HACETTEPE UNIVERSITY
FACULTY OF SCIENCE
TURKEY

HACETTEPE JOURNAL OF
MATHEMATICS AND
STATISTICS

A Bimonthly Publication
Volume 45 Issue 4
2016

ISSN 1303 5010






HACETTEPE JOURNAL OF
MATHEMATICS AND
STATISTICS

Volume 45 Issue 4
August 2016

A Peer Reviewed Journal

Published Bimonthly by the
Faculty of Science of Hacettepe University

Abstracted /Indexed in

SCI-EXP, Journal Citation Reports, Mathematical Reviews,
Zentralblatt MATH, Current Index to Statistics,
Statistical Theory & Method Abstracts,
SCOPUS, Tiibitak-Ulakbim.

ISSN 1303 5010

This Journal is typeset using KXTEX.



HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS

Cilt 45 Say1 4 (2016)
ISSN 1303 — 5010

KUNYE

YAYININ ADI:
HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS

YIL: 2016 SAYTI: 45 -4 AY : Agustos

YAYIN SAHIBININ ADI: H.U. Fen Fakiiltesi Dekanlig1 adima
Prof. Dr. A. Nurdan Ozer

SORUMLU YAZI iSL. MD. ADI: Prof. Dr. Yiicel Tiras

YAYIN iDARE MERKEZI ADRESI: H.U. Fen Fakiiltesi Dekanligi

YAYIN iIDARE MERKEZI TEL.: 0 312 297 68 50

YAYININ TURU : Yaygin

BASIMCININ ADI: Hacettepe Universitesi Hastaneleri Basimevi.

BASIMCININ ADRESI: 06100 Sthhiye, ANKARA.

BASIMCININ TEL.: 0 312 305 1020

BASIM TARIHI - YERI: - ANKARA




HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS

A Bimonthly Publication — Volume 45 Issue 4 (2016)
ISSN 1303 — 5010

EDITORIAL BOARD

Honorary Editor:
Lawrence Micheal Brown

Co-Editors in Chief:

Mathematics:
Yiicel Tirag (Hacettepe University - Mathematics - ytiras@hacettepe.edu.tr)

Statistics:

Cem Kadilar (Hacettepe University-Statistics - kadilar@hacettepe.edu.tr)

Associate Editor:

Durdu Karasoy (Hacettepe University-Statistics - durdu@hacettepe.edu.tr)
Managing Editor:

Ramazan Yagar (Hacettepe University - Mathematics - ryasar@hacettepe.edu.tr)
Furkan Yildirim (Hacettepe University - Actuarial Science - furkany@hacettepe.edu.tr)

Members:

Ali Allahverdi (Operational research statistics, ali.allahverdi@ku.edu.kw)
Olcay Arslan (Robust statistics, oarslan@ankara.edu.kw)

N. Balakrishnan (Statistics, bala@mcmaster.ca)

Gary F. Birkenmeier (Algebra, gfb1127@louisiana.edu)

G. C. L. Briimmer (Topology, gcl.brummer@uct.ac.za)

Okay Celebi (Analysis, acelebi@yeditepe.edu.tr)

Giilin Ercan (Algebra, ercan@metu.edu.tr)

Alexander Goncharov (Analysis, goncha@fen.bilkent.edu.tr)
Sat Gupta (Sampling, Time Series, sngupta@uncg.edu)
Varga Kalantarov (Appl. Math., vkalantarov@ku.edu.tr)
Ralph D. Kopperman (Topology, rdkcc@ceny.cuny.edu)
Vladimir Levchuk (Algebra, levchuk@lan.krasu.ru)

Cihan Orhan (Analysis, Cihan.Orhan@science.ankara.edu.tr)
Abdullah Ozbekler (App. Math., aozbekler@gmail.com)
Ivan Reilly (Topology, i.reilly@auckland.ac.nz)

Biilent Sarag (Algebra, bsarac@hacettepe.edu.tr )

Patrick F. Smith (Algebra, pfs@maths.gla.ac.uk )

Alexander P. Sostak (Analysis, sostaks@latnet.lv)

Derya Keskin Tiitiincii (Algebra, derya.tutuncu@outlook.com)
Agacik Zafer (Appl. Math., zafer@metu.edu.tr)

PUBLISHED BY HACETTEPE UNIVERSITY
FACULTY OF SCIENCE






CONTENTS

Mathematics

Yelda Aygar

Investigation of spectral analysis of matrixz quantum difference
equations with spectral singularities ....... ... ... .. i, 999

Elgiz Bairamov and Serifenur Cebesoy

Spectral singularities of the matriz Schrodinger equations .................. 1007

Serap Bulut

Coefficient bounds for certain subclasses of analytic
functions of complex order ....... ... 1015

Bilal Demir, Ozden Koruoglu and Recep Sahin

Some normal subgroups of extended generalized Hecke groups .............. 1023

Kamal Fallahi and Aris Aghanians

On quasi-contractions in metric spaces with a graph ....................... 1033

Fazal Ghani, Saeed Islam, Cenap Ozel, Liagat Alj,
M. M. Rashidi and Tayebeh Hajjari

Application of modified optimal homotopy perturbation method to higher order
boundary value problems in a finite domain ......... .. ... ... . o, 1049

Jang Hyun Jo

On some questions regarding projectivity CTiteria ................c.oeeuieon.. 1061

Arshad Khan and Talat Sultana

Numerical solution of fourth order parabolic partial differential
equation using parametric septic Splines ........ ... .. . . i, 1067

Hongxing Liu

Morita equivalence based on Morita context for arbitrary semigroups ....... 1083

Matejdes Milan
Soft topological space and topology on the Cartesian product ............... 1091



G. Murugusundaramoorthy, K.Vijaya and S.Porwal

Some inclusion results of certain subclass of analytic functions
associated with Poisson distribution series ........... .. ...

H.S.Shekarabi and J.Rashidinia

Numerical solution of Burgers equation with nonlinear damping using
non-polynomial tension spline ......... ... .. i

Nurettin Cenk Turgay

A classification of biharmonic hypersurfaces in the Minkowski
spaces of arbitrary diMension ........... ... i

Lihui Yang, Xiaowei Ai and Lin Zhang
The Zagreb coindices of a type of composite graph .........................

Statistics

Ayman Alzaatreh, M. Mansoor, M. H. Tahir, M. Zubair,
and Shakir Ali Ghazali

The gamma half-Cauchy distribution: properties and applications ..........

Pablo Martinez-Camblor

Kaplan-Meier estimator in competing risk contexts ........................

Gauss M. Cordeiro, Morad Alizadeh, M. H. Tahir, M. Mansoor,
Marcelo Bourguignon, G. G. Hamedani

The beta odd log-logistic generalized family of distributions .................

Gauss M. Cordeiro, Abdus Saboor, Muhammad Nauman Khan,
Gamze Ozel, and Marcelino A.R. Pascoa

The Kumaraswamy exponential-Weibull distribution:
theory and applications .......... .. .. oo

Meral Ebegil and Senay Ozdemir

Two different shrinkage estimator classes for the shape
parameter of classical Pareto distribution ...............c.viiiiiiaiiaiiins

Aygiin Erdogan and Paul D. Zwick

Spatial decision making under determinism vs. uncertainty:
A comparative multi-level approach to preference mapping .................



A. Jabarali and K. Senthamarai Kannan

Single server queueing model with Gumbel distribution using
Bayesian approach . ... ... e 1275

Saadia Masood and Javid Shabbir

Generalized multi-phase regression-type estimators under the effect of
measuemmnent error to estimate the population variance .................... 1297

Manas Ranjan Tripathy

Equivariant estimation of common location parameter of
two exponential populations using censored samples ........................ 1307






MATHEMATICS






Hacettepe Journal of Mathematics and Statistics
Volume 45 (4) (2016), 999-1005

Investigation of spectral analysis of matrix
quantum difference equations with spectral
singularities

Yelda Aygar*'

Abstract

In this paper, we investigate the Jost solution, the continuous spectrum,
the eigenvalues and the spectral singularities of a nonselfadjoint matrix-
valued g-difference equation of second order with spectral singularities.

Keywords: Quantum difference equation, Discrete spectrum, Spectral theory,
Spectral singularity, Eigenvalue.
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1. Introduction

Spectral analysis of nonselfadjoint differential equations including Sturm-Liouville,
Schrodinger and Klein-Gordon equations has been treated by various authors since 1960
[23, 9, 11, 22, 12]. Study of spectral theory of nonselfadjoint discrete Schrédinger and
Dirac equations were obtained in [1, 20, 8, 10, 7]. Also, spectral analysis of these equations
in self-adjoint case is well-known [4, 5]. In addition to differential and discrete equations,
spectral theory of ¢-difference equations has been investigated in recent years [2, 3|,
and important generalizations and results were given for dynamic equations including
g-difference equations as a special case in [14, 13].

Some problems of spectral theory of differential and difference equations with matrix
coefficients were studied in [15, 24, 18, 6]. But spectral analysis of the matrix g-difference
equations with spectral singularities has not been investigated yet.

In this paper, we let ¢ > 1 and use the notation ¢"° := {¢" : n € Ny}, where Ny denotes
the set of nonnegative integers. Let us introduce the Hilbert space £2(g", C™) consisting
of all vector sequences y € C™, (y = y(t), t & q"), such that Dt p(O[y(®)||Em < oo
with the inner product (y, z)q := >_,c v #(t) (¥(t), 2(¢))cm, where C™ is m-dimensional
(m < oo) Euclidean space, u(t) = (¢ — 1)t for all t € ¢", and || - ||cm and (-,-)cm denote

*University of Ankara, Faculty of Science, Department of Mathematics, 06100, Ankara,
Turkey, Email: yaygar@science.ankara.edu.tr
JrCorresponding Author.
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the norm and inner product in C™, respectively. We denote by L the operator generated
in £2(g",C™) by the g-difference expression

(19)(t) = aA(®)y(at) + BOy(t) + A (g) y (g)  ted,

and the boundary condition y(1) = 0, where A(t), t € ¢ and B(t), t € ¢" are linear
operators (matrices) acting in C™. Throughout the paper, we will assume that A(t) is
invertible and A(t) # A*(t) for all t € ¢"'°. Furthermore B(t) # B*(t) for all ¢t € ¢",
where * denotes the adjoint operator. It is clear that L is a nonselfadjoint operator in
£5(¢",C™). Related to the operator L, we will consider the matrix g-difference equation
of second order

(L.1) qA(t)y(qt)+B<t>y(t>+A<§)y(2):Ay(w, teq",

where A is a spectral parameter.

The set up of this paper is summarized as follows: Section 2 discusses the Jost solution
of (1.1) and contains analytical properties and asymptotic behavior of this solution. In
Section 3, we give the continuous spectrum of L, by using the Weyl compact perturbation
theorem. In Section 4, we investigate the eigenvalues and the spectral singularities of L.
In particular, we prove that L has a finite number of eigenvalues and spectral singularities
with a finite multiplicity.

2. Jost solution of L

We assume that the matrix sequences {A(t)} and {B(t)}, t € ¢" satisfy

@1 > (I =A@+ IBOI) < oo,

teqh

where || - || denotes the matrix norm in C™ and I is identity matrix. Let F'(-, z), denotes
the matrix solution of the ¢-difference equation

E) y (2) =2\/qcoszy(t), te qN,

(22)  qAWylat) + BOw(t) + A <q

satisfying the condition

(23)  lim F(t, Deima \/u(t) =1, z€Cq={z€C:Imz>0}.

The solution F'(-, z) is called the Jost solution of (2.2).

2.1. Theorem. Assume (2.1). Let the solution F(-,z) be the Jost solution of (2.2).

Then
int s Ins—Int
(24) F(t,2)= 1+ s MH(S)
’ ) qt sin z ’
s€[qt,00)NgN
where

H(s) := {1 A (2)] F (2 z) — B(s)F(s,2) + q[I — A(s)]F(gs, 2).

Proof. Using (2.2), we obtain

2.5) F (2) + qF(qt) — 2/Geos 2F(t) = H(t).
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cxp(ih’:—;z) cxp(—ill;’—;z)
\ w(t) Tand \/ w(t)

equation

F (2) + qF(qt) — 2y/qcos zF(t) = 0,

we get the general solution of (2.5) by

Since

I are linearly independent solutions of the homogeneous

jlnt _ilnt
n Ing

z

F(t,z) = e « ¢
CD= Tt e’
(26) ( ) 1 sin (111 sflnt)z
H(S Ing s
+ Z q /u(t) sin z H(s),

s€[qt,00)Ng!

where « and 3 are constants in C™. Using (2.1), (2.3), and (2.6), we find o = I and
B = 0. This completes the proof, i.e., F (¢, z) satisfies (2.4). O

2.2. Theorem. Assume (2.1). Then the Jost solution F(-,z) has a representation

jlnt
e'Ing

2.7)  F(t,z) =T(t)

In r
I+ZK(t,r)elmZ , teqd"

V(t) regh

where z € Cy, T(t) and K(t,7) are expressed in terms of {A(t)} and {B(t)}.
Proof. If we put F(-, z) defined by (2.7) into (2.2), then we have the relations
1

A@)T(t) =T(qt), K(t.q)— K(? q) = %Tﬂ(t)B(t)T(t),

K(? ") = K(t,q*) =T~ (t) (T(t) —AXO)T(1) — %B(t)T(t)K(t, Q)) :

K(tord®) = K o) = 770 (AOTWR ) + = BOTOK t.ar) ) = K(e1),
and using these relations, we obtain

= ] Mo, Kto=-— S T0)BET0)

pe[t,00)NgN v p€[gt,00)Ng"

K(t,g¢)= > T 'p) B(p)T(p)K (p,q) + (I — A*(p))T(p)|,
pE[qt,c0)NgV [ \/a ]

K(t,rg®) =K(gt,r)+ Y. T '(p)[I—A*(p)] T(p)K(qp,7)

p€[qt,c0)Ngh

L

1 _
~ > T p)BET()K(p,qr),
p€Elqt,o0)Ng"
for r € ¢ and ¢ € ¢"°. Due to the condition (2.1), the infinite product and the series in
the definition of T'(t) and K (¢, r) are absolutely convergent. O

Note that, in analogy to the Sturm-Liouville equation the function

F(1,2) := \;% (I + 2 eqn K(l,r)eiiﬁz) is called the Jost function.

2.3. Theorem. Assume

28 > 111% (=A@l +1B®I) < oo

tegh
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Then the Jost solution F(-,z) is continuous in Ci and analytic with respect to z in
Cy:={2€C:Imz > 0}.

Proof. Using the equalities for K (t,r) given in Theorem 2.2 and mathematical induction,
we get

29 K¢ <C > (I =A@+ 1BM®I)
pe {tqtzl?inqu ,oo) al'al

Inr

21lngqg

where C' > 0 is a constant and | | is the integer part of

we get that the series

;{‘nrq. From (2.8) and (2.9),

Sln ln ' Sln
E K(t,r)e'ma”, I—K(t,r)e”nqz
n
reql regh q

are absolutely convergent in C; and in C,, respectively. This completes the proof. [

2.4. Theorem. Under the condition (2.8), the Jost solution satisfies

i—ll“tz
e na

(2.10) F(t,2) = —=——= (I +o0(1)), 2 € C4, t — o0,

Vu(t)

cIn t

cifzte
V()
Proof. Tt follows from the definition of 7'(¢), (2.8), and (2.9) that
(2.12)  lim T(t) = I,

(2.11) F(t,z)=1T(t) (I40(1)), t € ¢, Tmz — occ.

and

(2.13) Z K(t, r)eiﬁz =o(1), z € Cq, t — .

regh

From (2.7), (2.12), and (2.13), we get (2.10). Using (2.8) and (2.9), we have

(2.14) Z K(t, r)eiiﬁz =o(1), 2€ Cs, Imz — co.

regh

From (2.7) and (2.14), we get (2.11). O

3. Continuous spectrum of L

Let L, and Ly denote the g-difference operators generated in £2(¢",C™) by the g-
difference expressions

(Ly)(t) = qy(qt) +y (2)

and
t

t
(an)(0) = a0 ~ 11y(an) + B + |4 (1) ~1]w (%)
with the boundary condition y(1) = 0, respectively. It is clear that L = L1 + Lo.

3.1. Lemma. The operator L is self-adjoint in £2(¢",C™).
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Proof. Since

[ L1ylle < 2v/4llyllg
for all y € £2(g",C™), L, is bounded in the Hilbert space ¢2(¢",C™), and since

sy = L a0 (w@ -+ (1))

tegh

5 utt) (astat + 2 (£) ) 0 = (rtazh

tegh

the operator L, is self-adjoint in £2(g",C™). O

3.2. Theorem. Assume (2.8). Then o.(L) = [-2./q,2./q], where o.(L) denotes the
continuous spectrum of L.

Proof. 1t is easy to see that L; has no eigenvalues, so the spectrum of the operator L,
consists only its continuous spectrum and

o(L1) = oe(L1) = [-2/4,2//4];
where o(L1) denotes the spectrum of the operator Li. Using (2.8), we find that Lo is
compact operator in £2(¢",C™)[21]. Since L = Ly + L and Ly = (L1)*, we obtain that
0e(L) = 0e(L) = [~21/3, 2]

by using Weyl’s theorem of a compact perturbation [19, p.13]. d

4. Eigenvalues and spectral singularities of L

If we define
(4.1)  f(2) :=detF(1,z2), z € Cy,
then the function f is analytic in Cy4, f(2) = f(z + 27) and is continuous in C;. Let
us define the semi-strips Py = {z € C4 : 0 < Rez < 271} and P = Py U [0, 2nr]. We will
denote the set of all eigenvalues and spectral singularities of L by o4(L) and o4s(L), re-
spectively. From the definitions of eigenvalues and spectral singularities of nonselfadjoint
operators|[22, 23], we have
(4.2)  oa(L)={reC: AX=2/gcosz, z € Po, f(z) =0},
(43) o0ss(L)={AeC: X=2/qcosz, z€[0,2n], f(z) =0}\{0}.

4.1. Theorem. Assume (2.8). Then

i) the set o4(L) is bounded and countable, and its limit points lie only in the interval

[~2v/a.2./4,

il) 0ss(L) C [-24/q,2,/q] and the linear Lebesque measure of the set oss(L) is zero.

Proof. In order to investigate the quantitative properties of eigenvalues and spectral
singularities of L, it is necessary to discuss the quantitative properties of zeros of f in P
from (4.2) and (4.3). Using (2.11) and (4.1), we get

L
(1)
where detT'(1) # 0. From (4.4), we get the boundedness of zeros of f in P,. Since f is
a 2m-periodic function and is analytic in C, we obtain that f has at most a countable
number of zeros in Py. By the uniqueness of analytic functions, we find that the the
limit points of zeros of f in Py can lie only in [0, 27]. We get 0s.(L) C [—2,/q,2./q] using

(4.4)  f(2) =detT(1) I+o0(1)], Imz>0, z€ Py, Imz — oo,



1004

(4.3). Since f(z) # 0 for all z € C4, we get that the linear Lebesgue measure of the set
of zeros of f on real axis is not positive, by using the boundary uniqueness theorem of
analytic functions [17], i.e., the linear Lebesgue measure of the o4s(L) is zero. O

4.2. Definition. The multiplicity of a zero of f in P is called the multiplicity of the
corresponding eigenvalue or spectral singularity of L.

4.3. Theorem. If, for somee > 0,
Int
(45)  sup { B (17 = AW+ 1BOID} < o0
teq

then the operator L has a finite number of eigenvalues and spectral singularities, and each
of them s of finite multiplicity.

Proof. Since F(1,z) = \2(% (IJrZTGqN K(Lr)ei%ﬁz), using (2.9) and (4.5), we get
that

elnr

(4.6) |IK(1,7)| < De iwa, req,

where D > 0 is a constant. From (4.1) and (4.6), we obtain that the function f has an
analytic continuation to the half-plane Im z > —=. Because the series

1 Jlnr
S K (1) et

reql

£
4

is uniformly convergent in Im z > —%. Since f is a 27 periodic function, the limit points

of its zeros in P cannot lie in [0,2n]. Using Theorem 4.1, we find that the bounded
sets 04(L) and o4s(L) have no limit points, i.e., the sets o4(L) and o,s(L) have a finite
number of elements. From the analyticity of f in Imz > —=, we get that all zeros of f

1
in P have a finite multiplicity. O
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Spectral singularities of the matrix Schrédinger
equations

Elgiz Bairamov* and Serifenur Cebesoy’

Abstract

In this paper, we investigate analytical and asymptotical properties of
the Jost function of the matrix Schrédinger equation. Later, using the
analytic continuation and the uniqueness theorems of analytic functions
we study the eigenvalues and the spectral singularities of that equation.

Keywords: Differential Equations, Jost Function, Eigenvalues, Spectral Singu-
larities
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1. Introduction

Schrédinger differential equations subject to the general point interaction can be found
in many real world problems. These equations describe observed evolution phenomena.
For instance, many chemical, physical phenomena and pharmacokinetics do exhibit point
interaction effects [1]. The spectral analysis of Schrédinger equations with general point
interaction have been investigated in detail in [2]-[6]. To be more precise, we should
note that these equations have bound states, i.e., eigenvalues with square-integrable
eigenfunctions and spectral singularities. It is well known that the bound state of quan-
tum mechanical system correspond to the energy. Also a physical interpretation for the
spectral singularities that identifies with the energies of scattering states having infinite
reflection and transmission
coefficients. So spectral singularities correspond to the resonance states having a real
energy. Consequently, the spectral analysis of Schrodinger equations with
spectral singularities are important to study in quantum mechanics. So in this paper, we
investigate the spectral analysis of general matrix Schrédinger equations with spectral
singularities.

*Department of Mathematics, Ankara University, 06100 Tandogan, Ankara, TURKEY
Email : bairamov@science.ankara.edu.tr
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The spectral analysis of differential equations with spectral singularities was inves-
tigated by Naimark [7]. Schwartz studied the spectral singularities of a certain class
of abstract linear operators in a Hilbert space [8]. The following definition of spectral
singularities is given by Schwartz.

Let H be a Hilbert space and A : H — H be a linear operator such that its spectrum
o(A) consists of an interval J of the real axis and a finite number of complex numbers
outside .J. We will denote the resolvent operator of A by R, (A) := (A — uI)™!, where
u € C. Let Jo be a finite subset of J. Assume that for any finite subinterval A of J,
whose closure do not contain any point of Jy, the limit operator

. 1
EA::egg;Q;;/WRu+kc4>—fm_kcAndﬂ
A

exists in the strong limit sense, so that Fa is a linear bounded operator on H. Denote
by d the distance from the interval A to the set Jy. If

lim || Ea [|= o0
d—0

then any point of the set Jo, is called a spectral singularity of the operator A. For the
selfadjoint operators || Ea ||< 1, so that selfadjoint operators have no spectral singulari-
ties.

The sets of the spectral singularities for closed linear operators on a Banach space was
given by Nagy [9]. Nagy shows that the set of spectral singularities defined according to
his general definition coincides in the case of differential operators as defined by Naimark
and Lyance [7], [10]. Pavlov established the dependence of the structure of the spectral
singularities of Schrédinger operators on the behaviour of the potential function at infinity
[11].

Note that the principal functions corresponding to the spectral singularities are not
the elements of the Hilbert space. Also, the spectral singularities belong to the continuous
spectrum and are not the eigenvalues. However, the  spectral
singularities play a certain critical role in the spectral analysis of operators. Their exis-
tence is accompanied by specific phenomenon which are new in the sense that they do
not occur either in the spectral analysis of selfadjoint or normal operators.

The spectral singularities of the Sturm-Liouville operators with the general boundary
conditions was investigated in detail by Krall [12], [13]. Some problems of spectral theory
of differential equations and operators with spectral singularities were also studied in [14]-
[19].

Let S be a n-dimensional (n < oo) Euclidian space and we denote by L?(R,S) the
Hilbert space of vector-valued functions with values in S and the norm

HN%=/wﬂ@@m.

Let L denote the operator generated in L?(R, S) by the matrix Schrodinger equation
(1) —y +Q@)y =AY ,—cc<z<oo

where @ is a non-self adjoint matrix-valued potential function (Q # Q") and X is a
spectral parameter. It is clear that, the operator L is non-selfadjoint. L is called the
matrix Schrédinger operator.

In this paper, we investigate asymptotics and analytical properties of Jost
function of (1.1). We also obtain the resolvent of L. Later, we study the eigenvalues and
the spectral singularities of L using the analytic continuation and
uniqueness theorems of analytic functions. Afterwards we prove that the equation (1.1)
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(i.e. the operator L) has a finite number of eigenvalues and spectral
singularities and each of them is of finite multiplicity under the condition

sup {exp (EM) HQ(:E)”} <oo , €>0.

—oo<zr<oo

2. Jost function

Suppose the matrix function @ satisfies
@) [+ e Q@) do < .

We introduce the notation
oo

0t (z) = / Quldt, nf(x)= / 0t (t)t,

0 (z) = / QWlde,  ni ()= / 0 (t)dt.

— 00

Let E*(z,)\) and F~(z,\) denote the solutions of (1.1) subject to the conditions

lim EY (z,\)e " =1, AeCi:={\:A€C, ImA>0},
and
lim F~ (z,\)e™ =1, AeCy,
Tr——00

respectively, where I denotes the identity matrix in S. Under the condition (2.1) the
solution E (x,\) has the following integral representation [20]

EY (z,A) =™ + /K+ (z,t) e™dt, AeCs.

We also denote the solution of the equation

—z“-l—zQ(a?):)\Qz , —oo <z < oo,
subject to the condition
lim 27 (z,\) ™ =1, AeCy
r—r — 00
by E~ (z,\).

Under the conditon (2.1), the solution E (z,\) has the similar integral
representation

E™ (z,\) =e ™I+ /K7 (z,t)e”Mdt, AeC,y

where the matrix-functions K= (z, t) are differentiable with respect to  and ¢ and satisfies

@) K @l < (e (@ -t (5 ]

T+
2

xT

ey |5 @oTieh| < gant (5 et o),
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x+t 1 4 L, rx+t
< =
) < o
The matrix-functions E*(x,\) and E~(x,\) are analytic with respect to ) in
Cy:={A: X €C, ImA >0} and continuous up to the real axis.
Now, let us introduce

D) :==W [E™ (z,\),E"(z,))], AeCy,

where W [E~ (z, A), E*(z, \)] is the Wronskian of the solutions of E~ (z, A) and E* (z, \).
The function D is called Jost function of (1.1). Note that Jost function is analytic in C4
and continuous on the real axis.

Theorem 2.1. The function D satisfies

) exp i (t)

(2.0 HK? (@) 2

(2.5)  D(\) = 2\ — 2K7(0,0) — 2K (0,0) + /f(t)e”tdt
0
where

f(t) = K5 (0,t) - K, (0,—t) — K/ (0,t) + K; (0,—t) — K~ (0,0) K™ (0,t)
— KT (0,0) K~ (0,—t) + K~ (0, —t) * K (0,t) + K (0,—t) * K (0,¢)
in which (*) is the convolution operation and f € L1(R,S).
Proof. By the definition of the Wronskian of the solutions E~(x,)) and E*(z,\) we
have
D(\) = E7(0,\)ES(0,\) — E; (0, \)ET(0,\).

Using the integral represantations of £~ (z, A) and E* (x, \) we obtain (2.5). It follows
from (2.2) — (2.4) that f € Li1(R,S). O

Theorem 2.2. The following asymptotics hold
(2.6)  D()\) = 22X —2K7(0,0) — 2K (0,0) +o(1) A€ Cy, [N — oo,
(2.7) D) =2M+0(1) AeCq, [N — 0.

Proof. a) Let A € R. By the Riemann-Lebesgue lemma for the Fourier transforms we
get that [21]

(2.8) /f(t)e“tdt =o(l) , AER, |\ — Foo.
0
b) Let A € C4. In this case, by the Lebesgue theorem we obtain that [21]
(2.9) /f(t)e“tdt =o(l) , AeC4, [N — .
0
Tt follows from (2.8) and (2.9) that
(2.10) /f(t)e“tdt:oa) , A€C4, |A — .
0

From (2.5) and (2.10) we have (2.6). In a similar way we may also prove (2.7). O
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3. Eigenvalues and Spectral Singularities of L

Let us suppose that
(3.1) G(A) :=det D(X)

Also, 04(L) and 0ss(L) will denote the eigenvalues and spectral singularities of L, respec-
tively. By the definition of eigenvalues and spectral singularities of differential operators
we can write [7], [10]

(32) oga(l)={z:2=X XeC4,G(\) =0}

(33)  ow(L)={z:2=2 A€ R\{0},G(\) =0}.

Definition 3.1. The multiplicity of a zero of G in Cy is defined as the multiplicity
of the corresponding eigenvalue and spectral singularity of L.

In order to investigate the quantitative properties of the eigenvalues and the spectral
singularities of L, we need to discuss the quantitative properties of the zeros of G in C .

Let M; denotes the zeros of the function G in C; and M> denotes the zeros of the
function G on the real axis. Therefore, using (3.2) and (3.3) we obtain

(34) o4(L) = {Z:ZZ/\Q,/\E M}
(3.5)  ows(L)={z:2=2"x€ M} \{0}

Lemma 3.2. (i) The set M is bounded and has at most countable number of elements

and its limit points can lie only in a bounded subinterval of the real axis.
(ii) The set My is compact and its Lebesque measure is zero.

Proof. From (2.7), we can obtain
(36) | K= @0 < e (T

)

where ¢ > 0 is a constant. Using (3.1) and (3.6), we get that the function G is analytic
in C4, continuous on the real axis and satisfies the following

(3.7) G\ =2iA+0(1) , Ae T, [\ = o0

Equation (3.7) shows that the sets M; and M, are bounded. Since D()) is analytic
in C4, then the set M; has at most countable number of elements. By (3.7) and the
boundary value uniqueness theorem of analytic functions, we get that the set My is closed
and p(Mz) = 0, where p(Mz) denote Lebesgue measure of the set Ms [22]. O

From (3.4),(3.5) and Lemma 3.2 we obtain the following theorem.

Theorem 3.3. Under the condition (2.1)

(i) The set of eigenvalues of L is bounded, is no more than countable and its limit
points can lie only in a bounded subinterval of the positive semiaxis.

(ii) The set of spectral singularities of L is bounded and p(oss(L)) = 0.

Now, let us assume that, for some ¢ > 0,

oS}

(3.8) / exp(e |2]) |Q(@)|d < oo.

— 00

From (2.2) — (2.4), we get the following

B9 1K @Ol I 0l I 0] < comp | -e(E5 )|
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where ¢ > 0 is a constant. Also under the condition (3.8) we have
(3.10) [If()] < ce 2

by (3.9).
Theorem 3.4. Under the condition (3.8), the operator L has a finite number of
eigenvalues and spectral singularities and each of them is of finite multiplicity.

Proof. By using (3.9) and (3.10) we observe that the function G has analytic continuation
to the half plane Im A > —35. So, the limit points of zeros of G can not lie in R. Using
Lemma 3.2, we get that the bounded sets M; and M> have a finite number of elements.
Since G is analytic for ImA > —35, we obtain that all zeros of G in C, have a finite
multiplicity. So that the sets o4(L) and oss(L) have a finite number of element with a
finite multiplicity. O

Now, let us suppose that

(3.11) / exp(ey/| z )]|Q(z)|lde <00 , €>0
which is weaker than (3.8).

It is evident that under the condition (3.11), the function G is analytic in C;and
infinite differentiable on the real axis.

Let us denote the sets of all limit points of M1 and Mz by M3 and My respectively,
and the set of all zeros of G with infinite multiplicity in C; by Ms. It is obvious from
the uniqueness theorem of the analytic functions that

M3z C Mz, My C M2, Ms C Mz, Mz C Ms, My C Ms

and p(Ms) = p(Ms) =0 [22].
Lemma 3.5. Under the condition (3.11), the function G and its derivatives provide
the following inequality:

(3.12) ’GW(A)‘SAn . n=1,2,.., ImA>0

where

Aq :2+622/t67§ﬂdt
0

(3.13) A, = 2"t /t"e‘%ﬁdt, n=23,..
0
are constants. In addition, for all n € N

(3.14) A, < Bb'nln"

holds where B,b are constants.

Proof. We easily get the proof of the Lemma using (2.5) and (3.1). O
Theorem 3.6. If (3.11) holds, then Ms = &.

Proof. Using Lemma 3.2, for sufficiently large 7" > 0, we get

T oo

In |G /lan(A)l
(3.14) / T2 d\| < oo, 1 dA\| < oo

[eS] T
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Since G(\) # 0, we obtain
h

(3.15) /lnH(s)du(M57s) >~
0

s™

by (3.12), (3.14) and Pavlov’s Theorem, where H(s) = inf 4=

, w(Ms, s) is the Lebesque

measure of the s-neighbourhood of Ms and h > 0 is a constant [5]. Substituting (3.14)
into the definition H(s), we arrive at

H(s) < Binf {b"s"n"} < Bexp {—bilsflefl}

n!

and
InH(s) < —b ‘s 'e?
Consequently,
h

1
/gdu(M5,s) < 00
0
holds by using (3.15) for arbitrary s, if and only if u(Ms,s) =0 or M5 = @. O

Lemma 3.7. G has a finite number of zeros with finite multiplicity in C..

Proof. Since M3 C Ms and My C M5, we get
(316) Ms = My = @.

By using Lemma 3.2 and (3.16), we obtain the finiteness of the sets M; and M. Because
of M5 = @, all of the zeros of the function G have finite multiplicities. O

From Lemma 3.7, we get the following theorem.
Theorem 3.8. The operator L has a finite number of eigenvalues and spectral sin-
gularities and each of them is of finite multiplicity if condition (3.11) holds.
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In this paper, we introduce and investigate two subclasses of analytic
functions of complex order, which are introduced here by means of
a certain nonhomogeneous Cauchy—FEuler-type differential equation of
order m. Several corollaries and consequences of the main results are
also considered.
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1. Introduction, definitions and preliminaries
Let R = (—o0,00) be the set of real numbers, C be the set of complex numbers,
N:={1,2,3,...} = No\ {0}
be the set of positive integers and
N*:=N\{1} ={2,3,4,...}.

Let A denote the class of functions of the form
(1.1) f(z):z+Zaizi
i=2

which are analytic in the open unit disk

U={z:2€C and |z|<1}.
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Recently, Faisal and Darus [8] defined the following differential operator:
Df(z) = f(2),
a—p+p—=A + A
Dhapmre = (I per (A1) e 6.

a+p
D3 (o, B, 1) f (2) D (Dj (o, B, 1) f (2))

(12)  DX(aBm)f(2) = D(DY(a.B,m) f(2))-
If f is given by (1.1), then it is easily seen from (1.2) that

(a + (1 +O:\l(;— 1)+ ﬁ) 0,2

(13) DX (B f(2) =2+

1=2
(feA;a,B,p,A>0; a4+ #0;neNy).

By using the operator DY («, 3, 1), Faisal and Darus [8] defined a function class
W (n,a, B, p, A, ¢, 7, €) by

%{1+§ ( [CDX* (0, 1) £ (2) + (1= ) DR (@, ) [ (2)] 1)} -

(DY (@, By 1) f (2) + (1 =€) DR (e, B, 1) f (2)

(2€U;0<y< ;0S¢ <L E€C\{0})
and also investigated the subclass ® (n, «, 3, 1, A, (,7, &, 7) of the analytic function class
A, which consists of functions f € A satisfying the following nonhomogenous Cauchy-
Euler differential equation:
2.

d2

(w=f(2) €A; g€ ¥ (n,a, 8,11, \,(,7,€)5 T € (—1,00)).
In the same paper [8], coefficient bounds for the subclasses ¥ (n, «, 3, u, A, ¢, 7, &) and
D (n,a, B, 1, A\, ¢, v, &, 7) of analytic functions of complex order were obtained.
Making use of the differential operator DY (a, 8, 1), we now introduce each of the
following subclasses of analytic functions.

+2(1+T)z—+r(1+r)wf(1+T)(2+T)q(z)

1. Definition. Let g : U — C be a convex function such that
g(0)=1 and R{g(z)} >0 (z€0).
We denote by My (n, «, B, 1, A, ¢, €) the class of functions f € A satisfying
1 (z[cD:“ (o, 8,1) f (2) + (1= Q) D8 (e, B, 1) £ (2)]' 1) ca(l),
E\ DX (@B ) f(2) + (1= Q) DY (e Bop) £ (2)
where z € U; 0 < ¢ <1; € € C\ {0}.

2. Definition. A function f € A is said to be in the class My (n, o, B, i, A, ¢, §;m, 7) if
it satisfies the following nonhomogenous Cauchy-Euler differential equation:

md"w m m_ldmflw i et .
z dZm+<1>(T+ml)z g -+ < ) 1:[ T+7) (z)jl:[O(TJr]Jrl)

(14)  (w=f(z) €A g€My(n,, 8,1, 1 ¢,6); meN; 7€ (—1,00)).
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Remark 1. There are many choices of the function g which would provide interesting
subclasses of analytic functions of complex order. In particular,
(i) if we choose the function g as
9(x)= 1+ s
1+ Bz
it is easy to verify that g is a convex function in U and satisfies the hypotheses of Definition
1. If f e My (n,a, B, 1, A, (&), then we have

L (z[cD;L“ (e 8,0) f (2) + (1= Q) D3 (@, B, 1) f ()] _1> JLlkds g

(-1<B<A<1; z€U),

E\ DY (0, B,1) f(2) + (1 =) DY (o, B, 1) £ (2) 1+ Bz

We denote this new class by H (n, «, 8, 1, A, (, &, A, B). Also we denote by

B (n,a, B, py N, ¢, & A, B;m, 1) for corresponding class to My (n, «, 8, 1, A, ¢, & m, 7);

(ii) if we choose the function g as

1+(1-2y)z
1—=z

it is easy to verify that g is a convex function in U and satisfies the hypotheses of Definition

1. If f € My (n,a, B, 1, A, ¢, &), then we have

1 (2 [¢DF (@ B,m) £ (2) + (1= Q) D (0, B ) £ (2)] )
%{Hf( CD3 (0, B,10) £ (2) + (1= ) D (. B, £ (2) 1)}” (et

g9(2) = (0<y<1;2€l),

that is

feql(n7a7ﬁ7u7)\7c7,y7§)'

Remark 2. In view of Remark 1(i7), by taking
1+(1—-27)z
1—-2z

in Definitions 1 and 2, we easily observe that the function classes

Mg (nvanB? M7)‘7<7£) a‘nd Mg (n7avﬁ7 IJ’7A7<7§;27T)

become the aforementioned function classes

\P(n7a7B7M7A7C777£) and é(n7a7ﬁ7M7A7<7’y7€7T),

respectively.
In this work, by using the principle of subordination, we obtain coefficient bounds for
functions in the subclasses

Mg (n,a,ﬁ,u,A,(,f) a‘nd MQ (n7a7ﬁ7:u/7A7<7§;m7T)

of analytic functions of complex order, which we have introduced here. Our results would
unify and extend the corresponding results obtained earlier by Robertson [13], Nasr and
Aouf [12], Altintas et al. [1], Faisal and Darus [8], Srivastava et al. [16], and others.

In our investigation, we shall make use of the principle of subordination between
analytic functions, which is explained in Definition 3 below (see [11]).

g(2) = (0<~<1; zel)

3. Definition. For two functions f and g, analytic in U, we say that the function f (z)
is subordinate to g (2) in U, and write

f(z)<g(z) (€1,
if there exists a Schwarz function w (z), analytic in U, with

w(0)=0 and |o(z)]<1 (z€U),
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such that
f(z)=gw(2)) (z€0).

In particular, if the function g is univalent in U, the above subordination is equivalent to
f(0)=g(0) and f(U)cCg(U).

2. Main results and their demonstration

In order to prove our main results (Theorems 1 and 2 below), we first recall the
following lemma due to Rogosinski [14].

1. Lemma. Let the function g given by
a(z) = Z brz" (z € )
k=1
be convex in U. Also let the function f given by

flz) = Zakzk (z € )

be holomorphic in U. If
f(z) <e(z) (2€0),
then
lax] < b1 (keN).
We now state and prove each of our main results given by Theorems 1 and 2 below.

1. Theorem. Let the function f € A be defined by (1.1). If the function f is in the
class My (n, «, B, u, A\, ¢, &), then
i—2

(a+p)" [T+l lg" ()]
< — — . g
= ((=D'at+Cp+XNE-1)+8 ot (p+2) (@ -1)+f]
Proof. Let the function f € A be given by (1.1). Suppose that the function F(z) is
defined, in terms of the differential operator DY («, 3, i), by

(22)  F(2) =C(DVT (@B, ) f(2) + (1= Q) DX (e, B, ) f (2) (2 €T).
Then, clearly, F is an analytic function in U, and a simple computation shows that F has
the following power series expansion:

(2.1) |a; (1 e N").

(2.3) F(z)=z2+ iAizi (€ U),

where, for convenience,

NG ) Aot N G- A"

(2.4) A () (1eN).
From Definition 1 and (2.2), we thus have
1 (2 (2)
1+E< 7) 71) €g(U) (2€0).

Let us define the function p(z) by

(2.5) plz)=1+ 1 (Z;{/(S) — 1) (z € U).

3
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Hence we deduce that

p(0) =¢(0) =1 and p(z) €g(U) (z€0).
Therefore, we have

p(z) < g(z) (2€).
Thus, according to the Lemma 1, we obtain

(1)
(2.6) ’p “(O)’gyg’(on (leN).

Also from (2.5), we find

27) 2T (2) =[1+&(p(z) —D]T(2).

Next, we suppose that

(2.8) pl)=1l+ciz+cz’+--- (z€l).
Since A1 =1, in view of (2.3), (2.7) and (2.8), we obtain
(29 (-DA=¢{cic1+ci242+--+cadi1} (i€N).
By combining (2.6) and (2.9), for ¢ = 2, 3,4, we obtain
42| < I€l]9(0)],

144] < & 9" ()] (1 + €] 19’ (0)])
— 2! )

4| < 1€11g"(0)] (1 + 1€l 1g"(0)]) (2 + €] 19 (0)])
— 3! b
respectively. Also, by using the principle of mathematical induction, we obtain

1 17+ €119/ )]
1A < =2

(i— 1)

Now from (2.4), it is clear that

(1eN").

(a+ 8" T [ + 1€l 1/ O]

Jj=0

< — - - n
= (i—=Da+Cu+A) -1+ [a+ (p+A) (i —1)+ 5]
This evidently completes the proof of Theorem 1. |

\ai (ZEN*)

2. Theorem. Let the function f € A be defined by (1.1). If the function f is in the
class My (n, o, B, p, A\, ¢, &;m, 7) , then

(@48 T +lelly ) TT 45+

i=0
lai| < d

— (1 e N).
(=D a+Cr+N)E-1)+8] [a+ (p+A)(@—1)+8]" _E[O (T+Jj+14)

Proof. Let the function f € A be given by (1.1). Also let

h(z) =z+ Y biz' € My (n, 0, 8,1, 7C,8).

=2
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Hence, from (1.4), we deduce that

m—1

II ¢+7+1)

ai= 1" bi (€N, 7e(-1,00)).
(T 437 +1)
=0

J
Thus, by using Theorem 1, we obtain

i—2 m—1

(a+8)"" TI i+ ¢l 19 O] 1 (r+j+1)
jas] < o . L= .
- Dt CurING-D+A @t NG—1)+7 T

This completes the proof of Theorem 2. |

3. Corollaries and consequences

In this section, we apply our main results (Theorems 1 and 2 of Section 2) in order to
deduce each of the following corollaries and consequences.

1. Corollary. ([19]) Let the function f € A be defined by (1.1). If the function f is in
the class My (0, B, 11, A, €, §) = 84(C, €), then

i—2
I+ I€l1g'O)]
< = i € N).
ol < A v ey SN
2. Corollary. ([19]) Let the function f € A be defined by (1.1). If the function f is in
the class Mg (07 «, 57 12 >\, C7 57 m, T) = xg(§,§7 m; T)7 then

TG+EgOn T (r+j+1)
Jai] < =2 — = (i € N").
G—1)!14+C¢@E-1) 1;[0(7+j+i)

3. Corollary. ([17]) Let the function f € A be defined by (1.1). If the function f is in
the class My (n,1,0,0,1,¢,§) = My(n, ¢, &), then

I+l O
ol < warca-ma-m (N

4. Corollary. ([17]) Let the function f € A be defined by (1.1). If the function f is in
the class My (n,1,0,0,1,(,&;2,7) = Mg(n,(,&;7), then

(1) @) T+ Ills )

ol s STy ararien CEN):
Setting
m=2 and g(z):w (0<vy<1; z€)

in Theorems 1 and 2, we have following corollaries, respectively.
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5. Corollary. [8] Let the function f € A be defined by (1.1). If the function f is in the
Class \p (n’ a’ /37 u? A’ <7 ’Y’ 5)7 then

(a+ 8" T l+21el (1= )

< ((=DMa+Cu+N)@-1)+8] [at (u+X)(@—1)+4]"

6. Corollary. [8] Let the function f € A be defined by (1.1). If the function f is in the
Class ¢(n’ a7 5’ u’ A7 C’ ’y’ 57 T)7 then

las (i e N*).

(14 @+ ot H T+ 2060

il < G+7)GE+1+7) (=D a+C(p+N)GE—1)+8] [a+ (n+ )G —1)+p]

= (1 eNY).

For several other closely-related investigations, see (for example) the recent works [1-7,
12, 13].
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1. Introduction

In [1], Hecke introduced the groups H(\) generated by two linear fractional transfor-
mations

T(z) = —% and U(z) =z + A,

where ) is a fixed positive real number. Let S =TU, i.e.,
1
2+
Hecke showed that [ () is discrete if and only if either A = Aq = 2cos(7), ¢ > 3 integer,

or A > 2. These groups have come to be known as the Hecke groups and we will denote
them by Hg, or by H()), respectively. The first few Hecke groups are Hs = PSL(2,7Z)
(the modular group), Hy = H(V/2), H5 = H(#), and Hg = H(V/3) for ¢ = 3,4,5 and
6, respectively.

It is known that when A = \; = 2cos(§), g > 3 integer, Hecke group H, is isomorphic
to the free product of two finite cyclic groups of orders 2 and ¢,

H,=<T,5|T*=8"=1>~CyxC,,

S(z) = —

and when \ > 2, Hecke group H()) is a free product of a cyclic group of order 2 and
infinity, so all such H(X) have the same algebraic structure, i.e.

H\) =<T, S|T?=1>~CyxZ.

Also Hecke group H, or H()) is the Fuchsian group of the first kind when either
A= Aq =2cos(%), q > 3 integer or A =2, and H(X) is the Fuchsian group of the second
kind when A > 2.

On the other hand, Lehner studied in [2] more general class H, 4 of Hecke groups Hy,
by taking

—1
X = dV = Ap + Ag,
— an Z+ Ap + Aqg,
where 2 < p < ¢ < o0, p+ g > 4. Here if we take Y = XV = —ﬁ7 then we have the
presentation,

(1.1)  Hpy=<X,Y | X’ =YT"=1>~C,*C,.

We call these groups as generalized Hecke groups Hp 4. We know from [2] that Hs =
Hy, |Hq : Hqq| = 2, and there is no group Hz . Also, all Hecke groups H, are included
in generalized Hecke groups H), 4. Also, generalized Hecke groups H), 4 have been studied
extensively for many aspects in the literature (for examples, please see, [3], [4], [5], [6],
[7] and [8]).

Extended generalized Hecke groups H, , have been defined in [9] and [10], similar to
extended Hecke groups H, (please see, [11] and [12]), by adding the reflection R(z) = 1/Z
to the generators of generalized Hecke group H, 4. From [9], extended generalized Hecke
groups H, , have a presentation

Hyy=<X,Y,R|X?=Y'=R>=1, RX =X""'RRY =Y 'R >,
or
Hp,=<X,Y,R| X’ =Y9=R*=(XR)?=(YR)?=1>~D,xc, D,.

The group Hp,, is a subgroup of index 2 in Hp,,.
In (1.1), if ¢ = oo, then we have more general class H, , of Hecke groups H()\).
Now we can give the following definitions;
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1.1. Definition. Let )\, = 2005%, p > 2 integer and let A > 2. Generalized Hecke
groups Hp oo () are defined as the groups generated by

X = -1 and Y = — ! R
zZ—Ap z+ A

and have a presentation
HpooN) =< XY | XP =Y =] >, % L.

1.2. Definition. Extended generalized Hecke groups Hp,o()), are defined by adding
reflection R(z) = 1/Z to the generators of generalized Hecke groups Hp o(A) and have a
presentation

Hpyo M) =<X,Y,R|XP=Y® =R*=I,RX =X""'RRY =Y 'R >,
or

Hy(\) = <X, Y,R|XP=Y>*=R>=(XR)’=(YR)?=1>,
>~ Dy #*cy Doo.

In this paper, we study the commutator subgroups of extended generalized Hecke
groups Hp oo(A). Then, we determine the power subgroups of generalized Hecke groups
Hp.0(\) and extended generalized Hecke groups Hpoo()). We use the Reidemeister-
Schreier method to get the generators of all these subgroups.

Let G be a group and N be a normal subgroup of G with finite index. According
to the Reidemeister-Schreier method we get the generators of N as follows: We first
choose a Schreier transversal 3 for the quotient group G/N such that all certain words of
generators including.Note that this transversal is not unique. Then we get the generators
of N as following order:

(An element of ) x (A generator of G) X
(coset representative of the preceeding product)fl.

For more details please see [13].

Commutator subgroups and power subgroups of Hecke and extended Hecke groups
have been studied in, [14], [15], [17], [20], [23], [24] and [25]. Here, our aim is to generalize
the results given in [14] and [15] for Hecke groups H()\) and extended Hecke groups H ()
to extended generalized Hecke groups Hp, oo ()).

2. Commutator Subgroups of Extended Generalized Hecke Groups

Since the index of the commutator subgroup Hj, o, (\) in Hp o ()) is infinite, we study
only the commutator subgroup ﬁ;’m()\) of extended generalized Hecke groups H p,oo(\).

Here, we investigate the cases of p, odd or even, seperately.
2.1. Theorem. Let p > 3 be an odd integer and let A > 2. Then

— —
1) |Hpoo(A) : Hp oo(N)| = 4.
2) Hyoo(\) =< X, YXY L Y? | XP = (YXY })?
=(YH>® =1>2C,xC,p L.

Proof. 1) Firstly, we set up the quotient group Fp,oo()\)/ﬁ;m()\) which can be construct
by adding the abelianizing relation to the relations of H, o (A). Then

Hpoo(N)/Hyo(\) =< X,Y,R| X? = Y® =R? = I, RX = X" 'R,
RY =Y 'R, XR=RX,YR=RY, XY =YX >.
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Since p is odd and from the relations RX = X? 'R and RX = XR, we have X = I.
Also we get Y? =T from the relations RY = Y 'R and YR = RY. Thus we have

HpooN)/Hyoo(A) =<Y,R|Y? = R* = (YR)’> = I >~ C> x Cb.

2) Now we determine the set of generators for ﬁ;’w()\). We choose a Schreier transversal
for H'poo(A) as ¥ = {I,Y, R, Y R}. According to Reidemeister-Schreier method we can
form all possible products;

LX) =X, LY.(Y) ' =1, ILR(R)™ =1,
YX.(Y) ' =YXy, YY(I)T' =Y? Y.R(YR)™' =1,
RX.(R)™' = X771, RY.(YR)™'=Y"2 RR()'=1I,

YRX.(YR) ' =YX?"'v"!, YRY.(R)'=1I, YRR(Y) ' =1

Since X' = XP71 (VXY™™ = YXP7'Y ! and (Y?)™! = Y72, the generators are
X, YXY ! and Y2 Thus H', o (\) has a presentation

=/

H, (N <X, YXY LY?|XP=(YXY )P

- (Y2)°°:I>§CP*CP*Z.

2.2. Theorem. Let p > 2 be an even integer and let A > 2. Then
— —
D [Home V) : By (V)] = 8.
2)

< X2 YX*v 7l XYy XY Ly Xy x| (x?)p?
= (YXAY O (XYXY H® = (YH® = (XYX H®=T>
Cpra* Cpo ¥ Lok L x 7.

Hyoo(N)

14

Proof. 1) Similar to the previous proof, we have the quotient group pro()\)/ﬁg,’oo()\)
as

Hpoo\)/Hpoo(\) =< X,Y,R| X? = Y® =R? = [, RX = X" 'R,
RY =Y 'R, XR=RX,YR=RY,XY =YX >.

Since p is even and from the relations RX = X? 'R, XR = RX, RY = Y 'R and
YR = RY, we have X? =T and Y? = I. Thus we get

HpooN)/Hypoold) = <X,V,R:X*=Y?=R>=(XY)’=(XR)>=(YR?=1>,
Cz X Cz X Cz.

I
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2) Now we can determine the Schreier transversal as ¥ = {I, X, Y, R, XR, YR, XY,
XY R}. From the Reidemeister-Schreier method all possible products are;

IL.X.(X) ' =1, LY.(Y) ' =1,
X.X.(I)' = X2 XY.(XY) ' =1,
Y.X(XY) P =vXy 1xr 1 Y.Y. ()" =Y2,
RX.(XR)™'=X7r"2 RY.(YR)™'=Y"2,
XRX.(R) =1, XRY.(XYR)™' = Xy 2Xx 1
YRX.(XYR) '=YX 'Y 'x 1 YRY.(R) ' =1,
XY.X.(Y) ' =XYXy !, XYY.(X) ' =XY2Xx
XYRX.(YR)™' = XYX~'vy !, XYRY.(XR)™' =1,
IL.R(R)™' =1,

X.R(XR)™' =1,
Y.R(YR) ' =1,
RR.(I)™' =1,
XR.R.(X)™' =1,
YRR.(Y) ' =1,
XY.R(XYR)™' =1,
XYRR.(XY)'=1
Since (X?) ' = XP2 (YXY 'XP H ' =XYyX 'V (YX 'Y X )l =XYXYy
(YH™ ' =y2 (XY?2X1)"! = XY 2X !, we have the presentation of ﬁ;’w()\) as
H, () < X2 YXAYTlOXYXY “LY? XYIX | (XP)r/?
= (YXPY PP = (XYXY D)™ = (¥YH® = (XY’ X H®=1>
Cp/g*cp/Q*Z*Z*Z.

14

3. Power Subgroups of H, () and H, o (\)

In this section, we consider the power subgroups of generalized Hecke groups Hp, oo ()
and extended generalized Hecke groups H, o (A). Here, we note that the power subgroups
of Hecke groups H,, or H()\) and extended Hecke groups H,, or H()\) have been studied
by many authors in [6], [7], [10], [11], [12], [14], [16], [18], [19], |21], |22].

Now we give some information about the power subgroups.

Let m be a positive integer. Let us define G™ to be the subgroup generated by the
m'" powers of all elements of G = H oo (A) or Hp,oo(A). The subgroup G™ is called the
mt™ — power subgroup of G. As fully invariant subgroups, they are normal in G.

From the definition, it is easy to see that

Gmk < G™
and
G < (G™)F.
We now discuss the group theoretical structure of these subgroups. We find a presen-
tation for the quotient G/G™ by adding the relation A™ = I to the presentation of G.
The order of G/G™ gives us the index. Thus we use the Reidemeister-Schreier process

to find the presentation of the power subgroups G™.
Let us start with Hp o ().

3.1. Theorem. 1) Let p > 2 be an odd integer and X\ > 2. Then,
H o) =< X,YXY L Y? | XP = (YXY )P = (Y)® =1 >=Cp*Cp L.
2) Let p > 2 be an even integer and X\ > 2. Then,
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H2 (N =< X2 YX?Y ', XYXY L Y2 XY2X 1| (X?)P/?
= (VXY I = (XYXY H™ = (V)™ = (XY2X H)>®=1>.
Proof. 1) The quotient group Hp oo (N)/Hp o (N) is
HpooN)/H} o) =< X,Y | XP =Y * = (XY)* =X’ =Y’ =(XY)’ = =1>.
Since p > 2 is an odd integer and from the relations X? = X? = [ and Y?> = Y™ = I,
we have X = Y2 =T . Thus we get
HpooN)/H} c(A\) =< Y | Y? =T > Co.

If we choose a Schreier transversal as {I, Y} and use the Reidemeister-Schreier
method, we obtain all possible products;

I.X.(H) ' =X, LY.(Y) ' =1,
YX.(YV)'=YXYy~ ' YY) '=Y2
So we get the presentation of H; . (\) as
H o\ =< X,YXY ", Y’ | XP = (YXY ) = (Y)® =1 >2CpxCp+ L.
2) The quotient group Hyp oo (N)/H7 (N is
HpoN)/Hy c(N) = <X, Y|XP=Y>=(XY)™
X2=v?=(XY)=...=I>.
Since p > 2 is an even integer and from the relations X? = X? =T and Y? = Y™ =],
we obtain X =Y? =1 . Thus we have
Hyoe N/ H2 (V) =< X,Y | X* =Y* = (XY)? = [ > Dy
Now we choose a Schreier transversal as {I, X, Y, XY} for H2 ., (\). According to the
Reidemeister-Schreier method, we can form all possible products;

ILX.(X) ™t =1, LY.(Y) ' =1,
X.X(I)t = X7 XY.(XY) =1,
YX(XY) ' =YXY X' YY) l=Y?

XY.X. (V) '=XYyXyl,  XVV(X)'=XY2xlL

Thus we obtain a presentation of Hy . (\) as

H (N < X2 YXAY Tl OXyXY L Y? XvIX | (xP)P/?
(YX2Yy NP2 = (XY XY )™ = (VH)® = (XY’X )®=1>
Cpy2* Cpyo x L% L 7.

1

O

3.2. Theorem. Let A > 2. If m and p are positive integers such that (m,p) = 1, then
H' o (M) <X, YXYy~' VIXy TP ... ymUlXylTT Y™ | XP
= (YXY D)W =(Y’XY )P =...=(Y" ' XYy'""P =(¥Y™)®=1>
Cp*Cpx-xCpx 7.

14

m times
Proof. The quotient group Hp oo (A)/Hy s (A) is
HpooN)/H (N =< X,V | X =Y =(XY)"=X"=Y"=(XY)"=--.=1>.
Since (m,p) =1 and from the relations X? = X™ = I, we find X = I. Thus we have
Hpoo(N)/Hy'oo(X\) =<Y : Y™ =1 > C,,.
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Then we choose the Schreier transversal as ¥ = {1, Y, Y?, ..., Y™ '}, According to the
Reidemeister-Schreier method, we get the following products;

I.X.(I) ' =X, LY. (Y) ' =1,
YX(Y) =YXy YY.(YH =1,
Y2.X.(Y?) T =v2XY 2 Y2Y.(v3) Tt =1,

Y3X. (Y3l =v3iXy 3, Y3Yy.(yH =1,

ymolx (yme )Tl ymolxylem o ymely (1) =y

So we have a presentation of H_ .,(\) as

H'(\) = <X, YXY ' Y’XYy 2 ... y"™lxy'""my™ | xP
= (YXY D)W =(Y’XY )P =...=(Y"'XYy'""P =(¥Y™)®=1>
= CpxChx---xCpxZ.
O
The case (m,p) = d > 1, except of m = 2 and p even, is more complex, since the
index of quotient group Hy oo (A)/H} s (A) is unknown. In this case, we have the relations
X% = Y™ = (XY)™ = ... = I and can not say anything about the power subgroups
Hyloo(N)-

Now we consider the power subgroups F:?oo (A\) of extended generalized Hecke groups
Hp o0(N). Here, we interest with the cases such that the index of the quotient group
Hpoo(N\)/H, o0 (N) is finite.

3.3. Theorem. 1) Let p > 2 be an odd integer and A\ > 2. Then,
Hooo(\) =< X,YXY L V2| X? = (YXY )P = (Y)® =T >2 C, % Cp * Z.
2) Let p > 2 be an even integer and X\ > 2. Then,
Hooo(\) =< X2 Y XYL XYXY L Y2 XY2X 1| (X2)P/2
= (Y X2y P2 = (XYXY 1™ = (Y?)® = (XY2X H>® =]>.

Proof. The quotient group ﬁp,oo()\)/ﬁi’oo()\) is

Hypoo(\)/Hyoo(\) =< X,Y,R| X? = Y™ = R> = (XR)? = (YR)?
=X?=Y’=(XY)’ = =1>.

The rest of the proof is similar to the proof of the Theorems 1 and 2. O

By using the Theorems 1, 2, 3 and 5, we can give the following.
3.4. Corollary. Fi,oo()\) = Hg’oo(/\) = F;;,oo()\)-

3.5. Theorem. 1) Let A > 2 and let p > 3 be an odd number. If m is an even positive
integer such that (m,p) =1, then

H, () = <X, YXY ' VXY 2 ... y"'Xy'"""™ym™|x?

(YXY ™ N = (Y2XY )P =...= (Y™ ' XY'"™"™)P = (Y™")® =1 >
Cp*Cps-xCp 7.

————

I

m times

2) Let A > 2. If m > 0 is odd integer such that (m,p) = 1, then Hp o(A) = Hp,oo(N).
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Proof. 1) The quotient group Hp,oo(A)/Hp oo (N) is

HpooN)/Hyoo(N) =< X,Y,R| X? =Y> = R? = (XR)? = (YR)?
=X"=Y"=(XY)"=-..=1>.

Since (m,p) = 1 and m is even, we have X = I.
HpooN)/Hy oo\ =<Y,R:Y" =R’ = (YR)’ = ... = [ >~ D,,.

Considering the presentation of quotient group we can choose Schreier transversal as
S ={LY, Y% .., Y™ R RY, RY? .. RY™ '}. Then the process as following;

I.X.(H)'=X, LY. (Y) ' =1,
Y.X(Y) =YXV !, YY.(YH =1,
Y2X.(Y?)™ =YXy 2, Y2Y.(Y*) T =1,
Yyl X(ym )Tt =yl Xyt ymly(nTt=vym™,
RX.(R)™'= X", RY.(RY)™ =1,
RY.X.(RY)™' =y~ 1Xx?ly, RY.Y.(RY*)™' =1,

RY2.X.(RY?) ' =y 2xPly 2 RY2Y.(RY®) ™' =1,

RY™ X (Ry™ H~t=yl-mxr-lym=l RY™ ' Y(R)"'=Y"",

I.R(R)™' =1,
Y.R(RY™ )t =vy™,
Y2.R(RY™ )"l =vy™,

Y™ L R(RY) '=Y™,
RR.(I)' =1,
RY.R(Y™ H=t=y—m,
RY2.R(Ym2)"t=y ™

RY™ ' R(Y) =Y,
After required calculations, we have a presentation of H,, ., (\) as
H) (N = <X, YXY ' VXY 2 ... vy ' Xy' "y XP = (YXY )P
(VXY )P =...=(Y"'XYy'"™"P =(¥y™)>® =1>
CpxCpx---xCpxZ.
N—e—

1%

m times
2) The quotient group Hp,ec(N)/H, oo () is
HpoN)/Hyoo\) = <X, Y,R|X"=Y> =R’
= (XR?=(YR?’=X"=Y"=(XY)"=-.=1>

Since m > 0 is an odd integer and from the relations X™ = X? =1, Y™ = (YR)> = I
and R?> = R™ = I, we have X =Y = R = I. Obviously we have X = I. As a result, we
obtain

Hpoo(N)/Hyioo (V) 2 {1},
and 5o H, o (\) = Hp,00(N). O
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3.6. Corollary. Let p > 3 be an odd integer and let A > 2. If m 1s an even positive
integer such that (m,p) = 1, then H, o (\) = HJ"..(\).

The case (m,p) = d > 1,except of m = 2 and p even, is unknown and so we can not
say anything about the power subgroups H:OO()\), similar to H,"» (N).

3.7. Remark. In this paper, if we take p = 2, then our results coincide with the ones
given in [14] and [15].
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On quasi-contractions in metric spaces with a
graph
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Abstract

In the present work, we introduce G-quasi-contractions using directed
graphs in metric spaces with a graph and we show that this contrac-
tion generalizes a large number of contractions. We then investigate
the existence of fixed points for G-quasi-contractions under two dif-
ferent conditions and discuss the main theorem. Finally, we list some
consequences of our theorem where either the contractive condition is
replaced with a stronger one or the underlying space is changed to a
complete metric space or a complete cone metric space.
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1. Introduction and Preliminaries

In 1974, Lj. B. Ciri¢ |9] introduced (single-valued) quasi-contractions in metric spaces
and gave an example to show that this new contraction is a real generalization of some
well-known linear contractions. He investigated the existence and uniqueness of fixed
points for quasi-contractions in T-orbitally complete metric spaces via a different ap-
proach rather than using merely the iterates of a point. He also introduced multi-valued
quasi-contractions and showed that a similar result is valid for these contractions in
F-orbitally complete metric spaces.

In [21], B. E. Rhoades compared various definitions of contractive mappings in metric
spaces and showed that Ciri¢’s contractive condition is one of the most general contractive
definitions in metric spaces and includes a large number of different types of contractions.
Thus, many authors became interested in studying quasi-contractions. The existence and
uniqueness of fixed points for these contractions as well as some interesting properties
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of them have been investigated not only in metric spaces but in different spaces such as
modular spaces (see, e.g., [17]) and cone metric spaces (see, e.g., [13, 15, 16, 20]) so far.
Quasi-contractions have also been studied in Banach spaces (see, e.g., [10]).

The most important graph theory approach to metric fixed point theory introduced
so far is attributed to J. Jachymski [14]. In this approach, the underlying metric space
is equipped with a directed graph and the Banach contraction is formulated in a graph
language. Using this simple but very interesting idea, J. Jachymski generalized several
well-known versions of Banach contraction principle in metric spaces simultaneously and
from various aspects. As an application, he proved the Kelisky-Rivlin theorem on the
iterates of the Bernstein operators defined on the Banach space of continuous functions
on [0,1]. In the recent years, many authors followed J. Jachymski’s idea to formulate
different types of contractions via directed graphs in metric spaces and generalized the
concerned fixed point theorems (see, e.g. [1, 2, 3, 6]).

The main goal of this paper is to formulate single-valued quasi-contractions in metric
spaces with a graph and find sufficient conditions which guarantee the existence of a fixed
point. A large number of different types of contractive mappings formulated using di-
rected graphs satisfy the presented contractive condition and our main result is a natural
generalization of |9, Theorem 1| from metric spaces to metric spaces with a graph.

We start by reviewing a few basic notions in graph and fixed point theory that are
frequently used in the paper. For more details on graphs, the reader is refered to [4].

In an arbitrary (not necessarily simple) graph G, a link is an edge of G with distinct
ends and a loop is an edge of G with identical ends. Two or more links of G with the
same pairs of ends are called parallel edges of G.

Suppose that (X, d) is a metric space and G is a directed graph whose vertex set V(G)
coincides with X and edge set E(G) contains all loops (note that in general, G can have
uncountably many vertices). Suppose further that G has no parallel edges. In this case,
(X,d) is called a metric space with the graph G.

By G, it is meant the conversion of G as usual, i.e. a directed graph obtained
from GG by reversing the directions of the edges of G, and by é, it is always meant the
undirected graph obtained from G by ignoring the directions of the edges G. Thus, it is
clear that V(G ') = V(G) = V(G) = X and we have

BE(G") ={(z,y) € X x X : (y,z) € B(G)} and E(G)=E(G)UEG").

If (X, x) is a partially ordered set, then by comparable elements of (X, x), it is meant
two elements x,y € X satisfying either z < y or y < z, and following A. C. M. Ran and
M. C.B. Reurings [19, Theorem 2.1], a mapping 7' : X — X is called order-preserving
whenever x < y implies Tx < Ty for all z,y € X. Furthermore, following the idea of A.
Petrugel and I. A. Rus in L-spaces [18, Definitions 3.1 and 3.6] (see also [23]), one can
naturally formulate Picard and weakly Picard operators in metric spaces as follows:

1.1. Definition ([14, 18, 23]). Let (X,d) be a metric space and 7' : X — X be a
mapping.
a) T is called a Picard operator if T has a unique fixed point 2* € X and T"x — z*
for all z € X.
b) T is called a weakly Picard operator if {T"xz} is a convergent sequence and its
limit (which depends on z) is a fixed point of T for all x € X.

Finally, we need a weaker type of continuity defined in metric spaces with a graph
which was first introduced by J. Jachymski (see [14, Definition 2.4]). The idea of this
definition comes from the definition of orbital continuity defined by Lj. B. Ciri¢ [8].

1.2. Definition ([14]). Let (X, d) be a metric space with a graph G. A mapping T :
X — X is called orbitally G-continuous on X if Tz — y implies T(T*"z) — Ty for
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all z,y € X and all sequences {b,,} of positive integers such that (T°~z, T T'z) € E(G)
for all n € N.

2. Main Results

Let (X,d) be a metric space with a graph G and let T : X — X be a mapping. In
this section, by Cr, we mean the set of all points z € X such that (T™z, T"z) is an edge

of G for all m,n € NU{0}, i.e.
Cr={zeX:(IT"zT"s) € BE(G) m,n= 0,1,...}.

Note that C'r may be an empty set. For instance, consider the set R of all real numbers
with the usual Euclidean metric and a graph G given by V(G) =R and E(G) = {(z,z) :
xz € R}, If T: R — R is defined by the rule Tz = = + 1 for all © € R, then it is easily
seen that Cp = 0.

Given z € X and n € NU {0}, the n-th orbit of x under T is denoted by O(x;n), i.e.

O(z;n) ={z,Tx,...,T"x}.
Finally, if A is a subset of X, then by diam(A), it is meant the diameter of A in X,
ie.
diam(A) = sup {d(z,y) : 2,y € A}.
Following the idea of S. M. A. Aleomraninejad et al. [1], we say that G is a (C)-graph
whenever the triple (X, d, G) has the following property:
If x € X and {z,} is a sequence in (X, d, G) such that =, — x and (zn,Tn+1) €
E(G) for all n € N, then there exists a subsequence {zy, } of {z,} such that
(Tny, ) € E(G) for all k € N.
Now, we are ready to give the definition of G-quasi-contractions in metric spaces with
a graph which is motivated by [9, Definition 1| and [14, Definition 2.1].

2.1. Definition. Let (X,d) be a metric space with a graph G and T : X — X be a
mapping. We say that 7" a GG-quasi-contraction if
Q1) T preserves the edges of G, i.e. (z,y) € E(G) implies (Tz,Ty) € E(G) for all
x,y € X;
Q2) there exists a A € [0,1) such that
d(Tx, Ty) < A-max {d(z,y),d(z, Tx),d(y, Ty),d(z, Ty),d(y, Tx) }
for all z,y € X with (z,y) € E(G).
We also call the number X in (Q2) a quasi-contractive constant of T

We now give some examples of G-quasi-contractions.

2.2. Example. Suppose that (X,d) is a metric space with a graph G and zo € X. It
is easy to verify that the constant mapping x — xzo is a G-quasi-contraction. So the
cardinality of the set of all G-quasi-contractions defined on a metric space (X, d) with a
graph G is no less than the cardinality of X.

2.3. Example. Suppose that (X,d) is a metric space and T : X — X is a quasi-
contraction in the sense of Lj. B. Ciri¢ [9, Definition 1], i.e. there exists a A € [0,1) such
that

(2.1) d(Tz, Ty) < X -max {d(ac7 y),d(z, Tx),d(y, Ty), d(z, Ty), d(y, Tx)}

for all z,y € X. Define a graph Go by V(Gy) = X and E(Go) = X x X, i.e. Go is
the complete graph whose vertex set coincides with X. Clearly, 7" preserves the edges of
Go and (2.1) guarantees that T satisfies (Q2) for the complete graph Go. Thus, T is a
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Go-quasi-contraction. Hence Go-quasi-contractions on metric spaces with the graph Go
are precisely the quasi-contractions on metric spaces, and so G-quasi-contractions are a
generalization of quasi-contractions from metric spaces to metric spaces with a graph.

2.4. Example. Suppose that (X, <) is a partially ordered set and d is a metric on X.
Define a graph Gy by V(G1) = X and E(G1) = {(z,y) € X x X : 2 < y}. A mapping
T : X — X preserves the edges of (G1 if and only if 7" is order-preserving, and 71" satisfies
(Q2) for the graph G if and only if there exists a A € [0,1) such that

d(Tz,Ty) < X -max {d(a:, y),d(z, Tx),d(y, Ty),d(z, Ty), d(y, Tx)}
for all comparable elements x,y € X.

2.5. Example. Suppose that (X, <) is a partially ordered set and d is a metric on X.
Define a graph G2 by V(G2) = X and E(G2) = {(z,y) e X x X 2 gy V y < z}.
A mapping T : X — X preserves the edges of G5 if and only if T maps comparable
elements of (X, <) onto comparable elements, and T satisfies (Q2) for the graph G if
and only if there exists a A € [0,1) such that

(2.2) d(Tz,Ty) < XA - max {d(m, y),d(z, Tx),d(y, Ty), d(z, Ty), d(y, Tx)}

for all comparable elements z,y € X. In particular, if 7' is a G1-quasi-contraction, then
T is a Ga-quasi-contraction. Hence (G-quasi-contractions are a generalization of ordered
quasi-contractions from metric spaces equipped with a partial order to metric spaces with
a graph.

2.6. Example. Suppose that (X, d) is a metric space and £ > 0 is a fixed real number.
Recall that two elements z,y € X are said to be e-close if d(z,y) < e. Define a graph
G3 by V(G3) = X and E(G3) = {(z,y) € X x X : d(z,y) <e}. A mappingT:X — X
preserves the edges of G if and only if 7" maps e-close elements of (X, d) onto e-close
elements, and T satisfies (Q2) for the graph G if and only if there exists a A € [0, 1)
such that

(2.3)  d(Tz,Ty) < A-max {d(z,y), d(z, Tz),d(y, Ty), d(z, Ty),d(y, Tx) }
for all e-close elements z,y € X.

Hereafter, we assume that the graphs Go, G1, G2 and G3 are as defined in Examples
2.3, 2.4, 2.5 and 2.6, respectively.

2.7. Remark. In the definitions of (6)—graph and the set Cr, let’s set G the special
graphs Go, G1, G2 and G3. Then we obtain the following special cases:

e The set Cr related to the complete graph Gy coincides with X and Gy is a
(C)-graph.

e If < is a partial order on X, then the set Cr related to the graph G; (and also
G) consists of all points © € X whose every two iterates under 7' are comparable
elements of (X, <). In addition, G; (and also G2) is a ((N?)—graph whenever the
triple (X, d, <) has the following property:

(%) If {zn} is a sequence in (X,d) converging to an z € X whose successive
terms are pairwise comparable elements of (X, x), then there exists a sub-
sequence of {x,} whose terms and x are comparable elements of (X, x).

e If ¢ > 0, then the set Cr relative to the graph G3 consists of all points x € X
whose every two iterates under 7" are e-close elements of (X, d). In addition, G3
is a (C)-graph. Indeed, if {z,,} is a sequence in (X, d) converging to an z € X,
then for sufficiently large indices n, say n > N, we have d(x,,z) < €. Therefore,
{zn4+n} is a subsequence of {x,} whose terms and = are e-close elements of

(X, d).
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2.8. Example. Suppose that (X, d) is a metric space with a graph G and T: X — X is
a Banach G-contraction in the sense of J. Jachymski [14, Definition 2.1], i.e. T preserves
the edges of G and there exists an o € (0, 1) such that

d(Tz, Ty) < ad(z,y)
for all z,y € X with (z,y) € E(G). If (z,y) € E(G), then
d(Tz, Ty) < ad(z,y) < o max {d(z,y),d(z, Tz),d(y, Ty), d(z, Ty),d(y, Tz) }.

Therefore, T satisfies (Q2) and so T is a G-quasi-contraction. Hence every G-contraction
is a GG-quasi-contraction.

2.9. Example. Suppose that (X,d) is a metric space with a graph G and T : X — X
is a G-Kannan mapping in the sense of F. Bojor [2, Definition 4|, i.e. T preserves the
edges of G and there exists an « € [0, 1) such that
d(Tz,Ty) < a(d(w,Tx) + d(y, Ty))
for all z,y € X with (z,y) € E(G). If (z,y) € E(G), then
d(Tz, Ty) < a(d(a:, Tz) + d(y, Ty))

< 2a-max {d(z,Tz),d(y, Ty)}

< 2a - max {d(m, y),d(z, Tx),d(y, Ty), d(z, Ty), d(y, TSB)}
Therefore, T satisfies (Q2) and so T is a G-quasi-contraction. Hence every G-Kannan

mapping is a G-quasi-contraction.

2.10. Example. Suppose that (X, d) is a metric space with a graph Gand T: X — X
is a G-Chatterjea mapping in the sense that 7" preserves the edges of G and there exists
an o € [0, 1) such that

d(Tz, Ty) < a(d(:v, Ty) + d(y, T:L’))

for all z,y € X with (z,y) € E(G) (see [5, 21| for the definition in metric spaces). If
(z,y) € E(G), then an argument similar to that appeared in Example 2.9 establishes
that

d(Tz,Ty) < 2 - max {d(m, y),d(z, Tx),d(y, Ty), d(z, Ty), d(y, Tm)}
Therefore, T satisfies (Q2) and so T' is a G-quasi-contraction. Hence every G-Chatterjea
mapping is a G-quasi-contraction.

2.11. Example. Suppose that (X, d) is a metric space with a graph Gand T: X — X
is a G-Ciri¢-Reich-Rus operator in the sense of F. Bojor |3, Definition 7|, i.e. T preserves
the edges of G and there exist a,b,c > 0 with a + b+ ¢ < 1 such that

d(Tz, Ty) < ad(z,y) + bd(x, Tz) + cd(y, Ty)

for all z,y € X with (z,y) € E(G). If (z,y) € E(G), then an argument similar to that
appeared in Example 2.9 establishes that

d(Tz,Ty) < (a+ b+ c) - max {cl(ar:7 y),d(z, Tx),d(y, Ty), d(z, Ty), d(y, T;zc)}

Therefore, T satisfies (Q2) and so T is a G-quasi-contraction. Hence every G-Ciri¢-Reich-
Rus operator is a G-quasi-contraction.

Now, suppose that 7' : X — X is a Ciri¢-Reich-Rus G-contraction in the sense of C.
Chifu and G. Petrusgel [6, Definition 2.2|, i.e. T preserves the edges of G and there exist
a, B,y > 0 with a + 8+ v < 1 such that

d(Tz, Ty) < ad(zx,y) + Bd(z, Tz) + vd(y, Ty)
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for all z,y € X with (z,y) € E(G). Then by a similar argument, one can easily see that
T is a G-quasi-contraction. Hence every Ciri¢-Reich-Rus G-contraction is a G-quasi-
contraction.

2.12. Example. Suppose that (X, d) is a metric space and T': X — X is a A-generalized
contraction in the sense of Lj. B. Ciri¢ [7, Definition 2.1], i.e. for all 2,y € X, there exist
four functions q,r,s,t: X x X — [0, 00) with
sup {q(z,y) + r(z,y) + s(z,y) + 2t(z,y) 12,y € X x X} =A< 1
such that
d(Tz,Ty) < q(z,y)d(z,y) + r(z,y)d(z, Tz) + s(z,y)d(y, Ty)
+ t(x,y) (d(z, Ty) + d(y, Tx))

for all z,y € X. In 1979, B. E. Rhoades [22] studied a more general form of \-generalized
contractions (where the terms d(z,Ty) and d(y,Tx) have different coefficients) in se-
quentially complete uniform spaces via entourages and the Minkowski’s pseudometrics

corresponding to them. One can combine Ciri¢’s and Rhoades’ ideas with Jachymski’s
idea and formulate G-\-generalized contractions in metric spaces with a graph as follows:

Let (X,d) be a metric space with a graph G. A mapping 7 : X — X is called
a G-\-generalized contraction if 7" preserves the edges of G and there exist five
functions a1, az,as,as,as : X x X — [0, 00) with

(24)  sup {ai(z,y) + az(e,y) + as(z,y) + as(e,y) + as(z,y) s oy € X x X} =A< 1
such that
d(Tx, Ty) < ar(z,y)d(z,y) + az2(z,y)d(z, Tz) + as(z, y)d(y, Ty)

+ as(z,y)d(z, Ty) + as(z,y)d(y, T)

for all z,y € X with (z,y) € E(G).

Now, suppose that (X, d) is a metric space with a graph G and T: X — X is a G-\~
generalized contraction. If (z,y) € E(G), then an argument similar to that appeared in
Example 2.9 establishes that

d(Tz,Ty) < (Zai(x,y)) -max {d(z,y),d(z, Tz), d(y, Ty),

i=1
d(z,Ty),d(y, Tz)}
< X-max {d(z,y),d(z,Tx),d(y, Ty),d(z,Ty),d(y, Tx)},
where a1, a2,a3,a4,a5 : X x X — [0,00) satisfy (2.4). Therefore, T" satisfies (Q2) and

so T is a G-quasi-contraction. Hence every G-\-generalized contraction (in particular,
every \-generalized contraction) is a G-quasi-contraction.

2.13. Example. Suppose that F is a nontrivial real Banach space and P is a closed
cone in E such that PN (—P) = {0}. It is well-known that P induces a partial order <p
on F given by
a<pb & b—acP (a,b € E).

Assume that d : X x X — FE is a cone metric on X and (X,d) is a cone metric space
(see [12, Definition 1]). In 2010, W.-S. Du [11] showed that if the underlying cone P has
nonempty interior and £ : £ — R is the nonlinear scalarization function defined by

ée(a)=inf{t eR:a € te— P} (a € E),
where e is an interior point of P, then the function p. : X x X — R given by

(2.5)  pe(z,y) =& (d(z,y)  (z,y€X)
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defines a metric on X, and the natural (cone) topology on X induced by the cone metric
d and the metric topology on X induced by the metric p. coincide (see |11, Theorems
2.1 and 2.2)).

Now, suppose that 7' : (X,d) — (X,d) is a quasi-contraction in the sense of D. Ili¢
and V. Rakocevié¢ [13, Definition 1.2], i.e. there exists a A € (0,1) such that

d(Tz,Ty) Xp A Uay
for all z,y € X and some

Ugp,y € {d(m, y), d(z, Tx),d(y, Ty),d(z, Ty), d(y, Tm)}

Suppose further that the underlying cone P has nonempty interior and pick an interior
point e of P. If z,y € X, since &, is positively homogeneous (i.e. a € E and ¢ > 0 imply
e(ta) = t€e(a)) and nondecreasing (i.e. a,b € E and a <p b imply &c(a) < &.(b)) on E
(see [11, Lemma 1.1(v) and (vi)]), it follows that

pe(Tx, Ty) = & (d(Tx, Ty))
S fe(>‘ . Uac,y)
= A Ee(uzy)

< A-max {& (d(z, 1)), & (dle, T2)) & (d(y, Ty)),

£.(d(x, Ty)) & (dly, T2)) }
=X max {pe(2,y), pe(x, Tx), pe(y, Ty), pe(x, Ty), pe(y, T) } .

Therefore, T : (X, pe.) — (X, pe) is also a quasi-contraction and in particular, a Go-
quasi-contraction. Hence every quasi-contraction on a cone metric space is a Go-quasi-
contraction whose domain is a suitable metric space with the complete graph G provided
that the underlying cone has nonempty interior.

The following proposition is an immediate consequence of the definition of G-quasi-
contractions and gives a simple procedure to construct new G-quasi-contractions from
older ones.

2.14. Proposition. Let (X,d) be a metric space with a graph G and T : X — X be a
mapping.
a) If T preserves the edges of G, then T preserves the edges of G™' and G.
b) If T satisfies (Q2) for the graph G, then T satisfies (Q2) for both the graphs G+
and G.
c) If T is a G-quasi-contraction with a quasi-contractive constant X € [0,1), then T'

is both a G~ -quasi-contraction and a G-quasi-contraction with a quasi-contractive
constant .

To prove the existence of a fixed point for a G-quasi-contraction in a complete metric
space with a graph, we need some lemmas. The first one is the graph version of |9,
Lemma 1] proved by Lj. B. Ciri¢ and the proof appears here is very similar to Ciri¢’s
proof. Nevertheless, for convenience of the reader, we repeat the detailed proof here.

2.15. Lemma. Let (X,d) be a metric space with a graph G and T : X — X be a
G-quasi-contraction with a quasi-contractive constant A\. Then

d(T'z, T72) < X - diam (O(x;n)) hL,j=1,...,n

for all x € Cr and allm € N.
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Proof. Let x € Cr and n € N be given. If 7 and j are arbitrary positive integers no
more than n, then (7" 'z, T 'z) € E(é) By Proposition 2.14(c), T is also a é—quasi—
contraction with a quasi-contractive constant A. In particular, T satisfies (Q2) for the
graph G. Therefore,

ATz, T'x) = d(TT" o, TT' ')
<X max {d(T" 12, 77" 2), d(T" 2, T"2),d(T" 2, T z),
AT 2, T 2),d(T 'z, ')}
< X -diam (O(z;n)). O

The next example shows that both the integers ¢ and j must be positive in Lemma
2.15. In other words, neither ¢ nor j is allowed to be zero.

2.16. Example. Counsider the set R of real numbers with the usual (Euclidean) metric
and the complete graph Go, and define a mapping 7' : R — R by the rule Tz = 5 for
all z € R. Then T is a Go-quasi-contraction with a quasi-contractive constant \ = % In
addition, 7"z = 2% and diam(O(z;n)) = |z|(1 — 5=) for all z € R and all n € NU {0}.
Now, let xo be a positive real number and put n = 2, 4 =0 and j = 1 in Lemma 2.15.
Then we have
|zo — Txo| = % > % . (1 — %) = \-diam (O(x0;2)).

2.17. Lemma. Let (X,d) be a metric space with a graph G and T : X — X be a G-
quasi-contraction. Then for each © € Cr and each n € N, there exists a positive integer
k no more than n such that

diam (O(z;n)) = d(z, T*z).

Proof. Let x € Cr and n € N be given. If diam(O(x;n)) = 0, then O(z;n) is singleton.
In particular, x is a fixed point for T and d(T"z,T’z) = 0 for all 4,j = 0,...,n. Thus,
the statement holds trivially for any positive integer £ no more than n.

Otherwise, since O(xz;n) is a finite set, it follows that there exist distinct nonnegative
integers i and j no more that n such that diam(O(x;n)) = d(T"x,Tz). If both the
integers ¢ and j are assumed to be positive, then from Lemma 2.15, we have

diam (O(z;n)) = d(T"2, T?z) < X - diam (O(z;n)),
where X\ € [0,1) is a quasi-contractive constant of T, a contradiction. Hence either ¢ or j

must be zero and the proof is finished. O

2.18. Remark. Combining Lemmas 2.15 and 2.17, one can easily obtain that if (X, d)
is a metric space with a graph G and 7' : X — X is a G-quasi-contraction with a quasi-
contractive constant A, then for each x € Cr and each n € N, there exists a positive
integer k£ no more than n such that

d(Tix, T72) < X - diam (O(x; n)) =\-d(x, Tkaz) ,j=1,...,n.

2.19. Lemma. Let (X,d) be a metric space with a graph G and T : X — X be a
G-quasi-contraction with a quasi-contractive constant A\. Then

diam (O(z;n)) < ﬁ ~d(z,Tx)

for all x € Cr and all n € NU {0}.
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Proof. Let z € Cr and n € NU {0} be given. If n = 0, since diam(O(xz;0)) = 0, there
remains nothing to prove. Otherwise, from Lemma 2.17, there exists a positive integer k
no more than n such that diam(O(z;n)) = d(z, T"z). Putting i = 1 and j = k in Lemma
2.15, we get

diam (O(z;n)) = d(a, T 2)
< d(z,Tx) + d(Tz, T" )
< d(z,Tz) + X - diam (O(z;n)).
Now the inequality
1

diam (O(z;n)) < = d(z,Tx)

follows immediately. O

2.20. Lemma. Let (X,d) be a metric space with a graph G and T : X — X be a
G-quasi-contraction. Then {T"z} is Cauchy for all x € Cr.

Proof. Let € Cr be given. If m,n € N and m > n > 2, since T" 'z € Cr, it follows
that putting ¢ =m —n + 1 and j = 1 in Lemma 2.15, we get
(26) ATz, T"z)=d(T™ "7 2, TT" 'z) < X diam (O(T" 'z;m — n + 1)),

where A € [0,1) is a quasi-contractive constant of 7. Moreover, by Lemma 2.17, there
exists a positive integer £ no more than m — n + 1 such that

(2.7)  diam (O(T" aym —n + 1)) = d(T" 'z, T a).

Because n > 2, it follows that 7" 2z € Cr and so putting i = 1 and j = k+1 in Lemma
2.15 yields

AT e, T ) = d(TT™ 22, TR T %)
(2.8) < - diam (O(T"izz; m—n+2)).
Finally, combining (2.6), (2.7) and (2.8), and using induction and Lemma 2.19, we obtain
d(T™2, T"z) < X - diam (O(T" 'a;m — n + 1))
=\-d(T" e, T )
< A?-diam (O(T"*z;m — n + 2))

< A" - diam (O(z;m))
A"
—1-A
Letting m,n — oo, we find d(T™z,T"z) — 0. Hence {T"z} is Cauchy. O

A

~d(z, Tx).

Now we are ready to prove our main theorem on the existence of fixed points for
G-quasi-contractions in complete metric spaces with a graph.

2.21. Theorem. Let (X,d) be a complete metric space with a graph G and T : X — X
be G-quasi-contraction. Then the restriction of T' to Cr is a weakly Picard operator if
either T is orbitally G-continuous on X or G is a (C)-graph.

In particular, whenever T is orbitally G-continuous on X or G is a (6)—gmph, T has
a fized point in X if and only if Cr # 0.
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Proof. 1f C1 = (), then there remains nothing to prove. So assume that C is nonempty.
If z € Cr, since (T"z, T"z) € E(G) for all m,n € NU {0}, it follows that Tz € Cr.
Thus, Cr is T-invariant, i.e. T(Cr) C Cr.

Now, let x € Cr be given. By Lemma 2.20, {T"z} is a Cauchy sequence in X and
since (X, d) is complete, there exists an z* € X (depending on x) such that 7"z — z*.
We show that z* is a fixed point for T

To this end, note first that from = € Cr, we have (T"z,T""'z) € E(G) for all
n € NU{0}. If T is orbitally G-continuous on X, then 7"z — 2* implies 7" "'z =
T(T"z) — Tz* and by uniqueness of the limit of convergent sequences in metric spaces,
we obtain Tz* = z*.

Otherwise, if G is a (6)-graph, since T"x — z*, there exists a strictly increasing
sequence {ny} of positive integers such that (T z,z*) € E(G) for all k € N. On the
other hand, if A € [0,1) is a quasi-contractive constant of 7', then by Proposition 2.14(c),
Tis a é—quasi—contraction with a quasi-contractive constant . In particular, T" satisfies
(Q2) for the graph G. Therefore,

d(T™ g, Te*) = d(TT " z, Tx*)
< X-max {d(T""z,z"),d(T"* z, T ) d(2t, Tx*),
(2.9) d(T™ a, Tx*),d(z*, T ')}
for all k£ € N. For a fixed positive integer k, one of the five terms appeared in the right
side of (2.9) is the maximum. So we consider the following five possible cases:
Case 1: If the first term is the maximum, then
d(T™ e, Ta*) < X - d(T™ x, x*);
Case 2: If the second term is the maximum, then
d(T™ e, Ta*) < A-d(T™ ez, T x);
Case 3: If the third term is the maximum, then
d(T™ e, Ta*) < X-d(z*, Tx*)
<A (d(@, T ) + d(T" e, Ta™)).
Therefore,

A

. ni+1 * .
1— )\ d(T T, T )7

d(T™ 2, Tat) < % Cd(at, T ) =

Case 4: If the forth term is the maximum, then
d(T™ g, Ta*) < X-d(T™*z, Tx*)
<A (d(T™ a, T ) + d(T™ e, Ta?)).
Therefore,
(T, Ta*) < % Sd(T™ g, T ),
Case 5: Finally, if the fifth term is the maximum, then
A(T™ e, To*) < X-d(a*, T a) = X - d(T™ e, ).

Clearly, at least one of the above five cases happens for infinitely many indices k.
Hence {T"* %1z} has a subsequence converging to Tz*, and again by the uniqueness of
the limit of convergent sequences in metric spaces, we obtain Tx* = x*.

Finally, since Cr contains all fixed points of T, it follows that z* € Cr. Consequently,
T |cp: Cr — Cr is a weakly Picard operator. O
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Before listing some important consequences of Theorem 2.21, it is worth having a
discussion on the hypotheses of Theorem 2.21.

2.22. Remark. In [9, Theorem 1], Lj. B. Ciri¢ has used a weaker type of completeness
of metric spaces which had been defined by himself in [8] as follows:

Let (X,d) be a metric space and 7' : X — X be a mapping. The metric space
(X, d) is called T-orbitally complete if each Cauchy sequence of the iterates of a
point of X under T is convergent.

It is clear that every complete metric space (X,d) is T-orbitally complete for all
mappings T : X — X, but the converse is not true in general. For instance, the set Q
consisting of all rational numbers with the usual (Euclidean) metric is not a complete
metric space whereas Q is T-orbitally complete, where 7" : Q — Q is defined by the rule
Tz = 5 for all z € Q.

The notion of T-orbital completeness of a metric space can be generalized to metric
spaces with a graph in several different ways. However, by a subtle look at the proof
of Theorem 2.21, it is easily realized that we have only used the following weaker type
of T-orbital completeness (called, e.g., weak G-T-orbital completeness) in metric spaces
with a graph as follows:

Let (X,d) be a metric space with a graph G and T': X — X be a mapping.
The metric space (X, d) is called “weak é—T—orbitally complete" if for each x €
Cr, the sequence {T"xz} is convergent whenever {T"xz} is Cauchy and satisfies
(T"z, T""'z) € B(G) for all n € N.

Obviously, by replacing this new notion with the standard notion of completeness, a
new version of Theorem 2.21 is obtained.

2.23. Remark. By a subtle look at the proof of Theorem 2.21 in the case that the
mapping 7" is orbitally G-continuous on X, it is easily realized that not the whole but a
weaker type of the hypothesis of orbital é—continuity of T is used. Indeed, the sequence
{bn} of positive integers in Definition 1.2 is replaced with the sequence {n}, i.e. the
sequence of all positive integers. Using this, a weaker type of orbital é—continuity (called,
e.g., weak orbital é’—continuity) can be defined as follows:

Let (X,d) be a metric space with a graph G. A mapping T : X — X is called
“weakly orbitally G-continuous" on X if T"x — y implies T e — Ty for all
x,y € X such that (T"z, T""x) € E(G) for all n € N.

Obviously, by replacing this new notion with the notion of orbital @—continuity, The-
orem 2.21 is strengthened.

Now we present three important consequences of Theorem 2.21 where the graph G is
replaced with the special graphs. Firstly, we put G = Go in Theorem 2.21 and we get
Ciri¢’s fixed point theorem [9, Theorem 1] on single-valued quasi-contractions in complete
metric spaces instead of T-orbitally complete metric spaces as follows:

2.24. Corollary. Every quasi-contraction defined on a complete metric space is a Picard
operator.

Proof. Let (X,d) be a complete metric space and T : X — X be a quasi-contraction.
The set Cr is nonempty because Cr = X. Therefore, by Theorem 2.21, the mapping
T =T |c, is a weakly Picard operator. In particular, T has a fixed point in X. To see
that 7" is a Picard operator, it sufficies to show that 7" has a unique fixed point in X. To
this end, suppose that z* and 2** are two fixed points for 7' in X. Then from (2.1) we
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have
d(z*, ) = d(Tx*, Tz"")
< X-max {d(z*,2""),d(z*, Tz"), d(z™*, Tz""),
T T %
d(z*, Tz™),d(x*", Tz") }
—d(arzt)  —d(orta)

=X-d(z*,x"),

where A € [0,1) is a constant. Hence d(z*,2**) = 0 or equivalently, * = 2**. O

2.25. Remark. By a subtle look at the proof of Corollary 2.24, and use an argument
similar to that appeared there, we see that both the ends of any link of G cannot be fixed
points for a G-quasi-contraction, i.e. if z # y, Te = x and Ty = y, then (x,y) ¢ E(G).
Roughly speaking, no G-quasi-contraction can keep both the ends of a link of G fixed. In
particular, the following results on the number of the fixed points of G-quasi-contractions
are obtained:

e No quasi-contraction can have two distinct fixed points.

e If < is a partial order on X, then neither a (G1-quasi-contraction nor a GG2-quasi-
contraction can have two distinct fixed points which are comparable elements of
(X, <).

e If ¢ > 0, then no GG3-quasi-contraction can have two distinct fixed points which
are e-close elements of (X, d).

Secondly, we consider a partial order on the metric space (X,d) and put G = Gy
or G = G2 in Theorem 2.21. Having done this, the following partially ordered version
of Ciri¢’s fixed point theorem on ordered quasi-contractions in complete metric spaces
equipped with a partial order is obtained:

2.26. Corollary. Let (X, <) be a partially ordered set and d be a metric on X such that
(X,d) is a complete metric space. Let T : X — X be a mapping which maps comparable
elements of (X,<) onto comparable elements and satisfies (2.2). Then the restriction of
T to the set of all points x € X whose every two iterates under T are comparable elements
of (X, <) is a weakly Picard operator if either T is orbitally G2-continuous on X or the
triple (X, d, %) satisfies (x).

In particular, whenever T is orbitally Ga-continuous on X or the triple (X,d, <)
satisfies (%), T has a fized point in X if and only if there exists an x € X such than T™x
and T"z are comparable elements of (X, x) for all m,n € NU {0}.

Finally, we put G = G3 in Theorem 2.21 and we get the following version of Ciri¢’s
fixed point theorem on quasi-contractions in complete metric spaces:

2.27. Corollary. Let (X,d) be a complete metric space and € > 0 be a fized real number.
Let T : X — X be a mapping which maps e-close elements of (X, d) onto e-close elements
and satisfies (2.3). Then the restriction of T to the set of all points x € X whose every
two iterates under T are e-close elements of (X,d) is a weakly Picard operator.

In particular, T has a fized point in X if and only if there exists an x € X such that
T™x and T"x are e-close elements of (X,d) for all m,n € NU{0}.

Since Banach G-contractions, G-Kannan mappings, G-Chatterjea mappings, G-Ciri¢-
Reich-Rus operators, Ciri¢-Reich-Rus G-contractions and G-\-generalized contractions
are all a G-quasi-contraction, we have also the following fixed point theorem for these
contractions as a consequence of Theorem 2.21:
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2.28. Corollary. Let (X,d) be a complete metric space with a graph G and T : X — X
be a Banach G-contraction (a G-Kannan mapping, a G-Chatterjea mapping, a G-Cirié-
Reich-Rus operator, a Cirié-Reich-Rus G-contraction, or a G-\-generalized contraction,).
Then the restriction of T to Cr is a weakly Picard operator if either T is orbitally G-
continuous on X or G is a (C)-graph.

In particular, whenever T is orbitally G-continuous on X or G is a (6)—gmph, T has
a fized point in X if and only if Cr # 0.

By comparing Corollary 2.28 as a version of Theorem 2.21 for several types of con-
tractions with some recent results in graph metric fixed point theory, one can get the
followings:

e If we employ Corollary 2.28 for Banach G-contractions, then we obtain a simple
and weaker version of [14, Theorems 3.2(4°) and 3.3(2°)] and [3, Corollary 2];

e If we employ Corollary 2.28 for G-Kannan mappings, then we obtain another
version of [2, Theorem 3] and [3, Corollary 3] without imposing the assumption
of weak T-connectedness on the graph (see |3, Definition 8]);

e If we employ Corollary 2.28 for G-Chatterjea mappings, then we obtain a new
version of Chatterjea’s fixed point theorem [5] in complete metric spaces with a
graph;

e If we employ Corollary 2.28 for either G-Ciri¢-Reich-Rus operators or Ciri¢-
Reich-Rus G-contractions, then we obtain another version of [3, Theorem 6]
without imposing the assumption of weak T-connectedness on the graph and
another version of [6, Theorem 2.2 and Lemma 2.7];

e Finally, if we employ Corollary 2.28 for G-A-generalized contractions, then we
obtain a new version of [7, Theorem 2.5| and a weaker version of [22, Theorem
1] in complete metric spaces with a graph.

Because convergence of sequences in a cone metric space has already been defined
in [12, Definition 2|, Picard operators can be generalized naturally from metric to cone
metric spaces in the following way:

Let E be a nontrivial real Banach space, P be a closed cone in F such that
PN (—P) = {0}, and (X,d) be a cone metric space. A mapping 7': X — X is
called a Picard operator if T has unique fixed point z* € X and T"z — z* for
all x € X.

Similar to the Cauchy property of sequences in metric spaces and using the idea of
formulating convergent sequences in cone metric spaces, the Cauchy property of sequences
is defined in cone metric spaces (see [12, Definition 3]). So it is natural to say that a
cone metric space is complete if every Cauchy sequence is convergent (see [12, Definition
4]). Hence we have also the following consequence of Corollary 2.24 in complete cone
metric spaces where the underlying cone has nonempty interior. This result is another
version of [20, Theorem 2.1] and generalizes [12, Theorem 1], [13, Theorem 2.1] and [16,
Theorems 2.2 and 2.3].

2.29. Corollary. Every quasi-contraction defined on a complete cone metric space is a
Picard operator provided that the underlying cone has nonempty interior.

Proof. Let E be a nontrivial real Banach space, P be a closed cone in £ with nonempty
interior such that PN (—P) = {0}, and (X, d) be a complete cone metric space. Pick any
interior point e of P and consider the metric p. given by (2.5). Since the cone metric
space (X,d) is complete, it follows from [11, Theorem 2.2(iii)] that the metric space
(X, pe) is also complete.

Now, let T : (X,d) — (X,d) be a quasi-contraction. As it was shown in Example
213, T : (X,pe) — (X, pe) is also a quasi-contraction. Therefore, by Corollary 2.24,
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T : (X, pe) = (X, pe) is a Picard operator, i.e. T has a unique fixed point z* € X and
Tz — z* in (X, pe) for all z € X.

On the other hand, it follows from [11, Theorem 2.2(i)] that a sequence {z, } consisting
of points of X converges to an x € X in the cone metric space (X, d) if and only if {z,}
converges to the same point z in the metric space (X, p.). Hence T"x — z* in (X, d) for
all x € X. Consequently, T': (X,d) — (X,d) is a Picard operator. O
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Abstract

This research focuses on the solution of higher order boundary value
problems by our proposed method “Modified Optimal Homotopy Per-
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1. INTRODUCTION

Nounlinear boundary value problems have a significant contribution in today’s modern
fields of science and technology. They take place from steady state solutions of transient
problems. The significance of higher order boundary value problems (BVPS) can be judge
from their extensive use in mathematical modeling of different entities such as visco-
elastic flows, hydrodynamic stability problems, non-Newtonian fluids and convection of
heat etc [1]. In general, an nth order BVP can be represented as:

w® = ¢(w, w', .. wP D)+ 0(s), f<s<h,

having boundary conditions

w® () = s and w® () = A,

where(q < p)is a non-negative integer, n;and \; are real finite constants and O(s) is a
continuous function on[f, h].

Finding a solution for the above type differential equations is a tedious job. One may
find an exact solution, but if the degree of non linearity is high, it becomes impossible to
get an exact solution. Researchers have therefore focused on analytic solutions of such
type problems. In literature we come across different analytic methods. Some of the in-
teresting analytic methods which can be applied to a wide range of high order differential
equations are homotopy analysis method (HAM) [2-4], homotopy perturbation method
(HPM) [5-6], Adomian decomposition method (ADM) [7], optimal homotopy asymptotic
method (OHAM) [8-12], optimal homotopy perturbation method (OHPM) [13-15] and
variational iteration method (VIM) [16-18]. In order to obtain best approximate solution
of differential equations, researchers in the field modify the existing analytical methods
time to time. One such modification of (HPM) has been done by V. Marinca et al
[13-15].The basis for their new method, which is known as (OHPM) is He’s homotopy
perturbation method. This method is developed on the same lines as was done earlier in
He’s homotopy perturbation method. A visible change in (OHPM) is that the non linear
function is extended in series form for the parameter involved and auxiliary functions are
inducted within the coefficients of this truncated series. In (OHPM) the auxiliary func-
tions have unknown parameters which can be determined optimally. All these techniques
give (OHPM) an edge over the conventional (HPM).

Our purpose in this paper is to obtain a new version of OHPM, which produces more
accurate and reliable results than OHPM. The target is achieved here by introducing
Daftardar-Jafferi polynomials in OHPM. The modified version of OHPM thus obtained
will have its name as modified optimal homotopy perturbation method (MOHPM). It
is important to note that these polynomials were defined in Daftatdar-Jafferi Method
(DJM)[19], and basically are the non linear terms of the Taylor’s series. S. Bhalekar et
al. [20] have proved the convergence of these polynomials. It can be observed from the
solved problems in section 3 that MOHPM is a powerful method as it converts a complex
problem into a simpler one, which can then be solved easily. This method has great
potential to solve ordinary differential equations of any order. The same technique can
also be extended to solve partial differential equations, Integro-differential equations and
system of differential equations of physical phenomenon. In our coming papers we will
be showing the application of MOHPM to these types of problems. Here we have solved
some linear and non linear higher order BVPS by MOHPM and OHPM to confirm the
difference in obtained solutions. The results of MOHPM are also compared with those
of exact solutions and the errors are compared with the already existing well-known
results of OHAM, VIM, HPM, VIMHP, ADM and B-Spline. Numerical results show
that MOHPM is found best in giving better and more accurate results.
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This manuscript is arranged as follows: In part 2, introduction of MOHPM is given.
Part 3 is devoted to the application of MOHPM to higher order BVPS. In the same
section results of numerical simulation using Mathematica 7.0 are given. In next and
final section a concluding remarks are given for the obtained results.

2. INTRODUCTION OF MOHPM
Consider the problem

(21) € ((s)) +C (r(s) ~T(s) =0, s€Q
(2.2) A (m %) =0,s €1l

where ¢ and ¢ are linear and nonlinear operators respectively, A is the boundary operator,IT
is the boundary of the domain), I is the analytic function and the differential along the
normal drawn outwards from (2 is represented by %, According to homotopy scheme, we
create a homotopy, #(s, ¥) : Q x [0,1] — R by

LR = (1=9)(E(E(s, D) = E(Rini(s, 7))

(2.3) 0 (§(R(s,9)) + ((R(s,9)) = T'(s)) = 0,

where ¥ € [0,1] is known as the embedding parameter and the initial guess for the
solution of (2.1) by Kini(s, ), which satisfies the boundary conditions. It is quite easy to
note that, when ¢ = 0 and ¥ = 1 equation (2.3) holds and takes the form respectively as

(24) B, 0) = £(&(s, 0)) — E(kini(s, 0) =0,
(25) DR 1) = £(R(s, 1) + (& (s, 1)) ~ T(s) = 0,

thus change in ¥ from zero to one, will change the trivial solution for (2.4) to the solution
of (2.5) continuously. That is, if ¥ changes from zero to one then % changes from Kip;.
to x, this is known as deformation in topology. The paths {(&(s, 0)) — &£(Kini(s, 0)) and
&(R(s, 1)) + ¢(R(s, 1)) — I'(s) are homotopic to each other. At this stage assume the
perturbation series

(2.6)  &(s) = FRo(s)+DRi(s) + 0> o+ .
For MOHPM, the nonlinear function {(f(r,0)) decomposes as
27 S 9)) =C(Fo(s)) + 0 (CRo(s) + Fals)) = C(Fo(s)))
' +0% (C(Fo(s) + Ra(s) + Fa(s)) = C(Fo(s) + Fa(s)) +--- -
The terms C(o(s)), {C(Fo(s) +F1(5)) — C(Fo(s)}, {C(Ro(s) +Fr(s) + Fa(s)) — C(Fo(s) +

%1(s))} and so on, appearing in equation (2.7) on the right hand side are Daftardar-Jafari
polynomials defined in [19]. Equation (2.7) can be written in a more compact form if
we write (o = ((%o(s))and Cm = ¢ (30, #i(s)) — ¢ (05" &i(s)) . Thus, the expression
(2.7) reduces to

(28)  C(R(s, 9) =G+ Y_ ¢

j=1
putting back, equation (2.8) for equation (2.3), also by introducing a number of unknown

auxiliary functions,e, (s, ¢;); fori = 0,1,2,3,... that depend on the variable s and some
constants co, 1, C2, ..., we get a new homotopy for (2.1) as:

D (7 9) = (L= D)[E(R(s, V) = ERinils, 9))]

+OE(R(5,9) + 05, c0)co + 3 enls, ex)0* G — T(s)] = 0,

k=1

(2.9)
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along with the boundary conditions:
0

A(R — (& =0.

(R (s, 9), 5-(k(s, 9))) =0

Now, comparing the coefficients of similar powers of 9 in (2.9), we get linear differen-
tial equations of zeroth order, first order, second order and so on, which can be solved
very easily.

Zeroth order problem:

(2.10)  &(Ro(s)) = E(Rini(s)), A (RO’ %> -

First order problem:

(2.11)  &(R1(s)) +eo(s,co)Co —I'(s) =0, A (f{l, %) =0.

Second order problem:

(2.12)  &(R2(s)) +e1(s,c1)(C1) =0, A (’:’“2’ L?) =0

Third order problem:

(213)  €(Rs(s)) + ea(s, ¢2)(C2) = O, A(Rg,%):o.

and so on.

Where €;(s,¢;); @ =0,1,2,3,..., are auxiliary functions. The parameters ¢;’s are used to
control the convergence and can itself be determined optimally. This can be done over
the domain of the problem by minimizing the residual functional. In order to get an
accurate result, solutions up to the higher order problems can be made but a solution
up to third order will be sufficient. For ¢ = 1, if the series (2.7) converges, then the
approximate solution is given by

(2.14)  k(s) = R(s) = Ro(s) + R1(s, co) + Ra(s, co,c1) + Ra(s, co,c1,c2) + -+ .

The resulting residual can be obtained by backward substitution of equation (2.13) into
equation (2.1) as

(2.15)  R(s, co,c1,c2,....) = £(R(s)) + C(R(s)) = T'(s).

The exact solution %, will be obtained if R = 0. In most of the problems usuallyR # 0,
and a minimization is needed over the domain of the problem. This can be done by using
either least square’s method, Galerkin’s method or collocation method. When applying
the method of least squares, we first introduce the functional

h
(2.16) w(co,cl,cQ,...):/ Rdzx,
t

and then minimizing it, we obtain

W _W__
(217) 800 o 8c1 - 662 o =0

For auxiliary constants we have to solve the following system, when applying Galerkin’s
method:

h = h ~ h ~
_ Ok _ IR _ Ok
2.1 IR g5 = IR s = Higs=o0,.....
(2.18) /tRaCOds 0, /t Ry —ds =0, /t Ry —ds =0,
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3. APPLICATION OF OHPM AND MOHPM

In this section high accuracy of MOHPM is shown over the existing methods in the
literature. The proposed method is applied to some linear and non linear differential
equations of different orders. As a result, we see that MOHPM gives best approximation
and takes very less time to produce the solution.

Problem 1. Consider fifth order linear boundary value problem [10].

5

(3.1) j;gfu+15es+10se‘g:0, 0<s<l,

(3.2)  w(0)=0,u(1)=0, v (0)=1, u'(1) = —e, u"(0)=0.

The exact solution for this problem is u(s) = s(1 — s)e®.

To apply MOHPM, we take:

(3.3) u(s,9) = uo(s) +dui(s) + Pua(s),

(3.4) &(R(s,0)) = %, E(Kini(s,7)) = 0,e0(s,c0) =1, e1(s,c1) =1,

. . d’u s s
(3.5)  &(R(s, V) +C(R(s, V) —T(s) = i +15e”+10se”.

Now put the above values in (2.9) and compare the coefficients of like powers of 1 we get
as:
Zeroth order problem:

(3.6)  (u0)®(s) =0, uo(0) =0, uo(1) =0, up(0) =0, up(1) = —e, uf(0) =0.
First order problem:

15e* + 10e®s — suo(s) + (u1)®(s) =0,

u1(0) = 0,u1(1) = 0,u1(0) = 0,u(1) = 0,u7 (0) = 0.
Second order problem:

—sui(s) + (u2)®(s) = 0, ua(0) =0, ua(1) =0,

u5(0) = 0, us(1) =0, uy(0) = 0.

(3.7)

(3-8)

Solve the above equations we obtain: ug(s), u1(s),u2(s), put these values in (3.3) and
also ¥ = 1, we get the following solution for t = 0and h =1 :

u(s) =s—0.500000000s> —0.333333333s* —0.1255°
—0.0333333335° —0.0069444444 5"

—0.001190476 s° — 0.000173611 s” — 0.0000220475"° — 0.000002480 s"*
—2.5052 x 107 75" — 2.2967 x 10™%s" — 1.9261 x 107 s,

(3.9)

The results for problem 1 are shown in table-1 and figure-1 as follows:

Problem 2. Fifth order non-linear boundary value problem [10].
5

dsb
(3.11) u(0)=1, v'(0)=1, «"(0)=1, u(1)=e, v'(1)=e.

Having exact solution u(s) = e®. To solve this problem, we consider the second order
approximation

(3.12)  w(s) = uo(s) + ui(s,co) + uz(s, co,c1).

(3.10) —uPe =0, 0<s<l1,
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Let, u(s, 9) = uo(s)-+0 w1 (5)+0%ua(s), £(7(s5,9)) = L4 (i (s, 9)) = 0.L(A(s, 9)) =
u?(s)e™" eo(s, c0) = co, €1(s,c1) = c1,50 = ud(s), st = 2uo(s)ua(s) + ui(s).
Put the above values in (2.9) and compare coefficients of like powers of ¥ we get as:
Zeroth order problem:

(3.13)  (u0)® (s) =0, uo(0) =1, ut(0) =1, uf(0) =1, uo(1) = e, up(1) =e.
First order problem:

—e *couo(s)’ + (u1)®(s) =0, u1(0) =0,

w1 (1) =0, u1(0) =0, ui(1) =0, uf(0) =0.
Second order problem:

—2e " cruo(s) ur(s) — e "crui(s)? + (U2)(5)($) =0,
u2(0) =0, u2(1) =0, u5(0) =0, us(1) =0, uy(0) =0.

Solution of the above gives ug(s), u1(s, co), u2(s, co, c1).
Now use (3.12) and apply the Galerkin’s method consist of (2.15) and (2.18) we get
the following values of ¢;s for t = Oand h =1,

co = 0.999999240, c¢1 = 0.999758960 .
The MOHPM approximate solution becomes:

(3.14)

(3.15)

7

u(s) =145+ % +0.166666667s° +0.041666667s* + 225 + 5 + sor0
(3.16) +0.000024802 s® + 0.000002756 s 4 2.7557 x 107751 4 2.5050 x 10~ s
+2.0928 x 107252 + 1.5506 x 107 %' +1.4690 x 10~ 14,

Now to check the accuracy of OHPM, we apply OHPM to (3.10) and obtain
cp = 1.000553563, c¢1 = —0.417820368 .
The approximate solution by OHPM is then given as

2
u(s) =1+s+ % + 0.1666684325° + 0.041661159s* + 0.0083379465°

+0.00138968s° + 0.000198523 5" + 0.000019825 5* 4 0.000006842 s”
—5.0613 x 107"s"® — 4.1383 x 10~ %s"! — 1.6480 x 10~ °s"?
+1.4653 x 10~%s"* — 9.8279 x 10~ 7s'*
The results for problem 2 are shown in table-2 and figure-2 as follows:

Problem 3. Sixth order linear boundary value problem [17]
&
ds
(3.19)  w(0) =1, u(1) =0, u”(0) = -1, u”(1) = —2¢, u"(0) = =3, v (1) = —4e.
The exact solution for this problem is:

u(s) = (1 — s)e’.

To apply MOHPM, we use the steps used in problem-1 and in problem-2;, we obtain
approximate solution for t = Oand h =1 as

(3.17)

(3.18) —(u—6¢€°)=0, 0<s<l,

(3.20)
u(s) = 1. — 3.5811 x 10~ %5 — 0.5 5> — 0.333333333 s° — 0.125 5" — 0.0333333333 5°

—0.006944444 s® — 0.001190476 s” — 0.000173611 5% — 0.000 022046 s°
— 0.000002480 s'° — 2.5052 x 1077 s'' — 2.2964 x 108 s*2

The results for problem 3 are shown in table-3 and figure-3 as follows:



1055

(1) Table 3
(2) Figure 3

Problem 4. Sixth order nonlinear boundary value problem [24]

6
(3.21) %‘ —u?e® =0, 0<s<l,

(3.22) w(0)=1,4'(0)=—-1,u"(0) =1, u(l) = ", v/ (1) —e ", u"(1) = .

The exact solution is given as u(s) = e °.

To apply MOHPM, we consider the following second order approximationu(s) =
uo(s) + ui(s,co) + uz(s, co,c1).

Now we use the steps mentioned in problem-1 and problem-2.

Using the Galerkin’s method which consist of (2.15) and (2.18) , we obtain the fol-
lowing values of ¢;sfor t = Oand h =1 :

co = 0.999781503, ¢ = 0.568319310.
The approximate solution by MOHPM becomes:

u=1-s+% —0.1666666676 s° + 0.041666667s* — 0.008333333 s° + -

(3.23) — S s — 0000002756 57 + 2.7556 x 107 7s'0 — 25048 x 10 %!

+2.0862 x 10775 — 1.5896 x 107 '%s"® 4 9.6037 x 10?5,
Also when we apply OHPM, we obtain the values of ¢}s as
co = 0.999986482, ¢ = 0.991801518.

The approximate solution given by OHPM is

u=1-5+% —01666666675>+0.041666667s*—0.0083333345
+0.001388889 55 — 0.000198413 57 4 0.000024802 s® — 0.000002756 s°
+2.7561 x 107750 — 2.5071 x 10785 + 2.0905 x 10~ 9s'2

—1.5728 x 10719 4+ 7.1664 x 1071214,

(3.24)

Results for problem 4 are given in table 4 and figure 4 as follows:

(1) Table 4
(2) Figure 4

4. CONCLUSION

In this paper a new idea has been developed and effectively applied to four higher
order boundary value problems of fifth and sixth orders which provide very accurate
results as compared to other well known methods in practice. Our proposed method has
great potential to solve ordinary differential equations of any order. The same technique
can also be extended to the solutions of partial differential equations, integro-differential
equations and system of differential equations, the results obtained for these types of
differential equations will be revealed in our coming papers. The merit of MOHPM is
that it requires only a few terms to obtain accurate approximate solutions. This technique
has a great robust, to attract engineer, scientists and researchers of every field.
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Table 1. Tablel
(MOHPM)(3.9), (OHAM) [10], (VIMHP) [16], (VIM) [18], (B-Spline)
[22], with the exact solution. We observe that the result of MOHPM
is better and more accurate than the above mentioned methods.
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shows comparison of the errors obtained by

s Exact MOHPM | E* E* E* E* E* (B
(MOHPM)|) (OHAM) | (VIMHP)| (VIM) Spline)
0.0 | 0.000000 | 0.000000 | 0. 0. 0. 0. 0.
0.1 | 0.099465 | 0.099465 | 5.4x10~1%] 9.0x10~ 1] - 1.0x107°9] -
3.0x10~ 1 7.0x107%
0.2 | 0.195424 | 0.195424 | 3.7x10~ 3] 4.0x10~'°] - 2.0x107%9 -
2.0x1071° 7.2x107%
0.3 | 0.283470 | 0.283470 | 1.0x10~ 2] 5.0x10 '] - 1.0x10~%9] 4.1x10~ %
4.0x10710
0.4 | 0.358037 | 0.358037 | 1.9x10~ 2| 2.0x10~ 1] - 2.0x107%7] 4.6x10~"*
8.0x101°
0.5 | 0.412180 | 0.412180 | 2.7x10~ 2| 1.0x10~ %] - 3.1x10 %[ 4.7x10~ %%
1.0x107%°
0.6 | 0.43730 | 0.437308 | 3.0x10~ 12| 2.0x10~%%] - 3.7x107 %] 4.8x10~™
2.0x107%
0.7 | 0.422888 | 0.422888 | 2.1x10~ 2| 2.0x10 %] - 4.1x107 %] 3.9x10 %%
2.0x107%°
0.8 | 0.356086 | 0.356086 | 3.7x10~ 1| 1.0x10~°9] - 3.1x107 %[ 3.1x10 ™
2.0x107%
0.9 |0.221364 | 0.221364 | - 4.0x10~ 1] -1.0x1- 1.4x10~ 8] 1.6x107 %%
3.2x107 1 —09
1.0 | 0.000000 | 2.5x107°% | - 0. 0. 0. 0.
1.6x10710
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Table 1

o

E*—Exact-Approx.

Figure 1: Dotted curve-sol: (MOH

TABLE 2
E*=Exact-Approx.

PM) and solid curve-sol: (Exact).
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Table 2. Table 2 shows comparison of the solutions obtained by
MOHPM (3.16), OHPM (3.17), OHAM [10], VIM [18] and B-Spline

[22]. From the numerical results it is clear that MOHPM is more effi-
cient and more accurate.

s Exact MOHPM | E* E* E* E* VIM | E*
MOHPM | OHPM | OHAM B-Spline

0.0 | 1.000000 | 1.000000 | 0.0 0.0 0.0 0.0000 0.0000

0.1 | 1.105170 | 1.105170 | 3.1x10~™°] 1.2x107%°] 1.9x10~ 17| - -
3.0x10~ | 8.0x107%

0.2 | 1.221402 | 1.221402 | 1.9x10 ™| 6.8x10~ 9] 1.2x10~ 7| - -
2.2x1071°| 1.2x1079

0.3 | 1.349858 | 1.349858 | 5.4x10~ ™*| 1.4x10~ %8| 3.3x10 %7 - -
4.0x1071°| 5.0x107%3

0.4 |1.491824 | 1.491824 | 1.0x10~ ] 2.0x107°8] 6.3x107%°| - 3.0x107%3
8.0x101°

0.5 | 1.648721 | 1.648721 | 1.4x10~ 3] 2.1x10~ 8] 9.3x10~ %7 - 8.0x107 %3
1.2x107%°

0.6 | 1.822118 | 1.822118 | 1.6x10~ 3| 1.7x10~ %8| 1.1x10~ %] - 6.0x107°%
209x10799

0.7 [2.013752 | 2.013752 | 1.5x10~ 3] 1.2x10~ %] 1.1x10 %8| - -0.0000
2.2x107%°

0.8 | 2.225540 | 2.225540 | 9.9x10~™*| 7.0x10~°?] 8.2x10~ %7 - 9.0
1.9x107%9| 10793

0.9 | 2.459603 | 2.459603 | 1.1x10~ ™| 2.0x10~%°] 1.9x10 7| - -
1.4x107%9| 9.0x107%

1.0 | 2.718281 | 2.718281 | 1.0E-13 | 3.0E-09 | 0.00 0.000 0.0000

- I
Figure 2: Dotted curve-sol: (MOHPM) and solid curve-sol: (Exact).
Table 3

E*=Exact-Approx.




1059

Table 3. Table3shows comparison of the errors obtained by MOHPM(
3.20), OHAM [10], ADM [23], VIM [18] and HPM [24], with the exact
solution. We observe that our results of MOHPM are better and more

accurate than the above mentioned methods.

Figure 3: Dotted curve-sol: (MOHPM) and solid ¢

Table 4
E*=Exact-Approx.

SR

urve-sol: (Exact).

s Exact MOHPM | E* E* E* ADM | E* VIM | E¥ HPM
MOHPM | OHAM
0.0 | 1. 1. 0. 0. 0. 0. 0.
0.1 | 0.994653 0.994653 | 3.5x10 °| 2.1x10~ "% - - -
4.1x107%] 4.1x107%4| 4.1x107%
0.2 |0.977122 0.977122 | 6.7x10~ 3] 4.0x10 %8| - - -
7.8x107%| 7.8x107%4| 7.8x107%
0.3 | 0.944901 0.944901 | 9.2x10~ 3] 5.7x10 %8| - - -
1.1x1079%] 1.1x107%%| 1.1x107%3
0.4 | 0.895094 0.895094 | 1.1x10~ 2] 7.0x107 %8| - - -
1.3x1079%] 1.3x107%%| 1.3x107%3
0.5 | 0.824360 0.824360 | 9.0x10~ 3] 7.6x107 %8| - - -
1.3x1079%] 1.3x107%%| 1.3x107%3
0.6 | 0.728847 0.728847 | - 7.5x107 8] - - -
1.6x10712 1.3x1079%] 1.3x107%%| 1.3x1073
0.7 | 0.604125 0.604125 | - 6.5x107 %8| - - -
1.9x10~ 11 1.1x1079%] 1.1x107%%| 1.1x107%3
0.8 | 0.445108 0.445108 | - 4.8x107%8] - - -
1.1x1071° 4.1x107%| 4.1x107%4| 4.1x107%
0.9 | 0.245960 0.245960 | - 2.5x107%8] - - -
5.3x1071° 7.8x107%4| 7.8x107%4| 7.8x10~%
1.0 | 0. 2.0E-09 | - - 0.0 0.0 0.0
2.1x107%9] 2.1x107%°
) Frse
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Table 4. Table 4 shows comparison of errors obtained by MOHPM
(3.23), OHPM (3.24), OHAM [21], ADM [23], VIM [18] and HPM
[24], with the exact solution. Results indicate clearly that MOHPM
gives better and accurate approximations than the above mentioned

methods.
s Exact MOHPM [ E* E* E* E* E* E*
MOHPM | OHPM | OHAM | VIM ADM HPM
0.0 | 1.000000 | 1.000000 | 0.0 0.0 0 0 0 0
0.1 | 0.904837 | 0.904837 | 4.1x10~ "] 1.2x107°9] -4.82 - - -
x10710 2.3x10797| 1.2x107%| 1.2x107%
0.2 | 0.818730 | 0.818730 | 2.4x10~ %] 6.8x107"9] - - - -
4.92x1071P 1.3x1079¢| 2.3x107%| 2.3x107%
0.3 | 0.740818 | 0.740818 | 5.5x10~ 1| 1.4x107 %] - - - -
2.37x107 1} 3.3x107%| 3.2x107%4| 3.2x107%
0.4 |0.670320 | 0.670320 | 8.3x10~ 1% 2.0x107 %] 5.11x10~f - - -
5.2x1079¢| 3.8x107%%| 3.8x107 %
0.5 | 0.606530 | 0.606530 | 9.3x10~ ] 2.1x107 %] 6.42x10~ '} - - -
6.1x1079¢| 4.0x107%| 4.0x107%
0.6 | 0.548811 | 0.548811 | 8.2x10~ ™| 1.7x107°%] 2.02x10~ '} - - -
5.7x1079| 3.9x107%%| 3.9x107%
0.7 | 0.496585 | 0.496585 | 5.5x10~**| 1.2x107 %] - - - -
5.37x107 ' 4.0x107°¢| 3.3x107%4| 3.3x107%
0.8 | 0.449328 | 0.449328 | 2.9x10~ ™| 7.0x107 7] - - - -
1.02x107% 1.9x107% 2.4x107%4| 2.4x107%*
0.9 | 0.406569 | 0.406569 | 3.1x10~ ™| 2.0x107 7] - - - -
8.23x1071 3.5x107°7| 1.2x107%| 1.2x107%*
1.0 | 0.367879 | 0.367879 | 1.1x10~ 3] 3.0x107 9] - - 2.0x107%°] 2.0x10~%°
2.05x10~ ' 5.0x10~*°

Figure 4: Dotted curve-sol: (MOHPM) and solid curve-sol: (Exact).




Hacettepe Journal of Mathematics and Statistics
Volume 45 (4) (2016), 1061 —1066

On some questions regarding projectivity criteria

Jang Hyun Jo *

Abstract

We investigate questions which are related to projectivity criteria and
give some partial answers and related results to them.

Keywords: Complete cohomology, free, projective, stably free
2000 AMS Classification: 16D40, 18G05, 18G20

Received : 13.04.2015 Accepted : 27.08.2015  Doi: 10.15672/HJMS.20164513112

1. Introduction

The purpose of this paper is to investigate questions related to projectivity criteria.
It is well-known that if G is a finite group, then a ZG-module M is projective if and only
if M is Z-free and proj.dim, M < oo (cf. [5]). In [16] we investigated whether or not
only finite groups satisfy the criterion above, and showed that this is true in the class
of groups LHF. For the definitions of LHF and some other terminologies below in this
section, see Section 2.

Note that if G is a virtually torsion-free group with vedG = n and M is a Z-free
ZG-module, then proj.dim,, M < oo if and only if proj.dim,, M < n ([5, Theorem
X.5.3]). This result was generalized in [15, Theorem 4.7] as follows: if G is a HF-group
and spliG < oo, then proj.dim,. M < oo if and only if proj.dim,. M < pccd G.

It is also known that if H is a subgroup of finite index in G, then a ZG-module M is
ZG-projective if and only if M is ZH-projective and proj.dim,, M < co (|6, Lemma 4.1
(@))).

In these viewpoints, we may ask the following questions:

1.1. Question. Let n be a nonnegative integer. Suppose that G satisfies the fol-
lowing property: for any Z-free ZG-module M, proj.dimy,, M < oo if and only if
proj.dimys M < n. Is it true that pccd G < n?

1.2. Question. Let H be a subgroup of G. Suppose that (G, H) satisfies the property
that for any ZG-module M, M is ZG-projective if and only if M is ZH-projective and
proj.dimy, M < co. Is it true that |G : H| < co?

*Department of Mathematics, Sogang University, Seoul, 121-742 KOREA,
Email: jhjo@sogang.ac.kr
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It is known in [16, Corollary 2.7] that Question 1.1 has a positive answer for any
LH3-group and n = 0.

On the other hand, recall the following conjecture (a special case of Moore’s conjec-
ture ([1, p 64]), which is a far reaching generalization of Serre’s theorem [1, p 65]) on
cohomological dimension of groups.

1.3. Conjecture. Let G be a torsion-free group and H a subgroup of finite indez in G.
Then every Z.G-module M which is ZH -projective is also ZG-projective.

In the same sprit as the questions above, we also naturally ask the following;:

1.4. Question. Let G be a torsion-free group and H a subgroup of G. Suppose that
(G, H) satisfies the property that every ZH-projective ZG-module is ZG-projective. Is
it true that |G : H| < o0?

It can be seen that for a torsion-free group GG and its subgroup H, if Question 1.4 has
an affirmative answer for (G, H), then Question 1.2 has also an affirmative answer for
(G, H).

We give some partial answers and related results to Questions 1.1, 1.2, and 1.4 in
Theorems 3.7, 3.8, 3.9, and 3.10 and Corollaries 3.5 and 3.6.

2. Preliminaries

In this section, we briefly introduce some definitions and preliminary results. For more
details, we recommend each reference below.

1. (|18, 3]) The class HF is the smallest class of groups containing the class of finite
groups and which contains a group G whenever G admits a finite dimensional contractible
G-C-complex whose stabilizers are already in HF. The class LHF is the class of groups
such that all of its finitely generated subgroups are in HF. The class LHF is extension
closed, closed under ascending unions, and closed under amalgamated free products and
HNN extensions. The class LHF contains, for example, all elementary amenable groups
and all linear groups.

2. The cohomological dimension of G, denoted cd G, is the projective dimension of the
trivial G-module Z over ZG. For a virtually torsion-free group G, i.e., G has a torsion-
free subgroup of finite index, it was well-known that all torsion-free subgroups of G of
finite index have the same cohomological dimension (cf. [5]). The common cohomological
dimension of the torsion-free subgroups of finite index is called the virtual cohomological
dimension of G and is denoted by ved G. The finiteness of ved G ensures that the Farrell
cohomology of a group is well defined. There are other well-known invariants of a group
which have been accompanied with the Tkenaga’s generalized cohomology ([14]) and the
complete cohomology ([4, 12, 19]):

(1) edG :=sup{n : Extzo(M,F) #0, M : Z-free, F :ZG-free} ([14]).

(2) spliG :=sup{n : Exty(I,—) # 0, I: ZG-injective} ([11]).

(3) silpG :=sup{n : Extyg(—, P) #0, P :ZG-projective} ([11]).

(4) fin.dim G :=sup{n : proj.dim;M =n < oo} ([20]).

(5) pccdG :=sup{n : H"(G, P) # 0, P : ZG-projective} ([15]).

(6) GedG := GpdyZ, the Gorenstein projective dimension of the trivial ZG-
module Z (]2, 3]).

It is well known from [2, 3, 7, 11, 13, 14, 15, 17, 22| that for any group G,

(a) pccdG <cdG = GedG <silpG =spliG <cdG+1=GedG + 1.

(b) —1 < pccdG < 0.

(¢) If G is the Thompson group T, @;2, Z, or GL,(K), where K is a subfield of
the algebraic closure of QQ, then pccd G = —1.
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(d) If G = *nenGn, where G, := @], Z, then pced G = co.
(e) If Ged G < oo, then Ged G = peed G and so —1 < peed G < oc.
(f) fin.dim G < spli G, the equality holds when G € LHF or spliG < 0.

3. Main results

In what follows, let G be an arbitrary discrete group and ZG its group ring. We write
“G-module”, “G-projective”, etc. instead of “ZG-module”, “ZG-projective”, etc.

3.1. Lemma. Let G be a group satisfying the following property: for any Z-free G-module
M,

proj.dimy, M < oo if and only if proj.dim,, M < n.
Then fin.dimG <n + 1.

Proof. Let N be a G-module with proj.dim,, N < oco. Consider an exact sequence
of G-modules 0 - K — P — N — 0, where P is G-projective. It is clear that K
is Z-free and proj.dim,, K < oco. Thus proj.dim,, K < n by the assumption and so
proj.dimys N <n + 1. Hence we conclude that fin.dim G <n 4+ 1. 0

In [8] Dembegioti and Talelli proposed the following conjecture and gave some example
of groups satisfying it.

3.2. Conjecture. For any group G, spliG =c¢d G + 1.
In [3] Bahlekeh, Dembegioti, and Talelli proposed the following conjecture.
3.3. Conjecture. For any group G, fin.dimG = Ged G + 1.

Note that Ged G = ¢d G for any group G, and fin.dim G = spli G when G is an LHF-
group. Thus Conjecture 3.2 is equivalent to Conjecture 3.3 when G is an LHF-group.

3.4. Theorem. If Conjecture 3.3 is true, then Question 1.1 has an affirmative answer.

Proof. Assume that G satisfies the property in Question 1.1. Then fin.dimG < n+ 1 by
Lemma 3.1. By the assumption, it follows that Ged G < n. Hence pcecd G < n. O

3.5. Corollary. Suppose that G satisfies the one of the following:
(1) ecdG =0 or 1.
(2) duality group.
(3) fundamental group of graph of finite groups.
(4) fundamental group of certain finite graph of group of type F'Ps in [8, Theorem
3.5].

Then Question 1.1 has an affirmative answer for G.

Proof. Tt is known from [8, 10] that if a group G is one of the list above, then G satisfies
Conjecture 3.3. Hence the result follows from Theorem 3.4. O

The following corollary shows that the validity of Conjecture 3.3 settles Question A
in [16] completely.

3.6. Corollary. Let G be a group with the property that every Z-free G-module of finite
projective dimension is projective. If G satisfies Conjecture 3.3, then G is finite.

Proof. Note that G is finite if and only if pccd G = 0 ([15, Proposition 3.9]). Hence the
result follows immediately from Theorem 3.4. 0
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3.7. Theorem. Let G be a virtually torsion-free group. If G is an LHF-group, then
Question 1.1 has an affirmative answer for G.

Proof. Assume that G satisfies the property in Question 1.1. Then fin.dimG < n -+ 1 by
Lemma 3.1. Since G is an LHF-group, it follows from [22, Corollary 2| that spliG < n+1.
Since ¢cd G < silpG = spliG, it follows that cdG < n 4+ 1. Let H be a torsion-free
subgroup of finite index in G. Since G is an LHF-group, it follows from [22, Corollary 2]
and [11, 5.2| that fin.dim G = spliG = spli H = fin.dim H < co. By [22, Corollary 1] we
have cd H < oo. Then ¢cd G = ¢d H = ¢d H = ved G by [14, Proposition 3, Proposition 5]
and so ved G < n + 1. Suppose that ved G = n + 1. Then c¢d H = proj.dim,,;Z = n + 1.
But this contradicts to the property in Question 1.1. Hence pccdG = ved G < n as
required. O

3.8. Theorem. Let H be a normal subgroup of G. Suppose that every H-projective,
G-module M with proj.dim,, M < oo is H-free. Then Question 1.2 has an affirmative
answer for (G, H).

Proof. Assume that a G-module M is H-projective and proj.dimy,, M < oco. Let Q =
G/H. Since M is H-projective, it follows from a spectral sequence argument as in the
proof of [6, Lemma 4.1 (a)] that for any G-module N,

Ext}e (M, N) = H(Q,Homzz (M, N)).

Suppose that there exists a projective Q-module L and k > 0 such that H*(Q, L) # 0.
We can regard L as a G-module via the quotient map ¢ : G — Q. By the assumption,
we see that M is G-projective and thereby for any i > 0,

Exthe (M, L) = H(Q,Homgzz (M, L)) = 0.
Since M is H-free by the assumption, it follows that
Homz (M, L) = Homzy (@ZH, L) = | [ Homzu (ZH, L) = [ L
as @Q-modules (cf. [21, Thorem 2.31]). Thus we have
H*(Q,Homzy (M, L)) = H*(Q, [[L) = [[ H" (@, L) #0

(cf. [21, Proposition 7.22]), which makes a contradiction. Hence H*(Q,S) = 0 for each
i > 0 and any projective Q-module S, and therefore pccd Q < 0. But since pced Q # —1,
we see that pccd @ = 0 and so @Q is finite by [15, Proposition 3.9]. Hence we conclude
that |G : H| < oco. O

3.9. Theorem. Let H be a normal subgroup of G. Suppose that every H-stably free,
G-module M with proj.dimy- M < oo is H-free. Assume further that for any H-stably-
free, G-module M with proj.dim,, M < oo, there exist H-free modules M' and F such
that M @& M' = F as H-modules and the H-free rank of M’ is different from that of F.
Then Question 1.2 has an affirmative answer for (G, H).

Proof. Let Q = G/H. By the proof of Theorem 3.8, we see that for any G-module N,
Ext}e (M, N) = H'(Q, Homzy (M, N)).

Suppose that there exists a projective Q-module L and k > 0 such that Hk(Q,L) # 0.
By the assumption, it follows that M is G-projective and therefore we have that for any
>0,

Exthq (M, L) = H (Q, Homzy (M, L)) = 0.
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Note that Homyy (F, L) = HI L and Homzy (M', L) = HJ L as @Q-modules, where the
cardinalities of I and J are the H-free ranks of F' and M’, respectively. Note also that

HomZH(F, L) = HOII’IZH(M, L) D HOHIZH(M/, L)
Thus we have

[1#%@Q.1) = B*(Q,Homzn (M, L)) & (]  H*(Q, L))
J

J
=~ H"(Q,Homzx (M, L)) & H*(Q, Homzu (M’ L))

H"Q,Homzp (F, L)) = H*Q, [ [ L) = [[ H*(@. L).

[l

But this makes a contradiction, since the H-free rank of F is different from that of M’.
Hence we can conclude that @ is finite by the same argument of the proof of Theorem 3.8.
Therefore |G : H| < co. O

3.10. Theorem. Let G be a torsion-free group and H a normal subgroup of G. Suppose
that pced (G/H) > —1 and (G, H) satisfies one of the following:

(a) Every H-projective, G-module M with proj.dim,. M < oo is H-free.

(b) Ewvery H-stably free, G-module M with proj.dimy, M < oo is H-free, and for
any H-stably-free, G-module M with proj.dimy,, M < oo, there exist H-free
modules M’ and F such that M & M’ = F as H-modules and the H-free rank of
M’ is different from that of F.

Then Question 1.4 has an affirmative answer for (G, H).

Proof. It can be proved by the same argument of the proof of Theorems 3.8 and 3.9. O

3.11. Remark. Let X be a CW-complex such that the universal cover X is (m —
1)-connected. It is known from [9, Proposition 1.4] that if m > 3, then X has the
m-type of a finite m-complex if and only if its Swan-Wall class SW,,[X] = 0, where
SWin[X] := Cu(X)/Bm(X) € C(m1(X)), and where C(m1(X)) is the abelian monoid
of stable equivalence classes of finitely generated m1(X)-modules. Recall that for an
abelian group A and positive integer m, a C'W-complex Y is called a Moore space of
type M(A,m) if Ho(Y) = Z, Hn(Y) is isomorphic to A, and H;(Y") = 0 for ¢ # 0, m.
Suppose now that G is a finite group. Let X be a finite dimensional, finite type CW-
complex X with 71 (X) = G such that X is a Moore space of type M (A, m). Then we

see that proj.dimye (Cn (X)/Bm (X)) < oo, since
0 = Caimx (X) = -+ = Cu(X) = Con(X)/Bm(X) = 0
is a G-free resolution of Cm()z)/Bm()E). Tt is clear that the sequence of G-modules
0 = Zm(X)/Bm(X) = Con(X)/Bim(X) = Con (X)) Zm(X) — 0

is exact. Since Cn(X)/Zm(X) = Bp-1(X) C Cm(X) and Cp(X) is Z-free, it follows
that Cp(X)/Zm(X) is Z-free. Thus we see that Cp,(X)/Bym(X) is finitely generated G-
projective and s0 Cp(X)/Bm(X) = 0 € Ko(Zm1(X)). By [9, Proposition 1.4], it follows
that X has the m-type of a finite CW-complex. Consequently, we can conclude that
if G is a finite group, then every finite dimensional, finite type CW-complex X with
71 (X) = G such that X is a Moore space of type M(A, m) has the m-type of a finite
C'W-complex. But we do not yet know whether the converse of this holds.
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Numerical solution of fourth order parabolic
partial differential equation using parametric
septic splines

Arshad Khan* and Talat Sultanaf

Abstract

In this paper, we report three level implicit method of high accuracy
schemes for the numerical solution of fourth order nonhomogeneous
parabolic partial differential equation, that governs the behavior of a
vibrating beam. Parametric septic spline is used in space and finite
difference discretization in time. The linear stability of the presented
method is investigated. The computed results for three examples are
compared wherever possible with those already available in literature
which shows the superiority of the proposed method.

Keywords: Parametric septic splines; Fourth order parabolic equation; Stability
analysis; Vibrating beam; Finite difference scheme.
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1. Introduction

In this paper, we consider the problem of undamped transverse vibration of a flexible
straight beam in such a way that its support do not contribute to the strain energy of
the system and is represented by the fourth order parabolic partial differential equation
of the form

9u  d'u
ﬁ‘f’@:f(l',t), a<z<b t>0, (1.1)

subject to the initial conditions

u(x,0) = go(z), a<z<b,
(1.2)
ug(z,0) = g1(x), a<x<b
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1068

and the boundary conditions

U(avt):fo(t)a U(bvt):fl(t)7 t >0,
(1.3)
Uz (ar t) = qO(t)v Uz (bvt) =aq1 (t)7 t >0,

where u is the transverse displacement of the beam, go(z), g1(x), fo(t), f1(t), qo(t), q1(t)
are continuous functions, ¢ and x are time and distance variables respectively and f(z,t)
is dynamic driving force per unit mass [10,21,22,35].

Numerical methods for the solution of equation (1.1) have been carried out by many
authors. Jain et al. [24], Danaee and Evans [1], Evans [8], Collatz [20], Andrade and
Mckee [7] and Evans and Yousif [9] used finite difference methods for the numerical solu-
tion of transverse vibrations. Fairweather and Gourlay [13] derived explicit and implicit
finite difference methods based on the semi explicit method. Parametric quintic spline
methods are given by Rashidinia and Aziz [16] using nodal points. Collatz [20], Crandall
[33], Jain [23], Conte [32], Jain et al. [24] and Todd [18] have proposed both explicit and
implicit methods successfully. Five level, unconditionally stable, explicit method with
truncation error of O(k* + h*® + (£)?) has been given by Albrecht [15]. All the above
authors considered the homogeneous case of equation (1.1) with a constant coefficients.
The analytical solution of homogeneous case of equation (1.1) has been obtained by using
Adomain decomposition method by Wazwaz [3,4]. The nonhomogeneous problem with
constant coefficients has been studied by Aziz et al. [34] based on parametric quintic
spline and by Khan et al. |2] based on sextic spline by using nodal points. Khaliq and
Twizell [6] and Twizell and Khaliq [11] developed a family of numerical methods, which
are second order accurate in space and time, based on exact recurrence relation for a ho-
mogeneous case of equation (1.1) with a variable coefficient. Rashidinia and Mohammadi
[17] developed three level implicit methods of O(k* + h*) and O(k* + h*) for the numer-
ical solution of equation (1.1) with variable coefficients by using sextic spline. Wazwaz
[5] has developed analytical solution of variable coefficient fourth order parabolic partial
differential equation in two and three space dimensions. Khan et al. [25] have introduced
a new algorithm, namely Laplace Decomposition Algorithm for fourth order parabolic
partial differential equations with variable coefficients. In [26], the homotopy analysis
method (HAM) is applied to solve such problems. Khan et al. [27] have studied numer-
ical solution of time fractional fourth order partial differential equations with variable
coefficients. They have implemented reliable series solution techniques namely, Adomian
Decomposition Method (ADM) and He’s Variational Iteration Method (HVIM). A fam-
ily of B-spline methods have been considered by Caglar [14]. In [28], Mittal and Jain
discussed two methods. In Method-I, they decomposed equation (1.1) in a system of
second order equations and have solved them by using cubic B-spline and in Method-II,
they have solved equation (1.1) directly by using quintic B-spline method. Talwar et al.
[19] and Mohanty et al. [29-31] have used high accuracy spline scheme for solving one
dimensional partial differential equations.

In this paper, parametric septic spline relations have been derived using nodal points.
We have used parametric septic spline functions to develop a new numerical method for
obtaining smooth approximations to the solution of nonhomogeneous parabolic partial
differential equations dealing with vibrations of beams. In section 2, parametric septic
spline and spline relations are developed. In section 3, we have presented the formulation
of our method. Development of boundary equations are given in section 4. In section 5,
truncation error and class of methods are given. Stability analysis is discussed in section
6. Finally in section 7, three examples are given to demonstrate the practical usefulness
and superiority of our method.
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2. Parametric septic spline

Let a set of grid points in the interval [a, b] such that

(b—a)

i = jh, 3 =001)N, h=
Tj CL+]7] 0()7 N

(2.1)

A function Sa(z,7) of class C°[a,b] which interpolates u(z) at the mesh point z;
depends on a parameter 7, and as 7 — 0 it reduces to septic spline Sa(z) in [a,b] is
termed as parametric septic spline function. Since the parameter 7 can occur in Sa(z)
in many ways such a spline is not unique.

If Sa(z,7) = Sa(z) is a piecewise function satisfying the following differential equation
in the interval [z;_1, ;]

T — T T, —x
SO (@) —7°SK(x) = (Q5— T2Mj)TJ1 +(Qj—1 — T Mj—1) =
= AjZ+Aj712,
(2.2)
where
z = 71‘7;&71, 221_25, Az :Qi_TzMi7
SA(wi,7) = My, SO(i,7)=Qi, i=37—1,5; 7>0,
then it is termed as parametric septic spline II.
Solving equation (2.2), we get
Sa(x) = A1+ Asx + Az coshy/Tx + Assinh /72 + As cos /T2 + Ag sin/7x
1 (. —x;_1)° (z; — x)®
—Tﬁ{(Qj—TzMj)iﬁé +(Qj—1—T2Mj—1)736h
(2.3)

To develop the consistency relations between the value of spline and its derivatives at
knots, let

Sa(z;) = uj, Sa(wjtr) = uj1,
SA(z;) = Mj, SA(wj41) = Mj1, (2.4)

SO (xs) = Fy, SO (xj41) = Fran.
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To define spline in terms of u;’s, M;’s and Fj’s, the coefficients introduced in Eq.(2.3)
are calculated as

h2
A = uj—1+@(Qj—1—72Mj—1)— =

2
T

h? h 1
3 [(u]- —uj-1) = g5 (@1 — M) + 62 (@i ™ M;) + — (Fi-1 = 1)

1 h 1
Az = g —um1) + g {—(ijl —7°Mj-1) +(Q; — TQM]‘)} + o, (Fi-1 = ),
1 1. Qi1 1. Q;
A3 = m |:§ sinh \/’FCEJ (ijl — jT) — Esmh \/’ijfl( j— TJ)
—lsinh \/;Jij_le + lsinh \/;Lliij_1:|,
T T
1 1 Q- 1 Q;
Ay = e V7R {—5 cosh \/Tx; (F]',l - JT 1) + §coshﬁxj,1( j = TJ)
+lcosh VTTi_1Q5 — 1 cosh \/’Fﬂij]‘71:|,
T T
1 . Qj-1 . Q;
As = 572 sinh v/rh |:sm VT, (Fj_l — ]7_ ) —sin \/;Q?j_l( j— TJ)},
1 Qj- Q)
As = 377 sinb J/7h [— cos \/Tx; (Fj_l - JTI) + cos ﬁ:cj_l( V= TJ)}
(2.5)
Substituting these values in (2.3), we get
h? !
Sa(@) = us B+ o (M + 9N + i) 4 ]
h6
+5 {Q(Z)Qj +Q(5)Qj—1]7
(2.6)
where
(z)—z?’—z (Z)_i_i_‘_Ssinhwz_Ssinwz
piiz) = » MET AT 0 T Ssinhw | wOsinw’
—2z sinhwz sinwz
= d = h. 2.
r(2) w? + w?sinhw + wisinw Y VT (2.7)

Applying the first, third and fifth derivative continuities at the knots, i.e. S(Am(xj_) =

S(Am(xj), 1= 1,3 and 5, the following consistency relations are derived:

6
Mjer +4M; + Mj—1 = 55 (ujen = 2u5 +uj-1) + 3h* (a2 Fji1 4 2B2F) + azFj-1)

+h (1Qi1 +261Q; + 1Qj-1), j=1(1)N —1. (2.8)

h2
Mj+1 =2M; + Mj—1 = [0~ w'on)Fy1 +2(2 — w'B1)Fj + (1 — w'on) Fj-]

4

—%(062Qj+1 +282Q; + a2Q;-1), j=11)N-1.  (29)
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P [(1 - w )@ + 22— w'B1)Q; + (1 —w'an)Qj-1] =
3l(w'az + 2)Fju1 +2(w' B2 — 2)Fj + (w'az + 2)Fj1], j=1L1)N -1,

(2.10)
where
o l, 3 3
T T Wsinhw  Wisinw’
2 3 3
B = A Ecothw + Ecotc‘g
g = ;2 + ! + !
2T 07 T OSsinhw | Wlsinw’
2 1 1
52=Jfﬁcothwfﬁcotw. (2.11)
As 7 — 0 that is w — 0 then (a1, B1, a2, B2) = (555 315 Tag» 15 )-
Using equations (2.8)-(2.10), we obtain the following scheme
(e1uj—3 + eauj_o + esuj—1 + eauj + e3ujr1 + eaujyo + e1ujys)
h? '
= g(ple73+p2Fj72+p3Fj71+p4Fj+p3Fj+1+p2Fj+2+p1Fj+3), Jj=3(1)N-3,
(2.12)

where the coefficients (e1, ez, e3, e4) and (p1, p2, ps, pa) of the developed scheme are given
by

ep = 1-— 3w4a1 + SwSa% — wlza‘;’,
er = dw'ar —2w*B —8wa? + 4wlai B — 2walpy,
ez = 7T(1—-w'ar)® =81 —w'm)*(2—w'pL),
s = 121 —w'm)?(2—wB1) —8(1 —w'm)®,
o= al-w'a)?,
p2 = 201(17w4a1)(27w4,81)+cz(1 7w4oc1)2 —3d:1(1 7w4a1)(2+w4a2),
ps = (c14e)(1—w'ar)?+6di(1—wan)(2—w'B2) + 2e2(1 —w'ai1)(2 — w' 1)
—3da(1 — w'on)(2 + was),
pi = 21 —w'an)? —6di(1 —war)(2+wias) — 6d1(2 —w'B1)(2 — w*Ba)
+2e3(1 — w'a)(2 — w*Bi) + 6d2(1 — w'ar) (2 — w'Ba).
(2.13)
Also
c = éwsoﬁ - gw4a§ - %w4a1 — 6ay — Gae + 5
c2 = %wga? + %w8a151 —18w'aras — 3w'asfz — 6w'al — 2wiar — é‘fﬁl
—1201 — 682 + %,
c3 = %wsoﬁ + §w8a1ﬁ1 — 36w’ @12 — 12w azfs — 3w'aj — ?wzlal - §w451
+36a1 + 122 + 1282 + 3,
di = w4a2ﬂ1 — w4a162 + 6w4a§ — 101 — 2c02 + 261 + P2,
dy = Adw'asf —Aw'anfa + 12w a1 f1 — 1601 — 18a — 4B + 45s.

(2.14)
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As 7 — 0 that is w — 0, we have

(i)(617 €2, €3, 64) - (1’ 0, -9, 16),
. 1 17 249 9 4
(11)(017621 C3, d17d2) — (m: ﬁ> %7 m7 %)7
(iii) (p1, p2, p3, pa) —> (L g0 %)
TR e 140777 1407 35 )’
[Remarks:] For these values our scheme reduces to the polynomial septic spline for
fourth order boundary value problem which is given as equation (7) in G. Akram and S.
S. Siddiqi [12].
Here, we have taken (e1, ez, e3,e4) = (1,0, -9, 16), therefore scheme (2.12) becomes

p1(Fj—3 + Fjt3) + p2(Fj—2 + Fjr2) + ps(Fj—1 + Fjt1) + paky
6

= ﬁ (Uj73 + Uj+3) — 9(Uj71 + ’LLj+1) =+ 16u, ; _] = 3(1)N — 3. (215)
We can also write (2.15) as
AoFj = %(66:% +02)uy, (2.16)

where 0 is the central difference operator and operator A, for any function W is defined
by

AWy =p1(Wj—3 + Wjis) + p2(Wj—2 + Wii2) + ps(Wj—1 + Wjt1) +paWy. (2.17)

3. Derivation of the method

Let the region R = [a,b] x [0,00) be discretized by a set of points Ry, which are
the vertices of a grid points (zj,tm), where z; = jh,j = 0(1)N,Nh = b — a and
tmm = mk, m = 0,1,2,3,... The quantities h and k are mesh sizes in the space and
time directions respectively.

We have developed an approximation for (1.1) in which the time derivative is replaced
by a finite difference approximation and space derivative is replaced by the parametric
septic spline function approximation. We need the following finite difference approxima-
tion for the time partial derivative of u :

uy, = k720 (1+ 067) M, (3.1)
where o is a parameter such that the finite difference approximation to the time derivative
is O(k?) for arbitrary o and O(k") for o = 1/12. uJ" is the approximate solution of (1.1)
at (xj,tm) and d; is the central difference operator with respect to ¢ so that

m—1

m—+1
] J

6t2u§”:uj —2ul" +u
At the grid point (j, m) the differential equation may be discretized by
e, + Unpea, =I5 (3:2)
where U, is the fourth order spline derivative at (z;, tm) denoted by F;" = Sgl) (zj,tm)
with respect to the space variable f;" = f(x;,tm). Using (3.1) and replacing fourth order
spline derivative by F;", we have

k7257 (L4 007) 'l + F* = f]. (3.3)
Operating A, on both sides of (3.3) and using (2.16), we obtain
87 [pr (i s +ufhs) +po (Wi a o) +pa(ufty +ufs) +pauf]+6r? (14+067) (655 +55)uf"

_ k2(1+0_5t2)[p1(fjnig+fﬁ3)+p2(fﬁ2—i—fﬂz)"‘pB(fjﬂil +fﬁ1)+p4fgm}7 ] = 3(1)]\](—3),
3.4
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where r = h% is the mesh ratio and p1, p2, ps, pa are parameters. After simplifying the
above equation, we obtain

671(2p1 + 2p2 + 2ps + pa) + (9p1 + 4pa + p3)da + (6p1 + p2 + 3607°)85 + (p1 + 6077 )50 u]"
+6r° (65, 40)u = k> (14067 ) [pr (f]2 s+ f1ta) +p2 (fa+ f142) 403 (fLa+ F140) +pafi],
j=3(1)N — 3. (3.5)

This scheme (3.5) is finite difference in time and spline scheme in space variable, which
on simplification can be written as

[Py(uf 8+ ul ) + Po(ul G + i) + Ps(u ™ + o) + Pt
+[S1(uft s + ujs) + 52(’&] 2 +uJ+2) + S3(ujZ L +uj1) + Sauj']
+[Pi(u _;n_‘51+u]+3 )+ Pa(uf’, +UJ+2 Y+ P(ul u;y +uj+1 )+P4um_1}
= Ka[pi(f]75" + 750 + o2 (F75 4 7550 + s (0 + £7500) + paf ]
+K2[])1(fj 3+fy+3)+102(f] 2+fj+2)+P3(f] 1+ fi1) +paf]
+K1[Pl(f -3 +f]+3 )+p2(f —2 +fg+2 )+p3( -1 +f]+l )+p4f;’171]a Jj=3(1)N-3.

(3.6)
The final scheme (3.6) may be written in the schematic form as
P P Ps Py P3s Po Py Kip1 Kips Kips Kips Kips Kip2 Kipa
S1 Sy S3 Si S3 S S uj' = Kop1 Kops Kops Kops Kops Kopa Kapi
P P, Ps Py P3 Po P Kip1 Kips Kips Kips Kips Kip: Kip:

where
Py = p1 4 6012, Py = pa, Ps = p3 — 540712, Py = pa + 96072,

Sl = —2P1 + 60’7’2,52 = —2P2,S3 = —2P3 — 540’7’2,54 = —2P4 +960’T2,
Ky =ok? Ky = k*(1 — 20).

4. Development of boundary equations

The relation (3.6) gives N — 5 linear algebraic equations in N — 1 unknowns u;, j =
3(1)N — 3. We need four more equations, two at each end of the range of integration, for
the direct computation of uj,j = 1(1)N — 1.

(i)
1392 ., 2340 ,, 20320 ,, 1320 ,, 432 , 548 ,. 464 ,,

7T ey Ty u4+7”5*§“62707*

h2(0)7 :lv

(i) _ 10280 . 8746 .. 19309 . 11287 . 960 .. 9793 .. 464 .,
469 + T8 2 97 52 4 7 P Togo7 ¢ 67 7
720 o 1" j
=
~ 169 (ug")”,
(i) 464 . 9793 960 ., 11287um 19309 L, 8T46 .
67 UN-—7 207 UN—6 7 UN-—5 52 N—4 97 N-3 87 N—-2
10280 ,, 720, "o
_ == j=N-2
(iv) 548 432 1820 ., +20320 w2340 ., 1392
63 UN—6 7 UN-—5 7 UN—4 63 UN-—3 7 UN_—2 7 UN-—1

= g - SRR = N -

£
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For high accuracy formula of O(k° + h'?), we use the following equations for approxi-
mating the boundary equations:

1
15928 v 5141, 32427 . 11441 o, 15875 17741 . 6919 .. 3853 ..
35 1 5 2oy P g ATy P45 S T rr T T 3R 8

_ 6985, 12600
T2 0 761

hQ(ug)n)”,j =1,

iy 4858 0, 18192 o 38050 . 2UISL .. 275354 . 188411 .. 25063 .
125 0T g M2 T ey M8 T T M T g U5 T g1 Y6 T T g W7

3707 o 4288 . _ 967
46 % 473 % T 625

hz(ugl)”mj =2,

(i) 4288 . 3707 . 25063 ., 138411 .. 275354 ., 21181 ..
473 N0 ye N8 g TNTTTqgr N6 ggp VST gp TN

38050 ,, 18192 , 4883 ., 967 5, men
Y UN -3 + 79 UN—2 — EUN—I = —@fﬁ(uN)Nv] =N-2

i) 3853, 6910 ., LTTAL ,, 15875 . 11441, 32497
359 N-8 71 N-T7 45 N—-6 17 N—-5 8 N—4 22 N-3

5141 ,, 15928 ,, 6985 ,, 12600 m .
_TUN72 + 35 UN—-1 = ﬁuN - th(UN)Nv] =N-1

5. Truncation error and class of methods

Expanding (3.5) in Taylor series in terms of u(xj,tn) and its derivatives, we obtain
the following relations

1008 105840

Sou(xy tm) = :hGDg + ThSDi + o R'DL + %h”p}f

+%hl4Di‘l + | u(zy, tm)
Stulzy, tm) = -h4D;l + 161!0}16172 + 58—0!5h8D2 + 1?;!6 DL + %hupf + } w(@y, tm)
SFu(xy, tm) = *hiD5 + %r4h8D§ — %rfithD}f + mrsthiG + } u(xj, tm),

(5.1)
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where (D7 + D3)u(zj,tm) = f(xj,tm). Using (3.5) and (5.1), we obtain the truncation

error

m
T;

{(2101 + 2p2 4 2p3 + pa) + (9p1 + 4p2 + p3)da + (6p1 + p2 + 36077)5,
+(p1 + 607’2)62} 5t2u;n + 6r2(662 + 52)u§"

(14 00?) [m(f,-“zg )+ pa(f 4 ) s I +p4fﬂ

oo 2k*D}  2kSDS  2k8D3
|:01 (k Di + 1 + ol + 3 + ...

°p 9 2k*DE 2k°DY  2k3DP
(Ozh )(k Dt + 1 + ol + ] =+ ...

474 414 6 16 8 18
th<k2D?+2th+2th+2th+m)

(202 4 2d0s) = 41 6! 8l
h6D6 2k*DE  2k°DY¢  2k8DP
+(202 4 12003 4 72004) (k:ZDf + : : T )

4!+6!+8!

2k'Df | 2k°DY | 2k°Dj

e e e
thDm 2k*D}  2k°D¢ 2D

+(202 + 101603 + 10584004) '”” (k2D§ + L L ! +)]u

A1 6! 8!
111936 10 510, 10266000, 15

10! “ 12!

+(202 + 50403 + 1008004) ——= D (k D} +

6r (144 DA 4 1440 h6 DS+ 4032 hg DS+

+...)uj [olk + o010k D? + k8D +

2
4' 6' Lok DS + %JkloD}O + ..

5 o h4 4 h6 6
(om Dy +2(81p1 + 16p2 + ps) == + 2(729p1 + 64p2 + p3) ——

heD8
+2(6561p1 + 256p2 +p3)T” + ) x

20kSD}  20k®DS  20Kk1°D3 m
<k2+ak4D§’+ 04' 4 ‘76' LA ‘78' ¢ +...)}(D3+Di)uj

which may be written as

" =

[(36 — 01)r2h4Di + (12 — 02)r2h6Dg+(g - —(81p1 + 16p2 +p3))r2h8D2

583 2,10 410
2%% (729, + 64 KD
3150 360( 1+ pz—‘,—pg))r v

+

2565 2712 12
199584 20160(6561191 + 256p2 +ps))r D+ ...

J’_

1 4 1 2,4 1 2,6 6

(12 )olk Dt+(12 a)OQthDtJr(gGO 12) 02h* kS D2 D
h 4 4 4 2

+ 5 (02 + 1203) — o10k” — (81p1 + 16p2 + p3) | k"D, D;

+(%(02 + 6003 + 36004) — 020k — %(729;71 + 64po +p3))h2k4D2D3

m
J
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+ m(@ +1203) — —olakQ - —(81p1 + 16p2 +p3))k4D§Df

20
E*D D+ ( = — == o2k D2DY
(20160 360) o t+(360 12) o t+(8' 6')02 o

2 (205 + 50403 + 1008004) — 01—2(811)1 + 16p2 + ps)

4
Zh (6561p1 + 256p2 +p3)) n*k*DS D}
+ B (02 + 1203) — io k2——(81p + 16p2 + p3) |K°DIDY + . |ul?
43207 37 360717 144! 2T EE
+
(5.2)
where
01 = 2p1 + 2p2 + 2p3 + pa, 02 = 9p1 + 4p2 + p3,
) )
03 = 6p1 + p2 + 36072, 04 = p1 + 607>, Dy = 5. D=3 (5.3)

For various values of parameters pi,p2,ps,ps and o, we obtain the following class of
methods:

Case 1: If 36 — 0; = 0, we obtain various schemes of O(k? 4 h?) for arbitrary values of
o.

Case 2: If 36 — 0y = 0 and 12 — 02 = 0, we obtain various schemes of O(k* + h*) for
arbitrary values of o.

Case 3: If 36 —01 =0, 12— 02 = 0, and g - ﬁ(Slpl + 16p2 +p3) = 0, we obtain various
schemes of O(k* + h®) for 0 # & and O(k® + h®) for 0 = L.

Case 4: For (p1,p2,p3, p1,0) =<%, 2 816, %), we obtain a scheme of O(k® +h'0).

6. Stability analysis

To investigate the stability analysis of the scheme (3.6), we use the Von Neumann
method. We have assumed that the solution of (3.6) at the grid point (z;,tm) is of the
form
j=eme, (6.1)
where ¢ = /—1, 0 is real and £ in general is complex.

Substituting (6.1) in homogeneous part of (3.6), we obtain a characteristic equation

XE+YE+Z =0, (6.2)

uy

where
X =7 =P cos30+ P>cos20 + Pscos + 2P,
Y = S1cos30 + S3cos20 + Sz cosf + 254.
Under the transformation £ = 1*’7 , equation (6.2) becomes

(X—Y+Z)77 +2X -2+ (X+Y +2)=0. (6.3)

The necessary and sufficient condition for |§| < 1isthat X - Y +Z >0, X —Z > 0 and
X+Y+2Z>0.

The conditions X —Z > 0 and X +Y + Z > 0 are always satisfied for all real values of 6.
From the condition X —Y +Z > 0, we get that the scheme (3.6) is unconditionally stable
if o > % and conditionally stable if o < i for all real values of pi1,p2, p3,ps and 6.

We summarized the above results in the following theorem:
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Theorem: The scheme (3.6) for solving (1.1) is unconditionally stable if o > + and

conditionally stable if ¢ < %. By using the Lax theorem, we can conclude that the

present method is converge as long as stability criterion is satisfied.

7. Numerical results and discussions

We have applied the presented method on the fourth order parabolic partial differen-
tial equation and have considered one homogeneous and two nonhomogeneous examples.
The proposed method (3.6) is implicit three level method based on parametric septic
spline function.

Example 1: Consider a nonhomogeneous fourth order parabolic partial differential
equation [2,9,17,34]

ot? Ozt
subject to the initial conditions
w(z,0) =sinmz, u(z,0)=0, 0<z<1
and the boundary conditions
w(0,t) = u(1,t) = uze(0,t) = Uz (1,t) =0, ¢> 0.

The analytical solution for this example is

= (' —Dsinmzcost, 0 <z <1, t>0,

u(x,t) = sinmx cost.

We have solved the above example with h = 0.05 and k£ = 0.005 giving » = 2 and by
choosing o = 1, L with O(k* + h®), O(k® + h®) and O(k® + h'°) for arbitrary choices of
parameters p1, p2, ps and ps. All computations have been done over ten time steps. The
absolute errors at particular points x = 0.1,0.2,0.3,0.4,0.5 and comparison with other
existing methods [2,8,15,26] are tabulated in table 1. We repeat the computations for 16

time steps with » = 0.5.
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Table 1. Absolute errors for example 1

Methods r |Time steps| 2 =0.1 |z =02 |2=03|2=04|2z=0.5

(p17p27p33p470—)
O(kﬁ + th)

(%%ﬁ%g%) 2 10 2.05(—6)[4.37(=7)[1.04(—7)|1.19(—8)|5.61(—8)
05 16  |4.04(—7)|7.81(—9)|8.34(—9)|4.56(—8)|5.10(—8)

O(k® + h¥)
(;g, =32 104, ) 2 10 2.63(—6)|2.86(—8)|4.34(—8)[7.02(—8)|6.31(—8)
0.5 16 6.80(—7)|3.52(—7)|9.65(=7)[1.39(—6)|1.53(—6)
(f030,315439,42001,1 i) 2 10 2.76(—6)|4.65(—8)|3.55(—8)[6.71(—8)|6.06(—8)
0.5 16 1.08(—6)|2.14(=7)|1.02(—6)|1.59(—6)[1.78(—6)

O(k™ + 1)
(;g, =32 104, ) 2 10 9.02(—6)(8.37(—7)|3.92(=7)[1.60(—8)|9.53(—8

05 16  |3.84(—6)|1.60(—6)|3.04
(14030, 149 401y 4) 2 10 [9.10(—6)|8.43(—7)|3.96
05| 16  |2.14(—6)[1.10(—6)[1.20

7)|1.98(—6)|2.66(—6
7)|1.67(—8)[9.57
7)|1.07(—6)|1.51(—6

(=
(=
(=
(=

[17]
O(k*>+h'),o=1% |2 10 3.09(—6)|4.04(—6)|1.65(—6)|2.44(—6)|2.73(=7)
0.5 16 5.25(—7)|2.87(=7)|1.54(=7)[1.64(=7)|1.76(—7)
O(k* +h*),0=2, | 2 10 2.91(—6)[1.73(—6)[1.60(—6)|2.33(—6)|2.60(—7)
0.5 16 |4.47(=7)]2.66(—7)|1.39(=7)[1.55(=7)[1.57(=7)
2] 2 10 1.87(—6)[2.13(=5)[1.49(—5)[8.60(—6)[5.96(—6)
0.5 16 9.07(—6)|7.79(—6)|2.75(—6)[1.01(—6)|2.59(—6)
[34] 2 10 1.80(—5)|2.00(—5)[1.40(—5)[8.30(—6)[5.70(—6)
0.5 16 9.20(—6)|7.90(—6)|2.80(—6)[9.80(—7)|2.50(—6)
9] 2 10 2.20(—4)[4.10(—4)[5.40(—4)[6.20(—4)[6.50(—4)
0.5 16 2.50(—5)|4.70(—5)|6.60(—5)|7.80(—5)|8.20(—5)

Example 2: Consider a homogeneous fourth order parabolic partial differential equation
[18,33,34]
v 9'u
o2 " o
subject to the initial conditions

u(z,0) = 1%(2062 — 2%~ 1), w(z,00=0, 0<z<1

=0, 0<z<1,t>0,

and the boundary conditions
w(0,t) = u(1,t) = upe(0,t) = uza(1,t) =0, t>0.

The analytical solution for this example is

u(z,t) = Z ds sin(2s + 1wz cos(2s + 1) 7t
s=0
where

-8

b = 125 T 1]



We have solved this example with h = 0.1 for o =

Table 2. Absolute errors for example 2

1
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The absolute errors at particular
points = = 0.1,0.2,0.3,0.4,0.5 with » = 2 and 50 time steps of O(k* 4+ h®), O(k® + h®)
and O(k® + h'?) for arbitrary choices of parameters pi,p2,ps and ps and comparison
with other existing methods are tabulated in table 2. We repeat the computations for
100 time steps with r = \/g, \/% and r = 8%1. We have also included results given by
unconditionally stable method.

g

Methods r*|Time steps| =0.1 | =02 | =03 | =04 | z=0.5

(p1,p2,p3,p4,0)

O(]CG-f-th)
(%;—42%1&&%) 4 50 2.66(—12)]5.48(—12)|1.12(—12)|6.07(—13)|7.42(—13)
i 100 |1.29(—12)|3.24(—13)|1.79(—12)|3.63(—12)|5.06(—12)
& 100 |1.79(—12)[4.02(—12)|1.38(—11)|2.40(—11)(3.11(—11)
2| 100 |2.17(—13)|1.33(—13)|7.43(—13)|1.35(—12)|1.50(—12)

O(k® + h¥)

2,52, 1240,1) |4 50 1.69(—12)(1.11(—12)|6.43(—13)|9.50(—13) |1.54(—12)
1 100 |2.44(— 12) 3.47(— 13) 3.06(—12)|3.98(—12)|3.71(— 12)
a5l 100 |3.00(—12)[4.44(—12)|1.55(—11)|2.45(—11)3.24(—11)
| 100 |2.74(—13)|1.83(—13)|9.23(—13)|1.39(—12)|1.71(—12)

(14030,—1239,42001,15) 4 50 1.54(—12)[1.00(—12)[6.33(—13)|9.57(—13)|1.52(—12)
1 100 |3.06(—12)]6.12(—13)|3.26(—12)|4.06(—12)|3.46(—12)
| 100 |3.73(—12)(4.14(—12)|1.57(—11)|2.46(—11)3.21(—11)
=| 100 |3.39(—13)|1.56(—13)|9.46(—13)|1.40(—12)|1.68(—12)

O(k4+h8)

12 =82 100, 1) |4 50 4.77(—13)[1.85(—12)[4.04(—12)|6.80(—12)|9.90(—12)
3 100 |4.64(—12)[1.43(—12)|3.58(—12)|4.21(—12)|4.01(—12)

(14030,—11539,42001,1,4) 4 50 5.59(—13)[3.20(—13)|5.36(—13)|1.24(—12)|2.71(—12)
1 100 |8.74(—12)|3.30(—12)|4.79(—12)|4.75(—12)|4.50(—12)

[18],0 = 1 4 50 3.19(—4) [ 6.19(—4) [ 8.81(—4) [ 1.87(=3) [ 1.15(-3)
H 100 2.61(—4) | 4.43(—4) | 5.47(—4) | 6.08(—4) | 6.33(—4)

34,0 = 1 4 50 3.21(—4) | 5.77(—4) | 7.24(—4) | 7.89(—4) | 8.10(—4)
3 100 3.81(—4) | 3.33(—4) | 7.74(—4) | 7.81(—4) | 7.66(—4)

33,0 = 5 4 50 4.32(—4) [ 8.34(—4) [ 1.18(—4) | 1.42(=3) | 1.52(—3)
1 100 2.30(—4) | 4.08(—4) | 5.40(—4) | 6.56(—4) | 7.02(—4)

34,0 = & 4 50 1.00(—5) | 5.00(=5) | 1.73(—4) | 3.33(—4) | 4.10(—4)
1 100 3.52(—4) | 6.30(—4) | 7.77(—4) | 7.72(—4) | 7.38(—4)

| 100 1.38(—4) | 1.74(—4) | 9.05(—5) | 3.40(—4) | 9.60(—4)

=| 100 3.53(=5) | 6.22(=5) | 7.11(=5) | 6.11(=5) | 5.53(—5)

Example 3: Consider a nonhomogeneous fourth order parabolic partial differential
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equation [32]
u  0*u

o+ =[24—2*(1—2)%cost, 0<z<1,t>0,
[

ot? Ozt
subject to the initial conditions

uw(z,0) =2(1 —2)?, w(z,0)=0, 0<z<1

and the boundary conditions

u(0,t) = u(1,t) = 0,uzs(0,t) = uga(1,t) = 2cost, t>0.
The analytical solution for this example is

u(z, t) = 2°(1 — z)? cos t.

We have solved this example with A = 0.05 for 0 =

1 1
40 12"

The absolute errors at particu-

lar points & = 0.1,0.2,0.3,0.4, 0.5 with r = 2 and 10 time steps for O(k* 4 h®), O(k® 4 h®)
and O(k® 4+ h'%) using arbitrary choices of parameters py, p2,ps and ps are tabulated in
table 3. We repeat the computations for 16 time steps with » = 0.5.

Table 3. Absolute errors for example 3

Methods r | Time steps|  =0.1 | =02 | 2=03 | =04 | z=0.5
(p1,p2,p3,p4,0)

O(k6+h10)
(%;—f%?%) 2 10 3.16(—4) [ 2.74(—5) | 4.18(—6) [ 8.92(—7) | 1.17(—8)
0.5 16 1.35(—5) | 6.11(—6) [ 2.99(—6) | 1.15(—5) | 1.48(—5)

O(k® + h%)
(%,;—?,%,0,%) 2 10 3.97(—4) [ 2.82(—5) | 4.92(—6) [ 1.20(—6) | 1.77(=7)
0.5 16 1.12(—4) | 2.17(=5) | 6.58(—5) [ 9.42(—5) | 1.04(—4)
(%,;};)9,%,1,5) 2 10 3.98(—4) [2.90(—5) | 5.00(—6) | 1.16(—6) | 1.26(—T7)
0.5 16 1.36(—4) | 1.28(—5) | 7.08(—=5) [ 1.10(—4) | 1.24(—4)

O(k™ + h%)
2,32 10,5 2 10 1.05(—3) | 7.46(—5) | 5.42(—5) | 7.48(—6) | 4.98(—6)
0.5 16 1.50(—4) |9.27(=5) | 1.83(—5) [ 1.20(—4) | 1.61(—4)
(%,;};ﬁ,%@i) 2 10 1.04(—3) | 7.43(—5) | 5.43(—5) | 7.46(—6) | 5.00(—6)
0.5 16 5.31(—5) [6.32(—5) | 6.29(—7) | 6.61(—5) [9.31(—5)

Conclusion

The parametric septic spline function have been developed to obtain three level implicit
methods for solving fourth order parabolic partial differential equations. The developed
methods are tested on three examples. The performance of these methods have been
examined by comparing solution of homogeneous and nonhomogeneous fourth order par-
abolic partial differential equations with available results. In examples 1, 2 and 3, we
have computed absolute errors at the points x = 0.1,0.2,0.3,0.4, 0.5 for the sake of com-
parison with our references and results are tabulated in tables 1-3. Tables show that our
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results are more accurate than the results obtained by previous methods.

Acknowledgement: The authors would like to thank the editor and reviewers for their
valuable comments and suggestions to improve the paper.
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Abstract

In this paper, we study the Morita context for arbitrary semigroups. We
prove that, for two semigroups S and 7, if there exists a Morita context
(S,T, P,Q, 7, 1) (not necessary unital) such that the maps 7 and p are
surjective, the categories US-FAct and UT-FAct are equivalent. Using
this result, we generalize Theorem 2 in [2| to arbitrary semigroups.
Finally, we give a characterization of Morita context for semigroups.
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1. Introduction

Morita theory characterizes equivalences between module categories over rings with
1. Kyuno [5] studied Morita theory for rings without 1. Knauer [4] and Banschewski
[1] independently generalized this theory to monoids. Banschewski [1] proved that for
two semigroups S and T, if the two categories S-Act and T-Act are equivalent, then S
is isomorphic to T. Talwar [8] extended Morita theory to semigroups with local units.
He proved that for two semigroups with local units S and T, the two categories F'S-Act
and FT-Act are equivalent <= there is a unitary Morita context (5,7, P, Q, T, i) such
that the maps 7 and p are surjective, where F'S-Act = {M € S-Act|SM = M and S ®
Homg (S, M) = M}. In [7], Talwar investigated strong Morita equivalence for factorisable
semigroups. He got that if there is a unitary Morita context (S, T, P, @, T, u) such that
the maps 7 and p are surjective, then S and 7' are strongly Morita equivalent. Chen
and Shum [2]| showed that, for factorisable semigroups S and T, if there exists a unitary
Morita context (S,T,P,Q, T, ) such that the maps 7 and p are surjective, then the
categories US-FAct and UT-FAct are equivalent.

In this paper, we mainly use the techniques of paper [5] to study the corresponding
problems for arbitrary semigroups. The paper is constructed as follows: In Section 2, we
recall some basic notions; In Section 3, we give the main results of the paper. We prove

*School of Mathematical Sciences, Shandong Normal University, 250014, Jinan, P. R. China,
Email: 1hxshanda@163.com
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that, for two semigroups S and T, if there exists a Morita context (S, T, P,Q, T, 1) (not
necessary unital) such that the maps 7 and u are surjective, the categories US-FAct and
UT-FAct are equivalent. Also, we extend Theorem 2 in [2] to arbitrary semigroups. In
Section 4, we give a characterization of Morita contexts for semigroups.

2. Preliminaries

Let S be a semigroup. A set M is a left S-act if there is a function from S x M to M,
denoted (s, m) — sm, such that (st)m = s(tm) (Vs,t € S,m € M). If M is a left S-act,
we write sM. A left S-act M is said to be unitary if M = SM. Similarly, we can define
right acts over semigroups.

Let M and N be two S-acts. A map f: M — N is an S-morphism if f satisfies
f(sm) = sf(m), (Ym € M,s € S). Let Homg(M, N) denote the set of all S-morphisms
from sM to gN. Denote by Endg(M) the set of all S-morphisms from M to itself. Let
S-Act denote the category of left acts over a semigroup S.

The unital left S-acts together with the S-morphisms form a full subcategory of S-Act,
which we shall denote by US-Act.

Let S and T be two semigroups. An S-T-biact is a set M which is both left S-act
and right T-act and (sm)t = s(mt) for all s € S,t € T and all m € M. A biact is
said to be unitary if it is left and right unitary. If M and N are S-T-biact, a map
f: M — N is called biact morphism if f satisfies f(sm) = sf(m) and f(mt) = f(m)t
forallme M,se S;teT.

Let S be a semigroup and M € S-Act. An equivalence R on S is a congruence if for
all s,t,a €5,

(s,t) € R= (as,at) € R, (sa,ta) € R.
An equivalence p on M is a congruence if for all s € S;m,n € M,
(m,n) € p= (sm,sn) € p.

If p is a congruence on M, then M/p is also a left S-act. The act M/p is called a quotient
act. Let € be the identity congruence on M.
Let S be a semigroup and M € S-Act. According to [2], we use the following notations.
Cv = {(z,y) € M x M|sx = sy,Vs € S};
US-FAct = {M € US-Act|Cy = €}.
Obviously, ¢ is a congruence on M.

For a right S-act Ag and a left S-act sB, the tensor product A ®g B exists. In fact,
A®s B = (A x B)/o, where o is the equivalence on A x B generated by

R ={((zs,y), (z,sy))|a € A,b € B,s € S}.

We denote the element (z,y)o of A®s B by z ® y.
By Proposition 1.4.10 of [3], we have that a ® b =c®d <= (a,b) = (¢,d) or there
is a sequence
(a’ b) = (xhyl) - (x27y2) — (xn,yn) = (C, d)
such that either ((x;,yi), (Tit1,¥i+1)) € T or ((Tit1,Yit+1), (Ti,yi)) € T, where 1 < i <
n—1.
If Ais aright S-act and B is an S-T-biact, then A ®s B is a right T-act with

(a ®b)t = a @ bt;

similarly, if A is a 7-S-biact and B is a left S-biact, then A ®g B is a left T-act with
tla®b) =ta®b

(Proposition 3.1, [8]).
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3. Morita equivalence for semigroups

In this section, S and T are arbitrary semigroups. If there exists a Morita context
(S, T, P,Q, T, 1), we shall prove that the two categories F' : US-FAct = UT-FAct : G are
equivalent. Furthermore, if (S,T, P,Q, 7, 1) is unital, we get that FF = (Q ® —)/Cos-)
and G = (P ® —)/{(pg—)- This generalizes Theorem 2 in [2].

3.1. Definition. [8] Let S and T be two semigroups. If there exist sets P and @, such
that
1) P is an S-T-biact, @Q is a T-S-biact;
2) there are biact morphisms 7 : PQrQ — S and i : Q®s P — T written correspondingly
as
T(p®q) =<p,q>, wula®p)=Iqn

such that

<p,g>-p2=pi-lgpl, 0,0l @2 =q- <p,g>
for each p,p1,p2 € P,q,q1,q2 € Q. Then (S,T, P,Q, 7, 1) is called a Morita context.

By Proposition 3.1 in [8], we have 7(p ® q)s = 7((p ® q)s) = 7(p ® ¢s), where p €
P,qg € Q,s € S. We will use this fact in the proof of Lemma 3.2 and Lemma 3.4.

3.2. Lemma. Let (S,T,P,Q,1,1) be a Morita context, where T and j are surjective.
Then o
1) For all M € US-FAct, set U = Q x M. Then (Q, M) = (Q x M)/poxm) € UT-FAct,
where poxar = {((g,;m), (¢ \m)) € U x Ulr(p@ q)m = 7(p@ q )m',¥p € P}.
2) For all N € UT-FAct, set V.= P x N. Then (P,N) = (P x N)/ppxn) € UT-FAct,
where prse = {((p.n). (7' n) € V x Vipu(g @ p)n = (g @ p')n' ¥q € Q).

Proof 1) i) Clearly, pu is an equivalence on U. Set (Q, M) = U/py. Denote by (r,m)
the equivalence class (r,m)py. Fort € T, we can write t = p(q @ p) since p is surjective.

For all (q,m) € (Q, M), u(q ®p') € T, define

wd ©p)(gm) =, ®q)m).

If (g1, m1) = (g2, m2), for all p € P, we have < p,q1 > m1 =< p,q2 > ma. Hence, the
definition s independent of the choice of equivalence class representative.
If wlgr ® pr) = gz @ p2), for all x € P, we have

<z, ><pL,g>m = <z,q <pi,q>>m=<uz[q,pilg>m
= < x, [Q27P2]q >m =< X, q2 >< p27Q> m.

Hence,

(91, <p1,q > m) = (g2, < p2,q¢ > m).
Therefore, the definition is well-defined.
For all u(ay @ pr), (a2 @ pa) € T, (g, m) € (Q, M), we have

(@1 @ p1)p(g2 ® p2)) (g, m) = p([q1, pilaz @ p2)(g, m) = ([q1, p1]g2, T(p2 ® q)m)

and

wlar @ p1)(p(g2 ® p2)(g,m)) = (g1 @ p1)(g2, 7(p2 @ ¢)m) = (q1, 7(p1 ® g2)7(p2 ® @)m).

Then (u(q1 @p1)p(g2 ®@p2))(q, m) = (g1 @p1) (g2 ®p2) (g, m)). This means that (Q, M)
is a left T-Act.

i1) Suppose ((q,m), (¢",m")) € C(ﬁ). For all y € Q,x € P, we have

wy ®z)(g,m) = ply @ x)(¢’,m).
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That is,

(7@ ®qm) = (y,7(x @ q')m").
This implies that
TpRyYr(z@gm =1y T(r®q)m,
for all p € P. Since M € US-FAct, we have
(@ ®qm=r(e®q)m
For arbitrary of x, we get that (q,m) = (¢',m").
11) For all m € M, since M = SM and 7 is surjective, we have m = 7(p ® q/)m',

where m' € M. For all (¢,m) € (Q, M), we have

@m) =@ e d)m) = pulgep)d,m) € T(Q,M).

Q, M) (Q, M) Therefore (Q M) € UT-FAct.
2) For all (p,n) € (P N), (p ®q ) € S, define

(0 @ q)pn) = @' uld” @ p)n).
Similarly, we can prove (?,\]\7) € US-FAct.

Hence, we get T

3.3. Theorem. Let S and T be two semigroups. If (S, T, P,Q, T, 1) is a Morita context
with T and p surjective, then we have the category equivalence F': US-FAct = UT-FAct :

G, where F' = (Q X —)/pgx—) and G = (P X =)/p(px—)-
Proof Let f M —s N be an S-morphism, where M, N € US-FAct. Define f :
(Q.M) — (Q,N) by

F((q;m)) = (g, f(m)).
Suppose (¢,m) = (¢',m’). For all p € P, we have 7(p ® ¢)ym = 7(p ® q/)m/. This
implies that f(7(p ® q)m) = f( (r® q/)m/). Since f is an S-morphism, it follows that

T(p ® q)f(m) = 7(p @ ¢ )f(m'). Hence, (g, f(m)) = (¢, f(m")). This proves that f is
well-defined.

It is easy to check that f is a left T-morphism.
Let f U — V and and g : V — W be two S- morphlsms where U, V,W € US-FAct.

Let f (Q U) — (Q V) and g : (Q V) — (Q W) be T-morphisms determined by f
and g respectlvely Then gf = gf In fact, since gf : U — W is an S- morphlsm we have
a T-morphism gf : (Q U) — (Q W). This implies that dom(gf) (Q, U) = dom(gJf).
For all (¢q,u) € (Q U), we have

9f (@) = (¢, 9f (W) = §(q, F(w)) = 3./ (q, w).

Define F : US-FAct — UT-FAct by F(M) = (Q x M)/poxan = (@, M) and
F(f) = f, for all M, N € US-FAct, f € Homg(M, N). Then F is a functor.
Similarly, for U,V e UT FAct, if f : U — V is a T-morphism, we can define S-

morphism f : (P U) — (P V) by
F((p,w) = (p, f(w)).
Also, for U, V,W € UT-FAct, if f: U — V and g : V. — W be two T-morphisms, then
9f=3f.
We can define a functor G : UT-FAct — US-FAct by G(N) = (P x N)/ppxn) =
(P,N) and G(f) = f, for all N € UT-FAct, g € Hom¢ (M, N).
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For M € US-FAct, we have

Define ny : M — (P, (5,\1\71)) by

7(p ® ¢)m = (p, (g, m)).
For all p,p/ € P,q, q/ € Q,m, m € M, we have
Tp@gm=71(p ®q)m

r@@y)r(p@gm=T(z®y)7(p ©q)m,
for all z € P,y € Q (since M € US-FAct)

(v, 7(p® g)m) = (y, 7(p" © ¢ )m'), for ally € Q
1y ®@p)(g,m) = ply®@p)(g',m), forally € Q
(p, (¢,m)) = (p', (¢",m")).
This shows that nas is well-defined and injective. It is obvious that 7, is surjective. For
m € M, write m = T(p' (X)q/)m'7 where p € P,qg € Q,m € M. For all p€ P,q € Q, we
have

m(tp@q)t(p ®q)m) = (p,(q,7(p' ®q)m)) = (p,u(g®p")(¢,m"))
Tp@aq)(®', (¢ ,m") =T(p@ )nu(r(p ®q)m).

¢

t ¢

Hence, nys is an S-isomorphism.
Let f: M — N be an S-morphism. For m = 7(p ® ¢)m € M, we have

GF(fynu(m) = GF(Nnu(rp® gym’) = GF(f)((p, (a,m")))
(p, F(f)((a:m"))) = (p, (g, f(m'))) = nn f(m).

Hence, we have the following commutative diagram

ML N
LY Lnn
ar) B arv.
Therefore, GF' = 1,4 pAct-
Similarly, we can prove that F'G = 1, _pac- This get the desired result. O
3.4. Lemma. Let (S,T,P,Q,1,u) be a Morita context and M € US-FAct. If g @ m1 =
G2 @ma € Q ® M, we have (g1, m1) = (g2, m2).

Proof 1) Suppose ((q1,m1), (g2, m2)) € T. Without loss of generality, We suppose
G2 = q18,m1 = sma, where s € S. Then

T(p@q)m1 =7(pQ q1)sme = 7(p ® g15)ma2,

for all p € P. Hence, we have (q1,m1) = (q15,m2) = (g2, m2).
2) If g1 @ m1 = g2 ® ma, By Proposition 1.4.10 of [3], we have that (q1,m1) = (g2, m2)
or for some positive integer n > 1, there is a sequence
(quml) = (ylaxl) — (yz,l’z) o (yny«rn) = (q23m2)
in which, for each i in {1,2,--- ,n — 1}, either ((yi, x:), (yi+1,xi+1)) € R
or ((Yi+1,mix1), (Yi, ;) € R. By part 1), we can easily get that (g1, m1) = (g2, m2). O

3.5. Definition. Let S and T be two semigroups. A Morita context (S,T, P,Q, T, i) is
called unital, if P is a unital S-7-biact and @ is a unital 7-S-biact.
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3.6. Lemma. Let (S,T,P,Q, 1, ) be a unital Morita context and M € US-FAct. Then
we have a T-isomorphism (Q x M)/paxm) = (Q @ M)/{oem)-

Proof Define a map ¢ : (@x M)/pgxa) = (QQM)/(qam) by ¢((g,m)) = (¢@m)(,
where (¢ ® m)( represent the congruence class (¢ ® m){(ggm)-

Suppose (q1,m1), (g2, m2) € (Q, M). If (q1,m1) = (g2, m2), we have 7(p ® q1)m1 =
7(p ® g2)ma, for all p € P. Then

wly@z) (g @mi) = p(yRz)gr@m = yd7(x®q1)mi = y7(2@¢2)me = p(y@z)(ge@ms),

for all y € Q,z € P. This implies that (g1 ® m1){ = (g2 ® m2)(. Therefore, ¢ is well-
defined. Obviously, ¢ is surjective.
If (1 @ m1)¢ = (g2 @ m2)¢, for all z € P,y € Q, we have

py@z)(qr @ mi) = u(y @ z)(gz @ ma).
Since y @ 7(z ® q1)m1 = y7(r @ 1) @ m1 = p(y @ x)(q1 @ m1), we get
YR 1T(r R q1)mi =y 7(r @ g2)ma.

By Lemma 3.4, we have

(y,7(z @ q)ma) = (y,7(z @ g2)ma).
For all p € P, we have
T(T(p@y)z@q)m = T(pRY)T(z©q1)m1 = T(pRY)T(2 D g2)me = T(T(pOY)z © g2)mo.
Since P is unitary and 7 is surjective, we get

{r(p® y)z|for all p,x € P,q € Q} = SP = P.

Then (g1, m1) = (g2, m2). This proves that ¢ is injective.
For all (¢,m) € (Q, M), u(y ® z) € T, we have

ey )(g,m) = oy, 7(z®@qm)) = (y@7(z ® ¢)m)¢
= (yr(z®q) ®@m)¢ = (uly ® z)g ® m)¢
= wyer)((qem)) = puy e z)e((q,m)).
Hence, ¢ is a T-isomorphism. That is, (Q x M)/poxm) = (Q ® M)/Coem) as left
T-act. O
By Theorem 3.3 and Lemma 3.6, we have the following theorem which generalizes
Theorem 2 in paper [2].

3.7. Theorem. Let S and T be two semigroups. If (S, T, P,Q, T, 1) be a unital Morita
context with T and p are surjective, then we have the category equivalence F' : US-FAct =

UT-FAct: G, where F = (Q ® —)/{ga—) and G = (P ® —)/{(pa—)-

4. Characterization of Morita context

In this section, we give an equivalent condition of Morita context in semigroup settings.
Also, we give a characterization of Morita context for factorisable semigroups. Similar
to Theorem 1 in [6], we have the following.

4.1. Theorem. Let P and Q be two sets. We have the following equivalent conditions.
1) There ezist two semigroups S and T such that (S, T, P,Q, T, u) is a Morita contet.
2) There exist maps T : P X Q x P — P and A: Q X P X Q — Q such that
1) T(T((p1, a1, p2)), 2, p3) = L((p1, A((q1, P2, ¢2)), p3)) = T'(p1, q1, T ((p2, 42, p3)));
11) A(A((q1,pP1,42)), P2, 93) = Alqr, T((p1, 42, 2)), 43) = Alqr, p1, A((g2, P2, 3)))-
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Proof 1) = 2) : Suppose that (S,7T, P,Q, T, 1) is a Morita context. Define I' : P X
QXP — Pand A: Qx P xQ — Q by putting I'((p1,¢1,p2)) = 7(p1 ® ¢1) - p2 and
A((q1,p1,q2)) = p(g1 @ p1) - g2. We can easily check that I' and A satisfy the conditions
I) and II).

2) = 1) : Define H, : P — P by putting Ha(p) = I'((a,p)) and define K; : Q — Q by
putting K3(q) = A((b,q)), where a € P x Q and b € Q x P.

We write X = {Hala € PxQ} and Y = {Ky|b € Q x P}. For all H,, 1), Hpy,q0) € X,
for all p € P, we have

Hpyq0) Hipy,a2)(P) = T'((p1, 01, T'(p25 g2, 1)) = T((F'(P1,q1,P2), 42, 1)) = H(r (p1,41.,p2),42) (P)-

That is, H(p, ,q,)H(ps,02) = H(T((p1,q1,p2)),a2) € X. Then we easily get that X is a subsemi-
group of End(P). Similarly, we have that Y is a subsemigroup of End(Q).

For all p € P, H, € X, Ky € Y, define H, - p = I'((a,p)) and p - K, = I'((p,b)).
Then P is a X-Y-biact. Similarly, for all ¢ € @, we can define K - ¢ = A((b,q)) and
q-Ho = A((g,a)). This makes @ to be a Y-X-biact.

Now, we define o : P ®y Q@ — X and 8 : Q ®x P — Y by putting a(p ® q) = H,,q)
and B(q ® p) = K(q,p), where p € P and ¢ € Q. It is easy to check that o and 3 are both
biact morphisms. Then

a(p1 ®q) -p2 = Hp, q 02 =T((p1,¢,p2)) = p1 - Kig.py) = p1- Bl @ p2).
Similarly, we have
Bl ®p)az = q1a(p @ q2).
Then (X,Y, P,Q, «, 3) is a Morita context. O

4.2. Definition. [7] A semigroup S is called factorisable if S = S2.

4.3. Theorem. Let P and Q) be two sets. We have the following equivalent conditions.

1) There exist two factorisable semigroups S and T such that (S, T,P,Q,T,pn) is a
unital Morita context and T and p are surjective.

In this case, (Q ® —)/Coe—) : US-Act = UT-Act : (P ® —)/((pe—) are equivalent
functors.

2) There exist surjective maps I : P X Q X P — P and A : Q x P X Q — Q satisfy
the two conditions in part 2) of Theorem 4.1 and

III) For all p,pl € P, q € Q, there exist p1,p2 € P,q1,q2 € Q such that

T(((p,9).p ) = T((T(p1, a1, p2), 42.p )

IV) For allp € P, q, q/ € Q, there ezist p1,p2 € P,q1,q2 € Q such that

A((4:0),4)) = A(A (g1, D1, a2), 92,0 ))-

Proof 1) = 2) : Since S is factorisable and 7 is surjective, for all p € P,q € @, there
exist p1,p2 € P,q1,q2 € Q such that 7(p ® q) = 7(p1 ® ¢1)7(p2 ® ¢2). Hence,

M((p.0)p)) = 700 =7 ©a)T(p2 @ a2)p = 7(p1 © )T (P2, 42,9))
= T((pr,q1,T(p2,02,p))) = T((T'((p1, 01, p2)), G2,p ))-

Therefore, the condition IIT) holds. Similarly, we can get IV).

By Theorem 3.7 or Theorem 2 in [2|, we have the category equivalence (Q®—)/(oe-) :
US-Act = UT-Act : (P & _)/C(P®—)-

2)=1):Forall Hy, € f)C,p/ € P, by the condition III), we have

’

T(((psq),2 ) = T((T(p1, a1, p2), 42,0 ).
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This implies that

Hpp®) = T((p.9).p) = D((C(p1,q1,p2),42,0))

F((plvqlar((p27q27p )))) = H(P1YQ1)H(P2,112)(p )

That is, H(p,q) = Hp, ,q1)H(ps,q0)- This proves that X is factorisable.

Similarly, we have that Y is a factorisable semigroup.

Since I and A are surjective, we obviously have that P and @) are unital as biacts and
a and f are surjective. Hence, (X, Y, P,Q, a, 3) is a unital Morita context. O
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Abstract

The paper deals with a soft topological space which is defined over an
initial universe set U with a fixed set of parameters E. The main goal
is to point out that any soft topological space is homeomorphic to a
topological space (E x U,7) where 7 is an arbitrary topology on the
product E x U, consequently many soft topological notions and results
can be derived from general topology. Furthermore, in many papers
some notions are introduced by different ways and it would be good to
give a unified approach for a transfer of topological notions to a soft
set theory and to create a bridge between general topology and soft set
theory.
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1. Introduction

In 1999, Molodtsov [18], [19], [20] introduced a soft set theory as a mew tool for
investigation of uncertainties where we can find a large range of applications of soft sets
in many different fields. There has been a rapid growth of interest in soft set theory,
its applications and its connection with another mathematical branches [1], [2], [4], [5],
[71, 8], [12], [13], [14], [15], [16], [23]. Moreover, there are many papers devoted to soft
topological spaces [3], [6], [9] .[10], [11], [17], [21], [22]. The basic topological notions
such as the soft open and soft closed sets, soft subspace, soft closure and soft interior,
soft boundary, soft separation axioms, soft continuity have been introduced and the
investigation of their basic properties has been established.

We continue investigating the soft topological theory based on a corresponce between
set valued mappings and binary relations. Their close connection shows that both defi-
nitions of a soft set by a set valued mapping and by a relation are equivalent and there is

*Department of Mathematics and Computer Science, Faculty of Education, Trnava University
in Trnava, Priemyselna 4, 918 43 Trnava, Slovakia. Email: milan.matejdes@truni.sk
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only a formal difference between them. Furthemore, the binary relation view is very com-
fortable and many results concerning the properties of the operations on soft sets follow
from the set theory. On the other hand, the set valued mapping view gives possibilities
for a further investigation of the soft set theory in many directions, since the theory of set
valued mappings is strong and has many applications in mathematics (general topology,
generalized continuities, linear and dynamic programming, differential inclusions, fixe
point theory, statistics, economics and so on).

This paper shows that many results concerning soft topological spaces follow from
general topology. In particular, some notions introduced in soft topological spaces and
their consequences (the properties of soft open (closed) sets, interior and closure of soft
set, soft cluster points) are identical with corresponding notions known from general
topology. Some of them are different (soft separation axioms, soft continuity) and they
are introduced by different ways. The main goal of this paper is to give a unified view for
a further development of soft topological spaces based on the results of general topology.

2. Relations, set valued mappings and their correspondence

Any subset S of a Cartesian product A x U is called a binary relation from a set
A to a set U. By R(A,U), we denote a set of all binary relations from A to U and
Sla] :={u € U : [a,u] € S}. The operations of sum S U T, UserSt, intersection SN T,
NeerSt, complement S¢ and difference S\ T of relations are defined in the obvious way
as in the set theory.

By F : A — 2V we denote a set valued mapping from A to power set 2V of U. The set
of all set valued mappings from A to 2V is denoted by F(A, U). If F,G are two set valued
mappings, then F' C G (F = G) means F'(a) C G(a) (F(a) = G(a)) for any a € A.

A graph of F' is a set Gr(F) := {[a,u] € Ax U : v € F(a)} and it is a subset of
A x U, hence Gr(F) € R(A,U). So, any set valued mapping F' determines a relation
from R(A,U) denoted by Rr :={[a,u] € AxU:ue€ F(a)} = Gr(F).

On the other hand, any relation S € R(A,U) determines a set valued mapping Fs
from A to 2V where Fs(a) = S[a]. So, there is one-to-one correspondence between a
relation S from R(A,U) and a set valued mapping G from F(A,U), i.e.,

S+ Fs, Fs(a) = S[a], G — Rg, Rgla] = G(a),
Fro =G, Rpg = S.

2.1. Remark. For H,G,F; € F(A,U), t € T, we define the following obvious set valued
mapping operations and we give also their binary relation equivalents.

(1) Sum: UgerFy : A — oV
(Uter Fy)(a) = Uier Fi(a) = Uter Rr,[a] = (Uter RE,)[d], a € A,

(2) Intersection: NierFy: A — U
(Nter Fy)(a) = Nier Fi(a) = Nier Re[a] = (Mier RE,)[a], a € A,

(3) Complement: H¢: A — 2V

(H%)(a) =U\ H(a) = U\ Rula] = Ry [a], a € A,

(4) Difference: H\ G : A — 2V

(H\ G)(a) = H(a) \ G(a) = Rula] \ Rgla] = (Ru \ Ra)la], a € A.

The next lemma is a consequence of Remark 2.1.

2.2. Lemma. For H,G,F; € F(A,U) and S,P,R, € R(A,U), t € T, the following
equations hold.

(1) RUteTFt = UtETRFu FUtEth = UtGTFRt;
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(2) RﬁteTFt = mteTRFu Fﬁtet,Rt = mteTFRt;
(3) RHC:RHC5 FSC:FSC’
(4) RH\G:RH\RG; FS\P:FS\FP-

3. Set valued mapping and binary relation representation of soft
set

In this section we will consider soft sets over a common initial universe set U and
a fixed set of parameters F and a definition of a soft set is introduced by a set valued
mapping (see references).

3.1. Definition. If F : E — 2 is a set valued mapping, then a pair (F, E) is called a
soft set over U with respect to a set of parameters E. The family of all soft sets over U
with respect to a set of parameters F is denoted by SS(E,U).

As we said above there is no difference between the graph of a set valued mapping F’
and a relation Gr(F) C E x U, which is a member of R(E,U). So, a soft set can be
defined equivalently as follows.

3.2. Definition. A soft set over U with respect to a set E is any subset of £ x U. So,
in this case a soft set is a member of R(E,U).

From Definition 3.2 we can see a benefit of both equivalent interpretations of a soft
set. Any operation known from a set theory setting can be used for a soft set (soft sets)
from R(E,U). In this case we deal with the soft sets as subsets of E x U and it is not
necessary to use the different notations (symbols) for operations and many proofs can be
omitted. For example, the next operations on the soft sets form R(E,U), RC S, R= S,
R\ S, RNS, RUS, Uier Ry, Nter Ry, R® are the set theory ones and all known properties
from set theory hold in the soft set setting (for example associativity, commutativity,
distributivity, de Morgan laws and so on).

Equivalently, if a soft set is understood as a pair (F,U) (F € F(E,U)), we can
define standard operations on the set valued mappings (sum, intersection, complement,
difference) which have equivalent binary relation forms, as we see from Remark 2.1 and
Lemma 2.2.

3.3. Lemma. Let S € R(E,U), G € F(E,U) and (H1,E),(H2,E) € SS(E,U). Then

(1) G(a) C Sla] for all a € E iff G C Fs iff Ra C S iff a soft set (G, E) is a soft
subset of (Fs, E),

(2) Sla] € G(a) for alla € E iff S C Re iff Fs C G iff a soft set (Fs,E) is a soft
subset of (G, E),

(3) G(a) = Sla] for all a € E iff G = Fs iff Ra = S iff a soft set (Fs, E) is equal
to a soft set (G, E),

(4) a soft set (H1, F) is a soft subset of (Ha, E) iff Ru, C Ru, iff Hi C Ha,

(5) a soft set (H1, E) is equel to a soft set (Ha, E) iff Ry, = Ru, iff H1 = Ha.

4. Special soft sets, their notation and terminology

Let AC E, X C U. Then A x X is called a rectangle soft set. It represents a constant
soft set (a constant set valued mapping F with values F(a) = X if a € A and F(a) =0
if a ¢ A) denoted also ¢(A, X). Maximal (minimal) rectangle soft set with respect to the
set inclusion is E x U (0 x () called a full soft set (a null soft set). For the special cases of
a constant soft set ¢(A4, X) € R(A,U) we introduce the next notation and terminology.
Let ACU, X CU,ecE,xzeU.
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(1) ¢(A,z) :== A x {z} - a horizontal z-line on A,

(2) ¢(E,z):= E x {z} - a full horizontal z-line,

(3) c(e, X) :={e} x X - a vertical e-line on X,

(4) c(e,U) :={e} x U - a full vertical e-line,

(5) c(e,z) := [e,z] - a point, denoted also Ple, z] or briefly P.

4.1. Lemma. Let S € R(E,U), G € F(E,U). Then

(1) S= UEeE({e} X S[e]) =Ueecr[SNcle,U)] = Uzeuv[SNe(E,x)],
(2) Rg = Ueccr ({e} P G(e)) = Ueer[Ra Nc(e,U)] = Uzev[Re Ne(E, z)].

5. Soft topological space

By [9],[10],[21] a soft topological space is a triplet (E,U,7), where 7 C SS(E,U) is
a topology. So, 7 is represented by a family of set valued mappings F' from F(E,U)
each of them has a binary relation representation Rr from R(E,U). Put 7exv :={R €
R(E,U): (Fr,E) € 7}.

On the other hand, if (E x U,7exvu) is a topological space, then (E,U,7g,u) is a
soft topological space, where 7e.v = {(G,E) € SS(E,U) : Rg € Texv}. Then a soft
topological space can be characterized (defined) as follows:

5.1. Proposition. A triplet (E,U,7p,u) is a soft topological space if and only if (E x
U,Texu) 18 a topological space. For brevity we will denote Tpxu as well as Tg,.u by T and
the difference between both topologies is clear from notation (E,U,T) (a soft topological
space, T C SS(E,U)) and (E x U, T) (a topological space, T C R(E,U)).

Again, there is a one-to-one correspondence between the soft topological spaces and
the topological spaces and any soft topological space can be considered as an arbitrary
topological space on the product of two sets. The members from 7 are called open sets
in a topological space (E x U, 7) or soft open sets in a soft topological space (E,U, ). A
complement of an open set (a soft open set) is called a closed set (a soft closed set). It
can be formulated by the following lemma.

5.2. Lemma. A soft set (G, E) is soft open (soft closed) in a soft topological space
(E,U,7) iff Rg 1s open (closed) in a topological space (E X U,7) and S is open (closed)
in a topological space (E x U, T) iff (Fs, E) is soft open (soft closed) in a soft topological
space (E,U,T).

Any topological notion known from general topology on the product of two sets can be
introduced (formulated) also for a soft topological space by direct reformulation. From
Proposition 5.1 we can see that many results in a soft topological space follow from
general topology, provided they are directly reformulated. It is not necessary to prove
the properties of the soft open and soft closed sets, the properties of the soft interior and
soft closure operators, soft cluster points, soft interior points, soft topological subspaces,
soft boundary sets, the soft separation axioms and so on, provided they are defined by
the same way as in topological spaces. But some notions are defined by a different way
and we will discuss them below.

On the other hand, many interesting and important results follow from general topol-
ogy, provided 7 is the Tychonoff (product) topology on E x U. But if a topology 7 on
E x U is not Tychonoff, many results do not hold. So, there are many open problems in
the soft topology setting and before researchers is a huge challenge.
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6. Comparison of some topological notions and soft topological
ones

In this section we show a few correspondences between some topological notions and
soft topological ones. For example, our expectation is that the soft closure of a soft set
(G, E) in a soft topological space (E,U, ) agrees with the closure of R¢ in a topological
space (E x U, ).

Recall a few basic topological notions. Let (E x U, 7) be a topological space. A set
H € 7 is an open neighborhood of a point Pla,z] € E x U, if Pla,z] € H and Pla,z] is a
cluster point of S C E x U, if any open neighborhood of P[a,z] intersects S. The set of
all cluster points of S in (A x U, 7) is equal to the closure of S denoted by cl(S), which is
the smallest closed set containing S or it is the intersection of all closed sets containing
S. A point Pla,x] € E x U is an interior point of S, if there is an open set H € 7 such
that Pla,x] € H C S and S is open, if any its point is an interior point of S. The sum
of all open subsets of S is called the interior of S denoted by int(S).

1. Open (closed) sets and interior (cluster) points of a set versus
soft open (closed) sets and a-interior (a-cluster) points of a soft set

By [9], an a-soft open neighborhood of x is any open soft set (G, E) such that x € G(a),
equivalently R¢ is open and x € R¢|a] or Pla,x] € Rg. A point x € U is said to be an
a-cluster point of (H, F) € SS(E,U) if for every a-soft open neighborhood (G, E) of z,
(H, E) and (G, E) are not soft disjoint (there is e € E such that H(e) N G(e) # 0). The
set of all a-cluster points of (H, A) is denoted by cl(H,a), see [9]. Similarly, int(H,a) is
a set of all a-interior points of (H, E), see [9].

6.1. Lemma.

(1) = € cl(H,a) if and only if Pla,z] € cl(Ru), so cl(H,a) = cl(Ru)lal,

(2) x €int(H,a) if and only if Pla,z] € int(Ru), so int(H,a) = int(Ru)[a).
Consequently, cl(H,a) (int(H,a)) is a set of all cluster (interior) points of Ry in (E x
U,7) from the full vertical a-line (cl(H,a) = cl(Ru) Nc(a,U) (int(H,a) = int(Rg) N
c(a,U))).

Proof. (1)

"=" Let x € cl(H,a) and Pla,z] € S € 7. Then = € Fs(a). That means (Fs, E) is
a-open neighborhood of z, so (H, E) and (Fs, E) are not soft disjoint. Hence, there are
e € E,y € U such that y € H(e) N Fs(e) or Ple,y] € Ry N S. That means Ry NS # 0
or Pla,z] € cl(Rmu).

"<"Let Pla,z] € cl(Ry) and (G, E) be a-soft open neighborhood of z. Then Pla, z| €
Rg € T and Ry N Rg # (. So, there are e € F and y € U such that y € Rule] N Rale],
hence (H, F) and (G, E) are not soft disjoint, so « € cl(H, a).

Item (2) is similar.

O

6.2. Lemma. Let cl(G,E), int(G,E) be a soft closure, a soft interior of a soft set
(G, E), respectively (see [9]). Then

(1) Cl(G7 E) = (Fcl(Rg)vE)’

(2) int(G, E) = (Fint(RG)7E)-

Proof. (1) By the definition of the soft closure ([9]) and by Lemma 5.2, cl(G, FE) is the
intersection of all soft closed supersets (G, E),t € T of (G, F) if and only if Nyer Re, is
the intersection of all closed (in (E x U, 7)) supersets Rg, of Rg. That means NierRe, =
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cl(Rg) is the graph of a multivalued mapping H for which cl(G, E) = (H, E), s0o Fy(ry,) =
H.
(2) is similar.

O

Since (Foyry), E) = cl(G, E), cl(G,E) is a soft set given by a set valued mapping
with the values cl(Rg)[a], @ € E which is equal to a set valued mapping R¢, g defined in
[9] as Ra,e(a) = G(a) Ucl(G,a) = cl(G,a) = cl(Rg)[a] (see Lemma 6.1). So, cl(G, E) =
(Ra,E, E). Similarly, Rg.e(a) = G(a)Nint(G, a) = int(Rg)|a] for int(G, E) = (Ra,E, E)
see [9]. So Proposition 3.9 and 3.12 of [9] are clear.

2. Separation azioms

In the literature ([11], [17], [21]) we can see notation = € (F,FE), where F is a set
valued mapping from E to 2V and x € U. It means z € F(e) for any e € E. So, the
notation x € (F, E) is in fact the inclusion ¢(E,z) C Rr. It was used in the definitions
of soft separation axioms in a soft topological space. In general topology, the separation
axioms separate two different points or a closed set and a point or two disjoint closed
sets. For example, by [21], (E, U, ) is called soft Tb, if for every distinct points z,y of
U there are two soft open sets (F, E) and (G, E) such that = € (F,E), y € (G, E) and
(F,E) and (G, E) are soft disjoint. That means it separates two full horizontal lines
c(E,x) and ¢(E,y). Further, if (F, E) is a soft closed set and x ¢ (F, E), a soft regularity
introduced in [21] separates two sets, namely ¢(E, z) and Rr which need not be disjoint.
It is a very strict definition as we see from the next lemma.

6.3. Lemma. Let (E,U,7) be a soft topological space and (F,E) be a soft closed set.
If there are e1r,e2 € E and a point y € U such that y € F(e1) and y & F(e2) (it is
sufficient (E,U,T) is not indiscrete), then (E,U,T) is not soft reqular (in the sense of
[21]). Consequently, if some soft topological space over U is soft reqular, then any soft
closed set (F,E) is constant, i.e., there is a set X C U such that F(e) = X for any
ec k.

Proof. Suppose (E,U,T) is soft regular. It is clear y ¢ (F,E). Then there are two
soft open and soft disjoint sets (G, F) containing y and (H, E) containing (F, E), but
y € G(e1) N H(e1), a contradiction.

O

The next theorem shows that soft regularity in the sense of [21] seems to be a rather
strong definition.

6.4. Theorem. If a non indiscrete soft topological space is soft reqular, then any soft
closed set is a constant soft set (it is of the form c¢(E, X)).

In [10], the authors introduced other soft separation notions, namely Ty, T1, 1o, Ts.
We recall only two of them (for further see [10]). A soft topological space (E,U,7) is
called soft Tb, if for any distinct points z and y of U and for every a € E there exist two
soft open sets (G, E) and (H, E) such that © €, (G, E), y €, (H, F) and G(a)NH(a) =0
(z €a (G, E) means that z € G(a) and z €4 (G, E) means that z ¢ G(a)). In this case we
separate a couple of the points Pla,z] and Pla,y] from full vertical a-line ¢(a, U) by two
soft open sets "disjoint at a". This is a different definition of a soft T»-space introduced in
[21]. Further by [10], a soft topological space (E, U, 7) is called a soft T3-space if for every
point = € U, for every a € E and for every soft closed set (Q, E) such that z €, (Q, E)
there exist two soft open sets (G, E) and (H, E) such that z €, (G, E), Q(a) C H(a),
and G(a) N H(a) = (). In this case the sets G(a) N c(a,U) and H(a) N c(a,U) are two
subsets of E x U which are open in a subspace (c¢(a,U), 7q) of (A x U, T).
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Generally, for any full vertical line c(e, U), topology 7 induces a relative topology Te
on c(e,U), so also on U (for different ei, ez the induced topological spaces (U, 7, ) and
(U, Te,) can be different). So we have the next theorem (which does not hold generally.
? =7 follows from hereditary of T;,7 = 0,1,2,3 and ” <= ” follows from a character of
the definitions of the soft separation axioms in [10]).

6.5. Theorem. A soft topological space (E, A, T) is soft T; (in the sense of [10]) if and
only if the topological space (U, ) is Ty (i =0,1,2,3) for any e € E.

Any subset S of (E x U, 1) induces relative topology 7s on S. Since the properties T;
(i =0,1,2,3) are hereditary, Proposition 3.13 of [10] holds for any S C F x U not only
for E x Y (see Definition 3.12 in [10] or [21]).

3. Soft e-continuity of f and continuity of e X f,
soft continuity of Pey

In [3], [9], [10], [13], [22] for two functions e : Ey — Ea, f: U1 — Us, a function @,y
from SS(E1,Up) to S(E2,Uz) was defined (denoted also fp. in [22], g in [3]). We will
show a connection between ®.¢ and the product e X f : Ey x Uy — Ea x Us, defined as
(e x f)([er, z1]) = [e(e1), f(z1)]. Define two soft mappings:

Sexf : SS(E1,U1) — SS(E‘Q7 UQ) as Sexf((H, E1)) B (F(exf)(RH)7E2)a

Sois i SS(E2,Us) = SS(E1,Un) as S_! (G, E2)) = (Flex p)-1(re)s E1)-

6.6. Theorem. Let (H, E1) S SS(Eh Ul) and (G,Ez) c SS(EQ,UQ). Then
(1) Sexlf = q)efl, i.e., CI)efl((I{7 El)) = (F(exf)(RH)aEZ);
(2) Sexp =0, ie, @ (G E2)) = (Flexpy-1(rg) E2)-

X

Proof. Let H € F(E1,U1) and Ry be a corresponding relation, so Ry [a] = H(a). Then,
by Lemma 4.1 (1),

(e x f)(Ru) = (e x f)(Uacr, ({a} x Rula])) =
=Uacr, (e x f)({a} x Rula]) = Uack, (e(a) x f(Rula]))-

That means (e x f)(Rg) is a subset of F2 x Uz and corresponding set valued mapping
denoted by G : E; — Us has its values given by [(e x f)(Ru)][p2] for any ps € Ea.

G(p2) = [(e x /)(Rm)][p2] = [Uaer, (e(a) x f(Rula)))][p2] =
= Uaer, [e(a) x f(Rula])][p2]) = U{f(Rrla]) : e(a) = p2} =

=U{f(H(a):ace ' (p2)}-
So, (G, E») is the image of (H, E1) under ®.; as it was defined in [10]. So, ®c¢((H, E1)) =
(G, Es) = (F<6Xf)(RH),E2) (see Lemma 3.3 (3)) or ®.y = Scxy.
Similarly we can show (see [10]) that ®_/((G, E2)) = (D, E1),
where D(p1) = f~1(G(e(p1))) = (exf) "' (Ra)[p1]- So, D4 (G, E2)) = (Fex)-1(rg)» E1)
or o =S_},.

O

Proposition 2.18 and 2.19 of [9] (Proposition 2.8 of [10]) follow from the properties of
the image and the inverse image, which hold generally for any function.

In [10], for two soft topological spaces (F1, U1, 7) and (FE2, Us, o) a definition of a soft
e-continuity of f was introduced by the following way.
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6.7. Definition. Let (E1,U;,7) and (FE2,Us, o) be two soft topological spaces and x €
Ui, e: By — E>. Amap f: U — Us is called soft e-continuous at the point z if for
every a € E; and every e(a)-soft open neighborhood (G, E2) of f(z) in (E2, Uz, o) there
exists an a-soft open neighborhood (H, E1) of z in (E1, Ui, 7) such that ®.¢((H, E1)) is
a soft subset of (G, E2). If the map f is soft e-continuous at any point z € E1, then we
say that the map f is soft e-continuous.

Now we reformulate the definition above in the corresponding topological spaces (F X
Ui, 7) and (E1 x Us,0).

6.8. Definition. Let (Ey x Ui, 7) and (E1 X Us,0) be two topological spaces, x € Uy,
e: E1 — Es. Amap f:U; — Us is called soft e-continuous at the point z if for every
a € Ep (ie., for every [a,z] € ¢(E1,x)) and every open set G € o containing [e(a), f(z)]
there exists an open set H € 7 containing [a, z] such that (e x f)(H) C G. If the map f
is soft e-continuous at any point x € Uy, then we say that the map f is soft e-continuous.

Since @cp((H, E1)) = (Flexf)(ry)s B2) (see Theorem above), ®.r((H, E1)) is a soft
subset of (G, F») iff (e X f)(Ry) C Rg. That means the soft e-continuity of f at x
means that the set of all continuity points (in the general topology sense) of e x f :
(E1 X Uy, 7) = (E2 x Uz, 0) contains a full horizontal x-line ¢(E1, z). Since ®ef = Scxy
and @;fl = Se_xlf, the next theorem is clear and Propositions 2.18 and 2.19 of [10] follows
from standard equivalent conditions of continuity.

6.9. Theorem. The next conditions are equivalent

(1) A function f is soft e-continuous (in the sense of [10]),
(2) ex f:(E1xUp,7T)—= (B2 x Uz, 0) 18 continuous (in the topological sense),
(3) @;fl((G, E»)) € T for any (G, E2) € 0.

Finally, we recall a notion of a soft set point mentioned in [22]. A soft point, denoted by
er is a soft set for which F(e) # 0 and F(a) = ( for all a € E\{e} and er € (G, E) means
F(a) C G(a) for all a € E. So, a soft point is in fact any vertical e-line ¢(e, X) = {e} x X
on X, for X # 0. By [22], ®es (= fpu) is soft continuous (soft pu-continuous see [22]) at
a soft point ep if for any soft open set (G, E2) containing ®.¢(er) there is a soft open set
(H, E1) containing er such that ®.¢((H, E1)) is a soft subset of (G, E2) and P,y is soft
continuous if it is so at any soft point. Since a point Ple, x] is also a soft point (namely
er where F(a) = 0 for a # e and F(e) = {z}), soft continuity of ®.; in the sense of
[22] implies a topological continuity of e X f at any point Ple,z] € E x U. The opposite
implication also holds, as we prove in the next theorem.

6.10. Theorem. A function ey (= fpu) is soft continuous (in the sense of [22]) if and
only if e X f is continuous (in the topological sense). Consequently, the soft continuity is
equivalent to the soft e-continuity.

Proof. 1t is sufficient to prove "<". Let gk (i.e., K(g9) # 0 and K(e) = 0 for e # g)
be a soft point and (G, E2) be a soft open superset of ®.f(gx). Since R¢ is an open
set in Fy X Uz, R is open neighborhood of a point [e(g), f(z)] for any x € K(g). Since
e X f is continuous at [g,z], for any z € K(g) there is an open subset H, of Fy x Uy
containing [g, z] such that (e x f)(H.) C Rg. Put H := Uyeg(g)Hz O Ry Then H is
open in Fy x Uy and (e X f)(H) C Ra, 50 (Flex f)(m), E2) is a soft subset of (G, E2) (see
Lemma 3.3 (2)). Since (Fu, E1) is a soft open set containing gk (see Lemma 3.3 (1)),
O (Fu, E1) = (Flex py(m), E2) (see Theorem 6.6 (1)) is a soft subset of (G, E2).

O
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7. Conclusion

This paper deals with the study of the theory of soft topological spaces and the
main result is to show a deep connection between a soft topology 7 on SS(F,U) and
a topology 7exv = {R C E X U : (Fr,E) € 7} on the product £ x U. Any soft
topological space (E,U,T) can be considered as a topological space on F x U and any
topological space (U, T) can be considered as a soft topological space over U with respect
to a singleton E = {e}. From this correspondence between (E,U, ) and (E x U, Texv),
it follows that many results from soft set theory are consequences of the topological
results. In fact, (F,U,7) and (E x U,Texu) are homeomorphic. A homeomorphism
h:(ExUrt)— (EU,T) is given by h([a,z]) = (Fe(a,2), E), where F,(, ) is given by
Fia,)(e) = {a} for e = a and F,(, 4 (e) = 0 for e # a.

Similarly, if E = {e}, then (F,U,7) and (U, 7) are homeomorphic and a homeomor-
phism h : (U,7) — (E,U,7) is defined by h(x) = (Fi(e,z), £),2 € U. This homeomor-
phism is a very good tool for finding a soft topological space which has a soft property
Py (for example soft T;) and it has not a soft property P> (soft Tj, i < j). Then, it is
sufficient to find a topological space which has the property Pi (7;) and it has not the
property P> (T}, i < j, 4,5 =1,2,3,4).
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1. Introduction and Preliminaries

Let A be the class of functions f normalized by

(1.1) f(z):z—i-Zanz"

n=2
which are analytic in the open disk U= {z: z € C and |z| < 1}. As usual, we denote by
8 the subclass of A consisting of functions which are normalized by f(0) =0 = f'(0) — 1
and also univalent in U. Denote by T [19] the subclass of A consisting of functions of
the form

(1.2) f(z):z—Zanz", an >0, n=2,3,....
n=2
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Also, for functions f € A given by (1.1) and g € A given by

g(z) =z + anzn,

n=2

we define the Hadamard product (or convolution) of f and g by

(13)  (f*+9)(2) =2+ > anbpz", (z€D).

n=2
The class 8" («) of starlike functions of order o (0 < o < 1) may be defined as
" Zf/(Z)) }
Sa:fe./l:%( >a, zeUp.
= e
The class 8" (a) and the class K(a) of convex functions of order a (0 < a < 1)
zf”(Z)) }
K(a) = f€A:3?:<1+ >a, z€U
@~ )
={feA: 2f €8 (a)}
were introduced by Robertson in [17]. We also write 8*(0) = 8%, where 8" denotes
the class of functions f € A that f(U) is starlike with respect to the origin. Further,
K(0) = K is the well-known standard class of convex functions. It is an established fact
that f € K(a) < 2f’ € 8" ().
A function f € A is said to be in the class f € R7 (A, B) if it satisfies the inequality
f'(z) -1
(A= B)T = B[f'(z) — 1]
where z € U,7 € C\{0}, —1 < B < A < 1. The class " (A, B) was introduced earlier by
Dixit and Pal [6]. If we put

7T=1, A=aand B=—-a (0<a<l1),

<1

we obtain the class of functions f € A satisfying the inequality
f'(z) -1
fz)+1
which was studied by (among others) Padmanabhan [12] and Caplinger and Causey [4].

Very recently, Porwal [13] introduce a power series whose coefficients are probabilities
of Poisson distribution

‘<a (zeU;0<a <)

n—1
m —-m n

K(m,z):erZme 2", (€ U)

and we note that, by ratio test the radius of convergence of above series is infinity. In
[13], Porwal also defined the series

0 n—1

F(m,z):2z—K(m,z):z—Z (:Ln, 1)!677”2”, (z €U).

Now, we considered the linear operator
Jm): A— A
defined by
mn—1

(1.4)  I(m)f = K(m,z2) * f(2) :z—l—zme*manz".
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Motivated by results on connections between various subclasses of analytic univalent
functions by using generalized Bessel functions [1, 2, 3, 8, 11, 13, 15, 22|, hypergeometric
functions by Srivastava et al. [20] (see [5, 7, 9, 10, 18]) we obtain necessary and sufficient
condition for functions F(m, z) in §*(\, «) and KX*(\, ). Further due to the works of
Ramesha et al. [16], Padmanabhan [12],we estimate certain inclusion relations between
the classes R7 (A, B), and §*(\, ) and K* (A, ).

For 0 < A< 1land 0 < a <1, welet (A, a) the subclass of functions f € A which
satisfy the condition

(1.5) %(W) > a, (z € ).

and also let KX(\, «) the subclass of functions f € A which satisfy the condition

(16) R (Z[Zf,(z);,?;) f”(z)],) >a, (z€U).

Also denote §* (X, o) = §(\, @) N T and K*(\, ) = K (X, a) N T.

1.1. Remark. It is of interest to note that for A = 0, we have §(\, @) = 8"(a) and
K\ a) = K(a)

To prove the main results, we need the following Lemmas.

1.2. Lemma. [21]| A function f € A belongs to the class G(\, @) if

Z(n+>\n(n — 1) —a)an] <1-a.

n=2

1.3. Lemma. 21| A function f € A belongs to the class K(\, a) if
Zn(n +An(n—1)—a)la,] <1—a.

n=2
Further we can easily prove that the conditions are also necessary if f € T.

1.4. Lemma. A function f € T belongs to the class §*(\, @) if and only if

Z(n—l—)m(n — 1) —a)an] <1-a.

n=2

1.5. Lemma. A function f € T belongs to the class KX*(\, «) if and only if
Zn(n +An(n—1) —a)a.] <1-a.
n=2

2. Main Results
2.1. Theorem. If m >0, then F(m,z) is in §*(\, «) if and only if
(2.1) €™ [/\m2 +(1+20)m] <1—o.

Proof. Since F(m,z) =z — . (’Z%;;e*mz" and by virtue of Lemma 1.4, it suffices to
n=2

show that
n—1

nz::z(n +An(n—1)— a)he*m <1l-oa.
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Let
e 5 mnfl
Li(m, A\ o) = Z(n A+n(l—2A) — a)me—m
n=2 .

Writing n? = (n—1)(n—2)+3(n—1)+1and n = (n—1)+1, and by simple computation,
we get

Li(m,\ o) = ZA(TL —1D(n— 2)%677”
4203 (n - 1)%5” +(1-a)> %e—m
- Anga (:Lf gie T +2A)n§ (;nf e

+(1-a) ; 7(;”i_11)! e ™
=e " [Am®e™ + (1 + 22)me™ + (1 — a)(e™ — 1)]
=xm’+ (142 )m+ (1 —a)(l—e ™).
But, this last expression is bounded above by 1 — « if and only if (2.1) is satisfied. O
2.2. Theorem. If m > 0, then F(m,z) is in X*(\, «) if and only if
(22) " [Am®+ (1 +50m” + (3+4X —a)m] <1 - a.

n—1

Proof. Since F(m,z) =z — Y o, he*mz" and by virtue of Lemma 1.5, it suffices
to show that

[es} n—1

m _
A +n*(1 =N —na)——e " <1—a.

1';2 (n—1)!

Let
e} n—1
Lo(m, A, o) = Z(nd)\—i-nz(l—)\) — na) m e "

(n—1)!

n=2

Writing n® = (n — 1)(n —2)(n —3) +6(n — 1)(n —2) + 7(n — 1) + 1,
n®=(n-1)(n-2)+3(n—-1)+1 and n = (n—1)+1, we can rewrite the above terms

as

n—1

La(m, Aa) = A3 (n—1)(n—2)(n — 3)he—m
+ (1450 (n—1)(n— 2)%6%

m —m

+(3+4)\—a)2(n— 1)me

0 n—1

+(1 —a)Zhe*m

n=2
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n—1

:)\Z(Zlizl)!e + (145 ;::3 m
m 4

m"” m"
+(3+4)\—a);m67 l—a)nz_;m7
=e " [)\m3em + (145 )m%e™ + (3 + 4\ — a)yme™
+ (1 —-a)(e™—-1)]
=’ + (L+50)m° + B+ —a)m+ (1 —a)(l—e ™).
But, this last expression is bounded above by 1 — « if and only if (2.2) is satisfied. O
By taking A = 0,in Theorem 2.1land 2.2 we state the following corollaries:
2.3. Corollary. If m >0, then F(m,z) is in 8*(a) if
(23)  me™<1-—a.
2.4. Corollary. If m >0, then F(m,z) is in € X(«a) if
(24) e™"m(m+3—-—a)<1l-—a.

3. Inclusion Properties

Making use of the following lemma, we will study the action of the Poisson distribution
series on the classes K(\, ).

3.1. Lemma. [6] A function f € R7(A, B) is of form (1.1), then
(3.1)  Jan| < (AfB)%, n € N\{1}.

The bound given in (3.1) is sharp for
L A=B)rl"
= - 7 @ > .
f(=) / ( 15 Bon dz (n>2; z€ )
3.2. Theorem. Let m > 0. If f € R7 (A, B),then I(m)f € K(X\, o) if and only if
(A= B)|r[e™ [Am® + (1 + 2X)m]
<l—-a«
1-(A-B)|r|(1—e"™)
where 7 € C\{0},-1 < B < A<1.

(3.2)

Proof. Let f be of the form (1.1) belong to the class R” (A, B) then by virtue of Lemma
1.5, it suffices to show that

nm*A+nl—=XN\N)—a)——e "an| <1-a.
St a1 =)~ ) e
Let -
Lz(m, \, o) = Zn(n2x\+n(l —-A) fa)ﬂe_mhzﬂ.
Y — (n—=1)!

Since f € R (A, B) by Lemma 3.1 we have |a,| < (A — B)ZL, n € N\{1}, hence we get

n’

La(m A\ a) <e™ Z(n2A+n(1 - a)%(A — B)r|
< (A= B)|rle” ;(nA+n(1—A) )W
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Writing n? = (n—1)(n —2) +3(n — 1)+ 1 and n = (n — 1) + 1, and by using the similar
arguments as in the proof of Theorem 2.1, we get

Ls(m, N a) < (A= B)|r|[dm® + (L+20)m+ (1 —a)(1—e ™).

But,the last expression is bounded above by 1 — « if and only if (3.2) is satisfied. Hence
the proof is completed. O

3.3. Corollary. Let m >0 and A= 0. If f € R7 (A, B), then I(m)f € K(«) if and only
if

(A=B)rim[1—(A=B)r|(1—e™] ' <1-a
where 7 € C\{0} —1 < B< A<1.

3.4. Theorem. Let m > 0, then
G(m, 2) :/ F(%J))dt
0

is in X*(\, @) if and only if

(33) "+ (1+20)m] <1-a.

Proof. Since

o —-m, . n—1 _n o0 —-m, n—1
e ""m z e ""'m n
Gmz)=2=3 < =7 2~ —*
n=2 n=2
by Lemma 1.5, we need only to show that
o] n—1
Zn(nQ)\—l—n(l—)\)—a)m e <1l—a.

n=2
Now, let

e n—1

La(m, A\, o) = Zn(n2)\+n(1—)\) —a)m -

n!e

—1
m'" m

= ngz(n2)\ +n(l—=X)— a)me

Hence ,writing n® = (n — 1)(n —2) +3(n —1) + 1 and n = (n — 1) + 1, and by using the
similar arguments as in the proof of Theorem 2.1, we have

La(m, A o) < Am® + (14+20)m+ (1 —a)(1—e ™),
which is bounded above by 1 — « if and only if (3.3) holds. O
3.5. Theorem. Let m >0, then G(m,z) = fOZ M)dt is in §*(\, @) if and only if
« —m —m
(3.4) m/\+(1fa)(1fe J+ae ™ <1-a.

Proof. The proof of theorem is similar to that of Theorem 3.4, hence we omit the details
involved. o

Acknowledgement: The authors thank the referee for his insightful suggestions to
improve the paper in present form.
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1. Introduction

The Burgers equation introduced by Burgers [1]| provide fundamental pedagogical ex-
amples for many important equation in nonlinear Partial Differential equations such as
traveling waves,shock formation,similarity solutions and singular perturbations [14,27,40,43],
it appears in some of condensed matter and statistical Physics and non-physics prob-
lems such as vehicular traffic [7], The Kardar-Parisi-Zhang or KPZ equation|23,2],traffic
flow,shallow water waves, gas dynamics, and fluids with the dissipative viscous behav-
ior[28,29,39,30].

Furthermore,Burgers equation is studying in directed polymers[24,3] and has found in-
teresting applications in cosmology, such as "Zel’dovich approximation"[46] and "adhe-
sionmodel" [16]. Another application of Burgers equation is in the theory of turbulence
and field|34,37,15,31].

Hofe[20] and Cole[8] have shown the Burgers equation can reduce to heat conduction
equation.

In this paper, we investigate the solution of generalized one-dimensional Burgers equation
with nonlinear damping term [38] of the form

(1.1) Ut + QUG — Uzs = g(u), z€Q=1Icd], t>0,
with the initial condition
(1.2)  u(z,to) = ¢(x),
and the boundary conditions
u(c, t) = po(t),
(1.3)  w(d,t) =p(t),

where u(z,t) indicates the velocity for the space z and time ¢, a is parameter and g(u)
is damping term.

The Burgers equation in the first term is an unsteady term,the second and third term
represents nonlinear convection and diffusion problem,with nonlinearity term,can be sur-
vived by many researcher.

Different numerical technique have been used for solving Burgers equation.Finite differ-
ence methods have been given by Biringen et al[4] and Kutluay et al.[25]and recently,by
Inan et al [21].Finite elements methods have been given by Caldwell et al.[9]and Varglu
et al.[42] and Ozis et al.[35].Spectral methods have been developed by Bar-yoseph et
al.[5]and Mansell et al.[32].Pseudo-spectral method has been used by Darvishi et al.[12]
and distributed approximation function approach has studied by Zang et al.[47] and Wei
et al.[44].Boundary elements methods is given by Bahadir et al.[6].A wavelet collocation
method has used by Garba [17].furthermore quasi wavelet based numerical method has
been suggested by Wan et al.[45].Fast adaptive diffusion wavelet method have been sur-
vived by Goyal et al.[18].Least square quadratic B-spline finite elements has been given
by Kutluay et al.[26].Various B-spline have been proposed by Dag et al.[13,41].B-spline
and multi-quadratic quasi-interpolation have been described by Zhu et al and Chen et
al.[48,10].

The present work attempts to use cubic non-polynomial spline[36,19,33].One of the im-
portant ability of this approximation is the tension parameters involving definition of
non-polynomial cubic spline which can be chosen in such a way that the local truncation
error of the proposed method can be optimal.Hence,it has been demonstrate that tension
spline give better result.This paper is organized as follows:In section 2,derivation and
formulation of the cubic non-polynomial tension spline along with consistency relation
of second derivatives discussed in details.In section 3,the derivation of two level scheme
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based on non-polynomial tension spline has been described.In section 4,convergence anal-
ysis of the present method has been discussed in detail and we have shown under appro-
priate condition the method converges.At the end,we illustrate the accuracy and efficiency
of the proposed method by testing this approach on two test problems.comparison of the
numerical result are given.

2. Non-polynomial tension spline

Following our earlier works,let s(x) of class ¢*[c, d] be non-polynomial tension spline
interpolating the function u(z) at the grid point 2;,1 = 0,1,2,...,n.For each segment
[z, 2141],0 = 0,1,...,n — 1,the non-polynomial s(z) defined by

(21)  s(z) = a4+ bi(z — 1) + a(e?E7T) — 7@ 4 gy (@) 4 gmwlEma)y

where the ay, by, ¢, d; are unknown coefficients and w is arbitrarily parameter. To deter-
mine the unknown coefficient in (2.1) we denote the following relations

s(z1) =, s(zi41) = w1,
s'(z1) = my, s’ (Ti41) = Mg
(2.2) s"(:cl) = M, s”(le) = Mi41.
The first and second derivatives of non-polynomial tension spline function s(z) are

(2.3) 8" =b +we (e 4@ 4oy (e — el Ty =12 n

(2.4) "= wa(cl(e“’(x_ml) - e_“(m_zl)) + dl(e“(m_zl) + e_w(z_xl)), [=1,2,...,n

Now using (2.2)-(2.4) and after some algebraic manipulation,we can determine the un-
known coefficients in (2.1) as

M, U1 —wp | My — M
oy b —
s ! h * wo
o = 2Mips — (e + )M, g M
! 2w2(e? — e~ ?) ' RN

where h = d;c, 0 = wh.

Using the continuity of the first derivative at (z;, w;),that is s'(z; ) = s'(x;"). We obtain
the following equation for [ =1, ..., n.

U1 — 2up + Up—1

(2.5) 12 =aM;4+1 + Q/BML + aM;_1,
where
1 20 1,00 +e7?)
o=mpl-G—=) P=ma—= 1

When w — 0,that 6 — 0,then (o, 3) — (g, 3), and the relations defined by (2.5) reduced
into construction relation of conventional cubic spline.
Now by using the continuous of the first derivative,we have

Ui+1 —

(2.6)  §'(2]) = ua, 7 O hlaMi1 + BM;]

2.7)  S(x]) = uy = % + h[BM; + aM,; 1]
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combining (2.6) and (2.7),we obtain

— u— h
(2.8)  mu=s'(21) =us = umTull - %[Mwl + M;-1]

Similarly ,we have

(2.9)  mugr = 8" (@141) = sy = w + h[BMi41 + aM)]
(210) muoy = (@io1) = usy, = U~ RBMiy + adi]

3. The method based on tension spline

The notation u{ is used for the discrete approximation value of u(x;,t;),l =0,1,...,n
and j =0,1,...,m,in which n and m are integer and z; = ¢+ lh and t; = to + jk,where
k is the step size in t direction.

We consider the following finite difference approximation

J+1_

31) @l = w = ul, + O(k)
) uj+1 _ uj )
(3.2) @%Hl = % =, +O(k)
) uj+1 _ uj )
(3.3) @l = % =ul,_ +O(k)
j “{-H - uf 1 i 2
(34) uy, = —n = ul, + O(h”)
i 3U{+1 —4u] +u_, j 2
(3.5) u;Hl = 5 = uiHl +O(h%)
. —3uj7 + dud — ! .
(36) ﬂ]zl71 _ -1 5 1 1+1 :u5j”71 +O(h2)7

By replacing space derivatives by non-polynomial tension spline

(B.7) Uy, =" (a1, t;) = M +O(h?)
(3.8) @), = s (z,t;) =mj +O(h®)
By using the relations of (3.1),(3.7) and (3.8),we can obtain the new approximate solution
of equation (1) as

o

k

where m] similar to (2.8) in jth time level and g/ = g(u]) , | = 1(1)n — 1.
Furthermore,similar to (2.5) in jth time level,we get

) Jo_ J
) +au].m] — g =M},

3.9 (

J J J
U — 2up + Uy

(3.10) = =aMj , +2B8M] +aMj_,.
We substitute (3.9) in (3.10) and by the help of (3.1)-(3.3),we obtain
J J J Jj+1 J
Uy — 2w U, Uipr — U j j j
+ 2 = af + - + )+aau{+1.mf+1 —ozgf_*_1
W o ’
+ 25(%) + 2Bau].m] — 2Bg]
uj+1 _ uj ) ) )
(3.11)  +a(-——) +aau] ,.m] | —agl .
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Now by using equations of (3.4)-(3.6) in (2.8)-(2.10),we have

mi = U?+1 - U{—l _ ih(ufif - U{+1) _ ahauj (3u{+1 —4u{ +u{71)
1 2h 2 k 2 1+1 2h
i+1 ; . . .
(3.12) %(M) O‘hauj (_3“{71 + 4u] — ufﬂ) ihgj _ @gj
’ 2 k 9 i1 oh 9 Jit1 5 Ji-1
i Uit — W Uip1 — W o 3wl —Au] +ug_
il = S R ¢ ] (ST
uj_H - uj - uj7 . )
(3.13) + ah(%) + ah(wg(%) — Bhgl,, — ahg]
j Uy — U Uy — U C =3ul g 4 du] —
mi oy = S~ Bh(T ) — Bhaul T )
L _ il . .
(3.14) —ah(%)—ahau{(%wﬂhgg_ﬁa@;

By substituting equations (3.12)-(3.14) in (3.11),we can obtain

(bo)juiy + (b)julXy + (b2)jul ™t = ba(uf,y +ui_y) + bau]
+ b5(glj+1 + gljfl) + bloglJ + bﬁ((u{+1)2 - (“{71)2) - b7“{ (u{+1 - ugﬂ)
= bswj (BY) — bo(ui 1 (A7) +u_1(CY)),

(3.15) 1=1(1)n—1,

where

(bo){ = h*aBaluf,, —uf) + W a,
(bx { = hSaﬁa(u{ - u{fl) + hla,
(b2)] = h?’ozza(u{+1 —ul_ )+ 28h%,

bs = h2a+ k,

by = 268R% — 2k,
bs = kha,

bs = h*afa,

br = hsaa(a - B),
bs = 26kh>a,

by = akh’a,

bio = 2Bkh?,
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and
J J J J J
i U — U i Bupyy —Au +uyy
Al :+T+5hau{+l( - 5 )
. uj _U«{, . .
+ ahau] s o 1) — (hBgi 1 + ahgl),
g Un v ok Bl A b,
1 2h 9 T+l 2h
ah 5 =3ul_, 4wl —uf,, ah ;  ah
+ TGU{_I( o ) + (791]+1 - 7911—1)7
J J J J J
e g 3wy Auy — gy
Ci = — Bhau] | ( o 1)

J uy — i, J j
— ahau] (T) + (hBg]_, + ahg).

The above system can be associated with boundary conditions.By solving this system
the approximate solution can be obtain.

3.1. The appropriate parameters. Using Taylor expansion about the grid point
u(xy, t;),finally we obtain the local truncation error
; 0%u 1.0  A'%E? O
T) = k*n° — +h'k{a— =} o— — ..
l lat B g thka = Glap ¥ 5 “Gpge T
The consistency relation for (2.5) lead to the equation 2« + 28 = 1,by simplifying the

above equation and choose a = % and 8 = % obtain the scheme of O(k* + h* + h%k?).

4. Convergence of the method

Here we analyze the convergence of the system,we can write system (3.15) in the
matrix form

(4.1)  PUT = QU + G(UY)

P is tri-diagonal matrix with variable entries,Q is coefficient matrix of U7 with constant
entries and G(U7) is nonlinear terms in this system.

to prove convergence,we suppose a > 0,p = max \uﬂ,l =11)n—1,7=0(1)m.

In this paper ||.|| means ||.||cc-

4.1. Lemma. P is nonsingular.
proof. It is sufficient to solve that P is strictly diagonally dominant.Therefore we must
prove

(42) | Go) + ()] <] (2)] |

We have
| (bo)] + (01)] |=| hPaBa(u,y —u]) + h*aBa(u] —u )+ 2h°a |
=| h3a6a(u{+l — u{_l) | +2h%a

(4.3)  >2n°a— | h’aBalul,, —u]_,) |

By using inequality (4.3) in left hand side of equation (4.2),we obtain
2h’a— | hSO‘/Ba(U{+1 - “{—1) I<| haaza(u{-H - “{—1) | +2r3h2

(44)  20%(a—pB) <a(h’aB+h%a®) [ul,, —ul_,|.

We know a — 8 = f%,therefore inequality (4.4) is obvious and proof complete.
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4.1. Theorem. The discrete numerical scheme defined by (3.15) is convergent,provided
that |N|| < h*(2 + h(38))-

proof. We assume that U™ and U7t are ezact and approzimation solution of (4.1),
respectively. The error in the solution is:

U -7 = PTIQUY - U7) + PTUGUY) - G(UY)] j=0(1)m
(4.5) EY = PT'QFE 4+ P GUY) — G(UY)]
where E = (e1, ez, ...,en)T
Following [11] we have
(4.6) GU)-GU7)=EN

N 1is the coefficient matriz of the nonlinear term.
Now by using of equation (4.6) in (4.5)we obtain

(4.7)  FET =P'QE'+ PT'E'N
Using the infinity norm,we can write
| B < |IPT'Q+ PTIN|L|IE
I B < IPTHQ A+ N)ILIE|
I E < IPTHII@ + N)ILIE?|
< IPTHI@+ M) E

IE7H < (IPTHI@ + M) HHIE)
The method is convergent if

IP~HLIQ + N < 1

1
N S —

(4.8) HINII—IIQHISII(Q+N)H§ﬁ-

Since | P||||P~|| > 1,we have

1
NI = 11QIl € w557 < IP
NI =1l 71 Pl

(4.9) IV < QI + 1Pl

By simple calculation,we achieve

(4.10) [|IQIl = A%,

(4.11) [Pl < B+ ha())

By substitute (4.10) and (4.11) in (4.9),the proof complete.

5. Numerical illustrations

To illustrate accuracy and ability of the proposed method,we considered two examples.
Note that,the proposed non-linear tension spline is o two-level scheme therefore the start-
ing level can be determined by the given initial condition.Finally we solve the arising
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system.
Examplel. We consider equation

Ut + AUy = Uzz, t>0, 0<ax<1
with the following initial and boundary conditions
u(x,0) = sin(rx), 0<z<1

u(0,t) =0,
u(l,t) =0, t>0.

The ezxact solution of the above equation is taken

2wy anexp(—n’m*t)nsin(nnz)
ao + oo, anexp(—n2mw2t) cos(nrx)

ap = /0 exp{(—2n)"'[1 — cos(mz)]}dx

u(x,t) =

an = 2/1 exp{(—2m) "' [1 — cos(mz)]} cos(nmx)dz n=123,..

Ezample 1 is the Burgers equation without damping terms. The proposed scheme (3.15)
applied on example 1,with a = 0.1 and 0.01,k = 0.00001 and values of step size h = 0.02
and h = 0.01 fort; = 0.1. The computed solution are compare with ezact solution,the maz-
imum absolute errors are tabulated in table 1.In table 2,we take h = 0.1 and k = 0.001,the
results are computed for different time levels and different a.the mazimum absolute error
are tabulated in table 2. In Figures 1 — 3, we show the graphs between exact and numerical
solutions at t = 1,t = 3 and t =5 in different a.

Table 1. Maximum absolute error for example 1

T a=0.1 a = 0.01
h = 0.02 h =0.01 h =0.02 h =0.01
0.10 8.45119(—4) 2.07841(-5) 8.37944(-=7) 2.0917(-7)
0.20 1.44193(—4) 3.56293(—5) 1.43739(—6) 3.58991(—T7)
0.30 1.83155(—4) 4.54565(—5) 1.83520(—6) 4.58581(—7)
0.40 2.04631(—4) 5.09991(—5) 2.06059(—6) 5.15176(—T7)
0.50 2.10730(—4) 5.27339(—5) 2.13234(—6) 5.33425(—7)
0.60 2.02309(—4) 5.08367(—5) 2.05703(—6) 5.14941(-7)
0.70 1.78959(—4) 4.51683(—5) 1.82853(—6) 4.58146(—T7)
0.80 1.39121(—4) 3.52934(-—5) 1.42858(—6) 3.58431(—7)
0.90 6.59886(—4) 2.05162(—5) 8.28727(=7) 2.08597(—7)
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Table 2. Maximum absolute error for example 1
T a t—1 t—3 t=5
0.1 0.1 3.05996(—5) 3.06791(—5) 3.07569(—5)
0.01  3.07903(—7) 3.07924(—7) 3.79320(—T7)
0.001 3.08122(—9) 2.08135(—9) 3.08135(—9)
0.5 0.1 837130(—5) 8.39331(—5) 8.41479(—5)
0.01 8.45321(—7) 8.45385(—7) 8.45406(—7)
0.001 8.46212(—9) 8.46255(—9) 8.46255(—9)
0.9 0.1 270077(—5) 2.70793(—5) 2.71493(—5)
0.01  2.73069(—7) 2.73089(—7) 2.73096(—T7)
0.001 2.73389(—9) 2.73402(—9) 2.73402(—9)
u[x,t]
0.5004= = =
0498 NE
0496 PN p>a=0.01
N ©0-a=0.1
04940 e 052=0.001
0.492 - \\\ o
0.490 | IS .
L I L L I L L I L L I L \\\ X
02 0.4 0.6 0.8 1.0

Figure 1:Approzimate and ezxact solution for example 1 at t = 1,with different a

ufx,t]

0.502

0.500

0.498

0.496

0.494

0.492

0.490

>—-a=0.01
¢o—-a=0.1
°c-a=0.001

0.2

0.4

Figure 2:Approzimate and exact solution for example 1 at t = 3,with different a
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0.502 4
0.5008 —
0.498 - \o\\\ >—>a=0.01
[ AR osa=0.1
0.496 - N c-a=0.001
i <o
0.494 [ ~2
L \\\ o
0492 NN R
[ | L L L | L L L | L L L | L L L - >
02 04 0.6 0.8 10

Figure 3:Approzimate and ezact solution for ezample 1 at t = 5,with different a
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Example2. We consider nonlinear damping equation
U + Uy = Ugy +bu(l —u), ¢>0, 0<z<1

with the following initial and boundary conditions

u(z,0) = %—l—%tanh(%ax), 0<z<1
1 1 —a a 2b
u(0,t) = 5 + §tanh[7(—(§ + Z)t)},
1 1 — 2b
u(lt) = 5+ 5 tanh[2 (1= (5 + )] t>0.

The ezact solution s

2b
a
In our computation,the computed solution are compare with exact solution. The mazimum
absolute error are reported in table 3-5.In Table 3,we take a = b = 0.001, k = 0.00001
and h = 0.02.The results are computed for different time levels.In table 3,results have
been compared with the results in references[22]. The result show,our numerical results
are more accurate in comparison to those given by Ismail et al. That result has been
calculated by 5 terms in Adomian methods.In table 4,we take a = 0.001 and k = 0.0001,the
results are computed for different step size and different b.The mazimum absolute error
for time t = 1 has been computed and tabulated in table 4.In table 5,we take h = 0.05 and
k = 0.00001.The result are computed for different a and b.The mazimum absolute error
for two time level t = 0.5 and t = 1 have been computed and tabulated in table5. We show
the graphs between exact and numerical solutions at t = 1 and a = 0.001,with different
values of h and b in figures 4 — 6.

w(z, t) = % + %tanh[%a(x ~(G+ 20 t20

Table 3. Maximum absolute error for example 2

x t [22] present method

0.1 0.005 9.68763(—6) 1.20184(—10)
0.001 1.93753(—6)  3.04431(—11)
0.01 1.93752(—5) 2.21709(—10)

0.5 0.005 9.68691(—6) 1.41649(—10)
0.001 1.93738(—6) 3.05515(—11)
0.01 1.93738(—5)  2.80496(—10)

0.9 0.005 9.68619(—6) 1.17931(—10)
0.001 1.93724(—6)  3.02686(—11)
0.01 1.93724(—5)  1.9840(—10)
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Table 4. Maximum absolute error for example 2

T b=0.001

h=0.1 h =0.05 h =0.02
0.1 3.08469(—8) 7.78978(—9)  1.24965(—9)
0.2 5.47325(—8) 1.30415(—8)  2.22143(—9)
0.3 7.16608(—8) 1.81554(—8)  2.91536(—9)
0.4 8.16355(—8) 2.07319(—8)  3.33144(-9)
0.5 8.46606(—8) 2.15716(—8)  3.46967(—9)
0.6 8.07397(—8) 2.06747(—8)  3.33005(—9)
0.7 6.98764(—8) 1.80417(—8)  2.91259(—9)
0.8 5.20745(—8) 1.367281(—8) 2.21728(—9)
0.9 2.73372(—8) 7.56845(—9) 1.2441(-9)
T b=0.01

h=0.1 h =0.05 h =0.02
0.1 3.09723(—8) 7.82111(—9)  1.25449(—9)
0.2 5.49535(—8) 1.38968(—8)  2.22997(—9)
0.3 7.19487(—8) 1.82276(—8) 2.9265(—9)
04 8.19626(—8) 2.08142(—8)  3.34412(—9)
0.5 8.49993(—8) 2.16571(—8)  3.48284(—9)
0.6 8.10628(—8) 2.07567(—8)  3.34269(—9)
0.7 7.01566(—8) 1.81134(—8)  2.92366(—9)
0.8 5.22838(—8) 1.37274(—8)  2.22573(—9)
0.9 2.7447(-8) 7.5988(—9) 1.24887(—9)
T b=1

h=0.1 h =0.05 h =0.02
0.1 1.53032(—7) 1.80708(—7)  1.86514(—T7)
0.2 2.71202(=7) 3.19366(—7)  3.29698(—T7)
0.3 3.54373(=7) 4.17367(=7)  4.03961(—T7)
0.4 4.04031(-=7) 4.75743(=7) 4.913151(—7)
0.5 4.20779(—=7) 4.95119(-7)  5.11369(—7)
0.6 4.04834(—=7) 4.75713(=7)  4.91322(-7)
0.7 3.56028(—7) 4.17331(—=7)  4.30974(-T7)
0.8 2.73812(—7) 3.19371(—7)  3.29714(-T7)
0.9 1.57255(—7) 1.80824(—7)  1.86529(—7)
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Table 5. Maximum absolute error for example 2

x a=0b=0.001 a =b=0.0001
t=20.5 t=1 t=20.5 t=1
0.10 7.76059(—8) 7.8118(—8) 7.73848(—10) 7.78809(—10)
0.20 1.3774(—7) 1.38711(=7) 1.37441(—9)  1.38383(—9)
0.30 1.80401(—7) 1.81813(—7)  1.802181(—9) 1.81513(—9)
0.40 2.05904(—7) 2.07467(=T7) 2.05754(-9) 2.07274(-9)
0.50 2.14074(—7) 2.15714(-7) 2.14076(—9) 2.15672(—9)
0.60 2.05038(—7) 2.06597(—7) 2.05189(—9)  2.06705(—9)
0.70 1.78832(—7) 1.80157(—7) 1.79091(—9)  1.8038(—9)
0.80 1.35472(—7) 1.36436(—T7) 1.35763(—9)  1.36699(—9)
0.90 7.4967(—8) 7.69406(—8)  7.51754(—10) 7.56673(—9)
u[x,t]
0.73106 |- o o
N o,
0.73104 |- AN 8o
r Sl Bo
~ o,
[ o
0.73102 |- AN ° >->h=0.05
[ \\\\ ®on o o-h=0.1
073100 T~ Toon o °-h=0.02
[ ©w
r \\\ o;
0.73098 - S ¢
‘ 0.‘2 ‘ ‘ 014 T s 018 170 *

Figure 4:Approzimate and exact solution for example 2 at b = 1,with different h

u[x,t]
0.50250

050248 -
050246 -
050244 -
0.50242
050240

0.50238 |

>—-h=0.05
o-h=0.1
o-h=0.02

0.2

0.4 0.6

0.8

: X
1.0

Figure 5:Approzimate and ezact solution for ezample 2 at b = 0.01,with different h
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u[x,t]
0.50250
0.50248 |
0.50246
[ >—h=0.05
0.50244 o>h=0.1
o->h=0.02

0.50242

0.50240

0.50238 |

T S T S S R SR X
0.2 0.4 0.6 0.8 1.0

Figure 6:Approzimate and exact solution for example 2 at b = 0.001,with different h

6. Conclusion

The basic goal of this work has been employed the non-polynomial tension spline as a
reasonable basis for studying the approrimate solutions for Burgers equations with nonlin-
ear damping term.Finite difference approximation for time and tension spline for spatial
are used.Presented scheme are of order O(h2 + k*h? + h4) and under appropriate con-
dition the method convergence.The performance and accuracy of the method have been
examined by applying in 2 examples.
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A classification of biharmonic hypersurfaces in the
Minkowski spaces of arbitrary dimension
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Abstract

In this paper we study hypersurfaces with the mean curvature function
H satisfying (VH,VH) = 0 in a Minkowski space of arbitrary dimen-
sion. First, we obtain some conditions satisfied by connection forms of
biconservative hypersurfaces with the mean curvature function whose
gradient is light-like. Then, we use these results to get a classification of
biharmonic hypersurfaces. In particular, we prove that if a hypersurface
is biharmonic, then it must have at least 6 distinct principal curvatures
under the hypothesis of having mean curvature function satisfying the
condition above.
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1. Introduction

After Bang-Yen Chen conjectured that every biharmonic submanifold of a Euclidean
space is minimal, biharmonic and biconservative submanifolds in semi-Euclidean spaces
have been studied by many geometers (cf. [4, 5, 7, 8]). In particular, many results on
biharmonic submanifolds in the Minkowski 4-space E and the semi-Euclidean space E3
have appeared since the middle of 1990s, [1, 2, 6, 9, 18|.

On the other hand, several geometrical properties of biconservative submanifolds in
Euclidean spaces have been obtained and some classification results of biconservative
hypersurfaces have been given so far, [3, 12, 15, 17]. For example in [12]|, Hasanis and
Vlachos obtained the complete classification of biconservative hypersurfaces in E* and
E?. Furthermore, Yu Fu have recently proved that the only biconservative surfaces in E3
are surfaces of revolution and null scrolls, [10]. Most recently, the complete classification
of biconservative surfaces in 4-dimensional Lorentzian space forms is obtained in [11]

*Tstanbul Technical University, Faculty of Science and Letters, Department of Mathematics,
34469 Maslak, Istanbul, Turkey, Email: turgayn@itu.edu.tr
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Let M be a hypersurface in E?™! s = 0,1 with the shape operator S, mean curvature
H and xz : M — E™ an isometric immersion. M is said to be biharmonic if the equation
A%z = 0 is satisfied or, equivalently, the system of differential equations

(BC) S(VH)+ E%VH =0,

(BH1) AH+ HtrS*=0

is satisfied, where N is the unit normal vector field (see [6, 13]) and & = (N, N).

On the other hand, a hypersurface satisfying (BC) is said to be a biconservative
hypersurface. From (BC), one can see that if a hypersurface M with non-constant mean
curvature is biconservative, then VH is an eigenvector of its shape operator. Note that
along with the increase of index, the difference between Euclidean space and Minkowski
space is the appearance of light-like vectors. Thus, the hypersurfaces with light-like VH
has no counterparts in Euclidean spaces and they are worth to be studied separately in
terms of being biconservative or biharmonic.

1.1. Remark. For ease of elaboration, we want to abbreviate a hypersurface with mean
curvature whose gradient is light-like to a MCGL-hypersurface.

In this work we study MCGL-hypersurfaces in the Minkowski space of arbitrary dimen-
sion. In Sect. 2, after we describe our notations, we give a summary of the basic facts and
formulas that we will use. In Sect. 3, we focus on biconservative MCGL-hypersurfaces
and obtain some necessary conditions. In Sect. 4, we prove the non-existence of bihar-
monic MCGL-hypersurfaces under some conditions.

2. Prelimineries

Let E* denote the pseudo-Euclidean m-space with the canonical pseudo-Euclidean
metric tensor g of index s given by

ngidw?+ i da:?,
i=1

j=s+1
where (21,%2,...,%m) is a rectangular coordinate system in EI'. A non-zero vector
v € ET is called space-like, time-like or light-like if (v,v) > 0, (v,v) < 0 or {(v,v) = 0,
respectively.

Consider an oriented hypersurface M of the Minkowski space E}™'. We denote the
Levi-Civita connections of E?“ and M by V and V, respectively. Then, the Gauss and
Weingarten formulas are given, respectively, by
(2.1) VxY = VxY +h(X,Y)N,

(2.2) VxN = -5(X)

for all tangent vectors fields X, Y, where h, V* and S are the second fundamental form,
the normal connection and the shape operator of M, respectively, and N is the unit
normal vector field associated with the orientation of M.

The Gauss and Codazzi equations are given, respectively, by
(2.3) RX,Y,Z,W) = (h(Y,Z),MX,W)) — (h(X, Z), h(Y,W)),

(2.4) (Vxh)(Y,Z) = (Vyh)(X,2),
where R is the curvature tensor associated with the connection V and Vh is defined by

(Vxh)(Y,Z) = Vxh(Y,Z) — (VxY, Z) — h(Y,VxZ).
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M is said to be Lorentzian if its tangent space T,, M at every point m € M has two

linearly independent null vectors. In this case, there exists a pseudo-orthonormal frame
field {e1,e2,...,e,} of the tangent bundle of M satisfying

(ea,eB) =1—3dap, f{ea,eq) =0, {ea,ep)=dab

forall A,B=1,2,a,b=3,4,...,n. Then, the Levi-Civita connection V of M becomes

(2.5a) Vee1 = ¢ier + Zwlb(ei)eln
b=3
(2.5b) Ve €2 = —¢iea+ szb(ei)eh
b=3
(2.5¢) Ve,ea = waalei)er +wialei)es + Zwab(ei)eln

b=3

where ¢; = ¢(e;) = (Ve,e2,e1) and wir(e;) = (Ve €5, ex), Le., ¢ = —wi2.

On the other hand, the shape operator S of an oriented Lorentzian hypersurface
in E7™! can be non-diagonalizable. If S is non-diagonalizable, then its characteristic
polynomial may also have complex roots. However, in this case all eigenvectors of S are
space-like.

Now, assume that M has non-diagonalizable shape operator S and consider the case
that all of the eigenvalues of S are real at any point of M. In this case, locally, we
may assume that the multiplicities of eigenvalues are constant at every point of M.
Therefore, [14, Lemma 2.3 and Lemma 2.5] imply that there exists an appropriate pseudo-
orthonormal frame field {ei,ea,...,e,} of smooth vector fields such that the matric
representation of S is in one of the following two forms.

k1 0 0 0
0 k 0 O 0
0 0 k3 O 0
Case LS=[ 0 0 0 ks o |

0 0 0 o0 kn

(2.6)
k 0 1 0 0
0 ki 0 O 0
0 -1 Kk 0 0

Case II. S = 0 0 0 Ky 0

0 0 0 0 ... kn

for some smooth functions k1, k3, ka4, . . ., ky,, where the eigenvector e; of S is light-like,

(see also [13, 16]). With the abuse of terminology, we call these vector fields e1, ez, . .., €n

as principal directions and the functions k1, ks, k4, . . ., ky, as principal curvatures. More-
over, we put

s1 =2k +ks+---+k,=nH,

where H is the mean curvature of M.
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3. Biconservative MCGL-hypersurfaces

In this section we focus on biconservative MCGL-hypersurfaces in the Minkowski
space IE?H. As we described in the previous section, the shape operator S of a MCGL-
hypersurfaces in the Minkowski space E} ™ is one of two forms given in (2.6). We study
these two cases separately.

3.1. Case I. Consider a hypersurface M in the Minkowski space E?"! with the shape
operator S given by case I of (2.6). Then, we have

h(ei,e2) = —ki, h(ez,e2) = —1,
(3.1)  h(ea,ep) =daBka,

h(ei,e1) = h(e1,ea) = h(ez,ea) =0, A, B=3,4,...,n.

Now, assume that M is a biconservative MCGL-hypersurface, i.e., Vs is light-like
and (BC) is satisfied. Then, ey is proportional to Vs; and we have

(3.23) k’1:—551, ks +ka+ -+ kn = 2s1,

(3.21’)) 61(1451) :63(]61) 264(k1) =--- :en(kl) :0, 62(’61) #0.

Let the distinct principal curvatures of M be K, Ks,..., K, with the multiplicities
V1, Va,...,Vp, respectively, i.e., the characteristic polynomial of S is

(33)  ps(t)=(t— Ki)"(t — K2)™ ... (t = Kp)™

with K7 = k1 and 11 > 2. We also suppose that the functions K, — K3 does not vanish
on M, for all « # B € {1,2,...,p}. Then, (3.2a) becomes

(3.4) Ki=-2 wKs+uvsKs+ - +v,Kp=(-2—11)Ki.

2 b
On the other hand, from the Codazzi equation (2.4) for X =e1, Y = Z = es we get
ei(Ka) .
B « == — f = [e 3] = b AR -
(3.5) P wia(ea) K Ka if ka =Ko, a=2,3 P
By rearranging the indices if necessary, we may assume that 2,3,...,1%, # 0 and
Yrg1 = Ypgp2 = -+ =1, = 0 for some r < p. Thus, from (3.5) we have

(3.6) e1(Ka)=0 ifka=Ky, a>r.

From Codazzi equation (2.4) for X = e1, Y = ea, Z = ep and X = ea, Y = ep,
Z = e1 we obtain

(3.7) wia(e)(k1 —ka) =wip(ea)(k1 — k) =wap(e1)(ka—ks), A,B=23,...,n.
Moreover, from the equation [ea, es](k1) = 0 we have
wiales) = wip(ea).
By combining the above equation with (3.7) one may obtain
(3.8) wip(ea) =0 if ka,kp # K1.

On the other hand, from the Codazzi equation X =e1, Y =e1, Z = ¢e; and X = ey,
Y =e1, Z = e; we have

(3.9) wlj(€1) :0, j =374,..,,7’L.

In addition, by combining the Codazzi equation (2.4) for X = ea, Y = e1, Z = e, and
lea,ea] (k1) = 0, we obtain

(3.10)  waa(er) =wia(eq) = wia(ea) =0
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for all a, A = 3,4,...,n such that k, = K1 # ka. By summing up (3.8)-(3.10) we obtain

Ve e1=¢1e1, Ve e1=¢aer +wialea)ea,
wialez) =0, z#2,x#A

for all A=3,4,...,n such that K; # ka.
Hence, by combaining (3.11) and the Gauss equation R(ea,e1,e1,ea) = 0 we obtain

er(wia(ea)) =wialea)(dpr —wialea)) if ka # Ki

(3.11)

from which we get
(312) 61(1/]04) :¢a(¢1 71/}04)7 ¢a :2537"'37"'
Next, we obtain the following lemma which we will use later.

3.1. Lemma. Let M be a biconservative MCGL-hypersurface in the Minkowski space
E"*! with the shape operator given by (3.1). Then the functions 3,4, ..., defined
above satisfy

(K1 — K>)
v3(K1 — K3)

(3.13a) W(th2,%s,...,¢r) : =0,
I/T(K1.f KT)

where W (12,13, ...,1%;) is an r X r matrix given by

¢y2 1/}3 'l/)r
U R SNV
(3.13b) W(2,¢hs,eesdbr) = | ..
LE T TR

Proof. By applying e; to the second equation in (3.4) and using (3.2b), we obtain
(314) Vo€ (KQ) + 1/361(K3) + -+ e (Kp) =0.

Now, by induction we would like to show
(315) > (ta)'va(Ki—Ko) =0, t=1,2,....
a=2

Note that by combining (3.5) and (3.14) one can obtain (3.15) for ¢t = 1. Suppose that
(3.15) is satisfied for t =1 — 1, i.e.,

(3.16) Z(wa)L_lVa(Kl —Ko)=0, n=1,2,....
a=2

By applying e; to this equation and using (3.2b), (3.5) and (3.12) we obtain
D= 1)) " a1 = Ya)(Er — Ka) = D (1) va (K1 = Ka).
a=2 a=2

By combining this equation and (3.16) we obtain (3.15) for ¢ = [. Thus, we have (3.15)
for all ¢ which implies (3.13). O
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3.2. Case II. In this subsection, we consider the hypersurfaces with the shape opera-
tor given by case II of (2.6) in the Minkowski space E"™!. Now, assume that M is a
biconservative MCGL-hypersurface. In this case, we have

h(ei,e2) = —ki, h(ei,e1) = h(ei,es) = h(ez,e2) =0,
(3.17) h(es,e3) = ki, h(ea,ep)=daBka,
h(ei,e1) = h(ei,ea) = h(ez,ea) = h(es,ea) =0, A, B=4,5...,n.

Assume that the characteristic polynomial of S is as given by (3.3) with K1 = k1 = —s1/2
and v; > 3. Then, we have (3.4) and

(318) 61(K1)=€3(K1):64(K1):"'=€n(K1):0, 62(K1)750.

We again suppose that the functions K, — K3 does not vanish on M.

Note that the Codazzi equation (2.4) for X = e1, Y = ea, Z = ea gives e1(ka) =
wia(ea)(ki —ka) if k1 # ka. Let 12,43, ...,%, be the functions defined by (3.5) such
that o, ¢s,...,¢, # 0 and Yr41 = Yrq2 = -+ = ¢, = 0 for some r < p.

(3.18) implies [e1, ea](k1) = 0. By computing the left-hand side of this equation we get
wialer) =0,A =3,4,...,n. In addition, the Codazzi equation (2.4) for X =e1, Y = e,
Z = e3 gives ¢1 = 0. Thus, we have V., e; = 0. Next, similar to previous subsection,
we apply the Codazzi equation (2.4) for X = e;,Y = e;,Z = e for each triplet (i,
j, k) in the set {(1,2,a), (1,3, 4), (3,4,1), (1,A,B), (A,B,1), (1,a,A)} and combine
equations obtained with [ea, er](k1) = [ea,eq](k1) = 0 to get Ve, (e1) € span{ei,ea}
and wia(ey) = 0, © # 2, A, where A,B,a = 4,5,...,n with A # B, ka,kp # K,
ko = K. By combaining these equations with the Gauss equation R(es,e1,e1,e3) =0
we obtain

61("%):—?/)3” 0521,2,...77’.

Therefore, similar to Lemma 3.1 we have

3.2. Lemma. Let M be a biconservative MCGL-hypersurface in the Minkowski space
E?! with the shape operator given by (3.17). Then the functions 3,4, . . . , ¢, defined
above satisfy (3.13).

3.3. Biconservative hypersurfaces. In this subsection, we would like to obtain condi-
tions satisfied by connection forms of biconservative MCGL-hypersurfaces (See [17, 10, 11]
for implicit examples of biconservative hypersurfaces that have recently obtained).

Now we would like to obtain some necessary conditions for being biconservative of an
MCGL-hypersurface by using Lemma 3.1 and Lemma 3.2.

3.3. Proposition. Let M be an MCGL-hypersurface in the Minkowski space IE{LJrl and
e1,e2,..., e, its principal directions with corresponding principal curvatures
ki,ki, ks, ka,..., Kk, such that e; is proportional to gradient of its mean curvature. If M
is biconservative, then
(i) For any 3 <14 < n such that k; # ki,w1i(e;) # 0, there exists a j # ¢ such that
wij(e;) = wii(ei), kj # ki.
(11) Let L, = {3 S j S n|w1]- (ej) = wh-(ei)}. Then,

(3.19) > (k1 —kj) =0.
J€L;
(iii) There exists a j € {3,4,...,n} such that e1(k;) = wi(e;) =0, ki # k.

Proof. Let Ki,...,K, and 12,...,%, be the functions defined on the beginning of this
section.
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Assume that ¢2 # 0 and ¥2 # 1, 2 < j < r. Then, we have det W (12, ¥3,...,1,) =0
from (3.13) since the functions K7 — K> is non-vanishing by the assumptions. Therefore,
Y3, ..., 9, are not distinct and we may assume 1,1 = 1,. Thus (3.13) gives

(K1 — Ka)
v3(K1 — K3)
W(1/12:1/)37-~-71/1r—1) : =0.

I/’V‘(Kl - K’V‘) + Vrfl(Kl - Krfl)

Since (K7 — K>) is non-vanishing, the above equation implies that vs,...,%,_1 are not
distinct and we may assume either ¥, _o = 1,._1 or 13 = 4. By repeating this procedure,
one can get Y3 =--- =1,_1 and

¢2(K1 — K2) +'¢13 (Z I/a(Kl — Ka)> :O7

a=3

ﬁmmw%(Zwm1K»=o
a=3
which gives 12 = 13 or K1 — K2 = 0 which yields a contradiction. Hence we have (i) of
the proposition.

Let [ — 1 of 92,3, ...%, be distinct and by rearranging indices if necessary, assume
that they are t2,s,...1¢;. Note that we have [ — 1 < (r — 1)/2 because of (i) of the
proposition. Moreover, we have det W (t2, 93, ..., ;) # 0. Thus, (3.13) implies

2 vi(Kr — Kj)
JEI2
2 vk — Kj)
W (e, s, tp) | 7€ =0
2 vi(Ky = Kj)
Jen

which gives (ii) of the proposition.
Now, assume that all of the functions w1 ;(e;) are non-zero, i.e., r = p and 12, 93, ... 1y

1

are distinct. Note that we have |J I; = {2,3,...,p} and (ii) of the proposition implies
j=2

> vj(K1 — Kj;) = 0 or, equivalently,

J€la

> K= <Z Vj) Ki, a=2.3,...,L
J€la J€la
By summing these equations over a we get

oo +vsKs + -+ vpKp = (2 +vs + -+ +1p) K1

However, this equation and (3.4) give K1 = 0 on M which implies Vs; = 0. This is a
contradiction because we have assummed that Vs; is light-like. Hence, we have (iii) of
the proposition. O

4. Biharmonic MCGL-Hypersurfaces

In this section we study biharmonic MCGL-hypersurfaces with the shape operator
given by (3.1) in the Minkowski space E7"* and obtain some classification results.
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Let M be a biharmonic MCGL- hypersurface with the shape operator given by (3.1).
Then, we have (3.2a)-(3.13) obtained in the Sect. 3.1. In addition, from the Codazzi
equation X =ea, Y =e1, Z =ez and X =eyu, Y =e3, Z = ea we have
(4.1) 62(k1)22¢1 :wlA(eA), if kA:K1, A > 2.

Moreover, since erez(k1) = [e1, e2](k1), by using (3.2b) we get
(4.2)  erea(ki) = —prea(kr).
This equation and (4.1) imply

(43)  ei(en) = 4.
Now we would like to consider the biharmonic equation (BH1). By a direct calculation
using (3.2b) and (4.2) we get

<6162 + ese1 — Zejej — Ve, €2 — VE2€1> (k1) =0
=3

which gives

Ak1 = iwlj(ej)ez(kl) = Z Z 0J1A(6A)62(k1)

a=1 \ka=Ka
= (2u1¢1 + vatha +v3ths + - -+ vpahr) ea(kr).

By combaining the above equation and (4.1), we see that the biharmonic equation (BH1)
becomes

(BH2)  (4v1¢1 + 2uathy + 2u3ths 4 -+ + 20,00, )1 = —k1 (11 K7 + 12K + -+ + 1, K).

4.1. Theorem. There exists no biharmonic MCGL-hypersurface with at most 5 distinct
principal curvatures and the shape operator given by (3.1) in the Minkowski space E?H.

Proof. Let the distinct principal curvatures of M be K1, K2, K3, K4, K5 with the multi-
plicities v1, va, 3, V4, Vs, respectively, and consider the functions 12, 13, 14, 15 defined by
(3.5). Now, toward contradiction we assume that M is a biharmonic MCGL-hypersurface,
i.e., (BC) and (BH1) are satisfied.

Case I p < 4. If the number of distinct principal curvatures is less then 4, the proof
directly follows from Proposition 3.3.

Case II. p = 4. Next, we consider the case that M has exactly 4 distinct principal
curvatures, i.e., K4 = Ks. Then, because of (iii) of Proposition 3.3, we may assume
12 = 0. Note that if 15 = 0, then (i) of Proposition 3.3 implies 14 = 0. In this subcase,
we have r = 1 and (3.6) implies e1(Ko) =0, o = 1,2,3,4. Thus (BH2) becomes

(4.4)  dn¢i = k1 (K} + K3 + 13 K5 + 1 K7).

By applying e; to this equation and using (4.3) one can find v1¢3 = 0. However, this
equation and (4.4) implies k1 = 0. Thus, we have Vs; = 0 which contradicts with being
light-like of Vs;. Hence, ¥3 and 14 are non-zero.

Therefore, (i) and (ii) of Proposition 3.3 imply

(4.5) V3 = s, v3(K1 — K3)+ (K1 — K4) =0.
Thus, (BH2) becomes
(4.6)  (ag1 + bhs)pr = —k1 (1 K} + 12 K3 4+ v3K3 + 1 K3),

where a = 4v1 and b = 2(v3 + v4) are some non-negative constants. Note that o = 0
and (3.5) imply e1(K2) = 0.
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Next, we apply e1 to (4.6) and use (3.2b), (4.3), (3.12) to get
(47)  —(2a¢7 + bp3) 1 = —krer (s K3 + vaK3).
Then we use, (3.5) and (4.5) to compute the right-hand side of (4.7) and get
(4.8)  —(2a¢7 + b3)1 = —2k13(bKT — vs K3 — v4K7).
By applying e; to (4.8) again and using (3.2b), (4.3), (3.12) we get
(6ag? — bprps + 2003)p1 = — 2kats(d1 — ¥3) (WK — va K3 — vaK3)
+ 2k1ser (Vs K + vaK3)
By combining (4.7), (4.8) and (4.9) we get
(4.10)  (6ag? — bprths + 295 + (1 — 3¢3) (2067 + byh3)) 1 = 0.

Thus, we have ¥3 = c¢; for a constant c. However, in this case, from (4.3) and (3.12) we
get ¢ = 2, i.e., P53 = 2¢1. However, this equation and (4.10) give (a + 2b)¢1 = 0 which
is impossible to be satisfied because a, b are non-negative constants. Thus, the proof for
this case is completed.

Case III. p = 5. Then, because of (iii) of Proposition 3.3, we may assume 1 = 0.
Note that, if 13 = 0, then we have either ¥4 = 15 # 0 or ¥3 = s = 15 = 0. However,
these subcases and the other possible subcase 13 = 14 = 15 are similar to case II. O

(4.9)

Acknowledgements

This work is supported by Scientific Research Agency of Istanbul Technical Univer-
sity (Project Number: ITU-BAP:37992). The author would like to express his sincere
gratitude to the anonymous referee for his/her helpful comments that help to improve
the quality of the manuscript.

References
[1

Arvanitoyeorgos, A., Defever, F., Kaimakamis, G. and Papantoniou, V., Hypersurfaces of

IE‘Sl with proper mean curvature vector , J. Math. Soc. Japan, 59, 797-809, 2007.

Arvanitoyeorgos, A, Kaimakamis, G. and Magid, M., Lorentz hypersurfaces in ]E‘l1 satisfying

AH = oH. Tlinois J. Math. 53, 581 590, 2009.

Caddeo, R., Montaldo, S., Oniciuc, C. and Piu, P.,Surfaces in three-dimensional space forms

with divergence-free stress-bienerqy tensor Annali di Matematica Pura ed Applicata 193,

529-550, 2014.

Chen, B. Y., Some open problems and conjectures on submanifolds of finite type. Soochow

J. Math. 17(2), 169-188, 1991.

[5] Chen, B.-Y., A report on submanifolds of finite type, Soochow J. Math., 22, 117-337, 1996.

[6] Chen, B.-Y., Total mean curvature and submanifolds of finite type, 2nd Edition, World

Scientific, Hackensack NJ 2014.

Chen, B.-Y. and Munteanu, M. 1., Biharmonic ideal hypersurfaces in FEuclidean spaces,

Differential Geom. Appl. 31 (1), 1-16, 2013.

Defever, F., Hypersurfaces of E* with harmonic mean curvature vector, Math Nachr, 196,

61-69, 1998.

Defever, F., Kaimakamis, G. and Papantoniou, V., Biharmonic hypersurfaces of the 4-

dimensional semi-Euclidean space EX, J. Math. Anal. Appl. 315, 276 286, 2006.

[10] Fu, Y., On bi-conservative surfaces in Minkowski 3-space, J. Geom. Phys. 66, 71-79, 2013.

[11] Fu, Y., Ezplicit classification of biconservative surfaces in Lorentz 3-space forms, Ann. Mat.
Pura Appl. 194, 805 822, 2015.

[12] Hasanis, T. and Vlachos, 1., Hypersurfaces in E* with harmonic mean curvature vector

field, Math Nachr, 172, 145-169, 1995.

[2

3

[4

7

[8

[9



1134

[13] Lucas, P. and Ramirez-Ospina H.F., Hypersurfaces in the Lorentz-Minkowski space satisfy-
ing Liyp = A + b, Geom. Dedicata, 153, 151-175, 2011

[14] Magid, M. A., Lorentzian isoparametric hypersurfaces, Pacific J. Math., 118 (1985), 165—
197.

[15] Montaldo, S., Oniciuc, C. and Ratto, A., Proper biconservative immersions into the Eu-
clidean space, arXiv:1312.3053 (to print) Ann. Mat. Pura Appl., DOI: 10.1007/s10231-014-
0469-4.

[16] O’Neill, M. P., Semi- Riemannian geometry with applications to relativity. Academic Press,
1983.

[17] Turgay, N. C., H-hypersurfaces with 3 distinct principal curvatures in the Euclidean spaces
(to print) Ann. Mat. Pura Appl., DOI: 10.1007/s10231-014-0445-z.

[18] Turgay, N. C., Some classifications of biharmonic Lorentzian hypersurfaces in Minkowski
5-space (to print) Mediterr. J. Math., DOT: 10.1007/s00009-014-0491-1.



Hacettepe Journal of Mathematics and Statistics
Volume 45 (4) (2016), 11351142

The Zagreb coindices of a type of composite graph
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Abstract

For a nontrivial graph G, its first and second Zagreb coindices are
defined as the sum of degree sum of of nonadjacent vertex pairs and
the sum of degree product of nonadjacent vertices pairs, respectively.
Motivated by the work in [1], we study Zagreb coindices of a new kind
of composite graph, namely, double graph. For any given nontrivial
graph, explicit formulas are given for the Zagreb coindices of its double
graph and k-iterated double graph, respectively.
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1. Introduction

Let G be a simple graph with vertex set V(G) and edge set E(G). For a graph G,
we let dg(v) be the degree of a vertex v in G, i.e., the number of the first neighbors of
vertex v.

A topological index or graph invariant is a function defined on a (molecular) graph
regardless of the labeling of its vertices. Till now, hundreds of different graph invariants
have been employed in QSAR/QSPR studies, some of which have been proved to be
successful (see [11]). Among those successful invariants, there are two topological indices,
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relevant to our paper, called the first Zagreb index and the second Zagreb indez (see
[3, 4, 8, 10, 14]), defined as

Mi(G)= Y [de(w)]® and My(G)= >  da(u)de(v),
ueV (G) wveE(G)
respectively.
Equivalently, we can rewrite the first Zagreb index as

M(G)= ) ldo(u) +dc(v)]-
weE(G)
More recently, the authors [2] proposed two new Zagreb-type indices, namely, the first
Zagreb coindexr and second Zagreb coindexr as

MG = Y [de(u)+do()] and Ma(G)= 3 do(u)da(v),
uwvgE(G) uwgE(G)
respectively.

It is well-known that one can construct many graphs from simpler graphs via various
graph operations. Thus, it is important to understand how certain invariants of such
composite graphs are related to the corresponding invariants of the original graphs.

More recently, Ashrafi et al. [1] investigated Zagreb coindices and presented explicit
formulas for these new graph invariants under several graph operations, including union,
join, Cartesian product, disjunction product, etc. Ashrafi et al. [2] determined the ex-
tremal values of Zagreb coindices over some special classes of graphs. Hua and Zhang [5]
revealed some relations between Zagreb coindices and some other distance-based topo-
logical indices.

The double graph (see |9]) G* of a given graph G is constructed by making two copies
of (including the initial edge set of each) and adding edges u1v2 and ugvi for every edge
uv of G. For a nontrivial graph G, its k-iterated double graph G**, is defined as

G =G and G** = (G*V)" for k > 2.

In particular, it is generally assumed that G®* = G for the sake of consistence.

For results on double graphs, see [6, 7, 12, 13] and the references cited therein.

Motivated by the work in [1], we study Zagreb coindices of double graph. For any
given nontrivial graph, explicit formulas are given for the Zagreb coindices of its double
graph and k-iterated double graph, respectively.

2. Main results

We begin with some notation and terminology used in the proof of our results.

= XXX

Fig. 1. The double graphs of C's and Ps.

For each vertex u in a nontrivial graph G, we call the corresponding vertices u; and
uz, in G*, the clone vertices of u. As examples, we depicted the double graphs C3 (Fig.
1(a)) and P¢ (Fig. 1(b)) of C3 (Fig. 1(a)) and Ps, respectively.
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For a given vertex v in G, if we let Elc(v) = > lda(u)+ dg(v)] and Eé(v) =
wvg€E(G)
> dg(u)de(v), then we can rewrite the expressions of M;(G) and M2(G) as
wgE(G)

1) @) =5 Y Dew)

veV(G)
and
— 1 —2
(22)  MaG)=5 > Do),
veV(G)
respectively.
Similarly, if we denote DZ(v) = 3.  dg(u)de(v), then the second Zagreb index of

uwveE(G)
G can be rewritten as

(23) MAG)=5 S Di().

veV(G)
In the following, we shall state and prove our main results of this paper.

2.1. Theorem. LﬁG be a nontrivial graph of order n and size m. Then
(i) M1(G") = 8M1(G) + 8m;
(i1) M2(G*) = 8M2(G) — 8M2(G) + 16m>.

Proof. For the sake of convenience, we label all vertices in G as {v1, ..., vn}. Suppose
that z; and y; are the corresponding clone vertices, in G*, of v; for each i = 1, ..., n.
For any given vertex v; in G and its clone vertices x; and y;, there exists dg=(z:) =
da+(yi) = 2dc(v;) by the definition of double graph.

For v;, v; € V(G), if viv; € E(G), then z;z; € E(G), viy; € E(G), x:y; ¢ F(G) and

So we need only to consider total contribution of the following three types of nonad-
jacent vertex pairs both to M1 (G*) and to Mo(G™*).

e Type 1. The nonadjacent vertex pairs {x;, z;} and {v:, y;}, where v;v; € E(G).

e Type 2: The nonadjacent vertex pairs {x;, y;} for each i =1, ..., n.

e Type 3: The nonadjacent vertex pairs {z;, y;} and {y;, z;}, where v;v; & E(G).

The total contribution of nonadjacent vertex pairs of type 1 to M1 (G*) and M2(G*)
are, respectively, given by

> [dar(yi) + dar(y;)] > lde () + da- ()]

viy; EE(G*) zix; FE(G*)
= > [2da(vi) + 2da(v))]

v;v; €E(G)
= 2 Y [de(v) +da(vy)

v;v; ZE(G)

= 2M.(G)
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and

> de(yi)da-(y)) > des(i)do (x)

yiy; EE(G*) zix; EE(G*)
= > [2de(v)] - [2da(v;)]
viv; €E(G)
= 4 > de(v)da(vy)
v;v; ZE(G)
= 4M2(G).
The total contribution of nonadjacent vertex pairs of type 2 to M1(G*) and Mo (G*)
are, respectively, given by

n n

Z[dc* (i) +do~(y:)] = Z[QdG(Ui) +2dg (vi)]
= 4 i dG (’Ul)
~ 8m

and

n

Y de-(wi)de-(yi) = Y [2de(vi)][2de(vi)]

i=1 i=1

= 4Z[dc(vi)]2
4{ch(m) =8> > de(vi)da(v)
i=1 i=1j=1,j#i

= 16m® — 8Ma(G) — 8Ma(G).

Now, we consider the total contribution of nonadjacent vertex pairs of type 3 to
M1(G*) and M2(G*), respectively.

For each z;, there exist n — 1 — dg(v;) vertices in the set {y1, ..., yn}, among which
every vertex together with x; compose a nonadjacent vertex pairs of G*. The total contri-
bution of these n—1—dg(v;) nonadjacent vertex pairs to M1 (G*) is > [dex(x)+

z;y; €E(G*)

do-(y)]= Y [2de(vi) +2dc(v;)] = 2Dg(v:) and to Ma(G*)
vivi EE(G)
is Y [de-(w)de-(y)] =4 Y da(vi)da(v;) = 4Dg(vi).
z;y; €E(G*) v;v; ZE(G)
So we have

> o) +der ()] = Y 2Dc(v)

i#jwiy; EE(G*)

= 2 iﬁ};(vi)
i=1

= 4M:(G) (‘by Eaq. (1))
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and
> ldes(@)de-(y)] = Y 4Da(v)
#5529 €E(G*) i=1
= 8M2(G) ( by Eq. (2)).
Therefore,
Mi(G") = Yo e (@) +de-(x)]+ D [de(yi) +da-(y;)] +
zix FE(G*) viy; EE(G*)
> ldae (2:) + do ()] + > [da= (i) + da= (y;)]
i=1 i#gixy; EE(G*)
and
Mo(G*) = Z de+ (mi)de-(x;5) + Z de+ (y:)de (y;) +
zjw; FE(G*) yiy; €E(G*)
> do(wi)de (vi) + > da+ (w:)da- (y;)
i=1 i£jiwy; E(G*)
= 8M1(G) + (16m® — 8M>(G) — 8M2(G)) + 8M2(G)
= 8M2(G) — 8Ms(G) + 16m>.
This completes the proof. O

Now, we give two examples as applications of Theorem 1.

XXX~ XX

Fig. 2. The graphs Ga,.
2.2. Example. Consider Zagreb coindices of the graph Gs,, as shown in Fig. 2.

It can be easily seen that G2, is just the double graph of the n-vertex path P,. By
an elementary calculation, we obtained M1 (P,) = 2(n — 2)%, M2(P,) = 2n*> — 10n + 13
and M»(P,) = 4n — 8. It then follows from Theorem 1 that M;(G2,) = 8 x 2(n — 2)? +
8(n —1) = 16n? —56n + 56 and Ma(G2,) = 8(2n* — 10n+13) — 8(4n — 8) + 16(n —1)* =
32n% — 144n + 184.

Fig. 3. The graphs Ha,.

2.3. Example. Consider Zagreb coindices of the graph Hs,, as shown in Fig. 3.
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It can be easily seen that Hs, is just the double graph of the n-vertex star S,,. By an
elementary calculation, we obtained M1(S,) = n® — 3n + 2, M2(Sn) = 2(n® — 3n+2)
and M2(S,) = (n — 1)2. Tt then follows from Theorem 1 that M; (Hz2n) = 8(n? — 3n +
2)+8(n—1) = 8n” —16n+8 and M2(Hazn) = 8[2(n” —3n+2)] —8(n—1)>+16(n—1)* =
12n” — 28n + 16.

Now, we give formulas for Zagreb coindices of k-iterated double graphs.

2.4. Theorem. Let G be a nontrivial graph of order n and size m, and let G** be its
k-th iterated double graph. Then

(i) M1(G**) = 8 M1 (G) + 2%+ (28 — 1)m;

(id) M2(G**) = 8FM+1(G) — [8F (2% — 1) M2(G) + 2[8% (2" — 1)|m>.

Proof. For any nontrivial graph G with n vertices and m edges, the number of vertices
in G* is 2n and the number of edges in G* equals to 2m plus those edges between the

sets {z1, ..., zn} and {y1, ..., yn}, that is, 2m + > da(v;) = 4m.
i=1

Now, we can deduce that G** has 2¥n vertices and 4*m edges.
By Theorem 1 and the definition of k-th iterated double graph, for k > 1, we have

(24) M. (G*) =8M(G* V%) 48 (48" tm) = M, (G V7) 422 1,
By the recursive relations (4), we have

Ml(Gk*) _ 8M1(G(k71)*) + 92k+1,
= §[8M(GF 2"y 4 22h= L) 4 g2kl
_ 82M1(G<k72>*) 492k 2, 4 g2kl
_ 83M1(G<k73)*) + 92k+3 + 92k+2 + 92k+1

= "M (GO 4+ 2% m . 422 272 4 22y
= §"M.(G) + 22T (2" — 1)m.

Let us proceed to (i¢). By Theorem 1 and the definition of k-th iterated double graph,
for k > 1, we have

Mo(GF*) = 8Mo(GF D) — 8My (G 1) + 16(41m)?,
that is,
(25)  Ma(G*) = 8Mo(GF~D*) — 8Mo(GF 1) + 165 m?.

By a similar argument to that employed in Theorem 1 to treat the second Zagreb
coindex and using Eq. (3) at the same time, we obtain > dex(x)de(y;) =
z;y; €E(G*)

4 ﬁ:; D% (v;) = 8M2(G).

i=1
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In view of this equality, we obtain

My(G") = Y. des(w)de(z)+ Y de(yi)de- () +

zizjeE(G*) yiyJEE(G*)

> de(wi)de (y))

z;y; €E(G*)

= 4 > de(w)da(w)+4 Y. da(vi)da(v;) +

v;v; €E(G) viv; €E(G)
> do-(wi)de-(y;)
z;y; €E(G*)
8M2(G) + 8M2(G)
= 16M2(QG).
So we have the recursive relation Ma(G**) = 16 M2(G*~1*) for each k > 1, and then
(2.6)  Ma(G**) = 16" Mo (GO%) = 16" My (G).
By Eqgs. (5) and (6), we obtain
May(G¥) = 8My(GF V") —8.16" ' My (G) + 16"m?
= B88M2(G* %) = 8. 16" 2My(G) 4 16" 'm? — 8- 16" Ma(G) + 16" m?
= 8 Mo(GF %) — 8% 168 2 My (G) — 8- 165 T My (G) + 8- 165 m? + 168 m?

= 8"M (GO —[8-16F 1 +82.16" %+ ...+ 8" 16" Ma(G) +
(16" +8-16" " + ... 48" .16"|m>

= 8"M(G)—[8-16" 1 +8%.16" 7 + ... + 8. 16")|M2(G) +
(16" +8-16° " + ... 48" 1. 16"|m>

= §8"M (@) — [8F(2F — 1) M2 (@) + 2[8F (2F — 1))m?,

as claimed. O
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1. Introduction

Half-Cauchy distribution is the folded standard Cauchy distribution around the origin
so that positive values are observed. Modeling with half (or folded) distributions has been
proposed and five folded distributions have been reported so far in literature, namely,
the students’ ¢, normal, normal-slash, logistic and Cauchy. These folded distributions
have been used in Bayesian paradigm when a proper prior is necessary. Although some
applications of the half Cauchy distribution exist in the literature, but the fact that
the finite moments of order greater than or equal to one do not exist, the central limit
theorem does not hold. This fact reduces the applicability of this distribution in modeling
real life scenarios.

A random variable X has the half-Cauchy (HC) distribution with scale parameter
o > 0, if its cumulative distribution function (cdf) is given by

(11)  F@) =2 tan‘(z/o), z>0.
™
The probability density function (pdf) corresponding to (1.1) is

(12)  f@) =2 [1+@/o)?] .

Henceforth, we denote by X ~HC(o), the random variable having the HC density in
(1.2) with parameters 0. As a heavy tailed distribution, the HC distribution has been
used as an alternative to exponential distribution to model dispersal distances [18] as
the former predicts more frequent long distance dispersed events than the later. Paradis
et al. [16] used the HC distribution to model ringing data on two species of tits (Parus
caeruleus and Parus major) in Britain and Ireland.

Few generalizations of the HC distribution exist in the literature, namely, beta-half-
Cauchy (BHC) by Cordeiro and Lemonte [9], Kumaraswamy-half-Cauchy (KHC) by
Ghosh [11] and Marshall-Olkin half-Cauchy (MOHC) by Jacob and Kayakumar [13]. In
this paper, we propose a new generalization of the HC distribution using the technique
defined by Alzaatreh et al. [7].

Let r(¢) be the probability density function (pdf) of a random variable T' € [a, b] for
—00 < a < b < ooandlet F(z) be the cumulative distribution distribution function (cdf)
of a random variable X such that the link function W(-) : [0,1] — [a, b] satisfies the
following conditions:

(1.3) (7)  W(-)is differentiable and monotonically non-decreasing, and
’ (i) W (0) = aand W (1) — b.

The T-X family of distributions defined by Alzaatreh et al. [7] as

WI[F(z)]
(14)  Gz) = / r(t) dt.

If T € (0,00), X is a continuous random variable and W[F(z)] = —log[l — F'(x)], then
the pdf corresponding to (1.4) is given by

(1.5)  g(z) = %r( —log [1 = F(@)] ) = hy(w)r (Hs (@),

where hy(x) and Hy(x) are, respectively, the hazard and cumulative hazard function
corresponding to f(x). For more details about the T-X family, one is refer to Alzaatreh
et al. [3, 6], Alzaatreh and Ghosh [5] and Lee et al. [14].

If a random variable T follows the gamma distribution with parameters o and g,
r(t) = (B F(a))71 t*"1e tf ¢ >0. Then from (1.5),the pdf of Gamma-X family of
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distributions is given by

(16) o) = oy

The cdf corresponding to (1.6) is

(1.7) G(x) = ﬁv(a,—ﬁ_llog [I—F(x)]),

1

f@) (~tog [1- F(@))" 1= F@)

where vy(a,t) = f(f u®"te"du is the incomplete gamma function. Several properties of
gamma-X family have been studied in literature. For more details see Alzaatreh et al.
[3, 7,6, 4, 8|.

The paper is unfolded as follows. In Section 2, we define a new generalization of the
HC distribution, namely, Gamma-half-Cauchy (GHC) distribution. In Section 3, some
properties of the GHC are investigated. The density of the order statistics is obtained in
Section 4. In Section 5, the model parameters are estimated by the method of maximum
likelihood and the observed information matrix is determined. In Section 6, we explore
the usefulness of the proposed distribution by means of two real data sets. Finally,
Section 7 offers some concluding remarks.

2. The gamma-half Cauchy (GHC) distribution

From (1.1), (1.2), (1.6) and (1.7), it follows that the pdf and cdf of the GHC are given
by

glz) = wﬁ [1+ (56/0')2] - ( —log [1— 27! tanfl(ar/a)])u_1
(2.1) x[1— 277" tan™ (z/o)]
and
1 —1 —1 —1
(2.2) G(z) = mfy(a, —B " log[1—27"" tan (x/a)]),

respectively. Henceforth, a random variable having pdf in (2.2) is denoted by X ~
GHC(w, 8, 0).

Special cases of GHC distribution:

(i) f a = g = 1 in (2.2), the GHC distribution reduces to the HC distribution with
parameter o.

(ii) If &« = 1 in (2.2), the GHC distribution reduces to the exponentiated HC distribution
with parameters § and o.

(iii) f @« =n+1 and 8 = 1 in (2.2), the density of GHC reduces to the density of the
nth upper record of the HC distribution.

Note that the special case in (ii) does not exist in the literature and it is considered
another generalization of the HC distribution.

The survival function (sf), S(z), hazard rate function (hrf), h(x), and cumulative
hazard rate function (chrf), H(z), of X are, respectively, given by

1 -1 1 1
S(fr)zl—@v(a,—/ﬁ log [1 - 27" tan~(2/0)]),

2( —log[1—27"" tanfl(m/a)])ai1 [1—27"" tan™"(x/0)] pl

hle) = mo B (1+ (x/0)?) {F(Oé) - 7(047 —p~ 1 log [1 —271 tan_l(x/a)])}




1146

and

H(z) = — log [1 - ﬁy(a, —B M log[1—277" tan_l(a:/a)])} .

2.1. Asymptotic behavior of the pdf. The limit of the pdf of X as z — oo is 0.
Further, the limits of the pdf of X as 2 — 0" are given by

0, fa<l
iﬁ, if =1,

lim g(z) = =
0, if o> 1.

z—0t

In Figures 1 and 2, various graphs of the density when ¢ = 1 and for different values of
«a and [ are displayed. Figure 1 indicates that the GHC distribution is well-suited for
right-skewed data. For fixed o < 1, the density is always reversed-J shaped. For fixed
a > 1, the peakedness increases as § decreases. Also, Figure 2 shows that the hazard
function of the GHC distribution has DFR. (decreasing failure) or UBT (upside down
bathtub) properties.
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Figure 1. Plots of the GHC densities for various values of o and .

3. Properties of the GHC distribution

In this section, we provide some properties of the GHC distribution. Some proofs are
omitted in case of trivial results.
The following Lemma gives the relation between GHC and gamma distributions.

3.1. Transformation.

3.1. Lemma. If a random variable Y follows the gamma distribution with parameters «
and B, then X = o cot (g e*Y) ~ GHC(a, 8, 0).
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Figure 2. Plots of GHC hazard rates for various values of o and g.

3.2. Mode.
3.2. Lemma. The mode of GHC distribution is the solution of k(x) = 0, where
—1
k(x) = Tt [1 — 277" tan™" (m/o)]
o
a—1 1
3.1 X — — 415,
3D {log [1—2r1tan~! (z/0)]" B }

Proof. Setting ¢'(x) is equivalent to,

g = A+ (@/o)] < —log [1— 27" tan™" (z/0)] >

w2l (o) B>
11
(3.2) x [1 —2r " tan ™! (x/a)] X k(a),
where
k(z) = —(z/o)+n '[1—2r" tan™" (x/a)]71
a—1 1
3.3 X — 1y
(33) {log [1—2r1 tan~! (z/0)]”" B }
Hence the critical values of g(x) is the solution of k(z) = 0. O

Note that equation implies the following; when o« = 8 = 1, the mode of GHC is at x = 0
which is the mode of HC distribution. When « < 1, implies that < 0 and as = — 0T,
k(z) — oo. Also, when o = 1, x = 0 is a modal point and as z — 0", k(z) — 773'['3'

Hence, when o < 1, GHC has a unique mode at x = 0.

3.3. Quantile function. The following Lemma gives the quantile function for the GHC
distribution.

3.3. Lemma. The mode of GHC distribution is given by
(34)  Q(A) =ocot (0,57refﬁw_l(a’kr(a>)).

Proof. Follows by inverting equation 2.1. O
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3.4. Shannon entropy.
3.4. Theorem. The Shannon entropy for the GHC distribution is given by

(3.5)  nmx =3log(0.5m) +a(B—1)+log (BT(a)) + (1 — ) ¥(a) fzi wy (14+2k6)™7,

k=1
where 1(+) is the digamma function and wi, = %
Proof. Based on Alzaatreh et al. [8], the Shannon entropy for the gamma-X family is
given by

(3.6) nx=-E{log f (F" (1=¢"))} +a(l - ) +log (8T(@) + (1 - a) t(a),

where T' ~ Gamma(a, ).

We first need to find —E {log f (F~' (1—e" "))}, where f(z) and F(z) are the
pdf and cdf of HC distribution. It follows immediately that log f (F~'(1—e™ ")) =
log(0.5 ) + 2log (sin(0.5me~ ")) and hence by using the series expansion for
log (sin(0.5me™")) (see [12]) as

(3.7)  log(sin(0.5me ")) =log(0.57) — T + Z % e 2,

wi

where By, is the Bernoulli number.
Therefore,

(38)  ~E{log s (F* (1-¢7))} =3 log(0.5m) - 2E(T) + zi wi E(e™2*T).

k=1
The results in (3.5) followed by substituting (3.8) in (3.6) and noting that E(T) = af
and E(e™ ") = (1 + 2k8) . O

3.5. Moments. By using the Lemma 3.1, the rth moments of GHC distribution can be
written as

(3.9) E(XT):BQ"?T(Q) /0 " (cot(5me ™) w " e du,

A series expansion for cot(0.57e™") can be obtained from [12] as follows

(3.10) cot(05me ) =S vpe DY

k=0
o (—1)k (m)2k—1
where v, = W
Hence,
r oo
—u _ —(2sp—1)u
(cot(0.57re )) = E Uy, © )
1y kr=0

where vy, kr = Up=1Vk=2 ... Vk=r and s, = k1 + ko + -+ - + ky.

Therefore, from (3.9) we get
B1) EX) =0 S vmk (285 —B+1) "

3.5. Theorem. Let X ~ GHC(a, 8,0), then E(X") exists iff B < r '



1149
Proof. The rth moment of GHC can be obtained from

(3.12) E(X") :/0 z" g(x) dx + /loo z" g(x) dz,

where g(z) is defined in (2.2).

Without loss of generality assume o = 1. From (3.12), the existence of E(X") equiv-
alent to the existence of [ z" g(z) dz. Now,

) 1
3.13 / " g(r)de = ——— 1
( ) : g( ) ﬂ.ﬁa F(a)
where
1 = /OO o (o [1 - 05r ! tan @)}
, 1+a2 & .
1_
(3.14) x[1-05mt tan @) 7 do

Consider the following inequality (Abramowitz and Stegun [1])
(3.15) z < —log(l —2) < IL < 1,z#0.
—x
Now, for a > 1, one can use the right hand-side of the inequality in (3.15) to show that

o s _ 1,
(3.16) I</ ﬁ [0.57r_1 tan_l(m)]a ! [1—0.57r_1 tan_l(x)]ﬁ dz .
1

1 ()

l*a o0 .
7%"%‘“72, then limg o0 :;Ez; = (0.57r*1) 8-". Therefore, f1 71(z) exists

f [ 7o) exists iff % > o+ 7 — 1. Since a > 1, this implies that % >r. If a< 1, the
left hand side of the inequality in (3.15) implies that

Let 7o(z) = x

[ee) T B 3
(3.17) I</ 1ix2 (0577 tan™ ! (2)]""" [1— 057" tan '(2)]7 " da.
1

Similarly, one can show the right hand side of the integrand in exists iff % > r. This ends
the proof. O

3.6. Mean deviations. The mean deviations about the mean (61(X) = E(|X — p1l))
and about the median (62(X) = E(]X — M]|)) of X can be expressed as

(3.18)  0u(X) = 21 F(ph) — 2ma(ph) and  62(X) = 241 — 2ma (M),

respectively, where pj = [E(x) can be obtained from (3.11) by setting r = 1 and M is the
median of the GHC which can be calculated from Lemma 3.3 as

(319) M = o cot (0‘5’/1'6_5771(0"0‘51—‘(0‘)))_

Further, F(u}) can easily be computed from the (2.1) and mi(z) = [J z f(z)dz (the
first incomplete moment of X) can be computed from

(3.20)  ma(z) :/ cot(0.5me ) u" e P du.
0

The result immediately follows from (3.10) as

oo

(3.21) ma(z) = %a)z o (14 28k — ) y(a, %(1 L 28k —ﬁ)).

k=0



1150

3.7. Mean residual life function. Let X be a random variable with cdf F' such that
E(X) < oo. The mean residual life (MRL) function &(x) of X is defined by &(z) =
E(X — z|X > z). It plays a major rule in many fields such as industrial reliability, life
insurance and biomedical science. The following theorem provides an expansion for the
MRL for the GHC distribution.

3.6. Theorem. Let X be a random wariable which follows the GHC («, B,0) such that
B < 1, then the MRL function is given by

Z k ,(2k+ 87 —1)2)

(3.22) &)= SO e E

F(a) S(z)

where T'(x,a) = f t*~Y e~ dt is the upper incomplete gamma function and v is defined
in (3.10) and S(z) is surmval function of GHC defined in section 2.

Proof. From Lemma (3.1)
o o _ o
EXX>$:7/ cot (0.5me™¥) y* e ¥ P ay.
(X1 ) B T(0)S(@) ( )y Y
On using the expansion in (3.10), one can get the result in (3.22). O

3.8. Reliability estimation. The reliability parameter R is defined as R = P(X >Y),
where X and Y are independent random variables. Many applications of the reliability
parameter have appeared in the literature such as the area of classical stress-strength
model and the breakdown of a system having two components. If X and Y are two
continuous random variables with cdfs Fi(z) and F>(y) and their pdfs fi(z) and f2(y)
respectively. Then, the reliability parameter R can be written as

(3.23) R=P(X >Y)= / Fa(z) f1(x) da.

3.7. Theorem. Suppose that X and Y are two independent GHC random variables with
parameters a1, f1 and oz, B2, and fized scale parameter o. Then

L & (B (D) a2+ k)
(324) R= T(on) (o) Z <ﬁ2) E!'T (a2 + k) '

Proof. On using the following series expansion from [1]

k k+a
(325) (o,2) = Z(k,”kiw),

and then substituting u = —log [1 — 27~ tan™"(2/0)], (3.23) reduces to

1 - (D" /OO artastk—1_—u/B
3.26) R=—5 E [T e ! du.
(3.26) Brt D) Paz) &= k! (a2 + k) B3 Jo
The result in (3.24) follows immediately from (3.26). O

3.9. Mixture representation of GHC density.

3.8. Theorem. The GHC distribution is the linear combination of infinite exponentiated-
HC densities

(327)  g(x) = wi, hatkri, o) (),

k=0
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where Mo yk+ti, o) () is the ezponentiated-HC density with power parameter o+ k+1i and

& (kt1-a) (k) (L1 (1) pjik
wm—ZZ< k )(])([31 )(a—j—l)(a+k+i)F(a)ﬁ“'

=0 i=0

Proof. Based on the formula given at
http:// functions.wolfram.com/ ElementaryFunctions/Log/06/01/04/03/, we can write

(— log [1— 27! tan_l(ar/a)])ai1 =

oo —a) (DI pik . atk—1
(3.28) (a—1)2<k+; >Z()(J)p [2 tan ™t @/o)] "
k=0

2 a1

Here, the constants p;, (for j > 0 and k > 1) can be determined recursively by

e}

pik =kt D [k=m(+ D]em pjk-m,

m=1
where pjo =1 and ¢, = (1) (k+1)7"

Now, using the generalized binomial series expansion
-1 -1 51 = (51 2 -1 ‘
(3.29) [1 — 27 tan (x/U)] = Z (=" ? [f tan (w/a)] ,
P i 7r

where (¢) =a(a—1)--(a—i+1)/il.
The result (3.27) follows immediately by substituting (3.28) and (3.29) in (2.2). O

Note that the second summation in w; ; is finite whenever ﬁfl is a natural number.

4. Order statistics

Order statistics make their appearance in many areas of statistical theory and practice.
Suppose X1,..., X, is a random sample from the GHC distribution. Let X;., denote
the 7th order statistic. Then, the pdf of X;., can be expressed as

n!

i = —— Flo) ' {1 = Fz)}""
finl@) = Gy {@ F@ T {1 F@)
n! = i fn—i pi
= Y (1) F(z) ™
(i — D)l(n—1)! ;( ) ( j >f(x) (z)
Inserting (2.1) and (2.2) in the last equation and after some algebra, we obtain

n—i

_ _ (=)' T(n+1)(i+5)"" 2 P
fz:n(ﬂf) = Jz:;) i F(j-}—l)r(n—i—j-‘rl){FUF(O&)ﬂO‘ [1+($/0') ]

< (—tog 1 =27 1 (w/e)])" 1= 20 tan~ @/

'y(a, —B7og [1 —27! tan_l(a:/a)D e
: I(a)
Hence,
(4.1) fin(@) =D 0 farp (i) (),

=0
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where
(=1)'T(n+1)

(+HNIF@OIG+1)ln—i—j+1)
and f, g,(j+i)(2) is the exponentiated-GHC density with parameters (a, B, (i + j))

Equation (4.1) is the main result of this section. It reveals that the pdf of the GHC
order statistics is a linear combination of exponentiated-GHC densities. So, several math-
ematical quantities of these order statistics like ordinary and incomplete moments, fac-
torial moments, mgf, mean deviations and several others can be derived from those
quantities of the GHC distribution.

ni =

5. Estimation and information matrix

In this section, the method of maximum likelihood estimation is used to estimate
the GHC distribution parameters. The maximum likelihood estimates (MLEs) enjoy de-
sirable properties that can be used when constructing confidence intervals and regions
and deliver simple approximations that work well in finite samples. The resulting ap-
proximation for the MLEs in distribution theory is easily handled either analytically or
numerically. Let x1,...,z, be a sample of size n from the GHC distribution given by
(2.2). The log-likelihood function for the vector of parameters © = (a,,0) can be
expressed as

2 ~ 2
! = nlog{m} _;IOg[l‘F(xi/U)]

+(a—1) i log ( —log [1— 277! tanfl(xi/a)D

+ (% - 1) i log [1 =27 " tan™" (z:/0)]

The components of the score vector J(©) are given by

Jo = —niy(a)—nlogp+ Z log ( — log [1 —on ! tanfl(ggi/a)]),
i=1
Js = —napt-p7>? Z log [1 — 27! tanfl(xi/a)],
i=1
J, = —no 4207 Z x? 1+ (mi/a)2]_l
i=1

e {z tan~V(ws/0) [1 = 27" tan~(z1/0)] }

— —log [1 — 27~ tan~'(zi/0)]

1 PP T anill(xi/a)
a3 e e

i=1

Setting these equations to zero and solving them simultaneously yield the maximum like-
lihood estimates (MLEs) of the model parameters. Numerical methods can be used to
obtain the MLE ©. For example, the Newton-Raphson iterative technique could be ap-
plied to solve the likelihood equations and obtain 5) numerically. For interval estimation
of the parameters, we require the 3 x 3 observed information matrix J(©) = {—J,s}
(for r,s = a, 8,0) given in Appendix A. The observed information matrix can be de-
termined numerically from standard maximization routines, which provide the observed
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information matrix as part of their output; e.g., one can use the R functions optim or
nlm, the Ox function MaxBFGS, the SAS procedure NLMixed, among others, to compute
J(©) numerically.

Under standard regularity conditions, the multivariate normal Ns(0, J(©)~") distri-
bution can be used to construct approximate confidence intervals for the model param-
eters. Here, J(é) is the total observed information matrix evaluated at ©. Then, the
100(1 — ¥)% confidence intervals for «, S and o are given by & + z,« /5 x \/var(&),

B8+ Zor j2 X \/var(B) and & + Zyx 2 X \/var(g), respectively, where the var(-)’s denote

the diagonal elements of J((:))*1 corresponding to the model parameters, and z,-/; is
the quantile (1 —~*/2) of the standard normal distribution.

The likelihood ratio (LR) statistic can be used to check if the GHC distribution is
strictly “superior” to the HC distribution for a given data set. The testof Hy: a = =1
versus Hy : Hy is not true is equivalent to compare the GHC and HC distributions and
the statistic w = —2 log A = 2{{(a, B\, o) —£(1,1,5)}, where @, B\ and ¢ are the MLEs
under H; and & is the MLE under Hy, is asymptotically follows chi-square distribution
with 2 degrees of freedom. Similarly, the test of Hy : o« = 1 versus H; : o # 1 is
equivalent to compare the GHC and exponentiated HC distributions with the statistic
w = 2{4(a, B, 5) — £(1,3,5)}, where @, B and & are the MLEs under H; and § and &
are the MLEs under Hy. In this case w is asymptotically follows chi-square distribution
with 1 degrees of freedom.

5.1. Simulation study. We evaluate the performance of the maximum likelihood method
for estimating the GHC parameters using Monte Carlo simulation for a total of twenty
four parameter combinations and the process is repeated 200 times. Two different sam-
ple sizes n = 100 and 300 are considered. The MLEs and the standard deviations of the
parameter estimates are listed in Table 1. The MLEs of o, 8 and ¢ are determined by
solving the nonlinear equations U(©) = 0. From Table 1, we note that the ML method
performs well for estimating the model parameters. Also, as the sample size increases,
the biases and the standard deviations of the MLEs decrease as expected.
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Table 1: MLEs and standard deviations for various parameter values.

Sample size  Actual values Estimated values Standard deviations
n « B o a B G & B G
100 05 05 1 0.5267 0.4094 3.6791  0.0060 0.0272 0.6534
0.5 1.0 2 0.5212 0.9324 2.9044 0.0080 0.0308 0.4838
05 15 1 0.5315 1.4004 1.1285  0.0085 0.0329 0.0556
0.5 2.0 2 0.5168 1.9218 2.36179 0.0100 0.0426 0.1342
1.0 0.5 1 1.0416  0.4409 2.2191 0.0164 0.0176 0.4728
1.0 1 2 1.0741  0.9578 2.1989 0.0605 0.0186 0.0939
1.0 15 1 1.3303 1.4166 1.0224 0.1236 0.0274 0.0513
1.0 20 2 1.4304 1.8939 1.9073 0.1399 0.0424 0.1084
1.5 05 1 1.7037 0.4683 1.3396 0.0992 0.0111 0.3024
1.5 1.0 2 2.2656 0.9118 2.0189 0.2288 0.0194 0.1082
1.5 1.5 1 2.1739 1.3711 0.9861 0.1726 0.0315 0.0570
1.5 2.0 2 21626 1.8253 2.1688 0.1758 0.0455 0.2187
1
2
1
2
1
2
1
2
1
2
1
2

300 0.5 0.5 0.5070 0.4529 1.7515 0.0020 0.0100 0.1402
05 1 0.5040 0.9787 2.1165 0.0022  0.0095 0.0311
0.5 1.5 0.5075 1.4764 1.0328 0.0027 0.0124 0.0153
0.5 2.0 0.5014 1.9610 2.1106 0.0026 0.0138 0.0291
1.0 0.5 1.0140 0.5001 1.0231 0.0052 0.0047 0.0159
1.0 1.0 1.0120 0.9854 2.0763 0.0069 0.0061 0.0299
1.0 1.5 1.0196  1.4891 1.0263 0.0077  0.0075 0.0148
1.0 2.0 1.0281 1.9801 2.0308 0.0084 0.0107 0.0314
1.5 0.5 1.5326  0.4970 1.0183 0.0104 0.0036 0.0157
1.5 1.0 1.6108 0.9887 1.9955 0.035 0.0059 0.0381
1.5 1.5 1.7063  1.4497 0.9605 0.0479 0.0109 0.0193
1.5 2.0 1.6754  1.9499 1.9397  0.0335 0.0160 0.0475

6. Applications

In this section, we provide two applications to real data to illustrate the importance of
the GHC distribution. The model parameters are estimated by the method of maximum
likelihood and three well-recognized goodness-of-fit statistics are calculated to compare
the GHC distribution with other competing models.

The first data set represents the annual food discharge rates for the 39 years (1935-
1973) at Floyd River located in James, Iowa, USA. The Floyd River data were reported
by Mudholkar and Hutson [15] and Akinsete et al. [2]. The second data set consists of
the waiting times between 65 consecutive eruptions of the Kiama Blowhole (da Silva et
al. [10]; Pinho et al. [17]). The Kiama Blowhole is a tourist attraction located nearly
120km to the south of Sydney. The swelling of the ocean pushes the water through a
hole bellow a cliff. The water then erupts through an exit usually drenching whoever is
nearby. The times between eruptions of a 1340 hours period starting from July 12th of
1998 were recorded using a digital watch. Both data sets are reported in Appendix B.

We fitted the GHC model to the three data sets and compared it with other models:
the BHC, KHC, EHC and HC. The measures of goodness-of-fit statistics including the
log-likelihood function evaluated at the MLEs (—log/), Akaike information criterion
(AIC) and Kolmogrov-Smirnov (K-S) are computed to compare the fitted models. In
general, the smaller the values of these statistics, the better the fit to the data. The
required computations are carried out using the R-software.
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Table 2 lists the MLEs and their corresponding standard errors (in parentheses) of
the model parameters for data sets 1 and 2. The numerical values of the model selection
statistics — log Z, AIC and K-S, and p-values are listed in Table 2. In general, the results
from Table 2 indicate that the GHC distribution provides the best fit among the BHC,
KHC, EHC and HC models. The histogram of the data sets 1 and 2, and the estimated
pdfs and cdfs of the GHC distribution and its competitive models are displayed in Figures
3 and 4. These Figures support the results in Table 2. To compare the GHC distribution
with its sub-models, EHC and HC distributions, the LR test is used for both data sets
1 and 2. When comparing the fits between GHC and EHC (HC) for data 1, w =
4.2902 (w = 6.5608) with p-value—0.0383 (p-value—0.0376). For data 2, w = 11.0436
(w = 12.6044) with p-value=0.0009 (p-value=0.0018). These values suggest that GHC
performs significantly better for both data sets when comparing it with the sub-models
EHC and HC distributions.

7. Concluding remarks

In this paper, we propose a generalization of half-Cauchy distribution called the
gamma-half-Cauchy distribution. We study some properties of gamma-half Cauchy dis-
tribution including quantile function, moments, mean deviations and Shannon entropy.
The maximum likelihood method is used for estimating the model parameters and the
observed information matrix is analytically derived. We fit the gamma-half-Cauchy to
two real data sets to demonstrate its usefulness. The new model provides consistently
better fit than other competing models.

1.0

S |0 oo KHC
g | EHC o |
87y HC °
S
| © |
N S
= -
5 o 3
o é7 < |
g S
S

0.2

s
8 i S _ °
g SR |
2 T T T T © T T T T T
0 20000 40000 60000 80000 0 20000 40000 60000 80000
X X
(a) Estimated pdfs (b) Estimated cdfs

Figure 3. Plots of the estimated pdfs and cdfs of the GHC, BHC,
KHC and EHC models for data set 1.

Appendix A

The observed information matrix for the parameter vector © = (a, 8,0)" is given by
o e (e
T 9eoser R
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(a) Estimated pdfs
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Figure 4. Plots of the estimated pdfs and cdfs of the GHC, BHC,
KHC and EHC models for data set 2.

whose elements are

Joo = —n¥'(a),
Jap = —% ;

Jas = 7T20'2 sz;{xl
T = G AR
Joo = 7T02252 ;

“Y(zi/o) [1—27"" tan " (z/0)]

—log [1 — 27~ tan~!(z:/0)]

x; tan~Y(z,/0)

[1—271 tan™!(w:/0)]

! tan~! (xl/a)} ,

|

N
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_ 2 = 4z} B 6 x?
Joo = 5t ;{06 14 (z:/0)2? o1+ (mi/a)ﬂ}
1 " 4a; tan~ (2;/0)
- (E - 1) ; { o3[l —27-1 tan~!(z/0)]
422 tan™ Y (24/0)? 222 tan" " (24/0)
+7(r2 o {)[1 2 tan Ha/o)] ) mo {1 - 27 tanl(xi/o)]}}
—(a—1

- 4x; tan_ll(xi/a)

im1 {7r03 log [1 =271 tan™!(w:/0)] (1 — 271 tanfl(mi/a))
Y(@i/o)?
n2ot log {[1 — 27! tan~(z;/0)] }2 {(1 — 271 ta1r1_1(a:i/0))}2
422 tan~ (z;/0)?
m2ot log [1 — 27! tan~" (z:/0)] {(1 — 271 tarﬁl(gti/a))}2

222 tan~ " (2 /0)

422 tan~
_|_

J’_

+ )
motlog [l — 27" tan~(z:/0)] (1 — 271 tanfl(mi/a)) }
P ’ 2
where (a) = dl%;(a) = I;%)) is the polygamma function and v’ (a) = %)1‘2(04) =
% is the trigamma function.

Appendix B

The first data set are: 1460, 4050, 3570, 2060, 1300, 1390, 1720, 6280, 1360, 7440,
5320, 1400, 3240, 2710, 4520, 4840, 8320, 13900, 71500, 6250, 2260, 318, 1330, 970, 1920,
15100, 2870, 20600, 3810, 726, 7500, 7170, 2000, 829, 17300, 4740, 13400, 2940, 5660.

The second data set were reported by professor Jim Irish and can be obtained at
http://www.statsci.org/data/oz/kiama.html. The data are: 83, 51, 87, 60, 28, 95, 8, 27,
15, 10, 18, 16, 29, 54, 91, 8, 17, 55, 10, 35,47, 77, 36, 17, 21, 36, 18, 40, 10, 7, 34, 27, 28,
56, 8, 25, 68, 146, 89, 18, 73, 69, 9, 37, 10, 82, 29, 8, 60, 61, 61, 18, 169, 25, 8, 26, 11, 83,
11, 42, 17, 14, 9, 12.
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Abstract

Survival analysis has become in a common procedure in biomedical re-
searches. Conventionally, the well-known nonparametric Kaplan-Meier
(KM) estimator is used in order to approximate the real survivor curve.
However, in competing risk contexts where more than one failure cause
compete to occur and only one of them is of interest, the direct use
of the Kaplan-Meier statistic does not perform correctly and, in or-
der to obtain a good estimation, it must be adapted. In this work,
via Monte Carlo simulations, the author explores the behavior of the
Kaplan-Meier estimator in a competing risk context. In addition, dif-
ferences between KM and multiple decrement methods are pointed out.
Finally, a real-data problem is used in order to illustrate the situation.
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1. Introduction

Conventionally, survival analysis is devoted to the study of data where the response
of interest is the time required for certain (studied) event, which inevitably happens,
to occur. Main particularities of these studies are: i) on one hand, the distribution of
time is often strongly asymmetric and usual parametric models based on the normal law
do not perform adequately and, 7i) the researcher frequently does not have a complete
knowledge on the time to event for each subject included in the study; he/she knows
that the event does not occur in a period of time but he/she does not know how long
the event is needing to occur. These situations are frequently repeated in the nature;
perhaps the bio-sanitary (the study of time to death in patients with some particular
disease) is one of the most known fields. Of course, there exists a vast literature about
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statistical survival methods, among all, we want to remark the indispensable monograph
of Kalbfleish and Prentice (2002).

Let T be the non-negative random variable representing the failure time of interest,
as is well-known, in survival analysis, there are mainly three different ways to specify
its distribution (see, for instance, Kalbfleish and Prentice (2002)): the survivor function,
the probability density function, and the hazard function. The survivor function stands
for the probability that the event occurs after a fixed value of time, ¢, that is,

(1.1)  S(t) =P{T > t}, 0<1t<oo0.

Note that if F' denotes the standard cumulative distribution function (CDF) for the
random variable T', S(t) = 1 — F(t) (0 < ¢t < o0). Directly, when T is an absolutely
continuous variable, the probability density function (PDF) is defined in the standard
form,

(1.2)  f(t) =d[1 - S@®)]/dt =dF(t)/dt, 0<t<o0.

Obviously, it holds S(t) = ftoo f(u)du. Finally, the hazard function stands for the rate
of that the event occurs instantaneously after the time ¢ when it is known that it does
not happen before ¢; that is,

A(t) = lim P{T <t+h|T > t}/h
h—0

(1.3) = f(t)/S(t) = —dlog(S(¢))/dt, 0<t<oo.
Integrating with respect to ¢ and taking into account that S(0) = 1, it holds the equality
t
(1.4)  S(t) =exp {—/ )\(u)du} =exp{—A(t)}, 0<t<o0.
0

where A(t) = fot A(u)du is known as the cumulative hazard function. Standard analysis of
survival data usually includes the non-parametric Kaplan-Meier (KM) estimator (Kaplan
and Meier (1958) for the survivor curve estimation and the semi-parametric proportional
hazard Cox regression (Cox (1972)) in order to explore possible covariate effects.

Under the usual assumption of independence between time to event and censoring
time, the KM estimator has really good properties (in the Section 2, some properties of
the KM estimator are pointed out); in addition, it has a direct and simple probabilistic
interpretation. However, when the studied event not necessarily happens; i.e., there ex-
ists one (or more) event which is incompatible with the studied one, the KM estimator
overestimated the probability that the event happens. In practice, these situations are
really frequent; for instance, when the studied variable is the time to recurrence of some
disease; obviously, death without recurrence makes not possible the disease relapses or,
when the researcher is interested in the time to death by a particular cause; the death
for other cause is, logically, not compatible with the considered event. In this work, the
author explores the survival curve estimation in the competing risk setting. Particularly,
the advantages of using the multiple decrement (MD) estimator (Aalen (1978)) are inves-
tigated via Monte Carlo simulations (Section 4). From a real problem dataset, in Section
5, the differences between the KM and the MD estimators are pointed out; particularly,
the distribution of the time-free of leukemia in patients with myelodysplasia is analyzed.
Finally, in Section 6, the author presents his conclusions.

2. The Kaplan-Meier estimator

The well-known Kaplan-Meier or product-limit estimator was proposed in 1958 in
one of the most (or the most, depending on the consulted source) cited and popular
statistical paper (Kaplan and Meier (1958)). In that work, the authors proposed a
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non-parametric method for the estimation of the cumulative distribution function from
incomplete observations. The standard mathematical formulation is as follows: let T' =
{Ti,...,Tn} be the times to event and let C = {C4,...,Cn} be the censor times, let F’
and G be the CDFs for the time to event and the censor time, respectively. The observed
times are Z = {Z1,...,Zn} where Z; = min{7},C;} (1 < ¢ < N). In addition, it is
also known what time is really observed; i.e., the final available information are the pairs
{(Z1,01),...,(ZN,0N)}, where §; = Ir;(Z;) (takes the value 1 if the time to event is
observed and 0 otherwise). Then, the KM estimator for the survivor function is defined
by
N

& hy — O) * (~0,1(Z())
(2.1) SN(t)jlj[l{l— N1 }
where for j € 1..., N, the pairs (Z(;),d(;)) satisfy that Z) < Z) < -+ < Z(n). In
this context, the Kaplan-Meier is the maximum-likelihood estimator. In addition, their
properties have been deeply studied; asymptotic normality can be derived from the work
of Csorgd (1996) in which, under usual and mild assumptions, the so-called Hungarian
embeddings (Komlos, Major and Tusnady (1975)) and the law of the iterated logarithm
are generalized to the random right censorship case. Although some alternative methods
have been proposed (see, for instance Peto et al. (1975) or Simon and Lee (1982)), the
variance of the KM estimator is usually approximated from the Greenwood’s formula
(Greenwood (1926)),

N
VS (] =3 3() ]\‘][(*‘X’ﬂt](Z(J)) _
j=1 N - Z]‘:l I—o0,i1(Z(5)
On the other hand, Bitouzé et al. (1999) provided a Dvoretzky-Kiefer-Wolfowitz type
inequality for the Kaplan-Meier estimator; in particular, they established that there exists
an absolute constant K such that,

v {Sup (1= G(®)) - (Sn(t) = S)] > A/\/ﬁ} <250 N
teR
for any positive value \. Figure 1 depicts the Kaplan-Meier estimation joint with a 95%
confidence band (computed using the Greenwood’s formula), for the time to death (at
left) and the time-free of leukemia (right) for the Myelodysplastic dataset. This dataset
is from a retrospective study that included high-risk patients reported to the Spanish
Group of Myelodysplastic Syndromes Registry (RESMD) between years 2000 and 2013.
This data will be used in order to illustrate the considered problem (see Section 6).
Anyway, interested readers are referred to Bernal et al. (2015) for additional information
about this study. The dataset includes a total of 968 patients (1,273.7 persons-year), 616
of them died during the follow-up. Two-hundred sixty eight patients (27.7%) developed
leukemia during the follow-up and 403 died without leukemia. In spite that, of course,
these 403 patients are not going to develop leukemia anymore, they are considered as
censored for the KM estimator; i.e., their weights are spread among the subjects who are
still at risk.

The Kaplan-Meier estimator, like the traditional empirical estimator for the CDF,
initially assigns to each sample point a weight of 1/N (N stands for the sample size).
The main particularity is that, at the time that one subject is censored, KM assumes
that its (future) behavior will be similar to the behavior of subjects who are still at risk;
therefore, these subjects inherit the weight of the censored subject. Suppose that the
minimum time Z(;) corresponds with an event, at this time KM produces a jump of
1/N, the second time Z(5) is a censored subject; then, subjects who are still in the study
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Figure 1. For the Myelodysplastic dataset: at left, Kaplan-Meier esti-
mation for the time to death, at right, Kaplan-Meier estimation for the
leukemia-free time. In both panels, 95% confidence bands are included

(in gray).
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Table 1. Kaplan-Meier  contruction for the case de-
scribed in the manuscript: considered sorted sample is:

{(2(1)7 1)7 (Z(2)70)7 (Z(3)7 1)7 e 7(Z(N)>5(N))}

Time at risk ¢ survival
0 N 1

Zoy N1 1 [1/N]

Zay N—-1 0 1—[1/N]

Z(3) N-2 1 1-[1/N]=[(1/N)+1/N(N —2)]

(N — 2) inherit its weight (1/N); therefore the new weight of these N — 2 subjects will
be 1/N + 1/N(N — 2). Hence, if the third observed time, Z(3), is again an event, KM
will produce, at time Z3), a jump of 1/N + 1/N(N —2). Table 1 depicts schematically
the KM construction.

3. The competing risk context

There are many real situations in which the event of interest does not always occur;
i.e., there exist other events, incompatible with the studied one, which can happen before.
The study of the time to death for some particular cause; death for other causes makes
not possible the studied event (see, for instance, Verduijn et al. (2011)), the study of the
time-free of one particular disease; death for other causes makes impossible the relapse
of the considered disease (Boo et al. (2015)), or the study of the transplanted organ



1165

Figure 2. Usual competing risk schema. Transitions from the state
9Start to k the different events are the quantities of interest.

Tevent 1
[ °sStart 2EVent 2
REVENE R

survivor; death of patient does not permit the study of the organ failure (Martinez-
Camblor et al. (2015)) are just a few examples of the so-called competing risk context.
Of course, there exists a vast literature on this topic; see, for instance, Tiatsis (1998)
and references therein and Andersen et al. (2002) for the multi-state models approach
to competing risk, but our purpose is not to make a revision. Rather, we discuss the
problem of the Kaplan-Meier estimator on this context. Figure 2 depicts the standard
schema for the competing risk setting; Po; = Po,i(t) = P{T; < t} where T; is the time
required to achieve the jth event, with j € 1,...,k are the main quantities of interest.

In the competing risk contests, the sample must provide information about the ob-
served time and on what event has been really observed. Therefore,
Z; =min{Cj,T1j,..., Tk ;} (T3; (1 < j < N) is the time that the subject 7 would need
to achieve the event (state) i) and §; = ¢ with ¢ € 0,1, ..., k stands for the observed event
for the subject j (0 when no event has still happened, i.e., at the final of the study, the
subject is still at risk; censored subjects). In order to study the distribution of the time
to one particular event (for instance, the ith one, with i taking any value in 1,... k), a
frequent -and wrong- practice is to consider the rest of the events as censored and then, to
estimate the distribution of interest from the Kaplan-Meier estimator. The main issues
of this procedure are:

i) Although the independence assumption between the times to event and the time
to censoring is plausible, usually, the times to the different events involved in
a competing risk setting are strongly dependent. Notice that a patient died
before having a relapse, is not going to relapse anymore; the censorship provides
information about the considered even. This effect is known as informative
censorship.

ii) Due to patients which experiencing a competing event, different to the studied
one, are not going to achieve, directly, the event of interest anymore (they are
not going to do the transition from “Start to the studied event), subjects which
are still at risk; i.e., those which can still experimenting the event of interest,
must not inherit their weights.

iii) In the standard survival analysis, the probability of survival and the probability
of event are equivalent quantities (1 = P{T" > t} + P{T < t}). In the competing
risk context, there are more involved events and the fact that a subject does not
suffer the studied event does not imply that this subject is free of events.
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In this context, it holds the equality,
1=P{T >t} +P{T <t}
(3.1) =P{T >t} +P{T <tANd=1}+ -+ P{T <tAJ=k}.

The quantities P{T < t Ad = i} (1 < i < k) are the cumulative incidence functions.
However, Andersen, Abildstrom and Rosthoj (2002) claimed that: ’this is, in fact, a
rather unfortunate name for this quantity as it may give the incorrect impression that
it is a cumulative intensity’. Alternative proposed names are marginal or crude failure
probabilities.

4. Multiple decrements method

The nonparametric Kaplan-Meier estimator can be adapted for the competing risk
setting in the so-called multiple decrement (MD) method. The considered estimator for
the general transition probabilities was proposed by Aalen (1978). However, and in spite
that different papers have tried to popularize this procedure (see, for instance, Martinez-
Camblor et al. (2009) and references therein) it is still little used by practitioners and
it is unknown by the physicians. The MD procedure assumes that the probability that
two different events occur simultaneously is zero (i.e., P{T; =T;} =0for 1 <i#1<k).
From this proviso, Py, = P{T < t, § = I} (transition probability between the states 0
and [, 1 <1 < k) is equivalent to the probability that all the involved times were greater
or equal to ¢t and the studied one was exactly t, that is

(41) Po= /t S(u) A (u)dt = /t S(u)dA;(u),

where \;(u) is the hazard function referred to event [. A direct plug-in method using
the KM estimator for estimate S(u), and the Nelson-Aalen estimator to estimate the
cumulative incidence function, let us to obtain the MD estimator by

@2 D)= Y " ] (1 . E;V> |

tj<t 7 t;<t

where 7 ; (1 <1< N) and N; are the number of subjects which have suffered the event
l and which were at risk just before of moment ¢; (1 < j < N), respectively. Of course,
theoretical properties of the MD;(+) estimator have been deeply studied. In Aalen (1978)
is proved its uniform consistency (with rate log(N) - N~1/2?) and its weak convergence to
an adequate Gaussian process (with the usual rate N*1/2). Recently, Njamen-Njomen
and Ngatchou-Wandji (2014) developed adapted stochastic processes to the Nelson-Aalen
and Kaplan-Meier estimators.

In order to illustrate the problem we simulate a three independent times from an
exponential law (with mean 1): Ty, T»,; and Cj, in ten subjects (1 < j < 10). We
compute Zj = miH{TLj,TQ’j,C]‘} and define (Sj = i, where i = 1 if Zj = Tl,j: i = 2if
Z;=Tsjand 6; =01if Z; = C; (1 < j <10). Table 2 depicts the computed estimations
by using the KM and the MD methods for the events 1 and 2. Real values (for both
events, they are the CDF of an exponential distribution with mean 1) are also reported.
Note that in this case, all involved subdistributions are the same. Figure 3 depicts the
curves. Since the KM considers censored all events different to the studied one, its ’jumps’
are frequently bigger than the MD ones. Obviously, for a fixed point of time ¢, the MD
estimator considers at risk only those subjects which at this time, have not suffer any
event.
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Table 2. Results for one simulation example of competing risk setting.
Sample size was 10 and two different events were simulated (6 = 1,2;
0 = 0 stands for censored data). Direct Kaplan-Meier (KM) and its
modification for the multiple decrement (MD). Real values are the same
for both considered events.

Subjects KM MD

Time at risk 4 Real 1 2 1 2

0.021 10 2 0.010 0.000 0.100 0.000 0.090
0.091 9 0 0.043 0.000 0.100 0.000 0.090
0.164 8 0 0.076 0.000 0.100 0.000 0.090
0.171 7 1 0.079 0.143 0.100 0.110 0.090
0.235 6 0 0.105 0.143 0.100 0.110 0.090
0.476 5 0 0.189 0.143 0.100 0.110 0.090
0.516 4 2 0.202 0.143 0.325 0.110 0.234
0.779 3 0 0.271 0.143 0.325 0.110 0.234
0.828 2 2 0.281 0.143 0.662 0.110 0.379
1.492 1 0 0.388 0.143 0.662 0.110 0.379

Figure 3. Referred to the data shown in Table 2. At left, real (gray),
KM and MD estimations for the event 1. At right, real (gray), KM
and MD estimations for the event 2.
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5. Monte Carlo simulation study

In order to study the behavior of the direct Kaplan-Meier (KM) and the Multiple
decrement (MD) estimators on the competing risk setting, a Monte Carlo simulation
study was carried out. The time of studied event, T = exp{D1}, where D, was drawn
from a normal distribution with mean p (values of —1/2 and 1/2 were considered) and
variance one; the time to the competing risk event, 7> = exp{D2}, with D, generated
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Table 3. Mean + standard deviation of the 1,000 Monte Carlo itera-
tions for the quantity 100-7~ ' [7 [S(t) — S(t)|dt where S(t) is the real
subdistribution function and S'(t) its estimation based on KM and on
MD estimators and 7 is the maximum observed time for pn = —1/2.

p=0.0 p=0.25

N c KM MD KM MD
50 10 7.06 £2.39 2.10 £1.39 590 £2.26 1.79 £ 1.19
-1/4 7.88 £3.72 3.85 +£2.20 6.85 £3.40 3.55 +1.99
-1/2  7.99 £ 3.87 4.19 + 2.37 7.15 +3.67 4.11 + 2.28
250 10 5.55 £1.09 0.62 £ 0.41 435 £0.96 048 + 0.33
-1/4 6.67 £1.52 1.23 +£0.74 5.67 = 1.42 1.15 + 0.65
-1/2 6.86 £1.85 1.46 4+ 0.90 5.76 £ 1.73 1.37 £ 0.79
1000 10 4.60 £0.81 0.23 +£0.17 3.47 £0.72  0.16 £ 0.11
-1/4 6.12 £0.91 0.48 +£0.29 5.01 £0.81 0.45 £ 0.26
-1/2 6.27 £0.97 0.57 + 0.33 5.24 £ 0.90 0.54 £ 0.31

p=0.75 p = —0.50

50 10 317 +£144 1.17 £0.81 9.84 £290 3.12+1.85
-1/4  4.69 £2.67 3.17 £1.81 10.03 +3.99 4.43 £ 2.48
-1/2 544 £3.17 3.72 £1.98 10.16 +4.47 5.03 £ 2.71
250 10 211 £0.62 0.29 £0.21 879 £1.14 1.05 + 0.68
-1/4 3.24 £1.08 1.00 £+ 0.59 9.23 £1.70 1.53 £0.91
-1/2 3.52 £1.31 1.24 4+ 0.66 9.36 £2.04 1.82 + 1.03
1000 10 1.55 £ 0.38 0.10 £ 0.07 812 £0.78 0.42 + 0.27
-1/4 291 £0.59 0.39 £+ 0.22 899 £0.94 0.66 = 0.38
-1/2 296 £ 0.69 0.49 + 0.26 898 £0.99 0.76 + 0.44

from a standard normal distribution and E[D; - D3] = p (values of 0, 1/4, 1/2 and
3/4 were considered). Finally, the censoring time, C' = exp{N}, where N was drawn,
independently, from a normal distribution with mean ¢ (values of 10, -1/4 and -1/2
were considered) and variance one. The (simulated) observed data were the pairs (Z, §)
where Z = min{C,Th,To} and § =i i =0if Z =C,i=1if Z =Ty, and i = 2 if
Z = T). Mean + standard deviation of the average error, 100 - 7~ [ |S(t) — S(t)|d¢
with 7 = maxi<;<n Z; based on 1,000 Monte Carlo iterations are reported (/N stands for
the sample size, S(t) denotes the real subdistribution function and S(t) its estimation).

Table 3 depicts the observed results when p = —1/2. In this case, the probability
that the considered event happens is: P{7T1 < T>} = 0.638, 0.658, 0.761 and 0.611 for
p =0,1/4,3/4 and —1/2, respectively. The expected censorship percentages were 0%
(¢ = 10); 32.6%, 34.5%, 40.1% and 28.3% (c = —1/4) for p = 0, 1/4, 3/4 and —1/2,
respectively; and 39.7%, 41.9%, 47.2% and 37.5% (c = —1/2) for p = 0, 1/4, 3/4 and
—1/2, respectively. The MD method clearly obtained better results than KM.

Table 4 shows the coverage percentages and mean+sd (standard deviations below 0.00
were denoted by 0.01) of the length of the 95% symmetric confidence intervals (computed
by using the naive bootstrap method) for the subdistribution function at times ¢t = 1/2
and ¢t = 1 using the KM and MD estimators. Observed results endorses the previous
obstained ones: KM is not an estimator for the subdistribution function, especially, for
larger censorship percentages. The DM estimator works adequately although it shows
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Table 4. Coverage percentages and mean+sd (standard deviations be-
low 0.00 were denoted by 0.01) of the length of the 95% symmetric
confidence intervals (computed by using the naive bootstrap method
with 200 iterations) for the subdistribution function at times t = 1/2
and ¢t = 1 using the KM and MD estimators when p = —1/2.

p=00 t=1/2 t=1

N c KM MD KM MD

50 10 87.3% 0.289 £ 0.02 91.6% 0.237 + 0.02 55.0% 0.312 + 0.04 87.3% 0.234 + 0.02
-1/2 90.8% 0.348 4 0.04 91.4%  0.265 + 0.02 75.4% 0452 +0.10 85.1% 0.266 + 0.02

1000 10 20.0% 0.065 & 0.01 92.9% 0.059 + 0.01 5.1% 0.070 £ 0.01 93.6% 0.061 = 0.01
-1/2 37.1% 0.077 +£0.01 96.0% 0.069 + 0.01 3.2% 0.105 £ 0.01 94.9% 0.080 %+ 0.01
p=0.75 t=1/2 t=1

50 10 92.4% 0.275 £ 0.02 92.8% 0.238 £ 0.02 77.4% 0.285 £ 0.03 91.2% 0.233 + 0.02
-1/2 91.9% 0.325 £ 0.03  92.3%  0.266 + 0.02 83.3% 0.426 £ 0.08 89.5% 0.869 + 0.03

1000 10 71.2% 0.062 + 0.01 93.9% 0.059 + 0.01 1.4%  0.065 + 0.01 93.0% 0.961 + 0.01
-1/2 76.6% 0.073+0.01 95.1% 0.069 + 0.01 1.7% 0.095 + 0.01 93.5% 0.083 + 0.01
itself a little bit unconservative for the largest censorship percentage (¢ = —1/2 and
t=1).

Table 5 is similar to Table 3 for ;4 = 1/2. In this case, the probability that the con-
sidered event happens is: P{T} < 7>} = 0.361, 0.341, 0.239 and 0.387 for p =0, 1/4, 3/4
and —1/2, respectively. The expected censorship percentages were 0% (for ¢ = 10); for
¢ = —1/4, approximately 47.2%, 49.3%, 54.3% and 43.5% for p =0, 1/4, 3/4 and —1/2,
respectively; and for ¢ = —1/2, 54.8%, 56.7%, 61.2% and 51.5% for p = 0, 1/4, 3/4
and —1/2, respectively. The observed results were similar to the ones observed in the
Table 3. Notice that, due to, in this case, the effect of the competing event was higher
(P{T1 < T2} < 1/2), the difference between the MD and the KM methods was bigger.

Finally, Table 6 is similar to Table 4 when u = 1/2. Although the KM estimator
obtained better results, observed results are in the same way to the previous one and
endorse the conclusions.

6. Real-world problem: the Myelodysplastic data

As has been claimed above, competing risk appears frequently in biomedicine re-
searches, in fact, it is more a rule than an exception. The study of a specific cause
of death and the time-free of disease are, probably, the most repeated examples. The
main objectives of this section are the estimation of the time-free of leukemia and the
time to death without leukemia in a cohort of patients with Myelodysplastic syndromes.
The Myelodysplastic data was used with this goal. This dataset has been previously
introduced in the Section 2 and were collected by the Spanish Group of Myelodysplastic
Syndromes Registry (RESMD). Remember that a total of 968 patients (1,273.7 persons-
year) were finally included in the study. There were 603 males (62.3%) and 365 females
(37.7%); the median age at diagnosis was of 72.8 (ranged between 63.5 and 79.1) years.
Two-hundred sixty eight patients (27.7%) developed leukemia during the follow-up and
403 died without leukemia. Figure 4 depicts a flowchart for the Myelodysplastic data.
Interested readers are referred to Bernal et al. (2015) for complete information about
the cohort and the problem.

By using the KM estimator and assuming as censored those events different to the
studied one, the median time for developing leukemia was 3.37 years and, during the
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Table 5. Mean + standard deviation of the 1,000 Monte Carlo itera-
tions for the quantity 100-7~ ' [7 [S(t) — S(t)|dt where S(t) is the real
subdistribution function and S'(t) its estimation based on KM and on
MD estimators and 7 is the maximum observed time for p = 1/2.

p=0.0 p=0.25

N c KM DM KM MD
50 10 6.03 £1.96 1.16 £ 0.81 5.12 + 1.82 0.96 + 0.70
-1/4 6.30 £ 3.57 2.67 £ 1.72 5.93 £ 3.18 2.21 £+ 1.34
-1/2 6.38 £3.68 2.78 £ 1.75 5.80 4+ 3.48 2.52 + 1.41
250 10 529 4+0.99 0.34 £0.24 4.34 £ 0.88 0.28 £ 0.20
-1/4 599 £ 1.77 0.92 £+ 0.55 5.06 = 1.67 0.83 4+ 0.48
-1/2 5.86 £2.08 1.06 £+ 0.61 5.01 £2.01 1.02 + 0.61
1000 10 4.58 £0.71 0.13 £ 0.09 3.60 £ 0.66 0.09 £ 0.07
-1/4 592 £0.99 0.38 +£0.23 5.04 £0.94 0.35 +0.21
-1/2 577 +£1.14 0.48 £ 0.27 5.07 £ 1.11 0.42 + 0.25

p=0.75 p = —0.50

50 10  3.41 £1.49 0.56 £ 0.43 8.38 £2.19 1.68 £ 1.08
-1/4  4.05 £2.59 1.71 +£1.00 7.76 £ 3.55 2.80 + 1.59
-1/2 420 £2.90 1.99 +1.23 7.78 £3.79 3.08 £ 1.70
250 10  2.76 £0.72 0.16 £ 0.12 6.43 £1.01 0.45 £ 0.32
-1/4 3.35 £1.59 0.63 £+ 0.38 7.93 £1.03 0.59 £+ 0.40
-1/2 3.30 £1.80 0.80 4+ 0.47 7.82 £2.13 1.25 £ 0.71
1000 10 2.25 £ 0.51 0.05 £ 0.04 743 £0.73 0.23 £ 0.15
-1/4 327 £0.94 0.26 £ 0.15 8.07 +£0.92 0.48 £+ 0.29
-1/2 3.26 £1.07 0.34 + 0.20 7.98 £ 1.04 0.54 + 0.30

Table 6. Coverage percentages and mean+sd (standard deviations be-
low 0.00 were denoted by 0.01) of the length of the 95% symmetric
confidence intervals (computed by using the naive bootstrap method
with 200 iterations) for the subdistribution function at times t = 1/2
and ¢ = 1 using the KM and MD estimators when p = 1/2.

p=00 t=1/2 t=1
N c KM MD KM MD
50 10 92.0% 0.188 £ 0.04 92.3% 0.150 £ 0.03 76.2% 0.315 £ 0.04 91.8% 0.203 £ 0.02
S1/20 91.2%  0.223 4+ 0.07  90.6%  0.168 & 0.05 87.3% 0.490 + 0.14  89.4%  0.243 + 0.04
1000 10 64.7% 0.043 +0.01 94.2% 0.037 & 0.01 0.2% 0.070 £ 0.01 94.0% 0.051 + 0.01
-1/2 79.1% 0.051 £ 0.01  95.2% 0.044 & 0.01 5.5% 0107 £0.01 95.1% 0.071 + 0.01
p=0.75 t=1/2 t=1
50 10 92.7% 0.137 £0.05 92.6% 0.110 £ 0.04 88.0% 0.240 £0.05 91.6% 0.150 £ 0.03
-1/2 87.1% 0.149 + 0.08 89.6% 0.116 + 0.06 91.2% 0.344 £ 0.16  90.1% 0.189 4 0.07
1000 10 81.9% 0.031 +0.01 92.6% 0.027 & 0.01 11.4%  0.053 +0.01 95.1% 0.039 + 0.01
-1/2 85.5% 0.037 £ 0.01  94.9% 0.032 % 0.01 39.6% 0.080 + 2.26 94.0% 0.055 + 0.01

follow-up, the estimated percentage of leukemia was 60.4%, while this estimation was
only the 34.9% with the MD method (because this percentage does not lead the 50%, it
is not possible to estimate the median time). In the same way, the median time to direct
death (without developing leukemia) was 1.67 years when it was estimated by using the
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Figure 4. Flowchart for the Myelodysplastic data.
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Figure 5. Crude failure probabilities computed by the KM and MD
estimators for the time-free of leukemia, at left, and the time to direct
death (without a previous leukemia), at right for the Myelodysplastic
data.
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KM estimator and 2.93 years when the MD method is employed. Figure 5 depicts the
crude failure probabilities computed by the KM and MD estimators for the time-free of
leukemia, at left, and the time to direct death (without a previous leukemia), at right;
also called transition probabilities from the state 0 to 1 and 0 to 2, respectively.

It is worth to make note that the sum of the two KM estimations can take values
larger than 1. In the considered problem, for ¢ > 3, it does.

7. Main conclusions

Even when there exists a number of papers (see, for instance, the works of Putter et
al. (2007) or Martinez-Camblor et al. (2015) among many others) trying to avoid the
existing gap between theoretical and practical backgrounds, the advances in the statistical
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methodology are still far from the methods commonly used by practitioners. In addition
physicians and basic investigators are usually reluctant to apply in their studies new
statistical techniques even when they may be more appropriate to deal with the problem
at hand. Multi-state and, particularity, competing risk methods are examples of this
situation; in spite of these techniques are the appropriate ones in order to study complex
survival schemes, direct Kaplan-Meier and Cox regression are still the used methodologies
even when some of the necessary assumptions are violated.

This paper considered the Kaplan-Meier estimator behavior in the competing risk
setting. Monte Carlo simulations show that the direct use of the KM estimator produces
serious mistakes in those scenarios where the probability of the competing event is high.
However, in this context, the MD procedure works fine. In particular, under usual
and mild conditions, it is an asymptotically unbiased estimator for the subdistribution
functions (see, Kalb fleisch and Prentice (2002)). In addition, and in spite of MD is
not include in most popular software, this procedure is easy to implement from the
KM outcomes. In addition, several specific and friendly R packages [18] which are
freely available in the CRAN (http://cran.r-project.org/web/package) have been
developed with this goal; for example, Meira-Machado and Roca-Pardinas (2011) describe
the p3state.msm package and give a complete revision about previously existing software.

Finally, it is worth to remark that friendly statistical packages make easy the data
analysis process. Particularly, most of the commercial software includes routines which
perform Kaplan-Meier estimations and proportional hazard Cox models. However, using
these techniques without checking (and, of course, knowing) conditions required for their
correct performing, can produce erroneous conclusions. Remark that, in the practical
problem considered, differences between the estimations provided by the KM and the
MD methods were beyond ten percent.
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1. Introduction

There has been an increased interest in defining new generators or generalized (QG)
classes of univariate continuous distributions by adding shape parameter(s) to a base-
line model. The extended distributions have attracted several statisticians to develop
new models because the computational and analytical facilities available in program-
ming softwares like R, Maple and Mathematica can easily tackle the problems involved
in computing special functions in these extended models. Several mathematical prop-
erties of the extended distributions may be easily explored using mixture forms of the
exponentiated-G (“exp-G” for short) distributions. The addition of parameter(s) has
been proved useful in exploring skewness and tail properties, and also for improving the
goodness-of-fit of the generated family. The well-known generators are the following:
beta-G by Eugene et al. [15] and Jones [29], Kumaraswamy-G (Kw-G) by Cordeiro
and de Castro [10], McDonald-G (Mc-G) by Alexander et al. [1], gamma-G type 1 by
Zografos and Balakrishnan [53] and Amini et al. [6], gamma-G type 2 by Risti¢ and
Balakrishnan [44], odd-gamma-G type 3 by Torabi and Montazari [50], logistic-G by
Torabi and Montazari [51], odd exponentiated generalized (odd exp-G) by Cordeiro et
al. [12], transformed-transformer (T-X) (Weibull-X and gamma-X) by Alzaatreh et al.
[3], exponentiated T-X by Alzaghal et al. [5], odd Weibull-G by Bourguignon et al.
[7], exponentiated half-logistic by Cordeiro et al. [13], logistic-X by Tahir et al. [47],
T-X{Y}-quantile based approach by Aljarrah et al. [2] and T-R{Y} by Alzaatreh et al.
[4]-

This paper is organized as follows. In Section 2, we define the beta odd log-logistic
generalized (BOLL-G) family. Some of its special cases are presented in Section 3. In
Section 4, we derive some of its mathematical properties such as the asymptotics, shapes
of the density and hazard rate functions, mixture representation for the density, quantile
function (qf), moments, moment generating function (mgf), mean deviations, explicit
expressions for the Rényi and Shannon entropies and order statistics. Section 5 deals
with some characterizations of the new family. Estimation of the model parameters and
simulation using maximum likelihood and the method of minimum spacing distance are
discussed in Section 6. In Section 7, we illustrate the importance of the new family by
means of two applications to real data. The paper is concluded in Section 8.

2. The odd log-logistic and beta odd log-logistic families

The log-logistic (LL) distribution is widely used in practice and it is an alternative
to the log-normal model since it presents a hazard rate function (hrf) that increases,
reaches a peak after some finite period and then declines gradually. Its properties make
the distribution an attractive alternative to the log-normal and Weibull models in the
analysis of survival data. If T has a logistic distribution, then Z = €' has the LL
distribution. Unlike the more commonly used Weibull distribution, the LL distribution
has a non-monotonic hrf which makes it suitable for modeling cancer survival data.

The odd log-logistic (OLL) family of distributions was originally developed by Gleaton
and Lynch [18, 19]; they called this family the generalized log-logistic (GLL) family. They
showed that:

— the set of GLL transformations form an Abelian group with the binary operation of
composition;

the transformation group partitions the set of all lifetime distributions into equivalence
classes, so that any two distributions in an equivalence class are related through a GLL
transformation;

either every distribution in an equivalence class has a moment generating function, or
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none does;

— every distribution in an equivalence class has the same number of moments;

— each equivalence class is linearly ordered according to the transformation parameter,
with larger values of this parameter corresponding to smaller dispersion of the distribution
about the common class median; and

— within an equivalence class, the Kullback-Leibler information is an increasing function
of the ratio of the transformation parameters.

In addition, Gleaton and Rahman obtained results about the distributions of the
MLE’s of the parameters of the distribution. Gleaton and Rahman [20, 21] showed
that for distributions generated from either a 2-parameter Weibull distribution or a 2-
parameter inverse Gaussian distribution by a GLL transformation, the joint maximum
likelihood estimators of the parameters are asymptotically normal and efficient, provided
the GLL transformation parameter exceeds 3.

Given a continuous baseline cumulative distribution function (cdf) G(z;€) with a
parameter vector &, the cdf of the OLL-G family (by integrating the LL density function
with an additional shape parameter ¢ > 0) is given by

G(z:€)/G(x;€ c—1 Le\e
2.1)  Forra() :/ DL U .1 ) M
0 (1+19)2 G(z;€)c + G(z; )
If ¢ > 1, the hrf of the OLL-G random variable is unimodal and when ¢ = 1 it
decreases monotonically. The fact that its cdf has closed-form is particularly important
for analysis of survival data with censoring.

We can write
o log [F(w;€)/F(a;€)]
log [G(x; €)/G(x; €)]
Here, the parameter c represents the quotient of the log-odds ratio for the generated and
baseline distributions.

and G(x;€) =1 — G(x;¢).

The probability density function (pdf) corresponding to (2.1) is

2l c—1
cg(z;€) {G(2:€) G(x;€)}
— CE—
{G(z;6)° + G(x:€)°}
In this paper, we propose a new extension of the OLL-G family. Based on a baseline

cdf G(x;€) depending on a parameter vector &, survival function G(z;€) = 1 — G(x;€)
and pdf g(x; &), we define the cdf of the BOLL-G family of distributions (for x € R) by

. 1 G(z;6)° ,
(2.3) F(a) = F(z;0,b,¢,6) = 5o B (G(x; PR b),
where a > 0, b > 0 and ¢ > 0 are three additional shape parameters, B(z;a,b) =
Jo w* (1 — w)*"'dw is the incomplete beta function, B(a,b) = I'(a)T'(b)/T'(a + b) is
the beta function and I'(a) = [ t*~'e™"dt is the gamma function. We also adopt the
notation I.(a,b) = B(z;a,b)/B(a,b).

The pdf and hrf corresponding to (2.3) are, respectively, given by

cg(;8) G(a; ) G(a; )"
— a+b

B(a,b) {G(a;€)° + Cla: )}

(2.2) forra(z) =

(2.4) fx) = [f(za,bc€) =

and
cg(z;€) Ga;€)* ' G(a; §)

(2.5)  h(z) = - > — .
{G(w:€) +Cla; )} {Bla,b) — B (5829 —sab)}
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Clearly, if we take G(z) = z/(1 + x), equation (2.3) becomes the beta log-logistic
distribution. The family (2.4) contains some sub-families listed in Table 1. The baseline
G distribution is a basic exemplar of (2.4) when a = b = ¢ = 1. Hereafter, X ~
BOLL-G(a, b, ¢, &) denotes a random variable having density function (2.4). We can omit
the parameters in the pdf’s and cdf’s.

Table 1: Some special models of the BOLL-G family.

a b ¢ G(z) Reduced distribution
- - 1 G(zx) Beta-G family (Eugene et al. [15])
1 1 - G(z) 0Odd log-logistic family (Gleaton and Lynch[19])
1 - 1 G(z) Proportional hazard rate family (Gupta et al. [26])
1 1 G(z) Proportional reversed hazard rate family (Gupta and Gupta [25])
1 1 1 G G

The BOLL-G family can easily be simulated by inverting (2.3) as follows: if V has a
beta (a,b) distribution, then the random variable X can be obtained from the baseline

of, say Qg (u) = G '(u). In fact, the random variable
1
Ve
(2.6) X=Q¢|——=
[V% +(1-V)e

has density function (2.4).

3. Some special models

Here, we present some special models of the BOLL-G family.

3.1. The BOLL-exponential (BOLL-E) distribution. The pdf and cdf of the ex-
ponential distribution with scale parameter o > 0 are given by g(z;a) = ae™*" and
G(z;a) =1 — e 7 respectively. Inserting these expressions in (2.4) gives the BOLL-E
pdf

ca e *b® {1 —e_o‘x}a“l

f(@abye,a) = B(a,b) [{1 — e—a#}¢ 4 e—caz]®tt’

3.2. The BOLL-normal (BOLL-N) distribution. The BOLL-N distribution is de-
fined from (2.4) by taking G(z;€) = ® (:2£) and g(x;€) = 0~ ' ¢ (:£) for the cdf and
pdf of the normal distribution with parameters ; and o2, where ¢(-) and ®(-) are the pdf
and cdf of the standard normal distribution, respectively, and & = (i, 0%). The BOLL-N

pdf is given by

co(=7#) {@ (2} 1@ (=)
oB(ab) [{® (554)} + {1 - @ (=5)} "
where x € R, u € R is a location parameter and ¢ > 0 is a scale parameter.

We can denote by X ~ BOLL-N(a, b, ¢, 1, 0°) a random variable having pdf (3.1).

(3.1)  flzsa,bye,p,0°) =

3.3. The BOLL-Lomax (BOLL-Lx) distribution. The pdf and cdf of the Lomax
distribution with scale parameter 5 > 0 and shape parameter o > 0 are given by
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glz;0,8) = (a/B)[1 + (x/B8)]” @™ and G(z;0a,8) = 1 — [1 + (z/B)] "%, respectively.
The BOLL-Lx pdf follows by inserting these expressions in (2.4) as

[PUUIRIE ot € ) S (5 ©) B

—a) ¢ —ac atb’
B(a,b) H1 ~[1+(3)] } +{1+(2)} }
3.4. The BOLL-Weibull (BOLL-W) distribution. The pdf and cdf of the Weibull
distribution with scale parameter a« > 0 and shape parameter § > 0 are given by

g(z;a,8) = aﬁmﬁfle*‘”ﬁ and G(z;a,8) = 1 — e*‘”ﬁ7 respectively. Inserting these
expressions in (2.4) yields the BOLL-W pdf

caBzPt e-beas’ {1 — ef"‘zﬁ}akl
Bt [~} {en YT

3.5. The BOLL-Gamma (BOLL-Ga) distribution. Consider the gamma distribu-
tion with shape parameter o > 0 and scale parameter 5 > 0, where the pdf and cdf (for
2 > 0) are given by

f(x;a,b,C,Oé,B) =

9(z;a, B) = %x“_le_ﬁ”” and  G(z;a,8) = %,

where (o, fz) = [; 7 ¢t> e~ dt is the incomplete gamma function. Inserting these
expressions in equation (2.4), the BOLL-Ga density function follows as

ac—1 be—1
a a1 -z [ (B _ (8o
cBx e { () } {1 () }

c cra+b
r(a) Bla,b) [{ 2552} + {1 - %22} ]

f(x;a7b7c’a7/8) =

In Figures 1 and 2, we display some plots of the pdf and hrf of the BOLL-E, BOLL-
N and BOLL-Lx distributions for selected parameter values. Figure 1 reveals that the
BOLL-E, BOLL-N and BOLL-Lx densities generate various shapes such as symmetrical,
left-skewed, right-skewed, reversed-J, unimodal and bimodal. Also, Figure 2 shows that
these models can produce hazard rate shapes such as constant, increasing, decreasing, J
and upside-down bathtub. This fact implies that the BOLL-G family can be very useful
for fitting data sets with various shapes.
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Figure 1. Density plots (a)-(b) of the BOLL-E model, (c)-(d) of the

BOLL-N model and (e)-(f) of the BOLL-Lx model.
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Figure 2. Hazard rate plots (a)-(b) of the BOLL-E model, (c)-(d) of
the BOLL-N model and (e)-(f) of the BOLL-Lx model.
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4. Mathematical properties

Here, we present some mathematical properties of the new family of distributions.

4.1. Asymptotics and shapes. The asymptotes of equations (2.3), (2.4) and (2.5) as
x — 0 and © — oo are given by

F(x) ~ Igge(a,b) as © — 0,
1= F(z) ~ Igye(b,a) as x — oo,

Jz) ~ % g(x)G(x)* ™" as . — 0,
@)~ g
cg(@)G(z)" "
I~ Toga (@)
cg(x)G ()"

h ~ .
(z) I@(z)c(b, 2 as £ — 0o

g(@)G(x)? 7 as © — oo,

h(z) ~ as * — 0,

The shapes of the density and hazard rate functions can be described analytically. The
critical points of the BOLL-G density function are the roots of the equation:

g (z) g9(x) g(z) Ga) ' = Ga)"
(4.1) el + (ac — UG(z) +(1 - bc)% —c(a+0b)g(x) G 1 Cw 0

There may be more than one root to (4.1). Let A(x) = d* log[f(x)]/dx*. We have

g (@)g(x) — [¢' ()] ae — 19 @)G(@) —g(x)?
M= IO €T
0 @G@) Fg@? e Gle) T = Gl
+ -t (j 09 ) T G
— cle—=1)(a+b)g(x)? G(g)(m)c igggc
G(z)* ™t - G(z) 1 ?
_ (a+b){cg(m) G@) 1 G } .

If z = z0 is a root of (4.1) then it corresponds to a local maximum if A(z) > 0 for all
x < xo and A(z) < 0 for all z > zo. It corresponds to a local minimum if A(z) < 0 for
all z < zo and A(z) > 0 for all & > zo. It refers to a point of inflexion if either A(z) > 0
for all x # xo or A(z) < 0 for all = # zo.

The critical points of the hrf h(z) are obtained from the equation

G(LE)671 _ ?(I)c—l
G(z)c 4+ G(x)°

g (x)

g(x)

(4.2) +

+ (ac—1) g((g;)) +(1- bc)% —cla+b)g(x)

cg(z)G(x)* ' Gx)*!
B(a,b){G(x)wré(x)c}”b{1_1 Gy (a,b)}

G(@)¢+G(x)°

=0.
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There may be more than one root to (4.2). Let 7(z) = d? log[h(x)]/dz*. We have

oy~ 9 @)~ @) ¢ (2)G(x) — g(x)?

= + (ac—1)

g9(x)? G(z)?
S @@ el Gy G
L A e @+ 09 @) = o T )
o e gyt C@) £ G
+ ele= 1o+ Do(a) HIEZ
G(x)cfl_é(x)cfl 2
— (a+b) {cg(z) G(a) 1 Clo)° }
N e/ ()G ()" C)*
{G@)e+ )} " {Bla,b) - B (5089 a0) |
n clac —1)g(x)G(x)**G(x) "

{G(2)° +é(w)c}a+b {B(a7 b) — B (%, a b)}

e(be — 1)g(z)*G(z)* ' G(x)?e2
{G(z)e +5(m)c}a+b {B(a, b) — B (%70 a b)}

G +C@ma*
®(a+b)g(z)G(2)*  G(x)" ' {G(x)" — Gla)* "}

— a+b+1 z;€)¢
{G@) + )} " {Bla,b) - B (g9 5a,b)}

{ () Ga) " Ci) ! } |
{G@) +Ca)}"" {Bla,b) - B (g iab) }

If © = x¢ is a root of (4.2) then it refers to a local maximum if 7(z) > 0 for all z < zo
and 7(x) < 0 for all z > xg. It corresponds to a local minimum if 7(x) < 0 for all z < x¢
and 7(z) > 0 for all z > xo. It gives an inflexion point if either 7(z) > 0 for all z # zo
or 7(z) < 0 for all x # xo.

4.2. Useful expansions. For an arbitrary baseline cdf G(z), a random variable Z has
the exp-G distribution (see Section 1) with power parameter ¢ > 0, say Z ~exp-G(c),
if its pdf and cdf are given by h.(z) = cG(x)* * g(z) and H.(z) = G(z)°, respectively.
Some structural properties of the exp-G distributions are studied by Mudholkar and
Srivastava [35], Mudholkar et al. [36], Mudholkar and Hutson [34]|, Gupta et al. [26],
Gupta and Kundu [27, 28], Nadarajah and Kotz [39], Nadarajah and Gupta [40, 41] and
Nadarajah [37].
We can prove that the cdf (2.3) admits the expansion

o (=) b—1 G(x) Y
Fa) = ;B (a,b)(a+1) ( l > [G(z)e + G(z)c]at!

_ N (Y b—1) X, ap Gla)*
- ; a“)( l )Zkoﬁi”c(x%'

Using the power series for the ratio of two power series, we have

) = 3 gl )(bll> Sl ),

1=0 k=0
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where (for each 1) a,(f) = ak(c(a+1)), 5,(;) = hi(c,a+1), ap(c(a+1)) and hi(c,a+1) are
defined in the Appendix A and 'y,gl) is determined recursively as

k
1 1 1 1 @
'Yl(c) =k(a,c) = 0) (al(c) -0 51( ) V;E)T) .
0 0

r=1

Then, we have
F(z) = by Hy(z),
k=0
where
(4 3) b _i (71)l7157l) b—1
‘ T Bab) @+ \ 1)

and Hy(z) = G(z)* denotes the exp-G cdf with power parameter k. So, the density
function of X can be expressed as

oo
(44)  f(@) = fw;a,b,c,€) = berr husa (2;€),

k=0
where hyy1(z) = hig1(2;€) = (k+1) g(z; €) G(x;€)" denotes the exp-G density function
with power parameter k+1. Hereafter, a random variable having density function hj41 ()
is denoted by Yi41 ~ exp-G(k + 1). Equation (4.4) reveals that the BOLL-G density
function is an infinite mixture of exp-G densities. Thus, some mathematical properties of
the new model can be obtained directly from those exp-G properties. For example, the
ordinary and incomplete moments, and mgf of X can be determined from those quantities
of the exp-G distribution.

The formulae derived throughout the paper can be easily handled in most symbolic
computation software platforms such as Maple, Mathematica and Matlab. These plat-
forms have currently the ability to deal with analytic expressions of formidable size
and complexity. Established explicit expressions to calculate statistical measures can be
more efficient than computing them directly by numerical integration. The infinity limit
in these sums can be substituted by a large positive integer such as 20 or 30 for most
practical purposes.

4.3. Quantile function. The of of X, say z = Q(u) = F~'(u), can be obtained by
inverting (2.3). Let z = Qa,(u) be the beta gf. Then,

{ [?a,b(u)}% } .
[Qap(w)]* +[1 — Qau(u)]*

It is possible to obtain some expansions for Qq»(u) from the Wolfram website
http://functions.wolfram.com/06.23.06.0004.01 such as

oS}

2= Qap(u) = eu'’?,

=0

r=Q(u) = Qa

where e; = [a B(a,b)]"/%d; and do =0, dy =1, do = (b—1)/(a + 1),

b — (b—1) (a® +3ab— a + 5b — 4)
°T 2(a+1)2(a + 2) ’

di = (b=1[a" + (6b—1)a® + (b+2)(8b — 5)a” + (33b° — 30b+ 4)a
+  b(31b—47) +18]/[3(a + 1)*(a + 2)(a + 3)],. ..
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The effects of the shape parameters a, b and ¢ on the skewness and kurtosis of X
can be based on quantile measures. The Bowley skewness (Kenney and Keeping |30]) is
one of the earliest skewness measures defined by the average of the quartiles minus the
median, divided by half the interquartile range, namely

QR(E)+QE)-20(3)
() -eh)

B=

Since only the middle two quartiles are considered and the outer two quartiles are ignored,
this adds robustness to the measure. The Moors kurtosis (Moors [33]) is based on octiles

Q(F)-QGE)+Q(E)-Q([E)

Q) -Q(%) '
These measures are less sensitive to outliers and they exist even for distributions without
moments.

In Figure 3, we plot the measures B and M for the BOLL-N and BOLL-Lx distribu-
tions. The plots indicate the variability of these measures on the shape parameters.
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Figure 3. Skewness (a) and (b) and kurtosis (c) and (d) of X based on
the quantiles for the BOLL-N and BOLL-Lx distributions, respectively.
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4.4. Moments. We assume that Y is a random variable having the baseline cdf G(x).
The moments of X can be obtained from the (r,k)th probability weighted moment
(PWM) of Y defined by Greenwood et al. [23] as

ek = EY" G(Y)"] = [ ¥ G() g(w)da

The PWNMs are used to derive estimators of the parameters and quantiles of general-
ized distributions. The method of estimation is formulated by equating the population
and sample PWMs. These moments have low variance and no severe biases, and they
compare favorably with estimators obtained by maximum likelihood. The maximum
likelihood method is adopted in Section 6.1 since it is easier to estimate the BOLL-G
parameters because of several computer routines available in widely known softwares.
The maximum likelihood estimators (MLESs) enjoy desirable properties and can be used
when constructing confidence intervals and regions and also in test statistics.
We can write from equation (4.4)

oo
(45)  pr=B(X") = (k+1)bes1 7ok,

k=0

where 7, = fol Q¢ (u)" u*du can be computed at least numerically from any baseline of.

Thus, the moments of any BOLL-G distribution can be expressed as an infinite
weighted sum of the baseline PWMs. We now provide the PWMs for three distribu-
tions discussed in Section 3. For the BOLL-N and BOLL-Ga distributions discussed in
subsections 3.2 and 3.5, the quantities 7, can be expressed in terms of the Lauricella
functions of type A (see Exton [16] and Trott [52]) defined by

Ff,")(a;bl,...,bn;c1,...,cn;x1,,..,xn) =
i i (@)my+ectmn (01)my - - - (On)my, 272
e w2 (c1)my - - (Cn)mn, mil...mp!’

where (a); = a(a+1)...(a+¢— 1) is the ascending factorial (with the convention that
(a)o = 1).

In fact, Cordeiro and Nadarajah [11] determined 7, for the standard normal distri-
bution as

k
_ AU k—1+1
Togp = 272D 30 <z> 27!z (%) X

1=0
(r+k—1)even
A 72 Pgrigigr gl Sy .

This equation holds when r 4+ k — [ is even and it vanishes when r + k& — [ is odd. So,
any BOLL-N moment can be expressed as an infinite weighted linear combination of
Lauricella functions of type A.
For the gamma distribution, the quantities 7, can be expressed from equation (9) of
Cordeiro and Nadarajah [11] as
T'(r+ (k+1)a)

_ (k) . .
TT,k_W F (’/‘+(k+1)(1,01,...,04,Oz+1,‘..701-5—1,—1,.‘.,—1)‘

Finally, for the BOLL-W distribution, the quantities 7, are given by

L(r/B+1) w—~  (=1° [k
Trk = T 7B ; (s+1)r/p+1 (s)
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4.5. Generating function. Here, we provide two formulae for the mgf M(s) = E(e*¥)
of X. The first formula for M (s) comes from equation (4.4) as

(4.6) M(s) = brr1 Myya(s),
where Mj11(s) is the exp-G generating function with power parameter k + 1.
Equation (4.6) can also be expressed as

(4.7) M(s) = (k+1) bt pr(s),
k=0
where the quantity pi(s) = f01 exp [s Qe (u)] uFdu can be computed numerically.

4.6. Mean deviations. Incomplete moments are useful for measuring inequality, for
example, the Lorenz and Bonferroni curves and Pietra and Gini measures of inequality all
depend upon the incomplete moments of the distribution. The nth incomplete moment
of X is defined by mn(y) = [Y__ 2" f(z)dz. Here, we propose two methods to determine
the incomplete moments of the new family. First, the nth incomplete moment of X can
be expressed as

b G(y;€)
(4.8) ma(y) =Y bri / Qc(u)" u” du.
k=0 0

The integral in (4.8) can be computed at least numerically for most baseline distributions.
The mean deviations about the mean (6, = E(]X — pf|)) and about the median

(62 = E(|X — M])) of X are given by

(4.9) 0 =2ui F (/.L/l) —2ma (;/1) and 8o = py — 2my (M),

respectively, where M = Q(0.5) is the median of X, pj = E(X) comes from equation

(4.5), F(u}) can easily be calculated from (2.3) and mi(z) = [°__ x f(z)dx is the first

incomplete moment.

Next, we provide two alternative ways to compute d; and d2. A general equation for
m1(z) can be derived from equation (4.4) as

(4.10) mi(2) =Y b Jera(2),

k=0
where
Jk+1(z) = / :Ehk+1(1’)d1’.

Equation (4.10) is the basic quantity to compute the mean deviations in (4.9). A simple
application of (4.10) refers to the BOLL-W model. The exponentiated Weibull density
function (for = > 0) with power parameter k + 1, shape parameter o and scale parameter
B, is given by

hisa(x) = (k+ 1) af® 2" exp {=(82)"} [1 - exp {~(S2)"}]",
and then

[e% - T k N [e% «
Jer1(z)=c(k+1)8 Z(—l) (r) / % exp{—(r+1)(Bx)"} dx.
r=0 0
The last integral reduces to the incomplete gamma function and then

Jrr1(2) = Z((l)—i-(f—ii)*l() (L+a " (r+1)(82)%).
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A second general formula for mi(z) can be derived by setting u = G(x) in (4.4)

mi(z) =Y (k+1)brsr Te(2),

k=0

where Ty (z) = fOG(Z) Qa(u) uFdu.

The main application of the first incomplete moment refers to the Bonferroni and
Lorenz curves which are very useful in economics, reliability, demography, insurance and
medicine. For a given probability 7, applications of these equations can be addressed to
obtain these curves defined by B(w) = m1(q)/(7 u}) and L(w) = m1(q)/u}, respectively,

where ¢ = Q(n) is calculated from the parent gf.

4.7. Entropies. An entropy is a measure of variation or uncertainty of a random vari-
able X. Two popular entropy measures are the Rényi [43] and Shannon [45]. The Rényi
entropy of a random variable with pdf f(x) is defined by

i) = tos ([ @y )

for v > 0 and v # 1. The Shannon entropy of a random variable X is given by Is =
E{—1log[f(X)]}. It is the special case of the Rényi entropy when « 1 1. Direct calculation
yields

Is = -tog | i ] - B Qog (50} + (1 - 00 B log 6w €)])
+ (1—be)E{log [G(z;€)]} + (a+ b) E {log [G(x;€)° + G(x;€)°] } .
First, we define and compute
‘a _ 1 ual (1 _ u)ag 5
Hensonas) = [ G A

oo M ay 1 w1t
- 200 (>/ =T
_ - i [ a2 ! Z?:oalvkuk
-2 () o Siabenit
= (-1 (“f)/o S Gsput
_ > (—l)iég,k a2
N z:(k+1) (i)7

1=0

where 61, = ar(a1 + @), 92,5 = hir(a,as) and

1 1 <&
Sap = — (m o ;az,r (m) :

02,0

After some algebraic manipulations, we obtain:

4.1. Theorem. Let X be a random variable with pdf (2.4). Then,
c 0
]}_Bwﬁ)&
- c 1o}
E{log{G(X)]}_maA(ac—l,bc—i—t—l,a-ﬁ-b,c)‘ ,

t=0

E{log [G(X) A(ac—i—t—1,bc—1,a—|—b;c)L:O7
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E{G(z;6)" + G(X;€)" }— A(ac 1,bc—1,a+b—t;c) o

(a, b) ot
The simplest formula for the entropy of X is given by

Is = ~log [ s | = B {log[9(X;€)]}

c(l—ac) 0 )
Blab) 8tA(ac+t—1,bc—1,a+b,c) -

c(l—bec) 0 ]
Blab) ot (ac—1,bc+t—1,a+ b;c) .
cla+bd) 9

+ —A(ac—1,bc—1, a—O—b—tc)‘

B(a,b) 0ot

After some algebraic developments, we have an alternative expression for Ir(y):

In(7) = 1 g [Bé,b)] Frlos | Y e Bu(e 6T ()

i,k=0

Here, Vi, has a beta distribution with parameters k + 1 and one,

(=1)i ys.1(a, b, ¢, ) <c(a - 1)>’

tik = .
» (k+1) i
Yk = Gk ((ac -y + i)7 Y2, = hi (C, (a+ 5)7)

and

1 1<
Y3k =— |10 — — 2’72,7"’73,19—7“ ,
Y2,0 Y2,0 —

s

where ax((ac— 1)y +14) and hy (c, (a+ b)v) are defined in equation (8.6) given in Ap-
pendix A.

4.8. Order statistics. Order statistics make their appearance in many areas of statis-
tical theory and practice. Suppose Xi,..., X, is a random sample from the BOLL-G
family of distributions. We can write the density of the ith order statistic, say Xi.,, as

fin(@) = K f(@) ™) {1 - F(a)}" ™ = KZ 1)]( “) F@) Py,

where K = n!/[(i — 1)! (n — )!].
Following similar algebraic developments of Nadarajah et al. [38], we can write the
density function of Xj., as

(411) fzn Z mrkhr+k+1( )
k=0

where h,1x(z) denotes the exp-G density function with power parameter r + k + 1 (for
r k> 0)

(D) (= Dbes o~ (1) fipio1k
Mk = r+k+1) ZO (n—i—jlj"
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and by, is defined in equation (4.3). The quantities fj4+;—1,x can be obtained recursively
by fiti—1,0=0y""" and

k
fivieie = (kbo) ™" Z [m(j + 1) — k] bm fijri—1.k—m, k> 1.
m=1

Equation (4.11) is the main result of this section. It reveals that the pdf of the
BOLL-G order statistics is a linear combination of exp-G density functions. So. several
mathematical quantities of the BOLL-G order statistics such as ordinary, incomplete
and factorial moments, mgf, mean deviations and several others can be determined from
those quantities of the exp-G distribution.

5. Characterizations of the new family based on two truncated
moments

The problem of characterizing distributions is an important problem which has at-
tracted the attention of many researchers recently. An investigator will, generally, be
interested to know if their chosen model fits the requirements of a particular distribu-
tion. Hence, one will depend on the characterizations of this distribution which provide
conditions under which one can check to see if the underlying distribution is indeed that
particular distribution. Various characterizations of distributions have been established
in many different directions. In this section, we present characterizations of the BOLL-G
distribution based on a simple relationship between two truncated moments. Our char-
acterization results will employ a theorem due to Glénzel [24] (Theorem 5.1, below). The
advantage of the characterizations given here is that the cdf F' is not required to have a
closed-form and is given in terms of an integral whose integrand depends on the solution
of a first order differential equation, which can serve as a bridge between probability and
differential equation. We believe that other characterizations of the BOLL-G family may
not be possible.

5.1. Theorem. Let (Q2,%,P) be a given probability space and let H = [a,b] be an interval
for some a < b (a = —o0,b = oo might as well be allowed). Let X : Q@ — H be a
continuous random variable with distribution function F(x) and let ¢ and q2 be two real
functions defined on H such that
Elqn(X)[X 2 2] =E[q(X)| X = 2] n(x), z€H,

is defined with some real function n. Consider that ¢, g2 € C*(H), n € C*(H) and F(z)
18 twice continuously differentiable and strictly monotone function on the set H. Further,
we assume that the equation gan = q1 has no real solution in the interior of H. Then, F
18 uniquely determined by the functions q1, q2 and 7, particularly

x /
F(x) :/ C" ' (u) e W du,

n(u) g2 (u) — q1 (u)

’
where the function s is a solution of the differential equation s’ = ngﬁh and C is a

constant chosen to make fH dF = 1.

We have to mention that this kind of characterization based on the ratio of truncated
moments is stable in the sense of weak convergence. In particular, let us assume that
there is a sequence {X,} of random variables with distribution functions {F,} such
that the functions ¢1,n, g2,» and 7, (n € N) satisfy the conditions of Theorem 5.1 and let
qi,n — q1, g2,n — g2 for some continuously differentiable real functions ¢; and ¢». Finally,
let X be a random variable with distribution F. Under the condition that g1, (X) and
@2,n (X)) are uniformly integrable and the family {F), } is relatively compact, the sequence
X, converges to X in distribution if and only if 7, converges to n, where
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Elg (X)X > a]

1) = e Yoo
32 (X) |X = 4]

5.2. Remark. (a)In Theorem 5.1, the interval H need not be closed since the condition
is only on the interior of H.
(b) Clearly, Theorem 5.1 can be stated in terms of two functions ¢1 and n by taking
g2 () = 1, which will reduce the condition in Theorem 5.1 to E [¢1 (X) |X > z] = n (x).
However, adding an extra function will give a lot more flexibility, as far as its application
is concerned.

5.3. Proposition. Let X : Q — R be a continuous random variable and let g1 (z) =
@2 (¢) G ()" and g2 (z) = {G(2:6)° + G (@:9)°} " G (230 ™" for v € R. The
pdf of X is (2.4) if and only if the function n defined in Theorem 5.1 has the form

@)= 1+G@e"], ver

Proof. If X has pdf (2.4), then

1= F@)Bla () |X > 0] = s 1 -G @], aek
and

[l —F@)]Eq (X)X > 1] = 2(1371((1,1)) [1-G@6%], zekR
Finally,

1) 2 () — 1 (1) = 502 (@) [1 = G ;)] >0, for wER

Conversely, if 7 is given as above, then

/ ac—1
/ n' () g2 (x) acg(z) G(x;8)
s \x) = = ac ) T c R7
W @ e®-a@ 1-G@o
and hence
s(z) = —log[l — G (z;€)*], z€R.
Now, in view of Theorem 5.1, X has pdf (2.4). O

5.4. Corollary. Let X : Q — R be a continuous random variable and let g2 (x) be as
in Proposition 5.3. The pdf of X is (2.4) if and only if there exist functions q1 and 7
defined in Theorem 5.1 satisfying the differential equation

n(2)g2(z)  acg(z)G(z;&)* ! .
@@ -—a@  1-Gwmee "k

5.5. Remark. (a) The general solution of the differential equation in Corollary 5.4 is

n(z) = [L = G(z;6)*] ™ {—/ac 9(x) G(x; )7 1 (w) gz ()" da + D] ;

for x € R, where D is a constant. One set of appropriate functions is given in Proposition
5.3 with D = 1/2.

(b) Clearly there are other triplets of functions (q1, g2, 7) satisfying the conditions of
Theorem 5.1, e.g.,

@1 (z) = g2 (z) G(x; )"
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and
a2(2) = [G(@:)° + C(w;6)] ™ Gz )™, zeR
Then, n(z) = & G(z;£)" and s'(z) = % =bcg(z)G(x)™", zeR

6. Different methods of estimation

Here, we discuss parameter estimation using the methods of maximum likelihood and
of minimum spacing distance estimator proposed by Torabi [48].

6.1. Maximum likelihood estimation. We consider the estimation of the unknown
parameters of this family from complete samples only by the method of maximum likeli-
hood. Let z1,...,z, be observed values from the BOLL-G distribution with parameters
a, b, cand €. Let © = (a,b,c,€)T be the r x 1 parameter vector. The total log-likelihood
function for © is given by

tn = nlog(e) ~nlog[B(a,b)] + > logly(wis €)] + (ac = 1) 3 _log[G(wi; )]
(6.1) + (be—1) Zlog[@(:ci; & —(a+d) Zlog {G(xi; €)° + G(xs; §)c} .

The log-likelihood function can be maximized either directly by using the R (Adequa-
cyModel or Maxlik) (see R Development Core Team [42]), SAS (PROC NLMIXED),
Ox program (sub-routine MaxBFGS) (see Doornik [14]), Limited-Memory quasi-Newton
code for bound-constrained optimization (L-BFGS-B) or by solving the nonlinear likeli-
hood equations obtained by differentiating (6.1).

Let Un(0) = (84, /da, 80, /0b, 0L, |Oc, DL, /OE)T be the score function. Its compo-
nents are given by

Dn = npla) +mb(at )+ e Y loglGris€)] - 3 log {Glai ) + Glris€)°),
i=1 =1
O = )+ npla+8) +e D oglGa: )] D log {Glas€)° + Gl )}
i=1 i=1
oy, n - - -
Be = tad loglGui &) +b) loglGlai; )]
=1 =1

~ Glwis &) loglGlwi; §)] + Glwis €)° loglGlai; €)]
b, G(zi;€)° +G(azz,£>

i=1

% -~ g(xz,§)< B G(mz, - xl, )(5)
o€ Z o &) T 12 Gz 1,9 1 b’z Gl €)

_ - o G ) = Gais ©) !
C(a+b);G(l’17€) Clan ) + Clan )

where h(®)(.) means the derivative of the function h with respect to &.

For interval estimation and hypothesis tests, we can use standard likelihood techniques
based on the observed information matrix, which can be obtained from the authors upon
request.
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6.2. Minimum spacing distance estimator (MSDE). Torabi [48] introduced a gen-
eral method for estimating parameters through spacing called maximum spacing distance
estimator (MSDE). Torabi and Bagheri [49] and Torabi and Montazeri [51] used differ-
ent MSDEs to compare with the MLEs. Here, we used two MSDEs, “minimum spacing
absolute distance estimator” (MSADE) and “minimum spacing absolute-log distance es-
timator” (MSALDE) and compared them with the MLEs of the BOLL-E distribution.
For mathematical details, the reader is referred to Torabi and Bagheri [49] and Torabi
and Montazeri [51].

Table 2: The AEs, biases and MSEs of the MLEs, MSADEs and MSALDESs of the
parameters based on 1,000 simulations of the BOLL-E(2, 1.5, 0.5, 1)
distribution for n = 100, 200, 300 and 400.

MLE MSADE MSALDE
n AE Bias MSE AE Bias MSE AE Bias MSE

100 e 3.158 1.158 5.743 2.271 0.271 5404 2.361 0.361 14.717

b 2826 1326 5.933 1870 0.370 5.206 2.053 0.553 14.854
c 0.587 2.658 0.301 0.509 1.771 0.027 0.582 1.861 0.133
o 1.203 0.203 0.817 1.074 0.074 0.303 1.145 0.145 0.485
200 a 2862 0.862 3.915 2.179 0.179 2.771 2.072 0.072 2.715
b 2461 0.961 3.758 1.750 0.250 2.855 1.651 0.151 2.837
c 0539 2362 0.126 0.535 1.679 0.048 0.582 1.572 0.081
o 1.114 0.114 0.440 1.078 0.078 0.245 1.141 0.141 0.334
300 a 2112 0.112 2492 2.666 0.666 2.609 2.133 0.133 3.709
b 1.695 0.195 2331 2217 0.717 2475 1.695 0.195 3.368
c 0.554 1.612 0.072 0.519 2.166 0.080 0.583 1.633 0.080
o 1.051 0.061 0.176 1.097 0.097 0.310 1.130 0.130 0.248
400 a 2.587 0.587 1.956 2.048 0.048 0.956 2.143 0.143 3.588
b 2109 0.609 1.869 1.602 0.102 0.970 1.669 0.169 3.383

c 0.498 2.087 0.049 0.534 1.548 0.026 0.558 1.643 0.039
o 1.080 0.080 0.232 1.062 0.062 0.161 1.135 0.135 0.220

We simulate the BOLL-E distribution for n=100, 200, 300 and 400 with a = 2, b = 1.5,
¢ = 0.5 and a = 1. For each sample size, we compute the MLEs, MSADEs and MSALDEs
of the parameters. We repeat this process 1,000 times and obtain the average estimates
(AEs), biases and mean square error (MSEs). The results are reported in Table 2. From
the figures in this table, we note that the performances of the MLEs and MSADEs are
better than MSALDEs.

7. Applications

In this section, we provide two applications to real data to illustrate the importance
of the BOLL-G family through the special models: BOLL-E, BOLL-N and BOLL-Lx.
The MLEs of the parameters are computed and the goodness-of-fit statistics for these
models are compared with other competing models.
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7.1. Data set 1: Strength of glass fibres. The first data set represents the strength
of 1.5 cm glass fibres, measured at National physical laboratory, England (see, Smith and
Naylor [46]). The data are: 0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73,
1.81, 2.00, 0.74, 1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77,
1.11, 1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29, 1.48,
1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51, 1.55, 1.61, 1.63,
1.67, 1.70, 1.78, 1.89.

We fit the BOLL-E, BOLL-N, McDonald-Normal (McN) (Cordeiro et al. [9]), beta-
normal (BN) (Famoye et al. [17]) and beta-exponential (BE) (Nadarajah and Kotz [39])
models to data set 1 and also compare them through seven goodness-of-fit statistics. The
densities of the McN, BN and BE models are, respectively, given by:

MeN & futen (50,0, ¢, 1,0) = —5s & (552) @ (252) "7 [1— @ (252)°]",

weR, a,beco>0,

BN : fan(a,b, 1,0) = sy (554) @ (2524) 7 1 — @ (222)]"71

nweR, a,bo>0,

BE: fee(w;0,b,0) = gigye " (1— e ) g b > 0.

7.2. Data set 2: Bladder cancer patients. The second data set represents the un-
censored remission times (in months) of a random sample of 128 bladder cancer patients
reported in Lee and Wang [31]. The data are: 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11,
23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80,
25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74,
14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34,
14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62,
10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33,5.49, 7.66,
11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79,
18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31,
4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63,
22.69.

We fit the BOLL-E, BOLL-Lx, McDonald-Lomax (McLx) and beta-Lomax (BLx)
(Lemonte and Cordeiro [32]) and BE models to these data and also compare their
goodness-of-fit statistics. The densities of the McLx and BLx models are, respectively,
given by

—(a+1)
McLx : fumerx(x;a,b,¢,,8) = % [1 + (%)

R Gl B O] I R U ER O 1

a,b,c,a,ﬂ > 07
—(ab+1) —aya—1
BLx : farx(z;a,b, a, B) = mﬁ + (g)} {1 - [1 + (g)} }

x [1—{1—[1+(§)]7Q}a]b71, a,b,a,8 > 0.
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For all models, the MLEs are computed using the Limited-Memory Quasi-Newton Code
for Bound-Constrained Optimization (L-BFGS-B). Further, the log-likelihood function
evaluated at the MLEs (¢), Akaike information criterion (AIC), consistent Akaike infor-
mation criterion (CAIC), Bayesian information criterion (BIC), Hannan-Quinn informa-
tion criterion (HQIC), Anderson-Darling (A*), Cramér—von Mises (W*) and Kolmogorov-
Smirnov (K-S) statistics are calculated to compare the fitted models. The statistics A*
and W* are defined by Chen and Balakrishnan [8]. In general, the smaller the values of
these statistics, the better the fit to the data. The required computations are carried out
in R-language.
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Table 3: MLEs and their standard errors (in parentheses) for the first data set.

Distribution a b c m o o
BOLL-E 0.0698 0.1834 50.4548 - - 0.4118
(0.0931) (0.2712)  (66.9766 - - (0.0125)
BOLL-N 0.0358 0.0764 34.7642 1.6597 0.6056 -
(0.0660)  (0.1384) (65.6410) (0.0381) (0.5323) -
McN 0.5298 17.2226 1.2924 2.3850 0.4773 -
(0.5249) (48.8078)  (6.2595)  (1.8112) (0.9820) -
BN 0.5836 21.9402 - 2.5679 0.4658 -
(0.6444) (79.8234) - (1.3451)  (0.4546) -
BE 17.4548  38.3856 - - - 0.2514
(3.1323) (65.8297) - - - (0.3684)
Table 4: The statistics £, AIC, CAIC , BIC , HQIC, A* and W* for the first data set.
Distribution 0 AIC CAIC BIC HQIC A w*
BOLL-E —10.4852 28.9703 29.6599 37.5429 32.3419 0.3923 0.0681
BOLL-N —9.9976 29.9953 31.0479 40.7110 34.2098 2.0245 0.2858
McN —14.0577  38.1154  39.1680  48.8311 42.3299  0.9289  0.1659
BN —14.0560  36.1119  36.8016  44.6845 39.4836  0.9179  0.1637
BE —24.0256  54.0511 54.4579  60.4805 56.5798  3.1307  0.5708

Table 5: The K-S statistics and p-values for the first data set.

Distribution K-S p-value (K-S)
BOLL-E 0.1126 0.4013
BOLL-N 0.0928 0.6496
McN 0.1369 0.1886
BN 0.1356 0.1973
BE 0.2168 0.0053

Table 6: MLEs and their standard errors (in parentheses) for the second data set.

Distribution a b c « B
BOLL-E 0.2772 0.1548 3.7895 0.1563 -
(0.2529)  (0.1441)  (3.1996) (0.0413) -
BOLL-Lx 0.4507 0.3046 2.5267 8.5700 57.6246
(0.4279)  (0.3573)  (2.0183) (14.4135) (88.4252)
McLx 1.5052 5.9638 2.0608 0.7177 10.9267
(0.2831)  (30.1616) (2.9944) (3.0698) (16.6896)
BLx 1.5882 12.0014 - 0.3859 20.4693
(0.2830) (319.2372) - (10.0697) (14.0657)
BE 1.3781 0.2543 - 0.4595 -
(0.2162)  (0.0251) - (0.0028) -
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Table 7: The statistics ¢, AIC, CAIC , BIC , HQIC, A* and W* for the second data set.

Distribution J4 AIC CAIC BIC HQIC A" w*
BOLL-E —409.8323 827.6646 827.9898 839.0727 832.2998 1.5745 0.2022
BOLL-Lx —409.2256 828.4513 828.9431 842.7115 834.2453 0.0800 0.0126
McLx —409.9128 829.8256 830.3174 844.0858 835.6196  0.1688  0.0254
BLx —410.0813 828.1626 828.4878 839.5708 832.7978  0.1917  0.0285
BE —412.1016 830.2033 830.3968 838.7594 833.6797  0.5475  0.0896
Table 8: The K-S statistics and p-values for the second data set.

Distribution K-S p-value (K-S)

BOLL-E 0.0295 0.9999

BOLL-Lx 0.0341 0.9984

MecLx 0.0391 0.9896

BLx 0.0407 0.9840

BE 0.0688 0.5793

25
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(a) Estimated pdfs (b) Estimated cdfs

Figure 4. Plots (a) and (b) of the estimated pdfs and cdfs of the
BOLL-E and BOLL-N and other competitive models.

Tables 3 and 6 list the MLEs and their corresponding standard errors (in parentheses)
of the parameters. The values of the model selection statistics AIC, CAIC, BIC, HQIC,
A", W* and K-S are listed in Tables 4-5 and 7-8. We note from Tables 4 and 5 that the
BOLL-E and BOLL-N models have the lowest values of the AIC, CAIC, BIC, HQIC, W™
and K-S statistics (for the first data set) among the fitted McN, BN and BE models, thus
suggesting that the BOLL-E and BOLL-N models provide the best fits, and therefore
could be chosen as the most adequate models for the first data set. The histogram of
these data and the estimated pdfs and cdfs of the BOLL-E and BOLL-N models and their
competitive models are displayed in Figure 4. Similarly, it is also evident from the results
in Tables 7 and 8 that the BOLL-E and BOLL-Lx models give the lowest values for the
¢, AIC, CAIC, BIC, HQIC, A*, W* and K-S statistics (for the second data set) among
the fitted McLx, BLx, KwlLx and Lx distributions. Thus, the BOLL-E and BOLL-Lx
models can be chosen as the best models. The histogram of the second data set and
the estimated pdfs and cdfs of the BOLL-E and BOLL-Lx models and other competitive
models are displayed in Figure 5.
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Figure 5. Plots (a) and (b) of the estimated pdfs and cdfs of the
BOLL-E and BOLL-Lx models and other competitive models.

It is clear from the figures in Tables 4-5 and 7-8, and Figures 4 and 5 that the BOLL-E,
BOLL-N and BOLL-Lx models provide the best fits to these two data sets as compared
to other models.

8. Concluding remarks

The generalized continuous univariate distributions have been widely studied in the
literature. We propose a new class of distributions called the beta odd log-logistic-G
family. We study some of its structural properties including an expansion for its density
function and explicit expressions for the moments, generating function, mean deviations,
quantile function and order statistics. The maximum likelihood method and the method
of minimum spacing distance are employed to estimate the model parameters. We fit
three special models of the proposed family to two real data sets to demonstrate its
usefulness. We use some goodness-of-fit statistics in order to determine which distribution
fits better to these data. We conclude that these special models provide consistently
better fits than other competing models. We hope that the new family and its generated
models will attract wider applications in several areas such as reliability engineering,
insurance, hydrology, economics and survival analysis.

Appendix A

‘We present four power series expansions required for the proof of the general result in
Section 4. First, for a > 0 real non-integer, we have the binomial expansion

®1)  (1-w=) (-1 ( ) u?,
Jj=0 J
where the binomial coefficient is defined for any real a as a(a—1)(a—2),...,(a—j+1)/j!.

Second, the following expansion holds for any « > 0 real non-integer

(82)  G()* =) ar(a)G(2),
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where a,(a) = 322 (—1)"" (j) (?). The proof of (8.2) follows from G(z)* = {1 —[1 —
G(z)]}® by applying (8.1) twice.
Third, by expanding z* in Taylor series (when k is a positive integer), we have

83) =D (We(z-DF/kl=>fiz,
k=0 i=0

where
oo k—i
fi= gy =3 EU (’“) (Ve
k=0
and (A)y = XA —=1)... (A =k +1) is the descending factorial.
Fourth, we use throughout an equation of Gradshteyn and Ryzhik [22]| for a power
series raised to a positive integer i given by

(8.4) (i aj vj) = icm v,
3=0 j=0

where the coefficients ¢; ; (for j = 1,2,...) are obtained from the recurrence equation
(for j > 1)
J
. 1 . .
85)  ciy=(jao) ' D [mG+1) = lamcij-m

m=1

and ¢; o = aj). Hence, ¢;; can be calculated directly from c;,...,c;j—1 and, therefore,
from ao,...,a;. -

We now obtain an expansion for [G(x)° + G(z)°]*. We can write from equations (8.1)
and (8.2)

where

e [() £ ()6))

Then, using (8.3), we have

[G(z)° + G(z)]* = Z fi (Z t; G(z)’ )

where f; = fi(a) is defined before.
Finally, using equations (8.4) and (8.5), we obtain

i
)

(8.6) [G(z)* + G(2)]" = Z h; G(z),

where
]’Lj = hj(C7 a) = Z fz mi g,
=0

i
miy = (Gto) " Y [mG+1) = jltmmigm (for j>1)
m=1

and mi,0 = t%).
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1. Introduction

In many applied areas like lifetime analysis, finance, insurance and biology, there
is a clear need for extended forms of the classical distributions, i.e., new distributions
more flexible to model real data that present a high degree of skewness and kurtosis
in these areas. Recent developments focus on new techniques by adding parameters to
existing distributions for building classes of more flexible distributions. Following this
idea, Cordeiro et al. [6] introduced an interesting method by adding two new parameters
to a parent distribution to model data with a high degree of skewness and kurtosis. The
generated family can provide more flexibility to model various types of data. If G(z) is
the cumulative distribution function (cdf) of a baseline model, then the Kumaraswamy
generalized (Kw-G) family has cdf given by

(1.1) Fz)=1-{1-G%(x)}".
The probability density function (pdf) corresponding to (1.1) is given by

(1.2) flx) = ayg(z) G* @) {1 - G%(x)}" .

Each new Kw-G distribution can be obtained from a specified G distribution. For o =
v = 1, the G distribution is a basic exemplar of the Kw-G family with a continuous
crossover towards cases with different shapes (e.g., a particular combination of skewness
and kurtosis). One major benefit of equation (1.2) is its ability of fitting skewed data
that can not be properly fitted by existing distributions. Further, it allows for greater
flexibility of its tails and can be widely applied in many areas of reliability and biology.

The Weibull distribution is a very popular distribution for modeling lifetime data.
When modeling monotone hazard rates, it may be an initial choice because of its skewed
density shapes. However, it does not have a bathtub or upside-down bathtub shaped
hazard rate function (hrf) and can not be used to model the lifetime of certain systems.
Such bathtub hazard curves have nearly flat middle portions and the corresponding
densities have a positive anti-mode. An example of the bathtub-shaped failure rate is
the human mortality experience with a high infant mortality rate which reduces rapidly
to reach a low level. Unimodal failure rates can be observed in course of a disease whose
mortality reaches a peak after some finite period and then declines gradually. Thus, it
cannot be used to model lifetime data with a bathtub shaped hazard function, such as
human mortality and machine life cycles. Therefore, several researchers have developed
various extensions and modified forms of the Weibull distribution having a number of
parameters ranging from two to five parameters.

In the last few years, new classes of distributions aim to define generalized Weibull
distributions to cope with bathtub shaped failure rates. Mudholkar and Srivastava [17]
and Mudholkar et al. [18] pioneered and studied the exponentiated Weibull (ExpW)
distribution to analyze bathtub failure data. A good review of some of these extended
models is presented in Pham and Lai [25]. Also, the additive Weibull distribution was
proposed by Xie and Lai [27], the modified Weibull distribution by Lai et al. [12] and the
generalized modified Weibull distribution by Carrasco et al. [2]. Further, Lee et al. [13]
and Silva et al. [23] defined two extensions of the Weibull model called the beta Weibull
(BW) and beta modified Weibull (BMW) distributions, respectively.
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The ezponential-Weibull (EW) distribution proposed by Cordeiro et al. [5] has cdf
and pdf given by

(1.3) Ga)=1-—e "1 (x), A>0,8>0,k>0
and

— —Ax—BxK
(1.4) g(z) = A+ Bka" ") e 1 (x),

respectively, where A > 0 and k > 0 are shape parameters, § > 0 is a scale parameter
and 14(x) denotes the characteristic function of the set A, i.e. 14(x) =1 when z € A
and equals O elsewhere.

We generalize the EW model by defining the Kumaraswamy ezponential Weibull
(KwEW) distribution. The cdf and pdf of the KwEW distribution, for which the EW is
the baseline model, are given by

(1.5) Fa)=1-{1- (1) "V 15 (@)
and

Fa) = oy (A ket 1) e (1 ey T
(1.6) % {1_ (1_eka—6xk)a}—1+"f Lo (@),

respectively, where A > 0, 5 > 0,k > 0, « > 0 and 7 > 0. Hereafter, we denote by
X ~KwEW, (A, 8, k) a random variable having the pdf (1.6).

The density (1.6) is much more flexible than the EW density and can allow for greater
flexibility of the tails. It can exhibit different behavior depending on the parameter
values. In fact, Figure 1 (a,c) and Figure 2 (d) reveal that the mode of the pdf increases
as « and X increases, respectively. Figure 2 (e) also shows that the mode of the pdf
increases as k increases. The new parameter v behaves somewhat as a scale parameter
as shown in Figure 1(b). The structure of the density function (1.6) can be motivated
as it provides more flexible distribution than the two-parameter Weibull and many other
extended Weibull distributions (see Table 1).

The rest of the paper is organized as follows. In Section 2, twelve widely-known special
models of the proposed distribution are presented. A useful expansion for the KwEW
density and explicit expressions for certain mathematical quantities of X are obtained in
Section 3. We demonstrate in Section 4 that the KwEW density is an infinite mixture of
EW densities. Further, we obtain alternative expressions for the moments and generating
function. The estimation of the model parameters by maximum likelihood and a Bayesian
procedure are addressed in Section 5. We prove in Section 6 the flexibility of the new
distribution for modeling lifetime data by means of a real data set. A bivariate extension
is given in Section 7. The paper is concluded in Section 8.

2. Special Distributions

We point out some special cases of the KWEW, (X, 8, k) distribution by specifying its
parameters values. Table 1 lists twelve important special models of the new distribution.
For example, the KwEW,, (0, 3, k) model reduces to the Kw-modified Weibull [12], the
KwEW, 1 (), 8, k) refers to the ezponential Weibull [5], the KwEW 1 1(), 8,2) is the mod-
ified Rayleigh, the KwEW1 1 (), 8, 1) is the modified ezponential and the KwEW 1 1(0, 8, k)
becomes the classical two-parameter Weibull. If k¥ = 1 and k£ = 2 in addition to
a =1,y =1 and A = 0, it coincides with the exponential and Rayleigh distribu-
tions, respectively. Finally, the KwEW1 (0, 8, k) model becomes the ExpW distribution
pioneered by [17, 18].
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Figure 1. Plots of the KwEW density function. (a) A\ = 0.5, 8 =
0.6, k =2,v =15 and a = 1.4 (dotted line), « = 3 (dashed line),
a =5 (solid line), o = 10 (thick line). (b) A =35, 8=1.6, k=2, a=
1.5 and v =1 (dotted line), v = 1.5 (dashed line), v = 2 (solid line),
~v = 2.5 (thick line). (¢) 3 =2.6,k=12 a=35y=17Tand A =1
(dotted line) A = 2, (dashed line), A = 3 (solid line), A = 4 (thick line).

3. Main Properties

We derive computational sum-representations and explicit expressions for the ordinary
and central moments, skewness, kurtosis, generating and quantile functions, Shannon
entropy and mean deviations of X. These expressions can be evaluated analytically
or numerically using packages such as Mathematica, Matlab and Maple. In numerical
applications, the infinite sums can be truncated whenever convergence is observed.



(d)

Figure 2.
3, a=5,v=13and 8 = 0.5 (dotted line), 3 = 2 (dashed line), 5 =4
(solid line), S = 6 (thick line). (e) A = 1,8 = 1.5,a = 3,7 = 1.3
and k = 1 (dotted line), & = 1.5 (dashed line), £ = 2 (solid line),
k = 3 (thick line).

3.1. A Useful Expansion. Here, we provide

15 20
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20-

Plots of the KwEW density function. (d) A = 1.3, k =

Table 1. Some special distributions

Model

Kw-Modified Weibull

Kw-Exponential

Kw-Rayleigh

Exponentiated Weibull

Kw-Linear Failure Rate

AN Blk|al|y
0l = 1=1=1=
“To = _
0|-121]-1-
0 -1 |-
“ =12

Exponential Weibull

Two Parameter Weibull

Exponential

Rayleigh

o|lo|ol |
|

Modified Rayleigh

Modified Exponential

Linear Failure Rate

|

|
| = o no| =]
| =] = ] =] =]
e e e e

(1.6). By using the power series

(3.1)

we obtain

(3.2)

a useful expansion for the KwEW pdf

(1—2)"t= Zanz", lz| <1, 8> 0,
n=0

[}

m=0

flx) = ay ()\—i-kﬁxk*l) Z Win (e—)\x,BXk>m+1’
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where

_CUTE) S DTN )

n = (B —n)n!’ v —n)T{(n+ 1)y — m}m!n!’

n=0
3.2. Moments. Some key features of a distribution such as skewness and kurtosis can
be studied through its moments. We derive closed-form expressions for the ordinary and
central moments, generating function, skewness and kurtosis of X.

First, we introduce the Fox-Wright function ,¥,, which is an extension of the usual

generalized hypergeometric function , Fy, with p € No numerator parameters ai, --- ,ap €
C and g € No denominator parameters b1, --- ,bq € C\ Z , defined by
((11, Al) s T (G‘PaAP)

Sl = F(a1+A1n) F(ap—i-Apn)i
o = F(b1 + B1n) .. F(bq + Bqn) n!’

PlI}lI

(blvBl)v T 7(b‘17BlI)

where the empty products are conventionally taken to be equal to one, and

q P
Aj>07j:m7Bk>07k:15q7 AZlJ"ZB]_ZA]zOv
j=1 j=1

(see, for instance [11, p. 56]). The convergence will occur for suitably bounded values of
|z] such that

ol <V = (JﬁlAjAj) (HBB) |

We derive closed-form expressions for the real order moments of X. We have

EX) =ay ) Wn / a (A+5kmk*1) oA (M) x =B (mt 1) XK g
m=0 0

oo o0 Kk
—aqA Z W, / 2" A (ML x =B (mt1) = g
m=0 0

[e5S}

o0 Kk
+ ayBk E Wm/ g TRl A DX = B(mA " gy
= 0

=0

The rth moment is a linear combination of integrals of the type J(w) based on a similar
approach by [19, Eq. (2.1)], where w = (k, p,a,n) and all components are positive
parameters,

e n
J(w) = / g e (wxtax)
0

A representation for this integral is given by [21, p. 515, Corollary 1.1]:

TRV (1) ‘_a:|7 0<n<l,
J— wun
I'(k)
=1
(3.3) J(w) = (b +a)~’ n )
) K 1)
A L
WI\IIO nn ‘al/n:|’ n>1




Thus, for all k£ € (0,1), we can write

E(X")=ayA iWmﬂ(r+1,/\(m+1),ﬂ(m+1),k)

m=0

+oyBk > Wi I(r+k—1,A(m+1), B(m + 1), k)

m=0
_ - T (r+1,k) _L
= 2 Wy e % ’ X <m+1)'€1}
> CV'Vﬁk (T+k’k) #
(3.4) +mZ:OWmW 1Po ‘_ )\k(m+1)k1:|.

For k =1, we have

- AayI(r+1)
(3.5) E(X) )\+[3 r+1 mz m+1 r+1°

The remaining values of the parameter k > 1 lead to

o r+1 1 11
EX) =S w27y ( k ’E) ‘ (m+1) ”\]
O = W ey TV g
oo T 1 1—1
- S W Bk, { (E‘va) ‘WH)A}
(30 2 Bem+ Dy N Bt

Hence, we have the following result:

1209
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3.1. Theorem. If X ~ KwEW, (X, 3,k), then (for all r > —1) we have

b T
Z Win " (m + 1)r+1

m=0
+ 1,k
x 1Wq (Ti) '>\k(mf_1)k1:|
- aypBk

+ 2 W s e

x 1 (r+k, k) _)\k(m,—/ia—l)kl:|’ 0<k<l,

= AayT(r+1) -
61 Ex) = | W G g k=1,

- Wma—’y)\rl
mzzo k{B(m + 1)}

(44) | s
B

S R 1L .
mzzo {B(m+1)} %

T 1 11
(g“vg) i_(m“)”} b1

X 1‘1/()

Proof. It only remains to verify the convergence conditions of the Fox—Wright series,
which depends only on the parameter k. Note that, when k € (0,1), A=1—%k >0, so
that both series in (3.4) converge. So, it does when k& = 1. Finally, for & > 1, the value
A =1- 1 >0 ensures that the moment E(X") is finite for any r > —1. d0

3.2. Remark. For certain integer and rational values of the parameter k, we adopt a
representation of the Fox—Wright ; U function in terms of the generalized hypergeometric
»Fy functions, which is discussed in detail in [16]. By their Eq. (3.3), for all positive

rational A = 77, one has
M N
m Tla+ £j) 27
1T, (a; 77) . :p(a)+z(+3)
- ~ 4!
1.4 4y a ... J 4 atm=1 | pm M
><'m+1FJVI 7]V[+m7 ’]W+ m MM )

where , F, stands for the generalized hypergeometric function which is a built in Math-
ematica function specified by

HypergeometricPFQ[{a_1,\ldots, a_p},{b_1,\1dots, b_q},z].

On the other hand, the same authors also give an insight into transforming Fox—Wright
VU functions into Meijer G functions for rational arguments. Referring to [16, Eq. (5.1)],
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one has
m 2v M m*®
1VPo (e, 57) z :—’CYVT}W
I'(a) ymn~ =2
)M

GM’m mm (—Z
X m,M MM

1
07M7"'3 M

a at+m—1
1_E7... ’1_T
M-1 .

See, for example, the monographs |14, Ch. V]| and [11] for an introduction to the G
function. |

3.3. Remark. The nth factorial moment of order of X is given by
d" [E(tY)]

O, =EX(X-1D)(X-2)---(X—n+1)]= =

t=1
Based on the Viete—Girard formula for expanding the polynomial X (X—1)(X—-2)--- (X—
n+ 1), we obtain

n

D, => (-1 > bl p E(XT),

r=1 1<0) <<l <n—1

where the second sum represents elementary symmetric polynomials:

er =ep(lr, b)) = Z ly by, r=0,n—1.
1< < <lp<n-—1
This in conjunction with positive integer rth order moment expression given in equation
(3.7) provides an exact power series for the fractional order moments. |

3.4. Remark. The moment generating function (mgf) M(t) = E(e'*) of X can be
obtained by setting » = 0 and replacing [A (m + 1)] by [A (m + 1) — ] in equation (3.7).H

3.5. Remark. The central moments (u,) and cumulants (k,) of X are easily obtained
from (3.7) as

n n—1
_ E[T k1 o n—1 ’
Hn _Z(_l) (k}) K1 Hn—k and Kn _Mn_z <k’—1> Kk Hn—k>
k=0 k=1
respectively, where k1 = p}. Thus, ko = pb — 2, k3 = ps — 3ubp + 2u, etc. Clearly,
the skewness and kurtosis measures can be calculated from the ordinary moments using
well-known relationships.l

Some numerical values for the skewness and kurtosis of X are listed in Table 2. The
figures in this table indicate a large range for the skewness of X, although the kurtosis
does not vary much.

Next, we discuss some other structural properties of X, i.e., survival, hazard rate,
mean residual life, entropy, mean deviations and quantile function (qf).

3.3. Survival, Hazard rate, Quantile function, Skewness and Kurtosis. Central
role is playing in the reliability theory by the ratio of the pdf and survival function. The
survival function of X is given by

(38) S ={1- (1= "V 12 @),
Then, the hrf of X reduces to

—1+a
oy (kx_1+kﬁ + /\) e—)\x—ﬂxk (1 o e—Ax—ﬂxk)

(3.9) h(z)= = (1)) 1z, ().
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Table 2. Skewness and kurtosis of the KwEW distribution for selected
parameter values.

A 5] k « y Skewness | Kurtosis
1.0 | 26 | 1.5 | 10 30 -0.001 1.229
2.0 | 26 | 1.5 | 10 30 -0.001 1.229
3.0 | 26 | 1.5 | 10 30 -0.001 1.229
4.0 | 2.6 | 1.5 | 10 30 -0.001 1.229
1.3 105 | 25 | 25 18 -0.002 1.234
1.3 ] 2.0 | 25| 25 18 -0.002 1.234
1.3 | 4.0 | 2.5 | 25 18 -0.002 1.234
1.3 |1 6.0 | 2.5 | 25 18 -0.002 1.234
0.2 | 34| 1.0 | 2.0 | 3.0 | 0.150 1.251
0.2 | 34| 1.5 |20 | 3.0 | 0.150 1.251
0.2 | 34| 2.0 | 20 | 3.0 | 0.150 1.251
0.2 | 3.4 | 3.0 | 2.0 | 3.0 | 0.150 1.251
0.7 | 0.7 | 2.0 | 0.2 | 5.0 | 0.914 5.283
0.7 | 0.7 | 2.0 | 1.2 | 5.0 | 0.218 1.275
0.7 |07 ] 20| 1.8 | 50| 0.149 1.245
0.7 | 0.7 | 2.0 | 10 5.0 | 0.049 1.238
3.5 |16 | 3.0 | 5.0 | 0.5 | 0.190 1.306
3.5 | 1.6 | 3.0 | 5.0 | 1.0 | 0.146 1.277
3.5 | 1.6 | 3.0 | 5.0 | 1.5 | 0.123 1.263
3.5 | 1.6 | 3.0 [ 5.0 | 2.0 | 0.108 1.254

Figures 3 (a), (b) and (c) display some plots of h(x).
The qf of X is determined by inverting (1.5) as

o — — (1 =)t/
(3.10) Q(u) = F'(u) = — 08l ={1 A(+1/3) el

Simulating KwEW random variable is straightforward. Let U be a uniform variable
on the unit interval (0,1). Thus, by means of the inverse transformation method, the
random variable X given by
Clog[l — {1 - (1 -U)Vyte
(A+5)
follows the density (1.6). In particular, the median of X is
log[1 — {1 — 0.5}/
(A+58)
Further, the mode of f(z) is obtained as

1/«
log {1 - (12__aa,y) }
A +5)
The shortcomings of the classical kurtosis measure are well-known. There are many
heavy tailed distributions for which this measure is infinite. So, it becomes uninforma-
tive precisely when it needs to be. Indeed, our motivation to use quantile-based measures

stemmed from the non-existence of the classical kurtosis for many of the Kw-G distribu-
tions. The Bowley’s skewness is based on quartiles

g QB/4) —2Q01/2) + Q(1/4)
Q(/4) —Q(1/4)

(3.11) X =

M=

MO = —




and the Moors’ kurtosis is based on octiles

k- 1Q(7/8) —Q(5/8)} +{Q(3/8) — Q(1/8)}
Q(6/8) — Q(2/8) 7

where Q(-) is given by (3.10).

a. (Increasing hrtf) b. (Upside-down bathtub hrf)

20
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Figure 3. (a) a = 25,y =3, A =4
a=23,vy=13,A=18,=9, k=0

c¢. (Bathtub-shaped hrf)

0.0 0.2 0.4 0.6 0.8 1.0 12

Figure 4. (¢) a=0.8,y=0.5, A=2.3, =10, k =24.

3.4. Mean residual life function. The mean residual life function (mrlf) is defined

by
1

K(z) = @) [E(X) —ma(z)] =z,
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where f(z), F(X) and S(z) are given in (1.6), (3.7) and (3.8), respectively, and

ml(w):/ozyf(y)dy:cw W
0

m=

0

is the first incomplete moment of X. By expanding the exponential in the last expression,
we obtain

> = (=1 A(m+ 1))
mi(z) = ay ZWmZ—( ) [j(! )l
X/ i ()\+,6ky’“’1) e B m Y g
0

O SR ol Lk
o )

4!
0 )dy),
6 ), k =p/qand p > 1 and ¢ > 1 are natural co-prime

/théj?(ﬂ(m+1)yp/q 6>dy
0

qaP (t+1) op {B(m+1)}22P
= p(2m)(@-1)/2 Gripta

x <>\/ Yy Gy (ﬁ (m + 1)y?/?
0

(3.12) + Bg / y Gy <ﬂ (m+ 1)y
0

where ¢ 809 = Gé:(l) (g(x)

numbers and

(3.13)

Equation (3.13) is obtained by using (13) of [5]. So, the first incomplete moment of X is
easily obtained from (3.12) and (3.13).

Some applications of mi(z) refer to the Bonferroni and Lorenz curves of X defined,
for a given probability m, by B(m) = mi(q)/(wp}) and L(mw) = ma(q)/ul, respectively,
where py = E(X) and ¢ = Q(m) is the value of (3.10) at u = 7.

3.5. Entropy. An entropy is a concept encountered in physics and engineering. It is a
measure of variation or uncertainty of a random variable X. An extension of Shannon’s
entropy for the continuous case can be defined as follows:

(3.14) 1(f) =~ [ 1oglf(a)) f(a) da.

0
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Combining (1.6) and (3.14), we can write

H(f)=—ay ZWm log (av Z Wm>

m=0 m=0
y /oo ()\ n B kﬂ;’k_l) A (m+1)x —B(m+1) x dx
0
e S
m=0

X / ()\ + ﬁkmkil) log (/\ + 5kxk71) o A (mH)x o =f (mt1) Xkdx
0

+ day Z(m-ﬁ-l)Wm

m=0

X /Oo x ()x + 5kxk71) e A mADx =B (mil) Xk g
0

+ Bay Z(erl)Wm

m=0
(3.15) X / z" ()\ +ﬂkxk_1) e A Al x (=B (mtD) 1 g
0

Note that the first, third and fourth integrals on the right-hand side of (3.15) can be
determined by using (3.7) for » = 0, 1 and k, respectively. The second one can be
evaluated by numerical integration.

3.6. Order statistics. Let X1, X»,...,X,, be a random sample from the KwEW dis-
tribution and Xi., < Xo.,, < ... < Xy, denote the corresponding order statistics. Let
fin () and F;.p (x) denote, respectively, the pdf and the cdf of the ith order statistic
Xi.n. We can write

fon (2) = T (jj)_l),z( ) () F @),

and

Fin () = (5= 1),nllzl+l< )F()ul

where F'(z) and f (z) are given by equations (1.5) and (1.6), respectively. Using (3.1)
and after some algebra, we obtain

nlay A+ Bka* ) XX (n—i “A(ut1)x —B(ut1)xk
Fen (@) = =4 Dm0 S e ¢

and o
- (n—i\ D@+ (-1t
Fim (x) = (Mgg( )I‘(i—i—_l‘_—s)s!l(i-i-l)
x {1— (1—e*“*’3"k)a}ws,
where

N (DT 4 ) T{(s + D)y T{(t + Da}
ZZ r z+lfs YT{(s+ 1)y —t}I{(t + D)o — u}s! tlu!”

t=0 s=0
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The sth moment of Xj.,, is given by
B(Xi) = [ o fin (@) do.
0
By using fi., () and equation (3.3), the moments of X;.,, can be easily obtained.

3.7. Mean deviations. The mean deviations provide important information about
characteristics of a population and they can be calculated from the first incomplete
moment. Indeed, the amount of dispersion in a population may be measured to some
extent by the deviations from the mean and median. The mean deviations of X about the
mean pj = E(X) and about the median M can be expressed as §1 = 2uF (1)) — 2ma (1})
and 6y = py — 2ma (M), where F(u}) is calculated from (1.5) and mi(z) = [« f(z)dx
can be determined from (3.12) and (3.13).

4. Alternative Properties

In this section, we provide an alternative mixture representation for the pdf of X. By
combining (1.4) and (3.2), we can write

(4.1) F@) =Y Vi gmia(a),
m=0
where (for m > 0) V,, = ayW,,/(m + 1) and gm+1(z) is the pdf of the EW model with
parameters \* = (m + 1)\, 8* = (m+ 1)8 and k. So, the KWEW density function is a
mixture of EW densities.
Based on equation (4.1) and the results by Cordeiro et al. [5], we can obtain the
following properties of X.

4.1. Moments. The calculations in this section involve some special functions. In par-
ticular, the gamma function I'(r) = [; w" ‘e ¥dw (r > 0), and other functions given
in Appendices A and B. In order to obtain u., we require an integral of the type

(4.2)  I(s; X, 8% k) = / ® em WRHBT) gy
0

* . .
A" in Taylor series, we

We provide four representations for (4.2). First, by expanding e™
PN S Gk
I(S,)\,B,]f)—z |
Jj=0

obtain
oo ) * k
/ 2 e gx
J 0

1 (-1 N N L (s k14
e 2 - (o) T (T

=0

The above sum can be expressed in a simple form for £ > 1 using the Fox—Wright
generalized hypergeometric function defined in Appendix A. We have

1 (£,
(4.3) (S,A,B,k)—WﬂI/o _ 7_5*1/’“ .

Applying (4.3) to (4.1), we can write

(44)  pe=EBE(X") =Y VN I(s; X85 k) + B kI(s+ A" — 1\, 8, k)].
m=0
Secondly, we offer two formulae for the integral (4.2) provided that k = p/q, where
p > 1and g > 1 are relatively natural co-prime numbers. We use equation (2.3.2.13) in
[26, p. 321] to obtain formulae for I(s; \*, 8, k) when 0 < k < 1 and k > 1. We exclude
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the case k = 1 since the model is non-identifiable. For irrational k, an approximation of
vanishingly small error can be made using increasingly accurate rational approximations
for k. Let z = (pPB* ") /(¢"N*P), pFy(a1,...,ap;b1,...,bg;x) be the well-known gener-
alized hypergeometric function and A(r,a) = (a/7,(a +1)/7,...,(a + 7 —1)/7). The
generalized hypergeometric functions are available in Mathematica. For 0 < k < 1, we
obtain

a—
I(s; A", 8% k) = >

~ (=B’ T(s + 1+ jp/q)
X

Ax(sT1E5P/9) 51

pr1F (1L, A(p, s + 14 jp/q); A(g, 1 +7); (=1)2) .

(4.5)

For v > 1, we have

(=1)7qT ([s + 1+ jlq/p)
pﬂ*(s+l+j)q/p 4!

-1
I(s; A", 8%, k) = Z
(4.6) i=0

< anfy (1A I+ 1+ /o A1+ CF ).

A fourth representation for the integral (4.2) also holds when k = p/q, where p > 1
and ¢ > 1 are natural co-prime numbers. It follows in terms of the Meijer G}y function
defined in Appendix B and also available in Mathematica. For an arbitrary function g(-),
we use the result

@ enl-g@} =Gt (s 5 ).

and then equation (4.2) can be expressed in the same form of equation (2.24.3.1) given
by [26, p. 350]. Hence, we obtain
s+1/2 —s 1—s p—s—1
p’ p ' p .
0

LK * _ P q,p
(48) LM 60 = s GM(

/8*‘1 pP
A*P qq

Further, if ¢ = 1, using equation (9.31.2) in [10]

m,n —1, ar n,m 1—bs
Gpg (Z | be )ZGq,p (Z 1-a, >7

we have, as a special case of (4.8), the following result [3]

s+1/2 *p
I(s; X, 8" K) = oy OF < ;

(2m)(P—1)/2 AxstL T Lp B* pP

Equations (4.3), (4.4), (4.5), (4.6) and (4.8) are the main results of this section.

5 p P

1
(s+1) (s42) (s+p) )
P

4.2. Incomplete Moments. For lifetime models, it is useful to obtain the sth incom-
plete moment of X given by Ts(y) = [} z° f(x)dx. We define J(s,a) = J(s,a;8,7) =
e e~ 7" dx. Moreover, it is simple to verify from (1.6) that T, (y) can be expressed as

y oot axik
Ts(y) = / 2 (V' + B k) e AT g
0
By expanding the exponential in the last expression, we have

(4.9) Ts(y):Z%[A*J(s—iﬂ}y)+/3’*kJ(s+k—1,y)].
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We now provide a formula for T’ (y) in terms of the Meijer G}';" function (see Appendix
B) which holds only when k& = p/q, where p > 1 and ¢ > 1 are natural co-prime numbers.
By using (4.7), we can write

J(s,a) :/ x’ Gé:(l) (ﬁ*xp/q | 6 )dx.
0

By using equation (2.24.2.2) in [26, p. 348|, we can express J(s,a) as

—s 1l=s p—s—1

P ) P PN P )

0. = -1 s p—s—2 .
s .

S
p 'p’ " p

(s+1) *q P
__4a” e (B
(4.10) J(s,a) = p(2m)@D/2 Trrta ( q4

Combining equations (4.9) and (4.10), we obtain the incomplete moments of X.

4.3. Generating Function. For ¢ < \*, the mgf of X follows from (4.1) as

M(t) = i Vi I(s; X —t, 8%, k).
m=0

Thus, we can use the results in Section 4.1 to obtain an explicit expression for M (t)

e 1 o~ (=17 (A =t (st 14
M(t) = Z Vin kG Z ;! (5*1/k > r < k
m=0 j=0

5. Parameter Estimation

5.1. Maximum likelihood estimation. Several approaches for parameter estimation
were proposed in the literature but the maximum likelihood method is the most com-
monly employed. The maximum likelihood estimates (MLEs) enjoy desirable properties
and can be used when constructing confidence intervals and test statistics. Large sample
theory for these estimates delivers simple approximations that work well in finite sam-
ples. However, we can approximate quantities such as the density of test statistics that
depend on the sample size in order to obtain better approximation for the MLEs, which
can be easily handled either analytically or numerically.

Let 6 = (\, B, k,a,7) be the parameter vector of the KwEW distribution. The log-
likelihood for @ given the data set x1,...,x, obtained from (1.6) is given by

-(1l-a ilog (1 - e_xm_’“k) + ilog (kxf_lﬂ + )\)
=1 i=1

(5.1 -yt {1- (1)

£(0) =n [log(a) +log(y)] + Y _ log (e— xika—xix)
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The associated nonlinear log-likelihood equations 62(9) = 0 are given by

o10) n Xj— IXI n 1
R PR RICER B D Bpves

i

n e—)\xi—ﬂxi (1 _ e—)\xi—Bx}() _1+aOéXi

- (’7 - 1) « = 07
i=1 1- (1 — e_)‘xi_ﬁx%()
40 Z" Z iy Z" ke 1Tk
_ 7 = —_ 1 a — 1 + 7 -
9 i—1 : e T Xk o AT kﬁzi_l+k

—Ax; —Bx! Zax—BxK) —
e AX; ﬂx) (1—6 AX BX,> 1+aax}<

; 1- (1 - e—AXi—ﬁx?) a

86(0 i —Blog (z:) =¥ + ( a—l)i A Blog (x;) x¥

7Ax, Bx)

-1+«
n_ A= Bxf (l — e M ) aflog (xi) x

-(y=-1>

= 1— (1 o e—kxi—ﬁx%c)a
+Zﬁafl+k+kﬂlog(xl)az —0
)\ + kﬂﬂ?;l+k )

85(9 n + Zlog ( 7>\Xifﬂx¥) —(v—1)

n (1 _ eka;fﬁxg‘)a lOg (1 _ eka;f5x§‘>

X; 1_(1_67»(;—5)4‘)“ =0,
(5.2) (%(0 i + ZLog {1 — ( _ Axi_gx§<)a} o

For estimating the model parameters, numerical iterative techniques should be em-
ployed to solve these equations. We can investigate the global maximum of the log-
likelihood by setting different starting values for the parameters. The information ma-
trix will be required for interval estimation. The elements of the 5 x 5 total observed
information matrix J(0) = {Jrs(0)} (for r,s = X, B,k,a,v) can be obtained from the
authors upon request. The asymptotic distribution of (6 — 6) is N5(O, K(0)™'), under
standard regularity conditions, where K(0) = E{J(0)} is the expected information ma-
trix and J(6‘) is the observed information matrix evaluated at §. The multivariate normal
N5(0, J(0)") distribution can be used to construct approximate confidence intervals for
the individual parameters.

5.2. Bayesian analysis. In the Bayesian approach, the information referring to the
model parameters is obtained through a posterior marginal distribution. Here, we use the
simulation method of Markov Chain Monte Carlo (MCMC) by the Metropolis-Hastings
algorithm. Since we have no prior information from historical data or from previous
experiment, we assign conjugate but weakly informative prior distributions to the pa-
rameters. We assume informative (but weakly) prior distribution and then the posterior
distribution is a well-defined proper distribution. We also assume that the elements of the
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parameter vector are independent and that the joint prior distribution for all unknown
parameters has a pdf given by

(5.3) (A, By kya,y) x w(A) x w(B) x w(k) X 7w(a) X 7(v).

Here, A ~ I'(a1,b1), B ~ I'(az2,b2), k ~ I'(as,bs), « ~ I'(as,bs) and v ~ I'(as, bs),
where I'(a;, b;) denotes a gamma distribution with mean a;/b;, variance ai/b? and density
function given by

b vt exp(—ub;)
I'(a:) '
where v > 0, a; > 0 and b; > 0. All hyper-parameters are specified. Combining the

likelihood function (5.1) and the prior distribution (5.3), the joint posterior distribution
for A\, 8, k, a and ~ reduces to

f(vsai,bi) =

7\ B, K, a, y|z) o (ay)" e A = XimA i X H { ()x + kﬂx%‘_l)

i=1

x (1 - e_)‘xi‘ﬁ"}‘)71+a {1 — (1 _ e—Axa-BX%‘)“}*lﬂ }
(5.4) x (A, B, k, @, 7).

The joint posterior density above is analytically intractable because the integration of
the joint posterior density is not easy to perform. In this direction, we first obtain the
full conditional distributions of the unknown parameters given by

TN, B, k, a,7) o e * =1 ﬁ { ()\ + kak‘l) (1 7 e‘A"i—ﬁ"?)

i=1

x {1 - (1 - e*“i*ﬁx?)&}fl+7 } x (N,

7(Blz, A, by, ) ox e P A=<t f[ { ()\ + kﬁxi(fl) (1 - e*’\"ifﬁﬂ‘) Tt

i=1

x {1 - (1 - e‘*xi“”‘ik)a}_ler } x 7(B),

n n —1+a
w (K, X, B,a,7) oc e P EE T { (A ko) (1)

i=1

y {1 _ (1 B efxxifﬁX?)a}_Hw } x m(k),

n

m(alz, A, B, k,y) oc a” H { (1 _ e—/\Xi—ﬂx}‘)a
i=1

x {1 - (1 - e‘)"‘i—ﬁ’(?)a}AM } x ()

—1l+a

and
m(rlw A By k,a) oy [T {1 = (1= e725) " (),
=1

Since the full conditional distributions for A, 8, k, « and v do not have explicit
expressions, we require the use of the Metropolis-Hastings algorithm.
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Table 3. Empirical means and the RMSEs in parentheses for § = 1

n A B k & 4
A=23 k=16 a=15 =1
250 1.218 1.689 1.467 1.702 1.346
(0.954) (0.517) (0.978) (1.597) (1.510)
350 1.214 1.574 1.428 1.503 1.335
(0.897) (0.501) (0.834) (1.453) (1.478)
450 1.213 1.572 1.346 1.548 1.217
(0.805) (0.498) (0.740) (1.404) (1.156)
AX=34 k=18 a=2 ~y=23
250 1.414 1.023 1.101 2.471 2.601
(1.221) (0.742) (0.456) (2.102) (2.102)
350 1.367 1.367 1.084 2.495 2.495
(0.918) (0.904) (0.285) (2.104) (2.104)
450 1.278 1.278 1.053 2.348 2.348
(1.012) (0.843) (0.324) (1.945) (1.945)
A=04 k=2 a=25 y=14
250  2.203 1.146 2.142 2.104 1.925
(0.962) (0.765) (0.978) (1.231) (1.024)
350 2.458 1.107 2.154 2.116 1.823
(0.784) (0.452) (0.450) (1.114) (0.978)
450 1.067 1.047 2.045 2.123 1.450
(0.452) (0.596) (0.258) (1.080) (0.856)
N=32 k=25 a=15 =3
250 1.854 1.256 1.478 1.149 1.853
(0.927) (0.451) (0.301) (0.856) (1.420)
350 1.745 1.024 1.201 1.131 1.741
(0.847) (0.237) (0.214) (0.723) (1.204)
450 1.680 1.345 1.635 1.085 1.658
(0.784) (0.478) (0.481) (0.456) (1.004)

5.3. Simulation study. We also assess the performance of the MLEs in terms of the
sample size n. The simulation is performed using the Ox matrix programming language.
The number of Monte Carlo replications is 10,000. For maximizing the log-likelihood
function, we use the MaxBFGS subroutine with analytical derivatives. The evaluation
of the estimates is performed based on the following quantities for each sample size: the
empirical mean squared errors (MSEs) and the root MSEs (RMSEs) using the R package
from the Monte Carlo replications. The inversion method is used to generate samples,
i.e., the variates having the KwEW distribution are generated using (3.10). The MLEs
are evaluated for each simulated data, say (Xi,Bi, K, di,7:) (for ¢ = 1,...,10,000) and
the biases and MSEs are computed by

10000 10000

L S™ (ki —h) and MSE(n) = —— 3 (R — h)?

bi - -
fasn(m) = 15000 — 10000

for h =\, B, k, a, 7.

Let the sample size be n = 250, 350 and 450 and consider different values for the shape
parameters A, k, « and «, whereas the scale parameter [ is fixed at one. The empirical
results are given in Table 3.
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Table 4. MLEs of the parameters (standard errors in parentheses) for
the Aarset data

Distributions Estimates
Weibull(k, X) 3.441197 47.05054
(0.000248)  (0.036047)
E-W(X, 8, k) 0.018620 0.040483 0.373635
(0.003771)  (0.031143) (0.188693)
ExtW(a, b, ¢) 0.027836 0.942137 0.020278
(0.033196)  (0.285026) (0.319463)
MO-EW(a,b,c, a) 0.027083 0.161829 0.328829 3.599999
(0.006184)  (0.124196) (0.143844) (1.87102)
Kw-W(a,b,c,\) 0.340211 0.145696 1.209999 0.089756

(0.201699) (0.106772)  (0.294355)  (0.079873)
KwEW(X,B,k,a,v) 0.004366  0.209999  0.116764  3.516432 18.99999
(0.001879)  (0.175644)  (0.057365) (1.61287)  (15.3596)

The figures in this table indicate that the estimates are quite stable and, more impor-
tantly, are close to the true values for these sample sizes. Additionally, as the sample size
increases, the RMSEs decrease as expected. We can conclude that the MLEs are robust.

6. Application

Here, we prove the potentiality of the KwEW distribution by means of a real data set
using both MLEs and Bayesian approaches.

6.1. The MLEs approach. By using MLEs method, we fit the two-parameter Weibull
(Weibull), exponential-Weibull (EW) [5], extended Weibull (ExtW) [20], Marshall-Olkin
exponential-Weibull (MO-EW) [22], Kumaraswamy Weibull (Kw-W) [4] and KwEW dis-
tributions to the Aarset data [1] on lifetimes of 50 components, which possess a bathtub-
shaped failure rate property. The density functions of these models are given below (for
x> 0):

e The Weibull density function

flx) = ; (;)kil e OV K> 0,05 0;
e The EW density function
Fz) = (/\+ ﬂkxk_l) e N Bk > 0
e The ExtW density function

f(x)=a(c+bx) TP e_c/"_axbe_c/x7 a,b>0,c>0;
e The MO-EW density function
ala+ bC$71+C ef(ax+bxc)
f(x): ( ) 7A,ﬁ7k7a>0;

1—(1-a) e—(ax+bx")]2
The Kw-W density function
c cya—1 cyaib—1
f(x) =abeA®at"te N {1—6_(“) } [1—{1—e_<")‘) } ] ,
a,b,c, A > 0.

The parameters of the above distributions are estimated by maximizing the log-
likelihoods using the NMazimize command in the symbolic computational package Math-
ematica. Table 4 lists the MLEs (and the corresponding standard errors in parentheses)
of the parameters. Table 5 gives the values of minus the maximized log-likelihood (),
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Distributions -0 AIC BIC A* w*
Weibull(k, X) 240.98 485.959  489.783  3.53566  0.532084
E—W()\, 3, k) 239.463 484.927 490.663 2.92873 0.513036
ExtW(a, b, ¢) 240.957  487.914  493.65 3.5425 0.53549
MO-EW(a, b, ¢, o) 235.515  479.03 486.678  2.21706  0.34524
waW(a, b, c, )\) 235.925 479.851 487.499 2.48043 0.424629
KwEW(X, 8, k, a, v) 233.087 476.175 485.735 2.11894 0.32768
() (8)
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Figure 5. (f) The estimated KwEW density superimposed on the his-
togram for the Aarset data with other models. (g) The empirical cdf
and the estimated cdf’s of other models, where Kw-Ew is represented
by (Thick line), Kw-W by (Thin line), MO-EW by (Long and short
dashed line), ExtW by (Long dashed line), E-W by (dashed line) and
Weibull by (Dotted line)

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), Anderson-
Darling (A*) and Cramér-von Mises (W*) goodness-of-fit statistics for some fitted mod-
els. Since the values of these statistics are smaller for the KwEW distribution compared
to those values of the Weibull, EW, ExtW, MO-EW and Kw-W distributions, the pro-
posed distribution is a very competitive model for lifetime data analysis. Plots of the
fitted KwEW, Weibull, E-W, ExtW, Mo-EW and Kw-W densities and the histogram of
the data are displayed in Figure 5(f). In Figure 5(g), we plot the empirical cumulative
function and the estimated cdf’s for the KwEW and other distributions, which shows a
satisfactory fit of the new model.

6.2. Bayesian approach. The following independent priors are considered to perform
the Metropolis-Hastings algorithm: A ~1°(0.01,0.01), 8 ~I'(0.01,0.01), k ~ T'(0.01,0.01),
a ~ I'(0.01,0.01) and v ~ I'(0.01,0.01), so that we have vague prior distributions. Con-
sidering these prior density functions, we generate two parallel independent runs of the
Metropolis-Hastings with size 150,000 for each parameter, disregarding the first 15.000
iterations to eliminate the effect of the initial values and, to avoid correlation problems,
we consider a spacing of size 10, obtaining a sample of size 13,500 from each chain. To
monitor the convergence of the Metropolis-Hastings, we perform the methods suggested
by Cowles and Carlin [7]. To monitor the convergence of the Metropolis-Hastings, we use
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Figure 6. Approximate posterior marginal densities for the parame-
ters from the KwEW model for the Aarset data.

the between and within sequence information, following the approach developed in Gel-
man and Rubin [9], to obtain the potential scale reduction, R. In all cases, these values
were close to one, indicating the convergence of the chain. The approximate posterior
marginal density functions for the parameters are presented in Figure 6. In Table 6, we
report posterior summaries for the parameters of the new model. We note that the values
for the means a posteriori (Table 6) are quite close (as expected) to the MLEs given in
Table 5. Here, SD represents the standard deviation from the posterior distributions of
the parameters and HPD represents the 95% highest posterior density (HPD) intervals.

Table 6. Posterior summaries for the parameters from the KwEW

model for the Aarset data.

Parameter | Mean SD HPD (95%) R
A 0.0044 0.0007  (0.0031;0.0057) 1.0052
153 0.2102  0.0050  (0.2005;0.2200) 1.0002
k 0.1175 0.0227  (0.0740;0.1630) 1.0018
a 3.5188 0.0934  (3.3338;3.7012)  0.9999
ol 19.0003  0.2027 (18.6049;19.3974) 1.0008

7. Bivariate KwEW Distribution
Suppose U1 ~ KWwEW (71, a, A, B, k), Uz ~ KWEW (2, @, A, 8, k) and

Us ~ KwEW (73, a, A, 3, k) are independently distributed. Define X1 = maxz (U1, Us) and
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X2 = max(Usz, Us). Then the bivariate vector (X1, X2) ~ KwEW
(71,72,’}/3,@,)\,5,]6).

Now, we construct the joint CDF of X; and X». Since
F(x1,22) = P(X1 <21, X2 < 22),

we have

F(x1,22) = P(max(Ur,Us) < z1, (max(Usz,Us) < x2)
= P(U1 S £L'1,U3 S .T1,U2 S £CQ,U3 S 1‘2)
= P(Ul S I1,U2 S T2, U3 S min(l’1,x2).

Since U;,i = 1,2, 3 are independent, one gets

F(.’L’1,SE2) = P(U1 S ml,Uz S T2, Ug S min(ml,xg)
= F(I1,’Y1,0¢,/\,ﬁ,k‘) F(w27’y27aa>‘7/63k) F(Z,’}/3,Oé7/\,ﬁ,k)

o i
i

(7.1) x17{17 (17e_“—ﬁzk)a}”3 7

where z = min(x1,x2) .
Combining (1.5) and (7.1), we obtain the joint cdf of the bivariate KwEW distribution

as:
{1 - {1 - (1 - e_)‘xl—ﬁxlf)a}m+%}
% [1_{1_ (1_67AX2*5XL2()Q}72:| s T S$2

(7.2) F(x1,22) = [1 — {1 - (1 — e_)\X1—5le)a}W1}

ay 2+
X [1_ {1_ (1_87/\3(2*5"12() } ? 3:| s T2 Sl’1

k\ @) Y1+v2+73
1_{1_(1_6—)\)(1_5)(1) } , T1=XT2=2T

The joint pdf of (X1, X>) is given by

f1(561,1’2)7 r1 < T2
flxr,z2) =  fa(z1,22), x2 <1

fs(z1,22), T1=12=2

Now, fi(x1,z2) and fao(x1,22) can easily be obtained by taking second order partial
differentiation (i.e f(x1,22) = %) of the bivariate KwEW cdf given in (7.2) and
obtain the following forms:
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fuler. ) = e +75) (B-k) 2§ = A) (B(-R 2"~ 2)

% (1 _ ef)\xlf,Bxllﬂ)afl e,A(x1+xQ)fﬂ(xll‘+x]2‘) (1 _ e*AX2*13X]2()a71

(7.3) X (1 — (1 — e’*XZ*BXlﬁ)a)7271 (1 _ (1 o e,AX17Bx¥)a)71+7371

and

falwr2) = a® (92 +35) (B-k) 2§ = A) (B(—R 2"~ 2)

X (1 — eiAx]iBle)ail eiA(X1+X2)7B(X11(+X]2() (1 — e7>‘x2*l3x]2()

(7.4) x (1 _ (1 -~ ef)\xzf[-}xlz‘)a)’hfl (1 _ (1 B efol—Bxll‘)a)72+7371 .

But f3(x1,z2) can not be derived in the similar way. For this, we use the following

a—1

identity
[eS) To o x1
/ / fi(zr, 22) dxldxz-i-/ / o (x1, x2) dxy dxo
o Jo o Jo
+/ fa(z,z)dx =1
0
=Il+12+/ fa(z,z)dx =1.
0
Let
o k K\ a—1
Il = aryZ/ /8 —k wk—l Y e—kxz—ﬂxz 1 76_)\,(2_6)(2
[ (semat ) ( )
ay v2—1
x (1— (1—5“2*/3»%‘) )”2 dxs
T2 _ —x—xk —x—xka71
><a(71+'y3)/ (5(*]?)%]1617)\)6:’\151(176/\1131)
0
a1+ -1
X (1— (1—e’“1*5"1f) )71 s dxy
then
- a—1
I = a'yg/ (5(_@ m’;fl _ )\) e,Angﬁxg (1 _ekaz—ﬁxlg)
0
ay v1+v2+v3—1
(7.5) 0 (1= (1) ) g
Similarly,

a—1

Iy = ofyl/ (5(_}0 m’1971 _ )\) ef)\x1*6x11‘ (1 _ ef)\xlfﬁxlf)
0
x (1- (1 —ekalfﬂxlf)a)n_l dxs
o a—1
X a (2 +73)/ (5(_@ zht - )\) oA x2—Bxb (1 _ ef/\xzfﬂxg)
0

ay v2+y3—1
x (1 (1)) g,
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then

a—1

B=an [T (Bt o a) e (1)
0

(7.6) % (1 . (1 - e—Axl—ﬁxlf)a)’Yl+’Y2+’Y3—1 dxs

From (7.5) and (7.6), one obtains

o0 o .
/ fa(z,z)dx = Q’Y3/ (,6’(—k) 1 )\) e Ax—Bx
0 0
x (1 - e*“*ﬁxk)%1 (1 - (1 _ e*)\xfﬁxk)o‘)"“*"/?*ﬁ*l e

Thus,
f3(z,2) = a3 /Ooo (5(—k) A A) ekafﬁxk (1 _ efk)cfﬁxk)a*l

(7.7) % (1 _ (1 _ e—xx_gxk)a)’vﬁvﬁwsﬂ

8. Conclusions

In the last two decades, several authors have been interested in developing methods for
generating distributions with more flexibility in applications and data modeling. There
has been a growing interest among statisticians and applied researchers in constructing
flexible lifetime models in order to improve the modeling of survival data. In particular,
some authors proposed new extensions of the classical Weibull model. In this paper, we
introduce a five—parameter distribution obtained by applying the Kumaraswamy gener-
ator defined by Cordeiro et al.[6] to the exponential-Weibull model given by Cordeiro
et al. |5]. Interestingly, the proposed model has increasing, upside-down bathtub and
bathtub shaped hazard rate functions. We study some of its mathematical properties.
We discuss the maximum likelihood method and a Bayesian approach to make inference
on the model parameters. In the Bayesian approach, the selection of proper priors is
difficult to examine and it is left to the interested readers for further study. Also, the
monitoring the rate of convergence of the associated MCMC method will be an impor-
tant issue to look after. An application proves its flexibility to analysis of real data. We
also discuss a bivariate extension of the KwEW distribution. The distributional results
developed in this paper can have numerous applications in the physical and biological
sciences, reliability theory, hydrology, medicine, meteorology, engineering and survival
analysis.

Appendix A. The unified Fox—Wright generalized hypergeometric
function

Here,
« (a, A)p
(8.1) pmq[(b’B)q

stands for the unified variant of the Fox— Wrzght generalized hypergeometric function with
pupper and g lower parameters; (a, A), denotes the parameter p tuple (a1, A1), -, (ap, Ap)
and a;j € C, b; € C\ Zy, A;,B; >0 for all j =1,p,i = 1,q. The power series converges
for suitably bounded values of |z| when

P q
Ap,qII—ZA]‘-FZBj >0.
j=1 j=1

] Z J1(aJAnzn

Bnn'




1228

In the case A = 0, the convergence holds in the open disc |z| < 8 = 5:1 B]Bj .
roATh

J=177J

The function 1§ is called confluent. The convergence condition Ay g =1—A4; > 01is
of special interest for us.

We point out that the original definition of the Fox—Wright function ,¥4[z] (consult
formula collection [8] and the monographs [11], [15]) contains gamma functions instead
of the generalized Pochhammer symbols used here. However, these two functions differ
only up to constant multiplying factor, that is

.

v [ (a,A), Z] I T(ay) \Ij[ (a,A)p
P (ba B)q ;1':1 F(bj) pra (b7 B)q
The unification’s motivation is clear - for A; = --- = A, = By = --- = By = 1, the
fucntion , ¥} [z] reduces exactly to the well-known generalized hypergeometric function
pllq

J

Appendix B. Meijer G—function

The symbol G (+| -) denotes Meijer’s G—function [24] defined in terms of the Mellin—
Barnes integral as

G'm,n (Z‘ i, ,0p ) _ i f H;nzl F(b] - 8) H?:l F(l —aj + S) ZS

Pa b1, -+ ,bg 211 Jo [[jop i T =05 + ) IT)_, 11 Dla; — s)
where 0 < m < g, 0 < n < pand the poles a;, b; are such that no pole of I'(b;—s),7 = 1,m
coincides with any pole of I'(1 —a; + s),j7 = 1,n; i.e. ar —b; € N, while 2 # 0. Cisa
suitable integration contour which startes at —ico and goes to ico separating the poles of
I'(bj —s),j = 1, m which lie to the right of the contour, from all poles of I'(1 —a; +s),j =
1,n, which lie to the left of €. The integral converges if 6 = m +n — %(p +¢) > 0 and
larg(z)| < om, see [14, p. 143] and [24].

The G function’s Mathematica code reads

MeijerG[{{al, ceny an}7 {an+1, vy ap}}7 {{b1, vy bm}7 {bm+1, very bq}}, z].

(8.2)

S,
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Abstract

In this study, biased estimators for the shape parameter of a classical
Pareto distribution are proposed using two different shrinkage tech-
niques which give a smaller mean square error than an unbiased esti-
mator. Then these obtained biased estimators are compared with the
unbiased estimator by the means of their mean square error.
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1. Introduction

Primarily descriptive parameters of the population are used to make a statistical in-
ference about any population. Unbiased estimators are widely used for this purpose. It
can be mentioned that using biased estimators have a smaller mean square error (MSE)
if the unbiased estimator has a high MSE.

There have been some studies on biased but smaller MSE estimators of an unknown
population parameter. Thompson [1, 2| considered a technique of shrinking best linear
unbiased estimator (BLUE) by multiplying it by a shrinking factor to obtain an estimator
which has a smaller MSE than that of BLUE. Other important studies about this issue
are made by Metha and Srinivasan [3], Govindarajulu and Sahai [4], Das [5], Srivastava
et. al. [6], Rao and Singh [7], Bhatnagar [8], Singh and Katyar [9], Singh [10], Jani [11],
Kourouklis [12], Singh et. al. [13], Singh and Singh [14], Singh and Shukla [15], Singh
and Saxena [16], Prakash et. al. [17], Prakash [18].
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Pareto distribution was first used by Pareto [19] to describe an income distribution.
Rytgaard [20] studied on the maximum likelihood estimator (MLE) and the moment
estimator for the shape parameter of the Pareto distribution. Furthermore, he found
a minimum variance unbiased (MVU) estimator for the shape parameter of the Pareto
distribution using the obtained MLE. Sing et. al. [13] proposed new shrinkage estimators
for scale parameter of the Pareto distribution using the MLE and the unbiased estimator.
Then they compared the proposed estimators with the MLE and the unbiased estimator
by the means of their MSE. Prakash et. al. [17] obtained that some test estimators for
the scale parameter of a classical Pareto distribution are considered when a prior point
guess value of the shape parameter is available. Then they showed that their proposed
biased test estimators were better than other estimators through a squared error loss
function. Prakash [18] derived some shrinkage test estimators and the Bayes estimators
for the shape parameter of the Pareto distribution under the general entropy loss function.

In this study, two different estimator classes are obtained for the shape parameter
of the Pareto distribution. These estimator classes are compared with the unbiased
estimator by the means of their MSE. After that, it is tried to find out in which case
obtained estimator classes are better than the unbiased estimator.

2. Shrinkage Estimators Classes

Jani [11] and Singh and Singh [14] proposed two different shrinkage estimator classes
for scale parameters of exponential and normal distribution.

First, Jani [11] proposed a shrinkage estimator class for the scale parameter of the
exponential distribution is given as

~

(2.1) Ty = 6o[1 + k(60/0)"]

where 0 is a priori value of 6 parameter, k is a shrinking factor minimizing MSE value,
p is a nonzero real number and 6 is the unbiased estimator of § parameter.

Second, Singh and Singh [14] studied on the estimation problem of population variance
0% by adapting the estimation class defined equation (2.1) to a normal population. This
estimation class is given as the following:

2\ P
_ s
(2.2) U(2p> =00 [1 —l—w(?) }

0

where o2 is a prior value of o® parameter, w is a shrinking factor minimizing MSE value,
p is a nonzero real number and s? is the unbiased estimator of o parameter.

The biased estimators, which have a smaller MSE than the unbiased estimator for the
shape parameter of Pareto distribution, are obtained using the estimator classes defined
in equation (2.1) and equation (2.2).

3. The Obtained Estimators for the Shape Parameter of the Pareto
Distribution and Their Properties
In this section, the shape parameter of the Pareto distribution’s MVU estimator,

which is proposed by Rytgaard [20], is introduced. Then the biased estimator classes,
which have smaller MSE than the unbiased estimator, is obtained using various shrinking
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factors and MSE values of these estimators are calculated.

Let’s consider, X is a Pareto distributed random variable. The probability density
function (pdf) is as in equation (3.1)

(ﬁo/j)/:r(ﬁﬂ> T >«

(31)  fx(@)= {O o

where « is the scale parameter, 3 is the shape parameter.

If X random variable has the pdf defined in equation (3.1), the MLE for the shape
parameter of the Pareto distribution is

_n
Y
Using equation (3.2) estimator, Rytgaard [20] obtained an unbiased estimator which
is defined as
n—1-

(33) fB= B.

It can be found that the expected value of this estimator is

32 fB=

n

Variance of § estimator is

V‘”’(B) = ﬁﬁQ where E[BQ] — ("*1)62_

- (n-2)

3.1. Corollary. The shrinkage estimator class for the shape parameter of Pareto distri-
bution, which is obtained by help of equation(2.1), given as

(3.4) By =Bo+ (B — Boky)
where

{ntp- D!
(n+2p—1)!

and p is a nonzero real number. MSE of f8<*p) estimator class s

(3:5) kg =(n—1)°

2 kQP 2 2
(3:6)  MSE(Sy) =5 | (7255 + oy = D*(1 =)

where X = Bo/B. Furthermore bias of By estimators class given by

(3.7) Bms(ﬁ(*p)) = (1 = k() (Bo — B)-

Proof. The shrinkage estimator class for the shape parameter of Pareto distribution is
described as

(38) By =fo [1 + k(%ﬂ

which is obtained by means of equation (2.1).



B|(3)"] = Kim/s” (=12

_ip(n+jp—1)!
Kigp) = (n—1) JPW

functions are used to calculate the MSE of B(*p) estimator class. As it is known the value
of MSE (,Bz*p)) is

* 2
(3.9) MSE (ﬂ(p)) = E[ﬁ?m - ﬂ] :
If required information is written in equation (3.9) where A = 3o/, the MSE value is
obtained as

MSE(8j,) = 8 [2() T Kiap) + 26N (A = 1) Ky + (A= 1)°] -

Differentiating this equation with respect to k and setting the derivative equal to zero,
we find

(3.10) k=" (% - 1) K/ Kizp)

which minimizes the MSE value. If the required values are inserted into equation (3.10),
the k value is obtained as given in equation (3.11);

(3.11) k= (5;()@)) (%)p(n_ 1);:%

The shrinking parameter k is obtained as a function of § parameter. In practice, it is
impossible to attain parameter 3. Therefore the unknown parameters in equation (3.11)
are replaced by their unbiased estimators. So an estimator for k is obtained as

. B — » —1)!
i (B52) (L) ey et
Bo Bo (n+2p—1)!
On conclusion, when necessary adjustment is made, the estimator class for the shape
parameter of Pareto distribution is obtained as

Blpy = Bo + (B— 50) k)

-1
where k() = (n — 1)1"%.’1%%, the MSE value of §(,, is obtained as
k'(2 )52 2 2
(812)  MSE (8() = "=y + (k) = 1)7(8 = fo)

by making necessary adjustment in equation (3.9). If A = 8o/ is written on its place,
equation (3.12) is written as

I )
(3.13) MSE (8,)) = 8° = (j>2) + (kg —1)° (1= 22|

The bias of 5(*1)) estimators class is obtained as
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Bias (B(*p)) =B (ﬁ?p)) -B= (1 - k(P)) (Bo—=B) -
Thus the proof is completed. O

The relative efficiency of ﬁ(*p) estimator class with respect to E estimator is calculated
by means of

MSE (5(*1)))

If equation (3.14) is smaller than 1, it is clear that MSE(B(,)) < Var(B).

(3.14) = ki + (n—2) (kg — 1)1 = N2

Case Study 1: Consider that p=1. By using equation(3.4) and equation(3.5) an esti-
mator is obtain as

(n—1)
(n+1)°
The MSE value of this estimator is
* ) _ g2 (n—1)° (nfl)_ ’ Y
MSE () =8 Ln—Zﬂn+D2+(Ul%U 1)(1 M}-

The relative efficiency of [3(*1) estimator with respect to E estimator is

Bl1y = Bo + (E— 50)

MSE@)  _ (=0 (=) N
Var(3) _'(n+mi+( 2)(m+1) 0(1 A
UV TUE Y

(n+1)?  (n+1)?

) . ) . o . MSB(B)
It is clear that B(7) estimator is better than § estimator if

Var(p) < 1 inequality

is true. Thus

(m—1°> 4(n-2), .
nr1E Tzt <t

inequality can be written. If the necessary adjustment is made in equation (3.15), it is
obtained that

n 1/2
0<)\<1+(7) .
n—2

In case this inequality is true, it can be said that §(}) estimator is better than B esti-
mator. Further, when n is very large (i.e. n — 00 )

(3.15)

1-2)2< 2
- <
inequality reduces to 0 < A < 2.

n

Case Study 2: Consider that p = 2. By using equation(3.4) and equation(3.5) an
estimator is obtained as
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_ ~ (n—1)*

The MSE value of this estimator is

2 (n—1)* (n—1)? 2 2
MSE (ﬁé)) =8 |i(n+l)2(n+2)2(n72) + ((n+1)(n+2> - 1) (1=X)7|.

The relative efficiency of ,8<*2) estimator with respect to E estimator is

MSE() _ [_n=1® 1 g =D )y
Var(B) {(n+1)(n+2)} o 2)[(n+1)(n+2) 1} (=2
_ (n—1)* (n—2)(5n+1)2(1i/\)2
(n+1)2n+2)° (n+1)>*n+2)° -
MSE(st)

It is clear that [3{2) estimator is better than 5 estimator if < 1 inequality

VCL’V‘(E)
is true. Thus

(n—1)* (n—2)(5n +1)°

(n+1)2n+2)7°  (n+1)°*(n+2)?

inequality can be written. If the necessary adjustment is made in equation (3.16), it is
obtained that

1_ wm?4+n+3 1/2<)\<1+ on?4+n+3 1/2
(n—2)(Bn+1) (n—2)(Bn+1) '

(3.16) 1-3*<1

In case this inequality is true, it can be said that B(*Q) estimator is better than E
estimator. Furthermore, when n is very large (i.e. n — oo )

2n? 4+ n+3
(n—2)(Bn+1)
inequality reduces to 0.37 < A < 1.63.

(1-X7°<

3.2. Corollary. The shrinkage estimator class for the shape parameter of Pareto distri-
bution, which is obtained by means of equation(2.2), is given as

(317) By =Po+ (5 - /D’o) W(p)
where

(n—p-—1)

(818) wgy = (0= 1)

of B(p) estimator class is
2

* w 2 2

MSE (B(,) = 5 [m(f%) + (wy —1)7(1 =)

where A = Bo/B.Furthermore bias of () estimator class is given by

(3.19)  Bias (8(,) = (1 —w) (Bo — B) -
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Proof. The shrinkage estimator class for the shape parameter of Pareto distribution is

described as
B' p
1 £

Bipy = Po
which is obtained by means of equation(2.2).

B (B7) = Kagn(B)" (= 1,2)

and

_ jp(n—jp—1)!
Kogjp) = (n—1) W

functions are used to calculate the MSE of 3, estimator class. The value of M SE (ﬂ(*p))
is

(3.20) MSE(B) = E[B{,) — 8]

If necessary information is written in equation (3.20) where A = %0, the MSE value is
obtained as

MSE (8) = 8 [0 ()P Kagap) + 200! 7 (A= 1) Kagy + (A= 1)°] .

Differentiating this equation with respect to w and setting the derivate equal to zero, we
find

(3.21) w= (% _ 1) () (%)

which is a constant minimizing the MSE value. If necessary information is written in
equality which is introduced equation (3.21) w is obtained as follows:

(3.22) w= (%) (%)p(n - 1)”%-

The shrinking parameter k is obtained as a function of Sparameter. In practice, it is
impossible to attain parameter 3. Therefore the unknown parameter in equation (3.22)
is replaced by its unbiased estimator. So an estimator for w is obtained as

(B (B (nmp )
“"( o )(5)( R e )

On conclusion, when necessary adjustment is made, the estimator class for the shape
parameter of Pareto distribution is obtained as

B = Bo+ (B=B0) wiy)

where w(,) = (n — 1)_7’% .Thus, the MSE value of 3, is obtained as

2 52
w(p)ﬂ

(3.23) MSE (B(y) = (n—2)

+ (wey —1)*(8 = Bo)’
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by making necessary adjustment in equation (3.20). If A = 3y/f is written on its place,
equation (3.23) is written as

w2
MSE () = 8° | gy + (wi = 1)° (1= )

Furthermore the bias of ﬂzp)estimator class can be obtained as

Bias (BZP)) =B (B?p)) -B= (1 - w(P)) (Bo—=B) -
Thus the proof is completed. O

The relative efficiency of 3(,) estimator class with respect to B estimator is calculated
by means of

MSE (ﬁ(*p))
Var (E)

If equation (3.24) is smaller than 1, it is clear that M SE (ﬁ(*p)) < Var (E)

(3.24) = wly + (n—2) (wey —1)°(1 = N2

Case Study 3: Consider that p=1. An estimator is obtained as

(n—2)
(n—1)

by using equation (3.17) and equation (3.18). The MSE value of this estimator is

MSEwaﬁ—ﬁQ[ (n—2) +(m2”—0(1_mﬂ‘

Biy = o+ (B—B5))

=2 m-17 -1
The relative efficiency of /5(*1) estimator with respect to B estimator is
MSE(8},)) (n - 2)?

_ oo [=2 e
Var®) o 'l 2)[@%1) 1] (=2
(n-2° (-2

(n—1°  (n-1)>
sB(61)

. * . . > . oM
It is clear that 3}, estimator is better than 3 estimator if Var(3)

(1= N>

< 1 inequality is
true. Thus
(n—-27°  (n-2)
(=17 " 1)
inequality can be written. If the necessary adjustment is made in above inequality, it is
obtained that

0<A<1+(

1-2><1

on — 3\ /2
n—2 ’

In case this inequality is true, it can be said that 52‘1)estimator is better than E estimator.
Further, when n is very large (i.e. n — 00 )

2n — 3
12
1=2)"<——

inequality reduces to 0 < \ < 2.41.
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Case Study 4: Consider that p = 2. By using equation (3.17) and equation (3.18) an
estimator is obtained as

B = o+ (- o) 20

The MSE value of this estimator is

MSE (B(5) = B2 |:(n—3)2(n_4)2 + ((n—3>(n—4) _ 1)2(1 _ )\)2} _

(n—2)(n—1)% (n—1)2

The relative efficiency of ) estimator with respect to E estimator is

MSE(B* a2/ )2 _ _ 2
(b)) _ (n 3)"(n —4) +M=0)<m 3ﬂn24)70 (1 2
Var(B) (n—1) (n—1) It is
2 2 2
~ (n=3)"(n—4) (n—2)(5n —11)
(n—1)* (n-1?

clear that ;) estimator is better than B estimator if M\ifri((ﬂéi)) < 1 inequality is true.

Thus

(n—3)2mn—4)>  (n—2)(5n—11)
(n—1)" (n—17
inequality can be written. If the necessary adjustment is made in above inequality, it is
obtained that

1 1

2n* —9n+13 \? 2n* —9n+13 \?
1-(——F—— 1 D ToEE———— .
((n—2><5n—n>) <A +(<n—2>(5n—n))

2
1-N><1

In case this inequality is true, it can be said that ﬁ(*z)estimator is better than 5 estimator.
Further, when n is very large (i.e. n — o0 )

2n? —9n + 13
(n—2)(5n—11)
inequality reduces to 0.37 < A < 1.63.

1-)?2<

Note: It can be seen that the estimator class proposed by Jani [11] is directly related
with that of Singh and Singh [14] for the shape parameter of the Pareto distribution.
This relationship is expressed as k() = w(_p).

4. Comparisons of the estimators

Here, the relative efficiency of the obtained estimator classes with respect to the un-
biased estimator for the shape parameter of the Pareto distribution is calculated using
different values of n, p and A\. The handled X\ values are selected by considering the
efficiency range for large n values in case studies.

The relative efficiency of the estimator class introduced in equation (3.4) with respect
to the estimator given in equation (3.3) is calculated for the different value of n, p and A
by the help of equation (3.14). These calculated values are summarized in Table 1.
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Table 1. The relative efficiency of the estimator class proposed equa-
tion (3.4) with respect to estimator given by equation (3.3)

Sample Size n

A Estimator | 5 10 15 25 50
By 0.8657 0.9130 0.9357 0.9490 0.9749
B{Z1/2) 0.9738 0.9831 0.9875 0.9901 0.9951
B{12) 0.9022 0.9354 0.9518 0.9615 0.9809
0.125 B{1) 0.8719 0.9211 0.9436 0.9563 0.9796
[’3?3/2> 1.1139 1.1369 1.1304 1.1190 1.0761
B2 1.6853 1.6965 1.6407 1.5788 1.3687
[‘3?5 2) 2.4890 2.5955 2.5228 2.4111 1.9533
By 0.8148 0.8788 0.9100 0.9284 0.9646
B_1/2) 0.9730 0.9826 0.9871 0.9898 0.9950
B(1/2) 0.8858 0.9236 0.9426 0.9541 0.9770
0.50 B 0.7355 0.8164 0.8594 0.8861 0.9416
B(3/2) 0.6667 0.7647 0.8182 0.8519 0.9231
B2 0.7319 0.8302 0.8785 0.9065 0.9581
B(5/2) 0.9107 1.0270 1.0697 1.0858 1.0823
By 0.7901 0.8622 0.8975 0.9184 0.9596
B{1/2) 0.9726 0.9823 0.9869 0.9896 0.9949
B(12) 0.8778 0.9179 0.9382 0.9504 0.9751
1.00 B{1) 0.6694 0.7656 0.8186 0.8521 0.9231
B32) 0.4499 0.5842 0.6668 0.7224 0.8490
B2 0.2696 0.4103 0.5090 0.5805 0.7590
B(s/2) 0.1455 0.2665 0.3652 0.4432 0.6600
By 0.8148 0.8788 0.9100 0.9284 0.9646
B{_1/2) 0.9730 0.9826 0.9871 0.9898 0.9950
Bli2) 0.8858 0.9236 0.9426 0.9541 0.9770
1.50 B 0.7355 0.8164 0.8594 0.8861 0.9416
Bz )2 0.6667 0.7647 0.8182 0.8519 0.9231
B2 0.7319 0.8302 0.8785 0.9065 0.9581
Bls/2) 0.9107 1.0270 1.0697 1.0858 1.0823
ﬂ{_l) 1.0123 1.0115 1.0097 1.0082 1.0046
B{_1/2) 0.9760 0.9846 0.9887 0.9910 0.9956
(1/2) 0.9494 0.9693 0.9781 0.9830 0.9920
2.50 Bh) 1.2645 | 1.2227 | 11859 | 1.1583 | 1.0892
B3/2) 2.4013 2.2085 2.0290 1.8880 1.5164
{2) 4.4301 4.1901 3.8347 3.5142 2.5509
(5/2) 7.0327 7.1109 6.7060 6.2265 4.4606

Table 1 shows that 3{_ o) and 3 /» estimators are better than the unbiased estima-
tors for all values of A. Further when 0.50 < \ < 1.50, the all proposed biased estimators
are better than the unbiased estimators. Hence the efficiency of the proposed biased es-
timator class with respect to the unbiased estimator decreases as A\ values differ from 1.
Besides increased p values cause a decrease in efficiency of the proposed biased estimator

class with respect to the unbiased estimator.
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Table 2. The relative efficiency of the estimator class proposed equa-
tion (3.17) with respect to estimator given by equation (3.3)

Sample Size n

A Estimator | 5 10 15 25 50
[3(*,1) 0.8719 0.9211 0.9436 0.9563 0.9796
[3(*,1/2) 0.9022 0.9354 0.9518 0.9615 0.9809
[3(*1/2) 0.9738 0.9831 0.9875 0.9901 0.9951
0.125 [3(*1> 0.8657 0.9130 0.9357 0.9490 0.9749
[3(*3/2) 0.9948 0.9987 0.9997 1.0000 1.0003
[5’(*2> 1.6888 1.5148 1.4053 1.3331 1.1750
[‘3(*5 2) 2.9280 2.6133 2.3354 2.1289 1.6252
,8(*71) 0.7355 0.8164 0.8594 0.8861 0.9416
,8(*71/2) 0.8858 0.9236 0.9426 0.9541 0.9770
,8(*1/2) 0.9730 0.9826 0.9871 0.9898 0.9950
0.50 ,8(*1) 0.8148 0.8788 0.9100 0.9284 0.9646
,8(*3/2) 0.6758 0.7768 0.8302 0.8630 0.9304
,8(*2) 0.7325 0.8001 0.8412 0.8686 0.9297
,8{5/2) 1.0254 1.0314 1.0250 1.0197 1.0083
ﬂ{_l) 0.6694 0.7656 0.8186 0.8521 0.9231
ﬁ(*—1/2) 0.8778 0.9179 0.9382 0.9504 0.9751
ﬂ(*1/2) 0.9726 0.9823 0.9869 0.9896 0.9949
1.00 ﬁ(*l) 0.7901 0.8622 0.8975 0.9184 0.9596
ﬂZ‘S/Q) 0.5212 0.6692 0.7480 0.7966 0.8966
ﬁ&) 0.2689 0.4536 0.5677 0.6433 0.8108
ﬂg}, 2) 0.1030 0.2644 0.3897 0.4819 0.7092
Bﬁil) 0.7355 0.8164 0.8594 0.8861 0.9416
6611/2) 0.8858 0.9236 0.9426 0.9541 0.9770
Ba/g) 0.9730 0.9826 0.9871 0.9898 0.9950
1.50 szl) 0.8148 0.8788 0.9100 0.9284 0.9646
Bfg/g) 0.6758 0.7768 0.8302 0.8630 0.9304
B@ 0.7325 0.8001 0.8412 0.8686 0.9297
6{5 2) 1.0254 1.0314 1.0250 1.0197 1.0083
ﬂ{_l) 1.2645 1.2227 1.1859 1.1583 1.0892
5(*—1/2) 0.9494 0.9693 0.9781 0.9830 0.9920
ﬁ{1/2> 0.9760 0.9846 0.9887 0.9910 0.9956
2.50 Bl 1.0123 | 1.0115 | 1.0097 | 1.0082 | 1.0046
563/2) 1.9130 1.6374 1.4877 1.3946 1.2014
ﬂ<*2> 4.4417 3.5723 3.0293 2.6704 1.8810
(*5 2) 8.4051 7.1672 6.1078 5.3222 3.4012

Similarly, the relative efficiency of the estimator class proposed in equation (3.17) with
respect to estimator given in equation (3.3) is calculated for different values of n, p and

A with the help of equation (3.24). These calculated values are given in Table 2.

Table 2 shows that §(_, ;) and B(; 5 estimators are better than the unbiased esti-
mators for all A values. Furthermore, when 0.50 < A < 1.50, the all proposed biased
estimators better than the unbiased estimators. But the efficiency of the proposed bi-
ased estimator class with respect to the unbiased estimator decrease as A values differ
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Table 3. The relative biases of equation (3.4) and equation (3.17)
estimators for different n and p values

P Sample Size n
10 15 20 25 50

-1 0.6111 0.5714 0.5526 0.5417 0.5204
-1/2 0.2185 0.2120 0.2089 0.2070 0.2035
1/2 4.5769 4.7175 4.7880 4.8303 4.9151
1 1.6364 1.7500 1.8095 1.8462 1.9216
3/2 1.1841 1.2952 1.3569 1.3961 1.4799
2 0.9985 1.1009 1.1623 1.2030 1.2940
5/2 0.9108 0.9958 1.0530 1.0931 1.1882

from 1. In addition increased p values cause a decreased efficiency of the proposed biased
estimator class with respect to the unbiased estimator. Moreover, when the estimators
given in Table 1 are compared to the estimators given in Table 2, it is observed that the
efficiency range of the estimator class introduced in equation (3.17) with respect to the
estimator given in equation (3.3) is larger than that of the estimator class introduced in
equation (3.4) with respect to estimator given in equation (3.3).

In addition to the MSE criteria, bias has an important role in comparison of estimators.
A relative bias can be calculated by dividing equation (3.7) to equation (3.19). The
relative bias is given in equation (4.1).

Bias(ﬁ&,)) 1=k,
Bias(B(,) 11— wg)

The relative bias values are calculated by means of equation (4.1) for different n and
p values and given in Table 3.

(4.1)

In Table 3, it is seen that the biases of [3(*p) estimators are smaller than those of
ﬁ(*p) estimators when p has a negative value. Furthermore, it can be mentioned that
Bias(B(,))/Bias(B(,)) values decrease when there is an increase on positive values of p.
However, it can be noted thatﬁ(*p) estimators have smaller bias than ﬁzp)estimators if p
is near 1.

5. Simulation Study

In this section, we generated a data set for the Pareto distribution with the shape
parameter § = 5 and the scale parameter a = 1. The scale parameter a was taken as
1 because the same results were obtained from experiments for « = 1, 1.5, 2,.... The
shape parameter should be greater than 2 so that the variance of a data set from the
Pareto distribution could be calculated. Also Thompson [1,2] used the proportion 1/5
between two descriptive parameters of the normal distribution in his study. The relative
efficiency of the obtained estimator classes with respect to the unbiased estimator for the
shape parameter of the Pareto distribution is calculated using different values of n, p and
A. First we calculated the MSE values to obtain the relative efficiency. These MSE val-
ues were calculated by the means of Monte Carlo Simulation study where the number of
iterations was 25000. We obtained relative efficiencies similar to that of previous section.
The simulation study results which are given in Table 4 support to the theoretical results.
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Table 4. The relative efficiency of the estimator class proposed equa-
tion(3.4) and equation(3.17) with respect to estimator given by equa-

tion (3.3)
Sample Size n

A Estimator | 5 15 50
By 0.7797 0.9339 0.9808
Bl 0.7124 0.8857 0.9633

0.50 ﬂ(*_l/Q) 0.9715 0.9916 0.9976
B(1/2) 0.8841 0.9609 0.9882
ﬂ(*l) 0.7123 0.8857 0.9633
By 0.7796 0.9339 0.9808
,3(*,1) 0.5625 0.7901 0.9596
,3{,1) 0.4444 0.6694 0.9231

1.00 ,3(*,1/2) 0.9396 0.9726 0.9949
,3(*,1/2) 0.7610 0.8778 0.9751
,6<*1> 0.4444 0.6694 0.9231
/B(*l) 0.5625 0.7901 0.9596
By 0.1242 0.6646 0.8973
By 0.0195 0.4575 0.8075

2.50 B{_1/2) 0.8471 0.9545 0.9869
B(1/2) 0.4475 0.7948 0.9363
Bl1 0.0195 0.4575 0.8075
B(1 0.1242 0.6646 0.8973

6. Conclusion and Suggestions

When the biased estimators give smaller MSE than unbiased estimators, the biased
estimators can be preferred to the unbiased estimators. In this study, considering this
case, two different biased estimator classes are proposed. These estimators are generated
by minimizing MSE.

In section 4, the cases in which the biased estimators have smaller MSE than the
unbiased estimator are assessed. When 0.50 < A\ < 1.50, the biased estimator class which
is given in equation(3.4) is better than the unbiased estimator. However the efficiency
of the proposed biased estimator class with respect to the unbiased estimator decreases
as the X\ values differ from 1. Increased p values cause a decrease in efficiency of the
proposed biased estimator class with respect to the unbiased estimator. Similarly, when
0.50 < X < 1.50, the biased estimator class given in equation (3.17) is better than the
unbiased estimators. However the efficiency of the proposed biased estimator class with
respect to the unbiased estimator decreases as A values differ from 1. Further increased p
values cause decrease in efficiency of the proposed biased estimator class with respect to
the unbiased estimator. When the relative efficiency values given in Table 1 and Table 2
are considered, it is shown that the both biased estimators classes have almost the same
efficiency range. Besides, if both biased estimator classes are considered as an efficient
range, it is observed that the efficiencies of biased estimators with respect to biased es-
timators decrease when n increases. In addition to the relative efficiency values in both
tables, the efficiency range of the estimator class introduced in equation (3.17) is greater
than that of the estimator class given in equation (3.4) as shown in case study 1 and 3.
It is observed that the estimator class given in equation (3.4) is more efficient than the
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others when p is a negative real number, while the estimator class given equation (3.17)
is more efficient than others when p is a positive real number.

In conclusion, it is possible to obtain estimators that give a smaller MSE than the
unbiased estimator for the shape parameter of Pareto distribution using the estimator
class given in equation (3.4) if p is a negative number near zero, while it is reasonable to
use the estimator class given in equation (3.17) if p is a positive number near zero, when
A values are near 1.
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The aim of this study is to highlight the importance of uncertainty as-
sessments in GIS-based multi-attribute land-use decision making. To
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1. Introduction

The limitations associated with the classical Boolean logic representation of spatial
data in standard geographic information systems (GIS) [41; 6; 1], which is “crisp, deter-
ministic, and precise in nature” |1:143|, has resulted in the integration of multi-attribute
decision making (MADM) techniques (referred to in general as multi-criteria decision
making — MCDM — in MADM literature) with GIS [29]. This approach facilitates a wide
range of analytical procedures [7], and has gained increasing interest among modelers
over the last two decades, based on its ability to assess uncertainty in spatial MCDM
process.

GIS-based or spatial MADM is based on the discrete representation of spatial data,
generally in the form of a hierarchical structure [28]. Unlike the multi-objective process of
MCDM [28; 15], as in all multi-attribute decision making approaches this process involves
the definition of objectives, the choice of criteria for measuring these objectives and their
standardization, the criteria weighting that reflects the decision-makers’ preferences, and
an aggregation of the weighted standardized criterion values, allowing the alternatives to
be ranked, after which the best alternative will be selected [29; 30; 27].

1.1. Uncertainty analysis in land-use planning and environmental manage-
ment in spatial MCDM literature, and context of the current study. The
uncertainties in the decision-making process related to planning or environment-related
problems, including land-use suitability, are distinguishable in three dimensions, that is,
(1) location, (2) level, and (3) nature of the uncertainty [30]. In their review of some
basic works (see [45; 36; 46]) Mosadeghi et al. [30] suggest a linkage between uncertainty
analysis in MCDM and the dimensions of uncertainty with respect to uncertainty in en-
vironmental decision making (Figure 1). As can be seen in the figure, uncertainties that
are stochastic in nature are found in the context and model structure, and are related to
the decision makers’ preferences and knowledge of the MCDM process, while epistemic
uncertainties are found in the context, modeling technique and input, and are related to
model uncertainty. By definition, stochastic uncertainty, which is inherent in the context
of natural, behavioral, social, economic, and cultural systems, is random in nature and
cannot be eliminated [18; 30]. On the other hand, epistemic uncertainties are a result
of imperfect or incomplete knowledge, and can be reduced through empirical efforts and
high-quality data, monitoring and longer time series [18; 30; 32].

The following list explains the sources of uncertainty found in modeling that may
be dealt with in an uncertainty analysis in which stochastic uncertainties are excluded.
Uncertainty in the final result may originate from any of these stages [41], or may be
found in one or more of the different stages of the spatial (GIS-based) MCDM process
that may propagate in the final result [32]. As is common in many works [41; 18; 12;
11; 13; 40; 30; 32; 27|, these stages of the modeling process, which are characterized by
assessable (i.e., epistemic) uncertainty, can be listed as in the following with reference to
the locational dimension presented in Figure 1.

1. Selecting a particular/appropriate model (model structure);

2. Setting or defining the problems, goals and/or objectives (model structure);

3. Identifying appropriate attribute/criteria and/or parameters (model structure);

4. Obtaining high-quality data with minimal measurement and data processing  (context

and input) or algorithm (model technique) errors;

5. Decision making to obtain standardized criterion maps (context and model
technique);

6. Decision making for assigning of weights (model structure); and

7. Interpretation of the final results (context and model technique).



1247

Uncertainty in environmental Uncertainty analysis in
decision making MCDM
Location of uncertainty ' g :
Context g, ® & Problem structuring 1
2 S - ontex S5 $8 Method selection i
2 tochastic <::> 128 54 oc sel o !
'§ Uncertainty 12 g 3‘2 g Identification of criteria !
g Model Structure : %M Criteria weights !
=} 1
= 1 1 H
o Context e il bbbl
Q 1 E :
g istem] | ©5  Sclected mathematical
= Epistemic ) <',::> [~ elected mathematica I
=3 P =] . 1
& Uncertainty Model Technique , 2o % algorithm !
= ! £ Criteria estimation '
Input 1 = 1

Figure 1. Linkage between uncertainty terminology in environmental
decision-making science and MCDM
Source: [30:1104]

Although the number of studies that focus on uncertainty assessments in MCDM are
increasing in number, they are still considered insufficient by many scholars who con-
centrate on the requirement for the proper expression of uncertainty in GIS-based works
(see e.g., [14; 35; 40]). The shortfall, specifically, is in the quantification of uncertainty
in decision making and policy assessment concerning land-use planning [32] and for en-
vironmental processes [18].

The level of resolution to the problem of uncertainty in the above listed stages of the
modeling process in land-use or environmental decision making differs in existing litera-
ture. That is, while in some studies uncertainty is dealt with to a greater extent in terms
of both the number of works and the variety of techniques used, others are subject to
less attention by the modelers. For example, although the number of works that consider
uncertainty in relation to the selection of the model, goal/objectives, criteria/parameters
(stages 1 to 3) above is very limited [29; 11], those that are related to stage 4 on data
quality and processing is relatively high (see e.g., [2; 26; 39]). That said, it is also known
that in MCDM methods, the input data is generally assumed to be error free (see e.g.,
[41]), precise and accurate [29]. The majority of spatial MCDM literature focuses on
stages 5 and 6 [16], and to a much lesser degree, on stage 7, which deal with decision
making in terms of criteria standardization and weight assignment, and results interpreta-
tion, respectively. In literature, different MCDM techniques for dealing with uncertainty,
especially in stages 5 and 6, have been developed since the first introduction of this
decision-making process into the fields of economics and finance in the 1960s [30]. These
multi-attribute (multi-criteria) evaluation methods include the weighted linear combi-
nation (WLC), and as an extension to its limitations, the ordered weighted averaging
(OWA), as well as other additive techniques, such as multi-attribute value/utility the-
ory (MAVT/MAUT) and analytic hierarchy process (AHP). Some WLC-variant decision
rules are also included, such as ideal point methods (e.g., Technique for Order Preference
by Similarity to Ideal Solution-TOPSIS) and concordance methods (e.g., Elimination et
Choice Translating Reality-ELECTRE, Preference Ranking Organization Method for En-
richment Evaluations-PROMETHEE), and also some other methods that utilize theories
of Fuzzy sets, Random sets and Game [28; 41; 29; 16; 30).
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Literature contains a number of works that discuss the similarities and differences
between uncertainty analysis (UA) and sensitivity analysis (SA); and based on these, it
can be stated that while some authors claim there is no distinct difference between the
two concepts and that they may be used interchangeably [35; 16; 30; 31], others consider
them to be separate (see e.g., [28; 27;], but still emphasize the need of their integrated
use. As Ligmann-Zielinska and Jankowski [27] point out, UA is used to quantify the
variability of outcomes in a multi-criteria evaluation, given the model input uncertainty,
whereas SA is used to identify which criteria or criteria weights are most responsible for
this variability.

In spatial MCDM, works on land-use suitability or environmental management uncer-
tainty are dealt with using different methods, based on different theoretical backgrounds,
assumptions and different levels/types of data requirement. With reference to some
basic works [25; 8; 28; 41; 29; 35; 16; 11; 30; 31| a summary table charting these un-
certainty /sensitivity analysis methods, in addition to those that are deterministic, is
presented, with respect to their modeling type/underlying theory, typology, uncertainty
handling, method of criterion map combination, level of objectiveness and ease of com-
munication to the decision makers (Table 1).

The purpose of an uncertainty analysis in decision making is to determine the risk
in choosing a particular alternative [11]. Based on the above-listed basic works, it can
be stated that in turning the uncertainty into ‘risk’; in addition to either data-driven
traditional (a priori) probabilistic (e.g., logistic regression and Monte Carlo simulation),
data and knowledge-driven conditional (a posteriori) probabilistic (e.g., Bayesian net-
work) and their extensions (e.g., Dempster-Shafer Belief functions) or artificial intelli-
gence (e.g., neural network and fuzzy sets) methods, there are many other approaches,
including analytical error propagation, one-at-a-time (OAT), indicator-based (distance-
based) analysis, variance-based analysis, methods using random sets theory and game
theory (Table 1).

In spatial MCDM literature, which deals mainly with subjects of land-use suitability in
land-use planning and environmental management, uncertainty is handled mainly within
the 5" and 6" stages of the modeling process described earlier.

In environmental GIS-based MCDM studies, Falk et al. [18] assess the uncertainty
estimates of the outcomes of a deterministic environmental model (Revised Universal
Soil Equation-RUSLE), along with its input parameters; while Store and Kangas [41]
integrate expert knowledge with a spatial multi-criteria evaluation to model GIS habitat
suitability. As a resolution to the classical Boolean representation of GIS in uncertainty
modeling, and to make empirical data cost savings, Store and Kangas [41] utilize expert
knowledge that is based on the theoretical background of MAUT in habitat suitability.
For cost saving purposes, Castrignano et al. [10] opted for multivariate geostatistics in
GIS, utilizing ancillary less-expensive information to improve the estimate uncertainty
of a soil quality index. Facing the same GIS representation problem, Avdagic et al. [6]
and Reshmidevi et al. [37] developed a methodology to integrate a Mamdani-type fuzzy
inference rule base in GIS in land valorization for land-use planning and land suitability
for particular crops, respectively. In addition, Reshmidevi et al. [37] used the local
knowledge of farmers and experts, and compared two different aggregation methods:
WLC and Yager’s aggregation. Based on the same GIS limitation, but criticizing the
integration of Mamdani-type fuzzy logic in GIS, Adhikari and Li [1] utilize a Sugeno-
type fuzzy inference. Similar to Falk et al. [18|, who utilized Bayesian melding in a
cell-based GIS environment, O'Brien et al. [35] developed a tool called CaNaSTA (Crop
Niche Selection in Tropical Agriculture) to define site suitability for particular crops and
forages using sparse and uncertain data based on Bayesian modeling. In their tool, called
the Catchment Evaluation Decision Support System (CEDSS), which enables the explicit
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Table 1. Deterministic vs. uncertainty or sensitivity analysis methods
in multi-attribute modeling that utilize GIS and other spatial analysis
software in land-use suitability or environmental management

Deterministic /

Fuzzy logic (operations)

Fuzzy sets theory

“Possibility
theory”

Uncertainty due to imprecision
of knowledge or the ambiguity
of an event, i.e., to which
degree an event occurs

Set membership value is
between 0 and 1

. Modeling type / Method of Lo
Uncertainty or « b . . N Objectiveness /
O . Underlying Typology Uncertainty handling criterion map ..
Sensitivity analysis h . bi . Communication|
methods! theory’ combination
Boolean logic Nf’ weighting
(operations) (simple overlay of
0-1 maps)
Binary evidence Deterministic .
-extension to Boolean  |“Determinism” No uncertainty assumed WLC Easy
. The most Probability is either 0 or 1 L
Hogic | traditional [Set membership value is either commumeation to
Traditional set Oor1 WLC/OWA/MAVT/|decision makers
Index overlay theory AHP/ideal point
-extension to binary methods/
evidence concordance
methods
Logistic regression Uncertainty due to limitation Being data-
Generalized Linear and |Data-driven in knowledge (epistemic) or Methods listed i driven and a
Generalized Additive probabilistic Traditional |randomness in occurrence of he 1 (;ts isted in priori, more
Models “Probability probability |an event (stochastic) t le © mosti for objective
-extension of logistic theory” (a priori) Based on probability density, | qu_m_use h or
regression probability distribution co-_rzl ining the Relatively
Monte Carlo Simulation Probability is between 0 and 1 ;_;;\521‘2; miipi'lse complicated
Both data-driven Conditi Based on a priori probability o |
onditional they are used for .
and knowledge- (Bayesian) and knowledge-base a criterion ma Being knowledge-
Bayesian network driven rolzabilit posteriori probability is estimation t]};en driven, and to a
probabilistic ? tori };'i) obtained with the principle of Probabilistic certain extent,
“Bayesian theory” @ postertor)| o« cluded middle additive being a
g{;}g:ﬁedge- Extension of Makes a distinction between —|weighting/OWA/ gzztzz:}: more
Dempster-Shafer Belief S ; probability and ignorance MAUT/ AHP/ideal |*"™
X probabilistic Bayesian . N . hods/
functions “Dempster-Shafer|probabilit; removing the assumption of point methods Complicated
Bolo fp theory” P ¥ |excluded middle concordance
methods is/are
Classification and Data-driven for used
regression trees robust results but
—i\kj)ase:dlon decl.slion trees gl‘l.ow knowledge- Tolerant of imprecision, (In addition,
eural networ riven ambiguity, vagueness, MAUT is also used :
assessment for uncertainty in standardizing | Not necessarily
Cellular automata determ.n.ns.nc or criterion maps) more accurate
probabilistic rule but “more
base i informed”
ﬁ::;ﬁf;z:lcez Fuzzy additive decisions

weighting/ Fuzzy
MIN/Fuzzy
MAX/OWA/AHP/
ideal point
methods/
concordance
methods is/are
used

“Black box” to
the decision
makers

1Other basic uncertainty or sensitivity analysis methods not detailed here are analytical error propagation, one-at-a-time (OAT),
indicator-based (distance-based) analysis, variance-based analysis, methods using random sets theory and game theory.

2 Evolutionary (genetic) algorithms is a multi-objective decision making (MODM) method that utilizes artificial

intelligence, and so is not included in the table.

Source: Compiled from the explanations found in [25; 8; 28; 41; 29; 35; 16; 11; 30; 31]

visual exploration of uncertainties in decision making resulting from both weights and
attribute (criterion) values in GIS-based catchment management, Chen et al. [11] utilize
an indicator (distance)-based method facilitated by an OAT approach. On the other
hand, Ligmann-Zielinska and Jankowski [27] use a Monte Carlo simulation in addition to a
variance-based analysis in an uncertainty analysis in their UA-SA integrated methodology
aimed at defining habitat suitability for a wetland plant.

More transparent graphical display facilities of GIS, such as the work by Chen et al.
[11], have taken a novel approach, visualizing the uncertainties in criterion weighting
based especially on the AHP method, and thus its pairwise comparisons. In this respect,
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to evaluate epistemic uncertainties in coastal land-use planning decisions Mosadeghi et
al. [31] examine the sensitivity of AHP weighting decisions to input uncertainties, and
to this end, combine the conventional UA with the visualization capability of GIS and
the Monte Carlo simulation algorithm. Similarly, Chen et al. [12] developed a GIS-based
AHP-SA tool that utilizes the OAT method to assess the behavior and limitations of a
GIS-based irrigated cropping land-use suitability model. The tool provides access to an
interactive range of user-defined simulations to evaluate the dependency of the model
output on the weights of the input parameters, identifying the criteria that are sensitive
to weight changes. In further developing their work (AHP-SA), Chen et al. [13] devel-
oped the AHP-SA2 to increase the tool’s efficiency, while also improving its flexibility
and enhancing its visualization capability to analyze the weight sensitivity resulting from
both direct and indirect weight changes using the OAT technique. Likewise, based on
the subjectivity limitation of AHP, Ahmad et al. [3] developed a new technique called
the “Objective Spatial Analytic Hierarchy Process (OSAHP)”, combining AHP with re-
gression modeling to identify potential agroforestry areas using GIS. With the aim of
sustainable development and consensus building, and considering the uncertainties in
the land-use planning process, Soltani et al. [40] utilize a GIS-based urban land-use
model combined with UA. In their GIS-based MCDM they used AHP, sensitivity anal-
ysis, Monte Carlo simulation and probability classification methods, and made use of
the visual spatial representation of the results for different stages of the decision-making
process under different conditions.

As in the above-mentioned literature, this study deals mainly with the uncertainty in
the 5" and 6'" stages (decision making on criteria standardization and weight assign-
ment) of the spatial MCDM modeling process listed earlier, and with the 7" stage to the
extent of discussing the possibility of different results based on different interpretations
of the results of the modeling.

In doing this, rather than carrying out classical sensitivity analysis procedures on crite-
rion values and weights, the intention is to examine the differences between the results of
a deterministic approach and an uncertainty approach using standardized criterion maps
at lower levels of a hierarchical GIS-based multi-criteria model, and those of weighted and
aggregated maps at higher levels. By assessing the differences at each level (multi levels)
in the two modeling approaches, and between their equivalent overall goal (preference)
maps, this study aims to show that uncertainty makes a difference in the ranking and the
spatial pattern of the alternatives in land-use decision making, and presents empirical
proof of the importance of uncertainty assessment in spatial multi-criteria modeling.

In this respect, the study does not deal with the question of uncertainty in terms of
the potentially subjective decisions given by the decision makers, in this case, the two
modelers. In other words, the study does not make a sensitivity analysis of the criterion
values and weighting of the two models, but rather shows that the deterministic results
should not be seen as the only solution set with a particular ranking and spatial pattern
of alternatives in land-use suitability, and reveals that they are subject to change under
different conditions of decision making, which is characterized by uncertainty.

As mentioned earlier, although there is an increasing number of works on uncertainty
assessment, related especially to the 5" and 6 stages of spatial multi-criteria modeling,
there has to date been no one-to-one comparison of the deterministic and uncertainty
maps at each level of an MCDM land-use suitability model in a GIS environment.

With this study, two main types of uncertainty method, being probability and fuzzy
set theories, in addition to MAUT (Table 1), were used to obtain standardized criterion
maps at the lowest levels of the hierarchical structure of the existing deterministic model.
Then, a weighting process was carried out, which included trade-offs at levels under the
goal level and entropy at the goal level compared to existing model’s AHP at all levels of
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hierarchy with two exceptions (i.e., for one lower level sub-objective and for goals). After
weighting, each criterion map at the lower levels was aggregated at the higher levels to
obtain the preference (overall goal) map for a particular land-use type via either modeling
approach (deterministic vs. uncertainty). In these stages, each map pair from either of
the modeling approaches at each level of the hierarchy was compared for the case study
area, being Hillsborough County in the state of Florida.

The deterministic model used in this study is the Land-Use Conflict Identification
Strategy (LUCIS), the structure of which is described in brief in the following section.

1.2. Deterministic spatial multi-attribute land-use modeling: Land-Use Con-
flict Identification Strategy (LUCIS). The Land-Use Conflict Identification Strat-
egy (LUCIS) is a deterministic MADM process and “a goal-driven GIS model that pro-
duces a spatial representation of probable patterns of future land use” [9:9]. In order
to assess the conflicts between the three main land-use types (agricultural, urban, and
ecologically sensitive) and possible future land-use patterns, models are established to
obtain preference maps related to each of these land uses (Figure 2). Even though the
complete LUCIS deals with conflict identification based on three different land uses, and
in total involves a 6" level at the top of the hierarchical structure, the scope of this study
is limited up to 5'* level, and to the agricultural land use (Figure 2). In this respect, the
uncertainty maps obtained in this study, like their corresponding deterministic equiva-
lents from existing models, consist of the overall goal map, referred to as the preference
map hereafter, at the top of the hierarchical structure, followed by maps charting the
goals, objectives, sub-objectives and lower level sub-objectives at the lower levels.

VA

Agricultural land use
Z _ - ) multilevels

VAN Urban land use

’ - multilevels
Ecological sensitivity
multi levels

* Whenever exist, the upper level objectives in the hierarchy
are also assessed separately with a level name of 3’

Figure 2. Symbolic representation of multi-level LUCIS hierarchies
(study covers the levels concerning agricultural land use on the left,
the preference map being at the top)
Source: Adapted from [9:231,233,236]

The related numbering, naming and a short description of the LUCIS hierarchical
levels for the agricultural land-use preference map seen on the left part of Figure 2 is
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Table 2. Numbering, naming, and a short description of the LUCIS
hierarchical levels for the agricultural land-use preference map

Level 4
Goal maps

Level 3’
Upper level
objective maps*

Level 3
Objective maps

Level 2
Sub-objective maps

Level 1
Lower level sub-objective maps

Row crops
land

suitability (1)

Physical
suitability (11)

Soils suitability (111)

a:Grass; b:Strawberries; c¢:Corn;
d:Sugarcane; e:Cabbage;
f:Peppers; g:Soybeans;
h:Snapbeans; i:Watermelons;
j:Peanuts; k:Cucumbers

Land-use suitability (112)

a:City population; b:Row crops

Livestock
suitability (2)

Proximit; Local markets proximity (122 .
suitability (12) . p— o distance
Major roads proximity (123) -
Land value
suitability (13)
Land-use suitability (211) -
Physical Dist.ance to open wa.ter resources (212) | -
suitability (21) Aquifer rec}.)arge suitability (213)
High-intensity Soils suitability (214)
livestock Distance to existing urban areas (215)
suitability (2A) Proximity Local markets proximity (221)
suitability (22) | Major roads proximity (223)
Land value

suitability (25)

Low-intensity
livestock
suitability (2B)

Physical
suitability (23)

Land-use suitability (231)

Distance to open water resources (232) | -

Aquifer recharge suitability (233)
Soils suitability (234)

Proximity Local markets proximity (241) -
suitability (24) | Major roads proximity (243) -
Land value

suitability (26)

Land-use suitability (311)

suitability (52)

Physical Distance to open water resources (312) | -
. suitability (31) |Aquifer recharge suitability (313) -
Zpl:‘i‘:llgty ] Soils suitability (314) .
suitability (3) Pr9x1m1_ty Pl’O?{lmlty to processing plants (321) -
suitability (32) | Major roads proximity (323) -
Land value
suitability (33)
Physical Land-use suitability (411)
suitability (41) | Parcel size suitability (412)
Nursery Proximity Local markets proximity (421) -
suitability (4) | suitability (42) | Major roads proximity (423) -
Land value
suitability (43) 3
Land-use suitability (511)
Physical Aquifer recharge suitability (513)
suitability (51) |[Soils suitability (514) -
Timber Parcel size suitability (515) -
suitability (5)|" Proximity Local markets proximity (521)

Major roads proximity (522)

Land value
suitability (53)

presented in Table 2, in which all of the goals and objectives at all levels are phrased
in such a way that they are tried to be maximized in the decision-making process. As
is clearly apparent in Table 2, the LUCIS agricultural land-use hierarchical levels, each
of which is in fact a GIS map layer, follow a naming convention that is composed of an

alphanumeric code for each different level.

For example, Level 4: Goal map 1, Level

3: Objective 11, Level 2: Sub-objective 111 and Level 1: Lower Level Sub-objective
criterion maps under sub-objective 111 are named respectively with codes agl; aglol1;
aglollo111; and criterion maps under sub-objective aglol1sol11l, which are named with
a letter a—k to ensure ease in following, and since the maps at these levels are only a few
in number.
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2. Study area and data

Hillsborough County is located on the west coast of central Florida (Figure 3). It has
total of surface area of 1,072 square miles (1,048 sq mi of land and 24 sq mi of inland
water). Tampa is the County seat and the largest city in Hillsborough, in which there are
two more municipal cities: Temple Terrace and Plant City [23]. It is a rapidly urbanizing
county [44] with a population increase of 23.2 percent (from 997,936 to 1,229,226) and a
population density increase from 879 to 1082 persons/sq mi between 2000 and 2010 [43].
The rapid and continuous urban development, which has been mainly in the form new
suburban construction, especially into the more rural, unincorporated part of the county
[23], has caused both the environmental degradation of natural resources, such as soil
erosion and compaction, deforestation and disturbance to aquifers [44], and a decrease
in valuable agricultural lands, which makes up one of the most important production
capacities in the state total [38].

HILLSBOROUGH
Total area (mi?): 1,072 | Countyseat and the
largest city: Tampa
Land area (mi?): 1,048 |Incorporated cities
(163 mi%): Tampa, Temple|
Terrace, and Plant City

Inland water area (mi®): |Unincorporated area
24 (909 mi?): About 85% of

the total area |

Hillsborough (2000) FL (2000) Hillsborough (2010) FL (2010) i

Population: 997,936 15,982,378 1,229,226 18,801,310 {
Total households: 391,043 6,341,121 474,030 7,420,802 N !
Population density ML L Miles A
(persons/mi”: B 273 1,082 321 0 15 3 6 9 12 !

7

Figure 3. The study area, Hillsborough County in the state of Florida
Source: Map data compiled from [19]; Tabular data compiled from
[23;43]

The strong competition with an essentially high level of decision-making uncertainty
among the urban, agricultural and natural land uses in Hillsborough County was the
main reason for the selection of this area for a study of the impact of uncertainty on
a deterministic multi-criteria land-use modeling, aiming to identify land-use conflicts
(LUCIS) among the three land uses.

Aside from the annual agricultural sales of Hillsborough County, obtained from Census
of Agriculture data, and the ‘Critical Lands and Waters Identification Project (CLIP):
Version 2.0 data [21], all other data used in the study at both the county and state level
were obtained from the ‘Florida Geographic Data Library’ (FGDL) website [19], as the
source of the most recent available data at the time of writing.
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In this study, all the models for the deterministic approach were built and run us-
ing ArcGIS® software. The same software was used also for the uncertainty approach,
although for some models, additional software was needed, such as, spreadsheet environ-
ment (MS Excel®) and spatial data analysis (CrimeStat®).

3. Methodology and application

In this section, the methodology and its applications to the study area will be explained
in three subsequent stages. The first stage includes the development of uncertainty
models for LUCIS and the comparisons with their deterministic equivalents in terms of the
standardization of criterion maps (each different GIS layer) at the different hierarchical
levels (levels 1, 2 and 3) prior to any weighting being applied. The second stage involves
a comparison of the decision rules of the two different approaches (deterministic vs.
uncertainty) for combining the criterion maps under each relevant level of hierarchy
(levels 1, 2, 3, 3> and 4). In the final stage, a comparison is made for the preference
maps of the two modeling approaches (level 5). The results of the two modelings of these
three stages, considering all hierarchical levels of LUCIS (up to the 5”‘)7 are explained
in Section 4.

3.1. Comparison of newly developed uncertainty models and their existing
deterministic equivalents in criteria standardization (levels 1, 2 and 3). The
criteria standardization in uncertainty modeling was carried out using seven different
groups of methods, each applied to a different group of maps prior to any weighting (i.e.,
the maps have no other sub-level maps) (Table 2). The seven groups of methods are
listed in Table 3 according to the groups of criterion maps (GIS layers) to which they
were applied, which are referred using their alphanumeric names described earlier.

In general, the GIS-based uncertainty models in criteria standardization were devel-
oped with reference to the characteristics of the decision variable: whenever they are
numeric, the uncertainty is assumed to be a result of limited information related to the
decision-making process in a particular spatial system and dealt with traditional prob-
ability [25; 4; 28] (Table 1), contrary to the unit probability of an alternative in the
deterministic DM process [20; 22]. However, if the variables are categorical, and imply
that the uncertainty is a result of the imprecision or ambiguity of the information or, in
other words, if the variables are linguistic or fuzzy, the fuzzy set membership methods
[28] are used to obtain the criterion maps. Both of these two types of maps are then
compared with those obtained from the deterministic variables with binary, discrete or
continuous values at each level of the hierarchy.

In the former type of variables, probabilistic maps are obtained with discrete, contin-
uous or mixed variable values, and the transformation processes are based on probability
density or cumulative probability density functions, in which most of the maps can be
considered to be data-driven, based on objective probabilistic methods (Table 1) using
relative frequency (or area) distributions. The only exceptions to this are the two lower
level sub-objectives handled by MAUT, in which the derivation of utility functions in-
cludes the assessment of the decision maker’s expected utility. The remaining assessments
of uncertainty involve the use of fuzzy logic (Table 1) by means of linguistic variables.

In Table 4 below the detailed methodology applied to the seven different groups of cri-
terion maps are explained in terms of both the deterministic and uncertainty approaches.

3.2. Comparison of decision rules in criteria aggregation and weighting in the
deterministic and uncertainty models (levels 1, 2, 3, 3’ and 4). In the deter-
ministic modeling, the decision rule for combining the criterion maps at each weighting
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Table 3. Seven groups of uncertainty methods for criteria standard-
ization, and the criterion maps (GIS layers) to which they were applied

Methods Uncertainty Hierarchi- Criterion map name Objective
method type cal level p (in terms of minimization or maximization)
Expected utilities
based on frequencies Lower Level Sub-objective
Method 1 | multiplied by a Level 1 under Sub-objective -row crops-physical-soils
particular value aglollsolll
(vield)
Utility functions and
utility function
multiplied by a Lower Level Sub-objective
Method 2 |particular value Level 1 under Sub-objective -row crops-proximity-local markets
(probability of aglol2s0122
standard deviation
of the prediction)
Sub-objective aglol1s0112 |-row crops-physical-land-use
Sub-objective ag4041s0411 |-nursery-physical-land-use
Sub-objective aghob1so511 |- timber-physical-land-use
Sub-objective ag2021s0213 |-livestock-high-intensity livestock physical- aquifer
recharge
Fuzzy set — . . P . .
membership (and Sub-objective ag2023s0233 |- livestock-low-intensity livestock physical-aquifer
fuzzy overlay) based recharge
IMethod 3 on ei ort kn};wled o Level 2 Sub-objective ag3031s0313 |- specialty farming-physical-aquifer recharge
and spatial MCDI\/% Sub-objective agho51s0513 |- timber-physical-aquifer recharge
literalt)ure Sub-objective ag2021s0214 |-livestock-high-intensity livestock physical-soils
Sub-objective ag2023s0234 |- livestock-low-intensity livestock physical-soils
Sub-objective ag3031s0314 |-specialty farming-physical-soils
Sub-objective aghoblso514 |-timber-physical-soils
Sub-objective ag4041s0412 |- nursery-physical-parcel size
Sub-objective aghob1s0515 |- timber-physical-parcel size
Fuzzy set
membership based
on the mean and
standard deviations Sub-objective aglo12s0123 |- row crops-proximity-roads
of already grouped SO L
data with respect to Sub-objective ag4042s0421 |- nursery-proximity-local markets
Method 4 their f P Level 2 Sub-objective agho52s0521 |- timber-proximity-local markets
e1r tuzzy. Sub-objective ag4042s0423 |- nursery-proximity-roads
membership values ject g . y-proximity
based on expert ’ Sub-objective agho52s0522 |- timber-proximity-roads
knowledge and
spatial MCDM
literature
f‘rlel::;?oor?:i tion of Sub-objective ag2021s0211 |-livestock-high-intensity livestock physical-land-use
Method 5 robabilities based Level 2 Sub-objective ag2023s0231 |-livestock-low-intensity livestock physical-land-use
];n areas Sub-objective ag3031s0311 |-specialty farming-physical-land-use
Sub-objective ag2021s0212 |-livestock-high-intensity livestock physical-open
water
Fuzzy sot Sub-objective ag2023s0232 |-livestock-low-intensity livestock physical-open
memi,)ershi based water
on the mearI: and Sub-objective ag3031s0312 |-specialty farming-physical-open water
standard deviations Sub-objective ag2021s0215 |-livestock-high-intensity livestock physical-existing
of already grouped - urban S _— .
Method 6 data with respect to Level 2 Sub-objective ag2022s0221 |-livestock-high-intensity livestock proximity-local
N R markets
:?:;iﬁ::nigfir;ilo ¢ Sub-objective ag2024s0241 |-livestock-low-intensity livestock proximity-local
s markets
g:lo:f\eb;lmes, based Sub-objective ag3032s0321 |-specialty farming-proximity-processing plants
. Sub-objective ag2022s0223 |-livestock-high-intensity livestock proximity-roads
Sub-objective ag2024s0243 |-livestock-low-intensity livestock proximity-roads
Sub-objective ag3032s0323 |-specialty farming-proximity-roads
Fuzzy set
membership based Objective aglol3 -row crops-land value
on enumeration Objective ag2025 -livestock-high-intensity livestock-land value
Method 7 derived from spatial Level 3 Objective ag2026 -livestock-low-intensity livestock-land value

k-means clustering
and non-spatial
mean and standard
deviations

Objective ag3033
Objective ag4043
Objective agho53

-specialty farming-land value
-nursery-land value
-timber-land value
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Table 4. Detailed deterministic and uncertainty methodology applied
to the seven different groups of criterion maps

s0311

suitability for specialty

farming

the parcel data

Level | Map name Aim Deterministic models Uncertainty models
Expected utility estimation for each
row crop type by the number of pixels

(ak: (i.e., area) of each row crop type,
— oy L . Score assignment by linearly multiplied by the yield value of that
=3 different maximize soil . . il
S |Level 1 o increasing values between land 9 to | crop, and divided by the total of these
= types of suitability for each . o ) .
% |maps crops) under |crop type either individual or classified products
= solll increasing crop yield amounts (spreadsheet used for floating point
rasters, conditional map algebra
operation in GIS used for value
assignment)
- Cities’ populations (including neighbor
counties) interpolation by a
geostatistical process of kriging that
-Results from a deterministic provided a prediction and its variance
interpolation method (inverse raster. Prediction surface is used with
distance weighting — IDW) on the | an estimated utility function by using
(acit maximize proximity to cities of the county with non-zero indifference method for
N oy . p y population were used for standardization. This 0-1 range
=1 population; |local markets for row o Lo L.
2 Level 1 birow crops |crops (cities’ reclassifying the raster prediction map was multiplied by the
T |maps | P DS 1L -An Euclidian distance map of row | probability of square root of the
distance) population and row . . N . . .
= under 50122 |crop areas) crop areas used for reclassification | variance raster to give higher weights
P based upon the mean and 1/4 to the values having less errors and
standard deviation distances found | vice versa.(
in the zonal statistics table for row |-Row crops distance standardized
crop areas [9] utility scores was estimated by
application of a utility function to the
raw scores obtained by Euclidian
distances.®
maximize agricultural . Conversion of deterministic
o v - | Expert knowledge and spatial . . . .
50112, so411,|land-use suitability in M . . N assignments (1-9) into linguistic
CDM literature used in assigning X .
s0511 terms of land cover, Lo X rankings (1-very low and 9-very high)
. the deterministic values of either 1
soils and parcels to use fuzzy large or small
- and 9 or all or some of the values e .
minimize and . transformation in GIS to obtain
L. . between 1 and 9. The higher and 3 .
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@ See Appendix 1 for details of uncertainty method 2
@ See Appendix 2 for details of uncertainty method 3
® See Appendix 3 for details of uncertainty method 4
@ See Appendix 4 for details of uncertainty method 5
® See Appendix 5 for details of uncertainty method 6
© See Appendix 6 for details of uncertainty method 7

level (1, 2, 3, 3’ and 4) is the weighted summation of the standardized map scores using
Equation 3.1.

J

In this equation, x;; is the score of the i'" alternative with respect to the ;'™ attribute

(criterion), and the weight w; is a normalized weight, so that Z w; =1]28].

J
Similar to this, in the uncertainty approach the weighted summation turned out to be

of the linear utility function [33], where the scores are replaced by utilities [28] (Equation
3.2).

(3.2) Uq; = Zw]'uij
J
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In the deterministic models, the combining methods also involved some other opera-
tions, including conditional map algebra or cell statistics, whereby the related land-use
layers or urban land-use layers were used as constraint maps. In these operations, the
existence of urban uses were given the minimum suitability at the final level (for the
result of level 3 for goals 1, 3, 4, 5 and level 3’ for goal 2), or the agriculture-related land
uses were given maximum suitability or maximum cell statistic at each level at which
they were utilized (at level 2 for goal 1, for the result of level 2 and level 3’ for goal 2, for
the result of level 2 for goal 3). In the uncertainty approach, the only additional method
used after weighting was a transformation using Equation A.1.2 in Appendix 1 to obtain
the final so111 map. In this approach, the constraint mapping for existing urban and
suburban land uses was made only once on the final preference map.

In the deterministic modeling, all of the priority weights were obtained from the AHP
method carried out with the community and experts of a similar county, with only two
exceptions. These included the use of information obtained from the annual agricultural
sales of Hillsborough County in determining the weights for each row crop type at level 1
to obtain the soll11 at level 2, and the weights for five different goals at level 4 to obtain
the preference map at level 5.

After the row crops weighting at level 1, the objectives weighting at level 3 under
goal 1, and after goals weighting at level 4, the deterministic approach used Equation
3.3 to transform the suitability scores to a range of 1 to 9. The comparison of the final
preference map with the one obtained from the uncertainty approach was made on the
final untransformed map.

B (X _nglliin)(X_max _ ijin

(33) (X)) = e
(Xiold ~Xiold

In Equation 3.3, X;j is the transformed standardized score for the i*" alternative of
the j'" attribute (criterion), X;; is the raw standardized score, and ngll:in and X;ho0
and ngllgx and ngg)f are the minimum and maximum scores for the j'* attribute
before and after transformation, respectively.

In the uncertainty approach, to assess the decision maker’s (here, the modeler) prefer-
ence uncertainty on the priority weights at levels 1, 2, 3 and 3’ for all goals, with the aim
of maximizing agricultural suitability, a direct weighting estimation method a trade-off
— was utilized with consistency checks [33].

For the weighting of the goals themselves (at level 4), a mixed methodology was used
to assign weights based on their size in terms of acreage, just (market) value and annual
sales. This raised a question of how to weight these weights for different criteria. For this
purpose, and to assess the uncertainty in this process, the concept of entropy was utilized
by applying a series of formulations to the decision matrix (see [24:52-56]), consisting of
goals versus their weightings, based on the three different data sets.

3.3. Comparing the final stages in the two modelings to obtain the agricul-
tural preference maps, and the comparison of these two maps (level 5). The
deterministic and uncertainty approaches resulted in their own agricultural preference
maps after a weighted sum operation (Equations 3.1 and 3.2) on the goal maps. These
maps were finalized by merging them with the constraint map data relating to existing
urban-suburban land uses, which were assigned values of 1 and 0 the minimum stan-
dardized scores — in the deterministic and uncertainty models, respectively. However, the
comparison of preference maps also involved the exclusion of these areas from their final
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forms, since they covered the areas that were given and were not a result of the either of
the modelings.

4. Results and discussion

In the following sections the results obtained from the deterministic and uncertainty
modeling approaches are presented in the order in which they were compared in terms
of their methodology and application, as explained in Section 3.

4.1. Comparison of results of the criteria standardization obtained from the
two modeling approaches (levels 1, 2 and 3).

Method 1: The results of the maximization of soil suitability for each crop type from
the deterministic and uncertainty approaches were found to be different in terms of the
level of suitability assigned to areas of similar shapes, in that the latter approach (in this
case, the probabilistic one) considered not only yield values, but also their occurrences
in space. Since the frequencies have a much greater influence in the multiplication than
yield values, the larger areas assumed higher utilities for soil suitability, even though they
had lower yield values. When considering long-term land-use planning, this result can be
seen as a positive impact on the preservation of large row crop areas, despite their low
yields.

Method 2: The uncertainty method (in this case, the probabilistic one) adopted in
these two level-1 criterion maps, required subjective evaluations of the decision makers
(here, the modeler) by means of utility functions that result from the indifference tech-
nique (see Appendix 1). This and the other differences in data processing (such as kriging
and additional processes on its results as opposed to IDW in the deterministic approach)
yielded highly different results in terms of patterns and the levels of suitability for the
cities’ population map. In contrast, the deterministic model’s linear value assignment for
the Euclidian distance map and the non-linear utility function’s utility assignment in the
uncertainty approach produced rather similar results in terms of the relative placement
of higher values to alternatives closer to row crop areas (for an illustrative comparison of
the results of the two approaches having different and similar patterns and/or suitability
scores, refer to Figure 4 in Section 4.2).

Method 3: The resultant maps from the two approaches were found to be similar in
terms of patterns, although the levels of suitability that they reflected were found to be
different to the extent that their raw data value ranges were either different (as in s0213,
80233, 50313 and s0513) or as a natural result of nonlinear fuzzy membership functions
(as in s0112, s0214, s0234, s0314, so514 and so412) (see Appendix 2). The remaining
group of sub-objective criterion maps (so411, so511 and s0515) displayed similarities both
in terms of their patterns, and in their level of suitability, as an essential result of two
discrete groupings of the same selections from the raw data.

Method 4: The resultant maps from the two approaches were found to be differ-
ent, which resulted from the uncertainty approach’s assessment of major roads or local
markets proximities, based on the two-group categorization of the study area (see Appen-
dix 3). In addition to the variations between different levels for the land-use suitability
groups, the results showed also internal variations within each group. For each related
distance map, the uncertainty approach provided different series of suitability levels for
each different parcel of the highly suitable land uses, and for the areas having lower land-
use suitability based on a constant mean and standard deviation. On the other hand,
the deterministic criterion maps were distinguished by small quarter standard deviation
increments around the most suitable area distance buffer, as defined by the mean zonal
distance of the existing/ most suitable land for each respective agricultural goal, i.e., goal
1 (row crops), goal 4 (nursery) and goal 5 (timber).
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Method 5: When the results of the two approaches were compared, a more significant
variety was observed on the 0-1 uncertainty maps than on the 1-9 deterministic maps. The
probabilities computed in the former maps allowed the assignment of utilities for land-use
suitability with respect to their occurrences in space for the three different agricultural
activities (high- and low-intensity livestock, and specialty farming) that were evaluated
(see Appendix 4). The transformation of smaller probabilities to higher utilities for high-
intensity livestock (so211) and specialty farming (so311), and of higher probabilities
to higher utilities for low-intensity livestock (s0231), were based on the increasing and
decreasing revenues per unit area for the respective agricultural activities.

Method 6: The evaluations of the results of the two approaches were found to be
quite similar to those made in the Section Method 4, although differences existed in the
higher level of variety in the uncertainty maps. This was due to the grouping of the
respective land-use maps into three rather than two, in which the study area was divided
into areas of high-, moderate- and low-level land-use potential. Another difference was
found in the interfering fuzzy ranking in models 0212, s0232 and so312, which were set
in such a way that the nearer and then the nearest areas to the water resources were left
to be given the least suitable ranking in each of the three groups of land-use potentials,
i.e., high- and low-intensity livestock and specialty farming (see Appendix 5). Finally, in
contrast to the only proximity maximization problems handled in the Method 4 models,
both approaches dealt with both the aims of maximization of proximity and distance
(i.e., minimization of proximity) on the Euclidian distance maps.

Method 7: In comparing the results from the two approaches, although at first look,
the non-spatial component of the resultant corresponding objective criterion maps from
the uncertainty approach seems to resemble the deterministic maps, the final uncertainty
maps were found to have different patterns and levels of suitability. This was due to a
variety of factors, including (1) the existence of their spatial components, (2) the overall
fuzzy hedge ordering in each of the components after the enumeration process carried
out for both types, and (3) the respective fuzzy set membership values (see Appendix 6).

4.2. Comparison of results for criteria aggregation after weighting from the
two modeling approaches (levels 1, 2, 3, 3’ and 4). The results of the two ap-
proaches after any weighting process at levels of 1, 2, 3, 3’ and 4 turned out to be different
from each other, to the extent that their component maps are different. The level of dif-
ferences with respect to the same alternatives (pixels) between the two groups of results
at the same level can be categorized into four groups, such that they have either:
1. very different patterns/shapes/forms and different levels of suitability;
2. partially different patterns/shapes/forms and different levels of suitability;
3. similar patterns/shapes/forms and different levels of suitability; or
4. similar patterns/shapes/forms and similar levels of suitability.

Each of the above-listed groups of aggregated weighted map result differences are il-
lustrated by some of the level 2 and level 3 results in Figure 4’s la-4a (deterministic) vs.
1b-4b (uncertainty) sections.

4.3. Comparison and interpretation of agricultural preference maps from the
two modeling approaches (level 5). For a comparison of the preference maps (overall
goal) obtained from the two modeling approaches at level 5 of the hierarchical structure
of LUCIS, the z-scores of each pair of maps (including and excluding the existing urban-
suburban areas) and the z-score differences were computed. The maps, their distributions
and the summary statistics of these comparisons are shown in Figure 5.

When the first case was evaluated in terms of its z-scores, the deterministic result
was found to vary between -1.153 and 1.783, and the uncertainty between -1.157 and
1.978 (Figure 5). However, when the given urban-suburban areas were excluded from
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Figure 4. Deterministic (1a, 2a, 3a, 4a) and uncertainty (1b, 2b, 3b,
4b) aggregated maps for sub-objective 122 (la and 1b), objective 42
(2a and 2b), objective 31 (3a and 3b), and objective 41 (4a and 4b)

the analysis, which composed the modes (i.e., the most repeated land-use type) for both
distributions (see the 1°¢ and 3"¢ graph in the 2"¢ row of Figure 5), the minimum values
of the maps increased to -0.825 and -0.946, respectively. In the second case, the graph
of the deterministic result revealed a bi-modal distribution, with one near to its mean
(0.742), and the other towards the end of its lower tail (at about 1.53). Accordingly,
it suggested a data spread that cannot be attributed to a normal distribution (see the
2" graph in the 2% row of Figure 5); however, looking at the graph of the uncertainty
result (see the 4" graph in the 2"? row of Figure 5), it is seen that it was more or less
normally distributed about its own mean (0.744). The main difference between the two
results was observed in the uncertainty result filling the gap between the two modes of
the deterministic approach. This comparison can be illustrated by overlaying the two
graphs after converting them to the same scale, after which the difference can be seen in
the light grey tone frequency distribution in the 2% graph on the bottom row of Figure
5. It can also be seen in this graph that following the exclusion of unsuitable areas from
the analysis, a substantial part of all alternatives (pixels) in both results is observed on
the positive side of the z-score distribution.

The z-score difference maps for the two cases (i.e., including and excluding urban and
sub-urban areas) was found to vary between a minimum of -1.629 and a maximum of
1.263, suggesting a non-statistically significant difference between the two results in a
one-to-one comparison of each pixel (alternative) at a 95 percent confidence interval (see
the summary statistics in the 3™ and 4*" rows of Figure 5). Moreover, in the second
case, when the given urban-suburban areas were excluded, as would be expected, the
distribution of the difference map was found to be approximating a normal distribution
around a mean value, which was very close to zero (-0.0088) (see the 1°* graph and the
summary statistics on the bottom row of Figure 5). Accordingly, based on the comparison
of agricultural preference maps in terms of their z-score pixel values, it can be stated that
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the newly developed uncertainty models did not result in a significant difference over the
existing deterministic models of LUCIS.
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Figure 5. Z-score agricultural preference maps of deterministic and
uncertainty approaches and their z-score difference maps, including and
excluding the existing urban-suburban areas, distributions and sum-
mary statistics of maps

On the other hand, as stated earlier, by means of three different land-use preference
maps (agricultural, urban and ecologically sensitive), the ultimate aim in LUCIS model-
ing is to achieve a land-use conflict map (Figure 2), and based on this, to develop possible
future land-use scenarios. The first step in the conflict analysis requires the three pref-
erence maps to be collapsed into three classes, in which each map is differentiated by
low, moderate and high levels of preferences [9]. Therefore, to be evaluated as a base
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map in the conflict analysis, the two agricultural preference maps from deterministic and
uncertainty modeling were also compared after being collapsed into three equal interval
rank groups, labeled 1 for low, 2 for moderate and 3 for high preferences, i.e., their agri-
cultural land-use suitability. The results of these analyses for both cases, i.e., including
and excluding the given urban-suburban areas, are shown in Figure 6.

In the first case, as expected, the total number of alternatives (pixels) on the two
preference maps was found to have a correspondence level as high as 83.72 percent,
about 40 percent of which was a result of the same given urban-suburban areas having
the same preference level of 1 (see the table on the left in Figure 6). Accordingly, the
Cohen’s Kappa, which is a measure of agreement between the two ordered preference
groups [34] of the two maps, was found to be 0.75 (Figure 6). Since the used data
was the population itself, its significance was not assessed. Nevertheless, the results for
the second case suggested a higher level of difference between the two maps. When the
existing urban-suburban areas were excluded, the total difference in one level of preference
from 1 to 2 or 2 to 1, and from 2 to 3 or 3 to 2, increased by almost two times, i.e., from
16.28 percent to 32.04 percent (see the two tables in Figure 6). In addition, although
negligible, the difference in two levels of preference from 1 to 3 or 3 to 1 increased to 0.18
percent from 0.00058 percent, which was the result of only one category of the collapsed
map having a value of 1 in the deterministic and 3 in the uncertainty components. That
is, in the second case, the collapsed map had a newly emerged category for two levels of
preference difference with a value of 3 from the deterministic component and 1 from the
uncertainty map. As a result of the second case analysis, as expected, the Cohen’s Kappa
value decreased to 0.39 (Figure 6), which suggested only a moderate level of agreement
between the two ordered preference groups of the two maps rather than a strong one [34].

5. Conclusion

Recognizing the need for studies relating to the proper expression of uncertainty in
GIS-based multi-criteria in land-use planning, this study has concentrated on epistemic
uncertainties, concerning particularly the last three stages of the spatial multi-criteria
modeling process commonly defined in spatial MCDM literature, being decision making
on criteria standardization, criteria weighting and the interpretation of the final results.
In general, the uncertainty associated with criteria standardization and weighting pro-
cesses is assessed by way of classical error propagation or sensitivity analyses, which
measure the impact of the errors found in, or perturbations made to the criterion val-
ues and their weights on the outputs in terms of the suitability ranking of alternatives.
Instead of utilizing these indirect methods of uncertainty assessment at the final output
level in decision making [28], this study set out with the main premise that uncertainty
makes a difference in terms of both the pattern and level of suitability of the alternatives
at each hierarchical level of multi-criteria land-use planning. In doing this, no consider-
ation was given to how “objective” or “sensitive” the decisions were, and by whom they
were taken in the decision-making process, whether individual modelers, a group of ex-
perts with different backgrounds — such as planners [42] —, community participants [9;
17] and/or politicians.

To this end, the study tried to show the importance of determining the risk in choos-
ing a particular alternative [11] in land-use planning, and for this purpose it made use of
LUCIS (Land-Use Conflict Identification Strategy), which is a deterministic GIS-based
multi-criteria decision process, and compared it with a newly developed equivalent un-
certainty modeling at each level of the hierarchical structure. Although the ultimate aim
of LUCIS is to represent the probable patterns of future land use based on a conflict map
obtained from the overlaying of low, moderate and high levels of preferences or suitability
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Figure 6. Agricultural preference maps and distributions of three-
class equal interval z-score agricultural preference maps, including
and excluding the existing urban and suburban areas, their cross-
tabulations and Cohen’s Kappa values
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for the three land uses (agricultural, urban, and ecologically sensitive) at the 6" level of
the hierarchy, the scope of this study was limited to the agricultural preference (overall
goal) map at the 5" level, starting from the maps in the 1°¢ level, corresponding to lower
level sub-objectives.

The two modeling approaches were applied to the case of Hillsborough County in the
state of Florida, which is characterized by heavy urbanization and an urban footprint
[44] that continues to expand into the valuable natural and agricultural areas. The
comparison of the methodologies and results of the two modeling were made in three
stages of the analysis: (1) in criteria standardization, prior to the application of any
weighting at levels 1, 2 and 3; (2) in criteria weighting and aggregation at levels 1, 2, 3,
3’ and 4; and (3) in obtaining the preference maps and the interpretation of these maps
at level 5.

The first stage at which uncertainty is assessed by means of probability, fuzzy sets
and multi-attribute utility theories under seven different groupings of the unweighted
criterion maps of the model revealed:

- different suitability levels and more variability in the alternatives for similar
physical boundaries (method 1 and method 5, respectively);

- different suitability levels with similar patterns (part of method 3);

- different suitability levels with different patterns (part of method 2, method 4,
method 7) with more variability (method 6); and

- similar suitability levels with similar patterns (part of method 2, part of method 3).

Similarly, the comparisons of the maps at the aggregation levels after the weighting
which were handled by Analytic Hierarchy Process in the deterministic modeling and us-
ing the trade-off method, except for the weights of goal maps in the uncertainty modeling,
were found to have differentiating levels of differences in terms of pattern/shape/form
and the degree of land-use suitability.

In the final stage of the analysis, which addresses directly the agricultural land-use
preferences in the decision-making process, a moderate level of difference was identified
between the two approaches when the given urban-suburban areas are excluded from the
analysis and when the agricultural preference map is collapsed into three different levels of
preference (low, moderate and high), which is a critical, and in fact an uncertain, process
in defining and interpreting the results of modeling. This process needs special attention
when the preference maps results are not utilized on the basis of individual alternatives
(pixels), but rather on the basis of data that is collapsed into only a few broad categories.
The main difference in these broad categories was reflected in the change between the
moderate and high levels of suitability between the two approaches in about 13 percent
of the alternatives in either direction, that is from moderate to high and vice versa, and
their locations in the southeast and north east parts of the county. The use of different
algorithms for modeling uncertainty in decision making in the standardization of criteria
values and criteria weighting would have given rise to a different set of solutions in
terms of the ranking and spatial pattern of agricultural land-use suitability. This study
has aimed to show this possibility, and to clarify that the unique solution set obtained
through a deterministic approach should not be considered as the only one, and also that
uncertainty assessments are an indispensable part of land-use planning, since they make
a difference. This point should be considered when engaged in informed decision and
policy making to allocate limited land resources to their most appropriate land uses in
future, being aware of the limitations and assumptions of the utilized modeling.
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Appendices

A.1. Details of uncertainty method 2. The probability raster of the standard devi-
ation of prediction for “cities’ population” was obtained by applying a probability distri-
bution (exponential) function observed for its distribution given in Equation A.1.1.

(A1) f(z M) =de ™

In this equation, the value of A\, which is a scale parameter, is estimated by calculating
the observed mean nearest neighbor distance of the used cities’ distribution. The final
criterion map was obtained by applying a cumulative exponential distribution with the
formula given in Equation A.1.2 on the multiplied raster.

(A12) f(z;N)=1—e "

The value of A\, which is now a rate parameter and is the reciprocal of the scale
parameter, found by dividing 1 by a denominator that was assumed to be the mean of
the distribution of the weighted cities’ population map obtained by Equation A.1.1.

Figure A.1.1 below shows the estimated utility function obtained in the spreadsheet
environment applied on the “row crops” Euclidian distance raster.

Utility 1,2
Outcome (Probability) 1
24213 0 LN
15000  0.0625 038 \
10000  0.125 0,6
7000 0.25 04 AN
3(5)88 8-55 02 D y = 3E-09x2 - 0,0001x + 0,9648
. ’ R?=0,98
500 0.875 0 . \‘?\ . . .
0 1 02 5000 10000 15000 20000 25000 30000
meters

Figure A.1.1. Utility scores and curve estimated through the indif-
ference technique for distance to row crop areas to obtain the row crops
distance criterion map
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A.2. Details of uncertainty method 3. Fuzzy large or small transformation func-
tions with their default mid-point and spread values were used, whereby the larger and
smaller input values are more likely to be a member of the set, respectively [5]. The only
two exceptions to the use of mid-point default values were the use of the mean of the
distribution of the raster values as for s0213, s0233, s0313 and so0513, and the mean of
parcels having a size of equal or greater than 10 acres for so412. After the rasterization
of this map, the values for Nodata (null) pixels were computed using a conditional map
algebra, assigning them a value through the multiplication of the number of cells by 100
to find their area in square meters, which was then converted to acres. Similarly, in the
model for the timber parcel size sub-objective (s0515), a conditional map algebra was run
so that the null pixels had a value of 1 in contrast to other selected and rasterized pixel
values of 9 before the fuzzy membership operation. Moreover, in the aquifer recharge
models, a conditional map algebra was run in which the null values (originally water
surfaces) were set to a membership value of 0. A final additional operation in the row
crops land-use model (sol112) was a fuzzy OR overlay on the fuzzy membership maps.

A.3. Details of uncertainty method 4. The models followed the course of actions
below.

1. Two zonal statistics raster maps were obtained for the regions having a fuzzy set
membership value of 0.5 < x < 1 (higher level of suitability from s0112, so411
and so511): one for the mean, and the one for the standard deviation, based
on the five respective Euclidian distance maps obtained for the deterministic
approach.

2. To assign the utilities of distances to major roads and/or local markets for the
three goals’ land-use values with a suitability level of 0.5 < = < 1, two conditional
map algebra were operated respectively on each of these statistical raster maps
described above, and on the respective Euclidian distance maps. As a result,
two new raster maps were obtained showing the rankings seen in Table A.3.1.

Table A.3.1. Ranks assigned to conditional rasters

Conditional Raster 1
Euclidian distances having a value lower than mean — 3 standard deviations 8
Euclidian distances having a value lower than mean — 2 standard deviations 7
Euclidian distances having a value lower than mean — 1 standard deviation 6
Euclidian distances having a value lower than mean 5
Otherwise 4
Conditional Raster 2
Euclidian distances having a value higher than mean + 3 standard deviations | 1
Euclidian distances having a value higher than mean + 2 standard deviations | 2
Euclidian distances having a value higher than mean + 1 standard deviation 3
Otherwise 4

3. For the areas with a value of 4 in the 2" conditional raster, the values of the 1%
conditional raster were computed (otherwise the values of the 1" were taken)
on a new raster that combined the two. The assignments in the first and second
conditional raster maps and the combined raster are illustrated on a normal
curve in Figure A.3.1.

4. In a similar way, the regions with a fuzzy set membership value of 0 < z < 0.5
(lower level of suitability from s0112, so411 and so511) were reclassified with the
same range of 1-8 by means of the constant rasters. These rasters were created
using the mean values of the mean and standard deviation zonal statistics maps
of the complementary areas (i.e., where 0.5 < x < 1).



1268

0.2 1

0.15 1 /\
" l?_r | \ 4 Conditional raster 1
a | 4 | 2 Conditional raster 2

0 —— ). 1 "
40 -30 -20 -1o0 io 20 30 40

IE‘ EHE IEI IZI II] Combined raster

Figure A.3.1. The rank assignments for row crops, nursery and tim-
ber land-use suitability levels of 0.5 < z < 1 with respect to their
mean and standard deviations found from their distances to major
roads and/or local markets

5. The final ranking of the utilities for suitability, which gave higher priority to the
more suitable areas, were used in a fuzzy set membership operation after the
reclassification of the combined conditional maps for higher-to-lower suitability
rank groups, one after the other. That is, from 1-7 to 8-15 (for s0123, s0423 and
$0522) or from 1-8 to 9-16 (for so421 and s0521), and merging the two resultant
combined rasters. This was achieved through a maximum cell statistic operation
to obtain raster maps having values of 1-15 or 1-16 in different rankings for the
distances. Finally, the resultant maps for the five sub-objectives were obtained
through a fuzzy large transformation function with default mid-point and spread
values.

A.4. Details of uncertainty method 5. In the uncertainty models, the objects with
suitability scores greater than 1 in the deterministic models were selected. Since the
high-intensity livestock (so211) and specialty farming (so311) activities were carried out
mainly on smaller farmland areas and low-intensity livestock (s0231) on larger farmland
areas, their probabilities were computed from the area of each selected object divided
by the total area of all the selected objects. For the former two sub-objectives (so211
and so311), the probability values with a value of 0 at a 1/1,000,000 precision level
were assumed to be slivers, and were thus excluded from any further analysis. This
was to prevent them from having higher utilities for suitability based on the subsequent
transformation of their probabilities. The probabilities were then recalculated in the
same way, with the results processed on a spreadsheet, after which a transformation
function of a logarithm of base 0.000001 was carried out, resulting in a maximum utility
of 1 for the smallest probabilities for s0211 and s0311. The results of these functional
transformations were merged with the original vector data in the model, and raster maps
were created based on these utilities by way of a polygon-to-raster operation, followed
by the assignment of 0 to any pixels having null values by a map algebra operation. In
the model for low-intensity livestock land use (s0231), after obtaining a raster map of the
computed probabilities in the first step, the cumulative exponential distribution function
given in Equation A.1.2 was applied. The value of the rate parameter of A was found
by dividing 1 by the mean of the probability distribution, which was assumed to be the
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scale parameter. The model for s0231 was then finalized by the assignment of 0 to any
pixels having null values.

A.5. Details of uncertainty method 6. Although the uncertainty models utilized
the same Euclidian distance maps as a base in the corresponding deterministic models,
their results were different due to the uncertainties in these models, which were assessed
in a similar way to that explained in Method 4. The difference here was the evaluation
of three rather than two mean-standard deviation pairs of zonal statistic raster maps
(total of 6 rasters) by means of the three different selections. These were based on the
pixels from the resultant land-use suitability maps from s0211, s0231 and so311 for sub-
objective groups of (1) 80212, s0215, s0221 and s0223 related to high-intensity livestock
activities; (2) 50232, 80241 and 50243 related to low-intensity livestock activities; and (3)
s0312, so321 and s0323 related to specialty farming, respectively. In addition, instead
of two groups, the selection of three groups from the raster maps here included the
selection of alternatives (x) having utility levels based on the functional transformations
of the probabilities found for the respective land-use parcels, which were 0.5 < x < 1;
0 < x < 0.5 and x=0. Another difference was found in the interfering linguistic hedges (as
in 80212, 80232 and s0312) for these groups of probabilities (an example is given in Figure
A.5.1), rather than their one-after-the-other ordering (as in s0215, 0221, 0241, s0321,
80223, 0243 and s0323). Moreover, the constant rasters were created using the mean
values of the mean and standard deviation zonal statistics maps of the complementary
land-use probability groups having a value of 0 < z < 0.5 for models s0212, s0312, s0215,
80221, 50321, 50223, s0323, and by the one having a value of 0.5 < x < 1 for models 50232,
$0241 and s0243. Finally, the models ended with a fuzzy small (for s0212, 0232, s0312,
$0215) or large (for s0221, s0241, s0321, 80223, s0243, s0323) transformation function
with default mid-point and spread values.

very oW sssssssmmss

5
1

8 76 54321 8 76 543 21
B s e SR EAT v Y 7
\ [, 7 ¢

Figure A.5.1. Simplified fuzzy representations and combined rasters,
and the resultant fuzzy ranked sub-objective 212 criterion map

A.6. Details of uncertainty method 7. In order to handle any uncertainties in the
fuzzy set membership functions based on both the spatial and non-spatial aspects of the
alternatives, i.e., parcels, the uncertainty models involved the following steps:
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. To obtain the spatial component of the model, the parcel objects having the

land uses that were selected in the deterministic model were selected based on
the same sliver assumption criteria for each respective objective.

. The X-Y coordinates of the selected data centroids were computed in the GIS,

and the data was inputted into the spatial data analysis software in order to run
a K-means clustering routine, for which the separation parameter was set as 5.
Since the main clustering regions were observed to be 3 for objectives 13, 26, 33
and 43, and 2 for objectives 25 and 53, the K-location values were set as 3 and
2 for the respective objectives.

. The first and second standard deviation ellipses of the computed three or two

respective K-means clusters were visualized in the GIS, and their parameters
were used to compute the third standard deviation ellipses through a table to
ellipse operation.

. The model continued with dissolving, erasing and merging operations (and ge-

ometry repairment operations when needed to remove slivers etc.) to obtain
combined concentrated zones of three standard deviation ellipses with no self-
intersecting areas. Subsequently, these areas were rasterized and reclassified
with respect to their standard deviation ellipse numbers and as Nodata around
the third ellipses to be combined with the non-spatial component of the model.

. As for the non-spatial component, the parcel objects having descriptions other

than ‘header’ and ‘note’ were selected, and a raster layer was obtained from
these objects based on just value per acre field. This raster was reclassified with
the listed ranks below for the 3 K-means cluster objectives of 13, 26, 33 and 43,
and without rank 4 for the 2 K-means cluster objectives of 25 and 53.

- 0 and mean (7) as rank 1;

- (%) and (Z)+ one standard deviation (s) as rank 2;

- (%) + (s) and (T) + 2(s) as rank 3;

- (T) + 2(s) and a value that is more than the largest just value/acre value in
the data set as rank 4;

- Nodata as Nodata

. Two separate map algebra tools were used in an enumeration process of the two

classified standard deviation raster maps, with one based on the spatial (cluster
location) properties of the selected parcels, and the other on the just value/acre
values of all the parcels with respect to the mean and the standard deviation
statistics of the selected parcels. The enumeration processes involved the mul-
tiplication of the first component by 10, then adding the second component to
the result. These processes, their respective maps, the assignment of ranking
to the enumeration results and the combined enumeration map through a mean
cell statistic (max or min operations would also have given the same result) op-
eration can be seen in Figure A.6.1 with the example for objective 13. While all
other 3 K-means cluster objectives (026, 033, 043) utilized a similar 4x4 enumer-
ation and a 10-level ranking, 2 K-means cluster objectives (025 and 053) used a
3x3 enumeration tables removing the 4" column and 4*" row from the 4x4 one,
and a 6-level ranking, which replaced 7 with 6 in the 4x4 table (Figure A.6.1).

. Before carrying out the final fuzzy membership operation to obtain the final

objective criterion maps, the parcel objects having descriptions of ‘header’ and
‘note’ were selected and assigned a value of 11 for objectives 13, 26, 33 and
43, and a value of 7 for objectives 25 and 53, and then merged with the final
raster map obtained in the previous step already having a 1-10 or 1-6 ranking,
respectively.
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Spatial Non-spatial Fuzzy set membership ranking
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Figure A.6.1. The enumeration processes (a and b), rank assignment

to the enumeration results (¢) and the respective maps (d for a and e

for b), including their combined cell statistic resultant map (f) for a

further fuzzy set membership operation in the model for objective 13
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1. Introduction

Statistical inference in queueing theory has drawn the attention of researcher in the
past few decades. The problem of estimation is concerned with the parameters of the
queueing process such as arrival rate, service rate and traffic intensity. It is the most
important thing in the queueing systems [6]. The pioneer investigators have derived
the Maximum Likelihood Estimates (MLE) for the arrival and service parameters of an
M/M/1 queueing model [9] and an infinite server queueing model [4]. The hypothesis
testing for the point and the interval estimations of the M/M/1 queueing model using
Bayesin approaches [7] and the non-zero waiting time of the model has been disscussed
by using the convential and the Bayesian approaches along with the risk factors [8]. The
five different approaches has been applied for the constructed 100(1-a) % of the Con-
fidence Interval (CI) of the intensity of the queuing system [22]. Examining the MLE
and Moment Estimate (ME) of the parameters of the inter-arrival and the service time
distributions of GI/G/1 queueing model are discussed [3]. Consequently, the inferential
procedures are concerned with the traffic intensity of M/FE) /1 queueing model which
discussed [16]. The stationary solution of MLE of Markovian two server queueing model
parameters have been obtained in the case of the non-identical servers [11]. Later, the
stationary solution of the MLE of the generalized form of the multi-server queueing model
in the presence of the non-identical servers and some of the CI of these model parameters
are obtained [28]. Meanwhile, the MLE and the Bayesian estimates of the M/M/1/1
queueing model parameters are explained and the large sample test for the model pa-
rameters are also discussed [17]. The inferential process for the parameters of the bulk
service queues is derived by using the Bayesian hierarchical model approaches [1]. Re-
cently, the single server queueing model with working vacations has considered based on
MLE approaches and simulation studies are carried out by the performance measures of
the model [21].

The service times and the inter-arrival times of queueing model are not followed by
the exponential distribution because of the high variability is observed in the inter-arrival
time and the service time, most of the times are smaller than the minor proportion of
the time and this leads to the characterisation of the heavy tails not only by the expo-
nentially distributed [25]. In this regard, serveral authors have been devoted by queueing
models based on the heavy tailed distribution [13], [15], [26]. Weibull, Parato, log-
normal, Burr type III, Burr type XII and Gumbel distributions are some heavy tailed
behaviour distributions [19]. The Bayesian estimation for the double Pareto lognormal
(dPIN) distribution which has been proposed by the model in the queueing system for the
heavy-tailed phenomena [10]. The evaluation of M/G/1 queueing model with the service
time as assumed to Gumbel distribution, which has been explained by numerically and
graphically based on the various combinations of the arbitrary values [20]. The extended
queueing model when service time distributed according to Gumbel distribution under
multiple working vacations scenario and the model parameters has been estimated based
on Bayesian approaches with Gibbs sampling algorithm through Markov Chain Monte
Carlo (MCMC) technique [18].

This article introduces tele-traffic and insurance data and some of the unusual char-
acteristics of these types of data which motivate some of the inter-arrival and service
time model that are analyzed through heavy tailed nature, particularly in Gumbel dis-
tribution. In insurance context, the claim sizes can take on extremely large values so
they can be well modeled by heavy-tailed distribution. However, one difference between
the insurance data and the internet traffic data is that in the insurance context, high
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autocorrelations are not observed to such an extent as with the tele-traffic data and that
the insurance claims processes do not exhibit burstiness so much as the tele-traffic data,
which suggests that heavy-tailed, but independent distributions may be reasonable for
modeling insurance claims data in many contexts [12].

This paper proposes the new queueing model when exponential times of the inter-
arrival time and service time are disappeared due to unusual characteristics. Therefore,
the inter-arrival times of two successive arrival of customers and service times becomes
a heavy tailed. For this reason, here the inter-arrival times and service times of the sys-
tem follows Gumbel distribution. No attempts are found in the literature on evaluating
the queueing models under Gumbel distribution based on Bayesian approaches. Deter-
mination of Gumbel/Gumbel/1 queueing model using Bayesian approach is discussed.
The posterior distribution of the queueing model is derived incorporating the natural
conjugate prior and non-informative prior to the parameters of the Gumbel distribution.
The objective of this paper is to analyse the traffic congestion of the Gumbel/Gumbel/1
queueing model satisfying the stability condition of the system.

The probability generating function and cumulative distribution function of the Gum-
bel distribution are based on the location parameter, a and the scale parameter, £,
respectively,

(z—a)

_(z—a) —

(1.1) f(:c:a,ﬁ):%e e for zeRaeR;B>0 and

(z—a)

B

(1.2)  F(x)=¢e°

with the mean « + B~ where v = 0.5722... is the Euler’s constant.

This paper is organized into the five sections, this is being the first. Section 2 contains
model descriptions. The frame work of Bayesian estimation of model parameters is
presented in section 3. The computational studies for the empirical Bayesian estimates
by using Gibbs sampling algorithm in MCMC technique of the model are discussed in
section 4 and section 5 provides the summary and conclusion of this work.

2. Model descriptions
Consider an Gumbel/Gumbel/1 queueing model,

e The inter-arrival time of two consecutive arrival of the customers which follows
Gumbel distribution (v, B) with mean inter-arrival time,
1/X = 1/[a + B¢] where Euler’s constant, (= 0.5277....

e The service time of the system is distributed according to Gumbel distribution
(v,9) with mean service time, 1/u = 1/[y + 0¢] where Euler’s constant, (=
0.5277....

e The inter-arrival times and the service times are mutually independent of each
other.

e The server gives the services the single stage service with First In First Out
(FIFO) discipline.

e In order to learn about the congestion of the system, the inference about the
parameters governing the whole system 6 = {«, 3,7,0} is considered.
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e The queueing system is consolidated and operated for the long time which indi-
cates that it is working at equilibrium and satisfies the ergodic condition.

e Note that, the ergodic assumption implies that the parameters can only move
freely in the reduced parametric space ©. = {0 : A < p, A\, u > 0}. Hence, the

traffic intensity of the model is p = ;/igi‘ <1

3. Estimation on Gumbel/Gumbel/1 model

The Bayesian methodology consists of the sample information along with the prior
information available about the parameter before the sample has been observed. The
Bayesian approach treats that the model parameters are the random variables. The suit-
able probability distribution is determined for the models parameters for the queueing
system say 7(0) with reference to the prior information. The information about the pa-
rameter given by the sample z is obtained from the likelihood function, L(0|z). A prior
probability distribution that represents perfect ignorance or indifference would produce
the posterior probability distribution that represents that one should need about the
parameter on the basis of the evidence alone. The prior distributions can be classified
into two main categories like the informative prior and non-informative prior (vague,
objective, and diffuse). The informative prior expresses the previous knowledge about
parameter and the non-informative prior provides the formal way of expressing ignorance
of the value of the parameter over the permitted range. The efforts to construct the priors
may be represented by the absence of the knowledge. They have failed because no prob-
ability distribution to represent the pure ignorance. Combining these two information,
the updated information about the parameter is obtained as the posterior distribution,
7(0)z). The inference about the parameter, 6 is drawn from this posterior distribution.
More details about the Bayesian methods can be found in [2], [27].

In the Gumbel/Gumbel/1 queueing model, the n, inter-arrival times
ZTa = (T1,,%24,...s Tn, ) are a random samples distributed according to Gumbel (o, 5) and
the n, recorded service time x, = (z1,,22,,...,Tn,) constitute a
random sample from Gumbel (v,d). The joint probability generating function of this
model is

(va—a) %1 (25—) (Isé—"f)

(3.1) f(x|0):%e et 5¢ 5 e V' Za, s >0

where 0 = {\ < pu; a,B,y and § > 0}.

From Eqn. 3.1, the corresponding likelihood equation are as follows,

ig =) CT )
1 @ig— 2 1 (= Las

(3.2)  L(O]z) =1}, 5Tae Fef A i€ ° e’

where, x, = Z?:l xi, is the total time until the arrival of n, customer considered in the
queue and x5 = E;‘Zl x;, is the total time taken by the server to compelete the service
under consideration. Note that, the restriction in the domain of the likelihood in Eqn. 3.2

corresponding to the ergodic condition of the queueing model.

Suppose that, the inverted Gamma distribution is employed as a probability model
for the inter-arrival and service parameters based on the information obtained from the
history of previous process of the queues respectively. The inverted Gamma distribution
is a natural conjugate prior for sampling from the gumbel distribution for the inter-arrival
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and service parameters. The probability density function of inverted Gamma distribution
is given in Eqn. 3.3.

d)x*(c“)e*c/z c,d>0; x>0

(3.3) (e, d) = { e

In certain situations, especially in the investigation of new problems of a pioneering
nature, useful prior information may not be available. In such situations, the statistician
will be forced to select a prior distribution which will reflect a situation of no prior infor-
mation. This led to the notion of vague or diffused or non-informative prior distributions.
The parameters is continuous and can take any value in a finite interval, then one can
use a continuous uniform distribution as the prior distribution for the parameter. Such
prior distributions are called non-informative priors and sometimes as vague priors (see
more [5], [2], [27]). Furthermore, it may be considered that the uniform distribution
is a non-informative prior knowledge about the model parameters «, 5, v and 6. The
probability density function of uniform distribution is

otherwise

1
3.4 = —;
(34)  m(@)=_—0<p<é<g

The updated inforamtions of posterior distribution is obtained for the model param-
eters is given by

didadady q (et g=(eat) o
ﬂ"aénaf‘ (61) T (62) I (63) I (64)
,y—(63+1)5—(C4+1)8—(61/a+62//3+(¢3/’7+64/§) «

71 (e, 8,7, 0|data)

N ) E(I—iuﬁ_—a) NG e(iisé’J
(35) i=1€ B € j=1€ 5 €
(z; —a) (. —)
1 (Fig =) 3 (j =) ds_ 12
(3.6) 71 (v, B,7,d|data) x Fragm e A ¢° B e e 5

Since, the posterior distributions of the informative and the non-informative prior
knowledges are not attained in the closed form expression. Hence, MCMC simulation
technique is more appropriate to deal with the empirical estimates of the model pa-
rameters. The empirical Bayesian estimates are computed particularly through Gibbs
sampling algorithm [24] using OpenBugs software.

4. Gibbs sampling algorithm in MCMC technique

The Markov chains have significant role in Bayesian statistics because it is generally
possible to construct the Markov chain in such a way that the target distribution is the
joint posterior distribution of all the unknown parameters in the Bayesian model. Thus,
the Markov chain Monte Carlo methods provide a way of generating samples from the
joint posterior distribution in the realistic and high-dimensional Bayesian models. The
Gibbs sampling algorithm is a special case of Metropolis-Hastings sampling algorithm
which one particular way of constructing the transition kernel to produce the Markov
chain with the desired target distribution. The Gibbs sequence converges to the sta-
tionary(equilibrium) distribution that is independent of the initial values, and by the
attaining this stationary distribution is the target distribution. The step-by-step proce-
dure in Gibbs sampling alogrithm for the proposed queueing model as follows:
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(1) Set initial values a©®, g ) 50
(2) For t=1,...,T
(a) Fori=1,2,....,n
(i) Generate xm from f (m|a(t*1)75(7571)’7(’5*1),5“71))

(b) Generate a'¥ ~ 7 (a\x(t))
(¢) Generate 3 ~ 7 (,B\x(t))
(d) Generate y® ~ 7 (7|x(t>)
(e) Generate 6 ~ 7 (6\m(t))

The MCMC samples are generated through Gibbs sampling algorithm from the poste-
rior distribution of model parameters for the given set of the informative priors Eqn. 3.3
and non-informative prior Eqn. 3.4 for obtaining the Bayes estimates of the model. The
markov chain is run in OpenBugs for 10,000 number of iterations for various arbitrary
values and samples.

4.1. Convergence diagnostics of MCMC. From the outputs of OpenBugs, the diag-
nostic checking plots for each model parameters are presented in Appendix. The Markov
chain has converged in both informative and non-informative priors since it likely to be
sampling from the stationary distribution and horizontal band, with no long upward or
downward trends as shown in Figure [15, 16, 17, 18]. Moreover, the autocorrelation is
almost negligible for all the model parameters (see Figure[19, 20, 21, 22|). Therefore, the
generated samples, in each iteration from posterior densities under informative and non-
informative priors are independent to each other. Further, the kernal densities of model
parameters «, 3, v, 0 for various samples 50, 100, 150, 200, 250 and o — 0.2, 0.3, 0.4, 0.5,
5=0.3,04,0.5,06,v=0.1,0.2,0.3, 0.4, & § = 0.2, 0.3, 0.4, 0.5 under informative and
non-informative priors are displayed (see Figure[23, 24, 25, 26]) for checking the conver-
gence of the algorithm. Also, the Monte Carlo FError (MC.E) of
Gumbel/Gumbel/1 queueing model is presented Table.1 & Table.3. It is to be observed
that, MC error is minimum for each estimates in model parameters.

4.2. Numerical results of Bayesian estimation. The posterior mean and 95 % cred-
ible region of Gumbel/Gumbel/1 queueing model parameters are presented in Table.l -
Table.4. Meanwhile, the empirical Bayesian estimates of traffic intensity of the model
are computed from the posterior mean of corresponding parameter and it is to be ob-
served that in Figure [1, 2| , the stable intensity level has been maintained when sample
observations and values of model parameters increase in both prior informations. The
congenstion level of the each model belongs to the interval of 0.5 - 0.95.

5. Summary and conclusion

In this paper, the Bayesian estimates of an Gumbel/Gumbel/1 queueing model un-
der the informative and non- informative prior knowledges is considered. The empirical
posterior mean, 95 % credible region and the diagonostic checking plots are carried out
for various size of the sample observations and different sets of arbitrary values based on
Gibbs sampler through the MCMC simulation technique using the OpenBugs software.
From those results, the traffic intensity of the model has been increased when the model
parameters of inter-arrival time and service time are increased but not in the increas-
ing size sample observations. Meanwhile, the stable intensity level has been maintained
when the sample observations and the values of model parameters are increased in both



Table 1. Empirical Bayesian estimates of Gumbel/Gumbel /1 queue-
ing model for various arbitrary values and samples based on informative
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priors
Arbitrary Samples & MC.E B MC.E A MC.E ) MC.E
a =02, 50 0.257 | 0.00040 | 0.233 | 0.00038 | 0.195 | 0.00026 | 0.212 | 0.00029
B =03, 100 0.331 | 0.00030 | 0.268 | 0.00027 | 0.178 | 0.00017 | 0.154 | 0.00015
v =01, 150 0.331 | 0.00024 | 0.258 | 0.00018 | 0.218 | 0.00016 | 0.189 | 0.00014
5§ =02 200 0.294 | 0.00019 | 0.250 | 0.00017 | 0.193 | 0.00014 | 0.156 | 0.00011
250 0.299 | 0.00020 | 0.264 | 0.00014 | 0.183 | 0.00011 | 0.154 | 0.00093
@ =103, 50 0.359 | 0.00050 | 0.290 | 0.00041 | 0.297 | 0.00045 | 0.338 | 0.00050
B =04, 100 0.331 | 0.00029 | 0.268 | 0.00025 | 0.279 | 0.00025 | 0.238 | 0.00021
v =02, 150 0.402 | 0.00035 | 0.333 | 0.00025 | 0.318 | 0.00022 | 0.259 | 0.00019
5§ =103 200 0.407 | 0.00024 | 0.345 | 0.00022 | 0.314 | 0.00019 | 0.247 | 0.00017
250 0.428 | 0.00020 | 0.311 | 0.00018 | 0.298 | 0.00017 | 0.253 | 0.00013
o =04, 50 0.574 | 0.00057 | 0.411 | 0.00050 | 0.435 | 0.00054 | 0.587 | 0.00062
B =0.5, 100 0.464 | 0.00038 | 0.379 | 0.00032 | 0.347 | 0.00036 | 0.342 | 0.00027
v =0.3, 150 0.508 | 0.00043 | 0.473 | 0.00033 | 0.386 | 0.00026 | 0.316 | 0.00021
5§ =04 200 0.515 | 0.00038 | 0.446 | 0.00028 | 0.428 | 0.00026 | 0.353 | 0.00025
250 0.484 | 0.00030 | 0.419 | 0.00025 | 0.428 | 0.00023 | 0.331 | 0.00019
@ = 0.5, 50 0.687 | 0.00073 | 0.585 | 0.00061 | 0.468 | 0.00069 | 0.440 | 0.00055
B =06, 100 0.464 | 0.00035 | 0.379 | 0.00030 | 0.460 | 0.00050 | 0.394 | 0.00039
v =04, 150 0.582 | 0.00045 | 0.487 | 0.00038 | 0.560 | 0.00041 | 0.473 | 0.00032
5 =05 200 0.670 | 0.00039 | 0.551 | 0.00037 | 0.571 | 0.00037 | 0.473 | 0.00028
250 0.608 | 0.00035 | 0.513 | 0.00023 | 0.541 | 0.00031 | 0.415 | 0.00023
Table 2. 95% Credible region of Gumbel/Gumbel/1 queueing model
for various arbitrary values and samples based on informative priors
Arbitrary Samples o v
Values LB UB LB UB LB UB LB UB
« =02, 50 0.1908 | 0.3266 | 0.1823 | 0.3002 | 0.1578 | 0.2697 | 0.1541 | 0.2491
B =03, 100 0.2778 | 0.3880 | 0.2268 | 0.3164 | 0.1471 | 0.2099 | 0.1310 | 0.1811
5 = 0.1, 150 0.2887 | 0.3762 | 0.2270 | 0.2956 | 0.1872 | 0.2500 | 0.1654 | 0.2158
5§ =02 200 0.2584 | 0.3322 | 0.2235 | 0.2802 | 0.1709 | 0.2156 | 0.1397 | 0.1749
250 0.2653 | 0.3337 | 0.2385 | 0.2934 | 0.1632 | 0.2035 | 0.1388 | 0.1707
@ =103, 50 0.2777 | 0.4459 | 0.2207 | 0.3685 | 0.2373 | 0.3763 | 0.2530 | 0.4272
B =04, 100 0.2774 | 0.3865 | 0.2267 | 0.3166 | 0.2313 | 0.3280 | 0.204 | 0.2797
v =02, 150 0.3458 | 0.459 | 0.2932 | 0.381 | 0.2765 | 0.3619 | 0.2279 | 0.2958
5§=0.3 200 0.3589 | 0.4580 | 0.3071 | 0.3873 | 0.2792 | 0.3507 | 0.2217 | 0.2769
250 0.3888 | 0.4688 | 0.4688 | 0.3444 | 0.2658 | 0.3309 | 0.2286 | 0.2800
@ =04, 50 0.4551 | 0.6915 | 0.3203 | 0.5134 | 0.3503 | 0.5456 | 0.4655 | 0.7124
B =0.5, 100 0.3879 | 0.5410 | 0.3242 | 0.4439 | 0.2767 | 0.4197 | 0.2900 | 0.4040
v =0.3, 150 0.4322 | 0.5860 | 0.4152 | 0.5422 | 0.3352 | 0.4396 | 0.2782 | 0.3627
5§ =04 200 0.4516 | 0.5802 | 0.3999 | 0.5000 | 0.3766 | 0.4809 | 0.3140 | 0.3958
250 0.4297 | 0.5382 | 0.3790 | 0.4637 | 0.3865 | 0.4716 | 0.2995 | 0.3665
@ = 0.5, 50 0.5258 | 0.8328 | 0.4738 | 0.7107 | 0.3503 | 0.5582 | 0.3422 | 0.5937
B =0.6, 100 0.3877 | 0.5430 | 0.3238 | 0.4437 | 0.3823 | 0.5415 | 0.3358 | 0.4632
v = 0.4, 150 0.5016 | 0.6628 | 0.4265 | 0.5559 | 0.4819 | 0.6391 | 0.4163 | 0.5381
§=105 200 0.5925 | 0.7496 | 0.4936 | 0.6155 | 0.5031 | 0.6422 | 0.4224 | 0.5303
250 0.5417 | 0.6749 | 0.4647 | 0.5683 | 0.4880 | 0.5964 | 0.3756 | 0.4589

prior informations. Hence, this model is appropriate for studying the queueing system
when the inter-arrival time and service time follows heavy tailed particularly in Gumbel

distribution.
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Diagnostics checking plots

o oo~ W ot

bt
s o,
p2oflEns

— = o N TR W W IR ) P r——
- - - -
et e
W ! h H

|
;
I
|

',,;‘.’ (m;m \m!p\;lmm V.‘;;.n‘v« . A
(a) 50 Samples (b) 100 Samples (C) 150 Samples

|
|
|

- - a :

i i
5 v . 5
(d) 200 Samples (e) 250 Samples

Figure 3. History plots of model parameter a under informative prior for various
samples and arbitrary values

i
I
i

el —E —

T T m omom D ] ] R
e e = e o e
[} A i ] 0 [

|
E
E
)
i

TEE e E e T x5 7 R oW e e s T E s
7 % 8 ; r T
(a) 50 Samples (b) 100 Samples (c) 150 Samples
Wi —— - So—— {_o—
TR on o= R e oww TE oA
- - : :
; { ]
i | % ;
r " v Fy
(d) 200 Samples (e) 250 Samples

Figure 4. History plots of model parameter 8 under informative prior for various
samples and arbitrary values



1286

m m ] D ] Bomow T o= @
- - i n i o
) L] ] [0}

[}

W

{

f
I
I
!

'] e TR R T = o= ] & = &
W i 0 k) i 'l
(a) 50 Samples (b) 100 Samples (C) 150 Samples

£ W————

I
|
I

PR [ T W W IR
- = P -
. —— (— ] —
I—— :
I I — T == T
" W 0 I
(d) 200 Samples (e) 250 Samples

Figure 5. History plots of model parameter v under informative prior for various
samples and arbitrary values

.-

I
|

I ] 1 oo Kl L] L] 1] L L ] i [ . 1 o ow =
- ¥ b " > -
] ; .
‘ — | *
T om om om e r— e r— D PR ] T 3w
v W B O " .
(a) 50 Samples (b) 100 Samples (c) 150 Samples

! I

g N z
LU o | | I—
- : o
(d) 200 Samples (e) 250 Samples

Figure 6. History plots of model parameter § under informative prior for various
samples and arbitrary values




1287

L . .
i Ll
(a) 50 Samples (b) 100 Samples (C) 150 Samples
] i
gl ‘; R
(d) 200 Samples (e) 250 Samples

Figure 7. Auto correlation plots of model parameter « under informative prior
for various samples and arbitrary values

] i -
H | | i i { l |
(a; 50 SamplesM (b; 100 Samplejs (c)‘*150 Sample;
o
.
(d) 200 s;mples (e; 250 Samples

Figure 8. Auto correlation plots of model parameter 8 under informative prior
for various samples and arbitrary values



1288

i | i i
i i L
(a) 50 Samples (b) 100 Samples (C; 150 Sampl;s
T IO i
I i | il
(d; 200 Samples (e) 250 Samples

Figure 9. Auto correlation plots of model parameter v under informative prior
for various samples and arbitrary values

/T N I ]
i H 1 i
(al) 50 Samples | (b) 100 Sample; (c) 150 Sampl;
L b
i
(@) 200 Sampies (e) 250 Samples

Figure 10. Auto correlation plots of model parameter § under informative prior
for various samples and arbitrary values



basaple: ‘000 lehlxlm:b Ho0c: = k272 samcie 12200 . [dbnasanp 12000 0 pha sarpe: 1277 btz szplz 10000
2 N & A &
a5 IS Es Y
Gl oA = FEA
i N i/ 5
3 o oe 0y e a0 2 o o . %
an h
) @
_ [ e T ~
: B £
o £ S
ol T I
ig| ol ol
@ oo o0 2w w60 [
i epe i
@) ® @)

(a) 50 Samples

(b) 100 Samples

((’,) 150 Samples

o g
o o
3 A
/0
N
25 5w o T
an e
0] i)
L, 3z sange 10000 nmltaum— 1000
S o
B I %
T I 5
£ / E
Lo s \¥ =}

wn n
@ #

(d) 200 Samples

_ [ ofFrE
f)
£o) A
E v
oy I
o) A
0205 03 0% 04 oo o 07
alaha aht:
e sampe 070 i apl 10000
g 2
Lo i
N £
i Y
o g J o
1on § 05 07 04 05 05 07T 0
epha e

(e) 250 Samples

Figure 11. Kernal densities of model parameter o under informative prior for

various samples and arbitrary values

e s [
3 I :

20 29| N

Fus Eot AN

. o N

(oera)
sito o]

=

e G0

e 1000 [ easame won

Sl

W PR Vs % 9m o0 o 1
- u
@ 8
. [ [ R
o) Sof o, 8y pe
i3 A o N 3
fox £ & &
T i/ & i [
v ow %o o ow oo % oo on 6o YR A S R I AR
e e s Y e
@) @) E) @ ¥
(a) 50 Samples (b) 100 Samples (c) 150 Samples
T ST
Bof g 3
E A & 50
A £ =
of /N [0 Ly
% = = = n e o
" - v oo .
i ) i
[ [ o s 100 o
ol 3] ) e
= IaN %o 36 ' o
AN Fl & 2
o/ S~ qf [ J \ lo,
o ououe 0 st 0% w0 08 wosoon 0
" "
& ® o -

(d) 200 Samples

(e) 250 Samples

Figure 12. Kernal densities of model parameter 8 under informative prior for

various samples and arbitrary values

1289



1290

e —TH —— = [waamE T T - e =
g A asepl 1000 '{ﬂq e 2000 g & L ;7:! Lz 5 E pl: 100C ?;“ k13000
=0 A Eo £91
I = Al B
Jed PR R I &
gol S . ]
wsowows a2 o oW w2 on 2 e w0
- m s
1] [t @
g e 1000 e 10 P
0| Eor .
Eg ~ B/
& N AN
s AN io _/
2 uou o W W oee o0 0 2o o6 w1 D6 om o w o om oy o
arn cm s an e
® @ i) ) ®

(a) 50 Samples

(b) 100 Samples

((’,) 150 Samples

e same, G0

g 1000

o 5 T -
a sap ) Jamrassple 007 ?E“C 3
3 = 5 B
i ® & 20N
o LR g A\ L)
] @ ic U S R
0. L 1o Mo L

e
]

= a0

7ol T

E

£ M~ Y

A N =

S -~ e

R & e % % w

o ane o .
® ® )

(d) 200 Samples

(e) 250 Samples

Figure 13. Kernal densities of model parameter v under informative prior for
various samples and arbitrary values

e T e 107 o T BT o T T s T
o To A
= 8- p o) A
o o) N 25| B
|8 fak AN =
= P — o N
B w6 o w6 L
@ & I o
B ) o i
o[t _ [N dta arp 10
o P Lo S
<5 " o
< / \\ =2 / A
Gof /% g A

© o oos ko0
an
@

(a) 50 Samples

[

(b) 100 Samples

(c) 150 Samples

Al 100

etz same 10 el 100

o[

ol

b
o)

S 100D

I
I

(d) 200 Samples

(e) 250 Samples

Figure 14. Kernal densities of model parameter 6 under informative prior for
various samples and arbitrary values



i g i i
zm 5 ——— %W %W  ——— *W
- h ill : T‘ y;w mih ‘i!l
g * i { : § mm—
h i H g §
(pontvone (ROt @

(a) 50 Samples

(b) 100 Samples

(C) 150 Samples

{ J
#
v 5 I s
‘ £ F—— W
5
: W H % %
: 1l u m L] ° 1 £ w - ) = w b 1 m m k)
V W I3 [3

(d) 200 Samples

(e) 250 Samples

Figure 15. History plots of model parameter o under non-informative prior for

various samples and arbitrary values

L | TP T (e—

I

z z d z 3
[} @ [} i

| n : h

g D ——— ;

i

 — ! 4 il . ——

B o El ]

[l ] W [ o W oW U W= L ) woow W t M m om
o ) @

(a) 50 Samples

(c) 150 Samples

e

(d) 200 Samples

(e) 250 Samples

Figure 16. History plots of model parameter 8 under non-informative prior for

various samples and arbitrary values

1291



1292

P o |
g ‘ | [— w———
i 5 & i
q
] TR onom ] ] I ]
o o ™ o o o
U 4 i i H [}

|
|
|
1
|
;

: : H 'E 5 z ] ; [
(a) 50 Samples (b) 100 Samples (C) 150 Samples

!
!
|

.

v T v "
5 w—
N ——© o— E
k) E S k] 1 - o “ 1 - '::\: L] o| - ::. L
o : : :
(d) 200 Samples (e) 250 Samples

Figure 17. History plots of model parameter v under non-informative prior for
various samples and arbitrary values

sosliton

(NS PSR

o astalita e
en S

HEEERE] ] D Tom @ % T & W om P R ——
- - - . g
0 ) i 0 i I

g
|
E
I
f

h t m W m oW W ' oowow k ° - :":I = l mow ] ] a = m
v W i [ . y
(a) 50 Samples (b) 100 Samples (c) 150 Samples

ke,
Piras
i,

s

B EE] E ] EEE] D
o v - d
[} [ 9 i

i
]
|

o om ] powoowmoow oo .V': L
" = - -
(d) 200 Samples (e) 250 Samples

Figure 18. History plots of model parameter § under non-informative prior for
various samples and arbitrary values




1293

| f % f |
: il % (I
(aﬁ) 50 Samples (b) 100 Samplems (C) 150 Sampl;s
TR O
il f i f

H

(d) 200 Samples

(e) 250 Samples

Figure 19. Auto correlation plots of model parameter « under non-informative
prior for various samples and arbitrary values

i f l 1 ; i
ol o [ é

:

(a) 50 Samples

(b) 100 Samples

&

(c) 150 Samples

e
i

D

o

i
ey

(d) 200 Samples

(e) 250 Samples

Figure 20. Auto correlation plots of model parameter 3 under non-informative
prior for various samples and arbitrary values



1294

g
T

. il i il |
(a; 50 Samples (b) 100 Sample:s (C) 150 Samplems
; | |
L i l
(d)ﬂ 200 Samples (e)ﬂ 250 Sample;

Figure 21. Auto correlation plots of model parameter v under non-informative
prior for various samples and arbitrary values

i i H f i f
| o il i I
(a; 50 Samplesh (b)“ 100 Sample; (c)‘ 150 Samples
| f T
(- | fl.
(d)‘ 200 Sample; (e)@250 Sample;

Figure 22. Auto correlation plots of model parameter § under non-informative
prior for various samples and arbitrary values



e 00 _ [ NET=E _ s om _ [Evem _ [eesm0n
2 [ : T g 7
£ £ . £of £
S A = i S 5
> / & / & =
= i\ T \ & &
o / io| _J o) i
[ wow w6 CI onow ' 0 e ou B
aa a Lol efha s
i [} 5] [ i)
alna se e 0200 2 pha sam:e: 12000 s sargi 1000
- w0 e o
i 3 o« = A
£ n ) ; &2 ) Lo i 7
E { o 0 S| / '
b / i A & A I
i s o /N o AN Y
o200 0 w 5 10 W oo 0 0 0 0E 0s 0% 1 0B s s
e e o o » ko
] ) ® ) O] [

(a) 50 Samples

(b) 100 Samples

((’,) 150 Samples

| dhe sampe 10000 apha samg: 17720 phe sampe: ‘0220 - alaha sai: 10000
& [N o
ol A B & A
= A E = A
[ A o i Y
ae R N o o e
™
0 s ?m u/:‘lu
phasepk 12000 — axd
g osme 10 W zsame T
L . g i,
& f o - x
= o E
o A I " 2 "
| | Do A
oo o E —_—
e @ ouow o WG ow oo o6
@ st e

(d) 200 Samples

(e) 250 Samples

Figure 23. Kernal densities of model parameter « under non-informative prior
for various samples and arbitrary values

B o HeamE T o a0 e 0 e 0
oA T S £ ,
& » N 78 A © /
a7 A s/ 3o o <2 /
T AN p ! [ T JA
ol /SN I e N o e
(1] AN I R U ) LA "2 I B [H 0 " s oo e s 0 3 o
4 e bes - b o
[ @ 1) ® 5] @
o e 1 e 00 ErT EEr
T - G T
4 A o i
29 I 22
[ J o
@ % 6w w o 6ow 1 @ 6o @ I T ow ow oo T
4 ta bea " " w
@ & @ ® @ )

(a) 50 Samples

(b) 100 Samples

(c) 150 Samples

B [ e B
A o e E:
& 5 o i
=) £ &
b L) b
@ G ous o o oo s
- -
f 0 ]
P P
B e
i @ N
B e
15 G| s N
T os w0 o W
n b
@ W

(d) 200 Samples

(e) 250 Samples

Figure 24. Kernal densities of model parameter 3 under non-informative prior

for various samples and arbitrary values

1295



1296

a7 soe 1000

- o W NEr ol ] P
E £o- £ A & [
B I\ o3 i ol /\-
2 & FER or| 4
b AN b s b J e
I K BN e 6o
- - o
[ 1] ®
e - = [
o g z
£o & Eq
o £ Eqf A
5 £ & |
5 | 5 g/
& S i [ AN
TN P i [ 26w = @ e 1 M
garm: e orm LY gamm:
@ ) @ @
(a) 50 Samples (b) 100 Samples ((’) 150 Samples
e N [ 5 [
& £ £l Eo|
E8| £l ,\ =
i 5 I =
& o N [ —
@ e oo T © o % w0 % 5o
s - e
o} @
5 [ o 7 [
£ £01 o N
£ ES f S
5 7 = A\ L B
& : S g
o A o S aol S
T w e o n QG on oo W % % ow
g s o o
@ ] @ )

(d) 200 Samples (e) 250 Samples

Figure 25. Kernal densities of model parameter v under non-informative prior
for various samples and arbitrary values

vk 0 v 0 e e o T
T T T
=
hei] i
Tof L
W e ou % o o 1o 6 % o %
a: h
] i
J e B
: = = -
L9 fof M o /n ke
i = ol L 2
ot AR = P ey
bl o/ [ AN ol
w6 : n e on R 0D et e w M ¢ vk o
o o o wn o
@ G

] & @
(a) 50 Samples (b) 100 Samples (c) 150 Samples

e e CE] B
B 3 3 B
o o
) f\ 3 ﬁ
il J b S
n ® ¢ w6 v on )
s 5
0] &)
d s 0] o ST
= 3 o
g o -
© Y N
= = =0
g Lo A
& 7 2 03 24 05 16 07 20 50 07
4 o P @
® @ ® [C]

(d) 200 Samples (e) 250 Samples

Figure 26. Kernal densities of model parameter § under non-informative prior
for various samples and arbitrary values



Hacettepe Journal of Mathematics and Statistics
Volume 45 (4) (2016), 12971306

Generalized multi-phase regression-type estimators

under the effect of measuemnent error to estimate
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Saadia Masood*, Javid Shabbir!

Abstract

In this article, we suggest some regression-type estimators for the esti-
mation of finite population variance using multi-variate auxiliary infor-
mation under multi-phase sampling schemes when measurement error
(ME) contaminates the study variable. An empirical study is also car-
ried out to judge the merits of proposed estimators.
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1. Introduction

In sample surveys, it is customary to exploit the auxiliary information to enhance the
precision of estimators. Ratio and regression estimators provide one type of example.
Sometimes the sample units are chosen with probability proportionate to some measure
of size based on the auxiliary variate. In all these cases it is information on just one
auxiliary variate that is used for reasons of sample selection or estimation. Pretty often
we take information on several variates and it may be considered important to make use
of the whole of the available material to improve the precision of at least some of the key
items in the survey (see Raj [10]). Isaki [7] has discussed multi-variate ratio estimators
to estimate finite population variance S;. Singh and Solanki ([16], [17]) and Solanki and
Singh [19] proposed the procedure for variance estimation using auxiliary information
under simple random sampling.

Two-phase sampling of a finite population occurs when a sample from the population
is itself sampled, with the goal of determining variates in the sub-sample not already
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available in the sample. An important example is the regression estimator for means
or totals, which uses values of an auxiliary variable from the full sample to estimate
the mean of a variable of interest that is available only on the subsample. Multi-phase
sampling is not widely discussed in literature. Mukerjee et al. [9] considered mainly
three phases. Singh [18] proposed a class of estimators for population variance under two-
phase sampling, whose composition was partially defined for the single auxiliary variable.
Dorfman [5] proposed regression estimator for estimation of population variance under
two-phase sampling scheme. Allen et al. [1] proposed a family of estimators of population
mean using multi-auxiliary information in presence of measurement errors.

In most of the statistical studies, it is one of the common believes that the data are
error-free but usually in realistic circumstances this statement is not absolutely met and
the data are infected by errors. The consequences made for the error free data become
invalid for the measurement error situation. Some important sources of measurement
error are discussed in Cochran [3]. In sampling theory, the use of suitable auxiliary infor-
mation results in considerable reduction in mean square error. Shukla et al. ([11],[12])
contributed by suggesting a mean estimator as well as class(es) of factor-type estima-
tor(s) in the presence of measurement error. Singh and Karpe [13] have paid attention
towards the estimation of population mean of the study variable y using the auxiliary
information in presence of measurement error. Singh and Karpe [14] considered the
problem of estimation of population variance 5'5 under the assumptions: (i) when the
study variable y is measured without error and auxiliary variable z is affected by error
with known error variance SZ, (ii) when the study variable y is affected by error with
known error variance S2 and the auxiliary variable z is free from error. Furthermore, un-
der the assumption of measurement error in study variabley, Singh and Karpe [15] paid
attention towards the estimation of finite population variance Sg. Bhushan et al. [2]
proposed two-phase generalized class of regression-type estimators using auxiliary infor-
mation. Diana and Giordan [4] have proposed a family of estimators for the population
variance 55 by assuming error in both variables yand x under the regression approach. In
practical application, let a psychiatrist wants to estimate the population variance of level
of pathology in certain class of patients which depends upon the thinking disturbance |,
aggressive attitude, number of major miss-haps in life, ect.

In literature, the work on estimation of finite population variance using multi-auxiliary
variables under multi-phase sampling is lacking especially when the study variable y is
assumed to be contaminated with measurement error, so the present article is one of the
steps to the solution of such situation.

Proposed Set-up: In the present study, we consider the following set-up:

(1) Complete Information Case (CIC): When information on all ¢ auxiliary variables
is known (we use single phase sampling).

(2) Incomplete Information Case (IIC): When information on some auxiliary vari-
ables is known.

(3) No Information Case (NIC): When information on all ¢ auxiliary variables is
unknown.

In Section 2, the symbols and notations used in this article are discussed. Section 3
presents the generalized regression-type variance estimator based on complete informa-
tion of the multi-auxiliary variables about population variance, when the study variable
is contaminated with measurement error. Section 4 present the generalized regression-
type variance estimator when population variance of few auxiliary variables is known. In
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Section 5, the generalized regression-type variance estimator is proposed when the pop-
ulation variance of all multi-auxiliary variable is unknown. Sections 6, 7 and 8 present
the efficiency comparison, numerical analysis and concluding remarks respectively.

2. Symbols and notations

Let U ={1,2,......, j, ..., N} be a finite population of N distinct and identifiable units.
Let y and z; (i =1,2,...,7,r+1,...,q), be the study and the ¢ auxiliary variables re-
spectively, taking values y; and x;; for the j-th population unit. We are interested
in estimating the finite population variance (SS) under multi-phase sampling schemes.
Specifically we assume that a preliminary large sample ;) is drawn with simple random
sampling without replacement (SRSWOR) from a population and information on the
auxiliary variable x; is taken. In second phase, a relatively small sample of size n(y) is
drawn from n (n(g) < n(l)) and information on both auxiliary variables z; and x» is
taken. This procedure goes up to the last phase when the smallest sample of size n 1)
(n(q+1) <ng < ... < n(l)) is drawn. At this phase, all the ¢ auxiliary variables as well
as the variable of interest y are also observed. According to assumption, the measure-
ment error is present in the variable of interest y denoted by y® with known variance S2.
Moreover, let Sgi and sii(l)denote the known population variance and sample variance
of the 4-th auxiliary variable (i = 1,2,...,7,7 + 1,...,q) at I-th phase (I =14,...,q,q+ 1),
respectively. We limit our numerical study to two-phase sampling using three auxiliary
variables.

The observational or measurement errors are defined as
Uiy = y;@(l) — Y1) and Vi) = x?}(l) — Tij(1) (Z =12,..,r,r+1, ..,,q) s
where u;(;) and v;;(yare assumed to be stochastic with zero mean and constant variances
52 and 5'12,1.. As 7y and T;(;) are unbiased estimators but sgmand sim) are biased esti-
mators.

Let (17, Xi) and (5'5, Sﬁl) be the population means and population variances of the true
values of y;;) and x;;() respectively with corresponding sample means (gm, _i(l)) and

1 ()
il ylwls un-

sample variances (sz(l),siim) at [-th phase. We know that g‘ﬁ) =0

2
_ "(L ® =® o i : 2
biased estimator but sy”> = n(l)A § (yj(l) y(l)) is biased estimator of S, due

_ 1 () 3 H
to measurement error. Similarly xij(l) = =2k 1961]([) is unbiased estimator but

n(1)

" 2
3%’1.2 = D= “ (x?;.(l) — f%z)) (i=1,2,....,r,7+1,...,q) is biased estimator of Sﬁi

n(l)fl
due to measurement error at [-th phase.
The expected values of sym and s®i2are given by
E(s52) =55 +82 and B (552, ) = 52, + 82,
where 52 and 5'2 are known, then the unbiased estimators of SE and Szj are

2 3 2 _ 2 (s
Sy(z) y(z) - S, andSaC(L) w(z) -8, =12,..,rr4+1,..,q).

To obtain the properties of proposed estimators, we use the following approximations.
For I-th and (I 4+ 1)-th phase, we define the notations as

®2 _ a2 ®2  _ Q2 a2

Let Syay = Sy (l—i—eyu)) 5941 =5, (1+ey<z+1)) y(z) =5, (l—i—ey(l))
_ Q2 _ Q2 a2

szz(l) Sz (1 + e%(z)) S%(L) Sz, (1 + 69?1(1))’ Szl(z+1) Sz, (1 + e$1(l+1))
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4 A% 2 4 A * 2 4\ *
such that E( J(l)) =pwSyAyy, E (egzﬂ)) =Pt SyAyy, E (ey(z)) = P SyAyy;
2 * 4 *
E (ezz‘(l)) = @(Z)Szi)\z.z., E (ezz(l“)) E (ewl) 1(l+1)) = Q4+1)52,; A\z;2,5
E (6£l)ezi(z)> ‘/’(l)s Sm)‘yww E (ey(z)ezi(zﬂ)) ‘p(l+1)S Sz/\;xl
2424, (1—0 52
where A%, = 2, + — § 0)’ , 0, = 52+52: Yoy = Pary) — 3 and v2u = Ba(u) — 3,
here B,y and B, are the population co-efficients of kurtosis for the variable y and w.

Let Alo, = Mooy — 1, Aje, = Mgy — L, lym, = fhye; — fyblays fy = Sy, po; = Sz, and
Wl) n<1) :
Also Mg = — 22200 — s gp ¢ — gy z; and s = y, 25 (i=1,2,..,mr+1,....,q),

H20(t,s)H02(t,s) HtHs

SN (4-T)(s,-5)"
N-—1 ‘

where Hab(t,s) =

£, (1 7) (515"

For a =2 and b = 2= iog(s,s) = —=

N (s,—3)?
For a =0 and b = 2= iga(s,s) = W

For a =2 and b = 0= pigg(s,s) = W
3. Generalized Regression-Type Estimators Using Multi- A uxiliary
Variables

In this section, the estimators are formulated under the proposed setup.

3.1. Generalized regression-type estimators using multi-auxiliary variables
under multi-phase sampling in the presence of ME under CIC. Let S'U(l) and
szi(l)be the sample variances of the study variable y under measurement error and the
i-th auxiliary variable (i = 1,2,...,7,7 + 1,...,q) respectively. The population variance

Sgi (i=1,2,....,r,7+1,...,q) of all multi-auxiliary variables is known. We consider the
following generalized multi-phase regression-type estimator for population variance S,i
using a; (1 =1,2,...,7,7+ 1,...,q) as unknown constants.

&2 2
(3'1) Syl - y(z) +Za1 (S% - 1<z>)
In terms of e’s, we have
q
S®2 2 2 ® 2
(3.2) Sy —S,;=S,e Zainlemi(l).
i=1

vy

Squaring (3.2) and then taking expectation, we get MSE (5‘?5) as

2
(3.3) MSE (5@912) =F < ey(l) Zalszlewl(z)> :

For optimum value of a; = (—1)"' % (i=1,2,...,q), the resulting minimum
zx(gxq

MSE (S‘ﬁZ), to first order of approximation, is given by
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a |Ayav'|(y~ ) Ay
i iyZq) Ha; Ay,
A y Z (_1) i |A . .

m(q><q)| Hy

(3.4) MSE (S;?f)mm = oS!

2 _ I |<w>ml
Let %55'5241 =37 ,(-1) m 5 then (3.4) can be written as

(85)  MSE(S5?) =wwS, {A;;y — %% } :
: min Yy Tig
Remark 3.1.1: Single-phase sampling using g auxiliary variables

For full information case using ¢ multi-auxiliary variables, we replace [ by 1, which is the
case of simple random sampling. The estimator given in (3.1) becomes

(3.6) 8% = 5y(1)+ZozZ (Si 1(1))

For the optimum values of a; = (—1)"*" % (i=1,2,...,q), the resulting mini-
zz(gXq

mum MSE <S®2T) to first order of approximation, is given by

(3.7) MSE (S@’Qf) = 91)Sy {Azy—%iz‘sz }
min Tq

Yy

Here |Aym7.|(ya.c ) is the determinant of matrix of population variances of the variables
} q

Yy T1, ooy g and |Agy(gxq)| is the determinant of matrix of population variances of the
variables z1, ...., 4.

Remark 3.1.2: Single-phase sampling using ¢ auxiliary variables in the
absence of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
S2 =01in (3.5), we get A5, = A}

vy

(88)  MSE($5) =¢nS, {A;y—&e% 3 ]

v Sz

3.2. Generalized regression-type estimators using multi-auxiliary information
under multi-phase sampling in the presence of ME under IIC. Let si}_’m and

sii(lﬂ) be sample variances of the auxiliary variables z; (i = 1,2,...,r,74+1,...,q) at I-
th and (I + 1)-th phases respectively with the sample size n(;y and n(1) having the pop-
ulation variance Si Also 3?5“) be the sample variances of the study variable y of size
n(4+1) selected at (I 4 1)-th phase. The population variance Sﬁi (i=1,2,..,mr+1,..,q)
on some auxiliary variables is known. We formulate the generalized regression-type
estimator for the estimation of unknown finite population variance SE using «;, 0;
(i=1,2,..,r)and v; (i =7+ 1,7+ 2,...,q) as unknown constants.

S _Sy<z+1> +ZO‘Z( i S%m) +Z5 ( i z<z+1>)
2
(3.9) + Z Vi (sziu) smwn)

i=r+1



1302

In terms of e’s, we have

(3.10)

AR2 o2
Syz =5y = [ ey<z+1> ZO‘ SZzeIzU) Z‘S S%e%wm + Z 7Sz, (ewz) ezi(l+1)):| :

1=r+1

Squaring (3.10) and then taking expectation, we get

”
fo2) o
MSE (Sy2) - 6y(l+1) ZOQS iCriay T Z(Slszie“:i(HJ)
i=1

2
2
(3.11) + Z YiSz, (emim _eli<z+1>)] :

i=r+1

i1 [ 1Aveil [Ayeil,a i1 [Nl s
i (1)t ilyzq) _ TYTil(yay) (gL YT ya,)
For the optimum values of oi; = (—1) Romtana)] Top— ,0i = (—1) Rovirnr]

(i=1,2,...,7) and 7, = (— 1)”1 M (i=r+1,7r+2,..,q), the resulting mini-

[Aza(gxq)l

mum MSE (5';852), to first order of approximation, is given by

& 4 * i yzi| Ty ,LL T
G I S
min zx(gXq Yy

| YTq T
(3.12) + () — var) Z (-1t Mi()ﬂy '} .

ca(axa) M3

Let Rig'sg =>_ (= 1)1+1 M My“” . then (3.12) can be written as

Avz(gxaq)l K3

(3.13) MSE (gg%Q)mm =5, |:‘P(l+l)A?jy —ewRs.2 + (ew) —easn) %ig‘sgq} :
Remark 3.2.1: Two-phase sampling using g auxiliary variables

For the case of two-phase sampling using ¢ multi-auxiliary variables, we replace ! by
1. The estimator given in (3.9) becomes

(3.14)

q

G2t _ (.2 2
Sy2 y(2>+zal( i 8”z<1>)+26 ( zi z<2>)+ Z i (S%(l) 8”1(2))'

i=r+1

. Aya; 7 yx; i |(ys
For optimum values of a; = (*1)#1 ||AU ‘(y q) *| z l“"“”) 0i = (— 1)l+1| - ‘(y o

wx(gxq)l [Agw(rxml [Aza(gxq)!
o i+1 | v ‘(qu) —
(i=1,2,...,7r) and v; = (—1) ] (i=r+1,r+2,..4q), the minimum
Azz(gxq

MSE (S®2T) to first order of approx1mat10n, is given by
(3.15)

G®R2 4 * 2 2 2
MSE (S3") =5, {W(m <Ayy - %@55) + (v — @) (%%s;q R )} :

2
v
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Remark 3.2.2: Two-phase sampling using g auxiliary variables in the ab-
sence of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
S2 =01in (3.13), we get A}, SO

yy’

q

(316) MSE(S:) =, [30<z>>\2y —eRe 2+ (P0) —e@) R .2

3.3. Generalized regression-type estimators using multi-auxiliary information

under multi-phase sampling in the presence of ME under NIC. Let 3?(?“) and
sii(Hl) be the sample variances of the study variable y under measurement error and the
i-th auxiliary variable (i = 1,2, ...,7,7 + 1, ..., q) respectively at (I + 1)-th phase, whereas
sii(l)be the sample variance of i-th auxiliary variable at [-th phase. The population
variance Sgi (1=1,2,...,m,r+1,..,q) of all multi-auxiliary variables is unknown. We
consider the following generalized regression-type estimator for population variance Sg

under no information case using «; (i =1,2,...,r,7 4+ 1,...,q) as unknown constant.

2
(817) Sy = Syasn T Zal (SI w " z‘(1+1>) :
To the first order of approximation, we write (3.17) as
q
6®2 2 2 2
(3.18) Syz — S, =S5, ey(Hl) + ZSziozi (emi(l) — exi(H_l)) .
i=1
Squaring (3.18) and then taking expectation, we get MSE as

q 2
® _ _
€y T Z Qi (e””i(l) ezi<l+1))] :

(3.19) MSE (35’32) =SiE

For optimum value of a; = (—1)""" %( =1,2,...,q) ,the resulting minimum
zx(gXq

MSE (ﬁf}f), to first order of approximation, is given by

[Ava(gxay| H3

X Aveil(ys,) pto,
MSE (5532)mm =Sy [@(m) ( Z( e ) f )

yzi ‘(yiQ) ,U“*z
(3.20) +oa 1)”1 1
@ Z [ Azzaxa)| K3

We can write (3.20) in compact form as
(3.21) MSE (ﬁ%)mm =S, |:SD(Z+1)Ayy + (Y@ — ea+1)) §Rgz 2 J :
Remark 3.3.1: Two-phase sampling using ¢ auxiliary variables

For no information case using ¢ auxiliary variables, we replace [ by 1, which is the case
of two-phase sampling. The estimator given in (3.17) becomes

a®2t _ 2
(3.22) S5 = Sy(z) +Zal (5r - 81'1(2)) .
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i1 Mol eg)

For optimum value of a; = (—1) Iy

o] (i=1,2,...,q), the resulting minimum
zx(gXq

MSE (S;%?T), to first order of approximation, is given by

(3.23) MSE(SF') =S, [Wz)AZy +(ea) — @) R 2 } :
min % Tq

Remark 3.3.2: Two-phase sampling using ¢ auxiliary variables in the absence
of measurement error

Let the observations of variable of interest y be recorded without an error. Substituting
S2 =01in (3.21), we get A}, = \;

vy

(3.24) MSE (Sis)min =5, [Lp(z))xzy + (1) — ¢@) %ii-séq] .

4. Efficiency Comparison

To obtain the efficiency of proposed estimators, we compare the mean square errors of
proposed multi-phase regression-type variance estimators under measurement error with
the estimators assumed to be free of error.

By (3.7) and (3.8), (3.15) and (3.16), (3.23) and (3.24), it is evident that

(4.1) Ay, < Ay,

Note: The Condition (4.1) is always true.

Remark: The numerical comparison is made under the efficiency conditions given above.

5. Data Description

Population 1: (Source: Mukherjee et al. [8])

The fertility data is based on 64 countries. Let y =Total fertility rate, 1980-1985, the
average number of children born to a woman, using age specific fertility rates for a given
year, 1 = Child mortality, the number of deaths of children under age 5 in a year per
1000 live births, zo =Female literacy rate, (percent) and 23 =Per capita GNP (in billions)
in 1980.

N = 64,5, =2.277,52 = 5772.670, 52, = 676.409, S, = 7429417.00,
Y =5.549, X; = 141.500, X5 = 51.188, X3 = 1401.250, 52 = 1.255,
Ayy = 2,773, Aoyoy = 2.341, Agpay = 1.631, Apgyus = 34.046,

Aoy = 1.458, Ayzy = 1.069, Ayry = 0.540, Ay 0, = 1.415,

Aoyzs = 1.921, Agyry = 0.372, Ay, = 1.234.

Population 2:(Source: Gujarati [6])

The data is baesd on the demand for chicken in USA, 1960-1982. Let y = Per capita
consumption of chickens in pounds, 1 = Real disposable income per capita in dollars,
2 = Real retail price of chicken per pound (in cents) and 3 = Real retail price of pork
per pound (in cents).

N = 23,55 = 54.360, 52, = 381735.00, S, = 123.592, S, = 1240.710,
Y = 39.669, X1 = 1035.065, X2 = 47.995, X5 = 90.400, S = 3.987,

Ayy = 2.03, Aoy oy = 2.696, Appzy = 1.756, Ay = 1.951, Aye, = 2.094,
Ayas = 1.541, Ayzy = 1758, Aay oy = 1.997, Ay g = 2.145, Appuy = 1.755,



1305
Ayy = 1.033.

Population 3:(Source: Vandaele [20])
The data is based on the crime rate data of USA in 1960. Let y =Number of offenses
reported to police per million population, x1 =Number of males of age 14-24 per 1000
population, x2 =Indicator variable for southern states and zs3 =Mean number of years of
schooling times 10 for persons age 25 or older.

N = 47,5, = 1495.853, S2, = 151.516, S, = 0.229, S, = 124.076,

Y = 90.508, X; = 137.511, X» = 0.340, X5 = 105.406, S = 1428.881,

Ayy = 3.859, Apyay = 3.684, Appay = 1.423, Apyzy = 1.896, Ay, = 0.456,

Mgy = 0.743, Ayoy = 1.041, Ay = 1354, Mgy g = 1.356, Appy = 1.220,

Ayy = 2.703.

Table 1. MSE of proposed ratio-type estimators 5'5’12*, SS%QT and SSZ;;T

Estimators Pop.1  Pop.2 Pop.3

SEET 0408 119.840  17.957
0.112  2.05 42.106
S5 0709 453.212 62581
0.134 14.781 1.408
SE2T 0.554 280270 19.282

0.379 2.050 42.106

*The results written in Table 1 in bold format are the absolute values of measurement
error.

6. Conclusion

In general, the presence of measurement error in the survey data invalidates the results.
The goal of this study was to show how measurement error is to be seperated in case of
multi-phase sampling using multi-auxiliary variables for estimation of population vari-
ance S;. The values of absolute measurement error are shown in Table 1. It is also evident
that the condition (4.1) holds for all the populations. Hence, the use of proposed esti-
mators are highly preferred in the cases of multi-phase sampling under CIC, IIC and NIC.

Acknowledgments
The authors wish to thank the editor and the anonymous referees for their suggestions
which led to improvement in the earlier version of the manuscript.



1306

References

1

[2

(3]
[4]

[10]
[11]
2]
[13]
[14]

[15]

[16]

[17]
18]
[19]

[20]

Allen, J., Singh, H.P. and Smarandache, F. A family of estimators of population mean
using multi-auziliary information in presence of measurement error, International Journal
of Social Economics, 30 (7): 837-849, 2003.

Bhushan, S.; Singh, R. K. and Pandey, A. Some generalized classes of double sampling
regression type estimators using auziliary information, Science Vision, 11 (1): 2-6, 2011.
Cochran W.G. Errors of measurement in statistics. Technometrics, 10: 637-666, 1968.
Diana, T. and Giordan, M. Finite population variance estimation in presence of measure-
ment error, Communications in Statistics-Theory and Methods, 41: 4302-431, 2012.
Dorfman, A. H. A note on variance estimation for regression estimator for double sampling,
Journal of American Statistical Association, 89: 137- 140, 1994.

Gujarati, D. M. Basic Econometrics. The McGraw-Hill Companies, 2004.

Isaki, C.T. Variance estimation using auziliary information,Journal of American Statistical
Association, 381: 117-123, 1983.

Mukherjee, C., White, H. and Whyte, M. FEconometrics and Data Analysis for Developing
Countries, Routledge, London, 1998.

Mukerjee R., Rao T.J. and Vijayan K. Regression-type estimators using multiple auziliary
information, Australian Journal of Statistics, 29 (3): 244-254, 1998.

Raj, D. On a method of using multi-auziliary information in sample surveys, Journal of
American Statistical Association, 60: 270-277, 1965.

Shukla, D., Pathak, S. and Thakur, N. S. An estimator for mean estimation in presence of
measurement error, Research and Reviews: A Journal of Statistics, 2 (1), 1-8, 2012 a.
Shukla, D., Pathak, S. and Thakur, N. S. Class(es) of factor-type estimator(s) in presence
of measurement error, Journal of Applied Statistical Methods, 11 (2), 336- 347, 2012 b.
Singh, H.P. and Karpe, N. Ratio-product estimator for population mean in the presence of
measurement errors, Journal of Applied Statistical Science, 16: 49-64, 2008 a.

Singh, H.P. and Karpe, N. Estimation of population variance using auziliary information
in the presence of measurement errors, Statistics in Transition, 9 (3): 443-470, 2008b.
Singh, H.P. and Karpe, N. A class of estimators using auziliary information for estimating
finite population variance in presence of measurement errors, Communications in Statistics-
Theory and Methods, 38: 734-741, 2009.

Singh H. P. and Solanki, R.S. Improved estimation of finite population variance using auz-
iliary information, Communications in Statistics-Theory and Methods, 42 (15), 2718-2730,
2013 a.

Singh H. P. and Solanki, R.S. A new procedure for variance estimation in simple random
sampling using auziliary information, Statistical Papers, 54 (2), 479-497, 2013 b.

Singh, S. Estimation of finite population variance using double sampling, Aligarh Journal
of Statistics, 11: 53-56, 1991.

Solanki R. S. and Singh H. P. An improved class of estimators for the population variance,
Model Assisted Statistics and Applications, 8 (3), 229-238, 2013.

Vandaele, W. Participation in Illegitimate Activities: Erlich Revisted. Deterrence and In-
capacitation, National Academy of Sciences. 270-335, 1978.



Hacettepe Journal of Mathematics and Statistics
Volume 45 (4) (2016), 13071320

Equivariant estimation of common location
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Abstract

In this paper, we consider the problem of estimating common location
parameter of two exponential populations using type-II censored sam-
ples when the scale parameters are unknown. The loss function is taken
as the quadratic loss. First, we derive a class of affine equivariant esti-
mators, which includes the maximum likelihood estimator (MLE) and
the uniformly minimum variance unbiased estimator (UMVUE). A suf-
ficient condition for improving estimators in the class is derived. Con-
sequently, estimators dominating the MLE and the UMVUE in terms
of the risk values are obtained. An example is given to compute the
estimates using our result. Finally a simulation study has been carried
out to numerically compare the risk functions of all the estimators.
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1. Introduction

Suppose X(1) < X(2) <+ < Xy 2<r<m)and Y1) <V <+ <Y (2<s<
n) be the ordered observations taken from two exponential populations Ez(u,o01) and
Ex(u,02) respectively. Here Ex(u,0;) denotes the exponential distribution with density
function

1
(1.1) flt, py0) = ;exp{—(t —p)foit, t>p,0 >0,
T
—oco < pu<oo; i =1,2.
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The problem is to estimate the common location parameter p (minimum guarantee
time) when the scale parameters o1, o2 (residual life times) are unknown, with respect
to the loss function,

(12) L(d,a) = (1),
o1
where d is an estimate for p and a = (u, 01,02).

The model (1.1) under consideration arises naturally in the study of reliability, life
testing and survival analysis and has applications in industry, engineering, business and
social science. For example, two brands of electronic devices having m(> 2) and n(> 2)
number of units respectively put for a life testing experiment. Due to some constraints
(may be time or cost) the experimenter could able to observe only the (< m) and s(< n)
failure times respectively. It is assumed that, the life times of each units are random and
follow exponential distributions having same minimum guarantee time. The problem we
consider, comes under the umbrella of estimation problems “estimation of parameters
of a distribution function using censored samples”. For some more examples on related
model one may refer to Suresh [13]. Basically, the censoring schemes available are type-I
(number of failures are random), type-II (censoring time is random) and random censor-
ing (both may be random) or some modifications of these. We consider the conventional
type-II right censoring sampling scheme which is a particular case of progressive type-I11
censoring scheme. For some results on estimation of parameters of exponential distri-
butions using various such conventional censoring schemes one may refer to Lawless [9]
and Johnson et al. [8]. For some reference on estimation of parameters using progressive
type-II censored samples one may refer to Chandrasekar et al. [4], Madi [12] and Wang
et al. [14] and the references cited there in. Some applications of these types of models
have been discussed in Balakrishnan and Aggarwala [1] and Balakrishnan and Cramer
[2]. It is very surprising to see in the literature that, a very little attention has been
paid for estimation of a common mean/location (or in general common parameter) when
incomplete data (censored samples) are available from the population. In that regard,
Chiou and Cohen [5] considered the model in (1.1) under type-II censoring scheme and
estimate the common location parameter p, when the scale parameters are unknown.
They obtained the maximum likelihood estimate (MLE) and the uniformly minimum
variance unbiased estimate (UMVUE) for pu. They have also generalized the results to
k = 3 exponential populations. Elfessi and Pal [6] considered the problem of estimation
of common scale parameter of several exponential populations under type-II censoring
scheme. They provided stein type testimators for the common scale parameter and used
this to construct estimators for the location parameters.

In the case of full sample (that is » = m and s = n) probably, Ghosh and Razmpour
[7] was the first to consider the problem of estimation of p. They obtained the MLE, a
modification to the MLE (MMLE) and the UMVUE for . Asymptotic and numerical
comparisons of these estimators were done in terms of bias and mean squared error.
Their simulation study shows that, the MLE is dominated by both the MMLE and the
UMVUE. Jin and Pal [11] considered the problem of estimation of common location
parameter of several exponential populations and suggested a class of estimators which
dominates the MLE under a class of convex loss functions. For some early results on the
estimation of common location of exponential populations we refer to Jin and Crouse
[10] and the references there in.

In this article, we consider the model in (1.1) under the conventional type-II censoring,
which was considered earlier by Chiou and Cohen [5] and estimated the common location
parameter p with respect to a quadratic loss function. The aim of the present work is
twofold, one is to propose a wide class of estimators which include the MLE, the MMLE
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(we propose in next section) and the UMVUE for u. Secondly, we derive a sufficient
condition that helps in obtaining estimators which dominate estimators belonging to
this class. The rest of the work is organized as follows. In Section 2, we present the
model and discuss some basic results. In Section 3, a general class of estimators has
been proposed and sufficient conditions for improving estimators in the class has been
derived. This class contains the MLE, MMLE and the UMVUE for u. Using the results
of section 3, estimators dominating the MLE and the UMVUE have been obtained. In
Section 4, a massive simulation study has been carried out to numerically compare the
risk performances of all these estimators.

2. Some Basic Results

In this section, we discus the model and derive some basic estimators such as the
MLE, a modification to the MLE (MMLE) and the uniformly minimum variance unbiased
estimator (UMVUE) for the common location parameter p, when the scale parameters
are unknown.

Specifically, let X(1) < X(9) <--- < Xy, (2 <7 < m) be the r ordered observations
taken from a random sample of size m which follows Ez(u,01) as in (1.1). Similarly,
let i) < Yo <--- <Y, (2<s< n) be the s ordered observations from a random
sample of size n which follows Ex(u,02) as in (1.1). We assume that the two random
samples drawn are stochastically independent. The joint probability density function of
X, = (X, X@), - Xy) and Y, = (Ya), Yi2), -+, Yis)) IS given by

22:1(75(1‘) —p)+ (m—r) (m(r) — )

flz,y,) = Mexp{ -

o2

(2.1) X e) —w) + (= 8)(ye) — w) }

where, u < w1y < 22y < ey 1 < Ya) LYo L Yy —00 < < oo, o1 > 0,
o2 > 0 and
M_m(mf1)~~~(m71"+1)n(n71)~-(n7s+1)

r S
0102

It can be observed that, the maximum likelihood estimator (MLE) of y is

7 = min(X(l),Y(l)) = dur (say). The MLEs of both o; and o2 can be obtained by
differentiating the log-likelihood function with respect to o; (i = 1,2) and equating to
zero. These are obtained as,

b = YieXp -2+ (m—1) X —2)
5 E§:1(Ym*Z)+(n*8)(Y<s>*Z).
S

Let us introduce the new random variables
1 X )X Y+ (n— )Y,
U, = Zim Xt monXe g 2 Yo 9V
m n

For our model, a sufficient statistic is (U1, Uz, Z) (see Chiou and Cohen [5]). Further,
the joint probability density function of (U1, Us, Z) is given by,
(ul _ Z)r—2(u2 _ z)s—l (Ul _ Z)r—l(u2 _ 2)3—2

TsT'(r —1) Trl'(s —1)

(2.2) exp{ — m(u;_ m n(ui_ ) }, Ul > 1y, U2 > Y1), 2 > [
1 2

fu1,Us,2(ur,u2, 2) = K[
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where

m'n®

K=

o105
It should be noted that the details of derivation of the joint probability density function
of (U1,Usz, Z) has been omitted here for brevity, however for equal sample sizes one may
refer to Chiou and Cohen [5].
The probability density function of Z is given by

where p = Jﬂl + g% It can be noted that, E(Z) = p + %. Motivated by Ghosh and
Razmpour [7], we propose a modification to the MLE dy 1, as,

1
(2.4) dyum =7 — =
p

~ )

where, we have the MLE for p as p = Uﬂl + % It can be further noticed that the
statistics (Uy — Z,U> — Z) and Z are independent. Using the complete and sufficient
statistic (Uy — Z,Us — Z, Z), it is easy to observe that the UMVUE of y is given by,

U, -2)(U2— 2)
(r=1)Uz2 = 2)+ (s = 1)(U1 = Z)’

(see Chiou and Cohen [5] for m = n and r = s).

In the next section, we prove a general inadmissibility result for affine equivariant
class of estimators and as a consequence, estimators dominating the MLE dasr, and the
UMVUE duy v in terms of risk values have been obtained.

(2.5) dvy = Z —

3. A Sufficient Condition for Improving Equivariant Estimators

In this section, we introduce the concept of invariance to our problem and obtain some
inadmissibility conditions for estimators belonging to the affine equivariant class.

Let G = {gab : gap(x) = azx +b,a > 0,—00 < b < oo} be an affine group of transfor-
mations. Let us use the notation Vi3 = Uy — Z, Vo = Uz — Z. Under the transformation
Ja,b, the sufficient statistics, Vi — aVi, Vo — aVa and Z — aZ +b. The set of parameters
being transformed as y — ap+b, oy — aoc;,i = 1,2. In order that, the loss function (2.1)
to be invariant, the decision rule d must satisfy the equation,

d(aZ + b,aVi,aVa) = ad(Z, Vi, Va2) + b.

Taking choice for b = —aZ, where a = V%, and rearranging the terms, we obtain the form
of an affine equivariant estimator based on (Z, V1, V2) for estimating p as,

d(Z,V1,Va) = Z+WV¥(V),
(3.1) = du, (say),

where U (V) is any function of V = “%’
Further, define a function Wy, for the affine equivariant estimator dy (as given in
(3.1)) as,

1

— s max(v, 1), if U(v) < — L max(v, 1)

r+s

(3.2)  Wo(v) =4 ¥Y(v), if — ?18 max(v, 1) < ¥(v) < — = min(v, 1),
_%‘_S min(v, 1), if ¥(v) > —ris min(v, 1)

Next, we present the main result of this section which helps in obtaining the improved
estimators for p.



1311

3.1. Theorem. For the affine equivariant estimator dw given in (3.1), define the function
Ug as given in (3.2) and the loss function be the affine invariant loss (1.2). The estimator
dy is inadmissible and is improved by dw,, if there exist some values of parameters
(,01,02) such that, P(dw # dw,) > 0.

Proof. The proof of this theorem can be done by using a result of Brewster and Zidek
[3]- So, consider the conditional risk function of dw given V = v.

R(dw, o))V =v) = Eldy -’V =1
(3.3) - %E[(Z FVIU(V) = w2V = ).

1

The above risk function (3.3) is a convex function in . Hence, the minimizing value of
U (V) for fixed values of V' is obtained as,

1 EWV =)

(3.4) \i/(U,O'l,O'Q) = ;m

To evaluate the above expression in (3.4), we have the joint probability density function
of (U1,Us, Z) as given in (2.2). Let us use the transformation Vi1 =Uy — Z, Vo =Us — Z
and Z = Z. The inverse transformation is given by Uy = Vi + Z, Uz = Vo + Z, and
Z = Z. The jacobian is obtained as J = 1. Hence, the joint probability density function
of (Z,V1,V>) is obtained as,

TS r—1, s—2 r—2, s—1
_mnTru v V] Vs ] m o
Foivaz(v1,v,2) = S [FrF(s —1) T e -1y Pl ()

n
2 (oa 2= p)h
v > 0,02 > 0,2 > pu.
Using the independence of (V1,V2) and Z one can easily write the joint probability density
function of (Vi, V2) and is given by,
1 r—1, s—2 r—2 s—1
] 05 vy 05 ] {_E _ﬂ}
[Frf(s —-1) + TsT'(r—1) P o T ey
vy > 0,v2 > 0.

m’r'nsp—

Fviv (v1,02) = P

We need to calculate the conditional density of Vi given V. Let us use the transfor-
mation, V = “%, Vi = Vi. The inverse transformation is given by Vo = VVi, Vi = V.
The jacobian of this transformation is obtained as V;. Hence the joint probability density
function of (V1,V) is obtained as,

f (v U) m'rnspfl |:v'{+372vs—2 N v;+372vs—1:| . { mv n - }
= XD 4 — g — —
VLVATh otoy LITrl(s—1) Ts'(r—1) P PR
v1 > 0,0 > 0.
The marginal density function of V' is given by
ros —1 s s—2 s—1
_m'n’p F(r+sfl)(ﬂ 1)1*7*5[ v v ]
folv) = olos o1 + o Irl'(s —1) + LsC(r—1)1
v > 0.

It is easy to observe that, the conditional probability density function of Vi given V = v,

is a gamma distribution with shape parameter » + s — 1 and scale parameter —2172—.
mog+noiv
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Here the gamma probability density function with a shape parameter o and a scale
parameter [ is defined as,

g(z, o, B) =

1 a—1 —%
——a" e B, z>0,a>0,8>0.
[(a)B

So, the conditional expectations are calculated and obtained as

_(r+s—1)o102

(3.5) EMW|V =v) moz + noiv
and

s _ _ ooz \?
(3.6) EWVV =v)=(r+s 1)(T+S)(ma'2+n0'1v)

Substituting these conditional expectations from (3.5) and (3.6) in (3.4), and simplifying,
we have the minimizing choice of (7, v) for fixed v as,

A m + nTv
(37) \Ij(Tv 1}) - _(’f' T s)(m+ m‘)’
whereT:Z—; >0, and v > 0.

In order to apply the Brewster Zidek orbit-by-orbit improvement technique (see Brew-
ster and Zidek [3]), we need to find the supremum and infimum of ¥(r,v) with respect
to 7 for fixed v. Let h(r) = —£27 Tt can be easily seen that, h(7) is an increasing
function in 7 if and only if v < 1 and decreasing if and only if v > 1. We consider two
separate cases for obtaining the supremum and infimum of \i!(v)7 depending upon v < 1
orv > 1.

Case-I: v < 1. In this case, the supremum and infimum of the function ¥(7,v) for fixed
values of v, are obtained as,

1
r+s

supU(v, 1) = —
7‘>13 ( ) r+s

, and inf ¥(v,7) = —
>0
Case-II: v > 1. For this case we have the supremum and infimum of ¥(7,v) as,
v
r+s

Utilizing the results from Case-I and II, we can easily define the function ¥o(v) as in
(3.2). Now applying the orbit by orbit improvement technique of [3] (see Theorem 3.1.1
in Brewster and Zidek [3]), the proof follows. O

sup W (v, 7) = —

, and inf (v, 7) = —
>0 r+s >0

Next, our target is to apply the results of Theorem 3.1, and provide improved estima-
tors for p which will perform better than the MLE djs;, and the UMVUE dy/v in terms
of risk values. The class considered above contains the MLE djsr, the modified MLE
dyrv and the UMVUE dary . Hence, expressing darr, and dary in the form (3.1), we have

dvr = Z+ViVyp(V),where Wap (V) =0,
d = Z4+WNv V h U V= ————
MV + ViUny (V), where Wy (V) -Vt (-1

Let us define the new estimators for p as,

Z—Y itV >V,

Z—T‘i, if Vi < Vo

(3.8)  dr = {

and

39) dvr={ %™ 2L max(V, 1), if Warv (V) < — = max(V, 1),
. duv, otherwise.
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Next, we present the result in the form of a theorem, regarding improvement over the
MLE durr, and the UMVUE dav, for estimating p.

3.2. Theorem. Let the loss function be the quadratic loss as in (1.2).

e The estimator dy (MLE) is inadmissible and is improved by darr.
e The estimator dyry 1 improves upon dyyv (UMVUE), if there exists some values
of parameters (u,o1,02) such that, P(dav # duvr) > 0.

Proof. The proof follows by an application of Theorem 3.1. The choice of U7, = 0 >
—+4s (when v < 1) and also ¥pp = 0 > —T%Ls (when v > 1). Hence, replacing
these choices by their respective supremum values, we get the estimator defined in (3.8),
which has smaller risk values than dy;;, by an application of Theorem 3.1. Also we
note that, for estimator dasv, the choice P(¥ v (V) < —Tis) > 0 (when v < 1) and

P(Uynv(V) < —Tis) > 0 (when v > 1). Replacing v (V) by these extreme values in

dary we get the required estimator dasvy as given in (3.9), which has smaller risk values
than d]wv. O

Let us define ¥; = —Tis max(v, 1) and ¥y = —Tis min(v, 1).

3.1. Remark. Though the estimator dasas is a member of the class considered in (3.1)
(we can write dyy = Z+V1iW i (V), where W (V) = f%ﬂ), it can not be improved
by using our result in Theorem 3.1, as it can be seen that, P(Waa (V) € [¥1, ¥o]) = 1.

3.2. Remark. The class of estimators Dy = {dy : U1 < ¥ < W5} form a complete class
for estimating common location parameter p when the loss is (1.2).

Next, we present an example where our model fits well and compute the estimates for
the minimum guarantee time.

3.1. Example. (Simulated Data) Suppose two brands of electronic devices each having
30 units are placed for a life testing experiment. It is known that, the lifetimes (in hours)
of each unit follows an exponential distribution with same minimum guarantee time. The
experimenter could able to observe only 15 failures (in hours) from each brands of devices
because of some constraints. The data for both the brands are obtained as,

Brand 1: 1417.70, 1458.49, 2963.76, 3969.39, 5995.44, 6939.76, 7048.85, 7768.59, 7844.87,
8824.96, 9190.34, 9321.34, 9434.04, 10793.03, 12881.22.

Brand 2: 462.71, 659.86, 1187.35, 1295.99, 1370.69, 2050.36, 2305.46, 2633.27, 3176.41,
3297.63, 3413.95, 3806.01, 4571.04, 4639.71, 6059.09.

On the basis of above data, we have computed the statistic values as Z = 462.7199,
Ty = 9506.285, and T> = 3931.15. The various estimates for p have been computed as
dyp = 462.7199, dayrnr = 331.6816, darayr = 277.3143, dyy = 264.0711 and dyvr =
264.0711. It can be noted that the condition for improvement over dyyv (that is Uy <

1

———max(w, 1)) is not satisfied. So, in this case we will not get improved estimator for
r+s

dpyrv . In this situation, we recommend to use das -

4. Numerical Comparisons

In this section, we compare numerically the simulated risk values of all the estimators
proposed in previous sections for estimating p. For this purpose, we have generated
20,000 type-II censored random samples each from two exponential populations (1.1)
with a common location parameter p and different scale parameters o1, o2. The loss
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function is taken as (1.2). We use Monte-Carlo simulation method to compute the risk
values of each estimator. The accuracy of simulation has been checked and the error is
of the order of 1072, It can be easily seen that with respect to the loss (1.2), the risk
functions of all the estimators are function of 7 (> 0) for fixed sample sizes. Though the
values of 7 can lie in the interval (0, c0) theoretically, to avoid simulation error we present
the risk values for 7 up to 4. Let us define the percentage of relative risk improvements
(RRI) of all estimators with respect to the MLE as,

R(MLI) = dMLd*idM“ x 100, R(MM) = dMLdfw % 100
ML ML

R(MV) = dur —duv x 100, R(MVI) = dur —duvi % 100.
duvr ML

Further we define the censoring factors (CF1, CF2) for both the populations as the ratio
of number of observed samples to total number of samples. That is for first population
CF1 = r/m and for second population CF2 = s/n. It can be noticed that the censoring
factors CF'1 and CF2 always lie between 0 and 1. A massive simulation study has been
carried out by considering various combinations of sample sizes. However, for illustration
purpose, we present (in Table 4.1-4.3) the percentage of relative risk performances of
dyrr, Ay, davy and daryr over darr for equal and unequal sample sizes. Specifically in
Table 4.1 we present the percentage of relative risk performances for sample sizes (16, 16)
and (24,24). The first column gives the values of 7. Corresponding to one value of 7,
there corresponds three values of relative risk performances for an estimators. These
three values are obtained for CF1 = CF2 = 0.25,0.50,0.75 respectively. Similarly in
Tables 4.2-4.3 the relative risk performances have been presented for unequal sample
sizes. We have also plotted the graph of the RRI values of the improved estimators with
respect to MLE in Figures 1 and 2 for CF1 = CF2 = 0.25 and CF1 = CF2 = 0.5
respectively. It can be seen that, as the values of CF'1 and C'F'2 become close to 1, the
amount of improvements for dasv; over dyv is marginal.

The following conclusions can be made from our simulation study and Table 4.1-4.3.

(i) The risk values of all the estimators are decreasing as 7 increases, with respect
to the loss function (1.2). Further, as 7 becomes large the risk values of all
the estimators converge to some constant value. The percentage of relative
risk performances of each estimator with respect to MLE increases as censoring
factors (CF1 and C'F2) increase for fixed sample sizes.

(ii) When the sample sizes are small, and for small values of 7, the percentage of
relative risk improvement for dasas is maximum (near about 46%). For moderate
values of 7 the estimator da;v; has the best percentage of relative risk perfor-
mance (near about 46.5%). For large values of 7 the estimator dj;a performs
the best (near about 45%).

(iii) For moderate sample sizes, and for small values of 7 the estimator dysas performs
the best(about 47%). When 7 values are moderate the estimators dasas and
dmvi are good competitors of each other. For large values of 7 the estimator
dprv performs the best (about 48.5%).

(iv) For large sample sizes, and for small values of 7 the estimator dasv; has the best
performance (48%). For moderate values of 7 the estimators dasar and darvr
are competing each other. For large values of 7 the estimator dasa has the best
percentage of relative risk performance (48%).

(vi) As the sample sizes increase for fixed censoring factors (CF1 and CF2) the
amount of percentage of improvements of darr; over dyrr increases. Also the
amount of improvement of dysyv; over dy/y increases as sample sizes increase.
The percentage of risk improvement of dasv over dary is near about 2.5% and
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this value decreases as C'F'1 and C'F2 become close to 1. The percentage of
improvement for darrr over darr, has been seen near about 45.5%. This validates
the findings of theoretical results in Section 3.

(vii) It has been also noticed that for small and large values of 7 (that is when the
standard deviations vary significantly) the percentage of relative risk improve-
ments for daryr is very marginal. A similar type of observations were made for
other combinations of m,n and r, s and we omit the tables here.

(viii) Combining the facts (ii)-(iv), we recommend using dasas for all sample sizes.
Though the estimator performs better theoretically (around 2.5% improvement
from simulation study) than dasar, we do not recommend using it as it is not a
smooth estimator.

5. Conclusions

In this article, we have considered the model that was earlier considered by Chiou and
Cohen [5] for exponential populations. Specifically, we have considered the estimation
of common location parameter p of two exponential populations when the samples are
type-1I right censored in a decision theoretic approach. First we propose a broad class of
estimators (which are equivariant under an affine group of transformations) for the com-
mon location parameter p. Interestingly, this class contains the MLE and the UMVUE
for . Then we provide a sufficient condition which may be useful for improving certain
estimators in this class. Using our results of Theorem 3.1, we have obtained an estimator
which dominates the MLE significantly (the percentage of relative risk improvement is
between 28% to 46%). However, the improved estimator obtained for the UMVUE has
marginal percentage of risk improvements. The theoretical results are well supported by
a simulation study. It should be noted that, a very little attention has been given by the
researchers in the recent past for the problem considered in this article. Our work revisits
the problem and will definitely help the researchers to search new estimators which may
work better than the usual one.
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Table 4.1: Relative risk performances of different estimators for p
with CF1=CF2=0.25,0.50,0.75

T m=n=16 and r=s=4,8,12 m=n=24 and r=s=6,12,18
R(MLI) | R(MM) | R(MV) | R(MVI) | RIMLI) | R(IMM) | R(MV) | R(MVI)
33.53 40.45 37.89 38.28 36.95 44.43 43.73 43.78
0.25 38.07 45.33 44.88 44.90 39.62 47.01 46.90 46.90
39.74 47.04 46.92 46.92 40.54 47.75 47.70 47.70
36.14 41.51 40.22 41.34 40.33 44.93 44.38 44.63
0.50 42.32 46.77 46.60 46.70 43.48 47.42 47.29 47.30
42.81 47.06 47.03 47.07 44.71 48.30 48.21 48.22
36.95 41.19 39.84 41.28 41.06 44.75 44.71 45.08
0.75 43.37 46.40 46.38 46.58 44.76 47.12 47.21 47.25
45.40 47.66 47.56 47.64 46.91 48.74 48.73 48.76
36.91 41.13 40.54 41.84 41.36 44.61 44.24 44.80
1.00 43.05 45.57 45.32 45.61 45.68 47.54 47.62 47.67
46.24 48.07 48.03 48.11 47.17 48.40 48.37 48.41
37.04 41.11 39.91 41.40 41.69 45.15 44.95 45.35
1.25 43.31 46.07 46.08 46.22 45.66 47.69 47.67 47.71
45.66 47.77 47.74 47.81 47.00 48.60 48.62 48.63
36.94 41.47 40.52 41.78 40.81 44.64 44.51 44.84
1.50 43.30 46.55 46.41 46.56 45.85 48.58 48.57 48.61
44.08 46.73 46.71 46.76 45.93 48.43 48.48 48.49
36.55 41.29 40.00 41.09 40.19 44.35 43.84 44.23
1.75 42.78 46.62 46.38 46.54 44.19 47.39 47.29 47.31
44.06 47.46 47.43 47.46 45.06 48.22 48.24 48.25
36.31 41.67 40.28 41.48 39.85 44.55 4417 44.45
2.00 41.34 45.79 45.66 45.80 43.58 47.44 47.35 47.36
43.12 47.04 46.94 46.96 43.79 47.76 47.84 47.84
35.56 41.56 40.84 41.65 39.05 44.24 43.88 44.10
2.25 41.15 46.22 46.08 46.13 42.34 46.86 46.76 46.77
42.19 47.11 47.14 47.14 44.53 48.81 48.74 48.74
35.49 41.43 40.01 40.72 38.77 44.60 44.42 44.56
2.50 40.18 45.91 45.92 45.95 42.26 47.50 47.42 47.42
42.22 47.26 47.12 47.12 43.32 48.38 48.35 48.35
34.69 40.89 39.52 40.17 38.29 44.12 43.57 43.66
2.75 40.42 46.30 46.05 46.08 41.04 46.71 46.64 46.64
41.84 47.48 47.33 47.34 42.76 48.28 48.24 48.24
34.69 41.25 39.37 40.01 37.65 44.02 43.49 43.61
3.00 39.39 45.78 45.62 45.65 41.31 47.33 47.19 47.19
41.43 47.70 47.66 47.66 42.30 47.90 47.78 47.78
33.76 40.31 38.73 39.18 37.41 43.81 43.07 43.16
3.25 39.01 45.49 45.08 45.12 41.10 47.42 47.30 47.30
40.58 46.69 46.46 46.46 41.26 47.63 47.62 47.62
33.60 40.59 39.24 39.73 36.49 43.66 43.39 43.46
3.50 38.88 45.76 45.45 45.46 40.77 47.60 47.44 47.45
39.85 46.48 46.35 46.35 41.16 47.74 47.70 47.70
33.37 40.29 38.57 38.95 36.26 43.28 42.58 42.65
3.75 38.39 45.22 44.71 44.72 40.13 47.33 47.26 47.26
40.37 47.54 47.41 47.41 41.13 47.95 47.88 47.88
33.25 40.55 38.77 39.17 36.25 43.72 43.12 43.17
4.00 38.84 45.89 45.35 45.36 39.91 47.02 46.82 46.82
40.19 47.51 47.35 47.35 40.77 47.89 47.82 47.82
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Table 4.2: Relative risk performances of different estimators for p
with CF1=CF2=0.25,0.50,0.75

T m=12, n=16 and r=3,6,9;5=4,8,12 m=16,n=24 and r=4,8,12;5=6,12,18
R(MLI) | R(MM) | R(MV) | R(MVI) | RIMLI) | R(IMM) | R(MV) | R(MVI)
29.25 37.89 34.50 35.38 31.45 41.49 40.45 40.63
0.25 35.04 44.60 44.27 44.29 36.23 46.53 46.27 46.28
36.97 46.18 45.94 45.94 37.14 47.65 47.62 47.62
32.74 39.09 37.52 39.11 36.07 42.83 42.52 43.10
0.50 39.42 44.97 44.80 44.89 40.79 46.90 46.94 47.00
41.94 47.14 46.96 47.01 42.25 47.81 47.79 47.80
34.76 39.84 38.18 40.33 39.25 43.96 43.31 44.16
0.75 42.23 45.88 45.60 45.91 43.45 46.94 47.04 47.11
44.05 47.15 47.23 47.29 45.70 48.37 48.32 48.36
35.28 39.89 38.37 40.58 39.79 43.63 43.20 44.07
1.00 42.72 45.92 45.90 46.24 44.68 46.95 46.86 47.01
45.23 47.48 47.53 47.61 46.89 48.56 48.58 48.63
36.23 40.66 39.31 41.34 39.76 43.25 42.80 43.49
1.25 42.67 45.58 45.63 45.82 45.22 47.16 46.95 47.06
45.66 47.63 47.45 47.57 46.41 47.99 47.99 48.04
35.91 40.14 38.42 40.25 40.43 44.05 43.65 44.32
1.50 42.88 45.88 45.75 45.98 44.96 47.30 47.34 47.42
45.20 47.53 47.47 47.52 46.86 48.62 48.57 48.58
35.92 40.24 38.61 40.13 40.30 43.92 43.42 43.95
1.75 42.04 45.31 45.13 45.32 43.86 46.20 46.00 46.11
44.36 47.13 47.06 47.10 46.41 47.99 47.99 48.04
35.56 40.27 38.44 40.20 39.64 43.22 42.43 42.85
2.00 41.86 45.49 45.20 45.32 44.45 47.31 47.22 47.24
43.84 47.06 47.01 47.04 44.86 47.42 47.37 47.37
35.96 40.75 38.80 40.09 40.18 44.16 43.59 43.89
2.25 41.39 45.43 45.25 45.35 43.16 46.47 46.39 46.42
43.64 47.33 47.26 47.28 45.15 48.31 48.35 48.35
35.56 40.52 38.81 39.93 39.32 43.34 42.48 42.83
2.50 41.00 45.26 44.94 45.03 42.95 46.28 46.01 46.02
43.34 47.24 47.08 47.10 44.75 47.94 47.84 47.84
34.77 39.67 37.73 38.64 38.48 42.70 41.93 42.24
2.75 41.15 45.70 45.34 45.41 42.86 46.61 46.39 46.40
42.67 46.74 46.49 46.49 44.14 47.98 47.98 47.98
35.79 41.03 39.09 39.89 38.51 43.07 42.41 42.64
3.00 40.39 45.18 44.86 44.90 42.14 46.35 46.29 46.31
42.31 46.84 46.68 46.69 44.36 48.21 48.15 48.15
34.58 39.71 37.22 38.10 38.88 43.40 42.37 42.59
3.25 40.11 45.23 44.88 44.95 42.37 46.53 46.30 46.31
42.24 47.07 46.86 46.87 43.46 47.78 47.77 47.77
34.35 39.71 37.56 38.19 38.68 43.24 42.33 42.46
3.50 39.99 44.93 44.35 44.37 42.19 46.74 46.56 46.56
42.06 47.33 47.23 47.24 43.44 47.60 47.47 47.47
34.03 39.71 37.80 38.46 38.35 43.18 42.32 42.45
3.75 39.45 44.74 44.28 44.29 41.49 46.00 45.80 45.80
40.85 46.03 45.86 45.86 42.85 47.12 46.96 46.96
33.97 39.39 36.59 37.23 38.19 43.11 42.12 42.27
4.00 39.61 45.10 44.54 44.57 41.79 46.23 45.85 45.85
40.81 46.32 46.20 46.20 43.13 47.75 47.63 47.63
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Table 4.3: Relative risk performances of different estimators for p
with CF1=CF2=0.25,0.50,0.75

Tl m—16, n—12 and r—4,8,12;5—3,6,9 m—24n—16 and r—6,12,18;5—4,8,12
R(MLI) | R(MM) | R(MV) | R(MVI) | RIMLI) | R(IMM) | R(MV) | R(MVI)
34.11 39.83 37.83 38.35 38.28 43.11 42.09 42.21
0.25 39.67 45.15 44.67 44.67 42.23 46.88 46.57 46.58
41.39 46.83 46.62 46.63 43.01 47.51 47.36 47.36
35.57 40.03 38.08 39.47 40.31 43.99 43.14 43.66
0.50 41.87 45.42 45.15 45.32 44.64 47.61 47.54 47.59
43.98 4717 47.14 47.14 45.64 48.10 47.99 48.00
36.05 40.50 39.30 41.18 40.32 43.70 43.15 43.80
0.75 43.15 46.10 46.11 46.31 45.22 47.34 47.20 47.33
45.30 47.41 47.40 47.47 46.67 48.21 48.16 48.19
35.94 40.60 38.90 41.29 40.17 44.11 43.82 44.59
1.00 43.05 46.17 46.18 46.51 44.81 47.11 47.00 47.16
44.87 47.09 47.08 47.21 46.24 47.89 47.90 47.94
35.13 40.18 38.90 41.13 38.67 43.17 42.73 43.59
1.25 41.50 45.10 45.03 45.38 43.57 46.53 46.40 46.55
45.11 47.91 47.81 47.98 46.13 48.47 48.41 48.46
34.86 40.35 38.80 40.80 38.29 43.47 43.09 43.73
1.50 41.50 45.10 45.03 45.38 42.46 46.55 46.57 46.66
43.66 47.15 47.14 47.21 44.54 47.79 47.79 47.80
32.93 38.83 37.01 39.12 36.77 42.72 42.33 42.98
1.75 40.78 45.89 45.80 46.06 40.84 45.61 45.53 45.60
42.76 47.15 47.06 47.13 43.34 47.87 47.82 47.85
32.43 38.96 37.52 39.24 36.54 43.45 43.26 43.82
2.00 39.94 45.70 45.42 45.57 40.41 46.29 46.25 46.30
41.20 46.73 46.72 46.77 42.46 48.01 48.02 48.04
32.32 39.25 37.39 39.06 35.80 43.27 42.83 43.30
2.25 38.61 45.06 44.98 45.06 40.29 47.02 46.98 47.01
40.91 46.86 46.69 46.73 41.55 48.12 48.15 48.16
31.72 38.94 37.08 38.51 35.01 42.83 41.95 42.47
2.50 38.31 45.50 45.25 45.36 39.40 46.87 46.76 46.79
40.09 46.68 46.59 46.60 40.80 48.27 48.31 48.32
31.51 38.91 36.52 37.72 34.06 42.22 41.42 41.78
2.75 37.16 44.36 44.06 44.10 38.19 46.03 45.84 45.86
39.62 47.24 47.22 47.23 40.20 48.16 48.11 48.11
30.73 38.31 35.25 36.63 33.13 41.87 41.10 41.40
3.00 35.56 43.53 43.24 43.33 37.67 46.34 46.24 46.25
38.97 46.56 46.28 46.29 39.28 47.99 48.01 48.01
29.81 37.87 35.43 36.51 32.66 41.73 40.70 41.01
3.25 36.33 44.46 43.97 44.00 37.27 46.28 46.04 46.04
37.90 46.33 46.25 46.25 38.66 47.66 47.58 47.58
30.06 38.35 35.35 36.40 32.39 41.80 40.94 41.11
3.50 35.70 44.30 43.80 43.83 36.51 46.21 46.17 46.18
37.02 45.54 45.39 45.39 37.52 47.06 47.03 47.03
29.39 37.91 34.99 35.90 31.94 41.65 40.53 40.73
3.75 35.29 44.30 43.79 43.80 36.09 45.99 45.77 45.78
37.56 46.46 46.20 46.20 37.51 47.30 47.19 47.19
29.17 38.14 35.76 36.55 31.38 41.08 39.80 39.91
4.00 35.16 44.41 43.83 43.85 35.89 46.07 45.74 45.75
36.46 45.71 45.53 45.53 37.51 47.38 47.18 47.18
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Figure 1. Comparison of RRI in % of improved estimators for u when
m=n=16and r = s =4.
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