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Abstract

The main aim of this paper is to construct generating functions for the
Bernstein type polynomials. Using these generating functions, various
functional equations and differential equations can be derived. New
proofs both for a recursive definition of the Bernstein type basis func-
tions and for derivatives of the nth degree Bernstein type polynomials
can be given using these equations. This paper presents a novel method
for deriving various new identities and properties for the Bernstein type
basis functions by using not only these generating functions but also
these equations. By applying the Fourier transform and the Laplace
transform to the generating functions, we derive interesting series rep-
resentations for the Bernstein type basis functions. Furthermore, we
discuss analytic representations for the generalized Bernstein polyno-
mials through the binomial or Newton distribution and Poisson distri-
bution with mean and variance. By using the mean and the variance,
we generalize Szasz-Mirakjan type basis functions.
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tions; Bezier curves; Binomial distribution; Poisson distribution; Fourier transform;
Laplace transform; Functional equation .

2000 AMS Classification: 14F10, 12D10, 26C05, 26C10, 30B40, 30C15, 42A38, 44A10.

∗Department of Mathematics, Faculty of Science University of Akdeniz TR-07058 Antalya,
Turkey, Email: ysimsek@akdeniz.edu.tr



Y. Simşek

1. Introduction and main definition

In the literature in Bezier Curves and Surfaces, one can find systematic and extensive
investigations not only of the classical Bernstein polynomials and Bezier curves, but also
of their various generalizations and q-extensions. According to Goldman [7], freeform
curves and surfaces are smooth shapes often describing man-made objects. The hood
of a car, the hull of a ship, and the fuselage of an airplane are all examples of freeform
shapes which differ from the classical surfaces. The classical surfaces are easy to describe
with a few parameters. But the hood of a car or the hull of a ship is not easy to describe
with a few parameters. Thus recently many scientists and engineers have developed
mathematical techniques for describing freeform curves and surfaces. It is also well-
known that scientists and engineers use freeform curves and surfaces to interpolate data
and to approximate shape. The Bezier curves, which are polynomials curves, have many
practical applications, ranging from the design of new fonts to the creation of mechanical
components and assemblies for large scale industrial design and manufacture. By using
the Bernstein polynomials, one can easily find an explicit polynomial representation for
Bezier curves. Therefore, the Bernstein polynomials have many applications in theory of
freeform curves and surfaces, in approximations of functions, in statistics, in numerical
analysis, in p-adic analysis and in the solution of differential equations. It is also well-
known that in Computer Aided Geometric Design polynomials are often expressed in
terms of the Bernstein basis functions. The goal of this paper is to develop some of
properties underlying the Bernstein polynomials using their novel generating functions.

Many of the known identities for the Bernstein basis functions are currently derived
in an ad hoc fashion, using either the binomial theorem, the binomial distribution, tricky
algebraic manipulations or blossoming. The aim of this paper is to derive functional
equations and differential equations using novel generating functions for the Bernstein
polynomials. By using these equations, we provide a new approach to derive both for
standard identities and for new identities for the Bernstein type basis functions.

The organization of the paper is as follows:
In Section 2; We define generating functions for the Bernstein type basis functions.

We find many functional equations and differential equations of this novel generating
function. Using these equations, many properties of the Bernstein type basis functions
can be determined. For instance, we give sum and alternating sum of the Bernstein type
basis functions, some well-known properties of the Bernstein type basis functions, sub-
division property, a recursive definition of the Bernstein type basis functions, derivatives
of the nth degree Bernstein basis functions. We also prove many other properties of the
Bernstein basis functions via functional equations. In Section 3; we give some application
of the Fourier transform and the Laplace transform to the generating functions for the
Bernstein type basis functions. We derive series representations for the Bernstein type
basis functions. In Section 4; by using novel generating functions and their functional
equation, we give some new identities related to the Bernstein type basis function. In
Section 5; we give relations between the Bernstein basis functions, the binomial distri-
bution and the Poisson distribution. Using the Poisson distribution, we give generating
functions for the Szasz-Mirakjan type basis functions. By using Abel and Li’s method [1],
and applying our generating functions to Proposition 5.1, we derive identities which give
pointwise orthogonality relations for the Bernstein polynomials and the Szasz-Mirakjan
type basis functions.
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2. New approach to deriving new proofs of the identities and
properties for the Bernstein type basis functions

In this section, we provide fundamental properties of the Bernstein basis functions
and their generating functions. We introduce some functional equations and differential
equations of the novel generating functions for the Bernstein basis functions. We also
give new proofs of some well known properties of the Bernstein basis functions by using
functional equations and differential equations.

2.1. Generating Functions. Recently the Bernstein polynomials have been defined
and studied in many different ways, for example, by q-series, by complex functions, by
p-adic Volkenborn integrals and many algorithms. Here, by using entire function, related
to nonnegative real parameters, we construct generating functions for the Bernstein type
basis functions.

The Bernstein type basis functions Ynk (x; a, b,m) are defined as follows:

2.1. Definition. Let a and b be nonnegative real parameters with a 6= b. Let m be a
positive integer and let x ∈ [a, b]. Let n be non-negative integer. The Bernstein type
basis functions Ynk (x; a, b,m) can be defined by

(2.1) Ynk (x; a, b,m) =

(
n
k

)
(x− a)k (b− x)n−k

(b− a)m
,

where

k = 0, 1, . . . , n,

and (
n
k

)
=

n!

k!(n− k)!
.

Remark 1. In the special case when m = n, Definition 2.1 immediately yields the
corresponding well known results concerning the Bernstein basis functions Bnk (x, a, b)
that appears, for example, in Goldman [7, p. 384, Eq.(24.6)] and cf. [3]:

Ynk (x; a, b, n) = Bnk (x; a, b) =

(
n
k

)(
x− a
b− a

)k (
b− x
b− a

)n−k
,

where k = 0, 1,· · · , n and x ∈ [a, b] (cf., see also [5]). One can easily see that

(2.2) Bnk (x) =

(
n
k

)
xk(1− x)n−k,

where k = 0, 1, · · · , n and x ∈ [0, 1] cf. [1]-[19]. In [7], Goldman gives many properties
of the Bernstein polynomials Bnk (x, a, b). The functions Bn0 (x, a, b), · · · , Bnn(x, a, b) are
called the Bernstein basis functions. Goldman [7, Chapter 26], shows that the Bernstein
basis functions form a basis for the polynomials of degree n.

Generating functions for the Bernstein type basis functions can be defined as follows:

2.2. Definition. Let a and b be nonnegative real parameters with a 6= b. Let t ∈ C.
Let m be a positive integer and let x ∈ [a, b]. The Bernstein type basis functions can be
defined by means of the following generating function

(2.3) fY,k(x, t; a, b,m) :=

∞∑

n=0

Ynk (x; a, b,m)
tn

n!
,

where k = 0, 1, . . . , n.

We construct novel generating functions for the Bernstein type basis functions explic-
itly by the following theorem:

3
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2.3. Theorem. Let a and b be nonnegative real parameters with a 6= b. Let t ∈ C. Let
m be a positive integer and let x ∈ [a, b]. Then we have

(2.4) fY,k(x, t; a, b,m) =
tk (x− a)k e(b−x)t

(b− a)mk!
.

Proof. By using (2.1) and (2.3), we have

∞∑

n=0

Ynk (x; a, b,m)
tn

n!
=

∞∑

n=0

(
n
k

)
(x− a)k (b− x)n−k

(b− a)m
tn

n!
.

From this equation, we obtain

∞∑

n=0

Ynk (x; a, b,m)
tn

n!
=

(x− a)k tk

k!(b− a)m

∞∑

n=k

(b− x)n−ktn−k

(n− k)!
.

The series on the right hand side is the Taylor series for e(b−x)t. Thus we are led to the
formula (2.4) asserted by Theorem 2.3. �

Alternative form of the generating functions for the Bernstein type basis functions
can be given as follows

(2.5)
tk (x− a)k

(b− a)mk!
= fY,k(x, t; a, b,m)e(x−b)t.

Substituting m = n in (2.1), we now give another well-known generating function for
the Bernstein basis functions:

∞∑

n=0

(
n∑

k=0

Bnk (x; a, b)tk
)
zn

n!
=

∞∑

n=0

(
n∑

k=0

(
n
k

)
tk
(
x− a
b− a

)k (
b− x
b− a

)n−k)
zn

n!
.

By using the Cauchy product in the above equation, we have

∞∑

n=0

(
n∑

k=0

Bnk (x; a, b)tk
)
zn

n!
=

∞∑

n=0

(
t
x− a
b− a

)n
zn

n!

∞∑

n=0

(
b− x
b− a

)n
zn

n!
.

From this equation, we find that

∞∑

n=0

(
n∑

k=0

Bnk (x; a, b)tk
)
zn

n!
= ez(

b−x
b−a

+t x−a
b−a ).

After some elementary calculations in the above relation, we arrive at the following
generating function for the Bernstein basis functions:

(2.6)

n∑

k=0

Bnk (x; a, b)tk =

(
b− x
b− a + t

x− a
b− a

)n
.

Remark 2. If we set a = 0 and b = 1 in (2.6), then we have

(2.7)

n∑

k=0

Bnk (x)tk = ((1− x) + tx)n .

This generating function is given by Goldman [9]-[8, Chapter 5, pp. 299-306]. Goldman
[9]-[8, Chapter 5, pp. 299-306] also constructs the following generating function for the
Bernstein basis functions:

n∑

k=0

Bnk (x)eky = ((1− x) + tey)n .

4
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Remark 3. If we set a = 0 and b = 1 in (2.4), we obtain a result given by Simsek
[18], Simsek et al. [19] and Acikgoz et al. [2]:

(xt)k

k!
e(1−x)t =

∞∑

n=0

Bnk (x)
tn

n!
,

so that, obviously;

Ynk (x; 0, 1, n) = Bnk (x),

where Bnk (x) denote the Bernstein basis functions.

2.2. Bernstein type polynomials. A Bernstein type polynomial P(x, a, b,m) is a
polynomial represented in the Bernstein basis functions:

(2.8) P(x, a, b,m) =

n∑

k=0

cnkYnk (x; a, b,m).

Remark 4. If we set a = 0, b = 1 and m = n in (2.8), then we have

P (x) =

n∑

k=0

cnkB
n
k (x)

(cf. [4]).

2.3. Bezier type curve. We define the Bezier type curve B(x, a, b) with control points

P0, . . . , Pn

as follows:

(2.9) B(x, a, b;m) =

n∑

k=0

PkYnk (x, a, b,m).

Remark 5. In the special case when m = n, Equation (2.9) yields the corresponding
well known results concerning the Bezier curve B(x, a, b) with control points P0, . . . , Pn
defined as follows (cf. [7]):

B(x, a, b) =

n∑

k=0

PkB
n
k (x, a, b).

2.4. Some well-known properties of the Bernstein type basis functions. Below
are some well-known properties of the Bernstein type basis functions:

Non-negative property :

(2.10) Ynk (x; a, b,m) ≥ 0, for 0 ≤ a ≤ x ≤ b.
Symmetry property :

(2.11) Ynk (x; a, b,m) = Ynn−k(b+ a− x; a, b,m).

Corner values:

(2.12) Ynk (a; a, b, n) =

{
0 if k 6= 0,
1 if k = 0,

and

(2.13) Ynk (b; a, b, n) =

{
0 if k 6= n,
1 if k = n.

Remark 6. If we set a = 0, b = 1 and m = n, then (2.10)-(2.13) reduce to Goldman’s
results [9]-[8, Chapter 5, pp. 299-306]. In [9] and [8, Chapter 5, pp. 299-306], Goldman
also gives many identities and properties for the univariate and bivariate Bernstein basis

5
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functions, for example boundary values, maximum values, partitions of unity, representa-
tion of monomials, representation in terms of monomials, conversion to monomial form,
linear independence, Descartes’ law of sign, discrete convolution, unimodality, subdivi-
sion, directional derivatives, integrals, Marsden identities, De Boor-Fix formulas, and the
other properties.

In the next section, by using the same method in [18], we give some functional equa-
tions. By using this equations, we find sum and alternating sum of the Bernstein basis
functions.

2.5. Sum of the Bernstein type basis functions. Using the same method proposed
in [18], we get the following functional equation:

∞∑

k=0

fY,k(x, t; a, b,m) =
e(b−a)t

(b− a)m
.

From the above equation, we have the sum of the Bernstein basis functions:

n∑

k=0

Ynk (b; a, b,m) = (b− a)n−m .

Observe that by substituting n = m into the above equation, we obtain sum of the
Bernstein basis function as follows:

n∑

k=0

Bnk (b; a, b) = 1.

2.6. Alternating sum of the Bernstein type basis functions. Using the same
method proposed in [18], we get the following functional equation:

(2.14)

∞∑

k=0

(−1)kfY,k(x, t; a, b,m) =
e(b−a−2x)t

(b− a)m
.

By using this equation, we easily arrive at the following alternating sum for the Bernstein
type basis functions:

2.4. Theorem.

(2.15)

n∑

k=0

(−1)kYnk (b; a, b,m) =
(b− a− 2x)n

(b− a)m
.

Remark 7. Substituting m = n in (2.1), we get

∞∑

n=0

(
n∑

k=0

(−1)kBnk (x; a, b, n)

)
tn

n!
=

∞∑

n=0




n∑

k=0

(
a−x
b−a

)k (
b−x
b−a

)n−k

k!(n− k)!


 tn.

By using the Cauchy product in the above equation, we have

∞∑

n=0

(
n∑

k=0

(−1)kBnk (x; a, b)

)
tn

n!
= e(

a+b−2x
b−a )t.

From this relation, we also arrive at the following alternating sum for the Bernstein basis
functions:

n∑

k=0

(−1)kBnk (x; a, b) =

(
a+ b− 2x

b− a

)n
.

6
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2.7. Differentiating the generating function. Here, we give higher order derivatives
of the Bernstein type basis functions by differentiating the generating function in (2.4)
with respect to x. Using Leibnitz’s formula for the lth derivative, with respect to x, of
the product fY,k(x, t; a, b,m) of two functions

g(t, x; a, b) =
tk (x− a)k

(b− a)mk!
(a 6= b)

and

h(t, x; b) = e(b−x)t,

we obtain the following higher order partial derivative equation:

(2.16)
∂lfY,k(x, t; a, b,m)

∂xl
=

l∑

j=0

(
l
j

)(
∂jg(t, x; a, b)

∂xj

)(
∂l−jh(t, x; b)

∂xl−j

)
.

By using induction on l, Equation (2.16) is easily obtained.

2.5. Theorem. Let l be a non-negative integer. Then

∂lfY,k(x, t; a, b,m)

∂xl
=

l∑

j=0

(
l
j

)
(−1)l−j

tl

(b− a)j
fY,k−j(x, t; a, b,m− j).

Proof. By using (2.16), we easily arrive at the desired result. �

By using Theorem 2.5, we obtain higher order derivatives of the Bernstein type basis
functions by the following theorem:

2.6. Theorem. Let a and b be nonnegative real parameters with a 6= b. Let m be a
positive integer and let x ∈ [a, b]. Let k, l and n be nonnegative integers with n ≥ k.
Then

dlYnk (x; a, b,m)

dxl
=

n!

(n− l)!
l∑

j=0

(−1)l−j
(

l
j

) Yn−lk−j(x; a, b,m− j)
(b− a)j

.

Remark 8. Substituting a = 0, b = 1 and m = n into Theorem 2.6, we have

dlBnk (x)

dxl
=

n!

(n− l)!
l∑

j=0

(−1)l−j
(

l
j

)
Bn−lk−j(x),

Substituting l = 1 into the above equation, we have

d

dx
Bnk (x) = n

(
Bn−1
k−1 (x)−Bn−1

k (x)
)

(cf. [9], [8, Chapter 5, pp. 299-306], [18]) and (cf. [1]-[19]).

2.8. Recurrence Relation. Here, by using higher order derivatives of the novel gen-
erating function with respect to t, we derive a partial differential equation. Using this
equation, we shall give a new proof of the recurrence relation for the Bernstein type basis
functions.

Differentiating Equation (2.4) with respect to t, we prove a recurrence relation for
the Bernstein type basis functions. This recurrence relation can also be obtained from
Equation (2.1). By using Leibnitz’s formula for the vth derivative, with respect to t, of
the product fY,k(x, t; a, b,m) of two function

g(t, x; a, b) =
tk (x− a)k

(b− a)mk!
(a 6= b)

7
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and

h(t, x; b) = e(b−x)t,

we obtain another higher order partial differential equation as follows:

(2.17)
∂vfY,k(x, t; a, b,m)

∂tv
=

v∑

j=0

(
v
j

)(
∂jg(t, x; a, b)

∂tj

)(
∂v−jh(t, x; b)

∂tv−j

)
.

By using induction on v, Equation (2.17) is easily obtained.

2.7. Theorem. Let v be an integer number. Then

∂vfY,k(x, t; a, b,m)

∂tv
=

v∑

j=0

(b− a)v−jBvj (x; a, b)fY,k−j(x, t; a, b,m− j),

where fY,k(x, t; a, b,m) and Bvj (x; a, b) are defined in (2.4) and (2.1), respectively.

Proof. Proof of Theorem 2.7 follows immediately from (2.17). �

Using definition (2.3), (2.1), and Theorem 2.7, we obtain a recurrence relation for the
Bernstein type basis functions by the following theorem:

2.8. Theorem. Let a and b be nonnegative real parameters with a 6= b. Let m be a
positive integer and let x ∈ [a, b]. Let k, v and n be nonnegative integers with n ≥ k.
Then

Ynk (x; a, b,m) =

v∑

j=0

(b− a)v−jBvj (x; a, b)Yn−vk−j (x; a, b,m− j).

Remark 9. Substituting a = 0 and b = 1 into Theorem 2.8, we obtain the following
result (cf. [18]):

Bnk (x) =

v∑

j=0

Bvj (x)Bn−vk−j (x).

Substituting v = 1 into above equation, we have (cf. [1]-[19])

Bnk (x) = (1− x)Bn−1
k (x) + xBn−1

k−1 (x).

2.9. Multiplication and division by powers of (x−a
b−a )d and ( b−x

b−a )d. In [4], Buse
and Goldman present much background material on computations with Bernstein poly-
nomials. They provide formulas for multiplication and division of Bernstein polynomials
by powers of x and 1−x and for degree elevation of Bernstein polynomials. Our method
is similar to that of Buse and Goldman’s [4]. Here, we find two functional equations.
Using these equations, we also give new proofs of both the multiplication and division
properties for the Bernstein polynomials.

By using the generating function in (2.4) , we provide formulas for multiplying Bern-

stein polynomials by powers of
(
x−a
b−a

)d
and

(
b−x
b−a

)d
and for degree elevation of the

Bernstein polynomials.
Using (2.4), we obtain the following functional equation:

(
x− a
b− a

)d
fY,k(x, t; a, b, n) =

(k + d)!

k!td
fY,k(x, t; a, b, n).

After elementary manipulations in this equation, we get

(2.18)

(
x− a
b− a

)d
Bnk (x; a, b) =

n!(k + d)!

k!(n+ d)!
Bn+dk+d (x; a, b).

8
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Substituting d = 1, we have

(2.19)

(
x− a
b− a

)
Bnk (x; a, b) =

k + 1

n+ 1
Bn+1
k+1 (x; a, b).

Remark 10. Substituting a = 0 and b = 1 into (2.19), we have

xBnk (x) =
k + 1

n+ 1
Bn+1
k+1 (x).

The above relation can also be proved by (2.2) (cf. [4]).
Similarly, using (2.1), we obtain

(
b− x
b− a

)d
Bnk (x; a, b) =

n!(n+ d− k)!

(n+ d)!(n− k)!
Bn+dk (x; a, b).

Substituting d = 1 into the above equation, we have

(2.20)

(
b− x
b− a

)
Bnk (x; a, b) =

n+ 1− k
n+ 1

Bn+1
k (x; a, b).

Consequently, by the same method as in [4], if we have (2.8), then

(2.21)

(
x− a
b− a

)d
P(x, a, b) =

n∑

k=0

cnk
n!(k + d)!

k!(n+ d)!
Bn+dk+d (x; a, b),

and

(2.22)

(
b− x
b− a

)d
P(x, a, b) =

n∑

k=0

cnk
n!(n+ d− k)!

(n+ d)!(n− k)!
Bn+dk (x; a, b).

We now consider division properties. We assume that (2.8) holds and that we are given

an integer j > 0. Since
(
x−a
b−a

)j
divides Bnk (x; a, b) for all k ≥ j, it follows that

(
x−a
b−a

)j

divides P(x, a, b). Similarly, using (2.4), we obtain the following functional equation:

fY,k(x, t; a, b, n)(
x−a
b−a

)j =
(k − f)!tj

k!
fY,k−j(x, t; a, b, n− j).

For k ≥ j, from the above equation, we have

Bnk (x; a, b)(
x−a
b−a

)j =
n!(k − j)!
k!(n− j)!B

n−j
k−j (x; a, b).

By a calculation similar to that in [4], for j ≤ n− k, we have

Bnk (x; a, b)(
b−x
b−a

)j =
n!(n− j − k)!

(n− k)!(n− j)!B
n−j
k (x; a, b).

Therefore

(2.23)
P(x, a, b)(
x−a
b−a

)j =

n∑

k=j

cnk
n!(k − j)!
k!(n− j)!B

n−j
k−j (x; a, b),

and

(2.24)
P(x, a, b)(
b−x
b−a

)j =

n−j∑

k=0

cnk
n!(n− j − k)!

(n− k)!(n− j)!B
n−j
k (x; a, b).

9
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2.10. Degree elevation. According to Buse and Goldman [4], given a polynomial rep-
resented in the univariate Bernstein basis of degree n, degree elevation computes rep-
resentations of the same polynomial in the univariate Bernstein bases of degree greater
than n. Degree elevation allows us to add two or more Bernstein polynomials which are
not represented in the same degree Bernstein basis functions.

Adding (2.19) and (2.20), we obtain the degree elevation formula for the Bernstein
basis functions:

Bnk (x; a, b) =
k + 1

n+ 1
Bn+1
k+1 (x; a, b) +

n+ 1− k
n+ 1

Bn+1
k (x; a, b).

Substituting d = 1 into (2.22), and adding it with the latter equations gives the following
degree elevation formula for the Bernstein polynomials:

(2.25) P(x, a, b) =

n∑

k=0

(
k

n+ 1
cnk−1 +

n+ 1− k
(n+ 1)

cnk

)
Bn+1
k (x; a, b),

where

cn+1
k =

k

n+ 1
cnk−1 +

n+ 1− k
(n+ 1)

cnk .

Remark 11. If we set a = 0 and b = 1, then Equation (2.25) reduces to Equation
(2.5) in [4, p. 853].

3. Application of the Fourier and the Laplace transforms to the
generating functions

In this section, by applying the Fourier transform and the Laplace transform to the
generating function for the Bernstein basis functions, we obtain some interesting series
representations for the Bernstein basis functions.

In [18, p. 5, Eq. (11)], the following functional equation was derived:

(3.1) fB,j(xy, t) = fB,j (x, ty) et(1−y).

From this generating function, we obtain subdivision property for the Bernstein basis
functions (see [18]):

Bnj (xy) =

n∑

k=j

Bkj (x)Bnk (y)

cf. (see also [9]-[8, Chapter 5, pp. 299-306]).
By using (3.1), we obtain functional equation

fB,k(xy, t)e−t = fB,k (x, ty) e−ty.

For a = 0 and b = 1, combining (2.4) with the above equation, we get

(3.2)

∞∑

n=0

Bnk (xy)
tn

n!
e−t =

∞∑

n=0

Bnk (x)yn
tn

n!
e−ty.

Integrate this equation (by parts) with respect to t from 0 to ∞, we get

∞∑

n=0

Bnk (xy)

n!

∞∫

0

tne−tdt =

∞∑

n=0

Bnk (x)yn

n!

∞∫

0

tne−tydt.

By using the Laplace transform in the above equation, we arrive at the following Theorem:

10



Generating Functions for the Bernstein Type Polynomials...

3.1. Theorem. Let x, y ∈ [0, 1]. The following relationship holds true:

∞∑

n=0

Bnk (xy) =

∞∑

n=0

1

y
Bnk (x).

From (2.4), we define the following functional equation:

tk (x− a)k

(b− a)mk!
e−xt =

∞∑

n=0

Ynk (x; a, b,m)
tn

n!
e−bt.

By applying the Fourier transform to the above equation,

(x− a)k

(b− a)mk!

∞∫

0

tke−xte−istdt =

∞∑

n=0

Ynk (x; a, b,m)
1

n!

∞∫

0

tne−bte−istdt.

From this equation, we arrive at the following Theorem:

3.2. Theorem. Let x ∈ [a, b] and s ∈ R. We have

∞∑

n=0

Ynk (x; a, b,m)

(b+ is)n+1 =
(x− a)k

(b− a)m (x+ is)k+1
,

where
∣∣∣ b−xb+is

∣∣∣ < 1.

4. New Identities

By using novel generating functions, we derive some new identities related to the
Bernstein type basis function.

4.1. Theorem.

n∑

j=0

j∑

k=0

(−1)k
(
n
j

)
Yjk(x; a, b,m) (2x)n−j = (b− a)n−m .

Proof. By using (2.14), we obtain

(4.1)

∞∑

k=0

(−1)kfY,k(x, t; a, b,m)e2xt =
1

(b− a)m
e(b−a)t.

From this equation, we get

∞∑

n=0

n∑

k=0

(−1)kYnk (x; a, b,m)
tn

n!

∞∑

n=0

(2x)n
tn

n!
=

∞∑

n=0

(b− a)n−m
tn

n!
.

Therefore

∞∑

n=0

(
n∑

j=0

j∑

k=0

(−1)k
(
n
j

)
Yjk(x; a, b,m) (2x)n−j

)
tn

n!
=

∞∑

n=0

(b− a)n−m
tn

n!
.

Comparing the coefficients of tn

n!
on the both sides of the above equation, we arrive at

the the desired result. �

4.2. Theorem.
n∑

k=j

(−1)n−k
(
n
k

)
Bkj (xy) = yn

n∑

k=j

(−1)n−k
(
n
k

)
Bkj (x).

11
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Proof. Using (3.2), we obtain

∞∑

n=0

Bnk (xy)
tn

n!

∞∑

n=0

(−1)n
tn

n!
=

∞∑

n=0

Bnk (x)yn
tn

n!

∞∑

n=0

(−y)n
tn

n!
.

From the above equation, we get

∞∑

n=j




n∑

k=j

(−1)n−k
(
n
k

)
Bkj (xy)


 tn

n!
=

∞∑

n=j


yn

n∑

k=j

(−1)n−k
(
n
k

)
Bkj (x)


 tn

n!
.

Comparing the coefficients of tn

n!
on the both sides of the above equation, we arrive at

the the desired result. �

5. Further remarks and observations on the generating functions
fY,k(x, t; a, b,m), Poisson distribution and Szasz-Mirakjan type
basis functions

The identity of Jetter and Stöckler represents a pointwise orthogonality relation for
the multivariate Bernstein polynomials on a simplex. This identity give us a new rep-
resentation for the dual basis which can be used to construct general quasi-interpolant
operators (cf., see, for details, [10] and [1]). As an application of the generating functions
for the basis functions to the identity of Jetter and Stöckler, Abel and Li [1] proved
Proposition 5.1, which is given in this section. Applying our generating functions to
Proposition 5.1, we give pointwise orthogonality relations for the Bernstein polynomials
and the Szasz-Mirakjan basis functions.

In this section, we give relations between the Bernstein basis functions, the binomial
distribution and the Poisson distribution. First we consider the generalized binomial or
Newton distribution (probability function). Suppose that 0 ≤ x−a

b−a ≤ 1 and 0 ≤ b−x
b−a ≤ 1.

Set

(5.1) Bnk (x; a, b) =

(
n
k

)(
x− a
b− a

)k (
b− x
b− a

)n−k
.

Remark 12. If we set a = 0 and b = 1, then (5.1) reduces to

Bnk (x) =

(
n
k

)
xk(1− x)n−k

which is the binomial or Newton distribution (probabilities) function. If 0 ≤ x ≤ 1 is
the probability of an event E, then Bnk (x) is the probability that E will occur exactly k
times in n independent trials (cf. [13]).

Expected value or mean and variance of Bnk (x; a, b) are given by

µ =

n∑

k=0

kBnk (x; a, b) = n

(
x− a
b− a

)
,

and

σ2 =

n∑

k=0

k2Bnk (x; a, b)− µ2 =
n (x− a) (b− x)

(b− a)2
.

If we let n→∞ in (5.1), then we arrive at the well-known Poisson distribution:

(5.2) Bnk

(
b− a
n

µ+ a; a, b

)
→ µke−µ

k!
.

The following proposition is proved by Abel and Li [1, p. 300, Proposition 3]:

12
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5.1. Proposition. Let the system {fn(x)} of functions be defined by the generating
function

At(x) =

∞∑

n=0

fn(x)tn.

If there exists a sequence wk = wk(x) such that

∞∑

k=0

wkD
kAt(x)DkAz(x) = Atz(x)

with D = d
dx

, then we have

∞∑

k=0

wkD
kfi(x)Dkfj(x) = δi,jfi(x), (i, j = 0, 1, . . .) .

As an application of Proposition 5.1, Abel and Li [1] use the generating function in
Equation (2.7) for the Bernstein basis functions. They also use generating functions for
the Szasz-Mirakjan basis functions and Baskakov basis functions.

In this section, we apply our novel generating functions to Proposition 5.1, which give
pointwise orthogonality relations for the Bernstein polynomials and the Szasz-Mirakjan
type basis functions, respectively.

As applications of Proposition 5.1, we give the following examples:
Example 1. For given n and k, the Bernstein basis functions

fk(x, n; a, b) = Bnk (x; a, b) =

(
n
k

)(
x− a
b− a

)k (
b− x
b− a

)n−k

are generated by the function in (2.4), that is

At(x) =
tk (x− a)k e(b−x)t

(b− a)nk!
=

∞∑

k=0

fk(x, n; a, b)

k!
tk.

It is easy to check that Proposition 5.1 holds with wk = wk(x) = Bnk (x; a, b).
Example 2. Using (5.2), for j ≥ 0, we generalize the Szasz-Mirakjan type basis

functions as follows

fj(x, n; a, b) =
(nx−a

b−a )je−n
x−a
b−a

j!
,

where a and b are nonnegative real parameters with a 6= b, n is a positive integer and
x ∈ [a, b]. The functions fj(x, n; a, b) are generated by

At(x) = exp

(
(t− 1)n

(
x− a
b− a

))
=

∞∑

i=0

fi(x, n; a, b)ti,

where exp(x) = ex. In this case, Proposition 5.1 holds with wk = wk(x) =
( x−a

b−a )k

nkk!
.

Therefore, we have

∞∑

k=0

(
x−a
b−a

)k

nkk!
D
kfi(x, n; a, b)Dkfj(x, n; a, b) = δi,jfi(x, n; a, b).

Remark 13. If a = 0 and b = 1 in Example 2, then we arrive at the Szasz-Mirakjan
basis functions which are given in [1, p. 300, Example 2].
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Abstract

The aim of our study is prove that the presence of the internal state
variables in a thermoelastic dipolar body do not influence the unique-
ness of solution. After the mixed initial boundary value problem in
this context is formulated, we use the Gronwall’s inequality to prove
the uniqueness of solution of this problem.
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1. Introduction

Interest to consider the internal state variables as a means to estimate mechanical
properties has grown rapidly in recent years.

The theories of internal state variables in different kind of materials represent a ma-
terial length scale and are quite sufficient for a large number of the solid mechanics
applications.

The internal state variables are the smallest possible subset of system variables that
can represent the entire state of the system at any given time. The minimum number of
state variables required to represent a given system, n, is usually equal to the order of
the differential equations system’s defining. If the system is represented in the transfer
function form, the minimum number of state variables is equal to the order of the transfer
function’s denominator after it has been reduced to a proper fraction. It is important
to understand that converting a state space realization to a transfer function form may
lose some internal information about the system, and may provide a description of a
system which is stable, when the state-space realization is unstable at certain points.
For instance, in the electric circuits, the number of state variables is often, though not
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∗Corresponding author
bDepartment of Mathematics, King Abdulaziz University, Jeddah, Saudi Arabia.
cDepartment of Mathematics, Science Faculty, Sohag University, Egypt



M. Marin, S. R. Mahmoud, and G. Stan

always, the same as the number of energy storage elements in the circuit such as capacitors
and inductors.

The theory of bodies with internal state variables has been first formulated for the
thermo-viscoelastic materials (see, for instance Chirita [3]). Then the internal state
variables has been considered for different kind of materials.

The study [9] of Nachlinger and Nunziato is dedicated to the internal state variables
approach of finite deformations without heat conduction in the one-dimensional case.

In the paper [12] the authors describe how the so-called Bammann internal state vari-
able constitutive approach, which has proven highly successful in modelling deformation
processes in metals, can be applied with great benefit to silicate rocks and other geolog-
ical materials in modelling their deformation dynamics. In its essence, the internal state
variables theory provides a constitutive framework to account for changing history states
that arise from inelastic dissipative microstructural evolution of a polycrystalline solid.

A thermodynamically consistent framework is proposed for modeling the hysteresis
of capillarity in partially saturated porous media in the paper [14]. Capillary hysteresis
is viewed as an intrinsic dissipation mechanism, which can be characterized by a set of
internal state variables. The volume fractions of pore fluids are assumed to be additively
decomposed into a reversible part and an irreversible part. The irreversible part of the
volumetric moisture content is introduced as one of the internal variables. It is shown
that the pumping effect occurring in a porous medium experiencing a wetting/drying
cycle is thermodynamically admissible.

The paper [2] presents the formulation of a constitutive model for amorphous ther-
moplastics using a thermodynamic approach with physically motivated internal state
variables. The formulation follows current internal state variable methodologies used for
metals and departs from the spring-dashpot representation generally used to characterize
the mechanical behavior of polymers.

Anand and Gurtin develop in the paper [1] a continuum theory for the elastic-viscoplastic
deformation of amorphous solids such as polymeric and metallic glasses. Introducing
an internal-state variable that represents the local free-volume associated with certain
metastable states, the authors are able to capture the highly non-linear stress-strain
behavior that precedes the yield-peak and gives rise to post-yield strain softening.

In the study [13], is presented a formulation of state variable based gradient theory to
model damage evolution and alleviate numerical instability associated within the post-
bifurcation regime. This proposed theory is developed using basic microforce balance
laws and appropriate state variables within a consistent thermodynamic framework. The
proposed theory provides a strong coupling and consistent framework to prescribe energy
storage and dissipation associated with internal damage. For other paper in this topic,
see [10], [11].

Other results on some generalizations of thermoelastic bodies can be found in the
papers [4]-[8].

2. Basic equations

Let us consider B be an open region of three-dimensional Euclidean space R3 occupied,
at time t = 0, by the reference configuration of a thermoelastic dipolar body with internal
state variables.

We assume that the boundary of the domain B, denoted by ∂B, is a closed, bounded
and piece-wise smooth surface which allows us the application of the divergence theorem.
A fixed system of rectangular Cartesian axes is used and we adopt the Cartesian tensor
notations. The points in B are denoted by (xi) or (x). The variable t is the time
and t ∈ [0, t0). We shall employ the usual summation over repeated subscripts while

16



Internal state variables in dipolar thermoelastic bodies

subsripts preceded by a comma denote the partial differentiation with respect to the
spatial argument. Also, we use a superposed dot to denote the partial differentiation
with respect to t. The Latin indices are understood to range over the integers (1, 2, 3),
while the Greek subsripts have the range 1, 2, . . . , n.

In the following we designate by ni the components of the outward unit normal to the
surface ∂B. The closure of the domain B, denoted by B̄, means B̄ = B ∪ ∂B.

Also, the spatial argument and the time argument of a function will be ommited when
there is no likelihood of confusion.

The behaviour of a thermoelastic dipolar body is characterized by the following kine-
matic variables:

ui = ui(x, t), ϕjk = ϕjk(x, t), (x, t) ∈ B × [0, t0)

where ui are the components of the displacement field and ϕjk - the components of the
dipolar displacement field.

The fundamental system of field equations, in the theory of dipolar thermoelastic
bodies with internal state variables, consists of:

- the equations of motion:

(τij + ηij),j + %Fi = %üi,

µijk,i + σjk + %Gjk = Ikrϕ̈jr;(2.1)

- the energy equation:

T0η̇ = qi,i + %r;(2.2)

- the constitutive equations:

τij = Cijmn εmn +Gmnij γmn + Fmnrij κmnr −Bij θ +Bijα ωα,

σij = Gijmn εmn +Bijmn γmn +Dijmnr κmnr −Dij θ +Dijα ωα,

µijk = Fijkmn εmn +Dmnijk γmn +Amnrijk κmnr − Fijk θ + Fijkα ωα,(2.3)

η = Bij εij +Dij γij + Fijs κijs − a θ −Gα ωα,
qi = aijk εjk + bijk γjk + cijsm κjsm + di θ + fiα ωα +Kij θ, j ;

- the geometric equations:

εij =
1

2
(uj,i + ui,j) , γij = uj,i − ϕij ,

κijk = ϕjk,i.(2.4)

Usually, the internal state variables are denoted by ξα, α = 1, 2, . . . , n. In the
linear theory, we denote by ωα the internal state variables measured from the internal
state variables ξ0α of the initial state. Also, the temperature θ represents the difference
between the absolute temperature T and the temperature T0, T0 > 0, of the initial state.
Thus we have:

ξα = ξ0α + ωα, T = T0 + θ.(2.5)

Within the linear approximation, from the entropy production inequality, it follows
(see, for instance, [1]):

ω̇α = fα,(2.6)

where

fα = gijαεij + hijαγij + lijkακijk + pαθ + qαβωβ + riαθ, i.(2.7)

The other notations used in the above equations have the following meanings:
- % - the constant mass density;
- τij , σij , µijk - the components of the stress tensors;
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- Iij - the coefficients of inertia;
- Fi - the components of body force per unit mass;
- Gjk - the components of dipolar body force per unit mass;
- r - the heat supply per unit mass and unit time;
- η - the entropy per unit mass;
- qi - the components of the heat flux;
- εij , γij , κijk - the kinematic characteristics of the strain tensors.
The above coefficients Cijmn, Bijmn, . . . , Dijm, Eijm, . . . , aijk, . . . , gijα, . . . , riα are

functions of x and characterize the thermoelastic properties of the material with internal
state variable (the constitutive coefficients). For a homogeneous medium these quantities
are constants. The constitutive coefficients obey to the following symmetry relations

Cijmn = Cmnij = Cijnm, Bijmn = Bmnij ,

Gijmn = Gijnm, Fijkmn = Fijknm, Aijkmnr = Amnrijk,(2.8)

Bij = Bji, aijk = aikj , Kij = Kji, gijα = gjiα.

We supplement the above equations with the following initial conditions

ui (xs, 0) = u0i (xs) , u̇i (xs, 0) = u1i (xs) ,

ϕij (xs, 0) = ϕ0ij (xs) , ϕ̇ij (xs, 0) = ϕ1ij (xs) ,(2.9)

θ (xs, 0) = θ0 (xs) , ωα (xs, 0) = ω0α (xs) , (xs) ∈ B
and the prescribed boundary conditions

ui = ũi, on ∂B1 × [0, t0] , ti ≡ (τij + σij)nj = t̃i, on ∂B2 × [0, t0] ,

ϕij = ϕ̃ij , on ∂B3 × [0, t0] , µjk ≡ µijkni = µ̃jk, on ∂B4 × [0, t0] ,(2.10)

θ = θ̃, on ∂B5 × [0, t0] , q ≡ qini = q̃, on ∂B6 × [0, t0] .

Here ∂B1, ∂B3, ∂B5 and ∂B2, ∂B4, ∂B6 are subsets of the boundary ∂B which satisfay
the relations

∂B1 ∪ ∂B2 = ∂B3 ∪ ∂B4 = ∂B5 ∪ ∂B6 = ∂B

∂B1 ∩ ∂B2 = ∂B3 ∩ ∂B4 = ∂B5 ∩ ∂B6 = ∅
In the above conditions 2.9 and 2.10, the functions u0i, u1i, ϕ0ij , ϕ1ij , θ0 ω0α, ũi, t̃i,

ϕ̃ij , µ̃jk, θ̃ and q̃ are prescribed in their domain of definition.
In conclusion, the mixed initial boundary value problem of the thermoelasticity of

dipolar bodies with internal variables consists of the equations (2.1), (2.2) and (2.6), the
initial conditions (2.9) and the boundary conditions (2.10).

By a solution of this problem we mean a state of deformation (ui, ϕij , θ, ωα) satis-
fying the Eqns. (2.1), (2.2) and (2.6) and the conditions (2.9) and (2.10).

3. Main results

In the main section of our paper we will deduce some estimations and then, as a
consequence, we obtain in simple manner the uniqueness theorem of the solution of the
above problem.
In order to prove these results, we shall need the following assumptions

- (i) the mass density % is strictly positive, i.e.

% (xs) ≥ %0 > 0, on B;

- (ii) there exists a positive constant λ1 such that

Iijξiξj ≥ λ1ξiξi, ∀ ξi;
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- (iii) the specific heat a from (3)4 is strictly positive, i.e.

a (xs) ≥ a0 > 0, on B;

- (iv) the constitutive tensors Cijmn, Bijmn and Aijkmnr are positive definite:
∫

B

Cijmn ξij ξmn dv ≥ λ2

∫

B

ξij ξij dv, ∀ ξij
∫

B

Bijmn ξij ξmn dv ≥ λ3

∫

B

ξij ξij dv, ∀ ξij
∫

B

Aijkmnr ξijk ξmnr dv ≥ λ4

∫

B

ξijk ξijk dv, ∀ ξijk

where λ2, λ3 and λ4 are positive constants;
- (v) the symmetric part K̃ij of the thermal conductivity tensor Kij is positive definite,

in the sense that there exists a positive constant µ such that
∫

B

K̃ij ξi ξj dv ≥ µ
∫

B

ξi ξi dv, for all vectors ξi.

Let us consider(
u
(ν)
i , ϕ

(ν)
ij , θ

(ν), ω(ν)
α

)
, ν = 1, 2

two solutions of our initial boundary value problem.
Because of the linearity of the problem, their difference is also solution of the problem.

We denote by (vi, ψij , κ, wα) the differences,

vi = u
(2)
i − u

(1)
i , ψi = ϕ

(2)
ij − ϕ

(1)
ij , κ = θ(2) − θ(1), wα = ω(2)

α − ω(1)
α

In order to prove the desired uniquness theorem, it suffice to prove that the above
considered problem, consists of the equations (2.1), (2.2) and (2.6) and the conditions
(2.9) and (2.10), in which

Fi = Gjk = r = 0

u0i = u1i = ϕ0ij = ϕ1ij = θ0 = ω0α = 0

and

ũi = t̃iϕ̃ij = µ̃ij = θ̃ = q̃ = 0

imply that

ui = ϕij = θ = ωα = 0,

in B × [0, t0], provided that the hypotheses (i) - (v) hold.
Therefore, we consider the new problem P0 defined by the following equations

(τij + σij),j = %üi,

µijk,i + σjk = Ikrϕ̈jr(3.1)

T0η̇ = qi,i(3.2)

ω̇α = fα,(3.3)

with the initial conditions

ui (xs, 0) = 0, u̇i (xs, 0) = 0, ϕij (xs, 0) = 0,

ϕ̇ij (xs, 0) = 0, θ (xs, 0) = 0, ωα (xs, 0) = 0, (xs) ∈ B(3.4)

19



M. Marin, S. R. Mahmoud, and G. Stan

and the boundary conditions

ui = 0, on ∂B1 × [0, t0] , ti ≡ (τij + σij)nj = 0, on ∂B2 × [0, t0] ,

ϕij = 0, on ∂B3 × [0, t0] , µjk ≡ µijkni = 0, on ∂B4 × [0, t0] ,(3.5)

θ = 0, on ∂B5 × [0, t0] , q ≡ qini = 0, on ∂B6 × [0, t0] .

To these equations and conditions we adjoin the constitutive relations (2.3) and (2.7).
In order to prove that the problem P0 admits the null solution, we will show that the
function y(t) defined by

y(t) =

∫

B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εijεij + γijγij + κijrκijr + θ2 + ωαωα

)
dV

vanishes on [0, t0].
To this aim, we first prove some useful estimations.

3.1. Theorem. If the ordered array (ui, ϕij , θ, ωα) is a solution of the problem P0,
then the following relation hold

1

2

∫

B

(Cijmnεijεmn + 2Gijmnεijγmn + 2Fmnrijεijκmnr+

+Bijmnγijγmn +Aijsmnrκijsκmnr + 2Dijmnrγijκmnr + 2Bijαεijωα+

+2Dijαγijωα + 2Fijrακijrωα + aθ2 + %u̇iu̇i + Ikrϕ̇jrϕ̇jk
)
dV =(3.6)

∫ t

0

∫

B

[
(Bijαεij +Dijαγij + Fijrακijr) ω̇α − 1

T0
qiθ,i

]
dV ds.

Proof. By using the constitutive equations (2.3) and the symmetry relations (2.8), we
obtain

τij u̇j,i + σij γ̇ij + µijsκ̇ijs =

1

2

∂

∂t
(Cijmnεijεmn + 2Gmnijεijγmn + 2Fmnrijεijκmnr+

+Bijmnγijγmn +Aijsmnrκijsκmnr + 2Dijmnrγijκmnr+(3.7)

+2Bijαεijωα + 2Dijαγijωα + 2Fijsακijsωα + aθ2
)
−

−Bijαεijω̇α −Dijαγijω̇α − Fijsακijsω̇α −Gαθω̇α.

On the other hand, in view of (3.1) and (3.2) we deduce:

τij u̇j,i + σij γ̇ij + µijsκ̇ijs =

=

[
(τij + σij) u̇j + µijsϕ̇js +

1

T0
qiθ

]

,i

−(3.8)

−1

2

∂

∂t
(%u̇iu̇i + Ikrϕ̇jrϕ̇jk)− 1

T0
qiθ,i
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From the equalities (3.7) and (3.8) we have

1

2

∂

∂t
(Cijmnεijεmn + 2Gmnijεijγmn + 2Fmnrijεijκmnr+

+Bijmnγijγmn +Aijsmnrκijsκmnr + 2Dijmnrγijκmnr+

+2Bijαεijωα + 2Dijαγijωα + 2Fijsακijsωα+

+aθ2 + %u̇iu̇i + Ikrϕ̇jrϕ̇jk
)

=(3.9)

=

[
(τij + σij) u̇j + µijsϕ̇js +

1

T0
qiθ

]

, i

− 1

T0
qiθ, i+

+ (Bijαεij +Dijαγij + Fijsακijs +Gαθ) ω̇α

Now, we integrate relation (3.9) over the domain B. By using the divergence theorem
and the boundary conditions (3.5), we conclude that

1

2

∂

∂t

∫

B

(Cijmnεijεmn + 2Gmnijεijγmn + 2Fmnrijεijκmnr+

Bijmnγijγmn +Aijsmnrκijsκmnr + 2Dijmnrγijκmnr+

2Bijαεijωα + 2Dijαγijωα + 2Fijsακijsωα+(3.10)

+aθ2 + %u̇iu̇i + Ikrϕ̇jrϕ̇jk
)
dV =

∫

B

[
(Bijαεij +Dijαγij + Fijsακijs +Gαθ) ω̇α − 1

T0
qiθ, i

]
dV.

Finally, we integrate the equality (20) from 0 to t and, by using the initial condition
(3.4), we arrive at the desired result (3.6). �

3.2. Theorem. Let (ui, ϕij , θ, ωα) be a solution of the problem P0. Then there exists
the positive constants m1 and m2 such that the following relation hold

∫

B

[
(Bijαεij +Dijαγij + Fijsακijs +Gαθ) ω̇α − 1

T0
qiθ, i

]
dV ≤

≤ −m1

∫

B

θ, iθ, jdV +m2

∫

B

(
εijεij + γijγij + κijsκijs + θ2 + ωαωα

)
dV.(3.11)

Proof. Taking into account the relations (2.6), (2.7) and (2.3)5, we can write:

∫

B

[
(Bijαεij +Dijαγij + Fijsακijs +Gαθ) ω̇α − 1

T0
qiθ, i

]
dV =

∫

B

[(Bijαεij +Dijαγij + Fijsακijs +Gαθ) (gijαεij + hijαγij+

+lijsακijs + pαθ + qαβωβ + riαθ, i)−

− 1

T0
(aijkεjk + bijγjk + cijsmκjsm + diθ + fiαωα +Kijθ, j) θ, i

]
dV =

−
∫

B

1

T0
Kijθ, iθ, jdV +

∫

B

(Bijεijθ + Dijγijθ + Fijsκijsθ+(3.12)

Mθ2 + Lαωαθ + Diθθ, i + Cijmnεijεmn + Dijmnεijγmn+

Fijmnrεijκmnr + Bijαεijωα + Bijkεijθ, k + Bijmnγijγmn+

Dijmnrγijκmnr + Dijαγijωα + Dijkγijθ, k + Aijsmnrκijsκmnr+

+Fijsακijsωα + Fijsmκijsθ, m + Piαωαθ, i) dV,
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where we have used the following notations

Aijsmnr =
1

2
(Fijkαlmnrα + Fmnrαlijkα) , Cijmn =

1

2
(Bijαgmnα +Bmnαgijα) ,

Bij = Bijαpα +Gαgijα, Bijα = Bijβqβα, Bijk = Bijαγkα − 1

T0
akji

Dij = Dijαpα +Gαhijα, Di = Gαriα − 1

T0
di, Dijα = Dijβqβα,(3.13)

Dijk = Dijαrkα − 1

T0
bkij , Fijmnr = Dijαlmnrα + Fijkαhmnα,

Fijk = Gαlijkα + Fijkαpα, Fijkα = Fijkβqβα, Fijkm = Fijkαrmα − 1

T0
cmijk,

Dijmn = Bijαhmnα +Dmnαgijα, Lα = Gβqβα, M = Gαpα, Piα = − 1

T0
fiα.

By using the Schwarz’s inequality and the arithmetic - geometric mean inequality

ab ≤ 1

2

(
a2

π2
+ b2π2

)
(3.14)

to the last term in the relation (3.12), we are lead to
∫

B

[
(Bijα εij +Dijα γij + Fijsα κijs +Gα θ) ω̇α − 1

T0
qi θ, i

]
dV ≤

≤
(
−2µ+ π2

1 + π2
2 + π2

3 + π2
4 + π2

5

) ∫

B

θ, i θ, idV+

(
M2

2

π2
2

+M2
6 +M2

11 +M2
12 +M2

13 +M2
14

)∫

B

εij εijdV+

(
M2

3

π2
3

+M2
7 +M2

15 +M2
16 +M2

17 + 1

)∫

B

γij γijdV+(3.15)

(
M2

4

π2
4

+M2
8 +M2

18 +M2
19 + 2

)∫

B

κijs κijsdV+

(
M2

5

π2
5

+M2
10 + 3

)∫

B

ωα ωαdV +

(
M2

1

π2
1

+M2
9 + 4

)∫

B

θ2dV,

where π1, π2, π3, π4 and π5 are arbitrary positive constants. Also, in the inequality
(3.15) we have used the notations

M2
1 = max (Di Di) (xs) , M

2
2 = max (Bijk Bijk) (xs) ,

M2
3 = max (Dijk Dijk) (xs) , M

2
4 = max (Fijkm Fijkm) (xs) ,

M2
5 = max (Piα Piα) (xs) , M

2
6 = max (Bij Bij) (xs) ,

M2
7 = max (Dij Dij) (xs) , M

2
8 = max (Fijk Fijk) (xs) ,

M2
9 = 2 max |M (xs)| , M2

10 = max (Lα Lα) (xs) ,(3.16)

M2
11 = 2 max [(CijmnCijmn) (xs)]

1/2 , M2
12 = max (Dijmn Dijmn) (xs) ,

M2
13 = max (Dijmnr Dijmnr) (xs) , M

2
14 = max (Bijα Bijα) (xs) ,

M2
15 = 2 max [(BijmnBijmn) (xs)]

1/2 ,M2
16 = max (Fijmnr Fijmnr) (xs) ,

M2
17 = max (Dijα Dijα) (xs) , M

2
18 = 2 max [(AijkmnrAijkmnr) (xs)]

1/2 ,

M2
19 = max (Fijkα Fijkα) (xs) .
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We choose the arbitrary constants π1, π2, π3, π4 and π5 so that the quantity m1 defined
by

m1 = µ− 1

2

(
π2
1 + π2

2 + π2
3 + π2

4 + π2
5

)

is strictly positive. Next, if we choose the constant m2 as follows

m2 =
1

2
max

{
M2

2

π2
2

+M2
6 +M2

11 +M2
12 +M2

13 +M2
14,

M2
3

π2
3

+M2
7 +M2

15 +M2
16 +M2

17 + 1,

M2
4

π2
4

+M2
8 +M2

18 +M2
19 + 2,

M2
5

π2
5

+M2
10 + 3,

M2
1

π2
1

+M2
9 + 4

}

then we arrive to the estimate (21) and this conclude the proof of Theorem 3.2. �

3.3. Theorem. Let (ui, ϕij , θ, ωα) be a solution of the problem P0 and suppose that
the assumptions (i) - (v) are satisfied. Then there exists a positive constant m3 such that
we have the following inequality

∫

B

(
u̇i u̇i + ϕ̇ij ϕ̇ij + εij εij + γijγij + κijkκijk + θ2 + ωαωα

)
dV ≤

m3

∫ t

0

∫

B

(
u̇i u̇i + ϕ̇ij ϕ̇ij + εij εij + γijγij + κijkκijk + θ2 + ωαωα

)
dV ds(3.17)

for any t ∈ [0, t0].

Proof. First, taking into account the hypotheses (i) - (v), we have

m0

∫

B

(
u̇i u̇i + ϕ̇ij ϕ̇ij + εij εij + γijγij + κijsκijs + θ2

)
dV ≤

∫

B

(Cijmnεijεmn +Bijmnγijγmn +Aijsmnrκijsκmnr+(3.18)

a θ2 + % u̇i u̇i + Ikr ϕ̇jr ϕ̇jk
)
dV,

where we have used the notation

m0 = min {%, a, λ1, λ2, λ3, λ4}
Next, we use the Schwarz’s inequality and the arithmetic - geometric mean inequality

(3.14) to the left side of the relation (3.18). So, we are lead to the inequality

m0

∫

B

(
u̇i u̇i + ϕ̇ij ϕ̇ij + εij εij + γijγij + κijsκijs + θ2

)
dV ≤

≤
(
π2
6 +N2

4 +N2
5

) ∫

B

εijεijdV +
(
π2
7 +N2

6 + 2
) ∫

B

γijγijdV+

+
(
π2
8 + 3

) ∫

B

κijsκijsdV +

(
N2

1

π2
6

+
N2

2

π2
7

+
N2

3

π2
8

)∫

B

ωαωαdV−(3.19)

+m2

∫ t

0

∫

B

(
εij εij + γijγij + κijsκijs + θ2 + ωαωα

)
dV ds

−m1

∫ t

0

∫

B

θ, iθ, idV ds
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where t ∈ [0, t0].
In this inequality we have used the notations

N2
1 = max (Bijα Bijα) (xs) , N

2
2 = max (Dijα Dijα) (xs) ,

N2
3 = max (Fijkα Fijkα) (xs) , N

2
4 = max (Gmnij Gmnij) (xs) ,(3.20)

N2
5 = max (Fmnrij Fmnrij) (xs) , N

2
6 = max (Dijmnr Dijmnr) (xs) ,

where (xs) ∈ B.
On the other hand, by using the initial conditions (3.4) and the consitutive relation

(2.7), we arrive to the conclusion that:

∫

B

ωαωαdV =

∫ t

0

d

ds

(∫

B

ωαωαdV

)
ds = 2

∫ t

0

(∫

B

ωαω̇αdV

)
ds =

= 2

∫ t

0

∫

B

(gijαεijωα + hijαγijωα + lijsακijsωα+(3.21)

+pαθωα + qαβωαωβ + riωαθ, i) dV ds

Now, by using, again, the Schwarz’s inequality and the arithmetic - geometric mean
inequality (3.14) to the right side of the relation (3.21). So, we deduce that for an
arbitrary positive constant π9 the following inequality hold:

∫

B

ωα ωα dV ≤ π2
9

∫ t

0

∫

B

θ, i θ, i dV ds+

+

(
Q2

1

π2
9

+Q2
5 +Q2

6 + 3

)∫ t

0

∫

B

ωα ωα dV ds+(3.22)

+Q2
2

∫ t

0

∫

B

εij εij dV ds+Q2
3

∫ t

0

∫

B

γij γij dV ds+

+Q2
4

∫ t

0

∫

B

κijs κijs dV ds+

∫ t

0

∫

B

θ2dV ds

where t ∈ [0, t0].
In this inequality we have used the notations

Q2
1 = max (riα riα) (xs) , Q

2
2 = max (gijα gijα) (xs) ,

Q2
3 = max (hijα hijα) (xs) , Q

2
4 = max (lijkα lijkα) (xs) ,(3.23)

Q2
5 = max (pα pα) (xs) , Q

2
6 = max [(qiα qiα) (xs)]

1/2 ,

where (xs) ∈ B.
If we denote by m4 the quantity

m4 = max

{
Q2

1

π2
9

+Q2
5 +Q2

6 + 3, Q2
2, Q

2
3, Q

2
4, 1

}
,

then, from (3.21) we obtain the following inequality

∫

B

ωα ωα dV ≤ π2
9π

2
10

∫ t

0

∫

B

θ, i θ, i dV ds+

+m4π
2
10

∫ t

0

∫

B

(
εijεij + γijγij + κijsκijs + θ2 + ωα ωα

)
dV ds(3.24)
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which is satisfied for an arbitrary positive constant π10.
From (3.19) and (3.24) we obtain

m0

∫

B

(
u̇iu̇i + ϕ̇ijϕ̇ij + θ2

)
dV +

[
m0 −

(
π2
6 +N2

4 +N2
5

)] ∫

B

εij εij dV+

+
(
m0 − π2

7 −N2
6 − 2

) ∫

B

γij γij dV +
(
m0 − π2

8 − 3
) ∫

B

κijs κijs dV+(3.25)

+

(
π2
10−

N2
1

π2
6

−N
2
2

π2
7

−N
2
3

π2
8

)∫

B

ωαωαdV ≤
(
m1−π2

9−π2
10

) ∫ t

0

∫

B

θ, iθ, idV ds+

+
(
m2 +m4π

2
10

)∫ t

0

∫

B

(
εijεij + γijγij + κijsκijs + θ2 + ωα ωα

)
dV ds

We choose the arbitrary constants π6, π7, π8, π9 and π10 so that

m5 ≡ m0 − π2
6 −N2

4 −N2
5 > 0, m6 ≡ m0 − π2

7 −N2
6 − 2 > 0,

m7 ≡ m0 − π2
8 − 3 > 0, m8 ≡ π2

10 −
N2

1

π2
6

− N2
2

π2
7

− N2
3

π2
8

> 0,

m9 ≡ m1 − π2
9 π

2
10 > 0,

and thus we are lead to

(
m2 +m4π

2
10

)∫ t

0

∫

B

(
εijεij + γijγij + κijsκijs + θ2 + ωα ωα

)
dV ds ≥

≥ m0

∫

B

(
u̇iu̇i + ϕ̇ijϕ̇ij + θ2

)
dV +m5

∫

B

εijεijdV +m6

∫

B

γijγijdV+

+m7

∫

B

κijsκijsdV +m8

∫

B

ωα ωαdV +m9

∫

B

θ, iθ, idV dV ≥(3.26)

≥ m10

∫

B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εijεij + γijγij + κijsκijs + θ2 + ωα ωα

)
dV,

where the signification of the constant m10 is

m10 = min {m0, m5, m6, m7, m8} .
It is easy to observe that

∫ t

0

∫

B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εij εij + γij γij + κijs κijs + θ2 + ωα ωα

)
dV ds ≥

≥
∫ t

0

∫

B

(
εij εij + γij γij + κijs κijs + θ2 + ωα ωα

)
dV ds(3.27)

Finally, if we choose

m3 =

(
m2 +m4π

2
10

)

m10

then from (3.26) and (3.27) we arrive at the desired result (3.17) and Theorem 3.3 is
proved. �

Theorem 3.1, Theorem 3.2 and Theorem 3.3 form the basis of the main result of this
study: the uniqueness of mixed initial-boundary value problem for thermoelastic dipolar
body with internal state variables.

3.4. Theorem. Assume that the hypotheses (i) - (v) hold. Then there exists at most
one solution of the problem defined by the equations (2.1), (2.2) and (2.6) with the initial
conditions (2.9) and the boundary conditions (2.10).
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Proof. Suppose that the mixed problem has two solutions. Then the difference of these
solutions is solution for the above mentioned problem P0. For our aim it is suffice to
show that the function y(t) defined by

y(t) =

∫

B

(
u̇iu̇i + ϕ̇ijϕ̇ij + εijεij + γijγij + κijrκijr + θ2 + ωαωα

)
dV

vanishes on [0, t0].
If we assume the contrary, i.e. y(t) 6= 0, this is absurdum because the inequality (3.17)

and Gronwall’s inequality imply that y(t) ≡ 0 on [0, t0] and Theorem 3.4 is concluded. �

Conclusion. The existence of internal state variables do not affect the uniqueness of
solution of the mixed problem for dipolar thermoelastic materials.
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Abstract

In this paper, we study solutions of the 2-variable mixed additive and
cubic functional equation

f(2x+ y, 2z + t) + f(2x− y, 2z − t) = 2f(x+ y, z + t)

+ 2f(x− y, z − t) + 2f(2x, 2z)− 4f(x, z),

which has the cubic form f(x, y) = ax3 + bx2y + cxy2 + dy3 as a so-
lution. Also the Hyers–Ulam–Rassias stability of this equation in the
non-Archimedean Banach spaces is investigated.

Keywords: Hyers–Ulam–Rassias stability, Cubic functional equation, Non–Archimedean
normed space, Derivation.
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1. Introduction and preliminaries

The study of stability problems for functional equations is related to a question of
Ulam [26] concerning the stability of group homomorphisms, affirmatively answered for
Banach spaces by Hyers [8]. Subsequently, the result of Hyers was generalized by Aoki
[1], Bourgin [5] and Rassias [24].
During the last decades several stability problems for various functional equations have
been investigated by numerous mathematicians. We refer the reader to the survey articles
[7, 9, 23] and monographs [6, 10, 13, 22] and references therein.
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Let X and Y be real vector spaces. For a mapping f : X × X → Y , consider the
following 2-variable mixed additive and cubic functional equation:

(1.1)
f(2x+ y, 2z + t) + f(2x− y, 2z − t) = 2f(x+ y, z + t) + 2f(x− y, z − t)

+ 2f(2x, 2z)− 4f(x, z)

One can see that the cubic form f(x, y) = ax3 + bx2y+ cxy2 + dy3 is a solution of (1.1),
when X = Y = R.

The one variable cubic equation

(1.2) f(2x+ y) + f(2x− y) = 2f(x+ y) + 2f(x− y) + 2f(2x)− 4f(x)

is considered in [17] and the general solutions of this equation and its Hyers–Ulam–Rassias
stability in quasi-Banach spaces is studied.

Several-variable functional equations and their stability have been studied in many
papers (see, for example, [3, 4], [12, 11], [14], [18, 19], [20, 21], [25]).

In this paper first we study solutions of (1.1) and its relations with (1.2) and then the
Hyers–Ulam–Rassias stability of (1.1) in non-Archimedean Banach spaces is investigated.

By a non-Archimedean field we mean a field K equipped with a function (valuation)
| · | from K into [0,∞) such that |r| = 0 if and only if r = 0, |rs| = |r| |s|, and |r + s| ≤
max{|r|, |s|} for all r, s ∈ K. Clearly |1| = | − 1| = 1 and |n| ≤ 1 for all n ∈ N. By the
trivial valuation we mean the mapping | · | taking everything but 0 into 1 and |0| = 0. Let
X be a vector space over a field K with a non-Archimedean non-trivial valuation | · |. A
function ‖ · ‖ : X → [0,∞) is called a non-Archimedean norm if it satisfies the following
conditions:

(i) ‖x‖ = 0 if and only if x = 0;
(ii) for any r ∈ K, x ∈ X, ‖rx‖ = |r|‖x‖;
(iii) the strong triangle inequality (ultrametric); namely,

‖x+ y‖ ≤ max{‖x‖, ‖y‖} (x, y ∈ X).

Then (X, ‖ · ‖) is called a non-Archimedean normed space. Due to the fact that

‖xn − xm‖ ≤ max{‖xj+1 − xj‖ : m ≤ j ≤ n− 1} (n > m),

a sequence {xn} is Cauchy if and only if {xn+1 − xn} converges to zero in a non-
Archimedean normed space. By a complete non-Archimedean normed space we mean
one in which every Cauchy sequence is convergent.

The stability problem in non-Archimedean normed spaces has been studied by many
authors. In [2], the stability of approximate additive mappings f : Qp → R is investigated.
In [15, 16], the authors investigated the stability of Cauchy, quadratic and cubic functional
equations, in the context of non-Archimedean normed spaces.

We need the following lemmas from [17] for our stability results.

1.1. Lemma. If a mapping f : X → Y with f(0) = 0 satisfies (1.2), then the mapping
g : X → Y defined by g(x) = f(2x)− 8f(x) is additive.

1.2. Lemma. If a mapping f : X → Y with f(0) = 0 satisfies (1.2), then the mapping
h : X → Y defined by h(x) = f(2x)− 2f(x) is cubic.

2. Relations between (1.2) and (1.1)

In this section we show that equations (1.2) and (1.1) are closely related and so by
knowing the solutions of (1.2), we may find solutions of (1.1). Next some useful examples
are considered.
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2.1. Theorem. Suppose f : X ×X → Y is a mapping satisfying (1.1), then g : X → Y
defined by g(x) := f(x, x) satisfies (1.2).

Proof. From (1.1) and definition of g,

g(2x+ y) + g(2x− y) = f(2x+ y, 2x+ y) + f(2x− y, 2x− y)

= 2f(x+ y, x+ y) + 2f(x− y, x− y) + 2f(2x, 2x)− 4f(x, x)

= 2g(x+ y) + 2g(x− y) + 2g(2x)− 4g(x).

�

2.2. Theorem. Let a, b, c, d ∈ R and g : X → Y be a mapping satisfying (1.2). If
f : X ×X → Y is defined by

(2.1) f(x, y) = (a− c

3
)g(x) + (

c+ b

6
)g(x+ y) + (

c− b
6

)g(x− y) + (d− b

3
)g(y),

then f satisfies (1.1). Furthermore if f(0, 0) = 0, a + d = 1 and c = −b, then g(x) =
f(x, x).

Proof. We have

f(2x+ y, 2z + t) + f(2x− y, 2z − t) = (a− c

3
)g(2x+ y) + (

c+ b

6
)g(2x+ y + 2z + t)

+ (
c− b

6
)g(2x+ y − (2z + t)) + (d− b

3
)g(2z + t)

+ (a− c

3
)g(2x− y) + (

c+ b

6
)g(2x− y + 2z − t)

+ (
c− b

6
)g(2x− y − (2z − t)) + (d− b

3
)g(2z − t)

= (a− c

3
)
[
g(2x+ y) + g(2x− y)

]

+ (
c+ b

6
)
[
g(2x+ 2zy + t) + g(2x+ 2z − (y + t))

]

+ (
c− b

6
)
[
g(2x− 2z + y − t) + g(2x− 2z − (y − t))

]

+ (d− b

3
)
[
g(2z + t) + g(2z − t)

]
.(2.2)

On the other hand

2f(x+ y, z + t) + 2f(x− y, z − t) + 2f(2x, 2z)− 4f(x, z)

= (a− c

3
)
[
2g(x+ y) + 2g(x− y) + 2g(2x)− 4g(x)

]

+ (
c+ b

6
)
[
2g(x+ y + z + t) + 2g(x+ z − (y + t)) + 2g(2x+ 2z)− 4g(x+ z)

]

+ (
c− b

6
)
[
2g(x− z + y − t) + 2g(x− z − (y − t)) + 2g(2x− 2z)− 4g(x− z)

]

+ (d− b

3
)
[
2g(z + t) + 2g(z − t) + 2g(2z)− 4g(z)

]

= (a− c

3
)
[
g(2x+ y) + g(2x− y)

]

+ (
c+ b

6
)
[
g(2x+ 2zy + t) + g(2x+ 2z − (y + t))

]

+ (
c− b

6
)
[
g(2x− 2z + y − t) + g(2x− 2z − (y − t))

]

+ (d− b

3
)
[
g(2z + t) + g(2z − t)

]
.(2.3)
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Thus (2.2) and (2.3) imply that f satisfies (1.1). �

For the following example, we recall that a mapping D from an algebra X into itself
is called derivation if, for any x, y ∈ X, D(xy) = D(x)y + xD(y).

2.3. Example. Let X be a real algebra and let D1 be a derivation on X. Suppose
D2 : X → X satisfies

D2(xy) = D2(x)y +D1(x)D1(y) + xD2(y).

Now define f : X ×X → X by f(x, y) = D2(xy), then f satisfies (1.1). Also g : X → X
defined by g(x) = D2(x2) satisfies (1.2).

2.4. Example. Let Mn be the algebra of n × n-real matrices. Define the mapping
g : Mn → Mn by g(A) = A3, A ∈ Mn, then one can easily see that g satisfies (1.2). For
a, b, c, d ∈ R, set

f(A,B) = aA3 +
2b

3
A2oB +

2c

3
AoB2 +

b

3
ABA+

b

3
BAB + dBAB,

where AoB is the Jordan product 1
2
(AB + BA) of A and B, for any A,B ∈ Mn. Then

f satisfies (2.1). So by Theorem 2.2, f satisfies (1.1).

3. Stability of Eq. (1.2)

Throughout this section, assume that X is a vector space and that Y is a non-
Archimedean Banach space. In this section, we study some stability results from [17]
in non-Archimedean Banach spaces. Indeed, we consider the stability of functional equa-
tion (1.1), and the fact the X ×X with the point-wise operations is also a vector space
implies a similar stability result for (1.2). For convenience, we use the following abbrevi-
ation for a given mapping f : X → Y ,

Df(x, y) := f(2x+ y) + f(2x− y)− 2f(x+ y)− 2f(x− y)− 2f(2x) + 4f(x)

for all x, y ∈ X.

3.1. Theorem. Let ϕa : X ×X → [0,∞) be a mapping such that

lim
n→∞

1

|2|nϕa(2nx, 2ny) = 0(3.1)

Ma(x, y) := lim
n→∞

max{ 1

|2|iϕa(2ix, 2iy) : 0 ≤ i < n} <∞(3.2)

lim
t→∞

lim
n→∞

max{ 1

|2|iϕa(2ix, 2iy) : t ≤ i < t+ n} = 0(3.3)

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

(3.4) ‖Df(x, y)‖Y ≤ ϕa(x, y)

for all x, y ∈ X. Then the limit

A(x) = lim
n→∞

1

2n
[f(2n+1x)− 8f(2nx)]

exists, for all x ∈ X, and the mapping A : X → Y is the unique additive mapping
satisfying

(3.5) ‖f(2x)− 8f(x)−A(x)‖Y ≤ 1

|2| ϕ̃a(x),

for all x ∈ X, where

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}

30



On a functional equation originating from a mixed...

Proof. Letting x = 0 in (3.4), we get

(3.6) ‖f(y) + f(−y)‖Y ≤ ϕa(0, y)

for all y ∈ X. Replacing y by x and 2x in (3.4), respectively, we get the following
inequalities

‖f(3x)− 4f(2x) + 5f(x)‖Y ≤ ϕa(x, x)(3.7)

‖f(4x)− 2f(3x)− 2f(2x)− 2f(−x) + 4f(x)‖Y ≤ ϕa(x, 2x)(3.8)

for all x ∈ X. It follows from (3.6)-(3.8) that for any x ∈ X,

(3.9) ‖f(4x)− 10f(2x) + 16f(x)‖Y ≤ max{|2|ϕa(x, x), |2|ϕa(0, x), ϕa(x, 2x)}.

Let g : X → Y be a mapping defined by g(x) := f(2x)− 8f(x) and let

ψa(x) := max{|2|ϕa(x, x), |2|ϕa(0, x), ϕa(x, 2x)},

for all x ∈ X. Therefore (3.9) means

(3.10) ‖g(2x)− 2g(x)‖Y ≤ ψa(x),

for all x ∈ X. By relations (3.1)-(3.3) we infer that for all x ∈ X,

(3.11) max{ψa(2ix)

|2|i : 0 ≤ i < n} <∞, lim
n→∞

1

|2|nψa(2nx) = 0.

Replacing x by 2nx in (3.10) and dividing both sides (3.10) by |2|n+1 we get

(3.12) ‖ 1

2n+1
g(2n+1x)− 1

2n
g(2nx)‖Y ≤ 1

|2|n+1
ψa(2nx)

for all x ∈ X and all non-negative integer n, and so for any x ∈ X and every non-negative
integers n and m with n ≥ m,

(3.13) ‖ 1

2n
g(2nx)− 1

2m
g(2mx)‖Y ≤ 1

|2| max{ψa(2ix)

|2|i : m ≤ i < n}.

Therefore we conclude from (3.11) and (3.12) that the sequence { 1
2n
g(2nx)} is a Cauchy

sequence in Y , for all x ∈ X. The sequence { 1
2n
g(2nx)} converges in Y for any x ∈ X,

since Y is complete. So one can define the mapping A : X → Y by

(3.14) A(x) := lim
n→∞

1

2n
g(2nx)

for all x ∈ X. Letting m = 0 and passing to the limit when n → ∞ in (3.13), we get
(3.5). Now we show that A is an additive mapping. It follows from (3.11), (3.12) and
(3.14) that

‖A(2x)− 2A(x)‖Y = lim
n→∞

‖ 1

2n
g(2n+1x)− 1

2n−1
g(2nx)‖Y

= |2| lim
n→∞

‖ 1

2n+1
g(2n+1x)− 1

2n
g(2nx)‖Y

≤ lim
n→∞

1

|2|nψa(2nx),

for all x ∈ X. So

(3.15) A(2x) = 2A(x)
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for all x ∈ X. On the other hand it follows from (3.1), (3.4) and (3.14) that

‖DA(x, y)‖Y = lim
n→∞

1

|2|n ‖Dg(2nx, 2ny)‖Y

= lim
n→∞

1

|2|n {‖Df(2n+1x, 2n+1y)− 8Df(2nx, 2ny)‖Y }

≤ lim
n→∞

1

|2|n max{‖Df(2n+1x, 2n+1y)‖Y , |8|‖Df(2nx, 2ny)‖Y }

≤ lim
n→∞

1

|2|n max{ϕa(2n+1x, 2n+1y), |8|ϕa(2nx, 2ny)} = 0,

for all x, y ∈ X. Hence the mapping A satisfies (1.2). So by Lemma 1.1, the mapping
x 7→ A(2x) − 8A(x) is additive. Therefore (3.15) implies that A is additive. To prove
the uniqueness of A, let T : X → Y be another additive mapping satisfying (3.5). So it
follows from (3.5), (3.14) and (3.3) that

lim
t→∞

1

|2|t ϕ̃a(2tx) = lim
t→∞

max{|2|Ma(2tx, 2tx)

|2|t , |2|Ma(0, 2tx)

|2|t ,
Ma(2tx, 2t2x)

|2|t }

= lim
t→∞

max{ lim
n→∞

max{|2|ϕa(2i+tx, 2i+tx)

|2|t+i) : 0 ≤ i < n},

lim
n→∞

max{|2|ϕa(0, 2i+tx)

|2|t+i 0 ≤ i < n},

lim
n→∞

max{ϕa(2i+tx, 2i+t+1x)

|2|t+i) : 0 ≤ i < n}}

= lim
t→∞

lim
n→∞

{|2|ϕa(2ix, 2ix)

|2|i , |2|ϕa(0, 2ix)

|2|i ,
ϕa(2ix, 2i+1x)

|2|i : t ≤ i < t+ n}

= 0.

Hence it follows

‖A(x)− T (x)‖Y = lim
t→∞

1

|2|t ‖g(2tx)− T (2tx)‖Y

≤ 1

|2| lim
t→∞

1

|2|t ϕ̃a(2tx) = 0,

for all x ∈ X. So A = T �

3.2. Theorem. Let ϕa : X ×X → [0,∞) be a mapping such that

lim
n→∞

|2|nϕa(
x

2n
,
y

2n
) = 0,

Ma(x, y) = lim
n→∞

max{|2|iϕa(
x

2i
,
y

2i
) : 1 ≤ i < n} <∞,(3.16)

lim
t→∞

lim
n→∞

max{|2|iϕa(
x

2i
,
y

2i
) : t+ 1 ≤ i < t+ n} = 0,(3.17)

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕa(x, y),

for all x, y ∈ X. Then the limit

A(x) = lim
n→∞

2n[f(
x

2n−1
)− 8f(

x

2n
)]

exists for all x ∈ X and the mapping A : X → Y is the unique additive mapping satisfying

(3.18) ‖f(2x)− 8f(x)−A(x)‖Y ≤ 1

|2| ϕ̃a(x),
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for all x ∈ X, where

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}.

Proof. Let g : X → Y be a mapping defined by g(x) := f(2x)− 8f(x) and let

ψa(x) := max{|2|ϕa(x, x), |2|ϕa(0, x), ϕa(x, 2x)},
for all x ∈ X. Similar to the proof of Theorem 3.1, we have

(3.19) ‖g(2x)− 2g(x)‖Y ≤ ψa(x),

for all x ∈ X. From our assumptions, we infer that

(3.20) lim
n→∞

|2|nψa(
x

2n
) = 0, lim

n→∞
max{|2|iψa(

x

2i
) : 1 ≤ i < n} <∞,

for all x ∈ X. Replacing x by x
2n+1 in (3.19) and multiplying both sides of (3.19) by |2|n,

we get

(3.21) ‖2n+1g(
x

2n+1
)− 2ng(

x

2n
)‖y ≤ |2|nψa(

x

2n+1
),

for all x ∈ X and all non-negative integer n. So we have

(3.22) ‖2ng(
x

2n
− 2mg(

x

2m
‖Y ≤ 1

|2| max{|2|(i+1)ψa(
x

2i+1
) : m ≤ i < n},

for all x ∈ X and all non-negative integers n and m with n ≥ m. Therefore we conclude
from (3.20) and (3.21) that the sequence {2ng( x

2n
} is a Cauchy sequence in Y , for all

x ∈ X and so converges in Y , for all x ∈ X, since Y is complete. Thus one can define
the mapping A : X → Y by

A(x) := lim
n→∞

2ng(
x

2n
),

for all x ∈ X. Letting m = 0 and passing to the limit when n → ∞ in (3.22) we get
(3.18). The rest of the proof is similar to the proof of Theorem 3.1. �

3.3. Corollary. Let θ, r, s be non-negative real numbers such that r, s > 1 or 0 ≤ r, s < 1
and |2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality

‖Df(x, y)‖Y ≤ ϕa(x, y) :=





θ, r = s = 0
θ‖x‖rX , r > 0, s = 0
θ‖y‖sX , r = 0, s > 0
θ(‖x‖rX + ‖y‖sX), r, s > 0

for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y satisfying

‖f(2x)− 8f(x)−A(x)‖Y ≤

θ

|2|





1, r = s = 0
‖x‖rX , r > 0, s = 0
|2|‖x‖sX , r = 0, s > 0
max{|2|(‖x‖rX + ‖x‖sX), (‖x‖rX + ‖2x‖sX)}, r, s > 0

for all x ∈ X where r, s > 1 and satisfying

‖f(2x)− 8f(x)−A(x)‖Y ≤ θ

|2|





|2|, r = s = 0
|2|‖x‖rX
|2|r , r > 0, s = 0
|4|‖x‖sX
|2|s , r = 0, s > 0

|2|( ‖x‖
r
X

|2|r + ‖x‖sX), r, s > 0

for all x ∈ X where r, s < 1.
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Proof. The result follows by Theorem 3.1 when 0 < r, s < 1, and by Theorem 3.2 when
r, s > 1. �

The following corollary also can be deduced from Theorems 3.1 and 3.2.

3.4. Corollary. Let θ ≥ 0 and r, s > 0 be non-negative real numbers such that λ :=
r + s 6= 1. Suppose that the function f : X → Y with f(0) = 0 satisfies the inequality

(3.23) ‖Df(x, y)‖Y ≤ ϕa(x, y) := θ‖x‖rX‖y‖sY
for all x, y ∈ X. Then there exists a unique additive mapping A : X → Y satisfying the
inequality

‖f(2x)− 8f(x)−A(x)‖Y ≤ Wθ

|2| ‖x‖
r
X‖y‖sY

for all x, y ∈ X when λ > 1 with W = max{|2|, |2|s}, and satisfying

‖f(2x)− 8f(x)−A(x)‖Y ≤ |2|θ|2|λ ‖x‖
r
X‖y‖sY

for all x, y ∈ X when λ < 1.

3.5. Theorem. Let ϕc : X ×X → [0,∞) be a mapping such that

lim
n→∞

1

|8|nϕc(2
nx, 2ny) = 0(3.24)

Mc(x, y) = lim
n→∞

max{ 1

|8|iϕc(2
ix, 2iy) : 0 ≤ i < n} <∞(3.25)

lim
t→∞

lim
n→∞

max{ 1

|8|iϕc(2
ix, 2iy) : t ≤ i < t+ n} = 0(3.26)

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

(3.27) ‖Df(x, y)‖Y ≤ ϕc(x, y)

for all x, y ∈ X. Then the limit

C(x) := lim
n→∞

1

8n
[f(2n+1x)− 2f(2nx)]

exists, for all x ∈ X, and the mapping C : X → Y is the unique cubic mapping satisfying

(3.28) ‖f(2x)− 2f(x)− C(x)‖Y ≤ 1

|8| ϕ̃c(x)

for all x ∈ X, where

ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x),Mc(x, 2x)}.

Proof. Similar to the proof of Theorem 3.1 we have

(3.29) ‖f(4x)− 10f(2x) + 16f(x)‖Y ≤ ψc(x),

for all x ∈ X, where ψc(x) := max{|2|ϕa(x, x), |2|ϕa(0, x), ϕa(x, 2x)}. Let h : X → Y be
a mapping defined by h(x) := f(2x)− 2f(x) for all x ∈ X. Therefore (3.29) means that

(3.30) ‖h(2x)− 8h(x)‖Y ≤ ψc(x)

for all x ∈ X. By the relations (3.24) and (3.25), we infer that

(3.31) lim
n→∞

max{ψc(2
ix)

|8|i : 0 ≤ i < n} <∞, lim
n→∞

1

|8|nψc(2
nx) = 0
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for all x ∈ X. Replacing x by 2nx in (3.30) and dividing both sides of (3.30) by |8|n+1

we get

(3.32) ‖ 1

8n+1
h(2n+1x)− 1

8n
h(2nx)‖Y ≤ 1

|8|n+1
ψc(2

nx),

for all x ∈ X and all non-negative integer n. So we have

(3.33) ‖ 1

8n
h(2nx)− 1

8m
h(2mx)‖Y ≤ 1

|8| max{ψc(2
ix)

|8|i m ≤ i < n},

for all x ∈ X and all non-negative integers n and m with n ≥ m. Therefore we conclude
from (3.31) and (3.32) that the sequence { 1

8n
h(2nx)} is a Cauchy sequence in Y for all

x ∈ X. The sequence { 1
8n
h(2nx)} converges in Y , for all x ∈ X, since Y is complete. So

one can define the mapping C : X → Y by

(3.34) C(x) := lim
n→∞

1

8n
h(2nx),

for all x ∈ X. Letting m = 0 and passing to the limit when n → ∞ in (3.33), we get
(3.28). Now we show that C is a cubic mapping. It follows from (3.31), (3.32) and (3.34)
that

‖C(2x)− 8C(x)‖Y = lim
n→∞

‖ 1

8n
h(2n+1x)− 1

8n−1
h(2nx)‖Y

≤ lim
n→∞

1

|8|nψc(2
nx) = 0,

for all x ∈ X. So

(3.35) C(2x) = 8C(x),

for all x ∈ X. On the other hand it follows from (3.24), (3.27) and (3.34) that

‖DC(x, y)‖Y = lim
n→∞

1

|8|n ‖Dh(2nx, 2ny)‖Y

= lim
n→∞

1

|8|n {‖Df(2n+1x, 2n+1y)− 2Df(2nx, 2ny)‖Y }

≤ lim
n→∞

1

|8|n max{‖Df(2n+1x, 2n+1y)‖Y , |2|‖Df(2nx, 2ny)‖Y }

≤ lim
n→∞

1

|8|n max{ϕc(2n+1x, 2n+1y), |2|ϕc(2nx, 2ny)} = 0

for all x, y ∈ X. Hence the mapping C satisfies (1.2). So by Lemma (1.2), the mapping
x 7→ C(2x)− 2C(x) is cubic. Therefore (3.35) implies that C is cubic.

To prove the uniqueness of C, let T : X → Y be another cubic mapping satisfying

(3.28). So it follows from (3.26) that limt→∞
ϕ̃c(2

tx)
|8|t = 0, for all x, y ∈ X and x ∈

{0, y, y
2
}. So by relations (3.28) and (3.24)

‖C(x)− T (x)‖Y = lim
n→∞

1

|8|n ‖h(2nx)− T (2nx)‖Y ≤ 1

|8| lim
n→∞

1

|8|n ϕ̃c(2
nx) = 0,

for all x ∈ X. So C = T . �

3.6. Theorem. Let ϕc : X ×X → [0,∞) be a mapping such that

lim
n→∞

|8|nϕc( x
2n
,
y

2n
) = 0(3.36)

Mc(x, y) = lim
n→∞

max{|8|iϕc( x
2i
,
y

2i
) : 1 ≤ i < n} <∞(3.37)

lim
t→∞

lim
n→∞

max{|8|iϕc( x
2i
,
y

2i
) : t+ 1 ≤ i < t+ n} = 0(3.38)

35



M. Janfada, T. L. Shateri, and R. Shourvarzi

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕc(x, y)

for all x, y ∈ X. Then the limit

C(x) = lim
n→∞

8n[f(
x

2n−1
)− 2f(

x

2n
)]

exists, for all x ∈ X, and the mapping C : X → Y is the unique cubic mapping satisfying

(3.39) ‖f(2x)− 2f(x)− C(x)‖Y ≤ 1

|8| ϕ̃c(x),

for all x ∈ X, where

ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x),Mc(x, 2x)}.

Proof. Let h : X → Y be a mapping defined by h(x) := f(2x)− 2f(x) and let

ψc(x) := max{|2|ϕa(x, x), |2|ϕc(0, x), ϕc(x, 2x)}
for any x ∈ X. Similar to the proof of Theorem 3.5, for every x ∈ X, we have

(3.40) ‖h(2x)− 8h(x)‖Y ≤ ψc(x).

From (3.36) and (3.37) we infer that

(3.41) lim
n→∞

|8|nψc( x
2n

) = 0, and lim
n→∞

max{|8|iψc( x
2i

) : 1 ≤ i < n} <∞,

for all x ∈ X. Replacing x by x
2n+1 in (3.40) and multiplying both sides of (3.40) by |8|n,

we get

(3.42) ‖8n+1h(
x

2n+1
)− 8nh(

x

2n
)‖y ≤ |8|nψc( x

2n+1
)

for any x ∈ X and all non-negative integer n. Thus we have

(3.43) ‖8nh(
x

2n
)− 8mh(

x

2m
)‖Y ≤ 1

|8| max{|8|i+1ψc(
x

2i+1
) : m ≤ i < n},

for all x ∈ X and all non-negative integers n and m with n ≥ m. Therefore we conclude
from (3.41) and (3.42) that the sequence {8nh( x

2n
} is a Cauchy sequence in Y for all

x ∈ X. Hence the sequence {8nh( x
2n
} converges in Y , for all x ∈ X, since Y is complete.

So one can define the mapping C : X → Y by

C(x) := lim
n→∞

8nh(
x

2n
)

for all x ∈ X. Letting m = 0 and passing to the limit when n → ∞ in (3.43) we get
(3.39). The rest of the proof is similar to the proof of Theorem 3.5. �

The following two corollaries follow from Theorems 3.5 and 3.6.

3.7. Corollary. Let θ, r, s be non-negative real numbers such that r, s > 3 or 0 ≤ r, s < 3
and |2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality of
Corollary 3.3, for all x, y ∈ X. Then there exists a unique cubic mapping C : X → Y
satisfying

‖f(2x)−2f(x)− C(x)‖Y

≤ θ

|8|





1, r = s = 0
‖x‖rX , r > 0, s = 0
|2|‖x‖sX , r = 0, s > 0
max{|2|(‖x‖rX + ‖x‖sX), (‖x‖rX + ‖2x‖sX), r, s > 0,
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for all x ∈ X when r, s > 3 and satisfying

‖f(2x)− 2f(x)− C(x)‖Y

≤ θ





1, r = s = 0
‖x‖rX
|2|r , r > 0, s = 0
‖x‖sX
|2|s max{|2|, |2|s}, r = 0, s > 0

max{|2|( ‖x‖
r
X

|2|r +
‖x‖sX
|2|s ), (

‖x‖rX
|2|r + ‖x‖sX), r, s > 0,

for all x ∈ X when r, s < 3.

3.8. Corollary. Let θ ≥ 0 and r, s > 0 be non-negative real numbers such that λ :=
r + s 6= 3 and |2| < 1. Suppose that the function f : X → Y with f(0) = 0 satisfies the
inequality (3.23), for all x, y ∈ X. Put W = max{|2|, |2|s}. Then there exists a unique
cubic mapping C : X → Y satisfying the inequality

‖f(2x)− 2f(x)− C(x)‖Y ≤ 1

|8|Wθ‖x‖rX‖x‖sY ,

for all x ∈ X, when λ > 3 and satisfying

‖f(2x)− 2f(x)− C(x)‖Y ≤ 1

|2|λWθ‖x‖rX‖x‖sY

for all x ∈ X, when λ < 3.

3.9. Theorem. Let ϕ : X ×X → [0,∞) be a mapping such that

lim
n→∞

1

|8|nϕ(2nx, 2ny) = 0

Mc(x, y) = lim
n→∞

max{ 1

|8|iϕ(2ix, 2iy) : 0 ≤ i < n} <∞

lim
t→∞

lim
n→∞

max{ 1

|8|iϕ(2ix, 2iy) : t ≤ i < t+ n} = 0

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕ(x, y), x, y ∈ X.
Then there exist a unique additive mapping A : X → Y and a unique cubic mapping
C : X → Y such that for every x ∈ X,

(3.44) ‖f(x)−A(x)− C(x)‖Y ≤ 1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}

where

Ma(x, y) := lim
n→∞

max{ 1

|2|iϕ(2ix, 2iy)0 ≤ i < n}

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}
ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x).Mc(x, 2x)}

Proof. By Theorems 3.1 and 3.5, there exist an additive mapping A0 : X → Y and a
cubic mapping C0 : X → Y such that

‖f(2x)− 8f(x)−A0(x)‖Y ≤ 1

|2| ϕ̃a(x), ‖f(2x)− 2f(x)− C0(x)‖Y ≤ 1

|8| ϕ̃c(x)

for all x ∈ X. This implies that for any x ∈ X,

‖f(x) +
1

6
A0(x)− 1

6
C0(x)‖Y ≤ 1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}.
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So we obtain (3.44), by letting A(x) = 1
6
A0(x) and C(x) = 1

6
C0(x), for all x ∈ X.

To prove the uniqueness of A and C, let A1, C1 : X → Y be other additive and cubic
mappings satisfying (3.44).

Put A′ = A−A1 and C′ = C − C1. So

‖A′(x) + C′(x)‖Y ≤ max{‖f(x)−A(x)− C(x)‖Y , ‖f(x)−A1(x)− C1(x)‖Y }

≤ 1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}(3.45)

for all x ∈ X. The fact that for every x ∈ X,

lim
n→∞

1

|8|n ϕ̃c(2
nx) = lim

n→∞
1

|2|n ϕ̃a(2nx) = 0,

and (3.45) imply that

lim
n→∞

1

|2|n ‖A
′(2nx) + C′(2nx)‖Y = 0,

for all x ∈ X. Therefore A′ = 0. So it follows from (3.45) that

‖C′(x)‖Y = lim
n→∞

‖C
′(2nx)

8n
‖Y ≤ lim

n→∞
1

|4| max{|4| ϕ̃a(x)

|8|n ,
ϕ̃c(x)

|8|n },

for all x ∈ X. Therefore C′ = 0. �

The next theorem is an alternative result of Theorem 3.9.

3.10. Theorem. Let ϕ : X ×X → [0,∞) be a mapping such that

lim
n→∞

|2|nϕ(
x

2n
,
y

2n
) = 0

Ma(x, y) := lim
n→∞

max{|2|iϕ(
x

2i
,
y

2i
) : 1 ≤ i < n} <∞

lim
t→∞

lim
n→∞

max{|2|iϕ(
x

2i
,
y

2i
) : t+ 1 ≤ i < t+ n} = 0,

for all y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕ(x, y),

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤ 1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}, x ∈ X,

where

Mc(x, y) := lim
n→∞

max{|8|iϕ(
x

2i
,
y

2i
) : 1 ≤ i < n},

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}
ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x),Mc(x, 2x)}

for all x ∈ X.

3.11. Corollary. Let r, s, θ be non-negative real numbers such that r, s > 3 or 0 ≤ r, s < 1
and |2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality
Corollary 3.3, for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y
and a unique cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤ 1

|48|γa1 for all x ∈ X when 0 ≤ r, s < 1
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and

‖f(x)−A(x)− C(x)‖Y ≤ 1

|48| max{γa2, γc} for all x ∈ X when r, s > 3,

where

γa1 =





|8|θ, r = s = 0
|8|θ‖x‖rX
|2|r , r > 0, s = 0

|8||2|sθ‖x‖sX
|2|s , r = 0, s > 0

|8|θ( ‖x‖
r
X

|2|r + ‖x‖sX), r, s > 0,

γa2 =





|4|θ, r = s = 0
|4|θ‖x‖rX , r > 0, s = 0
|8|θ‖x‖sX , r = 0, s > 0
|4|θmax{|2|(‖x‖rX + ‖x‖sX), (‖x‖rX + ‖2x‖sX), r, s > 0,

γc =





|8|θ, r = s = 0
|8|θ‖x‖rX
|2|r , r > 0, s = 0

|8|θ‖x‖sX
|2|s max{|2|s, |2|}, r = 0, s > 0

|8|θmax{|2|( ‖x‖
r
X

|2|r +
‖x‖sX
|2|s ), (

‖x‖rX
|2|r + ‖x‖sX)}, r, s > 0.

3.12. Corollary. Let θ ≥ 0 and r, s > 0 be real numbers such that λ := r + s ∈
(0, 1)

⋃
(3,+∞) and |2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies

the inequality (3.23) for all x, y ∈ X. Then there exist a unique additive mapping A :
X → Y and a unique cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤ 1

|48|Wθ‖x‖rX‖x‖sY for all x ∈ X and λ > 3,

where W = max{|2|, |2|s}

‖f(x)−A(x)− C(x)‖Y ≤ |2|s
|6||2|λ θ‖x‖

r
X‖x‖sY for all x ∈ X and 0 < λ < 1.

3.13. Theorem. Let ϕ : X ×X → [0,∞) be a mapping such that

lim
n→∞

1

|2|nϕ(2nx, 2ny) = 0,

Ma(x, y) := lim
n→∞

max{ 1

|2|iϕ(2ix, 2iy) : 0 ≤ i < n} <∞,

lim
t→∞

lim
n→∞

max{ 1

|2|iϕ(2ix, 2iy) : t ≤ i < t+ n} = 0,

for all y ∈ X and all x ∈ {0, y, y
2
}. Also suppose

lim
n→∞

|8|nϕ(
x

2n
,
y

2n
) = 0,

Mc(x, y) := lim
n→∞

max{|8|iϕ(
x

2i
,
y

2i
) : 1 ≤ i < n} <∞,

lim
t→∞

lim
n→∞

max{|8|iϕ(
x

2i
,
y

2i
) : t+ 1 ≤ i < t+ n} = 0,

for all x, y ∈ X and all x ∈ {0, y, y
2
}. Suppose that a mapping f : X → Y with f(0) = 0

satisfies the inequality

‖Df(x, y)‖Y ≤ ϕ(x, y)

39



M. Janfada, T. L. Shateri, and R. Shourvarzi

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤ 1

|48| max{|4|ϕ̃a(x), ϕ̃c(x)}

where

ϕ̃a(x) := max{|2|Ma(x, x), |2|Ma(0, x),Ma(x, 2x)}

ϕ̃c(x) := max{|2|Mc(x, x), |2|Mc(0, x),Mc(x, 2x)}
for all x ∈ X.

Proof. The proof is similar to the proof of Theorem 3.9. �

3.14. Corollary. Let θ, r, s be non-negative real numbers such that 1 < r, s < 3 and
|2| < 1. Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality
‖Df(x, y)‖Y ≤ θ(‖x‖rX + ‖y‖sX) for all x, y ∈ X. Then there exist a unique additive
mapping A : X → Y and a unique cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤ 1

|48| max{|4|γa(x), γc(x)} for all x ∈ X,

where

γa(x) = max{|2|θ(‖x‖rX + ‖x‖sX), θ(‖x‖rX + ‖2x‖sX)},

γc(x) = |8|θmax{|2|(‖x‖
r
X

|2|r +
‖x‖sX
|2|s ), (

‖x‖rX
|2|r + ‖x‖sX).

3.15. Corollary. Let θ, r, s be non-negative real numbers such that 1 < λ := r + s < 3.
Suppose that a function f : X → Y with f(0) = 0 satisfies the inequality

‖Df(x, y)‖Y ≤





θ‖x‖rX , r > 0, s = 0
θ‖y‖sX , r = 0, s > 0
θ‖x‖rX‖y‖sX , r, s > 0

for all x, y ∈ X. Then there exist a unique additive mapping A : X → Y and a unique
cubic mapping C : X → Y such that

‖f(x)−A(x)− C(x)‖Y ≤ 1

|48| max{|4|γa(x), γc(x)} for all x ∈ X

where,

γa(x) =





θ‖x‖rX , r > 0, s = 0
|2|θ‖x‖sX , r = 0, s > 0

θ‖x‖λX max{|2|, |2|s}, r, s > 0,

γc(x) =





|8|θ‖x‖rX
|2|r , r > 0, s = 0

|8|θ‖x‖sX
|2|s max{|2|, |2|s}, r = 0, s > 0

|8|θ‖x‖λX
|2|λ max{|2|, |2|s}, r, s > 0.

3.16. Remark. The hypothesis f(0) = 0 is not essential in the statement of the theo-
rems, since it is possible to deal with the auxiliary function g(x) := f(x)−f(0) for which
we have Dg(x, y) = Df(x, y).
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Abstract

The neutrix composition F (f(x))) of a distribution F (x) and a locally
summable function f(x) is said to exist and be equal to the distribution
h(x) if the neutrix limit of the sequence {Fn(f(x))} is equal to h(x),
where Fn(x) = F (x) ∗ δn(x) and {δn(x)} is a certain sequence of in-
finitely differentiable functions converging to the Dirac delta-function
δ(x). It is proved that the neutrix composition δ(s){[exp+(x) − 1]r}
exists and

δ(s){[exp+(x)− 1]r} =

rs+r−1∑

k=0

(−1)s+ks!crs+r−1,k

2rk!
δ(k)(x),

for r = 1, 2, . . . and s = 0, 1, 2, . . .. Further results are also proved.

Keywords: distribution, dirac-delta function, composition of distributions, neutrix,
neutrix limit.

2000 AMS Classification: 46F10.

1. Introduction

Certain operations on smooth functions (such as addition, and multiplication by
scalars) can be extended without difficulty to arbitrary distributions. Others (such as
multiplication, convolution, and change of variables) can be defined only for particular
distributions. Note that it is a difficult task to give a meaning to the expression F (f(x)),
if F and f are singular distributions.

The technique of neglecting appropriately defined infinite quantities was devised by
Hadamard and the resulting finite value extracted from the divergent integral is usually
referred to as the Hadamard finite part. In fact, Hadamard’s method can be regarded
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bSs. Cyril and Methodius University in Skopje Faculty of Electrical Engineering, Karpos II
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as a particular application of the neutrix calculus developed by van der Corput, see [1].
This is a very general principle for the discarding of unwanted infinite quantities from
asymptotic expansions and has been widely exploited in the context of distributions, by
Fisher in connection with the problem of compositions of distributions, see [2] or [3].

In the following, we let D be the space of infinitely differentiable functions ϕ with
compact support and let D[a, b] be the space of infinitely differentiable functions with
support contained in the interval [a, b]. We let D′ be the space of distributions defined
on D and let D′[a, b] be the space of distributions defined on D[a, b].

Now let ρ(x) be a function in D[−1, 1] having the following properties:
(i) ρ(x) = 0 for |x| ≥ 1,
(ii) ρ(x) ≥ 0,
(iii) ρ(x) = ρ(−x),

(iv)

∫ 1

−1

ρ(x) dx = 1.

Putting δn(x) = nρ(nx) for n = 1, 2, . . . , it follows that {δn(x)} is a regular sequence of
infinitely differentiable functions converging to the Dirac delta-function δ(x). Further,
if F is a distribution in D′ and Fn(x) = 〈F (x − t), δn(x)〉, then {Fn(x)} is a regular
sequence of infinitely differentiable functions converging to F (x).

There have been several attempts recently to define distributions of the form F (f(x))
in D′, where F and f are distributions in D′, see [6] and [4]. At the beginning, we look
at the following definition which is a generalization of Gel’fand and Shilov’s definition
of the composition involving the delta function, see [10]. This definition was given in [2]
by Fisher, it involves neutrix limit and was originally called the neutrix composition of
distributions.

1.1. Definition. Let F be a distribution in D′ and let f be a locally summable function.
We say that the neutrix composition F (f(x)) exists and is equal to h on the open interval
(a, b) if

N−lim
n→∞

∫ ∞

−∞
Fn(f(x))ϕ(x)dx = 〈h(x), ϕ(x)〉

for all ϕ in D[a, b], where Fn(x) = F (x) ∗ δn(x) for n = 1, 2, . . . and N is the neutrix,
see [1], having domain N ′ the positive integers and range N ′′ the real numbers, with
negligible functions which are finite linear sums of the functions

nλ lnr−1 n, lnr n : λ > 0, r = 1, 2, . . .

and all functions which converge to zero in the usual sense as n tends to infinity.

If f, g are two distributions then in the ordinary sense the composition f(g) does not
necessarily exist, but the neutrix composition can exist. Thus the definition of the neutrix
composition is an extension of the regular definition of compositions of distributions.
Some neutrix composition of distributions are considered in [9], [11] and [12].

Recently, Jack Ng and van Dam applied the neutrix calculus, in conjuction with the
Hadamard integral, developed by van der Corput, to quantum field theories, in particular,
to obtain finite results for the cofficients in the perturbation series. They also applied
neutrix calculus to quantum field theory, obtaining finite renormalization in the loop
calculations, see [13] and [14].

Now let f(x) be an infinitely differentiable function having a single simple root at the

point x = x0. Gel’fand and Shilov defined the distribution δ(r)(f(x)) by the equation

δ(r)(f(x)) =
1

|f ′(x0)|
[ 1

|f ′(x)|
d

dx

]r
δ(x− x0),
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for r = 0, 1, 2, . . . , see [10].

The following theorems were proved in [5], [6], [8] and [7] respectively.

1.2. Theorem. The neutrix composition δ(s)(sgnx|x|λ) exists and

δ(s)(sgnx|x|λ) = 0

for s = 0, 1, 2, . . . and (s+ 1)λ = 1, 3, . . . and

δ(s)(sgnx|x|λ) =
(−1)(s+1)(λ+1)s!

λ[(s+ 1)λ− 1]!
δ((s+1)λ−1)(x)

for s = 0, 1, 2, . . . and (s+ 1)λ = 2, 4, . . . .

1.3. Theorem. The compositions δ(2s−1)(sgnx|x|1/s) and δ(s−1)(|x|1/s) exist and

δ(2s−1)(sgnx|x|1/s) =
(2s)!

2
δ′(x),

δ(s−1)(|x|1/s) = (−1sδ(x)

for s = 1, 2, . . . .

1.4. Theorem. The neutrix composition δ(s)[lnr(1 + |x|)] exists and

δ(s)[lnr(1 + |x|)] =

sr+r−1∑

k=0

k∑

i=0

(
k

i

)
(−1)s−i[1 + (−1)k]s!(i+ 1)rs+r−1

2r(rs+ r − 1)!k!
δ(k)(x)

for s = 0, 1, 2, . . . and r = 1, 2, . . . .
In particular, the composition δ[ln(1 + |x|)] exists and

δ[ln(1 + |x|)] = δ(x).

1.5. Theorem. The neutrix composition δ(s)(sinh−1 x+) exists and

δ(s)(sinh−1 x+) =

s∑

k=0

k∑

i=0

(
k

i

)
(−1)s+i+k

(k − 2i+ 1)s + (k − 2i− 1)s

2kk!
δ(k)(x)

for s = 0, 1, 2, . . . .

2. Main Results

In the following, the functions exp+(x) and exp−(x) are defined by

exp+(x) =

{
exp(x), x ≥ 0,

0, x < 0
and exp−(x) =

{
exp(x), x ≤ 0,

0, x > 0.

The constants ci,k are defined by the expansion

lnk(1 + x)

1 + x
=

∞∑

i=1

ci,kx
i(2.1)

for i, k = 1, 2, . . . and by the expansion

(1 + x)−1 =

∞∑

i=0

ci,0x
i =

∞∑

i=0

(−1)ixi(2.2)

for i = 0, 1, 2, . . . and k = 0.
We also need the following lemma, which can be easily proved by induction:
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2.1. Lemma.
∫ 1

−1

tiρ(s)(t) dt =

{
0, 0 ≤ i < s,

(−1)ss!, i = s

and
∫ 1

0

tsρ(s)(t) dt = 1
2
(−1)ss!

for s = 0, 1, 2, . . . .

We now prove the following theorem.

2.2. Theorem. The neutrix composition δ(s){[exp+(x)− 1]r} exists and

(2.3) δ(s){[exp+(x)− 1]r} =

rs+r−1∑

k=0

(−1)s+ks!crs+r−1,k

2rk!
δ(k)(x),

for r = 1, 2, . . . and s = 0, 1, 2, . . . , where the constants crs+r−1,k are defined with relations
(2.1) and (2.2).

In particular

δ[exp+(x)− 1] =
1

2
δ(x),(2.4)

δ{[exp+(x)− 1]2} = −1

4
δ(x) +

1

4
δ′(x),(2.5)

δ′{[exp+(x)− 1]2} =
1

2
δ(x)− 1

2
δ′(x).(2.6)

Proof. We will first of all prove equation (2.3) on the interval [−1, 1]. To do this, we
need to evaluate

∫ 1

−1

xkδ(s)n {[exp+(x)− 1]r} dx =

=

∫ 1

0

xkδ(s)n {[exp(x)− 1]r} dx+

∫ 0

−1

xkδ(s)n [(−1)r] dx

= ns+1

∫ 1

0

xkρ(s){n[exp(x)− 1]r} dx+ 0

= I.(2.7)

Making the substitution n[exp(x)− 1]r = t or

x = ln[1 + (t/n)1/r],

we have

dx =
t1/r−1 dt

rn1/r[1 + (t/n)1/r]
.

Then for for n > 1, we have

I =
ns+1

rn1/r

∫ 1

0

lnk[1 + (t/n)1/r]t1/r−1

1 + (t/n)1/r
ρ(s)(t) dt

=

∞∑

i=0

ci,k
r

∫ 1

0

t(i+1)/r−1

n(i+1)/r−s−1
ρ(s)(t) dt.
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It follows that

N−lim
n→∞

I = N−lim
n→∞

∫ 1

0

xkδ(s)n {[exp(x)− 1]r} dx

=
(−1)ss!crs+r−1,k

2r
,(2.8)

on using the lemma 2.1, for k = 0, 1, 2, . . . , rs+ r − 1, r = 1, 2, . . . and s = 0, 1, 2, . . . .
Next, when k = rs+ r, we have

∫ 1

0

∣∣xrs+rδ(s)n {[exp(x)− 1]r}
∣∣ dx ≤ ns+1

rn1/r

∫ 1

0

∣∣∣∣
lnrs+r[1 + (t/n)1/r]t1/r−1

1 + (t/n)1/r
ρ(s)(t)

∣∣∣∣ dt

= O(n−1/r),

since | lnrs+r[1 + (t/n)1/r]| = O(n−s−1)). Hence, if ψ(x) is an arbitrary continuous func-
tion, then

(2.9) lim
n→∞

∫ 1

0

xrs+rδ(s)n {[exp(x)− 1]r}ψ(x) dx = 0,

for r = 1, 2, . . . and s = 0, 1, 2, . . . .

Further,

N−lim
n→∞

∫ 0

−1

xrs+rδ(s)n (0)ψ(x) dx = N−lim
n→∞

ns+1

∫ 0

−1

xrs+r)ρ(s)(0)ψ(x) dx

= 0,(2.10)

for r = 1, 2, . . . and s = 0, 1, 2, . . . .
Now let ϕ be an arbitrary function in D[−1, 1]. By Taylor’s Theorem we have

ϕ(x) =

rs+r−1∑

k=0

xkϕ(k)(0)

k!
+
xrs+rϕ(rs+r)(ξx)

s!
,
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where 0 < ξ < 1. Then

N−lim
n→∞

〈δ(s)n {[exp(x)− 1]r}, ϕ(x)〉 =

= N−lim
n→∞

rs+r−1∑

k=0

ϕ(k)(0)

k!

∫ 1

−1

xkδ(s)n {[exp(x)− 1]r} dx

+ N−lim
n→∞

∫ 1

−1

xrs+r

(rs+ r)!
δ(s)n {[exp(x)− 1]r}ϕ(rs+s)(ξx) dx

= N−lim
n→∞

rs+r−1∑

k=0

ϕ(k)(0)

k!

∫ 1

0

xkδ(s)n {[exp(x)− 1]r} dx

+ N−lim
n→∞

rs+r−1∑

k=0

ϕ(k)(0)

k!

∫ 0

−1

xkδ(s)n (0) dx

+ N−lim
n→∞

∫ 1

0

xrs+r

(rs+ r)!
δ(s)n {[exp(x)− 1]r}ϕ(s)(ξx) dx

+ N−lim
n→∞

∫ 0

−1

xrs+r−1

(rs+ r − 1)!
δ(s)n (0)ϕ(s)(ξx) dx

=

rs+r−1∑

k=0

(−1)ss!crs+r−1,k

2rk!
ϕ(k)(0)

=

rs+r−1∑

k=0

(−1)s+ks!crs+r−1,k

2rk!
〈δ(k)(x), ϕ(x)〉,

on using equations (2.7), (2.8), (2.9) and (2.10), for r = 2, 3, . . . and s = 1, 2, . . . .

This proves that the neutrix composition δ(s){[exp+(x)− 1]r} exists and

δ(s){[exp+(x)− 1]r} =

rs+r−1∑

k=0

(−1)s+ks!crs+r−1,k

2rk!
δ(k)(x),

on the interval [−1, 1] for r = 1, 2, . . . and s = 0, 1, 2, . . . .

It is obvious that δ(s){[exp+(x) − 1]r} = 0, if x 6= 0 and so the neutrix composition

δ(s){[exp+(x)− 1]r} exists on the real line.
Equations (2.4), (2.5) and (2.6) follow on noting that c0,0 = 1, c1,0 = −1 and c1,1 =

−1.
Finally note that when r = 1 and s = 0, the normal limits exist and so the composition

δ[exp+(x)− 1] exists. This completes the proof of the theorem 2.2.

2.3. Corollary. The neutrix composition δ(s){[1− exp−(x)]r} exists and

δ(s){[1− exp−(x)]r} =

rs+r−1∑

k=0

(−1)rs+r+s+k−1s!crs+r−1,k

2rk!
δ(k)(x),(2.11)

for r = 1, 2, . . . and s = 0, 1, 2, . . . .
In particular

δ{[1− exp−(x)]} =
1

2
δ(x),(2.12)

δ{[1− exp−(x)]2} =
1

4
δ(x)− 1

4
δ′(x),(2.13)

δ′{[1− exp−(x)]2} =
1

2
δ(x)− 1

2
δ′(x).(2.14)
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Proof. To prove equation (2.11) on the interval [−1, 1], we need to evaluate
∫ 1

−1

xkδ(s)n {[1− exp−(x)]r} dx =

=

∫ 0

−1

xkδ(s)n {[1− exp(x)]r} dx+

∫ 1

0

xkδ(s)n (1) dx

= ns+1

∫ 0

−1

xkρ(s){n[1− exp(x)]r} dx+ 0

= I.(2.15)

Making the substitution n[1− exp(x)]r = t or

x = ln[1− (t/n)1/r],

we have

dx = − t1/r−1 dt

rn1/r[1− (t/n)1/r]
.

Then for for n > 1, we have

I =
ns+1

rn1/r

∫ 1

0

lnk[1− (t/n)1/r]t1/r−1

1− (t/n)1/r
ρ(s)(t) dt

=

∞∑

i=0

(−1)ici,k
r

∫ 1

0

t(i+1)/r−1

n(i+1)/r−s−1
ρ(s)(t) dt.

It follows that

N−lim
n→∞

I = N−lim
n→∞

∫ 1

0

xkδ(s)n {[1− exp(x)]r} dx

=
(−1)rs+r+s−1s!crs+r−1,k

2r
,(2.16)

on using the lemma 2.1, for k = 0, 1, 2, . . . , rs+ r − 1, r = 1, 2, . . . and s = 0, 1, 2, . . . .
Next, when k = rs+ r, we have

∫ 0

−1

∣∣xrs+rδ(s)n {[1− exp(x)]r}
∣∣ dx ≤

≤ ns+1

rn1/r

∫ 0

−1

∣∣∣∣
lnrs+r[1− (t/n)1/r]t1/r−1

1− (t/n)1/r
ρ(s)(t)

∣∣∣∣ dt

= O(n−1/r).

Hence, if ψ(x) is an arbitrary continuous function, then

(2.17) lim
n→∞

∫ 1

0

xrs+rδ(s)n {[1− exp(x)]r}ψ(x) dx = 0,

for r = 1, 2, . . . and s = 0, 1, 2, . . . .
The proof of the corollary now follows as in the proof of Theorem 2.2, using (2.15),

(2.16) and (2.17). Equations (2.12), (2.13) and (2.14) follows immediately.

2.4. Corollary. The neutrix composition δ(s)[| exp(x)− 1|r] exists and

δ(s)[| exp(x)− 1|r] =





rs+r−1∑

k=0

(−1)ks!crs+r−1,k

rk!
δ(k)(x), r odd s even,

0, r even,
0, r, s odd

(2.18)

for r = 1, 2, . . . and s = 0, 1, 2, . . . .
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Proof. Equation (2.18) follows on noting that we have

δ(s)[| exp(x)− 1|r] = δ(s)[| exp+(x)− 1|r] + δ(s)[| exp−(x)− 1|r]
and

δ(s)[| exp−(x)− 1|r] =





δ(s){[exp(x)− 1]r} r odd, s even,

δ(s){[1− exp(x)]r}, r even,

−δ(s){[1− exp(x)]r}, r, s odd.
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Abstract

Let n ≥ 0 be an arbitrary integer. We prove some results for strongly
n-simply presented abelian p-groups with C-decomposable property, ex-
tending classical achievements due to Keef in Commun. Algebra (1990).
As applications we define the classes of strongly ω1-pω+n-projective and
separably ω1-pω+n-projective abelian p-groups which are also properly
contained in all ω1-pω+n-projectives, recently defined by Keef in J. Alg.
Numb. Th. Acad. (2010). Moreover, some principal descriptions con-
cerning these new objects are obtained as well.

Keywords: C-decomposable groups, pω+n-projective groups, strongly n-simply pre-
sented groups, ω1-pω+n-projective groups, strongly ω1-pω+n-projective groups, bounded
subgroups, countable subgroups, nice subgroups, Ulm subgroups, Ulm factors.
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1. Introduction and Terminology

Let all groups into consideration throughout the paper be abelian p-torsion groups
where p is a fixed prime integer. As usual, for some ordinal α ≥ 0 and a group G,
we state the α-th Ulm subgroup pαG, consisting of all elements of G with height ≥ α,
inductively as follows: p0G = G, pG = {pg | g ∈ G}, pαG = p(pα−1G) if α− 1 exists (so
α is non-limit) and pαG = ∩β<αpβG if α − 1 does not exist (so α is limit). The group
G is named pα-bounded if pαG = {0}; note that these groups have to be reduced. We
shall say that G is Σ-cyclic if it is a direct sum of cyclic groups, and separable if it is pω-
bounded - notice that Σ-cyclic groups are separable. Most of the important unexplained
here notations and notions will follow mainly those from [9].

The class of pω+n-projective groups, defined originally as in [14], plays an important if
not facilitating role in the theory of abelian groups whenever n ≥ 0 is an integer. There
are two similar characterizations of the pω+n-projectives given in [14] and [1], respectively.

∗Department of Mathematics, Plovdiv State University P. Hilendarski, Plovdiv 4000, Bul-
garia. Emails: pvdanchev@yahoo.com, peter.danchev@yahoo.com
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1.1. Theorem. The group G is pω+n-projective if and only if precisely one of the fol-
lowing conditions holds:

(a) there exists a pn-bounded subgroup P of G such that G/P is Σ-cyclic.

(b) there exists a Σ-cyclic group S with a pn-bounded subgroup B such that G ∼= S/B.

Observe that when n = 0 we obtain the classical Σ-cyclic groups, i.e., the pω-projective
groups. Moreover, note that P is of necessity nice in G because G/P is separable.

On the other hand, a few years ago, Keef established in ([12], Proposition 1.4 and
Theorem 1.2 (a1)) the following intriguing generalization of pω+n-projective groups:

1.2. Theorem. The group G is ω1-pω+n-projective if and only if exactly one of the
following conditions is valid:

(i) there is a countable subgroup C of G such that C ⊆ pωG and G/C is pω+n-
projective.

(ii) there is a pn-bounded subgroup H of G such that G/H is the direct sum of a
countable group and a Σ-cyclic group.

Notice that the subgroup C of point (i) of the last theorem is necessarily nice in G
satisfying the inequalities pω+nG ⊆ C ⊆ pωG. So, it is interesting to know whether or
not the subgroup H in point (ii) of the same theorem can be chosen to be nice in G.
Unfortunately or not, the answer is ”no” as it will be demonstrated in the sequel.

Thus adding the niceness will be a non-trivial procedure, and thereby we come to the
main concept which motivates the writing of this article.

Definition 1.1. A group G is called strongly ω1-pω+n-projective if it contains a pn-
bounded nice subgroup A such that G/A is a direct sum of a countable group and a
Σ-cyclic group.

Each pω+n-projective group is necessarily strongly ω1-pω+n-projective, while the con-
verse is untrue provided that the group has length strictly greater ω + n. However,
pω+n-bounded strongly ω1-pω+n-projective groups must be pω+n-projective, instead of
ω1-pω+n-projectives (cf. [12]) which are not.

A weaker version of the last group class is the following:

Definition 1.2. A group G is said to be separably ω1-pω+n-projective if it contains a
pn-bounded nice subgroup M such that M ∩ pωG = {0} and G/M is a direct sum of a
countable group and a Σ-cyclic group.

It is worthwhile noticing that such a subgroup M , for which G/(M ⊕ pωG) is Σ-
cyclic, must be nice in G as it will be demonstrated below. Also, Σ-cyclic groups are
separably ω1-pω+n-projective and, for n = 1, pω-bounded pω+1-projective groups are
necessarily separably ω1-pω+1-projective, whereas in both cases the converse is not true
provided that the group has length greater than ω. Even more, pω-bounded separably
ω1-pω+n-projective groups need not be Σ-cyclic; in fact they are pω+n-projective.

On the other hand, in [4] we enlarged the Keef’s concept to the so-termed weakly ω1-
pω+n-projective groups that are groups G containing countable nice subgroups N ⊆ pωG
such that G/N/pω+n(G/N) ∼= G/(pω+nG+N) is pω+n-projective. Likewise, some other
improvements of ω1-pω+n-projectivity were established in [2] and [5], respectively.
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On another vein, in [8] the present author along with Keef defined the class of
(strongly) n-simply presented groups G which are groups containing a (nice) pn-bounded
subgroup P such that G/P is simply presented. Clearly, (strongly) ω1-pω+n-projective
groups are (strongly) n-simply presented.

Besides, in [10], it was introduced and investigated the class of separably n-simply
presented groups that are strongly n-simply presented groups G for which P ∩pωG = {0}.
Evidently, all separably ω1-pω+n-projective groups are themselves separably n-simply
presented.

In some of the next sections we shall study the above stated concepts more carefully.

2. A Survey of Known Results

In this brief section, we shall list a few more useful results, needed for applicable pur-
poses in the next sections. These results are stated here only for the sake of completeness
and for the readers’ convenience, and will be utilized below without some more special
and concrete referring.

2.1. Proposition. ([9])
(j) (Nunke’s property) A group G is simply presented if and only if pαG and G/pαG

are both simply presented for some ordinal α.
(jj) (Direct summand property) Direct summands of simply presented groups are again

simply presented.

2.2. Proposition. ([14]) Subgroups of pω+n-projective groups are again pω+n-projective.

2.3. Proposition. ([12]) Subgroups of ω1-pω+n-projective groups are again ω1-pω+n-
projective.

2.4. Proposition. ([8])
(j) If G is a strongly n-simply presented group with pω+nG = {0}, then G is pω+n-

projective.
(jj) If G is a strongly n-simply presented group, then G/pαG is strongly n-simply

presented for some ordinal α. In particular, G/pω+nG is pω+n-projective.
Moreover, G is strongly n-simply presented if and only if pα+nG and G/pα+nG are

both strongly n-simply presented.

3. C-Decomposable Strongly n-Simply Presented p-Groups

As mentioned in the first section, a strongly n-simply presented group is such a group
G for which there is a pn-bounded nice subgroup N with G/N being simply presented.

The next assertion strengthens ([11], Theorem 3).

3.1. Theorem. Suppose G is a strongly n-simply presented group with pωG simply pre-
sented and G ∼= H⊕K where K is a Σ-cyclic group whose final rank is at least r(pω+nG).
Then G is a direct sum of a simply presented group and a pω+n-projective group.

Proof. Since G is strongly n-simply presented, in virtue of [8] the quotient G/pω+nG
should be pω+n-projective. But H/pω+nH is obviously isomorphic to a summand of
G/pω+nG, and hence it is pω+n-projective as well. Moreover, pωH ∼= pωG is simply
presented and hence so is pω+nH applying [9]. Therefore, H is strongly n-simply pre-
sented again by the utilization of [8]. It follows from Theorem 1.1 (a) that there exists
a subgroup Q ⊆ (H/pω+nH)[pn] such that (H/pω+nH)/Q is Σ-cyclic. Let P be the
subgroup of H containing pω+nH ∼= pω+nG and defined by the equation P/pω+nH = Q;
thus pnP ⊆ pω+nH, and H/pω+nH/P/pω+nH ∼= H/P is Σ-cyclic with pωH ⊆ P .
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Using the idea behind a ”standard ω + n-decomposition”, there is clearly a subgroup
P1 ⊆ pωH ⊆ P such that if L is a pω+n-high subgroup of H, and thus it is pω+n-
bounded, then there exists a decomposition pωG ∼= pωH = P1 ⊕ pωL; so, in particular,
pnP1 = pω+nH since pω+nL = {0}. Indeed, we first claim that pωL is a maximal pn-
bounded summand of pωH, so that it is pure and bounded in pωH, whence its direct
summand. To prove this, we foremost see that pn(pωL) = pω+nL = {0}, hence pωL is
bounded by pn. Furthermore, because L is isotype in H and hence obviously pωL is pure
in pωH, we write pωH = P1 ⊕ pωL (see, e.g., [9]). To show the maximality, also write
pωH = X ⊕ T for some X ≤ pωH and T ≤ pωH such that pnT = {0}. It is apparently
seen that pω+nH = pnX and thus immediately T ∩pω+nH = {0}. But L∩pω+nH = {0}
is maximal with this property, so that T ⊆ L ∩ pωH = pωL because as mentioned above
L is isotype in H, as required. This gives the claim.

If now P2 = P ∩ L, we even have a valuated direct decomposition P = P1 ⊕ P2. In
fact, it is elementary to verify that (pω+nH)[p] = P1[p] = (pnP1)[p]. This insures at once
that P1 ∩ L = {0} and hence P1 ∩ P2 = {0}. Next, since H[p] = (pω+nH)[p] ⊕ L[p] =
(pnP1)[p] ⊕ L[p] = P1[p] ⊕ L[p] and since L is pure in H (see, cf. [9]), it easily follows
that H[pn] = P1[pn]⊕ L[pn] . Therefore, intersecting the last equality with P ≤ H, the
modular law yields that P [pn] = P1[pn]⊕(L∩P )[pn] = P1[pn]⊕P2[pn]. By what we have
just shown above, pnP ⊆ pω+nH = pnP1 which, because of P1 ⊆ P , is tantamount to
pnP = pnP1. The last equality directly implies that P = P1 + P [pn], that is equivalent
to P = P1 ⊕ P2, as asserted. That this decomposition is valuated follows routinely,
which technical details we leave to the reader. It is also worth noticing that the equality
P = P1 ⊕ P2 is an extension of the equality pωH = P1 ⊕ pωL; in fact the modular law
ensures for P1 ≤ pωH ≤ P that pωH = P1 ⊕ (P2 ∩ pωH). But the latter summand is
equal to L∩pωH = pωL because L is pure in H (e.g., [9]), and consequently we conclude
that pωH = P1 ⊕ pωL which was our initial pivotal relation.

We further observe that L/P2
∼= (L + P )/P ⊆ H/P is Σ-cyclic, and that pnP2 ⊆

pnP ∩ pnL ⊆ pω+nH ∩ L = {0}, whence L is pω+n-projective owing to Theorem 1.1 (a)
as well.

Let us now T be a simply presented group with the following Ulm-Kaplansky function:
fT (α) = fK(α), when α < ω; fT (α) = 0, when ω ≤ α < ω + n− 1, and fT (α) = fG(α),
when ω+n− 1 ≤ α. Note that the existence of such a group T is guaranteed by the fact
that K has final rank no less than r(pω+nG) - see, for example, ([9], Theorem 83.6).

Next, consider the direct sum A = T ⊕ L. If B ⊆ A is the subgroup pωT ⊕ P2, then
apparently A/B ∼= (T/pωT )⊕ (L/P2) is Σ-cyclic. Moreover, pnP1 = pω+nH ∼= pω+nG is
simply presented, hence in virtue of [9] so is P1. But pωT is also simply presented (cf. [9])
and, in accordance with the preceding paragraph, it is readily checked that both pωT and
P1 have same Ulm-Kaplansky invariants. Thus [9] allows us to conclude that pωT ∼= P1,
and so there is an isometry φ : B = pωT ⊕ P2 → P1 ⊕ P2 = P . It is easy to check
that fG,P (α) = fA,B(α) = fL,P2(α) + fK(α), when α < ω, or fG,P (α) = fA,B(α) = 0,
when α ≥ ω. This, however, implies in view of ([9], Theorem 83.4) that φ extends to an
isomorphism Φ : A = T ⊕ L→ G, thus proving the result. �

Remark. It is worth noting that the first part of the above proof actually demonstrates
that any pω+n-high subgroup of a strongly n-simply presented group is pω+n-projective.

As a direct consequence, we derive a generalization of Corollary 4 from [11].

3.2. Corollary. The group G is a summand of the direct sum of a simply presented
group and a pω+n-projective group if and only if G is a strongly n-simply presented group
such that pωG is simply presented.

54



On Strongly and Separably ω1-p
ω+n-Projective Abelian p-Groups

Proof. ”⇒”. Write T⊕P = G⊕H where T is simply presented and P is pω+n-projective.
Evidently, pωG is a summand of pωT ⊕ pωP which is simply presented. Therefore, pωG
is simply presented referring to [9].

On the other hand, one may observe that (T/pω+nT )⊕ (P/pω+nP ) ∼= (G/pω+nG)⊕
(H/pω+nH). Since T/pω+nT is a direct sum of countable groups of length ω+n, hence it is
pω+n-projective, and P/pω+nP is pω+n-projective, the left hand-side is pω+n-projective
too, whence so is G/pω+nG. Finally, [8] applies to show that G is strongly n-simply
presented, as desired.

”⇐”. Let G be strongly n-simply presented with pωG simply presented. Also, let C
be a Σ-cyclic group whose final rank exceeds the rank of pω+nG. Then G ⊕ C is, by
Theorem 3.1, a direct sum of a simply presented group and a pω+n-projective group, as
required. �

Recall that a group G is C-decomposable if G ∼= H ⊕ C where C is a Σ-cyclic group
with the same final rank as that of G.

An other (second) valuable consequence of the chief result of this section is the fol-
lowing generalization of Corollary 5 in [11].

3.3. Corollary. If G is a C-decomposable strongly n-simply presented group such that
pωG is simply presented, then G is the direct sum of a simply presented group and a
pω+n-projective group.

Proof. It is clear that the final rank of G must be at least as large as the rank of pω+nG.
Furthermore, we apply Theorem 3.1 to get the claim. �

4. Strongly ω1-p
ω+n-Projective p-Groups

As stated in the introductory Section 1, a group G is strongly ω1-pω+n-projective
if it has a nice subgroup N ≤ G[pn] such that G/N is ω1-pω-projective (= ω-totally
Σ-cyclic in terms of [7]), that is, the direct sum of a countable group and a Σ-cyclic
group. Respectively, a group G is separably ω1-pω+n-projective if it possesses a subgroup
L ≤ G[pn] with L∩ pωG = {0} such that G/L is ω1-pω-projective (= ω-totally Σ-cyclic),
i.e., the direct sum of a countable group and a Σ-cyclic group. It is pretty easy to check
that pω+n-projective groups are strongly ω1-pω+n-projective (in fact, the countable group
in the direct decomposition of G/N must be exactly {0}) as well as separable pω+n-
projective groups are separably ω1-pω+n-projective (indeed, pωG = {0} and again the
countable summand from the direct decomposition of G/L has to be precisely {0}).

In [13] the following useful technicality due to B. Charles was stated explicitly:

Lemma (Charles). Suppose A is a group with a countable subgroup B such that A/B is
Σ-cyclic. Then A is the direct sum of a countable group and a Σ-cyclic group.

In the case when A/B is pω+n-projective for some n ≥ 1, the group A is defined in
[12] to be ω1-pω+n-projective (compare also with Theorem 1.2 (i) stated above in Section
1) and it is not necessarily a direct sum of a countable group and a pω+n-projective
group; indeed there exists a pω+n-bounded ω1-pω+n-projective group which is not pω+n-
projective (see the comments on pp. 56 and 57 of [12]).

However, it is rather natural to ask whether the following strengthening is true: For
some group A let A/B be Σ-cyclic and let B be the direct sum of a countable group
and a pn-bounded group (i.e., pnB is countable) for some n ≥ 1. Does it follow that A
is the direct sum of a countable group and a pω+n-projective group? Unfortunately or
not, it is untrue, and A is in general a proper subgroup of such a direct sum being an
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ω1-pω+n-projective group (see, for instance, Theorem 1.2 (b1) and Theorem 1.5 (b) of
[12]); that is why an equality may not be fulfilled.

Reciprocally, if A is a group with a Σ-cyclic subgroup C such that A/C is countable,
then A is again a direct sum of a countable group and a Σ-cyclic group - see, e.g., [6], or
Theorem 1.5 (b) from [12] when n = 0.

On the other hand, Megibben proved in [13] the following statement (for some non-
trivial generalizations to that fact see also [7] and [3]).

Proposition (Megibben). Suppose G is a group. Then the following are equivalent:
(i) G/pωG is Σ-cyclic with pωG countable;
(ii) G is the direct sum of a countable group and a Σ-cyclic group.

Actually, the implication (i) ⇒ (ii) in this assertion follows immediately from the
above Lemma of Charles. Besides, a subgroup of the direct sum of a countable group
and a Σ-cyclic group is again a direct sum of a countable group and a Σ-cyclic group; in
fact, if H ≤ G where G is such a group, then pωG is countable and G/pωG is Σ-cyclic.
But H/(H ∩ pωG) ∼= (H + pωG)/pωG ⊆ G/pωG is Σ-cyclic as being a subgroup with
countable intersection H∩pωG, so that the Lemma of Charles applies to get the assertion.

It is now quite usual to ask whether or not the following enlargement holds:

Question. Let G be a group and n ≥ 0. Does it follow that the next two points are
equivalent?

(a) G/pω+nG is pω+n-projective and pω+nG is countable;
(b) G is the direct sum of a countable group and a pω+n-projective group.

This is true only when n = 1 – see Corollary 2.11 from [7]. However, when n = 2, the
answer is negative – see Example on p. 533 from [7]. (See also [3] for more details when
n ≥ 1.)

Reciprocally, if A is a group with a pω+n-projective subgroup S such that A/S is
countable, then A need not be the direct sum of a countable group and a pω+n-projective
group whenever n ≥ 1. Indeed, an appeal to Theorem 1.2 (c3) from [12] gives that A
is ω1-pω+n-projective, whereas Theorem 1.5 (b) of [12] insures that A is only a (proper)
subgroup of such a direct sum.

We will now provide the reader with some equivalent characterizations of strongly
(respectively, separably) ω1-pω+n-projectives.

4.1. Lemma. The group G is strongly ω1-pω+n-projective if and only if there exists a
nice subgroup N of G such that pnN = {0}, G/(N + pωG) is Σ-cyclic and pω(G/N) ∼=
pωG/(pωG ∩N) is countable.

Proof. ”⇒”. Write G/N = (A/N) ⊕ (B/N) where A/N is countable and B/N is Σ-
cyclic for some pn-bounded nice subgroup N of G. Therefore pω(G/N) = pω(A/N) is
countable, i.e., same is true for (pωG + N)/N ∼= pωG/(N ∩ pωG). On the other hand,
G/N/pω(G/N) = G/N/(pωG+N)/N ∼= G/(pωG+N) should be Σ-cyclic, as stated.

”⇐”. Since G/(N + pωG) ∼= G/N/(N + pωG)/N is Σ-cyclic and (N + pωG)/N ∼=
pωG/(N ∩ pωG) is countable, the Lemma of Charles applies to deduce that G/N is the
direct sum of a countable group and a Σ-cyclic group, as required. �

4.2. Lemma. The group G is separably ω1-pω+n-projective if and only if there exists a
nice subgroup P of G such that pnP = {0}, P ∩ pωG = {0} and G/(P ⊕ pωG) is Σ-cyclic
with countable pωG.
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Proof. Follows in the same manner as the above Lemma 4.1, taking into account Lemma
1 from [10] which says that P ⊕ pωG is nice in G if and only if P is nice in G (see [4]
too). Also, pωG/(pωG ∩ P ) ∼= pωG is now countable. �

4.3. Corollary. If G is strongly (respectively, separably) ω1-pω+n-projective, then so is
pαG for any ordinal α.

Proof. Let N be a nice pn-bounded subgroup of G such that G/N is ω-totally Σ-cyclic
(in addition, pωG ∩ N = {0}). Consequently, owing to ([7], Theorem 2.6) or to the
comments after the Proposition of Megibben, one can see that (pαG+N)/N ⊆ G/N is
also ω-totally Σ-cyclic as being a subgroup, and thus (pαG + N)/N ∼= pαG/(pαG ∩ N)
is also ω-totally Σ-cyclic, where pαG ∩ N is pn-bounded and nice in pαG. In addition,
pω(pαG) ∩ (pαG ∩N) = pα+ωG ∩N ⊆ pωG ∩N = {0}, as needed. �

4.4. Corollary. If G is strongly (respectively, separably) ω1-pω+n-projective, then so is
G/pαG for each ordinal α.

Proof. Let N be a pn-bounded nice subgroup of G such that G/N is the direct sum of a
countable group and a Σ-cyclic group . Put N ′ = (N + pαG)/pαG, and it is easily seen
that N ′ is pn-bounded and nice in G/pαG. Likewise,

G/pαG/(N + pαG)/pαG ∼= G/(N + pαG) ∼= G/N/(N + pαG)/N = G/N/pα(G/N).

But pα(G/N) is again countable whenever α ≥ ω, hence G/N/pα(G/N) remains a direct
sum of a countable group and a Σ-cyclic group. Finally, G/pαG is a strongly ω1-pω+n-
projective group, as expected. In addition, the modular law from [9] ensures that N ′ ∩
pω(G/pαG) = N ′∩(pωG/pαG) = [(N+pαG)∩pωG]/pαG = (pαG+N∩pωG)/pαG = {0}
provided α > ω and N ∩ pωG = {0}. For α ≤ ω, the intersection is again clearly equal
to zero. �

The next two corollaries are also consequences of results from [8].

4.5. Corollary. If G is a group such that pω+nG = {0}, then G is strongly ω1-pω+n-
projective if and only if G is pω+n-projective.

Proof. In accordance with Proposition 4.1, the quotient G/(N + pωG) is Σ-cyclic for
some N ≤ G[pn]. Thus pn(N + pωG) = {0} and Theorem 1.1 is manifestly applicable to
obtain the claim. �

4.6. Corollary. If G is strongly ω1-pω+n-projective, then G/pω+nG is pω+n-projective.

Proof. Follows directly from the combination of Corollaries 4.4 and 4.5. �

Remark. In ([12], Example 2.3) was constructed an example of an ω1-pω+n-projective
group of length ω + n which is not pω+n-projective; thereby in view of Corollary 4.5 it
is not strongly ω1-pω+n-projective as well. Invoking [8], it is not even strongly n-simply
presented.

Moreover, the following inclusions hold:

{separable pω+n-projective groups} ⊆ {pω+n-projective groups} ∩ {separably ω1-
pω+n-projective groups} ⊆ {strongly ω1-pω+n-projective groups} ⊆ {ω1-pω+n-projective
groups} ∩ {strongly n-simply presented groups}.
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Below we shall demonstrate that the last containment is actually tantamount to an
equality - see Corollary 4.16.

On the other hand, Keef also showed in [12] that for any n ≥ 2 there is a pω+n-
projective group G with the property that G is not separably ω1-pω+n-projective (see
too the Example on p. 4382 of [11] where a pω+n-projective group was exhibited which
is not separably n-simply presented and thus not separably ω1-pω+n-projective; however
every pω+1-projective group is separably 1-simply presented). That is why there exists an
example of a strongly ω1-pω+n-projective group that is not separably ω1-pω+n-projective
(and even not separably n-simply presented) whenever n > 1. For n = 1 this will be
illustrated below as well.

As a matter of fact, we begin with the following affirmation that restricts strong
(separable) ω1-pω+1-projectivity to Ulm subgroups and Ulm factors.

4.7. Proposition. The group G is strongly ω1-pω+1-projective if and only if
(i) pω+1G is countable;
(ii) G/pω+1G is pω+1-projective.

Proof. The necessity being already established in the series of our previous assertions,
we concentrate now on the sufficiency.

And so, using ([7], Corollary 2.11), the decomposition G = K ⊕ S holds, where K is
countable and S is pω+1-projective. Thus, by Theorem 1.1 (a), there is T ≤ S[p] with
S/T being Σ-cyclic. Hence T is nice in S and so in G. Finally, G/T ∼= K ⊕ (S/T ) is
the direct sum of a countable group and a Σ-cyclic group, as required in Definition 1.1.
Besides, even T ∩ pω+1G = T ∩ pω+1K ⊆ S ∩K = {0} is fulfilled. �

4.8. Proposition. The group G is separably ω1-pω+1-projective if and only if
(i) pωG is countable;
(ii) G/pω+1G is pω+1-projective.

Proof. The necessity being already obtained in the series of our preceding statements, we
deal now with the sufficiency. And so, utilizing ([7], Corollary 2.11), one may decompose
G = L ⊕ R, where L is countable and R is separable pω+1-projective. Thus, again an
appeal to Theorem 1.1 (a), leads to the existence of M ≤ R[p] such that R/M is Σ-cyclic.
Hence M is nice in R and so it is nice in G. Furthermore, G/M ∼= L ⊕ (R/M) is the
direct sum of a countable group and a Σ-cyclic group. Moreover, M ∩pωG = M ∩pωL ⊆
R ∩ L = {0}, as required in Definition 1.2. �

As promised above, the wanted example of a strongly ω1-pω+1-projective non separa-
bly ω1-pω+1-projective group can be produced by choosing a group G whose subgroup
pω+1G is countable but such that pωG is uncountable, and G/pω+1G is pω+1-projective.
There exists an abundance of such groups; in fact, any pω+1-projective group G with
uncountable pωG may be applied in this situation. Nevertheless, each pω+1-projective
group G with countable pωG (in particular, each separable pω+1-projective group) is sep-
arably ω1-pω+1-projective, as it will be seen below. This crucial property is due to the
fact that pω+1-projectives are C-decomposable (for more details see, for instance, [11]
and [12]).

4.9. Proposition. Suppose that G is a group whose pωG is countable. Then G is
separably n-simply presented if and only if G is separably ω1-pω+n-projective.

Proof. The sufficiency being trivial, we are now attack the necessity. Thus the application
of [10] guarantees that G/(M ⊕ pωG) is Σ-cyclic for some pn-bounded nice subgroup M
of G such that M ∩ pωG = {0}. But G/(M ⊕ pωG) ∼= G/M/(M ⊕ pωG)/M and since
(M ⊕ pωG)/M ∼= pωG is countable, the Lemma of Charles listed above applies to show
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that G/M is the direct sum of a countable group and a Σ-cyclic group. So, by Definition
1.2, the group G has to be separably ω1-pω+n-projective, as desired. �

4.10. Proposition. Let G be a group such that pωG is countable. Then G is both
separably ω1-pω+1-projective and pω+1-bounded if and only if G is pω+1-projective.

Proof. The necessity follows immediately from Corollary 4.5.
Concerning the sufficiency, it was proved in [11] that any pω+1-projective groups be-

longs to the class of separably 1-simply presented groups. We now employ the preceding
Proposition 4.9 to get the claim. �

4.11. Corollary. Suppose G is a group with countable pωG. Then G/pω+1G is separably
ω1-pω+1-projective if and only if G/pω+1G is pω+1-projective.

Proof. Observe that pω(G/pω+1G) = pωG/pω+1G is countable and we next apply Propo-
sition 4.10. �

4.12. Corollary. If G is a separably ω1-pω+1-projective group and H is a subgroup such
that H ∩ pω+1G = pω+1H, then H is separably ω1-pω+1-projective.

In particular, isotype subgroups of separably ω1-pω+1-projectives are separably ω1-
pω+1-projective.

Proof. With the help of Proposition 4.8 write that pωG is countable and G/pω+1G is
pω+1-projective. Hence pωH is countable, and H/pω+1H = H/(H ∩ pω+1G) ∼= (H +
pω+1G)/pω+1G ⊆ G/pω+1G is pω+1-projective. Consequently, again Proposition 4.8
works to get the assertion. The second half is immediate. �

The above two reduction statements suggest the following stronger consideration. So
we will now somewhat enlarge Propositions 4.7 and 4.8 to an arbitrary natural number
n ≥ 1 in an identical way, noticing also that Corollary 4.11 can be eventually derived
from the next Theorem 4.13. In this aspect, Keef showed in [11] that a group G is
separably n-simply presented if and only if pω+nG is simply presented and G/pω+nG is
separably n-simply presented, while in [8] it was established that G is strongly n-simply
presented if and only if pω+nG is strongly n-simply presented and G/pω+nG is pω+n-
projective. Moreover, Keef proved in [12] that G is ω1-pω+n-projective if and only if
pω+nG is countable and G/pω+nG is ω1-pω+n-projective.

So, keeping the similarity of the formulation, we are now able to formulate and prove
our first central result of the present section.

4.13. Theorem. (First Reduction Criterion). For every n ≥ 1 the group G is strongly
ω1-pω+n-projective if and only if

(1) pω+nG is countable;
(2) G/pω+nG is pω+n-projective.

Proof. ”⇒”. According to Lemma 4.1, one may write that pωG/(pωG∩N) is countable
for some pn-bounded nice subgroup N of G. Thus pωG = pωG ∩N +C where C ≤ pωG
is countable. Furthermore, pω+nG = pnC is countable, so that clause (1) follows.

Next, point (2) follows directly from Corollary 4.6.
”⇐”. Suppose that P ≤ G such that pω+nG ⊆ P , pnP ⊆ pω+nG (thereby P/pω+nG

is pn-bounded) and G/P is Σ-cyclic. Let Y be a maximal pn-bounded summand of pωG;
so there is a decomposition pωG = X ⊕ Y and thus the inclusions X ⊆ pωG ⊆ P hold.
We may assume without loss of generality that X is countable; in fact, pω+nG = pnX
is countable and so we can decompose X = K ⊕ T where K is countable and T is pn-
bounded (whence T is a pn-bounded summand of pωG and thereby T ⊆ Y ; then even
T = T ∩ Y ⊆ X ∩ Y = {0} and X = K - in any case pωG = K ⊕ (T ⊕ Y ) where T ⊕ Y is
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pn-bounded). That is why pωG = K ⊕ Y with a countable summand K, as desired. An
other verification of this fact is like this: Note that X[p] = (pω+nG)[p] = (pnX)[p], and
hence X[p] is countable. So X will be countable, provided that it is reduced.

Let us now H be a pω+n-high subgroup of G containing Y (thus H is maximal with
respect to H∩pω+nG = {0}). We next assert that (G/pω+nG)[pn] = (X⊕H[pn])/pω+nG.
To this aim, given v ∈ G with pnv ∈ pω+nG, it suffices to prove that v ∈ X ⊕H[pn]. If
x ∈ X is chosen such that pnx = pnv, then replacing v by v − x, we may assume that
pnv = 0. Since G[p] = (pω+nG)[p] ⊕ H[p] = X[p] ⊕ H[p] and H is pure in G, it easily
follows that G[pn] = X[pn]⊕H[pn]. Therefore, v = x′+h where x′ ∈ X[pn] and h ∈ H[pn]
as required. Moreover, X ∩H = {0} because as noted above X[p] = (pω+nG)[p], which
substantiates our assertion. Furthermore, by what we have just shown above, P/pω+nG ⊆
(G/pω+nG)[pn] implies that P ⊆ X ⊕H[pn]. Note also the fact from above that X ≤ P .
Let L = P ∩H[pn] ⊆ H[pn] ⊆ G[pn]; so pnL = {0}. Clearly, the inclusion L ⊆ H forces
that L∩pω+nG = {0}. Likewise, P ⊆ X⊕H[pn] yields that P = X+(P∩H[pn]) = X+L;
indeed the modular law applies to get that P = (X⊕H[pn])∩P = X+P∩H[pn] as stated.
Consequently, we conclude that P = pωG+ P = pωG+L. Thus G/P = G/(pωG+L) is
Σ-cyclic.

We next will show that L is nice in G. Since L ∩ pω+nG = {0}, it readily follows via
some technical efforts that L ∩ pωG is nice in pωG and so nice in G. But L+ pωG = P
is also nice in G because G/(pωG + L) is separable, and these two conditions together
imply that L is nice in G, as wanted (see, e.g., Section 79, Exercise 10 of [9]).

Furthermore, we claim that pω(G/L) = (pωG + L)/L = P/L is countable. In fact,
P/L = P/(P ∩ H[pn]) ∼= (P + H[pn])/H[pn] = (pωG + H[pn])/H[pn] ∼= pωG/(pωG ∩
H[pn]). But pωG = X ⊕ Y and since Y ⊆ H, one may have in view of the modular
law that pωG ∩ H = (X ⊕ Y ) ∩ H = (X ∩ H) ⊕ Y = Y . We therefore establish that
P/L ∼= (X ⊕ Y )/Y [pn] ∼= X ⊕ (Y/Y [pn]) ∼= X ⊕ pnY = X, because pnY = {0}. As
noticed above, X is countable, so that pω(G/L) is really countable as claimed. Finally,
Lemma 4.1 allows us to infer that G is strongly ω1-pω+n-projective, as required. �

An immediate consequence is this one:

4.14. Proposition. Suppose that G is a group whose pω+nG is countable. Then the
following are equivalent:

(a) G is strongly ω1-pω+n-projective;
(b) G/pω+nG is strongly ω1-pω+n-projective;
(c) G/pω+nG is pω+n-projective.

Proof. Follows by a direct application of Corollaries 4.4 and 4.5 as well as of Theo-
rem 4.13. �

As a new valuable consequence of the First Reduction Criterion, we obtain an analog
of Proposition 4.9 (see also Corollary 3.2):

4.15. Corollary. Suppose pω+nG is countable. Then G is strongly n-simply presented
if and only if G is strongly ω1-pω+n-projective.

Proof. One direction ”⇐” being trivial, we observe for the another one ”⇒” that, appeal-
ing to [8], the quotient G/pω+nG is pω+n-projective. Next, the First Reduction Criterion
can be applied to derive that G is strongly ω1-pω+n-projective, as formulated. �

An interesting consequence to the last statement is the following.

4.16. Corollary. Strongly n-simply presented ω1-pω+n-projective groups are strongly
ω1-pω+n-projective, and vice versa.
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Proof. The sufficiency being elementary, we will attack the necessity. Since by The-
orem 1.2 (i) for each ω1-pω+n-projective group G we have that pω+nG is countable,
Corollary 4.15 applies to infer that G is, in fact, strongly ω1-pω+n-projective. �

4.17. Corollary. Suppose G is a group such that pωG is countable. Then the following
are equivalent:

(1) G is strongly ω1-pω+1-projective;
(2) G is separably 1-simply presented;
(3) G is separably ω1-pω+1-projective.

Proof. The equivalence (1) ⇐⇒ (3) follows from directly Propositions 4.7 and 4.8. On
the other hand the equivalence (2) ⇐⇒ (3) was proved in Proposition 4.9. �

For n = 1 the alluded to above Corollary 4.15 can be slightly extended in the following
way:

4.18. Corollary. Suppose that G is a group with countable pω+1G. Then the following
three conditions are equivalent:

(1) G is strongly 1-simply presented;
(2) G is separably 1-simply presented;
(3) G is strongly ω1-pω+1-projective.

Proof. For the fact that (1) is tantamount to (3) we employ Corollary 4.15.
To prove that (2) and (3) are equal, we first observe that separably 1-simply presented

groups are strongly 1-simply presented and thus by what we have just shown, they are
strongly ω1-pω+1-projective. So (2) implies (3). In order to verify the converse, we next
apply the First Reduction Criterion to deduce that G/pω+1G is pω+1-projective, whence
in view of [11] this quotient must be separably 1-simply presented. Finally, again an
appeal to [11] insures that G has to be separably 1-simply presented, as wanted. �

Note that the last two corollaries fail for n ≥ 2.

4.19. Corollary. Let H be a subgroup of the strongly ω1-pω+n-projective group such that
H ∩ pω+nG = pω+nH. Then H is strongly ω1-pω+n-projective.

In particular, isotype subgroups of strongly ω1-pω+n-projectives are strongly ω1-pω+n-
projective.

Proof. Employing Theorem 4.13 we can write that pω+nG is countable and G/pω+nG is
pω+n-projective. Thus pω+nH is countable as being a subgroup of pω+nG. Moreover,
H/pω+nH = H/(H ∩ pω+nG) ∼= (H + pω+nG)/pω+nG ⊆ G/pω+nG is pω+n-projective
as well. So, again the utilization of the First Reduction Criterion guarantees that H is
strongly ω1-pω+n-projective, as expected. The final part is immediate. �

We are now in a position and state and prove the second major result of this section.

4.20. Theorem. (Second Reduction Criterion). For every n ≥ 1 the group G is separably
ω1-pω+n-projective if and only if

(1) pωG is countable;
(2) G/pω+nG is separably ω1-pω+n-projective.

Proof. ”⇒”. That pωG is countable is evident in virtue of Lemma 4.2. With the aid of the
same lemma write that G/(P ⊕pωG) is Σ-cyclic for some P ≤ G[pn] with P ∩pωG = {0}.
But by the modular law we have

[(P + pω+nG)/pω+nG] ∩ pω(G/pω+nG) = [(P + pω+nG) ∩ pωG]/pω+nG =
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= [(P ∩ pωG) + pω+nG]/pω+nG = {0}.
Furthermore,

G/(P ⊕ pωG) ∼= G/pω+nG/(P ⊕ pωG)/pω+nG =

= G/pω+nG/[((P + pω+nG)/pω+nG)⊕ pω(G/pω+nG)]

is Σ-cyclic with pn[(P + pω+nG)/pω+nG] = {0} and pω(G/pω+nG) countable. This
verifies the necessity.

”⇐”. Let Q be a subgroup of G containing pω+nG such that Q/pω+nG is pn-bounded
(i.e., pnQ ⊆ pω+nG), Q ∩ pωG ⊆ pω+nG and G/pω+nG/[(Q/pω+nG)⊕ pω(G/pω+nG)] =
G/pω+nG/(Q+ pωG)/pω+nG ∼= G/(Q+ pωG) is Σ-cyclic. Suppose

Q/pω+nG = ⊕i∈I〈xi + pω+nG〉

where xi ∈ Q and order(xi + pω+nG) = pti ≤ pn in G/pω+nG, which is equivalent to
pti(xi + pω+nG) = pω+nG, i.e. to ptixi ∈ pω+nG, and ti is the minimal natural number
with this property. Now, for each i ∈ I, ptixi ∈ pω+nG = pn(pωG) = pti(pω+n−tiG)
whence ptixi = ptigi for some gi ∈ pωG. Put

P = ⊕i∈I〈xi − gi〉

observing that P ⊆ G. Clearly, pnP = {0} because pnxi = pngi. If now y ∈ P ∩ pωG,
then one may write y = a1(xi1 − gi1) + · · ·+ ak(xik − gik ) for some collection of indexes
ij and integers aj , where j = 1, · · · , k. This forces that

a1xi1 + · · ·+ akxik + pω+nG = y + a1gi1 + · · ·+ akgik + pω+nG ∈

(Q/pω+nG) ∩ pω(G/ω+nG) = (Q/pω+nG) ∩ (pωG/pω+nG) = (Q ∩ pωG)/pω+nG = {0},

hence we have a1xi1 + · · ·+ akxik ∈ pω+nG which ensures that a1(xi1 + pω+nG) = · · · =
ak(xik + pω+nG) = pω+nG. Consequently, p

tij /aj for every j = 1, · · · , k and hence

y = s1p
t1(xi1 − gi1) + · · ·+ skp

tk (xik − gik ) =

s1(pt1xi1 − pt1gi1) + · · ·+ sk(ptkxik − ptkgik ) = 0.

That is why P ∩ pωG = {0} as expected. Finally, since Q =
∑
i∈I〈xi + pω+nG〉 =∑

i∈I〈xi〉+pω+nG, we infer that P +pωG = Q+pωG. But G/(P ⊕pωG) = G/(Q+pωG)
is Σ-cyclic and this substantiates the sufficiency in accordance with Lemma 4.2. �

Remark. It is worthwhile noticing that, unfortunately, the Second Reduction Criterion
does not directly lead to the aforementioned fact from Proposition 4.9 that separably
n-simply presented groups with countable first Ulm subgroup are themselves separably
ω1-pω+n-projective. The reason for this contrast with the First Reduction Criterion
is that separably n-simply presented groups of length ≤ ω + n need not be separably
ω1-pω+n-projective for any n ≥ 1; they are just pω+n-projective.
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The following example illustrates that in point (2) of Theorem 4.20 the factor-group
G/pω+nG cannot be replaced to be pω+n-projective when n ≥ 2 (compare also the differ-
ence with Proposition 4.8 when n = 1). This is so because separably ω1-pω+n-projectives
of length ≤ ω + n are necessarily pω+n-projective but the converse fails whenever n ≥ 2
and even for n = 1 provided the first Ulm subgroup is uncountable (see Proposition 4.10
too).

Example. Let A be the pω+n-projective group which is not separably ω1-pω+n-projective
for some n ≥ 2, as constructed in [11], and let G be a group such that G/pω+nG ∼= A. We
claim that G is not separably ω1-pω+n-projective because, otherwise, Corollary 4.4 would
imply that so is G/pω+nG that is against our construction. The example is sustained.

However, since G/pω+nG is pω+n-projective, the First Reduction Criterion, that is
Theorem 4.13, assures that G is necessarily strongly ω1-pω+n-projective.

In [10] was appeared that summands of separably n-simply presented groups are again
separably n-simply presented. The same idea works and for separably ω1-pω+n-projective
groups, so that one may formulate without a proof the following.

4.21. Proposition. A summand of a separably ω1-pω+n-projective group is also separa-
bly ω1-pω+n-projective.

5. Concluding Discussion

Certainly, the major concept of strong ω1-pω+n-projectivity can be extended as follows:

Definition 5.1. A group G is called weakly n-ω1-pω+n-projective if there exists a sub-
group R ≤ G[pn] which is nice in G such that G/R is a subgroup of the direct sum of a
countable group and a pω+n-projective group.

It is worth noticing that, in view of Theorem 1.5 (a) from [12], G/R must be ω1-pω+n-
projective. Also, the subgroup pω+2nG must be countable.

Besides, strongly n-simply presented groups of length ≤ ω+2n and n-simply presented
groups of length ≤ ω + n are both strongly n-ω1-pω+n-projective by taking R = pω+nG
or R = pωG, respectively.

Another interesting variation in a more weak form of ω1-pω+n-projectivity is given in
the following new concept:

Definition 5.2. A group G is said to be nicely ω1-pω+n-projective if it has a nice pω+n-
projective subgroup X such that G/X is countable.

Apparently, owing to ([12], Theorem 1.2 (c3)), nicely ω1-pω+n-projectives are them-
selves ω1-pω+n-projective.

The class of nicely ω1-pω+n-projectives is also worthy of investigation, which will be
done in a subsequent article.

Corrigendum. In the proof of Proposition 2.3 from [7] there is a typo, namely the
subgroup P of H should satisfy pn+1P = {0} instead of the written there equality
pω+n+1P = {0}.
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Abstract

The aim of this short research note is to provide a reduction formula
for the Kampé de Fériet function Fh:2;0g:2;0 [−x, x] by employing a new
summation formula for Clausen’s series 3F2[1] obtained recently by the
authors [Miskolc Math. Notes 10(2), 145–153, 2009.]
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1. Introduction and results required

Recently Paris [9] established a Kummer–type I transformation formula for the gen-
eralized hypergeoemtric function 2F2[x], namely

(1.1) 2F2

[ a, c+ 1
b, c

;x
]

= ex 2F2

[ b− a− 1, f + 1
b, f

;−x
]

x ∈ C ,

where

f =
c(1 + a− b)

a− c .

Equation (1.1) is seen to be analogous to the well–known and much employed Kummer’s
first transformation for the confluent hypergeometric function

1F1

[ a
b

;x
]

= ex 1F1

[ b− a
b

;−x
]
.
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Paris’ result (1.1) may be regarded as the generalization of the Exton’s result [5], by
letting 2c = a so that f = 1 + a− b, given by

2F2

[ a, 1 + 1
2
a

1
2
a

;x
]

= ex 2F2

[ b− a− 1, 2 + a− b
b, 1 + a− b ;−x

]
.

Recently Kim et al. [8] have obtained a new summation formula for Clausen’s 3F2[1]
series given by

(1.2) 3F2

[ −n, b− a− 1, f + 1

b, f
; 1

]
=

(a)n(c+ 1)n
(b)n(c)n

,

where (a)n = Γ(a + n)/Γ(n) = a(a + 1) · · · (a + n − 1), a ∈ C \ Z−
0 stands for the

Pochhammer symbol and f is the same as in (1.1). We note that by convention (a)0 = 1.
By utilizing (1.2), Kim et al. [8] have obtained the following result:

(1− x)−h 3F2

[ h, b− a− 1, f + 1
b, f

;− x

1− x
]

= 3F2

[ h, a, c+ 1
b, c

;x
]
.

This result is also recorded in [10], in a slightly modified form. On the other hand, this
relation may be regarded as a generalization of the following result due to Exton [5]:

(1− x)−h 3F2

[ h, a, 1 + 1
2
a

b, 1
2
a

;− x

1− x
]

= 3F2

[ h, b− a− 1, 2 + a− b
b, 1 + a− b ;x

]
.

On the other hand, just as the Gauss function 2F1 was extended to generalized hyperge-
ometric function pFq by increasing the number of parameters in the numerator as well as
in the denominator, the four Appell functions were introduced and generalized by Appell
and Kampé de Fériet [1] who defined a general hypergeometric function in two variables.
For further details see [12]. The notation defined and introduced originally by Kampé de
Fériet for this double hypergeometric function of superior order was subsequently abbre-
viated by Burchnall and Chaundy [3]. We, however, recall here the definition of a more
general double hypergeometric function (than the one defined by Kampé de Fériet) in a
sligthly modified notation given by Srivastava and Panda [14, p. 423, Eq. (26)]. For this,
let (Hh) denotes the sequence of parameters (H1, · · · , Hh) and for nonnegative integers
define the Pochhammer symbols ((Hh)) := (H1)n(H2)n · · · (Hh)n, where when n = 0,
the product is understood to reduce to unity. Therefore, the convenient generalization
of the Kampé de Fériet function is defined as follows:

(1.3) Fh:a;bg:c;d

[ (Hh) : (Aa) ; (Bb) ;
(Gg) : (Cc) ; (Dd) ;

x, y
]

=
∑

m,n≥0

((Hh))m+n((Aa))m((Bb))n
((Gg))m+n((Cc))m((Dd))n

xm

m!

yn

n!
.

For more details about the convergence for the function (1.3) we refer to [1]. Various
authors (see e.g. [1, 4, 5, 6, 7, 11, 12]) have discussed the reducibility of the Kampé de
Fériet function.

The main objective of this short research note is to establish a reduction formula for
the Kampé de Fériet function Fh:2;0g:2;0 [−x, x] by employing the summation formula (1.2).

2. Main result

2.1. Theorem. There holds true

(2.1)

Fh:2;0g:2;0

[ (Hh) : b− a− 1, f + 1 ; − ;
(Gg) : b, f ; − ;

−x, x
]

= h+2Fg+2

[ (Hh), a, c+ 1
(Gg), b, c

; x
]
,
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where f is given in (1.1). Here the series (2.1) converges either for all x ∈ C for g ≥ h;
or inside the unit circle |x| < 1 when g = h− 1; or on the unit circle |x| = 1 when

<
{
h−1∑

j=1

Gj −
h∑

j=1

Hj + b− a
}
> 1 .

Proof. In order to derive (2.1), we proceed as follows. Denoting the left–hand side of
(2.1) by S and expressing the Kampé de Fériet function as a double series, we have

S =
∑

m,n≥0

((Hh))m+n (b− a− 1)m (f + 1)m
((Gg))m+n (b)m (f)m

(−1)mxn+m

m!n!
.

Making use of the well–known Bailey–transform technique in summing up double infinite
series [2]

∑

n≥0

∑

k≥0

A(k, n) =
∑

n≥0

n∑

k=0

A(k, n− k) ,

we have, after some little algebra, using

(n−m)! =
(−1)m n!

(−n)m
,

that

S =
∑

n≥0

((Hh))n
((Gg))n

xn

n!

n∑

m=0

(−n)m(b− a− 1)m (f + 1)m
(b)m (f)mm!

.

The inner–most finite series we recognize as a 3F2[1] expression, that is

S =
∑

n≥0

((Hh))n
((Gg))n

xn

n!
3F2

[ −n, b− a− 1, f + 1
b, f

; 1
]
.

Using (1.2) we have

S =
∑

n≥0

((Hh))n
((Gg))n

· (a)n (c+ 1)n
(b)n (c)n

· x
n

n!
,

which gives in fact the right–hand side of the series (2.1).
By conditions that hold for the generalized hypergeometric function we easily conclude

the stated convergence constraints. �

3. Special cases

3.1. In (2.1), if we take 2c = a, so that f = 1 + a− b, we get the following result due to
Exton [5]:

Fh:2;0g:2;0

[ (Hh) : b− a− 1, 2 + a− b ; − ;
(Gg) : b, 1 + a− b ; − ;

−x, x
]

= h+2Fg+2

[ (Hh), a, 1
2
a+ 1

(Gg),
1
2
a, b

; x
]
,

where the series converges under the same conditions which hold for (2.1).
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3.2. If we take b = c+ 1, so that f = c, we arrive at the following result:

Fh:1;0g:1;0

[ (Hh) : c− a ; − ;
(Gg) : c ; − ;

− x, x
]

= h+1Fg+1

[ (Hh), a
(Gg), c

; x
]
,

where the series converges under the same conditions which hold for (2.1), exception is
the convergence for g = h− 1 on the unit circle |x| = 1 which follows for

<
{
h−1∑

j=1

Gj −
h∑

j=1

Hj + c− a
}
> 0 .

3.3. Finally, if we take (H) = (G) and h = g = 0, we arrive at Paris’ result (1.1). In this
case, the formula is valid in the whole complex plane C.
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Kampé de Fériet function. Draft manuscript. (Novosibirsk, Russia, 1998).

[7] Karlsson, P.W. Some reduction formulae for power series and Kampé de Fériet functions,
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1. Introduction.

Throughout this paper, unless specially stated, K denotes a commutative ring with
unit, R is always a prime K-algebra with center Z(R), right Martindale quotient ring Q
and extended centroid C. The definition, axiomatic formulations and properties of this
quotient ring can be found in [2] (Chapter 2).

Many results in literature indicate how the global structure of a ring R is often tightly
connected to the behaviour of additive mappings defined on R. A well known result of
Posner [32] states that if d is a derivation of R such that [d(x), x] ∈ Z(R), for any x ∈ R,
then either d = 0 or R is commutative. Later in [3], Bresar proved that if d and δ are
derivations of R such that d(x)x− xδ(x) ∈ Z(R), for all x ∈ R, then either d = δ = 0 or
R is commutative. In [29], Lee and Wong extended Bresar’s result to the Lie case. They
proved that if d(x)x− xδ(x) ∈ Z(R), for all x in some non-central Lie ideal L of R then
either d = δ = 0 or R satisfies s4, the standard identity of degree 4.

Recently in [28], Lee and Zhou considered the case when the derivations d and δ
are replaced respectively by the generalized derivations H and G, and proved that if
R 6= M2(GF (2)), H,G are two generalized derivations of R, and m,n are two fixed
positive integers, then H(xm)xn = xnG(xm) for all x ∈ R if and only if the following
two conditions hold: (1) There exists w ∈ Q such that H(x) = xw and G(x) = wx for
all x ∈ R; (2) either w ∈ C, or xm and xn are C-dependent for all x ∈ R.

More recently in [5], a similar situation is examined: more precisely it is proved that
if H(un)un + unG(un) ∈ C, for all u ∈ L, a non-central Lie ideal of R, then there
exists a ∈ Q such that H(x) = xa, G(x) = −ax, or R satisfies the standard identity s4.
Moreover in this last case a complete description of H and G is given.

Finally, as a partial extension of the above results to the case of derivations and
generalized derivations acting on multilinear polynomials, we have the following:

1.1. Fact. (Theorem 2 in [27]) Let R be a prime ring, f(x1, . . . , xn) a multilinear poly-
nomial over C in n noncommuting indeterminates, and d : R → R a nonzero derivation
of R. If d(f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ R and f(x1, . . . , xn) is not
central valued on RC, then char(R) = 2 and R satisfies s4.

1.2. Fact. (Lemma 3 in [1]) Let R be a prime ring, f(x1, . . . , xn) a noncentral multi-
linear polynomial over C in n noncommuting indeterminates, and G : R→ R a nonzero
generalized derivation of R. If G(f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ R,
then either char(R) = 2 and R satisfies s4 or there exists b ∈ C such that G(x) = bx for
all x ∈ R and f(x1, . . . , xn)2 is central valued on R.

These facts in a prime K-algebra are natural tests which evidence that, if d is a
derivation of R and G is a generalized derivation of R, then the sets {d(x)x | x ∈ S} and
{G(x)x | x ∈ S} are rather large in R, where S is either a non-central Lie ideal of R, or
the set of all the evaluations of a non-central multilinear polynomial over K.

In this paper we will continue the study of the set

{F (f(x1, . . . , xn))f(x1, . . . , xn) | x1, . . . , xn ∈ R}
for a generalized skew derivation F of R instead of a generalized derivation, and for a
multilinear polynomial f(x1, . . . , xn) in n noncommuting variables over C. For the sake
of clearness and completeness we now recall the definition of a generalized skew derivation
of R. Let R be an associative ring and α be an automorphism of R. An additive mapping
d : R −→ R is called a skew derivation of R if

d(xy) = d(x)y + α(x)d(y)

for all x, y ∈ R. The automophism α is called an associated automorphism of d. An
additive mapping F : R −→ R is said to be a generalized skew derivation of R if there
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exists a skew derivation d of R with associated automorphism α such that

F (xy) = F (x)y + α(x)d(y)

for all x, y ∈ R, and d is said to be an associated skew derivation of F and α is called an
associated automorphism of F . For fixed elements a and b of R, the mapping F : R→ R
defined as F (x) = ax − σ(x)b for all x ∈ R is a generalized skew derivation of R. A
generalized skew derivation of this form is called an inner generalized skew derivation.
The definition of generalized skew derivations is a unified notion of skew derivation and
generalized derivation, which have been investigated by many researchers from various
view points (see [8, 9, 10], [11], [26]).

The main result of this paper is the following:

1. Theorem. Let R be a prime ring, f(x1, . . . , xn) a multilinear polynomial over C in
n noncommuting indeterminates, I a nonzero right ideal of R, and F : R→ R a nonzero
generalized skew derivation of R.

Suppose that F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I. If the polyno-
mial f(x1, . . . , xn) is not central valued on R, then either char(R) = 2 and R satisfies s4
or one of the following holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) F (I)I = (0);

(iii) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, there exist b, c, q ∈ Q with q an
invertible element such that F (x) = bx − qxq−1c for all x ∈ R, and q−1cI ⊆ I.
Moreover, in this case either (b − c)I = (0) or b − c ∈ C and f(x1, . . . , xn)2 is
central valued on R.

It is well known that automorphisms, derivations and skew derivations of R can be
extended toQ. Chang in [8] extended the definition of a generalized skew derivation to the
right Martindale quotient ring Q of R as follows: by a (right) generalized skew derivation
we mean an additive mapping F : Q −→ Q such that F (xy) = F (x)y + α(x)d(y) for all
x, y ∈ Q, where d is a skew derivation of R and α is an automorphism of R. Moreover,
there exists F (1) = a ∈ Q such that F (x) = ax+ d(x) for all x ∈ R (Lemma 2 in [8]).

2. X-inner Generalized Skew Derivations on Prime Rings.

In this section we consider the case when F is an X-inner generalized skew derivation
induced by the elements b, c ∈ R, that is, F (x) = bx − α(x)c for all x ∈ R, where
α ∈ Aut(R) is the associated automorphism of F . Here Aut(R) denotes the group of
automorphisms of R.

At the outset, we will study the case when R = Mm(K) is the algebra of m × m
matrices over a field K. Notice that the set f(R) = {f(r1, . . . , rn) : r1, . . . , rn ∈ R}
is invariant under the action of all inner automorphisms of R. Hence if we denote r =
(r1, . . . , rn) ∈ R× . . .×R = Rn, then for any inner automorphism ϕ of Mm(K), we have
that r = (ϕ(r1), . . . , ϕ(rn)) ∈ Rn and ϕ(f(r)) = f(r) ∈ f(R).

Let us recall some results from [23] and [30]. Let T be a ring with 1 and let eij ∈
Mm(T ) be the matrix unit having 1 in the (i, j)-entry and zero elsewhere. For a sequence
u = (A1, . . . , An) in Mm(T ) the value of u is defined to be the product |u| = A1A2 · · ·An
and u is nonvanishing if |u| 6= 0. For a permutation σ of {1, 2, · · · , n} we write uσ =
(Aσ(1), . . . , Aσ(n)). We call u simple if it is of the form u = (a1ei1j1 , . . . , aneinjn), where
ai ∈ T . A simple sequence u is called even if for some σ, |uσ| = beii 6= 0, and odd if for
some σ, |uσ| = beij 6= 0, where i 6= j and b ∈ T . We have:
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2.1. Fact. (Lemma in [23]) Let T be a K-algebra with 1 and let R = Mm(T ), m ≥ 2.
Suppose that h(x1, . . . , xn) is a multilinear polynomial over K such that h(u) = 0 for all
odd simple sequences u. Then h(x1, . . . , xn) is central valued on R.

2.2. Fact. (Lemma 2 in [30]) Let T be a K-algebra with 1 and let R = Mm(T ), m ≥ 2.
Suppose that h(x1, . . . , xn) is a multilinear polynomial over K. Let u = (A1, . . . , An) be
a simple sequence from R.

1. If u is even, then h(u) is a diagonal matrix.
2. If u is odd, then h(u) = aepq for some a ∈ T and p 6= q.

2.3. Fact. Suppose that f(x1, . . . , xn) is a multilinear polynomial over a field K not
central valued on R = Mm(K). Then by Fact 2.1 there exists an odd simple sequence
r = (r1, . . . , rn) from R such that f(r) = f(r1, . . . , rn) 6= 0. By Fact 2.2, f(r) = βepq,
where 0 6= β ∈ K and p 6= q. Since f(x1, . . . , xn) is a multilinear polynomial and K is
a field, we may assume that β = 1. Now, for distinct i and j, let σ ∈ Sn be such that
σ(p) = i and σ(q) = j, and let ψ be the automorphism of R defined by ψ(

∑
s,t ξstest) =∑

s,t ξsteσ(s)σ(t). Then f(ψ(r)) = f(ψ(r1), . . . , ψ(rn)) = ψ(f(r)) = βeij = eij .

In all that follows we always assume that f(x1, . . . , xn) is not central valued on R.

2.4. Lemma. Let R = Mm(K) be the algebra of m ×m matrices over the field K and
m ≥ 2, f(x1, . . . , xn) a multilinear polynomial over K, which is not central valued on R.
If there exist b, c, q ∈ R with q an invertible matrix such that

(
bf(r1, . . . , rn)− qf(r1, . . . , rn)q−1c

)
f(r1, . . . , rn) ∈ Z(R)

for all r1, . . . , rn ∈ R, then either char(R) = 2 and m = 2, or q−1c, b − c ∈ Z(R) and
f(x1, . . . , xn)2 is central valued on R, provided that b 6= c.

Proof. If q−1c ∈ Z(R) then the conclusion follows from Fact 1.2. Thus we may assume
that q−1c is not a scalar matrix and proceed to get a contradiction. Say q =

∑
hl qhlehl

and q−1c =
∑
hl phlehl, for qhl, phl ∈ K. By Fact 2.3, eij ∈ f(R) for all i 6= j, then for

any i 6= j

X = (beij − qeijq−1c)eij ∈ Z(R).

By X, we have qeijq
−1ceij = qpjieij ∈ Z(R). Then for any 1 ≤ k ≤ m [qpjieij , eik] = 0,

that is qkipji = 0. Since q is invertible qk0i 6= 0 for some k0, we get pji = 0 for all i 6= j.
Hence q−1c is a diagonal matrix in R. Let i 6= j and ϕ(x) = (1 + eji)x(1 − eji) be an
automorphism of R. It is well known that ϕ(f(ri)) ∈ f(R), then

(
ϕ(b)u− ϕ(q)uϕ(q−1c)

)
u ∈ Z(R)

for all u ∈ f(R). By the above argument, ϕ(q−1c) is a diagonal matrix, that is the (j, i)-
entry of ϕ(q−1c) is zero. By calculations it follows pii = pjj , and we get the contradiction
that q−1c is central in R. �

2.5. Lemma. Let R be a prime ring, f(x1, . . . , xn) be a non-central multilinear polyno-
mial over C. If there exist b, c, q ∈ R with q an invertible element such that

(bf(r1, . . . , rn)− qf(r1, . . . , rn)q−1c)f(r1, . . . , rn) ∈ C
for all r1, . . . , rn ∈ R, then either char(R) = 2 and R satisfies s4, or q−1c, b− c ∈ Z(R)
and f(x1, . . . , xn)2 is central valued on R, provided that b 6= c.
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Proof. Consider the generalized polynomial

Φ(x1, . . . , xn+1) =

[(
bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c

)
f(x1, . . . , xn), xn+1

]

which is a generalized polynomial identity for R. If {1, q−1c} is linearly C-dependent,
then q−1c ∈ C. In this case R satisfies

Φ(x1, . . . , xn+1) =

[(
(b− c)f(x1, . . . , xn)

)
f(x1, . . . , xn), xn+1

]

and we are done by Fact 1.2.
Hence we here assume that {1, q−1c} is linearly C-independent. In this case Φ(x1, . . . , xn+1)

is a non-trivial generalized polynomial identity for R and by [12] Φ(x1, . . . , xn+1) is a non-
trivial generalized polynomial identity for Q. By Martindale’s theorem in [31], Q is a
primitive ring having nonzero socle with the field C as its associated division ring. By
[20] (p. 75) Q is isomorphic to a dense subring of the ring of linear transformations of a
vector space V over C, containing nonzero linear transformations of finite rank. Assume
first that dimCV = k a finite integer. Then Q ∼= Mk(C) and the conclusion follows from
Lemma 2.4. Therefore we may assume that dimCV = ∞. As in Lemma 2 in [33], the
set f(R) = {f(r1, . . . , rn) : ri ∈ R} is dense in R and so from Φ(r1, . . . , rn+1) = 0 for all
r1, . . . , rn+1 ∈ R, we have that Q satisfies the generalized identity

[(
bx1 − qx1q−1c

)
x1, x2

]
.

In particular for x1 = 1, [b − c, x2] is an identity for Q, that is b − c ∈ C, say b = c + λ
for some λ ∈ C. Thus Q satisfies

[(
(c+ λ)x1 − qx1q−1c

)
x1, x2

]

and by replacing x1 with y1 + t1 we have that
[(

(c+ λ)y1 − qy1q−1c

)
t1, x2

]
+

[(
(c+ λ)t1 − qt1q−1c

)
y1, x2

]

is an identity for Q. Once again for y1 = 1 it follows that Q satisfies
[
λt1 + (c+ λ)t1 − qt1q−1c, x2

]

and for x2 = t1 [
ct1 − qt1q−1c, t1

]
.

By Lemma 3.2 in [17] (or [18] Theorem 1) and since R cannot satisfy any polynomial
identity (dimCV =∞), it follows the contradiction q−1c ∈ C. �

2.6. Proposition. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear poly-
nomial over C in n non-commuting variables, b, c ∈ R and α ∈ Aut(R) such that F (x) =
bx − α(x)c for all x ∈ R. If F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ R,
and F is nonzero on R, then either char(R) = 2 and R satisfies s4, or f(x1, . . . , xn)2 is
central valued on R and there exists γ ∈ C such that F (x) = γx, for all x ∈ R. When
this last case occurs, we have:

(i) if α is X-outer then γ = b and c = 0;
(ii) if α(x) = qxq−1 for all x ∈ R and for some invertible element q ∈ Q, then

γ = b− c and q−1c ∈ C.

Proof. In case α is an X-inner automorphism of R, there exists an invertible element
q ∈ Q such that α(x) = qxq−1 for all x ∈ R and the conclusion follows from Lemma
2.5. So we may assume here that α is X-outer. Since by [14] R and Q satisfy the same
generalized identities with automorphisms, then

Φ(x1, . . . , xn+1) =
[(
bf(x1, . . . , xn)− α(f(x1, . . . , xn))c

)
f(x1, . . . , xn), xn+1

]
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is satisfied by Q, moreover Q is a centrally closed prime C-algebra. Note that if c = 0
we are done by Fact 1.2. Thus we may assume c 6= 0. In this case, by [13] (main
Theorem), Φ(x1, . . . , xn+1) is a non-trivial generalized identity for R and for Q. By
Theorem 1 in [21], RC has non-zero socle and Q is primitive. Moreover, since α is an
outer automorphism and any (xi)

α-word degree in Φ(x1, . . . , xn) is equal to 1, then by
Theorem 3 in [14], Q satisfies the identity

[(
bf(x1, . . . , xn)− fα(y1, . . . , yn)c

)
f(x1, . . . , xn), xn+1

]
,

where fα(X1, . . . , Xn) is the polynomial obtained from f by replacing each coefficient γ
of f with α(γ). By Fact 1.2 we conclude that either char(R) = 2 and R satisfies s4 or
b, c ∈ C and f(x1, . . . , xn)2 is central valued on R. Moreover, in this last case we also
have that Q satisfies

c
[
f(y1, . . . , yn)f(x1, . . . , xn), xn+1

]
.

Since c 6= 0 we have [f(y1, . . . , yn)f(x1, . . . , xn), xn+1] is a polynomial identity for Q.
Thus there exists a suitable field K such that Q and the l × l matrix ring Ml(K)
satisfy the same polynomial identities by Lemma 1 in [22]. In particular, Ml(K) sat-
isfies [f(y1, . . . , yn)f(x1, . . . , xn), xn+1]. Hence, since f(x1, . . . , xn) is not central val-
ued on Ml(K) (and hence l ≥ 2), by Fact 2.3 we have that for all i 6= j there exist
r1, . . . , rn, s1, . . . , sn ∈Ml(K) such that f(r1, . . . , rn) = eij and f(s1, . . . , sn) = eji. As a
consequence we get 0 = [eijeji, xn+1] = [eii, xn+1], which is a contradiction for a suitable
choice of xn+1 ∈Ml(K) (for example xn+1 = eij). �

2.7. Fact. (Theorem 1 in [15]) Let R be a prime ring, D be an X-outer skew derivation of
R and α be an X-outer automorphism of R. If Φ(xi, D(xi), α(xi)) is a generalized polyno-
mial identity for R, then R also satisfies the generalized polynomial identity Φ(xi, yi, zi),
where xi, yi and zi are distinct indeterminates.

We close this section by collecting the results we obtained so far in the following

2.8. Proposition. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear poly-
nomial over C in n non-commuting variables, F : R→ R a nonzero X-inner generalized
skew derivation of R.

If F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ R, then either char(R) = 2
and R satisfies s4, or f(x1, . . . , xn)2 is central valued on R and there exists γ ∈ C such
that F (x) = γx, for all x ∈ R.

Proof. We can write F (x) = bx+d(x) for all x ∈ R where b ∈ Q and d is a skew derivation
of R (see [8]). We denote f(x1, . . . , xn) =

∑
σ∈Sn

γσxσ(1) · · ·xσ(n) with γσ ∈ C. By

Theorem 2 in [15] R and Q satisfy the same generalized polynomial identities with a
single skew derivation, then Q satisfies

(2.1)

[(
bf(x1, . . . , xn) + d(f(x1, . . . , xn))

)
f(x1, . . . , xn), xn+1

]
.

Since F is X-inner then d is X-inner, that is there exist c ∈ Q and α ∈ Aut(Q) such
that d(x) = cx − α(x)c, for all x ∈ R. Hence F (x) = (b + c)x − α(x)c and we conclude
by Proposition 2.6. �

2.9. Corollary. Let R be a prime ring, f(x1, . . . , xn) a non-vanishing multilinear poly-
nomial over C in n non-commuting variables, F : R→ R a non-zero X-inner generalized
skew derivation of R. If F (f(r1, . . . , rn))f(r1, . . . , rn) = 0, for all r1, . . . , rn ∈ R, then
char(R) = 2 and R satisfies s4.
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3. Generalized Skew Derivations on Right Ideals.

We premit the following:

3.1. Fact. (Main Theorem in [1]) Let R be a prime ring, I a nonzero right ideal of
R, f(x1, . . . , xn) a multilinear polynomial over C in n non-commuting indeterminates,
which is not an identity for R, and g : R→ R a nonzero generalized derivation of R with
the associated derivation d : R → R, that is g(x) = ax+ d(x), for all x ∈ R and a fixed
a ∈ Q.

Suppose that g(f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I. Then either
char(R) = 2 and R satisfies s4 or f(x1, . . . , xn)xn+1 is an identity for I, or there exist
b, c ∈ Q such that g(x) = bx+ xc for all x ∈ R and one of the following holds:

(i) b, c ∈ C and f(x1, . . . , xn)2 is central valued on R;
(ii) there exists λ ∈ C such that b = λ− c and f(x1, . . . , xn) is central valued on R;

(iii) (b+ c)I = (0) and I satisfies the identity [f(x1, . . . , xn), xn+1]xn+2;
(iv) (b+ c)I = (0) and there exists γ ∈ C such that (c− γ)I = (0).

3.2. Fact. (Theorem 1 in [1]) Under the same situation as in above Fact, we notice
that in case g(f(r1, . . . , rn))f(r1, . . . , rn) = 0, for all r1, . . . , rn ∈ I, the conclusions (i)
and (ii) cannot occur. Hence we have that either char(R) = 2 and R satisfies s4 or
f(x1, . . . , xn)xn+1 is an identity for I, or there exist b, c ∈ Q such that g(x) = bx + xc
for all x ∈ R and one of the following holds:

(i) (b+ c)I = (0) and I satisfies the identity [f(x1, . . . , xn), xn+1]xn+2;
(ii) (b+ c)I = (0) and there exists γ ∈ C such that (c− γ)I = (0).

3.3. Proposition. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear polyno-
mial over C in n non-commuting indeterminates, I a nonzero right ideal of R, F : R→ R
an X-outer generalized skew derivation of R. If

(3.1) F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C,

for all r1, . . . , rn ∈ I, then either char(R) = 2 and R satisfies s4(x1, . . . , x4), or f(x1, . . . , xn)xn+1

is an identity for I.

Proof. As above we write F (x) = bx + d(x) for all x ∈ R, b ∈ Q and d is an X-outer
skew derivation of R. Let α ∈ Aut(Q) be the automorphism which is associated with
d. Notice that in case α is the identity map on R, then d is a usual derivation of R
and so F is a generalized derivation of R. Therefore by Fact 3.1 we obtain the required
conclusions. Hence in what follows we always assume that α 6= 1 ∈ Aut(R).

We denote by fd(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by replacing
each coefficient γσ with d(γσ). Notice that

d
(
γσxσ(1) · · ·xσ(n)

)
= d(γσ)xσ(1) · · ·xσ(n)

+ α(γσ)

n−1∑

j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n)

so that

d(f(x1, . . . , xn)) = fd(x1, . . . , xn)

+
∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(xσ(1) · · ·xσ(j))d(xσ(j+1))xσ(j+2) · · ·xσ(n).
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Since IQ satisfies (3.1), then for all 0 6= u ∈ I, Q satisfies
[(
bf(ux1, . . . , uxn) + fd(ux1, . . . , uxn)

)
f(ux1, . . . , uxn), xn+1

]

+

[(∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(uxσ(1) . . . uxσ(j))d(uxσ(j+1))uxσ(j+2) . . . uxσ(n)

)
f(ux1, . . . , uxn), xn+1

]
.

By Theorem 1 in [15], Q satisfies
[(
bf(ux1, . . . , uxn) + fd(ux1, . . . , uxn)

)
f(ux1, . . . , uxn), xn+1

]

+

[( ∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(uxσ(1) . . . uxσ(j))d(u)xσ(j+1) . . . uxσ(n)

)
f(ux1, . . . , uxn), xn+1

]

+

[(∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(uxσ(1)) . . . uxσ(j))α(u)yσ(j+1)uxσ(j+2) . . . uxσ(n)

)
f(ux1, . . . , uxn), xn+1

]
.

In particular Q satisfies

(3.2)
[(∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(uxσ(1) . . . uxσ(j))α(u)yσ(j+1)uxσ(j+2) . . . uxσ(n)

)
f(ux1, . . . , uxn), xn+1

]
.

Here we suppose that either char(R) 6= 2 orR does not satisfy s4, moreover f(x1, . . . , xn)xn+1

is not an identity for I, if not we are done. Hence suppose there exist a1, . . . , an+1 ∈ I
such that f(a1, . . . , an)an+1 6= 0. We proceed to get a number of contradictions.

Since 0 6= α(u) is a fixed element of Q, we notice that (3.2) is a non-trivial generalized
polynomial identity forQ, thenQ has nonzero socleH which satisfies the same generalized
polynomial identities of Q (see [12]). In order to prove our result, we may replace Q by
H, and by Lemma 1 in [19], we may assume that Q is a regular ring. Thus there exists

0 6= e = e2 ∈ IQ such that
∑n+1
i=1 aiQ = eQ, and ai = eai for each i = 1, . . . , n+1. Notice

that eQ satisfies the same generalized identities with skew derivations and automorphisms
of I. So that we may assume e 6= 1, if not eQ = Q and the conclusion follows from
Proposition 2.6.

Assume that α is X-outer. Thus, by Fact 2.7 and (3.2), Q satisfies

(3.3)
[(∑

σ∈Sn

α(γσ)

n−1∑

j=0

α(e)tσ(1) · · ·α(e)tσ(j)α(e)yσ(j+1)exσ(j+2) · · · exσ(n)
)
f(ex1, . . . , exn), xn+1

]

and in particular

(3.4)

[(∑

σ∈Sn

α(γσ)α(e)yσ(1) · · ·α(e)yσ(n)

)
f(ex1, . . . , exn), xn+1

]
.

We also denote by fα(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by replac-
ing each coefficient γσ with α(γσ). Therefore we may rewrite (3.4) as follows:

(3.5)

[
fα(α(e)r1, . . . , α(e)rn

)
f(es1, . . . , esn), X

]
= 0

for all r1, . . . , rn, s1, . . . , sn, X ∈ Q. Choose in (3.5) X = Y (1− α(e)), then we get

fα(α(e)r1, . . . , α(e)rn)f(es1, . . . , esn)Y (1− α(e)) = 0
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and by the primeness of Q and since e 6= 1, it follows that Q satisfies

fα(α(e)y1, . . . , α(e)yn)f(ex1, . . . , exn)

that is fα(α(e)Q)f(eQ) = (0), where α(e)Q and eQ are both right ideals of Q and
fα and f are distinct polynomials over C (since α 6= 1). In this situation, apply-
ing the result in [16] (see the proof of Lemma 3, pp. 181), it follows that either
fα(α(e)Q)α(e) = (0) or f(eQ) = (0). Since this last case cannot occur, we have that
fα(α(e)r1, . . . , α(e)rn)α(e) = 0 for all r1, . . . , rn ∈ Q. Hence

0 = α−1

(
fα(α(e)r1, . . . , α(e)rn)α(e)

)
= f(eα−1(r1), . . . , eα−1(rn))e

and since α−1 is an automorphism of Q, it follows that f(es1, . . . , esn)e = 0, for all
s1, . . . , sn ∈ Q, which is again a contradiction.

Finally consider the case when there exists an invertible element q ∈ Q such that
α(x) = qxq−1, for all x ∈ Q. Thus from (3.2) we have that Q satisfies

(3.6)
[(∑

σ∈Sn

α(γσ)

n−1∑

j=0

q(exσ(1) · · · exσ(j))eq−1yσ(j+1)exσ(j+2) · · · exσ(n)
)
f(ex1, . . . , exn), xn+1

]
.

Since α(γσ) = γσ and by replacing yσ(i) with qxσ(i), for all σ ∈ Sn and for all i = 1, . . . , n,
it follows that Q satisfies

(3.7)

[(∑

σ∈Sn

γσqexσ(1) · · · exσ(j)exσ(j+1)exσ(j+2) · · · exσ(n)
)
f(ex1, . . . , exn), xn+1

]

that is

(3.8)

[(
qf(ex1, . . . , exn)

)
f(ex1, . . . , exn), xn+1

]
.

By Fact 3.1 it follows that one of the following holds:

1. char(Q) = 2 and Q satisfies s4;
2. f(x1, . . . , xn)xn+1 is an identity for eQ;
3. q ∈ C;
4. qeQ = (0).

Since in any case we get a contradiction, we are done. �

3.4. Lemma. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear polynomial
over C in n non-commuting indeterminates, I a nonzero right ideal of R, b, c ∈ Q and
α ∈ Aut(R) be an automorphism of R such that F (x) = bx−α(x)c, for all x ∈ R. Assume
that F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I. If R does not satisfy any
non-trivial generalized polynomial identity then F (I)I = (0).

Proof. Let u be any nonzero element of I. By the hypothesis R satisfies the following:
[(
b(f(ux1, . . . , uxn))− α(f(ux1, . . . , uxn))c

)
f(ux1, . . . , uxn), xn+1

]
.

Also here we denote by fα(x1, . . . , xn) the polynomial obtained from f(x1, . . . , xn) by
replacing each coefficient γσ of f(x1, . . . , xn) with α(γσ). Thus R satisfies

(3.9)

[(
bf(ux1, . . . , uxn)− fα(α(u)α(x1), . . . , α(u)α(xn))c

)
f(ux1, . . . , uxn), xn+1

]
.
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In case α is X-outer, by Theorem 3 in [14] and (3.9) we have that R satisfies
[(
b(f(ux1, . . . , uxn))− fα(α(u)y1, . . . , α(u)yn)c

)
f(ux1, . . . , uxn), xn+1

]

and in particular R satisfies both

(3.10)

[
bf(ux1, . . . , uxn)2, xn+1

]

and

(3.11)

[
fα(α(u)y1, . . . , α(u)yn)cf(ux1, . . . , uxn), xn+1

]
.

Since (3.10) and (3.11) must be trivial generalized polynomial identities for R, by [12] it
follows that bu = 0 and cu = 0 that is F (I)I = (0).

Consider now the case α(x) = qxq−1 for all x ∈ R, for some invertible element q ∈ Q.
Since by (3.9)

(3.12)

[(
bf(ux1, . . . , uxn)− qf(ux1, . . . , uxn)q−1c

)
f(ux1, . . . , uxn), xn+1

]

is a trivial generalized polynomial identity for R, again by [12] we have that bu = λqu,
for some λ ∈ C. Thus we may write (3.12) as follows

(3.13)

[
qf(ux1, . . . , uxn)(λ− q−1c)f(ux1, . . . , uxn), xn+1

]
.

Once again (3.13) is a trivial identity for R, moreover qu 6= 0. This implies that (λ −
q−1c)u = 0 and hence (λu − q−1c)u = 0 for all u ∈ I and for some λu ∈ C. Then u
and q−1cu are C-dependent for all u ∈ I. By a standard argument we conclude that
(λ− q−1c)I = (0) for some λ ∈ C, and thus F (I)I = (0). �

3.5. Lemma. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear polynomial
over C in n non-commuting indeterminates, I a nonzero right ideal of R, b, c ∈ Q and
α ∈ Aut(R) be an X-outer automorphism of R such that F (x) = bx−α(x)c, for all x ∈ R.
If F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C, for all r1, . . . , rn ∈ I, then either char(R) = 2 and
R satisfies s4 or one of the following holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) F (I)I = (0);

(iii) cI = (0), b ∈ C and f(x1, . . . , xn)2 is central valued on R.

Proof. Firstly we notice that in case cI = (0), then bf(r1, . . . , rn)2 ∈ C, for all r1, . . . , rn ∈
I. Thus by Fact 3.1 it follows that either cI = (0), b ∈ C and f(x1, . . . , xn)2 is central
valued on R, or cI = bI = (0) that is F (I)I = (0). Hence in the following we assume
cI 6= (0). By previous Lemma we may assume that R satisfies some non-trivial general-
ized polynomial identity. As above let u be any nonzero element of I. By the hypothesis
R satisfies the following:

(3.14)

[(
bf(ux1, . . . , uxn)− fα(α(u)α(x1), . . . , α(u)α(xn))c

)
f(ux1, . . . , uxn), xn+1

]
.

Since α is X-outer, by Theorem 3 in [14], R satisfies

(3.15)

[(
bf(ux1, . . . , uxn)− fα(α(u)y1, . . . , α(u)yn)c

)
f(ux1, . . . , uxn), xn+1

]

and in particular R as well as Q satisfy the component

(3.16)

[
fα(α(u)y1, . . . , α(u)yn)cf(ux1, . . . , uxn), xn+1

]
.
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By [31] Q is a primitive ring having nonzero socle H with the field C as its associated
division ring. Moreover H and Q satisfy the same generalized polynomial identities with
automorphisms (Theorem 1 in [14]). Therefore H satisfies (3.14) and so we may replace
Q by H. Suppose there exist a1, . . . , an+2 ∈ I such that f(a1, . . . , an)an+1 6= 0 and
can+2 6= 0. Since Q is a regular GPI-ring, there exists an idempotent element e ∈ IQ
such that eQ =

∑n+2
i=1 aiQ and ai = eai, for any i = 1, . . . , n + 2. Therefore, by (3.14),

Q satisfies

(3.17)

[(
bf(ex1, . . . , exn)− fα(α(e)α(x1), . . . , α(e)α(xn))c

)
f(ex1, . . . , exn), xn+1

]
.

Moreover assume e 6= 1, if not eQ = Q and by Proposition 2.6 we get b ∈ C, c = 0 and
f(x1, . . . , xn)2 is central valued on R. Since α is X-outer, as above by (3.17) Q satisfies

[(
bf(ex1, . . . , exn)− fα(α(e)y1, . . . , α(e)yn)c

)
f(ex1, . . . , exn), xn+1

]
.

In particular Q satisfies
[
fα(α(e)y1, . . . , α(e)yn)cf(ex1, . . . , exn), xn+1(1− α(e))

]

that is Q satisfies

fα(α(e)y1, . . . , α(e)yn)cf(ex1, . . . , exn)xn+1(1− α(e))

and since Q is prime and e 6= 0, 1, it follows fα(α(e)r1, . . . , α(e)rn)cf(es1, . . . , esn) = 0,
for all r1, . . . , rn, s1, . . . , sn ∈ Q. Since f(ea1, . . . , ean)ean+1 6= 0 and cean+2 6= 0 and by
using the result in [16], it follows that fα(α(e)y1, . . . , α(e)yn) is an identity for Q. This
implies that f(eα−1(y1), . . . , eα−1(yn)) is also an identity for Q. Moreover it is clear that
α−1 is X-outer, therefore f(ex1, . . . , exn) is an identity for Q, a contradiction. �

3.6. Lemma. Let R be a prime ring, f(x1, . . . , xn) a non-central multilinear polynomial
over C in n non-commuting indeterminates, I a nonzero right ideal of R, b, c, q ∈ Q such
that F (x) = bx− qxq−1c, for all x ∈ R. If

F (f(r1, . . . , rn))f(r1, . . . , rn) = 0,

for all r1, . . . , rn ∈ I, then either charR = 2 and R satisfies s4 or one of the following
holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, (b− c)I = (0) and q−1cI ⊆ I;

(iii) F (I)I = (0).

Proof. Here I satisfies

(3.18)

(
bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c

)
f(x1, . . . , xn)

and left multiplying by q−1, I satisfies

(3.19)

(
q−1b(f(x1, . . . , xn))− (f(x1, . . . , xn)q−1c

)
f(x1, . . . , xn).

Since we assume f(x1, . . . , xn) is not central valued on R, by Fact 3.2 we have that either
charR = 2 and R satisfies the standard identity s4, or f(x1, . . . , xn)xn+1 is an identity
for I, or one of the following holds:

1. there exists γ ∈ C such that q−1bx = γx = q−1cx, for all x ∈ I (this is the case
F (I)I = (0)).

2. q−1(b − c)I = (0), that is (b − c)I = (0), moreover [f(x1, . . . , xn), xn+1]xn+2 is
an identity for I.
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In this last case, by (3.19) it follows that I satisfies

(3.20)

(
bf(ux1, . . . , uxn)− qf(ux1, . . . , uxn)q−1b

)
f(ux1, . . . , uxn)

and moreover, since I satisfies the polynomial identity [f(x1, . . . , xn), xn+1]xn+2, in view
of Proposition in [25], I = eQ for some idempotent e in the socle of Q. Here we write
f(x1, . . . , xn) =

∑
ti(x1, . . . , xi−1, xi+1, . . . , xn)xi, where any ti is a multilinear polyno-

mial in n−1 variables and xi never appears in ti. Of course, if ti(ex1, . . . , exi−1, exi+1, . . . , exn)e
is an identity for Q, then f(x1, . . . , xn)xn+1 is an identity for I and we are done. Thus
assume there exists i ∈ {1, . . . , n} such that ti(er1, . . . , eri−1, eri+1, . . . , ern)e 6= 0 for
some r1, . . . , rn ∈ I. In particular,

f(ex1, . . . , exi−1, exi(1− e), exi+1, . . . , exn) = ti(ex1, . . . , exn)exi(1− e)
and by (3.20) Q satisfies

bti(ex1, . . . , exn)exi(1− e)ti(ex1, . . . , exn)exi(1− e)
− qti(ex1, . . . , exn)exi(1− e)q−1bti(ex1, . . . , exn)exi(1− e)

that is Q satisfies

(3.21)

(
−qti(ex1, . . . , exn)exi(1− e)q−1b

)
ti(ex1, . . . , exn)exi(1− e)

and left multiplying by (1− e)q−1bq−1, we easily have that Q satisfies

(3.22) (1− e)q−1bti(ex1, . . . , exn)eX(1− e)q−1bti(ex1, . . . , exn)eX(1− e).
By Lemma 2 in [32] and since e 6= 1, it follows that

(1− e)q−1bti(ex1, . . . , exi−1, exi+1, . . . , exn)e

is an identity for Q, that is (1 − e)q−1beti(x1e, . . . , xi−1e, xi+1e, . . . , xne) is an identity
for Q. In this case, since ti(x1e, . . . , xi−1e, xi+1e, . . . , xne) is not an identity for Q, we get
in view of the result in [16], (1− e)q−1be = 0, that is q−1bI ⊆ I and also q−1cI ⊆ I. �

3.7. Theorem. Let R be a prime ring, f(x1, . . . , xn) a multilinear polynomial over C
in n non-commuting variables, I a non-zero right ideal of R, F : R → R be a non-zero
generalized skew derivation of R. Suppose that

F (f(r1, . . . , rn))f(r1, . . . , rn) ∈ C,
for all r1, . . . , rn ∈ I. If f(x1, . . . , xn) is not central valued on R, then either char(R) = 2
and R satisfies s4 or one of the following holds:

(i) f(x1, . . . , xn)xn+1 is an identity for I;
(ii) F (I)I = (0);

(iii) [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, there exist b, c, q ∈ Q with q in-
vertible such that F (x) = bx−qxq−1c for all x ∈ R, and q−1cI ⊆ I; moreover in
this case either (b− c)I = (0) or b− c ∈ C and f(x1, . . . , xn)2 is central valued
on R provided that b 6= c.

Proof. In view of all previous Lemmas and Propositions, we may assume I 6= R and
F (x) = bx−qxq−1c, for all x ∈ R. Moreover we may assume that there exist s1, . . . , sn ∈ I
such that F (f(s1, . . . , sn))f(s1, . . . , sn) 6= 0. Therefore

(bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c)f(x1, . . . , xn)

is a central generalized polynomial identity for I. Thus R is a PI-ring and so RC is a
finite dimensional central simple C-algebra (the proof of this fact is the same of Theorem
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1 in [7]). By Wedderburn-Artin theorem, RC ∼= Mk(D) for some k ≥ 1 and D a finite-
dimensional central division C-algebra. By Theorem 2 in [24]

(bf(x1, . . . , xn)− qf(x1, . . . , xn)q−1c)f(x1, . . . , xn) ∈ C
for all x1, . . . , xn ∈ IC. Without loss of generality we may replace R with RC and assume
that R = Mk(D). Let E be a maximal subfield of D, so that Mk(D) ⊗C E ∼= Mt(E)
where t = k · [E : C]. Hence (bf(r1, . . . , rn) − qf(r1, . . . , rn)q−1c)f(r1, . . . , rn) ∈ C, for
any r1, . . . , rn ∈ I ⊗ E (Lemma 2 in [24] and Proposition in [29]). Therefore we may
assume that R ∼= Mt(E) and I = eR = (e11R+ · · ·+ ellR), where t ≥ 2 and l ≤ t.

Suppose that t ≥ 2, otherwise we are done and denote q =
∑
r,s qrsers and q−1c =∑

r,s crsers, for qrs, crs ∈ E. As in Lemma 3.6 we write

f(x1, . . . , xn) =
∑

ti(x1, . . . , xi−1, xi+1, . . . , xn)xi

and there exists some ti(x1, . . . , xi−1, xi+1, . . . , xn)xi which is not an identity for I. In
particular qti(ex1, . . . , exi−1, exi+1, . . . , exn)exi is not an identity for R, because q is
invertible. Hence, again for

f(ex1, , . . . , exi−1, exi(1−e), exi+1, . . . , exn) = ti(ex1, . . . , exi−1, exi+1, . . . , exn)exi(1−e)
and by our hypothesis, we have that

qti(ex1, . . . , exi−1, exi+1, . . . , exn)exi(1−e)q−1cti(ex1, . . . , exi−1, exi+1, . . . , exn)exi(1−e)
is an identity for R, and by the primeness of R it follows that

(1− e)q−1cti(ex1, . . . , exi−1, exi+1, . . . , exn)e

is an identity for R. By [16] and since ti(ex1, . . . , exi−1, exi+1, . . . , exn)exi is not an
identity for R, the previous identity says that (1− e)q−1ce = 0. Thus q−1cI ⊆ I.
In case [f(x1, . . . , xn), xn+1]xn+2 is an identity for I, then by our assumption we get
(b− c)f(r1, . . . , rn)2 ∈ C for all r1, . . . , rn ∈ I. In view of Fact 3.1, either (b− c)I = (0)
and we are done, or b − c ∈ C and f(x1, . . . , xn)2 is central valued on R, provided that
b 6= c.

Consider finally the case [f(x1, . . . , xn), xn+1]xn+2 is not an identity for I. By Lemma
3 in [6], for any i ≤ l, j 6= i, the element eij falls in the additive subgroup of RC generated
by all valuations of f(x1, . . . , xn) in I. Since the matrix (beij − qeijq−1c)eij has rank at
most 1, then it is not central. Therefore qeijq

−1ceij = 0, i.e. qki(q
−1c)ji = 0 for all k

and for all j 6= i. Since q is invertible, there exists some qki 6= 0, therefore (q−1c)ji = 0
for all j 6= i.

Consider the following automorphism of R:

λ(x) = (1 + eij)x(1− eij) = x+ eijx− xeij − eijxeij
for any i, j ≤ l, and note that λ(I) ⊆ I is a right ideal of R satisfying

[(
λ(b)f(x1, . . . , xn)− λ(q)f(x1, . . . , xn)λ(q−1c)

)
f(x1, . . . , xn), xn+1

]
.

If we denote λ(q−1c) =
∑
rs c
′
rsers, the above argument says that c′rs = 0 for all s ≤ l and

r 6= s. In particular the (i, j)-entry of λ(q−1c) is zero. This implies that cii = cjj = α, for
all i, j ≤ l. Therefore q−1cx = αx for all x ∈ I. This leads to (b − c)f(r1, . . . , rn)2 ∈ C
for all r1, . . . , rn ∈ I and we conclude by the same argument above. �

For the sake of completeness, we would like to conclude this paper by showing the
explicit meaning of the conclusion F (I)I = (0), more precisely we state the following:
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3.8. Remark. Let R be a prime ring, I be a non-zero right ideal of R and F : R → R
be a non-zero generalized skew derivation of R. If F (I)I = (0) then there exist a, b ∈ Q
and α ∈ Aut(R) such that F (x) = (a + b)x − α(x)b for all x ∈ R, aI = (0) and one of
the following holds:

(i) bI = (0);
(ii) there exist λ ∈ C and an invertible element q ∈ Q such that α(x) = qxq−1, for

all x ∈ R, and q−1by = λy, for all y ∈ I.

Proof. As previously remarked we can write F (x) = ax + d(x) for all x ∈ R, where
a ∈ Q and d is a skew derivation of R (see [8]). Let α ∈ Aut(R) be the automorphism
associated with d, in the sense that d(xy) = d(x)y + α(x)d(y), for all x, y ∈ R. Thus, by
the hypothesis, for all x, y ∈ I,

(3.23) (ax+ d(x))y = 0.

For all x, y, z ∈ I we have:

0 = F (xz)y = (ax+ d(x))zy + α(x)d(z)y

and by (3.23) we obtain α(x)d(z)y = 0 for all x, y, z ∈ I. Moreover α(I) is a non-zero
right ideal of R, so that it follows

(3.24) d(z)y = 0

for all y, z ∈ I. Once again by (3.23) we get azy = 0 for all z, y ∈ I, that is aI = (0).
Finally in (3.24) replace z with xs, for any x ∈ I and s ∈ R, then:

(3.25) 0 = d(xs)y = d(x)sy + α(x)d(s)y

for all x, y ∈ I, s ∈ R. In case d is X-outer, it follows that d(x)sy + α(x)ty = 0, for all
x, y ∈ I and s, t ∈ R (Theorem 1 in [15]). In particular α(x)ty = 0, which implies the
contradiction α(x) = 0 for all x ∈ I. Therefore we may assume that d is X-inner, that is
there exists b ∈ Q such that d(r) = br − α(r)b, for all r ∈ R and by (3.24)

(3.26) (bx− α(x)b)y = 0

for all x, y ∈ I. Consider first the case α is X-outer and replace x with xr, for any r ∈ R.
Then (bxr − α(x)α(r)b)y = 0 and, by Theorem 3 in [14], (bxr − α(x)sb)y = 0 for all
x, y ∈ I and r, s ∈ R. In particular bIRI = (0), which implies bI = (0) and we are done.

On the other hand, if there exists an invertible element q ∈ Q such that α(r) = qrq−1,
for all r ∈ R, from (3.26) we have (bx− qxq−1b)y = 0, for all x, y ∈ I. Left multiplying
by q−1, it follows [q−1b, x]y = 0, and by Lemma in [4] there exists λ ∈ C such that
q−1bx = λx for all x ∈ I. �
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Abstract

In the present paper, we introduce a new notion of weak module
amenability for Banach algebras which is related to module homomor-
phisms. Among other results, we investigate the relationship between
this concept for a Banach algebra A which is a Banach A-bimodule with
compatible actions, and the quotient Banach algebra A/J where J is
the closed ideal of A generated by elements of the form (a ·α)b−a(α ·b)
for a ∈ A and α ∈ A. We then study this concept for an inverse
semigroup S, where some examples on `1(S) and C∗(S) are given.

Keywords: Banach modules; Module derivation; Weak amenability; Weak module
amenability; Inverse semigroup.
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1. Introduction

Let S be a (discrete) semigroup. The semigroup algebra `1(S) is the Banach algebra
consisting of all absolutely summable complex-valued functions on S, with the convolu-
tion product and the `1-norm; ‖f‖1 =

∑
s∈S |f(s)| (f ∈ `1(S)). We will use δs to denote

the point mass function at s; δs(t) = 1 if t = s and = 0 elsewhere. Using point masses
we may represent a function f on S as f =

∑
s∈S f(s)δs. Here we recall that an inverse

semigroup is a discrete semigroup S such that for each s ∈ S, there is a unique element
s∗ ∈ S with ss∗s = s and s∗ss∗ = s∗. The set of elements of the form s∗s are called
idempotents of S and denoted by E.

The concept of amenability for a Banach algebra A was introduced by B. E. John-
son in [18]. A Banach algebra A is amenable if every bounded derivation from A into
any dual Banach A-module is inner, equivalently if H1(A, X∗) = {0} for every Banach
A-module X, where H1(A, X∗) is the first Hochschild cohomology group of A with coef-
ficients in X∗, the first dual space of X. Also, a Banach algebra A is weakly amenable
if H1(A,A∗) = {0}. Bade, Curtis and Dales introduced the notion of weak amenability
in [5]. They considered this concept only for commutative Banach algebras. After that

∗ Department of Mathematics, Garmsar Branch, Islamic Azad University, Garmsar, Iran,
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Johnson defined the weak amenability for arbitrary Banach algebras [19] and showed
that for a locally compact group G, L1(G) is weakly amenable [20]. This fact fails for
semigroups though. For example, if S is the bicyclic inverse semigroup, then `1(S) is not
weakly amenable [9].

Homomorphisms on Banach algebras play an important role in Functional Analysis.
Papers [8] and [21] defined and investigated two concepts of the amenability for Ba-
nach algebras by using homomorphisms which are different from weak amenability and
amenability. In [1], Amini introduced the concept of module amenability of a Banach
algebra A which is a Banach module over another Banach algebra A with compatible
actions. Later this notion of amenability is generalized by the author in [7]. The notion
of weak module amenability of Banach algebras is defined in [4] and studied in [2]. In
fact, the author and Amini investigated the concept of weak module amenability in [2]
and obtained some results on the seond dual of a Banach algebra. In [6], the author
showed that for an arbitrary inverse semigroup S with a set of idempotents E, the semi-
group algebra `1(S) as an `1(E)-module with trivial left action is always weakly module
amenable. The abelian case for S was proved earlier in [4]. These papers motivated us
to generalize of the concept of weak module amenability by homomorphisms.

Let A and A be Banach algebras such that A is a Banach A-bimodule with compatible
actions. Then every A-module homomorphism σ (not necessarily C-linear) on A induces
a linear continuous homomorphism σ̂ on A/J , where J is a closed ideal of A. In section
three, we generalize the concept of weak module amenability of Banach algebras by using
A-module homomorphisms. On the other hand, for each pair A-module homomorphism
σ and τ on A, we define (σ, τ)-weak module amenability of Banach algebras and among
other results, we study the relation between (σ, τ)-weak module amenability of A and
(σ̂, τ̂)-weak amenability of A/J , where J is the closed ideal of A generated by elements
of the form (a · α)b− a(α · b), for a ∈ A and α ∈ A (see also [8]).

In the last part of this paper, we show that under some conditions, `1(S) is (σ, τ)-
weakly module amenable for all `1(E)-module homomorphisms σ and τ on `1(S). Finally
by applying our results, we give an example that `1(S) [C∗(S)] is (σ, σ)-weakly module
amenable as an `1(E)-bimodule [as an C∗(E)-bimodule]. These examples show that this
new concept and module amenability on Banach algebras do not coincide.

2. Preliminaries and Notations

Throughout this paper, A and A are Banach algebras such that A is a Banach A-
bimodule with compatible actions as follows:

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with the following com-
patible actions:

α · (a · x) = (α · a) · x, a · (α · x) = (a ·α) · x, (α · x) · a = α · (x · a) (a ∈ A, α ∈ A, x ∈ X)

and similar for the right or two-sided actions. Then we say that X is a Banach A-A-
module. Moreover, if α · x = x · α for all α ∈ A, x ∈ X, then X is called a commutative
A-A-module. If X is a commutative Banach A-A-module, then so is X∗, where the
actions of A and A on X∗ are defined as follows:

〈f · α, x〉 = 〈f, α · x〉, 〈f · a, x〉 = 〈f, a · x〉,

〈α · f, x〉 = 〈f, x · α〉, 〈a · f, x〉 = 〈f, x · a〉 (a ∈ A, α ∈ A, x ∈ X, f ∈ X∗).
One should remember that A is not an A-A-module in general because A does not satisfy
the compatibility condition a · (α · b) = (a · α) · b for α ∈ A, a, b ∈ A. But when A is
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a commutative A-module and acts on itself by multiplication from both sides, then it is
also a Banach A-A-module.

Let E and F be Banach algebras. We denote by Hom(E,F ) the metric space of all
bounded homomorphisms from E into F , with the metric derived from the bounded
linear operators from E into F , and denote Hom(E,E) by Hom(E).

Now let A and B be A-bimodules. Then a A-module homomorphism from A to B is
a bounded map T : A −→ B with T (a± b) = T (a)± T (b), and is multiplicative, that is
T (ab) = T (a)T (b) for all a, b ∈ A, and

T (α · a) = α · T (a), T (a · α) = T (a) · α, (a,∈ A, α ∈ A).

We denote by HomA(A,B), the space of all such homomorphisms and denote HomA(A,A)
by HomA(A). Note that when A = C, the set of complex numbers, then HomC(A,B) =
Hom(A,B). Although the elements of HomA(A,B) are not necessarily linear, their
boundedness still implies their norm continuity.

Let A and A be as above and X be a Banach A-A-module. Recall that the mapping
D : A −→ X is bounded if there exists M > 0 such that ‖D(a)‖ ≤ M‖a‖ for all a ∈ A.
Suppose that ϕ and ψ are in HomA(A). A bounded map D : A −→ X is called a module
(ϕ,ψ)-derivation if

D(α · a) = α ·D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A)

and

D(a± b) = D(a)±D(b), D(ab) = D(a) · ϕ(b) + ψ(a) ·D(b) (a, b ∈ A).

If X is a commutative A-A-module, then each x ∈ X defines a module (ϕ,ψ)-derivation
Dx(a) = x · ϕ(a) − ψ(a) · x on A. These are called module (ϕ,ψ)-inner derivations.
Derivations of these forms are studied in [7]. A Banach algebra A is called module (ϕ,ψ)-
amenable (as an A-module) if for any commutative Banach A-A-module X, each module
(ϕ,ψ)-derivation D : A −→ X∗ is (ϕ,ψ)-inner [7]. We use the notations ZA(A, (X(ϕ,ψ))

∗)
for the space of all module (ϕ,ψ)-derivations D : A −→ X∗, BA(A, (X(ϕ,ψ))

∗) for those
which are inner (ϕ,ψ)-derivations, and HA(A, (X(ϕ,ψ))

∗) for the quotient space which we
call the first relative (to A) (ϕ,ψ)-cohomology group of A with coefficients in X∗. Hence
A is module (ϕ,ψ)-amenable if and only if HA(A, (X(ϕ,ψ))

∗) = {0} for all commutative
Banach A-A-module X. Indeed, for any φ, ψ ∈ Hom(A), a Banach algebra A is (φ, ψ)-
weakly amenable if H1(A, (A(φ,ψ))

∗) = {0} (for details see [8]).

3. (σ, τ)-weak module amenability of Banach algebras

Let Y be a subspace A∗ as a vector space which is A-submodule and commutative
Banach A-submodule. From now on, such subspaces are called commutative Banach
A-A-submodule of A∗.

3.1. Definition. Let A be a Banach A-module and σ, τ ∈ HomA(A). Then A is called
(σ, τ)-weakly module amenable (as an A-module) if for any commutative Banach A-A-
submodule Y of A∗, each module derivation from A to Y(σ,τ) is inner.

In other words, in the above definition the module actions on A are considered as
follows:

a · x := σ(a)x, x · a = xτ(a) (a, x ∈ A).

Thus, the module actions A on Y ⊆ A∗ are as follows:

〈a · y, b〉 = 〈y, bτ(a)〉, 〈y · a, b〉 = 〈y, σ(a)b〉 (a, b ∈ A, y ∈ Y ).

Note that if σ and τ are the identity maps, then (σ, τ)-weak module amenability
becomes weak module amenability (see [2]).
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Consider the closed ideal J of A generated by elements of the form (a · α)b− a(α · b)
for α ∈ A, a, b ∈ A. The ideal J is both A-submodule and A-submodules of A. Hence the
quotient Banach algebra A/J is a Banach A-A-module with compatible actions when A

acts on A/J canonically. Now, if A/J is a commutative Banach A-module and σ, τ are
epimorphisms in HomA(A), then A is (σ, τ)-weakly module amenable if and only if every
module derivation from A to (A/J)∗ is inner. In fact for each α ∈ A, a, b ∈ A, y ∈ Y , we
have

〈y, (σ(a) · α)τ(b)− σ(a)(α · τ(b))〉 = 〈y, (σ(a) · α)τ(b)〉 − 〈y, σ(a)(α · τ(b))〉
= 〈b · y, σ(a) · α〉 − 〈y · a, α · τ(b)〉
= 〈α · (b · y), σ(a)〉 − 〈(y · a).α, τ(b)〉
= 〈(b · y) · α, σ(a)〉 − 〈α · (y · a), τ(b)〉
= 〈b · (y · α), σ(a)〉 − 〈(α · y) · a, τ(b)〉
= 〈y · α, σ(a)τ(b)〉 − 〈α · y, σ(a)τ(b)〉
= 〈y · α− α · y, σ(a)τ(b)〉 = 0.

Thus for α ∈ A, a, b ∈ A, y ∈ Y with σ(a0) = a and τ(b0) = b, we get

〈y, (a · α)b− a(α · b)〉 = 〈y, (σ(a0) · α)τ(b0)− σ(a0)(α · τ(b0))〉 = 0.

By continuity of D, we see D(a) ⊆ J⊥ = (A/J)∗. It immediately follows from
the above definition that a module amenable Banach algebra A is (σ, τ)-weakly module
amenable for all σ, τ ∈ HomA(A). As we will see later in section four with some examples,

the converse is false. Here and subsequently, we denote

n−times︷ ︸︸ ︷
σ ◦ σ... ◦ σ by σn for all n ∈ N.

3.2. Proposition. Let A be a Banach A-bimodule and σ, τ, µ ∈ HomA(A). If µ is an
epimorphism and A is (σ ◦ µ, τ ◦ µ)-weakly module amenable, then A is (σ, τ)-weakly
module amenable. The converse is true if µ2 is the identity map.

Proof. Let Y be a commutative Banach A-A-submodule of A∗ and let D : A → Y(σ,τ)

be a module (σ, τ)-derivation. Then D ◦ µ is a module (σ ◦ µ, τ ◦ µ)-derivation. So there
exists y ∈ Y(σ◦µ,τ◦µ) such that for each a ∈ A, D(a) = y · (σ ◦µ)(a)− (τ ◦µ)(a) · y. Given
b ∈ A. Then there exists a ∈ A such that µ(a) = b and hence

D(b) = D(µ(a)) = y · σ(µ(a))− τ(µ(a)) · y = y · σ(b)− τ(b) · y.
Thus D is (σ, τ)-inner.

Conversely, suppose that D : A → Y(σ◦µ,τ◦µ) is a module (σ ◦ µ, τ ◦ µ)-derivation. It

is easy to show that D̃ = D ◦ µ−1 is in ZA(A, (Y(σ,τ))). Thus there exists y ∈ Y(σ,τ) so
that for each a ∈ A, D(a) = y · σ(a)− τ(a) · y. We have

D(a) = D(µ−1(µ(a))) = D̃(µ(a)) = y · (σ ◦ µ)(a)− (τ ◦ µ)(a) · y,
for all a ∈ A. Therefore D is (σ ◦ µ, τ ◦ µ)-inner. �

3.3. Corollary. Let A be a Banach A-module and σ ∈ HomA(A). Then the following
statements hold:

(i) If σ is an epimorphism and A is (σn, σn)-weakly module amenable for some
n ∈ N, then A is weakly module amenable;

(ii) If A is weakly module amenable and σ2 is the identity map, then A is (σ, σ)-
weakly module amenable.

3.4. Proposition. Let σ, τ ∈ HomA(A) such that σ be an epimorphism and let the
restriction of σ on the set {ab− ba | a, b ∈ A} be the identity map. If A is (τ, τ)-weakly
module amenable, then A is (σ ◦ τ, σ ◦ τ)-weakly module amenable.
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Proof. Let Y be a commutative Banach A-A-submodule of A∗ and let D : A→ Y(σ◦τ,σ◦τ)
be a module (σ ◦ τ, σ ◦ τ)-derivation. Define D̃ : A→ Y(τ,τ) via 〈D̃(a), b〉 := 〈D(a), σ(b)〉.
It is easy to check that D̃ is a module (τ, τ)-derivation and thus there exists y ∈ Y(τ,τ)

such that D̃(a) = y · τ(a) − τ(a) · y for every a ∈ A. Take x ∈ A. Since σ is an
epimorphism, there exists b ∈ A such that x = σ(b). Then for each a ∈ A, we get

〈D(a), x〉 = 〈D̃(a), b〉 = 〈y · τ(a)− τ(a) · y, b〉
= 〈y, σ(τ(a)b− bτ(a))〉
= 〈y · σ ◦ τ(a)− σ ◦ τ(a) · y, x〉.

It follows that D is an (σ ◦ τ, σ ◦ τ)-inner derivation. �

3.5. Corollary. Let σ ∈ HomA(A) such that σ is an epimorphism and let the restriction

of σ on Ã = {ab − ba | a, b ∈ A} be the identity map. If A is weakly module amenable,
then A is (σn, σn)-weakly module amenable for all n ∈ N.

Recall that A has a bounded approximate identity for A if there is a bounded net
{αj} in A such that ‖αj · a− a‖ → 0 and ‖a · αj − a‖ → 0, for each a ∈ A.

3.6. Proposition. Let A be a Banach A-module and σ, τ ∈ HomA(A). If A has a
bounded approximate identity, then (σ, τ)-weak amenability of A implies its (σ, τ)-weak
module amenability.

Proof. Let Y be a commutative Banach A-A-submodule of A∗ and let D : A → Y(σ,τ)

be a module (σ, τ)-derivation. If {αj} is a bounded approximate identity for A, then by
the Cohen factorization theorem [11], it is a bounded approximate identity for A. Thus
for each a ∈ A there are β ∈ A and b ∈ A such that a = β · b. Hence for each a ∈ A and
ρ ∈ C, we deduce that

σ(ρa) = σ(ρ(β · b)) = lim
j
σ(ρ(αjβ) · b) = lim

j
σ(ραj · a) = lim

j
ραj · σ(a) = ρσ(a).

Therefore σ is C-linear. Similarly, τ ∈ Hom(A). To complete of the proof, it is enough
to show that D is C-linear. Again, by the Cohen factorization theorem for each a ∈ A

there are γ ∈ A and y ∈ Y such that D(a) = γ · y. Then

D(ρa) = D(ρ(β · b)) = lim
j
D(ρ(αjβ) · b)

= lim
j
D(ραj · a) = lim

j
ραj ·D(a)

= lim
j
ραj · (γ · y) = ρ(γ · y) = ρD(a).

for all a ∈ A and ρ ∈ C. �

3.7. Proposition. Let A be a commutative Banach algebra and a commutative Banach
A-bimodule. Suppose that σ ∈ HomA(A) such that σ2 = σ, and the range of σ is a closed
ideal of A. If A is weakly module amenable and A has a bounded approximate identity
for A, then A is (σ, σ)-weakly module amenable.

Proof. Let Y be a Banach A-A-submodule of A∗ and let D : A → Y(σ,σ) be a mod-

ule (σ, σ)-derivation. It is easily verified that the mapping D : A → Y is defined by

〈D(a), b〉 := 〈D(a), σ(b)〉, is a module derivation. Thus there exists y ∈ Y such that

D(a) = y · a − a · y. Since A = ker(σ) ⊕ Im(σ), it follows from [4, Proposition 2.1] that
A/Im(σ) ∼= ker(σ) is a weakly module amenable Banach algebra. For every a ∈ A, we
put a = a1 + a2 in which a1 ∈ ker(σ) and a2 ∈ Im(σ). By [4, Proposition 2.4] and the
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Cohen factorization theorem, (ker(σ))2 is dense in ker(σ). Hence, there is a bounded net
(albl)l ⊂ (ker(σ))2 such that albl → a1, and

D(a1) = lim
l
D(albl) = lim

l
(D(al) · σ(bl)− σ(al) ·D(bl)) = 0.

This shows that D(a) = D(σ(a)) for all a ∈ A. Now, suppose that b ∈ A such that
b = b1 + b2 where b1 ∈ ker(σ) and b2 ∈ Im(σ). Take a ∈ A and the bounded nets
(al1bl2)l ⊂ (ker(σ))2 and (ak1bk2)k ⊂ A2 such that al1bl2 → b1 and ak1bk2 → a. Then,
we have

〈D(a), b1〉 = lim
l

lim
k
〈D(ak1bk2), al1bl2〉

= lim
l

lim
k
〈D(ak1) · σ(bk2) + σ(bk1) ·D(bk2), al1bl2〉

= lim
l

lim
k
〈D(ak1), σ(bk2)al1bl2〉+ lim

l
lim
k
〈D(bk2), al1bl2σ(bk1)〉 = 0.

The last equality follows from the fact that σ(bk2)al1bl2 and al1bl2σ(bk1) are in ker(σ)∩
Im(σ) = {0}. Also,

〈D(a), b2〉 = 〈D(a), σ(b2)〉 = 〈D(σ(a)), σ(b2)〉
= 〈D(σ(a)), b2〉 = 〈y · σ(a)− σ(a) · y, b2〉
= 〈y, σ(a)b2 − b2σ(a)〉 = 〈D(−b2), σ(a)〉
= 〈D(−σ(b2)), σ2(a)〉 = 〈D(−σ(b2)), σ(a)〉
= 〈y · σ(a)− σ(a) · y, b2〉.

The above computations show that D ∈ BA(A, Y(σ,σ)). Therefore A is (σ, σ)-weakly
module amenable. �

Let A and A be as in the previous section and X be a Banach A-A-module with the
compatible actions, and J be the corresponding closed ideals of A. Let σ ∈ HomA(A).
Then for each a, b ∈ A and α ∈ A, we have

σ((a · α)b− a(α · b)) = (σ(a) · α)σ(b)− σ(a)(α · σ(b)) ∈ J.
Since J is a closed ideal of A and σ is continuous, σ(J) ⊆ J . Therefore, the mapping
σ̂ : A/J −→ A/J is defined by σ̂(a+ J) = σ(a) + J is well defined.

Recall that a left Banach A-module X is called a left essential A-module if the linear
span of A · X = {a · x : a ∈ A, x ∈ X} is dense in X. Right essential A-modules
and (two-sided) essential A-bimodules are defined similarly. We remark that if A is an
essential left (right) A-module, then every A-module homomorphism σ is also a linear
homomorphism. If a ∈ A, then there is a sequence (bn) ⊆ A · A such that limn bn = a.

Assume that bn =
∑Kn
m=1 αn,man,m for some finite sequences (an,m)m=Kn

m=1 ⊆ A and

(αn,m)m=Kn
m=1 ⊆ A. Let t ∈ C. Then

σ(tbn) = σ(t
∑Kn
m=1 αn,m · an,m) =

∑Kn
m=1 σ((tαn,m) · an,m)

=
∑Kn
m=1(tαn,m) · σ(an,m) =

∑Kn
m=1 tσ(αn,m · an,m) = tσ(bn),

and so by the continuity of σ, σ(ta) = tσ(a). By definition of σ̂, it is also C-linear.
We say the Banach algebra A acts trivially on A from left (right) if for each α ∈ A

and a ∈ A, α · a = φ(α)a (a ·α = φ(α)a), where φ is a continuous linear functional on A.
The following lemma is proved in [3, Lemma 3.1].

3.8. Lemma. Let A be a Banach algebra and Banach A-module with compatible actions,
and J0 be a closed ideal of A such that J ⊆ J0. If A/J0 has a left or right identity e+J0,
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then for each α ∈ A and a ∈ A we have a · α − α · a ∈ J0, i.e., A/J0 is a commutative
Banach A-module.

The concept of (σ̂, τ̂)-weak amenability of A/J has been investigated in [8]. Relating
to this, we now prove the main result in this section which gives the sufficient conditions
for being (σ, τ)-weakly module amenable of a Banach algebra.

3.9. Theorem. Let A be a Banach A-module with trivial left action, and let σ, τ be in
HomA(A) and A/J has an identity. If A is a right essential A-module, then (σ̂, τ̂)-weak
amenability of A/J implies (σ, τ)-weak module amenability of A. The converse is true if
σ and τ are epimorphisms.

Proof. Let Y be a commutative Banach A-A-submodule of A∗, and let D : A → Y(σ,τ)

be a module (σ, τ)-derivation. For y ∈ Y, a, b ∈ A and α ∈ A, we get

((a · α)b− a(α · b)) · y = (a · α) · (b · y)− a · ((α · b) · y)

= a · (α · (b · y))− a · (α · (b · y)) = 0.

Hence, J · Y = {0}. Similarly, we have Y · J = {0}. Therefore, the following module
actions are well-defined

(a+ J) · y := a · y, y · (a+ J) := y · a (y ∈ Y, a ∈ A).

Thus Y is a Banach A/J-A-module. Define D̃ : A/J −→ Y ⊆ J⊥ = ((A/J)(σ̂,τ̂))
∗ via

D̃(a+ J) = D(a). For each α ∈ A and a, b ∈ A we have

D((a · α)b− a(α · b)) = D((a · α)b)−D(a(α · b))
= D(a · α) · σ(b) + τ(a · α) ·D(b)

− (D(a) · σ(α · b)− τ(a) ·D(α · b))
= (D(a) · α) · σ(b)−D(a) · (α · σ(b))

+ (τ(a) · α) ·D(b)− τ(a) · (α ·D(b)) = 0.

It means that D vanishes on J . Therefore D̃ is well-defined. For each a, b in A we have

D̃(ab+ J) = D(ab) = D(a) · σ(b) + τ(a) ·D(b)

= D̃(a+ J) · (σ(b) + J) + (τ(a) + J) · D̃(b+ J)

= D̃(a+ J) · σ̂(b+ J) + τ̂(a+ J) · D̃(b+ J).

Since A is a right essential A-module, σ̂ and τ̂ are homomorphism. Thus σ̂, τ̂ ∈Hom(A/J).

Now, it follows from the above discussion that D̃ is also C-linear, and so it is (σ̂, τ̂)-inner.
Hence there exists y ∈ Y such that

D(a) = D̃(a+ J) = y · σ̂(a+ J)− τ̂(a+ J) · y = y · σ(a)− τ(a) · y.
Therefore D is a module (σ, τ)-inner derivation.

Conversely, suppose that σ, τ ∈HomA(A) are epimorphisms, andD : A/J −→ ((A/J)(σ̂,τ̂))
∗

is a (σ̂, τ̂)-derivation. We define D̃ : A −→ ((A/J)(σ,τ))
∗ by D̃(a) = D(a + J), for all

a ∈ A. Lemma 3.8 shows that when A acts on A trivially from left or right, then A/J

is a commutative A-module and thus Y = J⊥ ⊆ A∗. Hence D̃ could be considered as a
map from A to Y . Now, for each α ∈ A and a ∈ A we have

D̃(α · a) = D(α · a+ J) = D(φ(α)a+ J) = φ(α)D(a+ J) = α · D̃(a)

and
D̃(a · α) = D(a · α+ J) = D(φ(α)a+ J) = φ(α)D(a+ J) = D̃(a) · α.

Also, for a, b ∈ A we obtain D̃(ab) = D̃(a) · σ(b) + τ(a) · D̃(b). Thus D̃ is a (σ, τ)-
module derivation. Due to (σ, τ)-weak module amenability of A, there exists y ∈ Y ∼=
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((A/J)(σ,τ))
∗ such that D̃(a) = σ(a) · y − y · τ(a), and so D(a + J) = σ̂(a + J) · y − y ·

τ̂(a+ J). �

The Banach algebras with compatible A-module structure could be considered as ob-
jects of a category CA whose morphisms are bounded A-module maps. We are interested
in the case where A is an injective object in CA, that is for any objects A,B ∈ CA

and monomorphism θ : B −→ A and morphism µ : B −→ A, there exists a morphism
µ̃ : A −→ A such that µ = µ̃ ◦ θ. This is the case when A = C (Hahn Banach Theorem).

3.10. Proposition. Let A be a commutative A-module and let σ, τ be in HomA(A) such
that σ(a)b = aτ(b) for all a, b ∈ A. Also let A be injective and has a bounded approximate
identity. If A is (σ, τ)-weakly module amenable, then span (AAA) is dense in A.

Proof. Let B be the linear span of (AAA). Suppose that B 6= A. Take a0 ∈ A\B
and f1 ∈ A∗ such that f1(a0) = 1 and f1|B = 0. Since a0 is not in B, similar to
the proof of [2, lemma 2.1] we can construct an epimorphism f2 : A −→ A such that
f2|B = 0 and f2(a0) = 1. Define D : A −→ ((A)(σ,τ))

∗ via D(a) = f2(a) · f1 for all
a ∈ A. Then D is (σ, τ)-module derivation and hence there exists g ∈ (A(σ,τ))

∗ such that
D(a) = g · σ(a)− τ(a) · g, for all a ∈ A. Thus, we have

1 = f2(a0)f1(a0) = 〈D(a0), a0〉
= 〈g · σ(a0)− τ(a0) · g, a0〉
= 〈g, σ(a0)a0 − τ(a0)a0〉 = 0,

which is a contradiction. �

3.11. Corollary. With the hypotheses of the above Proposition, A is (0, 0)-weakly module
amenable if and only if span (AAA) is dense in A.

Proof. Let D : A → (A(0,0))
∗ be a (0, 0)-module derivation. Then we have D(AAA) =

{0}. Since D is continuous, we have D = 0. So D is (0, 0)-inner. Conversely, let A be

(0, 0)-weakly amenable. Then by Proposition (3.10), AAA = A. �

3.12. Remark. Let A be a commutative A-module and let σ, τ ∈ HomA(A) such that
σ(a)b = aτ(b) for all a, b ∈ A. Then the second adjoints σ′′ and τ ′′ belong to HomA(A∗∗)
and are also w∗-w∗-continuous. We thus can show that σ′′(F )�G = F�τ ′′(G), where
� is the first Arens product on the second dual A∗∗ (for more information about this
product see [10]). Now, if A∗∗ is (σ′′, τ ′′)-weakly amenable then by Proposition 3.10,

A∗∗AA∗∗ = A∗∗. It follows from the proof of [2, Proposition 3.6] that AAA = A.
Therefore A is (0, 0)-weakly amenable by Corollary 3.11.

4. (σ, τ)-weak module amenability of semigroup algebras

Let S be an (discrete) inverse semigroup with the set of idempotents ES (or E), where
the order of E is defined by

e ≤ d⇐⇒ ed = e (e, d ∈ E).

It is easy to show that E is a (commutative) subsemigroup of S [17, Theorem V.1.2].
In particular `1(E) could be regarded as a subalgebra of `1(S), and thereby `1(S) is a
Banach algebra and a Banach `1(E)-module with compatible actions [1]. We consider
the following module actions `1(E) on `1(S):

(4.1) δe · δs = δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E).
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If φ is a continuous linear function on `1(E), then for each e ∈ E we have φ(δe) = 1.
So for each f =

∑
e∈E f(e)δe ∈ `1(E) and g =

∑
s∈S g(s)δs ∈ `1(S), we get

f · g = (
∑

e∈E
f(e)δe) · (

∑

s∈S
g(s)δs) =

∑

s∈S,e∈E
f(e)g(s)δe · δs

=
∑

s∈S,e∈E
f(e)g(s) · δs = (

∑

e∈E
f(e))(

∑

s∈S
g(s)δs) = φ(f)g.

Therefore multiplication from left is trivial. In this case, the ideal J (see section 3) is the
closed linear span of {δset− δst : s, t ∈ S, e ∈ E}. We consider an equivalence relation on
S as follows:

s ≈ t⇐⇒ δs − δt ∈ J (s, t ∈ S).

For an inverse semigroup S, the quotient S/≈ is a discrete group (see [3] and [23]). As in
[24, Theorem 3.3], we may observe that `1(S)/J ∼= `1(S/ ≈). We consider the following
module actions `1(E) on `1(S)/J ∼= `1(S/ ≈):

δe · (δs + J) = δs + J, (δs + J) · δe = δse + J (s ∈ S, e ∈ E).

Indeed δs − δse ∈ J if and only if δst − δset ∈ J , for all s, t ∈ S, e ∈ E. Therefore
`1(S/ ≈) is a commutative `1(E)-bimodule. For each σ ∈ Hom`1(E)(`

1(S)), we define

σ̂ in Hom(`1(S/ ≈)) by σ̂(δ[s]) = δ[σ(s)] and extend by linearity, where [s] denote the
equivalence class of s in S/≈ (see the explanations after Proposition 3.7). We see that all
conditions of Theorem 3.9 hold for σ, τ ∈ Hom`1(E)(`

1(S)) which are also epimorphism.

Now, if `1(S) is (σ, τ)-weakly module amenable then `1(S/ ≈) is (σ̂, τ̂)-weakly amenable.
We are now going to prove the main result in this section.

4.1. Theorem. Let S be an inverse semigroup with the set of idempotents E. Then for
each σ and τ in Hom`1(E)(`

1(S)), the semigroup algebra `1(S) is (σ, τ)-weakly module

amenable as an `1(E)-module, with trivial left action.

Proof. Suppose firstly that σ or τ is zero map. Since S/≈ is a discrete group, the group
algebra `1(S/ ≈) has an identity, and thus `1(S/ ≈) is (σ̂, 0) and (0, σ̂)-weakly amenable
by [8, Example 4.2]. With the actions considered in (4.1), for each f ∈ `1(S), we have

f =
∑

s∈S
f(s)δs =

∑

s∈S
f(s)δs ∗ δs∗s =

∑

s∈S
f(s)δs · δs∗s.

Consequently f belongs to the closed linear span of `1(S) ·`1(E) = {δs ·δe : e ∈ E, s ∈ S}.
This shows that `1(S) is a right essential `1(E)-module. For A = `1(S) and A = `1(E),
the result of this case follows from Theorem 3.9. For the case that both σ and τ are
non-zero homomorphisms, it is proved in [14, Theorem 2.5] that for any locally compact
group G, the group algebra L1(G) is (ϕ,ψ)-weakly amenable for all ϕ,ψ ∈ Hom(L1(G)).
In particular, `1(S/ ≈) is (σ̂, τ̂)-weakly amenable. Now, Theorem 3.9 again shows that
`1(S) is (σ, τ)-weakly module amenable. �

Note that for an amenable inverse semigroup S, `1(S) is module `1(E)-amenable [1,
Theorem 3.1] and so, it is module (σ, τ)-amenable [7, Corollary 2.3]. We close this section
by two examples.

4.2. Example. Let S be a commutative inverse semigroup. Then `1(S) is a commutative
Banach algebra and commutative Banach `1(E)-module with the following actions:

δe · δs = δs · δe = δes (s ∈ S, e ∈ E).

We consider the mapping σ as follows:

σ : `1(S) −→ `1(S);
∑

s∈S
f(s)δs 7→

∑

s∈S
f(s)δs∗ (s ∈ S),
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where f(s) is the complex conjugate of f(s). Obviously σ ∈ Hom`1(E)(`
1(S)). Also, σ is

also C-linear and σ2 is the identity map. It is shown in [4, Theorem 3.1] that `1(S) is
weakly module amenable. Now it follows from Corollary 3.3 that `1(S) is (σ, σ)-weakly
module amenable. Note that if S is not amenable, `1(S) is not module amenable [1,
Theorem 3.1].

4.3. Example. Let S be an inverse semigroup with the set of idempotents E. Let C∗(S)
be the enveloping C∗-algebra of `1(S) (see [13]). Then by continuity, the action of `1(E)
on `1(S) extends to an action of C∗(E) on C∗(S). The C∗-algebra C∗(E) has a bounded
approximate identity, and so it is (σ, 0) and (0, σ)-weakly module amenable by Proposition
3.6 and [8, Example 4.2], for all σ ∈ HomC∗(E)(C

∗(S)) . Now, suppose that σ2 is the
identity map (see Example 4.2). Since C∗(S) is weakly amenable [16, Theorem 1.10],
C∗(S) is (σ, σ)-weakly module amenable by Corollary 3.3. However, if C∗(S) is nuclear
then it is amenable [15]. By [1, Proposition 2.1], C∗(S) is module amenable as an C∗(E)-
module. Therefore C∗(S) is module (σ, τ)-amenable, for all σ, τ ∈ HomC∗(E)(C

∗(S)) by
[7, Corollary 2.3].

Acknowledgements. The author express his sincere thanks to the referee for the careful
and detailed reading of the manuscript and very helpful suggestions that improved the
manuscript substantially.
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Abstract

This study compares circular ANOVA against bootstrap test, uniform
scores test and Rao’s test of homogeneity which are considered non-
parametric alternatives. Circular ANOVA is one-way analysis of vari-
ance method to test the equality of mean directions in circular data
analysis, but it requires some assumptions. The main assumption for
circular ANOVA is that all r-independent samples must come from von
Mises distribution with equal directional means and equal concentra-
tion parameters. On the other hand, nonparametric alternatives are
distribution free methods and, therefore, does not require having von
Mises distribution or equality of parameters. Literature of circular sta-
tistics is very limited on the comparison of these tests; therefore, a
power simulation study is performed to compute the power of circu-
lar ANOVA against the nonparametric alternatives under assumptions
of von Mises and non-von Mises populations. Power simulation study
shows that bootstrap and uniform scores tests perform slightly better
than circular ANOVA if the common concentration parameter, κ, is
less than 1 under the assumption of von Mises distribution. If κ ≥ 2,
then bootstrap and circular ANOVA perform better than the other al-
ternatives. Rao’s test of homogeneity requires very large samples in
order to reach the same power levels of competitive tests in this study.
Finally, uniform scores tests performs better than circular ANOVA and
bootstrap test if the sample sizes are small and the data comes from
mixed von Mises distributions or wrapped Cauchy.
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1. Introduction

The history of circular data problems, which can be seen in biology, geography,
medicine, meteorology, oceanography and many other fields, goes back to the 1950s,
but we have seen more publications in the last 25 years. Several textbooks and many
papers have been published in recent years about the circular data problems. [11], [16],
[6], [9],[2] are excellent resources for circular data problems. Technological developments
in computers and programming made it possible to analyze large or complicated circular
data problems. There are several computer programs currently available for the analysis
of circular data problems. One of these is R program with circular package, which is
jointly developed by [1]. It is called ”circular” in R package repository. In fact, some of
the results in this study are obtained from this circular package.

Circular data is obtained by measuring directions or arrival times of subjects with
respect to a reference point on the unit circle. This reference point or the choice of the
origin is arbitrary and the final conclusions should not depend on it. For example, North
can be taken as a reference point (considered as 0 degrees) on the unit circle. Therefore,
circular data will have a domain of [0, 2π) in radians or [0, 360) in degrees depending on
the definition of the problem. If the arrival times of patients to an emergency room are
the main interest, then the data can be recorded in 24 hour clock notation (domain of
[0:00, 24:00) ) and can later be converted to the angles on the unit circle.

Moreover, two or more sample circular data problems have been increasingly common
in recent years. Watson and Williams ([17]) introduced a test for the equality of r-
population means in circular data problems. This test can be considered an equivalent
of one-way ANOVA in the traditional linear data problems. In later years, [11] and [14]
modified the Watson-Williams test for certain conditions, which are given in Section 2.
Nonparametric tests are also developed for two or more sample circular data problems.
The test of homogeneity of r-populations is proposed by [11] and [18]. It is called uniform
scores test or Mardia-Watson-Wheeler test in the literature. The test is based on ranks
of the combined samples, but it is very sensitive to the existence of ties. [2] suggested
that Mardia-Watson-Wheeler test should not be used if there are many ties in the data,
but a few ties could be broken by a randomization or average methods. [13] introduced
a nonparametric test called ”Rao’s test of homogeneity” for the equality of r-populations
(homogeneity of populations). The details of the test are given in Section 3. Also, a
bootstrap based test for the equality of r-population means is available and promoted by
[6] especially if the sample sizes are less than 10 or assumptions do not meet in circular
ANOVA test. The next section will give some insight about the multi-sample method
called circular ANOVA in circular statistics.

2. Circular ANOVA

Circular ANOVA (One-Way Analysis of Variance) has been proposed by [17] and
later modified by [11] based on suggestions by [14]. The theory of circular ANOVA is
discussed extensively by [6], [11] and [9] on pages 125-128. In an another important
paper, [8] also discuss the drawbacks of suggestions by [14]. The first assumption of the
circular ANOVA is that all random samples should come from von Mises distribution
with a common concentration parameter κ such that H0 : κ1 = κ2 = .. = κr = κ (test
of homogeneity of kappa). If the assumptions of having von Mises distribution and the
test of homogeneity of the kappa parameters fail, then [6] proposes nonparametric ap-
proaches for the analysis of two or more samples in circular data. If the sample sizes
n1, .., nr are less than 25, the bootstrap approach is heavily emphasized by [6]. There
are several options (analogous to Levene’s test in linear data) available for testing that
all κ parameters are equal. We will introduce one of them in the next section when we
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Source DF SS MS F

Between Samples r − 1
∑
Ri −R (

∑
Ri −R)/(r − 1) = I Ft = I/II

Within Samples N − r N −∑Ri (N −∑Ri)/(N − r) = II

Total N − 1 N −R

perform the large sample example with R’s circular package. There is a necessity that
either the common concentration parameter κ is given or must be estimated from the
data. So, [6] proposes κ̂ = median{κ̂1, κ̂2, .., κ̂r} as an estimator of κ if it is unknown.
Depending on the value of the common concentration parameter, there are several alter-
native approaches for circular ANOVA. [6] categorizes these approaches in three sections:
κ ≥ 2, 1 < κ < 2, and κ ≤ 1.

First, assume that κ ≥ 2 and state the hypothesis that

H0 : µ1 = µ2 = .. = µr vs H1 : At least two are distinct.

Let θij (for i = 1, .., r and j = 1, .., ni) shows angular observations coming from a
circular distribution on the unit circle. Let R be the resultant length of all N(N =
n1 +n2 + ..+nr) observations. The variable R can be computed by using all observations
(θ1, ..., θN ) or [6] provided the following formula that uses individual sample resultant

lengths (R1, R2, ..Rr) and mean directions (θi). Let

(2.1) R = [(

r∑

i=1

Ri cos(θi))
2 + (

r∑

i=1

Ri sin(θi))
2]0.5

The test statistic for circular ANOVA is defined by

(2.2) Ft = (N − r)(
r∑

i=1

Ri −R)/[(r − 1)(N −
r∑

i=1

Ri)]

where Ft has an F distribution with r-1 and N-r degrees of freedoms. We reject the test
if Ft > Fr−1,N−r. One advantage of this test is that the F critical values can be found
in many statistics books. [11] defined a circular ANOVA table summarizes the result:

If 1 < κ < 2, [14] proposes a modified test that uses correction a factor and it is
defined as F ′t = [1 + 3/(8 ∗ κ̂)]Ft. If κ ≤ 1, then [11] proposes an approximate likelihood
ratio test which is defined below,

(2.3) −2 loge λ
.
=

2

N
{(

r∑

i=1

Ri)
2 −R2} = U.

where for a large N, U has an approximate chi-square (χ2) distribution with r−1 degrees
of freedom when H0 is true. The expression for λ can be derived from the equation (2.3).
Details of this approximation can be seen in [11] on page 164.

3. Nonparametric Tests

Recall that circular ANOVA is discussed in Section 2 and requires multiple assump-
tions: (i) r-samples are coming from (at least approximately) von Mises distribution, (ii)
the concentration parameters (κ) are equal, (iii) the value of the common concentration
parameter is larger than κ̂ > 1. In many real life situations, one or more of these as-
sumptions may not be satisfied. Therefore, alternative tests for circular ANOVA must
be considered in order to avoid those assumptions or replace circular ANOVA if the as-
sumptions are not satisfied. Bootstrap test is one approach that avoids these assumptions
listed above. Mardia-Watson-Wheeler test (also called uniform scores test) and Rao’s test
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of homogeneity are also nonparametric tests that they do not require having von Mises
distribution assumption or the equality of parameters. One disadvantage for Rao’s test
is that it requires sufficiently large sample sizes. These nonparametric alternatives are
discussed in the following sections.

3.1. Bootstrap Test. The bootstrap method was first introduced by [3] and became
popular in recent years due to technological advances in the computer sciences. With
the bootstrap method, the original sample is treated as the population and a resampling
procedure is performed on it. This is done by randomly drawing a sample of size n from
the original sample (size n) with replacement. [4] introduced many bootstrap methods as
an alternative to parametric methods. [5] and [7] studied bootstrap method for circular
data problems extensively. An algorithm based on bootstrap test for circular data has also
been discussed by [12]. They showed that the bootstrap based hypothesis testing method
to test the equality of peak months for fish populations could be used by considering the
months as circular variables. In comparison to the circular ANOVA, bootstrap test
approach uses the bootstrap estimate of the test statistic (F statistic) from the combined
samples of circular data. In each bootstrap step, bootstrap estimate of the test statistics
(F ?) is found and compared with the original test statistic which is computed from
the original samples. Then an estimated significance value (p-value) of the bootstrap
test is calculated by first finding the number of bootstrap test statistic which is greater
than the original test statistics and dividing the result with the number of bootstrap
runs (B replications). If the estimated significance value is less than or equal to level of
significance, it means that there is a significant difference among the population mean
directions and, therefore, H0 : µ1 = µ2 = ... = µr is rejected.

The following bootstrap test algorithm can be defined in order to obtain the bootstrap
significance value or p-value. The algorithm is somewhat similar to [6]’s definition of the
bootstrap test for two or more samples but the main difference is that [6] does not combine
the samples whereas the proposed bootstrap test combines the samples to create one large
sample and draws a bootstrap sample from this combined sample, then partitions it into
n1, n2, ..nr sub-samples randomly. Of course, bootstrap test is performed under H0.
Therefore, combining r-samples to create one large sample and re-sampling from this
large sample is used in the proposed algorithm.

An algorithm for the construction of bootstrap test and finding p-value as follow:

(1) Let θij for i = 1, .., nj , and j = 1, .., r be the angular measurements from
n1, ..nr samples. Calculate Ft test statistics using the original samples with
”aov.circular” function in R.

(2) Draw a bootstrap sample of size N = n1 + n2 + .. + nr from the combined
sample of θij with replacement. Assign first n1 observation to first level 1,
then n2 observations to level 2, and the last nr observations to level r. This way
n1, n2, .., nr observations are assigned to 1, 2, .., r samples respectively. Calculate
the test statistics F ?b using these samples.

(3) Repeat the last two steps for b = 1, ..., B.
(4) There are now F ?1 , .., F

?
B estimated bootstrap test statistics.

(5) Find the number of F ?b ≥ Ft and then divide the result by B. The result gives
p̂ = #{F ?b ≥ Ft}/B.

(6) Compare p̂ by the level of significance α. If p̂ ≤ α, reject H0 : µ1 = µ2 = ... = µr.
Otherwise, do not reject H0.

3.2. Uniform Scores Test. A nonparametric test for the equality of two circular distri-
butions is first presented by [18]. A few years later, two-sample case has been extended to
k-sample case by [10]. For this reason, k-sample uniform scores test has also been called
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as Mardia-Watson-Wheeler test in the literature. The null and alternative hypothesis of
the test is

H0:All samples come from the same population
H1:At least two are distinct.

Let θij (for i = 1, .., r and j = 1, .., ni) show the combined samples of n1, n2, .., nr, where
each sample consists of angular observations on the circle. The testing procedure assigns
ranks to all θij and finds a uniform score or circular rank for each θij as,

dij =
2π(rij)

N
for i = 1, .., r and j = 1, .., ni

where rij is the rank of jth observation from ith sample and N = n1+, ..,+nr. A starting
point should be set on the circle in order to find the ranks which can be assigned clock
wise or counter clock wise on the circle. In fact, the test is invariant under all rotations
as shown by [11], therefore the initial rank could be given to the smallest angle in the
data. The test statistics is defined as

(3.1) W = 2

r∑

i=1

(C2
i + S2

i )/ni

where

(3.2) Ci =

ni∑

j=1

cos(dij) and Si =

ni∑

j=1

sin(dij).

are the components of resultant vector for each sample. We should keep in mind that∑r
i=1 Ci = 0 and

∑r
i=1 Si = 0, where they could be used to check if the computations

are correct in the formulas above. The test statistic, W, has an approximate chi-square
(χ2) distribution with degrees of freedom of 2(r-1) as shown by [10]. Therefore, if W >
χ2
α,2(r−1), H0 is rejected in favor of H1. [6] suggests that this test is applicable if ni > 10

for i = 1, .., r. Otherwise, a permutation test should be applied.

3.3. Rao’s Test of Homogeneity. [13] proposed a test of homogeneity that it is
considered large sample alternative of circular ANOVA test. The test is available from
R circular package. The requirements to apply Rao’s test of homogeneity tests is that
the data must be unimodal and the sample size must be sufficiently large.

Let θij (for i = 1, .., r and j = 1, .., ni) show the combined samples of n1, n2, .., nr.
Let Xi and Yi denote the means of cosine and sine values for ith sample of size ni such
that

Xi =
∑ni

j=1 cosθij

ni
and Yi =

∑ni
j=1 sinθij

ni

and Ti = Yi
Xi

with asymptotic estimated variance of s2i in which the details can be found

in [13]. The test statistics, H, is defined as

H =
∑r
i=1

T2
i

s2i
−
(∑r

i=1

T2
i

s2i

)2
/
(∑r

i=1
1
s2i

)
)

Under H0 and some general conditions, the test statistics H has a χ2 distribution with
df = r−1. For large values of H, the null hypothesis H0 is rejected which implies different
mean directions.

4. Large Sample Example

4.1. Application of Circular ANOVA. The city of Ankara is the capital of Turkey
and has a population 4.4 million according to Turkish Institute of Statistics. The city has
an elevation of 3077 feet (938 meters) and located at the central part of Turkey. Turkish
State Meteorological Services (TSMS) has regional stations that collect and distribute
weather related data in Turkey. The literature review did not reveal any studies about
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the analysis of the seasonal wind directions for the city of Ankara. This study will be
the first in this regard. The data provided by TSMS consisted of daily wind directions of
Ankara for the year of 2010. First, using the data provided, descriptive summary results
were obtained for each seasons (winter, spring, summer and fall). Table 1 shows the
descriptive statistics for four seasons. To see the seasonal differences, the data is divided

Table 1. Descriptive Statistics for Seasonal Wind Directions in Ankara

Parameters Winter Spring Summer Fall

Sample Size 90 92 92 91
Mean Direction(degrees) 108.38 140.93 111.48 116.79
Mean Resultant Length 0.6182 0.6458 0.7086 0.6727

Circ. Variance 0.3818 0.3542 0.2914 0.3273
Circ. Std. Deviation 0.9808 0.9464 0.8396 0.8963

Median Direction(degrees) 100.5 140.5 103 107

into four seasons( winter, spring, summer and fall), and rose diagrams( equivalent of
histogram) are graphed for each season. Figure 1 shows the seasonal distribution of the
wind directions for the year of 2010 in Ankara. In Figure 2, QQ plots of von Mises
distribution for each season is shown. It is safe to assume that seasonal wind directions
of Ankara (at least for the year of 2010) follow von Mises distribution.
Before performing a circular ANOVA test, we needed to find MLE of κ parameter for all

four seasons. The common κ is estimated by κ̂ = 1.693012 with all the samples combined
together. If we use [6]’s approach by finding the median of the four seasons, we find that
κ̂ = 1.754571. Both results are very much comparable and on the interval 1 < κ̂ < 2.
See Table 2.

Assumption of the homogeneity of concentration parameters (κ) must be tested in the
next step. The circular ANOVA test proposed by [17] assumes that all r concentration
parameters are equal to the common concentration parameter κ. So,

H0 : κ1 = κ2 = κ3 = κ4 = κ vs H1: At least two are distinct.

This must be tested before starting circular ANOVA method. The following results
are obtained from R software using the package called ”circular” and using ”rao.test”
function. The hypothesis test checks the equality of the concentration parameters, the
results are from R software (See Table 3).

As we see from the result, the p-value of the test is 0.6171 which is greater than a
level of significance of α = 0.05 or even 0.10. Therefore, it is safe to assume that all
concentration parameters are equal. Since the estimated common concentration, κ̂, is
between 1 and 2, we must use the modified F-test in circular ANOVA according to [6].

Table 2. κ parameter estimates for all four seasons. Table also
includes common κ estimates which are the last two values

Winter Spring Summer Fall Common κ̂ Fisher’s κ̂

1.585405 1.679172 2.024359 1.829970 1.6930 1.7545

Table 3. Test of Homogeneity of Kappa Parameter

df ChiSq P-value

3 1.79 0.6171
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Figure 1. Seasonal Rose Diagrams For Ankara’s Wind Data

The modified version is proposed by [11] which is based on Stephen’s approximation; as
suggested by [14].

After confirming the validity of the assumptions before circular ANOVA, we are now
ready to run the circular ANOVA test in R. We would like to see if there is a significant
difference in the mean wind directions of winter, spring, summer and fall seasons for the
city of Ankara. So, we set

H0 : µ1 = µ2 = µ3 = µ4, versus H1: At least two are distinct.

The circular package in R has aov.circular option that performs circular ANOVA test.
The circular ANOVA program in R has two options. First, the analysis can be performed
by using F-test if the common kappa parameter (κ) is greater than 1 (if the κ parameter
is between 1 and 2, then a modified F test must be performed). The second option
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Figure 2. von Mises QQ plots of Wind Directions from Winter,
Spring, Summer and Fall

performs Likelihood Ratio Test if the common kappa, κ, parameter is less than 1. Since
the estimated common concentration parameter, κ̂ = 1.69, a modified F test is used in
circular ANOVA. The result of the circular ANOVA is shown below in Table 4. Table 4

Table 4. Test of Circular ANOVA using R

Source df SumSquare MeanSquare F Pvalue

Between 3 5.5446 1.8487 6.516 0.000266
Within 356 123.371 0.3465

Total 359 128.917 0.3591

implies that H0 is rejected and, therefore, there is a significant difference among the
seasonal winds directions of Ankara since the p-value of the test is 0.000266. This means
that there was a seasonal difference among four seasons for the year of 2010. Visual
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analysis of Table 1 and Figure 1 indicates that the mean wind direction of spring season
is 1400 and looks significantly different than the other three seasons. In the next step, we
will perform the circular ANOVA again without the spring season data in order to see
the effect of the spring season on the analysis. The results can be seen below in Table 5.
It appears that there is no significant difference among three seasons (winter, summer,

Table 5. Test of Circular ANOVA without Spring data

Source df SumSquare MeanSquare F Pvalue

Between 2 0.3238 0.1619 0.575 0.5634
Within 267 90.8774 0.3404

Total 269 91.2012 0.3390

and fall) since the p-value is 0.5634. This means that the spring season has significantly
different mean wind direction for the months of March, April and May. Figure 1 shows
the circular plots and rose diagrams for each season, and the mean direction for spring is
significantly different at α = 0.05. The result of the circular ANOVA and also bootstrap
approach could lead to new studies related to seasonal wind directions in different parts
of Turkey.

4.2. Application of Nonparametric Tests. Nonparametric tests did not need prior
investigation of the circular data in order to check assumptions as in the case of circular
ANOVA. So, we implemented bootstrap, uniform scores test and Rao’s test of homogene-
ity in R using circular package. Bootstrap and uniform scores test are not available in R’s
circular package. Therefore, a function has been written in R for those two tests. Rao’s
test of homogeneity is called rao.test in R via circular package. Rao’s test of homogeneity
gives p-value of 0.0214 for the test of H0 which assumes all seasonal mean directions are
equal. So, Rao’s test implies that there is a significant difference in the seasonal wind
directions of Ankara. Similar to the circular ANOVA, spring wind directions are excluded
and Rao’s test is applied again using winter, summer and fall data. The result shows
that Rao’s test gives a p-value of 0.6216 which implies no significant difference in the
remaining seasons. When we run the uniform scores test on Ankara’s seasonal wind data,
it gives a p-value of 0.0014 which implies significant difference among the seasonal wind
directions. If we repeat the test without spring season, then uniform scores test gives
a p-value of 0.64 which is not significant or no difference in the mean wind directions.
Bootstrap test finds a p-value of 0.0005 which is very significant and implies a difference
in the seasonal mean wind directions of Ankara. If we remove the spring season from the
data and run the bootstrap test again, we obtain a p-value of 0.6055. Therefore, we note
that circular ANOVA and alternative nonparametric tests confirm each other and reach
the same decision for Ankara’s seasonal wind data.

5. Small Sample Example

5.1. Application of Circular ANOVA. Circular ANOVA and nonparametric alter-
natives are demonstrated under a small sample example (all samples are less than 25).
The example consists of seasonal wind directions of Gorleston, England from [11]. The
data have winter, spring, summer and fall wind directions, which are collected between
11:00 and 12:00AM on Sundays in 1968. Descriptive Statistics for the data shown below
in Table 7. The main focus is again ”is there any significant seasonal difference in the
wind directions?”. For this purpose, we again set H0 : µ1 = µ2 = µ3 = µ4 vs H1: At least
two are distinct. [11] also investigated this example and assumed that the concentration
parameters of the seasonal winds are equal. [11] estimated the concentration parameter
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Table 6. Descriptive Statistics for Seasonal Wind Directions in
Gorleston, England

Parameters Winter Spring Summer Fall

Sample Size 12 12 13 12
Mean Direction(degrees) 272 330 57 232
Mean Resultant Length 0.4265 0.1776 0.2975 0.2656

Circ. Variance 0.5735 0.8224 0.7025 0.7344
Circ. Std. Deviation 1.3054 1.8589 1.5570 1.6282

Median Direction(degrees) 288 360 30 255.6

Table 7. Likelihood Ratio Test of Homogeneity of Seasonal
Wind Directions in Gorleston, England

df ChiSq Pvalue

3 3.459 0.3261

from the combined samples and found it as κ̂ = 0.24. Moreover, it is true that all κ̂i < 1
for i = 1, .., r. Therefore, [11] suggests Likelihood Ratio Test (LRT) type test statistics
for this problem because of too small (less than 1) concentration parameter estimate. See
example 6.11 on page 165 of Mardia ([11]). Using ”aov.circular” (with LRT option) in R,
we find the following results: The chi-square critical value for df=3, and α = 0.05 is 7.81
from a chi-square table. The p-value of the test is 0.3261. Thus, the result from LRT
test option concludes that the seasonal wind directions are not significantly different at
α = 0.05.

5.2. Application of Nonparametric Tests. Nonparametric tests from Section 3 is
executed in R to get the significance probability of the tests (p-values). In fact, [6] made
a remark that the summer seasonal directions for Gorleston data appear to be different
that the rest of the data and excluded it from his application of Gorleston data. Similarly,
[11] used the same data set to run the uniform scores test(Mardia-Watson-Wheeler test)
to investigate the homogeneity of population distributions and found that uniform score
test rejects H0 with a p-value of 0.0409. So, uniform scores test finds significant difference
among seasonal wind directions. On the other hand, Rao’s test of homogeneity finds a
p-value of 0.9095 which does not reject H0 that claims all mean directions are equal. One
explanation of this difference in Rao’s test is that it requires large samples in order to
reach the nominal type-I error rate as seen in Section 6. So, as indicated by [6] and [11],
the uniform score test was able to identify the significance of seasonal wind directions
for Gorleston, England. Finally, bootstrap test obtains a p-value of 0.2045 for H0 and it
implies no significance difference among the seasonal wind directions.

6. Power Study

Performance of nonparametric tests are compared against the circular ANOVA by a
power simulation study. Three different distribution models are considered: von Mises
(ideal case for Circular ANOVA test), wrapped Cauchy and mixed von Mises with rate of
mixtures of 90% and 70%, respectively. Mixed von Mises is analogues the contaminated
normal distribution which is commonly used in traditional statistics to investigate data
models with contaminations or outliers. We assumed that there are four random samples
(for example, wind directions in four seasons) and the equality of the mean directions
of four populations is the null hypothesis. So, we consider the following alternative
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hypothesis in order to compute the power of circular ANOVA against the nonparametric
test:

H0 : µ1 = µ2 = µ3 = µ4

H1 : µ1 + d = µ2, µ1 + 2d = µ3, µ1 + 3d = µ4

where d is a constant (shift value) that controls the alternative hypothesis. If d=0, then
H0 = H1 and the tests compared in this study should reach nominal value of type-I error
rate (which is set to α = 0.05). First, Monte Carlo simulation is performed (B=1000
replications) by generating four independent random samples (n1 = n2 = n3 = n4 = 25)
from von Mises distribution with parameters µ = π and κ = 2. Monte Carlo simulation
finds the number of times the tests rejects H0 under the assumption that H1 is true for
each

d=(0,0.1,0.2,0.3,0.5,0.7,0.9)

Then, the result is divided by B (number of replications) to find an estimate of the power.
The result can be converted to the percentage that gives the empirical power of the test.
Figure 3(a) shows the power curve for circular ANOVA, Bootstrap test, Rao’s test of
homogeneity and uniform scores test under H1 and κ = 2 for each d.

Figure 3(a) and Table 8 show that when d=0, circular ANOVA, bootstrap and uniform
scores tests have comparable estimated type-I error rates which are close to the nominal
value of 0.05. On the other hand, Rao’s test did not reach the nominal value of type-I
error. Moreover, circular ANOVA is known to be powerful according to [6] when κ has
2 or higher and the data come from von Mises distribution. Bootstrap and Uniform
score tests also worked as good as circular ANOVA under the data model and parameter
assumptions. For larger shifts in the mean directions of the populations (for larger d
values), uniform score test and Rao’s tests started to lose some power as shown by
Figure 3(a). In the next simulation, we assumed that all four samples are coming from
von Mises populations and the common concentration parameter of κ = 0.5.
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(a)

(b)

Figure 3. Circular ANOVA and nonparametric test alternatives
are compared in terms of their power curves. All four samples
are generated from von Mises with κ = 2 (figure a) and κ = 0.5
(figure b) parameters for each d.

Figure 3(b) shows that, when κ = 0.5, bootstrap test performed the best among the
compared methods. Bootstrap test has an estimated type-I error rate of 0.049 which is
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very close to the nominal value of α = 0.05. Uniform score and circular ANOVA tests
are comparable at d=0 but circular ANOVA loses power at the larger shift values under
H1. As pointed out by [6], circular ANOVA requires κ parameter to be larger than 2
in order to maintain type-I error rate and its power. On the other hand, Rao’s test of
homogeneity did not perform well against the other three methods and did not reach the
desired level of α or power. One reason could be that Rao’s test requires large sample
sizes to reach nominal value of type-I error. Table 8 has the numerical values of the
simulations for κ = 2 and κ = 0.5 assumptions.

Table 8. Power simulation results for Circular ANOVA, Rao’s
test, Uniform Score test. All four samples are from von Mises
with κ = 2 (left table) and κ = 0.5 (right table) parameters

d CirANOVA Boot Uniform Rao

d=0 0.046 0.047 0.056 0.034

d=0.1 0.120 0.140 0.083 0.086

d=0.2 0.451 0.447 0.216 0.338

d=0.3 0.831 0.816 0.486 0.575

d=0.5 0.999 0.999 0.945 0.526

d=0.7 1.000 1.000 1.000 0.826

d=0.9 1.000 1.000 1.000 0.822

CirANOVA Boot Uniform Rao

0.045 0.049 0.045 0.000

0.054 0.051 0.057 0.003

0.057 0.070 0.072 0.000

0.091 0.105 0.093 0.000

0.151 0.192 0.156 0.002

0.252 0.330 0.324 0.002

0.272 0.442 0.425 0.003

In the next simulation, we considered small and large sample simulations to compare
the performance of all four tests under wrapped Cauchy distribution assumption. First,
four random samples of size 10 generated from wrapped Cauchy distribution with µ =
π + d and ρ = 0.9 parameters. The reason that we considered the wrapped Cauchy
distribution is to see the performance of circular ANOVA and alternative tests when the
data come from non-von Mises models and also compare the tests under a small sample
case. We repeated the same experiment for a large sample size (n1 = n2 = n3 = n4 =
100) using the same wrapped Cauchy distribution and parameters.
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Figure 4(a) shows uniform score test performed better than bootstrap and circular
ANOVA tests under a small sample case and wrapped Cauchy assumption. At d=0,
uniform score test estimates the nominal type-I error rate with 0.049 which almost equals
to the true rate of α = 0.05. On the other hand, bootstrap, circular ANOVA and Rao’s
test did not maintain the nominal type-I error rate of α = 0.05. Overall, Rao’s test of
homogeneity did not perform well again due to small sample sizes. Figure 4(b) shows the
power curves under the large sample case where the random samples of size 100 created
from the wrapped Cauchy distribution with µ = π + d and ρ = 0.9. Figure 4(b) shows
all methods except circular ANOVA have maintained the nominal rate of type-I error as
seen in Table 9. Rao’s test homogeneity has an estimated type-I error rate of 0.044 for
α = 0.05 and it has shown its best performance when large samples sizes are considered.
So, circular ANOVA did not perform very well under the assumption of wrapped Cauchy
populations.

Table 9. Power simulation results for circular ANOVA, Rao’s
test, uniform score test. Four random samples of size 10 are from
wrapped Cauchy with µ = π and ρ = 0.9 parameters (right table)
and large sample case where n1 = n2 = n3 = n4 = 100 are
again generated from wrapped Cauchy distribution with the same
parameters (left table).

d CirANOVA Boot Uniform Rao

d=0 0.008 0.027 0.049 0.026

d=0.1 0.148 0.288 0.774 0.468

d=0.2 0.678 0.826 0.998 0.880

d=0.3 0.938 0.980 1.000 0.930

d=0.5 1.000 1.000 1.000 0.972

d=0.7 1.000 1.000 1.000 1.000

d=0.9 1.000 1.000 1.000 1.000

CirANOVA Boot Uniform Rao

0.004 0.051 0.048 0.044

0.998 1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

1.000 1.000 1.000 1.000

In the next simulation, four independent random samples (n1 = n2 = n3 = n4 = 25)
are generated from ”mixed” von Mises distribution with proportion of the mixture is
defined as p ∗ V onM(µ1 = π/2 + d, κ1 = 3) + (1− p)V onM(µ2 = 2π, κ2 = 0.5) where p
shows the proportion of the mixture. We will consider p=0.90 (90%-10% mixture) and
p=0.70 (70%-30% mixture) proportions respectively. These model assumptions can also
be considered an equivalent of contaminated normal distribution in the traditional sense.
The goal is to see the performance of circular ANOVA and nonparametric tests under
these assumptions that random samples come from mixture of von Mises distributions.
This approach is clearly a violation of the assumption for circular ANOVA since the test
requires all r populations should come from von Mises distributions with equal param-
eters. For each d, Monte Carlo simulation is performed and estimated power curve of
each method is presented in Figure 5.
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Simulation results are also shown by Table 10 below. As it can be seen from Figure
5(a) and also from Table 10, uniform scores test performed the best overall when p = 0.90
(90%-10% mixture). At d=0, the nominal type-I error rate (α) should be reached if a test
works as expected but only uniform scores comes close to the nominal value of α = 0.05
with estimates of 0.044. Circular ANOVA and Rao’s test estimates for α = 0.05 were
0.028 and 0.015, respectively. It could be an indication that these two tests are very
conservative in rejecting H0. Bootstrap test is also under performing since its estimated
type-I error rate is 0.034 but it is slightly better than circular ANOVA and Rao’s test. If
we assume p = 0.70 ( 70%− 30% mixture of von Mises distributions) and generate four
random samples from this mixed von Mises distribution, simulation results show uniform
scores tests have an estimate of 0.047 for α = 0.05. It is considerably close to the nominal
value of type-I error rate and indication that the test works as expected even if the data
come from mixture of von Mises distribution. On the other hand, circular ANOVA and
bootstrap have estimates of 0.033 and 0.039 which are much smaller then the nominal
value of α = 0.05. Again, circular ANOVA and bootstrap test look very conservative
when we assume mixture of von Mises distributions with p = 0.70. Similarly, Rao’s test
did not perform well for the mixture of von Mises distributions when p = 0.70. Thus,
uniform scores tests should be considered a better performer under contaminations and
violation of having von Mises distribution assumption.

Table 10. Power simulation results for circular ANOVA, boot-
strap test, Rao’s test of homogeneity, and uniform score test from
the mixture of von Mises populations with proportion of the mix-
ture is 90% (right table) and 70% (left table) respectively.

d CirANOVA Boot Uniform Rao

d=0 0.028 0.034 0.044 0.015

d=0.1 0.185 0.192 0.133 0.021

d=0.2 0.635 0.6466 0.458 0.044

d=0.3 0.941 0.947 0.829 0.438

d=0.5 0.998 0.998 0.989 0.902

d=0.7 1.000 1.000 0.998 0.993

d=0.9 1.000 1.000 1.000 0.999

CirANOVA Boot Uniform Rao

0.033 0.039 0.047 0.003

0.090 0.089 0.103 0.028

0.332 0.341 0.334 0.007

0.725 0.729 0.720 0.061

0.942 0.945 0.935 0.307

0.991 0.992 0.990 0.645

1.000 0.999 1.000 0.803

7. Conclusion

The main motivation of this paper was about investigating circular ANOVA (one
way analysis of variance in circular data analysis) against nonparametric alternatives
such as bootstrap test, uniform scores test (Mardia-Watson-Wheeler test) and Rao’s
test of homogeneity in the analysis of multi-sample circular data problems. Circular
ANOVA requires certain assumptions as we discussed in Section 2. On the other hand,
bootstrap, uniform scores, and Rao’s tests are considered nonparametric tests, and they
do not depend on any population distributions (see Section 3) or equality of parameters.
There is also a lack of study in the literature about the comparison of circular ANOVA
with alternative methods if the assumptions of circular ANOVA do not meet. So, real
life examples and power analysis are performed on circular ANOVA, bootstrap, uniform
scores test and Rao’s test of homogeneity to observe their comparative performance under
von Mises, mixed von Mises and wrapped Cauchy distribution assumptions.

Section 6 presents power simulation study which is performed to see the performance
of nonparametric tests against circular ANOVA under von Mises distribution. As seen
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in Figure 3(a) that it is an ideal case for circular ANOVA since the test gives its best
performance if κ = 2 or higher but circular ANOVA starts under performing compare to
the uniform score test if κ < 1 as shown by Figure 3(b) and Table 8. Moreover, Figure 4
shows power curves of all four tests under a small and large sample cases. As we see in
Figure 4(a) that uniform score test performs better than bootstrap and circular ANOVA
when sample sizes are small and come from wrapped Cauchy populations. Rao’s test
can not compete with them if the sample sizes are too small. Next, we considered a
large sample case where all four random samples have a size of 100 and the results are
presented by Figure 4(b) and Table 9. As we see that all four tests have converged power
curves but only bootstrap and uniform score tests have maintained the nominal type-I
error rate of 0.05 which is an indication that under a large sample case bootstrap and
uniform score test works as expected and detect shifts in the mean directions better than
circular ANOVA. Figure 5 and Table 10 are obtained by generating four random samples
(sizes of 25) from mixed von Mises with (µ1 = π/2, κ1 = 3) and (µ2 = 2π, κ2 = 0.5)
with a mixture rate of p = 0.90 and 0.70 respectively. Figure 5(a) (also Table 10) shows
that only uniform scores test is almost equal to the nominal type-I error rate of 0.05.
Therefore, uniform scores test could be used without sacrificing the power of the test
compare to the circular ANOVA, bootstrap and Rao’s test under the mixture of von
Mises distributions with p = 0.90. Figure 5(b) also shows uniform scores test is almost
equal to the nominal type-I error rate when we assume mixed von Mises with a mixture
rate of p = 0.70. In both cases of mixed von Mises distributions, circular ANOVA and
bootstrap tests are less likely to reject H0 when it is false since their estimates of nominal
type-I rate are much smaller than α = 0.05. Similarly, Rao’s test is also under performing
when we assume mixture of von Mises distributions.

We can conclude that circular ANOVA shows superiority if the data come from von
Mises distribution with a common concentration parameter of κ = 2 or higher which
is considered an ideal case for circular ANOVA. If κ < 1, bootstrap and uniform scores
tests performs slightly better overall. If we assume mixed von Mises and wrapped Cauchy
distributions, uniform scores tests performs better than circular ANOVA, bootstrap and
Rao’s test of homogeneity in which Rao’s test requires large sample sizes in order to reach
the performance of the alternative tests.
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Appendix A

R functions that are used in this paper can be found in Tasdan ([15]). These functions
require ”circular” package to be installed first in order to run the functions.
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(a)

(b)

Figure 4. Circular ANOVA and nonparametric alternatives are
compared in terms of their power curves. Figure (a) shows all four
samples of size 10 (small sample case) are generated from wrapped
Cauchy distribution with µ = π and ρ = 0.9 parameters and figure
(b) shows large sample case where n1 = n2 = n3 = n4 = 100.
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(a)

(b)

Figure 5. Circular ANOVA and nonparametric tests are com-
pared in terms of their power curves. Figure (a) shows all four
samples are generated from mixed von Mises with µ1 = π/2 + d,
κ1 = 3 and µ2 = 2π, κ2 = 0.5 with proportion of the mixture
is 90% and figure (b) shows the repeat of the simulation with
proportion of 70% mixture.
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Abstract

In this study, we derived new formulations for the first and second
order inclusion probabilities of a ranked set sample in a finite population
setting. Gökpınar and Özdemir (2010) developed a formula to calculate
the first order inclusion probabilities. However, the formula given in
this study is much easier than the one given by Gökpınar and Özdemir
(2010). Second order inclusion probabilities are computed based on
the formulas which are used for the calculation of first order inclusion
probabilities. Also, we give a numerical example to show the calculation
of the formulas and Matlab codes which give first and second inclusion
probabilities for any set and population sizes.

Keywords: Ranked Set Sampling, First Order Inclusion Probability, Second Order
Inclusion Probability, Finite Population Setting.

2000 AMS Classification: 62D05, 65C60

1. Introduction

Ranked Set Sampling (RSS) is an efficient sampling technique than the simple random
sampling (SRS) for improving the accuracy of the estimation of means. RSS was first
introduced by McIntyre (1952) for estimate the mean of pasture yields. In recent years,
RSS is used in many fields such as the environment, ecology and agriculture. Some
applications in these fields can be found in the studies of Johnson et.al. (1993) and
Al-Saleh et al(2000). Also, some recent ideas about RSS can be found in Bouza(2005).

In RSS, the inclusion probabilities of the population units are different from each
other, and it is difficult to determine the inclusion probabilities for all sample sizes. Al-
Saleh and Samawi (2007) obtained the inclusion probabilities in RSS for the set size 2

and 3. Özdemir and Gökpınar (2007) obtained the inclusion probabilities in RSS for

all set sizes when the cycle size is one, and Özdemir and Gökpınar (2008) have adapted
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this procedure to Median Ranked Set Sampling (MRSS) with any set and cycle sizes.

Gökpınar and Özdemir (2010) generalized the formula of inclusion probabilities in RSS
for all cycle and set sizes.

Jafari et. al. (2010) derived the first and second order inclusion probabilities for
Level 0 RSS procedure (sampling with replacement) of Deshpande et. al. (2006) and
developed several designs based estimators of the population mean. Recently, Gökpınar
and Özdemir (2011) defined the Horvitz-Thompson (HT) estimator of the population
mean using the inclusion probabilities of a ranked set sample in a finite population setting.
Furthermore, they give a calculation formula of the second order inclusion probabilities
which is required to calculate the variance of the HT estimator.

In this study, we give a simple formula to calculate the first and second order inclusion
probabilities in RSS. In the second section of this study, we give the selection procedure,
required definitions, and the formulas of these inclusion probabilities in RSS. In the third
section, a numerical example is given to show the calculation of the formula. Concluding
remarks are given in section 4. Also in the appendix, we give Matlab codes to calculate
the first and second inclusion probabilities for any set and population sizes.

2. Inclusion Probabilities in RSS

Let the population units be X1<X2<...<XN and let a ranked set sample from this
population be Y1,Y2,...,Ym based on the level 1 sampling procedure. Level 1 sampling
procedure is given as follows (Deshphande et al. 2006, Al-Saleh and Samawi, 2007):

In the gth selection,
1. A simple random sample of size m is selected without replacement from the popu-

lation.
2. The sampled units are ranked with respect to the variable of interest and the gth

order statistic is selected for measurement.
3. All other m-1 units are returned to the population.
4. The steps 1-3 are repeated for g=1,2,...,m to obtain a ranked set sample of size m.
The entire cycle may be repeated, if necessary, r times to produce a ranked set sample

of size mr=n. In this study, we only considered the case of r=1. A generalization for
r>1 can be easily derived.

To calculate the first and second order inclusion probabilities, some basic definitions
are required.

Ai is the event of selecting the ith population unit in the sample (i=1,2,. . . ,N).
Aj is the event of selecting the jth population unit in the sample (j=1,2,. . . ,N).

lg(i, j) =





1 t < i
2 t > j
3 i < t < j

where i<j and t is the rank of the population unit which is selected in the gth selection.
If i=j, then lg(i, i) = lg(i) can be defined as;

lg(i) =

{
1 t < i
2 t > i

B1
g(i, j)is the event of selecting smaller population unit than the ith population unit in

the gth selection (lg(i, j)=1). If i=j, then B1
g(i, i) = B1

g(i).

B2
g(i, j)is the event of selecting greater population unit than the j th population unit

in the gth selection (lg(i, j)=2). If i=j, then B2
g(i, i) = B2

g(i).

B3
g(i, j)is the event of selecting greater population unit than i th and smaller population

unit than the jth population unit in the gth selection (lg(i, j)=3).
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ag(i) is the number of smaller population units than the i th population unit selected
before the gth selection.
ag(j)is the number of smaller population units than the j th population unit selected

before the gth selection.
So there is a relationship between ag(i) and {l1(i), l2(i), ..., lg−1(i)}as given below

ag(i) = 2(g − 1)−
g−1∑

u=1

lu(i)

By using these definitions, the probability of selecting the i th population unit in the
sample can be obtained as

(2.1) πN (Ai) = 1− πN (Ac
i
) i = 1, 2, . . . , N

where

πN (Ac
i
) =

2∑

l1(i),l2(i),...,lm(i)=1

P
(
B
l1(i)
1 (i) ∩Bl2(i)2 (i)∩... ∩Blm(i)

m (i)
)

(2.2) =

2∑

l1(i),l2(i),...,lm(i)=1

m∏

g=1

Pag(i)

(
B
lg(i)
g (i)|Bl1(i)1 (i) ∩Bl2(i)2 (i) ∩ ... ∩Blg−1(i)

g−1 (i)
)

We derive Pag(i)

(
B
lg(i)
g (i)|Bl1(i)1 (i) ∩Bl2(i)2 (i) ∩ ... ∩Blg−1(i)

g−1 (i)
)

in the following theo-
rems.

2.1. Theorem. The probability, Pag(i)

(
B1
g(i)|Bl1(i)1 (i) ∩Bl2(i)2 (i) ∩... ∩Blg−1(i)

g−1 (i)
)

in

Eq. (2.2), can be written as follows when ag(i)=0;

(2.3) P0

(
B1
g(i)|B2

1(i) ∩B2
2(i)... ∩B2

g−1(i)
)

=





0 i = 1, 2, ..., g

∑m
u=g


 i− 1

u





 N − i− g + 2

m− u





 N − g + 1

m




i = g + 1, ...N −m+ 1

1 i = N −m+ 2, ..., N.

Proof. P0

(
B1
g(i)|B2

1(i) ∩B2
2(i) ∩ ... ∩B2

g−1(i)
)

means that the probability of selection of
a smaller unit than the i-th population unit in the g-th selection under the condition that
there is no a smaller population unit selected before the g-th selection. So, there are i-1
smaller population units and N-i+1-(g-1) =N-i-g+2 greater population units from the
i-th population unit in the g-th selection. Also, we should choose at least g population
units smaller than i-th population unit to choose a population unit smaller than the i-th
population unit. So, smaller population units than any of the first g population units
(i = 1, 2, ..., g) have no chance to be selected in the g-th selection. On the other hand,
greater population units than any of the last m-1 population units(i = N −m+ 2, ..., N)
have no chance to be selected in the g-th selection. Therefore, smaller population units
than any of the last m-1 population units(i = N −m+ 2, ..., N) have a %100 probability
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to be selected in the g-th selection. So,

P0

(
B1
g(i)|B2

1(i) ∩B2
2(i)... ∩B2

g−1(i)
)

=


 i− 1

g





 N − i− g + 2

m− g





 N − g + 1

m




+ ...+


 i− 1

m





 N − i− g + 2

0





 N − g + 1

m




=
∑m
u=g


 i− 1

u





 N − i− g + 2

m− u





 N − g + 1

m




, i = g + 1, ...., N −m+ 1.

This completes the proof. �

The other probabilities required to calculate the inclusion probabilities can be obtained
by using Theorem 2.1. The selection probability of the population unit smaller than
i′ = i + ag(i

′) (ag(i
′) = 1, 2, ..., g − 1) in the g-th selection when ag(i

′) > 0, is equal to
the selection probability of the population unit smaller than the i-th population unit in
the g-th selection when ag(i) = 0. This probability is stated at Theorem 2.2.

2.2. Theorem. Pag(i′)

(
B1
g(i′)|Bl1(i

′)
1 (i′) ∩Bl2(i

′)
2 (i′)... ∩Blg−1(i

′)
g−1 (i′)

)
can be written as

follows when i′ = i+ ag(i
′) (ag(i

′) = 1, 2, ..., g − 1).

Pag(i′)

(
B1
g(i′)|Bl1(i

′)
1 (i′) ∩ ... ∩Blg−1(i

′)
g−1 (i′)

)
=

Pag(i)=0

(
B1
g(i)|B2

1(i) ∩ ... ∩B2
g−1(i)

)
.(2.4)

Proof. In the g-th selection, the number of population units smaller than i′ are

i′ − ag(i′)− 1 = i+ ag(i
′)− ag(i′)− 1 = i− 1.

By the same way, the number of population units equal or greater than i′ are

N− i′+1−(g−1−ag(i′)) = N−(i+ag(i
′))+1−(g−1−ag(i′)) = N− i−g+2.

So,

Pag(i′)

(
B1
g(i′)|Bl1(i

′)
1 (i′) ∩Bl2(i

′)
2 (i′) ∩ ... ∩Blg−1(i

′)
g−1 (i′)

)

=

m∑

u=g

(
i− 1
u

)(
N − i− g + 2

m− u

)

(
N − g + 1

m

) .

This probability is equal to Pag(i)=0

(
B1
g(i)|B2

1(i) ∩B2
2(i)... ∩B2

g−1(i)
)
.

This completes the proof. �

We also required the probability of selecting of a greater unit from the i-th population
unit. This probability is stated at Theorem 2.3.

2.3. Theorem. Pag(i)

(
B2
g(i)|Bl1(i)1 (i) ∩Bl2(i)2 (i) ∩ ... ∩Blg−1(i)

g−1 (i)
)

can be written as

follows:

(2.5)
Pag(i)

(
B2
g(i)|Bl1(i)1 (i) ∩Bl2(i)2 (i) ∩ ... ∩Blg−1(i)

g−1 (i)
)

= 1− Pag(i+1)=ag(i)

(
B1
g(i+ 1)|Bl1(i+1)

1 (i+ 1) ∩ ... ∩Blg−1(i+1)

g−1 (i+ 1)
)
.

120



Simple Computational Formulas for Inclusion Probabilities...

Proof. From the basic complement rule of probability, P (Ac) = 1 − P (A), we know

that Pag(i)
(
{B2

g(i) |Bl1(i)1 (i) ∩Bl2(i)2 (i)... ∩Blg−1(i)

g−1 (i)}
)

is the selection probability of

a greater unit from i-th population unit (i+1,i+2,. . . ,N ) when ag(i) is known and

Pag(i+1)=ag(i)

(
B1
g(i+ 1)|Bl1(i+1)

1 (i+ 1) ∩ ... ∩Blg−1(i+1)

g−1 (i+ 1)
)

is the selection proba-

bility of a smaller unit from (i+1)-th population unit (1,2,. . . i) when ag(i+ 1) = ag(i).
So, these probabilities are complement to each other. This completes the proof. �

By using these definitions, the probability of selecting both the ith and jth population
units in the sample can be obtained as

πN (Ai ∩Aj) = 1− πN ((Ai ∩Aj)c) i, j = 1, 2, . . . , N (i < j)(2.6)

= 1−
[
πN (Aci ) + πN

(
Acj
)
− πN

(
Aci ∩Acj

)]

where πN (Ac
i
) and πN

(
Acj
)

probabilities can be calculated from the Theorems 2.1, 2.2,
2.3. The probability πN (Ac

i
∩Acj) can be defined as follows;

πN (Ac
i
∩Acj) =

3∑

l1(i,j),l2(i,j),...,lm(i,j)=1

P
(
B
l1(i,j)
1 (i, j) ∩ ... ∩Blm(i,j)

m (i, j)
)

=

3∑

l1(i,j),l2(i,j),...,lm(i,j)=1

m∏

g=1

Pag(i),ag(j)

(
B
lg(i,j)
g (i, j)|Bl1(i,j)1 (i, j) ∩ ... ∩Blg−1(i,j)

g−1 (i, j)
)

(2.7)

The conditional probability of B
lg(i,j)
g (i, j) can be calculated from Theorems 2.1, 2.2, 2.3.

when lg(i,j )=1 and lg(i,j )=2. When lg(i,j )=3, the conditional probability of B
lg(i,j)
g (i, j)

is given as following Theorem 2.4.

2.4. Theorem. Pag(i),ag(j)

(
B3
g(i, j)|Bl1(i,j)1 (i, j) ∩Bl2(i,j)2 (i, j)... ∩Blg−1(i,j)

g−1 (i, j)
)

can

be written as follows:

(2.8) Pag(i),ag(j)

(
B3
g(i, j)|Bl1(i,j)1 (i, j) ∩ ... ∩Blg−1(i,j)

g−1 (i, j)
)

= Pag(j)

(
B1
g(j)|Bl1(j)1 (j) ∩ ... ∩Blg−1(j)

g−1 (j)
)

−Pag(i+1)=ag(i)

(
B1
g(i+ 1)|Bl1(i+1)

1 (i+ 1) ∩ ... ∩Blg−1(i+1)

g−1 (i+ 1)
)

Proof. Pag(j)

(
B1
g(j)|Bl1(j)1 (j) ∩ ... ∩Blg−1(j)

g−1 (j)
)

is the probability of selecting smaller

population unit than the j th population unit in the gth selection when there are ag(j )
smaller unit then jth population unit. Also,

Pag(i+1)=ag(i)

(
B1
g(i+ 1)|Bl1(i+1)

1 (i+ 1) ∩ ... ∩Blg−1(i+1)

g−1 (i+ 1)
)

is the probability of selecting a smaller population unit than the (i+1)th population unit
in the gth selection when there are ag(i+1)= ag(i) smaller units then (i+1)th population
unit. So, from the basic rules of probability, the probability of a population unit between
i th and j th unit including in a ranked set sample can be obtained by using the difference
of these two probabilities. This completes the proof. �

By using Theorem 2.1, 2.2, 2.3 and 2.4 we can obtain the inclusion probabilities given
in Eq. (2.1) and (2.6). A simple example for calculation is given in the following section.

121



F. Gökpınar and Y. A. Özdemir

3. Computation of the Formula

By using the formulas in previous section, the inclusion probabilities for the all units in
the population can be derived easily. For example, when N=5 and m=3, the population
consists of X1<X2<X3<X4<X5 elements. The inclusion probability of Xi (i=1, 2, 3, 4,
5) can be written using Eq. (2.1) as follows:
πN (Ai) = 1− πN (Ac

i
) i=1,2,3,4,5

where

πN (Ac
i
) =

2∑

l1,l2,l3=1

P
(
Bl11 (i) ∩Bl22 (i) ∩Bl33 (i)

)

=

2∑

l1,l2,l3=1

Pa3(i)

(
Bl33 (i)|Bl11 (i) ∩Bl22 (i)

)
Pa2(i)

(
Bl22 (i)|Bl11 (i)

)
Pa1(i)

(
Bl11 (i)

)
.

here a1(i) = 0, a2(i) = 0, 1 and a3(i) = 0, 1, 2.
By using Theorem 2.1, the probability of selecting a smaller unit than the i-th popu-

lation unit when g=1, can be written as follows;

P0

(
B1

1(i)
)

=





0 i = 1

∑3
u=1


 i− 1

u





 6− i

3− u





 5

3




i = 2, 3

1 i = 4, 5.

P0

(
B1

1(1)
)

= 0; P0

(
B1

1(2)
)

= 6/10;

P0

(
B1

1(3)
)

= 9/10; P0

(
B1

1(4)
)

= 1; P0

(
B1

1(5)
)

= 1.

From Theorem 2.3, it can be written as follows;

P0

(
B2

1(1)
)

= 4/10; P0

(
B2

1(2)
)

= 1/10;

P0

(
B2

1(3)
)

= 0; P0

(
B2

1(4)
)

= 0; P0

(
B2

1(5)
)

= 0.

We can write the other inclusion probabilities by the same way. In Table 1, the inclusion
probabilities of the all population units are given in the gth selection for all possible
combinations of (l1, l2, l3). In Table 1, Pl1,l2,l3 is defined as follows;

Pl1,l2,l3 = P
(
Bl11 (i) ∩Bl22 (i) ∩Bl33 (i)

)

= Pa3(i)

(
Bl33 (i)|Bl11 (i) ∩Bl22 (i)

)
Pa2(i)

(
Bl22 (i)|Bl11 (i)

)
Pa1(i)

(
Bl11 (i)

)
.

The obtained inclusion probabilities in Table 1 are the same as the inclusion probabil-
ities which are given in the study of Gökpınar and Özdemir (2010). But this formula is
much easier and simpler than the formula of the inclusion probabilities given in Gökpınar
and Özdemir (2010).

By the same way, the second order inclusion probabilities can be obtained as given in
Table 2.

As seen from Table 1, the extreme units have greater inclusion probabilities than the
others. The following figures are constructed for different population and set sizes.

As seen from Figures 1-6, units from both extremes (e.g. X1, XN ) have greater second
order inclusion probabilities than the others for all set and population sizes. Also units in
the mid section of the population have smaller second order inclusion probabilities. The
effects of first and second order inclusion probabilities on HT estimator under populations
with different coefficient of variation and skewness values are investigated at Gökpınar
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Table 1. The first order inclusion probabilities of the population
units with N=5, m=3

Xi (l1,l2,l3) (1,1,1) (1,1,2) (1,2,1) (1,2,2) (2,1,1) (2,1,2) (2,2,1) (2,2,2) πN (Ac
i
) πN (A

i
)

X1 g=1 0 0 0 0 0.40 0.40 0.40 0.40

g=2 0 0 1 1 0 0 1 1 0.40 0.60
g=3 0 1 0 1 0 1 0 1

Pl1,l2,l3 0 0 0 0 0 0 0 0.40

X2 g=1 0.60 0.60 0.60 0.60 0.10 0.10 0.10 0.10
g=2 0 0 1 1 0 0 0.50 0.50 0.65 0.35

g=3 0 1 0 1 0 1 0 1

Pl1,l2,l3 0 0 0 0.60 0 0 0 0.05

X3 g=1 0.90 0.90 0.90 0.90 0 0 0 0

g=2 0 0 0.50 0.50 0.50 0.50 0 0 0.45 0.55

g=3 0 1 0 1 0 1 0 0

Pl1,l2,l3 0 0 0 0.45 0 0 0 0

X4 g=1 1 1 1 1 0 0 0 0

g=2 0.50 0.50 0 0 1 1 0 0 0.50 0.50
g=3 0 1 0 0 0 0 1 1

Pl1,l2,l3 0 0.50 0 0 0 0 0 0

X5 g=1 1 1 1 1 0 0 0 0

g=2 1 1 0 0 1 1 0 0 0 1

g=3 0 0 1 0 1 0 0 0

Pl1,l2,l3 0 0 0 0 0 0 0 0

Table 2. The second order inclusion probabilities of the popula-
tion units with N=5, m=3

πN (Ai ∩Aj) X1 X2 X3 X4 X5

X1 - 0 0.30 0.30 0.60

X2 0 - 0.20 0.15 0.35

X3 0.30 0.20 - 0.05 0.55

X4 0.30 0.15 0.05 - 0.50

X5 0.60 0.35 0.55 0.50 -

and Özdemir(2012). The results of assigning larger probabilities to the extremes are also

discussed at Gökpınar and Özdemir(2012).

4. Concluding Remarks

In this study, we give a new formula for the first and the second order inclusion
probabilities in RSS which is simpler and easier than the previous ones. This formula
can be adapted to other modifications of RSS and can be generalized for any cycle sizes.
Furthermore, a MATLAB code is given for calculate the inclusion probabilities in the
Appendix.
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Figure 1. The second order inclusion probabilities of the popu-
lation units with N=20, m=3

Figure 2. The second order inclusion probabilities of the popu-
lation units with N=20, m=5
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Figure 3. The second order inclusion probabilities of the popu-
lation units with N=20, m=7

Figure 4. The second order inclusion probabilities of the popu-
lation units with N=50, m=3
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Figure 5. The second order inclusion probabilities of the popu-
lation units with N=50, m=5

Figure 6. The second order inclusion probabilities of the popu-
lation units with N=50, m=7
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Appendix A. Matlab Code for First Order Inclusion Probabili-
ties

function P =firstinc(N,m)
B(1:m,1:m,1:N,1:2)=0;
for i=1:N
for g=1:m
for u=g:m
B(1,g,i,1)=B(1,g,i,1)+nck(i-1,u)*nck(N-i-g+2,m-u)/nck(N-g+1,m);
if i>1
B(1,g,i-1,2)=1-B(1,g,i,1);
end
end
end
end
for ag=2:m
for i=1:N
for g=ag:m
for u=g:m
B(ag,g,i+ag-1,1)=B(1,g,i,1);
if i>1
B(ag,g,i-1,2)=1-B(ag,g,i,1);
end
end
end
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end
end
A=allperm([1 2],m);
for i=1:N
AT(:,1,i)=B(1,1,i,A(:,1));
end
for i=1:N
for j=2:m
for t=1:2ˆm
AT(t,j,i)=B(2*j-1-sum(A(t,1:j-1)),j,i,A(t,j));
end
end
end
for i=1:N
for t=1:2ˆm
c(i,t)=1;
for j=1:m
c(i,t)=c(i,t)*AT(t,j,i);
end
end
end
P=1-sum(c’);
B. Matlab Code for Second Order Inclusion Probabilities
function P2=secondinc(N,m)
B(1:m,1:m,1:N,1:2)=0;
B3(1:m,1:m,1:m,1:N,1:N)=0;
for i=1:N
for g=1:m
for u=g:m
B(1,g,i,1)=B(1,g,i,1)+nck(i-1,u)*nck(N-i-g+2,m-u)/nck(N-g+1,m);
if i>1
B(1,g,i-1,2)=1-B(1,g,i,1);
end
end
end
end
for ag=2:m
for i=1:N
for g=ag:m
for u=g:m
B(ag,g,i+ag-1,1)=B(1,g,i,1);
if i>1
B(ag,g,i-1,2)=1-B(ag,g,i,1);
end
end
end
end
end
for aig=1:m
for ajg=aig:m
for i=1:N
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for j=i+1:N
for g=1:m
B3(aig,ajg,g,i,j)=B(ajg,g,j,1)-B(aig,g,i+1,1);
if B3(aig,ajg,g,i,j)<0
B3(aig,ajg,g,i,j)=0;
end
end
end
end
end
end
A=allperm([1 2 3],m);
for k=1:size(A,1)
for l=1:size(A,2)
if A(k,l)==1;
AA{k,l}={1 1};
elseif A(k,l)==3;
AA{k,l}={2 1};
elseif A(k,l)==2;
AA{k,l}={2 2};
end
end
end
for i=1:N-1
for j=i+1:N
for k=1:3ˆm
if A(k,1)==1;
AT(i,j,k,1)=B(1,1,i,1);
elseif A(k,1)==2;
AT(i,j,k,1)=B(1,1,j,2);
elseif A(k,1)==3;
AT(i,j,k,1)=B3(1,1,1,i,j);
end
end
end
end
for i=1:N-1
for j=i+1:N
for l=2:size(A,2)
for k=1:3ˆm
if A(k,l)==1;
aa=2*l-1;
for t=1:l-1
aa=aa-AA{k,t}{1};
end
AT(i,j,k,l)=B(aa,l,i,AA{k,l}{1});
elseif A(k,l)==2
aa=2*l-1;
for t=1:l-1
aa=aa-AA{k,t}{2};
end
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AT(i,j,k,l)=B(aa,l,j,AA{k,l}{2});
elseif A(k,l)==3
aai=2*l-1;
for t=1:l-1
aai=aai-AA{k,t}{1};
end
aaj=2*l-1;
for t=1:l-1
aaj=aaj-AA{k,t}{2};
end
AT(i,j,k,l)=B3(aai,aaj,l,i,j);
end
end
end
end
end
for i=1:N-1
for j=i+1:N
for k=1:3ˆm
c(i,j,k)=1;
for l=1:m
c(i,j,k)=c(i,j,k)*AT(i,j,k,l);
end
end
P(i,j)=sum(c(i,j,:));
end
end
P(N,1:N)=0;
P1=firstinc(N,m);
for i=1:N-1
for j=i+1:N
P2(i,j)=1-((1-P1(i))+(1-P1(j))-P(i,j));
end
end
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Abstract

In this paper, we propose a new class of exponential regression cum
ratio estimator using the auxiliary variable for the estimation of the
finite population mean under two phase sampling scheme. The Bias
and Mean Square Error (MSE) equations of the proposed estimator
are obtained and compared with the MSE equations of some existing
estimators in two phase sampling. We find theoretically the proposed
estimator is always more efficient than classical ratio and regression es-
timators, Singh and Vishwakarma [17] ratio type exponential estimator
in two phase sampling. In addition, theoric results are supported by a
numerical example using original data sets.

Keywords: Two phase sampling, Auxiliary variable, Exponential estimation, Effi-
ciency.

2000 AMS Classification:

1. Introduction

In the sampling theory, the use of auxiliary information results in considerable im-
provement in the precision of estimators of population mean. The ratio and regression
methods have been widely used when auxiliary information is available. In literature,
number of authors introduced many ratio and regression type estimators by using general
linear transformation of the auxiliary variable. For recent development, exponential es-
timators have been widely studied by several authors such as Bahl and Tuteja [2], Singh
et al. [19] and Grover and Kaur [6].

Under various sampling schemes, many exponential estimators, using the population
information of the auxiliary variable, have been proposed. However, the knowledge on
the population mean of the auxiliary variable is not always available. In this situation,
two phase sampling method is the most popular sampling scheme in literature. Two
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phase sampling, first introduced by Neyman [13], is a cost effective technique in survey
sampling. It is typically used when it is very expensive to collect data on the variables
of interest, but it is relatively inexpensive to collect data on variables that are correlated
with the variables of interest. By these aspects two phase sampling is a powerful and
cost economical procedure for finding the reliable estimate in first phase sample for
the unknown parameters of the auxiliary variable x. Simply, a field survey is to be
undertaken to determine the average value of some characters of a population. For
example, the amount of money families spend on food. As the collection of data requires
long interviews by specially trained enumerators, the cost per family is quite high. The
cost of survey is constrained within a specified amount but the sample does not appear
to yield an estimate of desired precision because of the great variability of the character.
Nevertheless, the character is correlated with a second character that can be determined
at a lower cost per family so that a precise estimate of the distribution of this second
character is readily obtained. Hence, a more precise estimate of the original character can
be found by first estimating the distribution of the second character alone from a large
random sample [10]. In literature, many authors improved ratio and regression estimators
using at least one auxiliary variable under two phase sampling scheme. Singh and Espejo
[16] suggested a class of ratio-product estimators in two phase sampling with its properties
and identified asymptotically optimum estimators from proposed class of estimators.
Samiuddin and Hanif [14] proposed ratio and regression estimation procedures to estimate
the population mean in two-phase sampling using idea of partial and no information cases.
Ahmad [1] has proposed various estimators for two phase and multiphase sampling using
information on several auxiliary variables. Hanif et al. [7] proposed regression estimator
using several auxiliary variables. In recent years, exponential estimators have not been
studied sufficiently in two phase sampling. Singh and Vishwakarma [17] adapted Bahl
and Tuteja [2] exponential ratio type estimator into two phase sampling. We, here, give
the notations about two phase sampling and various estimators of the population mean
in two phase sampling method in Section 2. We propose a class of exponential regression
cum ratio estimator in Section 3. In Section 4, the proposed estimator is compared
with other existing estimators in two phase sampling and we obtain certain conditions
that proposed estimator is found to be more efficient than other estimators. In Section
5, the theoretical results are supported by a numerical example. In Section 6, we give
conclusion.

2. Notations and Various Existing Estimators

Consider a finite population U = U1, U2, . . . , UN , of size N units. Let y denote the
study variable taking the values yi on the unit Ui, (i = 1, 2, . . . , N) and Y is its unknown
population mean. Let x denotes the auxiliary variable taking the values xi on the unit
Ui, (i = 1, 2, . . . , N) positively correlated with y and X is its unknown population mean.

It is well known that when the population mean of the auxiliary variable is not known,
two phase sampling is used. Two phase sampling consists of two phase. In first phase,
a sample of fixed size is drawn by Simple Random Sampling Without Replacement (SR-
SWOR) from the finite population to estimate the mean of the auxiliary variable. The
sample is drawn in first phase is named as primary sample and expressed by s′. The usual
practice is to estimate the mean of the auxiliary variable by sample mean. In second
phase, a sample s (s ⊂ s′) of fixed size n is drawn SRSWOR from the primary sample
(s′) to estimate the mean of the study variable. The sample is drawn in second phase is
named as sub sample and expressed by s [14].
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When information is not available on the auxiliary variable, x, that is positively cor-
related with the study variable, y, the classical ratio estimator is a widely used estimator
to estimate the population mean, Y , in two phase sampling as follows:

(2.1) yR =
y

x
x
′

where x
′

is the primary sample mean of the auxiliary variable, y and x are the sub
sample means of the study and auxiliary variables, respectively. It is well known that
the MSE equation of the classical ratio estimator is given by

(2.2) MSE (yR) ∼= Y
2 [
λC2

y + λ∗C2
x (1− 2Kyx)

]

where Kyx = ρyx
Cy
Cx

; λ =
1

n
− 1

N
; λ∗ =

1

n
− 1

n′
; n
′

is the primary sample size; n is

the sub sample size; N is the number of units in the population; ρyx is the population
correlation coefficient between the auxiliary and the study variables, Cx and Cy are the
population coefficients of variation of the auxiliary and study variables, respectively.

When auxiliary variable is correlated with the study variable, the classical unbiased
regression estimator is used to estimate the population mean, in two phase sampling as
follows:

(2.3) ylr = y + βyx
(
x
′ − x

)

where βyx is the regression coefficient between the auxiliary and the study variables.
It is well known that the variance of the classical regression estimator is given by

(2.4) V ar (ylr) = Y
2
C2
y

(
λ− λ∗ρ2yx

)

Singh and Vishwakarma [17] suggested the following modified exponential ratio esti-
mator in two phase sampling

(2.5) ysvr = y exp

(
x
′ − x
x
′

+ x

)

The MSE equation of the estimator can be given by

(2.6) MSE (ysvr)
∼= Y

2
[
λC2

y + λ∗
(
C2
x

4
− ρyxCyCx

)]

In sampling literature, the authors rarely consider the exponential estimators in two
phase sampling scheme. For this reason, we improved a class of exponential regression
cum ratio estimator in two phase sampling using the ratio and regression methods and
their linear transformation in this study.

3. Suggested Exponential Estimator in Two Phase Sampling

Replacing regression estimator instead of sample mean and using linear transformation
in exponential term in Singh and Vishwakarma [17] exponential ratio estimator given in
(2.5), we improve a class of exponential regression cum ratio estimator as follows:

(3.1) yNH =
[
k1y + k2

(
x
′ − x

)]
exp

(
z
′ − z
z + z

′

)
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where k1 and k2 are some known constants, z
′

is a transformation of the auxiliary variable

at first phase as z
′

= ax
′
+b, and z is a transformation of the auxiliary variable at second

phase as z = ax+ b.
Then, we have

(3.2)
z
′

= ax
′

+ b
z = ax+ b

}

where a (6= 0) and b are either any known constants or functions of any known popula-
tion parameters of the auxiliary variable, such as standard deviation (σx), coefficient of
variation (Cx), coefficient of skewness {β1 (x)}, coefficient of kurtosis {β2 (x)}, coefficient
of correlation (ρyx) [9]. The list of new exponential estimator generated from (3.1) is
given in Table 1.

To obtain the Bias and MSE equations for the proposed estimator, we define following
notations:

(3.3) e0 =

(
y − Y

)

Y
, e1 =

(
x−X

)

X
, e1
′ =

(
x
′ −X

)

X

such that

(3.4)

E (e0) = E (e1) = E
(
e
′
1

)
= 0;E

(
e20
)

= λC2
y ;E

(
e21
)

= λC2
x;

E
(
e
′
1

2
)

= λ
′
C2
x;E (e0e1) = λρyxCyCx;E

(
e0e
′
1

)
= λ

′
ρyxCyCx;

E
(
e1e
′
1

)
= λ

′
C2
x

where

λ =
1

n
− 1

N
, λ

′
=

1

n′
− 1

N
, C2

y =
S2
y

Y
2 , C2

x =
S2
x

X
2 , S2

y =

N∑
i=1

(
yi − Y

)2

N − 1
,

S2
x =

N∑
i=1

(
xi −X

)2

N − 1
, ρyx =

N∑
i=1

(
yi − Y

) (
xi −X

)

√
N∑
i=1

(
xi −X

)2 N∑
i=1

(
yi − Y

)2

and we use Taylor series method [4] for two variables to solve the exponential term as

(3.5)

f
(
e1, e

′
1

)
= f

(
e1, e

′
1

) ∣∣∣e1=e′1=0
+

1

1!

∂f
(
e1, e

′
1

)

∂e1

∣∣∣e1=e′1=0

+
1

1!

∂f
(
e1, e

′
1

)

∂e
′
1

∣∣∣e1=e′1=0
+

1

2!

∂f
(
e1, e

′
1

)

∂e21

∣∣∣e1=e′1=0

+
1

2!

∂f
(
e1, e

′
1

)

∂e
′
1
2

∣∣∣e1=e′1=0
+

1

2!

∂f
(
e1, e

′
1

)

∂e1e
′
1

∣∣∣e1=e′1=0

+
1

2!

∂f
(
e1, e

′
1

)

∂e
′
1e1

∣∣∣e1=e′1=0
+ . . .

Expressing (3.1) in terms of e’s and using (3.5) for the exponential term, we have

(3.6) yNH =
[
k1Y (1 + e0) + k2X

(
e
′
1 − e1

)]
exp





aX
(
e
′
1 − e1

)

aX
(
e1 + e

′
1 + 2

)
+ 2b
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where f(e1, e
′
1) = exp





aX
(
e
′
1 − e1

)

aX
(
e1 + e

′
1 + 2

)
+ 2b



 and we solve the exponential term from

(3.5) as

yNH =
[
k1Y (1 + e0) + k2X

(
e
′
1 − e1

)]

{
1− θ

(
e1 − e

′
1

)
+

3θ2

2
e21 −

θ2

2
e
′
1

2
− θ2e1e

′
1 + ...

}

where θ =
aX

2
(
aX + b

) .

Assuming |e1| < 1, expanding the right hand side of (3.6), and retaining terms up to
the second degree of e’s, we have

yNH − Y ∼= Y

[
(k1 − 1)− k1θ

(
e1 − e

′
1

)
− 3θ2

2

(
e21 − e

′
1

2)
+ k1e0−(3.7)

k1θ
(
e0e1 − e0e

′
1

)]
+ k2X

[
e
′
1 − e1 + θ

(
e21 − e

′
1

2)]

Squaring both sides of (3.7), retaining terms of e’s up to the second degree and
taking expectation, we get the Bias and MSE Equations of yNH to the second degree of
approximation as

(3.8) Bias (yNH) ∼= E
(
yNH − Y

) ∼= Y
[
(k1 − 1) + k1λ

∗θC2
x

](3θ

2
−Kyx

)

MSE (yNH) ∼= E
(
yNH − Y

)2
(3.9)

∼= Ȳ 2 [(k1 − 1)2 + k21
{
λC2

y + 4λ∗θC2
x (θ −Kyx)

}
+

k1λ
∗θC2

x (2Kyx − 3θ) + k22λ
∗X

2
C2
x + 2k2X Y λ∗C2

x {k1 (2θ −Kyx)}

To obtain the minimum MSE (yNH), we get

(3.10)
∂

∂ki
{MSE (yNH)} = 0; i = 1, 2.

Solving two equations simultaneously, the optimum values of k1 and k2 are respec-
tively,

(3.11) k1 = 1− 2− λ∗θ2C2
x

1 +
(
λ− λ∗ρ2yx

)

(3.12) k2 =
Y

X

{
(θ − 1) +

2− λ∗θ2C2
x

1 +
(
λ− λ∗ρ2yx

) (2θ −Kyx)

}

k1 and k2 quantities can be guessed quite accurately through a pilot sample survey or
sample data or experience gathered in due course of time, see Das and Tripathi [5], Singh
and Ruiz-Espejo [16], Singh, H.P. et al. [18] and Koyuncu and Kadilar [11].
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When k1 and k2 are replaced in (3.9), the minimum MSE of the proposed estimator
can be written as

MSEmin (yNH) ∼= Y
2
C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4{
1 + C2

y

(
λ− λ∗ρ2yx

)}(3.13)

∼= Y
2
V ar (ylr)

(
1− λ∗θ2C2

x

)
− λ∗2Y

2
θ4C4

x

4{
Y

2
+ V ar (ylr)

}

Table 1. Some Members of the Suggested Estimator yNH

A subset of yNH a b

yNH1 =
[
k1y + k2

(
x
′ − x

)]
exp

(
x
′−x
x+x

′

)
1 0

yNH2 =
[
k1y + k2

(
x
′ − x

)]
exp

(
x
′−x

x+x
′
+2

)
1 1

yNH3 =
[
k1y + k2

(
x
′ − x

)]
exp

(
x
′−x

x+x
′
+2β2(x)

)
1 β2 (x)

yNH4 =
[
k1y + k2

(
x
′ − x

)]
exp

{
β2(x)

(
x
′−x

)

β2(x)(x+x′)+2

}
β2 (x) 1

yNH5 =
[
k1y + k2

(
x
′ − x

)]
exp

{
Cx

(
x
′−x

)

Cx(x+x′)+2β2(x)

}
Cx β2 (x)

yNH6 =
[
k1y + k2

(
x
′ − x

)]
exp

{
β2(x)

(
x
′−x

)

β2(x)(x+x′)+2Cx

}
β2 (x) Cx

yNH7 =
[
k1y + k2

(
x
′ − x

)]
exp

{
ρyx

(
x
′−x

)

ρyx(x+x′)+2β2(x)

}
ρyx β2 (x)

yNH8 =
[
k1y + k2

(
x
′ − x

)]
exp

{
β2(x)

(
x
′−x

)

β2(x)(x+x′)+2ρyx

}
β2 (x) ρyx

yNH9 =
[
k1y + k2

(
x
′ − x

)]
exp

{
Cx

(
x
′−x

)

Cx(x+x′)+2ρyx

}
Cx ρyx

4. Efficiency Comparisons in Two Phase Sampling

In this section, we obtain the efficiency conditions for the proposed estimator by com-
paring the MSE of the proposed estimators with the MSE of classical ratio and regression
estimators and the exponential ratio estimator suggested by Singh and Vishwakarma [17].

We compare the MSE of the proposed estimator, yNH , given in (3.13), with the MSE
of the existing estimators, yR, ylr, ysvr.

From (2.2) and (3.13), we have the condition

MSE (yNH) < MSE (yR)

Y
2
C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4
1 + C2

y

(
λ− λ∗ρ2yx

) < Y
2 [
λC2

y + λ∗C2
x (1− 2Kyx)

]
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Table 1 Continued: Some Members of the Suggested Estimator yNH

A subset of yNH a b

yNH10 =
[
k1y + k2

(
x
′ − x

)]
exp

{
ρyx

(
x
′−x

)

ρyx(x+x′)+2Cx

}
ρyx Cx

yNH11 =
[
k1y + k2

(
x
′ − x

)]
exp

{
σx

(
x
′−x

)

σx(x+x′)+2ρyx

}
σx ρyx

yNH12 =
[
k1y + k2

(
x
′ − x

)]
exp

{
ρyx

(
x
′−x

)

ρyx(x+x′)+2σx

}
ρyx σx

yNH13 =
[
k1y + k2

(
x
′ − x

)]
exp

{
β2(x)

(
x
′−x

)

β2(x)(x+x′)+2σx

}
β2 (x) σx

yNH14 =
[
k1y + k2

(
x
′ − x

)]
exp

{
σx

(
x
′−x

)

σx(x+x′)+2β2(x)

}
σx β2 (x)

yNH15 =
[
k1y + k2

(
x
′ − x

)]
exp

{
β1(x)

(
x
′−x

)

β1(x)(x+x′)+2β2(x)

}
β1 (x) β2 (x)

yNH16 =
[
k1y + k2

(
x
′ − x

)]
exp

{
β2(x)

(
x
′−x

)

β2(x)(x+x′)+2β1(x)

}
β2 (x) β1 (x)

Note: In addition to estimators listed in Table 1, a large number of esti-
mators can also be generated from (3.1) by putting 1, Cx, β2 (x), ρyx, σx,
β1 (x) values for a and b.

C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4
1 + C2

y

(
λ− λ∗ρ2yx

) < λC2
y +λ∗ (Cx − ρyxCy)2−λ∗ρyxCy

(4.1)

{
λ∗θ2C2

x

2
+
V ar (ylr)

Y
2

}2

+ λ∗ (Cx − ρyxCy)2
{

1 +
V ar (ylr)

Y
2

}
> 0

The condition (4.1) is always satisfied, the proposed estimator, yNH , is always more
efficient than the classical ratio estimator, yR.

From (2.4) and (3.13), we have the condition

MSE (yNH) < V ar (ylr)

Y
2
V ar (ylr)

(
1− λ∗θ2C2

x

)
− λ∗2Y

2
θ4C4

x

4

Y
2

+ V ar (ylr)
< V ar (ylr)

(4.2)

{
V ar (ylr)

Y
2 +

λ∗θ2C2
x

2

}2

> 0

The condition (4.2) is always satisfied, the proposed estimator, yNH , is always more
efficient than the classical regression estimator, ylr.

From (2.6) and (3.13), we have the condition
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MSE (yNH) < MSE (ysvr)

Y
2
C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4
1 + C2

y

(
λ− λ∗ρ2yx

) < Y
2
[
λC2

y + λ∗
(
C2
x

4
− ρyxCyCx

)]

C2
y

(
λ− λ∗ρ2yx

) (
1− λ∗θ2C2

x

)
− λ∗2θ4C4

x

4
1 + C2

y

(
λ− λ∗ρ2yx

) < λC2
y+λ∗

(
Cx
2
− ρyxCy

)
−λ∗ρ2yxC2

y

(4.3)

(
V ar (ylr)

Y
2 + λ∗θ2C2

x

)2

+ λ∗
(
Cx
2
− ρyxCy

)2{
1 +

V ar (ylr)

Y
2

}
> 0

The condition (4.3) is always satisfied, the proposed estimator, yNH , is always more
efficient than Singh and Vishwakarma [17] exponential ratio estimator, ysvr.

Thus, finally, we conclude from the efficiency comparisons that the class of exponential
regression cum ratio estimator, yNH , is always more efficient than the estimators, yR,
ylr and ysvr.

5. Numerical Example

To show the performance of the proposed estimator in comparison to other estimators
in two phase sampling, four original data sets used by other authors in literature has
been considered. The descriptions of the populations are given below.

Population I : Cingi et. al. [3],
y : the number of teachers
x : the number of student in both primary and secondary school for 923 districts

N = 923, n
′

= 400, n = 200, Y = 436, 3, X = 11440, 50, Cy = 1, 72, Cx = 1, 86,
ρyx = 0, 955.

Population II : Sukhatme and Sukhatme [20],
y: No. of villages in the circle.
x: A circle consisting more than five villages.

N = 89, n
′

= 30, n = 20, Y = 3, 360, X = 0, 124, Cy = 0, 604, Cx = 2, 190 ,
ρyx = 0, 766.

Population III : Kadilar and Cingi [9],
y: Level of apple production.
x: No. of apple trees.

N = 104, n
′

= 40, n = 20, Y = 625, 37, X = 13, 930, Cy = 1, 866, Cx = 1, 653,
ρyx = 0, 865.

Population IV : Murthy [12],
y: Output
x: fixed capital

N = 80, n
′

= 40, n = 20, Y = 51, 826, X = 11, 265, Cy = 0, 354, Cx = 0, 751,
ρyx = 0, 9413.
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We compute the MSE values of classical ratio and regression estimators, Singh and
Vishwakarma [17] estimator and proposed estimator using the equations, (2.2), (2.4),

(2.6), and (3.13), respectively. We have taken a = b = 1, that is, θ =
X

2
(
X + 1

) , just for

the sake of simplicity.
These MSE values are shown in Table 2. We observe that the most efficient estimator

is the proposed exponential regression cum ratio estimator as compared to those existing
ones.

Table 2. MSE Values of Estimators in Two Phase Sampling

Population

Estimators I II III IV

Classical Ratio(ȳR) 807,59 0,30 54993,75 12,64

Classical Regression(ȳlr) 780,89 1,86 29536,17 16,87

Singh and Vishwakarma (ȳsvr) 1045,59 0,40 35586,14 5,29

Proposed Est.(ȳNH) 774,71 0,12 26960,89 5,12

6. Conclusion

We propose a class of regression cum estimator using the exponential function for the
population mean in two phase sampling improving the exponential ratio estimator sug-
gested in Singh and Vishwakarma [17]. Theoretically, we demonstrate that the proposed
estimator is always the most efficient estimator in two phase sampling and numerically,
for various specific data sets, we show that the proposed estimator has small MSE value
according to other estimators. In future work, we will improve the proposed estimator,
presented here, with using several auxiliary variables and adding more parameters for
other sampling schemes.
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Abstract

Nowadays, with the help of advanced imaging techniques the image or
shape of an organ or organism can be used as input data. Therefore,
the statistical analysis of shape has recently become more important
in the medical and biological sciences. Methods related to two-sample
tests have been developed for statistical shape analysis, giving rise to
considerable interest in research that evaluates the performance of these
tests. In this study, two sample procedures are used to compare the
mean shapes from the statistical shape analysis literature according to
type I error rate.

Keywords: Statistical shape analysis, two-sample tests, type I error rate.
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1. Introduction

In the biological and medical sciences, morphometric methods are frequently preferred
for examining the morphologic structures of organs or organisms with regard to diseases
or environmental factors. Therefore, the statistical analysis of shapes has recently become
more important in the medical and biological sciences. Data sets include qualitative and
quantitative measurements for use in the statistical analyses associated with medical
research. Nowadays, with the help of advanced imaging techniques the image or shape
of an organ or organism can be used as input data [1].

Shape is defined as all the geometrical information that remains when location, scale
and rotational effects are filtered from an object [2], [3], [4], [5]. Statistical shape analysis
is a geometrical analysis of the statistics measured from sets of shapes that determines
the features of similar shapes or of different groups comprising similar shapes. Distance
between shapes, mean shape and shape variation can be predicted and obtained using
statistical shape analysis [3]. A comparison of shapes between groups can also be done
at a particular significance level.
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Inferential methods described in the shape analysis literature make use of landmark
configurations that are optimally superimposed via either a least-squares procedure or
an analysis of interlandmark distance matrices [6].

Methods concerning two-sample tests have been developed for statistical shape anal-
ysis, giving rise to considerable interest in research that evaluates the performance of
these tests. In this study, the Hotelling T 2, Goodall’s F and James Fj tests as well as
the λmin test statistic are used to compare the mean shapes of two samples from the
statistical shape analysis literature according to type I error rates derived from various
variance values in different sample sizes. This simulation study considers both isotropic
and anisotropic cases for which tangent space is used as shape space and considers meth-
ods that use complex arithmetic and exploit the geometry of the shape space.

2. Materials and Methods

2.1. Shape Space. The shape space is the set of all possible shapes [3]. For any set of
landmarks {Xi} in the original Euclidean plane, we can imagine the set of shapes derived
by holding all but one of the X’s at fixed position and varying that one in a circle about its
original position. We would like the metric assigned to shape space (the set of ”shapes”
of all such sets of X’s, correcting for centroid, orientation, and scale, all of which usually
change whenever one of the X’s moves) to be such that the shapes generated by circles
in the original landmark plane are all at the same distance from the original shape {Xi}
in the shape space. That is, to a circle around one landmark in data space should
correspond something very nearly a circle in shape space [7]. Although shape spaces
defined by superimposition methods have less dimensions than raw data or non-redundant
measurements, they are non-Euclidean and correspond to a curved surface. Nobody
will recommend applying traditional statistics directly in this space because traditional
statistics relies on the Euclidean metric, which is not the same as the Procrustes one
[8]. Special statistical methods (rather than the usual linear multivariate methods) are
required to take into account the non-Euclidean geometry of Kendall’s shape space for
both two and three-dimensional landmarks [4]. To perform usual statistical methods, one
must first project the surface of the hyperhemisphere onto a ”flat” tangent space where
the Euclidean metrics allows us to use Euclidean statistics. The data are projected
on a tangent shape space (also called Kendall tangent space or Kent tangent space).
The contact between spaces is chosen as the mean shape. Working on variation in the
tangent space is a rather perilous estimation since the projection can introduce distortion
for the largest distances. However, provided that variation is small, one can assume that
the portion of the shape hyperhemisphere and tangent space are nearly flat and nearly
confused [8].

The projection onto a Euclidean space can be orthogonal or stereographic. Note that
both projections will introduce biases for shapes being very different from the mean
shape: the orthogonal projection minimizes large differences while stereographic projec-
tion accentuates them. The stereographic projection is produced by adjusting the size
scale factor for the configuration to be projected onto the tangent space. To perform this
projection, we use simple trigonometric relationships and divide the coordinates of the
aligned configurations by the cosine of the Procrustes distance ρ between shapes and the
mean shape [8].

In this study the performances of two-sample test procedures that examine differences
in mean shape between two independent populations were evaluated in case of using
tangent shape space as a shape space. For these test procedures the case in terms of
using complex arithmetic and exploiting the geometry of the shape space which is an
alternative computational method was also considered for examining tests performances.
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2.2. Two-Sample Hotelling T 2 Test. The two-sample Hotelling T 2 test is used to test
an alternative hypothesis related to the differences of the mean shapes of two groups and
is accordingly applied to shape coordinates [9]. The Hotelling T 2 test assumes that the
samples have multivariate normal distributions and equal variance-covariance matrices
[10].

Consider two independent random samples X1, . . . , Xn1 and Y1, . . . , Yn2 from two
independent populations with mean shapes [µ1] and [µ2]. To test the hypothesis H0 :
[µ1] = [µ2], a two-sample Hotelling T 2 test can be performed in the Procrustes tangent
space where the pole corresponds to overall pooled full Procrustes mean shape µ̂. Let
v1, . . . , vn1 and w1, . . . , wn2 be the partial Procrustes tangent coordinates (with pole µ̂)
[3].

A multivariate normal model is proposed in the tangent space, where vi ∼ N(ξ1,
∑

1)
for i = 1, . . . , n1, wj ∼ N(ξ2,

∑
2) for j = 1, . . . , n2, and the vi and wj values are

all mutually independent. v̄ and w̄ and Sv, Sw represent the sample means and sample
covariance matrices respectively (with divisors n1 and n2) in each group. If the covariance
matrices are assumed to be equal (

∑
1 =

∑
2), then the squared Mahalanobis distance

between v̄ and w̄ is given by Equation-2.1.

(2.1) D2 = (v̄ − w̄)TS+
U (v̄ − w̄)

where SU = (n1S1 + n2S2)/(n1 + n2 − 2) and S+
U is the Moore-Penrose generalized

inverse of SU . Under the null hypothesis, we have ξ1 = ξ2 and the two-sample Hotelling
statistic, which is given by Equation 2.2

(2.2) FH =
n1n2(n1 + n2 −M − 1)

(n1 + n2)(n1 + n2 − 2)M
D2

where M = 2d− 2 is the dimension of the planar shape space. The test statistic has an
FM,n1+n2−M−1 distribution under the null hypothesis [2], [3].

2.3. James Fj Test. When covariances are not assumed to be equal, an alternative
method is to use the statistic proposed by James, which represents an effort to solve the
multivariate Behrens-Fisher problem [2], [6].

(2.3) Fj = (v̄ − w̄)T
(

1

n1
Sv +

1

n2
Sw

)+

(v̄ − w̄)

The J-statistic has an asymptotic χ2
M distribution under the null hypothesis regardless

of whether
∑

1 and
∑

2 are equal, and we reject the null hypothesis for large values of
this statistic [2].

2.4. Two-Sample Goodall’s F Test. Goodall presented a statistical framework for
analyzing Procrustes shape data and developed a possible F test. This test is based on
the Procrustes chord distance and should work under the assumption that variation is
isotropic and is equal for each landmark [8]. This assumption implies that the variances
of all landmarks (that is, the amount of dispersion) are expected to be the same. The
assumption also implies that the patterns of dispersion across landmarks are expected to
be uncorrelated [11].

If
∑

1 =
∑

2 =
∑

and we have isotropic covariance structure (
∑

= σ2I) [2].
In an isotropic variance structure, the diagonal elements and the variance values of

the covariance matrix are equal for each landmark, and all elements except the diagonal
elements are equal to zero. Perhaps the simplest type of covariance structure for the
perturbation distribution is one in which all landmarks are perturbed with the same
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variance irrespective of direction. This isotropic variance structure is easy to visualize,
but may not be biologically realistic in the study of certain biological structures or cer-
tain populations [12]. An isotropic normal model with mean µ and transformed by an
additional location, rotation and scale effects are given by Equation-2.4

(2.4) xi = βi(µ+ Ei)Γi + 1kγ
T
i vec(Ei) ∼ N(0, σ2Ikm)

where βi > 0 (scale), Γi ∈ SO(m) (rotation) and γi ∈ Rm (translation), and σ is small.
Consider independent random samples x1, x2, . . . , xn from a population modeled by

Equation-2.4 with µ1 and y1, y2, . . . , yn from Equation-2.4 with mean µ2. Both popula-
tions are assumed to have a common σ2 variance for each coordinate [3].

We wish to test H0 : [µ1] = [µ2](= [µ0]) against H1 : [µ1] 6= [µ2]. [µ̂1] and [µ̂2] are
the full Procrustes means of each sample. Under the H0 hypothesis, with a small σ the
Procrustes distances are approximately distributed as

(2.5)

n1∑

i=1

d2F (Xi, µ̂1) ∼ τ20χ2
(n1−1)M

(2.6)

n2∑

i=1

d2F (Yi, µ̂2) ∼ τ20χ2
(n2−1)M

(2.7) d2F (µ̂1, µ̂2) ∼ τ20
(

1

n1
+

1

n2

)
χ2
M

where τ = σ/δ, δ0 = S(µ0) and d2F represents the squared full Procrustes distance
between two configurations. In addition, these statistics are approximately mutually
independent [3]. Hence, under the null hypothesis, we have the approximate distribution
as given in equation-2.8.

(2.8) FG =
n1 + n2 − 2

n−1
1 + n−1

2

d2F (µ̂1, µ̂2)∑n1
i=1 d

2
F (Xi, µ̂1) +

∑n2
i=1 d

2
F (Yi, µ̂2)

∼ FM,(n1+n2−2)M

We reject the null hypothesis for large values of this test statistic. The Hotelling T 2

procedure is less powerful than Goodall’s F test, for which the isotropic normal model
holds [3], [13].

2.5. λmin Test Statistic. Amaral et al. [2] proposed a novel bootstrap approach to
k-sample testing problems in which each sample consists of a set of real or complex unit
vectors. The basic assumption is that the distribution of the sample mean shape (or
direction or axis) is highly concentrated [6]. Consider k samples of unit vectors in Cd (in
most traditional applications, d = 2; 3, but sometimes the case d ≥ 4 is also relevant),
and let µ̂i be the estimator of µ0 (i.e., the mean shape under the hypothesis) based on

sample i, for i = 1, . . . , k. Assume that n
1
2 M̂iµ0

D−→ CNd−1(0, Gi) for i = 1, . . . , k where

Gi denotes asymptotic covariance matrix has full rank and M̂i represents a projection
onto the tangent space at µ̂i [6].

Define Â0 = n
∑k
i=1 M̂

T
i Ĝi

−1
M̂i and T0(µ) = 2µT Â0µ, where T denotes the conjugate

transpose, µ is a complex unit vector and Ĝi is a consistent estimator of Gi. We thus
obtain

(2.9) λmin ≡ min
µ:‖µ‖=1

T0(µ) = T0(µ̂)
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where λmin is the smallest eigenvalue of Â0 and µ̂0 is the corresponding unit eigenvector

[2], [6]. It is proven that λmin
D−→ χ2

2(k−1)(d−1) as n → ∞ under the null hypothesis of

equality of means across populations [6].

2.6. A Simulation Study. In this study we aim to compare type I error rates of the
tabular, bootstrap and permutation adaptations of Hotelling T 2, Goodall’s F and James
Fj tests as well as the λmin test statistic. A mean vector and a variance-covariance matrix
are computed from a data set obtained from the landmark markings of the nose in the
anterior views of the faces of 50 subjects. Eleven landmarks (Figure 1) are applied to
the images in the manner described by Ercan et al. [14]. In the present study, the data
are simulated from a multivariate normal distribution under isotropic and anisotropic
models.

Figure 1. Landmark markings for the source data set used in
the simulation study.

The samples for which type I error rates are examined in the simulation study are
n1 = n2 = 20, 50, 100 and 500.

A mean vector that computed from a data set obtained from the landmark markings
as mentioned above is (x̄1, . . . , x̄11, ȳ1, . . . , ȳ11) = (501, 590, 546, 522, 568, 546, 521, 570,
532, 563, 547, 399, 398, 384, 398, 397, 409, 425, 426, 469, 469, 500).

Variance values are determined to be 0.001, 0.01, 0.05, 0.1, 0.5, 1, 5, 737, 1703 and 2949
in the isotropic case. The values 737, 1703 and 2949 values are the minimum, maximum
and mean variance values of the variance-covariance matrix, which contains real values
from the sample data set.

Isotropic structures are used in studies and when comparing the methods; however
it is not the case as in real-world applications; therefore, in our study we also compare
methods by simulating with anisotropic structures. The real variance-covariance matrix
computed from the sample data set is used as input for the simulation of the anisotropic
case.

In the examination of type I error rate in the simulation study, it is assumed that
related tests use tangent space as shape space, that they use complex arithmetic and
that they exploit the geometry of shape space.

The simulation study has been conducted with 1000 replications, and the number of
bootstrap and permutation resamples is set to 100.

We used TPSDIG 2.04 software to mark the landmarks on the images. The simulation
study and analyses were performed using R 2.12.0 software [15].
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3. Results and Discussion

In Table 1, we give type I error rates as determined for both cases according to the
exploitation of shape space, according to various variance values for the isotropic model
and according to the variance-covariance matrix computed from the real data set for the
anisotropic model in different sample sizes.

It has been observed that applications of statistical shape analysis have recently been
used more than ever before in medical and biological sciences to compare the structures
of shapes [14], [16], [17], [18]. For example, forensics analyses [19], computer-assisted
neurosurgery methods [20] anthropological studies [14], [17], [18], [21] and MRI-based
morphological analyses of the brain [22], [23], [24] make use of statistical shape analysis.
Therefore, it is of great importance that shape objects be recognized, measured and
compared.

Newly developed methods utilize two-sample tests in statistical shape analysis, which
is a geometric morphometric concept. However, more emphasis has been placed on studies
of the comparative performance of related tests. In this study, we aim to compare the
type I error rates of the Hotelling T 2, Goodall’s F and James Fj tests as well as the
λmin test statistic, which are all used in the shape analysis literature to compare mean
shapes. In this simulation study, the performance of tabular, bootstrap and permutation
adaptations of the related procedures are examined in terms of type I error rate. We
also consider isotropic and anisotropic cases for different variance values and sample sizes
using the tangent space as the shape space. Finally, we consider related procedures that
use complex arithmetic and exploit the geometry of the shape space.

We examined the procedures of bootstrap adaptations through simulation results, con-
sidered isotropic covariance structure, exploited tangent space and used complex arith-
metic with the geometry of the shape space, thus evaluating small samples. In light of
these findings, the application of the Hotelling T 2, James Fj and Goodall’s F tests in
tangent space put the type I error rate under the determined nominal level. Additionally,
we observe that the type I error rates remained under the nominal level following the
application of λmin test statistic with the Hotelling T 2, Goodall’s F and James Fj tests
when complex arithmetic was applied and the geometry of the shape space was exploited.
In a similar study of small samples, Brombin and Salmaso [6] conducted the Hotelling T 2,
Goodall’s F and James Fj tests and generally found that the type I error rate was under
the nominal level in the isotropic covariance structure when using complex arithmetic
with the geometry of the shape space. Brombin and Salmaso [6] also observed a value
close to the determined nominal level when using the λmin test statistic. Amaral et al.
[2] carried out a similar study with small samples and observed a value close to
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Table-1: Type I error rates for  n1=n2=20, 50, 100, 500  and σ
2
= 0.001, 0.01, 0.05, 0.1 in the case of using shape space as tangent space and exploiting complex arithmetic  

with geometry of  shape space. 

                                  

  n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 
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H_bootstrap 0.000 0.024 0.051 0.049 0.000 0.033 0.037 0.055 0.000 0.021 0.036 0.066 0.000 0.027 0.040 0.048 
H_permutation 0.047 0.042 0.057 0.048 0.037 0.045 0.054 0.056 0.048 0.040 0.046 0.057 0.062 0.046 0.042 0.050 
H_tabular 0.018 0.024 0.044 0.044 0.032 0.041 0.037 0.056 0.047 0.042 0.044 0.061 0.052 0.052 0.043 0.043 
G_ bootstrap 0.017 0.020 0.047 0.041 0.019 0.036 0.033 0.058 0.019 0.038 0.036 0.053 0.028 0.041 0.038 0.041 
G_ permutation 0.046 0.032 0.050 0.041 0.051 0.050 0.043 0.057 0.045 0.047 0.045 0.063 0.060 0.053 0.057 0.051 
G _ tabular 0.044 0.030 0.044 0.035 0.053 0.048 0.037 0.059 0.054 0.049 0.041 0.056 0.059 0.052 0.052 0.042 
J_ bootstrap 0.000 0.024 0.051 0.049 0.000 0.033 0.037 0.055 0.000 0.021 0.036 0.066 0.000 0.027 0.040 0.048 
J_ permutation 0.047 0.032 0.057 0.048 0.037 0.045 0.054 0.056 0.048 0.040 0.046 0.057 0.062 0.046 0.042 0.050 
J_ tabular 0.120 0.035 0.053 0.044 0.167 0.051 0.042 0.056 0.191 0.062 0.046 0.062 0.228 0.066 0.052 0.045 
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H_ bootstrap 0.000 0.012 0.047 0.049 0.000 0.032 0.038 0.059 0.000 0.022 0.039 0.054 0.000 0.031 0.041 0.046 
H_ permutation 0.050 0.034 0.043 0.042 0.043 0.051 0.044 0.056 0.047 0.048 0.038 0.061 0.051 0.054 0.046 0.046 
H_ tabular 0.044 0.033 0.059 0.045 0.041 0.048 0.042 0.060 0.047 0.042 0.044 0.061 0.052 0.052 0.043 0.043 
G_ bootstrap 0.020 0.017 0.040 0.039 0.030 0.042 0.036 0.056 0.019 0.036 0.042 0.050 0.026 0.042 0.042 0.043 
G_ permutation 0.050 0.037 0.053 0.039 0.050 0.050 0.043 0.060 0.047 0.044 0.044 0.058 0.048 0.050 0.055 0.047 
G _ tabular 0.054 0.032 0.051 0.039 0.055 0.049 0.042 0.060 0.053 0.049 0.041 0.056 0.059 0.052 0.052 0.042 
J_ bootstrap 0.000 0.012 0.047 0.049 0.000 0.032 0.038 0.059 0.000 0.022 0.039 0.054 0.000 0.031 0.041 0.046 
J_ permutation 0.050 0.034 0.043 0.042 0.043 0.051 0.044 0.056 0.047 0.048 0.038 0.061 0.051 0.054 0.046 0.046 
J_ tabular 0.197 0.066 0.063 0.046 0.198 0.067 0.049 0.060 0.191 0.062 0.046 0.062 0.228 0.066 0.052 0.045 
λmin_ bootstrap 0.045 0.029 0.044 0.041 0.056 0.058 0.043 0.059 0.049 0.046 0.038 0.053 0.072 0.038 0.045 0.043 
λmin_ permutation 0.052 0.033 0.051 0.037 0.050 0.057 0.038 0.058 0.044 0.051 0.052 0.060 0.056 0.050 0.051 0.049 
λmin_ tabular 0.000 0.000 0.000 0.000 0.000 0.000 0.012 0.000 0.108 0.112 0.076 0.066 0.286 0.106 0.076 0.047 

 

 

 

 

 

 

 

 

147



Table-1 (continued): Type I error rates for  n1=n2=20, 50, 100, 500  and σ
2
= 0.5, 1, 5, 737  in the case of using shape space as tangent space and exploiting complex arithmetic 

with geometry of  shape space. 

                            

   n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 
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H_bootstrap 0.000 0.023 0.041 0.043 0.000 0.028 0.045 0.052 0.000 0.024 0.039 0.054 0.000 0.023 0.040 0.047 
H_permutation 0.045 0.054 0.047 0.048 0.049 0.045 0.055 0.045 0.054 0.044 0.045 0.048 0.047 0.049 0.043 0.046 
H_tabular 0.049 0.046 0.055 0.051 0.047 0.049 0.058 0.048 0.052 0.041 0.045 0.054 0.046 0.049 0.047 0.048 
G_ bootstrap 0.022 0.028 0.042 0.046 0.019 0.040 0.044 0.047 0.020 0.034 0.044 0.054 0.021 0.035 0.038 0.048 
G_ permutation 0.054 0.047 0.046 0.046 0.060 0.050 0.055 0.042 0.049 0.047 0.049 0.050 0.047 0.045 0.037 0.052 
G _ tabular 0.046 0.045 0.048 0.049 0.057 0.050 0.058 0.044 0.046 0.046 0.049 0.053 0.046 0.051 0.041 0.049 
J_ bootstrap 0.000 0.023 0.041 0.043 0.000 0.028 0.045 0.052 0.000 0.024 0.039 0.054 0.000 0.023 0.040 0.047 
J_ permutation 0.045 0.054 0.047 0.048 0.049 0.045 0.055 0.045 0.054 0.044 0.045 0.048 0.047 0.049 0.043 0.046 
J_ tabular 0.222 0.066 0.056 0.053 0.207 0.066 0.065 0.050 0.232 0.048 0.051 0.055 0.188 0.070 0.053 0.048 
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H_ bootstrap 0.000 0.023 0.051 0.047 0.000 0.022 0.045 0.047 0.000 0.028 0.042 0.059 0.000 0.031 0.045 0.044 
H_ permutation 0.052 0.045 0.055 0.053 0.051 0.046 0.059 0.050 0.056 0.041 0.047 0.054 0.050 0.054 0.048 0.053 
H_ tabular 0.049 0.046 0.055 0.051 0.047 0.049 0.058 0.048 0.052 0.041 0.045 0.054 0.047 0.052 0.048 0.047 
G_ bootstrap 0.022 0.029 0.046 0.044 0.024 0.029 0.048 0.045 0.023 0.038 0.038 0.048 0.008 0.039 0.035 0.044 
G_ permutation 0.049 0.042 0.058 0.050 0.053 0.044 0.054 0.045 0.042 0.051 0.048 0.053 0.053 0.052 0.046 0.051 
G _ tabular 0.046 0.045 0.048 0.049 0.057 0.050 0.059 0.044 0.048 0.048 0.049 0.053 0.486 0.524 0.548 0.568 
J_ bootstrap 0.000 0.023 0.051 0.047 0.000 0.022 0.045 0.047 0.000 0.028 0.042 0.059 0.000 0.031 0.045 0.044 
J_ permutation 0.052 0.045 0.055 0.053 0.051 0.046 0.059 0.050 0.056 0.041 0.047 0.054 0.050 0.054 0.048 0.053 
J_ tabular 0.222 0.066 0.056 0.053 0.207 0.066 0.065 0.050 0.232 0.058 0.051 0.055 0.185 0.071 0.053 0.047 
λmin_ bootstrap 0.009 0.026 0.047 0.048 0.013 0.036 0.046 0.046 0.010 0.029 0.038 0.054 0.004 0.039 0.042 0.041 
λmin_ permutation 0.042 0.038 0.052 0.059 0.057 0.045 0.044 0.048 0.049 0.048 0.043 0.053 0.047 0.050 0.043 0.049 
λmin_ tabular 0.281 0.117 0.078 0.055 0.264 0.110 0.087 0.054 0.294 0.109 0.075 0.057 0.240 0.109 0.073 0.048 
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Table-1 (continued): Type I error rates for n1=n2=20, 50, 100, 500  and σ
2
= 1703, 2949  and anisotropic covariance structure in the case of using shape space as tangent space 

and exploiting complex arithmetic with geometry of  shape space. 

                    Anisotropic covariance structure 

    n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 n=20 n=50 n=100 n=500 
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H_bootstrap 0.000 0.034 0.037 0.050 0.000 0.022 0.034 0.046 0.000 0.016 0.038 0.045 
H_permutation 0.053 0.052 0.043 0.050 0.049 0.042 0.044 0.052 0.060 0.048 0.050 0.047 
H_tabular 0.054 0.054 0.047 0.054 0.053 0.042 0.041 0.053 0.046 0.049 0.050 0.045 
G_ bootstrap 0.030 0.040 0.033 0.047 0.024 0.041 0.027 0.043 0.052 0.041 0.051 0.051 
G_ permutation 0.057 0.055 0.041 0.053 0.051 0.052 0.038 0.055 0.061 0.046 0.051 0.050 
G _ tabular 0.057 0.054 0.044 0.054 0.053 0.047 0.033 0.048 0.169 0.140 0.122 0.154 
J_ bootstrap 0.000 0.034 0.037 0.050 0.000 0.022 0.034 0.046 0.000 0.016 0.038 0.045 
J_ permutation 0.053 0.052 0.043 0.050 0.049 0.042 0.044 0.052 0.060 0.048 0.050 0.047 
J_ tabular 0.214 0.073 0.055 0.055 0.212 0.066 0.046 0.054 0.207 0.064 0.055 0.050 
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H_ bootstrap 0.000 0.033 0.031 0.036 0.000 0.016 0.018 0.028 0.000 0.022 0.039 0.005 
H_ permutation 0.054 0.059 0.045 0.053 0.051 0.046 0.037 0.046 0.051 0.056 0.050 0.042 
H_ tabular 0.053 0.055 0.050 0.051 0.056 0.043 0.041 0.053 0.046 0.049 0.050 0.045 
G_ bootstrap 0.011 0.038 0.033 0.054 0.004 0.021 0.027 0.047 0.047 0.042 0.050 0.049 
G_ permutation 0.093 0.065 0.059 0.050 0.146 0.077 0.046 0.051 0.069 0.047 0.053 0.054 
G _ tabular 0.914 0.931 0.927 0.936 0.988 0.992 0.995 0.997 0.168 0.145 0.122 0.151 
J_ bootstrap 0.000 0.033 0.031 0.036 0.000 0.016 0.018 0.028 0.000 0.022 0.039 0.045 
J_ permutation 0.054 0.059 0.045 0.053 0.051 0.046 0.037 0.046 0.051 0.056 0.050 0.042 
J_ tabular 0.218 0.075 0.053 0.054 0.216 0.067 0.044 0.055 0.207 0.064 0.055 0.047 
λmin_ bootstrap 0.006 0.040 0.036 0.051 0.003 0.023 0.028 0.048 0.016 0.040 0.048 0.040 
λmin_ permutation 0.059 0.055 0.037 0.044 0.050 0.051 0.035 0.045 0.061 0.055 0.051 0.051 
λmin_ tabular 0.243 0.110 0.062 0.058 0.239 0.116 0.064 0.056 0.315 0.146 0.117 0.093 

In Table-1, H indicates Hotelling T
2
 test,  G indicates Goodall’s F test and J indicates James FJ test respectively. 
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the determined level in terms of type I error rates in related procedures. As for large
samples, while the type I error rates converged to the nominal level in both usages of
shape space, we found results under the nominal level in the simulation study of high
variance values.

In the simulation study in which we exploited the variance-covariance matrix of real
landmark values, the anisotropic covariance structure and the procedures of bootstrap
adaptations, we found that type I error rates stayed under the nominal level according
to the Hotelling T 2, Goodall’s F and James Fj tests as well as the λmin test statistic
for both usages of shape space in small samples. When large samples were evaluated,
we found that the type I error rates remained under the determined nominal level only
when the Hotelling T 2 test was applied in the case of exploiting complex arithmetic with
the geometry of the shape space.

Following the examination of the permutation adaptation of procedures through the
simulation results and considering the isotropic covariance structure, the tests showed
an overall performance in all sample sizes in both usages of shape space. However, the
Goodall’s F test tends to overestimate the nominal level in small samples in the case of
exploiting complex arithmetic with the geometry of the shape space. In a similar study
of small samples, Amaral et al. [2] found an overall results that were close the nominal
level for the type I error rates; however, Amaral et al. [2] reported that as the variance
values in the Goodall’s F test increased, the related procedure tended to overestimate
the nominal level of the type I error rate. Compared to the variance values in Amaral et
al. [2], the variance values of the Goodall’s F test are close to the values of the nominal
level of the type I error rate. Brombin and Salmaso [6] stated that the Hotelling T 2

and James Fj tests showed similar values but that the Goodall’s F test and the λmin

test statistic tended to underestimate the nominal level. In the anisotropic covariance
structure, the examined procedures showed similar results to the nominal type I error
rate in small and large sample sizes.

When tabular versions of procedures were analyzed through simulation results, the
James Fj test tended to overestimate the nominal level in small samples in both usages
of shape space in the case of isotropic covariance structure. The Hotelling T 2 test un-
derestimated the nominal level in small samples in tangent space with reference to type
I error rate in low variance values, but the Goodall’s F test overestimated the nominal
level in the case of exploiting complex arithmetic with the geometry of the shape space
in high variance values. We found that comparison with the λmin test statistic generally
underestimated and overestimated the nominal level. We found that the James Fj and
Goodall’s F tests as well as the λmin test statistic underestimated and overestimated
the nominal level; on the other hand, the Hotelling T 2 test revealed values close to the
nominal level, which Brombin and Salmaso [6] also observed in a similar study of small
samples in the case of exploiting isotropic covariance structure and in the cases of related
procedures that use complex arithmetic and exploit the geometry of the shape space.
Amaral et al. [2] also found that the Goodall’s F test and the λmin test statistic over-
estimated the nominal level; however, the Hotelling T 2 and James Fj tests resulted in
values close to the nominal level in a similar study of small samples. The Goodall’s F
test overestimated the nominal level in large samples when exploiting complex arithmetic
with the geometry of the shape space and in the case of high variance values. It was
observed that the Goodall’s F test and λmin test statistic overestimated the nominal level
in both usages of shape space in anisotropic covariance structure.

When the present study is compared with the similar studies [2], [6] in the literature,
performances of two-sample test procedures used in this study were examined in terms
of both using tangent space as a shape space and using complex arithmetic with exploit-
ing the geometry of shape space. This study also differs from other literatures in terms
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of using variance-covariance matrix of real-life data set to examine the performances of
related procedures in anisotropic case. In addition, it has been observed that the vari-
ance values given in simulation scenarios in similar studies are smaller than the variance
values of real-life data sets. For this reason, in this study two-sample test procedures’
performances were also examined for large variance values computed from a real-life data
set. Present study also differs in terms of including large sample size values.

4. Conclusions

As predicted, the results of the present study indicate that tests perform better with
large samples than with small samples. For small samples, permutation test adaptations
gave the most favorable results in all isotropic and anisotropic covariance structures. For
large samples, permutation test adaptations gave the most favorable results with regard
to type I error rate in all low and high variance values and in all isotropic and anisotropic
covariance structures. It was concluded that bootstrap adaptations of tests gave the
most unfavorable results in all isotropic and anisotropic covariance structures in small
samples.
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