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Small supplements, weak supplements and proper
classes

Rafail Alizade∗, Engin Büyükaşık† and Yılmaz Durǧun‡§

Abstract

Let SS denote the class of short exact sequences E :0 → A
f→ B →

C → 0 of R-modules and R-module homomorphisms such that f(A)
has a small supplement in B i.e. there exists a submodule K ofM such
that f(A) +K = B and f(A) ∩K is a small module. It is shown that,
SS is a proper class over left hereditary rings. Moreover, in this case,
the proper class SS coincides with the smallest proper class contain-
ing the class of short exact sequences determined by weak supplement
submodules. The homological objects, such as, SS-projective and SS-
coinjective modules are investigated. In order to describe the class SS,
we investigate small supplemented modules, i.e. the modules each of
whose submodule has a small supplement. Besides proving some clo-
sure properties of small supplemented modules, we also give a complete
characterization of these modules over Dedekind domains.

Keywords: Proper class of short exact sequences, weak supplement submodule,
small module, small supplement submodule
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1. Introduction
All rings are associative with identity element and all modules are unitary left modules.

We use the notation E(M), Soc(M), Rad(M), for the injective hull, socle, radical of an
R-module M respectively. Let M be any module and let N and K be submodules of M.
N is said to be small (or superfluous) in a module M , denoted as N �M if N +K = M
implies K = M for any submodule K ofM . N is said to be a small module if N is a small
submodule of some R-module. N is a small module if and only if N is a small submodule
of its injective envelope (see, [9]). A submodule N of M is called a supplement of K in
M if N is minimal with respect to the property M = K +N , equivalently, M = K +N
and K ∩N � N . A submodule K of M has a supplement in M provided there exists a
submodule N of M such that N is a supplement of K in M . A submodule N of M has
(is) a weak supplement K in M if M = K +N and K ∩N �M . If every submodule of
M has a (weak) supplement in M , then M is called (weakly) supplemented.

Proper classes were introduced by Buchsbaum in order to axiomatize conditions under
which a class of short exact sequences of modules can be computed as Ext groups corre-
sponding to a certain relative homology. Let E : 0→ A

f→ B → C → 0 be a short exact
sequence. It is well-known that the class of short exact sequences E such that Im(f) is a
supplement in B, respectively pure in B is a proper class in the sense of Buchsbaum (see,
[7, 20.7]). However, many other analogous classes of short exact sequences of modules
do not form a proper class. For example, the classes Small, S or WS i.e. the classes
of short exact sequences E such that Im f small in B, has a supplement in B, or has a
weak supplement in B, respectively, are not proper classes. But, in this case, one may
consider the least proper class containing a given class of short exact sequences, that
is, the intersection of all proper classes containing them. Recently, in [3], the authors
shows that, the least proper classes containing the classes Small, S or WS coincide over
hereditary rings. They obtained this proper class by natural extension of the class WS

and denoted it by WS.
At this point, the question which arises naturally is that, whether the class WS can be

described as a class of short exact sequences E such that Im(f) has a certain property in
B. The answer of this question is affirmative over left hereditary rings. Over such rings
the class WS coincides with the class determined by small supplements.

The paper is organized as follows.
In section 3, weakening the notion of weak supplement we consider small supplement

submodules. Namely, a submodule N of a module M has a small supplement in M if
there exists a submodule K of M such that N +K = M and N ∩K is a small module.
Let SS be the class of short exact sequences such that Im(f) has a small supplement in
B. We prove that, SS is a subgroup of Ext, and over a hereditary ring SS is a proper
class. Moreover, SS coincides with the proper class WS.

In section 4, we investigate SS-projective modules which are projective relative to
short exact sequences that belong to SS. We show that an R-module F is SS-projective
if and only if Ext(F, S) = 0 for each small R-module S. Moreover, we prove that every
SS-projective module is flat if R is commutative C-ring (i.e. Soc(R/I) 6= 0 for each
essential proper left ideal I).

In section 5, we study on the properties of the modules whose submodules have small
supplements. We call these modules small supplemented. Small supplemented mod-
ules are proper generalization of weakly supplemented modules. It is shown that, small
supplemented modules are closed under submodules, factor modules, finite sums and
extensions. An injective module is small supplemented if and only if it is weakly supple-
mented.
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In section 6, we characterize small supplemented modules over Dedekind domains.
We prove that, an R-module M is small supplemented if and only if every primary
component of T (M) is a direct sum of a bounded submodule and an artinian submodule,
and M/T (M) has finite uniform dimension, where T (M) is the torsion submodule of M .

2. Proper Classes
Let us recall the definition of a proper class of short exact sequences (e.g., see [4], [7],

[11], [19]).

2.1. Definition. Let P be a class of short exact sequences of R-modules and R-module
homomorphisms. If a short exact sequence E : 0→ A

f→ B
g→ C → 0 belongs to P, then

f is said to be a P-monomorphism and g is said to be an P-epimorphism. Also, E is said
to be a P-exact sequence.

The class P is said to be a proper class (in the sense of Buchsbaum) if it has the
following properties:

P-1) P is closed under isomorphisms;
P-2) P contains all splitting short exact sequences;
P-3) The class of P-monomorphisms is closed under composition; if f, g are monomor-

phisms and gf is an P-monomorphism, then f is an P-monomorphism;
P-4) The class of P-epimorphisms is closed under composition; if f, g are epimor-

phisms and gf is an P-epimorphism, then g is an P-epimorphism.

2.2. Example. Some examples of proper classes, which are interesting for the purpose
of this paper are the following (e.g., see [7]).

(i) The class Split of all splitting short exact sequences.
(ii) The class P of all short exact sequences on which the functor Hom(M,−) is

exact for every M ∈M , where M is a class of modules. Its elements are called
P-pure exact sequences. For the class M of finitely presented modules, one has
the classical pure exact sequences.

(iii) The classes of all short exact sequences 0 → A
f→ B → C → 0 with Im f is a

supplement, or a closed submodule of B are proper classes.

The set Ext1
P(C,A) of all short exact sequence of Ext1

R(C,A) that belongs to a proper
class P is a subgroup of the group of the extensions Ext1

R(C,A). Conversely given a class
P of short exact sequences if Ext1

P(C, A) is a subfunctor of Ext1
R(C, A), Ext1

P(C, A)
is a subgroup of Ext1

R(C, A) for every R-modules A,C and the composition of two P-
monomorphisms (or P-epimorphisms) is a P-monomorphism (a P-epimorphism respec-
tively) then P is a proper class (see Theorem 1.1 in [14]). For any class P of short exact
sequences the intersection 〈P〉 of all proper classes containing P is clearly a proper class.
We say that 〈P〉 is the proper class generated by P (see [15]). Clearly 〈P〉 is the least
proper class containing P.

2.3. Definition. [3] A short exact sequence E : 0 → A → B → C → 0 is said to be
extended weak supplement if there is a short exact sequence E′ : 0→ A

f→ B′ → C′ → 0
such that Im f has (is) a weak supplement in B′ and there is a homomorphism g : C → C′

such that E = g∗(E′), that is, there is a commutative diagram as follows:

0 // A // B

��

// C

g

��

// 0 : E

0 // A
f // B′ // C′ // 0 : E′
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The class of all extended weak supplement short exact sequences will be denoted by WS.
So ExtWS(C, A) = {E : 0→ A→ B → C → 0 | E = g∗(E′) for some E′ : 0→ A

f→ B′ →
C′ → 0 ∈WS and g : C → C′ }.

The class WS is the least proper class containing the class WS (see, [3]).

3. The Proper Class SS

3.1. Definition. A submodule L of an R-module M has a small supplement in M if
there is a submodule K of M such that L+K = M and L ∩K is a small module.

Let SS be the class of all short exact sequences E : 0 → A
f→ B → C → 0 such that

Im f has a small supplement in B. To prove that SS is a proper class we will use the
result of [14, Theorem 1.1].

Firstly, we show that ExtSS(C,A) is a subgroup of Ext1(C,A) for every R-modules
A, C. The following lemma can be proved by using similar arguments as in [3, Lemma
3.3].

3.2. Lemma. For every homomorphism f : A → A′, f∗ : Ext(C, A) → Ext(C, A′)
preserves short exact sequences from SS.

3.3. Lemma. For every homomorphism g : C′ → C, the homomorphism g∗ :
Ext(C, A)→ Ext(C′, A) preserves short exact sequences from SS.

Proof. Let E : 0→ A→ B
h→ C → 0 be a short exact sequence in SS and g : C′ → C be

a homomorphism. Then the following diagram is commutative with exact rows.

E1 : 0 // A // B′

g′

��

h′
// C′

g

��

// 0

E : 0 // A // B
h
// C // 0

where g∗(E) = E1. Let V be a small supplement of Kerh in B. Then Kerh+V = B and
V ∩Kerh is a small module. Then g′−1(V )+Kerh′ = B′ by the pullback diagram. Since
g′ induces an isomorphism between g′−1(V ) ∩Kerh′ and V ∩Kerh, g′−1(V ) ∩Kerh′ is
a small module by [9, Theorem 2]. Therefore, E1 ∈ SS. �

The proof of the following is routine, hence we skip its proof.

3.4. Proposition. If E1, E2 ∈ ExtSS(C, A), then E1 ⊕ E2 ∈ ExtSS(C ⊕ C, A⊕A).

3.5. Corollary. ExtSS(C, A) is a subgroup of Ext(C, A) for every modules C and A.

Proof. Let E1, E2 ∈ ExtSS(C, A). E1 ⊕ E2 is SS-element by Proposition 3.4. Since
E1 + E2 = ∇A(E1 ⊕ E2)∆C where ∆C : c 7→ (c, c) is the the diagonal map and ∇A :
(a1, a2) 7→ a1 + a2 is the codiagonal map, E1 + E2 is in SS by Lemma 3.2 and Lemma
3.3. �

3.6. Theorem. If R is a left hereditary ring, then SS is a proper class.

Proof. By Lemma 3.2, Lemma 3.3, Corollary 3.5, Ext1
SS(C, A) is a subfunctor of

Ext1
R(C, A) and Ext1

SS(C, A) is a subgroup of Ext1
R(C, A) for every R-modules A and C.

By [14, Theorem 1.1], we only need to show that the composition of two SS-epimorphisms
is an SS-epimorphism. Let f : B → B′ and g : B′ → C be SS-epimorphisms. We have
the following commutative diagram with exact rows and columns:
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0

��

0

��
0 // Kerf // A //

��

Kerg //

��

0

0 // Kerf // B
f //

��

B′ //

g

��

0

C

��

C

��
0 0

where A/Ker f ∼= Ker g, B/Ker f ∼= B′. Therefore there exist a submodule V in B
such that Ker f + V = B and Ker f ∩ V is a small module and there exist a submodule
U/Ker f in B/Ker f such that (U/Ker f) + (A/Ker f) = B/Ker f and (A ∩ U)/Ker f
is a small module. By modular law, A = Ker f + (A ∩ V ), U = Ker f + (U ∩ V ),
A∩U = Ker f +(A∩V ∩U). Therefore, B = A+U = A+(U ∩V ) and (A∩U)/Ker f ∼=
(A∩U ∩V )/(Ker f ∩V ). Since Ker f ∩V and (A∩U ∩V )/(Ker f ∩V ) are small modules
and R is a hereditary ring, A ∩ U ∩ V is small by [9, Theorem 3]. Hence g ◦ f is a
SS-epimorphism. �

A module M is said to be WS-coinjective if every extension of M is extended weak
supplement.

3.7. Theorem. The classes SS and WS coincide over left hereditary rings.

Proof. Let 0 → A → B → C → 0 ∈ SS. Then there is a submodule V of B such that
B = A+V and A∩V is a small module. So we have the following commutative diagram
with exact columns and rows:

0

��

0

��
A ∩ V

��

A ∩ V

��
E : 0 // A

��

// B

f

��

// C // 0

E1 : 0 // A/A ∩ V //

��

B/A ∩ V
g //

��

C // 0

0 0

Clearly g is a Split-epimorphism, and since small modules are WS-coinjective by [3,
Theorem 4.1], f is an WS-epimorphism. Since R is hereditary, WS is a proper class by
[3, Theorem 3.12], and hence the composition g ◦ f is a WS-epimorphism. Then, E is in
WS. Conversely, since WS ⊆ SS and WS is the smallest proper class containing WS, we
have WS ⊆ SS. �
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3.8. Lemma. The composition g ◦ f of a Split-epimorphism f and an SS-epimorphism
g is an SS-epimorphism.

Proof. Let f : B → B′ be a Split-epimorphism and g : B′ → C an SS-epimorphism. We
have the following commutative diagram with exact rows and columns:

0

��

0

��
0 // Kerf // A //

��

Kerg //

��

0

0 // Kerf // B
f //

��

B′ //

g

��

0

C

��

C

��
0 0

where A/Ker f ∼= Ker g, B/Ker f ∼= B′. Therefore there exist a submodule V in B
such that Ker f ⊕ V = B and there exist a submodule U/Ker f in B/Ker f such that
(U/Ker f) + (A/Ker f) = B/Ker f and (A ∩ U)/Ker f is a small module. By modular
law, U = Ker f⊕(U∩V ), A∩U = Ker f⊕(A∩V ∩U). Therefore, B = A+U = A+(U∩V ).
Since (A ∩ U)/Ker f is a small module and (A ∩ U)/Ker f ∼= (A ∩ U ∩ V ), A ∩ U ∩ V is
a small module. Hence g ◦ f is an SS-epimorphism. �

An epimorphism f : N →M is said to be a small cover ofM if Ker f � N . Moreover,
if N is projective, then f is called a projective cover. A ring R is said to be left (semi)
perfect if every (finitely generated) module has a projective cover.

3.9. Corollary. If R is a left perfect ring, then every short exact sequence is an SS-exact.
In particular, SS is a proper class.

Proof. Let 0 → A → B
f→ C → 0 be a short exact sequence. Since R is left perfect

ring, there exists an epimorphism g : P → C where P is a projective R-module and
Ker g � P . Therefore, g is an SS-epimorphism. Consider the pullback diagram:

B
f // C // 0

X

g′

OO

f ′ // P //

g

OO

0
Since P is projective, f ′ is a Split-epimorphism. Then g ◦ f ′ is an SS-epimorphism by
Lemma 3.8, and hence f is an SS-epimorphism by P − 4). �

4. Homological Objects of The Class SS

We begin with the following definition.

4.1. Definition. An R-module F is called SS-projective if it is projective relative to the
short exact sequences that belong to SS i.e., for each E in SS the sequence Hom(F,E) is
exact.

4.2. Proposition. The following are equivalent for an R-module F .
(1) F is SS-projective.
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(2) Ext(F, S) = 0 for each small R-module S.

Proof. (1)⇒ (2) is clear, since every short exact sequence starting with a small module
is in SS.

(2) ⇒ (1) Let 0 → A → B → C → 0 be a short exact sequence belongs to SS. Then
there is a submodule V of B such that B = A+ V and A ∩ V is a small module. So we
have the following commutative diagram

B

π

��

gπ // C // 0

B/(A ∩ V )
g // C // 0

where π is the canonical epimorphism and g a split epimorphism. Applying the functor
Hom(F, .), we have the following diagram

Hom(F,B)

π∗

��

g∗π∗ // Hom(F,C)

Hom(F,B/(A ∩ V ))
g∗ //

��

Hom(F,C) // 0

Ext(F,A ∩ V )

Since g is a split epimorphism, g∗ is an epimorphism. Then Ext(F,A ∩ V ) = 0 by
(2), and so π∗ is an epimorphism. Therefore, g∗π∗ is an epimorphism. Thus F is an
SS-projective module.

�

Note that every (finitely generated) SS-projective module is projective if R is left
(semi) perfect by Proposition 4.2.

A ring R is said to be left C-ring if Soc(R/I) 6= 0 for each proper essential left ideal
I of R, (see [16]). Right perfect rings and left semiartinian rings are left C-rings. One
of the characterization of left C-rings is the following: R is a left C-ring if and only if
Ext(S,M) = 0 for each simple R-module S impliesM is injective R-module, ([20, Lemma
4]).

4.3. Theorem. Let R be a commutative C-ring. Then SS-projective R-modules are flat.

Proof. LetM be an SS-projective R-module. Since every simple R-module is either small
or injective, for each simple R-module S, Ext(M,S) = 0 by Proposition 4.2. Note that if
R is commutative and E is an injective cogenerator, then Hom(S,E) ∼= S for each simple
R-module S. Then Ext(M,Hom(S,Q/Z) = 0. By the standart adjoint isomorphism
Hom(Tor(M,S),Q/Z) ∼= Ext(S,Hom(M,Q/Z)) = 0. Hence, Hom(Tor(M,S),Q/Z) = 0
by [17, Theorem 2.75]. But R is C-ring, and so Hom(M,Q/Z) is injective. Therefore, M
is flat by [17, Proposition 3.54].

�

Renault [16] proved that a left Noetherian ring is a C-ring if and only if for every
essential left ideal I of R, R/I has finite length. If R is a left and right Noetherian,
and left and right hereditary ring, then for every essential (proper) left ideal I of R,
the left R-module R/I has finite length, ([12, Proposition 5.4.5 ]). Therefore, hereditary
Noetherian commutative rings are C-rings.
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In [15], it is shown that, for a class of short exact sequences E, modules which are
relatively projective with respect to the classes E and 〈E〉 coincide. Therefore, by Theorem
3.7, we get:

4.4. Corollary. Let R be a commutative hereditary Noetherian ring. Then every R-
module which is relatively projective with respect to the short exact sequences in WS is
flat.

4.5. Remark. LetM be a left R-module. M is called SS-coinjective if every short exact
sequence starting with M is in SS. Every small module is SS-coinjective. M is called
almost injective if M is a supplement submodule in each module that contains M as
a submodule see [6]. It is easy to see that almost injective modules are SS-coinjective,
but the converse is not true in general. For example, Z is a small module, and so Z is
SS-coinjective. On the other hand, Z has no supplement in Q, hence it is not almost
injective.

Recall that a ring R is called a left V -ring if every simple R-module is injective or,
equivalently, Rad(M) = 0 for every R-module M (see [8, Theorem 3.75]).

4.6. Proposition. The ring R is a left V -ring if and only if every SS-coinjective R-
module is injective.

Proof. LetM be an SS-coinjective R-module. ThenM is small supplement in E(M) i.e.,
there is a submodule V of E(M) such that E(M) = A+ V and A ∩ V � E(M). But R
is V -ring, hence A ∩ V = 0. Then A is direct summand of E(M), and so it is injective.
The converse follows easily since every simple R-module is either small or injective. �

5. Small Supplemented Modules
An R-moduleM is called small supplemented if every submodule ofM has a small sup-

plement. In this section, we shall prove some properties of small supplemented modules.
The proof of the following proposition is standard. We shall use it in the sequel.

5.1. Proposition. Let M1, U be submodules of M with M1 small supplemented. If there
is a small supplement for M1 + U in M , then U also has a small supplement in M .

Proof. Let V be a small supplement of M1 + U in M , i.e. V + (M1 + U) = M and
V ∩ (M1 + U) is small. Since M1 is small supplemented, there exist a submodule T
of M1 such that T + [M1 ∩ (V + U)] = M1 and T ∩ [M1 ∩ (V + U)] = T ∩ (V + U)
is a small module. Then M = V + T + [M1 ∩ (V + U)] + U = V + T + U . Hence
U ∩ (V + T ) ⊆ T ∩ (V + U) + V ∩ (T + U), and so U ∩ (V + T ) is a small module by [9,
Theorem 2]. �

5.2. Corollary. If M = M1 +M2 with M1,M2 small supplemented modules, then M is
also small supplemented.

Proof. For every submodule N ⊆ M , M1 + (M2 + N) has the trivial small supplement
and so, by Proposition 5.1, M2 +N has a small supplement. Then, again by Proposition
5.1, N has a small supplement. �

5.3. Proposition. The class of small supplemented modules is closed under submodules,
homomorphic images and finite sums.

Proof. Let L be a submodule of a small supplemented moduleM . Suppose T ⊆ L and N
is a small supplement of T inM . Then L = T+(N∩L) and T∩N∩L ⊆ N∩T � E(N∩T )
showing that L is small supplemented.
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LetN be a submodule of a small supplemented moduleM . Given a submoduleK/N of
M/N , let L be a small supplement of K inM . ThenM = K+L and K∩L� E(K∩L).
Thus K/N + (L + N)/N = M/N and (K/N) ∩ ((L + N)/N) = ((K ∩ L) + N)/N ∼=
(K ∩ L)/(N ∩ L) is a small module by [9, Theorem 2]. Thus (L + N)/N is a small
supplement of K/N in M/N . So M/N is small supplemented. The rest of the proof hold
by Corollary 5.2. �

Note that small modules are closed under extensions over left hereditary rings (see,
[9]).

5.4. Lemma. Let R be a hereditary ring and M be a small supplemented R-module. If
f : N →M is an epimorphism with Ker f a small module, then N is small supplemented.

Proof. Let K = Ker f . SinceM ∼= N/K, N/K is small supplemented by Proposition 5.3.
Let L be a submodule of N . Then (L+K)/K has a small supplement, say T/K, in N/K.
So that ((L+K)/K) + (T/K) = N/K and [(L+K)/K]∩ (T/K) = ((T ∩L) +K)/K ∼=
(T ∩L)/(K ∩L) is a small module. Then N = L+ T and L∩ T is a small module by [9,
Theorem 3]. Therefore N is small supplemented. �

5.5. Proposition. Let R be a hereditary ring and 0 → L → M → N → 0 be a short
exact sequence from SS. Then L and N are small supplemented if and only if M is small
supplemented.

Proof. Without restriction of generality we will assume that L ⊆ M . Let S be a small
supplement of L in M i.e. L+ S = M and L ∩ S � E(L ∩ S). Then we have,

M/(L ∩ S) = L/(L ∩ S)⊕ S/(L ∩ S)

L/(L ∩ S) is small supplemented as a factor module of L by Proposition 5.3. On the
other hand, S/(L ∩ S) ∼= M/L ∼= N is small supplemented. Then M/(L ∩ S) is small
supplemented as a sum of small supplemented modules by Proposition 5.3. Therefore M
is small supplemented by Lemma 5.4. The converse holds by Proposition 5.3. �

A submodule L ≤ M is called coclosed in M , if for any proper submodule K ≤ L,
there is a submodule N of M such that L + N = M but K + N 6= M . A module M is
called weakly injective if for every extension X of M , M is coclosed in X. The properties
of weakly injective modules are studied in [23].

5.6. Proposition. Let M be a weakly injective module. Then M is small supplemented
if and only if M is weakly supplemented.

Proof. (⇒) Suppose M is small supplemented and let L be any submodule of M . Then
M = L + T and L ∩ T � E(M) where T is small supplement of L in M . Since M is
weakly injective module, it is coclosed in its injective hull E(M) and so L ∩ T � M by
[23, Lemma A.2].

(⇐) Clear. �

5.7. Proposition. Every R-module is small supplemented if and only if every injective
R-module is weakly supplemented.

Proof. Suppose that I is an injective R-module. Let L be any submodule of I. By the
assumption, there is a submodule T of I such that I = L+T and L∩T � I. Conversely,
E(M) is weakly supplemented for any R-moduleM by the assumption. ThenM is small
supplemented by Proposition 5.3. �
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6. Small Supplemented Modules Over Dedekind Domains
In this section, we shall describe the structure of small supplemented modules over

Dedekind domains. Recall that, a local Dedekind domain is called a discrete valuation
ring (or, DVR). If R is a DVR, then the unique maximal ideal of R is of the form pR,
for some p ∈ R and every nonzero ideal of R is of the form pnR for some n ∈ Z+. For
a Dedekind domain R, Ω and Q will stand for the set of maximal ideals of R, and the
quotient ring of R respectively.

A module M is called coatomic, if Rad(M/N) 6= M/N for every proper submodule N
of M , equivalently every proper submodule of M is contained in a maximal submodule,
(see [22]). Recall that a module M over a Dedekind domain is divisible if and only if it
is injective if and only if it has no maximal submodules (see, [1], [18]).

The following lemma can be obtained from [22, Section 4]. We include it for com-
pleteness.

6.1. Lemma. Let R be a Dedekind domain and M be an R-module. Then M is coatomic
if and only if M is a small module.

Proof. Let M be a coatomic module and suppose M +K = E(M) for some submodule
K of M . Then M/M ∩ K ∼= E(M)/K is injective and so E(M)/K has no maximal
submodules. As M is coatomic, we must have M/(M ∩K) = 0, i.e. M ⊆ K. So that
K = E(M), and hence M is a small module.

Conversely, if M is small and Rad(M/K) = M/K for some K ⊆ M , then M/K is
injective. So that M/K is a direct summand of E(M)/K. On the other hand M/K is a
small module as a factor of the small module M , a contradiction. Hence K = M and so
M is coatomic. �

6.2. Lemma. Let R be a Dedekind domain and M be a small supplemented R-module.
Then Rad(M) has a weak supplement in M .

Proof. Since M is small supplemented, Rad(M) + L = M and Rad(M) ∩ L is a small
module, for some L ⊆M . Let A = Rad(M) ∩ L and suppose that A+ Y = M for some
Y $ M . Then A is coatomic by Lemma 6.1, and so A/(A ∩ Y ) ∼= (A + Y )/Y = M/Y
is also coatomic. So there is a maximal submodule Z of M containing Y . Now, we have
M = Rad(M) + Y = Rad(M) + Z ⊆ Z, a contradiction. Therefore A�M , and so L is
a weak supplement of Rad(M) in M . �

6.3. Lemma. [22, Lemma 4.1] Let R be a commutative noetherian ring and M be an
R-module. Then a submodule U of M is small in M if and only if Um is small in Mm

for every maximal ideal m of R.

6.4. Lemma. Let R be a commutative noetherian ring and M be an R-module. If a
submodule V of M is small supplement of a submodule U of M , then Vm is a small
supplement of Um in Mm for each maximal ideal m of R.

Proof. Suppose U+V = M and U∩V is a small module. Then Um+Vm = (U+V )m = Mm,
and (U∩V )m = Um∩Vm is a small module by Lemma 6.3. So that Vm is a small supplement
of Um in Mm. �

6.5. Proposition. Let R be a Dedekind domain and M be a torsion free R-module.
Then M is small supplemented if and only if M has finite uniform dimension.

Proof. Assume that the uniform dimension ofM is not finite. ThenM has a submodule L
such that L ∼= R(N). Then R(N) is small supplemented by Proposition 5.3. Set N = R(N).
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Let m be a maximal ideal of R. Then

Nm = (R(N))m ∼= (Rm)(N)

and
Rad(Nm) = m((R)(N))m ∼= (mRm)(N) = (mm)(N) = Rad(Rm)(N).

Now (m)(N) has a small supplement in R(N). Then (mm)(N) has a weak supplement in
(Rm)(N) by Lemma 6.2 Lemma 6.3 and Lemma 6.4. Therefore Rm is a perfect ring by
[5, Theorem 1]. This contradicts with the fact that Rm is a domain. Therefore M
has a finite uniform dimension. Conversely, suppose M has finite uniform dimension.
Then E(M) ∼= Qn, where Q is the quotient ring of R and n ∈ Z+. Then E(M) is
weakly supplemented by [2, Lemma 2.8] and [10, Proposition 2.5]. So that E(M) is small
supplemented and so M is small supplemented by Proposition 5.3. �

6.6. Lemma. Let R be a DV R and M be a torsion and reduced R-module. Then M is
small supplemented if and only if M is bounded.

Proof. Suppose M is small supplemented. Then Rad(M) = pM has a weak supplement
by Lemma 6.2. Hence L + pM = M and L ∩ pM is small for some L ⊆ M . Since
L

L∩pM
∼= L+pM

pM
= M

pM
is semisimple, it is coatomic. So that, L is coatomic by [21,

Lemma 1.5]. Then L is bounded by [21, Lemma 2.1], that is, pnL = 0 for some n ∈ Z+.
Hence we get pnM = pn(pM + L) = pn+1M = p(pnM), and so pnM is divisible by [1,
Lemma 4.4]. But M is reduced, so that we must have pnM = 0.

The converse is clear, because bounded modules are small and small modules are small
supplemented. �

6.7. Lemma. Let R be a DV R and M be a divisible(injective) and torsion R-module.
Then M is small supplemented if and only if M ∼= (Q/R)n, for some n ∈ Z+.

Proof. Since M is divisible and torsion, M ∼= (Q/R)(I) for some index set I. Suppose M
is small supplemented. If I is finite then we are done. Otherwise, M has a submodule

which is isomorphic to L = ⊕∞i=1 <
1

pi
+ R >. Then L is small supplemented by

Proposition 5.3 and so L is bounded by Lemma 6.6, a contradiction. Hence I is finite.
Conversely, if M ∼= (Q/R)n, then M is weakly supplemented by [2, Lemma 2.8] and

[10], and so M is small supplemented. �

6.8. Theorem. Let R be a Dedekind domain and M be a torsion R-module. Then M
is small supplemented if and only if TP (M) is small supplemented for every P ∈ Ω.

Proof. (⇒) Since M is torsion, M = ⊕P∈ΩTP (M). Then TP (M) is small supplemented
by Proposition 5.3.

(⇐) Let N be a submodule of M . As M is a torsion module, N = ⊕P∈ΩNP , where
NP = N ∩ TP (M). Let KP be a small supplement of NP in TP (M). Then it is straight-
forward to check that, for the submodule K = ⊕p∈ΩKp, we have N + K = M and
N ∩ K is a small module. That is, K is a small supplement of N . Hence M is small
supplemented. �

6.9. Lemma. Let R be a Dedekind domain and M be an R-module. If T (M) is small
supplemented then T (M) has a small supplement in M .

Proof. Let T (M) = N ⊕ D, where N is the reduced part and D is the divisible part
of T (M). Write N = ⊕P∈ΩTP (N). Since T (M) is small supplemented N is small
supplemented by Proposition 5.3. So that TP (N) is bounded, and so TP (N) is small in
E(N). Hence N = ⊕P∈ΩTP (N) is small in E(N). Now as N is small in E(M) and D
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is an injective module, N and D have small supplements in E(M). If E(M) = D ⊕D′,
then T (M) = D⊕ T (M)∩D′. So that N ∼= T (M)∩D′ is small, and hence D′ is a small
supplement of T (M) in E(M). Then D′ ∩M is small supplement of T (M) in M . This
completes the proof. �

6.10. Corollary. Let R be a Dedekind domain and M be an R-module. Then M is small
supplemented if and only if T (M) and M/T (M) are small supplemented.

Proof. (⇒) By Proposition 5.3.
(⇐) By Proposition 5.5 and Lemma 6.9. �

Summing up, Lemma 6.6, Lemma 6.7, Theorem 6.8 and Corollary 6.10, we get:

6.11. Corollary. Let R be a Dedekind domain and M be an R-module. Then M is small
supplemented if and only if

(1) M/T (M) has finite uniform dimension.
(2) For every P ∈ Ω, the reduced part of TP (M) is bounded and the divisible part

has finite uniform dimension.

We finish the paper by showing that every small supplemented module is SS-coinjective
over Dedekind domains. Recall that, every module M over a Dedekind domain can
be written as M = N ⊕ D, where D is divisible (equivalently, injective) and N is re-
duced. Since injective modules are coinjective, M is SS-coinjective if and only if N is
SS-coinjective.

6.12. Theorem. Over a Dedekind domain R, every small supplemented R-module is
SS-coinjective.

Proof. Let M be a small supplemented module. Without loss of generality we may
assume that M is a reduced R-module. We shall prove that both T (M) and M/T (M)
are SS-coinjective. Since M is reduced and small supplemented, in the decomposition
T (M) = ⊕P∈ΩTP (M) each TP (M) is bounded by Corollary 6.11. Every bounded module
is small and so T (M) is a small module by Lemma 6.3. Therefore T (M) is SS-coinjective
by [3, Theorem 4.1]. On the other hand, M/T (M) has finite uniform dimension by
Corollary 6.11. ThenM/T (M) is SS-coinjective by [3, Corollary 4.4]. By [13], coinjective
modules are closed under extensions. Hence M is SS-coinjective, as T (M) and M/T (M)
both are SS-coinjective. �
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Abstract
In this article, by using the notion of generalized action, we introduce
the concept of crossed module of hypergroups, in the sense of Marty,
and its related structures from the light of crossed polymodules. Hyper-
groups in the sense of Marty are more different than polygroups since
they have not identity element or inverse element in general. Exam-
ples of crossed modules of hypergroups are originally presented. These
examples illustrate the structure and behavior of crossed modules of
hypergroups. Moreover, we obtain a crossed module in the sense of
Whitehead from a crossed module of hypergroups by applying the no-
tion of fundamental relation.
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1. Introduction
The crossed module is a very powerful applications tools for mathematicians. The

importance of crossed modules are: crossed modules may be thought of as 2-dimensional
objects (Groups, polygroups, etc), a number of improvements in group theory are better
seen from a crossed module point of view and crossed modules occur geometrically as
π2(X,A) → π1A when A is a subspace of X or as π1F → π1E where F → E → B is a
fibration.

Crossed modules were defined by J. H. C. Whitehead in [25]. The important con-
structions of crossed modules are induced crossed module [8], actor of a crossed module
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[23] and pullback crossed modules of algebroids [3]. A new application of crossed mod-
ule is the crossed module of polygroups [4]. Polygroups application can be taught as
generalization of crossed module on groups. Cat1-structures are defined and proved that
the category of crossed modules is equivalent to the category of cat1- structures by Lo-
day [20]. So, many crossed module applications related to cat1-structure were given by
mathematicians after the definition of cat1-structures such as pullback cat1-commutative
algebra [2] and cat1-polygroups[13]. Also computations of these two categories play very
important role to solve specific problems and construct examples to well known theories.
GAP [16] provides a high level programming language with so many kind advantages. A
GAP share package XMOD [6] was improved by taking these advantages. As example,
[5] and [1] can be considered to this share package usage. Another important applica-
tion of crossed module is the crossed module of hypergroups and is presented in this
paper. When we defined a crossed module of hypergroups we thought normal subgroup
condition gN = Ng since hypergroup does not have inverse element. The importance of
this application comes from this point of view. Polygroups and hypergroups studies can
give a new direction to the different studies such as equivalent categories of simplicial
polygroups and cat1-polygroups. Therefore, properties of crossed module of hypergroups
are given very cletailed in this paper.

Hypergroup theory was born in 1934, when Marty [22] gave the definition of hyper-
group and illustrated some applications and showed its utility in the study of groups,
algebraic functions and relational fractions. Nowadays the hypergroups are studied from
the theoretical point of view and for their applications to many subjects of pure and
applied mathematics: geometry, topology, cryptography and code theory, graphs and hy-
pergraphs, probability theory, binary relations, theory of fuzzy and rough sets, automata
theory, economy, ethnology, etc. (see [10, 11]).

An outline of the paper is as follows. After the introduction, in Section 2, we give the
very well known definition of crossed module and its examples. Definition, properties
and examples of hypergroups are presented in Section 3. To define crossed module of
hypergroups we need hypergroup action and a strong homomorphism. Two important
needs are presented. Specially, hypergroup action and its examples are given in Section 4
due to [24] and [21]. Crossed module of hypergroups and its components such as examples
and properties are given in Section 5.

2. Crossed modules
In this section we recall the definition of crossed module.

2.1. Definition. Let G be a group and X be a non-empty set. A (left) group action is
a binary operator τ : G×X → X that satisfies the following two axioms:

(1) τ(gh, x) = τ(g, τ(h, x)), for all g, h ∈ G and x ∈ X,
(2) τ(e, x) = x, for all x ∈ X.

For x ∈ X and g ∈ G, we write gx := τ(g, x).

2.2. Definition. A crossed moduleX = (M,G, ∂, τ) consists of groupsM andG together
with a homomorphism ∂ : M → G and a (left) action τ : G×M → M on M , satisfying
the conditions:

(1) ∂( gm) = g∂(m)g−1, for all m ∈M and g ∈ G,
(2) ∂(m)m′ = mm′m−1, for all m,m′ ∈M .

The standard examples of crossed modules are inclusionM ↪→ G of a normal subgroup
M of G, the zero homomorphism M → G when M is a G-module, and any surjection
M → G with central kernel, i.e., the kernel is a subset of center. There is also an
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important topological example: if F → E → B is a fibration sequence of pointed spaces,
then the induced homomorphism π1F → π1E of fundamental groups is naturally a
crossed module [7].

In the next sections of the paper we present a very powerful application of crossed
module due to [25]. The importance of this application comes from the fact that hyper-
groups do not have inverse element. From this reason we have to pay more attention to
define hypergroup action and crossed module of hypergroup.

3. Hypergroups
Let H be a non-empty set and ? : H ×H → P∗(H) be a hyperoperation. The couple

(H, ?) is called a hypergroupoid. For any two non-empty subsets A and B of H and
x ∈ H, we define

A ? B =
⋃

a∈A
b∈B

a ? b, A ? x = A ? {x} and x ? B = {x} ? B.

A hypergroupoid (H, ?) is called a semihypergroup if for all a, b, c of H we have (a?b)?c =
a ? (b ? c), which means that ⋃

u∈a?b
u ? c =

⋃
v∈b?c

a ? v.

A hypergroupoid (H, ?) is called a quasihypergroup if for all a of H we have a ? H =
H ? a = H. This condition is also called the reproduction axiom.

3.1. Definition. A hypergroupoid (H, ?) which is both a semihypergroup and a quasi-
hypergroup is called a hypergroup.

3.2. Remark. Every group is a hypergroup.

In a hypergroup (H, ?), an element e ∈ H is called a scalar identity element if e ? x =
x ? e = {x} := x, for all x ∈ H.

There exist many examples of hypergroups in [9, 11]. Here, we present two examples
of hypergroups.

3.3. Example. (1) [9, 11] Let (G, ·) be a group and H be a non-normal subgroup
of it. If we denote G/H = {xH | x ∈ G}, then (G/H, ?) is a hypergroup, where
for all xH, yH of G/H, we have xH ? yH = {zH | z ∈ xHy}.

(2) [14] Let H = {1, 2, 3, 4} with the hyperoperation defined in the following table:

? 1 2 3 4

1 1 {1, 2, 3} {1, 2, 3} {1, 4}
2 {1, 2, 3} {2, 3} {2, 3} {2, 3, 4}
3 {1, 2, 3} {2, 3} {2, 3} {2, 3, 4}
4 {1, 4} {2, 3, 4} {2, 3, 4} 4

Then, (H, ?) is a hypergroup.

3.4. Definition. Let (C, ?) and (H, ◦) be two hypergroups. Let ∂ be a map from C into
H. Then, ∂ is called

(1) an inclusion homomorphism if

∂(x ? y) ⊆ ∂(x) ◦ ∂(y), for all x, y ∈ C;

(2) a strong homomorphism or a good homomorphism if

∂(x ? y) = ∂(x) ◦ ∂(y), for all x, y ∈ C.
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3.5. Example. In Example 3.3(1), suppose that G is the symmetric group of degree 3,
H = 〈(1 2)〉 and C = 〈(2 3)〉. Then, we have

H = (1 2)H = {e, (1 2)}
(1 3)H = (1 3 2)H = {(1 3), (1 3 2)}
(2 3)H = (1 2 3)H = {(2 3), (1 2 3)}

Hence, G/H = {H, (1 3)H, (2 3)H}. By easy calculation we obtain the following
multiplication table on G/H.

◦ H (1 3)H (2 3)H

H H {(1 3)H, (2 3)H} {(1 3)H, (2 3)H}
(1 3)H (1 3)H {H, (2 3)H} {H, (2 3)H}
(2 3)H (2 3)H {H, (1 3)H} {H, (1 3)H}

Similarly, we have
C = (2 3)C = {e, (2 3)}
(1 2)C = (1 3 2)C = {(1 2), (1 3 2}
(1 3)C = (1 2 3)C = {(1 3), (1 2 3}

Hence, G/C = {C, (1 2)C, (1 3)C}. Again, by easy calculation we obtain the following
multiplication table on G/C.

? C (1 2)C (1 3)C

C C {(1 2)C, (1 3)C} {(1 2)C, (1 3)C}
(1 2)C (1 3)C {C, (1 3)C} {C, (1 3)C}
(1 3)C (2 3)C {C, (1 2)C} {C, (1 2)C}

Now, we define the map ∂ : G/C → G/H by ∂(C) = H, ∂((1 2)C) = (1 3)H and
∂((1 3)C) = (2 3)H. It is straightforward to that ∂ is a strong homomorphism.

4. Hypergroup action
According to [17, 24], we can consider a generalized permutation on a non-empty set

X as a map f : X → P∗(X) such that the reproductive axiom holds, i.e.,⋃
x∈X

f(x) = f(X) = X.

We denote the set of all generalized permutations by MX . A generalized permutation
f is said to satisfy the condition θ if x ∈ X and z ∈ f(x), then f(z) = f(x) [24]. We
denote the set of all generalized permutations that satisfies the condition θ by Mθ.

4.1. Proposition. [24] Let f ∈ Mθ and Mf = {g ∈ MX | g ⊆ f}. Then, Mf is a
hypergroup with respect to the hyperoperation ? defined by f1?f2 = {p ∈MX | p ⊆ f1◦f2},
where f1 ◦ f2 is defined by f1 ◦ f2 =

⋃
y∈f2(x)

f1(y).

Several mathematicians considered actions of algebraic hyperstructures, for example
see [21, 12, 26]. In [21], Madanshekaf and Ashrafi considered a generalized action of a
hypergroup H on a non-empty set X and obtained some results in this respect. For the
definition of crossed modules of hypergroups, we need the notion of hypergroup action.
So, we recall the following definition from [21].

4.2. Definition. Let (H, ?) be a hypergroup and X be a non-empty set. A map α :
H ×X → P∗(X) is called a generalized action of H on X, if the following axiom hold:

(1) α(g ? h, x) ⊆ α(g, α(h, x)), for all g, h ∈ H and x ∈ X, where

α(g ? h, x) =
⋃

k∈g?h
α(k, x).
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(2) For all h ∈ H, α(h,X) = X, where

α(h,X) =
⋃
x∈X

α(h, x).

If the equality holds in axiom (1) of Definition 4.2, the action is called strong general-
ized action. Moreover, if H has the scalar identity element e, then the following condition
must holds too,

(3) α(e, x) = {x} := x, for all x ∈ X.

4.3. Example. [21]
(1) For any hypergroup (H, ?) and any non-empty set X, the map α : H × X →

P∗(X), given by α(h, x) = X is a strong generalized action of H on X. If we
define α(h, x) = {x}, then this map is also a strong generalized action of H on
X.

(2) Let (H, ?) be a hypergroup. Then, the map α : H × H → P∗(H), given by
α(h, x) = h ? x is a strong generalized action of H on H.

4.4. Example. [21] Let X be a non-empty set, f ∈ Mθ and H = Mf . Then, the map
α : H ×X → P∗(X), defined by α(h, x) = h(x) is a strong generalized action of H on X.

For x ∈ X, we put hx := α(h, x). Then, for a strong generalized action, we have
(1) g( hx) =g?h x, for all g, h ∈ H and x ∈ X.
(2)

⋃
x∈X

hx = X, for all h ∈ H.

4.5. Example. Consider Example 3.3(1). We define the map α : G/H ×G→ P∗(G) by
yHx := yHx. Then, α is a strong generalized action.

4.6. Example. Suppose that G/H and G/C are the hypergroups defined in Example
3.5 and ∂ is the homomorphism between them. We define α : G/H ×G/C → P∗(G/C)
by

gHxC := {zC | z ∈ gHx}.
We show that α is a strong generalized action.

(1) For all g1H, g2H ∈ G/H and xC ∈ G/C we have
g2H

(
g1HxC

)
= g2H ({zC | z ∈ g1Hx})
= {aC | a ∈ g2Hz, z ∈ g1Hx}
= {aC | a ∈ g2Hg1Hx},

g2H◦g1HxC = {zH | z∈g2Hg1}xC
= {bC | b ∈ zHx, z ∈ g2Hg1}
= {bC | b ∈ g2Hg1Hx}.

Thus, g2H
(
g1HxC

)
=g2H◦g1H xC.

(2) Clearly, for all gH ∈ G/H we have
⋃

xC∈G/C

gHxC = G/C.

5. Crossed module of hypergroups
Now, in this section, we give the notion of crossed module of hypergroups. To define a

crossed module of hypergroups, we need the notion of hypergroup action and boundary
strong homomorphism.

5.1. Definition. A crossed module of hypergroups X = (C,H, ∂, α) consists of hyper-
groups (C, ?) and (H, ◦) together with a strong homomorphism ∂ : C → H and a strong
generalized action α : H × C → P∗(C) on C, satisfying the conditions:
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(1) h ◦ ∂(c) ⊆ ∂( hc) ◦ h, for all c ∈ C and h ∈ H.
(2) c ? c′ ⊆ ∂(c)c′ ? c, for all c, c′ ∈ C.

5.2. Example. Suppose that H is a non-empty set. We define the hyperoperation ◦ on
H by

h1 ◦ h2 = {h1, h2}, for all h1, h2 ∈ H.
Then, (H, ◦) is a hypergroup. Suppose that C is a subhypergroup of H and ∂ : C → H
is the identity map. The map α : H × C → P∗(C) is defined by hc := C is a strong
generalized action. Moreover,

(1) For all c ∈ C and h ∈ H, we have

h ◦ ∂(c) = h ◦ c = {h, c} ⊆ C ∪ {h} = C ◦ h = ∂(C) ◦ h = ∂( hc) ◦ h.

(2) For all c, c′ ∈ C, we have

c ◦ c′ = {c, c′} ⊆ C = C ◦ c = cc′ ◦ c = ∂(c)c′ ◦ c.

Therefore, X = (C,H, ∂, α) is a crossed module of hypergroups.

5.3. Example. Suppose that G is an abelian group and P a non-empty subset of G.
We consider the P -hyperoperation ?P on G as follows:

x ?P y = xyP, for all x, y ∈ G.

Then, (G, ?P ) is a hypergroup. Suppose that ∂ : G → G is the identity map. The map
α : G×G→ P∗(G) is defined by gx := {x} is a strong generalized action. Moreover,

(1) For all x, y ∈ G, we have

g ?P ∂(x) = g ?P x = gxP = xgP = x ?P g = ∂(x) ?P g = ∂( gx) ?P g

(2) For all x, y ∈ G, we have

x ?P y = xyP = yxP = y ?P x = xy ?P x = ∂(x)y ?P x.

Therefore, X = ((G, ?P ), (G, ?P ), ∂, α) is a crossed module of hypergroups.

5.4. Example. The direct product of X1 × X2 of two crossed modules of hypergroups
has source C1 ×C2, range H1 ×H2 and boundary homomorphism ∂1 × ∂2 with H1 ×H2

acting obviously on C1 × C2.

5.5. Theorem. Every crossed module is a crossed module of hypergroups.

Proof. By using Remark 3.2, the proof is straightforward. �

Let (H◦) be a hypergroup. We define the relation β∗H as the smallest equivalence
relation on H such that the quotient H/β∗H , the set of all equivalence classes, is a group.
In this case β∗H is called the fundamental equivalence relation on H and H/β∗H is called
the fundamental group. The product � in H/β∗H is defined as follows: β∗H(x)� β∗H(y) =
β∗H(z), for all z ∈ β∗H(x) ◦ β∗H(y). This relation is introduced by Koskas [18] and studied
mainly by Corsini [9], Leoreanu-Fotea [19] and Freni [15] concerning hypergroups, Vou-
giouklis [24] concerning Hv-groups, Davvaz concerning polygroups [11], and many others.
We consider the relation βH as follows:

x βH y ⇔ there exist z1, . . . zn such that {x, y} ⊆ ◦
n∏
i=1

zi.

Freni proved that for hypergroups β = β∗ i in [15]. The kernel of the canonical
map ϕH : H −→ H/β∗H is called the heart of H and is denoted by ωH . Here we also
denote by ωH the unit of H/β∗H . The heart of a hypergroup H is the intersection of all
subhypergroups of H, which are complete parts.
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5.6. Lemma. [9] ωP is a subhypergroup of H.

Throughout the paper, we denote the binary operations of the fundamental groups
H/β∗H and C/β∗C by � and ⊗, respectively.

Now, we consider the notion of kernel of a strong homomorphism of hypergroups.

5.7. Definition. Let (H, ◦) and (C, ?) be two hypergroups and ∂ : C → H be a strong
homomorphism. The core-kernel of ∂ is defined by

ker∗∂ = {x ∈ C | ∂(x) ∈ ωH}.

5.8. Theorem. ker∗∂ is a subhypergroup of C.

Proof. Suppose that x, y ∈ ker∗∂ are arbitrary. Then, ∂(x), ∂(y) ∈ ωH and so

β∗H((∂(x ? y))) = β∗H(∂(x) ◦ ∂(y)) = β∗H(∂(x))⊗ β∗H(∂(x)) = ωH ⊗ ωH = ωH .

Therefore, ∂(x?y) ⊆ ωH . This implies that x?y ⊆ ker∗∂. Now, we show that x?ker∗∂ =
ker∗∂ ? x = ker∗∂, for all x ∈ ker∗∂. Clearly, according to the above proof, we have
x ? ker∗∂ ⊆ ker∗∂. So, we show that ker∗∂ ⊆ x ? ker∗∂. Suppose that x, y ∈ ker∗∂.
Then, there exists z ∈ C such that y ∈ x ? z. Hence,

∂(y) ∈ ∂(x ? z) = ∂(x) ◦ ∂(z).
This implies that

β∗H(∂(y)) = β∗H(∂(x) ◦ ∂(z)) = β∗H(∂(x))� β∗H(∂(z))

and so we obtain ωH = ωH�β∗H(∂(z)). Hence, z ∈ ker∗∂. Thus, y ∈ x?ker∗∂. Similarly,
we can show that ker∗∂ ? x = ker∗∂. �

5.9. Definition. We say that (A,B, ∂′, α′) is a subcrossed module of the crossed module
of hypergroups (C,H, ∂, α) if

(1) A is a subhypergroup of C, and B is a subhypergroup of H,
(2) ∂′ is the restriction of ∂ to A,
(3) the action of B on A is induced by the action of H on C.

5.10. Definition. Let X = (C,P, ∂, α) and X′ = (C′, P ′, ∂′, α′) be two crossed modules
of hypergroups. A crossed module of hypergroups morphisms

< θ, φ >: (C,H, ∂, α)→ (C′, H ′, ∂′, α′)

is a commutative diagram of strong homomorphisms of hypergroups

C
θ //

∂

��

C′

∂′

��
H

φ
// H ′

such that for all h ∈ H and c ∈ C, we have

θ( hc) = φ(h)θ(c).

We say that < θ, φ > is an isomorphism if θ and φ are both isomorphisms. Similarly,
we can define monomorphism, epimorphism and automorphism of crossed modules of
hypergroups.

5.11. Proposition. Let (C, ?) and (H, ◦) be two hypergroups and let ∂ : C → H be a
strong homomorphism. Then, ∂ induces a group homomorphism D : C/β∗C → H/β∗H by
setting

D(β∗C(c)) = β∗H(∂(c)), for all c ∈ C.
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Proof. First, we prove that D is well defined. Suppose that β∗C(c1) = β∗C(c2). Then,

there exist a1, . . . , an such that {c1, c2} ⊆ ?
n∏
i=1

ai. So,

{∂(c1), ∂(c2)} ⊆ ∂
(
?
n∏
i=1

ai

)
= ◦

n∏
i=1

∂(ai).

Hence, ∂(c1) β∗H ∂(c2), which implies that D (β∗C(c1)) = D (β∗C(c2)). Now, we have

D(β∗C(c1)⊗ β∗C(c2)) = D(β∗C(c1 ? c2)) = β∗H(∂(c1 ? c2))

= β∗H(∂(c1) ◦ ∂(c2)) = β∗H(∂(c1))� β∗H(∂(c2))

= D(β∗C(c1))�D(β∗C(c2)).

�

We say the action of H on C is productive, if for all c ∈ C and h ∈ H there exist
c1, . . . , cn in C such that hc = c1 ? . . . ? cn.

Let (C, ?) and (H, ◦) be two hypergroups and let α : H ×C → P∗(C) be a productive
action on C. We define the map ψ : H/β∗H ×H/β∗C → P∗(H/β∗C) as usual manner:

ψ(β∗H(h), β∗C(c)) = {β∗C(x) | x ∈
⋃

y ∈ β∗C(c)
z ∈ β∗H (h)

zy}.

By the definition of β∗C , since the action of H on C is productive, we conclude that
ψ(β∗H(h), β∗C(c)) is singleton, i.e., we have

ψ : H/β∗H ×H/β∗C → H/β∗C ,

ψ(β∗H(h), β∗C(c)) = β∗C(x), for all x ∈
⋃

y ∈ β∗C(c)
z ∈ β∗H (h)

zy.

We denote ψ(β∗H(h), β∗C(c)) =
[β∗H (h)] [β∗C(c)].

5.12. Proposition. Let (C, ?) and (H, ◦) be two hypergroups and let α : H×C → P∗(C)
be a productive action on C. Then, ψ is an action of the group H/β∗H on the group C/β∗C .

Proof. Suppose that g, h ∈ H and c ∈ C. Then, we have

ψ(β∗H(h)� β∗H(g), β∗C(c)) = ψ(β∗H(h ◦ g), β∗C(c)) = [β∗H (h◦g)] [β∗C(c)] ,

and

ψ(β∗H(h), ψ(β∗H(g), β∗C(c))) = ψ
(
β∗H(h), [β∗H (g)] [β∗C(c)]

)
= [β∗H (h)]

(
[β∗H (g)] [β∗C(c)]

)
.

By the condition (1) of Definition 4.2, we have h( gc) = h◦gc. Now, it is not difficult to
see that

[β∗H (h◦g)] [β∗C(c)] =
[β∗H (h)]

(
[β∗H (g)] [β∗C(c)]

)
.

�

5.13. Theorem. Let X = (C,H, ∂, α) be a crosed module of hypergroups such that the
action of H on C is productive. Then, X = (C/β∗C , H/β

∗
H ,D, ψ) is a crossed module.
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Proof. By Propositions 5.11 and 5.12, it is enough to show that the conditions of Defi-
nition 2.2 hold. Suppose that c ∈ C and h ∈ H are arbitrary. Then, we have

D
(
[β∗H (h)] ([β∗C(c)])

)
� β∗H(h) = D ([β∗C(z])� β∗H(h), for all z ∈ hc

= β∗H(∂(z))� β∗H(h), for all z ∈ hc

= β∗H(∂( hc)) ◦ h))

= β∗H(h ◦ ∂(c))

= β∗H(h)� β∗H(∂(c))

= β∗H(h)�D(β∗C(c)),

which implies that D
(
[β∗H (h)] ([β∗C(c)])

)
= β∗H(h) � D(β∗C(c)) � β∗H(h)−1. So, the first

condition of Definition 2.2 holds. For the second condition, suppose that c, c′ ∈ C are
arbitrary. Then, we have

[D(β∗C(c))] [β∗C(c
′)]⊗ β∗C(c) = [β∗P (∂(c))] [β∗C(c

′)]⊗ β∗C(c)

= β∗C(z)⊗ β∗C(c), for all z ∈ ∂(c)c′

= β∗C

(
∂(c)c′ ? c

)
= β∗C(z), for all z ∈ c ? c′

= β∗C(c ? c
′)

= β∗C(c)⊗ β∗C(c′),

which implies that [D(β∗C(c))] [β∗C(c
′)] = β∗C(c)⊗ β∗C(c′)⊗ β∗C(c)−1. �

5.14. Theorem. Let X = (C,H, ∂, α) be a crossed module of hypergroups, ϕC and ϕP
be canonical maps. Then, < ϕC , ϕH > is a crossed modules of hypergroups morphisms.

Proof. Note that according to Theorem 5.13, we can consider (C/β∗C , P/β
∗
P ,D, ψ) as a

crossed module of hypergroups. We show that the following diagram is commutative.

C
ϕC //

∂

��

C/β∗C

D

��
H

ϕH

// H/β∗H

Indeed, we have DϕC(c) = D (β∗C(c)) = β∗H(∂(c)) = ϕH∂(c), for all c ∈ C. Moreover,

ϕC(
hc) = β∗C(

hc) = [β∗H (h)] [β∗C(c)] =
ϕH (h)ϕC(c),

for all c ∈ C and h ∈ H. Therefore, < ϕC , ϕH > is a crossed module of hypergroup
morphism. �

The following example give us another crossed module structure on the fundamental
groups.
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5.15. Example. Suppose that (H, ◦) is a hypergroup. Then, H/β∗H is a group. Sup-
pose that Aut (H/β∗H) its group of automorphisms. There is an obvious action α of
Aut (H/β∗H) on H/β∗H , and a group homomorphism ∂ : H/β∗H → Aut (H/β∗H) sending
each β∗H(h) ∈ P/β∗P to the inner automorphism of conjugation by β∗P (p). These together
form a crossed module (H/β∗H , Aut (H/β

∗
H) , ∂, α).
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Let R be a commutative ring and M an Artinian R-module. In this
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1. Introduction
Throughout this paper, R will denote a commutative ring with identity and "⊂" will

denote the strict inclusion. We write N ≤ M to indicate that N is a submodule of an
R-module M . Also Spec(R) and Z will denote the set of all prime ideals of R and the
ring of integers respectively.

Let M be an R-module. A proper submodule P of M is said to be prime if for any
r ∈ R and m ∈ M with rm ∈ P , we have m ∈ P or r ∈ (P :R M). A non-zero
submodule S of M is said to be second if for each a ∈ R, the endomorphism S

a→ S
is either surjective or zero (see [13]). A submodule N of M is said to be completely
irreducible if N =

⋂
i∈I Ni, where {Ni}i∈I is a family of submodules of M , implies that

N = Ni for some i ∈ I. It is easy to see that every submodule of M is an intersection
of completely irreducible submodules of M . Thus, the intersection of all completely
irreducible submodule of M is zero (see [6]).
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The saturation of N ≤ M with respect to P ∈ Spec(R) is the contraction of NP in
M and designated by SP (N). It is well known that

SP (N) = {e ∈M : es ∈ N for some s ∈ R− P}.
In [1], H. Ansari-Toroghy and F. Farshadifar, introduced the dual notions of satura-

tions of submodules, that is, P -interiors of submodules and investigated some related
results (see [1] and [3]). Let N be a submodule of M . The P -interior of N relative to M
is defined [1, 2.7] as the set

IMP (N) = ∩{L | L is a completely irreducible submodule of M and

rN ⊆ L for some r ∈ R− P}.
There are considerable results about saturation of a module with respect to a prime

ideal in literature (see, for example, [7], [8], and [9]). It is natural to ask that to what
extent the dual of these results hold. The purpose of this paper is to answer this question
and provide more information about the P -interiors of submodules in case that our
module is an Artinian module.

2. P -interiors of submodules and related properties
Recall that an R-module L is said to be cocyclic if L is a submodule of E(R/m) for

some maximal ideal m of R, where E(R/m) is the injective envelope of R/m (see [14]).

2.1. Lemma. Let L be a completely irreducible submodule of an R-module M and
a ∈ R. Then (L :M a) is a completely irreducible submodule of M .

Proof. This follows from the fact that a submodule L of M is a completely irreducible
submodule of M if and only if M/L is a cocyclic R-module by [6] and that M/(L :M
a) ∼= (aM + L)/L.

�

We use the following basic fact without further comment.

2.2. Remark. Let N and K be two submodules of an R-moduleM . To prove N ⊆ K, it
is enough to show that if L is a completely irreducible submodule ofM such that K ⊆ L,
then N ⊆ L.

2.3. Lemma. Let P ∈ Spec(R) and N be a submodule of an R-moduleM . IfM/IMP (N)
is a finitely cogenerated R-module, then there exists r ∈ R− P such that rN ⊆ IMP (N).

Proof. SinceM/IMP (N) is finitely cogenerated, there exists a finite number of completely
irreducible submodules L1, L2, ..., Ln of M such that IMP (N) = ∩n

i=1Li and riN ⊆ Li for
some ri ∈ R− P . Set r = r1...rn. Then rN ⊆ IMP (N). �

2.4. Theorem. Let P ∈ Spec(R) and N be a submodule of an R-module M . Then we
have the following.

(a) If M is an Artinian R-module, then IMP (IMP (N)) = IMP (N).
(b) If M is an Artinian R-module, then HomR(RP , I

M
P (N)) = HomR(RP , N).

(c) AnnR(N) ⊆ SP (AnnR(N)) ⊆ AnnR(I
M
P (N)).

(d) If M is an Artinian R-module, then AnnR(I
M
P (N)) = SP (AnnR(I

M
P (N))).

Proof. (a) Clearly, IMP (IMP (N)) ⊆ IMP (N). To prove the opposite inclusion, let L be a
completely irreducible submodule ofM such that IMP (IMP (N)) ⊆ L. By Lemma 2.3, there
exists r ∈ R − P such that rIMP (N) ⊆ IMP (IMP (N)). Therefore, rIMP (N) ⊆ L. Again by
Lemma 2.3, there exists s ∈ R − P such that sN ⊆ IMP (N). Hence rsN ⊆ L. It follows
that IMP (N) ⊆ L, as required.
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(b) By Lemma 2.3, there exists r ∈ R − P such that rN ⊆ IMP (N). Now rN ⊆
IMP (N) ⊆ N implies that

HomR(RP , rN) ⊆ HomR(RP , I
M
P (N)) ⊆ HomR(RP , N).

As r ∈ R − P , one can see that HomR(RP , rN) = HomR(RP , N). Therefore,**
HomR(RP , N) = HomR(RP , I

M
P (N)).

(c) Clearly, AnnR(N) ⊆ SP (AnnR(N)). Now let r ∈ SP (AnnR(N)). Then there
exists s ∈ R − P such that rs ∈ AnnR(N) and so rsN = (0). Thus for each i ∈ I,
rsN ⊆ Li, where {Li}i∈I is the collection of all completely irreducible submodules of M .
Hence sN ⊆ (Li :M r) for each i ∈ I. This implies that IMP (N) ⊆ (Li :M r) for each i ∈ I
because (Li :M r) is a completely irreducible submodule of M by Lemma 2.1. Therefore,
rIMP (N) ⊆ ∩i∈ILi = (0). Thus r ∈ AnnR(I

M
P (N)).

(d) Clearly, AnnR(I
M
P (N)) ⊆ SP (AnnR(I

M
P (N)). Now let r ∈ SP (AnnR(I

M
P (N)).

Then there exists s ∈ R − P such that rs ∈ AnnR(I
M
P (N)) and so rsIMP (N) = (0).

As M is an Artinian R-module, there exists t ∈ R − P such that tN ⊆ IMP (N) by
Lemma 2.3. Therefore, strN = (0). This implies that for each i ∈ I, stN ⊆ (Li :M r),
where {Li}i∈I is the collection of all completely irreducible submodules of M . Hence
IMP (N) ⊆ (Li :M r). Therefore, rIMP (N) ⊆ ∩i∈ILi = (0). Hence r ∈ AnnR(I

M
P (N)), as

required. �

2.5. Definition. We say that a submodule N of an R-module M is cotorsion-free with
respect to (w.r.t.) P if IMP (N) = N , where P ∈ Spec(R).

2.6. Lemma. Let N ba a submodule of an R-module M and P ∈ Spec(R). If N is
cotorsion-free w.r.t. P , then N is cotorsion-free w.r.t. Q for each Q ∈ V (P ).

Proof. Since P ⊆ Q, IMP (N) ⊆ IMQ (N). Therefore, N = IMP (N) ⊆ IMQ (N) ⊆ N. Hence
N = IMP (N) = IMQ (N) for each Q ∈ V (P ). �

A non-zero R-module M is said to be secondary if for each a ∈ R, the endomorphism
M

a→ M is either surjective or nilpotent (see [10]). Clearly, every second module is a
secondary module.

2.7. Example. (1) If P ∈ Spec(R), then every P -secondary submodule of an R-
module M is cotorsion-free w.r.t. P by [4, 2.8].

(2) The Z-module Zp∞ is cotorsion-free w.r.t. (0).

2.8. Corollary. Let P ∈ Spec(R) and N be a submodule of an R-module M . If N is
cotorsion-free w.r.t. P , then AnnR(I

M
P (N)) = SP (AnnR(I

M
P (N))).

Proof. The results follows from part (c) of Theorem 2.4 because N = IMP (N). �

The cosupport of an R-module M [12] is denoted by Cosupp(M) and it is defined by

Cosupp(M) = {P ∈ Spec(R)|P ⊇ AnnR(L) for some cocyclic

homomorphic image L of M}.

2.9. Theorem. Let P ∈ Spec(R) and N be a submodule of an Artinian R-module M .
Then we have the following.

(1) AnnRP (HomR(RP , N)) = (AnnR(I
M
P (N)))P .

(2) The following statements are equivalent.
(a) HomR(RP , N) 6= (0).
(b) AnnR(I

M
P (N)) ⊆ P .

(c) IMP (N) 6= (0).
(d) P ∈ CosuppR(N).
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Proof. (1) By Theorem 2.4 (b), HomR(RP , I
M
P (N)) = HomR(RP , N). It is easy to see

that
(AnnR(I

M
P (N)))P ⊆ AnnRP (HomR(RP , I

M
P (N)).

To see the reverse inclusion, we note that IMP (IMP (N)) = φ(HomR(RP , I
M
P (N))) by [2,

2.15], where φ : HomR(RP , I
M
P (N))→ IMP (N) is the natural homomorphism defined by

φ(f) = f(1RP ) for any f ∈ HomR(RP , I
M
P (N)). Now by Theorem 2.4 (a), IMP (N) =

φ(HomR(RP , I
M
P (N))). But always we have

AnnR(HomR(RP , I
M
P (N))) ⊆ AnnR(φ(HomR(RP , I

M
P (N))).

Hence AnnR(HomR(RP , I
M
P (N))) ⊆ AnnR(I

M
P (N)). Therefore,

AnnRP (HomR(RP , I
M
P (N))) ⊆ (AnnR(I

M
P (N)))P ,

as required.
(2) (a) ⇔ (d). By [12, 2.3], CosuppR(N) = V (AnnR(N)) and by [11, p. 130],

CosR(N) = V (AnnR(N)), where CosR(N) = {P ∈ Spec(R) : HomR(RP , N) 6= (0)}.
Hence we get the equivalence (a) and (d).

(b)⇒ (c). This is clear.
(a) ⇒ (b). HomR(RP , N) 6= (0) ⇔ AnnRP (HomR(RP , N)) 6= RP . Thus by using

part (1), we have

HomR(RP , N) 6= (0)⇔ (AnnR(I
M
P (N)))P 6= RP ⇔ AnnR(I

M
P (N)) ⊆ P.

(c)⇒ (a). If HomR(RP , N) = (0), then HomR(RP , I
M
P (N)) = (0). Thus by [2, 2.15],

IMP (N) = IMP (IMP (N)) = φ(HomR(RP , I
M
P (N)) = (0),

where φ : HomR(RP , I
M
P (N))→ IMP (N) is the natural homomorphism defined by φ(f) =

f(1RP ) for any f ∈ HomR(RP , I
M
P (N)). This contradiction completes the proof. �

We need the following lemma.

2.10. Lemma. [7, 2.2] Let I be an ideal of R and P ∈ Spec(R). Then the following
statements are equivalent.

(a) SP (I) is a P -primary ideal of R.
(b)

√
SP (I) = P .

(c) P is a minimal prime ideal of I.

2.11. Theorem. Let P ∈ Spec(R) and N be a submodule of an Artinian R-module M .
Then the following statements are equivalent.

(a) IMP (N) is a P -secondary submodule of M .
(b) AnnR(I

M
P (N)) is a P -primary ideal of R.

(c)
√
AnnR(IMP (N)) = P .

In particular, IMP (N) is P -second if and only if AnnR(I
M
P (N)) = P .

Proof. (a)⇒ (b). This is clear.
(b)⇒ (a). Since AnnR(I

M
P (N)) is a P -primary ideal of R and IMP (IMP (N)) = IMP (N)

by Theorem 2.4 (a), IMP (N) is a P -secondary submodule of M by [4, 2.2].
(b)⇒ (c). This is elementary.
(c) ⇒ (b). Put I = AnnR(I

M
P (N)). Then by Theorem 2.4 (d), SP (I) = I. Now, we

have
√
I = P =

√
SP (I) by the hypothesis. It follows from Lemma 2.10 that SP (I) is a

P -primary ideal of R. Hence I = SP (I) = AnnR(I
M
P (N)) is a P -primary ideal of R, as

required. �
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2.12. Definition. Let M be an R-module, (0) 6= N ≤M and P ∈ Spec(R). We say the
pair (N,P ) satisfies property (∗∗) if SP (AnnR(N)) = AnnR(I

M
P (N)) 6= R. We say the

module M satisfies property (∗∗) if for every (0) 6= N ≤ M and P ∈ V (AnnR(N)) the
pair (N,P ) satisfies property (∗∗).

2.13. Remark. (a) For every N ≤ M and P ∈ Spec(R), if AnnR(N) 6⊆ P , then
IMP (N) = (0) because there exists r ∈ R−P such that rN = (0). Hence for each
i ∈ I, rN ⊆ Li, where {Li}i∈I is the set of all completely irreducible submodules
of M . Therefore, IMP (N) ⊆ ∩i∈ILi = (0). However, the converse is not true in
general. As a counter example, take the Z-module Z asM , N = Z, and P = (0).

(b) Let M be an R-module, (0) 6= N ≤ M and P ∈ Spec(R). If a pair (N,P )
satisfies property (∗∗), then by part (a), we have AnnR(N) ⊆ P .

2.14. Example. (a) The Z-module Z does not satisfy property (∗∗) because (Z,
(0)) does not satisfy this property.

(b) Let N be a non-zero submodule of an R-module M and let P be a prime ideal
of R. If N is cotorsion-free w.r.t. P , then (N,P ) satisfies property (∗∗). This
is because IMP (N) = N 6= (0) implies that AnnR(I

M
P (N)) = AnnR(N) 6= R and

hence by Corollary 2.8, we have

AnnR(N) = SP (AnnR(N)) = AnnR(I
M
P (N)) 6= R.

Moreover, not only (N,P ), but also (N,Q) for each Q ∈ V (P ) satisfies property
(∗∗) by Lemma 2.6. In particular, every P -secondary submodule S of M and
each Q ∈ V (P ) = V (AnnR(S)) satisfies property (∗∗) by Example 2.7.

2.15. Theorem. Every non-zero Artinian R-module M satisfies property (∗∗).

Proof. Let (0) 6= N ≤ M and P ∈ V (AnnR(N)). By Lemma 2.3, there exists t ∈
R − P such that tN ⊆ IMP (N). Now let r ∈ AnnR(I

M
P (N)). Then rtN = (0). Hence

r ∈ SP (AnnR(N)). Thus R 6= AnnR(I
M
P (N)) ⊆ SP (AnnR(N)). The reverse inclusion

follows from Theorem 2.4 (c). �

2.16. Remark. Those modules M which satisfy property (∗∗) are not necessarily Ar-
tinian. For example, every vector space W satisfies property (∗∗) even it is of infinite
dimensional. This is due to that every non-zero subspace U of W is (0)-second with
V (AnnR(U)) = {(0)}.

2.17. Corollary. Let M be an Artinian R-module, (0) 6= N ≤M and P ∈ Spec(R).
(1) The following statements are equivalent.

(a) IMP (N) is a P -secondary submodule of M .
(b)

√
SP (AnnR(N)) = P .

(c) P is a minimal prime ideal of AnnR(N).
(2) IMP (N) is a P -second submodule of M if and only if SP (AnnR(N)) = P .

In particular, if AnnR(N) = P , then IMP (N) is a P -second submodule of M .

Proof. The proof is straightforward from Theorem 2.11, Lemma 2.10, and Theorem 2.4.
�

3. Maximal second submodules
A submodule N of an R-module M is said to be a maximal second submodule of a

submodule K of M , if N ⊆ K and there does not exist a second submodule L of M such
that N ⊂ L ⊂ K (see [1]).

3.1. Lemma. Let R be an integral domain and letM be an Artinian non-zero R-module.
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(a) If IM(0)(M) 6= (0), then IM(0)(M) is a maximal (0)-second submodule of M and it
contains every (0)-second submodule of M .

(b) IM(0)(M) =M if and only if M is a (0)-second submodule of M .

Proof. (a) This follows from [1, 2.9] and [3, 2.10].
(b) This follows from part (a) and [3, 2.10]. �

3.2. Theorem. Let R be an integral domain of dimension 1, M be a non-zero Artinian
R-module and (0) 6= P ∈ V (AnnR(M)). Then IMP ((0 :M P )) is a maximal second
submodule of M if and only if IMP ((0 :M P )) 6⊆ IM(0)(M).

Proof. Since (0) ⊂ P ⊆ AnnR((0 :M P )), dimR = 1, and R is a domain, it follows that
if AnnR((0 :M P )) 6= R, then AnnR((0 :M P )) = P . Hence IMP ((0 :M P )) is a second
submodule of M by [1, 2.8].
Suppose that IMP ((0 :M P )) is a maximal second submodule of M . Then there are two
cases:

(i) IMP ((0 :M P )) =M and
(ii) IMP ((0 :M P )) 6=M .

In case (i), M is a P -second submodule for P 6= (0). Consequently, IM(0)(M) 6= M by
Lemma 3.1 (b). Hence IMP ((0 :M P )) 6⊆ IM(0)(M).
In case (ii), IMP ((0 :M P )) is a proper maximal second submodule of M . Hence M is not
a second submodule, in particular, it is not a (0)-second submodule so that IM(0)(M) 6=M

by Lemma 3.1 (b) again. Thus if IM(0)(M) 6= (0), then IM(0)(M) is a proper maximal
(0)-second submodule of M by Lemma 3.1 (a). Consequently, IMP ((0 :M P )) 6⊆ IM(0)(M)

by the maximality of IMP ((0 :M P )) in M . On the other hand, if IM(0)(M) = (0), then
obviously, IMP ((0;M P )) 6⊆ IM(0)(M).

Conversely, suppose that IMP ((0;M P )) 6⊆ IM(0)(M). Then clearly IM(0)(M) 6= M . Thus
by Lemma 3.1 (b), M is not a (0)-second submodule. To see that IMP ((0 :M P )) is a
maximal second submodule ofM , let K be a second submodule ofM such that IMP ((0 :M
P )) ⊆ K ⊆M . Then

(0) ⊆ AnnR(M) ⊆ AnnR(K) ⊆ AnnR(I
M
P ((0 :M P ))) = P.

Since dimR = 1, the prime ideal AnnR(K) = (0) or P . If AnnR(K) = (0), then K is a
(0)-second submodule. However, K 6=M becauseM is not a (0)-second submodule as we
have seen above. Since every proper (0)-second submodule contained in IM(0)(M), we have
that IMP ((0 :M P )) ⊆ K ⊆ IM(0)(M) 6= (0) which contradicts to IMP ((0 :M P )) 6⊆ IM(0)(M).
Therefore, AnnR(K) = P , i.e., K is a P -second submodule. Thus K = IMP (K) ⊆
IMP ((0 :M P )). Therefore, K = IMP ((0 :M P )). This proves that IMP ((0 :M P )) is a
maximal second submodule of M . �

3.3. Proposition. Let Y be a set of prime ideals of R which contains all the maximal
ideals, M be an Artinian R-module, and N be a non-zero submodule of M . Then
N =

∑
P∈Y I

M
P (N).

Proof. Let L be a completely irreducible submodule of M such that
∑

P∈Y I
M
P (N)

⊆ L so that IMP (N) ⊆ L for every P ∈ Y . Hence by Lemma 2.3, we have (L :R N) 6⊆ P
for every P ∈ Y . This implies that (L :R N) 6⊆ m for every maximal ideal m ∈ Y . This
in turn implies that (L :R N) = R and hence N ⊆ L. Thus N ⊆

∑
P∈Y I

M
P (N). The

reverse inclusion is clear. �
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3.4. Corollary. Let (R,m) be a local ring,M an Artinian R-module, and (0) 6= N ≤M .
Then N is cotorsion-free w.r.t. m.

Proof. Take Y = {m} in Proposition 3.3. Then we have IMm (N) = N . �

Let N be a submodule of an R-module M . The (second) socle of N is defined as
the sum of all second submodules of M contained in N and it is denoted by soc(N) or
sec(N) (see [1] and [5]). In case N does not contain any second submodule, the socle of
N is defined to be (0).

3.5. Proposition. Let M be an Artinian R-module, P ∈ Spec(R), and (0) 6= N ≤ M .
If P is a minimal prime ideal of AnnR(N) and IMP ((0 :N P )) 6= (0), then IMP ((0 :N P ))
is a maximal second submodule of K ≤ M with IMP ((0 :N P )) ⊆ K ⊆ N . In particular
IMP ((0 :N P )) is a maximal P -second submodule of sec(N).

Proof. Since IMP ((0 :N P )) 6= (0), IMP ((0 :N P )) is a maximal P -second submodule of
(0 :N P ) by [1, 2.9]. Now suppose that K is a submodule ofM such that IMP ((0 :N P )) ⊆
K ⊆ N and S is a Q-second submodule of M such that IMP ((0 :N P )) ⊆ S ⊆ K ⊆ N .
Then as P is a minimal prime ideal of AnnR(N), we have Q = P . Thus S ⊆ (0 :N P ). It
follows that S = IMP ((0 :N P )) as desired. The last assertion follows from the fact that
IMP ((0 :N P )) ⊆ sec(N) ⊆ N . So the proof is completed.

�

The following example shows that the condition IMP ((0 :N P )) 6= (0) in the statement
of Proposition 3.5 can not be dropped.

3.6. Example. Consider M = N = Zp∞ as Z-module, where p is a prime number.
Let q 6= p be an another prime number. Then clearly, qZ is a minimal prime ideal of
AnnZ(M) and IM(q)((0 :N qZ)) = (0).

The next theorem gives an important information on the maximal second submodules
of an Artinian R-modules.

3.7. Theorem. Let N be a non-zero submodule of an Artinian R-module M . Then
every maximal second submodule of N must be of the form IMP ((0 :N P )) for some
P ∈ V (AnnR(N)).

Proof. Let S be a maximal P -second submodule of N . Then S ⊆ N and AnnR(S) = P
so that S ⊆ (0 :N P ). Therefore, S = IMP (S) ⊆ IMP ((0 :N P )) ⊆ N by [3, 2.10]. Since
P ∈ V (AnnR(N)), IMP ((0 :N P )) is a P -second submodule , as we have seen in the proof
of Proposition 3.5. Thus S = IMP ((0 :N P )). �

3.8. Corollary. Let M be an Artinian R-module and (0) 6= N ≤ M . Then sec(N) =∑
P∈Y I

M
P ((0 :N P )), where Y is a finite subset of V (AnnR(N)).

Proof. By [1, 2.6, 2.2], there exists n ∈ Z such that sec(N) =
∑n

i=1 Si, where for
1 ≤ i ≤ n, Si is a maximal second submodule of N . Now the proof follows from Theorem
3.7. We remark that this corollary is also a direct consequence of [3, Proposition 2.7
(a)]. �

3.9. Corollary. LetN be a non-zero submodule of an ArtinianR-moduleM . If IMP ((0 :N
P )) 6= (0) and N is a P -secondary submodule of an R-module M for some P ∈ Spec(R),
then we have the following.

(a) IMP ((0 :N P )) is a maximal P -second submodule of sec(N).
(b) If P is a maximal ideal of R, then sec(N) = IMP ((0 :N P )) so that sec(N) is a

P -second submodule of M .
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Proof. (a) This follows from Proposition 3.5 because P is a minimal prime ideal of
AnnR(N).

(b) By Corollary 3.8, sec(N) =
∑

Q∈V (AnnR(N)) I
M
Q ((0 :N Q)). Since P is maximal

and
√
AnnR(N) = P , V (AnnR(N)) = {P}. Thus sec(N) = IMP ((0 :N P )) as required.

�

3.10. Corollary. Let I be an ideal of R and M be an Artinian R-module such that
(0 :M I) 6= (0). Then sec((0 :M I)) =

∑
P∈V (AnnR((0:M I))) I

M
P ((0 :M P )).

Proof. Set N = (0 :M I). Then this follows from Corollary 3.8 since, (0 :(0:M I) P ) =
(0 :M P ) for every P ∈ V (AnnR((0 :M I))). �

3.11. Example. For any prime integer p, let M = (Z/pZ) × Zp∞ . Then M is an
Artinian faithful Z-module and V (AnnZ(M)) = V ((0)) = Spec(Z). Hence sec(M) =∑

(q)∈V ((0)) I
M
(q)((0 :M qZ)) by Corollary 3.10. Since IM(q)((0 :M qZ)) = IM(q)(0) = (0) for

each prime number p 6= q,

sec(M) = IM(0)(M) + IM(p)((0 :M pZ))
= ((0)× Zp∞) + ((Z/pZ)× < 1/p+ Z >)

=M.
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Abstract
In this paper, using the concept of strong summation process, we give a
Korovkin type approximation theorem for a sequence of positive linear
operators acting from Lp,q (loc) into itself. We also study modulus of
continuity for Lp,q (loc) approximation and give the rate of convergence
of these operators.

Keywords: A−summability, positive linear operators, locally integrable func-
tions, Korovkin type theorem, modulus of continuity, rate of convergence.

2000 AMS Classification: 41A25, 41A36.

Received : 13.01.2015 Accepted : 14.05.2015 Doi : 10.15672/HJMS.20164513102

1. Introduction
The classical theorem of Korovkin [7] on approximation of continuous functions on a

compact interval gives conditions in order to decide whether a sequence of positive linear
operators converges to the identity operator. Some results concerning the Korovkin type
approximation theorem in the space Lp[a, b] of the Lebesgue integrable functions on a
compact interval may be found in [4]. If the sequence of positive linear operators does
not converge then it might be benefical to use matrix summability methods.

Approximation theory has important applications in the theory of polynomial approx-
imation, in functional analysis, numerical solutions of differential and integral equations
[1], [8].

The purpose this paper is to study a Korovkin type approximation theorem of a
function f by means of sequence of positive linear operators from the space of locally
integrable functions into itself with the use of a matrix summability method which in-
cludes both convergence and almost convergence. We also obtain rate of convergence in
Lp,q (loc) approximation with positive linear operators by means of modulus of continuity.

Now we recall some information of locally integrable functions given in [6].
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Let q(x) = 1 + x2 ; −∞ < x < ∞ . For h > 0, by Lp,q(loc) we will denote the space
of measurable functions f satisyfing the inequality,

(1)

 1

2h

x+h∫
x−h

|f(t)|p dt

1/p

≤Mf q (x) ,−∞ < x <∞

where p ≥ 1 and Mf is a positive constant which depends on the function f.
It is known [6] that Lp,q(loc) is a linear normed space with norm,

(2) ‖f‖p,q = sup
−∞<x<∞

(
1
2h

x+h∫
x−h
|f(t)|p dt

)1/p

q (x)

where ‖f‖p,q may also depend on h > 0. To simplify the notation, we need the following.
For any real numbers a and b put

‖f ;Lp (a, b)‖p,q :=

 1

b− a

b∫
a

|f(t)|p dt

1/p

,

‖f ;Lp,q (a, b)‖p,q = sup
a<x<b

‖f ;Lp (x− h, x+ h)‖p,q
q(x)

,

‖f ;Lp,q (|x| ≥ a)‖p,q = sup
|x|≥a

‖f ;Lp (x− h, x+ h)‖p,q
q(x)

.

With this notation the norm in Lp,q (loc) may be written in the form

‖f‖p,q = sup
x∈R

‖f ;Lp (x− h, x+ h)‖
q(x)

.

It is known [6] that Lkp,q (loc) is the subspace of all functions f ∈ Lp,q (loc) for which
there exists a constant kf such that

lim
|x|→∞

‖f − kfq;Lp (x− h, x+ h)‖
q(x)

= 0.

As usual, if T is a positive linear operator from Lp,q (loc) into Lp,q (loc), then the operator
norm ‖T‖ is given by ‖T‖ := sup

f 6=0

‖Tf‖p,q
‖f‖p,q

.

2. Strong A−summation process in Lp,q (loc)

The main aim of the present work is to study a Korovkin type approximation theorem
for a sequence of positive linear operators acting on the weighted space Lp,q (loc) by using
matrix summability method which includes both convergence and almost convergence.
We also give an example of positive linear operators which verifies our Theorem 2.5. but
does not verify the classical one ( see Theorem 2.1 below).

Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with nonnegative real

entries. Let {Tj} be a sequence of positive linear operators from Lp,q (loc) into itself. If

(3) lim
k

∑
j

ankj ‖Tjf − f‖p,q = 0, uniformly in n,

then we say that {Tjf} is strongly A−summable to f for every f in Lp,q (loc) where it is
assumed that the series converges for each k, n and f. Some results concerning summation
processes on some other spaces may be found in [2], [9] and [10].
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We recall the following result of [6] that we need in the sequel.
2.1. Theorem. Let {Tj} be a sequence of positive linear operators from Lp,q (loc)

into itself and satisfy the conditions
i) The sequence (Tj) is uniformly bounded, that is, ‖Tj‖ ≤ C < ∞, where C is a

constant independent of j,
ii) limj ‖Tj (fi;x)− fi (x)‖p,q = 0 where fi (y) = yi, i = 0, 1, 2.Then

lim
j
‖Tjf − f‖p,q = 0

for each function f ∈ Lkp,q (loc) , (see [6]) .
The next result shows that Korovkin type theorem does not hold in the whole space

Lp,q (loc) .

2.2. Theorem. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices

with nonnegative real entries. Let {Tj} be a sequence of positive linear operators from
Lp,q (loc) into itself satisfying

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2. Then there exists a function f∗ in Lp,q (loc) for which

(4) lim
k

sup
n

∑
j

a
(n)
kj ‖Tjf

∗ − f∗‖p,q ≥ 2
1− 1

p .

Proof. We consider the sequence of operators Tj given in [6] :

Tj (f ;x) =

{
x2

(x+h)2
f (x+ h) , x ∈ [2 (j − 1)h, (2j + 1)h)

f (x) , otherwise.

It is shown in [6] that

‖Tjf‖p,q ≤ 4 ‖f‖p,q .

Assume now that A :=
{
A(n)

}
=
{
a
(n)
kj

}
is a sequence of infinite matrices defined by

a
(n)
kj =

{
1
k+1

, n ≤ j ≤ n+ k

0 , otherwise.

Consider the following function f∗ given in [6] :

f∗ (x) =


x2 , if x ∈

∞⋃
k=1

[(2k − 1)h, 2kh)

−x2 , if x ∈
∞⋃
k=1

[2kh, (2k + 1)h)

0 , if x < 0.

Then f∗ ∈ Lp,q (loc) and it is shown in [6] that

‖Tjf∗ − f∗‖p,q ≥ 2
1− 1

p
(2j − 1)2 h2

1 + 4j2h2
.

Hence

1

k + 1

k+n∑
j=n

‖Tjf∗ − f∗‖p,q ≥
1

k + 1

k+n∑
j=n

2
1− 1

p
(2j − 1)2 h2

1 + 4j2h2
.
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On applying the operator lim
k

sup
n

on both sides one can see that

lim
k

sup
n

1

k + 1

k+n∑
j=n

‖Tjf∗ − f∗‖p,q ≥ 21−1/p.

Therefore the theorem is proved.
Now we show that the above mentioned problem has a positive solution in the subspace

Lkp,q (loc) . First we give the following
2.3. Lemma. LetA : =

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with non-

negative real entries. Let {Tj} be a sequence of positive linear operators from Lp,q (loc)
into itself satisfying

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2. Assume that

(5) H
′
= sup

n,k

∑
j

a
(n)
kj <∞.

Then, for any continuous and bounded function f on the real axis,

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(f ;x)− f (x) ;Lp,q (a, b)‖ = 0

holds, where a and b are any real numbers.
Proof. Since f is uniformly continuous function on any closed interval, given ε > 0 there
exists a positive number δ = δ (ε) such that if |t− x| < δ implies that

(6) |f (t)− f (x)| < ε , for all x ∈ [a, b], t ∈ R.

Also, setting M = sup
x∈R
|f (x)|, we can write if |t− x| ≥ δ that

(7) |f (t)− f (x)| < 2M , for all x ∈ [a, b], t ∈ R.

Combining (6) and (7) we have

(8) |f (t)− f (x)| < ε+
2M

δ2
(t− x)2 ,

where -∞ < t < ∞; x ∈ [a, b]. Let c := maks {|a| , |b|} and using the positivity and
linearity of operators Tj we obtain from (8) that∑

j

a
(n)
kj ‖Tj(f (t) ;x)− f (x) ;Lp,q (a, b)‖

≤
∑
j

a
(n)
kj ‖Tj(|f (t)− f (x)| ;x)‖p,q + |f (x)|

∑
j

a
(n)
kj ‖Tj(1;x)− 1‖p,q

<
∑
j

a
(n)
kj

∥∥∥∥Tj(ε+ 2M

δ2
(t− x)2 ;x)

∥∥∥∥
p,q

+M
∑
j

a
(n)
kj ‖Tj(1;x)− 1‖p,q

= ε
∑
j

a
(n)
kj +

2M

δ2

∑
j

a
(n)
kj

∥∥Tj(t2;x)− x2∥∥p,q + 4Mc

δ2

∑
j

a
(n)
kj ‖Tj(t;x)− x‖p,q

+

(
2Mc2

δ2
+ ε+M

)∑
j

a
(n)
kj ‖Tj(1;x)− 1‖p,q .

Hence the proof is completed.
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2.4. Theorem. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices

with nonnegative real entries. Let {Tj} be a sequence of positive linear operators from
Lp,q (loc) into itself. Assume that

(9) H := sup
n,k

∑
j

a
(n)
kj ‖Tj‖ <∞

and

(10) H
′
:= sup

n,k

∑
j

a
(n)
kj <∞.

Then {Tj} is an A − strong summation process in Lkp,q (loc) , i.e.,for any function f ∈
Lkp,q (loc) we have

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(f ;x)− f (x)‖p,q = 0

if and only if

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2.
Proof. We follow [6] up to a certain stage. If f ∈ Lkp,q (loc) then f − kf .q ∈ L0

p,q (loc) .

So it is sufficient to prove the theorem for the function f ∈ L0
p,q (loc) . For ε > 0, there

exists a point x0 such that the inequality

(11)

 1

2h

x+h∫
x−h

|f (t)|p dt

1/p

< εq (x)

holds for all x, |x| ≥ x0. By the well known Lusin Theorem, there exists a continuous
function ϕ on the finite interval [−x0 − h, x0 + h] such that the inequality

(12) ‖f − ϕ;Lp (−x0, x0)‖ < ε

is fulfilled. Setting

(13) δ < min

{
2hεp

Mp (x0)
, h

}
,

where M (x0) = max

{
max

|x|≤x0+h
|ϕ (x)| , 1

}
, we can define a continuous function g by

g (x) =


ϕ (x) , if |x| ≤ x0 + h
0 , if |x| ≥ x0 + h+ δ

linear , otherwise.

Then by (11) , (12) , (13) and the Minkowski inequality, we obtain

(14) ‖f − g‖p,q < ε

for any ε > 0 (see [6]).
Now we can find a point x1 > x0 such that

(15) q (x1) >
M (x0)

ε
and g (x) = 0 for |x| > x1,
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where M (x0) is defined above. Then by (12), (13), (14) and the definiton of g and
Lemma 2.1. we get∑

j

a
(n)
kj ‖Tj (f ;x)− f (x)‖p,q ≤

∑
j

a
(n)
kj ‖Tj (f − g)‖p,q +

∑
j

a
(n)
kj ‖Tjg − g‖p,q

+
∑
j

a
(n)
kj ‖f − g‖p,q

≤ ε

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)
+
∑
j

a
(n)
kj ‖Tjg − g;Lp,q (−x1, x1)‖

+
∑
j

a
(n)
kj ‖Tjg − g;Lp,q (|x| ≥ x1)‖

≤ ε

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj + 1

)
+
∑
j

a
(n)
kj ‖Tjg;Lp,q (|x| ≥ x1)‖ .(16)

Since |g (x)| ≤M (x0) for all x ∈ R, we can write∑
j

a
(n)
kj ‖Tjg;Lp,q (|x| ≥ x1)‖p,q ≤M (xo)

∑
j

a
(n)
kj ‖Tj1;Lp,q (|x| ≥ x1)‖

≤M (xo)
∑
j

a
(n)
kj ‖Tj1− 1;Lp,q (|x| ≥ x1)‖

+M (xo)
∑
j

a
(n)
kj ‖1;Lp,q (|x| ≥ x1)‖

≤M (xo)
∑
j

a
(n)
kj ‖Tj1− 1‖p,q

+
M (xo)

q (x1)

∑
j

a
(n)
kj .

Considering hypothesis and (15) we get by (16) that

lim
k

sup
n

∑
j

a
(n)
kj ‖Tjf − f‖p,q = 0.

In the whole space Lp,q (loc) we have the following.
2.5. Theorem. Let A : =

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries for which (9) and (10) holds. Let {Tj} be a sequence of positive
linear operators from Lp,q (loc) into itself satisfying

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2. Then for any functions f ∈ Lp,q (loc) we have

lim
k

sup
n

∑
j

a
(n)
kj

(
sup
x∈R

‖Tjf − f ;Lp (x− h, x+ h)‖p,q
q∗ (x)

)
= 0
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where q∗ is a weight function such that lim
|x|→∞

1+x2

q∗(x) = 0.

Proof. By hypothesis, given ε > 0, there exists x0 such that for all x with |x| ≥ x0 we
have

(17)
1 + x2

q∗ (x)
< ε.

Let f ∈ Lp,q (loc). Then, for all n, k we get

γn :=
∑
j

a
(n)
kj

∥∥∥B(n)
k f − f ;Lp (|x| > x0)

∥∥∥
≤
∑
j

a
(n)
kj ‖Tjf‖p,q +

∑
j

a
(n)
kj ‖f‖p,q

≤ ‖f‖p,q

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)
< N, say.

Hence we have sup
n
γn < ∞ is bounded. By Lusin’s theorem we can find a continuous

function ϕ on [−x0 − h, x0 + h] such that

(18) ‖f − ϕ;Lp (−x0 − h, x0 + h)‖ < ε.

Now we consider the following function G given in [6]

G (x) :=


ϕ (−x0 − h) , x ≤ −x0 − h
ϕ (x0) , |x| < x0 + h

ϕ (x0 + h) , x ≥ x0 + h.

We see that G is continuous and bounded on the whole real axis. Now let f ∈
Lp,q (loc)and we get for all n, k that

βn :=
∑
j

a
(n)
kj ‖Tjf − f ;Lp,q (−x0, x0)‖

≤
∑
j

a
(n)
kj ‖Tj (f −G) ;Lp,q (−x0, x0)‖+

∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖

+
∑
j

a
(n)
kj ‖f −G;Lp,q (−x0 − h, x0 + h)‖

≤
∑
j

a
(n)
kj ‖Tj‖p,q ‖(f −G) ;Lp,q (−x0 − h, x0 + h)‖

+
∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖

+
∑
j

a
(n)
kj ‖f −G;Lp,q (−x0 − h, x0 + h)‖

≤ ‖f −G;Lp,q (−x0 − h, x0 + h)‖

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)
+
∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖ .

Hence by the hypothesis and Lemma 2.1. we have

(19) lim
k

sup
n
βn = 0.
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On the other hand, a simple calculation shows that

un :=
∑
j

a
(n)
kj ‖Tjf − f‖p,q

<
∑
j

a
(n)
kj sup
|x|<x0

(
1
2h

x+h∫
x−h

∣∣∣∣∣∑j a(n)kj Tjf − f

∣∣∣∣∣
p

dt

)1/p

q∗ (x)

q (x)

q (x)

+
∑
j

a
(n)
kj sup
|x|≥x0

(
1
2h

x+h∫
x−h

∣∣∣∣∣∑j a(n)kj Tjf − f

∣∣∣∣∣
p

dt

)1/p

q∗ (x)

q (x)

q (x)

= βn sup
|x|<x0

q (x)

q∗ (x)
+ γn sup

|x|≥x0

q (x)

q∗ (x)

(20) < βnq (x0) + εγn.

It follows from (17), (18) , (19) , (20) and Lemma 2.1. that

un < q (x0) ‖f −G;Lp,q (−x0 − h, x0 + h)‖

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)

+ q (x0)

∥∥∥∥∥∑
j

a
(n)
kj TjG−G;Lp,q (−x0, x0)

∥∥∥∥∥+ εN

= Kε+ q (x0)

∥∥∥∥∥∑
j

a
(n)
kj TjG−G;Lp,q (−x0, x0)

∥∥∥∥∥
where K :=Mq (x0) +N and M := H + 1. By Lemma 2.1. we get

lim
k

sup
n

∑
j

a
(n)
kj

(
sup
x∈R

‖Tjf − f ;Lp (x− h, x+ h)‖p,q
q∗ (x)

)
= 0.

2.6. Remark. We now present an example of a sequence of positive linear operators
which satisfies Theorem 2.5 but does not satisfy Theorem 2.1. Assume now that A :={
A(n)

}
=
{
a
(n)
kj

}
is a sequence of infinite matrices defined by

a
(n)
kj =

{
1
k+1

, n ≤ j ≤ n+ k

0 , otherwise.

In this case A−summability method reduces to almost convergence,([8]).
Let Tj : Lp,q (loc)→ Lp,q (loc) be given by

Tj (f ;x) =

{
x2

(x+h)2
f (x+ h) , x ∈ [2 (j − 1)h, (2j + 1)h]

f (x) , otherwise

The sequence {Tj} satisfies Theorem 2.1. (see [6]). It is shown that for all j ∈ N,
‖Tjf‖p,q ≤ 4 ‖f‖p,q . Hence {Tj} is an uniformly bounded sequence of positive linear
operators from Lp,q (loc) into itself. Also

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj(fi;x)− fi (x)‖p,q = 0

where fi (y) = yi for i = 0, 1, 2. Now define {Pj} by

Pj (f ;x) = (1 + uj)Tj (f ;x)
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where

uj =

{
1 , j = 2n, n ∈ N
0 d.d.

It is easy to see that {uj} almost convergent to zero. Therefore the sequence of positive
linear operators {Pj} satisfies Theorem 2.5. but does not satisfy Theorem 2.1.

3. Rates of Convergence For Strong A−Summation Process in
Lp,q (loc)

In this section, using the modulus of continuity, we study rates of convergence in
Lp,q (loc).
We now turn to introducing some notation and basic definitions to obtain the rate con-
vergence of the operators given in Theorem 2.5.
Also, we consider the following modulus of continuity:

w (f, δ) = sup
|x−y|≤δ

|f (y)− f (x)| ,

where δ is a positive constant, f ∈ Lp,q (loc) . It is easy to see that, for any c > 0 and all
f ∈ Lp,q (loc) ,

w (f, δ) ≤ (1 + [c])w (f, δ) ,

where [c] is defined to be the greatest integer less than or equal to c, [3].
To obtain our main results we first need the following lemma.
3.1. Lemma. Let A : =

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with non-

negative real entries. Let {Tj} be a sequence of positive linear operators from Lp,q (loc)
into itself.Then for each j ∈ N and δ > 0, and for every function f that is continuous
and bounded on the whole real axis, we have∑

j

a
(n)
kj ‖Tjf − f ;Lp,q (a, b)‖ ≤ w (f ; δ)

∑
j

a
(n)
kj ‖Tjf0 − f0‖p,q

+ 2w (f ; δ)
∑
j

a
(n)
kj + C1

∑
j

a
(n)
kj ‖Tjf0 − f0‖p,q

where f0 (t) = 1, ϕx (t) := (t− x)2 , C1 = sup
a<x<b

|f (x)| and δ := αj =
√
‖Tjϕx‖p,q.

Proof. Let f be any continuous and bounded function on the real axis, and let x ∈ [a, b]
be fixed. Using linearity and monotonicity of Tj and for any δ > 0, by modulus of
continuity, we get

|Tj (f ;x)− f (x)| ≤ Tj
(
w

(
f,
|t− x|
δ

δ

)
, x

)
+ |f (x)| |Tj (f0;x)− f0 (x)|
≤ wq (f, δ) |Tj (f0;x)− f0 (x)|+ wq (f, δ)

+
wq (f, δ)

δ2
|Tj ϕx|+ |f (x)| |Tj (f0;x)− f0 (x)| .
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Let δ := αj =
√
‖Tj ϕx‖p,q. Then we have

‖Tj f − f ;Lp,q (a, b)‖ ≤ wq (f, δ) ‖Tj (f0;x)− f0 (x)‖p,q +
+ wq (f, δ)

+
wq (f, δ)(√
‖Tj ϕx‖p,q

)2 ‖Tj ϕx‖p,q
+ ‖Tj (f0;x)− f0 (x)‖p,q sup

a<x<b
|f (x)|

Now let C1 = sup
a<x<b

|f (x)|. Then we get

∑
j

a
(n)
k,j ‖Tj f − f ;Lp,q (a, b)‖ ≤

∑
j

a
(n)
kj wq (f, δ) ‖Tj (f0;x)− f0 (x)‖p,q

+ 2
∑
j

a
(n)
kj wq (f, δ)

+ C1

∑
j

a
(n)
kj ‖Tj (f0;x)− f0 (x)‖p,q .

3.2. Theorem. Let A : =
{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries for which (10) holds. Let {Tj} be a sequence of positive lin-
ear operators from Lp,q (loc) into itself. Assume that for each continuous and bounded
function f on the real line, the following conditions hold:

(i) lim
k

sup
n

∑
j

a
(n)
kj ‖Tj (f0;x)− f0 (x)‖p,q = 0

(ii) lim
k

sup
n

∑
j

a
(n)
kj wq (f, δ) = 0

(iii) lim
k

sup
n

∑
j

a
(n)
kj wq (f, δ) ‖Tj (f0;x)− f0 (x)‖p,q = 0

where δ = αj =
√
‖Tj ϕx‖p,q. Then we have

lim
k

sup
n

∑
j

a
(n)
kj ‖Tjf − f ;Lp,q (a, b)‖ = 0.

Proof. Using Lemma 3.1. and considering (i) , (ii), (iii) and (10) we have

lim
k

sup
n

∑
j

a
(n)
kj ‖Tjf − f ;Lp,q (a, b)‖ = 0

for all continuous and bounded functions on the real axis.
3.3. Theorem. Let A : =

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with

nonnegative real entries for which (9) and (10) holds. Let {Tj} be a sequence of positive
linear operators from Lp,q (loc) into itself. Assume that

lim
k

sup
n

∑
j

a
(n)
kj ‖Tj (fi;x)− fi (x)‖p,q = 0
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where fi (y) = yi for i = 0, 1, 2. If

(i) lim
k

sup
n

∑
j

a
(n)
kj ‖Tj (f0;x)− f0 (x)‖p,q = 0

(ii) lim
k

sup
n

∑
j

a
(n)
kj wq (G, δ) = 0

(iii) lim
k

sup
n

∑
j

a
(n)
kj wq (G, δ) ‖Tj (f0;x)− f0 (x)‖p,q = 0

where G is given as in the proof of Teorem 2.5. Then we have

lim
k

sup
n

∑
j

a
(n)
kj

(
sup
x∈R

‖Tjf − f ;Lp (x− h, x+ h)‖
q∗ (x)

)
= 0

where q∗ is a weight function such that lim
|x|→∞

1+x2

q∗(x) = 0.

Proof. It is known from Theorem 2.5. that

un < q (x0) ‖f −G;Lp,q (−x0 − h, x0 + h)‖

(∑
j

a
(n)
kj ‖Tj‖p,q +

∑
j

a
(n)
kj

)
+ q (x0)

∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖+ εN

= Kε+ q (x0)
∑
j

a
(n)
kj ‖TjG−G;Lp,q (−x0, x0)‖

where K :=Mq (x0) +N and M := H + 1. Then by Lemma 3.1. and Theorem 2.5. we
get

u
(n)
k ≤ Kε+ q (x0)

∑
j

a
(n)
kj wq (G; δ) ‖Tj (f0;x)− f0 (x)‖p,q

+ 2q (x0)
∑
j

a
(n)
kj wq (G; δ)

+ q (x0)C
′
1

∑
j

a
(n)
kj ‖Tj (f0;x)− f0 (x)‖p,q

where C
′
1 := sup

−x0<x<x0
|G (x)| and the proof is completed.

References
[1] F. Altomare and M. Campiti, Korovkin Type Approximation Theory and Its Applications,

de Gruyter, Berlin, 1994.
[2] S. J. Bernau, Theorems of Korovkin type for Lp spaces, Pacific J. Math. 53 , 11-19, 1974.
[3] O. Duman and C. Orhan, Rates of A- statistical convergence of operators in the space of

locally integrable functions, Appl. Math. Letters, 21, 431-435, 2008.
[4] V. K. Dzyadik, On the approximation of functions by linear positive operators and singular

integrals, Mat. Sbornik 70 (112), 508-517, 1966( in Russian ).
[5] A. D. Gadjiev, On P. P. Korovkin type theorems, Math. Zametki 20, 1976.
[6] A. D. Gadjiev, R. O. Efendiyev and E. İbikli, On Korovkin’s type theorem in the space of

locally İntegrable functions, Czech. Math. J.,53 (128), 45-53, 2003.
[7] P. P. Korovkin, Linear Operators and The Theory of Approximation, India, Delhi, 1960.
[8] G. G. Lorentz, A contribution to the theory of divergent sequences. Acta Math. 80 (1948),

167-190.
[9] C. Orhan and İ. Sakaoğlu, Rate of convergence in Lp approximation. Periodica Mathematica

Hungarica, 68, 176-184, 2014.



694

[10] İ. Sakaoğlu and C. Orhan, Strong summation process in Lp spaces, Nonlinear Analysis, 86,
89-94, 2013.



Hacettepe Journal of Mathematics and Statistics
Volume 45 (3) (2016), 695 – 703

Bounds for the energy of graphs
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Abstract

The energy of a graph G, denoted by E(G), is the sum of the absolute
values of all eigenvalues of G . In this paper we present some lower
and upper bounds for E(G) in terms of number of vertices, number
of edges, and determinant of the adjacency matrix. Our lower bound
is better than the classical McClelland’s lower bound. In addition,
Nordhaus–Gaddum type results for E(G) are established.
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trix.
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1. Introduction
Let G = (V,E) be a simple graph with vertex set V (G) = {v1, v2, . . . , vn} and edge

set E(G), |E(G)| = m. Let di be the degree of the vertex vi for i = 1, 2, . . . , n. The
maximum and minimum vertex degrees are denoted by ∆ and δ, respectively. If the
vertices vi and vj are adjacent, we denote that by vivj ∈ E(G). The adjacency matrix
A = A(G) of G is defined by its entries as aij = 1 if vivj ∈ E(G) and 0 otherwise. Let
λ1 ≥ λ2 ≥ · · · ≥ λn denote the eigenvalues of A(G) . λ1 is called the spectral radius of
the graph G . Some well known properties of graph eigenvalues are:

n∑
i=1

λi = 0 ,

n∑
i=1

λi
2 = 2m and detA =

n∏
i=1

λi .
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A graph G is said to be singular if at least one of its eigenvalues is equal to zero. For
singular graphs, evidently, detA = 0. A graph is nonsingular if all its eigenvalues are
different from zero. Then, detA 6= 0.

The energy of the graph G is defined as

(1.1) E(G) =

n∑
i=1

|λi|

where λi, i = 1, 2, . . . , n, are the eigenvalues of graph G.

This spectrum-based graph invariant has been much studied in both chemical and
mathematical literature. For details and an exhaustive list of references see the mono-
graph [14]. What nowadays is referred to as graph energy, defined via Eq. (1.1), is
closely related to the total π-electron energy calculated within the Hückel molecular
orbital approximation; for details see in [8, 11, 18].

The paper is organized as follows. In Section 2, we give a list of some previously known
results. In Section 3, we present a lower bound on the energy E(G). In Section 4, we
obtain an upper bound on E(G). In Section 5, Nordhaus–Gaddum type results for E(G)
are established.

2. Preliminaries
In this section, we shall list some previously known results that will be needed in the

next two sections.

2.1. Lemma. (Cauchy interlace theorem) [3, 17] Let B be a p×p symmetric matrix and
let Bk be its leading k× k submatrix; that is, Bk is a matrix obtained from B by deleting
its last p− k rows and columns. Then for i = 1, 2, . . . , k,

(2.1) ρp−i+1(B) ≤ ρk−i+1(Bk) ≤ ρk−i+1(B)

where ρi(B) is the i-th largest eigenvalue of B.

2.2. Lemma. [13] Let x1, x2, . . . , xN be non-negative numbers, and let

α =
1

N

N∑
i=1

xi and γ =

(
N∏
i=1

xi

)1/N

be their arithmetic and geometric means. Then
1

N(N − 1)

∑
i<j

(√
xi −

√
xj
)2
≤ α− γ ≤ 1

N

∑
i<j

(√
xi −

√
xj
)2

.

Moreover, equality holds if and only if x1 = x2 = · · · = xN .

2.3. Lemma. [6] Let a1, a2, . . . , an and b1, b2, . . . , bn be non-negative real numbers. If
p > 1, then (

n∑
i=1

(ai + bi)
p

)1/p

≤

(
n∑
i=1

api

)1/p

+

(
n∑
i=1

bpi

)1/p

.

Moreover, the above equality holds if and only if the rows {ai} and {bi} are proportional.
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2.4. Lemma. [1] For a graph G,

−

√
2m(r − 1)

n(n− r + 1)
≤ λr ≤

√
2m(n− r)

nr
, 1 ≤ r ≤ n

2.5. Lemma. [2, 3] Let G be a connected graph of order n. Then

λ1 ≥
2m

n
with equality if and only if G is a regular graph.

3. Lower bound on graph energy
In this section we give a lower bound on energy E(G) in terms of n, m and the

determinant of the adjacency matrix.
First we mention some popular lower bounds on graph energy.
In the monograph [14] the following simple lower bound in terms of m is mentioned:

(3.1) E(G) ≥ 2
√
m

with equality holding if and only if G consists of a complete bipartite graph Ka, b such
that a · b = m and arbitrarily many isolated vertices.

McClelland [18] obtained the following lower bound in terms of n, m and the deter-
minant of the adjacency matrix:

(3.2) E(G) ≥
√

2m+ n(n− 1)| det A|2/n .

Recently, Das et al. [5] have given the following lower bound, valid for non-singular
graphs:

(3.3) E(G) ≥ 2m

n
+ n− 1 + ln

(
n | detA|

2m

)
.

We now give an additional such lower bound, applicable for any graphs:

3.1. Theorem. Let G be a simple graph of order n > 2 with m edges. Then

(3.4) E(G) ≥

√√√√2m+ n(n− 1)| detA|2/n +
4

(n+ 1)(n− 2)

[√
2m

n
−
(

2m

n

)1/4
]2

where equality holds if and only if G ∼= n
2
K2 (n is even) or G ∼= Kn .

Proof. When G ∼= Kn , we have m = 0, detA = 0 and E(G) = 0. Hence the equality
holds in (3.4). When G ∼= n

2
K2 (n is even), we have 2m = n, detA = (−1)n/2 and

E(G) = n. Hence the equality holds in (3.4). When G ∼= pK2∪(n−2p)K1 (
⌈
n
2

⌉
> p ≥ 1),

we have 2m = 2p < n, detA = 0 and E(G) = 2p. Hence the inequality in (3.4) is strict.
Otherwise, G has at least one connected component with m1 ≥ 2 (m1 is the number of
edges in the connected component).

From Lemma 2.2, we get

(3.5)
N∑
i=1

xi ≥ N

(
N∏
i=1

xi

)1/N

+
1

(N − 1)

∑
i<j

(√
xi −

√
xj
)2

.
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Putting N =
n(n− 1)

2
and

(x1, x2, . . . , xN ) =
(
|λ1||λ2|, |λ1||λ3|, . . . , |λ1||λn|, |λ2||λ3|,

. . . , |λ2||λn|, . . . , |λn−1||λn|
)

in (3.5), we get

∑
1≤i<j≤n

|λi||λj | ≥
n(n− 1)

2

(
n∏
i=1

|λi|

)2/n

+
2

(n2 − n− 2)

∑
i<j≤k<`

(√
|λi||λj | −

√
|λk||λ`|

)2
that is,

2
∑

1≤i<j≤n

|λi||λj | ≥ n(n− 1) |detA|2/n

+
4

(n+ 1)(n− 2)

∑
i<j≤k<`

(√
|λi||λj | −

√
|λk||λ`|

)2
.(3.6)

By Lemma 2.4,

λn/2 ≤
√

2m

n
and λ(n+1)/2 ≤

√
2m(n− 1)

n(n+ 1)
<

√
2m

n

for even and odd n, respectively.
From Lemma 2.5 and also from the above, we get for n ≥ 3,

(3.7) λ1 ≥
2m

n
and λdn

2
e ≤

√
2m

n
.

Since m ≥ 1, by Lemma 2.1,

λn ≤ λ2(A2) = −1 .

From the above, we have that |λn| ≥ 1. Since n ≥ 3 and m1 ≥ 2, we further have∑
i<j≤k<`

(√
|λi||λj | −

√
|λk||λ`|

)2
≥
(√
|λ1||λn| −

√
|λdn

2
e||λn|

)2
+

∑
i<j≤k<`

(i, j)6=(1, n),

(k, `) 6=(dn
2
e, n)

(√
|λi||λj | −

√
|λk||λ`|

)2
> |λn|

(√
|λ1| −

√
|λdn

2
e|
)2

≥

[√
2m

n
−
(

2m

n

)1/4
]2
.

Combining the above result with (3.6), we get

2
∑

1≤i<j≤n

|λi||λj | > n(n− 1) |detA|2/n +
4

(n+ 1)(n− 2)

[√
2m

n
−
(

2m

n

)1/4
]2

.
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Adding to both sides
n∑
i=1

λ2
i (= 2m), we get

E(G)2 > 2m+ n(n− 1) |detA|2/n +
4

(n+ 1)(n− 2)

[√
2m

n
−
(

2m

n

)1/4
]2

which straightforwardly implies (3.4). �

Inequality (3.4), as well as (4.1), was mentioned in [9], but without details and without
the characterization of the equality cases.

3.2. Remark. Our lower bound (3.4) is better than the lower bound (3.2).

3.3. Remark. In [5], it has been mentioned that sometimes the lower bound in (3.3) is
better that the lower bounds in (3.1) and (3.2), but the lower bound in (3.3) is applicable
for non-singular graphs.

4. Upper bound on graph energy
In this section we give an upper bound on energy E(G) in terms of n, m, and detA.

Other upper bounds on graph energy are discussed in the book [14] and the recent papers
[4, 9, 19].

4.1. Theorem. Let G be a connected non-singular graph of order n with m edges. Then

(4.1) E(G) ≤ 2m− 2m

n

(
2m

n
− 1

)
− ln

(
n| detA|

2m

)
where detA ( 6= 0) is the determinant of the adjacency matrix. Equality holds in (4.1) if
and only if G ∼= Kn .

Proof. Since G is non-singular, we have |λi| > 0, i = 1, 2, . . . , n. Thus

| detA| =
n∏
i=1

|λi| > 0 .

Moreover, since G has no isolated vertices,

2m =
n∑
i=1

di ≥ n i.e.,
2m

n
≥ 1 .

Consider now the function

f(x) = x2 − x− lnx, x > 0

for which

f ′(x) = 2x− 1− 1

x
.

Thus f(x) is an increasing function on x ≥ 1 and a decreasing function on 0 < x ≤ 1 .
Thus, f(x) ≥ f(1) = 0 implying x ≤ x2 − lnx for x > 0, with equality holding if and
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only if x = 1. Using this result, we get

E(G) = λ1 +

n∑
i=2

|λi|

≤ λ1 +

n∑
i=2

(
λ2
i − ln |λi|

)
(4.2)

= λ1 + 2m− λ2
1 − ln

n∏
i=1

|λi|+ lnλ1

= 2m+ λ1 − λ2
1 − ln | detA|+ lnλ1 .(4.3)

From Lemma 2.5 we know that λ1 ≥ 2m/n. Since

g(x) = 2m+ x− x2 − ln |detA|+ lnx

is an increasing function on 0 < x ≤ 1 and a decreasing function on x ≥ 1, and since
x ≥ 2m

n
≥ 1, we have

g(x) ≤ g
(

2m

n

)
= 2m+

2m

n
−
(

2m

n

)2

− ln |detA|+ ln

(
2m

n

)
.

Combining this with (4.3), we arrive at (4.1). By this, the first part of the proof is done.
Suppose now that the equality holds in (4.1). Then all the inequalities in the above

consideration must be equalities. From equality in (4.2), we get

(4.4) |λ2| = |λ3| = · · · = |λn| = 1 .

Since G is connected, condition (4.4) is satisfied if and only if G ∼= Kn [3].

Conversely, one can see easily that the equality holds in (4.1) for Kn . �

Concluding this section, it should be mentioned that similar techniques (based on
the inequalities stated in Section 2) have been used in estimating other spectrum–based
graph indices, especially the Estrada index EE(G) [7, 12, 15, 16, 21, 22]. Recall that this
index is defined as

EE(G) =

n∑
i=1

eλi

and that details of its theory can be found in the survey [10].

5. Nordhaus–Gaddum–type results for graph energy
Motivated by the seminal work of Noradhaus and Gaddum [20], we report here anal-

ogous results for graph energy. As usual, G denotes the complement of the graph G.

5.1. Theorem. Let G and G be both connected non-singular graphs. If G has n vertices
and m edges, then

3(n− 1) + ln

(
n2 | det (AA)|

2m(n(n− 1)− 2m)

)
≤ E(G) + E(G) ≤ 2(n− 1)

+
4m(n(n− 1)− 2m)

n2
− ln

(
n2 | det (AA)|

2m(n(n− 1)− 2m)

)
(5.1)
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where detA (6= 0) and detA ( 6= 0) are the determinants of the adjacency matrices of G
and G, respectively.

Proof. By (3.3),

E(G) + E(G) ≥ 2m+ 2m

n
+ 2(n− 1) + ln

(
n | detA|

2m

)
+ ln

(
n |detA|

2m

)

where m and A are the number of edges and the adjacency matrix of G.
Since 2m+2m = n(n−1) and detAA = detA detA, the lower bound in (5.1) follows.
By (4.1),

E(G) + E(G) ≤ 2m+ 2m+
2m+ 2m

n
− 4m2 + 4m2

n2

− ln

(
n| detA|

2m

)
− ln

(
n |detA|

2m

)
.

This straightforwardly leads to the upper bound in (5.1). �

5.2. Theorem. Let G be a graph of order n with m edges. Then

E(G) + E(G) ≤ n+ ∆− δ − 1

+

[
(n− 1)

(
n− 1 +

4m(n(n− 1)− 2m)

n2

+
2

n2

√
2m(2m+ n)(n2 − 2m)(n2 − 2m− n)

)]1/2
(5.2)

where ∆ and δ are the maximum degree and minimum degree of G, respectively.

Proof. By Lemma 2.3,

(
n∑
i=2

(|λi|+ |λi|)2
)1/2

≤

(
n∑
i=2

λ2
i

)1/2

+

(
n∑
i=2

λ
2
i

)1/2

where λi and λi are eigenvalues of G and G, respectively. Since

n∑
i=1

λ2
i = 2m and

n∑
i=1

λ
2
1 = 2m
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we get

n∑
i=2

(|λi|+ |λi|)2 ≤
n∑
i=2

λ2
i +

n∑
i=2

λ
2
i + 2

√√√√ n∑
i=2

λ2
i

n∑
i=2

λ
2
i

= 2m− λ2
1 + 2m− λ2

1 + 2

√
(2m− λ2

1) (2m− λ2
1)

≤ n(n− 1)− 4m2 + 4m2

n2
+ 2

√
4mm

n4
(n2 − 2m) (2m+ n)

= n− 1 +
4m(n(n− 1)− 2m)

n2

+
2

n2

√
2m(n2 − 2m− n)(n2 − 2m)(2m+ n) .(5.3)

Since λ1 ≤ ∆, using the Cauchy–Schwarz inequality, we obtain

E(G) + E(G) = |λ1|+ |λ1|+
n∑
i=2

(|λi|+ |λi|)

≤ ∆ + n− δ − 1 +

√√√√(n− 1)

n∑
i=2

(|λi|+ |λi|)2 .

Together with (5.3) this yields (5.2). �

6. Concluding remarks
Studies of the structure–dependence of the total π-electron energy has a long history.

Beginning with McClelland’s seminal work [18] in the early 1970s, most of the researches
along these lines were done by means of estimates (upper and lower bounds); for details
see the surveys [8, 9]. Eventually, the concept of total π-electron energy was extended
and redefined to the mathematically more general and more convenient concept of graph
energy, Eq. (1.1), see [14].

In the present work we offer a few more estimates for graph energy, in terms of
parameters that have direct and straightforward structural interpretation. By this, we
deem to have somewhat improved the understanding of how graph energy (and thus total
π-electron energy) are influenced by the respective structural features of the underlying
graph.
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Abstract
Let G be a finite simple group and GK(G) be the prime graph of G. The
connected component of GK(G) whose vertex set contains 2 is denoted
by π1(G). In this paper, our purpose is to classify the finite simple
groups G such that π1(G) is regular. We prove that π1(G) is regular if
and only if all the connected components of GK(G) are cliques.
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1. Introduction
For a positive integer n, let π(n) denote the set of all prime divisors of n. Given a

finite group G, we set π(G) = π(|G|). The prime graph (or Gruenberg-Kegel graph )
GK(G) of G is a simple graph which is defined as follows. The vertex set of GK(G) is the
set π(G) and two distinct vertices p and q are adjacent (we write (p, q) ∈ GK(G)) if G
contains an element of order pq. If 2 ∈ π(G), then the connected component of GK(G)
whose vertex set contains 2 is denoted by π1(G).

The concept of prime graph arose during the investigation of certain cohomological
questions associated with integral representations of finite groups. And after that, prime
graphs have received some attention in the theory of finite groups. For instance, it has
been proved that some of finite simple groups can be characterized by their prime graphs
(see [2, 3, 5, 17]). Moreover, some graph properties of this graph have been studied. It
has been showed that for every finite group G, the number of connected components of
GK(G) is at most 6 (see [6, 16]) and the diameter of GK(G) is at most 5 (see [8]). Also, in
[9] the groups G such that GK(G) is a tree, have been investigated. Moreover, according
to [12, 16], we know that if ∆ is a connected component of GK(G) whose vertex set does
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not contain 2, then ∆ is a clique. Note that a clique in a graph is a subset of its vertices
such that every two vertices in the subset are connected by an edge. Motivated by this
result, Lucido and Moghaddamfar in [10], described the finite nonabelian simple groups
G such that π1(G) is a clique. Finally, in [4, 11, 18], the finite simple groups G such that
π1(G) is m-regular, where m ∈ {0, 1, 2}, have been obtained. For a nonnegative integer
m, a graph is called m-regular, when the degree of each vertex is m. Also, a graph is
regular if the degrees of all vertices are the same. The aim of this paper is to extend
them-regularity results, for an arbitrarym. In fact, we prove the following main theorem:

Main theorem. Let G be a finite nonabelian simple group and let m be a nonnegative
integer. If π1(G) is m-regular, then π1(G) is a clique and one of the following statements
holds:

• G = A5, A6, A2(4), A1(2k), where k > 1, 2B2(22k+1), where k ≥ 1 and m = 0;
• G = M11,M22, A7 and m = 1;
• G = J1, J2, J3, HiS,A9,

3D4(2), 2A3(3), 2A5(2), C3(2), D4(2) and m = 2;
• G = A12, A13 and m = 3;
• G = A1(q), where q ≡ 1 (mod 4) and m = |R1(q)| − 1;
• G = A1(q), where q ≡ 3 (mod 4), q > 3, and m = |R2(q)| − 1;
• G = A2(q), where (q − 1)3 6= 3, q + 1 = 2k, and m = |R1(q)|+ 1;
• G = 2A2(q), where (q + 1)3 6= 3, q − 1 = 2k, C2(q), where q > 2 or G2(3k),

where k ≥ 1 and m = |R1(q)|+ |R2(q)|.
It is worth remarking that by Rk(q) we mean the set of all primitive prime divisors of

qk − 1.
As an immediate consequence of the main theorem, we have the following corollary:

Corollary. Let G be a finite nonabelian simple group. Then π1(G) is regular if and
only if all the connected components of the prime graph GK(G) are cliques.

2. Notation and preliminary results
Throughout this paper, we use the following notation and definitions: By gcd(k, l) we

denote the greatest common divisor of k and l. Let G be a finite group. For p ∈ π(G),
put deg(p) := |{q ∈ π(G)| (p, q) ∈ GK(G)}|.
The notation for groups of Lie type is according to [1] and sometimes for abbreviation,
we write Aεn(q) and Dε

n(q), where ε ∈ {+,−}, and A+
n (q) = An(q), A−n (q) = 2An(q),

D+
n (q) = Dn(q), D−n (q) = 2Dn(q). Also, for an integer n, by η(n), ν(n) and νε(n) we

denote the following functions:

η(n) =

{
n if n is odd;
n/2 otherwise.

ν(n) =


n if n ≡ 0 (mod 4);
n/2 if n ≡ 2 (mod 4);
2n if n ≡ 1 (mod 2).

νε(n) =

{
n if ε = +;
ν(n) if ε = −.

All further unexplained group theory notation is standard and can be found in [1].
The following lemma describes the finite nonabelian simple groups G such that π1(G)

is m-regular, where m ∈ {0, 1, 2}:

2.1. Lemma. [4, 11, 18] Let G be a finite nonabelian simple group.
1. If π1(G) is 0-regular, then G = A5, A6;A2(4), A1(q), where q is a Fermat prime,

a Mersenne prime or a prime power of 2; 2B2(q), where q is an odd prime power
of 2.
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2. If π1(G) is 1-regular, thenG = A7;M11,M22;A2(3), 2A2(3), 2A3(2), G2(3); A1(q),
where q is a prime power such that 3 < q ≡ ε1 (mod 4) and |π(q − ε1)| = 2, for
ε ∈ {+,−}.

3. If π1(G) is 2-regular, thenG = A9; J1, J2, J3, HiS;C3(2), 2A2(9), 2A3(3), 3D4(2),
G2(9), D4(2); C2(q), where q = 4, 5, 7, 8, 9, 17; A1(q), where q is a prime power
such that 3 < q ≡ ε1 (mod 4) and |π(q − ε1)| = 3, for ε ∈ {+,−}.

The finite nonabelian simple groups G such that all the connected components of
GK(G) are cliques, have been determined in [10]. Since this result plays a role in the
proof of the main theorem, in the following, we state its revised version from [14]:

2.2. Lemma. Let G be a finite nonabelian simple group. Then all the connected com-
ponents of GK(G) are cliques if and only if G is one of the following:

1. Sporadic groups M11,M22, J1, J2, J3, HiS;
2. Alternating groups An, where n = 5, 6, 7, 9, 12, 13;
3. Groups of Lie type A1(q), where q > 3; A2(4); A2(q), where (q − 1)3 6= 3,

q+ 1 = 2k; 2A3(3); 2A5(2); 2A2(q), where (q+ 1)3 6= 3, q−1 = 2k; C3(2), C2(q),
where q > 2; D4(2); 3D4(2); 2B2(q), where q = 22k+1; G2(q), where q = 3k.

2.3. Remark. According to Table 1 in [7], we have π1(2A5(2)) = {2, 3, 5} and
π1(2A2(17)) = {2, 3, 17}. Moreover, by Lemma 2.2, the prime graph components of the
groups 2A5(2) and 2A2(17) are cliques. Thus these mentioned groups should be added
to the list of groups in Lemma 2.1(3).

3. Proof of the main theorem
If G is a finite nonabelian simple group, then by the classification of the finite simple

groups, it follows that G is a sporadic simple group, an alternating group or a simple
group of Lie type. We will consider each case separately.

According to [1], we can easily conclude the next statement for the sporadic simple
groups:

3.1. Lemma. Let G be a sporadic simple group. If π1(G) is m-regular, then one of the
following cases holds:

(1) G = M11,M22 and m = 1;
(2) G = J1, J2, J3, HiS and m = 2.

For considering the alternating groups, we need the following lemma:

3.2. Lemma. [7, Lemma 1] If n ≥ 19 is a natural number, then there are at least three
prime numbers qi such that (n+ 1)/2 < qi < n.

3.3. Lemma. Let G = An be an alternating group of degree n. If π1(G) is m-regular,
then π1(G) is a clique and one of the following cases holds:

(1) G = A5, A6 and m = 0;
(2) G = A7 and m = 1;
(3) G = A9 and m = 2;
(4) G = A12, A13 and m = 3.

Proof. According to Lemma 2.1, we can assume that m ≥ 3. Note that for odd primes
r, s ∈ π(An), (r, s) 6∈ GK(An) if and only if r + s > n. Also, (r, 2) 6∈ GK(An) if and
only if r + 4 > n (see [14]). So, it easy to see that if (s, r) ∈ GK(An) and (p, s) 6= (2, 3),
where 2 ≤ p < s < r, then (p, r), (p, s) ∈ GK(An). Moreover, if (p, r) ∈ GK(An), then
(p, s) ∈ GK(An).
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If we denote the i-th prime number, by pi, then since deg(2) = m, according to π(G),
we see that {2, p2, p3, · · · , pm, pm+1} ⊆ π1(G) and hence, pm+1 ≤ n. We know that
pm+2 ≤ n, otherwise,

π(G) = {2, p2, p3, · · · , pm, pm+1}
which implies that GK(G) is complete and this is impossible according to Lemma 2.2.
Since m ≥ 3, we have pm+2 ≥ 11. Also, since π1(G) is m-regular, we conclude that
(3, pm+2) 6∈ GK(G), otherwise, deg(3) = m + 1 which is a contradiction. Therefore,
n ≤ 2 + pm+2. On the other hand, since pm+1 ∈ π1(G) and deg(pm+1) = m, we deduce
that (pm, pm+1) ∈ GK(G) and hence, pm + pm+1 ≤ n. Thus pm + pm+1 ≤ n ≤ 2 + pm+2

which implies that

pm+2 − (pm + pm+1) ≥ −2(3.1)

Now, if pm+2 ≥ 19, then by Lemma 3.2 there exist at least three distinct primes qi such
that (pm+2 − 1)/2 < qi < pm+2. Thus we conclude that (pm+2 − 1)/2 < pm−1 < pm <
pm+1 < pm+2 and hence,

1 + (pm+2 − 1)/2 ≤ pm−1,

2 + (pm+2 − 1)/2 ≤ pm,(3.2)

3 + (pm+2 − 1)/2 ≤ pm+1.(3.3)

Summing 3.2 and 3.3, implies that 5 + 2 × (pm+2 − 1)/2 ≤ pm + pm+1 and hence,
pm+2 − (pm + pm+1) ≤ −4, which contradicts 3.1. Thus pm+2 ∈ {11, 13, 17}. If
pm+2 = 11, 13 or 17, then m = 3, 4 or 5 respectively. But according to 3.1, the
last two cases cannot happen. So, m = 3 and by 3.1, we see that n ∈ {12, 13}, as desired.
2

The rest of the paper will be devoted to the proof of the main theorem for the simple
groups of Lie type. We will consider the classical and the exceptional groups of Lie type
separately. For the classical simple groups, our method is based on the results of [14],
concerning the arithmetic criterion of adjacency in their prime graphs.

Let s be a prime and let k be a natural number. The s-part of k which is denoted
by ks is equal to st if st | k and st+1 - k. If q is a natural number, r is an odd prime
and gcd(r, q) = 1, then by e(r, q) we denote the smallest natural number k such that
qk ≡ 1 (mod r). If q is odd, we put e(2, q) = 1 whenever q ≡ 1 (mod 4), and e(2, q) = 2
otherwise. The following lemma is considered as a corollary to Zsigmondy’s theorem:

3.4. Lemma. [14, Lemma 1.4] Let q be a natural number greater than 1. For every
natural number k, there exists a prime r with e(r, q) = k, but for the cases q = 2 and
k = 1, q = 3 and k = 1, and q = 2 and k = 6.

A prime r with e(r, q) = k is called a primitive prime divisor of qk − 1. It is obvious
that qk − 1 can have more than one primitive prime divisor. We denote by Rk(q) the set
of all primitive prime divisors of qk − 1 and by rk(q) any element of Rk(q). When no
confusion can arise, we will write rk instead of rk(q) and Rk instead of Rk(q).

3.5. Lemma. [14, Propositions 2.1-2.2],[15, Propositions 2.4-2.5] Let G be a finite
simple group of Lie type over a field of order q = pα, for some prime p. Let r and s be
odd primes and r, s ∈ π(G) \ {p}. Put k = e(r, q) and l = e(s, q).

(1) If G = Aεn−1(q) and 2 ≤ νε(k) ≤ νε(l), then r and s are nonadjacent if and only
if νε(k) + νε(l) > n and νε(k) does not divide νε(l).

(2) If G = Bn(q) or Cn(q) and 1 ≤ η(k) ≤ η(l), then r and s are nonadjacent if and
only if η(k) + η(l) > n and l/k is not an odd natural number.
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(3) If G = Dε
n(q) and 1 ≤ η(k) ≤ η(l), then r and s are nonadjacent if and only

if 2η(k) + 2η(l) > 2n − (1 − ε(−1)k+l) and l/k is not an odd natural number.
Moreover, if ε = +, then the chain of equalities n = l = 2η(l) = 2η(k) = 2k, is
not true as well.

3.6. Lemma. [14, Proposition 3.1] Let G be a finite simple classical group of Lie type
over a field of characteristic p, and let r ∈ π(G) and r 6= p. Then r and p are nonadjacent
if and only if one of the following holds:

(1) G = Aεn−1(q), r is odd, and νε(e(r, q)) > n− 2;
(2) G = Cn(q) or G = Bn(q), η(e(r, q)) > n− 1;
(3) G = Dε

n(q), η(e(r, q)) > n− 2;
(4) G = A1(q), r = 2;
(5) G = Aε2(q), r = 3 and (q − ε1)3 = 3.

3.7. Lemma. [14, Proposition 4.1-4.2] Let G = Aεn−1(q) be a finite simple group of Lie
type, r be a prime divisor of q−ε1, and s be an odd prime distinct from the characteristic.
Put k = e(s, q). Then s and r are nonadjacent if and only if one of the following holds:

(1) νε(k) = n, nr ≤ (q − ε1)r, and if nr = (q − ε1)r, then 2 < (q − ε1)r;
(2) νε(k) = n− 1 and (q − ε1)r ≤ nr.

3.8. Lemma. [14, Propositions 4.3-4.4] Let G be a finite simple group of Lie type over
a field of order q = pα, for some prime p. Let r be an odd prime divisor of |G|, r 6= p,
and k = e(r, q).

(1) If G = Bn(q) or Cn(q), then r and 2 are nonadjacent if and only if η(k) = n and
one of the following holds:
(a) n is odd and k = (3− e(2, q))n;
(b) n is even and k = 2n.

(2) If G = Dε
n(q), then r and 2 are nonadjacent if and only if one of the following

holds:
(a) η(k) = n and gcd(4, qn − ε1) = (qn − ε1)2;
(b) η(k) = k = n− 1, n is even, ε = +, and e(2, q) = 2;
(c) η(k) = k/2 = n− 1, ε = +, and e(2, q) = 1;
(d) η(k) = k/2 = n− 1, n is odd, ε = −, and e(2, q) = 2.

3.9. Remark. Let G be a finite simple group over a field of order q, where q = pα for
an odd prime p. According to the above lemmas, it is evident that 2 and p are adjacent
in all classical simple groups except A1(q). Moreover, for a fixed k, every two elements
in Rk(q) are adjacent in GK(G).

From now on, we assume that q = pα, where p is a prime number.

3.10. Lemma. Let G be a finite simple classical group of Lie type. If π1(G) ism-regular,
then π1(G) is a clique and one of the following cases holds:

(1) G = C2(q), where q > 2, and m = |R1(q)|+ |R2(q)|.
(2) G = A1(q), where q > 3. In this case, if q ≡ 1 (mod 4), then m = |R1(q)| − 1;

and if q ≡ 3 (mod 4), then m = |R2(q)| − 1; also if q is even, then m = 1.
(3) G = A2(q), where (q − 1)3 6= 3, q + 1 = 2k, and m = 1 + |R1(q)|;
(4) G = A2(4), and m = 0;
(5) G = 2A3(3), 2A5(2), C3(2) or D4(2), and m = 2;
(6) G = 2A2(q), where (q + 1)3 6= 3, q − 1 = 2k, and m = |R1(q)|+ |R2(q)|;

Proof. According to the types of the classical groups, the proof will be divided into five
parts.



710

Part A. G = Bn(q) or G = Cn(q), where n ≥ 2 and (n, q) 6= (2, 2):
If (n, q) = (3, 2), then Bn(q) ∼= Cn(q) and according to Lemma 2.1(3), the result is
obvious. Also, if n = 2, then q > 2 and Bn(q) ∼= Cn(q) and hence, Lemma 2.2 implies
that π1(G) is a clique. Thus according to Remark 3.9, it is enough to calculate deg(p).
Since π(G) = {p} ∪ R1(q) ∪ R2(q) ∪ R4(q), Lemma 3.6(2) implies that m = |R1| + |R2|
as desired. So we may assume that n ≥ 3 and (n, q) 6= (3, 2).
Case 1. Let n be an odd number.
• If 2 6∈ R2(q), then q ≡ 1 (mod 4) or p = 2. Since n ≥ 3, we can see that R2n ∩R2 =

∅. Also, Lemma 3.4 and the fact that (n, q) 6= (3, 2) imply that R2n(q) is nonempty.
Moreover, since n ≥ 3 is odd, according to Lemmas 3.8(1), 3.6(2) and 3.5(2), we have
(2, r2), (r2, r2n) ∈ GK(G). Thus {r2n, r2} ⊆ π1(G). Now, we claim that if (r, r2n) ∈
GK(G), then (r, r2) ∈ GK(G):

Since n ≥ 3 is odd, by Lemmas 3.8(1) and 3.6(2), we see that (r2, 2), (r2, p) ∈ GK(G).
Thus, we may assume that r ∈ Rl(q) \ {2}, where l ∈ N. Considering Lemma 3.5(2)
implies that 2n/l is an odd number, so is l/2. Lemma 3.5(2) now yields r and r2 are
adjacent in GK(G).

Moreover, since n ≥ 3 and 2 6∈ R2(q), considering Lemma 3.5(2) implies that
(r2, r2(n−1)) ∈ GK(G) but (r2n, r2(n−1)) 6∈ GK(G). Thus, deg(r2) > deg(r2n) and hence,
in this case π1(G) cannot be m-regular.
• If 2 ∈ R2(q), then q ≡ −1 (mod 4) and hence, q is odd. In this case, according to

Lemma 3.8(1), we have (2, r) ∈ GK(G) if and only if r 6∈ Rn(q). Also, Lemma 3.5(2)
implies that (rn, r2n) 6∈ GK(G). Thus if the vertex r is adjacent to r2n, then r and 2
are adjacent as well. On the other hand, according to Lemma 3.5(2), we have r2n and
r2(n−1) are nonadjacent and hence deg(2) > deg(r2n), which implies that π1(G) cannot
be m-regular.
Case 2. If n is even, then n ≥ 4. In this case, by Lemmas 3.6(2) and 3.8(1), we conclude
that r and 2 are adjacent if and only if r 6∈ R2n. Thus if r2n 6∈ π1(G), then π1(G) is a
clique, which is impossible according to Lemma 2.2. Thus r2n ∈ π1(G) and GK(G) is
connected. In this case, we have n = 2k ×m, where m ≥ 1 is odd and k ≥ 1. If m = 1,
then Lemmas 3.6(2), 3.5(2) and 3.8(1) imply that R2n(q) is an odd connected component
of GK(G), which is a contradiction. Therefore, m ≥ 3 and n 6= 2k. Now we claim that,
if (r, r2n) ∈ GK(G), then (r, r2k+1) ∈ GK(G):

Since n is even, by Lemmas 3.6(2) and 3.8(1), we conclude that

(2, r2n), (p, r2n) 6∈ GK(G).

If (r, r2n) ∈ GK(G), then r ∈ Rl(q) \ {2}, where l ∈ N and according to Lemma 3.5(2),
l = 2k+1 × j, where j | m. Therefore, we can easily infer our assertion by using Lemma
3.5(2).

On the other hand, since n 6= 2k, Lemma 3.8(1) implies that (2, r2k+1) ∈ GK(G).
Thus deg(r2n) < deg(r2k+1) and π1(G) cannot be m-regular.

Consequently, if G = Bn(q) or Cn(q), according to Cases 1 and 2, π1(G) is m-regular
if and only if (n, q) = (3, 2) or n = 2 and q > 2. Moreover, Lemma 2.2 implies that π1(G)
is a clique.
Part B. G = Dn(q), where n ≥ 4:
Case 1. If 2 ∈ R2(q), then q ≡ −1 (mod 4) and hence, p 6= 2. In this case, if n is even,
then according to Lemma 3.6(3) and |G|, we conclude that (r, p) ∈ GK(G) if and only if
r 6∈ Rn−1 ∪R2(n−1). Also, considering Lemma 3.8(2) and |G| imply that (r, 2) ∈ GK(G)
if and only if r 6∈ Rn−1. Thus R2(n−1) ⊆ π1(G) and deg(2) > deg(p). If n is odd, then
by the same procedure, we can conclude that (r, 2) ∈ GK(G) if and only if r 6∈ Rn and
(r, p) ∈ GK(G) if and only if r 6∈ Rn ∪R2(n−1). Thus deg(2) > deg(p) and π1(G) cannot
be m-regular.
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Case 2. If 2 6∈ R2(q), then p = 2 or q ≡ 1 (mod 4). If (n, q) = (4, 2), then according to
Lemma 2.1(3), the result is obvious. Thus we may assume that (n, q) 6= (4, 2) and hence,
R2∩R2(n−1) = ∅. Lemma 3.4 now implies R2(n−1) is nonempty. Also, by Lemmas 3.6(3)
and 3.8(2), we have (p, r2), (2, r2) ∈ GK(G). Moreover, by Lemma 3.5(3), we can easily
see that if r is an odd number which is adjacent to r2(n−1), then r is adjacent to r2 as
well. On the other hand, if n ≥ 5, then (r2, r3) ∈ GK(G), but (r3, r2(n−1)) 6∈ GK(G).
Also, if n = 4, then (r2, r4) ∈ GK(G), but (r4, r2(n−1)) 6∈ GK(G). Therefore, deg(r2) >
deg(r2(n−1)) and π1(G) cannot be m-regular.
Consequently, if G = Dn(q), according to Cases 1 and 2, π1(G) is m-regular if and only
if (n, q) = (4, 2) and m = 2. Moreover, Lemma 2.2 implies that π1(G) is a clique.
Part C. G = 2Dn(q), where n ≥ 4:
Case 1. In this case, we assume that 2 6∈ R2(q) and hence, q ≡ 1 (mod 4) or p = 2.
• If n is odd, then according to Lemmas 3.8(2), 3.6(3) and 3.5(3), we see that

(p, r2), (2, r2), (r2, r2n) ∈ GK(G) and hence, {r2, r2n} ⊆ π1(G). Now, we claim that
if (r, r2n) ∈ GK(G), then (r, r2) ∈ GK(G):

Since (2, r2), (p, r2) ∈ GK(G), it is sufficient to consider the case r ∈ π1(G) \ {2, p}.
Thus if (r, r2n) ∈ GK(G), then there exists a natural number l, such that r ∈ Rl(q).
Applying Lemma 3.5(3) implies that 2n/l is an odd number, so is l/2. Thus by Lemma
3.5(3), we have (r, r2) ∈ GK(G).

Moreover, Lemma 3.5(3) implies that (r2, r4) ∈ GK(G), but (r2n, r4) 6∈ GK(G). Thus
deg(r2) > deg(r2n) and π1(G) cannot be m-regular.
• If n ≥ 4 is even and (n, q) 6= (4, 2), then r2(n−1) ∈ π(G) and it is enough to

replace r2n with r2(n−1) in the previous argument and conclude that r2(n−1) ∈ π1(G)

and deg(r2) > deg(r2(n−1)). If G = 2D4(2), then according to Lemma 3.6(3), we see that
2 is just adjacent to 3 and 5. Thus π1(G) should be 2-regular. But according to Lemma
3.5(3), 3 is adjacent to 2,5,7 and hence, π1(G) cannot be m-regular.
Case 2. If 2 ∈ R2(q), then q ≡ −1 (mod 4) and hence, q is odd and q ≡ ε0 (mod 8),
where ε0 ∈ {3, 7}.
• If n is even, then according to Lemma 3.8(2), we have (2, r) ∈ GK(G) if and

only if r ∈ π(G) \ R2n. Thus (R2(n−1) ∪ Rn−1) ⊆ π1(G). Also, Lemma 3.6(3) implies
that (r, p) ∈ GK(G) if and only if r ∈ π(G) \ (R2n ∪ R2(n−1) ∪ Rn−1). Consequently,
deg(2) > deg(p) and Remark 3.9 implies that π1(G) cannot be m-regular.
• If n is odd and q ≡ 7 (mod 8), then as in the even case we can see that (2, r) ∈ GK(G)

if and only if r ∈ π(G) \ R2(n−1). Also, (r, p) ∈ GK(G) if and only if r ∈ π(G) \ (R2n ∪
R2(n−1)). Thus similarly, we can conclude that π1(G) in not m-regular. Therefore, we
may assume that n is odd and q ≡ 3 (mod 8). Now, by Lemma 3.8(2), (2, r) ∈ GK(G) if
and only if r ∈ π(G) \ (R2n ∪R2(n−1)). Thus (r3, 2), (2, r2(n−2)) ∈ GK(G). Also, Lemma
3.5(3) implies that (r3, r2(n−1)), (r3, r2n), (r3, r2(n−2)) 6∈ GK(G). Thus {r3, r2(n−2)} ⊆
π1(G) and the same argument in the above discussion conclude that deg(2) > deg(r3).

Consequently, if G = 2Dn(q), according to Cases 1 and 2, π1(G) cannot be m-regular.
Part D. G = An−1(q), where n ≥ 2 and (n, q) 6= (2, 2), (2, 3):
Case 1. In this case, we consider n ∈ {2, 3}. If n = 2, then Lemma 2.2 implies that the
simple group G has complete prime graph components. Also, we can see that π(G) =
{p} ∪R1 ∪R2. So, we can easily conclude the result by Lemmas 3.6(1,4) and 3.7. Thus
it remains to consider the case n = 3. In this case, if p 6= 2, then π(G) = {p}∪Ri, where
1 ≤ i ≤ 3, and according to Remark 3.9 and Lemma 3.7, we infer that (r, 2) 6∈ GK(G)
if and only if r ∈ R3(q). Thus since 2 ∈ R1 ∪ R2 and (2, p) ∈ GK(G), we conclude that
deg(2) = |R1|+ |R2|. Lemma 3.6(1,5) now yields (r, p) ∈ GK(G) if and only if

r ∈ R1(q) ∪ {2}, where (q − 1)3 6= 3;(3.4)

r ∈ (R1(q) ∪ {2}) \ {3}, where (q − 1)3 = 3.(3.5)
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Now we find the possible cases which π1(A2(q)) is m-regular:
• If {2, 3} ∩ R1(q) = ∅, then 2 ∈ R2(q) and (q − 1)3 6= 3. Thus according to 3.4 we

have deg(p) = 1 + |R1| and since π1(G) is m-regular and deg(2) = |R1| + |R2|, we are
supposed to have |R2(q)| = 1. Therefore, q + 1 = 2k and by Lemma 2.2, the result is
obtained.
• If 2 ∈ R1 and 3 6∈ R1, then according to 3.4, deg(p) = |R1| and hence deg(2) > deg(p)

which implies that π1(G) is not m-regular.
• If 2 6∈ R1 and 3 ∈ R1, then since p 6= 2, we conclude that 2 ∈ R2. Also, by 3.4 and

3.5, we have deg(p) = 1 + |R1|, where (q−1)3 > 3 and deg(p) = |R1|, where (q−1)3 = 3.
Thus since π1(G) is m-regular, we infer that deg(2) = deg(p). Since R2 is nonempty, we
conclude that q + 1 = 2k. Therefore, the result is obvious by Lemma 2.2.
• If {2, 3} ⊆ R1. As in the previous case, we conclude that deg(p) = |R1| − 1, where

(q − 1)3 = 3 and deg(p) = |R1|, where (q − 1)3 > 3. Thus both cases imply that
deg(2) > deg(p) and hence, in this case π1(G) is not m-regular.
Now it remains to consider the case n = 3 and q = 2α ≥ 4:
• If R1 = {3}, then according to Lemma 3.6(1,5), we conclude that 2 is a vertex with

degree zero. On the other hand, since 3 | (2α−1), we conclude that α = 2k, where k ∈ N.
Thus 2α − 1 = (2k − 1)(2k + 1). But since R1 = {3}, we have 2k − 1 = 1 and hence,
G ∼= A2(4) and π1(G) is 0-regular.
• If R1 6= {3}, then there is r1 ∈ R1 \ {3}. Now, according to Lemmas 3.6(5) and 3.7,

we conclude that (r, r1) ∈ GK(G) if and only if r ∈ π(G)\R3. Thus deg(r1) = |R1|+|R2|.
Lemma 3.6(1,5) now yields deg(2) ≤ |R1| and hence, deg(2) < deg(r1) and in this case
π1(G) cannot be m-regular.
Case 2. Let n ≥ 4. If 2 ∈ R2(q), then q ≡ −1 (mod 4) and hence, p 6= 2. According to
Lemma 3.6(1), (p, r) ∈ GK(G) if and only if r ∈ π(G) \ (Rn ∪Rn−1). On the other hand,
since 4 | (q + 1), so (q − 1)2 = 2 and Lemma 3.7 implies that (2, r) ∈ GK(G) if and only
if either r ∈ π(G) \Rn or r ∈ π(G) \Rn−1. Thus deg(2) > deg(p) and in this case π1(G)
cannot be m-regular.
If 2 6∈ R2(q), then Lemmas 3.5(1), 3.6(1) and 3.7 imply that (r2, r4), (r2, 2) ∈ GK(G)
and hence, {r2, r4} ⊆ π1(G). Now, we claim that if (r, r4) ∈ GK(G), then r and r2 are
adjacent as well:

Since 2 6∈ R2(q) and n ≥ 4, according to Lemmas 3.6(1) and 3.7, we conclude that
(p, r2), (2, r2), (r1, r2) ∈ GK(G). Thus if (r, r4) ∈ GK(G), then it is enough to consider
the case r ∈ Rl(q), where l ≥ 2. Since (rl, r4) ∈ GK(G), by Lemma 3.5(1), we have
l + 4 ≤ n or 4 | l or l | 4. In each case, by using Lemma 3.5(1), we conclude that
(rl, r2) ∈ GK(G).

If n ≥ 5, then we can choose l ∈ {n − 2, n − 3} as an odd integer greater than 1.
Now by Lemma 3.5(1), we can easily check that (rl, r4) 6∈ GK(G), but (rl, r2) ∈ GK(G).
Therefore, deg(r2) > deg(r4). Now it remains to consider the case n = 4. In this case,
we have π(G) = {p}∪Ri, where 1 ≤ i ≤ 4, and since 2 6∈ R2, we have p = 2 or 4 | (q−1).
Lemmas 3.7, 3.6(1) and 3.5(1) now yields (r, r4) ∈ GK(A3(q)) if and only if r ∈ R4 ∪R2.
Also, (r, r2) ∈ GK(A3(q)) if and only if r ∈ π(A3(q)) \ R3. Thus deg(r2) > deg(r4) and
in this case π1(G) cannot be m-regular.

Consequently, according to Cases 1 and 2, we conclude that π1(An−1(q)) is m-regular
if and only if π1(An−1(q)) is a clique.
Part E. G = 2An−1(q), where n ≥ 3 and (n, q) 6= (3, 2):
Case 1. If n = 3, we consider the cases “q is even” and “q is odd”, separately:
• If q is even, then π(G) = {2} ∪R1 ∪R2 ∪R6. According to Lemma 3.6(1), we know

that 2 is nonadjacent to r1 and r6. If R2 6= {3}, then Lemmas 3.7 and 3.6(1,5) imply that
(r2, r) ∈ GK(G), where r2 ∈ R2\{3} and r ∈ R1∪R2∪{2}. Thus deg(2) ∈ {|R2|, |R2|−1}
and deg(r2) = |R1|+ |R2| which imply that deg(2) < deg(r2). But this is a contradiction
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to the fact that π1(G) is m-regular and hence, R2 = {3}. Now, since q 6= 2 is even we
deduce that (q + 1) = 3k and (q + 1)3 6= 3. Thus by Lemmas 3.7, 3.5(1) and 3.6(1,5) we
can see that (2, r) ∈ GK(G) if and only if r = 3 and also, (3, r) ∈ GK(G) if and only if
r ∈ {2} ∪ R1. Therefore, deg(2) = 1 < deg(3) = |R1| + 1 and in this case π1(G) cannot
be m-regular.
• If q is odd, then by Lemma 3.7 and Remark 3.9, we can easily see that deg(2) = |R1|+

|R2|. Since π1(G) is m-regular, Remark 3.9 implies that deg(p) = deg(2) = |R1|+ |R2|.
On the other hand, according to Lemma 3.6(1,5) and Remark 3.9, we conclude that
(r, p) ∈ GK(G) if and only if

r ∈ ({2} ∪R2) \ {3} and (q + 1)3 = 3(3.6)

or

r ∈ {2} ∪R2 and (q + 1)3 6= 3(3.7)

Thus if 3.6 holds, then deg(p) = |R2| or deg(p) = |R2| − 1, where 2 ∈ R1 or 2 ∈ R2

respectively. If 3.7 holds, then deg(p) = |R2| + 1 or deg(p) = |R2|, where 2 ∈ R1 or
2 ∈ R2 respectively.
Therefore, according to the above statements, we can easily conclude that (q + 1)3 6= 3,
q − 1 = 2k and m = |R1|+ |R2|. Moreover, Lemma 2.2 implies that π1(G) is a clique.
Case 2. If n ≥ 4, then we consider the following two subcases:
Subcase a. If R1(q) = ∅, then q ∈ {2, 3}. First we deal with the case q = 2. Since
2A3(2) ∼= C2(3) is 1-regular by Lemma 2.1(2), we can assume that n 6= 4. In this case,
according to Lemma 3.6(1), (r, 2) 6∈ GK(G) if and only if r ∈ Rl, where ν(l) ∈ {n, n−1}.
Since (n, q) 6= (4, 2), Lemma 3.7 implies that deg(2) < deg(3). Similarly, if n3 > 3, then
we can conclude that deg(2) < deg(3). Therefore, it remains to consider the case n3 = 3.
If n = 6, then by Lemmas 3.6(1), 3.7 and 3.5(1), we have π1(G) = {2, 3, 5} is 2-regular.
Thus we may assume that n ≥ 12 and in this case we know that R4(2)∪R8(2) = {5, 17} ⊆
π(G). According to Lemmas 3.6(1) and 3.7, we have (2, r4), (3, r4) ∈ GK(G). Now we
claim that if (r, r8) ∈ GK(G), then (r, r4) ∈ GK(G):

Since r4 is adjacent to 2 and 3 and R2(2) = {3}, it is enough to consider the case
r ∈ Rl(2), where ν(l) ≥ 2. Thus if (rl, r8) ∈ GK(G), then by Lemma 3.5(1), we can see
that ν(l) + 8 ≤ n, ν(l) | 8 or 8 | ν(l) which imply that ν(l) + 4 ≤ n, ν(l) ∈ {2, 4, 8} or
8 | ν(l), respectively and hence, (rl, r4) ∈ GK(G).

Set l be an integer, where ν(l) ∈ {n−5, n−4} and ν(l) is odd. Thus by Lemma 3.5(1),
we can conclude that (rl, r4) ∈ GK(G), but (rl, r8) 6∈ GK(G). Therefore, deg(r4(2)) >
deg(r8(2)). Thus if n ≥ 4, then π1(2An−1(2)) is m-regular if and only if (n,m) = (4, 1)
or (n,m) = (6, 2). Moreover, according to Lemma 2.2, in both cases π1(2An−1(2)) is a
clique.

If q = 3, then according to Lemma 3.6(1), we have (r, 3) 6∈ GK(G) if and only if
ν(e(r, 3)) ∈ {n − 1, n}. On the other hand, if n2 6= 4, then by Lemma 3.7 and as in
the above discussion, we can see that deg(2) = deg(r2(3)) > deg(3). Thus it is enough
to consider the case n2 = 4. Since according to Lemma 2.1(3), π1(2A3(3)) is 2-regular,
we may assume that n ≥ 8. Also, we know that Rn(3) ⊆ π(G). Now, we claim that if
(r, rn) ∈ GK(G), then (r, r4) ∈ GK(G):

Since n ≥ 8, according to Lemmas 3.6(1) and 3.7, we can see that (3, r4), (2, r4) ∈
GK(G) and since R2(3) = {2} we may assume that r ∈ Rl(3), where ν(l) ≥ 2. Now
Lemma 3.5(1) implies that ν(l) | n. If ν(l) = n, then since 4 | n, by Lemma 3.5(1), we
conclude that (r, r4) ∈ GK(G). If ν(l) 6= n, then ν(l) ≤ n/2 and since n ≥ 8, so we have
ν(l) + 4 ≤ /2 + 4 ≤ n. Now, using Lemma 3.5(1) completes the proof of our claim.

Since (2, r4) ∈ GK(G) and (2, rn) 6∈ GK(G), according to the above discussion, we
conclude that deg(r4) > deg(rn). As n ≥ 4, we can see that π1(2An−1(3)) is m-regular if
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and only if (n,m) = (4, 2). Moreover, according to Lemma 2.2, in this case π1(2An−1(3))
is a clique.
Subcase b. If R1(q) 6= ∅, then we have the following cases:
• If 2 ∈ R1, then q ≡ 1 (mod 4) and hence q is odd. According to Lemma 3.6(1) and

Remark 3.9, we conclude that (r, p) 6∈ GK(G) if and only if ν(e(r, q)) ∈ {n− 1, n}. Since
π1(G) is m-regular, we should have deg(2) = deg(p) and hence, Lemma 3.7 implies that
n2 = (q + 1)2 > 2, which is impossible according to q ≡ 1 (mod 4).
• If 2 6∈ R1 and n ≥ 5, then by using Lemmas 3.6(1), 3.7 and 3.5(1), we can easily see

that (p, r1), (2, r1), (r1, r4) ∈ GK(G) and each vertex which is adjacent to r4 is adjacent
to r1, as well. On the other hand, according to Lemma 3.5(1), the vertex rl, where ν(l) ∈
{n− 3, n− 2} is odd, is adjacent to r1 but is nonadjacent to r4. Thus deg(r1) > deg(r4)
and π1(G) cannot be m-regular. If 2 6∈ R1 and n = 4, then p = 2 or q ≡ −1 (mod
4). Thus Lemmas 3.6(1) and 3.7 imply that (2, r4), (p, r4) 6∈ GK(G). Now, by Lemma
3.5(1), we conclude that (r, r4) ∈ GK(G) if and only if r ∈ R1 ∪ R4. Also, we can see
that (r, r1) ∈ GK(G) if and only if r ∈ {p} ∪R1 ∪R2 ∪R4. Thus deg(r1) > deg(r4) and
hence, π1(G) cannot be m-regular.

Consequently, according to Cases 1 and 2, we conclude that π1(2An−1(q)) ism-regular
if and only if π1(2An−1(q)) is a clique. 2

In order to complete the proof of the main theorem, we need the following lemmas for
considering the Ree groups 2G2(32n+1) and 2F4(22n+1), where n is a natural number.

3.11. Lemma. [14, Lemma 1.5(2-3)] Let n be a natural number.
(1) Let m1(G,n) = 32n+1 − 1, m2(G,n) = 32n+1 + 1, m3(G,n) = 32n+1 − 3n+1 +

1, m4(G,n) = 32n+1 + 3n+1 + 1. Then gcd(m1(G,n),m2(G,n)) = 2 and
gcd(mi(G,n),mj(G,n)) = 1 otherwise.

(2) Letm1(F, n) = 22n+1−1, m2(F, n) = 22n+1+1, m3(F, n) = 24n+2+1, m4(F, n) =
24n+2 − 22n+1 + 1, m5(F, n) = 24n+2 − 23n+2 + 22n+1 − 2n+1 + 1, m6(F, n) =
24n+2 + 23n+2 + 22n+1 + 2n+1 + 1.
Then gcd(m2(F, n),m4(F, n)) = 3 and gcd(mi(F, n),mj(F, n)) = 1 otherwise.

3.12. Lemma. [14, Propositions 3.3(2-3)] Let G be a finite simple Ree group over a
field of characteristic p, let r ∈ π(G) \ {p}. Then r, p are nonadjacent if and only if one
of the following holds:

(1) G = 2G2(32n+1), r divides mk(G,n) and r 6= 2.
(2) G = 2F4(22n+1), r divides mk(F, n), r 6= 3 and k > 2.

3.13. Lemma. [14, Propositions 4.5(8)] If G = 2G2(32n+1) and r ∈ π(G) \ {2, 3}, then
r and 2 are nonadjecent if and only if r divides m3(G,n) or m4(G,n).

If G = 2F4(22n+1), then denote by Si(G) the set π(mi(F, n)) \ {3}. Thus we have the
following lemma:

3.14. Lemma. [15, Propositions 2.9(3)] Let G = 2F4(22n+1) and r, s ∈ π(G) \ {2}.
Then r and s are nonadjecent if and only if either r ∈ Sk(G) and s ∈ Sl(G), where l 6= k,
{k, l} 6= {1, 2}, {1, 3}; or r = 3 and s ∈ Sl(G), where l ∈ {3, 5, 6}.

3.15. Lemma. Let G be a finite simple exceptional group of Lie type. If π1(G) is
m-regular, then π1(G) is a clique and one of the following cases holds:

(1) G = 2B2(22n+1) and m = 0;
(2) G = 3D4(2) and m = 2;
(3) G = G2(3n) and m = |R1(q)|+ |R2(q)|.

Proof. According to the compact form of GK(G) in [15], where

G ∈ {E7(q), E8(q), E6(q), 2E6(q), F4(q)},
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we can easily find two vertices p and q in π1(G) which have the following properties:

(1) If (p, r) ∈ GK(G), then (q, r) ∈ GK(G);
(2) There exists a prime s in π(G), where (p, s) 6∈ GK(G) but (q, s) ∈ GK(G).

Thus deg(q) > deg(p) which implies that π1(G) cannot be m-regular. In the same man-
ner we can see that π1(3D4(q)) is m-regular if and only if q = 2. We omit the details
for convenience. Also, according to the compact form of GK(G2(q)), we can see that
π1(G2(q)) is m-regular if and only if q = 3α. In this case, we have m = |R1| + |R2|.
Moreover, by Lemma 2.1(1), we know that π1(2B2(22n+1)), where n ∈ N, is 0-regular.
Additionally, if G = 2F4(2)

′, then using [1] implies that deg(2) = 2, deg(3) = 1 and
(2, 3) ∈ GK(G) and hence, π1(2F4(2)

′
) is not m-regular. Thus it remain to consider

the simple groups, 2G2(32n+1) and 2F4(22n+1), where n ∈ N. If G = 2G2(32n+1), then
Lemma 3.12(1) implies that (3, r) ∈ GK(G) if and only if r = 2. Also, according to
Lemma 3.13, we can see that (2, r) ∈ GK(G) if and only if r = 3 or r | m1(G,n) or
r | m2(G,n). Thus deg(2) > deg(3) and π1(2G2(32n+1)) is not m-regular. Finally, if
G = 2F4(22n+1), then Lemma 3.12(2) implies that (2, r) ∈ GK(G) if and only if r = 3
or r | m1(F, n) or r | m2(F, n). Moreover, according to Lemma 3.14, we can see that
(3, r) ∈ GK(G) if and only if r = 2 or r | m1(F, n) or r | m2(F, n) or r | m4(F, n). Thus
deg(2) < deg(3) and π1(2F4(22n+1)) is not m-regular. 2
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We define and characterize classical completely prime submodules
which are a generalization of both completely prime ideals in rings and
reduced modules (as defined by Lee and Zhou in [18]). A comparison of
these submodules with other “prime” submodules in literature is done.
If Rad(M) is the Jacobson radical of M and βc

cl(M) the classical com-
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1. Introduction
All modules are left modules, the rings are associative but not necessarily unital. An

ideal P of a ring R is completely prime (completely semiprime) if for any a, b ∈ R (a ∈ R)
such that ab ∈ P (a2 ∈ P) we have, a ∈ P or b ∈ P (a ∈ P). A ring R is completely prime
if the zero ideal is completely prime. A ring R is completely semiprime (or reduced) if
and only if for all a ∈ R, a2 = 0⇒ a = 0. An R-moduleM is reduced if for all a ∈ R and
every m ∈ M , am = 0 implies 〈m〉 ∩ aM = 0, where 〈m〉 = Zm+ Rm is the submodule
of M generated by m ∈ M . It is worth noting that, if R is unital then 〈m〉 = Rm,
otherwise Rm ⊆ 〈m〉 but 〈m〉 6⊂ Rm in general. By (P : N) (resp. (P : m)) where P ,
N are submodules of an R-module M and m ∈ M , we mean {r ∈ R : rN ⊆ P} (resp.
{r ∈ R : rm ∈ P}). If a is an element of a ring R, by 〈a〉 we denote the ideal of R
generated by a. We write N ≤ M to mean N is a submodule of M . Our definition of a
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reduced module is a generalization of that in [18], where Rm is used in the place of 〈m〉.
We state an equivalent but more handy definition for a reduced module.

1.1. Definition. An R-moduleM is reduced if for all a ∈ R and everym ∈M , a2m = 0
implies a〈m〉 = 0.

This definition of a reduced (completely semiprime) module motivates the following
two definitions:

1.2. Definition. A proper submodule P of an R-module M is completely semiprime if
for all a ∈ R and every m ∈M , a2m ∈ P implies a〈m〉 ⊆ P .

1.3. Definition. A proper submodule P of an R-module M is classical completely
prime if for all a, b ∈ R and every m ∈M , abm ∈ P implies a〈m〉 ⊆ P or b〈m〉 ⊆ P .

An R-moduleM/P is a classical completely prime module if and only if P is a classical
completely prime submodule of M . Thus, an R-module M is classical completely prime
(completely semiprime) if and only if the zero submodule is a classical completely prime
(completely semiprime) submodule ofM . Although the phrase “completely prime" would
seem suitable in the place of classical completely prime in Definition 1.3, we reserve it
for a different meaning - one given by Tuganbaev in [24, p.1480] and discussed in [21] (in
which it is most suitable).

1.1. Example. A free module M over a domain R is classical completely prime.

Proof. Suppose abm = 0 for some a, b ∈ R and m ∈M . Then

abm = ab

n∑
i=1

(rimi) =

n∑
i=1

(abri)mi = 0

for some ri ∈ R and mi ∈ M . Since M is free abri = 0 for all i ∈ {1, · · ·n}. For m 6= 0,
there is atleast one j ∈ {1, · · ·n} such that rj 6= 0. Now abrj = 0 implies a = 0 or b = 0
(since R is a domain) such that a〈m〉 = 0 or b〈m〉 = 0. �

1.2. Example. A torsionfree module M over a domain R is classical completely prime.
It follows that flat modules over domains (and hence projective modules over domains)
are classical completely prime modules.

Proof. Suppose for a, b ∈ R and m ∈ M , abm = 0. If m = 0, a〈m〉 = 0 and b〈m〉 = 0.
Let m 6= 0, then ab = 0 sinceM is torsionfree. Hence, a = 0 or b = 0 since R is a domain.
Therefore, a〈m〉 = 0 or b〈m〉 = 0. The last part is due to the fact that flat modules are
torsionfree, see [23, Example 1, p.15] and projective modules are flat modules. �

1.3. Example. Every submodule P of a module M over a division ring R is a classical
completely prime submodule.

Proof. Suppose a, b ∈ R and m ∈ M such that abm ∈ P . If ab = 0, a = 0 or b = 0 such
that a〈m〉 ⊆ P or b〈m〉 ⊆ P . Suppose ab 6= 0, then, m ∈ (ab)−1P ⊆ P .§ Thus, a〈m〉 ⊆ P
and b〈m〉 ⊆ P . �

1.4. Example. Any prime (sub)module over a commutative ring is a classical completely
prime (sub)module.

Proposition 1.1 below and its corollaries provide more justification for our definition
of classical completely prime submodules.

§(ab)−1 is here used to mean the inverse of ab in R
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1.1. Proposition. If 1 ∈ R and P / R, then P is a completely prime ideal of R if and
only if P is a classical completely prime submodule of RR.

Proof. Suppose P is a completely prime ideal of R and for any a, b ∈ R and m ∈R R,
abm ∈ P . By definition of a completely prime ideal, a ∈ P or b ∈ P or m ∈ P . Thus,
a〈m〉 ⊆ P or b〈m〉 ⊆ P . Conversely, suppose the ideal P of R is a classical completely
prime submodule of RR. Let for any a, b ∈ R, ab ∈ P . Since 1 ∈ R by definition of
classical completely prime submodule, ab.1 ∈ P implies aR ∈ P or bR ∈ P such that
a ∈ P or b ∈ P . �

1.1. Corollary. If 1 ∈ R, then R is a domain if and only if RR is a classical completely
prime module.

1.2. Corollary. If 1 ∈ R and P /R, then P is a completely semiprime ideal of R if and
only if it is a completely semiprime submodule of RR.

1.3. Corollary. A unital ring R is reduced if and only if RR is a reduced module.

2. Investigation of properties
In this section, we investigate properties exhibited by classical completely prime

(semiprime) submodules. First, we introduce notions of symmetric and IFP submod-
ules that will prove useful later in the sequel. Lambek in [17, p.364] called a module M
symmetric if abm = 0 implies bam = 0 for a, b ∈ R and m ∈ M . We call a submodule
P of an R-module M symmetric if abm ∈ P implies bam ∈ P for a, b ∈ R and m ∈ M .
So, a module M is symmetric if its zero submodule is symmetric. From [8], a right (or
left) ideal I of a ring R is said to have the insertion-of-factor-property (IFP) if whenever
ab ∈ I for a, b ∈ R, we have aRb ⊆ I. We call a submodule N of an R-module M an IFP
submodule if whenever am ∈ N for a ∈ R and m ∈M , we have aRm ⊆ N . A module is
IFP if its zero submodule is IFP.

2.1. Proposition. For any submodule P of an R-module M ,

completely semiprime⇒ symmetric⇒ IFP.

Proof. Let abm ∈ P . (bab)2m ∈ P and P completely semiprime gives bab〈m〉 ⊆ P .
Thus, (ba)2m = bab(am) ∈ bab〈m〉 ⊆ P and again P completely semiprime gives bam ∈
ba〈m〉 ⊆ P . For the second implication, let am ∈ P for a ∈ R and m ∈ M . Then
Ram ⊆ P and P symmetric implies aRm ⊆ P . �

2.1. Example. A module M over a left duo ring R (a ring whose all left ideals are two
sided) is fully IFP (every submodule of M is IFP) but it need not be symmetric.

Proof. Let P ≤ M , a ∈ R and m ∈ M such that am ∈ P , then a ∈ (P : m). (P : m)
is a left ideal of R but since R is left duo, we have (P : m) / R and aR ⊆ (P : m) such
that aRm ⊆ P . Hence, P is IFP. Z2 is a left quasi duo ring (i.e., every maximal left
ideal of Z2 is two sided). By [16, Prop. 2.1], any n-by-n upper triangular matrix ring R
over Z2 is left quasi duo. Hence, every submodule of the module RR is IFP. We show

that the zero submodule of RR is not symmetric. Take m =

(
1̄ 0̄
0̄ 1̄

)
, a =

(
1̄ 0̄
1̄ 0̄

)
, and

b =

(
0̄ 0̄
1̄ 0̄

)
∈ R; abm = 0 but bam 6= 0. �

2.2. Example. A submodule P of a moduleM over a commutative ring R is symmetric
but it need not be completely semiprime.
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2.1. Properties of underlying ring. We give information classical completely prime
(completely semiprime) submodules of RM reveal about the underlying ring R. Proposi-
tions 2.2 and 2.3 indicate that there is a one to one correspondence between completely
semiprime (classical completely prime) submodules P of the module RM and completely
semiprime (completely prime) ideals of R of the form (P : m) for all m ∈M \ P .

2.2. Proposition. For P ≤ RM , the following statements are equivalent:
(1) P is a completely semiprime submodule of M ;
(2) (P : m) = (P : 〈m〉) = (0̄ : m̄) is a completely semiprime ideal of R for every

m ∈M \ P , where m̄ = m+ P ;
(3) for all m ∈M \ P , (P : m) / R and for all a ∈ R if a2m ∈ P , then am ∈ P ;
(4) for all m ∈M \ P , (P : m) / R and for all a ∈ R if 〈a2m〉 ⊆ P , then 〈am〉 ⊆ P ;
(5) for all a ∈ R and every m ∈M , if 〈a2m〉 ⊆ P , then 〈a〈m〉〉 ⊆ P .

Proof. (1) ⇒ (2). Since (P : m) is always a left ideal of R for all m ∈ M \ P , we show
that if a ∈ (P : m), then aR ⊆ (P : m). Suppose a ∈ (P : m), then Ram ⊆ P and
from Proposition 2.1, we have aRm ⊆ P and therefore, aR ⊆ (P : m) as required. Let
m ∈ M \ P , (P : m) = {r ∈ R : rm ∈ P} = {r ∈ R : rm̄ = 0̄} = (0̄ : m̄). The
inclusion (P : 〈m〉) ⊆ (P : m) is clear. Suppose x ∈ (P : m), then xR ⊆ (P : m). Hence,
x〈m〉 ⊆ P and we have x ∈ (P : 〈m〉). Lastly, suppose a2 ∈ (P : m), i.e., a2m ∈ P . Then,
am ∈ a〈m〉 ⊆ P since P is a completely semiprime submodule of M . Thus, a ∈ (P : m).

(2) ⇒ (1). Let for all a ∈ R and m ∈ M , a2m ∈ P . Then, a2 ∈ (P : m) which
implies a ∈ (P : m) by definition of a completely semiprime ideal of a ring R. Thus,
aR ⊆ (P : m) and aRm ⊆ P . Therefore, a〈m〉 = Zam+aRm ⊆ P and P is a completely
semiprime submodule of M .

(2)⇔ (3)⇔ (4) and (5)⇔ (1) are trivial. �

2.1. Corollary. An R-module M is reduced if and only if for every 0 6= m ∈M , (0 : m)
is a completely semiprime two sided-ideal of R.

2.3. Proposition. For a proper submodule P of an R-module M , the following state-
ments are equivalent:

(1) P is a classical completely prime submodule of M ;
(2) for every m ∈M \ P , (P : m) = (P : 〈m〉) = (0̄ : m̄) is a completely prime ideal

of R;
(3) for all m ∈M \ P , (P : m) / R and if a, b ∈ R such that abm ∈ P , then am ∈ P

or bm ∈ P ;
(4) for all m ∈ M \ P , (P : m) / R and if a, b ∈ R such that 〈abm〉 ⊆ P , then
〈am〉 ⊆ P or 〈bm〉 ⊆ P ;

(5) for all a, b ∈ R and everym ∈M , if 〈abm〉 ⊆ P , then 〈a〈m〉〉 ⊆ P or 〈b〈m〉〉 ⊆ P .

Proof. (1) ⇒ (2). Every classical completely prime submodule of M is a completely
semiprime submodule of M . We have seen in Proposition 2.2 that (P : m) is an ideal
of R and (P : m) = (P : 〈m〉) = (0̄ : m̄). Let a, b ∈ R and 0 6= m ∈ M such
that ab ∈ (P : m), i.e., abm ∈ P . Now, P classical completely prime submodule gives
am ∈ a〈m〉 ⊆ P or bm ∈ b〈m〉 ⊆ P . Hence, a ∈ (P : m) or b ∈ (P : m).

(2) ⇒ (1). Let for a, b ∈ R and 0 6= m ∈ M , abm ∈ P , i.e., ab ∈ (P : m). (P : m)
a completely prime ideal of R gives a ∈ (P : m) or b ∈ (P : m). Hence, (am ∈ P and
aRm ⊆ P ) or (bm ∈ P and bRm ⊆ P ) such that a〈m〉 ⊆ P or b〈m〉 ⊆ P .
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(2)⇔ (3)⇔ (4) and (5)⇔ (1) are trivial. �

The zero divisor set of RM [3, p.316] is the set

Zd(M) := {r ∈ R : there exists 0 6= m ∈M, with rm = 0}.

The following proposition provides us with two other ways of constructing completely
prime ideals of a ring R from a submodule P of an R-module M .

2.4. Proposition. Let P be a classical completely prime submodule of an R-module
M . Then,

(1) for any m,n ∈M \ P either (P : n) ⊆ (P : m) or (P : m) ⊆ (P : n);
(2) Zd(M/P ) is a completely prime ideal of R;
(3) for all submodules K and L of M not contained in P , (P : L) ⊆ (P : K) or

(P : K) ⊆ (P : L);
(4) (P : K) is a completely prime ideal of R for all submodules K of M such that

K 6⊆ P .

Proof. (1) Assume n,m ∈ M \ P . Then, (P : n)(P : m) ⊆ (P : n) ∩ (P : m) ⊆ (P :
n+m). We know that, (P : n+m) is a completely prime ideal of R and hence
a prime ideal of R. So, we have (P : n) ⊆ (P : n+m) or (P : m) ⊆ (P : n+m).
If (P : n) ⊆ (P : n + m), then (P : n) = (P : n) ∩ (P : n + m) ⊆ (P : m).
Similarly, if (P : m) ⊆ (P : n+m), we get (P : m) ⊆ (P : n).

(2) By definition, Zd(M/P ) =
⋃

m∈M\P
(P : m). But {(P : m)}m∈M\P form a chain

of completely prime ideals of R. We see that Zd(M/P ) is the largest of all the
(P : m)’s and hence a completely prime ideal of R.

(3) (P : K)(P : L) ⊆ (P : K) ∩ (P : L) ⊆ (P : K + L). Hence, (P : K) ⊆ (P :
K + L) ⊆ (P : L) or (P : L) ⊆ (P : K + L) ⊆ (P : K).

(4) To show that (P : K) is a completely prime ideal of R, it is enough to show
that it is both prime and completely semiprime as an ideal of R. If P is classical
completely prime, by Theorem 3.1 it is classical prime (see definition 3.2) and
hence (P : K) is a prime ideal of R for all K ≤ M such that K 6⊆ P . Suppose
a2 ∈ (P : K) for a ∈ R and K ≤ M with K 6⊆ P , then a2k ∈ P for all k ∈ K.
By hypothesis, a〈k〉 ⊆ P for all k ∈ K. Thus, aK ⊆ P such that a ∈ (P : K).

�

2.2. Homomorphic images.

2.5. Proposition. Let M be an R-module, N,P ≤ M such that N ⊆ P . If f : M →
M/N is a canonical epimorphism, then P is a classical completely prime submodule of
M if and only if f(P ) is a classical completely prime submodule of M/N .

The proof is elementary, if N 6⊆ P , P classical completely prime submodule ofM does
not in general imply f(P ) is a classical completely prime submodule of M/N (and hence
classical completely prime is not in general closed under homomorphic images).

2.3. Example. The Z-module Z is a classical completely prime module by Corollary
1.1 and N = 8Z is a submodule of M = ZZ. By [1, Example 2.5], M/N is not a reduced
module (i.e., not a completely semiprime module) and hence not a classical completely
prime module.

2.6. Proposition. Let f : R → A be a ring epimorphism and M an A-module, then
M is an R-module and AM is classical completely prime if and only if RM is classical
completely prime.
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Proof. Define a function from RM to AM by rm = f(r)m. This function turnsM into an
R-module wheneverM is an AM module. Suppose AM is classical completely prime and
for all r, s ∈ R and m ∈M , rsm = 0. Then, 0 = rsm = f(r)f(s)m. Since AM is classical
completely prime, f(r)〈m〉A = 0 or f(s)〈m〉A = 0. Then by structure of R-module, it
follows that r〈m〉R = 0 or s〈m〉R = 0. Thus, RM is classical completely prime. Assume
RM is classical completely prime and for all a, b ∈ R and m ∈ M , abm = 0. Then
since f is an epimorphism, there exists r, s ∈ A such that a = f(r) and b = f(s), i.e.,
f(r)f(s)m = rsm = 0. By assumption, r〈m〉R = 0 or s〈m〉R = 0. If r〈m〉R = 0 (resp.
s〈m〉R = 0), the fact that f is onto leads to a〈m〉A = 0 (resp. b〈m〉A = 0). Hence, AM
is classical completely prime. �

2.3. Properties of submodules and direct summands.

2.7. Proposition. If M is a classical completely prime module, then any submodule N
of M is also a classical completely prime module.

Proof. Elementary. �

2.8. Proposition. For an R-module M , the following statements are equivalent:
(1) M is a classical completely prime module,
(2) Each direct summand of M is a classical completely prime submodule of M .

Proof. (1) ⇒ (2). By Proposition 2.7 any submodule N of M is a classical completely
prime module. If M = K ⊕P where K and P are submodules, then M/K is isomorphic
to P which is a classical completely prime module and so K is a classical completely
prime submodule.

(2) ⇒ (1). If each direct summand of M is a classical completely prime submodule,
then so is the zero submodule and hence M is a classical completely prime module. �

2.4. Classical multiplicative systems.

2.1. Definition. Let R be a ring and M an R-module. A nonempty set S ⊆M \ {0} is
called a classical multiplicative system if, for all a, b ∈ R, m ∈M and for all submodules
K of M , if (K + a〈m〉) ∩ S 6= ∅ and (K + b〈m〉) ∩ S 6= ∅, then (K + abm) ∩ S 6= ∅.

2.9. Proposition. Let M be an R-module. A proper submodule P of M is classical
completely prime if and only if its complement M\P is a classical multiplicative system.

Proof. Suppose S := M\P . Let a, b ∈ R, m ∈ M and K be a submodule of M such
that (K + a〈m〉) ∩ S 6= ∅ and (K + b〈m〉) ∩ S 6= ∅. If (K + {abm}) ∩ S = ∅, then
abm ∈ P . Since P is classical completely prime , a〈m〉 ⊆ P or b〈m〉 ⊆ P . It follows that
(K + a〈m〉) ∩ S = ∅ or (K + b〈m〉) ∩ S = ∅, a contradiction. Therefore, S is a classical
multiplicative system in M . For the converse, let S := M\P be a classical multiplicative
system in M . Suppose for a, b ∈ R and m ∈ M , abm ∈ P . If a〈m〉 6⊆ P and b〈m〉 6⊆ P ,
then a〈m〉 ∩ S 6= ∅ and b〈m〉 ∩ S 6= ∅. Thus, abm ∈ S, a contradiction. Therefore, P is
a classical completely prime submodule of M . �

2.10. Proposition. Let M be an R-module, P be a proper submodule of M , and
S := M\P . Then, the following statements are equivalent:

(1) P is a classical completely prime submodule of M ;
(2) S is a classical multiplicative system of M ;
(3) for all a, b ∈ R and m ∈M , if a〈m〉 ∩ S 6= ∅ and b〈m〉 ∩ S 6= ∅, then abm ∈ S;
(4) for all a, b ∈ R and m ∈ M , if 〈a〈m〉〉 ∩ S 6= ∅ and 〈b〈m〉〉 ∩ S 6= ∅, then
〈abm〉 ∩ S 6= ∅.
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2.1. Lemma. Let M be an R-module, S ⊆ M a classical multiplicative system of M
and P a submodule of M maximal with respect to the property that P ∩ S = ∅. Then,
P is a classical completely prime submodule of M .

Proof. Suppose a ∈ R and m ∈M such that 〈abm〉 ⊆ P . If 〈a〈m〉〉 6⊆ P and 〈b〈m〉〉 6⊆ P
then (〈a〈m〉〉 + P ) ∩ S 6= ∅ and (〈b〈m〉〉 + P ) ∩ S 6= ∅. By definition of a classical
multiplicative system S ofM , (〈abm〉+P )∩S 6= ∅. Since 〈abm〉 ⊆ P , we have P ∩S 6= ∅,
a contradiction. Hence, P must be a classical completely prime submodule. �

2.2. Definition. Let R be a ring and M an R-module. For N ≤ M , if there is a
classical completely prime submodule of M containing N , we define clc.

√
N := {m ∈

M : every classical multiplicative system containing
m meets N}. We write clc.

√
N = M when there are no classical completely prime sub-

modules of M containing N .

2.1. Theorem. Let M be an R-module and N ≤ M . Then, either clc.
√
N = M

or clc.
√
N equals the intersection of all classical completely prime submodules of M

containing N , which is denoted by βc
cl(N).

Proof. Suppose clc.
√
N 6= M . Both clc.

√
N and N are contained in the same classical

completely prime submodules. By definition of clc.
√
N it is clear that N ⊆ clc.

√
N .

Hence, any classical completely prime submodule of M which contains clc.
√
N must

necessarily contain N . Suppose P is a classical completely prime submodule of M such
that N ⊆ P , and let t ∈ clc.

√
N . If t 6∈ P , then the complement of P , C(P ) in M is a

classical multiplicative system containing t and therefore we would have C(P ) ∩N 6= ∅.
However, since N ⊆ P , C(P ) ∩ P = ∅ and this contradiction shows that t ∈ P . Hence
clc.
√
N ⊆ P as we wished to show. Thus, clc.

√
N ⊆ βco(N). Conversely, assume

s 6∈ clc.
√
N , then there exists a classical multiplicative system S such that s ∈ S and

S∩N = ∅. From Zorn’s Lemma, there exists a submodule P ⊇ N which is maximal with
respect to P ∩ S = ∅. From Lemma 2.1, P is a classical completely prime submodule of
M and s 6∈ P . �

2.5. Complete systems.

2.3. Definition. Let R be a ring and M an R-module. A nonempty set T ⊆ M \ {0}
is called a complete system if, for all a ∈ R, m ∈ M and for all submodules K of M , if
(K + a〈m〉) ∩ T 6= ∅, then (K + {a2m}) ∩ T 6= ∅.

2.2. Corollary. Let M be an R-module. A proper submodule P of M is completely
semiprime if and only if M\P is a complete system.

2.11. Proposition. Let M be an R-module, P be a proper submodule of M , and
T := M\P . Then, the following statements are equivalent:

(1) P is completely semiprime;
(2) T is a complete system;
(3) for all a ∈ R and m ∈M , if a〈m〉 ∩ T 6= ∅, then a2m ∈ T ;
(4) for all a ∈ R and m ∈M , if 〈a〈m〉〉 ∩ T 6= ∅, then 〈a2m〉 ∩ T 6= ∅.

2.1. Remark. Every classical multiplicative system is a complete system but not con-
versely.

2.2. Question. Is every completely semiprime submodule of a module an intersection
of classical completely prime submodules?
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3. Comparison with “primes” in literature
In this section we compare classical completely prime (resp. completely semiprime)

submodules with prime (resp. semiprime) and classical prime (resp. classical semiprime)
submodules.

3.1. Definition. [2], [11] P ≤ RM with RM 6⊆ P is prime if for any N ≤ RM and any
A / R such that AN ⊆ P , then AM ⊆ P or N ⊆ P . P is a semiprime submodule of M
if for a ∈ R and m ∈M such that aRam ⊆ P , then am ∈ P .

3.2. Definition. [4, p.338 ] P ≤ RM with RM 6⊆ P is classical prime if for any
N ≤ RM and any A,B /R such that ABN ⊆ P , then AN ⊆ P or BN ⊆ P . P ≤R M is
classical semiprime if for every A / R, and N ≤ M such that A2N ⊆ P , then AN ⊆ P .

Propositions 3.1 and 3.2 are modifications of [4, Proposition 1.1] and [4, Proposition
1.2] to suit a not necessarily unital module.

3.1. Proposition. Let P ≤ RM , the following statements are equivalent:
(1) P is a classical prime submodule of M ;
(2) for all a, b ∈ R and every m ∈M , if 〈a〉〈b〉m ⊆ P , then 〈a〉m ⊆ P or 〈b〉m ⊆ P ;
(3) for all a, b ∈ R and every m ∈ M such that aRb〈m〉 ⊆ P , then a〈m〉 ⊆ P or

b〈m〉 ⊆ P .

3.2. Proposition. Let P ≤ RM , the following statements are equivalent:
(1) P is a classical semiprime submodule of M ;
(2) for all a ∈ R and every m ∈M , if 〈a〉2m ⊆ P , then 〈a〉m ⊆ P ;
(3) for all a ∈ R and every m ∈M , if aRa〈m〉 ⊆ P , then a〈m〉 ⊆ P .

3.1. Remark. In literature, classical prime is used interchangeably with weakly prime,
cf., [3], [4], [5], [6]. We here use classical prime instead of weakly prime. In defense of our
nomenclature, weakly prime modules exist in [13] when used in a totally different context
- a context which generalizes the notion of weakly prime ideals for rings to modules. To
the best of our knowledge, classical prime has never been used by other authors to mean
something different. Our “classical semiprime" is what is called “semiprime" in [4], our
nomenclature reflects that classical semiprime is derived from classical prime. Lastly, our
“semiprime" is the semiprime in [11].

3.1. Theorem. For any submodule P ≤ RM , we have the following implications:
(i) in general (ii) P IFP submodule

prime prime
⇓ ⇓

classical ⇒ classical classical ⇔ classical
completely prime prime completely prime prime

Proof. (i). By [22, Prop. 4.1.11], it is known that a prime submodule is classical
prime. Now we show that a classical completely prime submodule is classical prime.
Let a, b ∈ R and m ∈ M such that 〈a〉〈b〉m ⊆ P . Then, abm ∈ P and P classi-
cal completely prime in M implies a〈m〉 ⊆ P or b〈m〉 ⊆ P . Thus, (am ∈ P and
aRm ⊆ P ) or (bm ∈ P and bRm ⊆ P ) so that 〈a〉m = (Za+Ra+ aR+RaR)m ⊆ P or
〈b〉m = (Zb+Rb+ bR+RbR)m ⊆ P . Hence, P is classical prime.

(ii). Suppose a classical prime submodule P is IFP, we show that P is classical
completely prime. If a, b ∈ R and m ∈ M such that abm ∈ P , then aRbm ⊆ P and
aRb(Rm) ⊆ P so that aRb〈m〉 ⊆ P . This implies, either a〈m〉 ⊆ P or b〈m〉 ⊆ P by
definition of classical prime submodule. So, P is classical completely prime. �
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3.2. Theorem. P is a classical completely prime submodule of an R-module M if and
only if P is both a classical prime and a completely semiprime submodule of M .

Proof. Every classical completely prime submodule is completely
semiprime. From Theorem 3.1, classical completely prime submodules are classical prime.
For the converse, assume P is both a completely semiprime and a classical prime sub-
module of M . Now, let a, b ∈ R and m ∈ M such that abm ∈ P . By Proposition 2.1, P
is IFP. Hence, aRb〈m〉 ⊆ P . P classical prime implies a〈m〉 ⊆ P or b〈m〉 ⊆ P . �

3.1. Example. Every maximal submodule P of an R-module M is a classical prime
submodule but there exist modules with maximal submodules which are not classical
completely prime. Let A / R and N ≤ M such that AN ⊆ P , where P is a maximal
submodule of M . If N ⊆ P , we are through. Suppose N 6⊆ P . Then, M = N + P so
that AM = AN + AP ⊆ P . This shows P is a prime submodule and hence a classical
prime submodule. We construct a maximal submodule which is not classical completely
prime. Let R = (M2(Z),+, .) be a ring of all 2-by-2 matrices with integral entries and
(M2(Z2),+) be a group of all 2-by-2 matrices with entries from the ring Z2 = {0̄, 1̄}.
Then, M2(Z2) is an M2(Z)-module and

P =

{(
0̄ 0̄
0̄ 0̄

)
,

(
0̄ 0̄
1̄ 1̄

)
,

(
1̄ 1̄
0̄ 0̄

)
,

(
1̄ 1̄
1̄ 1̄

)}
is a maximal submodule of M2(Z2). Now, let a =

(
0 1
0 0

)
, b =

(
1 0
0 0

)
and m =(

0̄ 1̄
1̄ 0̄

)
. abm = 0 ∈ P but a〈m〉 6⊆ P and b〈m〉 6⊆ P since am 6∈ P and bm 6∈ P .

Therefore, P is a maximal submodule of M2(Z2) but not a classical completely prime
submodule of M2(Z)-module M2(Z2).

In regard to Example 3.1, we point out that, although it is not true in general, we can
find noncommutative rings for which every maximal submodule is classical completely
prime. To illustrate this, we use left (quasi) duo rings. A ring R is called left (quasi) duo
if every left (maximal left) ideal of R is two sided. A ring R is called left quasi-duo, if
every maximal left ideal of R is two sided.

3.3. Proposition. [20, Proposition 3.6] R is a left quasi-duo ring if and only if each
simple R-module M is reduced.

3.4. Proposition. If R is a left quasi-duo ring, then each maximal submodule P of M
is a classical completely prime submodule of M .

Proof. Let P be a maximal submodule of M and R a left quasi-duo ring. M/P is simple
and from Proposition 3.3, it is reduced. Hence, P is a completely semiprime submodule
of M . Since every maximal submodule of M is classical prime, it follows from Theorem
3.2 that P is a classical completely prime submodule of M . �

3.2. Remark. It is not possible to get an example like Example 3.1 for a ring R which
is a collection of all upper triangular matrices over Z. This is because, upper triangular
matrix rings are left quasi-duo and from Proposition 3.4, maximal submodules are always
classical completely prime.

It is clear from Example 3.1 that simple modules are not always classical completely
prime. We give another example to show that simple modules are not always classical
completely prime. It makes use of Lemma 3.1.

3.1. Lemma. For a simple and reduced module RM , am = 0 implies aM = 0 for all
a ∈ R and 0 6= m ∈M .
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Proof. Suppose am = 0. Since M is simple and reduced, we have 0 = aM ∩ 〈m〉 =
aM ∩M = aM . �

3.2. Example. Let M =

{(
0̄ 0̄
0̄ 0̄

)
,

(
0̄ 0̄
1̄ 1̄

)
,

(
1̄ 1̄
0̄ 0̄

)
,

(
1̄ 1̄
1̄ 1̄

)}
where entries of ma-

trices in M are from Z2 = {0̄, 1̄} and R = M2(Z). RM is a simple module which is not
classical completely prime.

Proof. Let r =

(
a b
c d

)
∈ R,

rM =

{(
0̄ 0̄
0̄ 0̄

)
,

(
a a
c c

)
,

(
b b
d d

)
,

(
a+ b a+ b
c+ d c+ d

)}
⊆M

for any a, b, c, d ∈ Z. The would be nontrivial proper submodules, namely; N1 ={(
0̄ 0̄
0̄ 0̄

)
,

(
1̄ 1̄
0̄ 0̄

)}
, N2 =

{(
0̄ 0̄
0̄ 0̄

)
,

(
0̄ 0̄
1̄ 1̄

)}
and

N3 =

{(
0̄ 0̄
0̄ 0̄

)
,

(
1̄ 1̄
1̄ 1̄

)}
are not closed under multiplication by R since, for a and

c odd, rN1 6⊆ N1, for b and d odd, rN2 6⊆ N2 and for a odd but b, c, d even, rN3 6⊆

N3. Take a =

(
3 3
2 2

)
∈ R and m =

(
1̄ 1̄
1̄ 1̄

)
∈ M , am = 0 but aM 6= 0 since

a =

(
3 3
2 2

)(
1̄ 1̄
0̄ 0̄

)
=

(
1̄ 1̄
0̄ 0̄

)
6= 0. By Lemma 3.1, M is not reduced and hence not

classical completely prime. �

3.3. Example. If P is a classical prime submodule of an R-module M , (P : M) is a
prime ideal of R which is not necessarily a completely prime ideal of R. On the other
hand, if P is a classical completely prime submodule of an R-module M , then (P : M)
is a completely prime ideal of R. This shows that a classical prime submodule need not
be classical completely prime.

Since over commutative rings classical completely prime submodules and classical
submodules are indistinguishable, we have:

3.4. Example. [6, Example 1] Assume that R is a unital commutative domain and P is
a non-zero prime ideal in R. P⊕ 0 and 0⊕P are classical completely prime submodules
in the free module M = R⊕R, but they are not prime submodules.

4. Comparison of “semiprimes”
4.1. Theorem. For any submodule P of an R-module M ,

completely semiprime ⇒ semiprime ⇒ classical semiprime.

Proof. Suppose for a ∈ R and m ∈ M , aRam ⊆ P , then (a2)2m ∈ P and P completely
semiprime implies a2m ∈ a2〈m〉 ⊆ P . Hence, am ∈ a〈m〉 ⊆ P and P is semiprime.
Now, suppose aRa〈m〉 ⊆ P but a〈m〉 6⊆ P . Then, there exists m1 ∈ 〈m〉 such that
am1 6∈ P . By definition of semiprime submodules, aRam1 6⊆ P and so aRa〈m〉 6⊆ P
which is a contradiction. Therefore, whenever aRa〈m〉 ⊆ P , we have a〈m〉 ⊆ P and
semiprime ⇒ classical semiprime. �

The reverse implications in Theorem 4.1 are not true in general. The simple module
M constructed in Examples 3.2 is semiprime (because all simple modules are prime)
but it is not completely semiprime. For the second implication, a counter example was
constructed by Hongan in [15, p.119].



727

4.1. Corollary. If P is an IFP submodule of M , then

completely semiprime ⇔ semiprime ⇔ classical semiprime.

Proof. It is enough to show that classical semiprime ⇒ completely semiprime, the rest
follows from Theorem 4.1. Let a2m ∈ P , where a ∈ R and m ∈ M . For P IFP,
aRa〈m〉 ⊆ P . By definition of classical semiprime, a〈m〉 ⊆ P and P is completely
semiprime. �

A ring R is left (right) permutable [10, p.258], if for all a, b, c ∈ R, abc = bac (abc =
acb). R is permutable if it is both left and right permutable. Commutative rings and
nilpotent rings of index ≤ 3 are left (right) permutable. A ring R is medial [10], if for all
a, b, c, d ∈ R, abcd = acbd. A left (right) permutable ring is medial but not conversely.
A unital medial ring is indistinguishable from a commutative ring. A ring R is left self
distributive, denoted by LSD (resp. right self distributive, denoted by RSD) if for all
a, b, c, d ∈ R, the identity: abc = abac (resp. abc = acbc) holds. LSD rings are left
permutable, see [14, Corollary 2.2]. Left (right) permutable rings and medial rings exist
in abundancy; according to Birkenmeier and Heatherly in [10, p.258], they are a special
type of PI-rings and also exist as special subrings of every ring. Furthermore, if R is
a noncommutative medial (left permutable, right permutable or permutable) ring, then
the ring of polynomials (resp. formal power series or formal Laurent series) over R is a
medial (left permutable, right permutable or permutable) ring which is not commutative,
see [10, p.262-263].

4.2. Theorem. If P is a classical semiprime submodule of RM and R is a medial (left
permutable, right permutable or LSD) ring then each of the following statements implies
P is a completely semiprime submodule of RM :

(1) M is finitely generated,
(2) M is free,
(3) M is cyclic.

Proof. We prove only the case forM cyclic, the proofs for other cases are similar. Suppose
a2m ∈ P for a ∈ R and m ∈ M , R2a2m ⊆ P . R medial implies RaRam ⊆ P . Since M
is cyclic, m = rm0 for some r ∈ R and m0 ∈ M . RaRarm0 ⊆ P and R2aRarm0 ⊆ P .
Again, R medial leads to RaRaRm ⊆ P . It follows that RaRa〈m〉 ⊆ P . Since P is
classical semiprime, Ra〈m〉 ⊆ P , i.e., Ra ⊆ (P : 〈m〉). P classical semiprime implies
(P : 〈m〉) is a semiprime ideal of R and hence a ∈ (P : 〈m〉), i.e., a〈m〉 ⊆ P . �

4.2. Corollary. If P is a prime (semiprime, classical prime) submodule of RM with R
medial (left permutable, right permutable or LSD), then each of the following statements
implies P is completely prime and hence classical completely prime.

(1) M is finitely generated,
(2) M is free,
(3) M is cyclic.

5. The radicals βccl(M) and βco(R)

Let Mc be the class of all completely prime rings, i.e., rings which have no non-zero
divisors. Then Mc

R is the class of all classical completely prime R-modules. We have
Rc = Ng, the generalized nil radical which we shall call the completely prime radical of
R (denoted by βco(R)) with

βco(R) := ∩{I / R : I is a completely prime ideal}.
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The corresponding classical completely prime radical for the R-moduleM will be denoted
by

βc
cl(M) := ∩{N ≤M : M/N ∈M

c
R}.

Since each classical completely prime submodule of an R-module M is also classical
prime submodule, we have βcl(M) ⊆ βc

cl(M) where βcl(M) is the classical prime radical
(the intersection of all classical prime submodules of M). If M is an R-module over a
commutative ring, then the two radicals coincide.

5.1. Proposition. For any ring R, βc
cl(RR) ⊆ βco(R).

Proof. Follows from [21, Lemma 4.1] and the fact that any completely prime module is
classical completely prime. �

5.1. Lemma. For any R-module M , we have

βco(R) ⊆ (βc
cl(M) : M)R.

Proof. We have (βc
cl(M) : M) = (

⋂
S≤M

S : M)R =
⋂

S≤M

(S : M)R where M/S is a

classical completely prime module. Since (S : M)R is a completely prime ideal, we get
βco(R) ⊆ (βc

cl(M) : M). �

5.1. Remark. The containment in Lemma 5.1 is in general strict. Let R = Z and
M = Zp∞ ⊕ Z for some prime number p. Now βc

cl(M) = Zp∞ and βco(R) = 0, i.e.,
βco(R)M = (0).

5.2. Lemma. For any ring R, we have βco(R) = (βc
cl(RR) : R)R.

Proof. Follows from [12, Proposition 4.6]. �

Recall that for an R-module M , we have the Jacobson radical Rad(M) of the module
M defined as:

Rad(M) = ∩{K ≤M : K is a maximal submodule of M}.

5.1. Theorem. Let M be a module over a left Artinian ring R. Then

Rad(M) ⊆ βc
cl(M) and Rad(RR) = βc

cl(RR).

Proof. From [9, Cor. 4.3.17, p.178], Rad(M) = Jac(R)M = βco(R)M and from the fact
that βco(R) ⊆ (βc

cl(M) : M)R we get Rad(M) ⊆ βc
cl(M). Again from [9, Cor. 4.3.17,

p.178], and Lemma 5.2, Rad(RR) = Jac(R)R = βco(R)R = βc
cl(RR). �
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1. Introduction
The trigonometric and hyperbolic inequalities have been in recent years in the focus

of many researchers. For many results and a long list of references we quote the papers
[6, 10, 24], where many further references may be found. The following inequality

(1.1)
(
sinx

x

)2

+
tanx

x
> 2. 0 < x <

π

2

is due to Wilker [13]. It has attracted attention of several researchers(see, e. g.,[4],[7],
[8], [9],[14],[15],[21]). A hyperbolic counterpart of Wilker’s inequality

(1.2)
(
sinhx

x

)2

+
tanhx

x
> 2.

(x 6= 0) has been established by L. Zhu[16].
In [12], it was proved that

(1.3) 2 +
8

45
x3 tanx >

(
sinx

x

)2

+
tanx

x
> 2 +

(
2

π

)4

x3 tanx,

for 0 < x < π
2
. The constants 8

45
and

(
2
π

)4 in the inequality (1.3) are the best possible.
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The famous Huygens inequality[11] for the sine and tangent functions states that for
x ∈

(
0, π

2

)
(1.4) 2 sinx+ tanx > 3x.

The hyperbolic counterpart of (1.4) was established in [6] as follows: For x > 0

(1.5) 2 sinhx+ tanhx > 3x.

The inequalities (1.4) and (1.5) were respectively refined in [6, Theorem 2.6] as

(1.6) 2
sinx

x
+

tanx

x
> 2

x

sinx
+

x

tanx
> 3,

and

(1.7) 2
sinhx

x
+

tanhx

x
> 2

x

sinhx
+

x

tanhx
> 3, x 6= 0.

In the most recent paper [5], the inequalities (1.6) ,(1.7) and (1.1) were respectively
further refined as

(1.8) 2
sinx

x
+

tanx

x
>

sinx

x
+ 2

tan(x/2)

x/2
> 2

x

sinx
+

x

tanx
> 3.

and

(1.9) 2
sinhx

x
+

tanhx

x
>

sinhx

x
+ 2

tanh(x/2)

x/2
> 2

x

sinhx
+

x

tanhx
> 3.

and (
sinx

x

)2

+
tanx

x
>
( x

sinx

)2
+

x

tanx
>

sinx

x
+

(
tan(x/2)

x/2

)2

>
x

sinx
+

(
x/2

tan(x/2)

)2

> 2.(1.10)

The hyperbolic counterparts of the last two inequalities in (1.10) were also given in [5]
as follows:

(1.11)
sinhx

x
+

[
tanh(x/2)

x/2

]2
>

x

sinhx
+

[
x/2

tanh(x/2)

]2
> 2.

Inspired by (1.3), Jiang et al. [19] first proved

(1.12) 3 +
1

60
x3 sinx < 2

x

sinx
+

x

tanx
< 3 +

8π − 24

π3
x3 sinx.

and

2 +
17

720
x3 sinx <

x

sinx
+

( x
2

tan x
2

)2

< 2 +
π2 + 8π − 32

2π3
x3 sinx.(1.13)

holds for 0 < |x| < π
2
. Furthermore the constants 1

60
, 8π−24

π3 in (1.12) and the constants
17
720

, π
2+8π−32

2π3 in (1.13) are the best possible.
Recently, Chen and Sándor [20] proved that

3 +
3

20
x3 tanx < 2

(
sinx

x

)
+

tanx

x
< 3 +

(
2

π

)4

x3 tanx.

for 0 < |x| < π
2
. The constants 3

20
and

(
2
π

)4 are the best possible.
This paper is a continuation of our work [25] and is organized as follows. In Section

2, we give some lemmas and preliminary results. In Section 3, we prove some new sharp
Wilker- and Huygens-type inequalities for trigonometric and hyperbolic functions.
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2. some Lemmas
In order to establish our main result we need several lemmas, which we present in this

section.

2.1. Lemma. The Bernoulli numbers B2n for n ∈ N have the property

(2.1) (−1)n−1B2n = |B2n|,

where the Bernoulli numbers Bi for i ≥ 0 are defined by

(2.2)
x

ex − 1
=

∞∑
i=0

Bi
i!
xi = 1− x

2
+

∞∑
i=1

B2i
x2i

(2i)!
, |x| < 2π.

Proof. In [2, p. 16 and p. 56], it is listed that for q ≥ 1

(2.3) ζ(2q) = (−1)q−1 (2π)
2q

(2q)!

B2q

2
,

where ζ is the Riemann zeta function defined by

ζ(s) =

∞∑
n=1

1

ns
.

In [22, p.18, theorem 3.4], the following formula was given
∞∑
n=1

1

n2q
=

22q−1π2q|B2q|
(2q)!

.(2.4)

From (2.3) and (2.4), the formula (2.1) follows. �

2.2. Lemma. [17, 18] Let B2n be the even-indexed Bernoulli numbers. Then

2(2n)!

(2π)2n
1

1− 2−2n
< |B2n| <

2(2n)!

(2π)2n
1

1− 21−2n
,n = 1, 2, 3, · · · .

2.3. Lemma. For 0 < |x| < π, we have

(2.5)
x

sinx
= 1 +

∞∑
n=1

2
(
22n−1 − 1

)
|B2n|

(2n)!
x2n.

Proof. This is an easy consequence of combining the equality

(2.6)
1

sinx
= cscx =

1

x
+

∞∑
n=1

(−1)n−12
(
22n−1 − 1

)
B2n

(2n)!
x2n−1,

see [1, p. 75, 4.3.68], with Lemma 2.1. �

2.4. Lemma ([1, p. 75, 4.3.70]). For 0 < |x| < π,

(2.7) cotx =
1

x
−
∞∑
n=1

22n|B2n|
(2n)!

x2n−1.

The following Lemma 2.5 and Lemma 2.6 can be found in [25].

2.5. Lemma. For 0 < |x| < π,

(2.8)
1

sin2 x
=

1

x2
+
∞∑
n=1

22n(2n− 1)|B2n|
(2n)!

x2(n−1).
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2.6. Lemma. For 0 < |x| < π,

(2.9)
cosx

sin2 x
=

1

x2
−
∞∑
n=1

2(2n− 1)
(
22n−1 − 1

)
|B2n|

(2n)!
x2(n−1).

2.7. Lemma. For 0 < |x| < π,

1

sin3 x
=

1

x3
+

1

2

∞∑
n=2

22n − 2

(2n)!
|B2n|(2n− 1)(2n− 2)x2n−3

+
1

2x
+

1

2

∞∑
n=1

22n − 2

(2n)!
|B2n|x2n−1,(2.10)

and

(2.11)
cosx

sin3 x
=

1

x3
−
∞∑
n=2

(2n− 1)(n− 1)22n|B2n|
(2n)!

x2n−3.

Proof. Combining

1

sin3 x
=

1

2 sinx
− 1

2

(
cosx

sin2 x

)′
with Lemma 2.6, the identity (2.6), and Lemma 2.1 gives (2.10).

The equality (2.11) follows from combination of

cosx

sin3 x
= −1

2

(
1

sin2 x

)′
with Lemma 2.5. �

2.8. Lemma. [23, 3, 15] Let an and bn(n = 0, 1, 2, · · · ) be real numbers, and let the power
series A(t) =

∑∞
n=0 ant

n and B(t) =
∑∞
n=0 bnt

n be convergent for |t| < R. If bn > 0 for
n = 0, 1, 2, · · · , and if an

bn
is strictly increasing (or decreasing) for n = 0, 1, 2, · · · , then

the function A(t)
B(t)

is strictly increasing (or decreasing) on (0, R).

3. Main results
Now we are in a position to state and prove our main results.

3.1. Theorem. For 0 < |x| < π
2
, we have

(3.1) 2 +
23

720
x3 sinx <

sinx

x
+

(
tan x

2
x
2

)2

< 2 +
128− 16π2 + 16π

π5
x3 sinx.

The constants 23
720

and 128−16π2+16π
π5 in (3.1) are the best possible.

Proof. Let

f(x) =

sin x
x

+
(

tan x
2

x
2

)2
− 2

x3 sinx

=
x sin3 x− 8 cosx− 4 sin2 x− 2x2 sin2 x+ 8

x5 sin3 x

=
1

x5

(
x+

8

sin3 x
− 8 cosx

sin3 x
− 4

sinx
− 2x2

sinx

)
for x ∈

(
0, π

2

)
. By virtue of (2.10), (2.11), and (2.6), we have
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f(x) =
1

x5

[
x+

8

x3
+

∞∑
n=2

4(2n− 1)(2n− 2)(22n − 2)

(2n)!
|B2n|x2n−3

+
4

x
+

∞∑
n=1

4(22n − 2)

(2n)!
|B2n|x2n−1

− 8

x3
+

∞∑
n=2

8 · 22n(2n− 1)(n− 1)

(2n)!
|B2n|x2n−3

− 4

x
−
∞∑
n=1

4(22n − 2)

(2n)!
|B2n|x2n−1

− 2x−
∞∑
n=1

2(22n − 2)

(2n)!
|B2n|x2n+1

]

=
1

x5

[
−x+

∞∑
n=2

16(2n− 1)(n− 1)(22n − 1)

(2n)!
|B2n|x2n−3 −

∞∑
n=1

2(22n − 2)

(2n)!
|B2n|x2n+1

]

=
1

x5

[
∞∑
n=3

16(2n− 1)(n− 1)(22n − 1)

(2n)!
|B2n|x2n−3 −

∞∑
n=1

2(22n − 2)

(2n)!
|B2n|x2n+1

]

=
1

x5

[
∞∑
n=1

16(2n+ 3)(n+ 1)(22n+4 − 1)

(2n+ 4)!
|B2n+4|x2n+1 −

∞∑
n=1

2(22n − 2)

(2n)!
|B2n|x2n+1

]

=

∞∑
n=2

[
16(2n+ 3)(n+ 1)(22n+4 − 1)

(2n+ 4)!
|B2n+4| −

2(22n − 2)

(2n)!
|B2n|

]
x2n−4.

Let an = 16(2n+3)(n+1)(22n+4−1)
(2n+4)!

|B2n+4| − 2(22n−2)
(2n)!

|B2n| for n ≥ 2.
By a simple computation, we have a2 = 23

720
.

Furthermore, when n ≥ 3, From Lemma 2.2 one can get

an =
16(2n+ 3)(n+ 1)(22n+4 − 1)

(2n+ 4)!
|B2n+4| −

2(22n − 2)

(2n)!
|B2n|

>
16(2n+ 3)(n+ 1)(22n+4 − 1)

(2n+ 4)!
· 2(2n+ 4)!

(2π)2n+4

1

1− 2−2n−4

− 2(22n − 2)

(2n)!
· 2(2n)!
(2π)2n

1

1− 21−2n

=
4

(π)2n

[
8(2n+ 3)(n+ 1)

π4
− 1

]
> 0.

So the function f(x) is strictly increasing on
(
0, π

2

)
. Moreover, it is easy to obtain

lim
x→0+

f(x) = a2 =
23

720
and lim

x→(π/2)−
f(x) =

128− 16π2 + 16π

π5
.

The proof of Theorem 3.1 is complete. �

3.2. Remark. Since f(x) is an even function we conclude that Theorem 3.1 holds for
all x which satisfy 0 < |x| < π

2
.

3.3. Theorem. For x 6= 0, we have

(3.2) 3 +
1

40
x3 tanhx <

sinhx

x
+ 2

(
tanh x

2
x
2

)
< 3 +

1

40
x3 sinhx.
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The constant 1
40

is the best possible.

Proof. Without loss of generality, we assume that x > 0.
We firstly prove the first inequality of (3.2).
Consider the function F (x) defined by

F (x) =

sinh x
x

+ 2
tanh x

2
x
2
− 3

x3 tanhx

=
cosh 3x− 17 coshx+ 8 cosh 2x− 6x sinh 2x+ 8

2x4(cosh 2x− 1)
.

and let

f(x) = cosh 3x−17 coshx+8 cosh 2x−6x sinh 2x+8 and g(x) = 2x4(cosh 2x−1).
From the power series expansions

(3.3) sinhx =

∞∑
n=0

x2n+1

(2n+ 1)!
and coshx =

∞∑
n=0

x2n

(2n)!
,

it follows that

f(x) = cosh 3x− 17 coshx+ 8 cosh 2x− 6x sinh 2x+ 8

=

∞∑
n=0

32nx2n

(2n)!
−
∞∑
n=0

17x2n

(2n)!
+

∞∑
n=0

22n+3x2n

(2n)!
−
∞∑
n=0

6 · 22n+1x2n+2

(2n+ 1)!
+ 8

=

∞∑
n=0

(
32n + 22n+3 − 17

)
x2n

(2n)!
−
∞∑
n=0

6 · 22n+1x2n+2

(2n+ 1)!
+ 8

=

∞∑
n=1

(
32n + 22n+3 − 17

)
x2n

(2n)!
−
∞∑
n=1

6n22nx2n

(2n)!

=

∞∑
n=3

32n + 22n+3 − 17− 6n22n

(2n)!
x2n

,
∞∑
n=3

anx
2n

and

g(x) = 2x4(cosh 2x− 1)

=

∞∑
n=1

22n+1x2n+4

(2n)!

=

∞∑
n=3

4n(n− 1)(2n− 3)(2n− 1)22n−3x2n

(2n)!

,
∞∑
n=3

bnx
2n.

It is easy to see that the quotient

cn =
an
bn

=
32n + 22n+3 − 17− 6n22n

4n(n− 1)(2n− 3)(2n− 1)22n−3

satisfies c3 = 1
40
, c4 = 51

1120
, c5 = 507

8960
and

cn+1 − cn =
f1 + f2 + f3

2n(2n+ 3)
(
4n2 − 1

)(
n2 − 1

) , (n ≥ 6),
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where

f1 =

(
9

4

)n (
10n2 − 57n+ 23

)
=

(
9

4

)n
(10n(n− 6) + 3(n− 6) + 41) > 0,

f2 =
1

4n
(102n2 + 298n+ 17) > 0,

f3 =144n2 − 184n− 8 = 144n(n− 6) + 680(n− 6) + 4072 > 0.

for n ≥ 6. This means that the sequence cn is increasing. By Lemma 2.8, the function
F (x) is increasing on (0,∞). Moreover, it is not difficult to obtain limx→0+ F (x) = c3 =
1
40
. Therefore, the first inequality in (3.2) holds.
Finally, we prove the second inequality of (3.2).
Define a function G(x) by

G(x) =

sinh x
x

+ 2
tanh x

2
x
2
− 3

x3 sinhx

=
cosh 2x+ 8 coshx− 6x sinhx− 9

x4(cosh 2x− 1)
.

and let

f(x) = cosh 2x+ 8 coshx− 6x sinhx− 9 and g(x) = x4(cosh 2x− 1).

By using (3.3), it follows that

f(x) = cosh 2x+ 8 coshx− 6x sinhx− 9

=

∞∑
n=0

22nx2n

(2n)!
+

∞∑
n=0

8x2n

(2n)!
−
∞∑
n=0

6x2n+2

(2n+ 1)!
− 9

=

∞∑
n=1

(
22n + 8

)
x2n

(2n)!
−
∞∑
n=0

6x2n+2

(2n+ 1)!

=

∞∑
n=1

(
22n + 8

)
x2n

(2n)!
−
∞∑
n=1

12nx2n

(2n)!

=

∞∑
n=3

(
22n + 8− 12n

)
x2n

(2n)!

,
∞∑
n=3

anx
2n

and

g(x) = x4(cosh 2x− 1)

=

∞∑
n=1

22nx2n+4

(2n)!

=
∞∑
n=3

4n(n− 1)(2n− 1)(2n− 3)22n−4x2n

(2n)!

,
∞∑
n=3

bnx
2n.

Let

cn =
an
bn

=
22n − 12n+ 8

4n(n− 1)(2n− 1)(2n− 3)22n−4
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satisfies c3 = 1
40
. Furthermore, when n ≥ 3, by a simple computation, we have

cn+1 − cn = −4(8n− 2)4n − (18n3 + 33n2 − 16n− 11)

n(2n− 3)
(
4n2 − 1

)
(n2 − 1)4n

,

for n ≥ 3.
Since

(8n− 2)4n − (18n3 + 33n2 − 16n− 11)

> (8n− 2)4n2 − (18n3 + 33n2 − 16n− 11)

= 14n3 − 41n2 + 16n+ 11

= 14n(n− 3)2 + 43n(n− 3) + 19(n− 3) + 68 > 0.

This means that the sequence cn is decreasing. By Lemma 2.8, the function G(x) is
decreasing on (0,∞). Moreover, it is not difficult to obtain limx→0+ G(x) = c3 = 1

40
.

This completes the proof of Theorem 3.3 .
�

3.4. Remark. Since F (x) and G(x) both are even functions, we conclude that Theorem
3.3 holds for all x 6= 0.

3.5. Theorem. For x 6= 0,

(3.4) 2 +
23

720
x3 tanhx <

sinhx

x
+

[
tanh(x/2)

x/2

]2
< 2 +

23

720
x3 sinhx.

The both constants 23
720

in (3.4) are the best possible.

Proof. The left-hand side of inequality in (3.4) has been proved in [19], so we only need
to prove the right-hand side of the inequality in (3.4).

Without loss of generality, we assume that x > 0.
Consider the function H(x) defined by

H(x) =

sinh x
x

+
[ tanh(x/2)

x/2

]2 − 2

x3 sinhx

=
x sinhx coshx+ x sinhx+ 4 coshx− 2x2 coshx− 2x2 − 4

x5 sinhx(1 + coshx)

and let

f(x) = x sinhx coshx+ x sinhx+ 4 coshx− 2x2 coshx− 2x2 − 4

and

g(x) = x5 sinhx(1 + coshx).

By the power series expansions in (3.3), we obtain
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f(x) = x sinhx coshx+ x sinhx+ 4 coshx− 2x2 coshx− 2x2 − 4

=

∞∑
n=0

22n

(2n+ 1)!
x2n+2 +

∞∑
n=0

x2n+2

(2n)!
+

∞∑
n=0

4x2n

(2n)!
−
∞∑
n=0

2x2n+2

(2n)!
− 2x2 − 4

=

∞∑
n=0

22n + 1− 2(2n+ 1)

(2n+ 1)!
x2n+2 +

∞∑
n=2

4

(2n)!
x2n

=

∞∑
n=1

22n−2 + 1− 2(2n− 1)

(2n− 1)!
x2n +

∞∑
n=2

4

(2n)!
x2n

=

∞∑
n=3

2n

(
22n−2 − 4n+ 3

)
+ 4

(2n)!
x2n

,
∞∑
n=3

anx
2n

and

g(x) = x5
[
1

2
sinh(2x) + sinhx

]
=

∞∑
n=0

1 + 22n

(2n+ 1)!
x2n+6 =

∞∑
n=3

1 + 22n−6

(2n− 5)!
x2n

=

∞∑
n=3

(
1 + 22n−6

)
(2n− 4)(2n− 3)(2n− 2)(2n− 1)2n

(2n)!
x2n

,
∞∑
n=3

bnx
2n.

Let

cn =
an
bn

=

2n

(
22n−2 − 4n+ 3

)
+ 4(

1 + 22n−6
)
(2n− 4)(2n− 3)(2n− 2)(2n− 1)2n

satisfies

c3 =
23

720
= 0.031 . . . , c4 =

17

336
= 0.01226 . . . .

Furthermore, when n ≥ 4, by a simple computation, we have

cn+1 − cn = −4 f1(n) + f2(n) + f3(n)

n(16 + 4n)(64 + 4n)(n− 2)(2n− 3)
(
4n2 − 1

)
(n2 − 1)

,

where

f1(n) = 16n
(
8n2 + 2n− 6

)
f2(n) = 4n

(
−24n4 − 138n3 + 391n2 + 153n− 382

)
f3(n) = −1536n3 − 256n2 + 2944n− 256

Since n ≥ 4, one can easily check that 4n ≥ 16n2, this implies that

f1(n) + f2(n) > 4n16n2(8n2 + 2n− 6) + 4n
(
−24n4 − 138n3 + 391n2 + 153n− 382

)
= 4n(104n4 − 106n3 + 295n2 + 153n− 382)
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By a simple computation, one has

104n4 − 106n3 + 295n2 + 153n− 382

= 104n(n− 4)3 + 1142n(n− 4)2 + 4439n(n− 4) + 6293(n− 4) + 24790 > 0.

On the other hand, when n ≥ 4, one has 4n > 16, Hence

f1(n) + f2(n) + f3(n)

> 4n(104n4 − 106n3 + 295n2 + 153n− 382)− 1536n3 − 256n2 + 2944n− 256

> 16(104n4 − 106n3 + 295n2 + 153n− 382)− 1536n3 − 256n2 + 2944n− 256

= 1664n4 − 3232n3 + 4464n2 + 5392n− 6368

= 1664n(n− 4)3 + 16736n(n− 4)2 + 58480n(n− 4) + 78032(n− 4) + 305760 > 0.

This means that the sequence cn is decreasing. By Lemma 2.8, the function H(x) is
decreasing on (0,∞). Moreover, it is not difficult to obtain limx→0+ H(x) = c3 = 23

720
.
�

3.6. Remark. Since H(x) is an even function, we conclude that Theorem 3.5 holds for
all x 6= 0.
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Abstract
In the present paper, we introduce and explore new form of continuity
called soft pu-semi-continuity via soft semi-open set in soft topological
spaces. Moreover we introduce the concepts of soft-pu-semi-open and
soft pu-semi-closed functions and discuss many of their characteriza-
tions and properties. It is interesting to mention that the soft functions
define and discuss here are the generalization of soft functions explored
in [7][21].
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1. Introduction
Researchers working in the fields of science including engineering physics, computer

sciences, economics, social sciences and medical sciences usually deals with modelling of
problems having uncertainty present in data and not clear objects. The difficulty arose,
because of failure of classical methods to solve the problems having uncertainties and not
enough information. Researches are going on for the development of new theories and
ideas day by day and a lot of material is available in the literature.
In [15], Molodtsov introduced soft sets theory as a new general mathematical approach
to deal with uncertain data and not clear objects. In soft systems, a very general frame
work has been provided with the involvement of parameters. In [16], they applied suc-
cessfully this approach for modelling the problems having uncertainties. In [13-14], Maji
et. al explored the basics of soft set theory and presented its applications in decision
making problems. Xiao et. al [20] and Pei et. al [18] discussed the relationship among
soft sets and information systems. Using approach of soft sets, Kostek[11] introduced
the criteria to measure sound quality. In [17], Mushrif et. al used the notions of soft set
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theory to develop the remarkable method for the classification of natural textures. Many
researchers worked on the algebraic structures of soft set theory.
Shabir and Naz [19] explored and discussed the basics of soft topological spaces. After
that Hussain [6-7], Hussain and Ahmad [8-9] [1], Aygunoglu et.al [2], Zorlutana et. al
[21] continued studying the properties and introduced many interesting concepts in soft
topological spaces. Bin Chen [3-4] presented and discussed soft semi-open sets and soft-
semi-closed sets in soft topological spaces. S. Hussain [5] continued to add many notions
and concepts toward soft semi-open sets and soft semi-closed sets in soft topological
spaces.
Kharral and Ahmad[10] and then Zorlutana [21] discussed the mappings of soft classes
and their properties in soft topological spaces. Recently, in 2015, S. Hussain[7], estab-
lished fundamental and important characterizations of soft pu-continuous functions, soft
pu-open functions and soft pu-closed functions via soft interior, soft closure, soft bound-
ary and soft derived set.
In the present paper, we introduce and explore new form of continuity called soft pu-
semi-continuity via soft semi-open set in soft topological spaces. Moreover we introduce
the concepts of soft-pu-semi-open and soft pu-semi-closed functions and discuss many of
their characterizations and properties. It is interesting to mention that the soft functions
define and discuss here are the generalization of soft functions introduced in [7] [21].

2. Preliminaries
First we recall some definitions and results, which will use in the sequel.

2.1. Definition. [15] Let X be an initial universe and E be a set of parameters. Let
P (X) denotes the power set of X and A be a non-empty subset of E. A pair (F,A) is
called a soft set over X , where F is a mapping given by F : A→ P (X). In other words,
a soft set over X is a parameterized family of subsets of the universe X . For e ∈ A, F (e)
may be considered as the set of e-approximate elements of the soft set (F,A). Clearly, a
soft set is not a set.

Here we consider only soft sets (F,A) over a universe X in which all the parameters
of set A are same. We denote the family of these soft sets by SS(X)A. For soft subsets,
soft union , soft intersection, soft complement and their properties and relations to each
other; the interested reader is refer to [13-16].

2.2. Definition. [21] The soft set (F,A)∈̃SS(X)A is called a soft point in XA, denoted
by eF , if for the element e ∈ A, F (e) 6= φ and F (ec) = φ, for all e

c

∈ A− {e}.

2.3. Definition. [21] The soft point eF is said to be in the soft set (G,A), denoted by
eF ∈̃(G,A), if for the element e ∈ A, F (e) ⊆ G(e).

2.4. Definition. [21] A soft set (F,A) over X is said to be a null soft set, denoted by
ΦA , if for all e ∈ A, F (e) = φ.

2.5. Definition. [21] A soft set (F,A) over X is said to be an absolute soft set, denoted
by X̃A , if for all e ∈ A, F (e) = X. Clearly, X̃c

A = ΦA and Φc
A = X̃A.

2.6. Definition. [19] Let τ be the collection of soft sets over X, then τ is said to be a
soft topology on X, if
(1) Φ, X̃ belong to τ .
(2) the union of any number of soft sets in τ belongs to τ .
(3) the intersection of any two soft sets in τ belongs to τ .
The triplet (X, τ,E) is called a soft topological space over X.
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2.7. Definition. [19][8] Let (X, τ,E) be a soft topological space over X and A ⊆ E
then
(1) soft interior of soft set (F,A) over X is denoted by (F,A)◦ and is defined as the
union of all soft open sets contained in (F,A). Thus (F,A)◦ is the largest soft open set
contained in (F,A). A soft set (F,A) over X is said to be a soft closed set in X, if its
relative complement (F,A)

c

belongs to τ .
(2) soft closure of (F,A), denoted by (F,A) is the intersection of all soft closed super sets
of (F,A). Clearly (F,A) is the smallest soft closed set over X which contains (F,A).
(3) soft boundary of soft set (F,A) over X is denoted by (F,A) and is defined as (F,A) =

(F,A)∩ ((F,A)′). Obviously (F,A) is a smallest soft closed set over X containing (F,A).

For detailed properties of soft interior, soft closure and soft boundary, we refer to [8].

2.8. Definition. [3] Let (X, τ,E) be a soft topological space over X with A ⊆ E and
(F,A) be a soft set over X. Then (F,A) is called soft semi-open set if and only if there
exists a soft open set (G,A) such that (G,A)⊆̃(F,A)⊆̃(G,A). The set of all soft semi-
open sets is denoted by S.S.O(X). Note that every soft open set is soft semi-open set.
A sot set (F,A) is said to be soft semi-closed if its soft relative complement is soft semi-
open . Equivalently there exists a soft closed set (G,A) such that (G,A)◦⊆̃(F,A)⊆̃(G,A).
Note that every soft closed set is soft semi-closed set.

2.9. Definition. [5] Let (X, τ,E) be a soft topological space over X and A ⊆ E. Then
(i) soft semi-interior of soft set (F,A) over X is denoted by sints(F,A) and is defined as
the union of all soft semi-open sets contained in (F,A).
(ii) soft semi-closure of (F,A) over X is denoted by scls(F,A) is the intersection of all
soft semi-closed super sets of (F,A).
(3) soft semi-exterior of soft set (F,A) over X is denoted by sexts(F,A) and is defined
as sexts(F,A) = sints((F,A)c).
(4) soft semi-boundary of soft set (F,A) over X is denoted by sbds(F,A) and is defined
as sbds(F,A) = (sints(F,A) ∪ sexts(F,A))c.

For detailed properties of soft semi-interior, soft semi-exterior, soft semi-closure and
soft semi-boundary, we refer to [5].

2.10. Definition. [10] Let SS(X)A and SS(Y )B be families of soft sets. u : X → Y
and p : A→ B be mappings. Then a function fpu : SS(X)A → SS(Y )B defined as :
(1) Let (F,A) be a soft set in SS(X)A. The image of (F,A) under fpu , written as
fpu(F,A) = (fpu(F ), p(A)), is a soft set in SS(Y )B such that

fpu(F )(y) =


⋃

x∈p−1(y)∩A u(F (x)), p−1(y) ∩A 6= φ

φ, otherwise ,

for all y ∈ B.
(2) Let (G,B) be a soft set in SS(Y )B . Then the inverse image of (G,B) under fpu ,
written as f−1

pu (G,B) = (f−1
pu (G), p−1(B)), is a soft set in SS(X)A such that

f−1
pu (G)(x) =


u−1(G(p(x))), p(x) ∈ B

φ, otherwise ,

for all x ∈ A.

The soft function fpu is called soft surjective, if p and u are surjective. The soft function
fpu is called soft injective, if p and u are injective.

For detailed properties of soft functions, we refer to [7][21].
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3. Properties of soft pu-semi-continuous functions
3.1. Definition. Let (X, τ,A) and (Y, τ∗, B) be soft topological spaces over X and Y
respectively and u : X → Y and p : A → B be mappings. Then the soft function
fpu : SS(X)A → SS(Y )B is soft pu-semi-continuous if and only if for any soft open set
(G,B) in SS(Y )B , f−1

pu (G,B) is a soft semi-open set in SS(X)A.
Clearly it follows from the definition that the soft function fpu : SS(X)A → SS(Y )B is
soft pu-semi-continuous if and only if for any soft closed set (G,B) in SS(Y )B , f−1

pu (G,B)
is a soft semi-closed set in SS(X)A.

3.2. Theorem. Let (X, τ,A) and (Y, τ∗, B) be soft topological spaces over X and Y

respectively and soft point eF ∈̃X̃A. Then the soft function fpu : SS(X)A → SS(Y )B is
soft pu-semi-continuous if and only if for each soft open set (G,B) in SS(Y )B such that
fpu(eF )⊆̃(G,B), there exists soft semi-open set (F,A) in SS(X)A such that eF ∈̃(F,A)

and fpu(F,A)⊆̃(G,B).

Proof. (⇒) Let fpu is soft pu-semi-continuous function. Then for soft open set (G,B)
in SS(Y )B , f−1

pu (G,B) is soft semi-open in SS(X)A. We show that for each soft open
set (G,B) containing fpu(eF ), there exists soft semi-open set (F,A) in SS(X)A such
that eF ∈̃(F,A) and fpu(F,A)⊆̃(G,B). Let eF ∈̃f−1

pu (G,B), which is soft semi-open and
(F,A)=̃f−1

pu (G,B). Then eF ∈̃(F,A) and for soft open set (G,B),
fpu(F,A)⊆̃fpu(f−1

pu (G,B))⊆̃(G,B), where (G,B) is soft open.
(⇐) Suppose that (G,B) be a soft open set in SS(Y )B . We prove that inverse image
of soft open set in SS(Y )B is soft semi-open set in SS(X)A. Let eF ∈̃f−1

pu (G,B). Then
fpu(eF )∈̃(G,B). Thus there exists soft semi-open set (F,AeF ) such that eF ∈̃(F,AeF )

and fpu(F,AeF )⊆̃(G,B). Then eF ∈̃(F,AeF )

⊆̃f−1
pu (G,B) and f−1

pu (G,B)=̃
⋃

eF ∈̃f
−1
pu (G,B)

(F,AeF ). This follows that f−1
pu (G,B) is soft

semi-open, by Theorem 3.2[3]. Hence fpu is soft pu-semi-continuous. �

3.3. Theorem. Suppose fpu : SS(X)A → SS(Y )B be a soft function. Then the following
statements are equivalent:
(1) fpu is soft pu-semi-continuous.
(2) For any soft subset (G,B) of SS(Y )B, sbds(f−1

pu (G,B))⊆̃f−1
pu ((G,B)).

(3) For any soft subset (F,A) of SS(X)A, fpu(scls(F,A))⊆̃(fpu(F,A)).

Proof. (1)⇒ (2) Let fpu is soft pu-semi-continuous and (G,B) be a soft set in SS(Y )B .
So, sbds(f−1

pu (G,B))=̃scls(f−1
pu (G,B)) ∩ scls((f−1

pu (G,B))c)

⊆̃scls(f−1
pu ((G,B))∩̃scls(f−1

pu (((G,B)c)) =̃f−1
pu ((G,B))∩̃f−1

pu ((G,B))

=̃f−1
pu ((G,B)∩̃((G,B)c))=̃f−1

pu ((G,B)). Hence sbds(f−1
pu (G,B))⊆̃f−1

pu ((G,B)).
(2)⇒ (1) Suppose that (G,B) be a soft closed set in SS(Y )B . We prove that f−1

pu (G,B)

is soft semi-closed in SS(X)A. As sbds(f−1
pu (G,B))⊆̃f−1

pu ((G,B))

⊆̃f−1
pu (G,B). This follows that sbds(f−1

pu (G,B))⊆̃f−1
pu (G,B). Therefore f−1

pu (G,B) is soft
semi-closed in SS(X)A. This gives that fpu is soft pu-semi-continuous.
(1) ⇒ (3) Suppose (F,A) be any soft set in SS(X)A. As (fpu(F,A)) is soft closed in
SS(Y )B . Therefore, fpu is soft pu-semi-continuous implies that f−1

pu ((fpu(F,A))) is soft
semi-closed in SS(X)A with (F,A)⊆̃f−1

pu ((fpu(F,A))). This implies that
scls(F,A)⊆̃scls(f−1

pu ((fpu(F,A))))=̃f−1
pu ((fpu(F,A))). Which implies that

fpu(scls(F,A))⊆̃fpu(f−1
pu ((fpu(F,A)))). Hence fpu(scls(F,A))⊆̃(fpu(F,A)).

(3) ⇒ (1) Suppose (G,B) be soft closed in SS(Y )B . We prove that f−1
pu (G,B) is soft

semi-closed. By (3), fpu(scls(f−1
pu (G,B)))⊆̃(fpu(f−1

pu (G,B)))

⊆̃(G,B)=̃(G,B). This follows that scls(f−1
pu (G,B))⊆̃f−1

pu fpu(scls(f−1
pu (G,B)))⊆̃
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f−1
pu (G,B). Consequently scls(f−1

pu (G,B))⊆̃f−1
pu (G,B). This shows that f−1

pu (G,B) is soft
semi-closed in SS(X)A. Thus fpu is soft pu-semi-continuous. �

3.4. Theorem. A soft function fpu : SS(X)A → SS(Y )B is soft pu-semi-continuous if
and only if scls(f−1

pu (G,B))⊆̃f−1
pu ((G,B)), for any soft set (G,B) in SS(Y )B.

Proof. (⇒) Suppose that fpu is soft pu-semi-continuous. Then by above Theorem 3.3,
we get

fpu(scls(F,A))⊆̃(fpu(F,A)) . . . (A)

Suppose (G,B) be any soft set in SS(Y )B . Take
(F,A)=̃f−1

pu (G,B) then fpu(scls(f−1
pu (G,B)))⊆̃(fpuf

−1
pu (G,B))⊆̃(G,B) . This follows that

fpu(scls(f−1
pu (G,B)))⊆̃(G,B).

(⇐) Suppose that fpu(scls(f−1
pu (G,B)))⊆̃(G,B), for any soft subset (G,B) in SS(Y )B .

Let (G,B)=̃fpu(F,A), for any soft set (F,A) in SS(X)A. This gives
scls(F,A)⊆̃scls(f−1

pu (G,B))⊆̃f−1
pu ((fpu(F,A)). This follows that fpu(scls(F,A))⊆̃

(fpu(F,A)). Hence by above Theorem 3.3, fpu is soft pu-semi-continuous. �

3.5. Lemma. [3][5] The following properties of soft set (F,A) in SS(X)A are equivalent:
(1) (F,A) is soft semi-closed.
(2) ((F,A))◦⊆̃(F,A).
(3) (F,A)c is soft semi-open.

3.6. Theorem. Let fpu : SS(X)A → SS(Y )B be a soft function. Then the following
statements are equivalent:
(1) fpu is soft pu-semi-continuous.
(2) For any soft set (G,B) in SS(Y )B, {(f−1

pu (G,B))}◦⊆̃f−1
pu ((G,B)) .

(3) For any soft set (F,A) in SS(X)A, fpu({(F,A)}◦)⊆̃(fpu(F,A)).

Proof. (1) ⇒ (2) Suppose (G,B) be any soft set in SS(Y )B . Then using soft pu-semi-
continuity of fpu, f−1

pu ((G,B)) is a soft semi-closed. Using Lemma 3.5 and (G,B)⊆̃(G,B),

we have f−1
pu ((G,B))⊇̃((f−1

pu ((G,B))))◦⊇̃((f−1
pu (G,B)))◦. This follows that

{(f−1
pu (G,B))}◦⊆̃f−1

pu ((G,B)).
(2)⇒ (3) Suppose that (F,A) be any soft set in SS(X)A. Take (G,B)=̃fpu(F,A). Then
(F,A)⊆̃f−1

pu (G,B). Using our supposition, we get ((F,A))◦⊆̃((f−1
pu (G,B)))◦

⊆̃f−1
pu ((G,B)). This implies that fpu(((F,A))◦)⊆̃fpuf−1

pu ((G,B))⊆̃(G,B)

=̃(fpu(F,A)).
(3)⇒ (1) Suppose that(G,B) be any soft closed set in SS(Y )B . Take (F,A)=̃

f−1
pu (G,B), then fpu(F,A)⊆̃(G,B). Using our supposition, we get

fpu(((F,A))◦)⊆̃(fpu(F,A))⊆̃(G,B)=̃(G,B) ..... (B)

By (B), we have ((F,A))◦⊆̃f−1
pu fpu(((F,A))◦)⊆̃f−1

pu ((fpu(F,A)))⊆̃f−1
pu ((G,B))=̃

f−1
pu (G,B). This gives ((F,A))◦⊆̃f−1

pu (G,B)=̃(F,A). Lemma 3.5 implies that
f−1
pu (G,B)=̃(F,A) is a soft semi-closed set. Hence fpu is soft pu-semi-continuous. �

3.7. Definition. Let (X, τ,A) be a soft topological spaces over X, (F,A) be a soft
set in SS(X)A and soft point eF ∈̃X̃A. Then eF is called a soft semi-limit point of a
soft set (F,A), if (H,A)∩̃((F,A)−̃{eF }) ˜6=φ̃, for any soft semi-open set (H,A) such that
eF ∈̃(H,A). The set of all soft semi-limit point of (F,A) is called as soft semi-derived set
of (F,A) and is denoted by sds(F,A).
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Note that if (F,A)⊆̃(H,A) then sds(F,A)⊆̃sds(H,A)..... (C)

3.8. Remark. Clearly eF is a soft semi-limit point of (F,A) if and only if
eF ∈̃scls((F,A)−̃{eF }).

In the following theorem, we discuss the properties of soft semi-derived set "sds".

3.9. Theorem. Let (X, τ,A) be a soft topological spaces over X and (F,A) be a soft set
in SS(X)A. Then
(1) scls(F,A)=̃(F,A)∪̃sds(F,A).
(2) sds((F,A)∪̃(H,A))=̃sds(F,A)∪̃sds(H,A).
In general,
(3)

⋃
i sd

s(F,Ai)=̃sd
s(
⋃

i(F,Ai)).
(4) sds(sds(F,A))⊆̃sds(F,A).
(5) scls(sds(F,A))=̃sds(F,A).

Proof. (1) Suppose eF ∈̃scls(F,A). Then for any soft semi-closed set (K,A) such that
(F,A)⊆̃(K,A), we have eF ∈̃(K,A). Now we consider two cases:
Case (i) If eF ∈̃(F,A), then eF ∈̃(F,A)∪̃sds(F,A).
Case (ii) If eF /̃∈(F,A), then we prove that eF ∈̃scls(F,A).
For this consider (L,A) is a soft semi-open set such that eF ∈̃(L,A). Then (L,A)∩̃(F,A) ˜6=φ̃.
If not, then , (F,A)⊆̃(L,A)c=̃(K,A), where (K,A) is a soft semi-closed soft superset of
(F,A) such that eF /̃∈(F,A). Which is contradiction to the fact that eF soft belongs to
every soft semi-closed soft superset (K,A) of (F,A). This follows that eF ∈̃sds(F,A).
This implies that eF ∈̃(F,A)∪̃sds(F,A).
Conversely, suppose that eF ∈̃(F,A)∪̃sds(F,A), we prove that eF ∈̃scls(F,A). If eF ∈̃(F,A)
then eF ∈̃scls(F,A). If eF ∈̃sds(F,A), then we show that eF is in every soft semi-closed
soft superset of (F,A). Contrarily suppose that there is a soft semi-closed soft super-
set (K,A) of (F,A) such that eF /̃∈(F,A). This follows that eF ∈̃(K,A)c=̃(L,A)(say),
which is soft semi-open and (L,A)∩̃(F,A)=̃φ̃. This gives eF /̃∈sds(F,A). This contradic-
tion proves that eF ∈̃scls(F,A). Hence scls(F,A)=̃(F,A)∪̃sds(F,A). This completes the
proof of (1).
(2) First we prove that sds((F,A)∪̃(H,A))⊆̃sds(F,A)∪̃sds(H,A).
Suppose eF ∈̃sds((F,A)∪̃(H,A)). Then eF ∈̃scls(((F,A)∪̃(H,A))−̃{eF })
or eF ∈̃scls(((F,A)−̃{eF })∪̃((H,A)−̃{eF }) implies eF ∈̃scls((F,A)−̃{eF })
or eF ∈̃scls((H,A)−̃{eF }). This gives eF ∈̃sds(F,A) or eF ∈̃sds(H,A) . Therefore
eF ∈̃sds(F,A)∪̃sds(H,A). This proves sds((F,A)∪̃(H,A))⊆̃sds(F,A)∪̃sds(H,A). The
reverse inclusion follows form property(C).
(3) This directly follows from property (C).
(4) Suppose that eF /̃∈sds(F,A). Then eF /̃∈scls((F,A)−̃{eF }). This follows that there is
a soft semi-open set (L,A) such that eF ∈̃(L,A) with (L,A)∩̃((F,A)−̃{eF })
=̃φ̃. We show that eF /̃∈sds(sds(F,A)). Contrarily suppose that eF ∈̃sds(sds(F,A)). This
implies that eF ∈̃scls(sds(F,A)−̃{eF }). eF ∈̃(L,A) follows that
(L,A)∩̃(sds(F,A)−̃{eF }) ˜6=φ̃. Thus there exists a qF ˜6=eF such that qF ∈̃(L,A)
∩̃(sds(F,A)). This implies that qF ∈̃((L,A)−̃{eF })∩̃(sds(F,A)−̃{eF }). Therefore
((L,A)−̃{eF })∩̃(sds(F,A)−̃{eF }) ˜6=φ̃. This is contradiction to the fact that
((L,A)∩̃(sds(F,A)−̃{eF })=̃φ̃. This follows that eF /̃∈sds(sds(F,A)). Hence
sds(sds(F,A))⊆̃sds(F,A). This proves (4).
(5) The proof follows form (1), (2) and (4). �

3.10. Theorem. Let fpu : SS(X)A → SS(Y )B be a soft function. Then the following
statements are equivalent:
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(1) fpu is soft pu-semi-continuous.
(2) For any soft set (F,A) in SS(X)A, fpu(sds(F,A))⊆̃(fpu(F,A)).

Proof. (1) ⇒ (2) Let fpu be soft pu-semi-continuous and (F,A) be any soft set in
SS(X)A. (fpu(F,A)) is soft closed implies that f−1

pu (fpu(F,A)) is soft semi-closed in
SS(X)A. (F,A)⊆̃f−1

pu (fpu(F,A))⊆̃f−1
pu ((fpu(F,A))). This follows that

scls(F,A)⊆̃scls(f−1
pu ((fpu(F,A))))=̃f−1

pu ((fpu(F,A))). This implies that
fpu(sds(F,A))⊆̃fpu(scls(F,A))⊆̃fpuf−1

pu ((fpu(F,A)))⊆̃(fpu(F,A)). Therefore,
fpu(sds(F,A))⊆̃(fpu(F,A)).
(2) ⇒ (1) Let fpu(sds(F,A))⊆̃(fpu(F,A)), for any soft set (F,A) in SS(X)A. Suppose
that (G,B) be any soft closed subset in SS(Y )B . We prove that f−1

pu (G,B) is soft semi-
closed. By our supposition, fpu(sds(f−1

pu (G,B)))⊆̃(fpu(f−1
pu (G,B)))

⊆̃(G,B)=̃(G,B). This follows that fpu(sds(f−1
pu (G,B)))⊆̃(G,B). This implies that

sds(f−1
pu (G,B))⊆̃f−1

pu (G,B). This follows that f−1
pu (G,B) is soft semi-closed. Hence fpu

is soft pu-semi-continuous. �

3.11. Theorem. Let fpu : SS(X)A → SS(Y )B be a soft function. Then fpu is soft pu-
semi-continuous if and only if for any soft set (G,B) in SS(Y )B, f−1

pu ((G,B)◦)⊆̃sints
(f−1

pu (G,B)).

Proof. (⇒) Since for any soft set G,B) in SS(Y )B , (G,B)◦=̃((G,B)c)c [5]. This fol-
lows that f−1

pu ((G,B)◦)=̃f−1
pu (((G,B)c)c)=̃(f−1

pu ((G,B)c))c. Since fpu is soft pu-semi-
continuous, by Theorem 3.4, we get scls(f−1

pu ((G,B)c)⊆̃
f−1
pu ((G,B)c). Therefore f−1

pu ((G,B)◦)⊆̃scls((f−1
pu ((G,B)c))c). This implies that

f−1
pu ((G,B)◦)⊆̃(scls((f−1

pu (G,B))c))c. Thus f−1
pu ((G,B)◦)⊆̃X − (scls(f−1

pu (G,B)))c=̃

sints(f−1
pu (G,B)).

(⇐) Suppose that (G,B) be any soft open set in SS(Y )B . Then (G,B)◦=̃(G,B).
Using our supposition, we get f−1

pu (G,B)=̃f−1
pu ((G,B)◦)⊆̃sints(f−1

pu (G,B)). This fol-
lows that f−1

pu (G,B)⊆̃sints(f−1
pu (G,B)). But sints(f−1

pu (G,B))⊆̃f−1
pu (G,B). Therefore,

f−1
pu (G,B)=̃sints(f−1

pu (G,B)). This shows that f−1
pu (G,B) is soft semi-open. Hence fpu

is soft pu-semi-continuous. �

4. Properties of soft pu-semi-open functions
4.1. Definition. A soft set (F,A) in SS(X)A is said to be a soft semi-nbd of a soft
point eF ∈̃X̃A, if there exists a soft semi-open set (H,A) such that eF ∈̃(H,A)⊆̃(F,A).

4.2. Definition. Let (X, τ,A) and (Y, τ∗, B) be soft topological spaces over X and Y
respectively and u : X → Y and p : A → B be mappings. Then the soft function
fpu : SS(X)A → SS(Y )B is soft pu-semi-open if and only if for any soft open set (F,A)
in SS(X)A, fpu(F,A) is soft semi-open in SS(Y )B .

4.3. Lemma. If (F,A) is soft semi-open and (H,A) be any soft set such that (F,A)⊆̃(H,A).
Then (F,A)⊆̃(H,A)◦.

Proof. (F,A) is soft semi-open implies that (F,A)⊆̃(F,A)◦[5]. Moreover,
(F,A)⊆̃(H,A) implies that (F,A)◦⊆̃(H,A)◦. Thus (F,A)◦⊆̃(H,A)◦ follows that
(F,A)⊆̃(H,A)◦. �

4.4. Theorem. A soft function fpu : SS(X)A → SS(Y )B is soft pu-semi-open if and
only if for any soft subset (F,A) in SS(X)A, fpu((F,A)◦)⊆̃(fpu(F,A))◦.
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Proof. (⇒) Suppose that fpu be soft pu-semi-open. Then fpu((F,A)◦)⊆̃fpu(F,A)) im-
plies that fpu((F,A)◦) is soft semi-open. Thus by Lemma 4.3,
fpu((F,A)◦)⊆̃(fpu(F,A))◦.
(⇐) Suppose that (H,A) be any soft open set in SS(X)A. Then
(fpu(H,A))◦⊆̃fpu(H,A))⊆̃fpu((H,A)◦)⊆̃(fpu(H,A))◦. So fpu(H,A)) is soft semi-open.
Which implies that fpu is soft pu-semi-open. Hence the proof. �

The following theorem can be proved in similar fashion.

4.5. Theorem. A soft function fpu : SS(X)A → SS(Y )B is soft pu-semi-open if and
only if for any soft subset (G,B) in SS(Y )B, (f−1

pu (G,B))◦⊆̃f−1
pu ((G,B)◦).

4.6. Theorem. If a soft function fpu : SS(X)A → SS(Y )B be soft pu-semi-continuous
and soft pu-semi-open and (F,A) be soft semi-open set in SS(X)A. Then fpu(F,A) is
soft semi-open in SS(Y )B.

Proof. Since (F,A) is soft semi-open, then there exists soft open set (H,A) in SS(X)A
such that (H,A)⊆̃(F,A)⊆̃(H,A). This implies that fpu(H,A)⊆̃fpu(F,A)

⊆̃fpu((H,A))⊆̃(fpu(H,A)). Thus fpu(F,A) is soft semi-open in SS(Y )B . This proves as
required. �

The proof of the following lemma and proposition is easy and thus omitted.

4.7. Lemma. Let (F,A) be any soft set and (H,A) be soft semi-closed set in SS(X)A
such that (F,A)⊆̃(H,A), then sbds(F,A)⊆̃(H,A).

4.8. Proposition. If (F,A)∩̃(H,A)=̃φ̃ and (F,A) is soft open, then (F,A)∩̃(H,A)=̃φ̃.

The following lemma directly follows form Proposition 4.8.

4.9. Lemma. If (F,A)∩̃(H,A)=̃φ̃ and (F,A) is soft open in SS(X)A, then
(F,A)∩̃(H,A)=̃φ̃.

4.10. Theorem. If fpu : SS(X)A → SS(Y )B be a soft bijective, soft function and
(G,B) be any soft subset in SS(Y )B. Then fpu is soft pu-semi-open if and only if
f−1
pu (sbds(G,B)⊆̃(f−1

pu (G,B)) .

Proof. (⇒) Let soft function fpu be soft pu-semi-open and (G,B) be soft open set in
SS(Y )B . Take

(F,A)=̃(f−1
pu (G,B))c . . . (D)

This follows that (F,A) is soft open. Therefore fpu(F,A) is soft semi-open in SS(Y )B .
This follows that (fpu(F,A))c is soft semi-closed in SS(Y )B . Therefore by equation (D)
and soft bijectivity of soft function fpu, we have (G,B)⊆̃(fpu(F,A))c. Using Lemma 4.7,
we get f−1

pu (sbds(G,B))⊆̃
f−1
pu ((fpu(F,A))c)⊆̃(F,A)c =̃(((f−1

pu (G,B)))c)c=̃(f−1
pu (G,B)). This gives

f−1
pu (sbds(G,B))⊆̃(f−1

pu (G,B)).
(⇐) Let (H,A) be soft open in SS(X)A. Take (G,B)=̃(fpu(H,A))c. Clearly
(G,B)∩̃fpu(H,A)=̃φ̃, follows (H,A)∩̃f−1

pu (G,B)=̃φ̃. Lemma 4.9 implies that
(H,A)∩̃(f−1

pu (G,B))=̃φ̃. Therefore f−1
pu (sds(G,B))⊆̃(f−1

pu (G,B)) implies (H,A)∩̃
f−1
pu (sbds(G,B))=̃φ̃. Thus, φ̃=̃fpu((H,A)∩̃f−1

pu (sbds(G,B)))=̃fpu(H,A)∩̃sbds(G,B) gives
sbds(G,B)⊆̃(fpu(H,A))c=̃(G,B). Therefore (G,B) is soft semi-closed. Hence fpu(H,A)
is soft semi-open. Hence the proof. �
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4.11. Theorem. Let fpu : SS(X)A → SS(Y )B be a soft function. Then the following
statements are equivalent:
(1) fpu is soft pu-semi-open.
(2) For any soft set (F,A) in SS(X)A , fpu((F,A)◦)⊆̃sints(fpu((F,A)) .
(3) For each eF ∈̃X̃A and each soft open-nbd (U,A) of soft point eF , there exists a soft
semi-open-nbd (V,A) of fpu(eF ) such that (V,A)⊆̃fpu(U,A).

Proof. (1) ⇒ (2) Let fpu be soft pu-semi-open and (F,A) be any soft set in SS(X)A.
Then fpu((F,A)◦) is soft semi-open and fpu((F,A)◦)⊆̃fpu(F,A) implies that
fpu((F,A)◦)⊆̃sints(fpu((F,A)).
(2) ⇒ (3) Suppose that (U,A) be any soft open-nbd of soft point eF ∈̃X̃A. Then there
exists a soft open set (O,A) such that eF ∈̃(O,A)⊆̃(U,A). Using our supposition, we get
fpu(O,A)=̃fpu((O,A)◦)⊆̃sints(fpu((O,A)). This follows that
fpu(O,A)⊆̃sints(fpu((O,A)). Consequently, fpu(O,A) is soft semi-open-nbd in SS(Y )B
such that fpu(eF )∈̃fpu(O,A)⊆̃fpu(U,A).
(3)⇒ (1) Suppose that (U,A) be a soft open set in SS(X)A. For any qF ∈̃fpu(U,A), by
(3), there exists a soft semi-open-nbd (VqF , A) of qF ∈̃ỸB such that (VqF , A)⊆̃
fpu(U,A). Since (VqF , A) is a soft semi-open-nbd of qF . Then there exists a soft
semi-open set (HqF , A) in SS(Y )B such that qF ∈̃(HqF , A)⊆̃(VqF , A). This implies that
fpu(U,A)=̃

⋃̃
{(HqF , A) : qF ∈̃fpu(U,A)} is a soft semi-open in SS(Y )B [3]. Consequently,

fpu is a soft pu-semi-open function. �

4.12. Lemma. Let (F,A) and (G,A) be soft sets in SS(X)A. Then
(1) ((F,A)−̃(H,A))⊇̃(F,A)−̃(H,A).
(2) ((F,A)−̃(H,A))◦⊆̃(F,A)◦−̃(H,A)◦.
(3) If (F,A) is soft open, then (F,A)∩̃(H,A)⊆̃((F,A)∩̃(H,A)).

Proof. (1). Suppose that eF ∈̃(F,A)−̃(H,A). Then eF ∈̃(F,A) and eF /̃∈(H,A). Thus
there exists a soft open nbd (K,A) of eF such that (K,A)∩̃(F,A) ˜6=φ̃ and (K,A)∩̃(H,A)=̃φ̃.
This follows that (K,A)∩̃((F,A)−̃(H,A)) ˜6=φ̃. Thus
eF ∈̃((F,A)−̃(H,A)).
(2) This follows directly by (1) and using Demorgan’s law.
(3) Given that (F,A) is soft open. Thus (F,A)=̃(F,A)◦. Thus (F,A)∩̃(H,A)=̃

(H,A)∩̃(F,A)◦=̃(H,A)−̃((F,A)◦)c=̃(H,A)−̃((F,A)c)⊆̃((H,A)−̃(F,A)c)

=̃((H,A)∩̃(F,A))=̃((F,A)∩̃(H,A)). Consequently, (F,A)∩̃(H,A)⊆̃((F,A)∩̃(H,A)). �

4.13. Theorem. Let fpu : SS(X)A → SS(Y )B be a soft bijective, soft function. Then
fpu is soft pu-semi-open if and only if for any soft set (G,B) in SS(Y )B,
f−1
pu (scls(G,B))⊆̃(f−1

pu (G,B)).

Proof. (⇒) Suppose that (G,B) be any soft set in SS(Y )B . Take

(H,A)=̃((f−1
pu (G,B)))c ...... (E)

This is clear that (H,A) is a soft open set in SS(X)A. Then by our supposition,
fpu(H,A) is a soft semi-open set in SS(Y )B , or (fpu(H,A))c is soft semi-closed set
in SS(Y )B . As fpu is soft onto, from (E), it gives (G,B)⊆̃(fpu(H,A))c. Therefore, we
get scls(G,B)⊆̃(fpu(H,A))c. fpu is soft one-one, implies that
f−1
pu (scls(G,B))⊆̃(f−1

pu ((fpu(H,A))))c=̃(f−1
pu fpu(H,A))c⊆̃(H,A)c=̃(f−1

pu (G,B)).
(⇐) Suppose that (H,A) be any soft open set in SS(X)A. Take (G,B)=̃(fpu(H,A))c.
Since fpu is soft bijective, then by our supposition, fpu(H,A)∩̃scls(G,B)=̃
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fpu((H,A)∩̃f−1
pu (scls(G,B)))⊆̃fpu((H,A)∩̃(f−1

pu (G,B))). Since (H,A) is soft open, there-
fore above Lemma 4.12(3) implies that (H,A)∩̃(f−1

pu (G,B))

⊆̃((H,A)∩̃f−1
pu (G,B)). Furthermore, it is obvious that (H,A)∩̃f−1

pu (G,B)=̃φ̃. This im-
plies that fpu(H,A)∩̃
scls(G,B)=̃φ̃ and hence scls(G,B)⊆̃(fpu(H,A))c=̃(G,B). This follows that (G,B) is a
soft semi-closed and hence fpu(H,A) is a soft semi-open set in SS(Y )B . This shows that
fpu is a soft pu-semi-open. �

4.14. Theorem. Let fpu : SS(X)A → SS(Y )B be soft bijective, soft function. Then fpu
is soft pu-semi-open if and only if for any soft subset (V,B) in SS(Y )B and for any soft
closed set (F,A) in SS(X)A such that f−1

pu (V,B)⊆̃(F,A), there exists a soft semi-closed
set (G,B) in SS(Y )B with (V,B)⊆̃(G,B) such that f−1

pu (G,B)⊆̃(F,A).

Proof. (⇒) Suppose that (V,B) be soft set in SS(Y )B and (F,A) be any soft closed set
in SS(X)A such that f−1

pu (V,B)⊆̃(F,A). Take (G,B)=̃(fpu((F,A)c))c. fpu is soft pu-
semi-open implies that (G,B) is soft semi-closed sets in SS(Y )B . Since fpu is bijective,
it follows from f−1

pu (V,B)⊆̃(F,A) that (V,B)⊆̃(G,B). By simple calculations, we have
f−1
pu (G,B)⊆̃(F,A).

(⇐) Let (U,A) be soft open set in SS(X)A. Take (V,B)=̃(fpu(U,A))c. Then (U,A)c is
a soft closed set such that f−1

pu (V,B)⊆̃(U,A)c. By hypothesis, there exists a soft semi-
closed set (G,B) in SS(Y )B such that (V,B)⊆̃(G,B) and f−1

pu (G,B)⊆̃
(U,A)c. On the other hand, it follows from (V,B)⊆̃(G,B) that fpu(U,A)⊆̃(G,B)c. Hence
we get fpu(U,A)=̃(G,B)c, which is soft semi-open. This follows that soft function fpu is
soft pu-semi-open. �

5. Properties of soft pu-semi-closed functions
5.1. Definition. Let (X, τ,A) and (Y, τ∗, B) be soft topological spaces over X and Y
respectively and u : X → Y and p : A → B are mappings. Then the soft function
fpu : SS(X)A → SS(Y )B is soft pu-semi-closed if and only if for any soft closed set
(F,A) in SS(X)A, fpu(F,A) is soft semi-closed in SS(Y )B .

5.2. Theorem. Let fpu : SS(X)A → SS(Y )B be a soft function and (F,A) be soft set
in SS(X)A. Then fpu is soft pu-semi-closed if and only if
fpu((F,A))⊇̃{(fpu(F,A))}◦.

Proof. (⇒) Suppose that fpu is a soft pu-semi-closed function and (F,A) be soft set in
SS(X)A. Then fpu((F,A)) is soft semi-closed in SS(Y )B . Then by Lemma 3.5, we get
fpu((F,A))⊇̃{fpu((F,A))}◦⊇̃{(fpu(F,A))}◦. This follows that fpu((F,A))⊇̃{(fpu(F,A))}◦.
(⇐) Let (F,A) be a soft closed set in SS(X)A. Then by hypothesis, we have
{(fpu(F,A))}◦⊆̃fpu((F,A))=̃fpu(F,A). By Lemma 3.5, fpu(F ) is soft semi-closed in
SS(Y )B . This implies that fpu is soft pu-semi-closed. �

5.3. Theorem. Let fpu : SS(X)A → SS(Y )B be a soft function and (F,A) be soft set
in SS(X)A. Then fpu is soft semi-closed if and only if scls(F,A)⊆̃fpu((F,A)).

Proof. (⇒) Let fpu : SS(X)A → SS(Y )B be a soft function and (F,A) be soft set
in SS(X)A. Then fpu(F,A) is soft semi-closed. Since fpu(F,A)⊆̃fpu((F,A)), then
scls(fpu(F,A))⊆̃fpu((F,A)). Therefore scls(fpu(F,A))⊆̃fpu((F,A)).
(⇐) This follows from Theorem 5.2. �
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5.4. Theorem. Let fpu : SS(X)A → SS(Y )B be a soft surjective, soft function. Then
fpu is soft pu-semi-closed if and only if for any soft subset (G,B) in SS(Y )B and any
soft open set (F,A) in SS(X)A such that f−1

pu (G,B)⊆̃(F,A), there exists a soft semi-open
set (V,B) in SS(Y )B with (G,B)⊆̃(V,B) such that f−1

pu (V,B)⊆̃(F,A).

Proof. (⇒) Let (G,B) be any soft set in SS(Y )B and (F,A) be any soft open set in
SS(X)A such that f−1

pu (G,B)⊆̃(F,A). Take

(V,B)=̃(fpu((F,A)c))c ..... (F)

Then (V,B) is soft semi-open set. Since f−1
pu (G,B)⊆̃(F,A). Simple calculations give

(G,B)⊆̃(V,B). Moreover, by (F), we have f−1
pu (V,B)=̃(f−1

pu (fpu((F,A)c))c

⊆̃((F,A)c)c=̃(F,A).
(⇐) Let (F,A) be any soft closed set in SS(X)A and eG be an arbitrary soft point
in (fpu(F,A))c, then f−1

pu (eG)⊆̃(f−1
pu (fpu(F,A)))c⊆̃(F,A)c, and (F,A)c is soft open in

SS(X)A. Using our supposition, there exists a soft semi-open set (VeG , B) containing eG
such that f−1

pu (VeG , B)⊆̃(F,A)c. This follows eG∈̃(VeG , B)⊆̃(fpu(F,A))c. This implies
that
(fpu(F,A))c=̃

⋃̃
{(VeG , B) : eG∈̃(fpu(F,A))c} is soft semi-open in SS(Y )B , since union

of any collection of soft semi-open sets is soft semi-open[3]. Hence fpu(F,A) is soft
pu-semi-closed. �

Conclusion: In recent years, many researchers worked on the findings of structures
of soft sets theory initiated by Molodtsov and applied to many problems having uncer-
tainties. In the present work, we introduced and explored new form of continuity called
soft pu-semi-continuity via soft semi-open set in soft topological spaces. Moreover we
also introduced the concepts of soft-pu-semi-open and soft pu-semi-closed functions and
discussed many of their characterizations and properties. It is interesting to mention
that the soft functions defined and discussed here are the generalization of soft functions
introduced in [7]. This is need to continue further research in this direction to upgrade
the general framework and to explore the practical life applications.
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1. Introduction
Delay or time-delay differential equations or compound systems as generalization of

an ordinary differential equations have been studied for at least 200 years. While some of
the early investigation had its origins in certain types of geometric problems and number
theory, much of the impetus for the development of the theory came from studies of
viscoelasticity, population dynamics and control theory. More recent work has involved
models from a wide variety of scientific fields, including nonlinear optics, economies, biol-
ogy and as well population dynamics, engineering, ecology, chemistry, circadian rhythms,
epidemiology, the respiratory system, tumor growth, neural networks.

Note that the fundamental theory of delay differential equations has been given in
many of books. The detail analysis of this theory can be found in monographs of A.
Ashyralyev and P.E. Sobolevskii [1], J.K. Hale and S.M.V. Lunel [2], O. Diekmann et
al.[3], L. Edelstein-Keshet [4], L.E. El’sgol’ts and S.B. Norkin [5], T. Erneux [6], H. Smith
[7] and etc.

One of the basis questions of this theory is to investigate the spectral properties of
the corresponding problems.

The spectral analysis for the some delay differential equations with large delay first or-
der with matrix coefficients has been investigated in work of M.Lichther, M.Wolfrum and
S.Yanchuk [8]. Some aspects of the spectral theory have been investigated by A.Politi,
G.Giacomelli, W.Huang, M.Lichther, M.Wolfrum and S.Yanchuk. In particular J.Mallet-
Paret and R.D.Nussbaum [9] have studied in detail the appearance of periodic solutions
for compound differential equation of first order with single delay in scalar and special
cases.

Since analytical computation of solutions, eigenvalues and corresponding eigenfunc-
tions problem is very theoretically and technically difficult, then here play significant role
method of numerical analysis. Numerically computing of solutions, eigenvalues and cor-
responding eigenfunctions of the considered delay differential equations have been done,
for example in works A. Ashyralyev with his group[10-12] and E. Jarlebring [13].

Recall that an operator S : D(S) ⊂ H → H in Hilbert space H is called solvable, if S
is one-to-one, SD(S) = H and S−1 ∈ L(H).

In this work, by using methods of operator theory the all solvable extensions of min-
imal operator generated by delay differential operator expression for first order in the
Hilbert space of vector functions at finite interval have been described in terms of bound-
ary values. In addition, in section 3 sharp formula for the spectrum of these extensions
has been given.Applications of obtained results to concrete models have been applied in
section 4.

2. Description of Solvable Extensions
In the Hilbert space L2(H, (0, 1)) of vector-functions consider a linear delay differential-

operator expression for first order in the form

(2.1) l(u) = u′(t) +A(t)u(t− τ),

where:
(1) H is a separable Hilbert space with inner product ( . , . )H and norm ‖ . ‖H ;
(2) operator-function A( . ) : [0, 1]→ L(H) is continuous on the uniformly operator
topology;
(3) 0< τ <1.

On the other hand here will be considered the following differential expression

(2.2) m(u) = u′(t),
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in the Hilbert space L2(H, (0, 1)) corresponding to (2.1). It is clear that formally adjoint
expression of (2.2) is of the form

(2.3) m+(v) = −v′(t),

Now let us define operator M ′0 on the dense in L2(H, (0, 1)) set of vector-functions D′0

D′0 :=
{
u(t) ∈ L2(H, (0, 1)) : u(t) =

n∑
k=1

ϕk(t)fk,

ϕk ∈ C∞0 (0, 1), fk ∈ H, k = 1, 2, . . . , n, n ∈ N
}

as M ′0u = m(u).
The closure of M ′0 in L2(H, (0, 1)) is the minimal operator generated by differential-

operator expression(2.2) and is denoted by M0.
In a similar way the minimal operatorM+

0 in L2(H, (0, 1)) corresponding to differential
expression (2.3) can be defined.

The adjoint operator of M+
0 (M0) in L2(H, (0, 1)) is called the maximal operator

generated by (2.2)((2.3)) and it is denoted by M(M+). Now here define a operator Sτ ,
0< τ < 1 in L2(H, (0, 1)) in form

Sτu(t) :=

{
u(t− τ), if τ < t < 1,

0, if 0 < t < τ.

From this it is obtained that

‖Sτu‖2L2(H,(0,1)) =

1∫
τ

(u(t− τ), u(t− τ))Hdt

=

1−τ∫
0

(u(x), u(x))Hdx

≤
1∫

0

‖u(x)‖2Hdx

= ‖u‖L2(H,(0,1))

for all u ∈ L2(H, (0, 1)).
Then ‖Sτ‖≤1, 0< τ <1. On the other words Sτ ∈ L(L2(H, (0, 1))) for any τ ∈ (0, 1).

In this situation the tensor product A with Sτ

Aτ (t) = A(t)⊗ Sτ , 0 < τ < 1

is a linear bounded operator in L2(H, (0, 1)).
Along of this work the following defined operators

L0 :=M0 +Aτ (t),

L0 :
o

W
1

2 (H, (0, 1)) ⊂ L2(H, (0, 1))→ L2(H, (0, 1))

and

L :=M +Aτ (t),

L :W 1
2 (H, (0, 1)) ⊂ L2(H, (0, 1))→ L2(H, (0, 1))

will be called the minimal and maximal operators corresponding to differential expression
(2.1) in L2(H, (0, 1)) respectively.
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Now let U(t, s), t, s ∈ [0, 1], be the family of evolution operators corresponding to the
homogeneous differential equation{

U ′t(t, s)f +Aτ (t)U(t, s)f = 0, t, s ∈ (0, 1)
U(s, s)f = f, f ∈ H

The operator U(t, s), t, s ∈ [0, 1] is a linear continuous boundedly invertible in H and

U−1(t, s) = U(s, t), s, t ∈ [0, 1].

(for more detail analysis of this concept see [14]).
Let us introduce the operator

Uz(t) := U(t, 0)z(t), U : L2(H, (0, 1))→ L2(H, (0, 1)).

In this case it is easy to see that for the differentiable vector-function z ∈ L2(H, (0, 1)),
z : [0, 1]→ H, is valid the following relation:

l(Uz) = (Uz)′(t) +A(t)(Uz)(t− τ) = U(z′(t)) + (U ′t +Aτ (t)U)z(t) = Um(z)

From this U−1lU(z) = m(z). Hence it is clear that if the L̃ is some extension of the
minimal operator L0, that is, L0 ⊂ L̃ ⊂ L, then

U−1L0U =M0, M0 ⊂ U−1L̃U = M̃ ⊂M, U−1LU =M.

For example, can be easily to prove the validity of last relation. It is known that

D(M) =W 1
2 (H, (0, 1)), D(M0) =

o

W
1

2 (H, (0, 1)).

If u ∈ D(M),then l(Uz) = Um(z) ∈ L2(H, (0, 1)), that is, Uu ∈ D(L). From last relation
M ⊂ U−1LU . Contrary, if a vector-function u ∈ D(L), then

m(U−1v) = U−1l(v) ∈ L2(H, (0, 1)),

that is, U−1v ∈ D(M). From last relation U−1L ⊂ MU , that is U−1LU ⊂ M . Hence
U−1LU =M .

The following assertions are true.

2.1. Theorem. KerL0 = {0} and R(L0) 6= L2(H, (0, 1)).

2.2. Theorem. Each solvable extension L̃ of the minimal operator L0 in L2(H, (0, 1))
is generated by the differential-operator expression (2.1) and boundary condition

(2.4) (K + E)u(0) = KU(0, 1)u(1),

where K ∈ L(H) and E is a identity operator in H. The operator K is determined
uniquely by the extension L̃, i.e L̃ = LK .

On the contrary, the restriction of the maximal operator L0 to the manifold of vector-
functions satisfy the condition (2.4) for some bounded operator K ∈ L(H) is a solvable
extension of the minimal operator L0 in the L2(H, (0, 1)).

Proof. Firstly, it is described all solvable extensions M̃ of the minimal operator M0 in
L2(H, (0, 1)) in terms of boundary values.

Consider the following so-called Cauchy extension Mc

Mcu = u′(t), Mc : D(Mc) = {u ∈W 1
2 (H, (0, 1)) : u(0) = 0} ⊂ L2(H, (0, 1))→ L2(H, (0, 1))

of the minimal operator M0. It is clear that Mc is a solvable extension of M0 and

M−1
c f(t) =

t∫
0

f(x)dx, f ∈ L2(H, (0, 1)),

M−1
c : L2(H, (0, 1))→ L2(H, (0, 1)).
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Now assume that M̃ is a solvable extension of the minimal operatorM0 in L2(H, (0, 1)).
In this case it is known that domain of M̃ can be written in direct sum in form

D(M̃) = D(M0)⊕ (M−1
c +K)V,

where V = KerM = H,K ∈ L(H) (see[15]). Therefore for each u(t) ∈ D(M̃) it is true

u(t) = u0(t) +M−1
c f +Kf, u0 ∈ D(M0), f ∈ H.

That is,

u(t) = u0(t) + tf +Kf, u0 ∈ D(M0), f ∈ H.

Hence

u(0) = Kf, u(1) = f +Kf = (K + E)f

and from these relations it is obtained that

(2.5) (K + E)u(0) = Ku(1).

On the other hand uniqueness of operator K ∈ L(H) it is clear from the work [15].
Therefore M̃ =MK . This completes of necessary part of this assertion.

On the contrary, if MK is a operator generated by differential expression (2.2) and
boundary condition (2.5), then MK is boundedly invertible and

M−1
K : L2(H, (0, 1))→ L2(H, (0, 1)),

M−1
K f(t) =

t∫
0

f(x)dx+K

1∫
0

f(x)dx, f ∈ L2(H, (0, 1)).

Consequently, all solvable extension of the minimal operator M0 in L2(H, (0, 1)) is
generated by differential expression (2.2) and boundary condition (2.5) with any linear
bounded operator K.

Now consider the general case. For the this in the L2(H, (0, 1)) introduce a operator
in form

U : L2(H, (0, 1))→ L2(H, (0, 1)), (Uz)(t) := U(t, 0)z(t), z ∈ L2(H, (0, 1)).

From the properties of family of evolution operators U(t, s), t, s ∈ [0, 1] imply that a
operator U is a linear bounded, boundedly invertible and

(U−1z)(t) = U(0, t)z(t).

On the other hand from the relations

U−1L0U =M0, U
−1L̃U = M̃, U−1LU =M

it is implies that a operator U is a one-to-one between of sets of solvable extensions of
minimal operators L0 and M0 in L2(H, (0, 1)).

Extension L̃ of the minimal operator L0 is solvable in L2(H, (0, 1)) if and only if the
operator M̃ = U−1L̃U is a extension of the minimal M0 in L2(H, (0, 1)). Then u ∈ D(L̃)
if and only if

(K + E)U(0, 0)u(0) = KU(0, 1)u(1),

that is,

(K + E)u(0) = KU(0, 1)u(1).

This proves the validity of the claims in theorem. �
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2.3. Remark. In general case A(t)Sτ 6= SτA(t) in L2(H, (0, 1)). Indeed, if

(Af)(t) = tf(t), f ∈ L2(H, (0, 1)), A : L2(0, 1)→ L2(0, 1),

then for 0 < τ < 1, f ∈L2(0, 1) we have

(ASτ )f(t) = A(Sτf(t)) = A(f(t− τ)) = tf(t− τ), 0 < t < 1

and

(SτA)f(t) = Sτ (Af(t)) = Sτ (tf(t)) = (t− τ)f(t− τ), 0 < t < 1.

2.4. Corollary. Assume that A(t) = A = const a.e. in (0, 1).
In this case all solvable extensions of minimal operator L0 are generated by delay

differential expression

l(u) = u′(t) +Au(t− τ), 0 < τ < 1

and boundary condition

(K + E)u(0) = K[u(1)− Au(1− τ)
1!

+
A2u(1− 2τ)

2!
+ ...]

= K

∞∑
n=0

(−1)n

n!
Anu(1− nτ), K ∈ L(H)

in the Hilbert L2(H, (0, 1)) and vice versa.

2.5. Remark. Since for any 0 < τ < 1 there exists n0 = n0(τ) ∈ N such that

0 ≤ 1− n0τ < 1 and 1− (n0 + 1)τ < 0.

Then
∞∑
n=0

(−1)n

n!
Anu(1− nτ) =

n0∑
n=0

(−1)n

n!
Anu(1− nτ).

2.6. Remark. All solvable extensions of minimal operator are generated by delay dif-
ferential expression

l(u) = u′(t) + u(t− τ), 0 < τ < 1

and boundary condition

(K + E)u(0) = K[u(1)− u(1− τ)
1!

+
u(1− 2τ)

1!
+ ...

+
(−1)nu(1− nτ)

n!
+ ...], K ∈ L(H),

in the space L2(H, (0, 1)) and vice versa.
In addition note that following boundary value problem

u′(t) = −u(t− τ), τ < t < 1, τ > 0, u(t) = 1, τ < t < 0

by changing the function u(t) with y(t) = u(t)− 1, τ < t < 1 can be reduced to problem

y′(t) = −y(t− τ)− 1, y(t) = 0, τ < t < 0.
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3. Spectrum of Solvable Extension
In this section will be investigated spectrum structure of solvable extensions of minimal

operator L0 in L2(H, (0, 1)).
Firstly, prove the following fact.

3.1. Theorem. If L̃ is a solvable extension of a minimal operator L0 and M̃ = U−1L̃U
corresponding for the solvable extension of a minimal operator M0, then for the spectrum
of these extensions is true σ(L̃)=σ(M̃) .

Proof. Let us consider a problem for the spectrum for a solvable extension LK of a
minimal operator L0 generated by delay differential-operator expression (2.1), that is,

LKu = λu+ f, λ ∈ C, f ∈ L2(H, (0, 1)).

From this it is obtained that

(LK − λE)u = f or (UMKU
−1 − λE)u = f

Hence

U(MK − λ)(U−1u) = f

the last equation explains the validity of the theorem. �

Now prove the following result for the spectrum of solvable extension.

3.2. Theorem. If LK a solvable extension of the minimal operator L0 in the space
L2(H, (0, 1)), then spectrum of LK has the form:

σ(LK) = {λ ∈ C : λ = ln |µ+ 1

µ
|+ i arg(

µ+ 1

µ
) + 2nπi;

µ ∈ σ(K) \ {0,−1}, n ∈ Z}.

Proof. Firstly, will be investigated the spectrum of the solvable extensionMK = U−1LKU
of the minimal operatorM0 in L2(H, (0, 1)). Consider the following problem for the spec-
trum, MKu = λu+ f, λ ∈ C, f ∈ L2(H, (0, 1)). Then

u′ = λu+ f, (K + E)u(0) = Ku(1), λ ∈ C, f ∈ L2(H, (0, 1)),K ∈ L(H).

It is clear that a general solution of a above differential equation in L2(H, (0, 1)) has the
form

uλ(t) = eλtf0 +

t∫
0

eλ(t−s)f(s)ds, f0 ∈ H.

Therefore from the boundary condition (K + E)uλ(0) = Kuλ(1) it is obtained that

(E +K(1− eλ))f0 = K

1∫
0

eλ(1−s)f(s)ds.

For the λm = 2mπi, m ∈ N from the last relation it is established that

f
(m)
0 = K

1∫
0

eλm(1−s)f(s)ds,m ∈ N.

Consequently, in this case the resolvent operator of MK is in form

Rλm(MK)f(t) = Keλmt
1∫

0

eλm(1−s)f(s)ds+

t∫
0

eλm(t−s)f(s)ds, f ∈ L2(H, (0, 1)),m ∈ Z.



762

On the other hand it is clear that Rλm(MK) ∈ L((L2(H, (0, 1)) , m ∈ Z.
If λ 6= 2mπi,m ∈ Z, λ ∈ C, then from boundary condition we have

(K − 1

eλ − 1
E)f0 =

1

1− eλK
1∫

0

eλ(1−s)f(s)ds, f0 ∈ H, f ∈ (L2(H, (0, 1)).

Therefore, for λ ∈ σ(MK) if and only if µ = 1
eλ−1

∈ σ(K).

In this case since eλ = µ+1
µ
, µ ∈ σ(K), then λn = ln|µ+1

µ
|+ iarg(µ+1

µ
) + 2nπi, n ∈ Z.

Later on, using the last relation and Theorem 3.1 it is proved the validity of claim in
theorem. �

3.3. Corollary. Let LK be a solvable extension of minimal operator L0 in L2(H, (0, 1)).

(1) If σ(K) ⊂ {0, 1}, then σ(LK) = ∅;
(2) If σ(K) \ {0, 1} 6= ∅, then σ(LK) is infinite.

Now will be proved one result on the asymptotically behaviour of eigenvalues of solv-
able extensions in special case.

3.4. Theorem. If K ∈ L(H),K 6= 0, σ(K) = σp(K), there exist α, β > 0 such that for
any µ ∈ σp(K) is true

|µ| ≥ α > 0 and |µ+ 1| ≥ β > 0,

then λn(MK) ∼ 2nπ, as n→∞.

Proof. In this case for n ≥ 1

|λn(MK)|2 = ln2|µ+ 1

µ
|+ |arg(µ+ 1

µ
) + 2nπ|2.

Since for any µ∈σp(K)

|µ+ 1

µ
| ≥ β

|µ| ≥
β

‖K‖ > 0, |µ+ 1

µ
| ≤ 1 +

1

|µ| ≤ 1 +
1

α
,

then

ln
β

‖K‖ ≤ ln|
µ+ 1

µ
| ≤ ln(1 + 1

α
).

Therefore for any µ∈σp(K) is true

min{|ln( β

‖K‖ )|, |ln(1 +
1

α
)|} ≤ |ln|µ+ 1

µ
|| ≤ max{|ln( β

‖K‖ )|, |ln(1 +
1

α
)|}.

On the other hand for any n ∈Z

(2nπ)2 ≤ |arg(µ+ 1

µ
) + 2nπ|2 ≤ (2(n+ 1)π)2.

Consequently, for any n ∈N

(2nπ)2
(
1 +

1

4n2π2
min2{|ln( β

‖K‖ )|, |ln(1 +
1

α
)|}
)

≤ |λn(MK)|2 ≤ (2nπ)2
(
(
2(n+ 1)π

2nπ
)2 +

1

(2nπ)2
max2{|ln( β

‖K‖ )|, |ln(1 +
1

α
)|}
)

This means that λn(MK) ∼ 2nπ, as n→∞. �
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4. Applications
4.1. Example. Assume that

H = C, (H, ‖ . ‖H) = (C, | . |), A( . ) = a( . ) ∈ C(R)

and consider the following delay differential equation in from

u′(t) = a(t)u(t− τ), 0 < τ < 1

with history function u(t) = 0,−τ < t < 0 in the Hilbert space L2(0, 1).
Then the all solvable extension Lk of minimal operator L0 is generated by delay

differential expression

l(u) = u′(t)− a(t)u(t− τ)

and boundary condition

(k + 1)u(0) = kexp(

1∫
0

a(t)dt)u(1), k ∈ C

in L2(0, 1). In addition, spectrum of Lk is in form

σ(Lk) = {λ ∈ C : λ = ln |k + 1

k
|+ i arg(

k + 1

k
) + 2nπi, n ∈ Z}.

4.2. Example. Let us

(H, ‖ . ‖H) = (C, | . |), a( . ), b( . ) ∈ C(R)

and consider the delay differential expression in form l(u) = u′(t)+a(t)u(t)+b(t)u(t−τ),
0 < t < 1, 0 < τ < 1 with history function u(t) = 0, −τ < t < 0. If change of function
u( . ) by y( . )

y(t) = λ(t)u(t), λ(t) = exp(

t∫
0

a(x)dx),

then

l(λ−1y) = y′(t) + c(t)y(t− τ),

where

c(t) =
λ(t)b(t)

λ(t− τ) = b(t)exp(

t∫
t−τ

a(x)dx).

In this case all solvable extension Pk of minimal operator P0 is generated by delay
differential expression

P (y) = y′(t) + c(t)y(t− τ)

and boundary condition

(k + 1)y(0) = kexp(−
1∫

0

c(t)dt)y(1), k ∈ C

and vice versa.
Consequently, all solvable extension Pk of the minimal operator P0 is generated by

delay differential expression

l(u) = u′(t) + a(t)u(t) + b(t)u(t− τ)
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and boundary condition

(k + 1)u(0) = kexp(−
1∫

0

b(t)exp(

t∫
t−τ

a(x)dx)dt)exp(

1∫
0

a(x)dx)u(1), k ∈ C

and vice versa.
Moreover, spectrum of solvable extension Lk is in form

σ(Lk) = {λ ∈ C : λ = ln |k + 1

k
|+ i arg(

k + 1

k
) + 2nπi, n ∈ Z}, k ∈ C.
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Abstract
In this paper, we introduce and investigate the notions of ξ-strongly copure
projective objects in a triangulated category. This extends Asadollahi’s notion
of ξ-Gorenstein projective objects. Then we study the ξ-strongly copure pro-
jective dimension and investigate the existence of ξ-strongly copure projective
precover.

Keywords: strongly copure projective object; triangulated category; proper class of
triangles.

2000 AMS Classification: 18E30; 18G25; 18G20.

Received : 18.01.2015 Accepted : 23.06.2015 Doi : 10.15672/HJMS.20164513098

1. Introduction
Triangulated categories originated from algebraic geometry and algebraic topology and were in-

troduced by Grothendieck and Verdier in the early sixties as the proper framework for doing homo-
logical algebra in an abelian category. By now triangulated categories have become indispensable
in many different areas of mathematics, such as algebraic geometry, stable homotopy theory, and
representation theory.

In [3], Beligiannis develops a classical homological algebra in a triangulated category C =
(C,Σ,∆). He introduced ξ-projective objects, ξ-projective resolution, ξ-projective dimension and
their dualities. Based on the works of Auslander and Bridger [2], Enochs and Jenda [8] and Be-
ligiannis [5], Asadollahi [3] introduced and studied ξ-Gorenstein projective objects and their du-
alities, which maked contributions to develop there relative homological algebra in a triangulated
category.

At the other extreme, Mao [9] investigated strongly P-projective modules. M is called to be
strongly P-projective if ExtiR(M,P) = 0 for all projective left R-modules P, which is dual to strongly
copure injective modules in Enochs and Jenda [6]. So we also call strongly P-projective modules as
strongly copure projective modules in this paper. As we all known, strongly copure projective (resp.
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injective) modules are a generaliation of Gorenstein projective and projective (resp., Gorenstein
injective and injective) modules in categories of modules.

Our aim in this paper is to introduce and study ξ-strongly copure projective (injective) objects
in a triangulated category C. This is denoted by ξ-SCprojective (ξ-SCinjective) objects for conve-
nience. In Section 2, we introduce the notion of ξ-SCprojective objects and study some properties
of ξ-SCprojective objects in C. We also investigate ξ-SCprojective dimension. In Section 3, we in-
troduce the concept of ξ-SCprojective precover and show the existence of ξ-SCprojective precover.
We also prove that the equivalence between ξxtn+1

SCP(ξ)
(A,−) = 0 and ξ-SCpdA ≤ n under some

conditions.
Next we recall some known notions and facts of triangulated categories needed in the sequel. The

basic reference for triangulated categories and derived categories is the original article of Verdier
[15]. Also [3, 7, 11] give introduction to these concepts.

Let C be an additive category and Σ : C −→ C an additive functor. Let Diag(C,Σ) denotes the
category whose objects are diagrams in C of the form A −→ B −→ C −→ ΣA, and morphisms
between two objects Ai −→ Bi −→ Ci −→ ΣAi, i = 1,2, are triple of morphisms α : A1 −→ A2,
β : B1 −→ B2 and γ : C1 −→C2, such that the following diagram commutes:

A1
f1 //

α

��

B1
g1 //

β

��

C1
h1 //

γ

��

ΣA1

Σα

��
A2

f2 // B2
g2 // C2

h2 // ΣA2

A triangle (C,Σ,∆) is called a triangulated category, where C is an additive category. Σ is an autoe-
quivalence of C and ∆ is a full subcategory of Diag(C,Σ) which satisfies the following axioms. The
elements of ∆ are then called triangles.
(Tr1) Every diagram isomorphic to a triangle is a triangle. Every morphism f : A −→ B in C

can be embedded into a triangle A
f−→ B

g−→ C h−→ ΣA. For any object A ∈ C, the diagram

0−→ A 1A−→ A−→ 0 is a triangle, where 1A denotes the identity morphism from A to A.

(Tr2) A
f−→ B

g−→C h−→ ΣA is a triangle if and only if B
g−→C h−→ ΣA

−Σ f−→ ΣB is so.

(Tr3) Given triangles Ai
fi−→ Bi

gi−→ Ci
hi−→ ΣAi, i = 1,2, and morphisms α : A1 −→ A2 and

β : B1 −→ B2 such that α f2 = f1β, there exists a morphism γ : C1 −→ C2 such that (α,β,γ) is a
morphism from the first triangle to the second.

(Tr4) (The Octahedral Axiom) Given triangles A
f−→ B i−→ C′ i′−→ ΣA, B

g−→ C
j−→ A′

f ′−→ ΣB,

A
g f−→C k−→ B′ k′−→ ΣA, there exist morphisms f ′ : C′ −→ B′ and g′ : B′ −→ A′ such that the fol-

lowing diagram commutes and the third row is triangle:

Σ−1B′ Σ−1k′ //

Σ−1g′

��

A
1A //

f

��

A

g f

��
Σ−1A′

Σ−1 j′ // B
g //

i
��

C
j //

k
��

A′
j′ //

1A′

��

ΣB

Σi
��

C′
f ′ //

i′

��

B′
g′ //

k′

��

A′
Σi j′ // ΣC′

ΣA
1ΣA // ΣA

Throughout the paper, we fix a triangulated category C = (C,Σ,∆), Σ is the suspension functor
and ∆ is the triangulation.
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1.1. Proposition. ([3, Proposition 2.1]) Let C be an additive category equipped with an autoequiv-
alence Σ : C −→ C and a class of diagrams ∆ ⊆ Diag(C,Σ). Suppose that the triple (C,Σ,∆), Σ

satisfies all the axioms of a triangulated category except possibly of the Octahedral Axiom. Then
the following are equivalent:

(a) Base change. For any triangle A
f−→ B

g−→ C h−→ ΣA ∈ ∆ and morphism ε : E −→ C, there
exists a commutative diagram

0 //

��

M

α

��

M //

δ

��

0

��
A

f ′ // G
g′ //

β

��

E h′ //

ε

��

ΣA

A
f //

��

B
g //

γ

��

C h //

ζ

��

ΣA

��
0 // ΣM ΣM // 0

in which all horizontal and vertical diagrams are triangle in ∆.

(b) Cobase change. For any triangle A
f−→ B

g−→C h−→ ΣA ∈ ∆ and any morphism α : A −→ D,
there exists a commutative diagram

0 //

��

N

ζ

��

N //

δ

��

0

��
Σ−1C

−Σ−1(h) // A
f //

α

��

B
g //

β

��

C

Σ−1C
−Σ−1(h′) //

��

D
f ′ //

η

��

F
g′ //

ν

��

C

��
0 // ΣN ΣN // 0

in which all horizontal and vertical diagrams are triangles in ∆.
(c) Octahedral Axiom For any two morphisms f1 : A−→ B, f2 : B−→C, there exists a commuta-
tive diagram

A
f1 // B

g1 //

f2

��

X
h1 //

α

��

ΣA

A
f2 f1 //

f1

��

C
g3 // Y

h3 //

β

��

ΣA

Σ f1

��
B

f2 //

��

C
g2 //

0
��

Z
h2 //

Σg1h2

��

ΣB

��
0 // ΣX ΣX // 0

in which all horizontal and the third vertical diagrams are triangles in ∆.

A class of triangles ξ is closed under base change if for any triangle A
f−→ B

g−→C h−→ ΣA ∈ ξ

and any morphism ε : E −→C as in Proposition 1.1(a), the triangle A
f ′−→G

g′−→ E h′−→ ΣA belongs
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to ξ. Dually, a class of triangles is closed under cobase change if for any triangle A
f−→ B

g−→C h−→
ΣA∈ ξ and any morphism α : A−→D as in Proposition 1.1(b), the triangle D

f ′−→ F
g′−→C h′−→ ΣD

belongs to ξ. A class of triangles is closed under suspension if for any triangle A
f−→ B

g−→C h−→
ΣA ∈ ξ and any integer i ∈ Z, the triangle

Σ
iA

(−1)iΣi f−→ Σ
iB

(−1)iΣig−→ Σ
iC

(−1)iΣih−→ Σ
i+1A

is in ξ. A class of triangles ξ is called saturated if in the situation of base change in Proposition 1.1,

whenever the third vertical and the second horizontal triangle is in ξ, then the triangle A
f−→ B

g−→
C h−→ ΣA is in ξ.

1.2. Definition. ([3, Definition 2.2]) A full subcategory ξ ⊆ Diag(C,Σ) is called a proper class of
triangles if the following conditions hold:

(i) ξ is closed under isomorphisms, finite coproducts and ∆0 ⊆ ξ⊆ ∆, where ∆0 denotes the full
subcategory of split triangles.

(ii) ξ is closed under suspensions and is saturated.
(iii) ξ is closed under base and cobase change.

Throughout we fix a proper class of triangles ξ in the triangulated category C.

2. Strongly copure projective objects
2.1. Definition. ([3, Definition 4.1]) An object P ∈ C, (respectively I ∈ C) is called ξ-projective
(respectively ξ-injective) if for any triangle A→ B→C→ ΣA in ξ, the induced sequence

0→ HomC(P,A)→ HomC(P,B)→ HomC(P,C)→ 0

(respectively 0→ HomC(C, I)→ HomC(B, I)→ HomC(A, I)→ 0)

is exact in the category of abelian group Ab.

The symbol P(ξ) (res. I(ξ)) will denote the full subcategory of ξ-projective (res. ξ-injective)
objects of C. It follows easily from the definition that the categories P(ξ) and I(ξ) are full, additive,
closed under isomorphisms, direct summands and Σ-stable.

C is said to have enough ξ-projective objects if for any object A ∈ C there exists a triangle
K→ P→ A→ ΣK in ξ with P ∈ P(ξ). Dually one defines when C has enough ξ-injectives.

2.2. Lemma. ([3, Lemma 4.2]) Assume that C is a triangulated category with enough ξ-projective
objects. Then A −→ B −→C −→ ΣA is in ξ if and only if for all P ∈ P(ξ) the induced sequence
0−→ HomC(P,A)−→ HomC(P,B)−→ HomC(P,C)−→ 0 is exact.

In [3], the ξ-projective dimension ξ-pdA of an object A ∈ C is defined inductively.

2.3. Definition. ([3, Definition 4.7]) An ξ-exact complex X• → A over A ∈ C is a diagram · · · →
Xn+1

dn+1−−→ Xn −→ ·· · −→ X1
d1−→ X0

d0−→ A→ 0 such that for each integer n≥ 0 :

(i) There are triangles Kn+1
gn−→ Xn

fn−→ Kn
hn−→ ΣKn+1 in ξ, where K0 = A.

(ii) The differential dn = gn−1 fn for any n≥ 1 and d0 = f0.

An ξ-projective resolution of A ∈ C is an ξ-exact complex P•→ A as above such that Pn ∈ P(ξ),
n≥ 0.

2.4. Definition. ([2, Definition, 3.2]) A triangle A→ B→C→ ΣA in ξ is called HomC(−,P(ξ))-
exact, if for any Q ∈ P(ξ), the induced complex

0→ HomC(C,Q)→ HomC(B,Q)→ HomC(A,Q)→ 0

is exact in Ab.
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2.5. Definition. An object A is said to be ξ-strongly copure projective object (ξ-SCprojective object)

if there exists an ξ-projective resolution of A : · · · → Pn+1
dn+1−−→ Pn → ·· · → P1

d0−→ P0
d0−→ A→ 0

with Pi ∈ P(ξ) for all i≥ 0 such that Kn+1
gn−→ Pn

fn−→ Kn
hn−→ ΣKn+1 in ξ are HomC(−,P(ξ))-exact

triangles for all integer n.

We denote SCP(ξ) the full subcategory of ξ-strongly copure projective objects of C. It follows
directly from the definition that the category SCP(ξ) is full, additive and closed under isomor-
phisms.

Remark. By [2, Definition 3.6], every ξ-Gorenstein projective object is ξ-strongly copure pro-
jective. In particular, there is an inclusion of categories GP(ξ)⊆ SCP(ξ), where GP(ξ) is the class
of ξ-Gorenstein projective objects.

Let C be an object of C. For any integer n ≥ 0, the ξ-extension functor ξxtn
ξ
(−,C) is defined to

be the nth right ξ-derived functor of the functor HomC(−,C), that is ξxtn
ξ
(−,C) := Rn

ξ
HomC(−,C).

2.6. Proposition. ([3, Corollary 4.12]) If A −→ B −→ C −→ ΣA is a triangle in ξ, then for any
X ∈ C we have a long exact sequence

0−→ ξxt0
ξ
(C,X)−→ ξxt0

ξ
(B,X)−→ ξxt0

ξ
(A,X)−→ ξxt1

ξ
(C,X)−→ ·· · .

2.7. Lemma. Let A be a ξ-SCprojective object of C. Then ξxt0
ξ
(A,Q) ∼= HomC(A,Q) and

ξxt i
ξ
(A,Q) = 0 for any Q ∈ P̃(ξ) and any i > 0, where P̃(ξ) denote the full subcategory of C whose

objects are of finite ξ-projective dimension.

Proof. Let ξ-pdQ=n for some nonnegative integer n and P∗ a ξ-projective resolution of A. If
n = 0, then Q is an ξ-projective object. Then HomC(P∗,Q) is an exact sequence, and this implies
that

HomC(A,Q)∼= H0(0−→ HomC(P0,Q)−→ HomC(P1,Q)−→ ·· ·)∼= ξxt0
ξ
(A,Q).

Moreover, ξxt i
ξ
(A,Q)= 0 for any i> 0. Inductively, suppose that the assertions follow for any object

with ξ-projective dimension n−1. Consider the triangle K −→ P −→ Q −→ ΣK in ξ , where P ∈

P(ξ) and ξ-pdK = n−1. For any j ∈ Z, the triangle Σ jK
(−1) jΣ j f−→ Σ jP

(−1) jΣ jg−→ Σ jQ
(−1) jΣ jh−→ Σ j+1K

is also in ξ. By Proposition 2.6, there is an exact sequence 0 −→ ξxt0
ξ
(A,Σ jK) −→ ξxt0

ξ
(A,Σ jP),

and then 0−→HomC(A,Σ jK)−→HomC(A,Σ jP). This implies that HomC(A,−) kills ξ-phantom
map (−1) jΣ jh. Especially, we have the following commutative diagram:

0 // HomC(A,K) //

∼=
��

HomC(A,P) //

∼=
��

HomC(A,Q) //

��

0

0 // ξxt0
ξ
(A,K) // ξxt0

ξ
(A,P) // ξxt0

ξ
(A,Q) // ξxt1

ξ
(A,K) = 0

,

where rows are exact. Hence ξxt0
ξ
(A,Q)∼= HomC(A,Q). Since

ξxt i
ξ
(A,P)−→ ξxt i

ξ
(A,Q)−→ ξxt i+1

ξ
(A,K)

is exact by Proposition 2.6, where ξxt i
ξ
(A,P) = ξxt i+1

ξ
(A,K) = 0. Thus ξxt i

ξ
(A,Q) = 0.

2.8. Proposition. Assume that C is a triangulated category with enough ξ-projective objects and X
is an object in P(ξ). Then X is ξ-injective relative to SCP(ξ) .

Proof. Let A −→ B −→C −→ ΣA be a triangle of SCP(ξ) in ξ. By Proposition 2.6, there is an
exact sequence 0−→ ξxt0

ξ
(C,X)−→ ξxt0

ξ
(B,X)−→ ξxt0

ξ
(A,X)−→ ξxt1

ξ
(C,X). Since ξxt1

ξ
(C,X) =

0 by Lemma 2.7 and ξxt0
ξ
(G,X) ∼= HomC(G,X) for any G ∈ SCP(ξ), there is an exact sequence

0−→HomC(C,X)−→HomC(B,X)−→HomC(A,X)−→ 0. So X is ξ-injective relative to SCP(ξ).
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2.9. Theorem. Assume that C is a triangulated category with enough ξ-projective objects and A α−→
B

β−→ C
γ−→ ΣA is a triangle in ξ such that C is ξ-SCprojective. Then A is ξ-SCprojective if and

only if B is ξ-SCprojective.

Proof. First assume that A is ξ-SCprojective. We will show that B is also such. Since A and C

are ξ-SCprojective, there exist triangles KA
gA−→ PA

fA−→ A hA−→ ΣKA and KC
gC−→ PC

fC−→C
hC−→ ΣKC

in ξ, where PA and PC are ξ-projective, KA and KC are ξ-SCprojective. By [3, Lemma 4.2], γ fC = 0.
Using that Σ is an automorphism and a result of Verdier [16], the commutative square on the top
left corner below is embedded in a diagram

PC
0 //

fC
��

ΣPA
−Σp //

−Σ fA

��

ΣPB
Σq //

−Σ fB

��

ΣPC

Σ fC
��

C
γ //

hC

��

ΣA
−Σα //

−ΣhA
��

ΣB
−Σβ //

−ΣhB
��

ΣC

ΣhC
��

ΣKC
−ΣΦ //

−ΣgC

��

Σ2KA
Σ2Ψ //

Σ2gA

��

Σ2KB
Σ2ω //

Σ2gB

��

Σ2KC

−Σ2gC

��
ΣPC

0 // Σ2PA
−Σ2 p // Σ2PB

Σ2q // Σ2PC

,

which is commutative except the lower right square which anticommutes and where the rows and
columns are triangles. But the above diagram is equivalent to the following commutative diagram:

KA
−ψ //

gA

��

KB
ω //

gB

��

KC

gC

��

−φ // ΣKA

ΣgA

��
PA

p //

fA

��

PB
q //

fB

��

PC

fC
��

0 // ΣPA

Σ fA

��
A α //

hA

��

B
β //

hB

��

C
γ //

hC

��

ΣA

ΣhA
��

ΣKA
−Σψ // ΣKB

Σω // ΣKC
−Σφ // Σ2KA.

Since the second horizontal triangle is split and PA, PC are ξ-projective, PB is ξ-projective. Applying
to the above diagram the homological functor HomC(P,−), ∀P ∈ P(ξ), a simple diagram chasing
argument shows that 0 −→ HomC(P,K1

A) −→ HomC(P,K1
B) −→ HomC(P,K1

C) −→ 0 is exact. By
Lemma 2.2, the first horizontal triangle is in ξ. Similarly the sencond vertical triangle is in ξ. Since
there is the commutative diagram for any Q ∈ P(ξ):
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0

��

0

��
HomC(C,Q)

f //

��

HomC(B,Q)
g //

��

HomC(A,Q)

��
0 // HomC(PC,Q) //

��

HomC(PB,Q) //

��

HomC(PA,Q) //

��

0

HomC(KC,Q)
h //

��

HomC(KB,Q)
w // HomC(KA,Q)

��
0 0 .

Obviously, f is monic and w is epic. Thus g is epic and h is monic. By HomC(−,Q) is a co-
homological functor and snake Lemma, the sequence 0 −→ HomC(B,Q) −→ HomC(PB,Q) −→
HomC(KB,Q) −→ 0 is exact. Proceeding the above procedure for the triangle KA −→ KB −→
KC −→ ΣKA, we get the ξ-projective resolution of B with appropriate properties. Hence B is ξ-
SCprojective.

Assume that B is ξ-SCprojective. By base change, there is a commutative diagram:

0 //

��

Σ−1K1
C

��

Σ−1K1
C

//

��

0

��
Σ−1A // Σ−1D //

��

Σ−1P0
C

//

��

A

Σ−1A //

��

Σ−1B //

��

Σ−1C //

��

A

��
0 // K1

C K1
C

// 0.

Since Σ−1B and Σ−1K1
C are ξ-SCprojective, we may use the previous case to deduce that Σ−1D is ξ-

SCprojective. Then there exists an ξ-projective resolution of Σ−1D : · · · −→ Σ−1P1
D −→ Σ−1P0

D −→
Σ−1D satisfying the condition of definition. Since C is ξ-SCprojective, there exists a triangle K1

C
gC−→

P0
C

fC−→C
hC−→ ΣKC in ξ with P0

C ξ-projective and K1
C ξ-SCprojective and K1

C −→ P0
C −→C−→ ΣK1

C
is HomC(−,P(ξ)) exact. For any Q ∈ P(ξ),there is a commutative diagram:

0 // ξxt0
ξ
(B,Q) //

∼=
��

ξxt0
ξ
(D,Q) //

∼=
��

ξxt0
ξ
(K1

C,Q) //

∼=
��

0

0 // HomC(B,Q) // HomC(D,Q) // HomC(K1
C,Q) // 0
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by Lemma 2.7. Moreover, there is the commutative diagram

0 // ξxt0
ξ
(C,Q) //

∼=
��

ξxt0
ξ
(B,Q) //

∼=
��

ξxt0
ξ
(A,Q) //

��

0

HomC(ΣA,Q) // HomC(C,Q)
β∗ // HomC(B,Q)

α∗ // HomC(A,Q)
γ∗ // HomC(Σ

−1C,Q)

with the below is exact. Since β∗ is monic, γ∗ is also so. So 0 −→ HomC(C,Q) −→
HomC(B,Q) −→ HomC(A,Q) −→ 0 is exact. Thus Σ−1A −→ Σ−1D −→ Σ−1P0

C −→ A is
HomC(−,P(ξ)) exact. Now pasting · · · −→ Σ−1P1

D −→ Σ−1P0
D −→ Σ−1D with Σ−1A −→

Σ−1D−→ Σ−1P0
C −→ A, so A is ξ-SCprojective.

2.10. Proposition. Assume that C is a triangulated category with enough ξ-projective objects. If
X ∈ SCP(ξ) is ξ-projective relative to SCP(ξ) , then X ∈ P(ξ).

Proof. Since C has enough ξ-projectives, there exists a triangle K −→ P−→ X −→ ΣK in ξ with
P ∈ P(ξ). But X and P are ξ-SCprojective, then so is K by Theorem 2.9. Since X is ξ-projective
relative to SCP(ξ), there exists an exact sequence

0−→ HomC(X ,K)−→ HomC(X ,P)−→ HomC(X ,X)−→ 0.

So K −→ P−→ X −→ ΣK is split. Then P∼= K⊕X . Hence X ∈ P(ξ).

It is clear that SCP(ξ) is closed under countable direct sums. In the following, we use Eilenberg’s
trick to show that SCP(ξ) is closed under direct summands.

2.11. Corollary. SCP(ξ) is closed under direct summands.

Proof. Let A be an object of SCP(ξ) and B a direct summand of A. So A = B⊕B′, for some
object B′ of C. Set

K = B⊕B′⊕B⊕B′⊕·· · .

Since K = A⊕A⊕·· · and SCP(ξ) is closed under countable direct sum, K belongs to SCP(ξ). We
have K ∼= B⊕K and so B⊕K also belongs to SCP(ξ). Now consider the split exact triangle

B−→ B⊕K −→ K 0−→ ΣB

in ξ to conclude, from the previous Theorem 2.9 , that B belongs to SCP(ξ).

Now we introduce a new invariant for an object A of C, namely its ξ-SCprojective dimension, ξ-
SCpdA. It is defined inductively. When A=0, put ξ-SCpdA =−1. If A∈ SCP(ξ), then ξ-SCpdA = 0.
Next by induction, for an integer n> 0, put ξ-SCpdA≤ n if there exists a triangle K−→P−→A−→
ΣK in C with P ∈ SCP(ξ) and ξ-SCpdK ≤ n−1.

We define ξ-SCpdA = n if ξ-SCpdA≤ n and ξ-SCpdA� n−1. If ξ-SCpdA 6= n for all n≥ 0, we
set ξ-SCpdA = ∞.

2.12. Theorem. Assume that C is a triangulated category with enough ξ-projective objects and
A−→B−→C

γ−→ ΣA is a triangle in ξ such that A 6= 0 and C is ξ-SCprojective. Then ξ-SCpdA= ξ-
SCpdB.

Proof. The result is clear from Theorem 2.9 if one of A or B is ξ-SCprojective. Let ξ-SCpdA =
n > 0. So there exists a triangle KA −→ PA −→ A −→ ΣKA in ξ where PA is ξ-SCprojective and
ξ-SCpdKA = n−1. Since C is ξ-SCprojective, there exists a triangle KC −→ PC −→C −→ ΣKC in
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ξ where PC is ξ-projective and KC is ξ-SCprojective. Then by the proof of Theorem 2.9, we have
the following commutative diagram:

PC
0 //

��

ΣPA //

��

ΣPB //

��

ΣPC

��
C

γ //

��

ΣA //

��

ΣB //

��

ΣC

��
ΣKC //

��

Σ2KA //

��

Σ2KB //

��

Σ2KC

��
ΣPC // Σ2PA // Σ2PB // Σ2PC,

which is commutative except the lower right square which anticommutes and where the rows and
columns are triangles. This is equivalent to the commutative diagram:

KA //

��

KB //

��

KC //

��

ΣKA

��
PA //

��

PB //

��

PC
0 //

��

ΣPA

��
A //

��

B //

��

C
γ //

��

ΣA

��
ΣKA // ΣKB // ΣKC // Σ2KA,

in which the first three vertical and horizontal diagrams are triangles. The second horizontal triangle
is split, and so belongs to ξ. Since PA and PC are both ξ-SCprojective, it follows from that PB is also
ξ-SCprojective. Applying HomC(P(ξ),−) to the above commutative diagram , by Lemma 2.2 and
diagram chasing argument, the first horizontal and also second vertical triangles are HomC(P(ξ),−)
exact and so belong to ξ. Now consider the triangle KA −→ KB −→ KC −→ ΣKA in ξ, in which ξ-
SCpdKA = n−1 and use induction to deduce that ξ-SCpdKB = n−1 and hence ξ-SCpdB = n.

Now suppose ξ-SCpdB = n. So there exists a triangle KB −→ PB −→ B−→ ΣKB in ξ, where PB
is ξ-SCprojective and ξ-SCpdKB = n− 1. Using (Tr2) and base change in Proposition 1.1, we get
the following commutative diagram:

0 //

��

KB

��

KB //

��

0

��
Σ−1C // PA //

��

PB //

��

C

Σ−1C //

��

A //

��

B //

��

C

��
0 // ΣKB ΣKB // 0
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in which all horizontal and vertical diagrams are triangles. Since the third horizontal and third
vertical triangles are in ξ, one can show the second horizontal and second vertical triangles are
HomC(P(ξ),−) exact and so belong to ξ. Because both PB and Σ−1C are ξ-SCprojective, by Theo-
rem 2.9, so is PA. So ξ-SCpdA = n.

2.13. Lemma. ([2, Proposition 3.15]) Let the following be a commutative diagram such that rows
are triangles in ξ:

X //

��

Y // Z //

��

ΣX

��
X ′ // Y ′ // Z′ // ΣX ′.

Then it may be completed to a morphism of triangles

X //

��

Y //

��

Z //

��

ΣX

��
X ′ // Y ′ // Z′ // ΣX ′

so that X −→ X ′⊕Y −→ Y ′ −→ ΣX is a triangle in ξ.

2.14. Proposition. Assume that C is a triangulated category with enough ξ-projective objects and
let A be an object of C. Then the following are equivalent:

(i) ξ-SCpdA≤ n.
(ii) In any ξ-exact sequence 0 −→ B −→ Pn−1 −→ ·· · −→ P0 −→ A −→ 0, if Pi are ξ-

SCprojective, then so is B.

Proof. (i)⇒ (ii). There exits a triangle K −→ Q−→ A−→ ΣK in ξ where Q is ξ-SCprojective
and ξ-SCpdK ≤ n−1. Since 0−→ B−→ Pn−1 −→ ·· · −→ P0 −→ A−→ 0 is ξ-exact, by definition
of ξ-exact sequence, there exists a triangle K1 −→ P0 −→ A −→ ΣK in ξ. Since C have enough
ξ-projectives, there exists a triangle L −→ P −→ A −→ ΣL in ξ with P ξ-projective. So we can
construct morphisms of triangles:

L //

��

P //

��

A //

��

ΣL

��
K // Q // A // ΣK,

L //

��

P //

��

A //

��

ΣL

��
K1 // P0 // A // ΣK1

Now consider the diagrams

L //

��

P // A //

��

ΣL

��
K // Q // A // ΣK,

L //

��

P // A //

��

ΣL

��
K1 // P0 // A // ΣK1

where the rows are triangles in ξ. By Lemma 2.13, we can complete them such that L−→K⊕P−→
Q −→ ΣL and L −→ K1 ⊕P −→ P0 −→ ΣL are both triangles in ξ. Since Q is ξ-SCprojective,
by Theorem 2.12, ξ-SCpdL = ξ-SCpd(K⊕P). Since P0 is ξ-SCprojective, by Theorem 2.12, ξ-
SCpdL= ξ-SCpd(K1⊕P). Thus ξ-SCpd(K⊕P)= ξ-SCpd(K1⊕P). But K−→K⊕P−→P−→ΣK
and K1 −→ K1 ⊕P −→ P −→ ΣK1 are split triangles and so are in ξ, and P is ξ-projective, so
is ξ-SCprojective. By Theorem 2.12 again, then ξ-SCpdK = ξ-SCpdK1. The proof now can be
completed by induction.

(ii)⇒ (i). Since C has enough ξ-projectives, there exists a ξ-exact complex

0−→ B−→ Pn−1 −→ ·· · −→ P0 −→ A−→ 0,

where each Pi is ξ-projective. So by assumption B is ξ-SCprojective. This gives the result.
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2.15. Proposition. Assume that C is a triangulated category with enough ξ-projective objects and
let ξ-SCpdA≤ 1 and ξxt1

ξ
(A,P) = 0 for all P ∈ P(ξ). Then A is ξ-SCprojective.

Proof. Since C has enough ξ-projectives. We have a triangle K
f−→ P0

g−→ A h−→ ΣK in ξ,
where P0 is ξ-projective. By proposition 2.14, K is ξ-SCprojective. Thus we have the following
commutative diagram for any P ∈ P(ξ) :

0 // ξxt0
ξ
(A,P) //

∼=

ξxt0
ξ
(P0,P) //

α ∼=
��

ξxt0
ξ
(K,P) //

β ∼=
��

ξxt1
ξ
(A,P) = 0

HomC(ΣK,P) // HomC(A,P)
g∗ // HomC(P0,P)

f ∗ // HomC(K,P) // HomC(Σ
−1A,P),

in which the rows are exact. Since the two isomorphisms α, β hold by Lemma 2.7, f ∗ is epic.

So g∗ is monic. Hence K
f−→ P0

g−→ A h−→ ΣK is HomC(−,P(ξ)) exact. Since C has enough
ξ-projectives, we have a triangle K1 −→ P1 −→ K −→ ΣK1 in ξ with P1 ξ-projective. Thus K1 is
ξ-SCprojective by Theorem 2.9. By Proposition 2.6 and Lemma 2.7, there is an exact sequence

0−→ ξxt0
ξ
(K,P)−→ ξxt0

ξ
(P1,P)−→ ξxt0

ξ
(K1,P)−→ 0.

This is equivalent to

0−→ HomC(K,P)−→ HomC(P1,P)−→ HomC(K1,P)−→ 0

is exact. So K1 −→ P1 −→ K −→ ΣK1 is also HomC(−,P(ξ)) exact. Proceeding this procedure,
we get ξ-projective resolution of A satisfying the condition of definition of ξ-SCprojective object.

2.16. Theorem. Assume that C is a triangulated category with enough ξ-projective objects and let
A ∈ C be of finite ξ-SCprojective dimension. Then ξ-SCpdA ≤ n if and only if ξxt i

ξ
(A,Q) = 0 for

any Q ∈ P̃(ξ) and i > n.

Proof. Let ξ-SCpdA≤ n. So there exists a ξ-exact complex

0−→ Pn −→ Pn−1 −→ ·· · −→ P1 −→ P0 −→ A−→ 0,

with Pi ξ-SCprojective. But now in view of Lemma 2.7 and using the corresponding triangles, we
see that ξxt i

ξ
(Pn,Q)∼= ξxtn+i

ξ
(A,Q) = 0 for all i≥ 1.

Let 0 −→ B −→ Pn−1 −→ ·· · −→ P1 −→ P0 −→ A −→ 0 is ξ-exact sequence with Pi ξ-
projective. Since ξ-SCpdA < ∞, ξ-SCpdB < ∞. Suppose ξ-SCpdB = m. Then there exists an ξ-exact
SCprojective resolution

0−→ Gm −→ Gm−1 −→ ·· · −→ G0 −→ B−→ 0,

with Gi ξ-SCprojective. Next we show that B is ξ-SCprojective. Consider a triangle Gm −→
Gm−1 −→ Km−1 −→ ΣGm in ξ, where ξ-SCpdKm−1 ≤ 1. For any Q ∈ P(ξ), ξxt1

ξ
(Km−1,Q) ∼=

ξxtm
ξ
(B,Q) ∼= ξxtm+n

ξ
(A,Q) = 0. By Proposition 2.15, Km−1 is ξ-SCprojective. Proceeding this

procedure, we get B is ξ-SCprojective. So ξ-SCpdA≤ n.

3. ξ-SCprojective precover
3.1. Definition. Let A be an object of C. A morphism G −→ A where G is ξ-SCprojective is
called a ξ-SCprojective precover of A if it can be completed to an HomC(SCP(ξ),−)-exact triangle
K −→ G−→ A−→ ΣK in ξ.

The following proposition implies that the existence of ξ-SCprojective precover.

3.2. Theorem. Let A be an object of C of finite ξ-projective dimension. Then there exists an
ξ-SCprojective precover.
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Proof. By definition of ξ-projective dimension in [3], there exists a triangle K
f−→ P

g−→ A h−→
ΣK with P ξ-projective and ξ-pdK <∞. For any ξ-SCprojective object Q, ξxt1

ξ
(Q,K) = 0 by Lemma

2.7. But HomC(Q,−) is a cohomological functor, then we have the following commutative dia-
gram:

0 // ξxt0
ξ
(Q,K) //

∼=

ξxt0
ξ
(Q,P) //

α ∼=
��

ξxt0
ξ
(Q,A) //

β ∼=
��

ξxt1
ξ
(Q,K) = 0

HomC(Q,Σ−1A) // HomC(Q,K)
f∗ // HomC(Q,P)

g∗ // HomC(Q,A) // HomC(Q,ΣK),

in which the rows are exact. Since the two isomorphisms α, β hold by Lemma 2.7, g∗ is epic.

Thus f∗ is monic. Hence K
f−→ P

g−→ A h−→ ΣK is HomC(SCP(ξ),−)-exact. Then P −→ A is a
ξ-SCprojective precover of A.

3.3. Proposition. Assume that K1
f1−→ P1

g1−→ A h1−→ ΣK1 and K2
f2−→ P2

g2−→ A h2−→ ΣK2 are
triangles in ξ, where P1

g1−→ A and P2
g1−→ A are both ξ-SCprojective precovers of A. Then

K1⊕P2 ∼= K2⊕P1.

Proof. According to the base change in Proposition 1.1, we get the following commutative
diagram:

0 //

��

K2
= //

α

��

K2 //

f2

��

0

��
K1

f ′1 // Y
g′1 //

β

��

P2
h′1 //

g2

��

ΣK1

K1
f1 //

��

P1
g1 //

γ

��

A
h1 //

h2

��

ΣK1

��
0 // ΣK2 ΣK2 // 0.

Since P2
g2−→ A is an ξ-SCprojective precover of A, there is an exact sequence

HomC(P2,K1)
α−→ HomC(P2,P1)−→ HomC(P2,A)

(h1)∗−→ HomC(P2,ΣK1),

such that (h1)∗g2 = 0, i.e. h1g2 = 0. Thus h′1 = 0. Then the second rows is split. Hence Y ∼=K1⊕P2.
Since P1

g1−→ A is an ξ-SCprojective precover of A, there is an exact sequence

HomC(P1,K2)
α−→ HomC(P1,P2)−→ HomC(P1,A)

(h2)∗−→ HomC(P1,ΣK2),

such that (h2)∗g1 = 0, i.e. h2g1 = 0. Thus γ = 0. Then the second column is split. So Y ∼= K2⊕P1.
Hence K2⊕P1 ∼= K1⊕P2.

3.4. Definition. A ξ-SCprojective resolution of A ∈ C is a ξ-exact complex

P := · · ·Pn+1
dn+1

−→ Pn −→ ·· · −→ P1 −→ P0 −→ A−→ 0

such that Pn ∈ SCP(ξ) and for any n∈N0, in the relevant triangle Kn −→ Pn −→Kn−1 −→ ΣKn(n≥
0)Pn −→ Kn−1 is the ξ-SCprojective precover of Kn−1, in which K−1 = A. The resolution is said to
be of length n if Pn 6= 0 and Pi = 0 for all i > n.

3.5. Definition. Let P := · · ·Pn+1
dn+1

−→ Pn −→ ·· · −→ P1 −→ P0 −→ A−→ 0 be an ξ-SCprojective
resolution of A ∈ C. Then define ξxtn

SCP(ξ)
(A,B) to be the nth-cohomology of the induced complex

HomC(P,B) for any B ∈ C.
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Remark. By the comparison theorem the above ξ-derived functors are well defined.

3.6. Corollary. Let 0 −→ Pn −→ Pn−1 −→ ·· · −→ P0 −→ A1 −→ 0 and 0 −→ P′n −→ P′n−1 −→
·· · −→ P′0 −→ A2 −→ 0 be ξ-SCprojective resolution of A1 and A2 respectively. If A1 ∼= A2, then
P0⊕P′1⊕P2⊕·· · ∼= P′0⊕P1⊕P′2⊕·· · .

3.7. Proposition. Suppose A α−→ B
β−→ C

γ−→ ΣA in ξ such that 0 −→ HomC(P,A) −→

HomC(P,B) −→ HomC(P,C) −→ 0 is exact for all P ∈ SCP(ξ). If · · · −→ P′1 −→ P′0
f ′0−→ A −→ 0

and · · · −→ P′′1 −→ P′′0
f ′′0−→ C −→ 0 are ξ-SCprojective resolutions of A and C respectively, then

there exists a ξ-SCprojective resolution of B.

Proof. Since 0 −→ HomC(P′′0 ,A) −→ HomC(P′′0 ,B) −→ HomC(P′′0 ,C) −→ 0 is exact with
P′′0 ∈ SCP(ξ), γ f ′′0 = 0. Using that Σ is an automorphism and a result of Verdier (see [16]), the
commutative square on the top left corner below is embedded in a diagram

P′′0
0 //

f ′′0
��

ΣP′0
−Σ(p) //

−Σ f ′0
��

ΣP0
Σq //

−Σ f0

��

ΣP′′0

Σ f ′′0
��

C
γ //

h′′0
��

ΣA
−Σα //

−Σh′0
��

ΣB
−Σβ //

−Σh0

��

ΣC

Σh′′0
��

ΣK′′1
−Σφ //

−Σg′′0
��

Σ2K′1
Σ2ψ //

Σ2g′0
��

Σ2K1
Σ2ω //

Σ2g0

��

Σ2K′′1

−Σ2g′′0
��

ΣP′′0
0 // Σ2P′0

Σ2 p // Σ2P0
Σ2q // Σ2P′′0

which is commutative except the lower right square which anticommutes and where the rows and
columns are triangles. Then we have the following commutative diagram in which the first three
vertical and horizontal diagrams are triangles:

K′1
ψ //

g′0
��

K1
ω //

g0

��

K′′1
−φ //

g′′0
��

ΣK′1

Σg′0
��

P′0
p //

f ′0
��

P0
q //

f0

��

P′′0
0 //

f ′′0
��

ΣP′0

Σ f ′0
��

A α //

h′0
��

B
β //

h0

��

C
γ //

h′′0
��

ΣA

−Σh′0
��

ΣK′1
−Σψ // ΣK1

Σω // ΣK′′1
−Σφ // Σ2K′1.

Since the second horizontal triangle is split, we have P0 ∈ SCP(ξ). Applying the cohomological
HomC(P,−) to the above diagram for any P ∈ P(ξ), a simple chasing argument shows that the first
horizontal triangle and the second vertical triangle are both in ξ. Applying to the above diagram the
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cohomological HomC(Q,−) for any Q ∈ SCP(ξ), we have the following commutative diagram:

0

��

0

��

0

��
0 // HomC(Q,K′1) //

��

HomC(Q,K1) //

��

HomC(Q,K′′1 )

��

// 0

0 // HomC(Q,P′0) //

��

HomC(Q,P0) //

��

HomC(Q,P′′0 ) //

��

0

0 // HomC(Q,A) //

��

HomC(Q,B) //

��

HomC(Q,C) //

��

0

0 0 0 .

Easily, we get dotted arrows. Then the second row and the second column are both exact. Induc-
tively the above procedure completes the proof.

3.8. Definition. ([3, Definition 4.14]) Let C be a triangle category and D is a subcategory of C. D
is called generating subcategory if D is Σ-stable and HomC(D,A) = 0⇒ A = 0 for any A ∈ C.

3.9. Theorem. If SCP(ξ) is a generating subcategory of a triangulated category C, then the follow-
ing two conditions are equivalent for any A ∈ C and n≥ 0:

(i) ξxtn+1
SCP(ξ)

(A,B) = 0 for any B ∈ C;
(ii) there exists an ξ-SCprojective resolution 0−→ Pn −→ Pn−1 −→ ·· · −→ P0 −→ A−→ 0.

Proof. (ii)⇒ (i). It is obvious.

(i) ⇒ (ii). Let · · · −→ Pn+2
dn+2−→ Pn+1

dn+1−→ Pn −→ ·· · −→ P1 −→ P0 −→ A −→ 0 be an ξ-

SCprojective resolution of A, where dn = gn−1 fn and Pn
fn−→ Kn is ξ-SCprojective precover of Kn,

∀n≥ 0. Since ξxtn+1
SCP(ξ)

(A,B) = 0 for any B ∈ C, the complex

HomC(Pn,Kn+1)
d∗n+1−→ HomC(Pn+1,Kn+1)

d∗n+2−→ HomC(Pn+2,Kn+1)

implies Im d∗n+1 =Ker d∗n+2. But fn+1gn+1 fn+2 = 0, then fn+1dn+2 = 0. That is to say, d∗n+2 fn+1 =
0, i.e. fn+1 ∈ Ker d∗n+2. So there exists α : Pn −→ Kn+1 such that fn+1 = dn+1α. Applying the

functor HomC(P,−), ∀P ∈ SCP(ξ), to the triangle Kn+1
gn−→ Pn

fn−→ Kn −→ ΣKn+1, we get the
exact sequence

0−→ HomC(P,Kn+1)
gn∗−→ HomC(P,Pn)

fn∗−→ HomC(P,Kn)−→ 0.

Since α : Pn −→ Kn+1 is ξ-SCprojective precover, HomC(P,Pn)
α∗−→ HomC(P,Kn+1) is epic. So

α∗gn∗ = 1HomC(P,Kn+1). Then the above exact sequence is split. So HomC(P,Pn) ∼= HomC(P,Kn⊕
Kn+1). But SCP(ξ) be generating subcategory, then Pn ∼= Kn⊕Kn+1. Hence Kn is ξ-SCprojective.
Thus the proof is completed.

Remark. Similar to the way that we define ξ-SCprojective objects, one can define ξ-SCinjective
objects of triangulated category C. The conclusions and their proofs in Sections 2 and 3 dualize
perfectly, so all the resluts in these sections have valid analogs in terms of ξ-SCinjective objects.
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4. Conclusions and a future work
In this paper, we generalize the notion of strongly copure projective modules in category of mod-

ule to triangulated category, which is called to be ξ-strongly copure projective objects. This extends
the notions of ξ-projective objects and ξ-Gorenstein projective objects in triangulated categories.
We prove that SCP(ξ) has a resolving property in Theorem 2.9. We discuss the ξ-strongly copure
projective dimension and show the relation between ξ-SCpdA and ξxt i

ξ
(A,−) for any object A of

C in Theorem 2.16. We also introduce the concept of ξ-SCprojective precover and investigate the
existence in Theorem 3.2, and moreover, characterize the ξ-SCprojective resolution of object A by
the functor ξxt i

SCP(ξ)
(A,−) in Theorem 3.9.

Referee of this paper has suggested to study a relative quasi-Frobenius property of the category
C in connection with the results obtained in [8] for module categories and in [14] for locally finitely
presented Grothendieck categories. Following Referee’s suggestion, we intend to study in future
the following problem:

Problem 1. Assume that C is a triangulated category with enough ξ-projective objects as in
Section 2. When are the following conditions equivalent?

(i) every ξ-SCprojective object in C is ξ-SCinjective;
(ii) every ξ-SCinjective object C is ξ-SCprojective;
(iii) every object in C is ξ-SCprojective or ξ-SCinjective (that is the global dimension of C is

zero),
Let us recall that the equivalence of these three conditions are proved 40 years ago in [8] for the

usual fp-purity in module categories and the equivalence is proved in [14] for the usual fp-purity
in any locally finitely presented Grothendieck categories. Moreover, an analogous problem is also
discussed in [3].

In the category R-Mod of unitary left modules over a ring R with an identity element, the classical
equality is

sup{pdRA| for any left R-module A}= sup{idRA| for any left R-module A}
established in [13, Theorem 8.14] is extended by D. Bennis and N. Mahdou in [4] to the equality

sup{GpdRA| for any left R-module A}= sup{GidRA| for any left R-module A}
where pdRA(res. idRA) means the projective(res. injective) dimension of A, GpdRA(res. GidRA)
means the Gorenstein projective(res. injective) dimension of A. Naturally, we also try to find some
conditions such that the following conclusion holds in a triangulated category C .

Problem 2. sup{ξ-SCpdA| for any A ∈ C}= sup{ξ-SCidA| for any A ∈ C}.
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1. Introduction
1.1. Lattice-valued frames. The well-known equivalence between the categories of
sober topological spaces and spatial locales, initiated by D. Papert and S. Papert [42], and
developed in a rigid way by J. R. Isbell [31] and P. T. Johnstone [32], opened an important
relationship between general topology and universal algebra. In particular, it provided
a convenient framework for the famous topological representation theorems of M. Stone
for Boolean algebras [71] and distributive lattices [72], which in their turn (backed by
the celebrated representation of distributive lattices of H. Priestley [45] and the plethora
of its induced results) started the theory of natural dualities [8], presenting a general
machinery (based in some elements of category theory, but for the most part in universal
algebra) for obtaining topological representations of algebraic structures. The success
of the evolving theory is mostly due to the fact that it translates algebraic problems,
usually stated in an abstract symbolic language, into dual, topological problems, where
geometric intuition comes to our help.

No wonder then that the beginning of the fuzzy era of L. A. Zadeh [82] and J. A. Goguen
[17], together with the almost immediate fuzzification of the concept of topological space
by C. L. Chang [7], R. Lowen [38] and S. E. Rodabaugh [51], turned the attention of the
newly appearing fuzzy researchers to the fuzzification of the above-mentioned sobriety-
spatiality equivalence. One of the first and the most successful attempt was made by
S. E. Rodabaugh [52], who presented its both fixed- and variable-basis extensions, bring-
ing the theory to its completion in [54, 56], thereby streamlining the initial machinery of
P. T. Johnstone.

It soon appeared, however, that to develop properly lattice-valued pointless topology,
one needs the corresponding lattice-valued generalization of locales, which should not
be a direct fuzzification of the corresponding algebraic structure in the sense of fuzzy
groups of A. Rosenfeld [59] and J. M. Anthony and H. Sherwood [4], or, more generally,
lattice-valued algebras of A. Di Nola and G. Gerla [10], but should be capable of restoring
the point-theoretic structure from a given extended locale of a lattice-valued topological
space. One of the pioneering endeavors in this respect is due to D. Zhang and Y.-
M. Liu [84], who introduced the concept of L-fuzzy locale as a frame homomorphism
L

iA−→ A and provided a lattice-valued sobriety-spatiality equivalence for the respective
category of these structures (the comma category (Loc ↓ L)). A similar viewpoint was
taken by W. Yao [79], who introduced L-frames through the notion of L-partially ordered
set of L. Fan [12]. Moreover, in [78, 80], he developed the theory of lattice-valued domains,
based in his newly established framework of L-order. Later on, W. Yao [81] constructed
an isomorphism between his category of L-frames and the category of L-fuzzy frames of
D. Zhang and Y.-M. Liu. On the other hand, there exists another and more sophisticated
notion of lattice-valued frame, introduced by A. Pultr and S. E. Rodabaugh [48] and
induced by the Lowen-Kubiák ιL (fibre map) functor [37, 38], the latter providing a way
of obtaining a crisp topological space from a lattice-valued one (it is important to notice
that there exists another approach to the just mentioned fuzzy-crisp topological space
passage, suggested by the notion of attachment of C. Guido [19] (see also [13, 14, 15, 20]),
which extends the hypergraph functor of the fuzzy community [26]; whether the notion
of attachment has its corresponding concept of lattice-valued frame is still an open and
challenging question). The theory was given its maturity in [49, 50], which presented
a new presheaf motivation for the concept as well as studied categorical properties of
lattice-valued frames and deepened their relationships to lattice-valued topology.

1.2. Lattice-valued quantales. Motivated by the above-mentioned fuzzifications of
the sobriety-spatiality equivalence, we extended the obtained theory in several ways [63,
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65, 66, 67], thereby initiating categorically-algebraic topology [62], introduced as a com-
mon framework for the majority of modern approaches to lattice-valued topology, in
order to provide convenient means of interaction between different theories. In par-
ticular, in [67] (see also [68]), we considered the notion of algebra over a given unital
commutative quantale as a generalization of the concept of quantale module [36, 43, 61],
whose theory has already been established as an important part of universal algebra,
extending the classical theory of modules over a ring [3]. After a brief consideration, it
became clear to us that the above-mentioned result of W. Yao on categorical equivalence
between two concepts of lattice-valued frame is a direct consequence of a more general
correspondence between quantale modules and lattice-valued

∨
-semilattices, established

recently by I. Stubbe [76], which, in its turn, extends the well-known isomorphism be-
tween the categories of 2-modules and

∨
-semilattices [61] (cf. the similar result for

Z-modules and abelian groups [3]). More precisely, having the just mentioned correspon-
dence in hand, one easily obtains an isomorphism between the categories of quantale
algebras and lattice-valued quantales, a particular instance of the latter providing the
category of L-frames of W. Yao. Moreover, an analogue of the standard representation
of unital algebras over a commutative ring with identity through central ring homomor-
phisms [18, 30] provides an isomorphism between the categories of L-frames of W. Yao
and L-fuzzy frames of D. Zhang and Y.-M. Liu (obtained in a way different from [81]).
The employed machinery clearly shows the strong dependance of this isomorphism on the
existence of the unit in the considered algebras, the condition, which holds trivially in
the frame case. In other words, the passage from frames to quantales makes the concepts
of W. Yao as well as D. Zhang and Y.-M. Liu different. In view of the above-mentioned
importance of lattice-valued frames in fuzzification of the sobriety-spatiality equivalence,
as an additional consequence, quantale algebras give a convenient universally algebraic
framework for developing lattice-valued analogues of the latter as well as for answering
the long-standing question on its relationships to the notion of stratification of lattice-
valued topology [58].

1.3. Skeletal Q-categories versus lattice-valued partial orders. The develop-
ments of this paper are highly dependant on the isomorphism between the categories
RMod(Q) of right Q-modules and CSCat(Q) of cocomplete skeletal Q-categories, con-
structed by I. Stubbe [76] for every unital quantale Q (in fact, for a small quantaloid Q).
The result extends the classical representation of the category Sup of

∨
-semilattices in

terms of Eilenberg-Moore categories of two monads.
On the one hand, there exists the well-known powerset monad P = (P, η, µ) on the

category Set of sets and maps, which is given by the following data:

(1) P(X1
f−→ X2) = PX1

Pf−−→ PX2, where PXi = {S |S ⊆ Xi} and Pf(S) =
{f(s) | s ∈ S};

(2) X
ηX−−→ PX is defined by ηX(x) = {x};

(3) PPX
µX−−→ PX is defined by µX(S) =

⋃
S.

The Eilenberg-Moore category SetP of the monad P is then precisely the above-mentioned
category Sup.

On the other hand, there exists the down-set monad D = (D, ζ, ν) on the category
Prost of preordered sets (no anti-symmetry of partial order) and order-preserving maps,
which is given by the following items:

(1) D(A1
f−→ A2) = DA1

Df−−→ DA2, where DAi = {S |S ⊆ Ai and S =↓ S} and
Df(S) =↓ {f(s) | s ∈ S};

(2) A
ζA−−→ DA is defined by ζA(a) =↓ a;
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(3) DDA
νA−−→ DA is defined by νA(S) =

⋃
S.

The monad in question is easily seen to restrict to the full subcategory Pos of Prost
of partially ordered sets (posets). The Eilenberg-Moore category PosD of the monad
D (whose objects have a simplified description due to the fact that the monad D is of
Kock-Zöberlein type [35]) is again the category Sup. Moreover, the latter monad is

induced by the reflective embedding Sup �
� |−| // Pos (which is precisely the forgetful

functor), the left adjoint of which is given by the particular example of completion of
posets, namely, by the above-mentioned functor D, whose codomain is easily seen to be
Sup, since the set DA is closed in PA under arbitrary set-theoretic unions (cf. Item (3)

in the definition of the monad D). Even more, since the forgetful functor Pos
|−|−−→ Set

(which is no more an embedding) has a left adjoint Set K−→ Pos, which is given by
K(X1

f−→ X2) = (X1,=)
f−→ (X2,=), one easily gets that the composition of the just

mentioned adjoint situations gives the one, which induces the powerset monad P on the
category Set.

It is well-known that given a unital quantale Q, the Eilenberg-Moore category SetPQ
of the Q-powerset monad PQ on the category Set provides the category RMod(Q) of
right modules over Q, which essentially is a fuzzification of the above-mentioned isomor-
phism SetP ∼= Sup, taking into consideration the simple fact that Sup ∼= RMod(2).
Moreover, I. Stubbe [73] provided a lattice-valued analogue of both preordered and par-
tially ordered set (Q-category and skeletal Q-category, respectively), the down-set monad
D (the so-called contravariant presheaf monad on the category of (skeletal) Q-categories),
and showed [76] that its Eilenberg-Moore category is precisely the category CSCat(Q)
of cocomplete skeletal Q-categories, studying the properties of the latter structures in
both stand-alone and category context. Additionally, he obtained that the category
CSCat(Q) is isomorphic to the above category RMod(Q). Viewing the objects of the
former category as a fuzzification of

∨
-semilattices, we see that similar to the crisp case,

where the categories RMod(2) and Sup are isomorphic, the categories RMod(Q) and
CSCat(Q) are isomorphic as well.

The original results of I. Stubbe are more general than the above-mentioned ones,
employing a (small) quantaloid Q instead of a quantale Q, and, therefore, using the lan-
guage of enriched categories [34, 39]. As follows from the above discussion, however,
their simplified Q-versions are closely related to lattice-valued mathematics. More pre-
cisely, Q-categories are nothing else than lattice-valued preorders of L. A. Zadeh [83] and
S. V. Ovchinnikov [41] (see, e.g., [5] for a thorough discussion on the topic), whereas the
assumption on being skeletal makes lattice-valued preorders into lattice-valued partial or-
ders (see the above-mentioned references). Further, a contravariant Q-enriched presheaf
is nothing else than a lattice-valued down-set (a covariant Q-enriched presheaf is then
precisely a lattice-valued up-set), and the free cocompletion of a skeletal Q-category is
a lattice-valued analogue of the above-mentioned completion of partially ordered sets
(already studied elsewhere). Lastly, the assumption on cocompleteness of a skeletal Q-
category provides the existence of a lattice-valued

∨
-operation. As a consequence, one

gets a convenient representation of lattice-valued
∨
-semilattices through quantale mod-

ules (and vice versa), much relied upon in this paper.
When looking at the results of I. Stubbe though, ones notices that he neither uses the

language of many-valued mathematics (even in the restrictedQ-valued case), nor provides
a proper (in fact, any, apart from [77], up to the knowledge of the author) placement of his
achievements in that context. On the other hand, the theory of lattice-valued sets, going
back up to 1965, can contribute a lot to the theory of Q-categories through the notion of
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lattice-valued preorder. More precisely, the theory of the latter structures is already well-
developed, and, moreover, makes a significant part of lattice-valued mathematics. Since
this paper targets the fuzzy community, we restate the above-mentioned isomorphism
RMod(Q) ∼= CSCat(Q) of I. Stubbe in lattice-valued terms, and use it, later on, as
an important tool in obtaining a characterization of lattice-valued frames. Our main
point here is to contribute to the study of lattice-valued posets and not to the theory of
Q-categories, the properties of which lie off the scope of this paper.

In the developments below, we rely on category theory and universal algebra. The
necessary categorical background can be found in [2, 24, 39]. For algebraic notions we
recommend [3, 9, 36, 43, 61]. Although we tried to make the paper as much self-contained
as possible, it is expected from the reader to be acquainted with basic concepts of category
theory, e.g., with that of category and functor.

2. Quantale modules and algebras
In this section, we briefly recall the notions of quantale module and algebra (notice that

these structures are closely related to many-valued mathematics [67, 68]). Both concepts
rely on the notion of quantale (introduced by C. J. Mulvey [40] as an attempt to provide
a possible setting for constructive foundations of quantum mechanics, and to study the
spectra of non-commutative C∗-algebras, which are locales in the commutative case),
whose theory has found numerous applications in both universal algebra and category
theory [36, 73, 74, 75, 76] as well as in lattice-valued mathematics [25, 27, 29, 57].

1. Definition. A
∨
-semilattice is a partially ordered set (poset, for short), which has

arbitrary joins (denoted
∨
). A

∨
-semilattice homomorphism (A,

∨
)

ϕ−→ (B,
∨

) is a∨
-preserving map A ϕ−→ B. Sup is the construct of

∨
-semilattices and their homomor-

phisms.

Notice that in this article, we use the term “
∨
-semilattice" instead of the more usual

term “sup-lattice" as in, e.g., [16, 36, 73, 76], or the term “join-semilattice" as in, e.g.,
[57]. Moreover, to be in line with the overall categorical notation of this paper, we use
“Sup" instead of “s`" [33], or “SL" [60], or “Sup" [36].

2. Definition. A quantale is a triple (Q,
∨
,⊗) such that

(1) (Q,
∨

) is a
∨
-semilattice;

(2) (Q,⊗) is a semigroup, i.e., q1⊗ (q2⊗ q3) = (q1⊗ q2)⊗ q3 for every q1, q2, q3 ∈ Q;
(3) q⊗ (

∨
S) =

∨
s∈S(q⊗ s) and (

∨
S)⊗ q =

∨
s∈S(s⊗ q) for every q ∈ Q and every

S ⊆ Q.
A quantale homomorphism (P,

∨
,⊗)

ϕ−→ (Q,
∨
,⊗) is a map P ϕ−→ Q, which preserves ⊗

and
∨
. Quant is the category of quantales and their homomorphisms, concrete over the

categories Sup of
∨
-semilattices and SGrp of semigroups.

Since the main results of the paper are much dependant on algebraic structures with
ever growing signature (cf., e.g., the passage from

∨
-semilattices to quantales), we will

sometimes shorten the notion to just A (for
∨
-semilattices) or Q (for quantales), making

explicit just the algebraic structure which we need at the moment (cf., e.g., the notation
for quantale modules of Definition 9).

The category Quant has been studied thoroughly in [36, 60], K. I. Rosenthal giving a
coherent statement to the quantale theory. Throughout this paper, we will consider two
specific types of quantales, which are mentioned below.

3. Definition. A quantaleQ is said to be unital provided that there exists an element  ∈
Q such that (Q,⊗, ) is a monoid. A unital quantale homomorphism should additionally
preserve the unit. UQuant denotes the respective (non-full) subcategory of Quant.
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4. Definition. A quantale Q is said to be commutative provided that q1 ⊗ q2 = q2 ⊗ q1
for every q1, q2 ∈ Q. CQuant is the respective full subcategory of Quant.

Every quantale, being a complete lattice, has the largest element > and the smallest
element ⊥. The following examples provide more intuition for the concept.

5. Example. Every frame, i.e., a complete lattice L such that a ∧ (
∨
S) =

∨
s∈S(a ∧ s)

for every a ∈ L and every S ⊆ L [32], is a commutative unital quantale, where ⊗ = ∧
and  = >. In particular, the two-element chain 2 = {⊥, >} is a commutative unital
quantale.

6. Example. Let (A, ·) be a semigroup. The powerset P(A) is a quantale, where
∨

are
unions and S ⊗ T = {s · t | s ∈ S, t ∈ T}. If (A, ·, ) is a monoid, then P(A) is unital,
with the unit {}. If (A, ·) is commutative, then so is P(A).

Example 6 provides the free quantale over a given semigroup [60] (the result is ex-
tended in [68]).

7. Example. Let X be a set and let R(X) be the set of all binary relations on X. R(X)
is a quantale, where

∨
are unions and ⊗ is given by S ⊗ T = {(x, y) ∈ X ×X | (x, z) ∈

T and (z, y) ∈ S for some z ∈ X} (standard composition of relations). R(X) is unital,
with the diagonal relation 4 = {(x, x) |x ∈ X} being the unit, but not commutative.

It is shown in [6] that every unital quantale is isomorphic to a relational quantale,
namely, a subset of R(X), which contains 4 and is closed under composition of relations,
with

∨
being (in general) different from unions (see [22] for a more general result).

8. Example. Given a
∨
-semilattice A, let Q(A) be the set Sup(A,A) of all

∨
-preserving

maps A ϕ−→ A. Equipped with the point-wise order, the set becomes a
∨
-semilattice.

Moreover, Q(A) is a unital quantale, where multiplication is given by the map composition
and the unit is the identity map A

1A−−→ A.

It is shown in [44] that every quantale Q has a faithful representation, i.e., an embed-

ding Q
� � µ // Q(A) for some

∨
-semilattice A (which is actually Q itself).

On the next step, we recall the category Mod(Q) of unital left modules over a given
unital quantale Q [36, 43, 61, 67, 68]. Its definition is very similar to the (well-known to
algebraists) category Mod(R) of unital left modules over a unital ring R [3, 18, 30].

9. Definition. Given a unital quantale Q, a unital left Q-module is a pair (A, ∗), where
A is a

∨
-semilattice and Q×A ∗−→ A is a map (the action of Q on A) such that

(1) q ∗ (
∨
S) =

∨
s∈S(q ∗ s) for every q ∈ Q and every S ⊆ A;

(2) (
∨
T ) ∗ a =

∨
t∈T (t ∗ a) for every T ⊆ Q and every a ∈ A;

(3) q1 ∗ (q2 ∗ a) = (q1 ⊗ q2) ∗ a for every q1, q2 ∈ Q and every a ∈ A;
(4) Q ∗ a = a for every a ∈ A.

A unital left Q-module homomorphism (A, ∗) ϕ−→ (B, ∗) is a map A ϕ−→ B, which preserves∨
and satisfies the condition ϕ(q ∗ a) = q ∗ ϕ(a) for every a ∈ A and every q ∈ Q.

Mod(Q) is the category of left unital Q-modules and their homomorphisms, concrete
over the category Sup.

Notice the possibility to define the category of modules over an arbitrary quantale,
omitting Item (4) of Definition 9. Recently, however, we showed [69] that every category
of modules over a non-unital quantale is equivalent to the category of unital modules
over a unital extension of this quantale.

For the sake of shortness, from now on, “Q-module" means “unital left Q-module". It
is easy to see that the categoryMod(2) (recall the two-element quantale of Example 5) is
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isomorphic to the category Sup (cf. the well-known isomorphism between the categories
of modules over the ring of integers Z and abelian groups [30]). Also notice that every
unital quantale can be considered as a module over itself (with action given by quantale
multiplication).

The concept of Q-module goes back to (at least) A. Joyal and M. Tierney [33]. More
precisely, since Sup is a monoidal closed category (a convenient description of tensor
products of

∨
-semilattices is presented in [23]), unital (commutative) quantales are pre-

cisely the (commutative) monoids in Sup. ThenQ-modules of Definition 9 areQ-modules
in the sense of [33] (which essentially are just the Q-actions (in the sense of monoidal
categories) on the objects of the monoidal category Sup, with Q-action morphisms (in
the sense of monoidal categories again) serving as Q-module homomorphisms), provided
that one notices that most of the results of [33], which deals with the commutative set-
ting, are valid in the non-commutative case as well. Modules over a unital quantale form
the central idea in the unified treatment of process semantics developed by S. Abramsky
and S. Vickers in [1].

On the last step, we define the category Alg(Q) of algebras over a given unital com-
mutative quantale Q. The definition was motivated by the category Alg(K) of algebras
over a commutative ring K with identity [3, 18, 30]. Being started rather recently, the
theory is less developed than that of quantale modules.

10. Definition. Given a unital commutative quantale Q, a Q-algebra is a triple (A,⊗, ∗)
such that

(1) A is a
∨
-semilattice;

(2) (A, ∗) is a Q-module;
(3) (A,⊗) is a quantale;
(4) q ∗ (a1 ⊗ a2) = (q ∗ a1)⊗ a2 = a1 ⊗ (q ∗ a2) for every a1, a2 ∈ A, q ∈ Q.

A Q-algebra homomorphism (A,⊗, ∗) ϕ−→ (B,⊗, ∗) is a map A
ϕ−→ B, which is both a

quantale homomorphism and a Q-module homomorphism. Alg(Q) is the category of
Q-algebras and their homomorphisms, concrete over both the category Mod(Q) and the
category Quant.

It is not difficult to see that the category Alg(2) is isomorphic to the category Quant
(cf. the isomorphism between the categories of algebras over the ring of integers Z and
rings [30]). Notice as well that every unital commutative quantale is an algebra over
itself (with action given by quantale multiplication).

Similar to the case of quantale modules, one can see that quantale algebras also go
back to (at least) the already mentioned paper of A. Joyal and M. Tierney [33]. Given a
unital commutative quantale Q, Mod(Q) is a monoidal closed category (see, e.g., [64] for
the description of its monoidal structure, namely, tensor products of quantale modules).
Then Q-algebras are precisely the monoids in Mod(Q).

It appears that the concept of quantale algebra provides a common framework for two
concepts of lattice-valued frame, currently available in the fuzzy literature.

3. Quantale algebras as comma categories
In [84] D. Zhang and Y.-M. Liu introduced the concept of L-fuzzy frame as an object

of the comma category (L ↓ Frm), where Frm is the category of frames. This section
extends the notion to quantales and shows its categorical equivalence to a particular
instance of quantale algebras.

There exists the well-known representation of unital algebras over a commutative
ring with identity through central ring homomorphisms [18, Proposition 1.1 of Chapter
XIII], [30, Exercise 3 of Section IV.7]. In the following, we extend the result to quantale
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algebras. It should be noticed immediately that a similar achievement has been already
attempted by W. Yao [81]. Due to its rather chaotic presentation, a significant flaw and
the lack of proper universally algebraic background, we provide a more rigorous proof
below. For convenience of the reader, we begin with certain algebraic and categorical
preliminaries.

11. Definition. Given a unital commutative quantale Q, UAlg(Q) is the (non-full)
subcategory of Alg(Q), whose objects additionally are unital quantales and whose mor-
phisms additionally preserve the unit.

12. Definition. The center of a Q-algebra A is the set Z(A) = {a ∈ A | a ⊗ a′ =
a′ ⊗ a for every a′ ∈ A}.

13. Definition. Given a unital commutative quantale Q, (Q ↓ UQuant)z is the cate-
gory, whose objects are the UQuant-morphisms Q

iA−→ A (i.e., from Q to any UQuant-
object) such that the image of iA lies in the center of A. The morphisms of the category
(Q

iA−→ A)
ϕ−→ (Q

iB−−→ B) are the UQuant-morphisms A ϕ−→ B, which make the triangle

Q
iB

��

iA

��
A

ϕ
//B

commute.

Notice that (Q ↓ UQuant)z is a full subcategory of the comma category (Q ↓
UQuant), whose definition is written explicitly for convenience of the reader. More-
over, to be in line with the main goal of this article, we use the notation for comma
categories of [84]. The preliminaries in hand, we proceed to the main result of this
section, which makes use of the following two propositions.

14. Proposition. There exists a functor UAlg(Q)
F−→ (Q ↓ UQuant)z defined by

F ((A, ∗) ϕ−→ (B, ∗)) = (Q
iA−→ A)

ϕ−→ (Q
iB−−→ B), where iA(q) = q ∗ A.

Proof. To show that the functor is correct on objects, we start by checking that the map
Q

iA−→ A is a unital quantale homomorphism. Given S ⊆ Q, iA(
∨
S) = (

∨
S) ∗ A =∨

s∈S(s ∗ A) =
∨
s∈S iA(s). Given q1, q2 ∈ Q, iA(q1 ⊗ q2) = (q1 ⊗ q2) ∗ A = q1 ∗

(q2 ∗ A) = q1 ∗ (A ⊗ (q2 ∗ A)) = (q1 ∗ A) ⊗ (q2 ∗ A) = iA(q1) ⊗ iA(q2). Moreover,
iA(Q) = Q ∗ A = A.

To show that the image of iA lies in the center of A, notice that given q ∈ Q and
a ∈ A, iA(q)⊗ a = (q ∗ A)⊗ a = q ∗ (A ⊗ a) = q ∗ (a⊗ A) = a⊗ (q ∗ A) = a⊗ iA(q).

To verify that the functor is correct on morphisms, use the fact that given q ∈ Q,
ϕ ◦ iA(q) = ϕ(q ∗ A) = q ∗ ϕ(A) = q ∗ B = iB(q). �

An attentive reader will see that Proposition 14 makes no use of the centrality property
of the objects of the category (Q ↓ UQuant)z. It is the functor in the opposite direction
which employs the requirement.

15. Proposition. There exists a functor (Q ↓ UQuant)z
G−→ UAlg(Q) defined by

G((Q
iA−→ A)

ϕ−→ (Q
iB−−→ B)) = (A, ∗) ϕ−→ (B, ∗), where q ∗ a = iA(q)⊗ a.

Proof. To check the correctness of the functor on objects, we show that (A, ∗) is a unital
Q-algebra. Given q ∈ Q and S ⊆ A, q ∗ (

∨
S) = iA(q) ⊗ (

∨
S) =

∨
s∈S(iA(q) ⊗ s) =∨

s∈S(q ∗ s). Given S ⊆ Q and a ∈ A, (
∨
S) ∗ a = iA(

∨
S) ⊗ a = (

∨
s∈S iA(s)) ⊗ a =∨

s∈S(iA(s)⊗a) =
∨
s∈S(s∗a). Given q1, q2 ∈ Q and a ∈ A, q1∗(q2∗a) = q1∗(iA(q2)⊗a) =
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iA(q1)⊗(iA(q2)⊗a) = (iA(q1)⊗ iA(q2))⊗a = iA(q1⊗q2)⊗a = (q1⊗q2)∗a. Given a ∈ A,
Q ∗ a = iA(Q) ⊗ a = A ⊗ a = a. Lastly, given q ∈ Q and a1, a2 ∈ A, q ∗ (a1 ⊗ a2) =
iA(q)⊗ (a1 ⊗ a2) = (iA(q)⊗ a1)⊗ a2 = (q ∗ a1)⊗ a2. Moreover, the centrality property
of Q

iA−→ A gives (iA(q)⊗ a1)⊗ a2 = (a1⊗ iA(q))⊗ a2 = a1⊗ (iA(q)⊗ a2) = a1⊗ (q ∗ a2).
For correctness of the functor on morphisms, use the fact that for q ∈ Q and a ∈ A,

ϕ(q ∗ a) = ϕ(iA(q)⊗ a) = (ϕ ◦ iA(q))⊗ ϕ(a) = iB(q)⊗ ϕ(a) = q ∗ ϕ(a). �

It is important to underline that W. Yao [81] erroneously used the whole category
(Q ↓ UQuant) as the domain of the functor G of Proposition 15.

16. Theorem. G ◦ F = 1UAlg(Q) and F ◦G = (Q ↓ UQuant)z, i.e., the two categories
UAlg(Q) and (Q ↓ UQuant)z are isomorphic.

Proof. Given an UAlg(Q)-object (A, ∗), it follows that G ◦ F (A, ∗) = G(Q
iA−→ A) =

(A, ∗′), where q∗′a = iA(q) ⊗ a = (q ∗ A) ⊗ a = q ∗ (A ⊗ a) = q ∗ a. Given a (Q ↓

UQuant)z-object Q
iA−→ A, it follows that F ◦G(Q

iA−→ A) = F (A, ∗) = Q
i′A−→ A, where

i′A(q) = q ∗ A = iA(q)⊗ A = iA(q). �

One should pay attention to the fact that the existence of the functor F of Proposi-
tion 14 depends on the availability of the unit in the objects of UAlg(Q).

4. Quantale algebras as lattice-valued quantales
In [79, 81] W. Yao developed the theory of lattice-valued frames, based in the concept

of lattice-valued order of L. Fan [12]. In this section, we extend the notion to lattice-
valued quantale and show its categorical equivalence to the concept of quantale algebra.

4.1. Quantale modules as lattice-valued
∨
-semilattices. In view of the discussion

in Subsection 1.3 on the isomorphism RMod(Q) ∼= CSCat(Q) of I. Stubbe [76], in this
subsection, we restate his result in lattice-valued terms. More precisely, we consider
the category Sup(Q) of Q-

∨
-semilattices and show that it is isomorphic to the above-

mentioned category Mod(Q). As a consequence, one obtains a particular (and very
simple) case of [76, Corollary 4.13].

Before moving forward, we have to recall several basic properties of quantales and Q-
modules. Given a quantale Q, there exist two residuations induced by its multiplication ⊗
and defined by q1 −→r q2 =

∨
{q ∈ Q | q1⊗ q 6 q2} and q1 −→l q2 =

∨
{q ∈ Q | q⊗ q1 6 q2},

providing a single residuation · −→ · in case of Q being commutative. The operations
enjoy the standard properties of Galois connections [11], i.e., q2 6 q1 −→r q3 if and only
if q1 ⊗ q2 6 q3 iff q1 6 q2 −→l q3. On the other hand, given a Q-module (A, ∗), there
exist residuations a1 � a2 =

∨
{q ∈ Q | q ∗ a1 6 a2} and q ; a =

∨
{a′ ∈ A | q ∗ a′ 6 a}.

The operations satisfy the Galois connection property q 6 a1 � a2 iff q ∗ a1 6 a2 iff
a1 6 q ; a2. Moreover, the subsequent two lemmas recall a number of other standard
properties of the above-mentioned residuations (for their simple proofs, the reader is
referred to [36, 43, 60], or any other comprehensive reference on quantales).

17. Lemma. Given a quantale Q, the following hold:
(1) q1 −→r (q2 −→r q3) = (q2 ⊗ q1) −→r q3 and q1 −→l (q2 −→l q3) = (q1 ⊗ q2) −→l q3 for

every q1, q2, q3 ∈ Q;
(2) q −→r (

∧
S) =

∧
s∈S(q −→r s) and q −→l (

∧
S) =

∧
s∈S(q −→l s) for every q ∈ Q

and every S ⊆ Q;
(3) (

∨
S) −→r q =

∧
s∈S(s −→r q) and (

∨
S) −→l q =

∧
s∈S(s −→l q) for every q ∈ Q

and every S ⊆ Q.
If Q is unital, then, additionally,
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(4) Q −→r q = q and Q −→l q = q for every q ∈ Q.

18. Lemma. Given a Q-module (A, ∗), the following hold:
(1) q −→l (a1 � a2) = (q ∗ a1)� a2 for every q ∈ Q and every a1, a2 ∈ A;
(2) a� (

∧
S) =

∧
s∈S(a� s) for every a ∈ A and every S ⊆ A;

(3) (
∨
S)� a =

∧
s∈S(s� a) for every a ∈ A and every S ⊆ A;

(4) a1 � (q ; a2) = q −→r (a1 � a2) for every q ∈ Q and every a1, a2 ∈ A.

Notice that the corresponding analogue for · −→r · in Item (1) of Lemma 18 requires
commutativity of the quantale Q. All the properties mentioned in Lemmas 17, 18 will be
heavily used throughout the paper, without mentioning them explicitly on each occasion.

Some results and notation from the theory of lattice-valued powerset operators will
be also used throughout the paper (we notice that our employed powerset operators were
first described by L. A. Zadeh in [82]; the arrow notation and the complete development
is due to S. E. Rodabaugh [53, 55, 57]). Given a map X

f−→ Y , there exist forward

P(X)
f→−−→ P(Y ) and backward P(Y )

f←−−→ P(X) powerset operators, defined by f→(S) =
{f(x) |x ∈ S} and f←(T ) = {x ∈ X | f(x) ∈ T} respectively. Given a

∨
-semilattice L,

the maps can be extended to forward LX
f→L−−→ LY and backward LY

f←L−−→ LX L-powerset
operators, defined accordingly by (f→L (α))(y) =

∨
{α(x) | f(x) = y} and f←L (β) = β ◦ f .

The necessary preliminaries in hand, we can proceed to the main definition of this
subsection.

19. Definition. Let Q be a unital quantale. A Q-partially ordered set (Q-poset) is a
pair (A, e), where A is a set, and A × A e−→ Q is a map (Q-partial order or Q-order on
A) such that

(1) Q 6 e(a, a) for every a ∈ A (Q-reflexivity);
(2) e(a1, a2)⊗ e(a2, a3) 6 e(a1, a3) for every a1, a2, a3 ∈ A (Q-transitivity);
(3) Q 6 e(a1, a2) and Q 6 e(a2, a1) imply a1 = a2, for every a1, a2 ∈ A (Q-

antisymmetry).

A Qr-
∨
-semilattice is a triple (A, e,t), where (A, e) is a Q-poset, and QA

t−→ A is a
map (Qr-join operation on A) such that e(tα, a) =

∧
a′∈A(α(a′) −→r e(a

′, a)) for every
α ∈ QA and every a ∈ A. A Qr-

∨
-semilattice homomorphism (A, e,t)

ϕ−→ (B, e,t) is a
map A ϕ−→ B such that ϕ(tα) = tϕ→Q (α) for every α ∈ QA (Qr-join-preserving map).
Supr(Q) is the construct of Qr-

∨
-semilattices and their homomorphisms.

Replacing · −→r · with · −→l ·, one obtains the concept of Ql-
∨
-semilattice. Since they

both share the same notion of lattice-valued order, we employ neither “r" nor “l" in the
notation for this lattice-valued order. Moreover, the term “Q-

∨
-semilattice" will suppose

commutativity of the quantale Q. Given a Q-poset (A, e), there exists at most one Q-(r,l)-
join operation t on (A, e), since the condition e(tα, a) =

∧
a′∈A(α(a′) −→r,l e(a

′, a)) =

e(t′ α, a) for every a ∈ A, implies tα = t′ α by Items (1) and (3) of Definition 19. One
should also underline at once that Definition 19 uses the concepts of W. Yao [78, 79, 80, 81]
developed for frames. An important difference though is the distinguishing between the
two cases “r" and “l", the use of the unit Q instead of the top element> and the inequality
“Q 6 . . ." instead of the equality “Q = . . .". However, the case of Q being a frame,
makes the two concepts coincide with that of W. Yao. To give the reader more intuition
for the new notion, below, we provide its simple example based in non-commutative
quantales.

20. Lemma. Every unital quantale Q provides the Qr-
∨
-semilattice (Q, e,t), where

e(q1, q2) = q1 −→r q2 and tα =
∨
q∈Q(q ⊗ α(q)).
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Proof. To show that (Q, e) is a Q-poset, notice that given q ∈ Q, q ⊗ Q 6 q provides
Q 6 q −→r q = e(q, q). On the other hand, given q1, q2, q3 ∈ Q, e(q1, q2) ⊗ e(q2, q3) =
(q1 −→r q2) ⊗ (q2 −→r q3) =

∨
{q ⊗ q′ | q1 ⊗ q 6 q2 and q2 ⊗ q′ 6 q3} and then, q1 ⊗

(q ⊗ q′) = (q1 ⊗ q) ⊗ q′ 6 q2 ⊗ q′ 6 q3 gives q ⊗ q′ 6 q1 −→r q3 = e(q1, q3). As a
result, e(q1, q2) ⊗ e(q2, q3) 6 e(q1, q3). Lastly, if Q 6 e(q1, q2) and Q 6 e(q2, q1), then
q1 = q1 ⊗ Q 6 q2 and q2 = q2 ⊗ Q 6 q1 give q1 = q2.

To show that t is the Qr-join operation w.r.t. (Q, e), notice that for α ∈ QQ and
q ∈ Q, it follows that∧

q′∈Q

(α(q′) −→r e(q
′, q)) =

∧
q′∈Q

(α(q′) −→r (q′ −→r q)) =

∧
q′∈Q

((q′ ⊗ α(q′)) −→r q) = (
∨
q′∈Q

(q′ ⊗ α(q′))) −→r q =

e(
∨
q′∈Q

(q′ ⊗ α(q′)), q) = e(tα, q),

which provides then the result in question. �

Notice that the machinery of Lemma 20 is not applicable to the residuation · −→l ·.
Indeed, to show Item (2) of Definition 19, one starts with e(q1, q2) ⊗ e(q2, q3) = (q1 −→l

q2)⊗(q2 −→l q3) =
∨
{q⊗q′ | q⊗q1 6 q2 and q′⊗q2 6 q3} and has to show that (q⊗q′)⊗q1 6

q3, which is generally not true, unless Q is commutative. An analogue of this deficiency is
the main reason for our using commutative quantales in the subsequent developments. We
should notice, however, immediately that the above-mentioned machinery of Q-categories
of I. Stubbe [76] does not depend on commutativity of its underlying quantale (indeed,
its general version relies on a quantaloid Q instead of a quantale Q).

21. Proposition. Given a unital commutative quantale Q, there exists a functor
Mod(Q)

F−→ Sup(Q) defined by F ((A, ∗) ϕ−→ (B, ∗)) = (A, e,t)
ϕ−→ (B, e,t), where

e(a1, a2) = a1 � a2 and tα =
∨
a∈A(α(a) ∗ a).

Proof. To show that the functor is correct on objects, we begin by checking that (A, e) is
a Q-poset. Given a ∈ A, Q ∗ a = a implies Q 6 a � a = e(a, a). Given a1, a2, a3 ∈ A,
e(a1, a2) ⊗ e(a2, a3) = (a1 � a2) ⊗ (a2 � a3) =

∨
{q ⊗ q′ | q ∗ a1 6 a2 and q′ ∗ a2 6

a3} and then, (q ⊗ q′) ∗ a1
(†)
= (q′ ⊗ q) ∗ a1 = q′ ∗ (q ∗ a1) 6 q′ ∗ a2 6 a3 provides

q ⊗ q′ 6 a1 � a3 = e(a1, a3), where (†) uses commutativity of the quantale Q. As a
result, e(a1, a2)⊗ e(a2, a3) 6 e(a1, a3). Lastly, if Q 6 e(a1, a2) and Q 6 e(a2, a1), then
a1 = Q ∗ a1 6 a2 and a2 = Q ∗ a2 6 a1 give a1 = a2.

To show that t provides the Q-join operation w.r.t. (A, e), use the fact that given
α ∈ QA and a ∈ A,∧

a′∈A

(α(a′) −→ e(a′, a)) =
∧
a′∈A

(α(a′) −→ (a′ � a)) =

∧
a′∈A

((α(a′) ∗ a′)� a) = (
∨
a′∈A

(α(a′) ∗ a′))� a =

e(
∨
a′∈A

(α(a′) ∗ a′), a) = e(tα, a).
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To show that the functor F is correct on morphisms, notice that given α ∈ QA and
b ∈ B,

e(ϕ(tα), b) = ϕ(tα)� b = ϕ(
∨
a∈A

(α(a) ∗ a))� b =

(
∨
a∈A

(α(a) ∗ ϕ(a)))� b =
∧
a∈A

((α(a) ∗ ϕ(a))� b) =∧
a∈A

(α(a) −→ (ϕ(a)� b)) =
∧
a∈A

(α(a) −→ e(ϕ(a), b)) =∧
b′∈B

∧
ϕ(a)=b′

(α(a) −→ e(b′, b)) =
∧
b′∈B

((
∨

ϕ(a)=b′

α(a)) −→ e(b′, b)) =

∧
b′∈B

((ϕ→Q (α))(b′) −→ e(b′, b)) = e(tϕ→Q (α), b).

As a result, one obtains that ϕ(tα) = tϕ→Q (α). �

The functor in the opposite direction requires the following specific notation. Given
a
∨
-semilattice L and a set X, for every S ⊆ X and every b ∈ L, there exists a map

X
αb
S−−→ L defined by

αbS(x) =

{
b, x ∈ S
⊥, otherwise.

In particular, if S is a singleton {s}, then we use the notation αbs. An important property
of such maps is contained in the next “folklore" lemma.

22. Lemma. Given a map X f−→ Y and a
∨
-semilattice L, for every map αbS ∈ LX ,

f→L (αbS) = αbf→(S).

23. Proposition. Given a unital commutative quantale Q, there exists a functor
Sup(Q)

G−→Mod(Q) defined by G((A, e,t)
ϕ−→ (B, e,t)) = (A,6,

∨
, ∗) ϕ−→ (B,6,

∨
, ∗),

where
(1) a1 6 a2 iff Q 6 e(a1, a2), for every a1, a2 ∈ A;
(2)

∨
S = tαQS for every S ⊆ A;

(3) q ∗ a = tαqa for every q ∈ Q and every a ∈ A.

Proof. To check that G is well-defined on objects, we show that (A,6,
∨
, ∗) is a Q-

module. The properties of Q-order of Definition 19 imply that (A,6) is a poset (notice
that reflexivity and antisymmetry can be obtained replacing Q in Definition 19 by an
arbitrary element of the quantale Q, whereas transitivity relies on the identity Q =
Q ⊗ Q).

To show that
∨

is the join operation on (A,6), notice that given S ⊆ A, for every
s ∈ S, it follows that

Q 6 e(tα
Q
S ,tαQS ) =

∧
a∈A

(α
Q
S (a) −→ e(a,tαQS )) =∧

s′∈S

(Q −→ e(s′,tαQS )) =
∧
s′∈S

e(s′,tαQS ) 6 e(s,tαQS )

and, therefore, s 6 tαQS . On the other hand, given a ∈ A such that s 6 a for every
s ∈ S, it follows that

Q 6
∧
s∈S

e(s, a) =
∧
a′∈A

(α
Q
S (a′) −→ e(a′, a)) = e(tαQS , a)
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and, therefore, tαQS 6 a.
To show that ∗ is a module action on (A,

∨
), we verify the required conditions of

Definition 9 in a row.
Item (1): For q ∈ Q and S ⊆ A, it follows that q ∗ (

∨
S) = tαq∨S and

∨
s∈S(q ∗ s) =∨

s∈S tα
q
s = tαQT , where T is the shorthand for {tαqs | s ∈ S}. To continue, we notice

that

e(tαq∨S ,tα
Q
T ) =

∧
a∈A

(αq∨S(a) −→ e(a,tαQT )) =

q −→ e(
∨
S,tαQT ) = q −→ e(tαQS ,tαQT ) =

q −→ (
∧
a∈A

(α
Q
S (a) −→ e(a,tαQT ))) =

q −→ (
∧
s∈S

e(s,tαQT )) =
∧
s∈S

(q −→ e(s,tαQT )).

For every s ∈ S, it follows that tαqs 6
∨
{tαqs′ | s

′ ∈ S} = tαQT and thus,

Q 6 e(tαqs,tα
Q
T ) =

∧
a∈A

(αqs(a) −→ e(a,tαQT )) = q −→ e(s,tαQT ).

As a consequence, one obtains that Q 6
∧
s∈S(q −→ e(s,tαQT )) and, therefore, tαq∨S 6

tαQT .
For the converse inequality, one starts with the following:

e(tαQT ,tαq∨S) =
∧
a∈A

(α
Q
T (a) −→ e(a,tαq∨S)) =∧

s∈S

(Q −→ e(tαqs,tαq∨S)) =
∧
s∈S

e(tαqs,tαq∨S) =∧
s∈S

∧
a∈A

(αqs(a) −→ e(a,tαq∨S)) =
∧
s∈S

(q −→ e(s,tαq∨S)).

To continue, we notice that

Q 6 e(tαq∨S ,tα
q∨
S) =

∧
a∈A

(αq∨S(a) −→ e(a,tαq∨S)) =

q −→ e(
∨
S,tαq∨S)

and, therefore, q 6 e(
∨
S,tαq∨S). For every s ∈ S, it follows that q = Q ⊗ q 6

e(s,
∨
S) ⊗ e(

∨
S,tαq∨S) 6 e(s,tαq∨S) and, therefore, Q 6 q −→ e(s,tαq∨S). As a

consequence, one immediately obtains that Q 6
∧
s∈S(q −→ e(s,tαq∨S)), which then

yields the desired tαQT 6 tαq∨S .

Item (2): For S ⊆ Q and a ∈ A, it follows that (
∨
S)∗a = tα

∨
S

a and
∨
s∈S(s∗a) =∨

s∈S tα
s
a = tαQT , where T is a shorthand for {tαsa | s ∈ S}. To continue, we notice

that

e(tα
∨
S

a ,tαQT ) =
∧
a′∈A

(α
∨
S

a (a′) −→ e(a′,tαQT )) =

(
∨
S) −→ e(a,tαQT ) =

∧
s∈S

(s −→ e(a,tαQT )).

For every s ∈ S, it follows that tαsa 6
∨
{tαs

′
a | s′ ∈ S} = tαQT , which yields,

Q 6 e(tαsa,tα
Q
T ) =

∧
a′∈A

(αsa(a′) −→ e(a′,tαQT )) = s −→ e(a,tαQT ).
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As a result, one gets, Q 6
∧
s∈S(s −→ e(a,tαQT )) and, therefore, the desired tα

∨
S

a 6
tαQT follows.

For the converse inequality, use the fact that

e(tαQT ,tα
∨
S

a ) =
∧
a′∈A

(α
Q
T (a′) −→ e(a′,tα

∨
S

a )) =

∧
s∈S

(Q −→ e(tαsa,tα
∨
S

a )) =
∧
s∈S

e(tαsa,tα
∨
S

a ) =∧
s∈S

∧
a′∈A

(αsa(a′) −→ e(a′,tα
∨
S

a )) =
∧
s∈S

(s −→ e(a,tα
∨
S

a )) =

(
∨
S) −→ e(a,tα

∨
S

a ) =
∧
a′∈A

(α
∨
S

a (a′) −→ e(a′,tα
∨
S

a )) =

e(tα
∨
S

a ,tα
∨
S

a ) > Q.

Item (3): For q1, q2 ∈ Q and a ∈ A, it follows that q1 ∗ (q2 ∗a) = q1 ∗ (tαq2a ) = tαq1t ,
where t is a shorthand for tαq2a , and (q1 ⊗ q2) ∗ a = tαq1⊗q2a . To continue, we notice
that

e(tαq1t ,tα
q1⊗q2
a ) =

∧
a′∈A

(αq1t (a′) −→ e(a′,tαq1⊗q2a )) =

q1 −→ e(tαq2a ,tαq1⊗q2a ) = q1 −→ (
∧
a′∈A

(αq2a (a′) −→ e(a′,tαq1⊗q2a ))) =

q1 −→ (q2 −→ e(a,tαq1⊗q2a )) = (q1 ⊗ q2) −→ e(a,tαq1⊗q2a ) =∧
a′∈A

(αq1⊗q2a (a′) −→ e(a′,tαq1⊗q2a )) = e(tαq1⊗q2a ,tαq1⊗q2a ) > Q

and, therefore, tαq1t 6 tαq1⊗q2a .
For the converse inequality, we notice that

e(tαq1⊗q2a ,tαq1t ) =
∧
a′∈A

(αq1⊗q2a (a′) −→ e(a′,tαq1t )) =

(q1 ⊗ q2) −→ e(a,tαq1t ) = q1 −→ (q2 −→ e(a,tαq1t )) =

q1 −→ (
∧
a′∈A

(αq2a (a′) −→ e(a′,tαq1t ))) = q1 −→ e(tαq2a ,tαq1t ) =

∧
a′∈A

(αq1t (a′) −→ e(a′,tαq1t )) = e(tαq1t ,tα
q1
t ) > Q.

Item (4): Given a ∈ A, it follows that Q ∗ a = tαQa =
∨
{a} = a.

To show that the functor is correct on morphisms, notice that given S ⊆ A, we get,
ϕ(

∨
S) = ϕ(tαQS ) = tϕ→Q (α

Q
S )

(†)
= tαQϕ→(S) =

∨
ϕ→(S), where (†) uses Lemma 22.

Moreover, given q ∈ Q and a ∈ A, it follows that ϕ(q ∗ a) = ϕ(tαqa) = tϕ→Q (αqa)
(†)
=

tαqϕ(a) = q ∗ ϕ(a), where (†) again relies on Lemma 22. �

Having constructed the two functors, we can prove the main result of this subsection
and one of the main (and most interesting) results of this paper. More precisely, the fol-
lowing theorem provides a relation between lattice-valued

∨
-semilattices of Definition 19,

which are expressed through fuzzy concepts (e.g., fuzzy sets and fuzzy order) and quan-
tale modules of Definition 9, which is a notion expressed in terms of universal algebra. As
a consequence, one gets an additional tool for dealing with many-valued partial orders.
In particular, the tool in question (i.e., the theory of quantale modules) is already rather
well developed (see, e.g., [36, 43, 64]), which opens the possibility to bring an unsolved
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problem from the theory of lattice-valued partial orders to the theory of quantale mod-
ules, solve it in the new framework, and get the answer back to the initiating one. We
obtain thus an analogue of the results of the theory of “natural dualities" [8], which allows
an easy interchange between algebraic problems, usually stated in an abstract symbolic
language, and their dual, topological problems, where geometric intuition comes to our
help.

24. Theorem. Given a unital commutative quantale Q, G ◦ F = 1Mod(Q) and F ◦G =
1Sup(Q), i.e., the two categories Mod(Q) and Sup(Q) are isomorphic.

Proof. Given a Q-module (A, ∗), G◦F (A, ∗) = G(A, e,t) = (A,6′,
∨′, ∗′). On the other

hand, given a1, a2 ∈ A, a16′a2 iff Q 6 e(a1, a2) = a1 � a2 iff a1 = Q ∗ a1 6 a2.
Then

∨
=

∨′, which can be verified directly, since given S ⊆ A,
∨′S = tαQS =∨

a∈A(α
Q
S (a) ∗ a) =

∨
s∈S(Q ∗ s) =

∨
S. Moreover, given q ∈ Q and a ∈ A, q∗′a =

tαqa =
∨
a′∈A(αqa(a′)∗a′) = q∗a. Altogether, it follows that (A,6′,

∨′, ∗′) = (A,6,
∨
, ∗).

Given a Q-
∨
-semilattice (A, e,t), F ◦G(A, e,t) = F (A,6,

∨
, ∗) = (A, e′,t′). On the

other hand, given a1, a2 ∈ A, it follows that

e′(a1, a2) = a1 � a2 =
∨
{q ∈ Q | q ∗ a1 6 a2} =∨

{q ∈ Q | Q 6 e(tαqa1 , a2)} = (†).

Since e(tαqa1 , a2) =
∧
a∈A(αqa1(a) −→ e(a, a2)) = q −→ e(a1, a2), we get that

(†) =
∨
{q ∈ Q | Q 6 q −→ e(a1, a2)} =∨

{q ∈ Q | q 6 e(a1, a2)} = e(a1, a2)

and, therefore, e′(a1, a2) = e(a1, a2). Given α ∈ QA, t′α =
∨
a∈A(α(a)∗a) =

∨
a∈A tα

α(a)
a

= tαQT , where T is a shorthand for {tαα(a)
a | a ∈ A}. Given a′ ∈ A,

e(tαQT , a′) =
∧
a′′∈A

(α
Q
T (a′′) −→ e(a′′, a′)) =

∧
a∈A

(Q −→ e(tαα(a)
a , a′)) =

∧
a∈A

e(tαα(a)
a , a′) =

∧
a∈A

∧
a′′∈A

(αα(a)
a (a′′) −→ e(a′′, a′)) =

∧
a∈A

(α(a) −→ e(a, a′)) = e(tα, a′)

and thus, t′α = tα. Taken together, it follows that (A, e′,t′) = (A, e,t). �

Notice that Theorem 24 essentially provides two descriptions of the same concept. In
the current paper, we are inclined to favor the category Mod(Q), whose many properties
are already known, and (which is more important) whose definition enjoys an easy and
straightforward universally algebraic presentation. The subsequent results of this paper
will provide additional reasons for our viewpoint.

4.2. Some properties of lattice-valued
∨
-semilattices. Looking closely at the cat-

egory Sup(Q) of lattice-valued
∨
-semilattices from the previous subsection, an experi-

enced reader could ask whether its properties resemble those of the well-known and much
studied category Sup. A more general question on the overall fruitfulness of such an ex-
tension is ultimately looming in the background. It is the main purpose of this subsection,
to remove the possible doubts of that kind through considering several simple (but im-
portant) properties of the category Sup(Q). More precisely, we restate several of the
properties of skeletal Q-categories (already obtained by, e.g., I. Stubbe [73, 74, 75, 76])
in lattice-valued terms (cf., e.g., Lemma 30 and Proposition 31). Such a restatement is
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required for a better development of the theory of lattice-valued partial orders, whose
tools are different from the already mentioned theory of skeletal Q-categories, based in
the technique of enriched categories.

The first feature we extend is the trivial fact that every
∨
-preserving map is au-

tomatically monotone. Our intuition suggests that the statement should be valid in
the framework of the category Sup(Q) as well. Strikingly enough, however, the pa-
pers of W. Yao [78, 79, 80, 81] keep silence on the topic, strictly distinguishing be-
tween lattice-valued monotonicity and preservation of lattice-valued

∨
. With the help

of Theorem 24 from the previous subsection, we can clarify the matter. We begin with
the extension of crisp monotonicity, modifying the respective many-valued concept of
W. Yao [78, 79, 80, 81] developed for frames.

25. Definition. Given two Q-ordered sets (A, e) and (B, e), a map A f−→ B is said to be
Q-monotone provided that e(a1, a2) 6 e(f(a1), f(a2)) for every a1, a2 ∈ A.

Notice that we do not require the quantale Q to be commutative. On the other hand,
if this is really the case, one easily obtains the following result.

26. Proposition. Given a unital commutative quantale Q, every Sup(Q)-morphism is
Q-monotone.

Proof. Given a Sup(Q)-morphism (A, e,t)
ϕ−→ (B, e,t), there exists aMod(Q)-morphism

(A, ∗) ϕ−→ (B, ∗) such that F ((A, ∗) ϕ−→ (B, ∗)) = (A, e,t)
ϕ−→ (B, e,t) and, therefore,

we can assume that the maps e, t are induced by the action ∗. Given a1, a2 ∈ A,
q 6 e(a1, a2) = a1 � a2 implies q ∗ a1 6 a2 implies q ∗ ϕ(a1) 6 ϕ(a2) implies
q 6 ϕ(a1)� ϕ(a2) = e(ϕ(a1), ϕ(a2)). Altogether, e(a1, a2) 6 e(ϕ(a1), ϕ(a2)). �

Proposition 26 illustrates the technique, which will be used throughout this subsec-
tion, i.e., replacing the abstract maps e and t of a Q-

∨
-semilattice with their concrete

realizations through a module action. Simple as it looks, the machinery is capable of
providing several useful results.

Our next property extends another well-known result that every
∨
-semilattice is ac-

tually a complete lattice, i.e., has additionally a
∧
-operation. This fact was heavily

employed in the definition of Q-
∨
-semilattices in the previous subsection and also in the

most important results of the latter and, therefore, the simple property should be most
welcome in the extended framework. In the following, we show that this really is the
case. Start with the extension of the crisp

∧
-operation to our new framework (notice

that we still follow the frame path of W. Yao [78, 79, 80, 81]).

27. Definition. Given a Q-poset (A, e), the map QA u−→ A is called a Qr-meet operation
on A provided that e(a,uα) =

∧
a′∈A(α(a′) −→r e(a, a

′)) for every α ∈ QA and every
a ∈ A.

Replacing · −→r · with · −→l ·, one obtains the concept of Ql-meet operation. The case
of a commutative quantale Q provides a nice property of these notions.

28. Proposition. Given a unital commutative quantale Q, every Sup(Q)-object has
Q-meets.

Proof. Given a Q-
∨
-semilattice (A, e,t), we know that both e and t are induced by

a module action ∗ on A. Define a map QA
u−→ A by uα =

∧
a∈A(α(a) ; a) (recall

the notation, stated before Lemma 17). To show that the map is the desired Q-meet
operation on A, notice that given α ∈ QA and a ∈ A, it follows that e(a,uα) = a �
uα = a � (

∧
a′∈A(α(a′) ; a′)) =

∧
a′∈A(a � (α(a′) ; a′)) =

∧
a′∈A(α(a′) −→ (a �

a′)) =
∧
a′∈A(α(a′) −→ e(a, a′)). �
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It should be underlined that in case of lattice-valued frames, W. Yao [78, 79] provides a
stronger result, namely, that the conditions of the existence of L-join- or L-meet operation
for a frame L are equivalent. We will not pursue, however, the topic any further, which
would lead us off the goal of the paper.

The last property concerns the concept of Galois connection on
∨
-semilattices. The

standard result (see, e.g., [11] or [16, Section 0-3]) says that every Sup-morphism (A,
∨

)
ϕ−→

(B,
∨

) has an upper adjoint map B
ψ−→ A characterized uniquely by the condition

ϕ(a) 6 b iff a 6 ψ(b), for every a ∈ A and every b ∈ B. The explicit formula for the map
is then given by ψ(b) =

∨
{a ∈ A |ϕ(a) 6 b} =

∨
ϕ←(↓ b), where ↓ b = {b′ ∈ B | b′ 6 b}.

Moreover, one can show that ψ is
∧
-preserving. Since the above machinery was much

used in the previous subsection, its analogue in the extended setting seems to be highly
desirable. In the following, we provide its generalization, employing the frame notions of
W. Yao [78, 79, 81].

29. Definition. Given Q-posets (A, e) and (B, e), a pair (g, f) of maps A f−→ B and
B

g−→ A is a Q-Galois connection or a Q-adjunction between (A, e) and (B, e) provided
that e(f(a), b) = e(a, g(b)) for every a ∈ A and every b ∈ B. The map f (resp. g) is
called Q-lower (resp. Q-upper) adjoint.

The following lemma provides the extension of two well-known properties of Galois
connections.

30. Lemma. Given a Q-Galois connection (g, f) between (A, e) and (B, e), the following
hold:

(1) both g and f are Q-monotone;
(2) g (resp. f) preserves the existing Q-(r,l)-

∧
(resp. Q-(r,l)-

∨
).

Proof. To show Item (1), notice that given a1, a2 ∈ A, e(f(a1), f(a2)) = e(a1, g◦f(a2)) >
e(a1, a2)⊗ e(a2, g ◦ f(a2)) = e(a1, a2)⊗ e(f(a2), f(a2)) > e(a1, a2)⊗ Q = e(a1, a2). On
the other hand, given b1, b2 ∈ B, it follows that e(g(b1), g(b2)) = e(f ◦ g(b1), b2) >
e(f ◦ g(b1), b1)⊗ e(b1, b2) = e(g(b1), g(b1))⊗ e(b1, b2) > Q ⊗ e(b1, b2) = e(b1, b2).

For Item (2), use the fact that given α ∈ QA such that uα exists and a ∈ A,

e(a, g(uα)) = e(f(a),uα) =
∧
b∈B

(α(b) −→r,l e(f(a), b)) =

∧
b∈B

(α(b) −→r,l e(a, g(b))) =
∧
a′∈A

∧
g(b)=a′

(α(b) −→r,l e(a, g(b))) =

∧
a′∈A

∧
g(b)=a′

(α(b) −→r,l e(a, a
′)) =

∧
a′∈A

((
∨

g(b)=a′

α(b)) −→r,l e(a, a
′)) =

∧
a′∈A

((g→Q (α))(a′) −→r,l e(a, a
′)).

It follows that u g→Q (α) exists and equals g(uα).
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Given α ∈ QA such that tα exists and b ∈ B,

e(f(tα), b) = e(tα, g(b)) =
∧
a∈A

(α(a) −→r,l e(a, g(b))) =∧
a∈A

(α(a) −→r,l e(f(a), b)) =
∧
b′∈B

∧
f(a)=b′

(α(a) −→r,l e(f(a), b)) =

∧
b′∈B

∧
f(a)=b′

(α(a) −→r,l e(b
′, b)) =

∧
b′∈B

((
∨

f(a)=b′

α(a)) −→r,l e(b
′, b)) =

∧
b′∈B

((f→Q (α))(b′) −→r,l e(b
′, b)).

It follows that t f→Q (α) exists and equals f(tα). �

Notice that in order to illustrate the extension of the classical duality machinery to the
fuzzy setting, Lemma 30 provides the proofs, which usually are replaced with something
like “follows through duality".

Turning back to quantale modules, to employ the standard machinery, we introduce
a simple notation. Given a Q-poset (A, e), every a ∈ A provides a map A ↓ea−−→ Q defined
by (↓e a)(b) = e(b, a) (notice the fuzzification of the above-mentioned lower set ↓ a).

31. Proposition. Given a unital commutative quantale Q, every Sup(Q)-morphism
(A, e,t)

ϕ−→ (B, e,t) has a Q-upper adjoint.

Proof. We again assume that the maps e, t are induced by their respective module
actions on A. Define a map B

ψ−→ A by ψ(b) = tϕ←Q (↓e b). To check the adjunction
property, notice that given a ∈ A and b ∈ B, e(ϕ(a), b) = ϕ(a)� b, whereas e(a, ψ(b)) =
a� ψ(b), where

ψ(b) = tϕ←Q (↓e b) =
∨
a′∈A

((ϕ←Q (↓e b))(a′) ∗ a′) =
∨
a′∈A

((↓e b)(ϕ(a′)) ∗ a′) =

∨
a′∈A

(e(ϕ(a′), b) ∗ a′) =
∨
a′∈A

((ϕ(a′)� b) ∗ a′) =
∨
a′∈A

((
∨

q∗ϕ(a′)6b

q) ∗ a′) =

∨
a′∈A

∨
q∗ϕ(a′)6b

(q ∗ a′) =
∨

q∗ϕ(a′)6b

(q ∗ a′)

and, therefore, e(a, ψ(b)) = a � (
∨
q∗ϕ(a′)6b(q ∗ a

′)) = a � (
∨
S). Given q ∈ Q,

q 6 ϕ(a) � b implies q ∗ ϕ(a) 6 b implies q ∗ a ∈ S implies q ∗ a 6
∨
S implies

q 6 a � (
∨
S). On the other hand, q 6 a � (

∨
S) implies q ∗ a 6

∨
S implies

ϕ(q ∗ a) 6 ϕ(
∨
S) implies q ∗ ϕ(a) 6

∨
q∗ϕ(a′)6b(q ∗ ϕ(a′)) 6 b implies q 6 ϕ(a) � b.

Altogether, one obtains, e(ϕ(a), b) = e(a, ψ(b)). �

The challenging task of generalizing other important results to the new setting will
be left to the subsequent developments of the topic, whereas here, we will extend Q-

∨
-

semilattices to lattice-valued quantales.

4.3. Quantale algebras as lattice-valued quantales. This subsection provides the
main result of the section, namely, a representation of quantale algebras as lattice-valued
quantales. With the concept of lattice-valued frame of W. Yao [79, 81] in mind, we
introduce the latter notion in the following way (cf. the crisp case of Definition 2).

32. Definition. Given a unital quantale Q, a Qr-quantale is a tuple (A, e,t,⊗), where
(A, e,t) is a Qr-

∨
-semilattice and A × A ⊗−→ A is a map (Q-multiplication on A) such

that
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(1) (A,⊗) is a semigroup;
(2) a ⊗ (tα) = t(a ⊗ ·)→Q (α) and (tα) ⊗ a = t(· ⊗ a)→Q (α) for every a ∈ A and

every α ∈ QA.
AQr-quantale homomorphism (A, e,t,⊗)

ϕ−→ (B, e,t,⊗) is a map A ϕ−→ B, which is aQr-∨
-semilattice homomorphism (A, e,t)

ϕ−→ (B, e,t) such that ϕ(a1⊗ a2) = ϕ(a1)⊗ϕ(a2)
for every a1, a2 ∈ A. Quantr(Q) is the category of Qr-quantales and their homomor-
phisms, concrete over both Supr(Q) and SGrp.

Similarly, one gets the category Quantl(Q). Below, we generalize the fact mentioned
after Definition 10 that the categoryAlg(2) is isomorphic to the categoryQuant (cf. the
isomorphism between the category Alg(Z) of algebras over the ring of integers Z and the
category Rng of rings [30]), namely, we show that given a unital commutative quantale
Q, the categories Alg(Q) and Quant(Q) are isomorphic (notice that Quantl(Q) =
Quantr(Q) = Quant(Q) for a commutative quantale Q). The underlying machinery will
rely on the isomorphism between the categories Mod(Q) and Sup(Q) of Theorem 24.

33. Proposition. Given a unital commutative quantale Q, there exists a functor
Alg(Q)

F−→ Quant(Q) defined by F ((A,⊗, ∗) ϕ−→ (B,⊗, ∗)) = (A, e,t,⊗)
ϕ−→ (B, e,t,⊗),

where the maps e and t are obtained as in Proposition 21.

Proof. In view of Proposition 21, it will be enough to check the correctness of the functor
on objects and that will follow from verification of Item (2) of Definition 32. Given a ∈ A
and α ∈ QA, for every ā ∈ A,

e(t(a⊗ ·)→Q (α), ā) =
∧
a′∈A

(((a⊗ ·)→Q (α))(a′) −→ e(a′, ā))=

∧
a′∈A

((
∨

a⊗a′′=a′
α(a′′)) −→ (a′ � ā)) =

∧
a′∈A

∧
a⊗a′′=a′

(α(a′′) −→ (a′ � ā))=

∧
a′∈A

∧
a⊗a′′=a′

(α(a′′) −→ ((a⊗ a′′)� ā)) =
∧
a′′∈A

(α(a′′) −→ ((a⊗ a′′)� ā))=

∧
a′′∈A

((α(a′′) ∗ (a⊗ a′′))� ā) =
∧
a′′∈A

((a⊗ (α(a′′) ∗ a′′))� ā)=

(
∨
a′′∈A

(a⊗ (α(a′′) ∗ a′′)))� ā = (a⊗ (
∨
a′′∈A

(α(a′′) ∗ a′′)))� ā=

(a⊗ (tα))� ā = e(a⊗ (tα), ā).

As a result, one obtains that a⊗ (tα) = t(a⊗ ·)→Q (α).
On the other hand,

e(t(· ⊗ a)→Q (α), ā) =
∧
a′∈A

(((· ⊗ a)→Q (α))(a′) −→ e(a′, ā))=

∧
a′∈A

((
∨

a′′⊗a=a′

α(a′′)) −→ (a′ � ā)) =
∧
a′∈A

∧
a′′⊗a=a′

(α(a′′) −→ (a′ � ā))=

∧
a′∈A

∧
a′′⊗a=a′

(α(a′′) −→ ((a′′ ⊗ a)� ā)) =
∧
a′′∈A

(α(a′′) −→ ((a′′ ⊗ a)� ā))=

∧
a′′∈A

((α(a′′) ∗ (a′′ ⊗ a))� ā) =
∧
a′′∈A

(((α(a′′) ∗ a′′)⊗ a)� ā)=

(
∨
a′′∈A

((α(a′′) ∗ a′′)⊗ a))� ā = ((
∨
a′′∈A

(α(a′′) ∗ a′′))⊗ a)� ā=

((tα)⊗ a)� ā = e((tα)⊗ a, ā).
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As a result, we get that (tα)⊗ a = t(· ⊗ a)→Q (α). �

Notice that to illustrate the use of the properties of quantale algebras, we provided
the full proof for both the right and the left distributivity laws.

34. Proposition. Given a unital commutative quantale Q, there exists a functor
Quant(Q)

G−→ Alg(Q), G((A, e,t,⊗)
ϕ−→ (B, e,t,⊗)) = (A,6,

∨
, ∗,⊗)

ϕ−→ (B,6,
∨
, ∗,⊗),

where 6,
∨

and ∗ are obtained as in Proposition 23.

Proof. In view of Proposition 23, it will be enough to show that the functor is correct on
objects and that will follow from verification of Item (3) of Definition 2 and Item (3) of
Definition 10.

For the first item, notice that given S ⊆ A and a ∈ A, a ⊗ (
∨
S) = a ⊗ (tαQS ) =

t(a ⊗ ·)→Q (α
Q
S ) and

∨
s∈S(a ⊗ s) = tαQT , where T is a shorthand for {a ⊗ s | s ∈ S}.

For every ā ∈ A, it follows that

e(t(a⊗ ·)→Q (α
Q
S ), ā) =

∧
a′∈A

(((a⊗ ·)→Q (α
Q
S ))(a′) −→ e(a′, ā)) =

∧
a′∈A

((
∨

a⊗a′′=a′
α
Q
S (a′′)) −→ e(a′, ā)) =

∧
a′∈A

∧
a⊗a′′=a′

(α
Q
S (a′′) −→ e(a′, ā)) =

∧
s∈S

(Q −→ e(a⊗ s, ā)) =
∧
s∈S

e(a⊗ s, ā).

On the other hand,

e(tαQT , ā) =
∧
a′∈A

(α
Q
T (a′) −→ e(a′, ā)) =

∧
s∈S

(Q −→ e(a⊗ s, ā)) =

∧
s∈S

e(a⊗ s, ā).

Altogether, e(t(a⊗ ·)→Q (α
Q
S ), ā) = e(tαQT , ā) and, therefore, t(a⊗ ·)→Q (α

Q
S ) = tαQT ,

which yields then the desired a⊗ (
∨
S) =

∨
s∈S(a⊗ s).

To show the second distributivity law, notice that (
∨
S) ⊗ a = (tαQS ) ⊗ a = t(· ⊗

a)→Q (α
Q
S ) and

∨
s∈S(s ⊗ a) = tαQT , where T is a shorthand for {s ⊗ a | s ∈ S}. For

every ā ∈ A, it follows that

e(t(· ⊗ a)→Q (α
Q
S ), ā) =

∧
a′∈A

(((· ⊗ a)→Q (α
Q
S ))(a′) −→ e(a′, ā)) =

∧
a′∈A

((
∨

a′′⊗a=a′

α
Q
S (a′′)) −→ e(a′, ā)) =

∧
a′∈A

∧
a′′⊗a=a′

(α
Q
S (a′′) −→ e(a′, ā)) =

∧
s∈S

(Q −→ e(s⊗ a, ā)) =
∧
s∈S

e(s⊗ a, ā).

Moreover,

e(tαQT , ā) =
∧
a′∈A

(α
Q
T (a′) −→ e(a′, ā)) =

∧
s∈S

(Q −→ e(s⊗ a, ā)) =

∧
s∈S

e(s⊗ a, ā).

As a result, we obtain that e(t(·⊗a)→Q (α
Q
S ), ā) = e(tαQT , ā), namely, t(·⊗a)→Q (α

Q
S ) =

tαQT , which provides then the desired (
∨
S)⊗ s =

∨
s∈S(s⊗ a).

For the second item, notice that given q ∈ Q and a1, a2 ∈ A, q ∗ (a1⊗ a2) = tαqa1⊗a2 ,
(q ∗ a1) ⊗ a2 = (tαqa1) ⊗ a2 = t(· ⊗ a2)→Q (αqa1) and a1 ⊗ (q ∗ a2) = a1 ⊗ (tαqa2) =
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t(a1 ⊗ ·)→Q (αqa2). For every ā ∈ A, it follows that

e(t(· ⊗ a2)→Q (αqa1), ā) =
∧
a∈A

(((· ⊗ a2)→Q (αqa1))(a) −→ e(a, ā)) =∧
a∈A

((
∨

a′⊗a2=a

αqa1(a′)) −→ e(a, ā)) =
∧
a∈A

∧
a′⊗a2=a

(αqa1(a′) −→ e(a, ā)) =

q −→ e(a1 ⊗ a2, ā)

as well as

e(t(a1 ⊗ ·)→Q (αqa2), ā) =
∧
a∈A

(((a1 ⊗ ·)→Q (αqa2))(a) −→ e(a, ā)) =∧
a∈A

((
∨

a1⊗a′=a

αqa2(a′)) −→ e(a, ā)) =
∧
a∈A

∧
a1⊗a′=a

(αqa2(a′) −→ e(a, ā)) =

q −→ e(a1 ⊗ a2, ā).

On the other hand, we obtain that

e(tαqa1⊗a2 , ā) =
∧
a∈A

(αqa1⊗a2(a) −→ e(a, ā)) = q −→ e(a1 ⊗ a2, ā).

As a consequence, one gets that

e(t(· ⊗ a2)→Q (αqa1), ā) = e(tαqa1⊗a2 , ā) = e(t(a1 ⊗ ·)→Q (αqa2), ā).

It immediately follows that t(· ⊗ a2)→Q (αqa1) = tαqa1⊗a2 = t(a1 ⊗ ·)→Q (αqa2), which then
gives the desired equality (q ∗ a1)⊗ a2 = q ∗ (a1 ⊗ a2) = a1 ⊗ (q ∗ a2). �

The two propositions in hand, we can prove the main result of this section.

35. Theorem. Given a unital commutative quantale Q, G ◦ F = 1Alg(Q) and F ◦ G =
1Quant(Q), i.e., the two categories Alg(Q) and Quant(Q) are isomorphic.

Proof. Follows from Theorem 24, in view of Propositions 33, 34. �

Similar to the case of Theorem 24, Theorem 35 provides two descriptions of the same
concept. It is our opinion thatAlg(Q) is better suited for applications due to its compact
universally algebraic definition and a certain knowledge on its properties. The next
section will give more reasons for such an opinion.

4.4. Quantale algebras as lattice-valued frames. The main results of the previous
two subsections can be summarized as follows (we notice that the prefix “U" in the
notations for categories in Theorem 36 stands for “unital", which in case of, e.g., the
category UQuant(Q) means that Item (1) of Definition 32 employs a monoid (A,⊗, )).

36. Theorem. Given a unital commutative quantale Q, the categories (Q ↓ UQuant)z,
UAlg(Q) and UQuant(Q) are isomorphic.

Proof. Follows from Theorems 16, 35 and the construction of functors of Propositions 33,
34. �

The isomorphism between (Q ↓ UQuant)z and UAlg(Q) is more demanding, since
it requires the existence of the unit in the underlying quantales of Q-algebras, and the
isomorphism between UAlg(Q) and UQuant(Q) is the restriction of a more general one
between Alg(Q) and Quant(Q). In other words, one easily gets the following result (see
the construction of the functors of Propositions 33, 34).

37. Corollary. For every unital commutative quantale Q, the category (Q ↓ UQuant)z
is isomorphic to a non-full subcategory of the category Quant(Q).
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Corollary 37 acquires more importance when one considers the concepts of lattice-
valued frame of D. Zhang and Y.-M. Liu [84] as well as W. Yao [79]. To make the handling
of the corresponding situation easier, below we introduce two additional categories.

38. Definition. For a frame L, UAlgFrm(L) is the full subcategory of UAlg(L), whose
objects have frames as their underlying quantales. Frm(L) is the image of the subcate-
gory UAlgFrm(L) under the isomorphism F of Proposition 33.

It is easy to check that the category Frm(L) is isomorphic to the category L-FrmY of
L-frames of W. Yao [81]. Also notice the double simplification of the category Alg(Q),
not only taking frames as the underlying algebraic structures of quantale algebras, but
also replacing the quantale Q with a frame L. Such a reduced case makes Corollary 37
stronger and, possibly, more interesting.

39. Corollary. Given a frame L, the categories (L ↓ Frm) and Frm(L) are isomorphic.

Proof. By Theorem 16, (L ↓ Frm) is isomorphic to the category UAlgFrm(L). �

Since the category (L ↓ Frm) provides the concept of lattice-valued frame of D. Zhang
and Y.-M. Liu [84], Corollary 39 says that the notions of D. Zhang and Y.-M. Liu as well as
of W. Yao are categorically equivalent. It should be noticed immediately that W. Yao [81]
obtained the same result. Corollary 39, however, provides a more general viewpoint on
this relation and employs completely different machinery. In particular, Corollary 37
shows that the passage from frames to quantales makes the setting of D. Zhang and
Y.-M. Liu different from that of W. Yao. Moreover, since both concepts of lattice-valued
frame are instances of quantale algebras, by our opinion, they both are categorically
redundant in mathematics. The next section elaborates our opinion in full extent.

5. Applications to lattice-valued topology
When looking closely into the papers, which introduce the concepts of lattice-valued

frames, considered in this article, one sees immediately that both of them are moti-
vated by the wish of their authors to extend the well-known equivalence between sober
topological spaces and spatial locales [32] to the setting of lattice-valued topology. The
crucial point here is the following. Since locales come essentially from the crisp world,
e.g., are nicely and conveniently related to crisp topology, they can easily loose their
efficiency in the lattice-valued framework. Indeed, one is confronted with the use of one
and the same algebraic structure to encode the information on both crisp and lattice-
valued topological spaces. While the passage from spaces to locales causes no difficulty,
the converse transformation is liable to miss some information on its way. Despite the
fact that S. E. Rodabaugh [52] successfully extended the crisp localic machinery to the
lattice-valued case, later on, he himself cast certain doubts on its fruitfulness and intro-
duced a fuzzification on the localic side as well, considering lattice-valued locales [49, 50].
The previous section gave another framework for dealing with the notion. It is the main
purpose of this section to show its fruitfulness in this respect.

To begin with, we recall the concept of stratified topological space [47, 58]. Notice that
given a set X and a

∨
-semilattice L, the L-powerset LA is a

∨
-semilattice with the point-

wise algebraic structure. The result is easily extendable to other algebraic structures,
e.g., unital Q-algebras. Moreover, for every a ∈ L, we denote by a the constant map
X

a−→ L with the value a.

40. Definition. Given a unital quantale Q, a Q-topological space or Q-space is a pair
(X, τ), where X is a set and τ is a unital subquantale of QX . Given Q-spaces (X, τ)

and (Y, σ), a map X
f−→ Y is said to be Q-continuous provided that (f←Q )→(σ) ⊆ τ .
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Top(Q) is the category of Q-topological spaces and Q-continuous maps, concrete over
the category Set.

41. Definition. Given a unital quantale Q, a Q-space (X, τ) is called stratified provided
that {q | q ∈ Q} ⊆ τ . STop(Q) is the full subcategory of Top(Q) consisting of stratified
Q-spaces.

42. Definition. Given a unital quantale Q and a unital subquantale D of Q, a Q-space
(X, τ) is called stratified to degree D provided that {q | q ∈ D} ⊆ τ . STopD(Q) is the
full subcategory of Top(Q) consisting of Q-spaces, which are stratified to degree D.

Notice that the stratification idea is due to R. Lowen [38], the term itself first occurring
in [46]. Stratification degree was first encountered by the author in [47]. It appears
that there exists a nice relation between quantale algebras and (stratified) lattice-valued
topological spaces. Start with one preliminary notion.

43. Definition. A unital Q-algebra A is said to be ∗-divisible w.r.t. A (divisible, for
short) provided that for every a ∈ A, there exists q ∈ Q such that a = q ∗ A.

Every unital quantale Q provides a unital divisible Q-algebra, since given q ∈ Q,
q = q ⊗ Q = q ∗ Q. In particular, every frame L is a unital divisible L-algebra.

44. Proposition. Let A be a unital Q-algebra and let (X, τ) be an A-space. If (X, τ)
is stratified, then τ is a unital sub(Q-)algebra of AX . If A is divisible and τ is a unital
sub(Q-)algebra of AX , then τ is stratified.

Proof. For the first statement, notice that it is enough to check the closure of τ under
the module action. Given α ∈ τ and q ∈ Q, (q ∗ α)(x) = q ∗ α(x) = q ∗ (A ⊗ α(x)) =
(q ∗ A) ⊗ α(x) = q ∗ A(x) ⊗ α(x) = (q ∗ A ⊗ α)(x) for every x ∈ X. As a result,
q ∗ α = q ∗ A ⊗ α ∈ τ , since q ∗ A ∈ τ by stratification.

For the second statement, notice that given a ∈ A, by the condition of the proposition,
there exists some q ∈ Q such that a = q ∗ A. Since A ∈ τ and τ is a Q-module,
a = q ∗ A = q ∗ A ∈ τ . �

With Proposition 44 in hand, one obtains the following result.

45. Theorem. Given a unital commutative quantale Q and a Q-algebra A, there is a

functor STop(A)
ΩA−−→ UAlg(Q) defined by ΩA((X, τ)

f−→ (Y, σ)) = τ
(f←A )op

−−−−−→ σ.

The real power of the above result can be exploited in the framework of variety-based
topology [63, 65]. In particular, one easily obtains the functor in the opposite direction as
well as the related concepts of sobriety and spatiality, providing an equivalence between
sober topological spaces and spatial Q-algebras (see [65], where the case A = Q is consid-
ered). The resulting issue here is as follows. Since the concept of Q-algebra incorporates
the above-mentioned two notions of lattice-valued frames, the respective extensions of
the sobriety-spatiality equivalence of D. Zhang and Y.-M. Liu [84] and W. Yao [79] are
particular instances of that for Q-algebras and, therefore, are categorically redundant
in lattice-valued mathematics. Based in this observation, we strongly believe in the
desirability to shift from lattice-valued frames to quantale algebras.

As a final remark, we notice that the passage from unital Q-algebras to stratified
topologies in Proposition 44 requires divisibility of the respective Q-algebra A. Since,
in general, the property rarely holds, it is time for stratification degree to come in play.
Recall from Proposition 14 that every unital Q-algebra A provides a map Q

iA−→ A defined
by iA(q) = q ∗ A and denote by DA the image of iA.

46. Proposition. Given a unital Q-algebra A, every A-space is stratified to degree DA.



804

Proof. Given an A-space (X, τ), and a ∈ DA, there exists some q ∈ Q such that a = q∗A.
Similar to the proof of the second part of Proposition 44, one obtains that a ∈ τ . �

As a consequence, it follows that every category Top(A) over a unital Q-algebra
A is essentially the category STopDA

(A) of A-spaces stratified to degree DA. The
observation provides a convenient framework for studying the concept of stratification in
lattice-valued topology.

6. Conclusion: open problems
Employing the isomorphism between the categories of right Q-modules and cocom-

plete skeletal Q-categories, obtained by I. Stubbe [76] for every unital quantale Q (in
fact, a small quantaloid Q), in this paper, we showed that the concept of quantale al-
gebra, introduced recently [67] as a generalization of the well-known notion of algebra
over a commutative ring with identity, has a significant merit of providing a common
framework for (at least) two notions of lattice-valued frames available in the literature,
namely, L-fuzzy frames of D. Zhang and Y.-M. Liu [84] and L-frames of W. Yao [79].
The obtained results suggest categorical redundancy of these concepts in mathematics in
(at least) two respects. Firstly, both of them are isomorphic to particular subcategories
of the category of quantale algebras and, moreover, are categorically equivalent to each
other (as already observed by W. Yao [81]). Secondly, their motivating extensions of the
classical equivalence of the categories of sober topological spaces and spatial locales to
the lattice-valued world can be done much easier and more straightforward in the setting
of quantale algebras. The quantale algebra extension in its turn follows from the results
obtained in the realm of variety-based topology, providing another fruitful example of its
usefulness as well as making its current generalization to categorically-algebraic (catalg)
topology [62, 70] most desirable. Moreover, the isomorphism between the categories of
quantale algebras and lattice-valued quantales of Theorem 35, suggest categorical re-
dundancy of lattice-valued quantales (and, in particular, lattice-valued frames) in fuzzy
mathematics. On the other hand, the results of Subsection 4.2 make the development of
non-categorical properties of lattice-valued quantales highly desirable, in order to stream-
line and study deeper the classical properties of crisp quantales. It will be the topic of
our forthcoming papers to investigate this issue in its full generality.

As it happens with every new theory, certain open problems arise in its development,
some of which are worth (by our opinion) to be presented to the reader.

6.1. From lattice-valued frames to lattice-valued quantales. In Corollary 39, we
showed categorical equivalence between the concepts of lattice-valued frame of D. Zhang,
Y.-M. Liu [84] and W. Yao [79]. On the other hand, Corollary 37 shows that the frame-
works are different in case of arbitrary quantales. In particular, it suggests that the
setting of D. Zhang and Y.-M. Liu can be partly incorporated into that of W. Yao. The
obtained relationships, however, are by no means complete, requiring further studies on
the topic. At the moment, one can pose the following open problems.

47. Problem. Does the category (Q ↓ UQuant)z provide a (co)reflective subcategory
of Quant(Q)?

48. Problem. Is the category Quant(Q) isomorphic to a subcategory of (Q ↓ Quant)?

49. Problem. To what extent is it possible to lift the isomorphism of Corollary 39 to
quantale setting?
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The first problem deals with a generalization of the issue of adding a unit to a non-
unital quantale considered in [69]. The last problem is ultimately the most important
and, probably, the most difficult one.

6.2. Lattice-valued frames of A. Pultr and S. E. Rodabaugh. Having incorpo-
rated two concepts of lattice-valued frame in the setting of quantale algebras, we have
exhausted the topic by no means. In particular, there exists another famous instance
of the notion, introduced by A. Pultr and S. E. Rodabaugh [48] and studied by them
further in [49, 50]. As has been mentioned in Introduction, its motivation came from
the Lowen-Kubiák ιL (fibre map) functor [37, 38]. As a result, the ultimate definition is
more complicated than the respective concepts of this paper.

Start with a preliminary notation, namely, given a
∧
-semilattice L, let L> denote the

set L\{>}.

50. Definition. Given a chain L, an L-frame is a system of frame homomorphisms

A = (Au ϕA
t−−→ Al)t∈L> such that

(1) ϕA∧S =
∨
s∈S ϕ

A
s for every non-empty S ⊆ L>;

(2) A is an extremal epi-sink;
(3) A is a mono-source.

The condition of L being a chain deals mostly with the meet-irreducibles of L (as
was pointed out by U. Höhle) and, therefore, its various modifications has already been
considered by U. Höhle and S. E. Rodabaugh [28] as well as J. Gutiérrez García, U. Höhle
and M. A. de Prada Vicente [21]. Despite these changes, the notion is still considerably
out of the scope of the classical definitions of lattice-valued frames. In view of the results
of this paper, the next problem springs into mind immediately.

51. Problem. Does there exist any connection between quantale algebras and lattice-
valued frames of A. Pultr and S. E. Rodabaugh?

Notice that while the concept of quantale algebra essentially provides an extension of
partially ordered sets, employing generalization of partial order in the sense of Principle
of Fuzzification of J. A. Goguen [17], the just mentioned notion of lattice-valued frame
seems to be more sophisticated, the first of its conditions stemming from the realm of
sheaves [49]. As a result, a quick look at Problem 51 inspired the author with nothing
more than the following observations.

Every Q-algebra (A, ∗) provides two families of maps: A1 = (A
q∗·−−→ A)q∈Q and

A2 = (Q
·∗a−−→ A)a∈A. Moreover, the Q-action on A can be restored from each of them.

The next lemma shows several simple (but important) properties of these families.

52. Lemma. Given a Q-algebra A, the following hold:
(1) every element of A1, A2 is a

∨
-semilattice homomorphism;

(2) if every element of Q (resp. A) is idempotent w.r.t. the multiplication, then
every element of A1 (resp. A2) is a quantale homomorphism;

(3) A1 is both a mono-source and an epi-sink, whereas A2 is an epi-sink; both are
extremal epi-sinks in the category Sup;

(4) if Q = 2, then A1 = (A
⊥−→ A, A

1A−−→ A), whereas A2 = (2 ·∗a−−→ A)a∈A with

q ∗ a =

{
a, q = 2

⊥, otherwise;
(5) if A1 (resp. A2) satisfies Item (1) of Definition 50, then (

∧
S) ∗ a = (

∨
S) ∗ a

for every a ∈ A and every non-empty S ⊆ Q> (resp. A has no more than two
elements).
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Proof. Item (1) follows from the properties of Q-algebras (Definition 10).

To show Item (2), notice that given q ∈ Q and a1, a2 ∈ A, it follows that q∗(a1⊗a2)
(†)
=

(q ⊗ q) ∗ (a1 ⊗ a2) = q ∗ (q ∗ (a1 ⊗ a2)) = q ∗ (a1 ⊗ (q ∗ a2)) = (q ∗ a1) ⊗ (q ∗ a2),
where (†) uses the idempotency of Q. On the other hand, given a ∈ A and q1, q2 ∈ Q,

(q1⊗q2)∗a (†)
= (q1⊗q2)∗(a⊗a) = q1 ∗(q2 ∗(a⊗a)) = q1 ∗(a⊗(q2 ∗a)) = (q1 ∗a)⊗(q2 ∗a),

where (†) uses the idempotency of A.
The first part of Item (3) follows from the fact that Q ∗ · is the identity map on

A. For the second part, notice that given a ∈ A, Q ∗ a = a and, therefore,
⋃
a∈A(· ∗

a)→(Q) = A. For the last part, use the fact that both sinks are jointly surjective (cf. [2,
Examples 10.65(1)]).

Item (4) is straightforward.
To verify Item (5), notice that in case of A1, the requirement provides (

∧
S) ∗ a =∨

s∈S(s ∗ a) for every a ∈ A and every non-empty S ⊆ Q>. With Definition 10 in mind,
one obtains, (

∧
S) ∗ a = (

∨
S) ∗ a for every a ∈ A and every non-empty S ⊆ Q>.

The case of A2 gives q ∗ (
∧
S) =

∨
s∈S(q ∗ s) for every q ∈ Q and every non-empty

S ⊆ A>. By Definition 10, substituting Q for q, we get,
∧
S =

∨
S for every non-empty

S ⊆ A>. Now, given a1, a2 ∈ A>, a1 6 a1 ∨ a2 = a1 ∧ a2 6 a2 and, similarly, a2 6 a1,
resulting in a1 = a2. �

Taking into consideration the properties of frames (e.g., idempotency of the meet
operation), Lemma 52 provides a point in favor of the above-mentioned representations
of Q-algebras. However, its Item (5) eliminates the use of the representation A2 (also
suggested by the second part of Item (4) of Lemma 52). It will be the topic of our further
research to study the issue in full detail.

The above open problems will be addressed in our forthcoming papers.
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1. Introduction

A. Friedmann and J. A. Schouten introduced the idea of a semi-symmetric linear
connection on a Riemannian manifold in [10]. Later, H. A. Hayden [11] gave the definition
of a semi-symmetric metric connection. In 1970, K. Yano [19] studied semi-symmetric
metric connection and proved that a Rimannian manifold admits a semi-symmetric metric
connection with vanishing curvature tensor if and only if the manifold is conformally
flat. Then, in [12], [13] and [16] T. Imai and Z. Nakao considered some properties of a
Riemannian manifold admitting a semi-symmetric metric connection and they studied
submanifolds of a Riemannian manifold with a semi-symmetric metric connection.

On the other hand, B. Y. Chen introduced Chen inequality and he gave the definition
of new types of curvature invariants (called extrinsic and intrinsic invariants) in [6]. Then,
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in [7], [8] and [9], he established sharp inequalities for different submanifolds in various
ambient spaces.

In [3] and [4], K. Arslan, R. Ezentaş, I. Mihai, C. Murathan and C. Özgür studied
Chen inequalities for submanifolds in locally conformal almost cosymplectic manifolds
and (κ, µ)-contact space forms, respectively. Later, P. Alegre, A. Carriazo, Y. H. Kim
and D. W. Yoon considered same inequalities for submanifolds of generalized space forms
in [2].

Recently, in [14], A. Mihai and C. Özgür proved Chen inequalities for submanifolds
of real space forms admitting a semi-symmetric metric connection. They also studied
same problems for submanifolds of complex space forms and Sasakian space forms with
a semi-symmetric metric connection in [15]. As a generalization of the results of [15],
in tis study, we prove similar inequalities for submanifolds of generalized complex space
forms and generalized Sasakian space forms with respect to a semi-symmetric metric
connection.

2. Preliminaries

Let N be an (n+p)-dimensional Riemannian manifold with a Riemannian metric g. A
linear connection ∇̃ on a Riemannian manifold N is called a semi-symmetric connection
if the torsion tensor T̃ of the connection ∇̃

(2.1) T̃ (X̃, Ỹ ) = ∇̃X̃ Ỹ − ∇̃Ỹ X̃ − [X̃, Ỹ ]

satisfies

(2.2) T̃ (X̃, Ỹ ) = w(Ỹ )X̃ − w(X̃)Ỹ ,

for any vector fields X̃ and Ỹ on N , where w is a 1-form associated with the vector field
U on N defined by

(2.3) w(X̃) = g(X̃, U).

∇̃ is called a semi-symmetric metric connection if

∇̃g = 0.

If
◦

∇̃ is the Levi-Civita connection of a Riemannian manifold N , the semi-symmetric
metric connection ∇̃ is given by

(2.4) ∇̃X̃ Ỹ =
◦

∇̃X̃ Ỹ + w(Ỹ )X̃ − g(X̃, Ỹ )U,

(see [19]).
Let M be an n-dimensional submanifold of an (n+ p)-dimensional Riemannian man-

ifold N . We will consider the induced semi-symmetric metric connection by ∇ and the

induced Levi-Civita connection by
◦
∇ on the submanifold M .

Let R̃ and
◦

R̃ be curvature tensors of ∇̃ and
◦

∇̃ of a Riemannian manifold N , re-

spectively. We also denote by R the curvature tensor of M with respect to ∇ and
◦
R the
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curvature tensor ofM with respect to
◦
∇. Then the Gauss formulas with a semi-symmetric

metric connection ∇ and the Levi-Civita connection
◦
∇, respectively, are given by

∇̃XY = ∇XY + σ(X,Y )

and
◦

∇̃XY =
◦
∇XY +

◦
σ(X,Y ),

for any vector fields X,Y tangent toM , where
◦
σ is the second fundamental form ofM in

N and σ is a (0, 2)-tensor on M . Also, the mean curvature vector of M in N is denoted

by
◦
H.
The equation of Gauss for an n-dimensional submanifold M in an (n+p)-dimensional

Riemannian manifold N is given by

(2.5)
◦

R̃(X,Y, Z,W ) =
◦
R(X,Y, Z,W ) + g(

◦
σ(X,Z),

◦
σ(Y,W ))− g(

◦
σ(Y,Z),

◦
σ(X,W ))

Then, R̃ and
◦

R̃ are related by

R̃(X,Y, Z,W ) =
◦

R̃(X,Y, Z,W )− α(Y,Z)g(X,W ) + α(X,Z)g(Y,W )−

−α(X,W )g(Y,Z) + α(Y,W )g(X,Z),(2.6)

for any vector fields X,Y, Z,W on N [19], where (0, 2)-tensor field α is given by

α(X,Y ) =

(
◦

∇̃w

)
Y − w(X)w(Y ) +

1

2
w(U)g(X,Y ),

for X,Y ∈ χ(M), where the trace of α is denoted by

traceα = λ.

Denote by K(π) or K(u, v) the sectional curvature of M associated with a 2-plane
section π ⊂ TxM with respect to the induced semi-symmetric non-metric connection ∇,
where {u, v} is an orthonormal basis of π. The scalar curvature τ at x ∈ M is denoted
by

τ(x) =
∑

1≤i<j≤n

K(ei ∧ ej),

where {e1, ..., en} is any orthonormal basis of TxM [8].
We will need the following Chen’s lemma for later use:

2.1. Lemma. [6] Let n ≥ 2 and a1, a2, ..., an, b be real numbers such that

(2.7)

(
n∑
i=1

ai

)2

= (n− 1)

(
n∑
i=1

a2i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = ... = an.
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LetM be an n-dimensional Riemannian manifold, L a k-plane section of TxM , x ∈M
and X a unit vector in L.

For an orthonormal basis {e1, ..., ek} of L such that e1 = X, the Ricci curvature (or
k-Ricci curvature) of L at X is defined by

RicL(X) = K12 +K13 + ...+K1k,

where Kij denotes the sectional curvature of the 2-plane section spanned by ei and ej .
For any integer k, 2 ≤ k ≤ n, the Riemannian invariant Θk of M is denoted by

Θk(x) = 1
k−1

inf
L,X

RicL(X), x ∈M,

where L runs over all k-plane sections in TxM and X runs over all unit vectors in L.

3. Chen inequality for submanifolds of generalized complex space
forms

We consider as an ambient space a generalized complex space form with a semi-
symmetric metric connection.

A 2m-dimensional almost Hermitian manifold (N, J, g) is said to be a generalized
complex space form (see [17] and [18]) if there exist two functions F1 and F2 on N such
that

(3.1)
◦

R̃(X,Y, Z,W ) = F1[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]+

+F2[g(X, JZ)g(JY,W )− g(Y, JZ)g(JX,W ) + 2g(X, JY )g(JZ,W )],

for any vector fields X,Y, Z,W on N , where
◦

R̃ is the curvature tensor of N with respect

to the Levi-Civita connection
◦

∇̃. In such a case, we will write N(F1, F2).
If N(F1, F2) is a generalized complex space form with a semi-symmetric metric con-

nection ∇̃, then by the use of (2.6) and (3.1), the curvature tensor R̃ of N(F1, F2) can
be written as

(3.2) R̃(X,Y, Z,W ) = F1[g(Y,Z)g(X,W )− g(X,Z)g(Y,W )]+

+F2[g(X, JZ)g(JY,W )− g(Y, JZ)g(JX,W ) + 2g(X, JY )g(JZ,W )]−

−α(Y,Z)g(X,W ) + α(X,Z)g(Y,W )− α(X,W )g(Y,Z) + α(Y,W )g(X,Z).

Let M be an n-dimensional, n ≥ 3, submanifold of a 2m-dimensional generalized
complex space form N(F1, F2). We put

JX = PX + FX,

for any vector field X tangent to M , where PX and FX are tangential and normal
components of JX, respectively.

We also set

‖P‖2 =

n∑
i,j=1

g2(Jei, ej).
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On the other hand, Θ2(π) is denoted by Θ2(π) = g2(Pe1, e2) = g2(Je1, e2) in [2], where
{e1, e2} is an orthonormal basis of a 2-plane section π. Θ2(π) is a real number in [0, 1],
independent of the choice of e1 and e2.

For submanifolds of generalized complex space forms with respect to the semi-symmetric
metric connection we establish the following sharp inequality:

3.1. Theorem. Let M , n ≥ 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(F1, F2) with respect to the semi-symmetric metric
connection ∇̃. Then we have:

τ(x)−K(π) ≤ n− 2

2

[
n2

n− 1
‖H‖2 + (n+ 1)F1 − 2λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] F2

2
− trace(α|π⊥),(3.3)

where π is a 2-plane section of TxM , x ∈M .

Proof. Let {e1, e2, ...en} be an orthonormal basis of TxM and {en+1, ..., e2m} be an or-
thonormal basis of T⊥x M , x ∈ M , where en+1 is parallel to the mean curvature vector
H.

Taking X = W = ei and Y = Z = ej such that i 6= j and by the use of (3.2), we get

(3.4) R̃(ei, ej , ej , ei) = F1 + 3F2g
2(Jei, ej)− α(ei, ei)− α(ej , ej).

From [16], the Gauss equation with respect to the semi-symmetric metric connection can
be written as

(3.5) R̃(ei, ej , ej , ei) = R(ei, ej , ej , ei) + g(σ(ei, ej), σ(ei, ej))− g(σ(ei, ei), σ(ej , ej)).

Comparing the right hand sides of the equations (3.4) and (3.5), we obtain

F1 + 3F2g
2(Jei, ej)− α(ei, ei)− α(ej , ej)

= R(ei, ej , ej , ei) + g(σ(ei, ej), σ(ei, ej))− g(σ(ei, ei), σ(ej , ej)).

Then, by summation over 1 ≤ i, j ≤ n, the above equation turns into

2τ + ‖σ‖2 − n2 ‖H‖2(3.6)

= n(n− 1)F1 + 3F2

n∑
i,j=1

g2(Jei, ej)− 2(n− 1)λ,

where

‖σ‖2 =

n∑
i,j=1

g(σ(ei, ej), σ(ei, ej))

and

H =
1

n
traceσ.

We set

(3.7) δ = 2τ − n2(n− 2)

n− 1
‖H‖2 + 2(n− 1)λ− n(n− 1)F1 − 3F2 ‖P‖2 .
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Then, the equation (3.6) can be written as follows

(3.8) n2 ‖H‖2 = (n− 1)
(
‖σ‖2 + δ

)
.

For a chosen orthonormal basis, the relation (3.8) takes the following form(
n∑
i=1

σn+1
ii

)2

= (n− 1)

 n∑
i=1

(σn+1
ii )2 +

∑
i6=j

(σn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ

 .
So, by the use of Chen’s Lemma, we have

2σn+1
11 σn+1

22 =
∑

1≤i 6=j≤n

(σn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ.

Let π be a 2-plane section of TxM at a point x, where π = sp{e1, e2}. Then, the
Gauss equation for X = Z = e1 and Y = W = e2 gives us

K(π) = F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2) +

2m∑
r=n+1

[σr11σ
r
22 − (σr12)2] ≥

≥ F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2)+

+
1

2

 ∑
1≤i6=j≤n

(σn+1
ij )2 +

2m∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ

+

2m∑
r=n+2

σr11σ
r
22 −

2m∑
r=n+1

(σr12)2

= F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2)+

+
1

2

∑
1≤i 6=j≤n

(σn+1
ij )2 +

1

2

2m∑
r=n+2

n∑
i,j>2

(σrij)
2+

+
1

2

2m∑
r=n+2

(σr11 + σr22)2 +
∑
j>2

[(σn+1
1j )2 + (σn+1

2j )2] +
1

2
δ ≥

≥ F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2) +

1

2
δ

which implies

K(π) ≥ F1 + 3F2g
2(Je1, e2)− α(e1, e1)− α(e2, e2) +

1

2
δ.

From (3.7), it is easy to see that

K(π) ≥ τ − n− 2

2

[
n2

n− 1
‖H‖2 + (n+ 1)F1 − 2λ

]
+

+
[
6Θ2(π)− 3 ‖P‖2

] F2

2
+ trace(α|π⊥),

where trace(α|π⊥) is denoted by

α(e1, e1) + α(e2, e2) = λ− trace(α|π⊥)

(see [15]). Hence, we finish the proof of the theorem.

3.2. Proposition. The mean curvature H of M admitting semi-symmetric metric con-

nection coincides with the mean curvature
◦
H of M admitting Levi-Civita connection if

and only if the vector field U is tangent to M .

As a consequence of Proposition 3.2 we can give the following result:
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3.3. Theorem. If the vector field U is tangent to M , then the equality case of (3.3)

holds at a point x ∈ M if and only if there exist an orthonormal basis {e1, e2, ...en} of
TxM and an orthonormal basis {en+1, ..., e2m} of T⊥x M such that the shape operators of
M in N(F1, F2) at x have the following forms:

Aen+1 =



a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ


, a+ b = µ

and

Aer =



σr11 σr12 0 · · · 0

σr12 −σr11 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


, n+ 2 ≤ i ≤ 2m,

where we denote by σrij = g(σ(ei, ej), er), 1 ≤ i, j ≤ n and n+ 2 ≤ r ≤ 2m.

Proof. Equality case holds at a point x ∈ M if and only if the equality holds in each of
the previous inequalities and hence the Lemma yields equality.

σn+1
ij = 0, ∀i 6= j, i, j > 2,

σrij = 0, ∀i 6= j, i, j > 2, r = n+ 1, ..., 2m,

σr11 + σr22 = 0, ∀r = n+ 2, ..., 2m,

σn+1
1j = σn+1

2j = 0, ∀j > 2,

σn+1
11 + σn+1

22 = σn+1
33 = ... = σn+1

nn .

If we choose {e1, e2} such that σn+1
12 = 0 and denote by a = σr11, b = σr22, µ = σn+1

33 =

... = σn+1
nn , then the shape operators take the desired forms.

4. Ricci curvature for submanifolds of generalized complex space
forms

In this section we establish relationship between the Ricci curvature of a submani-
fold M in a generalized complex space form N(F1, F2) with a semi-symmetric metric
connection, and the squared mean curvature ‖H‖2.

Now, let begin with the following theorem:

4.1. Theorem. Let M , n ≥ 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(F1, F2) with respect to the semi-symmetric metric
connection ∇̃. Then we have:

(4.1) ‖H‖2 ≥ 2τ

n(n− 1)
+

2

n
λ− F1 −

3F2

n(n− 1)
‖P‖2 .
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Proof. Let {e1, e2, ..., en} be an orthonormal basis of TxM and {en+1, ..., e2m} be an
orthonormal basis of T⊥x M at x ∈ M , where en+1 is parallel to the mean curvature
vector H.

Then, the equation (3.7) can be written as follows

(4.2) n2 ‖H‖2 = 2τ + ‖σ‖2 + 2(n− 1)λ− n(n− 1)F1 − 3F2 ‖P‖2 .

For a choosen orthonormal basis, let e1, e2, ..., en diagonalize the shape operator Aen+1 .
Then, the shape operators take the forms

Aen+1 =


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


and

Aer = (σrij), i, j = 1, ..., n; r = n+ 2, ..., 2m, traceAer = 0.

By the use of (4.2), we obtain

n2 ‖H‖2 = 2τ +

n∑
i=1

a2i +

2m∑
r=n+2

n∑
i,j=1

(σrij)
2 +

+2(n− 1)λ− n(n− 1)F1 − 3F2 ‖P‖2 .(4.3)

On the other hand, since

0 ≤
∑
i<j

(ai − aj)2 = (n− 1)

n∑
i=1

a2i − 2
∑
i<j

aiaj ,

we get

n2 ‖H‖2 =

(
n∑
i=1

ai

)2

=

n∑
i=1

a2i + 2
∑
i<j

aiaj ≤ n
n∑
i=1

a2i ,

which means

(4.4)
n∑
i=1

a2i ≥ n ‖H‖2 .

Thus, in view of (4.4) in (4.3) we get (4.1), which completes the proof of the theorem.

In view of Theorem 4.1, we can give the following theorem:

4.2. Theorem. Let M , n ≥ 3, be an n-dimensional submanifold of a 2m-dimensional
generalized complex space form N(F1, F2) with respect to the semi-symmetric metric
connection ∇̃ such that the vector field U is tangent to M . Then, for any integer k,
2 ≤ k ≤ n and for any point x ∈M , we have:

(4.5) ‖H‖2 (x) ≥ Θk(π) +
2

n
λ− F1 −

3F2

n(n− 1)
‖P‖2 .
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Proof. Let {e1, e2, ..., en} be an orthonormal basis of TxM at x ∈M . The k-plane section
spanned by ei1 , ..., eik is denoted by Li1...ik . Then, by the definitions, we can write

(4.6) τ(Li1...ik ) =
1

2

∑
i∈{i1...ik}

RicLi1...ik
(ei)

and

(4.7) τ(x) =
1

Ck−2
n−2

∑
1≤i1≤...≤ik≤n

τ(Li1...ik ).

By making use of (4.6) and (4.7) in (4.1), we obtain

τ(x) ≥ n(n− 1)

2
Θk(π),

which gives us (4.5).

5. Chen inequality for submanifolds of generalized Sasakian space
forms

Let N be a (2m + 1)-dimensional almost contact metric manifold [5] with an almost
contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1)-tensor field ϕ, a vector field ξ, a
1-form η and a Riemannian metric g on N satisfying

ϕ2X = −X + η(X)ξ, η(ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

g(ϕX,ϕY ) = g(X,Y )− η(X)η(Y ), g(X, ξ) = η(X),

for all vector fields X,Y on N . Such a manifold is said to be a contact metric manifold
if dη = Φ, where Φ(X,Y ) = g(X,ϕY ) is called the fundamental 2-form of N [5].

On the other hand, the almost contact metric structure of N is said to be normal if

[ϕ,ϕ](X,Y ) = −2dη(X,Y )ξ,

for any vector fields X,Y on N , where [ϕ,ϕ] denotes the Nijenhuis torsion of ϕ, given by

[ϕ,ϕ](X,Y ) = ϕ2[X,Y ] + [ϕX,ϕY ]− ϕ[ϕX, Y ]− ϕ[X,ϕY ].

A normal contact metric manifold is called a Sasakian manifold [5].
Given an almost contact metric manifold N with an almost contact metric structure

(ϕ, ξ, η, g), N is called a generalized Sasakian space form [1] if there exist three functions
f1, f2 and f3 on N such that

(5.1)
◦

R̃(X,Y, Z,W ) = f1{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}+

+f2{g(X,ϕZ)g(ϕY,W )− g(Y, ϕZ)g(ϕX,W ) + 2g(X,ϕY )g(ϕZ,W )}+

+f3{η(X)η(Z)g(Y,W )−η(Y )η(Z)g(X,W )+η(Y )η(W )g(X,Z)−η(X)η(W )g(Y,Z)},

for any vector fields X,Y, Z,W on N , where
◦

R̃ denotes the curvature tensor of N with

respect to the Levi-Civita connection
◦

∇̃. In such a case, we will write N(f1, f2, f3). If
f1 = c+3

4
, f2 = f3 = c−1

4
, then N is a Sasakian space form.



820

If N(f1, f2, f3) is a (2m+1)-dimensional generalized Sasakian space form with respect
to the semi-symmetric metric connection ∇̃. Then, from (2.6) and (5.1) the curvature
tensor R̃ of N(f1, f2, f3) can be written as follows

(5.2) R̃(X,Y, Z,W ) = f1{g(Y,Z)g(X,W )− g(X,Z)g(Y,W )}+

+f2{g(X,ϕZ)g(ϕY,W )− g(Y, ϕZ)g(ϕX,W ) + 2g(X,ϕY )g(ϕZ,W )}+

+f3{η(X)η(Z)g(Y,W )−η(Y )η(Z)g(X,W )+η(Y )η(W )g(X,Z)−η(X)η(W )g(Y,Z)}−

−α(Y,Z)g(X,W ) + α(X,Z)g(Y,W )− α(X,W )g(Y,Z) + α(Y,W )g(X,Z).

LetM , n ≥ 3, be an n-dimensional submanifold of a (2m+1)-dimensional generalized
Sasakian space form. We put

ϕX = PX + FX,

for any vector field X tangent to M , where PX and FX are tangential and normal
components of ϕX, respectively.

We also set

‖P‖2 =

n∑
i,j=1

g2(ϕei, ej).

Decompose

ξ = ξ> + ξ⊥,

where ξ> and ξ⊥ denote the tangential and normal components of ξ.
From [2], recall Θ2(π) = g2(Pe1, e2) = g2(ϕe1, e2), where {e1, e2} is an orthonormal

basis of a 2-plane section π, is a real number in [0, 1], independent of the choice of e1 and
e2.

Now, let begin with the following theorem which gives us a sharp inequality for sub-
manifolds of generalized Sasakian space forms with respect to the semi-symmetric metric
connection:

5.1. Theorem. LetM , n ≥ 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection ∇̃. Then we have:

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2

+ [‖ξπ‖
2 − (n− 1)

∥∥∥ξ>∥∥∥2]f3 −

−trace(α|π⊥),(5.3)

where π is a 2-plane section of TxM , x ∈M .

Proof. Let {e1, e2, ...en} be an orthonormal basis of TxM and {en+1, ..., e2m+1} be an
orthonormal basis of T⊥x M , x ∈M , where en+1 is parallel to the mean curvature vector
H.
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For X = W = ei and Y = Z = ej such that i 6= j, the equation (5.2) can be written
as

(5.4) R̃(ei, ej , ej , ei) = f1 + 3f2g
2(ϕei, ej)− f3[η(ei)

2 + η(ej)
2]− α(e1, e1)− α(e2, e2).

Comparing the right hand sides of the equations (3.5) and (5.4) we can write

f1 + 3f2g
2(ϕei, ej)− f3[η(ei)

2 + η(ej)
2]− α(e1, e1)− α(e2, e2)

= R(ei, ej , ej , ei) + g(σ(ei, ej), σ(ei, ej))− g(σ(ei, ei), σ(ej , ej)).

Then, by summation over 1 ≤ i, j ≤ n, the above relation reduces to

(5.5) 2τ + ‖σ‖2 − n2 ‖H‖2 = n(n− 1)f1 + 3f2 ‖P‖2 − 2(n− 1)f3

∥∥∥ξ>∥∥∥2 − 2(n− 1)λ.

If we put

(5.6) δ = 2τ − n
2(n− 2)

n− 1
‖H‖2 + 2(n−1)λ−n(n−1)f1−3f2 ‖P‖2 + 2(n−1)f3

∥∥∥ξ>∥∥∥2 ,
the equation (5.5) turns into

(5.7) n2 ‖H‖2 = (n− 1)
(
‖σ‖2 + δ

)
.

For a chosen orthonormal basis, the relation (5.7) takes the following form(
n∑
i=1

σn+1
ii

)2

= (n− 1)

 n∑
i=1

(σn+1
ii )2 +

∑
i6=j

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ

 .
So, by the use of Chen’s Lemma, we have

2σn+1
11 σn+1

22 =
∑

1≤i 6=j≤n

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ.

Let π be a 2-plane section of TxM at a point x, where π = sp{e1, e2}. We need to denote
ξπ = prπξ for the later use as follows

‖ξπ‖
2 = η(e1)2 + η(e2)2.

Then, from the Gauss equation for X = Z = e1 and Y = W = e2 we get

K(π) = f1+3f2g
2(Pe1, e2)−f3 ‖ξπ‖

2−α(e1, e1)−α(e2, e2)+

2m+1∑
r=n+1

[σr11σ
r
22−(σr12)2] ≥

≥ f1 + 3f2g
2(Pe1, e2)− f3 ‖ξπ‖

2 − α(e1, e1)− α(e2, e2)+

+
1

2

 ∑
1≤i6=j≤n

(σn+1
ij )2 +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2 + δ

+

2m+1∑
r=n+2

σr11σ
r
22 −

2m+1∑
r=n+1

(σr12)2

= f1 + 3f2g
2(Pe1, e2)− f3 ‖ξπ‖

2 − α(e1, e1)− α(e2, e2)+

+
1

2

∑
1≤i 6=j≤n

(σn+1
ij )2 +

1

2

2m+1∑
r=n+2

n∑
i,j>2

(σrij)
2+

+
1

2

2m+1∑
r=n+2

(σr11 + σr22)2 +
∑
j>2

[(σn+1
1j )2 + (σn+1

2j )2] +
1

2
δ ≥

≥ f1 + 3f2g
2(Pe1, e2)− f3 ‖ξπ‖

2 − α(e1, e1)− α(e2, e2) +
1

2
δ,
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which implies

K(π) ≥ f1 + 3f2g
2(Pe1, e2)− f3 ‖ξπ‖

2 − α(e1, e1)− α(e2, e2) +
1

2
δ.

From (5.6), it easy to see that

K(π) ≥ τ − (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2
− [‖ξπ‖

2 − (n− 1)
∥∥∥ξ>∥∥∥2]f3 +

+trace(α|π⊥),

which gives us (5.3). Hence, we complete the proof of the theorem.

5.2. Corollary. Let M , n ≥ 3, be an n-dimensional submanifold of a (2m + 1)-
dimensional generalized Sasakian space form N(f1, f2, f3) with respect to the semi-
symmetric metric connection ∇̃.

If the structure vector field ξ is tangent to M , we have

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2

+ [‖ξπ‖
2 − (n− 1)]f3 −

−trace(α|π⊥).(5.8)

If the structure vector field ξ is normal to M , we have

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)
‖H‖2 + (n+ 1)

f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2
− trace(α|π⊥).(5.9)

As a consequence of Proposition 3.2, for both submanifolds of generalized Sasakian
space forms, we can give the following corollary:

5.3. Corollary. Under the same assumptions as in the Theorem 5.1, if the vector field
U is tangent to M , then we have:

τ(x)−K(π) ≤ (n− 2)

[
n2

2(n− 1)

∥∥∥∥ ◦H∥∥∥∥2 + (n+ 1)
f1
2
− λ

]
−

−
[
6Θ2(π)− 3 ‖P‖2

] f2
2

+ [‖ξπ‖
2 − (n− 1)]f3 −

−trace(α|π⊥).

5.4. Theorem. The equality case of (5.3) holds at a point x ∈M if and only if there exist
an orthonormal basis {e1, e2, ...en} of TxM and an orthonormal basis {en+1, ..., e2m+1} of
T⊥x M such that the shape operators of M in N(f1, f2, f3) at x have the following forms:

Aen+1 =



a 0 0 · · · 0

0 b 0 · · · 0

0 0 µ · · · 0
...

...
...

. . .
...

0 0 0 · · · µ


, a+ b = µ
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and

Aer =



σr11 σr12 0 · · · 0

σr12 −σr11 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


, n+ 2 ≤ i ≤ 2m+ 1,

where we denote by σrij = g(σ(ei, ej), er), 1 ≤ i, j ≤ n and n+ 2 ≤ r ≤ 2m+ 1.

Proof. Equality case holds at a point x ∈ M if and only if the equality holds in each of
the previous inequalities and hence the Lemma yields equality.

σn+1
ij = 0, ∀i 6= j, i, j > 2,

σrij = 0, ∀i 6= j, i, j > 2, r = n+ 1, ..., 2m+ 1,

σr11 + σr22 = 0, ∀r = n+ 2, ..., 2m+ 1,

σn+1
1j = σn+1

2j = 0, ∀j > 2,

σn+1
11 + σn+1

22 = σn+1
33 = ... = σn+1

nn .

If we choose {e1, e2} such that σn+1
12 = 0 and denote by a = σr11, b = σr22, µ = σn+1

33 =

... = σn+1
nn , then the shape operators take the mentioned forms.

6. Ricci curvature for submanifolds of generalized Sasakian space
forms

In this section we establish relationship between the Ricci curvature of a submani-
fold M of a generalized Sasakian space form N(f1, f2, f3) with a semi-symmetric metric
connection and the squared mean curvature ‖H‖2.

Now, let begin with the following theorem:

6.1. Theorem. LetM , n ≥ 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection ∇̃. Then we have:

‖H‖2 ≥ 2τ

n(n− 1)
+

2

n
λ− f1 −

3f2
n(n− 1)

‖P‖2 +

+
2

n
f3

∥∥∥ξ>∥∥∥2 .(6.1)

Proof. Let {e1, e2, ..., en} be an orthonormal basis of TxM and {en+1, ..., e2m+1} be an
orthonormal basis of T⊥x M , x ∈M , where en+1 is parallel to the mean curvature vector
H . Then, the equation (5.5) can be written as follows

n2 ‖H‖2 = 2τ + ‖σ‖2 + 2(n− 1)λ− n(n− 1)f1

−3f2 ‖P‖2 + 2(n− 1)f3.(6.2)
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For a choosen orthonormal basis, let e1, e2, ..., en diagonalize the shape operator Aen+1 .
Then, the shape operators take the forms

Aen+1 =


a1 0 · · · 0

0 a2 · · · 0
...

...
. . .

...
0 0 · · · an


and

Aer = (σrij), i, j = 1, ..., n; r = n+ 2, ..., 2m+ 1, traceAer = 0.

By the use of (6.2), we obtain

n2 ‖H‖2 = 2τ +

n∑
i=1

a2i +

2m+1∑
r=n+2

n∑
i,j=1

(σrij)
2 +

+2(n− 1)λ− n(n− 1)f1 − 3f2 ‖P‖2 + 2(n− 1)f3.(6.3)

On the other hand, we know that

(6.4)
n∑
i=1

a2i ≥ n ‖H‖2 .

Hence, by the use of (6.4) in (6.3), we obtain (6.1).

In view of Theorem 6.1, we can give the following theorem:

6.2. Theorem. LetM , n ≥ 3, be an n-dimensional submanifold of a (2m+1)-dimensional
generalized Sasakian space form N(f1, f2, f3) with respect to the semi-symmetric metric
connection ∇̃ such that the vector field U is tangent to M . Then, for any integer k,
2 ≤ k ≤ n and for any point x ∈M , we have:

(6.5) ‖H‖2 (x) ≥ Θk(π) +
2

n
λ− f1 −

3f2
n(n− 1)

‖P‖2 +
2

n
f3

∥∥∥ξ>∥∥∥2 .
Proof. Similar to the proof of the Theorem 4.2, we easily get (6.5).
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Abstract
In this paper, we shall establish some extended trapezoid-type∣∣∣∣c− ab− af (x) +

b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣ (a ≤ x ≤ c ≤ y ≤ b)

inequalities for differentiable convex functions and differentiable con-
cave functions which are connected with Hermite-Hadamard inequal-
ity. Some error estimates for the midpoint, trapezoidal and Ostrowski
formulae are also given.
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1. Introduction
Throughout in this paper, let a < b in R.
The inequality

(1.1) f

(
a+ b

2

)
≤ (≥) 1

b− a

∫ b

a

f (t) dt ≤ (≥) f (a) + f (b)

2

which holds for all convex (concave) functions f : [a, b] → R, is known in the literature
as Hermite-Hadamard inequality [7].

For some results which generalize, improve, and extend the inequality (1.1), see [1]-[6]
and [8]-[15].
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In [11], Tseng et al. established the following Hermite-Hadamard-type inequality
which refines the first inequality of (1.1).

A. Theorem. Suppose that f : [a, b] → R is a convex function on [a, b]. Then we have
the inequality

f

(
a+ b

2

)
≤ 1

2

[
f

(
3a+ b

4

)
+ f

(
a+ 3b

4

)]
(1.2)

≤ 1

b− a

∫ b

a

f (x) dx.

Using the similar proof of Theorem A, we also note that the inequalities in (1.2) are
reversed when f is concave on [a, b] .

In [4], Dragomir and Agarwal established the following results connected with the
second inequality in the inequality (1.1).

B. Theorem. Let f : [a, b] → R be a differentiable function on (a, b) with a < b. If |f ′|
is convex on [a, b] , then we have

(1.3)
∣∣∣∣f (b) + f (a)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a
8

(∣∣f ′ (a)∣∣+ ∣∣f ′ (b)∣∣)
which is the trapezoid inequality provided |f ′| is convex on [a, b] .

C. Theorem. Let f : [a, b]→ R be a differentiable function on (a, b) with a < b and let
p > 1. If |f ′|p/(p−1) is convex on [a, b], then we have∣∣∣∣f (b) + f (a)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣(1.4)

≤ b− a
2 (p+ 1)

1
p

[
|f ′ (a)|

p
p−1 + |f ′ (b)|

p
p−1

2

] p−1
p

which is the trapezoid inequality provided |f ′|p/(p−1) is convex on [a, b] .

In [10], Pearce and Pečarić established the following theorems that improve Theorem
C, generalize Theorem D and give similar results of Theorems B-C with a concavity
property instead of convexity.

D. Theorem. Let f : [a, b] → R be a differentiable function on (a, b) with a < b and
q ≥ 1. If |f ′|q is convex on [a, b] , then we have

(1.5)
∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a
4

[
|f ′ (a)|q + |f ′ (b)|q

2

] 1
q

which is the trapezoid inequality provided |f ′|q is convex on [a, b] .

E. Theorem. Under the assumptions of Theorem D. Then we have

(1.6)
∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a
4

[
|f ′ (a)|q + |f ′ (b)|q

2

] 1
q

which is the midpoint inequality provided |f ′|q is convex on [a, b] .

F. Theorem. Under the assumptions of Theorem D and |f ′|q (q ≥ 1) is concave on [a, b] .
Then we have

(1.7)
∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a
4

∣∣∣∣f ′(a+ b

2

)∣∣∣∣
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and

(1.8)
∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a
4

∣∣∣∣f ′ (a+ b

2

)∣∣∣∣
which are the trapezoid inequality and the midpoint inequality provided |f ′|q is concave
on [a, b], respectively.

In [1], Alomari and Darus established the following Ostrowski-type inequalities.

G. Theorem. Under the assumptions of Theorem B. Then, for all x ∈ [a, b] , we have∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ (b− a)

[(
1

6
+

1

3

(
b− x
b− a

)3
)∣∣f ′ (a)∣∣(1.9)

+

(
1

6
+

1

3

(
x− a
b− a

)3
)∣∣f ′ (b)∣∣] .

H. Theorem. Under the assumptions of Theorem D. Then, for all x ∈ [a, b] , we have∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣ ≤ b− a
2

1
q

[(
x− a
b− a

)2 ∣∣∣∣f ′ (a+ 2x

3

)∣∣∣∣(1.10)

+

(
b− x
b− a

)2 ∣∣∣∣f ′(2x+ b

3

)∣∣∣∣
]
.

From the above results, it is natural to consider the extended trapezoid-type formulae
in the following lemma.

1.1. Lemma. Let a ≤ x ≤ c ≤ y ≤ b. Then we have the extended trapezoid-type formula∣∣∣∣c− ab− af (x) +
b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as follows:

(1) The trapezoid-type formula∣∣∣∣c− ab− af (x) +
b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣f ((1− α) a+ αb) + f (αa+ (1− α) b)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as 0 ≤ α ≤ 1

2
, x = (1− α) a+ αb, c = a+b

2
and y = αa+ (1− α) b.

(2) The trapezoid formula∣∣∣∣c− ab− af (x) +
b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as x = a, c = a+b

2
and y = b.

(3) The midpoint formula∣∣∣∣c− ab− af (x) +
b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as x = c = y = a+b

2
.
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(4) The Ostrowski formula∣∣∣∣c− ab− af (x) +
b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣
=

∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
as x = c = y.

In this paper, we establish some extended trapezoid-type inequalities which reduce
the trapezoid-type, midpoint-type, Ostrowski-type inequalities, and improve Theorems
B and D-H. Some applications to special means of real numbers are given. Finally, the
approximations for quadrature formulae are also given.

2. Extended trapezoid-type Inequality

Throughout in this section, let 0 ≤ α ≤ γ ≤ 1 − β ≤ 1, a ≤ x ≤ c ≤ y ≤ b and let
P1, P2, Ii (i = 1, · · · , 4) , h (t) , h1 (t) (t ∈ [a, b]) be defined as follows.

P1 =
1

3 (b− a)3

[
(x− a)2

(
3b− a

2
− x
)
+ (c− x)2

(
3b− c

2
− x
)

(2.1)

+(y − c)2
(
3b− c

2
− y
)
+ (b− y)3

]
.

P2 =
1

3 (b− a)3

[
(x− a)3 + (c− x)2

(
c− 3a

2
+ x

)
(2.2)

+(y − c)2
(
c− 3a

2
+ y

)
+ (b− y)2

(
b− 3a

2
+ y

)]
.

(2.3) I1 =
1

3 (b− a)2 (c− a)

[
(x− a)2

(
3c− a

2
− x
)
+ (c− x)3

]
,

(2.4) I2 =
1

3 (b− a)2 (c− a)

[
(c− x)2

(
c− 3a

2
+ x

)
+ (x− a)3

]
,

(2.5) I3 =
1

3 (b− a)2 (b− c)

[
(y − c)2

(
3b− c

2
− y
)
+ (b− y)3

]
,

and

(2.6) I4 =
1

3 (b− a)2 (b− c)

[
(b− y)2

(
b− 3c

2
+ y

)
+ (y − c)3

]
where a < c < b.

h (t) =


t− a, a ≤ t < x
t− c x ≤ t < y
t− b y ≤ t ≤ b

and h1 (t) =


t− a, a ≤ t < x
c− t, x ≤ t < c
t− c, c ≤ t < y
b− t, y ≤ t ≤ b

.

In order to prove our main results, we need the following lemma and remark whose
proof can be obtained by simple computations and r2 + s2 = (r + s)2 − 2rs, r2 + s2 +

t2 + u2 = (r + s+ t+ u)2 − [2 (r + s) (t+ u) + 2rs+ 2tu] where r, s, t, u ∈ R.



831

2.1. Lemma. Let a, b, x, c, y, P1, P2, Ii (i = 1, · · · , 4) , h (t) , h1 (t) (t ∈ [a, b]) be defined
as above. Then we have

|h (t)| = h1 (t) (t ∈ [a, b]) ,

P1 =
1

(b− a)3
∫ b

a

(b− t)h1 (t) dt and P2 =
1

(b− a)3
∫ b

a

(t− a)h1 (t) dt,

As a < c < b,

I1 =
1

(b− a)2 (c− a)

∫ c

a

(c− t)h1 (t) dt,

I2 =
1

(b− a)2 (c− a)

∫ c

a

(t− a)h1 (t) dt,

I3 =
1

(b− a)2 (b− c)

∫ b

c

(b− t)h1 (t) dt,

I4 =
1

(b− a)2 (b− c)

∫ b

c

(t− c)h1 (t) dt,

(2.7) I1 +
b− c
b− a (I2 + I3) = P1,

(2.8) I4 +
c− a
b− a (I2 + I3) = P2,

I1 + I2 =
1

(b− a)2
∫ c

a

h1 (t) dt =
1

2 (b− a)2
[
(x− a)2 + (c− x)2

]
(2.9)

=
1

2

(
c− a
b− a

)2

− (x− a) (c− x)
(b− a)2

,

I3 + I4 =
1

(b− a)2
∫ b

c

h1 (t) dt =
1

2 (b− a)2
[
(y − c)2 + (b− y)2

]
(2.10)

=
1

2

(
b− c
b− a

)2

− (y − c) (b− y)
(b− a)2

,

I1 + I2 + I3 + I4 = P1 + P2 =
1

(b− a)2
∫ b

a

h1 (t) dt(2.11)

=
1

2 (b− a)2
[
(x− a)2 + (c− x)2 + (y − c)2 + (b− y)2

]
=

1

2
−
[
(c− a) (b− c)

(b− a)2
+

(x− a) (c− x)
(b− a)2

+
(y − c) (b− y)

(b− a)2

]
,

aI1 + cI2

=
1

(b− a)2
∫ c

a

h1 (t) tdt

=
1

6

(
x− a
b− a

)2

(2x+ a) +
1

6

(
c− x
b− a

)2

(2x+ c) ,
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cI3 + bI4

=
1

(b− a)2
∫ b

c

h1 (t) tdt

=
1

6

(
y − c
b− a

)2

(2y + c) +
1

6

(
b− y
b− a

)2

(2y + b)

and

0 < P1, P2, Ii ≤ I1 + I2 + I3 + I4 ≤
1

2
(i = 1 · · · 4) .

2.2. Remark. Let α ∈ [0, 1] , x = (1− α) a+ αb, c = a+b
2

and y = αa+ (1− α) b in the
identities (2.1)− (2.11) . Then we have the identities

(2.12) I1 = I4 =
1

3

[
α2

(
3

2
γ − 2α

)
+ 2

(
1

2
− α

)3
]

as 0 < γ ≤ 1,

I2 = I3 =
1

3

[(
1

2
− α

)2(
1

2
+ 2α

)
+ 2α3

]
as 0 ≤ γ < 1,

(2.13) P1 = P2 = I1 + I2 = I3 + I4 =
1

8
− α

(
1

2
− α

)
,

and

(2.14) I1 + I2 + I3 + I4 = P1 + P2 =
1

4
− α (1− 2α) .

2.3. Remark. In Theorem 2.4, Let x = c = y in the identities (2.1)− (2.6) and (2.11) .
Then we have the identities

P1 =
(x− a)2 (3b− a− 2x)

6 (b− a)3
+

1

3

(
b− x
b− a

)3

,

P2 =
(b− x)2 (b− 3a+ 2x)

6 (b− a)3
+

1

3

(
x− a
b− a

)3

,

I1 =
1

2
I2 =

1

6

(
x− a
b− a

)2

, I4 =
1

2
I3 =

1

6

(
b− x
b− a

)2

,

I1 + I2 + I3 + I4 = P1 + P2 =
1

2
− (x− a) (b− x)

(b− a)2

Now, we are ready to state and prove the main results.

2.4. Theorem. Let a, b, x, c, y, P1, P2, Ii (i = 1, · · · , 4) , h (t) , h1 (t) (t ∈ [a, b]) be defined
as above and let q, f be defined as in Theorem D. Then we have the following extended
trapezoid-type inequalities.

(1) The following inequality holds:∣∣∣∣c− ab− af (x) +
b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.15)

≤ (P1 + P2) (b− a)
(
P1 |f ′ (a)|q + P2 |f ′ (b)|q

P1 + P2

) 1
q

.
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(2) As a < c < b, we have the inequality∣∣∣∣c− ab− af (x) +
b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.16)

≤ (I1 + I2 + I3 + I4) (b− a)
(
I1 |f ′ (a)|q + (I2 + I3) |f ′ (c)|q + I4 |f ′ (b)|q

I1 + I2 + I3 + I4

) 1
q

≤ (P1 + P2) (b− a)
(
P1 |f ′ (a)|q + P2 |f ′ (b)|q

P1 + P2

) 1
q

which refines the inequality (2.15) .

Proof. Using the integration by parts and simple computation, we have the following
identity:

1

b− a

∫ b

a

h (t) f ′ (t) dt(2.17)

=
c− a
b− af (x) +

b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt.

(1) Now, using Hölder’s inequality, the convexity of |f ′|q and Lemma 2.1, we have the
inequality ∣∣∣∣ 1

b− a

∫ b

a

h (t) f ′ (t) dt

∣∣∣∣(2.18)

≤ 1

b− a

∫ b

a

|h (t)|
∣∣f ′ (t)∣∣ dt

=
1

b− a

∫ b

a

h1 (t)
∣∣f ′ (t)∣∣ dt

≤ 1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
(∫ b

a

h1 (t)
∣∣f ′ (t)∣∣q dt) 1

q

=
1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
(∫ b

a

h1 (t)

∣∣∣∣f ′( b− tb− a · a+
t− a
b− a · b

)∣∣∣∣q dt)
1
q

≤ 1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
[∫ b

a

h1 (t)
b− t
b− a

∣∣f ′ (a)∣∣q + h1 (t)
t− a
b− a

∣∣f ′ (b)∣∣q dt] 1
q

=

(
1

(b− a)2
∫ b

a

h1 (t) dt

)1− 1
q
(

1

(b− a)3
∫ b

a

h1 (t) (b− t) dt ·
∣∣f ′ (a)∣∣q

+
1

(b− a)3
∫ b

a

h1 (t) (t− a) dt ·
∣∣f ′ (b)∣∣q) 1

q

· (b− a)

= (P1 + P2)
1− 1

q
(
P1

∣∣f ′ (a)∣∣q + P2

∣∣f ′ (b)∣∣q) 1
q (b− a)

= (P1 + P2) (b− a)
(
P1 |f ′ (a)|q + P2 |f ′ (b)|q

P1 + P2

) 1
q

.

The inequality (2.15) follows from the identity (2.17) and the inequality (2.18) .
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(2) Let a < c < b. Using the inequality (2.18) , the convexity of |f ′|q and Lemma 2.1,
we have the inequalities∣∣∣∣ 1

b− a

∫ b

a

h (t) f ′ (t) dt

∣∣∣∣(2.19)

≤ 1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
(∫ b

a

h1 (t)
∣∣f ′ (t)∣∣q dt) 1

q

=
1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
(∫ c

a

h1 (t)
∣∣f ′ (t)∣∣q dt+ ∫ c

a

h1 (t)
∣∣f ′ (t)∣∣q dt) 1

q

=
1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
[∫ c

a

h1 (t)

∣∣∣∣f ′( c− tc− a · a+
t− a
c− a · c

)∣∣∣∣q dt
+

∫ b

c

h1 (t)

∣∣∣∣f ′( b− tb− c · c+
t− c
b− c · b

)∣∣∣∣q]
1
q

≤ 1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
[∫ c

a

h1 (t)

(
c− t
c− a

∣∣f ′ (a)∣∣q + t− a
c− a

∣∣f ′ (c)∣∣q) dt
+

∫ b

c

h1 (t)

(
b− t
b− c

∣∣f ′ (c)∣∣q + t− c
b− c

∣∣f ′ (b)∣∣q)] 1
q

=
1

b− a

(∫ b

a

h1 (t) dt

)1− 1
q
[∫ c

a

h1 (t)

(
c− t
c− a

∣∣f ′ (a)∣∣q + t− a
c− a

∣∣f ′ (c)∣∣q) dt
+

∫ b

c

h1 (t)

(
b− t
b− c

∣∣f ′ (c)∣∣q + t− c
b− c

∣∣f ′ (b)∣∣q)] 1
q

=

(
1

(b− a)2
∫ b

a

h1 (t) dt

)1− 1
q
(

|f ′ (a)|q

(b− a)2 (c− a)

∫ c

a

(c− t)h1 (t) dt

+
|f ′ (c)|q

(b− a)2 (c− a)

∫ c

a

(t− a)h1 (t) dt+
|f ′ (c)|q

(b− a)2 (b− c)

∫ b

c

(b− t)h1 (t) dt

+
|f ′ (b)|q

(b− a)2 (b− c)

∫ b

c

h1 (t) (t− c) dt
) 1

q

· (b− a)

= (I1 + I2 + I3 + I4)
1− 1

q
(
I1
∣∣f ′ (a)∣∣q + (I2 + I3)

∣∣f ′ (c)∣∣q + I4
∣∣f ′ (b)∣∣q) 1

q (b− a)

= (I1 + I2 + I3 + I4) (b− a)
(
I1 |f ′ (a)|q + (I2 + I3) |f ′ (c)|q + I4 |f ′ (b)|q

I1 + I2 + I3 + I4

) 1
q

and

I1 |f ′ (a)|q + (I2 + I3) |f ′ (c)|q + I4 |f ′ (b)|q

I1 + I2 + I3 + I4
(2.20)

=
I1 |f ′ (a)|q + I4 |f ′ (b)|q

P1 + P2
+

I2 + I3
P1 + P2

∣∣∣∣f ′( b− cb− ac+
c− a
b− ab

)∣∣∣∣q

≤

[
I1 +

b−c
b−a (I2 + I3)

]
|f ′ (a)|q +

[
I4 +

c−a
b−a (I2 + I3)

]
|f ′ (b)|q

P1 + P2

=
P1 |f ′ (a)|q + P2 |f ′ (b)|q

P1 + P2
.
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The inequality (2.16) follows from the identities (2.11) , (2.17) and the inequalities (2.19)−
(2.20) . This completes the proof.

Under the conditions of Theorem 2.4, Remark 2.2 and the identities (2.11) , (2.1) −
(2.6), we have the following corollaries and remarks.

2.5. Corollary. Let 0 ≤ α ≤ 1, x = (1− α) a + αb, c = a+b
2

and y = αa + (1− α) b.
Then, using Theorem 2.4 and Remark 2.2, we have the trapezoid-type inequality∣∣∣∣f ((1− α) a+ αb) + f (αa+ (1− α) b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤

[
1

4
− α (1− 2α)

]
(b− a)

(
I1 |f ′ (a)|q + 2I2

∣∣f ′ (a+b
2

)∣∣q + I1 |f ′ (b)|q

2 (I1 + I2)

) 1
q

≤
[
1

4
− α (1− 2α)

]
(b− a)

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

which is provided |f ′|q is convex on [a, b] .

2.6. Remark. Let α = 0. Then, using Corollary 2.5 and Remark 2.2, we have I1 = 1
12
,

I2 = 1
24

and the trapezoid inequality∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ b− a

4

(
|f ′ (a)|q +

∣∣f ′ (a+b
2

)∣∣q + |f ′ (b)|q
3

) 1
q

≤ b− a
4

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

which improves Theorems B and D.

2.7. Remark. Let α = 1
2
. Then, using Corollary2.5 and Remark 2.2, we have I1 = 1

24
,

I2 = 1
12

and the midpoint inequality∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ b− a

4

(
|f ′ (a)|q + 4

∣∣f ′ (a+b
2

)∣∣q + |f ′ (b)|q
6

) 1
q

≤ b− a
4

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q

which improves Theorem E.

2.8. Remark. Let α = 1
4
. Then, using Corollary 2.5 and Remark 2.2, we have I1 =

I2 = 1
32

and the inequality∣∣∣∣∣f
(
3a+b

4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ b− a

8

(
|f ′ (a)|q + 2

∣∣f ′ (a+b
2

)∣∣q + |f ′ (b)|q
4

) 1
q

≤ b− a
8

(
|f ′ (a)|q + |f ′ (b)|q

2

) 1
q
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which is the second inequality in (1.2) provided |f ′|q is convex on [a, b] .

2.9. Corollary. Let P1, P2, Ii (i = 1, · · · , 4) be defined as in Remark 2.3. Then, using
Theorem 2.4 and Remark 2.3, we have the following Ostrowski-type inequalities which
are provided |f ′|q is convex on [a, b] .∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ (P1 + P2) (b− a)

(
P1 |f ′ (a)|q + P2 |f ′ (b)|q

P1 + P2

) 1
q

as x = c = y and a ≤ x ≤ b.∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ 3 (I1 + I4) (b− a)

[
I1 |f ′ (a)|q + 2 (I1 + I4) |f ′ (x)|q + I4 |f ′ (b)|q

3 (I1 + I4)

] 1
q

≤ (P1 + P2) (b− a)
(
P1 |f ′ (a)|q + P2 |f ′ (b)|q

P1 + P2

) 1
q

as x = c = y and a < x < b.

2.10. Remark. Let k1 (t) = (t− a)2 (3b− a− 2t) and k2 (t) = (b− t)2 (b− 3a+ 2t) be
defined on [a, b] . By simple computations,we obtain that k1 is strictly increasing on [a, b] ,

k2 is strictly decreasingon [a, b] and k1 (t) , k2 (t) ≤ (b− a)3 (t ∈ [a, b]) . The , using the
above inequalities, Corollary 2.9 improves Theorem G as q = 1.

2.11. Theorem. Let a, b, x, c, y, P1, P2, Ii (i = 1, · · · , 4) , h (t) , h1 (t) (t ∈ [a, b]) be de-
fined as above and let q, f be defined as in Theorem F. Then we have the following
extended trapezoid-type inequalities.

(1) The following inequality holds:∣∣∣∣c− ab− af (x) +
b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.21)

≤ (P1 + P2) (b− a)
∣∣∣∣f ′(P1a+ P2b

P1 + P2

)∣∣∣∣ .
(2) As a < c < b, we have the inequality∣∣∣∣c− ab− af (x) +

b− c
b− af (y)−

1

b− a

∫ b

a

f (t) dt

∣∣∣∣(2.22)

≤ (b− a)
[
(I1 + I2)

∣∣∣∣f ′(I1a+ I2c

I1 + I2

)∣∣∣∣+ (I3 + I4)

∣∣∣∣f ′(I3c+ I4b

I3 + I4

)∣∣∣∣]
≤ (P1 + P2) (b− a)

∣∣∣∣f ′(P1a+ P2b

P1 + P2

)∣∣∣∣
which refines the inequality (2.21) .

Proof. We observe that |f ′|q is concave on [a, b] implies |f ′| =
(
|f ′|q

) 1
q is also concave on

[a, b] . Using the inequality (2.18) , the Jensen’s integral inequality and Lemma 2.1, we
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have the following inequalities:

∣∣∣∣ 1

b− a

∫ b

a

h (t) f ′ (t) dt

∣∣∣∣(2.23)

≤ 1

b− a

∫ b

a

h1 (t)
∣∣f ′ (t)∣∣ dt

≤ 1

b− a

(∫ b

a

h1 (t) dt

) ∣∣∣∣∣f ′
(∫ b

a
h1 (t) tdt∫ b

a
h1 (t) dt

)∣∣∣∣∣
= (b− a)

(
1

(b− a)2
∫ b

a

h1 (t) dt

) ∣∣∣∣∣∣f ′
 1

(b−a)2
∫ b
a
h1 (t) tdt

1
(b−a)2

∫ b
a
h1 (t) dt

∣∣∣∣∣∣
= (P1 + P2) (b− a)

∣∣∣∣f ′(P1a+ P2b

P1 + P2

)∣∣∣∣ .

The inequality (2.21) follows from the identity (2.17) and the inequality (2.23) .
Now, let a < c < b. Then we have the inequality

∣∣∣∣ 1

b− a

∫ b

a

h (t) f ′ (t) dt

∣∣∣∣(2.24)

≤ 1

b− a

∫ b

a

h1 (t)
∣∣f ′ (t)∣∣ dt

=
1

b− a

(∫ c

a

h1 (t)
∣∣f ′ (t)∣∣ dt+ ∫ b

c

h1 (t)
∣∣f ′ (t)∣∣ dt)

≤ 1

b− a

[∫ c

a

h1 (t) dt

∣∣∣∣∣f ′
(

1
(b−a)2

∫ c
a
h1 (t) tdt

1
(b−a)2

∫ c
a
h1 (t) dt

)∣∣∣∣∣
+

∫ b

c

h1 (t) dt

∣∣∣∣∣f ′
(∫ b

c
h1 (t) tdt∫ b

c
h1 (t) dt

)∣∣∣∣∣
]

= (b− a)

[
1

(b− a)2
∫ c

a

h1 (t) dt

∣∣∣∣∣f ′
(

1
(b−a)2

∫ c
a
h1 (t) tdt

1
(b−a)2

∫ c
a
h1 (t) dt

)∣∣∣∣∣
+

1

(b− a)2
∫ b

c

h1 (t) dt

∣∣∣∣∣∣f ′
 1

(b−a)2
∫ b
c
h1 (t) tdt

1
(b−a)2

∫ b
c
h1 (t) dt

∣∣∣∣∣∣


= (b− a)
[
(I1 + I2)

∣∣∣∣f ′(I1a+ I2c

I1 + I2

)∣∣∣∣+ (I3 + I4)

∣∣∣∣f ′(I3c+ I4b

I3 + I4

)∣∣∣∣] .
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Using the inequality (2.18) , the convcavity of |f ′|q and Lemma 2.1, we have the
inequalitiy

(I1 + I2)

∣∣∣∣f ′ (I1a+ I2c

I1 + I2

)∣∣∣∣+ (I3 + I4)

∣∣∣∣f ′(I3c+ I4b

I3 + I4

)∣∣∣∣(2.25)

= (I1 + I2 + I3 + I4)

[
I1 + I2

I1 + I2 + I3 + I4

∣∣∣∣f ′(I1a+ I2c

I1 + I2

)∣∣∣∣
+

I3 + I4
I1 + I2 + I3 + I4

∣∣∣∣f ′ (I3c+ I4b

I3 + I4

)∣∣∣∣]
≤ (I1 + I2 + I3 + I4)

∣∣∣∣f ′(I1a+ (I2 + I3) c+ I4b

I1 + I2 + I3 + I4

)∣∣∣∣
= (I1 + I2 + I3 + I4)

∣∣∣∣∣∣f ′
I1a+ (I2 + I3)

(
b−c
b−aa+

c−a
b−a b

)
+ I4b

I1 + I2 + I3 + I4

∣∣∣∣∣∣
= (I1 + I2 + I3 + I4)

∣∣∣∣∣∣f ′

(
I1 + (I2 + I3)

b−c
b−a

)
a+

(
I4 + (I2 + I3)

c−a
b−a

)
b

I1 + I2 + I3 + I4

∣∣∣∣∣∣
= (P1 + P2)

∣∣∣∣f ′(P1a+ P2b

P1 + P2

)∣∣∣∣ .
The inequality (2.22) follows from the identity (2.17) and the inequalities (2.24) −

(2.25) . This completes the proof.

Under the conditions of Theorem 2.11 nad Remark 2.2, we have the following corol-
laries and remarks.

2.12. Corollary. Let 0 ≤ α ≤ 1, x = (1− α) a + αb, c = a+b
2

and y = αa + (1− α) b.
Then, using Theorem 2.11 and Remark 2.2, we have the trapezoid-type inequality∣∣∣∣f ((1− α) a+ αb) + f (αa+ (1− α) b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤

[
1

8
− α

(
1

2
− α

)]
(b− a)

(∣∣∣∣∣f ′
(
I1a+ I2

a+b
2

I1 + I2

)∣∣∣∣∣+
∣∣∣∣∣f ′
(
I2
a+b
2

+ I1b

I1 + I2

)∣∣∣∣∣
)

≤
[
1

4
− α (1− 2α)

]
(b− a)

∣∣∣∣f ′ (a+ b

2

)∣∣∣∣
which is provided |f ′|q is convex on [a, b] .

2.13. Remark. Let α = 0. Then, using Corollary 2.12 and Remark 2.2, we have I1 = 1
12
,

I2 = 1
24

and the trapezoid inequality∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ b− a

8

(∣∣∣∣f ′(5a+ b

6

)∣∣∣∣+ ∣∣∣∣f ′(a+ 5b

6

)∣∣∣∣)
≤ b− a

4

∣∣∣∣f ′(a+ b

2

)∣∣∣∣
which refines the inequality (1.7) .
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2.14. Remark. Let α = 1
2
. Then, using Corollary2.12 and Remark 2.2, we have I1 = 1

24
,

I2 = 1
12

and the midpoint inequality∣∣∣∣f (a+ b

2

)
− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ b− a

8

(∣∣∣∣f ′(2a+ b

3

)∣∣∣∣+ ∣∣∣∣f ′(a+ 2b

3

)∣∣∣∣)
≤ b− a

4

∣∣∣∣f ′(a+ b

2

)∣∣∣∣
which refines the inequality (1.8) .

2.15. Remark. Let α = 1
4
. Then, using Corollary 2.12 and Remark 2.2, we have I1 =

I2 = 1
32

and the inequality∣∣∣∣∣f
(
3a+b

4

)
+ f

(
a+3b

4

)
2

− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣∣
≤ b− a

16

(∣∣∣∣f ′(3a+ b

4

)∣∣∣∣+ ∣∣∣∣f ′(a+ 3b

4

)∣∣∣∣)
≤ b− a

8

∣∣∣∣f ′(a+ b

2

)∣∣∣∣
which is the second inequality in (1.2) provided |f ′|q is concave on [a, b] .

2.16. Corollary. Let P1, P2, Ii (i = 1, · · · , 4) be defined as in Remark 2.3. Then, using
Theorem 2.11 and Remark 2.3, we have the following Ostrowski-type inequalities which
are provided |f ′|q is convex on [a, b] .∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ (P1 + P2) (b− a)

∣∣∣∣f ′ (P1a+ P2b

P1 + P2

)∣∣∣∣
as x = c = y and a ≤ x ≤ b.∣∣∣∣f (x)− 1

b− a

∫ b

a

f (t) dt

∣∣∣∣
≤ b− a

2

[(
x− a
b− a

)2 ∣∣∣∣f ′(a+ 2x

3

)∣∣∣∣+ ( b− xb− a

)2 ∣∣∣∣f ′ (2x+ b

3

)∣∣∣∣
]

≤ (P1 + P2) (b− a)
∣∣∣∣f ′(P1a+ P2b

P1 + P2

)∣∣∣∣
as x = c = y anda < x < b.

2.17. Remark. Using the fact that 2 ≥ 2
1
q as q ≥ 1, Corollary 3.3 improves Theorem

H.

3. Applications for Special Means
In the literature, let us recall the following special means:
(1) The weighted arithmetic mean

Aα (u, v) = αu+ (1− α) v, 0 ≤ α ≤ 1, u, v ∈ R.
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(2) The unweighted arithmetic mean

A (u, v) =
u+ v

2
, u, v ∈ R.

(3) The harmonic mean

H (u, v) =
2

1
u
+ 1

v

, u, v > 0.

(4) The identric mean

I (u, v) =

 1
e

(
vv

uu

) 1
v−u if u 6= v

u if u = v
, u, v > 0.

(5) The logarithmic mean

L (u, v) =

{
v−u

ln v−lnu
if u 6= v

u if u = v
, u, v > 0.

(6) The p-logarithmic mean

Lp (u, v) =


[
vp+1−up+1

(p+1)(v−u)

] 1
p if u 6= v

u if u = v
, u, v > 0, p ∈ R\ {−1, 0} .

(7) The p-power mean

Mp (u, v) =

(
up + vp

2

) 1
p

, u, v > 0, p ∈ R\ {0} .

(8) The weighted p-power mean

Mp

(
α1, α2, · · · , αn
u1, u2, · · · , un

)
=

(
n∑
i=1

αiu
p
i

) 1
p

where 0 ≤ αi ≤ 1, ui > 0 (i = 1, 2, · · · , n) with
∑n
i=1 αi = 1.

Using the above results, we have the following propositions, corollaries and remarks
about the above special means:

3.1. Proposition. In Corollary 2.5 and Corollary 2.9, let s ∈ (−∞, 1]∪
[
1 + 1

q
,∞
)
\ {−1, 0} ,

q ≥ 1, 0 < a < b and let f (t) = ts on [a, b] . Then we have the following trapezoid-type
and Ostrowski-type inequalities.

|A (Asα (b, a) , Asα (a, b))− Lss (a, b)|(3.1)

≤
[
1

4
− α (1− 2α)

]
|s| (b− a)Mq

(
I1

2(I1+I2)
, I2
I1+I2

, I1
2(I1+I2)

as−1,
(
a+b
2

)s−1
, bs−1

)

≤
[
1

4
− α (1− 2α)

]
|s| (b− a)Mq

(
as−1, bs−1)

as α ∈ [0, 1] , x = (1− α) a+ αb, c = a+b
2

and y = αa+ (1− α) b.

|xs − Lss (a, b)|

≤ (P1 + P2) |s| (b− a)Mq

( P1
P1+P2

, P2
P1+P2

as−1, bs−1

)
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as x = c = y and a ≤ x ≤ b.

|xs − Lss (a, b)|

≤ 3 (I1 + I4) |s| (b− a)Mq

( I1
3(I1+I4)

, 2
3
, I4
3(I1+I4)

as−1, xs−1, bs−1

)
≤ (P1 + P2) |s| (b− a)Mq

( P1
P1+P2

, P2
P1+P2

as−1, bs−1

)
as x = c = y and a < x < b.

3.2. Corollary. Let α = 0 and in the inequality (3.1) . Then, using the Hermite-
Hadamard inequality (1.1), we have the following Hermite-Hadamard-type inequalities.

0 ≤ A (as, bs)− Lss (a, b)

≤ |s| (b− a)
4

Mq

( 1
3
, 1
3
, 1
3

as−1,
(
a+b
2

)s−1
, bs−1

)
≤ |s| (b− a)

4
Mq

(
as−1, bs−1)

as s ∈ (−∞, 0) ∪
[
1 + 1

q
,∞
)
\ {−1} .

0 ≤ Lss (a, b)−A (as, bs)

≤ s (b− a)
4

Mq

( 1
4
, 1
2
, 1
4

as−1,
(
a+b
2

)s−1
, bs−1

)
≤ s (b− a)

4
Mq

(
as−1, bs−1)

as s ∈ (0, 1] .

3.3. Corollary. Let α = 1
2

and in the inequality (3.1) . Then, using the Hermite-
Hadamard inequality (1.1), we have the following Hermite-Hadamard-type inequalities.

0 ≤ Lss (a, b)−As (a, b)

≤ |s| (b− a)
4

Mq

( 1
6
, 2
3
, 1
6

as−1,
(
a+b
2

)s−1
, bs−1

)
≤ |s| (b− a)

4
Mq

(
as−1, bs−1)

as s ∈ (−∞, 0) ∪
[
1 + 1

q
,∞
)
\ {−1} .

0 ≤ As (a, b)− Lss (a, b)

≤ s (b− a)
4

Mq

( 1
6
, 2
3
, 1
6

as−1,
(
a+b
2

)s−1
, bs−1

)
≤ s (b− a)

4
Mq

(
as−1, bs−1)

as s ∈ (0, 1] .
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3.4. Corollary. Let α = 1
4
in the inequality (3.1) . Then, using the inequality (1.2), we

have the Hermite-Hadamard-type inequalities.

0 ≤ Lss (a, b)−A
(
As1

4
(b, a) , As1

4
(a, b)

)
≤ |s| (b− a)

8
Mq

( 1
4
, 1
2
, 1
4

as−1,
(
a+b
2

)s−1
, bs−1

)
≤ |s| (b− a)

8
Mq

(
as−1, bs−1)

as s ∈ (−∞, 0) ∪
[
1 + 1

q
,∞
)
\ {−1} .

0 ≤ A
(
As1

4
(b, a) , As1

4
(a, b)

)
− Lss (a, b)

≤ s (b− a)
8

Mq

( 1
4
, 1
2
, 1
4

as−1,
(
a+b
2

)s−1
, bs−1

)
≤ s (b− a)

8
Mq

(
as−1, bs−1)

as s ∈ (0, 1] .

3.5. Proposition. In Corollary 2.12 and Corollary 2.16, let s ∈
[
1, 1 + 1

q

]
, q ≥ 1,

0 ≤ a ≤ x ≤ c ≤ y ≤ b and let f (t) = ts on [a, b] . Then we have the following trapezoid-
type and Ostrowski-type inequalities.

|A (Asα (b, a) , Asα (a, b))− Lss (a, b)|(3.2)

≤
[
1

8
− α

(
1

2
− α

)]
s (b− a)

[
As−1

I1
I1+I2

(
a,
a+ b

2

)
+As−1

I1
I1+I2

(
b,
a+ b

2

)]
≤

[
1

4
− α (1− 2α)

]
s (b− a)As−1 (a, b) .

As x = c = y,

|x− Lss (a, b)|
≤ (P1 + P2) s (b− a)As−1

P1
P1+P2

(a, b)

As x = c = y and a < x < b,

|x− Lss (a, b)|

≤ 3 (I1 + I4) s (b− a)
[
As−1

1
3

(a, x) +As−1
1
3

(b, x)
]

≤ (P1 + P2) s (b− a)As−1
P1

P1+P2

(a, b) .

3.6. Corollary. Let α = 0 and in the inequality (3.2) . Then, using the Hermite-
Hadamard inequality (1.1), we have the Hermite-Hadamard-type inequality

0 ≤ Lss (a, b)−A (as, bs) ≤ s (b− a)
8

[
As−1

1
6

(a, b) +As−1
1
6

(b, a)
]

≤ s (b− a)
4

As−1 (a, b) .
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3.7. Corollary. Let α = 1
2
in the inequality (3.2) . Then, using the Hermite-Hadamard

inequality (1.1), we have the Hermite-Hadamard-type inequality

0 ≤ As (a, b)− Lss (a, b) ≤
s (b− a)

8

[
As−1

1
3

(a, b) +As−1
1
3

(b, a)
]

≤ s (b− a)
4

As−1 (a, b) .

3.8. Corollary. Let α = 1
4
in the inequality (3.2) . Then, using the inequality (1.2), we

have the Hermite-Hadamard-type inequality

0 ≤ A
(
As1

4
(b, a) , As1

4
(a, b)

)
− Lss (a, b)

≤ s (b− a)
16

[
As−1

1
4

(a, b) +As−1
1
4

(b, a)
]

≤ s (b− a)
8

As−1 (a, b) .

3.9. Proposition. In Corollary 2.5 and Corollary 2.9, let q ≥ 1, 0 < a ≤ x ≤ c ≤ y ≤ b
and let f (t) = 1

t
on [a, b] . Then we have the following trapezoid-type and Ostrowski-type

inequalities. ∣∣H−1 (Aα (b, a) , Aα (a, b))− L−1 (a, b)
∣∣(3.3)

≤
[
1

4
− α (1− 2α)

]
(b− a)Mq

(
I1

2(I1+I2)
, I2
I1+I2

, I1
2(I1+I2)

a−2,
(
a+b
2

)−2
, b−2

)

≤
[
1

4
− α (1− 2α)

]
(b− a)Mq

(
a−2, b−2) .

As x = c = y, ∣∣∣∣ 1x − L−1 (a, b)

∣∣∣∣
≤ (P1 + P2) (b− a)Mq

( P1
P1+P2

, P2
P1+P2

a−2, b−2

)
.

As x = c = y and a < x < b,∣∣∣∣ 1x − L−1 (a, b)

∣∣∣∣
≤ 3 (I1 + I4) (b− a)Mq

( I1
3(I1+I4)

, 2
3
, I4
3(I1+I4)

a−2, x−2, b−2

)
≤ (P1 + P2) (b− a)Mq

( P1
P1+P2

, P2
P1+P2

a−2, b−2

)
.

3.10. Corollary. Let α = 0 and in the inequality (3.3) . Then, using the Hermite-
Hadamard inequality (1.1), we have the Hermite-Hadamard-type inequality

0 ≤ H−1 (a, b)− L−1 (a, b) ≤ b− a
4

Mq

( 1
3
, 1
3
, 1
3

a−2,
(
a+b
2

)−2
, b−2

)
≤ b− a

4
Mq

(
a−2, b−2) .
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3.11. Corollary. Let α = 1
2
in the inequality (3.3) . Then, using the Hermite-Hadamard

inequality (1.1), we have the Hermite-Hadamard-type inequality

0 ≤ L−1 (a, b)−A−1 (a, b) ≤ b− a
4

Mq

( 1
6
, 2
3
, 1
6

a−2,
(
a+b
2

)−2
, b−2

)
≤ b− a

4
Mq

(
a−2, b−2) .

3.12. Corollary. Let α = 1
4
in the inequality (3.3) . Then, using the inequality (1.2), we

have the Hermite-Hadamard-type inequality

0 ≤ L−1 (a, b)−H−1
(
A 1

4
(b, a) , A 1

4
(a, b)

)
≤ b− a

8
Mq

( 1
4
, 1
2
, 1
4

a−2,
(
a+b
2

)−2
, b−2

)
≤ b− a

8
Mq

(
a−2, b−2) .

3.13. Proposition. In Corollary 2.5 and Corollary 2.9, let q ≥ 1, 0 < a ≤ x ≤ c ≤ y ≤ b
and let f (t) = ln t on [a, b] . Then we have the following trapezoid-type and Ostrowski-type
inequalities.

|A (lnAα (a, b) , lnAα (b, a))− ln I (a, b)|(3.4)

≤
[
1

4
− α (1− 2α)

]
(b− a)Mq

(
I1

2(I1+I2)
, I2
I1+I2

, I1
2(I1+I2)

a−1,
(
a+b
2

)−1
, b−1

)

≤
[
1

4
− α (1− 2α)

]
(b− a)Mq

(
a−1, b−1) .

As x = c = y,

|lnx− ln I (a, b)|

≤ (P1 + P2) (b− a)Mq

( P1
P1+P2

, P2
P1+P2

a−1, b−1

)
.

As x = c = y and a < x < b,

|lnx− ln I (a, b)|

≤ 3 (I1 + I4) (b− a)Mq

( I1
3(I1+I4)

, 2
3
, I4
3(I1+I4)

a−1, x−1, b−1

)
≤ (P1 + P2) (b− a)Mq

( P1
P1+P2

, P2
P1+P2

a−1, b−1

)
3.14. Corollary. Let α = 0 and in the inequality (3.4) . Then, using the Hermite-
Hadamard inequality (1.1), we have the Hermite-Hadamard-type inequality

0 ≤ ln I (a, b)−A (ln a, ln b) ≤ b− a
4

Mq

( 1
3
, 1
3
, 1
3

a−1,
(
a+b
2

)−1
, b−1

)
≤ b− a

4
Mq

(
a−1, b−1) .

3.15. Corollary. Let α = 1
2
in the inequality (3.3) . Then, using the Hermite-Hadamard

inequality (1.1), we have the Hermite-Hadamard-type inequality

0 ≤ lnA (a, b)− ln I (a, b) ≤ b− a
4

Mq

( 1
6
, 2
3
, 1
6

a−1,
(
a+b
2

)−1
, b−1

)
≤ b− a

4
Mq

(
a−1, b−1) .



845

3.16. Corollary. Let α = 1
4
in the inequality (3.3) . Then, using the inequality (1.2), we

have the Hermite-Hadamard-type inequality

0 ≤ A
(
lnA 1

4
(a, b) , lnA 1

4
(b, a)

)
− ln I (a, b)

≤ b− a
8

Mq

( 1
4
, 1
2
, 1
4

a−1,
(
a+b
2

)−1
, b−1

)
≤ b− a

8
Mq

(
a−1, b−1) .

4. Applications for the extended Trapezoid Quadrature Formula
Throughout in this section, let 0 ≤ α ≤ 1, Ln : a = t0 < t1 < · · · < tn−1 < tn = b be a

partition of the interval [a, b] , ξi ≤ xi ≤ ζi in [ti, ti+1] , li = ti+1− ti, (i = 0, 1, · · · , n− 1)
let P1 (i) , P2, Ij (i) (j = 1, · · · , 4; i = 1, · · · , n) be defined as follows.

P1 (i) =
1

3l3i

[
(xi − ti)2

(
3ti+1 − ti

2
− ξi

)
+ (xi − ξi)

2

(
3ti+1 − xi

2
− ξi

)
+(ζi − xi)

2

(
3ti+1 − xi

2
− ζi

)
+ (ti+1 − ζi)

3

]
and

P2 (i) =
1

3l3i

[
(ξi − ti)

3 + (xi − ξi)
2

(
xi − 3ti

2
+ ξi

)
+(ζi − xi)

2

(
xi − 3ti

2
+ ζi

)
+ (ti+1 − ζi)

2

(
ti+1 − 3ti

2
+ ζi

)]
.

As ti < xi < ti+1,

I1 (i) =
1

3l2i (xi − ti)

[
(ξi − ti)

2

(
3xi − ti

2
− ξi

)
+ (xi − ξi)

3

]
,

I2 (i) =
1

3l2i (xi − ti)

[
(xi − ξi)

2

(
xi − 3ti

2
+ ξi

)
+ (ξi − ti)

3

]
,

I3 (i) =
1

3l2i (ti+1 − xi)

[
(ζi − xi)

2

(
3ti+1 − xi

2
− ζi

)
+ (ti+1 − ζi)

3

]
and

I4 (i) =
1

3l2i (ti+1 − xi)

[
(ti+1 − ζi)

2

(
ti+1 − 3xi

2
+ ζi

)
+ (ζi − xi)

3

]
.

Define the extended Trapezoid quadrature formula

(4.1)
∫ b

a

f(t)dt = T (f, Ln, ξ, ζ) +R (f, Ln, ξ, ζ)

where

(4.2) T (f, Ln, ξ, ζ) =

n−1∑
i=0

xi − ti
ti+1 − ti

f (ξi) +
ti+1 − xi
ti+1 − ti

f (ζi)

and the remainder term R (f, Ln, ξi, ζi) denotes the associated approximation error of∫ b
a
f(t)dt by T (f, Ln, ξ, ζ).
Now, we have the following special formulae.
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(1) The trapezoid formula

(4.3) T (f, Ln, ξ, ζ) = T0 (f, Ln, ξ, ζ) =

n−1∑
i=0

f (ti) + f (ti+1)

2
li

where ξi = ti and ζi = ti+1 (i = 0, 1, · · · , n− 1) .
(2) The midpoint formula

(4.4) T (f, Ln, ξ, ζ) =M (f, Ln, ξ, ζ) =

n−1∑
i=0

f

(
ti + ti+1

2

)
li

where ξi = ζi =
ti+ti+1

2
(i = 0, 1, · · · , n− 1) .

(3) The Ostrowski formula

(4.5) T (f, Ln, ξ, ζ) = O (f, Ln, ξ, ζ) =

n−1∑
i=0

f (xi) li

where ξi = ζi = xi (i = 0, 1, · · · , n− 1) .

4.1. Theorem. Let f be defined as in Theorem 2.4 and let
∫ b
a
f(t)dt, T (f, Ln, ξ, ζ) and

R (f, Ln, ξ, ζ) be defined as in the identity (4.1) . Then, the remainder term R (f, Ln, ξ, ζ)
satisfies the following estimates.

(1) We have the inequality

|R (f, Ln, ξ, ζ)|(4.6)

≤
n−1∑
i=0

(P1 (i) + P2 (i)) l
2
i

(
P1 (i) |f ′ (ξi)|

q
+ P2 (i) |f ′ (ζi)|

q

P1 (i) + P2 (i)

) 1
q

≤ max
{∣∣f ′ (a)∣∣ , ∣∣f ′ (b)∣∣} n−1∑

i=0

(P1 (i) + P2 (i)) l
2
i .

(2) Let ti < xi < ti+1 (i = 0, 1, · · · , n− 1) . Then we have the inequality

|R (f, Ln, ξ, ζ)|(4.7)

≤
n−1∑
i=0

{(
4∑
j=1

Ij (i)

)
l2i

×

I1 (i) |f ′ (ti)|q + (I2 (i) + I3 (i)) |f ′ (xi)|q + I4 (i) |f ′ (ti+1)|q
4∑
j=1

Ij (i)


1
q


≤

n−1∑
i=0

(P1 (i) + P2 (i)) l
2
i

(
P1 (i) |f ′ (ti)|q + P2 (i) |f ′ (ti+1)|q

P1 (i) + P2 (i)

) 1
q

≤ max
{∣∣f ′ (a)∣∣ , ∣∣f ′ (b)∣∣} n−1∑

i=0

(P1 (i) + P2 (i)) l
2
i .

Proof. Apply Theorem 2.4 on the intervals [ti, ti+1] (i = 0, 1, · · · , n − 1) to get the
following inequalities.
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(1) For all i = 0, 1, · · · , n− 1, we have the inequality∣∣∣∣f (ξi) + f (ζi)

2
li −

∫ ti+1

ti

f(s)ds

∣∣∣∣(4.8)

≤ (P1 (i) + P2 (i)) l
2
i

(
P1 (i) |f ′ (ti)|q + P2 (i) |f ′ (ti+1)|q

P1 (i) + P2 (i)

) 1
q

.

(2) Let ti < xi < ti+1 (i = 0, 1, · · · , n− 1) . Then we have the inequality∣∣∣∣f (ξi) + f (ζi)

2
li −

∫ ti+1

ti

f(s)ds

∣∣∣∣(4.9)

≤

(
4∑
j=1

Ij (i)

)
l2i

×

I1 (i) |f ′ (ti)|q + (I2 (i) + I3 (i)) |f ′ (xi)|q + I4 (i) |f ′ (ti+1)|q
4∑
j=1

Ij (i)


1
q


≤ (P1 (i) + P2 (i)) l

2
i

(
P1 (i) |f ′ (ti)|q + P2 (i) |f ′ (ti+1)|q

P1 (i) + P2 (i)

) 1
q

.

Using the convexity of |f ′|q , we have the inequality(
P1 (i) |f ′ (ti)|q + P2 (i) |f ′ (ti+1)|q

P1 (i) + P2 (i)

) 1
q

(4.10)

≤
[

P1 (i)

P1 (i) + P2 (i)

(
b− ti
b− a

∣∣f ′ (a)∣∣q + ti − a
b− a

∣∣f ′ (b)∣∣q)
+

P2 (i)

P1 (i) + P2 (i)

(
b− ti+1

b− a
∣∣f ′ (a)∣∣q + ti+1 − a

b− a
∣∣f ′ (b)∣∣q)] 1

q

≤
(
max

{∣∣f ′ (a)∣∣q , ∣∣f ′ (b)∣∣q}) 1
q = max

{∣∣f ′ (a)∣∣ , ∣∣f ′ (b)∣∣}
for all i = 0, 1, · · · , n− 1.

The inequalities (4.6) and (4.7) follow from the inequalities (4.10) − (4.10) and the
generalized triangle inequality.

This completes the proof.

4.2. Corollary. In Theorem 4.1, let ξi = ti, ζi = ti+1 and xi = ti+t2
2

(i = 0, 1, · · · , n− 1) .

Then P1 (i) = P2 (i) = 1
8
, I1 (i) = I4 (i) = 1

12
, I2 (i) = I3 (i) = 1

24
(i = 0, 1, · · · , n− 1)

and the trapzoid-type error satisfies

|R (f, Ln, ξ, ζ)|

≤
n−1∑
i=0

l2i
4

 |f ′ (ti)|q +
∣∣∣f ′ ( ti+ti+1

2

)∣∣∣q + |f ′ (ti+1)|q

3


1
q

≤
n−1∑
i=0

l2i
4

[
|f ′ (ti)|q + |f ′ (ti+1)|q

2

] 1
q

≤ max
{∣∣f ′ (a)∣∣ , ∣∣f ′ (b)∣∣} n−1∑

i=0

l2i
4

which improves Proposition 3 in [11].
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4.3. Corollary. In Theorem 4.1, let ξi = ζi = xi =
ti+ti+1

2
= (i = 0, 1, · · · , n− 1) .

Then P1 (i) = P2 (i) = 1
8
, I1 (i) = I4 (i) = 1

24
, I2 (i) = I3 (i) = 1

12
(i = 0, 1, · · · , n− 1)

and the midpoint-type error satisfies

|R (f, Ln, ξ, ζ)|

≤
n−1∑
i=0

l2i
4

 |f ′ (ti)|q + 4
∣∣∣f ′ ( ti+ti+1

2

)∣∣∣q + |f ′ (ti+1)|q

6


1
q

≤
n−1∑
i=0

l2i
4

[
|f ′ (ti)|q + |f ′ (ti+1)|q

2

] 1
q

≤ max
{∣∣f ′ (a)∣∣ , ∣∣f ′ (b)∣∣} n−1∑

i=0

l2i
4
.

4.4. Corollary. In Theorem 4.1, let ξi = ζi = xi ∈ (ti, ti+1) (i = 0, 1, · · · , n− 1) . Then

P1 (i) =
(xi − ti)2 (3ti+1 − ti − 2x)

6 (ti+1 − ti)3
+

1

3

(
ti+1 − x
ti+1 − ti

)3

,

P2 (i) =
(ti+1 − x)2 (ti+1 − 3ti + 2x)

6 (ti+1 − ti)3
+

1

3

(
xi − ti
ti+1 − ti

)3

,

I1 (i) =
1

2
I2 (i) =

1

6

(
xi − ti
ti+1 − ti

)2

,

I4 (i) =
1

2
I3 (i) =

1

6

(
ti+1 − xi
ti+1 − ti

)2

,

4∑
j=0

Ij (i) = P1 (i) + P2 (i)

= 3 (I1 (i) + I4 (i)) =
1

2
− (xi − ti) (ti+1 − xi)

(ti+1 − ti)2

and the Ostrowski-type error satisfies

|R (f, Ln, ξ, ζ)|

≤
n−1∑
i=0

{
3 (I1 (i) + I4 (i)) l

2
i

×

I1 (i) |f ′ (ti)|q + 2 (I1 (i) + I4 (i))
∣∣∣f ′ ( ti+ti+1

2

)∣∣∣q + I4 (i) |f ′ (ti+1)|q

3 (I1 (i) + I4 (i))


1
q


≤

n−1∑
i=0

(P1 (i) + P2 (i)) l
2
i

[
P1 (i) |f ′ (ti)|q + P2 (i) |f ′ (ti+1)|q

P1 (i) + P2 (i)

] 1
q

≤ max
{∣∣f ′ (a)∣∣ , ∣∣f ′ (b)∣∣} n−1∑

i=0

(P1 (i) + P2 (i)) l
2
i .

Similarly, using Theorem 2.11 we can prove the following theorem.

4.5. Theorem. Let f be defined as in Theorem 2.11 and let
∫ b
a
f(t)dt, T (f, Ln, ξ, ζ) and

R (f, Ln, ξ, ζ) be defined as in the identity (4.1) . Then, the remainder term R (f, Ln, ξ, ζ)
satisfies the following estimates.
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(1) We have the inequality

|R (f, In, ξ, ζ)| ≤
n−1∑
i=0

(P1 (i) + P2 (i)) l
2
i

∣∣∣∣f ′(P1 (i) ti + P2 (i) ti+1

P1 (i) + P2 (i)

)∣∣∣∣
for all i = 0, 1, ..., n− 1.

(2) Let ti < xi < ti+1 (i = 0, 1, · · · , n− 1) . Then we have the inequality

|R (f, Ln, ξ, ζ)|

≤
n−1∑
i=0

l2i

[
(I1 (i) + I2 (i))

∣∣∣∣f ′ (I1 (i) ti + I2 (i)xi
I1 (i) + I2 (i)

)∣∣∣∣
+(I3 (i) + I4 (i))

∣∣∣∣f ′(I3 (i)xi + I4 (i) ti+1

I3 (i) + I4 (i)

)∣∣∣∣]
≤

n−1∑
i=0

(P1 (i) + P2 (i)) l
2
i

∣∣∣∣f ′(P1 (i) ti + P2 (i) ti+1

P1 (i) + P2 (i)

)∣∣∣∣ .
4.6. Corollary. In Theorem 4.5, let ξi = ti, ζi = ti+1 and xi = ti+t2

2
(i = 0, 1, · · · , n− 1) .

Then P1 (i) = P2 (i) = 1
8
, I1 (i) = I4 (i) = 1

12
, I2 (i) = I3 (i) = 1

24
(i = 0, 1, · · · , n− 1)

and the trapzoid-type error satisfies

|R (f, Ln, ξ, ζ)|

≤
n−1∑
i=0

l2i
8

(∣∣∣∣f ′(5ti + ti+1

6

)∣∣∣∣+ ∣∣∣∣f ′ ( ti + 5ti+1

6

)∣∣∣∣)

≤
n−1∑
i=0

l2i
4

∣∣∣∣f ′ ( ti + ti+1

2

)∣∣∣∣
which improves Proposition 4 in [11].

4.7. Corollary. In Theorem 4.5, let ξi = ζi = xi =
ti+ti+1

2
= (i = 0, 1, · · · , n− 1) .

Then P1 (i) = P2 (i) = 1
8
, I1 (i) = I4 (i) = 1

24
, I2 (i) = I3 (i) = 1

12
(i = 0, 1, · · · , n− 1)

and the midpoint-type error satisfies

|R (f, Ln, ξ, ζ)|

≤
n−1∑
i=0

l2i
8

(∣∣∣∣f ′(2ti + ti+1

3

)∣∣∣∣+ ∣∣∣∣f ′ ( ti + 2ti+1

3

)∣∣∣∣)

≤
n−1∑
i=0

l2i
4

∣∣∣∣f ′ ( ti + ti+1

2

)∣∣∣∣
4.8. Corollary. In Theorem 4.5, let ξi = ζi = xi ∈ (ti, ti+1) (i = 0, 1, · · · , n− 1) . Then
the Ostrowski-type error satisfies

|R (f, Ln, ξ, ζ)|

≤
n−1∑
i=0

l2i
2

[(
xi − ti
ti+1 − ti

)2 ∣∣∣∣f ′( ti + 2xi
3

)∣∣∣∣+ ( ti+1 − xi
ti+1 − ti

)2 ∣∣∣∣f ′(2xi + ti+1

3

)∣∣∣∣
]

≤
n−1∑
i=0

(P1 (i) + P2 (i)) l
2
i

∣∣∣∣f ′(P1 (i) ti + P2 (i) ti+1

P1 (i) + P2 (i)

)∣∣∣∣ ,
where P1 (i) , P2 (i) (i = 0, 1, · · · , n− 1) is defined as in Corollary 4.7 and ti < xi < ti+1

(i = 0, 1, · · · , n− 1) .
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The (P-A-L) extended Weibull distribution:
A new generalization of the Weibull distribution
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Abstract

Recently, some attempts have been made to construct new families of
models to extend well-known distributions and at the same time provide
great flexibility in modeling data in practice. So, several classes by
adding shape parameters to generate new models have been explored in
the statistical literature. We propose a new generalization of the three-
parameter extended Weibull distribution pioneered by Pappas et al.
(2012) by using the generator by Marshall and Olkin (1997). The new
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1. Introduction
For more than half a century the Weibull distribution has attracted the attention

of statisticians working on theory and methods in various fields of applied researchers.
Thousands of papers have been written on this distribution. It is of most interest to the
theory because of its great number of special features and to practitioners because of
its ability to fit to real data from various fields, ranging from life data to weather data
or observations made in economics and business administration, hydrology, biology and
engineering sciences. When modeling monotone hazard rates, the Weibull distribution
may be an initial choice because of its negatively and positively skewed density shapes.
However, this distribution does not provide a reasonable parametric fit for some practical
applications where the underlying hazard rates may be bathtub or unimodal shapes.
[13] introduced a new generalization of any distribution, which is derived by using the
generator by [10]. In the literature, several generalizations of the Weibull distribution
have been proposed such as those studied by [3], [19], [14] and [20].

The extended Weibull (EW) distribution with parameters α > 0, β > 0 and ν > 0 has
probability density function (pdf) given by

(1.1) g(t) =
νβ
α

(
t
α

)β−1
e−( t

α )β[
1− (1− ν) e−( t

α )β
]2 .

The reliability function corresponding to (1.1) becomes

(1.2) G(t) =
ν e−( t

α )β

1− (1− ν) e−( t
α )β

.

Let G(t) be a baseline cumulative distribution function (cdf) with corresponding sur-
vival function G(t) = 1−G(t), pdf g(t) = dG(t)/dt and hazard rate function (hrf) λ(t).
[13] proposed the (P-A-L) extended family with the additional parameter p > 1, where
the survival function F (t), cdf F (t) and pdf f(t) are given by (for t > 0)

(1.3) F (t) =
log
[
1− (1− p)G(t)

]
log(p)

,

(1.4) F (t) = 1−
log
[
1− (1− p)G(t)

]
log(p)

and

f(t) =
(p− 1) g(t)[

1− (1− p)G(t)
]

log(p)
,

respectively.
Further, [13] studied the (P-A-L) extended modified Weibull distribution. In this

paper, we take the EW distribution given by (1.1) as the baseline model to define a new
four-parameter (P-A-L) extended Weibull, say the (P-A-L)EW distribution.

The rest of the paper is organized as follows. In Section 2, we provide the pdf and
cdf of the new distribution and present some special models. In Section 3, we study
some of its structural properties including moments, moment generating function (mgf),
quantile and residual life functions. The mean deviations and two types of entropies
are determined in Sections 4 and 5, respectively. Section 6 is devoted to the reliability
function. In Section 7, we present the reliability function, hrf, cumulative hazard rate
function (chrf) and mean residual lifetime function (mrlf). The order statistics and the
minimum and maximum order statistics are investigated in Section 8. In Section 9, we
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obtain the maximum likelihood estimates (MLEs) of the model parameters. In Section
10, we apply a particle swarm optimization (PSO) method to estimate the parameters. In
Section 11, we provide one application to real data in order to illustrate the potentiality
of the new model. Concluding remarks are addressed in Section 12.

2. The (P-A-L) Extended Weibull Distribution
Combining (1.2) and (1.4), the cdf of the (P-A-L)EW distribution follows as

(2.1) F (t) = 1− 1

log(p)
log

{
1− (1− p ν) e−( t

α )β

1− (1− ν) e−( t
α )β

}
.

By differentiating (2.1), the corresponding pdf reduces to

(2.2) f(t) =
1

log(p)

 (p− 1) νβ
α

(
t
α

)β−1
e−( t

α )β[
1− (1− p ν) e−( t

α )β
] [

1− (1− ν) e−( t
α )β
]
 .

Henceforth, we denote by T ∼(P-A-L)EW(α, β, ν, p) a random variable having pdf
(2.2). It is clear that the new distribution is very flexible (as it can seen from Table
1). In fact, several distributions can be obtained as special cases of the new model
for selected parameter values. These special cases include at least eleven distributions
displayed in Figure 1: the (P-A-L) extended Rayleigh (P-A-L)ER, (P-A-L) extended
Exponential (P-A-L)EE, (P-A-L) Weibull (P-A-L)W, (P-A-L) Rayleigh (P-A-L)R, (P-A-
L) exponential (P-A-L)E, extended Weibull (EW) (Marshall and Olkin, 1997), extended
Rayleigh (ER), extended exponential (EW), Weibull (W), Rayleigh (R) and exponential
(E) distributions.

Figure 1. Sub-models of the (P-A-L)EW distribution.

Figures 2(a) and 2(b) display some of the possible shapes of the pdf and cdf of the new
distribution, respectively, for different values of the parameters α, β, ν > 0 and p > 1.
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Table 1. Special cases of the (P-A-L)EW distribution.

Sub-Models Parameters of (P-A-L)EWD Cumulative distribution function
α β ν p

(P-A-L)ER - 2 - - 1− 1
log p

log

{
1−(1−p ν) e−(

t
α )

2

1−(1−ν) e−(
t
α )

2

}
(P-A-L)EE - 1 - - 1− 1

log p
log

{
1−(1−p ν) e−(

t
α )

1−(1−ν) e−(
t
α )

}
(P-A-L)W - - 1 - 1− 1

log p
log
{
1− (1− p) e−(

t
α )
β}

(P-A-L)R - 2 1 - 1− 1
log p

log
{
1− (1− p) e−(

t
α )

2}
(P-A-L)E - 1 1 - 1− 1

log p
log
{
1− (1− p) e−(

t
α )
}

W - - 1 p→ 1 F (t) = 1− e−(
t
α )
β

R - 2 1 p→ 1 F (t) = 1− e−(
t
α )

2

ED - 1 1 p→ 1 F (t) = 1− e−(
t
α )
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Figure 2. The (P-A-L)EW for (a) densities and for (b) distributions.

3. Mathematical Properties
In this section, we derive some mathematical properties of the (P-A-L)EW distribution

such as the quantile, median, random number generator, central and non-central moments
and mgf.

3.1. Quantile Function. The quantile function (qf) is used to obtain the quantiles
of a probability distribution. Consider FX : R → [0, 1] a distribution function of the
continuous random variable X. The pth quantile of F (x) is given by the value of x such
that

Q(u) = inf{x ∈ R : u ≤ F(x)},
where u ∈ (0, 1). The qf Q(u) = F−1(u) of T comes by inverting (2.1) as

(3.1) t = Q(u) =

[
αβ log

(
−νp

u+1 − pu − νp+ p

pu − p

)]1/β
.
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3.2. Central and Non-Central Moments. The rth non-central moment of T can be
expressed as

(3.2) E(T r) = µr =
αrν(p− 1)

log(p)
Γ

(
r

β
+ 1

) ∞∑
i,j=0

(1− pν)i (1− ν)j

(1 + i+ j)
r
β
+1

.

The nth central moment of T , say mn, can be easily obtained from the non-central
moments by (for n ≥ 1)

mn = E(T − µ)n =

n∑
r=0

(
n

r

)
(−µ)n−r E(T r).

Let α = 1.5, β = 1.3, ν = 1.2 and p = 1.2. We can easily check that equation (3.2) holds.
The following script written in the Julia language implements equation (3.2) with r = 2.
The Julia language can be obtained from http://julialang.org/downloads/ (see [4]).
So, we provide a numerical check for i = 0, . . . , 5000 and j = 0, . . . , 5000. The code
follows below.

alpha = 1.5
beta = 1.3
nu = 1.2
p = 1.2
I = 5000
J = 5000
r=2 # Moment of order 2.
constant = alpha^r*nu*(p-1)/log(p)*gamma(r/beta+1)
sum_I = zeros(Float64,I+1,1)
sum_J = zeros(Float64,J+1,1)
for i = 0:I

for j = 0:J
numerator = (1-p*nu)^i * (1-nu)^j
denominator = (1+i+j)^(r/beta+1)
sum_J[j+1] = numerador/denominador

end
sum_I[i+1] = sum(sum_J)

end
constant*sum(sum_I) # The result is 3.66655262332183.

Thus, for the fixed parameters, r = 2 and using the above code, we obtain E(T 2) =
3.6665526. The same result follows by numerical integration of (2.2). Established alge-
braic expansions to determine the moments of T can be more efficient than computing
these moments directly by using this numerical integration, which can be prone to round-
ing off errors among others.

3.3. Residual life function. Given that a component survives up to time x ≥ 0,
the residual life is the period beyond x until the time of failure and it is defined by
the expectation of the conditional random variable T |T > x. In reliability, it is well-
known that the mrlf and the ratio of two consecutive moments of residual life determine
the distribution uniquely (see [9]). Therefore, we obtain the rth order moment of the
residual life by

(3.3) mr(x) = E[(T − x)r | T > x] =
1

F (x)

∫ ∞
x

(t− x)r f(t)dt.

http://julialang.org/downloads/
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Applying the binomial expansion for (T − x)r and substituting F (x) given by (1.3)
into equation (3.3), the rth moment of the residual life of T is

mr(x) =
ν(p− 1)

F (x) log(p)

r∑
i=0

∞∑
j,k=0

(
r

i

)
(1− pν)j (1− ν)kαi (−x)r−i

(j + k + 1)
i
β
+1

×Γ

(
i

β
+ 1, (j + k + 1)

(x
α

)β)
,(3.4)

where Γ(a, y) =
∫∞
y
xa−1 e−xdx is the upper incomplete gamma function.

Another important characteristic for T is the mrlf obtained by setting r = 1 in equation
(3.4). It represents the mean lifetime left for an item of age x. Whereas the hrf at x
provides information on a random variable T about a small interval after x, the mrlf at
x considers information about the whole remaining interval (x,∞).

We obtain the mrlf of T as

m(x) = −x+
να(p− 1)

F (x) log(p)

∞∑
j,k=0

(1− pν)j (1− ν)k

(j + k + 1)
1
β
+1

× Γ

(
1

β
+ 1, (j + k + 1)

(x
α

)β)
.

3.4. Reversed residual life function. The waiting time since failure is the waiting
time elapsed since the failure of an item on condition that this failure had occurred in
[0, x]. The rth order moment of the reversed residual life function (rrlf) is given by
Mr(x) = E[(x− T )r | T < x] = 1

F (x)

∫ x
0

(x− t)r f(t)dt.
Following similar algebra as before, we obtain

Mr(x) =
ν(p− 1)

F (x) log(p)

r∑
i=0

∞∑
j,k=0

(−1)i αi
(
r
i

)
(1− pν)j (1− ν)k xr−i

(j + k + 1)
i
β
+1

×γ
(
i

β
+ 1, (j + k + 1)

(x
α

)β)
,

where γ(a, y) =
∫ y
0
xa−1 e−xdx is the lower incomplete gamma function.

Then, the mean reversed residual life of T becomes

M(x) = x− να(p− 1)

F (x) log(p)

∞∑
j,k=0

(1− pν)j (1− ν)k

(j + k + 1)
i
β
+1

× γ

(
i

β
+ 1, (j + k + 1)

[x
α

]β)
,(3.5)

where M(x) represents the mean time elapsed since the failure of T given that it fails at
or before x.

4. Mean Deviations
The amount of scatter in a population is evidently measured to some extent by the

totality of deviations from the mean and median. These are known as the mean deviations
about the mean and the median – defined by D1(T ) =

∫∞
0
|t− µ| f(t)dt and D2(T ) =∫∞

0
|t−M | f(t)dt, respectively, where µ = E(T ) is the mean and M = Q(0.5) is the

median given by (3.1).
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The measures D1(T ) and D2(T ) can be expressed as D1(T ) = 2µF (µ) − 2Z(µ) and
D2(T ) = µ − 2Z(M), where Z(x) =

∫ x
0
t f(t)dt is the first incomplete mean of T . This

integral can be determined from (2.2) by

(4.1) Z(x) =
να(p− 1)

log(p)

∞∑
i,j=0

(1− pν)i(1− ν)j

(i+ j + 1)
1
β
+1

Γ

(
1

β
+ 1, (i+ j + 1)

(x
α

)β)
.

Thus, the mean deviations D1(T ) and D2(T ) can be obtained from (4.1).
Important applications of (4.1) refer to the Bonferroni and Lorenz curves to study

income and poverty, but also in other fields such as reliability, demography, medicine
and insurance. For given probability p, they are given by B(p) = Z(q)/(pµ) and L(p) =
Z(q)/µ, respectively, where q = Q(p) comes directly from (3.1).

5. Rényi and Shannon Entropies
The entropy of a random variable T with density function f(t) is a measure of

variation of the uncertainty. One of the popular entropy measure is the Rényi entropy
given by

IR(η) =
1

1− η log[

∫
<
fη(t)dt],

where η > 0, η 6= 1. The quantity fη(t) for T reduces to

(5.1) fη(t) =
1

[log(p)]η

 (p− 1)η
(
νβ
α

)η ( t
α

)ηβ−η
e−η(

t
α )β[

1− (1− p ν)e−( t
α )β
]η [

1− (1− ν)e−( t
α )β
]η
 .

Using the power series in equation (5.1), we can write

fη(t) =
(p− 1)η

[log(p)]η

(
νβ

α

)η ∞∑
i,j=0

Γ(η + i)Γ(η + j)

[Γ(η)]2 j!
(1− p ν)i(1− ν)j

(
t

α

)ηβ−η
× e−(i+j+η)( t

α )β .

Then, after some calculations, IR(η) reduces to

IR(η) =
1

1− η log

[
(p− 1)η

[log(p)]η
νη
(
β

α

)η−1
]

+
1

1− η log

[
∞∑

i,j=0

Γ(η + i)Γ(η + j)

[Γ(η)]2 j!

(1− p ν)i(1− ν)j

(i+ j + η)
η− η−1

β

Γ

(
η − η − 1

β

)]
.

The Shannon entropy, which is defined by E{− log[f(T )]}, can be derived numerically
from lim

η→1
IR(η).

6. Reliability Function
In the context of reliability, the stress-strength model describes the life of a component

which has a random strength T1 that is subjected to a random stress T2. The component
fails at the instant when the stress applied to it exceeds the strength, and the component
will function satisfactorily whenever T1 > T2. Hence, R = Pr(T2 < T1) is a measure of
component reliability. It has many applications especially in engineering concepts such
as strength failure and system collapse. Now, we obtain the reliability R when T1 and
T2 have independent (P-A-L)EW(α, β, ν1, p1) and (P-A-L)EW(α, β, ν2, p2) distributions
with the same shape parameter β and scale parameter α. The reliability R is defined by
R =

∫∞
0
f1(t)F2(t)dx.
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By using the power series log(1 + x) =
∞∑
i=1

(−1)i+1

i
xi, F2(t) can be written as

F2(t) = 1− 1

log(p2)

∞∑
i=1

(−1)i+1

i

νi2(p2 − 1)i e−i( t
α )β[

1− (1− ν2)e−( t
α )β
]i .

By expanding f1(t) and F2(t), we can write f1(t)F2(t) as

f1(t)F2(t) = f1(t)− 1

log (p1 + p2)

∞∑
i=1

∞∑
j,k,l=0

(−1)i+1Γ(i+ l)

Γ(i+ 1) l!

ν1β, ν
i
2

α
(p1 − 1)

×(p2 − 1)i (1− p1 ν1)j(1− ν1)k(1− ν1)l
(
t

α

)β−1

e−(i+j+k+l)( t
α )β .(6.1)

Inserting (6.1) into the general expression for R and, after some algebra, we obtain

R = 1− 1

log (p1 + p2)

∞∑
i=1

∞∑
j,k,l=0

(−1)i+1Γ(i+ l) ν1 (ν2)i

Γ(i+ 1) l! (i+ j + k + l)

×(p1 − 1) (p2 − 1)i (1− p1ν1)j (1− ν1)k(1− ν1)l.

7. Reliability Analysis
Here, we present the reliability function, hrf, chrf and mrlf of T .

7.1. Survival function. The (P-A-L)EW distribution can be a useful characterization
of lifetime data analysis for a given system. Its survival function is

F (t) =
1

log(p)
log

{
1− (1− p ν)e−( t

α )β

1− (1− ν)e−( t
α )β

}
.

Figure 3 illustrates the survival behavior of the new distribution for some parameter
values.
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Figure 3. The survival function of the (P-A-L)EW distribution.
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7.2. Hazard rate function. The hrf of T is given by

h(t) =
(p− 1) νβ

α

(
t
α

)β−1
e−( t

α )β
[
1− (1− pν)e−( t

α )β
]−1

[
1− (1− ν) e−( t

α )β
]

log

{
1−(1−p ν) e−( t

α )β

1−(1−ν) e−( t
α )β

} .

We note that h(t) can be constant, increasing, or decreasing depending on the param-
eter values. For example, if p→ 1, ν = 1 and β = 1, then h(t) = 1

α
is constant, whereas

if p→ 1 and ν = 1, then h(t) = β
α

(
t
α

)β−1, which is increasing for β > 1 and decreasing
for β < 1. Figure 4 displays some plots of the hrf of T .
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Figure 4. The hrf of the (P-A-L)EW distribution

7.3. Cumulative hazard rate function. Many generalized Weibull models have been
proposed in reliability literature through the relationship between the reliability function
R(t) and the chrf H(t), which is a non–decreasing function of t, given by H(t) = −
log[R(t)]. The chrf of T becomes

H(t) =

∫ t

0

h(u)du = log (log p)− log

{
log

[
1− (1− p ν)e−( t

α )β

1− (1− ν)e−( t
α )β

]}
,

where H(t) is the total number of failures or deaths over an interval of time. Figure 5
illustrates the behavior of the chrf of T for some parameter values.
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Figure 5. Cumulative Hazard Rate Function.

7.4. Mean residual lifetime function. The additional life time given that the com-
ponent has survived up to time t is the rlf of the component. Then, the expectation of
the random variable Tt represents the remaining lifetime reduces to

m(t) = E(Tt) = E(T − t | T > t) =

∫∞
t

R(u)du

R(t)
.

The mrlf and the hrf are important since they characterize uniquely the corresponding
lifetime distribution. We obtain

m(t) = −t+
α

log

[
1−(1−p ν)e−( t

α )β

1−(1−ν)e−( t
α )β

] ∞∑
i=0

Γ
(

1
β

+ 1, (j + 1)
(
t
α

)β)
(i+ 1)

1
β
+1

×
{

(1− ν)i+1 − (1− pν)i−1
}
.

7.5. Order Statistics. Let T1, . . . , Tn denote n independent random variables from
a distribution function F (t) with pdf f(t), and T(1), . . . , T(n) denote the order sample
arrangement. So, the pdf of T(j) is given by

fT(j)
(t) =

n!

(j − 1)!(n− j)! f(t)F (t)j−1 [1− F (t)]n−j for j = 1, . . . , n.
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Using equations (2.1) and (2.2), the pdf of T(j) becomes

fT(j)
(t) =

n!

(j − 1)!(n− j)! ×

{
1− 1

log p
log

[
1− (1− p ν) e−( t

α )β

1− (1− ν) e−( t
α )β

]}j−1

×
(p− 1) νβ

α

(
t
α

)β−1
e−( t

α )β

[log(p)]n−j+1
[
1− (1− pν) e−( t

α )β
] [

1− (1− ν) e−( t
α )β
]

×

{
log

[
1− (1− p ν) e−( t

α )β

1− (1− ν) e−( t
α )β

]}n−j
.

Therefore, the pdf’s of the smallest order statistic T(1) and of the largest order statistic
T(n) are easily obtained from the last equation with i = 1 and i = n, respectively. Then,
the minimum and maximum order statistics can be derived for some special models of the
new distribution. For example, for the (P-A-L)ER (β = 2), (P-A-L)EE model (β = 1),
(P-A-L)W (ν = 1), (P-A-L)R (ν = 1 and β = 2), (P-A-L)E (ν = 1 and β = 1) and EW
(p→ 1) distributions, among others.

The pdf’s of the (k+1)th and kth ordered statistics from the (P-A-L)EW model obey
the relationship

fT(k+1)
(t) =

(
n− k
k

) 1− 1
log(p)
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[
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] fT(k)
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8. Estimation of the Parameters
Inference can be carried out in three different ways: point estimation, interval esti-

mation and hypothesis testing. Several approaches for parameter point estimation were
proposed in the literature but the maximum likelihood method is the most commonly
employed. The maximum likelihood estimates (MLEs) enjoy desirable properties and
can be used in constructing confidence intervals and also in test-statistics. Large sample
theory for these estimates delivers simple approximations that work well in finite samples.
Statisticians often seek to approximate quantities such as the density of a test-statistic
that depend on the sample size in order to obtain better approximate distributions. The
resulting approximation for the MLEs in distribution theory is easily handled either an-
alytically or numerically. In this section, we use the method of likelihood to estimate the
model parameters and use them to obtain confidence intervals for the unknown parame-
ters.

8.1. Maximum Likelihood Estimation. Let t1, . . . , tn be a sample of size n from
the (P-A-L)EW distribution. Let θ = (α, β, ν, p)T be the parameter vector. Then, the
log-likelihood function ` = `(θ) is given by

` = n log [log(p)] + n log(p− 1)− n log

(
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)
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Then, the MLE of θ can be derived from the derivatives of `. They should satisfy the
following equations:
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These equations cannot be solved analytically, and statistical softwares are required
to solve them numerically. To solve these equations, it is usually more convenient to
use nonlinear optimization algorithms such as quasi-Newton algorithm to numerically
maximize the log-likelihood function. For interval estimation of the parameters, we
obtain the 3× 3 observed information matrix J(θ) = { ∂

2`
∂r s
} (for r, s = α, β, ν, p), whose

elements can be computed numerically.
Under standard regularity conditions when n → ∞, the distribution of the MLE

can be approximated by a multivariate normal N4(0, J(θ̂)−1) distribution to construct
approximate confidence intervals for the parameters. Here, J(θ̂) is the total observed
information matrix evaluated at θ̂. The method of the re-sampling bootstrap can be
used for correcting the biases of the MLEs of the model parameters. Good interval
estimates may also be obtained through the bootstrap percentile method.

9. Particle Swarm Optimization
In computer science, the particle swarm optimization (PSO) is a computational method

for optimization of parametric and multiparametric functions. The PSO algorithm is a
meta-heuristic which has been providing good solutions for problems of optimization
global functions with box-constrained. The use of meta-heuristic methods such as PSO
has proved to be useful for maximizing complicated log-likelihood functions without
the need for early kick functions as the BFGS, L-BFGS-B, Nelder-Mead and simulated
annealing methods. As in most heuristic methods that are inspired by biological phe-
nomena, the PSO is inspired by the behavior of flying birds. The philosophical idea of
the PSO algorithm is based on the collective behavior of birds (particle) in search of food
(point of global optimal). The PSO technique was first defined by [6] in a paper pub-
lished in the Proceedings of the IEEE International Conference on Neural Networks IV.
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A modification of the PSO algorithm was proposed by [16] published in the Proceedings
of IEEE International Conference on Evolutionary Computation. Further details on the
philosophy of the PSO method are given in the book Swarm Intelligence (see [8]).

The PSO optimizes a problem by having a population of candidate solutions and
moving these particles around in the search-space according to simple mathematical
formulae over the particle’s position and velocity. The movement of the particles in
the search space is randomized. Each iteration of the PSO algorithm, there is a leader
particle, which is the particle that minimizes the objective function in the respective
iteration. The remaining particles arranged in the search region will follow the leader
particle randomly and sweep the area around this leading particle. In this local search
process, another particle may become the new leader particle and the other particles
will follow the new leader randomly. Each particle arranged in the search region has a
velocity vector and position vector and its movement in the search region is given by
changes in these vectors. The PSO algorithm is presented below, where f : Rn 7→ R is
the objective function to be minimized, S is the number of particles in the swarm (set of
feasible points, i.e. search region), each having particle a vector position xi ∈ Rn in the
search-space and a vector velocity defined by vi ∈ Rn. Let pi be the best known position
of particle i and g the best position of all particles.

(1) For each particle i = 1, . . . , S do:
• Initialize the particle’s position with a uniformly distributed random vector:
xi ∼ U(blo, bup), where blo and bup are the lower and upper boundaries of
the search-space.

• Initialize the particle’s best known position to its initial position: pi ← [ xi.
• If f(pi) < f(g) update the swarm’s best known position: g ← [ pi.
• Initialize the particle’s velocity: vi ∼ U(−|bup − blo|, |bup − blo|).

(2) Until a termination criterion is met (e.g. number of iterations performed, or a
solution with adequate objective function value is found), repeat:
• For each particle i = 1, . . . , S do:

– Pick random numbers: rp, rg ∼ U(0, 1).
– For each dimension d = 1, . . . , n do:

∗ Update the particle’s velocity: vi,d ←[ ω vi,d+ϕprp(pi,d−xi,d)+
ϕgrg(gd − xi,d).

– Update the particle’s position: xi ←[ xi + vi
– If f(xi) < f(pi) do:

∗ Update the particle’s best known position: pi ← [ xi
∗ If f(pi) < f(g) update the swarm’s best known position: g ←[
pi.

(3) Now g holds the best found solution.

The parameter ω is called inertia coefficient and as the name implies controls the
inertia of each particle arranged in the search region. The quantities ωp and ωg control
the acceleration of each particle and are called acceleration coefficients.

10. Application
We consider an application using the (P-A-L)EW distribution. We use the AdequacyModel

script version 1.0.8 available for the programming language R. The script is currently
maintained by one of the authors of this paper and more information can be obtained f
rom http://cran.rstudio.com/web/packages/AdequacyModel/index.html. The pack-
age is distributed under the terms of the licenses GNU General Public License (GPL-2
or GPL-3).

http://cran.rstudio.com/web/packages/AdequacyModel/index.html
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The application take into account the data relating to the percentage of body fat
determined by underwater weighing and various body circumference measurements for
250 men. For details about the data set, see http://lib.stat.cmu.edu/datasets/.

Table 2. Descriptive statistics.

Statistics Real data sets
Body Fat (%)

Mean 19.3012
Median 19.2500
Mode 22.5000
Variance 67.7355
Skewness 0.1953
Kurtosis -0.3815
Maximum 47.5000
Minimum 3.0000
n 250

In order to determine the shape of the most appropriate hazard function for modeling,
graphical analysis data may be used. In this context, the total time in test (TTT) plot
proposed by [1] is very useful. Let T be a random variable with non-negative values
which represents the survival time. The TTT curve is obtained by constructing the plot
of G(r/n) = [(

∑r
i=1 Ti:n) + (n − r)Tr:n]/(

∑n
i=1 Ti:n) versus r/n, for r = 1, . . . , n and

Ti:n (i = 1, . . . , n) are the order statistics of the sample (see [11]). The plots can be
easily obtained using the function TTT of the script AdequacyModel. For more details on
this function, see help(TTT). The TTT plot for the current data is displayed in Figure
6, which is concave and according to [1] provides evidence that the monotonic hrf is
adequate.
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Figure 6. The TTT plot for percentage of body fat.

http://lib.stat.cmu.edu/datasets/
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Figure 7 displays the estimated density to the data obtained in a nonparametric
manner using kernel density estimation with the Gaussian filter. Let X1, . . . , Xn be a
random vector of independent and identically distributed random variables, when each
random variable follows an unknown pdf f . The kernel density estimator is given by

(10.1) f̂h(x) =
1

n

n∑
i=1

Kh(x− xi) =
1

nh

n∑
i=1

K
(x− xi

h

)
,

where K(·) is the kernel function usually symmetrical and
∫∞
−∞K(x)dx = 1. Here, h > 0

is a smoothing parameter known in literature as bandwidth. Numerous kernel functions
are adopted in the literature. The normal standard distribution is the most widely used
because it has convenient mathematical properties. [17] demonstrated that for the K

standard normal, the bandwidth ideal is h =
(

4σ̂5

3n

) 1
5 ≈ 1.06 σ̂ n−1/5, where σ̂ is the

standard deviation of the sample.
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Figure 7. Gaussian kernel density estimation for percentage of body fat.

In order to verify which distribution fits better these data, we consider the Cramér-
von Mises (W ∗) and Anderson-Darling (A∗) statistics described by [5]. Chen and Bal-
akrishnan (see [5]) constructed the Cramér-von Mises and Anderson-Darling corrected
statistics based on the suggestions from [18]. We use these statistics, where we have a
random sample (x1, . . . , xn) with empirical distribution function Fn(x) and we want to
test if the sample comes from a special distribution. The Cramér-von Mises (W ∗) and
Anderson-Darling (A∗) statistics are, respectively, given by

W ∗ =

{
n

∫ +∞

−∞
{Fn(x)− F (x; θ̂n)}2dF (x; θ̂n)

}(
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0.5
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}(
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n2

)
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(
1 +

0.75

n
+

2.25

n2

)
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where Fn(x) is the empirical distribution function, F (x; θ̂n) is the postulated distribution
function evaluated at the MLE θ̂n of θ. Note that the statistics W ∗ and A∗ are given
by the differences of Fn(x) and F (x; θ̂n). Thus, the lower are the statistics W ∗ and A∗

more evidence we have that F (x; θ̂n) generates the sample. The details to compute the
statistics W ∗ and A∗ are given by Chen and Balakrishnan.

The goodness.fit function provides various adequacy of fit statistics, among them,
the Cramér-von Mises (W ∗) and Anderson-Darling (A∗) statistics proposed by [5], Con-
sistent Akaike Information Criterion (CAIC) defined by [2], Bayesian Information Crite-
rion (BIC) defined by [15] and Hannan-Quinn Information Criterion (HQIC) given by [7].
These statistics are used to assess the adequacy of the fit of the distributions considered
in the two real data sets.

The PSO methodology was used for the improvement of the MLEs. Initially, we use
the Nelder-Mead method to maximize the log-likelihood function of the models under
study using the goodness.fit function of the script AdequacyModel. After obtaining
convergence using the Nelder-Mead method (see [12]), we use the PSO method as an
attempt to obtain best candidates for global maximums of their log-likelihood functions
for the compared models. We consider S = 550 (550 particles) and 500 iterations as
stopping criterion. We choose as optimal candidates for the estimates, those MLEs cal-
culated by the PSO method when ` (the maximized log-likelihood function for the current
model) is higher than the log-likelihood function evaluated at the estimates computed
by the Nelder-Mead method. Figure 8 displays the fitted densities to the current data.
The MLEs used in Figure 8 are highlighted in Table 3. It is noted in Table 4 that the
proposed distribution provides the best fit to the data.

Table 3. MLEs obtained by Nelder-Mead and PSO methods.

Distributions Estimates `

(P-A-L)EW PSO 1.8571 0.7700 63.4424 37.5844 871.0364
Nelder-Mead 19.6993 2.5831 0.2865 28.0810 874.7802

Kw-W PSO 71.3501 77.4079 0.1635 25.1942 888.7122
Nelder-Mead 0.6960 2.0492 3.3057 0.0314 875.8679

Exp-W PSO 45.30062 69.5828 55.3411 - 875.8749
Nelder-Mead 0.0418 3.0356 0.7436 - 870.6432

Weibull PSO 21.7567 2.5373 - - 876.4216
Nelder-Mead 21.7552 2.5371 - - 876.1854

Gamma PSO 5.8060 0.3036 - - 888.5930
Nelder-Mead 4.6090 0.2388 - - 884.6877
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Figure 8. Fitted densities to the percentage of body fat data.

Table 4. Statistics of adequacy to adjust.

Distributions AIC CAIC BIC HQIC A∗ W ∗

(P-A-L)EW 1757.560 1757.724 1771.646 1763.230 0.1192 0.0144
Kw-W 1785.429 1785.592 1799.515 1791.098 1.8205 0.3005
Exp-W 1757.750 1757.847 1768.314 1762.002 0.2477 0.0334
Weibull 1756.843 1756.892 1763.886 1759.678 0.4357 0.0668
Gamma 1781.186 1781.235 1788.229 1784.021 1.9548 0.3233

11. Concluding Remarks
The idea of generating new extended models from classic ones has been of great

interest among researchers in the past decade. A new four-parameter generalization of the
Weibull model, called the (P-A-L) extended Weibull, (P-A-L)EW for short, distribution
is defined and some of its mathematical properties studied. They include moments,
generating, quantile, reliability and residual life functions, mean deviations and two types
of entropies. Many well-known distributions emerge as special cases of the proposed
distribution by using special parameter values. We use maximum likelihood and a particle
swarm optimization method to estimate the model parameters. By means of a real data
set, we prove that this model has the capability to provide consistent estimates from the
considered estimation methods.
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1. Introduction
The origin of gamma distribution, from the book by Johnson et al. (1994, p. 343), can

be attributed to Laplace (1836) who obtained a gamma distribution as the distribution
of a “precision constant". The gamma distribution has been used to model waiting times.
For example in life testing, the waiting time until “death" is a random variable that has
a gamma distribution (Hogg et al. 2013, p. 156). The gamma distribution is used in
Bayesian statistics, where it is used as a conjugate prior distribution for various types
of scale parameters such as the parameter θ in an exponential distribution or a normal
distribution with a known mean. Other applications include the size of insurance claims
(Boland, 2007), hydrology (Aksoy, 2000), and bacterial gene expression (Friedman et
al. 2006). For other types of applications, see for example the works of Costantino and
Desharnais (1981), Dennis and Patil (1984), and Johnson et al. (1994, Chapter 17) and
the references therein.

The early generalization of gamma distribution can be traced back to Amoroso (1925)
who discussed a generalized gamma distribution and applied it to fit income rates. John-
son et al. (1994, Chapter 8) gave a four parameter generalized gamma distribution
which reduces to the generalized gamma distribution defined by Stacy (1962) when the
location parameter is set to zero. Mudholkar and Srivastava (1993) introduced the ex-
ponentiated method to derive a distribution. The generalized gamma defined by Stacy
(1962) is a three-parameter exponentiated gamma distribution. Agarwal and Al-Saleh
(2001) applied generalized gamma to study hazard rates. Balakrishnan and Peng (2006)
applied this distribution to develop generalized gamma frailty model. Cordeiro et al.
(2012) derived another generalization of Stacy’s generalized gamma distribution using
exponentiated method, and applied it to life time and survival analysis. Nadarajah and
Gupta (2007) proposed another type of generalized gamma distribution with application
to fitting drought data.

Eugene et al. (2002) introduced the beta-generated family of distributions and since
then, many variants of this family have been studied. Based on the beta-generated
family and its variants, more generalized gamma distributions have been defined and
studied. Some examples are the beta-gamma distribution by Kong et al. (2007), the
Kumaraswamy-gamma distribution by Cordeiro and de Castro (2011), the Kumaraswamy-
generalized gamma distribution by de Pascoa et al. (2011), and the beta generalized
gamma distribution by Cordeiro et al. (2013).

The beta-generated family was extended by Alzaatreh et al. (2013) to the T -R(W )
family. The cumulative distribution function (CDF) of the T -R(W ) distribution is
G(x) =

∫W (F (x))

a
r(t)dt, where r(t) is the probability density function (PDF) of a ran-

dom variable T with support (a, b) for −∞ ≤ a < b ≤ ∞. The function W (F (x)) of the
CDF F (x) is monotonic and absolutely continuous. Aljarrah et al. (2014) considered
the function W (F (x)) to be the quantile function of a random variable Y and defined
the T -R{Y } family. This framework can be applied to derive generalized families of any
existing distribution.

Some generalizations of the gamma distribution that fall into the T -R{Y } framework
include the family of generalized gamma-generated distributions by Zografos and Bal-
akrishnan (2009), the gamma-Pareto distribution by Alzaatreh et al. (2012) and the
gamma-normal distribution by Alzaatreh et al. (2014a). These distributions belong to
the gamma-R{exponential} family. Various applications to biological data, lifetime data,
hydrological data and others were provided in these literatures. For a review of methods
for generating continuous distributions, one may refer to Lee et al. (2013).
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Various distributions in the T -R{Y } family have been studied in the literature. The
distributions, in general, have more parameters which add more flexibility to their use-
fulness. These distributions have shown their usefulness in many fields. They have been
applied in many areas and found to provide better fit to complex real life situations.
Examples include the following: the beta-normal (Eugene et al., 2002) was applied to
bimodal data; the Kumaraswamy-Weibull (Cordeiro et al., 2010) was applied to model
failure time data; the beta-Weibull (Famoye et al., 2005), the beta Pareto (Akinsete et
al., 2008) and the beta generalized Pareto (Mahmoudi, 2011) were applied to model flood
data.

This article focuses on the generalization of the gamma distribution using the T -
gamma{Y } framework and studies some new distributions in this family and their ap-
plications. Section 2 gives a brief review of the T -R{Y } framework, defines several
new generalized gamma sub-families. Section 3 gives some general properties of the T -
gamma{Y } distributions. Section 4 develops several new T -gamma{Y } distributions and
derives some properties. Section 5 gives some applications. Summary and conclusions
are given in section 6.

2. The T -gamma{Y } family of distributions
The T -R{Y } framework defined in Aljarrah et al. (2014) (see also Alzaatreh et al.,

2014b) is briefly described in the following. Let T , R and Y be random variables with
CDF FT (x) = P (T ≤ x), FR(x) = P (R ≤ x), FY (x) = P (Y ≤ x) and corresponding
quantile functions QT (p), QR(p) and QY (p), where the quantile function is defined as
QZ(p) = inf{z : FZ(z) ≥ p}, 0 < p < 1. If densities exist, we denote them by fT (x),
fR(x) and fY (x). Now assume the random variables T, Y ∈ (a, b) for −∞ ≤ a < b ≤ ∞.
The random variable X in T -R{Y } family of distributions is defined as

(2.1) FX(x) =

∫ QY (FR(x))

a

fT (t)dt = FT (QY (FR(x))).

The corresponding PDF associated with (2.1) is

(2.2) fX(x) = fT (QY (FR(x)))×Q′Y (FR(x))× fR(x).

Alternatively, (2.2) can be written as

(2.3) fX(x) = fR(x)× fT (QY (FR(x)))

fY (QY (FR(x)))
.

The hazard function of the random variable X can be written as

(2.4) hX(x) = hR(x)× hT (QY (FR(x)))

hY (QY (FR(x)))
.

Alzaatreh et al. (2013) studied the T -R{exponential} distributions. Aljarrah et al.
(2014) studied the general framework and some properties of T -R{Y }.

Let R be a gamma random variable with PDF fR(x) = β−α(Γ(α))−1xα−1e−x/β , x > 0

and CDF FR(x) = β−α(Γ(α))−1 ∫ x
0
tα−1e−t/βdt, then (2.2) reduces to

fX(x) =
1

βαΓ(α)
xα−1e−x/β × fT (QY (FR(x)))

fY (QY (FR(x)))

= gamma(α, β)× fT (QY (FR(x)))

fY (QY (FR(x)))
.(2.5)

Gamma(α, β) is the PDF of gamma random variable. Hereafter, the family of distribu-
tions in (2.5) will be called the T -gamma{Y } family and it will be denoted by T -G{Y }.
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It is clear that the PDF in (2.5) is a generalization of gamma distribution. For con-
sistency, the notation fG(x) and FG(x) will respectively be used in place of fR(x) and
FR(x) for the gamma random variable in the remaining sections. From (2.1), if T d

=Y ,
then X d

= gamma(α β). Also, if Y d
= gamma(α β), then X d

=T .
Various existing generalizations of the gamma distributions can be seen as members

of T -G{Y } family. When T ∼ beta(a, b) and Y ∼ uniform(0, 1), the T -G{Y } reduces
to the beta-gamma distribution (Kong et al., 2007). When T ∼ Power(a) and Y ∼
uniform(0, 1), the T -G{Y } reduces to the exponentiated-gamma distribution (Nadarajah
and Kotz, 2006) and when T ∼ Kumaraswamy(a, b) and Y ∼ uniform(0, 1), the T -G{Y }
reduces to the Kumaraswamy-gamma distribution (Cordeiro and de Castro, 2011). Table
1 gives five quantile functions of known distributions which will be applied to generate
T -G{Y } sub-families in the following subsections.

Table 1. Quantile functions for different Y distributions

Y QY (p)

(a) Uniform p
(b) Exponential −b log(1− p), b > 0

(c) Log-logistic a(p/(1− p))1/b, a, b > 0
(d) Logistic a+ b log[p/(1− p)], b > 0
(e) Extreme value a+ b log[− log(1− p)], b > 0

2.1. T -gamma{uniform} family of distributions (T -G{uniform}). By using the
quantile function of the uniform distribution in Table 1, the corresponding CDF to (2.1)
is

(2.6) FX(x) = FT {FG(x)} ,

and the corresponding PDF to (2.6) is

fX(x) =
1

βαΓ(α)
xα−1e−x/β × fT (FG(x))

= gamma(α, β)× fT (FG(x)) , x > 0.(2.7)

2.2. T -gamma{exponential} family of distributions (T -G{exponential}). By
using the quantile function of the exponential distribution in Table 1, the corresponding
CDF to (2.1) is

(2.8) FX(x) = FT {−b log(1− FG(x))} ,

and the corresponding PDF to (2.8) is

fX(x) =
b

βαΓ(α)(1− FG(x))
xα−1e−x/β × fT (−b log (1− FG(x)))

= gamma(α, β)× b

(1− FG(x))
× fT (−b log (1− FG(x))) , x > 0.(2.9)

Note that the CDF and the PDF in (2.8) and (2.9) can be written as FX(x) = FT (−bHG(x))
and fX(x) = bhG(x)fT (−bHG(x)) where hG(x) and HG(x) are the hazard and cumu-
lative hazard functions for the gamma distribution, respectively. Therefore, the T -
G{exponential} family of distributions arises from the ‘hazard function of the gamma
distribution’.
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2.3. T -gamma{log-logistic} family of distributions (T -G{log-logistic}). By us-
ing the quantile function of the log-logistic distribution in Table 1, the corresponding
CDF to (2.1) is

(2.10) FX(x) = FT
{
a(FG(x)/[1− FG(x)])1/b

}
,

and the corresponding PDF is

fX(x) =
a

bβαΓ(α)

xα−1e−x/β

(1− FG(x))2

(
FG(x)

1− FG(x)

)1/b−1

fT

(
a

(
FG(x)

1− FG(x)

)1/b
)

=
a · gamma(α, β)

b(1− FG(x))2

[
FG(x)

1− FG(x)

]1/b−1

fT

{
a

[
FG(x)

1− FG(x)

]1/b
}
, x > 0.(2.11)

Note that if a = b = 1, (2.11) reduces to

fX(x) =
gamma(α, β)

(1− FG(x))2 × fT (FG(x)/[1− FG(x)]) , x > 0,

which is a family of generalized gamma distributions arising from the ‘odds’ of the gamma
distribution.

2.4. T -gamma{logistic} family of distributions (T -G{logistic}). By using the
quantile function of the logistic distribution in Table 1, the corresponding CDF to (2.1)
is

(2.12) FX(x) = FT {a+ b log (FG(x)/[1− FG(x)])} ,

and the corresponding PDF is

(2.13) fX(x) =
bxα−1e−x/β

βαΓ(α)FG(x)[1− FG(x)]
fT

(
a+ b log

(
FG(x)

1− FG(x)

))
, x > 0.

Note that if a = 0 and b = 1, (2.13) reduces to

fX(x) =
hG(x)

FG(x)
× fT

(
log

(
FG(x)

1− FG(x)

))
, x > 0,

which is a family of generalized gamma distributions arising from the ‘logit function’ of
the gamma distribution.

2.5. T -gamma{extreme value} family of distributions (T -G{extreme
value}). By using the quantile function of the extreme value distribution in Table 1,
the corresponding CDF to (2.1) is

(2.14) FX(x) = FT {a+ b log(− log[1− FG(x)])} ,

and the corresponding PDF is

(2.15) fX(x) =
bxα−1e−x/βfT {a+ b log[− log(1− FG(x))]}

βαΓ(α)[FG(x)− 1] log(1− FG(x))
, x > 0.

The CDF in (2.14) and the PDF in (2.15) can be written as

FX(x) = FT (a+ b logHG(x))

and
fX(x) = b {hG(x)/HG(x)} fT (a+ b logHG(x))

respectively.
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3. Some properties of the T -G{Y } family of distributions
In this section, we discuss some general properties of the T -gamma family of distri-

butions in detail. We omit the proof for some straightforward results.

3.1. Lemma. Let T be a random variable with PDF fT (x), then the random variable
X = QG(FY (T )), where QG(.) is the quantile function of gamma(α, β), follows the T -
gamma{Y } distribution.

3.2. Corollary. Based on Lemma 3.1, we have
(i) X = QG(T ) follows the distribution of T -G{uniform} family.
(ii) X = QG(1− e−T/b) follows the distribution of T -G{exponential} family.
(iii) X = QG

(
[1 + (T/a)−b]

−1
)
follows the distribution of T -G{log-logistic} family.

(iv) X = QG
(

[1 + e−(T−a)/b]
−1
)
follows the distribution of T -G{logistic} family.

(v) X = QG
(

1− e−e
(T−a)/b

)
follows the distribution of T -G{extreme value} family.

3.3. Lemma. The quantile functions for T -gamma{Y } family is given by QX(p) =
QG(FY (QT (p))).

3.4. Corollary. Based on Lemma 3.3, the quantile function for the
(i) T -G{uniform}, (ii) T -G{exponential}, (iii) T -G{log-logistic}, (iv) T -G{logistic} and
(v) T -G{extreme value}, are respectively,

(i) QX(p) = QG (QT (p)),
(ii) QX(p) = QG

(
1− e−b

−1QT (p)
)
,

(iii) QX(p) = QG
(

[1 + (QT (p)/a)−b]
−1
)
,

(iv) QX(p) = QG
(

[1 + e−(QT (p)−a)/b]
−1
)
,

(v) QX(p) = QG
(

1− e−e
(QT (p)−a)/b

)
.

3.5. Proposition. The mode(s) of the T -gamma{Y } family are the solutions of the
equation

(3.1) x =
α− 1

β−1 −Ψ{fT (QY (FG(x)))} −Ψ{Q′Y (FG(x))} ,

where Ψ(f) = f ′/f .

Proof. For gamma distribution,

fG(x) = β−α(Γ(α))−1xα−1e−x/β ,

we have f ′G(x) = [(α − 1)/x − β−1]fG(x). Using this fact; one can show the result in
(3.1) by equating the derivative of the equation (2.5) to zero and then solving for x. �

The entropy of a random variable X is a measure of variation of uncertainty (Rényi,
1961). Shannon’s entropy has been used in many fields such as engineering and infor-
mation theory. Shannon’s entropy (Shannon, 1948) for a random variable X with PDF
f(x) is defined as ηX = −E {log (f(X))}.

3.6. Proposition. The Shannon’s entropy for the T -G{Y } family (2.1) is given by

(3.2) ηX = ηT + E (log fY (T ))− E {log fG(QG(FY (T )))} .

Proof. See Theorem 2 of Aljarrah et al. (2014). �
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3.7. Corollary. The Shannon’s entropy for the T -G{Y } family can be written as

ηX = ηT + E (log fY (T )) + log Γ(α) + α log(β) + (1− α)E (logX) + β−1µX .

Proof. For the T -G{Y } family, we have log(fG(x)) = − log(Γ(α)) − α log(β) + (α −
1) log(x)− x/β. The result follows from Proposition 3.6. �

3.8. Corollary. Based on Corollary 3.7, the Shannon’s entropies for the (i) T -G{uniform},
(ii) T -G{exponential}, (iii) T -G{log-logistic}, (iv) T -G{logistic} and (v) T -G{extreme
value}, distributions, respectively, are given by

(i) ηX = C1 + ηT + (1− α)E (logX) + β−1µX ,
(ii) ηX = C2 + ηT − b−1µT + (1− α)E (logX) + β−1µX ,
(iii) ηX = C3 +ηT +(b−1)E(log T )−2E(log(1+(T/a)b))+(1−α)E (logX)+β−1µX ,
(iv) ηX = C4 + ηT − b−1µT − 2E(log(1 + e−(T−a)/b)) + (1− α)E (logX) + β−1µX ,
(v) ηX = C5 + ηT + b−1µT − E(e(T−a)/b) + (1− α)E (logX) + β−1µX ,

where C1 = log Γ(α) +α log(β), C2 = − log b+ log Γ(α) +α log(β), C3 = log b− b log a+
log Γ(α) + α log(β), C4 = − log b+ ab−1 + log Γ(α) + α log(β) and C5 = − log b− ab−1 +
log Γ(α) + α log(β).

3.9. Proposition. The rth moment for the T -gamma{Y } family of distributions is given
by

(3.3) E(Xr) = βr
∑∞

k=0
ckE[FY (T )]k+r,

where c0 = 1, cm = m−1∑m
k=1 (kr −m+ k)gk+1cm−k, m ≥ 1 and gk satisfies the fol-

lowing:

g1 = 1, n(n+ α)gn+1 =
∑n

i=1

∑n−i+1

j=1
gigjgn−i−j+2j(n− i− j + 2)

− ∆(n)
∑n

i=2
gign−i+2i[i− α− (1− α)(n+ 2− i)],

and ∆(n) =

{
0, n < 2
1, n ≥ 2.

Proof. From Lemma 3.1, the rth moment for the T -G{Y } family can be written as
E(Xr) = E(QG(FY (T )))r, where QG(p) is the quantile function of gamma distribution
with parameters α and β. Steinbrecher and Shaw (2008) showed that a power series
expansion of QG(p) is possible and can be written as QG(p) = β

∑∞
n=1 gn p

n where gn
can be obtained from the recurrence relation defined in the statement of Proposition 3.9.
For example, the first three terms of gn are 1, (α+ 1)−1 and (3α+ 5)/[2(α+ 1)2(α+ 2)].
Other terms can be similarly obtained. Therefore, (QG(p))r = βr

∑∞
k=0 ck p

k+r (see
Gradshteyn and Ryzhik, 2007), where ck can be obtained from the recurrence relation
defined in Proposition 3.9. �

3.10. Corollary. Based on Proposition 3.9, the rth moments for the (i) T -G{uniform},
(ii) T -G{exponential}, (iii) T -G{log-logistic}, (iv) T -G{logistic} and (v) T -G{extreme
value} distributions, respectively, are given by

(i) E(Xr) = βr
∑∞
k=0 ckE(T k+r),

(ii) E(Xr) = βr
∑∞
k=0

∑k+r
j=0 (−1)j

(
k + r
j

)
ckMT (−j/b),

(iii) E(Xr) = βr
∑∞
k=0 ckE

(
1 + (T/a)−b

)−k−r
,

(iv) E(Xr) = βr
∑∞
k=0

∑∞
j=0 (−1)jckMT−a(−j/b),

(v) E(Xr) = βr
∑∞
k=0

∑k+r
j=0

∑∞
i=0 (−1)i+j (j)i

i!

(
k + r
j

)
ckMT−a(i/b),
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where MX(t) = E(etX).

3.11. Proposition. The mean deviations from the mean and the median for the T -
gamma{Y } family, respectively, are given by

(3.4) D(µ) = 2µFT (QY (FG(µ)))− 2Πµ and D(M) = µ− 2ΠM ,

where µ and M are the mean and median for X, and

Πc = β
∑∞

k=1
gk

∫ QY (FG(c))

−∞
fT (u)(FY (u))kdu.

Proof. For a nonnegative random variable X, we have D(µ) = 2µFX(µ) − 2Πµ and
D(M) = µ− 2ΠM , where Πc =

∫ c
0
xfX(x)dx. From (2.5) and Lemma 3.1, one can easily

see that Πc = β
∫ QY (FG(c))

−∞ fT (u)QG(FY (u))du. The results in (3.4) can be obtained
using the series expansion of QG(.) in Proposition 3.9. �

3.12. Corollary. Based on Proposition 3.11, the Πc’s for (i) T -G{uniform}, (ii) T -
G{exponential}, (iii) T -G{log-logistic}, (iv) T -G{logistic} and (v) T -G{extreme value}
distributions, are respectively given by

(i)

(3.5) Πc = β

∞∑
k=1

gkSu(c, 0, k),

where Sξ(c, a, k) =
∫ QY (FG(c))

a
ξkfT (u)du and QY (FG(c)) = FG(c) for uniform

distribution.
(ii)

(3.6) Πc = β

∞∑
k=1

k∑
j=0

gk

(
k
j

)
(−1)jSeu/b(c, 0,−j),

where QY (FG(c)) = −b log(1− FG(c)) for exponential distribution.
(iii)

(3.7) Πc = β

∞∑
k=1

k∑
j=0

gk

(
k
j

)
(−1)jS1+(u/a)b(c, 0,−j),

where QY (FG(c)) = a[FG(c)/(1− FG(c))]1/b for log-logistic distribution.
(iv)

(3.8) Πc = β

∞∑
k=1

gkS1+e−(u−a)/b(c,−∞,−j),

where QY (FG(c)) = a+ b log{FG(c)/(1− FG(c))} for logistic distribution.
(v)

(3.9) Πc = β

∞∑
k=1

k∑
j=0

(−1)j
(
k
j

)
gkS

ee
(u−a)/b (c,−∞,−j),

where QY (FG(c)) = a+ b log{− log(1− FG(c))} for extreme value distribution.

Proposition 3.11 and Corollary 3.12 can be used to obtain the mean deviations for
T -G{uniform}, T -G{exponential}, T -G{log-logistic}, T -G{logistic} and T -G{extreme
value} distributions.
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3.13. Proposition. Let X be a random variable that follows the T -gamma{Y } family
in (2.5). Assume that E(Xn) < ∞ for all n, then E(Xn) ≤ [βnΓ(α + n)/Γ(α)] ×
E (1/[1− FY (T )]).

Proof. If the random variable R is nonnegative and X follows the T -R{Y } family in (2.1)
with E(Xn) < ∞, one can show that E(Xn) ≤ E(Rn)E[1/(1 − FY (T ))] (see Theorem
1 in Aljarrah et al., 2014). The result follows by using the fact that R follows a gamma
distribution with parameters α and β, and E(Rn) = βnΓ(α+ n)/Γ(α). �

3.14. Corollary. If E(Xn) < ∞ and by using Proposition 3.13, we have the following
results:

(i) If X follows T -G{uniform}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
E
(
(1− T )−1).

(ii) If X follows T -G{exponential}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
MT (1/b).

(iii) If X follows T -G{log-logistic}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
[1 + E(T/a)b].

(iv) If X follows T -G{logistic}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
[1 +MT−a(1/b)].

(v) If X follows T -G{extreme value}, then E(Xn) ≤
[
βnΓ(α+n)

Γ(α)

]
E(ee

(T−a)/b

).

4. Some examples of T -G{Y } family of distributions
In this section, we present some members of the T -G{Y } family, namely, Weibull-

G{exponential}, Weibull-G{log-logistic} and Cauchy-G{logistic}. For simplicity, we only
use the standard form (i.e. no parameters in the distribution of Y ) of the quantile
functions in Table 1.

4.1. The Weibull-G{exponential} distribution. If a random variable T follows the
Weibull distribution with parameters c and γ, then

fT (t) = cγ−1(t/γ)c−1e−(t/γ)c , c, γ > 0.

From (2.9), the PDF of the Weibull-G{exponential} is given by

fX(x) =
c

γcβαΓ(α)

xα−1e−x/β

1− FG(x)
(− log(1− FG(x)))c−1(4.1)

× exp
{
−γ−c(− log(1− FG(x)))c

}
, x > 0.

When c = 1, (4.1) reduces to the exponential-G{exponential}. When c = γ = 1, equa-
tion (4.1) reduces to the gamma distribution. From (2.8), the CDF of the Weibull-
G{exponential} is given by

FX(x) = 1− exp
{
−γ−c(− log(1− FG(x)))c

}
, x > 0.

In Figure 1, various graphs of Weibull-G{exponential} PDF for different parameter
values are provided. These plots show that the PDF can be left skewed, right skewed,
approximately symmetric or have a reversed J-shape.
Some properties of the Weibull-G{exponential} are obtained in the following by using
the general properties discussed in section 3.

(1) Quantile function: By using Lemma 3.3, the quantile function of the Weibull-
G{exponential} distribution is given by

QX(p) = QG
{

1− e−γ(− log(1−p))1/c
}
.
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Figure 1. The PDFs of Weibull-G{exponential} for various parameter values

Figure 1: The PDFs of Weibull-G{exponential} for various parameter values 
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(2) Mode: By using Proposition 3.5, the mode of Weibull-G{exponential} distribu-
tion can be obtained by solving the following equation numerically

x = (α− 1)

(
β−1 − hG(x)

{
c− 1

(1− FG(x))HG(x)
+ γ−c+1(HG(x))c−1

})−1

.

(3) Shannon entropy: By using Corollary 3.8 and the fact that µT = γΓ(1+1/c) and
ηT = 1+ξ(1−1/c)+log(γ/c), the Shannon’s entropy of Weibull-G{exponential}
distribution is

ηX = C + (1− α)E (logX) + β−1µX ,

where C = log Γ(α) + α log(β) + ξ(1 − 1/c) + log(γ/c) − γΓ(1 + 1/c) + 1 and
ξ ≈ 0.5772 is the Euler’s constant.

(4) Moments: By using Corollary 3.10, the rth moment of the Weibull-G{expo-
nential} distribution can be written as

E(Xr) = βr
∑∞

k=0

∑k+r

j=0

∑∞

i=0

(−1)j+ijiγi

i!

(
k + r
j

)
ckΓ(1 + i/c).

(5) Mean deviations: By using Corollary 3.12, the mean deviation from the mean
and the mean deviation from the median of Weibull-G{exponential} distribution
can be obtained from (3.4) where

Πc = β

∞∑
k=1

k∑
j=0

∞∑
i=0

(−1)jkiγi

i!

(
k
j

)
gkΓ [1 + i/c, (QY (FG(c))/γ)c],

QY (FG(c)) = − log(1 − FG(c)) and Γ(α, x) =
∫ x

0
uα−1e−udu is the incomplete

gamma function.
(6) Moments upper bound: By Corollary 3.14, E(Xn) ≤ [βnΓ(α+n)/Γ(α)]×MT (1),

where T follows Weibull(c, γ). If c = 1 and γ < 1, one can show that E(Xn) ≤
βnΓ(α+n)
(1−γ)Γ(α)

.

4.2. The Weibull-G{log-logistic} distribution. If a random variable T follows the
Weibull distribution with parameters c and γ, then

fT (t) = cγ−1(t/γ)c−1e−(t/γ)c , c, γ > 0.
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From (2.11), the PDF of the Weibull-G{log-logistic} is given by

fX(x) =
c

γcβαΓ(α)

xα−1e−x/β

(1− FG(x))2

(
FG(x)

1− FG(x)

)c−1

(4.2)

× exp

{
−
(

FG(x)

γ(1− FG(x))

)c}
, x > 0.

When c = 1, the Weibull-G{log-logistic} reduces to the exponential-G{log-logistic}.
From (2.10), the CDF of the Weibull-G{log-logistic} is given by

FX(x) = 1− exp

{
−
(

FG(x)

γ(1− FG(x))

)c}
, x > 0.

Various graphs of Weibull-G{log-logistic} PDF for different parameter values are pro-
vided in Figures 2 and 3. These plots show the PDF has great shape flexibility. It can
be left skewed, right skewed, approximately symmetric or have a reversed J-shape. Also,
the distribution can be unimodal or bimodal.

Figure 2. The PDFs of Weibull-G{log-logistic} for various parameter values
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4.3. The Cauchy-G{logistic} distribution. If a random variable T follows the Cauchy
distribution with parameters c and γ, then

fT (t) = π−1{1 + [(t− c)/γ]2}−1
, γ > 0, c ∈ R.

From (2.13), the PDF of the Cauchy-G{logistic} is defined as

fX(x) =
xα−1e−x/β

πγβαΓ(α)FG(x)(1− FG(x))
(4.3)

×
[
1 + γ−2(log(FG(x)/(1− FG(x))− c)2]−1

, x > 0.

In Figure 4, various graphs of the Cauchy-G{logistic} distribution for various param-
eter values are provided. These graphs indicate that the Cauchy-G{logistic} distribution
can be right skewed, approximately symmetric or have a reversed J-shape.
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Figure 3. Some bimodal PDFs of Weibull-G{log-logistic} for various
parameter values

Figure 3: Some bimodal PDFs of Weibull-G{log-logistic} for various parameter values
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5. Applications
In this section, the applications of the T -gamma distribution are illustrated by fitting

some members of the family to different data sets including unimodal and bimodal data
sets.

5.1. Unimodal data sets. In this subsection, we fit theWeibull-G{exponential}, Weibull-
G{log-logistic} and Cauchy-G{logistic} in equations 4.1, 4.2 and 4.3, respectively, to three
data sets with various shapes that are approximately symmetric or left skewed or right
skewed. The maximum likelihood method is used to estimate the model parameters.
The initial values for the parameters α and β are obtained by assuming the random
sample xi, i = 1, 2, . . . , n is from the gamma distribution with parameters α and β. The
moment estimates from the gamma distribution are used as the initial values, which are
α0 = x̄2/s2 and β0 = s2/x̄. Now, by Lemma 3.1, ti = QY (FG(xi)), i = 1, 2, . . . , n follows
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the T distribution with parameters c and γ in all the examples in section 4. The moment
estimates or the maximum likelihood estimates of the T -distribution can be used as the
initial values for c and γ.

The first data set (n = 80) in Table 2 represents the annual maximum temperatures
at Oxford and Worthing in England for the period of 1901-1980. Chandler and Bate
(2007) used the generalized extreme value distribution to model the annual maximum
temperatures in Table 2. The summary statistics from the first data set are: x̄ = 85.3250,
s = 4.2658, γ1 = −0.0162 and γ2 = 2.7309, where γ1 and γ2 are the sample skewness
and kurtosis respectively. The second data set (n = 202) in Table 3 is from Weisberg
(2005) and it represents the sum of skin folds in 202 athletes collected at the Australian
Institute of Sports. The summary statistics from the second data set are: x̄ = 69.0218,
s = 32.5653, γ1 = 1.1660 and γ2 = 4.3220. The third data set (n = 40) in Table 4 is from
Xu et al. (2003) and it represents the time to failure (103 h) of turbocharger of one type
of engine. The summary statistics from the third data set are: x̄ = 6.2525, s = 1.9555,
γ1 = −0.6542 and γ2 = 2.5750.

The data sets are fitted to the Weibull-G{exponential}, Weibull-G{log-logistic} and
Cauchy-G{logistic} distributions. The maximum likelihood estimates, the log-likelihood
value, the Akaike Information Criterion (AIC), the Kolmogorov-Smirnov (K-S) test statis-
tic, and the p-value for the K-S statistic for the fitted distributions to the three data sets
are reported in Table 5. The results in Table 5 show that all the generalized gamma
distributions provide adequate fit to the data set in Table 2. For the data set in Table 3,
the Weibull-G{exponential} provides the best fit followed by the Weibull-G{log-logistic},
while the Cauchy-G{logistic} does not provide an adequate fit. For the data set in Table
4, all the three generalized gamma distributions provide an adequate fit.

On examining the summary statistics of the data sets, it is noticed that the data set
in Table 2 is approximately symmetric, the data set in Table 3 is right skewed and the
data set in Table 4 is left skewed. This shows the flexibility of these generalized gamma
distributions in fitting various data sets with different distribution shapes. We also fit
the three data sets to the gamma distribution. The resulting K-S statistics p-values are
less than 0.0001 for all data sets. Figure 5 displays the histogram and the fitted density
functions for the three data sets, which support the results in Table 5.

Table 2. The annual maximum temperatures data (n = 80)

75 92 87 86 85 95 84 87 86 82 77
89 79 83 79 85 89 84 84 82 86 81
84 84 87 89 80 86 85 84 89 80 87
84 85 82 86 87 86 89 90 90 91 81
85 79 83 93 87 83 88 90 83 82 80
81 95 89 86 89 87 92 89 87 87 83
89 88 84 84 77 85 77 91 94 80 80
85 83 88

5.2. Bimodal data. In this subsection, we fit the Weibull-G{log-logistic} to a bimodal
data set obtained from Emlet et al. (1987) on the asteroid and echinoid egg size. The
data consists of 88 asteroids species divided into three types; 35 planktotrophic larvae,
36 lecithotrophic larvae, and 17 brooding larvae. The logarithm of the egg diameters of
the asteroids data has a bimodal shape. We fit the logarithm of the egg diameters of the
asteroids data and compared it with the beta-normal distribution (Famoye et al., 2004)
and logistic-normal{logistic} distribution (Alzaatreh et al., 2014b). The results of the
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Table 3. The sum of skin folds data (n = 202)

28.0 98 89.0 68.9 69.9 109.0 52.3 52.8 46.7 82.7 42.3
109.1 96.8 98.3 103.6 110.2 98.1 57.0 43.1 71.1 29.7 96.3
102.8 80.3 122.1 71.3 200.8 80.6 65.3 78.0 65.9 38.9 56.5
104.6 74.9 90.4 54.6 131.9 68.3 52.0 40.8 34.3 44.8 105.7
126.4 83.0 106.9 88.2 33.8 47.6 42.7 41.5 34.6 30.9 100.7
80.3 91.0 156.6 95.4 43.5 61.9 35.2 50.9 31.8 44.0 56.8
75.2 76.2 101.1 47.5 46.2 38.2 49.2 49.6 34.5 37.5 75.9
87.2 52.6 126.4 55.6 73.9 43.5 61.8 88.9 31.0 37.6 52.8
97.9 111.1 114.0 62.9 36.8 56.8 46.5 48.3 32.6 31.7 47.8
75.1 110.7 70.0 52.5 67 41.6 34.8 61.8 31.5 36.6 76.0
65.1 74.7 77.0 62.6 41.1 58.9 60.2 43.0 32.6 48 61.2
171.1 113.5 148.9 49.9 59.4 44.5 48.1 61.1 31.0 41.9 75.6
76.8 99.8 80.1 57.9 48.4 41.8 44.5 43.8 33.7 30.9 43.3
117.8 80.3 156.6 109.6 50.0 33.7 54.0 54.2 30.3 52.8 49.5
90.2 109.5 115.9 98.5 54.6 50.9 44.7 41.8 38.0 43.2 70.0
97.2 123.6 181.7 136.3 42.3 40.5 64.9 34.1 55.7 113.5 75.7
99.9 91.2 71.6 103.6 46.1 51.2 43.8 30.5 37.5 96.9 57.7
125.9 49.0 143.5 102.8 46.3 54.4 58.3 34.0 112.5 49.3 67.2
56.5 47.6 60.4 34.9

Table 4. The time to failure of turbocharger data (n = 40)

1.6 3.5 4.8 5.4 6.0 6.5 7.0 7.3 7.7 8.0 8.4
2.0 3.9 5.0 5.6 6.1 6.5 7.1 7.3 7.8 8.1 8.4
2.6 4.5 5.1 5.8 6.3 6.7 7.3 7.7 7.9 8.3 8.5
3.0 4.6 5.3 6.0 8.7 8.8 9.0

maximum likelihood estimates, the log-likelihood value, the AIC, the K-S test statistic,
and the p-value for the K-S statistic for the fitted distributions are reported in Table 6.
The results in Table 6 show that all distributions provide an adequate fit to the data set.
Figure 6 displays the histogram and the fitted density functions for the data.

6. Summary and Conclusions
The gamma distribution is a commonly used distribution for fitting lifetime data, sur-

vival data, hydrological data, and others. The generalization of the gamma distribution
provides more flexible distributions for these different applications. This article applies
the T -R{Y } framework proposed by Aljarrah et al. (2014) to define T -gamma{Y } fam-
ily by using the gamma random variable. Some general properties of the family are
studied. Five types of generalized gamma sub-families are defined by using five different
quantile functions for uniform, exponential, log-logistic, logistic, and extreme value distri-
butions. Various properties for each of these sub-families are studied including moments,
modes, entropy, deviation from the mean and deviation from the median. Three general-
ized gamma distributions, namely, Weibull-G{exponential}, Weibull-G{log-logistic} and
Cauchy-G{logistic} are defined and some of their properties investigated. It is noticed
that the shapes of T -G{Y } distributions can be symmetric, skewed to the right, skewed
to the left or bimodal. This shows that the new generalized gamma distributions are very
flexible in fitting real world data. For future research, many other types of generalizations
of gamma distribution can be derived using the methodology described in this paper.
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Table 5. Parameter estimates for the three data sets in Tables 2, 3, and 4

Parameter estimates for the annual maximum temperatures data in Table 2

Distribution ĉ ˆ ˆ ˆ ˆ AIC K-S K-S p-value

Weibull-G{E} 1.4579

(0.7993)*

2.8324

(4.0113)

392.4465

(169.4705)

0.2048

(0.0901)

–228.9830 465.9661 0.0638 0.9006

Weibull-G{LL} 0.4753

(0.1934)

0.0481

(0.1168)

423.0032

(169.6370)

0.2232

(0.0904)

–229.0198 466.0396 0.0635 0.9041

Cauchy-G{L} 0.1349

(0.8799)

1.1913

(0.2113)

534.8853

(90.7804)

0.1591

(0.0269)

–239.0094 486.0187 0.0727 0.7922

Parameter estimates for the sum of skin folds data in Table 3

Distribution ĉ ˆ ˆ ˆ ˆ AIC K-S K-S p-value

Weibull-G{E} 0.7291

(0.0404)

3.9319

(0.4010)

17.3862

(0.0025)

2.6521

(0.0025)

–953.5709 1915.1420 0.0634 0.3921

Weibull-G{LL} 0.3184

(0.0518)

0.0219

(0.0131)

13.4018

(2.7954)

10.4219

(2.8058)

–962.2296 1932.4590 0.0793 0.1578

Cauchy-G{L} -0.9076

(0.3571)

3.2642

(0.3125)

29.4223

(0.0203)

2.1914

(0.0236)

–977.9650 1963.9300 0.1174 0.0076

Parameter estimates for the time to failure of turbocharger data in Table 4

Distribution ĉ ˆ ˆ ˆ ˆ AIC K-S K-S p-value

Weibull-G{E} 8.3877

(1.8836)

4.2085

(0.9729)

0.1116

(0.0714)

4.9569

(1.6596)

–81.3549 170.7098 0.1114 0.7039

Weibull-G{LL} 0.6094

(0.2749)

28.3338

(43.2957)

7.5745

(5.5233)

0.5396

(0.3396)

–78.9643 165.9286 0.0820 0.9507

Cauchy-G{L} 1.6246

(1.4562)

3.3557

(1.1973)

57.8285

(21.4393)

0.1015

(0.0354)

–85.9245 179.8491 0.1442 0.3766

*standard error

Table 6. Parameter estimates for the asteroids data

Distribution Weibull-G{LL} Beta-normal∗ Logistic-N{L}
Parameter α̂ = 410.7779(16.1145) α̂ = 0.0129 λ̂ = 0.1498(0.0185)

Estimates β̂ = 0.0151(0.0196) β̂ = 0.0070 µ̂ = 6.0348(0.0685)
ĉ = 0.1390(0.0865) µ̂ = 5.7466 σ̂ = 0.2604(0.0100)
γ̂ = 3.6233(0.4476) σ̂ = 0.0675

Log-likelihood −111.2091 −109.4800 −111.4287
AIC 230.4182 226.9600 228.4974
K-S statistic 0.1088 0.1233 0.0988
p-value 0.2486 0.1377 0.3572
∗From Famoye et al. (2004) and the MLE standard errors were not provided
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Abstract

One of the basic graphical methods for assessing the validity of a dis-
tributional assumption is the Q-Q plot which compares quantiles of a
sample against the quantiles of the distribution. In this paper, we focus
on how a Q-Q plot can be augmented by intervals for all the points so
that, if the population distribution is Weibull or exponential then all
the points should fall inside the corresponding intervals simultaneously
with probability 1− α. These simultaneous 1− α probability intervals
provide therefore an objective mean to judge whether the plotted points
fall close to the straight line: the plotted points fall close to the straight
line if and only if all the points fall within the corresponding intervals.
The powers of �ve Q-Q plot based graphical tests and the most popular
non-graphical Anderson-Darling and Cramér-von-Mises tests are com-
pared by simulation. Based on this power study, the tests that have
better powers are identi�ed and recommendations are given on which
graphical tests should be used in what circumstances. Examples are
provided to illustrate the methods.
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1. Introduction

When a simple random sample Y1, · · · , Yn is drawn from a population, one important
question is whether the population has a distribution of the form F0 ((y − µ)/σ), where
F0(·) is a given cumulative distribution function (cdf), and −∞ < µ <∞ and σ > 0 are
two unknown parameters. Note that µ is not necessarily the mean and σ is not necessarily
the standard deviation of Y . One widely used graphical technique for dealing with this
question is the Q-Q plot. In order to provide an objective judgement on whether the
points (zk, Y[k]) fall close to a straight line and building on the work of Michael (1983).
Chantarangsi et al. (2015) consider augmenting the normal probability plot by providing
an interval for each Y[k] (k = 1, . . . , n) so that, if the population is normally distributed
then all the Y[k] (k = 1, · · · , n) will fall into the corresponding intervals simultaneously
with probability 1 − α. In this paper, the authors use the idea of Chantarangsi et al.
(2015) on Q-Q plots to judge whether a sample is drawn from the Weibull or exponential
distributions.

The exponential distribution Exp(µ, σ) is a location-scale family, but the Weibull
distribution is not. Therefore, log-transformation is applied to the Weibull distribution
to obtain the smallest extreme value distribution SEV (µ, σ), which is a location-scale
family. A Q-Q plot consists of the n points (qk, Y[k]), k = 1, · · · , n, where Y[1] ≤ · · · ≤ Y[n]

are the ordered Yk's and q1 < . . . < qn are a set of n reference values which represent
the ordered values of a typical sample of size n from the distribution F0(y). There are
several ways to choose the reference values qk = F−1

0 (pk) where F−1
0 (·) is the inverse

function of F0(·). Various slightly di�erent forms of pk have been suggested in the
statistical literature. See, e.g., Weibull (1939) [23], Blom (1958) [2] and Filliben (1975)
[7]. Throughout this paper, we use pk = (k − 0.5)/n (k = 1, . . . , n), which are �rstly
given in Hazen (1914) [8] and used in the software packages R (when n > 10) and Matlab.
Note that the choices of the pk's do not a�ect the tests discussed in this paper.

If Y1, · · · , Yn have the distribution F0 ((y − µ)/σ), then the n points (qk, Y[k]) should
fall close to a straight line. In order to provide an objective judgement on whether the
points (qk, Y[k]) fall close to a straight line, one can augment the Q-Q plot by providing
an interval for each Y[k] (k = 1, · · · , n) so that, if the population follows the distribution
F0 ((y − µ)/σ), then all the Y[k] (k = 1, · · · , n) will fall inside the corresponding intervals
simultaneously with probability 1 − α. Each of these n intervals can be depicted in the
Q-Q plot as a vertical interval at the corresponding qk. Therefore, if at least one point
(qk, Y[k]) (1 ≤ k ≤ n) does not fall within the corresponding interval then one can claim,
with 1−α con�dence, that the population does not follow the distribution F0 ((y − µ)/σ).
This is in e�ect a size α test for the null hypothesis H0: the population distribution is
F0 ((y − µ)/σ) for some −∞ < µ <∞ and σ > 0 against the alternative hypothesis Ha:
H0 is not true, but with a clear graphical interpretation on the Q-Q plot.

One way to construct the intervals is to use the Kolmogorov-Smirnov statistic

(1.1) D = max
1≤k≤n

∣∣F0

(
(Y[k] − µ̂)/σ̂

)
− (k − 0.5)/n

∣∣
where µ̂ and σ̂ are the estimates of µ and σ, respectively. Note that D is sometimes also
referred to as Lilliefors' (1967) statistic [11] when F0 is the cdf of the standard normal
distribution Φ(·). Let cD be a critical constant so that P{D ≤ cD} = 1 − α under H0.
This probability statement can be rewritten as

(1.2) P
{
Y[k] ∈ µ̂+ σ̂F−1

0 ((k − 0.5)/n± cD ) , k = 1, · · · , n
}

= 1− α.

Hence, under H0, each Y[k] should fall in the corresponding interval

µ̂+ σ̂F−1
0 ((k − 0.5)/n± cD ) simultaneously for k = 1, · · · , n with probability 1− α.
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The second set of intervals is due to Michael (1983) [16] and based on the statistic

(1.3) Dm = max
1≤k≤n

∣∣∣∣(2/π) arcsin
√
F0

(
(Y[k] − µ̂)/σ̂

)
− (2/π) arcsin

√
(k − 0.5)/n

∣∣∣∣ .
Let cDm

be a critical constant so that P{Dm ≤ cDm
} = 1−α under H0. This probability

statement can be rewritten as

(1.4) P
{
Y[k] ∈ µ̂+ σ̂F−1

0

(
sin2[arcsin

√
(k − 0.5)/n± π

2
cDm

]
)
for k = 1, . . . , n

}
= 1−α.

The purpose of this paper is to propose three new graphical tests and to compare the
powers of these graphical tests in order to identify the one having larger overall power.

The layout of the paper is as follows. Section 2 presents the methods of parameter
estimation for Weibull and exponential distributions. Section 3 then constructs graphical
tests for testing Weibull and exponential distributions based on the tests proposed in
Chantarangsi et al. (2015) [5]. The powers of these graphical and two non-graphical
tests are then compared in a simulation study in order to identify the tests that have
overall good power in Section 4. An illustrative example is presented in Section 5.

2. Distribution function and Parameter estimation

2.1. Weibull distribution. A random variable X is said to have the Weibull distribu-
tion, Wbl(a, b, c), if its cdf is given by

(2.1) F (x|a, b, c) = 1− exp
{
−
[x− a

b

]c}
, x > a, b > 0, c > 0

where a is called the location parameter, b the scale parameter and c the shape parameter.
In this paper, it is assumed a is known and so Y = ln(X − a) has the so-called smallest
extreme value (SEV ) distribution. The cdf of Y is given by

(2.2) F (y|µ, σ) = 1− exp
(
− exp

(y − µ
σ

))
, −∞ < y <∞

where −∞ < µ = ln b < ∞ is the location parameter and σ = 1/c > 0 is the scale
parameter. In short, Y ∼ SEV (µ, σ). The original null hypothesis H0 : X1, . . . , Xn
come from Wbl(a, b, c), where a is known, is therefore the same as H0 : Y1 = ln(X1 −
a), . . . , Yn = ln(Xn − a) are from SEV (µ, σ) for some unknown parameters µ and σ.

Note that the pth quantile of the distribution SEV (0, 1) is given by F−1(p) =
ln(− ln(1−p)). Hence a Q-Q plot contains the n points (ln(− ln(1−pk)), Y[k]), k = 1, . . . , n

where pk = k−0.5
n

.
Since both the location and scale parameters of SEV (µ, σ) are unknown, they have to

be estimated. We consider three popular estimators proposed in the statistical literature:
the maximum likelihood estimators (MLE), the best linear unbiased estimators (BLUE)
and the best linear invariant estimators (BLIE). They are studied to see which one gives
better power. The MLEs are given (cf. Krishnamoorthy (2006) [9]) by

µ̃ = σ̃ ln
( 1

n

n∑
k=1

exp
(Yk
σ̃

))
,(2.3)

σ̃ = −Ȳ +

∑n
k=1 Yk exp

(
Yk
σ̃

)
∑n
k=1 exp

(
Yk
σ̃

) .(2.4)

Pirouzi�Fard and Holmquist (2013) [19] considered the statistic Dm in which the
BLUEs of µ and σ in SEV (µ, σ) are obtained by the generalised least squares (GLS)
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method. Let Z[1] ≤ . . . ≤ Z[n] be the ordered values of a sample of size n from SEV (0, 1)
with

µk = E(Z[k]), k = 1, . . . , n(2.5)

σ2
k = Var(Z[k]), k = 1, . . . , n.(2.6)

Pirouzi�Fard and Holmquist (2007) [17] propose the approximations

(2.7) µk ≈
{ − ln(n)− γ, for k =1,

ln(− ln(1− [ k−0.4866
n+0.1840

])), for k = 2,. . . , n

where γ ≈ 0.577215665 is Euler's constant. Pirouzi�Fard and Holmquist (2008) [18]
propose the approximations

(2.8) σ2
rk ≈

{
π2

6
, for r = k = 1,

(k−0.469)([n+0.831−k][n+0.073])−1

ln(n+0.831−k
n+0.356

) ln(n+0.779−k
n+0.356

)
, for 1 ≤ r ≤ k ≤ n

where σ2
rk = σ2

kr is the covariance of the Z[r] and Z[k] and so, if r = k, σ2
rk = σ2

k.

Let µ = [µ1 . . . µn]′, V = (σ2
rk)n×n and Y = [Y[1] . . . Y[n]]

′. Then Y[k] = µ + σZ[k] and
E(Y[k]) = µ+ σE(Z[k]) = µ+ σµk.

Consider the regression model

(2.9) Y[k] = µ+ σµk + εk, k = 1, . . . , n,

with Cov(Y[r], Y[k]) = σ2Cov(Z[r], Z[k]) = σ2σ2
rk. Since the Y[k]'s are heteroscedastic and

autocorrelated, the unknown β = [µ, σ]′ in (2.9) can be estimated by using the GLS

method, which result in the BLUEs β̇ = (X′V −1X)
−1
X′V −1Y where X = [1,µ] and

V = (σ2
rk)n×n. Lloyd (1952) [14] is the �rst to apply the GLS method for estimating the

parameters of a location�scale distribution.
Although BLUEs have some very nice properties, they often have larger mean square

errors than some other linear estimators. The BLIEs are given in Mann (1969) [15] by

(2.10) µ̈ = µ̇− σ̇
( E12

1 + E22

)
, σ̈ =

σ̇

1 + E22

where µ̇ and σ̇ are the BLUEs of µ and σ and

(
E11 E12

E12 E22

)
= X′V −1X.

2.2. Exponential distribution. The cdf of the two-parameter exponential distribution
with the location parameter µ and the scale parameter σ is given by

(2.11) F (y|µ, σ) = 1− exp
(
− y − µ

σ

)
, y > µ, σ > 0.

Speci�cally, the pth quantile of a random variable Y ∼ Exp(µ, σ) is given by

(2.12) F−1(p) = µ− σ ln(1− p).

In particular, the pth quantile of the random variable Y−µ
σ
∼ Exp(0, 1) is − ln(1− p).

2.2.1. Parameter estimation. Again the three popular estimators MLE, BLUE and
BLIE are investigated in order to �nd the estimator that gives good overall powers.

The MLEs of µ and σ are given (cf. Krishnamoorthy, 2006 [9]) by

(2.13) (µ̃, σ̃) =
(
Y[1],

1

n

n∑
k=1

(Yk − Y[1])
)

=
(
Y[1], Ȳ − Y[1]

)
.
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Let Z[1] ≤ . . . ≤ Z[n] be the ordered sample fromExp(0, 1). Then we have (cf. Ahsanullah
and Hamedani, 2010 [1])

µk = E(Z[k]) =

k∑
i=1

1

n− i+ 1
, k = 1, . . . , n(2.14)

σ2
k = Var(Z[k]) =

k∑
i=1

1

(n− i+ 1)2
, k = 1, . . . , n(2.15)

σ2
rk = Cov(Z[r], Z[k]) =

k∑
i=1

1

(n− i+ 1)2
, 1 ≤ r ≤ k ≤ n.(2.16)

where σ2
rk = σ2

kr = Cov(Z[r], Z[k]). Similar to the case of Weibull distribution, the BLUEs
of (µ, σ) can be obtained by the generalised least squares method and are given by

µ̇ =
nY[1] − Ȳ
n− 1

,(2.17)

σ̇ =
n(Y[1] − Ȳ )

n− 1
.(2.18)

See, e.g., Ahsanullah and Hamedani (2010) [1] for details.
The BLIEs are given in Mann (1969)[15] by

µ̈ = (1 +
1

n
)Y[1] −

Ȳ

n
,(2.19)

σ̈ = Ȳ − Y[1].(2.20)

3. The tests

The �ve graphical tests considered in this paper include the two existing tests D, Dm
mentioned in the introduction and the three new tests De, Dbe and Dbi based on those
in Chantarangsi et al.(2015) [5] for testing normality. The (µ̂, σ̂) in each test can there-
fore be substituted by (µ̃, σ̃), (µ̇, σ̇) or (µ̈, σ̈). In this section, we assume H0 is true and
provide all the tests of size α. The D and Dm tests using (µ̃, σ̃) have been considered by
Kimber (1985) [10]. The D and Dm tests using (µ̃, σ̃) have been studied in Coles (1989)
[3], which shows that the (µ̇, σ̇) gives better powers than the (µ̃, σ̃).

Recall that Z1, ..., Zn denote a simple random sample drawn from SEV (0, 1) or
Exp(0, 1) and Z[1] ≤ ... ≤ Z[n] be the ordered values. The expected values and vari-
ances of Z[k] for k = 1, . . . , n are given by

µk = E(Z[k]),(3.1)

σ2
k = Var(Z[k]) = E(Z2

[k])− µ2
k(3.2)

where fk(z) is the probability density function of Z[k] and is de�ned by

fk(z) =
n!

(k − 1)!(n− k)!
(FZ(z))k−1(1− FZ(z)

)n−k
fZ(z) , −∞ ≤ z ≤ ∞.

First, we consider testing the Weibull distribution. Recall that Z1, ..., Zn denote a simple
random sample from SEV (0, 1), Z[1] ≤ ... ≤ Z[n] are the ordered values, and µk =

E(Z[k]), σ
2
k = Var(Z[k]). It is clear that (Y[1], ..., Y[n]) have the same joint distribution as

(µ+σZ[1], ..., µ+σZ[n]). In particular, we have E(Y[k]) = µ+σµk and Var(Y[k]) = σ2σ2
k.

The test De uses the test statistic

(3.3) De = max
1≤k≤n

∣∣∣Y[k] − (µ̂+ σ̂µk)

σ̂σk

∣∣∣,
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where (µ̂, σ̂) is the estimator of (µ, σ) and can be any one of the three estimators MLE
(µ̃, σ̃), BLUE (µ̇, σ̇) and BLIE (µ̈, σ̈) considered in Section 2.

It is clear from expression (3.3) that the distribution of De does not depends on
the unknown parameters µ and σ2. The critical constant ce, which satis�es P{De ≤
ce} = 1 − α under H0, can easily be computed accurately by using a large number of
simulations, as in Chantarangsi et al. (2015) [5]. See Edwards and Berry (1987) [6] and
Liu et al. (2005) [13] for ways to assess the accuracy of this approach. It is noteworthy
that simulation methods are also used to compute the critical constants of the D and
Dm tests; see, e.g., Michael (1983) [16] and Scott and Stewart (2011) [20].

The probability statement P{De ≤ Ce} = 1−α produces the following simultaneously
probability intervals for Y[1], ..., Y[n]:

P
{
Y[k] ∈ [µ̂+ σ̂µk ± ceσ̂σk] for k = 1, · · · , n

}
= 1− α.(3.4)

The Dbe test is constructed in the following steps. Let F0(·) denote the cdf of

SEV (0, 1). Note that, under H0, Uk = F0

(Yk − µ
σ

)
, k = 1, . . . , n has a uniform dis-

tribution on the interval (0, 1) and the order statistic Uk = F0

(Yk − µ
σ

)
has the beta

distribution with parameters k and n− k + 1.

• Step 1. Construct p∗ level highest-density probability interval
[L(p∗, k, n), U(p∗, k, n)] for U[k], which is the shortest probability interval for U[k]

among all the p∗ level probability intervals for U[k].
• Step 2. Find p∗ so that

K(p∗) ≡ P
{
F−1
0 (L(p∗, k, n)) ≤

Y[k] − µ̂
σ̂

≤ F−1
0 (U(p∗, k, n)) for k = 1, ..., n

}
= 1− α.

Such a p∗ can be found by simulation and a standard numerical searching algo-
rithm in a similar way as in Chantarangsi et al. (2015) [5].

• Step 3. Under H0, the simultaneous 1− α probability intervals for Y[1] ≤ ... ≤
Y[n] are therefore given by

µ̂+ σ̂F−1
0 (L(p∗, k, n)) ≤ Y[k] ≤ µ̂+ σ̂F−1

0 (U(p∗, k, n)), k = 1, . . . , n.

Hence test Dbe rejects H0 if and only if at least one Y[k] is not included in its correspond-

ing interval [µ̂+ σ̂F−1
0 (L(p∗, k, n)), µ̂+ σ̂F−1

0 (U(p∗, k, n))].

The Dbi test uses statistic

Dbi = max
1≤k≤n

∣∣F0

(
(Y[k] − µ̂)/σ̂

)
− (k − 0.5)/n

∣∣√
(k − 0.5)(n− k + 0.5)/n3

.

Let cbi be a critical constant so that P
{
Dbi < cbi

}
= 1 − α, under H0, which can be

determined by using simulation as before. The simultaneous 1− α probability intervals
for Y[1] ≤ ... ≤ Y[n] are therefore given by

(3.5) Y[k] ∈ µ̂+ σ̂F−1
0

(k − 0.5

n
± cbi

√
(k − 0.5)(n− k + 0.5)

n3

)
for k = 1, . . . , n.

The test D and Dm are speci�ed in (1.1), (1.2) and (1.3), (1.4), respectively, but with
F0(·) being the cdf of SEV (0, 1).

The non-graphical Anderson-Darling (AD) test rejectsH0 if and only if AD > c where

(3.6) AD = −
n∑
k=1

[ (2k − 1){ln(F0(Y[k])) + ln(1− F0(Y[n+1−k]}
n

]
− n.



893

The critical constant c, which satis�es P{AD < c} = 1−α under H0, can be determined
by simulation as before.

The non-graphical Cramér-von Mises (CvM) test rejects H0 if and only if CvM > c
where

(3.7) CvM =

n∑
k=1

[
F0(Y[k])−

2k − 1

2n

]2
+

1

12n

The critical constant c, which satis�es P{CvM < c} = 1 − α under H0, can again be
determined by simulation.

For testing the Exponential distribution Exp(µ, σ), the �ve graphical and two non-
graphical tests for testing the Weibull distribution given above are easily modi�ed by
simply assuming that F0(·) is the cdf of Exp(0, 1) and that Z1, . . . , Zn are a simple
random sample from Exp(0, 1) to give the �ve graphical and two non-graphical tests also
denoted as D, Dm, De, Dbe, AD and CvM.

Our focus is on the �ve graphical tests D, Dm, De, Dbi and Dbe, each providing a set
of simultaneous 1− α probability intervals for the Y[k]'s. These intervals can be used in
the Q-Q plot to objectively judge whether the n points (qk, Y[k]) fall close to a straight
line. We also want to compare the powers of the �ve graphical and the two non-graphical
tests.

From many simulation studies on power comparison published in statistical literature
(cf. Littell et al. (1979) [12] and Sürücü (2008) [21]), the AD and CvM tests usually have
larger power than other tests, for testing Weibull or Exponential distributions. This is
the reason why AD and CvM tests are included in our power comparison study.

4. Power comparisons

The power of a test is evaluated by simulation as the proportion of times the null
hypothesisH0 is rejected by the test for a given alternative distribution. In our simulation
study, each critical constant c is based on 30,000 simulations and each power value is
based on 10,000 simulations. The powers of the seven tests are computed for all possible
combinations of α = 0.01, 0.05, 0.1, the three estimators (MLE, BLUE, BLIE), sample
size n from a set of values, and the alternative distribution from a set of distributions.
The set of alternative distributions includes many of the distributions used in several
published studies on power comparison of tests for Weibull or Exponential distributions
(cf. Littell, et al. (1979) [12], Kimber (1985) [10], Coles (1989) [3], Tiku and Singh (1981)
[22], Castro-Kusiss (2011) [4], Pirouzi-Fard and Holmquist et al. (2013) [19]).

4.1. For Weibull distribution. The alternatives are divided into the following three
groups. The �rst group of seven distributions are asymmetric on the support (0,∞) and
includes χ2(1), χ2(3), χ2(4), χ2(6), χ2(10), LogN(0, 1) and Half-normal(0,1) (HN(0, 1)).
The second group of seven distributions are on the interval (0, 1) and includes U(0, 1),
beta(2, 2), beta(2, 5), beta(5, 1.5), beta(0.5, 0.5), beta(0.5, 3) and beta(1, 2). The third
group of seven distributions are symmetric on the support (−∞,∞) and include
Laplace(0, 1), logistic(0, 1), N(0, 1), t(1), t(3), t(4) and t(6).

Sample sizes n = 10, 25, 40 ,100, 150, 200, 250, 300, 350, 400 and 500 are used for the
alternative distributions from Group I and Group II. For the alternative distributions
from Group III, the considered sample sizes are n = 5(5)30, 40, 50, 100, 150, and 200
since the powers are very close to 100% already at sample size n = 200.

From the results of our study, which one of the three estimators is used has little e�ect
on the powers of the seven tests. Hence any one of the three estimators can be used with
any one of the seven tests. Tables 1-3 give the powers of the tests when BLUE is used.



894

From the power results in Table 1 for the �rst group of alternative distributions, the
following observations can be made. The Dbe test has good power, even relative to the
non-graphical tests AD and CvM, against the alternatives in Group I except χ2(1) and
HN(0, 1). Dm and Dbe have similar powers. Overall D and De tend to be less powerful
than the other tests. While Dbi has better power than D and De on many cases, it is
less powerful than Dbe and Dm overall.

From the power results in Table 2 for the second group of alternative distributions,
the Dbi test often has the best powers and is more powerful than the non-graphical
AD and CvM tests on most occasions whereas the D and De tests generally have least
powers. However, when n 6 40, De seems to have greater powers than all the other tests.
Additionally, the powers of Dm and Dbe are close to each other. All tests have little
power in detecting the departure from the Weibull distribution of beta(2, 5). Also, the
Dbi test is more powerful than the non-graphical AD and CvM tests on most occasions.

From the power results in Table 3 for the third group of alternative distributions,
the AD and CvM tests are overall more powerful than the other tests. Nevertheless, for
N(0, 1), the Dbi test is more powerful than the AD and CvM tests. The D, De and Dbi
tests have low power over the distributions in Group III and the powers of Dbi are less
than those of D and De for larger sample sizes. Among the graphical tests, the Dm and
Dbe tests are more powerful overall.

4.2. For exponential distribution. The �rst group of nine distributions are asym-
metric on the support (0,∞) includes χ2(1), χ2(3), χ2(4), χ2(6), χ2(10), LogN(0, 1),
HN(0, 1), Wbl(0, 0.5, 0.5) and Wbl(0, 2, 2). The second and the third groups of the
distributions are the same as the second and third groups, respectively, given in Section
4.1

From our simulation study, the BLIE often gives the best power, even though the
power di�erences between BLIE and BLUE are often small. Hence BLIE is recommended
for testing Exponential distribution.

From the power results given in Table 4 for the �rst group of alternative distri-
butions, the following observations can be made. The two non�graphical AD and CvM
tests are the most powerful against all alternative distributions exception LogN(0, 1).
Interestingly, the powers of the D test are as good as those of the others. Moreover, the
De test is the best choice against LogN(0, 1). On the other hand, it has low powers in
comparison with the other tests in this group. Also, theDbi test is the best choice against
HN(0, 1); however, it has the least power among χ2(1), LogN(0, 1) and Wbl(0, 0.5, 0.5).
For the other alternative distributions, powers of theDbi test is slightly better than those
of Dm and Dbe.

From the power results given in Table 5 for the second group of the alternative
distributions, we can observe that the Dbi test shows good power, even relative to the
non-graphical AD and CvM tests, except for beta(0.5, 3). The De test has the worst
power among all the tests except for beta(0.5, 3). The powers of the Dm and Dbe tests
are not as high as those of the Dbi, AD and CvM tests in many cases, but they perform
quite well overall the alternative distributions generally.

From the power results given in Tables 6 for the third group of the alternative
distributions, the powers of all tests are very similar. Nevertheless, the CvM test is
slightly more powerful than the other tests.

The overall conclusions from this power study for both Weibull and Exponential dis-
tributions are as follows. Although not completely dominated, the D and De are less
powerful than the other three graphical tests in most scenarios and so not recommended.
Therefore, the graphical tests Dm, Dbe and Dbi are recommended for use with Q-Q plot.
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Table 1. Powers (in %) for testing Weibull distribution with BLUE
and α = 0.05 against the alternative distributions from Group I

Alternatives n D Dm De Dbe Dbi AD CvM

χ2(1) 10 5.88 5.27 8.26 5.35 3.72 5.96 6.01

25 7.92 5.28 12.20 4.69 3.62 8.90 7.60

40 8.59 6.08 15.10 5.50 4.14 10.54 9.45

100 15.12 11.76 21.55 11.83 8.97 20.02 17.65

150 18.26 17.09 28.31 18.26 13.23 30.18 22.92

200 24.79 23.03 32.11 24.50 15.90 36.20 30.45

250 28.68 29.80 36.00 31.73 20.39 44.26 36.02

300 33.80 35.66 40.64 39.01 23.22 52.24 43.40

350 40.00 42.05 44.83 44.21 27.60 59.38 50.78

400 44.94 48.46 49.11 49.36 31.80 64.56 56.43

500 53.12 57.82 54.76 59.67 37.64 75.64 66.21

χ2(3) 10 4.95 5.56 4.26 5.30 6.35 5.22 5.36

25 5.19 6.95 3.49 6.86 7.90 4.90 5.45

40 5.69 8.05 3.41 7.80 8.61 5.22 5.92

100 6.42 10.25 4.15 10.42 10.25 7.72 7.23

150 7.60 11.63 5.42 12.32 10.91 10.08 9.00

200 8.90 13.49 6.17 14.26 12.48 11.82 10.62

250 9.53 15.12 6.08 15.46 13.48 12.28 11.15

300 10.46 16.67 6.61 17.40 13.29 15.54 12.76

350 11.89 18.54 7.58 18.94 14.85 17.26 14.84

400 12.59 19.61 8.46 20.36 15.34 18.60 15.64

500 14.85 23.04 9.59 23.24 16.16 22.08 18.56

χ2(4) 10 5.38 6 3.61 5.94 7.15 5.10 5.78

25 5.86 8.51 3.28 7.82 9.94 5.76 6.65

40 6.52 10.8 3.69 10.56 12.73 7.30 7.25

100 9.46 16.89 5.73 16.46 16.36 12.88 11.57

150 11.94 21.11 8.48 21.04 19.32 18.50 15.73

200 15.81 26.15 10.32 26.42 21.74 22.88 19.73

250 18.3 31.00 11.59 32.24 25.62 26.9 23.20

300 20.29 35.16 14.34 36.96 26.09 34.22 27.74

350 23.49 39.30 15.93 40.20 29.91 38.24 31.85

400 25.85 42.15 18.41 45.44 30.54 42.80 34.45

500 31.83 49.39 21.69 52.28 35.57 51.98 42.92

χ2(6) 10 5.27 6.31 3.25 7.16 8.16 5.64 6.11

25 6.89 11.60 3.55 10.16 13.83 8.02 8.22

40 8.68 14.66 4.67 14.64 16.47 10.06 10.47

100 14.87 28.75 9.88 27.98 27.93 22.66 19.81

150 20.91 38.06 15.08 39.04 33.85 34.52 28

200 27.7 47.71 19.75 48.26 40.11 43.62 37.24

250 33.44 56.15 23.16 56.50 45.65 52.74 45.45

300 38.48 62.91 28.89 65.20 49.38 64.00 53.22

350 44.89 69.20 33.12 71.16 55.36 69.82 60.17

400 49.49 74.85 39.38 75.80 59.42 76.5 65.55

500 59.44 82.92 46.73 84.48 66.89 85.54 76.69

χ2(10) 10 6.05 7.42 3.25 7.62 9.90 6.58 6.94

25 8.45 15.36 4.53 15.18 18.09 10.70 10.44

40 12.10 20.96 6.79 20.46 23.40 15.80 14.34

100 22.95 44.68 16.41 43.98 42.34 37.64 31.43

150 32.45 58.86 25.65 60.14 52.66 54.08 45.41

200 43.97 70.82 32.42 72.00 62.19 68.92 58.92

250 52.61 80.28 40.01 81.68 70.69 78.58 69.77

300 60.13 86.40 49.10 87.44 75.20 86.82 77.76

350 69.08 91.21 57.34 91.68 81.42 91.76 84.74

400 74.35 94.05 65.87 94.66 85.55 94.38 88.95

500 84.01 97.62 76.72 98.10 91.39 98.30 95.04

LogN(0, 1) 10 9.34 12.40 3.97 12.43 16.88 10.36 11.25

25 18.62 34.49 11.94 33.89 40.13 28.40 25.46

40 28.12 52.20 20.64 51.58 56.83 43.92 38.57

100 63.39 91.66 51.29 91.59 90.10 86.94 79.81

150 81.86 98.38 73.18 98.48 97.35 97.18 94.17

200 93.03 99.80 87.30 99.80 99.33 99.56 98.54

250 97.35 100 94.65 99.98 99.89 99.90 99.74

300 98.93 99.98 98.58 99.98 99.95 99.98 99.94

350 99.71 99.99 99.60 99.99 100 99.98 99.97

400 99.88 100 99.88 100 100 100 100

500 99.99 100 99.99 100 100 100 100

HN(0, 1) 10 5.93 5.43 8.56 5.25 4.00 6.62 5.99

25 7.15 5.28 12.18 4.51 3.05 8.64 7.45

40 8.75 5.91 14.58 5.38 4.06 10.40 9.28

100 14.39 11.21 21.20 10.78 9.02 19.24 16.33

150 18.87 17.01 27.84 17.83 13.15 28.12 23.71

200 25.35 23.58 32.23 25.03 16.05 36.26 31.01

250 30.30 29.43 35.25 30.53 20.49 43.74 37.25

300 34.27 35.62 40.75 38.35 23.16 52.94 44.61

350 40.56 41.92 45.11 44.39 27.38 59.48 51.30

400 44.67 47.59 48.83 49.75 30.69 65.56 56.10

500 53.89 58.04 55.33 59.65 37.40 75.70 66.90

The bolded number is the highest power among the seven tests for each sample size.
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Table 2. Powers (in %) for testing Weibull distribution with BLUE
and α = 0.05 against the alternative distributions from Group II

Alternatives n D Dm De Dbe Dbi AD CvM

U(0, 1) 10 14.21 12.00 20.92 9.97 5.44 19.68 15.94

25 32.05 31.54 42.77 25.61 36.30 48.62 39.43

40 49.17 66.52 57.26 60.33 77.42 72.12 60.46

100 91.16 99.99 92.79 99.93 100 99.32 97.21

150 98.66 100 99.86 100 100 100 99.89

200 99.88 100 100 100 100 100 100

250 100 100 100 100 100 100 100

300 100 100 100 100 100 100 100

350 100 100 100 100 100 100 100

400 100 100 100 100 100 100 100

500 100 100 100 100 100 100 100

beta(2, 2) 10 6.59 5.50 9.59 4.80 3.14 7.52 6.88

25 9.56 6.47 14.47 5.53 4.15 13.38 10.62

40 12.84 9.65 18.01 8.36 10.64 18.16 15.15

100 28.22 46.57 29.62 39.38 56.22 49.62 38.56

150 41.99 76.58 39.77 70.98 84.94 70.94 56.61

200 56.74 92.79 47.98 90.94 96.39 83.74 71.93

250 68.90 98.58 57.59 97.30 99.50 92.04 82.95

300 75.78 99.76 70.69 99.55 99.92 97.06 90.43

350 84.35 99.98 81.58 99.89 99.99 98.90 94.79

400 89.27 100 89.49 99.99 100 99.46 97.29

500 94.82 100 97.48 100 100 99.96 99.25

beta(2, 5) 10 4.62 4.41 4.78 4.28 4.39 4.86 4.85

25 5.20 4.62 5.16 3.64 4.27 4.34 5.10

40 4.57 3.98 4.56 3.96 4.30 4.54 4.65

100 5.37 4.85 3.94 4.23 6.14 5.50 5.64

150 5.67 5.27 4.07 5.30 6.67 7.26 6.04

200 6.24 6.88 4.16 6.22 8.42 7.28 7.01

250 6.71 8.16 3.29 6.39 10.59 8.06 7.99

300 6.57 8.53 3.49 8.11 11.78 9.66 8.18

350 7.58 10.32 3.54 9.15 14.76 10.70 9.57

400 8.96 12.58 3.90 10.45 16.46 11.28 10.85

500 9.14 15.62 3.29 12.60 20.97 14.32 11.99

beta(5, 1.5) 10 8.01 6.43 11.80 5.54 3.14 9.92 8.34

25 15.01 11.07 22.14 8.52 8.50 21.30 17.66

40 20.65 21.21 29.10 17.81 27.54 35.22 26.04

100 52.08 87.37 52.56 82.54 92.98 79.70 66.78

150 72.15 99.11 70.78 98.45 99.75 94.98 86.69

200 86.56 99.98 86.87 99.96 100 99.22 95.78

250 93.99 100 95.62 100 100 99.78 98.62

300 97.42 100 98.47 100 100 100 99.68

350 99.16 100 99.93 100 100 100 99.93

400 99.59 100 100 100 100 100 99.98

500 99.96 100 100 100 100 100 100

beta(0.5, 0.5) 10 33.39 30.47 42.47 25.68 19.10 46.44 38.96

25 73.77 85.45 79.02 80.91 92.48 90.24 82.42

40 92.10 99.60 93.11 99.37 99.84 99.30 97.09

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

250 100 100 100 100 100 100 100

300 100 100 100 100 100 100 100

350 100 100 100 100 100 100 100

400 100 100 100 100 100 100 100

500 100 100 100 100 100 100 100

beta(0.5, 3) 10 7.64 6.09 10.92 5.59 3.40 8.78 7.67

25 11.56 8.25 18.65 6.62 4.76 17.96 12.59

40 15.57 12.17 24.85 10.12 10.80 21.82 18.44

100 34.31 44.73 43.08 40.37 46.97 53.34 44.78

150 48.78 68.59 55.84 67.44 72.02 74.86 62.26

200 62.84 86.65 65.45 85.04 88.69 86.86 76.82

250 74.08 95.30 73.12 93.69 96.18 93.42 87.03

300 81.81 98.42 81.59 97.86 98.85 97.84 93.06

350 88.79 99.57 88.39 99.41 99.71 98.88 96.52

400 92.53 99.81 92.62 99.82 99.94 99.74 98.00

500 97.01 100 97.31 99.97 100 99.98 99.68

beta(1, 2) 10 6.89 5.53 10.12 4.95 3.19 9.56 6.88

25 11.17 8.10 17.98 6.36 5.07 15.70 12.68

40 15.92 12.97 23.00 10.83 13.73 22.46 18.94

100 35.17 56.25 39.37 50.40 65.34 57.34 46.89

150 50.68 84.91 53.03 81.43 91.37 79.70 66.85

200 67.18 97.10 64.43 95.51 98.58 90.42 81.10

250 77.27 99.60 72.79 99.35 99.83 96.64 89.98

300 86.15 99.93 84.35 99.88 99.96 98.92 95.14

350 90.96 100 92.33 99.99 100 99.66 97.74

400 94.92 100 97.08 100 100 99.96 99.07

500 98.28 100 99.71 100 100 99.98 99.89

The bolded number is the highest power among the seven tests for each sample size.
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Table 3. Powers (in %) for testing Weibull distribution with BLUE
and α = 0.05 against the alternative distributions from Group III

Alternatives n D Dm De Dbe Dbi AD CvM

Laplace(0, 1) 5 9.73 9.71 8.24 10.60 11.44 8.42 9.82

10 19.56 24.02 12.10 24.88 27.00 23.03 24.12

15 28.93 34.3 21.59 35.23 34.12 35.57 35.92

20 37.33 43.57 32.12 46.18 41.05 47.03 46.43

25 46.92 52.22 40.26 54.51 46.24 57.06 56.08

30 55.42 58.61 48.28 60.53 51.40 65.73 65.04

40 67.43 68.97 61.76 70.24 57.72 78.08 76.93

50 76.62 75.98 71.28 77.85 62.10 85.56 84.58

100 96.73 95.10 94.00 95.95 79.88 98.80 98.60

150 99.68 98.97 98.98 99.27 89.72 99.93 99.91

200 99.91 99.84 99.84 99.91 95.01 99.98 99.98

logistic(0, 1) 5 6.92 6.96 6.11 7.49 8.39 6.00 6.92

10 12.14 16.66 6.23 16.95 21.01 15.21 15.6

15 17.08 24.35 11.14 24.59 28.35 22.95 22.02

20 21.99 32.40 17.64 33.89 36.11 31.65 29.29

25 27.67 40.51 23.56 41.59 41.50 39.05 36.56

30 33.29 46.99 29.12 47.51 46.99 47.12 43.69

40 41.67 57.45 39.37 57.19 55.02 58.72 54.4

50 49.23 64.32 47.57 65.94 60.65 67.92 62.79

100 80.52 89.51 77.33 90.48 81.39 93.46 90.59

150 93.54 96.73 92.68 97.40 91.26 98.8 98.01

200 98.02 99.20 97.08 99.43 95.98 99.8 99.58

N(0, 1) 5 6.12 6.14 5.35 6.35 7.10 5.19 6.33

10 9.34 12.40 3.97 12.31 16.88 10.66 11.25

15 11.99 19.50 6.00 19.18 25.58 15.97 15.54

20 15.08 26.60 9.04 26.15 33.13 22.62 20.79

25 18.62 34.49 11.94 34.17 40.13 28.44 25.46

30 21.20 40.80 14.26 40.64 46.48 33.81 29.35

40 28.12 52.20 20.64 51.58 56.83 44.20 38.57

50 34.00 63.23 25.66 62.38 66.57 54.84 47.11

100 63.39 91.66 51.29 91.65 90.10 87.06 79.81

150 81.86 98.38 73.18 98.48 97.35 97.11 94.17

200 93.03 99.80 87.30 99.80 99.33 99.59 98.54

t(1) 5 29.51 29.54 27.90 30.42 31.14 29.09 30.53

10 57.46 59.16 52.82 60.89 58.12 60.83 61.63

15 74.7 75.48 71.96 76.67 72.05 78.63 78.87

20 84.57 84.78 82.93 86.41 79.99 88.29 88.27

25 90.87 90.96 89.64 91.88 85.82 93.61 93.57

30 94.48 94.24 94.23 98.23 89.47 96.59 96.57

40 98.48 98.15 98.16 98.04 95.13 99.24 99.25

50 99.55 99.39 99.17 99.46 97.38 99.82 99.81

100 99.99 99.99 99.99 99.99 99.95 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(3) 5 10.22 10.22 9.11 11.07 11.78 9.47 10.68

10 20.44 24.62 14.82 25.56 26.67 24.35 24.79

15 29.91 35.99 25.70 36.78 37.79 37.32 36.57

20 38.28 46.30 36.23 47.67 44.65 48.31 46.71

25 44.87 52.07 44.71 54.12 48.93 55.70 53.75

30 53.21 59.70 51.88 61.79 55.00 64.49 62.31

40 65.06 70.69 65.83 71.58 61.89 76.47 74.48

50 73.21 77.30 73.89 78.96 67.17 84.37 82.35

100 94.82 94.91 95.01 95.87 84.33 98.24 97.79

150 99.17 99.05 99.08 99.25 92.34 99.81 99.78

200 99.90 99.82 99.79 99.91 96.78 99.99 99.99

t(4) 5 8.42 8.34 7.19 9.38 10.01 7.86 9.03

10 16.23 20.52 10.06 21.19 24.02 19.26 19.71

15 24.30 31.57 18.27 31.69 34.57 31.35 30.48

20 29.66 39.30 27.64 41.26 39.82 40.30 38.41

25 36.57 46.94 34.70 48.43 44.96 48.65 46.28

30 43.92 54.04 42.72 55.34 50.89 57.18 54.20

40 54.16 63.65 55.10 65.51 57.76 68.83 65.64

50 63.98 71.89 64.72 73.25 63.75 78.45 75.41

100 89.52 92.18 90.06 93.15 80.28 96.31 95.22

150 97.67 98.05 97.77 98.56 89.32 99.62 99.50

200 99.71 99.67 99.44 99.69 95.12 99.98 99.94

t(6) 5 7.36 7.44 6.39 8.06 8.94 6.60 8.00

10 13.12 17.30 7.71 17.84 21.37 15.56 16.08

15 19.79 27.33 13.72 27.05 31.09 25.84 25.03

20 24.37 34.85 20.20 35.55 37.02 34.02 32.06

25 28.99 41.57 25.69 42.88 42.01 41.23 38.45

30 35.57 48.13 32.68 49.40 47.53 48.97 45.51

40 45.09 59.16 44.56 60.42 55.11 61.44 57.07

50 52.67 66.73 53.43 67.79 60.94 70.89 66.24

100 82.40 89.59 81.38 90.57 80.02 94.11 91.83

150 94.14 96.94 94.13 97.61 89.50 98.94 98.26

200 98.59 99.17 98.32 99.32 94.79 99.84 99.74

The bolded number is the highest power among the seven tests for each sample size.
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Table 4. Powers (in %) for testing exponential distribution with BLIE
and α = 0.05 against the alternative distributions from Group I

Alternatives n D Dm De Dbe Dbi AD CvM

χ2(1) 5 3.88 3.93 6.43 4.22 3.92 6.91 4.38

10 10.66 10.95 11.78 10.29 5.98 17.95 12.18

15 19.85 21.14 15.45 19.33 8.04 31.62 22.77

20 29.58 31.39 19.63 29.14 10.39 44.49 34.35

25 39.12 42.05 23.29 41.13 13.56 55.70 44.23

30 48.89 52.44 28.02 52.94 16.41 66.29 55.15

40 65.77 70.48 38.14 68.94 25.37 81.21 71.65

50 77.49 81.98 47.76 81.63 32.17 90.29 82.33

100 98.44 99.19 91.11 99.25 77.25 99.76 99.16

150 99.8 99.95 99.04 99.98 95.65 99.97 99.95

200 100 100 100 100 100 100 100

χ2(3) 5 6.71 6.68 6.03 6.5 6.72 6.55 7.13

10 9.14 9.38 8.09 9.31 9.99 8.35 9.85

15 11.41 12.33 10.13 12 13.27 11.11 12.82

20 12.79 13.49 11.58 14.08 15.26 12.9 14.53

25 14.86 16.54 14.33 17.05 18.98 15.67 17.36

30 17.48 20.55 18.15 20.5 23.20 19.07 20.93

40 22.36 27.02 23.75 26.2 29.30 26.17 27.44

50 28.63 33.3 29.57 33.12 32.83 32.79 33.31

100 55.11 62.31 57.49 62.72 55.78 66.06 64.9

150 75.82 81.42 77.27 80.94 73.85 85.92 84.15

200 88.34 91.63 88.78 91.78 84.15 94.96 93.84

χ2(4) 5 7.53 7.52 6.83 8.40 7.55 7.31 8.38

10 12.49 12.71 10.84 12.52 13.65 12.47 14.34

15 17.87 18.81 15.87 19.37 20.18 18.21 20.34

20 22.79 24.45 21.38 25.45 26.9 24.29 27.25

25 28.83 31.47 28.2 31.62 34.64 32.04 34.48

30 35.45 38.87 35 39.77 41.44 39.55 42.07

40 47.26 52.1 48.1 52 53.31 54.19 55.67

50 59.32 64.21 59.55 63.68 62.12 67.96 68.35

100 91.96 93.2 90.83 93.39 89.79 96.13 95.92

150 98.9 99.05 98.33 98.97 97.78 99.76 99.67

200 99.86 99.85 99.71 99.88 99.48 99.97 99.94

χ2(6) 5 9.01 8.76 7.76 9.82 9.09 8.82 9.91

10 18.46 18.81 15.91 18.81 20.24 18.83 21.69

15 28.86 29.97 25.94 30.47 31.66 30.47 33.50

20 39.04 40.25 36.76 40.41 42.5 43.67 46.71

25 49.3 52.05 47.95 51.09 54.19 55.2 57.70

30 59.48 62.14 58.25 62.56 63.71 66.24 68.38

40 75.66 78.24 74.9 76.43 78 82.77 83.69

50 86.15 86.82 83.99 86.31 85.44 91.07 91.42

100 99.54 99.47 99.07 99.45 98.92 99.8 99.81

150 99.99 99.99 99.99 100 99.96 100 100

200 100 100 100 100 100 100 100

χ2(10) 5 11.25 10.8 9.24 11.59 11.31 10.15 11.63

10 25.03 25.23 21.74 25.71 26.69 26.66 29.69

15 40.73 41.76 37.59 42.23 42.87 45.36 48.66

20 55.33 55.86 51.79 55.47 57.69 61.25 63.83

25 67.44 68.15 64.6 67.48 69.71 73.69 75.90

30 77.25 77.87 74.37 78.26 78.83 83.11 84.53

40 89.81 89.72 87.86 89.06 89.67 93.82 94.33

50 95.93 96.11 94.85 95.74 95.32 98.07 98.18

100 99.97 99.96 99.91 99.98 99.89 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

LogN(0, 1) 5 4.94 4.86 5.46 5.07 4.92 5.60 4.98

10 6.6 6.45 10.54 6.48 6.05 8.55 7.11

15 8.41 8.25 13.68 8.24 7.28 10.84 9.22

20 9.98 9.73 17.84 9.63 8.53 12.6 11.09

25 11.5 10.76 20.89 10.67 8.9 13.91 12.43

30 13.09 12.49 23.86 12.69 10.04 16.17 14.93

40 16.56 15.92 29.88 15.67 11.7 19.52 18.62

50 19.22 18.29 34.85 18.23 12.62 22.86 21.12

100 34.56 36.09 59.85 38.55 23.17 41.63 40.03

150 48.77 55.58 76.67 57.09 37.67 62.01 57.11

200 62.53 71.6 87.66 74.74 50.32 77.89 71.49

HN(0, 1) 5 7.71 7.56 6.47 8.05 7.73 7.14 8.01

10 11.95 11.51 9.81 11.89 11.87 11.56 13.63

15 15.4 14.68 12.49 14.9 15.01 15.28 17.56

20 18.66 17.42 15.07 17.37 19.53 19.5 21.97

25 22.44 20.66 17.79 20.32 23.72 23.84 26.89

30 26.36 24.34 20.92 24.39 28.17 28.53 31.49

40 33.68 31.05 25.74 29.35 37.97 38.52 42.03

50 41.27 38.31 29.78 35.99 44.46 47.83 50.45

100 71.14 70.53 51.8 68.05 74.89 80.67 82.66

150 87.36 87.97 68.69 85.55 90.08 94.22 94.95

200 95.33 95.82 80.58 95.21 95.53 98.39 98.51

Wbl(0, 2, 2) 5 12.13 11.97 10.16 13.08 12.18 11.35 13.10

10 26.38 26.68 23.32 27.15 27.95 28.51 31.66

15 42 41.66 37.49 42.47 42.88 46.8 49.91

20 56.21 55.18 51.39 56.12 58.68 63.61 66.42

25 69.1 67.8 63.63 68.26 71.4 76.72 78.60

30 79.46 78.94 75.08 78.38 81.81 86.19 87.49

40 90.65 90.41 86.89 89.52 92.1 95.26 95.75

50 96.17 96.11 93.6 95.57 96.25 98.61 98.75

100 99.99 100 99.95 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

Wbl(0, 0.5, 0.5) 5 8.09 8.08 14.47 8.58 8.09 15.83 9.42

10 34.64 35.48 33.86 33.55 23.84 48.41 38.89

15 58.36 59.64 48.38 57.67 39.07 72.17 64.11

20 75.35 76.39 59.78 75.66 51.32 86.42 80

25 85.75 86.82 70.47 86.84 62.04 93.62 89.27

30 92.51 93.55 79.13 93.13 72.78 97.25 94.6

40 97.97 98.55 91.08 98.43 86.55 99.45 98.89

50 99.52 99.64 97.03 99.67 93.63 99.93 99.71

100 100 100 100 100 99.96 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

The bolded number is the highest power among the seven tests for each sample size.
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Table 5. Powers (in %) for testing exponential distribution with BLIE
and α = 0.05 against the alternative distributions from Group II

Alternatives n D Dm De Dbe Dbi AD CvM

U(0, 1) 5 15.67 15.55 14.28 16.24 15.71 16.46 17.66

10 31.33 29.25 27.39 28.75 27.13 37.18 38.87

15 45.01 40.55 37.26 39.61 47.03 55.29 56.27

20 56.22 52.96 46.61 50.21 75.36 69.99 70.11

25 66.49 72.22 55.16 64.58 91.51 81.01 80.71

30 76.06 87.6 63.65 80.84 97.90 88.46 88.06

40 86.99 98.51 76.27 96.24 99.93 96.62 96.14

50 93.95 99.94 83.99 99.64 100 99.18 98.96

100 99.95 100 99.03 100 100 100 100

150 100 100 99.97 100 100 100 100

200 100 100 100 100 100 100 100

beta(2, 2) 5 17.46 17.34 15.33 17.35 17.48 17.36 19.58

10 39.35 37.79 34.76 38.38 37.23 45.71 48.30

15 59.77 56.97 53.34 56.85 59.87 69.63 71.17

20 74.61 72.36 68.37 71.85 82.53 85.9 86.51

25 85.39 85.76 79.74 83.82 93.97 93.73 94.01

30 92.35 94.41 87.41 92.36 98.52 97.28 97.43

40 97.95 99.47 95.49 98.83 99.92 99.64 99.57

50 99.66 99.96 98.94 99.96 99.99 99.96 99.96

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

beta(2, 5) 5 11.54 11.21 9.58 11.68 11.55 10.35 12.07

10 22.41 22.2 19.41 22.78 23.13 23.4 26.49

15 34.2 33.89 29.72 35.67 34.7 38.87 41.73

20 46.85 46.9 42.85 46.37 50.73 55.33 58.30

25 59.29 59.51 54.71 58.35 65.09 69.04 70.72

30 69.49 69.56 64.45 68.86 74.73 78.33 79.83

40 83.18 84.2 78.88 82.76 88.58 91.46 92.18

50 91.68 92.59 87.17 91.88 94.65 96.61 96.51

100 99.89 99.95 99.62 99.97 99.97 99.99 99.99

150 100 100 99.99 100 100 100 100

200 100 100 100 100 100 100 100

beta(5, 1.5) 5 29.41 29.25 26.77 30.17 29.43 32.5 34.46

10 67.79 65.79 63.03 66.24 63.23 77.22 78.49

15 88.88 87.03 84.94 86.69 91.03 94.62 94.72

20 96.36 96.32 94.22 95.58 99.06 98.85 98.88

25 99.04 99.53 97.9 99.24 99.93 99.83 99.83

30 99.77 99.94 99.41 99.92 100 99.96 99.97

40 99.99 100 99.99 100 100 100 100

50 100 100 100 100 100 100 100

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

beta(0.5, 0.5) 5 15.37 17.09 17.51 15.55 15.02 19.08 18.55

10 25.68 23.86 24.3 23.7 17.77 33.07 30.86

15 34.68 30.67 29.02 29.62 39.82 46.82 42.86

20 42.05 43.44 33.96 37.41 67.97 58.65 52.89

25 51.63 64.34 39.1 53.45 85.32 69.81 63.54

30 60.5 82.04 46.19 72.82 94.24 79.64 73.03

40 73.47 96.83 56.8 93.4 99.34 91.34 85.51

50 84.76 99.67 66.83 99.02 99.97 97.12 93.44

100 99.58 100 95.72 100 100 100 99.94

150 100 100 99.8 100 100 100 100

200 100 100 100 100 100 100 100

beta(0.5, 3) 5 4.2 4.29 5.74 4.68 4.22 6.20 4.43

10 6.89 7.12 5.54 6.57 3.41 11.14 7.24

15 11.39 12.59 6.15 11.45 3.69 19.21 12.77

20 16.4 18.64 5.8 18.03 4.06 27.30 18.89

25 21.82 25.79 6.1 25.21 5.23 35.77 25.36

30 29.42 35.96 7.52 34.63 7.15 46.15 33.48

40 41.8 50.45 10.36 49.5 10.79 61.25 47.45

50 53.19 63.21 14.96 62.88 13.39 73.41 58.37

100 88.7 95.48 62 95.76 46.13 97.09 91.98

150 98.05 99.38 90.74 99.59 79.03 99.79 98.87

200 99.75 99.94 98.74 99.99 94.15 99.99 99.85

beta(1, 2) 5 9.27 9 7.91 9.37 9.29 8.25 9.51

10 13.61 13.05 11.31 13.28 12.79 13.94 16.16

15 18.9 17.48 15.04 17.5 17.18 19.96 21.98

20 22.78 20.16 18.07 20.65 24.65 26.83 28.78

25 27.42 24.72 20.68 24.74 34.97 33.24 35.41

30 33.8 31.55 25.3 28.85 46.92 39.23 41.61

40 42.05 45 30.49 37.17 68.24 51.83 53.67

50 50.05 59.11 33.95 51.04 82.03 61.94 62.77

100 82.37 98.78 58.94 96.71 99.93 92.94 92.8

150 95.21 100 77.37 99.97 100 99.26 99.11

200 99.06 100 89.27 100 100 99.94 99.93

The bolded number is the highest power among the seven tests for each sample size.
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Table 6. Powers (in %) for testing exponential distribution with BLIE
and α = 0.05 against the alternative distributions from Group III

Alternatives n D Dm De Dbe Dbi AD CvM

Laplace(0, 1) 5 25.61 24.7 21.48 26.16 25.67 25.04 27.65

10 60.42 60.3 56.88 61.58 60.62 62.09 65.41

15 83.94 83.34 81.32 82.93 82.41 85.7 87.23

20 93.38 92.83 91.86 92.78 92.59 94.33 95.17

25 97.35 97.23 96.71 97.19 96.87 98.02 98.31

30 98.95 98.74 98.56 99.07 98.51 99.26 99.39

40 99.92 99.89 99.85 99.83 99.75 99.95 99.96

50 99.99 99.97 99.97 99.98 99.98 99.99 99.99

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

logistic(0, 1) 5 21.7 20.94 18.16 22.39 21.76 21.18 23.72

10 53 52.19 48.92 53.43 52.87 56.92 60.18

15 77.37 75.92 72.94 75.67 76.04 81.49 83.42

20 89.05 88.33 86.86 88.07 88.63 92.34 93.20

25 94.98 94.46 93.29 94.59 94.89 96.95 97.39

30 97.64 97.47 99.51 97.89 97.6 98.76 99

40 99.75 99.65 99.92 99.57 99.62 99.88 99.92

50 99.97 99.96 100 99.95 99.92 99.98 99.98

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

Cauchy(0, 1) 5 36.91 36.15 34.7 37.87 36.95 37.42 38.16

10 71.92 72.42 71.82 72.93 73.18 72.74 73.67

15 89.01 90.12 89.82 89.63 90.32 90.3 90.66

20 95.56 96.1 96.2 96 96.2 96.62 96.64

25 98.37 98.53 98.63 98.44 98.43 98.96 98.84

30 99.26 99.48 99.53 99.57 99.33 99.61 99.59

40 99.92 99.93 99.93 99.91 99.9 99.97 99.97

50 99.98 99.96 99.98 99.98 99.95 99.99 99.98

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

N(0, 1) 5 19.96 19.38 16.72 20.56 20 19.36 21.68

10 48.77 48.2 44.51 48.66 47.92 53.85 56.93

15 72.26 70.56 67.53 70.91 70.84 78.64 80.52

20 86.74 85.46 83.21 85.28 86.97 91.58 92.48

25 93.69 93.11 91.48 92.8 94.22 96.61 97.10

30 97.4 96.97 95.94 96.93 97.79 98.89 98.97

40 99.53 99.6 99.36 99.54 99.7 99.87 99.87

50 99.9 99.93 99.74 99.9 99.97 99.99 99.99

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(1) 5 36.95 36.49 35.15 37.38 36.99 37.63 38.10

10 71.96 72.62 71.82 73.13 73.33 72.87 73.95

15 88.84 89.8 89.55 88.73 90.01 90.29 90.42

20 95.55 95.99 95.99 95.8 95.96 96.28 96.40

25 98.1 98.47 98.38 98.38 98.5 98.73 98.75

30 99.44 99.57 99.54 99.55 99.46 99.70 99.64

40 99.94 99.94 99.94 99.91 99.89 99.96 99.96

50 100 100 100 99.99 100 100 100

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(3) 5 24.99 24.26 21.54 25.92 25.03 24.09 26.51

10 57.86 57.82 54.6 59.09 58.19 60.54 63.44

15 79.54 79.53 77.17 79.71 79.48 81.94 83.82

20 91.11 90.99 89.6 90.34 90.63 92.85 93.56

25 96.16 96.11 95.66 96.26 95.85 97.23 97.55

30 98.54 98.27 98.01 98.24 97.99 99.02 99.15

40 99.78 99.71 99.69 99.74 99.66 99.84 99.87

50 99.92 99.95 99.86 99.94 99.88 99.96 99.96

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(4) 5 23.11 22.34 19.63 24.39 23.22 22.4 24.80

10 56.85 56.46 53.18 56.42 56.33 59.36 62.35

15 77.96 77.74 75.06 78.02 77.67 80.79 82.63

20 89.87 89.29 88.05 89.12 89.5 92.19 92.92

25 96.04 95.82 95.24 95.62 95.75 97.18 97.59

30 98.27 98 97.55 98.3 97.75 98.93 99.11

40 99.67 99.62 99.54 99.61 99.54 99.88 99.91

50 100 99.98 99.95 99.94 99.94 100 100

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

t(6) 5 22.14 21.71 18.71 22.41 22.19 21.57 24.02

10 54.25 53.75 50.25 54.45 53.79 57.52 60.85

15 76.8 76.15 73.28 75.82 75.88 80.59 82.37

20 89.28 88.48 86.95 88.44 88.94 91.94 92.83

25 95.62 95.19 94.29 95.04 95.05 97.1 97.37

30 98.15 98.08 97.46 97.75 97.92 98.83 99.06

40 99.72 99.64 99.52 99.72 99.6 99.83 99.87

50 99.98 99.98 99.95 99.94 99.94 99.99 99.99

100 100 100 100 100 100 100 100

150 100 100 100 100 100 100 100

200 100 100 100 100 100 100 100

The bolded number is the highest power among the seven tests for each sample size.
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Figure 1. The Q-Q plot and simultaneous probability intervals ofDm
(dot dashed lines), Dbe (solid lines) and Dbi (dotted lines) for testing
the SEV (µ, σ) distribution by using BLUE at α = 0.05

.

5. Illustrative examples

Example 1 The following sample of n = 40 observations is available: 0.1638, 0.176,
0.2208, 0.2697, 0.2872, 0.2976, 0.3782, 0.3851, 0.4464, 0.4934, 0.4946, 0.5341, 0.5413,
0.6063, 0.631, 0.6395, 0.8083, 0.829, 0.9798, 1.0765, 1.2162, 1.2174, 1.5189, 1.539, 1.7137,
1.7962, 2.1652, 2.4304, 2.445, 2.6073, 2.772, 2.8333, 2.9133, 3.1765, 3.6735, 4.2328, 4.3731,
4.4028, 4.5422 and 7.4225. We want to test whether the population from which the sample
is taken has the distribution SEV (µ, σ) for some unknown µ and σ > 0. Following the
recommendations in the last section, we can apply any one of the Dm, Dbe and Dbi tests
at α = 0.05. The Q-Q plot together with the corresponding intervals for the Y[k]'s of
Dm, Dbe and Dbi are given in Figure 1. Since Y[1] is outside the corresponding interval
of each of Dm, Dbe and Dbi tests, H0 is rejected by each of Dm, Dbe and Dbi tests, i.e.
we can claim that the sample does not follow a SEV (µ, σ) distribution.

For the non-graphical tests AD and CvM, the tests statistics of AD and CvM are
0.5111 and 0.0783, respectively. Also, the corresponding critical values of AD and CvM
at α = 0.05 are 0.7529 and 0.1240, respectively. Hence the hypothesis H0 is not rejected
by either AD or CvM in this case.

Example 2 The following sample of n = 40 observations is available: 3.4966, 3.6591,
4.2103, 4.7391, 4.9138, 5.0151, 5.7313, 5.7879, 6.264, 6.6019, 6.6103, 6.8772, 6.9248,
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7.3341, 7.4817, 7.5318, 8.4437, 8.5465, 9.2456, 9.6554, 10.2049, 10.2092, 11.2582, 11.3228,
11.8595, 12.0993, 13.0847, 13.72, 13.7534, 14.1161, 14.4676, 14.5948, 14.7573, 15.2703,
16.1591, 17.0582, 17.2696, 17.3136, 17.5179 and 20.9488. We want to test that H0 the
population from which the sample is taken has the distribution Exp(µ, σ) for some un-
known µ and σ > 0.

The usual Q-Q plot with the corresponding intervals for the Y[k]'s of Dbi with α = 0.05
are given in Figure 2. Since several points are outside the corresponding intervals of Dbi,
e.g., Y[3], Y[4], Y[39] and Y[40], the null hypothesis H0 is rejected by Dbi.

For the non-graphical tests, the test statistics AD and CvM are 1.5627 and 0.2773,
respectively. Also, the critical values at α = 0.05 and n = 40 are 1.1755 and 0.2107,
respectively. Hence the null hypothesis H0 is also rejected by AD or CvM.
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Figure 2. The Q-Q plot and simultaneous probability intervals ofDbi
(dotted lines) for testing Exp(µ, σ) distribution by using BLIE at α =
0.05

6. Conclusions

Generally, the Kolmogorov-Smirnov test (D test) has a very low power. Although the
Anderson-Darling and Cra �mer-von-Mises tests are non-graphical, they may not be more
powerful than the graphical tests. According to Wanpen et al.(2015), the Dbi and De
tests should be used for testing normality based on a simple random sample. For testing
the Weibull and exponential distributions, the Dbe, Dbi and Dsp tests should be used.
Although the De test is one of the graphical tests recommended for testing normality
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when a simple random sample is considered, it is a bad choice for testing Weibull and
exponential distributions.

Speci�cally, we obtain the simultaneous 1 − α probability intervals suitable for Q-Q
plots on testing the Weibull and exponential distributions. They become the objective
judgement on Q-Q plots for practitioners who want to use the graphical test.
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Dividend moments for two classes of risk processes
with phase-type interclaim times
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Abstract

In this paper, we consider the distribution of discounted dividend pay-
ments until ruin under a risk model with two independent classes
of claims in which both of the two interclaim times have phase-
type distributions and a constant dividend barrier. We obtain the
integro-di�erential equations with boundary conditions for the moment-
generating function of the sum of the discounted dividend payments un-
til ruin. Explicit expressions for arbitrary moments of the discounted
dividend payments are derived if the distribution of the two classes
claim amount both belong to the rational family. Finally, numerical
illustrations are presented to show how the results are applied.
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1. Introduction

The ruin problems for a risk model involving two independent classes of risks have
been considered by many researchers, see, for example, [9], [10], [15], and among others.
As an extension of these papers, [5] investigated the risk model with two classes of renewal
risk processes by assuming that both of the two claim number processes have phase-type
interclaim times. The topics of these literatures are concentrated on the Gerber-Shiu
discounted penalty function, which is an important tool to quantify the riskiness of the
risk model.

In recent years, particular attention has been devoted to the risk models with dividend
strategies. We refer the readers to, e.g. [6], [12], [13], [14] for details. The distribution of
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the discounted sum of dividend payments until ruin which is an important quantity in as-
sessing the quality of dividend strategies has been studied by [7], [11], and the references
therein. In particular, [1] presented some results on the distribution of dividend pay-
ments until ruin in a Sparre Andersen risk model with generalized Erlang(n)-distributed
interclaim times and a constant dividend barrier which complemented the results of [8].
[16] considered dividend payments with a threshold strategy in the compound Poisson
risk model perturbed by di�usion. [4] extended the results of [16] via assuming that the
interclaim times follow a generalized Erlang(n) distribution. As a more general frame-
work, [3] considered surplus processes of which the claim number is a Markovian arrival
process perturbed by di�usion with dividend barrier strategies.

The main purpose of the current paper is to investigate the distribution of the dis-
counted sum of dividend payments until ruin for two classes of risk processes in the pres-
ence of a constant dividend barrier, where both of the two claim number processes have
phase-type interclaim. This paper is a natural extension of [1] and enriches the results
for two classes of renewal risk processes. The rest of the paper is structured as follows.
Section 2 describes the risk model. In Section 3, we derive systems of integro-di�erential
equations for the moment-generating function of the sum of discounted dividend pay-
ments until ruin. Section 4 presents the results for arbitrary moments of the discounted
dividend payments and derives explicit expressions when the two classes claim amount
distributions both belong to the rational family. In Section 5, a numerical example is
given.

2. Model setup

The surplus process R(t) of an insurance portfolio is given by

(2.1) R(t) = u+ ct− S(t), t ≥ 0,

where u ≥ 0 is the initial surplus, c denotes the insurer's premium income per unit time,
and the aggregate-claim process {S(t) : t ≥ 0} is de�ned by

S(t) =

N1(t)∑
i=1

Xi +

N2(t)∑
i=1

Yi, t ≥ 0,

where {X1, X2, · · · } and {Y1, Y2, · · · } are independent and identically distributed (i.i.d.)
positive random variables representing the successive individual claim amounts from
the �rst and the second class, respectively. The random variables {X1, X2, · · · } are
assumed to have common cumulative distribution function F (x) = 1 − F̄ (x), x ≥ 0,
with probability density function f(x) = F ′(x), of which the Laplace transform is

f̃(s) =
∫∞
0
e−sxf(x)dx, s ∈ C, C denotes the complex space. Similarly, common cu-

mulative distribution function, density function and the Laplace transform of the den-
sity function of {Y1, Y2, · · · } are given by G(x) = 1 − Ḡ(x), x ≥ 0, g(x) = G′(x) and
g̃(s) =

∫∞
0
e−sxg(x)dx. The renewal processes {N1(t); t ≥ 0} and {N2(t); t ≥ 0} denote

the number of claims up to time t caused by the �rst and the second class of claim
respectively, and are de�ned as follows:

N1(t) = sup{n : T1 + T2 + · · ·+ Tn ≤ t},

N2(t) = sup{n : V1 + V2 + · · ·+ Vn ≤ t},

where the i.i.d. interclaim times {T1, T2, · · · } have common cumulative distribution func-
tion K1(t), t ≥ 0 and density function k1(x) = K′1(x), and {V1, V2, · · · } have common
cumulative distribution function K2(t), t ≥ 0 and density function k2(x) = K′2(x).
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In addition, we assume that {X1, X2, · · · }, {Y1, Y2, · · · }, {N1(t); t ≥ 0} and {N2(t); t ≥
0} are mutually independent. The net pro�t condition is given by c > E(X1)/E(T1) +
E(Y1)/E(V1).

In the present paper, we consider the risk model (2.1) with a constant dividend barrier
d(≥ 0). For such a dividend strategy, it is assumed that whenever the surplus process
reaches the level d, the premium income is paid out as dividends to policyholders; oth-
erwise, no dividend is paid. Let Rd(t) be the surplus of an insurance company at time t
under a constant dividend barrier d, then

dRd(t) =

{
cdt− dS(t), Rd(t) < b,
−dS(t), Rd(t) ≥ b.

The time of (ultimate) ruin is T = inf{t|R(t) < 0}, where T = ∞ if R(t) ≥ 0 for all
t ≥ 0. The probability of ruin is ψ(u) = Pr(T <∞).

Denote by D(t) the cumulative amount of dividends paid out up to time t and δ > 0

the force of interest, then D =
∫ T
0
e−δtdD(t) is the present value of all dividends until

ruin time T . In the following text, we turn to the moment generating function of D,

M(u, y, d) = E[eyD|R(0) = u]

(for those values of y where it exists) and the rth moment

W (u, r, d) = E[Dr|R(0) = u], r ∈ N.

Note that W (u, 0, d) ≡ 1. We will always assume that 0 ≤ u ≤ d (otherwise the over�ow
is immediately paid out as dividends) and that M(u, y, d) and W (u, r, d) are su�ciently
smooth functions in u and y, respectively.

Throughout the text of the paper, all bold-faced letters represent either vectors or
matrices and all vectors are column vectors. We assume that the distribution K1(t)
of the interclaim time random variable T1 is phase-type with representation (α>,A,a),
where α> = (α1, α2, · · · , αn), with αi ≥ 0,

∑n
i=1 αi = 1, A = (aij)

n
i,j=1 is an n × n

matrix with aii < 0, aij ≥ 0, for i 6= j,
∑n
j=1 aij ≤ 0, for any i = 1, 2, · · · , n, and

a = (a1, a2, · · · , an)> with a = −Aen, where x> denotes the transpose of x and en
denotes a n-dimensional column vector with all elements being one. Following [2], we
have

K1(t) = 1−α>eAten, k1(t) = α>eAta, t ≥ 0,

and

(2.2) k̃1(s) =

∫ ∞
0

e−stk1(t)dt = α>(sI−A)−1a.

By the de�nition of phase-type distributions, each of the interclaim times Ti, i = 1, 2, · · · ,
corresponds to the time to absorption in a terminating continuous-time Markov Chain,

say, I
(i)
t with n transient states {E1, E2, · · · , En} and one absorbing state E0.

Correspondingly, the distribution K2(t) of the interclaim time random variable V1 is
phase-type with representation (β>,B,b), where β> = (β1, β2, · · · , βm), B = (bij)

m
i,j=1

is an m×m matrix, b = (b1, b2, · · · , bm)> with b = −Bem. Then we have

K2(t) = 1− β>eBtem, k2(t) = β>eBtb, t ≥ 0,

and

(2.3) k̃2(s) =

∫ ∞
0

e−stk2(t)dt = β>(sI−B)−1b.

Similarly, J
(i)
t denotes the terminating continuous-time Markov Chain of Vi, i =

1, 2, · · · , with m transient states {F1, F2, · · · , Fm} and one absorbing state F0.
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Now, we construct a two-dimensional Markov process {(I(t), J(t)); t ≥ 0} by piecing

the {I(i)t ; i = 1, 2, · · · } and {J(i)
t ; i = 1, 2, · · · } together,

I(t) = {I(1)t }, 0 ≤ t < T1, I(t) = {I(2)t−T1
}, T1 ≤ t < T1 + T2, · · · ,

J(t) = {J(1)
t }, 0 ≤ t < V1, J(t) = {J(2)

t−V1
}, V1 ≤ t < V1 + V2, · · · .

So {(I(t), J(t)); t ≥ 0} is the underlying state process with states
{(E1, F1) , (E2, F1), · · · , (En, F1), (E1, F2), (E2, F2), · · · , (En, F2), · · · , (E1, Fm), (E2, Fm),
· · · , (En, Fm)}, initial distribution γ = β ⊗α, where ⊗ denotes the Kronecker product
of two matrices.

For k = 1, 2; i = 1, 2, · · · , n; j = 1, 2, · · · ,m, let M (k)(u, y, d) denote the moment
generating function of D if the ruin is caused by a claim from class k and R(0) = u.

M
(k)
ij (u, y, d) denotes the moment generating function of D when the ruin is caused by a

claim from class k and initial state (I
(1)
0 , J

(1)
0 ) = (Ei, Fj), then the moment generating

function can be written as

(2.4) M (k)(u, y, d) = γ>M(k)(u, y, d),

where M(k)(u, y, d) ≡
(
M

(k)
11 (u, y, d),M

(k)
21 (u, y, d), · · · ,M (k)

n1 (u, y, d), M
(k)
12 (u, y, d),

M
(k)
22 (u, y, d), · · · ,M (k)

n2 (u, y, d), · · · , M (k)
1m (u, y, d),M

(k)
2m (u, y, d), · · · ,M (k)

nm(u, y, d)
)>

. Thus

(2.5) M(u, y, d) = γ>M(u, y, d) = γ>[M(1)(u, y, d) + M(2)(u, y, d)].

Let Wij(u, r, d) denote the rth moment of D if (I
(1)
0 , J

(1)
0 ) = (Ei, Fj). Then the

moment can be computed by

(2.6) W (u, r, d) = γ>W(u, r, d),

where W(u, r, d) ≡ (W11(u, r, d),W21(u, r, d), · · · ,Wn1(u, r, d), W12(u, r, d), W22(u, r, d),

· · · ,Wn2(u, r, d), · · · , W1m(u, r, d), W2m(u, r, d), · · · , Wnm(u, r, d))>.

3. Integro-di�erential system for M(k)(u, y, d)

Let ∂·
∂u

and ∂·
∂y

denote the di�erentiation operators with respect to u and y, respec-

tively.

3.1. Theorem. The vectors M(k)(u, y, d), 0 ≤ u ≤ d, k = 1, 2 satisfy the following partial

integro-di�erential system, respectively,

(3.1)

(
c ∂
∂u
− yδ ∂

∂y

)
M(1)(u, y, d) + Im×m ⊗AM(1)(u, y, d)+

B⊗ In×nM(1)(u, y, d) + Im×m ⊗ (aα>)
∫ u
0

M(1)(u− x, y, d)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(1)(u− x, y, d)g(x)dx+ (em ⊗ a)F̄ (u) = 0,

and

(3.2)

(
c ∂
∂u
− yδ ∂

∂y

)
M(2)(u, y, d) + Im×m ⊗AM(2)(u, y, d)+

B⊗ In×nM(2)(u, y, d) + Im×m ⊗ (aα>)
∫ u
0

M(2)(u− x, y, d)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(2)(u− x, y, d)g(x)dx+ (b⊗ en)Ḡ(u) = 0,

with boundary conditions

(3.3)
∂M(k)(u, y, d)

∂u

∣∣∣∣
u=d

= yM(k)(d, y, d), k = 1, 2,

where In×n denotes the n × n identity matrix, 0 denotes a column vector of length mn
with all elements being 0.
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Proof. Considering an in�nitesimal time interval (0, dt) for 0 ≤ u ≤ d, there are four
possible events regarding to the occurrence of the claim and change of the environment:
(i) no claim arrival and no change of state; (ii) a claim arrival but no change of state; (iii)
a change of state but no claim arrival; (iv) two or more events occur. Taking into account
the above four events in (0, dt) and using the total expectation formula, it follows that

(3.4)

M
(1)
ij (u, y, d)

= (1 + aiidt)(1 + bjjdt)M
(1)
ij (u+ cdt, ye−δdt, d)

+(1 + bjjdt)
n∑

k=1,k 6=i
(aikdt)M

(1)
kj (u+ cdt, ye−δdt, d)

+(1 + aiidt)
m∑

h=1,h6=j
(bjhdt)M

(1)
ih (u+ cdt, ye−δdt, d)

+(1 + bjjdt)(aidt)

[
n∑
s=1

αs
∫ u+cdt
0

M
(1)
sj (u+ cdt− x, ye−δdt, d)f(x)dx

+
∫∞
u+cdt

f(x)dx
]

+(1 + aiidt)(bjdt)
m∑
r=1

βr
∫ u+cdt
0

M
(1)
ir (u+ cdt− x, ye−δdt, d)g(x)dx+ o(dt).

By Taylor expansion,

(3.5)
M

(1)
ij (u+ cdt, ye−δdt, d)

= M
(1)
ij (u, y, d) + cdt

∂M
(1)
ij (u,y,d)

∂u
+ y(e−δdt − 1)

∂M
(1)
ij (u,y,d)

∂y
+ o(dt).

Substituting (3.5) into (3.4), dividing by dt and then letting dt→ 0, it yields that

(3.6)

c
∂M

(1)
ij (u,y,d)

∂u
− yδ

∂M
(1)
ij (u,y,d)

∂y
+

n∑
k=1

aikM
(1)
kj (u, y, d) +

m∑
h=1

bjhM
(1)
ih (u, y, d)

+ai

(
n∑
s=1

αs
∫ u
0
M

(1)
sj (u− x, y, d)f(x)dx+

∫∞
u
f(x)dx

)
+bj

m∑
r=1

βr
∫ u
0
M

(1)
ir (u− x, y, d)g(x)dx = 0.

Rewriting (3.6) in matrix form and rearranging it, we have (3.1). By similar derivation
to (3.4)-(3.6), we get (3.2).

When u = d, we have

(3.7)

M
(1)
ij (d, y, d)

= (1 + aiidt)(1 + bjjdt)e
ycdtM

(1)
ij (d, ye−δdt, d)

+(1 + bjjdt)e
ycdt

n∑
k=1,k 6=i

(aikdt)M
(1)
kj (d, ye−δdt, d)

+(1 + aiidt)e
ycdt

m∑
h=1,h6=j

(bjhdt)M
(1)
ih (d, ye−δdt, d)

+(1 + bjjdt)(aidt)e
ycdt

[
n∑
s=1

αs
∫ d
0
M

(1)
sj (d− x, ye−δdt, d)f(x)dx

+
∫∞
d
f(x)dx

]
+(1 + aiidt)(bjdt)e

ycdt
m∑
r=1

βr
∫ d
0
M

(1)
ir (d− x, ye−δdt, d)g(x)dx+ o(dt).
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It follows from Taylor expansion that

(3.8)

ycM
(1)
ij (d, y, d)− yδ

∂M
(1)
ij (d,y,d)

∂y
+

n∑
k=1

aikM
(1)
kj (d, y, d) +

m∑
h=1

bjhM
(1)
ih (d, y, d)

+ai

(
n∑
s=1

αs
∫ d
0
M

(1)
sj (d− x, y, d)f(x)dx+

∫∞
d
f(x)dx

)
+bj

m∑
r=1

βr
∫ d
0
M

(1)
ir (d− x, y, d)g(x)dx = 0.

Comparing the above equations with the corresponding equations in (3.6) and utilizing

the continuity of M
(1)
ij (u, y, d) at u = d, then

∂M(1)(u, y, d)

∂u

∣∣∣∣
u=d

= yM(1)(d, y, d).

By the same approach, we can obtain the boundary conditions (3.3) for k = 2. �

3.2. Remark. When m = 1 and G(0) = 1, from Eq.(3.1), we have

(3.9)

(
c ∂
∂u
− yδ ∂

∂y

)
M(1)(u, y, d) + AM(1)(u, y, d)

+
[∫ u

0
α>M(1)(u− x, y, d)f(x)dx+ F̄ (u)

]
a = 0.

In this case, M(2)(u, y, d) need not be considered. Specially, when the distribution K1(t)
of the interclaim time is a generalized Erlang(n) distribution, i.e.,

α> = (1, 0, . . . , 0),A =


−λ1 λ1 0 · · · 0 0

0 −λ2 λ2 0 · · · 0
...

...
. . .

. . .
. . .

...
0 · · · 0 0 0 −λn

 ,a =


0
0
...
λn

 .

Then (3.9) can be expressed as(
n∏
i=1

yδ ∂
∂y
− c ∂

∂u
+ λi

λi

)
M (1)(u, y, d)−

∫ u

0

M (1)(u, y, d)f(x)dx− F̄ (u) = 0,

which is identical to (2) in [1].

4. The moments of the discounted dividend payments

4.1. Integro-di�erential system. Adding (3.1) to (3.2), by virtue of (2.5) leads to

(4.1)

(
c ∂
∂u
− yδ ∂

∂y

)
M(u, y, d) + Im×m ⊗AM(u, y, d)+

B⊗ In×nM(u, y, d) + Im×m ⊗ (aα>)
∫ u
0

M(u− x, y, d)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

M(u− x, y, d)g(x)dx+ (em ⊗ a)F̄ (u)
+(b⊗ en)Ḡ(u) = 0.

Note that W (u, r, d) = E[Dr|R(0) = u]. With the help of the representation

M(u, y, d) = emn +

∞∑
r=1

yr

r!
W(u, r, d),

by equating the coe�cients of yr(r ∈ N) in (4.1), using a = −Aen, b = −Bem, Im×m ⊗
Aemn = −Im×m ⊗ (aα>)emn = −em ⊗ a and B ⊗ In×nemn = −(bβ>) ⊗ In×nemn =
−b⊗ en, we have the following result.
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4.1. Theorem. The vector W(u, r, d), 0 ≤ u ≤ d, satis�es the following integro-di�erential
system,

(4.2)
c dW(u,r,d)

du
− rδW(u, r, d) + Im×m ⊗AW(u, r, d)+

B⊗ In×nW(u, r, d) + Im×m ⊗ (aα>)
∫ u
0

W(u− x, r, d)f(x)dx+

(bβ>)⊗ In×n
∫ u
0

W(u− x, r, d)g(x)dx = 0,

with boundary conditions

(4.3)
∂W(u, r, d)

∂u

∣∣∣∣
u=d

= rW(d, r − 1, d).

4.2. Remark. When m = 1 and G(0) = 1, from Eq.(4.2), we get

(4.4) c
dW(u, r, d)

du
− rδW(u, r, d) +AW(u, r, d) + (aα>)

∫ u

0

W(u−x, r, d)f(x)dx = 0.

Furthermore, when the distributionK1(t) of the interclaim time is a generalized Erlang(n)
distribution, see Remark 3.1 for the representation (α>,A,a). Under this scenario, we
recover (9) in [1] from (4.4) as follows:(

n∏
i=1

rδ − c ∂
∂u

+ λi

λi

)
W (u, r, d)−

∫ u

0

W (u− x, r, d)f(x)dx = 0.

4.2. Explicit results for claim-size with rational family distributions. Now de-
�ne the Laplace transforms W̃(s, r, d) =

∫∞
0
e−suW(u, r, d)du by ignoring for a moment

that W(u, r, d) is only de�ned for 0 ≤ u ≤ d.
Taking Laplace transforms on both sides of (4.2) yields

(4.5)

[
(cs− rδ) Imn×mn + Im×m ⊗A + B⊗ In×n + Im×m ⊗ (aα>)f̃(s)

+ (bβ>)⊗ In×ng̃(s)
]
W̃(s, r, d) = cW(0, r, d).

Let L(s) = (cs− rδ) Imn×mn + Im×m ⊗A + B⊗ In×n + Im×m ⊗ (aα>)f̃(s) + (bβ>)⊗
In×ng̃(s), and L∗(s) be the adjoint of matrix L(s). In the following, we assume det[L(s)] 6=
0. So, from (4.5), it holds that

(4.6) W̃(s, r, d) =
L∗(s)

det[L(s)]
cW(0, r, d).

Thanks to [5], the generalized Lundberg's equation det[L(s)] = 0 has exactlymn roots
in the right half of the complex plane when δ > 0. We denote them by ρ1, ρ2, · · · , ρmn
respectively, and for simplicity, we assume that they are di�erent from each other.

Next, we present some explicit results for the moments of the discounted dividend
payments by assuming that the claim amount distributions F and G are both from the
rational family distribution. That is, the Laplace transforms of the density functions are
of the forms

f̃(s) =
pm1−1(s)

pm1(s)
, g̃(s) =

qm2−1(s)

qm2(s)
, m1,m2 ∈ N+,

where pm1−1(s), qm2−1(s) are polynomials of degreem1−1 andm2−1 or less, respectively,
while pm1(s) and qm2(s) are polynomials of degree m1 and m2 with only negative roots,
and satisfy pm1−1(0) = pm1(0), qm2−1(0) = qm2(0). Without loss of generality, we
assume that pm1(s) and qm2(s) have leading coe�cient 1. This wide class of distributions
includes the phase-type distributions, and in particular, it includes the Erlang, Coxian
and exponential distribution and all the mixtures of them.
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In what follows, let h(s) = [pm1(s)qm2(s)]mn. Multiplying both numerator and de-
nominator of (4.6) by h(s) results in

(4.7) W̃(s, r, d) =
h(s)L∗(s)

h(s)det[L(s)]
cW(0, r, d).

Obviously, the factor h(s)det[L(s)] of the denominator is a polynomial of degreemn(m1+
m2 + 1) with leading coe�cient cmn. Therefore, the equation h(s)det[L(s)] = 0 has
mn(m1 +m2 + 1) roots on the complex plane. We can factorize h(s)det[L(s)] as follows

(4.8) h(s)det[L(s)] = cmn
mn∏
i=1

(s− ρi)
(m1+m2)mn∏

j=1

(s+Rj),

where Rj for each j has positive real part and we assume that all of them are distinct
from each other.

Since the numerator h(s)L∗(s) in (4.7) is a polynomial with degree less thanmn(m1 +
m2 + 1). By the partial fraction decomposition, it follows that

(4.9) W̃(s, r, d) =

mn∑
j=1

Γj(d)

s− ρj
+

(m1+m2)mn∑
j=1

Λj(d)

s+Rj
,

where Γj(d), for j = 1, 2, · · · ,mn, and Λj(d), for j = 1, 2, · · · , (m1 + m2)mn, are the
coe�cient matrices de�ned respectively by

(4.10) Γj(d) = − h(ρj)L
∗(ρj)W(0, r, d)

cmn−1

[
(m1+m2)mn∏

k=1

(Rk + ρj)

][
mn∏

i=1,i 6=j
(ρi − ρj)

] ,
and

(4.11) Λj(d) =
h(−Rj)L∗(−Rj)W(0, r, d)

cmn−1

[
mn∏
k=1

(ρk +Rj)

][
(m1+m2)mn∏
i=1,i 6=j

(Ri −Rj)

] .
Obviously, Γj(d) and Λj(d) depend on dividend barrier d. Inverting (4.9) leads to

(4.12) W(u, r, d) =

mn∑
j=1

Γj(d)eρju +

(m1+m2)mn∑
j=1

Λj(d)e−Rju.

Since we don't need to distinguish Γj(d) and Λj(d), for notational convenience, (4.12)
can be reexpressed as

(4.13) W(u, r, d) =

mn(m1+m2+1)∑
j=1

Υj(d)eκju,

where κj , j = 1, . . . ,mn(m1+m2+1) denotemn(m1+m2+1) roots of h(s)det[L(s)] = 0.
Now we announce that the explicit forms for arbitrary moments of the discounted div-

idend payments can be obtained from (4.13) if the two classes claim amount distributions
both belong to the rational family. The coe�cientsΥj(d) can be determined by boundary
conditions (4.3), and we can obtain the other demand equations for determining these
coe�cients by substituting (4.13) into (4.2), and equating coe�cients of the resulting
exponential terms. At the same time, the asymptotic behavior limd→∞W(u, r, d) = 0
holds.
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5. Numerical illustrations

In this section, we will illustrate numerically an application of the main results in
this paper. We assume that the claim amounts from class 1 and class 2 both follow
exponentially distributions with density functions, respectively,

f(x) = µ1e
−µ1x, µ1 > 0, x > 0, g(y) = µ2e

−µ2y, µ2 > 0, y > 0.

We also assume µ1 6= µ2 for simplicity. Thus, the Laplace transforms f̃(s) = µ1
s+µ1

,

g̃(s) = µ2
s+µ2

. At the same time, we suppose that the interclaim times from class 1 occur

following a Poisson process with parameter λ and interclaim times from class 2 occur
following a phase-type distribution with the following parameters: β> = (1/2, 1/2),B =(
−λ1 0

0 −λ2

)
,b =

(
λ1

λ2

)
. So, we also have α = (1),A = (−λ),a = (λ), and

L(s) =

(
cs− rδ − λ− λ1 + λµ1

s+µ1
+ λ1µ2

2(s+µ2)
λ1µ2

2(s+µ2)
λ2µ2

2(s+µ2)
cs− rδ − λ− λ2 + λµ1

s+µ1
+ λ2µ2

2(s+µ2)

)
.

From (4.2), we have

(5.1)

c dW(u,r,d)
du

− rδW(u, r, d) +

(
−λ 0
0 −λ

)
W(u, r, d)+(

−λ1 0
0 −λ2

)
W(u, r, d) +

(
λ 0
0 λ

)∫ u
0

W(u− x, r, d)f(x)dx+(
λ1
2

λ1
2

λ2
2

λ2
2

)∫ u
0

W(u− x, r, d)g(x)dx = 0.

Using (4.13), we obtain the representation

(5.2) W(u, r, d) =

6∑
j=1

Υj(d)eκju.

Obviously, s = −µ2 is one of the roots of h(s)det[L(s)] = 0. Hence, (5.2) can be rewritten
as

(5.3) W(u, r, d) =

5∑
j=1

Υj(d)eκju + Υ6(d)e−µ2u.

Substituting (5.3) into (5.1) results in

(5.4)
5∑
j=1

L(κj)Υj(d)eκju =[
5∑
j=1

(
λ 0
0 λ

)
Υj(d) µ1

κj+µ1
+

(
λ 0
0 λ

)
Υ6(d) µ1

−µ2+µ1

]
e−µ1u+{(

cµ2 + rδ + λ+ λ1 − λµ1
−µ2+µ1

0

0 cµ2 + rδ + λ+ λ2 − λµ1
−µ2+µ1

)
Υ6(d)+

5∑
j=1

(
λ1
2

λ1
2

λ2
2

λ2
2

)
Υj(d) µ2

κj+µ2
−
(

λ1
2

λ1
2

λ2
2

λ2
2

)
Υ6(d)µ2u

}
e−µ2u,

from which we have the following conditions

(5.5)
5∑
j=1

L(κj)Υj(d) = 0,
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(5.6)
5∑
j=1

(
λ 0
0 λ

)
Υj(d)

µ1

κj + µ1
+

(
λ 0
0 λ

)
Υ6(d)

µ1

−µ2 + µ1
= 0,

(5.7)

(
cµ2 + rδ + λ+ λ1 − λµ1

−µ2+µ1
0

0 cµ2 + rδ + λ+ λ2 − λµ1
−µ2+µ1

)
Υ6(d)+

5∑
j=1

(
λ1
2

λ1
2

λ2
2

λ2
2

)
Υj(d) µ2

κj+µ2
= 0,

and

(5.8)

(
λ1
2

λ1
2

λ2
2

λ2
2

)
Υ6(d) = 0.

For r = 1 we have from (4.3) ∂W(u,1,d)
∂u

∣∣∣
u=d

= emn, which yields

(5.9)
5∑
j=1

Υj(d)κje
κjd −Υ6(d)µ2e

−µ2d = e2.

By virtue of the asymptotic behavior limd→∞W(u, r, d) = 0, we have

(5.10) lim
d→∞

[
5∑
j=1

Υj(d)eκju + Υ6(d)e−µ2u

]
= 0.

Thus the coe�cients Υj(d), j = 1, . . . , 6, can be determined from Eqs. (5.5)-(5.10), then
we obtain W(u, 1, d). By the same arguments and in view of the boundary conditions
(4.3), we can derive W(u, r, d) for r = 2, 3, . . . .

For illustration purpose, we set c = 2.5, δ = 0.01, λ = 1, λ1 = 1, λ2 = 2, µ1 = 1, µ2 = 2.
It is easy to check that the net pro�t condition holds. Now, we consider the expecta-
tion of discounted dividend payments, namely, r = 1. In this case the solutions of
h(s)det[L(s)] = 0 are κ1 = 0.8082, κ2 = 0.0118, κ3 = −0.4017, κ4 = −0.7713, κ5 =
−1.6390, κ6 = −µ2 = −2.000. In the following, Table 1 gives some numerical values of
W (u, 1, d) = γ>W(u, 1, d).

Table 1. Exact values for W (u, 1, d).

d\u 0 1 2 3 4 5 6 7 8

0 1.0372
1 0.7157 1.4795
2 0.3980 0.7842 1.4831
3 0.2003 0.3858 0.7050 1.3935
4 0.0621 0.1376 0.2784 0.5856 1.2718
5 0.0449 0.0847 0.1498 0.2878 0.5942 1.2803
6 0.0206 0.0388 0.0680 0.1296 0.2663 0.5722 1.2582
7 0.0094 0.0176 0.0307 0.0582 0.1191 0.2555 0.5613 1.2472
8 0.0042 0.0079 0.0138 0.0261 0.0532 0.1140 0.2503 0.5560 1.2419
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A class of Hartley-Ross type unbiased estimators
for population mean using ranked set sampling
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Abstract

In this paper, we propose a class of Hartley-Ross type unbiased esti-
mators for estimating the �nite population mean of the study variable
under ranked set sampling (RSS), when population mean of the auxil-
iary variable is known. The variances of the proposed class of unbiased
estimators are obtained to �rst degree of approximation. Both theo-
retically and numerically, the proposed estimators are compared with
some competitor estimators, using three di�erent data sets. It is iden-
ti�ed through numerical study that the proposed estimators are more
e�cient as compared to all other competitor estimators.

Keywords: Ranked set sampling, auxiliary variable, variance.
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1. Introduction

In applications, there might be a situation when the variable of interest cannot be
easily measured or is very expensive to do so, but it can be ranked easily at no cost or at
very little cost. In view of this, Mclntyre [5] was the �rst who proposed the concept of
ranked set sampling (RSS) in the context of obtaining reliable farm yield estimates based
on sampling of pastures and crop yield. He provided a clear and insightful introduction to
the basic framework of RSS and laid out the rationale for how it can be lead to improved
estimation relative to simple random sampling (SRS). Takahasi and Wakimoto [11] have
provided the necessary mathematical theory of RSS and showed that the sample mean
under RSS is an unbiased estimator of the �nite population mean and more precise than
the sample mean estimator under SRS.

The auxiliary information plays an important role in increasing e�ciency of the esti-
mator. Samawi and Muttlak [6] have suggested an estimator for population ratio in RSS
and showed that it has less variance as compared to usual ratio estimator in SRS.
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In RSS, perfect ranking of elements was considered by Mclntyre [5] and Takahasi and
Wakimoto [11] for estimation of population mean. In some situations, ranking may not
be perfect. Dell and Clutter [2] have studied the case in which there are errors in rank-
ing. They pointed out that a loss in e�ciency would be caused by the errors in ranking.
The sample mean in RSS is an unbiased estimator of the population mean regardless of
errors in ranking of the elements. To reduce the error in ranking, several modi�cations
of the RSS method had been suggested. Stokes [10] has proposed use of the concomitant
variable to aid in the ranking process to obtain ranked set data. She has also studied
the ranked set sample approach for making inferences about the population variance and
correlation coe�cient. Here, the ranking of elements was done on basis of the auxiliary
variable instead of judgment. Singh et al. [7] have proposed an estimator for population
mean and ranking of the elements is observed on basis of the auxiliary variable. Singh et
al.[9] have also proposed the ratio and the product type estimators for population mean
under strati�ed ranked set sampling (SRSS).

Hartley and Ross [3] proposed an unbiased ratio estimators for �nite population mean
in SRS. Motivated by Singh et al. [8], we suggest a class of Hartley-Ross type unbiased
estimators based on RSS for population mean, using some known population parame-
ters of the auxiliary variable. It is shown that the proposed estimators outperform as
compared to some existing estimators in RSS.

2. RSS procedure

To create ranked sets, we must partition the selected �rst phase sample into sets of
equal size. In order to plan RSS design, we must therefore choose a set of size m that is
typically small, around three or four, to minimize ranking error. Here m is the number
of sample units allocated to each set. The RSS procedure can be summarized as follows:

• Step 1:Randomly select m2 bivariate sample units from the population.
• Step 2:Allocate m2 selected units randomly as possible into m sets, each of size
m.

• Step 3:Each sample is ranked with respect to one of the variables Y or X. Here,
we assume that the perfect ranking is done on basis of the auxiliary variable X
while the ranking of Y is with error.

• Step 4:An actual measurement from the �rst sample is then taken of the unit
with the smallest rank of X, together with variable Y associated with smallest
rank of X. From second sample of size m, the variable Y associated with the
second smallest rank of X is measured. The process is continued until from the
mth sample, the Y associated with the highest rank of X is measured.

• Step 5:Repeat Steps 1 through 4 for r cycles until the desired sample size
n = mr, is obtained for analysis.

As an illustration, we select a sample of size 36 from a population by simple random
sampling with replacement (SRSWR). These data are grouped into 3 sets each of size
3 and we repeat this process 4 times. According to RSS methodology, we order the X
values from smaller to larger and assume that there is no judgment error in this ordering.
Then, the smallest unit is selected from the �rst ordered set, the second smallest unit
is selected from the second ordered set and so on. Similarly from the third ordered set,
the third smallest unit is selected. By this way, we select n = mr = 12 observations. A
ranked set sample design with set size m = 3 and number of sampling cycles r = 4 is
illustrated in Figure 1. Although 36 sample units have been selected from the population,
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only the 12 circled units are actually included in the �nal sample for quantitative analysis.

Figure 1. Illustration of ranked set sampling.

3. Symbols and Notations

We consider a situation when rank the elements on the auxiliary variable. Let
(y[i]j , x(i)j) be the ith judgment ordering in the ith set for the study variable Y based on
the ith order of the ith set of the auxiliary variable X in the jth cycle. To obtain bias
and variance of the estimators, we de�ne:
ȳ[i] = Ȳ (1 + e0), x̄(i) = X̄(1 + e1), r̄(i) = R̄(1 + e2), x̄∗(i) = X̄∗(1 + e∗1),

r̄∗(i) = R̄∗(1 + e∗2), such that

E(ei) = 0, i=0,1,2. E(e∗i ) = 0, i=1,2.
and
E(e2

0) = γC2
y −W 2

y[i], E(e2
1) = γC2

x −W 2
x(i), E(e0e1) = γCyx −Wyx(i),

E(e∗21 ) = γC2
x∗ −W 2

x∗(i), E(e0e
∗
1) = γCyx∗ −Wyx∗(i), E(e∗1e

∗
2) = γCr∗x∗ −Wr∗x∗(i),

where

Wyx(i) =
1

m2rX̄Ȳ

m∑
i=1

τyx(i), W
2
x(i) =

1

m2rX̄2

m∑
i=1

τ2
x(i), W

2
y[i] =

1

m2rȲ 2

m∑
i=1

τ2
y[i],

Wyx∗(i) = 1
m2rX̄∗Ȳ

∑m
i=1 τyx∗(i), W

2
x∗(i) = 1

m2rX̄∗2
∑m

i=1 τ
2
x∗(i),

Wr∗x∗(i) = 1
m2rX̄∗R̄∗

∑m
i=1 τr∗x∗(i),

τx(i) = (µx(i) − X̄), τy[i] = (µy([i] − Ȳ ), τyx(i) = (µy[i] − Ȳ )(µx(i) − X̄),

τx∗(i) = (µx∗(i)−X̄∗), τyx∗(i) = (µy[i]−Ȳ )(µx∗(i)−X̄∗), τr∗x∗(i) = (µr∗(i)−R̄∗)(µx∗(i)−X̄∗).
Here γ = ( 1

mr
) and Cyx = ρCyCx, where Cy and Cx are the coe�cients of variation of

Y and X respectively. Also Ȳ and X̄ are the population means of Y and X respectively.
The values of µy[i] and µx(i) depend on order statistics from some speci�c distributions
(see Arnold et al.[1]).
The following notations will be used through out this paper.
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ȳ[i] = (1/n)
∑n

j=1 y[i]j , x̄(i) = (1/n)
∑n

j=1 x(i)j , r̄(i) =
∑n

j=1 r(i)j
n

, r(i)j =
y[i]j
x(i)j

,

R̄ = E(r̄(i)), r̄∗(i) =
∑n

j=1 r∗(i)j
n

, r∗(i)j =
y[i]j
x∗
(i)j

, x∗(i)j = (ax(i)j + b),

x̄∗(i) = (ax̄(i) + b), X̄∗ = (aX̄ + b), R̄∗ = E(r̄∗(i)), r̄
′
(i) =

∑n
j=1 r

′
(i)j

n
,

r
′
(i)j =

y[i]j

x
′
(i)j

, x
′
(i)j = (x(i)jCx + ρ), x̄

′
(i) = (x̄(i)Cx + ρ), X̄

′
= (X̄Cx + ρ),

R̄
′

= E(r̄
′
(i)), r̄

′′
(i) =

∑n
j=1 r

′′
(i)j

n
, r

′′
(i)j =

y[i]j

x
′′
(i)j

, x
′′
(i)j = (x(i)jβ2(x) + Cx),

x̄
′′
(i) = (x̄(i)β2(x) + Cx), X̄

′′
= (X̄β2(x) + Cx), R̄

′′
= E(r̄

′′
(i)), r̄

′′′
(i) =

∑n
j=1 r

′′′
(i)j

n
,

r
′′′
(i)j =

y[i]j

x
′′′
(i)j

, x
′′′
(i)j = (x(i)jCx + β2(x)), x̄

′′′
(i) = (x̄(i)Cx + β2(x)),

X̄
′′′

= (X̄Cx + β2(x)) and R̄
′′′

= E(r̄
′′′
(i)),

where a and b are known population parameters, which can be coe�cient of variation,
coe�cient of skewness and coe�cient of kurtosis and the coe�cient of correlation of the
auxiliary variable.

Following Singh [8], the variance of the Hartley-Ross type unbiased estimator based
on Upadhyaya and Singh [12] estimator in SRS, is given by

V (ȳ
(u)

US2(SRS))
∼= γ

(
Ȳ 2C2

y + X̄
′′′2R̄

′′′2C2
x
′′′ − 2R̄

′′′
Ȳ X̄

′′′
Cyx

′′′

)
.(3.1)

Under RSS scheme, the variance of ȳRSS = ȳ[i] = (1/n)
∑n

j=1 y[i]j , is given by

(3.2) V (ȳRSS) = Ȳ 2 (γC2
y −W 2

y[i]

)
.

4. Proposed Hartley-Ross unbiased estimator in RSS

Following Singh et al. [8], we consider the following ratio estimator:

(4.1) ȳH(RSS) = r̄(i)X̄.

The bias of ȳH(RSS), is given by

B(ȳH(RSS)) = − (N − 1)

N
Sr(i)x(i)

,

where Sr(i)x(i)
= 1

N

∑N
j=1 (r(i)j − R̄)(x(i)j − X̄) and an unbiased estimator of Sr(i)x(i)

is
given by

sr(i)x(i)
=

1

n− 1

n∑
j=1

(r(i)j − r̄(i))(x(i)j − x̄(i))

=
n

n− 1
(ȳ[i] − r̄(i)x̄(i)).

So bias of ȳH(RSS) becomes

B(ȳH(RSS)) = −n(N − 1)

N(n− 1)
(ȳ[i] − r̄(i)x̄(i)).(4.2)

Thus an unbiased Hartley-Ross type estimator of population mean based on RSS is given
by

(4.3) ȳ
(u)

H(RSS) = r̄(i)X̄ +
n(N − 1)

N(n− 1)
(ȳ[i] − r̄(i)x̄(i)).

In terms of e′s, we have

ȳ
(u)

H(RSS) = X̄R̄(1 + e2) +
n(N − 1)

N(n− 1)

[
Ȳ (1 + e0) − X̄R̄(1 + e1)(1 + e2)

]
.
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Under the assumption n(N−1)
N(n−1)

∼= 1, we can write

(ȳ
(u)

H(RSS) − Ȳ ) ∼= (Ȳ e0 − X̄R̄e1).

Taking square and then expectation, the variance of ȳ
(u)

H(RSS), is given by

V (ȳ
(u)

H(RSS))
∼= Ȳ 2(γC2

y −W 2
y[i]) + X̄2R̄2(γC2

x −W 2
x(i)) − 2R̄Ȳ X̄(γCyx −Wyx(i)).(4.4)

5. Proposed class of Hartley-Ross type unbiased estimators in

RSS

Consider the following ratio estimator:

(5.1) ȳP (RSS) = r̄∗(i)X̄
∗.

The bias of ȳP (RSS), is given by

B(ȳP (RSS)) = − (N − 1)

N
Sr∗

(i)
x∗
(i)
,

where Sr∗
(i)

x∗
(i)

= 1
N

∑N
j=1 (r∗(i)j − R̄∗)(x∗(i)j − X̄∗) and an unbiased estimator of Sr∗

(i)
x∗
(i)

is given by

sr∗
(i)

x∗
(i)

=
1

n− 1

n∑
j=1

(r∗(i)j − r̄∗(i))(x
∗
(i)j − x̄∗(i))

=
n

n− 1
(ȳ[i] − r̄∗(i)x̄

∗
(i)).

We give the following theorem.

5.1. Theorem. An unbiased estimator of Sr∗
(i)

x∗
(i)

= 1
N

∑N
j=1 (r∗(i)j − R̄∗)(x∗(i)j − X̄∗) is

given by

sr∗
(i)

x∗
(i)

= 1
n−1

∑n
j=1 (r∗(i)j − r̄∗(i))(x

∗
(i)j − x̄∗(i)).

Proof. We have to prove that E(sr∗
(i)

x∗
(i)

) = Sr∗
(i)

x∗
(i)
. Here for �xed i, j = 1, 2, ..., n, r∗(i)j

and x∗(i)j are simple random samples of size n.

E(sr∗
(i)

x∗
(i)

) =E

[
1

n− 1

n∑
j=1

(r∗(i)j − r̄∗(i))(x
∗
(i)j − x̄∗(i))

]
,

=
1

n− 1
E

[
n∑

j=1

r∗(i)jx
∗
(i)j − nr̄∗(i)x̄

∗
(i)

]
,

=
1

n− 1

[
n∑

j=1

E(r∗(i)jx
∗
(i)j) − nE(r̄∗(i)x̄

∗
(i))

]
,

=
1

n− 1

[
n

N

N∑
j=1

r∗(i)jx
∗
(i)j − n

(
Cov(r̄∗(i), x̄

∗
(i)) + R̄∗X̄∗

)]
,

=
n

n− 1

[
1

N

N∑
j=1

r∗(i)jx
∗
(i)j − R̄∗X̄∗ −

Sr∗
(i)

x∗
(i)

n

]
,

=
n

n− 1

(
Sr∗

(i)
x∗
(i)

−
Sr∗

(i)
x∗
(i)

n

)
,

=Sr∗
(i)

x∗
(i)
.

�
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So bias of ȳP (RSS) becomes

B(ȳKP (RSS)) = −n(N − 1)

N(n− 1)
(ȳ[i] − r̄∗(i)x̄

∗
(i)).(5.2)

Thus an unbiased class of Hartley-Ross type estimators of population mean based on
RSS is given by

(5.3) ȳ
(u)

P (RSS) = r̄∗(i)X̄
∗ +

n(N − 1)

N(n− 1)
(ȳ[i] − r̄∗(i)x̄

∗
(i)).

In terms of e′s, we have

ȳ
(u)

P (RSS) = X̄∗R̄∗(1 + e∗2) +
n(N − 1)

N(n− 1)

(
Ȳ (1 + e0) − X̄∗R̄∗(1 + e∗1)(1 + e∗2)

)
.

Under the assumption n(N−1)
N(n−1)

∼= 1, we have

(ȳ
(u)

P (RSS) − Ȳ ) ∼= (Ȳ e0 − X̄∗R̄∗e∗1).

Taking square and then expectation, the variance of ȳ
(u)

P (RSS), is given by

V (ȳ
(u)

P (RSS))
∼=Ȳ 2(γC2

y −W 2
y[i]) + X̄∗2R̄∗2(γC2

x∗ −W 2
x∗(i))

− 2R̄∗Ȳ X̄∗(γCyx∗ −Wyx∗(i)).(5.4)

Note: (i). If a = Cx and b = ρ, then from Equation (5.3), we get the Hartley-Ross type

unbiased estimator based on Kadilar and Cingi [4] estimator ȳ
(u)

KC(RSS), as:

(5.5) ȳ
(u)

KC(RSS) = r̄
′

(i)X̄
′

+
n(N − 1)

N(n− 1)
(ȳ[i] − r̄

′

(i)x̄
′

(i)).

The variance of ȳKC(RSS), is given by

V (ȳ
(u)

KC(RSS))
∼=Ȳ 2(γC2

y −W 2
y[i]) + X̄

′2R̄
′2(γC2

x
′ −W 2

x
′
(i)

)

− 2R̄
′
Ȳ X̄

′
(γCyx

′ −Wyx
′
(i)).(5.6)

(ii). If a = β2(x) and b = Cx, then Equation (5.3) becomes the Hartley-Ross type

unbiased estimator based on Upadhyaya and Singh [12] estimator ȳ
(u)

US1(RSS) and is given

by

(5.7) ȳ
(u)

US1(RSS) = r̄
′′

(i)X̄
′′

+
n(N − 1)

N(n− 1)
(ȳ[i] − r̄

′′

(i)x̄
′′

(i)).

The variance of ȳUS1(RSS), is given by

V (ȳ
(u)

US1(RSS))
∼=Ȳ 2(γC2

y −W 2
y[i]) + X̄

′′2R̄
′′2(γC2

x
′′ −W 2

x
′′

(i)
)

− 2R̄
′′
Ȳ X̄

′′
(γCyx

′′ −Wyx
′′

(i)).(5.8)

(iii). If a = Cx and b = β2(x), then Equation (5.3) becomes the Hartley-Ross type

unbiased estimator based on Upadhyaya and Singh [12] estimator ȳ
(u)

US2(RSS) and is given

by

(5.9) ȳ
(u)

US2(RSS) = r̄
′′′

(i)X̄
′′′

+
n(N − 1)

N(n− 1)
(ȳ[i] − r̄

′′′
(i)x̄

′′′
(i)).

The variance of ȳUS2(RSS), is given by

V (ȳ
(u)

US2(RSS))
∼=Ȳ 2(γC2

y −W 2
y[i]) + X̄

′′′2R̄
′′′2(γC2

x
′′′ −W 2

x
′′′

(i)
)

− 2R̄
′′′
Ȳ X̄

′′′
(γCyx

′′′ −Wyx
′′′

(i)).(5.10)
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6. E�ciency comparison

The proposed estimator ȳ
(u)

US2(RSS) is more e�cient than ȳ
(u)

US2(SRS), ȳ(RSS), ȳ
(u)

H(RSS),

ȳ
(u)

KC(RSS) and ȳ
(u)

US1(RSS) respectively if the following conditions hold:

(i). −(Ȳ Wy[i] − X̄
′′′
R̄
′′′
Wx
′′′

(i))
2 < 0

(ii). X̄
′′′
R̄
′′′

(γC2
x
′′′ −W 2

x
′′′

(i)
) − 2Ȳ (γCyx

′′′ −Wyx
′′′

(i)) < 0

(iii). X̄
′′′2R̄

′′′2(γC2
x
′′′ −W 2

x
′′′

(i)
) − 2X̄

′′′
R̄
′′′
Ȳ (γCyx

′′′ −Wyx
′′′

(i))

− X̄2R̄2(γC2
x −W 2

x(i)) + 2R̄X̄Ȳ (γCyx −Wyx(i)) < 0

(iv). X̄
′′′2R̄

′′′2(γC2
x
′′′ −W 2

x
′′′

(i)
) − 2X̄

′′′
R̄
′′′
Ȳ (γCyx

′′′ −Wyx
′′′

(i))

− X̄
′2R̄

′2(γC2
x
′ −W 2

x
′
(i)

) + 2R̄
′
X̄
′
Ȳ (γCyx

′ −Wyx
′
(i)) < 0.

(v). X̄
′′′2R̄

′′′2(γC2
x
′′′ −W 2

x
′′′

(i)
) − 2X̄

′′′
R̄
′′′
Ȳ (γCyx

′′′ −Wyx
′′′

(i))

− X̄
′′2R̄

′′2(γC2
x
′′ −W 2

x
′′

(i)
) + 2R̄

′′
X̄
′′
Ȳ (γCyx

′′ −Wyx
′′

(i)) < 0.

7. Numerical Illustration

To observe performances of the estimators, we use the following three data sets. The
descriptions of these populations are given below.

Population I [source: Valliant et al.[13]]
The summary statistics are:
y : Breast cancer mortality in 1950-1969,
x : Adult female population in 1960.

N = 301, n = 12, m = 3, r = 4,

X̄ = 11288.1800, Ȳ = 39.8500, ρ = 0.9671, β2(x) = 10.79,

R̄ = 0.0039, R̄
′

= 0.0032, R̄
′′

= 0.00036, R̄
′′′

= 0.0032,

X̄
′

= 13780.84, X̄
′′

= 121852.40, X̄
′′′

= 13290.67, Cy = 1.2794,

Cx = 1.2207, Cx
′ = 1.2206, Cx

′′ = 1.2207, Cx
′′′ = 1.2198,

Cyx = 1.5105, Cyx
′ = 1.5104, Cyx

′′ = 1.5104, Cyx
′′′ = 1.5093,

W 2
y[i] = 0.014502, W 2

x(i) = 0.002234, Wyx(i) = 0.022478, W 2
x
′
(i)

= 0.002234,

Wyx
′
(i) = 0.022476, W 2

x
′′

(i)
= 0.002234, Wyx

′′
(i) = 0.022478, W 2

x
′′′

(i)
= 0.002231,

Wyx
′′′

(i) = 0.022461.

Population II [source: Valliant et al. [13]]
The summary statistics are:
y : Number of patients discharged,
x : Number of beds.

Population III [source: Valliant et al. [13]]
The summary statistics are:
y : Population, excluding residents of group quarters in 1960,
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N = 393, n = 15, m = 3, r = 5,

X̄ = 274.70, Ȳ = 814.65, ρ = 0.9105, β2(x) = 3.5670,

R̄ = 3.1548, R̄
′

= 3.6842, R̄
′′

= 0.9286, R̄
′′′

= 3.5520,

X̄
′

= 214.13, X̄
′′

= 980.63, X̄
′′′

= 216.78, Cy = 0.7239,

Cx = 0.7762, Cx
′ = 0.7729, Cx

′′ = 0.7756, Cx
′′′ = 0.7634,

Cyx = 0.5116, Cyx
′ = 0.5094, Cyx

′′ = 0.5112, Cyx
′′′ = 0.5031,

W 2
y[i] = .016234, W 2

x(i) = 0.003354, Wyx(i) = 0.041280, W 2
x
′
(i)

= 0.003353,

Wyx
′
(i) = 0.041277, W 2

x
′′

(i)
= 0.003354, Wyx

′′
(i) = 0.041279, W 2

x
′′′

(i)
= 0.003348,

Wyx
′′′

(i) = 0.04148.

x : Number of households in 1960.

N = 304, n = 12, m = 3, r = 4,

X̄ = 8931.17, Ȳ = 32916.19, ρ = 0.9979, β2(x) = 14.6079,

R̄ = 3.7993, R̄
′

= 2.9703, R̄
′′

= 0.2589, R̄
′′′

= 2.9580,

X̄
′

= 11627.52, X̄
′′

= 130466.90, X̄
′′′

= 11641.13, Cy = 1.2390,

Cx = 1.3018, Cx
′ = 1.3017, Cx

′′ = 1.3018, Cx
′′′ = 1.3002.98,

Cyx = 1.6096, Cyx
′ = 1.6094, Cyx

′′ = 1.6095, Cyx
′′′ = 1.6075,

W 2
y[i] = .006744, W 2

x(i) = 0.005193, Wyx(i) = 0.023651, W 2
x
′
(i)

= 0.005192,

Wyx
′
(i) = 0.023649, W 2

x
′′

(i)
= 0.005193, Wyx

′′
(i) = 0.023652, W 2

x
′′′

(i)
= 0.005179,

Wyx
′′′

(i) = 0.023622.

Table 1. Comparison values

Population V (ȳ
(u)

US2(RSS)) V (ȳ
(u)

US2(RSS)) V (ȳ
(u)

US2(RSS)) V (ȳ
(u)

US2(RSS)) V (ȳ
(u)

US2(RSS))

< V (ȳ
(u)

US2(SRS)) < V (ȳRSS) < V (ȳ
(u)

H(RSS)) < V (ȳ
(u)

KC(RSS)) < V (ȳ
(u)

US1(RSS))

I −7.7800 < 0 −3.0556 < 0 −3.5006 < 0 −4.2868 < 0 −3.4670 < 0

II −3509.73 < 0 −0.55052 < 0 −0.43858 < 0 −0.39893 < 0 −0.43292 < 0

III −50649.03 < 0 −2773.45 < 0 −199146.50 < 0 −185356.01 < 0 −197541.90 < 0

We investigate the percent relative e�ciency (PRE) of Hartley-Ross unbiased estima-

tor ȳ
(u)

H(RSS) = θ̂1 (say), Hartley-Ross type unbiased estimator based on Kadilar and Cingi

[4] estimator ȳ
(u)

KC(RSS) = θ̂2, Hartley-Ross type unbiased estimator based on Upadhyaya
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and Singh [12] estimator ȳ
(u)

US1(RSS) = θ̂3 and ȳ
(u)

US2(RSS) = θ̂4 with respect to conventional

estimator ȳRSS = θ̂0 (say) .

The PRE of proposed estimators θ̂j , j = 1, 2, 3, 4, with respect to conventional

estimator ȳRSS = θ̂0, is de�ned as:

(7.1) PRE(θ̂0, θ̂j) =
V (θ̂0)

V (θ̂j)
× 100, j = 1, 2, 3, 4.

The PRE′s of our proposed estimators and other existing estimators for Populations
I, II and III are given in Tables 2, 3 and 4 respectively.
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Table 2. PRE′s of various estimators for Population I.

m r n ȳRSS ȳ
(u)

H(RSS) ȳ
(u)

KC(RSS) ȳ
(u)

US1(RSS) ȳ
(u)

US2(RSS)

3 3 9 100 178.37 178.40 178.38 178.74

4 12 100 354.74 354.77 354.75 354.92

5 15 100 326.14 326.23 326.22 326.96

4 3 12 100 397.23 397.30 397.25 397.80

4 16 100 119.37 119.40 119.38 119.56

5 20 100 114.70 114.75 114.74 114.86

5 3 15 100 217.06 217.10 217.09 217.30

4 20 100 108.68 108.71 108.70 108.85

5 25 100 177.16 177.20 177.18 177.50

10 50 100 355.90 355.98 355.94 356.77

Table 3. PRE′s of various estimators for Population II.

m r n ȳRSS ȳ
(u)

H(RSS) ȳ
(u)

KC(RSS) ȳ
(u)

US1(RSS) ȳ
(u)

US2(RSS)

3 3 9 100 199.15 201.21 199.54 207.09

4 12 100 147.75 149.47 148.08 154.18

5 15 100 119.02 119.06 119.04 119.45

4 3 12 100 259.28 259.33 259.29 259.86

4 16 100 177.56 177.60 177.57 177.96

5 20 100 141.97 142.01 141.98 142.78

5 3 15 100 111.53 111.56 111.54 112.72

4 20 100 138.47 138.50 138.48 139.75

5 25 100 167.65 167.69 167.67 168.08

10 50 100 260.15 260.20 260.17 260.66
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Table 4. PRE′s of various estimators for Population III.

m r n ȳRSS ȳ
(u)

H(RSS) ȳ
(u)

KC(RSS) ȳ
(u)

US1(RSS) ȳ
(u)

US2(RSS)

3 3 9 100 158.03 158.08 158.04 158.66

4 12 100 330.60 330.71 330.61 332.27

5 15 100 288.63 288.68 288.64 289.37

4 3 12 100 194.50 194.56 194.51 195.34

4 16 100 116.76 116.82 116.78 117.51

5 20 100 322.73 322.84 322.75 324.23

5 3 15 100 146.69 146.73 146.70 147.21

4 20 100 122.19 122.23 122.20 122.71

5 25 100 124.24 124.28 124.26 124.76

10 50 100 215.39 215.46 215.40 216.32

From Tables 2, 3 and 4, we see that the proposed Hartley-Ross type unbiased esti-
mators are more e�cient than usual conventional estimator in RSS. Thus, if population
coe�cient of variation, population coe�cient of kurtosis and population correlation co-
e�cient are known in advance, then our proposed estimators can be used in practice.

8. Conclusion

Table 1 has established the conditions obtained in Section 6 numerically. It is shown
that all conditions are satis�ed for all considered populations. On the basis of results
given in Tables 2, 3 and 4, we conclude that the proposed class of Hartley-Ross type
unbiased estimators are preferable over its competitive estimators under RSS. It is also

observed that the proposed unbiased estimator ȳ
(u)

US2(RSS) has highest PRE in compari-

son to all other considered estimators in all three populations.
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1. Introduction

In real life, we are accustomed with two categories of items mainly-damageable and
non-damageable items. Again damageable items can be divided into two sub-categories
namely-breakable item and deteriorating items. Deteriorating items deteriorate with
time like seasonal fruits, di�erent vegetable items etc. Since the items are deteriorated
with time ,as a result the holding cost of the items is increased. For example, the fruits
like grapes are available in the market from march to July in every year. Therefore the
business time of that type of fruit is �nite. Naturally, demand of the grapes increases
with time and it exist in the market for a short period of time i.e. the business time
horizon is �nite. Also, fruits like mango, apple,vegetable like ladies �nger, cabbage, beet
and carrot are available in the market for a �nite period and their demands increase
with time. Some research works already have been investigated so far by several re-
searchers on EOQ and EPQ/EMQ models with time dependent demand (cf. Dave and
Patel[15], Dutta and Pal[14],Cheng[9],Lee and Hsu[25],Sana[47],Sarkar et al.[48], Mai-
hami and Kamalabadi[32], Guchhait et al.[20]).

On the other hand, items made of glass, clay, ceramic, etc. belong to breakable
category. Mainly fashionable/decorating items are made of glass, ceramic, etc., and de-
mand of these types of items exists over �nite time only. As sale of these fashionable
products increases with the exhibition of stock, manufacturers of these items face a con-
�icting situation in their business. To stimulate the demand, they are tempted to go
for huge number of production to have a large display and in this process, invites more
damage to his units, as breakability increases with the increase of piled stock and the
duration of stress due to the stock. So, breakability depend on huge stock and duration
of accumulated stress due to stock. In the literature, there are only very few articles with
this type of items(cf. Maiti and Maiti[[35],[36],[37]], Mandal[[38],[39]],Lee[[26]]). Still
there is a scope to develop/modify some inventory models in this area considering time
dependent breakability specially in di�erent environments.

In real life, basically in metropolitan cities, holding cost increases with time due
to non availability of space, bank interest etc. Also set-up is cost partially dependent on
production rate. The researchers gave the less attention for research in this area. A no-
table remarks have been highlighted in inventory control problems with variable holding
cost (cf. Alfares[1], Urban[56]) and Set-up cost (cf. Matsuyama[31], Darwish[13]). As
per our knowledge, no one has formulated an inventory model for breakable/demegable
items with the assumption of variable set-up cost or time dependent holding cost.

In recent times, the economy of developing countries like India, Bangladesh,
Nepal, Bhutan, Pakistan etc. changes rigorously due to high in�ation. The e�ect of
in�ation and time value of money are also well established in inventory problems. Ini-
tially, Buzacott[4] used the in�ation subject to di�erent types of pricing policies. Then
consequently in the subsequent years, Mishra[33] , Padmanavan and Vrat[42] , Hariga
and Ben-daya[21] , Bierman and Thomas[6] , Chen[8] , Moon and Lee[34] , Dey et al.[16]
, Shah [50] etc. have worked in this area. Liao et al.[28] investigated the model of Ag-
garwal and Jaggi[2] with the assumption of in�ation and stock dependent demand rate.
Chen and Kang[7] presented integrated models with permissible delay in payments and
variant pricing energy.

In most of the previous production inventory models, the researchers considered
that all the produced items are of perfect quality. But, in real life, due to complex design
of mechinaries items, it is not possible to produce all the items of perfect quality and
is directly a�ected by the reliability of the production process.Recently some research
works have been done in an imperfect production process like as Bazan[5] , Paul[43],
Dey[17], Sarkar[[51],[52]], Mohammadia[40], Haidar[22] etc. In the literature there are
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few research publications in the two ware-house inventory model with defective items
like as Rad[45], Pal[44] etc . In the literature there are some notable works in the area
of rework of the imperfect product such as Cardenas-Barron [[10][11][12]], Taleizadeh
[[54],[55]], Sarkar[53], Wee[58] etc. In imperfect production-inventory models, reliability
of the production process is considered in di�erent ways. Firstly a fraction r of produced
units are considered as good product and remaining (1-r) defective units. Some authors
consider r as crisp (cf. Cheng[9], Maiti and Maiti[29]) and others consider r as uncertain
(cf. Yoo et al.[57],Liao and Sheu[28]) and they tried to determine optimal r so as to
optimize cost or pro�t.In reality if r is maximum, the manufactures are highly satis�ed.
Considering this fact some research works have been done in this area (cf. Sana[47] and
Sarkar et al.[48] ,Guchhait[20]) . In this research work, we consider this approach.

Nearly all inventory models are formulated with constant holding cost (cf. Sana[47],
Sarkar et al.[48], Maiti,[30]). In reality, due to rental charges, in�ation, preservation cost,
bank interest, etc., holding cost increases with time. Thus some factors contributing to
the holding cost change with time ( cf. Giri et al.[18]) . Also set-up cost depends on
production rate as high production rate require sophisticated modern mechanism. In this
paper set-up and holding costs are considered as functions of production rate and time
respectively.

Variational principle is a straightforward process for the analysis of optimal con-
trol problems. Few researchers have formulated the production- inventory models as
optimal control problems and solved using this method (cf. Sana[47],Sarkar et al.[48]
and Guchhait[20]). But all the researchers formulated their models with single item.To
the best of our knowledge, none has considered the multi-item with shortages via varia-
tional principle. The present problem has been solved under the assumption of multi-item
with shortages using variational principle.

Most of the EPQ models, unit production cost is taken as a constant. But in re-
ality production cost varies with production rate, raw material cost, labour charge, wear
and tear cost and reliability of the production process (cf. Khouja[24]). In this study,
unit production cost is dependent on production rate, reliability indicator, raw material,
labour charge and wear-and-tear costs.

Thus, major contributions of the present investigation is as follows:
• A notable remark has been put in the area of production-inventory research where
the models are developed with the assumption of in�nite time horizon (cf. Porteous[41],
Cheng[9],Maiti and Maiti[29], Yoo et al. [57]etc). According to their assumptions, de-
mand of an item remains unchanged for interminably. But, in real life, Gurnani[19]
pointed out that rapid development of technology leads to the change in product spec-
i�cation with latest feature which in turn, motivates the customers to go for buy new
products. For this reason, many researchers have investigated and analysised the inven-
tory models with �nite time horizon (cf. Khanra and Choudhuri[23], Maiti[30] etc). But
in the existing literature of inventory model with demagable/deteriorating items,they
overlooked this phenomenon (cf. Maiti and Maiti[29], Guchhait et al.[20]). For this
reason, here a �nite time horizon multi-item production manufacturing model of a dam-
ageable items with shortages has been formulated and solved.
• In this paper, due to this reasons mentioned above holding and set-up costs are con-
sidered as functions of time and production rate for both the item respectively.
• In imperfect production inventory control problem,reliability factors play an important
role in manufacturing process. But in the competitive market, due to existence in the
market, managers of the production �rms are highly satis�ed if r i.e. reliability (also
called process reliability)reaches its maximum levels and they can not allow the reliabil-
ity to fall below a minimum level. Following, this approach, recently some works have
been done by Sana[47],Sarker et al.[48], Sarkar[46] and Guchait et al.[20]. In the present
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investigation, the authors have considered this approach for both the items.
• But in the common business practices that customers are allured with displayed stock
and for that, demand is considered as stock-dependent. Some works have been done by
Levin et al.[27], Baker and Urban[3], Alfares[1], Stavrulaki[49], etc. In recent market
policy of the big departmental stores like Big Bazar, Metro Bazar, Bazar Kolkata, Wall
Mart, TESCO, Carrefour etc.,where the items are displayed in huge stock and for the
breakable items, huge stocks invites more breakability / damageability along with more
sales. Hence, a balanced is to be maintained between increased breakability and sale for
maximum pro�t. Till now, inventory practitioners have been paid a little attention in
this area of inventory problem with damageable items (cf. Maiti and Maiti[29]). In this
present investigation, optimum reliability indicator and the inventory level of breakable
items made a balance between the process reliability and increased sale so as to maximize
the pro�t.
• Due to simplicity and e�ectiveness of the variational principle as mentioned above ,
the present models are solved using Variational principle method by considering the aug-
mented pro�t function.
• Thus, here an attempt has made to formulate and solve multi-item EPQ models in-
corporating all the features. As per the above arguments,in this present investigation,
unit production cost taken depends on production rate, reliability indicator, raw material
cost, etc.
•Till now, none has considered all the above features into account in a single model.

In this paper, a multi-item production-inventory model with imperfect produc-
tion process is formulated for a breakable or deteriorating items over a �nite time horizon.
Here we formulate two models with shortages. First model is for two items with short-
ages and the second model is for single item with shortages. The unit production cost is
a function of production rate, raw material cost, labour charge, wear and tear cost and
product reliability indicator. The �rst model is formulated as optimal control problems
for the maximization of total pro�ts over the planning horizon with budget constraint
and optimum pro�t with pro�ts along with optimum reliability indicator(r) are obtained
using Euler-Lagrange equation based on variational principle. The second model is of
single item also solved under the same assumptions and technique. Both problems have
been solved using a non-linear optimization technique -GRG (LINGO-13.0) and illus-
trated with some numerical data. Several particular cases are derived and the results are
presented in both tabular and graphical forms. Finally, some sensitivity analyses can be
made with respect to di�erent parameters.

The rest of the research paper is structured as follows. Some notations and as-
sumptions are given by section 2. Section 3 is followed by the mathematical development
and description of the proposed model with shortages through optimal control framework.
Here three lemmas are proposed and proved. Also, the mathematical development and
description of the model with single item are proposed in section 4. Section 5 proposed
the solution procedure. Section 6 represents the numerical data and results of di�erent
models and pictographic representation of the e�ect of di�erent parameters. Discussion
and managerial insights are discussed in section 7. After that a summarization of this
study is included in section 8 by naming it as conclusion and future research work. At
last, the list references that are used to make this study possible.

2. Notations and assumptions for the proposed model

2.1. Notations:

(i) q1(t) and q2(t) be the inventory at any time t of item-1 and -2 respectively.
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(ii) q̇1(t) and q̇2(t) are the derivative of q1(t) and q2(t) with respect to time t respec-
tively.

(iii) B1(q1, t) and B2(q2, t) be the breakability or damageability function of item-1
and item- 2 respectively.

(iv) P1(t) and P2(t) are the production rate of item-1 and item-2 respectively at any
time t.

(v) r1 and r2 are the production reliability indicator for item-1 and item-2 respec-
tively,
0 ≤ r1, r2 ≤ 1.

(vi) r1min, r2min. and r1max, r2max are the minimum and maximum value of r1 and
r2 respectively,
0 ≤ r1min, r2min ≤ 1,0 ≤ r1max, r2max ≤ 1.

(vii) λ1 and λ2 are the variation constant of tool or die costs for item-1 and-2
respectively,λ1 > 0 , λ2 > 0.

(viii) χ(r1) and χ(r2) are the development cost of item-1 and-2 respectively.
(ix) Cp1 and Cp2 are the unit production cost of item-1 and item-2 respectively.
(x) Cd1 and Cd2 are the rework cost per defective item-1 and item-2 respectively.
(xi) Ch1(t) and Ch2(t) are the unit holding cost of item-1 and item-2 respectively.
(xii) C3 and C4 are the setup cost of item-1 and item-2 respectively.
(xiii) Sp1 and Sp2 is the unit selling price for the item-1 and item-2 respectively,Sp1 >

Cp1 ,Sp2 > Cp2 .
(xiv) Sh1 and Sh2 is the unit shortages cost for the item-1 and item-2 respectively.

2.2. Assumptions:

(i) The imperfect production-inventory system involves single and multi-item and
which are to be sold .

(ii) The planning horizon for both the models are limited i.e. T is �nite.
(iii) Here, it is assume that the inventory levels at t = 0 is −S1 for item-1 and −S2

for item-2 and both the inventory reaches to 0 at t = T .
(iv) In the show-rooms, the items made of China-clay, mud, glass,ceramic, etc., are

kept in a heaped stocks. Due to this reason, the items at the bottom are under
stress due to weight and for a long time, items are get damaged and break.
Therefore, the breakability or damageability rate depends upon the stock of item
and as well as how many times is under stress. Therefore the breakability rate of
item-1 can be expressed as a function of stock levels and time and is of the form:
B1(q1, t) = b10q1 + b11t for q1 > 0 where b10 and b11 are the parameters can be
chosen for best �t for the reliability function. Similarly, B2(q2, t) = b20q2 + b21t
for q2 > 0 where b20 and b21 are the parameters can be chosen for best �t for
the reliability function.

(v) For the seasonal fruits like mango, apple etc., theirs demand is increases with
time though their business period is limited and �nite. Here demand rate is
linear time-dependent for both the item.

(vi) Production rate for both items increases with time.
(vii) r1 and r2 indicates the defective rate of the production. Therefore, r1P1(t),

r2P2(t) are the rate of producing defective item-1 and -2 respectively.
(viii) λ1 and λ2 are the variation constant of tool or die costs for item-1 and-2 respec-

tively.
(ix) χ(r1) and χ(r2) depends upon the production reliability indicator, r1 and r2

respectively and are represented as χ(r1) = N1 + N2e
CA(r1max−r1)/(r1−r1min)

and χ(r2) = N3 +N4
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eCA(r2max−r2)/(r2−r2min) where N1 and N3 are the �xed cost like labour, en-
ergy, etc., and is independent of r1 and r2. N2 and N4 are the cost of modern
technology, resource and design complexity for production when r1 = r1max,
r2 = r2max,. Also, CA represents the di�culties in increasing reliability, which
depends on the design complexity, technology and resource limitations, etc for
both the items.

(x) Unit production cost,Cp1 and Cp2 are the function of production rate P1(t),P2(t)
respectively and production reliability and can be expressed in the form

Cp1(r1, t) = Cr1+
χ(r1)
P1(t)

+λ1P1(t) for item-1 and Cp2(r2, t) = Cr2+
χ(r2)
P2(t)

+λ2P2(t)

for item-2, where Cr1 and Cr2 are the �xed material cost for item-1 and 2
respectively. Second term is the development cost which is equally distributed
over the production P1(t),P2(t) at any time t. Also, the third term λ1P1(t)
and λ2P2(t) are the tool/ die cost which is proportional to the production rate
respectively for both the item.

(xi) Now-a-days, due to in�ation, bank interest, hiring charge, etc., holding cost
increases with time. For this reason the holding cost changes with time and
other factors remain constant. Hence the holding cost Ch1(t) and Ch2(t) can
be expressed as Ch1(t) = C10 + C11t and Ch2(t) = C20 + C21t respectively for
item-1 and item-2, where C10, C11, C20 and C21 are constants.

(xii) Set-up cost, C3 and C4, are normally constant with time for both the items. But,
, if dynamic production rate is considered, some machineries, etc., are to be set-
up and maintained in such a way that the production system can stand with the
pressure of increasing demand. Thus, a part of C3,C4 are linearly proportional
to production rate and hence C3, C4 are of the form: C3(P1(t)) = C30+C31P1(t)
and C4(P2(t)) = C40 +C41P2(t), where C30, C31, C40 andC41 are the constants.

(xiii) In the developing countries, in�ation is predominant and interest rate depends
on the in�ation value. Thus µ = R − i, where R and i are the interest and
in�ation per unit currency, respectively,µ > 0.

(xiv) All inventory costs are positive.

3. Mathematical formulation of the proposed multi-item model:

3.1. Model-1: Model with stock and time dependent breakable items: In real
life, a production company not only produce one item but produce di�erent types of
item i.e. multi-item. Due to continuous long operation of machinery units and over duty
of the workers , the production �rm produces good quality item as well as imperfect
quality items.These defective or imperfect quality items are instantly reworked at a per
unit cost to make the product as new as perfect one to maintain the brand image of the
manufacturer. The production of the defective items increases with time and reliability
parameter of the produced item. The parameters r1 and r2 are the reliability indicator
of the item-1 and -2 respectively. The production system became more stable and reliable
, if r1 and r2 decreases i.e. smaller value of r1 and r2 provides the better quality product
and produced smaller imperfect quality unites.
The inventory levels decreases due to demand and breakability/deterioration. Thus, the
rate of change of inventory level at any time t for the item -1 can be represented by the
following di�erential equation:

dq1(t)

dt
= P1 −D1 −B1(q1 , t)

i.e P1(t) = q̇1 +D1 +B1(q1 , t),with q1(0) = −S1 and q1(T ) = 0 ,(3.1)

where D1 ≡ D1(t)
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Thus, the rate of change of inventory level at any time t for the item -2 can be represented
by the following di�erential equation:

dq2(t)

dt
= P2 −D2 −B2(q2 , t)

i.e. P2(t) = q̇2 +D2 +B2(q2, t)with q2(0) = −S2 and q2(T ) = 0,(3.2)

whereD2 ≡ D2(t)

where D1 and D2 are the demand function of time t and is of the form D1(t) = a1 + b1t
and D2(t) = a2 + b2t for item-1 & 2 respectively.
The end condition q1(0) = −S1, q2(0) = −S2 and q1(T ) = 0 and q2(T ) = 0 indicate
that at time t = 0 the maximum shortages is −S1 for item-1 and −S2 for item-2 i.e.
the inventory starts with shortages at time t = 0. As P1 and D1 are the function of
time t and combined e�ect of theses two the shortages reaches to zero and the inventory
build-up as P1(t) > D1 + B1(q1 , t) in the �rst part of the cycle. After some time, as
demand is a function of time t, D1 is more than the combined e�ect of D1 + B1(q1 , t)
i.e. the accumulated stock decreases as P1(t) < D1 + B1(q1, t) and ultimately the stock
reaches to zero. Similar process is also followed for the item-2.
Since the production �rm manufacturers two di�erent types of items, then a budget
constraint is imposed for procurement of the raw materials cost. Here Cr1 and Cr2 are
the �xed material cost for item-1 and -2 respectively and ifM be the maximum available
budget for both the items, then the budget constraint can be expressed as

Cr1q1 + Cr2q2 ≤M(3.3)

The corresponding pro�t function for both the items, incorporation the in�ation and
time value of money during the time duration [0, T ] is given by

Zp =

∫ T

0

{
e−µt

[
Sp1D1 − Cp1(r1, t)P1(t)− Cd1r1P1(t)− Ch1(t)q1 −

C3(P1(t))

T
−

Sh1S1

]
+ e−µt

[
Sp2D2 − Cp2(r2, t)P2(t)− Cd2r2P2(t)− Ch2(t)q2 −

C4(P2(t))

T
−

Sh2S2

]}
dt

=

∫ T

0

e−µt
[
Sp1D1 + Sp2D2 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− (Cr2 + Cd2r2)

(q̇2 +D2 +B2)− χ(r1)− χ(r2)− λ1(q̇1 +D1 +B1)
2 − λ2(q̇2 +D2 +B2)

2

−(C10 + C11t)q1 − (C20 + C21t)q2

−{C30 + C31(q̇1 +D1 +B1])}/T − {C40 + C41(q̇2 +D2 +B2)}/T − Sh1S1 − Sh2S2

]
dt

=

∫ T

0

f(q1 , q2 , q̇1 , q̇2 , t)dt

where f(q1 , q2 , q̇1 , q̇2 , t) = e−µt
[
Sp1D1 + Sp2D2 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)

−(Cr2 + Cd2r2)(q̇2 +D2 +B2)− χ(r1)− χ(r2)− λ1(q̇1 +D1 +B1)
2 − λ2(q̇2 +D2 +B2)

2
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−(C10 + C11t)q1 − (C20 + C21t)q2 − {C30 + C31(q̇1 +D1 +B1])}/T − {C40 + C41

(q̇2 +D2 +B2)}/T − Sh1S1 − Sh2S2

]
(3.4)

Now our problem is to �nd the path of q1(t), q2(t) , P1(t) and P2(t) such that Zp is
maximum with respect to the budget constraint. Since the problem is involved with a
constraint, then to �nd the optimal solution of the optimal control problem, we construct
the augmented pro�t functional as

ZT =

∫ T

0

[
f(q1 , q2 , q̇1 , q̇2 , t) + λe−µt(Cr1q1 + Cr2q2 −M)

]
dt(3.5)

where,F (q1 , q2 , q̇1 , q̇2 , t) = f(q1 , q2 , q̇1 , q̇2 , t) + λe−µt(Cr1q1 + Cr2q2 −M) and λ is the
Lagrange multiplier having any real value.

3.1. Lemma. ZT has a maximum value for a path q1 = q1(t) and q2 = q2(t)in the
interval [0, T ]

Proof. Proof of the Lemma 3.1 . we consider a path(curve)q1 = q1(t) and q2 = q2(t)
such that the functional ZT is maximum in that path in the interval [0, T ] i.e. t = 0
and t = T . Let us consider a path q0 which is given by the path q = q0 for which ZT
has a maximum value.We consider a class of neighboring curves pρ which is given by
q1 = q1ρ(t) = q0(t) + ρ1η1(t) and q2 = q2ρ(t) = q0(t) + ρ2η2(t), where ρ1 and ρ2 is a very
small constant and η1(t) and η2(t) (> 0, for all values of t) is any two di�erential functions

of t.Therefore, the value of ZT for the path pρ is given by the relation ZT (ρ) =
∫ T
0
Fρ1ρ2

dt, where Fρ1ρ2 = F (q0(t) + ρ1η1(t), q̇0(t) + ρ1η̇1(t), q0(t) + ρ2η2(t), q̇0(t) + ρ2η̇2(t), t)
For maximum value of ZT , we must have

∂
∂ρ1

(ZT (ρ1, ρ2)) |ρ1=0= 0

and ∂
∂ρ2

(ZT (ρ1, ρ2)) |ρ2=0= 0 and

[
∂2ZT

∂ρ21

∂2ZT

∂ρ22
− ∂2ZT
∂ρ1∂ρ2

]
> 0 and ∂2

∂ρ21
(ZT (ρ1, ρ2)) < 0

Now,

∂

∂ρ1
(ZT (ρ1, ρ2)) =

∫ T

0

{
η1(t)

∂Fρ
∂q1

+ η̇1(t)
∂Fρ
∂q̇1

}
dt

=

∫ T

0

[
η1(t)

∂Fρ
∂q1

]
dt+

[
η1(t)

∂Fρ
∂q̇1

]T
0
−
∫ T

0

η1(t)
d

dt

(∂Fρ
∂q̇1

)
dt

=

∫ T

0

η1(t)
{∂Fρ
∂q1
− d

dt

(∂Fρ
∂q̇1

)}
dt

As q1(t) is �xed at the end points t = 0 and t = T , so, η1(0) = η1(T ) = 0. Therefore,
d
dρ1

(ZT (ρ1, ρ2)) |ρ1=0= 0 gives

∂Fρ
∂q1
− d

dt
(
∂Fρ
∂q̇1

) = 0(3.6)

Similarly,

∂

∂ρ2
(ZT (ρ1, ρ2)) =

∫ T

0

{
η2(t)

∂Fρ
∂q2

+ η̇2(t)
∂Fρ
∂q̇2

}
dt

=

∫ T

0

[
η2(t)

∂Fρ
∂q2

]
dt+

[
η2(t)

∂Fρ
∂q̇2

]T
0
−
∫ T

0

η2(t)
d

dt

(∂Fρ
∂q̇2

)
dt

=

∫ T

0

η2(t)
{∂Fρ
∂q2
− d

dt

(∂Fρ
∂q̇2

)}
dt(3.7)
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As q2(t) is �xed at the end points t = 0 and t = T , so, η2(0) = η2(T ) = 0. Therefore,
∂
∂ρ2

(ZT (ρ1, ρ2)) |ρ2=0= 0 gives

∂Fρ
∂q2
− d

dt
(
∂Fρ
∂q̇2

) = 0(3.8)

Equations (3.6) and (3.8) are the necessary conditions for extreme value of PT .

Again, to �nd the maximum value of ZT we must have,

[
∂2ZT

∂ρ21

∂2ZT

∂ρ22
− ∂2ZT
∂ρ1∂ρ2

]
> 0 and

∂2ZT

∂ρ21
< 0

Now,

∂2ZT
∂ρ21

=

∫ T

0

{
η21
∂2Zp
∂q2

1

+ 2η1η̇1
∂2Zp
∂q1∂q̇1

+ η̇1
2 ∂

2Zp

∂q̇1
2

)
dt

= −2λ1e
−µt
{
η21b

2
10 + 2η1η̇1b10 + η̇1

2
}
< 0 as 2λ1e

−µt > 0

Similarly,

∂2ZT
∂ρ22

=

∫ T

0

{
η22
∂2Zp
∂q2

2

+ 2η2η̇2
∂2Zp
∂q2∂q̇2

+ η̇2
2 ∂

2Zp

∂q̇2
2

)
dt

= −2λ2e
−µt
{
η22b

2
20 + 2η2η̇2b20 + η̇2

2
}
< 0 as 2λ2e

−µt > 0

Finally,
∂2ZT
∂ρ1∂ρ2

= 0

Therefore, [
∂2ZT
∂ρ21

∂2ZT
∂ρ22

− ∂2ZT
∂ρ1∂ρ2

]
= 2λ1e

−µt
{
η21b

2
10 + 2η1η̇1b10 +

η̇1
2
}
2λ2e

−µt
{
η22b

2
20 + 2η2η̇2b20 + η̇2

2
}
> 0

and
∂2ZT
∂ρ21

= −λ1e
−µt
{
η21b

2
10 + 2η1η̇1b10 + η̇1

2
}
< 0 as λ1e

−µt > 0

Hence the su�cient condition,

[
∂2ZT

∂ρ21

∂2ZT

∂ρ22
− ∂2ZT
∂ρ1∂ρ2

]
> 0 and ∂2ZT

∂ρ21
< 0 shows that ZT

has a maximum in [0, T ]. �

3.2. Lemma.
∂ZT (r1, r2)

∂r1
= 0 must have at least one solution in [r1min, r1max], if

∂ZT (r1, r2)

∂r1
< 0, provided

∂ZT (r1, r2)

∂r1
→∝ at r1 = r1min for all r2, otherwise

∂ZT (r1, r2)

∂r1
= 0 may have or may not have a solution in [r1min, r1max]. The solution

gives a maximum value of ZT , if
∂2ZT
∂r21

< 0 and
∂2ZT
∂r21

∂2ZT
∂r22

−
( ∂2ZT
∂r1∂r2

)2
> 0 in the

rectangle [r1min, r1max : r2min, r2max]

Proof. Proof of the Lemma 3.2 .For maximization of the associate pro�t for both the
items, ZT (r1, r2), di�erentiating ZT (r1, r2) with respect to r1, we have

∂ZT
∂r1

= N2e
CA(r1max−r1)/(r1−r1min)CA

r1min − r1max
(r1 − r1min)2

e−µT − 1

µ
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As r1 → r1min, then
∂ZT
∂r1

→∝
Again,

∂2ZT
∂r21

=
N2CAe

−µT−1

µ

[
eCA(r1max−r1)/(r1−r1min) r1min − r1max

(r1 − r1min)4
+ eCA(r1max−r1)/(r1−r1min)

r1min − r1max
(r1 − r1min)3

]
As r1 → r1min then

∂ZT
∂r1

→∝, therefore ∂ZT
∂r1

has at least one solution if
∂ZT
∂r1

→∝

holds; otherwise
∂ZT (r1, r2)

∂r1
= 0 may have or may not have a solution in [r1min, r1max].

If
∂ZT
∂r1

|r1=r∗1= 0 for r∗1 ∈ [r1min, r1max] and
∂2ZT
∂r21

< 0 and
∂2ZT
∂r21

∂2ZT
∂r22

−( ∂
2ZT

∂r1∂r2
)2 > 0,

then PT (r
∗
1) is maximum.

Similarly,Lemma 3.3 can be written as, �

3.3. Lemma.
∂ZT (r1, r2)

∂r2
= 0 must have at least one solution in [r2min, r2max], if

∂ZT (r1, r2)

∂r2
< 0, provided

∂ZT (r1, r2)

∂r2
→∝ at r2 = r2min for all r1 otherwise

∂ZT (r1, r2)

∂r2
=

0 may have or may not have a solution in [r2min, r2max]. The solution gives a max-

imum value of ZT , if
∂2ZT
∂r22

< 0 and
∂2ZT
∂r21

∂2ZT
∂r22

− (
∂2ZT
∂r1∂r2

)2 > 0 in the rectangle

[r1min, r1max : r2min, r2max]

Proof. Proof of the Lemma 3.3.we can proof the Lemma 3.3 following the same of Lemma
3.2. �

Now, for �nd the optimal path, we have from the Euler-Lagranges equation for the
maximum value of F (q1 , q2 , q̇1 , q̇2 , t) is

∂F

∂q1
− d

dt
(
∂F

∂q̇1
) = 0(3.9)

∂F

∂q2
− d

dt
(
∂F

∂q̇2
) = 0(3.10)

Firstly, we consider the �rst Euler-Lagrangian equation (3.9) and the boundary condition
(3.1), we have

q̈1 − µq̇1 − (b10 + µ)b10q1 = H1(t)(3.11)

where

H1(t) = (µ+ b10)D1 − b1 − b11(b10t− 1 + µt)

+
(Cr1 + r1Cd1 + C31/T )(µ+ b10) + (C10 + C11)t

2λ1
− λ

2λ1
Cr1

= K1 +K2t+K
′
1

where K1 = a1(µ+ b10)− b1 − b11 +
(Cr1 + r1Cd1 + C31/T )(µ+ b10) + C10

2λ1

K2 =
[
b1(µ+ b10) + b11(b10 + µ) +

C11

2λ1
],K

′
1 = − λ

2λ1
Cr1(3.12)
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The complementary function of the Eq. (3.11) is C1e
(b10+µ)t+C2e

−b10t, where C1 and C2

are arbitrary constants and the particular integral is given by the 1
D2−µD−(µ+b10)b10

{
K1+

K2t+K
′
1

}
. Here D(≡ d

dt
) represents the di�erential operator. Therefore, the complete

solution of the Eq.(3.11) can be represented as

q1(t) = C1e
(b10+µ)t + C2e

−b10t − 1

K2
3

[
K1K3 +K2

(
K3t− µ

)]
− K

′
1

K3
(3.13)

P1(t) = K4e
(b10+µ)t +K5t+K6 +K7,(3.14)

where,K4 = C1(2b10 + µ),K3 = b10(b10 + µ),K5 = (b1 + b11 −
b10K2

K3
),K6 = −K

′
1

K3
b10

K7 =
1

K2
3

[
a1K

2
3 −K2K3 − b10(K1K3 −K2µ),

]

C2 =
1

[e(b10+µ)T − e−b10T ]
(
1

K2
3

[(K1K3 −K2µ)e
(b10+µ)T − (K1K3 +K2(K3T − µ))]

−K
′
1

K3
(e(b10+µ)T − 1)− S1e

(b10+µ)T )

C1 = −S1 − C2 +
1

K2
3

(K1K3 −K2µ) +
K
′
1

K3

Substituting the value of q1(t) and P1(t) in the expression of (3.4), the corresponding
pro�t function for the item-1 can be expressed as

Zp1 =

∫ T

0

e−µt
[
Sp1D1 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− χ(r1)− λ1(q̇1 +D1 +B1)

2

−(C10 + C11t)q1 − {C30 + C31(q̇1 +D1 +B1)}/T − Sh1S1

]
dt

= Sp1
[
− a1

(e−µT − 1)

µ
− b1

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr1 + r1Cd1)

[K4(e
b10T − 1)

b10

+ K5

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K6

µ
(1− e−µT ) + K7

µ
(1− e−µT )

]
+
[
N1 +N2

eCA(r1max−r1)/(r1−r1min)](e−µT − 1

µ
) + λ1

[
(K4e

(b10+µ)T +K5T +K6 +K7)
2 e

−µT

µ

− (K4 +K6 +K7)
2

µ
+

2

µ2

(K2
4 (b10 + µ)

(2b10 + µ)
(e(2b10+µ)T − 1) +

K4K5

b10
(eb10T − 1) +

K4K5(b10 + µ)

b10
{Te

b10T

b10
− eb10T

b210
+

1

b210
}+ (K7 +K6)K4(b10 + µ)

b10
(eb10T − 1)

− K2
5 (
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K6 +K7)K5

µ
(1− e−µT ))]− C10

[C1

b10
(eb10T − 1)

− C2

(b10 + µ)
(e−(b10+µ)T − 1) +

K
′
1

K3µ
(e−µT − 1) +

1

K2
3

(K1K3 +K2(K3T − µ))
e−µT

µ

+
K2

K3µ2
(e−µT − 1)− 1

K2
3µ

(K1K3 −K2µ)
]
− C11

[
C1(

Teb10T

b10
− eb10T

b210
+

1

b210
)+
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C2(
−Te−(b10+µ)T

(b10 + µ)
− e−(b10+µ)T

(b10 + µ)2
+

1

(b10 + µ)2
)− K1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)

− K2µ

K2
3

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K2

K3
(
−T 2e−µT

µ
− 2Te−µT

µ2
− 2

µ3
e−µT +

2

µ3
)

− K
′
1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)
]
− 1

T
[
C30

µ
(1− e−µT ) + C31(

K4

b10
(eb10T − 1)

+ K5(−
Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K6 +K7)

µ
(1− e−µT ))]− Sh1S1(

1− e−µT

µ
)(3.15)

From the second Euler-Lagranges Equation and using the boundary condition, we have

q̈2 − µq̇2 − (b20 + µ)b20q2 = H2(t)(3.16)

where

H2(t) = (µ+ b20)D2 − b2 − b21(b20t− 1 + µt)

+
(Cr2 + r2Cd2 + C41/T )(µ+ b20) + (C20 + C21)t

2λ2
− λ

2λ2
Cr2

= K11 +K22t+K
′
11

where,K11 = a2(µ+ b20)− b2 − b21 +
(Cr2 + r2Cd2 + C41/T )(µ+ b20) + C20

2λ2

K22 =
[
b2(µ+ b20) + b21(b20 + µ) +

C21

2λ2
, K

′
11 = − λ

2λ2
Cr2

andK33 = b20(b20 + µ)

The complementary function of the Eq. (3.16) is C3e
(b20+µ)t + C4e

−b20t, where C3 and
C4 are arbitrary constants and the particular integral is given by the

1
D2−µD−(µ+b20)b20

{
K11+K22t+K

′
11

}
. HereD(≡ d

dt
) represents the di�erential operator.

Therefore, the complete solution of the Eq.(16) can be represented as

q2(t) = C3e
(b20+µ)t + C4e

−b20t − 1

K2
33

[
K11K33 +K22

(
K33t− µ

)]
(3.17)

−K
′
11

K33

and P2(t) = K8e
(b20+µ)t +K9t+K10 +K12,(3.18)

where, K8 = C3(2b20 + µ),K9 = (b2 + b21 − b20
K22

K33
),K10 = −K

′
11b20
K33

,

K12 =
1

K2
33

[a2K33
2 −K22K33 − b20(K11K33 −K22µ)]

C4 =
1

[e(b20+µ)T − e−b20T ]
(

1

K2
33

[(K11K33 −K22µ)e
(b20+µ)T − (K11K33 +K22(K33T − µ))]

−K
′
11

K33
(e(b20+µ)T − 1)− S2e

(b20+µ)T )

C3 = −S2 − C4 +
1

K2
33

(K11K33 −K22µ) +
K
′
11

K33

Substituting the value of q2(t) and P2(t) in the expression of (3.4), the corresponding
pro�t function for the item-2 can be expressed as
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Zp2 =

∫ T

0

e−µt
[
Sp2D2 − (Cr2 + Cd2r2)(q̇2 +D2 +B2)− χ(r2)− λ2(q̇2 +D2 +B2)

2

− (C20 + C21t)q2 − {C40 + C41(q̇2 +D2 +B2])}/T − Sh2S2

]
dt

= Sp2
[
− a2

(e−µT − 1)

µ
− b2

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr2 + r2Cd2)

[K8(e
b20T − 1)

b20

+ K9

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K10

µ
(1− e−µT ) + K12

µ
(1− e−µT )

]
+
[
N3

+ N4e
CA(r2max−r2)/(r2−r2min)]e−µT − 1

µ
+ λ1

[
(K8e

(b20+µ)T +K10T +K10 +K12)
2

e−µT

µ
− (K8 +K10 +K12)

2

µ
+

2

µ2

(K2
8 (b20 + µ)

(2b20 + µ)
(e(2b20+µ)T − 1) +

K8K9

b20
(eb20T

− 1) +
K8K9(b20 + µ)

b20
{Te

b20T

b20
− eb20T

b220
+

1

b220
}+ (K12 +K10)K8(b20 + µ)

b20
(eb20T −

1)−K2
9 (
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K10 +K12)K9

µ
(1− e−µT ))]− C20

[C3

b20
(eb20T

− 1)− C4

(b20 + µ)
(e−(b20+µ)T − 1) +

K
′
11

K33µ
(e−µT − 1) +

1

K2
33

(K11K33 +K22(K33T

−µ))e
−µT

µ
+

K22

K33µ2
(e−µT − 1)− 1

K2
33µ

(K11K33 −K22µ)
]
− C21

[
C3(

Teb20T

b20
−

eb20T

b220
+

1

b220
) + C4(

−Te−(b20+µ)T

(b20 + µ)
− e−(b20+µ)T

(b20 + µ)2
+

1

(b20 + µ)2
)− K11

K33
(
−Te−µT

µ

− e−µT

µ2
+

1

µ2
)− K22µ

K2
33

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K22

K33
(
−T 2e−µT

µ
− 2Te−µT

µ2
− 2

µ3

e−µT +
2

µ3
)− K

′
11

K33
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)
]
− 1

T
[
C40

µ
(1− e−µT ) + C41(

K8

b20
(eb20T−

1) +K9(−
Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K10 +K12)

µ
(1− e−µT ))]− Sh2S2(

1− e−µT

µ
)(3.19)

Therefore total pro�t for item-1 and -2 can be expressed as Zp = Zp1 + Zp2 , where Zp1
and Zp2 are given by (3.15)&(3.19) respectively, Therefore,

Zp =

∫ T

0

e−µt
[
Sp1D1 + Sp2D2 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− (Cr2 + Cd2r2)(q̇2 +D2

+B2)− χ(r1)− χ(r2)− λ1(q̇1 +D1 +B1)
2 − λ2(q̇2 +D2 +B2)

2 − (C10 + C11t)q1 − (C20

+C21t)q2 − {C30 + C31(q̇1 +D1 +B1)}/T − {C40 + C41(q̇2 +D2 +B2)}/T − Sh1S1

−Sh2S2 + λ(Cr1q1 + Cr2q2 −M)

]
dt
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= Sp1
[
− a1

(e−µT − 1)

µ
− b1

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr1 + r1Cd1)

[K4(e
b10T − 1)

b10

+ K5

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K6

µ
(1− e−µT ) + K7

µ
(1− e−µT )

]
+
[
N1 +N2

eCA(r1max−r1)/(r1−r1min)](e−µT − 1

µ
) + λ1

[
(K4e

(b10+µ)T +K5T +K6 +K7)
2 e

−µT

µ

− (K4 +K6 +K7)
2

µ
+

2

µ2

(K2
4 (b10 + µ)

(2b10 + µ)
(e(2b10+µ)T − 1) +

K4K5

b10
(eb10T − 1)

+
K4K5(b10 + µ)

b10
{Te

b10T

b10
− eb10T

b210
+

1

b210
}+ (K7 +K6)K4(b10 + µ)

b10
(eb10T − 1)

− K2
5 (
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K6 +K7)K5

µ
(1− e−µT ))]− C10

[C1

b10
(eb10T − 1)−

C2

(b10 + µ)
(e−(b10+µ)T − 1) +

K
′
1

K3µ
(e−µT − 1) +

1

K2
3

(K1K3 +K2(K3T − µ))
e−µT

µ

+
K2

K3µ2
(e−µT − 1)− 1

K2
3µ

(K1K3 −K2µ)
]
− C11

[
C1(

Teb10T

b10
− eb10T

b210
+

1

b210
)

+ C2(
−Te−(b10+µ)T

(b10 + µ)
− e−(b10+µ)T

(b10 + µ)2
+

1

(b10 + µ)2
)− K1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)

− K2µ

K2
3

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K2

K3
(
−T 2e−µT

µ
− 2Te−µT

µ2
− 2

µ3
e−µT +

2

µ3
)−

K
′
1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)
]
− 1

T
[
C30

µ
(1− e−µT ) + C31(

K4

b10
(eb10T − 1) +

K5(−
Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K6 +K7)

µ
(1− e−µT ))]− Sh1S1(

1− e−µT

µ
)

+ Sp2
[
− a2

(e−µT − 1)

µ
− b2

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr2 + r2Cd2)

[K8(e
b20T − 1)

b20

+ K9

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K10

µ
(1− e−µT ) + K12

µ
(1− e−µT )

]
+
[
N3 +N4

eCA(r2max−r2)/(r2−r2min)]e−µT − 1

µ
+ λ2

[
(K8e

(b20+µ)T +K10T +K10 +K12)
2

e−µT

µ
− (K8 +K10 +K12)

2

µ
+

2

µ2

(K2
8 (b20 + µ)

(2b20 + µ)
(e(2b20+µ)T − 1) +

K8K9

b20

(eb20T − 1) +
K8K9(b20 + µ)

b20
{Te

b20T

b20
− eb20T

b220
+

1

b220
}+ (K12 +K10)K8(b20 + µ)

b20
−

(eb20T − 1)K2
9 (
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K10 +K12)K9

µ
(1− e−µT ))]− C20

[C3

b20

(eb20T − 1)− C4

(b20 + µ)
(e−(b20+µ)T − 1) +

K
′
11

K33µ
(e−µT − 1) +

1

K2
33

(K11K33 +K22

(K33T − µ))
e−µT

µ
+

K22

K33µ2
(e−µT − 1)− 1

K2
33µ

(K11K33 −K22µ)
]
− C21

[
C3(

Teb20T

b20

− eb20T

b220
+

1

b220
)
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+ C4(
−Te−(b20+µ)T

(b20 + µ)
− e−(b20+µ)T

(b20 + µ)2
+

1

(b20 + µ)2
)− K11

K33
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)

− K22µ

K2
33

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K22

K33
(
−T 2e−µT

µ
− 2Te−µT

µ2
− 2

µ3
e−µT +

2

µ3
)−

K
′
11

K33
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)
]
− 1

T
[
C40

µ
(1− e−µT ) + C41(

K8

b20
(eb20T − 1)

+ K9(−
Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

(K10 +K12)

µ
(1− e−µT ))]− Sh2S2

1− e−µT

µ
+ λ[

Cr1

{C1

b10
(eb10T − 1)− C2

(b10 + µ)
(e−(b10+µ)T − 1) +

1

K2
3µ

(K1K3 +K2(K3T − µ))

e−µT +
K2

K3µ2
(e−µT − 1)− 1

K2
3µ

(K1K3 −K2µ) +
K
′
1

K3µ
(e−µT − 1)

}
+ Cr2

{C3

b20

(eb20T − 1)− C4

(b20 + µ)
(e−(b20+µ)T − 1) +

1

K2
33µ

(K11K33 +K22(K33T − µ))e−µT

+
K22

K33µ2
(e−µT − 1)− 1

K2
33µ

(K11K33 −K22µ) +
K
′
11

K33µ
(e−µT − 1)

}
+

M

µ
(e−µT − 1)

]
(3.20)

3.2. Model-1a: Model with two stock-dependent breakable items. In the above
Model-1, if we take the the parametric values of breakability/deterioration which are di-
rectly related to the time equal to zero i.e. b11 = 0 and b21 = 0 , then we get another
Model-1a. Therefore, the Model-1 reduces to a production-inventory model for deterio-
rating items with stock dependent breakability/deterioration. So, the total pro�t can be
obtain by optimizing the Eq. (3.20) with b11 = 0 and b21 = 0

3.3. Model-1b: Model with two items without breakability. In the above Model-
1, if we take the parametric value of deterioration which is directly related to stock and
time is equal to zero i.e. b10 = 0, b11 = 0,b20 = 0, b21 = 0, then we get a another
Model-1b. Therefore, the Model-1 reduces to a production-inventory model with out
deteriorating item. As b10,b11, b20,b21 appears in the denominator of the expression of
(3.20) So, the total pro�t can not obtain by optimizing the Eq. (3.20) by directly putting
with b10 = 0,b11 = 0, b20 = 0, b21 = 0. Thus, for the total pro�t of Model-1b can be
obtain by omitting the breakability term from the expression of 1 and 2 and processing
the same way as before in Model-1.

3.4. Model-1c: Model with two breakable items with constant demand. In the
above Model-1, if we take the the parametric value of demand which is directly related to
the time is equal to zero i.e. b1 = 0,b2 = 0, then we get a another Model-1c. Therefore,
the Model-1 reduces to a production-inventory model for breakable item with constant
demand . So, the total pro�t can be obtain by optimizing the Eq. (3.20) with b1 = 0
and b2 = 0.
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3.5. Model-1d: Model two breakable items with constant holding cost. In the
above Model-1, if we take the the parametric value of holding cost which is directly
related to the time is equal to zero i.e. C11 = 0,C21 = 0, then we get a another Model-1d.
Therefore, the Model-1 reduces to a production-inventory model for breakable item with
constant holding cost. So, the total pro�t can be obtain by optimizing the Eq. (3.20)
with C11 = 0 and C21 = 0.

3.6. Model-1e: Model with two breakable items with constant set-up cost.

In the above Model-1, if we take the the parametric value of setup cost which is directly
related to the production rate is equal to zero i.e. C31 = 0,C41 = 0, then we get a another
Model-1e. Therefore, the Model-1 reduces to a production-inventory model for breakable
item with constant set up cost. So, the total pro�t can be obtain by optimizing the Eq.
(3.20) with C31 = 0 and C41 = 0.

4. Mathematical formulation of the proposed model with single

item:

4.1. Model-2: Model with single item. In real life, the manager of a production
�rm always wants to produce more quantity through a long-run process by imposing
over-time to its labour as well as machinery items. As a result, there may aries di�erent
types of di�culties in the production process which results the production of perfect
quality item as well as defective item. These defective items are reworked instantly at
a per unit cost to make the product as new as perfect one to maintain the brand image
of the manufacturer. The production of the defective items increases with time and the
reliability parameter of the produced item. The parameter r1 is the reliability indicator
of the item-1. The production system became more stable and reliable , if r1 decreases i.e.
smaller value of r1 provides the better quality product and produced smaller imperfect
quality unites.
The inventory levels decreases due to demand and deterioration. Thus, the change of
inventory level at any time t can be represented by the following di�erential equation:

dq1(t)

dt
= P1 −D1 −B1(q1 , t)

i.e. P1(t) = q̇1 +D1 +B1(q1, t)

(4.1) with q1(0) = −S1 and q1(T ) = 0 , where D1 ≡ D1(t)

where D1 is the demand function of time t and is of the form D1(t) = a1 + b1t .
The end condition q1(0) = −S1 and q1(T ) = 0 indicate that at time t = 0 the maximum
shortages is −S1 i.e. the inventory starts with shortages at time t = 0. As P1 and
D1 are the function of time t and combined e�ect of theses two the shortages reaches
to zero and the inventory build-up as P1(t) > D1 + B1(q1 , t) in the �rst part of the
cycle. After some time, as demand is a function of time t, D1 is more than the combined
e�ect of D1 + B1(q1, t) i.e. the accumulated stock decreases as P1(t) < D1 + B1(q1 , t)
and ultimately the stock reaches to zero.
The corresponding pro�t function, incorporation the in�ation and time value of money
during the time duration [0, T ] is given by

Zp =

∫ T

0

e−µt
[
Sp1D1 − Cp1(r1, t)P1(t)− Cd1r1P1(t)− Ch1(t)q1 − C3(P1(t))/T − Sh1S1

]
dt

=

∫ T

0

e−µt
[
Sp1D1 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− χ(r1)− λ1(q̇1 +D1 +B1)

2 − (C10

+C11t)q1 − {C30 + C31(q̇1 +D1 +B1)}/T − Sh1S1

]
dt(4.2)
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=

∫ T

0

F (q1 , q̇1 , t)dt

where F (q1, q̇1, t) = e−µt
[
Sp1D1 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− χ(r1)− λ1

(q̇ +D1 +B1)
2 − (C10 + C11t)q − {C30 + C31(q̇1 +D1 +B1)}/T − Sh1S1

]
Now our problem is to �nd the path of q1(t) and P1(t) such that F (q1, q̇1, t) is to be
maximized. Now, for �nd the optimal path, we have from the Euler-Lagranges equation
for the maximum value of F (q1, q̇1, t) is

∂F

∂q1
− d

dt
(
∂F

∂q̇1
) = 0(4.3)

using (4.2), we have,

q̈1 − µq̇1 − (b10 + µ)b10q1 = H1(t)(4.4)

where

H1(t) = a1(µ+ b10)− b1 − b11 +
(Cr1 + r1Cd1 + C31/T )(µ+ b10) + C10

2λ1
+ t[

b1(µ+ b10) + b11(b10 + µ) +
C11

2λ1
]

= K1 +K2t

where K1 = a1(µ+ b10)− b1 − b11 +
(Cr1 + r1Cd1 + C31/T )(µ+ b10)

2λ1

K2 =
[
b1(µ+ b10) + b11(b10 + µ) +

C11

2λ1
]

The complementary function of the Eq. (4.4) is C
′
1e

(b10+µ)t + C
′
2e

−b10t, where C
′
1 and

C
′
2 are arbitrary constants and the particular integral is given by the

1
D2−µD−(µ+b10)b10

H1(t). Here D(≡ d
dt
) represents the di�erential operator.

Therefore, the complete solution of the Eq.(4.4) can be represented as

q1(t) = C
′
1e

(b10+µ)t + C
′
2e

−b10t − 1

K2
3

[
K1K3 +K2

(
K3t− µ

)]
and the corresponding rate is

P1(t) = K4e
(b10+µ)t +K5t+K7,(4.5)

where, K3 = b10(b10 + µ),K4 = C
′
1(2b10 + µ),K5 = (b1 + b11 −

b10K2

K3
),

and K7 =
1

K2
3

(a1K
2
3 + b10K2µ− b10K1K3 −K2K3)

Using the boundary conditions given with q1(0) = −S1 and q1(T ) = 0 in the expression

of q1(t),we can get the value of C
′
1 and C

′
2. Substituting the value of q1(t) and P1(t) in

the expression of (4.2), the corresponding pro�t function can be expressed as

Zp =

∫ T

0

e−µt
[
Sp1D1 − (Cr1 + Cd1r1)(q̇1 +D1 +B1)− χ(r1)− λ1(q̇1 +D1 +B1)

2

−(C10 + C11t)q1 − {C30 + C31(q̇1 +D1 +B1)}/T − Sh1S1

]
dt
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= Sp1
[
− a1

(e−µT − 1)

µ
− b1

(e−µT − 1 + µTe−µT )

µ2

]
− (Cr1 + r1Cd1)

[K4(e
b10T − 1)

b10

+ K5

(−Te−µT
µ

− e−µT

µ2
+

1

µ2
) +

K7

µ
(1− e−µT )

]
+
[
N1 +N2

eCA(r1max−r1)/(r1−r1min)](e−µT − 1

µ
) + λ1

[
(K4e

(b10+µ)T +K5T +K7)
2 e

−µT

µ
−

(K4 +K7)
2

µ
+

2

µ2
{K

2
4 (b10 + µ)

(2b10 + µ)
(e(2b10+µ)T − 1) +

K4K5

b10
(eb10T − 1) +

K4K5

b10

(b10 + µ){Te
b10T

b10
− eb10T

b210
+

1

b210
}+ K4K7(b10 + µ)

b10
(eb10T − 1)− K5K7

µ
(e−µT − 1)}]

−C10

[C′1
b10

(eb10T − 1)− C
′
2

(b10 + µ)
(e−(b10+µ)T − 1) +

K1

K3µ
(e−µT − 1) +

1

K2
3

(K1K3

+ K2(K3T − µ))
e−µT

µ
+

K2

K3µ2
(e−µT − 1)− 1

µK3
2 (K1K3 −K2µ)

]
− C11

[
C
′
1(
Teb10T

b10
− eb10T

b210
+

1

b210
) + C

′
2(
−Te−(b10+µ)T

(b10 + µ)
− e−(b10+µ)T

(b10 + µ)2
+

1

(b10 + µ)2
)

− K1

K3
(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
)− K2µ

K2
3

(
−Te−µT

µ
− e−µT

µ2
+

1

µ2
) +

K2

K3
(
−T 2e−µT

µ

− 2Te−µT

µ2
− 2

µ3
e−µT +

2

µ3
)
]
− 1

T
[
C30

µ
(1− e−µT ) + C31(

K4

b10
(eb10T − 1)

+ K5(−
−TeµT

µ
− e−µT

µ2
+

1

µ2
) +

K7

µ
(1− e−µT ))]− Sh1S1(

1− e−µT

µ
)(4.6)

4.2. Model-2a: Model with single stock-dependent breakable item. In the
above Model-2, if we take the the parametric values of breakability/deterioration which
are directly related to the time equal to zero i.e. b11 = 0, then we get another Model-2a.
Therefore, the Model-2 reduces to a production-inventory model for deteriorating items
with stock dependent breakability/deterioration. So, the total pro�t can be obtained by
optimizing the Eq. (4.6) with b11 = 0

4.3. Model-2b: Model with single non-breakable item. In the above Model-2, if
we take the the parametric value of deterioration which is directly related to stock and
time is equal to zero i.e. b10 = 0, b11 = 0, then we get a another model-2b. Therefore,
the Model-2 reduces to a production-inventory model with out deteriorating item. As
b10, b11 appears in the denominator of the expression of (4.6), So the total pro�t can
not obtain by optimizing the Eq. (4.6) by directly putting with b10 = 0, b11 = 0. Thus,
for the total pro�t of Model-2b can be obtain by omitting the reliability term from the
expression of (4.6) and processing the same way as before in Model-2.

4.4. Model-2c: Model with single breakable item with constant demand. In
the above Model-2, if we take the the parametric value of demand which is directly related
to the time is equal to zero i.e. b1 = 0, then we get a another Model-2c. Therefore,
the Model-2 reduces to a production-inventory model for breakable item with constant
demand . So, the total pro�t can be obtain by optimizing the Eq. (4.6) with b1 = 0.
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4.5. Model-2d: Model with single breakable item with constant holding cost.

In the above Model-2, if we take the the parametric value of holding cost which is directly
related to the time is equal to zero i.e. C11 = 0, then we get a another Model-2d.
Therefore, the Model-2 reduces to a production-inventory model for breakable item with
constant holding cost. So, the total pro�t can be obtain by optimizing the Eq. (4.6) with
C11 = 0.

4.6. Model-2e: Model with single breakable item with constant set-up cost.

In the above Model-2, if we take the the parametric value of setup cost which is directly
related to the production rate is equal to zero i.e. C31 = 0, then we get a another Model-
2e. Therefore, the Model-2 reduces to a production-inventory model for breakable item
with constant set up cost. So, the total pro�t can be obtain by optimizing the Eq. (4.6)
with C31 = 0.

5. Solution procedure:

In section 3.2, we already prove that there exists a path q = q1(t) and q = q2(t) lying
between the interval [0, T ] for which Zp is maximum. In this problem, only the reliability
indicator is the decision variable and others parameters are known, so the pro�t function
Zp given by (3.20) and (4.6) are the function of a two variable r1 and r2 for Model-1
and single variable r1 for Model-2 respectively. So, there are two method for �nding
the optimal value of r1 and r2. First we discussed the analytical method for �nding the
optimal value of r1 and r2. To �nd the optimal value of r1 and r2, the �rst order partial
derivative of the pro�t function with respect to r1 and r2 are made equal to zero. Thus for
the Model-1, we get two di�erent transcendental equation on r1 and r2 and for Model-2,
we get one transcendental equation on r1 and solve using Newton-Raphson method. Now
to �nd the second order derivative of Zp with respect to r1 and r2 are calculate separately
for both the models. Both the value of second order derivative with to the calculated r1

and r2 value are less than zero i.e.
∂2ZT
∂r21

< 0,
∂2ZT
∂r22

< 0, ∂
2ZT

∂r21

∂2ZT

∂r22
−
( ∂2ZT
∂r1∂r2

)2
> 0 for

model-1 and
d2ZT
dr21

< 0 for Model-2. So for both the model, we conclude that both the

pro�t function are maximized and the corresponding pro�t can be calculated by putting
the value of r1 and r2 respectively for both the models. Also the pro�t functions are
optimized using LINGO-13 software and the result obtained are same as those obtained
by analytical method. Therefore, we conclude that the result obtained by the above
mentioned procedure is a global optimal solution for di�erent models.

6. Numerical Experiment:

Model-1: The following parametric value have been used to validate the model:
a1 = 60; b1 = 50; λ1 = 0.05; Cr1 = 4; Cd1 = 4; C10 = 1, C11 = 0.02; C30 = 10;
C31 = 0.02; CA = 0.002; Sp1 = 75; b10 = 0.05; b11 = 1.5; r1max = 0.9; r1min = 0.1
N1 = 200; N2 = 30; T = 12; Sh1 = 1.02; S1 = 10;S2 = 20; µ = 0.03;M = 2000; a2 = 65;
b2 = 55; λ2 = 0.06; Cr2 = 5; Cd2 = 5; C20 = 2, C21 = 0.03; C40 = 11; C41 = 0.03;
Sp2 = 76; b20 = 0.06; b21 = 1.6; r2max = 0.9; r2min = 0.1, Sh2 = 1.03; N3 = 205;
N4 = 32;
Model-2: In this model i.e.,only one item is considered. In this case, we consider the
inputs of 1st item and all the parameters are same as Model 1.
With the above input data, the optimum values of r1 and r2 and the corresponding value
of pro�t function for both the models are obtained and presented in Tables-1 and 2.
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Table-1: Optimum results of Models-1

Model-1 Model-1a Model-1b Model-1c Model-1d Model-1e

r1 0.1065489 0.1066123 0.107523 0.107528 0.101572368 0.124578
r2 0.1064327 0.1066529 0.107439 0.157423 0.1792436 0.14132563
Zp 609575.45 611359.89 702204.56 120451.97 617561.24 624578.57

Table-2: Optimum results of Models -2

Model-2 Model-2a Model-2b Model-2c Model-2d Model-2e

r1 0.1065357 0.1066117 0.1081474 0.0059423 0.1065271 0.1065355
r2 −− −− −− −− −− −−
Zp 307580.8 307731.6 398616.8 50141.1 315486 307629

With the optimal values of r1 and r2, di�erent pictorial representations of inventory,
production and demand against time, pro�t and development cost against reliability
indicator , unit production cost and set-up cost against time for Model-1 are depicted in
Figs.1-6, respectively. Similar graphical representation for Model-2 are given in Figs.7-9.

Figure 1. Time vs. production, demand and inventory of item-1 in Model-1

Figure 2. Time vs. production, demand and inventory of item-2 in Model-1
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Figure 3. Time vs. unit production cost and set-up cost of item-1 in
Model-1

Figure 4. Time vs. unit production cost and set-up cost of item-2 in
Model-1

Figure 5. Reliability vs.developement cost and Pro�t of item-1 (Model-1)

7. Discussion:

For the presumed parametric values, it is very clear that pro�ts for the models without
damageability i.e. Model-1b and Model-2b gives the more pro�ts than the corresponding
models with damageability models such as Model-1, Model-1a, Model-2 and Model-2a.
It is as per expectation of the real life phenomena. It occurs because pro�ts decreases
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Figure 6. Reliability vs.developement cost and Pro�t of item-2 (Model-1)

Figure 7. Time vs. production, demand and inventory for Model-2

Figure 8. Time vs. set-up cost and unit production cost for Model-2

due to damageability of the units. Also from the Tables-1 and -2, it is observed that
the models with stock dependent breakable items i.e. Model-1a and Model-2a give more
pro�ts than the corresponding models of breakable items i.e. Model-1 and Model-2. It is
because the damageability rates for breakable items with both stock and time dependent
breakability are higher than that of stock dependent breakability.

From Tables -1 and -2 it can be observe that the pro�t for the time dependent demand
i.e Model -1 and -2 is greater than the constant demand i.e Model -1c and -2c, it can be
explained from the real life situation that if demand increases with time then the pro�t
will be more.It is also observed from Tables -1 and -2 that the pro�ts for the constant
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Figure 9. Reliability vs. pro�t and development cost for Model-2

holding cost and constant set up cost i.e pro�ts for Model -1d,Model -2d,Model -1e and
Model -2e are more than the pro�ts for Model -1 and -2.It can be justi�ed from the real
fact that if unit holding cost and set up cost are constant than the retailer has to pay
less amount for holding cost and set up cost and as a result the retailer gets more pro�t.
Again process reliability indicators plays an important role for the pro�t making imper-
fect production system. Reliability indicator of a imperfect production process can be
controlled using high quality machineries and skilled and e�cient manpowers workers.
In our present investigation, demand of both models are time dependent. For both the
models, production rate increases with time as demand increases with time. This phe-
nomenon is justi�ed by our pictorial representation i.e. Figs.-1,-2 and -7. It is observed
from the Figs.1,2,7 that as the terminal conditions for stock are q1(0) = −10, q1(T ) = 0,
q2(0) = −20, q2(T ) = 0 for Model-1 and q1(0) = −10 and q1(T ) = 0 for Model-2, initially
when time t = 0 shortages occurs at maximum level and as the demand and production
dependent on time t and due to their combine e�ect, the shortages reach to zero after
certain time. Due to this e�ect, the inventory is built-up as production is greater than
the combine e�ect of demand and damageability. But after some time when considerable
stock is built-up i.e., when the stock level becomes highest,production is discontinued.
After this, to meet the demand, after allowing breakability, stock gradually reduces and
ultimately becomes zero at t = T . Again from the Figs.-5,-6 and-9, it is observed that
optimum pro�t ZT is attained for a particular value of the process reliability r. Also it is
noticed that the pro�t deceases with increasing process reliability,since reliability is de-
�ned as the ratio of number of damageable item with total items. Since the breakability
increases with time i.e. damageability increases with time, so the pro�t is decreases with
increasing reliability. This Phenomenon is also agree with the real life situation. Again
from this �gure, we observed that for some initial increasing value of r, the development
cost sharply decreases and then become almost constant for higher values of r.Initially
the pro�t become maximum and then decreases with increasing reliability. As set-up cost
and production cost are partially production dependent, and production is time depen-
dent, set-up cost and production cost increases with increasing time.These observation
are found from the Figs.-3,-4 and-8.

8. Conclusions and Future Research work:

In this paper, for the �rst time, a multi-item production-inventory model with imperfect
production process is considered for a breakable or deteriorating item over �nite time
horizon, where the process reliability indicator of the production process together with
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the production rate is controllable. For the present models, we observed that an opti-
mum reliability indicator lures the maximum pro�t for an item having time dependent
demand. Also it is found from our �ndings that minimum unit production cost for an
item does not guaranty for giving maximum pro�t always. From the present models, it
can be concluded that optimal control of production rate reduces holding cost as well as
damageability which in turn increases pro�t separately for breakable/deteriorating items.
The present investigation reveals that process reliability indicator is an important fac-
tor which determines the production rate and thus determining the optimal production
path, unit production cost and optimal pro�t for the production-inventory managers.
Here we formulate two types of models with shortages. First model is for two items with
shortages and second model is for single item with shortages. The unit production cost
is a function of production rate, raw material cost, labour charge, wear and tear cost and
product reliability indicator. The �rst model is formulated as optimal control problems
for the maximization of total pro�ts over the planning horizon with budget constraint
and optimum pro�t with pro�ts along with optimum reliability indicator(r) are obtained
using Euler-Lagrange equations based on variational principle.The second model is also
solved under the same assumptions and using the same technique. Both the problems
have been solved using a non-linear optimization technique -GRG (LINGO-13.0) and
illustrated with some numerical data. Several particular cases are derived and the results
are presented in both tabular and graphical forms. Finally, some sensitivity analyses
can be made with respect to di�erent parameters.The present models can be extended
to fuzzy environment taking constant part of holding cost, set-up cost, etc as fuzzy in
nature.Now a days due to inherent various and highly uncertinity of real life informa-
tions/data , impreciseness of fuzzy set i.e type-2 fuzzy sets in quite popular. Hence the
present problem can be solved with type-2 fuzzy inventory cost,etc.This is a new area of
research in which integrand of a �nite integral is fuzzy or type-2 fuzzy and variational
principle is applied.
More-over with the deterministic integrand and the limits of a �nite integral as fuzzy,
models can be formulated and solved using Fuzzy Riemann integral, not using variational
principle.
The present model can also be extended to multi-period models where period starts with
inventory and end with shortages or starts with inventory and end with inventory or
di�erent variations can be done with respect to shortages.
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Abstract

Three point estimators and two interval estimators of P (Y < X) are
derived when X and Y are independent Lévy random variables. Their
performance with respect to relative biases, relative mean squared er-
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1. Introduction

Let X be a Lévy random variable with scale parameter σx. Then the probability
density function (pdf) and the cumulative distribution function (cdf) of X are:

f (x, σx) =

√
σx
2π
x−

3
2 exp

(
−σx

2x

)
and

F (x, σx) = 2

[
1− Φ

(√
σx
x

)]
,

respectively, for x > 0 and σx > 0, where Φ(·) denotes the standard normal cdf. Accord-
ing to O'Reilly and Rueda [28], 1

X
is a gamma random variable with shape parameter 1

2

and scale parameter 2
σ
. Lévy distribution has no moments.
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Lévy distribution and the more general alpha-stable distribution have received ap-
plications in many areas, including dispersive transport in disordered semiconductors,
stock and stock-indexes returns, linear dynamical systems, income distribution, stochas-
tic arti�cial neural networks, many-particle quantum systems, oil pricing time-series,
distributions of stochastic payo� variations, real tra�c �ow, satellite magnetic �eld mea-
surements, models for circular data, models of asset trading, directed percolation with
incubation times, earthquake slip spatial distributions, models for �nancial markets with
central regulation, long correlation times in supermarket sales, edge turbulence of fu-
sion devices, network tra�c behavior in switched Ethernet systems, modeling individual
behavior in a large marine predator, evolutionary programming using mutations, distri-
bution of marks in high school, fractal structures, models for �sh locomotion, distribution
of economical indices, south Spain seismic series, geophysical data analysis, supermarket
sales, velocity di�erence in systems of vortex elements, currency exchange market, ran-
dom �eld models for geological heterogeneity, structural reorganization in rice piles, and
wave scattering from self-a�ne surfaces. Three of the most recent applications relate
to daily price �uctuations in the Mexican �nancial market index (Alfonso et al. [1]),
observations of anomalous di�usion (Sagi et al., 2012), and bistable systems (Srokowski
[33]).

In the stated areas, it is of interest to estimate the probabilityR = P (Y < X) when X
and Y are independent Lévy random variables. For example, X and Y could represent:
stock returns for two di�erent commodities; oil prices in two di�erent countries; tra�c at
two di�erent locations; earthquake magnitudes at two di�erent locations; marks at two
di�erent high schools; and, so on.

Estimation of P (Y < X) is widely known as stress-strength modeling: if X denotes
the stress that a system is subjected to and Y the strength of the system then P (Y < X)
is the probability of the failure of the system. Many papers have investigated estimation
of P (Y < X) when X and Y arise from a speci�c distribution. For details, see Awad and
Gharraf [4], Surles and Padgett [34] for the case X,Y are Burr distributed; Constantine
et al. [11], Ismail et al. [20] for the case X,Y are gamma distributed; Obradovic et al.

[27] for the case X,Y are geometric-Poisson distributed; Babayi et al. [5] for the case
X,Y are generalized logistic distributed; Kundu and Raqab [22] for the case X,Y are
generalized Rayleigh distributed; Saracoglu et al. [32] for the case X,Y are Gompertz
distributed; Nadar et al. [25] for the caseX,Y are Kumaraswamy distributed; Downtown
[14], Reiser and Guttman [30] for the case X,Y are normal distributed; Genc [17] for
the case X,Y are Topp-Leone distributed; McCool [24] for the case X,Y are Weibull
distributed. There are also semiparametric and nonparametric methods for estimating
P (Y < X). Kotz et al. [21] provide an excellent review of known work.

There has not been much work on the estimation of R = P (Y < X) when X and Y
are independent Lévy random variables. The only paper we are aware of is Ali and Woo
[3]. But the estimators given in Ali and Woo [3] are not those for R. A related paper by
Ali et al. [2] studies the distribution of X/(X + Y ).

In this note, we provide point as well as interval estimators for R = P (Y < X). The
point estimators considered are: maximum likelihood estimator, uniformly minimum
variance unbiased estimator (UMVUE) and Bayes estimator taken as the mean of the
posterior distribution of R given suitable priors. The interval estimators considered are:
asymptotic maximum likelihood estimator and bootstrap based percentile estimator. The
performance of these estimators is assessed by simulation studies as well as by a real data
application.
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2. Point estimators of R

In this section, we give three point estimators for R. Their performances are com-
pared by a simulation study in Section 5.1. Throughout, we suppose X1, X2, . . . , Xn and
Y1, Y2, . . . , Ym are independent random samples from the Lévy distribution with scale
parameters σx and σy, respectively.

2.1. Maximum likelihood estimator of R. The maximum likelihood estimators of
σx and σy are:

σ̂x =
n

n∑
i=1

1

Xi

and

σ̂y =
m

m∑
j=1

1

Yj

,

respectively. Ali and Woo [3] show that:

R =
2

π
sin−1 1√

1 +
σy
σx

.

Thus, the maximum likelihood estimator of R follows by the invariance property:

R̂ =
2

π
sin−1 1√

1 +
σ̂y
σ̂x

.(2.1)

2.2. UMVUE of R. To �nd the UMVUE of R, we use results in Ismail et al. [20]. It

is easy to see that

(
n∑
i=1

1/Xi,

m∑
j=1

1/Yj

)
is complete and su�cient for (σx, σy). Let

Φ(X,Y ) =

{
1, if 1

X
< 1

Y
,

0, if 1
X
> 1

Y
.

Then, one can see that Φ(X,Y ) is an unbiased estimator of R. It follows by Lehmann-
Sche�e theorem (see page 369 in Casella [8]) that:

R̃ = E

(
Φ(X,Y )

∣∣∣∣∣
n∑
i=1

1

Xi
,

m∑
j=1

1

Yj

)

is an UMVUE. Since 1
X
, 1
Y
,

n∑
i=1

1

Xi
,
m∑
j=1

1

Yj
are gamma random variables, we have from

Ismail et al. [20] that

R̃ =



∫ 1

0

FW2

(
U

V
w1

)
fW1 (w1) dw1, if U ≤ V,

∫ V
U

0

FW2

(
U

V
w1

)
fW1 (w1) dw1 + 1− FW1

(
V

U

)
, if U > V,

(2.2)
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where W1 ∼ Beta
(
1
2
, n−1

2

)
and W2 ∼ Beta

(
1
2
, m−1

2

)
are beta random variables, U =

n∑
i=1

1

Xi
and V =

m∑
j=1

1

Yj
. If W ∼ Beta(a, b) then its cdf is the incomplete beta function

ratio de�ned by Iw(a, b) =

∫ w

0

ta−1(1 − w)b−1dt/B(a, b), where B(a, b) =

∫ 1

0

ta−1(1 −

w)b−1dt denotes the beta function. So, (2.2) can be expressed as

R̃ =



1

B (1/2, (n− 1)/2)

∫ 1

0

IUw/V

(
1

2
,
m− 1

2

)
w−1/2(1− w)(n−3)/2dw,

if U ≤ V,

1

B (1/2, (n− 1)/2)

∫ V/U

0

IUw/V

(
1

2
,
m− 1

2

)
w−1/2(1− w)(n−3)/2dw

+1− IV/U
(

1

2
,
n− 1

2

)
,

if U > V.

(2.3)

An alternative expression using the series expansion

Iw(a, b) =
wa

B(a, b)

∞∑
k=0

(1− b)kwk

(a+ k)k!
,

where (e)k = e(e+ 1) · · · (e+ k − 1) denotes the ascending factorial, is

R̃ =



1

B (1/2, (n− 1)/2)B (1/2, (m− 1)/2)

·
∞∑
k=0

((3−m)/2)k
(k + 1/2) k!

B

(
k + 1,

n− 1

2

)(
U

V

)k+1/2

,

if U ≤ V,

1

B (1/2, (n− 1)/2)B (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

((3−m)/2)k ((3− n)/2)`
(k + 1/2) (k + `+ 1) k!`!

(
V

U

)`
+1− 1

B (1/2, (n− 1)/2)

∞∑
k=0

((3− n)/2)k
(k + 1/2) k!

(
V

U

)k+1/2

,

if U > V.

(2.4)

This expression can be used to compute measures like the variance, skewness and kurtosis

of R̃. For example, using equation (6.455.1) in Gradshteyn and Ryzhik [18], one can show



961

that

E
(
R̃2
)

=
1

B2 (1/2, (n− 1)/2)B2 (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

((3−m)/2)k ((3−m)/2)`
(k + 1/2) k! (`+ 1/2) `!

·B
(
k + 1,

n− 1

2

)
B

(
`+ 1,

n− 1

2

)
·I (k + `+ 1,−k − `− 1)

+
1

B2 (1/2, (n− 1)/2)B2 (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

∞∑
p=0

∞∑
q=0

((3−m)/2)k
(k + 1/2) k!

·
((3− n)/2)` ((3−m)/2)p ((3− n)/2)q
(k + `+ 1) `! (p+ 1/2) (p+ q + 1) p!q!

J (`+ q,−`− q)

+1 +
1

B2 (1/2, (n− 1)/2)

∞∑
k=0

∞∑
`=0

((3− n)/2)k
(k + 1/2) k!

·
((3− n)/2)`
(`+ 1/2) `!

J (k + `+ 1,−k − `− 1)

+
2

B (1/2, (n− 1)/2)B (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

((3−m)/2)k
(k + 1/2) k!

·
((3− n)/2)`
(k + `+ 1) `!

J (`,−`)

− 2

B2 (1/2, (n− 1)/2)B (1/2, (m− 1)/2)

·
∞∑
k=0

∞∑
`=0

∞∑
p=0

((3−m)/2)k
(k + 1/2))k!

·
((3− n)/2)` ((3− n)/2)p
(k + `+ 1) `! (p+ 1/2) p!

J

(
`+ p+

1

2
,−`− p− 1

2

)
− 2

B (1/2, (n− 1)/2)

∞∑
k=0

((3− n)/2)k
(k + 1/2) k!

J

(
k +

1

2
,−k − 1

2

)
,

where

I(α, β) =
2α+βσ

n/2
x σ

m/2
y Γ (α+ β + (m+ n)/2)

(σx + σy)α+β+(m+n)/2 (α+ n/2) Γ(m/2)Γ(n/2)

·2F1

(
1, α+ β +

m+ n

2
;α+

n

2
+ 1;

σx
σx + σy

)
and

J(α, β) =
2α+βΓ (α+ n/2) Γ (β +m/2)

σαxσ
β
yΓ(m/2)Γ(n/2)

− I(α, β),
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where

Γ (a) =

∫ ∞
0

ta−1 exp(−t)dt

and

2F1 (a, b; c;x) =

∞∑
k=0

(a)k (b)k
(c)k

xk

k!

denote the gamma and Gauss hypergeometric functions, respectively. So, the variance of

R̃2 is E
(
R̃2
)
−R2.

2.3. Bayes estimator of R. Suppose the scale parameters, σx and σy, have the fol-
lowing gamma priors:

σx ∼ Γ
(r1

2
, λ1

)
and σy ∼ Γ

(r2
2
, λ2

)
.

There are several reasons why we have chosen gamma priors: i) the resulting posterior
pdfs of σx and σy,

σx|x ∼ Γ

(
n+ r1

2
, λ1 +

1

2
u

)
and σy|y ∼ Γ

(
m+ r2

2
, λ1 +

1

2
v

)
,

where u =

n∑
i=1

1

Xi
and v =

m∑
i=1

1

Yi
, belong to the same class; ii) According to Felsenstein

[16], assuming a prior distribution �of rates such as a gamma distribution or lognormal
distribution has deservedly been popular�; iii) According to Lambert et al. [23], gamma
priors are �the most common used prior distribution for variance parameters, not least
because it is used in many of the examples provided with the WinBUGS software�;
iv) According to page 69 in Congdon [10], there has �been considerable debate about
appropriate priors for variance and precision parameters . . . the most common option
is a gamma�; v) According to Dorfman and Karali [13], the gamma prior �on the error
variance term is a standard one�.

If we suppose σx and σy are independent then the joint posterior pdf of σx and σy is:

f (σx, σy|x, y) = σ
r1+n

2
−1

x

(
1

2
u+ λ1

) r1+n
2

Γ
(r1 + n

2

) exp

(
−σx

[
1

2
u+ λ1

])

· exp

(
−σy

[
1

2
v + λ2

])
σ

r2+m
2
−1

y

(
1

2
v + λ2

) r2+m
2

Γ
(r2 +m

2

) .

Thus, the posterior pdf of R is:

fR (r|x, y) = C

cot
(π

2
r
)r2+m−1

[
1 + cot

(π
2
r
)2]

[(
1

2
u+ λ1

)
+

(
1

2
v + λ2

)
cot
(π

2
r
)2]n+m+r1+r2

2

,

where

C = π

(
1

2
u+ λ1

) r1+n
2

Γ
(r1 + n

2

)
(

1

2
v + λ2

) r2+m
2

Γ
(r2 +m

2

) Γ
(r1 + r2 +m+ n

2

)
.
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Under the mean squared error loss function, the Bayes estimator of R is:

R̂Bayes =

∫ 1

0

rfR (r|x, y) d

= C

∫ 1

0

r

cot
(π

2
r
)r2+m−1

[
1 + cot

(π
2
r
)2]

[(
1

2
u+ λ1

)
+

(
1

2
v + λ2

)
cot
(π

2
r
)2]n+m+r1+r2

2

dr.(2.5)

Analytical solutions for the above integral are not available.

3. Interval estimators of R

In this section, we give two interval estimators for R. Their performances are com-
pared by a simulation study in Section 5.2. Throughout, we suppose X1, X2, . . . , Xn and
Y1, Y2, . . . , Ym are independent random samples from the Lévy distribution with scale
parameters σx and σy, respectively.

3.1. Asymptotic con�dence interval. For large sample sizes, a con�dence interval
for R can be obtained based on maximum likelihood estimation. For this purpose, we
�rst obtain an asymptotic distribution of the maximum likelihood estimators, σ̂x and σ̂y.

1. Theorem. If n→∞ and m→∞ such that n
m
→ p then(√

n (σ̂x − σy) ,
√
m (σ̂y − σy)

)
→ N (0,Σ) ,

where

Σ =

(
2σ2

x 0
0 2σ2

y

)
.

Proof. The proof is straightforward using asymptotic normality of σ̂x and σ̂y. �

The asymptotic distribution of R̂ can now be easily deduced.

2. Theorem. If n = m and n→∞ then

√
n
(
R̂−R

)
→ N(0, D),

where

D =
4σxσy

π2 (σx + σy)2
.

Hence, a 95 percent asymptotic con�dence interval for R is(
R̂− 1.96

√
D

n
, R̂+ 1.96

√
D

n

)
.(3.1)

Proof. Follows by the delta method (see pages 33-35 of Davison [12]). �
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3.2. Bootstrap con�dence interval. Bootstrap con�dence intervals are useful for
small sample sizes. Here, we propose a percentile based bootstrap con�dence interval
due to Efron [15]. It can be constructed by the following scheme:

(1) From the samples X1, X2, . . . , Xn and Y1, Y2, . . . , Ym, compute the maximum
likelihood estimates, σ̂x and σ̂y;

(2) Using σ̂x, generate a bootstrap sample X∗1 , X
∗
2 , . . . , X

∗
n and similarly using σ̂y

generate a bootstrap sample Y ∗1 , Y
∗
2 , . . . , Y

∗
m. The inversion method was used to

generate samples: this entails inverting the standard normal cdf and routines for
this inversion are widely available even in pocket calculators. From the samples
X∗1 , X

∗
2 , . . . , X

∗
n and Y ∗1 , Y

∗
2 , . . . , Y

∗
m, compute the maximum likelihood estimate

of R, say R̂∗;

(3) Repeat step 2, B times, giving the estimates, say R̂∗1, R̂
∗
2, . . . , R̂

∗
B , of R;

(4) Compute the empirical cdf, say Ĝ(·), of R̂∗1, R̂∗2, . . . , R̂∗B . Then an approximate
95 percent con�dence interval of R is[

Ĝ−1(0.025), Ĝ−1(0.975)
]
,(3.2)

where Ĝ−1(·) denotes the inverse function of Ĝ(·).
Another bootstrap based interval is the bootstrap-t con�dence interval for R. We shall
not consider this here as it performed similarly to the percentile based bootstrap con�-
dence interval.

4. A real data application

As mentioned in Section 1, one application of the Lévy distribution is to model stock
index data. Here, we discuss such an application.

The data are S&P/IFC (Standard & Poor's / International Finance Corporation)
global daily price indices in United States dollars for Egypt and South Africa, the two
largest economies in Africa. The data cover the period from the 1st of January 1996 to
the 31st of October 2008. The data were obtained from the database Datastream.

Following common practice, daily log returns were computed as �rst order di�erences
of logarithms of daily price indices. Let X denote the daily log returns from South Africa
and Y the daily log returns from Egypt. Some summary statistics for the data on X
are: range = 0.078847, �rst quartile = 0.020640, median = 0.026720, and third quartile
= 0.034270. Some summary statistics for the data on Y are: range = 0.086333, �rst
quartile = 0.017030, median = 0.024120, and third quartile = 0.036920. The sample size
for both data sets is 153.

The Lévy distribution was �tted to the data on X and Y by the method of maximum
likelihood. We obtained the estimates σ̂x = 0.02392927 and σ̂y = 0.01898238. The
chisquare and Kolmogorov-Smirnov tests for the �t to the log returns from South Africa
gave the p-values 0.061 and 0.063. The chisquare and Kolmogorov-Smirnov tests for the
�t to the log returns from Egypt gave the p-values 0.051 and 0.077. Since the Kolmogorov-
Smirnov test assumes that the �tted distribution gives the �true� parameter values, the
p-values were computed using Monte Carlo simulation.

Using the �tted estimates of σx and σy, we were able to compute R = P (X < Y ) using
the three point estimation methods. For the maximum likelihood method, we obtained

R̂ = 0.5367768. For the UMVUE, we obtained R̂ = 0.5368976. For the Bayes method,

we obtained R̂ = 0.5367891. It is remarkable that all three estimates are identical up
to the �rst three decimal places. We took λ1 = λ2 = 1 and r1 = r2 = 1 for the Bayes
method. Other choices gave similar results.
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Using the �tted estimates of σx and σy, we were also able to compute R = P (X < Y )
using the two interval estimation methods. Using the asymptotic method, we obtained
the 95 percent con�dence interval (0.4866747, 0.5868788). Using the bootstrap method,
we obtained the 95 percent con�dence interval (0.4969806, 0.577812). The coverage
length is smaller for the bootstrap method. We took B = 500 for the bootstrap method.
Other choices gave similar results.

Both the con�dence intervals contain R = 0.5 as a real value. Hence, there is no
evidence that the daily log returns di�er signi�cantly between South Africa and Egypt.
Further statistical analysis of the data set can be found in Nadarajah et al. [26].

5. Simulation studies

5.1. Simulation study for point estimators of R. Here, we perform a simulation
study to compare the performances of the maximum likelihood estimator, the UMVUE
and the Bayes estimator of R. The performance was assessed in terms of relative biases
and relative mean squared errors. The following scheme was used:

(1) Generate ten thousand samples of {X1, X2, . . . , Xn, Y1, Y2, . . . , Ym};
(2) Compute the estimators, (2.1), (2.2) and (2.5), for each of the ten thousand

samples, say R1i, R2i, R3i for i = 1, 2, . . . , 10000. (2.2) and (2.5) were computed
using the function integrate in R (R Development Core Team [29]);

(3) Compute the relative biases for the three estimators as

Biasj =
1

10000

10000∑
i=1

(Rji −R) /R

for j = 1, 2, 3;
(4) Compute the relative mean squared errors for the three estimators as

MSEj =
1

10000

10000∑
i=1

(Rji −R)2 /R

for j = 1, 2, 3.

We repeated this scheme for m = n = 2, 3, . . . , 100 and (σx, σy) = (1, 1), (1, 2), (1, 5),
(2, 2), (2, 5), (5, 5). For the Bayes estimator, we took λ1 = λ2 = 1 and r1 = r2 = 1, as
in Section 4. Plots of the relative biases, bias1, bias2 and bias3, versus n are shown in
Figure 1. Plots of the relative mean squared errors, MSE1, MSE2 and MSE3, versus n
are shown in Figure 2. The red line in Figure 1 represents the relative biases being zero.

The following observations can be drawn from Figures 1 and 2:

(1) the magnitudes of the relative biases and relative mean squared errors generally
decrease to zero with increasing n. Also the relative biases appear to take both
positive and negative values when σx = σy;

(2) the relative biases for (2.1), (2.2) and (2.5) appear not too di�erent when σx =
σy;

(3) the relative biases for (2.1) and (2.5) appear generally positive when σx < σy;
(4) the relative biases for (2.1) and (2.2) appear smallest when σx < σy;
(5) the relative biases for (2.5) appear largest when σx < σy;
(6) the relative mean squared errors appear smallest, second smallest and largest

for (2.5), (2.1) and (2.2), respectively, for small n;
(7) the relative biases and relative mean squared errors for all three estimators

appear reasonable for all n and parameter values.

We have presented results for limited choices of (σx, σy) and for only one choice of
(λ1, λ2, r1, r2). But the results were the same for a wide range of other choices for
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Figure 1. Relative biases of (2.1) in black, (2.2) in blue and (2.5) in
brown. Top left is for (σx, σy) = (1, 1), top right is for (σx, σy) = (1, 2),
middle left is for (σx, σy) = (1, 5), middle right is for (σx, σy) = (2, 2),
bottom left is for (σx, σy) = (2, 5), and bottom right is for (σx, σy) =
(5, 5).

(σx, σy) and (λ1, λ2, r1, r2), including choices where λ1 6= λ2 and r1 6= r2. Similar results
were also obtained when the gamma priors were replaced by non informative priors. In
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Figure 2. Relative mean squared errors of (2.1) in black, (2.2) in blue
and (2.5) in brown. Top left is for (σx, σy) = (1, 1), top right is for
(σx, σy) = (1, 2), middle left is for (σx, σy) = (1, 5), middle right is for
(σx, σy) = (2, 2), bottom left is for (σx, σy) = (2, 5), and bottom right
is for (σx, σy) = (5, 5).

particular, the magnitude of the relative biases generally decreased to zero with increas-
ing n, the relative mean squared errors generally decreased to zero with increasing n,
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the relative biases for all three estimators appeared reasonable for all n, and the relative
mean squared errors for all three estimators appeared reasonable for all n.

5.2. Simulation study for interval estimators of R. Here, we perform a simulation
study to compare the performances of the asymptotic maximum likelihood and percentile
based bootstrap con�dence intervals for R. The performance was assessed in terms of
coverage probabilities and coverage lengths. The following scheme was used:

(1) Generate ten thousand samples of {X1, X2, . . . , Xn, Y1, Y2, . . . , Ym};
(2) Compute the con�dence intervals, (3.1) and (3.2), for each of the ten thousand

samples, say (L1i, U1i) and (L2i, U2i) for i = 1, 2, . . . , 10000;
(3) Compute the coverage probabilities for the two intervals as

Pj =
1

10000

10000∑
i=1

I

Lji <
2

π
sin−1 1√

1 +
σy
σx

< Uji


for j = 1, 2;

(4) Compute the coverage lengths for the two intervals as

Lj =
1

10000

10000∑
i=1

(Uji − Lji)

for j = 1, 2.

We repeated this scheme for m = n = 1, 2, . . . , 100 and (σx, σy) = (1, 1), (1, 2), (1, 5),
(2, 2), (2, 5), (5, 5). For the bootstrap con�dence interval, we took B = 500, as in Section
4. Plots of the coverage probabilities, P1 and P2, versus n are shown in Figure 3. Plots of
the coverage lengths, L1 and L2, versus n are shown in Figure 4. The red line in Figure
3 represents the 95 percent nominal level.

The following observations can be drawn from Figures 3 and 4:

(1) coverage probabilities generally approach the nominal level with increasing n
and coverage lengths generally decrease with increasing n;

(2) coverage probabilities for (3.2) appear closer to the nominal level for all n < 40.
Thereafter (3.1) and (3.2) appear to perform equally well.

We have presented results for limited choices of (σx, σy) and for only one choice of B.
But the results were the same for a wide range of other choices for (σx, σy) and B > 500.
In particular, the coverage probabilities generally approached the nominal level with
increasing n and the coverage lengths generally decreased with increasing n.

6. Conclusions

In this note, we have studied estimation of R = P (Y < X) when X and Y are
independent Lévy random variables. We have considered three di�erent point estimators
for R: maximum likelihood estimator, UMVUE and Bayes estimator. We have considered
two di�erent interval estimators for R: asymptotic maximum likelihood estimator and
bootstrap based percentile estimator.

Among the three point estimators, the Bayes estimator has the smallest relative mean
squared errors but also the largest relative biases. The maximum likelihood estimator
and the UMVUE have the smallest relative biases. But they do not have the smallest
relative mean squared errors.

Among the two interval estimators, the bootstrap estimator has better coverage prob-
abilities for small n. Both estimators perform equally well for all su�ciently large n.
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Figure 3. Coverage probabilities of (3.1) and (3.2). Top left is for
(σx, σy) = (1, 1), top right is for (σx, σy) = (1, 2), middle left is for
(σx, σy) = (1, 5), middle right is for (σx, σy) = (2, 2), bottom left is for
(σx, σy) = (2, 5), and bottom right is for (σx, σy) = (5, 5).

In Sections 5.1 and 5.2, we have taken m = n for simplicity. But the stated observa-
tions were the same when m 6= n.
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Figure 4. Coverage lengths of (3.1) and (3.2). Top left is for
(σx, σy) = (1, 1), top right is for (σx, σy) = (1, 2), middle left is for
(σx, σy) = (1, 5), middle right is for (σx, σy) = (2, 2), bottom left is for
(σx, σy) = (2, 5), and bottom right is for (σx, σy) = (5, 5).

This is the �rst time estimation of R = P (Y < X) for Lévy random variables has been
studied in a comprehensive manner. Previously only maximum likelihood estimation of
R has been considered for Lévy random variables.
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A more comprehensive study of the estimation of R = P (Y < X) for Lévy random
variables could consider other point as well as interval estimators. These could include
Bayesian highest posterior density intervals (Chen and Shao [9]), interval estimators
based on the signed log-likelihood ratio due to Barndor�-Nielsen [6], interval estimators
based on the modi�ed signed log-likelihood ratio due to Barndor�-Nielsen [7], and robust
estimators based on the theory of bounded in�uence M -estimators (Greco and Ventura
[19]).
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1. Introduction

Several compounding distributions have been proposed in the literature to model life-
time data. Adamidis and Loukas [2] pioneered the two-parameter exponential-geometric
(EG) distribution with decreasing failure rate. Kus [16] de�ned the exponential-Poisson
distribution (following the same idea of the EG distribution) with decreasing failure
rate and discussed various of its properties. Adamidis et al. [1] proposed the extended
exponential-geometric (EEG) distribution which generalizes the EG distribution and dis-
cussed various of its structural properties along with its reliability features. The hazard
rate function (hrf) of the EEG distribution can be monotone decreasing, increasing or
constant. Lai et al. [17] introduced a modi�ed Weibull distribution capable of modeling
a bathtub-shaped hazard rate function (hrf). Mahmoudi and Shiran [19] proposed an
exponentiated Weibull-geometric (EWG) distribution by compounding the EW and geo-
metric distributions more �exible than the EW distribution and studied some of its prop-
erties. Wang and Elbatal [35] discussed a modi�ed Weibull geometric distribution having
monotonically increasing, decreasing, bathtub-shaped, and upside-down bathtub-shaped
hazard rate functions. Finally, Saboor et al. [31] introduced a transmuted exponen-
tial Weibull distribution which have a bathtub-shaped and upside-down bathtub-shaped
hazard rate functions.

The modeling of lifetime data by compounding a life model and a discrete distribution
has been used to construct new lifetime models in the last few years. For some references,
see Silva et al. [27]. In practice, the exponential and Weibull are the most used baseline
models. Suppose that a company has N systems functioning independently and producing
a certain product at a given time, where N is a random variable, which is often determined
by economy, customers demand, etc. The reason for considering N as a random variable
comes from a practical viewpoint in which failure (of a device for example) often occurs
due to the present of an unknown number of initial defects in the system. In this paper,
we focus on the case in which N is a geometric random variable with probability mass
function (pmf) P (N = n) = (1 − p) pn−1, for 0 < p < 1 and n = 1, 2, · · · . We can also
consider that N follows other discrete distributions, such as the binomial, Poisson, etc,
whereas they require to be truncated at zero since N ≥ 1. Another reason by taking N
to be a geometric random variable is that the �optimum� number can be interpreted as
the �number to event�, matching up with the de�nition of a geometric random variable as
suggested by Nadarajah et al. [22]. Other motivations can also be found in Nadarajah et
al. [22]. Readers are referred to [34].

Suppose that {Zi}Ni=1 are independent and identically distributed (iid) random vari-
ables having the EW(α, β, θ) distribution with cumulative distribution function (cdf)
given by

F (x;α, β, θ) = (1− e−(αx)β )θ, x > 0,

and N a discrete random variable having a geometric distribution de�ned before. Let
Z(n) = max {Zi}Ni=1. The cdf and probability density function (pdf) of Z(n) are given by

(1.1) G(x;α, β, θ, p) =
(1− p) (1− e−(αx)β )θ

1− p(1− e−(αx)β )θ

and

(1.2) g(x;α, β, θ, p) = (1− p)θβαβxβ−1e−(αx)β (1− e−(αx)β )θ−1 [1−p(1− e−(αx)β )θ]−2,

respectively, where α, β, θ > 0 and p ∈ [0, 1). The lifetime model de�ned by (1.1) and
(1.2) is called the exponentiated Weibull geometric (EWG) distribution [19]. Hereafter,
let Y be a random variable having the density (1.2) and write Y vEWG(α, β, θ, p).
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In this paper, we de�ne and study a new lifetime model called the transmuted expo-
nentiated Weibull-geometric (�TEWG� for short) distribution. The main feature of this
model is that a transmuted parameter is inserted in (1.2) to give greater �exibility in the
form of the generated distribution. Using the quadratic rank transmutation map stud-
ied by [32], we construct the �ve-parameter TEWG model. We give a comprehensive
description of some mathematical properties of the new distribution with the hope that
it will attract wider applications in reliability, engineering and other areas of research.
The concept of transmuted generator is explained below.

A Quadratic Rank Transmutation Map (QRTM) is de�ned by GR12(u) = u+ λu (1−
u), |λ| ≤ 1, from which the cdf's satisfy F2(x) = (1+λ)F1(x)−λF1(x)2. By di�erentiating
F2(x), we have

(1.3) f2(x) = f1(x) [(1 + λ)− 2λF1(x)] ,

where f1(x) and f2(x) are the pdf's corresponding to the cdf's F1(x) and F2(x), respec-
tively. For λ = 0, we have f2(x) = f1(x).

1.1. Lemma. The function f2(x) given by (1.3) is a well-de�ned density function.

Proof. Rewriting f2(x) as f2(x) = f1(x)[1 − λ{2F1(x) − 1}], we note that f2(x) is
nonnegative. We prove that the integration over its support is equal to one. Considering
that the support of f1(x) is (−∞,∞), we have

∫ ∞
−∞

f2(x)dx = (1 + λ)

∫ ∞
−∞

f1(x)dx− 2λ

∫ ∞
−∞

f1(x)F1(x)dx = 1.

Similarly, for other cases, where the support of f1(x) is a part of the real line, the previous
lemma holds. Hence, f2(x) is a well-de�ned pdf. We call f2(x) the transmuted pdf of a
random variable with baseline density f1(x). This proves the current result.

Many authors constructed generalizations of some well-known distributions by using
the transmuted construction. Aryal and Tsokos [4, 3] de�ned the transmuted generalized
extreme value and transmuted Weibull distributions. Aryal [5] proposed and studied vari-
ous structural properties of the transmuted log-logistic distribution, Shuaib and King [28]
introduced the transmuted modi�ed Weibull distribution, which extends the transmuted
Weibull distribution by [3], and studied some of its mathematical properties and maxi-
mum likelihood estimation of the unknown parameters. Elbatal and Aryal [11] discussed
the transmuted additive Weibull distribution. Elbatal [12, 13] presented the transmuted
generalized inverted exponential and transmuted modi�ed inverse Weibull distributions.
Further, Merovci and Elbatal [20] proposed the transmuted Lindley-geometric distribu-
tion, Merovci et al. [20] de�ned the transmuted generalized inverse Weibull distribution
and Elbatal et al. [10] studied the transmuted exponentiated Fréchet distribution.

The rest of the paper is organized as follows. In Section 2, we provide the pdf, cdf and
survival function (sf) of the new distribution. Some special cases are given in Section 3.
The density of the order statistics is given in Section 4. A mixture representation for
the new pdf is derived in Section 5, where some of its structural properties can be easily
obtained. Section 7 is related to the maximum likelihood estimates (MLEs) and the
asymptotic con�dence intervals for the unknown parameters. Finally, in Section 8, we
present a real data analysis to illustrate the �exibility of the new lifetime model. Some
conclusions are given in Section 9.



976

2. The TEWG Distribution

Let φ = (α, β, θ, p, λ)T . By inserting (1.1) and (1.2) in equation (1.3), the cdf and pdf
of the TEWG distribution are given by

FTEWG(x;φ) =
(1− p)

(
1− e−(αx)β

)θ
1− p

(
1− e−(αx)β

)θ
×

1 + λ− λ

 (1− p)
(

1− e−(αx)β
)θ

1− p
(
1− e−(αx)β

)θ

(2.1)

and

fTEWG(x;φ) = θβαβ(1− p)xβ−1e−(αx)β

×
(

1− e−(αx)β
)θ−1

[
1− p

(
1− e−(αx)β

)θ]−2

×

(1 + λ)− 2λ

 (1− p)
(

1− e−(αx)β
)θ

1− p
(
1− e−(αx)β

)θ

 ,(2.2)

respectively, where p ∈ [0, 1), α, β, θ > 0 and |λ| ≤ 1. If X is a random variable with pdf
(2.2), we use the notation X vTEWG(φ).

We emphasize that the new model (2.2) is obtained by using the transmuted con-
struction applied to a compounding life distribution from the exponentiated Weibull and
geometric distributions.

The sf of X is given by STEWG(x;φ) = 1 − FTEWG(x;φ), whereas its hazard rate
function (hrf) becomes hTEWG(x;φ) = fTEWG(x;φ)/STEWG(x;φ), which is an impor-
tant quantity to characterize life phenomenon. The reversed hazard rate function (rhrf)
of X is given by τTEWG(x;φ) = fTEWG(x;φ)/FTEWG(x;φ).

2.1. Shapes of density and hazard function. The TEWG density (2.2) allows for
greater �exibility of the tails. This function can exhibit di�erent behavior depending on
the parameter values as shown in Figures 1, 2 and 3. They display plots of the pdf of X
for selected parameter values. Figure 1(a,b) and Figure 2(d) reveal that the mode of the
pdf increases as λ, α and θ increases, respectively. Figure 2(c) and 3(e) indicate that the
parameters β and p behave somewhat as scale parameters. Figure 3(f) and 4(g) display
the increasing and bathtub-shaped of the hrf's, respectively.

3. Special Models

The TEWG distribution is a very �exible model that provides di�erent distributions
when its parameters are changed. It contains the following ten special models:

• For λ = 0, then (2.2) reduces to the EWG distribution pioneered by [19].
• The case θ = 1 refers to the transmuted Weibull-geometric distribution.
• For λ = 0 and θ = 1, we have the Weibull-geometric distribution given by [6].
• The transmuted generalized exponential geometric distribution arises as a special
case of the TEWG distribution by taking θ = β = 1.

• The case β = 1 refers to the transmuted exponentiated exponential geometric
distribution.

• Setting λ = 0 and β = 1, we have the exponentiated exponential geometric
distribution given by [18].
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(a) (b)

Figure 1. The TEWG density function: (a) α = 0.5, θ = 1, β =
1.1, p = 0.5 and λ = −1 (dotted line), λ = −0.5 (small dashed line),
λ = 0 (long dashed line), λ = 0.5 (thick line). (b) λ = −0.5, θ = 2, β =
1.1, p = 0.5 and α = 0.1 (dotted line), α = 0.2 (small dashed line),
α = 0.3 (long dashed line), α = 0.4 (thick line).

(c) (d)

Figure 2. The TEWG density function: (c) α = 0.5, θ = 1, p =
0.5, λ = −0.5 and β = 1 (dotted line), β = 2 (small dashed line),
β = 10 (long dashed line), β = 30 (thick line). (d) λ = −0.5, α =
0.5, β = 1, p = 0.5 and θ = 1 (dotted line), θ = 1.5 (small dashed
line), θ = 2 (long dashed line), θ = 4 (thick line).

• For θ = β = 1, it follows the transmuted exponential geometric distribution.
• For λ = 0 and θ = β = 1, we obtain the exponential geometric distribution given
by [2].

• For β = 2, we have the transmuted generalized Rayleigh geometric distribution.
• The case β = 2 and θ = 1 refers to the transmuted Rayleigh geometric distribu-
tion.
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(e) (f)

Figure 3. The TEWG density function: (e) α = 0.5, θ = 2, λ =
−0.5, β = 1.1 and p = 0 (dotted line), p = 0.3 (small dashed line),
p = 0.6 (long dashed line), p = 0.9 (thick line). The TEWG hazard
rate function: (f) Increasing (α = 2.45, β = 1.2, θ = 2.9, p = 0.9, λ =
0.15), decreasing (α = 0.5, β = 0.4, θ = 0.1, p = 0.2, λ = 0.1), bathtub
(α = 0.3, β = 3.3, θ = 0.1, p = 0.8, λ = 1.2) and upside-down bathtub
(α = 2.4, β = 1, θ = 1.3, p = 0.01, λ = 0.5).

4. Order statistics

In this section, we derive closed-form expressions for the pdf of the rth order statistic
of X. Let X1, . . . , Xn be a simple random sample from the TEWG distribution with pdf
and cdf given by (2.1) and (2.2), respectively. Let X(1) ≤ X(2) ≤, . . . ,≤ X(n) denote the
order statistics obtained from this sample. The pdf of Xi:n, say fi:n(x;φ), is given by

(4.1) fi:n(x, φ) =
1

B(i, n− i+ 1)
F (x;φ)i−1 [1− F (x;φ)]n−i f(x;φ),

where F (x;φ) and f(x;φ) are the cdf and pdf of X given by (2.1) and (2.2), respectively,
and B(·, ·) is the beta function. We have

fi:n(x;φ) =
θβαβ(1− p)
B(i, n− i+ 1)

xβ−1e−(αx)βhθ−1

×
[
1− phθ

]−2
{

(1 + λ)− 2λ

[
(1− p)hθ

1− phθ

]}
×
[

(1− p)hθ

1− phθ

{
1 + λ− λ

[
(1− p)hθ

1− phθ

]}]i−1

×
[
1− (1− p)hθ

1− phθ

{
1 + λ− λ

[
(1− p)hθ

1− phθ

]}]n−i
,

where h = 1− e−(αx)β .
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5. Mixture Representation

Based on equation (1.3), we can write

(5.1) f(x) =

∞∑
k=0

[w1k hk+1(x) + w2k hk+2(x)] ,

where w1k = (1 + λ)(1 − p)pk and w2k = −(k + 1)λ(1 − p)2pk. Equation (5.1) reveals
that the density function of X is a mixture of EW densities.

5.1. Moments. Using the mixture representation, we obtain

(5.2) µ′r = E(Xr) =

∞∑
k=0

[w1k E(Y rk+1) + w2k E(Y rk+2)] .

We now provide two explicit expressions for E(Y rk+1). First, Choudhury [7] derived
the closed-form expression

E(Y rk+1) =
(k + 1)θ

αr
Γ

(
r

β
+ 1

)[
1 +

∞∑
i=1

(−1)i ai((k + 1)θ)

(i+ 1)r/β+1

]
,

where ai = ai(γ) = (−1)i (γ − 1) · · · (γ − i)/i! for i = 1, 2, . . .. The in�nite series on the
right hand side converges for all θ > 0.

Second, Nadarajah and Gubta [24] derived an in�nite series representation applicable
for any r > −β real or integer given by

E(Y rk ) =
(k + 1)θ

αr
Γ

(
r

β
+ 1

) ∞∑
i=0

(1− (k + 1)θ)i
i! (i+ 1)(r+β)/β

.

Inserting the last two expressions in (5.2) gives E(Xr)

5.2. Incomplete moments. The answers to many important questions in economics
require more than just knowing the mean of the distribution, but its shape as well. This
is obvious not only in the study of econometrics but in other areas as well.

For lifetime models, it is of interest to known the rth lower and upper incomplete
moments of X de�ned by mr(x) =

∫ x
0
xr f(x)dx and vr(x) =

∫∞
x
xrf(x)dx, respectively,

for any real r > 0. Clearly, these rth incomplete moments are related by vr(x) =
µ′r −mr(x).

Based on equation (5.1), we have

(5.3) mr(x) =

∞∑
k=0

[
w1km

(k+1)
r (x) + w2km

(k+2)
r (x)

]
,

where m
(k+1)
r (x) =

∫∞
x
xr hk+1(x)dx is the rth lower incomplete moment of Yk+1.

Following a result of [23], we obtain

m(k+1)
r (x) = (k + 1) θ α−r β

∞∑
j=0

(−1)j

(j + 1)(r+1)β

(
(k + 1)θ − 1

j

)

× γ
(
r

β
+ 1; (j + 1)(αx)β

)
,(5.4)

where γ(s; t) =
∫ t
0
xs−1 e−xdx is the lower incomplete gamma function. Equation (5.4)

givesmr(x) as a linear combination of incomplete gamma functions evaluated at di�erent
points.
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The main application of the �rst incomplete moment refers to the Bonferroni and
Lorenz curves. These curves are very useful in economics, reliability, demography, insu-
rance and medicine. For a given probability π, they are de�ned by B(π) = m1(q)/(π µ′1)
and L(π) = m1(q)/µ′1, respectively, wherem1(q) can be determined from (5.3) with r = 1
and q = Q(π) is calculated by inverting numerically (2.1).

The amount of scatter in a population is measured to some extent by the totality of
deviations from the mean and median de�ned by δ1 =

∫∞
0
|x − µ′1|f(x)dx and δ2(x) =∫∞

0
|x −M |f(x)dx, respectively, where µ′1 = E(X) is the mean and M = Q(0.5) is the

median. These measures can be determined using the relationships δ1 = 2µ′1F (µ′1;φ))−
2m1(µ′1) and δ2 = µ′1 − 2m1(M), where m1(µ′1) comes from (5.3) with r = 1.

5.3. Generating function. Let Mk+1(t) be the moment generating function (mgf) of
Yk+1. We obtain the mgf of X, say M(t), from equation (5.1) as

M(t) =

∞∑
k=0

[w1kMk+1(t) + w2kMk+2(t)] .

We provide an explicit expression forMk+1(t) when β > 1, which requires the complex
parameter Wright generalized hypergeometric function with p numerator and q denomi-
nator parameters (Kilbas et al., 2006, Equation (1.9)) de�ned by

pΨq

[
(α1, A1) , . . . , (αp, Ap)
(β1, B1) , . . . , (βq, Bq)

; z

]
=

∞∑
n=0

p∏
j=1

Γ (αj +Ajn)

q∏
j=1

Γ (βj +Bjn)

zn

n!
(5.5)

for z ∈ C, where αj , βk ∈ C, Aj , Bk 6= 0, j = 1, p, k = 1, q and the series converges for
1 +

∑q
j=1Bj −

∑p
j=1Aj > 0.

The mgf of Yk+1 (when β > 1) is given by

Mk+1(t) = (k + 1)θ

∞∑
j=0

(−1)j

j + 1

(
(k + 1)θ − 1

j

)
1Ψ0

[ (
1, β−1

)
− ;α t (j + 1)−1/β

]
.(5.6)

Generalized hypergeometric functions are included as in-built functions in most ana-
lytical softwares, so the special function in (5.5) and hence (5.6) can be evaluated by the
softwares Maple, Matlab and Mathematica using known procedures.

6. Residual life and reversed failure rate functions

Given that a component survives up to time t ≥ 0, the residual life is the period beyond
t until the time of failure and de�ned by the conditional random variable X − t|X >
t. In reliability, it is well-known that the mean residual life function and ratio of two
consecutive moments of residual life determine the distribution uniquely [15]. Therefore,
we obtain the rth order moment of the residual life using the general formula

µr(t) =
1

F (t)

∫ ∞
t

(x− t)rf(x;ϕ) dx, r ≥ 1.
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Applying the binomial expansion of (x− t)r and substituting f(x;ϕ) given by (2.2) into
the above formula and using the generalized binomial power series gives

µr(t) =
θβαβ(1− p)

F (t)

r∑
m=0

∞∑
k,j=0

(−1)m+k

(
r

m

)
(j + 1)pj

{
(1 + λ)

((j+1)θ−1

k

)
tm

− λ(1− p)(j + 2)

(
(j+2)θ−1

k

)}∫ ∞
t

xr+β−m−1 e−(k+1)(αx)βdx

=
θ(1− p)
F (t)

r∑
m=0

∞∑
k,j=0

(−1)m+k

(
r

m

)
(j + 1) pj tm

{
(1 + λ)

(
(j+1)θ−1

k

)

− λ(1− p)(j + 2)

(
(j+2)θ−1

k

)}[
Γ( r−m

β
+ 1; (k + 1)(αt)β)

αr−m(k + 1)
r−m
β

+1

]
,(6.1)

where Γ(s; t) =
∫∞
t
xs−1 e−xdx is the upper incomplete gamma function.

Another important characteristic of the TEWG model is the mean residual life (MRL)
function obtained by setting r = 1 in equation (6.1). The importance of the MRL function
is due to its uniquely determination of the lifetime distribution as well as the failure rate
(FR) function. Lifetimes can exhibit IMRL (increasing MRL) or DMRL (decreasing
MRL). The MRL function that �rst decreases (increases) and then increases (decreases)
is usually called bathtub (upside-down bathtub) shaped, BMRL (UMRL). Ghitany [14],
Mi [21], Park [30] and Tang et al. [33], among others, studied the relationship between
the behaviors of the MLR and FR functions of a distribution.

7. Estimation and Inference

Here, we determine the maximum likelihood estimates (MLEs) of the parameters of
the new distribution from complete samples only. Let x1, . . . , xn be a random sample
of size n from the TEWG(x;φ) model, where φ = (α, β, θ, p, λ)T . The log likelihood
function for the vector of parameters φ can be expressed as

`(φ) = n log θ + n log β + nβ logα+ n log(1− p) + (β − 1)

n∑
i=1

log(xi)−
n∑
i=1

(αxi)
β

− 2
n∑
i=1

log

[
1− p

(
1− e−(αx(i))

β
)θ]

+ (θ − 1)

n∑
i=1

log
(

1− e−(αx(i))
β
)

+

n∑
i=1

log

(1 + λ)− 2λ

 (1− p)
(

1− e−(αx(i))
β
)θ

1− p
(

1− e−(αx(i))
β
)θ

 .

The corresponding score function is given by

(7.1) Un(ϕ) =

(
∂`(φ)

∂α
,
∂`(φ)

∂β
,
∂`(φ)

∂θ
,
∂`(φ)

∂p
,
∂`(φ)

∂λ

)T
.
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The log-likelihood can be maximized either directly or by solving the nonlinear likelihood
equations obtained from (7.1), namely:

∂`(φ)

∂α
= nβ

α
− βαβ−1

n∑
i=1

(xi)
β + (θ − 1)

n∑
i=1

e
−(αx(i))

β
βαβ−1(xi)

β(
1−e

−(αx(i))
β
)

+2θp
n∑
i=1

e
−(αx(i))

β
βαβ−1(xi)

β
(
1−e

−(αx(i))
β)θ−1

[
1−p

(
1−e

−(αx(i))
β
)θ]

−2λ
n∑
i=1

1(1+λ)−2λ


(1−p)

(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ




×

 (1−p)θβαβ−1e
−(αx(i))

β
(xi)

β
(
1−e

−(αx(i))
β)θ−1

[
1−p

(
1−e

−(αx(i))
β
)θ]2

 = 0,

∂`(φ)

∂β
= n

β
+ n logα+

n∑
i=1

log(xi)−
n∑
i=1

(αxi)
β log(αxi)

+2pθ
n∑
i=1

(
1−e

−(αx(i))
β)θ−1

e
−(αx(i))

β
(αxi)

β log(αxi)[
1−p

(
1−e

−(αx(i))
β
)θ]

+(θ − 1)
n∑
i=1

e
−(αx(i))

β
(αxi)

β log(αxi)(
1−e

−(αx(i))
β
)

−2λ
n∑
i=1

1(1+λ)−2λ


(1−p)

(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ




×

 θ(1−p)
(
1−e

−(αx(i))
β)θ−1

e
−(αx(i))

β
(αxi)

β log(αxi)[
1−p

(
1−e

−(αx(i))
β
)θ]2

 = 0,

∂`(φ)

∂θ
= n

θ
+

n∑
i=1

log
(

1− e−(αx(i))
β
)

+ 2p
n∑
i=1

(
1−e

−(αx(i))
β)θ

log

(
1−e

−(αx(i))
β)

1−p
(
1−e

−(αx(i))
β
)θ

+
n∑
i=1

1(1+λ)−2λ


(1−p)

(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ




×

 (1−p)
(
1−e−(αx(i))

β)θ
log

(
1−e

−(αx(i))
β)

[
1−p

(
1−e

−(αx(i))
β
)θ]2

 = 0,
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∂`(φ)

∂p
= −n

1−p + 2
n∑
i=1

(
1−e

−(αx(i))
β)θ

[
1−p

(
1−e

−(αx(i))
β
)θ]

−2λ
n∑
i=1

1(1+λ)−2λ


(1−p)

(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ




×


(
1−e−(αx(i))

β)θ(
1−
(
1−e

−(αx(i))
β)θ)

[
1−p

(
1−e

−(αx(i))
β
)θ]2

 = 0,

and

∂`(φ)

∂λ
=

n∑
i=1

1− 2

 (1−p)
(
1−e

−(αx(i))
β)θ

1−p
(
1−e

−(αx(i))
β
)θ


(1 + λ)− 2λ

 (1−p)
(
1−e

−(αx(i))
β
)θ

1−p
(
1−e

−(αx(i))
β
)θ


= 0.

The above equations cannot be solved analytically but statistical software can be used
to solve them numerically, for example, through the R-language or any iterative methods
such as the NR (Newton-Raphson), BFGS (Broyden-Fletcher-Goldfarb-Shanno), BHHH
(Berndt-Hall-Hall-Hausman), NM (Nelder-Mead), SANN (Simulated-Annealing) and L-
BFGS-B (Limited-Memory Quasi-Newton code for Bound-Constrained Optimization).

The modi�ed Anderson-Darling (A∗) and the modi�ed Cramér-von Mises (W ∗) sta-
tistics are widely used to determine how closely a speci�c cdf F (·) �ts the empirical
distribution for a given data set. The statistics A∗ and W ∗ are given by

A∗ =

(
2.25

n2
+

0.75

n
+ 1

)[
−n− 1

n

n∑
i=1

(2i− 1) log (zi (1− zn−i+1))

]
,

and

W ∗ =

(
0.5

n
+ 1

)[ n∑
i=1

(
zi −

2i− 1

2n

)2

+
1

12n

]
,

respectively, where zi = F (y(i)), and the y(i)'s are the ordered observations.
The smaller these statistics are, the better the �t. Upper tail percentiles of the as-

ymptotic distributions of them were tabulated by [25].

8. Application to the carbon �bres

We provide an application to a real data set to prove the �exibility of the TEWG
distribution. We �t the gamma exponentiated exponential (GEE) [29], exponentiated
Weibull�geometric (EWG) [19], extended Weibull (ExtW) [26], Kumaraswamy modi�ed
Weibull (KwMW) [9] and TEWG distributions to a real data on �carbon �bres� [25]. The
parameters of the following distributions are estimated by maximizing the log-likelihood
using the NMaximize procedure in the symbolic computational package Mathematica.
The density functions (for x > 0) associated to these models are given by:

• The GEE density function,

f(x) =
λαδ e−λ x

(
1− e−λ x

)α−1 (− log
(
1− e−λx

))δ−1

Γ(δ)
, λ , α , δ , x > 0.
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(h) (i)

Figure 4. (a) The estimated TEWG density superimposed on the his-
togram for the carbon �bres. (b) The empirical cdf and the estimated
TEWG cdf.

Table 1. MLEs of the parameters (standard errors in parentheses) for
the carbon �bres

Distributions Estimates

GEE (λ , α , δ) 0.26555 10.0365 7.23658
(0.21621) (2.59504) (7.05288)

EWG (α, θ, β, p) 520.24 0.35943 177.132 0.999778
(332.051) (0.02509) (207.54) (0.00262)

ExtW ( a , b , c) 16.1979 0.001 8.05671
(25.7118) (0.938764) (1.65309)

KwMW(α , γ , λ , a , b) 0.14981 1.7994 0.49987 0.64975 0.171114
(0.326517) (2.40813) (0.616749) (1.13328) (0.529126)

TEWG (α, θ, β, p, λ) 59.2556 0.455874 1.42577 0.999917 -0.447535
(27.5648) (0.03366) (1.60102) (0.00937) (0.49717)

• The ExtW density function,

f(x) = a (c+ b x)x−2+b e−c/x−axbe−c/x

, a > 0 , b > 0 , c ≥ 0 , x > 0.

• The KwMW density function,

f(x) = a bαxγ−1(γ + λx) exp
(
λx− αxγ eλ x

) [
1− exp (−αxγ eλ x)

]a−1

×
{

1−
[
1− exp (−αxγ eλ x)

]a}b−1

,

where a > 0 , b > 0, α > 0 , γ > 0 , λ ≥ 0.

The estimated pdf and cdf of the TEWG distribution �tted to the uncensored breaking
stress of carbon �bres (in Gba) reported by [8] are displayed in Figure 4. The estimates
of the parameters and their standard errors (SEs) are listed in Table 1. The values of
the statistics A∗ and W ∗, Akaike Information Criterion (AIC), Bayesian Information
Criterioon (BIC), Hannan�Quinn Information Criterion (HQIC) and Consistent Akaike
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Table 2. Goodness-of-�t statistics for the carbon �bres

Distributions A∗ W ∗ AIC BIC HQIC CAIC
GEE (λ , α , δ) 1.43415 0.266823 189.787 196.356 192.383 190.175
EWG (α, β, θ, p) 0.789187 0.121661 118.164 127.922 122.625 119.82
ExtW ( a , b , c) 2.26745 0.416152 207.471 214.04 210.067 207.858
KwMW(αγ , λ , a , b) 1.28891 0.212227 180.676 191.624 185.002 181.676
TEWG (α, β, θ, p, λ) 0.77199 0.12016 117.586 128.534 121.912 118.586

Information Criterion (CAIC) are also given in Table 2. We note that the TEWG model
provides the best �t among these models.

To compare the TEWG model with its EWG sub-model, the likelihood-ratio (LR)
statistic is given by w = 4.54198 with p-value 0.033. The value if the LR statistic
suggests that the TEWG model performs signi�cantly better than its sub-model EWG.

9. Conclusions

We propose a new compounding lifetime model named the transmuted exponentia-
ted Weibull geometric distribution, and study some of its general structural properties.
The proposed model includes at least ten special lifetime models. A very useful mixture
representation for its density function is derived. We provide explicit expressions for the
moments and incomplete moments, generating and quantile functions, mean deviations
and order statistics. These expressions are manageable using analytic and numerical
computer resources, which may turn into adequate tools comprising the arsenal of applied
statisticians. The model parameters are estimated by maximum likelihood. We prove
that the proposed model can be superior to some models generated from other know
families in terms of model �tting by means of an application to a real data set.
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Abstract

Schaefer et al. [15] proposed a ridge logistic estimator in logistic regres-
sion model. In this paper a new estimator based on the ridge logistic
estimator is introduced in logistic regression model and we call it as
almost unbiased ridge logistic estimator. The performance of the new
estimator over the ridge logistic estimator and the maximum likelihood
estimator in scalar mean squared error criterion is investigated. We
also present a numerical example and a simulation study to illustrate
the theoretical results.
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1. Introduction

In this paper we consider the estimation of Euclidean parameters β ∈ Rp in logistic
regression model based on the dependent variable yi is Be(πi). The parameters πi relate
to β and x1, x2,...,xn with the following value:

(1.1) πi =
exp(xiβ)

1 + exp(xiβ)
, i = 1, 2, ..., n

Usually the parameters of the model should be estimated using the maximum likelihood
(ML) way by applying the following iterative weighted least square (IWLS) algorithm:

(1.2) β̂ML = (X ′ŴX)−1X ′Ŵ Ẑ

where Ẑ is a vector with ith element equals log(π̂i) + yi−π̂i
π̂i(1−π̂i)

and W = diag( π̂i
1−π̂i

).
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Since ML estimation does not require any restriction on the characteristics of the
independent variables, Maximum likelihood (ML) is the preferred estimation way in
logistic regression. However, the ML estimator can be a�ected seriously by the presence
of collinearity. It is known that ML parameter estimates have large variances in cases
of multicollinearity. Many methods have proposed to combat this problem in linear
regression model, such as the ridge estimator by Hoerl and Kennard [5], Liu estimator
by Liu [10].

Schaefer et al. [15] use the ridge method to overcome the multicollinearity in logistic
regression model and propose a ridge logistic estimator. Mansson and Shukur [13], Kibria
et al. [12] proposed many methods to estimate the ridge parameter in ridge logistic
estimator. Inan and Erdogan [9] proposed a Liu-type logistic estimator to overcome
multicollinearity in logistic regression model.

Though the ridge logistic estimator proposed by Schaefer et al. [15] can overcome
multicollinearity, however, this estimator has big bias. In this paper, we propose a new
estimator which can be used not only overcome multicollinearity, but also can reduce
the bias of the ridge estimator. We also discuss the statistical properties of the new
estimator.

2. The almost unbiased ridge logistic estimator

The ridge logistic estimator (RLE) in the logistic regression model presented by Schaefer
et al. [15] is denoted as follows:

(2.1) β̂RLE(k) = (X ′ŴX + kI)−1X ′Ŵ Ẑ, k > 0

It is easy to obtain that:

Bias(β̂RLE(k)) = E(β̂RLE(k))− β
= (X ′ŴX + kI)−1X ′ŴXβ − β
= [(X ′ŴX + kI)−1X ′ŴX − I]β

= (X ′ŴX + kI)−1[X ′ŴX − (X ′ŴX + kI)]β

= −k(X ′ŴX + kI)−1β(2.2)

and

(2.3) Cov(β̂RLE(k)) = (X ′ŴX + kI)−1X ′ŴX(X ′ŴX + kI)−1

In linear regression model, many authors have studied the almost unbiased estimator,
such as Kadiyala [11], Akdeniz and Kaciranlar [1] and Xu and Yang [16, 17].

To obtain the almost unbiased ridge logistic estimator, we �rstly list the following
de�nitions.

De�nition 2.1. [16, 17] Suppose β̂ is a biased estimator of parameter vector β, and if the

bias vector of β̂ is given by Bias(β̂) = E(β̂)−β = Rβ, which shows that E(β̂−Rβ) = β,

then we call the estimator β̃ = β̂−Rβ̂ = (I−R)β̂ is the almost unbiased estimator based

on the biased estimator β̂.
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Now, we are ready to derive the almost unbiased ridge logistic estimator based on the

RLE. Since: Bias(β̂RLE(k)) = (X ′ŴX + kI)−1X ′ŴXβ − β ,we have

β̂AURLE(k) = [I − ((X ′ŴX + kI)−1X ′ŴX − I)]β̂RLE(k)

= [2I − (X ′ŴX + kI)−1X ′ŴX]β̂RLE(k)

= [2I − (X ′ŴX + kI)−1X ′ŴX](X ′ŴX + kI)−1X ′Ŵ Ẑ

= [I + (X ′ŴX + kI)−1X ′ŴX](X ′ŴX + kI)−1X ′ŴXβ̂ML

= [I + k(X ′ŴX + kI)−1][I − k(X ′ŴX + kI)−1]β̂ML

= [I − k2(X ′ŴX + kI)−2]β̂ML(2.4)

In the next section, we will discuss the properties of the new estimator.
For the convenience of the following discussions, let α = Q′β, Λ = diag(λ1, ..., λp) =

Q′(X ′ŴX)Q, where λ1 ≥ ... ≥ λp > 0 are the ordered eigenvalues of X ′ŴX.

3. The performance of the new estimator

The new estimator is proposed to reduce the bias of the ridge logistic estimator (RLE).
So now we compare the new estimator with the RLE.

3.1. Theorem. In logistic regression model we have

‖ Bias(β̂AURLE(k)) ‖2<‖ Bias(β̂RLE(k)) ‖2 for k > 0.

Next we discuss the superiority of the new estimator in the scalar mean squared error

(MSE) sense. Firstly we give its de�nition. Let β̂ be an estimator of β, then the scalar
mean squared error is de�ned as follows:

MSE(β̂) = E(β̂ − β)′(β̂ − β) = tr{Cov(β̂)}+Bias(β̂)′Bias(β̂)(3.1)

3.2. Theorem. A su�cient of the new estimator superior to the RLE by the MSE
criterion in logistic regression model is

k >
3− λiα2

i +
√

(3 + λiα2
i )

2 + 4λiα2
i

4α2
i

for all i = 1, ..., p.

3.3. Theorem. The new estimator is superior to the maximum likelihood (ML) estimator
in logistic regression model for k > 0 if 1 − λiα2

i > 0 for all i = 1, ..., p and for k <
2λi+λi

√
2(1+α2

iλi)

α2
iλi−1

if 1− λiα2
i < 0 for some i.

4. The selection of ridge parameter k

In this section we consider that the ridge parameter which is obtained by using the
ridge parameter introduced in the previous section and the ridge parameters proposed
by Hoerl and Kennard [5], Hoerl et al. [6], Batah et al. [3], Lawless and Wang [7] and
Khurana et al [4].

The ridge parameter corresponding to Eq. (7.2) is

kNEW =
p∑p

i=1[α2
i /[1 + (1 + λi ∗ α2

i )
1/2]

Second, the Hoerl and Kennard [5] ridge parameter is de�ned as

kHK =
σ̂2

maxα2
iML



992

Table 1. Estimated quadratic bias with γ = 0.9

k NEW HK HKB LW LS

RLE×10−2 3.8401 0.5730 2.9811 0.0000 5.0532
AURLE ×10−2 0.0023 0.0000 0.0014 0.0000 0.0039

Table 2. Estimated quadratic bias with γ = 0.95

k NEW HK HKB LW LS

RLE 0.1093 0.0020 0.0100 0.0000 0.1627
AURLE 0.0002 0.0006 0.0001 0.0000 0.0004

Table 3. Estimated quadratic bias with γ = 0.99

k NEW HK HKB LW LS

RLE 0.9889 0.2645 0.9696 0.0000 1.3761
AURLE 0.1230 0.0090 0.0118 0.0000 0.2368

Third, the Hoerl et al. [6] ridge parameter is de�ned as

kHKB =
pσ̂2

β̂′MLβ̂ML

Fourth, the Lawless and Wang [7] ridge parameter is de�ned as

kLW =
pσ̂2

β̂′MLX
′WXβ̂ML

Fifth, the Lindley and Smith [8] ridge parameter is de�ned as

kLS =
(n− p)(p+ 2)

n+ 2

σ̂2

β̂′MLβ̂ML

5. Monte Carlo simulation

The main purpose of this article is to compare the MSE properties and bias of the ML,
RLE and AURLE when the regressors are highly intercorrelated. Hence, the core factor
varied in the design of the experiment is the degree of correlation γ between the regressors.
Therefore, the following formula which enables us to vary the strength of the correlation
is used to generate the explanatory variables:

(5.1) xij = (1− γ2)1/2zij + γzip, i = 1, ..., n, j = 1, ..., p

where zij are independent standard normal pseudo-random numbers,and γ is speci�ed
so that the correlation between any two explanatory variables is given by γ2.

Four di�erent values of γ corresponding to 0.9, 0.95, 0.99 are considered and the sample
size is equal to 50.

All simulation results are given in Tables 1-6.
From Tables 1-3, we can see that the new estimator has smaller quadratic bias than

the RLE. When we see the estimated MSE of the new estimator and the RLE, we see
that the new estimator is always superior to the RLE. The new estimator is superior to
the RLE in the MSE criterion.
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Table 4. Estimated MSE with γ = 0.9

k 0 NEW HK HKB LW LS

ML 0.0376 0.0376 0.0376 0.0376 0.0376 0.0376
RLE 0.0376 0.0709 0.0413 0.0629 0.0376 0.0823
AURLE 0.0376 0.0374 0.0376 0.0374 0.0376 0.0375

Table 5. Estimated MSE with γ = 0.95

k 0 NEW HK HKB LW LS

ML 0.0717 0.0717 0.0717 0.0717 0.0717 0.0717
RLE 0717 0.1645 0.0843 0.1558 0.0717 0.2146
AURLE 0.0717 0.0711 0.0714 0.0711 0.0717 0.0722

Table 6. Estimated MSE with γ = 0.99

k 0 NEW HK HKB LW LS

ML 0.3111 0.3111 0.3111 0.3111 0.3111 0.3111
RLE 0.3111 1.1128 0.4654 1.0948 0.3111 1.4769
AURLE 0.3111 0.2943 0.2955 0.3487 0.3111 0.4392

From the Tables, we also conclude that the new ridge parameter perform well.

6. Numerical example

In this section, we present a real data application in order to illustrate the bene�ts of
the new estimator AURLE and satisfy the theoretical results. The data set is obtained
from the o�cial website of the Statistics Sweden (http://www.scb.se/) and it was also
used in Asar and Genc [2] and a similar data set was used in Mansson et al. [4]. There are
271 observations which are the municipalities of Sweden in the data set. We �t a logistic
regression model where the followings are the independent variables: the population (x1),
the number of unemployed people (x2), the number of newly constructed buildings (x3)
and the number of bankrupt �rms (x4). We consider the net population change as the
dependent variable such that it is coded as 1 if there is an increase in the population and 0
vice versa. We computed the bivariate correlations and observed that they are all greater
than 0.90. The condition number being a measure of the degree of multicollinearity is
computed as 38.3274 showing that there is severe multicollinearity problem with this
data.

We provide the estimated theoretical MSE and coe�cients of ML, RLE and AURLE
for kNEW kHK , kHKB , kLW and kLS in Table 7.

It is observed from Table 7 that MSE of ML is the largest among all possible situations.
The new estimator NEW works well with the estimator AURLE such that AURLE has
a less MSE than RLE when NEW is used. Moreover, AURLE has better performance
when HKB and LS are used. In Figure 1, we plot the MSE values of RLE and AURLE
for changing values of the parameter k between zero and 1. It is seen from Figure 1 that
ARLE has less MSE values in this interval. According to Theorem 3.2, for k > 4.0608 ,
AURLE should have a less MSE than that of RLE. This result can be seen from Figure
2.
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Table 7. The estimated theoretical MSEs and coe�cients of estima-
tors for di�erent estimators of k

k β1 β2 β3 β4 SMSE

kNEW 2.3757 0.2549 1.1752 -2.7641 973.7117
kHK 18.1501 -11.8274 3.6423 -9.0784 1157.0656

RLE kHKB 4.1873 -0.9625 1.9584 -4.1488 904.7912
KLW 0.1674 0.1576 0.1342 0.0622 1076.8163
kLS 8.3886 -4.2012 2.8882 -6.0829 826.1210

kNEW 3.9688 -0.6164 2.0167 -4.3217 931.4176
kHK 23.2398 -15.7957 3.8558 -10.4687 1642.0958

AURLE kHKB 7.1375 -3.1442 2.9676 -5.9501 865.1787
KLW 0.2679 0.2492 0.2012 0.0581 1074.8677
kLS 13.6711 -8.3300 3.6388 -8.0437 936.7677

ML 25.3151 -17.4071 3.8669 -10.9661 1894.3979
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Figure 1. The estimated MSE of RLE and AURLE when 0 < k < 1

Moreover, we plot the biases of the estimators to illustrate Theorem 3.1 in Figure 3.
According to Figure 3, it is observed that the squared bias of AURLE is always less than
that of RLE which coincides with Theorem 3.1.

Finally, Theorem 3.3 is also satis�ed. Since 1−λiα2
i > 0, AURLE has less MSE value

than that of ML.

7. Conclusion

In this paper we propose a almost unbiased ridge logistic estimator based on the ridge
logistic estimator and we also discuss the properties of the new estimator. The compar-
ison results show that the new estimator has smaller quadratic bias the RLE, and under
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Figure 2. The estimated MSE of RLE and AURLE for satisfying
Theorem 3.2
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Figure 3. The biases of the estimator RLE and AURLE when 0 < k < 1

certain conditions the new estimator is superior to the ML and RLE in the MSE sense.

Acknowledgements

The authors are thankful to the editor and the reviewers for their valuable comments
and suggestions which have led to substantial improvement in the paper. This work
was supported by the National Natural Science Foundation of China [No. 11501072],



996

the Natural Science Foundation Project of CQ CSTC [No. cstc2015jcyjA00001], and
the Scienti�c and Technological Research Program of Chongqing Municipal Education
Commission [No. KJ1501114]

References

[1] Akdeniz, F. and Kaciranlar. S. On the almost unbiased generalized Liu estimator and un-
biased estimation of the Bias and MSE, Comm. Statist. Theory Methods 24, 1789-1797,
1995.

[2] Asar, Y. and Genc, A. New Shrinkage Parameters for the Liu-type Logistic Estimators,
Communications in Statistics-Simulation and Computation 45(3), 1094-1103, 2016.

[3] Batah, F.S.M. Gore, S. D. and Verma, V.R. E�ect of jackkni�ng on various ridge type
estimators, Model Assisted Statistics and Applications 3, 201-210, 2008.

[4] Khurana, M. Chaubey, Y.P. and Chandra, S. Jackkni�ng the Ridge Regression Estimator:
A Revisit, Comm. Statist. Theory Methods 24, 5249-5262,2012.

[5] Hoerl, A.E. and Kennard, R.W. Ridge regression: Biased estimation for nonorthogonal
problems, Technometrics 12,55-67, 1970.

[6] Hoerl, A.E. and Kennard, R.W. and Baldwin, K.F.Ridge Regression: Some Simulations,
Comm. Statist. Theory Methods 4, 105-123, 1975.

[7] Lawless. J. F. and Wang, P. A Simulation Study of Some Ridge and Other Regression
Estimators, Comm. Statist. Theory Methods 5, 307-323,1976.

[8] Lindley. D. V. and Smith, A.F.M. Bayes Estimate for The Linear Model (with discussion)
part 1, Journal of the Royal Statistical Society Ser B 34, 1-41,1972.

[9] Inan, D. and Erdogan, B. E. Liu-Type Logistic Estimator, Communications in Statistics-
Simulation and Computation 42, 1578-1586, 2013.

[10] Liu, K. A new class of biased estimate in linear regression, Comm. Statist. Theory Methods
22, 393-402, 1993.

[11] Kadiyala, K. A class almost unbiased and e�cient estimators of regression coe�cients,
Econom. Lett 16, 293-296, 1984.

[12] Kibria, K. M. G. Mansson, K. and Shukur, G. Performance of Some Logistic Ridge Regres-
sion Estimators, Computational Economics 40, 401-414, 2012.

[13] Mansson, K. and Shukur, G. On Ridge Parameters in Logistic Regression, Comm. Statist.
Theory Methods 40, 3366-3381, 2011.

[14] Mansson, K. Kibria, B. G. and Shukur, G.On Liu estimators for the logist regression model,
Economic Modelling 29(4), 1483-1488, 2012.

[15] Schaefer, R.L. Roi, L.D. and Wolfe, R. A. A ridge logistic estimator, Comm. Statist. Theory
Methods 13, 99-113, 1984.

[16] Xu, J. W. and Yang, H.More on the bias and variance comparisons of the restricted almost
unbiased estimators, Comm. Statist. Theory Methods 40, 4053-4064, 2011.

[17] Xu, J. W. and Yang, H. On the restricted almost unbiased estimators in linear regression,
Journal of Applied Statistics 38, 605-617, 2011.



997

Appendix

3.1 Theorem

Proof. We have Bias(β̂RLE(k)) = −k(X ′ŴX + kI)−1β and

Bias(β̂AURLE(k)) = [I − k2(X ′ŴX + kI)−2]β − β
= −k2(X ′ŴX + kI)−2β(7.1)

Thus we have

‖Bias(β̂RLE(k))‖2 − ‖Bias(β̂AURLE(k))‖2

= β′k2(X ′ŴX + kI)−2β − β′k4(X ′ŴX + kI)−4β

= α′k2(Λ + kI)−2α− α′k4(Λ + kI)−4α = α′Gα(7.2)

where G = k2(Λ + kI)−2 − k4(Λ + kI)−4 = diag( k
2λi(λi+2k)

(λi+k)4
), thus for k > 0, α′Gα > 0.

The proof is completed. �

3.2 Theorem

Proof. By (2.2)-(2.3) and the de�nition of SMSE, we have

MSE(β̂RLE(k)) = tr{Covβ̂RLE(k)}+Bias(β̂RLE(k))′Bias(β̂RLE(k))

= tr{(X ′ŴX + kI)−1X ′ŴX(X ′ŴX + kI)−1}
+α′k2(Λ + kI)−2α

=

p∑
i=1

λi
(λi + k)2

+

p∑
i=1

k2α2
i

(λi + k)2

=

p∑
i=1

λi + k2α2
i

(λi + k)2
(7.3)

By (2.4), we can compute that:

Covβ̂AURLE(k)

= [I − k2(X ′ŴX + kI)−2](X ′ŴX)−1[I − k2(X ′ŴX + kI)−2](7.4)

Then we get

MSE(β̂AURLE(k))

= tr{Covβ̂AURLE(k)}+Bias(β̂AURLE(k))′Bias(β̂AURLE(k))

= tr{[I − k2(X ′ŴX + kI)−2](X ′ŴX)−1[I − k2(X ′ŴX + kI)−2]}
+α′k4(Λ + kI)−4α

=

p∑
i=1

(1− k2

(λi + k)2
)2

1

λi
+

p∑
i=1

k4α2
i

(λi + k)4

=

p∑
i=1

(λi + 2k)2λi + k4α2
i

(λi + k)4
(7.5)

Now we consider the di�erence:

∆1 = MSE(β̂RLE(k))−MSE(β̂AURLE(k))

=

p∑
i=1

λi + k2α2
i

(λi + k)2
−

p∑
i=1

(λi + 2k)2λi + k4α2
i

(λi + k)4

=

p∑
i=1

λik[2k2α2
i + (λiα

2
i − 3)k − 2λi]

(λi + k)4
(7.6)
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∆1 will be positive for k > 0 if and only if

2k2α2
i + (λiα

2
i − 3)k − 2λi > 0(7.7)

for all i = 1, ..., p. The expression in (7.7) is a quadratic function of k which has two
distinct roots

k1,2 =
3− λiα2

i ±
√

(3 + λiα2
i )

2 + 4λiα2
i

4α2
i

(7.8)

Though the root
3−λiα

2
i−
√

(3+λiα
2
i )

2+4λiα
2
i

4α2
i

is negative. Thus when k > 0 and

k >
3− λiα2

i +
√

(3 + λiα2
i )

2 + 4λiα2
i

4α2
i

for all i = 1, ..., p, the new estimator is superior to the RLE by the MSE criterion in
logistic regression model. �

3.3 Theorem

Proof. It is easy to obtain that

MSE(β̂ML) =

p∑
i=1

1

λi
(7.9)

Now we study the following di�erence:

∆2 = MSE(β̂ML)−MSE(β̂AURLE(k))

=

p∑
i=1

1

λi
−

p∑
i=1

(λi + 2k)2λi + k4α2
i

(λi + k)4

= k2
p∑
i=1

(1− α2
iλi)k

2 + 4λik + 2λ2
i

λi(λi + k)4
(7.10)

∆2 will be positive if and only if

(1− α2
iλi)k

2 + 4λik + 2λ2
i > 0(7.11)

Now we discuss (1− α2
iλi)k

2 + 4λik + 2λ2
i .

(1) If 1− λiα2
i > 0 for all i = 1, ..., p, then (1− α2

iλi)k
2 + 4λik + 2λ2

i > 0.
(2) If 1− λiα2

i < 0 for some i = 1, ..., p, then using the method in Theorem 3.2, we have

if k <
2λi+λi

√
2(1+α2

iλi)

α2
iλi−1

, (1− α2
iλi)k

2 + 4λik + 2λ2
i > 0.

This completes the proof of Theorem. �
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