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On commutativity of prime gamma rings with
derivation

Okan Arslan∗† and Hatice Kandamar‡

Abstract

Let M be a weak Nobusawa Γ-ring and γ be a nonzero element of
Γ. In this paper, we �nd a relation between Γ-rings and rings, and
give some commutativity conditions on Γ-rings by using this relation.
Also, we prove that any Γ-ring M in the sense of Nobusawa with a
nonzero element γ in the center of M -ring Γ is γ-prime if and only
if M is Γ-prime. As a consequence, we show that the semiprimeness
(semisimpleness) of the ring (M,+, ·γ) for any γ ∈ Γ implies the Γ-
semiprimeness(Γ-semisimpleness) of the Γ-ring M .

Keywords: gamma ring, prime Γ-ring, k-derivation, commutativity, γ-radical.

2000 AMS Classi�cation: AMS Primary 16N60; Secondary 16W25, 16Y99

Received : 10.03.2015 Accepted : 21.10.2015 Doi : 10.15672/HJMS.20164514286

1. Introduction

Let M and Γ be additive Abelian groups. M is said to be a Γ-ring in the sense of
Barnes [3] if there exists a mappingM ×Γ×M →M satisfying these two conditions for
all a, b, c ∈M , α, β ∈ Γ:

(1) (a+ b)αc = aαc+ bαc
a(α+ β)c = aαc+ aβc
aα (b+ c) = aαb+ aαc

(2) (aαb)βc = aα (bβc)

In addition, if there exists a mapping Γ×M × Γ→ Γ such that the following axioms
hold for all a, b, c ∈M , α, β ∈ Γ:

(3) (aαb)βc = a (αbβ) c

∗Department of Mathematics, Adnan Menderes University, Ayd�n, Turkey,
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†Corresponding Author.
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(4) aαb = 0 for all a, b ∈M implies α = 0, where α ∈ Γ

then M is called a Γ-ring in the sense of Nobusawa [17]. If a Γ-ring M in the sense of
Barnes satis�es only the condition (3), then it is called weak Nobusawa Γ-ring [11].

We assume that all gamma rings in this paper are weak Nobusawa gamma ring unless
otherwise speci�ed.

LetM be a Γ-ring. M is said to be a Γ-prime gamma ring if aΓMΓb = 0 with a, b ∈M
implies either a = 0 or b = 0 [15]. M is Γ-simple if MΓM 6= 0 and M has no ideals (0)
and M itself [15].
CM = {α ∈ Γ | αmβ = βmα,∀m ∈M,β ∈ Γ} is called the center of M -ring Γ and

Cγ = {c ∈M | cγm = mγc, ∀m ∈M} with γ ∈ Γ is called the γ-center of Γ-ring M .
Recall that from [9], an additive mapping d : M → M is called a derivation on M if

d (aαb) = d (a)αb+aαd (b) for all a, b ∈M and α ∈ Γ. Note that d = 0 when d is de�ned
on a prime weak Nobusawa Γ-ring M . So, in this paper we consider k-derivations that
has been de�ned by Kandamar [10] on any gamma ring M .

In this work, we �rst obtain some commutativity conditions on the γ-prime Γ-ring
M with k-derivations and prove that M is γ-prime if and only if M is Γ-prime where
γ is a nonzero element in the center of M -ring Γ in the sense of Nobusawa. Then, we
also show that if there exists a nonzero element γ in CM in a Nobusawa Γ-ring M , then
(0) is Γ-prime ideal if and only if (0) is γ-prime ideal. Finally, we study the relation
between semiprimeness (semisimpleness) of the ring (M,+, ·γ) and Γ-semiprimeness (Γ-
semisimpleness) of the Γ-ring M where γ ∈ Γ.

2. Relation between Γ-rings and rings up to γ

We now give some de�nitions that have been �rstly de�ned by Arslan and Kandamar
in [1].

2.1. De�nition. Let M be a Γ-ring, γ be a nonzero element of Γ and I be an additive
subgroup of M .

(i) M is said to be γ-commutative if xγy = yγx for all x, y ∈M .
(ii) I is said to be a γ-subring of M if xγy ∈ I for all x, y ∈ I.
(iii) I is said to be a γ-left ideal(resp. γ-right ideal) ofM if mγa ∈ I(resp. aγm ∈ I)

for all m ∈ M , a ∈ I. If I is both γ-left and γ-right ideal then I is called a
γ-ideal of M .

(iv) I is said to be a γ-prime ideal if AγB implies A ⊆ I or B ⊆ I for any γ-ideals
A and B of M .

(v) I is said to be a γ-Lie ideal of M if [x,m]γ = xγm−mγx ∈ I for all x ∈ I and
m ∈M .

2.2. De�nition. A Γ-ring M is called a γ-prime gamma ring if there exists a nonzero
element γ in Γ such that aγMγb = 0 with a, b ∈M implies either a = 0 or b = 0.

2.3. De�nition. A Γ-ring M is called a γ-simple if MγM 6= 0 and M has no γ-ideal
besides the (0) and itself.

2.4. Lemma. Let M be a Γ-ring. Then the following holds:

(i) If M is a γ-prime gamma ring, then M is Γ-prime.

(ii) If M is a γ-simple gamma ring, then M is Γ-simple.

Proof. (i) Let M be a γ-prime gamma ring and aΓMΓb = 0 for any a, b ∈ M .
Therefore, we have aγMγb = 0. SinceM is a γ-prime gamma ring, we get a = 0
or b = 0. Hence, the γ-primeness of M implies the Γ-primeness of M .
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(ii) It is clear from the de�nitions of γ-simple and Γ-simple gamma rings.
�

2.5. Proposition. LetM be a Γ-ring and γ be a nonzero element of Γ. Then the Abelian

group M with a binary operation ·γ de�ned by a ·γ b = aγb for all a, b ∈M is a ring.

Proof. It is clear from the de�nition of the gamma ring. �

According to the Proposition 2.5, the Abelian group M can be made into a ring by
de�ning binary operations for all γ ∈ Γ. We denote this ring by (M,+, ·γ).

It is obvious that a γ-ideal of a Γ-ringM is an ideal of the ring (M,+, ·γ). Conversely,
every ideal of the ring (M,+, ·γ) is a γ-ideal of the Γ-ring M . Similarly γ-Lie ideals of
the Γ-ring M and Lie ideals of the ring (M,+, ·γ) is same. Also, if d is a k-derivation of
the Γ-ring M and k(γ) = 0, then d is a derivation of the ring (M,+, ·γ). Thus, we can
adapt all of the known results for the ring (M,+, ·γ) to the Γ-ring M . For instance, the
commutativity of the ring (M,+, ·γ) is equal to the γ-commutativity of the Γ-ring M .
Similarly one can say the primeness (semiprimeness) of the ring (M,+, ·γ) is the same
as the γ-primeness (γ-semiprimeness) of the Γ-ring M . We give some results below.

2.6. Theorem. LetM be a γ-prime gamma ring and d1, d2 be nonzero k1, k2-derivations
ofM such that k1 (γ) = k2 (γ) = 0 respectively. If charM 6= 2 and d1d2 is k1k2-derivation
of M , then d1 = 0 or d2 = 0.

Proof. By the hypothesis d1 6= 0, d2 6= 0 and d1d2 are derivations of the prime ring
(M,+, ·γ). Also the characteristic of the ring (M,+, ·γ) is di�erent from 2. Therefore by
[18, Theorem 1] one of the derivations d1 and d2 is zero in the ring (M,+, ·γ). �

2.7. Corollary. Let M be a γ-prime gamma ring of characteristic not 2 and d be a

0-derivation of M such that d2 = 0. Then d = 0.

Proof. Let M is a γ-prime gamma ring. Then M is a Γ-prime gamma ring by Lemma
2.4. Since d2 = 0 is a derivation on M , we get d = 0 by Theorem 2.6. �

2.8. Theorem. Let M be a gamma ring and d be a k-derivation ofM such that k(γ) = 0
and d3 6= 0. Then the γ-subring generated by d (m) for all m in M contains a nonzero

γ-ideal of M .

Proof. Since d is a derivation of the ring (M,+, ·γ) and d3 6= 0, the subring generated by
d (m) for all m in M contains a nonzero ideal of (M,+, ·γ) by [6, Theorem 1]. Therefore
the γ-subring generated by d (m) for all m in M contains a nonzero γ-ideal of M . �

2.9. Corollary. Let M be a Γ-ring, d be a nonzero 0-derivation on M such that d3 6= 0.
Then, the subring A of M generated by all d (aαb), with α ∈ Γ and a, b ∈M , contains a

nonzero ideal of M .

Another proof of Corollary 2.9 can be found in [19].

2.10. Theorem. Let M be a γ-prime gamma ring and d be a nonzero k-derivation of M
such that k(γ) = 0. Then M is γ-commutative if one of the following conditions holds:

(i) [a, d (a)]γ ∈ Cγ for all a ∈M .

(ii) charM 6= 2 and [d (M) , d (M)]γ ⊂ Cγ .
(iii) charM 6= 2 and d2 (M) ⊂ Cγ .
(iv) d1, d2 are nonzero k1, k2-derivations of M such that k1 (γ) = k2 (γ) = 0 respec-

tively, charM 6= 2 and d1d2 (M) ⊂ Cγ .
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Proof. (i) By the hypothesis d is a nonzero derivation of the prime ring (M,+, ·γ).
Since [a, d (a)] is in the center of the ring (M,+, ·γ) for all a ∈ M , the ring
(M,+, ·γ) is commutative by [18, Theorem 2]. Therefore the gamma ring M
is γ-commutative since commutativity of (M,+, ·γ) requires γ-commutativity of
Γ-ring M .

(ii) By the hypothesis d is a nonzero derivation of the prime ring (M,+, ·γ), the
characteristic of the ring M is di�erent from 2 and [d (M) , d (M)]γ is contained

in the center of the ringM . Hence M is commutative as a ring by [13, Theorem
2]. Therefore M is γ-commutative.

(iii) By the hypothesis d is a nonzero derivation of the prime ring (M,+, ·γ), the
characteristic of the ring M is di�erent from 2 and d2 (M) is contained in the
center of the ring M . Hence M is commutative as a ring by [13, Theorem 3].
Therefore M is γ-commutative.

(iv) By the hypothesis d1 and d2 are nonzero derivations of the prime ring (M,+, ·γ).
Also the characteristic of the ring (M,+, ·γ) is di�erent from 2 and d1d2 (M) is
contained in the center of the ring M . Hence M is commutative as a ring by
[13, Theorem 4]. Therefore M is γ-commutative.

�

2.11. Corollary. Let M be a γ-prime gamma ring for all nonzero elements γ in Γ and

d be a nonzero 0-derivation on M . Then M is Γ-commutative if one of the following

conditions holds:

(i) [a, d (a)]γ ∈ Cγ for all a ∈M and γ ∈ Γ.

(ii) charM 6= 2 and [d (M) , d (M)]γ ⊂ Cγ for all γ ∈ Γ.

(iii) charM 6= 2 and d2 (M) ⊂ Cγ for all γ ∈ Γ.
(iv) d1, d2 are nonzero 0-derivations of M , charM 6= 2 and d1d2 (M) ⊂ Cγ for all

γ ∈ Γ.

2.12. Theorem. Let M be a γ-prime gamma ring of characteristic not 2 and U be a

γ-Lie ideal of M . If U * Cγ , then there exists a γ-ideal K of M such that [K,M ]γ ⊆ U
but [K,M ]γ * Cγ .

Proof. U is a Lie ideal of the prime ring (M,+, ·γ) that is not contained in the center of
the ringM and the characteristic of the ringM is di�erent from 2 by hypothesis. Hence,
there exists an ideal K of (M,+, ·γ) such that [K,M ] ⊆ U and [K,M ] is not contained
in the center of the (M,+, ·γ) by [4, Lemma 1]. Therefore, there exists an ideal K of
Γ-ring M such that [K,M ]γ ⊆ U but [K,M ]γ * Cγ . �

2.13. Theorem. Let M be a γ-prime gamma ring of characteristic not 2 and U be a

γ-Lie ideal of M such that U * Cγ . If d1, d2 are nonzero k1, k2-derivations of M such

that k1 (γ) = k2 (γ) = 0 respectively and d1d2 (U) = 0, then d1 = 0 or d2 = 0.

Proof. By the hypothesis, d1 and d2 are nonzero derivations of the prime ring (M,+, ·γ)
and U is a Lie ideal of M that is not contained in the center of the ring M . Also the
characteristic of the ring (M,+, ·γ) is di�erent from 2 and d1d2 (U) = 0. Hence d1 = 0
or d2 = 0 by [4, Theorem 4]. �

2.14. Theorem. Let M be a γ-prime gamma ring of characteristic not 2, U be a γ-Lie
ideal of M and d be a k-derivation of M such that k (γ) = 0. Then U is contained in the

γ-center of M if one of the following conditions holds:

(i) d2 (U) = 0.
(ii) d 6= 0 and d2 (U) ⊂ Cγ .
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(iii) d1, d2 are nonzero k1, k2-derivations of M such that k1 (γ) = k2 (γ) = 0 respec-

tively and d1d2 (U) ⊂ Cγ .

Proof. It is similar to the proof of Theorem 2.10.
�

2.15. Corollary. Let M be a γ-prime gamma ring of characteristic not 2 for all nonzero

elements γ in Γ, U be a γ-Lie ideal of M and d be a 0-derivation of M . Then U is

contained in the center of M if one of the following conditions holds:

(i) d2 (U) = 0.
(ii) d 6= 0 and d2 (U) ⊂ Cγ for all γ ∈ Γ.
(iii) d1, d2 are nonzero 0-derivations of M and d1d2 (U) ⊂ Cγ for all γ ∈ Γ.

2.16. Theorem. Let M be a γ-prime gamma ring of characteristic not 2 and U be a

γ-Lie ideal of M such that U * Cγ . If d1 and d2 are nonzero k1 and k2-derivations of

M such that k1 (γ) = k2 (γ) = 0 respectively and d1d2 (U) ⊂ Cγ , then d1 = 0 or d2 = 0.

Proof. By the hypothesis d1 and d2 are nonzero derivations of the prime ring (M,+, ·γ)
and U is a Lie ideal ofM that is not contained in the center ofM . Also the characteristic
of the ring (M,+, ·γ) is di�erent from 2 and d1d2 (U) is contained in the center of M .
Hence d1 = 0 or d2 = 0 by [2, Theorem 6]. �

3. γ-Radicals of Gamma Rings

Radicals of Γ-rings has been investigated by a number of authors. Barnes [3] de�ned
prime radicals and proved some properties for gamma rings by methods similar to those
of McCoy[16]. Coppage and Luh [5] introduced the notions of Jacobson radical, Levitzki
nil radical, nil radical and strongly nilpotent radical for Γ-rings and Barnes' prime radical
was studied further. Kyuno [12] also studied prime radicals of gamma rings and showed
relations between radicals of gamma rings and radicals of its operator rings.

We de�ne γ-prime radical, strongly γ-nilpotent radical, γ-Levitzki nil radical and γ-
Jacobson radical for Γ-rings and show their relations with the radicals of Γ-rings in the
literature.

Let M be a gamma ring and S ⊆ M . S is said to be a γ-m-system if S = ∅ or
(a)γγ(b)γ ∩ S 6= ∅ for any a, b ∈ M . Here, (a)γ is the set of all elements of the form

ka+mγa+ aγx+
n∑
i=1

uiγaγvi for k ∈ Z, n ∈ N, m,x, ui, vi ∈M .

Proofs of the below results are obvious from the relation given in Section 2. So we
omit their proofs.

3.1. Proposition. Let M be a gamma ring and P be a γ-ideal of M . Then P is a

γ-prime ideal if and only if the complement of P is a γ-m-system.

Let A be a γ-ideal of a Γ-ringM . Then the set of all elements m inM such that every
γ-m-system in M which contains m meets A is called γ-prime radical of the γ-ideal A
and is denoted by Bγ(A). γ-prime radical of zero γ-ideal is called γ-prime radical of the
Γ-ring M and is denoted by Bγ(M). In fact, the prime radical of the ring (M,+, ·γ) is
equal to Bγ(M).

3.2. Theorem. If A is a γ-ideal in the Γ-ring M , then Bγ(A) coincides with the inter-

section of all the γ-prime ideals in M which contain A.

3.3. Corollary. γ-prime radical of a Γ-ring M is the intersection of all the γ-prime

ideals in M .
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An element a in M is called strongly γ-nilpotent if there exists a positive integer n
such that (aγ)na = 0. A subset L of M is called strongly γ-nil if all of the elements in L
are strongly γ-nilpotent. A subset S of M is called strongly γ-nilpotent if there exists a
positive integer m such that (Sγ)mS = 0.

The strongly γ-nilpotent radical of M is the sum of all strongly γ-nilpotent ideals of
M and is denoted by Sγ(M).

3.4. Proposition. If A and B are any strongly γ-nilpotent ideals in a Γ-ring M , then

A+B is also a strongly γ-nilpotent ideal in M .

3.5. Corollary. The strongly γ-nilpotent radical of a Γ-ring M is a strongly γ-nil ideal
in M .

A subset S ofM is called γ-locally nilpotent if for any �nite subset F of S there exists
a positive integer n such that (Fγ)nF = 0.

The γ-Levitzki nil radical of M is the sum of all γ-locally nilpotent ideals of M and
is denoted by Lγ(M).

An element a in M is called γ-right quasi regular if there exist b ∈ M such that
a+ b+ aγb = 0. A subset S of M is called γ-right quasi regular if all of the elements in
S are γ-right quasi regular.

The γ-Jacobson radical of M is the set of all a ∈ M such that the principal γ-ideal
generated by a is γ-right quasi regular and is denoted by Jγ(M). In fact, the Jacobson
radical of the ring (M,+, ·γ) is equal to Jγ(M).

4. Main Results

Not all of the properties of a ring holds for a gamma ring. For example, let d be a
k-derivation of γ-prime gamma ring M of characteristic not 2. If k (γ) 6= 0, then the
hypothesis d2 = 0 does not imply d = 0.

4.1. Example. Let M =

{(
a b a
c r c

)
| a, b, c, r ∈ Z

}
, Γ be the set of all 3× 2

matrices over Z and γ =

 0 0
0 −1
1 0

 ∈ Γ. Then,M is a γ-prime Γ-ring of characteristic

not 2. De�ne d : M → M, d

(
a b a
c r c

)
=

(
−b 0 −b
−r 0 −r

)
and k : Γ → Γ,

k

 u11 u12

u21 u22

u31 u32

 =

 0 0
u11 + u31 u12 + u32

0 0

.

It can be shown that d is a k-derivation and k(γ) 6= 0. Moreover, it is easy to see that
d 6= 0 but d2 = 0.

This example also shows that if d is a k-derivation on the Γ-prime gamma ring of
characteristic not 2 such that d2 = 0, then d may not be the zero derivation. In such a
case, k2 must be equal to zero as proved in the next theorem.

4.2. Theorem. Let M be a γ-prime gamma ring in the sense of Nobusawa of charac-

teristic not 2 and d be a k-derivation. If d2 = 0, then either d = 0 or k2 = 0.

Proof. Let k(γ) = 0. Then, the k-derivation d on M is also a derivation for the ring
(M,+, ·γ). Therefore, d = 0 by [18, Theorem 1]. Now, let k(γ) 6= 0. By hypothe-
sis we have d2(d(x)βd(y)) = 0 for all x, y ∈ M and β ∈ Γ. Expanding this we get
d(x)k2(β)d(y) = 0. Replacing β by βd(z)α we have d(x)k(β)d(z)k(α)d(y) = 0 since
charM 6= 2. Replacing β by βd(m)δ we get d(x)k(β)d(m) = 0 since M is Γ-prime
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Nobusawa Γ-ring by Lemma 2.4. If we replace x by d(x)αy in the last equation we have
d(x)k(α)y = 0 or zk(β)d(m) = 0. If d(x)k(α)y = 0, then replacing α by αmk(δ) we get
d(x)αmk2(δ)y = 0 for all x,m, y ∈ M and α, δ ∈ Γ. Then, d = 0 or k2 = 0 since M is
a prime Nobusawa Γ-ring. If we consider the case zk(β)d(m) = 0, same result can be
obtained similarly.

�

4.3. Theorem. Let M be a Γ-ring in the sense of Nobusawa and γ be a nonzero element

of Γ. If γ ∈ CM , then M is γ-prime gamma ring if and only if M is Γ-prime.

Proof. IfM is γ-prime gamma ring thenM is Γ-prime by Lemma 2.4. LetM is a Γ-prime
gamma ring, aγMγb = 0 for any a, b ∈ M and a 6= 0. Then we have aΓMγMγb = 0.
Since M is a Γ-prime MγMγb = 0. Thus MγMΓbγM = 0. Hence we get b = 0 since M
is a Γ-prime gamma ring and γ ∈ CM . Therefore, M is γ-prime. �

4.4. Theorem. The prime radical of a Γ-ring M is contained in γ-prime radical of M .

Proof. Let x be an element of B(M), the prime radical ofM . Suppose that x /∈ Bγ(M).
Then, there is a γ-m-system S which contains x such that 0 /∈ S. Therefore, there is
an m-system in M which contains x but not contains 0 since S is also an m-system.
This contradicts with x ∈ B(M). Hence, if x is an element of B(M), then x must be in
Bγ(M). �

4.5. Theorem. The strongly nilpotent radical of a Γ-ring M is contained in strongly

γ-nilpotent radical of M .

Proof. It is easy to see that a strongly nilpotent ideal ofM is also a strongly γ-nilpotent
ideal. Therefore, S(M), the strongly nilpotent radical ofM , is contained in Sγ(M). �

4.6. Theorem. The Levitzki nil radical of a Γ-ring M is contained in γ-Levitzki nil

radical of M .

Proof. It is easy to see that a locally nilpotent ideal of M is also a γ-locally nilpotent
ideal. Therefore, L(M), the Levitzki nil radical of M , is contained in Lγ(M). �

4.7. Theorem. The Jacobson radical of a Γ-ring M is contained in γ-Jacobson radical

of M .

Proof. It is easy to see that a right quasi regular element of M is also a γ-right quasi
regular. Therefore, J(M), the Jacobson radical of M , is contained in Jγ(M). �

4.8. Corollary. Let M be a Γ-ring.

(i) If the ring (M,+, ·γ) for any γ ∈ Γ is semiprime, then the Γ-ring M is Γ-
semiprime.

(ii) If the ring (M,+, ·γ) for any γ ∈ Γ is semisimple, then the Γ-ring M is Γ-
semisimple.
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Abstract

Let R be a commutative Noetherian ring, I an ideal of R and M
a �nitely generated R-module. It is shown that, whenever I is
principal, then for each integer i the set of associated prime ideals
AssRExtiR(R/In,M), n = 1, 2, . . . , becomes independent of n, for large
n.
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1. Introduction

Let R denote a commutative Noetherian ring (with identity), I an ideal of R, and
M a �nitely generated R-module. In [7] L.J. Ratli�, Jr., conjectured about the asymp-
totic behaviour of AssRR/In when R is a Noetherian domain. Subsequently, M. Brod-
mann [1] showed that AssRM/InM is ultimately constant for large n. In [6], Melkersson
and Schenzel asked whether the sets AssRExtiR(R/In,M) become stable for su�ciently
large n. The aim of this paper is to show that, for all i ≥ 0, the sets of prime ideals
AssRExtiR(R/In,M), n = 1, 2, . . . , becomes independent of n, for large n, whenever I is
principal, which is an a�rmative answer to the above question in the case I is principal.
Also, it is shown that, if I is generated by an R-regular sequence and ExtiR(R/I,M) is
Artinian, then the set ∪∞n=1AssRExti+1

R (R/In,M) is �nite.
For any R-module L, the set {p ∈ AssR L| dimR/p = dimL} is denoted by AsshRL.
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2. The Results

2.1. Lemma. Let R be a Noetherian ring, I an ideal of R and M a �nitely generated
R-module. Then the sequence AssRExt1R(R/In,M) becomes eventually constant, for
large n.

Proof. See [4, Corollary 2.3]. �

2.2. Lemma. Let x be an element of the Noetherian ring R. Let M and N be two
�nitely generated R-modules such that pd(N) = t <∞. Then for each i ≥ t + 2 and for
all large k,

AssR ExtiR(N/xkN,M) = AssR Exti−1
R (N/ΓRx(N),M),

and so the sets AssRExtiR(N/xkN,M) are eventually constant.

Proof. Suppose that i ≥ t + 2. As, N is �nitely generated, it follows that there is an
integer n such that

ΓRx(N) :=
⋃∞

i=0(0 :M Rxi) = (0 :N xn) = (0 :N xn+1) = · · · .

Now we claim that for any k ≥ n,

ExtiR(N/xkN,M) ∼= Exti−1
R (N/ΓRx(N),M).

To do this, as (0 :N xk) = ΓRx(N), it follows that xkN ∼= N/ΓRx(N). Therefore for all
j ≥ 0 we have

ExtjR(xkN,M) ∼= ExtjR(N/ΓRx(N),M),

for all k ≥ n. Now the exact sequence

0 −→ xkN −→ N −→ N/xkN −→ 0,

implies that

ExtiR(N/xkN,M) ∼= Exti−1
R (xkN,M) ∼= Exti−1

R (N/ΓRx(N),M),

(Note that pd(N) = t and i ≥ t + 2.) Hence we have

AssR ExtiR(N/xkN,M) = AssR Exti−1
R (N/ΓRx(N),M),

for all k ≥ n, as required. �

2.3. Theorem. Let R be a Noetherian ring and let x be an element of R. Let M be a
�nitely generated R-module and i a non-negative integer. Then the sequence

AssRExtiR(R/Rxk,M),

of associated primes is ultimately constant for large k, and if i ≥ 2, then

AssR ExtiR(R/Rxk,M) = AssR Exti−1
R (R/ΓRx(R),M),

for all large k.

Proof. The result follows from Lemmas 2.1 and 2.2. �

2.4. Proposition. Let R be a Noetherian ring and let M , N be tow �nitely generated
R-modules. Let x be an N -regular element of R. Then, for any given integer j ≥ 0, the
set

∞⋃
n=1

AssRExtjR(N/xnN,M),

of associated prime ideals, is �nite.
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Proof. If j = 0, then

AssRHomR(N/xnN,M) = AssRHomR(N,HomR(R/Rx,M)),

and so
∞⋃

n=1

AssRExt0R(N/xnN,M)

is a �nite set. Suppose then that j ≥ 1, and we use the exact sequence

0 −→ N
xn

−→ N −→ N/xnN −→ 0,

to obtain the exact sequence

· · · −→ Extj−1
R (N,M)

xn

−→ Extj−1
R (N,M) −→ ExtjR(N/xnN,M)

−→ ExtjR(N,M)
xn

−→ ExtjR(N,M) −→ · · · .
Hence we have the following exact sequence,

0→ Extj−1
R (N,M)/xnExtj−1

R (N,M)→ ExtjR(N/xnN,M)→ (0 :
Ext

j
R
(N,M)

xn)→ 0.

Consequently, it follows from Brodmann's result (see [1]) that the set

∞⋃
n=1

AssRExtjR(N/xnN,M)

is �nite. �

2.5. Lemma. Let R be a Noetherian ring and let M be an R-module. Let N be an
Artinian submodule of M . Then

AssRM/N\SuppN = AssRM\SuppN.

Proof. As N is an Artinian R-module, it follows that the set SuppN ⊆ MaxR is �nite.
Let SuppN = {m1, . . . ,mn} and J := m1 · · ·mn. Then we have

AssRM\SuppN = AssRM/ΓJ(M) = AssRM/N\SuppN,

as required. �

Following we let Hj
I (M) denote the jth local cohomology module of M with respect

to an ideal I of a Noetherian ring R (cf. [2] and [3]).

2.6. Theorem. Let R be a Noetherian ring and let I be an ideal of R which is generated
by an R-regular sequence. Let M be a �nitely generated R-module and let i be a non-
negative integer such that the R-module ExtiR(R/I,M) is Artinian. Then the set

∞⋃
n=1

AssRExti+1
R (R/In,M),

is �nite. In particular, the set AssRH
i+1
I (M) is �nite.

Proof. For n ≥ 0, the exact sequence

0 −→ In/In+1 −→ R/In+1 −→ R/In → 0

induces the exact sequence

ExtiR(In/In+1,M)→ Exti+1
R (R/In,M)→ Exti+1

R (R/In+1,M)→ Exti+1
R (In/In+1,M).



1332

Since I is generated by an R-regular sequence, by [5, page 125] In/In+1 is a �nitely
generated free R/I-module, and so the sets

AssRExti+1
R (In/In+1,M) = AssRExti+1

R (R/I,M), and

SuppExtiR(In/In+1,M) = SuppExtiR(R/I,M)

are �nite, (note that the R-module ExtiR(R/I,M) is Artinian). Therefore in view of the
above exact sequence and Lemma 2.5, the set

AssRExti+1
R (R/In+1,M)\SuppExtiR(R/I,M)

is a subset of

(AssRExti+1
R (R/In,M)\SuppExtiR(R/I,M)) ∪AssRExti+1

R (R/I,M),

and so the set
⋃∞

n=1 AssRExti+1
R (R/In,M) is �nite, as required. The second assertion

follows from the fact that

AssRH
i+1
I (M) ⊆

∞⋃
n=1

AssRExti+1
R (R/In,M).

�

2.7. Corollary. Let R be a Noetherian ring and let I be an ideal of R which is generated
by an R-regular sequence. Let M be a �nitely generated R-module and let i be a non-
negative integer such that ExtiR(R/I,M) = 0. Then the sequence

AssRExti+1
R (R/Ik,M),

of associated primes is increasing and ultimately constant for all large k.

Proof. Since Ik/Ik+1 is a free R/I-module, it follows that ExtiR(Ik/Ik+1,M) = 0, for all
k ≥ 1. Hence the exact sequence

0 −→ Exti+1
R (R/Ik,M) −→ Exti+1

R (R/Ik+1,M) −→ Exti+1
R (Ik/Ik+1,M),

implies that

AssRExti+1
R (R/Ik,M) ⊆ AssRExti+1

R (R/Ik+1,M).

Now the result follows from Theorem 2.6. �

2.8. Lemma. Let (R,m) be a Noetherian local ring of depth d. Let M be a �nitely
generated R-module and N an Artinan submodule of M . Then for all i ≤ d− 1,

ExtiR(M,R) ∼= ExtiR(M/N,R).

Proof. The exact sequence

0 −→ N −→M −→M/N −→ 0

induces the exact sequence

Exti−1
R (N,R) −→ ExtiR(M/N,R) −→ ExtiR(M,R) −→ ExtiR(N,R).

As N has �nite length and depthR = d, it follows that

ExtiR(N,R) = 0 = Exti−1
R (N,R).

Hence the result follows. �

2.9. Lemma. Let (R,m) be a local Cohen-Macaulay ring of dimension d and I an ideal

of R. Then for any p ∈ AssRExtgrade I
R (R/I,R),

height p = grade I.
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Proof. Let grade I = t. The assertion is clear when t = 0. Now suppose that, t ≥ 1.
There exists an R-regular sequence x1, . . . , xt ∈ I. As

Extgrade I
R (R/I,R) ∼= HomR/(x1,...,xt)(R/I,R/(x1, . . . , xt)),

and R/(x1, . . . , xt) is a Cohen-Macaulay ring it follows that

AssRExtgrade I
R (R/I,R) ⊆ AsshRR/(x1, . . . , xt),

that implies for any p ∈ AssRExtgrade I
R (R/I,R),

height p = grade I,

as required. �

2.10. Theorem. Let (R,m) be a local Cohen-Macaulay ring of dimension d ≥ 3. Let I
be an ideal of R such that 1 ≤ grade I ≤ d− 2. Then

depth Extgrade I
R (R/I,R) ≥ 2,

and if grade I ≤ d−3 then the equality holds if and only if m ∈ AssRExt1+grade I
R (R/I,R).

Proof. Set t := grade I. Let Γm(R/I) := J/I for some ideal J of R with I ⊆ J . Then it is
easy to see that m 6∈ AssRR/J and dimR/I = dimR/J . Hence as R is a Cohen-Macaulay
ring, it follows that grade I = grade J . Moreover, since J/I has �nite length, it follows
from Lemma 2.8 that

ExttR(R/I,R) ∼= ExttR(R/J,R) and Extt+1
R (R/I,R) ∼= Extt+1

R (R/J,R).

Therefore, we may and do replace I with J in the following. Since m 6∈ AssRR/J , it
follows that there exists an element x ∈ R such that x is R/J-regular sequence. Then,
as dimR/(J + Rx) = dimR/J − 1 and R is a Cohen-Macaulay ring, it follows that

grade (J + Rx) = grade J + 1.

Now the exact sequence

0→ R/J
x→ R/J → R/J + Rx→ 0

induces the exact sequence

0→ ExttR(R/J,R)
x→ ExttR(R/J,R)→ Extt+1

R (R/J + Rx,R).

Hence
AssRExttR(R/J,R)/xExttR(R/J,R) ⊆ AssRExtt+1

R (R/J + Rx,R),

and since 1 + grade J ≤ d− 1, it follows from Lemma 2.9 that

m 6∈ AssRExtt+1
R (R/J + Rx,R).

Now, it easily follows that
depth ExttR(R/J,R) ≥ 2.

Now, let grade J ≤ d− 3. Then we have the following exact sequence,

0→ ExttR(R/J,R)/xExttR(R/J,R)→ Extt+1
R (R/J + Rx,R)→ (0 :

Extt+1
R

(R/J,R)
x)→ 0.

Since grade (J + Rx) = t + 1 and t + 1 ≤ d − 2, it follows from the �rst part that
depth Extt+1

R (R/J + Rx,R) ≥ 2. Therefore it follows from the exact sequence

0→ HomR(R/m, (0 :
Extt+1

R
(R/J,R)

x))→ Ext1R(R/m,ExttR(R/J,R)/xExttR(R/J,R))→ 0

that depth ExttR(R/J,R) = 2 if and only if HomR(R/m, (0 :
Extt+1

R
(R/J,R)

x)) 6= 0. Conse-

quently depth ExttR(R/J,R) = 2 if and only if m ∈ AssRExtt+1
R (R/J,R), as required. �
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On rings over which every �nitely generated
module is a direct sum of cyclic modules
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Abstract

In this paper we study (non-commutative) rings R over which every
�nitely generated left module is a direct sum of cyclic modules (called
left FGC-rings). The commutative case was a well-known problem
studied and solved in 1970s by various authors. It is shown that a
Noetherian local left FGC-ring is either an Artinian principal left ideal
ring, or an Artinian principal right ideal ring, or a prime ring over
which every two-sided ideal is principal as a left and a right ideal. In
particular, it is shown that a Noetherian local duo-ring R is a left FGC-
ring if and only if R is a right FGC-ring, if and only if, R is a principal
ideal ring.

Keywords: Cyclic modules; FGC-rings; duo-rings; principal ideal rings.
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1. Introduction

The question of which rings have the property that every �nitely generated module is
a direct sum of cyclic modules has been around for many years. We will call these rings
FGC-rings. The problem originated in I. Kaplansky's papers [13] and [14], in which it
was shown that a commutative local domain is FGC if and only if it is an almost maximal
valuation ring. For several years, this is one of the major open problems in the theory.
R. S. Pierce [19] showed that the only commutative FGC-rings among the commutative
(von Neumann) regular rings are the �nite products of �elds. A deep and di�cult study
was made by Brandal [3], Shores-R. Wiegand [22], S. Wiegand [24], Brandal-R. Wiegand
[4] and Vámos [23], leading to a complete solution of the problem in the commutative
case. To show that a commutative FGC-ring cannot have an in�nite number of minimal
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prime ideals required the study of topological properties (so-called Zariski and patch
topologies). For complete and more leisurely treatment of this subject, see Brandal [2].
It gives a clear and detailed exposition for the reader wanting to study the subject. The
main result reads as follows: A commutative ring R is an FGC-ring exactly if it is a �nite
direct sum of commutative rings of the following kinds: (i) maximal valuation rings; (ii)
almost maximal Bézout domains; (iii) so-called torch rings (see [2] or [8] for more details
on the torch rings).

The corresponding problem in the non-commutative case is still open; see [21, Ap-
pendix B. Dniester Notebook: Unsolved Problems in the Theory of Rings and Modules.
Pages 461-516] in which the following problem is considered.

Problem (I. Kaplansky, reported by A. A. Tuganbaev [21, Problem 2.45]): Describe the
rings in which every one-sided ideal is two-sided and over which every �nitely generated
module can be decomposed as a direct sum of cyclic modules.

Through this paper, all rings have identity elements and all modules are unital. A
left FGC-ring is a ring R such that each �nitely generated left R-module is a direct sum
of cyclic submodules. A right FGC-ring is de�ned similarly, by replacing the word left
with right above. A ring R is called a FGC-ring if it is a both left and right FGC-ring.
Also, a ring R is called duo-ring if each one-sided ideal of R is two-sided. Therefore, the
Kaplansky problem is: Describe the FGC-duo-rings.

In this paper we investigate Noetherian local left FGC-rings (see Section 2). Also, we
will present a partial solution to the above problem of Kaplansky (see Section 3).

2. On left FGC-rings

A ring R is local in case R has a unique left maximal ideal. An Artinian (resp.
Noetherian) ring is a ring which is both left and right Artinian (resp. Noetherian). A
principal ideal ring is a ring which is both left and right principal ideal ring. Also, for
a subset S of RM , we denote by AnnR(S), the annihilator of S in R. A left R-module
M which has a composition series is called a module of �nite length. The length of a
composition series of RM is said to be the length of RM and denoted by length(RM).

We begin with the following lemma which is an associative, non-commutative version
of Brandal [2, Proposition 4.3] for local rings (R,M) with M2 = (0). Also, the proof is
based on a slight modi�cation of the proof of [1, Theorem 3.1].

2.1. Lemma. Let (R,M) be a local ring with M2 = (0) and RM = Ry1 ⊕ . . .⊕Ryt such
that t ≥ 2 and each Ryi is a minimal left ideal of R. If there exist 0 6= x1, x2 ∈ M such
that x1R ∩ x2R = (0), then the left R-module (R ⊕ R)/R(x1, x2) is not a direct sum of
cyclic modules.

Proof. Since RM = Ry1⊕ . . .⊕Ryt and each Ryi is a minimal left ideal of R, we conclude
that R is of �nite composition length and length(RR) = t + 1. We put RG = (R ⊕
R)/R(x1, x2). Since x1, x2 ∈M and M2 = (0), we conclude that AnnR(R(x1, x2)) = M.
Thus R(x1, x2) is simple and hence

length(RG) = 2× length(RR)− length(RR(x1, x2)) = 2(t + 1)− 1.

We claim that every non-zero cyclic submodule Rz of G has length 1 or t+ 1. If Mz = 0,
then length(Rz) = 1 since Rz ' R/M. Suppose that Mz 6= 0, then there exist c1, c2 ∈ R
such that z = (c1, c2) + R(x1, x2). If c1, c2 ∈ M, then Mz = 0, since M2 = 0. Thus
without loss of generality, we can assume that z = (1, c2) + R(x1, x2) (since if c1 6∈ M,
then c1 is unit). Now let r ∈ AnnR(z), then r(1, c2) = t(x1, x2) for some t ∈ R. It follows
that r = tx1 and rc2 = tx2. Thus tx2 = tx1c2. If t /∈M, then t is unit and so x2 = x1c2
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that it is contradiction (since x1R ∩ x2R = (0)). Thus t ∈ M and so r = tx1 = 0.
Therefore, AnnR(z) = 0 and so Rz ∼= R. It follows that length(Rz) = t + 1.

Now suppose the assertion of the lemma is false. Then RG is a direct sum of cyclic
modules and since RG is of �nite length, we have

G = Rw1 ⊕ . . .⊕Rwk ⊕Rv1 ⊕ . . .⊕Rvl,

where l, k ≥ 0, and each Rwi is of length t+1 and each Rvj is of length 1. Clearly M⊕M

is not a simple left R-module. Since R(x1, x2) is simple, MG = (M⊕M)/R(x1, x2) 6= 0.
It follows that k ≥ 1. Also, length(RG) = 2(t+ 1)− 1 = k(t+ 1) + l and this implies that
k = 1 and l = t. Since Mvi = 0 for each i, MG = Mw1 and hence

G/MG ' Rw1/Mw1 ⊕Rv1 ⊕ . . .⊕Rvt.

It follows that length(RG/MG) = 1 + t. On the other hand, we have

G/MG ∼= R/M⊕R/M

and so length(RG/MG) = 2 and so t = 1, a contradiction. Thus the left R-module
(R⊕R)/R(x1, x2) is not a direct sum of cyclic modules. �

We recall that the socle soc(RM) of a left module M over a ring R is de�ned to be
the sum of all simple submodules of M .

2.2. Theorem. Let (R,M) be a local ring such that RM and MR are �nitely generated.
If every left R-module with two generators is a direct sum of cyclic modules, then either
M is a principal left ideal or M is a principal right ideal.

Proof. We can assume that M is not a principal left ideal of R. One can easily see
that MR is generated by {x1, · · · , xn} if and only if M/M2 is generated by the set
{x1 +M2, · · · , xn +M2} as a right ideal of R/M2. Thus it su�ces to show that M/M2 is
a principal right ideal of R/M2. Since every left R-module with two generators is a direct
sum of cyclic modules, we conclude that every left R/M2-module with two generators is
also a direct sum of cyclic modules. Therefore, without loss of generality we can assume
that M2 = (0). It follows that soc(RR) = soc(RR) = M. Since RM is �nitely generated,

RM = Ry1⊕ . . .⊕Ryt such that t ≥ 2 and each Ryi is a minimal left ideal of R. We claim
that MR = xR, for if not, then we can assume that MR = ⊕i∈IxiR where |I| ≥ 2 and
each xiR is a minimal right ideal of R. We can assume that {1, 2} ⊆ I and so 0 6= x1,
x2 ∈M and x1R∩ x2R = (0). Now by Lemma 2.1, the left R-module (R⊕R)/R(x1, x2)
is not a direct sum of cyclic modules, a contradiction. Thus M is principal as a right
ideal of R. �

A ring whose lattice of left ideals is linearly ordered under inclusion, is called a left
uniserial ring. A uniserial ring is a ring which is both left and right uniserial. Note that
left and right uniserial rings are in particular local rings and commutative uniserial rings
are also known as valuation rings.

Next, we need the following lemma from [18].

2.3. Lemma. (See Nicholson and Sánchez-Campos [18, Theorem 9]) For any ring R,
the following statements are equivalent:

(1) R is local, J(R) = Rx for some x ∈ R and xk = 0 for some k ∈ N.
(2) There exist x ∈ R and k ∈ N such that xk−1 6= 0 and

R ⊃ Rx ⊃ . . . ⊃ Rxk = (0)

are the only left ideals of R.
(3) R is left uniserial of �nite composition length.
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2.4. Theorem. Let (R,M) be a local ring such that RM and MR are �nitely generated

and Mk = (0) for some k ∈ N. If every left R-module with two generators is a direct sum
of cyclic modules, then either R is a left Artinian principal left ideal ring or R is a right
Artinian principal right ideal ring.

Proof. Assume that every left R-module with two generators is a direct sum of cyclic
modules. Then by Theorem 2.2, either M is a principal left ideal or M is a principal right
ideal. If M is a principal left ideal, then by Lemma 2.3, R is a left Artinian principal left
ideal ring. Thus we can assume that M is a principal right ideal. Then by using Lemma
2.3 to the right side, R is a right Artinian principal right ideal ring. �

Next, we need the following lemma from Mohamed H. Fahmy-Susan Fahmy[9]. We
note that their de�nition of a local ring is slightly di�erent than ours; they de�ned a local
ring (resp. scalar local ring) as a ring R such that it contains a unique maximal ideal
M and R/M is an Artinian ring (resp. division ring). Thus our de�nition of a local ring
and the scalar local ring coincide.

2.5. Lemma. (See [9, Theorem 3.2]) Let (R,M) be non-Artinian Noetherian local ring.
Then the following conditions are equivalent:

(1) M is principal as a right ideal.
(2) M is principal as a left ideal.
(3) Every two-sided ideal of R is principal as a left ideal.
(4) Every two-sided ideal of R is principal as a right ideal. Moreover, R is a prime

ring.

Now we are in a position to prove the main theorem of this section.

2.6. Theorem. Let (R,M) be a Noetherian local ring. If every left R-module with two
generators is a direct sum of cyclic modules, then one of the following holds:

(1) R is an Artinian principal left ideal ring.
(2) R is an Artinian principal right ideal ring.
(3) R is a prime ring and every two-sided ideal of R is principal as both left and

right ideals.

Proof. First we assume that R is an Artinian ring. Thus by Theorem 2.4, either R is
an Artinian principal left ideal ring or R is an Artinian principal right ideal ring. Now
we assume that R is not an Artinian ring. By Theorem 2.2, either M is a principal left
ideal or M is a principal right ideal. Thus by Lemma 2.5, R is a prime ring and every
two-sided ideal of R is principal as both left and right ideals. �

3. A partial solution of Kaplansky's problem on duo-rings

A ring R is said to be left (resp. right) hereditary if every left (resp. right) ideal of
R is projective as a left (resp. right) R-module. If R is both left and right hereditary,
we say that R is hereditary. Recall that a PID is a domain R in which any left and any
right ideal of R is principal. Clearly, any PID is hereditary.

Let R be an hereditary prime ring with quotient ring Q and A be a left R-module.
Following Levy [17], we say that a ∈ A is a torsion element if there is a regular element
r ∈ R such that ra = 0. Since, by Goldie's theorem, R satis�es the Ore condition, the
set of torsion elements of A is a submodule t(A) ⊆ A. A/t(A) is evidently torsion free
(has no torsion elements).
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3.1. Lemma. (Eisenbud-Robson [6, Theorem 2.1]) Let R be an hereditary Noetherian
prime ring, and let A be a �nitely generated left R-module. Then A/t(A) is projective
and A ∼= t(A)⊕A/t(A).

A Dedekind prime ring [20] is an hereditary Noetherian prime ring with no proper
idempotent two-sided ideals (see [7]). Clearly if a duo-ring R is a PID, then R is a
Dedekind prime ring.

3.2. Lemma. (Eisenbud-Robson [6, Theorem 3.11]) Let R be a Dedekind prime ring.
Then every �nitely generated torsion left R-module A is a direct sum of cyclic modules.

3.3. Lemma. (Eisenbud-Robson [6, Theorem 2.4]) Let R be a Dedekind prime ring, and
let A be a projective left R-module. Then:

(1) If A is �nitely generated, then A ∼= F ⊕ I where F is a �nitely generated free
module and I is a left ideal of R.

(2) If A is not �nitely generated, then A is free.

3.4. Proposition. Let R be a Dedekind prime ring. If R is a left principal ideal ring,
then R is a left FGC-ring.

Proof. Suppose that A is a �nitely generated left R-module. Since R is a Dedekind prime
ring, R is Noetherian and so A is also a Noetherian left R-module. Thus by Lemma 3.1,
A/t(A) is projective and A ∼= t(A) ⊕ A/t(A). By Lemma 3.2, t(A) is a direct sum of
cyclic modules. Also by Lemma 3.3, A/t(A) ∼= F ⊕ I where F is a free module and I is
a left ideal of R. Since R is a principal left ideal ring, I is a cyclic left R-module, i.e.,
A/t(A) is a direct sum of cyclic modules. Thus, A ∼= t(A) ⊕ A/t(A) is a direct sum of
cyclic modules. Therefore, R is a left FGC-ring. �

The following proposition is an answer to the question: �What is the structure of FGC
Noetherian prime duo-rings?"

3.5. Proposition. (See also Jacobson [11, Page 44, Theorems 18 and 19]) Let R be
a Noetherian prime duo-ring (i.e., R is a Noetherian duo-domain). Then the following
statements are equivalents:

(1) R is an FGC-ring.
(2) R is a left FGC-ring.
(3) R is a principal ideal ring.

The same characterizations also apply for right R-modules.

Proof. (1) ⇒ (2) is clear. (2) ⇒ (3). Suppose that I is an ideal of R. Since I is a direct
sum of principal ideals of R and R is a domain, we conclude that I is principal. Thus, R
is a principle ideal ring. (3) ⇒ (1) is by Proposition 3.4. �

A left (resp., right) Köthe ring is a ring R such that each left (resp., right) R-module
is a direct sum of cyclic submodules. A ring R is called a Köthe ring if it is a both
left and right Köthe ring. In [16] Köthe proved that an Artinian principal ideal ring
is a Köthe ring. Furthermore, a commutative ring R is a Köthe ring if and only if R
is an Artinian principal ideal ring (see Cohen and Kaplansky [5]). The corresponding
problem in the non-commutative case is still open (see [21, Appendix B, Problem 2.48] or
Jain-Srivastava [12, Page 40, Problem 1]. Recently, a generalization of the Köthe-Cohen-
Kaplansky theorem is given in [1]. In fact: in [1, Corollary 3.3.], it is shown that if R is
a ring in which all idempotents are central, then R is a Köthe ring if and only if R is an
Artinian principal ideal ring.
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Next, the following theorem is an answer to the question: �What is the structure of
FGC Noetherian local duo-rings?"

3.6. Theorem. Let (R,M) be a Noetherian local duo-ring. Then the following statements
are equivalent:

(1) R is an FGC-ring.
(2) R is a left FGC-ring.
(3) Every left R-module with two generators is a direct sum of cyclic modules.
(4) Either R is an Artinian principal ideal ring or R is a principal ideal domain.
(5) R is a principal ideal ring.

The same characterizations also apply for right R-modules.

Proof. (1) ⇒ (2) ⇒ (3) is clear.
(3) ⇒ (4). Suppose that every left R-module with two generators is a direct sum of
cyclic modules. Thus by Theorem 2.2, M is principal as both left and right ideals. If
R is Artinian, then by Theorem 2.4, R is an Artinian principal ideal ring. If R is not
Artinian, then by Lemma 2.5, R is a principal ideal domain.
(4) ⇒ (1). If R is an Artinian principal ideal ring, then by the Köthe result, each left,
and each right R-module is a direct sum of cyclic modules. Thus R is an FGC-ring. Now
assume that R is a principal ideal domain. Then by Proposition 3.5, R is an FGC-ring.
(4) ⇒ (5) is clear.
(5) ⇒ (4). Assume that R is a principal ideal ring. Then M is principal as both left and
right ideals. If R is Artinian, then by Lemma 2.3, R is an Artinian principal ideal ring.
If R is not Artinian, then by Lemma 2.5, R is a principal ideal domain. �

Let R = Πn
i=1Ri be a �nite product of rings Ri. Clearly R is a principal ideal ring if

and only if each Ri is a principal ideal ring. On the other hand if R is a left FGC-ring,
then each Ri is also a left FGC-ring. Thus as a corollary of Proposition 3.5 and Theorem
3.6, we have the following result.

3.7. Corollary. Let R = Πn
i=1Ri be a �nite product of Noetherian duo-rings Ri such

that each Ri is a domain or a local ring. Then the following statements are equivalent:

(1) R is an FGC-ring.
(2) R is a left FGC-ring.
(3) R is a principal ideal ring.

The same characterizations also apply for right R-modules.

Next, we need the following lemma from [10] about Artinian duo-rings (its proof is
worthwhile even in the commutative case (see [10, Corollary 4] or [15, Lemma 4.2])

3.8. Lemma. Let R be an Artinian duo-ring. Then R is a �nite direct product of
Artinian local duo rings.

Next, we give the following characterizations of an Artinian FGC duo-ring. In fact,
on Artinian duo-rings, the notions �FGC" and �Köthe" coincide.

3.9. Theorem. Let R be an Artinian Duo-ring. Then the following statements are
equivalent:

(1) R is a left FGC-ring.
(2) R is an FGC-ring.
(3) Every left R-module with two generators is a direct sum of cyclic modules.
(4) R is a left Köthe-ring.
(5) R is a Köthe-ring.
(6) R is a principal ideal ring.
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The same characterizations also apply for right R-modules.

Proof. Since R is an Artinian duo-ring, by Lemma 3.8, R = Πn
i=1Ri such that each Ri

is an Artinian local duo-ring. Thus by the Köthe result and Corollary 3.7, the proof is
complete. �

Acknowledgments. The authors would like to thank the anonymous referee for a
careful checking of the details and for helpful comments that improved this paper.

References

[1] Behboodi, M., Ghorbani, A., Moradzadeh-Dehkordi A. and Shojaee, S. H. On left Köthe

rings and a generalization of a Köthe-Cohen-Kaplansky theorem, Proc. Amer. Math. Soc.
142., no. 8, 2625-2631, (2014).

[2] Brandal, W. Commutative Rings Whose Finitely Generated Modules decompose, Lecture
Notes in Mathematics, Vol. 723. (Springer, 1979).

[3] Brandal, W. Almost maximal integral domains and �nitely generated modules.Trans. Amer.
Math. Soc. 183., 203-222, (1973).

[4] Brandal, W., and Wiegand, R. Reduced rings whose �nitely generated modules decompose.

Comm. Algebra 6., (2) 195-201, (1978).
[5] Cohen, I. S. and Kaplansky, I. Rings for which every module is a direct sum of cyclic

modules, Math. Z. 54., 97-101, (1951).
[6] Eisenbud, D. and Robson, J. C. Modules over Dedekind prime rings, J. Algebra 16., 67-85

(1970).
[7] Eisenbud, D. and Robson, J. C. Hereditary Noetherian prime rings, J. Algebra 16., 86-104,

(1970).
[8] Facchini, A. On the structure of torch rings. Rocky Mountain J. Math. 13., (3) 423-428,

(1983).
[9] Fahmy, M. H. and Fahmy, S. On non-commutative noetherian local rings, non-commutative

geometry and particle physics, Chaos, Solitons and Fractals 14., 1353-1359, (2002).
[10] Habeb, J. M. A note on zero commutative and duo rings, Math. J. Okayama Univ 32.,

73-76, (1990).
[11] Jacobson, N. The Theorey of Rings, Amerian Mathematical Society Mathematical Surveys,

vol. I, (American Mathematical Society, New York, 1943).
[12] Jain, S. K. and Srivastava, Ashish K. Rings characterized by their cyclic modules and right

ideals: A survey-I. (See http://euler.slu.edu/ srivastava/articles.html).
[13] Kaplansky, I. Elementary divisors and modules. Trans. Amer. Math. Soc. 66., 464-491,

(1949).
[14] Kaplansky, I. Modules over Dedekind rings and valuation rings. Trans. Amer. Math. Soc.

72., 327-340, (1952).
[15] Karamzadeh, N. S. and Karamzadeh, O. A. S.On artinian modules over Duo rings, Comm.

Algebra 38., 3521-3531, (2010).
[16] Köthe, G. Verallgemeinerte abelsche gruppen mit hyperkomplexem operatorenring, Math. Z.

39., 31-44, (1935).
[17] Levy, L. Torsion-Free and divisible modules over non-integral domains, Canad. J. Math.

15., 132-151, (1963).
[18] Nicholson, W. K. and Sánchez-Campos, E. Rings with the dual of the isomorphism theorem,

J. Algebra 271., (1) 391-406, (2004).
[19] Pierce, R. S. Modules over commutative regular rings.Mem. Amer. Math. Soc. 70., (1967).
[20] Robson, J. C. Non-commutative Dedekind rings, J. Algebra 9., 249-265, (1968).
[21] Sabinin, L., Sbitneva, L. and Shestakov, I. Non-associative algebra and its applications,

Lecture Notes in Pure and Applied Mathematics 246., Chapman and Hall/CRC, (2006).
[22] Shores, T. S. and Wiegand, R. Rings whose �nitely generated modules are direct sums of

cyclics. J. Algebra 32., 152-172, (1974).
[23] Vámos, P. The decomposition of �nitely generated modules and fractionally self-injective

rings. J. London Math. Soc. 16., 209-220, (1977).



1342

[24] Wiegand, R. and Wiegand, S. Commutative rings whose �nitely generated modules are

direct sums of cyclics. Abelian group theory (Proc. Second New Mexico State Univ. Conf.,
Las Cruces, N.M., 1976), pp. 406-423. Lecture Notes in Math., Vol. 616., (Springer, Berlin,
1977).



Hacettepe Journal of Mathematics and Statistics
Volume 45 (5) (2016), 1343 � 1354

Fibonacci, and Lucas Pascal triangles

Hacène Belbachir∗ and László Szalay†‡

Abstract

In this paper, we give explicit formulas for elements of the Fibonacci,
and Lucas Pascal triangles. The structure of these objects and Pascal's
original triangle coincide. Keeping the rule of addition, we replace both
legs of the Pascal triangle by the Fibonacci sequence, and the Lucas
sequence, respectively. At the end of the study we describe how to
determine such a formula for any binary recurrence {Gn}∞n=0 satisfying
Gn = Gn−1 +Gn−2. Other scattered results are also presented.
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1. Introduction

Although a lot is known about the Pascal triangle, its origin is lost in the mist of time.
Since the work of Pascal [10] several scholars have contributed with variations, gener-
alizations to this object. An early generalization is due to Raab [11], who introduced
the so-called AB-based Pascal triangles. Its structure is identical to the regular Pascal
triangle, and the elements are the coe�cients of xn−kyk in the expansion of the polyno-
mial (Ax+By)n. Some variations, for instance the Pascal pyramid, stem from di�erent
combinatorial approaches. The Hosoya's triangle [7] is also a triangular arrangement
based on the Fibonacci numbers, where each entry is the sum of the two entries above
in either the left diagonal or the right diagonal. Koshy [9] gave a description on di�erent
Pascal-like triangles which are linked to the sums αn +βn (and the di�erences αn−βn),
where α and β are the zeros of the characteristic polynomial x2 − Ax − B of the linear
recurrence Gn = AGn−1 +BGn−2. Sun [12] provided a generalization of the DFF , and
DFFz triangles introduced by Ferri et al. [5, 6], respectively. Generally, the cited papers
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work with elementary considerations, using the properties of binomial coe�cients and
certain sequences.

In this paper, we keep the arrangement of Pascal's original triangle and, apart from
the beginning, the rule of addition, but we vary the sequences located on the legs of the
triangle. More precise description will be given later. The main purpose of this work
is to give applicable explicit formulas for the elements of the so-called Fibonacci, and
Lucas Pascal triangle. Note that the Fibonacci triangle studied by the present paper
and Hosoya's triangle do not coincide since the insertion methods are di�erent. Ensley
[4] already derived a formula for the elements of Fibonacci Pascal triangle. While his
result is given by a weighted sum of certain binomial coe�cents, here (in Corollary 6)
the exponential and polynomial terms are separated. The principal results are Theorems
1 and 4 in Section 3. As a consequence of these outcomes, we are able to determine
analogous formula for the triangle generated by any binary recurrence {Gn}∞n=0 satisfying
Gn = Gn−1 + Gn−2 (Theorem 5). On the other hand, we provide certain interesting
arguments on arithmetic triangles, some of them have been justi�ed previously. In fact,
such objects are actually very popular, and one can �nd lot of information about them
in the literature (see [2, 3, 4, 12]).

Let {an}∞n=0 and {bn}∞n=0 denote two real sequences. There is no importance if a0 6= b0,
in this case we replace both terms by Ω as an indeterminate object.

The two initial sequences, as it was described by Dil and Mez® [3], generate an in�nite
matrix M = (Mk,n)k≥0,n≥0 as follows. Put M0,0 = Ω, and

Mk,0 = ak, M0,n = bn, k ≥ 1, n ≥ 1,

further let

Mk,n = Mk,n−1 +Mk−1,n, kn 6= 0.

For k ≥ 1 and n ≥ 1 the authors proved the explicit formula

(1.1) Mk,n =

k∑
i=1

(
k + n− i− 1

n− 1

)
ai +

n∑
j=1

(
k + n− j − 1

k − 1

)
bj .

A similar approach in constructing a sort of Generalized Arithmetic Triangle (in short
GAT) was used in [2]. Letting A, B ∈ R, the GAT is structurally identical with Pascal's
original triangle (Pascal himself called his object arithmetic triangle) and contains rows
numbered by 0, 1, 2, . . . such that the nth row possesses the elements

〈
n
k

〉
in the positions

(say columns) k = 0, 1, . . . , n as follows.
Let

〈
0
0

〉
be arbitrary denoted by Ω, and for positive integer n put

〈
n
0

〉
= Anan and〈

n
n

〉
= Bnbn, further for n ≥ 2 and 1 ≤ k ≤ n− 1 let〈

n

k

〉
= B

〈
n− 1

k − 1

〉
+A

〈
n− 1

k

〉
.

Theorem 1 of [2] admits the direct formula

(1.2)

〈
n

k

〉
= An−kBk

(
n−k∑
i=1

(
n− 1− i
k − 1

)
Γ

ai +

k∑
j=1

(
n− 1− j
n− k − 1

)
Γ

bj

)
,

to express
〈
n
k

〉
in the terms of A, B and the sequences if 1 ≤ n and 0 ≤ k ≤ n. The

extension
(·
·

)
Γ
of binomial coe�cients to arbitrary integers n and k appeared in (1.2) is

obtained by the Gamma function (see [1], formula 6.1.21):(
n

k

)
Γ

= lim
n1→n

lim
k1→k

Γ(n1 + 1)

Γ(k1 + 1) · Γ(n1 − k1 + 1)
.
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We really need it since if k = 0 or k = n in (1.2), then the lower index of the binomial
coe�cients is negative. Note that

(
n
k

)
Γ

=
(
n
k

)
if k is nonnegative.

Our Generalized Aritmetic Triangle extends Ensley's GAT [4], since here we allow
a0 6= b0 in the generator sequences, further we also vary the rule of addition by the
parameters A and B. In [4] (where A = B = 1, and a0 = b0) the formula

(1.3)

〈
n

k

〉
=

n−k∑
i=0

(
n− i
k

)
δai +

k∑
j=0

(
n− j
k − j

)
δbj −

(
n

k

)
a0

was established, where δai = ai − ai−1 for positive i, and δa0 = a0 (analogous scheme
holds for the sequence {bn}). At the �rst sight (1.3) is strange because it contains a0,
meanwhile the structure says no in�uence of a0 = b0 on the triangle. But there is no
contradiction, since a short calculation shows that we can exclude a0 (and δa0 , δ

b
0) from

(1.3). Moreover it is easy to see that (1.2) and (1.3) are compatible. Indeed, by (1.3) we
have 〈

n

k

〉
=

n−k∑
i=1

(
n− i
k

)
(ai − ai−1) +

(
n

k

)
b0 +

k∑
j=1

(
n− j
k − j

)
(bj − bj−1),

and for 1 ≤ k ≤ n− 1, via a0 = b0 it leads to〈
n

k

〉
=

n−k∑
i=1

(
n− 1− i
k − 1

)
ai +

k∑
j=1

(
n− 1− j
k − j

)
bj .

The next frame collects some relevant Pascal type triangles (or arrays) have been
already studied.

{an} {bn} Reference

1 1 Pascal Triangle (PT)

An Bn Raab [11] (AB-based PT)

2 1 Hosoya [8] (Asymmetrical PT)

arbitrary arbitrary Ensley [4] (GAT)

Fn+1 Fn+1 Ensley [4] (shifted Fibonacci Triangle)

0 1
n

Dil � Mez® [3] (Hyperharmonic numbers)

0 Fn Dil � Mez® [3] (Hyper-Fibonacci numbers)

F2n−1 Fn−1 Dil � Mez® [3]

Ana Bnb Belbachir � Szalay [2]

Assume now that A = B = 1. Then the rectangular shape matrix M and the tri-
angular shape GAT di�er only in their appearance. Indeed, apart from the geometrical
display, the identity

(1.4) Mk,n =

〈
k + n

n

〉
transmits them to each other for k+n ≥ 1. Apparently, for k ≥ 1 and n ≥ 1 the formulas
(1.2) and (1.1) are equivalent via (1.4). Really, replacing n by k + n and k by n in (1.2)
at the same time we arrive at (1.1).
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Obviously, with the parameters A and B a kind of Generalized Pascal Array (GPA,

given by the matrix M̃) can be obtained if we introduce the modi�cation

M̃k,0 = Akak, M̃0,n = Bnbn, k ≥ 1, n ≥ 1,

and

M̃k,n = BM̃k,n−1 +AM̃k−1,n, kn 6= 0.

In the sequel we always assume that A = B = 1, and in this paper, we basicly
investigate the situation, when the sequences {an} = {bn} are the Fibonacci, or the
Lucas sequence. When an = bn = Fn+1, as a consequence of (1.3), Ensley provided

n−k∑
i=1

(
n− i
k

)
Fi−2 +

k∑
j=1

(
n− j
k − j

)
Fj−2 +

(
n

k

)
,

for the kth entry in row n, we develope a more informative explicit formula. In this study,
we also show a new and simple proof for one of the equivalent formulas (1.2), (1.1) and
(1.3). Note that in [4] the author used a combination of two preliminary lemmata, in [3]
and in [2] the technique of induction was used. Here we apply an elementary �atomic�
observation. Later we will use some preliminary lemmata, which are stated here.

1.1. Lemma. For arbitrary nonnegative integer n we have

n∑
i=0

(
n

i

)
Fi = F2n,

n∑
i=0

(−1)i
(
n

i

)
Fi = −Fn.

Proof. See [9], Theorems 12.5 and 12.6, on pages 157-158. �

We note that in the case of the second statement of Lemma 1.1, some inaccuracy
appears in [9].

1.2. Lemma. Let n be a nonnegative integer. Then

n∑
i=0

(
n

i

)
Li = L2n,

n∑
i=0

(−1)i
(
n

i

)
Li = Ln

hold.

Proof. See [9], remarks after Theorems 12.5 and 12.6, on pages 157-158. �

1.3. Lemma. Let n, n1 and n2 be nonnegative integers. Then

n∑
i=0

(
n− i
n1

)(
i

n2

)
=

(
n+ 1

n1 + n2 + 1

)
is valid.

Proof. This is a corollary of the Vandermonde identity. �
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2. The �atomic� lemma, the principle of superposition, and some

easily computable arithmetic triangles

Recall, that A = B = 1. Let
〈
n
k

〉
{an,bn}

denote the elements of the Generalized Pascal

Triangle (in short GPT) generated by the sequences {an} and {bn}. For every given
sequences {an}, {bn}, {cn} and {dn}, we can show easily that〈

n

k

〉
{an,bn}

+

〈
n

k

〉
{cn,dn}

=

〈
n

k

〉
{an+cn,bn+dn}

.

Now we intend to split this e�ect into elementary parts, and as a consequence we
describe a method for determining

〈
n
k

〉
when the modifying sequences {cn} and {dn}

are simple from one sort of point of view. The next lemma describes the elementary
situation when an existing GPT is modi�ed by c ∈ R at exactly one element of one of
the legs. That is, apart from one entry of {cn} or {dn} we assume cn = dn = 0. Clearly,
such a modi�cation can be applied as many times as we need, and the in�uences of the
consecutive modi�cations can be superposed. At the end of the section we will see, that
this approach is not su�cient to handle the case of Fibonacci, and the Lucas triangle.

Assume that there is given a GPT by the sequences {an} and {bn}.

2.1. Lemma. If one modi�es the element
〈
i
j

〉
{an,bn}

located on one of the legs of a

triangle (i ≥ 1, further j = 0 or j = i) by adding c ∈ R to, then the only change on the

legs is
〈
i
j

〉
new

=
〈
i
j

〉
{an,bn}

+ c. Further, in the inner part of the triangle we �nd

(1) in case of j = 0 (left leg)〈
n

k

〉
new

=


〈
n
k

〉
{an,bn}

+ c
(
n−i−1
k−1

)
, if n ≥ i+ 1 and 1 ≤ k ≤ n− i;〈

n
k

〉
{an,bn}

, otherwise,

(2) in case of j = i (right leg)〈
n

k

〉
new

=


〈
n
k

〉
{an,bn}

+ c
(
n−i−1
k−i

)
, if n ≥ i+ 1 and i ≤ k ≤ n− 1;〈

n
k

〉
{an,bn}

, otherwise.

Proof. It is obvious by the construction (see Figure 1, as an illustration with i = 2,
j = 0). �

We can build simple GPT's by starting with the empty triangle (any
〈
n
k

〉
is zero), using

element by element of the sequences {cn} and {dn}. Note, that the idea is more and less
due to Ensley [4], although he started with the classical Pascal triangle, therefore at the
end of the procedure he removed that. Observe, that only inserting c1, c2, . . . , cn−k, and
d1, d2, . . . , dk has in�uence on the element

〈
n
k

〉
. Thus, by Lemma 2.1 and the principle of

superposition we obtain immediately a (new) proof for the identity (1.2), since
(
n
k

)
Γ

=
(
n
k

)
holds if k is nonnegative.

Now we demonstrate the applicabilty of Lemma 2.1 by a few further examples. Locally
we use the notations

Λc =

n−k∑
i=1

(
n− 1− i
k − 1

)
ci and Λd =

k∑
i=1

(
n− 1− i
n− k − 1

)
di.

Clearly, we have 〈
n

k

〉
new

=

〈
n

k

〉
old

+ Λc + Λd.
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Figure 1. The in�uence of modi�cation of one leg element

We will also use Lemma 1.3 to calculate the appropriate sums.

(1) Initial triangle: empty; modi�ed by cn = dn = 1 (case of classical Pascal trian-
gle).〈

n

k

〉
new

=

n−k∑
i=1

(
n− 1− i
k − 1

)
+

k∑
i=1

(
n− 1− i
n− k − 1

)
=

(
n− 1

k

)
+

(
n− 1

n− k

)
=

(
n

k

)
.

(2) Initial triangle: empty; modi�ed by cn = dn = p(n), where p(x) is a given poly-
nomial of degree d ≥ 1. First we express the polynomial as a linear combination
of the binomial coe�cients

(
x
i

)
, i = 1, . . . d. Then we apply Lemma 1.3 to de-

termine the sums appearing as the in�uence of the left, and the right leg. For
instance, put p(x) = x2, so cn = dn = n2. Since x2 = 2

(
x
2

)
+
(
x
1

)
, we �nd

Λc =

n−k∑
i=1

(
n− 1− i
k − 1

)
i2 =

n−k∑
i=1

(
n− 1− i
k − 1

)(
2

(
i

2

)
+

(
i

1

))

= 2

n−k∑
i=1

(
n− 1− i
k − 1

)(
i

2

)
+

n−k∑
i=1

(
n− 1− i
k − 1

)(
i

1

)
= 2

(
n

k + 2

)
+

(
n

k + 1

)
.

Similarly,

Λd = 2

(
n

k − 2

)
+

(
n

k − 1

)
,

thus 〈
n

k

〉
new

= 2

(
n

k − 2

)
+

(
n

k − 1

)
+

(
n

k + 1

)
+ 2

(
n

k + 2

)
.

(3) Initial triangle: Pascal triangle; modi�ed by cn = 1 (n ∈ N, Asymmetrical PT

in [8], see Figure 2). Only the changes at
(

1
0

)
,
(

2
0

)
, . . . ,

(
n−k

0

)
cause variation at
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n
k

)
. By Lemma 2.1 we �nd〈

n

k

〉
new

=


(
n
k

)
+
∑n−k
i=1

(
n−i−1
k−1

)
=
(
n
k

)
+
(
n−1
k

)
, if n ≥ 2 and 1 ≤ k ≤ n− 1;(

n
n

)
= 1, if k = n,

which coincides the result of [8].

Figure 2. Asymmetric Pascal triangle

Suppose now that we want to modify the empty triangle by the sequences cn = dn =
Fn. Then we face, among others, to the problem of determining the sum

(2.1) Λc =

n−k∑
i=1

(
n− 1− i
k − 1

)
Fi,

but unfortunately there is no closed formula to express it. Subsequently, we need some-
thing else to describe the Fibonacci Pascal triangle.

3. Fibonacci and Lucas triangles

3.1. Fibonacci triangle. In this part, �rst we focus on the Fibonacci triangle, which
was introduced by Ensley [4]. Recall, that he took cn = dn = Fn+1. Denoting the
elements of this triangle by

〈
n
k

〉
Fn+1

, Ensley showed〈
n

k

〉
Fn+1

=

(
n

k

)
+

n−k∑
i=1

(
n− i
k

)
Fi−2 +

n−k∑
j=1

(
n− j
k − j

)
Fj−2.

At the end of this section we will give a more applicable formula for the elements of this
triangle, but now we start with studying the triangle generated by an = bn = Fn (see
Figure 3). The main result is the following.

3.1. Theorem. For any nonnegative integers n and k we have

(3.1)

〈
n

k

〉
Fn

= Fn+k − qk(n),
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where

(3.2) qk(x) = 2

bk/2c∑
j=0

(
x

k − 2j

)
F2j

is a rational polynomial of degree k − 2 if k ≥ 2, and q0(x) = q1(x) = 0.

Figure 3. Fibonacci Pascal triangle

For proving Theorem 3.1, we need

3.2. Lemma. For any nonnegative integer k, the speci�c value qk(k) is given by qk(k) =
F2k − Fk.

Proof.

qk(k) = 2

bk/2c∑
j=0

(
k

k − 2j

)
F2j = 2

bk/2c∑
j=0

(
k

2j

)
F2j =

k∑
j=0

(
k

j

)
Fj+

k∑
j=0

(−1)j
(
k

j

)
Fj .

It implies, by Lemma 1.1, that qk(k) = F2k − Fk. �

3.3. Lemma. The equality qk(N + 1) − qk(N) = qk−1(N) ful�ls for any nonnegative
integers N and k.

Proof. Suppose �rst that k = 2κ. Then

qk(N + 1)

2
=

κ∑
j=0

(
N + 1

k − 2j

)
F2j =

κ−1∑
j=0

((
N

k − 2j − 1

)
+

(
N

k − 2j

))
F2j +

(
N

0

)
Fk

=

κ−1∑
j=0

(
N

k − 2j − 1

)
F2j +

κ∑
j=0

(
N

k − 2j

)
F2j =

qk−1(N)

2
+
qk(N)

2
.
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If k = 2κ+ 1 is odd, then similarly we get

qk(N + 1)

2
=

κ∑
j=0

(
N + 1

k − 2j

)
F2j =

κ∑
j=0

((
N

k − 2j − 1

)
+

(
N

k − 2j

))
F2j

=

κ∑
j=0

(
N

k − 2j − 1

)
F2j +

κ∑
j=0

(
N

k − 2j

)
F2j =

qk−1(N)

2
+
qk(N)

2
.

�

Now we turn to the proof of Theorem 3.1.

Proof. First we show the statement for the legs of the GPT.〈
n

0

〉
Fn

= Fn − q0(n) = Fn,〈
n

n

〉
Fn

= F2n − qn(n) = F2n − (F2n − Fn) = Fn.

Now assume that n ≥ 2 and 1 ≤ k ≤ n − 1. After verifying
〈

2
1

〉
Fn

= F3 − q1(2) = 2, we

use the technique of induction. Hence we assume that (3.1) is true for n ≤ N (N ≥ 2).
Applying it, together with Lemma 3.3, we deduce〈

N + 1

k

〉
Fn

=

〈
N

k − 1

〉
Fn

+

〈
N

k

〉
Fn

= (FN+k−1 − qk−1(N)) + (FN+k − qk(N))

= FN+k−1 + FN+k − (qk−1(N)− qk(N)) = FN+k+1 − qk(N + 1).

�

Since the polynomials qk(x) play crucial role in (3.1), in the next table we give the
�rst few of them explicitly. Recall, that q0(x) = q1(x) = 0.

k 2 3 4 5 6

qk(x) 2 2x x2 − x+ 6 1
3
(x3 − 3x2 + 20x) 1

12
(x4 − 6x3 + 47x2 − 42x+ 192)

The proof of Lemma 3.3 gives a hint how to determine qk−1(x) if one knows qk(x).
The reverse order is more interesting since we know the beginning of the list q2(x), q3(x),
. . . etc. Although we have (3.2) in Theorem 3.1, it may be challenging to know how to
generate the next unknown element of the list. Suppose that the polynomial

qt+1(x) = bt−1x
t−1 + bt−2x

t−2 + · · ·+ b1x+ b0

is known, and we intend to determine the coe�cients ai of the polynomial

qt+2(x) = atx
t + at−1x

t−1 + · · ·+ a1x+ a0.
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By Lemma 3.3, we expand the di�erence qt+2(x+1)−qt+2(x), and compare it to qt+1(x).
Hence we must consider the system of equations

bt−1 =

(
t

1

)
at,

bt−2 =

(
t

2

)
at +

(
t− 1

1

)
at−1,

bt−3 =

(
t

3

)
at +

(
t− 1

2

)
at−1 +

(
t− 2

1

)
at−2,

...

b1 =

(
t

t− 1

)
at +

(
t− 1

t− 2

)
at−1 + · · ·+

(
2

1

)
a2,

b0 =

(
t

t

)
at +

(
t− 1

t− 1

)
at−1 + · · ·+

(
2

2

)
a2 +

(
2

2

)
a2.

From the top of the list of equations to down one can consecutively determine the
coe�cients at, at−1, . . . , a1. Then the constant term a0 follows from the equality
qt+2(t+ 2) = F2t+4 − Ft+2.

At the end of this section recall that
∑n
k=0

〈
n
k

〉
Fn

= 2n+1 − 2Fn+1 ([2], after Example

1). Combining the former expression with (3.1), we have the following

3.4. Corollary. For any nonnegative integer n, the identity
n∑
k=0

qk(n) = F2n+2 + Fn+1 − 2n+1

holds.

The nonexistence of closed form for (2.1) was the motivation to work out a di�erent
approach for Fibonacci Pascal triangle. For the speci�c case n = 2k we see, that the two
sums in (1.3) coincide. This observation, together with Theorem 3.1 implies

3.5. Corollary. If k is a positive integer, then we get

k∑
i=1

(
2k − 1− i
k − 1

)
Fi =

F3k − qk(2k)

2
.

3.2. Lucas Pascal triangle. After studying Fibonacci Pascal triangle, it is natural to
consider Lucas Pascal triangle, i.e. when an = bn = Ln is the nth term of the Lucas
sequence {Ln}∞n=0 (see Figure 4).

Without detailing the proofs (only follow the maintance of Fibonacci PT), we yield
the main result and the corresponding lemmata.

3.6. Theorem. For any nonnegative integers n and k, we have〈
n

k

〉
Ln

= Ln+k − rk(n),

where

rk(x) = 2

b(k−1)/2c∑
j=0

(
x

k − 1− 2j

)
F2j+1
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Figure 4. Lucas Pascal triangle

is a rational polinomial of degree k − 1 if k ≥ 1, and r0(x) = 0.

Proof. Without going into details, we follow the method used in the case of an = bn =
Fn. �

The lemmata we need are the following.

3.7. Lemma. The equality rk(k) = L2k − Lk holds for any nonnegative integer k.

3.8. Lemma. For any nonnegative integers N and k, we have rk(N + 1) − rk(N) =
rk−1(N).

The �rst few polynomials rk(x) are listed here.

k 1 2 3 4 5

rk(x) 2 2x x2 − x+ 8 1
3
(x3 − 3x2 + 26x) 1

12
(x4 − 6x3 + 59x2 − 54x+ 264)

3.3. Ensley's Fibonacci Triangle and a generalization. Now we are ready to han-
dle Ensley's Fibonacci Triangle, when an = bn = Fn+1, by exploiting the results on
Fibonacci and Lucas Triangles.

Assume generally, that the sequence {Gn} satis�es the recursive rule

(3.3) Gn = Gn−1 +Gn−2 (n ≥ 2)

with the initial values G0 and G1. It is well known, that such a sequence can be given
by a linear combination of any two linearly independent recurrences (like Fibonacci and
Lucas sequences), which satisfy (3.3). Taking the Fibonacci and Lucas sequences as basis,
the solution of the vector equation[

F0

F1

]
x+

[
L0

L1

]
y =

[
G0

G1

]
,

(via F0 = 0, F1 = 1, L0 = 2 and L1 = 1) is y = G0/2, x = (2G1 −G0)/2. That is,

Gn =
2G1 −G0

2
Fn +

G0

2
Ln,



1354

and, by Theorems 3.1 and 3.6, and the principle of superposition we have the following
general theorem.

3.9. Theorem. The GPT generated by an = bn = Gn satis�es〈
n

k

〉
Gn

= Gn+k −
(2G1 −G0)qk(n) +G0rk(n)

2
.

Specifying Gn = Fn+1, we have[
G0

G1

]
=

[
F1

F2

]
=

[
1
1

]
,

hence now x = y = 1/2. Thus Fn+1 = (Fn + Ln)/2, and we conclude

3.10. Corollary. For any nonnegative integers n and k, we conclude〈
n

k

〉
Fn+1

= Fn+k+1 −
qk(n+ 1) + rk(n+ 1)

2
.
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1. Introduction

Throughout this paper, all rings will have identity elements and all modules will be
right unitary. We use the notation �⊂" to denote strict inclusion. Unless otherwise
stated, R denotes an arbitrary ring with identity element. Let M be an R-module. Then
the annihilator of M (in R) is the ideal annR(M) = {r ∈ R | Mr = 0}. Also for any
submodule N of M and any ideal I of R, the submodule {x ∈ M | xI ⊆ N} of M is
denoted by (N :M I).

Recall that a nonzero R-module M is prime if annR(M) = annR(N) for every nonzero
submodule N of M . Also a nonzero R-module M is called weakly prime in case annR(N)
is a prime ideal of R for every nonzero submodule N of M . By a (weakly) prime sub-
module of a module M we mean a submodule N such that the module M/N is (weakly)
prime. The notion of prime modules �rst was introduced by Dauns in [11]. Also in [9],
Behboodi and Koohi introduced the notion of weakly prime modules and investigated
the properties of this class of modules. More details about prime modules and weakly
prime modules can be found in [2, 5, 6, 9].

On the other hand, a nonzero module M is called a second module (the dual notion
of a prime module) provided annR(M) = annR(M/N) for every proper submodule N of
M . This notion was introduced by Yassemi in [15], for modules over commutative rings.
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Moreover, in [10], the authors generalized second modules from commutative rings to
noncommutative setting.

The purpose of this paper is to introduce and study the concept of weakly second
modules (the dual of weakly prime modules) over noncommutative rings. A nonzero
R-module M is called a weakly second module if annR(M/N) is a prime ideal of R for
every proper submodule N of M . It is clear that every second module is a weakly second
module. By a (weakly) second submodule of a module we mean a submodule which is also
a (weakly) second module. In addition to obtaining some useful information about this
class of modules, we investigate which dual of the given results about the weakly prime
modules hold for the weakly second ones. For a right R-module M , among other results,
we prove the following statements:

• Theorem 2.3. ((1), (2), (8)) M is a weakly second module if and only if for every two
ideals I and J of R, MIJ = MI or MIJ = MJ , if and only if the set {annR(M/N) | N
is a proper submodule of M} is a chain of prime ideals of R.

• Theorem 2.5 and Theorem 2.6. Secondness and weakly secondness are Morita in-
variant properties.

• Proposition 2.7. M is weakly second if and only if for every proper submodule K of
M , there is a prime ideal I of R contained in annR(M/K) such that M/K cogenerates
R/I.

• Corollary 2.9. If R is a right Artinian ring, then M is a weakly second R-module if
and only if M is a homogenous semisimple R-module.

• Theorem 2.15. If M satis�es the descending chain condition on weakly socle sub-
modules, then every nonzero submodule of M has only a �nite number of maximal weakly
second submodule.

• Proposition 2.17. If R satis�es the ascending chain condition on prime ideals, then
M has a second submodule if and only if it has a weakly second submodule.

• Theorem 3.5. Let R be a ring whose two-sided ideals satisfy ACC. Then a nonzero
R-module M is weakly second if and only if for every two prime ideals I and J of R,
MIJ = MI or MIJ = MJ .
• Proposition 3.7. Let R be a prime right Goldie ring. Then every nonzero properly
divisible R-module is a weakly second module.

2. Weakly second modules

We begin this section with the de�nition of weakly second modules and then some
remarks and examples are given.

2.1. De�nition. A nonzero right R-module M is called weakly second if for every proper
submodule N of M , annR(M/N) is a prime ideal of R.

2.2. Examples. (a) The Z-module Zn is a weakly second if and only if n is a prime
number.

(b) If n 6= m, then the Z-module Zn ⊕ Zm is not weakly second.

(c) Let D be a division ring and V = ⊕∞i=1eiD be a vector space over D. Set R =
End(VD) and T = {f ∈ R | rankf < ∞}. It is known that R has only three ideals (0),
R and T . So T is a maximal ideal and (0) is a prime ideal of R. Now it is easy to check
that R as a left R-module is weakly second but is not a second R-module.
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(d) Let p and q be two distinct prime numbers. Consider the Z-modules

M =< 1/p + Z > ⊕ < 1/q + Z > ⊕ Zp∞ ,

and

N =< 1/p + Z > ⊕(0)⊕ Zp∞ .

It is easily checked that N and M/N are weakly second modules, but M is not a weakly
second module.

(e) Recall that a submodule N of an R-module M is fully invariant if for every R-
endomorphism f : M →M , f(N) ⊆ N . A right R-module M is a weakly second module
if and only if for every fully invariant proper submodule N of M , annR(M/N) is a prime
ideal of R. To see this, let I and J be two ideals of R and L be a proper submodule
of M such that IJ ⊆ annR(M/L). Since MIJ is a fully invariant proper submodule
of M , annR(M/MIJ) is a prime ideal of R. Now IJ ⊆ annR(M/MIJ) implies that
MI ⊆MIJ ⊆ L or MJ ⊆MIJ ⊆ L, and so I ⊆ annR(M/L) or J ⊆ annR(M/L). Thus
annR(M/L) is prime.

In the following theorem, some characterizations of weakly second modules are given.

2.3. Theorem. For a nonzero right R-module M , the following statements are equiva-
lent:

(1) M is a weakly second module;
(2) For every two ideals I and J of R, MIJ = MI or MIJ = MJ ;
(3) For every two ideals I and J of R, J * annR(M/MIJ) implies that MIJ = MI;
(4) For every two ideals I and J of R, I * annR(M/MIJ) implies that MIJ = MJ ;
(5) For every two ideals I and J of R, annR(M/MIJ) ⊂ I implies that MIJ = MJ ;
(6) For every two ideals I and J of R, annR(M/MIJ) ⊂ J implies that MIJ = MI;
(7) Every nonzero quotient of M is weakly second;
(8) The set {annR(M/N) | N is a proper submodule of M} is a chain of prime ideals of
R.

Proof. (1) ⇒ (2). Suppose that M is weakly second and I and J are two ideals of
R. If MIJ = M , then MIJ = MI and MIJ = MJ . So suppose that MIJ is a
proper submodule of M and hence annR(M/MIJ) is a prime ideal of R. Since IJ ⊆
annR(M/MIJ), I ⊆ annR(M/MIJ) or J ⊆ annR(M/MIJ). Thus MIJ = MI or
MIJ = MJ .

(2) ⇒ (1). Let N be a proper submodule of M and IJ ⊆ annR(M/N) for some two
ideals I and J of R. Then MIJ ⊆ N and by the hypothesis MI ⊆ N or MJ ⊆ N . Thus
annR(M/N) is prime.

(2)⇔ (3) and (2)⇔ (4) are clear.

(4) ⇒ (5). Let I and J be two ideals of R such that annR(M/MIJ) ⊂ I. Then I *
annR(M/MIJ) and so MIJ = MJ .

(5) ⇒ (4). Suppose that I and J are two ideals of R and I * annR(M/MIJ). Then
annR(M/MIJ) ⊂ I+ annR(M/MIJ) and we have annR(M/MIJ) = annR(M/M(I+
annR(M/MIJ))J). Thus annR(M/M(I+ annR(M/MIJ))J) ⊂ I+ annR(M/MIJ) and
by (5), M(I+ annR(M/MIJ))J = MJ . But M(I+ annR(M/MIJ))J ⊆ MIJ and so
MIJ = MJ .

(3)⇒ (6) is similar to (4)⇒ (5) and (6)⇒ (3) is similar to (5)⇒ (4).

(1)⇒ (7) is clear.
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(7)⇒ (8). Let N1 and N2 be two proper submodules of M , P = annR(M/N1) and Q =
annR(M/N2). If P * Q and Q * P , then there exist two ideals I1 and I2 of R such that
I1 ⊆ P , I2 ⊆ Q, I1 * Q and I2 * P . Since annR(M/(N1∩N2)) is a prime ideal of R and
I1I2 ⊆ annR(M/(N1 ∩N2)), I1 ⊆ annR(M/(N1 ∩N2)) or I2 ⊆ annR(M/(N1 ∩N2)). But
annR(M/(N1∩N2)) ⊆ annR(M/N2) = Q and annR(M/(N1∩N2)) ⊆ annR(M/N1) = P .
Thus I1 ⊆ Q or I2 ⊆ P , a contradiction.

(8)⇒ (1). Clear. �

Next, we show that both secondness and weakly secondness are Morita invariant
properties.

2.4. Theorem. Secondness is a Morita invariant property.

Proof. Let R and S be Morita equivalent rings via an equivalence F : ModR → ModS .
Suppose that M is a second R-module. Let I = annR(M) and B = annS(F (R/I)). By
[1, Proposition 21.11], R/I is Morita equivalent to S/B. Also by [1, Proposition 21.6],
F (M) is faithful as an S/B-module because M is a faithful R/I-module. Thus B =
annS(F (M)). Now assume that N is a proper S-submodule of F (M). We show that
annS(F (M)) = annS(F (M)/N). For a submodule K of M , let iK≤M : K → M denote
the inclusion monomorphism. Since by [1, Proposition 21.7], the mapping de�ned by
ΛM : K → Im F (iK≤M ) is a lattice isomorphism from the lattice of submodules of
M onto the lattice of submodules of F (M), there exists K ≤ M such that ΛM (K) =
N = Im F (iK≤M ). Since Morita equivalences preserve exactness, F (M)/Im F (iK≤M ) ∼=
F (M/K). Therefore F (M)/N ∼= F (M/K) and so annS(F (M)/N) = annS(F (M/K)).
On the other hand, since M is a second R-module, I = annR(M) = annR(M/K) and so
by the �rst part of the proof, B = annS(F (M)) = annS(F (M/K)). Thus annS(F (M)) =
annS(F (M)/N) and this implies that F (M) is a second S-module, as desired. �

2.5. Theorem. Weakly secondness is a Morita invariant property.

Proof. Let R and S be Morita equivalent rings via an equivalence F : ModR → ModS .
Suppose that M is a weakly second R-module and N is a proper S-submodule of F (M).
We show that annS(F (M)/N) is a prime ideal of S. In the notations of the proof
of above theorem, there exists K ≤ M such that ΛM (K) = N = Im F (iK≤M ) and
annS(F (M)/N) = annS(F (M/K)). Let I = annR(M/K). Again by the proof of above
theorem, R/I is Morita equivalent to S/B, where B = annS(F (R/I)) = annS(F (M/K)).
Since M is a weakly second R-module, I = annR(M/K) is a prime ideal of R and hence
R/I is a prime ring. By [13, Corollary 18.45], S/B is also a prime ring. Thus B =
annS(F (M/K)) = annS(F (M)/N) is a prime ideal of S, as desired. �

2.6. Remark. For a nonzero R-module M , we note that M is a second R-module if
and only if for any proper submodule K of M , M/K cogenerates R/annR(M). To
see this, suppose that M is second and K is a proper submodule of M . Then r+
annR(M) → (xr + K)x∈M is an R-monomorphism of R/annR(M) into

∏
x∈M M/K.

Thus R/annR(M) is cogenerated by M/K. For the other direction, assume that f :
R/annR(M)→

∏
α∈AM/K is an R-monomorphism, where K is a proper submodule of

M . Let f(1) = (xα +K)α∈A. If r ∈ annR(M/K), then f(r) = (xαr +K)α∈A = 0 and so
r = 0. Thus r ∈ annR(M). This yields that annR(M) = annR(M/K) and hence M is
a second module.

Now for weakly second modules, we have the following statement.

2.7. Proposition. Let M be a nonzero R-module. Then M is weakly second if and
only if for every proper submodule K of M , there is a prime ideal I of R contained in
annR(M/K) such that M/K cogenerates R/I.
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Proof. First suppose that M is a weakly second module and K is a proper submodule of
M . Then annR(M/K) is a prime ideal and clearly M/K cogenerates R/annR(M/K).
Conversely, suppose that K is a proper submodule of M and I is a prime ideal of R con-
tained in annR(M/K) such thatR/I is cogenerated byM/K. Say f : R/I →

∏
α∈AM/K

is an R-monomorphism. Then annR(M/K) = annR(
∏
α∈AM/K) ⊆ annR(R/I) ⊆ I and

hence I = annR(M/K). �

Recall that a module M is homogeneous semisimple if M is a direct sum of pairwise
isomorphic simple submodules. Clearly, any homogeneous semisimple module is (weakly)
second. We show that the converse is true when R is an Artinian ring. First the following
lemma is needed.

2.8. Lemma. Let R be a ring in which every prime ideal is maximal. For a nonzero
R-module M , consider the following statements:
(1) M is prime;
(2) M is weakly prime;
(3) M is second;
(4) M is weakly second;
(5) M is homogeneous semisimple.

Then (1) ⇔ (2) ⇔ (3) ⇔ (4) ⇐ (5). Moreover, if in addition R is a commutative
ring, then all �ve statements are equivalent.

Proof. (1)⇒ (2), (3)⇒ (4) and (5)⇒ (4) are trivial.
(2)⇒ (3). Suppose thatM is weakly prime. Then annR(M) is a prime ideal and hence is
a maximal ideal. Thus for any proper submodule N of M , annR(M) ⊆ annR(M/N) ⊂ R
implies that annR(M) = annR(M/N) and so M is a second module.
(4)⇒ (1). Suppose M is a weakly second module. Then annR(M) is a prime ideal and
hence is a maximal ideal. Thus annR(M) ⊆ annR(N) ⊂ R implies that annR(M) =
annR(N), for every nonzero submodule N of M . It follows that M is a prime module.
(4) ⇒ (5). Suppose that R is a commutative ring and M is a weakly second R-module.
Then annR(M) is a prime ideal and by the hypothesis, it is a maximal ideal. Thus R/P
is a �eld where P = annR(M). This implies that M is a homogeneous semisimple as
R/P -module and as R-module. �

2.9. Corollary. Let R be a right Artinian ring. Then for any nonzero right R-module
M , the �ve statements in the previous lemma are all equivalent.

Proof. We only prove that if M is a weakly second R-module, then it is a homogeneous
semisimple R-module. Since M is weakly second, annR(M) is a prime ideal and so R/P
is a right Artinian prime ring where P = annR(M). By the Wedderburn-Artin Theorem
[12, Theorem 3.5], we conclude thatM is a homogeneous semisimple as R/P -module and
as R-module. �

2.10. Corollary. Let R be a commutative von Neumann regular ring and M be an R-
module. Then the following statements are equivalent:

(1) M is second;
(2) M is weakly second;
(3) M is homogeneous semisimple.

Proof. It is well known that every prime ideal in a commutative von Neumann regular
ring is a maximal ideal. Now apply Lemma 2.8. �
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The next two results were proved for second modules. See [10, Corollary 2.4 and
Proposition 3.6].

2.11. Corollary. Let A be an ideal of a ring R and M be a nonzero right R-module
such that MA = 0. Then the R-module M is a weakly second module if and only if the
R/A-module M is a weakly second module.

Proof. Suppose �rst that the R-module M is weakly second and let I and J be two ideals
of R containing A. Then M(I/A)(J/A) = M(IJ + A/A) = MIJ and so by Theorem
2.3, M(I/A)(J/A) = M(I/A) or M(I/A)(J/A) = M(J/A). Conversely, suppose that
the R/A-module M is a weakly second module. For any two ideals I and J of R,
MIJ = M(IJ +A) = M((IJ +A)/A) = M((I +A)/A)((J +A)/A). Using Theorem 2.3,
we have MIJ = M((I + A)/A) = MI or MIJ = M((J + A)/A) = MJ , as desired. �

Let R be a ring. An ideal A of R is called right T -nilpotent if for any sequence
{a1, a2, . . .} in A, there exists a positive integer n such that an . . . a1 = 0.

2.12. Proposition. Let A be a right T -nilpotent ideal of a ring R and R = R/A. Then
every nonzero right R-module M has a proper submodule N such that M/N is a weakly
second R-module if and only if, every nonzero right R-module M has a proper submodule
N such that M/N is a weakly second R-module.

Proof. Suppose �rst that every nonzero right R-module M has a proper submodule N
such that M/N is a weakly second R-module. Let K be a nonzero right R-module. Then
K is a right R-module and by the hypothesis, there exists a proper submodule L of K
such that the R-module K/L is weakly second. It follows that the R-module K/L is a
weakly second module. Conversely, suppose that every nonzero right R-module M has a
proper submodule N such that M/N is a weakly second R-module. Let X be a nonzero
right R-module. Then by [1, Lemma 28.3], X 6= XA and so X/(XA) is a nonzero right
R-module. Also by the hypothesis, there exists a proper submodule Y of X containing
XA, such that the R-module X/Y is weakly second. Now by Corollary 2.11, X/Y is a
weakly second R-module. �

In [10, Proposition 4.2], it is shown that the union of a chain of second submodules of
a module is also second. Here, we show that a similar result holds for a directed set of
weakly second submodules of a module.

2.13. Lemma. Let R be a ring, and let Ni (i ∈ I) be a directed set of weakly second
submodules of a right R-module M . Then N =

⋃
i∈I Ni is a weakly second R-module.

Proof. Note that N is a nonzero submodule of M . Let A and B be two ideals of R.
By Theorem 2.3, it su�ces to show that NAB = NA or NAB = NB. If there exists
k ∈ I such that for each i ∈ I, Nj = sup{Ni, Nk} satis�es NjAB = NjA, then for
each i ∈ I, we have NiA ⊆ NjA = NjAB ⊆ NAB. Thus NA = NAB. Now suppose
that for every k ∈ I, there exists i ∈ I such that Nj = sup{Ni, Nk} dose not satisfy
NjAB = NjA. Since Nj is weakly second, NjB = NjAB. Then for each i ∈ I, we have
NiB ⊆ NjB = NjAB ⊆ NAB. Thus NB = NAB. �

By a maximal weakly second submodule of a module M , we mean a weakly second
submodule L of M such that L is not properly contained in another weakly second
submodule of M .

2.14. Corollary. Let M be any nonzero module. Then every weakly second submodule
of M contained in a maximal weakly second submodule.

Proof. By Lemma 2.13 and Zorn's Lemma. �
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Let N be a submodule of a right R-module M . We de�ne the weakly socle of N as
the sum of all weakly second submodules of M contained in N , denoted by W.soc(N).
The weakly socle of N is de�ned to be (0) in case N dose not contain any weakly second
submodule. N is said to be a weakly socle submodule of M if N 6= 0 and W.soc(N) = N .

2.15. Theorem. Let M be a right R-module. If M satis�es the descending chain con-
dition on weakly socle submodules, then every nonzero submodule of M has only a �nite
number of maximal weakly second submodule.

Proof. Suppose that the result is false. Then there exists a nonzero submodule N of
M such that it has an in�nite number of maximal weakly second submodules. Thus
W.soc(N) is a weakly socle submodule of M and W.soc(N) has an in�nite number of
maximal weakly second submodules. By the assumption, let S be a weakly socle sub-
module of M chosen minimal such that S has an in�nite number of maximal weakly
second submodules. If S is weakly second, then every maximal weakly second sub-
module contained in S is equal to S. Thus S has not an in�nite number of max-
imal weakly second submodules, a contradiction. Therefore S is not weakly second
and so there exist two ideals I and J of R and a proper submodule K of M such
that SIJ ⊆ K, SI * K and SJ * K. Thus S * (K :S I) and S * (K :S J).
Therefore S * W.soc((K :S I)) and S * W.soc((K :S J)). Now we conclude that
W.soc((K :S I)) ⊂ S and W.soc((K :S I)) ⊂ S. Let V be a maximal weakly sec-
ond submodules of M contained in S. Then V IJ ⊆ SIJ ⊆ K and hence V I ⊆ K
or V J ⊆ K. Thus V ⊆ (K :S I) or V ⊆ (K :S J) so that V ⊆ W.soc((K :S I)) or
V ⊆ W.soc((K :S J)). The minimality of S, implies that both W.soc((K :S I)) and
W.soc((K :S J)) have only �nitely many maximal weakly second submodules. Therefore
there is only a �nite number of possibilities for the module S, which is a contradiction. �

The following result is immediately obtained.

2.16. Corollary. Every nonzero Artinian module contains only a �nite number of max-
imal weakly second submodule.

Clearly, if an R-module has a second submodule, then it has a weakly second sub-
module. Now, we show that the converse is true when a certain set of ideals of R has
the descending chain condition (brie�y, DCC). In fact, it is the dual statement of [9,
Proposition 5.1].

2.17. Proposition. Let R be a ring whose prime ideals satisfy DCC and let M be a
right R-module. Then M has a second submodule if and only if it has a weakly second
submodule.

Proof. Suppose that N is a weakly second submodule of M . Let I = annR(N). Since I
is a prime ideal, R/I is a prime ring and so N is a faithful R/I-module. Without loss
of generality, we may assume that R is a prime ring and M is a faithful weakly second
module. By Theorem 2.3, the set T = { annR(M/K) | K is a proper submodule of M}
is a chain of prime ideals. If T = {0}, then M is a second module and we are through.
Thus suppose that the chain T contains a nonzero element. Let L0 =

⋂
{L ⊂ M | 0 6=

annR(M/L) ∈ T}. Clearly, L0 is a submodule of M . By the hypothesis, assume that
P is a minimal among nonzero elements of T . Then P = annR(M/K) for some proper
submodule K of M . We claim that P = annR(M/L0). Since T is a chain, for any
proper submodule L of M with annR(M/L) 6= 0, we have annR(M/L) ⊆ annR(M/K)
or annR(M/K) ⊆ annR(M/L). The minimality of P implies that P ⊆ annR(M/L).
Thus MP ⊆ L for any proper submodule L of M with annR(M/L) 6= 0. It follows
that MP ⊆ L0 and hence P ⊆ annR(M/L0). By the de�nition of L0, we have P =
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annR(M/L0). Now we show that L0 is a second submodule of M . Suppose that I is an
ideal of R and L0I 6= 0. Since MP ⊆ L0, MPI ⊆ L0I. But R is a prime ring and so
PI 6= 0. Thus annR(M/L0I) 6= 0 and by the de�nition of L0, we conclude that L0 ⊆ L0I
and hence L0 = L0I, as desired. �

3. Further results related to weakly second modules

In this section, we start with some de�nitions. Then the relationships between weakly
second, weakly prime and second modules are investigated. Let R be a ring and M be a
right R-module. Then:

(i) M is called a multiplication module if for every submodule N of M there exists an
ideal I of R such that N = MI. This notion was introduced by Baranard in [7].

(ii) M is called a comultiplication module if for every submodule N of M there exists an
ideal I of R such that (0 :M I) = N . This notion is introduced by Ansari-Toroghy and
Farshadifar in [3].

(iii) A submodule N of M is called secondary submodule if for every ideal I of R, NI = N
or there exists a positive integer n such that NIn = 0.

3.1. Theorem. Let R be a ring and M be a nonzero right R-module. Then:

(1) If M is a multiplication module such that annR(M) is a prime ideal, then it is prime;
(2) If M is a comultiplication module such that annR(M) is a prime ideal, then it is
second;
(3) A submodule N of M is second if and only if it is both a weakly second and a secondary
submodule of M ;
(4) If any two prime ideals of R are comparable, i.e., I ⊆ J or J ⊆ I for every two prime
ideals I and J of R, then any sum of weakly second submodules of M is a weakly second
submodule of M .

Proof. (1) Suppose that N is a nonzero submodule of M and NI = 0, where I is an ideal
of R. Since M is multiplication, N = MJ for some ideal J of R. Then NI = MJI = 0
and so MI = 0 because annR(M) is prime. Thus M is a prime module.

(2) Suppose that N is a proper submodule of M and MI ⊆ N , where I is an ideal of R.
Since M is comultiplication, N = (0 :M J) for some ideal J of R. Then MI ⊆ (0 :M J)
and so MIJ = 0. Since annR(M) is prime and N 6= M , we have MI = 0. Thus
annR(M) = annR(M/N) and hence M is a second module.

(3) For one direction, the proof is clear. For the other direction, assume that N is both
a secondary and a weakly second submodule of M . Let I be an ideal of R such that
NI 6= 0 and NI 6= N . Since N is secondary, there exists n ≥ 2 such that NIn = 0. On
the other hand, since N is weakly second, we conclude that NI = 0, a contradiction.

(4) Let {Ni}i∈I be a collection of weakly second submodules of M and N =
∑
i∈I Ni.

Clearly N 6= 0. Since for any i ∈ I, Ni is weakly second, annR(Ni) is a prime ideal of R.
Also annR(N) = annR(

∑
i∈I Ni) =

⋂
i∈I annR(Ni) and since any two prime ideals of R

are comparable, annR(N) is a prime ideal of R. To complete the proof, it is enough to
show that (L :R N) is a prime ideal of R, where L is a submodule of M such that N * L.
Assume for two ideals A and B of R, NAB ⊆ L such that NA * L and NB * L. Then
there exist i, j ∈ I such that NiA * L and NjB * L. This implies that

A * annR( Ni
L∩Ni

) and B * annR(
Nj

L∩Nj
). (∗)
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Now since Ni and Nj are weakly second submodules ofM , annR( Ni
L∩Ni

) and annR(
Nj

L∩Nj
)

are prime and by the assumption, these are comparable. Without loss of generality, we
may assume that

annR( Ni
L∩Ni

) ⊆ annR(
Nj

L∩Nj
). (∗∗)

On the other hand, NAB ⊆ L implies that NiAB ⊆ L and NjAB ⊆ L. Thus NiAB ⊆
L ∩ Ni and NjAB ⊆ L ∩ Nj and so AB ⊆ annR( Ni

L∩Ni
) and AB ⊆ annR(

Nj

L∩Nj
). Since

annR( Ni
L∩Ni

) and annR(
Nj

L∩Nj
) are prime, by (∗), we have A ⊆ annR(

Nj

L∩Nj
) and B ⊆

annR( Ni
L∩Ni

). Now by (∗∗), B ⊆ annR(
Nj

L∩Nj
), a contradiction. �

Since every submodule of a comultiplication module is comultiplication and every
quotient module of a multiplication module is also multiplication, the following result is
immediate.

3.2. Corollary. Let R be a ring and M be a nonzero right R-module. Then:
(1) If M is multiplication and N is a weakly prime submodule of M , then N is prime;
(2) If M is comultiplication and N is a weakly second submodule of M , then N is second.

The following result shows that for an R-module M , if R has the ascending chain
condition (brie�y, ACC) on two-sided ideals, then there exists a factor module ofM such
that to be second.

3.3. Proposition. Let R be a ring and M be a nonzero right R-module. If annR(M/N0)
is a maximal member in the family {annR(M/N)} where N ranges over all proper
submodules of M , then M/N0 is a second R-module.

Proof. For any proper submodule K/N0 of M/N0, annR(M/N0) ⊆ annR(M/K) =

annR(M/N0
K/N0

) and the maximality of annR(M/N0), implies that annR(M/N0) = annR(M/N0
K/N0

).

Thus M/N0 is second R-module. �

3.4. Proposition. Let R be a ring and M be a nonzero right R-module. If there exists a
proper submodule N of M such that M/N is a weakly second module, then annR(M/N)
is a maximal member in the collection of ideals I of R such that MIJ + N 6= MJ + N
for every ideal J of R with J * annR(M/N).

Proof. Let P = annR(M/N) and J be an ideal of R such that J * P . Then clearly
MPJ + N 6= MJ + N . Suppose that A is an ideal of R such that P ⊂ A. Then A * P

and since M/N is weakly second, (M/N)A2 = (M/N)A. Thus MA2 + N = MA + N
and it follows that P is a maximal member in the stated collection. �

It was seen that a right R-module M is weakly second if and only if MIJ = MI or
MIJ = MJ for every two ideals I, J of R. Here, we improve this fact to modules over
Noetherian rings.

3.5. Theorem. Let R be a ring whose two-sided ideals satisfy ACC. Then a nonzero
R-module M is weakly second if and only if for every two prime ideals P and Q of R,
MPQ = MP or MPQ = MQ.

Proof. For one direction, the proof is clear. For the other direction assume that for
every two prime ideals P and Q of R, MPQ = MP or MPQ = MQ. First we show
that for prime ideals P1, · · · , Pn of R, MP1 · · ·Pn = MPj for some 1 ≤ j ≤ n. We
proceed by induction on n, the case n = 2 being covered by hypothesis. For n = 3,
MP1P2P3 = (MP1P2)P3 and by hypothesis, MP1P2 = MP1 or MP1P2 = MP2. Thus
we have MP1P2P3 = (MP1P2)P3 = (MP1)P3 = MP1P3 or MP1P2P3 = (MP1P2)P3 =
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(MP2)P3 = MP2P3. This shows that we are reduced to the case n = 2. Again by
hypothesis, MP1P3 = MP1 or MP1P3 = MP3 and MP2P3 = MP2 or MP2P3 = MP3.
Therefore MP1P2P3 = MPi for some 1 ≤ i ≤ 3. Now by the induction hypothesis,
MP1 · · ·Pn = (MP1 · · ·Pn−1)Pn = MPiPn for some 1 ≤ i ≤ n − 1. Also by the case
n = 2, we have MP1 · · ·Pn = MPiPn = MPj for some 1 ≤ j ≤ n and the claim is proved.
Now let I and J be two ideals of R. Since R has ACC on two-sided ideals, by [14, Lemma
1], there exist two integers n, m and prime ideals Qi(1 ≤ i ≤ n) and Pj(1 ≤ j ≤ m),
such that

Q1 · · ·Qn ⊆ I ⊆ Q1 ∩ · · · ∩Qn

and

P1 · · ·Pm ⊆ J ⊆ P1 ∩ · · · ∩ Pm.

Thus

Q1 · · ·QnP1 · · ·Pm ⊆ IJ ⊆ (Q1 ∩ · · · ∩Qn)(P1 ∩ · · · ∩ Pm),

and so

MQ1 · · ·QnP1 · · ·Pm ⊆MIJ ⊆M(Q1 ∩ · · · ∩Qn)(P1 ∩ · · · ∩ Pm).

By the �rst part of the proof, without loss of generality, we may assume that
MQ1· · ·QnP1· · ·Pm = MQs for some 1 ≤ s ≤ n. Then we have
MQs = MQ1 · · ·QnP1 · · ·Pm ⊆ MIJ ⊆ M(Q1 ∩ · · · ∩ Qn)(P1 ∩ · · · ∩ Pm) ⊆ MQs and
so MIJ = MQs. On the other hand, I ⊆ Q1 ∩ · · · ∩ Qn implies that MI ⊆ MQs and
hence MIJ = MI. �

Following [1, p. 232, ex. 11], a submodule N of a right R-module M is said to be pure
(in M) provided N ∩MI = NI for every left ideal I of R.

3.6. Proposition. Let R be a ring and M be a weakly second R-module. Then every
pure submodule of M is weakly second.

Proof. Let N be a nonzero pure submodule of M and I, J be two ideals of R. If
MIJ = MI, then NIJ = N ∩MIJ = N ∩MI = NI. Similarly, MIJ = MJ implies
that NIJ = NJ . Now by Theorem 2.3, the proof is complete. �

A right R-module X is called properly divisible if for every proper submodule Y of X
and every regular element c of R, Y = Y c.

3.7. Proposition. Let R be a prime right Goldie ring. Then every nonzero properly
divisible R-module is a weakly second module.

Proof. Let X be a nonzero properly divisible R-module and I, J be two ideals of R. If
XI = X, then XIJ = XJ . Thus suppose that XI ⊂ X and let A = annR(XI). If
A 6= 0, then it is an essential ideal of RR (since R is prime) and by the Goldie,s Theorem
[13, Theorem 11.13], A contains a regular element c of R. Since X is properly divisible,
XI = XIc = 0 and so XIJ = XI. Now assume that A = 0 and d is a regular element
of J . Then XI = XId ⊆ XIJ and hence XI = XIJ , as desired. �

A right R-moduleM is called a semisecond module, if for any ideal I of R, MI2 = MI,
i.e., annR(M/N) is a semiprime ideal of R, for any proper submodule N of M . We
conclude the paper with the following result.
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3.8. Proposition. Let R be a ring, M be a right R-module and N be a semisecond
submodule of M such that M/N is second. If for any ideal I of R, NI is a weakly prime
submodule of M, then M is a semisecond module.

Proof. Let I be an ideal of R. Since M/N is second, (M/N)I = M/N or (M/N)I = 0.
If (M/N)I = M/N , then MI +N = M and so MI2 +NI = MI. Since N is semisecond,
NI = NI2 and hence MI2 = MI. Now suppose that (M/N)I = 0. Then MI + N = N
implies that MI2 +NI = MI2 +NI2 = NI and so MI2 = NI, because N is semisecond.
Since NI is a weakly prime submodule, MI ⊆ NI and we have MI2 = MI. �
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Abstract

In this paper, we de�ne two new general p−valent integral operators in
the unit disc U and obtain the properties of p−valent starlikeness and
p−valent convexity of these integral operators of p−valent functions
on some classes of β−uniformly p−valent starlike and β−uniformly
p−valent convex functions of complex order and type α (0 ≤ α < p).
As special cases, the properties of p−valent starlikeness and p−valent
convexity of the operators

∫ z
0
ptp−1

(
f(t)
tp

)δ
dt and

∫ z
0
ptp−1

(
g′t)
ptp−1

)δ
dt

are given.
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1. Introduction and Preliminaries

Let Ap denote the class of the form

(1.1) f(z) = zp +

∞∑
k=p+1

akz
k (p ∈ N = {1, 2, ..., }) ,

which are analytic in the open disc U = {z ∈ C : |z| < 1} .
A function f ∈ S∗p(γ, α) is p−valently starlike of complex order γ (γ ∈ C− {0}) and

type α (0 ≤ α < p) , that is, f ∈ S∗p(γ, α), if it is satis�es the following condition

(1.2) Re

{
p+

1

γ

(
zf ′(z)

f(z)
− p
)}

> α (z ∈ U) .
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Furthermore, a function f ∈ Cp(γ, α) is p−valently convex of complex order
γ (γ ∈ C− {0}) and type α (0 ≤ α < p) , that is, f ∈ Cp(γ, α) if it satis�es the following
condition;

(1.3) Re

{
p+

1

γ

(
1 +

zf ′′(z)

f ′(z)
− p
)}

> α (z ∈ U) .

In particular cases, for p = 1 in the classes S∗p(γ, α) and Cp(γ, α), we obtain the
classes S∗(γ, α) and C(γ, α) of starlike functions of complex order γ (γ ∈ C− {0}) and
type α (0 ≤ α < 1) and convex functions of complex order γ (γ ∈ C− {0}) and type
α (0 ≤ α < 1) , respectively, which were introduced and studied by Frasin [15]. Also,
for α = 0 in the classes S∗p(γ, α) and Cp(γ, α), we obtain the classes S∗p(γ) and Cp(γ),
which are called p−valently starlike of complex order γ (γ ∈ C− {0}) and p−valently
convex of complex order γ (γ ∈ C− {0}) , respectively. Setting p = 1 and α = 0, we
obtain the classess S∗(γ) and C(γ). The class S∗(γ) of starlike functions of complex order
γ (γ ∈ C− {0}) was de�ned by Nasr and Aouf (see [21]) while the class C(γ) of convex
functions of complex order γ (γ ∈ C− {0}) was considered earlier by Wiatrowski (see
[27]). Note that S∗p(1, α) = S∗p(α) and Cp(1, α) = Cp(α) are, respectively, the classes of
p−valently starlike and p−valently convex functions of order α (0 ≤ α < p) in U. In spe-
cial cases, S∗p(0) = S∗p and Cp(0) = Cp are, respectively, the familiar classes of p−valently
starlike and p−valently convex functions in U. Also, we note that S∗1(α) = S∗(α) and
C1(α) = C(α) are, respectively, the usual classes of starlike and convex functions of order
α (0 ≤ α < 1) in U. In special cases, S∗1(0) = S∗ and C1 = C are, respectively, the familiar
classes of starlike and convex functions in U.

A function f ∈ β−USp(α) is β−uniformly p−valently starlike of order α (0 ≤ α < p),
that is, f ∈ β − USp(α) if it is satis�es the following condition

(1.4) Re

{
zf ′(z)

f(z)

}
> β

∣∣∣∣zf ′(z)f(z)
− p
∣∣∣∣+ α (β ≥ 0, z ∈ U) .

Furthermore, a function f ∈ β − UCp(α) is β−uniformly p−valently convex of order
α (0 ≤ α < p), that is, f ∈ β − UCp(α) if it satis�es the following condition

(1.5) Re

{
1 +

zf ′′(z)

f ′(z)

}
> β

∣∣∣∣1 +
zf ′′(z)

f ′(z)
− p
∣∣∣∣+ α (β ≥ 0, z ∈ U) .

These classes generalize various other classes which are worthy to mention here. For
example p = 1, the classes β − US(α) and β − UC(α) introduced by Bharti, Parvatham
and Swaminathan (see [2]). Also, the class β − UC1(0) = β − UCV is the known class
of β−uniformly convex functions [17]. Using the Alexander type relation, we can obtain
the class β − USp(α) in the following way:

f ∈ β − UCp(α)⇔ zf ′

p
∈ β − USp(α).

The class 1− UC1(0) = UCV of uniformly convex functions was de�ned by Goodman
[16] while the class 1− US1(0) = SP was considered by Rønning [26].

When the classes S∗p(γ, α) with β−USp(α) and Cp(γ, α) with β−UCp(α) are thought
together, we de�ne following classes. Let 0 ≤ α < p, β ≥ 0 and γ ∈ C− {0} . A function
f ∈ Ap is in the class β − USp(γ, α) if and only if for all z ∈ U

Re

{
p+

1

γ

(
zf ′(z)

f(z)
− p
)}

> β

∣∣∣∣ 1γ
(
zf ′(z)

f(z)
− p
)∣∣∣∣+ α

and in the class β − UCp(γ, α) if and only if for all z ∈ U

Re

{
p+

1

γ

(
zf ′′(z)

f ′(z)
+ 1− p

)}
> β

∣∣∣∣ 1γ
(
zf ′′(z)

f ′(z)
+ 1− p

)∣∣∣∣+ α.
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For f ∈ Ap given by (1.1) and g(z) given by

(1.6) g(z) = zp +

∞∑
k=p+1

bkz
k

their convolution (or Hadamard product), denoted by (f ∗ g), is de�ned as follows

(f ∗ g)(z) = zp +

∞∑
k=p+1

akbkz
k = (g ∗ f)(z) (z ∈ U) .

For a function f in Ap, in [13], the authors de�ned the multiplier transformations
Dm
p,λ,µ as follows.

1.1. De�nition. Let f ∈ Ap. For the parameters λ, µ ∈ R; 0 ≤ µ ≤ λ and m ∈ N0 =
N ∪ {0}, de�ne the multiplier transformations Dm

p,λ,µ on Ap by the following:

D
0
p,λ,µf(z) = f(z)

D
1
p,λ,µf(z) = Dp,λ,µf(z)

=
1

p

[
λµz2f ′′(z) + (λ− µ+ (1− p)λµ) zf ′(z) + p(1− λ+ µ)f(z)

]
...

D
m
p,λ,µf(z) = Dp,λ,µ

(
D
m−1
p,λ,µ

)
for z ∈ U and p ∈ N := {1, 2, ...}.

If f(z) is given by (1.1), then from the de�nition of the multiplier transformations
Dm
p,λ,µf(z), we can easily see that

D
m
p,λ,µf(z) = zp +

∞∑
k=p+1

Φkp(m,λ, µ)akz
k

where

Φkp(m,λ, µ) =

[
(k − p)(λµk + λ− µ) + p

p

]m
.

By using the operator Dm
p,λ,µf(z) (m ∈ N0), we introduce the new classes

β − USp(m,λ, µ, γ, α) and β − UCp(m,λ, µ, γ, α) as follows:

β − USp(m,λ, µ, γ, α) =
{
f ∈ Ap : D

m
p,λ,µf(z) ∈ β − USp(γ, α)

}
and

β − UCp(m,λ, µ, γ, α) =
{
f ∈ Ap : D

m
p,λ,µf(z) ∈ β − UCp(γ, α)

}
where f ∈ Ap, 0 ≤ α < p, β ≥ 0 and γ ∈ C− {0} .

We note that by specializing the parameters m, p, γ, β and α in the classes β −
USp(m,λ, µ, γ, α) and β − UCp(m,λ, µ, γ, α), these classes are reduced to several well-
known subclasses of analytic functions. For example, for m = 0 the classes
β−USp(m,λ, µ, γ, α) and β−UCp(m,λ, µ, γ, α) are reduced to the classes β−USp(γ, α)
and β − UCp(γ, α), respectively. Someone can �nd more information about these classes
in Ca§lar [10], Deniz, Orhan and Sokol [11], Deniz, Ca§lar and Orhan [12] and Orhan,
Deniz and Raducanu [22].

1.2. De�nition. Let l = (l1, l2, ..., ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+ for all i = 1, n,
n ∈ N. We de�ne the following general integral operators

I
δ,λ,µ
n,p,l (f1, f2, ..., fn) : Anp → Ap
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I
δ,λ,µ
n,p,l (f1, f2, ..., fn) = F

δ,λ,µ
n,p,l (z),

(1.7) F
δ,λ,µ
n,p,l (z) =

∫ z

0

ptp−1
n∏
i=1

(
D
li
p,λ,µfi(t)

tp

)δi
dt

and

J
δ,λ,µ
n,p,l (g1, g2, ..., gn) : Anp → Ap

J
δ,λ,µ
n,p,l (g1, g2, ..., gn) = G

δ,λ,µ
n,p,l (z),

(1.8) G
δ,λ,µ
n,p,l (z) =

∫ z

0

ptp−1
n∏
i=1


(
D
li
p,λ,µgi(t)

)′
ptp−1


δi

dt

where fi, gi ∈ Ap for all i = 1, n and Dl
p,λ,µ is de�ned in De�nition 1.1.

1.3. Remark. We note that if l1 = l2 = ... = ln = 0, then the integral operator Fδ,λ,µn,p,l (z)

is reduced to the operator Fp(z) which was studied by Frasin (see [14]). Upon setting
p = 1 in the operator (1.7), we can obtain the integral operator Fn(z) which was studied
by Oros G.I. and Oros G.A. (see [23]). For p = 1 and l1 = l2 = ... = ln = 0 in (1.7),

the integral operator F
δ,λ,µ
n,p,l (z) is reduced to the operator Fm(z) which was studied by

Breaz D. and Breaz N. (see [6]). Observe that when p = n = 1, l1 = 0 and δ1 = δ, we
obtain the integral operator Iδ(f)(z) which was studied by Pescar and Owa (see [24]), for
δ1 = δ ∈ [0, 1] special case of the operator Iδ(f)(z) was studied by Miller, Mocanu and
Reade (see [19]). For p = n = 1, l1 = 0 and δ1 = 1 in (1.7), we have Alexander integral
operator I(f)(z) in [1].

1.4. Remark. For l1 = l2 = ... = ln = 0 in (1.8) the integral operator G
δ,λ,µ
n,p,l (z) is

reduced to the operator Gp(z) which was studied by Frasin (see [14]). For p = 1 and

l1 = l2 = ... = ln = 0 in (1.8), the integral operator Gδ,λ,µn,p,l (z) is reduced to the operator

Gδ1,δ2,...,δm(z) which was studied by Breaz D., Owa and Breaz N. (see [8]). If p = n = 1,
l1 = 0 and δ1 = δ, we obtain the integral operatorG(z) which was introduced and studied
by Pfaltzgra� (see [25]) and Kim and Merkes (see [18]).

In this paper, we consider the integral operators Fδ,λ,µn,p,l (z) and G
δ,λ,µ
n,p,l (z) de�ned by (1.7)

and (1.8), respectively, and study their properties on the classes β−USp(m,λ, µ, γ, α) and
β−UCp(m,λ, µ, γ, α). As special cases, the order of p−valently convexity and p−valently
starlikeness of the operators

∫ z
0
ptp−1

(
f(t)
tp

)δ
dt and

∫ z
0
ptp−1

(
g′t)
ptp−1

)δ
dt are given.

2. Convexity of the integral operators F
δ,λ,µ
n,p,l (z) and G

δ,λ,µ
n,p,l (z)

First, in this section we prove a su�cient condition for the integral operator Fδ,λ,µn,p,l (z)
to be p−valently convex of complex order.

2.1. Theorem. Let l = (l1, l2, ...ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
γ ∈ C− {0} such that 0 <

∑n
i=1 δi (p− αi) ≤ p, βi ≥ 0 and fi ∈ βi − USp(li, λ, µ, γ, αi)

for all i = 1, n. Then, the integral operator F
δ,λ,µ
n,p,l de�ned by (1.7) is p−valently convex

of complex order γ (γ ∈ C− {0}) and type p−
∑n
i=1 δi (p− αi), that is, Fδ,λ,µn,p,l ∈ Cp(γ, p−∑n

i=1 δi (p− αi)).
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Proof. From the de�nition (1.7), we observe that Fδ,λ,µn,p,l (z) ∈ Ap. On the other hand, it
is easy to see that

(2.1)
[
F
δ,λ,µ
n,p,l (z)

]′
= pzp−1

n∏
i=1

(
D
li
p,λ,µfi(z)

zp

)δi
.

Now we di�erentiate (2.1) logarithmically and we easily obtain

(2.2)

p+
1

γ

z
[
F
δ,λ,µ
n,p,l (z)

]′′
[
F
δ,λ,µ
n,p,l (z)

]′ + 1− p

 = p+

n∑
i=1

δi

p+
1

γ

z
(
D
li
p,λ,µfi

)′
(z)(

D
li
p,λ,µfi

)
(z)

− p


−p n∑

i=1

δi.

Then, we calculate the real part of both sides of (2.2) and obtain

Re

p+
1

γ

z
[
F
δ,λ,µ
n,p,l (z)

]′′
[
F
δ,λ,µ
n,p,l (z)

]′ + 1− p


(2.3)

=

n∑
i=1

δi Re

p+
1

γ

z
(
D
li
p,λ,µfi

)′
(z)(

D
li
p,λ,µfi

)
(z)

− p


− p

n∑
i=1

δi + p.

Since fi ∈ βi − USp(li, λ, µ, γ, αi)) for all i = 1, n from (2.3), we have

Re

p+
1

γ

z
[
F
δ,λ,µ
n,p,l (z)

]′′
[
F
δ,λ,µ
n,p,l (z)

]′ + 1− p


(2.4)

>

n∑
i=1

δiβi
|γ|

∣∣∣∣∣∣∣
z
(
D
li
p,λ,µfi

)′
(z)(

D
li
p,λ,µfi

)
(z)

− p

∣∣∣∣∣∣∣+ p−
n∑
i=1

δi (p− αi) .

Because
∑n
i=1

δiβi
|γ|

∣∣∣∣∣ z
(
D
li
p,λ,µ

fi

)′
(z)(

D
li
p,λ,µ

fi

)
(z)
− p

∣∣∣∣∣ > 0, from (2.4), we obtain

Re

p+
1

γ

z
[
F
δ,λ,µ
n,p,l (z)

]′′
[
F
δ,λ,µ
n,p,l (z)

]′ + 1− p


 > p−

n∑
i=1

δi (p− αi) .

Therefore, the operator Fδ,λ,µn,p,l (z) is p−valently convex of complex order

γ (γ ∈ C− {0}) and type p−
∑n
i=1 δi (p− αi) . The proof of Theorem 2.1 is completed.

2.2. Remark.

(1) Letting γ = 1 and li = 0 for all i = 1, n in Theorem 2.1, we obtain Theorem 2.1
in [14].

(2) Letting p = 1, γ = 1 and li = 0 for all i = 1, n in Theorem 2.1, we obtain
Theorem 1 in [4].

(3) Letting p = 1, γ = 1 and αi = li = 0 for all i = 1, n in Theorem 2.1, we obtain
Theorem 2.5 in [7].

(4) Letting p = 1, β = 0 and li = 0 for all i = 1, n in Theorem 2.1, we obtain
Theorem 1 in [3].

(5) Letting p = 1, β = 0, αi = α and li = 0 for all i = 1, n in Theorem 2.1, we
obtain Theorem 1 in [9].
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(6) Letting p = 1, β = 0, αi = 0 and li = 0 for all i = 1, n in Theorem 2.1, we
obtain Theorem 1 in [5].

Putting n = 1, l1 = 0, δ1 = δ, α1 = α, β1 = β and f1 = f in Theorem 2.1, we have

2.3. Corollary. Let δ > 0, 0 ≤ α < p, β ≥ 0, γ ∈ C − {0} and f ∈ β − USp(γ, α). If

δ ∈ (0, p� (p− α)], then
∫ z
0
ptp−1

(
f(t)
tp

)δ
dt is convex of complex order γ (γ ∈ C− {0})

and type p− δ (p− α) in U.

2.4. Theorem. Let l = (l1, l2, ..., ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
βi ≥ 0, γ ∈ C− {0} and fi ∈ βi − USp(li, λ, µ, γ, αi) for all i = 1, n. If

(2.5)

∣∣∣∣∣∣∣
z
(
D
li
p,λ,µfi

)′
(z)(

D
li
p,λ,µfi

)
(z)

− p

∣∣∣∣∣∣∣ > −
p+

∑n
i=1 δi (αi − p)∑n
i=1

δiβi
|γ|

for all i = 1, n, then the integral operator F
δ,λ,µ
n,p,l (z) de�ned by (1.7) is p−valently convex

of complex order γ (γ ∈ C− {0}).

Proof. From (2.4) and (2.5), we easily get Fδ,λ,µn,p,l (z) is p−valently convex of complex order
γ.

From Theorem 2.4, we easily get

2.5. Corollary. Let l = (l1, l2, ..., ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p, βi ≥ 0,

γ ∈ C − {0} and fi ∈ βi − USp(li, λ, µ, γ, αi) for all i = 1, n. If Dli
p,λ,µfi ∈ S∗p(σ), where

σ = p −
(
p−

∑n
i=1 δi (p− αi)

)
�
∑n
i=1

δiβi
|γ| ; 0 ≤ σ < p for all i = 1, n, then the integral

operator F
δ,λ,µ
n,p,l (z) is p−valently convex of complex order γ (γ ∈ C− {0}).

Putting n = 1, l1 = 0, δ1 = δ, α1 = α, β1 = β and f1 = f in Corollary 2.5, we have

2.6. Corollary. Let δ > 0, 0 ≤ α < p, β > 0, γ ∈ C − {0} and f ∈ S∗p(ρ) where ρ =

[δ(pβ + (p− α) |γ|)− p |γ|]�δβ; 0 ≤ ρ < p, then the integral operator
∫ z
0
ptp−1

(
f(t)
tp

)δ
dt

is p−valently convex of complex order γ (γ ∈ C− {0}) in U.

Next, we give a su�cient condition for the integral operator Gδ,λ,µn,p,l (z) to be p−valently
convex of complex order.

2.7. Theorem. Let l = (l1, l2, ...ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
γ ∈ C− {0} such that 0 <

∑n
i=1 δi (p− αi) ≤ p, βi ≥ 0 and gi ∈ βi − UCp(li, λ, µ, γ, αi)

for all i = 1, n. Then, the integral operator G
δ,λ,µ
n,p,l de�ned by (1.8) is p−valently convex

of complex order γ (γ ∈ C− {0}) and type p−
∑n
i=1 δi (p− αi), that is, Gδ,λ,µn,p,l ∈ Cp(γ, p−∑n

i=1 δi (p− αi)).

Proof. From the de�nition (1.8), we observe that Gδ,λ,µn,p,l (z) ∈ Ap. On the other hand, it
is easy to see that

(2.6)
[
G
δ,λ,µ
n,p,l (z)

]′
= pzp−1

n∏
i=1


(
D
li
p,λ,µgi(z)

)′
pzp−1


δi

.
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Now, we di�erentiate (2.6) logarithmically and then do some simple calculations, we have

Re

p+
1

γ

z
[
G
δ,λ,µ
n,p,l (z)

]′′
[
G
δ,λ,µ
n,p,l (z)

]′ + 1− p


(2.7)

=

n∑
i=1

δi Re

p+
1

γ

1 +
z
(
D
li
p,λ,µgi

)′′
(z)(

D
li
p,λ,µgi

)′
(z)

− p


− p

n∑
i=1

δi + p.

Since gi ∈ βi − UCp(li, λ, µ, γ, αi) for all i = 1, n from (2.7), we have

Re

p+
1

γ

z
[
G
δ,λ,µ
n,p,l (z)

]′′
[
G
δ,λ,µ
n,p,l (z)

]′ + 1− p


(2.8)

> p− p
n∑
i=1

δi +

n∑
i=1

δi

βi
∣∣∣∣∣∣∣
1

γ

z
(
D
li
p,λ,µgi

)′′
(z)(

D
li
p,λ,µgi

)′
(z)

+ 1− p


∣∣∣∣∣∣∣+ αi


= p−

n∑
i=1

δi (p− αi) +

n∑
i=1

δiβi
|γ|

∣∣∣∣∣∣∣
z
(
D
li
p,λ,µgi

)′′
(z)(

D
li
p,λ,µgi

)′
(z)

+1− p

∣∣∣∣∣∣∣
> p−

n∑
i=1

δi (p− αi) .

Therefore, the operator Gδ,λ,µn,p,l (z) is p−valently convex of complex order γ (γ ∈ C− {0})
and type p−

∑n
i=1 δi (p− αi) . This evidently completes the proof of Theorem 2.7.

2.8. Remark.

(1) Letting γ = 1 and li = 0 for all i = 1, n in Theorem 2.7, we obtain Theorem 3.1
in [14].

(2) Letting p = 1, β = 0 and li = 0 for all i = 1, n in Theorem 2.7, we obtain
Theorem 3 in [3].

(3) Letting p = 1, β = 0, αi = µ and li = 0 for all i = 1, n in Theorem 2.7, we
obtain Theorem 3 in [9].

(4) Letting p = 1, β = 0, αi = 0 and li = 0 for all i = 1, n in Theorem 2.7, we
obtain Theorem 2 in [5].

Putting n = 1, l1 = 0, δ1 = δ, α1 = α, β1 = β and g1 = g in Theorem 2.7, we have

2.9. Corollary. Let δ > 0, 0 ≤ α < p, β ≥ 0, γ ∈ C − {0} and g ∈ β − UCp(γ, α).

If δ ∈ (0, p� (p− α)], then
∫ z
0
ptp−1

(
g′t)
ptp−1

)δ
dt is p−valently convex of complex order

γ (γ ∈ C− {0}) and type p− δ (p− α) in U.

2.10. Theorem. Let l = (l1, l2, ..., ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
βi ≥ 0, γ ∈ C− {0} and gi ∈ βi − UCp(li, λ, µ, γ, αi) for all i = 1, n. If

(2.9)

∣∣∣∣∣∣∣
z
(
D
li
p,λ,µgi

)′′
(z)(

D
li
p,λ,µgi

)′
(z)

+1− p

∣∣∣∣∣∣∣ > −
p+

∑n
i=1 δi (αi − p)∑n
i=1

δiβi
|γ|

for all i = 1, n, then the integral operator G
δ,λ,µ
n,p,l (z) de�ned by (1.8) is p−valently convex

of complex order γ (γ ∈ C− {0}).
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Proof. From (2.8) and (2.9), we easily get Gδ,λ,µn,p,l (z) is p−valently convex of complex order
γ.

From Theorem 2.10, we easily get

2.11. Corollary. Let l = (l1, l2, ..., ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,

βi ≥ 0, γ ∈ C−{0} and gi ∈ βi −UCp(li, λ, µ, γ, αi) for all i = 1, n. If Dli
p,λ,µgi ∈ Cp(σ),

where σ = p −
(
p−

∑n
i=1 δi (p− αi)

)
�
∑n
i=1

δiβi
|γ| ; 0 ≤ σ < p for all i = 1, n, then the

integral operator G
δ,λ,µ
n,p,l (z) is p−valently convex of complex order γ (γ ∈ C− {0}).

Putting n = 1, l1 = 0, δ1 = δ, α1 = α, β1 = β and g1 = g in Corollary 2.11, we have

2.12. Corollary. Let δ > 0, 0 ≤ α < p, β > 0, γ ∈ C − {0} and g ∈ C(ρ) where ρ =

[δ(pβ + (p− α) |γ|)− p |γ|]�δβ; 0 ≤ ρ < p, then the integral operator
∫ z
0
ptp−1

(
g′t)
ptp−1

)δ
dt

is convex of complex order γ (γ ∈ C− {0}) in U.

3. Starlikeness of the integral operators F
δ,λ,µ
n,p,l (z) and G

δ,λ,µ
n,p,l (z)

In this section, we will give the su�cient conditions for the integral operators Fδ,λ,µn,p,l

and G
δ,λ,µ
n,p,l (z) to be p−valently starlike of complex order.

Let

H(U) = {f : U→ C : f analytic}

H [a, n] =
{
f ∈ H(U) : f(z) = a+ anz

n + an+1z
n+1 + ...., z ∈ U, a ∈ C, n ∈ N0

}
.

In order to prove our main results, we shall need the following lemma due to S. S. Miller
and P. T. Mocanu [20].

3.1. Lemma. Let the function ψ : C2 × U→ U satisfy

Re ψ(iρ, σ; z) ≤ 0

for all ρ, σ ∈ R, n ≥ 1 with σ ≤ −n
2

(1+ρ2). If P ∈ H[1, n] and Re ψ(P (z), zP ′(z); z) > 0
for every z ∈ U, then

Re P (z) > 0.

3.2. Lemma. Let n ∈ N, κ ∈ R, u, v ∈ C such that Im v ≤ 0, Re (u− κv) ≥ 0. Assume
the following condition

Re

{
P (z) +

zP ′(z)

u− vP (z)

}
> κ, (z ∈ U)

is satisfy such that P ∈ H [P (0), n] , P (0) ∈ R and P (0) > κ. Then,

Re P (z) > κ, (z ∈ U ) .

Proof. Firstly, we consider the function R : U→ C,

R(z) =
P (z)− κ
P (0)− κ .

Then, R(z) ∈ H [1, n]. Furthermore, since P (0)− κ > 0 and

Re

{
P (z) +

zP ′(z)

u− vP (z)

}
> κ, (z ∈ U) ,

we have

Re

{
R(z) +

zR′(z)

u− vκ− v (P (0)− κ)R(z)

}
> 0, (z ∈ U) .
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Now, we de�ne the function ψ as follows

ψ(R(z), zR′(z); z) = R(z) +
zR′(z)

u− vκ− v (P (0)− κ)R(z)
.

Thus,

Reψ(R(z), zR′(z); z) > 0.

Now, so then we can use Lemma 3.1, we must show that the following condition

Re ψ(iρ, σ; z) ≤ 0

is satis�ed for ρ ≤ 0, σ ≤ − 1+ρ2

2
and z ∈ U. Indeed, from hypothesis, we obtain

Re ψ(iρ, σ; z) = Re
σ

u− vκ− v (P (0)− κ) ρi

= Re
σ

u1 + iu2 − (v1 + iv2)κ− (v1 + iv2) (P (0)− κ) ρi

=
σ [u1 − v1κ+ v2ρ (P (0)− κ)]

[u1 − v1κ+ v2ρ (P (0)− κ)]2 + [u2 − v2κ+ v1ρ (P (0)− κ)]2
≤ 0.

Hence, from Lemma 3.1, we get Re R(z) > 0 . Moreover, from the de�nition of R(z), we
obtain

ReP (z) > κ, (z ∈ U) .

Now, we prove the following theorem using Lemma 3.2

3.3. Theorem. Let l = (l1, l2, ...ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
γ ∈ C − {0} such that 0 <

∑n
i=1 δi (p− αi) ≤ p, Im γ ≥ 0, Re γ ≤ p∑n

i=1 δi(p−αi)
,

βi ≥ 0 and fi ∈ βi − USp(li, λ, µ, γ, αi) for all i = 1, n. Then, the integral operator

F
δ,λ,µ
n,p,l de�ned by (1.7) is p−valently starlike of complex order γ (γ ∈ C− {0}) and type

p−
∑n
i=1 δi (p− αi), that is, Fδ,λ,µn,p,l ∈ S∗p(γ, p−

∑n
i=1 δi (p− αi)).

Proof. We de�ne the analytic function q : U→ C, q(0) = p as follows

q(z) = p+
1

γ

z
[
F
δ,λ,µ
n,p,l (z)

]′[
F
δ,λ,µ
n,p,l (z)

] − p
 .

Thus, we obtain

p+ γ (q(z)− p) =
z
[
F
δ,λ,µ
n,p,l (z)

]′[
F
δ,λ,µ
n,p,l (z)

]

⇒ γzq′(z)

p(1− γ) + γq(z)
= 1 +

z
[
F
δ,λ,µ
n,p,l (z)

]′′
[
F
δ,λ,µ
n,p,l (z)

]′ −z
[
F
δ,λ,µ
n,p,l (z)

]′[
F
δ,λ,µ
n,p,l (z)

]
⇒ p+ γ (q(z)− p) +

γzq′(z)

p(1− γ) + γq(z)
= 1+

z
[
F
δ,λ,µ
n,p,l (z)

]′′
[
F
δ,λ,µ
n,p,l (z)

]′
⇒ q(z) +

zq′(z)

p(1− b) + bq(z)
= p+

1

γ

1− p+
z
[
F
δ,λ,µ
n,p,l (z)

]′′
[
F
δ,λ,µ
n,p,l (z)

]′
.
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When we consider this last equality and the inequality (2.2), we can write

q(z) +
zq′(z)

p(1− γ) + γq(z)
= p+

n∑
i=1

δi

p+
1

γ

z
(
Dli
p,λ,µfi

)′
(z)

Dli
p,λ,µfi(z)

− p


− p n∑

i=1

δi.

Similarly to the proof of Theorem 2.1, it can be easly seen that

Re

{
q(z) +

zq′(z)

p(1− γ) + γq(z)

}
> p−

n∑
i=1

δi (p− αi) .

Here, q(0) = p > p −
∑n
i=1 δi (p− αi) and the function q is analytic on U. Also, when

we write κ = p −
∑n
i=1 δi (p− αi) , u = p(1 − γ) and v = −γ, we �nd Im v ≤ 0 and

Re (u− κv) ≥ 0. Hence, all the conditions of Lemma 3.1 are satis�ed and so

Re q(z) = Re

p+
1

γ

z
[
F
δ,λ,µ
n,p,l (z)

]′[
F
δ,λ,µ
n,p,l (z)

] − p

 > p−

n∑
i=1

δi (p− αi) .

Thus, the proof of the theorem is completed.

Putting n = 1, l1 = 0, δ1 = δ, α1 = α, β1 = β and f1 = f in Theorem 3.3, we have

3.4. Corollary. Let δ > 0, 0 ≤ α < p, β ≥ 0, γ ∈ C − {0} , Im γ ≥ 0, Re γ ≤ p
δ(p−α)

and f ∈ β − USp(γ, α). If δ ∈
(

0, p
p−α

]
then

∫ z
0
ptp−1

(
f(t)
tp

)δ
dt ∈ S∗p(γ, p− δ (p− α)).

From Theorem 3.3, we obtain the following result.

3.5. Theorem. Let l = (l1, l2, ...ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
γ ∈ C− {0} such that 0 <

∑n
i=1 δi (p− αi) ≤ p, Im γ ≥ 0, Re γ ≤ p∑n

i=1 δi(p−αi)
, βi ≥ 0

and fi ∈ βi − USp(li, λ, µ, γ, αi) for all i = 1, n. If the inequality (2.5) is satis�ed for

all i = 1, n, then the integral operator F
δ,λ,µ
n,p,l (z) de�ned by (1.7) is p−valently starlike of

complex order γ (γ ∈ C− {0}).

From Theorem 3.5, we get the following result.

3.6. Corollary. Let l = (l1, l2, ...ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
γ ∈ C − {0} such that 0 <

∑n
i=1 δi (p− αi) ≤ p, Im γ ≥ 0, Re γ ≤ p∑n

i=1 δi(p−αi)
,

βi ≥ 0 and fi ∈ βi − USp(li, λ, µ, γ, αi) for all i = 1, n. If D
li
p,λ,µfi ∈ S∗p(σ), where

σ = p −
(
p−

∑n
i=1 δi (p− αi)

)
�
∑n
i=1

δiβi
|γ| ; 0 ≤ σ < p for all i = 1, n, then the integral

operator F
δ,λ,µ
n,p,l (z) is p−valently starlike of complex order γ (γ ∈ C− {0}).

Next, we give a su�cient condition for the integral operator Gδ,λ,µn,p,l (z) to be p−valently
starlike of complex order.

3.7. Theorem. Let l = (l1, l2, ...ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
γ ∈ C − {0} such that 0 <

∑n
i=1 δi (p− αi) ≤ p, Im γ ≥ 0, Re γ ≤ p∑n

i=1 δi(p−αi)
,

βi ≥ 0 and fi ∈ βi − UCp(li, λ, µ, γ, αi) for all i = 1, n. Then, the integral operator

G
δ,λ,µ
n,p,l de�ned by (1.8) is p−valently starlike of complex order γ (γ ∈ C− {0}) and type

p−
∑n
i=1 δi (p− αi), that is, Gδ,λ,µn,p,l ∈ S∗p(γ, p−

∑n
i=1 δi (p− αi)).

Proof. Let us de�ne the analytic function q : U→ C given by

q(z) = p+
1

γ

z
(
G
δ,λ,µ
n,p,l (z)

)′
(
G
δ,λ,µ
n,p,l (z)

) − p

 .
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Then, we follow the same steps as in the proof of Theorem 3.3, so we omit the details
involved in this case.

Putting n = 1, l1 = 0, δ1 = δ, α1 = α, β1 = β and g1 = g in Theorem 3.7, we have

3.8. Corollary. Let δ > 0, 0 ≤ α < p, β ≥ 0, γ ∈ C − {0} , Im γ ≥ 0, Re γ ≤ p
δ(p−α)

and f ∈ β−UCp(γ, α). If δ ∈
(

0, p
p−α

]
, then

∫ z
0
ptp−1

(
g′(t)
ptp−1

)δ
dt ∈ S∗p(γ, p− δ (p− α)).

From Theorem 3.7, we obtain the following result.

3.9. Theorem. Let l = (l1, l2, ...ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
γ ∈ C− {0} such that 0 <

∑n
i=1 δi (p− αi) ≤ p, Im γ ≥ 0, Re γ ≤ p∑n

i=1 δi(p−αi)
, βi ≥ 0

and fi ∈ βi − USp(li, λ, µ, γ, αi) for all i = 1, n. If the inequality (2.9) is satis�ed for

all i = 1, n, then the integral operator G
δ,λ,µ
n,p,l (z) de�ned by (1.8) is p−valently starlike of

complex order γ (γ ∈ C− {0}).

We obtain the following corollary using Theorem 3.9.

3.10. Corollary. Let l = (l1, l2, ...ln) ∈ Nn0 , δ = (δ1, δ2, ..., δn) ∈ Rn+, 0 ≤ αi < p,
γ ∈ C − {0} such that 0 <

∑n
i=1 δi (p− αi) ≤ p, Im γ ≥ 0, Re γ ≤ p∑n

i=1 δi(p−αi)
,

βi ≥ 0 and fi ∈ βi − USp(li, λ, µ, γ, αi) for all i = 1, n. If D
li
p,λ,µfi ∈ Cp(σ), where

σ = p −
(
p−

∑n
i=1 δi (p− αi)

)
�
∑n
i=1

δiβi
|γ| ; 0 ≤ σ < p for all i = 1, n, then the integral

operator G
δ,λ,µ
n,p,l (z) is p−valently starlike of complex order γ (γ ∈ C− {0}).
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Almost conformal Ricci solituons on 3-dimensional
trans-Sasakian manifold
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Abstract

In this paper we have shown that if a 3-dimensional trans-Sasakian
manifold M admits conformal Ricci soliton (g, V, λ) and if the vector
�eld V is point wise collinear with the unit vector �eld ξ, then V is a
constant multiple of ξ. Similarly we have proved that under the same
condition an almost conformal Ricci soliton becomes conformal Ricci
soliton. We have also shown that if a 3-dimensional trans-Sasakian
manifold admits conformal gradient shrinking Ricci soliton, then the
manifold is an Einstein manifold.
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1. Introduction

In 1982 Hamilton [9] introduced the concept of Ricci �ow and proved its existence.
This concept was developed to answer Thurston's geometric conjecture which says that
each closed three manifold admits a geometric decomposition. Hamilton also [9] classi�ed
all compact manifolds with positive curvature operator in dimension four. The Ricci �ow
equation is given by

(1.1)
∂g

∂t
= −2S
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on a compact Riemannian manifold M with Riemannian metric g.

A self-similar solution to the Ricci �ow [9], [14] is called a Ricci soliton [10] if it moves
only by a one parameter family of di�eomorphism and scaling. The Ricci soliton equation
is given by

(1.2) £Xg + 2S = 2λg,

where £X is the Lie derivative, S is Ricci tensor, g is Riemannian metric, X is a vector
�eld and λ is a scalar. The Ricci soliton is said to be shrinking, steady, and expanding
according as λ is positive, zero and negetive respectively.

A. E. Fischer developed the concept of conformal Ricci �ow [7] during 2003-04 which is
a variation of the classical Ricci �ow equation that modi�es the unit volume constraint of
that equation to a scalar curvature constraint. The conformal Ricci �ow onM whereM is
considered as a smooth closed connected oriented n-manifold is de�ned by the equation [7]

(1.3)
∂g

∂t
+ 2(S +

g

n
) = −pg

and r(g) = −1,
where p is a scalar non-dynamical �eld(time dependent scalar �eld), r(g) is the scalar
curvature of the manifold and n is the dimension of manifold.

In 2015, N. Basu and A. Bhattacharyya [2] introduced the notion of conformal Ricci
soliton equation as

(1.4) £Xg + 2S = [2λ− (p+
2

n
)]g,

where λ is constant.
The equation is the generalization of the Ricci soliton equation and it also satis�es the
conformal Ricci �ow equation.

The concept of Ricci almost soliton was �rst introduced by S. Pigola, M. Rigoli, M.
Rimoldi, A. G. Setti in 2010 [12]. R. Sharma has also done excellent work in almost Ricci
soliton [13]. A Riemannian manifold (Mn, g) is an almost Ricci soliton [1], if there exist
a complete vector �eld X and a smooth soliton function λ :Mn → R satisfying,

Rij +
1

2
(Xij +Xji) = λgij ,

where Rij and Xij +Xji stand for the Ricci tensor and the Lie derivative £Xg in local
coordinates respectively. It will be called expanding, steady or shrinking, respectively, if
λ < 0, λ = 0 or λ > 0.
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We introduce the notion of almost conformal Ricci soliton by

(1.5) £Xg + 2S = [2λ− (p+
2

n
)]g.

where λ :Mn → R is a smooth function.

Now a gradient Ricci soliton on a Riemannian manifold (Mn, gij) is de�ned by [6]

(1.6) S +∇∇f = ρg,

for some constant ρ and for a smooth function f on M . f is called a potential function
of the Ricci soliton and ∇ is the Levi-Civita connection on M . In particular a gradient
shrinking Ricci soliton satis�es the equation,

S +∇∇f − 1

2τ
g = 0,

where τ = T − t and T is the maximal time of the solution.

Again for conformal Ricci soliton if the vector �eld is the gradient of a function f ,
then we call it as a conformal gradient shrinking Ricci soliton [4]. For conformal gradient
shrinking Ricci soliton the equation is

(1.7) S +∇∇f = (
1

2τ
− 2

n
− p)g.

where τ = T − t and T is the maximal time of the solution and f is the Ricci potential
function.

2. Preliminaries:

Let M be a connected almost contact metric manifold with an almost contact metric
structure (φ, ξ, η, g) where φ is a (1, 1) tensor �eld, ξ is a vector �eld, η is a 1-form and
g is the compatible Riemannian metric such that

(2.1) φ2(X) = −X + η(X)ξ, η(ξ) = 1, η ◦ φ = 0, φξ = 0,

(2.2) g(φX, φY ) = g(X,Y )− η(X)η(Y ),

(2.3) g(X,φY ) = −g(φX, Y ),

(2.4) g(X, ξ) = η(X),

for all vector �eld X,Y ∈ χ(M).
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An almost contact metric structure (φ, ξ, η, g) onM is called a trans-Sasakian structure
[11], if (M×R, J,G) belongs to the classW4 [8], where J is the almost complex structure
on M × R de�ned by J(X, f d

dt
) = (φX − fξ, η(X) d

dt
) for all vector �elds X on M and

smooth functions f on M ×R. It can be expressed by the condition [5],

(2.5) (∇Xφ)Y = α(g(X,Y )ξ − η(Y )X) + β(g(φX, Y )ξ − η(Y )φX),

for some smooth functions α, β on M and we say that the trans-Sasakian structure is of
type (α, β). From the above expression we can write

(2.6) ∇Xξ = −αφX + β(X − η(X)ξ),

(2.7) (∇Xη)Y = −αg(φX, Y ) + βg(φX, φY ),

For a 3-dimensional trans-Sasakian manifold the following relations hold:

(2.8) 2αβ + ξα = 0,

(2.9) S(X, ξ) = (2(α2 − β2)− ξβ)η(X)−Xβ − (φX)α,

S(X,Y ) = (
r

2
+ ξβ − (α2 − β2))g(X,Y )− (

r

2
+ ξβ − 3(α2 − β2))η(X)η(Y )

− (Y β + (φY )α)η(X)− (Xβ + (φX)α)η(Y ),(2.10)

where S denotes the Ricci tensor of type (0, 2), r is the scalar curvature of the manifold
M and α, β are smooth functions on M .

For α, β = constant the following relations hold:

(2.11) S(X,Y ) = (
r

2
− (α2 − β2))g(X,Y )− (

r

2
− 3(α2 − β2))η(X)η(Y ),

(2.12) S(X, ξ) = 2(α2 − β2)η(X),

(2.13) R(X,Y )ξ = (α2 − β2)(η(Y )X − η(X)Y ),

(2.14) QX = (
r

2
− (α2 − β2))X − (

r

2
− 3(α2 − β2))η(X)ξ,

where Q is the Ricci operator given by S(X,Y ) = g(QX,Y ). Again,

(£ξg)(X,Y ) = (∇ξg)(X,Y )− αg(φX, Y ) + 2βg(X,Y )− 2βη(X)η(Y )− αg(X,φY )

= 2βg(X,Y )− 2βη(X)η(Y ) [∵ g(X,φY ) + g(φX, Y ) = 0].
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Putting the above value in the conformal Ricci soliton equation (1.4) and taking n = 3
we get

S(X,Y ) =
1

2
[2λ− (p+

2

3
)]g(X,Y )− 1

2
[2βg(X,Y )− 2βη(X)η(Y )

= Ag(X,Y )− βg(X,Y ) + βη(X)η(Y ),(2.15)

where A = 1
2
[2λ− (p+ 2

3
)].

Hence we can state the following proposition.

Proposition 2.1 : If a 3-dimensional trans-Sasakian manifold admits conformal Ricci
soliton (g, ξ, λ), then the manifolds becomes an η-Einstein manifold.

Also,

(2.16) QX = AX − βX + βη(X)ξ.

Again for almost conformal Ricci soliton

S(X,Y ) = λg(X,Y )− 1

2
(p+

2

3
)g(X,Y )− βg(X,Y ) + βη(X)η(Y )

= (B + λ− β)g(X,Y ) + βη(X)η(Y ),

where B = − 1
2
(p+ 2

3
).

Thus we can state the following proposition.

Proposition 2.2 : A 3-dimensional trans-Sasakian manifold admitting almost confor-
mal Ricci soliton (g, ξ, λ) is an η-Einstein manifold.

Example of a 3-dimensional trans-Sasakian manifold:

In this section we construct an example of a 3-dimensional trans-Sasakian manifold.To
construct this, we consider the three dimensional manifold M = {(x, y, z) ∈ R3 : z 6= 0}
where (x, y, z) are the standard coordinates in R3. The vector �elds

e1 = e−z(
∂

∂x
− y ∂

∂z
), e2 = e−z

∂

∂y
, e3 =

∂

∂z

are linearly independent at each point of M. Let g be the Riemannian metric de�ned by

g(e1, e1) = g(e2, e2) = g(e3, e3) = 1,

g(e1, e2) = g(e2, e3) = g(e3, e1) = 0.

Let η be the 1-form which satis�es the relation

η(e3) = 1.

Let φ be the (1, 1) tensor �eld de�ned by φ(e1) = e2, φ(e2) = −e1, φ(e3) = 0. Then we
have

φ2(Z) = −Z + η(Z)e3,
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g(φZ, φW ) = g(Z,W )− η(Z)η(W ),

for any Z,W ∈ χ(M3). Thus for e3 = ξ, (φ, ξ, η, g) de�nes an almost contact metric
structure on M. Now, after calculating we have

[e1, e3] = e1, [e1, e2] = ye−ze2 + e−2ze3, [e2, e3] = e2.

The Riemannian connection ∇ of the metric is given by the Koszul's formula

2g(∇XY,Z) = Xg(Y,Z) + Y g(Z,X)− Zg(X,Y )

(2.17) −g(X, [Y,Z])− g(Y, [X,Z]) + g(Z, [X,Y ]).

By Koszul's formula we get

∇e1e1 = −e3,∇e2e1 = −ye−ze2 −
1

2
e−2ze3,∇e3e1 = −1

2
e−2ze2,

∇e1e2 =
1

2
e−2ze3,∇e2e2 = ye−ze1 − e3,∇e3e2 =

1

2
e−2ze1,

∇e1e3 = e1 −
1

2
e−2ze2,∇e2e3 =

1

2
e−2ze1 + e2,∇e3e3 = 0.

From the above we have found that α = 1
2
e−2z, β = 1 and it can be easily shown that

M3(φ, ξ, η, g) is a trans-Sasakian manifold.

3. Some results for conformal Ricci soliton and almost conformal

Ricci soliton on 3-dimensional trans-Sasakian manifold

A conformal Ricci soliton equation on a Riemannian manifold M is de�ned by

£V g + 2S = [2λ− (p+
2

3
)]g,

where V is a vector �eld.

Let V be pointwise co-linear with ξ i.e. V = γξ where γ is a function on 3-dimensional
trans-Sasakian manifold. Then

(£V g + 2S − [2λ− (p+
2

3
)]g)(X,Y ) = 0,

which implies

(£γξg)(X,Y ) + 2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0.

Applying the property of Lie derivative and Levi-civita connection we have

γg(∇Xξ, Y ) + (Xγ)g(ξ, Y ) + (Y γ)g(ξ,X) + γg(∇Y ξ,X) + 2S(X,Y )

−[2λ− (p+
2

3
)]g(X,Y ) = 0.
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Using (2.3) and (2.6) in the above equation we obtain

2βγg(X,Y )− 2γβη(X)η(Y ) + (Xγ)η(Y ) + (Y γ)η(X)

(3.1) +2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0.

Replacing Y by ξ and using (2.12) in (3.1) we get

(3.2) Xγ + (ξγ)η(X) + 2[2(α2 − β2)η(X)]− [2λ− (p+
2

3
)]η(X) = 0.

Again putting X = ξ in (3.2) we get

(3.3) ξγ =
1

2
[2λ− (p+

2

3
)]− 2(α2 − β2).

Using (3.3) in (3.2) we have

Xγ + (
1

2
[2λ− (p+

2

3
)]− 2(α2 − β2))η(X) + 2(2(α2 − β2)η(X))

−[2λ− (p+
2

3
)]η(X) = 0,

which implies

(3.4) Xγ =
1

2
[2λ− (p+

2

3
)]η(X)− 2(α2 − β2)η(X).

Applying exterior di�erentiation in (3.4) and considering λ as constant we have

(3.5)
1

2
[2λ− (p+

2

3
)]− 2(α2 − β2) = 0,

(since dη 6= 0).

Using (3.5) in (3.4) we have

Xγ = 0

implies γ is constant.

Hence from (3.1) we have

2βγg(X,Y )− 2γβη(X)η(Y ) + 2S(X,Y )− [2λ− (p+
2

3
)]g(X,Y ) = 0

i.e.

S(X,Y ) =
1

2
[2λ− (p+

2

3
)]g(X,Y )− βγg(X,Y ) + γβη(X)η(Y ).

Putting X = Y = ei where {ei} is orthonormal basis of the tangent space TM where
TM is a tangent bundle of M and summing over i we get,

(3.6) r =
3

2
[2λ− (p+

2

3
)]− 3βγ + γβ.

Now for conformal Ricci soliton r = −1, so putting this value in the above equation we get

(3.7) λ =
1

2
p+

2

3
βγ.
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So we can state the following theorem:

Theorem 3.1 : A 3-dimensional trans-Sasakian manifold admitting conformal Ricci soli-
ton and if V is point-wise collinear with ξ, then V is a constant multiple of ξ. Also the
value of λ = 1

2
p+ 2

3
βγ provided α, β are constants.

Again for almost conformal Ricci soliton we consider that λ is a smooth function.
Then applying exterior derivative in (3.4) we get

(3.8)
1

2
[2λ− (p+

2

3
)]− 2(α2 − β2) = 0

and

(3.9) dλ = 0.

So λ is a constant function and from (3.4) and (3.8) we get γ is constant.

Hence we can conclude the following theorem:

Theorem 3.2 : If a 3-dimensional trans-Sasakian manifold admits almost conformal
Ricci soliton and if V is point-wise collinear with ξ, then V is a constant multiple of ξ
as well as λ becomes a constant function i.e. almost conformal Ricci soliton becomes
conformal Ricci soliton.

Now, from conformal Ricci soliton equation we have

(£ξg)(X,Y ) = 2β[g(X,Y )− η(X)η(Y )].

Using (2.11) in the above equation and from (1.4) we have

2β[g(X,Y )− η(X)η(Y )] + 2[(
r

2
− (α2 − β2))g(X,Y )− (

r

2
− 3(α2 − β2))η(X)η(Y )]

−[2λ− (p+
2

3
)]g(X,Y ) = 0.

For conformal Ricci soliton we have r = −1, so the above equation becomes

[2β + 2(
−1
2
− (α2 − β2))− (2λ− (p+

2

3
))]g(X,Y )

(3.10) −[2β + 2(
−1
2
− 3(α2 − β2))]η(X)η(Y ) = 0.

Now taking X = Y = ξ in (3.10) we get

2β + 2(
−1
2
− (α2 − β2))− (2λ− (p+

2

3
))− 2β

−2(−1
2
− 3(α2 − β2)) = 0,



1387

which gives

λ =
1

2
[4(α2 − β2) + (p+

2

3
)].

Since α2 6= β2 so
(1). Suppose α2 ≥ β2, then (α + β)(α − β) > 0 which implies α always greater than β.
Then λ > 0 and the conformal Ricci soliton is shrinking.
(2). Suppose α2 < β2 and (p+ 2

3
) > 4(α2 − β2), then (α+ β)(α− β) < 0 which implies

α always less than −β. Then λ > 0 and the conformal Ricci soliton becomes shrinking.
(3). Suppose α2 < β2 and (p+ 2

3
) < 4(α2 − β2), then (α+ β)(α− β) < 0 which implies

α always less than −β. Then λ < 0 and the conformal Ricci soliton becomes expanding.

Theorem 3.3 : A 3-dimensional trans-Sasakian manifold admitting a conformal Ricci
soliton (g, ξ, λ) satis�es the following relations:
1. For α > β, the conformal Ricci soliton is shrinking.
2. For α < −β and (p+ 2

3
) > 4(α2 − β2) the conformal Ricci soliton becomes shrinking.

3. For α < −β and (p+ 2
3
) < 4(α2−β2) the conformal Ricci soliton becomes expanding.

4. Almost conformal gradient shrinking Ricci soliton on 3-dimensional

trans-Sasakian manifold

A conformal gradient shrinking Ricci soliton equation is given by

(4.1) S +∇∇f = (
1

2τ
− 2

3
− p)g.

This reduces to

(4.2) ∇YDf +QY = (
1

2τ
− 2

3
− p)Y,

where D is the gradient operator of g.
From (4.2) it follows that

∇X∇YDf +∇XQY = (
1

2τ
− 2

3
− p)∇XY.

Now,

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= (
1

2τ
− 2

3
− p)[∇XY −∇YX − [X,Y ]]−∇X(QY ) +∇Y (QX) +Q[X,Y ],

where R is the curvature tensor.
Since ∇ is Levi-Civita connection, so from the above equation we get

(4.3) R(X,Y )Df = −∇X(QY ) +∇Y (QX) +Q[X,Y ] = (∇YQ)X − (∇XQ)Y.

Again di�erentiating equation (2.14) with respect to W and then putting W = ξ we get

(∇ξQ)X =
dr(ξ)

2
(X − η(X)ξ).
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So

(4.4) g((∇ξQ)X − (∇XQ)ξ, ξ) = g(
dr(ξ)

2
(X − η(X)ξ), ξ) = 0.

Putting this value in (4.3) we get

(4.5) g(R(ξ,X)Df, ξ) = 0.

Again from (2.13) and (4.5) we obtain

(α2 − β2)(g(X,Df)− η(X)η(Df)) = 0.

Since α2 6= β2, we have from the above equation

g(X,Df) = η(X)g(Df, ξ)

which implies

(4.6) Df = (ξf)ξ.

Now from (4.2) we have

g(∇YDf,X) + g(QY,X) = (
1

2τ
− 2

3
− p)g(Y,X)

i.e.

S(X,Y )− (
1

2τ
− 2

3
− p)g(Y,X) = g(∇Y (ξf)ξ,X)

= −α(ξf)g(φY,X) + β(ξf)g(X,Y )

− β(ξf)η(Y )η(X) + Y (ξf)η(X).(4.7)

Putting X = ξ in (4.7) we get

S(X, ξ)− (
1

2τ
− 2

3
− p)η(Y ) = Y (ξf).

So

(4.8) 2(α2 − β2)η(Y )− (
1

2τ
− 2

3
− p)η(Y ) = Y (ξf).

Now from (4.7) and interchanging X,Y we obtain

S(X,Y )− (
1

2τ
− 2

3
− p)g(Y,X) = −α(ξf)g(φX, Y ) + β(ξf)g(X,Y )

− β(ξf)η(Y )η(X) +X(ξf)η(Y ).(4.9)

Adding (4.7) and (4.9) we get

2S(X,Y )− 2(
1

2τ
− 2

3
− p)g(Y,X) = 2β(ξf)g(X,Y )− 2β(ξf)η(Y )η(X)

+ (ξf)(Y η(X) +Xη(Y )).(4.10)

Putting the value of Y (ξf) in the above equation we get

QY − (
1

2τ
− 2

3
− p)Y = β(ξf)Y − β(ξf)η(Y )ξ + 2(α2 − β2)η(Y )ξ

− (
1

2τ
− 2

3
− p)η(Y )ξ.
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Hence from (4.2) we can write

∇YDf = β(ξf)[Y − η(Y )ξ] + [2(α2 − β2)− (
1

2τ
− 2

3
− p)]η(Y )ξ.

Now,

R(X,Y )Df = ∇X∇YDf −∇Y∇XDf −∇[X,Y ]Df

= ∇X(β(ξf)(Y − η(Y )ξ) + (2(α2 − β2)− (
1

2τ
− 2

3
− p))η(Y )ξ)

− ∇Y (β(ξf)(X − η(X)ξ) + (2(α2 − β2)− (
1

2τ
− 2

3
− p))η(X)ξ)

− ∇[X,Y ]Df

= 2(α2 − β2)[η(Y )∇Xξ − η(X)∇Y ξ]− β(ξf)[η(Y )∇Xξ − η(X)∇Y ξ]

− (
1

2τ
− 2

3
− p)[η(Y )∇Xξ − η(X)∇Y ξ]−∇[X,Y ]Df

+ β(ξf)[X,Y ].(4.11)

Also

∇[X,Y ]Df = β(ξf)([X,Y ]− η([X,Y ])ξ) + (2(α2 − β2)− (
1

2τ
− 2

3
− p))η([X,Y ])ξ

= β(ξf)[X,Y ]− β(ξf)∇Xη(Y )ξ + β(ξf)ξ(∇Xη)Y + β(ξf)∇Y η(X)ξ

− β(ξf)ξ(∇Y η)X + [2(α2 − β2)− (
1

2τ
− 2

3
− p)]∇Xη(Y )ξ

− [2(α2 − β2)− (
1

2τ
− 2

3
− p)]ξ(∇Xη)Y − [2(α2 − β2)− (

1

2τ

− 2

3
− p)]∇Y η(X)ξ + [2(α2 − β2)− (

1

2τ
− 2

3
− p)]ξ(∇Y η)X.(4.12)

Putting (4.12) in (4.11) and taking inner product with ξ we have

2(α2 − β2)− (
1

2τ
− 2

3
− p)− β(ξf) = 0.

From (4.8) we obtain,

β(ξf)η(Y ) = Y (ξf).(4.13)

Using (4.13) in (4.10) we have

S(X,Y )− (
1

2τ
− 2

3
− p)g(X,Y ) = β(ξf)g(X,Y ).

After contraction

(ξf) =
−1
nβ
− 1

β
(
1

2τ
− 2

3
− p) = C,

where C is a constant.

So from (4.6) we get

(4.14) Df = (ξf)ξ = Cξ

Therefore

g(Df,X) = g(Cξ,X)
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which gives

df(X) = Cη(X).

Applying exterior di�erentiation on the above relation we get
Cdη = 0 as d2f(X) = 0.

So from (4.14) we have found that f is constant as dη = 0.

Finally from (4.1) we get

S(X,Y ) = (
1

2τ
− 2

3
− p)g(X,Y )

= 2(α2 − β2)g(X,Y ).

Hence M is an Einstein manifold.

Thus we can conclude the following theorem:

Theorem 4.1 : If a 3-dimensional trans-Sasakian manifold admits conformal gradient
shrinking Ricci soliton, then the manifold is an Einstein manifold.

Acknowledgement: Authors are thankful to honorable referee for valuable sugges-
tions to improve the paper.

References

[1] A. Barros, R. Batista, E. Ribeiro Jr, Compact Almost Ricci Solitons with constant scalar

curvature are gradient, Monatsh Math(2014), Vol. 174, Isu. 1, pp. 29-39.
[2] Nirabhra Basu, Arindam Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold,
Global Journal of Advanced Research on Classical and Modern Geometries(2015), Vol. 4, Isu.
1, pp. 15-21.
[3] Bejan, Crasmareanu, Ricci solitons in manifolds with quasi-constant curvature, Publ. Math.
Debrecen(2011), Vol. 78, Isu. 1, pp. 235-243.
[4] A. Bhattacharyya, N. Basu, Some curvature identities on Gradient Shrinking Conformal

Ricci Soliton, Analele Stiinti�ce Ale Universitatii Al.I.Cuza Din Iasi (S.N) Mathematica Tomul
LXI(2015), Vol. 61, Isu. 1, pp. 245-252.
[5] D. E. Blair and J. A. Oubina, Conformal and related changes of metric on the product of

two almost contact metric manifolds, Publ.Mathematiques(1990), Vol. 34, Isu.1, pp. 199-207.
[6] X. Cao, Compact Gradient Shrinking Ricci Solitons with positive curvature operator, J.
Geom. Anal.(2007), Vol. 17, Isu. 3, pp 425-433.
[7] A. E. Fischer, An introduction to conformal Ricci �ow, class.Quantum Grav.(2004), Vol. 21,
Isu. 3, pp. S171-S218.
[8] A Gray and M. L. Hervella, The Sixteen classes of almost Hermitian manifolds and their

Linear invariants, Ann.Mat.Pura Appl.(1980), Vol. 123, Isu.4, pp. 35-58.
[9] R. S. Hamilton, Three Manifold with positive Ricci curvature, J.Di�erential Geom.(1982),
Vol. 17, Isu.2, pp. 255-306.
[10] R. S. Hamilton, The Ricci �ow on surfaces, Contemporary Mathematics(1988), Vol. 71, pp.
237-261.
[11] J. A. Oubina, New Classes of almost Contact metric structures, Publ.Math.Debrecen(1985),
Vol. 32, Isu. 4, pp. 187-193.



1391

[12] S. Pigola, M. Rigoli, M. Rimoldi, A. G. Setti, Ricci almost solitons, arXiv:1003.2945v1,
(2010).
[13] Ramesh Sharma, Almost Ricci solitons and K-contact geometry, Monatsh Math (2014), Vol.
175, Isu. 4, pp. 621-628.
[14] Peter Topping, Lecture on the Ricci Flow, Cambridge University Press(2006).
[15] M. M. Tripathi, Ricci solitons in contact metric manifolds, arXiv:0801,4222v1, [mathDG],
(2008).
[16] M. Turan, U. C. De, A. Yildiz,Ricci solitons and gradient Ricci solitons in three-dimensional
trans-Sasakian manifolds, Filomat(2012), Vol. 26, Isu. 2, pp. 363-370.





Hacettepe Journal of Mathematics and Statistics
Volume 45 (5) (2016), 1393 � 1410

Numerical solution of linear integro-di�erential
equation by using modi�ed Haar wavelets

Fernane Khaireddine∗† and Ellaggoune Fateh ‡

Abstract

In this paper, we introduce a numerical method for solving linear Fred-
holm integro-di�erential equations of the �rst order. To solve these
equations, we consider the equation solution approximately from ratio-
nalized Haar (RH) functions.
The numerical solution of a linear integro-di�erential equation reduces
to solving a linear system of algebraic equations. Also, Some numerical
examples are presented to illustrate the e�ciency of the method.
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1. Introduction

Some important problems in science and engineering can usually be reduced to a
system of integral and integro-di�erential equations. Integro-di�erential equations have
attracted much attention and solving such equations has been one of the interesting
tasks for mathematicians. Several methods have been proposed for numerical solution
of these equations (see, e.g., [12]). One technique is the collocation method; of numer-
ous research papers about this approach we cite here ([6], [18]). Since 1991 the wavelet
method has been applied to solving integral equations. Various wavelet bases have been
employed. In addition to the conventional Daubechies wavelets [12], the Hermite-type
trigonometric wavelets [8], linear B-splines [2], Walsh functions [9], Cohen [8] and Fari-
borzi [10] wavelets have been used. These solutions are often quite complicated, therefore
simpli�cations are welcome. One possibility is to make use of Haar wavelets, which are
mathematically the simplest wavelets. For linear integral equations this approach has
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been realized in ([5], [13]). In this paper we examine the rate of convergence of the mod-
i�ed rationalized method using Haar functions for solving Fredholm integro-Di�erential
equations combined with �nite di�erence methods.

Solving the algebraic system obtained by the (RH) functions method allows one to
obtain �rst derivative approximations using a central di�erence scheme. We apply the
proposed method on some test problems to show its accuracy and e�ciency. Also, the
error evaluation of this method is presented. Before starting, let us recall some de�nitions.

1.1. De�nition. ([5]) The Haar wavelet is the function de�ned on the real line R as:

(1.1) H(t) =


1, 0 ≤ t < 1

2
,

−1, 1
2
≤ t < 1,

0, otherwise.

The Haar waveletH(t) can be used to de�ne a sequence of one-dimensional (RH)functions
on [0, 1) as follows:

1.2. De�nition. ([5]) The (RH)functions hn(t), for n = 2i + j with i ∈ Z and j =
0, 1, . . . , 2i−1, are the functions de�ned on the interval [0, 1) as:

(1.2) hn(t) = H(2nt− j)|[0,1)

Also, we de�ne h0(t) = 1 for all t ∈ [0, 1).

In Eq.(1.2), are the orthogonal set of rationalized Haar functions and can be de�ned
on the interval [0, 1) as [17]:

(1.3) RH(r, t) = hr(t) =


1, if J1 ≤ t < J( 1

2
),

−1, if J( 1
2
) ≤ t < J0,

0, otherwise.

where, Ju =
j − u

2i
, u = 0,

1

2
, 1.

The value of r is de�ned by two parameters i and j as:

r = 2i + j − 1, i = 0, 1, 2 . . . ., j = 1, 2, . . . ., 2i

h0(t) is de�ned for i = j = 0 and given by:

(1.4) h0(t) = 1, 0 ≤ t < 1

h0(t) is also included to make this set complete. The orthogonality property is given
by:

(1.5)

∫ 1

0

RH(r, t)RH(v, t)dt =

{
2−i, r = v
0 r 6= v

where

v = 2n +m− 1, n = 0, 1, 2, 3, . . . , m = 1, 2, 3, . . . , 2n
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2. Function Approximation

Any function f(t) de�ned over the interval [0, 1), which is L2([0, 1)), can be expanded
in (RH) functions as([23]);

(2.1) f(t) =

+∞∑
r=0

αrRH(r, t), r = 0, 1, 2, . . . ..

where the (RH) function coe�cients αr are given by:

(2.2) αr =
〈f(t), RH(r, t)〉
〈RH(r, t), RH(r, t)〉 = 2i

∫ 1

0

f(t)RH(r, t)dt, r = 0, 1, 2, . . .

with r = 2j + i− 1, i = 0, 1, 2, 3, . . . , j = 1, 2, 3, . . . , 2n and r = 0 for i = j = 0.
Usually, the series expansion of Eq. (2.1) contains in�nite terms. If f(t) is piecewise

constant by itself, or may be approximated as piecewise constant during each subinterval,
then Eq. (2.1) will be terminated at �nite terms. Otherwise, it is truncated up to its
�rst m terms as:

(2.3) f(t) ≈
k−1∑
r=0

arRH(r, t) = ATφ(t)

where k = 2α+1, and α = 0, 1, 2, 3, . . ..
The (RH) function coe�cients vector φ(t) and (RH) functions vector h(t) are de�ned

as;

(2.4) A = [a0, a1, a2, . . . , ak−1]T

and

(2.5) φ(t) = [h0, h1, h3, ....., hk−1]T

where

(2.6) hr(t) = RH(r, t), r = 0, 1, 2, . . . , k − 1

Babolian et al. proved in [21] that:

‖f(t) −
k−1∑
r=0

arRH(r, t) ‖2L2 == ‖
+∞∑
r=k

arhr(t) ‖2L2

≤
+∞∑
r=k

|ar|2‖hr(t) ‖2L2

=

+∞∑
r=k

|ar|2

(2.7) ∼
+∞∑
r=k

2−r ∼ 2−k = O(2−k) ≤ C2−k
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where C is a constant of integration.
Now, let k(t, s) be a function of two independent variables de�ned for t ∈ [0, 1) and

s ∈ [0, 1). Then k(t, s) can be expanded in (RH) functions as:

(2.8) k(t, s) =

m−1∑
u=0

m−1∑
v=0

huvhv(t)hu(s)

In Eq. (2.8) huv, for u = 0, 1, 2, ..,m− 1 and v = 0, 1, 2, ...,m− 1, is given as:

(2.9) huv = 2i+q
∫ 1

0

∫ 1

0

k(s, t)hv(t)hu(s)dtds

where
u = 2i + j, i ≥ 0 and 0 ≤ j < 2iv = 2q + r, q ≥ 0 and 0 ≤ r < 2q hence we have

(2.10) k(t, s) = φT (t)Hφ(s)

where

(2.11) H = (Φ̂−1
k×k)T ĤΦ̂−1

k×k

with

(2.12) Ĥ = (huv)Tk×k

Where Ĥ is an k × k matrix such that:

(2.13) hij =
〈RH(i, t), 〈k(t, s), RH(j, s)〉〉

〈RH(i, t), RH(i, t)〉〈RH(j, t), RH(j, t)〉
Take the Newton-Côtes nodes as:

(2.14) ti =
2i− 1

2k
, i = 1, 2, .., k

(2.15) ĥlp = k(
2l − 1

2k
,

2p− 1

2k
), p, l = 1, 2, ...., k.

2.1. Operational matrix of integration. Discrete Haar functions of order k repre-
sented by 2k × 2k matrix Φ̂k×k, in the sequency ordering are given by the following
recurrence relation ([23]):

(2.16) Φ̂k×k =

{
Φ̂ k

2
× k

2
⊗[1 1]

I k
2
× k

2
⊗[1 −1]

}
(2.17) Φ1×1 = [1]

where I k
2
× k

2
is the identity matrix of dimension k and ⊗ is the Kronecker product.

The integration of (RH) functions can be expanded into Haar series with Haar coef-
�cient matrix P as follows:
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(2.18)

∫ 1

0

tφ(x)dx = Pφ(t)

The k× k square matrix P = Pk is called the operational matrix of integration and is
given in [7] as:

(2.19) Pk =
1

2k

(
2kP k

2
−Φ̂ k

2

−Φ̂ k
2

0

)

where Φ̂−1
1 = [1], P1 = [

1

2
], Φ̂k is given by Eq. (2.16) and

(2.20) Φ̂−1
k =

1

k
Φ̂Tk diag

1, 1, 2, 2, 22, .., 22︸ ︷︷ ︸
22

, ...., 2α−1, .., 2α−1︸ ︷︷ ︸
2α−1


Also, the integration of the cross-product of two (RH) function vector is:

(2.21)

∫ 1

0

φ(t)φT (t)dt = D

where D is a diagonal matrix given by:

(2.22) D = diag

1, 1, 2, 2, 22, .., 22︸ ︷︷ ︸
22

, ...., 2α−1, .., 2α−1︸ ︷︷ ︸
2α−1


2.2. The product operational matrix. ([23])

Let the product of φ(t) and φT (t) be called the (RH) product matrix ψk×k(t). That
is:

(2.23) φ(t)φT (t) = ψk×k(t)

The basic multiplication properties of (RH) functions are as:

(2.24) h0(t)hi(t) = hi(t ), i = 0, 1, . . . , m− 1

and for i < j, we have

(2.25) hi(t)hj(t) =


hj(t), if hj occurs during the positive half-wave of hi
−hj(t), if hj occurs during the negative half-wave of hi

0 otherwise.

Also, the square of any (RH) functions is a block-pulse, with magnitude unity during
both the positive and negative half-waves of (RH) functions.

For notation simpli�cation, let us de�ne:

(2.26) φ̂a(t) = [h0(t), . . . , hk/2−1(t)]T

(2.27) φ̂b(t) = [hk/2(t), . . . , hk−1(t)]T
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The matrix ψk×k(t) in Eq. (2.23) can be derived easily as follows from ([7]):

(2.28) ψk×k(t) =

[
ψk/2(t) Dk/2diag[φ̂b(t)]

diag[φ̂b(t)]D
T
k/2 diαg[D−1

k/2φ̂a(t)]

]
where

(2.29) ψ1(t) = [h0(t)]

With the above recursive formulas, we can evaluate ψk(t) for any k = 2α, where α is
a positive integer. Furthermore, by multiplying the matrix ψk(t) in Eq. (2.23) by the
vector A in Eq. (2.3) we obtain:

(2.30) ψk(t)A = Ãkφ(t)

Where Ãk is a k × k given by [7]:

(2.31) Ãk =

[
Ãk/2(t) Dk/2diag[c̃b]
diag[c̃b]D

−1
k/2(t) diag[c̃Tb Dk/2]

]
where C1 = c0, and

(2.32) c̃a = [c0, . . . , ck/2−1]T

(2.33) c̃b = [ck/2, . . . , ck−1]T

3. Application of HAAR wavelet method

3.1. Solution of the Linear Fredholm Integro-Di�erential Equation. Consider
the linear Fredholm integro-di�erential equation given by:

(3.1)

{
q(t)y′(t) =

∫ 1

0
k(t, s)y(s)ds + r(t)y(t) + x(t)

y(0) = y0

where the functions x, q, r ∈ L2([0, 1)), the kernel k ∈ L2([0, 1) × [0, 1)) are known
and y(t) is the unknown function to be determined.

We approximate x, q, r, y′ and k using Haar wavelet space as follows:

(3.2)



y(t) = Y Tφ(t) = φT (t)Y
y′(t) = Y ′Tφ(t) = φT (t)Y ′

y(0) = Y T0 φ(t) = φT (t)Y0

x(t) = XTφ(t) = φT (t)X
k(t, s) = ψT (t)Kψ(s) = ψT (s)KTψ(t)
r(t) = RTφ(t) = φT (t)R
q(t) = QTφ(t) = φT (t)Q

where φ(t) is given by Eq. (2.5) and Y is an unknown m× 1 vector.
k is a known m×m dimensional matrix given by Eq. (2.8) and X is a known m× 1

vector given by Eq. (2.3).
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Substituting Eq. (3.2) into (3.1) we have:

QTφ(t)φT (t)Y ′ =

∫ t

0

φT (t)Hφ(s)φT (s)(PTY ′ + Y0)ds

+RTφ(t)φT (t)(PTY ′ + Y0) +XTφ(t)(3.3)

we have φ(t)φT (t) = ψk×k(t)

QTψk×k(t)Y ′ =

∫ t

0

φT (t)Hψk×k(s)(PTY ′ + Y0)ds(3.4)

+RTψk×k(t)(PTY ′ + Y0) +XTφ(t)(3.5)

QTψk×k(t)Y ′ = φT (t)H

∫ t

0

ψk×k(s)(PTY ′ + Y0)ds(3.6)

+RTψk×k(t)(PTY ′ + Y0) +XTφ(t)(3.7)

by Eq. (2.21) and by Eq. (2.23), we have QTψk×k(t) = ψk×k(t)Q = Q̃φ(t)

(3.8) φT Q̃Y ′ = φT (t)HD(PTY ′ + Y0) + φT (t)R̃(PTY ′ + Y0) + φT (t)X

or

(3.9) (Q̃ −HDPT −RPT )Y ′ = HDPY0 + R̃Y0 +X

By solving this linear system we can obtain the vector Y ′. Thus,

(3.10) y
′
(t) = Y ′Tφ(t) = φT (t)Y ′

Eq. (3.9) can be solved for the unknown vector Y ′.
The numerical solution yk is obtained by using �nite di�erences formulas to approxi-

mate the �rst time derivative. In general, the �rst order derivative of second order error
central di�erence formula can be derived from the Taylor series expansion as follows:

The Algorithm

Step 1:

Put h =
1

k
, k ∈ N, , y(0) = y0 (initial condition is given)

Step 2:

Set ti = ih, with t0 = 0 and tk = 1, i = 0, 1, . . . , k.
Step 3:

for i = 1, 2, . . . ., k − 1

(3.11) Y ′(ti) ≈
Y (ti+1)− Y (ti−1)

2h

for i = k

(3.12) Y ′(ti) ≈
3Y (ti)− 4Y (ti−1) + Y (ti−2)

2h

Use step 1 and step 2, 3 to �nd the approximate value of yk. Where h ≈ 1

k
is interval

length between nodes.
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4. Numerical Examples

In this section, we consider three integro-di�erential equations. We apply the system
of equations in (3.8) and (3.9-3.10). The programs have been provided by MATLAB

7.8.
The L2, L∞ error and rate of convergence are de�ned to be, respectively:

(4.1) e2 = ‖yk(t)− yex(t)‖2 = (

∫ 1

0

(yk(t)− yex(t))2dx)
1
2

(4.2) e∞ = max
1≤i≤2M

|yk(ti)− yex(ti)|

(4.3) ρ2,∞ =
log[e2,∞( k

2
)/e2,∞(k)]

log(2)

where yex(t) is the exact solution and yk(t) is the approximate solution obtained by
Eq. (3.11-3.12).

4.1. Example. Consider the following linear Fredholm integro-di�erential equation:

y′(t) =

∫ 1

0

etsy(s)ds+ y(t) +
1− et+1

1 + t
,(4.4)

with initial condition y(0) = 1.
The exact solution is as follows: y(t) = et.

The numerical results are shown in table (1) and in �gures (1, 2). Table (1) shows the
behaviour of the error for the norm L2 and norm L∞ in function of the parameter of
discretization h for di�erent values of k. Note that as h approaches zero, the numerical
solution converges to the analytical solution y(t).

k L2 L∞

8 8.6353e− 002 5.4116e− 002

16 2.9590e− 002 1.4152e− 002

32 1.0405e− 002 3.8126e− 003

64 3.6778e− 003 9.9140e− 004

128 1.3009e− 003 2.5290e− 004

256 4.6012e− 004 6.3875e− 005

512 1.6271e− 004 1.6051e− 005

1024 5.7535e− 005 4.0231e− 006

2048 2.0343e− 005 1.0071e− 006

4096 7.1925e− 006 2.5193e− 007

Convergence rate 2.8284 3.9975

Table 1. The errors estimates L2, L∞ and convergence rates ρ2,∞
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Figure 1. Comparison between approximate solution yk and exact
solution yex
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Figure 2. The errors L2 and L∞ with di�erent values of k.

We have also calculated the experimental rate of convergence ρ2,∞. We notice from
Table (1) that the convergence rates are 2.8284 in L2 norm and 3.9975 in norm L∞,
which is approximately 2

√
2 and 4 respectively.

4.2. Example. Consider the following linear Fredholm integro-di�erential equation:

y′(t) = 1− 1

3
t +

∫ 1

0

tsy(s)ds(4.5)

with initial condition y(0) = 0.
The exact solution is as follows: y(t) = t.
The numerical results are shown in table (2) and in �gures (3, 4). Table (2) shows

the behaviour of the error for the norm L2 and norm L∞ in function of the parameter of
discretization h for di�erent values of k. Note that as h approaches zero, the numerical
solution converges to the analytical solution y(t).

k L2 L∞

8 9.2671e− 004 6.4523e− 004

16 4.7431e− 004 2.1068e− 004

32 1.1754e− 004 4.5027e− 005

64 4.1585e− 005 1.1443e− 005

128 1.4705e− 005 2.8836e− 006

256 5.1991e− 006 7.2377e− 007

512 1.8382e− 006 1.8130e− 007

1024 6.4990e− 007 4.5369e− 008

2048 2.2977e− 007 1.1348e− 008

4096 8.1237e− 008 2.8376e− 009

Convergence rate 2.8284 3.9992

Table 2. The errors estimates L2, L∞ and convergence rates ρ2,∞
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Figure 4. The errors L2 and L∞ with di�erent values of k.

We have also calculated the experimental rate of convergence ρ2,∞. We notice from
Table (2) that the convergence rates are 2.8284 in L2 norm and 3.9975 in norm L∞,
which is approximately 2

√
2 and 4 respectively.

4.3. Example. Consider the following linear Fredholm integro-di�erential equation:

y′(t) =

∫ 1

0

sin(4πt+ 2πs)y(s)ds+ y(t)− cos(2πt)− 2π sin(2πt)− 1

2
sin(4πx),(4.6)

with initial condition y(0) = 1.
The exact solution is: y(t) = cos(2πt). The numerical results are shown in Table (3)

and in �gures (5, 6). Table (3) shows the behaviour of the error for the norm L2 and
norm L∞ in function of the parameter of discretization h for di�erent values of k. Note
that as h approaches zero, the numerical solution converges to the analytical solution
y(t).

k L2 L∞

8 4.9567e-001 3.0091e-001

16 1.7633e-001 7.5816e-002

32 6.2562e-002 1.8990e-002

64 2.2160e-002 4.7500e-003

128 7.8420e-003 1.1877e-003

256 2.7739e-003 2.9696e-004

512 9.8094e-004 7.4244e-005

1024 3.4686e-004 1.8561e-005

2048 1.2264e-004 4.6402e-006

4096 4.3361e-005 1.1601e-006

Convergence rate 2.8284 3.9992

Table 3. The errors estimates L2, L∞ and convergence rates ρ2,∞
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Figure 6. The errors L2 and L∞ with di�erent values of k.

We have also calculated the experimental rate of convergence ρ2,∞. We notice from
Table (3) that the convergence rates are 2.8284 in L2 norm and 3.9975 in norm L∞,
which is approximately 2

√
2 and 4 respectively.

4.4. Example. Consider the Fredholm integral equation of the second kind:

y′(t) =
1

(log2)2

∫ 1

0

(
t

1 + s
)y(s)ds+ y(t) − 1

2
t +

1

1 + t
− log(1 + t)(4.7)

with initial condition: y(0) = 0. The exact solution is: y(t) = log(1+t). The numerical
results are shown in Table (4) and in �gures (7, 8). Table (4) shows the behaviour of the
error for the norm L2 and norm L∞ in function of the parameter of discretization h for
di�erent values of k. Note that as h approaches zero, the numerical solution converges
to the analytical solution y(t).

k L2 L∞

8 1.0262e-002 6.3139e-003

16 4.0064e-003 1.8118e-003

32 1.4848e-003 4.8413e-004

64 5.3714e-004 1.2506e-004

128 1.9207e-004 3.1777e-005

256 6.8289e-005 8.0088e-006

512 2.4211e-005 2.0103e-006

1024 8.5720e-006 5.0359e-007

2048 3.0328e-006 1.2602e-007

4096 1.0726e-006 3.1522e-008

Convergence rate 2.8284 3.9992

Table 4. The errors estimates L2, L∞ and convergence rates ρ2,∞
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Figure 8. The errors L2 and L∞ with di�erent values of k.

We have also calculated the experimental rate of convergence ρ2,∞. We notice from
Table (4) that the convergence rates are 2.8284 in L2 norm and 3.9975 in norm L∞,
which is approximately 2

√
2 and 4 respectively.

5. CONCLUSION

The proposed method is a powerful procedure for solving linear Fredholm integro-
di�erential. The examples analyzed illustrate the e�ciency and reliability of the method
presented and show that the method is very simple and e�ective. The obtained numer-
ical solutions are very accurate, in comparison with the exact solutions. Results also
indicate that the convergence rate is fast, and lower order approximations can achieve
high accuracy.
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Abstract

This paper deals with the existence of extremal solutions for nonlinear
fractional integro-di�erential equations with advanced arguments. Our
analysis rely on monotone iterative method based on upper and lower
solutions. Also, we give an illustrative example in order to indicate the
validity of our assumptions.
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1. Introduction

Fractional calculus is a branch of mathematical analysis, that provides integrals and
derivatives of any arbitrary order and due to their multiple applications in many areas
of science and engineering has grown extensively. [1, 3, 4, 7, 8, 9, 10, 11, 14, 15, 16, 17].
The monotone iterative method based on upper and lower solutions is a fruitful tools that
provides an e�cient mechanism to prove the existence results for nonlinear di�erential
problems. We refer the reader to the book [5] and recent papers [2, 6, 12, 13, 18, 19, 20,
21, 22].
As far as we know, few authors consider the existence of extremal solutions for nonlinear
Riemann-Liouville fractional integro-di�erential equations with advanced arguments. So
this paper is devoted to study of the following nonlinear boundary value problem:{

(Dαx(t))′ = f(t, x(t), Dαx(t), Dβx(t), Tx(t), Sx(t)), t ∈ J := [0, T ],

Dαx(0) = x∗, t1−αx(t)|t=0 = 0, 0 < β ≤ α ≤ 1,
(1.1)
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†Corresponding Author.
‡S. Mansour Vaezpour, Email: vaez@aut.ac.ir
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where f ∈ C(J × R5,R),

(Tx)(t) =

∫ t

0

k(t, s)x(s)ds, (Sx)(t) =

∫ T

0

h(t, s)x(s)ds,

k(t, s) ∈ C[D,R+], h(t, s) ∈ C[[0, T ]2,R+], D = {(t, s) ∈ R2|0 ≤ s ≤ t ≤ T} and Dα, Dβ

are the Riemann-Liouville fractional derivatives.
The innovation of this study is that the nonlinear term f involve unknown function
x(t) and it's Riemann-Liouville fractional derivatives with di�erent orders and integral
operators Tx, Sx. Therefore, from this point of view, we generalize some recent works.
Moreover, with a suitable choice of upper and lower solutions and condition on function
f , we obtain the existence of extremal solutions and also present iterative sequences
which are convergent to them.
This paper is organized as follows: in section 2, some facts and results about fractional
calculus are given, also we consider the existence of the extremal solutions for �rst order
nonlinear di�erential equation, while in spire of [20] we prove the main result in section
3 and we conclude this paper by considering an example in section 4.

2. Preliminaries and some lemmas

In this section, we present some de�nitions and results which will be needed later.

2.1. De�nition. ([4]) The Riemann-Liouville fractional integral of order α > 0 of a
function f : (0,∞)→ R is de�ned by

Iαf(t) =
1

Γ(α)

∫ t

0

(t− s)α−1f(s)ds, t > 0,

provided that the right-hand side is pointwise de�ned.

2.2. De�nition. ([4]) The Riemann-Liouville fractional derivative of order α > 0 of a
continuous function f : (0,∞)→ R is de�ned by

Dαf(t) =
1

Γ(n− α)
(
d

dt
)n
∫ t

0

(t− s)n−α−1f(s)ds t > 0,

where n = [α] + 1, provided that the right-hand side is pointwise de�ned. In particular,

for α = n, Dnf(t) = f (n)(t).

1. Remark. The following properties are well known:

DαIαf(t) = f(t), α > 0, f(t) ∈ L1(0,∞),
DβIαf(t) = Iα−βf(t), α > β > 0, f(t) ∈ L1(0,∞).

2.1. Lemma. ([4]) Let Re(α) > 0, n = [Re(α)] + 1 and let fn−α(t) = In−αf(t) be the
fractional integral of order n−α. If f(t) ∈ L1(0, T ) and fn−α ∈ ACn[0, T ], then we have
the following equality

IαDαf(t) = f(t)−
n∑
i=1

f
(n−i)
n−α (0)

Γ(α− i+ 1)
tα−i.

2.2. Lemma. The nonlinear fractional di�erential equation (1.1) is equivalent to the
following IVP:{

u′(t) = f(t, Iαu(t), u(t), Iα−βu(t), T1u(t), S1u(t)), t ∈ J,
u(0) = x∗, 0 < β ≤ α ≤ 1,

(2.1)
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where

T1u(t) =

∫ t

0

k1(t, s)u(s)ds, S1u(t) =

∫ T

0

h1(t, s)u(s)ds,

k1(t, s) =

∫ t

s

(τ − s)α−1k(t, τ)

Γ(α)
dτ, h1(t, s) =

∫ T

s

(τ − s)α−1h(t, τ)

Γ(α)
dτ.

Proof. Take Dαx(t) = u(t) in (1.1), taking into account that t1−αx(t)|t=0 = 0, we get

x(t) = Iαu(t) =
1

Γ(α)

∫ t

0

(t− τ)α−1u(τ)dτ,

also

Tx(t) = T (Iαu(t)) =

∫ t

0

k(t, s)(Iαu(t))t=sds

=

∫ t

0

k(t, s)
(∫ s

0

(s− τ)α−1u(τ)

Γ(α)
dτ
)
ds

=

∫ t

0

(∫ t

τ

(s− τ)α−1k(t, s)

Γ(α)
ds
)
u(τ)dτ

=

∫ t

0

(∫ t

s

(τ − s)α−1k(t, τ)

Γ(α)
dτ
)
u(s)ds

=

∫ t

0

k1(t, s)u(s)ds.

The same process can be repeated for S. So the proof is completed. �

Presently, we prove a comparison result for the �rst order initial value problem (2.1).

2.3. Lemma. Let w ∈ C1(J,R) satisfy the relations{
w′(t) ≥ −KLαw(t)− Lw(t)−MLα−βw(t)−NT1w(t)− PS1w(t),

w(0) ≥ 0, 0 < β ≤ α ≤ 1,
(2.2)

where K,L,M,N, P ≥ 0 are constants and Lαw(t) =
∫ t

0

(t−s)α−1w(s)
Γ(α)

ds. If∫ T

0

[ Ktα

Γ(α+ 1)
+ L+

Mtα−β

Γ(α− β + 1)
+N

∫ t

0

k1(t, s)ds(2.3)

+ P

∫ T

0

h1(t, s)ds
]
dt < 1.

Then w(t) ≥ 0, ∀t ∈ J.

Proof. Suppose w(t) ≥ 0 is not true, then there exists a t0 ∈ (0, T ] such that w(t0) < 0.
Let max{w(t) : 0 ≤ t ≤ t0} = λ, then λ ≥ 0.
If λ = 0, the proof is similar to Lemma (2.1) of [20].
If λ > 0, then there exists a t1 ∈ [0, t0] such that w(t1) = λ > 0. From (2.2), we have

w′(t) ≥− λ
[ Ktα

Γ(α+ 1)
+ L+

Mtα−β

Γ(α− β + 1)

+N

∫ t

0

k1(t, s)ds+ P

∫ T

0

h1(t, s)ds
]
, ∀t ∈ [0, t0].
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Thus, we have

w(t0) = w(t1) +

∫ t0

t1

w′(t)dt

≥ λ− λ
∫ T

0

[ Ktα

Γ(α+ 1)
+ L+

Mtα−β

Γ(α− β + 1)
+N

∫ t

0

k1(t, s)ds

+ P

∫ T

0

h1(t, s)ds
]
dt

= λ
(

1−
∫ T

0

[ Ktα

Γ(α+ 1)
+ L+

Mtα−β

Γ(α− β + 1)
+N

∫ t

0

k1(t, s)ds

+ P

∫ T

0

h1(t, s)ds
]
dt
)
.

Then, by w(t0) < 0, we get

∫ T

0

[ Ktα

Γ(α+ 1)
+ L+

Mtα−β

Γ(α− β + 1)
+N

∫ t

0

k1(t, s)ds

+ P

∫ T

0

h1(t, s)ds
]
dt > 1,

which is contradiction. �

2.4. Lemma. If (2.3) holds. Then the linear problem

{
u′(t) = g(t)−KIαu(t)− Lu(t)−MLα−βu(t)−NT1u(t)− PS1u(t),

u(0) = x∗, g ∈ C(J,R), 0 < β ≤ α ≤ 1,
(2.4)

has a unique solution u∗ ∈ C1(J,R).

Proof. We know that, u(t) ∈ C1(J,R) is a solution of (2.4) if and only if u(t) ∈ C(J,R)
is a solution of the following integral equation

u(t) = x∗e−
∫ t
0 Lds +

∫ t

0

e−
∫ t
s Ldτ

(
g(s)−KIαu(s)−MIα−βu(s)

−NT1u(s)− PS1u(s)
)
ds

= Au(t).
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For any u, v ∈ C(J,R), we show that A is a contraction operator.

|Au(t)−Av(t)| =

∣∣∣∣∣
∫ t

0

eL(s−t)
[
g(s)−KIαu(s)−MIα−βu(s)−NT1u(s)− PS1u(s)ds

]
−
∫ t

0

eL(s−t)
[
g(s)−KIαv(s)−MIα−βv(s)−NT1v(s)− PS1v(s)

]
ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ t

0

eL(s−t)
[
K(Iα(v − u)(s)) +M(Iα−β(v − u)(s)) +N(T1(v − u)(s))

+ P (S1(v − u)(s))
]
ds

∣∣∣∣∣
≤
∫ T

0

∣∣∣∣∣K(Iα(v − u)(s)) +M(Iα−β(v − u)(s)) +N(T1(v − u)(s))

+ P (S1(v − u)(s))

∣∣∣∣∣ds
≤
∫ T

0

[ Ksα

Γ(α+ 1)
+

Msα−β

Γ(α− β + 1)
+N

∫ t

0

k1(t, s)ds

+ P

∫ T

0

h1(t, s)ds
]
ds||u− v||.

Therefore, by condition (2.3), it follows

||Au−Av|| < ||u− v||.

Thus, by Banach contraction principle A has a unique �xed point u∗, which is unique
solution of (2.4). �

2.1. Theorem. Let the following assumptions hold:

• (H1) There exist u0, v0 ∈ C1(J,R) satisfying u0(t) ≤ v0(t), ∀t ∈ J,{
u′0(t) ≤ f(t, Iαu0(t), u0(t), Iα−βu0(t), T1u0(t), S1u0(t)), t ∈ J,
u0(0) ≤ x∗, 0 < β ≤ α ≤ 1,

(2.5)

and v0 satis�es inverse inequalities of (2.5).
• (H2) There exist constants K,L,M,N, P ≥ 0 which satisfy condition (2.3) and

f(t, x, y, z, v, w)− f(t, x̄, ȳ, z̄, v̄, w̄) ≥ −K(x− x̄)− L(y − ȳ)−M(z − z̄)
−N(u− ū)− P (w − w̄).

where Iαu0(t) ≤ x̄ ≤ x ≤ Iαv0(t), u0(t) ≤ ȳ ≤ y ≤ v0(t), Iα−βu0(t) ≤ z̄ ≤ z ≤
Iα−βv0(t), T1u0(t) ≤ v̄ ≤ v ≤ T1v0(t), S1u0(t) ≤ w̄ ≤ w ≤ S1v0(t) ∀t ∈ J .

Then there exist monotone iterative sequences {un}, {vn} ⊂ [u0, v0] which converge
uniformly to the extremal solutions u∗, v∗ of (2.1), respectively, where {un}, {vn} are
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de�ned by

un(t) = x∗e−
∫ t
0 Lds +

∫ t

0

e−
∫ t
s Ldτ

[
f
(
s, Iαun−1(s), un−1(s), Iα−βun−1(s),

T1un−1(s), S1un−1(s)
)

−KIα(un − un−1)(s)− L(un − un−1)(s)−MIα−β(un − un−1)(s)

−N(T1(un − un−1)(s))− P (S1(un − un−1)(s))
]
ds,

and

vn(t) = x∗e−
∫ t
0 Lds +

∫ t

0

e−
∫ t
s Ldτ

[
f
(
s, Iαvn−1(s), vn−1(s), Iα−βvn−1(s),

T1vn−1(s), S1vn−1(s)
)

−KIα(vn − vn−1)(s)− L(vn − vn−1)(s)−MIα−β(vn − vn−1)(s)

−N(T1(vn − vn−1)(s))− P (S1(vn − vn−1)(s))
]
ds.

Also,

u0 ≤ u1 ≤ ... ≤ un ≤ ... ≤ u∗ ≤ v∗ ≤ ... ≤ vn ≤ ... ≤ v1 ≤ v0.

Proof. For η ∈ [u0, v0], we consider
u′(t) = gη(t)−KIαu(t)− Lu(t)−MIα−βu(t)

−N(T1u(t))− P (S1u(t))

u(0) = x∗, 0 < β ≤ α ≤ 1,

(2.6)

where

gη(t) = f
(
t, Iαη(t), η(t), Iα−βη(t), T1η(t), S1η(t)

)
+KIαη(t) + Lη(t) +MIα−βη(t)

+N(T1η(t)) + P (S1η(t)).

By Lemma (2.4), we know (2.6) has a unique solution u ∈ C1(J,R).
Denote an operator A : [u0, v0]→ C(J,R) by u = Aη, then

Aη = x∗e−Lt +

∫ t

0

eL(s−t)
[
f
(
s, Iαη(s), η(s), Iα−βη(s), T1η(s), S1η(s)

)
+KIαη(s) + Lη(s) +MIα−βη(s) +N(T1η(s)) + P (S1η(s))

−KIαu(s)− Lu(s)−MIα−βu(s)−N(T1u(s))− P (S1u(s))
]
ds.

Now, we show that u0 ≤ Au0, Av0 ≤ v0 and A is nondecreasing.
For the �rst claim, let u1 = Au0, p(t) = u1(t)− u0(t). we show that p(t) ≥ 0. By (H1),
we get that

p′(t) ≥ −KIαp(t)− Lp(t)−MIα−βp(t)

−N(T1p(t))− P (S1p(t)),

p(0) = u1(0)− u0(0) = Au0(0)− u0(0) ≥ 0.

Hence, by Lemma (2.3) p(t) ≥ 0. Similarly, we can show Av0 ≤ v0.
Now, we show that A is nondecresing. Let u1 = Au0, v1 = Av0 and p(t) = v1(t)− u1(t).
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By (H2), we have
p′(t) ≥ −KIαp(t)− L(t)−MIα−βp(t)

−N(T1p(t))− P (S1p(t)),

p(0) = v1(0)− u1(0) > 0.

So A is nondecreasing.
Next, let un = Aun−1, vn = Avn−1, n = 1, 2, ... . By the properties of the operator A, we
obtain that

u0 ≤ u1 ≤ ... ≤ un ≤ ... ≤ u∗ ≤ v∗ ≤ ... ≤ vn ≤ ... ≤ v1 ≤ v0.

Clearly, un, vn satisfy
u′n(t) = f(t, Iαun−1, un−1, I

α−βun−1, T1un−1, S1un−1)

−K(Iα(un − un−1))− L(un − un−1)−M(Iα−β(un − un−1))

−N(T1(un − un−1))− P (S1(un − un−1)),

un(0) = x∗,
v′n(t) = f(t, Iαvn−1, vn−1, I

α−βvn−1, T1vn−1, S1vn−1)

−K(Iα(vn − vn−1))− L(vn − vn−1)−M(Iα−β(vn − vn−1))

−N(T1(vn − vn−1))− P (S1(vn − vn−1)),

vn(0) = x∗.

The sequences un, vn are uniformly bounded and equicontinuous, so by Arzela-Ascoli
Theorem, we �nd that limn→∞ un(t) = u∗(t) and limn→∞ vn(t) = v∗(t) uniformly on J ,
and u∗(t), v∗(t) are solutions of (2.1).
Finally, we prove that u∗, v∗ are the extremal solutions of (2.1) in [u0, v0]. Let w ∈ [u0, v0]
be any solution of (2.1), then Aw = w. By u0 ≤ w ≤ v0 and the properties of A, we have

un ≤ w ≤ vn, n = 1, 2, ... .

Thus, taking limit as n → ∞, we have u∗ ≤ w ≤ v∗. That is, u∗, v∗ are the extremal
solutions of (2.1) in [u0, v0].
This completes the proof. �

3. Main result

In this section we prove the existence of extremal solutions of (1.1).
Let C1−α(J,R) = {u ∈ C(0, T ]; t1−αu ∈ C(J,R)} and
DC1−α(J,R) = {u ∈ C1−α(J,R); Dαu ∈ C1(J,R)}.

3.1. Theorem. Assume that:
(H ′1 ) There exist y0, z0 ∈ DC1−α(J,R) such that y0(t) ≤ z0(t) and Dαy0(t) ≤ Dαz0(t),
are lower and upper solution of (1.1),{

(Dαy0(t))′ ≤ f(t, y0(t), Dαy0(t), Dβy0(t), T y0, Sy0(t))

Dαy0(0) ≤ x∗, t1−αy0(t)|t=0 = 0.
(3.1)

and z0 satis�es inverse inequalities of (3.1).
(H ′2 ) There exist constants K,L,M,N, P ≥ 0 which satisfy condition (2.3) such that

f(t, x, y, z, u, w)− f(t, x̄, ȳ, z̄, ū, w̄) ≥ −K(x− x̄)− L(y − ȳ)−M(z − z̄)
−N(u− ū)− P (w − w̄),

where y0(t) ≤ x̄ ≤ x ≤ z0(t), Dαy0(t) ≤ ȳ ≤ y ≤ Dαz0(t), Dβz0(t) ≤ z̄ ≤ z ≤
Dβz0(t), T y0(t) ≤ ū ≤ u ≤ Tz0(t), Sy0(t) ≤ w̄ ≤ w ≤ Sz0(t).
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Then there exist iterative sequences {yn}, {zn} which converge uniformly to the extremal
solutions y∗, z∗ of (1.1), respectively.

Proof. Let Dαx(t) = u(t) in (1.1), then Equation (1.1) is transformed into �rst order
integro-di�erential equation (2.1). Now, we prove that all the conditions of Theorem
(2.1) hold. Let u0(t) = Dαy0(t), v0(t) = Dαz0(t), we have u0(t) ≤ v0(t). Also y0(t) =
Iαu0(t), z0(t) = Iαv0(t), so by (H ′1) u0, v0 satisfy (H1). By (H ′2), it is easy to see that
the condition (H2) holds. Therefore, by Theorem (2.1), we obtain that (2.1) has extremal
solutions u∗, v∗ ∈ C1(J,R) in [u0, v0]. Let y∗ = Iαu∗, z∗ = Iαv∗ so it follows that{

Dαy∗(t) = u∗(t)

t1−αy∗(t)|t=0 = 0
(3.2)

Since u∗ satis�es (2.1) and y∗ satis�es (3.2), then y∗ is a solution of (1.1). Similarly,
we can show that z∗ is a solution of (1.1). It is easy to show that y∗, z∗ are extremal
solutions of (1.1). This completes the proof. �

4. Example

Consider the following problem:
(D

1
2 x(t))′ = −1

10
x(t)− 1+t

15
D

1
2 x(t)− 1+t2

20
D

1
4 x(t)

− 1+t3

30

∫ t
0
tsx(s)ds− 1+t4

40

∫ 1

0
sx(s)ds, t ∈ [0, 1],

D
1
2 x(0) = 0, t

1
2 x(t)|t=0 = 0,

(4.1)

where α = 1
2
, β = 1

4
, k(t, s) = ts, h(t, s) = s. Here,

f(t, x, y, z, u, w) =
−1

10
x− 1 + t

15
y − 1 + t2

20
z − 1 + t3

30
u− 1 + t4

40
w.

By easy computation, we have
K = 1

10
, L = 2

15
, M = 1

10
, N = 1

15
, P = 1

20
.

Also, ∫ T

0

[ Ktα

Γ(α+ 1)
+ L+

Mtα−β

Γ(α− β + 1)
+N

∫ t

0

k1(t, s)ds

+ P

∫ T

0

h1(t, s)ds
]
dt = 0.324 < 1.

Now, take u0(t) = 0, v0(t) = t2. It is easy to see that u0, v0 are lower and upper solution
of (4.1). So all the conditions of Theorem (3.1) hold.
Thus there exist iterative sequences {un}, {vn} which converge uniformly to the extremal
solutions u∗, v∗ of (4.1), respectively.
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Quasi-primry submodules satisfying the primeful
property I
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Abstract

LetR be a commutative ring with identity andM a unitalR-module. In
this article we extend the notion of quasi-primary ideals to submodules.
A proper submoduleN ofM is called quasi-primary if whenever rx ∈ N
for r ∈ R and x ∈ M , then r ∈

√
(N : M) or x ∈ radN where radN

is the intersection of all prime submodules of M containing N . Also,
we say that a submodule N of M satis�es the primeful property if
M/N is a primeful R-module. For a quasi-primary submodule N of

M satisfying the primeful property,
√

(N : M) is a prime ideal of R.
For the existence of a module-reduced quasi-primary decomposition,
the radical of each term appeared in decomposition must be prime.
We provide su�cient conditions, involving the saturation and torsion
arguments, to ensure that this property holds as is valid in the ideal
case. It is proved that for a submoduleN ofM over a Dedekind domain
R which satis�es the primeful property, N is quasi-primary if and only
if radN is prime.
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1. Introduction

Throughout this paper all rings are commutative with non-zero identity and all mod-
ules are unital. If R is a ring and N a submodule of an R-module M , the ideal
{r ∈ R | rM ⊆ N} will be denoted by (N : M). Then ann(M), the annihilator of
M , is (0 : M). A proper submodule N of M is said to be prime (resp. primary), if

rx ∈ N for r ∈ R and x ∈ M implies that either r ∈ (N : M) (resp. r ∈
√

(N : M)) or
x ∈ N . In this case, N is called p-prime (resp. p-primary), where p = (N : M) (resp.

p =
√

(N : M)) (For more study these notions see for example [3, 13, 14, 16, 17, 19]).
The intersection of all prime submodules containingN , denoted radN , is called the prime
radical of N . Also, N is called a radical submodule if radN = N . A proper submodule
N of M is called primary-like if rx ∈ N for r ∈ R and x ∈ M implies that r ∈ (N : M)
or x ∈ radN . It is clear that primary-like submodules of R as an R-module and primary
ideals of R are the same. Also, N is a prime submodule of M if and only if N is a
radical and primary-like submodule of M . The notion of primary-like submodules has
been extensively studied by the authors and F. Rashedi in [6].

A proper ideal q of R is said to be quasi-primary if rs ∈ q for r, s ∈ R implies r ∈ √q or
s ∈ √q. In particular, q is a quasi-primary ideal of R if and only if

√
q is a prime ideal of

R [7, p.176]. Quasi-primary ideals was �rst introduced and studied by L. Fuchs [7]. Since
primary ideals are quasi-primary, every ideal of a Noetherian ring has a quasi-primary
decomposition. Moreover, the uniqueness of the corresponding shortest quasi-primary
decompositions of an ideal has been given in [7, Theorem 6]. Here we extend the no-
tion of quasi-primary ideals to submodules. Recall that a proper submodule N of M is
quasi-primary if rx ∈ N for r ∈ R and x ∈ M implies that r ∈

√
(N : M) or x ∈ radN .

It is clear that primary submodules are quasi-primary. We say that a submodule N
of an R-module M satis�es the primeful property if for each prime ideal p of R with
(N : M) ⊆ p, there exists a prime submodule P containing N such that (P : M) = p.
If the zero submodule of M satis�es the primeful property, then M is called primeful.
For instance �nitely generated modules, projective modules over domains and (�nite and
in�nite dimensional) vector spaces are primeful (see [10]). If N satis�es the primeful

property, then
√

(N : M) = (radN : M) [10, Proposition 5.3]. If N is a quasi-primary
(primary-like) submodule satisfying the primeful property, then it is easy to verify that

p =
√

(N : M) is a prime ideal of R. In this case, N is called a p-quasi-primary (p-
primary like) submodule of M . In [4], Atani and Darani used the term �quasi-primary
submodule" in a di�erent way. In fact, they consider a submodule N of an R-module M
as a quasi-primary submodule if

√
(N : M) is a prime ideal of R. Thus a quasi-primary

submodule satisfying the primeful property, in the our sense, follows that in [4]. But the
converse is not true in general. For example, if M =

∏
p∈Ω Z/pZ and N =

⊕
p∈Ω Z/pZ

are Z-modules, where Ω is the set of prime integers, then M is a primeful module and
N is a 0-prime submodule of M with rad(N) = 0 while N dose not satisfy the primeful
property, i.e. M/N is not primeful [10, Example 1 (5)]. Now we give an example of a sub-

module N such that
√

(N : M) is a prime ideal while N is not quasi-primary. Consider
the Z-module M = Q ⊕ Zp, where Q is the additive abelian group of rational numbers
and Zp is the cyclic group of order p. Then Q⊕ 0 and 0⊕Zp are only prime submodules
of M [14, Example 2.6]. Now if N = 0⊕ 0, it is easy to verify that (N : M) = 0 and N is
not a quasi-primary submodule of M . Also, a quasi-primary submodule does not satisfy
the primeful property necessarily. For example, ifM = Z(p∞)⊕Zp as a Z-module, where
Z(p∞) is the Prüfer group, and N = 0⊕Zp, then radN = M and so N is a quasi-primary
submodule of M . But N dose not satisfy the primeful property [14, Example 3.7].

We say that a submodule N of an R-module M has a quasi-primary decomposition
if N = N1 ∩ N2 ∩ · · · ∩ Nt, where each Ni is a quasi-primary submodule of M . If
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Ni # N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Nt, for 1 ≤ i ≤ t, then the above quasi-primary de-

composition is called (1) a reduced quasi-primary decomposition, if the ideals
√

(Ni : M)
are distinct primes; (2) a module-reduced quasi-primary decomposition, if the submod-
ules radNi are distinct primes; (3) a shortest quasi-primary decomposition, if none of
the intersection (Ni1 : M) ∩ (Ni2 : M) ∩ · · · ∩ (Nis : M) (s > 1) is a quasi-primary ideal.
In part II, we investigate the existence and uniqueness of these decompositions and rela-
tionships between them in di�erent cases. For this purpose we need to some properties
and facts about quasi-primary submodules, mostly consideration satisfying the primeful
property.

Unlike the ideal case, there are several challenging problems in radical theory of sub-
modules. Finding a good description of radN either in terms of its elements or as some
sort of decomposition and splitting the �nite intersection of submodules by radical are
two examples of them. Some works and methods for characterizing the radN may be
found in [1, 12, 15, 16, 18, 19, 20, 21]). One of the main di�erences between ideal and
module cases is that the radical of a quasi-primary submodule is not necessarily prime.
In fact, if R = Z[x], then the submodule N = R(2, x) + R(x, 0) is a quasi-primary sub-
module of M = R ⊕ R whose radical is not prime [19, Theorem 1.9 and Example 1.11].
The mentioned conditions are useful to obtain a module-reduced quasi-primary decom-
position from the original one.

In section 2, the behaviuor of quasi-primary submodules (probably satisfying the
primeful property) under some operations such as quotient and fraction are considered
(Corollary ?? and Theorem 2.14). In this section, it is also shown that q is a quasi-
primary ideal of R if and only if qF is a quasi-primary submodule of a free R-module F
(Theorem 2.18). In this case rad(qF ) is a prime submodule of F . Moreover, it is proved
that the radical of every quasi-primary submodule of a free module F over a Noetherian
domain R is prime provided that every prime submodule of F contains only �nitely many
prime submodules (Proposition 2.20).

Let p be a prime ideal of R and N a submodule of M . By the saturation of N with
respect to p, we mean the contraction of Np in M and designate it by Sp(N). It is also
known that Sp(N) = {x ∈M |cx ∈ N for some c ∈ R\p}. Saturations of submodules were
investigated in detail in [11] and some results of the study are applied for quasi-primary
submodules in section 3. For example, if N is a p-quasi-primary submodule satisfying
the primeful property, then we have : (1) Sp(N) is a prime submodule of M if and only
if radN = Sp(N) (Theorem 3.3); (2)Sp(radN) 6= M if and only if radN is a prime
submodule of M (Theorem 3.9). Also, some other conditions under which the radical of
a quasi-primary (probably satisfying the primeful property) is prime have been given in
Corollary 3.7, Proposition 3.10, Corollary 3.11 and Theorem 3.14.

The purpose of the section 4 is to discuss about important roles played by torsion
submodules in the class of quasi-primary submodules of a module. In Theorem 4.3, it is
proved that for a submodule N of a module M over a Dedekind domain R satisfying the
primeful property, radN is prime if and only if M = radN ⊕ N ′ for some torsion-free
submodule N ′ of M or (radN : M) = m for some maximal ideal m of R.

In part II, we will characterize the quasi-primary submodules of multiplication mod-
ules. Using this, we will fully investigate reduced and module-reduced and shortest
quasi-primary decompositions of submodules of multiplication modules. Also, we will
give some uniqueness theorems for reduced and module-reduced quasi-primary decom-
positions of submodules of modules over Noetherian rings.
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2. On quasi-primary submodules satisfying the primeful property

In this section, we study basic properties of quasi-primary submodules which probably
satis�es the primeful property. In particular we show the a�ect of some operations on
quasi-primary submodules. We start with some elementary results.

2.1. Lemma. Let M be an R-module. Then the following hold:

(i) Any maximal, prime, primary and primary-like submodule is quasi-primary.

(ii) Any quasi-primary radical submodule is primary. In particular, if radN is a

quasi-primary submodule for a submodule N of M , then radN is primary.

(iii) If N is a quasi-primary submodule of M and (N : M) is a radical ideal of R,
then N is primary-like.

2.2. Lemma. LetM be an R-module. If N is a quasi-primary submodule ofM satisfying

the primeful property with p =
√

(N : M), then radN = rad(N + pM).

Proof. Clearly radN ⊆ rad(N + pM). If Pi is a pi-prime submodule such that N ⊆ Pi,

then p =
√

(N : M) = (radN : M) ⊆ (Pi : M) = pi. Hence N + pM ⊆ Pi + piM ⊆ Pi.
Therefore rad(N + pM) ⊆ radN . �

2.3. Theorem. Let m be a maximal ideal of R and M an R-module. If N is an m-

quasi-primary submodule ofM satisfying the primeful property, then radN is an m-prime

submodule of M . Moreover, radN = rad(N +mM) = N +mM .

Proof. Since N satis�es the primeful property, we have (radN : M) =
√

(N : M) = m
and so radN is anm-prime submodule ofM . By Lemma 2.2,N+mM ⊆ rad(N +mM) =
radN . Sine radN is m-prime, we conclude m ⊆ (N +mM : M) ⊆ (radN : M) = m. It
follows that (N +mM : M) = m. Hence N +mM is a prime submodule containing N .
Thus radN = rad(N +mM) = N +mM . �

2.4. Proposition. Let M be an R-module. If N is a quasi-primary submodule of M
and L a submodule of M such that radN ∩ radL = rad(N ∩L), then L ⊆ N or N ∩L is

a quasi-primary submodule of L.

Proof. Suppose L * N . Let rl ∈ N ∩L for r ∈ R\
√

(N ∩ L : L) and l ∈ L. Then rl ∈ N
and r /∈

√
(N : M). Since N is a quasi-primary submodule of M , we have l ∈ radN .

Thus l ∈ radN ∩ radL = rad(N ∩ L). �

2.5. Corollary. Let N and K be proper submodules of an R-module M . If N is a quasi-

primary submodule of M satisfying the primeful property such that N  K, then N is

also a quasi-primary submodule of K.

Proof. It follows by applying Proposition 2.4 to N and K. �

2.6. Theorem. Let N be a proper submodule of a non-zero R-module M . Then the

following statements are equivalent:

(i) N is a quasi-primary submodule of M ;

(ii)
√

(N : K) =
√

(N : M) for every submodule K of M such that K ! radN .

Proof. (i)⇒(ii). LetK be any submodule ofM such thatK ! radN . ThenK/N ⊆M/N

and so,
√

(N : K) ⊇
√

(N : M). For the reverse inclusion, let a ∈
√

(N : K). Since
radN $ K, we can �nd an element x of K\radN . Then anx ∈ N for some positive

integer n. Hence, by (i), a ∈
√

(N : M).
(ii)⇒(i). Suppose rx ∈ N , where r ∈ R and x ∈ M . Assume x /∈ radN . Then radN (
radN + Rx ⊆ M . By (ii),

√
(N : radN +Rx) =

√
(N : M). Since rx ∈ N , we have
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r(N +Rx) = rN +Rrx ⊆ N . This shows that r ∈ (N : N +Rx) ⊆
√

(radN : N +Rx).

Hence r ∈
√

(N : M), as required. �

2.7. Theorem. Let {Ni : 1 ≤ i ≤ n} be a �nite collection of submodules of an R-module

M satisfying the primeful property. Then ∩n
i=1Ni satis�es the primeful property and√

(∩n
i=1Ni : M) = (rad(∩n

i=1Ni) : M).

Proof. Suppose p is a prime ideal of R containing (∩n
i=1Ni : M). Then (Nj : M) ⊆ p, for

some 1 ≤ j ≤ n. Since Nj satis�es the primeful property, there exists a prime submodule
P of M containing Nj with (P : M) = p. Hence ∩n

i=1Ni satis�es the primeful property

and so
√

(∩n
i=1Ni : M) = (rad(∩n

i=1Ni) : M). �

The following is a result of Theorem 2.7.

2.8. Corollary. Let M be an R-module and {Ni : i ∈ I} a collection of quasi-primary

submodules ofM satisfying the primeful property. Then (rad(∩n
i=1Ni) : M) = (∩n

i=1radNi :
M).

It is well-known that for a surjective homomorphism f : M →M ′ and a prime submod-
ule N of M containing Kerf , f(N) is a prime submodule of M ′. It follows that for any
submodule N of M , f(radN) ⊆ radf(N). Also if Kerf ⊆ N , then f(radN) = radf(N).
In particular for every submodule K of M containing N , rad(K/N) = radK/N . Analo-
gously we have the following corollaries:

2.9. Theorem. Let f : M → M ′ be a surjective homomorphism. If N ′ is a quasi-

primary submodule of M ′ such that f−1(N ′) is containing Kerf , then f−1(N ′) is a

quasi-primary submodule of M .

Proof. Suppose rm′ ∈ f−1(N ′) and r /∈
√

(f−1(N ′) : M). It follows that rf(m′) ∈ N ′

and r /∈
√

(N ′ : M ′). Since N ′ is a quasi-primary submodule of M ′, f(m′) ∈ radN ′;
i.e. f(m′) ∈ P ′ for any prime submodule P ′ of M ′ containing N ′. Now, let P be a
prime submodule of M containing f−1(N ′). Then N ′ = ff−1(N ′) ⊆ P . Since f(P )
is a prime submodule of M ′ containing N ′, we must have f(m′) ∈ f(P ). Therefore,
there exists an element x ∈ P such that m′ − x ∈ Kerf ⊆ P . Thus m′ ∈ P and so
m′ ∈ rad(f−1(N ′)). �

2.10. Theorem. Let f : M → M ′ be a surjective homomorphism and N a submodule

of M . If N is a quasi-primary submodule of M containing Kerf , then f(N) is a quasi-

primary submodule of M ′.

Proof. Suppose that rf(x) ∈ f(N) for r ∈ R and x ∈ M and r /∈
√

(f(N) : f(M)).
Hence there exists n ∈ N such that rx − n ∈ Kerf . Therefor rx ∈ N and so we have
x ∈ radN . Since f(radN) = rad(f(N)), we conclude that f(x) ∈ rad(f(N)). �

2.11. Corollary. Let f : M →M ′ be a surjective homomorphism. Then the assignment

N 7→ f(N) de�nes a one-to-one correspondence between the set of all quasi-primary

submodules of M containing Kerf and the set of all quasi-primary submodules N ′ of M ′

such that f−1(N ′) contains Kerf .

From now on, we frequently use the fact that (radN : M) =
√

(N : M) for a submod-
ule N of M which satis�es the primeful property. Specially it is used in items (ii) and
(iii) of the following immediate results.

2.12. Lemma. Let N be a submodule of an R-moduleM satisfying the primeful property.

Then the following hold:
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(i) If N is a quasi-primary submodule of M , then (N : M) is a quasi-primary ideal

of R.
(ii) radN is quasi-primary if and only if radN is primary-like if and only if radN

is primary if and only if radN is prime.

(iii) If radN is a prime submodule of M , then N is quasi-primary.

2.13. Theorem. Let N be a proper submodule of a �nitely generated module M over

a zero-dimensional ring R. Then N is quasi-primary if and only if there exists a quasi-

primary ideal q of R such that q ⊆ (N : M). In particular, N is a quasi-primary

submodule of M if and only if (N : M) is a quasi-primary ideal of R.

Proof. Since M is �nitely generated, N satis�es the primeful property, then Lemma 2.12
follows that (N : M) is a quasi-primary ideal. Conversely, let q be a quasi-primary ideal
of R such that q ⊆ (N : M). Since M is �nitely generated, N is contained in a maximal
submodule of M and so radN 6= M . Since R is zero-dimensional,

√
q is a maximal ideal

of R and so
√
q =

√
(N : M) = (radN : M). Hence radN is a prime submodule of M .

Therefore by Lemma 2.12 (iii), N is quasi-primary. �

Let S be a multiplicatively closed subset of R and M an R-module. We denote the
ring and module of fractions by S−1R and S−1M respectively.

2.14. Theorem. Let M be an R-module and N a quasi-primary submodule of M sat-

isfying the primeful property. Let S be a multiplicatively closed subset of R such that

S ∩
√

(N : M) = ∅. Then S−1N is a quasi-primary submodule of S−1R-submodule

S−1M .

Proof. It is easy to see that x/1 ∈ S−1M\S−1N for each x ∈M\radN and so S−1N 6=
S−1M . Suppose (r/s)(x/t) ∈ S−1N and r/s /∈

√
(S−1N : S−1M). Since S−1

√
(N : M) ⊆√

(S−1N : S−1M), then r /∈
√

(N : M). Thus there exist u,w ∈ S, y ∈ N such that

wurx = wsty. It follows x ∈ radN , since N is quasi-primary. Thus x/t ∈ S−1radN ⊆
rad(S−1N), by [16, Theorems 3.3 and Theorem 3.4]. �

In the following the localization of a ring R and an R-module M at a prime ideal p
are denoted by Rp and Mp respectively.

2.15. Theorem. Let M be an R-module and N a quasi-primary submodule of M sat-

isfying the primeful property. Then (radN)p is an Rp-prime submodule of Mp where

p =
√

(N : M) = (radN : M). In addition, radNp is prime and radNp = (radN)p.

Proof. By [16, Theorems 3.3 and Theorem 3.4] (radN)p ⊆ rad(Np). For the reverse
inclusion, it is easy to see that (radN : M)p ⊆ ((radN)p : Mp). Since N is quasi-
primary, by Lemma 2.12 (i), (radN : M)p is the unique maximal ideal of Rp. Now we
have (radN : M)p = ((radN)p : Mp), because (radN)p 6= Mp. Thus (radN)p is a prime
submodule of Mp containing Np. On the other hand, by [18, Lemma 1.7] rad(Np) is a
prime submodule of Mp containing Np. Hence rad(Np) ⊆ (radN)p. �

We remark that if N is a submodule ofM satisfying the primeful property, then radN
is also satis�es the primeful property. In this case if N is a proper submodule ofM , then
radN is also proper. Henceforth, we consider radN 6= M when trying to prove radN is
prime for a quasi-primary submodule N satisfying the primeful property.

2.16. Proposition. Let R be a ring and N a quasi-primary submodule of an R-module

M satisfying the primeful property. If
√

(N : M) is a maximal ideal of R, then radN is

a prime submodule of M .



1427

2.17. Proposition. Let M be an R-module and {Ni : i ∈ I} a collection of submodules

of M such that
∑

i∈I Ni satis�es the primeful property. Then
∑

i∈I radNi = M if and

only if
∑

i∈I Ni = M .

Proof. Assume
∑

i∈I radNi = M and
∑

i∈I Ni 6= M . Then there exists a maximal ideal
m of R containing (

∑
i∈I Ni : M) and a prime submodule P of M containing

∑
i∈I Ni

such that (P : M) = m. Thus
∑

i∈I radNi ⊆ P , a contradiction. The converse is
obvious. �

It is well-known that if F is a free R-module and I is an ideal of R, then (IF : F ) = I

and rad(IF ) =
√
IF [20, Proposition 2.2]. Thus if I is a prime(resp. primary) ideal of

R, then IF is prime(resp. primary) submodule of M . Now we give a similar result in
the quasi-primary case.

2.18. Theorem. Let F be a free R-module. Then qF is a quasi-primary submodule of

F if and only if q is a quasi-primary ideal of R.

Proof. Let qF be a quasi-primary submodule of M . Since (qF : F ) = q, q is a proper
ideal of R. Suppose rs ∈ q, for r ∈ R, s ∈ R\√q. Hence rsF ⊆ qF and s /∈ (radqF : F ),

since radqF =
√
qF [20, Proposition 2.2]. It follows that r ∈

√
qF : F =

√
q. Conversely

let q be a quasi-primary ideal of R. Again by (qF : F ) = q, qF is a proper submodule

of F . Suppose r /∈
√

(qF : F ) =
√
q and x /∈ radqF =

√
qF . Hence we have rx /∈ √qF ,

since
√
qF is a prime submodule of F . Thus rx /∈ qF . �

2.19. Corollary. Let F be a free R-module. Then the following statements are equiva-

lent.

(i) I = q1 ∩ · · · ∩ qt is a reduced quasi-primary decomposition of the ideal I;
(ii) IF = q1F ∩ · · · ∩ qtF is a reduced quasi-primary decomposition of IF ;
(iii) IF = q1F ∩ · · · ∩ qtF is a module-reduced quasi-primary decomposition of IF .

2.20. Proposition. If R is a Noetherian domain and F is a free R-module such that

every prime submodule of F contains only �nitely many prime submodules, then for every

non-zero quasi-primary submodule N of F , radN is prime.

Proof. We �rst show that R is a one-dimensional ring. Let 0 ⊂ p′ ⊆ p be a chain of prime
ideals of R. If p′ 6= p, then there exist in�nitely many such prime ideals contained in p [9,
p. 144]. It follows from the above argument of Theorem 2.18 that there exist in�nitely
many prime submodule contained in prime submodule pF , a contradiction. Thus R is a
one-dimensional domain. Now, let qF be a non-zero quasi-primary submodule of F . It
is clear that 0 ⊂ q ⊆

√
(qF : F ) and so the proof is completed by Proposition 2.16. �

2.21. Theorem. Let M be an R-module and N a proper submodule of M . If N1, · · · , Nt

satis�es the primeful property and N has a reduced quasi-primary decomposition N =
N1 ∩ N2 ∩ · · · ∩ Nt such that all the prime ideals associated with N are isolated, then

(N : M) = (N1 : M)∩(N2 : M)∩· · ·∩(Nt : M) is a reduced quasi-primary decomposition

of the ideal (N : M) in R.

Proof. Suppose not. Since the ideals
√

(Ni : M) are distinct, we have (Ni : M) ⊇
∩j 6=i(Nj : M) for some i. Then

√
(Ni : M) ⊇ ∩j 6=i

√
(Nj : M). It implies that

√
(Ni : M) ⊃√

(Nj : M) for some i 6= j, since
√

(Ni : M) is a prime ideal. The �nal inclusion contra-

dicts the assumption that
√

(Ni : M) is an isolated prime ideal of R. �

2.22. Corollary. Let M be an R-module and N a proper submodule ofM . If N1, · · · , Nt

satis�es the primeful property and N has a reduced quasi-primary decomposition N =
N1 ∩N2 ∩ · · · ∩Nt such that all the prime ideals associated with N are isolated, then
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(i) N is quasi-primary if and only if (N : M) is quasi-primary.

(ii) N is prime if and only if (N : M) is prime.

Proof. The necessity of each part is clear. To show su�ciency, let N = N1∩N2∩· · ·∩Nt

be a reduce quasi-primary decomposition of N . By Theorem 2.21 (N : M) = (N1 :
M) ∩ (N2 : M) ∩ · · · ∩ (Nt : M) is a reduced quasi-primary decomposition of the ideal
(N : M) in R. If (N : M) is quasi-primary, we must have t = 1 and so N = N1 is
quasi-primary. (ii) is concluded by an analogous argument. �

3. Saturation and radical

Let p be a prime ideal of R and N a submodule of an R-module M . Then Sp(N) =
{x ∈ M : cx ∈ N for some c ∈ R\p} is a submodule of M which is called the saturation
of N with respect to p. A submodule N of M is called saturated with respect to p if
Sp(N) = N . It is easy to verify Sp(N) is a saturated submodule of M with respect
to p. In [11], Lu applied the tool of saturation in the context of prime and primary
submodules. In this section we develop and use this tool for quasi-primary submodules
(probably satisfying the primeful property). In particular, using this, we give some
conditions under which the radical of a quasi-primary submodule is prime.

3.1. Lemma. Let N be a submodule of an R-module M satisfying the primeful property.

N is a p-quasi-primary submodule of M if and only if
√

(N : M) = p is a prime ideal of

R and Sp(N) ⊆ radN .

Proof. Suppose N is a p-quasi-primary submodule of M . Since N satis�es the primeful
property, it is clear that

√
(N : M) = p is a prime ideal of R. Let x ∈ Sp(N). Then

sx ∈ N for some s ∈ R \ p. Hence x ∈ radN and so that Sp(N) ⊆ radN .

Assume
√

(N : M) = p is a prime ideal of R. Let rx ∈ N and x /∈ radN . Hence we
conclude that sx /∈ N for any s ∈ R \ p. Thus r ∈ p, as required. �

From now on, we denote the set of all prime ideals of R containing (N : M) by
V (N : M).

3.2. Lemma. Let N be a quasi-primary submodule of an R-module M . Then Sp(N) ⊆
radN for every p ∈ V (N : M). In particular, if Sp(N) is a prime submodule of M for

some p ∈ V (N : M), then Sp(N) = radN .

Proof. Straightforward. �

3.3. Theorem. Let N be a p-quasi-primary submodule of an R-module M satisfying the

primeful property. Sp(N) is a p-prime submodule of M if and only if Sp(N) = radN .

Proof. Assume that Sp(N) is a p-prime submodule ofM . It follows from Lemma 3.2 that
Sp(N) = radN . Conversely, suppose Sp(N) = radN . Let rx ∈ Sp(N) and x /∈ Sp(N).
Then rx ∈ N for some r ∈ R \ p. Since N is a p-quasi-primary submodule of M ,

r ∈
√

(N : M) = (radN : M) = (Sp(N) : M). Thus Sp(N) is a p-prime submodule of
M . �

3.4. Lemma. If a submodule N of an R-module M satis�es the primeful property, then

so do radN and Sp(N) for every p ∈ V (N : M).

Proof. Suppose p is a prime ideal of R containing (radN : M). Since N satis�es the
primeful property and p ⊇ (N : M), there exists a prime submodule P of M containing
N such that (P : M) = p. It is clear that P ⊇ radN and so radN satis�es the primeful
property. For the second part, let p be a prime ideal of R such that p ⊇ (Sp(N) :
M) ⊇ (N : M). Then there exists a prime submodule P ′ of M containing N such that
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(P ′ : M) = p. Now, let x ∈ Sp(N). There exists s ∈ R \ p such that sx ∈ N ⊆ P ′.
Therefore x ∈ P ′. Hence we have Sp(N) ⊆ P ′, as desired. �

3.5. Theorem. Let p be a prime ideal of R and N a submodule of an R-module M
satisfying the primeful property. Then the following statements are equivalent:

(i) Sp(N) is a p-quasi-primary submodule of M ;

(ii) (Sp(N) : M) is a p-quasi-primary ideal of R;

(iii)
√

(Sp(N) : M) = (radSp(N) : M) = p;
(iv) (Sp(N) : M) is a p-primary ideal of R;
(v) Sp(N) is a p-primary submodule of M .

Proof. (i)⇒ (ii)⇒ (iii) is clear by Lemma 3.4.
(iii)⇒ (i). By [11, Result 1(1), page 2658], Sp(Sp(N)) = Sp(N). It implies that
Sp(Sp(N)) ⊆ rad(Sp(N)) and so Sp(N) is a p-quasi-primary submodule ofM by Lemma
3.1.
(iii)⇔ (iv)⇔ (v) is obtained by [11, Theorem 2.3]. �

3.6. Corollary. Let N be a p-quasi-primary submodule of an R-module M satisfying the

primeful property. Then the equivalent conditions in Theorem 3.5 hold.

Proof. Since N satis�es the primeful property, Lemma 3.4 shows that

p =
√

(N : M) ⊆
√

(Sp(N) : M) = (radSp(N) : M).

On the other hand, Lemma 3.1 follows that (Sp(N) : M) ⊆ p and hence p = (radSp(N) :
M). Thus (iii) of Theorem 3.5 holds. �

3.7. Corollary. Let N be a p-quasi-primary submodule of an R-module M satisfying

the primeful property. If (Sp(N) : M) is a radical ideal of R, then radN is a prime

submodule of M .

Proof. It follows from Corollary 3.6 that Sp(N) is a p-primary submodule of M and so
Sp(N) is prime, since (Sp(N) : M) is a radical ideal of R. Now the proof is completed
by Theorem 3.3. �

3.8. Proposition. Let N be a p-quasi-primary submodule of an R-module M satisfying

the primeful property. Then√
Sp(N : M) =

√
(Sp(N) : M) = p.

In particular, Sp(N : M) and (Sp(N) : M) are p-primary ideals of R.

Proof. Since N is p-quasi-primary, Lemma 3.1 shows that (Sp(N) : M) ⊆
√

(N : M).

Thus we conclude that (N : M) ⊆ Sp(N : M) ⊆ (Sp(N) : M) ⊆
√

(N : M), as required.
The second part is clear. �

3.9. Theorem. Let N be a submodule of an R-module M and p a prime ideal of R such

that p ⊆ (radN : M). Then the following statements are equivalent:

(i) Sp(radN) 6= M ;

(ii) (radN : M) = (Sp(radN) : M) = p;
(iii) Sp(radN) is a p-prime submodule of M .

Further, if N is a p-quasi-primary submodule of M , then the above statements are equiv-

alent to:

(iv) radN is a p-prime submodule of M .
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Proof. (i)⇒ (ii). By replacing N with radN in [11, Theorem 2.1], we have (Sp(radN) :
M) ⊆ p. Since pM ⊆ radN , we have p ⊆ (radN : M) ⊆ Sp(radN : M) ⊆ (Sp(radN) :
M) ⊆ p, whence (ii) follows.
(ii)⇒ (iii). Using [11, Theorem 2.3] by replacing N with radN .
(iii)⇒ (i) is clearly true.
(iii)⇒ (iv). Let N be a p-quasi-primary submodule of M . It follows from (ii) and (iii)
that Sp(radN) is a p-prime submodule of M where (radN : M) = p. It follows from
Lemma 3.2, Sp(radN) = radN . Hence radN is a p-prime submodule of M .
(iv)⇒ (iii) is clear. �

3.10. Proposition. Let N be a quasi-primary submodule of an R-module M . If p =
(N : M) is a prime ideal of R, then Sp(N) = M or radN is a prime submodule of M .

Proof. Suppose Sp(N) 6= M . By [11, Proposition 2.4], Sp(N) is a prime submodule of
M . It follows from Lemma 3.2 that radN is a prime submodule of M . �

3.11. Corollary. Let N be a quasi-primary submodule of an R-module M satisfying the

primful property. If p = (N : M) is a prime ideal of R, then radN is a prime submodule

of M .

Proof. Since N satis�es the primeful property, we have radN 6= M . Also, it follows from
Lemma 3.1 that Sp(N) ⊆ radN . Now Proposition 3.10 completes the proof. �

3.12. Proposition. Let N be a p-quasi-primary submodule of an R-module M satisfying

the primeful property. Then radSp(N) ⊆ Sp(N + pM) ⊆ Sp(radN). In particular,

p = (radSp(N) : M) = (Sp(N + pM) : M).

Proof. By [11, Theorem 4.3], Sp(N+pM) is a p-prime submodule ofM and so radSp(N) ⊆
Sp(N + pM). Suppose x ∈ Sp(N + pM). Then cx ∈ N + pM for some c ∈ R\p.
Since

√
(N : M) = p and cx ∈ radN , we conclude that x ∈ Sp(radN). Also, we have

p = (radN : M) ⊆ (radSp(N) : M) ⊆ (Sp(N + pM) : M) = p, as required. �

The following is a result of [11, Corollary 5.7] and Proposition 3.12.

3.13. Corollary. Let m be a maximal ideal of R and N a m-quasi-primary submod-

ule of an R-module M satisfying the primeful property. Then radN = radSm(N) =
Sm(radN) = Sm(N +mM).

3.14. Theorem. Let R be an Artinian ring and M a module over R. If N is a quasi-

primary submodule of M and p ∈ V (N : M) , then the followings hold.

(i) radN is a prime submodule of M .

(ii) radSp(N) = Sp(radN) = Sp(N + pM). In particular, radSp(N) is a prime

submodule of M .

Proof. (i). Since R is an Artinian ring, [2, Theorem 2.16] implies that N satis�es the
primeful property. Thus (N : M) is a quasi-primary ideal of R. Since R is zero-

dimensional,
√

(N : M) = (P : M) for all prime submodules P containing N . Hence

p =
√

(N : M) = (radN : M) is a prime ideal of R. Now if rx ∈ radN and x /∈ radN ,
there is a prime submodule P ′ containing N such that rx ∈ P ′ and x /∈ P ′. Thus
r ∈ (P ′ : M) =

√
(N : M) = (radN : M) and so radN is prime.

(ii). Suppose x ∈ Sp(N + pM). Then cx ∈ N + pM for some c ∈ R\p. Since√
(N : M) = p, cx ∈ radN and so x ∈ Sp(radN). Thus Sp(N + pM) ⊆ Sp(radN). Now

if x ∈ Sp(radN), there exists c ∈ R\p such that cx ∈ P and so similar to the process of
the proof (i), x ∈ P . Hence we have x ∈ radSp(N) and so Sp(radN) ⊆ radSp(N).
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Finally, by [12, Theorem 4.3], Sp(N + pM) is a prime submodule of M and hence
radSp(N) ⊆ radSp(N + pM) = Sp(N + pM). �

4. Torsioan and radical

Recall that a torsion submodule of a moduleM over a domain R, denoted by T (M), is
the submodule {x ∈M : ann(x) 6= 0} of M . An R-module M is said to be torsion(resp.
torsion-free), if T (M) = M(resp. T (M) = 0). Compare the following proposition with
[8, Lemma 1].

4.1. Lemma. LetM be an R-module. Let N be a submodule ofM satisfying the primeful

property. Then radN is a quasi-primary submodule of M if and only if (N : M) is a

quasi-primary ideal of R and T (M/radN) = 0 as a R/
√

(N : M)-module. In this case

radN is a prime submodule of M .

Proof. Suppose radN is a quasi-primary submodule ofM . By Lemma 2.12 (i),
√

(N : M) =
p is a prime ideal of R. If x + radN ∈ T (M/radN)), then rx ∈ radN , for some ele-
ment r ∈ R \ p. Since radN is p-quasi-primary, x ∈ radN i.e. T (M/radN) = 0.

Conversely,
√

(N : M) = p 6= R implies radN 6= M . If rx ∈ radN and r /∈ p, then
x+ radN ∈ T (M/radN) and so x ∈ radN . Thus radN is a quasi-primary submodule of
M . In this case radN is prime by Lemma 2.12. �

4.2. Corollary. Let N be a submodule of an R-module M satisfying the primeful prop-

erty. If (N : M) is a quasi-primary ideal of R and T (M/radN) = 0 as a R/
√

(N : M)-
module, then N is a quasi-primary submodule of M .

Proof. The proof is clear by using Lemma 2.12 and Lemma 4.1. �

4.3. Theorem. Let R be a Dedekind domain and N a submodule of an R-module M
satisfying the primeful property. The following are equivalent:

(i) radN is prime;

(ii) M = radN ⊕N ′ for some torsion-free submodule N ′ of M or (radN : M) = m
for some maximal ideal m of R.

Proof. (i)⇒ (ii). Suppose �rst that radN is a 0-prime submodule ofM . It follows from
Lemma 4.1 thatM/radN is a torsion-free R-module. It follows from [5, Exercise 19.6(a)]
that M/radN is projective and hence M = radN ⊕N ′ for some submodule N ′. Clearly
N ′ is torsion-free. Now, let radN be a prime submodule of M with (radN : M) 6= 0.
Since R is Dedekind domain, (radN : M) is a maximal ideal of R, as desired.
(ii) ⇒ (i). Assume that M = radN ⊕ N ′ for some torsion-free submodule N ′ of M .
Then M/radN ' N ′ follows that M/radN is torsion-free and hence radN is a 0-prime
submodule of M by [8, Lemma 1]. On the other hand, it is easy to verify that radN is
prime when (radN : M) is a maximal ideal. �

4.4. Theorem. Let R be a Noetherian domain and M be a non-torsion R-module such

that T (M) is contained in only �nitely many prime submodules of M . If N is a quasi-

primary submodule of M satisfying the primeful property, then radN is prime.

Proof. We �rst assume that (N : M) = 0. It follows from Corollary 3.11 that radN is
a prime submodule of M . Thus we may assume that (N : M) 6= 0. If P is a prime

submodule containing N , we have the chain 0 = (T (M) : M) ⊂
√

(N : M) ⊆ (P : M)
of prime ideals of R. If the later containment is proper, by [9, p.144] there are in�nitely
many prime ideals p with (N : M) ⊂ p ⊂ (P : M) and so we have in�nitely prime

submodules P containing T (M), a contradiction. Hence we have
√

(N : M) = (P : M),
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for all prime submodules P containing N . Now if rx ∈ radN and x /∈ radN , there
is a prime submodule P containing N such that rx ∈ P and x /∈ P and therefore
r ∈ (P : M) =

√
(N : M) = (radN : M), as required. �

For an R-module M and x ∈ M , we mean that (N : x) is the set {r ∈ R : rx ∈ N}.
Now we have the elementary following lemma.

4.5. Lemma. Let M be an R-module. Then N is a quasi-primary submodule of M if

and only if
√

(N : M) =
√

(N : x) for all x ∈M\radN .

In the following quasi-primary module is considered a module whose the zero submod-
ule is quasi-primary.

4.6. Theorem. Let M be a quasi-primary and primeful module over a one-dimensional

domain R. Then either
√
ann(M) = 0 or

√
ann(M) =

√
(N : M) for all proper sub-

modules N of M . In particular, if M is a non-cyclic torsion module, then
√

(Rx : M) =√
ann(x) for all x ∈M\rad0.

Proof. Suppose
√
ann(M) 6= 0. Since R is a one-dimensional domain,

√
ann(M) is a

maximal ideal of R. It conclude that
√
ann(M) =

√
(N : M) for all proper submodules

N . Since 0 is a quasi-primary submodule satisfying the primeful property, rad0 6= M .
Now if M is a torsion module, then

√
ann(M) 6= 0. Again since 0 is quasi-primary,√

ann(M) =
√
ann(m) for all x ∈ M\rad0 by Lemma 4.5. Since Rx is a proper

submodule for all x ∈M , by the �rst part
√

(Rx : M) =
√
ann(M) =

√
ann(x) �

4.7. Theorem. Let M be a torsion module over a one-dimensional domain R. If M is

quasi-primary and primeful, then there exists a prime ideal p of R such that r /∈ p implies

rM = M .

Proof. Suppose p =
√
ann(M). If rM 6= M , then by Theorem 4.6 r ∈

√
(rM : M) =√

ann(M) = p. �

4.8. Theorem. Let M be a quasi-primary primeful and torsion module over a one-

dimensional domain R. If p =
√
ann(M) and Mp is the localization of M at p, then

M/Sp(0) ∼= Mp, an isomorphism of R-modules.

Proof. Consider the R-module homomorphism ψ : M −→ Mp, given by m 7→ m/1. To
show that ψ is an epimorphism, take any m/s ∈Mp. Since s /∈ p, sM = M by Theorem
4.8 and so there exists m′ ∈M such that m = sm′. Thus m/s = sm′/s = m′/1 = ψ(m′).
Also it is easy to veri�ed that the kernel of ψ is Sp(0). Hence M/Sp(0) ∼= Mp. �
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Abstract

Compactness and local compactness of the hyperspace endowed with
both the Vietoris topology and the Hausdor� metric topology, have
been characterized by Costantini, Levi and Pelant. Our aim is to char-
acterize these two properties for the proximal topology, which is related
to both of the previous topologies.
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1. Introduction

The �rst one to characterize compactness of the Vietoris topology on the hyperspace
CL(X) of non-empty closed subsets of a topological space X, was Michael in [3]. He also
gave a result about local compactness, but it was not correct as remarked in the paper [2].
In that paper, Costantini, Levi and Pelant studied compactness and local compactness
of several hyperspace topologies. In particular they characterized compactness and local
compactness of CL(X) endowed both with the Vietoris topology τV and the Hausdor�
metric topology τHd .

Following the same spirit and using a similar technique, we characterize compactness
and local compactness of CL(X) endowed with the proximal topology τδ(d). We show
that both properties are equivalent to compactness ofX. The choice of τδ(d) is motivated
by the fact that it is deeply connected both to τV and τHd , because it can be obtained as
supremum of the lower Vietoris topology and the upper Hausdor� metric topology, i.e.
τδ(d) = τ−V ∨ τ

+
Hd

.
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2. Preliminaries

Let X be a metrizable space. Given a metric d on X, we denote by Dd the gap
between two non-empty closed sets E,F ∈ CL(X), de�ned as:

Dd(E,F ) = inf
x∈E

inf
y∈F

d(x, y).

Let x ∈ X, we denote by Bε(x) the open ball of radius ε and center x. Given A ∈ CL(X),
we denote by Bε[A] the ε-expansion of A, i.e. Bε[A] =

⋃
a∈ABε(a). It is easy to check

that B ε
2
[B ε

2
[A]] ⊆ Bε[A] and B ε

3
[B ε

3
[A]] ⊆ Bε[A] for every ε > 0 and every A ∈ CL(X).

Recall that the Vietoris topology is τV = τ−V ∨ τ
+
V , where τ

−
V and τ+V are generated

respectively by the collection of all V − = {F ∈ CL(X) | F ∩ V 6= ∅} and W+ = {F ∈
CL(X) | F ⊆ W}, when V and W run over all the open subsets of X. The Hausdor�
metric topology τHd is generated by the Hausdor� distance on CL(X) induced by d (see
for instance [1]). A base for τ+Hd is constituted by the collection of all W++ = {F ∈
CL(X) | Dd(F,X rW ) > 0} = {F ∈ CL(X) | ∃ε > 0 : Bε[F ] ⊆ W}, when W runs
through the open subsets of X. As recalled before, the proximal topology τδ(d) is the
supremum of the lower Vietoris topology and the upper Hausdor� metric topology, i.e.
τδ(d) = τ−V ∨ τ

+
Hd

.

Recall that the a net (Ci)i∈I is convergent to C with respect to the Kuratowski
convergence if, and only if, it converges with respect to τ−V and C ⊇ Lsi∈ICi where,
denoted by U(x) the collection of open neighbourhoods of x,

Lsi∈ICi = {x ∈ X | ∀V ∈ U(x) ∀i ∈ I ∃ji � i : V ∩ Cji 6= ∅} =
⋂
i∈I

⋃
j�i

Cj .

Given a metrizable space X, we denote by M(X) the set of all compatible metrics on
X.

3. The main result

In the sequel, in the de�nition of compactness and local compactness we require the
space also to be Hausdor�.

Our main result is the following theorem.

3.1. Theorem. Let X be a metrizable space, let C ∈ CL(X) and d ∈ M(X). Then

CL(X) is τδ(d)-locally compact at C if, and only if, there exists ε > 0 such that Bε[C] is
compact.

As a consequence we can characterize both local compactness and compactness of
X, using conditions on CL(X). Moreover we can also characterize compactness of
(CL(X), τδ(d)), showing that it is equivalent to local compactness of (CL(X), τδ(d)).

3.2. Corollary. Let X be a metrizable space. X is locally compact if, and only if, CL(X)
is τδ(d)-locally compact at {x}, for every x ∈ X.

3.3. Corollary. Let X be a metrizable space. The following are equivalent:

(1) X is compact;

(2) (CL(X), τδ(d)) is locally compact;

(3) (CL(X), τδ(d)) is locally compact at X.

Proof. The implications (1)⇒ (2) and (3)⇒ (1) follow from Theorem 3.1, while (2)⇒
(3) is obvious. �

The following result was proved in [2, Theorem 11].
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3.4. Theorem. Let X be a regular space and let C ∈ CL(X). Then CL(X) is τV -locally

compact at C if, and only if, there exists an open set A ⊆ X such that C ⊆ A and A is

compact.

Combining the previous result and our Theorem 3.1, we obtain as a consequence the
equivalence of local compactness and compactness of proximal and Vietoris topologies.

3.5. Corollary. Let X be a metrizable space. The following are equivalent:

(1) X is compact;

(2) (CL(X), τδ(d)) is compact;

(3) (CL(X), τV ) is compact;

(4) (CL(X), τδ(d)) is locally compact;

(5) (CL(X), τV ) is locally compact;

Proof. The equivalence between (1) ⇔ (3) ⇔ (5) has been proved in [2, Corollary 13].
If X is compact, then (CL(X), τδ(d)) is compact since τδ(d) = τV and this proves the
implication (1) ⇒ (2). The implication (2) ⇒ (4) is obvious. Finally the equivalence
(1)⇔ (4) follows from Corollary 3.3. �

3.6. Remark. Note that (4) ⇒ (5) can be easily proved in a direct way, in order to
explicitly use the condition that characterize local compactness of τδ(d) and τV . Indeed,
if (CL(X), τδ(d)) is locally compact at C, then by Theorem 3.1 there exists ε > 0 such

that Bε[C] is compact. Then V = Bε[C] is an open set containing C and with compact
closure. Hence (CL(X), τV ) is locally compact at C by Theorem 3.4.

In [2] it has been proved that local compactness of the Vietoris hyperspace is in general
a strictly stronger condition than local compactness of the Hausdor� hyperspace. As a
consequence of Corollary 3.5, local compactness of the proximal hyperspace has the same
behaviour. Finally it has been proved in [1, Theorem 3.2.4] that compactness of the
Hausdor� hyperspace is equivalent to compactness of X, and by Corollary 3.5, this is
equivalent to compactness of the proximal hyperspace.

4. Proof our main result

To prove our main theorem we need several preliminary results. The following remarks
are of easy veri�cation.

4.1. Remark. Let X be a metrizable space and let d ∈M(X). If C is closed, then C+

is τδ(d)-closed. If K is compact, then (X rK)++ = (X rK)+ and therefore (X rK)+

is τδ(d)-open and K− is τδ(d)-closed.

Proof. Since X r C is open, CL(X)r C+ = (X r C)− is τδ(d)-open.
If K is compact and F is closed, then F ∩K = ∅ implies Dd(F,K) > 0. Therefore

(X r K)+ = {F | F ⊆ X r K} = {F | Dd(F,K) > 0} = (X r K)++. Moreover
CL(X)rK− = (X rK)+ = (X rK)++ which is τδ(d)-open. �

4.2. Remark. Let X be a metrizable space and let d ∈M(X). Then (CL(X), τδ(d)) is
T2.

Proof. Let A,C ∈ CL(X) such that A 6= C. We may suppose there exists a ∈ A r C.

Since a /∈
⋂
ε>0Bε[C] = C, there exists ε > 0 such that a ∈ X rBε[C]. Take δ > 0 such

that Bδ(a) ⊆ X rBε[C]. We claim that Bε[C] ⊆ X rB δ
2
(a). Indeed let on the contrary

x ∈ Bε[C]∩B δ
2
(a). There exists y ∈ B δ

2
(x)∩B δ

2
(a), hence d(x, a) ≤ d(x, y)+d(y, a) < δ.

Then x ∈ Bδ(a) ⊆ X rBε[C], impossible.
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Hence Bε[C] ⊆ XrB δ
2
(a), that is C ∈ (XrB δ

2
(a))++ which is τδ(d)-open. Moreover

A ∈ B δ
2
(a)− which is τδ(d)-open and B δ

2
(a)− ∩ (X r B δ

2
(a))++ ⊆ B δ

2
(a)− ∩ (X r

B δ
2
(a))+ ⊆ B δ

2
(a)− ∩ (X rB δ

2
(a))+ = ∅. �

The following result gives a su�cient condition for compactness of a collection K ⊆
CL(X).

4.3. Proposition. Let X be a metrizable space. Let K ⊆ CL(X) and d ∈ M(X). If K

is τδ(d)-closed, and for every F ∈ CL(X), for every ε > 0 and for every open cover U of

Bε[F ], there exists a �nite open subcover F such that

K ∩Bε[F ]
−
⊆
⋃
U∈F

U−,

then K is τδ(d)-compact.

Proof. Let (Cj)j∈J be a net in K. By Remark 4.2, we have to prove that it has a
convergent subnet. By [1, Theorem 5.2.11], there exists a subnet (Cji)i∈I which is K-
convergent to a set C ∈ CL(X) ∪ {∅}. Note that since {∅} = ∅++, ∅ is isolated with
respect to τδ(d) and therefore C ∈ CL(X). Moreover (Cji)i∈I is τ

−
V -convergent to C. We

want to prove that Cji → C with respect to τ+Hd , and this would also imply that C ∈ K

since K is τδ(d)-closed.

On the contrary, suppose there exists W open such that C ∈ W++ but Cji /∈ W++

frequently. Since Dd(C,X rW ) > 0, there exists ε > 0 such that Bε[X rW ] ⊆ X r C.

Since C ⊇ Lsi∈ICji , for every x ∈ Bε[X rW ] ⊆ X r C ⊆ X r Lsi∈ICji , there exist a
neighbourhood Vx of x, and a index ix ∈ I such that Vx∩Cji = ∅ for every i ≥ ix. Since
Bε[X rW ] ⊆

⋃
x∈Bε[XrW ] Vx, by hypothesis there exist x1, . . . , xn ∈ Bε[X rW ] such

that

K ∩Bε[X rW ]
−
⊆

n⋃
k=1

V −xk .

Let i0 ∈ I such that i0 ≥ ixk for k = 1, . . . , n. Then for every i ≥ i0, Cji ∩ Vxk = ∅ for

every k = 1, . . . , n, that is Cji /∈
⋃n
k=1 V

−
xk . Since Cji ∈ K, then Cji /∈ Bε[X rW ]

−
for

every i ≥ i0, that is Cji ∩Bε[X rW ] = ∅.
On the other hand, Cji /∈ W++ frequently, so that there exists k ≥ i0, such that

for every δ > 0, Bδ[Cjk ] ∩ (X rW ) 6= ∅. In particular for δ = ε, there exist y ∈ Cjk ,
z ∈ XrW such that d(z, y) < ε. But then y ∈ Cjk∩Bε[XrW ] 6= ∅, a contradiction. �

4.4. Lemma. Let X be a metrizable space. Let K ∈ CL(X) and d ∈ M(X). If K is

compact and there exists δ > 0 such that Bδ(x) is compact for every x ∈ K, then B δ
2
[K]

is compact.

Proof. Of course K ⊆
⋃
x∈K B δ

2
(x). Since K is compact there exist x1, . . . , xn ∈ K

such that K ⊆
⋃n
i=1B δ

2
(xi). Then B δ

2
[K] ⊆

⋃n
i=1Bδ(xi) and therefore B δ

2
[K] ⊆⋃n

i=1Bδ(xi) =
⋃n
i=1Bδ(xi) which is compact. Hence B δ

2
[K] is compact. �

4.5. Lemma. Let X be a metrizable space. Let K ∈ CL(X) and d ∈ M(X). If K is

compact and there exists δ > 0 such that Bδ(x) is compact for every x ∈ K, then B δ
2
[K]

+

is τδ(d)-compact.

Proof. The set B δ
2
[K]

+
is τδ(d)-closed by Remark 4.1. Let C ∈ CL(X), ε > 0 and let U

be an open cover of Bε[C]. By Proposition 4.3, we have to �nd a �nite open subcover F
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such that B δ
2
[K]

+
∩Bε[C]

−
⊆
⋃
U∈F U

−. If Bε[C]∩B δ
2
[K] = ∅ then Bε[C]

−
∩B δ

2
[K]

+

is empty. Suppose Bε[C] ∩ B δ
2
[K] 6= ∅. Note that Bε[C] ∩ B δ

2
[K] is compact since it

is closed and it is contained in B δ
2
[K] which is compact by Lemma 4.4. There exist

U1, . . . , Un ∈ U such that Bε[C] ∩ B δ
2
[K] ⊆

⋃n
i=1 Ui. Therefore Bε[C]

−
∩ B δ

2
[K]

+
⊆

(Bε[C] ∩B δ
2
[K])− ⊆

⋃n
i=1 U

−
i . �

4.6. Proposition. Let X be a metrizable space and d ∈M(X). Let V, V1, . . . Vk be any

non-empty set. If V =
⋂k
i=1 V

−
i ∩V

+ is τδ(d)-compact and non-empty, then V is compact.

Proof. Since V 6= ∅, for every i = 1, . . . , k we can �x xi ∈ Vi ∩ V .
We �rst prove that V is closed. Otherwise there should exist (yn)n∈N such that yn ∈ V

and yn → y ∈ X r V . Since V 6= ∅, for every i = 1, . . . , k we can �nd xi ∈ Vi ∩ V . For
every n ∈ N set Cn = {x1, . . . , xk, yn} and C = {x1, . . . , xk, y}. Note that C /∈ V because
y ∈ C r V . Moreover Cn ∈ V for every n ∈ N. We prove that Cn →τδ(d) C in order to
have a contradiction, since V is τδ(d)-compact and hence closed.

Let U =
⋂p
i=1 U

−
i ∩ U

++ be a τδ(d)-neighbourhood of C. Let i ∈ {1, . . . , p}; we
distinguish two cases. If there exists j ∈ {1, . . . , k} such that xj ∈ Ui, then xj ∈ Cn ∩Ui,
hence Cn ∈ U−i for every n ∈ N. If xj /∈ Ui for every j = 1, . . . , k, since C ∩ Ui 6= 0,
then y ∈ C ∩ Ui. Take ε > 0 such that Bε(y) ∈ Ui. Then yn ∈ Bε(y) eventually and
therefore Cn ∈ U−i eventually. Since C ∈ U++, there exists δ > 0 such that Bδ[C] ⊆ U .
Eventually yn ∈ B δ

2
(y) and therefore B δ

2
[Cn] ⊆ Bδ[C] ⊆ U , that is Cn ∈ U++. Hence

Cn ∈
⋂p
i=1 U

−
i ∩ U

++ eventually, that is Cn →τδ(d) C.

We now prove that V is compact. Otherwise, there should exist (an)n∈N in V with no
cluster point. That is for every x ∈ X there exists a neighbourhood Vx of x and νx ∈ N
such that for every n ≥ νx, an /∈ Vx. For every n ∈ N set Cn = {x1, . . . , xk, an}. We
will prove that (Cn)n∈N has no cluster point in order to have a contradiction since V is
compact. Let C ∈ CL(X).

• If C ⊆ {x1, . . . , xk}, then
(⋃k

i=1 Vxi
)++

is a τδ(d)-neighbourhood of C. On the
other hand if ν ≥ max{νx1 , . . . , νxk}, then for every n ≥ ν, an /∈ Vxi for every
i = 1, . . . , k. Then Cn /∈

(⋃k
i=1 Vxi

)++
eventually.

• If there exists x0 ∈ C r {x1, . . . , xk}, let W be a neighbourhood of x0 such
that W ∩ {x1, . . . , xk} = ∅. Then Cn /∈ (W ∩ Vx0)− for every n ≥ νx0 , while
C ∈ (W ∩ Vx0)−. �

We are now able to �nally prove our main result.

Proof of Theorem 3.1.

⇒) Suppose that (CL(X), τδ(d)) is locally compact at C. There exists a neigh-

bourhood V =
⋂n
i=1 V

−
i ∩ V

++ of C such that V is τδ(d)-compact. For ev-
ery i = 1, . . . , n, let xi ∈ Vi ∩ C and let δ > 0 such that Bδ[C] ⊆ V . Set

U =
⋂n
i=1{xi}

− ∩B δ
3
[C]

+
. Note that U is τδ(d)-closed by Remark 4.1. If T ∈ U,

then B δ
3
[T ] ⊆ B δ

3
(B δ

3
[C]) ⊆ Bδ[C] ⊆ V , and this implies U ⊆ V. Hence U is

τδ(d)-compact being τδ(d)-closed and contained in the τδ(d)-compact set V. By

Proposition 4.6, B δ
3
[C] is compact.

⇐) Since C is closed and contained in the compact set Bε[C], it is compact. More-

over for every x ∈ C, Bε(x) is compact since it is contained in Bε[C]. By

Lemma 4.5, B ε
2
[C]

+
is τδ(d)-compact. Moreover C ∈ B ε

2
[C]++ ⊆ B ε

2
[C]

+
. The
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set B ε
2
[C]++ is a τδ(d)-neighbourhood of C and its closure in CL(X) is compact

since it is contained in B ε
2
[C]

+
, which is τδ(d)-compact. Hence (CL(X), τδ(d)) is

locally compact at C. �
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In the present paper, we give upper and lower bounds for the spectral
norm of g-circulant matrix, whose the �rst row entries are the classical
Horadam numbers U (a,b)

i . In addition, we also establish an explicit
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1 ]2, · · · , [U (a,b)

n−1 ]2).

Keywords: g-Circulant matrix; Spectral norm; Horadam number; Fibonacci

number; Lucas number

2000 AMS Classi�cation: 15A45, 15A60.

Received : 08.01.2015 Accepted : 01.03.2016 Doi : 10.15672/HJMS.20164515690

1. Introduction and Preliminaries

Many generalizations of the Fibonacci and Lucas sequences have been introduced and
studied [1-4]. Here we use the classical Horadam sequence {U (a,b)

n }n∈N , which is de�ned
in [4]:

U (a,b)
n = AU

(a,b)
n−1 +BU

(a,b)
n−2 , U

(a,b)
0 = a, U

(a,b)
1 = b,(1.1)

where a, b ∈ R and A2 + 4B > 0. Obviously, if we choose A = B = 1 in (1), then the
generalized Fibonacci sequence {F (a,b)

n }n∈N is obtained. Further more, when a = 0, b = 1

and a = 2, b = 1, the sequence {F (a,b)
n }n∈N reduces to the well-known Fibonacci sequence

{Fn}n∈N and Lucas sequence {Ln}n∈N , respectively.
For the Horadam sequence {U (a,b)

n }n∈N , the following generalization of the Binet's
formula of Fibonacci number holds [4]:

U (a,b)
n = c1α

n + c2β
n,(1.2)
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where

c1 =
a(A2 + 4B) + (2b− aA)

√
A2 + 4B

2(A2 + 4B)
,(1.3)

c2 =
a(A2 + 4B)− (2b− aA)

√
A2 + 4B

2(A2 + 4B)
,

α =
A+
√
A2 + 4B

2
, β =

A−
√
A2 + 4B

2
.(1.4)

Recently, there has been much interest in investigation of some special matrices. Akbu-
lak and Bozkurt [5] found the lower and upper bounds for the spectral norms of Toeplitz
matrices A = [Fi−j ]

n
i,j=1 and B = [Li−j ]

n
i,j=1, then Shen [6] generalized these results.

Solak [7,8] gave the upper and lower bounds for the spectral norms of circulant matrices
whose entries are Fibonacci and Lucas numbers. Then �pek [9] investigated an improved
estimation for the spectral norms of these matrices. In addition, there have been several
articles focus on the spectral distribution and norms of g-circulant matrices. Bose et
al. [10] listed the limiting spectral distribution for a class of g-circulant matrices with
heavy tailed input sequence. Zhou and Jiang [11] derived some explicit formulas for the
spectral norms of g-circulant matrices whose the �rst row entries are Fibonacci number,
Lucas number and their powers.

Besides, Shen et al. [12] gave some feasible computational formulas for the determi-
nants and inverses of the circulant matrices An=Circ(F1, F2, · · · , Fn) and Bn=Circ(L1,
L2, · · · , Ln), then Yazlik and Taskara [13] generalized all results from [12]. Stanimirovi¢
et al. [4] de�ned an n × n Toeplitz matrix U

(a,b,s)
n = [u

(a,b,s)
i,j ](i, j = 1, 2, · · · , n) of type

s, where

u
(a,b,s)
i,j =

{
U

(a,b)
i−j+1, i− j + s ≥ 0,

0, i− j + s < 0.
(1.5)

then the inverse of the matrix U
(a,b,0)
n was derived, and correlations between the ma-

trix U
(a,b,0)
n and the generalized Pascal matrices of the �rst and the second kinds were

considered. In addition, Shen and He [14] also established an explicit formula of the
Moore-Penrose inverse for the matrix U

(a,b,−1)
n .

In this paper, let AU and AU2 be two g-circulant matrices, whose the �rst row entries
are (U (a,b)

0 , U
(a,b)
1 , · · · , U (a,b)

n−1 ) and ([U
(a,b)
0 ]2, [U

(a,b)
1 ]2, · · · , [U (a,b)

n−1 ]2), respectively. We give
upper and lower bounds for the spectral norm of matrix AU , and establish an explicit
formula of the spectral norm for matrix AU2 , then generalize the main results in [11].

Now we give some preliminaries related to our study. A matrix A ∈ Mn is called a
g-circulant matrix if it is of the form

A =


a0 a1 a2 · · · an−1

an−g an−g+1 an−g+2 · · · an−g−1

an−2g an−2g+1 an−2g+2 · · · an−2g−1

...
...

...
. . .

...
ag ag+1 ag+2 · · · ag−1

(1.6)

where g is a nonnegative integer and each of the subscripts is understood to be reduced
modulo n. Obviously, when g = 1 or g = n+ 1, the g-circulant matrix A reduces to the
standard circulant matrix.
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For any A = [aij ] ∈Mm,n. The well-known Frobenius (or Euclidean) norm of matrix
A is

‖A‖F =

[ m∑
i=1

n∑
j=1

|aij |2
] 1

2

and also the spectral norm of matrix A is

‖A‖2 =
√

max
1≤i≤n

λi(AHA)

where λi(A
HA) is eigenvalue of AHA and AH is conjugate transpose of matrix A. Then

the following inequality holds:

1√
n
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F(1.7)

Lemma 1[15] An n × n matrix Qg is unitary if and only if (n, g) = 1, where Qg is
a g-circulant matrix with the �rst row (1, 0, · · · , 0).

Lemma 2[15] A is a g-circulant matrix with the �rst row (a0, a1, · · · , an−1) if and
only if A = QgC, where C is a circulant matrix with the �rst row (a0, a1, · · · , an−1).

Lemma 3[16] Let A = [aij ] ∈Mn is a nonnegative matrix, Then its spectral radius
ρ(A) satis�es the following inequality

min
1≤i≤n

n∑
j=1

aij ≤ ρ(A) ≤ max
1≤i≤n

n∑
j=1

aij .(1.8)

Lemma 4 For the Horadam sequence {U (a,b)
n }n∈N satisfying B 6= −1 and B±A 6= 1,

the following identity is valid:

n−1∑
i=0

[U
(a,b)
i ]2 =

M − [U
(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
,(1.9)

where M = a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
.

Proof: From B ± A 6= 1, we get α 6= ±1 and β 6= ±1, applying identities U (a,b)
n =

c1α
n + c2β

n and αβ = −B, then the following is valid

n−1∑
i=0

[U
(a,b)
i ]2 =

n−1∑
i=0

(c1α
i + c2β

i)2 = c21

n−1∑
i=0

α2i + c22

n−1∑
i=0

β2i + 2c1c2

n−1∑
i=0

(αβ)i

= c21 ·
1− α2n

1− α2
+ c22 ·

1− β2n

1− β2
+ 2c1c2 ·

1− (αβ)n

1− αβ

=
c21 + c22 − (c22α

2 + c21β
2)− (c21α

2n + c22β
2n) + (αβ)2(c21α

2n−2 + c22β
2n−2)

(1− α2)(1− β2)

+2c1c2
1− (−B)n

1 +B
.

By using identities α+ β = A and α− β =
√
A2 + 4B, we have

c1 =
a

2
+

2b− aA
2
√
A2 + 4B

=
a

2
+

2b− a(α+ β)

2(α− β) =
b− aβ
α− β ,

c2 =
a

2
− 2b− aA

2
√
A2 + 4B

=
a

2
− 2b− a(α+ β)

2(α− β) =
aα− b
α− β .
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So we obtain

c22α
2 + c21β

2 = (c2α+ c1β)
2 − 2c1c2αβ =

(
aα− b
α− β · α+

b− aβ
α− β · β

)2

− 2c1c2αβ

= [a(α+ β)− b]2 − 2c1c2αβ = (aA− b)2 + 2c1c2B.

Since c21 + c22 = a2 − 2c1c2 and

c21α
2n + c22β

2n = (c1α
n + c2β

n)2 − 2c1c2(αβ)
n = [U (a,b)

n ]2 − 2c1c2(−B)n,

(αβ)2(c21α
2n−2 + c22β

2n−2) = B2[U
(a,b)
n−1 ]2 − 2c1c2(−B)n+1.

While c1c2 = a2B+abA−b2

A2+4B
, hence

n−1∑
i=0

[U
(a,b)
i ]2 =

a2 − (aA− b)2 − 2c1c2(1 +B)[1− (−B)n]− [U
(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1 + αβ)2 − (α+ β)2

+2c1c2
1− (−B)n

1 +B

=
a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
− [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2

+
2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
.

Thus the proof is completed. 2

2. Main Results

Theorem 1 Let AU be as the matrix in (1.6), with ai = U
(a,b)
i (i = 0, 1, · · · , n− 1)

in the �rst row of AU . If B 6= −1, B ±A 6= 1 and (n, g) = 1, then we have√
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
≤ ‖AU‖2

≤ 1√
A2 + 4B

[
|b− aβ|(1− |α|n)

1− |α| +
|b− aα|(1− |β|n)

1− |β|

]
,

where α =
A+
√

A2+4B

2
, β =

A−
√

A2+4B

2
andM = a2−(aA−b)2− 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
.

Proof: Applying the de�nition of Frobenius norm and formula (1.9), we have

‖AU‖2F = n

n−1∑
i=0

[U
(a,b)
i ]2

= n

(
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)

)
,

where M = a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
. Hence from (1.7), we obtain

‖AU‖2 ≥ 1√
n
‖AU‖F

=

√
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
.

On the other hand, using the results from Lemma 1 and Lemma 2, one can verify

(AU )
H
AU = (QgC)HQgC = CH(Qg)

HQgC = CHInC = CHC,
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where C is a circulant matrix with the �rst row (U
(a,b)
0 , U

(a,b)
1 , · · · , U (a,b)

n−1 ) and In is an
identity matrix. Hence the spectral norm of matrix AU is the same as that of C. Let
f(x) =

∑n−1
i=0 U

(a,b)
i xi be a scalar-valued polynomial, and πn be an n×n circulant matrix

with the �rst row (0, 1, · · · , 0), then we get

C = f(πn) =

n−1∑
i=0

U
(a,b)
i πi

n,

hence

‖AU‖2 = ‖C‖2 = ‖
n−1∑
i=0

U
(a,b)
i πi

n‖2 ≤
n−1∑
i=0

‖U (a,b)
i πi

n‖2 ≤
n−1∑
i=0

|U (a,b)
i |‖πn‖i2.

Since πH
n πn = In, then we have

‖πn‖2 =
√

max
1≤i≤n

λi(πH
n πn) = 1.

Note that |α| 6= 1 and |β| 6= 1, hence we obtain

‖AU‖2 ≤
n−1∑
i=0

|U (a,b)
i | =

n−1∑
i=0

|c1αi + c2β
i| ≤ |c1|

n−1∑
i=0

|α|i + |c2|
n−1∑
i=0

|β|i

= |c1|
1− |α|n

1− |α| + |c2|
1− |β|n

1− |β| =
1

α− β

[
|b− aβ|(1− |α|n)

1− |α| +
|b− aα|(1− |β|n)

1− |β|

]
=

1√
A2 + 4B

[
|b− aβ|(1− |α|n)

1− |α| +
|b− aα|(1− |β|n)

1− |β|

]
,

where α =
A+
√

A2+4B

2
, β =

A−
√

A2+4B

2
. Thus the proof is completed. 2

Example Let AF be a 4-circulant matrix of the order 5 with the �rst row (F
(0,−1)
0 , F

(0,−1)
1 ,

· · · , F (0,−1)
4 ), then

√
15 ≤ ‖AF ‖2 ≤ 3 +

12√
5
.

Theorem 2 Let AU2 be as (1.6), with ai = [U
(a,b)
i ]2(i = 0, 1, · · · , n− 1) in the �rst

row of AU2 . If B 6= −1, B ±A 6= 1 and (n, g) = 1, then we have the following identity

‖AU2‖2 =
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
,

where M = a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
.

Proof: Applying the results from Lemma 1 and Lemma 2, the following is valid

(AU2)HAU2 = (QgC)HQgC = CH(Qg)
HQgC = CHInC = CHC,

where C = [cij ] ∈Mn is a circulant matrix with the �rst row ([U
(a,b)
0 ]2, [U

(a,b)
1 ]2, · · · , [U (a,b)

n−1 ]2).
Hence the spectral norm of matrix AU2 is the same as that of C.

Since the circulant matrix C is normal, there exists a unitary matrix V ∈ Mn such
that V HCV = diag(λ1, λ2, · · · , λn), where λi is eigenvalue of C, hence

V HCHCV = diag(|λ1|2, |λ2|2, · · · , |λn|2).

Thus, the spectral norm of C is given by its spectral radius. Also since C is nonnegative,
its spectral radius ρ(C) satis�es the following inequality:

min
1≤i≤n

n∑
j=1

cij ≤ ρ(C) ≤ max
1≤i≤n

n∑
j=1

cij
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While
n∑

j=1

cij =

n−1∑
k=0

[U
(a,b)
k ]2 =

M − [U
(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)

for any i = 1, 2, · · · , n, where M = a2 − (aA− b)2 − 2(1+B)(a2B+abA−b2)[1−(−B)n]

A2+4B
. Hence

‖AU2‖2 = ‖C‖2 =
M − [U

(a,b)
n ]2 +B2[U

(a,b)
n−1 ]2

(1−B)2 −A2
+

2(a2B + abA− b2)[1− (−B)n]

(1 +B)(A2 + 4B)
.

Thus the proof is completed. 2

In the particular case A = B = 1, a = 0 and b = 1 from Theorem 2, we get the
spectral norm for g-circulant matrix with the �rst row (F 2

0 , F
2
1 , · · · , F 2

n−1), which is the
known result in [11].

Corollary 1 Let AF2 be as (1.6), with ai = F 2
i (i = 0, 1, · · · , n− 1) in the �rst row

of AF2 . If (n, g) = 1, then we have

‖AF2‖2 = FnFn−1.

Proof: We select A = B = 1, a = 0 and b = 1 in Theorem 2, then the following is
valid

‖AF2‖2 = F 2
n − F 2

n−1 + (−1)n,
Thus, the proof is completed from the following identity

FnFn−1 − (F 2
n − F 2

n−1) = Fn+1Fn−1 − F 2
n = (−1)n. 2

In the case A = B = 1, a = 2 and b = 1 from Theorem 2, we obtain the following
result in [11].

Corollary 2 Let AL2 be as (1.6), with ai = L2
i (i = 0, 1, · · · , n− 1) in the �rst row

of AL2 . If (n, g) = 1, then we have the following identity

‖AL2‖2 = LnLn−1 + 2.

Proof: When A = B = 1, a = 2 and b = 1 in Theorem 2, then we have

‖AL2‖2 = L2
n − L2

n−1 − 5(−1)n + 2.

On the other hand, applying identities Fn+Ln = 2Fn+1 and Fn+1Fn−1−F 2
n = (−1)n,

then we have

L2
n − L2

n−1 = (2Fn+1 − Fn)
2 − (2Fn − Fn−1)

2

= 4(F 2
n+1 − Fn+1Fn − F 2

n) + (F 2
n − FnFn−1 − F 2

n−1) + 5FnFn−1

= 3(−1)n + 5FnFn−1,

hence, the following is valid

L2
n − L2

n−1 − LnLn−1 = 3(−1)n + 5FnFn−1 − (2Fn+1 − Fn)(2Fn − Fn−1)

= 3(−1)n + 4(FnFn−1 − Fn+1Fn) + 2Fn+1Fn−1 + 2F 2
n

= 3(−1)n + 2(Fn+1Fn−1 − F 2
n)

= 5(−1)n.

Thus the proof is completed. 2

3. Numerical tests

In this section, we list the results for Fibonacci and Lucas numbers in Table 1. Em-
ploying the formulas in above corollaries, the numerical results demonstrate that the
explicit identities of spectral norms of g-circulant matrices hold exactly.
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Table 1. Numerical results of ai = F 2
i , L

2
i

n 7 9
g 2 3 4 5 6 2 4 5 7 8
‖AF2‖2 104 104 104 104 104 714 714 714 714 714
‖AL2‖2 524 524 524 524 524 3574 3574 3574 3574 3574
FnFn−1 104 104 104 104 104 714 714 714 714 714
LnLn−1 + 2 524 524 524 524 524 3574 3574 3574 3574 3574

4. Conclusion

In this paper we introduce the notion of the classical Horadam numbers U (a,b)
i , then

give upper and lower bounds for the spectral norm of g-circulant matrix, whose the
�rst row entries are (U

(a,b)
0 , U

(a,b)
1 , · · · , U (a,b)

n−1 ). In addition, we also establish an explicit

formula of the spectral norm for g-circulant matrix with the �rst row ([U
(a,b)
0 ]2, [U

(a,b)
1 ]2,

· · · , [U (a,b)
n−1 ]2). In two particular cases A = B = 1, a = 0, b = 1 and A = B = 1, a =

2, b = 1, we obtain the known results from [11].
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1. Introduction

Let Σ denote the class of functions of the form

(1.1) f(z) =
1

z
+

∞∑
k=1

akz
k,

which are analytic in the punctured open unit disk

U∗ := {z : z ∈ C and 0 < |z| < 1} =: U\{0}.
Let f, g ∈ Σ, where f is given by (1.1) and g is de�ned by

g(z) =
1

z
+

∞∑
k=1

bkz
k.
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Then the Hadamard product (or convolution) f ∗ g of the functions f and g is de�ned by

(f ∗ g)(z) :=
1

z
+

∞∑
k=1

akbkz
k =: (g ∗ f)(z).

Let P denote the class of functions of the form

p (z) = 1 +

∞∑
k=1

pkz
k,

which are analytic and convex in U, and satisfy the condition

<(p (z)) > 0 (z ∈ U).

For two functions f and g, analytic in U, the function f is said to be subordinate to
g in U, or the function g is said to be superordinate to f in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that

f(z) = g
(
ω(z)

)
(z ∈ U).

Indeed, it is known that

f(z) ≺ g(z) (z ∈ U) =⇒ f(0) = g(0) and f(U) ⊂ g(U).

Furthermore, if the function g is univalent in U, then we have the following equivalence:

f(z) ≺ g(z) (z ∈ U)⇐⇒ f(0) = g(0) and f(U) ⊂ g(U).

The following we recall a general Hurwitz-Lerch Zeta function Φ(z, s, a) de�ned by
(cf., e.g., [20, p. 121 et sep.])

(1.2) Φ(z, s, a) :=

∞∑
k=0

zk

(k + a)s

(a ∈ C \ Z−0 ; s ∈ C when |z| < 1; <(s) > 1 when |z| = 1),

where, as usual,

Z−0 := Z \ N (Z := {0,±1,±2, . . .}; N := {1, 2, 3, . . .}).
Several interesting properties and characteristics of the Hurwitz-Lerch Zeta function
Φ(z, s, a) can be found in the recent investigations by (for example) Choi and Srivas-
tava [1], Ferreira and López [4], Garg et al. [5], Lin et al. [7], Luo and Srivastava [10],
Srivastava et al. [21], Ghanim [6] and others.

By making use of the Hurwitz-Lerch Zeta function Φ(z, s, a), Srivastava and Attiya
[19] (see also [8, 9, 14, 17, 22, 23, 24, 27, 28, 29, 30]) recently introduced and investigated
the integral operator

Js, bf(z) = z +

∞∑
k=2

(
1 + b

k + b

)s
ckz

k (b ∈ C \ Z−; s ∈ C; z ∈ U).

Motivated essentially by the above-mentioned Srivastava-Attiya operator Js, b, we now
introduce the linear operator

Ws, b : Σ −→ Σ

de�ned, in terms of the Hadamard product (or convolution), by

(1.3) Ws, bf(z) := Θs, b(z) ∗ f(z)
(
b ∈ C \ {Z−0 ∪ {1}}; s ∈ C; f ∈ Σ; z ∈ U∗

)
,
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where, for convenience,

(1.4) Θs, b(z) := (b− 1)s
[
Φ(z, s, b)− b−s +

1

z (b− 1)s

]
(z ∈ U∗).

It can easily be seen from (1.1) to (1.4) that

(1.5) Ws, bf(z) =
1

z
+

∞∑
k=1

(
b− 1

b+ k

)s
akz

k.

Indeed, the operator Ws, b can be de�ned for b ∈ C \ {Z− ∪ {1}}, where

Ws, 0f(z) := lim
b→0
{Ws, bf(z)} .

We observe that

(1.6) W0, bf(z) = f(z),

and

(1.7) W1, γf(z) =
γ − 1

zγ

∫ z

0

tγ−1f(t)dt (<(γ) > 1) .

Furthermore, from the de�nition (1.5), we �nd that

(1.8) Ws+1, bf(z) =
b− 1

zb

∫ z

0

t b−1
Ws, bf(t)dt (<(b) > 1) .

Di�erentiating both sides of (1.8) with respect to z, we get the following useful relation-
ship:

(1.9) z (Ws+1, bf)′ (z) = (b− 1)Ws, bf(z)− bWs+1, bf(z).

By using the integral operator (1.5), we now introduce the following subclasses of the
class Σ of meromorphic functions.

1.1. De�nition. A function f ∈ Σ is said to be in the class MSs, b(η;φ) if it satis�es
the subordination

(1.10)
1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)
≺ φ(z)

(s ∈ C; <(b) > 1; η ∈ [0, 1); φ ∈ P; z ∈ U).

1.2. De�nition. A function f ∈ Σ is said to be in the class MCs, b(λ;φ) if it satis�es
the condition

(1.11) (1− λ)zWs+1, bf(z) + λzWs, bf(z) ≺ φ(z) (s, λ ∈ C; <(b) > 1; φ ∈ P; z ∈ U).

For some recent investigations on meromorphic functions, see (for example) the ear-
lier works [2, 3, 15, 16, 25, 26, 31] and the references cited therein. In this paper, we
aim at deriving the inclusion relationships, convolution properties, coe�cient inequali-
ties, integral-preserving properties, subordination and superordination properties for the
function classes MSs, b(η;φ) and MCs, b(λ;φ).
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2. Preliminary results

The following lemmas will be required in the proof of our main results.

2.1. Lemma. ([11]) Let ϑ, γ ∈ C. Suppose that ψ is convex and univalent in U with

ψ(0) = 1 and <(ϑψ(z) + γ) > 0 (z ∈ U).

If p is analytic in U with p(0) = 1, then the following subordination

p(z) +
zp′(z)

ϑp(z) + γ
≺ ψ(z) (z ∈ U)

implies that

p(z) ≺ ψ(z) (z ∈ U).

2.2. Lemma. Let 0 ≤ α < 1, s ∈ C and <(b) > 1. Suppose also that the sequence
{Ak}∞k=1 is de�ned by

(2.1)

A1 = (1−α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s , Ak+1 =
2(1− α)

k + 2

∣∣∣∣ b+ k + 1

b− 1

∣∣∣∣s
(

1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)

(k ∈ N).

Then

(2.2) Ak = (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s k−1∏
j=1

j − 2α+ 3

j + 2

∣∣∣∣ b+ j + 1

b+ j

∣∣∣∣s .
Proof. From (2.1), we �nd that

(2.3) (k + 2)

∣∣∣∣ b− 1

b+ k + 1

∣∣∣∣sAk+1 = 2(1− α)

(
1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)
,

and

(2.4) (k + 1)

∣∣∣∣ b− 1

b+ k

∣∣∣∣sAk = 2(1− α)

(
1 +

k−1∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)
.

Combining (2.3) and (2.4), we get

(2.5)
Ak+1

Ak
=
k − 2α+ 3

k + 2

∣∣∣∣ b+ k + 1

b+ k

∣∣∣∣s .
Thus, for k ≥ 2, we deduce from (2.5) that

Ak =
Ak
Ak−1

· · · · · A3

A2
· A2

A1
·A1 = (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s k−1∏
j=1

j − 2α+ 3

j + 2

∣∣∣∣ b+ j + 1

b+ j

∣∣∣∣s .
The proof of Lemma 2.2 is completed. �

2.3. Lemma. ([12]) Let the function Ω be analytic and convex (univalent) in U with
Ω(0) = 1. Suppose also that the function Θ given by

Θ(z) = 1 + dnz
n + dn+1z

n+1 + · · ·
is analytic in U. If

(2.6) Θ(z) +
zΘ ′(z)

ζ
≺ Ω(z) (<(ζ) > 0; ζ 6= 0; z ∈ U),

then

Θ(z) ≺ $(z) =
ζ

n
z−

ζ
n

∫ z

0

t
ζ
n
−1Ω(t)dt ≺ Ω(z) (z ∈ U),
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and $ is the best dominant of (2.6).

2.4. Lemma. ([18]) Let q be a convex univalent function in U and let σ, η ∈ C with

<
(

1 +
zq′′(z)

q′(z)

)
> max

{
0, −<

(
σ

η

)}
.

If p is analytic in U and

σp (z) + ηzp′(z) ≺ σq(z) + ηzq′(z),

then p ≺ q and q is the best dominant.

Denote by Q the set of all functions f that are analytic and injective on U − E(f),
where

E(f) =
{
ε ∈ ∂U : lim

z→ε
f(z) =∞

}
,

and such that f ′(ε) 6= 0 for ε ∈ ∂U − E(f). Let H(U) denote the class of analytic
functions in U and let H[a, p] denote the subclass of the functions f ∈ H(U) of the form:

f(z) = a+ apz
p + ap+1z

p+1 + · · · (a ∈ C; p ∈ N).

2.5. Lemma. ([13]) Let q be convex univalent in U and κ ∈ C. Further assume that
<(κ) > 0. If

p ∈ H[q(0), 1] ∩Q,
and p+ κzp′ is univalent in U, then

q(z) + κzq′(z) ≺ p (z) + κzp′(z)

implies q ≺ p and q is the best subordinant.

3. Main results

Firstly, we derive the following inclusion relationship for the function classMSs, b(η;φ).

3.1. Theorem. Let 0 ≤ η < 1 and φ ∈ P with

(3.1) < ((1− η)φ(z) + η − b) < 0 (z ∈ U).

Then

(3.2) MSs, b(η;φ) ⊂MSs+1, b(η;φ).

Proof. Let f ∈MSs, b(η;φ) and suppose that

(3.3) ϕ(z) :=
1

1− η

(
−z (Ws+1, bf)′ (z)

Ws+1, bf(z)
− η
)

(z ∈ U).

Then ϕ is analytic in U with ϕ(0) = 1. By virtue of (1.9) and (3.3), we get

(3.4) (b− 1)
Ws, bf(z)

Ws+1, bf(z)
= −(1− η)ϕ(z)− η + b.

Di�erentiating both sides of (3.4) with respect to z logarithmically and using (3.3), we
have

1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)

= ϕ(z) +
zϕ′(z)

−(1− η)ϕ(z)− η + b
≺ φ(z).(3.5)

By means of (3.1), an application of Lemma 2.1 to (3.5) yields

ϕ(z) =
1

1− η

(
−z (Ws+1, bf)′ (z)

Ws+1, bf(z)
− η
)
≺ φ(z),

that is f ∈MSs+1, b(η;φ), which implies that the assertion (3.2) of Theorem 3.1 holds. �
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Next, we derive some convolution properties of the class MSs, b(η;φ).

3.2. Theorem. Let f ∈MSs, b(η;φ). Then

(3.6) f(z) =

[
z−1 · exp

(
(η − 1)

∫ z

0

φ (ω(ξ))− 1

ξ
dξ

)]
∗

(
1

z
+

∞∑
k=1

(
b+ k

b− 1

)s
zk
)
,

where ω is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

Proof. Suppose that f ∈MSs, b(η;φ). We �nd from (1.10) that

(3.7)
z (Ws, bf)′ (z)

Ws, bf(z)
= (η − 1)φ (ω(z))− η,

where ω is analytic in U with ω(0) = 0 and |ω(z)| < 1 (z ∈ U). From (3.7), we get

(3.8)
(Ws, bf)′ (z)

Ws, bf(z)
+

1

z
= (η − 1)

φ (ω(z))− 1

z
,

which, upon integration, yields

(3.9) log (zWs, bf(z)) = (η − 1)

∫ z

0

φ (ω(ξ))− 1

ξ
dξ.

It follows from (3.9) that

(3.10) Ws, bf(z) = z−1 · exp

(
(η − 1)

∫ z

0

φ (ω(ξ))− 1

ξ
dξ

)
.

The assertion (3.6) of Theorem 3.2 can directly be derived from (1.5) and (3.10). �

3.3. Theorem. Let f ∈ Σ and φ ∈ P. Then f ∈MSs, b(η;φ) if and only if

(3.11)

1

z

{
f ∗

{
−1

z
+

∞∑
k=1

k

(
b− 1

b+ k

)s
zk −

[
(η − 1)φ

(
eiθ
)
− η
](1

z
+

∞∑
k=1

(
b− 1

b+ k

)s
zk
)}}

6= 0

(z ∈ U∗; 0 ≤ θ < 2π).

Proof. Suppose that f ∈MSs, b(η;φ). We know that (1.6) is equivalent to

(3.12)
1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)
6= φ

(
eiθ
)

(z ∈ U; 0 ≤ θ < 2π).

It is easy to see that the condition (3.12) can be written as follows:

(3.13)
1

z

{
z (Ws, bf)′ (z)−

[
(η − 1)φ

(
eiθ
)
− η
]
Ws, bf(z)

}
6= 0 (z ∈ U∗; 0 ≤ θ < 2π).

On the other hand, we �nd from (1.5) that

(3.14) z (Ws, bf)′ (z) = −1

z
+

∞∑
k=1

k

(
b− 1

b+ k

)s
akz

k.

Combining (1.5), (3.13) and (3.14), we get the assertion (3.11) of Theorem 3.3. �
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3.4. Theorem. If f ∈MSs, b(0; [1 + (1− 2α)z]/(1− z)), then

|a1| ≤ (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s ,
and

|ak| ≤ (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s k−1∏
j=1

j − 2α+ 3

j + 2

∣∣∣∣ b+ j + 1

b+ j

∣∣∣∣s (k ∈ N\{1}).

Proof. Suppose that

(3.15) h(z) :=
− z(W s, bf)

′
(z)

Ws, bf(z)
− α

1− α = 1 + c1z + c2z
2 + · · · .

It follows from f ∈ MSs, b(0; [1 + (1 − 2α)z]/(1 − z)) that h ∈ P, and subsequently one
has |ck| ≤ 2 for k ∈ N.

By virtue of (3.15), we know that

(3.16) z (W s, bf)′ (z) = [(α− 1)h(z)− α]Ws, bf(z).

It now follows from (1.5), (3.15) and (3.16) that

(3.17)

1

z
+

∞∑
k=1

k

(
b− 1

b+ k

)s
akz

k =
[
−1 + (α− 1)

(
c1z + c2z

2 + · · ·
)] [1

z
+

∞∑
k=1

(
b− 1

b+ k

)s
akz

k

]
.

By evaluating the coe�cients of z k in both sides of (3.17), we get

(3.18) k

(
b− 1

b+ k

)s
ak = −

(
b− 1

b+ k

)s
ak + (α− 1)

[
ck+1 +

k−1∑
l=1

cl

(
b− 1

b+ k − l

)s
ak−l

]
.

By observing the fact that |ck| ≤ 2 for k ∈ N, we �nd from (3.18) that

(3.19) |ak| ≤
2(1− α)

k + 1

∣∣∣∣ b+ k

b− 1

∣∣∣∣s
(

1 +

k−1∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣s |am|
)
.

Now, we de�ne the sequence {Ak}∞k=1 as follows:

(3.20)

A1 = (1−α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s , Ak+1 =
2(1− α)

k + 2

∣∣∣∣ b+ k + 1

b− 1

∣∣∣∣s
(

1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)

(k ∈ N).

In order to prove that

|ak| ≤ Ak (k ∈ N),

we make use of the principle of mathematical induction. By noting that

|a1| ≤ A1 = (1− α)

∣∣∣∣ b+ 1

b− 1

∣∣∣∣s .
Therefore, assuming that

|am| ≤ Am (m = 1, 2, 3, · · · , k; k ∈ N).
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Combining (3.19) and (3.20), we get

|ak+1| ≤
2(1− α)

k + 2

∣∣∣∣ b+ k + 1

b− 1

∣∣∣∣s
(

1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣s |am|
)

≤ 2(1− α)

k + 2

∣∣∣∣ b+ k + 1

b− 1

∣∣∣∣s
(

1 +

k∑
m=1

∣∣∣∣ b− 1

b+m

∣∣∣∣sAm
)

= Ak+1.

Hence, by the principle of mathematical induction, we have

(3.21) |ak| ≤ Ak (k ∈ N)

as desired.
By virtue of Lemma 2.2 and (3.20), we know that (2.2) holds. Combining (3.21) and

(2.2), we readily get the coe�cient estimates asserted by Theorem 3.4. �

In what follows, we derive some integral-preserving properties for the classMSs, b(η;φ).

3.5. Theorem. Let f ∈MSs, b(η;φ) with

<((1− η)φ(z) + η − µ) < 0 (z ∈ U; <(µ) > 1).

Then the integral operator F de�ned by

(3.22) F (z) :=
µ− 1

z µ

∫ z

0

tµ−1f(t)dt (z ∈ U∗; <(µ) > 1)

belongs to the class MSs, b(η;φ).

Proof. Let f ∈MSs, b(η;φ). We then �nd from (3.22) that

(3.23) z (Ws, bF )′ (z) + µWs, bF (z) = (µ− 1)Ws, bf(z).

By setting

(3.24) q(z) :=
1

1− η

(
−z (Ws, bF )′ (z)

Ws, bF (z)
− η
)
,

we observe that q is analytic in U with q(0) = 1. It follows from (3.23) and (3.24) that

(3.25) −(1− η)q(z)− η + µ = (µ− 1)
Ws, bf(z)

Ws, bF (z)
.

Di�erentiating both sides of (3.25) with respect to z logarithmically and using (3.24), we
get

(3.26) q(z) +
zq′(z)

−(1− η)q(z)− η + µ
=

1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)
≺ φ(z).

Since

<(−(1− η)φ(z)− η + µ) > 0 (z ∈ U),

by virtue of Lemma 2.1 and (3.26), we obtain

1

1− η

(
−z (Ws, bF )′ (z)

Ws, bF (z)
− η
)
≺ φ(z),

which implies that the assertion of Theorem 3.5 holds. �
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3.6. Theorem. Let f ∈MSs, b(η;φ) with

<((1− η)δ φ(z) + η δ − µ) < 0 (z ∈ U; δ 6= 0; µ ∈ C).

Then the function K ∈ Σ de�ned by

(3.27) Ws, bK(z) :=

(
µ− δ
zµ

∫ z

0

tµ−1 (Ws, bf(t))δ dt

)1/δ

(z ∈ U∗; δ 6= 0)

belongs to the class MSs, b(η;φ).

Proof. Let f ∈MSs, b(η;φ) and suppose that

(3.28) %(z) :=
1

1− η

(
−z (W s, bK)′ (z)

W s, bK(z)
− η
)

(z ∈ U).

In view of (3.27) and (3.28), we have

(3.29) µ− η δ − (1− η)δ %(z) = (µ− δ)
(

W s, bf(z)

W s, bK(z)

)δ
.

Now, by means of (3.27), (3.28) and (3.29), we obtain

(3.30) %(z) +
z%′(z)

µ− η δ − (1− η)δ %(z)
=

1

1− η

(
−z (Ws, bf)′ (z)

Ws, bf(z)
− η
)
≺ φ(z).

Since

<(µ− η δ − (1− η)δ φ(z)) > 0 (z ∈ U),

it follows from (3.30) and Lemma 2.1 that %(z) ≺ φ(z), that is K ∈ MSs, b(η;φ). We
thus complete the proof of Theorem 3.6. �

Now, we derive the following subordination property for the class MCs, b(λ;φ).

3.7. Theorem. Let f ∈MCs, b(λ;φ) with <(λ/(b− 1)) > 0. Then

(3.31) zWs+1, bf(z) ≺ b− 1

2λ
z−

b−1
2λ

∫ z

0

t
b−1
2λ
−1φ(t)dt ≺ φ(z).

Proof. Let f ∈MCs, b(λ;φ) and suppose that

(3.32) h(z) := zWs+1, bf(z) (z ∈ U).

Then h is analytic in U. By virtue of (1.5), (1.11) and (3.32), we �nd that

(3.33) h(z) +
λ

b− 1
zh′(z) = (1− λ)zWs+1, bf(z) + λzWs, bf(z) ≺ φ(z).

Thus, an application of Lemma 2.3 to (3.33) yields the desired assertion (3.31) of Theorem
3.7. �

3.8. Theorem. Let λ2 > λ1 ≥ 0. Then MCs, b(λ2;φ) ⊂MCs, b(λ1;φ).

Proof. Suppose that f ∈MCs, b(λ2;φ). It follows that

(3.34) (1− λ2)zWs+1, bf(z) + λ2zWs, bf(z) ≺ φ(z) (z ∈ U).

Since

0 ≤ λ1

λ2
< 1

and the function φ is convex and univalent in U, we deduce from (3.31) and (3.34) that

(1− λ1)zWs+1, bf(z) + λ1zWs, bf(z)

=
λ1

λ2
[(1− λ2)zWs+1, bf(z) + λ2zWs, bf(z)] +

(
1− λ1

λ2

)
zWs+1, bf(z) ≺ φ(z),
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which implies that f ∈MCs, b(λ1;φ). The proof of Theorem 3.8 is thus completed. �

3.9. Theorem. Let f ∈MCs, b(λ;φ). If the function F ∈ Σ is de�ned by (3.22), then

(3.35) zWs+1, bF (z) ≺ φ(z) (z ∈ U).

Proof. Let f ∈MCs, b(λ;φ) and suppose that

(3.36) χ(z) := zWs+1, bF (z) (z ∈ U).

From (3.22), we �nd that

(3.37) z (Ws+1, bF )′ (z) + µWs+1, bF (z) = (µ− 1)Ws+1, bf(z).

By virtue of (3.31), (3.36) and (3.37), we have

(3.38) χ(z) +
1

µ− 1
z χ ′(z) = zWs+1, bf(z) ≺ φ(z).

Thus, an application of Lemma 2.3 to (3.38), we get the assertion of Theorem 3.9. �

3.10. Theorem. Let q1 be univalent in U. Suppose also that q1 satis�es the condition

(3.39) <
(

1 +
zq′′1 (z)

q′1(z)

)
> max

{
0, −<

(
b− 1

λ

)}
.

If f ∈ Σ satis�es the following subordination

(3.40) (1− λ)zWs+1, bf(z) + λzWs, bf(z) ≺ q1(z) +
λ

b− 1
zq′1(z),

then

zWs+1, bf(z) ≺ q1(z),

and q1 is the best dominant.

Proof. Let the function h be de�ned by (3.32). We know that (3.33) holds. Combining
(3.33) and (3.40), we �nd that

(3.41) h(z) +
λ

b− 1
zh′(z) ≺ q1(z) +

λ

b− 1
zq′1(z).

By Lemma 2.4 and (3.41), we obtain the assertion of Theorem 3.10. �

We now derive the following superordination result for the class MCs, b(λ;φ).

3.11. Theorem. Let q2 be convex univalent in U, λ ∈ C with <(λ) > 0. Also let
zWs+1, b f(z) ∈ H[q2(0), 1] ∩ Q and (1 − λ)zWs+1, b f(z) + λzWs, bf(z) be univalent
in U. If

q2(z) +
λ

b− 1
zq′2(z) ≺ (1− λ)zWs+1, b f(z) + λzWs, bf(z),

then

q2(z) ≺ zWs+1, bf(z),

and q2 is the best subordinant.

Proof. Let the function h be de�ned by (3.32). Then

q2(z) +
λ

b− 1
zq′2(z) ≺ (1−λ)zWs+1, bf(z) +λzWs, bf(z) = h(z) +

λ

b− 1
zh′(z).

Thus, an application of Lemma 2.5, yields the assertion of Theorem 3.11. �

Finally, combining the above-mentioned subordination and superordination results,
we obtain the following sandwich type result.
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3.12. Corollary. Let q3 be convex univalent and let q4 be univalent in U, λ ∈ C with
<(λ) > 0. Suppose also that q4 satis�es the condition

<
(

1 +
zq′′4 (z)

q′4(z)

)
> max

{
0, −<

(
b− 1

λ

)}
.

If 0 6= zWs+1, bf(z) ∈ H[q3(0), 1]∩Q and (1−λ)zWs+1, bf(z)+λzWs, bf(z) is univalent
in U, also

q3(z) +
λ

b− 1
zq′3(z) ≺ (1− λ)zWs+1, bf(z) + λzWs, bf(z) ≺ q4(z) +

λ

b− 1
zq′4(z),

then

q3(z) ≺ zWs+1, bf(z) ≺ q4(z),

and q3 and q4 are, respectively, the best subordinant and the best dominant.
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1. Introduction and preliminaries. We study model structures on the categories
R-Mod and Ch(R), where R is an n-FC ring. In [[15]], M. Hovey constructed an abelian
model structure on R-Mod where the class of co�brant objects is given by the class
of Gorenstein projective modules, the class of �brant objects is given by the category
R-Mod, and the trivial objects are the left R-modules of �nite projective dimension.
Dually, there was a model structure on R-Mod with the same trivial objects, the class
of co�brant objects being R-Mod, and the class of �brant objects being the class of the
Gorenstein injective modules. Later in [[13]], J. Gillespie constructed another abelian
model structure on R-Mod where the class of co�brant objects is given by the class of
Ding projective modules. Dually, there was a model structure on R-Mod where the class
of �brant objects is given by the class of Ding injective modules.

We construct two new abelian model structures onR-Mod, called the Ding t-projective
and Ding t-injective model structures. In the �rst structure, the class of co�brant ob-
jects is formed by the objects with Ding projective dimension at most t. In the second
structure, the class of �brant objects is given by the class of objects with Ding injective
dimension at most t. In order to construct these structures, we use a result known by
some authors as the Hovey's Criterion, which allows us to get abelian model structures
from compatible and complete cotorsion pairs. In this sense, we prove the completeness
of the cotorsion pair cogenerated by the class of Ding t-projective modules. Dually, the
cotorsion pair generated by the class of Ding t-injective modules is also complete. These
structures have their analogues in the category of chain complexes.

For any ring R, there exists an invertible functor from Ch(R) to the category of
graded R[x]/(x2)-modules. In [[14]], the authors proved that this functor gives rise to a
bijective correspondence between the dg-projective complexes over R and the Gorenstein
projective R[x]/(x2)-modules. The same also occurred between dg-injective complexes
over R and Gorenstein injective R[x]/(x2)-modules. We prove the Ding version of these
results.

In the end of this paper, we show that the embedding functorsK(DP) −→ K(R-Mod)
andK(DI) −→ K(R-Mod) have right and left adjoints respectively, whereK(DP) (K(DI))
is the homotopy category with each complex constructed by Ding projective (injective)
modules, and K(R-Mod) is the homotopy category.

We next recall some known notions and facts needed in the sequel.
In this paper, R denotes a ring with unity, R-Mod the category of left R-modules,

and Ch(R) the category of complexes of left R-modules. A complex

· · · δ2−→ C1
δ1−→ C0

δ0−→ C−1
δ−1−→ · · ·

of left R-modules will be denoted (C, δ) or C. Given a left R-module M , we will denote
by Dm(M) the complex

· · · −→ 0 −→M
id−→M −→ 0 −→ · · ·

with the M in the m and (m − 1)-th position. Given a complex C, ΣC denotes the
complex such that (ΣC)n = Cn−1 and whose boundary operators are −δCn−1.

A homomorphism ϕ : C −→ D of degree n is a family (ϕi)i∈Z of homomorphisms of
R-modules ϕi : Ci −→ Dn+i. All such homomorphisms form an abelian group, denoted
HomR(C,D)n, it is clearly isomorphic to

∏
i∈Z HomR(Ci, Dn+i). We let HomR(C,D)

denote the complex of abelian groups with n-th component HomR(C,D)n and boundary
operator

δn((ϕi)i∈Z) = (δDn+iϕi − (−1)nϕi−1δ
C
i )i∈Z.

A homomorphism ϕ ∈ HomR(C,D)n is called a chain map if δ(ϕ) = 0, that is, if
δDn+iϕi = (−1)nϕi−1δ

C
i for all i ∈ Z. A chain map of degree 0 is called a morphism.
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To every complex C we associate the numbers

supC = sup{i | Ci 6= 0}, inf C = inf{i | Ci 6= 0}.

The complex C is called bounded above when supC <∞, bounded below when inf C >
−∞ and bounded when it is bounded below and above.

For objects C and D of Ch(R) (R-Mod), Hom(C,D) (HomR(C,D)) is the abelian
group of morphisms from C to D in Ch(R) (R-Mod) and Exti(C,D) (ExtiR(C,D)) for
i ≥ 1 will denote the groups we get from the right derived functor of Hom(C,D)
(HomR(C,D)).

Let A,B be two classes of R-modules. The pair (A,B) is called a cotorsion pair (also
called a cotorsion theory) if A⊥ = B and A = ⊥B. Here A⊥ is the class of R-modules C
such that Ext1(A,C) = 0 for all A ∈ A, and similarly ⊥B is the class of R-modules C
such that Ext1(C,B) = 0 for all B ∈ B. A cotorsion pair (A,B) is said to be hereditary,

if whenever 0 → Ã → A → Â → 0 is exact with A, Â ∈ A then Ã is also in A, or

equivalently, if 0 → B̃ → B → B̂ → 0 is exact with B̃, B ∈ B then B̂ is also in B. A
cotorsion pair (A,B) is cogenerated by a set S ⊆ A if B = S⊥. A cotorsion pair (A,B)
is said to have enough injectives (projectives) [[10]] if for any object M there exists an
exact sequence 0→M → B → A→ 0 (0→ B → A→M → 0) with A ∈ A and B ∈ B.
By [[10], Proposition 1.1.5], a cotorsion pair (A,B) has enough projectives if and only if
it has enough injectives. The cotorsion pair (A,B) is called complete if it has enough
projectives and injectives.

Given a class B of objects of Ch(R), a morphism φ : X → B is called a B-preenvelope
([[6]]) if B ∈ B and Hom(B,B′)→ Hom(X,B′)→ 0 is exact for all B′ ∈ B. If, moreover,
any f : B → B such that fφ = φ is an automorphism of B then φ : X → B is called a
B-envelope of X. A complex X is said to have a special B-preenvelope [[9]] if there is an
exact sequence 0→ X → B → L→ 0 with B ∈ B and L ∈ ⊥B. (Special) precovers and
covers of X are de�ned dually.

2. Ding t-projective and Ding t-injective model structures. Ding and Chen ex-
tended FC rings to n-FC rings [[2], [3]], which are seen to have many properties similar
to those of n-Gorenstein rings. Just as a ring is called Gorenstein when it is n-Gorenstein
for some nonnegative integer n (a ring R is called n-Gorenstein if it is a left and right
Noetherian ring with self injective dimension at most n on both sides for some non-
negative integer n), Gillespie �rst called a ring Ding-Chen when it is n-FC for some n
[[13], De�nition 4.1]. An R-module M is called Ding projective if there exists an exact
sequence of projective R-modules · · · −→ P1 −→ P0 −→ P−1 −→ P−2 −→ · · · with
M = Ker(P0 −→ P−1) and which remains exact after applying Hom(−, F ) for any �at
R-module F [[5]]. The class of Ding projective R-modules is denoted by DP. An R-
module N is called Ding injective if there exists an exact sequence of injective R-modules
· · · −→ I1 −→ I0 −→ I−1 −→ I−2 −→ · · · with N = Ker(I0 −→ I−1) and which remains
exact after applying Hom(E,−) for any FP -injective R-module E [[17]]. The class of
Ding injective R-modules is denoted by DI. Note that every Ding injective (respectively,
Ding projective) R-module N is Gorenstein injective (respectively, Gorenstein projec-
tive), and if R is Gorenstein, then every Gorenstein injective R-module is Ding injective
(respectively, Gorenstein projective)[[13]].

From [[13], Theorem 4.2], we know that for a Ding-Chen ring R, the class of all mod-
ules with �nite �at dimension and the class of all modules with �nite FP -injective di-
mension are the same, and we use WR to denote this class throughout this section.

Ding and Mao proved that (⊥WR,WR) forms a complete cotorsion pair when R is
a Ding-Chen ring [[4], Theorem 3.8]. Also, (WR,W

⊥
R) forms a complete cotorsion pair
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when R is a Ding-Chen ring [[16], Theorem 3.4]. Moreover, Gillespie proved that an R-
module M is Ding projective if and only if M ∈⊥ WR, an R-module N is Ding injective
if and only if N ∈ W⊥R [[13], Corollaries 4.5 and 4.6]. So (DP,WR) and (WR,DI) are
complete hereditary cotorsion pairs (each cogenerated by a set). Hence for everyM ∈ R-
Mod there exists an epimorphism D0 −→M where D0 is a Ding projective module. This
allows us to construct an exact sequence

· · · −→ Dk −→ · · · −→ D1 −→ D0 −→M −→ 0,

where Dk is a Ding projective module, for every k ≥ 0. We shall say that this sequence
is a left Ding projective resolution of M . An R-module M is said to be Ding t-projective,
if M admits a left Ding projective resolution of length at most t (that is, M has Ding
projective dimension at most t), where t is a nonnegative integer. Let DPt denote the
class of Ding t-projective modules. We shall denote by Dpd(M) the (left) Ding projective
dimension of M . Note that DPt = {M ∈ R-Mod : Dpd(M) ≤ t} and that DP0 = DP,
similarly, we let Pt denote the class of t-projective R-modules.

Similarly, we can de�ne Ding t-injective modules, and we let DIt denote the class of
Ding t-injective modules and It the class of t-injective R-modules.

Let

· · · −→ Pn
fn−→ Pn−1 −→ · · · −→ P1

f1−→ P0
f0−→ X −→ 0, (1)

be a projective resolution of X. We shall say that Im(fi) is the i-th projective syzygy of
X in (1). We shall use the notation Ωi(X) for the class of all i-th projective syzygies of
X. Dually, given an injective coresolution of X, say

0 −→ X −→ I0
f0−→ I1

f1−→ · · · −→ In−1 f
n−1

−→ In −→ · · · , (2)

we shall say that Ker(f i) is the i-th injective cosyzygy of X in (2), and we shall use the
notation Ω−i(X) for the class of all i-th injective cosyzygies of X.

We begin with the following result.

1.1. Lemma ([[5], Lemma 3.4]). Let R be a Ding-Chen ring. Then the following are
equivalent:
(1) M is Ding t-projective.
(2) ExtiR(M,W ) = 0 for all i > t and for all W ∈WR.
(3) Extt+1

R (M,W ) = 0 for all W ∈WR.
(4) Every tth Ding projective syzygy of M is Ding projective.
(5) Every tth projective syzygy of M is Ding projective.

1.2. Corollary. Let R be an n-FC ring. Then for every 0 ≤ t ≤ n,DPt ∩WR = Pt.

Proof The inclusion Pt ⊆ DPt ∩WR is clear. Now let M ∈ DPt ∩WR. Then every
G ∈ Ωt(M) is in DP by Lemma 1.1. Since M ∈ WR, we have G ∈ WR. Then G ∈
DP ∩WR = P0 by [[5], Lemma 2.4]. It follows M ∈ Pt. �

The following results show that (DPt, (DPt)
⊥) is a complete cotorsion pair for every

1 ≤ t ≤ n.

1.3. Theorem. Let R be an n-FC ring. (DPt, (DPt)
⊥) is a cotorsion pair cogenerated

by a set, and so it is complete for every 1 ≤ t ≤ n.

Proof First we prove that (DPt, (DPt)
⊥) is a cotorsion pair.

It su�ces to show that ⊥((DPt)
⊥) ⊆ DPt. LetM ∈⊥ ((DPt)

⊥). Consider a left partial
projective resolution of M , say 0 −→ G −→ Pt−1 −→ · · · −→ P1 −→ P0 −→ M −→ 0.
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By Lemma 1.1, it su�ces to show that G is a Ding projective module. Suppose t = 1
and let W ∈WR. We have the exact sequence

· · · −→ Ext1R(P0,W ) −→ Ext1R(G,W ) −→ Ext2R(M,W ) −→ · · · ,
where Ext1R(P0,W ) = 0, since P0 is projective. On the other hand, Ext2R(M,W ) =
Ext1R(M,L), where L ∈ Ω−1(W ). We show L ∈ (DP1)⊥. Let K ∈ DP1 and consider the
short exact sequence 0 −→W −→ I −→ L −→ 0, where I is injective. Then we have an
exact sequence

· · · −→ Ext1R(K, I) −→ Ext1R(K,L) −→ Ext2R(K,W ) −→ · · · ,
where Ext1R(K, I) = 0, since I is injective, and Ext2R(K,W ) = 0 since K ∈ DP1 and
W ∈ WR. Then Ext1R(K,L) = 0 for every K ∈ DP1, i.e. L ∈ (DP1)⊥. It follows
Ext2R(M,W ) = 0. Hence Ext1R(G,W ) = 0 for every W ∈WR, i.e. G ∈ DP.

Suppose the result is true for every 1 ≤ j ≤ t− 1. We have an exact sequence

0 −→ G −→ Pt−1 −→ · · · −→ P1 −→ L −→ 0,

where L ∈ Ω1(M), and a short exact sequence 0 −→ L −→ P0 −→ M −→ 0. Let K ∈
(DPt−1)⊥. We have Ext1R(L,K) ∼= Ext1R(M,K′), where K′ ∈ Ω−1(K). Let N ∈ DPt.
Then N ′ ∈ DPt−1, for every N

′ ∈ Ω1(N). We have Ext1R(N,K′) ∼= Ext1R(N ′,K) = 0.
So K′ ∈ (DPt)

⊥. It follows Ext1R(L,K) ∼= Ext1R(M,K′) = 0, for every K ∈ (DPt−1)⊥.
Hence L ∈⊥ ((DPt−1)⊥) = DPt−1. It follows M ∈ DPt.

Now we prove that (DPt, (DPt)
⊥) is a cotorsion pair cogenerated by a set.

Consider the cogenerating set U of (DP,WR). On the other hand, it is known that

(Pt, (Pt)
⊥) is cogenerated by the set P

≤κ
t := {M ∈ Pt : Card(M) ≤ κ}, where κ ≥

Card(R) is a �xed in�nite cardinal number. Set Gt := U∪P≤κt . We prove (DPt)
⊥ = (Gt)

⊥.
Since Gt ⊆ DPt, we have (DPt)

⊥ ⊆ (Gt)
⊥. Now let N ∈ (Gt)

⊥, and consider M ∈ DPt.
Since (DP,WR) is a complete cotorsion pair, there exists a short exact sequence 0 −→
M −→ W −→ G −→ 0, where W ∈ WR and G ∈ DP. Then W ∈ DPt ∩WR = Pt by
Corollary 1.2. We apply the contravariant functor Ext(−, N) and obtain a long exact
sequence

· · · −→ Ext1R(W,N) −→ Ext1R(M,N) −→ Ext2R(G,N) −→ · · · .

Note that Ext2R(G,N) = 0, since N ∈ (Gt)
⊥ ⊆ U⊥ = WR and (DP,WR) is hereditary.

On the other hand, N ∈ (P≤κt )⊥ = (Pt)
⊥ and W ∈ Pt, so Ext1R(W,N) = 0. Hence

Ext1R(M,N) = 0 for every M ∈ DPt, i.e. N ∈ (DPt)
⊥. �

This gives the following result.

1.4. Corollary. Let R be an n-FC ring. Then (DPt)
⊥ = WR∩(Pt)

⊥ for every 1 ≤ t ≤ n.

Proof Since DP ⊆ DPt and Pt ⊆ DPt, we get (DPt)
⊥ ⊆ (DP)⊥ = WR and (DPt)

⊥ ⊆
(Pt)

⊥, and so (DPt)
⊥ ⊆ WR ∩ (Pt)

⊥. Let N ∈ WR ∩ (Pt)
⊥. Since (DPt, (DPt)

⊥) is
complete by Theorem 1.3, there exists a short exact sequence 0 −→ N −→ K −→ C −→ 0
where K ∈ (DPt)

⊥ and C ∈ DPt. Since N,K ∈WR, C ∈WR. Then C ∈ DPt∩WR = Pt
by Corollary 1.2 and hence Ext1R(C,N) = 0. It follows K ∼= N ⊕ C. Since (DPt)

⊥ is
closed under direct summands and K ∈ (DPt)

⊥, we get N ∈ (DPt)
⊥. �

1.5. De�nition. Given two cotorsion pairs (A,B′) and (A′,B) in an abelian category, we
shall say that they are compatible if there exists a class of objects W such that A′ = A∩W
and B′ = B ∩W.

1.6. Lemma. (Hovey's criterion) Let (A,B ∩W) and (A ∩W,B) be two compatible
cotorsion pairs in a bicomplete abelian category C with enough projective and injective
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objects, where the class W is thick. Then there exists a unique abelian model structure
on C such that A is the class of co�brant objects, B is the class of �brant objects, and W

is the class of trivial objects.

From the above results, there exists a unique abelian model strucutre onR-Mod where
DPt is the class of co�brant objects, (Pt)

⊥ is the class of �brant objects, and WR is the
class of trivial objects. We call this structure the Ding t-projective model structure on
R-Mod. Similarly, there is a unique abelian model structure on R-Mod such that ⊥(It)
is the class of co�brant objects, DIt is the class of �brant objects, and WR is the class of
trivial objects. We call this structures the Ding t-injective model structure on R-Mod.

We also have the following result.

1.7. Proposition. Let X be a chain complex bounded below. Then X is Ding t-projective
if and only if Xm is a Ding t-projective module for every m ∈ Z.

Proof Let X be a Ding t-projective chain complex. Then there exists an exact sequence
in Ch(R)

0 −→ Dt −→ Dt−1 −→ · · · −→ D1 −→ D0 −→ X −→ 0,

such that Di is a Ding projective complex for every 0 ≤ i ≤ t. For each m ∈ Z, we have
an exact sequence in R-Mod

0 −→ Dt
m −→ Dt−1

m −→ · · · −→ D1
m −→ D0

m −→ Xm −→ 0.

Since eachDi is a Ding projective complex, we have thatDi
m is a Ding projective module.

So the previous exact sequence turns out to be a right Ding projective resolution of Xm
of length t, i.e. Xm ∈ DPt.

Now suppose that Xm is a Ding t-projective module for every m ∈ Z. Consider a
partial left projective resolution

0 −→ Dt −→ P t−1 −→ · · · −→ P 1 −→ P 0 −→ X −→ 0.

It su�ces to show that Dt is a Ding projective chain complex. For each m ∈ Z, we have
a exact sequence

0 −→ Dt
m −→ P t−1

m −→ · · · −→ P 1
m −→ P 0

m −→ Xm −→ 0.

Note that each P im is a projective module. Since Xm ∈ DPt, we have Dt
m ∈ Ωt(Xm) ∈

DP. Hence Dt is a Ding projective complex by [[20], Proposition 3.14]. �

1.8. De�nition ([[12], De�nition 3.3]). Let (A,B) be a cotorsion pair in R-Mod and X
an R-complex.
(1) X is called an A complex if it is exact and ZnX ∈ A for all n ∈ Z.
(2) X is called a B complex if it is exact and ZnX ∈ B for all n ∈ Z.
(3) X is called a dg-A complex if Xn ∈ A for each n ∈ Z, and HomR(X,B) is exact
whenever B is a B complex.
(4) X is called a dg-B complex if Xn ∈ B for each n ∈ Z, and HomR(A,X) is exact
whenever A is an A complex.

We denote the class of A complexes by Ã and the class of dg-A complexes by dgÃ.

Similarly, the class of B complexes is denoted by B̃ and the class of dg-B complexes is

denoted by dgB̃.

As we did in the category R-Mod, we can prove that (D̃Pt, (D̃Pt)
⊥) and (⊥(D̃It), D̃It)

are complete cotorsion pairs. Moreover, we can see that (D̃Pt, (D̃Pt)
⊥) and (P̃t, (P̃t)

⊥)
are compatible. So there exists a unique abelian model structure on Ch(R) such that

D̃Pt is the class of co�brant objects, (P̃t)
⊥ is the class of �brant objects, and W̃R is the
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class of trivial objects. Similarly, there is a unique abelian model structure on Ch(R)

such that ⊥(Ĩt) is the class of co�brant objects, D̃It is the class of �brant objects, and

W̃R is the class of trivial objects. We call these structures the Ding t-projective model
structure and the Ding t-injective model structure on Ch(R), respectively.

3. Ding homological dimensions over graded rings. A Z-graded ring A is a ring
that has a direct sum decomposition into (abelian) additive groups A = ⊕n∈ZAn =
· · · ⊕A−1 ⊕A0 ⊕A1 ⊕ · · · such that the ring multiplication · satis�es Am ·An ⊆ Am+n,
for every m,n ∈ Z. A graded module is left module over a Z-graded ring A with a
direct sum decomposition M = ⊕n∈ZMn such that the product · : A ·M → M satis�es
Am ·Mn ⊆Mm+n, for every m, n ∈ Z.

Given any associative ring with unit R, consider the ring of polynomials R[x] and the
ideal (x2). It is easy to see that the quotient A := R[x]/(x2) is a Z-graded ring with a di-
rect sum decomposition given by R[x]/(x2) = · · ·⊕0⊕(x)⊕R⊕0⊕· · · , where the scalars
r ∈ R are the elements of degree 0, and the elements in the ideal (x) form the terms of
degree −1. The following we will check that the category A-Mod is isomorphic to the cat-
egory Ch(R) of unbounded R-chain complexes. Through this isomorphism, theA-module
A corresponds to D0(R). In particular, we have ExtiA(−, A) ∼= ExtiCh(R)(−, D0(R)).

Now we prove that every A-module can be viewed as a chain complex over R, and
vice versa.

Let Φ : A-Mod −→ Ch(R) be the application de�ned as follows:
(1) Given a graded A-module M = ⊕n∈ZMn, note that if y ∈ Mn then x · y ∈ Mn−1,
since x has degree −1. Denote by Φ(M)n the set Mn endowed with the structure of
R-module provided by the graded multiplication. Let ∂n : Φ(M)n −→ Φ(M)n−1 be the
map y 7→ x · y. It is clear that ∂n is an R-homomorphism. Moreover, ∂n−1 ◦ ∂n(y) =
x · (x · y) = x2 · y = 0 · y = 0. Then, Φ(M) = (Φ(M)n, ∂n)n∈Z is a chain complex over R.
(2) Let f : M −→ N be a homomorphism of graded A-modules. Then f(Mn) ⊆ Nn,
for every n ∈ Z. It follows that f |Mn is an R-homomorphism. Let Φ(f)n := f |Mn :
Φ(M)n −→ Φ(N)n. We have Φ(f)n−1 ◦ ∂Mn (y) = f |Mn−1(x · y) = x · f |Mn(y) = ∂Nn ◦
Φ(f)n(y). So Φ(f) = (Φ(f)n)n∈Z is a chain map.

Note that Φ : A-Mod −→ Ch(R) de�nes a covariant functor. We show that this
functor is an isomorphism, by giving an inverse functor Ψ : Ch(R) −→ A-Mod.
(1) LetM = (Mn, ∂n)n∈Z be a chain complex over R. Let y ∈Mn and de�ne the product
r · y = ry ∈ Mn for every r ∈ R, and x · y = ∂n(y) ∈ Mn−1. This gives rise to a graded
A-module, that we denote by Ψ(M) = (Ψ(M)n)n∈Z, where Ψ(M)n = Mn as sets.
(2) Given a chain map f : M −→ N , we have x · f(y) = ∂ ◦ f(y) = f ◦ ∂(y) = f(x · y).
Then f gives rise to a graded A-module homomorphism denoted by Φ(f).

It is easy to show that Ψ ◦ Φ = IdA-Mod and Φ ◦ Ψ = IdCh(R-Mod). It follows that Ψ
and Φ map projective (resp., injective, �at) objects into projective (resp., injective, �at)
objects. It is also easy to check that both Ψ and Φ preserves exact sequences.

2.1. De�nition ([[8]]). A complex C is called �nitely generated if, in case C =
∑
i∈I D

i,

with Di ∈ Ch(R) subcomplexes of C, then there exists a �nite subset J ⊂ I such that
C =

∑
i∈J D

i; A complex C is called �nitely presented if C is �nitely generated and for
every exact sequence of complexes 0→ K → L→ C → 0 with L �nitely generated, K is
also �nitely generated.

2.2. Lemma ([[8]]). An R-complex C is �nitely generated if and only if C is bounded
and Cn is �nitely generated in R-Mod for all n ∈ Z. A complex C is �nitely presented if
and only if C is bounded and Cn is �nitely presented in R-Mod for all n ∈ Z.
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It is obvious that Ψ and Φ map �nitely presented objects into �nitely presented objects
by Lemma 2.2. Next, we prove Ψ and Φ map FP -injective objects into FP -injective
objects.

2.3. Lemma. Let E be an FP -injective A-module, and Y be an FP -injective R-complex.
Then Φ(E) is an FP -injective R-complex, and Ψ(Y ) is an FP -injective A-module.

Proof We prove the �rst assertion, the second one can be proven similarly. Let F be a
�nitely presented A-module. We �rst prove that Exti(Φ(F ),Φ(E)) ∼= ExtiA(F,E) = 0
for every i ≥ 1. Given a class [0 −→ E −→ Q −→ F −→ 0] ∈ Ext1A(F,E), map its
representative to the sequence

0 −→ Φ(E) −→ Φ(Q) −→ Φ(F ) −→ 0.

This sequence is exact since Φ is an exact functor. Also, Φ preserves pullbacks, and hence
it preserves Baer sums. It follows

[0 −→ Φ(E) −→ Φ(Q) −→ Φ(F ) −→ 0] ∈ Ext1(Φ(F ),Φ(E)).

It is clear that this mapping de�nes a group isomorphism from
Ext1A(F,E) to Ext1(Φ(F ),Φ(E)). The same argument works for any i > 1. Since Φ(F )
is a �nitely presented R-complex, Φ(E) is an FP -injective R-complex. �

2.4. Proposition. If R is an n-FC ring, then the graded ring A := R[x]/(x2) is n-FC
with weak global dimension ∞.

Proof Any homogeneous left (resp. right) ideal of A is of the form I0 + I1x, where I0
and I1 are left (resp. right) ideals of R. Let I0 + I1x be �nitely generated. So I0, I1
is �nitely generated. Since R is left (right) coherent, I0, I1 is �nitely presented. Hence
I0 + I1x is �nitely presented. Hence A is left and right coherent. If M = ⊕n∈ZMn is a
�nitely presented A-module, then Mn is a �nitely presented R-module for every n ∈ Z.
Since

ExtiA(−, A) ∼= ExtiCh(R)(−, D0(R)),

and

HomCh(R)(X,D
0(R)) ∼= HomR(X−1, R),

where X−1 is the degree −1 part of X. Since this functor (−)−1 is exact and preserves
projectives, we see that

ExtiCh(R)(−, D0(R)) ∼= ExtiR((−)−1, R).

In particular, if R is n-FC, so is A.
Since �at chain complexes are exact, any chain complex that is not exact must have

in�nite �at dimension, so the weak global dimension of A is ∞. �

We say a chain complex X is projective (resp., injective, �at, FP -injective) if it is
exact and each cycle ZnX is projective (resp., injective, �at, FP -injective). We denote

these classes of chain complexes by P̃, Ĩ, F̃, and F̃I respectively.

2.5. Lemma. If R is an n-FC ring, then the class of chain complexes with �nite FP -
injective dimension and the class of chain complexes with �nite �at dimension coincide
and every exact complex E with cycles of �nite �at (FP -injective) dimension has fd(E) ≤
n (FP -id(E) ≤ n).

Proof From [[19], Theorem 2.26], we know that the class of chain complexes with �nite
FP -injective (�at) dimension is the class of exact complexes with cycles of bounded
FP -injective (�at) dimension. If R is n-FC, then these classes coincide. �
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By Proposition 2.4, for an n-FC ring R and A := R[x]/(x2), the class WA must
correspond to some collection of chain complexes. Next we will characterize these chain
complexes.

2.6. Corollary. Let R be left and right coherent with �nite weak global dimension. Then
WA corresponds the class of all exact complexes.

Proof By [[18], Proposition 3.5], [[13], Theorem 4.2] and Lemma 2.5 the conclusion is
obvious. �

Recall from [[7]] that a complex P is said to be dg-projective if each Pm is projective
and HomR(P,E) is exact for any exact complex E. A dg-injective complex is de�ned
dually.

Now we get the following result.

2.7. Proposition. Suppose R is a ring and let A be the graded ring R[x]/(x2). Then
every dg-projective chain complex over R is a Ding projective A-module. The converse
holds if R is left and right coherent and of �nite weak global dimension.

Proof Suppose X is a dg-projective chain complex. We want to show that it is a Ding
projective A-module. We �rst take a projective resolution of X

· · · −→ P 1 −→ P 0 −→ X −→ 0.

Note that since X is dg-projective, the kernel at any spot in the sequence is also dg-

projective. Next we use the fact that (dgP̃,E) is complete to �nd a short exact sequence
0 −→ X −→ P0 −→ K −→ 0 where P0 is exact and K is dg-projective. But P0 must
also be dg-projective since it is an extension of two dg-projective complexes. Therefore
P0 is a projective complex. Continuing with the same procedure on K we can build a
projective coresolution of X as below:

0 −→ X −→ P0 −→ P1 −→ P2 −→ · · · .

Again the kernel at each spot is dg-projective. Pasting this �right� coresolution together
with the �left� resolution above we get an exact sequence

· · · −→ P 1 −→ P 0 −→ P0 −→ P1 −→ · · ·

of projective complexes which satis�es the de�nition of X being a Ding projective A-
module. Indeed since X dg-projective implies Ext1(X,E) = 0 for any exact chain com-
plex E, we certainly have Ext1(X,F ) = 0 for any �at chain complex F . Therefore
applying HomA(−, F ) will leave the sequence exact.

Next we let X be a Ding projective A-module and argue that it is a dg-projective
R-chain complex, when R is both left and right Coherent and wD.dim(R) = n. Note
that by the de�nition of Ding projective we have Exti(X,F ) = 0 for all i > 0 and �at
complexes F . We will be done if we can show that Ext1(X,E) = 0 for any exact complex
E. By Corollary 2.6 fd(E) ≤ n, so there exists a �nite �at resolution

0 −→ Fn −→ · · · −→ F 1 −→ F 0 −→ E −→ 0.

By a dimension shifting argument we see that Ext1(X,E) ∼= Extn+1(X,Fn) = 0. �

With a dual proof we get the following.

2.8. Proposition. Suppose R is a ring and let A be the graded ring R[x]/(x2). Then
every dg-injective chain complex over R is a Ding injective A-module. The converse holds
if R is left and right coherent and of �nite weak global dimension.



1470

Now we extend Proposition 2.7 as follows.

2.9. Theorem. The functor Ψ : Ch(R) −→ A-Mod maps dg-t-projective complexes
into Ding t-projective A-modules. If R is a left and right coherent ring of �nite weak
global dimension, then the inverse functor Φ : A-Mod −→ Ch(R) maps Ding t-projective
A-modules into dg-t-projective complexes.

Proof Let X ∈ dgP̃t. Consider Ψ(X) and a partial left projective resolution

0 −→ G −→ Pt−1 −→ · · · −→ P1 −→ P0 −→ Ψ(X) −→ 0.

We show that G is a Ding projective A-module. Consider the complex Φ(G) and let E
be an exact complex. By the proof of Lemma 2.3 we have Ext1(Φ(G), E) ∼= Ext1(X,E′),

where E′ ∈ Ω−t(E). Note that E′ ∈ (P̃t)
⊥. In fact, if Z ∈ P̃t then Ext1(Z,E′) ∼=

Extt+1(Z,E) = 0. Also, it is easy to check that E′ ∈ E. So E′ ∈ (P̃t)
⊥ ∩ E = (dgP̃t)

⊥.
It follows Ext1(Φ(G), E) ∼= Ext1(X,E′) = 0, for every E ∈ E. In other words, Φ(G)
is dg-projective, and by Proposition 2.7 we have G = Ψ(Φ(G)) is a Ding projective
A-module.

Now suppose that R is a left and right coherent ring of �nite weak global dimension.
Note that Ψ and Φ de�ne an one-to-one correspondence between the projective objects
of Ch(R) and A-Mod. It follows that Ψ and Φ also de�ne an one-to-one correspondence

between t-projective complexes over R and t-projective A-modules. Let X ∈ (P̃t)
⊥

and consider Ψ(X). Let M be an t-projective A-module. Then Φ(M) is a t-projective
complex. We have Ext1A(M,Ψ(X)) ∼= Ext1(Φ(M), X) = 0. It follows Ψ(X) ∈ (Pt)

⊥.

Hence, Ψ and Φ give rise to a one-to-one correspondence between (P̃t)
⊥ and (Pt)

⊥.
Also, by Corollary 2.6, we have the same correspondence between E and WA. Since

(dgP̃t)
⊥ = (P̃t)

⊥ ∩ E and WA ∩ (Pt)
⊥ = (DPt)

⊥ by Corollary 1.4, we have that a

complex Y is in (dgP̃t)
⊥ if and only if Ψ(Y ) is in (DPt)

⊥. Since dgP̃t =⊥ ((dgP̃t)
⊥) and

DPt =⊥ ((DPt)
⊥), we have that Φ maps Ding t-projective A-modules into dg-t-projective

complexes. �

The following result is the dual version of Theorem 2.9.

2.10. Theorem. The functor Ψ : Ch(R) −→ A-Mod maps dg-t-injective complexes
into Ding t-injective A-modules. If R is a left and right coherent ring of �nite weak
global dimension, then the inverse functor Φ : A-Mod −→ Ch(R) maps Ding t-injective
A-modules into dg-t-injective complexes.

4. Adjoint functors. In this section, we show that the embedding functorsK(DP) −→
K(R-Mod) and K(DI) −→ K(R-Mod) have right and left adjoints respectively, where
K(DP) (K(DI)) is the homotopy category of complexes of Ding projective (injective)
modules, and K(R-Mod) denotes the homotopy category. To this end, we will be con-
cerned with the category Ch(R) and the category K(R-Mod) �rstly. These categories
have the same objects, and the morphisms in K(R-Mod) are homotopy equivalence
classes of chain maps, that is, for objects C and D of K(R-Mod), HomK(R-Mod)(C,D) =
H0(HomR(C,D)), where HomK(R-Mod)(C,D) denotes the abelian group of morphisms
from C to D in K(R-Mod). We recall that if f : C −→ D is a morphism in Ch(R), then
we have the mapping cone con(f) of f . We have that (con(f))n = Dn⊕Cn−1 and the dif-
ferential d is such that d(y, x) = (d(y) + f(x),−d(x)). We have the short exact sequence
0 −→ D −→ con(f) −→ ΣC −→ 0 where the maps D −→ con(f) and con(f) −→ ΣC
are given by y 7−→ (y, 0) and (y, x) 7−→ x respectively. Given f, g ∈ Hom(C,D) we will
let f ∼ g mean that f and g are homotopic. The idea of the next lemma derives from
Bravo et al. in [[1]].
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3.1. Lemma. Let R be a Ding-Chen ring, X be an R-complex, and 0 −→ C −→ D −→
X −→ 0 be exact where D ∈ D̃P, C ∈ dgW̃R. If D′ ∈ D̃P, fi ∈ Hom(D′, X) and
gi ∈ Hom(D′, D) such that

D′

gi~~
fi

��
D // X

are commutative for i = 1, 2, then f1 ∼ f2 if and only if g1 ∼ g2.

Proof If g1 ∼ g2 then easily f1 ∼ f2. For the converse let f = f1− f2 and g = g1− g2 we
see that we only need show that when f ∼ 0 we have g ∼ 0. With such f and g we get
the commutative diagram

0 // D

��

// con(g)

��

// ΣD′

��

// 0

0 // X // con(f) // ΣD′ // 0.

Since f ∼ 0, by [[11], Lemma 2.3.2] we get that the lower short exact sequence splits. A
retraction con(f) −→ X provides us with a commutative diagram

D

��

// con(g)

{{
X.

Since D̃P is closed under extensions and suspensions we have con(g) ∈ D̃P. Since D −→
X is a D̃P-precover we get a lifting con(g) −→ D. We now prove that con(g) −→ D
provides a retraction of D −→ con(g) in K(R-Mod). For this note that the di�erence of
the composition D −→ con(g) −→ D and the identity map idD maps D into the kernel

of D −→ X, that is into C. Since (D̃P, dgW̃R) is a complete hereditary cotorsion pair,
this di�erence (as a map into C) is homotopic to 0 by [[11], Lemma 2.3.2]. But then the
di�erence as a map into D is homotopic to 0. So con(g) −→ D provides a retraction of
D −→ con(g) in K(R-Mod). Next we prove that con(g) −→ D provides a retraction of
D −→ con(g) in Ch(R). Let s : con(g) −→ D (s a morphism in Ch(R)) give a retraction
of D −→ con(g) in K(R-Mod). Let r be the corresponding homotopy, i.e. for y ∈ D
we have (dr + rd)(y) = y − s(y, 0). De�ne con(g) −→ D by (y, x) 7→ y + rg(x) + s(0, x)
for (y, x) ∈ con(g). We can easily prove that this map is a morphism of complexes and
it gives the desired retraction. So we get that the short exact sequence 0 −→ D −→
con(g) −→ ΣD′ −→ 0 is split exact in Ch(R). So by [[11], Lemma 2.3.2] we get that
g ∼ 0. �

3.2. Corollary. Let R be a Ding-Chen ring, X be an R-complex, and 0 −→ C −→ D −→
X −→ 0 be exact whereD ∈ D̃P and C ∈ dgW̃R. If D

′ ∈ D̃P, then HomK(R-Mod)(D
′, D) −→

HomK(R-Mod)(D
′, X) is a bijection.

Proof We �rst note that the exact sequence 0 −→ C −→ D −→ X −→ 0 gives the
exact sequence Hom(D′, D) −→ Hom(D′, X) −→ Ext1(D′, C) = 0. So Hom(D′, D) −→
Hom(D′, X) is surjective. This gives that HomK(R-Mod)(D

′, D) −→ HomK(R-Mod)(D
′, X)

is surjective. Lemma 3.1 guarantees that this function is injective and so bijective. �

This gives the following result.
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3.3. Theorem. Let R be a Ding-Chen ring. Then the embedding K(DP) −→ K(R-Mod)
has a right adjoint.

Proof For each X ∈ Ch(R), there exists an exact sequence 0 −→ C −→ D −→ X −→ 0

in Ch(R) with D ∈ D̃P and C ∈ dgW̃R. We want to de�ne a functor T : K(R-Mod) −→
K(DP) so that T (X) = D. If f : X −→ X ′ is a morphism in Ch(R) we let [f ] represent
the corresponding morphism in K(R-Mod). So [f ] consists of all f ′ : X −→ X ′ such that
f ∼ f ′. We use the following procedure to de�ne T ([f ]). We have the exact sequence
Hom(D,D′) −→ Hom(D,X ′) −→ Ext1(D,C′) = 0. This means that there is a morphism
g ∈ Hom(D,D′) whose image in Hom(D,X ′), which is the composition D −→ X −→ X ′.
So we have the commutative diagram

D −−−−−→ X

g

y f

y
D′ −−−−−→ X ′.

For f ′ ∈ [f ] (so f ∼ f ′) we use the same argument and �nd a morphism g′ : D −→ D′

so that the diagram
D −−−−−→ X

g′
y f ′

y
D′ −−−−−→ X ′

is commutative. Then an application of Lemma 3.1 gives that g ∼ g′. This means that
we can de�ne T ([f ]) to be [g] with f and g as above. Then it can be quickly checked that
T is an additive functor. Note that the maps D −→ X then become maps T (X) −→ X
and give a natural transformation from T to the identity functor on K(R-Mod).

Now we appeal to Corollary 3.2. This Corollary says that HomK(R-Mod)(D
′, D) −→

HomK(R-Mod)(D
′, X) is a bijection if D′ ∈ D̃P and 0 −→ C −→ D −→ X −→ 0 is as

above. But T (X) = D, so we have the bijection

HomK(R-Mod)(D
′, T (X)) −→ HomK(R-Mod)(D

′, X).

From the de�nition of this map we see that it is natural inD′. From the natural transfor-
mation above we see that it is natural in X. So this establishes that T is a right adjoint
of the embedding functor K(DP) −→ K(R-Mod). �

3.4. Remark. We also have the duals of Lemma 3.1 and the Corollary 3.2. The embed-
ding K(DI) −→ K(R-Mod) has a left adjoint.

Acknowledgements. The authors would like to thank the referee for his/her valuable
comments, suggestions and corrections which resulted in a signi�cant improvement of the
paper.
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Abstract

In this paper, we introduces the idea of integral type contraction with
respect to G-metric space and by using the notion of integral type
contraction we prove some coupled coincidence �xed point results for
two pairs of mapping in G-metric space. Also we give an example as
an application point of view.
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1. Introduction

The study of common �xed points of mappings which satis�es certain contractive con-
ditions has been studied by a lot of researchers due to its applications in mathematics.
For the study of coincidence point of theory in metric and cone metric spaces we recom-
mend [1, 2, 3, 4, 7, 8, 9, 10, 11, 15, 17, 18]. In 2006 Mustafa and Sims [16], introduced the
idea of G-metric space and presented some �xed point theorems in G-metric space. The
concept of a coupled coincidence point of mapping was introduced by V. Lakshmikantham
[5, 13], they also studied some �xed point theorems in partially ordered metric spaces.
In 2010 Shatanawi [19] gave the proof of coupled coincidence �xed point theorems in
generalized metric spaces. Also in 2014 Manish Kumar [14] proved a coupled coincidence
�xed point theorem in the setting of two pairs of mapping in G-metric space. Moreover
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in 2002, Branciari [6] gave the idea of integral type contractive mappings in complete
metric spaces and they studied the existence of �xed points for mappings which is de�ned
on complete metric space satisfying integral type contraction. Recently F. Khojasteh et
al.[12], gave the idea of integral type contraction in cone metric spaces and proved some
�xed point theorems in such spaces. So by using the concept of Branciari [6] of integral
type contractive mapping, we presented a coupled coincidence �xed point results of inte-
gral type contractive mappings for two pairs in the setting of G-metric spaces. Also we
give suitable example that support our main result.

2. Preliminaries

We will need the following de�nitions and results in this paper.

2.1. De�nition. [16] Let Y be a non-empty set and G : Y × Y × Y → R+ is a function
that satis�es the following conditions:
(1) G(a, b, c) = 0 if a = b = c,
(2) G(a, a, b) > 0 for all a, b ∈ Y with a 6= b,
(3) G(a, a, b) ≤ G(a, b, c), for all a, b, c ∈ Y with c 6= b
(4) G(a, b, c) = G(a, c, b) = G(b, c, a) = . . . , symmetry in all variables,
(5) G(a, b, c) ≤ G(a, s, s) +G(s, b, c) for all a, b, c, s ∈ Y .
Then the function G is called a generalized metric and the pair (Y,G) is called a G-metric
space.

2.2. Example. [16] Let Y = {x, y}. De�ne G on Y × Y × Y by

G(x, x, x) = G(y, y, y) = 0, G(x, x, y) = 1, G(x, y, y) = 2

and extend G to Y ×Y ×Y by using the symmetry in the variables. Then it is clear that
(Y,G) is a G-metric space.

2.3. De�nition. [16] Let (Y,G) be a G-metric space and (an) a sequence of points of Y .
A point a ∈ Y is said to be the limit of the sequence (an), if limn,m→+∞G(a, an, am) = 0
and we say that the sequence (an) is G-convergent to a.

2.1. Proposition. [16] Let (Y,G) be a G-metric space. Then the following are equiva-

lent:

(1) (an) is G-convergent to a.

(2) G(an, an, a)→ 0 as n→ +∞.

(3) G(an, a, a)→ 0 as n→ +∞.

(4) G(an, am, a)→ 0 as n,m→ +∞.

2.4. De�nition. [15] Let (Y,G) be a G-metric space. A sequence (an) is called G-
Cauchy if for every ε > 0, there is k ∈ N such that G(an, am, al) < ε, for all n,m, l ≥ k;
that is G(an, am, al)→ 0 as n,m, l→ +∞.

2.2. Proposition. [16] Let (Y,G) be a G-metric space. Then the following are equivalent:

(1) The sequence (an) is G-Cauchy.

(2) For every ε > 0, there is k ∈ N such that G(an, am, am) < ε, for all n,m ≥ k.

2.5. De�nition. [16] A G-metric space (Y,G) is called G-complete if every G-Cauchy
sequence in (Y,G) is G-convergent in (Y,G).

2.6. De�nition. [5] An element (a, b) ∈ Y × Y is called a coupled coincidence point of
the mappings F : Y × Y → Y and g : Y → Y if F (a, b) = ga and F (b, a) = gb.
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2.7. De�nition. [13] Let Y be a non-empty set. Then we say that the mappings F :
Y × Y → Y and g : Y → Y are commutative if gF (a, b) = F (ga, gb).

2.8. De�nition. [13] An element (a, b) ∈ Y ×Y is called a coupled �xed point of mapping
F : Y × Y → Y if F (a, b) = a and F (b, a) = b.

In 2002, Branciari in [6] introduced a general contractive condition of integral type as
follows.

2.9. Theorem. [6] Let (Y, d) be a complete metric space, α ∈ (0, 1), and f : Y → Y is
a mapping such that for all x, y ∈ Y ,∫ d(f(x),f(y))

0

φ(t)dt ≤ α
∫ d(x,y)

0

φ(t)dt

where φ : [0,+∞) → [0,+∞) is Lebesgue-integrable mapping which is summable (i.e.,
with �nite integral ) on each compact subset of [0,+∞) such that for each ε > 0,∫ ε
0
φ(t)dt > 0, then f has a unique �xed point a ∈ Y , such that for each x ∈ Y ,

limn→∞ f
n(x) = a.

We use the above idea of Branciari [6] and presented some coupled coincidence �xed
point results of integral type contraction in G-metric space.

3. Main Results

In this section we will prove some �xed point results for two pairs in G-metric space
by using integral type contractive mapping. We will start our work with the following
important lemma.

3.1. Lemma. Let (Y,G) be a G-metric space. Suppose F, S : Y × Y → Y and g, h :
Y → Y be two mappings such that

(3.1)

∫ G(F (a,b),S(p,q),S(c,r))

0

ϕ(t)dt ≤ k
∫ (G(ha,gp,gc)+G(hb,gq,gr))

0

ϕ(t)dt

for all a, b, c, p, q, r ∈ Y and ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping

which is summable such that for each ε > 0,
∫ ε
0
ϕ(t)dt > 0. Assume that (a, b) is coupled

coincidence point of the pairs of mappings {F, h} and {S, g} and ga = ha and gb = hb.
If k ∈ [0, 1

8
), then

S(a, b) = ga = gb = S(b, a) and F (a, b) = ha = hb = F (b, a).

Proof. Since (a, b) is a coupled coincidence point of the mappings {F, h} and {S, g},
we have ha = F (a, b), hb = F (b, a) and ga = S(b, a), gb = S(b, a). Suppose ga 6= gb.
Then by (3.1), we get∫ G(ga,gb,gb)

0

ϕ(t)dt =

∫ G(F (a,b),S(b,a),S(b,a))

0

ϕ(t)dt

≤ k

∫ (G(ha,gb,gb)+G(hb,ga,ga))

0

ϕ(t)dt

= k

∫ (G(ga,gb,gb)+G(gb,ga,ga))

0

ϕ(t)dt.
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Also we have, ∫ G(gb,ga,ga)

0

ϕ(t)dt =

∫ G(F (b,a),S(a,b),S(a,b))

0

ϕ(t)dt

≤ k

∫ (G(hb,ga,ga)+G(ha,gb,gb))

0

ϕ(t)dt

= k

∫ (G(gb,ga,ga)+G(ga,gb,gb))

0

ϕ(t)dt.

Therefore∫ G(ga,gb,gb)

0

ϕ(t)dt+

∫ G(gb,ga,ga)

0

ϕ(t)dt ≤ 2k

∫ (G(ga,gb,gb)+G(gb,ga,ga))

0

ϕ(t)dt.

Since 2k < 1, we get∫ G(ga,gb,gb)

0

ϕ(t)dt+

∫ G(gb,ga,ga)

0

ϕ(t)dt <

∫ G(ga,gb,gb)

0

ϕ(t)dt+

∫ G(gb,ga,ga)

0

ϕ(t)dt

which is a contradiction. So ga = gb, and hence

S(a, b) = ga = gb = S(b, a) and F (a, b) = ha = hb = F (b, a).

3.1. Theorem. Let (Y,G) be a G-metric space. Let F, S : Y ×Y → Y and g, h : Y → Y
be two mappings such that

(3.2)

∫ G(F (a,b),S(p,q),S(c,r))

0

ϕ(t)dt ≤ k
∫ (G(ha,gp,gc)+G(hb,gq,gr))

0

ϕ(t)dt

for all a, b, c, p, q, r ∈ Y and ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping
which is summable such that for each ε > 0,

∫ ε
0
ϕ(t)dt > 0. Assume that F, S and g, h

satisfy the following conditions:
(i) F (Y × Y ) ⊂ g(Y ) and S(Y × Y ) ⊂ h(Y )
(ii) g(Y ) or h(Y ) is complete and
(iii) g and h are G-continuous and pairs {F, h} and {S, g} are commuting mappings.
If k ∈ [0, 1

8
), then there is a unique a ∈ Y such that F (a, a) = S(a, a) = g(a) = h(a) = a.

Proof. Let a0, b0 ∈ Y . Since F (Y × Y ) ⊂ g(Y ), choose a1, b1 ∈ Y such that u′1 =
ga1 = F (a0, b0) and v′1 = gb1 = F (b0, a0). Again since S(Y × Y ) ⊂ h(Y ), choose
a2, b2 ∈ Y such that u′2 = ha2 = S(a1, b1) and v′2 = hb2 = S(b1, a1). Continuing this
process, we can construct two sequences (u′n) and (v′n) in Y such that u′2n+1 = ga2n+1 =
F (a2n, b2n), v

′
2n = gb2n+1 = F (b2n+1, a2n+1) and u′2n+2 = ha2n+2 = S(a2n+1, b2n+1),

v′2n+2 = hb2n+2 = S(b2n+1, a2n+1). For n ∈ N , we have∫ G(u′2n+1,u
′
2n+2,u

′
2n+2)

0

ϕ(t)dt =

∫ (G(F (a2n,b2n),S(a2n+1,b2n+1),S(a2n+1,b2n+1))

0

ϕ(t)dt

≤ k

∫ (G(ha2n,ga2n+1,ga2n+1)+G(hb2n,gb2n+1,gb2n+1))

0

ϕ(t)dt

= k

∫ (G(u′2n,u
′
2n+1,u

′
2n+1)+G(v′2n,v

′
2n+1,v

′
2n+1))

0

ϕ(t)dt. (3.3)

In the same manner∫ G(v′2n+1,v
′
2n+2,v

′
2n+2)

0

ϕ(t)dt ≤ k

∫ (G(v′2n,v
′
2n+1,v

′
2n+1)+G(u′2n,u

′
2n+1,u

′
2n+1))

0

ϕ(t)dt. (3.4)
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We have

∫ G(u′2n+1,u
′
2n+2,u

′
2n+2)

0

ϕ(t)dt +

∫ G(v′2n+1,v
′
2n+2,v

′
2n+2)

0

ϕ(t)dt

≤ 2k

∫ {G(u′2n,u
′
2n+1,u

′
2n+1)+(G(v′2n,v

′
2n+1,v

′
2n+1)}

0

ϕ(t)dt

≤ 8k

∫ {G(u′2n,u
′
2n+1,u

′
2n+1)+(G(v′2n,v

′
2n+1,v

′
2n+1)}

0

ϕ(t)dt, (3.5)

holds for all n ∈ N , again from

∫ G(u′2n,u
′
2n+1,u

′
2n+1)

0

ϕ(t)dt ≤ 2

∫ G(u′2n+1,u
′
2n,u

′
2n)

0

ϕ(t)dt

= 2

∫ (G(F (a2n,b2n),S(a2n−1,b2n−1),S(a2n−1,b2n−1))

0

ϕ(t)dt

≤ 2k

∫ (G(ha2n,ga2n−1,ga2n−1)+G(hb2n,gb2n−1,gb2n−1))

0

ϕ(t)dt

= 2k

∫ (G(u′2n,u
′
2n−1,u

′
2n−1)+G(v′2n,v

′
2n−1,v

′
2n−1))

0

ϕ(t)dt

≤ 4k

∫ (G(u′2n−1,u
′
2n,u

′
2n)+G(v′2n−1,v

′
2n,v

′
2n))

0

ϕ(t)dt (3.6)

and

∫ G(v′2n,v
′
2n+1,v

′
2n+1)

0

ϕ(t)dt ≤ 2

∫ G(v′2n+1,v
′
2n,v

′
2n)

0

ϕ(t)dt

= 2

∫ (G(F (b2n,a2n),S(b2n−1,a2n−1),S(b2n−1,a2n−1))

0

ϕ(t)dt

≤ 2k

∫ (G(hb2n,gb2n−1,gb2n−1)+G(ha2n,ga2n−1,ga2n−1))

0

ϕ(t)dt

= 2k

∫ (G(v′2n,v
′
2n−1,v

′
2n−1)+G(u′2n,u

′
2n−1,u

′
2n−1))

0

ϕ(t)dt

≤ 4k

∫ (G(u′2n−1,u
′
2n,u

′
2n)+G(v′2n−1,v

′
2n,v

′
2n))

0

ϕ(t)dt. (3.7)

We have

∫ G(u′2n,u
′
2n+1,u

′
2n+1)

0

ϕ(t)dt +

∫ G(v′2n,v
′
2n+1,v

′
2n+1)

0

ϕ(t)dt

≤ 8k

∫ (G(u′2n−1,u
′
2n,u

′
2n)+G(v′2n−1,v

′
2n,v

′
2n))

0

ϕ(t)dt, (3.8)
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holds for all n ∈ N . Thus, using (3.5) and (3.8) in (3.3), we get∫ G(u′2n+1,u
′
2n+2,u

′
2n+2)

0

ϕ(t)dt ≤ k8k

∫ (G(u′2n−1,u
′
2n,u

′
2n)+G(v′2n−1,v

′
2n,v

′
2n))

0

ϕ(t)dt

≤ k(8k)2
∫ (G(u′2n−2,u

′
2n−1,u

′
2n−1)+G(v′2n−2,v

′
2n−1,v

′
2n−1))

0

ϕ(t)dt

≤ k(8k)2n
∫ (G(u′0,u

′
1,u
′
1)+G(v′0,v

′
1,v
′
1))

0

ϕ(t)dt

...

≤ (8k)2n+1

∫ (G(u′0,u
′
1,u
′
1)+G(v′0,v

′
1,v
′
1))

0

ϕ(t)dt,

and also, using (3.5) and (3.8) in (3.6), we get∫ G(u′2n,u
′
2n+1,u

′
2n+1)

0

ϕ(t)dt ≤ 4k(8k)

∫ (G(u′2n−2,u
′
2n−1,u

′
2n−2)+G(v′2n−1,v

′
2n−1,v

′
2n−1))

0

ϕ(t)dt

...

≤ (8k)2n
∫ (G(u′0,u

′
1,u1)+G(v′0,v

′
1,v
′
1))

0

ϕ(t)dt.

Thus for all n ∈ N , we have∫ G(u′n,u
′
n+1,u

′
n+1)

0

ϕ(t)dt ≤ (8k)n
∫ (G(u′0,u

′
1,u
′
1)+G(v′0,v

′
1,v
′
1))

0

ϕ(t)dt.

Let m,n ∈ N with m > n, we have∫ G(u′n,u
′
m,u
′
m)

0

ϕ(t)dt ≤
∫ G(u′n,u

′
n+1,u

′
n+1)

0

ϕ(t)dt+

∫ G(u′n+1,u
′
n+2,u

′
n+2)

0

ϕ(t)dt

+ · · ·+
∫ G(u′m−1,u

′
m,u
′
m)

0

ϕ(t)dt.

Since 8k < 1, we get∫ G(u′n,u
′
m,u
′
m)

0

ϕ(t)dt ≤
m−1∑
i=n

(8k)i
∫ (G(u′0,u

′
1,u
′
1)+G(v′0,v

′
1,v
′
1))

0

ϕ(t)dt

≤ (8k)n

(1− 8k)

∫ (G(u′0,u
′
1,u
′
1)+G(v′0,v

′
1,v
′
1))

0

ϕ(t)dt.

We have

lim
n,m→+∞

G(u′n, u
′
m, u

′
m) = 0.

Thus (u′n) is G-Cauchy in g(Y ). As g(Y ) is G-complete then subsequence (u′2n+1) =
(ga2n+1) and (v′2n+1) = (gb2n+1) are convergent to some a ∈ Y and b ∈ Y respectively.
As we know that every sequence and subsequence of a G-Cauchy sequence are convergent
to the same point. Hence (u′2n) = (ha2n) and (v′2n) = (hb2n) are also convergent. Since
g and h are G-continuous, we have

(gga2n+1)→ ga, (hga2n+1)→ ha, (gha2n)→ ga, (hha2n)→ ha
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and

(ggb2n+1)→ gb, (hgb2n+1)→ hb, (ghb2n)→ gb, (hhb2n)→ hb.

Since pairs {F, h} and {S, g} are commutative mappings, we have

hga2n+1 = hF (a2n, b2n) = F (ha2n, hb2n)

and

gha2n = gS(a2n−1, b2n−1) = S(ga2n−1, ga2n−1).

Thus∫ G(hga2n+1,gha2n,gha2n)

0

ϕ(t)dt =

∫ G(F (ha2n,hb2n),S(ga2n−1,gb2n−1),S(ga2n−1,gb2n−1))

0

ϕ(t)dt

≤ k

∫ (G(hha2n,gga2n−1,gga2n−1)+G(hhb2n,ggb2n−1,ggb2n−1))

0

ϕ(t)dt.

Letting n→ +∞, we have∫ G(ha,ga,ga)

0

ϕ(t)dt = k

∫ (G(ha,ga,ga)+G(hb,gb,gb))

0

ϕ(t)dt.

In the same way, we can show that∫ G(hb,gb,gb)

0

ϕ(t)dt = k

∫ (G(hb,gb,gb)+G(ha,ga,ga))

0

ϕ(t)dt.

Thus∫ G(ha,ga,ga)

0

ϕ(t)dt+

∫ G(hb,gb,gb)

0

ϕ(t)dt = 2k

∫ (G(ha,ga,ga)+G(hb,gb,gb))

0

ϕ(t)dt.

Since 2k < 8k < 1, the last equality happens only if∫ G(ha,ga,ga)

0

ϕ(t)dt =

∫ G(hb,gb,gb)

0

ϕ(t)dt = 0.

Hence ha = ga and hb = gb. Again∫ G(hga2n+1,S(a,b),S(a,b))

0

ϕ(t)dt =

∫ G(F (ha2n,hb2n),S(a,b),S(a,b))

0

ϕ(t)dt

≤ k

∫ (G(hha2n,gb,gb)+G(hhb2n,gb,gb))

0

ϕ(t)dt.

Letting n→ +∞, we have∫ G(ha,S(a,b),S(a,b))

0

ϕ(t)dt ≤ k
∫ (G(ha,gb,gb)+G(hb,gb,gb))

0

ϕ(t)dt = 0.

Thus, we get ∫ G(ha,S(a,b),S(a,b))

0

ϕ(t)dt = 0.
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Which implies that S(a, b) = ha. Similarly we can show that S(b, a) = hb. By using the
same technique, we get∫ G(F (a,b),gha2n,gha2n))

0

ϕ(t)dt =

∫ G(F (a,b),S(ga2n−1,gb2n−1),S(ga2n−1,gb2n−1))

0

ϕ(t)dt

≤ k

∫ (G(ha,gga2n−1,gga2n−1)+G(hb,ggb2n−1,ggb2n−1))

0

ϕ(t)dt.

Letting n→ +∞, we have∫ G(F (a,b),ga,ga))

0

ϕ(t)dt = k

∫ (G(ha,ga,ga)+G(hb,gb,gb))

0

ϕ(t)dt = 0.

Thus, we get ∫ G(F (a,b),ga,ga))

0

ϕ(t)dt = 0,

which means that F (a, b) = ga. By using the same method we can show that F (b, a) = hb.
Hence we get ga = ha, gb = hb and F (a, b) = gb, S(a, b) = ha, S(b, a) = hb, by using
Lemma 3.1 we have
F (a, b) = ga = gb = F (b, a) = S(a, b) = ha = hb = S(b, a).
Now ∫ G(ga2n+1,ga,ga)

0

ϕ(t)dt =

∫ G(F (a2n,b2n),S(a,b),S(a,b))

0

ϕ(t)dt

≤ k

∫ (G(ha2n,ga,ga)+G(hb2n,gb,gb))

0

ϕ(t)dt.

Letting n→∞, we have,∫ G(a,ga,ga)

0

ϕ(t)dt = k

∫ (G(a,ga,ga)+G(b,gb,gb))

0

ϕ(t)dt.

Similarly, we can show that∫ G(b,gb,gb)

0

ϕ(t)dt = k

∫ (G(b,gb,gb)+G(a,ga,ga))

0

ϕ(t)dt.

Thus∫ G(a,ga,ga)

0

ϕ(t)dt+

∫ G(b,gb,gb)

0

ϕ(t)dt = 2k

∫ (G(a,ga,ga)+G(b,gb,gb))

0

ϕ(t)dt.

Since 2k < 8k < 1, the last equality happens only if

∫ G(a,ga,ga)

0

ϕ(t)dt =

∫ G(b,gb,gb)

0

ϕ(t)dt = 0.

Hence a = ga and b = gb. Thus, we get
F (a, a) = S(a, a) = ga = ha = a.
For uniqueness, let y ∈ Y with y 6= a such that
F (y, y) = S(y, y) = gy = y.
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Then ∫ G(a,y,y)

0

ϕ(t)dt =

∫ G(F (a,a),S(y,y),S(y,y))

0

ϕ(t)dt

≤ k

∫ G(ha,gy,gy)+G(ha,gy,gy)

0

ϕ(t)dt

= k

∫ G(a,y,y)+G(a,y,y)

0

ϕ(t)dt

= 2k

∫ G(a,y,y)

0

ϕ(t)dt.

Since 2k < 8k < 1, we get∫ G(a,y,y)

0

ϕ(t)dt <

∫ G(a,y,y)

0

ϕ(t)dt.

Which is a contradiction. Thus F, S, g, h have a unique common �xed point.

3.2. Corollary. Let (Y,G) be a G-metric space. Let F, S : Y ×Y → Y and g, h : Y → Y
be two mappings such that

(3.3)

∫ G(F (a,b),S(p,q),S(p,q))

0

ϕ(t)dt ≤ k
∫ (G(ha,gp,gp)+G(hb,gq,gq))

0

ϕ(t)dt

for all a, b, p, q ∈ Y and ϕ : [0,+∞) → [0,+∞) is a Lebesgue integrable mapping which
is summable such that for each ε > 0,

∫ ε
0
ϕ(t)dt > 0. Assume that F, S and g, h satisfy

the following conditions:
(i)F (Y × Y ) ⊂ g(Y ) S(Y × Y ) ⊂ h(Y )
(ii)g(Y ) or h(Y ) is complete,and
(iii) g and h is G-continuous and pairs {F, h} and {S, g} are of commuting mappings.
If k ∈ [0, 1

8
), then there is a unique a ∈ Y such that F (a, a) = S(a, a) = g(a) = h(a) = a.

Proof. In Theorem 3.1 by taking c = p and q = r.

3.3. Example. Let Y = [0, 1]. De�ne G : Y × Y × Y → R+ by
G(a, b, c) = |a− b|+ |a− c|+ |b− c|
for all a, b, c ∈ Y . Then (Y,G) is a complete G-metric space.
De�ne mappings F, S : Y × Y → Y and g, h : Y → Y by

F (a, b) = 1
36
ab, S(a, b) = 1

144
ab and ga = 1

4
a, ha = 1

2
a.

Since |ab− pq| = |a− p|+ |b− q| holds for all a, b, p, q ∈ Y .

Then the condition of Theorem (3.1) holds, in fact∫ G(F (a,b),S(p,q),S(c,r))

0

ϕ(t)dt =

∫ (| 1
36
ab− 1

144
pq|+| 1

144
pq− 1

144
cr|+| 1

144
cr− 1

36
ab|)

0

ϕ(t)dt

≤ 1

9

∫ {| 1
2
a− 1

4
p|+| 1

4
p− 1

4
c|+| 1

4
c− 1

2
a|+| 1

2
b− 1

4
q|+| 1

4
q− 1

4
r|+| 1

4
r− 1

2
b|}

0

ϕ(t)dt

=
1

9

∫ G(ha,gp,gc)+G(hb,gq,gr)

0

ϕ(t)dt

holds for all a, b, c, p, q, r ∈ Y . It is easy to see that F , S, g, h satis�es all the hypothesis
of Theorem 3.1. Thus F, S, g, h have a unique common �xed point. Here F (0, 0) =
S(0, 0) = g0 = h0 = 0.
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Multi-stage multi-objective solid transportation
problem for disaster response operation with

type-2 triangular fuzzy variables

Abhijit Baidya∗† , Uttam Kumar Bera‡ and Manoranjan Maiti�

Abstract

In this paper, for the �rst time we formulate and solve multi-stage solid
transportation problem (MSSTP) to minimize the total cost and time
with type-2 fuzzy transportation parameters. During transportation
period, loading, unloading cost and time, volume and weight for each
item, limitation of volume and weight for each vehicle are normally
imprecise and taken into account to formulate the models. To remove
the uncertainty of the type-2 fuzzy transportation parameters from
objective functions and constraints, we apply CV-Based reduction
methods and generalized credibility measure. Disasters are unexpected
situations that require signi�cant logistical deployment to transport
equipment and humanitarian goods in order to help and provide relief
to victims and sometime this transportation is not possible directly
from supply point to destination. Again, the availabilities at supply
points and requirements at destinations are not known precisely
due to disaster. For this reason, we formulate the multi-stage solid
transportation problems under uncertainty (type-2 fuzzy). The models
are illustrated with a numerical example. Finally, generalized reduced
gradient technique (LINGO.13.0 software) is used to solve the models.

Keywords: Multi-stage solid transportation problem, type-2 fuzzy variable, CV-

based reduction methods, generalized credibility, goal programming approach.
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1. Introduction

1.1. Literature review and the main work of the research: The transportation
problem originally developed by Hitchcock [7] is one of the most common combinatorial
problems involving constraints. The solid transportation problem (STP) was �rst stated
by Shell [8]. Haley [5, 6] developed the solution procedure of a solid transportation prob-
lem and made a comparison between the STP and the classical transportation problem.
Geo�rion and Graves [19] were the �rst researchers studied on two-stage distribution
problem. After that so many researchers(Pirkul and Jayaraman [20], Heragu [17], Hindi
et al. [21], Syarif and Gen [22], Amiri [23], Gen et al. [24]) study two-stage TP. Mahap-
atra et al. [25] applied fuzzy multi-objective mathematical programming technique on a
reliability optimization model. A type-2 fuzzy variable is a map from a fuzzy possibility
space to the real number space; it is an appropriate tool for describing type-2 fuzziness.
The concept of a type-2 fuzzy set was �rst proposed in Qin et al. [1] as an extension
of an ordinary fuzzy set. Mitchell [10] used the concept of an embedded type-1 fuzzy
number. Liang and Mendel [11] proposed the concept of an interval type-2 fuzzy set.
Karnik and Mendel [2], Liu [3], Qin et al. [1], Yang et al. [30], Liu et al. [29], Yang et
al. [30] worked on type-2 fuzzy set. In the literature, data envelopment analysis (DEA)
technology was �rst proposed in [12]. Sengupta [22] incorporated stochastic input and
output variations; Banker [14] incorporated stochastic variables into DEA; Cooper et al.
[15] and Land et al. [16] developed a chance-constrained programming to accommodate
the stochastic variations in the data. Qin et al. [4] proposes three noble methods of
reduction for a type-2 fuzzy variable. Here, we present in tabular form a scenario of
literature development made on transportation problem in Table-1.

Table-1: Some remarkable research works on TP/STP
Author(s), Ref. Objective Nature Additional function Environments Solution Techniques
Kundu et al. Multi-objective STP Multi-item fuzzy LINGO

Yang and Feng Single-objective STP �xed charges stochastic Tabu search algorithm

Kundu et al. Single-objective TP Fixed charge type-2 fuzzy variable LINGO

Baidya et al. Single-objective STP Safety factor Fuzzy, Stochastic, Interval LINGO

Gen et al. Single-objective TP Two-stage Deterministic Genetic algorithms

Proposed Multi-objective STP Multi-stage Triangular type-2 fuzzy LINGO

In spite of the above developments, there are so many gaps in the literature. Some
of these omissions which are used to formulate the model with type-2 triangular fuzzy
number are as follows:

• So many ([26], [27], [28], [31], [32], [33],) solid transportation problems exist in
the literature to minimize the total transportation cost only but nobody can
formulate any STP to minimize the total transportation time, purchasing cost,
loading and unloading cost at a time.

• In spite of the above developments, very few can minimized the time objective
function which involves total transportation time, loading and unloading time
at a time.

• Lots of two stage transportation problems ([19]-[25]) exist in the literature where
the transportation cost is minimized. But nobody formulate and solved a multi-
stage multi-item multi-objective solid transportation problem to minimize the
"total cost" which involves transportation cost, purchasing cost, loading and
unloading cost and "total time" which involves transportation time, loading and
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unloading time.

• Sometimes, the value of the transportation parameters are not known to us pre-
cisely but at that time some imprecise data are known to us. For this reason,
lots of researchers solved so many transportation problems with fuzzy (triangu-
lar fuzzy number, trapezoidal fuzzy number, type-1 fuzzy number, type-2 fuzzy
number, interval type-2 fuzzy number etc.) transportation parameters. But
nobody solved any multi-stage multi-item multi-objective (cost and time) STP
with transportation parameters as type-2 triangular fuzzy number.

• So many STPs are developed in the literature to minimize the total transporta-
tion cost and time subjected to the supply constraints, demand constraints and
conveyances capacity constraints, budget constraint, safety constraint etc. but
nobody formulated any STP subjected to the weights constraints and volumes
constraints during transportation.

In this paper, a multi-item multi-stage solid transportation problem is formulated and
solved. Type-2 fuzzy theory is an appropriate �eld for research. To formulate the model,
we consider unit transportation cost, time, supplies, demands, conveyances capacities,
loading and unloading cost and time, volume and weights for each and every item, vol-
ume and weight capacities for each conveyances as type-2 triangular fuzzy variables. The
objective functions for the respective transportation model is to minimize the total cost
and time. To defuzzify the constraints and objective functions, we apply CV-based re-
duction method. The goal programming approach is used to solve the multi-objective
programming problem. The deterministic problems so obtained are then solved by using
the standard optimization solver - LINGO 13.0 software. We have provided numerical
examples illustrating the proposed model and techniques. Some sensitivity analyzes for
the model are also presented.
The paper is organized as follows. Problem descriptions are includes in the section 2.
In section 3 we brie�y introduce some fundamental concepts. The assumptions and
notations to construct the model are put in the section 4. In section 5, multi-stage multi-
objective solid transportation model with type-2 triangular fuzzy variable is formulated.
In section 6, we discuss about the methodology and defuzzi�cation method that used
to solve the model. A numerical example put in the section 7 is to illustrate the model
numerically. The results of solving the model numerically are put in the section 8. A
sensitivity analysis of the model is discussed in the section 9. In section 9, we discuss the
results obtained by solving the numerical example. The comparisons of the work with
the earlier research are discussed in the section 10. The conclusion and future extension
of the research work are discussed in the section 11. The references which are used to
prepare this manuscript are put in the last. In this work, we formulate and solve a multi-
stage multi-item solid transportation problem to minimize the total cost and time under
type-2 fuzzy environment. The real life applications of the research work are as follows:

• Basically to provide some relief to the survived peoples in disaster, we developed
our MSSTP model. In our paper, we consider all the transportation parameters
as type-2 fuzzy variables since after disaster, it is very di�cult to de�ne all
transportation parameters precisely. Since due to disaster roads, bridges, towers
etc. are damaged, thus it is not possible to survive the peoples smoothly with
the help of direct transportation network. This is the reason to formulate an
n-stage solid transportation model
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• To get the permit of a vehicle is a di�cult task for the owner of the vehicle.
Some vehicles are permitted to driver on a particular state or country. This
permit restricts us to carry the goods from one state to another or one country
to another. So in the transportation period, it is important to load and unload
the goods so many times at the destination centers (the destination centers are
lies between supply points and customers).So to overcome these transportation
di�culties we can apply this newly developed model.

1.2. Motivations: The motivation for this research dated back to September 2014,
the Kashmir region witnessed disastrous �oods across majority of its districts caused
by torrential rainfall. The Indian administrated Jammu and Kashmir, as well as Azad
Kashmir, Gilgit-Baltistan and Punjab in Pakistan, were a�ected by these �oods. By
September 24, 2014, nearly 277 people in India and 280 people in Pakistan died due to
the �oods and more than 1.1 million were a�ected by the �oods. During this period,
it is tedious to send the necessary foods to the survived peoples. For this reason, it is
important to impose so many destination centers in between supply point and customers.

2. Problem Description:

Disaster (earthquick, �ood etc.) is an extra ordinary situation for any country or state
and to provide relief to the survived person which is a risky and tedious task to us. But
at that time transportation is required to serve the foods, clothes etc. to the peoples.
Also due to the disaster, it is not possible to deliver the necessary things directly to
the survived people. It required some destination centers in between source point and
survived peoples such that the total cost and time should be minimized. This also mo-
tivated us to formulate a multi-stage multi-objective solid transportation problem. The
exact �gure of the survived peoples due to disaster is not known to us exactly. For this
reason, the transportation parameters are also remains unknown to us. Since all the
transportation parameters are not known to us precisely, so we consider the transporta-
tion parameters as type-2 triangular fuzzy variables. In this multi-stage transportation
network, destination center for stage-1 is reduced to the supply point for stage-2 and
destination center for stage-2 is reduced to the supply point for stage-3 and similarly the
destination center for the stage-(n-1) is converted to the supply point to the stage-n. The
pictorial representation of the multi-stage solid transportation problem is as follows:

Figure 1. Multi-stage solid transportation network
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3. Fundamental Concepts

De�nition 1. (Regular Fuzzy Variable)
Let Γ be the universe of discourse. An ample �eld [32] A on Γ is a class of subsets of Γ
that is closed under arbitrary unions, intersections, and complements in Γ.
Let Pos : A→ [0, 1] be a set function on the ample�eld Γ. Pos is said to be a possibility
measure [32] if it satis�es the following conditions:
(p1) Pos(ϕ) = 0 and Pos(Γ) = 1.
(p2) For any subclass {Ai|i ∈ I} of A (�nite, counter or uncountable), Pos(

⋃
i∈I(Ai)) =

Supi∈IPos(Ai)
The triplet (Γ,A, Pos) is referred to as a possibility space, in which a credibility measure
[33] is de�ned as Cr(A) = 1

2
(1 + Pos(A)− Pos(Ac)), A ∈ A.

If (Γ,A, Pos) is a possibility space, then an m-ary regular fuzzy vector ξ = (ξ1, ξ2, ..., ξm)
is de�ned as a membership map from Γ to the space [0, 1]m in the sense that for every
t = (t1, t2, ..., tm) ∈ [0, 1]m, one has
{γ ∈ Γ|ξ(γ) ≤ t} = {γ ∈ Γ|ξ1(γ) ≤ t1, ξ2(γ) ≤ t2, ..., ξm(γ) ≤ tm} ∈ A

When m = 1, ξ is called a regular fuzzy variable (RFV).

3.1. Critical values for RFVs. .
De�nition 2.(Qin et al. [1]) Let ξ be an RFV. Then the optimistic CV of ξ, denoted
by CV ∗[ξ], de�ned as CV ∗[ξ] = Sup{α ∧ Pos{ξ ≥ α}}︸ ︷︷ ︸

α∈[0,1]

, while the pessimistic CV of ξ,

denoted by CV∗[ξ], is de�ned as CV∗[ξ] = Sup{α ∧Nec{ξ ≥ α}}︸ ︷︷ ︸
α∈[0,1]

.

The CV of ξ , denoted by CV [ξ], is de�ned as CV [ξ] = Sup{α ∧ Cr{ξ ≥ α}}︸ ︷︷ ︸
α∈[0,1]

.

Theorem 1. (Qin et al. [1]) Let ξ = (r1, r2, r3, r4) be a trapezoidal RFV. Then we have

(i) The optimistic CV of ξ is CV ∗[ξ] = r4
1+r4−r3

.

(ii) The pessimistic CV of ξ is CV∗[ξ] = r2
1+r2−r1

.

(iii) The CV of ξ is CV [ξ] =


2r2−r1

1+2(r2−r1)
, if r2 >

1
2

1
2
, if r2 ≤ 1

2
≤ r3

r4
1+2(r4−r3)

, r3 ≤ 1
2

3.2. Methods of reduction for type-2 fuzzy variables (CV-Based Reduction
Methods). Due to the fuzzy membership function of a type-2 fuzzy number, the com-
putation complexity is very high in practical applications. To avoid this di�culty, some
defuzzi�cation methods have been proposed in the literature (see [6-8]). In this section,
we propose some new methods of reduction for a type-2 fuzzy variable. Compared with
the existing methods, the new methods are very much easier to implement when we em-
ploy them to build a mathematical model with type-2 fuzzy coe�cients.
Let (Γ,A, ˜Pos) be a fuzzy possibility space and ξ̃ a type-2 fuzzy variable with a known
secondary possibility distribution function µξ̃(x). To reduce the type-2 fuzziness, one

approach is to give a representing value for RFV µξ̃(x). For this purpose, we suggest

employing the CVs of ˜Pos{γ|ξ̃(γ) = x} as the representing values. This methods the

CV-based methods for the type-2 fuzzy variable ξ̃
Theorem 2.(Qin et al. [1]) Let ξ̃ be a type-2 triangular fuzzy variable de�ned as

ξ̃ = (r̃1, r̃2, r̃3; θl, θr). Then we have
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(i) Using the optimistic CV reduction method, the reduction ξ1 of ξ̃ has the following
possibility distribution:

µξ1(x) =


(1+θr)(x−r1)

(r2−r1+θr(x−r1))
, if x ∈ [r1,

r1+r2
2

]
(1−θr)x+θrr2−r1
(r2−r1+θl(r2−x))

, if x ∈ [ r1+r2
2

, r2]
(−1+θr)x−θrr2+r3
r3−r2+θr(x−r2)

, if x ∈ [r2,
r2+r3

2
]

(1+θr)(r3−x)
r3−r2+θr(r3−x)

, if x ∈ [ r2+r3
2

, r3]

(ii) Using the pessimistic CV reduction method, the reduction ξ2 of ξ̃ has the fol-
lowing possibility distribution:

µξ2(x) =


x−r1

r2−r1+θl(x−r1)
, if x ∈ [r1,

r1+r2
2

]
x−r1

r2−r1+θl(r2−x)
, if x ∈ [ r1+r2

2
, r2]

r3−x
r3−r2+θl(x−r2)

, if x ∈ [r2,
r2+r3

2
]

r3−x
r3−r2+θl(r3−x)

, if x ∈ [ r2+r3
2

, r3]

(iii) Using the CV reduction method, the reduction ξ3 of ξ̃ has the following possi-
bility distribution:

µξ3(x) =


(1+θr)(x−r1)

r2−r1+2θr(x−r1)
, if x ∈ [r1,

r1+r2
2

]
(1−θl)x+θlr2−r1
r2−r1+2θl(r2−x)

, if x ∈ [ r1+r2
2

, r2]
(−1+θl)x−θlr2+r3
r3−r2+2θl(x−r2)

, if x ∈ [r2,
r2+r3

2
]

(1+θr)(r3−x)
r3−r2+2θr(r3−x)

, if x ∈ [ r2+r3
2

, r3]

3.3. Generalized credibility and its properties. Suppose ξ is a general fuzzy vari-
able with the distribution µ. The generalized credibility measure C̃r of the event {ξ ≥ α}
is de�ned by
C̃r({ξ ≥ α}) = 1

2
(Supx∈Rµ(x) + Supx≥rµ(x)− Supx<rµ(x)), r ∈ R.

Therefore, if ξ is normalized, it is easy to check that Cr(ξ ≥ α) + Cr(ξ < α) =

Supx∈Rµξ(x) = 1; then C̃r coincides with the usual credibility measure. The concept
of independence for normalized fuzzy variables and its properties were discussed in [35].
In the following, we also need to extend independence to general fuzzy variables. The
general fuzzy variables ξ1, ξ2, ξ2..., ξn are said to be mutually independent if and only if
C̃r{ξi ∈ Bi, i = 1, 2, ...n} = Min1≤i≤nC̃r{ξi ∈ Bi} for any subsets Bi, i = 1, 2, ...n of R
Like the α-optimistic value of the normalized fuzzy variable [36], the α-optimistic value
of general fuzzy variables can be de�ned through the generalized credibility measure.
Let ξ be a fuzzy variable (not necessary normalized). Then ξSup(α) = Sup{r|C̃r{ξ ≥
r} ≥ α}, α ∈ [0, 1] is called the α-optimistic value of ξ, while ξinf = Inf{r|C̃r{ξ ≤ r} ≥
α}, α ∈ [0, 1] , is called the α− pessimistic value of ξ.

Theorem 3. (Qin et al. [1]) Let ξi be the reduction of the type-2 fuzzy variableξ̃i =
(r̃i1, r̃

i
2, r̃

i
3; θl,i, θr,i) obtained by the CV reduction method for i = 1, 2, ...n. Suppose

ξ1, ξ2, ..., ξn are mutually independent, and ki ≥ o for i = 1, 2, ...n.
Case-I: If α ∈ (0, 0.25], then eqnarray C̃r{

∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑
i=1

(1− 2α+ (1− 4α)θr,i)kir
i
1 + 2αkir

i
2

1 + (1− 4α)θr,i

Case-II: If α ∈ (0.25, 0.50], then eqnarray C̃r{
∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑
i=1

(1− 2α)kir
i
1 + (2α+ (4α− 1)θl,i)kir

i
2

1 + (1− 4α)θl,i
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Case-III: If α ∈ (0.50, 0.75], then eqnarray C̃r{
∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑
i=1

(2α− 1)kir
i
3 + (2(1− α) + (3− 4α)θl,i)kir

i
2

1 + (3− 4α)θl,i

Case-IV: If α ∈ (0.75, 1], then eqnarray C̃r{
∑n
i=1 kiξi ≤ t} ≥ α is equivalent to

n∑
i=1

(2α− 1 + (4α− 3)θr,i)kir
i
3 + 2(1− α)kir

i
2

1 + (4α− 3)θr,i

3.4. Goal programming Method. .
The goal programming method is used to solve the multi-objective programming problem
(MOPP). A general MOPP is of the following form:

Find the values of L decision variablesx1, x2, ..., xLwhich minimizes
F (x) = (f1(x), f2(x), ..., fQ(x))T

subject tox ∈ X
(3.1)

Where, X = {x = (x1, x2, ..., xL) such that gt(x) ≤ 0, xl ≥ 0, t = 1, 2, ..., T ; l = 1, 2, ..., L}
and f1(x), f2(x), ..., fQ(x) are Q(≥ 2) objective functions.
The di�erent steps of the goal programming method are as follows:
Step-1: Solve the multi-objective programming problem (1) as a single objective problem
using only one objective at a time ignoring the others, and determine the ideal objective
vector, say fmin1 , fmin2 , ..., fminQ .
Step-2: Formulate the following GP problem using the ideal objective vector obtained is
Step-1,

Min{
Q∑
q=1

[(d+q )p + (d−q )p]}
1
p

subject to fq(x) + d+q − d−q = fminq , d+q ≥ 0, d−q ≥ 0, d+q d
−
q = 0(q = 1, 2, ..., Q), for all

x ∈ X.
Step-3: Now, solve the above single objective problem described in Step-2 by GRG
method and obtain the compromise solution.

4. Notations and assumptions for the proposed model

(i) C̃1
ijk1q

, C̃2
jkk2q

, C̃nlmknq = Fuzzy unit transportation cost is to transport the q-th
item from i-th plant to j-th DC by k1-th vehicle, j-th plant to k-th DC k2-th
vehicle and l-th plant to m-th customer kn-th vehicle respectively.

(ii) t̃1ijk1q, t̃
2
jkk2q

, t̃nlmknq = Fuzzy unit transportation time is to transport the q-th
item from i-th plant to j-th DC by k1-th vehicle, j-th plant to k-th DC k2-th
vehicle and l-th plant to m-th customer kn-th vehicle respectively.

(iii) x̃1ijk1q, x̃
2
jkk2q

, x̃nlmknq, x̃
n
ulk(n−1)q

, x̃nlmknq = Unknown quantities which is to be

transported from i-th plant to j-th DC of q-th item by k1-th vehicle for stage-1,
j-th plant to k-th DC of q-th item by k2-th vehicle for stage-2, u-th plant to l-th
DC of q-th item by k(n−1)-th vehicle for stage-(n − 1), and l-th plant to m-th
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customer of q-th item by kn-th vehicle for stage-n respectively.

(iv) P̃C = Fuzzy purchasing cost of q-th item at i-th source.

(v) L̃O
1
i , L̃O

2
j , ..., L̃O

n
l = Fuzzy loading cost at i-th plant of stage-1, j-th plant of

stage-2 and l-th plant of stage-n respectively.

(vi) ŨD
1
j , ŨD

2
k, ..., ŨD

n
m =Fuzzy unloading cost at j-th DC of stage-1, k-th DC of

stage-2 and m-th customer of stage-n respectively.

(vii) ˜LTO
1
i , ˜LTO

2
j , ..., ˜LTO

n
l = Fuzzy loading time at i-th plant of stage-1, j-th plant

of stage-2 and l-th plant of stage-n respectively.

(viii) ˜UTD
1
j , ˜UTD

2
k, ..., ˜UTD

n
m =Fuzzy unloading time at j-th DC of stage-1, k-th DC

of stage-2 and m-th customer of stage-n respectively.

(ix) y1ijk1q =

{
1, if x1ijk1q > 0
0, otherwise

, y2jkk2q =

{
1, if x2jkk2q > 0
0, otherwise

, ynlmknq =

{
1, if xnlmknq > 0
0, otherwise

5. Formulation of solid transportation problem with transporta-

tion parameters as type-2 triangular fuzzy variables

Let us consider ′I ′ supply points (or sources), ′J ′ destination centers, K1 conveyances
for stage-1 transportation; ′J ′ supply points (or sources), ′K′ destination centers, K2

conveyances for stage-2 transportation; ′U ′ supply points, ′L′ destination centers, k(n−1)

conveyances for stage-(n− 1) transportation; ′L′ supply points (or sources), ′M ′ desti-
nation centers, Kn conveyances for stage-n transportation. Also we consider that Q be
the number of items which is to be transported from plants to DC by di�erent modes of
conveyances.

Minf1 =

Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(C̃1
ijk1q + L̃O

1
i + ŨD

1
j + P̃C

1
iq)x

1
ijk1q(5.1)

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(C̃2
jkk2q + L̃O

2
j + ŨD

2
k + P̃C

2
jq)x

2
jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(C̃nlmknq + L̃O
n
l + ŨD

n
m + P̃C

n
lq)x

n
lmknq

Minf2 =

Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(t̃1ijk1q + ˜LTO
1
i + ˜UTD

1
j )yijk1q(5.2)

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(t̃2jkk2q + ˜LTO
2
j + ˜UTD

2
k)y2jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(t̃nlmknq + ˜LTO
n
l + ˜UTD

n
m)ynlmknq
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J∑
j=1

K1∑
k1=1

x1ijk1q ≤ ã
1
iq, i = 1, 2, ..., I; q = 1, 2, ..., Q,(5.3)

I∑
i=1

K1∑
k1=1

x1ijk1q ≥ b̃
1
jq, j = 1, 2, ..., J ; q = 1, 2, ..., Q,(5.4)

Q∑
q=1

I∑
i=1

J∑
j=1

x1ijk1q ≤ ẽ
1
k1 , k1 = 1, 2, ...,K1,(5.5)

Q∑
q=1

I∑
i=1

J∑
j=1

w̃qx
1
ijk1q ≤ W̃

1
k1 , k1 = 1, 2, ...,K1,(5.6)

Q∑
q=1

I∑
i=1

J∑
j=1

ṽqx
1
ijk1q ≤ Ṽ

1
k1 , k1 = 1, 2, ...,K1,(5.7)

K∑
k=1

K2∑
k2=1

x2jkk2q ≤
I∑
i=1

K1∑
k1=1

x1ijk1q, j = 1, 2, ..., J ; q = 1, 2, ..., Q,(5.8)

J∑
j=1

K2∑
k2=1

x2jkk2q ≥ b̃
2
kqk = 1, 2, ...K; q = 1, 2, ..., Q,(5.9)

Q∑
q=1

J∑
j=1

K∑
k=1

x2jkk2q ≤ ẽ
2
k2 , k2 = 1, 2, ...,K2,(5.10)

Q∑
q=1

J∑
j=1

K∑
k=1

w̃qx
2
jkk2q ≤ W̃

2
k2 , k2 = 1, 2, ...,K2,(5.11)

Q∑
q=1

J∑
j=1

K∑
k=1

ṽqx
2
jkk2q ≤ Ṽ

2
k2 , k2 = 1, 2, ...,K2,(5.12)

...............................................................
M∑
m=1

Kn∑
kn=1

xnlmknq ≤
U∑
u=1

K(n−1)∑
k(n−1)=1

x
(n−1)
ulk(n−1)q

, l = 1, 2, ..., L; q = 1, 2, ..., Q,(5.13)

L∑
l=1

K1∑
kn=1

xnlmknq ≥ b̃
n
mq,m = 1, 2, ...M ; q = 1, 2, ..., Q,(5.14)

Q∑
q=1

L∑
l=1

M∑
m=1

xnlmknq ≤ ẽ
n
kn , kn = 1, 2, ...,Kn,(5.15)

Q∑
q=1

L∑
l=1

M∑
m=1

w̃qx
n
lmknq ≤ W̃

n
kn , kn = 1, 2, ...,Kn,(5.16)

Q∑
q=1

L∑
l=1

M∑
m=1

ṽqx
n
lmknq ≤ Ṽ

n
kn , kn = 1, 2, ...,Kn,(5.17)

x1ijk1q ≥ 0, x2jkk2q ≥ 0, ..., x
(n−1)
ulk(n−1)q

≥ 0, xnlmknq ≥ 0,

for all i, j, k, u, l,m, q, k1, k2, k(n−1), kn.
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where, W̃ 1
k1
, W̃ 2

k2
, W̃n

kn are the fuzzy weight capacity of k1-th vehicle of stage-1, k2-th

vehicle of stage-2, kn-th vehicle of stage-n. Ṽ 1
k1
, Ṽ 2
k2
, Ṽ nkn are the fuzzy volume capacity

of k1-th vehicle of stage-1, k2-th vehicle of stage-2, kn-th vehicle of stage-n. w̃q, ṽq are
the fuzzy weight and volume of the q-th item. Also ã1iq be the fuzzy availabilities of

the q-th item at i-th source of stage-1. b1jq, b
2
kq, and b

n
mq are the fuzzy demands of q-th

item at j-th DC, k-th DC and m-th customer for stage-1, stage-2 and stage-3 respec-
tively. Also, ẽ1k1 ẽ

2
k2
, ẽnkn are the fuzzy conveyances capacities of the k1-th, k2-th,kn-th

conveyances for stage-1, stage-2 and stage-n respectively. In this model formulation, we
are to minimize two objective functions as total cost and time under supply, demand,
conveyance capacity, weight and volume constraints. Here the �rst summation of the �rst
objective indicates the total cost for stage-1 transportation. Similarly, second and last
summation of the �rst objective function indicates the total cost for stage-2 and stage-n
transportation respectively. Also the three summations of second objective denotes the
total time in transportation respectively for stage-1, stage-2 and stage-n respectively.
We formulate the model in such a way that the goods are loaded at the supply point
and it is unloaded at the DC for stage-1 transportation. Since due to disaster, it is
not possible to move the vehicle directly to the survived people so after unloading at
the �rst DC it again loaded to another vehicle and goes to the next DC and it is un-
loaded again in second DC for stage-2. In this way the necessary goods are transported
to the survived peoples or customers. For this reason, we impose the loading and un-
loading cost and time for each stage. Again purchasing cost is also imposed in our model.

6. Methodology and defuzzi�cation technique used to solve the

Model

6.1. Methodology. The world has become more complex and almost every important
real-world problem involves more than one objective. In such cases, decision makers
�nd imperative to evaluate best possible approximate solution alternatives according to
multiple criteria. To solve such multi-objective programming problem we apply goal
programming method. Using CV -based reduction method and generalized credibility
measure we �nd the deterministic form of type-2 fuzzy transportation parameters. Fi-
nally generalized reduced gradient technique (LINGO 13.0 optimization software) is used
to solve the developed model.

6.2. Defuzzi�cation. The deterministic form of the objective functions and constraints
obtained by using CV -based reduction method and generalized credibility measure are
as follows:

Cr{(
Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(C̃1
ijk1q + L̃O

1
i + ŨD

1
j + P̃C

1
iq)x

1
ijk1q(6.1)

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(C̃2
jkk2q + L̃O

2
j + ŨD

2
k + P̃C

2
jq)x

2
jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(C̃nlmknq + L̃O
n
l + ŨD

n
m + P̃C

n
lq)x

n
lmknq) ≥ f1} ≤ αc
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Cr{(
Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(t̃1ijk1q + ˜LTO
1
i + ˜UTD

1
j )y

1
ijk1q(6.2)

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(t̃2jkk2q + ˜LTO
2
j + ˜UTD

2
k)y2jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(t̃nlmknq + ˜LTO
n
l + ˜UTD

n
m)ynlmknq) ≥ f2} ≤ αt

Cr(

J∑
j=1

K1∑
k1=1

x1ijk1q ≤ ã
1
iq) ≥ αavail., i = 1, 2, ..., I; q = 1, 2, ..., Q,(6.3)

Cr(

I∑
i=1

K1∑
k1=1

x1ijk1q ≥ b̃
1
jq) ≥ αdemand, j = 1, 2, ..., J ; q = 1, 2, ..., Q,(6.4)

Cr(

Q∑
q=1

I∑
i=1

J∑
j=1

x1ijk1q ≤ ẽ
1
k1) ≥ αcon.cap., k1 = 1, 2, ...,K1,(6.5)

Cr(

Q∑
q=1

I∑
i=1

J∑
j=1

w̃qx
1
ijk1q ≤ W̃

1
k1) ≥ αweight, k1 = 1, 2, ...,K1,(6.6)

Cr(

Q∑
q=1

I∑
i=1

J∑
j=1

ṽqx
1
ijk1q ≤ Ṽ

1
k1) ≥ αvolume, k1 = 1, 2, ...,K1,(6.7)

Cr(

J∑
j=1

K2∑
k2=1

x2jkk2q ≥ b̃
2
kq) ≥ αdemand, k = 1, 2, ...K; q = 1, 2, ..., Q,(6.8)

Cr(

Q∑
q=1

J∑
j=1

K∑
k=1

x2jkk2q ≤ ẽ
2
k2) ≥ αcon.cap., k2 = 1, 2, ...,K2,(6.9)

Cr(

Q∑
q=1

J∑
j=1

K∑
k=1

w̃qx
2
jkk2q ≤ W̃

2
k2) ≥ αweight, k2 = 1, 2, ...,K2,(6.10)

Cr(

Q∑
q=1

J∑
j=1

K∑
k=1

ṽqx
2
jkk2q ≤ Ṽ

2
k2) ≥ αvolume, k2 = 1, 2, ...,K2,(6.11)

...............................................................

Cr(

L∑
l=1

K1∑
kn=1

xnlmknq ≥ b̃
n
mq) ≥ αdemand,m = 1, 2, ...M ; q = 1, 2, ..., Q,(6.12)

Cr(

Q∑
q=1

L∑
l=1

M∑
m=1

xnlmknq ≤ ẽ
n
kn) ≥ αcon.cap.v, kn = 1, 2, ...,Kn,(6.13)

Cr(

Q∑
q=1

L∑
l=1

M∑
m=1

w̃qx
n
lmknq ≤ W̃

n
kn) ≥ αweight, kn = 1, 2, ...,Kn,(6.14)

Cr(

Q∑
q=1

L∑
l=1

M∑
m=1

ṽqx
n
lmknq ≤ Ṽ

n
kn) ≥ αvolume, kn = 1, 2, ...,Kn,(6.15)
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Let us consider αc, αt, αavail., αdemand, αcon.cap., αweight, αvolume be the credibility level
for cost, time, availabilities, demands, conveyances capacities, weights, volume respec-
tively for stage-1, stage-2,...,stage-n.
The crisp conversion of the constraints (6.1)-(6.15) are as follows:

Minf1 =

Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(SC̃1
ijk1q

+ S
L̃O

1
i

+ S
ŨD

1
j

+ S
P̃C

1
iq

)x1ijk1q

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(SC̃2
jkk2q

+ S
L̃O

2
j

+ S
ŨD

2
k

+ S
P̃C

2
jq

)x2jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(SC̃n
lmknq

+ SL̃On
l

+ SŨDn
m

+ SP̃Cn
lq

)xnlmknq

Minf2 =

Q∑
q=1

I∑
i=1

J∑
j=1

K1∑
k1=1

(St̃1
ijk1q

+ S ˜LTO
1
i

+ S ˜UTD
1
j
)yijk1q

+

Q∑
q=1

J∑
j=1

K∑
k=1

K2∑
k2=1

(St̃2
jkk2q

+ S ˜LTO
2
j

+ S ˜UTD
2
k
)y2jkk2q + ...

+

Q∑
q=1

L∑
l=1

M∑
m=1

Kn∑
kn=1

(St̃n
lmknq

+ S ˜LTO
n
l

+ S ˜UTD
n
m

)ynlmknq

J∑
j=1

K1∑
k1=1

x1ijk1q ≤ Sã1iq , i = 1, 2, ..., I; q = 1, 2, ..., Q,

I∑
i=1

K1∑
k1=1

x1ijk1q ≥ Sb̃1jq , j = 1, 2, ..., J ; q = 1, 2, ..., Q,

Q∑
q=1

I∑
i=1

J∑
j=1

x1ijk1q ≤ Sẽ1k1

, k1 = 1, 2, ...,K1,

Q∑
q=1

I∑
i=1

J∑
j=1

Sw̃qx
1
ijk1q ≤ SW̃1

k1

, k1 = 1, 2, ...,K1,

Q∑
q=1

I∑
i=1

J∑
j=1

Sṽqx
1
ijk1q ≤ SṼ 1

k1

, k1 = 1, 2, ...,K1,
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J∑
j=1

K2∑
k2=1

x2jkk2q ≥ Sb̃2kq
k = 1, 2, ...K; q = 1, 2, ..., Q,

Q∑
q=1

J∑
j=1

K∑
k=1

x2jkk2q ≤ Sẽ2k2

, k2 = 1, 2, ...,K2,

Q∑
q=1

J∑
j=1

K∑
k=1

Sw̃qx
2
jkk2q ≤ SW̃2

k2

, k2 = 1, 2, ...,K2,

Q∑
q=1

J∑
j=1

K∑
k=1

Sṽqx
2
jkk2q ≤ SṼ 2

k2

, k2 = 1, 2, ...,K2,

...............................................................
L∑
l=1

K1∑
kn=1

xnlmknq ≥ Sb̃nmq
,m = 1, 2, ...M ; q = 1, 2, ..., Q,

Q∑
q=1

L∑
l=1

M∑
m=1

xnlmknq ≤ Sẽnkn
, kn = 1, 2, ...,Kn,

Q∑
q=1

L∑
l=1

M∑
m=1

Sw̃qx
n
lmknq

≤ SW̃n
kn
, kn = 1, 2, ...,Kn,

Q∑
q=1

L∑
l=1

M∑
m=1

Sṽqx
n
lmknq ≤ SṼ n

kn
, kn = 1, 2, ...,Kn,

Where SC̃1
ijk1q

, SC̃2
jkk2q

, SC̃n
lmknq

, St̃1
ijk1q

, St̃2
jkk2q

, St̃n
lmknq

S
L̃O

1
i
, S

L̃O
2
j
, SL̃On

l
, S

ŨD
1
j
,

S
ŨD

2
k
, SŨDn

m
, S

P̃C
1
iq
, S

P̃C
2
jq
, SP̃Cn

lq
, S ˜LTO

1
i
, S ˜LTO

2
j
, S ˜LTO

n
l
, S ˜UTD

1
j
, S ˜UTD

2
k
, S ˜UTD

n
m
,,

Sã1iq
, Sb̃1jq

, Sb̃2
kq
, Sb̃nmq

, Sẽ1
k1

, Sẽ2
k2

, Sẽn
kn
, Sw̃q , SW̃1

k1

, Sṽq , SṼ 1
k1

, SW̃2
k2

, SṼ 2
k2

, SW̃n
kn
, SṼ n

kn

are equivalent crisp form of fuzzy parameters respectively and given as follows:

SC̃1
ijk1q

=



(1−2α+(1−4αc)θr,C̃1
ijk1q

)r
C̃1
ijk1q

1 +2αcr
C̃1
ijk1q

2

(1+(1−4αc)θr,C̃1
ijk1q

)
, if 0 < αc ≤ 0.25

(1−2αc)r
C̃1
ijk1q

1 +(2αc+(4αc−1)θ
l,C̃1

ijk1q
)r

C̃1
ijk1q

2

(1+(1−4αc)θl,C̃1
ijk1q

)
, if 0.25 < αc ≤ 0.50

(2αc−1)r
C̃1
ijk1q

3 +(2(1−αc)+(3−4αc)θl,C̃1
ijk1q

)r
C̃1
ijk1q

2

(1+(3−4αc)θl,C̃1
ijk1q

)
, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,C̃1

ijk1q
)r

C̃1
ijk1q

3 +2(1−αc)r
C̃1
ijk1q

2

(1+(4αc−3)θ
r,C̃1

ijk1q
)

, if 0.75 < αc ≤ 1

S
L̃O

1
i

=



(1−2αc+(1−4αc)θr,L̃O1
i
)r

L̃O1
i

1 +2αcr
L̃O1

i
2

(1+(1−4αc)θr,L̃O1
i
)

, if 0 < αc ≤ 0.25

(1−2αc)r
L̃O1

i
1 +(2αc+(4αc−1)θ

l,L̃O1
i
)r

L̃O1
i

2

(1+(1−4αc)θl,L̃O1
i
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
L̃O1

i
3 +(2(1−αc)+(3−4αc)θl,L̃O1

i
)r

L̃O1
i

2

(1+(3−4αc)θl,L̃O1
i
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,L̃O1

i
)r

L̃O1
i

3 +2(1−αc)r
L̃O1

i
2

(1+(4αc−3)θ
r,L̃O1

i
)

, if 0.75 < αc ≤ 1
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S
ŨD

1
j

=



(1−2αc+(1−4αc)θr,ŨD1
j
)r

ŨD1
j

1 +2αcr
ŨD1

j
2

(1+(1−4αc)θr,ŨD1
j
)

, if 0 < αc ≤ 0.25

(1−2αc)r
ŨD1

j
1 +(2αc+(4αc−1)θ

l,ŨD1
j
)r

ŨD1
j

2

(1+(1−4αc)θl,ŨD1
j
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
ŨD1

j
3 +(2(1−αc)+(3−4αc)θl,ŨD1

j
)r

ŨD1
j

2

(1+(3−4αc)θl,ŨD1
j
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,ŨD1

j
)r

ŨD1
j

3 +2(1−αc)r
ŨD1

j
2

(1+(4αc−3)θ
r,ŨD1

j
)

, if 0.75 < αc ≤ 1

SP̃Ciq
=



(1−2αc+(1−4αc)θr,P̃Ciq
)r

P̃Ciq
1 +2αcr

P̃Ciq
2

(1+(1−4αc)θr,P̃Ciq
)

, if 0 < αc ≤ 0.25

(1−2αc)r
P̃Ciq
1 +(2αc+(4αc−1)θ

l,P̃Ciq
)r

P̃Ciq
2

(1+(1−4αc)θl,P̃Ciq
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
P̃Ciq
3 +(2(1−αc)+(3−4αc)θl,P̃Ciq

)r
P̃Ciq
2

(1+(3−4αc)θl,P̃Ciq
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,P̃Ciq

)r
P̃Ciq
3 +2(1−αc)r

P̃Ciq
2

(1+(4αc−3)θ
r,P̃Ciq

)
, if 0.75 < αc ≤ 1

SC̃2
jkk2q

=



(1−2αc+(1−4αc)θr,C̃2
jkk2q

)r
C̃2
jkk2q

1 +2αcr
C̃2
jkk2q

2

(1+(1−4αc)θr,C̃2
jkk2q

)
, if 0 < αc ≤ 0.25

(1−2αc)r
C̃2
jkk2q

1 +(2αc+(4αc−1)θ
l,C̃2

jkk2q
)r

C̃2
jkk2q

2

(1+(1−4αc)θl,C̃2
jkk2q

)
, if 0.25 < αc ≤ 0.50

(2αc−1)r
C̃2
jkk2q

3 +(2(1−αc)+(3−4αc)θl,C̃2
jkk2q

)r
C̃2
jkk2q

2

(1+(3−4αc)θl,C̃2
jkk2q

)
, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,C̃2

jkk2q
)r

C̃2
jkk2q

3 +2(1−αc)r
C̃2
jkk2q

2

(1+(4αc−3)θ
r,C̃2

jkk2q
)

, if 0.75 < αc ≤ 1

S
L̃O

2
j

=



(1−2αc+(1−4αc)θr,L̃O2
j
)r

L̃O2
j

1 +2αcr
L̃O2

j
2

(1+(1−4αc)θr,L̃O2
j
)

, if 0 < αc ≤ 0.25

(1−2αc)r
L̃O2

j
1 +(2αc+(4αc−1)θ

l,L̃O2
j
)r

L̃O2
j

2

(1+(1−4αc)θl,L̃O2
j
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
L̃O2

j
3 +(2(1−αc)+(3−4αc)θl,L̃O2

j
)r

L̃O2
j

2

(1+(3−4αc)θl,L̃O2
j
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,L̃O2

j
)r

L̃O2
j

3 +2(1−αc)r
L̃O2

j
2

(1+(4αc−3)θ
r,L̃O2

j
)

, if 0.75 < αc ≤ 1
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S
ŨD

2
k

=



(1−2αc+(1−4αc)θr,ŨD2
k
)r

ŨD2
k

1 +2αcr
ŨD2

k
2

(1+(1−4αc)θr,ŨD2
k
)

, if 0 < αc ≤ 0.25

(1−2αc)r
ŨD2

k
1 +(2αc+(4αc−1)θ

l,ŨD2
k
)r

ŨD2
k

2

(1+(1−4αc)θl,ŨD2
k
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
ŨD2

k
3 +(2(1−αc)+(3−4αc)θl,ŨD2

k
)r

ŨD2
k

2

(1+(3−4αc)θl,ŨD2
k
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,ŨD2

k
)r

ŨD2
k

3 +2(1−αc)r
ŨD2

k
2

(1+(4αc−3)θ
r,ŨD2

k
)

, if 0.75 < αc ≤ 1

SC̃n
lmknq

=



(1−2αc+(1−4αc)θr,C̃n
lmknq

)r
C̃n
lmknq

1 +2αcr
C̃n
lmknq

2

(1+(1−4αc)θr,C̃n
lmknq

)
, if 0 < αc ≤ 0.25

(1−2αc)r
C̃n
lmknq

1 +(2αc+(4αc−1)θ
l,C̃n

lmknq
)r

C̃n
lmknq

2

(1+(1−4αc)θl,C̃n
lmknq

)
, if 0.25 < αc ≤ 0.50

(2αc−1)r
C̃n
lmknq

3 +(2(1−αc)+(3−4αc)θl,C̃n
lmknq

)r
C̃n
lmknq

2

(1+(3−4αc)θl,C̃n
lmknq

)
, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,C̃n

lmknq
)r

C̃n
lmknq

3 +2(1−αc)r
C̃n
lmknq

2

(1+(4αc−3)θ
r,C̃n

lmknq
)

, if 0.75 < αc ≤ 1

SL̃On
l

=



(1−2αc+(1−4αc)θr,L̃On
l
)r

L̃On
l

1 +2αcr
L̃On

l
2

(1+(1−4αc)θr,L̃On
l
)

, if 0 < αc ≤ 0.25

(1−2αc)r
L̃On

l
1 +(2αc+(4αc−1)θ

l,L̃On
l
)r

L̃On
l

2

(1+(1−4αc)θl,L̃On
l
)

, if 0.25 < αc ≤ 0.50

(2αc−1)r
L̃On

l
3 +(2(1−αc)+(3−4αc)θl,L̃On

l
)r

L̃On
l

2

(1+(3−4αc)θl,L̃On
l
)

, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,L̃On

l
)r

L̃On
l

3 +2(1−αc)r
L̃On

l
2

(1+(4αc−3)θ
r,L̃On

l
)

, if 0.75 < αc ≤ 1

SŨDn
m

=



(1−2αc+(1−4αc)θr,ŨDn
m

)r
ŨDn

m
1 +2αcr

ŨDn
m

2

(1+(1−4αc)θr,ŨDn
m

)
, if 0 < αc ≤ 0.25

(1−2αc)r
ŨDn

m
1 +(2αc+(4αc−1)θ

l,ŨDn
m

)r
ŨDn

m
2

(1+(1−4αc)θl,ŨDn
m

)
, if 0.25 < αc ≤ 0.50

(2αc−1)r
ŨDn

m
3 +(2(1−αc)+(3−4αc)θl,ŨDn

m
)r

ŨDn
m

2

(1+(3−4αc)θl,ŨDn
m

)
, if 0.50 < αc ≤ 0.75

(2αc−1+(4αc−3)θ
r,ŨDn

m
)r

ŨDn
m

3 +2(1−αc)r
ŨDn

m
2

(1+(4αc−3)θ
r,ŨDn

m
)

, if 0.75 < αc ≤ 1

St̃1
ijk1q

=



(1−2αt+(1−4αt)θr,t̃1
ijk1q

)r
t̃1ijk1q
1 +2αtr

t̃1ijk1q
2

(1+(1−4αt)θr,t̃1
ijk1q

)
, if 0 < αt ≤ 0.25

(1−2αt)r
t̃1ijk1q
1 +(2αt+(4αt−1)θ

l,t̃1
ijk1q

)r
t̃1ijk1q
2

(1+(1−4αt)θl,t̃1
ijk1q

)
, if 0.25 < αt ≤ 0.50

(2αt−1)r
t̃1ijk1q
3 +(2(1−αt)+(3−4αt)θl,t̃1

ijk1q
)r

t̃1ijk1q
2

(1+(3−4αt)θl,t̃1
ijk1q

)
, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r,t̃1

ijk1q
)r

t̃1ijk1q
3 +2(1−αt)r

t̃1ijk1q
2

(1+(4αt−3)θ
r,t̃1

ijk1q
)

, if 0.75 < αt ≤ 1
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S ˜LTO
1
i

=



(1−2αt+(1−4αt)θr, ˜LTO1
i
)r

˜LTO1
i

1 +2αtr
˜LTO1

i
2

(1+(1−4αt)θr, ˜LTO1
i
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜LTO1

i
1 +(2αt+(4αt−1)θ

l, ˜LTO1
i
)r

˜LTO1
i

2

(1+(1−4αt)θl, ˜LTO1
i
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜LTO1

i
3 +(2(1−αt)+(3−4αt)θl, ˜LTO1

i
)r

˜LTO1
i

2

(1+(3−4αt)θl, ˜LTO1
i
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜LTO1

i
)r

˜LTO1
i

3 +2(1−αt)r
˜LTO1

i
2

(1+(4αt−3)θ
r, ˜LTO1

i
)

, if 0.75 < αt ≤ 1

S ˜UTD
1
j

=



(1−2αt+(1−4αt)θr, ˜UTD1
j
)r

˜UTD1
j

1 +2αtr
˜UTD1

j
2

(1+(1−4αt)θr, ˜UTD1
j
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜UTD1

j
1 +(2αt+(4αt−1)θ

l, ˜UTD1
j
)r

˜UTD1
j

2

(1+(1−4αt)θl, ˜UTD1
j
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜UTD1

j
3 +(2(1−αt)+(3−4αt)θl, ˜UTD1

j
)r

˜UTD1
j

2

(1+(3−4αt)θl, ˜UTD1
j
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜UTD1

j
)r

˜UTD1
j

3 +2(1−αt)r
˜UTD1

j
2

(1+(4αt−3)θ
r, ˜UTD1

j
)

, if 0.75 < αt ≤ 1

St̃2
jkk2q

=



(1−2αt+(1−4αt)θr,t̃2
jkk2q

)r
t̃2jkk2q
1 +2αtr

t̃2jkk2q
2

(1+(1−4αt)θr,t̃2
jkk2q

)
, if 0 < αt ≤ 0.25

(1−2αt)r
t̃2jkk2q
1 +(2αt+(4αt−1)θ

l,t̃2
jkk2q

)r
t̃2jkk2q
2

(1+(1−4αt)θl,t̃2
jkk2q

)
, if 0.25 < αt ≤ 0.50

(2αt−1)r
t̃2jkk2q
3 +(2(1−αt)+(3−4αt)θl,t̃2

jkk2q
)r

t̃2jkk2q
2

(1+(3−4αt)θl,t̃2
jkk2q

)
, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r,t̃2

jkk2q
)r

t̃2jkk2q
3 +2(1−αt)r

t̃2jkk2q
2

(1+(4αt−3)θ
r,t̃2

jkk2q
)

, if 0.75 < αt ≤ 1

S ˜LTO
2
j

=



(1−2αt+(1−4αt)θr, ˜LTO2
j
)r

˜LTO2
j

1 +2αtr
˜LTO2

j
2

(1+(1−4αt)θr, ˜LTO2
j
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜LTO2

j
1 +(2αt+(4αt−1)θ

l, ˜LTO2
j
)r

˜LTO2
j

2

(1+(1−4αt)θl, ˜LTO2
j
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜LTO2

j
3 +(2(1−αt)+(3−4αt)θl, ˜LTO2

j
)r

˜LTO2
j

2

(1+(3−4αt)θl, ˜LTO2
j
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜LTO2

j
)r

˜LTO2
j

3 +2(1−αt)r
˜LTO2

j
2

(1+(4αt−3)θ
r, ˜LTO2

j
)

, if 0.75 < αt ≤ 1
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S ˜UTD
2
k

=



(1−2αt+(1−4αt)θr, ˜UTD2
k
)r

˜UTD2
k

1 +2αtr
˜UTD2

k
2

(1+(1−4αt)θr, ˜UTD2
k
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜UTD2

k
1 +(2αt+(4αt−1)θ

l, ˜UTD2
k
)r

˜UTD2
k

2

(1+(1−4αt)θl, ˜UTD2
k
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜UTD2

k
3 +(2(1−αt)+(3−4αt)θl, ˜UTD2

k
)r

˜UTD2
k

2

(1+(3−4αt)θl, ˜UTD2
k
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜UTD2

k
)r

˜UTD2
k

3 +2(1−αt)r
˜UTD2

k
2

(1+(4αt−3)θ
r, ˜UTD2

k
)

, if 0.75 < αt ≤ 1

Sl̃n
lmknq

=



(1−2αt+(1−4αt)θr,l̃n
lmknq

)r
l̃nlmknq
1 +2αtr

l̃nlmknq
2

(1+(1−4αt)θr,l̃n
lmknq

)
, if 0 < αt ≤ 0.25

(1−2αt)r
l̃nlmknq
1 +(2αt+(4αt−1)θ

l,l̃n
lmknq

)r
l̃nlmknq
2

(1+(1−4αt)θl,l̃n
lmknq

)
, if 0.25 < αt ≤ 0.50

(2αt−1)r
l̃nlmknq
3 +(2(1−αt)+(3−4αt)θl,l̃n

lmknq
)r

l̃nlmknq
2

(1+(3−4αt)θl,l̃n
lmknq

)
, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r,l̃n

lmknq
)r

l̃nlmknq
3 +2(1−αt)r

l̃nlmknq
2

(1+(4αt−3)θ
r,l̃n

lmknq
)

, if 0.75 < αt ≤ 1

S ˜LTO
n
l

=



(1−2αt+(1−4αt)θr, ˜LTOn
l
)r

˜LTOn
l

1 +2αtr
˜LTOn

l
2

(1+(1−4αt)θr, ˜LTOn
l
)

, if 0 < αt ≤ 0.25

(1−2αt)r
˜LTOn

l
1 +(2αt+(4αt−1)θ

l, ˜LTOn
l
)r

˜LTOn
l

2

(1+(1−4αt)θl, ˜LTOn
l
)

, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜LTOn

l
3 +(2(1−αt)+(3−4αt)θl, ˜LTOn

l
)r

˜LTOn
l

2

(1+(3−4αt)θl, ˜LTOn
l
)

, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜LTOn

l
)r

˜LTOn
l

3 +2(1−αt)r
˜LTOn

l
2

(1+(4αt−3)θ
r, ˜LTOn

l
)

, if 0.75 < αt ≤ 1

S ˜UTD
n
m

=



(1−2αt+(1−4αt)θr, ˜LTDn
m

)r
˜LTDn

m
1 +2αtr

˜LTDn
m

2

(1+(1−4αt)θr, ˜LTDn
m

)
, if 0 < αt ≤ 0.25

(1−2αt)r
˜LTDn

m
1 +(2αt+(4αt−1)θ

l, ˜LTDn
m

)r
˜LTDn

m
2

(1+(1−4αt)θl, ˜LTDn
m

)
, if 0.25 < αt ≤ 0.50

(2αt−1)r
˜LTDn

m
3 +(2(1−αt)+(3−4αt)θl, ˜LTDn

m
)r

˜LTDn
m

2

(1+(3−4αt)θl, ˜LTDn
m

)
, if 0.50 < αt ≤ 0.75

(2αt−1+(4αt−3)θ
r, ˜LTDn

m
)r

˜LTDn
m

3 +2(1−αt)r
˜LTDn

m
2

(1+(4αt−3)θ
r, ˜LTDn

m
)

, if 0.75 < αt ≤ 1

Sã1iq
=



(1−2αavail.+(1−4αavail.)θr,ã1
iq

)r
ã1
iq

1 +2αavail.r
ã1
iq

2

(1+(1−4αavail.)θr,ã1
iq

)
, if 0 < αavail. ≤ 0.25

(1−2αavail.)r
ã1
iq

1 +(2αavail.+(4αavail.−1)θ
l,ã1

iq
)r

ã1
iq

2

(1+(1−4αavail.)θl,ã1
iq

)
, if 0.25 < αavail. ≤ 0.50

(2αavail.−1)r
ã1
iq

3 +(2(1−αavail.)+(3−4αavail.)θl,ã1
iq

)r
ã1
iq

2

(1+(3−4αavail.)θl,ã1
iq

)
, if 0.50 < αavail. ≤ 0.75

(2αavail.−1+(4αavail.−3)θ
r,ã1

iq
)r

ã1
iq

3 +2(1−αavail.)r
ã1
iq

2

(1+(4αavail.−3)θ
r,ã1

iq
)

, if 0.75 < αavail. ≤ 1
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Sb̃1jq
=



(1−2αdemand+(1−4αdemand)θr,b̃1
jq

)r
b̃1jq
1 +2αdemandr

b̃1jq
2

(1+(1−4αdemand)θr,b̃1
jq

)
, if 0 < αdemand ≤ 0.25

(1−2αdemand)r
b̃1jq
1 +(2αdemand+(4αdemand−1)θ

l,b̃1
jq

)r
b̃1jq
2

(1+(1−4αdemand)θl,b̃1
jq

)
, if 0.25 < αdemand ≤ 0.50

(2αdemand−1)r
b̃1jq
3 +(2(1−αdemand)+(3−4αdemand)θl,b̃1

jq
)r

b̃1jq
2

(1+(3−4αdemand)θl,b̃1
jq

)
, if 0.50 < αdemand ≤ 0.75

(2αdemand−1+(4αdemand−3)θ
r,b̃1

jq
)r

b̃1jq
3 +2(1−αdemand)r

b̃1jq
2

(1+(4αdemand−3)θ
r,b̃1

jq
)

, if 0.75 < αdemand ≤ 1

Sẽ1
k1

=



(1−2αcon.cap.+(1−4αcon.cap.)θr,tildee1
k1

)r
tildee1k1
1 +2αcon.cap.r

tildee1k1
2

(1+(1−4αcon.cap.)θr,tildee1
k1

)
, if 0 < αcon.cap. ≤ 0.25

(1−2αcon.cap.)r
tildee1k1
1 +(2αcon.cap.+(4αcon.cap.−1)θ

l,tildee1
k1

)r
tildee1k1
2

(1+(1−4αcon.cap.)θl,tildee1
k1

)
, if 0.25 < αcon.cap. ≤ 0.50

(2αcon.cap.−1)r
tildee1k1
3 +(2(1−αcon.cap.)+(3−4αcon.cap.)θl,tildee1

k1

)r
tildee1k1
2

(1+(3−4αcon.cap.)θl,tildee1
k1

)
, if 0.50 < αcon.cap. ≤ 0.75

(2αcon.cap.−1+(4αcon.cap.−3)θ
r,tildee1

k1

)r
tildee1k1
3 +2(1−αcon.cap.)r

tildee1k1
2

(1+(4αcon.cap.−3)θ
r,tildee1

k1

)
, if 0.75 < αcon.cap. ≤ 1

Sw̃q =



(1−2αweight+(1−4αweight)θr,w̃q )r
w̃q
1 +2αweightr

w̃q
2

(1+(1−4αweight)θr,w̃q )
, if 0 < αweight ≤ 0.25

(1−2αweight)r
w̃q
1 +(2αweight+(4αweight−1)θl,w̃q )r

w̃q
2

(1+(1−4αweight)θl,w̃q )
, if 0.25 < αweight ≤ 0.50

(2αweight−1)r
w̃q
3 +(2(1−αweight)+(3−4αweight)θl,w̃q )r

w̃q
2

(1+(3−4αweight)θl,w̃q )
, if 0.50 < αweight ≤ 0.75

(2αweight−1+(4αweight−3)θr,w̃q )r
w̃q
3 +2(1−αweight)r

w̃q
2

(1+(4αweight−3)θr,w̃q )
, if 0.75 < αweight ≤ 1

SW̃1
k1

=



(1−2αweight+(1−4αweight)θr,W̃1
k1

)r
W̃1

k1
1 +2αweightr

W̃1
k1

2

(1+(1−4αweight)θr,W̃1
k1

)
, if 0 < αweight ≤ 0.25

(1−2αweight)r
W̃1

k1
1 +(2αweight+(4αweight−1)θ

l,W̃1
k1

)r
W̃1

k1
2

(1+(1−4αweight)θl,W̃1
k1

)
, if 0.25 < αweight ≤ 0.50

(2αweight−1)r
W̃1

k1
3 +(2(1−αweight)+(3−4αweight)θl,W̃1

k1

)r
W̃1

k1
2

(1+(3−4αweight)θl,W̃1
k1

)
, if 0.50 < αweight ≤ 0.75

(2αweight−1+(4αweight−3)θ
r,W̃1

k1

)r
W̃1

k1
3 +2(1−αweight)r

W̃1
k1

2

(1+(4αweight−3)θ
r,W̃1

k1

)
, if 0.75 < αweight ≤ 1

Sṽq =



(1−2αvolume+(1−4αvolume)θr,ṽq )r
ṽq
1 +2αvolumer

ṽq
2

(1+(1−4αvolume)θr,ṽq )
, if 0 < αvolume ≤ 0.25

(1−2αvolume)r
ṽq
1 +(2αvolume+(4αvolume−1)θl,ṽq )r

ṽq
2

(1+(1−4αvolume)θl,ṽq )
, if 0.25 < αvolume ≤ 0.50

(2αvolume−1)r
ṽq
3 +(2(1−αvolume)+(3−4αvolume)θl,ṽq )r

ṽq
2

(1+(3−4αvolume)θl,ṽq )
, if 0.50 < αvolume ≤ 0.75

(2αvolume−1+(4αvolume−3)θr,ṽq )r
ṽq
3 +2(1−αvolume)r

ṽq
2

(1+(4αvolume−3)θr,ṽq )
, if 0.75 < αvolume ≤ 1
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SṼ 1
k1

=



(1−2αvolume+(1−4αvolume)θr,Ṽ 1
k1

)r
Ṽ 1
k1

1 +2αvolumer
Ṽ 1
k1

2

(1+(1−4αvolume)θr,Ṽ 1
k1

)
, if 0 < αvolume ≤ 0.25

(1−2αvolume)r
Ṽ 1
k1

1 +(2αvolume+(4αvolume−1)θ
l,Ṽ 1

k1

)r
Ṽ 1
k1

2

(1+(1−4αvolume)θl,Ṽ 1
k1

)
, if 0.25 < αvolume ≤ 0.50

(2αvolume−1)r
Ṽ 1
k1

3 +(2(1−αvolume)+(3−4αvolume)θl,Ṽ 1
k1

)r
Ṽ 1
k1

2

(1+(3−4αvolume)θl,Ṽ 1
k1

)
, if 0.50 < αvolume ≤ 0.75

(2αvolume−1+(4αvolume−3)θ
r,Ṽ 1

k1

)r
Ṽ 1
k1

3 +2(1−αvolume)r
Ṽ 1
k1

2

(1+(4αvolume−3)θ
r,Ṽ 1

k1

)
, if 0.75 < αvolume ≤ 1

Sb̃2
kq

=



(1−2αdemand+(1−4αdemand)θr,b̃2
kq

)r
b̃2kq
1 +2αdemandr

b̃2kq
2

(1+(1−4αdemand)θr,b̃2
kq

)
, if 0 < αdemand ≤ 0.25

(1−2αdemand)r
b̃2kq
1 +(2αdemand+(4αdemand−1)θ

l,b̃2
kq

)r
b̃2kq
2

(1+(1−4αdemand)θl,b̃2
kq

)
, if 0.25 < αdemand ≤ 0.50

(2αdemand−1)r
b̃2kq
3 +(2(1−αdemand)+(3−4αdemand)θl,b̃2

kq
)r

b̃2kq
2

(1+(3−4αdemand)θl,b̃2
kq

)
, if 0.50 < αdemand ≤ 0.75

(2αdemand−1+(4αdemand−3)θ
r,b̃2

kq
)r

b̃2kq
3 +2(1−αdemand)r

b̃2kq
2

(1+(4αdemand−3)θ
r,b̃2

kq
)

, if 0.75 < αdemand ≤ 1

Sẽ2
k2

=



(1−2αcon.cap.+(1−4αcon.cap.)θr,ẽ2
k2

)r
ẽ2k2
1 +2αcon.cap.r

ẽ2k2
2

(1+(1−4αcon.cap.)θr,ẽ2
k2

)
, if 0 < αcon.cap. ≤ 0.25

(1−2αcon.cap.)r
ẽ2k2
1 +(2αcon.cap.+(4αcon.cap.−1)θ

l,ẽ2
k2

)r
ẽ2k2
2

(1+(1−4αcon.cap.)θl,ẽ2
k2

)
, if 0.25 < αcon.cap. ≤ 0.50

(2αcon.cap.−1)r
ẽ2k2
3 +(2(1−αcon.cap.)+(3−4αcon.cap.)θl,ẽ2

k2

)r
ẽ2k2
2

(1+(3−4αcon.cap.)θl,ẽ2
k2

ẽ2
k2

)
, if 0.50 < αcon.cap. ≤ 0.75

(2αcon.cap.−1+(4αcon.cap.−3)θ
r,ẽ2

k2

)r
ẽ2k2
3 +2(1−αcon.cap.)r

ẽ2k2
2

(1+(4αcon.cap.−3)θ
r,ẽ2

k2

)
, if 0.75 < αcon.cap. ≤ 1

SW̃2
k2

=



(1−2αweight+(1−4αweight)θr,W̃2
k2

)r
W̃2

k2
1 +2αweightr

W̃2
k2

2

(1+(1−4αweight)θr,W̃2
k2

)
, if 0 < αavail. ≤ 0.25

(1−2αweight)r
W̃2

k2
1 +(2αweight+(4αweight−1)θ

l,W̃2
k2

)r
W̃2

k2
2

(1+(1−4αweight)θl,W̃2
k2

)
, if 0.25 < αavail. ≤ 0.50

(2αweight−1)r
W̃2

k2
3 +(2(1−αweight)+(3−4αavail.)θl,W̃2

k2

)r
W̃2

k2
2

(1+(3−4αweight)θl,W̃2
k2

)
, if 0.50 < αavail. ≤ 0.75

(2αweight−1+(4αweight−3)θ
r,W̃2

k2

)r
W̃2

k2
3 +2(1−αweight)r

W̃2
k2

2

(1+(4αweight−3)θ
r,W̃2

k2

)
, if 0.75 < αavail. ≤ 1
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SṼ 2
k2

=



(1−2αvolume+(1−4αvolume)θr,Ṽ 2
k2

)r
Ṽ 2
k2

1 +2αvolumer
Ṽ 2
k2

2

(1+(1−4αvolume)θr,Ṽ 2
k2

)
, if 0 < αvolume ≤ 0.25

(1−2αvolume)r
Ṽ 2
k2

1 +(2αvolume+(4αvolume−1)θ
l,Ṽ 2

k2

)r
Ṽ 2
k2

2

(1+(1−4αvolume)θl,Ṽ 2
k2

)
, if 0.25 < αvolume ≤ 0.50

(2αvolume−1)r
Ṽ 2
k2

3 +(2(1−αvolume)+(3−4αvolume)θl,Ṽ 2
k2

)r
Ṽ 2
k2

2

(1+(3−4αvolume)θl,Ṽ 2
k2

)
, if 0.50 < αvolume ≤ 0.75

(2αvolume−1+(4αvolume−3)θ
r,Ṽ 2

k2

)r
Ṽ 2
k2

3 +2(1−αvolume)r
Ṽ 2
k2

2

(1+(4αvolume−3)θ
r,Ṽ 2

k2

)
, if 0.75 < αvolume ≤ 1

Sb̃nmq
=



(1−2αdemand+(1−4αdemand)θr,b̃nmq
)r

b̃nmq
1 +2αdemandr

b̃nmq
2

(1+(1−4αdemand)θr,b̃nmq
)

, if 0 < αdemand ≤ 0.25

(1−2αdemand)r
b̃nmq
1 +(2αdemand+(4αdemand−1)θ

l,b̃nmq
)r

b̃nmq
2

(1+(1−4αdemand)θl,b̃nmq
)

, if 0.25 < αdemand ≤ 0.50

(2αdemand−1)r
b̃nmq
3 +(2(1−αdemand)+(3−4αdemand)θl,b̃nmq

)r
b̃nmq
2

(1+(3−4αdemand)θl,b̃nmq
)

, if 0.50 < αdemand ≤ 0.75

(2αdemand−1+(4αdemand−3)θ
r,b̃nmq

)r
b̃nmq
3 +2(1−αdemand)r

b̃nmq
2

(1+(4αdemand−3)θ
r,b̃nmq

)
, if 0.75 < αdemand ≤ 1

Sẽn
kn

=



(1−2αcon.cap.+(1−4αcon.cap.)θr,ẽn
kn

)r
ẽnkn
1 +2αcon.cap.r

ẽnkn
2

(1+(1−4αcon.cap.)θr,ẽn
kn

)
, if 0 < αcon.cap. ≤ 0.25

(1−2αcon.cap.)r
ẽnkn
1 +(2αcon.cap.+(4αcon.cap.−1)θl,ẽn

kn
)r

ẽnkn
2

(1+(1−4αcon.cap.)θl,ẽn
kn

)
, if 0.25 < αcon.cap. ≤ 0.50

(2αcon.cap.−1)r
ẽnkn
3 +(2(1−αcon.cap.)+(3−4αcon.cap.)θl,ẽn

kn
)r

ẽnkn
2

(1+(3−4αcon.cap.)θl,ẽn
kn

)
, if 0.50 < αcon.cap. ≤ 0.75

(2αcon.cap.−1+(4αcon.cap.−3)θr,ẽn
kn

)r
ẽnkn
3 +2(1−αcon.cap.)r

ẽnkn
2

(1+(4αcon.cap.−3)θr,ẽn
kn

)
, if 0.75 < αcon.cap. ≤ 1

SW̃n
kn

=



(1−2αweight+(1−4αweight)θr,W̃n
kn

)r
W̃n

kn
1 +2αweightr

W̃n
kn

2

(1+(1−4αweight)θr,W̃n
kn

)
, if 0 < αweight ≤ 0.25

(1−2αweight)r
W̃n

kn
1 +(2αweight+(4αweight−1)θ

l,W̃n
kn

)r
W̃n

kn
2

(1+(1−4αweight)θl,W̃n
kn

)
, if 0.25 < αweight ≤ 0.50

(2αweight−1)r
W̃n

kn
3 +(2(1−αweight)+(3−4αweight)θl,W̃n

kn

)r
W̃n

kn
2

(1+(3−4αweight)θl,W̃n
kn

)
, if 0.50 < αweight ≤ 0.75

(2αweight−1+(4αweight−3)θ
r,W̃n

kn

)r
W̃n

kn
3 +2(1−αweight)r

W̃n
kn

2

(1+(4αweight−3)θ
r,W̃n

kn

)
, if 0.75 < αweight ≤ 1



1505

SṼ n
kn

=



(1−2αvolume+(1−4αvolume)θr,Ṽ n
kn

)r
Ṽ n
kn

1 +2αvolumer
Ṽ n
kn

2

(1+(1−4αvolume)θr,Ṽ n
kn

)
, if 0 < αvolume ≤ 0.25

(1−2αvolume)r
Ṽ n
kn

1 +(2αvolume+(4αvolume−1)θ
l,Ṽ n

kn

)r
Ṽ n
kn

2

(1+(1−4αvolume)θl,Ṽ n
kn

)
, if 0.25 < αvolume ≤ 0.50

(2αvolume−1)r
Ṽ n
kn

3 +(2(1−αvolume)+(3−4αvolume)θl,Ṽ n
kn

)r
Ṽ n
kn

2

(1+(3−4αvolume)θl,Ṽ n
kn

)
, if 0.50 < αvolume ≤ 0.75

(2αvolume−1+(4αvolume−3)θ
r,Ṽ n

kn

)r
Ṽ n
kn

3 +2(1−αvolume)r
Ṽ n
kn

2

(1+(4αvolume−3)θ
r,Ṽ n

kn

)
, if 0.75 < αvolume ≤ 1

7. Numerical Example

A �rm produces two types of food as Bread and Biscuit and stored at two plants which
are the supply points of our problem. The goods are delivered to two destination cen-
ters (DCs) from these supply points then �nally these products are transported to the
�nal destination centers or customers or survived peoples on disaster via the �rst DCs.
That is the transportation happened in two stages. Due to disaster, the requirements,
availabilities and other transportation parameters are not known to us precisely. For this
reason, we consider all the transportation parameters as type-2 triangular fuzzy numbers.
The type-2 triangular fuzzy inputs for unit transportation costs and times, availabilities,
demands, conveyances capacities, purchasing cost, loading and unloading cost and time,
weights and volumes etc. for stage-1 and stage-2 are as follows:

Type-2 fuzzy unit transportation cost, time for stage-1 and stage-2:
C1

1111 = (11, 12, 14; .4, .6), C1
1211 = (12, 13, 14; .2, .3), C1

1121 = (11, 13, 14; .2, .3), C1
1221 =

(12, 14, 16; .1, .2),
C1

2111 = (13, 15, 16; .6, .7), C1
2211 = (4, 5, 6; .3, .5), C1

2121 = (13, 15, 16; .3, 1.2), C1
2221 =

(14, 16, 17; .2, .5),
C1

1112 = (13, 14, 17; .4, .6),C1
1212 = (13, 14, 16; .2, .8),C1

1122 = (11, 15, 18; .2, .7),C1
1222 =

(12, 14, 16; .5, 1.2),
C1

2112 = (11, 15, 17; .6, .9),C1
2212 = (12, 13, 19; .3, .5),C1

2122 = (13, 17, 19; .3, .9),C1
2222 =

(15, 16, 18; .4, .5),
t11111 = (2, 3, 5; .4, .6),t11211 = (3, 4, 7; .7, .9),t11121 = (7, 9, 12; .9, 1),t11221 = (2, 4, 6; .1, .2),
t12111 = (7, 10, 13; .6, .9),t12211 = (5, 7, 8; .8, 1),t12121 = (4, 5, 8; .8, 1.3),t12221 = (6, 7, 9; .7, 1.5),
t11112 = (5, 9, 13; .2, .8),t11212 = (5, 7, 9; .8, 1.4),t11122 = (5, 8, 9; .9, 1.9),t11222 = (4, 5, 6; .5, .7),
t12112 = (4, 6, 9; .4, .7),t12212 = (2, 3, 9; .3, .5),t12122 = (3, 7, 10; .3, .9),t12222 = (5, 6, 8; .4, 1.5),
C2

1111 = (8, 9, 11; .4, .6),C2
1211 = (12, 13, 14; .2, 1),C2

1121 = (11, 13, 14; .2, 1.3),C2
1221

= (13, 15, 16; .1, .7),
C2

2111 = (13, 15, 16; .6, 1.9),C2
2211 = (14, 15, 16; .3, .5),C2

2121 = (13, 15, 16; .3, 1.2),C2
2221 =

(14, 16, 17; .6, 1.5),
C2

1112 = (13, 14, 17; .4, .6),C2
1212 = (14, 15, 17; .2, 1), C2

1122 = (11, 15, 18; .2, .7),C2
1222 =

(3, 4, 7; .7, .9),
C2

2112 = (11, 15, 17; .6, .9),C2
2212 = (12, 17, 19; .3, .5),C2

2122 = (16, 17, 19; .3, .9),C2
2222 =

(5, 7, 8; .8, 1),
t21111 = (2, 4, 8; .6, .7),t21211 = (3, 5, 7; .4, .8),t21121 = (2, 3, 4; .6, 1.7),t21221 = (2, 4, 6; .1, .2),
t22111 = (7, 8, 11; .2, 1.1),t22211 = (3, 7, 9; .8, 1.1),t22121 = (2, 5, 9; .8, 1.9),t22221 = (2, 6, 8; .7, 1.5),
t21112 = (3, 9, 12; .3, .8),t21212 = (2, 3, 4; .5, 1.1),t21122 = (3, 4, 11; .7, 1.4),t21222 = (4, 5, 6; .7, 1.3),
t22112 = (3, 6, 8; .3, .4), t22212 = (2, 6, 9; .2, .8), t22122 = (7, 9, 13; .2, .7), t22222 = (2, 6, 9; .9, 1.2).
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Table-2: Type-2 fuzzy availabilities, demands, conveyances capacities, loading and un-

loading time and cost, weights and volume for stage-1 and stage-2
Availabilities ã1

11 = (60, 66, 67; .2, .5),ã1
21 = (54, 56, 60; .1, .2),ã1

12 = (42, 47, 55; .2, .4),ã1
22 = (47, 53, 55; .5, .6)

Demands for stage-1 b̃111 = (19, 26, 30; .1, .3),b̃121 = (21, 24, 25; .2, .3),b̃112 = (20, 21, 22; .7, 2.1),b̃122 = (22, 23, 25; .5, 1.2)

Demands for stage-2 b̃211 = (18, 20, 23; .2, .3),b̃221 = (17, 18, 25; .1, .3),b̃212 = (15, 16, 17; .1, .4),b̃222 = (12, 14, 16; .9, 1.3)

Conveyances Capacities ẽ11 = (52, 54, 56; .2, .3),ẽ12 = (53, 55, 57; .6, .9),ẽ21 = (42, 44, 49; 1.8, 2.3),ẽ22 = (45, 49, 50; .4, .9)

Loading Cost L̃O
1
1 = (2, 4, 6; .2, .3),L̃O

1
2 = (5, 6, 7; .2, .3),L̃O

2
1 = (5, 6, 9; .2, .6),L̃O

2
2 = (2, 9, 10; .3, .4)

Unloading Cost ŨD
1
1 = (2, 3, 4; .4, .6),ŨD

1
2 = (3, 7, 8, .6; .7, ),ŨD

2
1 = (2, 3, 5; .4, .9),ŨD

2
2 = (6, 8, 9; .6, 1)

Loading Time ˜LTO
1
1 = (3, 7, 9; 1.2, 1.3), ˜LTO

1
2 = (1, 2, 3; 1.1, 1.2), ˜LTO

2
1 = (4, 6, 8; .2, .3), ˜LTO

2
2 = (1, 3, 6; .1, .2)

Unloading Time ˜UTD
1
1 = (3, 7, 10; .3, .8), ˜UTD

1
2 = (2, 9, 11; .1, .4), ˜UTD

2
1 = (2, 4, 5; .1, .5), ˜UTD

2
2 = (4, 5, 6; .5, .6)

Purchasing Cost P̃C11 = (10, 11, 12; 1.2, 1.4),P̃C12 = (13, 15, 16; 1.1, 1.4),P̃C21 = (11, 12, 13; 1.1, 1.2),P̃C22 = (14, 16, 17; .9, 1.3)

Weights capacity W̃ 1
1 = (185, 190, 225; .6, .7),W̃ 1

2 = (288, 320, 400; .7, .8), W̃ 2
1 = (310, 320, 331; .1, .9),W̃ 2

2 = (368, 340, 345; .6, .7)

Volumes capacity Ṽ 1
1 = (334, 360, 370; 1.2, 1.3),Ṽ 1

2 = (231, 294, 370; .6, .7), Ṽ 2
1 = (393, 395, 399; .6, .8),Ṽ 2

2 = (353, 354, 356; .8, .9)
weight,volume of items w̃1 = (1, 5, 7; .4, .5),w̃2 = (1, 4, 5; .7, .9),ṽ1 = (1, 2, 6; 1.1, 1.3),ṽ2 = (1, 3, 8; .2, .5)

8. Results

The fuzzy multi-stage STP is converted to its equivalent crisp problem by using CV-
based reduction method and generalized credibility measure. Then using LINGO.13.0
optimization software, we obtain the optimal solution of the deterministic STP. The val-
ues of the credibility level for the transportation parameters are sometime lies in the
interval (0, 0.25] or (0.25, 0.5] or (0.5, 0.75] or (0.75, 1]. For this reason, we obtain the
optimal solution of the newly developed model with the four limitations of the credibility
level. A sensitivity analysis is taken into consideration to show the change of the opti-
mal values of the objective functions and the transported amounts with respect to the
credibility level of availabilities, demands and conveyances capacities.
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Table-3: Changes of optimum cost and transported amount for di�erent cred-
ibility levels

Credibility Level Item-1 Item-2 Item-1 Item-2 Stage-1 Stage-2 Opt. cost Opt. time

αc = 0.07 x11111 = 21.02 x21111 = 18.58
αt = 0.10 x12211 = 21.90 x22221 = 17.29

αavail. = 0.13 x11122 = 20.20 x22112 = 15.28
αdemand = 0.16 41.92 42.40 35.87 27.71 x11222 = 22.20 x22212 = 6.88 3482.99 105.86
αcon.cap. = 0.19 x21222 = 5.49
αweight = 0.22 x22222 = 0.06
αvolume = 0.25

αc = 0.26 x11111 = 13.81, x21111 = 22,
αt = 0.29 x12211 = 26.19, x21211 = 3.25,

αavail. = 0.31 x11121 = 11.45, x22211 = 15.59,
αdemand = 0.33 51.40 64.08 40.84 41.44 x12212 = 14.30, x22112 = 14.7, 5730.85 188.26
αcon.cap. = 0.35 x11122 = 32.68, x21122 = 2.04,
αweight = 0.37 x11222 = 17.10, x21222 = 24.7
αvolume = 0.40

αc = 0.56 x12211 = 24.58, x21111 = 15.87,
αt = 0.59 x11121 = 15.87, x22121 = 4.84,

αavail. = 0.61 x11112 = 14.56, x22221 = 19.74,
αdemand = 0.63 40.45 44.62 40.45 30.60 x11122 = 6.64, x21112 = 4.43, 4912.23 186.70
αcon.cap. = 0.65 x11222 = 23.42 x22112 = 9.48,
αweight = 0.67 x21212 = 14.36,
αvolume = 0.69 x21122 = 2.33.

αc = 0.76 x12211 = 4.04, x21111 = 22.26
αt = 0.79 x11121 = 29.01, x21211 = 6.75,

αavail. = 0.83 x11221 = 20.71, x22211 = 12.57,
αdemand = 0.86 53.76 46.48 45.53 32.41 x11112 = 21.85, x22221 = 3.95, 6055.26 284.63
αcon.cap. = 0.90 x11212 = 17.62, x21212 = 6.24,
αweight = 0.95 x11222 = 7.01 x22122 = 16.76,
αvolume = 0.98 x21222 = 9.41
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8.1. Particular Case. Let us consider, the credibility level for costs, times, availabili-
ties, demands, conveyances capacities, weights and volume are all equal. i.e., αc = αt =
αavail. = αdemand = αcon.cap. = αweight = αvolume = α, say.

Table-4: Optimal results of the model with same credibility level

Credibility Level Item-1 Item-2 Item-1 Item-2 Stage-1 Stage-2 Opt. cost Opt. time

x11111 = 22.32, x21111 = 18.95
x12211 = 22.42, x21111 = 3.37,
x11122 = 20.44, x21111 = 5.09,

α = 0.24 44.74 42.90 36.43 28.38 x11222 = 22.46, x22221 = 9.02, 4022.51 115.49
x22112 = 15.47,
x21222 = 12.91

x12211 = 25.70, x21111 = 21.61,
x11121 = 24.90, x21211 = 3.29,
x11212 = 19.88, x22211 = 15.37,

α = 0.32 50.60 60.86 40.27 39.02 x12212 = 10.19, x21212 = 14.24, 7588.72 210.61
x11122 = 30.79, x22212 = 8.23,

x21122 = 16.55.

x12211 = 25.84, x21111 = 16.49,
x11121 = 16.49, x22111 = 4.8,
x11112 = 5.91, x22211 = 14.93,

α = 0.72 42.33 45.24 42.33 31.22 x11122 = 15.5, x22221 = 6.11, 5317.32 215.64
x11222 = 23.83, x21112 = 6.61,

x22122 = 9.82,
x21222 = 14.79.

x12211 = 8.02, x21111 = 21.87,
x11121 = 28.49, x21211 = 3.67,
x11221 = 16.6, x22211 = 18.69,

α = 0.80 53.11 46.07 44.23 31.99 x11112 = 21.72, x21212 = 3.4, 6037.55 268.83
x11212 = 13.12, x22122 = 16.63,
x11222 = 11.23, x21222 = 11.96.

8.2. Sensitivity Analysis of the availabilities and demands of the model. We
know that the sensitivity analysis is used to analyze the outputs with the given inputs
data. For this reason, in Table-5 and -6 we analyze some inputs data and outputs as sen-
sitivity analysis. Basically the minimization of cost objective and time objective in the
STP depend on the values of the transportation parameters such as unit transportation
costs, times, demands, supplies etc.
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Table-5: Sensitivity analysis on availabilities

αc αt αavail. αdemand αcon.cap. αweight αvolume Opt. cost Opt. time Item-1 Item-2

0.10 3574.57 101.08 35.93 27.78
0.12 3584.04 100.11 35.99 27.84

0.11 0.15 0.16 0.17 0.20 0.22 0.25 3584.13 91.03 36.00 27.85
0.19 3587.07 99.96 36.02 27.87
0.25 3601.32 109.94 36.06 27.92

0.26 5541.09 201.52 40.27 39.02
0.29 5600.76 189.59 40.27 39.02

0.26 0.29 0.32 0.32 0.35 0.38 0.40 5556.28 211.09 40.27 39.02
0.35 5544.85 197.75 40.27 39.02
0.38 5508.48 163.44 40.27 39.02

0.53 4821.18 216.28 39.85 30.45
0.58 4811.73 180.94 40.24 30.56

0.52 0.56 0.63 0.60 0.64 0.68 0.72 4857.09 185.68 40.85 30.72
0.68 4905.02 195.65 40.46 30.91
0.73 4938.51 179.64 41.72 31.07

0.77 6093.96 256.79 45.73 32.46
0.83 6139.95 259.16 46.11 32.56

0.77 0.83 0.87 0.87 0.91 0.95 0.99 6148.66 277.31 46.49 32.66
0.92 6173.94 280.47 46.83 32.95
0.98 6187.11 280.50 46.93 33.04

Table-6: Sensitivity analysis on demands

αc αt αavail. αdemand αcon.cap. αweight αvolume Opt. cost Opt. time Item-1 Item-2

0.13 3539.57 101.08 35.68 27.54
0.16 3565.36 100.18 35.87 27.71

0.11 0.15 0.17 0.19 0.19 0.22 0.25 3594.08 102.09 36.06 27.92
0.22 3626.59 101.59 36.27 28.18
0.25 3664.37 100.28 36.50 28.50

0.26 4534.36 184.54 37 29.69
0.29 4962.18 151.40 38.6 33.82

0.26 0.29 0.32 0.32 0.35 0.38 0.40 5563.87 186.38 40.27 39.02
0.35 6193.2 201.54 42.01 45.83
0.38 7072.83 199.66 43.83 55.23

0.53 4751.82 157.77 38.54 30.12
0.58 4798.8 164.77 39.47 30.35

0.52 0.56 0.60 0.63 0.64 0.68 0.72 4833.92 195.21 40.44 30.61
0.68 4913.07 200.54 41.47 30.92
0.73 5013.48 184.95 42.55 31.32

0.77 5921.35 255.83 43.5 31.71
0.83 6049.3 273.49 44.89 32.22

0.77 0.83 0.87 0.87 0.91 0.95 0.99 6213.72 234.95 45.74 32.46
0.92 6237.77 266.98 46.67 32.69
0.98 6271.87 233.34 47.69 32.93

8.3. Pictorial representation of the sensitivity analysis. The Pictorial represen-
tation of the sensitivity analysis are shown in the �gure-2 - �gure-17 and those are given
below:
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Figure 2. Change of total optimum cost and time with Credibility level
of availability, αavail. ∈ (0, 0.25]

Figure 3. Change of total optimum cost and time with Credibility level
of availability αavail. ∈ (0.25, 0.50]
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Figure 4. Change of total optimum cost and time with Credibility level
of availability, αavail. ∈ (0.50, 0.75]

Figure 5. Change of total optimum cost and time with Credibility level
of availability, αavail. ∈ (0.t5, 1]

9. Discussion

Since the credibility level of the availabilities, demands, conveyances capacities, weights
and volumes for each transported item and each vehicle are di�erent, so after taking
the variation of each transportation parameters, we obtained lots of results of our STP
model where all the transportation parameters are type-2 fuzzy variables and which are
discussed below: Following Table-3, we see that the least amount of total cost and time
are 3482.99 and 105.86 units respectively and these are obtained when the credibility
level of the transportation parameters lies within the interval (0, 0.25]. Again, in Table-
4, we put some optimal results which are obtained by taking the credibility level of all
the transportation parameters are equal. After careful investigation, we found that the
total cost and time are least when the credibility levels are same and it is lies in the
interval (0, 0.25]. In Table-5 we have the following:
(i) When credibility level of the availabilities increases with the limit (0, 0.25], then the
values of the cost objective also increases and the time objective are sometime increases
and decreases. The increase or decrease of the total time within the variation of the cred-
ibility level is also signi�cant i.e., if we change the credibility level then the allocations
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Figure 6. Change of total optimum cost and time with Credibility level
of demand, αdemand ∈ (0, 0.25]

Figure 7. Change of total optimum cost and time with Credibility level
of demand, αdemand ∈ (0.25, 0.50]

are changed and for this reason, it is happening.
(ii) From the third row of the Table-5, we obtained some optimal results of the objec-
tives where the credibility level of availabilities are lies within (0.25, 0.5]. Due to change
of credibility level of availabilities, sometimes the value of total cost are increased and
sometimes decreased but there is no signi�cant change in time objective. This is found
when credibility level increases within the range (0.25, 0.5].
(iii) The value of the cost objective increases when we increase the credibility level of
availabilities within the range (0.5, 0.75] but there are some random changes found in
the time objective function.
(iv) When credibility level of the availabilities increases within the limit (0.75, 1], then
the value of the objectives and transported amounts (item-1 and item-2) are increased.
Again if we can change the value of the credibility level of the demand, then we found
some signi�cant changes on the objective functions as well as transported amounts. From
Table-6, it is seen that when we increase the credibility level of the demands, then the
cost and time objectives are also increases and same type of changes is found on the
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Figure 8. Change of total optimum cost and time with Credibility level
of demand, αdemand ∈ (0.50, 0.75]

Figure 9. Change of total optimum cost and time with Credibility level
of demand, αdemand ∈ (0.75, 1]

transported amount in the �nal stages.

10. Comparison with the earlier Research work

Heragu [13] introduced the problem called two stages TP and gave the mathematical
model for this problem. The model includes both the inbound and outbound transporta-
tion cost and aims to minimize the overall cost. Hindi et al. [12] addressed a two-stage
distribution-planning problem. They considered two additional requirements on their
problem. First, each customer must be served from a single DC. Second, it must be pos-
sible to ascertain the plant origin of each product quantity delivered. A mathematical
formulation called PLANWAR presented by Pirkul and Jayaraman [20] to locate a num-
ber of sources and destination centers and to design distribution network so that the total
operating cost can be minimized. Syarif and Gen [23] considered production/distribution
problem formulated as two-stage TP and proposed a hybrid genetic algorithm (GA) for
solution. But in our research, we develop a new concept which is totally di�erent from the
concept of [20], [13], [12], [23] etc. Here our concept is to supply the commodities from
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Figure 10. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αdemand ∈ (0, 0.25]

Figure 11. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αdemand ∈ (0.25, 0.50]

sources to destination centers with their requirements in stage-1 and then the transported
amounts in stage-1 is converted to the availabilities of the stage-2. The transportation of
the stage-2 happened according to requirements of the destination centers of the stage-2
where the availabilities for the stage-2 are the transported amounts for stage-1 and so on
for the other stage transportations. So we can't make comparison of our approach to the
existing one. But we validate our technique and optimum result by sensitivity analysis.

11. Conclusion and Future Extension of the Research Work

11.1. Conclusion. In this paper, we propose a newly developed STP model under type-
2 fuzzy environment. Weight and volume of the transported items and vehicle are more
signi�cant in the transportation network. So we add two new additional constraints as
weight constraints and volume constraints for each vehicle to handle the STP with dif-
ferent stages. We apply the goal programming method is to solve our multi-objective
multi-stage STP since goal programming technique gives the better optimal result of the
objective function than the other methods. Here we study four cases of the credibility
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Figure 12. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αdemand ∈ (0.50, 0.75]

Figure 13. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αdemand ∈ (0.75, 1]

level of the di�erent transportation parameters. Also, after solving the transportation
model, we see that the least transportation cost is obtained when the credibility level lies
within the range (0, 0.25] and in particular when the credibility level of the transporta-
tion parameters are all equal, then a similar type of change is observed in the objective
functions. We obtain the optimal solution of the model by using generalized reduced
gradient technique (LINGO 13.0 optimization solver) and the results are very e�ective
in real-life sense. So we conclude that, if the credibility levels of the transportation pa-
rameters lies within (0, 0.25], then any multi-stage or single stage STP with type-2 fuzzy
parameter gives the least value of the objective function.

11.2. Future Extension of the Research Work. The future extensions of our re-
search work are as follows:
• We have formulated the STP model under type-2 fuzzy environment but this model
can be developed under fuzzy-rough, fuzzy-random, interval type-2 fuzzy environments
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Figure 14. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αavail. ∈ (0, 0.25]

Figure 15. Change of transported amounts (item-1 and 2) with Cred-
ibility level of demand, αavail. ∈ (0.25, 0.50]

etc.
• In our model we imposed two extra restrictions with the help of weights and volume of
each items and vehicles. There is a scope to formulate and solve the model with safety
constraints, budget constraint etc.
• In the objective function we considered the unit transportation cost, time, purchasing
cost, loading and unloading cost and time etc. but there is a scope to develop the cost
objective function of our model with �xed charges, vehicle carrying cost etc.
• In the solution of the imprecise STP model, the transported amounts have been con-
sidered as crisp. Hence there is a scope of taking these transported amount as fuzzy also
i.e. the models can be formulated as fully fuzzy models.
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Abstract

In almost all random sampling schemes, we adopt di�erent sampling
designs with an objective of obtaining a better representative sample
(optimal sample) for the population. Application of di�erent random-
ization techniques were adopted for providing a supportive basis for
this. Now the question arises, whether the �nal sample selected, on
which all our e�orts are utilized, from the population is an optimal
sample or not? No where we are checking about the optimality of
this sample, i.e., whether this sample is the best one or there exists
any other sample which is more optimal than the selected one satisfy-
ing all the constraints. In all these procedures, we only assume but,
nowhere we are establishing a guarantee about the achievement of such
a representative sample. The present paper emphasizes on achieving an
optimal sample by using variable neighborhood search (VNS) technique.
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1. Introduction

In any sample survey, we �rst develop a frame, which emphasizes on specifying the
sampled population identical with the target population lacking any kind of ambiguity
there on. A sample plays a role of centripetal force in sampling theory literature. An
optimum sample is always desirable and fetches attention at all phases because a poor
sample ruins the entire e�ort of the survey whatever attention may be put to other
aspects. We put our entire e�ort in sampling theory to develop methods of sample
selection i.e. to get an optimum sample and to draw inferences on the principles of
speci�ed precision and minimum cost. In this connection, two rivalry methods of selection

∗Department of Statistics, Tripura University, Email: prdashjsp@gmail.com
†Corresponding Author.
‡Department of Statistics, Tripura University, Email: sam.stat724@gmail.com



1520

Table 1. All possible samples selected by SRSWOR scheme

Sample No. Sample Units (y1, y2) Sample Mean y (y − Y )2

1 y1 = 5, y2 = 3 4 0 (Minimum)
2 y1 = 5, y3 = 6 5.5 2.25
3 y1 = 5, y4 = 2 3.5 0.25
4 y1 = 5, y5 = 4 4.5 0.25
5 y2 = 3, y3 = 6 4.5 0.25
6 y2 = 3, y4 = 2 2.5 2.25
7 y2 = 3, y5 = 4 3.5 0.25
8 y3 = 6, y4 = 2 4 0 (Minimum)
9 y3 = 6, y5 = 4 5 1
10 y4 = 2, y5 = 4 3 1

of a sample came into existence: (1) random selection and the other one is (2) purposive
(non-random) selection. Jensen (1926) [10], Gini and Galvani (1929) [3], Neyman (1934)
[12] advocated about these methods of selection. But, all of these based on the hope
that the sample we get is a representative one. Since, our desire lies on getting an
optimum sample (as a proper subset of the target population) whose characteristics

Φ̂y = ỹ(y1, y2, · · · , yn) under study are almost similar with the population characteristic

Φy = Ỹ (y1, y2, · · · , yN ), when we have a sample of size n from the population of size N to
infer about the variable y. Unfortunately, an optimum sample does not exist and even if
it exists, it is very di�cult, even not possible to identify it. In this regard Godambe(1955)
[4], Hege (1965) [8], Hanurav (1966) [7] had given signi�cant contributions. The following
hypothetical example will clear this idea.

1.1. Example. Consider a �nite population with N = 5 and n = 2. When the popula-
tion values are known to us (say) y1 = 5, y2 = 3, y3 = 6, y4 = 2, y5 = 4.So, we can have(
5
2

)
= 10 di�erent possible SRSWOR samples in total. (We are not emphasizing here

regarding WR and WOR samples, as both the schemes are indi�erent for large samples
(Freedman, 1977 [2]). We have to estimate the population mean Φy = Y . We now
calculate the sample means for these as follows. From the Table 1, it indicates that the
sample number 1 and 8 are optimum samples and the sample numbers 2 and 6 are poor
samples on the basis of the value of the expression ||Φ̂y − Φy|| = (y − Y )2.
When we use equal probability scheme to select a sample, in that case all the samples
are equally likely of being selected. Alternatively, if we use PPSWR sample, sample 2
is more likely to be selected than the others. So, in all the cases, we are not selecting
an optimum sample. It emphasis the individual units to be present in the sample for an
optimum sample.

The above result encourages to design a sampling scheme, which will guide us at each
step of selection of the units for moving towards optimality. However, we have to keep
in view about the cost incurred for selecting the sample.

2. An Overview of VNS Algorithm

Mladenovi¢ and Hansen (1997) [11] used the variable neighborhood approach for solv-
ing the vehicle routing problems. Variable neighborhood search is the systematic change
of neighborhood within a possibly randomized local search algorithm yields a simple and
e�ective metaheuristic for combinatorial and global optimization (Hansen and Mladen-
ovi¢, (1999, 2001) [5, 6]). Contrary to the other metaheuristics based on local search
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methods, VNS does not follow a trajectory but explores increasingly distant neighbor-
hoods of the current solution, and jumps from this solution to a new one, if and only
if an improvement has been made. In this way, favorable characteristics of the current
solution (e.g., many variables are already at their optimal value), will often be kept and
used to obtain promising neighboring solutions. Moreover, a local search routine is ap-
plied repeatedly to get from these neighboring solutions to local optima. This kind of
VNS algorithm has recently been successfully applied in the �eld of design of experi-
ments by �nding optimum allocation of experimental units with known predictors into
two treatment groups (Hore et al., 2014 [9]).

3. An Optimal Sample Using VNS Algorithm

Let x be the auxiliary variable closely related to the study variable y. The correspond-
ing parametric function of interest for x is de�ned as

Φx = X̃(x1, x2, · · · , xN ).

Let α = (α1, α2, · · · , αn) to be a selected sample of size n over the design P from
N units, gives the sample observation vector for auxiliary variable only. To obtain an
optimal sample observation vector over the selected one, an iterative method through
neighborhood search algorithm is propsed in this article. Let us denote the neighborhood
of α by N (α) and the neighborhood construction of the corresponding α is derived in
Step 3. The proposed algorithm is framed by using the concept of V NS algorithm.
Another sample of size k (≤ n) also has been selected randomly from remaining (N −n)
population units gives the sample observation vector

β = {β1, β2, · · · , βk}

with the relation β(j) = β(j−1)−{βj}; β(0) = β, j = 1, 2, · · · , k.We repeat the following
steps until a stopping condition is met.

Step 1: Start with j = 1. Select the jth unit from β(j−1).
Step 2: Choose the initial sample α(0) and calculate the value of Φ̂x = Φα(0) and

the corresponding value of the objective function

V
(
α(0)

)
= ||Φα(0) − Φx|| (say).

Step 3: The neighborhood of α(0) is constructed as

N
(
α(0)

)
=
{
α
(0)

(i) , βj : i = 1, 2, · · · , n
}
,

where the α
(0)

(i) is the sample vector of size (n− 1) and it is constructed as,

α
(0)

(i) = α(0) − {αi}, i = 1, 2, · · · , n.

Step 4: Consider all the allocations in N(α(0)) and compute V (α′), for all

α′ ∈ N(α(0)). Find the minimum objective function with respective sample

α(0′), denoted as

α(0′) = arg min
{
V (α′), for all α′ ∈ N

(
α(0)

)}
Step 5: If V (α(0′)) < V (α(0)), choose the next improved sample to be α(1) =

α(0′). Otherwise select α(1) = α(0).
Step 6: (Moving towards optimality) Replace α(0) by α(1), j by j+1 and start the

algorithm again from Step 1.
Step 7: (Stopping Condition) Continue repeating the above steps until all k units

are examined one by one or β(k) = φ.
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Table 2. Sizes of 15 Large United States Cities (in 1000's) in 1920
(xi) and 1930 (yi)

Sl No. 1 2 3 4 5 6 7 8
xi 76 138 67 29 381 23 37 120
yi 80 143 67 50 464 48 63 115

Sl No. 9 10 11 12 13 14 15
xi 61 387 93 172 78 66 60
yi 69 459 104 183 106 86 57

4. Empirical Illustrations

Table 2 gives the number of inhabitants (in 1000's) of 15 cities of United States in the
years 1920 and 1930. Cochran(2011) [1], p. 151-152.

In order to estimate the total number of inhabitants Y =
15∑
i=1

yi in these cities in the

year 1930, we select an initial sample of 4 cities using SRSWOR scheme. Let the selected
cities are 3, 6, 7 and 12. So, we have

α(0) = {α1 = 67, α2 = 23, α3 = 37, α4 = 172}.

Again we select another sample of size 3 from the remaining 15 − 4 = 11 cities as 1, 5
and 8. Thus, β = {β1 = 76, β2 = 381, β3 = 120}.

Step 1: Start with j = 1. Select the �rst unit from β as β1 = 76.
Step 2: Choose the initial sample α(0) = {67, 23, 37, 172} and calculate the value

of

V
(
α(0)

)
= ||Φα(0) − Φx|| = ||X̂ −X|| = (Nx−X)2

= (1121.25− 1788)2 = 444555.6 (say).

Step 3: To �nd the neighbors of α(0), we consider 4 samples, each of size 3, as

α
(0)

(1) = {23, 37, 172}, α(0)

(2) = {67, 37, 172}, α(0)

(3) = {67, 23, 172}, α(0)

(4) = {67, 23, 37}.

The neighborhood of α(0) is constructed as

N
(
α(0)

)
=

{{
α
(0)

(i) , βj
}
, i = 1, 2, · · · , n

}
= {{23, 37, 172, 76}, {67, 37, 172, 76},

{67, 23, 172, 76}, {67, 23, 37, 76}} .

Step 4: Here,

α(0′) = argmin
{∣∣∣∣V (α′)∣∣∣∣ , ∀α(0′) ∈ N

(
α(0)

)}
= argmin

{
(Nx−X)2

}
=
{
α
(0)

(2), β1
}

= {67, 37, 172, 76}

Step 5: Here V
(
α(0′)

)
= 219024 < V

(
α(0)

)
.

So, the corresponding units {3rd, 7th, 12th, 1st} gives a better representa-
tion of the population than the initial sample.

Step 6: (Moving towards optimality) We replace

α(0) by α(1) = {67, 37, 172, 76}.
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Table 3. Sample values for x and y

Sample units: u1 u3 u7 u12

y values: 80 67 63 183
x values: 76 67 37 172

Table 4. Estimate of Variance of Di�erent Estimators of Y and their
Relative Gain in E�ciency (RGE).

Sample Type Di�erent Estimators
Sample Est. of Est. RGE
Type Variance of (a) to (b)

SRSWOR Φ̂1 = Ny
a 178470.4

39.91885
b 249713.7

Ratio
Φ̂2 =

y

x
X

a 11669.76
142.9719

Estimator b 28354.24

Regression
Φ̂3 = N

[
y + b̂yx

(
X − x

)] a 10256.91
83.44258

Estimator b 18815.54

Ratio
Φ̂4 =

y

x
x′

a 80989.51
42.17238

Est. in DS∗ b 115144.7

Regression
Φ̂5 = N

[
y + b̂yx

(
x′ − x

)] a 80163.82
37.74642

Est. in DS∗ b 110422.8

a. Optimum sample b. Traditional sample *DS : Double Sampling

Step 7: (Stopping Condition) Again, proceeding in the previous manner, after

two such iterations, we can get β(3) = φ and the corresponding sample units
{3rd, 7th, 12th, 1st} is the optimum sample as it has the smallest argument.

Here, we get the optimum sample as s = {u3, u7, u12, u1}. Now, we can only study
these units for getting y values. The Table 3 gives the values of x and y for this optimum
sample.

If an equivalent two phase sample is selected from this population with n+ k units to
estimate the unknown population mean of auxiliary variableX and a second phase sample
of size n units out of n+k units, then in the present example (with n = 4, k = 3), observed
sample values for x are 67, 23, 37, 172, 76, 381, 120. Table 4 gives the estimated standard
errors of di�erent estimators and relative gain in e�ciency for estimating population total
(Y ) in adopting proposed optimal sample to the usual (initial) sample using di�erent
estimators under SRSWOR scheme.

5. Conclusion

In all traditional sample survey literature, we are emphasizing on improving the sam-
pling design or the estimators there on by e�ciently utilizing the auxiliary information
but neglecting the representativeness of the selected sample. The present paper utilizes
the readily available auxiliary information in order to get an improved sample, viewed
by a better representation of the population, to estimate the parameters of interest. The
proposed procedure provides, by sacri�cing a little cost to study the auxiliary variable, a
safeguard for arriving at a better representative sample employing variable neighborhood
search (VNS) technique. It does not require any kind of abstract knowledge about the
population values like population correlation coe�cient (ρ) between y and x as in case of
ratio and regression methods of estimation. The optimality of the �nal selected sample
is established by the relative gain in e�ciency to the traditional sample, on the basis of a
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numerical study, shown in Table 4. Therefore, the proposed VNS algorithm for selecting
an optimal sample strongly advocates about its better representativeness.
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Abstract

This article proposes a particular member of the weighted bivariate dis-
tribution, namely, bivariate weighted generalized exponential distribu-
tion. This distribution is obtained via conditioning, starting from three
independent generalized exponential distributions with di�erent shape
but equal scale parameters. Several structural properties of the pro-
posed bivariate weighted generalized exponential distribution including
total positivity of order two, marginal moments, reliability parameter
and estimation of the model parameters are studied. A multivariate
extension of the proposed model is discussed with some properties.
Small simulation experiments have been performed to see the behavior
of the maximum likelihood estimators, and one data analysis has been
presented for illustrative purposes.
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1. Introduction

In recent times, there have been numerous studies on the family of weighted
distributions that emerges as a center of attraction in the development of application (see
Arellano-Valle and Azzalini (2006) and the references therein). The weighted distribution
arises when the density g(x; θ1) of the potential observation x gets contaminated so that
it is multiplied by some non-negative weight function w(x; θ1, θ2) involving an additional
parameter vector θ2. Then, the observed data is a random realization from a weighted
distribution with density

(1.1) f(x; θ1, θ2) =
w(x; θ1, θ2)g(x; θ1)

E [w(X; θ1, θ2)]
,
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where the expectation in the denominator is just a normalizing constant. An extensive
class of weighted distributions are discussed in Rao (1965,1985), Bayarri and DeGroot
(1992), Arnold and Beaver (2002), Branco and Dey (2001), Azzalini (1985) and Kim
(2005). As elaborated in the articles by Arnold and Nagaraja (1991) as well as in the
book by Genton (2004), the application of the weighted distribution extends to the areas
of econometrics, astronomy, engineering, medicine as well as psychology. In particular
in scenarios where the observed random phenomena can be described by (1.1). Again,
if the potential observation x is obtained only from a selected portion of the population
of interest, then (1.1) is called a selection model. Weighted distributions, establishing
links with selection models obtained from various forms of selection mechanisms are well
addressed in the literature; see Genton (2004), Arellano-Valle et al. (2006) and the
references therein. The main objective of this study, described here, is to investigate
various properties of a class of weighted distributions arising via conditioning where the
underlying distributions are independent generalized exponential. Although the class
has some resemblance with the selection distributions developed by Arellano-Valle et al.
(2006), we are not aware of any detailed exposition of the distributional properties. This
lack of detailed exposition motivates the investigation described in this article. This
class apart from a theoretical interest, is worthy of investigation from an applied point of
view. In the applied view point, the class produce new models that provide us a means
to analyze non-normal data such as interval grouped data, screened data and skewed
data. We envision a real life scenario as a genesis of the proposed bivariate weighted
distribution in a classical stress-strength model context.
Assume a system has two independent components with strengths W1 and W2, and
suppose that to run the process each component strength has to overcome an out-

side stress W0 which is independent of both (W1 and W2). If we de�ne (X,Y )
d
=

((W1,W2)|(min(W1,W2)) > W0) where theW ′i s have absolutely continuous distributions,
then the resulting joint distribution of (W1,W2) is the type of bivariate weighted distri-
bution to be investigated in this paper.

2. The bivariate weighted generalized exponential distribution

Let W1,W2 and W0 be independent random variables with density functions fWi(wi),

i = 0, 1, 2. De�ne (X,Y )
d
= ((W1,W2)|W0 < min(W1,W2)) , then the density function of

the corresponding bivariate weighted distribution is given by

fX,Y (x, y) =
fW1(x)fW2(y)P (W0 < min(W1,W2)|W1 = x,W2 = y)

P (W0 < min(W1,W2))

=
fW1(x)fW2(y)FW0(min(x, y))

P (W0 < min(W1,W2))
.(2.1)

Indeed the density in (2.1) is a bivariate weighted distribution of (X,Y ) with the weight
P (W0 < min(W1,W2)). This method was �rst proposed by Al-Mutairi at el. (2011).

If W ′i s for i = 0, 1, 2, are identically distributed with common density function fW (w),
then P (W0 < min(W1,W2)) = 1

3
. Hence, (2.1) reduces to

(2.2) fX,Y (x, y) = 3fW (x)fW (y)FW0(min(x, y)).

Next, we consider a member of the weighted family in (2.1), the bivariate weighted
generalized exponential distribution. The exponentiated exponential distribution (Gupta
and Kundu, 2001), known in the literature as the generalized exponential distribution
(GED), is a two-parameter right skewed unimodal distribution where the behavior of the
density and the hazard functions are quite similar to the density and the hazard functions
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of the gamma and Weibull distributions. The generalized exponential distribution can
also be used e�ectively to analyze lifetime data.
Next, if Wi's are independent generalized exponential random variables with parameters
(αi, θ) for i = 0, 1, 2. Then the normalizing constant is

P (W0 < min(W1,W2)) =

∫ ∞
0

∫ ∞
0

fW1(x)fW2(y)FW0(min(x, y))dxdy

=

∫ ∞
0

∫ ∞
0

θ−2α1e
−x/θ(1− e−x/θ)α1−1

×e−y/θα2(1− e−y/θ)α2−1(1− e−min(x,y)/θ)α0dxdy

=
α1α2

α1 + α2 + α0

(
1

α1 + α0
+

1

α2 + α0

)
.(2.3)

From (2.1), the density function of the proposed bivariate generalized exponential distri-
bution can be written as

fX,Y (x, y) = θ−2δ(α0, α1, α2)e−(x/θ+y/θ)(1− e−x/θ)α1−1(1− e−y/θ)α2−1

×(1− e−min(x,y)/θ)α0 × I(x > 0, y > 0),(2.4)

where δ(α0, α1, α2) =
{

1
α1+α2+α0

(
1

α1+α0
+ 1

α2+α0

)}−1

, αi > 0 for i = 0, 1, 2 and θ > 0.

A bivariate random variable (X,Y ) with the joint p.d.f f(x, y) in (2.4) is said to follow the
bivariate weighted generalized exponential distribution with parameters α0, α1, α2 and
θ and will be denoted by BWGED(α0, α1, α2, θ). When α0 = α1 = α2 = 1, the BWGED
reduces to the bivariate weighted exponential distribution (BWED) with parameters
λ0 = λ1 = λ2 = 1/θ [Al-Mutairi et al., 2011]. Also, when α0 −→ 0 and α1 = α2 =
1, the BWGED reduces to the bivariate exponential distribution where X and Y are
independent and follow Exp(θ) distribution.
In Figure 1, various density and contour plots of BWGED density are provided. Figure
1 shows that the joint density function is very �exible in terms of shapes, it can assume
various shapes such as strictly decreasing and concave down. The shape of the distribu-
tion is strictly decreasing whenever αi < 1, i = 0, 1, 2. Also, it appears from the plots
that the BWGED density is a unimodal distribution.

The remainder of this paper is organized as follows: In section 3, some properties
of the bivariate generalized exponential distribution in (2.4) are discussed. In section
4, some discussion on the multivariate extension of the proposed family is provided.
Section 5 deals with the estimation of the bivariate generalized exponential distribution
parameters. For illustrative purposes, one data set is studied in section 6. In section 7,
some concluding remarks are made regarding the BWGED model.

3. Properties of the bivariate generalized exponential distribution

In this section we discuss various structural properties of the BWGED including mo-
ment generating functions, marginal distributions and distributions of the minimum and
maximum.

3.1. Moment generating function. The moment generating function of BWGED in
(2.4) is

(3.1) MX,Y (t1, t2) = E
(
et1X+t2Y

)
= I1 + I2, say
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Figure 1. The density and contour plots for various values of α0, α1 and α2.

where

I1 =

∫ ∞
0

∫ x

0

et1x+t2ye−(x/θ+y/θ)(1− e−x/θ)α1−1(1− e−y/θ)α0+α2−1dydx,
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and

I2 =

∫ ∞
0

∫ y

0

et1x+t2ye−(x/θ+y/θ)(1− e−x/θ)α0+α1−1(1− e−y/θ)α2−1dxdy.

For I1,
∫ y
0
et2θe−λ(y/θ)(1 − e−y/θ)λ(α0+α2−1)dx = θ B1−e−x/θ (α0 + α2, 1− θ t2) , |t2| <

θ−1 and Bx(a, b) =
∫ x
0
ta−1(1 − t)b−1dt, is the incomplete beta function. On using the

series representation,

Bx(a, b) =
∑∞
k=0

(1−b)k xa+k
k! (a+k)

where (a)k = a(a− 1) · · · (a− k + 1),

[http://mathworld.wolfram.com/IncompleteBetaFunction.html], one can show

(3.2) I1 = θ2
∞∑
k=0

(θ t2)k
k! (α0 + α2 + k)

B(α0 + α1 + α2 + k, 1− θ t1), |t1|, |t2| < θ−1.

Similarly,

(3.3) I2 = θ2
∞∑
k=0

(θ t1)k
k! (α0 + α1 + k)

B(α0 + α1 + α2 + k, 1− θ t2), |t1|, |t2| < θ−1.

Substituting (3.2) and (3.3) in (3.1), we get an expression for the joint moment generating
function of (X,Y ).

3.2. Marginal distributions. From (2.4), the marginal density of X is

fX(x) =

∫ ∞
0

fX,Y (x, y)dy

= θ−1δ(α0, α1, α2)e−x/θ((
1

α2 + α0
− 1

α2

)
(1− e−x/θ)α1+α2+α0−1 +

1

α2
(1− e−x/θ)α1+α0−1

)
×I(x > 0).(3.4)

Similarly, the marginal density of Y is

fY (y) = θ−1δ(α0, α1, α2)e−y/θ((
1

α1 + α0
− 1

α1

)
(1− e−y/θ)α1+α2+α0−1 +

1

α1
(1− e−y/θ)α2+α0−1

)
×I(y > 0).(3.5)

Lemma 1. The marginal distributions of X and Y are weighted generalized exponential
distributions.

Proof. From (3.4), one can write fX(x) =
∑2
i=1 aifXi(xi), where

∑2
i=1 ai = 1, X1 ∼

GED(α1 + α2 + α0, θ), X2 ∼ GED(α1 + α0, θ), a1 = δ(α0,α1,α2)
α1+α2+α0

(
1

α0+α2
− 1

α2

)
and

a2 = δ(α0,α1,α2)
(α0+α1)α2

. Similarly, one can write (3.5) as fY (y) =
∑2
i=1 bifYi(yi), where b1 =

δ(α0,α1,α2)
α1+α2+α0

(
1

α0+α1
− 1

α1

)
and b2 = δ(α0,α1,α2)

(α0+α1)α1
and Y1 ∼ GED(α1 + α2 + α0, θ), Y2 ∼

GED(α2 + α0, θ). �

Now, consider the following lemma from Gupta and Kundu (2001).

Lemma 2. If T follows generalized exponential distribution (GED) with parameters
(α, λ), then,
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(i) MT (t) = αB(α, 1− t/λ), |t| < λ.
(ii) E(T ) = (ψ(α+ 1)− ψ(1)) /λ, where ψ(.) is the digamma function.

From Lemma 1, the moment generating function ofX and Y , respectively, can be written
as

(3.6) MX(t) = a1MX1(t) + a2MX2(t),

(3.7) MY (t) = b1MY1(t) + b2MY2(t),

where a1, a2, b1 and b2 are mentioned in the proof of Lemma 1. Here,X1, Y1 ∼ GED(α1+
α2 + α0, θ), X2 ∼ GED(α1 + α0, θ) and Y2 ∼ GED(α2 + α0, θ).
Hence, using (3.6), (3.7) and Lemma 2, we get

MX(t) = (α0 + α1 + α2)a1B(α0 + α1 + α2, 1− t/θ)
+(α0 + α1)a2B(α0 + α1, 1− t/θ), |t| < θ,

MY (t) = (α0 + α1 + α2)b1B(α0 + α1 + α2, 1− t/θ)
+(α0 + α2)b2B(α0 + α2, 1− t/θ), |t| < θ,

E(X) = a1 θ
−1 ψ(α0 +α1 +α2 + 1) + a2 θ

−1 ψ(α1 +α0 + 1)− (a1 + a2) θ−1 ψ(1),

and

E(Y ) = b1 θ
−1 ψ(α0 + α1 + α2 + 1) + b2 θ

−1 ψ(α2 + α0 + 1)− (b1 + b2) θ−1 ψ(1).

3.3. Distributions of max(X,Y) and min(X,Y). To �nd the distribution of Z =
min(X,Y ), we consider the following: For any z ∈ (0,∞)

P (Z > z)

=

∫ ∞
z

∫ y

z

f(x, y)dxdy +

∫ ∞
z

∫ x

z

f(x, y)dydx

=
δ(α0, α1, α2)

(α1 + α0)

(
1

α0 + α1 + α2
− (1− e−z/θ)α1+α0

α2
+

(α1 + α0)(1− e−z/θ)α0+α1+α2

α2(α0 + α1 + α2)

)
+
δ(α0, α1, α2)

(α2 + α0)

(
1

α0 + α1 + α2
− 1

α1
(1− e−z/θ)α2+α0 +

α2 + α0

α1(α0 + α1 + α2)
(1− e−z/θ)α0+α1+α2

)
.(3.8)

On di�erentiation (3.8), we get

f(z) = θ−1δ(α0, α1, α2)e−z/θ

×
(

1

α1
(1− e−z/θ)α2+α0−1 +

1

α2
(1− e−z/θ)α1+α0−1

−
(

1

α1
+

1

α2

)
(1− e−z/θ)α0+α1+α2−1

)
× I(z > 0).(3.9)

Lemma 3. The distribution of min(X,Y ) is a weighted generalized exponential distri-
bution.
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Proof. From (3.9), fZ(z) =
∑3
i=1 cifZi(zi), where

∑3
i=1 ci = 1, Z1 ∼ GED(α2 + α0, θ),

Z2 ∼ GED(α1+α0, θ), Z3 ∼ GED(α0+α1+α2, θ) and c1 = δ(α0,α1,α2)
α1(α2+α0)

, c2 = δ(α0,α1,α2)
(α0+α1)α2

and c3 = δ(α0,α1,α2)
α2+α1+α0

(
1
α1

+ 1
α2

)
. �

For the distribution of W = max(X,Y ), note that for any w ∈ (0,∞),

FW (w) = P (W > w)

= P (X > w or Y > w)

= P (X > w) + P (Y > w)− P (X > w and Y > w)

= P (X > w) + P (Y > w)− P (Z > w)

= FX(w) + FY (w)− FZ(w).(3.10)

Di�erentiating (3.10) with respect to w and using (3.4), (3.5) and (3.9) we get:

fW (w) = fX(w) + fY (w)− fZ(w)

= θ−1(α0 + α1 + α2)e−w/θ(1− e−w/θ)α0+α1+α2−1 × I(w > 0).(3.11)

From (3.11), W = max(X,Y ), follows the generalized exponential distribution with
parameters α0 +α1 +α2 and θ. Using equations (3.9), (3.11) and Lemma 2, the moment
generating functions and the means of Z and W are:

(i) MZ(t) = c1(α2 + α0)B(α2 + α0, 1 − t/θ) + c2(α1 + α0)B(α1 + α0, 1 − t/θ) +
c3(α0 + α1 + α2)B(α0 + α1 + α2, 1− t/θ), |t| < θ.

E(Z) = c1θ
−1ψ(α2 +α0 + 1) + c2θ

−1ψ(α2 +α0 + 1) + c3θ
−1ψ(α2 +α1 +α0 +

1)− (c1 + c2 + c3)θ−1ψ(1).

(ii) MW (t) = (α2 + α1 + α0)B(α2 + α1 + α0, 1− t/θ), |t| < θ.
E(W ) = θ−1 (ψ(α2 + α1 + α0 + 1)− ψ(1)) .

3.4. Renyi Entropy. Shannon's (1948), pioneering work, entropy has been used as a
major tool in information theory and in almost every branch of science and engineering.
One of the main extensions of Shannon entropy was de�ned by Renyi (1961). This
generalized entropy measure is given by

(3.12) IR(λ) =
log (G(λ))

1− λ , λ > 0 , λ 6= 1.

Where G(λ) =
∫
X f

λdµ, and µ is a σ-�nite measure on X. One can get an expression for
the Shannon entropy from (3.12) by taking limit for λ→ 1.

3.1. Theorem. The Renyi entropy for the bivariate generalized exponential distribution
in (2.4) is IR(λ) = (1− λ)−1 log (G(λ)) , where

(3.13)

G(λ) = θ2−2λδλ(α0, α1, α2)

∞∑
k=0

(
Tλ,kα0+α1

+ Tλ,kα0+α2

)
B(λ, λ(α2+α1+α0−2)+k+2),

and Tλ,kx = (1−λ)k
k! [λ(x−1)+k+1]

.
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Proof. From (2.4), we can write

(3.14) G(λ) = θ−2λδλ(α0, α1, α2)× (I1 + I2),

where I1 =
∫∞
0

∫ y
0
e−λ(x/θ+y/θ)(1− e−x/θ)λ(α0+α1−1)(1− e−y/θ)λ(α2−1)dxdy and

I2 =
∫∞
0

∫ x
0
e−λ(x/θ+y/θ)(1− e−x/θ)λ(α1−1)(1− e−y/θ)λ(α0+α2−1)dydx.

The result in (3.13) follows from (3.14) by using similar approach as in equations (3.2)
and (3.3). �

3.5. Stochastic properties. Let t11, t12, t21 and t22 be real numbers with 0 < t11 < t12
and 0 < t21 < t22. Then (X,Y ) has the total positivity of order two (TP2) property i�

(3.15) fX,Y (t11, t21)fX,Y (t12, t22)− fX,Y (t12, t21)fX,Y (t11, t22) ≥ 0.

3.2. Theorem. The bivariate generalized exponential distribution in (2.4) has the TP2

property.

Proof. Let us consider di�erent cases separately. If 0 < t11 < t21 < t12 < t22, then for the
density function in (2.4), one can easily show that the condition in (3.15) is equivalent

to e−t21/θ − e−t12/θ ≥ 0. This inequality holds because t21 < t12. The other cases can be
shown similarly. �

The reliability parameter R is de�ned as R = P (X > Y ), where X and Y are indepen-
dent random variables. Numerous applications of the reliability parameter have appeared
in the literature such as the area of classical stress-strength model and the break down
of a system having two components. Other applications of the reliability parameter can
be found in Hall (1984) and Weerahandi and Johnson (1992).

3.3. Theorem. The reliability parameter of the bivariate weighted generalized exponen-
tial distribution is

R =
δ(α0, α1, α2)

α1α2

{
α1

α1 + α2
− α0

α0 + α2
+

α0α2

α0 + α1 + α2

}
.

Proof. Note that (X,Y )
d
= [(W1,W2)|W0 < min(W1,W2)] where the Wi's are indepen-

dent and Wi ∼ GED(αi, θ) for i = 0, 1, 2. Thus,

P (X > Y ) = P (W1 > W2|W0 < min(W1,W2))

=
P (W0 < W2 < W1)

P (W0 < min(W1,W2))
(3.16)

By using straightforward integration one can easily show that

(3.17) P (W0 < W2 < W1) =
α1

α1 + α2
− α0

α0 + α2
+

α0α2

α0 + α1 + α2
.

Substituting (2.3) and (3.17) in (3.16), the result follows immediately. �
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4. Multivariate weighted generalized exponential distribution

One can obtain a multivariate version of (2.1) by assuming Wi ∼ fWi(wi) for
i = 0, 1, · · · , k are independent random variables. The resulting multivariate weighted
density function is given by

(4.1) fX1,X2,...Xk (x1, x2, · · · , xk) =

[
k∏
i=1

fWi(xi)

]
FW0(min(x1, x2, ...xk))

P (W0 < min(W1,W2, ...,Wk))
.

From (4.1), a multivariate extension of the bivariate weighted generalized exponential
model in (2.4) is given by

(4.2)

f(x1, x2, ..., xk) ∝

(
k∏
i=1

αi
θ

)
e(−

∑k
i=1

xi
θ

)

(
k∏
i=1

(1− e−
xi
θ )αi−1

)(
1− e−

x1:k
θ

)αi−1

×I(x > 0),

where x1:k = min{(x1, x2, ..., xk}.
As a motivation, one can consider the following scenario: suppose that a system consists
of k components whose random strengths are denoted by W1,W2, ...Wk and the random
stress is given by W0. Next, if the system has a series structure then one would be
interested to know the distribution of W1,W2, ...Wk|W0 < min(W1,W2, ...,Wk). In fact
the system reliability in that case would be given by R = P (W0 < min(W1,W2, ...,Wk)).
Next, consider the model in which Y1, Y2, ..., Yj are i.i.d. random variables with distri-
bution and density functions G0 and g0; X1, X2, ..., Xk are i.i.d. random variables with
distribution and density functions F0 and f0 and Z1, Z2, ..., Z` are i.i.d. random variables
with distribution and density functions H0 and h0. In this case we have

(4.3) f(x1, x2, ..., xk) ∝

[
k∏
i=1

f0(xi)

]
[G0(x1:k)]j [1−H0(xk:k)]`,

where xk:k = max{(x1, x2, ..., xk}.
In some speci�c scenarios it will be possible to evaluate the normalizing constant in (4.3).
For example, when the three distributions are generalized exponential, (4.3) reduces to

f(x1, x2, ..., xk) ∝
[
αk1e

−θ−1(x1+x2+···+xk)
] k∏
i=1

(
1− e−xi/θ

)α1

×
[
1−

(
1− e−xk:k/θ

)α0
]` (

1− e−xk:k/θ
)j α2

.(4.4)

To identify the required normalizing constant we must evaluate∫ ∞
0

∫ ∞
0

....

∫ ∞
0

αk1e
−θ−1(x1+x2+···+xk)

k∏
i=1

(
1− e−xi/θ

)α1

×
[
1−

(
1− e−xk:k/θ

)α0
]` ((

1− e−xk:k/θ
)α2

)j
dx1dx2..dxk

=
∑̀
k1=0

∞∑
k2=0

∞∑
k3=0

(
`

k1

)(
α0k1
k2

)(
α2j

k3

)
(−1)k1+k2+k3E

(
e−k1X1:k/θ−k2Xk:k/θ

)
,(4.5)

where the Xi's have the generalized exponential (α1, θ) distribution. So we need the joint
moment generating function of (X1:k, Xk:k). Next, the joint distribution of (X1:k, Xk:k)
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is

f(x1:k, xk:k)

=
k3(k − 1)α2

1

θ2
e−x1:k/θ−xk:k/θ

(
1− e−xk:k/θ

)kα1−1 (
1− e−x1:k/θ

)α1−1

(
1−

(
1− e−x1:k/θ

)α1
)k−1 ((

1− e−xk:k/θ
)α1

−
(

1− e−x1:k/θ
)α1

)k−2

× I(0 < x1:k < xk:k <∞)

Now,

E
(
e−X1:k/θ−Xk:k/θ

)
=

∫ ∞
0

∫ xk:k

0

k3(k − 1)α2
1

θ2
e−2x1:k/θ−2xk:k/θ

(
1− e−xk:k/θ

)kα1−1 (
1− e−x1:k/θ

)α1−1

×
(

1−
(

1− e−x1:k/θ
)α1

)k−1 ((
1− e−xk:k/θ

)α1

−
(

1− e−x1:k/θ
)α1

)k−2

dx1:kdxk:k,(4.6)

which can be written as
∑∞
j=0(−1)j θ

2+j

((
(2k+1)α1

j

)
+
(
(2k+1)α1−1

j

))
, after some algebraic

simpli�cation. Hence, using (4.6) in (4.5), the normalizing constant corresponds to the
distribution in (4.4) is

C = θ
∑̀
k1=0

∞∑
k2=0

∞∑
k3=0

∞∑
j=0

(−1)k1+k2+k3+j

2 + j

(
`

k1

)(
α0k1
k2

)(
α2j

k3

)
((

(2k + 1)α1

j

)
+

(
(2k + 1)α1 − 1

j

))
,

Corollary 1. If (X1, X2, ..., Xk) has a multivariate weighted generalized exponential dis-
tribution in (4.1) with parameters (αi, θ), i = 0, 1, 2, · · · k, then the normalizing constant,

C1 = P (X1 < min(X2, · · · , Xk)) =
∑k
i=0 αi∏k
i=1 αi

(∑k
i=1

1
αi+α0

)−1

.

Proof. The result follows immediately by using the same logic as in (2.3). �

Corollary 2. If (X1, X2, ..., Xk) has a multivariate weighted generalized exponen-
tial distribution with parameters (αi, θ), i = 0, 1, 2, · · · k, then the distribution of Z =
min(X1, X2, · · · , Xk) has the density

f(z) = θ−1C−1
1 e−z/θ

(
k∑
i=1

1

αi
(1− e−z/θ)αi+α0−1 − 1∑k

i=1 αi
(1− e−z/θ)

∑k
i=0 αi−1

)

×I(z > 0),

where C1 is the constant in Corollary 1.

5. Estimation

In this section, we consider the maximum likelihood method to estimate the model
parameters of the bivariate generalized exponential distribution in (2.4).



1535

5.1. Maximum likelihood estimation. Assume that a random sample of size n obser-
vations are taken from the bivariate density in (2.4), then the corresponding log-likelihood
function can be written as

`(α0, α1, α2, θ) = −2n log θ + n log(α0 + α1 + α2) + n log(α0 + α1) + n log(α0 + α2)

−n log(2α0 + α1 + α2)− nθ−1 (x̄+ ȳ) + (α1 − 1)

n∑
i=1

log
(

1− e−xi/θ
)

+(α2 − 1)

n∑
i=1

log
(

1− e−yi/θ
)

+ α0

n∑
i=1

log
(

1− e−min(xi,yi)/θ
)
.(5.1)

Di�erentiating (5.1) with respect to α0, α1, α2, and θ we get

∂

∂α0
`(α0, α1, α2, θ) =

n

α0 + α1 + α2
− 2n

2α0 + α1 + α2
+

n

α0 + α1
+

n

α0 + α2
(5.2)

+

n∑
i=1

log
(

1− e−min(xi,yi)/θ
)
.

∂

∂α1
`(α0, α1, α2, θ) =

n

α0 + α1 + α2
− n

2α0 + α1 + α2
+

n

α0 + α1
(5.3)

+

n∑
i=1

log
(

1− e−xi/θ
)
.

∂

∂α2
`(α0, α1, α2, θ) =

n

α0 + α1 + α2
− n

2α0 + α1 + α2
+

n

α0 + α2
(5.4)

+

n∑
i=1

log
(

1− e−yi/θ
)
.

∂

∂θ
`(α0, α1, α2, θ)

= −2nθ−1 + θ−2n(x̄+ ȳ)− (α1 − 1)θ−2
n∑
i=1

xi
(
exi/θ − 1

)−1

− (α2 − 1)θ−2
n∑
i=1

yi
(
eyi/θ − 1

)−1

− α0θ
−2

n∑
i=1

min(xi, yi)
(
emin(xi,yi/θ) − 1

)−1

.(5.5)

Setting (5.2), (5.3), (5.4) and (5.5) to 0 and solving simultaneously, we get the maximum
likelihood estimates for α0, α1, α2 and θ.

If the scale parameter θ is assumed to be known, then setting equations (5.2), (5.3)
and (5.4) equal to zero, we get,

(5.6)
1

α
− 2

α0 + α
+

1

α0 + α1
+

1

α0 + α2
= C.

(5.7)
1

α
− 1

α0 + α
+

1

α0 + α1
= A.

(5.8)
1

α
− 1

α0 + α
+

1

α0 + α2
= B.

where A = −
∑n
i=1 log

(
1− e−Xi/θ

)
, B = −

∑n
i=1 log

(
1− e−Yi/θ

)
,

C = −
∑n
i=1 log

(
1− e−min(Xi,Yi)/θ

)
and α = α0 + α1 + α2.



1536

Adding (5.7) and (5.8) and then subtracting from (5.6), we get

(5.9) α =
1

A+B − C .

On using (5.7) and (5.8) and then simplifying, we get

(5.10) α2 = α−
(
A−B +

1

α− α1

)−1

.

Therefore, using equations (5.9), (5.10) and the fact that α0 = α−α1−α2, one can easily
solve equation (5.6) for α1. This will increase the calculation e�ciency in order to obtain
the numerical solution faster. The Fisher information matrix when θ is known, I(δ) =

−E
(

∂2

∂δi∂δj
log (f(X|δ))

)
= {Urs; r, s = α0, α1, α2}, can be obtained from equations (30)-

(32) as follows:

Uα0α0 = n
(
α−2 − 4(α0 + α)−2 + (α0 + α1)−2 + (α0 + α2)−2) .

Uα0α1 = n
(
α−2 − 2(α0 + α)−2 + (α0 + α1)−2) .

Uα0α2 = n
(
α−2 − 2(α0 + α)−2 + (α0 + α2)−2) .

Uα1α1 = n
(
α−2 − (α0 + α)−2 + (α0 + α1)−2) .

Uα1α2 = n
(
α−2 − (α0 + α)−2) ,

Uα2α2 = n
(
α−2 − (α0 + α)−2 + (α0 + α2)−2) .

The Fisher information matrix can be used to obtain interval estimation of the model
parameters. Under standard regularity conditions, the multivariate normalN3(0, I(δ̂)−1)
distribution can be used to construct approximate con�dence intervals for the model

parameters. The matrix, I(δ̂) is the Fisher information matrix evaluated at δ̂. Therefore,

the 100(1−a)% con�dence intervals for α0, α1 and α2 are given by α̂0±za/2×
√
var(α̂0),

α̂1 ± za/2 ×
√
var(α̂1), and α̂2 ± za/2 ×

√
var(α̂2), respectively, where

V ar(α̂0) =
10α4

0+22α3
0(α1+α2)+(α1+α2)

4+α2
0(20α2

1+34α1α2+20α2
2)+4α0(2α3

1+5α2
1α2+5α1α

2
2+2α3

2)
2n(α0+α1)(α0+α2)

,

V ar(α̂1) =
5α3

0+8α2
0α1+11α2

0α2+6α0α
2
1+12α0α1α2+7α0α

2
2+2α3

1+4α2
1α2+4α1α

2
2+α

3
2

2n(α0+α1)
,

V ar(α̂2) =
5α3

0+11α2
0α1+8α2

0α2+7α0α
2
1+12α0α1α2+6α0α

2
2+α

3
1+4α2

1α2+4α1α
2
2+2α3

2
2n(α0+α2)

.
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5.2. Simulation study. To illustrate the application of the bivariate generalized ex-
ponential distribution in (2.4), a small simulation study is conducted. However, in this
paper we report only the results for estimation of the model parameters using the max-
imum likelihood estimation procedure. Bivariate random samples of size 50, 100 and
200 were generated from the density in (2.4) with the following parameter values; Set I:
α0 = 1, α1 = 5 , α2 = 5 and θ = 1 and Set II: α0 = 1, α1 = 4 , α2 = 3 and θ = 3.
Since both the conditional distributions of the bivariate density in (2.4), X|Y and Y |X,
are completely known in closed forms, a Gibbs sampling technique is used to generate
bivariate random samples. The simulation is repeated 200 times. The estimated value
and the standard deviation of the parameters using the maximum likelihood method are
presented in Tables 1 and 2.

Table 1. Parameter estimates and standard deviations for BWGED under set I.
Sample size α̂0 α̂1 α̂2 θ̂

50 1.2372 (0.3220) 5.0955 (0.8543) 5.0902 (0.7065) 0.9903 (0.0379)

100 1.1616 (0.1662) 4.9123 (0.5579) 5.1261 (0.6607) 0.9767 (0.0217)

200 1.1510 (0.1190) 5.0190 (0.4097) 4.9918 (0.2449) 0.9956 (0.0207)

Table 2. Parameter estimates and standard deviations for the BWGED under set II.
Sample size α̂0 α̂1 α̂2 θ̂

50 1.1526 (0.4653) 4.1931 (0.5748) 3.5209 (0.7732) 2.8400 (0.2598)

100 1.2204 (0.2971) 3.9411 (0.4501) 3.5043 (0.6746) 2.9127 (0.2081)

200 1.1374 (0.1573) 4.1051 (0.2225) 3.2157 (0.4294) 2.9677 (0.1140)

From Tables 1 and 2, it appears that the maximum likelihood estimation performs quite
e�ectively to estimate the model parameters.

6. Application

In this section, the BWGED is applied to a data set from Al-Mutairi at el. (2011).
The data set represents the scores from twenty �ve �rst year graduate students in proba-
bility and inference classes of a premier Institute in India. For both the courses, Analysis-I
is a prerequisite. It is assumed that the knowledge of Analysis-I a�ects the scores in both
the courses. The data set is

X : 53, 55, 85, 87, 22, 23, 25, 93, 51, 62, 53, 32, 43, 47, 30, 88, 59, 49, 42, 71, 41, 82, 75, 93, 37.

Y : 89, 90, 59, 50, 25, 29, 54, 62, 39, 25, 89, 32, 33, 63, 38, 77, 55, 41, 31, 66, 57, 32, 43, 88, 34.

We �t the data set to the BWGED and compared the result with the bivariate weighted
exponential distribution (Al- Murairi et al., 2011). The maximum likelihood estimates
for both models are reported in Table 3. The Kolmogorov-Smirnov test statistic (K-S)
for the distribution functions of the marginal X and Y is used to compare the goodness
of �t of the BWGED and the bivariate weighted exponential distribution (BWED). The
K-S statistics and the p-value for the K-S statistics for the �tted marginal distributions
are reported in Tables 3. From Table 3, the p-values indicate that the marginals of the
BWGED gives an adequate �t to the data. Figure (2) displays the empirical and the
�tted cumulative distribution functions. This �gure supports the results in Table 3.
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Table 3. Parameter estimates for the scores data
Distribution BWED BWGED

Parameter Estimates λ̂1 = 0.0263 θ̂ = 20.9321

λ̂2 = 0.0293 α̂0 = 10.7633

λ̂3 = 0.0005 α̂1 = 0.9752
α̂2 = 1× 10−6

K-S for X 0.3290 0.0790
K-S p-value for X 0.2080 0.9977

K-S for Y 0.2250 0.1300
K-S p-value for Y 0.2860 0.7924
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Figure 2. Marginal CDFs for �tted distributions of the scores data

7. Concluding remarks

In this paper, we consider a method for generating bivariate and multivariate general-
ized exponential distributions. Some structural properties of the bivariate exponentiated-
exponential distribution in (2.4) are studied such as marginal distributions, moments, to-
tal positivity and parameter estimation. A small simulation study is conducted and the
outcome of the simulation study is quite encouraging. Furthermore, one can study general
properties for the multivariate generalized exponential distribution in (4.4). Although,
in this paper, we focus on the bivariate and multivariate generalized exponential distri-
butions, one can use the techniques in (2.1) and (4.3) to generate di�erent bivariate and
multivariate distributions. The analytical tractability of such resulting models is to be
investigated before one can explore other properties of the derived model(s).
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1. Introduction

A pair of objects is presented for comparison and two are placed in the relationship
preferred or not preferred. If the di�erences among the objects are distinguishable and
fairly apparent then ranking of all objects will be preferable where the objects will be
given ranked values depends on preferences. For a detailed discussion on PC method and
its usefulness, one is referred to [4], [7] and [9]
A PC model based on two Cauchy random variables has been developed by [1]. The model
has been analyzed in the Bayesian frame work using informative, Conjugate and non-
informative (Je�reys and Uniform) priors. The real data set of top �ve ranked one day
international cricket teams is collected for the Bayesian analysis. By study it is concluded
that Australia has been ranked on the top. The technique of collecting preference data
from judges through binary digits have been highlighted by [2]. The preferred item is
denoted by one and zero to the non-preferred item. The Bradley-Terry PC model is used
for analysis considering a real data set on ice-cream brands. [3] has been worked on two
types of models to use ordinal scales for PC analysis for several parameters. He shows
for binary scale that logit transformation for the models simpli�es them to the basic
Bradley-Terry model. [4] has given the Bayesian analysis of the Bradley-Terry and the
Rao-Kupper model. The posterior means of the parameters, posterior probabilities of the
hypotheses and predictive probabilities for both the models are included in this study.
These results were using the non-informative (Je�reys and Uniform) priors. [5] have
estimated the parameters of the Thurstone-Mosteller PC model by method of maximum
likelihood. The Bayesian analysis of the model is carried out using Je�reys prior. The
Binomial discrete logistic model for the relation between sensory and consumer preference
have been presented by [8]. It is also concluded that no preference is better to model as
a function than considered as ties for the sensory data. The Thurstone-Mosteller model
for PCs has been modi�ed by [10] which allows for widely di�ering proportions of draws.
Data relating to games between the 64 greatest chess player of the world is analyzed for
the model. [11] has discussed the technique of iterative maximum likelihood estimates
algorithms for the generalization of the Bradley Terry model. [13] has presented that
PC allow a large number of draws and variability of draw percentages among the players
of chess or soccer matches. The results are based on matching the number of home
wins, home draws, away wins and away draws for each team with their expected values.
Glenn- David model is used for the estimation. [16] have recommended the procedure of
lasso that categorized the contestants with similar aptitudes. The standard maximum
likelihood method is used for the prediction of rankings. The teams ranking of National
football league 2010-2011 and the American college hockey men's division I 2009-2010
have been used for the analysis.

In Section 2, the method of the Rayleigh model development and notations for the
model is discussed. The Bradley-Terry model is given in Section 3.The prior distributions
and the Bayesian analysis is provided in Sections 4 and 5. Concluding remarks are
provided in Section 6.

2. The Rayleigh Paired Comparisons Model

By considering PC experiments of the Rayleigh random variables with same shape
parameter and di�erent scale (αi) parameter, the Rayleigh model is derived on the basis
of the Stern's model criteria . The Rayleigh random variables are used to examine
wind velocity. The data of MRI images is also Rayleigh distributed. As the Rayleigh
distribution can be used in communication theory, so in paired comparison, perception
of the preference one object is communicated to the other object in a pair, for this
reason, Rayleigh distribution may be considered for PC model. The probability that the
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preference of Ti over Tj is denoted by φi.ij and de�ned as:

φi.ij =P (Tj ≤ Ti)

φi.ij =

∫ ∞
0

∫ ∞
tj

ti
α2
i

e
−

t2i
2α2
i
tj
α2
j

e
−

t2j

2α2
j dtidtj ,

φi.ij =
α2
i

α2
i + α2

j

(2.1)

and φj.ij is the probability that Tj is preferred over Ti and is obtained as:

φj.ij =1− φi.ij

φj.ij =
α2
j

α2
i + α2

j

(2.2)

where αi; (i < j) = 1, 2, ...m are the treatment parameters. The (2.1) and (2.2)
represent the model named as the Rayleigh model for PC.
We de�ne the notations for the model. Let wij be the random variable associated with
the rank of the treatments in the kth repetition of the treatment pair (Ti, Tj), where
(i 6= j; i ≥ 1, j ≤ m; k = 1, 2, ..., rij) and m is the number of observation.

wi.ijk =1 or 0 accordingly as treatment Ti is preferred to treatment Tj

or not in the kth repetition of comparison.

wj.ijk =1 or 0 accordingly as treatment Tj is preferred to treatment Ti

or not in the kth repetition of comparison.

wi.ij =
∑
k

wi.ijk = the number of times treatment Ti is preferred to

treatment Tj .

wj.ij =
∑
k

wj.ijk = the number of times treatment Tj is preferred to

treatment Ti.

rij =the number of times treatment Ti is compared with treatment Tj .

rij =wi.ij + wj.ij .

The likelihood function of the observed outcomes of the trial w and the parameters
α=α1, α2, ..., αm is :

(2.3) l(w ,α) =

m∏
i<j=1

rij !

wij ! (rij − wij)!
α
2wi.ij
i α

2wj.ij
j

(α2
i + α2

j )
wi.ij+wj.ij

, αi > 0

A constraint is imposed on parameters of the model i.e.,
∑m
i=1 αi = 1. This condition

con�rms that parameters are well de�ned.
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3. The Bradley-Terry Model

The Bradley-Terry model is the basic PC model. [7] proposed a model of PCs as-
suming the Logistic density instead of the standard normal density using [15] and [18].
The di�erence between two latent variables (Ti, Tj) has a Logistic density with location
parameters (lnαi, lnαj). The probability that treatment Ti is preferred to treatment Tj
according to Bradley and Terry is given as:

φi.ij =
αi

αi + αj
(3.1)

φj.ij =
αj

αi + αj
,(3.2)

where (3.1) and (3.2) is known as the Bradley-Terry model for PC.

4. Non-Informative Prior Distributions

The non-informative (Uniform and Je�reys) priors are assumed for the Bayesian anal-
ysis.

4.1. Uniform Prior. The Bayesian analysis of the unknown parameter using Uniform
prior is suggested by [6] and [14]. We use the Uniform U(0,1) as the prior distribution,
de�ned as:

(4.1) pU (α) ∝ 1

where α is de�ned in (2.3) and αi > 0. It is the improper prior.

4.2. Je�reys Prior. The Je�reys prior is de�ned as the density function proportional
to partially di�erentiating twice the log likelihood function and taking the square root of
the expected value, i.e.

(4.2) pJ(α) ∝ det[I(α)]
1
2

where det[I(α)] = (−1)2
∣∣∣∣∣∣E[ ∂

2 log l(.)

∂α2
1

] E[ ∂
2 log l(.)
∂α1α2

]

E[ ∂
2 log l(.)
∂α2α1

] E[ ∂
2 log l(.)

∂α2
2

]

∣∣∣∣∣∣
for m = 3 and α3 = 1− α1 − α2.

So, the Je�reys prior for the parameters is derived as:

pJ(α) ∝
√

A1
A2

where A1 =2α6
1 − 6α5

1 + 6α5
1α2 + 15α4

1α
2
2 − 14α4

1α2 + 7α4
1 − 4α3

1 + 12α3
1α2+

20α3
1α

3
2 − 28α3

1α
2
2 − 4α2α

2
1 + α2

1 − 28α2
1α

3
2 + 15α2

1α
4
2 + 18α2

1α
2
2+

12α1α
3
2 − 4α1α

2
2 + 6α1α

5
2 − 14α1α

4
2 + α2

2 + 7α4
2 − 4α3

2 − 6α5
2+

2α6
2

A2 =(2α2
2 + 1− 2α1 − 2α2 + α2

1 + 2α1α2)
2(2α2

2 + 1− 2α1 − 2α2 + α2
2

+ 2α1α2)
2(α2

1 + α2
2)

2

Maple-15 package is used for the mathematical derivation of Je�reys prior.
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5. Bayesian Analysis of the Model for m=3

The joint posterior distribution of the Rayleigh model parameters given data using
the (2.3) and p(α) (prior distribution) is:

p(αi, αj |w) =
1

K
p(α)

m=3∏
i<j=1

rij !

wij ! (rij − wij)!
α
2wi.ij
i α

2wj.ij
j

(α2
i + α2

j )
wi.ij+wj.ij

where K is the normalizing constant, de�ned as:

K =

∫ 1

0

∫ 1−αi

0

p(α)

m=3∏
i<j=1

rij !

wij ! (rij − wij)!
α
2wi.ij
i α

2wj.ij
j

(α2
i + α2

j )
wi.ij+wj.ij

dαjdαi

The marginal posterior distribution of the Rayleigh model parameter αi given data under
Uniform prior using the (4.1) and Sec.5.1 is:

(5.1) p(αi|w) =
1

K

∫ 1−αi

0

pU (α)

m=3∏
i<j=1

rij !

wij ! (rij − wij)!
α
2wi.ij
i α

2wj.ij
j

(α2
i + α2

j )
wi.ij+wj.ij

dαj ,

αi > 0,
∑m=3
i=1 αi = 1.

The marginal posterior distribution of the Rayleigh model parameter α1 given data under
Je�reys prior using the (4.2) and Sec. 5.2 is:

(5.2) p(αi|w) =
1

K

∫ 1−αi

0

pJ(α)

m=3∏
i<j=1

rij !

wij ! (rij − wij)!
α
2wi.ij
i α

2wj.ij
j

(α2
i + α2

j )
wi.ij+wj.ij

dαj ,

αi > 0,
∑m=3
i=1 αi = 1.

The posterior distribution is not in closed form but can be used numerically using package
like SAS.
For illustrative purposes, two real data sets (rij) of 5 and 30 respondents is collected
from the students of the Quaid-i-Azam University Pakistan. These data sets comprise
of the three di�erent brands of cigarettes (Benson & Hedges (BH), Marlboro (ML) and
Dunhill (DH)) which are commonly used among students. Bayesian analysis for the data
sets in Table 1 is carried out using non-informative priors.

Table 1. Data of Cigarette Brands

Pairs
Data 1

Pairs
Data 2

wi.ij wj.ij rij wi.ij wj.ij rij

(BH , ML) 1 4 5 (BH , ML) 11 13 24

(BH , DH) 2 3 5 (BH , DH) 12 15 27

(ML , DH) 4 1 5 (ML , DH) 16 11 27

5.1. Posterior Estimates. The posterior means are used as the estimates of the pa-
rameters. In the Table 2, the posterior means of the Rayleigh and the Bradley-Terry
models are given.



1546

Table 2. Posterior Means under Non-Informative Priors

Parameters
Data 1 Data 2

Bradley-Terry Rayleigh Bradley-Terry Rayleigh
Je�reys Uniform Je�reys Uniform Je�reys Uniform Je�reys Uniform

α1 0.15965 0.18604 0.23427 0.23063 0.28907 0.29027 0.31080 0.31051
α2 0.63030 0.57543 0.49461 0.49991 0.39659 0.39470 0.36483 0.36523
α3 0.21005 0.23853 0.27112 0.26946 0.31435 0.31502 0.32437 0.32426

From the Table 2, it is concluded that the cigarette brand Marlboro may be ranked
number one among the brands and commonly used by students. Dunhill is ranked number
two. Benson & Hedges has the lowest rank. Further observes that ranking of the brands
(of cigarettes) have same order under both the models and data sets using non-informative
priors.

5.2. Graphs of the Marginal Posterior Distribution. The graphs of the marginal
posterior distribution of the Bradley-Terry and the Rayleigh model using both data sets
for non-informative priors are drawn below.
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Figure 1. The Mar-
ginal Posterior Distri-
butions for αi of the
Rayleigh Model using
Uniform Prior (Data-
1)
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Figure 3. The Mar-
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butions for αi of the
Bradley-Terry Model
using Uniform Prior
(Data-1)
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Figure 7. The Mar-
ginal Posterior Distri-
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Bradley-Terry Model
using Uniform Prior
(Data-2)
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The Figures 1, 2, 3 and 4 have skewed marginal posterior distributions for the Rayleigh
and the Bradley-Terry models under non-informative priors for the data set-1. Where as
�gures 5, 6, 7 and 8 have symmetrical marginal posterior distributions for the Rayleigh
and the Bradley-Terry models under non-informative priors for the data set-2. Due to
large data set shows symmetrical graphs.

5.3. Credible Intervals. The 95 % credible intervals are constructed for the Bradley-
Terry and the Rayleigh models.

Table 3. 95% Credible Intervals under Non-Informative Priors

Parameters
Data-1

Bradley-Terry Rayleigh
Je�reys Uniform Je�reys Uniform

α1 (0.11902, 0.20029) (0.14547, 0.22662) (0.20679, 0.26175) (0.20296, 0.25830)
α2 (0.56769, 0.69291) (0.51878, 0.63207) (0.45733, 0.53189) (0.46271, 0.53712)
α3 (0.16432, 0.25577) (0.19459, 0.28247) (0.24349, 0.29875) (0.24151, 0.29741)

Parameters
Data-2

Bradley-Terry Rayleigh
Je�reys Uniform Je�reys Uniform

α1 (0.26477, 0.31336) (0.26623, 0.31431) (0.29806, 0.32354) (0.29770, 0.32332)
α2 (0.37023, 0.42295) (0.36881, 0.42060) (0.35191, 0.37776) (0.35222, 0.37823)
α3 (0.29121, 0.33748) (0.29216, 0.33789) (0.31254, 0.33619) (0.31236, 0.33616)

From the Table 3, it is observed that 95 % interval are narrower for the data-2. Further
more it is concluded that the credible intervals for the Rayleigh model are narrower than
the Bradley Terry model under non-informative priors.

5.4. Preference Probability. The term preference probability is used for the superi-
ority of probability of Ti over Tj on some de�ned attribute or characteristic. Using the
posterior means of the Rayleigh and the Bradley-Terry model provided in the Table 2,
the preference probabilities are calculated using (2.1), (2.2), (3.1) and (3.2) presented in
the Table 4.

Table 4. Preference Probabilities under Non-Informative Priors

φi.ij
Data-1 Data-2

Bradley-Terry Rayleigh Bradley-Terry Rayleigh
Je�reys Uniform Je�reys Uniform Je�reys Uniform Je�reys Uniform

φ1.12 0.20210 0.24431 0.18323 0.17549 0.42159 0.42377 0.42054 0.41955
φ1.13 0.43184 0.43818 0.42747 0.42282 0.47905 0.47956 0.47865 0.47835
φ2.23 0.75004 0.70695 0.76895 0.77487 0.55784 0.55613 0.55850 0.55921

From the Table 4, it is perceived that the preference probabilities implies the same
ranking order as the posterior means for both the models and data sets under non-
informative priors.

5.5. Predictive Probability. The predictive probabilities is used to predict the future
single preference of one treatment Ti over treatment Tj . It is denoted by Pi.ij and de�ned
as:

Pi.ij =

∫ 1

αi=0

∫ 1−αi

αj=0

φij p(αi, αj |w) dαj dαi
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Table 5. Predictive Probabilities under Non-Informative Priors

Pi.ij

Data-1 Data-2
Bradley-Terry Rayleigh Bradley-Terry Rayleigh

Je�reys Uniform Je�reys Uniform Je�reys Uniform Je�reys Uniform
P1.12 0.20875 0.24877 0.20870 0.20078 0.42222 0.42434 0.42222 0.42128
P1.13 0.43393 0.43960 0.43388 0.43003 0.47895 0.47945 0.47895 0.47865
P2.23 0.74477 0.70352 0.74482 0.75080 0.55721 0.55556 0.55721 0.55788

The predictive probabilities are closed to the preference probabilities and favors the
same ranking order for both the models and data sets under non-informative priors.

5.6. Bayesian Hypotheses Testing. In Bayesian analysis, the task of deciding be-
tween the hypotheses is conceptually more straightforward. One merely calculates the
posterior probabilities and decides between hypotheses accordingly.

Hij : αi ≥ αj V s. Hji : αi < αj ,

The posterior probability for the hypothesis Hij is:

pij =

∫ 1

ζ=0

∫ (1+ζ)/2

η=ζ

p(ζ, η|w)dηdζ,

The posterior probability for the hypothesis Hji is:

qij =1− pij

where η = αi and ζ = αi − αj.
The decision rule for the hypotheses is based on Bayes factor. It is denoted by 'B' and
the most general form of the Bayes factor can be described as follows.:

B =
Posterior odd ratios

Prior odd ratios

The central notion of Bayes factor is that prior and posterior information should be
combined in a ratio that provides evidence of one model speci�cation over another.
It can be interpreted as the 'odds for Hij to Hji that are given by the data. [12] gives
the following typology for comparing Hij Vs. Hji

B ≥ 1 support Hij

10−0.5 ≤ B ≤ 1 minimal evidence against Hij

10−1 ≤ B ≤ 10−0.5substantial evidence against Hij

10−2 ≤ B ≤ 10−1 strong evidence against Hij

B ≤ 10−2decisive evidence against Hij
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Table 6. Posterior Probability under Non-Informative Priors

Pairs

Data-1
Bradley-Terry Rayleigh

Je�reys Uniform Je�reys Uniform
pij B pij B pij B pij B

α1 > α2 0.02872 0.02957 0.04139 0.04318 0.02872 0.02957 0.04139 0.04318
α1 > α3 0.33206 0.49714 0.34256 0.52105 0.33206 0.49714 0.34256 0.52105
α2 > α3 0.92737 12.76842 0.90968 10.07174 0.92737 12.76842 0.90968 10.07174

Pairs

Data-2
Bradley-Terry Rayleigh

Je�reys Uniform Je�reys Uniform
pij B pij B pij B pij B

α1 > α2 0.15254 0.17999 0.15566 0.18436 0.14174 0.16515 0.14048 0.16344
α1 > α3 0.37300 0.59490 0.37428 0.59816 0.35536 0.55125 0.35479 0.54988
α2 > α3 0.75584 3.09567 0.75208 3.03356 0.74108 2.86219 0.74275 2.88727

The Bayes factor in the Table 6 signify substantial evidence against H12, minimal
evidence against H13 and H23 is supported for both the models and data sets under
non-informative priors. The preference order of treatments is con�rmed through testing
of hypotheses.

5.7. Appropriateness of the Model. It is used to compare the discrepancies of the
observed preferences among the expected preferences. The Chi-square test is used for
the appropriateness of the models. The hypothesis is de�ned as:
H0: The model is true for some values of α = α0

H1: The model is not true for any values of the parameters.
where α=α1, α2, ..., αm is the vector of the unknown parameters, αi > 0.
The χ2 has the following form:

χ2 =

m∑
i<j

{
(wij − ŵij)2

ŵij
+

(wji − ŵji)2

ŵji

}
with (m− 1)(m− 2)/2 degrees of freedom [4].

The expected number of preferences are obtained by the following form:

ŵi.ij = rij
α2
i

φij
and ŵj.ij = rij

α2
j

φij
,where φij = α2

i + α2
j .

wij and wji are the observed number of preferences from the data set given in the Table
1.

Table 7. Appropriateness of the Rayleigh Model

Data-1 Data-2
Bradley-Terry Rayleigh Bradley-Terry Rayleigh

Je�reys Uniform Je�reys Uniform Je�reys Uniform Je�reys Uniform
χ2 0.0873 0.2918 0.0519 0.0495 0.3947 0.3963 0.3945 0.3947

P − value 0.2324 0.4109 0.1802 0.1761 0.4702 0.4710 0.4701 0.4702

From the Table 7 , the values of χ2 for the Rayleigh and the Bradley-Terry model
for both data sets under non-informative priors have high P-values as P-values > 0.05
. It is evident from the P-values that both the models have good �t. Furthermore, the
Rayleigh model is considered to be better �t for the small data set in the Table 1 than
the Bradley-Terry model under both the non-informative priors.
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6. Conclusion

A new model for paired comparison is developed, named as the Rayleigh paired com-
parison model. The Rayleigh paired comparison model is analyzed in the Bayesian
framework using non-informative (Uniform and Je�reys ) priors. The results are also
compared with the existing Bradley-Terry model. For the analysis, we use the data
sets of the preferences of cigarette brands (Benson & Hedges, Marlboro and Dunhill)
used by university students. It is noticed that the cigarette brand Marlboro is highly
preferred among the students of university. Benson & Hedges is the lowest preferred.
The graphs, preference probabilities, predictive probabilities and hypotheses testing also
con�rm the same preference. The credible intervals for the Rayleigh model are narrower
than the Bradley Terry model under non-informative priors. The appropriateness of the
models (the Bradley-Terry and the Rayleigh model) through χ2- statistic suggests that
the �t is good but the proposed Rayleigh model is better �t for small data set than the
Bradley-Terry as the P-value of χ2− statistic under the Rayleigh model is smaller than
the Bradley-Terry model.
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Abstract

Resource allocation is an important application of data envelopment
analysis and has been investigated by many researchers and managers
from both economic and managerial �eld. In real managerial and eco-
nomical decisions, situations often occur when extra productions of
goods are utilized and the decision maker (DM) would like to deter-
mine the numbers of extra products that each unit can produced. In
this paper, several methods based on the data envelopment analysis
for resource allocation in such situations are introduced that can help
the managers to make better decisions. The primary aim of this paper
is to allocate resources such that the ine�cient decision making units
(DMUs) to become e�cient as possible. For this aim, �rstly several
homogeneous units under the control of a central unit are considered
and then the e�ciency of each unit is determined. In addition, if the
production of additional products seems logical, the DM wants to know
how much of additional outputs should be produced by each unit such
that the total outputs reach to a predetermined level. In this case the
proposed algorithms determine quantities of the consumed input and
produced output levels for each DMU to obtain the desirable output
level. For using the whole power of system, the multi objective pro-
gramming (MOP) problem has been used. A numerical example is
given to show the solution process to improve the clarity of the pro-
posed method. Finally, the real data of a gas company extracted from
extant literature are used to demonstrate the proposed method.
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1. Introduction

Data envelopment analysis (DEA) is a non-parametric frontier estimation methodol-
ogy based on linear programming to measure the relative e�ciency of a decision making
unit (DMU) and provide DMUs with relative performance assessment on multiple in-
puts and outputs. It originated from Farell's seminal work [16] , was popularized by
Charnes et al. [9], and has gained a wide range of applications measuring comparative
e�ciency. For instance, Amirteimori et al. [1] proposed a �exible slacks-based measure
(FSBM) of e�ciency in assessing UK higher education institutions. Ebrahimnejad and
Tavana [13] showed used an interactive method for performance assessment in North At-
lantic Treaty Organization (NATO) by establishing an equivalent relation between DEA
and multi objective programming problem. Ebrahimnejad et al. [12] proposed a DEA
model for banking with three stages. Maghbouli et al. [30] used the cooperative and
non-cooperative game theories to assess the relative performance of 39 Spanish Airports
based on a network DEA model with undesirable factors.

In empirical studies that examines scale economics and productive e�ciency within
a DEA framework, two of the most frequently used are resource allocation and target
setting. Resource allocation is the setting of input- output levels for DMUs when the
organization has limited input resources or output possibilities and plays a pivotal role
in the management of corporations. Because of this, it has been an interesting topic to
both business managers and researchers.

Several researchers have carried out investigations on resource allocation via DEA.
Golany et al. [18] presented a �ve-step procedure for input resource allocation at an
organizational level. Their procedure reduces to solving a linear program involving an
objective function weighted according to DMU e�ciencies. Their procedure does not
compute output targets and only distributes input resources guided by current (weighted)
DMU e�ciencies. Their work uses the additive DEA model of Charnes et al. [8]. Golany
and Tamir [19] presented a resource allocation model which simultaneously determines
input and output targets based on maximizing total output. Their model is only applied
in the case of a single output. For the multiple output case they suggest applying pre-
determined subjective weights to each output measure. Athanassopoulos [4] presented
a goal programming model incorporating ideas from Thanassoulis and Dyson [32]. A
signi�cant feature of his work is that DMUs are linked together at the global level with
respect to organizational input- output targets. In his model, proportional deviations
from current input-output levels for each DMU, as well as proportional deviations from
organizational input-output targets, are weighted together in a single linear objective
which is to be minimized. In his work, the weights are speci�ed by the DM. Thanassoulis
[33] presented a paper dealing with the single input case. He presented a mixed-integer
program to simultaneously cluster DMUs into k distinct sets and to determine a mar-
ginal resource level (MRL) for each output measure for each such cluster. MRLs were
de�ned as the rate of (input) resource entitlement per unit of output. Once MRLs have
been found, a logical numeric basis exists for future input resource allocation by DMs.
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Thanassoulis [34] presented a paper concerned with estimating a single set of MRLs that
apply to all DMUs in the single input case. He presented both the regression based
method and the linear programming based method for such estimation. Both methods
use a revised data set produced by replacing observed output levels for all DMUs by
output levels that would have rendered each DMU DEA- e�cient. Once this has been
done, then MRLs (for each output measure) can be found: (a) in the regression based
method from the regression coe�cients associated with each output measure in the or-
dinary least-squares linear regression line (b) in the linear programming based method
by solving a single linear program designed to ensure that the MRLs obtained will not
enable any DMU to attain its DEA-e�cient output levels using less resources than DEA
suggests is needed for those levels. An e�ciency based measure to enable a comparison
to be made between alternative sets of MRLs is also presented. (Basso and Peccati [5])
introduced a dynamic programming algorithm to get optimal resource allocation with
both minimum and maximum activation levels and �xed costs. Yan et al. [36] discussed
a typical inverse optimization problem on the generalized DEA model to identify how to
control or adjust the changes in the input and output such that the e�ciency index of
DMUs concerned is preserved. Beasley [6]developed a resource allocation model aiming
to maximize the total e�ciency of all DMUs. Lozano and Villa [28] and Lozano et al.
[29] introduced the concept of centralized DEA models, which aim at optimizing the
combined resource consumption by all units in an organization rather than considering
the consumption by each unit separately. Asmild et al. [3] suggested modifying these
centralized models to only consider adjustments of previously ine�cient unit and showed
how this new model formulation relate to a standard DEA model, namely as the analysis
of the mean ine�cient point. Fang [17] developed a new generalized centralized resource
allocation model that extends and generalizes Lozano and Villa 's model [28] and Asmild
et al.' s model [3] to a more general case. Hadi-Vencheh et al. [21] used an inverse
DEA model for resource allocation in order to estimate increased requirements of the
input vector when the output vector is increasing. Amireimoori and Mohaghegh Tabar
[2] presented a DEA-based method for allocating �xed resources or costs across a set
of decision making units and showed how output targets can be set at the same time
as decisions are made about allocating input resources. Bi et al. [7] investigated the
resource allocation and target setting for the organization consisting of production units,
each of which has several parallel production lines. Wu et al. [35] proposed some new
DEA models, which consider both economic and environmental factors in the allocation
of a given resource. Li et al. [27] considered the model construction method for resource
allocation considering undesirable outputs between di�erent decision making units based
on the DEA framework. They proposed some resource allocation models as a multiple
objective linear problem which considers the input reduction, desirable output reduction
and undesirable output reduction. Hosseinzadeh Lot� et al. [24] proposed an allocation
mechanism that is based on a common dual weights approach. Compared to alternative
approaches, their model can be interpreted as providing equal endogenous valuations of
the inputs and outputs in the reference set. Du et al. [11] used the cross-e�ciency con-
cept in DEA to approach cost and resource allocation problems. Hadi-Vencheh et al.[20]
proposed a new method to �nd how much some inputs/outputs of each decision making
unit (DMU) should be reduced such that the total e�ciency of all DMUs after reduction
being maximized.

It is worth noting that the assumptions that concern the unit's ability to change their
input-output mix and e�ciency are clearly the key factors a�ecting the results of the
resource allocation. Although many valuable ideas have been proposed concerning these
assumptions, the DMUs ability to change their input- output mix and e�ciency has not
be discussed thoroughly in the literature. In addition, the multiple criteria nature of the
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resource allocation problem has drawn only limited attention. DEA and multi-objective
programming (MOP) can be used as tools in management control and planning. The
structures of these two types of models have much in common but DEA is directed
to assessing past performances as part of the management control function and MOP to
planning further performances Cooper [10]. In order to �nd the most preferred allocation
plan, Korhonen and Syrjanen [26] developed an interactive formal approach based on
DEA and MOLP. Their approach concerns the modeling of units abilities to change
their production. The authors considered two sets in their model: production possibility
set and transformation possibility set. The �rst set describes all technically feasible
production plans while the second describes the units ability to change its production
within a planning period. They concluded that their approach can be applied to cases
where DM controls only a part of the units.

Nasrabadi et al. [31] presented a model to investigate the resource allocation problem
based on e�ciency improvement. Their model uses parameters which are not necessarily
unique in the case of alternative optimal solution. However, each optimal solution can be
applied in the model to achieve performance improvement. This can be a shortcoming
of their model, since �nding all alternative optimal solutions and solving the model for
each one seems unreasonable and time consuming.

Two kinds of factors which often have some relation with each other and play impor-
tant roles in resource allocation models are economic factors and environmental factors.
Economic factors usually refer to the desirable outputs generated in the production pro-
cess, such as pro�t. Environmental factors usually refer to the undesirable outputs such
as smoke pollution and waste. Jie and Qingxian [25] have proposed some new DEA mod-
els which consider not only economic but also environmental factors in the allocation of
a given resource.

The purpose of this paper is to develop several algorithms based on MOP and DEA
for resource allocation. Here, it is assumed that a central unit simultaneously controls all
the units. If the production of additional products seems logical, the DM wants to know
how much of additional outputs should be considered for each unit such that the total
outputs reach a predetermined level. In the developed algorithms, the unit's abilities to
change their production are modeled explicitly. The current input and output values are
used to characterize a production possibility set. It is assumed that the units are able
to modify their production plan within the production possibility set. These algorithms
determine quantities of the consumed input and produced output levels for each DMU,
such that the desirable output level is reached. Moreover, the number of e�cient units
is maximized, simultaneously.

It should be mentioned that in this paper we aim to allocate resources between units
of a system which can be e�cient but due to di�erent problems such as: lack of proper
supervision on the usage of the resources, wasting resources, ine�ciency of workers and
errors in production line, have become ine�cient. These problems can be solved, therefore
such units are �rst detected and then resource allocation is done among them. That is
why it was not important to consider how ine�cient the units are. The rest of this paper
is organized as follows: In Section 2, �rst some fundamental models and de�nitions in
DEA and MOP are reviewed and then the problem of resource allocation is stated. In
Section 3, two algorithms to determine the input-output levels of each unit are introduced
such that the maximum production capacity of the system can be used and the number
of e�cient units is maximized. Section 4, illustrates these algorithms using a numerical
example. In Section 5, an empirical example of allocating experts to gas companies is
presented to demonstrate the applicability of the proposed framework and exhibit the
e�cacy of the procedures. The paper ends with the conclusions and future research
directions in Section 6.
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2. Preliminaries and the statement of the problem

In this section, �rst a basic DEA model and also the concept of multiobjective linear
programming problem are reviewed. Then, the main aim of problem under consideration
is stated.

2.1. The input-oriented CCRmodel. Suppose there is a set of n, DMUs, {DMUj , j =
1, 2, · · · , n} which produce multiple outputs yrj(r = 1, 2, · · · , s) by utilizing multiple in-
puts xij(i = 1, 2, · · · ,m). Let the inputs and outputs forDMUj are xj = (x1j , x2j , . . . , xmj)

t

and yj = (y1j , y2j , . . . , ysj)
t, respectively. In addition xj ∈ Rm, yj ∈ Rs, xj > 0

and yj > 0, j = 1, 2, · · · , n. We de�ne the set of production possibility set (PPS),
as T = {(x, y)| y can be produced by x} and here we suppose that T = TCCR in which

TCCR = {((x1j , x2j . . . , xmj), (y1j , y2j , . . . , ysj)) | xij ≥
n∑
j=1

xijλj ,

yrj ≤
n∑
j=1

yrjλj , i : 1, ...,m; r : 1, ..., s;∀j : λj ≥ 0}

The relative e�ciency of the can be obtained by using the following linear program-
ming (LP) model called input-oriented CCR primal model (Charnes et al. [9]):

min
λ,θ

θ

s.t(2.1)
n∑
j=1

xijλj ≤ θxio, i : 1, ...,m

n∑
j=1

yrjλj ≥ yro, r : 1, ..., s

λj ≥ 0, j = 1, . . . , n.

Model (2.1) measures the e�ciency under a constant return to scale (RTS) assump-
tion of technology. In this model, the vector variable λ = (λ1, λ2, · · · , λn) exhibits the
intensity vector variable. The components of this vector represent the contribution of
e�cient units to constructing the projection point of ine�cient units. It should be noted
that in this model, the feasible region is non-empty and the optimal value θo satis�es
0 < θo 6 1.

2.1. De�nition. The optimal value θ∗o of model (2.1) is called the e�ciency index of
DMUo. If θ

∗
o = 1 then DMUo is called (at least) weakly e�cient unit. If θ∗o 6= 1 then it

is called an ine�cient unit.

Now, the index sets of e�cient and ine�cient units are de�ned as E = {j; θ∗j = 1}
and I = {j; θ∗j 6= 1} , respectively.

2.2. Multi objective programming. Here, we review some fundamentals of MOP
problems and Min-ordering method for solving them, which will be used throughout the
remainder of this paper (Ehrgott and Galperin, [14]; Ehrgott,[15]; Hosseinzadeh Lot� et
al. [22], [23]).
The MOP problem can be presented as follows:

max f(x) = (f1(x), f2(x), ..., fp(x))
s.t. x ∈ S(2.2)
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where is the feasible set of the optimization problem (2.2) and fk : S → R for
k = 1, ..., p are objective functions. The primary goal in MOP is to �nd the Pareto
optimal (e�cient) solutions and to help select the most preferred solution. In fact, a
solution represented by a point in the decision variable space is a strictly Pareto optimal
solution if it is not possible to move the point within the feasible region to improve an
objective function value without deteriorating at least one of the other objectives. In
other words, a feasible solution x ∈ S is called a Pareto optimal solution if there is no
feasible solution x ∈ S such that f(x) ≥ f(x) and f(x) 6= f(x).

To generate any Pareto optimal solution, MOP(2.2) can be written as a following
min-ordering problem:

max
xεS

min
1≤k≤p

fk(x)(2.3)

The min-ordering problem (2.3) can be solved as a single objective linear programming
problem. If we introduce a variabl ϕ to the stand for min1≤k≤p fk(x) we can rewrite
problem 2.3 as follows:

max ϕ(2.4)

s.t. fk(x) ≥ ϕ; k : 1, ..., p

xεS

2.3. Statement of the problem. Now, consider the following question: if the total
output of a system wants to increase such that the e�cient units remain unchanged, how
much of the additional output must be produced by other DMUs?

To answer this question, we suppose the total output of a system, i.e. Y =
∑n
j=1 Yj

should be increased from Y to β where β > Y and β 6= Y .
Now, it is required to estimate the output vector Y newj for every j ∈ I such that:

∑
j∈E

Yj +
∑
j∈I

Y newj = β

In this paper, we try to determine Y newj for every j ∈ I such that the total consumed
input is minimized by the system.

3. New Algorithms for Resource Allocation

In this section, several algorithms are proposed for solving the resource allocation
problem stated in Section 2. In these algorithms, it is tried to determine the di�erent
levels of output by use of maximum production power of system. Note that there are
systems that do not use their resources e�ciently. In such systems, the DM is able to
recognize some units as de�cient, and if it is possible, change them. In fact we believe
that the e�cient units use their maximum power, and therefore they will be remained
unchanged.

Consider a system where the de�cient units are able to alter their input-output compo-
sition. Without loss of the generality, assume that thatCard{I} = q,DMU1, DMU2, ...DMUq ∈
I and Io = I \{o}. In continue, several algorithms will be introduced for optimal resource
allocation between such units. For achieving this, �rst the following model is solved to
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determine the minimum value of k-th output produced by ine�cient unit o:

min ŷko

s.t(3.1) ∑
r∈{1,2,...,s}\{k}

uoryro + uokŷko = 1

m∑
i=1

voi xio = 1,

s∑
r=1

uoryrj −
m∑
i=1

voi xij 6 0, j ∈ Io, E

uor ≥ ε, voi ≥ ε, ∀i, r,
ŷkj > ykj , ∀j ∈ I.

In this model uor and v
o
i are the variables of the problem. They represent the input and

output weighs of the ine�cient unit o, respectively. The constraints refer to the condition
in which the ine�cient unit o and the e�cient unit j remain in the respective and the
ine�cient unit o is transformed into e�cient ones.

Model (3.1) is a non-linear MOP problem. To convert this non-linear model into a
linear one, let pko = uokŷko for all o ∈ I . This leads to the following linear MOP problem:

min ŷko

s.t(3.2) ∑
r∈{1,2,...,s}\{k}

uoryro + pko = 1, o ∈ I

m∑
i=1

voi xio = 1, o ∈ I

s∑
r=1

uoryrj −
m∑
i=1

voi xij 6 0, j ∈ Io, E

uor ≥ ε, voi ≥ ε, ∀i, r
ŷkj > ykj , ∀j ∈ I
pko > 0.

3.1. Theorem. Models (3.1) and (3.2) are equal to each other.

Proof. Suppose (uorr 6=k, u
o
k, vi

o, ŷko) is the optimal solution of model (3.1), then (uorr 6=k, v
o
i , pko

= uokŷko, ŷko) is a feasible solution of model (3.2). Now we show that this solution is
the optimal solution of model (3.2). By contradiction, suppose that (uorr 6=k, v

o
i , pko =

uokŷko, ŷko) is not the optimal solution of model (3.2) and there exists (ũor, r 6= k, ṽoi , p̃ko, ̂̂yko)
as the optimal solution of model (3.2) and ̂̂yko < ŷko. Therefore, the solution (ũor, r 6= k, ũok =
p̃kô̂yko

, ṽoi , ̂̂yko) is a feasible solution of model (3.1). Since ̂̂yko < ŷko is in contrast with the

optimality of (uorr 6=k, u
o
k, v

o
i , ŷko) , thus (uorr 6=k, v

o
i , pko = uokŷko, ŷko) is also the optimal

solution of model (3.2).
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On the other hand, suppose (uorr 6=k, v
o
i , pko, ŷko) is the optimal solution of model (3.2);

then it is obvious that (uorr 6=k, u
o
k = pko

ŷko
, voi , ŷko) is also a feasible solution of model (3.1).

Lets suppose another solution like (uorr 6=k, u
o
k, v

o
i , ŷko) as the optimal solution of model

(3.1) so that ŷko < ŷko . Therefore (uorr 6=k, u
o
k, pko = uokŷko, ŷko) is a feasible solution of

model (3.2) and since ŷko < ŷko , there is a contradiction with the previous solution. �

In a similar way, the model (3.2) gives the maximum value of output produced by
ine�cient unit o:

max ŷko

s.t(3.3)

Constraints of model (3.2)

Suppose that (y∗1o, y
∗
2o, ..., y

∗
so) and (y∗1o, y

∗
2o, ..., y

∗
so)and for all are optimal solutions of

model (3.2) and model (3.3), respectively. We de�ne the following index sets:

R1 = {r ∈ {1, 2, ..., s} | βr −
∑
j∈E

yrj 6
∑
j∈I

y∗
rj
}

R2 = {r ∈ {1, 2, ..., s} |
∑
j∈I

y∗
rj
6 βr −

∑
j∈E

yrj 6
∑
j∈I

y∗rj}

R3 = {r ∈ {1, 2, ..., s} | βr −
∑
j∈E

yrj >
∑
j∈I

y∗rj}

In such situation, two cases may be occur: R3 = φ or R3 6= φ . These cases are
investigated in the following sections, separately.

3.1. Resource allocation when R3 = φ. If R3 = φ then the mentioned system pro-
duces the desired level of output without any need to extra resources. In this case, an
algorithm is introduced to determine the output levels of each unit, such that the total
output is equal to β. In such algorithm, the values of the extra output produced by
ine�cient units, is determined. The di�erent levels of output are estimated in a way that
the number of the ine�cient units that are converted to e�cient ones will be maximized.

In this algorithm the following symbols are applied:

K: The index set of outputs that amounts of their changes have been determined.

L: The iteration number of algorithm which has been run for the output under con-
sideration.

SL: The index set of units converted to ine�cient unit in the iteration or previous
iterations.

J ir′ : The index set of units converted to ine�cient unit in the iteration during the
producing of output .

Or
′
: The index set of units converted to ine�cient unit during the producing of

output .
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Ir
′
: The index set of units that are able to change the output.

Algorithm1: Estimation output levels for ine�cient units when R1∪R2 6= φ

Step 1: Set K = φ and L = 1.

Step 2: Assume that r′ = argmax
r∈R1∪R2\K

{|βr −
∑
j∈E yrj |}.

Set S0 = J0
r′ = Or

′
= φ. De�ne Y 0

r′ =
∑
j∈I y

∗
r′j

+
∑
j∈E y

′j
r and

Ir′ =


I; if K = φ or K ⊂ R2⋃
r∈K O

r′; if K 6= φ

If r′ ∈ R1 go to Step 3; otherwise if r′ ∈ R2 go to Step 6.

Step 3: Since r′ ∈ R1 , the level of output r′ is less than the sum of minimum r′-th
outputs which could be generated by ine�cient units. In this case, let yr′j = y∗

r′j
for

j ∈ I and compute Y L,Kr′ = Y L−1
r′ − y∗

r′k
+ yr′k for every k ∈ Ir′ .

Note that in this case for every j ∈ I , yr′j has been replaced with y∗
r′j
. Thus based

on model (3.2) these DMUs are converted to e�cient units.

By de�nition of Y L,Kr′ , we attempt to �nd those DMUs that by substituting yr′j
instead of y∗

r′j
, the total output is reached to βr′ . If Y

L,K
r′ = βr′ then set SL = SL−1∪k

and go to Step 4, otherwise; go to Step 5.

Step 4: For every t ∈ SL , the r′-th output of DMUs is obtained as follows:

ŷr′j =



yr′j ; j ∈ E
y∗
r′j

; j ∈ Ir′ \ {∪L−1
i=0 J

i
r′, t}

yr′j ; j ∈ {∪L−1
i=0 J

i
r′, t}

y∗
r′j

; j ∈ I \ Ir′

Now set Or′ := {∪L−1
i=0 J

i
r′, t} and K := K ∪{r′}. If K = {1, 2, ..., s} then stop, otherwise;

if R1 ∪R2 6= φ go to Step 2, else if R3 6= φ run Algorithm 2.
Step 5: Assume that g1 = argmink∈Ir′{| βr′ − Y L,kr′ |} . Consider the following cases:

Case1. βr′ < Y L,g1r′ : In this case set Y Lr′ = Y L,g1r′ and consider the following sub cases:

Case1.1. Y Lr′ < Y L−1
r′ : In this case let
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JLr′ := JL−1
r′ ∪ g1, Or′ := Or′ ∪ {∪L−1

i=0 J
i
r′, g1}, L := L+ 1, K := K ∪ {r′}

If L > card(∪r∈KOr) then set Ir′ := I \ (∪r∈KOr) else set Ir′ := ∪r∈KOr and go to Step
3.

Case1.2. Y Lr′ = Y L−1
r′ : In this case compute yr′j + βr′ − Y L,jr′ for all j ∈ {∪Li=0J

i
r′} \

{∪L−1
i=0 J

i
r′}.

If all of these values are positive then set JLr′ := JL−1
r′ ∪ g1 and

ŷr′j =



yr′j ; j ∈ E
{yr′j + βr′ − Y L,jr′ + (c− 1)y∗

r′j
} × 1

c
; j ∈ JLr′

y∗
r′j

; j ∈ Ir′ \ {∪L−1
i=0 J

i
r′}

yr′j ; j ∈ {∪L−1
i=0 J

i
r′}

y∗
r′j

; j ∈ I \ Ir′

where c = Card{JLr′}. Now set L := L+ 1, Or′ := Or′∪{∪L−1
i=0 J

i
r′} and K := K ∪{r′}

. If K = {1, 2, ..., s} then stop, else go to Step 2.

If all values of yr′j + βr′ − Y L,jr′ are not positive then there exist h ∈ JLr′ such that

{yr′h +βr′−Y L,hr′ + (c−1)y∗
r′h
}× 1

c
= 0. In this case put ŷr′h = yr′h and remove DMUh

from the system and substitute βr′ and Or′ by βr′ − yr′h and Or′ ∪ {h} , respectively.
Finally run Algorithm1 for the new system.

Case2. βr′ > Y L,g1r′ : In this case set

ŷr′j =



yr′j ; j ∈ E
y∗
r′j

; j ∈ Ir′ \ {∪L−1
i=0 J

i
r′, g1}

yr′g1 + βr′ − Y L,g1r′ ; j = g1
yr′j ; j ∈ {∪L−1

i=0 J
i
r′}

y∗
r′j

; j ∈ I \ Ir′

Now, set Or′ := Or′ ∪ {∪L−1
i=0 J

i
r′, g1} and K := K ∪ {r′} . If K = {1, 2, ..., s} then stop,

otherwise; if R1 ∪ R2 6= φ then set L = 1 go to Step 2, else if R1 ∪ R2 = φ and R3 6= φ
run Algorithm 2.

Step 6: Since r′ ∈ R2 then it is possible to determine the output level of all ine�-
cient units such that they become e�cient. To do this, the following model is solved.

In this model without loss of the generality, we suppose that {o1, o2, ..., o′q} ∈ Ir
′
and

Ir
′
o = Ir

′
\ {o}.
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max {y∗
r′o1

+ tr′o1(y∗r′o1 − y
∗
r′o1

), y∗
r′o2

+ tr′o2(y∗r′o2 − y
∗
r′o2

), ..., y∗
r′o′q

+

tr′o′q (y∗r′o′q − y
∗
r′o′q

)}

s.t(3.4) ∑
r∈K\{r′}

uor ŷro + uor′y
∗
r′o

+ uor′tr′o(y
∗
r′o − y

∗
r′o

) = 1; o ∈ Ir
′

m∑
i=1

voi xio = 1; o ∈ Ir
′

∑
r∈K\{r′}

uor ŷrj −
m∑
i=1

voi xij 6 0; j ∈ Ir
′
o

∑
r∈K

uor ŷrj −
m∑
i=1

voi xij 6 0, j ∈ E∑
r∈Ir′

y∗
r′o

+ tr′o(y
∗
r′o − y

∗
r′o

) +
∑
j∈E

yr′j = βr′

uor > ε, voi > ε ∀i, r ,∀o ∈ Ir
′

0 6 tr′o 6 1; ∀j ∈ Ir
′
.

In this model ŷrj and ŷro for r ∈ K \ {r′}, j ∈ Ir
′
o , o ∈ Ir

′
are obtained from the

previous steps. Note that for some values of ŷrj and ŷro which are not obtained from the
previous steps set ŷrj := y∗

rj
and ŷro := y∗

ro
.

If K = φ then set ŷrj := y∗
rj

and ŷro := y∗
ro

for all j, o ∈ I . Also, set ŷrj := yrj

for all j ∈ E . By substituting P or′j = uor′tr′j the non-linear multi objective model (3.4)
is converted to the following linear multi objective model:

max {y∗
r′o1

+ tr′o1(y∗r′o1 − y
∗
r′o1

), y∗
r′o2

+ tr′o2(y∗r′o2 − y
∗
r′o2

), ..., y∗
r′o′q

+

tr′o′q (y∗r′o′q − y
∗
r′o′q

)}

s.t(3.5) ∑
r∈K\{r′}

uor ŷro + uor′y
∗
r′o

+ P or′o(y
∗
r′o − y

∗
r′o

) = 1; o ∈ Ir
′

m∑
i=1

voi xio = 1; o ∈ Ir
′

∑
r∈K\{r′}

uor ŷrj −
m∑
i=1

voi xij 6 0; j ∈ Ir
′
o
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∑
r∈K

uor ŷrj −
m∑
i=1

voi xij 6 0, j ∈ E∑
r∈Ir′

y∗
r′o

+ tr′o(y
∗
r′o − y

∗
r′o

) +
∑
j∈E

yr′j = βr′

uor > ε, voi > ε ∀i, r ,∀o ∈ Ir
′

0 6 tr′o 6 1; ∀j ∈ Ir
′

0 6 P or′j 6 u
o
r′ ; ∀j ∈ Ir

′

3.2. Theorem. Models (3.4) and (3.5) are equal to each other.

Proof. It is similar to the proof of Theorem 3.1. �

Model (3.5) can be rewritten as follows:

max min{y∗
r′o1

+ tr′o1(y∗r′o1 − y
∗
r′o1

), y∗
r′o2

+ tr′o2(y∗r′o2 − y
∗
r′o2

), ..., y∗
r′o′q

+

tr′o′q (y∗r′o′q − y
∗
r′o′q

)}

s.t Constraints of model (3.5).(3.6)

Let us assume

t = min{y∗
r′o1

+ tr′o1(y∗r′o1 − y
∗
r′o1

), y∗
r′o2

+ tr′o2(y∗r′o2 − y
∗
r′o2

), ..., y∗
r′o′q

+

tr′o′q (y∗r′o′q − y
∗
r′o′q

)}

Thus, model (3.6) can be rewritten as follows:

max t

s.t(3.7)

t 6 y∗
r′o1

+ tr′o1(y∗r′o1 − y
∗
r′o1

),

t 6 y∗
r′o2

+ tr′o2(y∗r′o2 − y
∗
r′o2

),

...

t 6 y∗
r′o′q

+ tr′o′q (y∗r′o′q − y
∗
r′o′q

)

Constraints of model (3.6).

Assuming that t∗r′o are the optimal solutions of model (3.7), the values of output r′ for
ine�cient units are determined as follows:

ŷr′o = y∗
r′o

+ t∗r′o(y
∗
r′o − y

∗
r′o

); ∀o ∈ I

Now, set K := K ∪ {r′}. If K = {1, 2, ..., s} then stop, otherwise; if R1 ∪ R2 6= φ then
set L = 1 and go to Step 2, else ifR1 ∪R2 = φ and R3 6= φ run Algorithm 2.
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3.2. Resource allocation when R3 6= φ. If R3 6= φ then the system cannot generate
the desired output even if all the ine�cient units are converted to e�cient units. In such
situations, the extra resources must be distributed among the units in order to produce
the desired output. In such cases, after the running of Algorithm 1 and �nding ŷrj for
j ∈ I and r ∈ R1 ∪ R2 , there would be r′ ∈ {1, 2, ..., s} such that its desired level of
output, with the present resources, cannot be generated by the system; even if all of the
de�cient unit are converted to e�cient ones. As a result, Algorithm 2 would be run in
order to determine the di�erent levels of input and output for the various units, in a way
that it becomes possible to generate the desired level of output.

Algorithm 2: Estimation input-output levels for ine�cient units when

R3 6= φ

Note that in this case, a new unit asDMUn+1 is added to system such that its outputs
in every level r ∈ {1, 2, ..., s}\{r̃}, is equal to zero but yr,n+1 is equal to αr̃, After solving
the correspond model, the minimum inputs that DMUn+1 is required to produce αr̃ are
determined. The γi,n+1 for i : 1, 2, · · · ,m gives the minimum value of the i -th input
consumed by system to produce αr̃ .

Step 1: Assume that

αr̃ = argmaxr′∈R3{βr′ − (
∑
j∈E

yr′j +
∑
j∈I

y∗r′j)}.

It is worth noting that αr̃ is the maximum value of output that has not been generated
yet.

Step 2: Solve the following model in order to determine the minimum required values
of systems inputs for generating αr̃ :

min {p1,n+1, p2,n+1, ..., pm,n+1}
s.t(3.8)

s∑
r=1

un+1
r ŷrj −

m∑
i=1

vn+1
i xij 6 0; j ∈ E∑

r∈R1∪R2

un+1
r ŷrj +

∑
r∈R3

un+1
r y∗rj +

∑
r/∈∪3

j=1Rj

un+1
r yrj −

∑
vn+1
i xij 6 0; j ∈ I

un+1
r αr̃ −

m∑
i=1

pi,n+1 = 0

un+1
r > ε, vn+1

i > ε, pi,n+1 > ε, r : 1, 2, ..., s i : 1, 2, ...,m.

In model (3.8), the values of y∗rj and ŷ
∗
rj are given based on model (3.2) and Algorithm

1, respectively. If Algorithm (1) is not applied set ŷrj := yrj(r : 1, 2, ..., s).
Assuming(p∗1,n+1, p

∗
2,n+1, ..., p

∗
m,n+1, v

n+1∗
1 , vn+1∗

2 , ..., vn+1∗
m , un+1∗

1 , un+1∗
2 , ..., un+1∗

m ) is a strongly

e�cient solution of model (3.8), set γ∗i,n+1 =
pi,n+1

∗

vn+1
i

∗ (i : 1, ...,m). In this case the mini-

mum value of the required resources for generating the total output is given by:

Γ = (
∑n
j=1 x1j + γ∗1,n+1,

∑n
j=1 x2j + γ∗2,n+1, ...,

∑n
j=1 xmj + γ∗m,n+1)
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Step 3: Now we determine how the extra resources γi,n+1 for i : 1, 2, · · · ,m should be
allocated between the various units and how much extra output should be generated by
each unit such that the amount of total output become β . To do this, solve the following
model:

max {θ′1, θ′2, ..., θ′ξ}
max {∆yr̃1,∆yr̃2, ...,∆yr̃n}

s.t

n∑
j=1

λkj ŷrj > ŷrk, r ∈ R1 ∪R2, k : 1, 2, ..., n(3.9)

∑
j∈E

λkj yr̃j +
∑
j∈I

λkj y
∗
r̃j + ξkr̃j > y

∗
r̃k + ∆yr̃k, k : 1, 2, ..., n

n∑
j=1

λkj y
∗
rj > y

∗
rk, r ∈ R3 \ r̃, k : 1, 2, ..., n

n∑
j=1

λkj yrj > yrk, r /∈ R1 ∪R2 ∪R3, k : 1, 2, ..., n

n∑
j=1

λkjxij + δkij 6 θ
′
kxik + µik, k ∈

⋃
r∈R1

Or, i : 1, 2, ...,m

n∑
j=1

λkjxij + δkij 6 θk(xik + ∆xik), k ∈ {1, 2, ..., n} \
⋃
r∈R1

Or, i : 1, 2, ...,m

n∑
j=1

(xij + ∆xij) = Γi,n+1, i : 1, 2, ...,m

n∑
j=1

∆yr̃j = αr̃

θ′k > θk, k ∈
⋃
r∈R1

Or

ξkr̃j > 0, δkij > 0, µik > 0, λkj > 0, lli, j, k.

where ξkr̃j = λkj∆yr̃j , δ
k
ij = λkj∆xij and µik = θ′k∆xik for i : 1, 2, ...,m and k, j : 1, 2, ..., n.

It is worth noting that in model (3.7) ξ = card(
⋃
r∈R1

Or) if R1 6= φ and ξ = card(I) if
R1 = φ .

In model (3.9), θk for k ∈
⋃
r∈R1

Or is the e�ciency value of DMUk given by model

(2.1) by putting yrj := y∗rj for r ∈ R3 and yrj := ŷrj for r ∈ R1∪R2 . Set R3 := R3 \{r̃}.
If R3 = ∅then stop; otherwise go to Step 1.

The MOP models are valuable and useful since when under the same constraints they
can address several objectives. In some models of the presented paper such as (3.8) and
(3.9) where we want to �nd out the least amount of inputs to produce the intended out-
puts, it saves us some calculation and time if we solve a m objective problem instead of
solving m di�erent problems (for each input).
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4. Numerical Example

4.1. Example. Consider the data reported in Table 1 with �ve DMUs that consume
two inputs to produce two outputs.

Table 1. The raw data

DMU Input 1 Input 2 Output 1 Output 2

1 19 131 150 50

2 27 168 180 72

3 55 255 230 90

4 31 206 152 80

5 50 268 250 100

The e�ciency score of each DMU obtained by model (2.1) is reported in Table 2.

Table 2. E�ciency Scores

DMU 1 2 3 4 5

E�ciency 1 1 0.83 0.97 0.87

Thus, we have E = {1, 2} and I = {3, 4, 5} . We �rst determine the minimum amount
of kth output which can be produced by ine�cient units according to model (3.2). For
example, the corresponding model to �nd the minimum amount of the �rst output for
DMU3 is as follows

min ŷ13

s.t(4.1)

90u3
2 + p13 = 1;

55v31 + 255v32 = 1;

152u3
1 + 80u3

2 − 31v31 − 206v32 6 0;

250u3
1 + 100u3

2 − 50v31 − 268v32 6 0;

150u3
1 + 50u3

2 − 19v31 − 131v32 6 0;

180u3
1 + 72u3

2 − 27v31 − 168v32 6 0;

u3
i > 0.00001 v3i > 0.00001; i : 1, 2,

ŷ13 > 230; p13 > 0

The optimal solution of model (4.1) is as follows:

ŷ13 = 291.9847 p113 = 1.00000000939939

u3
2 = 0.00001 u3

1 = 0.3424837E − 02

v31 = 0.00001 v32 = 0.3921569E − 02
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In addition, we can determine the maximum amount of kth output which can be
produced by ine�cient units according to model (3.3). For example, the corresponding
model to �nd the maximum amount of the second output for DMU4 is as follows:

max ŷ24

s.t(4.2)

p24 + 152u4
1 = 1;

31v41 + 206v42 = 1;

230u4
1 + 90u4

2 − 55v41 − 255v42 6 0;

250u4
1 + 100u4

2 − 50v41 − 268v42 6 0;

150u4
1 + 50u4

2 − 19v41 − 131v42 6 0;

180u4
1 + 72u4

2 − 27v41 − 168v42 6 0;

u4
i > 0.00001 v4i > 0.00001; i : 1, 2,

ŷ24 > 80; p24 > 0

The optimal solution of model (4.2) is as follows:

ŷ24 = 132.0593 p24 = 0.5769581016676

u4
2 = 0.4368932E − 02 u4

1 = 0.2783172E − 02

v41 = 0.00001 v42 = 0.4854369E − 02

In a similar way it is possible to �nd the maximum and minimum amount of the all
outputs for other units. The results are presented in Table 3.

Table 3. Maximum and minimum amount of outputs

DMU Minimum output 1 Maximum output 1 Minimum output 2 Maximum output 2

3 291.985 12750 109.2858 150.5714

4 233.7211 300 82.6667 132.059

5 306.87 7500 114.857 138.519

Now suppose that decision makers want to increase the total output according to fol-
lowing case: The �rst output of total output is increased to β1 = 20000 and the second
output of total output is increased to β2 = 400 .

Now it is required to determine the amount of output produced by each DMU to reach
the desired total output. Here, based on maximum and minimum amount of outputs of
each DMU, the index sets of R1, R2 and R3 are de�ned as follows:

R1 = {r ∈ {1, 2} | βr −
∑
j∈E

yrj 6
∑
j∈I

y∗
rj
} = {2}

R2 = {r ∈ {1, 2} |
∑
j∈I

y∗
rj
6 βr −

∑
j∈E

yrj 6
∑
j∈I

y∗rj} = {1}

R3 = {r ∈ {1, 2} | βr −
∑
j∈E

yrj >
∑
j∈I

y∗rj} = φ
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Since R3 = ∅ , Algorithm 1 is used for resource allocation. The steps of this algorithm
are given as follows:

Step 1: K = ∅ L = 1.

Step 2:

r′ = argmax
r∈{1,2}{|βr−

∑
j∈E

yrj |} = argmax
r∈{1,2}{|20000−330|, |400−122|} = 1

S0 = J0
1 = O1 = ∅, Y 0

1 = 1162.5761, I1 = {3, 4, 5}

Since r′ = 1 then Step 6 is applied.

Step 6: In this step model (4.3) is solved to determine the output level of all ine�cient
units.
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max t

s.t(4.3)

t 6 291.985 + t13(12750− 291.985)

t 6 233.7211 + t14(300− 233.7211)

t 6 306.87 + t15(7500− 306.87)

291.985u3
1 + 90u3

2 + p313(12750− 291.985) = 1

233.7211u4
1 + 80u4

2 + p414(300− 233.7211) = 1

306.87u5
1 + 100u5

2 + p515(7500− 306.87) = 1

55v31 + 255v32 = 1

31v41 + 206v42 = 1

50v51 + 268v52 = 1

233.7211u3
1 + 80u3

2 − 31v31 − 206v32 6 0

306.87u3
1 + 100u3

2 − 50v31 − 268v32 6 0

291.985u4
1 + 90u4

2 − 55v41 − 255v42 6 0

306.87u4
1 + 100u4

2 − 50v41 − 268v42 6 0

291.985u5
1 + 90u5

2 − 55v51 − 255v52 6 0

233.7211u5
1 + 80u5

2 − 31v51 − 206v52 6 0

150u3
1 + 50u3

2 − 19v31 − 131v32 6 0

180u3
1 + 72u3

2 − 27v31 − 168v32 6 0

150u4
1 + 50u4

2 − 19v41 − 131v42 6 0

180u4
1 + 72u4

2 − 27v41 − 168v42 6 0

150u5
1 + 50u5

2 − 19v51 − 131v52 6 0

180u5
1 + 72u5

2 − 27v51 − 168v52 6 0

291.985 + t13(12750− 291.985) + 233.7211 + t14(300− 233.7211)+

306.87 + t15(7500− 306.87) + 330 = 20000

uji > 0.00001 vji > 0.00001; i : 1, 2, j : 3, 4, 5

0 6 t1k 6 1; k : 3, 4, 5

pk1k > 0; k : 3, 4, 5

The optimal solution of model (4.3) is as follows:

t = 300.0000 t13 = 0.9470239 t14 = 1.000000 t15 = 0.9694121

u13 = 0.8271283E − 04 u23 = 0.00001 u14 = 0.333333E − 02 u24 = 0.00001

u15 = 0.1373631E − 03 u25 = 0.00001 v13 = 0.00001 v23 = 0.3921569E − 02

v14 = 0.3225806E−01 v24 = 0.00001 v15 = 0.00001 v25 = 0.3731343E−02

p313 = 0.000078331026 p414 = 0.0033333 p515 = 0.00013316451233
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According to optimal solution of model (4.3) and according to Equation ŷr′o =
y∗
r′o

+ t∗r′o(y
∗
r′o − y∗

r′o
); ∀o ∈ I , the output levels of all ine�cient units can be de-

termined in this case. The results are presented in Table 4.

Table 4. Resource allocation of case 1

DMU: 1 2 3 4 5

Output1: 150 180 12090.0229515585 300 7279.977258873

Now, we set K = {1}. Since R1 ∪R2 = {1, 2} 6= ∅ thus we go to Step 2.

Step 2:

r′ = argmax
r∈{1,2}{|βr −

∑
j∈E

yrj |} = argmax
r∈{2}{|400− 122|} = 2

S0 = J0
2 = O2 = ∅, Y 0

2 = 428.8095, I2 = {3, 4, 5}

Since r′ ∈ R1 thus we go to Step 3.

Step 3: we set y23 = 109.2858 y24 = 82.6667, y25 = 114.857 and compute Y 1,k
2 =

Y 0
2 − y∗2k + y2k for every k ∈ I2. We have:

Y 1,3
2 = 428.8095− 109.2858 + 90 = 409.5237

Y 1,4
2 = 428.8095− 82.6667 + 80 = 426.1428

Y 1,5
2 = 428.8095− 114.857 + 100 = 413.9525

Since Y 1,k
2 6= 400 for every k ∈ I thus we go to Step 5.

Step 5: g1 = argmink∈I2{| β2 − Y 1,k
2 |} = argmin{9.5237, 26.1428, 13.9525} = 3.

Since Y 1,3
2 = 409.5237 > 400 = β2 therefore we set Y 1

2 := 409.5237 and because of
Y 1
2 := 409.5237 < 428.8095 = Y 0

2 let:

J1
2 = J0

2 ∪ g1 = {3}, O2 := O2 ∪ {
L−1⋃
i=0

J i2, g1} = {3}, L := L+ 1, K = K ∪ {2}

Since L = 2 > 0 = card(
⋃
r∈{1}O

1) then we set I2 := I \ (r ∈ {1}O1) = {3, 4, 5} and
go to Step3.

Step 3: By computing Y 2,k
2 = Y 1

2 − y∗2k + y2k for every k ∈ I2 we have:

Y 2,3
2 = 409.5237− 109.2858 + 90 = 390.2379

Y 2,4
2 = 409.5237− 82.6667 + 80 = 406.857

Y 2,5
2 = 409.5237− 114.857 + 100 = 394.6667
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Since Y 2,k
2 6= 400 for every k ∈ I thus we go to Step 5.

Step 5: g1 = argmin{9.7621, 6.857, 5.3333} = 5.

Y 2,5
2 = 394.6667 < 400 = β2. Therefore we consider Case 2.

ŷ2j =



y2j ; j ∈ E
y∗
r′j

; j ∈ I2 \ {∪1
i=0J

i
2, 5}

y25 + β2 − Y 2,5
2 ; j = 5

y2j ; j ∈ {∪1
i=0J

i
2}

y∗
2j

; j ∈ I \ I2

and set O2 := O2∪{
⋃1
i=0 J

i
2, 5} and K = K ∪{2} . Since K = {1, 2} then the process

is stopped. The results are presented in Table 5.

Table 5. Results of Algorithm 1 for case 1

DMU: 1 2 3 4 5

Output2: 50 72 90 82.6667 105.3333

4.2. Example. Application in Gas Companies

In this section, we illustrate the resource allocation discussed in this paper with the
analysis of gas companies activity. This example is taken from Amireimoori and Mo-
haghegh Tabar [2]. The data set consists of 20 gas companies located in 18 regions in
Iran. The data for this analysis are derived from operations during 2005. There are six
variables from the data set as inputs and outputs in this example. Inputs include capital
( x1), number of sta� (x2 ), and operational costs (excluding sta� costs) (x3 ) and out-
puts include number of subscribers ( y1 ), length of gas network ( y2 ) and the sold-out
gas income ( y3 ). Table 6 contains a listing of the original data. In this example, the
initial capital, number of the sta� and the operation costs are considered as the resources
while the number of gas subscribers, the length of gas network and the income from gas
distribution are considered as the products.

Suppose that the DM wants to increase the number of subscribers to 9500000. How
much of the additional output must be produced by each DMU? We apply the algorithms
discussed in this paper to answer this question.
According to model (3.3) the maximum value of the �rst output which should produce
by ine�cient units is equal to 572609.81 numbers. Thus we have:

∑
j∈I

y∗1j +
∑
j∈E

y1j = 572609.81 + 349061 = 921670.81

Note that β1 = 9500000 > 921670.81 =
∑
j∈I y

∗
1j +

∑
j∈E y1j therefore y1 ∈ R3 .

Thus, Algorithm 2 is used to determine the additional output produced by each DMU
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Table 6. Data and e�ciency scores for Iranian gas companies

DMU x1 x2 x3 y1 y2 y3 θ

DMU1 124313 129 198598 30242 565 61836 1

DMU2 67545 117 131649 14139 153 46233 0.7106

DMU3 47208 165 228730 13505 211 42094 0.9015

DMU4 43494 106 165470 8508 114 44195 0.5977

DMU5 48308 141 180866 7478 248 45841 1

DMU6 55959 146 194470 10818 230 136513 1

DMU7 40605 145 179650 6422 127 70380 0.7044

DMU8 61402 87 94226 18260 182 36592 1

DMU9 87950 104 91461 22900 170 47650 1

DMU10 33707 114 88640 3326 85 13410 0.5235

DMU11 100304 254 292995 14780 318 79883 0.6679

DMU12 94286 105 98302 19105 273 32553 1

DMU13 67322 224 287042 15332 241 172316 0.9579

DMU14 102045 104 18082 155514 441 30004 0.9939

DMU15 177430 401 528325 77564 801 201529 1

DMU16 221338 1094 1186905 44136 803 840446 1

DMU17 267806 1079 1323325 27690 251 832616 0.9510

DMU18 160912 444 648685 45882 816 251770 1

DMU19 177214 801 909539 72676 654 341585 1

DMU20 146325 686 545115 19839 177 341585 0.8911

to increase the number of subscribers to 9500000. Since R3 = {1} we have:

αr̃ = argmax
r̃∈R3
{βr̃−(

∑
j∈E

yr̃j+
∑
j∈I

y∗r̃j)} = 9500000−921670.81 = 8578329.19

Now, model (3.8) is solved. The minimum value of the required resources for generating
9500000 numbers of subscribers is equal to:

Γ = (

20∑
j=1

x1j + γ∗1,21,

20∑
j=1

x2j + γ∗2,21,

20∑
j=1

x3j + γ∗3,21)

= (2125473 + 20000, 6446 + 35000, 7529507 + 42000)

Regarding the results from the model (3.3), if we want to increase the number of the
gas subscribers to 9500000, we need more initial resources. In this case, 20000 must be
added to the initial capital, 35000 people should be added to the sta� and the operation
costs should increase by 42000. Now we solve model (3.9) for determining how the ex-
tra resources should be allocated between the various units and how much extra output
should be generated by each unit. The obtained results are reported in Table7.
The results of the model show that among the ine�cient units, units 17, 20 and 11 have
higher positions in terms of both the inputs received and the outputs produced. Units 20,
14 and 10 have exactly the same position in terms of the inputs received and the outputs
produced. In fact, the e�ciency scores of units 20 and 14 are close to one and thus were
able to produce more when they received more. On the other hand, since unit 10 has a
low e�ciency score, therefore it received fewer inputs and produced fewer outputs. Since
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Table 7. Results of resource allocation for Iranian gas companies

DMU x∗1 x∗2 x∗3 y∗1
∑3

r=2 yrj + y∗1j
∑3

i=1 x
∗
ij

DMU1 124313 179.521 198598 271767.1 3341168.1 323090.521

DMU2 68537.485 117 133781.552 111893.18 158279 202436.037

DMU3 47208 165 230841.324 91358.74 133663.74 278214.324

DMU4 44486.432 106 167599.944 100001 144310 210392.426

DMU5 49300.485 141 182998.552 74484.49 120573.49 232440.037

DMU6 56951.487 146 196602.764 77782.15 214525.15 253700.251

DMU7 42944.011 145 181848.356 77700.97 148207.97 224937.367

DMU8 62392.828 87 94226 94800.8 131574.8 156705.8275

DMU9 88943.086 104 91461 86418.3 134238.3 180508.0855

DMU10 33898.825 2645.827 94160.634 18992.4 32487.4 130705.2855

DMU11 102944.869 32333.56 294488.088 597801.4 678002.4 429766.517

DMU12 95278.485 105 100434.552 86111.49 118937.49 195818.0374

DMU13 68318.133 224 294001.984 93194.32 265751.32 362544.1168

DMU14 103037.485 104 157646.552 94201.23 124646.23 260788.0374

DMU15 178422.485 401 528325 144570.49 346900.49 707148.4854

DMU16 222330.558 1430.849 1189036.775 111330.71 952579.71 1412799.182

DMU17 268788.176 1079 1325500.885 164111.23 996978.23 1595501.936

DMU18 161853 444 651035.936 6896791 7149377 813332.936

DMU19 178206.485 801 911671.552 139682.49 481921.49 1090679.037

DMU20 147317.485 687.241 547247.552 167006.49 508768.49 695252.2784

unit 13 has a higher e�ciency score among the ine�cient units, it received more inputs
compared to ine�cient units 4 and 2 but produced less outputs compared to them; thus
unit 13 has become e�cient.
According to the optimal resource allocation plan, company 17 will receive more resource
allocation in comparison with other companies. On the other hand, company 10 will
receive the least allocated resource. Also, as Table 7 indicates, the most value of output
1 is set for company 18, whereas the least one is set for company 10. It is to be noted
that the company 10 will receive the least allocated resource and so the least target is set
for this company. For increasing the number of subscribers to 9500000, the �rst output
of ine�cient units will be increased to

y∗1j + ∆y∗1j ; j ∈ I = {2, 3, 4, 7, 10, 11, 13, 14, 17, 20}

where y∗1j and ∆y∗1j are optimal solutions of model (3.3) and model (3.8), respectively.
The e�cient units i.e. DMUj j ∈ {1, 5, 6, 8, 9, 12, 15, 16, 18, 19} increase its �rst output
to ∆y∗1j where are obtained from model (3.3).
The values of output 2 and output 3 of the DMUs are not changed but the inputs of all
DMUs are increased as followes:

(

20∑
j=1

x∗1j ,

20∑
j=1

x∗2j ,

20∑
j=1

x∗3j) = (2145473, 41446, 7571507)
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5. Conclusion

In this paper, some algorithms for resource allocation are proposed. These algorithms
help the DM in determining the input-output levels of each DMU, when the produc-
tion of additional products seems to be desirable. DEA and MOP are applied in these
algorithms. In fact these algorithms will allocate the resources between the units in a
way that their maximum power will be applied for production. As an advantage of the
method, it can be mentioned that it can be easily run, does not have complicated cal-
culations and of course it tries to maximize the number of the e�cient units. In this
study, the data were considered as real, however, the algorithm can be expanded to the
situations in which the data are of interval or fuzzy type. These cases will be investigated
in future studies.
There are a number of challenges involved in the proposed research. These challenges
provide a great deal of fruitful scope for future research. The practicality of this model
can be further enhanced by developing the proposed framework into a decision support
system to reduce the computation time and e�ort. Another future research direction,
which could be an area of theoretical study, is extending the proposed method under a
fuzzy environment.
The proposed algorithm can also be used to solve transportation problems, �nd the
shortest route, obtain the maximum �ow in a network, allocate people to jobs and etc.
For example in transportation problems, in order to reduce the transfer cost up to a
certain amount or to set the pro�t of transferring goods to a predetermined level, it is
possible to consider routes as the DMUs and the goods as the resources allocated to each
route. Finally, extending the proposed technique for resource allocation of the two-stage
systems is an interesting research work. We hope that our study can inspire others to
pursue further research.
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Abstract

In this paper, we introduce the generalized Gompertz-power series class
of distributions which is obtained by compounding generalized Gom-
pertz and power series distributions. This compounding procedure fol-
lows same way that was previously carried out by [25] and [3] in intro-
ducing the compound class of extended Weibull-power series distribu-
tion and the Weibull-geometric distribution, respectively. This distri-
bution contains several lifetime models such as generalized Gompertz,
generalized Gompertz-geometric, generalized Gompertz-poisson, gen-
eralized Gompertz-binomial distribution, and generalized Gompertz-
logarithmic distribution as special cases. The hazard rate function
of the new class of distributions can be increasing, decreasing and
bathtub-shaped. We obtain several properties of this distribution such
as its probability density function, Shannon entropy, its mean residual
life and failure rate functions, quantiles and moments. The maximum
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1. Introduction

The exponential distribution is commonly used in many applied problems, particularly
in lifetime data analysis [15]. A generalization of this distribution is the Gompertz
distribution. It is a lifetime distribution and is often applied to describe the distribution of
adult life spans by actuaries and demographers. The Gompertz distribution is considered
for the analysis of survival in some sciences such as biology, gerontology, computer, and
marketing science. Recently, [13] de�ned the generalized exponential distribution and in
similar manner, [9] introduced the generalized Gompertz (GG) distribution. A random
variable X is said to have a GG distribution denoted by GG(α, β, γ), if its cumulative
distribution function (cdf) is

G(x) = [1− e−
β
γ
(eγx−1)

]α, α, β > 0, γ > 0; x ≥ 0.(1.1)

and the probability density function (pdf) is

g(x) = αβeγxe
− β
γ
(eγx−1)

[1− e
−β
γ

(eγx−1)
]α−1.(1.2)

The GG distribution is a �exible distribution that can be skewed to the right and
to the left, and the well-known distributions are special cases of this distribution: the
generalized exponential proposed by [13] when γ → 0+, the Gompertz distribution when
α = 1, and the exponential distribution when α = 1 and γ → 0+.

In this paper, we compound the generalized Gompertz and power series distribu-
tions, and introduce a new class of distribution. This procedure follows similar way that
was previously carried out by some authors: The exponential-power series distribution
is introduced by [7] which is concluded the exponential- geometric [1, 2], exponential-
Poisson [14], and exponential- logarithmic [27] distributions; the Weibull- power series
distributions is introduced by [22] and is a generalization of the exponential-power series
distribution; the generalized exponential-power series distribution is introduced by [19]
which is concluded the Poisson-exponential [5, 18] complementary exponential-geometric
[17], and the complementary exponential-power series [10] distributions; linear failure
rate-power series distributions [20].

The remainder of our paper is organized as follows: In Section 2, we give the proba-
bility density and failure rate functions of the new distribution. Some properties such as
quantiles, moments, order statistics, Shannon entropy and mean residual life are given
in Section 3. In Section 4, we consider four special cases of this new distribution. We
discuss estimation by maximum likelihood and provide an expression for Fisher's infor-
mation matrix in Section 5. A simulation study is performed in Section 6. An application
is given in the Section 7.

2. The generalized Gompertz-power series model

A discrete random variable, N is a member of power series distributions (truncated
at zero) if its probability mass function is given by

(2.1) pn = P (N = n) =
anθ

n

C(θ)
, n = 1, 2, . . . ,

where an ≥ 0 depends only on n, C(θ) =
∑∞
n=1 anθ

n, and θ ∈ (0, s) (s can be ∞) is
such that C(θ) is �nite. Table 1 summarizes some particular cases of the truncated (at
zero) power series distributions (geometric, Poisson, logarithmic and binomial). Detailed
properties of power series distribution can be found in [23]. Here, C′(θ), C′′(θ) and C′′′(θ)
denote the �rst, second and third derivatives of C(θ) with respect to θ, respectively.
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Table 1. Useful quantities for some power series distributions.

Distribution an C(θ) C′(θ) C′′(θ) C′′′(θ) s

Geometric 1 θ(1− θ)−1 (1− θ)−2 2(1− θ)−3 6(1− θ)−4 1

Poisson n!−1 eθ − 1 eθ eθ eθ ∞
Logarithmic n−1 − log(1− θ) (1− θ)−1 (1− θ)−2 2(1− θ)−3 1

Binomial
(
m
n

)
(1 + θ)m − 1 m

(θ+1)1−m
m(m−1)

(θ+1)2−m
m(m−1)(k−2)

(θ+1)3−m ∞

We de�ne generalized Gompertz-Power Series (GGPS) class of distributions denoted
as GGPS(α, β, γ, θ) with cdf

(2.2) F (x) =

∞∑
n=1

an(θG(x))n

C(θ)
=
C(θG(x))

C(θ)
=
C(θtα)

C(θ)
, x > 0,

where t = 1− e−
β
γ
(eγx−1). The pdf of this distribution is given by

(2.3) f(x) =
θαβ

C(θ)
eγx(1− t)tα−1C′ (θtα) .

This class of distribution is obtained by compounding the Gompertz distribution and
power series class of distributions as follows. Let N be a random variable denoting the
number of failure causes which it is a member of power series distributions (truncated
at zero). For given N , let X1, X2, . . . , XN be a independent random sample of size N
from a GG(α, β, γ) distribution. Let X(N) = max1≤i≤N Xi. Then, the conditional cdf of
X(N) | N = n is given by

GX(N)|N=n(x) = [1− e−
β
γ
(eγx−1)

]nα,

which has GG(nα, β, γ) distribution. Hence, we obtain

P (X(N) ≤ x,N = n) =
an(θG(x))n

C(θ)
=
anθ

n

C(θ)
[1− e−

β
γ
(eγx−1)

]nα.

Therefore, the marginal cdf of X(N) has GGPS distribution. This class of distributions
can be applied to reliability problems. Therefore, some of its properties are investigated
in the following.

2.1. Proposition. The pdf of GGPS class can be expressed as in�nite linear combination
of pdf of order distribution, i.e. it can be written as

f(x) =

∞∑
n=1

pn g(n)(x;nα, β, γ),(2.4)

where g(n)(x;nα, β, γ) is the pdf of GG(nα, β, γ).

Proof. Consider t = 1− e−
β
γ
(eγx−1). So

f(x) =
θαβ

C(θ)
eγx(1− t)tα−1C′ (θtα) =

θαβ

C(θ)
eγx(1− t)tα−1

∞∑
n=1

nan(θtα)n−1

=

∞∑
n=1

anθ
n

C(θ)
nαβ(1− t)eγxtnα−1 =

∞∑
n=1

png(n)(x;nα, β, γ).

�
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2.2. Proposition. The limiting distribution of GGPS(α, β, γ, θ) when θ → 0+ is

lim
θ→0+

F (x) = [1− e−
β
γ
(eγx−1)

]cα,

which is a GG distribution with parameters cα, β, and γ, where c = min{n ∈ N : an > 0}.

Proof. Consider t = 1− e−
β
γ
(eγx−1). So

lim
θ→0+

F (x) = lim
θ→0+

C(λtα)

C(θ)
= lim
λ→0+

∞∑
n=1

anθ
ntnα

∞∑
n=1

anθn

= lim
θ→0+

act
cα +

∞∑
n=c+1

anθ
n−ctnα

ac +
∞∑

n=c+1

anθn−c
= tcα.

�

2.3. Proposition. The limiting distribution of GGPS(α, β, γ, θ) when γ → 0+ is

lim
γ→0+

F (x) =
C(θ(1− e−βx)α)

C(θ)
,

i.e. the cdf of the generalized exponential-power series class of distribution introduced by
[19].

Proof. When γ → 0+, the generalized Gompertz distribution becomes to generalized
exponential distribution. Therefore, proof is obvious. �

2.4. Proposition. The hazard rate function of the GGPS class of distributions is

h(x) =
θαβeγx(1− t)tα−1C′(θtα)

C(θ)− C(θtα)
,(2.5)

where t = 1− e
−β
γ

(eγx−1)
.

Proof. Using (2.2), (2.3) and de�nition of hazard rate function as h(x) = f(x)/(1−F (x)),
the proof is obvious. �

2.5. Proposition. For the pdf in (2.3), we have

lim
x→0+

f(x) =


∞ 0 < α < 1
C′(0)θβ
C(θ)

α = 1

0 α > 1,

lim
x→∞

f(x) = 0.

Proof. The proof is a forward calculation using the following limits

lim
x→0+

tα−1 =


∞ 0 < α < 1
1 α = 1
0 α > 1,

lim
x→0+

tα = 0, lim
x→∞

t = 1.

�

2.6. Proposition. For the hazard rate function in (2.5), we have

lim
x→0+

h(x) =


∞ 0 < α < 1
C′(0)θβ
C(θ)

α = 1

0 α > 1,

lim
x→∞

h(x) =

{
∞ γ > 0
β γ → 0
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Figure 1. Plots of pdf and hazard rate functions of GGPS with
C (θ) = θ + θ20.

Proof. Since limx→0+(1− F (x)) = 1, we have limx→0+ h(x) = limx→0+ f(x).
For limx→∞ h(x), the proof is satis�ed using the limits

lim
x→∞

C′(θtα) = C′(θ), lim
x→∞

tα−1 = 1,

lim
x→∞

eγx(1− t)
C(θ)− C(θtα)

= lim
x→∞

eγx(1− t)[βeγx − γ]

θβαC′(θ)eγx(1− t) =

{
∞ γ > 0

1
θαC′(θ) γ → 0.

�

As a example, we consider C (θ) = θ+ θ20. The plots of pdf and hazard rate function
of GGPS for parameters β = 1, γ = .01, θ = 1.0, and α = 0.1, 0.5, 1.0, 2.0 are given in
Figure 1. This pdf is bimodal when α = 2.0, and the values of modes are 0.7 and 3.51.

3. Statistical properties

In this section, some properties of GGPS distribution such as quantiles, moments,
order statistics, Shannon entropy and mean residual life are obtained.

3.1. Quantiles and Moments. The quantile q of GGPS is given by

xq = G−1(
C−1(qC(θ))

θ
), 0 < q < 1,

where G−1(y) = 1
γ

log[1 − γ log(1−y
1
γ )

β
] and C−1(.) is the inverse function of C(.). This

result helps in simulating data from the GGPS distribution with generating uniform
distribution data.

For checking the consistency of the simulating data set form GGPS distribution, the
histogram for a generated data set with size 100 and the exact pdf of GGPS with C (θ) =
θ+ θ20, and parameters α = 2, β = 1, γ = 0.01, θ = 1.0, are displayed in Figure 2 (left).
Also, the empirical cdf and the exact cdf are given in Figure 2 (right).

Consider X ∼ GGPS(α, β, γ, θ). Then the Laplace transform of the GGPS class can
be expressed as

L(s) = E(e−sX) =

∞∑
n=1

P (N = n)Ln(s),(3.1)
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Figure 2. The histogram of a generated data set with the pdf (left)
and the empirical cdf with cdf (right) of GGPS distribution.

where Ln(s) is the Laplace transform of GG(nα, β, γ) distribution given as

Ln(s) =

∫ +∞

0

e−sxnαβeγxe
− β
γ
(eγx−1)

[1− e
−β
γ

(eγx−1)
]nα−1dx

= nαβ

∫ +∞

0

e(γ−s)xe
− β
γ
(eγx−1)

∞∑
j=0

(
nα− 1

j

)
(−1)je

−β
γ
j(eγx−1)

dx

= nαβ

∞∑
j=0

(
nα− 1

j

)
(−1)je

β
γ
(j+1)

∫ +∞

0

e(γ−s)xe
−β
γ

(j+1)eγx
dx

= nαβ

∞∑
j=0

(
nα− 1

j

)
(−1)je

β
γ
(j+1)

×
∫ +∞

0

e(γ−s)x
∞∑
k=0

(−1)k(β
γ

(j + 1))keγkx

Γ(k + 1)
dx

= nαβ

∞∑
j=0

∞∑
k=0

(
nα− 1

j

)
(−1)j+ke

β
γ
(j+1)

[β
γ

(j + 1)]k

Γ(k + 1)(s− γ − γk)
, s > γ.(3.2)

Now, we obtain the moment generating function of GGPS.

MX(t) = E(etX) =

∞∑
n=1

P (N = n)Ln(−t)

= αβ

∞∑
n=1

anθ
n

C(θ)

∞∑
k=0

∞∑
j=0

n
(
nα−1
j

)
(−1)j+k+1e

β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(t+ γ + γk)

= αβEN [

∞∑
k=0

∞∑
j=0

N
(
Nα−1
j

)
(−1)j+k+1e

β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(t+ γ + γk)
],(3.3)

where N is a random variable from the power series family with the probability mass
function in (2.1) and EN [U ] is expectation of U with respect to random variable N .
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We can use MX(t) to obtain the non-central moments, µr = E[Xr]. But from the
direct calculation, we have

µr =

∞∑
n=1

anθ
n

C(θ)

∞∑
k=0

∞∑
j=0

nαβ
(
nα−1
j

)
(−1)j+k+r+1e

β
γ
(j+1)

(β
γ

(j + 1))kΓ(r + 1)

Γ(k + 1)(γ + γk)r+1

= αβEN [

∞∑
k=0

∞∑
j=0

N
(
Nα−1
j

)
(−1)j+k+r+1e

β
γ
(j+1)

(β
γ

(j + 1))kΓ(r + 1)

Γ(k + 1)(γ + γk)r+1
].(3.4)

3.1. Proposition. For non-central moment function in 3.4, we have

lim
θ→0+

µr = E[Y r],

where Y has GG(cα, β, γ) and c = min{n ∈ N : an > 0}.

Proof. If Y has GG(cα, β, γ), then

E[Y r] =

∞∑
k=0

∞∑
j=0

cαβ
(
cα−1
j

)
(−1)j+k+r+1e

β
γ
(j+1)

(β
γ

(j + 1))kΓ(r + 1)

Γ(k + 1)(γ + γk)r+1
.

Therefore,

lim
θ→0+

µr = lim
θ→0+

∞∑
n=1

anθ
nE[Y r]

∞∑
n=1

anθn

= lim
θ→0+

acE[Y r] +
∞∑

n=c+1

anθ
n−cE[Y r]

ac +
∞∑

n=c+1

anθn−c

= E[Y r].

�

3.2. Order statistic. Let X1, X2, . . . , Xn be an independent random sample of size n
from GGPS(α, β, γ, θ). Then, the pdf of the ith order statistic, say Xi:n, is given by

fi:n(x) =
n!

(i− 1)!(n− i)!f(x)[
C(θtα)

C(θ)
]i−1[1− C(θtα)

C(θ)
]n−i,

where f is the pdf given in (2.3) and t = 1 − e−
β
γ
(eγx−1). Also, the cdf of Xi:n is given

by

Fi:n(x) =
n!

(i− 1)!(n− i)!

n−i∑
k=0

(−1)k
(
n−i
k

)
k + i+ 1

[
C(tα)

C(θ)
]k+i.

An analytical expression for rth non-central moment of order statistics Xi:n is obtained
as

E[Xr
i:n] = r

n∑
k=n−i+1

(−1)k−n+i−1

(
k − 1

n− i

)(
n

k

)∫ +∞

0

xr−1S(x)kdx

= r

n∑
k=n−i+1

(−1)k−n+i−1

[C(θ)]k

(
k − 1

n− i

)(
n

k

)∫ +∞

0

xr−1[C(θ)− C(θtα)]kdx,

where S(x) = 1− F (x) is the survival function of GGPS distribution.
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3.3. Shannon entropy and mean residual life. If X is a none-negative continuous
random variable with pdf f , then Shannon's entropy of X is de�ned by [24] as

H(f) = E[− log f(X)] = −
∫ +∞

0

f(x) log(f(x))dx,

and this is usually referred to as the continuous entropy (or di�erential entropy). An
explicit expression of Shannon entropy for GGPS distribution is obtained as

H(f) = E{− log[
θαβ

C(θ)
eγX(e

− β
γ
(eγX−1)

)(1− e−
β
γ
(eγX−1)

)α−1

×C′
(
θ(1− e−

β
γ
(eγX−1)

)α
)

]}

= − log[
θβα

C(θ)
]− γE(X) +

β

γ
E(eγX)− β

γ

−(α− 1)E[log(1− e−
β
γ
(eγX−1)

)]

−E[log(C′
(
θ(1− e−

β
γ
(eγX−1)

)α
)

)]

= − log[
θβα

C(θ)
]− γµ1 +

β

γ
MX(γ)− β

γ

−(α− 1)

∞∑
n=1

P (N = n)

∫ 1

0

nαtnα−1 log(t)dt

−
∞∑
n=1

P (N = n)

∫ 1

0

nun−1 log(C′(θu))du

= − log[
θβα

C(θ)
]− γµ1 +

β

γ
MX(γ)− β

γ

+
(α− 1)

α
EN [

1

N
]− EN [A(N, θ)],(3.5)

where A(N, θ) =
∫ 1

0
NuN−1 log(C′(θu))du, N is a random variable from the power series

family with the probability mass function in (2.1), and EN [U ] is expectation of U with
respect to random variable N . In reliability theory and survival analysis, X usually
denotes a duration such as the lifetime. The residual lifetime of the system when it is
still operating at time s, is Xs = X − s | X > s which has pdf

f(x; s) =
f(x)

1− F (s)
=

θg(x)C′(θG(x))

C(θ)− C(θG(s))
, x ≥ s > 0.

Also, the mean residual lifetime of Xs is given by

m(s) = E[X − s|X > s] =

∫ +∞
s

(x− s)f(x)dx

1− F (s)

=

∫ +∞
s

xf(x)dx

1− F (s)
− s

=
C(θ)EN [Z(s,N)]

C(θ)− C(θ[1− e−
β
γ
(eγs−1)

]α)
− s,

where Z(s, n) =
∫ +∞
s

xg(n)(x;nα, β, γ)dx, and g(n)(x;nα, β, γ) is the pdf of GG (nα, β, γ).

4. Special cases of GGPS distribution

In this Section, we consider four special cases of the GGPS distribution. To simplify,

we consider t = 1− e−
β
γ
(eγx−1), x > 0, and Aj =

(
nα−1
j

)
.
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4.1. Generalized Gompertz-geometric distribution. The geometric distribution
(truncated at zero) is a special case of power series distributions with an = 1 and C(θ) =
θ

1−θ (0 < θ < 1). The pdf and hazard rate function of generalized Gompertz-geometric

(GGG) distribution is given respectively by

f(x) =
(1− θ)αβeγx(1− t)tα−1

(θtα − 1)2
, x > 0,(4.1)

h(x) =
(1− θ)αβeγx(1− t)tα−1

(1− θtα)(1− tα)
, x > 0.(4.2)

4.1. Remark. Consider

fM (x) =
θ∗αβeγx(1− t)tα−1

((1− θ∗)tα − 1)2
, x > 0,(4.3)

where θ∗ = 1− θ. Then fM (x) is pdf for all θ∗ > 0 (see [21]). Note that when α = 1 and
γ → 0+, the pdf of extended exponential geometric (EEG) distribution [1] is concluded
from (4.3). The EEG hazard function is monotonically increasing for θ∗ > 1; decreasing
for 0 < θ∗ < 1 and constant for θ∗ = 1.

4.2. Remark. If α = θ∗ = 1, then the pdf in (4.3) becomes the pdf of Gompertz
distribution. Note that the hazard rate function of Gompertz distribution is h(x) = βeγx

which is increasing.

The plots of pdf and hazard rate function of GGG for di�erent values of α, β, γ and
θ∗ are given in Figure 3.

4.3. Theorem. Consider the GGG hazard function in (4.2). Then, for α ≥ 1, the
hazard function is increasing and for 0 < α < 1, is decreasing and bathtub shaped.

Proof. See Appendix A.1. �

The �rst and second non-central moments of GGG are given by

E(X) = αβ(1− θ)
∞∑
n=1

nθn−1
∞∑
k=0

∞∑
j=0

Aj(−1)j+ke
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)2
,

E(X2) = 2αβ(1− θ)
∞∑
n=1

nθn−1
∞∑
k=0

∞∑
j=0

Aj(−1)j+k+3e
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)3
.

4.2. Generalized Gompertz-Poisson distribution. The Poisson distribution (trun-
cated at zero) is a special case of power series distributions with an = 1

n!
and C(θ) = eθ−1

(θ > 0). The pdf and hazard rate function of generalized Gompertz-Poisson (GGP) dis-
tribution are given respectively by

f(x) = θαβeγx−θ(1− t)tα−1eθt
α

, x > 0(4.4)

h(x) =
θαβeγx(1− t)tα−1eθt

α

eθ − eθtα , x > 0.(4.5)

4.4. Theorem. Consider the GGP hazard function in (4.5). Then, for α ≥ 1, the hazard
function is increasing and for 0 < α < 1, is decreasing and bathtub shaped.

Proof. See Appendix A.2. �
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Figure 3. Plots of pdf and hazard rate function of GGG for di�erent
values α, β, γ and θ∗.

The �rst and second non-central moments of GGP can be computed as

E(X) =
αβ

eθ − 1

∞∑
n=1

θn

(n− 1)!

∞∑
k=0

∞∑
j=0

Aj(−1)j+ke
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)2
,

E(X2) =
2αβ

eθ − 1

∞∑
n=1

θn

(n− 1)!

∞∑
k=0

∞∑
j=0

Aj(−1)j+k+3e
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)3
.
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Figure 4. Plots of pdf and hazard rate function of GGP for di�erent
values α, β, γ and θ.

The plots of pdf and hazard rate function of GGP for di�erent values of α, β, γ and θ
are given in Figure 4.

4.3. Generalized Gompertz-binomial distribution. The binomial distribution (trun-
cated at zero) is a special case of power series distributions with an =

(
m
n

)
and C(θ) =

(θ+1)m−1 (θ > 0), wherem (n ≤ m) is the number of replicas. The pdf and hazard rate
function of generalized Gompertz-binomial (GGB) distribution are given respectively by

f(x) = mθαβeγx(1− t)tα−1 (θtα + 1)m−1

(θ + 1)m − 1
, x > 0,(4.6)
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h(x) =
mθαβeγx(1− t)tα−1(θtα + 1)m−1

(θ + 1)m − (θtα + 1)m
, x > 0.(4.7)

The plots of pdf and hazard rate function of GGB for m = 4, and di�erent values
of α, β, γ and θ are given in Figure 5. We can �nd that the GGP distribution can be
obtained as limiting of GGB distribution if mθ → λ > 0, when m→∞.

4.5. Theorem. Consider the GGB hazard function in (4.7). Then, for α ≥ 1, the hazard
function is increasing and for 0 < α < 1, is decreasing and bathtub shaped.

Proof. The proof is omitted, since θ > 0 and therefore the proof is similar to the proof
of Theorem 4.4. �

The �rst and second non-central moments of GGB are given by

E(X) =
αβ

(θ + 1)m − 1

∞∑
n=1

θnn

(
m

n

)
∞∑
k=0

∞∑
j=0

Aj(−1)j+ke
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)2
,

E(X2) =
2αβ

(θ + 1)m − 1

∞∑
n=1

θnn

(
m

n

)
∞∑
k=0

∞∑
j=0

Aj(−1)j+k+3e
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)3
.

4.4. Generalized Gompertz-logarithmic distribution. The logarithmic distribu-
tion (truncated at zero) is also a special case of power series distributions with an = 1

n

and C(θ) = − log(1 − θ) (0 < θ < 1). The pdf and hazard rate function of generalized
Gompertz-logarithmic (GGL) distribution are given respectively by

f(x) =
θαβeγx(1− t)tα−1

(θtα − 1) log(1− θ) , x > 0,(4.8)

h(x) =
θαβeγx(1− t)tα−1

(θtα − 1) log( 1−θ
1−θtα )

, x > 0.(4.9)

The plots of pdf and hazard rate function of GGL for di�erent values of α, β, γ and
θ are given in Figure 6.

4.6. Theorem. Consider the GGL hazard function in (4.9). Then, for α ≥ 1, the hazard
function is increasing and for 0 < α < 1, is decreasing and bathtub shaped.

Proof. The proof is omitted, since 0 < θ < 1 and therefore the proof is similar to the
proof of Theorem 1. �

The �rst and second non-central moments of GGL are

E(X) =
αβ

− log(1− θ)

∞∑
n=1

θn
∞∑
k=0

∞∑
j=0

Aj(−1)j+ke
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)2
,

E(X2) =
2αβ

− log(1− θ)

∞∑
n=1

θn
∞∑
k=0

∞∑
j=0

Aj(−1)j+k+3e
β
γ
(j+1)

(β
γ

(j + 1))k

Γ(k + 1)(γ + γk)3
.

5. Estimation and inference

In this section, we will derive the maximum likelihood estimators (MLE) of the un-
known parameters Θ = (α, β, γ, θ)T of the GGPS(α, β, γ, θ). Also, asymptotic con�dence
intervals of these parameters will be derived based on the Fisher information. At the
end, we proposed an Expectation-Maximization (EM) algorithm for estimating the pa-
rameters.
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Figure 5. Plots of pdf and hazard rate function of GGB for m = 5,
and di�erent values α, β, γ and θ.

5.1. MLE for parameters. Let X1, . . . , Xn be an independent random sample, with
observed values x1, . . . , xn from GGPS(α, β, γ, θ) and Θ = (α, β, γ, θ)T be a parameter
vector. The log-likelihood function is given by

ln = ln(Θ;x) = n log(θ) + n log(αβ) + nγx̄

+
n∑
i=1

log(1− ti) + (α− 1)

n∑
i=1

log(ti)



1592

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

Density

x

f(
x)

α=0.7,β=1,γ=0.01

θ=0.01
θ=0.1
θ=0.5
θ=0.9

0 1 2 3 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Density

x

f(
x)

α=3,β=1,γ=0.1

θ=0.01
θ=0.1
θ=0.5
θ=0.9

0.0 0.5 1.0 1.5 2.0 2.5

0.
0

0.
5

1.
0

1.
5

Density

x

f(
x)

α=3,β=1,γ=1

θ=0.01
θ=0.1
θ=0.5
θ=0.9

0 1 2 3 4

0.
0

0.
5

1.
0

1.
5

2.
0

Hazard

x

h(
x)

α=0.7,β=1,γ=0.01

θ=0.01
θ=0.1
θ=0.5
θ=0.9

0.0 0.5 1.0 1.5

0
1

2
3

4

Hazard

x

h(
x)

α=0.7,β=1,γ=1

θ=0.01
θ=0.1
θ=0.5
θ=0.9

0.0 0.5 1.0 1.5 2.0

0
1

2
3

4
5

6

Hazard

x

h(
x)

α=3,β=1,γ=1

θ=0.01
θ=0.1
θ=0.5
θ=0.9

Figure 6. Plots of pdf and hazard rate function of GGL for di�erent
values α, β, γ and θ.

+

n∑
i=1

log(C′(θtαi ))− n log(C(θ)),

where ti = 1 − e
− β
γ
(eγxi−1). Therefore, the score function is given by U(Θ;x) =

( ∂ln
∂α
, ∂ln
∂β
, ∂ln
∂γ
, ∂ln
∂θ

)T , where

∂ln
∂α

=
n

α
+

n∑
i=1

log(ti) +

n∑
i=1

θtαi log(ti)C
′′(θtαi )

C′(θtαi )
,(5.1)
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∂ln
∂β

=
n

β
− 1

γ
(

n∑
i=1

eγxi − n) + (α− 1)

n∑
i=1

∂ti
∂β

ti
+

n∑
i=1

θ
∂(tαi )

∂β
C′′(θtαi )

C′(θtαi )
,(5.2)

∂ln
∂γ

= nx̄+
β

γ2
(

n∑
i=1

eγxi − n)− β

γ
(

n∑
i=1

xie
γxi)

+(α− 1)

n∑
i=1

∂ti
∂γ

ti
+

n∑
i=1

θ
∂(tαi )

∂γ
C′′(θtαi )

C′(θtαi )
,(5.3)

∂ln
∂θ

=
n

θ
+

n∑
i=1

tαi C
′′(θtαi )

C′(θtαi )
− nC′(θ)

C(θ)
.(5.4)

The MLE of Θ, say Θ̂, is obtained by solving the nonlinear system U(Θ;x) = 0. We can-
not get an explicit form for this nonlinear system of equations and they can be calculated
by using a numerical method, like the Newton method or the bisection method.

For each element of the power series distributions (geometric, Poisson, logarithmic
and binomial), we have the following theorems for the MLE of parameters:

5.1. Theorem. Let g1(α;β, γ, θ, x) denote the function on RHS of the expression in
(5.1), where β, γ and θ are the true values of the parameters. Then, for a given β > 0,
γ > 0 and θ > 0, the roots of g1(α, β; γ, θ,x) = 0, lies in the interval(

−n
θC′′(θ)
C′(θ) + 1

(

n∑
i=1

log(ti))
−1,−n(

n∑
i=1

log(ti))
−1)

)
,

Proof. See Appendix B.1. �

5.2. Theorem. Let g2(β;α, γ, θ, x) denote the function on RHS of the expression in
(5.3), where α, γ and θ are the true values of the parameters. Then, the equation
g2(β;α, γ, θ, x) = 0 has at least one root.

Proof. See Appendix B.2. �

5.3. Theorem. Let g3(θ;α, β, γ, x) denote the function on RHS of the expression in
(5.4) and x̄ = n−1∑n

i=1 xi, where α, β and γ are the true values of the parameters.
a) The equation g3(θ;α, β, γ, x) = 0 has at least one root for all GGG, GGP and GGL
distributions if

∑n
i=1 t

α
i >

n
2
.

b) If g3(p;α, β, γ, x) = ∂ln
∂p

, where p = θ
θ+1

and p ∈ (0, 1) then the equation g3(p;α, β, γ, x) =

0 has at least one root for GGB distribution if
∑n
i=1 t

α
i >

n
2
and

∑n
i=1 t

−α
i > nm

m−1
.

Proof. See Appendix B.3. �

Now, we derive asymptotic con�dence intervals for the parameters of GGPS distribu-
tion. It is well-known that under regularity conditions (see [6], Section 10), the asymptotic

distribution of
√
n(Θ̂−Θ) is multivariate normal with mean 0 and variance-covariance

matrix J−1
n (Θ), where Jn(Θ) = limn→∞ In(Θ), and In(Θ) is the 4 × 4 observed infor-

mation matrix, i.e.

In (Θ) = −


Iαα Iαβ Iαγ Iαθ
Iβα Iββ Iβγ Iβθ
Iγα Iγβ Iγγ Iγθ
Iθα Iθβ Iθγ Iθθ

 ,
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whose elements are given in Appendix C. Therefore, an 100(1−η) asymptotic con�dence
interval for each parameter, Θr, is given by

ACIr = (Θ̂r − Zη/2
√
Îrr, Θ̂r + Z η

2

√
Îrr),

where Îrr is the (r, r) diagonal element of I−1
n (Θ̂) for r = 1, 2, 3, 4 and Zη/2 is the quantile

η
2
of the standard normal distribution.

5.2. EM-algorithm. The traditional methods to obtain the MLE of parameters are
numerical methods by solving the equations (5.1)-(5.4), and sensitive to the initial values.
Therefore, we develop an Expectation-Maximization (EM) algorithm to obtain the MLE
of parameters. It is an iterative method, and is a very powerful tool in handling the
incomplete data problem [8].

We de�ne a hypothetical complete-data distribution with a joint pdf in the form

g(x, z; Θ) =
azθ

z

C(θ)
zαβeγx(1− t)tzα−1,

where t = 1 − e
−β
γ

(eγx−1), and α, β, γ, θ > 0, x > 0 and z ∈ N. Suppose Θ(r) =
(α(r), β(r), γ(r), θ(r)) is the current estimate (in the rth iteration) of Θ. Then, the E-step

of an EM cycle requires the expectation of (Z|X; Θ(r)). The pdf of Z given X = x is
given by

g(z|x) =
azθ

z−1ztzα−α

C′(θtα)
,

and since

C′(θ) + θC′′(θ) =

∞∑
z=1

azzθ
z−1 + θ

∞∑
z=1

azz(z − 1)θz−2 =

∞∑
z=1

z2azθ
z−1,

the expected value of Z|X = x is obtained as

E(Z|X = x) = 1 +
θtαC′′(θtα)

C′(θtα)
.(5.5)

By using the MLE over Θ, with the missing Z's replaced by their conditional expec-
tations given above, the M-step of EM cycle is completed. Therefore, the log-likelihood
for the complete-data is

l∗n(y,Θ) ∝
n∑
i=1

zi log(θ) + n log(αβ) + nγx̄+

n∑
i=1

log(1− ti)

+

n∑
i=1

(ziα− 1) log(ti)− n log(C(θ)),(5.6)

where y = (x;z), x = (x1, . . . , xn) and z = (z1, . . . , zn). On di�erentiation of (5.6) with
respect to parameters α, β, γ and θ, we obtain the components of the score function,

U(y; Θ) = (
∂l∗n
∂α
,
∂l∗n
∂β
,
∂l∗n
∂γ
,
∂l∗n
∂θ

)T , as

∂l∗n
∂α

=
n

α
+

n∑
i=1

zi log[1− e
−β
γ

(eγxi−1)
],

∂l∗n
∂β

=
n

β
− 1

γ
(

n∑
i=1

eγxi − n) +

n∑
i=1

(ziα− 1)

1
γ

(eγxi − 1)

[e
β
γ
(eγxi−1) − 1]

,

∂l∗n
∂γ

= nx̄+
β

γ2
(

n∑
i=1

eγxi − n)− β

γ
(

n∑
i=1

xie
γxi)
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+

n∑
i=1

(ziα− 1)

−β
γ2

(eγxi − 1) + βxie
γxi

γ

[e
β
γ
(eγxi−1) − 1]

,

∂l∗n
∂θ

=

n∑
i=1

zi
θ
− nC

′(θ)

C(θ)
.

From a nonlinear system of equations U(y; Θ) = 0, we obtain the iterative procedure of
the EM-algorithm as

α̂(j+1) =
−n∑n

i=1 ẑi
(j) log[1− e

−β̂(j)

γ̂(j)
(eγ̂

(j)xi−1)
]

,

θ̂(j+1) − C(θ̂(j+1))

nC′(θ̂(j+1))

n∑
i=1

ẑ
(j)
i = 0,

n

β̂(j+1)
− 1

γ̂(j)
(

n∑
i=1

eγ̂
(j)xi − n) +

n∑
i=1

(ẑiα̂
(j) − 1)

1

γ̂(j)
(eγ̂

(j)xi − 1)

[e
β̂(j+1)

γ̂(j)
(eγ̂

(j)xi−1)
− 1]

= 0,

nx̄+
β̂(j)

[γ̂(j+1)]2
(

n∑
i=1

eγ̂
(j+1)xi − n)− β̂(j)

γ̂(j+1)
(

n∑
i=1

xie
γ̂(j+1)xi)

+

n∑
i=1

(ẑiα̂
(j) − 1)

−β̂(j)

[γ̂(j+1)]2
(eγ̂

(j+1)xi − 1) + β̂(j)xie
γ̂(j+1)xi

γ̂(j+1)

[e
β̂(j)

γ̂(j+1)
(eγ̂

(j+1)xi−1)
− 1]

= 0,

where θ̂(j+1), β̂(j+1) and γ̂(j+1) are found numerically. Here, for i = 1, 2, . . . , n, we have
that

ẑ
(j)
i = 1 +

θ∗(j)C′′(θ∗(j))

C′(θ∗(j))
,

where θ∗(j) = θ̂(j)[1− e
− β̂

(j)

γ̂(j)
(eγ̂

(j)xi−1)
]α̂

(j)

.
We can use the results of [16] to obtain the standard errors of the estimators from the

EM-algorithm. Consider lc(Θ;x) = E(Ic(Θ;y)|x), where Ic(Θ;y) = −[ ∂U(y;Θ)
∂Θ

] is the
4 × 4 observed information matrix.If lm(Θ;x) = V ar[U(y; Θ)|x], then, we obtain the
observed information as

I(Θ̂;x) = lc(Θ̂;x)− lm(Θ̂;x).

The standard errors of the MLEs of the EM-algorithm are the square root of the diagonal
elements of the I(Θ̂;x). The computation of these matrices are too long and tedious.
Therefore, we did not present the details. Reader can see [19] how to calculate these
values.

6. Simulation study

We performed a simulation in order to investigate the proposed estimator of α, β, γ
and θ of the proposed EM-scheme. We generated 1000 samples of size n from the GGG
distribution with β = 1 and γ = 0.1. Then, the averages of estimators (AE), standard
error of estimators (SEE), and averages of standard errors (ASE) of MLEs of the EM-
algorithm determined though the Fisher information matrix are calculated. The results
are given in Table 2. We can �nd that
(i) convergence has been achieved in all cases and this emphasizes the numerical stability
of the EM-algorithm,
(ii) the di�erences between the average estimates and the true values are almost small,
(iii) the standard errors of the MLEs decrease when the sample size increases.
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Table 2. The average MLEs, standard error of estimators and aver-
ages of standard errors for the GGG distribution.

parameter AE SEE ASE

n α θ α̂ β̂ γ̂ θ̂ α̂ β̂ γ̂ θ̂ α̂ β̂ γ̂ θ̂

50 0.5 0.2 0.491 0.961 0.149 0.204 0.114 0.338 0.265 0.195 0.173 0.731 0.437 0.782
0.5 0.5 0.540 0.831 0.182 0.389 0.160 0.337 0.260 0.263 0.210 0.689 0.421 0.817
0.5 0.8 0.652 0.735 0.154 0.684 0.304 0.377 0.273 0.335 0.309 0.671 0.422 0.896
1.0 0.2 0.988 0.972 0.129 0.206 0.275 0.319 0.191 0.209 0.356 0.925 0.436 0.939
1.0 0.5 1.027 0.852 0.147 0.402 0.345 0.352 0.226 0.283 0.408 0.873 0.430 0.902
1.0 0.8 1.210 0.711 0.178 0.745 0.553 0.365 0.230 0.342 0.568 0.799 0.433 0.898
2.0 0.2 1.969 0.990 0.084 0.216 0.545 0.305 0.151 0.228 0.766 1.135 0.422 0.902
2.0 0.5 1.957 0.842 0.113 0.487 0.608 0.334 0.192 0.277 0.820 1.061 0.431 0.963
2.0 0.8 2.024 0.713 0.161 0.756 0.715 0.396 0.202 0.353 1.143 0.873 0.402 0.973

100 0.5 0.2 0.491 0.977 0.081 0.212 0.084 0.252 0.171 0.179 0.125 0.514 0.283 0.561
0.5 0.5 0.528 0.883 0.109 0.549 0.124 0.275 0.178 0.247 0.155 0.504 0.275 0.567
0.5 0.8 0.602 0.793 0.136 0.769 0.215 0.323 0.194 0.299 0.220 0.466 0.259 0.522
1.0 0.2 0.974 0.997 0.102 0.226 0.195 0.242 0.129 0.206 0.251 0.645 0.280 0.767
1.0 0.5 1.030 0.875 0.113 0.517 0.262 0.291 0.155 0.270 0.298 0.651 0.295 0.843
1.0 0.8 1.113 0.899 0.117 0.846 0.412 0.342 0.177 0.331 0.400 0.600 0.287 0.781
2.0 0.2 1.952 0.995 0.138 0.221 0.424 0.237 0.117 0.209 0.524 0.922 0.321 0.992
2.0 0.5 2.004 0.885 0.110 0.518 0.493 0.283 0.131 0.274 0.601 0.873 0.321 0.966
2.0 0.8 2.028 0.981 0.104 0.819 0.605 0.350 0.155 0.339 0.816 0.717 0.289 0.946

7. Real examples

In this Section, we consider two real data sets and �t the Gompertz, GGG, GGP,
GGB (with m = 5), and GGL distributions. The �rst data set is negatively skewed, and
the second data set is positively skewed, and we show that the proposed distributions
�t both positively skewed and negatively skewed data well. For each data, the MLE
of parameters (with standard deviations) for the distributions are obtained. To test
the goodness-of-�t of the distributions, we calculated the maximized log-likelihood, the
Kolmogorov-Smirnov (K-S) statistic with its respective p-value, the AIC (Akaike Infor-
mation Criterion), AICC (AIC with correction), BIC (Bayesian Information Criterion),
CM (Cramer-von Mises statistic) and AD (Anderson-Darling statistic) for the six distri-
butions. Here, the signi�cance level is 0.10. To show that the likelihood equations have
a unique solution in the parameters, we plot the pro�le log-likelihood functions of β, γ,
α and θ for the six distributions.

First, we consider the data consisting of the strengths of 1.5 cm glass �bers given
in [26] and measured at the National Physical Laboratory, England. This data is also
studied by [4] and is given in Table 3.

The results are given in Table 5 and show that the GGG distribution yields the best
�t among the GGP, GGB, GGL, GG and Gompertz distributions. Also, the GGG, GGP,
and GGB distribution are better than GG distribution. The plots of the pdfs (together
with the data histogram) and cdfs in Figure 7 con�rm this conclusion. Figures 9 show
the pro�le log-likelihood functions of β, γ, α and θ for the six distributions.

As a second example, we consider a data set from [11], who studied the soil fertility
in�uence and the characterization of the biologic �xation of N2 for the Dimorphandra
wilsonii rizz growth. For 128 plants, they made measures of the phosphorus concentration
in the leaves. This data is also studied by [25] and is given in Table 4. Figures 10 show
the pro�le log-likelihood functions of β, γ, α and θ for the six distributions.
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Table 3. The strengths of glass �bers.

0.55, 0.93, 1.25, 1.36, 1.49, 1.52, 1.58, 1.61, 1.64, 1.68, 1.73, 1.81, 2.00, 0.74,
1.04, 1.27, 1.39, 1.49, 1.53, 1.59, 1.61, 1.66, 1.68, 1.76, 1.82, 2.01, 0.77, 1.11,
1.28, 1.42, 1.50, 1.54, 1.60, 1.62, 1.66, 1.69, 1.76, 1.84, 2.24, 0.81, 1.13, 1.29,
1.48, 1.50, 1.55, 1.61, 1.62, 1.66, 1.70, 1.77, 1.84, 0.84, 1.24, 1.30, 1.48, 1.51,
1.55, 1.61, 1.63, 1.67, 1.70, 1.78, 1.89

Table 4. The phosphorus concentration in the leaves.

0.22, 0.17, 0.11, 0.10, 0.15, 0.06, 0.05, 0.07, 0.12, 0.09, 0.23, 0.25, 0.23, 0.24,
0.20, 0.08, 0.11, 0.12, 0.10, 0.06, 0.20, 0.17, 0.20, 0.11, 0.16, 0.09, 0.10, 0.12,
0.12, 0.10, 0.09, 0.17, 0.19, 0.21, 0.18, 0.26, 0.19, 0.17, 0.18, 0.20, 0.24, 0.19,
0.21, 0.22, 0.17, 0.08, 0.08, 0.06, 0.09, 0.22, 0.23, 0.22, 0.19, 0.27, 0.16, 0.28,
0.11, 0.10, 0.20, 0.12, 0.15, 0.08, 0.12, 0.09, 0.14, 0.07, 0.09, 0.05, 0.06, 0.11,
0.16, 0.20, 0.25, 0.16, 0.13, 0.11, 0.11, 0.11, 0.08, 0.22, 0.11, 0.13, 0.12, 0.15,
0.12, 0.11, 0.11, 0.15, 0.10, 0.15, 0.17, 0.14, 0.12, 0.18, 0.14, 0.18, 0.13, 0.12,
0.14, 0.09, 0.10, 0.13, 0.09, 0.11, 0.11, 0.14, 0.07, 0.07, 0.19, 0.17, 0.18, 0.16,
0.19, 0.15, 0.07, 0.09, 0.17, 0.10, 0.08, 0.15, 0.21, 0.16, 0.08, 0.10, 0.06, 0.08,
0.12, 0.13

The results are given in Table 6. Since the estimation of parameter θ for GGP, GGB,
and GGL is close to zero, the estimations of parameters for these distributions are equal
to the estimations of parameters for GG distribution. In fact, The limiting distribution
of GGPS when θ → 0+ is a GG distribution (see Proposition 2.2). Therefore, the
value of maximized log-likelihood, log(L), are equal for these four distributions. The
plots of the pdfs (together with the data histogram) and cdfs in Figure 8 con�rm these
conclusions. Note that the estimations of parameters for GGG distribution are not equal
to the estimations of parameters for GG distribution. But the log(L)'s are equal for these
distributions. However, from Table 6 also we can conclude that the GG distribution is
simpler than other distribution because it has three parameter but GGG, GGP, GGB,
and GGL have four parameter. Note that GG is a special case of GGPS family.
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Figure 7. Plots (pdf and cdf) of �tted Gompertz, generalized Gom-
pertz, GGG, GGP, GGB and GGL distributions for the �rst data set.
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Table 5. Parameter estimates (with std.), K-S statistic, p-value, AIC,
AICC and BIC for the �rst data set.

Distribution

Gompertz GG GGG GGP GGB GGL

β̂ 0.0088 0.0356 0.7320 0.1404 0.1032 0.1705

s.e.(β̂) 0.0043 0.0402 0.2484 0.1368 0.1039 0.2571

γ̂ 3.6474 2.8834 1.3499 2.1928 2.3489 2.1502
s.e.(γ̂) 0.2992 0.6346 0.3290 0.5867 0.6010 0.7667

α̂ � 1.6059 2.1853 1.6205 1.5999 2.2177
s.e.(α̂) � 0.6540 1.2470 0.9998 0.9081 1.3905

θ̂ � � 0.9546 2.6078 0.6558 0.8890

s.e.(θ̂) � � 0.0556 1.6313 0.5689 0.2467

−log(L) 14.8081 14.1452 12.0529 13.0486 13.2670 13.6398
K-S 0.1268 0.1318 0.0993 0.1131 0.1167 0.1353
p-value 0.2636 0.2239 0.5629 0.3961 0.3570 0.1992
AIC 33.6162 34.2904 32.1059 34.0971 34.5340 35.2796
AICC 33.8162 34.6972 32.7956 34.78678 35.2236 35.9692
BIC 37.9025 40.7198 40.6784 42.6696 43.1065 43.8521
CM 0.1616 0.1564 0.0792 0.1088 0.1172 0.1542
AD 0.9062 0.8864 0.5103 0.6605 0.7012 0.8331

Table 6. Parameter estimates (with std.), K-S statistic, p-value, AIC,
AICC and BIC for the second data set.

Distribution

Gompertz GG GGG GGP GGB GGL

β̂ 1.3231 13.3618 10.8956 13.3618 13.3618 13.3618

s.e.(β̂) 0.2797 4.5733 8.4255 5.8585 6.3389 7.3125

γ̂ 15.3586 3.1500 4.0158 3.1500 3.1500 3.1500
s.e.(γ̂) 1.3642 2.1865 3.6448 2.4884 2.6095 2.5024

α̂ � 6.0906 5.4236 6.0906 6.0906 6.0905
s.e.(α̂) � 2.4312 2.8804 2.6246 2.7055 2.8251

θ̂ � � -0.3429 1.0× 10−8 1.0× 10−8 1.0× 10−8

s.e.(θ̂) � � 1.2797 0.8151 0.2441 0.6333

− log(L) -184.597 -197.133 -197.181 -197.133 -197.133 -197.133
K-S 0.1169 0.0923 0.0898 0.0923 0.0923 0.0923
p-value 0.0602 0.2259 0.2523 0.2259 0.2259 0.2259
AIC -365.194 -388.265 -386.362 -386.265 -386.265 -386.265
AICC -365.098 -388.072 -386.0371 -385.940 -385.940 -385.940
BIC -359.490 -379.709 -374.954 -374.857 -374.857 -374.857
CM 0.3343 0.1379 0.1356 0.1379 0.1379 0.1379
AD 2.3291 0.7730 0.7646 0.7730 0.7730 0.7730

Appendix

A. We demonstrate those parameter intervals for which the hazard function is decreasing,
increasing and bathtub shaped, and in order to do so, we follow closely a theorem given
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Figure 8. Plots (pdf and cdf) of �tted Gompertz, generalized Gom-
pertz, GGG, GGP, GGB and GGL distributions for the second data
set.
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Figure 9. The pro�le log-likelihood functions for Gompertz, general-
ized Gompertz, GGG, GGP, GGB and GGL distributions for the �rst
data set.

by [12]. De�ne the function τ(x) = −f ′(x)
f(x)

where f ′(x) denotes the �rst derivative of

f(x) in (2.3). To simplify, we consider u = 1− exp(−θ
γ

(eγx − 1)).
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Figure 10. The pro�le log-likelihood functions for Gompertz, gener-
alized Gompertz, GGG, GGP, GGB and GGL distributions for the
second data set.

A.1. Consider the GGG hazard function in (4.2), then we de�ne

τ(u) =
−f ′(u)

f(u)
=

1− α
u

+
2αθuα−1

1− θuα .

If α ≥ 1, then τ ′(u) > 0, and h(.) is an increasing function. If 0 < α < 1, then

lim
u→0

τ ′(u) = −∞, lim
u→1

τ ′(u) =
2αθ2

(1− θ)2 + (α− 1)(1− 1

(1− θ)2 ) > 0.

Since the limits have di�erent signs, the equation τ ′(u) = 0 has at least one root. Also,
we can show that τ ′′(u) > 0. Therefore, the equation τ ′(u) = 0 has one root. Thus the
hazard function is decreasing and bathtub shaped in this case.

A.2. The GGP hazard rate is given by h(u) = θαβuα−1eθu
α

/(eθ − eθu
α

). We de�ne
η(u) = log[h(u)]. Then, its �rst derivative is

η′(u) =
α− 1

u
+ αθeθ

uα−1

eθ − eθuα .

It is clearly for α ≥ 1, η′(u) > 0 and h(u) is increasing function. If 0 < α < 1, then

lim
u→0

η′(u) = −∞, lim
u→1

η′(u) = 0,

So the equation τ ′(u) = 0 has at least one root. Also, we can show that τ ′′(u) > 0. It
implies that equation η′(u) = 0 has a one root and the hazard rate increase and bathtub
shaped.
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B.

B.1. Let w1(α) =
∑n
i=1

θtαi log(ti)C
′′(θtαi )

C′(θtαi )
= ∂

∂α

∑n
i=1 log(C′(θtαi )). For GGG,

w1(α) = 2θ

n∑
i=1

tαi log ti
1− θtαi

,
∂w1(α)

∂α
= 2θ

n∑
i=1

tαi [
log ti

1− θtαi
]2 > 0.

For GGP,

w1(α) = θ

n∑
i=1

tαi log ti,
∂w1(α)

∂α
= θ

n∑
i=1

tαi [log ti]
2 > 0.

For GGL,

w1(α) = θ

n∑
i=1

tαi log ti
1− θtαi

,
∂w1(α)

∂α
= θ

n∑
i=1

tαi [
log ti

1− θtαi
]2 > 0.

For GGB,

w1(α) = (m− 1)θ

n∑
i=1

tαi log ti
1 + θtαi

,
∂w1(α)

∂α
= (m− 1)θ

n∑
i=1

tαi [
log ti

1 + θtαi
]2 > 0.

Therefore, w1(α) is strictly increasing in α and

lim
α→0+

g1(α;β, γ, θ, x) =∞, lim
α→∞

g1(α;β, γ, θ, x) =

n∑
i=1

log(ti).

Also,

g1(α;β, γ, θ, x) <
n

α
+

n∑
i=1

log(ti), g1(α;β, γ, θ, x) >
n

α
+ (

θC′′(θ)

C′(θ)
+ 1)

n∑
i=1

log(ti).

Hence, g1(α;β, γ, θ, x) < 0 when n
α

+
∑n
i=1 log(ti) < 0, and g1(α;β, γ, θ, x) > 0 when

n
α

+ ( θC
′′(θ)

C′(θ) + 1)
∑n
i=1 log(ti) > 0. The proof is completed.

B.2. It can be easily shown that

lim
β→0+

g2(β;α, γ, θ, x) =∞, lim
β→∞

g2(β;α, γ, θ, x) =
−1

γ

n∑
i=1

(eγxi − 1).

Since the limits have di�erent signs, the equation g2(β;α, γ, θ, x) = 0 has at least one
root with respect to β for �xed values α, γ and θ. The proof is completed.

B.3. a) For GGP, it is clear that

lim
θ→0

g3(θ;α, β, γ, x) =

n∑
i=1

tαi −
n

2
, lim

θ→∞
g3(θ;α, β, γ, x) = −∞.

Therefore, the equation g3(θ;α, β, γ, x) = 0 has at least one root for θ > 0, if
∑n
i=1 t

α
i −

n
2
> 0 or

∑n
i=1 t

α
i >

n
2
.

b) For GGG, it is clear that

lim
θ→∞

g3(θ;α, β, γ, x) = −∞, lim
θ→0+

g3(θ;α, β, γ, x) = −n+ 2
n∑
i=1

tαi .

Therefore, the equation g3(θ, β, γ, x) = 0 has at least one root for 0 < θ < 1, if −n +
2
∑n
i=1 t

α
i > 0 or

∑n
i=1 t

α
i >

n
2
.

For GGL, it is clear that

lim
θ→0

g3(θ;α, β, γ, x) =

n∑
i=1

tαi −
n

2
, lim

θ→1
g3(θ;α, β, γ, x) = −∞.
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Therefore, the equation g3(θ;α, β, γ, x) = 0 has at least one root for 0 < θ < 1, if∑n
i=1 t

α
i − n

2
> 0 or

∑n
i=1 t

α
i >

n
2
.

For GGB, it is clear that

lim
p→0

g3(p;α, β, γ, x) =

n∑
i=1

tαi (m− 1)− n(m− 1)

2
,

lim
p→0

g3(p;α, β, γ, x) =

n∑
i=1

−m+ 1 +mtαi
ti

,

Therefore, the equation g3(p;α, β, γ, x) = 0 has at least one root for 0 < p < 1, if∑n
i=1 t

α
i (m−1)− n(m−1)

2
> 0 and

∑n
i=1

−m+1+mtαi
tαi

< 0 or
∑n
i=1 t

α
i >

n
2
and

∑n
i=1 t

−α
i >

nm
1−m .

C. Consider ti = 1 − e−
β
γ
(eγxi−1). Then, the elements of 4 × 4 observed information

matrix In(Θ) are given by

Iαα =
∂2ln
∂α2

=
−n
α2

+ θ

n∑
i=1

tαi [log(ti)]
2[
C′′(θtαi )

C′(θtαi )

+θtαi
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iαβ =
∂2ln
∂α∂β

=

n∑
i=1

[
eγxi − 1

γ
] +

θ

γ

n∑
i=1

tαi [eγxi − 1][(α log(ti) + 1)
C′′(θtαi )

C′(θtαi )

+αθtαi log(ti)
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iαγ =
∂2ln
∂α∂γ

= β

n∑
i=1

[
eγxi(γxi − 1) + 1

γ2
]

+
θβ

γ2

n∑
i=1

[eγxi(γxi−1) + 1][(α log(ti) + 1)
C′′(θtαi )

C′(θtαi )

+αθtαi log(ti)
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iαθ =
∂2ln
∂α∂θ

=

n∑
i=1

tαi log(ti)[
C′′(θtαi )

C′(θtαi )
+ θtαi

C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iββ =
∂2ln
∂β2

=
−n
β2

+ θα2
n∑
i=1

tαi [
eγxi − 1

γ
]2[
C′′(θtαi )

C′(θtαi )

+θtαi
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iβγ =
∂2ln
∂β∂γ

=
(α− 2)

γ2

n∑
i=1

(eγxi(γxi − 1) + 1)

+αθ

n∑
i=1

ti
γ2

(eγxi(γxi − 1) + 1)[
C′′(θtαi )

C′(θtαi )

+
β2

γ
(eγxi − 1)

C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi )))2
]
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Iβθ =
∂2ln
∂β∂θ

=

n∑
i=1

t2αi [
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iγγ =
∂2ln
∂γ2

=
2β

γ3

n∑
i=1

[eγxi(γxi − 1) + 1]

+(α− 1)β

n∑
i=1

[
−2

γ3
(eγxi(γxi − 1) + 1) +

x2i e
γxi

γ3
]

+αβθ

n∑
i=1

[
−2

γ3
(eγxi(γxi − 1) + 1)tαi

C′′(θtαi )

C′(θtαi )
+
tαi x

2
i e
γxi

γ

C′′(θtαi )

C′(θtαi )

+
αβtαi
γ4

(eγxi(γxi − 1) + 1)2
C′′(θtαi )

C′(θtαi )

+
αβt2αi
γ4

(eγxi(γxi − 1) + 1)2
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi )))2
],

Iθγ =
∂2ln
∂θ∂γ

= αβ

n∑
i=1

tαi
γ2

[eγxi(γxi − 1) + 1][
C′′(θtαi )

C′(θtαi )

+θtαi
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
],

Iθθ =
∂2ln
∂θ2

=
−n
θ2

+

n∑
i=1

t2αi [
C′′′(θtαi )C′(θtαi )− (C′′(θtαi ))2

(C′(θtαi ))2
]

−n[
C′′(θ)C′(θ)− (C′(θ))2

(C′(θ))2
],
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In this paper, we estimate the parameters of the Marshall-Olkin gener-
alized exponential distribution under progressive Type-I interval cen-
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1. Introduction

Aggarwala [2001] introduced Type-I interval and progressive censoring and developed
the statistical inference for the exponential distribution based on progressively Type-I
interval censored data. Ng and Wang [2009] introduced the concept of progressive Type-
I interval censoring to the Weibull distribution and compared many di�erent estimation
methods for two parameters in the Weibull distribution via simulation.
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The generalized exponential (GE) distribution has the following probability density
function (pdf)

f(t;α, λ) = αλ(1− e−λt)α−1e−λt,

where t > 0, α > 0 and λ > 0. The cumulative distribution and the hazard rate function
of the GE distribution are as follows:

F (t;α, λ) = (1− e−λt)α,
and

h(t;α, λ) =
αλ(1− e−λt)α−1e−λt

1− (1− e−λt)α ,

where t > 0; The GE distribution was introduced by Gupta and Kunda [2001]. Recently,
Chen and Lio [2010] introduced the concept of progressive Type-I interval censoring
for the generalized exponential distribution and compared many di�erent estimation
methods for the parameters of the distribution via a simulation study.

The Marshall-Olkin generalized exponential (MOGE) distribution was �rst proposed
by Marshall and Olkin [1997] and extensively discussed by Alice and Jose [1999]. The
PDF of the MOGE distribution with the parameters λ and α is

(1.1) f(t;α, λ) =
αλe−λt

(1− (1− α)e−λt)2
, t > 0, 0 < α ≤ 1, λ > 0.

Also, the distribution function and the hazard rate function of the MOGE distribution
are as follows:

(1.2) F (t;α, λ) =
1− e−λt

1− (1− α)e−λt
,

and

h(t;α, λ) =
λ

1− (1− α)e−λt
,

where t > 0. Note that if α = 1, the MOGE distribution reduces to the conventional
exponential distribution. Plots of the density functions, distribution functions and hazard
rate functions for di�erent values of α and λ are given in �gures 1, 2 and 3, respectively.

The �rst two moments and variance of the MOGE distribution are given by

E[T ] =
α log (α)

(α− 1)λ
,(1.3)

E[T 2] =
2αPolyLog[2, 1− α]

(1− α)λ2
,(1.4)

V ar[T ] =
−α
(
α log (α)2 + 2(α− 1)PolyLog[2, 1− α]

)
(α− 1)2λ2

,

where

PolyLog[2, 1− α] =

∞∑
k=1

(1− α)k

k2
.

In this paper, we study the maximum likelihood estimates, estimates via moment
methods and estimates via probability plot for two parameters of the MOGE distribu-
tion under the progressive Type-I interval censoring. Section 2 introduces the progressive
Type-I interval censoring for the MOGE distribution. In Section 3, some methods for
parameters estimation are given. In Section 4, a simulation study is conducted to com-
pare the performances of these estimation methods based on the mean squared error
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Figure 1. Plots of density functions for di�erent values of α and λ

(MSE) and bias. Finally, a numerical example for a real data set is considered and some
discussions and conclusions are given.

2. Progressively Type-I interval censored data

Suppose that n items are placed on a life testing problem simultaneously at time
t0 = 0 under inspection at m pre-speci�ed times t1 < t2 < . . . < tm where tm is the
scheduled time to terminate the experiment. At the ith inspection time, ti, the number,
Xi, of failures within (ti−1, ti] is recorded and Ri surviving items are randomly removed
from the life testing, for i = 1, . . . ,m. It is obvious that the number of surviving items at
the time ti is Yi = n−

∑i
j=1Xj −

∑i−1
j=1Rj . Since Yi is a random variable and the exact
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Figure 2. Plots of distributions functions for di�erent values of α and λ

number of items withdrawn should not be greater than Yi at time schedule ti, Ri could be
determined by the pre-speci�ed percentage of the remaining surviving units at ti for given
i = 1, 2, . . . ,m. Also, given pre-speci�ed percentage values, p1, . . . , pm−1 and pm = 1, for
withdrawing at t1 < t2 < . . . < tm, respectively, Ri = bpiyic at each inspection time ti
where i = 1, 2, . . . ,m. Therefore, a progressively Type-I interval censored sample can be

denoted as (Xi, Ri, ti), i = 1, 2, . . .m, where sample size is n =
m∑
i=1

(Xi + Ri). Note that

if Ri = 0, i = 1, 2, . . . ,m− 1, then the progressively Type-I interval censored sample is a
Type-I interval censored sample, X1, X2, . . . , Xm, Xm+1 = Rm.

Let a progressively Type-I interval censored sample be collected as described above,
beginning with a random sample of n units with a continuous life time distribution
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Figure 3. Plots of hazard functions for di�erent values of α and λ

function F (.;θ). Then, based on the observed data, the likelihood function will be as
follows:

L(θ) ∝
m∏
i=1

[F (ti;θ)− F (ti−1;θ)]Xi [1− F (ti;θ)]Ri .

3. Some parameter estimation methods

In this section, we give some estimation methods for the parameters of the MOGE
distribution.
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3.1. Maximum likelihood estimation. Suppose a progressive Type-I interval cen-
sored sample is collected for the MOGE distribution. Using (1.2), the likelihood function
is

L(α, λ) ∝
m∏
i=1

[
1− e−λti

1− (1− α)e−λti
− 1− e−λti−1

1− (1− α)e−λti−1

]Xi
[

αe−λti

1− (1− α)e−λti

]Ri

,

and the log-likelihood function is

`(α, λ) ∝
m∑
i=1

Xi log

[
1− e−λti

1− (1− α)e−λti
− 1− e−λti−1

1− (1− α)e−λti−1

]

+

m∑
i=1

Ri log

[
αe−λti

1− (1− α)e−λti

]
.

Hence, we have the following log-likelihood equations:

(3.1)


∂`(α, λ)

∂α
= 0,

∂`(α, λ)

∂λ
= 0.

The MLEs of α and λ cannot be obtained in a closed form by solving equations (3.1)
and they must be calculated using a numerical method. Since there is no closed form for
MLEs, a mid-point approximation and the EM algorithm are introduced as follows for
�nding the MLEs of α and λ.

3.1.1. Mid-point approximation method. The midpoint estimators based on progres-
sively Type-I interval censoring can be obtained by assuming that Xi failures occurred

at the center of the interval, mi =
ti−1+ti

2
, and the Ri censored items withdrawn at

the censoring time ti. Then log-likelihood function from the MOGE distribution can be
speci�ed as follows:

log(L◦) ∝
m∑
i=1

[Xi log(f(mi;α, λ)) +Ri log(1− F (ti;α, λ))]

= n logα+ log λ

m∑
i=1

Xi − λ
m∑
i=1

(Ximi +Riti)

−2

m∑
i=1

Xi log(1− (1− α)e−λmi)−
m∑
i=1

Ri log(1− (1− α)e−λti).

Therefore, the maximum likelihood estimate of α, α̂, and the maximum likelihood esti-

mate of λ, λ̂, are the solution of the sequel equations:

(3.2)
n

α̂
= 2

m∑
i=1

Xi
e−λ̂mi

1− (1− α̂)e−λ̂mi
+

m∑
i=1

Ri
e−λ̂ti

1− (1− α̂)e−λ̂ti
,

and
m∑
i=1

Xi

λ̂
=

m∑
i=1

(Ximi +Riti) + 2(1− α̂)
m∑
i=1

Ximi
e−λ̂mi

1− (1− α̂)e−λ̂mi

+(1− α̂)

m∑
i=1

Riti
e−λ̂ti

1− (1− α̂)e−λ̂ti
.(3.3)
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There is no closed form for the solutions of (3.2) and (3.3), thus an iterative numerical

method is needed to obtain the parameter estimates, i.e., α̂ and λ̂.

3.1.2. EM algorithm. The EM algorithm is applicable to obtain the maximum likelihood
estimator of the parameters and useful in a variety of incomplete-data problems where
algorithms such as the Newton-Raphson method may sometimes be complicated. On
each iteration of the EM algorithm, there are two steps called E-step and the M-step:
Let yij , j = 1, 2, . . . , Xi, be the survival times within subinterval (ti−1, ti] and zij , j =
1, 2, . . . , Ri, be the survival times for those withdrawn items at ti for i = 1, 2, 3, . . . ,m,
then the log-likelihood, log(L∗), for the complete lifetimes of n items from the MOGE
distribution is given as follows:

log(L∗) ∝
m∑
i=1

[
Xi∑
j=1

log(f(yij , θ)) +

Ri∑
j=1

log(f(zij , θ))

]

= n(logα+ log λ)− λ
m∑
i=1

[
Xi∑
j=1

yij +

Ri∑
j=1

zij

]

−2

m∑
i=1

[
Xi∑
j=1

log(1− (1− α)e−λyij ) +

Ri∑
j=1

log(1− (1− α)e−λzij )

]
.

(3.4)

Taking the derivative with respective to α and λ, respectively, on (3.4), likelihood
equations are obtained by

n

α
= 2

m∑
i=1

[
Xi∑
j=1

e−λyij

(1− (1− α)e−λyij )
+

Ri∑
j=1

e−λzij

(1− (1− α)e−λzij )

]
,

and

n

λ
= 2

m∑
i=1

[
Xi∑
j=1

(1− α)yije
−λyij

(1− (1− α)e−λyij )
+

Ri∑
j=1

(1− α)zije
−λzij

(1− (1− α)e−λzij )

]

+

m∑
i=1

[
Xi∑
j=1

yij +

Ri∑
j=1

zij

]
.

The EM-algorithm has the following steps:
Step 1. Given initial estimates of α and λ , say α(0) and λ(0);
Step 2. In the kth iteration, the E-step requires to compute

E1i = Eα̂(k), λ̂(k)

[
Y
∣∣∣Y ∈ [ti−1, ti)

]
,

E2i = Eα̂(k), λ̂(k)

[
Y
∣∣∣Y ∈ [ti,∞)

]
,

E3i = Eα̂(k), λ̂(k)

[
e−λ̂

(k)Y

1− (1− α̂(k))e−λ̂(k)Y

∣∣∣∣∣Y ∈ [ti−1, ti)

]
,

E4i = Eα̂(k), λ̂(k)

[
e−λ̂

(k)Y

1− (1− α̂(k))e−λ̂(k)Y

∣∣∣∣∣Y ∈ [ti−1,∞)

]
,

E5i = Eα̂(k), λ̂(k)

[
Y e−λ̂

(k)Y

1− (1− α̂(k))e−λ̂(k)Y

∣∣∣∣∣Y ∈ [ti−1, ti)

]
,
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and

E6i = Eα̂(k), λ̂(k)

[
Y e−λ̂

(k)Y

1− (1− α̂(k))e−λ̂(k)Y

∣∣∣∣∣Y ∈ [ti−1,∞)

]
,

where Y is a random variable which has the MOGE distribution density function (1.1).
Step 3. The M-step maximize the likelihood function. Based on the likelihood equations
for complete data, we can obtain the estimates

α̂(k+1) =
n

2
m∑
i=1

[
Xi∑
j=1

E3i +
Ri∑
j=1

E4i

] ,
and

λ̂(k+1) =
n

m∑
i=1

[
Xi∑
j=1

E1i + 2(1− α̂(k+1))E5i +
Ri∑
j=1

E2i + 2(1− α̂(k+1))E6i

]
;

Step 4. Setting k = k+1, the MLEs of α and λ can be obtained by repeating the E-step
and M-step until convergence occurs.

Note that numerical integration methods are required to compute the above condi-
tional expectations in Step 2.

3.2. Method of moments. Let Y be a random variable which has the MOGE dis-
tribution density function (1.1). The kth moment of a doubly truncated generalized
exponential distribution in the interval (a, b) where 0 < a < b is given by

Eα, λ

[
Y k
∣∣∣Y ∈ [a, b)

]
=

b∫
a

ykf(y;α, λ)dy

F (b;α, λ)− F (a;α, λ)

Equating the sample moment to the corresponding population moment up to the second
order, the following equations can be used to �nd the estimates of moment method:

E[Y ] =
1

n

[ m∑
i=1

XiEα,λ[Y |Y ∈ [ti−1, ti)] +RiEα,λ[Y |Y ∈ [ti−1,∞)]

]
,

and

E[Y 2] =
1

n

[ m∑
i=1

XiEα,λ[Y 2
∣∣Y ∈ [ti−1, ti)]

]

+

[ m∑
i=1

RiEα,λ[Y 2
∣∣Y ∈ [ti−1,∞)]

]
.

An iterative procedure can be employed to solve the above equations for α and λ as
follows:
Step 1. Consider the initial values of α and λ, say α̂(0) and λ̂(0) with k = 0;
Step 2. In the k + 1th iteration,
• we compute Eα̂(k), λ̂(k) [Y |Y ∈ [ti−1, ti)] and Eα̂(k), λ̂(k)

[
Y 2
∣∣Y ∈ [ti−1, ti)

]
and solve

the following equation for α, say α̂(k+1):

P (α) =

[
m∑
i=1

XiEα,λ[Y |Y ∈ [ti−1, ti)] +RiEα,λ[Y |Y ∈ [ti−1,∞)]

]2
n
m∑
i=1

[
XiEα,λ[Y 2|Y ∈ [ti−1, ti)] +RiEα,λ[Y 2|Y ∈ [ti−1,∞)]

] ,
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where using (1.3) and (1.4),

P (α) = E2[Y ]/E[Y 2] =
α log2 α

2(1− α)PolyLog[2, 1− α])
.

• The solution for α, say α̂(k+1), is obtained through the following equation:

α̂(k+1) log (α̂(k+1))

(α̂(k+1) − 1)λ(k+1)
=

1

n

[ m∑
i=1

XiEα̂(k),λ̂(k) [Y |Y ε [ti−1, ti)]

+

m∑
i=1

RiEα̂(k),λ̂(k) [Y |Y ∈ [ti−1,∞)]

]
;

Step 3. Checking convergence, if the convergence occurs then the current α̂(k+1) and

λ̂(k+1) are the estimates of α and λ by the method of moments; otherwise set k = k + 1
and go to Step 2.

3.3. Estimation based on probability plot. For progressively Type-I interval cen-
sored data, (Xi, Ri, ti), i = 1, 2, . . . ,m, of size n, the distribution function at time ti can
be estimated as

F̂ (ti) = 1−
i∏

j=1

(1− p̂j), i = 1, 2, . . . ,m,

where

p̂j =
Xj

n−
j−1∑
k=0

Xk −
j−1∑
k=0

Rk

, j = 1, 2, . . . ,m.

From (1.2), we have

t = − 1

λ
log

1− F (t)

1− (1− α)F (t)
.

If F̂ (ti) is the estimate of F (ti), then the estimates of α and λ in the MOGE distribution

based on probability plot can be obtained by minimizing
m∑
i=1

[
ti + 1

λ
log 1−F̂ (ti)

1−(1−α)F̂ (ti)

]2
with respect to α and λ.

3.4. Simulation algorithm. In this section, we give A short algorithm for simulating
X1, X2, . . . , Xm from a random sample of size n put on life test at time 0 is therefore
given below. Let X0 = R0 = 0; We use the fact that for i = 1, ...,m,

Xi|Xi−1, . . . , X0, Ri−1, . . . , R0 ∼ Binom
(
n−

i−1∑
j=1

(Xj +Rj),

F (ti)− F (ti−1)

1− F (ti−1)

)
,

and

Ri =

⌊
pi
(
n−

i−1∑
j=1

(Xi +Ri)−Xi
)⌋
.

Hence we can give an algorithm as follows:
Step 1. Set i = 0 and let xsum = rsum = 0;
Step 2. Next i;
Step 3. If i = m+ 1, exit the algorithm;
Step 4. Generate Xi as a binomial random variable with parameters (n−xsum−rsum)
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and
F (ti)−F (ti−1)

1−F (ti−1)
;

Step 5. Calculate Robsi =

⌊
pi(n−

i−1∑
j=1

(Xi +Ri)−Xi)

⌋
or Robsi = min(n − xsum −

rsum−Xi, Ri), depending upon how the censoring scheme is chosen;
Step 6. Set xsum = xsum+Xi, rsum = rsum+Robsi ;
Step 7. Go to step 2.

3.5. Simulation schemes. Continuing with our exploration of progressive Type-I in-
terval censoring under the MOGE distribution lifetime models, let us consider a numer-
ical example, and discuss some of the issues which arise. We use the values t1 = 5.5,
t2 = 10.5, t3 = 15.5, t4 = 20.5, t5 = 25.5, t6 = 30.5, t7 = 40.5, t8 = 50.5 and t9 = 60.5.
The lifetime distribution is the MOGE Type with parameters (α, λ) = (0.5, .06), where
are the simulation input parameters. To compare the performances of the estimation
procedures developed in this paper, we consider the following four progressive interval
censoring schemes which are similar to the patterns of simulation schemes used in Ag-
garwala (2001) and also used in Ng and Wang (2009) and Chen and Lio (2010):

p(1) = (.25, .25, .25, .25, .5, .5, .5, .5, 1),

p(2) = (.5, .5, .5, .5, .25, .25, .25, .25, 1),

p(3) = (0, 0, 0, 0, 0, 0, 0, 0, 1),

p(4) = (.25, 0, 0, 0, 0, 0, 0, 0, 1),

where censoring in p(1) is lighter for the �rst four intervals and heavier for the next four
intervals. The censoring pattern is reversed in p(2). p(3) is the conventional interval
censoring where no removals prior to the experiment termination and the censoring in
p(4) only occurs at the left-most and the right-most. The initial values of α and λ for
iterative progresses of MLE, mid-point approximation, EM algorithm, moment method
and probability plot are given the same values, which for each simulation run, is randomly
generated.

3.6. Simulation results. The result for the 1000 simulation runs by R software is
shown in Table 1 and Table 2 and is graphically illustrated in Figures 4 and 5. As the
performances among the four censoring schemes, the third scheme p(3) provides the most

precise results as seen from �Bias�, �SD� (i.e. the standard deviation) and �MSE� (i.e. the
mean squared errors) shown in Table 1 and Table 2 from the dispersions of the boxplots
shown in the Figures 1 and 2, then followed by the schemes p(4), p(1) and p(2).

4. Real data analysis

A data set which consists of 118 patients with breast cancer treated at the Sadouqi
Hospital of Yazd is used for modelling the MOGE distribution; This data set is explored
from [4] and summarized in Table 3. In this table, the �rst column shows 7 pre-assigned
time intervals in years which were determined before the experiment, i.e., [ti−1, ti), i =
1, ..., 7. The second column shows the number of patients who are died in the time
intervals, i.e., X1, ..., X7 and �nally, the last column is the number of patients who were
dropped out from the study at the right end of each time interval; These dropped patients
are known to be survived at the right end of each time interval but no follow up. Hence,
the last column in Table 3 provides the values of Ri, i = 1, . . . ,m = 7.
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Scheme EM Midpoint MLE MME probpt

1 Median 0.4813 0.9553 0.5468 0.3978 0.4272
2 Median 0.4307 1.0000 0.5624 0.3858 0.4614
3 Median 0.5036 0.7766 0.5640 0.4640 0.5983
4 Median 0.4985 0.5783 0.3517 0.4316 0.5639

1 Mean 0.5080 0.8411 0.5740 0.3982 0.5193
2 Mean 0.4809 0.9020 0.5883 0.3860 0.5328
3 Mean 0.5237 0.7696 0.6223 0.4706 0.6100
4 Mean 0.5265 0.6433 0.3708 0.4318 0.5912

1 Bias 0.0080 0.3411 0.0740 -0.1018 0.0193
2 Bias -0.0191 0.4020 0.0883 -0.1140 0.0328
3 Bias 0.0237 0.2696 0.1223 -0.0294 0.1100
4 Bias 0.0265 0.1433 -0.1292 -0.0682 0.0912

1 SD 0.2136 0.2024 0.2777 0.0071 0.3376
2 SD 0.2124 0.1829 0.3110 0.0034 0.3382
3 SD 0.1775 0.2217 0.2683 0.0403 0.2746
4 SD 0.1858 0.2966 0.0979 0.0166 0.2829

1 MSE 0.0457 0.1573 0.0826 0.0104 0.1144
2 MSE 0.0455 0.1950 0.1045 0.0130 0.1155
3 MSE 0.0321 0.1219 0.0869 0.0025 0.0875
4 MSE 0.0352 0.1085 0.0263 0.0049 0.0884

Table 1. Estimates of α from 1000 simulations for the �ve estimation
methods and four simulation schemes.

4.1. Model selection. To select a suitable model for the given data set in Table 3,
we start with the MOGE distribution. We will �t the MOGE distribution and statisti-
cally test whether the MOGE distribution model can be reduced to the exponential (E)
distribution model for the given data set in the Table 3.

Fitting the MOGE to the given data, MLE of (α, λ) is

(α̂, λ̂) = (0.05785, 0.52959),

−2 logL(MOGE) = 137.4273 and AIC(MOGE) = 141.4273. Then we �t the exponen-

tial distribution model to the given data set, MLE of λ is λ̂ = 2.99422, −2 logL(E) =
152.0508 and AIC(E) = 154.0508. Note that AIC(MOGE) < AIC(E) and also, the
log-likelihood ratio statistic is

−2 log(Λ) = (−2 logL(E))− (−2 logL(MOGE)) = 14.6235,

which is greater than χ2
0.05(1) = 3.8415, hence the MOGE distribution provides a better

�t for the data at size 0.05; indeed, the p-value of the test is 0.00013!

Additional model �tting to the GE distribution yields the estimated parameters (α̂, λ̂) =
(0.19251, 1.03246) and −2 logL(GE) = 138.1842, so AIC(GE) = 142.1842.

4.2. Conclusion. In this paper, three methods to estimate the parameters of the MOGE
distribution under progressive Type-I interval censoring have been developed; These
methods were maximum likelihood estimation, estimation of method moments and the
estimation based on the probability plot. The simulation study in the case of moderate
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Figure 4. Boxplots for α from 1000 simulations for the �ve estimation
methods and four simulation schemes

large size data set indicated that all these estimators give relatively accurate parameter
estimation and the maximum likelihood estimator gives the most precise estimation as
summarized in the Table 1 and 2 and Figures 4 and 5. We therefore recommend the
"MLE� to be used to estimate the parameters in the MOGE distribution under progres-
sive Type-I interval censoring. In the end of the paper, a real data set based on patients
with breast cancer in order to demonstrate the applicabilities was used. Table 4 showed
high �exibility of the MOGE distribution to model the data.

Acknowledgment
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Scheme EM Midpoint MLE MME probpt

1 Median 0.06267 0.08473 0.06333 0.02206 0.05194
2 Median 0.05943 0.09222 0.06375 0.01634 0.05005
3 Median 0.06125 0.06425 0.05359 0.02987 0.06601
4 Median 0.06142 0.04903 0.04344 0.0267 0.06359

1 Mean 0.06625 0.0821 0.06254 0.02236 0.05634
2 Mean 0.07151 0.089 0.08204 0.01659 0.05631
3 Mean 0.06317 0.06403 0.05481 0.03016 0.06446
4 Mean 0.06438 0.05095 0.04309 0.02691 0.06391

1 Bias 0.00625 0.0221 0.00254 -0.03764 -0.00366
2 Bias 0.01151 0.029 0.02204 -0.04341 -0.00369
3 Bias 0.00317 0.00403 -0.00519 -0.02984 0.00446
4 Bias 0.00438 -0.00905 -0.01691 -0.03309 0.00391

1 SD 0.02626 0.01911 0.02387 0.00406 0.0296
2 SD 0.03347 0.03598 0.01973 0.27499 0.0043
3 SD 0.01657 0.01194 0.0136 0.00345 0.01817
4 SD 0.02836 0.01926 0.01341 0.014 0.00374

1 MSE 0.00089 0.00073 0.00085 0.00058 0.00143
2 MSE 0.00113 0.00143 0.00123 0.0761 0.0019
3 MSE 0.00035 0.00028 0.00016 0.00021 9e-04
4 MSE 0.00082 0.00039 0.00026 0.00048 0.00111

Table 2. Estimates of λ from 1000 simulations for the �ve estimation
methods and four simulation schemes.

Intervals Number of failures Number of Withdraws

[0, 0.5) 99 4
[0.5, 1.0) 8 2
[1.0, 1.5) 3 0
[1.5, 2.0) 1 0
[2.0, 2.5) 0 0
[2.5, 3.0) 0 0
[3.0, 3.5) 0 1

Table 3. Breast cancer survival times.

Distribution α̂ λ̂ −2 log L̂ AIC BIC CAIC

E - 2.99422 152.0508 154.0508 156.8215 154.0853

GE 0.19251 1.03246 138.1842 142.1842 147.7256 142.2885

MOGE 0.05785 0.52959 137.4273 141.4273 146.9687 141.5316

Table 4. Comparison of the E, GE and MOGE distributions



1618

Method

E
s
ti
m

a
te

s
 f
o
r 

L
a
m

b
d
a

0.05

0.10

0.15

EM MidPoint MLE MME ProbPlot

1

EM MidPoint MLE MME ProbPlot

2

3

0.05

0.10

0.15

4

Figure 5. Boxplot for λ from 1000 simulations for the �ve estimation
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Abstract

Survival analysis has a wide application area from medicine to market-
ing and Cox model takes an important part in survival analysis. When
the distribution of survival data is known or it is appropriate to assume
a survival distribution, use of a parametric form of Cox model is em-
ployed. In this article, we take into account Cox-Gompertz model from
the Bayesian perspective. Considering the di�culties in parameter es-
timation in classical setting, we propose a simple Bayesian approach for
Cox-Gompertz model. We derive full conditional posterior distributions
of all parameters in Cox-Gompertz model to run Gibbs sampling. Over
an extensive simulation study, estimation accuracies of the classical
Cox model and classical and Bayesian settings of Cox-Gompertz model
are compared with each other by generating exponential, Weibull, and
Gompertz distributed survival data sets. Consequently, if survival data
follows Gompertz distribution, most accurate parameter estimates are
obtained by the Bayesian setting of Cox-Gompertz model. We also
provide a real data analysis to illustrate our approach. In the data
analysis, we observe the importance of use of the most accurate model
over the survival probabilities of censored observations.
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1. Introduction

Survival analysis is a class of statistical methods for studying occurrence and timing
of events. An event can be de�ned as development of a disease, response to a treatment,
relapse, or death. Therefore, the time from start of a treatment to response, length
of remission, and time to death may be taken as a survival time. The most common
approach to model covariate e�ects on survival times is the Cox's semi-parametric re-
gression model, which takes into account the e�ect of censored observations [5]. In the
Cox model, no particular form of probability distribution is assumed for survival times.
However, if it is known, parametric models, such as exponential, Weibull, or Gompertz
can be applied.

The Cox model is sensitive to the violations of proportional hazards assumption. The
form of baseline hazard rate in�uences the properties of estimators [2]. Because there is
no need to assume a particular form of probability distribution for the survival times,
the Cox model is more advantageous than the parametric counterparts if baseline hazard
is incompatible with a particular distribution. Hazard function is not restricted to a
speci�c functional form; hence, the model has �exibility and widespread applicability. On
the other hand, if the assumption of a particular probability distribution is appropriate
for data, inferences based on such an assumption will be more precise. In particular,
parameter estimates and estimates of quantities such as relative hazards and median
survival times will tend to have smaller standard errors than those obtained without
a distributional assumption [4]. Based on asymptotic results, Efron [7] and Oakes [29]
showed that parametric models lead to more e�cient parameter estimates than the Cox
model under certain circumstances [28].

Making special assumptions on the distribution of survival times, such as exponential,
Weibull, or Gompertz, leads to parametric regression models. Exponential distribution
is widely used in survival studies. It plays a role in lifetime studies analogous to normal
distribution in other areas of statistics. It is often referred as purely random failure
pattern [26]. Although exponential distribution is characterized by a constant hazard
function, its constant hazard rate appears to be restrictive in both health and industrial
applications [22]. Weibull distribution is a generalization of exponential distribution. It
has a hazard function that is monotone increasing, decreasing, or constant. Therefore,
it has broader applications. Although use of exponential or Weibull model may be suf-
�cient for a realistic description of various survival time data, other distributions such
as Gompertz are required for more precise results. Gompertz distribution is used to
describe mortality curves and later modi�ed by Makeham [27] by addition of a constant
hazard function. Only exponential, Weibull, and Gompertz models have the assumption
of proportional hazards with the Cox model [2]. Because of the functional form of its
hazard rate, Gompertz model is more �exible than Weibull model. Also, it allows to
asses the in�uence of independent variables on both parameters of the distribution [3].

Cox-Gompertz model has a wide application area from automobile industry to medicine.
Gompertz distribution is commonly used in actuary, reliability, and life testing as a sur-
vival time distribution [1]. Firstly, it is used to �t mortality tables by Gompertz [15].
Spickett and Ark [30] �tted the Gompertz distribution to dose-response data of larval
tick populations. Grunkemeier et al. [16] used the Gompertz model for the survival
times after a surgery for acquired hearth disease. Classical analysis of Gompertz model
for cure rate models was given by Gieser, et al. [13]. Willekens [31] provided connections
between the Gompertz, the Weibull and other Type-I extreme value distributions. Fab-
rizio [8] used Gompertz model for cabinet duration times. Klepper [23] used Gompertz
distribution to estimate hazard rate models for the length of time for a particular �rm
stays in the market. Cantner et al. [3] used the approach of Klepper [23] for German
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automobile industry. Jeong and Fine [19] and Jeong [18] used Gompertz distribution
to parameterize cumulative incidence function, which is used to estimate the cumulative
probability of locoregional recurrences in the presence of other competing events. Goko-
vali et al. [14] use Gompertz distribution to analyze the determinants of tourists' length
of stay at a destination. Launder and Bender [24] developed adjusted risk di�erence
and number needed to treat measures for use in observational studies with survival time
outcomes within the framework of the Cox model taking the distribution of confounders
into account. The performance of these estimators is assessed by performing Monte Carlo
simulations and is also illustrated by means of data of the Dusseldorf Obesity Mortality
Study. Ghitanya et al. [12] studied the maximum-likelihood estimates of the parameters
by considering a progressively Type-II censored sample from the Gompertz distribution.

Estimation of parameters of Cox-Gompertz model requires use of numerical techniques
such as Newton-Raphson (NR). Because NR method requires only �rst and second partial
derivatives of likelihood function, it is very �exible. However, it is highly sensitive to
the initial values, it may require a large number of iterations to converge, and it may
converge to a local maximum or may not converge in some cases. NR method gives no
insight into the distribution of parameters. Moreover, numerical methods such as NR are
asymptotic; hence, standard deviations of parameters are obtained only approximately.
These are important disadvantages of the classical setting. Another general disadvantage
of the classical setting is that ML estimators need not be �nite, so it can occur outside the
parameter space. Considering these weaknesses, we propose use of a Bayesian approach
for estimation of Cox-Gompertz model.

In survival analysis, Bayesian approaches provide a �exible tool via the Gibbs sampling
when the full conditional distributions are found in a closed form. Dellaportas and
Smith [6] give a Bayesian approach for proportional hazards model with baseline hazard
function of exponential and Weibull distributions. Bayesian approaches to the parametric
survival models have some advantages over the classical setting. In the Bayesian setting,
inference is exact rather than asymptotic. It provides an entire posterior distribution for
each element of the model. However, the classical setting yields a point estimate and
a precision estimated via an asymptotic method. In addition, the Bayesian approach
would give better estimates of variability than the likelihood analysis [9].

Bayesian approaches to some parametric forms of the Cox model are given by Kim
and Ibrahim [21]. They consider Cox-Weibull and extreme value regression models,
and suggest use of a uniform prior instead of the Je�rey's. They also derive su�cient
conditions for the existence of posterior moment generating functions and those of the
posterior distributions to be proper in the case of Cox-Weibull and extreme value regres-
sion models. Kim and Ibrahim [21] give Bayesian estimation procedure for an extreme
value type I distribution. In their approach, data is a log-completely observed time or
log-censoring time. In this study, however, we consider the Gompertz distribution as
the distribution of a completely observed or censoring time without any transformations
such as log. Then, we propose a Bayesian approach to Cox-Gompertz model. Although
the distributional forms of extreme value and Gompertz distributions are similar, their
domains are not the same (see for the distributional forms Bender et al. [2] and Kim
and Ibrahim [21]. In fact, there are several distributional forms of Gompertz distribution
[20, p.25-26, 81-85]. The one used here can be interpreted as a truncated extreme value
type-I distribution. Therefore, we give a Bayesian approach for a di�erent parametric
model than the one given by Kim and Ibrahim [21]. In addition, we derive full conditional
posterior distributions of the model parameters. Because of not using an approximate
method to generate random numbers from the full conditionals, our derivations make the
application of Bayesian setting more �exible.
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In Section 2 the Cox-Gompertz model is illustrated. In Section 3, Bayesian inference
for the Cox-Gompertz model is demonstrated and full conditional distributions are given
to derive posterior inferences by the Gibbs sampling. In Section 4, a real data analysis
is presented to illustrate our approach. We observe that use of classical Cox model can
produce notably di�erent estimates of survival probabilities for censored observations.
In Section 5, the simulation study on the comparison of estimation accuracies of Cox,
Cox-Gompertz models in the classical setting, and Cox-Gompertz model in the Bayesian
setting is given. In Section 6, a short discussion is given.

2. The Cox-Gompertz model

A data set, based on a random sample of size n, consists of (tj , δj ,xj) for j = 1, . . . , n,
where tj is the time on study for the jth individual, δj is the event indicator taking 1 if
the event has occurred and 0 otherwise, and xj is the vector of covariates or risk factors
for the jth individual. Hazard function for the Cox model is given as follows:

h(t;x) = h0(t) exp{Xβ}, (1)

whereX is the design matrix including categorical variables or continuous measurements
of each individual, h0(t) is the baseline hazard function obtained for an individual with
xji = 0, and β[p×1] is a vector of unknown parameters. In the absence of tied observations,
complete censored-data likelihood is given as follows:

L(β, h0(t))=

n∏
j=1

h0(tj |xj)δjS(tj |xj)

=

n∏
j=1

h0(tj)
δj [exp{β

′
xj}]δj exp

{
−H0(tj) exp{β

′
xj}

}
,

(2)

where H0(t) is cumulative baseline hazard function and S(tj |xj) is survival function [22].
Under Gompertz distribution, the baseline hazard function is de�ned as follows:

h0(t) = λ exp{αt}, (3)

where 0 < t ≤ ∞, λ > 0 is a scale and −∞ < α <∞ is a shape parameter. Cumulative
baseline hazard function is as following:

H0(t) = (λ/α)[exp{αt} − 1]. (4)

Using (3), (4) and the general likelihood function given in (2), likelihood function of
the Gompertz model is obtained as following:

L(h0(t),β|t)∝
n∏
j=1

λδj exp
{
δj(αtj + β

′
xj)
}
exp

{
(λ/α)[1− exp(αtj)]

× exp(β
′
xj)
}
.

(5)

NR method is a frequently used method to obtain the ML estimates over (5).

3. Bayesian setting for the Cox-Gompertz model

The likelihood function given in (5) is used to obtain a posterior distribution. We
consider use of an improper prior distribution to conduct a noninformative Bayesian
analysis. Joint prior distribution of h0(t) and β is taken as p(h0(t),β) ∝ constant. Then
the joint posterior distribution of h0(t) and β given the data is found from (5) as follows:

p(h0(t),β|t)∝ λ
∑n

j=1 δj exp

{ n∑
j=1

δj(αtj + β
′
xj) + (λ/α)

n∑
j=1

[1− exp(αtj)] exp(β
′
xj)

}
.

(6)
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where p(h0(t),β|t) = p(α, λ,β|t).

Gibbs sampling is employed to draw posterior inferences from the posterior given in
(6). Full conditional posterior distributions of α, λ, βi are required to run the Gibbs
sampling. The following full conditionals are obtained:

α|λ,β ∼ N
[
3
∑n
j=1(δjtj − λ

t2j
2
eβ

′
xj )

λ
∑n
j=1 t

3
je
β
′
xj

,
3

λ
∑n
j=1 t

3
je
β
′
xj

]
, (7)

λ|α,β ∼ Gamma
[ n∑
j=1

δj + 1,
α∑n

j=1[exp(αtj)− 1] exp(β
′
xj)

]
, (8)

βi|α, λ,β−i ∼ N
[
s2
s1
,
1

s1

]
, (9)

where β−i contains the regression parameters but βi, s1 = (λ/α)
∑n
j=1 cjx

2
ji [exp(αtj)−

1], and s2 =
∑n
j=1 δjxji − (λ/α)

∑n
j=1 cjxji[exp(αtj) − 1]. Derivation of all of these

full conditionals are given in the Appendices A1-A3. Implementation of Gibbs sampling
using these full conditional distributions is straightforward. Number of iterations is
determined such that achievement of convergence is ensured. Convergence check can be

made by using the potential scale reduction factor, R̂, given by Gelman [11]. If value of

R̂ is close to 1 and less than 1.2 then it is concluded that the convergence is achieved for
the relevant parameter [11].

The su�cient conditions for the existence of posterior moment generating function of
the model parameters and the propriety of the posterior distribution are mentioned by
Kim and Ibrahim [21] for the Weibull and extreme value distribution cases. Kim and
Ibrahim [21] assume that one of the parameters of hazard function, corresponding to
Weibull distribution, is known; and hence, one of the parameters of hazard function in
the extreme value distribution case is also assumed to be known. In addition, they note
that if these do not assumed, joint posterior distributions are always improper. On the
contrary, all of the parameters of the hazard function of the Gompertz distribution that
we are working on are random. Thus, the propriety of our joint posterior distribution is
uncertain when looked from the perspective of Kim and Ibrahim [21]. Gelfand and Shau
[10] state that if a Gibbs sampler is used on the improper joint posterior, it is possible to
use obtained iterates to draw inferences on the lower-dimensional proper posteriors. As
a result, if full conditionals are proper, foregoing transition density remains valid. When
the full conditionals given in (7)- (9) are investigated, it is seen that they are proper if
α and λ are both �nite. Therefore, we do not need to ascertain propriety of our joint
posterior distribution in another way. Instead, we utilize directly the result given by
Gelfand and Shau [10] due to the propriety of the full conditionals.

4. A real data example

A popular data set is taken into account to illustrate and discuss our �ndings. The
data is on lung cancer and given by Lawless [25]. The data set is also used by Gelfand
and Mallic [9] and Kim and Ibrahim [21]. Gelfand and Mallic [9] used the data set to
illustrate their work on Cox model, for which the baseline hazard, the covariate link, and
the covariate coe�cients are all unknown. Thus, they investigated four models from the
Bayesian perspective. Kim and Ibrahim [21] gave the ML and Bayesian estimates using a
uniform prior under the Cox-Weibull model by including an intercept term and assuming
one of the parameters of the hazard function is known.
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The data set consists three covariates that performance status at diagnosis (measure
between 0 and 100), age of patients in years, and months from diagnosis to entry into
the study. Three of the 40 observations are censored. There are 3 tied observation pairs.
One of them includes one censored and one uncensored observations. The censored one
and one of the other two tied pairs were discarded from the data set. These tied observa-
tions were not noticed by Gelfand and Mallic [9] and Kim and Ibrahim [21]. In addition
they do not mention anything about the tied observations. We �t Cox-Gompertz model
under the Bayesian setting. In Gibbs sampling, total number of iterations was taken
as 2500, and 10 parallel chains were generated. To �ltrate the e�ect of starting values,
burn-in period was taken as the �rst 500 iterations of each chain. Every 25 iterations
were recorded to reduce the autocorrelation in each of the chains. Parameter estimates
with their estimated standard deviations for the Cox model in classical setting and the
Cox-Gompertz model in both of the classical and Bayesian settings, and potential scale
reduction factor, corresponding to each parameter are given by Table 1.

Table 1. Classical and Bayesian parameter estimates (estimated standard
deviations) over Cox and Cox-Gompertz models, and values of potential scale

reduction factor (R̂) values.

Classical Estimates Bayesian Estimates

Cox Model Cox-Gompertz Model Cox-Gompertz Model R̂

α 0.0003 (7.42 · 10−7) -0.0019 (2.65 · 10−7) 1.003
λ 0.0196(2.70 · 10−7) 0.0331 (5.41 · 10−3) 1.001
β1 -0.0130(1.13 · 10−4) -0.0504 (9.12 · 10−5) -0.0121 (2.86 · 10−5) 1.001
β2 0.0135(3.16 · 10−4) 0.0351 (8.79 · 10−5) -0.0076 (2.97 · 10−5) 1.001
β3 -0.0149(1.42 · 10−4) 0.0219 (2.65 · 10−5) -0.0015 (4.58 · 10−7) 1.004

R̂ values indicate that the convergence is achieved for all of the parameters. Estimated
standard deviations given in Table 1 are obtained by using inverse of the Hessian matrix
and the generated Gibbs sequence in the classical and Bayesian settings, respectively. It
is seen from the Table 1 that estimated standard deviations of the parameters of Cox-
Gompertz model are smaller than that of the Cox model in both of the classical and
Bayesian settings. ML and the Bayesian estimates are not far from each other. The
Bayesian estimates of the covariate coe�cients, which are more precise, are closer to that
of the classical Cox model.

To investigate which model is more successful in explaining the censoring, we estimate
P (t12 > 231|x12), P (t15 > 103|x15) and P (t23 > 25|x23) over the considered models,
where x12, x15 and x23 are the observed values of covariates corresponding to the relevant
censored observations. The same approach of Gelfand and Mallic [9] is used to calculate
the probabilities in the Bayesian case. ML estimates of the Cox-Weibull model given by
Kim and Ibrahim [21] are used. The results and product of these probabilities, referred
as overall, are given in Table 2.

Bene�t of the parametric approach for this data set is clearly seen in the Table 2 that
Cox-Gompertz model is better than the classical Cox model in the estimation of censored
survival times. Cox-Weibull model is also unsuccessful. This is an example of the case
that the baseline hazard is not compatible with the parametric distribution. The Cox-
Gompertz model seems to be more successful in the estimation of survival probabilities
in both of settings. When the classical and Bayesian settings of Cox-Gompertz model are
compared, the probabilities obtained over the classical estimates for the survival times
of 25 and 103 are greater than their Bayesian counterparts. However, the case is just the
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Table 2. Survival probabilities for censored observations.

Classical Estimates Bayesian Estimates

Cox Cox-Gompertz Cox-Weibull Cox-Gompertz

P (t12 > 231|x12) < 0.0001 0.0619 < 0.0001 0.1122
P (t15 > 103|x15) < 0.0001 0.7083 < 0.0001 0.3795
P (t23 > 25|x23) < 0.0001 0.9095 < 0.0001 0.7883

Overall < 0.0001 0.0387 < 0.0001 0.0336

reverse for the survival time of 231. Thus, the Bayesian estimates are more successful
for longer survival times for the data set of interest. As for the overall performance, the
Bayesian and classical estimates of Cox-Gompertz model are similar in estimating the
censored survival times.

Plots of posterior marginal distributions of the parameters are given by Figure 1. Most
of the probability mass of all marginal posterior densities of the parameters are less or
greater than zero. And all of them are nearly symmetric. We can conclude that all of
the parameters have statistically signi�cant e�ects on the survival times.

-0.002 -0.002 -0.002 -0.002
α

0.02 0.04 0.06λ

-0.0121 -0.0121 -0.0120 -0.0120
β1

-0.0077 -0.0076 -0.0076 -0.0075 -0.0075 -0.0074
β2

-0.001469 -0.001468 -0.001467 -0.001466
β3

Figure 1. Marginal posterior densities of α, λ and the elements of β.

5. Simulation study

A simulation study is conducted to investigate the features of our approach and to
compare them with classical Cox and Cox-Gompertz models. Two covariates were taken
into account. Values of the X1 is generated from N(3, 0.1) and values of the X2 is
generated from N(4, 0.5). The survival data were generated by using formulas of (10),
given by Bender, et al. [2], from the Exponential(λ), Gompertz(α, λ), and Weibull(ν, λ)
distributions, respectively.
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TEj = − log(U)

λ exp{β1xj1 + β2xj2}
, TGj = (1/α) log

[
1− α log(U)

λ exp{β1xj1 + β2xj2}

]
TWj =

[
− log(U)

λ exp{β1xj1 + β2xj2}

]1/ν
,

(10)

where U ∼Uniform(0,1) and βi's, i = 1, 2, are regression coe�cients.
To use a moderate sample size, it is taken as 20. True values of parameters for each

survival distribution are given in the third columns of Tables 3-11. Censoring rate is
taken as 0 and 0.1, which correspond to cases of no censoring and a moderate rate of
censoring, respectively. 1000 independent samples were generated for each of the com-
binations. Parameter estimates, given by the Tables 3-11 were calculated by averaging
the estimates over the generated 1000 samples. Absolute and relative bias, standard
deviation and mean square error (MSE) values are reported in Tables 3-11.

It is seen from the Table 3, 4, and 5 that when the survival data are distributed as ex-
ponential, parameter estimates and their estimated standard deviations are not a�ected
by the increased censoring for all of three settings. Classical parameter estimates of Cox
and Cox-Gompertz models are very di�erent from each other, and estimated standard
deviations and MSEs of the parameter estimates of Cox model are smaller than that
of Cox-Gompertz model. Absolute and relative biases of parameter estimates of Cox
model are smaller than that of Cox-Gompertz model. Thus, Cox model generates better
estimates than Cox-Gompertz model in case of exponentially distributed survival data
with the classical setting. As for the Bayesian setting, it is interesting that the parameter
estimates are similar in all of the cases, in addition their standard deviations and MSEs
are close to zero. Absolute biases in the Bayesian setting are somewhat greater than that
of Cox model in the classical setting, whereas MSEs are smaller in the Bayesian setting.
The cause of this situation is smaller estimated standard deviations of the Bayesian set-
ting. When the classical and Bayesian settings of Cox-Gompertz models are compared, it
is seen that absolute and relative biases and the MSEs of the Bayesian setting are smaller
than that of the classical setting. As the result, it can be stated the Bayesian approach
is neither better nor worse than the classical Cox approach and better than the classical
settings of Cox-Gompertz model when the data come from exponential distribution. The
side e�ects of the disagreement between the survival distribution and baseline hazard is
clearly seen here for the classical settings and obtained smaller variances are neutralized
the side e�ects of the disagreement in the Bayesian setting.

It can be concluded from the Table 6, 7, and 8 that in contrast to the preceding infer-
ences, absolute and relative biases of the parameter estimates obtained over Cox model
is greater than that of Cox-Gompertz model for the cases 3 and 4 when the survival data
comes from Weibull distribution. In addition, estimated standard deviations and MSEs
of the model parameters obtained by Cox model are greater than that of obtained by
Cox-Gompertz model for the cases 3 and 4. These situations are just reverse for the case
1. Absolute and relative biases and MSEs of the Bayesian estimates are less than that
of Cox and Cox-Gompertz models both. The Bayesian parameter estimates of model
parameters are also similar in all of the cases for Weibull distributed data. The cause
of this can be the con�ict between baseline hazard of the Gompertz distribution and
the Weibull distributed survival data. When the survival data come from the Weibull
distribution, the Bayesian setting is more successful than the classical setting.
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When the survival data comes from the Gompertz distribution, see the Tables 9,
10, and 11, the smallest estimated standard deviations are generated by the classical
setting of Cox-Gompertz model, whereas the smallest MSEs are given by the Bayesian
setting. The classical Cox model produces the worst standard deviations and MSEs
among the classical and Bayesian settings of Cox-Gompertz model. This implies that
when distribution of the data and underlying baseline hazard agrees, using Cox-Gompertz
model is practically reasonable. The smallest absolute biases are seen in the Bayesian
setting. Relative biases of the parameter estimates generated by the classical setting of
Cox-Gompertz model are greater than that of the Bayesian setting. While the classical
Cox model is being a�ected by the increased censoring, Cox-Gompertz model generates
smaller absolute biases for 0 and 0.1 censoring rates in all of the cases. The same inference
is valid for the Bayesian approach in the cases 5 and 6. In general, if one has strong
information on the distribution of the lifetime data are distributed as Gompertz, use of
the Bayesian setting for Cox-Gompertz model is a practically reasonable way.

When the overall results are considered, it is concluded that when survival data come
from exponential distribution, Cox model in the classical setting gives the best parameter
estimates. But if the data come from Weibull distribution, parameter estimates obtained
from all of the settings are not su�cient enough. Thus, a Cox-Weibull model can be
applied. When the data is distributed as Gompertz, due to the smallest absolute biases
and MSEs produced by the Bayesian setting, advantages of the parametric approach over
Cox model and advantages of the Bayesian approach over the classical are ascertained.

When the ratio of number of data sets for which NR method were not converged
to the total number of the generated data sets is considered, another advantage of the
Bayesian approach is clearly seen. Proportion of unconverged iterations for Cox and
Cox-Gompertz models are given in Table 12. Cases seen on the �rst column are the same
as the cases de�ned in the Tables 3, 6, and 9.

It is seen from Table 12 that NR method encounters certain convergence problems
for Cox-Gompertz model for exponential and Weibull distributions, because of its de-
pendency to the starting values. Because NR method had not converged in most of the
iterations, thus 1000 samples could not be obtained with reasonable number of genera-
tions; and hence , some cells of Tables 3 and 6 could not be �lled. Convergence of NR
method for Cox model under Weibull and Gompertz distributions were less problem-
atic. In general, the Table 12 re�ects the problematic dependency of NR method to the
starting values for considered models.

6. Discussion

In this article, we consider use of Gibbs sampling to draw posterior inferences for
Cox-Gompertz model, when all of the parameters of the hazard function are unknown.
We derive required full conditional distributions for all parameters. All of the full condi-
tionals are found to be familiar and proper distributions. Therefore, there is no need to
use a random number generation algorithm such as rejection sampling to generate ran-
dom numbers from full conditionals. This brings in a �exibility to the presented approach.

Main disadvantage of our approach is that if the survival data is not compatible with
the Gompertz distribution, it is not as successful as the classical Cox model in the esti-
mation of parameters. This situation is also observed in the simulation study. However,
if this is not the case, our approach is more advantageous than Cox model and classical
setting of Cox-Gompertz model. It utilizes superiorities of the Bayesian approaches over
the classical counterparts, which are mentioned in the Section 1. Because we are treating
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Table 3. The ML estimates of parameters of the Cox model over 1000
samples, each was generated from the exponential distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE

0
1 λ 0.071

β1 -0.100 β1 0.124 0.224 224.401 6.690 44.808
β2 -0.200 β2 -0.104 0.096 47.794 1.337 1.797

0.1
2 λ 0.071

β1 -0.100 β1 0.089 0.189 189.043 7.461 55.700
β2 -0.200 β2 -0.097 0.103 51.286 1.507 2.281

0
3 λ 0.071

β1 -1.000 β1 -1.120 0.120 -11.970 7.227 52.242
β2 -0.200 β2 -0.329 0.129 -64.442 1.516 2.315

0.1
4 λ 0.071

β1 -1.000 β1 -1.026 0.026 -2.645 > 104 > 104

β2 -0.200 β2 -0.499 0.299 -149.646 > 104 > 104

0
5 λ 0.071

β1 0.500 β1 0.248 0.252 50.452 4.071 16.637
β2 -1.000 β2 -0.577 0.423 42.287 0.836 0.878

0.1
6 λ 0.071

β1 0.500 β1 0.103 0.397 79.368 4.793 23.129
β2 -1.000 β2 -0.603 0.397 39.693 0.985 1.128

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation;
MSE: Mean square error.

all parameters of the hazard function as random, our approach is more precise. The
convergence problems of the Gibbs sampling are not as much as NR method, as seen in
the simulation study.

Gompertz distribution has many application areas, so does the Bayesian approach to
Cox-Gompertz model. Moreover, the Bayesian approach makes the application of the
Cox-Gompertz model easier, in all of the mentioned areas, because of the superiorities.

Appendix

A1. Derivation of full conditional distribution of α. Full conditional distribution
of α given the other parameters is obtained as

p(α|λ,β, t) ∝ exp

{ n∑
j=1

αδjtj + (λ/α)

n∑
j=1

[1− exp(αtj)] exp(β
′
xj)

}
. (11)

When we use Taylor expansion of exp(αtj) at 0, the following is obtained from eq.
(11):

p(α|λ,β, t) ∝ exp

{ n∑
j=1

αδjtj + [λ/α]

n∑
j=1

[
1− (Tm(α, j) +Rm(α, j))

]
exp(β

′
xj)

}
(12)

wherem is the order of Taylor expansion, Tm(α, j) = 1+αtj+(α2t2j )/2+· · ·+(αmtmj )/m!,
and Rm(α, j) is the reminder term of the Taylor expansion. Because each term is a
function of the rv α, to obtain a tractable full conditional distribution, we need to show
that the distribution of Tm(α, j) + Rm(α, j) converges to that of Tm as m → ∞. Let
Xm = αmtmj /m! be a sequence of rv's for m = 1, 2, . . . and Y = αtj , where Y ∈ R.
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Table 4. The ML estimates of parameters of the Cox-Gompertz model over
1000 samples, each was generated from the exponential distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE

0 α 0.022
1 λ 0.071 λ 0.283 0.211 -295.976 0.061 0.048

β1 -0.100 β1 1.377 1.477 1477.239 4.381 21.371
β2 -0.200 β2 -0.036 0.164 81.815 2.638 6.985

0.1 α * * * * *
2 λ 0.071 λ * * * * *

β1 -0.100 β1 * * * * *
β2 -0.200 β2 * * * * *

0 α 0.010
3 λ 0.071 λ 2.000 1.928 -2700.492 0.178 3.749

β1 -1.000 β1 -6.559 5.559 -555.935 63.643 4081.362
β2 -0.200 β2 -0.001 0.199 99.635 44.223 1955.697

0.1 α 0.010
4 λ 0.071 λ 1.997 1.925 -2696.298 0.201 3.746

β1 -1.000 β1 -6.561 5.561 -556.145 64.936 4247.671
β2 -0.200 β2 -0.001 0.199 99.259 45.049 2029.427

0 α 0.010
5 λ 0.071 λ 2.111 2.039 -2856.283 0.127 4.175

β1 0.500 β1 -7.004 7.504 1500.855 5628.965 > 104

β2 -1.000 β2 -0.009 0.991 99.056 4144.209 > 104

0.1 α 0.010
6 λ 0.071 λ 2.084 2.013 -2819.376 0.139 4.072

β1 0.500 β1 -6.923 7.423 1484.535 6196.135 > 104

β2 -1.000 β2 -0.004 0.996 99.553 4517.634 > 104

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.

*: 106 data sets had been generated, but the convergence could not be achieved for 1000 of them.
MSE: Mean square error.

For a �xed value of k, suppose |y| < k. Then, for all m > k the following result is
straightforwardly obtained:

|y|m−k < k(k + 1)(k + 2) · · · (m− 1).

Thus,

0 <
|y|m

m!
≤ |y|

km− k
m!

<
k(k + 1)(k + 2) · · · (m− 1)

m!
=

|y|k

(k − 1)!m
.

In terms of rv's, we have the following inequality for all values of α:

Xm ≤
|Y |k

(k − 1)!m
. (13)

The de�nition of convergence in probability to zero is as follows:

lim
m→∞

P (|Xm| < ε) = 1. (14)

The inequality in (13) implies that if

lim
m→∞

P

(
|Y |k

(k − 1)!m
< ε

)
= 1, (15)

then eq. (14) is ensured. Because k is a �xed constant, the limit in (15) is straightfor-
wardly equal to one. Thus,

Xm
p.−→ 0, as m→∞; and hence Sm =

∞∑
i=m

Xi
p.−→ 0, as m→∞.
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Table 5. The Bayesian estimates of parameters of the Cox-Gompertz model
over 1000 samples, each was generated from the exponential distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE

0 α -0.004 0.002 0.000
1 λ 0.071 λ 0.246 0.175 -244.768 0.058 0.034

β1 -0.100 β1 -0.371 0.271 -270.733 0.009 0.073
β2 -0.200 β2 -0.271 0.071 -35.286 0.005 0.005

0.1 α -0.005 0.002 0.000
2 λ 0.071 λ 0.214 0.143 -200.176 0.055 0.023

β1 -0.100 β1 -0.371 0.271 -270.686 0.010 0.073
β2 -0.200 β2 -0.270 0.070 -35.242 0.006 0.005

0 α -0.002 0.000 0.000
3 λ 0.071 λ 0.016 0.055 77.072 0.005 0.003

β1 -1.000 β1 -0.371 0.629 62.934 0.014 0.396
β2 -0.200 β2 -0.273 0.073 -36.346 0.008 0.005

0.1 α -0.002 0.000 0.000
4 λ 0.071 λ 0.015 0.057 79.510 0.005 0.003

β1 -1.000 β1 -0.371 0.629 62.929 0.015 0.396
β2 -0.200 β2 -0.273 0.073 -36.465 0.009 0.005

0 α -0.002 0.001 0.000
5 λ 0.071 λ 0.051 0.021 28.831 0.013 0.001

β1 0.500 β1 -0.371 0.871 174.291 0.010 0.760
β2 -1.000 β2 -0.261 0.739 73.900 0.006 0.546

0.1 α -0.002 0.001 0.000
6 λ 0.071 λ 0.043 0.028 39.138 0.012 0.001

β1 0.500 β1 -0.372 0.872 174.331 0.011 0.760
β2 -1.000 β2 -0.261 0.739 73.882 0.006 0.546

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.
MSE: Mean square error.

Let h be a continuous function at zero, if Ym
p.−→ 0 as m → ∞ then h(Ym)

p.−→ h(0)
as m → ∞ [17, see Theorem 10.2]. Regarding this theorem, if we de�ne h(Sm) as the
following:

h(Sm) = exp

{
− [λ/α]

n∑
j=1

exp(β
′
xj)Sm

}
,

then h(Sm)
p.−→ 1, as m → ∞. This result implies that the reminder term in (12)

converges to 1 in probability; and hence, it converges to 1 in distribution.
Right hand-side of (12) is rewritten as follows:

exp

{ n∑
j=1

αδjtj + [λ/α]

n∑
j=1

exp(β
′
xj)
[
1− Tm(α, j)

]}
· h(Sm). (16)

Because the value of n is �nite, it concludes from the well-known Slutsky's theorem [17,
p. 248] that the expression in (16) converges to the following:

exp

{ n∑
j=1

αδjtj + [λ/α]

n∑
j=1

exp(β
′
xj)
[
1− T (α, j)

]}
· 1 (17)

in distribution as m → ∞. Consequently, the distribution of the remaining expression
after the application of Taylor expansion of order m converges to the distribution of
original expression in eq. (11). Therefore, it is appropriate to use the Taylor expansion
to derive full conditional distribution of α.
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Table 6. The ML estimates of parameters of the Cox model over 1000
samples, each was generated from the Weibull distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE
1 ν 1.500 0

λ 0.015
β1 -0.100 β1 0.987 1.087 1087.272 60.900 3710.049
β2 -0.200 β2 -3.607 3.407 -1703.717 12.245 161.545

2 ν 1.500 0.1
λ 0.015
β1 -0.100 β1 -0.070 0.030 30.043 57.020 3251.321
β2 -0.200 β2 -3.170 2.970 -1484.821 11.487 140.772

3 ν 1.500 0
λ 0.015
β1 -1.000 β1 -5.077 4.077 -407.700 14.652 231.293
β2 -0.200 β2 -1.124 0.924 -462.180 2.975 9.703

4 ν 1.500 0.1
λ 0.015
β1 -1.000 β1 -7.710 6.710 -670.990 19.151 411.769
β2 -0.200 β2 -1.964 1.764 -882.138 3.931 18.568

5 ν 1.500 0
λ 0.015
β1 0.500 β1 1.446 0.946 -189.221 12.754 163.557
β2 -1.000 β2 -2.107 1.107 -110.657 2.568 7.820

6 ν 1.500 0.1
λ 0.015
β1 0.500 β1 2.260 1.760 -351.977 15.216 234.637
β2 -1.000 β2 -2.453 1.453 -145.310 3.094 11.682

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.
MSE: Mean square error.

We use the third order Taylor expansion of exp(αtj) at 0 to obtain p(α|λ,β, t). As
the result it is obtained that

p(α|λ,β, t)∝ exp

{ n∑
j=1

αδjtj + [λ/α]

n∑
j=1

[
1− (1 + αtj +

α2t2j
2

+
α3t3j
6

)
]
exp(β

′
xj)

}
∝ exp

{
−1
2

[
λα2

3

n∑
j=1

t3je
β
′
xj − 2α

n∑
j=1

(δjtj − λ
t2j
2
eβ

′
xj )

]}

∝ exp

{
−1
2

λ
∑n
j=1 t

3
je
β
′
xj

3

[
α2 − 2α

3
∑n
j=1(δjtj − λ

t2j
2
eβ

′
xj )

λ
∑n
j=1 t

3
je
β
′
xj

]}
∝ exp

{
−1
2σ2

α

(α− µα)2
}
.

(18)
Then the full conditional distribution of α is obtained normal distribution with mean

and variance

µα =
3
∑n
j=1(δjtj − λ

t2j
2
eβ

′
xj )

λ
∑n
j=1 t

3
je
β
′
xj

, σ2
α =

[
λ
∑n
j=1 t

3
je
β
′
xj

3

]−1

, (19)

respectively.
To demonstrate appropriateness of the third order Taylor expansion, we consider the

mechanism that generates survival times under the Gompertz model. Bender et al. [2]
demonstrate that survival times from Gomperts(α, λ) distribution is generated by the
transformation of uniformly distributed r.v. U given in eq. (10). We investigate the
impact of the value of α on survival times in Gompertz model over eq. (1). Note that in
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Table 7. The ML estimates of parameters of the Cox-Gompertz model over
1000 samples, each was generated from the Weibull distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE
1 ν 1.500 0 α 0.051 1.449 96.579 0.022 2.099

λ 0.015 λ 0.179 0.164 -1090.546 0.044 0.029
β1 -0.100 β1 1.287 1.387 1387.414 0.688 2.398
β2 -0.200 β2 -0.046 0.154 76.980 0.514 0.288

2 ν 1.500 0.1 α * * * * *
λ 0.015 λ * * * * *
β1 -0.100 β1 * * * * *
β2 -0.200 β2 * * * * *

3 ν 1.500 0 α 0.010 1.490 99.329 18.455 342.805
λ 0.015 λ 2.222 2.207 -14713.681 0.136 4.890
β1 -1.000 β1 -7.373 6.373 -637.282 5115.662 26170042.877
β2 -0.200 β2 0.000 0.200 99.910 3801.955 14454860.217

4 ν 1.500 0.1 α 0.010 1.490 99.322 12.018 146.645
λ 0.015 λ 2.178 2.163 -14417.268 0.147 4.699
β1 -1.000 β1 -7.234 6.234 -623.372 3115.142 9704147.295
β2 -0.200 β2 -0.001 0.199 99.713 2252.882 5075475.292

5 ν 1.500 0 α * * * * *
λ 0.015 λ * * * * *
β1 0.500 β1 * * * * *
β2 -1.000 β2 * * * * *

6 ν 1.500 0.1 α * * * * *
λ 0.015 λ * * * * *
β1 0.500 β1 * * * * *
β2 -1.000 β2 * * * * *

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.

*: 106 data sets had been generated, but the convergence could not be achieved for 1000 of them.
MSE: Mean square error.

eq. (1), λ > 0, exp{β1xj1 + β2xj2} > 0, and log(u) < 0. Because

lim
α→−∞

TGj = lim
α→∞

TGj = 0,

survival times goes to zero for greater values of α. For smaller values of λ exp{β1xj1 +
β2xj2}, the value of U should approach to one to make eq. (1) proper. Only for this case
the rate of convergence of TGj to zero decreases; and hence, we can observe reasonable
survival times for greater values of α. Due to the decreased range of reasonable values
of U , the probability of having such a situation in practice is small. For greater values
of λ exp{β1xj1 + β2xj2}, any value of U from (0, 1) interval makes eq. (1) proper. In
this case, values of α close to zero give reasonable survival times. Therefore, the rate of
convergence will be very fast due to the small values of α; and hence, use of the third
order Taylor expansion is appropriate.

A2. Derivation of full conditional distribution of λ. To derive the p(λ|α,β, t), (6)
is rewritten by discarding the constants as

p(λ|α,β, t) ∝ λ
∑n

j=1 δj exp

{
− (λ/α)

n∑
j=1

[exp(αtj)− 1] exp(β
′
xj)

}
. (20)

The distribution reached in (14) is gamma with the following shape and scale param-
eters

n∑
j=1

δj + 1, α

[ n∑
j=1

[exp(αtj)− 1] exp(β
′
xj)

]−1

. (21)
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Table 8. The Bayesian estimates of parameters of the Cox-Gompertz model
over 1000 samples, each was generated from the Weibull distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE
1 ν 1.500 0 α -0.005 1.505 100.329 0.004 2.265

λ 0.015 λ 0.342 0.327 -2179.422 0.081 0.113
β1 -0.100 β1 -0.371 0.271 -270.731 0.009 0.073
β2 -0.200 β2 -0.272 0.072 -35.797 0.006 0.005

2 ν 1.500 0.1 α -0.006 1.506 100.426 0.004 2.269
λ 0.015 λ 0.301 0.286 -1906.160 0.077 0.088
β1 -0.100 β1 -0.371 0.271 -270.931 0.010 0.073
β2 -0.200 β2 -0.271 0.071 -35.532 0.006 0.005

3 ν 1.500 0 α -0.002 1.502 100.102 0.001 2.255
λ 0.015 λ 0.044 0.029 -190.718 0.012 0.001
β1 -1.000 β1 -0.370 0.630 63.018 0.010 0.397
β2 -0.200 β2 -0.271 0.071 -35.593 0.007 0.005

4 ν 1.500 0.1 α -0.002 1.502 100.113 0.001 2.255
λ 0.015 λ 0.038 0.023 -153.024 0.011 0.001
β1 -1.000 β1 -0.370 0.630 63.024 0.012 0.397
β2 -0.200 β2 -0.271 0.071 -35.465 0.007 0.005

5 ν 1.500 0 α -0.002 1.502 100.139 0.001 2.256
λ 0.015 λ 0.106 0.091 -604.296 0.026 0.009
β1 0.500 β1 -0.372 0.872 174.431 0.010 0.761
β2 -1.000 β2 -0.256 0.744 74.389 0.006 0.553

6 ν 1.500 0.1 α -0.002 1.502 100.159 0.001 2.257
λ 0.015 λ 0.094 0.079 -525.466 0.025 0.007
β1 0.500 β1 -0.372 0.872 174.458 0.010 0.761
β2 -1.000 β2 -0.256 0.744 74.359 0.006 0.553

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.
MSE: Mean square error.

A3. Derivation of full conditional distribution of βi. With the same manner as
in Appendix A1, full conditional distribution of a particular regression parameter given
the others is obtained by using the Taylor expansion. Then, p(βi|β−i, α, λ, t) is obtained
by discarding the constants as follows:

p(βi|β−i, α, λ, t) ∝ exp

{
βi

n∑
j=1

δjxji + (λ/α)

n∑
j=1

[1− exp(αtj)] exp(xjiβi)cj

}
, (22)

where cj = exp(
∑n
k=1,k 6=i βkxjk). It is obtained using the second order Taylor expansion

of exp(xjiβi) at 0 that

p(βi|β−i, α, λ, t) ∝ exp

{
βi
[ n∑
j=1

δjxji − (λ/α)

n∑
j=1

cjxji[exp(αtj)− 1]
]

−[λ/(2α)]β2
i

n∑
j=1

cjx
2
ji[exp(αtj)− 1]

} (23)

by simply arranging (23),

p(βi|β−i, α, λ, t) ∝ exp

{
−1
2s1

[
βi − s2/s1

]2}
, (24)

where s1 = (λ/α)
∑n
j=1 cjx

2
ji[exp(αtj) − 1] and s2 =

∑n
j=1 δjxji − (λ/α)

∑n
j=1 cjxji ×

[exp(αtj)−1]. Then p(βi|β−i, α, λ, t) is approached by the normal distribution with mean
s2/s1 and variance 1/s1.

As for the appropriateness of the second order Taylor expansion, we evaluate the
impact of the value of βi on survival times in Gompertz model as done in Appendix A1.
Regarding the second equation in (10), we have the following results for the �xed values
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Table 9. The ML estimates of parameters of the Cox model over 1000
samples, each was generated from the Gompertz distribution.

Par. Cens. Absolute Relative St.Dev.
Case Values Rate Par. Estimate Bias Bias MSE
1 α 0.000 0

λ 0.010
β1 -0.100 β1 -0.012 0.088 88.380 6.763 45.746
β2 -0.200 β2 -0.362 0.162 -81.164 1.345 1.834

2 α 0.000 0.1
λ 0.010
β1 -0.100 β1 -0.959 0.859 -859.053 11.972 144.077
β2 -0.200 β2 -0.658 0.458 -228.872 2.328 5.631

3 α 0.000 0
λ 0.100
β1 -1.000 β1 -2.257 1.257 -125.700 9.299 88.055
β2 -0.200 β2 -0.627 0.427 -213.332 1.938 3.940

4 α 0.000 0.1
λ 0.100
β1 -1.000 β1 -4.193 3.193 -319.286 14.321 215.294
β2 -0.200 β2 -1.439 1.239 -619.288 3.076 10.999

5 α -0.001 0
λ 1.000
β1 0.500 β1 0.254 0.246 49.240 5.368 28.872
β2 -1.000 β2 -0.087 0.913 91.284 1.070 1.979

6 α -0.001 0.1
λ 1.000
β1 0.500 β1 -0.046 0.546 109.288 6.397 41.216
β2 -1.000 β2 -0.168 0.832 83.214 1.289 2.353

Par. : Parameter; Cens. : Censoring; St. Dev. : Estimated Standard Deviation.
MSE: Mean square error.

of α, λ, and β−i:

lim
βi→−∞

TGj =∞ and lim
βi→∞

TGj = 0.

Values close the −∞ are unreasonable and greater values give nearly zero survival
times. Positive and larger values of βi correspond to reasonable survival times for very
small values of U ; hence, probability of occurrence of this situation is small. Accordingly,
small values of βi will correspond to reasonable survival times in practice. Therefore, the
rate of convergence will be very fast; and hence, use of the second order Taylor expansion
is appropriate.
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We propose an improved class of estimators in estimating the �nite
population variance, using the auxiliary information. The expressions
for the bias and mean squared error of the proposed class of estimators
are derived up to the �rst order of approximation. Some estimators are
also derived from a proposed class by allocating the suitable values of
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1. Introduction

In this article, an improved class of estimators is proposed in estimating the �nite
population variance under simple random sampling. Various �elds of life like genetics,
biology and medical studies have been facing the problem in estimating the �nite pop-
ulation variance. An agriculturist requires su�cient knowledge of climatic variation to
devise appropriate plan for cultivating his crop. A fair understanding of variability is
vitally important for better results in di�erent walks of life. Singh et al. [36] and Das
and Tripathi [9] have proposed di�erent estimators for �nite population variance

(
S2
y

)
.
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Chaudhury [8] and Mukhopadhyay [27, 28] have made signi�cant contributions in es-
timating the �nite population variance under super population models. Srivastava and
Jhajj [47] and Wu [51], have taken the advantage of correlation between the study and the
auxiliary variables in estimating the �nite population variance. Isaki [17] has proposed
ratio and regression type estimators for population variance. Likewise, Singh [37], Searls
and Intrapanich [31], and Prasad and Singh [29, 30] have given some estimators for popu-
lation variance. Singh and Biradar [39], Garcia and Cebrain [10], Cebrain and Garcia [5],
Singh and Joarder [40], Upadhyaya and Singh [49], and Ahmed et al. [2] have paid their
attention towards the improved estimation or classes of estimators of S2

y . AL-Jaraha and
Ahmed [3] have given some chain ratio-type as well as chain product-type estimators
of S2

y using double-sampling scheme. Later on Singh and Singh [41], Upadhyaya et al.
[50], Chandra and Singh [7], Arcos et al. [1], Kadilar and Cingi [18, 19, 20, 21, 22, 23],
Koyuncu and Kadilar [24, 25], Singh and Vishwakarma [43], Turgut and Cingi [48], Gupta
and Shabbir [12, 13, 14], Shabbir and Gupta [33, 34], Grover [11], Singh et al. [38, 42, 44],
Yadav et al. [52, 53], Yadav and Kadilar [54], Singh and Solanki [45, 46], and Singh and
Malik [35] have paid their attention towards the improved estimation of population vari-
ance S2

y .
Motivated by these studies, the present article focuses on improved class of estimators
for S2

y using the auxiliary information.
The rest of the article is organized as: Section 2 provides the notations and symbols.
Section 3 gives a brief review of some existing estimators of S2

y . Section 4 gives the ex-
pressions for the bias and mean squared error (MSE) of the proposed class of estimators.
The e�ciency comparison of di�erent estimators is shown in Section 5. A numerical
study is presented in Section 6. Conclusion is given in Section 7.

2. Notations

Consider a �nite population Ω = {1, 2, .., i, .., N} having N units. We draw a sam-
ple of size n by using simple random sample without replacement (SRSWOR) sampling
scheme from this population. Let yi and xi be the values of the study variable (y) and
the auxiliary variable (x) respectively. Let ȳ = 1

n

∑n
i=1 yi and x̄ = 1

n

∑n
i=1 xi be the

sample means, respectively, corresponding to the population means Ȳ = 1
N

∑N
i=1 yi and

X̄ = 1
N

∑N
i=1 xi. Let s2y = 1

n−1

∑n
i=1 (yi − ȳ)2 and s2x = 1

n−1

∑n
i=1 (xi − x̄)2 be the

sample variances corresponding to population variances S2
y = 1

N−1

∑N
i=1

(
yi − Ȳ

)2
and

S2
x = 1

N−1

∑N
i=1

(
xi − X̄

)2
, respectively. Let θ22 = µ11√

µ20
√
µ02

, be the covariance between

S2
y and S2

x. Let β2(y) = µ40

µ2
20

and β2(x) = µ04

µ2
02

be the population coe�cients of kurtosis

of y and x, respectively, where µrs = 1
N−1

∑N
i=1(yi − Ȳ )r

(
xi − X̄

)s
and γ = 1/n. We

ignored the �nite population correction(fpc) term because of ease of computation. In
order to get biases and MSEs of the considered estimators, we use the following relative
error terms.

Let δ0 =
s2y−S

2
y

S2
y

and δ1 =
s2x−S

2
x

S2
x

such that E (δi) = 0 for i = 0, 1.

LetE
(
δ20
)

= γ
(
β2(y) − 1

) ∼= V20, E
(
δ21
)

= γ
(
β2(x) − 1

) ∼= V02, andE (δ0δ1) = γ (θ22 − 1) ∼=

V11, where Vrs = E

{
(s2y−S

2
y)

r(s2x−S
2
x)s

(S2
y)

r(S2
x)s

}
.

3. Some existing estimators

We discuss the following estimators.

(i) The variance of the usual unbiased variance estimator
(
Ŝ2
y

)
, is given by
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(3.1) V ar
(
Ŝ2
y

)
= S4

yV20.

(ii) Isaki [17] suggested the following regression estimator for S2
y , given by

(3.2) Ŝ2
Reg = s2y + b(s2y,s2x)

(
S2
x − s2x

)
,

where b(s2y,s2x) is the sample regression coe�cient whose population regression coe�cient

is β =
(
S2
yV11/S

2
xV02

)
. The variance of Ŝ2

Reg, is given by

(3.3) V ar(Ŝ2
Reg) ∼= S4

yV20

(
1− ρ2(s2y,s2x)

)
= MSE(Ŝ2

Reg),

where ρ(s2y,s2x) =
(
V11/
√
V20V02

)
.

(iii) Singh et al. [38] considered the following di�erence type estimator for S2
y , given

by

(3.4) Ŝ2
d = k1s

2
y + k2

(
S2
x − s2x

)
,

where k1 and k2 are suitably chosen constants.
The bias and minimum MSE of Ŝ2

d , to �rst order of approximation, at optimum values

k
(opt)
1 = V02

(V02+V02V20−V 2
11)

and k
(opt)
2 =

S2
x
S2
y

V11

(V02+V02V20−V 2
11)

,

are given by

Bias(Ŝ2
d) ∼= (k1 − 1)S2

y ,

and

(3.5) MSEmin(Ŝ2
d) ∼=

V ar(Ŝ2
Reg)

1 + S−4
y V ar(Ŝ2

Reg)
.

(iv) Shabbir and Gupta [32] suggested the following ratio-type exponential estimator
S2
y , given by

(3.6) Ŝ2
SG =

{
k3s

2
y + k4

(
S2
x − s2x

)}
exp

(
S2
x − s2x
S2
x + s2x

)
,

where k3 and k4 are suitably chosen constants.
The bias of Ŝ2

SG, to �rst order of approximation, is given by

Bias
(
Ŝ2
SG

)
∼= S2

y(k3 − 1) +
3

8
k3S

2
yV02 −

1

2
k3S

2
yV11 +

1

2
k4S

2
xV02.

The minimum MSE of Ŝ2
SG, to �rst order of approximation, at optimum values of

k
(opt)
3 = V02

8

(
8−V02

V02+V20V02−V 2
11

)
and k

(opt)
4 =

S2
y

8S2
x

(
−4V02+V

2
02+8V 2

11−V11V02+4V20V02−4V 2
11

V02+V20V02−V 2
11

)
,

is given by

(3.7) MSEmin

(
Ŝ2
SG

)
∼=
S4
y

64

{
V 2
02 + 16 (V02 − 4)S−4

y V ar(Ŝ2
Reg)

−1− S−4
y V ar(Ŝ2

Reg)

}
.

(v) Singh and Solanki [46] suggested a di�erence-in-ratio type estimator for S2
y , given

by

(3.8) Ŝ2
SS =

{
k5s

2
y + k6(S2

x − s2x)
}(aS2

x + b

as2x + b

)
,

where k5 and k6 are suitably chosen constants and a (6= 0) and b are functions of known
parameters of the auxiliary variable x.
The bias of Ŝ2

SS , to �rst order of approximation, is given by

Bias
(
Ŝ2
SS

)
∼= S2

y(k5 − 1) + k5S
2
yτ

2V02 − k5S2
yτV11 + k6S

2
xτV02,
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where τ = aS2
x/
(
aS2

x + b
)
.

The minimum MSE of Ŝ2
SS , to �rst order of approximation, at optimum values

k
(opt)
5 = V02(−1+τ2V02)

(−V02−V02V20+τ2V
2
02+V

2
11)

and

4 k
(opt)
6 = −S

2
y

S2
x

(
−V02τ+V

2
02τ

3+V11−V11V02τ
2+τV02V20−τV 2

11

−V02−V02V20+τ2V
2
02+V

2
11

)
,

is given by

(3.9) MSEmin

(
Ŝ2
SS

)
∼= S4

y

{
AS−4

y V ar(Ŝ2
Reg)

A + S−4
y V ar(Ŝ2

Reg)

}
,

where A = 1− V02τ
2.

(vi) Yadav et al. [53] suggested a general class of estimators for S2
y , given by

(3.10) Ŝ2
Y G =

{
k7s

2
y + k8(S2

x − s2x)
}{

λ

(
aS2

x + b

as2x + b

)
+ (1− λ) exp

(
a
(
S2
x − s2x

)
a (S2

x + s2x) + 2b

)}
,

where k7 and k8 are suitably chosen constants, λ can takes values 0 or 1 and a, b be
the population parameters of the auxiliary variables. Shabbir and Gupta [32] estimator
in (3.6) and Singh and Solanki [46] estimator in (3.8) can be generated from (3.10)

by substituting the suitable choices of λ, a and b. The bias of Ŝ2
Y G, to �rst order of

approximation, is given by

Bias
(
Ŝ2
Y G

)
∼= S2

y

[
(k7 − 1) +

(
3 + 5λ

8

)
k7V02τ

2 +
(1 + λ) τ

2

{(
S2
x

S2
y

)
k8V02 − k7V11

}]
.

The minimum MSE of Ŝ2
Y G, to �rst order of approximation, at optimum values

k
(opt)
7 =

V02

2

{
8− V02τ

2
(
1 + 3λ+ 4λ2

)
4V02 − V 2

02λτ
2 (1 + 3λ) + 4V02V20 − 4V 2

11

}
,

and

k
(opt)
8 =

S2
y

2S2
x




8V11 + 3V 2

02λτ
2 (1 + λ)− 4V02τ (1 + λ)

+V 2
02τ

3 (1 + λ3)− V02V11τ
2 (1 + 3λ+ 4λ2)

+4V02V20τ (1 + λ)− 4V 2
11 (1 + λ)


4V02 (1− V02τ2λ2)− V 2

02τ
2λ (1 + λ) + 4V02V20 − 4V 2

11


,

is given by

(3.11) MSEmin

(
Ŝ2
Y G

)
∼=
S4
y

16


{

(1 + λ)2 − 4λ2 (1 + λ− λ2)}V 2
02τ

4

+16S−4
y V ar(Ŝ2

Reg)
{

(1 + λ)2 V02τ
2 − 4

}
−4 + 3λ2τ2V02 + λτ2V02 − 4S−4

y V ar(Ŝ2
Reg)

 .
(vii) Yadav and Kadilar [54] suggested two parameters ratio-product-ratio type esti-

mator for S2
y , given by

(3.12) Ŝ2
YK = s2y

[
α1

{
(1− β1) s2x + β1S

2
x

β1s2x + (1− β1)S2
x

}
+ (1− α1)

{
β1s

2
x + (1− β1)S2

x

(1− β1) s2x + β1S2
x

}]
,
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where α1 and β1 are suitably chosen constants.
The bias and MSE of Ŝ2

YK , to �rst order of approximation, are given by

Bias
(
Ŝ2
YK

)
∼= S2

y

{
V02

(
1− α1 − 3β1 + 2α1β1 + 2β2

1

)
− V11 (1− 2α1 − 2β1 + 4α1β1)

}
−S2

y ,

and

MSE
(
Ŝ2
YK

)
∼= S4

y

{
(V02 + V20 − 2V11) + 16α1β1V02 (1− α1 − β1 + α1β1)

+4V11 (α1 − β1)2 + 4V02

(
−α1 − β1 + α2

1 + β2
1

)} .
Solving above for minimum MSE of Ŝ2

YK , to �rst order of approximation at (α1, β1) =
(1/2, 1/2), is

(3.13) MSEmin

(
Ŝ2
YK

)
∼= V ar

(
Ŝ2
y

)
,

and at (α1, β1) = {(V02 − V11) /2V02, 0}, we have

(3.14) MSEmin

(
Ŝ2
YK

)
∼= V ar(Ŝ2

Reg).

(viii) Recently Singh and Malik [35] suggested an improved estimator for S2
y , given by

(3.15) Ŝ2
SM = s2y

{
k9 + k10(S2

x − s2x)
}
exp

(
ψ1

(aS2
x + b)− (as2x + b)

(aS2
x + b) + (as2x + b)

)
,

where k9 and k10 are suitably chosen constants. Here ψ1 is the scalar quantity which
takes the values +1 and −1 for ratio and product type estimators respectively.
The bias of Ŝ2

SM , to �rst order of approximation, is given by

Bias
(
Ŝ2
SM

)
∼= S2

y (k9 − 1) +
1

4
S2
yk9ψ1τ

2V02 +
1

8
S2
yk9γ

2
1τ

2V02

+
1

2
S2
yS

2
xk10ψ1τV02 −

1

2
S2
yS

2
xk9ψ1τV11 − S2

yS
2
xk10V11.

The minimum MSE of Ŝ2
SM , to �rst order of approximation, at optimum values

k
(opt)
9 =

1

4

(
−12ψ1τV02V11 + 3ψ2

1τ
2V 2

02 + 16V 2
11 − 8V02 − 2ψ1τ

2V 2
02

ψ2
1τ

2V 2
02 − 4ψ1τV02V11 + 8V 2

11 − 2V02V20 − 2V02 − ψ1τ2V 2
02

)
and k

(opt)
10 = − 1

4S2
x

(
−6ψ2

1τ
2V02V11+ψ

2
1τ

3V 2
02+8ψ1τV

2
11−4ψ1τV02+8V11−8V02V11+4ψ1τV02V20

ψ2
1τ

2V 2
02−4ψ1τV02V11+8V 2

11−2V02V20−2V02−ψ1τ2V
2
02

)
, is

given by MSEmin

(
Ŝ2
SM

)
∼= S4

y

{
32(ψ2

1τ
2V 2

02−4ψ1τV02V11+8V 2
11−2V02V20−2V02−ψ1τ2V

2
02)

}
,

or, at τ = ψ1 = 1, we have

(3.16)

MSEmin

(
Ŝ2
SM

)
∼=
S4
y

64

V02

{
V02(V02 + 8V11) + 16(V02 − 4)V ar(Ŝ2

Reg) + 16V11(V11 − V02)
}

−V02(1 + V02 + 2V11) + 4V 2
11

 .
4. Proposed estimator

Bahl and Tuteja [4] exponential type estimators for population variance
(
S2
y

)
, are

given by

(4.1) Ŝ2
R = s2yexp

(
S2
x − s2x
S2
x + s2x

)
,

and

(4.2) Ŝ2
Pr = s2yexp

(
s2x − S2

x

S2
x + s2x

)
.
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Following Haq and Shabbir [15, 16], the average of the ratio and the product-type expo-
nential estimators given in (4.1) and (4.2) is

Ŝ2
A = s2y

1

2

[
exp

{(
S2
x − s2x
S2
x + s2x

)}
+ exp

{(
s2x − S2

x

S2
x + s2x

)}]
.

A generalized form of Ŝ2
A, is given by

(4.3) Ŝ2
A = s2y

1

2

[
exp

{
a
(
S2
x − s2x

)
a (s2x + S2

x) + 2b

}
+ exp

{
a
(
s2x − S2

x

)
a (s2x + S2

x) + 2b

}]
,

where (a 6= 0) and b are functions of known parameters of the auxiliary variable. Mo-
tivated by Singh and Solanki [46] and Haq and Shabbir [15, 16], replacing s2y given in

(4.3) by
(
Ŝ2
SS

)
given in (3.8), we propose the following class of estimators for estimating

the �nite population variance S2
y , given by

(4.4) Ŝ2
P =

{
k11s

2
y + k12(S2

x − s2x)
}(aS2

x + b

as2x + b

)
Ŝ2
A1
,

where k11 and k12 are suitably chosen constants, and

Ŝ2
A1

= 1
2

[
exp

{
a(S2

x−s
2
x)

a(s2x+S2
x)+2b

}
+ exp

{
a(s2x−S

2
x)

a(s2x+S2
x)+2b

}]
.

Expressing (4.4) in term of δ′s and keeping terms up to power two, we have

(4.5) Ŝ2
P =

{
k11S

2
y(1 + δ0)− k12S2

xδ1
} (

1− τδ1 + τ2δ21
)(

1 +
τ2δ21

8

)
.

Solving (4.5), up to �rst order of approximation, we get

(4.6)
Ŝ2
P − S2

y
∼= k11S

2
y − k11S2

yτδ1 + k11S
2
yδ0 − k12S2

xδ1 +
9

8
k11S

2
yτ

2δ21

− k11S2
yτδ0δ1 + k12S

2
xτδ

2
1 − S2

y .

Using (4.6), the bias and MSE of Ŝ2
P , to �rst order of approximation are, respectively

given by

(4.7) Bias(Ŝ2
P ) ∼= (k11 − 1)S2

y +
9

8
k11S

2
yτ

2V02 − k11S2
yτV11 + k12S

2
xτV02,

and

(4.8)

MSE(Ŝ2
P ) ∼= k211S

4
y − 2k11S

4
y + k211S

4
yV20 + 2k11S

4
yτV11 − 2k12S

2
yS

2
xτV02

+ k212S
4
xV02 + 4k11k12S

2
yS

2
xτV02 − 2k11k12S

2
yS

2
xV11

− 4k211S
4
yτV11 −

9

4
k11S

4
yτ

2V02 +
13

4
k211S

4
yτ

2V02 + S4
y .

Di�erentiating (4.8), with respect to k11 and k12, we get the optimum values of k11 and
k12 as

k
(opt)
11 =

V02

2

(
1 + 7A

V 2
02τ

2 + 4V02A + 4V02V20 − 4V 2
11

)
,

and

k
(opt)
12 =

S2
y

2S2
x

(
V11 + 7V11A− 8V02τA + 8V02V20 − 8V 2

11

V 2
02τ

2 + 4V02A + 4V02V20 − 4V 2
11

)
,
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where A, is de�ned earlier.
Substituting the optimum values of k11 and k12 in (4.8), we get MSEmin(Ŝ2

P ) as

(4.9) MSEmin(Ŝ2
P ) ∼=

S4
y

16

{
64AS−4

y V ar(Ŝ2
Reg)− V 2

02τ
4

V02τ2 + 4A+ 4S−4
y V ar(Ŝ2

Reg)

}
.

4.1. Some members of the proposed class of estimators. Di�erent estimators
can be generated from the proposed estimator given in (4.4) by substituting the suitable
choices of a, and b. Some generated estimators are listed in Table 1.

Table 1. Some members of proposed class of estimators Ŝ2
Pj (j = 1, 2, ..., 6)

a b Estimator

1 0 Ŝ2
P1

N −S2
x Ŝ2

P2

N −X̄2 Ŝ2
P3

n −S2
x Ŝ2

P4

n2 −X̄2 Ŝ2
P5

n2 −S2
x Ŝ2

P6

5. E�ciency comparisons

In this section, we compare the propose estimator with existing estimators.
Condition i: By (3.1) and (4.9),

V ar
(
Ŝ2
y

)
−MSEmin

(
Ŝ2
P

)
> 0, if

S4
y

16

V02τ
2
(
16V20 + V02τ

2
)

+ 64S−4
y V ar(Ŝ2

Reg) +
64AV 2

11
V02

4A + V02τ2 + 4S−4
y V ar(Ŝ2

Reg)

 > 0.

Condition ii: By [(3.3) or (3.14)] and (4.9),[
V ar

(
Ŝ2
Reg

)
or MSEmin

(
Ŝ2
YK

)]
−MSEmin

(
Ŝ2
P

)
> 0, if

S4
y

16



16V 2
02τ

2S−4
y V ar(Ŝ2

yReg) + V 3
02τ

4

+64V02

(
S−4
y V ar(Ŝ2

yReg)
)2

1 + 3A+ 4S−4
y V ar(Ŝ2

yReg)


> 0.

Condition iii: By (3.5) and (4.9),

MSEmin

(
Ŝ2
d

)
−MSEmin

(
Ŝ2
P

)
> 0, if

S4
yτ

2

16

S−4
y V ar(Ŝ2

yReg)
{
V02

(
16 + V02τ

2
)

+ 64V02S
−4
y V ar(Ŝ2

yReg)
}

+ V 2
02τ

2(
1 + S−4

y V ar(Ŝ2
yReg)

)(
4 + 4S−4

y V ar(Ŝ2
yReg) + V02τ

)
 > 0.

Condition iv: By (3.7) and (4.9),

MSEmin

(
Ŝ2
SG

)
−MSEmin

(
Ŝ2
P

)
> 0, if
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S4
yV02

64



3V02τ
2
{
V02 + 16S−4

y V ar(Ŝ2
Reg)

}
+4V02

{
(1 + S−4

y V ar(Ŝ2
Reg))(τ

2 + 1)(τ2 − 1)
}

−64S−4
y V ar(Ŝ2

Reg)
{

(1− τ2) + (1− 4τ2)S−4
y V ar(Ŝ2

Reg)
}

(1 + 3A+ 4S−4
y V ar(Ŝ2

Reg))(1 + 4S−4
y V ar(Ŝ2

Reg))


> 0.

Condition v: By (3.9) and (4.9),

MSEmin

(
Ŝ2
SS

)
−MSEmin

(
Ŝ2
P

)
> 0, if

S4
yτ

2V 2
02


(
AV02τ

2 + (1 + 15A)S−4
y V ar(Ŝ2

Reg)
)

(
A+ S−4

y V ar(Ŝ2
Reg)

)(
1 + 3A+ 4S−4

y V ar(Ŝ2
Reg)

)
 > 0.

Condition vi: By (3.11) and (4.9), when using λ = 1 .

MSEmin

(
Ŝ2
Y G

)
−MSEmin

(
Ŝ2
P

)
> 0, if

S4
yτ

2V 2
02


(
AV02τ

2 + (1 + 15A)S−4
y V ar(Ŝ2

Reg)
)

(
A+ S−4

y V ar(Ŝ2
Reg)

)(
1 + 3A+ 4S−4

y V ar(Ŝ2
Reg)

)
 > 0.

Condition vii: By (3.16) and (4.9), when using τ = ψ1 = 1 .

MSEmin

(
Ŝ2
SM

)
−MSEmin

(
Ŝ2
P

)
> 0, if

S4
y

32




512V 2

11 (V20 − V11) + 48V02V20 (1 + 4V02V20)− 60V02V
2
11

(
V02 + V 2

11

)
−960V02V

2
11S
−4
y V ar(Ŝ2

Reg) + 256V20V11

{
(V02V11) + (V02 − V11)S−4

y V ar(Ŝ2
Reg)

}
3

(
V 4
02 + 96V 3

02V
2
11 − 156

V 4
11

V02

)


2
{
S−4
y V ar(Ŝ2

Reg) + (1 + 4V11)− 3
V 2
11
V02

}{
4S−4

y V ar(Ŝ2
Reg) + (4− 3V02)

}


> 0.

Note that the proposed estimator (Ŝ2
P ) is more e�cient than the existing estimators

Ŝ2
i (i = y,Reg, d, SG, SS, Y G, Y K, SM), when above conditions are satis�ed.

6. Numerical study

In this section, we consider the following data sets for numerical comparisons.
Population I: [Source: Kadilar and Cingi [20]]
Let y = Level of apple production (1 unit=100 tones) and x = Number of apple trees (1
unit=100 trees).
N = 104, n = 20, γ = 0.05, Ȳ = 6.24064, X̄ = 13929.899, Sy = 11.670, Sx = 23026.133,
ρyx = 0.865,
ρ(S2

y,S
2
x) = 0.83675, β2(y) = 16.523, β2(x) = 17.516, θ22 = 14.398, V20 = 0.77615,

V02 = 0.8258, V11 = 0.6699.
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Population II: [Source: Cochran [6], p.34]
Let y = The weekly expenditure on food and x = The weekly family income.
N = 33, n = 10, γ = 0.1, Ȳ = 27.491, X̄ = 72.547, Sy = 10.131, Sx = 10.577, ρyx =
0.432738, ρ(S2

y,S
2
x) = −0.474028, β2(y) = 5.38276, β2(x) = 2.015035, θ22 = 0.000187,

V20 = 0.43827, V02 = 0.101503,
V11 = −0.099981.

Population III: [Source: Murthy [26], p.399]
Let y = Area of wheat in 1964 and x = Area of wheat in 1963.
N = 80, n = 10, γ = 0.1, Ȳ = 5182.638, X̄ = 285.125, Sy = 1835.638, Sx = 270.429,
ρyx = 0.988421,
ρ(S2

y,S
2
x) = 0.73198, β2(y) = 2.2665, β2(x) = 3.5808, θ22 = 2.32338, V20 = 0.12665,

V02 = 0.25808, V11 = 0.13234.

We use the following expression for Percentage Relative E�ciency (PRE) and the
Absolute Bias (AB).

PRE(Ŝ2
y , Ŝ

2
i ) =

V ar(Ŝ2
y)

MSEmin

(
Ŝ2
i

)
or MSE

(
Ŝ2
i

) ,
and

AB = |Bias
(
Ŝ2
i

)
|, for i=Reg, d, SG, SS, Y G, Y K, SM,P.

MSE, PRE and AB values based on Populations I, II and III are given in Tables 2�4.
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Ŝ
2 Y
G

Ŝ
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Ŝ
2 S
M

Ŝ
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7. Conclusion

In this paper, we have suggested an improved class of estimators for estimating the
�nite population variance using information on the auxiliary variable. Expressions for
bias and MSE of the proposed class of estimators have been derived to �rst order of
approximation. The proposed class of estimators Ŝ2

P is compared with existing estimators

both theoretically and numerically. From Tables 2�4, it is observed that the MSE of Ŝ2
P

is smaller as compared to MSE of existing estimators for all di�erent choices of a and b

considered here. Also bias of Ŝ2
P is smaller as compared to all other considered estimators

in all three populations except Ŝ2
YK in population II. Among three populations, the

maximum PRE gained by proposed estimator is in Population I. So it is preferable to
use the estimator Ŝ2

P .
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