) F (x;α, β, ξ) = 1−
∫ − log[G(x;ξ)]

0

αβ tβ−1 e−αt
β

dt = e−α{− log[G(x;ξ)] }β .

Hereafter, a random variable X with cdf (2.1) is denoted by X ∼ NWG(α, β, ξ). We can
motivate equation (2.1) based on linearization of the baseline cdf G(x; ξ) as follows. Let
Y be a Weibull random variable with scale parameter α > 0 and shape parameter β > 0.
The extreme value random variable V can be defined as minus the log of the Weibull
random variable, say V = − log(Y ). It gives the limiting distribution for the smallest
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or largest values in samples drawn from a variety of distributions. The NWG random
variable having cdf (2.1) can be derived by

P (X ≥ x) = P
(
Y ≥ − log[G(x; ξ)]

)
= P

(
V ≤ − log{− log[G(x; ξ)]}

)
,

where − log{− log[G(x; ξ)]} is a simple linearization of the baseline cdf.
Then, the pdf of X reduces to

(2.2) f(x;α, β, ξ) = αβ
g(x; ξ)

G(x; ξ)

{
− log [G(x; ξ)]

}β−1

e−α{− log[G(x;ξ)] }β ,

where g(x; ξ) is the parent pdf. Further, we can omit sometimes the dependence on
the vector ξ of the parameters and write simply G(x) = G(x; ξ) and g(x) = g(x; ξ).
Equation (2.2) will be most tractable when the cdf G(x) and pdf g(x) have simple analytic
expressions.

The quantile function (qf) of X is obtained by inverting (2.1). We have

X = Q(u) = QG
(

e−t(u); ξ
)
,

where QG(·; ·) = G−1(·; ·) is the baseline qf and t(u) = [log(1/u)1/α]1/β . Then, if U has
a uniform distribution on (0, 1), X = Q(U) follows the NWG(α, β, ξ) family.

Let h(x; ξ) be the hrf of the parent G. The hrf h(x;α, β, ξ) of X is given by

h(x;α, β, ξ) =
αβ g(x;ξ)

G(x;ξ)
{− log [G(x; ξ)]}β−1 e−α{− log [G(x;ξ)] }β

1− e−α{− log [G(x;ξ)] }β
.

3. Special models
In this section, we provide six special models of the NWG distributions. Suppose that

the parent distribution is uniform on the interval (0, θ), θ > 0. We have g(x; θ) = 1/θ,
0 < x < θ <∞, and G(x; θ) = x/θ, and then the Weibull-uniform (WU) cdf is given by

FWU (x;α, β, θ) = e−α[− log( xθ )]β , 0 < x < θ <∞ α, β, θ > 0.

Now, take the parent distribution as Weibull with pdf and cdf given by g(x) =

λ γ xγ−1 e−λx
γ

and G(x) = 1 − e−λx
γ

for λ, γ > 0. Then, the Weibull-Weibull (WW)
cdf becomes

FWW (x;α, β, λ, γ) = e
−α
[
− log

(
1−e−λ x

γ )]β
, x > 0, α, β, λ, γ > 0.

For γ = 1 and γ = 2, we obtain as special cases the Weibull-exponential (WE) and
Weibull-Rayleigh (WR) distributions, respectively.

For the Weibull-logistic (WLo) distribution, we have g(x) = λ e−λx
(
1 + e−λx

)−2 and
G(x) =

(
1 + e−λx

)−1. Then, the WLo cdf reduces to

FWLo(x;α, β, λ) = e
−α
{
− log

[
(1+e−λ x)−1

]}β
, x > 0, α, β, λ > 0.

Consider the parent log-logistic distribution with parameters s > 0 and c > 0 given
by g(x; s, c) = c s−c xc−1

[
1 +

(
x
s

)c]−2 and G(x; s, c) = 1−
[
1 +

(
x
s

)c]−1.
Then, the Weibull-log-logistic (WLL) cdf becomes

FWLL(x;α, β, s, c) = e
−α
[
− log

{
1−[1+( xs )c]−1

}]β
, x > 0, α, β, s, c > 0.
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We take the parent Burr XII distribution with pdf and cdf given by
g(x) = c k s−c xc−1 [1 + (x/s)c]−k−1 and G(x) = 1 − [1 + (x/s)c]−k. Then, the Weibull-
Burr XII (WBXII) cdf reduces to

FWBXII(x;α, β, s, c, k) = e
−α
[
− log

{
1−[1+( xs )c]−k

}]β
, x > 0, α, β, s, c, k > 0.

For c = 1 and k = 1, we obtain as a special case the Weibull-Lomax (WLx) distribution.

Finally, if we consider the baseline normal distribution, the pdf and cdf are g(x;µ, σ) =
σ−1 φ [(x− µ)/σ] and G(x;µ, σ) = Φ [(x− µ)/σ]. Then, the Weibull-normal (WN) cdf
becomes (for x ∈ <)

FWN (x;α, β, µ, σ) = e−α[− log{Φ( x−µσ )}]β , x ∈ <, α, β, σ > 0, µ ∈ <.
The density of the new family can be symmetrical, left-skewed, right-skewed, bathtub
and reversed-J shaped, and has constant, increasing, decreasing, bathtub, upside-down
bathtub, J, reversed J and S shaped hazard rates. In Figures 1 and 2, we display some
plots of the pdf and hrf of (a) WU, (b) WW, (c) WLL, (d) WLo, (e) WBXII and
(f) WN distributions for selected parameter values. Figure 1 indicates that the NWG
family generates distributions with various shapes such as symmetrical, left-skewed, right-
skewed, bathtub and reversed-J. Also, Figure 2 reveals that this family can produce
flexible hazard rate shapes such as increasing, decreasing, bathtub, upside-down bathtub,
J, reversed-J and S. This fact implies that the NWG family can be very useful to fit
different data sets with various shapes.

4. Shapes of the pdf and hrf
The shapes of the density and hazard rate functions can be described analytically.

The critical points of the NWG density are the roots of the equation:

g′(x)

g(x)
+
g(x)

G(x)
+

(1− β)g(x)

G(x) log [G(x)]
+
αβ g(x) {− log [G(x)]}β−1

G(x)
= 0.(4.1)

The critical points of h(x) are obtained from the equation

g′(x)

g(x)
+
g(x)

G(x)
+

(1− β)g(x)

G(x) log [G(x)]
+
αβ g(x) {− log [G(x)]}β−1

G(x)

+
αβ g(x) {− log [G(x)]}β−1 e−α{− log[G(x)]}β

G(x)
[
1− e−α{− log[G(x)]}β

] = 0.(4.2)

By using most symbolic computation software platforms, we can examine equations (4.1)
and (4.2) to determine the local maximums and minimums and inflexion points.
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Figure 1. Plots of the (a) WU (b) WW (c) WLL (d) WLo (e) WBXII
and (f) WN densities.
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Figure 2. Plots of the (a) WU (b) WW (c) WLL (d) WLo (e) WBXII
and (f) WN hazard rates.

5. Mathematical properties
The formulae derived throughout the paper can be easily handled in analytical soft-

wares such as Maple and Mathematica which have the ability to deal with analytic
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expressions of formidable size and complexity. Established algebraic expansions to de-
termine some mathematical properties of the NWG family can be more efficient than
computing those directly by numerical integration of its density function, which can be
prone to rounding off errors among others. The infinity limit in these sums can be sub-
stituted by a large positive integer such as 20 or 30 for most practical purposes. Here,
we provide some mathematical properties of X.

5.1. Expansion for the NWG cdf. Let A = e−α{− log[G(x;ξ)] }β . Then, using a power
series expansion for A, we can write (2.2) as

F (x;α, β, ξ) =

∞∑
i=0

(−1)i αi

i!
{− log[G(x; ξ)] }i β .(5.1)

The following formula holds for i ≥ 1
(http:// functions.wolfram.com/ ElementaryFunctions/Log/06/01/04/03/),
and then we can write

{− log[G(x; ξ)] }i β =

∞∑
k,l=0

k∑
j=0

(−1)j+k+l i β

(iβ − j)

(
k − i β
k

)(
k

j

)(
β i+ k

l

)
× pj,k [G(x; ξ)]l,

where (for j ≥ 0) pj,0 = 1 and (for k = 1, 2, . . .)

pj,k = k−1
k∑

m=1

(−1)m[m(j + 1)− k]

(m+ 1)
pj,k−m.

By inserting the above power series in equation (5.1) gives

(5.2) F (x;α, β, ξ) =

∞∑
l=0

blG(x; ξ)l =

∞∑
l=0

blHl(x; ξ),

where Hl(x; ξ) = G(x; ξ)l (for l ≥ 1), is the exponentiated-G (exp-G) density function
with power parameter l, H0(x; ξ) = 1,

bl =

∞∑
i,k=0

k∑
j=0

(−1)i+j+k+l i β

i! (i β − j)

(
k − i β
k

)(
k

j

)(
i β + k

l

)
pj,k.

We can write the NWG family density as a mixture of exp-G densities

(5.3) f(x;α, β, ξ) =

∞∑
l=0

bl+1 hl+1(x; ξ),

where hl+1(x; ξ) = (l + 1) g(x; ξ)G(x; ξ)l is the exp-G density function with power pa-
rameter l + 1.

Thus, some mathematical properties of the proposed family can be derived from (5.3)
and those of exp-G properties. For example, the ordinary and incomplete moments and
moment generating function (mgf) of X can be obtained from those exp-G quantities.
Some mathematical properties of the exp-G distributions are studied by [20, 21, 23] and
others.
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5.2. Moments. Let Yl be a random variable having the exp-G density function hl+1(x).
A first formula for the nth moment of X follows from (5.3) as

E(Xn) =

∞∑
l=0

bl+1 E(Y nl ).(5.4)

Expressions for moments of several exp-G distributions are given by Nadarajah and
Kotz [23], which can be used to obtain E(Xn).

A second formula for E(Xn) can be written from (5.4) in terms of the G qf as

E(Xn) =

∞∑
l=0

(l + 1) bl+1 τn,l,(5.5)

where τn,l =
∫∞
−∞ x

nG(x)l g(x) dx =
∫ 1

0
QG(u)n ul du.

Cordeiro and Nadarajah [13] obtained τn,l for some well-known distributions such as
normal, beta, gamma and Weibull, which can be used to determine the NWG moments.

For empirical purposes, the shapes of many distributions can be usefully described by
what we call the incomplete moments. These types of moments play an important role
for determining Lorenz and Bonferroni curves.

The nth incomplete moment of X is obtained as

mn(y) =

∞∑
l=0

(l + 1) bl+1

∫ G(y)

0

QG(u)n ul du.(5.6)

The last integral can be computed for most G distributions. Equations (5.4)-(5.6) are
the main results of this section.

5.3. Generating function. LetMX(t) = E(et X) be the mgf of X. Then, we can write

MX(t) =

∞∑
l=0

bl+1 Ml(t),(5.7)

whereMl(t) is the mgf of Yl. Hence,MX(t) can be determined from the exp-G generating
function.

A second formula for MX(t) can be expressed as

MX(t) =

∞∑
l=0

(l + 1) bl+1 ρ(t, l),(5.8)

where ρ(t, l) =
∫∞
−∞ et x G(x)l g(x) dx =

∫ 1

0
et QG(u) ul du.

We can obtain the mgfs of several distributions directly from equation (5.8).

5.4. Rényi entropy. Entropy has wide application in science, engineering and proba-
bility theory, and has been used in various situations as a measure of variation of the
uncertainty. The entropy of a random variable X is a measure of variation of uncertainty.
Here, we derive explicit expressions for the Rényi entropy [25] of the NWG family. The
Shannon entropy [27] of a random variable X is defined by E {− log [f(X)]}. It is the
special case of the Rényi entropy when γ ↑ 1.

The Rényi entropy is defined by

IR(δ) =
1

1− δ log [I(δ)],

where I(δ) =
∫∞
−∞ fδ(x) dx, δ > 0 and δ 6= 1.
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Let us consider

fδ(x) = (αβ)δ gδ(x) G−δ(x) {− log [G(x)]}δ(β−1) e−δα{− log [G(x)]}β .

Expanding the exponential function in power series and then expanding the power of
{− log [G(x)]} as in Section 5.1, we obtain

fδ(x) = (αβ)δ
∞∑

i,k=0

(−1)i (α δ)i [δ(β − 1) + iβ]

i!

(
k − δ(β − 1)− iβ

k

)

×
∞∑
j=0

(−1)j+k pj,k
(
k
j

)
[δ(β − 1) + iβ − j] gδ(x) Gδ(x) [1−G(x)]k−δ(β−1)−iβ ,

where the constants pj,k are given in Section 5.1.
Further, using the binomial expansion in the last equation, we can write

fδ(x) =

∞∑
l=0

Sl g
δ(x) Gδ+l(x),

where

Sl =

∞∑
i,j,k=0

(−1)i+j+k+l (α δ)i [δ(β − 1) + iβ]

i! [δ(β − 1) + iβ − j]

× pj,k−m

(
k

j

) (
k − δ(β − 1)− iβ

k

) (
k + δ(β − 1) + iβ

l

)
.

Hence, the Rényi entropy reduces to

IR(δ) =
1

1− δ log

[
∞∑
l=0

Sl

∫ ∞
−∞

gδ(x)Gδ+l(x) dx

]
.

6. Order statistics
Order statistics make their appearance in many areas of statistical theory and practice.

SupposeX1, . . . , Xn be observed values of a sample from the NWG family of distributions.
We can write the density of the ith order statistic, say Xi:n, as

fi:n(x) =
n!

(i− 1)! (n− i)!

n−i∑
j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1.

Following similar algebraic developments of Nadarajah et al. [22], we can write

fi:n(x) =

∞∑
r,k=0

mr,k hr+k+1(x),(6.1)

where hr+k+1(x) is the exp-G density function with power parameter r + k + 1,

mr,k =
n! (r + 1) (i− 1)! br+1

(r + k + 1)

n−i∑
j=0

(−1)j fj+i−1,k

(n− i− j)! j! ,

and bk is defined in equation (5.2). Here, the quantities fj+i−1,k are obtained recursively
by fj+i−1,0 = bj+i−1

0 and (for k ≥ 1)

fj+i−1,k = (k b0)−1
k∑

m=1

[m(j + i)− k] bm fj+i−1,k−m.
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Based on the expansion (6.1), we can obtain some mathematical properties (ordinary
and incomplete moments, generating function, etc.) for the NWG order statistics from
those exp-G properties.

7. Reliability
We derive the reliability R = P (X2 < X1) when X1 ∼ NWG(α1, β1, ξ1) and X2 ∼

NWG(α2, β2, ξ2) are independent random variables with a positive support. It has many
applications especially in engineering concepts. Let fi(x) and Fi(x) denote the pdf and
cdf of Xi for i = 1, 2. By using the mixture representations for F2(x) and f1(x) given in
Section 5.1, we obtain

R =

∞∑
k,s=0

b
(1)
k b

(2)
s+1 Rk,s+1,

where b(1)
l and b(2)

s+1 are given in these representations and

Rk,s+1 =

∫ ∞
0

Hk(x;α1, β1, ξ1) hs+1(x;α2, β2, ξ2) dx.

If α1 = α2 and β1 = β2, then

R =

∞∑
k,s=0

(s+ 1)

(s+ k + 1)
b
(1)
k b

(2)
s+1.

Finally, if α1 = α2, β1 = β2 and ξ1 = ξ2, then R = 1/2 as expected.

8. Characterizations of the NWG family
Various characterizations of distributions have been established in many different di-

rections. In this section, three characterizations of the NWG family are presented based
on: (i) a simple relationship between two truncated moments; (ii) a single function of
the random variable, and (iii) the hazard function.

8.1. Characterization based on truncated moments. Here, we present a charac-
terization of the NWG family in terms of a simple relationship between two truncated
moments. The characterization results employ an interesting result due to Glänzel [19]
(Theorem 1, below). It has the advantage that the cdf F is not required to have a closed-
form and is given in terms of an integral whose integrand depends on the solution of
a first order differential equation, which can serve as a bridge between probability and
differential equation.

8.1. Theorem. Let (Ω,Σ,P) be a given probability space and let H = [a, b] be an interval
for some a < b (a = −∞, b = ∞ might as well be allowed). Let X : Ω → H be a
continuous random variable with distribution function F (x) and let q1 and q2 be two real
functions defined on H such that

E [q1 (X) |X ≥ x] = E [q2 (X) |X ≥ x] η (x), x ∈ H,
is defined with some real function η. Assume that q1, q2 ∈ C1(H), η ∈ C2(H) and G(x)
is twice continuously differentiable and strictly monotone function on the set H. Finally,
assume that the equation q2η = q1 has no real solution in the interior of H. Then G is
uniquely determined by the functions q1, q2 and η, particularly

F (x) =

∫ x

a

C

∣∣∣∣ η′ (u)

η (u) q2 (u)− q1 (u)

∣∣∣∣ e−s(u) du ,
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where the function s is a solution of the differential equation s′ = η′ q2
η q2−q1

and C is a
constant, chosen to make

∫
H
dF = 1.

8.2. Proposition. Let X : Ω→ (0,∞) be a continuous random variable and let q2 (x) =

eα{− log[G(x;ξ)]}β and q1 (x) = q2 (x) {− log [G (x; ξ)]} for x > 0. The pdf of X is (2.2) if
and only if the function η defined in Theorem 1 has the form

η (x) =
β

β + 1
{− log [G (x; ξ)]} , x > 0.

Proof. Let X have density (2.2), then[
1− F (x)

]
E [q2 (X) |X ≥ x] = α {− log [G (x; ξ)]}β , x > 0,[

1− F (x)
]
E [q1 (X) |X ≥ x] =

αβ

β + 1

{
− log [G (x; ξ)]

}β+1
, x > 0,

and then

η (x) q2 (x)− q1 (x) = − 1

β + 1
q2 (x)

{
− log [G (x; ξ)]

}
< 0 forx > 0.

Conversely, if η is given as above, then

s′(x) =
η′(x) q2(x)

η(x) q2(x)− q1(x)
= β

[ g (x; ξ)

G (x; ξ)

]{
− log [G (x; ξ)]

}−1

, x > 0,

and hence
s(x) = −β log

(
{− log [G (x; ξ)]}

)
, x > 0,

or
e−s(x) =

{
− log [G (x; ξ)]

}β
, x > 0.

Now, in view of Theorem 1, X has density function (2.2). �

8.3. Corollary. Let X : Ω → (0,∞) be a continuous random variable and let q2 (x) be
as in Proposition 1. The pdf of X is (2.2) if and only if there exist functions q1 and η
defined in Theorem 1 satisfying the differential equation

η′(x) q2(x)

η(x) q2(x)− q1(x)
= β

[ g (x; ξ)

G (x; ξ)

] {
− log [G (x; ξ)]

}−1
, x > 0.

Remark 1. (a)The general solution of the differential equation in Corollary 1 is ob-
tained as follows:

η′(x)− β
[ g (x; ξ)

G (x; ξ)

]
{− log [G (x; ξ)]}−1

= −β q1(x)
[
g(x;ξ)
G(x;ξ)

]{
− log [G (x; ξ)]

}−1

[q2(x)]−1 ,

or
d

dx

[
{− log [G (x; ξ)]}β η(x)

]
= −β q1(x)

[
g(x;ξ)
G(x;ξ)

] {
− log [G (x; ξ)]

}β−1
[q2(x)]−1 .

From the above equation, we obtain

η(x) =
{
− log [G (x; ξ)]

}−β
×
[
−
∫
β q1(x)

[
g (x; ξ)

G (x; ξ)

]{
− log [G (x; ξ)]

}β−1

[q2(x)]−1 dx+D

]
,

where D is a constant. One set of appropriate functions is given in Proposition 1 with
D = 0.
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(b)Clearly there are other triplets of functions (q2, q1, η) satisfying the conditions of
Theorem 1. We present one such triplet in Proposition 1.

8.2. Characterization based on single function of the random variable. Here,
we employ a single function ψ of X and state characterization results in terms of ψ (X).

8.4. Proposition. Let X : Ω→ (0,∞) be a continuous random variable with cdf F (x).
Let ψ (x) be a differentiable function on (0,∞) with limx→∞ ψ (x) = 1. Then for δ 6= 1,

E [ψ (X) |X < x] = δ ψ (x) , x ∈ (0,∞)

if and only if

ψ (x) = F (x)
1
δ
−1, x ∈ (0,∞) .

Proof. The proof is straightforward. �

Remark 2. For ψ (x) = e−{− log[G(x;ξ)]}β , x ∈ (0,∞) and δ = α
α+1

, Proposition 2
provides a cdf F (x) given by (2.1).

8.3. Characterizations based on the hazard function. The hrf hF (x) of a twice
differentiable distribution function F (x) and pdf f(x) satisfies the first order differential
equation

h′F (x)

hF (x)
− hF (x) = q(x),

where q (y) is an appropriate integrable function. Although this differential equation has
an obvious form since

f ′(x)

f(x)
=
h′F (x)

hF (x)
− hF (x),(8.1)

for many univariate continuous distributions (8.1) seems to be the only differential equa-
tion in terms of the hrf. The goal of the characterization based on the hazard function
is to establish a differential equation in terms of the hrf, which has a simple form as
possible and is not of the trivial form (8.1). For some general families of distributions
this may not be possible.

8.5. Proposition. Let X : Ω → (0,∞) be a continuous random variable. The random
variable X has pdf (2.2) (for β = 1) and G(x) = (1 − e−λx) if and only if its hazard
function hF (x) satisfies the differential equation

h′F (x) + λ
(

1− e−λx
)−1

hF (x) =
α2 λ2 e−2λx

(1− e−λx)2 eα log(1−e−λ x)

×
[
1− eα log(1−e−λx)

]−2

,(8.2)

with initial condition hF (0) = 0.

Proof. The f(x) has pdf (2.2), then clearly (8.2) holds. Now, if (8.2) holds, then

d

dx

{
eλx

(
1− e−λx

)
hF (x)

}
= αλ

d

dx

{(
1− eα log[1−e−λ x]

)−1

+ C

}
,

where C is an appropriate constant. Letting C = −1 , we obtain from the above equation

hF (x) =
αλ e−λx

(1− e−λx)

{
eα log(1−e−λ x)

[
1− eα log(1−e−λx)

]−1
}
.

Integrating both sides of the last equation from 0 to x, we arrive at

− log
[
1− F (x)

]
= − log

[
1− eα log(1−e−λ x)

]
,
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from which, we obtain

1− F (x) = 1− eα log(1−e−λx), x ≥ 0.

�

9. Estimation
We consider the estimation of the unknown parameters of the NWG family of distri-

butions by the method of maximum likelihood. Let x1, . . . , xn be a sample of size n from
the NWG family given by (2.2). The log-likelihood function for the vector of parameters
Θ = (α, β, ξ)> can be expressed as

`(Θ) = n logα+ n log β +

n∑
i=1

log [g(x, ξ)]−
n∑
i=1

log {G(x, ξ)}

+(β − 1)

n∑
i=1

log {− log [G(x, ξ)]} − α
n∑
i=1

{− log [G(x, ξ)]}β .

The components of the score vector U(Θ) are given by

Uα =
n

α
−

n∑
i=1

{− log [G(x, ξ)]}β ,

Uβ =
n

β
−

n∑
i=1

[
log {− log [G(x, ξ)]}

]
−α

n∑
i=1

[
{− log [G(x, ξ)]}β log {− log [G(x, ξ)]}

]
,

Uξk =

n∑
i=1


(
∂ g(x,ξ)
∂ ξk

)
g(x, ξ)

− n∑
i=1


(
∂ G(x,ξ)
∂ ξk

)
G(x, ξ)



−(β − 1)

n∑
i=1


(
∂ G(x,ξ)
∂ ξk

)
{− log [G(x, ξ)]} G(x, ξ)



+αβ

 n∑
i=1

{− log [G(x, ξ)]}β−1
(
∂ G(x,ξ)
∂ ξk

)
G(x, ξ)

 .
Setting Uα, Uβ and Uξk equal to zero and solving numerically these equations simulta-
neously yields the maximum likelihood estimates (MLEs) Θ̂ = (α̂, β̂, ξ̂)ᵀ. The estimates
can be obtained using the R language.

For interval estimation and hypothesis tests, we can use standard likelihood techniques
based the observed information matrix, which can be obtained from the authors upon
request.

10. Applications
We provide two applications to real life data sets to prove the flexibility of the Weibull-

log-logistic (WLL) and Weibull-Weibull (WW) models presented in Section 3. The
MLEs of the model parameters and the goodness-of-fit statistics are calculated for the
WLL and WW models, and other competitive models. We compare these models with
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other Weibull-G models under the same baseline distribution, namely the WLL (BSC-
WLL, ALF-WLL) and WW (BSC-WW, ALF-WW) models based on Bourguignon et al.
(2014)’s generator G(x)/[1−G(x)] and Alzaatreh et al. (2013)’s generator − log[1−G(x)].
We note that the BSC-LL, ALF-LL, BSC-WW and ALF-WW models are not known in
the literature. Further, we also compare the gamma exponentiated-exponential (GEE)
(Ristić and Balakrishnan [26]) and exponential-exponential geometric (EEG) (Rezaei et
al. [24]) models with the proposed and other competitive models. The density functions
of the GEE and EEG distributions are, respectively, given by (for x > 0)

fGEE(x;λ, α, θ) =
α θ

Γ(λ)
e−θ x

[
1− e−θ x

]α−1 [
−α log

(
1− e−θ x

)]λ−1

,

λ, α, θ > 0,

fEEG(x; p, α, θ) =
α θ(1− p) e−θ x

[1− e−θ x]α−1 [1− p+ p (1− e−θ x)α]2
,

0 < p < 1, α, θ > 0.

The first real data represents the breaking strength of 100 yarn reported by Duncan [17].
The second real data set corresponds to the survival times (in days) of 72 guinea pigs
infected with virulent tubercle bacilli reported by Bjerkedal [9].

The measures of goodness-of-fit including the log-likelihood function evaluated at
the MLEs (ˆ̀), Akaike information criterion (AIC), Anderson-Darling (A∗), Cram´er-
von Mises (W ∗) and Kolmogorov-Smirnov (K-S), are calculated to compare the fitted
models. The statistics A∗ and W ∗ are described by Chen and Balakrishnan [10]. In
general, the smaller the values of these statistics, the better the fit to the data. The
required computations are carried out using the R software.

Table 1: MLEs and their standard errors (in parentheses) for the first data set.

Distribution β c s λ α θ p

WLL 0.6612 25.5915 97.7523 - - - -
(0.1395) (6.2313) (1.0425) - - - -

BSC-WLL 4.7898 1.5601 105.0254 - - - -
(195.4617) (63.6652) (1.4938) - - - -

ALF-WLL 0.6528 25.9621 99.6537 - - - -
(0.1423) (6.4490) (1.0920) - - - -

GEE - - - 20.4987 78.3734 0.0150 -
- - - (5.4222) (11.2681) (0.0022) -

EEG - - - - 38.9807 0.0198 0.9974
- - - - (5.8133) (0.0015) (0.0004)

Table 2: MLEs and their standard errors (in parentheses) for the second data set.

Distribution β γ λ α θ p

WW 2.6594 0.6933 0.0270 - - -
(0.7129) (0.1707) (0.0193) - - -

BSC-WW 11.1576 0.0881 0.4574 - - -
(4.5449) (0.0355) (0.0770) - - -

ALF-WW 1.7872 0.7795 0.0255 - - -
(0.7821) (0.3332) (0.0400) - - -

GEE - - 2.1138 2.6006 0.0083 -
- - (1.3288) (0.5597) (0.0048) -

EEG - - - 2.5890 0.0004 0.9999
- - - (0.4820) (0.0041) (0.1036)
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Table 3: The statistics ˆ̀, AIC, A∗, W ∗ and K-S for the fitted models to the first data
set.

Distribution ˆ̀ AIC A∗ W ∗ K-S p-value (K-S)

WLL -383.5896 773.1792 0.8402 0.1254 0.0805 0.5354
BSC-WLL -404.7074 815.4147 4.7296 0.7951 0.1948 0.0010
ALF-WLL -383.6181 773.2361 0.7432 0.1332 0.0888 0.4091
GEE -392.7053 791.4106 2.3551 0.3976 0.1423 0.0348
EEG -390.5435 787.0869 1.4894 0.2676 0.1442 0.0312

Table 4: The statistics ˆ̀, AIC, A∗, W ∗ and K-S for the fitted models to the second data
set.

Distribution ˆ̀ AIC A∗ W ∗ K-S p-value (K-S)

WW -390.2338 786.4676 0.7811 0.1427 0.1055 0.3994
BSC-WW -397.8399 801.6797 2.4764 0.4494 0.1510 0.0749
ALF-WW -397.1477 800.2953 2.3938 0.4348 0.1465 0.0911
GEE -393.6235 793.2470 1.7208 0.3150 0.1347 0.1467
EEG -389.9445 785.8890 0.5789 0.1047 0.0861 0.6282
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Figure 3. Plots of the estimated pdfs and cdfs of the WLL, BSC-
WLL, ALF-WLL, GEE and EEG models.

The MLEs and the corresponding standard errors (in parentheses) of the model pa-
rameters are given in Tables 1 and 2. The numerical values of the statistics AIC, A∗,
W ∗ and K-S are listed in Tables 3 and 4. The histograms of the two data sets and the
estimated pdfs and cdfs of the proposed and competitive models are displayed in Figures
3 and 4. Based on the figures in Tables 2 and 4, we conclude that the new WLL and WW
models provide adequate fits as compared to other Weibull-G models in both applications
with small values for AIC, A∗, W ∗ and K-S, and large p-values. In Application 1, the
proposed WLL model is much better than the BSC-WLL, GEE and EEG models, and
a good alternative to the ALF-WLL model. In Application 2, the proposed WW model
outperforms the BSC-WEW, ALF-WW and GEE models but it is not better than EEG
model. Figures 3 and 4 also support the results in Tables 2 and 4.
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Figure 4. Plots of the estimated pdfs and cdfs of the WW, BSC-WW,
ALF-WW, GEE and EEG models.

11. Concluding remarks
In this paper, we propose and study the new Weibull-G (NWG) family. We investigate

some of its mathematical properties including an expansion for the density function and
explicit expressions for the quantile function, ordinary and incomplete moments, gener-
ating function, entropies, reliability and order statistics. Three useful characterizations,
based on truncated moments, single function of the random variable and hazard function,
are formulated for the NWG family. The advantage of the characterizations given here
is that the cumulative distribution is not required to have a closed-form and are given in
terms of an integral whose integrand depends on the solution of a first order differential
equation. They can serve as a bridge between probability and differential equation. The
maximum likelihood method is employed to estimate the model parameters. We fit two
special models of the new family to two real data sets to demonstrate the flexibility of the
proposed family. These special models can give better fits than other competing models.
We hope that the new family and its generated models will attract wider application
in areas such as engineering, survival and lifetime data, hydrology, economics, among
others.
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