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Kantorovich-type operators preserving a�ne
functions

Octavian Agratini∗

Abstract

Starting from positive linear operators which have the capability to re-
produce a�ne functions, we design integral operators of Kantorovich-
type which enjoy by the same property. We focus to show that the error
of approximation can be smaller than in classical Kantorovich construc-
tion on some subintervals of its domain. Special cases are presented.

Keywords: Szász-Mirakjan operator, Baskakov operator, Stancu operator, Kan-

torovich operator, modulus of continuity.

2000 AMS Classi�cation: 41A36.
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1. Introduction

In the �eld of Approximation Theory the study of positive and linear approximation
processes holds an important place. In time numerous such sequences of discrete type
operators have been investigated. In the sequel we generically denote a such sequence by
(Ln)n≥1. Among them, a special attention has been paid to operators which reproduce
a�ne functions, property implied by the following two relations Lne0 = e0 and Lne1 = e1,
n ∈ N. Set ej , j ∈ N0 = {0} ∪ N, the monomial of degree j. Since discrete operators
are not suitable for approximating discontinuous functions, they were generalized into
operators of integral type. One of the usual techniques is known as Kantorovich method
which leads to an approximation process, say (L̃n)n≥1, in spaces of integrable functions.
Usually, the integral operators keep the property to reproduce constants, this means
L̃ne0 = e0 but lose the property to reproduce a�ne functions, in other words L̃ne1 6= e1.

The primary model for such construction is given by Bernstein operators de�ned as
follows

(1.1) (Bnf)(x) =

n∑

k=0

pn,k(x)f

(
k

n

)
, f ∈ R[0,1], x ∈ [0, 1],

∗Babe³-Bolyai University Faculty of Mathematics and Computer Science Str. Kog lniceanu,
1 400084 Cluj-Napoca, Romania
Email : agratini@math.ubbcluj.ro
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and pn,k(x) =

(
n

k

)
xk(1− x)n−k, k = 0, n. In the above R[0,1] represents the space of all

real-valued functions de�ned on the compact interval [0, 1]. Kantorovich extension has
the form

(1.2) (B̃nf)(x) = (n+ 1)

n∑

k=0

pn,k(x)

∫ (k+1)/(n+1)

k/(n+1)

f(t)dt, x ∈ [0, 1],

where f ∈ L1([0, 1]), the space of all Lebesgue integrable functions on [0, 1].
One has Bne0 = e0, Bne1 = e1, B̃ne0 = e0 and B̃ne1 6= e1.
The purpose of this article is the following. Starting from a general discrete linear

positive process reproducing polynomials of �rst degree, we indicate a technique to create
an integral generalization in Kantorovich sense which will inherit the same property to
reproduce a�ne functions. We study the error of approximation of the new sequence
establishing the condition in which they are more useful than classical Kantorovich-type
operators. Finally we present some particular examples.

2. The operators

Throughout the paper we consider an interval J ⊆ R, which may be one of the types
J = [0, 1] or J = R+ = [0,∞). The second variant will exhibit the problems caused by a
�nite endpoint and by the boundlessness of the interval. Let (xn,k)k∈In be a net on the
interval J , where In ⊆ N is a set of indices. In what follows we consider that the net has
equidistant nodes, meaning that for each n ∈ N,

(2.1) xn,k+1 − xn,k = pn, k ∈ In,
where lim

n
pn = 0. In fact, the overwhelming majority of discrete linear positive operators

have this property. Most frequently encountered case is described by xn,k = k/n, this
implying pn = 1/n.

We consider a sequence of linear positive operators of discrete type de�ned as follows

(2.2) (Lnf)(x) =
∑

k∈In
λn,k(x)f(xn,k), x ∈ J,

where λn,k ∈ C(J), λn,k ≥ 0 for each (n, k) ∈ N × In. For our purposes, if Card(In) is
�nite, then f ∈ C(J). If Card(In) is non-�nite, then

f ∈ F(J) := {g ∈ C(J) : the series in (2.2) is absolutely convergent}.
Denoting by CB(J) the space of all real-valued continuous and bounded functions on
J , we get CB(J) ⊂ F(J). Anyway, we keep the assumption that ej ∈ F(J), j = 1 and
j = 2. As announced in Introduction, we consider that these operators reproduce a�ne
functions, i.e.,

(2.3)
∑

k∈In
λn,k(x) = 1

and

(2.4)
∑

k∈In
λn,k(x)xn,k = x, x ∈ J.

Set p∗ = sup
n∈N

pn where pn is given at (2.1). If J = R+, then we consider J∗ =
[
p∗
2
,∞
)
.

If J = [0, 1], we take J∗ =
[
p∗
2
, 1
]
.
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We de�ne an integral generalization in Kantorovich sense of Ln, n ∈ N, operators as
follows

(2.5) (L̃nf)(x) =
1

pn

∑

k∈In
λn,k

(
x− pn

2

)∫ xn,k+1

xn,k

f(t)dt, x ∈ J∗.

If In is �nite, the function f must be chosen integrable on J . Otherwise, f must be
locally integrable function on J such that the antiderivative of f to belong to the space
F(J). Also we mention that for a certain k ∈ In such that xn,k ∈ J and xn,k+1 6∈ J we
will replace xn,k+1 with xn,k. In other words, the integral will become null. This can
happen if J is bounded.

Clearly, L̃n, n ∈ N, are linear and positive operators.
The aim of this note is to show that our modi�ed operators preserve a�ne functions.
In our opinion, the study of the convergence for (L̃n)n≥1 sequence does not bring too

much novelties. We will turn our attention to another direction. We determine in what
circumstances this class of operators can o�er a smaller approximation error than the
classical Kantorovich operators. Some special cases are delivered.

3. The usefulness of L̃n operator

At the beginning we calculate the �rst three moments of our integral operators.
Theorem 1. Let L̃n, n ∈ N, be de�ned by (2.5). For each x ∈ J∗ we have

(i) (L̃ne0)(x) = 1,

(ii) (L̃ne1)(x) = x,

(iii) (L̃ne2)(x) = (Lne2)
(
x− pn

2

)
+ pnx− p2n

6
,

where Ln and pn are de�ned by (2.2) and (2.1), respectively.
Proof. The �rst statement is a direct consequence of (2.3). By using (2.1) and (2.4) we
can write

(L̃ne1)(x) =
1

2pn

∑

k∈In
λn,k

(
x− pn

2

)
(2pnxn,k + p2n)

= (Lne1)
(
x− pn

2

)
+
pn
2

(Lne0)
(
x− pn

2

)
= x.

Similarly, by using (2.1) and (2.5), we get

(L̃ne2)(x) =
1

3pn

∑

k∈In
λn,k

(
x− pn

2

)
(3x2n,kpn + 3xn,kp

2
n + p3n)

which leads us to the last statement of Theorem 1. �
The �rst two identities of Theorem 1 guarantee that the operators L̃n, n ∈ N, inherit

property to reproduce a�ne functions.
At this point we introduce the second order central moment of the operator L̃n, that

is
µn,2(x) := (L̃nϕ

2
x)(x), where ϕx(t) = t− x, (t, x) ∈ J × J∗.

In view of Theorem 1, for any x ∈ J∗ we get

(3.1) µn,2(x) = (Lne2)
(
x− pn

2

)
+ x(pn − x)− p2n

6
.

Starting from the same discrete operator Ln, n ∈ N, it is well known that the classical
Kantorovich generalization is designed as follows

(3.2) (L∗nf)(x) =
1

pn

∑

k∈In
λn,k(x)

∫ xn,k+1

xn,k

f(t)dt, x ∈ J.
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Following a similar path set for L̃n, n ∈ N, we easily deduce the formulas for each x ∈ J .
(L∗ne0)(x) = 1,

(L∗ne1)(x) = x+
pn
2
,

(L∗ne2)(x) = (Lne2)(x) + pnx+
p2n
3
.

The second order central moment is given by

(3.3) µ∗n,2(x) := (L∗nϕ
2
x)(x) = (Lne2)(x)− x2 +

p2n
3
.

We turn our attention in comparing the approximation errors caused by the two
classes of operators, (L̃n)n≥1 and (L∗n)n≥1. To achieve it, we recall the notion of the �rst
modulus of smoothness associated to a continuous function f on a compact interval [a, b].
It is denoted by ω(f ; ·)[a,b] and is de�ned as follows

ω(f ; δ)[a,b] = sup{|f(t)− f(x)| : |t− x| ≤ δ, t, x ∈ [a, b]}, δ ≥ 0.

Theorem 2. (i) Let J = [0, 1] and J∗ =
[
p∗
2
, 1
]
. For any function f ∈ C(J), the

operators L̃n and L̃∗n, n ∈ N, satisfy

|(L∗nf)(x)− f(x)| ≤ 2ωJ
(
f ;
√
µ∗n,2(x)

)

and

|(L̃nf)(x)− f(x)| ≤ 2ωJ∗
(
f ;
√
µn,2(x)

)
.

(ii) Let J = [0,∞) and J∗ =
[
p∗
2
,∞
)
. Let τ be �xed, τ > p∗/2. For any function

f ∈ CB(J), the operators L̃n and L∗n, n ∈ N, satisfy

|(L∗nf)(x)− f(x)| ≤ 2ω[0,τ ]

(
f ;
√
µ∗n,2(x)

)

and

|(L̃nf)(x)− f(x)| ≤ 2ω[p∗/2,τ ]

(
f ;
√
µn,2(x)

)
.

Proof. These quantitative results given in terms of the modulus of smoothness are direct
consequence of the following statement proved by Shisha and Mond [6]. If Λ is a linear
positive operator de�ned on C([a, b]), then one has

|(Λf)(x)− f(x)| ≤ |f(x)| |(Λe0)(x)− 1|

+

(
(Λe0)(x) +

1

λ

√
(Λe0)(x)(Λϕ2

x)(x)

)
ω(f ;λ),

for every x ∈ [a, b] and λ > 0. Taking in view that our operators L∗n and L̃n reproduce
the constants and choosing λ =

√
(Λϕ2

x)(x) the conclusions of our theorem are taken
place. �

Examining the upper bound of the approximation error, it is noticed that the operators
L̃n, n ∈ N, prove their usefulness if µn,2 < µ∗n,2 holds.
Theorem 3. The operators L̃n, n ∈ N, de�ned by (2.5) as compared to operators
L∗n, n ∈ N, de�ned by (3.2) give a better error estimation for continuous and bounded
functions if

(3.4) (Lne2)(x)
(
x− pn

2

)
− (Lne2)(x) + pnx <

p2n
2
, x ≥ p∗

2
,

holds. The operators Ln, n ∈ N, are de�ned by (2.2).
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Proof. Imposing µn,2 < µ∗n,2 and using relations (3.1) and (3.3), the conclusion follows.
�

4. Examples

The �rst two examples pertain to the case J = R+ and in the last example we consider
J = [0, 1].

1. Modi�ed Szász-Mirakjan-Kantorovich operators
The classical Szász-Mirakjan operators are de�ned by

(Lnf)(x) =

∞∑

k=0

sn,k(x)f

(
k

n

)
, where sn,k(x) = e−nx

(nx)k

k!
, x ≥ 0.

The Szász-Kantorovich operators have been de�ned (see Butzer [1]) by

(L∗nf)(x) = n

∞∑

k=0

sn,k(x)

∫ (k+1)/n

k/n

f(t)dt, x ≥ 0.

In this case, pn = 1/n and our operators L̃n, n ∈ N, are given by

(L̃nf)(x) = ne
1−2nx

2

∞∑

k=0

(2nx− 1)k

2kk!

∫ (k+1)/n

k/n

f(t)dt, x ≥ 1

2
.

These operators have been de�ned and studied by Duman, Özarslan and Della Vecchia
[3]. The genuine Szász-Mirakjan operators satisfy

(Lne2)(x) = x2 +
x

n

and substituting in (3.4) we get −3/(4n2) < 0. This fact guarantees that L̃n operators
generate a smaller approximation error.

2. Modi�ed Baskakov-Kantorovich operators
The Baskakov operators are de�ned by

(Lnf)(x) =

∞∑

k=0

vn,k(x)f

(
k

n

)
,

where

vn,k(x) =

(
n+ k − 1

k

)
xk(1 + x)−n−k, x ≥ 0.

As mentioned in [2, p. 115 ], their Kantorovich extension has the form

(L∗nf)(x) = n

∞∑

k=0

vn,k(x)

∫ (k+1)/n

k/n

f(t)dt.

We deduce pn = 1/n and L̃n operators are de�ned by

(L̃nf)(x)= 2nnn+1
∞∑

k=0

(2nx− 1)k(2nx+ 2n− 1)−n−k
∫ (k+1)/n

k/n

f(t)dt,

x ≥ 1

2
. Since

(Lne2)(x) = x2 +
x(1 + x)

n
,

relation (3.4) becomes

1− 3n < 4nx, x ≥ 1

2
,
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which implies a better error approximation by using L̃n, n ∈ N, operators.

3. Modi�ed Stancu-Kantorovich operators
Stancu polynomials [7] depend on parameter α ≥ 0 and are de�ned by

(Lnf)(x) =

n∑

k=0

ω
〈α〉
n,k(x)f

(
k

n

)
, x ∈ [0, 1],

where

ω
〈α〉
n,k(x) =

(
n

k

)
x(k,−α)(1− x)(n−k,−α)

1(n,−α) ,

x(k,−α) := x(x+ α) . . . (x+ (k − 1)α).

The following identities

Lne0 = e0, Lne1 = e1, Lne2 = e2 +
1 + nα

n(1 + α)
(e1 − e2)

hold. The integral extension in Kantorovich sense of Stancu operators has been intro-
duced and studied in [5]

(L∗nf)(x) = (n+ 1)

n∑

k=0

ω
〈α〉
n,k(x)

∫ (k+1)/(n+1)

k/(n+1)

f(t)dt.

For operators generated by formula (2.5) we identify pn = 1/(n + 1), p∗ = 1/2 and
J∗ =

[
1
4
, 1
]
. Relation (3.4) becomes

(4.1) −1− βn + 2(n+ 1)βn(2x− 1) < 0,

where βn =
1 + nα

n(1 + α)
.

For special case α = 0, Stancu operators turn into Bernstein operators and L∗n op-
erators become the genuine Kantorovich operators [4], see (1.1) and (1.2). In this case
βn = 1/n and for each x < 3/4 relation (4.1) hold. Consequently, at least on the interval
[1/4, 3/4] the operators L̃n, n ∈ N, give a better error approximation.

For α > 0, we set

τ = inf
n≥1

2nβn + 3βn + 1

4(n+ 1)βn
.

We can easily verify that 1/2 < τ < 1.
In this case the interval I for which the operators L̃n, n ∈ N, give a better error of

approximation than the operators L∗n, n ∈ N, is the following I =
[
1
4
, τ
]
.

Acknowledgment. The author thanks to the reviewer for careful reading of the manu-
script which led the removal of some errors and misprints occurred in the original variant
of it.
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1. Introduction

Investigations of cusped elastic prismatic shells actually takes its origin from the �fties
of the last century, namely, in 1955 I.Vekua raised the problem of investigation of elastic
cusped prismatic shells, whose thickness on the prismatic shell entire boundary or on its
part vanishes (see [15], [16], [9] and references therein).

Let Ox1x2x3 be an anticlockwise-oriented rectangular Cartesian frame of origin O.
We conditionally assume the x3-axis vertical. The elastic body is called a prismatic shell
if it is bounded above and below by, respectively, the surfaces

x3 =
(+)

h (x1, x2) and x3 =
(−)

h (x1, x2), (x1, x2) ∈ ω,
laterally by a cylindrical surface Γ of generatrix parallel to the x3-axis and its vertical
dimension is su�ciently small compared with other dimensions of the body. ω := ω∪ ∂ω
is the so-called projection of the prismatic shell on x3 = 0.

The main di�erence between the prismatic shell of a constant thickness and the stan-
dard shell of a constant thickness is the following: the lateral boundary of the standard

∗I. Vekua Institute of Applied Mathematics & Faculty of Exact and Natural Sciences of
Iv. Javakhishvili Tbilisi State University, 2 University st., 0186 Tbilisi, Georgia, Email:
chinchaladze@gmail.com
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shell is orthogonal to the �middle surface� of the shell, while the lateral boundary of the
prismatic shell is orthogonal to the prismatic shell's projection on x3 = 0.

Let the thickness of the prismatic shell be

2h(x1, x2) :=
(+)

h (x1, x2)−
(−)

h (x1, x2)

{
> 0 for (x1, x2) ∈ ω,
≥ 0 for (x1, x2) ∈ ∂ω.

If the thickness of the prismatic shell vanishes on γ0 ⊂ ∂ω, it is called cusped one.
Below we consider symmetric prismatic shell, i.e. the case when

(+)

h (x1, x2) = −
(−)

h (x1, x2),

with the thickness as follows

(1.1) 2h := h0x
κ
2 , h0,κ = const, h0, κ > 0.

I. Vekua [15], [16] constructed hierarchical models for elastic prismatic shells, in par-
ticular, plates of variable thickness, when on the face surfaces either es (the �rst model)
or displacements (the second model) are known. The updated survey of results concern-
ing cusped elastic prismatic shells in the cases of the �rst and second models is given
in [9] (see also [1], [5], [6], [10], [12], [14] and references therein). In the present paper
the third hierarchical model for cusped elastic prismatic shells is analyzed. It means
that on the face surfaces a normal to the projection of the prismatic shell component
Q(±)

ν 3
of a traction vector and parallel to the projection of the prismatic shell components

uα(x1, x2,
(±)

h , t) of a displacement vector are known. The third model was �rst suggested
in [8].

In what follows the usual notations are used: Xij and eij are the stress and strain
tensors, respectively, ui are the displacements, Fi are the volume force components, ρ is
the density, λ and µ are the Lamé constants, δij is the Kronecker delta, subscripts pre-
ceded by a comma mean partial derivatives with respect to the corresponding variables.
Moreover, repeated indices imply summation (Greek letters run from 1 to 2 and Latin
letters run from 1 to 3).

In the �fties of the twentieth century, I.Vekua ([9], [15], [16]) introduced a new
mathematical model for elastic prismatic shells which was based on expansions of the
three�dimensional displacement vector �elds and the strain and stress tensors in linear
elasticity into orthogonal Fourier-Legendre series with respect to the variable of plate
thickness. By taking only the �rst N + 1 terms of the expansions, he introduced the
so�called N�th approximation. Each of these approximations for N = 0, 1, ... can be
considered as an independent mathematical model of plates. In particular, in case of the
�rst model the approximations for N = 0 and N = 1 correspond to the plane deformation
and classical Kirchho�-Love plate model, respectively (see [9]).

For the sake of simplicity we consider zero approximation of the hierarchical model.
Basic equation system can be written as follows (see e.g. [8], [3])

µ(hvα0),ββ +(λ+ µ)(hvγ0),γα

−(lnh),β {λδαβ(hvγ0),γ + µ [(hvα0),β +(hvβ0),α ]} + Φα0 = ρhv̈α0,(1.2)

µ(hv30,β),β +Φ30 = ρhv̈30,(1.3)
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where

Xαβ0(x1, x2, t) = λδαβ
[
(hvγ0),γ +Ψγγ

]
+ µ

[
(hvα0),β +(hvβ0),α +2Ψαβ

]
,

X3β0(x1, x2, t) = µhv30,β , X330 = λ
[
(hvγ0),γ +Ψγγ

]
,

eαβ0 =
1

2

[
(hvα0),β +(hvβ0),α

]
+ Ψαβ , e3β0 =

1

2
hv30,β , e330 = 0,

Φα0 := 2µ Ψαβ,β + λΨγγ,α − (lnh),β [λδαβΨγγ + 2µ Ψαβ ] + Fα0,

Φ30 := Q(+)
ν 3

√
(
(+)

h ,1 )2 + (
(+)

h ,2 )2 + 1 +Q(−)
ν 3

√
(
(−)

h ,1 )2 + (
(−)

h ,2 )2 + 1 + F30,

Ψαβ :=
1

2

[
uβ(x1, x2,

(−)

h , t)
(−)

h ,α−uβ(x1, x2,
(+)

h , t)
(+)

h ,α

+uα(x1, x2,
(−)

h , t)
(−)

h ,β −uα(x1, x2,
(+)

h , t)
(+)

h ,β
]
,

Xij0, eij0, ui0 and Fi0 are the zeroth order moments of Xij , eij , ui and Fi, respectively;
vi0 := h−1ui0 are called weighted moments of the function ui.

The case of cylindrical bending of the plates with the thickness (1.1) is considered in
[8]. In this case the system (1.2)-(1.3) can be rewritten as follows

µ(h(x2)v10(x2)),22−µ(lnh(x2)),2 (h(x2)v10(x2)),2 +Φ10(x2) = 0

(λ+ 2µ)(h(x2)v20(x2)),22−(λ+ 2µ)(lnh(x2)),2 (h(x2)v20(x2)),2 +Φ20(x2) = 0,

µ(h(x2)v30,2(x2)),2 +Φ30(x2) = 0.

In [8] it is shown that vα0 can not be prescribed in cusped edge (i.e., Dirichlet problem
are not satis�ed) if κ > 0, and v30 can not be prescribed in cusped edge if κ ≥ 1.

The weak setting of the homogeneous Dirichlet problem of the following system

µ(hvα0),ββ +(λ+ µ)(hvγ0),γα

−(lnh),β {λδαβ(hvγ0),γ + µ [(hvα0),β +(hvβ0),α ]} + Φα0 = 0,

µ(hv30,β),β +Φ30 = 0,

is considered in [3].

2. Vibration problem

We will consider the case of harmonic vibration

vi0(x, t) := e−ιϑt
0
vi0(x), Φi0(x, t) := e−ιϑt

0

Φi0(x), ι2 = −1,

ϑ = const > 0, x := (x1, x2) ∈ ω, i = 1, 2, 3.

Taking into account of (1.1), (1.2), and (1.3) for
0
vi0(x) we get the following system

(the overscript index 0 is omitted below)

−ρϑ2hv10 − µ∆2(hv10)− (λ+ µ)
[
(hv10),11 +(hv20),21

]

+µ(lnh),2 [(hv10),2 +(hv20),1 ] = Φ10,

−ρϑ2hv20 − µ∆2(hv20)− (λ+ µ)
[
(hv10),12 +(hv20),22

]

+(lnh),2 {λ [(hv10),1 + (hv20),2] + 2µ(hv20),2 } = Φ20,

−ρϑ2hv30 − µ [(hv30,1),1 +(hv30,2),2 ] = Φ30,
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where ∆2 is a two dimensional Laplace operator.
We can rewrite obtained system in the following vector form

(2.1) Av(x) = Φ(x), x ∈ ω,
where

A :=

∥∥∥∥∥∥

A11 A12 A13

A21 A22 A23

A31 A32 A33

∥∥∥∥∥∥
,

A11 := −ρϑ2h− (λ+ 2µ)h∂11 − µ [h∂22 + 2h,2 ∂2 + h,22 ] + µ(lnh),2 [h∂2 + h,2 ] ,

A12 := −(λ+ µ) [h∂12 + h,2 ∂1] + µ(lnh),2 h∂1,

A21 := −(λ+ µ) [h∂12 + h,2 ∂1] + λ(lnh),2 h∂1,

A22 := −ρϑ2h− µh∂11 − (λ+ 2µ) [h∂22 + 2h,2 ∂2 + h,22 ] + (λ+ 2µ)(lnh),2 [h∂1 + h,2 ] ,

A13 = A23 = A31 = A32 = 0, A33 := −ρϑ2h− µh(∂11 + ∂22) + µh,2 ∂2,

v := (v10, v20, v30)>, Φ := (Φ10,Φ20,Φ30),

the symbol (·)> means transposition.
Let

v, v∗ ∈ C2(ω) ∩ C1(ω), v∗ := (v∗10, v
∗
20, v

∗
30)>,

where v and v∗ are arbitrary vectors of the above class. We obtain the following Green's
formula

(2.2)

∫

ω

Av · v∗dω = J(v, v∗)−
∫

∂ω

Xnv · v∗d∂ω =

∫

ω

Φ · v∗dω.

Here n := (n1, n2) is the inward normal to ∂ω:

Xn := {Xn10, Xn20, Xn30},
with

Xni0 = Xij0nj ,

J(v, v∗) :=

∫

ω

−hρϑ2vi0v
∗
i0dω +

∫

ω

λ

h

[
(hv10),1 (hv∗10),1 +(hv20),2 (hv∗20),2

+(hv10),1 (hv∗20),2 +(hv20),2 (hv∗10),1
]
dω +

∫

ω

µ

h

[
2f(hv10),1 (hv∗10),1

+(hv10),2 (hv∗10),2 +(hv20),1 (hv∗10),2 +(hv20),1 (hv∗20),1 +(hv10),2 (hv∗20),1

+2(hv20),2 (hv∗20),2 +hv30,1hv
∗
30,1 + hv30,2hv

∗
30,2

]
dω

=

∫

ω

−hρϑ2vi0v
∗
i0dω +

∫

ω

λ

h
(hvα0),α (hv∗β0),β dω

+

∫

ω

µ

h

{
[(hvα0),β +(hvβ0),α ]

[
(hv∗α0),β +(hv∗β0),α

]
+ (hv30,α)(hv∗30,α)

}
dω

=

∫

ω

a[−h2ρϑ2vi0v
∗
i0 + λe1

kk0(v)e1
ii0(v∗) + 2µe1

ij0(v)e1
ij0(v∗)]dω,

where

a :=
1

h
,
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e1
ij0(v) :=





1

2

[
(hvi0),j +(hvj0),i

]
, i, j = 1, 2,

1

2
hvi0,j , i = 3, j = 1, 2,

0, i = j = 3.

If we consider BVPs for system (2.1) with homogeneous boundary conditions for which
the curvilinear integralalong ∂ω in (2.2) disappears, we arrive at the equation

J(v, v∗) =

∫

ω

Φ · v∗dω.

Denote by D(ω) a space of in�nity di�erentiable functions with compact support in
ω and introduce the linear form [D(ω)]3 by the formula:

(v, v∗)Xκ
ϑ

=

∫

ω

[
h2ρϑ2vi0v

∗
i0 + e1

ij0(v)e1
ij0(v∗)

] 1

h
dω,

‖v‖2Xκ
ϑ

=

∫

ω

[
hρϑ2vi0vi0 +

1

4h

(
4[(hv10),1 ]2

+4[(hv20),2 ]2 + 2((hv10),2 +(hv20),1 )2 + 2(hv30,1 )2 + 2(hv30,2 )2
)]
dω.

Xκ
ϑ is a Hilbert space.

The classical and weak setting of the homogeneous Dirichlet problem can be formu-
lated as follows:

2.1. Problem. Find a 3-dimensional vector v in ω satisfying the system of di�erential
equations (2.1) in ω and the homogeneous Dirichlet boundary condition

(2.3) [v(x)]+ = 0, x ∈ ∂ω.

2.2. Problem. Find a vector v ∈ Xκ
ϑ satisfying the equality

(2.4) J(v, v∗) = 〈Φ, v∗〉 for all v∗ ∈ Xκ
ϑ ,

here, the vector Φ belongs to the adjoint space [Xκ
ϑ ]∗, and 〈·, ·〉 denotes duality brackets

between the spaces [Xκ
ϑ ]∗ and Xκ

ϑ .

Further, we construct the vectors in Ω := {(x;x3) : x ∈ ω,−h(x) < x3 < h(x)} :

wi(x, x3) =
1

2
vi0(x), i = 1, 2, 3,

w∗i (x, x3) =
1

2
v∗i0(x), i = 1, 2, 3.

It can be shown that

(2.5) J(w,w∗) :=

∫

Ω

[−ρϑ2wiw
∗
i + σij(w)eij(w

∗)]dΩ = J(v, v∗),

where w(x, x3) := (w1, w2, w3) and w∗(x, x3) := (w∗1 , w
∗
2 , w

∗
3) are vectors and J(w,w∗)

is the bilinear form corresponding to the three-dimensional potential energy for the dis-
placement vector w.

In view of the homogeneous Dirichlet boundary condition (2.3), if κ > 1, the following
Hardy inequality holds (see [13], p. 69; [11])

(2.6)

∫ l

ε

xκ−2
2 v2

α0dx2 ≤ 4

(κ − 1)2

∫ l

ε

xκ2 (vα0,2 )2dx2, κ > 1.
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Replacing in (2.6) κ by κ + 2, we obtain

(2.7)

∫ l

ε

xκ2 v
2
α0dx2 ≤ 4

(κ + 1)2

∫ l

ε

xκ+2
2 (vα0,2 )2dx2, for any κ > 0.

Now, considering the limit procedure as ε→ 0+, since the limits of the integrals in (2.7)
exist for vα0 ∈ Xκ

ϑ , we immediately get the following

(2.8)

∫ l

0

xκ2 v
2
α0dx2 ≤ 4

(κ + 1)2

∫ l

0

xκ+2
2 (vα0,2 )2dx2, for any κ > 0.

Integrating by x1 both side of (2.8) over ]x0
1, x

1
1[, we get

(2.9)

∫

ω

xκ2 v
2
α0dω ≤

4

(κ + 1)2

∫

ω

xκ+2
2 (vα0,2 )2dω, for any κ > 0.

2.3. Lemma. The bilinear form J(·, ·) is bounded and strictly coercive in the space
Xκ
ϑ (ω), i.e., there are positive constant C0 and C1 such that

(2.10) |J(v, v∗)| ≤ C1‖v‖Xκ
ϑ
‖v∗‖Xκ

ϑ
,

(2.11) J(v, v) ≥ C0‖v‖2Xκ
ϑ

for all v, v∗ ∈ Xκ
ϑ and ϑ2 < µ(κ+1)2

16ρl2
.

Proof. In view of (2.5) we have

|J(v, v∗)|2 = |J(w,w∗)|2

=
[ ∫

Ω

−ρϑ2wiw
∗
i + (2µeij(w) + λδijekk(w))eij(w

∗)dΩ
]2

≤
∣∣∣
∫

Ω

ρϑ2wiw
∗
i dΩ

∣∣∣
2

+ C3

∣∣∣
∫

Ω

(2µeij(w) + λδijekk(w))eij(w
∗)dΩ

∣∣∣
2

≤
∣∣∣
∫

ω

hρϑ2vi0v
∗
i0dω

∣∣∣
2

+ C2

3∑

i,j=1

∫

Ω

e2
ij(w)dΩ

3∑

i,j=1

∫

Ω

e2
ij(w

∗)dΩ

≤
∣∣∣
∫

ω

hρϑ2vi0v
∗
i0dω

∣∣∣
2

+ C2

∫

ω

1

2

3∑

i,j=1

e2
ij0(v)

dω

h

∫

ω

1

2

3∑

i,j=1

e2
ij0(v∗)

dω

h

≤
∫

ω

hρϑ2
3∑

i=1

v2
i0dω

∫

ω

hρϑ2
3∑

i=1

v∗2i0dω

+C2

∫

ω

1

2

3∑

i,j=1

e2
ij0(v)

dω

h

∫

ω

1

2

3∑

i,j=1

e2
ij0(v∗)

dω

h

≤ C1‖v‖2Xκ
ϑ
‖v∗‖2Xκ

ϑ
,

where

C1 := max{1, C2}.

Whence (2.10) follows.
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Further, taking into account of (2.9) and of the fact that 2λ+ 3µ > 0, µ > 0 we get

‖v‖2Xκ
ϑ
≤ J(v, v)

2µ
+
ϑ2ρh0

µ

∫

ω

xκ2 v
2
i0dω ≤

J(v, v)

2µ
+

4ϑ2ρh0

µ(κ + 1)2

∫

ω

xκ+2
2 (vi0,2)2dω

≤ J(v, v)

2µ
+

4ϑ2ρh0l
2

µ(κ + 1)2

∫

ω

xκ2 (vi0,2)2dω ≤ J(v, v)

2µ
+

4ϑ2ρl2

µ(κ + 1)2

∫

ω

(hvi0,2)2

h
dω

=
J(v, v)

2µ
+

4ϑ2ρl2

µ(κ + 1)2

∫

ω

[ (hv10,2)2

h
+

(hv20,2)2

h
+

(hv30,2)2

h

]
dω

≤ J(v, v)

2µ
+

2ϑ2ρl2

µ(κ + 1)2

∫

ω

[2(hv10,2)2

h
+

4(hv20,2)2

h
+

2(hv30,2)2

h

]
dω

≤ J(v, v)

2µ
+

2ϑ2ρl2

µ(κ + 1)2

∫

ω

[2[(hv10),2 ]2

h
+

4[(hv20),2 ]2

h
+

2(hv30,2)2

h

]
dω

≤ J(v, v)

2µ
+

8ϑ2ρl2

µ(κ + 1)2
‖v‖2Xκ

ϑ
,

from here we have

(2.12) J(v, v) ≥ (2µ− 16ϑ2ρl2

(κ + 1)2
)‖v‖2Xκ

ϑ
.

If we assume ϑ2 < µ(κ+1)2

16ρl2
inequality (2.11) immediately follows from (2.12). �

2.4. Remark. If J(v, v) = 0, then v ≡ 0 by (2.12).

2.5. Theorem. Let F ∈ [Xκ
ϑ ]∗. Then the variational problem (2.4) has a unique solution

v ∈ Xκ
ϑ for an arbitrary value of the parameter κ and ‖v‖Xκ

ϑ
≤ 1

C0
‖F‖[Xκ

ϑ
]∗ .

Proof. The proof can be realized by means of Lax-Milgram theorem (see Appendix
A.1). �

It can be easily shown that if Φ ∈ [L(ω)]3 and suppΦ ∩ γ0 = ∅, then Φ ∈ [Xκ
ϑ ]∗ and

〈Φ , v∗〉 =

∫

ω

Φ(x) v∗(x) dω,

since v∗ ∈ [H1(ωε)]
3, where ε is su�ciently small positive number such that suppΦ ⊂

ωε = ω ∩ {x2 > ε}. Therefore,

|〈Φ , v∗〉| =
∣∣∣
∫

ω

Φ(x) v∗(x) dω
∣∣∣ ≤ ||Φ||[L2(ω)]3 ||v∗||[L2(ωε)]3

≤ ||Φ||[L2(ω)]3 ||v∗||[H1(ωε)]3 ≤ Cε ||Φ||[L2(ω)]3 ||v∗||Xκ
ϑ
.

In this case, we obtain the estimate

||v||Xκ
ϑ
≤ Cε
C0
||Φ||[L2(ω)]3 .

For establishing a representation of the space Xκ
0 as a weighted Sobolev space, we

introduce the following space:

Y κ
0 :=

[ 0

W 1
2 ,κ(ω)

]2
,

where
0

W 1
2 ,κ(ω) is a completion D(ω) by means of the norm

‖f‖20

W1
2 ,κ(ω)

:=

∫

ω

xκ2

(
|∇f |2

)
dω, ∇f = (f,1 , f,2 ).
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The norm in the space Y κ
0 for a vector (v10, v20, v30) reads as

‖v‖2Y κ
0

:=

∫

ω

xκ2

( 2∑

α=1

|∇vα0|2
)
dω.

Using Korn's and Hardy's inequalities (see Appendix) the following theorem can be
proved (similarly, to the Theorem 5.1 of [4])

2.6. Theorem. The linear spaces Xκ
0 and Y κ

0 as sets of vector functions coincide and

the norms ‖ · ‖
Xκ

0
, ‖ · ‖

Yκ
0

are equivalent if κ = 0 and ϑ2 < min{µ(κ+1)2

16ρl2
, 2
h0ρl2

}.

2.7. Remark. Note that if v ∈ Xκ
ϑ , then all the components of v posses the zero traces

on part γ1 of the boundary ∂ω for arbitrary κ due to the well-known trace theorem in
the Sobolev space W 1. This follows, on the one hand, from the fact that the elliptic
system under consideration is non-degenerated at the curve γ1 and, on the other hand,
from the construction of the space Xκ

ϑ .

3. Appendix

A.1. The Lax-Milgram theorem. Let V be a real Hilbert space and let J(w, v)
be a bilinear form de�ned on V × V . Let this form be continuous, i.e., let there exist a
constant K > 0 such that

|J(w, v)| ≤ K‖w‖V ‖v‖V
holds ∀w, v ∈ V and V -elliptic, i.e., let there exist a constant α > 0 such that

J(w,w) ≥ α‖w‖2
V

holds ∀w ∈ V . Further let F be a bounded linear functional from V ∗ dual of V . Then
there exists one and only one element z ∈ V such that

J(z, v) = 〈F, v〉 ≡ Fv ∀v ∈ V
and

‖z‖V ≤ α−1‖F‖
V ∗ .

Let ω be as in Section 1 and let D(ω) be a space of in�nitely di�erentiable functions
with compact support in ω.

A.2. Hardy's inequality. For every f ∈ D(ω) and ν 6= 1 there holds the inequality

(A.1)

∫

ω

xν−2
2 f2(x) dω ≤ Cν

∫

ω

xν2 |∇f(x)|2 dω,

where the positive constant Cν is independent of f .
By completion of D(ω) with the norm

||f ||2◦
W1

2,ν(ω)
:=

∫

ω

xν2 |∇ f(x)|2 dω,

we conclude that the inequality (A.1) holds for arbitrary f ∈
◦
W 1

2,ν(ω).
For proof see [7].

A.3. Korn's weighted inequality. Let ϕ = (ϕ1, ϕ2) ∈ [
◦
W 1

2,ν(ω)]2 and ν 6= 1. Then
∫

ω

xν2 [ |∇ϕ1(x)|2 + |∇ϕ2(x)|2 ] dω
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≤ Cν
∫

ω

xν2 [ϕ2
1,1(x) + ϕ2

2,2(x) + (ϕ1,2(x) + ϕ2,1(x))2 ] dω,

where the positive constant Cν is independent of ϕ.
The proof can be found in [7], [17].
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Abstract

We investigate the approximation properties of the functions by
trigonometric polynomials in weighted Lorentz spaces with weights sat-
isfying so called Muckenhoupt's Ap condition. Relations between mod-
uli of smoothness of the derivatives of the functions and those of the
functions itself are studied. In weighted Lorentz spaces we also prove a
theorem on the relationship between the derivatives of a polynomial of
best approximation and the best approximation of the function. More-
over, we study relationship between modulus of smoothness of the func-
tion and its de la Vallée-Poussin sums in these spaces.
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1. Introduction and the main results

Let T = [−π, π]. A function ω : T→ [0,∞] will be called a weight function if ω is
locally integrable and almost everywhere (a.e.) positive. The function ω generates the
Borel measure

ω(E) =

∫

E

ω(x)dx.

By

f∗ω(t) = inf {ν ≥ 0 : ω ({x ∈ T: |f(x)| > ν}) ≤ t}
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we denote the nondecreasing rearrangement of a function f : T→ [0,∞]. We denote also

f∗∗(t) :=
1

t

t∫

0

f∗ω(u)du.

Let 0 < p <∞, 0 < q <∞. A measurable and a.e. �nite function f on T belongs to the
Lorentz space Lpqω (T) if

‖f‖Lpqω :=



∫

T

(t
1
p f∗∗(t))q

dt

t




1/q

<∞.

Note that Lorentz spaces, introduced by G. Lorentz in the 1950 s. [24 ], [25 ]. As seen the
weighted Lorentz spaces Lpqω (T) is expressed not only in terms of the parameter p, but
also in terms of the second parameter q. If p = q, then Lpqω (T) is the weighted Lebesgue
space Lpω(T) [10, p. 20]. �f q < r, then the space Lpqω (T) is contained in Lprω (T). Detailed
information about properties of the Lorentz spaces can be found in [12], [20], [26] and
[31].

Let 1 < p < ∞, p′ = p
p−1

and let ω be a weight function on T. ω is said to satisfy
Muckenhoupt's Ap-condition on T if

sup
J


 1

|J |

∫

J

ω (t) dt




 1

|J |

∫

J

ω1−p′ (t) dt



p−1

<∞ ,

where J is any subinterval of T and |J | denotes its length. Note that the weight functions
belonging to the Ap− class, introduced by Muckenhoupt [27], play a very important role
in di�erent �elds of mathematical analysis.

We use c, c1, c2, ... to denote constants (which may, in general, di�er in di�erent
relations) depending only on numbers that are not important for the questions of interest.
We shall also employ the symbol A � B, denoting that cA ≤ B ≤ C, where c, C are
constants.

Let α ∈ Z+ and f ∈ L1(T). Suppose that x, h are real, and let us take into

∆α
t f(x) :=

α∑

j=0

(−1)j
(
α

j

)
f (x+ (α− j)t),

where
(
α
j

)
:= α(α−1)(α−2)...(α−j+1)

j!
, j > 1 is the Binomial coe�cients and

(
α
0

)
: = 1,

(
α
1

)
:

= α.
Let 1 < p, q <∞, ω ∈ Ap(T), f ∈ Lpqω (T). We put

σαδ f(x) :=
1

δ

δ∫

0

|∆α
t f(x)| dt.

If f ∈ Lpqω (T), ω ∈ Ap(T) according to [6 ] the Hardy-Littlewood Maximal function is
bounded in Lpqω (T), ω ∈ Ap(T). Then we have

‖σαδ f‖Lpqω ≤ c1 ‖f‖Lpqω . <∞.

For 1 < p, q < ∞, ω ∈ Ap(T), f ∈ Lpqω (T), α ∈ Z+ we de�ne the α − th mean modulus
of smoothness ωα(f, .)Lpqω by

ωα(f, h)Lpqω := sup
|δ|≤h

‖σαδ f(x‖Lpqω
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Let f ∈ Lpqω (T), α ∈ Z+ the modulus of smoothness ωα(f, .)Lpqω is a nondecreasing,
nonnegative, function and

ωpα(f1 + f2, .) Lpqω ≤ ωpα(f1, .) Lpqω + ωpα(f2, .) Lpqω ,

lim
δ→0+

ωα(f, δ)Lpqω = 0.

For f ∈ Lpqω (T), we de�ne the α− th derivative of f as function g ∈ Lpqω (T) satisfying

(1.1) lim
h→0+

∥∥∥∥
∆α
h(f)

hα
− g
∥∥∥∥
L
pq
ω

= 0,

in which case we write g = f (α).
Let

(1.2)
a0
2

+

∞∑

k=1

Ak(f, x), Ak(f, x) := ak(f) cos kx+ bk(f) sin kx

be the Fourier series of thefunction L1(T). The nth partial sums, and de la Vallée-Poussin
sum of the series (1.2 ) are de�ned, respectively, as

Sn(f) =
a0
2

+

n∑

k=1

Ak(f, x),

Vn(f) =
1

n

2n−1∑

ν=1

Sν(f).

We denote by En(f)Lpqω (n = 0, 1, 2, ...) the best approximation of f ∈ Lpqω (T) by
trigonometric polynomials of degree not exceeding n, i. e.,

En(f)Lpqω := inf
{
‖f − Tn‖Lpqω : Tn ∈ Πn

}
,

where Πn denotes the class of trigonometric polynomials of degree at most n.
Let Wα

pq,ω(T) (r = 1, 2, ...) be the linear space of functions f ∈ Lpqω (T), 1 < p, q <∞,
ω ∈ Ap(T), such that f (α) ∈ Lpqω (T). It becomes a Banach space with the norm

‖f‖Wα
pq,ω(T) := ‖f‖Lpqω +

∥∥∥f (α)
∥∥∥
L
pq
ω

.

The problems of approximation theory in the weighted and nonweighted Lorentz space
have been investigated in [1], [21], [35] and [37]. The approximation problems by trigono-
metric polynomials in di�erent spaces have been investigated by several authors (see, for
example, [2-5], [7], [9], [11], [13-19], [22], [23], [28-30], [33] and [34]).

In this work we study the approximation problems of functions by trigonometric poly-
nomials in the weighted Lorentz space Lpqω (T) with Muckenhoupt weights. Relations
between moduli of smoothness of the derivatives of a function and those of the function
itself are investigated. We also prove a theorem on the relationship between derivatives
of a polynomial of best approximation and the best approximation of the function in
the weighted Lorentz space Lpqω (T). In addition, in the weighted Lorentz space Lpqω (T)
relationship between modulus of smoothness of the function and its de la Vallée-Poussin
sums is studied. Similar problems in de�erent spaces were investigated in [9], [30], [32].

Our main results are the following.
Theorem 1.1. Let 1 < p, q < ∞, ω ∈ Ap(T), f ∈ Lpqω (T) and Tn a trigonometric

polynomial of degree n satisfying the following conditions:

‖f − Tn‖Lpqω = o

(
1

n

)
and

∥∥g − T ′n
∥∥
L
pq
ω

= o(1), n→∞.
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Then we obtain f ′ = g, that is, the function g satis�es the condition (1.1).
Using the same method as in the proof of Theorem 1.1 we have the following Corollary.
Corollary1.1. Let 1 < p, q < ∞, ω ∈ Ap(T), f, g1, ..., gk ∈ Lpqω (T) and Tn be a

trigonometric polynomial satisfying, for i = 1, ..., k, the conditions

‖f − Tn‖
L
pq
ω

= o
(

1

nk

)
, n→∞,

∥∥∥gi − T (i)
n

∥∥∥
L
pq
ω

= o
(

1

nk−i

)
, n→∞.

Then we obtain gi = g′i−1 (f = g0) in the sense of (1.1).
Theorem 1.2. Let 1 < p <∞ and 1 < q ≤ 2 or p > 2 and q ≥ 2. Then, for a given

ω ∈ Ap(T ), f ∈ Lpqω (T ) and integers α, r satisfying α > r we have

ωα−r
(
f (r), t

)
L
pq
ω

≤ c2





t∫

0

ωα (f, u)sLpqω
usr+1

du





1/s

,

where s = min ( q, 2).
Theorem 1.3. Let 1 < p, q < ∞, ω ∈ Ap(T ), f ∈ Lpqω (T ), α, r ∈ Z+ (α > r > 0)

and let Tn(f) ∈ Πn be the polynomial of best approximation to f in Lpqω (T ). In order
that

∥∥∥T
(α)

n (f)
∥∥∥
L
pq
ω

= O(nα−r)

it is necessary and su�cient that

En(f )Lpqω = O(n−r).

Theorem 1.4. Let 1 < p, q <∞, ω ∈ Ap(T ), α ∈ Z+. If f ∈ Lpqω , then
1.

c3ωα(f,
1

n
)
L
pq
ω

≤
(
n−α

∥∥∥V (α)
n ( f)

∥∥∥
L
pq
ω

+ ‖f(x)− Vn( f)‖Lpqω

)

≤ c4ωα(f,
1

n
)Lpqω(1.3)

where the constants c4 and c5 are dependent on α, p and q.
2.

c5ωα(f,
1

n
)
L
pq
ω

≤
(
n−α

∥∥∥S(α)
n (f)

∥∥∥
L
pq
ω

+ ‖f(x)− Sn( f)‖
L
pq
ω

)

≤ c6ωα(f,
1

n
)Lpqω ,(1.4)

where the constants c6and c7 are dependent on α, p and q.

2. Proofs of main results

We need the following results obtained in [35].
Lemma 2.1. Let ω ∈ Ap(T ), 1 < p, q < ∞. If f ∈ Lpqω (T ) and α = 1, 2, ..., then

there exists a constant c7 > 0 depending α, p and q such that

En(f)
L
pq
ω
≤ c7ωα(f,

1

n
)
L
pq
ω
.

holds where n = 0, 1, 2, ...
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Lemma 2.2. Let ω ∈ Ap(T ) and α ∈ Z+, 1 < p, q < ∞. If Tn ∈ Πn, n ≥ 1, then
there exists a constant c8 > 0 depending only on α, p and q such that

ωα(Tn, h)
L
pq
ω

≤ c8hα
∥∥∥T (α)

n

∥∥∥
L
pq
ω

, 0 < h ≤ π

Lemma 2.3. Let ω ∈ Ap(T ), 1 < p, q < ∞. If Tn ∈ Πn, n ≥ 1 and α ∈ Z+, then
there exists a constant c9 > 0 depending only on α, p and q such that

∥∥∥T (α)
n

∥∥∥
L
pq
ω

≤ c9nα ‖Tn‖Lpqω .

Proof of Theorem 1.1. We take ε > 0. We choose a natural number n0 = n0(ε) such
that for n ≥ n0

(2.1) ‖f − Tn‖
L
pq
ω

≤ ε 1

n
,

∥∥g − T ′n
∥∥
L
pq
ω

≤ ε.

Taking account of (2.1) for h satisfying the condition
√
ε
n
≤ h ≤ 1

n
we obtain

(2.2)

∥∥∥∥
f(·+ h)− f(·)

h
− T (·+ h)− Tn(·)

h

∥∥∥∥
p

L
pq
ω

≤ 2
p
2

Considering [8] we have

∆r
hTn(x) =

r∑

i=0

(
r
i

)
(−1)iTn

(
x+

( r
2
− i
)
h
)

=

=

∞∑

j=r

r∑

i=0

(
r
i

)
(−1)i

( r
2
− i
)j hj

j!
T (j)
n (x) =

(2.3) = hrT (r)
n (x) +

∞∑

j=r+1

η(r, j)j−rT (j)
n (x),

where − r
2
< η(r, j) < r

2
and η(r, j) = 0 if j − r is odd. Then using (2.3) and Lemma 2.3

for
√
ε
n
≤ h < 2

√
ε

n
we �nd that

∥∥∥∥
Tn(·+ h)− Tn(·)

h
− T ′n(·)

∥∥∥∥
p

L
pq
ω

≤
∞∑

m=2

(
hm−1

m!

)p ∥∥∥T (m)
n

∥∥∥
p

L
pq
ω

≤

(2.4) ≤
∞∑

m=2

(hn)(m−1)p ‖Tn‖p
L
pq
ω

≤ 4
ε

1− 2pεp/2
‖Tn‖p

L
pq
ω

≤ c12εp ‖Tn‖p
L
pq
ω

.

Using (2.2), (2.4) and (2.1) for
√
ε
n
≤ h < 2

√
ε

n
we reach

∥∥∥∥
f(·+ h)− f(·)

h
− g
∥∥∥∥
p

L
pq
ω

≤
∥∥∥∥
f(·+ h)− f(·)

h
− Tn(·+ h)− Tn(·)

h

∥∥∥∥
p

L
pq
ω

+

+

∥∥∥∥
Tn(·+ h)− Tn(·)

h
− T ′n(·)

∥∥∥∥
p

L
pq
ω

+

+
∥∥T ′n − g

∥∥p
L
pq
ω

≤ c10
(
εp/2 + εp ‖f‖p

L
pq
ω

+ εp
)

From the last inequality we have g = f ′ in the sense of (1.2). Then the proof of Theorem
1.1 is completed.

Proof of Theorem 1. 2. The function ωm(F, t)
L
pq
ω

non-decreasing and according to
reference [34] the following inequality holds:

(2.5) ωα(F, 2t)Lpqω ≤ c11ωα(F, t)Lpqω
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It is su�cient to prove theorem for t = 2−n. Then using of (2.5) we obtain




2−n∫

0

ωα (f, u)sLpqω
usr+1

du





1/s

�
{ ∞∑

ν=n

2νsrωα(f, 2−ν)sLpqω

}1/s

.

Therefore for all n it is su�cient to prove the following inequality:

(2.6) ωα−r(f
(r) , 2−n)Lpqω ≤

{ ∞∑

ν=n

2νsrωα(f, 2−ν)sLpqω

}1/s

.

By [34] for any trigonometric polynomial Qn of degree cn and F ∈ Lpqω (T) we obtain

(2.7) ωα(F , 1/n)Lpqω ≤ c12
(
‖F −Qn‖Lpqω + n−α

∥∥∥Q(α)
n

∥∥∥
L
pq
ω

)
.

Therefore we aim to �nd Q2n of degree c2n such that both
∥∥∥f (r) −Q2n

∥∥∥
L
pq
ω

and

2−n(α−r)
∥∥∥Q(α−r)

2n

∥∥∥
‖f‖

L
pq
ω

are bounded by the right-hand side of inequality (2.6). Let

Tn ∈ Πn (n = 0, 1, 2, ...) be the polynomial of best approximation to f. It is known
that [34] the set of trigonometric polynomials is dense in Lpqω (T) . Then we have
‖f − T2ν‖Lpqω → 0 as ν →∞.

Let f ∈ Lpqω (T) has the Fourier series

f(x) ∼ a0
2

+

∞∑

k=1

(ak cos kx+ bk sin kx) =

∞∑

k=0

Ak(f).

We de�ne trigonometric polynomial νNf as

νNf =

∞∑

k=0

ν(
k

N
)Ak(f),

where ν ∈ C∞ [0,∞), ν(x) = 1 for x ≤ 1 and ν(x) = 0 for x ≥ 1. Note that trigonometric
polynomial νNf has the following properties:

I) νNf is a trigonometric polynomial of degree smaller than N ;
II) If g is a trigonometric polynomial of degree [N/2] , then νNg = g;
III) ‖νNf ‖Lpqω ≤ c ‖f ‖Lpqω .

According to reference [34] we have

‖νNf − f‖Lpqω ≤ c13EN/2(f)
L
pq
ω
,

where Ek(f)
L
pq
ω

is the best approximation of f ∈ Lpqω (T) trigonometric polynomials of

degree not exceeding k. We now choose the Qn of (2.7) for F = f (r) to be (νnf )(r). It
is cleary that ‖f − νnf ‖Lpqω = o(1) as n→∞.

The following identity holds:

ν2kf − ν2nf =

k−1∑

m=n

(ν2m+1f − ν2mf ) ≡
k−1∑

m=n

γmf.

Then

(ν2kf)(r) − (ν2nf)(r) =

k−1∑

m=1

(γmf)(r) .
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Using the Littlewood- Paley inequality for the weighted Lorentz spaces Lpqω (T) in [21]
we have

c14

∥∥∥(ν2kf)(r) − (ν2nf)(r)
∥∥∥
L
pq
ω

≤

∥∥∥∥∥∥

(
k−1∑

m=n

{
(γmf)(r)

}2
)1/2

∥∥∥∥∥∥
L
pq
ω

≤ c15

∥∥∥(ν2kf)(r) − (ν2nf)(r)
∥∥∥
L
pq
ω

.(2.8)

According to [21, Lemma 4.2 and 4.3] we get

(2.9)

∥∥∥∥∥∥

(
k−1∑

m=n

{
(γmf)(r)

}2
)1/2

∥∥∥∥∥∥
L
pq
ω

≤
(
k−1∑

m=n

∥∥∥(γmf)(r)
∥∥∥
s

L
pq
ω

)1/s

,

where s = min (q, 2) .
Note that νnf is the near best approximation to f in Lpqω . Then using [35] we reach

the following equivalence

(2.10) ωα(f, 1/n) � ‖f − νnf ‖Lpqω + n−α
∥∥∥(νnf )(α)

∥∥∥
L
pq
ω

.

From (2.8 )- (2.10 ) and Lemma 2.3 we conclude that
∥∥∥(ν2kf)(r) − (ν2nf)(r)

∥∥∥
L
pq
ω

≤ c16

(
k−1∑

m=n

2mrs ‖(γmf)‖sLpqω

)1/s

≤ c17

(
k−1∑

m=n

2mrsωα(f, 2−m)sLpqω

)1/s

,

where c1 independent of m, k and f.
Use of Q2n = ν2nf and (2.10) gives us

2−n(α−r)
∥∥∥((ν2nf)(r))(α−r)

∥∥∥
L
pq
ω

= 2−n(α−r)
∥∥∥(ν2nf)(α)

∥∥∥
L
pq
ω

≤ 2nrωα(f, 2−n)Lpqω ≤ c18
( ∞∑

m=n

2mrsωα(f, 2−m)sLpqω

)1/s

.

The proof of Theorem 1.2 is completed.
Proof of Theorem 1. 3. We suppose that

(2.11) En(f)Lpqω = ‖f − Tn(f)‖
L
pq
ω

= O(n−r), (r > 0).

Taking into account Lemma 2.3 and the relations (2.11) we obtain
∥∥∥T

(α)

n (f)
∥∥∥
L
pq
ω

≤ c19nα ‖Tn(f)‖Lpqω ≤ n
α ‖f − Tn(f)‖Lpqω +‖Tn(f)‖

L
pq
ω

≤ c20nα−r.

Now we suppose that

(2.12)
∥∥∥T

(α)

n (f)
∥∥∥
L
pq
ω

= O(nα−r).
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Using Lemma 2.1, Lemma 2.2 and (2.2) we get

‖T2n(f)− Tn(T2n(f))‖Lpqω ≤ En(T2n(f))Lpqω ≤ c21ωα(T2n,
1

n
)
L
pq
ω
.

≤ c22n
−α
∥∥∥T (α)

2n

∥∥∥ ≤ c23n−α(nα−r) ≤ c24n−r.(2.13)

On the other hand, since Tn(T2n(f)) is a polynomial of order n the following inequality
holds:

‖T2n(f)− Tn(T2n(f))‖Lpqω = ‖f − Tn(T2n(f))− (f − T2n(f))‖Lpqω
≥ ‖f − Tn(T2n(f))‖Lpqω − ‖f − T2n(f))‖

L
pq
ω

≥ En(f)Lpqω − E2n(f)Lpqω ≥ 0.(2.14)

Use of (2.13) and (2.14) gives us

(2.15) 0 ≤ En(f)Lpqω − E2n(f)Lpqω ≤ c25n
−r.

Since En(f)Lpqω → 0 from the inequality (2.15) we conclude that

∞∑

k=n0

{
E2k (f)Lpqω − E2k+1(f)Lpqω

}
≤ c26

∞∑

k=n0

2−kr.

Then from the last inequality we obtain

(2.16) E2n0 (f)Lpqω ≤ c272−n0r.

It is clear that inequality (2.16) is equivalent to En(f)Lpqω ≤ c28(n−r). This completes
the proof.

Proof of Theorem 1. 4. In view of Lemma 2.2 the inequality

(2.17) ωα(Tn,
1

n
)Lpqω ≤ c29n

−α
∥∥∥T (α)

n

∥∥∥
L
pq
ω

,

holds, where Tn is a trigonometric polynomial of order n. Using the properties of smooth-
ness ωα(f, .)Lpqω and (2.17), we reach

ωα(f,
1

n
)Lpqω ≤

(
ωα(f − Tn, 1

n
)Lpqω + ωα(Tn,

1

n
)Lpqω

)

≤ c30

(
‖f − Tn‖Lpqω + n−α

∥∥∥T (α)
n

∥∥∥
L
pq
ω

)
.(2.18)

Considering [34] there exists a constant c > 0 depending only on α, p and q such that

(2.19) n−α
∥∥∥T (α)

n

∥∥∥
L
pq
ω

≤ c31ωα(Tn,
1

n
)Lpqω .

By virtue of Lemma 2.1

(2.20) En(f)Lpqω ≤ c32ωα(f,
1

n
)Lpqω .

It is known that [34] for the de la Vallée-Poussin mean the inequality

(2.21) ‖f − Vn(f)‖Lpqω ≤ c33En(f)Lpqω .
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holds. Use of (2.19 )-(2. 21) gives us

n−α
∥∥∥V (α)

n (f)
∥∥∥
L
pq
ω

+ ‖f − Vn(f)‖Lpqω

≤ c34

(
ωα(Vn,

1

n
)
L
pq
ω

+ En(f)Lpqω

)

≤ c35

(
ωα(f,

1

n
)
L
pq
ω

+ ωα(f − Vn, 1

n
)Lpqω + En(f)Lpqω

)

≤ c36ωα(f,
1

n
)
L
pq
ω
.

The last inequality and (2.18) imply that (1.3).
According to [35] there exists a constant c25 such that

(2.22) ‖f − Sn(f)‖
L
pq
ω

≤ c37En(f)Lpqω .

If the inequality (2.22) and the scheme of proof of the estimation (1.3) is used we obtain
the estimation (1.4).

Theorem 1.4 is proved.
Acknowledgement. The author would like to thank referee for all precious advices

and very helpful remarks.
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Subalgebra analogue to H-basis for ideals
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Abstract

The H-basis concept allows an investigation of multivariate polynomial
spaces degree by degree. In this paper we present the analogue of H-
bases for subalgebras in polynomial rings, we call them "SH-bases".
We present their connection to the Sagbi basis concept, characterize
SH-basis and show how to construct them.
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1. Introduction

The concept of Gröbner bases, introduced by Buchberger [3] in 1965, has become an
important ingredient for the treatment of various problems in computational algebra,
(see [2] for an extensive survey). This concept has also been extended to more general
situations, such as Gröbner bases of modules, for example, as in [9]. However, all ap-
proaches related to Gröbner bases are fundamentally tied to monomial orderings, which
lead to asymmetry among the variables of interest. On the other hand, the concept of
H-bases, introduced long ago by Macaulay [7], is based solely on homogeneous terms of
a polynomial. In [12], an extension of Buchberger's algorithm is presented to construct
H-bases algorithmically. Some applications of H-bases are given in [10], in addition, many
of the problems in applications which can be solved by the Gröbner technique can also
be treated successfully with H-bases.

The concept of Gröbner basis for ideals of a polynomial ring over a �eld K can be
adopted in a natural way to K-subalgebras of a polynomial ring. In [11] Sagbi (Subalge-
bra Analogue to Gröbner Basis for Ideals) basis for the K-subalgebra of K[x1, . . . , xn] is
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de�ned; this concept was also independently developed in [6]. The properties and appli-
cations of Sagbi bases are typically similar to standard Gröbner basis results (see [1] and
[4] for an overview of the standard theory). Like Gröbner bases, the concept of Sagbi
basis is also tied to monomial orderings. Consequently, within the concept of H- bases for
ideals, it is natural to probe the concept of subalgebra bases which may be based solely on
homogenous terms of a polynomial. In this paper we will present the analogue to H-bases
for ideals in polynomial rings, we call them "SH-bases". Unlike H-bases, SH-bases are
not �nite. This is not surprising because unlike ideals in polynomial rings, subalgebras
in polynomial rings are not necessarily �nitely generated. The subalgebras which are not
�nitely generated cannot have �nite SH-basis. Moreover, a �nitely generated subalgebra
may have an in�nite SH-basis (see Example 3.8).

The paper is organized as follows. In section 2, we brie�y describe the underlying
concept of grading which leads to Sagbi basis and SH-basis. Then, we give the notion of
d-reduction, which is one of the key ingredients for the characterization and construction
of SH-basis. After setting up the necessary notation, we present the d-reduction Algo-
rithm (see Algorithm 1). Also, here we present some properties characterizing SH-basis
(Theorem 2.4). In section 3, we present a criterion through which we can check that the
given system of polynomials is an SH-basis of the subalgebra it generates (Theorem 3.4)
and further on the basis of this theorem we present an algorithm for the construction of
SH-basis (Algorithm 2).

2. SH-bases and Sagbi bases

Here and in the following sections we consider polynomials in n variables x1, . . . , xn
with coe�cients from a �eld K. For short, we write

P := K[x1, . . . , xn].

If G is a subset of K[x1, . . . , xn] (not necessarily �nite), then the subalgebra of P

generated by G is K[G]. This notion is natural since the elements of K[G] are precisely
the polynomials in the set of formal variables G, viewed as elements of K[G].

2.1. De�nition. A G-monomial is a �nite power product of the form Gα = gα1
1 . . . gαm

m

where gi ∈ G for i = 1, . . . ,m, and α = (α1, . . . , αm) ∈ Nm.

Let Γ denote an ordered monoid, i.e., an abelian semigroup under an operation +,
equipped with a total ordering > such that, for all α, β, γ ∈ Γ,

α > β =⇒ α+ γ > β + γ.

A direct sum

P :=
⊕

γ∈Γ

P
(Γ)
γ

is called grading (induced by Γ) or brie�y a Γ-grading if for all α, β ∈ Γ

(2.1) f ∈ P
(Γ)
α , g ∈ P

(Γ)
β =⇒ f · g ∈ P

(Γ)
α+β .

Since the decomposition above is a direct sum, each polynomial f 6= 0 has a unique
representation

f =

s∑

i=1

fγi , 0 6= fγi ∈ P
(Γ)
γi .
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Assuming that γ1 > γ2 > . . . > γs, the Γ-homogeneous term fγ1 is called the maximal

part of f , denoted by M (Γ)(f) := fγ1 , and f −M (Γ)(f) is called the d-reductum of f .

For G ⊂ P, M (Γ)(G) := {M (Γ)(g) | g ∈ G }.
There are two major examples of gradings. The �rst one is grading by degrees,

P
(Γ)
d = {p ∈ P | p homogenous of degree d } ∀ d ∈ N.

Here, Γ = N with the natural total ordering. This grading is called theH-grading because
of the homogeneous polynomials. Therefore we also write H in place of this Γ. The space
of all polynomials of degree at most d can now be written as

Pd :=

d⊕

k=0

P
(H)
k .

The maximal part of a polynomial f 6= 0 is its homogeneous form of highest degree,
M (H)(f). For simplicity, let M (H)(0) := 0.

Now we introduce SH-bases and some of their properties. This concept is very similar
to the concept of Sagbi bases. Therefore, we will brie�y explain the underlying common
structure.

2.2. De�nition. A subset G of P is called SH- basis of the subalgebra A of P if, for all
0 6= f ∈ A, there exist G-monomials Gαi and ci ∈ K, i = 1, . . . , p such that

(2.2) f =

p∑

i=1

ciG
αi and

p
max
i=1
{deg(Gαi)} = deg(f).

The representation for f in (2.2) is also called its SH-representation with respect to G.

Note that SH-basis of a subalgebra is also a generating set of it. To obtain more
insight into SH-bases, we will give some equivalent de�nitions. First we need a more
technical notion.

2.3. De�nition. Let f ∈ P and G ⊂ P. We say f d-reduces to f̃ with respect to G if

f̃ = f −
m∑

i=1

ciG
αi , deg(f̃) < deg(f),

holds with G-monomials Gαi satisfying deg(Gα1) ≤ deg(f), i = 1, . . . ,m. In this case
we write

f →G f̃ .

By →G,∗ we denote the transitive closure of the binary relation →G
�.

The concept of d-reduction plays an important role in the characterization and con-
struction of SH-basis. For f ∈ P and G ⊂ P , the following algorithm computes h such
that f →G,∗ h.

�f →G,∗ h if we apply d-reduction iteratively such as f →G h1 →G h2 . . . →G h, where h

cannot be d-reduced any further with respect to G.
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Algorithm 1

Input: Let G and f be subset and polynomial respectively in P.
Output: h ∈ P such that f →G,∗ h.

1: h := f .
2: while (h 6= 0 and Gh = {∑i ciG

αi |M (H)(
∑
i ciG

αi) = M (H)(h)} 6= ∅)
3: (a) choose

∑
i ciG

αi ∈ Gh.
4: (b) h := h−∑i ciG

αi and continue at 2.

We note that when step 2(b), has been performed, then deg(h) is strictly smaller than
the deg(h −∑i ciG

αi) (by the choice of
∑
i ciG

αi). This shows that the Algorithm 1
always terminate.

2.4. Theorem. Let G ⊂ P and A be a subalgebra of P. Then the following conditions
are equivalent:
i) G is an SH-basis of A.

ii) K[{M (H)(g) | g ∈ G}] = K[{M (H)(f) | f ∈ A}].
iii) For all f ∈ A, f →G,∗ 0.

Proof. (i)⇒ (ii) follows by

M (H)(f) =
∑

j∈J
cjM

(H)(Gαj ), J := {j | deg(Gαj ) = deg(f)}

for arbitrary f ∈ A with SH-representation f =
∑
ciG

αi .

(ii) ⇒ (iii) If 0 6= f ∈ A, then M (H)(f) =
∑
j∈J cjM

(H)(Gαj ). Therefore, f̃ = f −
∑
j∈J cjG

αj , where f̃ ∈ A and deg(f̃) ≤ deg(f). Inductively, we get f →G,∗ 0.

(iii)⇒ (i) Let

g0 = f →G g1 →G . . .→G gd = 0

where M (H)(gi−1) = M (H)(Gαi) and deg(Gαi+1) < deg(Gαi), i = 1, . . . , d. Then

f =

d∑

i=1

ciG
αi and deg(f) = deg(Gα1) =

d
max
i=1
{deg(Gαi)}

i.e., f has an SH-representation with respect to G. �

The second major example of gradings leads to the Sagbi basis concept. Here, Γ = Nn
with componentwise addition and equipped with a total ordering satisfying (2.1) and, in

addition, γ ≥ 0 ∀γ ∈ Γ. For arbitrary γ = (γ1, . . . , γn) ∈ Γ, the space P
(Γ)
γ is a vector

space of dimension 1, namely,

P
(Γ)
γ = { c · xγ1 . . . xγn | c ∈ K }.

The maximal part of a polynomial is now a product of a leading coe�cient and a
leading monomial, M (Γ)(f) = LC(f) · LM(f), LC(f) ∈ K,LM(f) a leading mono-

mial. The s-reduction f →G f̃ is de�ned if there exists a G-monomial Gα such that

LM(Gα) = LM(f) and then we set f̃ := f − cGα, c ∈ K. The relation →G,∗ is con-
structed as above.

A Sagbi basis G (with respect to a given monomial ordering and a given subalgebra A)
is a set of polynomials, generating the subalgebra A and satisfying one of the following
equivalent conditions:
(i) Every f ∈ A has a representation f =

∑s
i=1 ciG

αi , LM(f) = maxsi=1{LM(Gαi)}.



1689

(ii) K[{M (Γ)(g) | g ∈ G}] = K[{M (Γ)(f) | f ∈ A}].
(iii) Every f ∈ A s-reduces to 0 with respect to G.

The proof of this equivalence and many other equivalent conditions can be found in
[11]. If a monomial ordering is compatible with the semi-ordering by degrees,

deg(xγ) > deg(xβ) =⇒ γ > β, γ, β ∈ Nn

then any Sagbi-representation as given in (i) is an SH-representation, in other words, a
Sagbi basis with respect to a degree compatible ordering is an SH-basis as well. The
converse is false, as the following example shows.

2.5. Example. Let f1 = x3 + x2y, f2 = y3, f3 = xy + y and A = K[f1, f2, f3]. Then
f1, f2 and f3 already constitute an SH-basis of A. (This is consequence of Theorem 2.4).
If we order the monomials by degree lexicographical ordering then

K[{M (H)(f) | f ∈ A}] = K[x3, y3, xy, x2y4].

Every Sagbi basis G with respect to this ordering contains at least four elements, for
instance SINGULAR ([5]) computes G = {g1, g2, g2, g4} with

g1 = x3 + x2y = f1

g2 = y3 = f2

g3 = xy + y = f3

g4 = x2y4 − 3x2y3 − 3xy3

Obviously, this Sagbi basis is an SH-basis as well.

It is possible that a subalgebra has a �nite SH-basis, but no �nite Sagbi basis, as the
following example shows.

2.6. Example. Let G = {f1, f2, f3} ⊂ K[x, y] where f1 = x + y, f2 = xy, f3 = xy2

and A = K[G]. It is easy to see that G is an SH-basis of A. However, the set S =
{x + y, xy, xy2, xy3, xy4, . . .} ⊂ A is an in�nite Sagbi basis for A with respect to a
monomial ordering x > y. (see [11]).

3. Construction of SH-bases

In this section, we present an SH-basis criterion, through which we can construct SH-
basis. For this purpose, we �x some notations which are necessary for this construction.

3.1. De�nition. Let G be a set of polynomials in P and let A = K[G]. We consider
f ∈ A with the representation f =

∑m
i=1 ciG

αi . Then the degree-height of f , written
d-ht(f), with respect to this representation is maxmi=1{deg(Gαi)}.

Let Y = {y1, . . . , ys} and K[Y ] be a polynomial ring over a �eld K in variables
y1, . . . , ys. Let P (Y ) = P (y1, . . . , ys) ∈ K[Y ] and Y α be a Y -monomial.

3.2. De�nition. Let G ⊆ P. A polynomial P (Y ) =
∑m
i=1 ciY

αi ∈ K[Y ] (where ci ∈ K)
is called G-homogenous if deg(Gαi) are same for 1 ≤ i ≤ m.

3.3. De�nition. Let G = {g1, . . . , gs} be a subset of K[x1, . . . , xn]. We denote

AR((M (H)(G)), the ideal of algebraic relations between M (H)(gi), i = 1, . . . , s de�ned
by:

AR((M (H)(G)) = {h ∈ K[y1, . . . , ys] |h(M (H)(g1)), . . . ,M (H)(gs)) = 0}
AR((M (H)(G)) is an ideal in K[y1, . . . , ys].
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In the case of Sagbi bases, there is as an algorithm for computing Sagbi bases by
means of algebraic relations (see [8]) where algebraic relations and their connection to
Sagbi bases are studied in detail.) The analogue for constructing SH-bases by means of
algebraic relations is based on the following result.

3.4. Theorem. (SH-basis criterion) Let G = {g1, . . . , gs} be a subset of K[x1, . . . , xn].
Let A = K[G] and let {Pj(Y ) | j ∈ J} be a �nite set of G-homogenous generators for

AR((M (H)(G)). Then the following conditions are equivalent:
i) G is an SH-basis of A.
ii) For each j ∈ J , Pj(G) = Pj(g1, . . . , gs)→G,∗ 0.

Proof. (i)⇒ (ii): This is trivial and follows from Theorem 2.4.
(ii)⇒ (i): For every h ∈ K[G], we will show that

h =

m∑

i=1

ciG
αi and deg(h) =

m
max
i=1
{deg(Gαi)}.

Let h ∈ K[G] and write h =
∑m
i=1 ciG

αi ; furthermore, assume that this representation
has the smallest possible degree-height t0 = maxmi=1{deg(Gαi)} of all such representation.
We know that deg(h) ≤ t0. Suppose that deg(h) < t0, without loss of generality, let the

�rst N summands be the ones for which deg(M (H)(Gαi)) = t0. Then the cancelation

of their maximal part must occur; i.e
∑N
i=1 ciM

(H)(Gαi) = 0. From this condition, we

obtain a polynomial P (Y ) =
∑N
i=1 ciY

αi ∈ AR((M (H)(G)). We can then write

(3.1)
N∑

i=1

ciY
αi = P (Y ) =

M∑

j=1

gj(Y )Pj(Y )

where the polynomials Pj(Y ) are among the stated generators of AR((M (H)(G)) and
the polynomials gj(Y ) ∈ K[y1, . . . , ys]. Moreover, we may assume that each gj(Y ) is
G-homogenous (since P (Y ) and every Pj(Y ) are) and also that

(3.2) d-ht(gj(G)) + d-ht(Pj(G)) = d-ht(P (G)) = t0 ∀j.
We have assumed that each Pj(G)→G,∗ 0; therefore we have Pj(G) =

∑nj

k=1 ckjG
αkj

where ckj ∈ K. By de�nition, these sums must have degree heights maxk{deg(G
αkj )} =

deg(Pj(G)) < d-ht(Pj(G)) for each j, where the last inequality holds because Pj(Y ) ∈
AR((M (H)(G)). Then for each j, 1 ≤ j ≤M ,

(3.3) gj(G)Pj(G) =

nj∑

k=1

ckjgj(G)Gαkj

Note that

(3.4) deg(gj(G))Pj(G)) = deg(gj(G)) + deg(Pj(G)) < deg(gj(G)) + d-ht(Pj(G)).

From our observation and using equation (3.2), we have

(3.5) deg(gj(G)) + d-ht(Pj(G)) ≤ d-ht(gj(G)) + d-ht(Pj(G)) = t0

Combining equations (3.4) and (3.5) we have

(3.6) deg(gj(G)Pj(G)) < t0

Finally, equations (3.1) and (3.3) imply that

(3.7) h = P (G) +

m∑

i=N+1

ciG
αi =

M∑

j=1

(

nj∑

k=1

ckjgj(G)Gαkj )

︸ ︷︷ ︸
+

m∑

i=N+1

ciG
αi .

︸ ︷︷ ︸
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Sum1 Sum2

If we examine the expression (3.7) closely, we see that:

• By (3.6), d-ht(Sum1) = maxMj=1{deg(gj(G)Pj(G))} < t0;
• By the choice of N , d-ht(Sum2) < t0;

But this contradicts our initial assumption that we have chosen a representation of h
that has the smallest possible height. Thus, G is an SH-basis of K[G]. �

On the basis of Theorem 3.4, now we present an algorithm which computes SH-basis
from a given set of generators. This algorithm is not necessarily terminating but does
terminate, if and only if, the considered subalgebra has a �nite SH-basis.

Algorithm 2

Input: A �nite subset G ⊂ P.
Output: SH-basis G.

1: Compute a generating set S for AR(M (H)(G)).
2: For P ∈ S

3: (a) h ∈ P, such that P (G)→G,∗ h.
4: (b) If h 6= 0, set G := G ∪ {h} and continue at 1.

3.5. Remark. We have implemented SH-basis construction algorithm in the computer
algebra system SINGULAR [5]. Code can be download from mathcity.org/junaid.

Now we present some examples which show the computation of SH-basis through
Algorithm 2.

3.6. Example. The subalgebra A ⊂ P of symmetric polynomials is well known to be
�nitely generated by a set S which is a set of elementary symmetric polynomials in
P. The set S is an SH-basis of A as AR(M (H)(S)) = {0} i.e, there is no polynomial
0 6= P (Y ) ∈ K[y1, . . . , yn] such that P (S) = 0.

3.7. Example. Let G = {x + y + 1, x2 + y2 − x + 2, 2xy − y} and A = Q[G]. The

ideal AR((M (H)(G)) = AR(x + y, x2 + y2, xy) in Q[y1, y2, y3] is generated by P (Y ) =
y2

1 − y2 − y3. It is easy to see that the polynomial P (G) = 3x + 3y − 1 →G.∗ 0. This
shows that G is an SH-basis of A.

The next example shows that there are �nitely generated algebras which do not admit
a �nite SH-basis.

3.8. Example. Let G = { g1 = xz+ y, g2 = xyz, g3 = xy2z} and A = Q[G]. Also we have

M (H)(g1) = xz,M (H)(g2) = xyz and M (H)(g3) = xy2z.
In �rst step, G = { g1 = xz + y, g2 = xyz, g3 = xy2z}. It is evident that the

ideal of relations AR(M (H)(G)) = AR(xz, xyz, xy2z) ⊂ Q[y1, y2, y3] is generated by
P (Y ) = y1y3 − y2

2 . The polynomial P (G) = (xz + y)(xy2z)− (xyz)2 = xy3z 9G,∗ 0, so
G := G ∪ {g4 = xy3z}.
In second step, G = { g1 = xz + y, g2 = xyz, g3 = xy2z, g4 = xy3z}. The polynomial

P (Y ) = y1y4 − y2y3 is one the generators of the ideal of relations AR(M (H)(G)) =
AR(xz, xyz, xy2z, xy3z) ⊂ Q[y1, y2, y3, y4]. Here we note that the polynomial P (G) =
(xz + y)(xy3z) − (xyz)(xy3z) = xy4z 9G,∗ 0, therefore we have G := G ∪ {xy4z} =
{ g1 = xz + y, g2 = xyz, g3 = xy2z, g4 = xy3z, g5 = xy4z}.

By induction, we get G = {xz+ y, xyz, xy2z, xy3z, xy4z, xy5z, . . .} which implies that
A have an in�nite SH-basis.
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Abstract

We consider a quantum particle moving in the one dimensional lattice
Z and interacting with a inde�nite sign external �eld v̂. We prove that
the associated Hamiltonian H can have one or two eigenvalues, situated
as below the bottom of the essential spectrum, as well as above the its
top. Moreover, we show that the operator H can have two eigenvalues
outside of the essential spectrum and one of them is situated below the
bottom of the essential spectrum, and other one above its top.
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1. Introduction

We consider the Hamiltonian H of a quantum particle moving in the one-dimensional
lattice Z and interacting with a inde�nite sign external �eld v̂, i.e., the potential has
positive and negative values.

In [9] of B.Simon the existence of eigenvalues of a family of continuous Schrödinger
operators H = −∆ + λV, λ > 0 in one and two-dimensional cases have been considered.
The result that H has bound state for all λ > 0 if only if

∫
V (x)dx < 0 is proven there

for all V (x) with
∫

(1 + |x|2)|V (x)|dx < +∞.
In [3] it is presented that under certain conditions on the potential a one-dimensional

Schrödinger operator has a unique bound state in the limit of weak coupling while under
other conditions no bound state in this limit. This question is studied for potentials
obeying

∫
(1 + |x|)|V (x)|dx < +∞.

The questions further discussed in R. Blankenbecker M.N. Goldberger and B.Simon
[1].
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All these results require the use of the modi�ed determinant. Throughout physics,
stable composite objects are usually formed by the way of attractive forces, which allow
the constituents to lower their energy by binding together. Repulsive forces separate
particles in free space. However, in structured environment such as a periodic potential
and in the absence of dissipation, stable composite objects can exist even for repulsive
interactions [10].

The Bose-Hubbard model, which have been used to describe the repulsive pairs, is the
theoretical basis for explanation of the experimental results obtained in [10].

Since the continuous Schrödinger operator has essential spectrum ful�lling semi-axis
[0,+∞) and its eigenvalues appear below the bottom of the essential spectrum, it is a
model, which well described the systems of two-particles with the attractive interaction.

Zero-range potentials are the mathematically correct tools for describing contact in-
teractions. The latter re�ects the fact that the zero-range potential is e�ective only in
the s-wave [11].

The existence of eigenvalues of a family of Schrödinger operators H = −∆−µV, λ >
0 with perturbation V of rank one in one and two-dimensional lattices have been con-
sidered in [7]. The result that H has a unique bound state for all µ > 0 is proven there
and for the unique eigenvalue e(µ) lying below the bottom of the essential spectrum an
asymptotic is found as µ→ 0.

In [2] for the Hamiltonian H of two fermions with attractive interaction on a neigh-
boring sites in the one-dimensional lattice Z has been considered and an asymptotics of
the unique eigenvalue lying below the bottom of its essential spectrum has been proven.

For a family of the generalized Friedrichs models Hµ(p), µ > 0, p ∈ T 2 with the
perturbation of rank one, associated to a system of two particles moving on the two-
dimensional lattice Z has been considered in [6] and the existence or absence of a positive
coupling constant threshold µ = µ0(p) > 0 depending on the parameters of the model
has been proved.

In[5]a family Hµ(p), µ > 0, p ∈ T of the generalized Friedrichs models with the
perturbation of rank one, associated to a system of two particles, moving on the one-
dimensional lattice Z is considered. The existence of a unique eigenvalue E(µ, p), of
the operator Hµ(p) lying below the essential spectrum is proved. For any p from a
neighborhood of the origin, the Puiseux series expansion for eigenvalue E(µ, p) at the
point µ = µ(p) ≥ 0 is found.

The main goal of this paper is to investigate the existence and location of eigenvalues
of the one-particle Hamiltonian H with the zero-range interaction µ 6= 0 and with inter-
actions λ 6= 0 on a neighboring sites. We prove that the Hamiltonian H may have one
or two eigenvalues, situating as below the bottom of the essential spectrum, as well as
above its top. Moreover, the operator H can have two eigenvalues outside of the essential
spectrum, where one of them is situated below the bottom of the essential spectrum and
other one above its top.

This results are new and in accord with the known results of [9, 3, 1, 7, 6, 5].

2. The coordinate representation of the one particle Hamiltonian

Let Z be the one dimensional lattice(integer numbers ) and `2(Z) be the Hilbert
space of square summable functions on Z and `2,e(Z) ⊂ `2(Z) be the subspace of func-

tions(elements) f̂ ∈ `2(Z) satisfying the condition

f̂(x) = f̂(−x), x ∈ Z
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The one particle operator Ĥµλ acting on `2,e(Z) is of the form

(2.1) Ĥµλ := Ĥ0 + V̂µλ,

where Ĥ0 is the Teoplitz type operator

(2.2) (Ĥ0ϕ̂)(x) :=
∑

s∈Z
ε̂(s)ϕ̂(x+ s), ϕ̂ ∈ `2,e(Z),

and

(2.3) (V̂µλϕ̂)(x) := v̂µλ(x)ϕ̂(x), ϕ̂ ∈ `2,s(Z).

The functions ε̂(s) and v̂µλ(s) are de�ned on Z as follows

ε̂(s) =





1, |s| = 0
− 1

2
, |s| = 1

0, |s| > 1,

and

v̂µλ(s) =





µ, |s| = 0
λ
2
, |s| = 1

0, |s| > 1,

where µ, λ ∈ R are real numbers.
We remark that Ĥµλ is a bounded self-adjoint operator on `2,e(Z).

3. The momentum representation of the Hamiltonian

Let T = (−π;π] be the one dimensional torus and L2(T, dν) be the Hilbert space of

integrable functions on T, where dν is the (normalized) Haar measure on T, dν(p) = dp
2π
.

Let L2,e(T, dν) ⊂ L2(T, dν)
be the subspace of elements f ∈ L2(T, dν) satisfying the condition

f(p) = f(−p), a.e. p ∈ T.

In the momentum representation the operator Hµλ acts on L2,e(T, dν) and is of the form

Hµλ = H0 + Vµλ,

where H0 is the multiplication operator by function ε(p) = 1− cos p:

(H0f)(p) = ε(p)f(p), f ∈ L2,e(T, dν),

and Vµλ is the integral operator of rank 2

(Vµλf)(p) =

∫

T

(
µ+ λ cos p cos t

)
f(t)dt, f ∈ L2,e(T, dν).

4. Spectral properties of the operators Hµ0 and H0λ

Since the perturbation operator Vµ0 resp.V0λ is of rank 1, according the well known
Weyl's theorem the essential spectrum σess(Hµ0) resp.σess(H0λ) ofHµ0 resp. H0λ doesn't
depend on µ ∈ R resp.λ ∈ R and coincides to the spectrum σ(H0) of H0 (see [8]), i.e.,

σess(Hµ0) = σess(H0λ) = σ(H0) = [min
p∈T

ε(p), max
p∈T

ε(p)] = [0, 2].

For any µ, λ ∈ R we introduce the Fredholm determinant ∆(µ, λ; z), associating to
the one particle Hamiltonian Hµ,λ, as follows

(4.1) ∆(µ, λ; z) =
[
1− µa(z)

][
1− λc(z)

]
− µλb2(z),
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where

a(z) :=

∫

T

dν

z − ε(q) ,(4.2)

b(z) := −
∫

T

cos qdν

z − ε(q) ,(4.3)

c(z) :=

∫

T

cos2 qdν

z − ε(q) .(4.4)

are regular functions in z ∈ C \ [0, 2].
In the following theorem we have collected results on a unique eigenvalue of the oper-

ator Hµ0 resp. H0λ depending on the sign of µ 6= 0 resp. λ 6= 0.

4.1. Theorem. For any 0 6= µ ∈ R resp. 0 6= λ ∈ R the operator Hµ0 resp. H0λ has

a unique eigenvalue ζ(µ) resp. ζ(λ) lying outside of the essential spectrum:

(i) If µ > 0 resp. λ > 0, then the eigenvalue ζ(µ) resp. ζ(λ) is lying in the interval

(2,+∞).
(ii) If µ < 0 resp.λ < 0, then the eigenvalue ζ(µ) resp. ζ(λ) is lying in the interval

(−∞, 0).
(iii) If µ > 0 resp.λ < 0 then the eigenvalue ζ(µ) resp. ζ(λ) is lying in the interval

(2,+∞) resp. (−∞, 0).
(iv) If µ < 0 resp.λ > 0 then the eigenvalue ζ(µ) resp. ζ(λ) is lying in the interval

(−∞, 0) resp. (2,+∞).

The proof of Theorem 4.1 is a consequence of the formulated below Lemmas and
corollaries, which can be deduced from the simple properties of determinant ∆(µ, 0; z)
resp.∆(0, µ; z).

4.2. Lemma. The number z ∈ C\ [0, 2] is an eigenvalue of the operator Hµ,0 resp. H0,λ

if and only if ∆(µ, 0; z) = 0 resp.∆(0, λ; z) = 0.

4.3. Lemma. Let µ, λ ∈ R.Then

lim
z→±∞

∆(µ, 0 ; z) = 1,

lim
z→±∞

∆(0, λ ; z) = 1,

lim
z→±∞

∆(µ, λ ; z) = 1.

4.4. Lemma. The functions a(·), b(·), c(·) are regular in the region C \ [0, 2], posi-

tive and monotone decreasing in the intervals (−∞, 0) and (2,+∞) and the following

asymptotics are true:

a(z) = C1(z − 2)−
1
2 +O(z − 2)

1
2 , as z → 2+,

b(z) = C1(z − 2)−
1
2 + 1 +O(z − 2)

1
2 , as z → 2+,

c(z) = C1(z − 2)−
1
2 − 1 +O(z − 2)

1
2 , as z → 2+,

where C1 > 0 and

a(z) = −C0(−z)− 1
2 +O(−z) 1

2 , as z → 0−,
b(z) = −C0(−z)− 1

2 − 1 +O(−z) 1
2 , as z → 0−,

c(z) = −C0(−z)− 1
2 − 1 +O(−z) 1

2 , as z → 0−,
where C0 > 0.
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Proof. Since the functions under integral sign are positive the monotonicity of the Lebesgue
integral gives that the functions a(z) and c(z) are positive. Now, we show that the func-
tion

b(z) := −
∫

T

cos qdν

z − ε(q)

is positive. Representing b(z) as

b(z) = −
∫ 0

−π

cos qdν

z − ε(q) −
∫ π

0

cos qdν

z − ε(q)
and then changing of variables q := q + π we have that

b(z) :=

π∫

0

2 cos2 qdν

(z − 1)2 − cos2 q
> 0

The asymptotics of functions a(·), b(·), c(·) can be found in [2]. �

The Lemma 4.4 yields the following Corollary, which gives asymptotics for the func-
tions ∆(µ, 0; z) and ∆(0, λ; z).

4.5. Corollary. The following asymptotics are true:

(i) If µ, λ > 0. Then

lim
z→2+

∆(µ, 0; z) = −∞,

lim
z→2+

∆(0, λ; z) = −∞,

(ii) If µ, λ < 0.Then

lim
z→2+

∆(µ, 0; z) = +∞,

lim
z→2+

∆(0, λ; z) = +∞,

(iii) If µ, λ > 0. Then

lim
z→0−

∆(µ, 0; z) = +∞,

lim
z→0−

∆(0, λ; z) = +∞,

(iv) If µ, λ < 0. Then

lim
z→0−

∆(µ, 0; z) = −∞,

lim
z→0−

∆(0, λ; z) = −∞,

5. Spectral properties of the operator Hµλ

The perturbation operator Vµλ is of rank 2 and hence by the well known Weyl's
theorem the essential spectrum σess(Hµλ) of Hµλ doesn't depend on µ, λ ∈ R and
coincides to the spectrum σ(H0) of H0 (see [8]), i.e.,

σess(Hµλ) = σ(H0) = [min
p∈T

ε(p), max
p∈T

ε(p)] = [0, 2].
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5.1. Remark. Note that since

(Vµλf, f) = µ|
∫

T

f(t)dν|2 + λ|
∫

T

cos tf(t)dν|2, f ∈ L2,e(T, dν)),

the operator Vµλ is not only positive or only negative and hence the operator Hµλ may
have eigenvalues as below the bottom of the essential spectrum, as well as above the its
top.

The following lemma describes the relations between the operator Hµ,λ and determi-
nant ∆(µ, λ; z) de�ned in (4.1).

5.2. Lemma. The number z ∈ C\ [0, 2] is an eigenvalue of the operator Hµ,λ if and only

if ∆(µ, λ; z) = 0.

Proof. Let the operator Hµ,λ has an eigenvalue z ∈ C \ [0, 2], i.e., the equation

(5.1) (z −Hµ,λ)ψ(q) = (z − ε(q))ψ(q)− µ
∫

T

ψ(t)dν(t)− λ cos p

∫

T

cos tψ(t)dν(t) = 0

has a non-zero solution ψ ∈ L2,e( T, dν). We introduce the following linear continuous
functionals de�ned on the Hilbert space ψ ∈ L2,e( T, dν)

c1 := c1(ψ) :=

∫

T

ψ(t)dν(t)(5.2)

c2 := c2(ψ) :=

∫

T

cos(t)ψ(t)(5.3)

Then we easily �nd that the solution of the equation (5.1) has form

(5.4) ψ(q) = µ
c1

z − ε(q) + λ
c2 cos(q)

z − ε(q) .

Putting the expression (5.6) for ψ to (5.2) and (4.7) we get the following homogeneous
system of linear equations with respect to the functionals c1 and c2

(5.5)





c1 = µc1
∫
T

dν
z−ε(q) + λc2

∫
T

cos(q)dν
z−ε(q)

c2 = µc1
∫
T

cos qdν
z−ε(q) + λc2

∫
T

cos2 qdν
z−ε(q)

Hence, we can conclude that this homogenous system of linear equations has nontrivial
solutions if and only if the associated determinant ∆(µ, λ; z) has zero z ∈ C \ [0, 2].

On the contrary, let a number z ∈ C \ [0, 2] be a zero of determinant ∆(µ, λ; z). Then
it easily can be checked that z is eigenvalue of Hµ,λ and the function

(5.6) ψ(q) = µ
c1

z − ε(q) + λ
c2 cos q

z − ε(q) ,

is the associated eigenfunction, where the vector (c1, c2) is a non-zero solution of the
system (5.5). �

The following asymptotics for the determinant ∆(µ, λ, z) can be received applying the
asymptotics of the functions a(·), b(·), c(·) in Lemma 4.4.
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5.3. Lemma.

∆(µ, λ, z) = C+

− 1
2
(µ, λ)(z − 2)−

1
2 + C+

0 (µ, λ) +O(z − 2)
1
2 , as z → 2+,(5.7)

∆(µ, λ, z) = C−− 1
2
(µ, λ)(−z)− 1

2 + C−0 (µ, λ) +O(−z) 1
2 , as z → 0−,(5.8)

where

C+

− 1
2
(µ, λ) = B2(µλ− µ− λ), B2 > 0(5.9)

C+
0 (µ, λ) = 1 + λ− µλ,(5.10)

C−− 1
2
(µ, λ) = B0(µλ+ µ+ λ), B0 > 0(5.11)

C−0 (µ, λ) = 1− λ− µλ.(5.12)

The Lemma 5.3 yields the following results for the determinant ∆(µ, λ; z).

5.4. Corollary. For the determinant ∆(µ, λ; z) the following results are true:

(i) Assume C+

− 1
2

(µ, λ) > 0 and C−− 1
2

(µ, λ) > 0. Then

lim
z→2+

∆(µ, λ; z) = +∞.

lim
z→0−

∆(µ, λ; z) = +∞.

(ii) Assume C+

− 1
2

(µ, λ) = 0, µ > 1 and C−− 1
2

(µ, λ) = 0, µ < −1. Then

lim
z→2+

∆(µ, λ; z) < 0,

lim
z→0−

∆(µ, λ; z) < 0.

(iii) Assume C+

− 1
2

(µ, λ) < 0 and C−− 1
2

(µ, λ) < 0.Then

lim
z→2+

∆(µ, λ; z) = −∞,

lim
z→0−

∆(µ, λ; z) = −∞.

(iv) Assume C+

− 1
2

(µ, λ) = 0, µ < 1 and C−− 1
2

(µ, λ) = 0, µ > −1.Then

lim
z→2+

∆(µ, λ; z) > 0,

lim
z→0−

∆(µ, λ; z) > 0.

To formulate the main theorem we introduce the regions G+
02,G

+
11 and G+

20 associated
to the function C+

− 1
2

(µ, λ) and also the regions G−20,G
−
11 and G−02 associated to the function

C−− 1
2

(µ, λ) as follows

G2,+ = {(µ, λ) ∈ R2 : C+

− 1
2
(µ, λ) > 0, µ > 1},(5.13)

G1,+ = {(µ, λ) ∈ R2 : C+

− 1
2
(µ, λ) = 0, µ > 1 or C+

− 1
2
(µ, λ) < 0},(5.14)

G0,+ = {(µ, λ) ∈ R2} : C+

− 1
2
(µ, λ) = 0, µ < 1 or C+

− 1
2
(µ, λ) > 0(5.15)

(5.16)
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and

G2,− = {(µ, λ) ∈ R2 : C−− 1
2
(µ, λ) > 0, µ < −1, }(5.17)

G1,− = {(µ, λ) ∈ R2 : C−− 1
2
(µ, λ) = 0, µ < −1 or C−− 1

2
(µ, λ) < 0},(5.18)

G0,− = {(µ, λ) ∈ R2} : C+

− 1
2
(µ, λ) = 0, µ > −1 or C−− 1

2
(µ, λ) > 0.(5.19)

(5.20)

The main results are given in the following theorem, where the existence and location
of eigenvalues of the one-particle Hamiltonian H with inde�nite sign interaction vµλ are
stated.

The Hamiltonian Hµλ can have one or two eigenvalues, situating as below the bottom
of the essential spectrum, as well as above its top. Moreover, the operator Hµλ has two
eigenvalues outside of the essential spectrum, depending on µ 6= 0 and λ 6= 0, where one
of them is situated below the bottom of the essential spectrum and the other one above
its top.

Figure 1.

5.5. Theorem. (i) Assume (µ, λ) ∈ G0,− ∩ G2,+. Then the operator Hµλ has no

eigenvalue below the essential spectrum and it has two eigenvalues ζ1(µ, λ) and

ζ2(µ, λ) satisfying the following relations

2 < ζ1(µ, λ) < ζmin(µ, λ) ≤ ζmax(µ, λ) < ζ2(µ, λ).

(ii) Assume (µ, λ) ∈ G0,− ∩ G1,+. Then the operator Hµλ has no eigenvalue below

the essential spectrum and it has one eigenvalue ζ2(µ, λ) satisfying the following

relation

ζ2(µ, λ) > 2.
(iii) Let (µ, λ) ∈ G1,− ∩ G1,+. Then the operator Hµλ has two eigenvalues ζ1(µ, λ)

and ζ2(µ, λ) satisfying the following relations

ζ1(µ, λ) < 0 and ζ2(µ, λ) > 2.
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(iv) Assume (µ, λ) ∈ G1,−∩G0,+. Then the operator Hµλ has one eigenvalue ζ1(µ, λ)
satisfying the relation ζ1(µ, λ) < 0 it has no eigenvalue above the essential spec-

trum.

(v) Assume (µ, λ) ∈ G2,−∩G0,+. Then the operator Hµλ has two eigenvalues ζ1(µ, λ)
and ζ2(µ, λ) satisfying the following relations

ζ1(µ, λ) < ζmin(µ, λ) ≤ ζmax(µ, λ) < ζ2(µ, λ) < 0

and it has no eigenvalue above the essential spectrum.

5.6. Remark. The sets G02,G01,G11,G10 and G20 which appears in Theorem 5.5 are
shown in the �gure 1.

Proof. (i) Assume (µ, λ) ∈ (µ, λ) ∈ G0,−∩G2,+ and z < 0. Then an application the

Cauchy�Schwarz inequality for the functions [ε(q)− z]− 1
2 and cos q [ε(q)− z]− 1

2

yields the inequality

∆(µ, λ; z) =
(
1 + µ

∫

T

dν

ε(q)− z
)

+
(
1 + λ

∫

T

cos2 qdν

ε(q)− z
)

+ µλ
[ ∫

T

dν

ε(q)− z

∫

T

cos2 qdν

ε(q)− z −
( ∫

T

cos qdν

ε(q)− z
)2]

> 0,

i.e., ∆(µ, λ; z) has no zero in the interval (−∞, 0). Lemma 5.2 gives that the
operator Hµλ has no eigenvalue below the bottom of the essential spectrum.

Let (µ, λ) ∈ (µ, λ) ∈ G0,− ∩G2,+ and z > 2.
Since µ, λ > 0 the function ∆(µ, 0; ·) resp. ∆(0, λ; ·) is monotone increasing

in (1,+∞). Applying Lemma 4.3 we have

lim
z→+∞

∆(µ, 0; z) = 1 resp. lim
z→+∞

∆(0, λ; z) = 1.

Corollary 4.5 gives that

lim
z→1+

∆(µ, 0; z) = −∞, resp. lim
z→1+

∆(0, λ; z) = −∞.

The continuous function ∆(µ, 0; ·) and ∆(0, λ; ·) has a zero ζ(µ) resp.
ζ(λ) in the interval (1,+∞). The representation (4.1) of the determinant ∆(µ, λ ; z)
gives the inequality ∆(µ, λ ; ζ(µ)) < 0 resp. ∆(µ, λ ; ζ(λ)) < 0. Denote by

ζmin(µ, λ) = min{ζ(µ), ζ(λ)}
ζmax(µ, λ) = max{ζ(µ), ζ(λ)}.

The representation (4.1) of determinant ∆(µ, λ; z) gives the inequality
∆(µ, λ; ζmin(µ, λ)) < 0. Corollary 5.3 yields

lim
z→1+

∆(µ, λ; z) = +∞

Hence there exist a number z1(µ, λ) ∈ (1, ζmin(µ, λ)) such that

∆(µ, λ; z1(µ, λ; 0)) = 0.

Lemma 5.2 gives the existence of the eigenvalue of the operator in the interval
(1, ζmin(µ, λ)).

The monotonicity of function ∆(µ, 0; z) resp. ∆(λ, 0; z) gives for z > ζ(µ)
resp. z > ζ(λ) the relation

∆(µ, 0; z) > ∆(µ, 0; ζ(µ)) = 0, resp. ∆(λ, 0; z) > ∆(λ; ζ(λ)) = 0.
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Applying Lemma 4.4 we have in the interval (2,+∞) the inequality

∂∆(µ, λ; z)

∂z
= −µ∆(0, λ; z)a′(z)− λ∆(µ, 0, ; z)c′(z)− 4µλb(z)b′(z) > 0,

i.e., the function ∆(µ, λ; ·) is monotone increasing in the interval (ζmax(µ, λ),+∞).
Lemma 4.3, i.e., the relation

lim
z→+∞

∆(µ, λ; z) = 1,

yields the existence a unique number z2(µ, λ) ∈ (ζmax(µ, λ) such that

∆(µ, λ; z2(µ, λ; 0)) = 0.

Lemma 5.2 gives that the operator has two eigenvalues above the top of the
essential spectrum. These eigenvalues obeys the relations (5.5).

(ii) Assume (µ, λ) ∈ G0,− ∩G1,+ and z < 0.
As in the case (i) we can show that operator Hµλ has no eigenvalue below

the essential spectrum.
It is easy to show that the operator Hµ0 has only one eigenvalue at the point

(µ, 0) ∈ G0,− ∩G1,+, µ > 0.
Lemma 4.3 and Corollary 5.4 give that

lim
z→−∞

∆(µ, 0; z) = 1

and

lim
z→2+

∆(µ, 0; z) < 0.

Hence, the continuous function ∆(µ, 0; ·) in z ∈ (2,+∞) has a unique zero
ζ1(µ, 0) ∈ (2,+∞).

If (µ, λ) ∈ G0,− ∩ G1,+ is an other point belonging to the region, then there
is a line
Γ[(µ, 0), (µ, λ)] ∈ G0,−∩G1,+, which connects the points (µ, 0) and (µ, λ)(because
this is a region).The compactness of Γ[(µ, 0), (µ, λ)] ∈ G0,− ∩ G1,+ yields that
at the point (µ, λ) the function ∆(µ, λ; z) has only one zero. Thus, Lemma 5.2
yields that the operator has only one eigenvalue above the top of the essential
spectrum.

(iii) Assume (µ, λ) ∈ G1,− ∩G1,+.
In this case applying Lemma 4.3 and Corollary 5.4 we have

lim
z→2+

∆(µ, λ; z) = −∞,

lim
z→0−

∆(µ, λ; z) = −∞,

and

lim
z→±∞

∆(µ, λ; z) = 1.

Hence, the continuous function ∆(µ, λ; ·) in z ∈ (−∞, 0)∪(2,+∞) has two zeros
ζ1(µ, λ) in the interval (−∞, 0) and ζ2(µ, λ) in the interval (2,+∞).

Thus, Lemma 5.2 yields that the operator has two eigenvalues: one of them
lays below the bottom of the essential spectrum and other one lays above the
top.

The other cases (iv) and (v) of Theorem 5.5 can be proven by the same way
as the cases (i) and (ii).

�
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In this paper, the eigenvalue distribution of a family of relaxed mixed
constraint preconditioner (RMCP) for the generalized saddle point
problems is discussed in detail. Most of the bounds developed improve
those appeared in previously published work.
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1. Introduction

Consider the large, sparse and nonsingular linear system in saddle point form as

(1.1) Ax ≡
[
A BT

B −C

] [
u
p

]
=

[
f
g

]
≡ b,

where A ∈ Rn×n is symmetric positive de�nite (SPD), B ∈ Rm×n with m ≤ n (possibly
m� n) is of full rank and C ∈ Rm×m is symmetric semi-positive de�nite. Systems of the
form (1.1) arise in a variety of scienti�c and engineering applications, such as constrained
optimization, least squares and Stokes problems. We refer the reader to [10] for a more
detailed list of applications and numerical solution techniques of (1.1).

In recent years, considerable e�ort has been invested in developing e�cient solvers
for systems of form (1.1). Recent works on sparse direct methods for symmetric sad-
dle point problems have been developed, such as direct solver package [18] and LDLT -
factorization technique [19]. In fact, the memory and the computational requirements
for solving saddle point problems (1.1) may seriously challenge the most e�cient direct
solution method available today. In actual implements, many iterative methods have
to be recommended to solve saddle point problems (1.1), such as generalized successive
overrelaxation (GSOR) method [2], modi�ed SSOR (MSSOR) method [33], Hermitian
and skew-Hermitian splitting method [3�7, 11, 12] and so on. However, well established

∗School of Mathematics and Statistics, Anyang Normal University, Anyang, 455000, China
Corresponding author: wushiliang1999@126.com or slwu@aynu.edu.cn



1706

iterative methods such as Krylov subspace methods are very slow or even fail to con-
verge if not conveniently preconditioned, it follows that preconditioning technique is a
key ingredient for the success of Krylov subspace methods in applications. Most of the
recent work on saddle point problems has focused on the development of preconditioners
for Krylov subspace methods, especially block preconditioners and multilevel schemes.
We refer the reader to [10] for a comprehensive survey of existing approaches for solving
saddle point problems.

An important class of preconditioners is based on the block LU factorization of the
coe�cient matrix A [8, 9]. This class includes a variety of block diagonal and block
triangular preconditioners [8, 9, 20�26, 28�30, 39�43]. Based on the Hermitian and skew-
Hermitian splitting of the coe�cient matrix A, the HSS preconditioner is established
[3�6,12]. Based on the Dimensional Splitting (DS) of the coe�cient matrix A, a relaxed
dimensional factorization preconditioner for Navier-Stokes equations is proposed [13,14].
Based on the augmented Lagrangian (AL) reformulation of the saddle point problem,
AL-type preconditioners appear to be remarkably robust for a broad range of problem
parameters, and they are currently the focus of intense development in [15,16].

As is known to all, the major issue of preconditioning technique is to �nd a good
approximation of the inverse of the coe�cient matrix A. To accelerate Krylov solvers
for saddle point problems, constraint preconditioner is another type of preconditioning
techniques and has been �rst introduced in constrained optimization for C = 0 [31]. It
has been proved [31] that the eigenvalues of the preconditioned matrix are all real and
positive. The strategy of constraint preconditioner is that a suitable approximation of
the (1,1) block A instead of the (1,1) block A leads to a good approximation of the
inverse of the coe�cient matrix A. Dollar [32] has extended these results in [31] by
allowing the (2,2) block to be symmetric and positive semide�nite. Further, the general
symmetric (2,2) block has been discussed [1] and the nonsymmetric (1,1) block has been
discussed [27]. Constraint preconditioner can be written as the inverse of a matrix whose
non diagonal blocks are the same as those in A, but their application may be very costly
since it requires the solution of a linear system at each iteration with an appropriate Schur
complement S as the coe�cient matrix A. A computationally e�cient inexact constraint
preconditioner (ICP) is represented by an approximation of S (or of S−1) by means of an
incomplete Cholesky factorization or a sparse approximate inverse. The application of
ICP is cheaper with respect to the constraint preconditioner. An exhaustive analysis of
spectral properties of ICP together with development of eigenvalue bounds are performed
in [36]. ICP has been proved much more robust and performing than ILU preconditioners
with variable �ll-in, computed on the whole saddle point matrix from a number of realistic
coupled consolidation problems [38].

Recently, drawing on the previous works: [34�36], Bergamaschi and Martínez [37]
discussed a family of relaxed mixed constraint preconditioner (RMCP) as follows:

Mω =

[
I 0

BP−1
A I

] [
PA 0
0 −ωPS

] [
I P−1

A BT

0 I

]
=

[
PA BT

B BP−1
A BT − ωPS

]
,

where ω is a real acceleration parameter, PA is a suitable approximation of the (1,1) block
A and PS is a suitable approximation of the Schur complement matrix S = BP−1

A BT +
C. A detailed spectral analysis of RMCP was presented in [37]. In this paper, we
focus on the relaxed mixed constraint preconditioner (RMCP) for symmetric saddle point
problems (1.1). The spectral properties of the preconditioned matrix are given and some
corresponding presented results in [36,37,44] are improved.

The paper is organized as follows. In Section 2, the spectral distribution of a class of
the parameterized saddle point problems is characterized, which extends the correspond-
ing theoretical results in [17, 36]. In Section 3, we discuss the eigenvalue distribution of
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M−1
ω A in detail and promote some corresponding presented results in [36, 37, 44]. The

conclusions are drawn in Section 4.

2. Eigenvalues of Aω

To make the spectral analysis of M−1
ω A easily, the spectral distribution of a class of

the parameterized saddle point matrix is characterized.
Given that A ∈ Rn×n is symmetric positive de�nite (SPD), B ∈ Rm×n (m ≤ n) is of

full rank and C ∈ Rm×m is symmetric positive de�nite. For ω > 0, we are interested in
the eigenvalues of

(2.1) Aωu ≡
[

A 1√
ω
BT

− 1√
ω
B 1

ω
C

][
u1

u2

]
= λ

[
u1

u2

]
≡ λu,

or

Au1 +
1√
ω
BTu2 = λu1,(2.2)

− 1√
ω
Bu1 +

1

ω
Cu2 = λu2.(2.3)

For the purposes of our discussion, the following notation regarding the eigenvalues of
SPD matrices A, BBT and C are required:

0 < αA = λmin(A), βA = λmax(A),

0 ≤ αS = λmin(BB
T ), βS = λmax(BB

T ),

0 < αC = λmin(C), βC = λmax(C).

Obviously, matrix Aω has at most n−m eigenvalues satisfying

αA ≤ λ ≤ βA
with eigenvectors u = (uT1 , 0)

T and Bu1 = 0. One can see for instance Proposition 2.2
in [17].

Throughout this section, we de�ne, for some s, u2 6= 0,

ηA =
sTAs

sT s
∈ [αA, βA], ηC =

uT2 Cu2

uT2 u2
∈ [αC , βC ], ηS =

uT2 BB
Tu2

uT2 u2
∈ [αS , βS ].

The proof of Theorem 2.2 is based on the following Lemma 2.1, which is from [36].

2.1. Lemma. [36] Let λ /∈ [αA, βA]. Then, for every z 6= 0, there exists a vector s 6= 0
such that

zT (A− λI)−1z

zT z
= (

sTAs

sT s
− λ)−1 = (ηA − λ)−1.

2.2. Theorem. The real eigenvalues of Equation (2.1) not lying in [αA, βA] satisfy

1

ω

(
αC +

αS
βA

)
≤ 1

ω

(
ηC +

ηS
ηA

)
≤ λ ≤ max

{
ηA,

1

ω
ηC
}
≤ max

{
βA,

1

ω
βC
}
.

Proof. Let λ ∈ R with λ /∈ [αA, βA] and let u such that Bu1 6= 0 and BTu2 6= 0.
Since A− λI is invertible, from (2.2) we have

(2.4) u1 = − 1√
ω
(A− λI)−1BTu2.

Substituting (2.4) into (2.3) yields

(2.5)
1

ω
B(A− λI)−1BTu2 +

1

ω
Cu2 − λu2 = 0.
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Premultiplying (2.5) by
uT
2

uT
2 u2

leads to

(2.6)
1

ω

uT2 B(A− λI)−1BTu2

uT2 u2
+

1

ω
ηC − λ = 0.

Based on Lemma 2.1, from (2.6) we have

1

ω
(ηA − λ)−1ηS +

1

ω
ηC − λ = 0.

or,

(2.7) ωλ2 − (ηC + ωηA)λ+ ηS + ηAηC = 0.

The lager solution of (2.7) is

λ2 =
ηC + ωηA +

√
(ηC + ωηA)2 − 4ω(ηS + ηAηC)

2ω

=
ηC + ωηA +

√
(ηC − ωηA)2 − 4ωηS

2ω

≤ max{ηA, 1
ω
ηC}.

The smaller solution of (2.7) is

λ1 =
ηC + ωηA −

√
(ηC + ωηA)2 − 4ω(ηS + ηAηC)

2ω

=
2(ηS + ηAηC)

ηC + ωηA +
√

(ηC − ωηA)2 − 4ωηS

≥ ηS + ηAηC
max{ωηA, ηC}

=
1

ω
(ηC +

ηS
ηA

).

The last equation follows from the inequality ηC < ωηA (otherwise we would have λ1 >
ηA > αA against the assumption). Hence,

λ1 ≥ 1

ω
(ηC +

ηS
ηA

) ≥ 1

ω
(αC +

αS
βA

).

2.1. Corollary. The real eigenvalues of Equation (2.1) satisfy

min
{
αA,

1

ω
(αC +

αS
βA

)
}
≤ λ ≤ max

{
βA,

1

ω
βC
}
.

In the sequel, we will denote any complex eigenvalue as

λ = λR + iλI .

2.2. Corollary. The complex eigenvalues of Equation (2.1) satisfy

ωαA + αC
2ω

≤ λR ≤ ωβA + βC
2ω

, |λI | ≤
√
βS
ω
.

Proof. From (2.7), we have

λR =
ηC + ωηA

2ω
,(2.8)

λ2
R + λ2

I =
ηS + ηAηC

ω
(2.9)

By simple computations, from (2.8) we have

ωαA + αC
2ω

≤ λR ≤ ωβA + βC
2ω

.
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Combining (2.8) and (2.9), we have

|λI | =
√
ηS + ηAηC

ω
−
(ηC + ωηA

2ω

)2

=

√
4ω(ηS + ηAηC)− (ηC + ωηA)2

4ω2

=

√
ηS
ω
− (ηC − ωηA)2

4ω2
≤
√
ηS
ω
≤
√
βS
ω
.

Remark 2.1 When ω = 1, Theorem 2.2 reduces to Theorem 1 [36], Corollary 2.1
reduces to Corollary 1 [36] and Corollary 2.2 reduces to Proposition 1 [36]. Speci�cally,
this result in Corollary 2.1 with ω = 1 improves that of Proposition 2.12 in [17], which
provides a lower bound for λ ≥ min{αA, αC}.

Example 2.1

Aω =




βA 0 1√
ω
× 1

0 αA
1√
ω
× 1

− 1√
ω
× 1 − 1√

ω
× 1 1

ω
× c


 , αS = βS = 2, ω = 4.

If βA = 3, αA = 2.9 and c = 1, the eigenvalues ofAω are λ(Aω) = {0.4501, 2.7372, 2.9627}.
Obviously, αC = βC = 1. From Corollary 2.1, we have

0.4167 < λ < 3.

If βA = 3, αA = 2 and c = 4, the eigenvalues of Aω are λ(Aω) = {2.8846, 1.5577 +
0.2949i, 1.5577− 0.2949i}. Obviously, αC = βC = 4. From Corollary 2.1, we have

7

6
< λ < 3.

From Corollary 2.2, we have

3

2
< λR < 2, |λI | ≤

√
2

2
.

Numerical results show that Corollary 2.1 provides some valid bounds for all the real
eigenvalues of Aω and Corollary 2.2 provides some valid bounds for all the complex
eigenvalues of Aω.

3. Spectral analysis of AM−1
ω

It is not di�cult to �nd that the spectral of M−1
ω A is equivalent to the spectral of

AM−1
ω . Here we focus on the bounds for the eigenvalues of AM−1

ω to obtain the bounds for
the eigenvalues of M−1

ω A. Making this strategy to discuss the bounds for the eigenvalues
of the corresponding preconditioned matrix, one can see [24, 25, 36, 40, 41, 43] for more
details.

In fact, AM−1
ω z = λz can be expressed as

Aν = λMων, ν = M
−1
ω z.

To investigate the spectral properties ofM−1
ω A, PA and PS , respectively, are SPD approx-

imations of A and S = BP−1
A BT+C. P−1

A and P−1
S can also be viewed as preconditioners

for the corresponding matrices, so that we can de�ne the following SPD preconditioned
matrices:

P =

[
PA 0
0 PS

]
and SP = P

−1/2
S SP

−1/2
S .
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Since P is symmetric positive de�nite, the problem of �nding the eigenvalues of M−1
ω A

with u = P
1
2
+ν is equivalent to solving

P
− 1

2AP
− 1

2 u = λP−
1
2MωP

− 1
2 u.

That is,

(3.1)

[
AP RT

R −Ĉ

] [
u1

u2

]
= λ

[
I RT

R RRT − ωI

] [
u1

u2

]
,

where R = P
−1/2
S BP

−1/2
A , AP = P

−1/2
A AP

−1/2
A and Ĉ = P

−1/2
S CP

−1/2
S . Note that

RRT = SP − Ĉ and the inverse of the right side matrix product in (3.1) can be written
as

[
I RT

R RRT − ωI

]−1

=

[[
I 0
R −√ωI

] [
I RT

0
√
ωI

] ]−1

=

[
I RT

0
√
ωI

]−1 [
I 0
R −√ωI

]−1

=

[
I − 1√

ω
RT

0 1√
ω
I

][
I 0
1√
ω
R − 1√

ω
I

]

≡ UL,

so that the eigenvalues of (3.1) are the same as those of LP−
1
2AP−

1
2Ux = λx which

reads:

(3.2)

[
AP

1√
ω
(I −AP )RT

− 1√
ω
R(I −AP ) 1

ω
(R(2I −AP )RT + Ĉ)

] [
x1
x2

]
= λ

[
x1
x2

]
.

Let us assume that

0 < αA = λmin(AP ) < 1 < λmax(AP ) = βA,

0 < αS = λmin(SP ) < 1 < λmax(SP ) = βS ,

0 ≤ αC = λmin(Ĉ) < λmax(Ĉ) = βC .

Obviously, the eigenvalues of the projected matrix AR = (RRT )−1RAPR
T is also

important in the spectral analysis of the preconditioned matrices. In [36, 37, 44], it is
shown that [αRA, β

R
A ] ⊂ [αA, βA], where α

R
A = λmin(AR) and β

R
A = λmax(AR).

Throughout this section, we will use the following notation:

θS =
xT2 SPx2
xT2 x2

, θRA =
xT2 RAPR

Tx2
xT2 RR

Tx2
, θA =

sTAP s

sT s
, θC =

xT2 Ĉx2
xT2 x2

,

for some s, x2 6= 0. It follows that θRA ∈ [αRA, β
R
A ] and

xT2 RR
T x2

xT2 x2
= θS − θC ≥ 0.

To obtain the bounds for the eigenvalues of M−1
ω A, we need the following lemma.

3.1. Lemma. Let H = R(2I −AP )RT + Ĉ, P = R(I −AP )2RT and βRA < 2.
If αRA < 1, then

λ(H) ∈ [αS(2− βRA) + αC(β
R
A − 1), βS(2− αRA)− αC(1− αRA)],

λ(P ) ≤ (βS − αC)max
{
(1− αRA)2, (βRA − 1)2

}
.

If αRA ≥ 1, then

λ(H) ∈ [αS(2− βRA) + αC(β
R
A − 1), βS(2− αRA) + βC(α

R
A − 1)],

λ(P ) ≤ (βS − αC)max
{
(1− αRA)2, (βRA − 1)2

}
.
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Proof. Based on the results in [36,44], here we only need prove that λ(H) ≤ βS(2−
αRA) + βC(α

R
A − 1) for αRA ≥ 1.

In fact, λ(H) ∈ [min q(x2, H),max q(x2, H)], where

q(x2, H) =
xT2 (R(2I −AP )RT + Ĉ)x2

xT2 x2

= (θS − θC)(2− θRA) + θC .

Because the function on the right hand side is decreasing in θRA, then

max q(x2, H) ≤ (θS − θC)(2− αRA) + θC

= θS(2− αRA) + θC(α
R
A − 1)

≤ βS(2− αRA) + βC(α
R
A − 1).

The proof is completed.
Investigating the results in Lemma 2 [36,44], the bounds for the eigenvalues of R(2I−

AP )R
T + Ĉ and R(I − AP )2RT are provided just when βRA < 2 and αRA < 1. In this

case, it is easy to see that the results in Lemma 3.1 perfect the corresponding theoretical
results in Lemma 2 [36, 44]. Based on Lemma 3.1, it is easy to obtain the following
results.

3.1. Corollary. Let H = 1
ω
(R(2I −AP )RT + Ĉ), P = 1

ω
R(I −AP )2RT and βRA < 2.

If αRA < 1, then

λ(H) ∈
[αS(2− βRA) + αC(β

R
A − 1)

ω
,
βS(2− αRA)− αC(1− αRA)

ω

]
,

λ(P ) ≤ (βS − αC)
ω

max
{
(1− αRA)2, (βRA − 1)2

}
.

If αRA ≥ 1, then

λ(H) ∈
[αS(2− βRA) + αC(β

R
A − 1)

ω
,
βS(2− αRA) + βC(α

R
A − 1)

ω

]
,

λ(P ) ≤ (βS − αC)
ω

max
{
(1− αRA)2, (βRA − 1)2

}
.

Obviously, Corollary 3.1 is a generalization of Lemma 3.1. When ω = 1, Corollary 3.1
reduces to Lemma 3.1.

Based on Theorem 3 in [36,44] and Corollary 3.1, we have the following results.

3.2. Theorem. Let βA < 2.
For αRA < 1, the real eigenvalues of (3.2) satisfy

(3.3) min

{
αA,

αS + αC(βA − 1)

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αRA)− αC(1− αRA)
ω

}
.

And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

ωαA + αS(2− βRA) + αC(β
R
A − 1)

2ω
≤λR ≤ ωβA + βS(2− αRA)− αC(1− αRA)

2ω
,(3.4)

|λI | ≤
√
βS − αC

ω
max{1− αRA, |βRA − 1|}.(3.5)

For αRA ≥ 1, the real eigenvalues of (3.2) satisfy

(3.6) min

{
αA,

αS + αC(βA − 1)

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αRA) + βC(α
R
A − 1)

ω

}
.
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And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

ωαA + αS(2− βRA) + αC(β
R
A − 1)

2ω
≤λR ≤ ωβA + βS(2− αRA) + βC(α

R
A − 1)

2ω
,(3.7)

|λI | ≤
√
βS − αC

ω
max{αRA − 1, |βRA − 1|}.(3.8)

Proof. The proof is similar to the proof of Theorem 3 in [36]. One can see [36] for
more details.

Obviously, when ω = 1, the following results are obtained.

3.2. Corollary. Let βA < 2.
For αRA < 1, the real eigenvalues of (3.2) satisfy

min

{
αA,

αS
βA

+
αC(βA − 1)

βA

}
≤ λ ≤ max

{
βA, βS(2− αRA)− αC(1− αRA)

}
.

And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

αA + αS(2− βRA) + αC(β
R
A − 1)

2
≤λR ≤ βA + βS(2− αRA)− αC(1− αRA)

2
,

|λI | ≤
√
βS − αC(βRA − 1).

For αRA ≥ 1, the real eigenvalues of (3.2) satisfy

min

{
αA,

αS
βA

+
αC(βA − 1)

βA

}
≤ λ ≤ max

{
βA, βS(2− αRA) + βC(α

R
A − 1)

}
.

And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

αA + αS(2− βRA) + αC(β
R
A − 1)

2
≤λR ≤ βA + βS(2− αRA) + βC(α

R
A − 1)

2
,

|λI | ≤
√
βS − αC(βRA − 1).

Remark 3.1 From Corollary 3.2, we know that for αRA < 1 and λI 6= 0, the upper
bound of λR is sharper than the upper bound of λR in [36, 44]. In fact, one can easily
see the following result, that is,

0 <
βA + βS(2− αRA)− αC(1− αRA)

2
≤ βA + βS(2− αRA) + αC(1− αRA)

2
.

If C ≡ 0, then Ĉ = P
−1/2
S CP

−1/2
S = 0. It follows that αC = βC = 0. Then the

bounds of Theorem 3.2 simplify is stated in the following.

3.3. Corollary. Let βA < 2 and C = 0. Then the real eigenvalues of (3.2) satisfy

min

{
αA,

αS
ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αRA)
ω

}
.

And if λI 6= 0, then the complex eigenvalues of (3.2) satisfy

ωαA + αS(2− βRA)
2ω

≤ λR ≤ ωβA + βS(2− αRA)
2ω

, |λI | ≤
√
βS
ω

max{1− αRA, |βRA − 1|}.

To develop eigenvalue bounds for RMCP we will use Theorem 3.2, and particularly
the results regarding the real eigenvalues of M−1

ω A. The following theorem gives very
simple estimates of the eigenvalues of the RMCP preconditioned matrix in terms of ω.
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3.3. Theorem. Let 1 ≤ βRA ≤ βA < 2.
For αRA < 1, any real eigenvalue λ of M−1

ω A satis�es

min
{
αA,

αS
2ω

}
≤ λ ≤ max

{
βA,

2βS
ω

}
.

Moreover, the complex eigenvalues λ of M−1
ω A satisfy

αA
2
≤ λR ≤ βA

2
+

2βS − αC
2ω

, |λI | ≤
√
βS
ω
.

For αRA ≥ 1, any real eigenvalue λ of M−1
ω A satis�es

min
{
αA,

αS
2ω

}
≤ max

{
βA,

2(βS + βC)

ω

}
.

Moreover, the complex eigenvalues λ of M−1
ω A satisfy

αA
2
≤ λR ≤ βA

2
+
βS + βC

ω
, |λI | ≤

√
βS
ω

(βRA − 1).

Proof. For αRA < 1, from (3.3) we have

min

{
αA,

αS + αC(βA − 1)

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αRA)− αC(1− αRA)
ω

}
.

Using αC ≥ 0, 1 < βA < 2 and αRA < 1, we have

min
{
αA,

αS
2ω

}
≤ λ ≤ max

{
βA,

2βS
ω

}
.

Using 1 < βRA < 2 and αRA < 1, from (3.4) and (3.5) we have

αA
2
≤ λR ≤ ωβA + βS(2− αRA)− αC(1− αRA)

2ω

=
βA
2

+
βS + (βS − αC)(1− αRA)

2ω

≤ βA
2

+
2βS − αC

2ω
and

|λI | ≤
√
βS
ω

(βRA − 1).

For αRA ≥ 1, from (3.6) we have

min

{
αA,

αS + αC(βA − 1)

ωβA

}
≤ λ ≤ max

{
βA,

βS(2− αRA) + βC(α
R
A − 1)

ω

}
.

Using αC ≥ 0, 1 < βA < 2 and αRA ≥ 1, we have

min
{
αA,

αS
2ω

}
≤ λ ≤ max

{
βA,

2βS + βCα
R
A

ω

}
≤ max

{
βA,

2(βS + βC)

ω

}
.

Using 1 < βRA < 2 and αRA ≥ 1, from (3.7) and (3.8) we have

αA
2
≤λR ≤ βA

2
+

2βS + αRAβC
2ω

≤ βA
2

+
βS + βC

ω
,

|λI | ≤
√
βS
ω

(βRA − 1).

Remark 3.2 Theorem 2 in [37] also gives very simple estimates of the eigenvalues
of the RMCP preconditioned matrix in terms of ω, but this result in Theorem 2 is
not generally true. In fact, by investigating the proof of Theorem 2, the bound of the
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eigenvalue λ of the preconditioned matrix M−1
ω A not only depends on whether αRA is

smaller or larger than 1, but depends on whether βRA is smaller or larger than 1. However
in [37] it is not specify whether αRA < 1 or αRA > 1. It is only stated that 0 < αA ≤ αRA
from [αRA, β

R
A ] ⊂ [αA, βA]. Similarly, the conditions in Theorem 2 [37] do not also specify

whether βRA < 1 or βRA > 1. It is only stated that βRA ≤ βA from [αRA, β
R
A ] ⊂ [αA, βA]. In

this case, Theorem 3.3 perfects the results in Theorem 2 in [37].
Example 3.1 Let

A =




0.5 0 0
0 1.5 0
0 0 1


 , B =

[
1 0 1
0 1 0

]
, C =

[
0.5 0
0 0.6

]
.

For convenience, we can choose PA = I and PS = 2I. Then AP = P
−1/2
A AP

−1/2
A = A,

S = BP−1
A BT + C =

[
2.5 0
0 1.6

]
, SP = P

−1/2
S SP

−1/2
S =

[
1.25 0
0 0.8

]

and

Ĉ = P
−1/2
S CP

−1/2
S =

[
0.25 0
0 0.3

]
.

Therefore, αA = λmin(AP ) = 0.5, βA = λmax(AP ) = 1.5, αS = λmin(SP ) = 0.8, βS =

λmax(SP ) = 1.25, αC = λmin(Ĉ) = 0.25 and βC = λmax(Ĉ) = 0.3.

Since R = P
−1/2
S BP

−1/2
A = P

−1/2
S B,

AR = (RRT )−1RAPR
T =

[
0.75 0
0 1.5

]
,

This shows that αRA = λmin(AR) = 0.75, βRA = λmax(AR) = 1.5 < 2.
If ω = 2, all the eigenvalues of M−1

ω A are λ(M−1
ω A) = {0.3283, 1, 1.4467, 0.6250 ±

0.2165i}. From Theorem 3.3, any real eigenvalue λ of M−1
ω A satis�es

0.2 < λ < 1.5,

and the complex eigenvalue λ of M−1
ω A satis�es

0.25 < λR < 1.3125, |λI | < 0.7906.

Obviously, 0.3283,1 and 1.4467 lie in (0.2, 1.5), 0.6250 ∈ (0.25, 1.3125) and | ± 0.2165| <
0.7906.

Based on Theorem 2 in [37], any real eigenvalue λ of M−1
ω A satis�es

0.5 < λ < 6,

and the complex eigenvalue λ of M−1
ω A satis�es

0.25 < λR < 2.75, |λI | < 1.5811.

Obviously, 0.3283 /∈ (0.5, 6), 0.6250 ∈ (0.25, 2.75) and | ± 0.2165| < 1.5811.
If ω = 1

2
, all the eigenvalues ofM−1

ω A are λ(M−1
ω A) = {0.6044, 1, 2.8956, 1.3±0.4583i}.

From Theorem 3.3, any real eigenvalue λ of M−1
ω A satis�es

0.5 < λ < 5,

and the complex eigenvalue λ of M−1
ω A satis�es

0.25 < λR < 3, |λI | < 1.5811.

Obviously, 0.6044 ,1, 2.8956 lie in (0.5, 5), 1.3 ∈ (0.25, 3) and | ± 0.4583| < 1.5811.
Based on Theorem 2 in [37], any real eigenvalue λ of M−1

ω A satis�es

0.2 < λ < 1.5,
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and the complex eigenvalue λ of M−1
ω A satis�es

0.25 < λR < 1.8125, |λI | < 0.7906.

Obviously, 2.8956 /∈ (0.2, 1.5), 1.3 ∈ (0.25, 1.8125) and | ± 0.4583| < 0.7906.
Example 3.2 Let

A =




0.5 0 0
0 1.5 0
0 0 0.25


 , B =

[
−1 0 −1
0 1 0

]
, C =

[
0 0
0 0.2

]
.

For convenience, we can choose PA = I and PS = 5
3
I. Then AP = P

−1/2
A AP

−1/2
A = A,

S = BP−1
A BT + C =

[
2 0
0 1.2

]
, SP = P

−1/2
S SP

−1/2
S =

[
1.2 0
0 0.72

]

and

Ĉ = P
−1/2
S CP

−1/2
S =

[
0 0
0 0.12

]
.

Therefore, αA = λmin(AP ) = 0.25, βA = λmax(AP ) = 1.5, αS = λmin(SP ) = 0.72,

βS = λmax(SP ) = 1.2, αC = λmin(Ĉ) = 0 and βC = λmax(Ĉ) = 0.12.

Since R = P
−1/2
S BP

−1/2
A = P

−1/2
S B,

AR = (RRT )−1RAPR
T =

[
0.375 0
0 1.5

]
,

This shows that αRA = λmin(AR) = 0.375, βRA = λmax(AR) = 1.5 < 2.
If ω = 3, all the eigenvalues of M−1

ω A are λ(M−1
ω A) = {0.2147, 0.3927, 1.4533, 0.5687±

0.3675i}. From Theorem 3.3, any real eigenvalue λ of M−1
ω A satis�es

0.12 < λ < 1.5,

and the complex eigenvalue λ of M−1
ω A satis�es

0.125 < λR < 1.15, |λI | < 0.6325.

Obviously, 0.2147, 0.3927 and 1.4533 lie in (0.12, 1.5), 0.5687 ∈ (0.125, 1.15) and | ±
0.3675| < 0.6325.

Based on Theorem 2 in [37], any real eigenvalue λ of M−1
ω A satis�es

0.25 < λ < 7.2,

and the complex eigenvalue λ of M−1
ω A satis�es

0.125 < λR < 3.3, |λI | < 1.8974.

Obviously, 0.2147 /∈ (0.25, 7.2), 0.5687 ∈ (0.125, 3.3) and | ± 0.3675| < 1.8974.
If ω = 1

3
, all the eigenvalues of M−1

ω A are λ(M−1
ω A) = {0.3649, 0.6642, 5.571, 1.38 ±

0.66i}. From Theorem 3.3, any real eigenvalue λ of M−1
ω A satis�es

0.25 < λ < 7.2,

and the complex eigenvalue λ of M−1
ω A satis�es

0.125 < λR < 4.35, |λI | < 1.8974.

Obviously, 0.3649, 0.6642 and 5.571 lie in (0.25, 7.2), 1.38 ∈ (0.125, 4.35) and | ± 0.66| <
1.8974.

Based on Theorem 2 in [37], any real eigenvalue λ of M−1
ω A satis�es

0.12 < λ < 1.5,

and the complex eigenvalue λ of M−1
ω A satis�es

0.125 < λR < 1.7, |λI | < 0.6325.
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Obviously, 5.571 /∈ (0.12, 1.5), 1.38 ∈ (0.125, 1.7) and | ± 0.66| ≮ 0.6325.
Numerical results of Examples 3.1 and 3.2 show that the eigenvalue distribution of

the preconditioned matrix M−1
ω A in Theorem 3.3 is more tighter than that of Theorem 2

in [37]. This shows that Theorem 3.3 provide valid bounds for all the real eigenvalues of
the preconditioned matrixM−1

ω A and also provide valid bounds for the real and imaginary
parts of all the complex eigenvalues of the preconditioned matrix M−1

ω A.

4. Conclusion

In this paper, our goal is to discuss the eigenvalue distribution of a family of relaxed
mixed constraint preconditioner (RMCP) for saddle point problems. Some valid bounds
for all the eigenvalues of the corresponding preconditioned matrix are obtained and some
corresponding theoretical results in [36, 37, 44] have been improved. With regard to the
application of RMCP, one can see [34,36,37] for more details.
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Abstract

In this paper, we mainly deal with the problem that f(qz) and f ′(z)
share common values. One of the purpose is to explore whether the
classical uniqueness results remain valid or not by considering some
uniqueness theorems on f(qz) and f ′(z) sharing common values. Some
examples and remarks are given to show that our results are sharp in
certain senses. We also consider the entire solutions of the equation
f ′(z) = f(qz), which is important for the uniqueness results.
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1. Introduction

We use the standard symbols and fundamental results of Nevanlinna theory [7, 10, 18].
A meromorphic function f(z) means meromorphic in the complex plane C. If f − a and
g − a have the same zeros, then we say that f and g share the value a IM (ignoring
multiplicities). If f − a and g− a have the same zeros with the same multiplicities, then
f and g share the value a CM (counting multiplicities).

Recall a classical result given by Rubel and Yang [16] as follows.

Theorem A. Let f(z) be a non-constant entire function. If f(z) and f ′(z) share two
values a, b ∈ C CM , then f ′(z) = f(z).

Many improvements on Theorem A were investigated afterwards. For example, f ′(z)
was improved to f (k)(z) or di�erential polynomials of f(z), the condition CM was reduced
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to IM , an entire function f(z) was extended to a meromorphic function, and so on. We
only recall the following result given by Mues-Steinmetz [12].

Theorem B. Let f(z) be a non-constant entire function. If f(z) and f ′(z) share two
values a, b ∈ C IM , then f ′(z) = f(z).

Recently, Qi, Liu and Yang [14] considered the problem that f(z) and f(qz) share
common values, where f(z) is a zero-order meromorphic function and |q| = 1. One of
the results can be stated as follows.

Theorem C. [14, Theorem 1.1] Let f(z) be a zero-order meromorphic function and
a1, a2, a3 ∈ C ∪ {∞} be three distinct values. If f(z) and f(qz) share a1, a2 CM and a3
IM , then f(z) = f(qz).

Here, two remarks are given to show that the conditions of Theorem C are indispens-
able, which are not considered in [14].

1.1. Remark. Theorem C is not valid for meromorphic functions with �nite order,
which can be seen by the following two examples.

1.1. Example. If f(z) = ez and q = −1, then f(z) and f(qz) share 0, 1,∞ CM , but
f(z) 6= f(qz).

1.2. Example. If f(z) = ez
2

and q = i, then f(z) and f(qz) share 0, 1,∞ CM , but
f(z) 6= f(qz).

1.2. Remark. The condition a1, a2 CM and a3 IM can not be reduced to a1, a2 CM
in Theorem C, which can be seen by the following example.

1.3. Example. If f(z) = 2z
(z+1)2

and q = −1, then f(qz) = −2z
(1−z)2 . We know that f(z)

and f(qz) share 0, 1 CM , but f(z) 6= f(qz).

However, if f is an entire function with zero-order, then the conditions of Theorem C
can be reduced as follows.

Theorem D. [14, Theorem 1.2] Let f be a zero-order entire function and a1, a2 ∈ C be
two distinct values. If f(z) and f(qz) share a1 and a2 IM , then f(z) = f(qz).

Noticing the above four theorems, Theorem A and Theorem B are related to the value
sharing problem on f(z) and f ′(z), Theorem C and Theorem D are related to the value
sharing problem on f(z) and f(qz). An interesting problem is what can we get if f ′(z)
and f(qz) share common values, where q is a non-zero constant. Some related results can
be found in Section 3. Some results on the zeros distribution of q-di�erence di�erential
polynomials of di�erent types and uniqueness results can be seen in Section 4.

2. The entire solutions of f ′(z) = f(qz)

As we all know that the di�erential equation f ′(z) = f(z) implies that f(z) = Aez,
where A is a constant. Before considering the value sharing problem on f(qz) and f ′(z),
we should consider the solutions properties of the q-di�erence di�erential equation

(2.1) f ′(z) = f(qz),

where q is a non-zero constant. Obviously, the non-trivial entire solutions of (2.1) should
be transcendental. Using the theory of series, we obtain the next result.

2.1. Theorem. The non-trivial entire solutions of (2.1) must be have the form

f(z) =

+∞∑

n=0

a0
n!
q
n(n−1)

2 zn,

where a0 is a free complex parameter.
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Proof. Let f(z) = a0 + a1z + a2z
2 + · · ·+ anz

n + · · · . Thus
(2.2) f(qz) = a0 + a1qz + a2(qz)

2 + · · ·+ an(qz)
n + · · ·

and

(2.3) f ′(z) = a1 + 2a2z + · · ·+ nanz
n−1 + · · · .

By comparing with the coe�cients of (2.2) and (2.3), we get

a1 = a0q
0,

a2 =
a0
2
q1,

a3 =
a0

3× 2
q1+2,

a4 =
a0

4× 3× 2
q1+2+3,

a5 =
a0

5× 4× 3× 2
q1+2+3+4,

a6 =
a0

6× 5× 4× 3× 2
q1+2+3+4+5, . . .

Using mathematical induction, we get f(z) should have the form

f(z) =

+∞∑

n=0

a0
n!
q
n(n−1)

2 zn.

�

2.1. Remark. As we all know that if g(z) =
∑∞
n=0 anz

n is an entire function, the
order's expression

ρ(g) = limn→∞
n logn

log 1
|an|

.

Thus, we conclude that ρ(f) = 0 if |q| 6= 1 and ρ(f) = 1 if |q| = 1 in Theorem 2.1.

Obviously, if q = 1, then f(z) =
∑+∞
n=0

a0
n!
zn = a0e

z.

3. Some results on f(qz) and f ′(z) share common values

Let us recall the classical results in the uniqueness theory of meromorphic functions,
the �ve-point, resp. four-point, theorems due to Nevanlinna [15].

The �ve-point theorem. If two meromorphic functions f, g share �ve distinct values
in the extended complex plane IM , then f ≡ g.

The four-point theorem. If two meromorphic functions f, g share four distinct
values in the extended complex plane CM , then f ≡ T (g), where T is a Möbius trans-
formation.

If the meromorphic function g has a special relationship with f , then the number �ve
or four can be reduced. For example, considering the value sharing problem on f(z) and
f(z+ c) [8, Theorem 2] or f(z) and f(qz) [14, Theorem 1.1], the number is three. Before
stating our results, we need the following lemma [18, Theorem 2.17].

3.1. Lemma. Let f and g be non-constant meromorphic functions with the order less

than one. If f and g share 0 and ∞ CM , then there exists a non-zero constant K
satisfying f = Kg.

Let f1 = f−a1
f−a2 and g1 = g−a1

g−a2 . If f and g share a1 and a2 CM , then f1 and g1 share

0,∞ CM , thus we have f−a1
f−a2 = k g−a1

g−a2 .
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3.2. Theorem. Let f be a meromorphic function with order ρ(f) < 1 and let a1, a2 ∈
C∪ {∞} and a3 ∈ C be three distinct values. If f(qz) and f ′(z) share a1, a2 CM and a3
IM , then f ′(z) = f(qz).

Proof. If a1, a2, a3 ∈ C. Let F (z) = f ′(z)−a1
f ′(z)−a2 .

a3−a2
a3−a1 and G(z) = f(qz)−a1

f(qz)−a2 .
a3−a2
a3−a1 . Thus,

we have F (z) and G(z) share 0,∞ CM and 1 IM . Since that F (z) and G(z) are
meromorphic functions with ρ(f) < 1, then F (z) = kG(z) follows from Lemma 3.1. If
the value 1 is not the Picard exceptional value, then k = 1, thus F (z) = G(z). If the

value 1 is the Picard exceptional value, we have F (z)−1
G(z)−1

has no zeros and poles. Hence,

we have F (z)−1
G(z)−1

= C, which implies that k = 1, thus F (z) = G(z). We conclude that

f ′(z) = f(qz).

If one of a1, a2 is ∞, without loss of generality, we suppose that a1 =∞. Let F (z) =
f ′(z) − a2 and G(z) = f(qz) − a2. Thus F (z) and G(z) share 0,∞ CM . From Lemma
3.1, we have F (z) = kG(z). Combining the above with the condition that a3 is IM
shared, then k = 1, thus f ′(z) = f(qz). �

3.1. Remark. Theorem 3.2 is not valid for meromorphic functions with ρ(f) ≥ 1, which
can be seen by taking f(z) = ez and q = −1. We see that f(qz) and f ′(z) share 0, 1,−1
CM , but f ′(z) 6= f(qz).

3.3. Theorem. Let f(z) be a non-constant entire function, q be a non-zero constant. If

f(qz) and f ′(z) share two distinct constants a, b ∈ C CM and one of a, b is the Picard

exceptional value, then f ′(z) = f(qz) or f(z) = e−Az+B, −Ae2B = b2 and q = −1.
For the proof of Theorem 3.3, we need the following three lemmas.

3.4. Lemma. [18, Theorem 1.47] Let h(z) be a non-constant entire function and f(z) =

eh(z). Then T (r, h′) = S(r, f).

3.5. Lemma. [18, Theorem 1.56] Let f1, f2, f3 be meromorphic functions such that f1
is not a constant. If f1 + f2 + f3 = 1 and if

3∑

j=1

N(r, 1/fj) + 2

3∑

j=1

N(r, fj) < (λ+ o(1))T (r),

where λ < 1 and T (r) := max1≤j≤3 T (r, fj), then either f2 = 1 or f3 = 1.

3.6. Lemma. [7, Theorem 3.7] Let f(z) be an entire function. If f(z) and f (l)(z) (l ≥ 2)
have no zeros, then f(z) = eAz+B, where A,B are constants.

Proof. One of a, b is the Picard exceptional value, without loss of generality, we suppose
that a is the Picard exceptional value. Thus

(3.1) f(qz)− a = eα(z)

and

(3.2) f ′(z)− a = eβ(z),

where α(z) and β(z) are non-constant entire functions. From Lemma 3.4, we have
T (r, α′(z)) = S(r, f(qz)). Di�erentiating f(qz), we have

(3.3) f ′(qz) =
1

q
eα(z)α′(z) = a+ eβ(qz).

From (3.1) and (3.3), we get

T (r, eα(z)) = T (r, f(qz)) +O(1) ≤ T (r, f ′(qz)) + S(r, f(qz)),(3.4)
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T (r, eβ(qz)) = T (r, f ′(qz)) +O(1).(3.5)

If a 6= 0, from (3.3), we conclude that

(3.6)
1

aq
eα(z)α′(z)− eβ(qz)

a
= 1.

Using the second main theorem for three small functions [7, Theorem 2.5], we have

T (r, eα(z)) ≤ N

(
r,

1

eα(z) − aq
α′(z)

)
+ S(r, eα(z))

= N

(
r,

1

eβ(qz)

)
+ S(r, eα(z))

= S(r, eα(z)),(3.7)

which is a contradiction. Thus, a = 0. From (3.3), then

(3.8) eβ(qz)−α(z) =
α′(z)

q
.

Since that b 6= 0 is CM shared by f ′(z) and f(qz), then we get f ′(z)−b
f(qz)−b = eγ(z), where

γ(z) is an entire function. Thus, combining the above with (3.1), (3.2), (3.8), we have

eβ(z) − b = f ′(z)− b = eγ(z)(f(qz)− b) = eγ(z)(eα(z) − b).
Since b 6= 0, then

eβ(z)

b
+ eγ(z) − eγ(z)+α(z)

b
= 1.

From Lemma 3.5, if eγ(z) ≡ 1, then f ′(z) = f(qz) follows. If eβ(z) ≡ b, which implies

that f ′(z) ≡ b, which is impossible. If e
γ(z)+α(z)

−b ≡ 1, then we also have eβ(z)−γ(z) ≡ −b.
Thus eα(z)+β(z) = b2, which implies that α(z) + β(z) ≡ d, where d is a constant. So
β(qz) ≡ −α(qz) + d. Combining the above with (3.8), we have

(3.9) e−α(qz)−α(z)+d =
α′(z)

q
.

Remark that the left hand of (3.9) has no zeros, we have α′(z) has no zeros, thus either
α(z) = Az + B or α(z) is a transcendental entire function. If α(z) = Az + B, from
(3.9), we have q = −1 and ed−2B = −A. From (3.1), we have f(z) = e−Az+B and
−Ae2B = b2. If α(z) is a transcendental entire function, since β(z) ≡ −α(z) + d, then

β′(z) also has no zeros. Thus from f ′′(z) = β′(z)eβ(z), then we have f(z) and f ′′(z) have
no zeros, f(z) = eaz+b follows by Lemma 3.6, which implies that α(z) is a polynomial, a
contradiction. Thus, we have the proof of Theorem 3.3. �

3.2. Remark. If a, b are not Picard exceptional values, then Theorem 3.3 is not valid,
which can be seen by the function f(z) = 3a − a

e2z
and q = −1. Thus, f ′(z) = 2a

e2z
and

f(qz) = 3a− ae2z share a and 2a CM , but f ′(z) 6= f(qz).

In what follows, we will use the properties of the solutions of Fermat type equations
to consider the problem that two functions share one common value. Recall the classical
Fermat type equation

(3.10) a(z)f(z)n + b(z)g(z)n = 1.

Yang [17, Theorem 1] obtained the following result.
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Theorem E. Let a(z), b(z), f(z), g(z) be meromorphic functions, m,n be positive inte-
gers. Then (3.10) can not hold, if T (r, a(z)) = S(r, f) and T (r, b(z)) = S(r, g), unless
m = n = 3. If f(z) and g(z) are entire, then (3.10) can not hold, even if m = n = 3.

We get the following result, which is an improvement of [14, Corollary 1.4 ].

3.7. Theorem. Let f be a zero-order non-constant entire function, and q 6= 0, n ≥ 2
be an integer, and let F = fn. If F (z) and F (qz) share a non-zero constant a CM, then

f(qz) = tf(z), where tn = 1.

Proof. Suppose that F (z) and F (qz) share a non-zero constant a CM, then we have
F (qz)−a
F (z)−a = C. Thus, we have

(3.11) f(qz)n − Cf(z)n = a(1− C).

If C = 1, then we have f(qz) = tf(z), where tn = 1. If C 6= 1, from Theorem E, we
know that n ≤ 2. From the condition n ≥ 2, then n = 2. In this case f(qz)−√cf(z) and
f(qz)+

√
cf(z) have no zeros. Since that f(z) is zero-order entire function and combining

the Hadamard factorization theorem, we obtain f(z) should be a constant. �

3.3. Remark. (1) Theorem 3.7 is not valid for �nite order entire function f(z), which
can be seen by taking f(z) = ez, q = −1. Then f(z)n and f(qz)n share the value 1 CM,
but f(qz) 6= tf(z), where t is a constant.

(2) The condition of a 6= 0 can not be deleted, which can be seen by f(z) = zn and
f(qz) = qnzn and qn 6= 1, thus f(z) and f(qz) share the value 0 CM, but f(z) 6= f(qz).

(3) The condition n ≥ 2 can not be improved to n ≥ 1, which can be seen by

f(z) = zn+ a and qn = c, thus f(qz)−a
f(z)−a = c. Here, f(qz) and f(z) share the value a CM,

but f(qz) 6= tf(z).

Brück conjecture is well-known as a classical problem in value sharing, which can be
stated as follows.

Conjecture. Let f(z) be a non-constant entire function, the hyper-order ρ2(f) is not a

positive integer or in�nite. If f(z) and f ′(z) share a �nite value b CM, then f ′−b
f−b = c,

where c is a non-zero constant.

The conjecture has been veri�ed in special cases only: (1) f is of �nite order, see [5];
(2) b = 0, see [3]; (3) N(r, 1

f ′ ) = S(r, f), see [3]. we also want to summarize some results

on q-di�erence analogue of Brück conjecture.

3.8. Theorem. Let f be a non-constant entire function with ρ(f) < 1, and q 6= 0. If

f ′(z) and f(qz) share a constant a CM, then
f ′(z)−a
f(qz)−a = c.

3.4. Remark. Theorem 3.8 is easily proved. Here, we state it to show a result similar
as Brück conjecture. Theorem 3.8 is not valid for �nite order entire functions, which

can be seen by f(z) = ez, q = −1, thus f ′(z)−1
f(qz)−1

= −ez, where f ′(z) and f(qz) share the
value 1 CM.

4. Results on values shared by f(qz)nf ′(z) and g(qz)ng′(z)

Hayman conjecture [6] is an important problem in the theory of value distribution. It
was also considered by some authors later, such as [2, 4, 13].

Theorem F.[4, Theorem 1] Let f be a transcendental meromorphic function. If n ≥ 1
is a positive integer, then f(z)nf ′(z)− 1 has in�nitely many zeros.
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Recently, some authors investigated the zeros of f(z)nf(z + c)− a, f(z)nf(qz)− a or
their improvements, where a is a non-zero constant. Some related results can be found
in [9, 11, 19]. The main aim of these results is to get the sharp value of n to ensure that
the di�erence polynomials or q-di�erence polynomials admit in�nitely many zeros. It is
interesting to consider the value distribution of f(qz)nf ′(z)− a(z), where a(z) is a small
function with respect to f . We obtain the following result.

4.1. Theorem. Let f(z) be a transcendental entire function with zero-order, q ∈ C\{0}
and n ≥ 1. Then f(qz)nf ′(z)− q(z) has in�nitely many zeros, where q(z) is a non-zero

polynomial.

4.2. Theorem. Let f(z) be a transcendental meromorphic function with zero-order,

q ∈ C \ {0} and n ≥ 9. Then f(qz)nf ′(z)− a(z) has in�nitely many zeros, where a(z) is
a non-zero small function with respect to f(z).

4.1. Remark. Theorem 4.1 is not valid for �nite order entire functions, which can be
seen by f(z) = ez, q = − 1

n
, and a(z) is a non-constant polynomial, thus f(qz)nf ′(z) −

a(z) = 1− a(z) has �nitely many zeros.

For the proofs of Theorems 4.1 and 4.2, we need the following results, which were
�rstly considered by Barnett et al.[1], Zhang and Korhonen [19] obtained the following
version.

4.3. Lemma. [19, Theorem 1.1] Let f(z) be a non-constant zero-order meromorphic

function and q ∈ C \ {0}. Then

T (r, f(qz)) = T (r, f) + S(r, f)

on a set of lower logarithmic density 1.

4.4. Lemma. [1, Theorem 1.1] Let f(z) be a non-constant zero-order meromorphic

function and q ∈ C \ {0}. Then

m

(
r,
f(qz)

f(z)

)
= S(r, f)

on a set of logarithmic density 1.

4.5. Lemma. Let f(z) be a non-constant zero-order meromorphic function and q ∈
C \ {0}. Then

(n− 2)T (r, f) ≤ T (r, f(qz)nf ′(z)) + S(r, f) ≤ (n+ 2)T (r, f)(4.1)

on a set of lower logarithmic density 1. If f(z) is a non-constant zero-order entire

function, then

nT (r, f) ≤ T (r, f(qz)nf ′(z)) + S(r, f) ≤ (n+ 1)T (r, f).(4.2)

Proof. From Lemma 4.3 and the fact that T (r, f ′(z)) ≤ 2T (r, f) + S(r, f) when f(z) is
a meromorphic function, we get

T (r, f(qz)nf ′(z)) ≤ (n+ 2)T (r, f) + S(r, f).
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Hence, the right hand side of (4.1) is true. On the other hand

(n + 1)T (r, f(z)) = T (r, f(qz)n+1) + S(r, f)

= T

(
r,
f(qz)n+1f ′(z)

f ′(z)

)
+ S(r, f)

≤ T

(
r,
f(qz)

f ′(z)

)
+ T

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ T

(
r,
f ′(z)

f(qz)

)
+ T

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ N

(
r,

1

f(qz)

)
+N(r, f ′(z)) + T

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ 3T (r, f) + T (r, f(qz)nf ′(z)) + S(r, f)(4.3)

on a set of lower logarithmic density 1. Thus, the left hand side of (4.1) is proved. If
f(z) is a transcendental zero-order entire function, then we have

(n+ 1)T (r, f(z) = (n+ 1)m(r, f)

≤ m(r, f(qz)n+1) + S(r, f)

≤ m

(
r,
f(qz)

f ′(z)

)
+m

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ T

(
r,
f ′(z)

f(qz)

)
+ T

(
r, f(qz)nf ′(z)

)
+ S(r, f)

≤ T (r, f) + T
(
r, f(qz)nf ′(z)

)
+ S(r, f)(4.4)

on a set of lower logarithmic density 1. Combining Lemma 4.3 with the fact that
T (r, f ′(z)) ≤ T (r, f) + S(r, f) when f(z) is an entire function, we get (4.2). �

Proofs of Theorems 4.1 and 4.2: Assume that f(qz)nf ′(z)−q(z) has only �nitely
many zeros, if f(z) is a transcendental zero-order entire function, from Hadmard factor-
ization theorem, we have f(qz)nf ′(z)− q(z) = p(z), where p(z) is a non-zero polynomial.
Thus, we have nT (r, f) + S(r, f) ≤ T (r, f(qz)nf ′(z)) = O(log r), which is impossible.

If f(z) is a transcendental zero-order meromorphic function, using the second main
theorem, we have

(n − 2)T (r, f(z)) ≤ T (r, f(qz)nf ′(z)) + S(r, f) ≤ N(r, f(qz)nf ′(z))

+ N

(
r,

1

f(qz)nf ′(z)

)
+N

(
r,

1

f(qz)nf ′(z)− a(z)

)
+ S(r, f)

≤ 6T (r, f) +N

(
r,

1

f(qz)nf ′(z)− a(z)

)
+ S(r, f),(4.5)

which is a contradiction with n ≥ 9.

Let P (z) = anz
n + an−1z

n−1 + · · · + a1z + a0 be a non-zero polynomial, where
a0, a1, . . . , an( 6= 0) are complex constants and tP is the number of the distinct zeros
of P (z). The following, we will consider the generally case of P (f(qz))f ′(z)−a(z), where
a(z) is a small function with respect to f(z).

4.6. Theorem. Let f(z) be a transcendental entire function with zero-order, q ∈ C\{0}
and n ≥ 1. Then P (f(qz))f ′(z)−q(z) has in�nitely many zeros, where q(z) is a non-zero

polynomial.

4.7. Theorem. Let f(z) be a transcendental meromorphic function with zero-order,

q ∈ C\{0} and n ≥ 2tP +7. Then P (f(qz))f ′(z)−a(z) has in�nitely many zeros, where

a(z) is a non-zero small function with respect to f(z).
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Using the similar method as the proof of Lemma 4.5, we have the following lemma,
which is needed for the proofs of Theorems 4.6 and 4.7.

4.8. Lemma. Let f(z) be a non-constant zero-order meromorphic function, and q ∈
C \ {0}. Then

(n− 2)T (r, f) ≤ T (r, P (f(qz))f ′(z)) + S(r, f) ≤ (n+ 2)T (r, f)(4.6)

on a set of lower logarithmic density 1. If f(z) be a non-constant zero-order entire

function,

nT (r, f) ≤ T (r, P (f(qz))f ′(z)) + S(r, f) ≤ (n+ 1)T (r, f)(4.7)

on a set of lower logarithmic density 1.

Finally, we consider the uniqueness of f(qz)nf ′(z) and g(qz)ng′(z) sharing a non-zero
polynomial and obtain the following result.

4.9. Theorem. Let f(z) and g(z) be transcendental entire functions with zero-order,

q ∈ C \ {0} and n ≥ 5. If f(qz)nf ′(z) and g(qz)ng′(z) share a non-zero polynomial p(z)
CM, then we have f(qz)nf ′(z) = g(qz)ng′(z).

Proof. From the conditions, we get f(qz)nf ′(z)−p(z)
g(qz)ng′(z)−p(z) = c. If c = 1, then f(qz)nf ′(z) =

g(qz)ng′(z) follows. If c 6= 1, then we have

(4.8) f(qz)nf ′(z)− cg(qz)ng′(z) = p(z)(1− c).
Using the second main theorem, we get

T (r, f(qz)nf ′(z)) ≤ N(r, f(qz)nf ′(z)) +N

(
r,

1

f(qz)nf ′(z)

)

+ N

(
r,

1

f(qz)nf ′(z)− (1− c)p(z)

)
+ S(r, f(qz)nf ′(z))

≤ N

(
r,

1

f(qz)

)
+N

(
r,

1

f ′(z)

)
+N

(
r,

1

g(qz)ng′(z)

)
+ S(r, f)

≤ 2T (r, f) + 2T (r, g) + S(r, f).(4.9)

Similar as the above, we also get

T (r, g(qz)ng′(z)) ≤ 2T (r, f) + 2T (r, g) + S(r, g).(4.10)

Combining (4.9), (4.10) with (4.2), we have

n[T (r, f) + T (r, g)] ≤ 4[T (r, f) + T (r, g)] + S(r, f) + S(r, g),

which is a contradiction with the condition n ≥ 5. �
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1. Introduction and auxiliary results

1.1. Preface. We consider various generalizations of the celebrated Poisson�Mehler for-
mula (see e.g. [10], (13.1.24) or [1], (10.11.17)):

(1.1)
∑

n≥0

ρn

[n]q!
Hn (x|q)Hn (y|q) =

(
ρ2
)
∞∏∞

j=0 ω
(
x
√

1− q/2, y√1− q/2|ρqj
) ,

where {Hn}n≥0 denote q−Hermite polynomials and ω (x, y|t) are certain polynomials

symmetric in x and y of degree two. These polynomials as well as symbols [n]q! and(
ρ2
)
∞are de�ned and explained in Sections 1.2 and 1.3. There exist many proofs of (1.1)

(e.g. see [10], [1], [2], [21]). In [22] a certain generalization of (1.1) has been proved by the
author. It was used in calculating moments of the so called Askey�Wilson distribution.

In the paper we consider functions

(1.2) γi,j (x, y|ρ, q) =
∑

n≥0

ρn

[n]q!
Hn+i (x|q)Hn+j (y|q) .

for all i, j ≥ 0. It was shown by the author in [21] (Lemma 3) that:

(1.3) γi,j (x, y|ρ, q) = Qi,j (x, y|ρ, q) γ0,0 (x, y|ρ, q) ,

where Qi,j (x, y|ρ, q) is a certain polynomial in x, y of degree i + j. Hence (1.3) can be
viewed as a generalization of (1.1).

The main object of the paper is to study the properties and later the rôle of the poly-
nomials Qi,j (x, y|ρ, q) in obtaining a family of two dimensional orthogonal polynomials
as well as various expansions that can be viewed as either generalizations of (1.1) or
expansions more or less directly related to this formula.

In particular we �nd generating function of these polynomials, we express them as
linear combinations of polynomials belonging to families of polynomials of one variable.

We also analyze the measure (the so-called (ρ, q)− 2Normal measure) on the square
S (q)×S (q) with the density de�ned by (2.5) below, that can be easily constructed from
the densities of measures that make q−Hermite and the so-called Al-Salam�Chihara
polynomials orthogonal and which can viewed as a generalization of bivariate Normal
distribution. Interval S (q) is de�ned by (1.5). The probabilistic aspects of this distri-
bution were presented in [19]. We point out the rôle of the polynomials Qn,m in further
analysis of this measure. In particular we introduce spaces of functions of two variables

(1.4) Λn(x, y|ρ, q) = span {Qi,n−i(x, y, |ρ, q), i = 0, . . . , n} , n ≥ 0

and show that they are orthogonal with respect to (ρ, q) − 2Normal measure. Hence
these spaces form the direct sum decomposition of the space of functions that are square
integrable with respect to (ρ, q)− 2Normal measure.

Further we use these polynomials to obtain various in�nite expansions. In particular
we obtain an expansion of the reciprocal of the right hand side of (1.1) in an in�nite
series. In [21], (formula 5.3) one such expansion was presented. The expansions was
non-symmetric in x and y (for each �nite sum). This time the expansion is symmetric
in x and y.

Among other possible views one can look at the results of paper as the generalization
of the results of the two papers of Van der Jeugt et al. [12], [13]. The authors of these
papers introduced convolutions of known families of classical orthogonal polynomials such
as Hermite or Laguerre considered at two variables thus obtaining bivariate polynomials.
They applied their results in Lie algebra and its generalizations.
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Our "convolutions" concern generalizations of Hermite polynomials (q-Hermite, and
Al-Salam�Chihara). As possible applications we mean the ones in analysis, two dimen-
sional orthogonal polynomials theory or probability.

Since in our paper appear kernels built of mostly q−Hermite and Al-Salam�Chihara
one should remark that some of the technics used in the proofs resemble those used in
e.g. [8]. But by no means results are the same.

The paper is organized as follows. In the next two Subsections (i.e. 1.2 and 1.3)
we provide simple introduction to q−series theory presenting typical notation used and
presenting a few typical families of the so called basic orthogonal polynomials. The word
basic comes from the base which is the parameter in most cases denoted by q. We do
this since notation and terminology used in q−series theory is somewhat speci�c and not
widely known to those not working within this �eld. We are also purposely not using
notation based on hypergeometric series since it is mostly known to specialists of special
functions theory. We believe that the results presented in the paper can be applied
in various �elds of traditional analysis like the theory of Fourier expansions, theory of
reproducing kernels, orthogonal polynomials theory and last but not least probability
theory. Then in Section 2 we present our main results, open questions and remarks are
in Section 3 while laborious proofs are in Section 4.

1.2. Notation. We use notation traditionally used in the so called q−series theory.
Since not all readers are familiar with it we will recall now this notation.

Throughout the paper, q is a parameter. We will assume that −1 < q ≤ 1 unless
otherwise stated. Let us de�ne [0]q = 0; [n]q = 1 + q+ . . .+ qn−1, [n]q! =

∏n
j=1 [j]q , with

[0]q! = 1 and

[
n

k

]

q

=

{
[n]q !

[n−k]q ![k]q !
, n ≥ k ≥ 0

0 , otherwise
.

It will be useful to use the so called q−Pochhammer symbol for n ≥ 1 :

(a; q)n =

n−1∏

j=0

(
1− aqj

)
,

(a1, a2, . . . , ak; q)n =

k∏

j=1

(aj ; q)n ,

with (a; q)0 = 1. Often (a; q)n as well as (a1, a2, . . . , ak; q)n will be abbreviated to (a)n
and (a1, a2, . . . , ak)n respectively, if it will not cause misunderstanding.

It is easy to notice that for |q| < 1 we have (q)n = (1− q)n [n]q! and

[
n
k

]
q

=

{
(q)n

(q)n−k(q)k
, n ≥ k ≥ 0

0 , otherwise
.

Notice that [n]1 = n, [n]1! = n!,
[
n
k

]
1

=
(
n
k

)
, (a; 1)n = (1− a)n and [n]0 =

{
1 if n ≥ 1
0 if n = 0

,

[n]0! = 1,
[
n
k

]
0

= 1, (a; 0)n =

{
1 if n = 0

1− a if n ≥ 1
.

In the sequel we shall also use the following useful notation:

S (q) =

{
[− 2√

1−q ,
2√
1−q ] if |q| < 1

R if q = 1
,(1.5)

IA (x) =

{
1 if x ∈ A
0 if x /∈ A .(1.6)
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1.3. Polynomials.

1.3.1. q−Hermite. Let {Hn (x|q)}n≥0 denote the family of the so called q− Hermite

(brie�y qH) polynomials. That is the one parameter family of orthogonal polynomials
satisfying the following three term recurrence:

(1.7) Hn+1 (x|q) = xHn (x|q)− [n]qHn−1 (x|q) ,

with H−1 (x|q) = 0 and H0 (x|q) = 1. In fact in the literature (see e.g. [1], [10], [15]) we
encounter more often the re-scaled versions of these polynomials. Namely more often ap-
pear under the name of q−Hermite polynomials the following polynomials {hn (x|q)}n≥0

de�ned by their three term recurrence:

(1.8) hn+1 (x|q) = 2xhn (x|q)− (1− qn)hn−1 (x|q) ,
with h−1 (x|q) = 0 and h0 (x|q) = 1. These polynomials are related to one another by
the relationship ∀n ≥ −1:

(1.9) Hn (x|q) =
hn
(
x
√

1− q/2|q
)

(1− q)n/2
,

for |q| < 1. For q = 1 we have hn(x|1) = 2nxn while Hn (x|1) = Hn (x), where polyno-
mials Hn (x) are the so called 'probabilistic' Hermite polynomials i.e. classical, monic†

polynomials orthogonal with respect to exp
(
−x2/2

)
. Observe further that hn (x|0) =

Un (x) and Hn(x|0) = Un(x/2), where Un denotes the so called Chebyshev polynomial
of the second kind (for details see e.g. [1]).

The polynomials Hn have nice probabilistic interpretation (see e.g. [22]) and besides
they constitute the real generalization of the ordinary Hermite polynomials. That is why
we will use them in this paper. The results presented here can be easily adopted and
expressed in terms of polynomials hn.

The generating function of these polynomials is given by the following formula that
is in fact adapted to our setting formula (14.26.1) of [15]

(1.10) ϕH (x|ρ, q) =
∑

n≥0

ρn

[n]q!
Hn (x|q) =

1∏∞
j=0 v

(
x
√

1− q/2|ρqj√1− q
) ,

convergent for |ρ(1− q)| < 1, x ∈ S (q) , where we denoted

(1.11) v (x|t) = 1− 2xt+ t2.

Let us observe that ∀x ∈ [−1, 1], t ∈ R : v (x|t) ≥ 0.
Adapting formula (14.26.2) of [15] to our setting we have:

(1.12)

∫

S(q)

Hn (x|q)Hm (x|q) fN (x|q) dx = [n]q!δmn,

with

(1.13) fN (x|q) =

√
(1− q)(4− (1− q)x2) (q)∞

2π

∞∏

j=1

l
(
x
√

1− q/2|qj
)
,

for x ∈ S (q) , where

(1.14) l (x|a) = (1 + a)2 − 4ax2.

†i.e. polynomials with leading coe�cient equal to 1.
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Ismail et al. showed that (see [11])

lim
q→1−

fN (x|q) =
1√
2π

exp
(
−x2/2

)
,(1.15)

lim
q→1−

ϕH(x|ρ, q) = exp
(
xρ− x2/2

)
.(1.16)

Apart from q−Hermite polynomials we will need the so called big q−Hermite (brie�y
bqH) polynomials {Hn (x|a, q)}n≥−1 with a ∈ R. They are de�ned through their three
term recurrence:

(1.17) Hn+1 (x|a, q) = (x− aqn)Hn (x|a, q)− [n]qHn−1 (x|a, q) ,
with H−1 (x|a, q) = 0, H0 (x|a, q) = 1. To support intuition let us remark that Hn(x|a, 1)
= Hn (x− a) and Hn (x|a, 0) = Un (x/2)− aUn−1 (x/2) .

One knows its relationship with the q−Hermite polynomials:

Hn (x|a, q) =

n∑

k=0

[
n

k

]

q

(−a)kq(
k
2)Hn−k (x|q) ,

and that (see e.g. [15], (14.18.2) with an obvious modi�cation for polynomials Hn):∫

S(q)

Hn (x|a, q)Hm (x|a, q) fbN (x|a, q) dx = [n]q!δmn,

∑

n≥0

tn

[n]q!
Hn (x|a, q) = ϕH (x|t, q) ((1− q)at)∞ ,

where

(1.18) fbN (x|a, q) = fN (x|q)ϕH (x|a, q) .
We will need the following Lemma concerning another relationship between polyno-

mials Hn (x|q) and Hn (x|a, q) .
1.1. Lemma. Let us de�ne for

∀n ≥ 0;x ∈ S (q) ; (1− q)t2 < 1 : ηn (x|t, q) =
∑
j≥0

tj

[j]q !
Hj+n (x|q) . Then

ηn (x|t, q) = Hn (x|t, q)ϕH(x|t, q),
where Hn (x|t, q) is the bqH polynomial de�ned by (1.17).

Proof. In a version with continuous q−Hermite polynomials h de�ned by (1.8) and
hn(x|t, q) are the big q−Hermite polynomials as de�ned in [15] (14.18.4) this formula
has been proved as a particular case in [25] (2.1). We notice that η0 (x|t, q) = ϕH(x|t, q).
To switch to polynomials Hn using (1.9) is elementary. �

1.2. Remark. Let us remark that Carlitz in [7] considered similar shifted characteristic

functions of the form
∑
j≥0

tj

(q)j
wn+j(x|q) with Rogers�Szegö polynomials wn (see dis-

cussion below following formula (2.3)). From this result of Carlitz one can also deduce
assertion of Lemma 1.1.

1.3.2. Al-Salam�Chihara. Next family of polynomials that we are going to consider
depends on 2 (apart from q) parameters denoted by a and b, that satisfy the following
three term recurrence (see e.g. [15],(14.8.4)):

(1.19) An+1 (x|a, b, q) = (2x−(a+b)qn)An (x|a, b, q)−(1−abqn−1)(1−qn)An−1 (x|y, ρ, q) ,
with A−1 (x|a, b, q) = 0, A0 (x|a, b, q) = 1. These polynomials will be called Al-Salam�
Chihara polynomials {An (x|a, b, q)}n≥−1 (brie�y ASC). We will assume in the sequel
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that |ab| < 1. This assumption together with |q| ≤ 1 guarantees that the measure that
makes these polynomials orthogonal is positive. It follows directly follows from Favard's
theorem since then (1− abqn−1)(1− qn) > 0.

In the sequel in fact we will consider these polynomials with complex parameters form-

ing a conjugate pair and also re-scaled. Namely we will take a =
√

1−q
2

ρ(y−i
√

4
1−q − y2),

b =
√

1−q
2

ρ(y + i
√

4
1−q − y2), with y ∈ S (q) and |ρ| < 1. More precisely we will consider

polynomials {Pn (x|y, ρ, q)}n≥0 de�ned by:

An

(
x

√
1− q
2
|a, b, q

)
/(1− q)n/2 = Pn (x|y, ρ, q) .

One can easily notice that a+ b = ρy
√

1− q, ab = ρ2 and thus that the polynomials Pn
satisfy the following three term recurrence:

(1.20) Pn+1 (x|y, ρ, q) = (x− ρyqn)Pn (x|y, ρ, q)− [n]q(1− ρ2qn−1)Pn−1 (x|y, ρ, q) ,
with P−1 (x|y, ρ, q) = 0, P0 (x|y, ρ, q) = 1.

1.3. Remark. To support intuition let us remark (following e.g. [22]) that Pn (x|y, ρ, 1) =

Hn

(
x−ρy√
1−ρ2

)(
1− ρ2

)n/2
. On the other hand Pn (x|y, ρ, 0) = Un (x/2) − ρyUn−1 (x/2)

+ ρ2Un−2 (x/2) , where Un (x) denotes Chebyshev polynomial of the second kind.

It is known see e.g. [15], (formula (14.8.13) adapted to our setting), [6], [22] that the
polynomials Pn have the following generating function:

ϕP (x|y, ρ, t, q) =
∑

n≥0

tn

[n]q!
Pn (x|y, ρ, q) =

∞∏

j=0

v
(
y
√

1− q/2|ρtqj√1− q
)

v
(
x
√

1− q/2|tqj√1− q
) ,

convergent for
∣∣t√1− q

∣∣ , |ρ| < 1, x, y ∈ S (q).
We also have (see e.g. [22]) or :

(1.21)

∫

S(q)

Pn(x|y, ρ, q)Pm (x|y, ρ, q) fCN (x|y, ρ, q) dx = δnm [n]q!(ρ
2)n,

where

fCN (x|y, ρ, q) = fN (x|q)
(
ρ2
)
∞∏∞

j=0 ω
(
x
√

1− q/2, y√1− q/2|ρqj
) ,

with

(1.22) ω (x, y|ρ) =
(
1− ρ2

)2 − 4ρ(1 + ρ2)xy + 4ρ2
(
x2 + y2

)
.

1.4. Remark. It was shown in [26](Lemma 1, (v)) that for |q| < 1 function
|fCN (x|y, ρ, q)/fN (x|q)| is bounded both from below and above hence square integrable
on the square S(q)×S (q) with respect to the measure fN (x|q) fCN (x|y, ρ, q) dxdy. This
will guarantee existence and convergence of some Fourier expansions considered in the
next section.

We will call the densities fN and fCN respectively q−Normal and (q, ρ)−Conditional
Normal. The names are justi�ed by the nice probabilistic interpretations of these densities
presented e.g. in [3], [4], [5], [6], [22] or [19]. Besides in [11] it was shown also that:

(1.23) lim
q→1−

fCN (x|y, ρ, q) = exp

(
− (x− ρy)2

2(1− ρ2)

)
/
√

2π(1− ρ2).
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1.5. Remark. Notice that convergence (1.15) and (1.23) in distribution of appropri-
ate measures with these densities can be easily seen since we have limq−→1− Hn (x|q) =

Hn (x) and limq−→1− Pn (x|y, ρ, q) = Hn

(
x−ρy√
1−ρ2

)(
1− ρ2

)n/2
, hence we have conver-

gence of appropriate moments. As stated above rigorous proofs of convergence of the
densities can be found in [11].

We end up this section by recalling an auxiliary simple result that will be used in
following sections many times. It has been formulated and proved in [25] Proposition 2.

1.6. Proposition. Let σn (ρ|q) =
∑
j≥0

ρj

[j]q !
ξn+j for |ρ| < 1, −1 < q ≤ 1 and certain

sequence {ξm}m≥0 such that σn exists for every n. Then

(1.24) σn (ρqm|q) =

m∑

k=0

(−1)k
[
m

k

]

q

q(
k
2) (1− q)k ρkσn+k(ρ|q).

1.7. Remark. Notice that this Proposition is trivially true for both q = 0 and q = 1.

2. Main Results

One of our main interests in this paper are the generalizations of the Poisson-Mehler
formula (1.1).

It is well known that convergence in (1.1) takes place for x, y ∈ S (q) , |ρ| < 1 and for
|q| < 1 is uniform. For q = 1 we have almost uniform convergence.

As a immediate corollary of Proposition 1.6 we have:

2.1. Corollary. For |q| < 1 we have:

γi,j (x, y|ρqm, q) =

m∑

k=0

(−1)k
[
m

k

]

q

q(
k
2) (1− q)k ρkγi+k,j+k (x, y|ρ, q) ,(2.1)

Hi (x|q)Hj (y|q) =
∑

k≥0

(−1)k q(
k
2) ρk

(q)k
γi+k,j+k (x, y|ρ, q) ,(2.2)

where γi,j(x, y|ρ, q) is de�ned by (1.2). Formula (2.1) is also true trivially for q = 1.

Proof. First assertion we get by applying directly (1.24) by setting σi,j = γi,j . Second
assertion we get by passing in the �rst one with m to in�nity and then noticing �rstly

that limm→∞
[
m
k

]
q

= 1
[k]q !

and �nally that (1−q)k
[k]q !

= 1
(q)k

. �

Now let us turn to polynomials Qi,j (x, y|ρ, q) de�ned by (1.3). It was shown in [22]
that for all −1 < q ≤ 1, |ρ| < 1, x, y ∈ R :

(2.3) Qi,j (x, y|ρ, q) =

j∑

s=0

(−1)sq(
s
2)

[
j

s

]

q

ρsHj−s (y|q)Pi+s (x|y, ρ, q) /
(
ρ2
)
i+s

,

and Qi,j (x, y|ρ, q) = Qj,i (y, x|ρ, q) .
2.2. Remark. It has to be remarked that Carlitz in [7] considered the sum ξk,j(x, y|ρ, q)
=
∑
n≥0

ρn

(q)n
wn+k (x|q)wn+j (y|q) , where wn(x|q) are the so called Rogers�Szegö poly-

nomials related to polynomials hn(x|q) by the formula: hn(x|q) = eniθwn(e−2iθ|q) with x
= cos θ, i−imaginary unit. Indeed it turned out that functions ξk,j also have the property
that

ξk,j(x, y|ρ, q) = νk,j(x, y|ρ, q)ξ0,0(x, y|ρ, q),



1736

where νk,j are polynomials of degree k+j in x and y.However to show that νk,j(e
−iθ, e−iη|ρ, q)

can be expressed as Qk,j(cos θ, cos η|ρ, q) is not an easy task. Discussion on this subject
is in [23]. In particular see the proof of Proposition 5.

In particular we have

(2.4) Qk,0 (x, y|ρ, q) = Pk (x|y, ρ, q) /
(
ρ2
)
k
.

To analyze further properties of polynomials Qk,j let us introduce the following 2

dimensional density de�ned for S2 (q)
df
= S (q)× S (q) .

(2.5) f2D (x, y|ρ, q) = fCN (x|y, ρ, q) fN (y|q) .

Measure that has density f2D will be called (ρ, q)−bivariate Normal (brie�y (ρ, q) −
2N). Obviously f2D (x, y|ρ, q) = γ0,0 (x, y|ρ, q) fN (x|q) fN (y|q) . Its applications in the-
ories of probability and Markov stochastic processes have been presented in [19] and
[20].

Here below we give another interpretation of the polynomials Qn,m in particular its
connection with the big q−Hermite polynomials.

2.3. Proposition. For |q| < 1, |ρ| < 1, x, y ∈ R we have:
i) ∀i, j,m, k, i+ j 6= m+ k,

∫

S2(q)

Qi,j (x, y|ρ, q)Qm,k (x, y|ρ, q) f2D (x, y|ρ, q) dxdy = 0,

ii) ∀i, j,m, k, i+ j = m+ k, k > j :

∫

S2(q)

Qn−j,j (x, y|q)Qn−k,k (x, y|ρ, q) f2D (x, y|ρ, q) dxdy =

(−1)k−j
ρk−jq(

k−j
2 ) [j]q! [n− j]q!

(ρ2)n

j∑

s=0

qs(s−1)+ns

[
k

k − j + s

]

q

×
[
n− j + s

s

]

q

ρ2s
(
ρ2qn−j+s

)
j−s

.

iii)

∑

n,m≥0

tnsm

[n]q! [m]q!
Qn,m (x, y|ρ, q) =

fbN (x|t, q) fbN (y|s, q)
f2D(x, y|ρ, q)

∑

k≥0

ρk

[k]q!
Hk (x|t, q)Hk (y|s, q) ,

where function fbN is de�ned by (1.18). The above mentioned formulae are also true for
q = 1.

iv) ∀m ≥ 0 :

Qi,j (x, y|ρqm, q)
m−1∏

i=0

ω
(
x
√

1− q/2, y
√

1− q/2|ρqi
)

=(2.6)

(
ρ2
)
2m

m∑

k=0

(−1)k
[
m

k

]

q

q(
k
2) (1− q)k ρkQi+k,j+k (x, y|ρ, q) ,
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where polynomial ω is de�ned by (1.22). In particular we have:

n−1∏

j=0

ω
(
x
√

1− q/2, y
√

1− q/2|ρqj
)

=(2.7)

(
ρ2
)
2n

n∑

k=0

(−1)k
[
n

k

]

q

q(
k
2) (1− q)k ρkQk,k (x, y|ρ, q) ,

and

q(
n
2)ρn(1− q)nQn,n (x, y|ρ, q) =(2.8)

n∑

k=0

(−1)k q(
n−k

2 )

[
n

k

]

q

∏k−1
j=0 ω

(
x
√

1− q/2, y√1− q/2|ρqj
)

(ρ2)2k
,

with understanding that
∏k−1
j=0 for k = 0 is equal to 1.

Proof. Is shifted to section 4. �

Our main results follow in fact directly the results presented above.

2.4. Theorem. Either for |q| < 1;x, y ∈ S (q) ; |ρ| < 1 we have:
i)

Hi (x|q)Hj (y|q)
∏∞
k=0 ω

(
x
√

1− q/2, y√1− q/2|ρqk
)

(ρ2)∞

=

∞∑

k=0

(−1)k q(
k
2) ρk

[k]q!
Qi+k,j+k (x, y|ρ, q) .

In particular we get:
ii)

1/
∑

n≥0

ρn

[n]q!
Hn (x|q)Hn (y|q) =

∏∞
k=0 ω

(
x
√

1− q/2, y√1− q/2|ρqk
)

(ρ2)∞

=

∞∑

k=0

(−1)k q(
k
2) ρk

[k]q!
Qk,k (x, y|ρ, q) .(2.9)

The last formula is valid also for x, y ∈ R, q = 1 and |ρ| < 1/2.

Proof. To get i) we pass in (2.6) with m to in�nity noting by (2.3) and (1.20) that
Qn,m(x, y|0, q) = Hn (x|q)Hm (y|q). On the way we observe that limm→∞

[
m
k

]
q

= 1
(q)k

=

(1− q)−k 1
[k]q !

. As far as the case q = 1 is concerned denote by gN (x, y, ρ) density of the

bivariate Normal density with parameters σ1 = σ2 = 1, correlation coe�cient ρ. Then
notice that function exp(− 1

2
(x2 + y2))/gN (x, y, ρ) is square integrable on the plane with

respect to gN (x, y, ρ) if |ρ| < 1/2. �

3. Open problems and comments

3.1. Remark. The non-symmetric kernels constructed of bqH polynomials were given
in [18]. Formula ii) of Proposition 2.3 gives its new interpretation. Besides, recall that
these kernels were expressed using basic hypergeometric function 3φ2. Expansion on the
left hand side of Proposition 2.3ii) gives new outlook on the properties of this function.
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Notice also that for q = 1 we have η(x|t, 1) = exp(xt − t2

2
), Hn (x|t, 1) = Hn (x− t)

and

∑

n≥0

ρn

n!
Hn (x)Hn(y) = exp(

x2

2
− (x− ρy)2

2(1− ρ2)
),

hence generating function of polynomials Qi,j can be calculated explicitly.
Similarly for q = 0 we have η(x|t, 0) = 1

1−xt+t2 (characteristic function of the Cheby-

shev polynomials) and Hn (x|t, 0) = Un (x/2)− tUn−1 (x/2) (see e.g. [24]) hence also in
this case we can get explicit form of the characteristic function of polynomials Qi,j .

3.2. Remark. First of all notice that the left hand side of (2.9) is equal to 1/γ0,0 (x, y|ρ, q)
= fN (x|q) /fCN (x|y, ρ, q) and that it is a symmetric ( with respect to x and y) func-
tion. In [21] there was presented (formula 5.3) an expansion of this function involving
polynomials Pn and certain polynomials related to q−Hermite ones. The expansion was
non-symmetric for every partial sum. Thus we get another expansion of known important
special function.

3.3. Remark. Assertion i) of Proposition 2.3 states that polynomials Qn,m and Qi,j
are orthogonal with respect to two dimensional measure µ2D with the density given by
(2.5) if only the n + m 6= i + j. Let us de�ne space L =L2

(
S2 (q) ,B, µ2D

)
of functions

f : S2 (q) −→ R square integrable with respect to the measure µ2D. Do polynomials Qm,n
constitute a base of this space? It seems that yes, but not orthogonal. We can de�ne
subspaces of Λm = span {Qm,0, . . . , Q0,m} of polynomials that are linear combinations
of polynomials Qi,j such that i+ j = m. Subspaces Λm are mutually orthogonal. Besides

following argument that polynomials are dense in L we deduce that L =

∞⊕

n=0

Λn. What

is the orthogonal base of L? We have calculated covariances between polynomials Qi,j
from Λm following (2.3) and (1.21). Thus we can follow Gram-Schmidt orthogonalization
procedure within the spaces Λm. Is the union of orthogonal bases of Λm an orthogonal
base of L? Again it seems that yes. It would be interesting to �nd this base. Note that
orthogonal polynomials on the plane are not an easy extension of the one-dimesional
case. There are problems in de�ning them. For details see e.g. [14], [17], [16]. Recently
in [9] there was de�ned a family of two dimensional polynomials that are two dimensional
analogies of q−Hermite polynomials. Analogy is in the sense that many properties of the
one-dimesional q−Hermite polynomials are retained in its two dimensional version.

3.4. Remark. In 2001 Wünsche in [27] considered Hermite and Laguerre polynomials
on the plane. He has not however related his Hermite polynomials to any particular
measure on the plane. In particular he de�ned Hermite polynomials depending on pa-
rameters forming a 2x2 matrix. This matrix is however not connected in any way to the
covariance matrix of the measure with respect to which these polynomials are supposed
to be orthogonal.

On the other hand de�nition of polynomials Qi,j depends heavily on the measure with
the density f2D. For q = 1 following (2.3), we have

Qi,j (x, y|ρ, 1) =

j∑

k=0

(−1)k
(
j

k

)
Hj−k (y)Hk+i

(
x− ρy√

1− ρ2

)
/
(√

1− ρ2
)k+i

.

Hence polynomials Qi,j (x, y, ρ, 1) are in fact another (di�erent from that of Wünsche's)
family of two dimensional generalization of Hermite polynomials.
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4. Proofs

Proof of Proposition 2.3. i) We use (2.3), assume that i > m. We have:

∫

S2(q)

Qi,j (x, y|q)Qm,k (x, y|ρ, q) f2D (x, y|ρ, q) dxdy =

j∑

s=0

k∑

t=0

(−1)s+t q(
s
2)q(

t
2)

[
j

s

]

q

[
k

t

]

q

ρs+t
1

(ρ2)i+s (ρ2)m+t

×
∫

S(q)

Hj−s (y|q)Hk−t (y|q) fN (y|q)

×
∫

S(q)

Pi+s (x|y, ρ, q)Pm+t (x|y, ρ, q) fCN (x|y, ρ, q) dxdy =

(−1)i−m ρi−m
j∧k+m−i∑

s=0∨m−i
q(

s
2)+(i−m+s

2 )

[
j

s

]

q

[
k

i+ s−m

]

q

×

ρ2s
[i+ s]q!

(ρ2)i+s

∫

S(q)

Hj−s (y|q)Hk+m−i−s (y|q) fN (y|q) dy = 0,

if j − s 6= k +m− i− s i.e. if j + i 6= k +m.
Now for j + i = k +m and assuming that k ≥ j we get:

∫

S2(q)

Qn−j,j (x, y|q)Qn−k,k (x, y|ρ, q) f2D (x, y|ρ, q) dxdy =

j∑

s=0

k∑

t=0

(−1)s+t q(
s
2)q(

t
2)

[
j

s

]

q

[
k

t

]

q

ρs+t
1

(ρ2)n−j+s (ρ2)n−k+t

×
∫

S(q)

Hj−s (y|q)Hk−t (y|q) fN (y|q)

×
∫

S(q)

Pn−j+s (x|y, ρ, q)Pn−k+t (x|y, ρ, q) fCN (x|y, ρ, q) dxdy =

(−1)k−j ρk−j
j∑

s=0

q(
s
2)+(k−j+s

2 )

[
j

s

]

q

[
k

k − j + s

]

q

ρ2s
[n− j + s]q!

(ρ2)n−j+s

×
∫

S(q)

Hj−s (y|q)Hj−s (y|q) fN (y|q) dy

= (−1)k−j ρk−j
j∑

s=0

q(
s
2)+(k−j+s

2 )

[
j

s

]

q

[
k

k − j + s

]

q

ρ2s
[n− j + s]q!

(ρ2)n−j+s
[j − s]q!

= (−1)k−j
ρk−jq(

k−j
2 ) [j]q! [n− j]q!

(ρ2)n

j∑

s=0

qs(s−1)+ns

[
k

k − j + s

]

q

×
[
n− j + s

s

]

q

ρ2s
(
ρ2qn−j+s

)
j−s

we use here s(s− 1)/2 + (s+ n)(s− 1 + n)/2− s(s− 1)− n(n− 1)/2 = ns
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ii) We have

∑

i≥0,j≥0

sitj

[i]q! [j]q!
Qi,j (x, y|ρ, q) =

1

γ0,0 (x, y|ρ, q)
∑

i≥0,j≥0

tisj

[i]q! [j]q!

∑

n≥0

ρn

[n]q!
Hi+n (x|q)Hn+j (y|q)

=
∑

n≥0

ρn

[n]q!

∞∑

j=0

sj

[j]q!
Hn+j (y|q)

∑

i≥0

ti

[i]q!
Hn+i (x|q) .

Now we use Lemma 1.1 twice and get

∑

i≥0,j≥0

sitj

[i]q! [j]q!
Qi,j (x, y|ρ, q) =

ϕH(x|t, q)ϕH (y|s, q)
γ0,0(x, y|ρ, q)

∑

n≥0

ρn

[n]q!
Hn (x|t, q)Hn(y|s, q)

=
1

(ρ2)∞

∞∏

j=0

ω
(
x
√

1− q/2, y√1− q/2|ρqj
)

v
(
x
√

1− q/2|t√1− qqj
)
v
(
y
√

1− q/2|s√1− qqj
)

×
∑

n≥0

ρn

[n]q!
Hn (x|t, q)Hn(y|s, q).

iii) First we notice that from (1.3) it follows that for x, y ∈ S (q) ; ρ2 < 1,−1 < q ≤ 1 :

γi,j (x, y|ρqm, q) = Qi,j (x, y|ρqm, q)
(
ρ2q2m

)
∞∏∞

i=0 ω
(
x
√

1− q/2, y√1− q/2|ρqm+i
)

= Qi,j (x, y|ρqm, q)
∏m−1
i=0 ω

(
x
√

1− q/2, y√1− q/2|ρqi
)

(ρ2)2m
γ0,0 (x, y, ρ, q) ,

and also that γ0,0 (x, y|ρ, q) =
(ρ2)∞∏∞

i=0 ω(x
√
1−q/2,y√1−q/2|ρqi)

. Then we apply (2.1) to γi,j

above and then use (1.24) and cancel out γ0,0 on both sides of (2.1). Finally we observe
that on both sides we have polynomials hence one can extend the identity for all values
of the variables. To get other formula of this assertion we argue by induction checking
that the equality is true for n = 0. Then we put (2.7) into (2.8) and get:

n∑

k=0

(−1)k q(
n−k

2 )

[
n

k

]

q

∏k−1
i=0 ω

(
x
√

1− q/2, y√1− q/2|ρqi
)

(ρ2)2k
=

n∑

k=0

(−1)k q(
n−k

2 )

[
n

k

]

q

k∑

j=0

(−1)j
[
k

j

]

q

q(
j
2)ρjQj,j (x, y|ρ, q) =

n∑

j=0

(−1)jq(
j
2)

[
n

j

]

q

ρjQj,j (x, y|ρ, q)
n∑

k=j

(−1)k q(
n−k

2 )

[
n− j
k − j

]

q

=

n∑

j=0

(−1)jq(
j
2)

[
n

j

]

q

ρjQj,j (x, y|ρ, q)
n−j∑

m=0

(−1)m+j q(
m
2 )

[
n− j
m

]

q

=

q(
n
2)ρn (1− q)nQn,n (x, y|ρ, q)

since ∀n ≥ 1 :
∑n
i=0(−1)iq(

i
2)
[
n
i

]
q

= 0. �
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Abstract

In this study, the explicit estimators of the model parameters in one-
way classi�cation AR(1) model with gamma innovations are derived
by using modi�ed maximum likelihood (MML) methodology. We also
propose a new test statistic for testing linear contrasts. Monte Carlo
simulation results show that the MML estimators have higher e�cien-
cies than the traditional least squares (LS) estimators and the proposed
test has much better power and robustness properties than the normal-
theory test.
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1. Introduction

Linear contrasts are widely used to make comparisons among the treatment means of
interest. The usage of them require the independence assumption for the observations in
each treatment. However, in numerous situations, the present state of a variable in each
treatment is in�uenced by its past and this gives rise to autocorrelated time series struc-
ture. For instance in the agricultural and the biological sciences, the observations that
are recorded over some time-space coordinate are extremely common, see, for example
[7]. Some of the reasons for the lack of independence are (see [15]):

• Biased measurements,
• A poor allocation of treatments to experimental units,
• Adjacent experimental units or plots in a �eld.
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Another standard assumption is that the error terms are i.i.d (identically and indepen-
dently distributed) as normal N(µ, σ2). From the practical point of view, this assumption
is also not realistic since nonnormal error distributions are more prevalent. There exists
huge literature on the subject of nonnormal error distributions, see, for example, [8], [11],
[5], [20], [31].

The normal theory test statistics for testing linear contrasts have low e�ciencies when
the normality assumption is not satis�ed, see [18]. However, they can still be used for
the situations where the normality assumption is violated to a slight or moderate degree.
On the other hand, if the independence assumption is not met, traditional test statistics
do not work well and give misleading results even if the observations exhibit low levels
of correlation over time, see [16] and [12].

In recent years, the MML method has been applied to various time series models by
Tiku and his colleagues. [21] developed a unit root test for the AR(1) model. The �rst
order autoregressive model, AR(1), has been considered in [22] with asymmetric innova-
tions of the gamma type. [24] extended the results of [22] to the symmetric non-normal
innovations. [25] gave some engineering applications of the AR(1) models with nonnormal
errors. [23] and [1] considered the simple regression model with �rst-order autoregressive
errors when the error distribution is symmetric and asymmetric nonnormal, respectively.
[26] and [3] extended this methodology to various independent sources of information
and to multiple autoregressive model under non-normality; respectively. [31] extended
the results of [23] to the generalized logistic distribution family representing very wide
skew distributions ranging from highly right skewed to the highly left skewed.

Skew distributions are observed frequently in the context of experimental design; see
for example, [18] and [17]. In their real life applications, they observed that the error
terms are distributed as Generalized Logistic(b,σ) with shape parameters b = 1, 2, 6
and Weibull(p,σ) with shape parameter p = 4; respectively. Thus, positively skewed
distributions �tted very well to the error terms. Therefore, di�erent than the earlier
studies, we assume that the error terms have Gamma which is another widely used and
well known positive skewed distribution. Besides, we assume that the observations in
each treatment are �rst order autocorrelated. This is the �rst study, dealing with both
autocorrelation and non-normality in experimental design as far as we know. Thus, we
aim to �ll this gap in the literature.

We derive the estimators of the model parameters in this one-way classi�cation model
by using MML methodology. The methodology was �rst initiated by [19]. We also
propose a new test statistic based on these MML estimators for testing linear contrasts
and show that our solutions are much more e�cient than the traditional normal-theory
solutions.

The methodology developed in this paper can be extended to other designs, time
series models (e.g. factorial designs AR(2) model) and any location-scale distribution
(e.g., long-tailed symmetric and short-tailed symmetric distributions).

2. One-way classi�cation AR(1) model

Consider the following one-way classi�cation model with �rst-order autoregressive
errors:

yi,j − φyi,j−1 =µi + ei,j , − 1 < φ < 1; −∞ < µi <∞;

i = 1, . . . , a; j = 1, . . . , n(2.1)
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or alternatively reparametrized as

yi,j − φyi,j−1 =µ+ τi + ei,j , − 1 < φ < 1;−∞ < τi <∞;

−∞ < µ <∞; i = 1, . . . , a; j = 1, . . . , n(2.2)

where yi,j is the jth observation in the ith treatment; µ is the constant representing
the overall mean; µi is the mean of the ith treatment; τi is the ith treatment e�ect and
ei,j is the error term.

Without loss of generality, we assume that
∑
τi = 0. Besides assume that ei,j are iid

and have the gamma distribution

f(e) =
1

σkΓ(k)
exp(− e

σ
)ek−1; 0 < e <∞(2.3)

where k is the shape parameter and is assumed to be known. Conditional on yi,0, the
likelihood function ignoring the constant term which has no e�ect on the estimators is

L =
1

σn
e
∑a

i=1

∑n
j=1 zi,j

a∏

i=1

n∏

j=1

zk−1
i,j(2.4)

where zi,j = ei,j/σ = (yi,j − φyi,j−1 − µ− τi)/σ.
The corresponding likelihood equations can be written as

∂lnL

∂µ
=
N

σ
− (k − 1)

σ

a∑

i=1

n∑

j=1

g(zi,j) = 0

∂lnL

∂τi
=
n

σ
− (k − 1)

σ

n∑

j=1

g(zi,j) = 0

∂lnL

∂φ
=

1

σ

a∑

i=1

n∑

j=1

yi,j−1 − (k − 1)

σ

a∑

i=1

n∑

j=1

yi,j−1g(zi,j) = 0

∂lnL

∂σ
= −N

σ
+

1

σ

a∑

i=1

n∑

j=1

zi,j − (k − 1)

σ

a∑

i=1

n∑

j=1

zi,jg(zi,j) = 0(2.5)

where g(z) = 1/z and N = an : total number of observations.
These equations are in terms of 1/zi,j and have no explicit solutions. Therefore they

have to be solved by iteration which might be problematic especially when the data
contains outliers, see, for example, [14], [27] and [28]. We, therefore, utilize the method
of modi�ed likelihood estimation which captures the beauty of maximum likelihood but
alleviates its computational di�culties, see [20].

3. The MML estimators

The �rst step of obtaining the MML estimators is to express the likelihood equations
(2.5) in terms of ordered zi,(j)'s (i = 1, . . . , a; j = 1, . . . , n), since the complete sums are
invariant to ordering. The second step is to linearize the term g(zi,(j)) = 1/zi,(j) around
t(j) by the use of the �rst two terms of a Taylor series expansion, since for large n, zi,(j)
is close to its expected value t(j) = E(zi,(j)). Thus,

g(zi,(j)) ∼= g(t(j)) + (zi,(j) − t(j))
{
∂g(z)

∂z

}

z=t(j)

= αj − βjzi,(j)(3.1)
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where αj = 2/t(j) and βj = 1/t2(j). Although the exact values of the t(j) are avail-
able, for convenience, we use their approximate values generated from the equation

1
Γ(k)

∫ t(j)
0 e−zzk−1dz = j

n+1
, 1 ≤ j ≤ n for each treatment (i.e., for i = 1, . . . , a).

Incorporating the linear approximation 3.1 into the likelihood equations 2.5 yields the
modi�ed likelihood equations. Then the MML estimators are obtained by solving these
modi�ed likelihood equations as:

µ̂ = µ̂.[.] +
∆

m
σ̂, τ̂i = µ̂i[.] − µ̂.[.],

φ̂ = K +Dσ̂, σ̂ =
B +

√
B2 + 4NC

2
√
N(N − a− 1)

(3.2)

where

µ̂i[.] =

∑n
j=1 βj(yi,[j] − φyi,[j]−1)

m
, µ̂.[.] =

∑a
i=1

∑n
j=1 βj(yi,[j] − φyi,[j]−1)

am
,

∆j =
1

k − 1
− αj , ∆ =

n∑

j=1

∆j , m =

n∑

j=1

βj ,

K =

∑a
i=1

∑n
j=1 βjyi,[j]yi,[j]−1 − 1

m

∑a
i=1(

∑n
j=1 βjyi,[j])(

∑n
j=1 βjyi,[j]−1)

∑a
i=1

∑n
j=1 βjy

2
i,[j]−1 − 1

m

∑a
i=1(

∑n
j=1 βjyi,[j]−1)2

,

D =

∑a
i=1

∑n
j=1(∆j − βj ∆

m
)yi,[j]−1∑a

i=1

∑n
j=1 βjy

2
i,[j]−1 − 1

m

∑a
i=1(

∑n
j=1 βjyi,[j]−1)2

,

B = (k − 1)

a∑

i=1

n∑

j=1

(yi,[j] − φyi,[j]−1 − µ̂i[.])∆j , and

C = (k − 1)

a∑

i=1

n∑

j=1

βj(yi,[j] − φyi,[j]−1 − µ̂i[.])2.(3.3)

It is clear that the MML estimators have closed forms. It should also be noted that
they have exactly the same forms as other MML estimators irrespective of the underlying
distribution besides having the invariance property, see [20]. The MML estimators are
known to be asymptotically fully e�cient, i.e. they are unbiased and minimum variance
bounds (MVB) estimators, see [4] and [29]. For small sample sizes, they have very little
or no bias and the true variances of the MML estimators are very close to minimum
variance bounds, see [28].

For the computation of the MML estimators µ̂, τ̂i, φ̂ and σ̂, �rst the ordered variates
of zi,j = ei,j/σ = (yi,j − φyi,j−1 − µ − τi)/σ (i = 1, . . . , a; j = 1, . . . , n) has to be
obtained. Since the ordering of zi,j only depends on φ (µ and τi are additive constants

and σ is positive), it is done by using the LS estimate φ̂LS of φ as an initial estimate.
Then using the concomitants (yi,[j], yi,[j]−1) corresponding to ordered variates wi,(j) =

yi,[j] − φ̂LSyi,[j]−1, the MML estimates µ̂, τ̂i, φ̂ and σ̂ are calculated from 3.2. A second

iteration is carried out by replacing φ̂LS with φ̂ in the ordering of wi,(j) variates and new

µ̂, τ̂i, φ̂ and σ̂ values are calculated. This is repeated till the estimates stabilize su�ciently
enough. In our computations, two iterations were enough. Actually, in literature based
on MML, it can be seen that at most three iterations are enough.
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4. E�ciency of the MML estimators

In practice the LS estimators are widely used which will be shown that they are
considerably less e�cient than the MML estimators. Relative e�ciencies (RE) of the LS
estimators de�ned as

RE = 100× (variance of MMLE)/(variance of LSE)(4.1)

are calculated by simulation based on [100000/n] Monte Carlo runs. Although much
other values are tried, the simulation results performed for sample sizes n = 30, 60 and
120 with the shape parameter taking the values k = 2, 3, 5 and 10 for φ = 0.0, 0.5 and
0.9 are given in Table 1. It must be noted that the values for other φ values including
negative ones yield the similar results so that they are not reported.

The model parameters µi, τi and σ are set as 0, 0 and 1 without loss of generality.
Realize that for φ = 0.0, the model 2.1 turns to be the usual one-way classi�cation where
the errors are distributed as gamma rather than normal. In fact, this is by its own a
contribution since the model parameters in one-way classi�cation model have not been
estimated with gamma distributions so far.

The LS estimators of the model parameters are given by

µ̃i =

∑n
j=1(yi,j − φyi,j−1)

n
− kσ̃, µ̃ =

∑a
i=1

∑n
j=1(yi,j − φyi,j−1

an
− kσ̃,

τ̃i = µ̃i − µ̃, φ̃ =

∑a
i=1

∑n
j=1 yi,jyi,j−1 − 1

n

∑a
i=1(

∑n
j=1 yi,j)(

∑n
j=1 yi,j−1)

∑a
i=1

∑n
j=1 y

2
i,j−1 − 1

n

∑a
i=1(

∑n
j=1 yi,j−1)2

,

σ̃2 =

∑a
i=1

∑n
j=1((yi,j − φyi,j−1)− µ̃i)2

(N − a− 1)k
.(4.2)

Note that the LS estimators µ̃ and σ̃2 are corrected for bias so that they become com-

parable with MML estimators. Besides, the initial values yi,0 are taken as ei,0/
√

1− φ2,
which is, in fact, Model II of [30].

It can be seen from Table 1 that the MML estimators are more e�cient than the LS
estimators especially for the small values of the shape parameter k. It should be noted
that the relative e�ciency of the LS estimators decrease as the sample size n increase.
This is another result of interest.
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Table 1. Simulated means (1), n×variances (2) and the relative e�-
ciencies (RE) of the LS and MML estimators.

n k = 2.0, φ = 0.0
∼
µi µ̂i RE

∼
τ i τ̂i RE

∼
φ φ̂ RE

∼
σ σ̂ RE

30 (1) 0.073 0.160
30

0.001 0.001
28

-0.031 -0.009
39

0.991 0.973
53

(2) 0.125 0.038 1.444 0.404 0.309 0.121 0.426 0.227

60 (1) 0.031 0.087
24

0.000 0.000
25

-0.015 -0.002
30

0.997 0.982
51

(2) 0.060 0.015 1.346 0.334 0.317 0.096 0.408 0.210

120 (1) 0.019 0.050
19

-0.001 -0.001
21

-0.008 0.000
21

1.000 0.988
45

(2) 0.032 0.006 1.289 0.269 0.344 0.070 0.424 0.193

k = 2.0, φ = 0.5
30 (1) 0.242 0.229

32
0.008 0.004

27
0.441 0.478

38
0.993 0.972

52
(2) 0.229 0.073 1.710 0.455 0.262 0.099 0.417 0.215

60 (1) 0.109 0.109
26

0.004 0.002
22

0.473 0.493
30

0.999 0.983
50

(2) 0.105 0.027 1.500 0.326 0.239 0.071 0.424 0.213

120 (1) 0.058 0.063
20

-0.001 0.003
21

0.485 0.496
24

0.999 0.987
48

(2) 0.054 0.011 1.513 0.317 0.255 0.060 0.405 0.196

k = 2.0, φ = 0.9
30 (1) 0.414 0.327

33
-0.008 -0.004

27
0.875 0.888

35
0.990 0.970

53
(2) 0.413 0.136 1.974 0.529 0.039 0.014 0.410 0.218

60 (1) 0.289 0.190
28

0.002 0.001
22

0.884 0.894
28

0.997 0.981
49

(2) 0.218 0.061 1.933 0.415 0.036 0.010 0.415 0.204

120 (1) 0.230 0.123
21

-0.003 0.000
19

0.888 0.896
22

0.999 0.987
48

(2) 0.172 0.036 1.690 0.325 0.052 0.011 0.463 0.221

k = 3.0, φ = 0.0
30 (1) 0.115 0.183

48
-0.005 -0.001

47
-0.032 -0.013

56
0.993 0.978

60
(2) 0.237 0.114 2.178 1.020 0.318 0.177 0.344 0.205

60 (1) 0.055 0.093
43

-0.004 -0.003
42

-0.014 -0.004
51

0.998 0.986
57

(2) 0.122 0.052 2.040 0.854 0.345 0.175 0.337 0.192

120 (1) 0.031 0.055
39

0.006 0.002
40

-0.009 -0.002
45

1.000 0.991
54

(2) 0.060 0.024 2.106 0.841 0.330 0.148 0.335 0.180

k = 3.0, φ = 0.5
30 (1) 0.377 0.333

49
0.003 0.003

43
0.440 0.468

53
0.991 0.978

57
(2) 0.471 0.229 2.599 1.127 0.258 0.137 0.345 0.198

60 (1) 0.178 0.153
41

-0.003 0.000
41

0.472 0.488
43

0.995 0.985
56

(2) 0.231 0.095 2.230 0.911 0.266 0.116 0.331 0.186

120 (1) 0.093 0.083
40

0.001 0.000
38

0.486 0.495
42

0.997 0.989
53

(2) 0.107 0.043 2.001 0.767 0.261 0.109 0.363 0.192

k = 3.0, φ = 0.9
30 (1) 0.459 0.411

53
-0.006 0.000

44
0.882 0.889

53
0.992 0.977

60
(2) 0.611 0.323 2.652 1.176 0.025 0.013 0.321 0.192

60 (1) 0.359 0.269
43

0.000 -0.002
41

0.887 0.893
42

0.995 0.983
55

(2) 0.395 0.169 2.463 1.004 0.027 0.012 0.317 0.173

120 (1) 0.262 0.189
42

0.010 0.007
40

0.891 0.895
41

1.001 0.993
54

(2) 0.257 0.109 2.431 0.980 0.034 0.014 0.336 0.180

k = 5.0, φ = 0.0
30 (1) 0.214 0.269

67
0.002 0.003

65
-0.033 -0.020

72
0.994 0.986

70
(2) 0.582 0.388 3.685 2.393 0.333 0.241 0.273 0.192

60 (1) 0.085 0.122
62

-0.001 -0.002
64

-0.013 -0.006
66

0.996 0.991
66

(2) 0.291 0.181 3.401 2.175 0.337 0.221 0.263 0.173

120 (1) 0.063 0.082
61

-0.004 -0.001
61

-0.011 -0.006
64

1.001 0.996
65

(2) 0.136 0.083 3.192 1.952 0.302 0.193 0.262 0.171

k = 5.0, φ = 0.5
30 (1) 0.550 0.515

69
-0.009 -0.008

64
0.446 0.463

72
0.995 0.985

69
(2) 1.157 0.795 4.091 2.618 0.253 0.182 0.274 0.190

60 (1) 0.320 0.299
66

0.001 0.002
63

0.468 0.478
67

0.998 0.991
64

(2) 0.569 0.373 3.690 2.340 0.250 0.167 0.295 0.188

120 (1) 0.144 0.138
61

-0.004 -0.001
59

0.485 0.491
65

1.000 0.995
63

(2) 0.262 0.160 3.417 2.029 0.232 0.152 0.263 0.165

k = 5.0, φ = 0.9
30 (1) 0.503 0.510

68
0.008 0.005

63
0.888 0.891

69
0.991 0.984

67
(2) 1.058 0.722 3.973 2.518 0.015 0.011 0.268 0.181

60 (1) 0.384 0.368
65

0.005 -0.002
62

0.892 0.894
67

0.999 0.991
63

(2) 0.727 0.470 3.888 2.417 0.017 0.012 0.274 0.174

120 (1) 0.267 0.255
62

-0.016 -0.007
60

0.894 0.896
65

1.001 0.996
62

(2) 0.509 0.314 3.828 2.302 0.023 0.015 0.269 0.168
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Table 1.(cont.ed.)
k = 10.0, φ = 0.0

∼
µi µ̂i RE

∼
τ i τ̂i RE

∼
φ φ̂ RE

∼
σ σ̂ RE

30 (1) 0.420 0.469
82

0.002 -0.001
81

-0.036 -0.029
87

0.994 0.991
81

(2) 2.082 1.711 6.969 5.624 0.326 0.284 0.223 0.181

60 (1) 0.178 0.215
81

0.001 0.000
80

-0.015 -0.011
82

0.997 0.994
78

(2) 0.903 0.732 7.191 5.752 0.320 0.263 0.223 0.173

120 (1) 0.105 0.138
76

0.005 0.005
80

-0.008 -0.006
80

0.998 0.995
77

(2) 0.491 0.375 6.897 5.514 0.318 0.254 0.221 0.170

k = 10.0, φ = 0.5
30 (1) 1.095 1.069

84
0.011 0.013

81
0.448 0.456

86
0.995 0.991

82
(2) 3.973 3.322 8.117 6.609 0.223 0.191 0.222 0.181

60 (1) 0.527 0.522
80

-0.012 -0.012
80

0.474 0.479
83

0.999 0.995
81

(2) 2.103 1.684 7.936 6.369 0.234 0.191 0.228 0.184

120 (1) 0.292 0.287
79

-0.010 -0.005
78

0.486 0.489
81

0.997 0.995
75

(2) 0.948 0.753 7.838 6.137 0.227 0.185 0.223 0.167

k = 10.0, φ = 0.9
30 (1) 0.570 0.636

86
0.008 0.009

82
0.893 0.894

86
0.995 0.990

82
(2) 2.334 2.005 7.448 6.068 0.008 0.007 0.210 0.172

60 (1) 0.441 0.476
81

-0.001 0.001
80

0.895 0.896
82

0.995 0.992
78

(2) 1.573 1.275 7.433 5.924 0.009 0.008 0.218 0.170

120 (1) 0.368 0.385
75

0.012 0.012
79

0.896 0.896
78

1.000 0.997
76

(2) 1.223 0.920 7.554 6.001 0.014 0.011 0.213 0.161

5. Power and robustness properties of the proposed test

For testing the null hypothesis H0 :
∑a
i=1 liτi =

∑a
i=1 liµi = 0 (µi = µ+τi);

∑a
i=1 li =

0, traditionally, where li (1 ≤ i ≤ a) are constant coe�cients of a linear contrast; we use
the following test statistics based on the LS estimators given in 4.2

t =

∑a
i=1 liµ̃i√∑a
i=1 l

2
i
σ̃2

n

.(5.1)

However, in this study, we propose the following test statistics based on MML esti-
mators

t∗ =

∑a
i=1 liµ̂i√∑a

i=1 l
2
i

σ̂2

m(k−1)

,(5.2)

where the large values of t∗ lead to the rejection of H0. The null distribution of t∗ is
asymptotically normal N(0,1) due to the following lemmas:

5.1. Lemma. For a given φ (σ known), the asymptotic distribution of µ̂i(φ, σ) = µ̂i. +
(∆/m)σ which is the minimum variance bound estimator of µi = µ + τi (1 ≤ i ≤ a) is
normal with variance V {µ̂i(φ, σ)} ∼= σ2/m(k − 1).

Proof. Proof of the Lemma 5.1. The result follows from the fact that asymptotically
∂lnL∗/∂µi is equivalent to ∂lnL/∂µi [29] and assumes the form

∂lnL∗

∂µi
=
m(k − 1)

σ2
(µ̂i(φ, σ)− µi)

[10]. The normality follows from the fact that E(∂lnL∗/∂µri ) = 0 for all r ≥ 3. �

5.2. Lemma. For a given φ(µ known),the asymptotic distribution of Nσ̂2(φ, µ)/σ2 is
chi-square with N = na degrees of freedom.
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Proof. Proof of the Lemma 5.2. Let

B0 = (k − 1)

a∑

i=1

n∑

j=1

(yi,(j) − φyi,(j−1) − µi)∆j and

C0 = (k − 1)

a∑

i=1

n∑

j=1

βj(yi,(j) − φyi,(j−1) − µi)2.

Since B0/
√
nC0

∼= 0, αj and βj are bounded,

∂lnL

∂σ
∼= ∂lnL∗

∂σ

= −N
σ3

(σ − B0 +
√
B2

0 + 4NC0

N
)(σ − B0 −

√
B2

0 + 4NC0

N
)

∼= N

σ3
(
C0

N
− σ2).

The result then follows from the values of E(∂rlnL∗/∂σr) as in [20]. �

5.3. Lemma. Since σ̂ converges to σ as n tends to in�nity, the asymptotic distribution

of
√
n/v11(µ̂(φ, σ̂) − µ)/σ̂ is N(0,1) where v11 is the �rst element in the asymptotic

covariance matrix.

Proof. Proof of the Lemma 5.3. This follows from the well-known Slutsky's theorem.
See [20]. �

Thus, when we have a linear contrast of 'a' MML estimators and σ̂2 is the pooled MML
estimator of σ2, the [2] conditions are satis�ed and

∑a
i=1 liµi and σ̂

2 are asymptotically
independently distributed resulting the asymptotic distribution of√
m(k − 1)

∑a
i=1 liµ̂i/(σ̂

√∑a
i=1 l

2
i ) being N(0,1).

Some of the simulated values of the probabilities P (t∗ ≥ z0.05 = 1.645|H0) for di�erent
sample sizes are given in Table 2.

Table 2. Values of the type I error of the t∗ test; α = 0.050.

k = 2.0 k = 3.0 k = 5.0 k = 10.0 k = 15.0
n φ = 0.0
50 0.030 0.042 0.046 0.046 0.048
100 0.032 0.053 0.052 0.055 0.051
150 0.032 0.042 0.054 0.054 0.053
200 0.032 0.048 0.050 0.056 0.046

φ = 0.4
50 0.034 0.047 0.054 0.058 0.048
100 0.030 0.045 0.047 0.053 0.040
150 0.030 0.041 0.053 0.051 0.056
200 0.036 0.046 0.054 0.052 0.040

φ = 0.8
50 0.044 0.057 0.053 0.059 0.052
100 0.033 0.050 0.054 0.052 0.043
150 0.039 0.048 0.047 0.047 0.053
200 0.030 0.046 0.044 0.056 0.048

It can be seen that the normal distribution provides satisfactory approximations to
the percentage points. To have an idea about the power of the two tests given in 5.1 and
5.2, the simulated values for n = 100 where l1 = 1, l2 = −2 and l3 = 1 for di�erent k
and φ values are reported in Table 3. We carried out simulations for several other k, n
and li values but did not report since they give the similar results.

The values of power given in Table 3 are obtained by adding a constant d to the ob-
servations in the �rst and the third treatments and subtracting 2d from the observations
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Table 3. Values of the power of the t∗ and t tests; n = 100.

k = 2.0 k = 3.0 k = 5.0 k = 10.0 k = 15.0
d t∗ t t∗ t t∗ t t∗ t t∗ t

φ = 0.0
0.000 0.035 0.040 0.035 0.044 0.034 0.041 0.044 0.066 0.056 0.065
0.013 0.120 0.091 0.100 0.103 0.094 0.088 0.100 0.093 0.088 0.086
0.025 0.304 0.175 0.232 0.166 0.170 0.140 0.152 0.153 0.135 0.137
0.038 0.589 0.257 0.382 0.234 0.332 0.277 0.259 0.239 0.257 0.244
0.050 0.774 0.331 0.583 0.347 0.469 0.356 0.378 0.330 0.357 0.321
0.063 0.920 0.467 0.735 0.471 0.600 0.487 0.540 0.468 0.473 0.437
0.075 0.966 0.591 0.866 0.589 0.759 0.630 0.658 0.589 0.606 0.557
0.088 0.993 0.704 0.929 0.716 0.860 0.698 0.772 0.703 0.723 0.683
0.100 0.999 0.795 0.979 0.787 0.920 0.780 0.865 0.785 0.839 0.789
0.113 1.000 0.865 0.994 0.888 0.963 0.874 0.906 0.864 0.890 0.856

φ = 0.4
0.000 0.026 0.052 0.035 0.048 0.045 0.059 0.040 0.056 0.048 0.057
0.013 0.082 0.090 0.110 0.113 0.084 0.077 0.067 0.067 0.085 0.078
0.025 0.225 0.130 0.189 0.139 0.160 0.130 0.166 0.164 0.159 0.154
0.038 0.383 0.188 0.322 0.220 0.276 0.223 0.258 0.237 0.264 0.245
0.050 0.623 0.267 0.487 0.322 0.404 0.306 0.372 0.332 0.363 0.338
0.063 0.816 0.368 0.613 0.373 0.549 0.427 0.522 0.441 0.498 0.458
0.075 0.888 0.474 0.758 0.483 0.685 0.520 0.605 0.541 0.609 0.584
0.088 0.960 0.543 0.869 0.594 0.802 0.611 0.752 0.681 0.708 0.676
0.100 0.981 0.607 0.935 0.701 0.874 0.739 0.833 0.768 0.816 0.771
0.113 0.996 0.726 0.967 0.769 0.927 0.781 0.906 0.857 0.894 0.866

φ = 0.8
0.000 0.035 0.054 0.042 0.058 0.040 0.053 0.044 0.043 0.051 0.049
0.013 0.124 0.086 0.125 0.094 0.118 0.103 0.133 0.105 0.115 0.102
0.025 0.357 0.163 0.308 0.210 0.265 0.214 0.246 0.223 0.239 0.223
0.038 0.620 0.271 0.508 0.294 0.457 0.348 0.438 0.380 0.410 0.392
0.050 0.848 0.405 0.705 0.461 0.638 0.499 0.603 0.541 0.621 0.564
0.063 0.951 0.543 0.874 0.580 0.792 0.643 0.777 0.690 0.793 0.739
0.075 0.988 0.685 0.956 0.757 0.920 0.788 0.904 0.830 0.902 0.849
0.088 1.000 0.768 0.990 0.849 0.963 0.879 0.951 0.919 0.955 0.931
0.110 1.000 0.858 0.998 0.927 0.993 0.944 0.988 0.964 0.980 0.969
0.113 1.000 0.913 0.998 0.947 0.997 0.973 0.998 0.987 0.994 0.988

in the second treatment. The results show that t∗ test is much more powerful than the
classical t test.

In practice, we may be in error when we assume that our data follow a particular
distribution, since the shape parameters might be misspeci�ed or the data might contain
outliers, or be contaminated. When these situations arise, the distribution of the test
statistic may di�er from that expected. Therefore, the accurate estimates of the proba-
bility of type I and type II errors (i.e. power of the test) will not be obtained. When the
underlying assumptions are violated, robust test statistics are preferred to the traditional
test statistics. A test is called robust if its type I error is never substantially higher than
a pre-assigned value for plausible alternatives to an assumed model (Criterion Robust-
ness) and if its power is high (Inference Robustness). It is clear that robustness is very
desirable property for the hypothesis testing procedures. Table 4 summarizes the results
of simulations for k = 3, φ = 0.4 and n = 100 when we assume that the true model is
Gamma(3, σ). For this simulation study, the plausible alternatives used are as follows:

(1) Gamma(2,σ),
(2) Gamma(4,σ),
(3) Outlier model: (n − r) observations come from Gamma(3,σ) but r observation

(we do not know which one) comes from Gamma(3,2σ); r = [0.5 + 0.1n],
(4) Mixture model: 0.90Gamma(3,σ) + 0.10Gamma(3,2σ),
(5) Contamination model: 0.90Gamma(3,σ) + 0.10Gamma(5,σ)



1752

Table 4. Power of the t∗ and t tests for alternatives to Gamma(3,σ);
k = 3, n = 100 and φ = 0.4.

Model (1) Model (2) Model (3) Moel (4) Model (5)
d t∗ t t∗ t t∗ t t∗ t t∗ t
0.00 0.042 0.058 0.042 0.052 0.030 0.015 0.046 0.048 0.043 0.051
0.02 0.127 0.090 0.163 0.122 0.111 0.026 0.156 0.093 0.131 0.100
0.04 0.335 0.213 0.339 0.232 0.314 0.082 0.368 0.212 0.303 0.163
0.06 0.608 0.341 0.619 0.381 0.569 0.161 0.668 0.334 0.544 0.239
0.08 0.811 0.539 0.809 0.519 0.808 0.303 0.872 0.490 0.739 0.350
0.10 0.946 0.704 0.936 0.685 0.947 0.479 0.970 0.648 0.899 0.489
0.12 0.987 0.819 0.985 0.823 0.981 0.628 0.992 0.786 0.964 0.603

The values are obtained by adding a constant d to the observations in the �rst and
the third treatments and subtracting 2d from the observations in the second treatment
as in e�ciency analysis. From Table 4, we see that the power of the t∗ test is higher than
the t test for all sample models given above. For sample models, except Model (3), in
fact, the t∗ test has a double advantage: not only has it much smaller type I error but
also has higher power. Similar results are obtained for other φ values.

6. Determination of the shape parameter

It is known that when location, scale and shape parameters are to be estimated, maxi-
mum likelihood method is doubtful unless large samples (n > 250 or so) are available; see
[6]. Thus, one should consider estimating location, scale or location and shape parame-
ters when the sample size is small which is the case for experimental design. Therefore,
in this study, it is assumed that the shape parameter k in 2.3 is known. Actually, an
assumption of known shape parameter is found to be quite reasonable for many real-life
problems; see for example, [9]. See also [13] for a better understanding of the importance
of a given shape parameter.

However, in practice, shape parameter is also unknown. A plausible value for it can be
identi�ed by using Q-Q plots, goodness-of-�t tests, or by matching (approximately) the
sample skewness and kurtosis with the corresponding values of the distribution. Also it
can be determined by trying a series of values of this parameter as in [24]. The one that
maximizes the likelihood function is the required estimate. Due to the intrinsic robustness
of MMLE shown in section 5, this value will yield essentially the same estimates and
standard errors for plausible alternatives.

7. Conclusion

In this study, we proposed a new test statistic for testing the assumed values of linear
contrasts in one-way classi�cation AR(1) model. We believe that the results of this study
will be very useful for researchers and practitioners. Since all the procedures related
with linear contrasts are based on the assumption of normality, homogeneity of variances
and independence of error terms. There is a huge literature about nonnormality and
heterogeneity of variances. However, there is no too much work when the independence
assumption of error terms is not satis�ed. Dependency is tried to be prevented at the
design stage by randomization and there is a gap about how to deal with it, if it exists.
This paper �lls this gap not only by dealing with dependency but also with non-normality.
The proposed test directly use the original data rather than the transformed data and is
straightforward both algebraically and computationally.

Besides it has nice properties like e�ciency and being robust to plausible deviations
from the assumed model, i.e. not much a�ected from the outliers, contamination or the
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misspesi�cation of the shape parameter. The robustness of the test is due to the half-
umbrella ordering of the βj coe�cients, i.e. they decrease in the direction of the long
tail(s). Thus, the extreme observations in the direction of the long tail(s) automatically
receive small weights. That is instrumental to achieve robustness; see [8] and [20].
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Abstract

In this paper, the concepts of set-valued homomorphism and strong set-
valued homomorphism of a hyperlattice are introduced. The notions
of generalized lower and upper approximation operators constructed
by means of a set-valued mapping are provided. We also propose the
notions of generalized lower and upper approximations with respect to
a hyperideal of a hyperlattice which is an extended notion of rough
hyperideal in a hyperlattice and discuss some signi�ciant properties of
them.
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1. Introduction

The theory of algebraic hyperstructures is a well-established branch of classical al-
gebraic theory which were initiated by Marty [15]. In a classical algebraic structure,
the composition of two elements is an element while in an algebraic hyperstructure the
composition of two elements is a set. Hundreds of papers and several books have been
written on hyperstructure theory, see for instance [5,6]. Hyperlattices were �rst studied
by Konstantinidou and Mittas [18]. Since the concept of hyperlattice is a generaliza-
tion of the concept of lattice, hyperlattice theory was studied by Konstantinidou [19-21],
Ashra� [3], Rahnamai-Barghi [29-30] Guo and Xin [14], Han and Zhao [12], Zhao and
Han [37].

Rough set theory was proposed by Pawlak [26]; see also [27-28]. The theory of rough
sets is an extension of set theory, in which a subset of a universe is described by a pair of
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ordinary sets called the lower and upper approximations. A key concept in Pawlak rough
set model is the equivalence relation. The equivalence classes are the building blocks for
the construction of the lower and upper approximations. However, the requirement of an
equivalence relation in Pawlak rough set model seems to be a very restrictive condition
that may limit the applications of rough set models. Thus, one of the main directions
of research in rough set theory is naturally the generalization of Pawlak rough set ap-
proximations. For instance, the notion of approximations are extended to general binary
relations, coverings, completely distributive lattices, fuzzy lattices and Boolean algebras.
This research soon led to a natural question concerning the possible connection between
rough sets and algebraic systems.

In [22], Kuroki introduced a rough ideal in a semigroup. Kuroki and Wang [23] pre-
sented some properties of the lower and upper approximations with respect to normal
subgroups. Davvaz [8] investigated the relationship between rough sets and ring theory
by considering a ring as a universal set and introducing the concepts of rough subrings
and rough ideals with respect to an ideal of a ring. Kazanc� and Davvaz [16] introduced
the notions of rough prime (primary) ideals and rough fuzzy prime (primary) ideals in
a ring and presented some properties of such ideals. Rough semigroups, rough modules,
rough lattices, rough MV-algebras, rough hemirings and rough γ semihyperrings have
been investigated by many authors( see also [1,2,4,7,8,11,17,19,24,25,31,34]). Davvaz
and Mahdavipour [10] presented a framework for generalizing the standard notion of
rough set approximation space. They proposed new de�nitions of the lower and upper
approximations which are basic concepts of rough set theory. In [9], Davvaz introduced
the concept of set-valued homomorphism for groups which is a generalization of an ordi-
nary homomorphism. The concepts of set-valued homomorphism and strong set-valued
homomorphism of a ring were introduced by Yamak et al.[35] and Hooshmandasl et al.
[13] .

The initiation and majority of studies on rough sets for algebraic structures have been
concentrated on a congruence relation. The congruence relation, however, seems to re-
strict the application of the generalized rough set model for algebraic sets. This may be
by reason of incomplete information about the objects under consideration. Sometimes
due to imprecise human knowledge about the elements of the universe set, an equiva-
lence relation among these elements is di�cult to �nd. To overcome this problem, we
require set-valued maps instead of equivalence relations in generalized rough sets. This
technique is useful where it is not easy to �nd a equivalence relation among the objects
of the universe set. This paper is structured as follows. After an introduction, in Sec-
tion 2, we present some basic de�nitions and results about approximation operators. In
Section 3, we restrict the universe of the approximation space to a hyperlattice and we
introduce the axiomatic form of this concept. In Section 4, the concepts of generalized
lower and upper approximation operators constructed by means of a set-valued homo-
morphism with respect to a hyperideal of a hyperlattice is presented and we examine
some properties of these operators in a hyperlattice.

2. Preliminaries

In this section, we recall some notions and results (see [5,6,14,15,20]) which will be
used throughout this article. Let L be a non-empty set and P ∗(L) be the set of all
nonempty subsets of L. A hyperoperation on L is a map ◦ : L×L→ P ∗(L) which asso-
ciates a nonempty subset a◦b with any pair (a, b) of elements of L×L. The couple (L, ◦)
is called a hypergroupoid. If A and B are nonempty subsets of L, then for a, b, x ∈ L,
we denote
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(1) x ◦A = {x} ◦A =
⋃

a∈A
x ◦ a, A ◦ x = A ◦ {x} =

⋃

a∈A
a ◦ x. (2) A ◦B =

⋃

a∈A,b∈B
a ◦ b.

2.1. De�nition. [14] Let L be a non-empty set endowed with two hyperoperations ⊗
and ⊕. The triple (L,⊗,⊕) is called a hyperlattice if the following conditions hold for
all a, b, c ∈ L:

(1) (idempotent laws) a ∈ a⊗ a, a ∈ a⊕ a,
(2) (commutative laws) a⊗ b = b⊗ a, a⊕ b = b⊕ a,
(3) (associative laws)(a⊗ b)⊗ c = a⊗ (b⊗ c), (a⊕ b)⊕ c = a⊕ (b⊕ c),
(4) (absorption laws) a ∈ a⊗ (a⊕ b), a ∈ a⊕ (a⊗ b).

2.2. De�nition. [14] Let L = (L,⊗,⊕) be a hyperlattice and S ∈ P ∗(L). Then S is
called a subhyperlattice of L if a⊗b and a⊕b ∈ P ∗(S) for all a, b ∈ S. That is to say, S is
subhyperlattice of L if and only if S is closed under the two hyperoperation ⊗ and ⊕ on L.

2.3. Example. Let L = {a, b, c, d} be a set. De�ne the hyperoperations ′′⊗′′ and ′′⊕′′
on L with the following Cayley table :

⊗ a b c d

a a a a a
b a b a {a,b}
c a a c c
d a {a,b} c d

⊕ a b c d

a a b {c,d} d
b b b d d
c {c,d} d {c,d} d
d d d d d

It is easy to check that (L,⊗,⊕) is a hyperlattice. Consider the subsets S1 = {a, d},
S2 = {c, d}. Then S1 and S2 are subhyperlattices of L. If we get S3 = {a, c}, then S3 is
not a subhyperlattice of L. Because it isn't closed under the hyperoperation ⊕ on L.

2.4. De�nition. [14] Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices.
A map ϕ : L1 → L2 is called a

(i) weak hyperlattice homomorphism if ϕ(a ⊗1 b) ⊆ ϕ(a) ⊗2 ϕ(b) and ϕ(a ⊕1 b) ⊆
ϕ(a)⊕2 ϕ(b) for all a, b ∈ L1,

(ii) strong hyperlattice homomorphism if ϕ(a⊗1 b) = ϕ(a)⊗2 ϕ(b) and ϕ(a⊕1 b) =
ϕ(a)⊕2 ϕ(b) for all a, b ∈ L1.

If such a homomorphism ϕ is surjective, injective or bijective, then ϕ is called an
epimorphism, a monomorphism or an isomorphism from the hyperlattice (L1,⊗1,⊕1) to
the hyperlattice (L2,⊗2,⊕2), respectively.

2.5. De�nition. Let L = (L,⊗,⊕) be a hyperlatice and A ∈ P ∗(L). Then A is called
a hyperideal of L if and only if a⊗ x ∈ P ∗(A), a⊕ x ∈ P ∗(A) for all a ∈ A, x ∈ L.

Let (L,⊗,⊕) be a hyperlattice. An equivalence relation θ is a re�exive, symmetric,
and transitive binary relation on L. If θ is an equivalence relation on L, then the equiv-
alence class of a ∈ L is the set {y ∈ L | (a, y) ∈ θ}. We write it as [a]θ.

Let θ be an equivalence relation on L. For any A,B ∈ P ∗(L), we write that AθB if the
following two conditions are hold:

(1)∀a ∈ A,∃b ∈ B such that aθb; (2) ∀x ∈ B,∃y ∈ A such that xθy.
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We denote AθB if for all a ∈ A, b ∈ B we have aθb.

2.6. De�nition. [32] An equivalence relation θ on a hyperlattice L = (L,⊗,⊕) is called
a regular (strongly regular) hypercongruence relation if for every x ∈ L, (a, b) ∈ θ implies

(a⊗ x)θ(b⊗ x) and (a⊕ x)θ(b⊕ x) ((a⊗ x)θ(b⊗ y) and (a⊕ x)θ(b⊕ y)).

Clearly, any strongly regular hypercongruence relation is a regular hypercongruence re-
lation.

2.7. Example. Let L = {a, b, c, d} and let the hyperoperations ′′⊗′′ and ′′⊕′′ on L be
de�ned as follows:

⊗ a b c d

a a a a a
b a {a,b} a {a,b}
c a a c c
d a {a,b} c {c,d}

⊕ a b c d

a {a,b} b {c,d} d
b b b d d
c {c,d} d {c,d} d
d d d d d

Then (L,⊗,⊕) is a hyperlattice [14]. Let θ be a hypercongruence relation on the hyper-
lattice L with the following equivalence classes: [a]θ = [b]θ = {a, b}, [c]θ = [d]θ = {c, d}.
Then θ is a strongly regular hypercongruence relation on L.

2.8. De�nition. Let L = (L,⊗,⊕) be a hyperlattice and θ be a regular hypercongru-
ence relation on L. Then θ is called a complete hypercongruence relation if
[a⊗b]θ = {x⊗y | x ∈ [a]θ, y ∈ [b]θ}, and [a⊕b]θ = {x⊕y | x ∈ [a]θ, y ∈ [b]θ} for all a, b ∈ L.

2.9. Example. Let L = {0, a, b, c, 1} be a lattice (L,∧,∨), where the partial order
relation on L is de�ned as shown in Figure 1. For all x, y ∈ L, x ⊗ y = {x ∧ y},
x⊕ y = {x ∨ y}, then L = (L,⊗,⊕) is a hyperlattice.

       1

       a

b             c

       0

Figure 1. The lattice in Example 2.9.

(i) Let θ be a regular hypercongruence relation on the hyperlattice L with the
following equivalence classes: [1]θ = 1, [a]θ = [c]θ = {a, c}, [b]θ = [0]θ = {b, 0}.
Then θ is a complete hypercongruence relation.

(ii) Let θ be a regular hypercongruence relation on the hyperlattice L with the
following equivalence classes: [1]θ = [a]θ = {1, a}, [c]θ = {c}, [b]θ = {b}, [0]θ =
{0}. θ is not complete because [c⊕ b]θ = {1, a}, [c]θ ⊕ [b]θ = {a} and [c⊕ b]θ 6=
[c]θ ⊕ [b]θ.
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2.10. Lemma. Let L = (L,⊗,⊕) be a hyperlattice and θ be a regular hypercongruence
relation on L. Then for all a, b, c, d ∈ L,

(i) If (a, b) ∈ θ and (c, d) ∈ θ , then (a⊗ c)θ(b⊗ d) and (a⊕ c)θ(b⊕ d),
(ii) {x⊗ y | x ∈ [a]θ, y ∈ [b]θ} ⊆ [a⊗ b]θ,
(iii) {x⊕ y | x ∈ [a]θ, y ∈ [b]θ} ⊆ [a⊕ b]θ.

3. Rough subsets of a hyperlattice in the generalized approxima-

tion space

In this section, according to the notion of generalized approximation space presented
in [9,35,36], we present some basic concepts about the generalized approximation space
(U,W, T ) and the associated lower and upper approximation operators. Let U and W
be two non-empty universes. Let T be a set-valued mapping given by T : U → P (W ).
Then the triple (U,W, T ) is referred to as a generalized approximation space. Any set-
valued function from U to P (W ) de�nes a binary relation from U to W by setting
ρT = {(x, y) | y ∈ T (x)}. Obviously, if ρ is an arbitrary relation from U to W , then it
can be de�ned as a set-valued mapping Tρ : U → P (W ) by Tρ(x) = {y ∈W | (x, y) ∈ ρ},
where x ∈ U . For any set X ⊆ W , a pair of lower and upper approximations T (X) and

T (X), are de�ned by

T (X) = {x ∈ U | T (x) ⊆ X} and T (X) = {x ∈ U | T (x) ∩ X 6= ∅}. The pair

(T (X), T (X)) is referred to as a generalized rough set and T and T are referred to as
lower and upper generalized approximation operators, respectively.

3.1. De�nition. Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices. A
mapping T : L1 → P (L2) is called a set-valued homomorphism if for all a, b ∈ L1,

(i) T (a)⊗2 T (b) ⊆ T (a⊗1 b),
(ii) T (a)⊕2 T (b) ⊆ T (a⊕1 b).

3.2. De�nition. Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices. A
mapping T : L1 → P (L2) is called a strong set-valued homomorphism if for all a, b ∈ L1,

(i) T (a)⊗2 T (b) = T (a⊗1 b),
(ii) T (a)⊕2 T (b) = T (a⊕1 b).

3.3. Example. Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices.

(i) The set-valued map T : L1 → P (L2) de�ned by T (a) = L2 is a set-valued
homomorphism.

(ii) If θ is a regular hypercongruence relation on a hyperlattice L1 then Tθ : L1 →
P (L1) de�ned by Tθ(a) = [a]θ is a set-valued homomorphism. If θ is a complete
regular hypercongruence then Tθ is a strong set-valued homomorphism.

(iii) If ϕ : L1 → L2 is a strong hyperlattice homomorphism, then the set-valued map
T : L1 → P (L2) de�ned by T (a) = {ϕ(a)} is a strong set-valued homomorphism.

Note that Example 3.3. (ii) indicates that every regular hyper congruence relations
may be considered as a set-valued homomorphism. On the other hand, hypercongruence
relations are important in hyperalgebraic systems. So set-valued homomorphisms are
interesting for pure algebraic systems.

3.4. Proposition. Let L1 = (L1,⊗1,⊕1) and L2 = (L2,⊗2,⊕2) be two hyperlattices
and T : L1 → P (L2) be a set valued homomorphism. If X,Y ∈ P ∗(L2), then
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(i) T (X)⊗1 T (Y ) ⊆ T (X ⊗2 Y ),

(ii) T (X)⊕1 T (Y ) ⊆ T (X ⊕2 Y ).

Proof. (i) Assume that x ∈ T (X)⊗1T (Y ). Then x ∈ x1⊗1x2 with x1 ∈ T (X), x2 ∈ T (Y ).
Hence T (x1)∩X 6= ∅ and T (x2)∩Y 6= ∅. Then there exist a ∈ T (x1)∩X and b ∈ T (x2)∩Y
such that a ∈ T (x1), b ∈ T (x2) and a ∈ X, b ∈ Y . Therefore a ⊗2 b ⊆ X ⊗2 Y . Since T
is a set-valued homomorphism, we have a⊗2 b ⊆ T (x1)⊗2 T (x2) ⊆ T (x1 ⊗1 x2). Hence

T (x1 ⊗1 x2) ∩ (X ⊗2 Y ) 6= ∅ which implies that x ∈ T (X ⊗2 Y ). So T (X) ⊗1 T (Y ) ⊆
T (X ⊗2 Y ).

(ii) The proof is similar to (i).
�

3.5. Corollary. Let θ be a regular hypercongruence relation on a hyperlattice L and
X,Y ∈ P ∗(L). Then

(i) Tθ(X)⊗ Tθ(Y ) ⊆ Tθ(X ⊗ Y ),

(ii) Tθ(X)⊕ Tθ(Y ) ⊆ Tθ(X ⊕ Y ).

The following example shows that the inclusion symbol �⊆� in Propositions 3.4. may
not be replaced by the equal sign.

3.6. Example. Consider the hyperlattice de�ned in Example 2.3. Let T : L → P (L)
be a set-valued map de�ned as T (x) = {a}. Then it is easy to see that T is a set-valued

homomorphism. If X = {b} and Y = {d}, then T (X) ⊗ T (Y ) = ∅, T (X ⊗ Y ) = L.

Thus T (X) ⊗ T (Y ) 6= T (X ⊗ Y ). Further, if T : L → P (L) is a set-valued map de-
�ned as T (x) = {d}, then T is a set-valued homomorphism. If X = Y = {c}, then
T (X)⊕ T (Y ) = ∅, then T (X ⊕ Y ) = L. Thus T (X)⊕ T (Y ) 6= T (X ⊕ Y ).

3.7. Proposition. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and
T : L1 → P (L2) be a strong set valued homomorphism. If X,Y ∈ P ∗(L2), then

(i) T (X)⊗1 T (Y ) ⊆ T (X ⊗2 Y ),
(ii) T (X)⊕1 T (Y ) ⊆ T (X ⊕2 Y ).

Proof. (i) Assume that z ∈ T (X)⊗1 T (Y ). Then z ∈ x⊗1 y with x ∈ T (X), y ∈ T (Y ).
Hence T (x) ⊆ X and T (y) ⊆ Y . Since T is a strong set-valued homomorphism, we
have T (x) ⊗2 T (y) = T (x ⊗1 x) ⊆ A ⊗2 B. Hence z ∈ x ⊗2 y ∈ T (X ⊗2 Y ), that is
T (X)⊗1 T (Y ) ⊆ T (X ⊗2 Y ).

(ii) The proof is similar to (i).
�

3.8. Corollary. Let θ be a regular hypercongruence relation on a hyperlattice L and
X,Y ∈ P ∗(L). Then

(i) Tθ(X)⊗ Tθ(Y ) ⊆ Tθ(X ⊗ Y ),
(ii) Tθ(X)⊕ Tθ(Y ) ⊆ Tθ(X ⊕ Y ).

The following example shows that the containment in the above proposition is proper.

3.9. Example. Consider the hyperlattice de�ned in Example 2.3. Let T : L → P (L)
be a set-valued map de�ned as T (x) = {a}. Then it is easy to see that T is a set-
valued homomorphism. If X = {d}, Y = {b}, then T (X) ⊗ T (Y ) = ∅, T (X ⊗ Y ) = L.
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Thus T (X) ⊗ T (Y ) 6= T (X ⊗ Y ). Further, if T : L → P (L) is a set-valued map de-
�ned as T (x) = {d}, then T is a set-valued homomorphism. If X = Y = {c}, then
T (X)⊕ T (Y ) = ∅, T (X ⊕ Y ) = L. Thus T (X)⊕ T (Y ) 6= T (X ⊕ Y ).

3.10. Proposition. Let T : L1 → P (L2) be a (strong) set-valued homomorphism and
f : L3 → L1 be a weak (strong) hyperlattice homomorphism. Then T ◦ f is a (strong)

set-valued homomorphism from L3 → P (L2) such that T ◦ f(X) = f−1(T (X)) and
T ◦ f(X) = f−1(T (X)), for all X ∈ P (L2).

Proof. The proof is straightforward.
�

3.11. Proposition. Let T : L1 → P (L2) be a (strong) set-valued homomorphism and
f : L2 → L3 be a weak (strong) hyperlattice homomorphism. Then Tf is a (strong)
set-valued homomorphism from L1 → P (L3) de�ned by Tf (r) = f(T (r)) such that

Tf (X) = T (f−1(X)) and Tf (X) = T (f−1(X)), for all X ∈ P (L3).

Proof. The proof is straightforward.
�

3.12. De�nition. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and

let T : L1 → P (L2) be a set-valued mapping. If T (X) and T (X) are subhyperlattices

(resp. hyperideals) of L1, then (T (X), T (X)) is called a generalized rough subhyperlat-
tice (resp. hyperideal).

3.13. Example. Let L = (L,⊗,⊕) be a hyperlattice de�ned in Example 2.3. Let

T : L → P (L) be a set-valued map de�ned as T (x) = {b} and X = {a, b}. Then T (X)

and T (X) are subhyperlattices (resp. hyperideals) of L. Hence (T (X), T (X)) is a gener-
alized rough subhyperlattice (resp. hyperideal).

3.14. Theorem. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and
X ∈ P ∗(L2).

(i) If T : L1 → P (L2) is a set-valued homomorphism and X is a subhyperlattice of

L2, then T (X) is a subhyperlattice of L1.
(ii) If T : L1 → P (L2) is a strong set-valued homomorphism and X is a subhyper-

lattice of L2, then T (X) is, if it is non-empty, a subhyperlattice of L1.
(iii) If T : L1 → P ∗(L2) is a set-valued homomorphism and X is a hyperideal of L2,

then T (X) is a hyperideal of L1.
(iv) If T : L1 → P ∗(L2) is a strong set-valued homomorphism and X is a hyperideal

of L2, then T (X) is, if it is non-empty, a hyperideal of L1.

Proof. (i) Suppose that x, y ∈ T (X). Then T (x) ∩ X 6= ∅ and T (y) ∩ X 6= ∅. Hence
there exist a ∈ T (x) ∩ X and b ∈ T (y) ∩ X. Thus a ⊗2 b ⊆ T (x) ⊗2 T (y) ⊆ T (x ⊗1 y)
and a ⊕2 b ⊆ T (x) ⊕2 T (y) ⊆ T (x ⊕1 y). Since X is a subhyperlattice of L2, we have
a ⊗2 b ⊆ X and a ⊕2 b ⊆ X. So T (x ⊗1 y) ∩X 6= ∅ and T (x ⊕1 y) ∩X 6= ∅. Therefore
x⊗1 y, x⊕1 y ∈ T (X). Consequently, T (X) is a subhyperlattice of L1.

(ii) Suppose that x, y ∈ T (X). Then T (x) ⊆ X and T (y) ⊆ X. Since X is a
subhyperlattice of L2 and T is a strong set-valued homomorphism, we have T (x⊗1 y) =
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T (x) ⊗2 T (y) ⊆ X ⊗2 X ⊆ X and T (x ⊕1 y) = T (x) ⊕2 T (y) ⊆ X ⊕2 X ⊆ X. Thus
x⊗1 y, x⊕1 y ∈ T (X). Therefore T (X) is a subhyperlattice of L1.

(iii) By (i) T (X) is a subhyperlattice of L1. Let b ∈ L1. Since T (b) 6= ∅, there exist

some z ∈ L2 such that z ∈ T (b). Let x ∈ T (X). Then T (x) ∩ X 6= ∅ which implies
that there exists a ∈ T (x) ∩ X, that is a ∈ T (x), a ∈ X. Since X is a hyperideal
of L2 and T is a strong set-valued homomorphism, we have a ⊗2 z, a ⊕2 z ⊆ X and
a ⊗2 z ⊆ T (x) ⊗2 T (b) = T (x ⊗1 b), a ⊕2 z ⊆ T (x) ⊕2 T (b) = T (x ⊕1 b) which implies

that T (x⊗1 b) ∩X 6= ∅ and T (x⊕1 b) ∩X 6= ∅. Thus x⊗1 b, x⊕1 b ∈ T (X). Therefore

T (X) is a hyperideal of L1.
(iv) Similarly, T (X) is a hyperideal of L1.

�

The following example shows that the converse of the above theorem does not hold in
general.

3.15. Example. Consider the hyperlattice de�ned Example 2.3. Let T : L → P (L) be
a set-valued map de�ned as T (x) = {d}. Then it is easy to see that T is a set-valued
homomorphism. If X = {b, d}, then X is not a subhyperlattice (hyperideal) of L. But

T (X) = L is a subhyperlattice (hyperideal) of L.

3.16. Corollary. Let θ be a regular hypercongruence relation on a hyperlattice L =
(L,⊗,⊕).

(i) If X is a hyperlattice of L, then Tθ(X) is a subhyperlattice of L.
(ii) If θ is a complete regular hypercongruence relation and X is a subhyperlattice of

L, then Tθ(X) is, if it is non-empty, a subhyperlattice of L.

(iii) If X is a hyperideal of L, then Tθ(X) is a hyperideal of L.
(iv) If θ is a complete regular hypercongruence relation and X is a hyperideal of L,

then Tθ(X) is, if it is non-empty, a hyperideal of L.

Now we give a counterexample which shows that the condition that θ is a complete
regular hypercongruence relation in Corollary 3.16. is necessary.

3.17. Example. Consider the hyperlattice L and the congruence relation on L de-
�ned in Example 2.9.(ii). If X = {a, b, c, 0}, then X is a subhyperlattice of L. But
Tθ(X) = {b, c, 0} is not a subhyperlattice of L.

4. Generalized lower and upper approximation operators with re-

spect to a hyperideal of a hyperlattice

4.1. De�nition. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices, A
be a hyperideal of L2 and T : L1 → P (L2) be a set-valued mapping. Then we de�ne
TA : L1 → P (L2) as TA(a) = T (a)⊗2 A for all a ∈ L1. Then TA is called the set-valued
mapping with respect to a hyperideal A.

4.2. De�nition. Let (L1, L2, TA) be a generalized approximation space with respect to
a hyperideal A and X be a non-empty subset of L2. Then the sets
TA(X) = {a ∈ L1 | TA(a) ⊆ X} and TA(X) = {a ∈ L1 | TA(a) ∩X 6= ∅}
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are called generalized lower and upper approximations of X with respect to the hyper-
ideal A, respectively.

4.3. Lemma. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and A,B
be hyperideals of L2. Let X be a subset of L2 such that A ⊆ B. Then

(i) TA(X) ⊆ TB(X),
(ii) TB(X) ⊆ TA(X).

Proof. (i) Suppose that x ∈ TA(X). Then (T (x) ⊗2 A) ∩ X 6= ∅. So there exist a ∈
(T (x)⊗2A)∩X such that a ∈ (T (x)⊗2A) and a ∈ X. Hence there exist y ∈ T (x), z ∈ A
such that a = y ⊗2 z. Since A ⊆ B, we have z ∈ B. Thus a = y ⊗2 z ⊆ T (x) ⊗2 B and

a ∈ X. So (T (x)⊗2 B) ∩X 6= ∅. As a consequent, we obtain TA(X) ⊆ TB(X).
(ii) The proof is similar to (i).

�

The following corollary follows from Lemma 4.3.

4.4. Corollary. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices and A,B
be hyperideals of L2. Let X be a subset of L2 such that A ⊆ B. Then

(i) TA∩B(X) ⊆ TA(X) ∩ TB(X),
(ii) TA(X) ∩ TB(X) ⊆ TA∩B(X).

4.5. Proposition. Let (L1, L2, TA) be a generalized approximation with respect to a
hyperideal A and X,Y be a non-empty subsets of L2.

(i) If T : L1 → P (L2) is a set-valued homomorphism, then TA(X) ⊗1 TA(Y ) ⊆
TA(X ⊗2 Y ).

(ii) If T : L1 → P (L2) is a strong set-valued homomorphism, then TA(X)⊗1TA(Y ) ⊆
TA(X ⊗2 Y ).

Proof. (i) Suppose that z ∈ TA(X) ⊗1 TA(Y ). Then there exist x ∈ TA(X), y ∈ TA(Y )

such that z ∈ x⊗1y. Since x ∈ TA(X) y ∈ TA(Y ) there exist a ∈ T (x)⊗2A, b ∈ T (y)⊗2A
such that a ∈ T (x), b ∈ T (y), a ∈ X, b ∈ Y . Since T is a set-valued homomorphism, we
have a ⊗2 b ⊆ T (x) ⊗2 T (y) ⊗2 A ⊆ T (x ⊗1 y) ⊗2 A and a ⊗2 b ⊆ X ⊗2 Y . Hence

a⊗2 b ⊆ T (x⊗1 y)⊗2 A ∩ (X ⊗2 Y ). So z ∈ x⊗1 y ⊆ TA(X ⊗2 Y ).Therefore, we obtain

TA(X)⊗1 TA(Y ) ⊆ TA(X ⊗2 Y ).
(ii) The proof is similar to (i).

�

4.6. Proposition. Let L1 = (L1,⊗1,⊕1), L2 = (L2,⊗2,⊕2) be two hyperlattices, A,B
be hyperideals of L2 and X be a subhyperlatice of L2.

(i) If T : L1 → P (L2) is a set-valued homomorphism, then TA(X) ⊗1 TB(X) ⊆
TA⊗2B(X).

(ii) If T : L1 → P (L2) is a strong set-valued homomorphism, then TA(X) ⊗1

TB(X) = TA⊗2B(X).

Proof. The proof is straightforward.
�

4.7. Theorem. Let (L1, L2, TA) be a generalized approximation space with respect to a
hyperideal A and X be a non-empty subset of L2.

(i) If T : L1 → P (L2) is a set-valued homomorphism and X is a subhyperlattice of

L2, then TA(X) is a subhyperlattice of L1.
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(ii) If T : L1 → P (L2) is a strong set-valued homomorphism and X is a subhyper-
lattice of L2, then TA(X) is, if it is non-empty, a subhyperlattice of L1.

(iii) If T : L1 → P ∗(L2) is a set-valued homomorphism and X is a hyperideal of L2,

then TA(X) is a hyperideal of L1.
(iv) If T : L1 → P ∗(L2) be a strong set-valued homomorphism and X is a hyperideal

of L2, then TA(X) is, if it is non-empty, a hyperideal of L1.

Proof. (i) Suppose that x, y ∈ TA(X). Then, (T (x)⊗2A)∩X 6= ∅ and (T (y)⊗2A)∩X 6=
∅. Hence there exist a ∈ (T (x) ⊗2 A) ∩ X and b ∈ (T (y) ⊗2 A) ∩ X. Since X is a
subhyperlattice of L2 , we have a ⊗2 b ⊆ X and a ⊕2 b ⊆ X. On the other hand,
a ⊗2 b ⊆ (T (x) ⊗2 A) ⊗2 (T (y) ⊗2 A) ⊆ T (x) ⊗2 T (y) ⊗2 A ⊆ T (x ⊗1 y) ⊗2 A and
a ⊕2 b ⊆ (T (x) ⊗2 A) ⊕2 (T (y) ⊗2 A) ⊆ T (x) ⊕2 T (y) ⊗2 A ⊆ T (x ⊕1 y) ⊗2 A. So

T (x ⊗1 y) ⊗2 A ∩ X 6= ∅ and T (x ⊕1 y) ⊗2 A ∩ X 6= ∅. Thus x ⊗1 y, x ⊕1 y ∈ TA(X).

Therefore, TA(X) is a subhyperlattice of L1.
(ii) Similarly, TA(X) is a subhyperlattice of L1.

(iii) Using (i), TA(X) is a subhyperlattice of L1. Let x ∈ TA(X) and c ∈ L1. Then

(T (x)⊗2A)∩X 6= ∅. So there exist a ∈ (T (x)⊗2A)∩X. Since TA(X) is non-empty set,
we can choose z ∈ T (c). Since X is a hyperideal of L2, we have a⊗2z, a⊕2z ⊆ X. On the
other hand, a⊗2z ⊆ (T (x)⊗2A)⊗2T (c) ⊆ T (x⊗1 c)⊗2A, a⊕2 z ⊆ (T (x)⊗2A)⊕2T (c) ⊆
T (x ⊕1 c) ⊗2 A. So (T (x ⊗1 c) ⊗2 A) ∩X 6= ∅, (T (x ⊕1 c) ⊗2 A) ∩X 6= ∅ which implies

x⊗1 c, x⊕1 c ∈ TA(X). Therefore TA(X) is a hyperideal of L1.
(iv)The proof is straightforward.

�

The following example shows that the converse of the above theorem does not hold in
general.

4.8. Example. Consider the hyperlattice de�ned in Example 2.9. Let T : L → P (L)
be a set-valued map de�ned as T (x) = {d}. Then it is easy to see that T is a set-
valued homomorphism. If A = L, X = {a, b, c}, then A is a hyperideal and X is not a

subhyperlattice (hyperideal) of L. But TA(X) = L is a subhyperlattice (hyperideal) of L.

5. Conclusion

The Pawlak rough sets on algebraic sets such as semigroups, groups, rings, modules
and lattices were mainly studied by congruence relations. In this paper, a de�nition
of set-valued homomorphism which was introduced for groups by Davvaz [9], for rings
and modules by Yamak et al. [35-36], respectively, is considered as a regular hyper-
congruence relation for hyperlattices. We obtain some new properties of a set-valued
homomorphism to provide opportunity for putting reasonable interpretations on the the-
ory and applications of rough sets and adhering to the set-valued homomorphism and
exploring the features of generalized rough approximations on hyperlattices. So, in this
paper we propose a de�nition of set-valued homomorphism and explore the properties of
generalized rough approximations on hyperlattices. Some new properties of set-valued
homomorphisms which shall be very practical in the theory and applications of rough
sets are obtained. Moreover, a new algebraic structure called generalized lower and upper
approximations of a set with respect to a hyperideal is presented.
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1. Introduction

Discretizing continuous distributions has recently received much attention in the lit-
erature. Let F (x) = P (X ≤ x) be the cumulative distribution function (cdf) of the
absolutely continuous random variable X. The corresponding probability mass function
(pmf) of X can be obtained by

P (X = x) = px = F (x+ 1)− F (x), x ∈ N0 = {0, 1, 2, . . .}.(1.1)

In recent years, several new discrete distributions have been appeared in the literature
by Eq. (1.1). For example, we can address the works of [12], [15], [9] and [10] which
are the discrete versions of Weibull, Rayleigh, half-normal and Burr distributions, re-
spectively. A discrete version of Lindley distribution is introduced by [7] and [4]. [13]
obtained a new discrete distribution by discretizing generalized exponential distribution
of [8]. Discrete modi�ed Weibull distributions, which are discrete versions of some known
modi�ed Weibull distributions, are introduced by [14] and [3]. In addition, [5] introduced
the discrete additive Weibull distribution as a discrete version of the additive Weibull
distribution of [19].

[11] introduced an extended family of distributions generated by the cdf

F (x;α) =
G(x)

1− αG(x)
; x ∈ RX , α > 0,(1.2)

where α = 1−α and G(x) is the cdf of an absolutely continuous distribution. Several new
continuous distributions have been obtained in the literature by inserting an arbitrary
G(x) into Eq. (1.2). For example, inserting the cdf of the exponential distribution into
Eq. (1.2) yields a new distribution, called exponential Marshall-Olkin distribution, with
cdf

F (x;α, β) =
1− e−βx

1− αe−βx ; x > 0, β > 0, α > 0,(1.3)

(see [11]). For 0 < α < 1, (1.3) coincides with the cdf of the exponential-geometric (EG)
distribution of [2].

[6] obtained the generalized geometric (GG) distribution by discretizing the exponen-
tial Marshall-Olkin distribution using Eq. (1.1). It is evident that when 0 < α < 1, the
GG distribution corresponds to a discrete analogue of the EG distribution.

In this paper, we will introduce the exponentiated generalized geometric (EGG) dis-
tribution which is indeed an extension of the GG distribution. This new distribution can
also be considered as a discrete version of the generalized exponential-geometric (GEG)
distribution of [17].

The paper is organized as follows: In Section 2, we introduce the new distribution and
investigate some of its statistical properties. We also derive expressions for the probability
generating function, moment generating function and factorial moments. In Section 3,
we will show that the proposed distributions are not in�nitely divisible in general. The
order statistics are discussed in Section 4. Estimation, Fisher information matrix and a
kind of simulated example are discussed in Section 5. An application of the new model
is illustrated in Section 6. Finally, Section 7 involves some concluding remarks.

2. Three-parameter EGG distribution

Consider the GG(α, θ) distribution of [6] with the cdf

FGG(x;α, θ) =
1− θx+1

1− αθx+1
, x ≥ 0,(2.1)
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where α > 0 and 0 < θ < 1 are the model parameters. By inserting (2.1) into the
resilience parameter family of distributions, the cdf of the resulting discrete distribution
is given by

F (x;α, θ, γ) = [FGG(x;α, θ)]γ =

[
1− θx+1

1− αθx+1

]γ
, x ≥ 0,(2.2)

in which γ > 0 is the resilience parameter.
We call such a random variable X, with cdf (2.2), an exponentiated generalized geo-

metric distribution with parameters α > 0, 0 < θ < 1 and γ > 0 and denote it by
EGG(α, θ, γ).

It is evident that when γ > 0 is an integer value, the cdf given by (2.2) agrees with
the cdf of the maximum of γ independent and identical GG(α, θ) random variables.

The corresponding pmf of a random variable X following an EGG(α, θ, γ) distribution
for x ∈ N0 is given by

f(x;α, θ, γ) = P (X = x) =

[
1− θx+1

1− αθx+1

]γ
−
[

1− θx
1− αθx

]γ
.(2.3)

[17] introduced the continuous generalized exponential-geometric (GEG) distribution
with cdf

F (x;α, θ, γ) =

[
1− e−βx

1− αe−βx
]γ
,(2.4)

where 0 < α < 1, β > 0 and γ > 0 are the model parameters. The above cdf is indeed a
kind of exponentiated distribution which contains the EG distribution of [2] as a special
case, when 0 < α < 1. It is interesting to note that for 0 < α < 1 and 0 < e−β = θ < 1,
the EGG distribution can be viewed as a discrete version of the GEG distribution. In
addition, the EGG distribution reduces to the GG distribution when γ = 1. Several
properties of the GG(α, θ) distribution are obtained for the case 0 < α < 1; see [6]. We
will study several properties of the EGG(α, θ, γ) distribution in this case. Figure 1 plots
the pmfs of the EGG(α, θ, γ) distribution for some parameters values.

The survival and hazard rate functions of the EGG(α, θ, γ) distribution are given by

S(x;α, θ, γ) = 1−
[

1− θx+1

1− αθx+1

]γ
, x ≥ 0

and

h(x;α, θ, γ) =

[
1−θx+1

1−αθx+1

]γ
−
[

1−θx
1−αθx

]γ

1−
[

1−θx+1

1−αθx+1

]γ , x ∈ N0,

respectively. As we see from Figure 2, the hazard rate function of the new distribution
can be decreasing, increasing, upside-down bathtub and bathtub-shaped, depending on
its parameters values, and hence presents a very �exible behavior.

Now, let b > 1 and k > 0 be real non-integers. If |z| < 1, we have the series
representations

(1− z)b =

∞∑

i=0

Γ(b+ 1)

Γ(b+ 1− i)i! (−1)izi(2.5)

and

(1− z)−k =

∞∑

j=0

Γ(k + j)

Γ(k)j!
zj .
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Figure 1. Pmfs of the EGG(α, θ, γ) distribution for some parameter values.

The sum in Eq (2.5) stops at b for integer values of b > 1. Using the above series
representations, Eq. (2.3), for 0 < α < 1, can be written as

f(x;α, θ, γ) = P (X = x) =

∞∑

i=0

∞∑

j=0

ωi,j(α, γ)(1− θi+j)θ(i+j)x, x ∈ N0,(2.6)

where

ωi,j(α, γ) =
Γ(γ + j)γαj(−1)i+1

i!j!Γ(γ + 1− i) .

It is clear that the pmf (2.6) is a linear combination of the geometric distributions

px = (1− θi+j)θ(i+j)x.

Hence, several properties of the EGG(α, θ, γ) distribution can be obtained from those
of the geometric distribution. For example, the moment and probability generating
functions of the proposed distribution are given, respectively, by

MX(t) =

∞∑

i=0

∞∑

j=0

ωi,j(α, γ)
1− θi+j

1− θi+jet



1771

−5 0 5 10 15 20
0

20

40
θ = 0.1, α = 0.5, γ = 0.5

−5 0 5 10 15 20
0

5
θ = 0.5, α = 0.5, γ = 0.5

−5 0 5 10 15 20
0

0.5

1
θ = 0.9, α = 0.5, γ = 0.5

0 1 2 3 4 5 6 7 8
0

10

20
θ = 0.1, α = 1, γ = 0.5

−5 0 5 10 15 20
0

2

4
θ = 0.5, α = 1, γ = 0.5

−10 0 10 20 30
0

0.5
θ = 0.9, α = 1, γ = 0.5

0 1 2 3 4 5 6 7 8 910
0

2

4
θ =0.25, α = 5, γ = 0.5

0 1 2 3 4 5 6 7 8 910
0

0.5

1
θ = 0.5, α = 5, γ = 0.5

−10 0 10 20 30
0

0.1

0.2
θ = 0.9, α = 5, γ = 0.5

0 1 2 3 4 5 6 7 8 910
0

10

20
θ = 0.1, α = 0.5, γ = 1.5

0 1 2 3 4 5 6 7 8 910
0

1

2
θ = 0.5, α = 0.5, γ = 1.5

−10 0 10 20 30
0

0.1

0.2
θ = 0.9, α = 0.5, γ = 1.5

0 1 2 3 4 5 6 7 8 910
0

50

100
θ = 0.01, α = 1, γ = 1.5

0 1 2 3 4 5 6 7 8 910
0

0.5

1
θ = 0.5, α = 1, γ = 1.5

0 1 2 3 4 5 6 7 8 910
0

0.05

0.1
θ = 0.9, α = 1, γ = 1.5

−5 0 5 10 15 20
0

2

4
θ = 0.25, α = 5, γ = 1

−5 0 5 10 15 20
0

0.5

1
θ = 0.5, α = 5, γ = 1

−5 0 5 10 15 20
0

0.05

0.1
θ = 0.9, α = 5, γ = 1

Figure 2. Hazard rate functions of the EGG(α, θ, γ) distribution for some

parameter values.

and

GX(z) =

∞∑

i=0

∞∑

j=0

ωi,j(α, γ)
1− θi+j
1− θi+jz .

Moreover, the factorial moments are given by

E {X(X − 1)...(X − r + 1)} =

∞∑

i=0

∞∑

j=0

ωi,j(α, γ)

(
θi+j

1− θi+j
)r

,

for r = 1, 2, ... . In particular, the mean and variance of the EGG(α, θ, γ) distribution
can be obtained by

E(X) =

∞∑

i=0

∞∑

j=0

ωi,j(α, γ)

(
θi+j

1− θi+j
)

(2.7)

and

V ar(X) =

∞∑

i=0

∞∑

j=0

ωi,j(α, γ)

(
θi+j

1− θi+j
)(

1 +
θi+j

1− θi+j
)

−
{ ∞∑

i=0

∞∑

j=0

ωi,j(α, γ)

(
θi+j

1− θi+j
)}2

.
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In addition, the median of the EGG model is given by

m = [
1

log θ

(
log

1− (1/2)1/γ

1− α(1/2)1/γ

)
− 1],

where [.] denotes the integer part notation.
The mean and variance of the EGG(α, θ, γ) distribution are calculated in Table 1 for

di�erent values of its parameters. It appears that the mean and variance increase, when
α, θ, and γ increase. In addition, depending on the values of the parameters, the mean
of the distribution can be smaller or greater than its variance.

Table 1 Mean (Variance) of EGG(α, θ, γ) for di�erent values of parameters.
γ 0.5

α/θ 0.1 0.5 0.95

Numeriacl Eq. (2.7) Numeriacl Eq. (2.7) Numeriacl Eq. (2.7)

0.1 0.0061 (0.0073) 0.0062 (0.0075) 0.0764 (0.1830) 0.0764 (0.1860) 2.4679 (47.6280) 2.4659 (48.6180)
0.5 0.0296 (0.0348) 0.0295 (0.0358) 0.3204 (0.7595) 0.3237 (0.7555) 7.6300 (169.2129) 7.6270 (170.2129)
1.0 0.0570 (0.0606) 0.0569 (0.0670) 0.5546 (1.2778) 0.5555 (1.3000) 11.5117 (268.8771) 11.5116 (269.8771)
2.0 0.1301 (0.1431) 0.1291 (0.1400) 1.0201 (2.2839) 1.0195 (2.29152) 16.0022 (403.8554) 16.6436 (413.8572)

γ 1.0

α/θ 0.1 0.5 0.95

Numeriacl Eq. (2.7) Numeriacl Eq. (2.7) Numeriacl Eq. (2.7)

0.1 0.0122 (0.0145) 0.0121 (0.0145) 0.1505 (0.3518) 0.1502 (0.3520) 4.5300 (84.5673) 4.5297 (85.5601)
0.5 0.0582 (0.0672) 0.0582 (0.0672) 0.6067 (1.3000) 0.6067 (1.2099) 13.0220 (259.8401) 13.0220 (259.8401)
1.0 0.1111 (0.1235) 0.1111 (0.1235) 1.0000 (2.0000) 1.0000 (2.0000) 19.0000 (380.0000) 19.0000 (380.0000)
2.0 0.2038 (0.1235) 0.2038 (0.1240) 1.5290 (2.8139) 1.5290 (2.8139) 26.5290 (519.9431) 26.5288 (519.9507)

γ 2.0

α/θ 0.1 0.5 0.95

Numeriacl Eq. (2.7) Numeriacl Eq. (2.7) Numeriacl Eq. (2.7)

0.1 0.0255 (0.0285) 0.0241 (0.0285) 0.2909 (0.6513) 0.2909 (0.6513) 7.8655 (140.2428) 7.8655 (140.2428)
0.5 0.1136 (0.1255) 0.1136 (0.1255) 1.0761 (1.9730) 1.0761 (1.9730) 20.5445 (358.1039) 20.5445 (358.1039)
1.0 0.2121 (0.2163) 0.2121 (0.2163) 1.6667 (2.6667) 1.6667 (2.6667) 28.7436 (475.1874) 28.7436 (475.1874)
2.0 0.3742 (0.3313) 0.3742 (0.3313) 2.3854 (3.2973) 2.3854 (3.2973) 38.4915 (587.3795) 38.4907 (587.4363)

Remark 2.1 Remember that a random variable X with cdf G is stochastically smaller
than Y with cdf F , denoted by X ≤st Y , if for all x, G(x) ≥ F (x). This is the most basic
and oldest stochastic order in Probability and Statistics. In this case, if G is simpler
than F , G(x) may provide a useful lower bound for F (x) (see, e.g., [16] for more details).
Now, let G and F denote the cdfs of the GG and EGG distributions which are de�ned
via Eq.'s (2.1) and (2.2), respectively. It is obvious that for γ > 1, we have X ≤st Y
because [G(x)]γ ≤ G(x) and if 0 < γ < 1, it follows that X ≥st Y . Hence, For γ ≥ 1
it follows that E(X) ≤ E(Y ) and corresponding result holds if X is stochastically larger
than Y . One can consider the results of Table 1 again.

3. In�nite divisibility

The researchers may also here make the following note in regards to the famous struc-
tural property of in�nite divisibility of the distribution in question. Such a characteristic
has a close relation to the Central Limit Theorem and waiting time distributions. Thus,
it is a desirable question in modeling to know whether a given distribution is in�nitely
divisible or not. To settle this question, we recall that according to [18], (pp. 56), if
px, x ∈ N0, is in�nitely divisible, then px ≤ e−1 for all x ∈ N. However, e.g., in an
EGG(0.65, 0.40, 3.80) distribution we see that p1 = 0.387 > e−1 = 0.367. Therefore,
in general, EGG(α, θ, γ) distributions are not in�nitely divisible. In addition, since the
classes of self-decomposable and stable distributions, in their discrete concepts, are sub-
classes of in�nitely divisible distributions, we conclude that an EDW distribution can be
neither self-decomposable nor stable in general.
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4. Order statistics

Let Fi(x;α, θ, γ) be the cdf of the i-th order statistic of a random sampleX1, X2, ..., Xn
from EGG(α, θ, γ) distribution. Then, we have

Fi(x;α, θ, γ) =

n∑

k=i

(
n

k

)
[F (x;α, θ, γ)]k[1− F (x;α, θ, γ)]n−k.

Now, using the binomial expansion for [1− F (x;α, θ, γ)]n−k, the expression

Fi(x;α, θ, γ) =

n∑

k=i

n−k∑

j=0

(
n

k

)(
n− k
j

)
(−1)j [F (x;α, θ, γ)]k+j

=

n∑

k=i

n−k∑

j=0

(
n

k

)(
n− k
j

)
(−1)j [G(x;α, θ)]γ(k+j)

=

n∑

k=i

n−k∑

j=0

(
n

k

)(
n− k
j

)
(−1)jFEGG(x;α, θ, (k + j)γ),

is obtained for the cdf of the i-th order statistic. The corresponding pmf of the i-th order
statistic, fi(x;α, θ, γ) = Fi(x;α, θ, γ)−Fi(x− 1;α, θ, γ) for an integer value of x, then is
given by

fi(x;α, θ, γ) =

n∑

k=i

n−k∑

j=0

(
n

k

)(
n− k
j

)
(−1)jfEGG(x;α, θ, (k + j)γ),

where fEGG denotes the pmf of an EGG distribution.

Remark 2.2 In view of the fact that fi(x;α, θ, γ) is a linear combination of a �nite
number of EGG(α, θ, γ(k + j)) distributions, we may obtain some properties of order
statistics, such as their moments, from the corresponding EGG distribution (see [13] ).
For example, the mean of the i-th order statistic is given by

µi:n =

∞∑

i=0

∞∑

l=0

n∑

k=i

n−k∑

j=0

(−1)j
(
n

k

)(
n− k
j

)
ωi,l(α, (k + j)γ)

θi+l

1− θi+l .

5. Estimation

Let X1, . . . , Xn be a random sample of size n from the EGG(α, θ, γ) distribution and
Θ = (α, θ, γ) be the unknown parameters vector. The log-likelihood function is given by

l(Θ) =

n∑

i=1

log

[(
1− θxi+1

1− (1− α) θxi+1

)γ
−
(

1− θxi
1− (1− α) θxi

)γ]
.

The maximum likelihood estimation (MLE) of Θ is obtained by solving the nonlinear
equations, U(Θ) = (Uα(Θ), Uθ(Θ), Uγ(Θ))T = 0, where

Uα(Θ) =
∂l(Θ)

∂α
=

n∑

i=1

− (1−θxi+1)γγ θxi+1

(1−(1−α)θxi+1)γ−1 + (1−θxi )γγ θxi
(1−(1−α)θxi )γ−1

(
1−θxi+1

1−(1−α)θxi+1

)γ
−
(

1−θxi
1−(1−α)θxi

)γ ,

Uθ(Θ) =
∂l(Θ)

∂θ
=

n∑

i=1

−αγ (xi + 1) θxi
(

1−θxi+1

1−(1−α)θxi+1

)γ−1

+ αxiθ
xi−1γ

(
1−θxi

1−(1−α)θxi

)γ−1

(
1−θxi+1

1−(1−α)θxi+1

)γ
−
(

1−θxi
1−(1−α)θxi

)γ ,
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Uγ(Θ) =
∂l(Θ)

∂γ
=

n∑

i=1

(
1−θxi+1

1−(1−α)θxi+1

)γ
ln
(

1−θxi+1

1−(1−α)θxi+1

)
−
(

1−θxi
1−(1−α)θxi

)γ
ln
(

1−θxi
1−(1−α)θxi

)

(
1−θxi+1

1−(1−α)θxi+1

)γ
−
(

1−θxi
1−(1−α)θxi

)γ .

We need the observed information matrix for interval estimation and hypotheses tests
on the model parameters. The 3× 3 Fisher information matrix, J = Jn(Θ), is given by

J = −



Jαα Jαθ Jαγ
Jθα Jθθ Jθγ
Jγα Jγθ Jγγ


 ,(5.1)

whose elements are given in Appendix.
Under conditions that are ful�lled for parameters in the interior of the parameter

space but not on the boundary, asymptotically
√
n(Θ̂−Θ) ∼ N3(0, I(Θ)−1),

where I(Θ) is the expected information matrix. This asymptotic behavior is valid if

I(Θ) replaced by Jn(Θ̂) , i.e., the observed information matrix evaluated at Θ̂.

5.1. A simulated example. Let X be a random variable that follows a GEG distri-
bution given by Eq. (2.4). Then, [X] has an EGG(α, θ, γ) distribution. Therefore, we
can simulate an EGG(α, θ, γ) random variable from the corresponding continuous GEG
distribution. Table 2 below presents the maximum likelihood estimates of Θ = (α, θ, γ)T

from an EGG(α, θ, γ) distribution and also contains their standard errors for di�erent
values of n as a kind of simulated example. Standard errors are attained by means of
the asymptotic covariance matrix of the MLEs of EGG(α, θ, γ) parameters when the
Newton-Raphson procedure converges in, e.g., MATLAB software.
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Table 2 MLEs of the EGG(α, θ, γ) parameters for di�erent values of n.

α = 0.50 α = 0.75
θ = 0.25 θ = 0.75

γ = 0.75 γ = 0.50

n α̂(ŜE(α̂)) θ̂(ŜE(θ̂)) γ̂(ŜE(γ̂)) α̂(ŜE(α̂)) θ̂(ŜE(θ̂)) γ̂(ŜE(γ̂))

100 0.492(0.477) 0.213(0.527) 0.0.984(2.764) 0.812(0.396) 0.753(0.297) 0.442(0.393)
200 0.511(0.323) 0.288(0.410) 0.788(0.1.347) 0.730(0.268) 0.719(0.237) 0.551(0.379)
500 0.501(0.242) 0.217(0.264) 0.792(0.1.099) 0745(0.158) 0.751(0.129) 0.526(0.204)
1000 0.568(0.175) 0.257(0.185) 0.799(0.675) 0.743(0.108) 0.745(0.090) 0.534(0.144)

α = 2.0 α = 3.0

θ = 0.5 θ = 0.9

γ = 3.0 γ = 2.0

n α̂(ŜE(α̂)) θ̂(ŜE(θ̂)) γ̂(ŜE(γ̂)) α̂(ŜE(α̂)) θ̂(ŜE(θ̂)) γ̂(ŜE(γ̂))

100 2.077(0.951) 0.564(0.349) 2.656(2.652) 2.912(1.197) 0.897(0.156) 1.872(1.542)
200 1.904(0.663) 0.494(0.289) 2.941(2.352) 2.937(0.818) 0.888(0.113) 2.022(1.163)
500 1.915(0.465) 0.462(0.187) 3.290(1.880) 3.153(0.605) 0.914(0.065) 1.980(0.781)
1000 2.004(0.321) 0.511(0.124) 2.950(1.068) 2.918(0.306) 0.895(0.041) 1.981(0.427)

α = 1.00 α = 1.50

θ = 0.50 θ = 0.95

γ = 1.00 γ = 0.50

n α̂(ŜE(α̂)) θ̂(ŜE(θ̂)) γ̂(ŜE(γ̂)) α̂(ŜE(α̂)) θ̂(ŜE(θ̂)) γ̂(ŜE(γ̂))

100 1.278(0.723) 0.601(0.416) 0.864(1.005) 1.257(0.436) 0.867(0.150) 0.808(0.494)
200 0.933(0.363) 0.488(0.293) 0.974(0.850) 1.443(0.393) 0.947(0.060) 0.471(0.198)
500 0.982(0.230) 0.484(0.177) 1.043(0.553) 1.521(0.233) 0.957(0.023) 0.522(0.125)
1000 1.058(0.172) 0.542(0.122) 0.909(0.318) 1.507(0.177) 0.955(0.012) 0.481(0.087)

6. Application

In this section, the EGG model will be examined for a real data set. The data are
integer parts of the lifetimes of �fty devices given by [1] and have also been analyzed by
[14] and [3]. The data are: 0, 0, 1, 1, 1, 1, 1, 2, 3, 6, 7, 11, 12, 18, 18, 18, 18, 18, 21, 32,
36, 40, 45, 46, 47, 50, 55, 60, 63, 63, 67, 67, 67, 67, 72, 75, 79, 82, 82, 83, 84, 84, 84, 85,
85, 85, 85, 85, 86, 86.

First, we obtain the MLE of the EGG(α, θ, γ) parameters using the Newton-Raphson
procedure. Then, we compare the EGG model with the discrete modi�ed weibull (DMW)
distribution of [14] as a rival model. In addition, a four-parameter discrete model, i.e.,
the discrete additive Weibull (DAddW) distribution of [5], is compared. A summery of
computations which consists of the MLEs, Akaike information criterion (AIC) and the
values of log-likelihood functions is given in Table 3.
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Table 3 MLEs, maximized log-likelihoods and AIC values of the �tted models.

Model Estimated parameters `(θ̂) AIC

EGG α̂=36011.39, θ̂=0.8845, γ̂ = 0.1783 -226.5 459.0

DMW q̂=0.9403, ĉ=1.0241, θ̂=0.3450 -229.1 464.2

DAddW q̂=0.9216, b̂=0.000060091, θ̂=0.4541, γ̂ = 2.8387 -228.2 464.4

GG α̂=2.7934, θ̂=0.9674 -239.9 483.7

According to the results of Table 3, it seems that the EGG distribution gives a better
�t than the GG (as a sub-model), the DMW (as a three-parameter rival model) and the
four-parameter DAddW distributions.

7. Concluding remarks

We proposed the exponentiated generalized geometric (EGG) distribution belonging
to the resilience parameter family. This new discrete distribution contains the general-
ized geometric (GG) distribution of [6] as a special case. Moreover, the EGG distribution
coincides with the discrete counterpart of the generalized exponential-geometric distri-
bution of [17]. We investigated the basic statistical and mathematical properties of the
new model and illustrated that the hazard rate function of the new model can be in-
creasing, decreasing, upside-down bathtub and bathtub-shaped. In addition, �tting the
EGG model to a real data set indicated the capacity of the proposed distribution in data
modeling.

Appendix
The elements of the 3× 3 information matrix in Eq. (5.1) are given by

Jαα =
∂2l(Θ)

∂α2

=

n∑

i=1

dγi
(
θxi+1

)2
γ (γ − 1)− ωγi θ2xiγ(γ − 1)

dγi − ωiγ

−
[
−dγi

(
1− (1− α)θxi+1

)
γ θxi+1 + ωγi (1− (1− α)θxi)γθxi

dγi − ωγi

]2
,

Jαθ =
∂2l(Θ)

∂α∂θ

=

n∑

i=1

{
1

dγi − ωγi
×

[
dγ−1
i γ θx (xi + 1)

(
γ θxi+1 − 1 + θxi+1)− dγi γ θ2 xi+1 (γ − 1) (1− α) (xi + 1)

− ωγ−1
i γ θxi−1xi (γ θxi − 1 + θxi) + ωγi γ (θ (γ − 1))2 xi−1 (1− α)xi

]

+
dγi (1− (1− α)θxi)γ θxi+1 − ωγi γ θxi(1− (1− α) θxi)

(dγi − ωγi )2

×
[
dγ−1
i γ(1− (1− α)θxi+1)−1θ−1(xi + 1)θxi+1 (−1 + di (1− α))

− ωγ−1
i γ(1− (1− α)θxi)−1θ−1xiθ

xi (−1 + ωi (1− α))

]}
,
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Jαγ =
∂2l(Θ)

∂α∂γ

=

n∑

i=1

{
1

dγi − ωγi
×

[
dγi
(
θ
(
γ ln

(
1− (1− α) θxi+1)− γ ln

(
1− θxi+1)− 1

))xi+1(
1− (1− α) θxi+1)

+ ωγi (1− θxi)γ (θ (ln (1− θxi) γ + 1− ln (1− (1− α) θxi) γ))xi(1− (1− α) θxi)
]

+
γ θxi

(
θ
(
1− θxi+1

)γ − (1− θxi)γ
)

(1− (1− α) θxi+1)γ−1

×
[dγi ln(di)− ωγi ln(ωi)

(dγi − ωγi )2
]}
,

Jθθ =
∂2l(Θ)

∂θ2

=

n∑

i=1

{
1

dγi − ωγi

[
dγ−2
i γ2

×
(
− θxi+1 (xi + 1)

θ (1− (1− α) θxi+1)
+ di(1− α) θxi+1 (xi + 1)

(
1− (1− α) θxi+1)−1

θ
−1
)2

+ di
γ−1γ[

θxi+1 (xi + 1) (−xi)
θ2 (1− (1− α) θxi+1)

+ 2 di
(
1− θxi+1) (1− α)2

(
θxi+1)2 (xi + 1)2

(
1− (1− α) θxi+1)−2

θ−2

+
(−1 + α) θxi+1 (xi + 1)

(
3 θxi+1x+ 2 θxi+1 − x

)

θ2 (1− (1− α) θxi+1)2
]

− α (xi + 1)2
(
θxi+1)2 γ

(
− −1 + θxi+1

θxi+1α− θxi+1 + 1

)γ

×
(
−1 + θxi+1)−2

θ−2 (θxi+1α− θxi+1 + 1
)−1

+

(
− −1 + θxi+1

θxi+1α− θxi+1 + 1

)γ
γ
(
θxi+1)2 (xi + 1)2

× α (−1 + α)
(
θxi+1α− θxi+1 + 1

)−2
θ−2

×
(
−1 + θxi+1)−1 − α2xi

2 (θxi)2 γ2

(
− −1 + θxi

θxiα− θxi + 1

)γ

× (−1 + θxi)−2θ−2 (θxiα− θxi + 1)−2 − ωγ−1
i γ

[
− θxixi (xi − 1)

θ2 (θxiα− θxi + 1)

+ 2
(1− θxi) (1− α)2 (θxi)2 xi

2

(1− (1− α) θxi)3 θ2
+
θxi−2xi (−1 + α) (3 θxixi − θxi − xi + 1)

(θxiα− θxi + 1)2
]

+ ωγ−1
i (1− θxi)[ γ θ

xixi
2α θxi−2

(θxiα− θxi + 1)2
] +

(1− θxi)γ−1 γ θ2 xi−2xi
2α (−1 + α)

(θxiα− θxi + 1)γ−2

]

− 1

(dγi − ωγi )2

×
[
dγ−1
i γ(− θxi+1 (xi + 1)α

(θxi+1α− θxi+1 + 1)2 θ
) +

ωγ−1
i γ θxi−1xα

(θxiα− θxi + 1)2
]2
}
,
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Jθγ =
∂2l(Θ)

∂θ∂γ

=

n∑

i=1

{
1

dγi − ωγi

[
dγ−1
i ln(di)γ(− θxi (xi + 1)α

(θxi+1α− θxi+1 + 1)2
)

− dγ−1
i

(
θxi (xi + 1)α

(θxi+1α− θxi+1 + 1)2

)

− ωγ−1
i ln(ωi)γ

(
− θxi−1xiα

(θxiα− θxi + 1)2

)
+ ωγ−1

i

(
θxixiα

(θxiα− θxi + 1)2 θ

)]

− 1

(dγi − ωγi )2
{[
dγ−1
i

(
− γ θxi (x+ 1)α

(θxi+1α− θxi+1 + 1)2

)
+ ωγ−1

i

(
γ θxi−1xiα

(θxiα− θxi + 1)2

)]

× [dγi ln(di)− ωγi ln(ωi)]
}}

,

Jγγ =
∂2l(Θ)

∂γ2

=

n∑

i=1

{d
γ
i (ln(di))

2 − ωγi (ln(ωi))
2

dγi − ωγi
− (dγi ln(di)− ωγi ln(ωi))

2

(dγi − ωγi )2
},

where di = 1−θxi+1

1−(1−α)θxi+1 and ωi = 1−θxi
1−(1−α)θxi .
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1. Introduction

The statistics literature is �lled with hundreds of continuous univariate distributions:
see Johnson et al. (1994, 1995). Recent developments have been focused to de�ne new
families by adding shape parameters to control skewness, kurtosis and tail weights thus
providing great �exibility in modeling skewed data in practice, including the two-piece
approach introduced by Hansen (1994) and the generators pioneered by Eugene et al.

(2002), Cordeiro and de Castro (2011), Alexander et al. (2012) and Cordeiro et al.

(2013). Many subsequent articles apply these techniques to induce skewness into well-
known symmetric distributions such as the symmetric Student t. For a review, see Aas
and Ha� (2006).

We study several mathematical properties of a new family of distributions called the
Zografos-Balakrishnan odd log-logistic-G (�ZBOLL-G� for short) family with two addi-
tional shape parameters. These parameters can provide great �exibility to model the
skewness and kurtosis of the generated distribution. Indeed, for any baseline G distri-
bution, the new family can extend several common models such as the normal, Weibull
and Gumbel distributions by adding these parameters to a parent G. The proposed fam-
ily is an extension of that one introduced recently by Zografos and Balakrishnan (�ZB�)
(2009) and Ristic and Balakrishnan (2012), although both are based on the same gamma
generator.

Let W be any continuous distribution de�ned on a �nite or an in�nite interval. The
ZB family is de�ned from the cumulative distribution function (cdf) (for β > 0)

F (x) =
γ (β,− log[1−W (x)])

Γ(β)
, x ∈ R,(1.1)

where Γ(α) =
∫∞

0
ta−1 e−tdt and γ(β, z) =

∫ z
0
tβ−1 e−tdt are the gamma function and

lower incomplete gamma function, respectively.
Further, we de�ne W (x) from any baseline cdf G(x; τ ) (x ∈ R), where τ denotes the

parameters in the parent G, as

W (x) =
Gα(x; τ )

Gα(x; τ ) + Ḡα(x; τ )
,(1.2)

where α > 0 and Ḡ(x; τ ) = 1 − G(x; τ ) is the baseline survival function. According
to Marshall and Olkin (2007, equation (21)), the function W (x) in (1.2) is the odd
log-logistic-G (OLL-G) cdf. By inserting (1.2) in equation (1.1), we have

F (x) =
1

Γ(β)
γ

{
β,− log

[
1− Gα(x; τ )

Gα(x; τ ) + Ḡα(x; τ )

]}
.(1.3)

The model (1.3) is called the ZBOLL-G distribution with parameters α and β. Let
g(x; τ ) = dG(x; τ )/dx be the baseline probability density function (pdf). The density
function corresponding to (1.3) is given by

f(x) =
αg(x; τ )Gα−1(x; τ ) Ḡα−1(x; τ )

Γ(β)[Gα(x; τ ) + Ḡα(x; τ )]2

{
− log

[
Ḡα(x; τ )

Gα(x; τ ) + Ḡα(x; τ )

]}β−1

.

(1.4)

Henceforth, a random variableX with density function (1.4) is denoted byX ∼ZBOLL-
G(α, β, τ ). The ZBOLL-G family has the same parameters of the parent G plus the
parameters α and β. For α = β = 1, it reduces to the baseline G distribution. For α = 1,
we obtain the gamma-G (G-G) family and, for β = 1, we have the OLL-G family. The
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hazard rate function (hrf) of X is given by

h(x) =
αg(x; τ )Gα−1(x; τ ) Ḡα−1(x; τ )

[Gα(x; τ ) + Ḡα(x; τ )]2

×

{
− log

[
Ḡα(x;τ)

Gα(x;τ)+Ḡα(x;τ)

]}β−1

Γ(β)− γ
{
β,− log

[
1− Gα(x;τ)

Gα(x;τ)+Ḡα(x;τ)

]} .(1.5)

Each new ZBOLL-G distribution can be de�ned from a speci�ed G distribution. The
ZBOLL family is easily simulated by inverting (1.3) as follows: if V has the γ(β, 1)
distribution, then the solution of the nonlinear equation

(1.6) X = G−1





(
1− e−V

) 1
α

(1− e−V )
1
α + e

−V
α





has density (1.4).
The parameters α and β have a clear interpretation. Following the key idea of Zo-

grafos and Balakrishnan (2009) and Ristic and Balakrishnan (2012), we can also interpret
(1.4) in this way: if XU(1), XU(2), . . . , XU(n) are upper record values from a sequence of
independent random variables with common pdf

w(x) = W ′(x) =
αg(x; τ ){G(x; τ )[1−G(x; τ )]}α−1

{Gα(x; τ ) + Ḡα(x; τ )}2 ,

then the pdf of the nth upper record value has the pdf (1.4).
It is important to mention that the results presented in this paper follow similar lines of

those developed by Nadarajah et al. (2015), although their model is completely di�erent
from that one discussed in this paper.

The rest of the paper is organized as follows. In Section 2, we present some new
distributions. In Section 3, we introduce the asymptotic properties of equations (1.3),
(1.4) and (1.5). Section 4 deals with two useful representations for (1.3) and (1.4). In
Section 5, we derive a power series for the quantile function (qf) of X. In Sections 6
and 7, we obtain the entropies and order statistics. Estimation of the model parameters
by maximum likelihood and the observed information matrix are presented in Section
8. Two applications to real data prove empirically the importance of the new family in
Section 9. Finally, some conclusions and future work are noted in Section 10.

2. Special ZOBLL-G distributions

The ZOBLL-G family of density functions (1.4) allows for greater �exibility of its tails
and can be widely applied in many areas of engineering and biology. In this section, we
present and study some special cases of this family because it extends several widely-
known distributions in the literature. The density function (1.4) will be most tractable
when G(x; τ ) and g(x; τ ) have simple analytic expressions.

2.1. Zografos-Balakrishnan odd log-logistic Weibull (ZBOLL-W) model. If
G(x; τ ) is the Weibull cdf with scale parameter κ > 0 and shape parameter λ > 0,
where τ = (λ, κ)T , say G(x; τ ) = 1 − exp{−(x/λ)κ}, the ZOBBLL-W density function
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(for x > 0) is given by

fZBOLL-W(x) =
ακλ−κxκ−1 exp[−(x/λ)κ]{1− exp[−(x/λ)κ]}α−1

Γ(β){{1− exp[−(x/λ)κ]}α + exp[−α(x/λ)κ]}2

× exp[−(α− 1)(x/λ)κ]

{
− log

[
exp[−α(x/λ)κ]

{1− exp[−(x/λ)κ]}α + exp[−α(x/λ)κ]

]}β−1

.

(2.1)

Figure 1 displays some possible shapes of the ZBOLL-W density function.

2.2. Zografos-Balakrishnan odd log-logistic normal (ZBOLL-N) model. The
ZBOLL-N distribution is de�ned from (1.4) by taking G(x; τ ) = Φ(x−µ

σ
) and g(x; τ ) =

σ−1 φ(x−µ
σ

) to be the cdf and pdf of the normal N(µ, σ2) distribution, where τ = (µ, σ)T .
Its density function is given by

fZBOLL-N(x) =
αφ(z)Φα−1(z)[1− Φ(z)]α−1

σΓ(β){Φα(z) + [1− Φ(z)]α}2

×
{
− log

[
[1− Φ(z)]α

Φα(z) + [1− Φ(z)]α

]}β−1

,(2.2)

where z = (x− µ)/σ, x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter,
α and β are shape and scale parameters, and φ(·) and Φ(·) are the pdf and cdf of the
standard normal distribution, respectively. For µ = 0 and σ = 1, we obtain the ZBOLL-
standard normal (ZBOLL-SN) distribution. Plots of the ZBOLL-N density function for
selected parameter values are displayed in Figure 2.

2.3. Zografos-Balakrishnan odd log-logistic Gumbel (ZBOLL-Gu) model. Con-
sider the Gumbel distribution with location parameter µ ∈ R and scale parameter σ > 0,
τ = (µ, σ)T , and the pdf and cdf (for x ∈ R) given by

g(x; τ ) =
1

σ
exp

[(x− µ
σ

)
− exp

(x− µ
σ

)]

and

G(x; τ ) = 1− exp
[
− exp

(x− µ
σ

)]
,

respectively. The mean and variance are equal to µ−γσ and π2σ2/6, respectively, where
γ is the Euler's constant (γ ≈ 0.57722). Inserting these expressions in (1.4) gives the
ZBOLL-Gu density function

fZBOLL−Gu(x) =
α exp[z − exp(z)]{1− exp[− exp(z)]}α−1 exp[−(α− 1) exp(z)]

σΓ(β){{1− exp[− exp(z)]}α + exp[−α exp(z)]}2

×
{
− log

(
exp[−α(exp(z))]

{1− exp[− exp(z)]}α + exp[−α exp(z)]

)}β−1

,(2.3)

where z = (x−µ)/σ,x, µ ∈ R and α, β, σ > 0. Plots of (2.3) for selected parameter values
are displayed in Figure 3.
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Figure 1. Plots of the ZBOLL-W density function for some parameter
values. (a) For di�erent values of β, with α = 0.3, κ = 3.5 and λ = 1.4.
(b) For di�erent values of β with α = 0.3, κ = 3.5 and λ = 1.4. (c) For
di�erent values of α with β = 1.5, κ = 3.5 and λ = 1.4.

3. Asymptotics

Let c = inf{x|G(x) > 0}, then the asymptotics of equations (1.3), (1.4) and (1.5)
when x→ c are given by

F (x) ∼ G(x)αβ

Γ(β + 1)
as x→ c,

f(x) ∼ αg(x)G(x)αβ−1

Γ(β)
as x→ c,

h(x) ∼ αg(x)G(x)αβ−1

Γ(β)
as x→ c.
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Figure 2. Plots of the ZBOLL-N density function for some parameter
values. (a) For di�erent values of α with β = 0.2, µ = 0 and σ = 1.
(b) For di�erent values of β with α = 0.3, µ = 0 and σ = 1.0. (c) For
di�erent values of β with α = 0.3, µ = 0 and σ = 0.1.

The asymptotics of equations (1.3), (1.4) and (1.5) when x→∞ are given by

1− F (x) ∼ 1

Γ(β)

{
−α log

[
Ḡ(x)

]}β−1
Ḡ(x)α as x→∞,

f(x) ∼ αg(x) Ḡ(x)α−1
{
−α log

[
Ḡ(x)

]}β−1

Γ(β)
as x→∞,

h(x) ∼ αg(x)

Ḡ(x)
as x→∞.
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Figure 3. Plots of the ZBOLL-Gu density function for some param-
eter values. (a) For di�erent values of α with β = 0.2, µ = 0 σ = 1.
(b) For di�erent values of α and β with µ = 0 and σ = 1.0. (c) For
di�erent values of β with α = 0.3, µ = 0 and σ = 0.

4. Two useful representations

Two useful linear representations for (1.3) and (1.4) can be derived using the concept
of exponentiated distributions. For an arbitrary baseline cdf G(x), a random variable
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is said to have the exponentiated-G (exp-G) distribution with power parameter a > 0,
say Z ∼exp-G(a), if its pdf and cdf are ha(x) = aGa−1(x)g(x) and Ha(x) = Ga(x),
respectively. The properties of exponentiated distributions have been studied by many
authors in recent years, see Mudholkar and Srivastava (1993) for exponentiated Weibull,
Gupta et al. (1998) for exponentiated Pareto, Gupta and Kundu (1999) for exponentiated
exponential, Nadarajah (2005) for exponentiated Gumbel, Kakde and Shirke (2006) for
exponentiated lognormal, and Nadarajah and Gupta (2007) for exponentiated gamma.

The generalized binomial coe�cient for real arguments is given by
(
x
y

)
= Γ(x +

1)/[Γ(y + 1)Γ(x − y + 1)]. By using the incomplete gamma function expansion, we
can write

F (x) =
1

Γ(β)

∞∑

i=0

(−1)i

i!(β + i)

{
− log

[
1− G(x)α

G(x)α + Ḡ(x)α

]}β+i

.

For any real positive power parameter, the formula below holds
(http://functions.wolfram.com/ElementaryFunctions/Log/06/01/04/03/)

{
− log

[
1− G(x)α

G(x)α + Ḡ(x)α

]}β+i

= (β + i)

∞∑

k=0

k∑

j=0

(−1)j+k
(
k − β − i

k

)(
k

j

)

(β + i− j)

× pj,k

[
G(x)α

G(x)α + Ḡ(x)α

]β+i+k

,

(4.1)

where the constants pj,k can be determined recursively by

pj,k = k−1
k∑

m=1

[k −m(j + 1)] cm pj,k−m(4.2)

for k = 1, 2, . . ., ck = (−1)k+1/(k + 1) and pj,0 = 1.
Further,

[
G(x)α

G(x)α + Ḡ(x)α

]β+i+k

=

∑∞
r=0 λr G(x)r∑∞
r=0 ρr G(x)r

=

∞∑

r=0

ar G(x)r,

where

λr =

∞∑

l=r

(−1)l+r
(
α(β + i+ k)

l

)(
l

r

)
, ρr = hr(α, β + i+ k),

and (for r ≥ 1)

ar = ar(α, β, i, k) =
1

ρ0

(
ρr − 1

ρ0

r∑

s=1

ρs ar−s

)
,

a0 = λ0/ρ0 and hr(α, β + i+ k) is de�ned in Appendix A.
Then, equation (1.3) can be expressed as

F (x) =

∞∑

r=0

brHr(x),(4.3)

where

br =
1

Γ(β)

∞∑

i,k=0

k∑

j=0

(−1)i+j+k pj,k ar(α, β, i, k)

(β + i− j) i!

(
k − β − i

k

)(
k

j

)
,
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and Hr(x) denotes the cdf of the exp-G(r) distribution. The pdf (1.4) reduces to

f(x) =

∞∑

r=0

br+1 hr+1(x),(4.4)

where hr+1(x) denotes the pdf of the exp-G(r + 1) distribution. So, several mathema-
tical properties of the proposed family can be obtained by knowing those of the exp-G
distribution, see, for example, Mudholkar et al. (1996), Gupta and Kundu (2001) and
Nadarajah and Kotz (2006), among others.

5. Quantile function

The gamma regularized function is de�ned by Q(β, z) =
∫∞
z
xβ−1 e−x/Γ(β). The

inverse gamma regularized function Q−1(β, u) admits a power series expansion given by (
http://functions.wolfram.com/GammaBetaErf/InverseGammaRegulari zed/06/01/03/)

Q−1(β, u) = u

∞∑

i=0

mi u
i,

where w = [Γ(β+1) (1−u)]1/β , m0 = 1, m1 = 1/(β+1), m2 = (3β+5)/[2(β+1)2 (β+2)],
m3 = [β(8β + 3) + 31]/[2(β + 1)3 (β + 2)(β + 3)], etc.

First,

B =
(1− e−v)

1
β

(1− e−v)
1
β + e

−v
β

=
1

1 + e
−v
β (1− e−v)

−1
β

By using Taylor expansion and generalized binomial expansion, we have obtain

e
−v
β (1− e−v)

−1
β =

∞∑

k=0

b∗k vk,

where b∗0 = 1 and, for k ≥ 1, b∗k = (−1)j+k (j+β−1)k

k!

(
−1/β

j

)
.

Then,

B =
1∑∞

k=0 b
∗
k v

k
=

∞∑

k=0

c∗k v
k

where c∗0 = 1/b∗0 and c∗k (for k ≥ 1) is obtained from the last equation as

c∗k = − 1

b∗0

k∑

r=1

b∗r c
∗
k−r.

Further, we can write

A =
(1− e−Q−1(β,u))

1
β

(1− e−Q−1(β,u))
1
β + e

−Q−1(β,u)
β

=

∞∑

k=0

c∗k
[
Q−1(β, u)

]k

=

∞∑

k=0

c∗k

(
u

∞∑

i=0

mi u
i

)k
.(5.1)

We use an equation by Gradshteyn and Ryzhik (2000, Section 0.314) for a power series
raised to a positive integer j

( ∞∑

i=0

ai u
i

)j
=

∞∑

i=0

cj,i u
i.(5.2)
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Here, for j ≥ 0, cj,0 = aj0, and the coe�cients cj,i (for i = 1, 2, . . .) are determined from
the recurrence equation

(5.3) cj,i = (i a0)−1
i∑

p=1

[p (j + 1)− i] ap cj,i−p,

So, the coe�cient cj,i follows from cj,0, . . . , cj,i−1 and then from a0, . . . , ai.
Based on equations (5.2) and (5.3), we can rewrite (5.1) as

A =

∞∑

i,k=0

c∗k vk,i u
i+k =

∞∑

l=0

d∗l u
l,

where, for k ≥ 0, the coe�cients vk,i (for i = 1, 2, . . .) are determined from the recurrence
equation

vk,i = (im0)−1
i∑

p=1

[p (j + 1)− i]mp vk,i−p,

with vk,0 = mk
0 and d∗l =

∑
(i,k)∈Il c

∗
k vk,i and Il = {(i, k)|i+ k = l; i, k = 0, 1, 2, . . .}.

Then, the qf of X reduces to

Q(u) = QG

( ∞∑

l=0

d∗l u
l

)
.(5.4)

In general, even when QG(u) does not have a closed-form expression, this function
can usually be expressed in terms of a power series

QG(u) =

∞∑

i=0

si u
i,(5.5)

where the coe�cients si's are suitably chosen real numbers. For several important distri-
butions, such as the normal, Student t, gamma and beta distributions, QG(u) does not
have a closed-form expression but it can be expanded as in equation (5.5).

By combining (5.4) and (5.5) and using again (5.2) and (5.3), we obtain

Q(u) =

∞∑

l=0

hl u
l,(5.6)

where hl =
∑∞
i=0 si hi,l (for i ≥ 0 and l ≥ 0), hi,l = (l d∗0)−1 ∑l

p=1 [p (i+ 1)− l] d∗p hi,l−p,
for l ≥ 1, and hl,0 = d∗0.

Hence, equation (5.6) reveals that the qf of the ZBOLL-G distribution can be expressed
as a power series. For practical purposes, we can adopt ten terms in this power series.

Let W (·) be any integrable function in the positive real line. We can write
∫ ∞

−∞
W (x) f(x)dx =

∫ 1

0

W

( ∞∑

l=0

hl u
l

)
du.(5.7)

Equations (5.6) and (5.7) are the main results of this section. We can obtain from them
various ZBOLL-G mathematical properties using integrals over (0, 1), which are usually
more simple than if they are based on the left integral. For example, an alternative
formula for the nth ordinary moment of X follows from (5.7) combined with (5.2) and
(5.3) as

µ′n =

∫ 1

0

( ∞∑

l=0

hl u
l

)n
du =

∞∑

l=0

fn,l
(l + 1)

,

where (for n ≥ 0) fn,0 = hn0 and, for n ≥ 1,
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fn,l = (l h0)−1 ∑l
r=1 [r (n+ 1)− l]hr fn,l−r.

6. Entropies

An entropy is a measure of variation or uncertainty of a random variable X. Two
popular entropy measures are the Rényi and Shannon entropies. The Rényi entropy of a
random variable with pdf f(·) is de�ned by

IR(γ) =
1

1− γ log

(∫ ∞

0

fγ(x)

)
dx,

for γ > 0 and γ 6= 1. The Shannon entropy of a random variable X is de�ned by
E{− log[f(X)]}. It is a special case of the Rényi entropy when γ ↑ 1.

Here, we derive expressions for the Rényi and Shannon entropies of the ZBOLL-G
family. By using (4.1), we can write
{
− log[1− G(x)α

G(x)α + Ḡ(x)α
]

}γβ−γ
= (γβ − γ)

∞∑

k=0

k∑

j=0

(−1)j+k
(
k−γβ+γ

k

)(
k
j

)
pj,k

[γ(β − 1)− j]

×
[

G(x)α

G(x)α + Ḡ(x)α

][γ(β−1)+k]

.

Hence,
{
− log[1− G(x)α

G(x)α + Ḡ(x)α
]

}γβ−γ [
αg(x)G(x)α−1Ḡ(x)α−1

Γ(β)
[
G(x)α + Ḡ(x)α

]2

]γ
=

αγ(γβ − γ)

∞∑

k,s=0

k∑

j=0

(−1)j+k
(
k−γβ+γ

k

)(
k
j

)
(
γ(α− 1)

s

)
pj,k

Γ(β)−γ [γ(β − 1)− j]

× G(x)αγ(β−1)+k α+γ(α−1)+s

[
G(x)α + Ḡ(x)α

]γ(β−1)+k+2γ
.

Further,

G(x)αγ(β−1)+k α+γ(α−1)+s

[
G(x)α + Ḡ(x)α

]γ(β−1)+k+2γ
=

∑∞
r=0 λ

′
r G(x)r∑∞

r=0 ρ
′
r G(x)r

=

∞∑

r=0

a′r G(x)r,

where

λ′r =

∞∑

l=r

(−1)l+r
(
αγ(β − 1) + k α+ γ(α− 1) + s

l

)(
l

r

)

ρ′r = hr(α, γ(β − 1) + k + 2γ)

a′r = a′r(α, β, i, k) =
1

ρ′0

(
ρ′r −

1

ρ′0

r∑

s=1

ρ′s a
′
r−s

)
, for r ≥ 1,

a0 = λ′0/ρ
′
0 and hr(α, β + i+ k) is de�ned in the Appendix. Then,

∫ ∞

0

gγ(x)dx =
1

Γ(β)γ

∫ ∞

0

{
− log

[
1− G(x)α

G(x)α + Ḡ(x; )α

]}γa−γ
×

{
αg(x)G(x)α−1Ḡ(x)α−1

[
G(x)α + Ḡ(x)α

]2

}γ
dx

=
αγ(γβ − γ)

Γ(β)γ

∞∑

k,r,s=0

k∑

j=0

(−1)j+k
(
k−γβ+γ

k

)(
k
j

)(
γ(α−1)

s

)
pj,ka

′
r

[γ(β − 1)− j] Sr,
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where Sr can be evaluated from the baseline distribution as

Sr =

∫ ∞

0

G(x)r gγ(x)dx.

Hence, the Rényi entropy of X is given by

IR(γ) =
γ

1− γ log (α)− γ

1− γ log [Γ(β)] +
1

1− γ log (γβ − γ)

+
1

1− γ log





∞∑

k,r,s=0

k∑

j=0

(−1)j+k
(
k−γβ+γ

k

)(
k
j

)(
γ(α−1)

s

)
pj,k a

′
r

[γ(β − 1)− j] Ir



 .

The Shannon entropy can be obtained by limiting γ ↑ 1 in IR(γ). However, it is easier
to derive an expression for it from �rst principles. Using the power series for log(1− z),
we can write

E{− log[f(X)]} = − log(α) + log[Γ(β)]− E{log[g(X)]}+ (1− α)E{log[G(X)]}
+(1− α)E{log[Ḡ(X)]}+ 2E{log[Gα(X) + Ḡα(X)]}

+(1− β)E

{
− log

[
1− Gα(X)

Gα(X) + Ḡα(X)

]}
.

First, we de�ne and compute

A(a1, a2, a3, a4;α) =

∫ 1

0

ua1(1− u)a2

[uα + (1− u)α]a3

{
− log

[
1− uα

uα + (1− u)α

]}a4
du.

Along the same lines of the derivation of the Rényi entropy, we obtain

A(a1, a2, a3, a4;α) = a4

∞∑

k,s=0

k∑

j=0

(−1)j+k+s

(
k − a4

k

)(
k

j

)(
a2

s

)
pj,k

a4 − j

×
∫ 1

0

uα(a4+k)+a1+s

[uα + (1− u)α]a4+k+a3
du.

Also,

uα(a4+k)+a1+s

[uα + (1− u)α]a4+k+a3
=

∑∞
r=0 λ

′′
r u

r

∑∞
r=0 ρ

′′
r ur

=

∞∑

r=0

a′′r u
r,

where (for r ≥ 1)

λ′′r =

∞∑

l=r

(−1)l+r
(
α(a4 + k) + a1 + s

l

)(
l

r

)
,

ρ′′r = hr(α, a4 + k + a3),

a′′r = a′′r (α, β, i, k) =
1

ρ′′0

(
ρ′r −

1

ρ′′0

r∑

s=1

ρ′′s a
′′
r−s

)
,

a′′0 = λ′′0/ρ
′′
0 and hr(α, a4 + k + a3) is de�ned in the Appendix. Then,

A(a1, a2, a3, a4;α) =

a4

∞∑

k,s,r=0

k∑

j=0

(−1)j+k+s

(
k − a4

k

)(
k

j

)(
α− 1

s

)

(a4 − j)(r + 1)
pj,ka

′′
r (α, β, i, k).
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Hence,

E {log [G(X)]} =
α

Γ(β)

∂

∂t
A(α+ t− 1, α− 1, 2, β − 1;α)

∣∣∣∣
t=0

,

E
{

log
[
Ḡ(X)

]}
=

α

Γ(β)

∂

∂t
A(α− 1, α+ t− 1, 2, β − 1;α)

∣∣∣∣
t=0

,

E
{

log
[
G(X)α + Ḡ(X)α

]}
=

α

Γ(β)

∂

∂t
A(α− 1, α− 1, 2− t, β − 1;α)

∣∣∣∣
t=0

and

E

{
− log

[
1− Gα(X)

Gα(X) + Ḡα(X)

]}
=

α

Γ(β)

∂

∂t
A(α− 1, α− 1, 2, β + t− 1;α)

∣∣∣∣
t=0

.

The simplest formula for the Shannon entropy of X is given by

E {− log[f(X)]} = − log(α) + log [Γ(β)]− E {log [g(X; τ )]}

+
α(1− α)

Γ(β)

∂

∂t
A(α+ t− 1, α− 1, 2, β − 1;α)

∣∣∣∣
t=0

+
α(1− α)

Γ(β)

∂

∂t
A(α− 1, α+ t− 1, 2, β − 1;α)

∣∣∣∣
t=0

+
2α

Γ(β)

∂

∂t
A(α− 1, α− 1, 2− t, β − 1;α)

∣∣∣∣
t=0

+
α(1− β)

Γ(β)

∂

∂t
A(α− 1, α− 1, 2, β + t− 1;α)

∣∣∣∣
t=0

.

We provide in Figures 4a-b a numerical investigation to identify how the parameter
values change the shapes of the Rényi entropy of X for some parameter ranges. To
evaluate the values of IR(γ) we consider the random variable X having the ZBOLL-W
distribution given in equation (2.1).

7. Order statistics

Suppose X1, . . . , Xn is a random sample from the ZBOLL-G family. Denote the
random variables in ascending order as X1:n ≤ . . . ≤ Xn:n. The pdf of Xi:n is given by
(David and Nagarajah, 2003)

fi:n(x) = K f(x)F i−1(x) {1− F (x)}n−i = K

n−i∑

j=0

(−1)j
(
n− i
j

)
f(x)F (x)j+i−1

=

∞∑

r,k=0

n−i∑

j=0

mj,r,k hr+k+1(x),(7.1)

where K = n!/[(i−1)! (n−i)!], hr+k+1(x) denotes the exp-G density function with power
parameter r + k + 1 and

mj,r,k =
(−1)j n!

(i− 1)! (n− i− j)! j!
(r + 1) br+1 fj+i−1,k

(r + k + 1)
,

where bk is de�ned by (4.3). Here, the quantities fj+i−1,k are obtained recursively by

fj+i−1,0 = bj+i−1
0 and (for k ≥ 1)

fj+i−1,k = (k b0)−1
k∑

m=1

[m(j + i)− k] bm fj+i−1,k−m.
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Figure 4. The Rényi entropy ofX as function of γ for λ = 1.5, κ = 3.5
and: (a) α = 0.2 for some values of β; (b) β = 1.5 for some values of
α.

Thus, one can easily obtain ordinary and incomplete moments and generating function
of ZBOLL-G order statistics from (7.1) for any parent G.

8. Maximum likelihood estimation

In this section, we determine the maximum likelihood estimates (MLEs) of the model
parameters of the new family from complete samples only. Let x1, . . . , xn be observed
values from the ZBOLL-G family with parameters α, β and τ . Let θ = (α, β, τ>)> be
the r × 1 parameter vector. The total log-likelihood function for θ is given by

`n(θ) = `n = n log(α)− n log[Γ(β)] +

n∑

i=1

log[g(xi; τ )]

+ (α− 1)

n∑

i=1

log[G(xi; τ )] + +(α− 1)

n∑

i=1

log[1−G(xi; τ )]

− 2

n∑

i=1

log{Gα(xi; τ ) + [1−G(xi; τ )]α}

+ (β − 1)

n∑

i=1

log

{
− log

[
[1−G(xi; τ )]α

Gα(xi; τ ) + [1−G(xi; τ )]α

]}
.(8.1)

The log-likelihood function can be maximized either directly by using the SAS (PROC
NLMIXED) or by solving the nonlinear likelihood equations obtained by di�erentiating
(8.1). The components of the score function
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Un(Θ) = (∂`n/∂α, ∂`n/∂β, ∂`n/∂τ )> are given by

∂`n
∂α

=
n

α
+

n∑

i=1

log[G(xi; τ )] +

n∑

i=1

log[1−G(xi; τ )]

− 2

n∑

i=1

Gα(xi; τ ) log[G(xi; τ )] + [1−G(xi; τ )]α log[1−G(xi; τ )]

Gα(xi; τ ) + [1−G(xi; τ )]α

+ (β − 1)

n∑

i=1

Gα(xi; τ ) log
{

[1−G(xi;τ)]
G(xi;τ)

}

[Gα(xi; τ ) + [1−G(xi; τ )]α] log
{

[1−G(xi;τ)]α

Gα(xi;τ)+[1−G(xi;τ)]α

} ,

∂`n
∂β

= −nψ(β) +

n∑

i=1

log

{
− log

[
[1−G(xi; τ )]α

Gα(xi; τ ) + [1−G(xi; τ )]α

]}
,

∂`n
∂τ

=

n∑

i=1

[ġ(xi; τ )]τ
g(xi; τ )

− (α− 1)

n∑

i=1

[Ġ(xi; τ )]τ
G(xi; τ )

− 2α

n∑

i=1

[Ġ(xi; τ )]τ{Gα(xi; τ )− [1−G(xi; τ )]α−1}
Gα(xi; τ ) + [1−G(xi; τ )]α

+ α(β − 1)

n∑

i=1

[Ġ(xi; τ )]τ [Gα(xi; τ ) +Gα−1(xi; τ )]

[Gα(xi; τ ) + [1−G(xi; τ )]α] log
{

[1−G(xi;τ)]α

Gα(xi;τ)+[1−G(xi;τ)]α

} ,

where

[ġ(xi; τ )]α =
dg(xi; τ )

dα
, [Ġ(xi; τ )]α =

dG(xi; τ )

dα
,

[ġ(xi; τ )]β =
dg(xi; τ )

dβ
, [Ġ(xi; τ )]β =

dG(xi; τ )

dβ
,

[ġ(xi; τ )]τ =
dg(xi; τ )

dτ
, [Ġ(xi; τ )]τ =

dG(xi; τ )

dτ
,

and the functions g(·) and G(·) are de�ned in Section 1 and ψ(·) is the digamma function.

The MLE θ̂ of θ is obtained by solving the nonlinear likelihood equations Uα(θ) = 0,
Uβ(θ) = 0 and Uτ (θ) = 0. These equations cannot be solved analytically and statistical
software can be used to solve them numerically. We can use iterative techniques such as

a Newton-Raphson type algorithm to obtain the estimate θ̂. We employ the numerical
procedure NLMixed in SAS.

For interval estimation of (α, β, τ ) and hypothesis tests on these parameters, we obtain
the observed information matrix since the expected information matrix is very compli-
cated and requires numerical integration. The (p + 2) × (p + 2) observed information
matrix J(θ), where p is the dimension of the vector τ , becomes

J(θ) = −




Lαα Lαβ Lατ
. Lββ Lβτ
. . Lττ


 ,

whose elements are given in Appendix B.
Under conditions that are ful�lled for parameters in the interior of the parameter space

but not on the boundary, the asymptotic distribution of (θ̂−θ) is Np+2(0, I(θ)−1), where

I(θ) is the expected information matrix. The multivariate normal Np+2(0, J(θ̂)−1) dis-

tribution, where I(θ) is replaced by J(θ̂), i.e., the observed information matrix evaluated

at θ̂, can be used to construct approximate con�dence intervals for the individual pa-
rameters.
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We can compute the maximum values of the unrestricted and restricted log-likelihoods
to obtain likelihood ratio (LR) statistics for testing some special models of the proposed
family. Tests of the hypotheses of the type H0 : ψ = ψ0 versus H : ψ 6= ψ0, where ψ
is a subset of parameters of θ, can be performed through LR statistics in the usual way.

9. Applications

In this section, we use two real data sets to compare the �ts of the ZBOLL-G family
with others commonly used lifetime models. In each case, the parameters are estimated
by maximum likelihood (Section 8) using the subroutine NLMixed in SAS. First, we
describe the data sets and give the MLEs (the corresponding standard errors and 95%
con�dence intervals) of the model parameters and the values of the Akaike Information
Criterion (AIC), Consistent Akaike Information Criterion (CAIC), Bayesian Information
Criterion (BIC) and Kolmogorov-Smirnov (K-S) statistics. The lower the values of these
criteria, the better the �t. Note that over-parametrization is penalized in these criteria,
so that the two additional parameters in the proposed family do not necessarily lead to
smaller values of these statistics. Next, we perform LR tests for testing some special
models. Finally, we provide the histograms of the data sets to have a visual comparison
of the �tted density functions.

9.1. Application 1: Zootechnics data. The data come from the zootechnics records
of a Brazilian company engaged in raising beef cattle, where the farms stocked with the
Nelore breed are located in the States of Bahia and São Paulo. In the analysis, only
data on females born in 2000 were used and the age at �rst calving was the reproductive
characteristic analyzed. In this case, the response variable is the logarithm of the age
of the cows at �rst calving (measured in days). The �rst calving age is an important
characteristic for beef cattle breeders because the faster cows reach reproductive maturity,
the more calves they will produce during their breeding cycle and the greater the breeder's
return on investment will be. Further, this trait is easy and inexpensive to measure. The
sample size in this study is n = 897.

First, we describe the descriptive statistics of the data in Table 1. They suggest neg-
atively skewed distributions with di�erent degrees of variability, skewness and kurtosis.
Then, we report the MLEs (and the corresponding standard errors in parentheses) of the

Table 1. Descriptive statistics.

Mean Median Mode Variance Skewness Kurtosis Min. Max. n

1004.32 1053.0 1074.0 13838.9 -0.405 -0.139 722 1453 897

parameters in Table 2. Additionally, we compare the models using the AIC, CAIC, BIC
and K-S statistics (see Table 3). The �gures in this table indicate that the ZBOLL-W
model gives the best �t among the �tted models.

A comparison of the proposed distribution with some of its sub-models using LR
statistics is performed in Table 4. The �gures in this table, specially the p-values, reveal
that the ZBOLL-Wmodel gives a better �t to these data than the other three sub-models.

More information is provided by a visual comparison of the histogram of the data with
the �tted density functions. The plots of the �tted ZBOLL-W, OLL-W, gamma-W and
Weibull density functions are displayed in Figure 5. We also conclude that the ZBOLL-W
distribution provides an adequate �t to these data.
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Table 2. Estimates of the parameters, standard errors in [·] and 95%
con�dence intervals in (·) for the zootechnics data.

Model α β κ λ

ZBOLL-W 86.8186 0.1612 0.4420 2582.45
[4.4833] [0.0136] [0.035] [168.38]

(78.0196, 95.6175) (0.1346, 0.1879) (0.3735, 0.5106) (2251.98, 2912.91)
OLL-W 1.3982 1 7.5136 1068.10

[0.1074] - [0.4975] [5.1663]
(1.1874, 1.6089) - (6.5372, 8.4899) (1057.97, 1078.24)

Gamma-W 1 2.0976 6.4239 924.76
- [0.3808] [0.6520] [40.0309]
- (1.3503, 2.8449) (5.1443, 7.7035) (846.20, 1003.33)

Weibull 1 1 9.4418 1054.36 3
- - [0.2198] [3.9260]
- - (9.0104, 9.8732) (1046.07, 1062.07)

Table 3. The AIC, CAIC, BIC and K-S statistics for the zootechnics data.

Model AIC CAIC BIC K-S p-value

ZBOLL-W 10838 10839 10857 0.1381 <0.001
OLL-W 11081 11082 11095 0.1519 <0.001

Gamma-W 11078 11079 11092 0.1717 <0.001
Weibull 11103 11104 11113 0.1595 <0.001

Table 4. LR statistics for the zootechnics data.

Model Hypotheses Statistic w p-value

ZBOLL-W vs OLL-W H0 : β = 1 vs H1 : H0 is false 244.0 <0.00001
ZBOLL-W vs Gamma-W H0 : α = 1 vs H1 : H0 is false 241.0 <0.00001
ZBOLL-W vs Weibull H0 : α = β = 1 vs H1 : H0 is false 268.0 <0.00001

9.2. Application 2: Temperature data. The variable temperature (oC) correspond-
ing to daily data for the period from January 1 to December 31, 2011, obtained from
the weather station of the Department of Biosystem Engineering of the Luiz de Queiroz
School of Agriculture (ESALQ) of the University of São Paulo (USP), located in the City
of Piracicaba, at latitude 22�42�30�S, longitude 47�38�30�W and altitude of 546 meters.
First, we describe the data set in Table 5.

Table 5. Descriptive statistics.

Mean Median Mode Variance Skewness Kurtosis Min. Max. n

22.32 22.90 19.25 8.71 -0.50 -0.73 14.68 27.25 365
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Figure 5. (a) Fitted ZBOLL-W, OLL-W, gamma-W andWeibull den-
sities for the zootechnics data.

For these data, we compare the �tted ZBOLL-N, OLL-N, gamma-N and normal distri-
butions. The MLEs of µ and σ for the normal distribution are taking as starting values
for the iterative procedure to �t the ZBOLL-N, OLL-N and gamma-N models. The
MLEs of the parameters, standard errors and 95% con�dence intervals for the parame-
ters are given in Table 6. Additionally, we compare the models using the AIC, CAIC,
BIC and K-S statistics (see Table 7). Since the values of these statistics are smaller
for the ZBOLL-N distribution compared to those values of the other models (see Table
6), the new distribution produces a �t to the current data quite better than its special
models.

A comparison of the proposed distribution with some of its sub-models using LR
statistics is performed in Table 8. The �gures in this table, specially the p-values, indicate
that the ZBOLL-N model gives a better �t to these data than the other three sub-models.
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Table 6. Estimates of the parameters, standard errors in [·] and 95%
con�dence intervals in (·) for the ZBOLL-N model and its special mod-
els and three criteria for the temperature data.

Model α β µ σ

ZBOLL-N 0.1783 1.3744 21.0200 0.9293
[0.0262] [0.1355] [0.3640] [0.0729]

(0.1183, 0.2382) (1.1579, 1.5907) (20.4648, 21.5757) (0.7422, 1.1163)
OLL-N 0.1861 1 21.9071 0.8915

[0.0448] - [0.1220] [0.1281]
(0.0958, 0.2763) - (21.6668, 22.1474) (0.6332, 1.1498)

Gamma-N 1 0.1246 26.698 1.4409
- [0.0069] [0.1910] [0.0319]
- (0.1109, 0.1383) (26.1933, 26.9446) (1.3782, 1.5037)

Normal 1 1 22.3271 2.9463
- - [0.1542] [0.1090]
- - () ()

Table 7. AIC, CAIC, BIC and K-S statistics for the temperature data.

Model AIC CAIC BIC K-S p-values

ZBOLL-N 1777.9 1778.1 1793.5 0.0617 0.0731
OLL-N 1790.4 1791.4 1802.1 0.1108 0.0002

Gamma-N 1797.6 1797.7 1809.3 0.0818 0.0151
Normal 1828.7 1829.7 1836.5 0.1029 0.0005

Table 8. LR statistics for the temperature data.

Model Hypotheses Statistic w p-value

ZBOLL-N vs OLL-N H0 : β = 1 vs H1 : H0 is false 14.5 0.00014
ZBOLL-N vs Gamma-N H0 : α = 1 vs H1 : H0 is false 22.0 <0.00001
ZBOLL-N vs Normal H0 : α = β = 1 vs H1 : H0 is false 54.8 <0.00001

More information is provided by a visual comparison of the histogram of the data and
the �tted density functions. The plots of the �tted ZBOLL-N, OLL-N, gamma-N and
normal densities are displayed in Figure 6. We conclude that the ZBOLL-N distribution
provides the best �t to these data.

10. Conclusions

In this paper, we propose a new family of distributions with two extra generator
parameters, which includes as special cases all classical continuous distributions. For
any parent continuous distribution G, we de�ne the so-called Zografos-Balakrishnan odd

log-logistic-G family with two extra positive parameters. The new family extends several
widely known distributions and some of its special models are discussed. We demonstrate
that the new family density function is a linear mixture of exponentiated-G densities.
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Figure 6. (a) Fitted ZBOLL-N, OLL-N, gamma-N and normal den-
sities for the zootechnics data.

We obtain some of its mathematical properties, which include ordinary and incomplete
moments, generating and quantile functions, mean deviations, Bonferroni and Lorenz
curves, two types of entropies and order statistics. The application of the new family is
straightforward. The model parameters are estimated by maximum likelihood. Two real
examples are used for illustration, where the new family does �t well both data sets.

Appendix A: Three useful power series

We present three power series required for the algebraic developments in Section 3
and 6. First, for b > 0 real non-integer and −1 < u < 1, we have the binomial expansion

(10.1) (1− u)a =

∞∑

j=0

(−1)j
(
a

j

)
uj ,
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where the binomial coe�cient is de�ned for any real.
Second, expanding zλ in Taylor series, we can write

(10.2) zλ =

∞∑

k=0

(λ)k (z − 1)k/k! =

∞∑

i=0

fi z
i

where

(10.3) fi = fi(λ) =

∞∑

k=i

(−1)k−i

k!

(
k

i

)
(λ)k

and (λ)k = λ(λ− 1) . . . (λ− k + 1) denotes the descending factorial.
Third, we obtain an expansion for [G(x)a + Ḡ(x)a]c. We can write from equation

(10.2) and (10.1)

(10.4) [G(x)a + Ḡ(x)a] =

∞∑

j=0

tj G(x)j ,

where tj = tj(a) = aj(a) + (−1)j
(
a
j

)
and aj(a) is de�ned by (10.2). Then, using (10.2),

we have

[G(x)a + Ḡ(x)a]c =

∞∑

i=0

fi

( ∞∑

j=0

tj G(x)j
)i
,

where fi = fi(c).
Finally, using again equations (10.3) and (10.4), we have

[G(x)a + Ḡ(x)a]c =

∞∑

j=0

hj(a, c)G(x)j ,(10.5)

where hj(a, c) =
∑∞
i=0 fimi,j and (for i ≥ 0)mi,j = (j t0)−1∑j

m=1[m(j+1)−j] tmmi,j−m
(for j ≥ 1) and mi,0 = ti0.

Appendix B

The elements of the observed information matrix J(θ) for the parameters (α, β, τ ) are
given by

Jαα =
−n
α2

− 2

n∑

i=1

Gα(xi; τ )[1−G(xi; τ )]α
{

log[G(xi; τ )] log[ G(xi;τ)
1−G(xi;τ)

]
}

[Gα(xi; τ ) + [1−G(xi; τ )]α]2

− 2

n∑

i=1

Gα(xi; τ )[1−G(xi; τ )]α
{

log[1−G(xi; τ ] log[ 1−G(xi;τ)
G(xi;τ)

]
}

[Gα(xi; τ ) + [1−G(xi; τ )]α]2
,

Jαβ = −
n∑

i=1

Gα(xi; τ ) log
[
G(xi;τ)

Ḡ(xi;τ)

]

[Gα(xi; τ ) + [1−G(xi; τ )]α] log
[
1− Gα(xi;τ)

Gα(xi;τ)+[1−G(xi;τ)]α

] ,
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Jα τ =

n∑

i=1

[Ġ(xi; τ )]τ
G(xi; τ )

−
n∑

i=1

[Ġ(xi; τ )]τ
1−G(xi; τ )

− 2

n∑

i=1

[Ġ(xi; τ )]τ
[
Gα−1(xi; τ )− [1−G(xi; τ )]α−1

]

Gα(xi; τ ) + [1−G(xi; τ )]α

− 2α

n∑

i=1

[Ġ(xi; τ )]τ G
α(xi; τ ) [1−G(xi; τ )]α log

[
G(xi;τ)

1−G(xi;τ)

]

[Gα(xi; τ ) + [1−G(xi; τ )]α]2

Jββ = −nψ′(β)

Jβ τ = −α
n∑

i=1

[Ġ(xi; τ )]τ Gα−1(xi; τ )

[1−G(xi; τ )] [Gα(xi; τ ) + [1−G(xi; τ )]α] log
[
1− Gα(xi;τ)

Gα(xi;τ)+[1−G(xi;τ)]α

]

Jττ = (α− 1)

n∑

i=1

{
[G̈(xi; τ )]ττ

G(xi; τ )
− [Ġ(xi; τ )]2τ

[G(xi; τ )]2

}

+(α− 1)

n∑

i=1

{
[G̈(xi; τ )]ττ

[1−G(xi; τ )]
+

[Ġ(xi; τ )]2τ
[1−G(xi; τ )]2

}

−β
n∑

i=1

{
[G̈(xi; τ )]ττ

[1−G(xi; τ )]2
+

2[Ġ(xi; τ )]2τ
[1−G(xi; τ )]3

}
+

n∑

i=1

{
[g̈(xi; τ )]ττ

g(xi; τ )
− [ġ(xi; τ )]2τ

[g(xi; τ )]2

}
,

where

[ġ(xi; τ )]τ =
dg(xi; τ )

dτ
, [Ġ(xi; τ )]τ =

dG(xi; τ )

dτ
, [G(xi; τ )]2 =

dG(xi; τ )

dτ

(
dG(xi; τ )

dτ

)T
,

[g̈(xi; τ )]ττ =
d2g(xi; τ )

dττT
, [G̈(xi; τ )]ττ =

d2G(xi; τ )

dττ 2
,

and g(·) and G(·) are de�ned in Section 1.
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Analysis of covariance by assuming a skew normal
distribution for response variable
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Abstract

The traditional theory of analysis of covariance (ANCOVA) is based on
normality assumption, while in many real world applications the data
violate normality and this theory is not adequate. In this paper, we
expand a model for analysis of covariance with a skew normal response
variable. The maximum likelihood estimates of the model parameters
are provided via an EM algorithm. We also developed asymptotic con-
�dence intervals for parameters. A simulation study is performed to
assess the performance of the proposed model. The methodology is
illustrated using a real data set.
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1. Introduction

Analysis of covariance is a widely used technique for exploring possible relation be-
tween a usually continuous response variable and a set of covariates and treatments. This
methodology is a combination of regression and analysis of variance (ANOVA) that prof-
its the bene�ts of both of these two e�cient modeling methods. The ANCOVA can be
employed for a wide range of di�erent purposes. It can be used to �lter out error variance,
to explore pre-test vs. post-test e�ects, to control the variables, to �nding signi�cant dif-
ference between groups by reducing the within-groups variations etc. It also provides a
useful approach to treat the potentially confounding variables. In many practical situ-
ations, one cannot provide the ideal homogenous experimental units for all treatments,
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even after blocking, which is an essential requirement for comparative experiments an-
alyzed by ANOVA. Thus one has to appeal to ANCOVA. In this context, adjusting
treatment e�ects for nuisance covariates e�ects on the response variable is of paramount
importance for the researcher. This practice allows �nding the net e�ect of treatments
under speci�ed collection of covariates and provides a clear guidance for users of the
results. This concept is foreign to proper regression analysis which does not discriminate
between treatment and covariate. ANCOVA was �rstly motivated by Fisher [14]. During
the years many researchers have investigated di�erent theoretical and applied aspects of
ANCOVA in di�erent sciences. Cochran [10] and Cox and McCullagh [11] and references
therein are good sources for more information about ANCOVA. As it is pointed out by
[19] the traditional theory of normal ANCOVA is not adequate when the data violate the
normality assumption. This creates a strong motivation for considering ANCOVA under
other distributions that are more �exible than normal distribution. Many researches
have been recently focused to develop suitable methods for dealing with non-normality.
These considerations are not limited to ANCOVA and other modeling techniques such
as regression, ANOVA, discriminant analysis etc. have investigated repeatedly for use in
situations that the normality assumption does not hold. In particular, the skew normal
family of distributions as a generalization of the normal family has attracted consider-
able attentions in literature. Though the earlier appearance of skew normal distribution
returns to Roberts [21] and O'Hagan and Leonard [20] and Aigner et al. [1], but the
�rst formal de�nition of this family of distributions was provided by Azzalini [3]. The
multivariate form of the skew normal distribution is expanded in [4] and [5]. During the
three past decades many skew normal distribution have been introduced and discussed in
literature. References [22, 15, 16, 4] are excellent sources of information about the skew
normal family of distributions and their properties. Di�erent modeling approaches such
as regression analysis (Sahu et al. [22], Ferreira and Steel [13] and Cancho [9]), Bayesian
nonlinear regression (De la Cruz and Branco [12]), linear mixed models (Arellano-Valle
[2]) and analyzing longitudinal data (Baghfalaki et al. [7] and Lin and Lee [18]) have
been developed under the assumption of skew normal distribution. This paper investi-
gates ANCOVA under the assumption of skew normal distribution for response variable.
We show that the skew normal ANCOVA model leads to the more e�cient estimations
of the model parameters than the traditional models.

The rest of paper is structured as follows. In section 2, we give some brief preliminaries
and necessary background about the concept of ANCOVA and its formulation. The skew
normal ANCOVA model is developed in section 3. We provide the ML estimates of the
model parameters and their adjusted counterparts via EM algorithm. In section 4, we
construct the asymptotic con�dence intervals for the model parameters. A simulation
study is performed to assess the performance of the proposed model, in section 5. In
section 6, a real data set is analyzed to explain the proposed methodology.

2. Preliminaries and Notations

The aim of ANCOVA is to explore possible relation between a response variable and a
set of treatments and covariates. Consider a balanced complete randomized design with t
treatments and r replications. We treat the balanced design to avoid cluttered notations,
but the problem can be cast in general unbalanced design, as it is explained by Meshkani
et. al. [19]. In the simplest case, an ANCOVA model with a covariate and a two-level
factor is given by

E[Yij |x,z] = β0 + βi + γ(zij − z̄i) i = 1, . . . , t, j = 1, . . . , r,(2.1)
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where β0 shows the intercept term and βi, i = 1, . . . , t denote the factor e�ects which
satisfy the constraint

∑t
i=1 βi = 0. The vector of model parameters is

θ = (β′,γ′)′ = (β0, β1, . . . , βt−1, γ)′.

In model (2.1) the regression equation of Y on Z has a �xed slope γ for all treatments. If
the slopes of the regression model for di�erent treatments is not the same, the ANCOVA
model would be of the form

E[Yij |x,z] = β0 + βi + γi(zij − z̄i) i = 1, . . . , t, j = 1, . . . , r,

therefore there is a vector of slopes γ = (γ1, . . . , γt)
′. In general case, an ANCOVA

model can be written as

E(Y11, . . . , Ytr) = Xβ +Zγ = Wθ,(2.2)

whereX denotes the design matrix, Z includes the observed covariates,W = [X,Z] and
θ = (β′,γ′)′ with β = (β0, β1, . . . , βt−1)′, γ = (γ1, . . . , γq)

′ and p = t+ q. For example,
in model (2.1) we have

W =




1r 1r 0r . . . 0r z̃1

1r 0r 0r . . . 0r z̃2

...
...

...
. . .

...
...

1r 0r 0r . . . 1r z̃t−1

1r −1r −1r . . . −1r z̃t




= [X|Z](2.3)

where 1r = (1, . . . , 1)′, 0r = (0, . . . , 0)′ and z̃i = ((zi1− z̄i), . . . , (zij − z̄i), . . . , (zir − z̄i)).
As it can be clearly seen, in an ANCOVA model the relationship between the mean
of a response variable and treatments and covariates is determined by the structure of
design matrix X and covariate matrix Z. For model (2.2) the design matrix, X, and the
vector of treatments e�ects, β, are the same as model (2.1), but the matrix of observed
covariates is given by

Z =




z̃1 0r . . . 0r 0r
0r z̃2 . . . 0r 0r
...

...
...

. . .
...

0r 0r . . . z̃t−1 0r
0r 0r . . . 0r z̃t



.

The unbalanced form of ANCOVA models can also be represented by the general form
given in equation (2.2). Considering the constraint

∑t
i=1 riβi = 0, it would su�ce to

replace the − 1
rt

(r1, . . . , rt−1) for −1r in the last row of the matrix W where ri, , i =

1, . . . , t, denotes the number of replications for i-th treatment. For Other common designs
such as split-plot, Latin squares, Greco-Latin etc., the modeling method is similar, i.e.,
the design matrix and the covariate matrix can be written in the general form of W =
[X,Z]. It should be noted that the constraint

∑t
i=1 βi = 0 has been absorbed into the

design matrixW . More details and examples about other common designs can be found
in [19]

Considering the general formulation of an ANCOVA model given in equation (2.2),
the main goal of ANOCVA is to estimate the vector of parameters θ, β and γ using the
vector of responses y = (y11, . . . , ytr) and the matrix of observations W . In what follows
we follow the notations of [19].
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3. The model and parameter estimation

In this section, we develop an ANCOVA model under the assumption of skew normal
distribution for response variable. Consider the general form of an ANCOVA model given
in equation (2.2). Let the skew normal ANCOVA model be

Yij |wij ∼ SSN(wijθ −
√

2

π
λ, σ2, λ) i = 1, ..., s; j = 1, ..., r,(3.1)

where s is the number of treatments, r is the number of replications, wij = (xi, zij)
denotes the ij-th row of matrix W and SSN(µ, σ2, λ) denotes the Sahu skew normal
distribution with location parameter µ, scale parameter σ2 and skewness parameter λ,
given by

fYij (y|µ, σ2, λ) = 2φ(y;µ−
√

2

π
λ, σ2 + λ2)Φ(

λ

σ

(y − µ)

(σ2 + λ2)
1
2

),(3.2)

where φ(·) and Φ(·) denote, respectively, the density and cumulative distribution function
of the normal distribution. The likelihood function of the model (3.1) is

L(θ, λ, σ2|y,W ) =

s∏

i=1

r∏

j=1

fYij (yij |θ, λ, σ2)

=

s∏

i=1

r∏

j=1

2φ(yij ;wijθ −
√

2

π
λ, σ2 + λ2)Φ(

λ

σ

(yij −wijθ)

(σ2 + λ2)
1
2

).(3.3)

Due to the complexity of likelihood function (3.3) there are no explicit form for the
ML estimators of the model parameters. Therefore, we provide an EM algorithm to
compute the numerical values of the ML estimates. For this, it is necessary to formulate
the problem in terms of a missing data problem. The skew normal ANCOVA model
(3.1) can be written in a hierarchical structure as a mixture of normal and halfnormal
distributions given by

{
Yij |Tij = tij ∼ N(wijθ + λ(tij −

√
2
π

), σ2)

Tij ∼ HN(0, 1) i = 1, ..., s; j = 1, ..., r.

Therefore, considering {Tij ; i = 1, . . . , s; j = 1, . . . , r} and {yij ; i = 1, .., s; j = 1, ..., r},
respectively, as missing and incomplete data, the joint density of the complete data
(yij , Tij) is given by

f(Yij ,Tij)(yij , tij) = fYij |Tij=tij (yij)× gTij (tij)

=
1√

2πσ2
exp

{
− 1

2σ2
(yij −wijθ − λ(tij −

√
2

π
))2

}

×
√

2

π
exp

{
− t2ij

2

}
.

Hence, the complete data likelihood and log-likelihood functions are obtained to be

Lc(θ, σ
2, λ|y,W , t) =

s∏

i=1

r∏

j=1

f(Yij ,Tij)(yij , tij)

= exp

{
− 1

2σ2

s∑

i=1

r∑

j=1

[
(yij −wijθ)2 − 2λ(yij −wijθ

+ λ

√
2

π
)tij + (λ2 + σ2)t2ij + 2λ

√
2

π
(yij −wijθ) + λ2 2

π

]}
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× (π)−sr(σ2)
−
sr

2

and

`c(θ, σ
2, λ|y,W , t) = − 1

2σ2

[
(y −Wθ)′(y −Wθ)− 2λ(y −Wθ + λ

√
2

π
1)′ttt

+ (λ2 + σ2)(ttt2)′1 + 2λ

√
2

π
(Y −Wθ)′1 +

2srλ2

π

]

− sr log π − sr

2
log σ2,

respectively, where t = (t11, ..., tsr)
′, t2 = (t211, ..., t

2
sr) and 1sr denotes a sr × 1 unit

vector. To proceeds the EM algorithm, the conditional expectation of the complete data
log-likelihood given incomplete data is obtained to be

E(`c(θ, σ
2, λ|y,W )) = −sr log π − sr

2
log σ2 − 1

2σ2

[
(y −Wθ)′(y −Wθ)

− 2λ(y −Wθ + λ

√
2

π
1sr)

′t̂tt+ (λ2 + σ2)(t̂tt2)′1sr

+ 2λ

√
2

π
(Y −Wθ)′1sr +

2srλ2

π

]
,(3.4)

where t̂ and t̂2 denote the �rst and second order conditional moments of random variable
Tij |yij , respectively. Using the equations of the truncated normal moments (see for
example, Barr et al. 1999), these moments are given by

t̂ij = E(tij |θ̂, yij) = ηij + τδij ,

t̂2ij = E(t2ij |θ̂, yij) = η2
ij + τ2 + τδijηij ,

where ηij = λ
σ2+λ2 (yij−wijθ+

√
2
π
λ), τ2 = σ2

σ2+λ2 and δij =
φ(
η̂ij
τ̂

)

Φ(
η̂ij
τ̂

)
. The M-step of EM

algorithm searches the parameter space to maximize the conditional expectation (3.4).
Given the values of the parameters in k-th iteration of algorithm, the ML estimates of
the parameters in (k+1)-th iteration are obtained as,

θ̂
(k+1)

= (W ′W )−1W ′
(
y + λ̂(k)(

√
2

π
1sr − t̂tt(k)

)
)
,

σ̂2
(k+1)

=
1

sr

[
(y −Wθ̂

(k)
)′(y −Wθ̂

(k)
)

− 2λ̂(k)(y −Wθ̂
(k)

+ λ̂(k)

√
2

π
1sr)

′t̂tt
(k)

+ λ̂2
(k)

(ttt2)′1

+ 2λ

√
2

π
(Y −Wθ)′1 +

2srλ2

π

]
,

λ̂(k+1) =
(√ 2

π
1′sr(y −Wθ̂

(k)
)− (y −Wθ̂

(k)
)′t̂tt

(k)
)

×
(
1′sr(2

√
2

π
t̂tt
(k) − t̂tt2(k)

)− sr 2

π

)−1

.

The E and M steps are repeated alternately until a convergence rule holds.

3.1. Adjusted e�ects. As it can be clearly seen, from equation (2.2), there are two
types of parameters in an ANCOVA model. The �rst type, denoted by β, corresponds to
the treatment e�ects. Whereas the second type, denoted by γ, corresponds to covariate
e�ects. The EM algorithm expounded in previous section, provides the ML estimator
for the vector of parameters, θ, without separating these two types of parameters. We
may be interested in estimating either the e�ects of treatments adjusted for the e�ects of
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covariates or the e�ects of covariates adjusted for the e�ects of treatments. In this section,
we provide the adjusted estimators for both covariates and treatments e�ects. For this
purpose, we rewrite the equation (3.4) by using the equality of wijθ = xiβ + zijγ, as:

E(`c(θ, σ
2, λ|β,γ)) ∝

s∑

i=1

r∑

j=1

(
yij − (xiβ + zzzijγ)

)2

− 2λ

s∑

i=1

r∑

j=1

(
yij − xiβ − zzzijγ

)
t̂ij − 2λ2

√
2

π

s∑

i=1

r∑

j=1

t̂ij ,

+ λ2
s∑

i=1

r∑

j=1

t̂2ij + 2λ

√
2

π

s∑

i=1

r∑

j=1

(
yij − xxxiβ − zzzijγ

)
+ srλ2 2

π

∝ y′y − 2y′(Xβ +Zγ) + (Xβ)′(Xβ) + 2(Xβ)′(Zγ)

− 2λ2

√
2

π
1′srt̂tt+ λ21′srt̂tt2 + 2λ

√
2

π
1′sr(y −Xβ −Zγ)

+ (Zγ)′(Zγ) + srλ2 2

π
.(3.5)

Equating the �rst order derivations of (3.5) with respect to the model parameters β and
γ to zero, leads to the following system of equations:




∂(E(`c(θ, σ
2, λ|β,γ))

∂β
= −2X ′y + 2X ′Xβ + 2X ′Zγ − 2λ

√
2
π
X ′1sr = 0

∂(E(`c(θ, σ
2, λ|β,γ))

∂γ
= −2Z′y + 2Z′Xβ + 2Z′Zγ − 2λ

√
2
π
Z′1sr = 0.

Therefore, the adjusted ML estimators of treatments and covariates e�ects in k − th
iteration of the EM algorithm are obtained to be:

β̂
(k+1)

ML.z = (X ′X)−1X ′(y −Zγ(k)
ML + λ(k)

√
2

π
1sr),

γ̂
(k+1)
ML.x = (Z′Z)−1Z′(y −X ˆ

β
(k)
ML + λ(k)

√
2

π
1sr).

Note that, as it is well known, in the proper regression analysis each regression coe�cient
shows the e�ect of corresponding explanatory variable on the response variable, given
all other explanatory variables (qualitative and quantitative) are kept �xed. But in
ANCOVA, one needs the treatment e�ects for the situation that only the whole set of
quantitative variables, i.e., covariates are kept �xed. Moreover, the partition used in
ANCOVA is dictated by the context of each special experiment. For example, some
experiments may have no covariate thus no partition is considered and some may have
one or more covariates whose e�ects should be removed from the treatment e�ects. Thus,
there is a natural partition of treatments and covariates correspond to each problem.

4. Asymptotic Con�dence Intervals

To construct exact con�dence intervals for the model parameters requires exact knowl-
edge of the sampling distribution of the ML estimators. Due to the complexity of these
estimators, derivation of their exact distributions is a challenging problem, if it be feasible
at all. Therefore, in this section we use the asymptotic distributions of these estimators
to construct asymptotic con�dence intervals for the model parameters. The results of
this section are valid when r or equivalently n(= tr) goes to in�nity.
Consider the skew normal ANCOVA model (3.1). Let

`ij(θ, σ
2, λ|y,W ) = log 2− 1

2
log 2π − 1

2
log a− bij

2
+ log Φ(kij),
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with a = σ2 + λ2 and

bij =

(
yij −wijθ +

√
2
π
λ
)2

σ2 + λ2
,

kij =
λ

σ
1
2

(
yij −wijθ +

√
2

π
λ
)
.

Then, the log-likelihood function of the model is given by

`(θ, σ2, λ|y,W ) =

s∑

i=1

r∑

j=1

`ij(θ, σ
2, λ|y,W ).

The �rst order partial derivations of the log-likelihood function with respect to the model
parameters θ, σ2 and λ are given by

∂`(θ, σ2, λ|y,W )

∂θ
=

s∑

i=1

r∑

j=1

∂`ij(θ, σ
2, λ|y,W )

∂θ
,

∂`(θ, σ2, λ|y,W )

∂σ2
=

s∑

i=1

r∑

j=1

∂`ij(θ, σ
2, λ|y,W )

∂σ2
,

∂`(θ, σ2, λ|y,W )

∂λ
=

s∑

i=1

r∑

j=1

∂`ij(θ, σ
2, λ|y,W )

∂λ
,

respectively, where

∂`ij(θ, σ
2, λ|y,W )

∂θ
=

yij −wijθ +

√
2

π
a

w′ij − δΦ(kij)
λ

σ
√
a
w′ij ,

∂`ij(θ, σ
2, λ|y,W )

∂σ2
= − 1

2a
+
bij
2a
− δΦ(kij)

kij(2σ
2 + λ2)

σ2a
,

∂`ij(θ, σ
2, λ|y,W )

∂λ
= −λ

a
− 1

a2
{a
√

2

π
(yij −wijθ +

√
2

π
λ)− λbij}

+ δΦ(kij)kij(1−
λ2

a
) +

λ

σ
√
a

√
2

π
,

and δΦ(u) =
φ(u)

Φ(u)
. The second order derivations of the log-likelihood function with

respect to the parameters are similarly given by

∂2`ij
∂ν∂ξ′

= −1

2

∂2 log a

∂ν∂ξ′
− 1

2

∂2bij
∂ν∂ξ′

+
∂2 log Φ(kij)

∂ν∂ξ′
,

where ν represents the parameters θ, σ2 or λ and

∂2 log Φ(kij)

∂ν∂ξ′
= δΦ(kij)

( ∂2kij
∂ν∂ξ′

)
+ ∆Φ(kij)

(∂kij
∂ν

)(∂kij
∂ξ

)′

∂2log a

∂λ2
= 2

(a− 2λ2)

a2
,

∂2bij
∂λ2

=
4

πa
− 8

σkij

λa
3
2

+ 2
bij
a2

(4λ− a),

∂2bij
∂λ∂σ2

= 2

√
2

π

σkij

λa
3
2

+ 4
λ

a2
bij ,

∂2bij

∂σ22 = −2
bij
a2
,

∂2bij
∂λ∂θ

= 2(
kij

a
3
2

−
√

2

π

1

a
)w′ij ,

∂2bij
∂σ2∂θ

=
σkij

λa
3
2

w′ij ,

∂2bij
∂θ∂θ′

=
2

a
w′ij(wij),

∂2kij
∂λ∂θ

= − σ

a
3
2

w′ij ,

∂2kij
∂λ2

= 2

√
2

π

σ

a
3
2

− 3
σ2

a2
kij



1812

∂2kij
∂λ∂σ2

=
(2σ2 + λ2)

2σa
3
2

(
kij

λa
1
2

−
√

2

π
λ) +

λkij
a2

(
3

2
− a

σ2
),

∂2kij
∂θ∂θ′

= 0.

with ∆φ(u) = δΦ(u)(u+ δΦ(u)). Therefore the Hessian matrix of model is obtained as:

HHH(θ, σ2, λ|y,W ) =




h11 h12 h13

h21 h22 h23

h31 h32 h33


 ,

where

h11 =
∂2`(θ, σ2, λ|y,W )

∂θ∂θ′
, h22 =

∂2`(θ, σ2, λ|y,W )

∂λ2
, h33 =

∂2`(θ, σ2, λ|y,W )

∂(σ2)2
,

h12 = h21 =
∂2`(θ, σ2, λ|y,W )

∂θ∂λ
, h13 = h31 =

∂2`(θ, σ2, λ|y,W )

∂θ∂σ2
,

h23 = h32 =
∂2`(θ, σ2, λ|y,W )

∂σ2∂λ
.

Consequently, the Fisher information matrix of model is given by

I(θ, σ2, λ|y,W ) = −H(θ, σ2, λ|y,W ) =




I(θ) I(θ.λ) I(σ2,θ)
I(θ, λ) I(λ) I(σ2, λ)
I(σ2,θ) I(σ2, λ) I(σ2)


 ,

where

I(θ) = −E(
∂2`(θ, σ2, λ|y,W )

∂θ∂θ′
)

= −1

a
W ′W +E

(
φ(kij)

Φ(kkk)
(kij +

φ(kij)

Φ(kij)
)

)
− λ

σσ2a
W ′W ,

I(λ) = −E(
∂2`(θ, σ2, λ|y,W )

∂λ2
) = −a− 2λ2

a2

−
(

2

πa
− 4

a2

√
2

π
λ+

(4− a)

a2

1

σ2 + λ2
(σ2 +

2λ2

π
)

)

+ E

(
φ(kij)

Φ(kij)
(2

√
2

π

σ

a
3
2

)− 3
σ2

a2
kij

φ(kij)

Φ(kij)
(kij +

φ(kij)

Φ(kij)
)kij

(
1− λ2

a

)

+
λ

σa
1
2

√
2

π

)
,

I(σ2) = −E(
∂2`(θ, σ2, λ|y,W )

∂σ2
),

I(σ2, λ) = −E(
∂2`(θ, σ2, λ|y,W )

∂σ2∂λ
),

I(σ2,θ) = −E(
∂2`(θ, σ2, λ|y,W )

∂σ2∂θ
),

I(θ, λ) = −E(
∂2`(θ, σ2, λ|y,W )

∂θ∂λ
).

Now, one can use the inverse of expected Fisher information matrix to approximate the
variance of ML estimators. Thus, the asymptotic distributions of ML estimators and
asymptotic con�dence intervals for the model parameters are given by

θ̂ML ∼ AN(θ, I−1(θ)),

σ̂2
ML ∼ AN(σ2, I−1(σ2)),

λ̂ML ∼ AN(λ, I−1(λ)),

and

(θ̂ML − Z
1−
α

2

√
I−1(θ̂ML) , θ̂ML + Z

1−
α

2

√
I−1(θ̂ML)),
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(σ̂2
ML − Z

1−
α

2

√
I−1(σ̂2

ML) , σ̂2
ML + Z

1−
α

2

√
I−1(σ̂2

ML)),

(λ̂ML − Z
1−
α

2

√
I−1(λ̂ML) , σ̂2

ML + Z
1−
α

2

√
I−1(λ̂ML)),(4.1)

respectively. Notice that in (4.1) we substituted the ML estimates of parameters in
Fisher information matrix to estimate it. According to the large sample theory results, if

I(ξ) is a continuous function of ξ, as it is typically the case, then I(θ̂ML) is a consistent
estimator of I(θML). See, for example, Lehmann [17], p.p. 525, for more details.

5. Simulation Study

In this section, we perform a simulation study to assess the e�ciency of the ML
estimators of the model parameters for the proposed model. We consider an ANCOVA
model with a covariate and a two-level treatment of the form

(5.1) µij = E(yij |X,Z) = β0 + βi + γ(zij − z̄i),
with i = 1, 2 and j = 1, . . . , r. The values of the model parameters are set to be
β0 = 2, β1 = 5 and γ = 1. The covariate values are simulated from normal distribution.
Then, the values of µij , i = 1, 2, j = 1, . . . , r are computed using the equality of µij =
wijθ. Finally, the response variable observations {yij , i = 1, 2; j = 1, ..., r} are simulated

from SSN(wijθ −
√

2

π
, σ2, λ). In order to evaluate the e�ect of sample size, n = sr,

on e�ciency of the ML estimators, we consider the number of replications, r, to be
{10, 25, 50, 100}.

Also, to assess the ability of the proposed model for modeling observations with both
symmetric and asymmetric structures, we consider di�erent values for the skewness pa-
rameter as {−2,−1, 0, 1, 2}. Taking these considerations into account, the values of the
root mean square error (RMSE) for the ML estimators of the model parameters are
computed and presented in Table 1. We also provide the corresponding values of the
ML estimators under normal distribution as the usual traditional ANCOVA model in
order to compare and evaluate the robustness of di�erent models against violation from
normality. The number of repetitions in simulations �xed to be 5000 in order to take
into account the uncertainty in random number generating procedure. As it is expected,
for λ = 0, there are no signi�cant di�erences between the values of RMSE for normal
and skew normal ANCOVA models. This is because for λ = 0 the skew normal distri-
bution reduces to normal distribution. For positive and negative values of the skewness
parameter, which respectively correspond to the right-skewed and left-skewed data, the
skew normal model provides more e�ciency (in terms of smaller RMSE) than the normal
model because it truly takes into account the skewed structure of data. Obviously, due to
the asymptotic optimality of ML estimators, the e�ciency of estimators for both normal
and skew normal models increase when the sample size increases.

6. Real Example

To illustrate the proposed methodology and to evaluate its applicability, we provide a
real example in this section. Table 2 shows the salary data for 58 employees in a company
in Iran by the level of pro�ciency and working experience. Our aim is to �nd the possible
relation between salary as the response variable and working experience as a covariate
for di�erent levels of the pro�ciency factor. Therefore, we consider an ANCOVA model
with a covariate and a two-level treatment as

µij = E(yij |X,Z) = β0 + βi + γ(zij − z̄i),
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Table 1. The values of RMSE for ML estimators of the model parameters.

ANCOVA Model

Skew Normal Normal
Sample

λ Size λ β0 β1 γ β0 β1 γ

20 4.5209 0.9088 4.7756 27.5127 1.0760 5.0431 27.6104
-2 50 4.6625 0.9106 4.6961 22.2627 1.0288 5.0194 22.9811

100 4.4520 0.9126 4.7334 12.2603 1.0186 5.0084 12.6771
200 3.9090 0.9206 4.8485 10.1249 1.0077 5.0029 9.6656

20 3.5050 0.6819 4.7952 18.3095 1.0264 5.0178 18.3095
-1 50 1.1328 0.6630 4.9245 10.9095 1.0105 5.0063 11.4319

100 3.7464 0.6995 4.7370 8.2709 1.0068 5.0068 8.6453
200 3.4097 0.7170 4.7982 5.7749 1.0017 5.0040 6.1442

20 < 1× 10−13 1.0098 5.0072 10.5319 1.0098 5.0072 10.5319
0 50 < 1× 10−13 1.0055 5.0018 7.5567 1.0055 5.0018 7.5567

100 < 1× 10−13 1.0036 5.0013 5.4093 1.0036 5.0013 5.4093
200 < 1× 10−13 1.0019 4.9981 3.6826 1.0019 4.9981 3.6826

20 1.4593 0.6506 4.8993 18.1243 1.0292 5.0137 19.0754
1 50 1.1328 0.6630 4.9245 10.9095 1.0105 5.0063 11.4319

100 0.7788 0.6711 4.9595 7.4625 1.0067 5.0032 7.8143
200 0.9599 0.9989 4.9984 6.1875 1.0037 5.0002 6.2877

20 2.4142 0.6868 4.6382 29.2781 1.0835 5.0349 36.4821
2 50 2.9663 0.6086 4.3624 15.1047 1.0414 4.9991 19.1748

100 3.3649 0.5308 4.1750 9.6994 1.0131 5.0090 12.9511
200 3.8389 0.4401 3.8845 7.6109 1.0100 5.0012 10.2676

with i = 1, 2 and j = 1, . . . , 29. The histogram and box plot of the response variable
observations presented in Figure 1, indicate unimodality and right-skewed structure of
data. The result of goodness-of-�t tests indicate that skew normal, lognormal and inverse
gaussian distributions could be �tted to the response observations at the 5% signi�cance
level . The ML estimates of model parameters and their corresponding 95% asymptotic
con�dence intervals are presented in Table 3. We also provide the corresponding values
for the ML estimators of the parameters for inverse Gaussian ANCOVA model, developed
by [19], and lognormal distribution as other possible candidates for modeling a positively
skewed data. The normal model is also considered to assess the e�ect of ignoring the
skewness in modeling process. As it can be clearly seen, in skew normal, lognormal and
inverse Gaussian ANCOVA models both the e�ects of covariate and pro�ciency factor are
signi�cant. While the normal model incorrectly indicates that the working experience is
not a signi�cant covariate. The negative log-likelihood values along with AIC and BIC
criteria for di�erent models are provided in Table 4. Notice that as it is pointed out by
[19] the regression coe�cients and factor e�ects are not directly comparable for di�erent
models due to their di�erent link functions. Therefore the predicted mean, µ̂, under
di�erent models of interest can be compared via the root mean square error of prediction
(RMSEP) criterion, presented in Table 4.
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Table 2. Salary data for 58 employees in a company in Iran by the
level of pro�ciency and working experience.

Pro�ciency
Level I Level II

Salary Working Salary Working
(1000,000 Rial) Experience (1000,000 Rial) Experience

No. (Year) (Year)

1 13.21067 13 22.37932 16
2 17.06074 22 18.49741 11
3 15.59944 17 15.24213 10
4 14.71969 15 15.09468 11
5 15.36749 18 15.91385 10
6 16.06207 20 18.95504 15
7 19.89032 11 15.32940 9
8 13.40146 13 15.11344 8
9 11.32948 13 14.69974 10
10 16.11468 16 17.81728 11
11 12.02035 16 19.44098 17
12 11.43113 11 18.08340 13
13 15.06282 13 12.64286 4
14 14.66817 17 14.48483 8
15 13.40854 19 20.44149 14
16 14.63256 13 18.36701 12
17 16.38201 18 25.21042 22
18 13.41755 10 15.72097 10
19 13.49431 16 20.43385 14
20 19.67476 16 17.28177 11
21 12.79719 15 16.72111 11
22 13.80254 18 19.04832 12
23 17.15738 23 14.69331 8
24 16.31889 16 14.76271 10
25 12.91568 14 17.64608 12
26 12.68716 11 17.11542 10
27 11.24524 10 19.80369 17
28 14.62928 18 16.30396 7
29 17.96321 26 18.22075 6

Table 3. The ML estimates and 95% asymptotic con�dence intervals
of parameters for the skew normal ANCOVA model along with corre-
sponding values for normal, lognormal and inverse Gaussian models.

Parameters
ANCOVA Model β0 β1 γ

Normal 7.67 4.70 0.44
(5.59,9.76) (3.20,6.21) (-0.07,0.96)

Lognormal 2.25 0.29 0.03
(2.12,2.39) (0.22,0.36) (0.02,0.03)

Inverse Gaussian 0.063 0.005 -0.001
(0.061,0.065) (0.003,0.007) (-0.002,-0.001)

Skew Normal 14.65 2.95 0.46
(13.65,15.65) (1.93,3.97) (0.28,0.65)

It is seen that the skew normal model has better �t to the data than those of the
other models. Moreover, the values of the RMSEP for di�erent models indicate that the
skew normal model leads to a model with higher predictive power than other models. Of
course, it is clear that the main advantage of the skew normal model to lognormal and
inverse Gaussian models is its applicability for symmetric, right-skewed and left-skewed
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Figure 1. The histogram and box plot of the response variable observations.

Table 4. The values of negative log-likelihood, AIC and BIC and RM-
SEP criteria for skew normal ANCOVA model along with correspond-
ing values for normal, lognormal and inverse Gaussian mode.

Goodness-of-�t Criteria
ANCOVA Model -loglike AIC BIC RMSEP

Normal 408.65 821.31 825.43 6.5931
Lognormal 291.40 588.80 594.98 5.2246

Inverse Gaussian 156.59 319.19 325.37 2.7994

Skew Normal 140.34 286.68 292.86 1.8062

data, whereas lognormal and inverse Gaussian models can be used only for analyzing
right-skewed data.

7. Conclusions

In many real world applications the normality assumption does not hold. Too many
researches have been recently focused to develop suitable methods for dealing with non-
normality. Particularly, in many real world applications the response variable re�ects a
unimodal skewed structure. In these cases, the skew normal family of distributions due
to its �exibility can be used for data analysis. The results show that in this situations
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the skew normal ANCOVA model leads to the more e�cient estimations of the model
parameters than the normal model. Moreover it is a considerably good rival for other
traditional models such as lognormal and inverse Gaussian for analyzing skewed data. It
is obvious that, the proposed ANCOVA model can be used when the data are symmetric,
because the skew normal family of distribution includes the normal distribution as a
special case. In this paper, we employed Sahu [21] skew normal distribution among other
families of skew normal distributions due to its interesting distributional properties such
as simple implementing of the EM algorithm. But other families of the skew normal
distribution can be employed in a similar manner.
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Abstract

We propose a modi�ed two-step approach for estimating the mean of a
sensitive variable using an additive optional RRT model which allows
respondents the option of answering a quantitative sensitive question
directly without using the additive scrambling if they �nd the ques-
tion non-sensitive. This situation has been handled before in Gupta et
al. (2010) using the split sample approach. In this work we avoid the
split sample approach which requires larger total sample size. Instead,
we estimate the �nite population mean by using an Optional Addi-
tive Scrambling RRT Model but the corresponding sensitivity level is
estimated from the same sample by using the traditional Binary Un-
related Question RRT Model of Greenberg et al. (1969). The initial
mean estimation is further improved by utilizing information from a
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1. Introduction

The randomized response technique of reducing respondent bias in obtaining answers
to sensitive questions developed by Warner (1965) has been extended from the situation
where response is categorical to that in which the response is quantitative. Choice of
scrambling mechanism plays an important role in quantitative response models. Eichhron
and Hayre (1983), Gupta and Shabbir (2004), Gupta et al. (2002, 2010), Wu et al. (2008)
and many others have estimated the mean of a sensitive variable when the study variable
is sensitive and no auxiliary information is available. While Eichhron and Hayre (1983)
have used multiplicative scrambling, Gupta et al. (2010) have used additive scrambling
in the context of optional randomized response models where a respondent provides a
true response if he/she considers the question non-sensitive, and provides a scrambled
response if the question is deemed sensitive. The researcher will not know which type of
response has been provided. Sousa et al. (2010) and Gupta et al. (2012) suggested mean
estimators based on full additive RRT models using an auxiliary variable. Kalucha et al.
(2015) and Gupta et al. (2015) improved the mean estimators further by using optional
additive RRT models which apart from estimating µY (the mean of sensitive variable
Y ) also estimated W (the sensitivity level of the research question) using a split-sample
approach. Recently Singh and Tarray (2014) have studied optional randomized response
model in the strati�ed sampling setting.

The main motivation for the proposed model is to avoid the split sample approach
which requires unnecessarily larger total sample sizes. We estimate the mean of the
sensitive characteristic by using an Additive Optional RRT model but the corresponding
sensitivity level is estimated from the same sample by using the Greenberg et al. (1969)
model. This eliminates the need for split-sample approach that requires a larger total
sample size.

Let µY and σ2
Y be the unknown mean and variance of the sensitive variable Y , µX

and σ2
X be the known mean and variance of the auxiliary variable X. Let W be the

unknown sensitivity level of the survey question in the population.

2. The Split-Sample Model � Gupta et al. (2010)

Here the sample of size n is split into two sub-samples of sizes n1 and n2 (n1 +n2 = n).
Let S1, S2 be scrambling variables used in the two sub-samples. Let the mean and
variance respectively of Si (i = 1, 2) be θi and σ2

Si
. We assume that Y , X and Si

(i = 1, 2) are mutually independent. For the ith population unit (i = 1, 2, . . . , N), let yi
and xi respectively be the values of the study variable Y and the auxiliary variable X.

Moreover let ȳ =
∑n

1 yi
n

, x̄ =
∑n

1 xi
n

, z̄ =
∑n

1 zi
n

be the sample means, and µY = E(Y ),
µX = E(X) and µZ = E(Z) be the corresponding population means for Y , X and the
scrambled response Z respectively. We assume that µX is known. In each sub sample, we
will observeX directly but will only have an additively scrambled version of Y . According
to this model, the reported response Zi in the ith sub-sample is given by

Zi =

{
Y with probability (1−W )

(Y + Si) with probability W

}
i = 1, 2

The mean and variance respectively for Zi (i = 1, 2) are given by

E(Zi) = µY + θiW where E(Si) = θi (i = 1, 2),(2.1)
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and

σ2
Zi = σ2

Y + σ2
SiW + θ2

iW (1−W )(2.2)

It follows easily from (2.1) that for θ1 6= θ2,

µY =
θ2E(Z1)− θ1E(Z2)

θ2 − θ1
and W =

E(Z2)− E(Z1)

(θ2 − θ1)
.(2.3)

Hence if information on X is ignored, expressions in (2.3) lead to the following unbiased
estimators of µY and W :

µ̂Y =
θ2z̄1 − θ1z̄2

θ2 − θ1
, θ1 6= θ2 and Ŵ =

z̄2 − z̄1

(θ2 − θ1)
, θ1 6= θ2,(2.4)

where z̄1, z̄2 respectively are the sample mean of reported responses in the two sub-
samples.

It can be veri�ed that µ̂Y and Ŵ are unbiased estimators of the population mean µY
and the sensitivity level W . Variances of these estimators are given by

Var(µ̂Y ) =
1

(θ2 − θ1)2

[
θ2

2

(
1− f1

n1

)
σ2
Z1

+ θ2
1

(
1− f2

n2

)
σ2
Z2

]
(2.5)

and

Var(Ŵ ) =
1

(θ2 − θ1)2

[(
1− f1

n1

)
σ2
Z1

+

(
1− f2

n2

)
σ2
Z2

]
,

where θ1 6= θ2, f1 = n1
N
, f2 = n2

N
, f = n

N
= f1 + f2,

σ2
Z1

=
1

N − 1

N∑

i=1

(Z1i − µZ)2 and σ2
Z2

=
1

N − 1

N∑

i=1

(Z2i − µZ)2 .

3. The Proposed Model

In the proposed model, the underlying sensitivity level W and its variance are esti-
mated by using the Greenberg et al. (1969) model. Here the sensitive question is �Whether
or not you consider the underlying main research question sensitive for a face-to-face sur-
vey�. Let πb be the known probability of the binary innocuous unrelated question and
pb be the known probability of the respondent selecting the sensitivity question. We
consider a �nite population U = {1, 2, . . . , N} of size N and a random sample of size
n be drawn without replacement. When estimating the mean, let S be the scrambling
variable used to additively scramble the responses in the sample with mean E(S) = θ.
We assume that Y , X and S are mutually independent.

3.1. Estimation of Sensitivity Level (W ). The probability of �yes response� to the
sensitivity question is given by

Py = pbW + (1− pb)πb(3.1)

Solving for W, we have

W =
Py − (1− pb)πb

pb
(3.2)

Thus the estimate of W, as per the Greenberg et al. (1969) model, is given by

Ŵ =
P̂y − (1− pb)πb

pb
,(3.3)

where P̂y is the proportion of yes response in the sample.
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We know that Ŵ is an unbiased estimator and its variance is given by

Var(Ŵ ) =

(
1− f
n

)
Py(1− Py)

p2
b

(3.4)

An unbiased estimator of this variance is given by

V̂ar(Ŵ ) =

(
1− f
n− 1

)
P̂y(1− P̂y)

p2
b

(3.5)

3.2. Estimation of Mean. The reported quantitative response Z to the main research
question according to optional additive RRT model can be expressed as

Z =

{
Y + S with probability W

Y with probability 1−W

}

The mean and variance respectively of Z are given by

E(Z) = WE(Y + S) + (1−W )E(Y )

= E(Y ) +WE(S)

= µY +Wθ,(3.6)

and

Var(Z) = WE(Y + S)2 + (1−W )E(Y 2)− µ2
Z

= σ2
Y +Wσ2

S + θ2W (1−W )(3.7)

From equation (3.6) we have

µY = µZ −Wθ

This leads to an estimator for µY given by

µ̂YW∗ = µ̂Z − Ŵθ,(3.8)

where µ̂Z = z̄ is the sample mean of reported responses and Ŵ is given by equation (3.3).
We note that µ̂YW∗ is an unbiased estimator of µY and its variance is given by

Var(µ̂YW∗) = Var(z̄ − Ŵθ)

= Var(z̄) + θ2 Var(Ŵ )

=

(
1− f
n

)
(σ2
Z) + θ2

(
1− f
n

)
Py(1− Py)

p2
b

(3.9)

The variance of the estimator in (3.9) can be conveniently estimated by

V̂ar(µ̂YW∗) =

(
1− f
n

)
(s2
z) + θ2V̂ar(Ŵ )(3.10)

where s2
z is the sample variance of reported responses given by

s2
z = (n− 1)−1∑n

i=1(zi − z̄)2 and V̂ar(Ŵ ) is as given in (3.5) above.
We further modify the proposed mean estimator µ̂YW∗ in the presence of an auxiliary

variable by proposing ratio (µ̂RW∗) and regression (µ̂RegW∗) estimators and compare it
with the estimators proposed in Kalucha et al. (2015) and Gupta et al. (2015), both
based on split-sample approach.
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4. Ratio Estimator

4.1. Kalucha et al. (2015) � Split-Sample Based Ratio Estimator. Kalucha et
al. (2015) proposed the following additive ratio estimator for the mean of Y :

µ̂AR =

(
θ2z̄1 − θ1z̄2

θ2 − θ1

)(
µX
x̄1

+
µX
x̄2

)(
1

2

)
, θ1 6= θ2.(4.1)

where
(
θ2z̄1−θ1z̄2
θ2−θ1

)
is the unbiased estimator of µY given by Gupta et al. (2010), and

x̄1 and x̄2 are the respective sub-sample means for X. It was shown that this estimator
performs better than the ratio estimator proposed by Sousa et al. (2010) utilizing a
non-optional additive RRT model.

Bias and MSE of µ̂AR, correct up to �rst order of approximation, are given by

Bias(µ̂AR) =

(
1− f1

n1

)[
µY
2
C2
x −

(
θ2

θ2 − θ1

)
ρyxσY Cx

2

]

+

(
1− f2

n2

)[
µY
2
C2
x + (

θ1

θ2 − θ1
)
ρyxσY Cx

2

]

= C2
xµY

[
α− ρyx β

2

]
(4.2)

and

MSE(µ̂AR) =
1

(θ2 − θ1)2

[
θ2

2

(
1− f1

n1

)
σ2
Z1

+ θ2
1

(
1− f2

n2

)
σ2
Z2

]

+
µ2
Y C

2
x

4
α− µY ρyxσY Cxβ(4.3)

where α =
(

1−f1
n1

)
+
(

1−f2
n2

)
, β =

(
1−f1
n1

)(
θ2

θ2−θ1

)
−
(

1−f2
n2

)(
θ1

θ2−θ1

)
, and Cx is the

coe�cient of variation for X.

4.2. Proposed Ratio Estimator-New Approach. In this section we propose a ratio
estimator where the RRT estimator of the mean of Y given by (3.8) above is further
improved by using information on an auxiliary variable X. We de�ne δz = (z̄− µZ)/µZ ,
δx = (x̄− µX)/µX . Note that E(δi) = 0 for i = z, x.

The proposed estimator is given by

µ̂RW∗ = (z̄ − Ŵθ)
(µX
x̄

)
= (µZ(1 + δz)− Ŵθ)(1 + δx)−1(4.4)

Using Taylor's approximation and retaining terms of order up to 2, (4.4) can be rewritten
as

µ̂RW∗ − µZ ∼= µZ(δz − δx − δzδx + δ2
x)− Ŵθ(1− δx + δ2

x)(4.5)

Substituting the value of µZ from (3.6) in (4.5), we have

µ̂RW∗ − µY ∼= µY (δz − δx − δzδx + δ2
x) + (W − Ŵ )θ(1− δx + δ2

x) +Wθ(δz − δzδx)(4.6)

Under the assumption of bivariate normality (see Sukhatme and Sukhatme, 1970), we
have

E(δ2
z) =

1− f
n

C2
z , E(δ2

x) =
1− f
n

C2
x, E(δzδx) =

1− f
n

Czx

where Czx = ρzxCzCx, Cz and Cx are the coe�cients of variation of Z and X, respec-
tively.
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Also, we have:

C2
z =

σ2
y +Wσ2

S + θ2W (1−W )

(Z̄)2
and ρzx =

ρyx√
1 +W

σ2
S
σ2
y

+ θ2W (1−W )

σ2
y

(4.7)

From equation (4.6), we can get expression for the Bias of µ̂RW∗ , correct up to �rst order
of approximation, as given by

Bias(µ̂RW∗) ∼= µY

(
1− f
n

)
(C2

x − ρzxCzCx)−Wθ

(
1− f
n

)
ρzxCzCx(4.8)

Similarly from (4.6), MSE of µ̂RW∗ , correct to �rst order of approximation, is given by

MSE(µ̂RW∗) = E(µ̂RW∗ − µY )2

∼= µ2
Y E(δ2

z + δ2
x − 2δzδx) + θ2E(W − Ŵ )2E(1− 2δx + 3δ2

x)

+W 2θ2E(δ2
z) + 2µYWθE(δ2

z − δzδx)

or

MSE(µ̂RW∗) ∼=
(

1− f
n

)
µ2
Y (C2

z + C2
x − 2ρzxCzCx)

+ θ2 Var(Ŵ )

(
1 + 3

(
1− f
n

)
C2
x

)
+W 2θ2

(
1− f
n

)
C2
z

+ 2µYWθ

(
1− f
n

)
(C2

z − ρzxCzCx)(4.9)

where Var(Ŵ ) is given by (3.4) above.

4.3. Mean and Variance of the Proposed Ratio Estimator. The proposed ratio
estimator can be rewritten as

µ̂RW∗ =
( ȳ
x̄

)
µX , where ȳ = z̄ − Ŵθ(4.10)

Hence

E(µ̂RW∗) = µXE
{ ȳ
x̄

}
(4.11)

Using a Taylor series expansion of ȳ
x̄
around (µY,µX):

ȳ

x̄
∼= ~y

x̄

∣∣∣∣
(µY ,µX )

+ (ȳ − µY )
∂

∂ȳ

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+ (x̄− µX)
∂

∂x̄

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+
1

2
(ȳ − µY )2 ∂

2

∂ȳ2

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+
1

2
(x̄− µX)2 ∂

2

∂x̄2

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+ (ȳ − µY )(x̄− µX)
∂2

∂ȳ∂x̄

( ȳ
x̄

) ∣∣∣∣
(µY ,µX )

+O

((
(ȳ − µY )

∂

∂ȳ
+ (x̄− µX)

∂

∂x̄

)3 ( ȳ
x̄

))

The mean of ȳ
x̄
can now be found by taking expected value, ignoring all terms higher

than 2.

E
{ ȳ
x̄

}
∼= µY
µX

+ Var(x̄)
µY
µ3
X

− Cov(ȳ, x̄)

µ2
X

∼= µY
µX

+
(1− f)

n

(
Var(x)

µY
µ3
X

− Cov(y, x)

µ2
X

)
(4.12)
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Substituting (4.12) in (4.11), we get

E(µ̂RW∗) ∼= µY +
(1− f)

n

(
Var(x)

µY
µ2
X

− Cov(y, x)

µX

)
(4.13)

It is clear from the above expression that µ̂RW∗ is asymptotically unbiased. Now

Var(µ̂RW∗) = µ2
X Var

( ȳ
x̄

)
(4.14)

An approximation of the variance of ȳ
x̄
is obtained by using the �rst order terms of Taylor

series expansion:

Var
( ȳ
x̄

)
= E

{( ȳ
x̄
− E

{ ȳ
x̄

})2
}

∼= E

{(
ȳ

x̄
− µY
µX

)2
}

∼= Var(ȳ)

µ2
X

+
µ2
Y Var(x̄)

µ4
X

− 2µY Cov(ȳ, x̄)

µ3
X

∼= (1− f)

n

(
Var(y)

µ2
X

+
µ2
Y Var(x)

µ4
X

− 2µY Cov(y, x)

µ3
X

)
(4.15)

Substituting (4.15) in (4.14), we have

Var(µ̂RW∗) ∼= (1− f)

n

(
Var(y) +

µ2
Y Var(x)

µ2
X

− 2µY Cov(y, x)

µX

)
(4.16)

Substituting for Var(y) and using the fact that Cov(y, x) = Cov(z, x) in (4.16), we get

Var(µ̂RW∗) ∼= (1− f)

n

(
Var(z)−W Var(S)− θ2W (1−W )(4.17)

+
µ2
Y Var(x)

µ2
X

− 2µY Cov(z, x)

µX

)

The above variance can be estimated by using:

V̂ar(z) = s2
z, Ŵ =

P̂y − (1− pb)πb
pb

, and ˆCov(z, x) = szx,

where sample covariance szx = (n− 1)−1∑n
i=1(zi − z̄)(xi − x̄).

5. Regression Estimator

5.1. Gupta et al. (2015) � Split-Sample Based Regression Estimator. Gupta
et al. (2015) suggested a regression estimator of the mean using split-sample approach,
as given by:

µ̂Areg =

(
θ2z̄1 − θ1z̄2

θ2 − θ1

)
+
{
β̂Z1X1(µX − x̄1) + β̂Z2X2(µX − x̄2)

}(1

2

)
,(5.1)

where β̂ZiXi(i = 1, 2) are the sample regression coe�cients between Zi and Xi respec-
tively, and z̄i, x̄i (i = 1, 2) are the two sub-sample means. It was shown that this
estimator performs better than the regression estimator proposed by Gupta et al. (2012)
utilizing a non-optional additive RRT model. Bias and MSE of µ̂Areg, correct up to �rst
order of approximation, are given by

Bias(µ̂Areg) ∼=
[
−1

2
βZ1X

(
1− f1

n1

)
− 1

2
βZ2X

(
1− f2

n2

)]{
µ12

µ11
− µ03

µ02

}
(5.2)
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and

MSE
(1)(µ̂Areg) =

1

(θ2 − θ1)2

[
θ2

2

(
1− f1

n1

)
σ2
Z1

+ θ2
1

(
1− f2

n2

)
σ2
Z2

]
(5.3)

+
ρ2
yxσ

2
Y

4
α− ρ2

yxσ
2
Y β,

where θ2 6= θ1; α and β are de�ned earlier and µrs = 1
N−1

∑N
i=1(zi − Z̄)r(xi − X̄)s.

5.2. Proposed Regression Estimator-New Approach. We modify the mean es-
timator in (3.8) above by using the regression estimation approach and propose the
following estimator for the population mean of Y :

µ̂RegW∗ = (z̄ − Ŵθ) + β̂zx(µX − x̄)(5.4)

We obtain the expressions for the bias and the mean square error for the proposed
regression estimator µ̂RegW∗ . If e0 = (z̄−µZ)/µZ , e1 = (x̄−µX)/µX , e2 = (σ2

x−σ2
X)/σ2

X

and e3 = (σzx − σZX)/σZX , then we have E(ei) = 0, i = 0, 1, 2, 3.
Using Taylor's approximation and retaining terms of order up to 2, (5.4) can be

rewritten as

µ̂RegW∗ − µZ ∼= µZe0 − Ŵθ − βzxµX [e1 + e1e3 − e1e2](5.5)

Substituting for µZ , (5.5) can be written as

µ̂RegW − µY ∼= µZe0 − βzxµX [e1 + e1e3 − e1e2] + (W − Ŵ )θ(5.6)

FromMukhopadhyay (1998, p. 123), we have E(e2
1) = 1−f

n
C2
x, E(e2

0) = 1−f
n
C2
z , E(e1e2) =

1−f
n

1
X̄
µ03
µ02

, E(e1e3) = 1−f
n

1
X̄
µ12
µ11

, where µrs = 1
N−1

∑N
i=1(zi − Z̄)r(xi − X̄)s and Cx, Cz

are the coe�cients of variation of x and z, respectively. Also, we have:

βzx =
σzx
σ2
x

=
σyx
σ2
x

= ρyx
σy
σx

= βyx(5.7)

where ρyx and ρzx are the coe�cients of correlation between y and x, and between z and
x, respectively.

Using this in (5.6), the Bias of µ̂RegW, to �rst order of approximation, is given by

Bias(µ̂RegW∗) ∼= −βzx
(

1− f
n

){
µ12

µ11
− µ03

µ02

}
(5.8)

The expression for MSE of µ̂RegW∗ to �rst order of approximation, is given by

MSE(µ̂RegW∗) ∼=
(

1− f
n

)[
σ2
z −

σ2
yx

σ2
x

]
+ θ2 Var(Ŵ )

=

(
1− f
n

)
σ2
y

{(
1 +

Wσ2
S + θ2W (1−W )

σ2
y

)
− ρ2

yx

}
+ θ2 Var(Ŵ )(5.9)

where Var(Ŵ ) is given by (3.4) above.
We note that µ̂RegW∗ is an unbiased estimator and hence

Var(µ̂RegW∗) = MSE(µ̂RegW∗)

∼=
(

1− f
n

)[
σ2
z −

σ2
yx

σ2
x

]
+ θ2 Var(Ŵ )(5.10)

The above variance can be estimated by using:

σ̂2
z = s2

z, σ̂
2
yx = σ̂2

zx = s2
zx and V̂ar(Ŵ ) =

(1− f)

(n− 1)

P̂y(1− P̂y)

p2
b

.
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6. E�ciency comparisons

6.1. E�ciency Comparison of µ̂RW∗ and µ̂YW∗ . We have from equations (3.9) and
(4.9), MSE(µ̂RW∗) < MSE(µ̂YW∗) if

1 +
3θ2 Var(Ŵ )

µ2
Y

< 2ρyx
Cy
Cx

(6.1)

Since 3θ2 Var(Ŵ )

µ2
Y

approaches 0 because Var(Ŵ ) approaches 0 as the sample becomes

larger, (6.1) will generally hold if

1 < 2ρyx
Cy
Cx

or ρyx >
1

2

Cx
Cy

(6.2)

If we assume (Cx ≈ Cy), we can conclude from (6.2) that

MSE(µ̂RW∗) < MSE(µ̂YW∗) if ρyx >
1

2
.(6.3)

Hence the proposed ratio estimator (µ̂RW∗) is more e�cient than the proposed ordinary
mean estimator (µ̂YW∗) when the correlation between the study variable and the auxiliary
variable is high

(
ρyx >

1
2

)
.

6.2. E�ciency Comparison of µ̂RegW∗ with µ̂RW∗ and µ̂YW∗ .

(i) It can be veri�ed from (3.9) and (5.9) that according to �rst order approximation
MSE(µ̂RegW∗) < MSE(µ̂YW∗) if
(

1− f
n

)
σ2
yx

σ2
x

> 0(6.4)

(ii) It can be veri�ed from (4.9) and (5.9) that up to �rst order approximation
MSE(µ̂RegW∗) < MSE(µ̂RW∗) if

1− 2ρyx
Cy
Cx

+ ρ2
yx

C2
y

C2
x

+
3θ2 Var(Ŵ )

µ2
Y

> 0(6.5)

With (Cx ∼= Cy), (6.5) can be rewritten as

(1− ρyx)2 +
3θ2 Var(Ŵ )

µ2
Y

> 0(6.6)

Since the conditions (6.4) and (6.6) will always hold true, up to �rst order of approxima-
tion, the regression estimator µ̂RegW∗ performs better than the ordinary mean estimator
µ̂YW∗ and the ratio estimator µ̂RW∗ .

7. Simulation Study

7.1. Comparison of the Proposed Model with the Split-Sample Model in the
Presence of Auxiliary Information. The tables below provide a comparison between
the proposed model and the split-sample additive scrambling models of Kalucha et al.
(2015) and Gupta et al. (2015) in the presence of non-sensitive auxiliary information.
We choose the parameters as per the observation A1 (given below) that was obtained
in Gupta et al. (2015) under which the regression estimator µ̂Areg is more e�cient than
both additive ratio estimator µ̂AR and the ordinary mean estimator µ̂Y under the split
sample approach:

A1. We choose our scrambling variables S1 and S1 in such a way that their means θ1

and θ2 are opposite in signs and associate the one with the smaller magnitude to
the larger sub-sample and vice-versa. Also if one of the chosen means is zero then
we associate it to the larger split sample.
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In the simulation study, we consider a �nite population of size N = 5000 generated from a
bivariate normal distribution. The simulated bivariate normal population has theoretical
mean of [Y,X] as µ = [6, 4]. The covariance matrix (

∑
) is as given below:

∑
=

[
9 4.8

4.8 4

]
, ρYX = 0.7996

We estimate the empirical MSE using 5000 samples of various sizes selected from this
population. The scrambling variables S1 and S2 are taken to be normal variates with
σ2
S1

= 2 and σ2
S2

= 1. The scrambling variable means are chosen as per A1 (given
above). The selected means are θ1 = 5, θ2 = −0.5 and n2 > n1. For the population
we consider two sample sizes: n = 500, 1000 for di�erent values of the sensitivity level
W = 0.3, 0.7, 0.9.

For the proposed model we choose θ = θ2 = −0.5 with πb = 0.25 and pb = 0.7.

Table 1. Theoretical (bold) and empirical MSE comparisons of the
mean estimator (µ̂YW∗), the ratio estimator (µ̂RW∗) and the regression
estimator (µ̂RegW∗) of the proposed model with the mean estimator
(µ̂Y ), the additive ratio estimator (µ̂AR) and the regression estimator
(µ̂Areg) of the split-sample model with ρYX = 0.7996.

MSE Estimation

n W Proposed Model Split-Sample Model

Var(Ŵ ) MSE(µ̂YW∗ ) MSE(µ̂RW∗ ) MSE(µ̂RegW∗ ) n1 n2 Var(Ŵ ) MSE(µ̂Y ) MSE(µ̂AR) MSE(µ̂Areg)

500

0.3

0.000749 0.017141 0.007283 0.006706

200 300

0.003511 0.024982 0.019001 0.017437

0.000821 0.016916 0.007221 0.006638 0.004487 0.023217 0.018106 0.01665

0.7

0.000903 0.0179 0.008041 0.007465

200 300

0.003688 0.02605 0.020069 0.018505

0.000999 0.017614 0.008264 0.007608 0.004821 0.025906 0.020948 0.019584

0.9

0.000764 0.018171 0.008313 0.007736

200 300

0.003277 0.026387 0.020406 0.018842

0.000853 0.018221 0.008534 0.008002 0.002443 0.029625 0.023441 0.022628

1000

0.3 0.000333 0.007618 0.003237 0.002981

450 550

0.001665 0.012846 0.009044 0.008528

0.000416 0.00738 0.003224 0.002915 0.003114 0.011986 0.009241 0.008602

0.7

0.000401 0.007956 0.003574 0.003318

450 550

0.001748 0.013394 0.009593 0.009076

0.000497 0.007744 0.003589 0.003319 0.002965 0.012035 0.009007 0.008506

0.9

0.000340 0.008076 0.003694 0.003438

450 550

0.001568 0.013578 0.009777 0.009260

0.000423 0.008367 0.003914 0.003693 0.001270 0.012051 0.008914 0.008395

We note from the table that consistently the regression estimator (µ̂RegW∗) is more
e�cient than the ratio (µ̂RW∗) and the mean estimator (µ̂YW∗) of the proposed model
for all values of W . Also as the sensitivity W increases, the MSE 's increase, highlighting
the usefulness of an Optional RRT model sinceW is highest (equal to 1) for non-optional
model. While comparing the proposed model with the split-sample model, we note that
MSE 's of the proposed model estimators (µ̂YW∗ , µRW∗µRegW∗) are consistently smaller
as compared to (µ̂Y , µ̂AR, µ̂Areg) estimators. We observe that for a �xed sample size
the MSE 's for the proposed model are reduced by more than two and a half times as
compared to the split-sample based model.

7.2. Comparison of the Point Estimates of Proposed Model with the Split-
Sample Model in the Presence of Auxiliary Information.
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Table 2. Empirical values of the estimators Ŵ , the mean estima-
tor (µ̂YW∗), the ratio estimator (µ̂RW∗) and the regression estimator
(µ̂RegW∗) of the proposed model and the corresponding split sample
model for W = 0.3, 0.7, 0.9 and the population mean µY = 6.

Point Estimates

n W Proposed Model Split-sample Model

Ŵ µ̂YW∗ µ̂RW∗ µ̂RegW∗ Ŵ µ̂Y µ̂AR µ̂Areg

500

0.3 0.30049 5.91234 5.90924 5.90958 0.34439 5.90478 5.90812 5.90471

0.7 0.69978 5.90947 5.91254 5.91158 0.6523 5.86084 5.86545 5.86143

0.9 0.89957 5.91218 5.90169 5.91065 0.90461 5.83561 5.83925 5.83557

1000

0.3 0.30052 5.91076 5.912 5.91161 0.34351 5.92844 5.93066 5.92885

0.7 0.69979 5.9116 5.91047 5.91053 0.65809 5.89841 5.90048 5.8986

0.9 0.89997 5.91107 5.91144 5.91125 0.90812 5.89409 5.89618 5.89436

We note that both methods produce nearly unbiased estimators of the population
mean. However, the proposed model produces better estimates of the sensitivity level.
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1. Introduction

Suppose a random variable Y is normally distributed with mean θ and variance φ
then X = exp(Y ) is distributed Log-Normally with location and scale parameters θ and
φ, respectively. The probability density function (pdf) of Log-Normal random variable
X is:

(1.1) f(x; θ, φ) =
1

x
√

2πφ
e
− 1

2φ
(ln x−θ)2

, x > 0, −∞ < θ <∞, φ > 0

where, θ is location and φ is scale parameter.
The cumulative distribution function of this distribution is given by

(1.2) F (x) =
1

2
+

1

2
Erf

(
lnx− θ√

2φ

)

The Log-normal distribution, de�ned in equation (1.1), has become a convenient model
for di�erent biological, social and life testing phenomena. This distribution has wide ap-
plications in business and economics such as modeling of �rm sizes, incomes, stock prices,
lengths of service in labor turnover contexts and many other �elds. Finney [2] obtained
formulae for e�cient estimation of the mean and variance of a population using sample
information from the Log-Normal distribution. Tiku [13] found the estimators of pa-
rameters of Log-Normal distribution using type-II censored sample data. He obtained
the asymptotic variances and covariances of the estimators. Zellner [14] used Bayesian
and non-Bayesian methods for estimating parameters of the log-normal distribution and
of log-normal regression processes. He derived posterior distributions for parameters of
interest and described their statistical properties. Stedinger [12] evaluated e�ciency of
di�erent methods for �tting two-parameter and three-parameter log-normal distributions.
He made the comparison using mean square error of estimators. Alternatively, Shen [10]
combined the orthogonal transformation and the Rao-Blackwell Theorem for deriving
uniform minimum variance unbiased estimators (UMVUEs) for the parameters of the
Log-Normal distribution. Limpert et al. [5] discussed the use of Log-Normal distribu-
tion in di�erent �elds of science, specially in biological sciences. For the two-parameter
log-normal distribution, Khan et al. [4] derived the prediction of future responses assum-
ing a non-informative prior and an informative prior for the parameters under type-II
censored sampling and type-II median censored sampling. Mehta et al. [7] proposed a
simple and novel method to approximate the sum of several log-normal random variables
with a single log-normal random variable. Martín and Pérez [6] presented generalized
form of the log-normal distribution and analyzed it through Bayesian tools. Saleem and
Aslam [9] used Bayesian tools of inference to estimate the parameters of two-component
mixture of Rayleigh distributions assuming the uniform and the Je�reys priors. Rupasov
et al. [8] showed that trial to trial neuronal variability of electromyographic (EMG) sig-
nals can be well described by the Log-Normal distribution. They also found that the
variability of temporal parameters of handwriting duration and response time can also
be well described by the Log-Normal distribution. Sindhu and Aslam [11] estimated
the parameters of Inverse Weibul distribution under di�erent loss functions and di�erent
priors.

Loss function plays a vital rule in Bayesian estimation problems. Loss function is the
penalty for not getting the actual value. Zellner [15] discussed estimation of parameters of
di�erent models including Log-Normal under Varian's asymmetric LINEX loss function.
Fabrizi and Trivisano [1] proposed a generalized inverse Guassian prior for the variance
parameter of Log-Normal distribution and discussed the estimation of its mean under
Quadratic Loss Function (QLF).
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Estimation of scale parameter of Log-Normal distribution is not yet been considered
under di�erent loss functions using non-informative priors. Keeping in mind the above
discussion and motivated by importance of the Log-Normal distribution in di�erent �elds,
this study is made to look for best loss function and appropriate non-informative prior.
In this paper, the posterior distributions for the scale parameter φ are derived under
Uniform and Je�reys priors. Also, Bayes estimators (BEs) and Bayes risks (BRs) are
obtained using Squared Error Loss Function (SELF), Quadratic Loss Function (QLF),
Weighted Loss Function (WLF), Precautionary Loss Function (PLF), Simple Asymmetric
Precautionary Loss Function (SAPLF) and DeGroot Loss Function (DLF).

Comparisons of the priors and the loss functions are made on the basis of posterior
variances, coe�cients of skewness, ex-kurtosis and Bayes risks. For these comparisons,
di�erent sample sizes, di�erent loss functions and di�erent choices of location parameter
θ have been considered. The rest of the paper is designed as follows.

In section 2, the posterior distributions of the scale parameter have been derived under
Uniform and Je�reys priors. A simulation study is presented in section 3 to compare the
performance of the two priors on the basis of posterior variance, skewness and ex-kurtosis.
Bayes estimators (BEs) and Bayes risks (BRs) under the considered loss functions are
given in section 4. To look for best non-informative prior and loss function for the
estimation of the scale parameter, a simulation study is carried out in section 5. A real
data set of lung cancer patients is used in section 6 to draw graphs of the posterior
distributions for di�erent values of the location parameter and to verify the simulation
results discussed in section 5.

2. The Posterior Distributions of the Scale Parameter under Non-

Informative Priors

The Likelihood function of the Log-normal distribution can be written as under.

(2.1) L(φ) =
(2πφ)−

n
2∏n

i=1 xi
e
− 1

2φ

∑n
i=1(ln xi−θ)2

We assume the improper Uniform prior (U(0,∞)) for φ which can be written as

(2.2) ΦU (φ) ∝ 1, φ > 0.

The Posterior Distribution of φ given the data, under the above prior is given by

(2.3) p(φ|x) =
βα1
1

Γ(α1)
φ−(α1+1)e

− β1
φ , φ > 0

where α1 = n
2
− 1 and β1 = 1

2

∑n
i=1(lnxi − θ)2.

The expression in 2.3 can be identi�ed as Inverted Gamma distribution.
The Je�reys prior for φ is

(2.4) ΦJ(φ) ∝ 1

φ
, φ > 0.

The posterior distribution of φ given the data, using Je�reys prior is given by

(2.5) p(φ|x) =
βα2
2

Γ(α2)
φ−(α2+1)e

− β2
φ , φ > 0

where α2 = n
2
and β2 = 1

2

∑n
i=1(lnxi − θ)2.

The expression in 2.5 can be identi�ed as Inverted Gamma distribution.
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3. Simulation Study for Comparison of Priors on the basis of Pos-

terior Variances, Co-E�cient of Skewness and Ex-Kurtosis

Consider the generation of random samples of sizes n = 30, 50, 100, 200 and 500 from
the Log-Normal distribution assuming the location parameter θ = 1, 2, 3 and the scale
parameter φ = 1, 4, 7. The simulation process is repeated 10, 000 times and the results
have then been averaged.

The results of posterior variance, skewmess and ex-kurtosis are showcased in the fol-
lowing tables.

Table 1. Posterior Variance for Di�erent Values of θ and φ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7
30 0.11885 30.4636 283.5813 0.11764 30.2204 281.9675 0.11712 30.2193 284.025

50 0.05619 14.2796 133.6523 0.05604 14.3247 134.2029 0.05569 14.2144 134.045

100 Uniform 0.02360 6.01455 56.68350 0.02352 6.03511 56.61045 0.02347 5.99707 56.4623

200 0.01085 2.77936 26.00710 0.01087 2.77255 26.01307 0.01083 2.76955 25.9318

500 0.00414 1.05660 9.922510 0.00413 1.05823 9.913580 0.00413 1.05553 9.91950

30 0.09363 24.2955 226.2839 0.09394 24.1826 225.9903 0.09475 24.0629 225.914

50 0.04923 12.5365 118.0433 0.04864 12.5922 117.5760 0.04932 12.5574 118.546

100 Je�reys 0.02210 5.66527 53.18104 0.02198 5.67742 52.97626 0.02220 5.68842 53.2441

200 0.01054 2.69131 25.18842 0.01052 2.69231 25.19030 0.01051 2.69701 25.3189

500 0.00409 1.04692 9.805566 0.00408 1.04212 9.804080 0.00408 1.04248 9.79537

Table 2. Posterior Skewness for Di�erent Values of θ and φ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7

30 0.31492 0.31492 0.31492 0.31492 0.31492 0.31492 0.31492 0.31492 0.31492
50 0.22335 0.22335 0.22335 0.22335 0.22335 0.22335 0.22335 0.22335 0.22335
100 Uniform 0.14904 0.14904 0.14904 0.14904 0.14904 0.14904 0.14904 0.14904 0.14904
200 0.10259 0.10259 0.10259 0.10259 0.10259 0.10259 0.10259 0.10259 0.10259
500 0.06389 0.06389 0.06389 0.06389 0.06389 0.06389 0.06389 0.06389 0.06389

30 0.30046 0.30046 0.30046 0.30046 0.30046 0.30046 0.30046 0.30046 0.30046
50 0.21799 0.21799 0.21799 0.21799 0.21799 0.21799 0.21799 0.21799 0.21799
100 Je�reys 0.14741 0.14741 0.14741 0.14741 0.14741 0.14741 0.14741 0.14741 0.14741
200 0.10206 0.10206 0.10206 0.10206 0.10206 0.10206 0.10206 0.10206 0.10206
500 0.06376 0.06376 0.06376 0.06376 0.06376 0.06376 0.06376 0.06376 0.06376
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Table 3. Posterior Ex-Kurtosis for Di�erent Values of θ and φ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7

30 3.21818 3.21818 3.21818 3.21818 3.21818 3.21818 3.21818 3.21818 3.21818
50 1.55714 1.55714 1.55714 1.55714 1.55714 1.55714 1.55714 1.55714 1.55714
100 Uniform 0.67826 0.67826 0.67826 0.67826 0.67826 0.67826 0.67826 0.67826 0.67826
200 0.31842 0.31842 0.31842 0.31842 0.31842 0.31842 0.31842 0.31842 0.31842
500 0.12285 0.12285 0.12285 0.12285 0.12285 0.12285 0.12285 0.12285 0.12285

30 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909 2.90909
50 1.48052 1.48052 1.48052 1.48052 1.48052 1.48052 1.48052 1.48052 1.48052
100 Je�reys 0.66327 0.66327 0.66327 0.66327 0.66327 0.66327 0.66327 0.66327 0.66327
200 0.31508 0.31508 0.31508 0.31508 0.31508 0.31508 0.31508 0.31508 0.31508
500 0.12235 0.12235 0.12235 0.12235 0.12235 0.12235 0.12235 0.12235 0.12235

To search for a suitable prior for the scale parameter φ of the Log-Normal distribu-
tion, di�erent properties of the posterior distributions have been checked under the two
assumed priors and for di�erent values of the location parameter θ.

It is clear from Tables 1, 2 and 3 that as the sample size increases, posterior variances
decrease. From Table 1, it can be seen that the posterior variances for Je�reys prior
are smaller for all the values of θ, considered in the simulation study. Speci�cally, for
θ = 3, the posterior variances are minimum. Tables 2 and 3 show that both the skewness
and ex-kurtosis are positive. Therefore, both the posteriors are positively skewed and
are lepto-kurtic. Skewness and ex-kurtosis decrease with the increase in sample size.
The choices of location parameter θ and the scale parameter φ put no e�ect on these
two quantities. Both co-e�cients of skewness and ex-kurtosis for posterior distribution
obtained under Je�reys prior are minimum.

It can be concluded, when no prior information is in hand, that Je�reys prior performs
better than the Uniform prior for estimating the scale parameter φ of the Log-Normal
model.

4. Bayes Estimators and Bayes Risks under Di�erent Loss Func-

tions

In this section, Bayes estimators (BE) and Bayes risks (BR) are derived for di�erent
loss functions under the considered priors.

4.1. BE and BR under Squared Error Loss Function (SELF). For an estimator
φ∗ of φ, the SELF is de�ned as follows.

(4.1) L(φ, φ∗) = (φ− φ∗)2

The BE under this loss function is:

(4.2) φ∗ = Eφ|x(φ)

where Eφ|x is the Expectation over the posterior distribution.
The BR under SELF is given by:

(4.3) ρ(φ∗) = Eφ|x(φ2)− (Eφ|x(φ))2

The BEs and BRs under SELF are given in the following table.
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Table 4. BEs and BRs under SELF

Prior BE = β
α−1

BR = β2

(α−1)2(α−2)

Uniform

n∑
i=1

(ln xi−θ)2

n−4

2

{
n∑
i=1

(ln xi−θ)2
}2

(n−4)2(n−6)

Je�reys

n∑
i=1

(ln xi−θ)2

n−2

2

{
n∑
i=1

(ln xi−θ)2
}2

(n−2)2(n−4)

4.2. BE and BR under Quadratic Loss Function (QLF). The QLF, for an esti-
mator φ∗ of the parameter φ, is de�ned as:

(4.4) L(φ, φ∗) =
(φ− φ∗)2

φ2

The BE under the above loss function is given below.

(4.5) φ∗ =
Eφ|x

(
φ−1

)

Eφ|x (φ−2)

The BR under QLF is of the following form.

(4.6) ρ(φ∗) = 1−
(
Eφ|x (φ)−1)2

Eφ|x (φ)−2

The BEs and BRs, using the two priors, under QLF are given in the following table.

Table 5. BEs and BRs under QLF

Prior BE = β
α+1

BR = 1
α+1

Uniform

n∑
i=1

(ln xi−θ)2

n
2
n

Je�reys

n∑
i=1

(ln xi−θ)2

n+2
2

n+2

4.3. BE and BR under Weighted Loss Function (WLF). The mathematical form
of this loss function, for an estimator φ∗ of the parameter φ, is as under.

(4.7) L(φ, φ∗) =
(φ− φ∗)2

φ

The BE under WLF is of the following form.

(4.8) φ∗ =

{
Eφ|x

(
1

φ

)}−1



1837

The BR under WLF is written as under.

(4.9) ρ(φ∗) = Eφ|x (φ)−
{
Eφ|x

(
1

φ

)}−1

The following table contains BEs and BRs, using the two priors, under WLF.

Table 6. BEs and BRs under WLF

Prior BE = β
α

BR = β
α(α−1)

Uniform

n∑
i=1

(ln xi−θ)2

n−2

2
n∑
i=1

(ln xi−θ)2

(n−2)(n−4)

Je�reys

n∑
i=1

(ln xi−θ)2

n

2
n∑
i=1

(ln xi−θ)2

n(n−2)

4.4. DeGroot Loss Function (DLF). For an estimator φ∗ of the parameter φ, the
DLF is written mathematically as follows.

(4.10) L(φ, φ∗) =
(φ− φ∗)2
φ∗2

The BE under this loss function is as under.

(4.11) φ∗ =
Eφ|x

(
φ2
)

Eφ|x (φ)

Under DLF, the BR is of the form.

(4.12) ρ(φ∗) = 1−
{
Eφ|x (φ)

}2

Eφ|x (φ)2

The BEs and BRs, using the two priors, under DLF are contained in the following table.

Table 7. BEs and BRs under DLF

Prior BE = β
α−2

BR = 1
α−1

Uniform

n∑
i=1

(ln xi−θ)2

n−6
2

n−4

Je�reys

n∑
i=1

(ln xi−θ)2

n−4
2

n−2
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4.5. BE and BR under Precautionary Loss Function (PLF). Let φ∗ be an esti-
mator of a parameter φ, then PLF can be de�ned through the following equation.

(4.13) L(φ, φ∗) =
(φ− φ∗)2

φ∗

The BE under PLF is given below.

(4.14) φ∗ =
√
Eφ|x(φ2)

The BR under PLF is as under.

(4.15) ρ(φ∗) = 2

{√
Eφ|x(φ2)− Eφ|x(φ)

}

The BEs and BRs, using the two priors, under PLF are presented in the following table.

Table 8. BEs and BRs under PLF

Prior BE = β√
(α−1)(α−2)

BR = 2

{
β√

(α−1)(α−2)
− β

α−1

}

Uniform

n∑
i=1

(ln xi−θ)2
√

(n−4)(n−6)

2
n∑
i=1

(ln xi−θ)2
√

(n−4)(n−6)
−

2
n∑
i=1

(ln xi−θ)2

n−4

Je�reys

n∑
i=1

(ln xi−θ)2
√

(n−2)(n−4)

2
n∑
i=1

(ln xi−θ)2
√

(n−2)(n−4)
−

2
n∑
i=1

(ln xi−θ)2

n−2

4.6. BE and BR under Simple Asymmetric Precautionary Loss Function
(SAPLF). The SAPLF, for an estimator φ∗ of a parameter φ∗, is de�ned as follows

(4.16) L(φ, φ∗) =
(φ− φ∗)2
φφ∗

The BE under SAPLF is as under.

(4.17) φ∗ =

√
Eφ|x (φ)

Eφ|x (φ−1)

The BR under SAPLF is as follows.

(4.18) ρ(φ∗) = 2

{√
Eφ|x (φ)Eφ|x (φ−1)− 1

}

The BEs and BRs, using the two priors, under SAPLF are shown in the following table.

Table 9. BEs and BRs under SAPLF

Prior BE = β√
α(α−1)

BR = 2
{√

α
α−1
− 1
}

Uniform

n∑
i=1

(ln xi−θ)2
√

(n−2)(n−4)
2
{√

n−2
n−4
− 1
}

Je�reys

n∑
i=1

(ln xi−θ)2
√
n(n−2)

2
{√

n
n−2
− 1
}



1839

It can easily be depicted from the expressions of BRs in Tables 4−9 that Je�reys prior
requires less number of observations than the Uniform prior.

5. Simulation Study for Bayes Estimators and Bayes Risks under

Di�erent Loss Functions

A simulation study is carried out to obtain the BEs and BRs under di�erent loss func-
tions using di�erent priors. The simulation process is repeated 10, 000 times considering
generation of random samples of sizes 30, 50, 100, 200 and 500 from Log-Normal distribu-
tion assuming φ = 1, 4, 7 and θ = 1, 2, 3, and the results have then been averaged. These
results are presented in the following tables.

Table 10. BE and BR under SELF for di�erent values of θ and φ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7

BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR

30 1.15610 0.11885 18.52246 30.5066 56.6850 285.3746 1.15067 0.11764 18.4261 30.18859 56.4148 283.1549 1.14740 0.11712 18.3917 30.07997 56.6257 284.8302

50 1.08966 0.05619 17.37730 14.2768 53.2779 134.0584 1.08900 0.05604 17.3905 14.30565 53.2108 133.8097 1.08531 0.05569 17.4230 14.3490 53.3653 134.5817

100 Uniform 1.04295 0.02360 16.70100 6.05753 51.0567 56.58021 1.04104 0.02352 16.7038 6.053948 50.9718 56.40364 1.03978 0.02347 16.7008 6.05122 51.0835 56.62360

200 1.02092 0.01085 16.2807 2.75962 49.9615 25.98787 1.02177 0.01087 16.3434 2.781177 49.9828 26.01366 1.02010 0.01080 16.3055 2.76811 49.9114 25.94280

500 1.00884 0.00414 16.1477 1.05986 49.3953 9.918169 1.00857 0.00413 16.1233 1.056755 49.3473 9.898489 1.00763 0.00413 16.1270 1.05722 49.3409 9.89536

30 1.06848 0.09363 17.0768 23.9193 52.3748 225.4040 1.06970 0.09394 17.1377 24.0990 52.4906 225.9511 1.07458 0.09475 17.1855 24.2322 52.5921 226.905

50 1.04362 0.04923 16.6159 12.4797 50.9967 117.5658 1.03705 0.04864 16.6749 12.5786 51.0691 117.9625 1.04420 0.04932 16.6611 12.5524 50.9845 117.615

100 Je�reys 1.01979 0.02210 16.3062 5.65119 49.9702 53.07748 1.01701 0.02198 16.3365 5.67291 50.0336 53.21180 1.02176 0.02220 16.2968 5.64316 50.0850 53.2689

200 1.01145 0.01054 16.1601 2.69165 49.5063 25.2586 1.01029 0.01052 16.1555 2.68966 49.4593 25.21420 1.00971 0.01051 16.1558 2.6904 49.5561 25.3112

500 1.00457 0.00409 16.0601 1.04411 49.1995 9.80001 1.00423 0.00408 16.0619 1.04442 49.1835 9.792590 1.00390 0.00408 16.0679 1.04520 49.2420 9.81679

Table 11. BE and BR under QLF for di�erent values of θ and φ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7

BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR

30 0.99683 0.06667 15.9892 0.06667 49.1442 0.06667 1.00001 0.06667 16.0197 0.06667 49.0209 0.06667 0.99872 0.06667 15.9924 0.06667 48.9732 0.06667

50 1.00010 0.04000 15.9874 0.04000 49.0865 0.04000 0.99895 0.04000 15.9871 0.04000 49.0378 0.04000 0.99732 0.04000 16.0079 0.04000 49.0887 0.04000

100 Uniform 0.99876 0.02000 15.9954 0.02000 49.0019 0.02000 1.00020 0.02000 15.9781 0.02000 49.1506 0.02000 1.00026 0.02000 16.0037 0.02000 48.9685 0.02000

200 1.00048 0.01000 15.9864 0.01000 49.0171 0.01000 0.99951 0.01000 16.0114 0.01000 48.9663 0.01000 1.00032 0.01000 16.0211 0.01000 49.0125 0.01000

500 0.99990 0.00400 16.0153 0.00400 49.0476 0.00400 0.99996 0.00400 15.9822 0.00400 49.0226 0.00400 1.00059 0.00400 16.0141 0.00400 49.0054 0.00400

30 0.93610 0.06250 14.9223 0.06250 45.8692 0.06250 0.93545 0.06250 15.0120 0.06250 45.8977 0.06250 0.93735 0.06250 14.9988 0.06250 45.9757 0.06250

50 0.96133 0.03846 15.3730 0.03846 47.0391 0.03846 0.96016 0.03846 15.3760 0.03846 47.3039 0.03846 0.96199 0.03846 15.3717 0.03846 46.9715 0.03846

100 Je�reys 0.98191 0.01961 15.6737 0.01961 47.9365 0.01961 0.97958 0.01961 15.6617 0.01961 48.0052 0.01961 0.98258 0.01961 15.6731 0.01961 48.0314 0.01961

200 0.99101 0.00990 15.8256 0.00990 48.5146 0.00990 0.99037 0.00990 15.8430 0.00990 48.5811 0.00990 0.98921 0.00990 15.8360 0.00990 48.5113 0.00990

500 0.99697 0.00398 15.9414 0.00398 48.7507 0.00398 0.99711 0.00398 15.9281 0.00398 48.7708 0.00398 0.99693 0.00398 15.9442 0.00398 48.7972 0.00398

Table 12. BE and BR under DLF for di�erent values of θ and φ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7

BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR

30 1.24656 0.07692 19.9602 0.076923 61.1146 0.076923 1.24301 0.07692 19.9337 0.076923 61.3169 0.076923 1.24796 0.07692 19.9892 0.076923 61.1388 0.076923

50 1.13850 0.04348 18.1615 0.043478 55.5427 0.043478 1.13462 0.04348 18.1893 0.043478 55.6496 0.043478 1.13137 0.04348 18.1539 0.043478 55.5593 0.043478

100 Uniform 1.06318 0.02083 17.0610 0.020833 52.2324 0.020833 1.06191 0.02083 17.0426 0.020833 52.1436 0.020833 1.06028 0.02083 17.0164 0.020833 52.1689 0.020833

200 1.03232 0.01020 16.4914 0.010204 50.5055 0.010204 1.03061 0.01020 16.4988 0.010204 50.5139 0.010204 1.03112 0.01020 16.4932 0.010204 50.5463 0.010204

500 1.01192 0.00403 16.1892 0.004032 49.5339 0.004032 1.01224 0.00403 16.2136 0.004032 49.6621 0.004032 1.01274 0.00403 16.1880 0.004032 49.6351 0.004032

30 1.15722 0.07143 18.4422 0.071429 56.6918 0.071429 1.15580 0.07143 18.4283 0.071429 56.3957 0.071429 1.14590 0.07143 18.4731 0.071429 56.6648 0.071429

50 1.08962 0.04167 17.3342 0.041667 53.2016 0.041667 1.08643 0.04167 17.3816 0.041667 53.4161 0.041667 1.09065 0.04167 17.3178 0.041667 53.2236 0.041667

100 Je�reys 1.04305 0.02041 16.6493 0.020408 50.8967 0.020408 1.04361 0.02041 16.6594 0.020408 51.0393 0.020408 1.04216 0.02041 16.6128 0.020408 51.0043 0.020408

200 1.02001 0.01010 16.3188 0.010101 49.9748 0.010101 1.02134 0.01010 16.3336 0.010101 49.9855 0.010101 1.01959 0.01010 16.3251 0.010101 50.0521 0.010101

500 1.00817 0.00402 16.1329 0.004016 49.4114 0.004016 1.00777 0.00402 16.1279 0.004016 49.4766 0.004016 1.00817 0.00402 16.1195 0.004016 49.4526 0.004016
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Table 13. BE and BR under PLF for di�erent values of θ and φ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7
BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR

30 1.19900 0.09412 19.2689 1.50411 58.9176 4.62280 1.20447 0.09406 19.1396 1.50174 58.8260 4.61562 1.20300 0.09400 19.1579 1.50317 58.7515 4.60977
50 1.10650 0.04890 17.8331 0.78000 54.1936 2.38243 1.11411 0.04889 17.8105 0.78298 54.4042 2.39169 1.11085 0.04892 17.7623 0.78086 54.2870 2.38653
100 Uniform 1.04918 0.02208 16.8483 0.35191 51.4916 1.07839 1.05408 0.02203 16.8532 0.35296 51.7212 1.08320 1.05465 0.02206 16.8587 0.35307 51.5888 1.08042
200 1.02585 0.01051 16.4034 0.16813 50.3456 0.51505 1.02526 0.01049 16.4234 0.16802 50.2900 0.51448 1.02659 0.01050 16.4062 0.16784 50.2758 0.51433
500 1.01034 0.00408 16.1673 0.06524 49.4900 0.19976 1.01074 0.00408 16.1734 0.06528 49.5453 0.19998 1.01002 0.00408 16.1553 0.06521 49.4755 0.19970

30 1.10422 0.08083 17.7628 1.29227 54.4858 3.96394 1.11366 0.08065 17.8432 1.29813 54.7219 3.98112 1.10893 0.08077 17.7381 1.29048 54.7425 3.98262
50 1.06769 0.04483 17.0319 0.71721 52.1369 2.19548 1.06427 0.04496 17.0239 0.71688 52.1163 2.19462 1.06592 0.04502 17.0836 0.71939 52.0445 2.19159
100 Je�reys 1.03147 0.02115 16.5329 0.33915 50.4415 1.03473 1.03123 0.02111 16.4857 0.33818 50.5669 1.03730 1.03206 0.02114 16.5087 0.33865 50.5803 1.03757
200 1.01443 0.01029 16.2330 0.16439 49.6779 0.50307 1.01520 0.01028 16.2528 0.16459 49.7859 0.50417 1.01576 0.01029 16.2391 0.16445 49.8353 0.50466
500 1.00522 0.00404 16.0991 0.06472 49.3332 0.19832 1.00423 0.00405 16.0972 0.06471 49.3168 0.19826 1.00528 0.00405 16.0805 0.06465 49.2540 0.19801

Table 14. BE and BR under WLF for di�erent values of θ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7
BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR

30 1.07093 0.08238 17.0964 1.31511 52.3845 4.02958 1.07238 0.08249 17.1583 1.31987 52.2952 4.02271 1.06978 0.08229 17.1576 1.31982 52.7499 4.05769
50 1.04137 0.04528 16.7085 0.72646 51.1505 2.22394 1.04207 0.04531 16.6322 0.72314 51.1362 2.22332 1.04296 0.04535 16.6528 0.72404 51.1519 2.22400
100 Uniform 1.02233 0.02130 16.3509 0.34065 49.9914 1.04149 1.02088 0.02127 16.3070 0.33973 49.8856 1.03928 1.01842 0.02122 16.3514 0.34066 49.9854 1.04136
200 1.01161 0.01032 16.1406 0.16470 49.4889 0.50499 1.01038 0.01031 16.1580 0.16488 49.4440 0.50453 1.01029 0.01031 16.1529 0.16483 49.5732 0.50585
500 1.01161 0.01032 16.0685 0.06479 49.1605 0.19823 1.01038 0.01031 16.0550 0.06474 49.1999 0.19839 1.01029 0.01031 16.0480 0.06471 49.2116 0.19843

30 0.99817 0.07130 16.0086 1.14347 48.8909 3.49221 1.00151 0.07154 15.9995 1.14283 48.9981 3.49986 0.99775 0.07127 15.9993 1.14281 49.0448 3.50320
50 1.00190 0.04175 15.9760 0.66567 49.1387 2.04745 1.00016 0.04167 15.9847 0.66603 49.0197 2.04249 0.99927 0.04164 16.0619 0.66925 48.8018 2.03341
100 Je�reys 0.99962 0.02040 16.0068 0.32667 48.9493 0.99897 1.00114 0.02043 16.0117 0.32677 49.1360 1.00278 1.00192 0.02045 15.9928 0.32638 49.0456 1.00093
200 1.00433 0.00405 16.0147 0.16177 48.9206 0.49415 1.00342 0.00405 16.0418 0.16204 49.0315 0.49527 1.00444 0.00405 16.0020 0.16164 48.9709 0.49466
500 1.00061 0.00402 15.9865 0.06420 48.9984 0.19678 1.00041 0.00402 15.9710 0.06414 48.9624 0.19664 0.99911 0.00401 16.0096 0.06430 49.0144 0.19685
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Table 15. BE and BR under SAPLF for di�erent values of θ

n Prior
θ = 1 θ = 2 θ = 3

φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7 φ = 1 φ = 4 φ = 7
BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR BE BR

30 1.10882 0.07550 17.8537 0.07550 54.2717 0.07550 1.10565 0.07550 17.7617 0.07550 54.1956 0.07550 1.11006 0.07550 17.8116 0.07550 54.4152 0.07550
50 1.06607 0.04302 17.0353 0.04302 52.1882 0.04302 1.06244 0.04302 17.0284 0.04302 52.1682 0.04302 1.05939 0.04302 17.0585 0.04302 52.2884 0.04302
100 Uniform 1.03035 0.02073 16.5174 0.02073 50.6166 0.02073 1.02912 0.02073 16.4974 0.02073 50.4981 0.02073 1.02754 0.02073 16.5164 0.02073 50.5237 0.02073
200 1.01661 0.01018 16.2418 0.01018 49.7278 0.01018 1.01493 0.01018 16.2476 0.01018 49.7359 0.01018 1.01543 0.01018 16.2452 0.01018 49.8430 0.01018
500 1.00585 0.00403 16.1019 0.00403 49.2450 0.00403 1.00647 0.00403 16.1005 0.00403 49.2936 0.00403 1.00464 0.00403 16.0890 0.00403 49.3088 0.00403

30 1.03686 0.07020 16.5563 0.07020 50.5246 0.07020 1.02791 0.07020 16.5673 0.07020 50.6038 0.07020 1.03678 0.07020 16.6341 0.07020 50.6590 0.07020
50 1.02010 0.04124 16.2593 0.04124 50.1087 0.04124 1.02411 0.04124 16.3179 0.04124 49.8674 0.04124 1.02081 0.04124 16.3662 0.04124 50.0359 0.04124
100 Je�reys 1.01204 0.02031 16.1777 0.02031 49.4667 0.02031 1.01064 0.02031 16.1720 0.02031 49.4841 0.02031 1.01039 0.02031 16.1187 0.02031 49.4309 0.02031
200 1.00596 0.01008 16.0850 0.01008 49.1865 0.01008 1.00423 0.01008 16.0760 0.01008 49.2391 0.01008 1.00501 0.01008 16.0741 0.01008 49.3851 0.01008
500 1.00243 0.00401 16.0383 0.00401 49.0779 0.00401 1.00275 0.00401 16.0324 0.00401 49.1231 0.00401 1.00125 0.00401 16.0218 0.00401 49.0598 0.00401

From Tables 10− 15, it is clear that Bayes estimates approach to the true value and Bayes
risks approach to zero with increase in sample size. Je�reys prior requires less number
of observations than the Uniform prior for e�cient estimation. Also, Bayes risks under
SELF, QLF, DLF, PLF, WLF and SAPLF using Je�reys prior are minimum. The results
under QLF are much better than the results of the remaining assumed loss functions.
Also, the results show that the parameter is over and under estimated and the degree
of over and under estimation is minimum under Je�reys and QLF. For large scale, the
degree of over estimation is signi�cant and SELF gives much poor estimates under both
the priors.

6. Application

To illustrate the proposed methodology, we used a published data on 137 inoperable
lung cancer patients. The data were published in a book titled �The Statistical Analysis of
Failure Time Data�, by Kalb�eisch and Prentice [3]. For our purpose, obviously these are
anonymous data since we don't know the patients' identi�cations. Also, no identi�cation
of the patients are given by the authors in their book. In our study, these data are
analyzed anonymously. There is no ethics committee/institutional review board (or data
production agency/commissioner) that approved this retrospective study.

The BEs and BRs under the assumed loss functions, for the real data set, are show-
cased in the tables given below.

Table 16. BEs and BRs under SELF using Real Data Set

Prior
θ=1 θ=2 θ=3

BE BR BE BR BE BR

Uniform 11.65964 2.075529 6.316937 0.6092167 3.034387 0.1405726

Je�reys 11.48690 1.984194 6.223353 0.582408 2.989433 0.1343866

Table 17. BEs and BRs under QLF using Real Data Set

Prior
θ=1 θ=2 θ=3

BE BR BE BR BE BR

Uniform 11.31921 0.014598 6.132501 0.0145985 2.945792 0.014598

Je�reys 11.15634 0.014389 6.0442630 0.014389 2.903407 0.014388
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Table 18. BEs and BRs under DLF using Real Data Set

Prior
θ=1 θ=2 θ=3

BE BR BE BR BE BR

Uniform 11.83765 0.015037 6.413379 0.015037 3.080714 0.015037

Je�reys 11.65964 0.014815 6.316937 0.014815 3.034387 0.014815

Table 19. BEs and BRs under PLF using Real Data Set

Prior
θ=1 θ=2 θ=3

BE BR BE BR BE BR

Uniform 11.748300 25.77324 6.364975 13.36979 3.057463 6.258806

Je�reys 11.572950 25.31613 6.269970 13.15072 3.011826 6.16111

Table 20. BEs and BRs under WLF using Real Data Set

Prior
θ=1 θ=2 θ=3

BE BR BE BR BE BR

Uniform 11.48690 0.1727354 6.223353 0.0935842 2.989433 0.0449539

Je�reys 11.31921 0.167692 6.1325010 0.090852 2.94579 0.043641

Table 21. BEs and BRs under SAPLF using Real Data Set

Prior
θ=1 θ=2 θ=3

BE BR BE BR BE BR

Uniform 11.572950 0.0149815 6.269970 0.0149815 3.011826 0.0149815

Je�reys 11.402750 0.0147603 6.1777600 0.0147603 2.967532 0.0147603

After examining the results presented in tables 16−21, it can easily be concluded
that the performance of Je�reys prior is better. Also, QLF performs much better than
the rest of the assumed loss functions for estimating the scale parameter of Log-Normal
distribution.

6.1. Graphical Presentation. The graphs of the posterior distributions, under the
two priors, are sketched for di�erent values of the location parameter using the real data
set.
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Figure 1. Graph of the Posterior Distributions under Uniform and
Je�reys Priors for θ = 1
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Figure 2. Graph of the Posterior Distributions under Uniform and
Je�reys Priors for θ = 2
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Figure 3. Graph of the Posterior Distributions under Uniform and
Je�reys Priors for θ = 3
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The �gures 1, 2 and 3 clearly favor Je�reys as the best non-informative prior for
the scale parameter, as the curves of the posterior distribution under this prior are less
skewed. For θ = 3, the graph has least posterior skewness.

Conclusions

In this paper, comparisons of non-informative priors for estimating the scale parameter
of log-normal distribution have been presented. The two non-informative priors, Uniform
and Je�reys, have been considered and then their posterior distributions were derived.
Comparisons have been made on the basis of posterior variance, coe�cients of skewness,
ex-kurtosis and Bayes risks. In these comparisons, we have observed that Je�reys prior
gives the less posterior variances, less posterior skewness, less ex-kurtosis and less Bayes
risks. The simulation results for large value of φ are not much convincing. The degree
of over estimation signi�cantly increases for large values of scale. SELF performs poorly
for large values of φ. Also, the results under Quadratic Loss Function (QLF) are e�cient
with minimum risks. A real data set of lung cancer patients had also been analyzed
which veri�ed the simulation results.

Therefor, it is concluded that Je�reys prior is the appropriate prior when no prior
information is available. Also, the Quadratic Loss Function (QLF) is recommended to
be used for the estimation of the scale parameter of Log-Normal distribution.

This work can further be extended by considering di�erent (weakly) informative priors
and di�erent loss functions. The location parameter can also be estimated for known scale
parameter in future research work. Both the parameters can be assumed unknown and
can be estimated simultaneously.
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1. Introduction
In many areas of knowledge, the study of the behavior of a variable is related to the tail of the

distribution. These observations, although they can occur with lower frequency than the central part
of the distribution, can be of the greatest interest to the researcher; in some situations, an occurrence
in the tail can cause a great impact on society, such as an index of very high rainfall or a high level
of river flow, among other variables such as temperature. These changes cause more impact than
in the mean of the index, according to [16] and [18]. One of the major challenges of analyzing
extremes is proposing a model and estimating its parameters with little information due to the scant
data available. Often the tail of a statistical distribution is commonly seen as normal, or exponential
tails may not be the most suitable for this type of data. Another challenge in analyzing this type
of data is estimating with a high level of precision the probability of the occurrence of events that
not have been observed. [2] shows in detail the difficulties in estimating extreme events. To answer
these questions, the extreme value theory has been developed to analyze these types of occurrences,
proposing specific distributions for this type of observation. One approach is to analyze this type
of data and group data in maxima every n observations, and then to model the block maxima. A
pioneering work in this area was done by [1], who presented an asymptotic result for distribution
of maximum block n. There was not much progress in the area until the 1950s, when works such
as those by [21] and [8] showed that the only non-trivial limiting distribution of affinely normalised
maximum is the generalized extreme value (GEV) distribution.

A random variable X follows the GEV distribution if its cumulative distribution function (cdf)
is given by

G(x;µ, σ, ξ) =





exp
{
−[1 + ξ(x− µ)/σ]−1/ξ

}
, ξ 6= 0,

exp {− exp[−(x− µ)/σ]} , ξ → 0,

(1.1)

and is defined in the set {x : 1 + ξ(x − µ)/σ > 0}, where µ ∈ R is a location parameter, σ > 0
is a scale parameter and ξ ∈ R is a shape parameter. Thus, for ξ > 0, the expression just given
for the cumulative distribution function is valid for x > µ − σ/ξ, while for ξ < 0 it is valid for
x < µ + σ/(−ξ). In the first case, at the lower end-point it equals 0; in the second case, at the
upper end-point, it equals 1. For ξ = 0 the expression in (1.1) is interpreted by taking the limit as
ξ → 0. The probability density function (pdf) corresponding to (1.1) is given by

g(x;µ, σ, ξ) =





σ−1[1 + ξ(x− µ)/σ]−(1/ξ)−1 exp
{
−[1 + ξ(x− µ)/σ]−1/ξ

}
, ξ 6= 0,

σ−1 exp[−(x− µ)/σ] exp {− exp[−(x− µ)/σ]} , ξ → 0.

Estimates of extreme quantiles zu of the annual maximum distribution are then obtained by
inverting Equation (1.1)

zu =





µ+ σ
ξ

{
[− log(u)]−ξ − 1

}
, ξ 6= 0,

µ− σ log [− log(u)] , ξ → 0,

where u ∈ [0, 1].
In GEV distribution, if x∗ is the upper limit of distribution G, according to [5] and [4] the shape

parameter ξ satisfies

lim
x→x∗

1−G(x;µ, σ, ξ)

xg(x;µ, σ, ξ)
= ξ,(1.2)
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if ξ > 0 and x∗ =∞, and

lim
x→x∗

1−G(x;µ, σ, ξ)

(x− x∗) g(x;µ, σ, ξ)
= ξ,(1.3)

if ξ < 0 and x∗ <∞.
There has been an increased interest in defining new classes of univariate continuous distribu-

tions introducing additional shape parameters to the baseline model. In many applied areas such
as lifetime analysis [7], environmental [17], medical [14], economy [11], there is a clear need for
extended forms of the classical distributions, that is, new distributions which are more flexible to
model real data in these areas since the data can present a high degree of skewness and kurtosis.
In the context of extreme values, Papastathopoulos and Tawn (2013) studied three extensions of
the generalised Pareto distribution. The extended distributions have attracted several statisticians
to develop new models because the computational and analytical facilities available in standard
softwares can easily tackle the problems involved in computing special functions in these extended
distributions.

In recent years, several common distributions have been generalized via exponentiation. Let
G(x) be the cdf of any continuous baseline distribution. The cdf of the exponentiated-G distribution
is defined by elevating G(x) to the power α, say F (x) = G(x)α, where α > 0 denotes an extra
shape parameter. The baseline distribution is obtained as a special case when α = 1. The pdf
corresponding can be written as

(1.4) f(x) = αg(x)G(x)α−1, x ∈ R.

where g(x) is the pdf of baseline distribution. Following this idea, [6] introduced the exponentiated
exponential distribution as a generalization of the exponential distribution. In the same way, [13]
proposed four more exponentiated distributions which generalize the gamma, Weibull, Gumbel and
Fréchet distributions and provided some mathematical properties for each distribution. Several
other authors have considered exponentiated distributions, for example, [12], [7], [20], [9] and [10].
Recently, [17] studied a broad family of univariate distributions through a particular case of Stacy’s
generalized gamma distribution. This new family stems from the general class: if G(x) denotes the
baseline cdf of a random variable, then a generalized class of distributions can be defined by

(1.5) F (x) = 1− γ{δ,− log[G(x)]}, x ∈ R, δ > 0,

where

γ(δ, z) =
1

Γ(δ)

∫ z

0

tδ−1e−tdt,

denotes the incomplete gamma function and Γ(·) is the gamma function. This family of distribu-
tions has pdf given by

f(x) =
1

Γ(δ)
{− log[G(x)]}δ−1 g(x).

[19] proposed a class of generalized distributions based on the transmutation map approach. Let
F1 and F2 be the cdf’s of two distributions with a common sample space. The general rank transmu-
tation as given in [19] is defined asGR12(u) = F2(F−1

1 (u)) andGR21(u) = F1(F−1
2 (u)). Notice

that the inverse cdf also known as quantile function is defined as F−1(y) = infx∈R{F (x) ≥ y},
for y ∈ [0, 1]. The functions GR12(u) and GR21(u) are both mapped in the unit interval I = [0, 1]
into itself, and under suitable assumptions are mutual inverses and they satisfy GRij (0) = 0
and GRij (1) = 1, for i = 1, 2. A quadratic rank transmutation map is defined as GR12(u) =
u+ λu(1− u), |λ| ≤ 1 from which follows that the cdf satisfies the relationship

(1.6) F2(x) = (1 + λ)F1(x)− λ[F1(x)]2,

which on differentiation yields f2(x) = f1(x)[1 + λ− 2λF1(x)], where f1(x) and f2(x) are the
corresponding pdfs associated with cdf F1(x) and F2(x) respectively.
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The aim of this paper is to propose new modifications to GEV models that incorporate an addi-
tional parameter, with the hope that it will yield “better” results in certain practical situations. We
create three new modifications for the GEV distribution: dual gamma GEV distribution, exponenti-
ated GEV distribution and transmuted GEV distribution. The major benefit of these models is their
ability to fit the skewed data better than GEV distribution.

The article is organized as follows. In Section 2, we define the dual gamma generalized extreme
value (GGEV), exponentiated generalized extreme value (EGEV) and transmuted generalized ex-
treme value (TGEV) distributions, derive the quantile functions of models and provide plots of such
functions for selected parameter values. In Section 3, inference procedure is carried out under the
Bayesian paradigm, with prior information playing an important role in the estimation procedures.
Section 4 illustrates the method with a few simulated examples. Section 5 presents two applications
to extreme data analysis. Concluding remarks are addressed in Section 6.

2. Construction of extreme value models
In this section, we present three new probability density functions that are generalizations of

the GEV density. We illustrate the flexibility of these distributions and provide plots of the density
function for selected parameter values.

2.1. The dual gamma generalized extreme value distribution (GGEV). Taking the GEV distri-
bution as the baseline model in Equation (1.5), we have

F (x;µ, σ, ξ, δ) =





1− γ(δ, [1 + ξ(x− µ)/σ]−1/ξ), ξ 6= 0,

1− γ(δ, exp[−(x− µ)/σ]), ξ → 0,

(2.1)

where δ > 0. The corresponding pdf has a very simple form

f(x;µ, σ, ξ, δ) =





σ−1

Γ(δ)
[1 + ξ(x− µ)/σ]−(δ/ξ)−1 exp

{
−[1 + ξ(x− µ)/σ]−1/ξ

}
, ξ 6= 0,

σ−1

Γ(δ)
exp {−δ[(x− µ)/σ]} exp {− exp[−(x− µ)/σ]} , ξ → 0.

The quantile function of GGEV distribution is given by

zu =





µ+ σ
ξ

{[
Q−1(δ, (1− u))

]−ξ − 1
}
, ξ 6= 0,

µ− σ log
[
Q−1(δ, (1− u))

]
, ξ → 0,

where u ∈ [0, 1] and Q−1(δ, u) is the inverse function of Q(δ, x) = γ(δ, x). Some plots of the
GGEV density functions are displayed in Figure 1. The case where δ = 1 is the particular case
of standard GEV distribution. As this distribution has not the form of a GEV distribution, it not
has some properties as max-stability. However, applications results shown that the flexibility of this
class of distribution allow some predictive advantages compared with standard GEV.
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Figure 1. Plot for the GGEV density for some parameter values; µ = 0 and σ = 1.

In the Proposition 2.1, we provide some useful properties of the GGEV distribution.

2.1. Proposition. Let X ∼ (µ, σ, ξ, δ). Then, first moment, variance, skewness and kurtosis are
given by

(a) E(X) =
µξΓ(δ) + σ[Γ(δ − ξ)− Γ(δ)]

ξΓ(δ)
, ξ 6= 0 and ξ < δ. When ξ = 0, we have

E(X) = µ− σψ(δ), where ψ(·) is derivative of the logarithm of the gamma function.

(b) Var(X) =
σ2[Γ(δ)Γ(δ − 2ξ)− Γ2(δ − ξ)]

ξ2Γ2(δ)
, ξ 6= 0 and ξ < δ/2. When ξ = 0,

Var(X) = σ2ψ(1, δ).

(c) γ1 =





Γ2(δ)Γ(δ−3ξ)−3Γ(δ)Γ(δ−ξ)Γ(δ−2ξ)+2Γ3(δ−ξ)
[Γ(δ)Γ(δ−2ξ)−Γ2(δ−ξ)]3/2 , if ξ > 0 and ξ < δ/3,

−Γ2(δ)Γ(δ−3ξ)−3Γ(δ)Γ(δ−ξ)Γ(δ−2ξ)+2Γ3(δ−ξ)
[Γ(δ)Γ(δ−2ξ)−Γ2(δ−ξ)]3/2 , if ξ < 0,

− ψ(2,δ)

[ψ(1,δ)]3/2
, if ξ = 0.

(d) γ2 =





Γ3(δ)Γ(δ−4ξ)−4Γ2(δ)Γ(δ−3ξ)Γ(δ−ξ)+6Γ(δ)Γ(δ−2ξ)Γ2(δ−ξ)−3Γ4(δ−ξ)
[Γ(δ)Γ(δ−2ξ)−Γ2(δ−ξ)]2 − 3, if ξ 6= 0 and ξ < δ

4
,

3[ψ(1,δ)]2+ψ(3,δ)

[ψ(1,δ)]2
− 3, if ξ = 0,

∞, if ξ ≥ δ/4.
These results (a), (b), (c) and (d) are directly obtained from the definition of each measure.

2.1. Remark. The density function of X (GGEV distribution) can be expressed as

f(x;µ, σ, ξ, δ) =
[1 + ξ(x− µ)/σ]

−(δ−1)
ξ

Γ(δ)
· g(x;µ, σ, ξ),

where g(x;µ, σ, ξ) is the pdf of the GEV distribution. The multiplying quantity [1+ξ(x−µ)/σ]
−(δ−1)

ξ

Γ(δ)

works as a corrected factor for the pdf of the GEV distribution.

2.2. The exponentiated generalized extreme value distribution (EGEV). Now inserting (1.1)
into (1.4) we obtain the pdf of exponentiated generalized extreme value (EGEV) distribution

f(x;µ, σ, ξ, α) =





ασ−1[1 + ξ(x− µ)/σ]−(1/ξ)−1 exp
{
−α[1 + ξ(x− µ)/σ]−1/ξ

}
, ξ 6= 0,

α σ−1 exp[−(x− µ)/σ] exp {−α exp[−(x− µ)/σ]} , ξ → 0.

(2.2)
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The EGEV cdf can be expressed as

F (x;µ, σ, ξ, α) =





exp
{
−α[1 + ξ(x− µ)/σ]−1/ξ

}
, ξ 6= 0,

exp {−α exp[−(x− µ)/σ]} , ξ → 0,

(2.3)

where α > 0. The quantile function corresponding to Equation (2.3) is

zu =





µ+ σ
ξ

{[
− 1
α

log(u)
]−ξ − 1

}
, ξ 6= 0,

µ− σ log
[
− 1
α

log(u)
]
, ξ → 0,

where u ∈ [0, 1].

2.2. Proposition. The EGEV distribution is a particular case of GEV distribution. The Proof is
shown in appendix.

The result of this proposition hold important properties for EGEV distribution as for example
the max-stability, and the shape parameter form obtained from Equations (1.2) and (2.5) is ξ.

Figure 2 displays some plots of the density function (2.2) for some parameter values. The case
where α = 1 is the particular case of standard GEV distribution.
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Figure 2. Plot for the EGEV density for some parameter values; µ = 0 and σ = 1.

In the Proposition 2.3, we provide some useful properties of the EGEV distribution.

2.3. Proposition. Let X ∼ (µ, σ, ξ, α). Then, first moment and variance are given by

(a) E(X) =
µξ + σ[αξΓ(1− ξ)− 1]

ξ
, ξ 6= 0 and ξ < 1. When ξ = 0, we have E(X) =

µ+ σ[ζ + lnα], where ζ = 0.577215 is the Euler’s constant.

(b) Var(X) =
σ2α2ξ[Γ(1− 2ξ)− Γ2(1− ξ)]

ξ2
, ξ 6= 0 and ξ < 1/2. When ξ = 0, the

variance is Var(X) =
π2σ2

6
.

These results (a) and (b) are directly obtained from the definition of each measure.

2.3. The transmuted generalized extreme value distribution (TGEV). If G(x) is the GEV cu-
mulative distribution in (1.1), then, applying it in the function (1.6), the transmuted generalized
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extreme value (TGEV) cumulative distribution is given by

F (x;µ, σ, ξ, λ) =





(1 + λ) exp
{
−[1 + z ξ]−1/ξ

}
− λ exp

{
−2[1 + z ξ]−1/ξ

}
, ξ 6= 0,

(1 + λ) exp {− exp[−z]} − λ exp {−2 exp[−z]} , ξ → 0.

(2.4)

The corresponding pdf is

f(x;µ, σ, ξ, λ) =





exp
{
−[1 + z ξ]−1/ξ

}
[1 + λ− 2λ exp

{
−[1 + z ξ]−1/ξ

}
]

σ[1 + z ξ]1+(1/ξ)
, ξ 6= 0,

exp[−z] exp {− exp[−z]} [1 + λ− 2λ exp {− exp[−z]}]
σ

, ξ → 0,

where λ ∈ [−1, 1], z = (x − µ)/σ. The quantile function of TGEV distribution, say zu, is given
by

zu =





µ+ σ
ξ

{[
− log

[
(1+λ)−

√
(1+λ)2−4λu

2λ

]]−ξ
− 1

}
, ξ 6= 0,

µ− σ log

{
− log

[
(1+λ)−

√
(1+λ)2−4λu

2λ

]}
, ξ → 0,

for λ 6= 0 and u ∈ [0, 1]. In Figure 3, we plot the density of the TGEV distribution for selected
parameter values. The case where λ = 0 is the particular case of standard GEV distribution.

−
3

−
2

−
1

0
1

2
3

0.0 0.2 0.4 0.6 0.8

x

f(x)

λ
=

−
0
.9

λ
=

−
0
.7

λ
=

−
0
.5

λ
=

−
0
.3

λ
=
0

λ
=
0
.3

λ
=
0
.5

λ
=
0
.7

λ
=
0
.9

(a) ξ = −0.4

−
2

−
1

0
1

2
3

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

x

f(x)

λ
=

−
0
.9

λ
=

−
0
.7

λ
=

−
0
.5

λ
=

−
0
.3

λ
=
0

λ
=
0
.3

λ
=
0
.5

λ
=
0
.7

λ
=
0
.9

(b) ξ = 0.4

Figure 3. Plot for the TGEV density for some parameter values; µ = 0 and σ = 1.

In the Proposition 2.4, we provide some useful properties of the TGEV distribution.

2.4. Proposition. Let X ∼ (µ, σ, ξ, α). Then, first moment and variance are given by

(a) E(X) =
µξ + σ[(1 + λ− 2ξλ)Γ(1− ξ)− 1]

ξ
, ξ 6= 0 and ξ < 1. When ξ = 0 we have

E(X) = (µ+ σζ)− λσ ln 2.

(b) Var(X) =
σ2{−[λ(2ξ − 1)− 1]2Γ2(1− ξ)− [λ(4ξ − 1)− 1]Γ(1− 2ξ)}

ξ2
, ξ 6= 0 and ξ <

1/2. When ξ = 0 we have Var(X) = σ2

{
π2

6
− λ(1 + λ)[ln 2]2

}
.
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These results (a) and (b) are directly obtained from the definition of each measure.

2.5. Proposition. The density function of X (TGEV) can be expressed as an finite linear combina-
tion of densities of GEV(µ, σ, ξ) and EGEV(µ, σ, ξ, 2) density functions, i.e.,

f(x;µ, σ, ξ, λ) = β · g(x;µ, σ, ξ) + (1− β) · z(x;µ, σ, ξ, 2),

where β = 1 + λ and z(x) is pdf of EGEV distribution.

2.1. Corollary. If λ = −1, then X ∼ EGEV(µ, σ, ξ, 2).

2.6. Proposition. If f is the density function of TGEV distribution, with cumulative function F, then

lim
x→x∗

1− F (x;µ, σ, ξ, λ)

xf(x;µ, σ, ξ, λ)
= ξ

if ξ > 0 and x∗ =∞, and

lim
x→x∗

1− F (x;µ, σ, ξ, λ)

(x− x∗) f(x;µ, σ, ξ, λ)
= ξ,(2.5)

if ξ < 0 and x∗ <∞.

The proof is shown in Appendix.

2.4. Return levels. In extreme values studies, is important to know with which probability a rare
event can occur in the next periods of time, or every how many years is expected an event higher
than r. For this, we can calculate the return level for every t periods of time. Specifically, the
return level rt is related to the quantile 1− 1/t of the distribution of extreme values. Thus, for each
of the three generalizations the return levels are given by rt = z1−1/t. In Bayesian estimation,
as sampled points of the parameters for the respective posteriors, they sampled points with the
return levels, obtaining a posterior distribution for rt. We can verify some relationship between the
standard GEV distribution and its generalizations.

2.7. Proposition. Let rEGEV,t the return level for EGEV distribution with parameters (µ, σ, ξ, α)
and let rGEV,t the return level for the GEV distribution with parameters (µ, σ, ξ). Then

(1) If α > 1, then rGEV,t < rEGEV,t.
(2) If α < 1, then rGEV,t > rEGEV,t.

The proof is shown in the appendix

2.8. Proposition. Let rGGEV,t the return level for GGEV distribution with parameters (µ, σ, ξ, δ)
and let rGEV,t the return level for the GEV distribution with parameters (µ, σ, ξ). Then

(1) If δ > 1, then rGEV,t > rGGEV,t.
(2) If δ < 1, then rGEV,t < rGGEV,t.

The proof is shown in the appendix

2.9. Proposition. Let rTGEV,t the return level for TGEV distribution with parameters (µ, σ, ξ, λ)
and let rGEV,t the return level for the GEV distribution with parameters (µ, σ, ξ). Then

(1) If λ > 0, then rGEV,t > rTGEV,t.
(2) If λ < 0, then rGEV,t < rTGEV,t.

The proof is shown in the appendix
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3. Estimation and inference
3.1. Maximum likelihood estimation. In this section, we discuss maximum likelihood estimation
for the new models. We present the log-likelihood function for all models considering the case
ξ 6= 0. Thus, the log-likelihood are given by

`GGEV(θ1) = −n log(σ Γ(δ))−(δ/ξ+1)

n∑

i=1

log[1+ξ(xi−µ)/σ]−
n∑

i=1

[1+ξ(xi−µ)/σ]−1/ξ,

`EGEV(θ2) = n log(α/σ)−(1/ξ+1)

n∑

i=1

log[1+ξ(xi−µ)/σ]−α
n∑

i=1

[1+ξ(xi−µ)/σ]−1/ξ,

`TGEV(θ3) = −n log(σ)− (1/ξ + 1)

n∑

i=1

log[1 + ξ(xi − µ)/σ]−
n∑

i=1

[1 + ξ(xi − µ)/σ]−1/ξ

+

n∑

i=1

log
(

1 + λ− 2λ exp
{
−[1 + ξ(xi − µ)/σ]−1/ξ

})
,

where θ1 = (µ, σ, ξ, δ), θ2 = (µ, σ, ξ, α) and θ3 = (µ, σ, ξ, λ), provided that

1 + ξ(xi − µ)/σ > 0, for i = 1, . . . , n.

At parameter combinations for which the above result is violated, corresponding to a configura-
tion for which at least one of the observed data falls beyond an end-point of the distribution, the
likelihood is zero and the log-likelihood equals −∞.

3.2. Bayesian analysis. In this work, we use the Bayesian paradigm to estimate the posterior pa-
rameters of these new class of distributions. We proposed vague prior distributions for the parame-
ters, and perform the estimation combining the information of prior and the likelihood function to
provide the posterior points. We have the posterior points by Markov chain Monte Carlo (MCMC)
[3]. Base on the parametric space of the parameters, we proposed the following priors:

• µ ∼ N(µ0, σ
2
0), µ0 and σ2

0 known;
• σ ∼ Γ(a1, b1), a1 and b1 known;
• ξ ∼ N(µξ, σ

2
ξ), µξ and σ2

ξ known;
• δ ∼ Γ(a2, b2), a2 and b2 known;
• α ∼ Γ(a3, b3), a3 and b3 known;
• λ ∼ U(−1, 1).

Considering a case with a non-informative prior to the parameters, we consider µ0 = µξ = 0,
σ2

0 = 1000, σ2
ξ , ai = 0.001, bi = 0.001, i = 1, 2, 3. Posterior points can be performed using

MCMC algorithms. As we not have a closed form for the full conditional distributions for all the
three cases, we use the Metropolis-Hastings algorithm technique of sampling.

4. Simulation study
Simulations was performed in different configuration of the parameters, from the three exten-

sions and the standard GEV distribution. The aim of this section if verify the ability of the estima-
tion fits correctly the value of the parameters, in differents points of the generalization parameter.
We performed all simulations with fixed (µ, σ, ξ) parameters at points (100, 50, 0.2). For the δ of
GGEV and α of EGEV, we used the values (0.5, 2.0). For the λ of TGEV, we simulated points with
(−0.9, 0.9).

Table 1 shows the Bayes estimator with respect to quadratic loss (posterior mean), and credibility
intervals of 95%. In all simulations, the posterior mean is near to the true value, and only for the
parameter σ for the EGEV model, with α = 2.0, the true value have been out of the credibility
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interval. The length of the intervals are similar between models, indicating that they have the
same accuracy. For the GEV standard model, the credibility intervals was (99.92; 101.97) for µ,
(49.78, 51.41) for σ and (0.190, 0.218) for ξ. Figures 4-6 shows trace plots of the parameters
for three simulations. In all cases, we observe that a stationary distribution whose central measure
coincides with the true value.

Table 1. Posterior means and 95% posterior credibility intervals for simulated
data in the parameters models.

EGEV, α = 0.5 GGEV, δ = 0.5 TGEV, λ = −0.9

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I.
µ 99.4 (98.1; 100.7) 99.0 (97.6; 100.5) 100.4 (99.2; 101.4)
σ 49.7 (48.7; 50.7) 49.5 (48.4; 50.6) 50.6 (49.6; 51.7)
ξ 0.197 (0.182; 0.213) 0.203 (0.191; 0.214) 0.205 (0.189; 0.220)

EGEV, α = 2.0 GGEV, δ = 2.0 TGEV, λ = 0.9

Mean 95% C.I. Mean 95% C.I. Mean 95% C.I.
µ 100.9 (99.9; 101.8) 100.3 (99.3; 101.3) 99.8 (99.0; 100.7)
σ 48.8 (47.8; 49.8) 50.1 (49.0; 51.2) 49.6 (48.8; 50.6)
ξ 0.202 (0.187; 0.218) 0.198 (0.176; 0.223) 0.181 (0.159; 0.203)
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Figure 4. Trace plot of the parameters from GGEV model δ = 0.5.
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Figure 5. Trace plot of the parameters from EGEV model, α = 2.0.
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Figure 6. Trace plot of the parameters from TGEV model, λ = 0.9.

Figure 7 show the return level plot for standard GEV estimation. Altouthg this plot is common
in literature of extremes, the objective of draw it in this work is to compare the GEV returns against
it’s generalizations.
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Figure 7. Posterior mean and 95% posterior credibility intervals of the return
level plot for simulatated GEV model.

The Figures 8-10 show the posterior mean of the expected return levels, from t = 2 to 100, for
each model simulated. From these figures, it is observed that for all simulations the true values of
the returns are within the credibility interval, and the estimation is more accurate for GGEV model,
where the line of the posterior mean returns is the nearest line of the true returns. The TGEV
model is the less accurate model about the returns, which presents larger distance between the line
of the mean and the true return, even so it is within the credibility interval. Comparing the three
extensions proposed in this work with the returns of standard GEV, it is observed that increasing
the parameter α in EGEV implies increasing values of returns, although even increasing α = 2.0
we have similar results compared with standard GEV. About the GGEV returns, when δ decrease,
we have a tail much more heavy than the standard GEV model. For TGEV model increase λ imply
in lower returns values.
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Figure 8. Posterior mean and 95% posterior credibility intervals of the return
level plot for simulatated EGEV model with α = 0.5 (a) and α = 2.0 (b). The
grey line is the true return of the model.
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Figure 9. Posterior mean and 95% posterior credibility intervals of the return
level plot for simulatated GGEV model with δ = 0.5 (a) and δ = 2.0 (b). The
grey line is the true return of the model.
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Figure 10. Posterior mean and 95% posterior credibility intervals of the return
level plot for simulatated TGEV model with λ = −0.9 (a) and λ = 0.9 (b).
The grey line is the true return of the model.
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5. Applications to real data
We conduct two applications with maxima are analyzed of the three extensions to real data

for illustrative purpose. The first example is a data set that consists of monthly maxima quota of
Gurgueia River, located in the State of Piauí, Brazil. A river quota is the height of the water in the
section relative to a given reference. Conventionally the quotas are measured in centimeters (cm).
Large quota values can cause floods in the regions close to the rivers. Daily data was collected from
1975 to 2012. We analyse the maximum for each every 30 days. The second application consist
to analyse rainfall data in Barcelos Station, located in the North of Portugal. The daily data was
collected daily from 1931 to 2008, and we analysed the maxima of each 30 days.

In both the modeling was done using the GEV and its three generalizations proposed in this
work. About the additional parameter, identifiability problems were detected in the estimation of
the parameters. In this case, we created a grid of possible values for the additional parameter to
estimate the other parameters using the Bayesian approach for each point of the grid, and choose
the one grid point that has the lowest −2`(θ), that is the primitive measure to calculate BIC and
DIC. After choosing the best point for each of the three generalizations, they are compared with the
standard GEV, to decide what the best model that fits each of the applications. In both application,
the dual gamma extension showed be the best model. Figure 11 shows the measure for a grid of
points for the applications. In the Gurgueia river quota, the best fit was when δ = 0.06, while
for the Barcelos rainfall data, the best fit measure was when δ = 0.26. For the exponentiated and
transmuted generalizations, the best additional parameter in the grid of points was points near the
standard GEV case.

0
.0

0
.5

1
.0

1
.5

2
.0

5140 5160 5180 5200 5220

δ

� 2loglik

(a)

0
.0

0
.5

1
.0

1
.5

2
.0

8110 8115 8120 8125

δ

� 2loglik

(b)

Figure 11. −2`(θ) for a grid of points to the δ of GGEV distribution. (a)
Gurgueia river quota and (b) Barcelos rainfall.
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Table 2 provides the BIC and DIC for the GEV and it’s three generalizations proposed in this
work. In general, the smaller the values of these statistics, the better the fit. We can note an
advantage of the Dual-Gamma Generalization, followed by the standard GEV distribution. Table 3
shows de 95% credible interval for the parameters. We can verify a high value in location and scale
parameter, and a negative value of the shape, indicating that the data has a lighted tail.

Figure 12 shows the return level plot for the applications. From this figure we can verify that,
for gurgueia river quota, the returns of the model GGEV grow more slowly than the returns of the
GEV, being more similar to the behavior of empirical returns. Based on the GGEV model, a return
higher than 500cm once every t = 20 periods is expected. Each t = 100 periods of time, is waiting
at least once a maximum higher than 604cm. For the Barcelos rainfall data, the return levels from
the GGEV model is more similar than the return levels of the GEV model. Each t = 20 periods
of time, is expected a return level higher than 76mm, while that for t = 100 periods of time, is
expected that once the level would be equal or higher than 101mm. Figure 13 shows the predictive
distribution for the applications based in GGEV model. We can verify a good fit for this model.
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Figure 12. Return level plot for the applications. (a) Gurgueia river and (b)
Barcelos Station, for the GGEV (full line), GEV (dotted Line:) and Empirical
(grey line).

Table 2. BIC and DIC measures for applications

River Quota at Gurgueia, Brazil Rainfall at Barcelos, Portugal
Model GEV EGEV GGEV TGEV GEV EGEV GGEV TGEV
DIC 5217 5215 5137 5218 8123 8122 8110 8123
BIC 5233 5239 5160 5241 8141 8148 8136 8149

Like the previous application, the best model pointed was the GGEV model, according to the
Table 2. As the river data, in rainfall data, the model presents a lighted tail behavior, by the negative
behavior of ξ (see Table 3).
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Table 3. Mean ane 95% credibility intervals for parameters for the applications.

River Quota at Gurgueia, Brazil
Parameter µ σ ξ

M (CI) 44.74 (38.35; 50.33) 14.37 (12.99; 16.08) −0.020 (−0.023; −0.016)
Rainfall at Barcelos, Portugal

Parameter µ σ ξ

M (CI) 5.21 (4.15; 6.20) 7.60 (7.13; 8.19) −0.042 (−0.053; −0.031)
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Figure 13. Predictive density for Barcelos station and Gurgueia river, respectively.

6. Concluding remarks
In this paper, we proposed three extensions to the GEV distribution, with an additional param-

eter which modifies the behavior of the distribution, composing as a alternative models for single
maxima events. In each generalization, the GEV distribution appears as a particular case. We per-
formed the modelling under a Bayesian approach and the estimation of the parameters was proposed
using the MCMC algorithm. The results of simulations show that the proposed method is efficient
in recovering the true values of the parameters of generalizations, which credibility intervals were
obtained with great accuracy in relation to the true parameter estimation. In fact, the three general-
izations can be used to fit real data, where in both applications, the best model according to the fit
measure was the generalization of GGEV model. These generalizations can be applied to any kinds
of environmental data that involves the analysis of maxima.
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Appendix

MCMC Algorithm. For the additional parameters (α for the exponentiated, δ for the dual Gamma,
and λ for the transmuted, we propose a Grid of points, and perform the Bayesian estimation via
MCMC for each point of the Grid. The point of the grid with best Goodness of fit is the choosen
point, denoted α∗, δ∗ and λ∗ for α and δ, the Grid is from 0.01 to 2, with intervals of 0.05 (the case
1.00 is the standard GEV). For λ, the Grid is from −0.9 to 0.9, with intervals of 0.1 (the case 0 is
the standard GEV).

After choose the best point in grid for each case, the parameters (µ, σ, ξ) are sampled using
the Metropolis-Hastings algorithm. Details of the MCMC sampling scheme are given below. At
iteration s, parameters are updated as follows:

Sampling Θ = (µ, σ, ξ): Propose new values for these parameters where µ∗ ∼ N(µ(s), Vµ),
ξ∗ ∼ N(ξ(s), Vξ)I−0.5,∞(ξ) and σ∗ ∼ Gamma(σ2(s)/Vσ, σ

(s)/Vσ). Accept the new values
Θ(s+1) = Θ∗ with probability αΘ, where

αΘ = min

{
1,

π(Θ∗|x)fN (µ(s) | µ∗, Vµ)fN (ξ(s) | ξ∗, Vξ)fG(σ(s) | σ∗2/Vσ, σ∗/Vσ)

π(Θ(s)|x)fN (µ∗ | µ(s), Vµ)fN (ξ∗ | ξ(s), Vξ)fG(σ∗ | σ(s)2/Vσ, σ(s)/Vσ)

}
,
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where π(Θ∗|x) is the posterior density given by the combination with the likelihood and the prior
distribution given in Section 3.

Proof of the propsition 2.2. Let X ∼ EGEV (µ, σ, ξ, δ). Then, for ξ 6= 0

F (x;µ, σ, ξ, α) = exp
{
−α[1 + ξ(x− µ)/σ]−1/ξ

}
= exp

{
−[α−ξ + α−ξξ(x− µ)/σ]−1/ξ

}

= exp




−


1 +

α−ξξ
[
x− µ+ σ(α−ξ−1)

ξα−ξ

]

σ



−1/ξ





= exp

{
−
[
1 +

ξ

σ/α−ξ

(
x−

(
µ+

σ

ξ
(αξ − 1)

))]−1/ξ
}

which is the cumulative distribution function of GEV (µ′, σ′, ξ), where µ′ =
(
µ+ σ

ξ
(αξ − 1)

)

and σ′ = σ/α−ξ.
The proof for the case ξ = 0 is similar, where EGEV (µ, σ) is a GEV (µ′, σ), where µ′ =

µ+ σ log(α).

Proof of the proposition 2.6. If f and F are respectively the density and cumulative distribution
of TGEV distribution, they can be written in function of a standard GEV distribution with density
g and cumulative function G, weighted by a λ parameter, as written in (1.6). Then, the shape
parameter of TGEV distribution, for the case where ξ > 0 is given by

lim
x→x∗

1− F (x;µ, σ, ξ, λ)

xf(x;µ, σ, ξ, λ)
= lim

x→x∗
[1− (1 + λ)G(x;µ, σ, ξ) + λG(x;µ, σ, ξ)2]

xg(x;µ, σ, ξ) (1 + λ− 2λG(x;µ, σ, ξ))

= lim
x→x∗

[1−G(x;µ, σ, ξ)][1− λG(x;µ, σ, ξ)]

xg(x;µ, σ, ξ) [1 + λ− 2λG(x;µ, σ, ξ)]

= lim
x→x∗

1−G(x;µ, σ, ξ)

xg(x;µ, σ, ξ)
lim
x→x∗

[1− λG(x;µ, σ, ξ)]

[1 + λ− 2λG(x;µ, σ, ξ)]

= ξ
lim
x→x∗

[1− λG(x;µ, σ, ξ)]

lim
x→x∗

[1 + λ− 2λG(x;µ, σ, ξ)]
= ξ

(1− λ)

(1− λ)
= ξ.

The proof for the case ξ < 0 is similar using (2.5).

Proof of the proposition 2.7. By simplicity of notation, consider ∆ =
[
1 + ξ(x−µ)

σ

]−1/ξ

for ξ 6=
0 and ∆ = exp{− (x−µ)

σ
} for ξ = 0. The cdf function of GEV distribution in (1.1) can be written

as G(x;µ, σ, ξ) = exp{−∆} and the cdf of EGEV in (2.3) can be written by F (x;µ, σ, ξ, α) =
exp{−α∆}.

Then, for α > 1, G(x;µ, σ, ξ) > F (x;µ, σ, ξ, α) and ∀ x, rGEV,t < rEGEV,t. For α < 1,
G(x;µ, σ, ξ) < F (x;µ, σ, ξ, α) and ∀ x, rGEV,t > rEGEV,t.

Proof of the proposition 2.8. The cdf of GGEV distribution in (2.1) can be rewritten asF (x;µ, σ, ξ, δ) =
1−FG(∆; δ, 1), where FG is the cdf of a Gamma distribution. Similarly, the GEV cdf in (1.1) can
be rewritten as G(x;µ, σ, ξ) = 1− FG(∆; 1, 1).

For δ > 1, FG(.; δ, 1) < FG(.; 1, 1) and then F (x;µ, σ, ξ, δ) > G(x;µ, σ, ξ), which implies
that rGEV,t > rGGEV,t. When δ < 1, FG(.; δ, 1) > FG(.; 1, 1) and then F (x;µ, σ, ξ, δ) <
G(x;µ, σ, ξ), which implies that rGEV,t < rGGEV,t.
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Proof of the proposition 2.9. Given the cdf G(x;µ, σ, ξ) of the GEV distribution in (1.1), the cdf
of TGEV in (2.4) can be rewritten as

F (x;µ, σ, ξ, λ) = G(x;µ, σ, ξ) + λG(x;µ, σ, ξ)[1−G(x;µ, σ, ξ)].

Then, for λ < 0, F (x;µ, σ, ξ, λ) < G(x;µ, σ, ξ) and then rGEV,t < rTGEV,t. When λ > 0,
F (x;µ, σ, ξ, λ) > G(x;µ, σ, ξ) and then rGEV,t > rTGEV,t.
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1. Introduction

The clinical or life savings drug testing experiments face the problems of missing data
due to elimination of some of the experimental units during the course of experiments.
Similarly in agricultural experiments, crops destroy due to some natural calamities or
disease during the course of experiments. In demographic and socio-economic surveys,
generally response from each unit in sample is not available due to various causes. Such
incompleteness is known as non-response and if the appropriate information about the
nature of non-response is not available, the conclusions concerning the population pa-
rameters may be spoiled.

In last couple of decades, signi�cant advancements have been made to reduce the
negative impact of non-response. Imputation is one which deals with the �lling up
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method of incomplete data for adapting the standard analytic model in statistics. It is
typically used when it is needed to substitute missing item values with certain fabricated
values in a survey or census. To deal with the missing item values e�ectively [13], [14],
[16] and [9] suggested imputation methods that make an incomplete data set structurally
complete and its analysis simple. Imputation may also be carried out with the aid of an
auxiliary variable if it is available. Some of the pioneer works which used information on
an auxiliary variable under missing completely at random (MCAR) response mechanism
were suggested by [10] ,[11] , [20],[22],[1],[4],[18],[21],[17],[19]and [2].

[15] advocated the use of multiple imputations to lessen the negative impact of miss-
ing data in more wise way. He showed multiple imputations provide a useful strategy
for dealing with missing data by replacing each missing value with two or more accept-
able fabricated values representing a distribution of possibilities. Motivated with this
suggestion and in follow up we suggest some single and multiple imputations methods
under MCAR response mechanism. The suggested imputation methods lead to some
e�ective estimation procedures of population mean. Properties of the proposed impu-
tation methods and subsequent estimation procedures have been examined and suitable
recommendations are made.

2. Sample structure and notations

Consider U = (U1, U2, U3, ..., UN ) denote the �nite population of size N and let y and x
be the positively correlated study and auxiliary variables respectively. It is assumed that
information on an auxiliary variable x is readily available for each unit of the population
and we intend to estimate the population mean of the study variable y. Let a sample s of
size n be drawn from the population under simple random sampling without replacement
(SRSWOR) scheme and surveyed for study variable y but response from each sampled
unit was not obtained which leads to the presence of non-response. Let r be the number
of responding units out of sampled n units and the set of responding units is denoted by
R and that of non-responding units by Rc . For sampled units i ∈ R, the values yi are
observed, while for the units i ∈ Rc ,the yi values are missing and respective imputed
values are derived. We intend to develop some e�ective imputation methods with the aid
of an auxiliary variable x, such that the value of xi for unit Ui, is known and has positive
value for each unit of the population. Hence onwards we use the following notations:
Ȳ , X̄:The population means of the study and auxiliary variables y and x respectively.
S2
y ,S

2
x :The population variances of the study and auxiliary variables y and x respectively.

Cy,Cx :The coe�cients of variations of the study and auxiliary variables y and x respec-
tively.
ρyx: The correlation coe�cient between the study and auxiliary variables y and x.
ȳr, x̄r:The response means of the study and auxiliary variables y and x respectively.
x̄n:The sample mean of the auxiliary variable x based on the sample size n.

2.1. Proposed imputation methods and subsequent estimators. In this section,
some more e�ective imputation methods and hence the corresponding estimators have
been proposed under MCAR response mechanism. The derived resultant estimators
have shown dominant performance over the existing methods of imputations and are
more relevant for practical applications.

2.1.1. Single imputation methods and subsequent estimators. Following the MCAR re-
sponse mechanism we suggest the following three single imputation methods for the
missing values of the sample data.

(a) First method of imputation
The data after imputation takes the form,
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(2.1) y.i =





yiexp
(
X̄−x̄r
X̄+x̄r

)
if i ∈ R(

yr + b̂xi − b̂x̄i
)
exp

(
X̄−x̄r
X̄+x̄r

)
if i ∈ Rc

where

b̂ =
syx (r)

s2
x(r)

Under the method of imputation discussed in equation (2.1), the point estimator of Ȳ
takes the following form

(2.2) τ1 =
1

n

n∑

i=1

y.i =
1

n

[∑

i∈R
y.i +

∑

i∈Rc

y.i

]

which is simpli�ed as

(2.3) τ1 =
[
ȳr + b̂ (x̄n − x̄r)

]
exp

(
X̄ − x̄r
X̄ + x̄r

)

(b) Second method of imputation
The data after imputation takes the form,

(2.4) y.i =





yiexp
(
X̄−x̄r
X̄+x̄r

)
if i ∈ R(

ȳr
x̄r
xi
)
exp

(
X̄−x̄r
X̄+x̄r

)
if i ∈ Rc

Under the method of imputation described in equation (2.4), the point estimator of Ȳ
takes the following form

(2.5) τ2 =
ȳr
x̄r
x̄nexp

(
X̄ − x̄r
X̄ + x̄r

)

(c) Third method of imputation
The data after imputation takes the form,

(2.6) y.i =

{
yi − n2

r2
x̄nb̂ if i ∈ R(

ȳr + n
n−r b̂x̄nexp

(
X̄−x̄r
X̄+x̄r

)
+ n

r
b̂xi
)

if i ∈ Rc

Under the method of imputation described in equation (2.6), the point estimator of Ȳ
takes the following form

(2.7) τ3 = ȳr + b̂

[{
x̄nexp

(
X̄ − x̄r
X̄ + x̄r

)}
− x̄r

]

2.1.2. Multiple imputations methods and resultant estimators. In single imputation, the
single value being imputed can re�ect neither sampling variability about the actual value
when one model for non-response is being considered nor additional uncertainty when
more than one model is being entertained. Since, multiple imputations retain the virtues
of single imputation and corrects its major �aws, therefore, we intend to use multiple
imputations for each missing value in the sample of size n. The previously discussed
methods of imputations have been considered to derive the imputed values for each
missing value. After the generations of imputed values, complete data sets are produced
and subsequently estimators based on sample of size n are reproduced. The �nal estimator
of population mean Ȳ is the average of estimates produced by imputation methods. Hence
the �nal estimators of population mean Ȳ based on the procedure of multiple imputations
are considered as

ȳMI1 =
1

3
[τ1 + τ2 + τ3]
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(2.8) ȳMI1 =
1

3




{
ȳr + b̂ (x̄n − x̄r) exp

(
X̄−x̄r
X̄+x̄r

)}

+
{
ȳr
x̄r
x̄nexp

(
X̄−x̄r
X̄+x̄r

)}

+
{
ȳr + b̂

{{
x̄nexp

(
X̄−x̄r
X̄+x̄r

)}
− x̄r

}




ȳMI2 =
1

2
[τ1 + τ2]

(2.9) ȳMI2 =
1

2



{
ȳr + b̂ (x̄n − x̄r) exp

(
X̄−x̄r
X̄+x̄r

)}

+
{
ȳr
x̄r
x̄nexp

(
X̄−x̄r
X̄+x̄r

)}



ȳMI3 =
1

2
[τ2 + τ3]

(2.10) ȳMI3 =
1

2



{
ȳr
x̄r
x̄nexp

(
X̄−x̄r
X̄+x̄r

)}

+
{
ȳr + b̂

{{
x̄nexp

(
X̄−x̄r
X̄+x̄r

)}}
− x̄r

}



ȳMI4 =
1

2
[τ1 + τ3]

(2.11) ȳMI4 =
1

2



{
ȳr + b̂ (x̄n − x̄r) exp

(
X̄−x̄r
X̄+x̄r

)}

+
{
ȳr + b̂

{{
x̄nexp

(
X̄−x̄r
X̄+x̄r

)}}
− x̄r

}



3. Bias and mean square errors of the proposed estimators τ1, τ2, τ3,
ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4

Under the suggested method of imputation the estimators τ1, τ2, τ3, ȳMI1 , ȳMI2 ,
ȳMI3 and ȳMI4de�ned in equations (2.3), (2.5), (2.7) and (2.8)-(2.11) are biased estima-
tors of Ȳ . Since, we have considered the MCAR response mechanism, therefore, the bias
and mean square errors of the proposed estimators are derived up to the �rst order of
approximations using the following transformations:
ȳr = Ȳ (1 + e1) , x̄n = X̄ (1 + e2) , x̄r = X̄ (1 + e3) , syx(r) = Syx (1 + e4) ,
s2
x(r) = S2

x (1 + e5) such that E(ei) = 0 and |ei| < 1 for i=1,2,...,5.
Under the above transformation, the estimators τ1, τ2 and τ3 take the following forms:

(3.1) τ1 =

[ {
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1 (e2 − e3)

}

exp
{
− e3

2

(
1 + e3

2

)−1
}

]

(3.2) τ2 =

[{
Ȳ (1 + e1) (1 + e2) (1 + e3)−1} exp

{
−e3

2

(
1 +

e3

2

)−1
}]

(3.3) τ3 =

[ {
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1}
{{

(1 + e2) exp
{
− e3

2

(
1 + e3

2

)−1
}}
− (1 + e3)

}
]

The bias and the mean square errors up to the �rst order of approximations of the
proposed estimators τ1, τ2, τ3, ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4 are derived in the following
theorems:

3.1. Theorem. The bias of the estimators τ1, τ2, τ3, ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4 are given

by

(3.4) B (τ1) =

[
Ȳ
{(

1
r
− 1

N

)
1
2

(
3
4
µ200
X̄2 − µ110

X̄Ȳ

)}

+
{(

1
r
− 1

n

)
βyx

(
1
2
µ200
X̄

+ µ300
µ200

− µ210
µ110

)}
]

(3.5) B (τ2) = Ȳ

[ {(
1
n
− 1

N

) (
ρyxCyCx − 3

2
C2
x

)}

+
{(

1
r
− 1

N

)
1
2

(
15
4
C2
x − 3ρyxCyCx

)}
]
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(3.6) B (τ3) = βyx



{(

1
r
− 1

N

)
3
2

(
1
4
µ200
X̄

+ µ300
µ200

− µ210
µ110

)}

+
{(

1
n
− 1

N

) (
µ210
µ110

− µ300
µ200

− 1
2
µ200
X̄

)}



(3.7) B(ȳMI1) =
1

3
{B(τ1) +B(τ2) +B(τ3)}

(3.8) B(ȳMI2) =
1

2
{B(τ1) +B(τ2)}

(3.9) B(ȳMI3) =
1

2
{B(τ2) +B(τ3)}

(3.10) B(ȳMI4) =
1

2
{B(τ1) +B(τ3)}

where µrst = E
[(
xi − X̄

)r (
yi − Ȳ

)s (
zi − Z̄

)t]
; (r, s, t) ≥ 0 are integers.

C2
y =

S2
y

Ȳ 2 , C
2
x =

S2
x

X̄2 , ρyx =
Syx

SySx
, S2

y , S
2
x and Syx have their usual meanings.

Proof. The bias of the estimators τ1, τ2 and τ3 are derived as
B (τ1) = E

[
τ1 − Ȳ

]

(3.11) = E

[[ {
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1 (e2 − e3)

}

exp
{
− e3

2

(
1 + e3

2

)−1
}

]
− Ȳ

]

B (τ2) = E
[
τ2 − Ȳ

]

(3.12) = E

[[{
Ȳ (1 + e1) (1 + e2) (1 + e3)−1} exp

{
−e3

2

(
1 +

e3

2

)−1
}]
− Ȳ

]

B (τ3) = E
[
τ3 − Ȳ

]

(3.13) = E

[[ {
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1

{{
(1 + e2) exp

{
− e3

2

(
1 + e3

2

)−1
}}
− (1 + e3)

}
]
− Ȳ

]

Now, expanding the right hand side of the equations (3.11) - (3.13) binomially and
exponentially, taking expectations and retaining the terms up to �rst order of
approximations, we get the expressions of the bias of the estimators τ1, τ2 and τ3 as
derived in equations (3.4) - (3.6).

The bias of the estimators ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4 are derived as

B (ȳMI1) = E
[
ȳMI1 − Ȳ

]

= E

[{
1

3
{τ1 + τ2 + τ3}

}
− Ȳ

]
=

1

3
E
[(
τ1 − Ȳ

)
+
(
τ2 − Ȳ

)
+
(
τ3 − Ȳ

)]

=
1

3

[
E
(
τ1 − Ȳ

)
+ E

(
τ2 − Ȳ

)
+ E

(
τ3 − Ȳ

)]

(3.14) B (ȳMI1) =
1

3
{B(τ1) +B(τ2) +B(τ3)}

B (ȳMI2) = E
[
ȳMI2 − Ȳ

]

= E

[{
1

2
{τ1 + τ2} − Ȳ

]
=

1

2
E
[(
τ1 − Ȳ

)
+
(
τ2 − Ȳ

)]

=
1

2

[
E
(
τ1 − Ȳ

)
+ E

(
τ2 − Ȳ

)]
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(3.15) B (ȳMI2) =
1

2
{B(τ1) +B(τ2)}

B (ȳMI3) = E
[
ȳMI3 − Ȳ

]

= E

[{
1

2
{τ2 + τ3}

}
− Ȳ

]
=

1

2
E
[(
τ2 − Ȳ

)
+
(
τ3 − Ȳ

)]

=
1

2

[
E
(
τ2 − Ȳ

)
+ E

(
τ3 − Ȳ

)]

(3.16) B (ȳMI3) =
1

2
{B(τ2) +B(τ3)}

B (ȳMI4) = E
[
ȳMI4 − Ȳ

]

= E

[{
1

2
{τ1 + τ3}

}
− Ȳ

]
=

1

2
E
[(
τ1 − Ȳ

)
+
(
τ3 − Ȳ

)]

=
1

2

[
E
(
τ1 − Ȳ

)
+ E

(
τ3 − Ȳ

)]

(3.17) B (ȳMI4) =
1

2
{B(τ1) +B(τ3)}

where B (τ1) = E
[
τ1 − Ȳ

]
, B(τ2) = E

[
τ2 − Ȳ

]
and B (τ3) = E

[
τ3 − Ȳ

]

�

3.2. Theorem. The mean square errors of the estimators τ1, τ2, τ3, ȳMI1 , ȳMI2 , ȳMI3 and

ȳMI4 are given by

(3.18) M(τ1) = Ȳ 2

[ (
1
r
− 1

N

) {
C2
y + 1

4
C2
x − ρyxCyCx

}

+
(

1
r
− 1

n

)
ρyxCyCx {Cx − ρyxCy}

]

(3.19) M(τ2) = Ȳ 2

[ (
1
r
− 1

N

) {
C2
y + 9

4
C2
x − 3ρyxCyCx

}

+2
(

1
n
− 1

N

) {
ρyxCyCx − C2

x

}
]

(3.20) M(τ3) = Ȳ 2C2
y

(
1

r
− 1

N

)[
1− 3

4
ρ2
yx

]

(3.21) M(ȳMI1) =

[
1
9

[M(τ1) +M(τ2) +M(τ3)]
+2 {C (τ1, τ2) + C (τ1, τ3) + C (τ2, τ3)}

]

(3.22) M(ȳMI2) =
1

4
[M(τ1) +M(τ2) + 2C (τ1, τ2)]

(3.23) M(ȳMI3) =
1

4
[M(τ2) +M(τ3) + 2C (τ2, τ3)]

(3.24) M(ȳMI4) =
1

4
[M(τ1) +M(τ3) + 2C (τ1, τ3)]

where

(3.25) C (τ1, τ2) = Ȳ 2

[ (
1
r
− 1

N

) (
C2
y − 1

4
C2
x − ρyxCyCx

)

+
(

1
r
− 1

n

) (
C2
x − ρ2

yxC
2
y

)
]

(3.26) C (τ1, τ3) = Ȳ 2

[ (
1
r
− 1

N

) (
C2
y − 1

4
ρyxCyCx − 1

2
ρ2
yxC

2
y

)

+
(

1
r
− 1

n

)
1
2

(
ρyxCyCx − ρ2

yxC
2
y

)
]

(3.27) C (τ2, τ3) = Ȳ 2

[ (
1
r
− 1

N

) (
C2
y − 1

4
ρyxCyCx − 1

2
ρ2
yxC

2
y

)

+
(

1
r
− 1

n

) (
ρyxCyCx − ρ2

yxC
2
y

)
]
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Proof. The mean square errors of the estimators τ1, τ2 and τ3 are derived as

M (τ1) = E
[
τ1 − Ȳ

]2

(3.28) = E

[[ {
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1 (e2 − e3)

}

exp
{
− e3

2

(
1 + e3

2

)−1
}

]
− Ȳ

]2

M (τ2) = E
[
τ2 − Ȳ

]2

(3.29) = E

[[{
Ȳ (1 + e1) (1 + e2) (1 + e3)−1} exp

{
−e3

2

(
1 +

e3

2

)−1
}]
− Ȳ

]2

M (τ3) = E
[
τ3 − Ȳ

]2

(3.30) = E

[[ {
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1

{{
(1 + e2) exp

{
− e3

2

(
1 + e3

2

)−1
}}
− (1 + e3)

}
]
− Ȳ

]2

Now, expanding the right hand side of the equations (3.28) - (3.30) binomially and
exponentially, taking expectations and retaining the terms up to �rst order of
approximations, we get the expressions of the mean square errors of the estimators
τ1, τ2 and τ3 as derived in equations (3.18) - (3.20).

The mean square errors of the estimators ȳMI1 , ȳMI2 , ȳMI3 and ȳMI4 are derived as

M (ȳMI1) = E
[
ȳMI1 − Ȳ

]2

= E

[{
1

3
{τ1 + τ2 + τ3}

}
− Ȳ

]2

= E

[
1

3

(
τ1 − Ȳ

)
+

1

3

(
τ2 − Ȳ

)
+

1

3

(
τ3 − Ȳ

)]2

(3.31) M (ȳMI1) =




1
9

{
E
(
τ1 − Ȳ

)2
+ E

(
τ2 − Ȳ

)2
+ E

(
τ3 − Ȳ

)2}

2
9

[
E
[(
τ1 − Ȳ

) (
τ2 − Ȳ

)]
+ E

[(
τ1 − Ȳ

) (
τ3 − Ȳ

)]]

+ 2
9

[
E
[(
τ2 − Ȳ

) (
τ3 − Ȳ

)]]




M (ȳMI2) = E
[
ȳMI2 − Ȳ

]2

= E

[{
1

2
{τ1 + τ2}

}
− Ȳ

]2

= E

[
1

2

(
τ1 − Ȳ

)
+

1

2

(
τ2 − Ȳ

)]2

=

[
1

4
E
(
τ1 − Ȳ

)2
+

1

4
E
(
τ2 − Ȳ

)2
+

1

2
E
[(
τ1 − Ȳ

) (
τ2 − Ȳ

)]

(3.32) M(ȳMI2) =
1

4
[M(τ1) +M(τ2) + 2C (τ1, τ2)]

M (ȳMI3) = E
[
ȳMI3 − Ȳ

]2

= E

[{
1

2
{τ2 + τ3}

}
− Ȳ

]2

= E

[
1

2

(
τ2 − Ȳ

)
+

1

2

(
τ3 − Ȳ

)]2

=

[
1

4
E
(
τ2 − Ȳ

)2
+

1

4
E
(
τ3 − Ȳ

)2
+

1

2
E
[(
τ2 − Ȳ

) (
τ3 − Ȳ

)]

(3.33) M(ȳMI3) =
1

4
[M(τ2) +M(τ3) + 2C (τ2, τ3)]

M (ȳMI4) = E
[
ȳMI4 − Ȳ

]2

= E

[{
1

2
{τ1 + τ3}

}
− Ȳ

]2

= E

[
1

2

(
τ1 − Ȳ

)
+

1

2

(
τ3 − Ȳ

)]2

=

[
1

4
E
(
τ1 − Ȳ

)2
+

1

4
E
(
τ3 − Ȳ

)2
+

1

2
E
[(
τ1 − Ȳ

) (
τ3 − Ȳ

)]
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(3.34) M(ȳMI4) =
1

4
[M(τ1) +M(τ3) + 2C (τ1, τ3)]

where M (τ1) = E
[
τ1 − Ȳ

]2
, M(τ2) = E

[
τ2 − Ȳ

]2
, M(τ3) = E

[
τ3 − Ȳ

]2
, C (τ1, τ2) =

E
[(
τ1 − Ȳ

) (
τ2 − Ȳ

)]
, C (τ1, τ3) = E

[(
τ1 − Ȳ

) (
τ3 − Ȳ

)]
and C (τ2, τ3) =

E
[(
τ2 − Ȳ

) (
τ3 − Ȳ

)]
The expressions of C (τ1, τ2) , C (τ1, τ3) and C (τ2, τ3) are derived

as

C (τ1, τ2) = E
[(
τ1 − Ȳ

) (
τ2 − Ȳ

)]

(3.35) = E




[{(
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1 (e2 − e3)

)
(
exp

(
− e3

2

(
1 + e3

2

)−1
))
} − Ȳ ][[{

Ȳ (1 + e1) (1 + e2) (1 + e3)−1} exp
{
− e3

2

(
1 + e3

2

)−1
}]
− Ȳ

]




C (τ1, τ3) = E
[(
τ1 − Ȳ

) (
τ3 − Ȳ

)]

(3.36) = E




[{(
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1 (e2 − e3)

)
(
exp

(
− e3

2

(
1 + e3

2

)−1
))
} − Ȳ ][{

Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1

{{
(1 + e2) exp

{
− e3

2

(
1 + e3

2

)−1
}}
− (1 + e3)

}
} − Ȳ ]




C (τ2, τ3) = E
[(
τ2 − Ȳ

) (
τ3 − Ȳ

)]

(3.37) = E




[[{
Ȳ (1 + e1) (1 + e2) (1 + e3)−1} exp

{
− e3

2

(
1 + e3

2

)−1
}]
− Ȳ

]
[{
Ȳ (1 + e1) + βyxX̄ (1 + e4) (1 + e5)−1

{{
(1 + e2) exp

{
− e3

2

(
1 + e3

2

)−1
}}
− (1 + e3)

}
} − Ȳ ]




Now, expanding the right hand side of the equations (3.35)− (3.37) binomially and
exponentially, taking expectations and retaining the terms up to the �rst order of ap-
proximations, we get the expressions of the C (τ1, τ2) , C (τ1, τ3) and C (τ2, τ3) as derived
in equations (3.25) - (3.27). �

4. Some well-known methods of single imputation and resultant

estimators

Following are the list of some existing methods of imputation and their resultant
estimators which are often practiced in survey sampling.

4.1. Mean method of imputation. The data produced under mean method of im-
putation is described as

(4.1) y.i =

{
yi if i ∈ R
yr if i ∈ Rc

Under the method of imputation discussed in equation (4.1), the point estimator of
the population mean Ȳ is derived as

(4.2) ȳM =
1

n

n∑

i=1

y.i =
1

n

[∑

i∈R
y.i +

∑

i∈Rc

y.i

]
= ȳr

which is simpli�ed as
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The variance of the estimator ȳM given in equation (4.2) is obtained under MCAR
response mechanism and is given as

V (ȳM ) =

(
1

r
− 1

N

)
Ȳ 2C2

y

4.2. Ratio method of imputation. The ratio method of imputation is applied with
the help of information obtained on an auxiliary variable x and consequently the data
generated is described as

(4.3) y.i =

{
yi if i ∈ R
b̂rxi if i ∈ Rc

where b̂r =
∑

i∈R yi∑
i∈R x.

= ȳr
x̄r

Under the method of imputation discussed in equation (4.3), the point estimator of
population mean Ȳ is derived as

(4.4) ȳRAT =
1

n

n∑

i=1

y.i = ȳr
x̄n
x̄r

The bias and mean square error of the estimator ȳRAT are obtained under MCAR re-
sponse mechanism up to �rst order of approximations and given as

(4.5) B (ȳRAT ) =

(
1

r
− 1

n

)
Ȳ
(
C2
x − ρyxCyCx

)

(4.6) M (ȳRAT ) = Ȳ 2

[(
1

r
− 1

n

)
C2
y +

(
1

r
− 1

n

)(
C2
x − ρyxCyCx

)]

4.3. Regression method of imputation. The data generated by regression method
of imputation is given as

(4.7) y.i =

{
yi if i ∈ R
ŷi if i ∈ Rc

where

ŷi = â+ b̂rexi, â = ȳr − b̂x̄r and b̂re =
Syx(r)

S2
x(r)

Under the method of imputation discussed in equation (4.5), the point estimator of
population mean Ȳ is derived as

(4.8) ȳREG =
1

n

n∑

i=1

y.i = ȳr + b̂re (x̄n − x̄r)

The bias and mean square error of the estimator ȳREG are obtained under MCAR re-
sponse mechanism up to �rst order of approximations and given as

(4.9) B (ȳREG) =
ρyxCy

CxX̄

(
1

r
− 1

n

)
Ȳ

(
µ300

µ200
− µ210

µ110

)

(4.10) M (ȳREG) = Ȳ 2C2
y

[(
1

r
− 1

n

)
−
(

1

r
− 1

n

)
ρ2
yx

]
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5. Empirical study

In this section, we demonstrate the performances of the proposed imputation methods
over mean, ratio and regression methods of imputation. To access the performances of
the proposed methods, empirical studies are carried out on seventeen natural populations
chosen from various survey literatures related to life sciences, agricultural and socio-
economic characters. The details of the populations are provided in this section. The
methodology of empirical study is as follows; from a �nite population of size N a sample
of size n is drawn under SRSWOR sampling scheme. The �rst m samples were selected
from the all possible NCn samples. First we drop (n-r) units randomly from each sample
corresponding to the study variable y and imputed values are derived with six methods
of imputations namely (i) Mean method of imputation (ii) Ratio method of imputation
(iii) Regression method of imputation (iv) Suggested single imputations methods (v)
Suggested multiple imputations methods

The percent relative e�ciencies of the proposed single imputation methods with re-
spect to the mean, ratio and regression methods of imputation are given as

PRE1 =

∑m
s=1

[
(ȳM )s − Ȳ

]2
∑m
s=1

[
(τ1)s − Ȳ

]2 × 100, PRE2 =

∑m
s=1

[
(ȳRAT )s − Ȳ

]2
∑m
s=1

[
(τ1)s − Ȳ

]2 × 100,

PRE3 =

∑m
s=1

[
(ȳREG)s − Ȳ

]2
∑m
s=1

[
(τ1)s − Ȳ

]2 × 100, PRE4 =

∑m
s=1

[
(ȳM )s − Ȳ

]2
∑m
s=1

[
(τ2)s − Ȳ

]2 × 100,

PRE5 =

∑m
s=1

[
(ȳRAT )s − Ȳ

]2
∑m
s=1

[
(τ2)s − Ȳ

]2 × 100, PRE6 =

∑m
s=1

[
(ȳREG)s − Ȳ

]2
∑m
s=1

[
(τ2)s − Ȳ

]2 × 100,

PRE7 =

∑m
s=1

[
(ȳM )s − Ȳ

]2
∑m
s=1

[
(τ3)s − Ȳ

]2 × 100, PRE8 =

∑m
s=1

[
(ȳRAT )s − Ȳ

]2
∑m
s=1

[
(τ3)s − Ȳ

]2 × 100

and PRE9 =
∑m

s=1[(ȳREG)s−Ȳ ]2
∑m

s=1[(τ3)s−Ȳ ]2
× 100

The percent relative e�ciencies of the proposed multiple imputations methods with re-
spect to the mean, ratio, regression and proposed single imputation methods are given
as

E1 =

∑m
s=1

[
(ȳM )s − Ȳ

]2
∑m
s=1

[
(ȳMI1)s − Ȳ

]2 × 100, E2 =

∑m
s=1

[
(ȳRAT )s − Ȳ

]2
∑m
s=1

[
(ȳMI1)s − Ȳ

]2 × 100,

E3 =

∑m
s=1

[
(ȳREG)s − Ȳ

]2
∑m
s=1

[
(ȳMI1)s − Ȳ

]2 × 100, E4 =

∑m
s=1

[
(τ1)s − Ȳ

]2
∑m
s=1

[
(ȳMI1)s − Ȳ

]2 × 100,

E5 =

∑m
s=1

[
(τ2)s − Ȳ

]2
∑m
s=1

[
(ȳMI1)s − Ȳ

]2 × 100, E6 =

∑m
s=1

[
(τ3)s − Ȳ

]2
∑m
s=1

[
(ȳMI1)s − Ȳ

]2 × 100,

E7 =

∑m
s=1

[
(ȳM )s − Ȳ

]2
∑m
s=1

[
(ȳMI2)s − Ȳ

]2 × 100, E8 =

∑m
s=1

[
(ȳRAT )s − Ȳ

]2
∑m
s=1

[
(ȳMI2)s − Ȳ

]2 × 100,

E9 =

∑m
s=1

[
(ȳREG)s − Ȳ

]2
∑m
s=1

[
(ȳMI2)s − Ȳ

]2 × 100, E10 =

∑m
s=1

[
(τ1)s − Ȳ

]2
∑m
s=1

[
(ȳMI2)s − Ȳ

]2 × 100,

E11 =

∑m
s=1

[
(τ2)s − Ȳ

]2
∑m
s=1

[
(ȳMI2)s − Ȳ

]2 × 100, E12 =

∑m
s=1

[
(ȳM )s − Ȳ

]2
∑m
s=1

[
(ȳMI3)s − Ȳ

]2 × 100,
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E13 =

∑m
s=1

[
(ȳRAT )s − Ȳ

]2
∑m
s=1

[
(ȳMI3)s − Ȳ

]2 × 100, E14 =

∑m
s=1

[
(ȳREG)s − Ȳ

]2
∑m
s=1

[
(ȳMI3)s − Ȳ

]2 × 100,

E15 =

∑m
s=1

[
(τ2)s − Ȳ

]2
∑m
s=1

[
(ȳMI3)s − Ȳ

]2 × 100, E16 =

∑m
s=1

[(
τ3)s − Ȳ

]2
∑m
s=1

[
(ȳMI3)s − Ȳ

]2 × 100,

E17 =

∑m
s=1

[
(ȳM )s − Ȳ

]2
∑m
s=1

[
(ȳMI4)s − Ȳ

]2 × 100, E18 =

∑m
s=1

[
(ȳRAT )s − Ȳ

]2
∑m
s=1

[
(ȳMI4)s − Ȳ

]2 × 100,

E19 =

∑m
s=1

[
(ȳREG)s − Ȳ

]2
∑m
s=1

[
(ȳMI4)s − Ȳ

]2 × 100, E20 =

∑m
s=1

[
(τ1)s − Ȳ

]2
∑m
s=1

[
(ȳMI4)s − Ȳ

]2 × 100,

and E21 =
∑m

s=1

[
(τ2)s−Ȳ ]2

∑m
s=1

[
(ȳMI4)

s
−Ȳ

]2 × 100,

The percent relative e�ciencies are computed for seventeen natural populations as de-
scribed below and presented in Tables 1-7.
Population I [Source: [12]] (Page No. 399)
Y: Area under wheat in 1964
X: Area under wheat in 1963
N = 34, n = 7, r = 5, ρyx = 0.9800867.
Population II [Source: [3]] (Page No. 58)
Y: Head length of second son.
X: Head length of �rst son.
N = 25, n = 7, r = 5, ρyx = 0.7107518.
Population III [Source: [5]] (Page No. 182)
Y: Number of placebo children.
X: Number of paralytic polio cases in the placebo group.
N = 34, n = 7, r = 5, ρyx = 0.7328235.
Population IV [Source: [8]] (Page No. 682)
Y: No. of hh± on ith block.
X: Eye estimate of no. of hh± on ith block
N = 20, n = 7, r = 5, ρyx = 0.8662052.
Population V [Source: [24]] (Page No. 349)
Y: Volume.
X: Diameter
N = 31, n = 7, r = 5, ρyx = 0.9671194.
Population VI [Source: [5]] (Page No. 182)
Y: Number of placebo children.
X: Number of paralytic polio cases in the not inoculated group.
N = 34, n = 7, r = 5, ρyx = 0.6426412.
Population VII [Source: [12] ] (Page No. 399)
Y: Area under wheat in 1964
X: Cultivated area in 1961
N = 34, n = 7, r = 5, ρyx = 0.9042627.
Population VIII [Source: [3]] (Page No. 58)
Y: Head length of second son.
X: Head breadth of �rst son.
N = 34, n = 7, r = 5, ρyx = 0.6931573.
Population IX [Source: [5]] (Page No. 34)
Y: Food cost of family
X: Size of family
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N = 33, n = 7, r = 5, ρyx = 0.432738.
Population X [Source: [7]] (Page No. 180)
Y: Sepal width of Iris setosa
X: Sepal length of Iris setosa
N = 35, n = 7, r = 5, ρyx = 0.6315548.
Population XI [Source: [6]] (Page No. 154)
Y: Average salary (in dollars) U. S.
X: Per pupil spending (in dollars) U. S.
N = 26, n = 7, r = 5, ρyx = 0.8096703.
Population XII [Source: [6]] (Page No. 274)
Y: Saving (in billions of dollars) U. S. (1970-1995).
X: Personal disposable income (in billions of dollars) U. S. (1970-1995).
N = 26, n = 7, r = 5, ρyx = 0.8759079.
Population XIII [Source: [6]] (Page No. 460)
Y: Index of real compensation per hour, business sector of U. S. (1959-1998).
X: Index of output per hour, business sector of U. S. (1959-1998).
N = 30, n = 7, r = 5, ρyx = 0.9910549.
Population XIV [Source: [6]] (Page No. 710)
Y: Investment in �xed plant and equipment in manufacturing (in billions of dollars) of
U. S. (1970-1991).
X: Manufacturing sales (in billions of dollars) seasonally adjusted of U. S. (1970-1991).
N = 22, n = 7, r = 5, ρyx = 0.9903192.
Population XV [Source: [23]] (Page No. 166)
Y: Number of banana bunches.
X: Number of banana pits.
N = 20, n = 7, r = 5, ρyx = 0.9800867.
Population XVI [Source: [24]] (Page No. 349)
Y: Volume.
Z: Height
N = 31, n = 7, r = 5, ρyx = 0.5982497.
Population XVII [Source: [5]] (Page No. 32)
Y: Food cost of family
X: Income of family
N = 33, n = 7, r = 5, ρyx = 0.2521603.
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Table 1: Percent relative e�ciencies of the estimator τ1 with respect to

mean, ratio and regression method of imputation

Population Source PRE1 PRE2 PRE3

Population I 651.309 316.1384 323.7037

Population II 157.1894 126.3349 124.532

Population III 223.1392 162.9272 194.0364

Population IV 294.5976 188.9788 186.6463

Population V 164.7055 154.3641 158.9833

Population VI 200.7349 166.7052 181.3413

Population VII 284.5805 182.3409 178.0122

Population VIII 241.128 170.1591 155.7499

Population IX 146.6306 133.258 110.9385

Population X 100.5127 106.255 101.159

Population XI 182.2423 144.3668 142.4705

Population XII 264.9797 189.8048 184.0865

Population XIII 2139.517 735.6239 925.6935

Population XIV 287.5206 237.6237 237.7244

Population XV 236.8863 169.4697 172.0994

Table 2: Percent relative e�ciencies of the estimator τ2 with respect to

mean, ratio and regression method of imputation

Population Source PRE1 PRE2 PRE3

Population I 609.8675 296.0231 303.1071

Population II 125.24594 100.6827 100.24594

Population III 177.9285 129.9161 154.7222

Population IV 248.101 147.7621 150.0241

Population V 301.875 282.9211 291.3873

Population VI 143.1064 118.8463 129.3873

Population VII 245.6476 157.3952 153.6587

Population VIII 181.8826 127.9263 117.0935

Population IX 116.9035 111.8727 106.1338

Population X 145.7711 115.4754 113.9586

Population XI 163.0738 142.7995 138.4974

Population XII 193.4761 198.1857 205.0121

Population XIII 3647.527 1254.118 1578.156

Population XIV 316.3238 261.4263 261.5392

Population XV 208.6929 149.2999 151.6167
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Table 3: Percent relative e�ciencies of the estimator τ3 with respect to

mean, ratio and regression method of imputation

Population Source PRE1 PRE2 PRE3

Population I 746.0278 362.1138 370.7794

Population II 148.3297 119.2142 117.5129

Population III 136.2724 100.50058 118.4991

Population IV 287.3633 184.3382 182.063

Population V 158.7588 148.7907 153.2432

Population VI 121.4111 100.8289 109.6812

Population VII 339.7371 217.6817 212.5141

Population VIII 261.7878 184.1273 168.5353

Population IX 149.2613 135.6488 112.9288

Population X 105.8197 111.8657 106.5001

Population XI 174.4859 138.224 136.4069

Population XII 241.7096 247.5934 256.1216

Population XIII 1264.535 434.813 547.1196

Population XVI 307.6482 254.2538 254.3616

Population XV 236.1414 168.9367 171.5582

Table 4: Percent relative e�ciencies of the estimator ȳMI1 with respect to

mean, ratio, regression, τ1, τ2, and τ3 method of imputation

Source E1 E2 E3 E4 E5 E6

Population I 264.907 207.769 204.951 101.495 100.9956 100.4527

Population XVI 161.723 149.986 123.486 111.909 131.157 115.262

Population XVII 108.2 101.727 104.704 108.014 107.128 126.231

Table 5: Percent relative e�ciencies of the estimator ȳMI2 with respect to

mean, ratio, regression, τ1, and τ2 method of imputation

Source E7 E8 E9 E10 E11

Population I 263.29 206.5075 203.701 100.8759 100.38554

Population II 204.77 134.7842 157.6394 105.1446 108.5116

Population VIII 192.0412 148.8212 173.3055 106.0514 111.1025

Population XI 142.7501 122.8817 144.1724 108.6922 101.2051

Population XV 239.2887 173.8419 171.1855 101.0125 101.3311

Population XVII 107.9156 101.4604 104.4289 107.7306 106.847

Table 6: Percent relative e�ciencies of the estimator ȳMI3 with respect to

mean, ratio, regression, τ2, and τ3 method of imputation

Source E12 E13 E14 E15 E16

Population I 578.9268 251.5427 240.5896 102.2776 101.6885

Population II 189.3006 124.63 145.77 100.3426 138.7786

Population IV 280.08 169.36 166.809 102.6493 112.8907

Population VI 143.5103 131.2604 113.5755 110.1633 103.5136

Population VIII 120.7001 109.198 114.8592 101.4147 109.9245

Population XIV 314.2731 259.8436 259.7335 102.1552 100.3516

Population XVI 169.3458 157.0557 129.3067 137.3398 120.6951

Population XVII 109.7599 103.1943 106.2136 108.6731 128.0516

Table 7: Percent relative e�ciencies of the estimator ȳMI4 with respect to

mean, ratio, regression, τ1, and τ3 method of imputation
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Source E17 E18 E19 E20 E21

Population I 264.0247 207.0764 204.268 101.1567 100.1214

Population VII 118.5684 118.6753 128.109 100.5546 101.4809

Population X 152.753 127.9926 137.42 100.3505 101.3829

Population XVI 155.0982 143.8421 118.4277 107.3255 110.5407

6. Conclusions and recommendations

A close look on Tables 1-7 reveals that the proposed methods of imputations are re-
warding in terms of percent relative e�ciencies. These �ndings suggest that the proposed
single and multiple methods of imputations described in this paper are highly bene�cial
in minimizing the negative impact of non-response to a greater extent as compared to
the mean, ratio and regression methods of imputation. The survey statisticians may
be encouraged for the practical applications of the suggested imputation methods, if
non-response is unavoidable in the survey data.
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Abstract

Log-linear models are used to analyze the contingency tables. If the
variables are ordinal or interval, because the score values a�ect both
the model signi�cance and parameter estimates, selection of score values
has importance. Sometimes an interval variable contains open-ended
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the score values can be calculated. In the previous studies, the un-
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this study, we suggested interdecile range (IDR), interpercentile range
(IPR), and mid-distance range (MDR) as alternative to IQR to detect
the e�ects of score values on model parameters.

Keywords: Contingency tables, Log-linear models, Interval measurement, Open-
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1. Introduction

Categorical variables, which have a measurement scale consisting of a set of categories,
are of importance in many �elds often in the medical, social, and behavioral sciences.
The tables that represent these variables are called contingency tables. Log-linear model
equations are applied to analyze these tables. Interaction, row e�ects, and association
parameters are strictly important to interpret the tables.

In the presence of an ordinal variable, score values should be considered. As using
row e�ects parameters for nominal�ordinal tables, association parameter is suggested
for ordinal�ordinal tables. Score values are used to weight these parameters. In that
case, selection of score values is important. For instance, taking the score values equal
does not �t in many studies because these scores may not represent true intervals be-
tween categories. Choice of scores a�ects estimates of model parameters and results of
goodness-of-�t test statistics.

To use quantitative data in contingency tables, the data need to be converted to qual-
itative form. If one category (class) of a variable has either no lower or upper limit,
this category is called open-ended. Age, income, serum cholesterol levels, systolic blood
pressure are some examples of variable which can have open-ended categories. Ku and
Kullback [12] used a contingency table which one of its variable is systolic blood pres-
sure with the levels: (1) "< 127", (2) 127-146, (3) 147-166, (4) "≥ 167". Lower bound
of the �rst and upper bound of the fourth categories are unknown. Agresti [3] applied
linear-by-linear association model to the data and accepted that the distance between
(1�2), (2�3), and (3�4) categories are equal. If it is not allowed to get raw data, it is
not possible to �nd minimum and maximum values. Therefore, it is impossible to �nd
the boundaries of open-ended categories. In this situation, the boundaries need to be
estimated �rst. Then the score values can be calculated.

Determining these boundaries and �tted score values have been discussed by authorities.
The author who studied on score values initially was Birch [6]. Simon [14], Goodman [9],
Agresti [3], Graubard and Korn [10] discussed the equally spaced score values in their
studies. Inequally spaced scores were discussed in the studies of Bross [7] and Agresti
[3]. Iki et al. [11] used ridit scores to analyze square contingency tables by using cumu-
lative probabilities. More recently, Bagheban and Zayeri [5] proposed exponential score
values as an alternative to equal spaced scores. Initially, Frigge et al. [8] proposed the
interquartile range to illustrate the outlier, then Tibshirani and Hastie [15], and Liu and
Wu [13] focused on the interquartile range (IQR) to detect genes with over-expressed
outlier disease samples as we used on estimate of the open ended boundaries. Aktas and
Saracbasi [4] used median and quartile ranges to calculate standardized score values on
open-ended categories. We suggested three di�erent methods as alternative to IQR for
ordinal categories that are grouped from quantitative data.

In this paper, through an application with one open-ended variable, we discussed the
e�ects of score values on model parameters. The proposed new methods used to de-
termine the boundaries of open-ended classes. In section 2, the log-linear models were
introduced. Section 3 outlined the score methods and suggested the methods to estimate
the boundaries of open-ended categories were represented in Section 4. The log-linear
models and the estimation methods were illustrated in Section 5 by an application.
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2. Log-Linear Models

2.1. Models for Two-way Tables. Consider an R×C contingency table that the �rst
variable is represented by X and the second variable is represented by Y. In this two-way
table, cross-classi�es constitute multinominal sample of n subjects on two categorical
responses. Let nij denote the frequency of (i, j) cell and the cell probabilities are πij
and the expected values mij where i = 1, 2, . . . , R and j = 1, 2, . . . , C. The properties of
independence [2], linear by linear association [9], and row e�ects [3] models for two-way
contingency tables are given in Table 1.

Table 1. The properties of most used log-linear models for two-way
contingency tables

Model X Y Equation df

Independence N, O* N,O log mij = λ+ λXi + λYj (R− 1)(C − 1)

Linear by Linear Association O O log mij = λ+ λXi + λYj + βuivj (R− 1)(C − 1)− 1

Row E�ects N O log mij = λ+ λXi + λYj + µivj (R− 1)(C − 2)

*:N: Nominal O: Ordinal

Here, in the equations λ is the overall e�ect parameter, λXi is e�ect of variable X at i and
λYj is e�ect of variable Y at j with constraints such as

∑R
i=1 λ

X
i =

∑C
j=1 λ

Y
j = 0. ui and vj

in linear by linear association model are the the known scores where u1 ≤ u2 ≤ . . . ≤ uR
are ordered row scores and v1 ≤ v2 ≤ . . . ≤ vC are column scores. β is the association
parameter. Goodman [9] called the speci�cal case of model uniform association model,
where {ui = i} and {vj = j}. µi in row e�ect model is the row e�ect parameters where

constraints are needed such as
∑R
i=1 µi = 0.

The local log-odds ratios of linear by linear association, uniform association and row
e�ects models are given in the Equations (2.1)-(2.3), respectively.

(2.1) log θij = β(ui − ui+1)(vj − vj+1),

(2.2) log θij = β,

(2.3) log θij = (µi+1 − µi)(vj+1 − vj).

2.2. Models for Multi-way Tables for Nominal × Ordinal × Ordinal Categor-

ical Data. Let X be a nominal variable, Y and Z be ordinal variables and, uj are score
values for variable Y and vk are score values for variable Z. Then the full model is:

(2.4) log mijk = λ+ λXi + λYj + λZk + µXYi uj + µXZi vk + βY Zujvk.

The constraints are
∑R
i=1 λ

X
i =

∑C
j=1 λ

Y
j =

∑R
i=1 µ

XY
i =

∑R
i=1 µ

XZ
i = 0. In this model,

βY Z represents the linear-by-linear association parameter, µXYi and µXZi represent the
row e�ects model parameters [2].

log θij(k) is the conditional log-odds ratio between X and Y for �xed levels of Z, log θi(j)k
is the conditional log-odds ratio between X and Z for �xed levels of Y and log θ(i)jk is
the conditional log-odds ratio between Y and Z for �xed levels of X can be calculated
from Equation (2.5).
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(2.5)

log θij(k) = (µXYi+1 − µXYi )(uj+1 − uj)

log θi(j)k = (µXZi+1 − µXZi )(vk+1 − vk)

log θ(i)jk = βY Z(uj+1 − uj)(vk+1 − vk).

2.3. Scoring Methods. For log-linear model studies, assignment of score values is
important. Assuming all distance between adjacent categories equal is not always �t
the data. In this situation, the way to assign the scores causes a problem. The score
equality of best �tting model is chosen as the distance between adjacent categories. As
π.j , j = 1, 2, . . . , C are the marginal probabilities of the ordered variable Y, the properties
of equal spaced, ridit [7, 11], and exponential [5] scores are summarized in Table 2.

Table 2. The recommended score equalities

Scores Variables ui vj
Equal spaced N, O i j

Ridit O -
∑j−1
k=1 π.k + 1

2
π.j

Exponential O ia ja

For application of equal spaced scores, all the intervals between adjacent categories are
assumed as equal. The cumulative probabilities are used to calculate ridit scores. Some-
times, non-equality characteristic of scores are observed in the categories of variables. In
this situation, the arithmetic progression between categories disappears. The exponential
scores are used when the baseline characteristic of categories changing by a geometric
progression. a in the exponential score equation is called the power parameter and the
model gives the uniform association model with equal spaced score values for a = 1.

3. Suggested Methods to Estimate the Boundaries of Open-ended

Categories

The most practical scoring method is the exponential scores because it permits di�er-
ent values of the power parameter. However, when working on the open-ended ordered
categories, these methods are insu�cient. Applying the same method both ordered and
open-ended categories is only possible when ignoring the open-ended structure. It makes
the minimum value (lower bound of the �rst category) and the maximum value (upper
bound of the last category) unimportant. However, these unknown values are the proof
of inequality of scores.

Instead of using equal or non-equal scoring method, the di�erent methods need to be
used. To avoid the outlier problem, the interquartile range was suggested as a measure
of dispersion [13]. The �rst quartile of a raw data is de�ned as Q1 and the third quartile
is Q3. Then, the interquartile range is IQR = Q3 − Q1. For a frequency table with k
categories, the values which are less and greater than the limits in the Equation (3.1)
were de�ned as outliers by Frigge et al. [8] under the normality assumption.

(3.1)
LowerBound(LB1) = Q1 − 1.5× IQR
UpperBound(UBk) = Q3 + 1.5× IQR.
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The de�nition of the quartiles can a�ect the number of observations which shown as
outside. This estimation method is used with 25% trimmed range. Changes of trimmed
range may have greater e�ects on the estimate of score values.

3.1. Interdecile and Interpercentile Ranges. In this study, interdecile range (IDR)
and interpercentile range (IPR) were suggested as the alternatives of IQR, having 10%
and 5% trimmed ranges, respectively. The calculations of IDR (IDR = P90 − P10) and
IPR (IPR = P95 − P5) are similar with IQR.

Under the normality assumption, the estimations of the boundaries with these methods
can be limited as following equations, respectively.

(3.2) LB1 = P10 − 0.78× IDR and UBk = P90 + 0.78× IDR,
(3.3) LB1 = P5 − 0.61× IPR and UBk = P95 + 0.61× IPR.
The standard normal distribution graphs and Z-values in order of IQR, IDR, and IPR
are shown in Figure 1. Although the IPR seems to have wider range, this does not mean
that it uses larger part of the distribution and it is better. The aim is to explain the data
well and this depends on the distribution of frequencies.

Figure 1. The trimmed ranges for IQR, IDR, and IPR under the
standard normal distribution

3.2. Mid-distance Range. Mid-distance range (MDR) was suggested to use as an al-
ternative to IQR. The mid-distance (MDi = (LBi + UBi−1)/2) is the midpoint of ith

and (i+ 1)th categories where i = 2, 3, . . . , k. The de�nition of MD is shown in Figure 2.
In this �gure, the �rst and last categories are open-ended and the values in the boxes are
unknown. For a variable with k categories, the frequency table has (k+1) MD. However,
because of open-ended boundaries (LB1 and UBk),MD1 andMDk+1 are not calculated.

Figure 2. The mid-distances of a k-categories frequency table
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Under the normality assumption, the percentage of the �rst category is p1 = P (x < MD2)
and the kth category is pk = P (x > MDk). Then MDR is calculated from MDR =
MDk − MD2. The distribution of frequencies is used to calculate MDR. Under the
normality assumption, the boundaries are suggested,

(3.4) LB1 = MD2 − [1/|Z1|]×MDR and UBk = MDk + [1/|Zk|]×MDR,

where Z1 = Φ−1(p1) and Zk = Φ−1(pk).

For Ku and Kullback [12] example, MD's of systolic blood pressure are calculated and
shown in Table 3 [2].

Table 3. Mid-distances of systolic blood pressure

i LB UB MD

� MD1

1 � 126
126.5 MD2

2 127 146
146.5 MD3

3 147 166
166.5 MD4

4 167 �
� MD5

3.3. Standardized Score Values for Open-ended Categories. For an open-ended
frequency table, because median is the appropriate measure of location and the quartile
deviation is the appropriate measure of dispersion, Aktas and Saracbasi [4] suggested a
score value that is calculated from quartile values. As si is the midpoint of ith class, Q2

is the median and Q1, Q3 are the �rst and third quartiles, respectively. The midpoint is,

(3.5) si = LBi+UBi
2

, i = 1, 2, . . . , k.

Here, the estimated LB1 and UBk, which are de�ned in Equations (3.1)-(3.4), are used
to calculate the midpoints. The standardized score values for row and column variables
are

(3.6)

ui = si−Q2
(Q3−Q1)/2

, i = 1, 2, . . . , R

vj =
sj−Q2

(Q3−Q1)/2
, j = 1, 2, . . . , C.

4. An Application

The 2× 4× 4 contingency table, which is shown in Table 4, is taken from General Social
Survey, 1991, National Opinion Research Center. It refers to the relationship between
job satisfaction and income, strati�ed by gender, for 104 African�Americans [3].

The described models in Section 2 with equal spaced score values for (nominal×ordinal×
ordinal) structure were applied to the data in Table 4. Because the data set contains
sampling zeros, a correction factor for zero of 6 cells (nij = 0 + 0.5) was used. Table 5
shows the value of likelihood ratio statistics (G2) for testing the goodness-of-�t of each
model. λGi is the e�ect of gender at i, λIj is the e�ect of income at j, and λSk is the

e�ect of job satisfaction at k. µGIi and µGSi are the row e�ects parameters between
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Table 4. Job Satisfaction and income, controlling for gender

Job Satisfaction

Very A Little Moderately Very

Gender Income Dissatis�ed Satis�ed Satis�ed Satis�ed

Female < 5000 1 3 11 2
5000�15,000 2 3 17 3
15,000�25,000 0 1 8 5
> 25, 000 0 2 4 2

Male < 5000 1 1 2 1
5000�15,000 0 3 5 1
15,000�25,000 0 0 7 3
> 25, 000 0 1 9 6

gender�income and gender�job satisfaction, respectively. βIS is the association parame-
ter between income and job satisfaction. Then, Akaike Information Criteria (AIC) was
used to select the best �tting model [1]. Regarding the presented results, all models were
�t the data. Because the Model 6 that contains both association parameter between
income�job satisfaction and the row e�ects parameter between gender�income had the
smallest value of AIC, this model was chosen as the best �tting model.

Table 5. The results of goodness-of-�t test results for equal spaced
score values

Models G2 df P-Value AIC

1 log mijk = λ+ λG
i + λI

j + λS
k 25.326 24 0.388 �22.674

2 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj 13.716 23 0.935 �32.284

3 log mijk = λ+ λG
i + λI

j + λS
k + µGS

i vk 24.983 23 0.351 �21.017

4 log mijk = λ+ λG
i + λI

j + λS
k + βISujvk 20.794 23 0.594 �25.206

5 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + µGS
i vk 13.373 22 0.922 �30.627

6 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + βISujvk 9.184 22 0.992 �34.816

7 log mijk = λ+ λG
i + λI

j + λS
k + µGS

i vk + βISujvk 20.451 22 0.555 �23.549

8 log mijk = λ+ λG
i + λI

j + λS
k + µGI

i uj + µGS
i vk + βISujvk 9.174 21 0.988 �32.826

Thereafter, the recommended score values were applied to Model 6 to choose the appro-
priate score values. Considering the open-ended structure, the standardized score values
for income were calculated. Because gender is a nominal variable, score alternatives were
not considered. For job satisfaction, equal spaced, exponential, and ridit scores were
applied. The IQR, IDR, IPR, and MDR values for income were calculated as 17936.92,
25855.86, 30441.32, and 20000 respectively. To use mid-distance range, the percentages
of �rst and fourth categories were calculated as p1 = 0.2056 and p4 = 0.2337. Then,
LB1 and UBk from the methods, that were previously mentioned, were estimated. The
estimated boundaries and range of income are shown in the Table 6. The estimated
values of the lower bound are negative. This is reasonable when considering the people's
loans. Between these methods, MDR has the largest value.

The score values in the �rst part of Table 7 were calculated for job satisfaction. In the
second part of the table, the standardized score values in Equatin (3.6) were calculated for
income. After analyzing the model with di�erent power parameter values of exponential
score, much appropriate a was found as 2. Because of the di�erences between estimated
lowermost and uppermost values, the only alteration happens on the �rst and last classes.
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Table 6. Estimated lower and upper boundaries of open-ended classes

Method LB1 UBk Range
IQR �20,523 51,219 71,742
IDR �15,304 50,887 67,191
IPR �16,151 51,429 67,580
MDR �19,330 52,510 71,840

Table 7. Estimated score values for income and job satisfaction

Scores v1 v2 v3 v4

Job Satisfaction
Equal Spaced 1 2 3 4
Exponential 1 4 9 16
Ridit 0.0304 0.1285 0.4906 0.8925
Scores u1 u2 u3 u4

Income

IQR �2.457 �0.477 0.638 2.658
IDR �2.166 �0.477 0.638 2.639
IPR �2.213 �0.477 0.638 2.670
MDR �2.390 �0.477 0.638 2.730

Model 6 was analyzed with the score values in Table 7. The results with di�erent score
values for income and job satisfaction were shown in Table 8.

Table 8. The results of parameter estimates for di�erent score values
in Model 6

Scores β̂IS µ̂GI

Income�Job Satisfaction G2 P-value Estimate P-value Estimate P-value
1 IQR�Equal Sapced 10.063 0.986 0.146 0.057 �0.202 0.001
2 IQR�Exponential 9.584 0.990 0.028 0.043 �0.202 0.001
3 IQR�Ridit 9.687 0.989 0.458 0.045 �0.202 0.001
4 IDR�Equal Spaced 9.750 0.988 0.157 0.055 �0.215 0.001
5 IDR�Exponential 9.273 0.992 0.030 0.041 �0.215 0.001
6 IDR�Ridit 9.377 0.991 0.488 0.043 �0.215 0.001
7 IPR�Equal Spaced 9.794 0.988 0.154 0.056 �0.211 0.001
8 IPR�Exponential 9.321 0.991 0.030 0.042 �0.211 0.001
9 IPR�Ridit 9.426 0.991 0.480 0.044 �0.211 0.001
10 MDR�Equal Spaced 9.974 0.987 0.146 0.057 �0.202 0.001
11 MDR�Exponential 9.501 0.990 0.028 0.043 �0.202 0.001
12 MDR�Ridit 9.605 0.990 0.456 0.045 �0.202 0.001

Despite all the models in Table 8 �tted the data based on df = 22, the goodness-of-�t
test statistics di�ered depending on the score alternatives. For these models, the best
�tting one is Case 5 which has standardized scores for income with IDR method and
exponential scores with a = 2 for job satisfaction. The 10% trimmed range was found as
more appropriate. Besides the variation on G2 statistics, estimated association parame-
ter changed for di�erent scores of income and job satisfaction. In general, the exponential
score for job satisfaction had a decreasing e�ect on G2 statistics for all the combinations.

The association between adjacent categories where the gender e�ect is constant could be
explained by odds ratio that θ(i)jk = exp{βIS(uj − uj+1)(vk − vk+1)}. The local odds
ratios from the scores in Table 7 were estimated. The association between adjoint cat-
egories where job satisfaction e�ect was constant could be explained by odds ratio that
θij(k) = exp{(µGIi+1 − µGIi )(uj+1 − uj)}. Table 9 and Table 10 show the odds ratios for
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di�erent score values.

Table 9. θ(1)11 for income × job satisfaction for the �xed levels of gender

Job Satisfaction
Income Equal Spaced Exponential Ridit
IQR 1.335 1.181 1.093
IDR 1.304 1.164 1.084
IPR 1.307 1.169 1.085
MDR 1.322 1.174 1.089

Table 10. θ11(1) for gender × income for the �xed levels of job satisfaction

Scores for Income
IQR IDR IPR MDR

2.225 2.067 2.080 2.166

Regarding the presented results in Table 9, using di�erent methods to estimate the lower
and/or upper boundaries of open-ended categories was varying odds ratios. Using the
estimation methods of IDR and IPR generated the odds ratios similar but di�erent from
the odds ratios estimated by using the IQR and MDR. Any category change on gender
does not a�ect the odds ratio. The reason of this is the odds ratio depends on only
changing scores of ordinal variable in row e�ects model. Regarding the presented results
in Table 10, the odds ratios were varied between di�erent scores of income.

By Case 5 in Table 8, the local odds ratios, which were calculated from parameter esti-
mates, are shown in the following matrix.

θ̂(i)jk =




1.164 1.288 1.426
1.105 1.182 1.264
1.197 1.350 1.522




θ̂ij(k) =
[
2.067 1.615 2.364

]

The odds ratio that income was "5000−15, 000" rather than "15, 000−25, 000" estimated
to be 1.182 times higher than when the job satisfaction was "A little satis�ed" rather
than "Moderately satis�ed". The odds ratio that males rather than female estimated to
be 2.067 times higher than when the income was "< 5000" rather than "5000− 15, 000".

5. Conclusions

In this study, we focused on determining the model which explains the data well for
open-ended categories. This determination depends on the changing score values. When
working on the contingency tables, which contain open-ended ordered categories, the
open-ended boundaries of the distribution is suggested to be estimated. In the previous
studies, utilizing the interquartile range, which is calculated from the �rst and the third
quartiles, the unknown boundaries were estimated. In this study, we suggested alterna-
tive methods of interquartile range. We estimated the unknown boundaries of the table
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with these methods.

The used method is important because di�erent methods cause di�erences on the esti-
mated boundaries and accordingly midpoints. Di�erences in midpoints cause di�erences
in score values. The changing score values also in�uenced the model signi�cance and
model �t. Parameter estimates and odds ratios varied between the methods which we
utilized.

The di�erence between these four methods is that the estimation methods of IQR, IDR,
and IPR use the trimmed range, which is a constant value, and trimmed ranges from the
both side of the frequency distribution is equal. However, to estimate the MDR, we used
the trimmed range where the information comes from the distribution of open-ended
variable itself. Therefore, the trimmed ranges are di�erent between the left and the right
sides of the distribution. This di�erence comes from the percentages of the �rst and last
categories.
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1. Introduction

The ranked set sampling (RSS) was �rst proposed by McIntyre [15] as an e�cient
sampling scheme for estimating the population mean of pasture and forage yields. This
sampling scheme is suitable in situations where the ranking of observations can be easily
done based on an auxiliary variable correlated with the variable of interest or any inex-
pensive method. The RSS has wide applications in many scienti�c problems, especially in
environmental and ecological studies where the main focus is on economical and e�cient
sampling strategies. For example, assume that the Environmental Protection Agency
wants to assure that the gasoline stations in metropolitan areas are distributing gasoline
which complies with air clean regulations. However, the chemical parameters of gasoline
can be easily ranked right after the collection at the gasoline pump by some crude �eld
techniques which are cheap and easy. While bringing the sample units to the laboratory
and use actual laboratory techniques to measure its chemical parameters is expensive.
For similar applications of RSS in environmental studies, we refer to Cobby et al. [9],
Halls and Dell [12], Martin et al. [14], and Ozturk et al. [17].
The standard ranked set sampling design can be described as follows:
I. Select a simple random sample of size k2 units from the target population and divide
them into k samples each of size k.
II. Rank the units within each sample in increasing magnitude by using personal judg-
ment, eye inspection or based on a concomitant variable.
III. Select the ith ranked unit from the ith (i = 1, · · · , k) sample for actual quanti�cation.
IV. The above Steps I through III can be repeated n times (cycles) if needed to obtain
a ranked set sample of size N = nk.

Let Y1, · · · , Yk be a simple random sample of size k, then the measured ranked set sam-
ple units are denoted by

{
Y[i]j , i = 1, · · · , k, j = 1, · · · , n

}
, where Y[i]j is the ith ranked

unit from the jth cycle. It is of interest to note here that Y[i]j (i = 1, · · · , k) are inde-
pendent random variables, and they follow the distribution of the ith order statistic of a
sample of size k based on perfect ranking in the jth cycle, j = 1, · · · , n. The cumulative
distribution function (cdf) of Y[i] is given by F[i](y) = i

(
k
i

) ∫ F (y)

0
wi−1(1−w)k−idw, and its

probability density function (pdf) is de�ned as f[i](y) = i
(
k
i

)
[F (y)]i−1 [1− F (y)]k−i . The

mean and the variance of Y[i] are µ[i] =
∫ +∞
−∞ yf[i](y)dy and σ2

[i] =
∫ +∞
−∞ (y−µ[i])

2f[i](y)dy,
respectively.

Under imperfect ranking, the Y[i]j 's follow the distribution of the ith judgment order
statistic. McIntyre [15] used the empirical estimator of the mean based on RSS to esti-
mate the population mean and deduced that his estimator is more e�cient than its SRS
counterpart via Monte Carlo simulation based on the same number of measured units.
The RSS empirical mean estimator is de�ned as

ȲRSS =
1

nk

n∑

j=1

k∑

i=1

Y[i]j ,(1.1)

with variance

V ar
(
ȲRSS

)
=
σ2

nk
− 1

nk2

k∑

i=1

(
µ[i] − µ

)2
.(1.2)

Takahasi and Wakimoto [21] introduced the same method independently and was the
�rst who proved mathematically that, ȲRSS is an unbiased estimator and has smaller
variance than its counterpart in SRS regardless of the issue of ranking. They proved that

1 ≤ V ar
(
ȲSRS

)

V ar
(
ȲRSS

) ≤ k + 1

2
,
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where ȲSRS = 1
nk

∑n
j=1

∑k
i=1 Yij is the SRS estimator of the population mean with

V ar
(
ȲSRS

)
= σ2

nk
.

The lower bound is attained if and only if the parent distribution is degenerate when
the ranking is perfect, while the upper bound is attained if and only if the parent distri-
bution is rectangular.

Bouza [7] and Al-Omari and Bouza [4] considered the problem of estimation of pop-
ulation mean in the RSS with missing values. Al-Saleh and Al-Omari [5], Al-Omari and
Al-Saleh [3] and Al-Omari [1], [2] proposed some mean estimators in other variations of
the RSS.

Stokes [20] suggested an estimator of the population variance based on RSS and showed
that it is asymptotically (n→∞ or k →∞) unbiased of the population variance and has
greater e�ciency than the sample variance using SRS regardless of the issue of ranking.
The variance estimator of Stokes [20] is given by

S2
Stokes =

1

nk − 1

n∑

j=1

k∑

i=1

(
Y[i]j − ȲRSS

)2
.(1.3)

Recently, an unbiased estimator of variance is proposed by MacEachern et al. [13] as

S2
M =

1

2n2k2

k∑

i 6=j

n∑

r=1

n∑

s=1

(
Y[i]r − Y[j]s

)2
+

1

2n(n− 1)k2

k∑

i=1

n∑

r=1

n∑

s=1

(
Y[i]r − Y[i]s

)2
.(1.4)

They showed that this estimator is more e�cient than S2
Stokes , especially when the

ranking is perfect. However, S2
M can be applied if the number of cycles is n ≥ 2.

Perron and Sinha [18] demonstrated that S2
M has the minimum variance among all

unbiased estimators of the form
∑
i

∑
j

∑
r

∑
s γi,j,r,sY[i]rY[j]s , where the coe�cients

{γi,j,r,s} satisfy γi,j,r,s = γj,i,r,s.
Another estimator of variance when the RSS is applied by measuring a concomitant

variable is proposed by Zamanzade and Vock [22]. Their estimator was obtained by
conditioning on observed concomitant values and using nonparametric kernel regression.
Zamanzade and Vock [22]`s simulation results indicated that their proposed estimator
considerably improves the estimation of variance when the rankings are fairly good.
However, since our interest here is not about using values of concomitant variable, we do
not consider their estimator for more investigations.

Biswas et al. [6] considered the problem of estimation of variance in �nite population
setting using jackknife method. Chen and Lim [8] considered the problem of estimation of
variances of strata in a balanced ranked set sample. Sengupta and Mukhuti [19] proposed
some unbiased variance estimators when the parent distribution is known to be simple
exponential.

The rest of this paper is organized as follows: In Section 2, the suggested sampling
scheme is explained and discussed for estimating the population mean and variance. In
Section 3, we compare the performance of the mean and variance estimators using NRSS
with their counterparts in RSS and SRS methods. In Section 4, a real data example is
provided to show the application of the new sampling strategy in practice. Some con-
cluding remarks are provided in Section 5.

2. Neoteric Ranked Set Sampling

Similar to the RSS, neoteric ranked set sampling (NRSS) is suggested to apply in
situations where the ranking of the sample observations is much easier than obtaining
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their precise values. The NRSS scheme can be described as follows:
I. Select a simple random sample of size k2 units from the target population.
II. Rank the k2 selected units in an increasing magnitude based on a concomitant vari-
able, personal judgment or any inexpensive method.
III. If k is an odd, then select the

[
k+1

2
+ (i− 1) k

]
th ranked unit for i = 1, · · · , k. But if

k is an even, then select the [l + (i− 1)k]th ranked unit, where l = k
2
if i is an even and

l = k+2
2

if i is an odd for i = 1, · · · , k.
IV. Repeat Steps I through III n times (cycles) if needed to obtain a neoteric ranked set
sample of size N = nk.
To illustrate the NRSS method, let us consider the following special case of univariate
observations.

Let Yij , Y2j , · · · , Yk2j be k2 simple random units selected from the population of
interest, and let Y[i]j , Y[2]j , · · · , Y[k2]j be the order statistics of Yij , Y2j , · · · , Yk2j for
j = 1, · · · , n.
1) Using NRSS
Assume that k = 3 and n = 1, then we have to select k2 = 9 units as

Y11, Y21, Y31, Y41, Y51, Y61, Y71, Y81, Y91.

Now, rank the units based on personal judgment or eye inspection to get

Y[1]1, Y[2]1, Y[3]1, Y[4]1, Y[5]1, Y[6]1, Y[7]1, Y[8]1, Y[9]1.

Using NRSS method, we have to choose the units with the rank 2, 5, 8 for actual quan-
ti�cation as

{
Y[1]1, Y[2]1 , Y[3]1, Y[4]1, Y[5]1 , Y[6]1, Y[7]1, Y[8]1 , Y[9]1

}
.

Then the measured NRSS units are
{
Y[2]1, Y[5]1, Y[8]1

}
, where their mean and the variance

are considered as estimators of the population mean and variance, respectively.
2) Using RSS

Now, using RSS method, we have to select 9 units:



Y11, Y12, Y13

Y21, Y22, Y23

Y31, Y32, Y33


 .

We then rank the units within each set with respect to a variable of interest and then
select the ith ranked unit of the ith sample as:




Y1[1] , Y1[2], Y1[3]

Y2[1], Y2[2] , Y2[3]

Y3[1], Y3[2], Y3[3]


 .

The measured RSS units are
{
Y1[1], Y2[2], Y3[3]

}
.

It is of interest to note here, that even if we select k2 units in both methods RSS and
NRSS, we only measure k units. Also, in RSS we rank k units in each of the k sets, while
in the NRSS, we rank all the k2 selected units at the same time.

In general, the resulting neoteric ranked set sample is denoted by{
Y[(i−1)k+l]j ; i = 1, · · · , k, j = 1, · · · , n

}
, where Y[(i−1)k+l]j is the [(i− 1)k + l]th mea-

sured unit from the jth cycle, and l = k+1
2

if k is odd, l = k
2
if k and i are both
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even and l = k
2

+ 1 if k is even but i is odd. Unlike RSS, NRSS measured units{
Y[(i−1)k+l]j ; i = 1, · · · , k

}
are dependent, and they follow the distribution of [(i− 1)k + l]th

order statistics of a sample of size k2 based on perfect ranking for j = 1, · · · , n. In the
case of imperfect rankings, the

{
Y[(i−1)k+l]j ; j = 1, · · · , n

}
follow distribution of judg-

ment order statistics of a sample of size k2.
To simplify the notations, if the sample size k is odd, then the measured units will be

denoted by Y[
k+1

2
], Y[

3k+1
2

], Y[
5k+1

2
], · · · , Y[

2k2−k+1
2

]. But if the sample size k is even, then

the measured units are denoted by Y[
k+2

2
], Y[

3k
2

], Y[
5k+2

2
], Y[

7k
2

], Y[
9k+2

2
], · · · , Y[

2k2−k
2

].
The suggested estimator of the population mean using NRSS is de�ned by

ȲNRSS =
1

nk

n∑

j=1

k∑

i=1

Y[(i−1)k+l]j ,(2.1)

with variance

V ar
(
ȲNRSS

)
=

1

nk2

k∑

i=1

V ar
(
Y[(i−1)k+l]1

)
+

2

nk2

k∑

i<j

Cov
(
Y[(i−1)k+l]1, Y[(j−1)k+l]1

)
.(2.2)

In the following theorem, we prove that the proposed mean estimator is unbiased for
symmetric distributions.

2.1. Theorem. ȲNRSS is an unbiased estimator of population mean if the rankings are

perfect and the parent distribution is symmetric.

Proof. Without loss of generality, we may suppose that n = 1.
If k is odd, then the NRSS estimator of the population mean can be written as

ȲNRSS =
1

k

k−1
2∑

i=1

(
Y

[ 2ik−k+1
2

]
+ Y

[ 2k
2−ik+1

2
]

)
+ Y

[ k
2+1
2

]
.

Take its expectation to have

E
(
ȲNRSS

)
= E


 1

k

k−1
2∑

i=1

(
Y

[ 2ik−k+1
2

]
+ Y

[ 2k
2−ik+1

2
]

)
+ Y

[ k
2+1
2

]




=
1

k

k−1
2∑

i=1

(
E
(
Y

[ 2ik−k+1
2

]

)
+ E

(
Y

[ 2k
2−ik+1

2
]

))
+ E

(
Y

[ k
2+1
2

]

)
.

From symmetric assumption about µ , we have Y[i] − µ
d
= µ − Y[i] , see for example

David and Nagaraja [11]. Thus, µ− µ
[ 2ik−k+1

2
]

= µ 2k2−ik+1
2

− µ, and then µ
[ 2ik−k+1

2
]
+

µ 2k2−ik+1
2

= 2µ . Also, E

(
Y

[ k
2+1
2

]

)
= µ since it is the median of the chosen sample of

size k2. Therefore,

E
(
ȲNRSS

)
=

1

k

k−1
2∑

i=1

(
µ

[ 2ik−k+1
2

]
+ µ

[ 2k
2−ik+1

2
]

)
+ µ

[ k
2+1
2

]

1

k

[
k − 1

2
(2µ) + µ

]
= µ.
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The case of the even sample size can be proved by rewriting ȲNRSS as:

ȲNRSS =
1

k

k
4∑

i=1

(
Y[ 4ik−3k

2 ] + Y[
2k2−4ik+3k+2

2

]
)

+
1

k

k
4∑

i=1

(
Y[ 4ik+k+2

2 ] + Y[
2k2−4ik−k+4

2

]
)
.

�

Let us consider the following two cases of symmetric and asymmetric distributions
under perfect ranking.

1. Uniform distribution. Suppose that the random variable Y has a uniform U (0, 1)
distribution. Therefore, the mean and variance of the ith ranked unit Y[i], respectively,

are given by E
(
Y[i]

)
= i

k+1
and Var

(
Y[i]

)
= i(k−i+1)

(k+1)2(k+2)
.

For k = 6, we have to select 36 units from the population and then measure only 6
units of them to be a neoteric ranked set sample which are Y[4], Y[9], Y[16], Y[21], Y[28], Y[33].
The NRSS mean estimator can be obtained as

ȲNRSS =
1

6

[
Y[4] + Y[9] + Y[16] + Y[21] + Y[28] + Y[33]

]
.

The expectation of this estimator is

E
(
ȲNRSS

)
=

1

6

[
E
(
Y[4]

)
+ E

(
Y[9]

)
+ E

(
Y[16]

)
+ E

(
Y[21]

)
+ E

(
Y[28]

)
+ E

(
Y[33]

)]

=
1

6

(
4

37
+

9

37
+

16

37
+

21

37
+

28

37
+

33

37

)
=

1

6

(
111

37

)
= 0.5,

which is an unbiased estimator of the true population mean, µ = 0.5. Recall that,

V ar
(
ȲNRSS

)
=

1

k2

k∑

i=1

V ar
(
Y[(i−1)k+s]

)
+

2

k2

k∑

i<j

Cov
(
Y[(i−1)k+s], Y[(j−1)k+s]

)
,

where for the uniform distribution

Cov
(
Y[j], Y[i]

)
= E

(
Y[j].Y[i]

)
− E

(
Y[j]

)
E
(
Y[i]

)
=

j(k + 1− i)
(k + 1)2(k + 2)

.

Therefore,
V ar

(
ȲNRSS

)
= 1

36

(
V ar

(
Y[4]

)
+ V ar

(
Y[9]

)
+ V ar

(
Y[16]

)
+ V ar

(
Y[21]

)
+ V ar

(
Y[28]

)
+ V ar

(
Y[33]

))

+ 2
36



Cov

(
Y[4], Y[9]

)
+ Cov

(
Y[4], Y[16]

)
+ Cov

(
Y[4], Y[21]

)
+ Cov

(
Y[4], Y[28]

)
+ Cov

(
Y[4], Y[33]

)
+

Cov
(
Y[9], Y[16]

)
+ Cov

(
Y[9], Y[21]

)
+ Cov

(
Y[9], Y[28]

)
+ Cov

(
Y[9], Y[33]

)
+ Cov

(
Y[16], Y[21]

)
+

Cov
(
Y[16], Y[28]

)
+ Cov

(
Y[16], Y[33]

)
+ Cov

(
Y[21], Y[28]

)
+ Cov

(
Y[21], Y[33]

)
+ Cov

(
Y28, Y[33]

)




=
1

36

(
66

26011
+

126

26011
+

168

26011
+

168

26011
+

126

26011
+

66

26011

)

+
2

36

[ (
56

26011
+ 42

26011
+ 32

26011
+ 18

26011
+ 8

26011

)
+
(

189
52022

+ 72
26011

+ 81
52022

+ 18
26011

)
+(

128
26011

+ 72
26011

+ 32
26011

)
+
(

189
52022

+ 42
26011

)
+ 56

26011

]

=
7

2812
.

Now, the variance of mean estimator based on a simple random sample of size k = 6

is V ar
(
ȲSRS

)
= σ2

k
= 1

12(6)
= 1

72
. Therefore, the relative e�ciency (RE) of the NRSS

estimator with respect to SRS estimator is RE1

(
ȲNRSS , ȲSRS

)
=

MSE(ȲSRS)
MSE(ȲNRSS)

= 5.5794,

and the RE of the RSS estimator with respect to its SRS counterpart isRE2

(
ȲRSS , ȲSRS

)
=

MSE(ȲSRS)
MSE(ȲRSS)

= 3.5.
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Exponential distribution. If Y has an exponential distribution with mean 1, then the
mean and variance of the ith order statistic, Y[i] are given by

E
(
Y[i]

)
=

k∑
w=k−i+1

1
w
, and Var

(
Y[i]

)
=

k∑
w=k−i+1

1
w2 .

For m = 5, we have to select 25 units from the population and then measure only 5
units of them to be a neoteric ranked set sample, which are Y[3], Y[8], Y[13], Y[18], Y[23].
Therefore, the NRSS mean estimator is

ȲNRSS =
1

5

[
Y[3] + Y[8] + Y[13] + Y[18] + Y[23]

]
.

The expectation of this estimator is

E
(
ȲNRSS

)
=

1

5

[
E
(
Y[3]

)
+ E

(
Y[8]

)
+ E

(
Y[13]

)
+ E

(
Y[18]

)
+ E

(
Y[23]

)]

=
1

5

(
1727

13800
+

22798213

60568200
+

19081066231

26771144400
+

10914604807

8923714800
+

20666950267

8923714800

)

=
1

5

(
5090112581

1070845776

)
= 0.950671,

where E
(
Y[3]

)
=

25∑
w=23

1
w

= 1727
13800

, E
(
Y[8]

)
=

25∑
w=18

1
w

= 22798213
60568200

, E
(
Y[13]

)
=

25∑
w=13

1
w

=

19081066231
26771144400

, E
(
Y[18]

)
=

25∑
w=8

1
w

= 10914604807
8923714800

, E
(
Y[23]

)
=

25∑
w=3

1
w

= 20666950267
8923714800

.

It can be seen that this estimator is biased with Bias
(
ȲNRSS

)
= −0.0493285, which is

very quite close to the bias value -0.05 obtained in Table 2, when ρ = 1.
The suggested NRSS estimator of the population variance is given by

S2
NRSS =

1

nk − 1

n∑

j=1

k∑

i=1

(
Y[(i−1)k+l]j − ȲNRSS

)2
(2.3)

It is of interest to note here that S2
NRSS has a negligible bias of the population variance,

which approaches to zero in most cases.

3. Monte Carlo Comparison

In this section, the performances of the proposed mean and variance estimators based
on NRSS are compared with their counterparts using RSS and SRS methods. As we
mentioned before, we only measure on N = nk units using NRSS and RSS methods, to
compare them with N units using SRS method.

For Monte Carlo simulation, we have used the model of imperfect ranking suggested by
Dell and Clutter (1972), assuming (Z,X) follows a standard bivariate normal distribution

with correlation coe�cient ρ. Then, we take Y = Z, Φ(Z), log
[

Φ(Z)
1−Φ(Z)

]
, − log [Φ(Z)]

and [Φ(Z)]5 as the variable of interest, where Φ(.) is the cdf of the standard normal
distribution. Therefore, we allow the relation between the interest variable (Y ) and
the auxiliary variable (X) to be linear or non-linear, and the parent distributions to be
Normal (0,1), Uniform (0,1), Logistic (0,1), Exponential (1) and Beta (0.2,1), respectively.
Thus we have considered both symmetric and asymmetric distributions with bounded
and unbounded supports in our simulation study.

The values of ρ are 0, 0.2, 0.4, 0.6, 0.8, 1. Without loss of generality, we assumed
that the ranking is based on X. Therefore, as ρ gets large to 1, the ranking approaches to
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Table 1. The relative e�ciencies of NRSS mean estimator to SRS
mean estimator (RE1) and RSS mean estimator to SRS mean estimator
(RE2) for di�erent values of (N, k).

Parent
Normal(0,1) Uniform(0,1) Logistic(0,1) Exponential(1) Beta(0.2,1)

Distribution

(N, k) ρ RE1 RE2 RE1 RE2 RE1 RE2 RE1 RE2 RE1 RE2
0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.04 1.03 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.01

(10,5) 0.4 1.14 1.11 1.13 1.12 1.15 1.11 1.14 1.11 1.1 1.08
0.6 1.40 1.28 1.34 1.30 1.42 1.29 1.38 1.24 1.29 1.21
0.8 2.02 1.68 1.94 1.71 2.05 1.66 1.92 1.51 1.71 1.47
1 4.75 2.78 4.68 3.00 4.88 2.56 4.37 2.16 4.05 2.14

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.02

(10,10) 0.4 1.17 1.14 1.16 1.14 1.18 1.14 1.14 1.11 1.12 1.10
0.6 1.47 1.4 1.43 1.39 1.51 1.39 1.43 1.32 1.32 1.27
0.8 2.37 2.03 2.25 2.03 2.38 1.99 2.19 1.77 1.94 1.71
1 9.78 4.82 9.71 5.50 9.99 4.2 9.00 3.43 8.94 3.53

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.03 1.02 1.03 1.03 1.03 1.03 1.03 1.02 1.02 1.01

(20,5) 0.4 1.15 1.11 1.12 1.11 1.16 1.12 1.13 1.09 1.10 1.08
0.6 1.41 1.31 1.35 1.27 1.42 1.29 1.37 1.23 1.29 1.21
0.8 2.03 1.68 1.90 1.7 2.06 1.64 1.90 1.53 1.68 1.47
1 4.74 2.78 4.66 3.00 4.89 2.58 3.99 2.19 3.93 2.12

0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.2 1.03 1.03 1.05 1.04 1.03 1.02 1.03 1.02 1.02 1.03

(20,10) 0.4 1.16 1.13 1.15 1.14 1.17 1.13 1.15 1.12 1.11 1.09
0.6 1.48 1.40 1.44 1.39 1.49 1.39 1.43 1.32 1.32 1.27
0.8 2.35 2.02 2.24 2.03 2.37 1.96 2.16 1.79 1.93 1.70
1 9.71 4.79 9.74 5.50 9.92 4.21 8.00 3.41 8.84 3.52

completely perfect. The relative e�ciency (RE) of NRSS and RSS with respect to SRS
is de�ned as

RE1

(
ȲNRSS , ȲSRS

)
=

MSE
(
ȲSRS

)

MSE
(
ȲNRSS

) , RE2

(
ȲRSS , ȲSRS

)
=
MSE

(
ȲSRS

)

MSE
(
ȲRSS

) ,

RE3

(
S2
Stokes, S

2
SRS

)
=

MSE
(
S2
SRS

)

MSE (S2
Stokes)

, RE4

(
S2
M , S

2
SRS

)
=
MSE

(
S2
SRS

)

MSE (S2
M )

,

RE5

(
S2
NRSS , S

2
SRS

)
=

MSE
(
S2
SRS

)

MSE (S2
NRSS)

.

where MSE
(
θ̂
)

= V ar
(
θ̂
)

+
[
Bias

(
θ̂
)]2

.

The values of (N, k) are selected to be (10, 5) , (10, 10) , (20, 5) , (20, 10). So, we can
assess the e�ect of increasing total sample size for �xed k, and the e�ect of increasing k
when the total sample size is �xed. The number of repetitions in the simulation study
is set to be 100,000 for each sample size. The results are reported in Tables 1-4 for
estimating the population mean and variance.
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Table 1 gives the relative e�ciencies of the mean estimators based on NRSS and
RSS schemes to SRS mean estimator for di�erent distributions. We observe that when
rankings are prefect (ρ = 1), the e�ciency gain in using NRSS mean estimator is approx-
imately two times higher than the mean estimator based on RSS scheme. Furthermore,
the performance of NRSS mean estimator for the symmetric distributions is slightly
better than the asymmetric distributions, and the best performance of NRSS mean esti-
mator is for logistic distribution. It is clear from this table that the e�ect of the imperfect
ranking on ȲNRSS is more than ȲRSS , however, even in the case of imperfect ranking
(ρ ≤ 0.8), the ȲNRSS is still superior to ȲRSS for ρ ≥ 0.4, and it is as e�cient as ȲRSS
for ρ ≤ 0.4. When the rankings are completely random (ρ = 0), all estimators have the
same performances. This can be justi�ed by the fact that in the case of random rankings,
RSS and NRSS schemes are intrinsically the same as SRS design. It is worth mentioning
that in all considered cases, the relative e�ciencies of ȲNRSS and ȲRSS increase as the
set size (k) increases for �xed sample size (N).

Table 2 presents the estimated biases of the NRSS mean estimator for asymmetric
distributions. We observe that the proposed mean estimator slightly underestimates the
true population mean when the parent distribution is standard exponential and ρ ≥ 0.4.
Furthermore, the bias of ȲNRSS decreases in absolute value when set size (k) increases
or the correlation of coe�cient (ρ) decreases. In the case of the parent distribution being
Beta(0.2,1), the NRSS mean estimator is almost unbiased.

The relative e�ciencies of di�erent variance estimators S2
NRSS and S2

Stokes to S2
SRS

are presented in Table 3. It is clear from this table that the performance of S2
NRSS

dominates all other estimators considered here when the rankings are perfect (ρ = 1),
and S2

NRSS performs at least twice as good as its competitors in RSS scheme. Although
the imperfect ranking has more negative e�ect on S2

NRSS than S2
Stokes and S

2
M , S2

NRSS

is still superior to its RSS competitors for ρ ≤ 0.8. Furthermore, we also observe that
the relative e�ciencies increase as the set size (k) increases for �xed sample size (N).

The estimated bias values of S2
NRSS and S2

Stokes are given in Table 4. We observe
that for standard uniform and Beta(0.2,1) distributions, S2

NRSS and S2
Stokes are almost

unbiased. However, for standard normal, standard exponential and standard logistic
distributions, S2

Stokes overestimates true population variance and S2
NRSS underestimates

σ2. It is also evident that the bias of S2
NRSS is larger than the bias of S2

Stokes in absolute
value. Furthermore, we observe that the biases of S2

Stokes and S
2
NRSS decrease in absolute

value as ρ decreases.

4. A real data set

In this section, a real data set is considered to illustrate the performance of NRSS
method in estimating the population mean and variance. The data set consists of the
percentage of body fat determined by underwater weighing and various body circumfer-
ence measurements for 252 men. For more details about these data, see
http://lib.stat.cmu.edu/datasets/bodyfat. We take the percentage of body fat as the
interest variable (Y ) and abdomen circumference as concomitant variable (X). Sampling
with replacement is considered, so the assumption of independence is covered. The mean
and variance of the target variable Y in the population are µY = 19.15 and σ2

Y = 70.03,
respectively, and the correlation of coe�cient between the two variables is ρXY = 0.81.
To select a sample of size 10, using using both RSS and NRSS designs, the following
steps are carry out:
I. Select a bivariate simple random sample of size 25 of (X,Y ).
II. On basis of NRSS, rank the X values and use their ordering for Y . Then, select the
3rd, 8th, 13th, 18th and 23rd judgment ranked values of Y for actual quanti�cation to
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Table 5. The values of the variable of interest Y using NRSS, RSS
and SRS designs.

NRSS 25.5 5.3 19.7 27.2 27.0 15.1 5.7 22.9 26.0 32.3

RSS 27.3 18.5 19.7 27.0 18.5 31.6 10.6 15.2 10.6 15.2

SRS 0.7 29.6 26.7 11.5 19.2 27.3 17.5 16.5 3.0 20.5

constitute a neoteric ranked set sample of size 5.
III. For RSS, divide the 25 SRS observations into 5 sets each of size 5. Then, use the true
ranked X values to rank the values of Y within each set of size 5 units. Finally, select
the ith judgment ranked values of Y from the ith sample (i = 1, · · · , 5).
IV. Repeat Steps I to III two times to have a sample of size 10 from NRSS and RSS
designs.
Also, a simple random sample of size 10 is selected from the same population. The results
of measured values in NRSS, RSS and SRS designs are presented in Table 5.
The above results in Table 5 showed that

ȲNRSS = 20.67, ȲRSS = 19.42, ȲSRS = 17.25,

S2
NRSS = 85.22, , S2

Stokes = 51.20, S2
M = 49.89, S2

SRS = 96.42.

Our results showed that the means of 100000 repeated values of the suggested estimators
are all quite close to the real population parameters. For example,
Bias

(
ȲNRSS

)
= 20.67 − 19.15 = 1.52, and Bias

(
S2
NRSS

)
= 85.22 − 70.03 = 15.19,

which are more better than the SRS estimators. Also, the NRSS variance estimator is
more e�cient than its counterparts in Stokes [20], and MacEachern et al. [13].

5. Conclusion

In this paper, a new modi�cation of the usual RSS is suggested for estimating the
population mean and variance. The suggested estimators are compared with their com-
petitors in SRS method. Our simulation results indicate that the suggested empirical
mean and variance estimates are strongly better than their competitors in RSS and SRS
designs for the same number of measured units with perfect ranking. In the case of
imperfect rankings, the NRSS estimators are still superior to their counterparts in the
RSS and SRS design and their superiority decrease as the quality of rankings decreases.
We prove that the NRSS mean estimator is unbiased when the parent distribution is
symmetric. For asymmetric distributions, the simulation results indicate that the NRSS
mean estimator is slightly biased. Thus, based on the above observations, the NRSS
can be recommended for estimating the population parameters due to its e�ciency with
respect to SRS and RSS methods.

In this paper, we consider the problem of estimation of mean and variance based on
the NRSS. One can use the NRSS scheme for estimation of cumulative distribution func-
tion and population quantiles. It is also interesting to investigate the performance of
goodness of �t tests based on empirical distribution function (e.g. Kolmogorov-Smirnov,
Anderson�Darling, etc) NRSS and compare them with their counterparts in the RSS and
SRS designs.
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