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On some variants of compactness

S. Bayhan ∗ and I. L. Reilly †

Abstract
Three weak variants of compactness were introduced and studied by
Kohli and Singh [ Acta Math. Hungar. 106 (2005), 317-329 ]. These
three properties are reconsidered from the change of topology perspec-
tive. In particular, it is shown that each of these properties is equivalent
to compactness with respect to another topology on the underlying set.
Some consequences of this situation are investigated.
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1. Introduction

The notion of compactness is one of the most significant topological properties, and
its importance reaches well beyond topology to several other branches of mathematics.
Weaker variants of compactness have been considered in the topological literature for at
least nine decades. For example, Hausdorff almost compact spaces (now known as H-
closed spaces) were introduced by Alexandroff and Urysohn [1], and have subsequently
been investigated by many researchers. The book [12] is a comprehensive source of refer-
ences. Almost compactness is considered in the book [3]. Frolik [5] introduced quasicom-
pact spaces. One reason for their significance is that functionally Hausdorff quasicompact
spaces are the natural setting for the Stone-Weierstrass theorem, see Stephenson [17].

In 2005 Kohli and Singh [10] introduced three weak variants of compactness which lie
between compactness and quasicompactness. They studied the basic properties of the
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The authors gratefully acknowledge financial support of this research by the Scientific and Tech-
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classes of spaces defined by these three weak variants of compactness, which have been
named d-compactness, d∗-compactness and Dδ-compactness.

In this paper, we reconsider these three notions from the perspective of change of
topology. In each case, we observe that there is an appropriate change of topology which
reveals that the new concept is equivalent to the classical notion of compactness. The last
two results of Kohli and Singh [10, Theorems 5.17 and 5.18] make this observation almost
as a post script. They do not use it anywhere in their paper [10]. In our view, this is the
fundamental defining characteristic of these three notions of weak compactness. For us,
it is the starting point of the discussion. Each of these three new notions is compactness
with respect to another topology on the underlying set. This observation provides the
natural setting for the subsequent discussion of each of these three notions.

We are able to exploit this observation to produce more elegant alternative proofs of
some of the results of Kohli and Singh [10], and to suggest other results.

Our notation and terminology are standard, see for example Dugundji [4]. In par-
ticular, we do not assume any separation properties for the spaces we consider, unless
explicitly stated. We denote the interior of a subset B of the topological space (X, τ) by
τintB, or just intB, and the closure of B by τclB or clB.

2. Preliminaries and definitions

In a topological space (X, τ) a set B is defined to be regular open if B = τint(τclB).
Since the intersection of two regular open sets is regular open, the collection of all τ
regular open sets forms the base for a topology τs on X, smaller than τ , called the
semi-regularization of (X, τ). Note that (X, τ) is semi-regular if and only if τ = τs.

In 1968 Veličko [18] made the following definition.

Let (X, τ) be a topological space and let A ⊂ X. A point x ∈ X is called a θ-limit
point of A ⊂ X if every closed neighbourhood of X intersects A. Let θclA denote the
set of all θ-limit points of A. The set A is θ-closed if A = θclA. The complement of
a θ-closed set is called a θ-open set. The collection of all θ-open sets in (X, τ) forms a
topology on X, denoted by τθ.

A subset B of (X, τ) is called a zero-set if there is a continuous real-valued function f
defined on X such that B = {x ∈ X : f(x) = 0}. The complement of a zero-set is called
a co-zero set. The collection of all co-zero sets of (X, τ) is the base for a topology τz on
X, and τz ⊂ τ . Moreover, (X, τ) is completely regular if and only if τz = τ .

2.1. Definition A space (X, τ) is said to be
(1) almost compact [3] if every open cover of X has a finite subcollection the closures

of whose members cover X;
(2) quasicompact [5] if every cover of X by co-zero sets has a finite subcover;
(3) nearly compact [14] if every open cover of X admits a finite subcollection the

interiors of the closures of whose members cover X;
(4) θ-compact [13, Definition 3.19] if every cover of X by θ-open sets has a finite

subcover.

The following result was proved by Carnahan [2, Theorem 4.1].

2.2. Theorem (X, τ) is nearly compact if and only if (X, τs) is compact.
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Definition 2.1 (2) immediately implies that

2.3. Theorem
(1) (X, τ) is quasicompact if and only if (X, τz) is compact.
(2) (X, τ) is θ-compact if and only if (X, τθ) is compact [13, Remark 4.27].

Following Heldermann [6] we have two definitions.

2.4. Definition A collection β of subsets of a space (X, τ) is called an open com-
plementary system if β consists of open sets such that for every B ∈ β, there exist
B1, B2, ... ∈ β with B = ∪{X/Bi : i ∈ N}.

2.5. Definition A subset U of a space (X, τ) is called a strongly open Fσ-set if there
exists a countable open complementary system β(U) with U ∈ β(U). The complement
of a strongly open Fσ-set is called a strongly closed Gδ-set.

Mack [11] made the next definition in 1970.

2.6. Definition A subset H of a space (X, τ) is called a regular Gδ-set if H is the

intersection of a sequence of closed sets whose interiors contain H, i.e., if H =
∞⋂
n=1

Fn =

∞⋂
n=1

intFn, where each Fn is a closed subset of X. The complement of a regular Gδ-set is

called a regular Fσ-set.

Kohli and Singh [10] introduced three weak variants of compactness which we now
consider from the perspective of change of topology.

2.7. Definition A space (X, τ) is said to be d-compact (d∗-compact, Dδ-compact)
if every cover of X by open Fσ-sets (strongly open Fσ-sets, regular Fσ-sets) has a finite
subcover.

3. Three topologies

Let (X, τ) be a topological space, and denote by β the collection of all open Fσ-subsets
of (X, τ). Now the intersection of two open Fσ-subsets is an open Fσ-subset. Therefore
the collection β is a base for a topology on X, which we denote by τd. This topology τd
is called the D-regularization of τ by Kohli and Singh [10].

Similarly, if we replace " open Fσ-subsets " in the paragraph immediately above by
" strongly open Fσ-subsets ", we obtain a second topology on X, denoted by τ∗, and
called the D-complete regularization of τ in [10].

Yet again, if we replace " open Fσ-subsets " by " regular Fσ-subsets " we obtain a
third topology on X, denoted by τ#, and called the Dδ-complete regularization of τ by
Kohli and Singh [10].

There is an alternative way of defining these three topologies given by the next defi-
nition.

3.1. Definition A set G in a topological space (X, τ) is said to be τd-open [8]
(τ∗-open, τ#-open) if for each x ∈ G, there exists an open Fσ-set (strongly open Fσ-
set, regular Fσ-set) H such that x ∈ H ⊂ G. The complement of a τd-open (τ∗-open,
τ#-open) set will be referred to as a τd-closed (τ∗-closed, τ#-closed) set.
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We note that the members of these topologies are denoted by d-open, d∗-open and
d#-open sets in [8], [15] and [9] respectively.

4. Change of topology

The fundamental defining characteristic of each of the three weak variants of compact-
ness that we are considering is given by the following result, which is proved immediately
from the definitions. Kohli and Singh [10, Theorems 5.17 and 5.18] have made this
observation.

4.1. Theorem Let (X, τ) be a topological space. Then

(1) (X, τ) is d-compact if and only if (X, τd) is compact,

(2) (X, τ) is d∗-compact if and only if (X, τ∗) is compact,

(3) (X, τ) is Dδ-compact if and only if (X, τ#) is compact.

Kohli and Singh [10] have provided an impressive list of Examples (2.8 to 2.13) to show
all the weak variants shown in their diagram of relationships are distinct. We reproduce
their diagram of relationships here as Figure 1.

compact −→ nearly compact −→ almost compact
↓ ↓

d-compact −→ Dδ-compact ←− θ-compact
↓ ↓

d∗-compact −→ quasicompact −→ pseudocompact

Figure 1.

We take this diagram to mean that one can find a topological space (X, τ) having one
of these properties but not one of the stronger properties. For this interpretation of Figure
1 one must regard the topology on X as fixed. Theorems 2.2, 2.3 and 4.1 indicate that
six of the concepts in Figure 1 are each separately equivalent to compactness provided
an appropriate change of the topology on the underlying set X is made in each case. It
seems that the two exceptions are almost compactness and pseudocompactness.

Claims of the kind that "d-compactness is independent of compactness" are confusing.
In fact, d-compactness is a disguised form of compactness. It is compactness with respect
to another topology on the underlying set. So d-compactness is not a new concept. It is
equivalent to the classical notion of compactness, only with respect to a different topology
(than the original topology) on the underlying set. The same comments apply to the
notions of d∗-compactness and Dδ-compactness.

5. Some Basic Properties

The following definition is due to Kohli and Singh [10, Definition 3.2]

5.1. Definition A topological space (X, τ) said to be D-Hausdorff (D∗-Hausdorff,
Dδ-Hausdorff) if each pair of distinct points is contained in disjoint open Fσ-sets (strongly
open Fσ-sets, regular Fσ-sets).

The proof of the next result is immediate from Definitions 5.1 and 3.1.
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5.2. Proposition Let (X, τ) be a topological space. Then

(1) (X, τ) is D-Hausdorff if and only if (X, τd) is Hausdorff.

(2) (X, τ) is D∗-Hausdorff if and only if (X, τ∗) is Hausdorff.

(3) (X, τ) is Dδ-Hausdorff if and only if (X, τ#) is Hausdorff.

One of the well-known standard results of a first course in topology, for example see
Dugundji [4, page 224 Theorem 1.4 (2)], is the following proposition.

5.3. Proposition If (X, τ) is a Hausdorff space and A is a compact subset (X, τ),
then A is closed in (X, τ).

Applying Theorem 4.1 and Propositions 5.2 and 5.3 we obtain the next result.

5.4. Proposition If A is a d-compact subset of the D-Hausdorff space (X, τ), then
A is d-closed in X.

Proof. Observe that A is a compact subset of the Hausdorff space (X, τd), so that
Proposition 5.3 implies that A is closed in (X, τd), or that A is d-closed in (X, τ).

Exactly parallel results can be obtained by analogous proofs for a d∗-compact (Dδ-
compact) subset of a D∗-Hausdorff (Dδ-Hausdorff) space. These three results have been
proved from first principles by Kohli and Singh [10, Theorem 3.3].

Another standard result concerning compact spaces is that a closed subset of a com-
pact space is compact, for example see Dugundji [4, page 224 Theorem 1.4 (3)]. From
this result we obtain the following result which generalizes Theorem 3.10 of [10].

5.5. Proposition Let (X, τ) be a d-compact topological space, and A be τd-closed
in X. Then A is d-compact.

Again, we can provide exactly parallel results for the other two variants of compact-
ness.

5.6. Proposition Let (X, τ) be a d∗-compact (Dδ-compact) topological space, and
A be τ∗-closed (τ#-closed) in X. Then A is d∗-compact (Dδ-compact).

It is well-known that compactness can be characterized in terms of the finite intersec-
tion property and adherence properties of filters and filterbases, see Dugundji [4, page
223 Theorem 1.3] for example. Kohli and Singh [10, Theorem 4.4] provide a version
of these characterizations for d-compactness, d∗-compactness and Dδ-compactness. We
note that their definitions of d-adherence and d-convergence of a filterbase T [10, Def-
initions 4.2 and 4.3] are equivalent to adherence and convergence of T with respect to
the topology τd. A change of topology approach to this topic is an alternative to the
discussion presented in Section 4 of [10].

In order to consider mapping properties we must define appropriate classes of functions
between topological spaces.

5.7. Definition A function f : (X, τ) −→ (Y, σ) is defined to be D-continuous
[7] (D∗-continuous [16], Dδ-continuous) if for each point x ∈ X and each open Fσ-set
(strongly open Fσ-set, regular Fσ-set) V containing f(x) there is an open subset U of X
such that x ∈ U and f(U) ⊂ V .
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5.8. Definition A function f : (X, τ) −→ (Y, σ) is defined to be D-supercontinuous
[8] (D∗-supercontinuous [15], Dδ-supercontinuous [9]) if for each point x ∈ X and each
open V of X containing f(x) there is an open Fσ-set (strongly open Fσ-set, regular
Fσ-set) U in X such that x ∈ U and f(U) ⊂ V .

5.9. Definition A function f : (X, τ) −→ (Y, σ) is defined to be D-irresolute (D∗-
irresolute, Dδ-irresolute) if for each point x ∈ X and each open Fσ-set (strongly open
Fσ-set, regular Fσ-set) V containing f(x) there is an open Fσ-set (strongly open Fσ-set,
regular Fσ-set) U in X such that x ∈ U and f(U) ⊂ V .

The following results are immediate from the preceding definitions and the discussion
in Section 3.

5.10. Proposition Let f : (X, τ) −→ (Y, σ) be a function between topological spaces.
Then

(1) f : (X, τ) −→ (Y, σ) is D-continuous if and only if f : (X, τ) −→ (Y, σd) is
continuous.

(2) f : (X, τ) −→ (Y, σ) is D∗-continuous if and only if f : (X, τ) −→ (Y, σ∗) is
continuous.

(3) f : (X, τ) −→ (Y, σ) is Dδ-continuous if and only if f : (X, τ) −→ (Y, σ#) is
continuous.

(4) f : (X, τ) −→ (Y, σ) is D-supercontinuous if and only if f : (X, τd) −→ (Y, σ) is
continuous.

(5) f : (X, τ) −→ (Y, σ) is D∗-supercontinuous if and only if f : (X, τ∗) −→ (Y, σ) is
continuous.

(6) f : (X, τ) −→ (Y, σ) is Dδ-supercontinuous if and only if f : (X, τ#) −→ (Y, σ) is
continuous.

(7) f : (X, τ) −→ (Y, σ) is D-irresolute if and only if f : (X, τd) −→ (Y, σd) is
continuous.

(8) f : (X, τ) −→ (Y, σ) is D∗-irresolute if and only if f : (X, τ∗) −→ (Y, σ∗) is
continuous.

(9) f : (X, τ) −→ (Y, σ) is Dδ-irresolute if and only if f : (X, τ#) −→ (Y, σ#) is
continuous.

The standard result that compactness is preserved by continuous functions, Proposi-
tion 5.10 and Theorem 4.1 can be used to prove the next set of results.

5.11. Proposition Let f : (X, τ) −→ (Y, σ) be a surjection.

(A) If f is D-continuous (D∗-continuous, Dδ-continuous) and (X, τ) is compact then
(Y, σ) is d-compact (d∗-compact, Dδ-compact).

(B) If f is D-supercontinuous (D∗-supercontinuous, Dδ-supercontinuous) and (X, τ)
is d-compact (d∗-compact, Dδ-compact) then (Y, σ) is compact.

(C) If f is D-irresolute (D∗-irresolute, Dδ-irresolute) and (X, τ) is d-compact (d∗-
compact, Dδ-compact) then (Y, σ) is d-compact (d∗-compact, Dδ-compact).
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Proof. We prove one case of each part only. The other cases have exactly similar
proofs.

(A) For D-continuity: Now f : (X, τ) −→ (Y, σd) is a continuous surjection and (X, τ)
is compact, so that (Y, σd) is compact. Thus (Y, σ) is d-compact.

(B) For D∗-supercontinuity: Now f : (X, τ∗) −→ (Y, σ) is a continuous surjection and
(X, τ∗) is compact. Hence (Y, σ) is compact.

(C) For Dδ-irresoluteness: Now f : (X, τ#) −→ (Y, σ#) is a continuous surjection and
(X, τ#) is compact. Therefore (Y, σ#) is compact, so that (Y, σ) is Dδ-compact.

Note that 5.11(A) is Theorems 5.2 and 5.3 of Kohli and Singh [10], while 5.11(B) is
Theorems 5.5 and 5.6 of [10]. The proofs provided by Kohli and Singh [10] are from first
principles, and quite different in character to the proofs given above.

The change of topology approach can be used to suggest new results. To illustrate,
we provide two such results.

5.12. Proposition Let f, g : (X, τ) −→ (Y, σ) be D-irresolute, and (Y, σ) be D-
Hausdorff. Then E, the equalizer of f and g, given by E = {x ∈ X : f(x) = g(x)} is
d-closed in (X, τ).

Proof. We have that f, g : (X, τd) −→ (Y, σd) are continuous, and that (Y, σd) is
Hausdorff. Thus by a standard result, e.g. Dugundji [4, page 140, 1.5(1)], we have that
E is closed in (X, τd), so that E is d-closed in (X, τ).

5.13. Proposition If f : (X, τ) −→ (Y, σ) isDδ-irresolute and (Y, σ) isDδ-Hausdorff,
then G(f), the graph of f , is closed in (X × Y, τ# × σ#).

Proof. Note that f : (X, τ#) −→ (Y, σ#) is continuous, and that (Y, σ#) is Hausdorff.
Then a standard result for continuous functions, e.g. Dugundji [4, page 140, 1.5(3)],
implies that G(f) is closed in (X × Y, τ# × σ#).
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Abstract
As a continues study of the paper [4], in here, we first state and prove
the p-Cockcroft property (or, equivalently, efficiency) for a presentation,
say PE , of the semi-direct product of a free abelian monoid rank two by
a finite cyclic monoid. Then, in a separate section, we present sufficient
conditions on a special case for PE to be minimal whilst it is inefficient.
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1. Preliminaries
Suppose that P = [X; r] is a finite presentation for a monoid M . Then the Euler

characteristic is defined by χ(P) = 1− |X|+ |r|. There also exists an upper bound over
M which is defined by δ(M) = 1 − rkZ(H1(M)) + d(H2(M)). In fact, as depicted in
[2, 3, 4], S. Pride has shown that χ(P) ≥ δ(M). With this background, we define the
monoid presentation P to be efficient if χ(P) = δ(M) and then M is called efficient if
it has an efficient presentation. Moreover a presentation P0 for M is called minimal if
χ(P0) ≤ χ(P), for all presentations P of M . There is also interest in finding inefficient
finitely presented monoids since if we can find a minimal presentation P0 for a monoid
M such that P0 is not efficient then we have χ(P′) ≥ χ(P0) > δ(M), for all presentations
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P′ defining the same monoid M . Thus there is no efficient presentation for M , that is,
M is not an efficient monoid.

Some of the fundamental material (for instance, semi-direct products of monoids,
Squier complex, a trivializer set of the Squier complex, p-Cockcroft property, monoid
pictures) which will be needed to construct the main results of this paper have been
defined and referenced in detail in [1, 2, 3, 4].

The following theorem also proved by S. Pride which we will use it rather than making
more direct computations of homology for monoids. In fact Kilgour and Pride showed
the analogous result for groups in [8] and credit an earlier proof by Epstein ([5]).

1.1. Proposition. Let P be a monoid presentation. Then P is efficient if and only if it
is p-Cockcroft for some prime p.

Let A and K be arbitrary monoids with associated presentations PA = [X ; r] and
PK = [Y ; s], respectively. Also let E = KoθA be the corresponding semi-direct product
of these two monoids. For every x ∈ X and y ∈ Y , choose a word, which we denote by
yθx, on Y such that [yθx] = [y]θ[x] as an element of K. To establish notation, let us
denote the relation yx = x(yθx) on X ∪Y by Tyx and write t for the set of relations Tyx.
Then, for any choice of the words yθx,

(1.1) PE = [Y, X ; s, r, t]

is a standard monoid presentation for the semi-direct product E. Then a trivializer set,
XE, of the Squier complex D(PE) has been defined in [10] by J. Wang as the set

XA ∪XK ∪C1 ∪C2

(see also [4, Lemma 1.5]) where XA and XK are the trivializers of the Squier complexes
D(PA) and D(PK), and also the subsets C1, C2 consist of the generating monoid pictures
PS,x (S ∈ s, x ∈ X) and PR,y (R ∈ r, y ∈ Y ). Hence, by using the set XE, Çevik proved
the following result which will be used to proof of Theorem 2.4 below.

1.2. Theorem. [3, Theorem 3.1] Let p be a prime or 0. Then the presentation PE in
(1.1) is p-Cockcroft if and only if the following conditions hold.

(i) PA and PK are p-Cockcroft,
(ii) expy(S) ≡ 0 (mod p) for all S ∈ s, y ∈ Y ,
(iii) expS(BS,x) ≡ 1 (mod p) for all S ∈ s, x ∈ X,
(iv) expS(Cy,θR) ≡ 0 (mod p) for all S ∈ s, y ∈ Y, R ∈ r,
(v) expTyx

(AR+,y) ≡ expTyx
(AR−,y) (mod p) for all R ∈ r, y ∈ Y and x ∈ X.

This paper has been divided into two main parts. In Section 2, we will investigate the
efficiency (in fact, by Proposition 1.1, p-Cockcroft property for a prime p) for a standard
presentation of the semi-direct product E of a free abelian monoid rank two, say K2,
by a finite cyclic monoid, say A, (see Theorem 2.4 below). Moreover, in Section 3, we
will present the minimality of the monoid E while it has an inefficient presentation (see
Theorem 3.1 below) by considering a special case.

2. Efficiency
2.1. The semi-direct product of K2 by A. By the definition, to define a semi-direct
product of K2 by an arbitrary monoid A, we first need to define an endomorphism of K2.
To do that, let us start with Z+n which is the free abelian monoid rank n, say Kn. Also
let M be an n× n-matrix with non-negative integer entries. Then we get a mapping

ψM : Kn −→ Kn, v 7−→ vM,
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where v = (v1, v2, · · · , vn). Actually ψM ∈ End(Kn) (and so ψM1ψM2 = ψM1M2). We
note that if φ ∈ End(Kn) then there exist a matrix M (depending on φ) such that
φ = ψM. By the mapping M 7−→ ψM, we get an isomorphism from Matn(Z+) to the
monoid End(Kn), where

Matn(Z+) = {M : M is an n× n-matrix with non-negative integer entries}

is a monoid under matrix multiplication.
Suppose PKn = [yi (1 ≤ i ≤ n) ; yiyj = yjyi (1 ≤ i < j ≤ n)] is a presentation for

Kn and PA = [x ; r] is a presentation for A. Suppose also that, for each x ∈ x, we
have an endomorphism ψx of K. Since End(Kn) ∼= Matn(Z+), the endomorphism ψx
(x ∈ x) will be ψMx for some matrix Mx. For any positive word W = x1x2 · · ·xn on x,
let MW be the product Mx1Mx2 · · ·Mxn of the matrices Mxi , where 1 ≤ i ≤ n. Then
the mapping x 7−→ ψx (x ∈ x) induces a homomorphism θ : A −→ End(Kn) if and only
if MR+ = MR− , for all R ∈ r.

Now let A be the finite cyclic monoid with a presentation PA = [x ; xk = xl] where
1 ≤ l < k and l, k ∈ Z+. (We note that the fundamental material about finite cyclic
monoids can be found in the book [6]).

2.1. Remark. Recall that the elements of the finite cyclic monoid A represented by
equivalence classes [xi] (0 ≤ i ≤ k). For 0 ≤ i ≤ l, the equivalence class [xi] just consist
of the single element xi. However for i ≥ l, the equivalence class [xi] consist of infinitely
many elements which are defined by [xi] = {xi+q(k−l) ; q = 0, 1, 2, · · · }.

Also let us consider K2 and let us suppose that ψ is the endomorphism ψM of K2,
where

M =

[
α11 α12

α21 α22

]

such that the entries αij ’s are the positive integers given by

[y1] 7−→ [y1
α11y2

α12 ] and [y2] 7−→ [y1
α21y2

α22 ].

Hence, by the previous explanation, the mapping x 7−→ ψx (x ∈ x) induces a well-defined
monoid homomorphism θ : A −→ End(K2) if and only if M[xk] = M[xl], or equivalently,

(2.1) M
k ≡M

l mod d,

where d | (k − l).

2.2. Remark. By considering the elements of finite cyclic monoid A with its presentation
PA as defined in Remark 2.1, there exits an inequality between the non-negative integers
k and l such as 1 ≤ l < k. Thus to define an induces homomorphism θ : A −→ End(K2),
that is, to be able to define K2 oθ A, we must take congruence relation between Mk and
Ml as given in (2.1) with the assumption d | (k − l).

In fact the kth and lth powers of the matrices can be written as follows. Initially, let
us consider the matrices

M
0 =

[
1 0
0 1

]
and M

1 =

[
α11 α12

α21 α22

]
,

and then, for simplicity, let us rewrite them as the matrices
[
A0 B0

C0 D0

]
and

[
A1 B1

C1 D1

]
,
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respectively. Then we clearly get

M
2 =

[
A1 B1

C1 D1

] [
α11 α12

α21 α22

]
=

[
A1α11 +B1α21 A1α12 +B1α22

C1α11 +D1α21 C1α12 +D1α22

]

=

[
A2 B2

C2 D2

]
, say.

Therefore the kth (k ∈ Z+) power of M will be

M
k =

[
Ak−1 Bk−1

Ck−1 Dk−1

] [
α11 α12

α21 α22

]

=

[
Ak−1α11 +Bk−1α21 Ak−1α12 +Bk−1α22

Ck−1α11 +Dk−1α21 Ck−1α12 +Dk−1α22

]

=

[
Ak Bk
Ck Dk

]
, say.

As a similar idea, the lth (l ∈ Z+) power of M will be

M
l =

[
Al Bl
Cl Dl

]
.

Now we can present the following lemma which gives the importance of Equation
(2.1). In fact this lemma will be needed in the proof of Theorem 2.4 below.

2.3. Lemma. The function θ : A −→ End(K2) defined by [x] 7−→ θ[x] is a well-defined
monoid homomorphism if and only if Ak ≡ Al mod d, Bk ≡ Bl mod d, Ck ≡ Cl mod d
and Dk ≡ Dl mod d, where d | (k − l).

Proof. This follows immediately from Mk ≡Ml mod d. �

Now suppose that (2.1) holds. Then, by Lemma 2.3, we obtain a semi-direct product
E = K2 oθ A and have a presentation

(2.2) PE = [y1, y2, x ; S,R, Ty1x, Ty2x],

as in (1.1), for the monoid E where

S : y1y2 = y2y1, R : xk = xl

Ty1x : y1x = xyα11
1 yα12

2 , Ty2x : y2x = xyα21
1 yα22

2 ,

respectively.
At the rest of this paper, we will assume that Equality (2.1) always holds when we

talk about the semi-direct product E of K2 by A.
We know that the trivializer set of XE of D(PE) consists of the trivializer set XK2 of

D(PK2), XA of D(PA) and the sets C1, C2 (see [4, Lemma 1.5]). In our case, XK2 is
equal to the empty set since, for the relator S, we have ι(S+) 6= ι(S−) (or, equivalently,
τ(S+) 6= τ(S−)) and so, by [7], PK2 is aspherical then p-Cockcroft for any prime p.
Newertheless, the trivializer set XA of the Squier complex D(PA) is defined as in Figure
1 (cf. [3, Lemma 4.4]).

Finally the subsets C1 and C2 contain the generating monoid pictures PS,x (which
contains a non-spherical subpicture BS,x as depicted in [3]), PR,y1 and PR,y2 of the triv-
ializer set XE. These pictures can be presented as in Figure 2-(a) and (b).
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2.2. The main theorem and its proof. For simplicity, let us replace the sum of
coefficients

(2.3)

A0 +A1 + · · ·+Ak−1 as Ak , A0 +A1 + · · ·+Al−1 as Al ,
B0 +B1 + · · ·+Bk−1 as Bk , B0 +B1 + · · ·+Bl−1 as Bl ,
C0 + C1 + · · ·+ Ck−1 as Ck , C0 + C1 + · · ·+ Cl−1 as Cl ,
D0 +D1 + · · ·+Dk−1 as Dk , D0 +D1 + · · ·+Dl−1 as Dl .





Suppose that the positive integer d, defined in (2.1), is equal to a prime p such that
p | (k− l). Therefore the first main theorem of this paper can be given as in the following.

2.4. Theorem. Let p be a prime or 0, and consider the replacements in (2.3). Then the
presentation PE, as in (2.2), for the monoid E = K2 oθ A is p-Cockcroft if and only if

a) detM ≡ 1 mod p,

b) Ak ≡ Dl mod p , Bk ≡ Cl mod p ,
Ck ≡ Bl mod p , Dk ≡ Al mod p .

Proof. The proof will be given by checking the conditions of Theorem 1.2. By a part
of prelimary material of this paper, it is clear that XK2 = ∅. Also, since the trivializer
set XA of the Squier complex D(PA) can be defined as in Figure 1, it is clear that PA
is p-Cockcroft (in fact Cockcroft). Moreover, by considering the picture PS,x in Figure
2-(a), we see that expTy1x(PS,x) = 0 = expTy2x(PS,x) which is clear by expy1(S) = 0 =

expy2(S). Thus the conditions (i) and (ii) of Theorem 1.2 hold. Furthermore in the
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picture BS,x, we actually have α11 α12-times positive and α12 α21-times negative S-discs.
Thus

expS(BS,x) = α11 α12 − α12 α21 = detM.

So to condition (iii) be hold, we must have detM ≡ 1 mod p, as required.
Let us consider the generating pictures PR,y1 and PR,y2 as drawn in Figure 2-(b). We

always have expR(PR,y1) = 0 = expR(PR,y2). Recall that to define a semi-direct product
K2 oθ A, we assumed equality (2.1) be held. That means, for each i ∈ {1, 2}, we must
have

yiθ[xk] = yiθ[xl].

But we know that this equality be hold if and only if the conditions in Lemma 2.3 are
satisfied. Besides of that using the equality of the congruence classes gives us that there
will be no Cyi,θR subpictures. In other words, all arcs in that part will be coincides
to each other. So the condition (iv) will be directly held. Let us now consider the
subpictures AR+,yi and AR−,yi which consist of only Tyix discs (1 ≤ i ≤ 2). Since each of
the generating pictures PR,y1 and PR,y2 contains a single subpicture AR+,yi and a single
subpicture A−1

R−,yi , we must have

expyi(AR+,yi)− expyi(AR−,yi) = expyi(PR,yi).

Now let us take into account the matrices M0,M1, · · · ,Mk−1. By using the endo-
morphism ψM of K defined by [y1] 7−→ [y1

α11y2
α12 ] and [y2] 7−→ [y1

α21y2
α22 ], a simple

calculation shows that the sum of the first row and first column elements in these matrices
gives the exponent sum of the Ty1x discs in the subpicture AR+,y1 . In other words

Ak = expTy1x(AR+,y1).

Similarly, we also get

Bk = expTy2x(AR+,y1),Ck = expTy1x(AR+,y2) and Dk = expTy2x(AR+,y2).

On the other hand, again by considering the matrices M0,M1, · · · ,Ml−1 with the
same idea as above, we obtain

Al = expTy2x(AR−,y2) , Bl = expTy1x(AR−,y2) ,
Cl = expTy2x(AR−,y1) , Dl = expTy1x(AR−,y1) .

Therefore to p-Cockcroft property be hold, we need

expTyix
(AR+,yi) ≡ expTyix

(AR−,yi) mod p,

for all 1 ≤ i ≤ 2.
Conversely let the two conditions a) and b) of the theorem be hold. Then, by using

the trivializer of the Squier complex D(PE), we can easily see that PE is p-Cockcroft
where p is a prime or 0.

Hence the result. �

2.5. Remark. The importance of the assumption p | (k − l) seems much clear in the
proof of Theorem 2.4. Otherwise we could not have obtained Equality (2.1) and so could
not have obtained the exponent sums of the disc Ty1x and Ty2x congruent to zero by
modulo p in the subpictures AR+,yi and AR−,yi , where i ∈ {1, 2}, since these sums are
directly related to the number of k-arcs and l-arcs, respectively.
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2.3. Some applications.

2.6. Example. Let p be an odd prime and suppose that

(2.4) M =

[
1 α12

0 1

]

is a matrix representation for the endomorphism of free abelian monoid K2 rank two.
We then always have

M
p+1 ≡M

1 mod p

and, by Lemma 2.3, we also have E = K2 oθ A. Hence we get a presentation

(2.5) PE = [y1, y2, x ; y1y2 = y2y1, x
p+1 = x, y1x = xy1y

α12
2 , y2x = xy2],

as in (2.2), for the monoid E.

Therefore we can give the following result as a consequence of Theorem 2.4.

2.7. Corollary. For all odd prime p, the semi-direct product presentation PE in (2.5)
always p-Cockcroft.

Proof. By considering the subpictures AR+,y1 , AR+,y2 , AR−,y1 and AR−,y2 given in Fig-
ures 3 and 4, the proof will be an easy application of Theorem 2.4. In fact the condition

l
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Figure 3

a) of Theorem 2.4 always holds since detM = 1. Moreover we have

expTy1x(PR,y1) = expTy1x(AR+,y1)− expTy1x(AR−,y1)
= A0 +A1 + · · ·+Ap −D0 = (p+ 1)− 1 = p,

which is obviously congruent to zero by modulo p, and

expTy2x(PR,y1) = expTy2x(AR+,y1)− expTy2x(AR−,y1)
= B0 +B1 + · · ·+Bp − C0

= α12
p(p+ 1)

2
− 0 = α12

p(p+ 1)

2
≡ 0 mod p.
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Similarly,

expTy1x(PR,y2) = expTy1x(AR+,y2)− expTy1x(AR−,y2)
= C0 + C1 + · · ·+ Cp −B0 ≡ 0 mod p,

expTy2x(PR,y2) = expTy2x(AR+,y2)− expTy2x(AR−,y2)
= D0 +D1 + · · ·+Dp −A0 = (p+ 1)− 1 = p ≡ 0 mod p.

Therefore, for all i ∈ {1, 2}, expTyix
(PR,yi) ≡ 0 mod p. (We note that, by the explanation

as in the proof of Theorem 2.4, we do not have Cyi,θR subpictures in PR,yi). This
completes the proof. �

2.8. Remark. In Example 2.6, if we constructed the matrix M, defined in (2.4), for
even prime p while xp+1 = x then, by Lemma 2.3, we would obtain a semi-direct product
E for just α12 = 1 or α12 = 0 while M3 ≡M mod p. However, for α12 = 1, since

B0 +B1 +B2 6= C0,

by Theorem 2.4, the presentation PE in (2.5) will be inefficient. Here, by Theorem
2.4, one can show that PE is efficient if and only if α12 = 0. But α12 = 0 gives the
homomorphism θ is identitiy and so, K2 oθ A becomes K2 ×A. In fact the efficiency for
a presentation of the direct product of arbitrary two monoids has been investigated in
[3, Theorem 4.1].

A similar case, as in Example 2.6, can be given by using the matrix

M =

[
1 0
α21 1

]
.

Then we obtain a semi-direct product E with a presentation

(2.6) PE = [y1, y2, x ; y1y2 = y2y1, x
p+1 = x, y1x = xy1, y2x = xyα21

1 y2].

Thus we have the following result, as a consequence of Theorem 2.4, which can be
proved quite similarly as in Corollary 2.7.

2.9. Corollary. Let PE, as in (2.6), be a presentation for the semi-direct product of K2

by A. Then, for all odd prime p, PE is p-Cockcroft.

We note that Remark 2.8 is also valid for the above case.

2.10. Example. Suppose that p is a prime and the matrixM is equal to either
[

1 α12

0 1

]
or
[

1 0
α21 1

]
.

Then, by applying a simple calculation as in the previous examples, we get an efficient
semi-direct product presentation for k = 2p+ 1 and l = 1.
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2.11. Example. Let p be any prime and let M =

[
1 0
0 α22

]
. Hence we get M2p+1 ≡

M mod p and, by Lemma 2.3, we have a semi-direct product E = K2 oθ A with a
presentation

(2.7) PE = [y1, y2, x ; y1y2 = y2y1, x
2p+1 = x, y1x = xy1, y2x = xyα22

2 ].

As an application of Theorem 2.4, we also have the following corollary.

2.12. Corollary. The presentation PE, as in (2.7), is p-Cockcroft for all prime p, if
α22 = 1 + pt where t > 0.

Proof. In the proof, we will assume α22 = 1 + pt, t > 0, and then just follow the same
way as in the proof of Corollary 2.7. It is clear that detM ≡ 1 (mod p) by the assumption
on α22. So the condition a) in Theorem 2.4 holds. Now let us consider the subpictures
AR+,y1 , AR+,y2 , AR−,y1 and AR−,y2 given in Figure 5. We note that, by fixing these
subpictures into the pictures PR,y1 and PR,y2 given in Figure 2-(b), we obtain similar
PR,yi (1 ≤ i ≤ 2) pictures for this case. Then we have
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Figure 5

expTy1x(AR+,y1)− expTy1x(AR−,y1) = (2p+ 1)− 1 = 2p ≡ 0 mod p,

expTy2x(AR+,y1)− expTy2x(AR−,y1) ≡ 0 mod p and
expTy1x(AR+,y2)− expTy1x(AR−,y2) ≡ 0 mod p.
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Furthermore, since

expTy2x(AR+,y2)− expTy2x(AR−,y2) = 1 + α22 + α22
2 + · · ·+ α22

2p − 1

=
α22

2p+1 − 1

α22 − 1
− 1

=
α22

2p+1 − α22

α22 − 1
≡ 0 mod p,

the condition b) of Theorem 2.4 holds.
We should note that M2p+1 ≡ M (mod p) implies α22

2p+1 ≡ α22 (mod p) and this
gives us that τ(AR+,y2) = ι(A−1

R+,y2
), that is, there is no subpicture Cy2,θR in the picture

PR,y2 as expressed in the proof of Theorem 2.4. �

By choosing

M =

[
α11 0
0 1

]
,

for any prime p, we get again M2p+1 ≡M mod p as in Example 2.11, and so we obtain
a presentation

(2.8) PE = [y1, y2, x ; y1y2 = y2y1, x
2p+1 = x, y1x = xyα11

1 , y2x = xy2],

for the semi-direct product E = K2 oθ A. Therefore, by drawing quite similar pictures
as in Figure 5, we have the following consequence of Theorem 2.4.

2.13. Corollary. The presentation PE, as in (2.8), is p-Cockcroft for all prime p, if
α11 = 1 + pt where t > 0 .

2.14. Remark. The examples and corrollories given in this subsection can also be true
for the general case of k = np+ 1 and l = 1 where n is the positive integer.

3. Minimality
3.1. The Main Theorem. Let K2 be the free abelian monoid rank 2 with a pre-
sentation PK2 = [y1, y2 ; y1y2 = y2y1] and let A be the finite cyclic monoid with a
presentation PA = [x ; x2p+1 = x]. Also, suppose that ψ is the endomorphism ψM of K,

where M =

[
α11 α12

α21 α22

]
such that (2.1) holds with the assumption d = p. Then, by

Lemma 2.3, we get a semi-direct product E = K2 oθ A with a presentation

PE = [ y1, y2, x ; y1y2 = y2y1, x
2p+1 = x,

y1x = xyα11
1 yα12

2 , y2x = xyα21
1 yα22

2 ].(3.1)

Let us assume that

α11 = 1, α12 = α21 = 0 and α22 = 1 + pt1 (t1 > 0) or
α22 = 1, α12 = α21 = 0 and α11 = 1 + pt2 (t2 > 0),

where p is a prime. Then, by Corollary 2.12 or Corollary 2.13, the presentation PE in
(3.1) is p-Cockcroft for any prime p and so, by Proposition 1.1, it is efficient.

Suppose that p is an odd prime. Then, in particular, PE is not efficient if

detM = expS(BS,x) ≡ 0 or p− 1 mod p.

Therefore our another main result in this paper is the following.
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3.1. Theorem. The presentation PE, as in (3.1), is minimal but inefficient if p is an
odd prime and

either





α11 = p− 1,
α12 = α21 = 0,
α22 = 1,

or





α11 = 1,
α12 = α21 = 0,
α22 = p− 1.

3.2. Preliminaries for the minimality result. Let M be a monoid with a presen-
tation P = [y; s], and let P (l) =

⊕

S∈s
ZMeS be the free left ZM -module with bases

{eS : S ∈ s}. For an atomic monoid picture, say A = (U, S, ε, V ) where U, V ∈
F (y), S ∈ s, ε = ±1, the left evaluation of the positive atomic monoid picture A is
defined by eval(l)(A) = εÛeS ∈ P (l), where Û ∈ M . For any spherical monoid picture
P = A1A2 · · ·An, where each Ai is an atomic picture for i = 1, 2, · · · , n, we then define

eval(l)(P) =
n∑

i=1

eval(l)(Ai) ∈ P (l). Let δP,S be the coefficient of eS in eval(l)(P). So we

can write eval(l)(P) =
∑

S∈s
δP,SeS ∈ P (l). Let I(l)2 (P) be the 2-sided ideal of ZM generated

by the set
{δP,S : P is a spherical monoid picture, S ∈ s}.

Then this ideal is called the second Fox ideal of P.
The fact of the following lemma has also been discussed in [4].

3.2. Lemma. If Y is a trivializer of D(P) then second Fox ideal is generated by the set
{δP,S : P ∈ Y, S ∈ s}.

The concept of the second Fox ideals is needed for a test of minimality for monoid
presentations (see [4]). The group version of this test has been proved by M. Lustig ([9]).

3.3. Theorem. Let Y be a trivializer of D(P) and let ψ be a ring homomorphism from
ZM into the ring of all n× n martices over a comutative ring L with 1, for some n ≥ 1,
and suppose ψ(1) = In×n. If ψ(λP,S) = 0 for all P ∈ Y, S ∈ s then P is minimal.

3.3. Proof of Theorem 3.1. As previously, let K2 denotes the free abelian monoid
rank two with a presentation PK2 = [y1, y2, ; y1y2 = y2y1] and, for an odd prime p, let A
denotes the finite cyclic monoid with a presentation PA = [x, ; x2p+1 = x]. Moreover let
M be the matrix representation of K2 with the assumption M2p+1 ≡ M mod p. Then
we have a semi-direct product E = K2 oθ A with a presentation PE as in (3.1).

Suppose that α11 = 1, α12 = α21 = 0 and α22 = p− 1 in PE .
Let us consider the picture PS,x, as drawn in Figure 2-(a), and also consider the

generating set {y1, y2} of PK2 . For a fixed element yi in this set, let us assume that
∂

∂yi

denotes the Fox derivation with respect to yi, and let
∂E

∂yi
be the composition

ZF ({y1, y2})
∂

∂yi−→ ZF ({y1, y2}) −→ ZE,

where F ({y1, y2}) is the free monoid on {y1, y2}. Furthermore, for the relator S : y1y2 =

y2y1, let us define
∂ES

∂yi
to be ∂ES+

∂yi
− ∂ES−

∂yi
. Thus, for a fixed yi ∈ {y1, y2}, the coefficients

of eTyix
in eval(l)(PS,x) is

∂ES

∂yi
. In fact

∂ES

∂y1
= y2 − 1 and

∂ES

∂y2
= 1− y1.
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We then have the following proposition.

3.4. Proposition. The second Fox ideal I(l)2 (PE) of PE is generated by the elements

1− x(eval(l)(BS,x)), 1− xk−1, 1− xk−2, · · · , 1− x,
∂ES

∂y1
,

∂ES

∂y2
,

eval(l)(AR+,y1)− eval(l)(AR−,y1), eval(l)(AR+,y2)− eval(l)(AR−,y2).

Proof. Recall that D(PE) has a trivializer XE consisting of the sets XA, XK2 , C1 and
C2 where XA (see Figure 1), XK2 (which is equal to the empty set) are the trivializer
sets of D(PA) and D(PK2), respectively and C1, C2 consist of the pictures PS,x (see
Figure 2-(a) by assuming α11 = 1, α12 = α21 = 0, α22 = p− 1), PR,y1 and PR,y2 (see
Figure 2-(b) by fixing AR+,yi and AR,yi given in Figure 5), respectively. Now we need to
calculate eval(l)(PS,x), eval(l)(PR,y1), eval(l)(PR,y2), and eval(l)(Pmk,l) (1 ≤ m ≤ k − 1).
So we have

eval(l)(PS,x) = δPS,x,SeS + δPS,x,Ty1xeTy1x + δPS,x,Ty2xeTy2x

= (1− x(eval(l)(BS,x)))eS + (
∂ES

∂y1
)eTy1x + (

∂ES

∂y2
)eTy2x

eval(l)(PR,y1) = δPR,y1
,ReR + δPR,y1

,Ty1xeTy1x + δPR,y1
,Ty2xeTy2x

= (1− y1)eR + (1 + x+ x2 + · · ·+ x2p − 1)eTy1x + 0eTy2x

= (1− y1)eR + (eval(l)(AR+,y1)− eval(l)(AR−,y1))eTy1x .

eval(l)(PR,y2) = δPR,y2
,ReR + δPR,y2

,Ty1xeTy1x + δPR,y2
,Ty2xeTy2x

= (1− y2)eR + 0eTy1x + (1 + x+ xy2 + x2y22 + · · ·+ x2yα22−1
2 +

· · ·+ x2p + x2py2 + x2py22 + · · ·+ x2pyα22
2p

2 )eTy2x

= (1− y2)eR + (eval(l)(AR+,y2)− eval(l)(AR−,y2))eTy2x .

Also, for each 1 ≤ m ≤ k − 1, eval(l)(Pmk,l) = δPm
k,l
,ReR, where δPm

k,l
,R = 1− xk−m.

Thus, by Lemma 3.2, we get the result as required. �

Let aug : ZE −→ Z, s 7−→ 1 be the augmentation map.

3.5. Lemma. We have the following equalities.

1) aug(eval(l)(BS,x)) = expS(BS,x).
2) i) aug( ∂

ES
∂y1

) = aug(y2 − 1) = expy1(S),

ii) aug( ∂
ES
∂y2

) = aug(1− y1) = expy2(S).

3)
i) aug(eval(l)(AR+,yi)) = expTyix

(AR+,yi),

ii) aug(eval(l)(AR−,yi)) = expTyix
(AR−,yi),

}
for i ∈ {1, 2}.

4) aug(eval(l)(Pmk,l)) = aug(1− xm) = expR(Pmk,l)), 1 ≤ m ≤ k − 1.

Proof. Since similar proofs of 1) and 2) can be found in [4], we will only show the
remaining conditions.

Proof of 3):
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We will just consider i) since the proof of ii) is completely same with the first one. We
can write

eval(l)(AR+,yi) = ε1W1eTyix
+ ε2W2eTyix

+ · · ·+ εnWneTyix
,

where, for 1 ≤ j ≤ n, εj = ±1 and each Wj is the certain word on the set {y1, y2}. In the
right hand side of the above equality, each term εjWjeTyix

corresponds to a single Tyix
disc and, in fact, the value of each εj gives the sign of this single Tyix disc. Therefore,
since the Tyix discs can only be occured in the subpictures AR+,yi and AR−,yi , the sum
of each εj (which is equal to the aug(eval(l)(AR+,yi))) must give the exponent sum of
the Tyix discs in the picture PR,yi , as required.

Proof of 4):

For each 1 ≤ m ≤ k − 1, since each Pmk,l contains just two R-discs (one is positive and
the other is negative), we write

eval(l)(Pmk,l) = −W1
meR +W2

meR,

where each Wj
m is the word on x (1 ≤ j ≤ 2). As in the previous case, by considering

the each term in above equalitiy, we get the sign of this single R-disc. Then the sum of
the whole these signs (i.e the augmentation of the evaluation of each picture) must give
the exponent sum of R-discs. That is,

aug(eval(l)(Pmk,l)) = aug(1− xm) = expR(P
m
k,l),

as required. Hence the result. �

We note that detM = expS(BS,x) = p − 1, where p is an odd prime, for the picture
PS,x in Figure 2-(a).

Also let us consider the homomorphism from E onto the finite cyclic monoid Mk,l

generated by x, defined by y1, y2 7−→ 1, x 7−→ x. This induces a ring homomorphism

γ : ZE −→Mk,l[x].

Let η be the composition of γ and the mapping

Mk,l[x] −→ Zp[x], x 7−→ x, n 7−→ n (n ∈ Z),

where n is n (mod p) and p | (k − l).
We note that the restriction of η to the subring ZK2 of ZE is just the augmentation

map augp : ZK2 −→ Zp by modulo p. Therefore the following lemma is valid.

3.6. Lemma. We have the following equalities.

i) augp(eval
(l)(Pmk,l)) ≡ 0 (mod p).

ii) augp(
∂ES
∂y1

) = augp(
∂ES
∂y2

) ≡ 0 (mod p).
iii) augp(eval

(l)(PR,y1)) ≡ 0 (mod p) and augp(eval(l)(PR,y2)) ≡ 0 (mod p).

Proof. By Lemma 3.5-4), for 1 ≤ m ≤ k − 1, since aug(eval(l)(Pmk,l)) = aug(1 − xm) =
expR(Pmk,l)) and since, by Figure 1, expR(Pmk,l)) = 0, it is obvious that the condition i)
holds. Similarly, by Lemma 3.5-2), aug( ∂

ES
∂y1

) = expy1(S) = 0 = expy2(S) = aug( ∂
ES
∂y2

).
Then the condition ii) clearly holds.
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Let us consider the generating pictures PR,y1 and PR,y2 , as drawn in Figure 2-(b) (by
fixing the subpictures AR+,yi and AR−,yi given in Figure 5 into them). By Lemma 3.5-3),
we then have

aug(eval(l)(PR,y1)) = aug[eval(l)(AR+,y1)− eval(l)(AR−,y1)]eTy1x

+aug(1− y1)eR
= expTy1x(AR+,y1)− expTy1x(AR−,y1) + 0

= (2p+ 1)− 1 = 2p

which is congruent to zero by modulo p. Moreover

aug(eval(l)(PR,y2)) = aug[eval(l)(AR+,y2)− eval(l)(AR−,y2)]eTy2x

+aug(1− y2)eR
= expTy2x(AR+,y2)− expTy2x(AR−,y2) + 0

=
α2p+1
22 − 1

α22 − 1
− 1 =

α2p+1
22 − α22

α22 − 1

=
(p− 1)2p+1 − (p− 1)

(p− 2)

which is congruent to zero by modulo p. Hence the result. �

Thus, by Lemmas 3.5 and 3.6, the image of I(l)2 (PE) under η is the ideal of Zp[x] that
is generated by the element 1−x(expS(BS,x)) = 1− (p− 1)x since expS(BS,x) = detM =
α11α22 − α12α21 = p− 1. In other words,

η(I
(l)
2 (PE)) = < 1− (p− 1)x >= I, say.

3.7. Remark. A simple calculation shows that I 6= Zp[x] since 1 /∈ I.

Let ψ be the composition

ZE η−→ Zp[x]
φ−→ Zp[x]/I,

where φ is the natural epimorphism. Then

ψ(1− x̂(eval(l)(BS,x))) = φη(1− x̂(eval(l)(BS,x)))
= φ(1− x̂(expS(BS,x)) since η is a ring

homomorphism and by Lemma 3.5− 1)

= φ(1− x̂(p− 1)) since expS(BS,x) = p− 1

= 0.

Moreover, by Lemmas 3.5 and 3.6, the images of 1 − xk−1, 1 − xk−2, · · · , 1 − x, ∂ES
∂y1

,
∂ES
∂y2

, eval(l)(AR+,y1)− eval(l)(AR−,y1), eval(l)(AR+,y2)− eval(l)(AR−,y2) under ψ are all
equal to 0 since the related exponent sums are all congruent to zero by modulo p. That
means the images of the generators I(l)2 (PE) are all 0 under ψ. Therefore, by Theorem
3.3 (Pride), PE is minimal and so E = K2 oθ A is a minimal but inefficient monoid.

We note that, by using the same method as in this proof, one can see that E is a
minimal but inefficient monoid if p is an odd prime and

α11 = p− 1, α22 = 1 and α12 = 0 = α21.

These all above progress complete the proof of Theorem 3.1. ♦
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3.8. Example. Let p = 3 and M =

[
1 0
0 2

]
. Thus we have M7 ≡ M mod 3 and, by

Lemma 2.3, we have E = K2oθA with a presentation PE = [y1, y2, x ; y1y2 = y2y1, x
7 =

x, y1x = xy1, y2x = xy22 ], as in (3.1), for the monoid E. It is clear that detM = 2 so,
by Theorem 2.4, PE is inefficient and also, by Theorem 3.1, PE is minimal. Moreover,

by taking the matrix M =

[
2 0
0 1

]
, it can also be obtained a minimal but inefficient

presentation.

3.9. Remark. 1) By using same progress as in the proof of Theorem 3.1, one can see
that if detM = 0 then 1 ∈ I, that is,

η(I
(l)
2 (PE)) =< 1 >= I

and so I = Zp[x] (see Remark 3.7). In fact this equality holds for any prime p. That
means the minimality test (Theorem 3.3) used in this paper cannot work for this case.
Therefore it can be remained as a conjecture whether the presentation obtained by this
case is minimal.

2) For p = 2, we have detM = 0 or 1. In the case of detM = 1, we know that PE
is efficient (see Corollary 2.12 or Corollary 2.13) and so we cannot apply Theorem 3.1.
Furthermore if detM = 0 then we need to turn back condition 1).
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circumventing problems such as Russell’s paradox. In fact S.Eilenberg and S. MacLane
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fundamental to major areas of contemporary research. Pioneering work of this nature
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The second section of this paper contains some preliminaries about the Fan-Gottesman
compactification. In 1952, Ky Fan and Noel Gottesman defined a compactification that is
similar to the Wallman compactification, introduced by Henry Wallman in 1938 [17], and
afterwards called Fan-Gottesman compactification of regular spaces with a normal base
[5]. We investigated the relations between the Fan-Gottesman and Wallman compactifi-
cation and showed that Fan-Gottesman compactification of some specific and interesting
spaces such as normal A2 and T4 is Wallman-type compactification [4]. In this section we
show that Fan-Gottesman compactification can be obtained via base consisting of open
ultrafilters.
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In [9], Herrlich has stated that it is of interest to determine if the Wallman compacti-
fication may be regarded as a functor, especially as an epireflection functor, on a suitable
category of spaces. This problem was solved affirmatively by Harris in [8].

In [3], Belaid and Echi characterize when Wallman extensions of maps are homeomor-
phisms.

The third section of this paper, we define FG−morphism and FG−extension. Let
X,Y be two T3 spaces and q : X→Y a continuous map. An FG−extension of q is a
continuous map F (q) : FX→FY such that F (q) ◦ fX = fY ◦ q, where FX is the Fan-
Gottesman compactification of X and fX : X→FX is the canonical embedding of X
into its Fan-Gottesman compactification FX. We will characterize when Fan-Gottesman
extensions of maps are homeomorphisms.

1. Categories
A category C consist of a certain collection of object Ob(C) and for any two object

b, c ∈ Ob(C), there is a set morph(b, c) of morphism (function) between b and c. This
collection may be empty, but an identity morphism 1b must be contained in morph(b, b).
Furthermore if there are morphism morph(b, c) and morphism morph(a, b), then their
composition must be in morph(a, c). Given two categories C and D, then a map can be
defined between these, the so called functor, F : C→D. A functor send object of C to
object of D and morphism in C to morphism in D subject to certain condition. Further-
more, it is possible to define maps between functors, the so called natural transformation
[11].

One usually requires the morphisms to preserve the mathematical structure of the
objects. So if the objects are all groups, a good choice for a morphism would be a group
homomorphism. Similarly, for vector spaces, one would choose linear maps, and for
differentiable manifolds, one would choose differentiable maps.

In the category of topological spaces, morphisms are usually continuous maps between
topological spaces. However, there are also other category structures having topological
spaces as objects, but they are not nearly as important as the "standard" category of
topological spaces and continuous maps.

We denote by Top the category of topological spaces with continuous maps as mor-
phisms, and by Topi the full subcategory of Top whose objects are the Ti spaces. There
are several ways to generalize the usual separation properties T0, T1, T2, T3 and T4 of
topology to topological categories [1,2]. All the above categories are full reflective sub-
categories of Top. There is a universal Ti -space for every topological space X, we denote
it by Ti(X). The assignment X→Ti(X) defines a functor Ti from Top onto Topi, which
is a left adjoint functor of the inclusion functor Topi → Top.

It is recalled that a continuous map q : Y → Z is said to be a quasihomeomorphism,
if U → q−1 (U) defines a bijection O (Z)→ O (Y ) [7], where O (Y ) is the set of all open
subsets of the space Y. If Z is T2 space and, q is not onto, thus q is not a quasihomeo-
morphism. As showed by the open sets Z, Z\{z} for some z ∈ Z. On the other hand,
if Z is R, with open sets {(−∞, c) : c ∈ (−∞,∞]} and Y is its subspace Q, then the
embedding is a quasihomeomorphism. A subset S of a topological space X is said to be
strongly dense in X, if S meets every nonempty locally closed subset of X [9]. In here,
locally closed means that every point x of S has a neighbourhood such that Vx ∩ S is
a closed subset of Vx. In other words, S is locally closed if and only if S = O ∩ F for
some open subset O of X and some closed subset F of X. In addition, one most evident
definition is equivalent to closedness. Thus, a subset S of X is strongly dense if and only
if the canonical injection S→X is a quasihomeomorphism. Besides, a continuous map
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q : X→Y is a quasihomeomorphism if and only if the topology of X is the inverse image
of Y by q and the subset q(X) is strongly dense in Y [7].

It is known that T0 -identification of a topological space is done by Stone [17].
Now, we will construct T3 reflection for X in Top. Firstly, we construct regular reflec-

tion by taking the supremum of all regular topologies which are coarser than the topology
of X. This is a bireflection in Top, in other words, the underlying set stays the same.
Then, apply it to the T0− reflection. We get a space which is regular and T0, hence
regular and T1. The composite of the two reflection is T3-reflection.

Let X be a topological space and define ∼ on X by x ∼ y if and only if clX {x} =
clX {y} . Then, ∼ is an equivalence relation on X and the resulting quotient space X/ ∼ is
T0-space. This procedure and the space it produces are referred to as the T0-identification
of X. Clearly T0 (X) = X� ∼. T0 (X) is called T0− reflection. The canonical onto map
from X onto its T0- identification T0 (X) will be denoted by µX . It is clear that µX is
an onto quasihomeomorphism. If q : X → Y is a continuous map,

then the diagram is commutative. T0 defines a (covariant) functor from Top to itself.
Thus, we get a space which is regular and T0, hence regular and T1. The composite of
the two reflections is T3−reflection.

2. Fan-Gottesman Compactification
A compactification of a topological spaceX is a compact Hausdorff space Y containing

X as a subspace such that clYX = Y. In addition there are a lot of compactification
methods applying different topological space such as Aleksandrov (one-point), Wallman,
Stone-Cech. But, we study with Fan-Gottesman compactification.

Let β be a class of open sets in X. If it satisfies the following three conditions, it is
called a normal base.

(1) β is closed under finite intersections
(2) If B ∈ β, then X − clXB ∈ β, where clXB denotes the closure of B in X.
(3) For every open set U in X and every B ∈ β such that clXB ⊂ U , there exists a

set D ∈ β such that clXB ⊂ D ⊂ clXD ⊂ U .
We consider a regular space having a normal base for open sets i.e., which satisfies

the above three properties of normal base. A chain family on β is a non-empty family
of sets of β such that

clXB1 ∩ clXB2 ∩ ... ∩ clXBn 6= ∅

for any finite number of sets Bi of the family. Every chain family on β is contained in
at least one maximal chain family on β by Zorn’s lemma. Maximal chain families on β
will be denoted by letters as a∗, b∗, ..., and also the set of all maximal chain families on
β will be denoted by (X,β)∗. Whose topology is defined as follow. For each B ∈ β, let

τ (B) = {b∗ ∈ (X,β)∗ : there exists a A ∈ b∗ with clXB ⊂ A}
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Then, the topology of (X,β)∗ is defined by taking

β∗ = {τ (B) : B ∈ β}
as a base of open sets. (X,β)∗ is a compact Hausdorff space and is a compactification of
our regular space. Afterwards this compactification is called Fan-Gottesman compactifi-
cation [6].

Now, we determine the Fan-Gottesman compactification via open ultrafilters.

2.1. Definition. Let X be a T3 space and FX the subcollection of all maximal ultrafilter
of closed subsets on X. For each open set O ⊂ X, define O∗ ⊂ FX to be the set

O∗ =
{
Ĝ ∈ FX : Ĝ consists of clXO

}

Let Φ be the family of O∗. It is clear that Φ is the base for open sets of topology on
FX. FX is a compact space and it is called the Fan-Gottesman compactifications of X.

In order to avoid the confusion between FX and (X,β)∗, we will use FX when it
regarded as Fan-Gottesman compactification of X.

On the other hand, for each closed set D ⊂ X, we define D∗ ⊂ FX by D∗ ={
Ĝ ∈ FX : Ĝ consists of G ⊆ D for some G

}
. The following properties of FX are use-

ful;
(i) If U ⊂ X is open, then FX − U∗ = (FX − U)∗

(ii) If D ⊂ X is closed, then FX −D∗ = (FX −D)∗

(iii) If U1 and U2 are open in X, then (U1 ∩ U2)∗ = U∗
1 ∩U∗

2 and (U1 ∪ U2)∗ = U∗
1 ∪U∗

2

Properties We consider the map fX : X → FX defined by fX (x) = Ĝx, the closed
ultrafilter converging to x in X. In order to avoid the confusing between Ĝx and Ĝ, we
will use Ĝx when it regarded as the maximal filter of closures of open sets containing x.
Then the following properties hold.

(1) If U is open in X, then fX (U) = U∗. In particular fX (X) is dense in FX.
(2) fX is continuous and it is an embedding of X in FX if and only if X is a

T3−space.
(3) If U1and U2 are open subsets of X, then fX (U1 ∩ U2) = fX (U1) ∩ fX (U2).
(4) FX is a compact T2−space .

For a T3 space, we define FGX = F (X) and we call it the Fan-Gottesman compact-
ification of X. The notation FX is reserved only for T3 spaces so that it is better to
use some other notation for topological spaces. The same for fX : fX is reserved for
topological space; for T3 space, we define FX = fX ◦ µx where µx is the canonical onto
map from X onto its T3 − reflection, T3 (X) .

Since µx is an onto quasihomeomorphism, one obtains immediately that FGX can be
described exactly as FX for T3 space. The above properties are also true for a T3 space.

2.2. Remark. Let X be a T3 space. Then, the following properties hold:

(1) For each open subset U of X, we have FX (U) ⊆ U∗

(2) For each closed subset C of X, we have FX (C) ⊆ C∗

(3) Let U be open and C closed in a T3 space. Then, U ∩ C 6= ∅ if and only if
U∗ ∩ C∗ 6= ∅

2.3. Proposition. Let X be a T3 space and

(1) U be an open subset of X. If U is compact, then U∗ = FX (U) .
(2) V be a closed subset of X. If V is compact, then V ∗ = FX (V ) .
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Proof. Suppose that V is closed in X. We have FX (V ) ⊆ V ∗ from Remark 1. If Ĝ ∈ V ∗,
then there exists G ∈ Ĝ such that G ⊆ V. Then V − G is compact by compactness of
V. Thus ∩

{
H ∩ (V −G) : H ∈ Ĝ

}
6= ∅. If x ∈ ∩

{
H ∩ (V −G) : H ∈ Ĝ

}
, then Ĝ =

FX (x) . Hence, Ĝ ∈ FX (V ) . Thus, V ∗ ⊆ FX (V ) . Therefore, V ∗ = FX (V ) .

Now, suppose that U is open inX. Let Ĝ ∈ U∗. Thus, U ∈ Ĝ. Since, ∩
{
H : H ∈ Ĝ

}
6=

∅, we take an x ∈ ∩
{
H : H ∈ Ĝ

}
. It is seen that Ĝ = FX (x) . Therefore, according to

Remark 1, U∗ = FX (U) . �

3. FG-morphisms and FG -extensions
Recall from [3] that a subset S of a topological space X is said to be sufficiently

dense if S meets each nonempty closed subset and each nonempty open subset of X. By
an almost -homeomorphism (α-homeomorphism, for short), we mean a continuous map
q : X → Y such that q (X) is sufficiently dense in Y and the topology of X is the inverse
image of Y by q.

3.1. Definition. i) A subset C of a topological space is said to be openly dense if C
meets each nonemty open subset of X.

Thus we have the following implications:
Strongly dense⇒Sufficiently dense ⇒openly dense

⇓
Dense

3.2. Definition. By a Fan-Gottesman morphism (FG-morphism, for short), we mean
a continuous map q : X → Y such that q (X) is openly dense in Y and the topology of
X is the inverse image of Y by q.We conclude that

homeomorphism ⇒quasihomeomorphism ⇒ α-homeomorphism ⇒ FG-morphism

3.3. Theorem.
(1) The composition of two FG-morphisms is an FG-morphism.
(2) If q : X → Y is an FG-morphism and X is T0, then q is injective.
(3) If q : X → Y is an FG-morphism and Y is T1, then q is an onto homeomor-

phism.
(4) If q : X → Y is an FG-morphism, X is T0 and Y is T1, q is a homeomorphism.

Proof. We show that (1). Let p : X → Y and q : Y → Z be two FG-morphisms. Clearly,
the topology of X is the inverse image of Z by q ◦ p. Let A be open subset of Z. Since
q−1 (A) is open in Y, the p (x) ∩ q−1 (A) 6= ∅, so that A ∩ q (p (X)) 6= ∅. Hence, q ◦ p is
an FG-morphism.

(2) Let x1, x2 be two points of X with q (x1) = q (x2) . Suppose that x1 6= x2. Then,
there exists an open subset U of X such that x1 ∈ U, x2 /∈ U, since X is T0. Because there
exists an open subset H of Y satisfying q−1 (H) = U, we get q (x1) ∈ H and q (x2) /∈ H,
which is impossible. It follows that q is injective.

(3) Let y ∈ Y . Then, {y} is a locally closed subset of Y. Hence, {y}∩ q (X) 6= ∅, since
q (X) is strongly dense in Y. Thus, y ∈ q (X) , hence q is an onto map.

(4) It is clear that q is homeomorphism from (2) and (3). �

Now, we define FG-extensions.

3.4. Definition. A continuous map q : X → Y between T3 spaces is said to be an FG-
extension, if there is a continuous map F (q) : FX → FY such that fY ◦ q = F (q) ◦ fX .
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3.5. Theorem. Let X,Y be two T3 spaces and q : X → Y an FG-morphism. Then, q
has an FG-extension which is a homeomorphism.

Proof. We remark that diagram in the introduction commutes. Hence, T3 (q)◦µx = µy◦q.
Thus, T3 (q) ◦ µx is an FG-morphism. Now, T3 (q) is an FG-morphism from Proposi-
tion 2.1, since µx is a quasihomeomorphism. Therefore, T3 (q) is a homeomorphism by
Proposition 2.1. It follows that T3 (q) has a canonical FG-extension F (T3 (q)) which
is a homeomorphism. Thus, the diagram commutes. If we denote FG (q) = F (T3 (q)),
then the diagram indicates clearly that FG (q) is an FG-extension of q which is a home-
omorphism.

�

It is known that if X is a T4 space, then FGX = wX = β (X) (the Wallman and
Stone-Čech compactification, respectively)[4].

3.6. Corollary. If T3 (X) is a T4 space, then FGX = w (T3 (q)) = β (T3 (q)) .

3.7. Definition. Let X be a T3 space and Y a subspace of X.

(1) Y is called a Fan-Gottesman generator (FG−generator) of X, if FGY is home-
omorphic to FGX.

(2) Y is called a strong Fan-Gottesman generator (sFG-generator) of X, if the
canonical embedding i : Y → X has an FG-extension FG (i) which is a home-
omorphism.

Clearly, sFG-generator⇒ FG−generator
3.8. Theorem. Let X, Y be two T3 spaces and q : X → Y a continuous map. Then,
the following statements are equivalent:

(1) q has an FG-extension which is a homeomorphism.
(2) q (X) is an sFG-generator of Y and the topology of X is the inverse image of

Y by q.

Proof. (i) ⇒ (ii) Firstly, we show that the topology of X is the inverse image of Y by
q. Let U be an open subset of X. Since FG (q) is a homeomorphism, FG (q) (U∗) = V is
a closed subset of wY. Set G = F−1

y (V ) . We prove that U = q−1 (G) .
(a) Let x ∈ U. Then, FX (x) ∈ FX (U) ⊆ U∗. Hence, FG (q) (FX (x)) ∈ FG (q) (U∗) =

V which gives FY (q (x)) ∈ V. It follows that q (x) ∈ F−1
Y (V ) = G. Therefore, x ∈

q−1 (G) .
(b) Conversely, let x ∈ q−1 (G) . Then, q (x) ∈ G = F−1

X (V ) ; this means that
(FY ◦ q) (x) ∈ V, so that FG (q) (FX (x)) ∈ V = FG (q) (U∗) . Since FG (q) is bijec-
tive, FX (x) ∈ U∗. Hence, x ∈ F−1

X (U∗) = U. We have proved that U = q−1 (G) . In
other words, the topology of X is the inverse image of Y by q.

Secondly, we show that q (X) is an sFG-generator of Y . According to (1), the map
q1 : X → q (X) induced by q is an FG-morphism. Hence, q1 has an FG-extension F (q1)
which is a homeomorphism, by Proposition 2.1. Thus, the diagrams commute.
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Let j : q (X)→ Y be the canonical embedding. Clearly, the diagram commutes.
Therefore, j has FG (q) ◦ (FG (q))−1 = Id as an FG-extension which is a homeomor-

phism. This means that q (X) is an sFG generator of Y. (ii)⇒ (i) We assume (ii) . The
map q1 : X → q (X) induced by q is an FG-morphism. Thus, according to Proposition
2.1, q1 has an FG-extension F (q1) which is a homeomorphism. On the other hand, the
canonical embedding j : q (X) → Y has an FG-extension which is a homeomorphism,
by Proposition 2.1. It follows that the two diagrams commute.

Therefore, F (j)◦F (q1) is an FG-extension of q : X → Y which is a homeomorphism.
�

Theorem 3.4 seems us to the following classical fact about the Stone-Ćech compacti-
fication eX : X → βX of a Tychonoff space X .

Consider any continuous mapping p : X → Y, where Y is also Tychonoff. Then, the
map β (p) : βX → βY is a homeomorphism if and only if p is a dense C∗-embedding.

We can mention this analogy in our paper.

3.9. Theorem. If X and Y are Tychonoff spaces, then the following are equivalent for
a map f : X → Y ;

(1) F (f) [FX\X] is contained in FY \Y.
(2) The diagram

is pullback.

Proof. (1) ⇒ (2) Suppose that h : Z → FX and g : Z → Y are mapping such that
F (f) ◦ h = fY ◦ g. Since fY ◦ g [Z] is contained in FY and F (f) sends FX\X into
FY \Y , we have that h [Z] is contained in X. Hence, defining I : Z → X by I (z) = h (z) ,
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it is shown that the square is pullback.(2) ⇒ (1) Choose p in FX and assume that
F (f) (p) = y belongs to Y. Then, let h be the map which embeds {p} into FX and g be
the map from the subspace {p} which sends p to F (f) (p) . Then, F (f) ◦ h = fY ◦ g so
that there exist a map I : {p} → X such that h = fx ◦ I. Hence, p belongs to X. �
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Abstract

We say that w(x) : R → C is a solution to a second-order linear re-
current homogeneous differential equation with period k (k ∈ N), if it
satisfies a homogeneous differential equation of the form

w(2k)(x) = pw(k)(x) + qw(x), ∀x ∈ R,

where p, q ∈ R+ and w(k)(x) is the kth derivative of w(x) with respect
to x. On the other hand, w(x) is a solution to an odd second-order
linear recurrent homogeneous differential equation with period k if it
satisfies

w(2k)(x) = −pw(k)(x) + qw(x), ∀x ∈ R.
In the present paper, we give some properties of the solutions of dif-
ferential equations of these types. We also show that if w(x) is the
general solution to a second-order linear recurrent homogeneous differ-
ential equation with period k (resp. odd second-order linear recurrent
homogeneous differential equation with period k), then the limit of the
quotient w((n+1)k)(x)/w(n)(x) as n tends to infinity exists and is equal
to the positive (resp. negative) dominant root of the quadratic equation
x2 − px− q = 0 as x increases (resp. decreases) without bound.
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1. Introduction
Problems involving Fibonacci numbers and its various generalizations have been ex-

tensively studied by many authors. Its beauty and applications have been greatly appreci-
ated since its introduction. In 1965, a certain generalization of the sequence of Fibonacci
numbers was introduced by A. F. Horadam in [1], which is called as a second-order linear
recurrence sequence and is now known as Horadam sequence. Properties of these type
of sequences have also been studied by Horadam in [1]. In [2], J. S. Han, H. S. Kim,
and J. Neggers studied a Fibonacci norm of positive integers. These authors [3] have
also studied Fibonacci sequences in groupoids and introduced the concept of Fibonacci
functions in [4]. They developed the notion of this type of functions using the concept
of f -even and f -odd functions. Later on, a certain generalization of Fibonacci function
has been investigated by B. Sroysang in [5]. In particular, Sroysang defined a function
f(x) : R → R as a Fibonacci function of period k, (k ∈ N) if it satisfies the equation
f(x + 2k) = f(x + k) + f(x) for all x ∈ R. Recently, the notion of Fibonacci function
has been further generalized by the author in [6]. The concept of second-order linear
recurrent functions with period k which has been introduced by the author in [6] gave
rise to the concept of Pell and Jacobsthal functions with period k, which are analogues of
Fibonacci functions. Some elementary properties of these newly defined functions were
also presented by the author in [6]. Now, inspired by these results, we present in this
work the concept of second-order (resp. odd second-order) linear recurrent homogeneous
differential equations with period k, or simply SOLRHDE-k (resp. oSOLRHDE-k), and
study some of its properties.

The next section, which discusses our main results, is organized as follows. First, we
present some elementary results on second-order (and odd second-order) linear recurrent
homogeneous differential equation with period k, and then provide the form of its general
solution. Afterwards, we investigate the quotient w((n+1)k)(x)/w(n)(x), where w(x) is the
general solution to a SOLRHDE-k (or an oSOLRHDE-k), and find its limit as n tends to
infinity. Each of our results is accompanied by an example for validation and illustration.

2. Main Results
We start-off this section with the following definition.

2.1. Definition. Let k ∈ N, p, q ∈ R+ and w : R → C be differentiable on R infinitely
many times. We say that w(x) is a solution to a SOLRHDE-k if it satisfies a differential
equation of the form given by

(2.1) w(2k)(x) = pw(k)(x) + qw(x),

for all x ∈ R, where w(k)(x) is the kth derivative of w(x) with respect to x. If (p, q) =
(1, 1), (1, 2), (2, 1), then w is a solution to a Fibonacci-like, Jacobsthal-like, and Pell-like
homogeneous differential equation with period k, respectively.

2.2. Example. Let p, q ∈ R+ and 0 6= t ∈ R. Define w(x) = atx, where a > 0. Suppose
that w(x) is a solution to a SOLRHDE-k then (t ln a)2katx = p(t ln a)katx + qatx. Hence,
r2 − pr − q = 0 where r = (t ln a)k. Solving for r, we have r = (p ±

√
p2 + 4q)/2. So,

a = exp
(
t−1Φ

1/k
±

)
, where Φ± = (p ±

√
p2 + 4q)/2. Thus, w(x) = A exp

(
α1/kx

)
+

B exp
(
β1/kx

)
, where α = Φ+ and β = Φ− and, A,B are any arbitrary real numbers. If

we set k = 1, and w(0) = 0 and w′(0) = 1, then we get A + B = 0 and αA + βB = 1.
Here we obtain,

(2.2) w(x) =
1

α− β
(
eαx − eβx

)
.
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Thus, (2.2) is a solution to a SOLRHDE-k, with k = 1 and initial boundary conditions
w(0) = 0 and w′(0) = 1. Using the identity eX =

∑∞
n=0(Xn/n!), we can express (2.2) in

terms of power series, i.e. we have

w(x) =
eαx − eβx
α− β =

∞∑

n=0

(
αn − βn
α− β

)
xn

n!
=

∞∑

n=0

Wn

n!
xn,

where Wn is the number sequence obtained from the recurrence relation given by

(2.3) W0 = 0, W1 = 1, Wn+1 = pWn + qWn−1, ∀n ∈ N.

We note that α + β = p, α − β =
√
p2 + 4q, and αβ = −q. Hence, for some particular

values of p and q, we have the following examples.
(1) For (p, q) = (1, 1), the function defined by

f(x) =
1√
5

(
eφx − e(1−φ)x

)
=

∞∑

n=0

Fn
n!
xn,

where φ is the golden ratio and Fn is the nth Fibonacci number, is a solution to
a Fibonacci-like homogeneous differential equation. By letting x = 1, we obtain
the identity
∞∑

n=0

Fn
n!

=
eφ − e1−φ√

5
.

(2) For (p, q) = (1, 2), the function defined by

j(x) =
1

3

(
e2x − e−x

)
=

∞∑

n=0

Jn
n!
xn,

where Jn is the nth Jacobsthal number, is a solution to a Jacobsthal-like homo-
geneous differential equation. By letting x = 1, we obtain the identity
∞∑

n=0

Jn
n!

=
e2 − e−1

3
.

(3) For (p, q) = (2, 1), the function defined by

p(x) =
1

2
√

2

(
eσx − e(2−σ)x

)
=

∞∑

n=0

Pn
n!
xn,

where σ is the silver ratio and Pn is the nth Pell number, is a solution to a
Pell-like homogeneous differential equation. By letting x = 1, we obtain the
identity
∞∑

n=0

Pn
n!

=
eσ − e2−σ

2
√

2
.

2.3. Proposition. Let k ∈ N, p, q,∈ R+ and w(x) be a solution to the differential
equation (2.1). If gm(x) := w(m)(x), then g(x) is also a solution to (2.1).

Proof. Let k ∈ N and p, q,∈ R+. Suppose gm(x) = w(m)(x) where w(x) is a solution to
(2.1). Then,

g(2k)m (x) =
d2k
[
w(m)(x)

]

dx2k
= p

dm
[
w(k)(x)

]

dxm
+ q

dm [w(x)]

dxm
= pg(k)m (x) + qgm(x),

proving the proposition. �

925



2.4. Example. Let j(x) = e(−1)1/kx where k ∈ N. It can be verified easily that j(x) =

e(−1)1/2x = e±ix is a solution to a Jacobsthal-like homogeneous differential equation with
period 2, i.e.

j(4)(x) = e±ix = −e±ix + 2e±ix = j′′(x) + 2j(x), ∀x ∈ R.

Now, define g(x) = ±ie±ix. We show that g(x) is also a solution to a Jacobsthal-like
homogeneous differential equation with period 2, i.e.

g(4)(x) = g′′(x) + 2g(x), ∀x ∈ R.

We note that,

g′(x) = −e±ix, g′′(x) = ∓ie±ix, g′′′(x) = e±ix, g(4)(x) = ±ie±ix.
Hence,

g(4)(x) = ±ie±ix = ∓ie±ix + 2± ie±ix = g′′(x) + 2g(x).

We can also show this via Proposition (2.3). Since g(x) = j′(x), and j(x) is a solution
to a Jacosthal-like homogeneous differential equation with period 2, then so is g(x) by
Proposition (2.3).

2.5. Proposition. Let k ∈ N, p, q,∈ R+ and, g(x) and h(x) be any two solutions
of the differential equation (2.1). Then, any linear combination of g(x) and h(x), say
w(x) = Ag(x) +Bh(x) where A,B ∈ R, is again a solution to (2.1).

Proof. The proof is straightforward. Let k ∈ N, p, q,∈ R+, and g(x) and h(x) be any two
solutions to the differential equation (2.1). Consider the function w(x) = Ag(x) +Bh(x)
where A,B ∈ R. Then,

w(2k)(x) = Ag(2k)(x) +Bh(2k)(x)

= p
[
Ag(k)(x) +Bh(k)(x)

]
+ q [Ag(x) +Bh(x)]

= pw(k)(x) + qw(x).

This proves the proposition. �

2.6. Example. Let j(x) = e(−1)1/kx where k ∈ N. It can be verified diretly that
the function j(x) = e(−1)1/3x = etx, where t ∈ {−1, (1 ±

√
3i)/2}, is a solution to a

Jacobsthal-like homogeneous differential equation with period 3, i.e.

(2.4) j(6)(x) = j′′′(x) + 2j(x), ∀x ∈ R,

Define w(x) = Ae−x +Be
1
2
(1±
√
3)ix, where A,B ∈ R. Then,

w(6)(x) = Ae−x +Be
1
2
(1±
√

3)ix

= −
[
Ae−x +Be

1
2
(1±
√

3i)x
]

+ 2
[
Ae−x +Be

1
2
(1±
√

3i)x
]

= w′′′(x) + 2w(x).

In fact, this can also be shown using Proposition (2.5). Since g(x) = e−x and h(x) =

exp( 1
2
(1 ±

√
3)ix) are solutions of (2.4), then the function defined by w(x) = Ag(x) +

Bh(x), where A,B ∈ R, is also a solution to (2.4) by Proposition (2.5).

2.7. Theorem. Let k ∈ N, p, q,∈ R+ and w(x) be a solution to the differential equation
(2.1). Furthermore, let {Wn}∞n=0 be a number sequence obtained from a second-order
linear recurrence relation defined by (2.3). Then,

(2.5) w(nk)(x) = Wnw
(k)(x) + qWn−1w(x), ∀x ∈ R, n ∈ N.
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Proof. We prove this using induction on n. Let k ∈ N, p, q ∈ R+, and w(x) be a solution
to the differential equation (2.1). Then,

w(k)(x) = (1)w(k)(x) + q(0)w(x) = W1w
(k)(x) + qW0w(x),

w(2k)(x) = pw(k)(x) + q(1)w(x) = W2w
(k)(x) + qW1w(x),

w(3k)(x) =
dk

dxk

(
w(2k)(x)

)
= pw(2k)(x) + qw(k)(x)

= p
[
pw(k)(x) + qw(x)

]
+ qw(k)(x)

= (p2 + q)w(k)(x) + qpw(x)

= W3w
(k)(x) + qW2w(x).

Now we assume that the following equation is true for some natural number n,

w(nk)(x) = Wnw
(k)(x) + qWn−1w(x).

Hence,

w((n+1)k)(x) =
dk

dxk

[
w(nk)

]
=

dk

dxk

[
Wnw

(k)(x) + qWn−1w(x)
]

= Wnw
(2k)(x) + qWn−1w

(k)(x)

= Wn

[
pw(k)(x) + qw(x)

]
+ qWn−1w

(k)(x)

= (pWn + qWn−1)w(k)(x) + qWnw(x)

= Wn+1w
(k)(x) + qWnw(x).

This proves the theorem. �

2.8. Corollary. Let k ∈ N and f(x) be a solution to a Fibonacci-like differential equation
with period k. If {Fn}∞n=0 is the sequence of Fibonacci numbers, then

f (nk)(x) = Fnf
(k)(x) + Fn−1f(x), ∀x ∈ R, n ∈ N.

2.9. Example. Consider the solution f(x) = e
4√φx to a Fibonacci-like differential equa-

tion with period 4 given by the equation

f (8)(x) = f (4)(x) + f(x), ∀x ∈ R.

Furthermore, let {Fn} be the sequence of Fibonacci numbers. By Corollary (2.8), we see
that

f (12)(x) = (2 +
√

5)e
4√φx = 2φe

4√φx + e
4√φx = F3f

(4)(x) + F2f(x),

f (16)(x) =
1

2
(7 + 3

√
5)e

4√φx = 3φe
4√φx + 2e

4√φx = F4f
(4)(x) + F3f(x).

Similarly, for Jacobsthal-like and Pell-like differential equations with period k we have
the following corollaries.

2.10. Corollary. Let k ∈ N and j(x) be a solution to a Jacobsthal-like differential
equation with period k. If {Jn}∞n=0 is the sequence of Jacobsthal numbers, then

j(nk)(x) = Jnj
(k)(x) + 2Jn−1j(x), ∀x ∈ R, n ∈ N.

2.11. Example. Consider the solution j(x) = e−x to a Jacobsthal-like differential equa-
tion given by

j′′(x) = j′(x) + 2j(x), ∀x ∈ R.
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Furthermore, let {Jn}∞n=0 be the sequence of Jacobsthal numbers, i.e. {Jn} = {0, 1, 1, 3, 5, 11, 21, 43, 85, 171, . . . }.
By Corollary (2.10), we see that

j(7)(x) = −e−x = 43(−e−x) + 2(21)e−x = J7j
′(x) + 2J6j(x),

j(8)(x) = e−x = 85(−e−x) + 2(43)e−x = J8j
′(x) + 2J7j(x),

j(9)(x) = −e−x = 171(−e−x) + 2(85)e−x = J9j
′(x) + 2J8j(x).

2.12. Corollary. Let k ∈ N and p(x) be a solution to a Pell-like differential equation
with period k. If {Pn}∞n=0 is the sequence of Pell numbers, then

p(nk)(x) = Pnp
(k)(x) + Pn−1p(x), ∀x ∈ R, n ∈ N.

2.13. Example. Consider the solution p(x) = e
3√σx to a Pell-like differential equation

with period 3 given by the equation

(2.6) p(6)(x) = 2p′′′(x) + p(x), ∀x ∈ R.

Furthermore, let {Pn}∞n=0 be the sequence of Pell numbers, i.e. {Pn} = {0, 1, 2, 5, 12, 29, . . . }.
By Corollary (2.12), we see that

p(9)(x) = (7 + 5
√

2)e
3√σx = 5σe

3√σx + 2e
3√σx = P3p

′′′(x) + P2p(x),

p(12)(x) = (17 + 12
√

2)e
3√σx = 12σe

3√σx + 5e
3√σx = P4p

′′′(x) + P3p(x),

p(15)(x) = (41 + 29
√

2)e
3√σx = 29σe

3√σx + 12e
3√σx = P5p

′′′(x) + P4p(x).

In solving for the solution of equation (2.6), we obtain an approximation of the golden
ratio involving the silver ratio σ. In particular, we obtain

φ ≈ 10
(

3
√
σ sin(2π/3)− 1

)
.

This gives us a motivation to obtain a better approximation which is given by

φ ≈ 10

(
3
√
σ sin

(
220 · 56 − 315611

219 · 3 · 56
π

)
− 1

)
.

Looking at this approximation, it might be interesting to get a better approximation of
φ in terms of σ by altering the coefficient of π inside the sine function.

2.14. Corollary. Let k = 1, p, q,∈ R+ and w(x) = eαx be a solution to (2.1). Further-
more, let {Wn}∞n=0 be a number sequence obtained from (2.3). Then,

(2.7) αn = αWn + qWn−1, ∀n ∈ N.

Furthermore, if {Fn}, {Jn}, and {Pn} are the sequence of Fibonacci, Jacobsthal and Pell
numbers, respectively, then

φn = φFn + Fn−1, ∀n ∈ N,(2.8)

2n−1 = Jn + Jn−1, ∀n ∈ N,(2.9)

σn = 2σPn + Pn−1, ∀n ∈ N,(2.10)

where φ and σ are the golden and silver ratio, respectively.

Proof. We note that w(x) = eαx is a solution to equation (2.1) with period k = 1. So,
by Theorem (2.7), we have

αneαx = αWne
αx + qWn−1e

αx,

proving equation (2.7). By letting (p, q) = (1, 1), (1, 2), (2, 1), we obtain equations (2.8),
(2.9), and (2.10), respectively. �
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In the following discussion, we study differential equations of the form

(2.11) w(2k)(x) = −pw(k) + qw(x), ∀x ∈ R,

where k ∈ N and p, q ∈ R+. We call such equation as an odd second-order linear recurrent
homogeneous differential equation with period k, or simply, oSOLRHDE-k.

Solving equation (2.11) we obtain the solution

w(x) = aeα
1/kζnx + beβ

1/kζnx,

where ζn = cos
(
π+2nπ
k

)
+ i sin

(
π+2nπ
k

)
, n = 0, 1, . . . , k − 1, and a, b ∈ R. If (p, q, k) =

(1, 1, 1), then we see that f(x) = e−φx is a solution to the following differential equation

w′′(x) = −w′(x) + w(x), ∀x ∈ R.

Similarly, for (p, q, k) = (1, 2, 1), (2, 1, 1), we see that the functions j(x) = e−2x and
p(x) = e−σx are solutions to the differential equations

j′′(x) = −j′(x) + 2j(x), ∀x ∈ R,

p′′(x) = −2p′(x) + p(x), ∀x ∈ R,

respectively. Also, if (p, q, k) = (1, 1, 3), then the function defined by f(x) = etx, where
t ∈ {− 3

√
φ, 3
√
φ(1 ±

√
3i)/2}, is a solution to an odd Fibonacci-like homogeneous differ-

ential equation with period 3. i.e., f(x) = etx is a solution to

(2.12) f (6)(x) = −f (3)(x) + f(x), ∀x ∈ R.

2.15. Theorem. Let k ∈ N, p, q,∈ R+ and w(x) be a solution to the differential equation
(2.11). Furthermore, let {W−n}∞n=0, where W−n = (−1)n+1Wn be a number sequence
obtained from a second-order linear recurrence relation defined by

(2.13) W0 = 0, W−1 = 1, W−(n+1) = −pW−n + qW−n+1, ∀n ∈ N.

Then,

(2.14) w(nk)(x) = W−nw
(k)(x) + qW−n+1w(x), ∀x ∈ R, n ∈ N.

Proof. We follow the proof of Theorem (2.7). Let k ∈ N, p, q,∈ R+, and w(x) be a
solution to the differential equation (2.11). Then,

w(k)(x) = (1)w(k)(x) + q(0)w(x) = W−1w
(k)(x) + qW0w(x),

w(2k)(x) = −pw(k)(x) + q(1)w(x) = W−2w
(k)(x) + qW−1w(x),

w(3k)(x) =
dk

dxk

(
w(2k)(x)

)
= −pw(2k)(x) + qw(k)(x)

= −p
[
−pw(k)(x) + qw(x)

]
+ qw(k)(x)

= (p2 + q)w(k)(x) + qpw(x)

= W−3w
(k)(x) + qW−2w(x).

Now we assume that the following equation is true for some natural number n,

w(nk)(x) = W−nw
(k)(x) + qW−n+1w(x).
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Hence,

w((n+1)k)(x) =
dk

dxk

[
w(nk)

]
=

dk

dxk

[
W−nw

(k)(x) + qW−n+1w(x)
]

= W−nw
(2k)(x) + qW−n+1w

(k)(x)

= W−n
[
−pw(k)(x) + qw(x)

]
+ qW−n+1w

(k)(x)

= (−pW−n + qW−n+1)w(k)(x) + qW−nw(x)

= W−(n+1)w
(k)(x) + qW−nw(x),

proving the theorem. �

2.16. Corollary. Let k ∈ N and f(x) be a solution to an odd Fibonacci-like differential
equation with period k. If {Fn}∞n=0 is the sequence of Fibonacci numbers then,

f (nk)(x) = F−nf
(k)(x) + F−n+1f(x), ∀x ∈ R, n ∈ N.

2.17. Example. Consider the solution f(x) = e(
3√φ/2)(1+

√
3i)x to the differential equa-

tion (2.12). By Corollary (2.16), we see that

f (15)(x) = −1

2
(11 + 5

√
5)e(

3√φ/2)(1+
√

3i)x

= −5φe(
3√φ/2)(1+

√
3i)x +−3e(

3√φ/2)(1+
√

3i)x

= F−5f
(3)(x) + F−4f(x).

2.18. Corollary. Let k ∈ N and j(x) be a solution to an odd Jacobsthal-like differential
equation with period k. If {Jn}∞n=0 is the sequence of Jacobsthal numbers then,

j(nk)(x) = J−nj
(k)(x) + 2J−n+1j(x), ∀x ∈ R, n ∈ N.

2.19. Example. Consider the solution j(x) = e−
5√2x to the odd Jacobsthal-like differ-

ential equation with period 5 given by

j(10)(x) = −j(5)(x) + 2j(x), ∀x ∈ R.

By Corollary (2.18), we see that

j(25)(x) = −32e−
5√2x = 11(−2e−

5√2x) + 2(−5)e−
5√2x = J−5j

(3)(x) + 2J−4f(x).

2.20. Corollary. Let k ∈ N and p(x) be a solution to an odd Pell-like differential equation
with period k. If {Pn}∞n=0 is the sequence of Pell numbers then,

p(nk)(x) = P−np
(k)(x) + P−n+1p(x), ∀x ∈ R, n ∈ N.

2.21. Theorem. Let k ∈ N, p, q ∈ R+, and consider the SOLRHDE-k defined by (2.1).
Then,

(2.15) ΩW,k(x) =

k∑

j=1

(
cje

rjx + c̄je
tjx
)
, ∀x ∈ R,

where cj , c̄j ∈ R and, rj and tj , for all j = 1, 2, . . . , k are roots of α and β, respectively,
is the general solution of the given homogeneous differential equation.

Proof. Let {rj}kj=1 and {tj}kj=1 be the set of kth roots of α and β, i.e.

rj = |α|1/k
[
cos

(
θr + 2πj

k

)
+ i sin

(
θr + 2πj

k

)]
,
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and

tj = |β|1/k
[
cos

(
θt + 2πj

k

)
+ i sin

(
θt + 2πj

k

)]
,

where j = 1, 2, . . . , k, θr = arg(α) and θt = arg(β). Note that rj′s and tj′s are all
distinct then, {er1x, er2x, . . . , erkx} and {et1x, et2x, . . . , etkx} are linearly independent sets
of solutions of the homogeneous linear equation defined in (2.1). Hence, by Proposition
(2.5), conclusion follows. �

2.22. Example. Consider the Jacobsthal-like homogeneous differential equation (2.4)
with period 3. By Theorem (2.21), we have the general solution

ΩJ,3(x) = c1e
3√2x + c2e

− 1
2

3√2(1+
√
3i)x + c3e

− 1
2

3√2(1−
√

3i)x

+ c̄1e
−x + c̄2e

1
2
(1+
√
3i)x + c̄3e

1
2
(1−
√

3i)x.

Also, if φ and σ are the golden ratio and silver ratio, respectively, then the general
solution to a Fibonacci-like and Pell-like homogeneous differential equation are given by

ΩF,k(x) =

k∑

j=1

cj exp
(
φ1/kΘ2jx

)
+

k∑

j=1

c̄j exp
(

(φ− 1)1/kΘ2j+1x
)

and

ΩP,k(x) =

k∑

j=1

cj exp
(
σ1/kΘ2jx

)
+

k∑

j=1

c̄j exp
(

(2− σ)1/kΘ2j+1x
)
,

where Θm = cos (mπ/k) + i sin (mπ/k) and cj′s, c̄j′s ∈ R, for all x ∈ R, respectively.

In the rest of our discussion, we investigate the quotient of solutions of a second-order
linear recurrent homogeneous differential equation with period k.

2.23. Theorem. Let p, q ∈ R+ and k ∈ N be the period of a SOLRHDE-k defined in
(2.1) and let w(x) be its general solution. Then, the limit limn→∞

w((n+1)k)(x)

w(n)(x)
exists and

is given by

(2.16) lim
n→∞

w((n+1)k)(x)

w(n)(x)
= α (resp. β), as x→∞ (resp. x→ −∞),

where α and β are the roots of the quadratic equation x2 − px − q = 0. Particularly,
if f(x), j(x), and p(x) are solutions to a Fibonacci-like, Jacobsthal-like, and Pell-like
homogeneous differential equation with period k, respectively, then

lim
n→∞

f ((n+1)k)(x)

f (n)(x)
= φ (resp. 1− φ), as x→∞ (resp. x→ −∞)(2.17)

lim
n→∞

j((n+1)k)(x)

j(n)(x)
= 2 (resp. − 1), as x→∞ (resp. x→ −∞)(2.18)

lim
n→∞

p((n+1)k)(x)

p(n)(x)
= σ (resp. 1− σ), as x→∞ (resp. x→ −∞).(2.19)

Proof. Let k, n ∈ N, p, q ∈ R+, and consider the quotient Q(x) : = ω(k)(x)
ω(x)

, where
ω(x) = w(nk)(x) satisfies a SOLRHDE-k. We suppose x→∞. The case when x→ −∞
can be proven in a similar fashion.

We consider two cases: (i) Q(x) < 0, and (ii) Q(x) > 0.
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CASE 1. Suppose that Q(x) < 0. Hence, we can assume without loss of generality
(WLOG) that ω(x) > 0 and ω(k)(x) < 0. By assumption, w(x) satisifes (2.1), so we have

w(2k)(x) = −pw(k)(x) + qw(x),

w(3k)(x) = pw(2k)(x)− qw(k)(x) = p(−pw(k)(x) + qw(x))− qw(k)(x)

= −(p2 + q)w(k)(x) + pqw(x),

w(4k)(x) = pw(3k)(x) + qw(2k)(x)

= p(−(p2 + q)w(k)(x) + pqw(x)) + q(−pw(k)(x) + qw(x))

= −(p3 + 2pq)w(2k)(x) + q(p2 + q)w(k)(x),

...

w(nk)(x) = −Wnw
(k)(x) + qWn−1w(x), ∀n ∈ N,

where Wn is the number sequence satisfying equation (2.3). We let ω(x) = w(nk)(x).
Hence, by Proposition (2.3), ω(x) is also a solution to (2.1). It follows that

ω(k)(x)

ω(x)
=

1

w(nk)(x)

dk

dxk

(
w(nk)(x)

)
=
−Wn+1w

(k)(x) + qWnw(x)

−Wnw(k)(x) + qWn−1w(x)

=
−w(k)(x)

Wn+1

Wn
+ qw(x)

−w(k)(x) + qw(x)
Wn−1

Wn

.

So we have

lim
n→∞

ω(k)(x)

ω(x)
= lim
n→∞

−w(k)(x)
Wn+1

Wn
+ qw(x)

−w(k)(x) + qw(x)
Wn−1

Wn

=
−w(k)(x)

(
limn→∞

Wn+1

Wn

)
+ qw(x)

−w(k)(x) + qw(x)
(

limn→∞
Wn−1

Wn

) .

Since β = (p−
√
p2 + 4q)/2 ∈ (−1, 0), then limn→∞ β

n = 0. Thus,

lim
n→∞

ω(k)(x)

ω(x)
=
−αw(k)(x) + qw(x)

−w(k)(x) + α−1qw(x)
= α <∞,

because limn→∞
Wn+1

Wn
= limn→∞

αn+1−βn+1

αn−βn = α and α > β.

CASE 2. Suppose (WLOG) that ω(x) and ω(k)(x) are both positive. By Proposition
(2.3), ω(x) = w(nk)(x) is also a solution to (2.1). Hence,

lim
n→∞

ω(k)(x)

ω(x)
= lim
n→∞

w((n+1)k)(x)

w(nk)(x)
= lim
n→∞

Wn+1w
(k)(x) + qWnw(x)

Wnw(k)(x) + qWn−1w(x)

= lim
n→∞

w(k)(x)
Wn+1

Wn
+ qw(x)

w(k)(x) + qw(x)
Wn−1

Wn

=
w(k)(x)

(
limn→∞

Wn+1

Wn

)
+ qw(x)

w(k)(x) + qw(x)
(

limn→∞
Wn−1

Wn

)

= α.

By letting (p, q) = (1, 1), (1, 2), (2, 1), we obtain equations (2.17), (2.18), and (2.19),
respectively. This completes the proof of the theorem. �
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We also have the following theorem for oSOLRHDE-k.

2.24. Theorem. Let p, q ∈ R+ and k ∈ N be the period of an oSOLRHDE-k defined
by (2.11) and let w(x) be its solutions. Then, the limit limn→∞

w((n+1)k)(x)

w(n)(x)
exists and is

given by

(2.20) lim
n→∞

w((n+1)k)(x)

w(n)(x)
= −β (resp. − α), as x→∞ (resp. x→ −∞),

where α and β are the roots of the quadratic equation x2 − px − q = 0. Particularly, if
f(x), j(x), and p(x) are solutions to an odd Fibonacci-like, odd Jacobsthal-like, and odd
Pell-like homogeneous differential equation with period k, respectively, then

lim
n→∞

f ((n+1)k)(x)

f (n)(x)
= −(1− φ) (resp. − φ), as x→∞ (resp. x→ −∞)

lim
n→∞

j((n+1)k)(x)

j(n)(x)
= 1 (resp. − 2), as x→∞ (resp. x→ −∞)

lim
n→∞

p((n+1)k)(x)

p(n)(x)
= −(1− σ) (resp. − σ), as x→∞ (resp. x→ −∞).

The proof of the above theorem follows the same argument as in the proof of Theorem
(2.23), so we omit it.
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1. Introduction
Let f : I ⊂ R→ R be a convex function defined on the interval I of real numbers and

a, b ∈ I with a < b. The following inequality

(1.1) f

(
a+ b

2

)
≤ 1

b− a

b∫

a

f(x)dx ≤ f(a) + f(b)

2

holds. This double inequality is known in the literature as Hermite-Hadamard integral
inequality for convex functions. Note that some of the classical inequalities for means
can be derived from (1.1) for appropriate particular selections of the mapping f . Both
inequalities hold in the reversed direction if f is concave. For some results which gener-
alize, improve and extend the inequalities (1.1) we refer the reader to the recent papers
(see [1, 2, 3, 4, 6, 5, 7] ).

The main purpose of this paper is to introduce the concept of harmonically convex
functions and establish some results connected with the right-hand side of new inequalities
similar to the inequality (1.1) for these classes of functions. Some applications to special
means of positive real numbers are also given.
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sun, Turkey.
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2. Main Results
2.1. Definition. Let I ⊂ R\ {0} be a real interval. A function f : I → R is said to be
harmonically convex, if

(2.1) f

(
xy

tx+ (1− t)y

)
≤ tf(y) + (1− t)f(x)

for all x, y ∈ I and t ∈ [0, 1]. If the inequality in (1.1) is reversed, then f is said to be
harmonically concave.

2.2. Example. Let f : (0,∞) → R, f(x) = x, and g : (−∞, 0) → R, g(x) = x, then f
is a harmonically convex function and g is a harmonically concave function.

The following proposition is obvious from this example:

2.3. Proposition. Let I ⊂ R\ {0} be a real interval and f : I → R is a function, then ;
• if I ⊂ (0,∞) and f is convex and nondecreasing function then f is harmonically

convex.
• if I ⊂ (0,∞) and f is harmonically convex and nonincreasing function then f is

convex.
• if I ⊂ (−∞, 0) and f is harmonically convex and nondecreasing function then f

is convex.
• if I ⊂ (−∞, 0) and f is convex and nonincreasing function then f is a harmoni-

cally convex.

The following result of the Hermite-Hadamard type holds.

2.4. Theorem. Let f : I ⊂ R\ {0} → R be a harmonically convex function and a, b ∈ I
with a < b. If f ∈ L[a, b] then the following inequalities hold

(2.2) f

(
2ab

a+ b

)
≤ ab

b− a

b∫

a

f(x)

x2
dx ≤ f(a) + f(b)

2
.

The above inequalities are sharp.

Proof. Since f : I → R is a harmonically convex function, we have, for all x, y ∈ I (with
t = 1

2
in the inequality (2.1) )

f

(
2xy

x+ y

)
≤ f(y) + f(x)

2
.

Choosing x = ab
ta+(1−t)b

, y = ab
tb+(1−t)a

, we get

f

(
2ab

a+ b

)
≤
f
(

ab
tb+(1−t)a

)
+ f

(
ab

ta+(1−t)b

)

2
.

Further, integrating for t ∈ [0, 1], we have

f

(
2ab

a+ b

)
(2.3)

≤ 1

2




1∫

0

f

(
ab

tb+ (1− t)a

)
dt+

1∫

0

f

(
ab

ta+ (1− t)b

)
dt


 .

Since each of the integrals is equal to ab
b−a

b∫

a

f(x)

x2
dx, we obtain the left-hand side of the

inequality (2.2) from (2.3).
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The proof of the second inequality follows by using (2.1) with x = a and y = b and
integrating with respect to t over [0, 1].

Now, consider the function f : (0,∞)→ R, f(x) = 1. thus

1 = f

(
xy

tx+ (1− t)y

)

= tf(y) + (1− t)f(x) = 1

for all x, y ∈ (0,∞) and t ∈ [0, 1]. Therefore f is harmonically convex on (0,∞) . We also
have

f

(
2ab

a+ b

)
= 1,

ab

b− a

b∫

a

f(x)

x2
dx = 1,

and

f(a) + f(b)

2
= 1

which shows us the inequalities (2.2) are sharp.

For finding some new inequalities of Hermite-Hadamard type for functions whose
derivatives are harmonically convex, we need a simple lemma below.

2.5. Lemma. Let f : I ⊂ R\ {0} → R be a differentiable function on I◦ and a, b ∈ I
with a < b. If f ′ ∈ L[a, b] then

f(a) + f(b)

2
− ab

b− a

b∫

a

f(x)

x2
dx

=
ab (b− a)

2

1∫

0

1− 2t

(tb+ (1− t)a)2
f ′
(

ab

tb+ (1− t)a

)
dt.(2.4)

Proof. Let

I∗ =
ab (b− a)

2

1∫

0

1− 2t

(tb+ (1− t)a)2
f ′
(

ab

tb+ (1− t)a

)
dt.

By integrating by part, we have

I∗ =
(2t− 1)

2
f

(
ab

tb+ (1− t)a

)∣∣∣∣
1

0

−
1∫

0

f

(
ab

tb+ (1− t)a

)
dt.

Setting x = ab
tb+(1−t)a

, dx = −ab(b−a)

(tb+(1−t)a)2
dt = −x2(b−a)

ab
dt, we obtain

I∗ =
f(a) + f(b)

2
− ab

b− a

b∫

a

f(x)

x2
dx

which gives the desired representation (2.4).
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2.6. Theorem. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with
a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q ≥ 1, then

∣∣∣∣∣∣
f(a) + f(b)

2
− ab

b− a

b∫

a

f(x)

x2
dx

∣∣∣∣∣∣
(2.5)

≤ ab (b− a)
2

λ
1− 1

q

1

[
λ2

∣∣f ′ (a)
∣∣q + λ3

∣∣f ′ (b)
∣∣q] 1

q ,

where

λ1 =
1

ab
− 2

(b− a)2
ln

(
(a+ b)2

4ab

)
,

λ2 =
−1

b (b− a) +
3a+ b

(b− a)3
ln

(
(a+ b)2

4ab

)
,

λ3 =
1

a (b− a) −
3b+ a

(b− a)3
ln

(
(a+ b)2

4ab

)

= λ1 − λ2.

Proof. From Lemma 2.5 and using the Hölder inequality, we have
∣∣∣∣∣∣
f(a) + f(b)

2
− ab

b− a

b∫

a

f(x)

x2
dx

∣∣∣∣∣∣

≤ ab (b− a)
2

1∫

0

∣∣∣∣
1− 2t

(tb+ (1− t)a)2
∣∣∣∣
∣∣∣∣f
′
(

ab

tb+ (1− t)a

)∣∣∣∣ dt

≤ ab (b− a)
2




1∫

0

∣∣∣∣
1− 2t

(tb+ (1− t)a)2
∣∣∣∣ dt




1− 1
q

×




1∫

0

∣∣∣∣
1− 2t

(tb+ (1− t)a)2
∣∣∣∣
∣∣∣∣f
′
(

ab

tb+ (1− t)a

)∣∣∣∣
q

dt




1
q

.

Hence, by harmonically convexity of |f ′|q on [a, b], we have

∣∣∣∣∣∣
f(a) + f(b)

2
− ab

b− a

b∫

a

f(x)

x2
dx

∣∣∣∣∣∣

≤ ab (b− a)
2




1∫

0

|1− 2t|
(tb+ (1− t)a)2

dt




1− 1
q

×




1∫

0

|1− 2t|
[
t |f ′ (a)|q + (1− t) |f ′ (b)|q

]

(tb+ (1− t)a)2
dt




1
q

≤ ab (b− a)
2

λ
1− 1

q

1

[
λ2

∣∣f ′ (a)
∣∣q + λ3

∣∣f ′ (b)
∣∣q] 1

q .
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It is easily check that

1∫

0

|1− 2t|
(tb+ (1− t)a)2

dt

=
1

ab
− 2

(b− a)2
ln

(
(a+ b)2

4ab

)
,

1∫

0

|1− 2t| (1− t)
(tb+ (1− t)a)2

dt

=
1

a (b− a) −
3b+ a

(b− a)3
ln

(
(a+ b)2

4ab

)
,

1∫

0

|1− 2t| t
(tb+ (1− t)a)2

dt

=
−1

b (b− a) +
3a+ b

(b− a)3
ln

(
(a+ b)2

4ab

)
.

2.7. Theorem. Let f : I ⊂ (0,∞)→ R be a differentiable function on I◦, a, b ∈ I with
a < b, and f ′ ∈ L[a, b]. If |f ′|q is harmonically convex on [a, b] for q > 1, 1

p
+ 1

q
= 1, then

∣∣∣∣∣∣
f(a) + f(b)

2
− ab

b− a

b∫

a

f(x)

x2
dx

∣∣∣∣∣∣
(2.6)

≤ ab (b− a)
2

(
1

p+ 1

) 1
p (
µ1

∣∣f ′ (a)
∣∣q + µ2

∣∣f ′ (b)
∣∣q) 1

q ,

where

µ1 =

[
a2−2q + b1−2q [(b− a) (1− 2q)− a]

]

2 (b− a)2 (1− q) (1− 2q)
,

µ2 =

[
b2−2q − a1−2q [(b− a) (1− 2q) + b]

]

2 (b− a)2 (1− q) (1− 2q)
.
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Proof. From Lemma 2.5, Hölder’s inequality and the harmonically convexity of |f ′|q on
[a, b],we have,

∣∣∣∣∣∣
f(a) + f(b)

2
− ab

b− a

b∫

a

f(x)

x2
dx

∣∣∣∣∣∣

≤ ab (b− a)
2




1∫

0

|1− 2t|p dt




1
p

×




1∫

0

1

(tb+ (1− t)a)2q
∣∣∣∣f
′
(

ab

tb+ (1− t)a

)∣∣∣∣
q

dt




1
q

≤ ab (b− a)
2

(
1

p+ 1

) 1
p

×




1∫

0

t |f ′ (a)|q + (1− t) |f ′ (b)|q

(tb+ (1− t)a)2q
dt




1
q

,

where an easy calculation gives
1∫

0

t

(tb+ (1− t)a)2q
dt(2.7)

=

[
a2−2q + b1−2q [(b− a) (1− 2q)− a]

]

2 (b− a)2 (1− q) (1− 2q)

and
1∫

0

1− t
(tb+ (1− t)a)2q

dt(2.8)

=

[
b2−2q − a1−2q [(b− a) (1− 2q) + b]

]

2 (b− a)2 (1− q) (1− 2q)
.

Substituting equations (2.7) and (2.8) into the above inequality results in the inequality
(2.6), which completes the proof.

3. Some applications for special means
Let us recall the following special means of two nonnegative number a, b with b > a :

(1) The arithmetic mean

A = A (a, b) :=
a+ b

2
.

(2) The geometric mean

G = G (a, b) :=
√
ab.

(3) The harmonic mean

H = H (a, b) :=
2ab

a+ b
.
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(4) The Logarithmic mean

L = L (a, b) :=
b− a

ln b− ln a
.

(5) The p-Logarithmic mean

Lp = Lp (a, b) :=

(
bp+1 − ap+1

(p+ 1)(b− a)

) 1
p

, p ∈ R\ {−1, 0} .

(6) the Identric mean

I = I (a, b) =
1

e

(
bb

aa

) 1
b−a

.

These means are often used in numerical approximation and in other areas. However,
the following simple relationships are known in the literature:

H ≤ G ≤ L ≤ I ≤ A.

It is also known that Lp is monotonically increasing over p ∈ R, denoting L0 = I and
L−1 = L.

3.1. Proposition. Let 0 < a < b. Then we have the following inequality

H ≤ G2

L
≤ A.

Proof. The assertion follows from the inequality (2.2) in Theorem 2.4, for f : (0,∞) →
R, f(x) = x.

3.2. Proposition. Let 0 < a < b. Then we have the following inequality

H2 ≤ G2 ≤ A(a2, b2).

Proof. The assertion follows from the inequality (2.2) in Theorem 2.4, for f : (0,∞) →
R, f(x) = x2.

3.3. Proposition. Let 0 < a < b and p ∈ (−1,∞) \ {0} . Then we have the following
inequality

Hp+2 ≤ G2.Lp
p ≤ A(ap+2, bp+2).

Proof. The assertion follows from the inequality (2.2) in Theorem 2.4, for f : (0,∞) →
R, f(x) = xp+2, p (−1,∞) \ {0} .

3.4. Proposition. Let 0 < a < b. Then we have the following inequality

H2 lnH ≤ G2 ln I ≤ A
(
a2 ln a, b2 ln b

)
.

Proof. The assertion follows from the inequality (2.2) in Theorem 2.4, for f : (0,∞) →
R, f(x) = x2 lnx.
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1. Introduction
By the well-known Wedderburn-Artin Theorem [4], any finite dimensional semisimple

algebra A over a field K is isomorphic to a direct sum of finite dimensional full matrix
rings over suitable division rings. We shall consider the direct sum of finite dimensional
full matrix rings over a field K. All such finite dimensional semisimple algebras arise as
finite dimensional Leavitt path algebras as studied in [2]. The Leavitt path algebras are
introduced independently by Abrams-Aranda Pino in [1] and by Ara-Moreno-Pardo in
[3] via different approaches.

In general, the Leavitt path algebra LK(E1) can be isomorphic to the Leavitt path
algebra LK(E2) for non-isomorphic graphs E1 and E2. In this paper, we introduce a
class of specific graphs which we call the class of truncated trees, denoted by T, and
prove that for any finite acyclic graph E there exists a unique element F in T such that
LK(E) is isomorphic to LK(F ). Furthermore, for any two acyclic graphs E1 and E2 and
their corresponding truncated trees F1 and F2 we have

LK(E1) ∼= LK(E2) if and only if F1
∼= F2.

For a given finite dimensional Leavitt path algebra A =
s⊕

i=1

Mni(K) with 2 ≤ n1 ≤
n2 ≤ . . . ≤ ns = N, the number s is the number of minimal ideals of A and N2 is the
maximum of the dimensions of the minimal ideals. Therefore, the integer s + N − 1 is
an algebraic invariant of A which we denote by κ(A).

Then, we prove that the number of isomorphism classes of finite dimensional Leavitt
path algebras A, with the invariant κ(A) > 1, having no ideals isomorphic to K is equal
to the number of distinct truncated trees with κ(A) vertices. The number of distinct
truncated trees with m vertices is computed in Proposition 3.4.

We also compute the best upper and lower bounds of the K-dimension of possible
trees on m vertices, as a function of m and the number of sinks.

In the last section, we calculated the number of isomorphism classes of Leavitt path
algebras of line graphs with m vertices as a function of m.

2. Preliminaries
We start by recalling the definitions of a path algebra and a Leavitt path algebra. For

a more detailed discussion see [1]. A directed graph E = (E0, E1, r, s) consists of two
countable sets E0, E1 and functions r, s : E1 → E0. The elements E0 and E1 are called
vertices and edges, respectively. For each e ∈ E0, s(e) is the source of e and r(e) is the
range of e. If s(e) = v and r(e) = w, then v is said to emit e and w is said to receive e.
A vertex which does not receive any edges is called a source, and a vertex which emits
no edges is called a sink. An isolated vertex is both a sink and a source. A graph is
row-finite if s−1(v) is a finite set for each vertex v. A row-finite graph is finite if E0 is a
finite set.

A path in a graph E is a sequence of edges µ = e1 . . . en such that r(ei) = s(ei+1)
for i = 1, . . . , n− 1. The source of µ and the range of µ are defined as s(µ) = s(e1) and
r(µ) = r(en) respectively. The number of edges in a path µ is called the length of µ,
denoted by l(µ). If s(µ) = r(µ) and s(ei) 6= s(ej) for every i 6= j, then µ is called a cycle.
A graph E is called acyclic if E does not have any cycles.

The total-degree of the vertex v is the number of edges that either have v as its source
or as its range, that is, totdeg(v) =

∣∣s−1(v) ∪ r−1(v)
∣∣ . A finite graph E is a line graph if

it is connected, acyclic and totdeg(v) ≤ 2 for every v ∈ E0. A line graph E is called an
m-line graph if E has m vertices.
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For n ≥ 2, define En to be the set of paths of length n, and E∗ =
⋃

n≥0

En the set of

all paths. Given a vertex v in a graph, the number of all paths ending at v is denoted by
n(v).

The path K-algebra over E, KE, is defined as the free K-algebra K[E0 ∪ E1] with
the relations:

(1) vivj = δijvi for every vi, vj ∈ E0,
(2) ei = eir(ei) = s(ei)ei for every ei ∈ E1.

Given a graph E, define the extended graph of E as the new graph Ê = (E0, E1 ∪
(E1)∗, r′, s′) where (E1)∗ = {e∗i | ei ∈ E1} is a set with the same cardinality as E and
disjoint from E so that the map assigning e* to e is a one-to-one correspondence; and
the functions r′ and s′ are defined as

r′|E1 = r, s′|E1 = s, r′(e∗i ) = s(ei) and s′(e∗i ) = r(ei).

The Leavitt path algebra of E, LK(E), with coefficients in K is defined as the path
algebra over the extended graph Ê, which satisfies the additional relations:
(CK1) e∗i ej = δijr(ej) for every ej ∈ E1 and e∗i ∈ (E1)∗,
(CK2) vi =

∑

{ej∈E1 | s(ej)=vi}
eje
∗
j for every vi ∈ E0 which is not a sink, and emits only

finitely many edges.
The conditions (CK1) and (CK2) are called the Cuntz-Krieger relations. Note that

the condition of row-finiteness is needed in order to define the equation (CK2).
Finite dimensional Leavitt path algebras are studied in [2] by Abrams, Aranda Pino

and Siles Molina. The authors characterize the structure theorems for finite dimensional
Leavitt path algebras. Their results are summarized in the following proposition:

2.1. Proposition. (1) The Leavitt path algebra LK(E) is a finite-dimensional K-
algebra if and only if E is a finite and acyclic graph.

(2) If A =
s⊕

i=1

Mni(K) , then A ∼= LK(E) for a graph E having s connected compo-

nents each of which is an oriented line graph with ni vertices,
i = 1, 2, · · · , s.

(3) A finite dimensional K-algebra A arises as a LK(E) for a graph E if and only

if A =
s⊕

i=1

Mni(K).

(4) If A =
s⊕

i=1

Mni(K) and A ∼= LK(E) for a finite, acyclic graph E, then the number

of sinks of E is equal to s, and each sink vi (i = 1, 2, · · · , s) has n(vi) = ni with
a suitable indexing of the sinks.

3. Truncated Trees
For a finite dimensional Leavitt path algebra LK(E) of a graph E, we construct a

distinguished graph F having the Leavitt path algebra isomorphic to LK(E) as follows:

3.1. Theorem. Let E be a finite, acyclic graph with no isolated vertices. Let
s = |S(E)| where S(E) is the set of sinks of E and N = max{n(v) | v ∈ S(E)}. Then
there exists a unique (up to isomorphism) tree F with exactly one source and s+N − 1
vertices such that LK(E) ∼= LK(F ).

Proof. Let the sinks v1, v2, . . . , vs of E be indexed such that

2 ≤ n(v1) ≤ n(v2) ≤ . . . ≤ n(vs) = N.
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Define a graph F = (F 0, F 1, r, s) as follows:

F 0 = {u1, u2, . . . , uN , w1, w2, . . . ws−1}
F 1 = {e1, e2, . . . , eN−1, f1, f2, . . . , fs−1}

s(ei) = ui and r(ei) = ui+1 i = 1, . . . , N − 1

s(fi) = un(vi)−1 and r(fi) = wi i = 1, . . . , s− 1.

u1 u2 un(v1)−1 un(v1) un(vs−1)−1 un(vs−1) uN−1 uN

w1 ws−1

f1 fs−1

e1 en(v1)−1 en(vs−1)−1 eN−1· · · · · · · · ·

Clearly, F is a directed tree with unique source u1 and s+N − 1 vertices. The graph
F has exactly s sinks, namely uN , w1, w2, . . . ws−1 with n(uN ) = N , n(wi) = n(vi),
i = 1, . . . , s− 1. Therefore, LK(E) ∼= LK(F ) by Proposition 2.1.

For the uniqueness part, take a tree T with exactly one source and
s+N−1 vertices such that LK(E) ∼= LK(T ). Now N = max{n(v) | v ∈ S(E)} is equal to
the square root of the maximum of the K-dimensions of the minimal ideals of LK(E) and
also of LK(T ). So there exists a sink v in T with |{µi ∈ T ∗ | r(µi) = v}| = N. Since, any
vertex in T is connected to the unique source by a uniquely determined path, the unique
path joining v to the source must contain exactly N vertices, say a1, ..., aN−1, v where a1
is the unique source and the length of the path joining ak to a1 being equal to k−1 for any

k = 1, 2, ..., N − 1. As LK(E) =
s⊕

i=1

Mni(K) with s summands, all the remaining s − 1

vertices, say b1, ..., bs−1, must be sinks by Proposition 2.1(4). For any vertex a different
from the unique source, clearly n(a) > 1. Also, there exists an edge gi with r(gi) = bi for
each i = 1, . . . , s − 1. Since s(gi) is not a sink, it follows that s(gi) ∈ {a1, a2, ..., aN−1},
more precisely s(gi) = an(bi)−1 for i = 1, 2, ..., s− 1. Thus T is isomorphic to F . �

We name the graph F constructed in Theorem 3.1 as the truncated tree associated
with E.

3.2. Proposition. With the above definition of F , there is no tree T with
|T 0| < |F 0| such that LK(T ) ∼= LK(F ).

Proof. Notice that since T is a tree, any vertex contributing to a sink represents a unique
path ending at that sink.

Assume on the contrary there exists a tree T with n vertices and LK(T ) ∼= A =
s⊕

i=1

Mni(K) such that n < s+N − 1. Since N is the maximum of ni’s there exists a sink

v with n(v) = N . But in T the number n− s of vertices which are not sinks is less than
N − 1. Hence the maximum contribution to any sink can be at most n− s+ 1 which is
strictly less than N . This is the desired contradiction. �

Remark that the above proposition does not state that it is impossible to find a graph
G with smaller number of vertices having LK(G) isomorphic to LK(E). The next example
illustrates this point.

3.3. Example. Consider the graphs G and F .

Both LK(G) ∼=M3(K) ∼= LK(F ) and |G0| = 2 where as |F 0| = 3.
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G F

Given any graphs G1 and G2, LK(G1) ∼= LK(G2) does not necessarily imply G1
∼= G2.

However, for truncated trees F1, F2 we have F1
∼= F2 if and only if LK(F1) ∼= LK(F2). So

there is a one-to-one correspondence between the Leavitt path algebras and the truncated
trees.

Consider a finite dimensional Leavitt path algebra A =
s⊕

i=1

Mni(K) with 2 ≤ n1 ≤
n2 ≤ . . . ≤ ns = N . Here, the number s is the number of minimal ideals of A and N2 is
the maximum of the dimensions of the minimal ideals. Therefore, the integer s+N − 1
is an algebraic invariant of A which is denoted by κ(A). Notice that the number of
isomorphism classes of finite dimensional Leavitt path algebras A, with the invariant
κ(A) > 1, having no ideals isomorphic to K is equal to the number of distinct truncated
trees with κ(A) vertices by the previous paragraph. The next proposition computes this
number.

3.4. Proposition. The number of distinct truncated trees with m vertices is 2m−2.

Proof. In a truncated tree, n(v1) 6= n(v2) for any two distinct non-sinks v1 and v2. For
every sink v, there is a unique non-sink w so that there exists an edge e with s(e) = w
and r(e) = v. Namely the non-sink w is with n(w) = n(v)−1. This w is denoted by b(v).

Now, define d(u) = |{v : n(v) ≤ n(u)}| for any u ∈ E0. Clearly, d(u) is equal to the
sum of n(u) and the number of sinks v with n(b(v)) < n(u) for any u ∈ E0. Assign
an m-tuple α(E) = (α1, α2, ..., αm) ∈ {0, 1}m to a truncated tree E with m vertices by
letting αj = 1 if and only if j = d(v) for some vertex v which is not a sink. Clearly, there
is just one vertex v with n(v) = 1, namely the unique source of E and that vertex is not
a sink, so α1 = 1. Since there cannot be any non-sink v with d(v) = m, it follows that
αm = 0.

Conversely, for β = (β1, β2, ..., βm) ∈ {0, 1}m with β1 = 1 and βm = 0 there exists
a unique truncated tree E with m vertices such that α(E) = β : If βi = 1, then
assign a non-sink v to E with n(v) = |{k : 1 ≤ k < i and βk = 1}|. If βi = 0 and j =
|{k : 1 ≤ k < i and βk = 1}| then construct a sink which is joined to the non-sink v with
n(v) = j. Clearly, the graph E is a truncated tree with m vertices and α(E) = β.

Hence the number of distinct truncated trees with m vertices is equal to 2m−2 which is
the number of all elements of {0, 1}m with the first component 1 and the last component
0. �

Hence, we have the following corollary.

3.5. Corollary. Given n ≥ 2, the number of isomorphism classes of finite dimensional
Leavitt path algebras A with κ(A) = n and which do not have any ideals isomorphic to
K is 2n−2.

947



4. Bounds on the K-Dimension of finite dimensional Leavitt Path
Algebras
For a tree F withm vertices, theK-dimension of LK(F ) is not uniquely determined by

the number of vertices only. However, we can compute the maximum and the minimum
K-dimensions of LK(F ) where F ranges over all possible trees with m vertices.

4.1. Lemma. The maximum K-dimension of LK(E) where E ranges over all possible
trees with m vertices and s sinks is attained at a tree in which n(v) = m− s+1 for each
sink v. In this case, the value of the dimension is s(m− s+ 1)2.

Proof. Assume E is a tree with m vertices. Then LK(E) ∼=
s⊕

i=1

Mni(K), by Proposition

2.1 (3) where s is the number of sinks in E and ni ≤ m− s+ 1 for all i = 1, . . . s. Hence

dimLK(E) =

s∑

i=1

n2
i ≤ s(m− s+ 1)2.

Notice that there exists a tree E as sketched below

•

•

• // • // • • // •

AA

GG

��

...

•

with m vertices and s sinks such that dimLK(E) = s(m− s+ 1)2. �

4.2. Theorem. The maximum K-dimension of LK(E) where E ranges over all possible
trees with m vertices is given by f(m) where

f(m) =





m(2m+ 3)2

27
if m ≡ 0(mod 3)

1

27
(m+ 2) (2m+ 1)2 if m ≡ 1(mod 3)

4

27
(m+ 1)3 if m ≡ 2(mod 3)

Proof. Assume E is a tree with m vertices. Then LK(E) ∼=
s⊕

i=1

Mni where s is the

number of sinks in E. Now, to find the maximum dimension of LK(E), determine the
maximum value of the function f(s) = s(m− s+ 1)2 for s = 1, 2, . . . ,m− 1. Extending
the domain of f(s) to real numbers 1 ≤ s ≤ m − 1 f becomes a continuous function,
hence its maximum value can be computed.

f(s) = s(m− s+ 1)2 ⇒ d

ds

(
s(m− s+ 1)2

)
= (m− 3s+ 1) (m− s+ 1)
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Then s =
m+ 1

3
is the only critical point in the interval [1,m− 1] and since

d2f

ds2
(
m+ 1

3
) <

0, it is a local maximum. In particular f is increasing on the interval
[
1,
m+ 1

3

]
and

decreasing on
[
m+ 1

3
,m− 1

]
. There are three cases:

Case 1: m ≡ 2 (mod 3). In this case s =
m+ 1

3
is an integer and maximum

K-dimension of LK(E) is f
(
m+ 1

3

)
=

4

27
(m+ 1)3 and ni =

2(m+ 1)

3
, for each i =

1, 2, . . . , s.

Case 2: m ≡ 0 (mod 3). Then:
m

3
= t < t+

1

3
= s < t+ 1 and

f
(m
3

)
=

(2m+ 3)2m

27
= α1 and f

(m
3

+ 1
)
=

4m2(m+ 3)

27
= α2.

Note that, α1 > α2. So α1 is maximum K -dimension of LK(E) and ni =
2

3
m + 1, for

each i = 1, 2, . . . , s.

Case 3: m ≡ 1 (mod 3). Then
m− 1

3
= t < t+

2

3
= s < t+ 1 and

f

(
m− 1

3

)
=

4

27
(m+ 2)2 (m− 1) = β1

and

f

(
m+ 2

3

)
=

1

27
(2m+ 1)2 (m+ 2) = β2.

In this case β2 > β1 and so β2 gives the maximum K-dimension of LK(E) and ni =
2m+ 1

3
, for each i = 1, 2, . . . , s. �

4.3. Theorem. The minimum K-dimension of LK(E) where E ranges over all possible
trees with m vertices and s sinks is equal to r(q + 2)2 + (s − r)(q + 1)2, where m − 1 =
qs+ r, 0 ≤ r < s.

Proof. We call a graph a bunch tree if it is obtained by identifying the unique sources of
the finitely many disjoint oriented finite line graphs as seen in the figure.

· · ·

Let E(m, s) be the set of all bunch trees with m vertices and s sinks. Every element
of E(m, s) can be uniquely represented by an s -tuple (t1, t2, ..., ts) where each ti is the
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number of vertices different from the source contributing to the ith sink,
with 1 ≤ t1 ≤ t2 ≤ ... ≤ ts and t1 + t2 + ...+ ts = m− 1.

Let E ∈ E(m, s) with ts − t1 ≤ 1. This E is represented by the s-tuple
(q, . . . , q, q + 1, . . . , q + 1) where m− 1 = sq + r, 0 ≤ r < s.

Now, claim that the dimension of E is the minimum of the set

{dimLK(F ) : F tree with s sinks and m vertices} .
If we represent U ∈ E(m, s) by the s-tuple (u1, u2, ..., us) then E 6= U implies that
us − u1 ≥ 2.

Consider the s-tuple (t1, t2, ..., ts) where (t1, t2, ..., ts) is obtained from
(u1 + 1, u2, ..., us−1, us − 1) by reordering the components in increasing order.

In this case, the dimension dU of U is

dU = (u1 + 1)2 + . . .+ (us + 1)2.

Similarly, the dimension dT of the bunch graph T represented by the s-tuple (t1, t2, ..., ts),
is

dT = (t1 + 1)2 + . . .+ (ts + 1)2 = (u1 + 2)2 + . . .+ (us−1 + 1)2 + u2
s.

Hence

dU − dT = 2(us − u1)− 2 > 0.

Repeating this process sufficiently many times, the process has to end at the exceptional
bunch tree E showing that its dimension is the smallest among the dimensions of all
elements of E(m, s).

Now let F be an arbitrary tree with m vertices and s sinks. As above assign to F the
s-tuple (n1, n2, ..., ns) with ni = n(vi)− 1 where the sinks vi, i = 1, 2, . . . , s are indexed
in such a way that ni ≤ ni+1, i = 1, . . . , s− 1. Observe that n1 + n2 + · · ·+ ns ≥ m− 1.
Let β =

∑s
i=1 ni − (m − 1). Since s ≤ m − 1, β ≤ ∑s

i=1(ni − 1). Either n1 − 1 ≥ β or
there exists a unique k ∈ {2, . . . , s} such that

∑k−1
i=1 (ni − 1) < β ≤ ∑k

i=1(ni − 1). If
n1 − 1 ≥ β, then let

mi =

{
n1 − β , i = 1
ni , i > 1

.

Otherwise, let

mi =





1 , i ≤ k − 1

nk −
(
β −∑k−1

i=1 (ni − 1)
)

, i = k

ni , i ≥ k + 1

.

In both cases, the s-tuple (m1,m2, . . . ,ms) that satisfies 1 ≤ mi ≤ ni,
m1 ≤ m2 ≤ · · · ≤ ms and m1 + m2 + · · · + ms = m − 1 is obtained. So, there ex-
ists a bunch tree M namely the one corresponding uniquely to (m1,m2, . . . ,ms) which
has dimension dM ≤ dF . This implies that dF ≥ dE .

Hence the result follows. �

4.4. Lemma. The minimum K-dimension of LK(E) where E ranges over all possible
trees with m vertices occurs when the number of sinks is m− 1 and is equal to 4(m− 1).

Proof. By the previous theorem observe that

dimLK(E) ≥ r(q + 2)2 + (s− r)(q + 1)2

where m− 1 = qs+ r, 0 ≤ r < s. Then

r(q + 2)2 + (s− r)(q + 1)2 = (m− 1)(q + 2) + qr + r + s.
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Thus

(m−1)(q+2)+qr+r+s−4(m−1) = (m−1)(q−2)+qr+r+s ≥ 0 if q ≥ 2.

If q = 1, then −(m− 1)+ 2r+ s = −(m− 1)+ r+(m− 1) = r ≥ 0. Hence dimLK(E) ≥
4(m− 1).

Notice that there exists a truncated tree E with m vertices and
dimLK(E) = 4(m− 1) as sketched below :

•v2 •v3 · · · •vm−1 •vm

•v1

55hh aa ;;

�

5. Line Graphs
In [2], the Proposition 5.7 shows that a semisimple finite dimensional algebra A =

s⊕
i=1

Mni(K) over the field K can be described as a Leavitt path algebra LK(E) defined

by a line graph E, if and only if A has no ideals of K-dimension 1 and the number of
minimal ideals of A of K-dimension 22 is at most 2. On the other hand, if A ∼= LK(E)
for some m-line graph E then m− 1 =

∑s
i=1(ni− 1), that is, m is an algebraic invariant

of A.
Therefore the following proposition answers a reasonable question.

5.1. Proposition. The number Am of isomorphism classes of Leavitt path algebras de-
fined by line graphs having exactly m vertices is

Am = P (m− 1)− P (m− 4)

where P (t) is the number of partitions of the natural number t.

Proof. Any m-line graph has m − 1 edges. In a line graph, for any edge e there exists
a unique sink v so that there exists a path from s(e) to v. In this case we say that
e is directed towards v. The number of edges directed towards v is clearly equal to
n(v) − 1. Let E and F be two m -line graphs. Then LK(E) ∼= LK(F ) if and only if
there exists a bijection φ : S(E) → S(F ) such that for each v in S(E), n(v) = n(φ(v)).
Therefore the number of isomorphism classes of Leavitt path algebras determined by
m-line graphs is the number of partitions of m − 1 edges in which the number of parts
having exactly one edge is at most two. Since the number of partitions of k objects
having at least three parts each of which containing exactly one element is P (k− 3), the
result Am = P (m− 1)− P (m− 4) follows. �
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in G and H ∩ T ≤ HτG, where HτG is the subgroup generated by all
those subgroups of H which are τ -quasinormal in G. In this paper,
we find a condition under which every chief factor of G below a normal
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1. Introduction
All groups considered in the paper are finite. The notations and terminology in this

paper are standard, as in [4] and [6]. G always denotes a finite group, π(G) denotes the
set of all prime dividing |G| and F ∗(G) is the generalized Fitting subgroup of G, i.e., the
product of all normal quasinilpotent subgroups of G.

Normal subgroup plays an important role in the study of the structure of groups.
Many authors are interested to extend the concept of normal subgroup. For example, a
subgroup H of G is said to be S-quasinormal [7] in G if H permutes with every Sylow
subgroup of G. As a generalization of S-quasinormality, a subgroup H of G is said to
be τ -quasinormal [11] in G if H permutes with every Sylow subgroup Q of G such that
(|H|, |Q|) = 1 and (|H|, |QG|) 6= 1. On the other hand, Wang [17] extended normality as
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follows: a subgroup H of G is said to be c-normal in G if there exists a normal subgroup
K of G such that HK = G and H∩K ≤ HG, where HG is the maximal normal subgroup
of G contained in H. In the literature, many people have studied the influence of the
τ -quasinormality and c-normality on the structure of finite groups and obtained many
interesting results (see [2, 5, 8, 11, 12, 17, 19]). As a development, we now introduce a
new concept:

1.1. Definition. A subgroup H of a group G is said to be partially τ -quasinormal in
G if there exists a normal subgroup T of G such that HT is S-quasinormal in G and
H ∩ T ≤ HτG, where HτG is the subgroup generated by all those subgroups of H which
are τ -quasinormal in G.

Clearly, partially τ -quasinormal subgroup covers both the concepts of τ -quasinormal
subgroup and c-normal subgroup. However, the following examples show that the con-
verse is not true.

1.2. Example. Let G = S4 be the symmetric group of degree 4.
(1) Let H be a Sylow 3-subgroup of G and N the normal abelian 2-subgroup of G

of order 4. Then HN = A4 E G and H ∩ N=1. Hence H is a partially τ -quasinormal
subgroup of G. But, obviously, H is not c-normal in G.

(2) Let H=〈(14)〉. Obviously, HA4=G and H ∩ A4=1. Hence H is partially τ -
quasinormal in G. But, obviously, H is not τ -quasinormal in G.

A normal subgroup E of a group G is said to be hypercyclically embedded in G if
every chief factor of G below E is cyclic. The product of all normal hypercyclically
embedded subgroups of G is denoted by ZU (G). In [15] and [16], Skiba gave some char-
acterizations of normal hypercyclically embedded subgroups related to S-quasinormal
subgroups. The main purpose of this paper is to give a new characterization by using
partially τ -quasinormal property of maximal subgroups of some Sylow subgroups. We
obtain the following result.

Main Theorem. Let E be a normal subgroup of G. Suppose that there exists a normal
subgroup X of G such that F ∗(E) ≤ X ≤ E and X satisfies the following properties: for
every non-cyclic Sylow p-subgroup P of X, every maximal subgroup of P not having a
supersoluble supplement in G is partially τ -quasinormal in G. Then E is hypercyclically
embedded in G.

The following theorems are the main stages in the proof of Main Theorem.

1.3. Theorem. Let P be a Sylow p-subgroup of a group G, where p is a prime divisor
of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P not having a p-nilpotent
supplement in G is partially τ -quasinormal in G, then G is soluble.

1.4. Theorem. Let P be a Sylow p-subgroup of a group G, where p is a prime divisor
of |G| with (|G|, p− 1) = 1. Then G is p-nilpotent if and only if every maximal subgroup
of P not having a p-nilpotent supplement in G is partially τ -quasinormal in G.

1.5. Theorem. Let E be a normal subgroup in G and let P be a Sylow p-subgroup of
E, where p is a prime divisor of |E| with (|E|, p − 1) = 1. Suppose that every maximal
subgroup of P not having a p-supersoluble supplement in G is partially τ -quasinormal in
G. Then each chief factor of G between E and Op′(E) is cyclic.

1.6. Theorem. Let E be a normal subgroup of a group G. Suppose that for each
p ∈ π(E), every maximal subgroup of non-cyclic Sylow p-subgroup P of E not having a
p-supersoluble supplement in G is partially τ -quasinormal in G. Then every chief factor
of G below E is cyclic.
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2. Preliminaries
2.1. Lemma ( [3] and [7]). Suppose that H is a subgroup of G and H is S-quasinormal
in G. Then

(1) If H ≤ K ≤ G, then H is S-quasinormal in K.
(2) If N is a normal subgroup of G, then HN is S-quasinormal in G and HN/N is

S-quasinormal in G/N .
(3) If K ≤ G, then H ∩K is S-quasinormal in K.
(4) H is subnormal in G.
(5) If K ≤ G and K is S-quasinormal in G, then H ∩K is S-quasinormal in G.

2.2. Lemma ([11, Lemmas 2.2 and 2.3]). Let G be a group and H ≤ K ≤ G.
(1) If H is τ -quasinormal in G, then H is τ -quasinormal in K.
(2) Suppose that H is normal in G and π(K/H) = π(K). If K is τ -quasinormal in G,

then K/H is τ -quasinormal in G/H.
(3) Suppose that H is normal in G. Then EH/H is τ -quasinormal in G/H for every

τ -quasinormal subgroup E in G satisfying (|H|, |E|) = 1.
(4) If H is τ -quasinormal in G and H ≤ Op(G) for some prime p, then H is S-

quasinormal in G.
(5) HτG ≤ HτK .
(6) Suppose thatK is a p-group and H is normal in G. ThenKτG/H ≤ (K/H)τ(G/H).
(7) Suppose that H is normal in G. Then EτGH/H ≤ (EH/H)τ(G/H) for every

p-subgroup E of G satisfying (|H|, |E|) = 1.

2.3. Lemma. Let G be a group and H ≤ G. Then
(1) If H is partially τ -quasinormal in G and H ≤ K ≤ G, then H is partially τ -

quasinormal in K.
(2) Suppose that N E G and N ≤ H. If H is a p-group and H is partially τ -

quasinormal in G, then H/N is partially τ -quasinormal in G/N .
(3) Suppose that H is a p-subgroup of G and N is a normal p′-subgroup of G. If H

is partially τ -quasinormal in G, then HN/N is partially τ -quasinormal in G/N .
(4) If H is partially τ -quasinormal in G and H ≤ K E G, then there exists T E G

such that HT is S-quasinormal in G, H ∩ T ≤ HτG and HT ≤ K.

Proof. (1) Let N be a normal subgroup of G such that HN is S-quasinormal in G and
H ∩ N ≤ HτG. Then K ∩ N E K, H(K ∩ N) = HN ∩ K is S-quasinormal in K by
Lemma 2.1(3) and H ∩ (K ∩N) = H ∩N ≤ HτG ≤ HτK by Lemma 2.2(5). Hence H is
partially τ -quasinormal in K.

(2) Suppose that H is partially τ -quasinormal in G. Then there exists K E G such
that HK is S-quasinormal in G and H ∩K ≤ HτG. This implies that KN/N E G/N
and (H/N)(KN/N) = HK/N is S-quasinormal in G/N by Lemma 2.1(2). In view of
Lemma 2.2(6), H/N ∩KN/N = (H ∩K)N/N ≤ HτGN/N = HτG/N ≤ (H/N)τ(G/N).
Thus H/N is partially τ -quasinormal in G/N .

(3) Suppose that H is partially τ -quasinormal in G. Then there exists K E G
such that HK is S-quasinormal in G and H ∩ K ≤ HτG. Clearly, KN/N E G and
(HN/N)(KN/N) = HKN/N is S-quasinormal in G/N by Lemma 2.1(2). On the
other hand, since (|HN : H|, |HN : N |)=1, HN/N ∩ KN/N = (HN ∩ K)N/N =
(H ∩K)(N ∩K)N/N = (H ∩K)N/N ≤ HτGN/N . In view of Lemma 2.2(7), we have
HτGN/N ≤ (HN/N)τ(G/N). Hence HN/N is partially τ -quasinormal in G/N .

(4) Suppose that H is partially τ -quasinormal in G. Then there exists N E G such
that HN is S-quasinormal in G and H ∩ N ≤ HτG. Let T = N ∩ K. Then T E G,
HT = H(N ∩ K) = HN ∩ K is S-quasinormal in G by Lemma 2.1(5), HT ≤ K and
H ∩ T = H ∩N ∩K = H ∩N ≤ HτG. �

955



2.4. Lemma. Let G be a group and p a prime dividing |G| with (|G|, p− 1) = 1.
(1) If N is normal in G of order p, then N lies in Z(G).
(2) If G has cyclic Sylow p-subgroups, then G is p-nilpotent.
(3) If M ≤ G and |G : M | = p, then M �G.
(4) If G is p-supersoluble, then G is p-nilpotent.

Proof. (1), (2) and (3) can be found in [18, Theorem 2.8]. Now we only prove (4). Let
A/B be an arbitrary chief factor of G. If G is p-supersolvable, then A/B is either a
cyclic group with order p or a p′-group. If |A/B| = p, then |Aut(A/B)| = p − 1. Since
G/CG(A/B) is isomorphic to a subgroup of Aut((A/B), the order of G/CG(A/B) must
divide (|G|, p − 1) = 1, which shows that G = CG(A/B). Therefore, we have G is
p-nilpotent. �

2.5. Lemma ([10, Lemma 2.12]). Let P be a Sylow p-subgroup of a group G, where p
is a prime divisor of |G| with (|G|, p − 1) = 1. If every maximal subgroup of P has a
p-nilpotent supplement in G, then G is p-nilpotent.

2.6. Lemma ([13, Theorem A]). If P is an S-quasinormal p-subgroup of a group G for
some prime p, then NG(P ) ≥ Op(G).

2.7. Lemma ([6, VI, 4.10]). Assume that A and B are two subgroups of a group G and
G 6= AB. If ABg = BgA holds for any g ∈ G, then either A or B is contained in a
nontrivial normal subgroup of G.

2.8. Lemma ([20, Chap.1, Theorem 7.19]). Let H be a normal subgroup of G. Then
H ≤ ZU (G) if and only if H/Φ(H) ≤ ZU (G/Φ(H)).

2.9. Lemma ([14, Lemma 2.11]). Let N be an elementary abelian normal subgroup of a
group G. Assume that N has a subgroup D such that 1 < |D| < |N | and every subgroup
H of N satisfying |H| = |D| is S-quasinormal in G. Then some maximal subgroup of N
is normal in G.

2.10. Lemma. Let N be a non-identity normal p-subgroup of a group G. If N is
elementary and every maximal subgroup of N is partially τ -quasinormal in G, then some
maximal subgroup of N is normal in G.

Proof. If |N | = p, then it is clear. Let L be a non-identity minimal normal p-subgroup
of G contained in N . First we assume that N 6= L. By Lemma 2.3(2), the hypothesis
still holds on G/L. Then by induction some maximal subgroup M/L of N/L is normal
in G/L. Clearly, M is a maximal subgroup of N and M is normal in G. Consequently
the lemma follows. Now suppose that L = N . Let M be any maximal subgroup of N .
Then by the hypothesis, there exists T E G such that MT is S-quasinormal in G and
M ∩ T ≤MτG. Suppose that M 6= MτG. Then MT 6= M and T 6= 1. If N ≤MT , then
N = N ∩MT = M(N ∩ T ). Hence N ≤ T , which implies that M = M ∩ T = MτG, a
contradiction. If N * MT , then M = M(T ∩N) = MT ∩N is S-quasinormal in G by
Lemma 2.1(5), a contradiction again. Hence M = MτG. In view of Lemma 2.2(4), M is
S-quasinormal in G. By Lemma 2.9, some maximal subgroup of N is normal in G. Thus
the lemma holds. �

2.11. Lemma ([15, Theorem B]). Let F be any formation and G a group. If H � G
and F ∗(H) ≤ ZF (G), then H ≤ ZF (G).
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3. Proofs of Theorems
Proof of Theorem 1.3. Assume that this theorem is false and let G be a counterexample
with minimal order. We proceed the proof via the following steps.

(1) Op(G) = 1.
Assume that L = Op(G) 6= 1. Clearly, P/L is a Sylow p-subgroup of G/L. Let M/L

be a maximal subgroup of P/L. Then M is a maximal subgroup of P . If M has a
p-nilpotent supplement D in G, then M/L has a p-nilpotent supplement DL/L in G/L.
If M is partially τ -quasinormal in G, then M/L is partially τ -quasinormal in G/L by
Lemma 2.3(2). Hence G/L satisfies the hypothesis of the theorem. The minimal choice
of G implies that G/L is soluble. Consequently, G is soluble. This contradiction shows
that step (1) holds.

(2) Op′(G) = 1.
Assume that R = Op′(G) 6= 1. Then, obviously, PR/R is a Sylow p-subgroup of

G/R. Suppose that M/R is a maximal subgroup of PR/R. Then there exists a maximal
subgroup P1 of P such that M = P1R. If P1 has a p-nilpotent supplement D in G, then
M/R has a p-nilpotent supplement DR/R in G/R. If P1 is partially τ -quasinormal in G,
then M/R is partially τ -quasinormal in G/R by Lemma 2.3(3). The minimal choice of
G implies that G/R is soluble. By the well known Feit-Thompson’s theorem, we know
that R is soluble. It follows that G is soluble, a contradiction.

(3) P is not cyclic.
If P is cyclic, then G is p-nilpotent by Lemma 2.4, and so G is soluble, a contradiction.
(4) IfN is a minimal normal subgroup of G, thenN is not soluble. Moreover, G = PN .
If N is p-soluble, then Op(N) 6= 1 or Op′(N) 6= 1. Since Op(N) char N � G,

Op(N) ≤ Op(G). Analogously Op′(N) ≤ Op′(G). Hence Op(G) 6= 1 or Op′(G) 6= 1,
which contradicts step (1) or step (2). Therefore N is not soluble. Assume that PN < G.
By Lemma 2.3(1), every maximal subgroup of P not having a p-nilpotent supplement in
PN is partially τ -quasinormal in PN . Thus PN satisfies the hypothesis. By the minimal
choice of G, PN is soluble and so N is soluble. This contradiction shows that G = PN .

(5) G has a unique minimal normal subgroup N .
By step (4), we see that G = PN for every normal subgroup N of G. It follows that

G/N is soluble. Since the class of all soluble groups is closed under subdirect product,
G has a unique minimal normal subgroup, say N .

(6) The final contradiction.
If every maximal subgroup of P has a p-nilpotent supplement in G, then, in view

of Lemma 2.5, G is p-nilpotent and so G is soluble. This contradiction shows that
we may choose a maximal subgroup P1 of P such that P1 is partially τ -quasinormal
in G. Then there exists a normal subgroup T of G such that P1T is S-quasinormal
in G and P1 ∩ T ≤ (P1)τG. If T = 1, then P1 is S-quasinormal in G. In view of
Lemma 2.6, P1 � POp(G) = G. By step (5), P1 = 1 or N ≤ P1. Since N is not
soluble by step (4), we have that P1 = 1. Consequently, P is cyclic, which contra-
dicts step (3). Hence T 6= 1 and N ≤ T . It follows that P1 ∩ N = (P1)τG ∩ N .
For any Sylow q-subgroup Nq of N with q 6= p, Nq is also a Sylow q-subgroup of
G by step (4). From step (2) it is easy to see that (P1)τGNq = Nq(P1)τG. Then
(P1)τGNq∩N = Nq((P1)τG∩N) = Nq(P1∩N), i.e., P1∩N is τ -quasinormal in N . Since
N is a direct product of some isomorphic non-abelian simple groups, we may assume that
N ∼= N1 × · · · × Nk. By Lemma 2.2(1), P1 ∩ N is τ -quasinormal in (P1 ∩ N)N1. Thus
(P1 ∩ N)(N1q)

n1 ∩ N1 = (N1q)
n1(P1 ∩ N ∩ N1) = (N1q)

n1(P1 ∩ N1) for any n1 ∈ N1,
where N1q is a Sylow q-subgroup of N1 with q 6= p. Since (N1q)

n1(P1 ∩ N1) 6= N1, we
have N1 is not simple by Lemma 2.7, a contradiction.
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Proof of Theorem 1.4. If G is p-nilpotent, then G has a normal Hall p′-subgroup Gp′ .
Let P1 be any maximal subgroup of P . Then |G : P1Gp′ | = p. In view of Lemma 2.4(3),
P1Gp′ �G. Obviously, P1 ∩Gp′ = 1. Hence P1 is partially τ -quasinormal in G.

Now we prove the sufficient part. Assume that the assertion is false and let G be a
counterexample with minimal order.

(1) G is soluble.
It follows directly from Theorem 1.3.
(2) G has a unique minimal normal subgroup N such that G/N is p-nilpotent. More-

over, Φ(G) = 1.
Let N be a minimal normal subgroup of G. Since G is solvable by step (1), N is

an elementary abelian subgroup. It is easy to see that G/N satisfies the hypothesis of
our theorem by Lemma 2.3. By the minimal choice of G, G/N is p-nilpotent. Since the
class of all p-nilpotent groups is a saturated formation, N is a unique minimal normal
subgroup of G and Φ(G) = 1.

(3) P is not cyclic.
If P is cyclic, G is p-nilpotent by Lemma 2.4(2), a contradiction.
(4) Op′(G) = 1.
(5) Every maximal subgroup of P has a p-nilpotent supplement in G.
It is clear that N ≤ Op(G). By Φ(G) = 1, we may choose a maximal subgroupM of G

such that G = NM and G/N ∼= M . Let P1 be an arbitrary maximal subgroup of P . We
will show P1 has a p-nilpotent supplement in G. Since N has the p-nilpotent supplement
M in G, we only need to prove N ≤ P1 when P1 is partially τ -quasinormal in G. Let T
be a normal subgroup of G such that P1T is S-quasinormal in G and P1 ∩ T ≤ (P1)τG.
First, we assume that T = 1, i.e., P1 is S-quasinormal in G. In view of Lemma 2.6,
P1 � POp(G) = G. By virtue of Lemma 2.4(2) and step (3), P1 6= 1. Hence N ≤ P1 by
step (2). Now, assume that T 6= 1. Then N ≤ T . It follows that P1 ∩N = (P1)τG ∩N .
For any Sylow q-subgroup Gq of G (p 6= q), (P1)τGGq = Gq(P1)τG in view of step (4).
Then (P1)τG∩N = (P1)τGGq ∩N � (P1)τGGq. Obviously, P1∩N �P . Therefore P1∩N
is normal in G. By the minimality of N , we have P1 ∩N = N or P1 ∩N = 1. If the later
holds, then the order of N is p since P1∩N is a maximal subgroup of N . Consequently, G
is p-nilpotent by step (2) and Lemma 2.4(1). This contradiction shows that P1 ∩N = N
and so N ≤ P1.

(6) The final contradiction.
Since every maximal subgroup of P has a p-nilpotent supplement in G by step (5), we

have G is p-nilpotent by Lemma 2.5, a contradiction.

Proof of Theorem 1.5. Assume that this theorem is false and and consider a counterex-
ample (G,E) for which |G||E| is minimal.

(1) E is p-nilpotent.
Let P1 be a maximal subgroup of P . If P1 has a p-supersolvable supplement T in G,

then P1 has a p-supersolvable supplement T ∩ E in E. Since (|E|, p − 1) = 1, T ∩ E
is also p-nilpotent by Lemma 2.4(4). If P1 is partially τ -quasinormal in G, then P1 is
also partially τ -quasinormal in E by Lemma 2.3(1). Hence every maximal subgroup of
P not having a p-nilpotent supplement in E is partially τ -quasinormal in E. In view of
Theorem 1.4, E is p-nilpotent.

(2) P = E.
By step (1), Op′(E) is the normal Hall p′-subgroup of E. Suppose that Op′(E) 6= 1.

It is easy to see that the hypothesis of the theorem holds for (G/Op′(E), E/Op′(E)).
By induction, every chief factor of G/Op′(E) between E/Op′(E) and 1 is cyclic. Con-
sequently, each chief factor of G between E and Op′(E) is cyclic. This condition shows
that Op′(E) = 1 and so P = E.
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(3) Φ(P ) = 1.
Suppose that Φ(P ) 6= 1. By Lemma 2.3(2), it is easy to see that the hypothesis of

the theorem holds for (G/Φ(P ), P/Φ(P )). By the choice of (G,E), every chief factor of
G/Φ(P ) below P/Φ(P ) is cyclic. In view of Lemma 2.8, every chief factor of G below P
is cyclic, a contradiction.

(4) Every maximal subgroup of P is partially τ -quasinormal in G.
Suppose that there is some maximal subgroup V of P such that V has a p-supersolvable

supplement B in G, then G = PB and P ∩ B 6= 1. Since P ∩ B � B, we may assume
that B has a minimal normal subgroup N contained in P ∩ B. It is clear that |N | = p.
Since P is elementary abelian and G = PB, we have that N is also normal in G. It is
easy to see that the hypothesis is still true for (G/N,P/N). Hence every chief factor of
G/N below P/N is cyclic by virtue of the choice of (G,E). It follows that every chief
factor of G below P is cyclic. This contradiction shows that all maximal subgroups of P
are partially τ -quasinormal in G.

(5) P is not a minimal normal subgroup of G.
Suppose that P is a minimal normal subgroup of G, then some maximal subgroup of

P is normal in G by Lemma 2.10, which contradicts the minimality of P .
(6) If N is a minimal normal subgroup of G contained in P , then P/N ≤ ZU (G/N),

N is the only minimal normal subgroup of G contained in P and |N | > p.
Indeed, by Lemma 2.3(2), the hypothesis holds on (G/N,P/N) for any minimal normal

subgroup N of G contained in P . Hence every chief factor of G/N below P/N is cyclic
by the choice of (G,E) = (G,P ). If |N | = p, every chief factor of G below P is cyclic,
a contradiction. If G has two minimal normal subgroups R and N contained in P ,
then NR/R ≤ P/R and from the G-isomorphism NR/R ∼= N we have |N | = p, a
contradiction. Hence, (6) holds.

(7) The final contradiction.
Let N be a minimal normal subgroup of G contained in P and N1 any maximal

subgroup of N . We show that N1 is S-quasinormal in G. Since P is an elementary
abelian p-group, we may assume that D is a complement of N in P . Let V = N1D.
Obviously, V is a maximal subgroup of P . By step (4), V is partially τ -quasinormal
in G. By Lemma 2.3(4), there exist a normal subgroup T of G such that V T is S-
quasinormal in G, V ∩ T ≤ VτG and V T ≤ P . In view of Lemma 2.2(4), VτG is an
S-quasinormal subgroup of G. If T = P , then V = VτG is S-quasinormal in G and
hence V ∩N = N1D ∩N = N1(D ∩N) = N1 is S-quasinormal in G by Lemma 2.1(5).
If T = 1, then V = V T is S-quasinormal in G. Consequently, we have also N1 is S-
quasinormal in G. Now we assume that 1 < T < P . Hence N ≤ T by step (6). Then,
N1 = V ∩N = VτG ∩N is S-quasinormal in G by virtue of Lemma 2.1(5). Hence some
maximal subgroup of N is normal in G by Lemma 2.9. Consequently, |N | = p. This
contradicts step (6).

Proof of Theorem 1.6. Let q be the smallest prime dividing |E|. In view of step (1) of
the proof of Theorem 1.5, E is q-nilpotent. Let Eq′ be the normal Hall q′-subgroup of E.
If Eq′ = 1, then every chief factor of G below E is cyclic by Theorem 1.5. Hence we may
assume that Eq′ 6= 1. Since Eq′ char E �G, we see that Eq′ �G. By Lemma 2.3(3), the
hypothesis of the theorem holds for (G/Eq′ , E/Eq′). By induction, every chief factor of
G/Eq′ below E/Eq′ is cyclic. On the other hand, (G,Eq′) also satisfies the hypothesis of
the theorem in view of Lemma 2.3(1). By induction again, we have also every chief fac-
tor of G below Eq′ is cyclic. Hence it follows that every chief factor of G below E is cyclic.
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Proof of Main Theorem. Applying Theorem 1.6, X is hypercyclically embedded in G.
Since F ∗(E) ≤ X, we have that F ∗(E) is also hypercyclically embedded in G. By virtue
of Lemma 2.11, E is also hypercyclically embedded in G.

4. Some Applications
4.1. Theorem. Let F be a saturated formation containing U and E a normal subgroup
of a group G such that G/E ∈ F . Suppose that for every non-cyclic Sylow subgroup P of
E, every maximal subgroup of P not having a supersoluble supplement in G is partially
τ -quasinormal in G. Then G ∈ F .

Proof. Applying our Main Theorem, every chief factor of G below E is cyclic. Since F
contains U , we know E is contained in the F -hypercentre of G. From G/E ∈ F , it
follows that G ∈ F . �

4.2. Theorem. Let F be a saturated formation containing U and E a normal subgroup
of a group G such that G/E ∈ F . Suppose that for every non-cyclic Sylow subgroup P
of F ∗(E), every maximal subgroup of P not having a supersoluble supplement in G is
partially τ -quasinormal in G. Then G ∈ F .

Proof. The proof is similar to that of Theorem 4.1. �

4.3. Corollary ([9, Theorem 3.4]). Let F be a saturated formation containing U and
E a normal subgroup of a group G such that G/E ∈ F . If every maximal subgroup of
any Sylow subgroup of F ∗(E) is S-quasinormal in G, then G ∈ F .

4.4. Corollary ([19, Theorem 3.4]). Let F be a saturated formation containing U and
E a normal subgroup of a group G such that G/E ∈ F . If every maximal subgroup of
any Sylow subgroup of F ∗(E) is c-normal in G, then G ∈ F .

4.5. Corollary ([1, Theorem 1.4]). Let F be a saturated formation containing U and E
a soluble normal subgroup of a group G such that G/E ∈ F . If every maximal subgroup
of any Sylow subgroup of F (E) is S-quasinormal in G, then G ∈ F .

4.6. Corollary ([8, Theorem 2]). Let G be a group and E a soluble normal subgroup
of G such that G/E is supersolvable. If all maximal subgroups of the Sylow subgroups
of F (E) are c-normal in G, then G is supersolvable.
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Abstract
In this paper, we obtain a unique common fixed point theorem for
two weakly compatible mappings in a Menger space and also obtain a
common coincidence point theorem for two hybrid pairs of mappings.
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1. Introduction and preliminaries
In 1942, Menger [6] introduced the notion of a statistical metric space as a generaliza-

tion of a metric space (M,d) in which the distance d(x, y) , (x, y ∈M) between x and y
is replaced by a distribution function Fx,y . Schweizer and Sklar [9] studied this concept
and established some fundamental results on this space . First , we give some known
preliminaries.

1.1. Definition. . A mapping F : R→ [0, 1] is said to be a distribution function if
(i) F is non-decreasing,
(ii) F is left continuous,
(iii) inf

x∈R
F (x) = 0 and sup

x∈R
F (x) = 1 .

We denote the set of all distribution functions by D.
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1.2. Definition. ([9]). A probabilistic metric space is an ordered pair (M,F ), where
M is a non empty set and F is a function defined on M ×M to D which satisfies the
following conditions: For x, y, z ∈M ,

(i) Fx, y(0) = 0 ,
(ii) Fx, y(s) = 1 for all s > 0 if and only if x = y ,
(iii) Fx, y(s) = Fy, x(s) for all s ∈ R and
(iv) Fx, y(s1) = 1 and Fy, z(s2) = 1 for all s1, s2 > 0 imply

Fx, z(s1 + s2) = 1.

1.3. Definition. ([9]). A function t : [0, 1]× [0, 1]→ [0, 1] is said to be a triangular norm
or t - norm if it satisfies the following conditions: For a, b, c, d ∈ [0, 1] ,

(i) t(a, 1) = a ,
(ii) t(a, b) = t(b, a) ,
(iii) t(c, d) ≥ t(a, b) if c ≥ a and d ≥ b ,
(iv) t(t(a, b), c) = t(a, t(b, c)) .

1.4. Definition. ([9]). Let M be a nonempty set, ’ t ’ is a t - norm and F :M ×M → D
satisfy:

(i) Fx,y(0) = 0 for all x, y ∈M ,
(ii) Fx,y(s) = 1 for all s > 0 if and only if x = y ,
(iii) Fx,y(s) = Fy,x(s) for all s ∈ R and
(iv) Fx,y(u+ v) ≥ t(Fx,z(u), Fz,y(v)) for all u, v ≥ 0 and x, y, z ∈M .

Then the triplet (M,F, t) is called a Menger space.

1.5. Remark. If (M,d) is a metric space then ‘ d ’ induces a mapping F :M ×M → D

, where F is defined by Fp,q(x) = H(x− d(p, q)) , where H(x) =





0 if x ≤ 0,

1 if x > 0
is

the Heaviside function.

Further, if t : [0, 1]× [0, 1] → [0, 1] is defined by t(a, b) = min{a, b} , then (M,F, t) is
a Menger space. It is complete if the metric space (M,d) is complete.

1.6. Definition. ([9]). Let (M,F, t) be a Menger space. Let x ∈ M . For ε > 0 and
0 < λ < 1, the (ε, λ) - neighbourhood of x is defined as
Nx(ε, λ) = {y ∈M : Fx,y(ε) > 1− λ} .

The topology induced by the family {Np(ε, λ) : p ∈ M, ε > 0, 0 < λ < 1} is known as
the (ε, λ)- topology.

1.7. Proposition. ([9]). If t is continuous then (ε, λ)- topology is a Hausdorff topology
on M .

1.8. Definition. ([9]). Let (M,F, t) be a Menger space. A sequence {xn} inM converges
to x ∈M , if for any ε > 0 and 0 < λ < 1, there exists a positive integer N = N(ε, λ) such
that Fxn,x(ε) > 1 − λ for all n ≥ N . A sequence {xn} in (M,F, t) is said to be Cauchy
sequence in M if for ε > 0 and 0 < λ < 1, there exists a positive integer N = N(ε, λ)
such that Fxn,xm(ε) > 1 − λ for all n,m ≥ N . A Menger space (M,F, t), where t is
continuous, is said to be complete if every Cauchy sequence in M is convergent in (ε, λ)
- topology.

In 1972, Sehgal and Reid [10] introduced the notion of contraction mapping on a
probabilistic metric space and proved fixed point theorems for such mappings.
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1.9. Definition. ([10]). Let (M,F, t) be a Menger space. A map T :M →M is said to be
a contraction mapping if there exists a constant 0 < p < 1 such that FTx,Ty(s) ≥ Fx,y(

s
p
)

for each x, y ∈M and for all s > 0 .

1.10. Theorem. ([10]). Let (M,F, t) be a complete Menger space, where ‘t’ is a con-
tinuous function satisfying t(x, x) ≥ x for each x ∈ [0, 1]. If T :M →M is a contraction
mapping then there is a unique p ∈ M such that Tp = p. Moreover Tnq → p for each
q ∈M .

In 1978, Hadzic [4] introduced a class F of t- norms t 6= tmin, for which every contrac-
tion in a complete Menger space (M,F, t) has a fixed point.

1.11. Definition. ([4]). We say that the t - norm t is of Hadzic - type and we write
t ∈ F if the family {tn}n∈N of it’s iterates defined, for each x ∈ [0, 1] by t0(x) = 1 and
tn+1(x) = t(tn(x), x) for all n ≥ 0 is equicontinuous at x = 1.

i.e., for each ε ∈ (0, 1), there exists δ ∈ (0, 1) such that x > 1− δ implies tnx > 1− ε
for all n ≥ 1.

1.12. Theorem. ([4]). Let (M,F, t) be a complete Menger space, where ‘t’ is a contin-
uous t - norm of Hadzic type. If T : M → M is a contraction mapping then there is a
unique p ∈M such that Tp = p. Moreover Tnq → p for each q ∈M .

Recently Choudhury and Das [1], proved the following

1.13. Theorem. ([1]). Let (M,F, tM ) be a complete Menger space with continuous
t-norm tM given by tM (a, b) = min{a, b} and f : M → M be satisfying Ffx,fy(ϕ(s)) ≥
Fx,y(ϕ(

s
c
)) for all x, y ∈M and for s ≥ 0, where 0 < c < 1 and ϕ : R→ R+ satisfies

(i) ϕ(t) = 0 iff t = 0,
(ii) ϕ(t) is increasing and ϕ(t)→∞ as t→∞,
(iii) ϕ is left continuous on (0,∞),
(iv) ϕ is continuous at 0 .

Then f has a unique fixed point in M .

Later several authors obtained fixed point theorems in Menger spaces using an altering
distance function,for example refer [2],[3],[7]etc.
Sastry et.al. [8] , defined altering function of type (S) as follows :

1.14. Definition. ([8]) A function ϕ : R+ → R+ is said to be an altering distance
function of type (S) if it satisfies

(i) ϕ(t) = 0 iff t = 0,
(ii) ϕ(t)→∞ as t→∞,
(iii) ϕ is continuous at 0 .

1.15. Lemma. ([8]) Let (M,F, t) be a Menger space with a continuous Hadzic type t -
norm , 0 < c < 1 and ϕ be an altering distance function of type (S). Suppose {xn}∞n=0 is
a sequence in M such that for any r > 0, Fxn,xn+1(ϕ(r)) ≥ Fx0,x1(ϕ(

r
cn

)). Then {xn} is
a Cauchy sequence.

1.16. Theorem. ([8]) Let (M,F, t) be a complete Menger space with a continuous
Hadzic type t - norm ‘t’ and ϕ be an altering distance function of type (S), P :M →M
be satisfying FPx,Py(ϕ(s)) ≥ Fx,y(ϕ(

s
c
)) for all x, y ∈ M and for s > 0 and 0 < c < 1.

Then P has a unique fixed point z ∈M . Moreover, Pnx→ z for each x ∈M .

1.17. Definition. ([5]) A pair of self mappings is called weakly compatible if they
commute at their coincidence points.

In this paper, we extend Theorem 1.16 for two pairs of weakly compatible mappings.
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2. Main results
2.1. Theorem. Let (M,F, t) be a Menger space with continuous Hadzic type t-norm ‘t’
and ϕ be an altering distance function of type (S). Let P,Q, f, g :M →M be maps such
that
(2.1.1) FPx,Qy(ϕ(s)) ≥ Ffx,gy(ϕ(

s
c
)) for all x, y ∈M and for s > 0 and 0 < c < 1.

(2.1.2) P (M) ⊆ g(M), Q(M) ⊆ f(M),
(2.1.3) either f(M) or g(M) is complete,
(2.1.4) the pairs (f, P ) and (g,Q) are weakly compatible .
Then f, g, P and Q have a unique common fixed point in M .

Proof. Let x0 ∈M .
Since P (M) ⊆ g(M), there exists x1 ∈M such that y1 = gx1 = Px0.
Since Q(M) ⊆ f(M), there exists x2 ∈M such that y2 = fx2 = Qx1.
Continuing in this way, we get sequences {xn} and {yn} inM such that y2n+1 = gx2n+1 =
Px2n and y2n+2 = fx2n+2 = Qx2n+1, n = 0, 1, 2 · · ·
Since ϕ is continuous at 0 and vanishes only at 0, it follows that for given s > 0 there
exists r > 0 such that s

2
> ϕ(r). Now

Fy2n+1, y2n+2(s) ≥ Fy2n+1, y2n+2(ϕ(r)),
= FPx2n, Qx2n+1(ϕ(r)),
≥ Ffx2n, gx2n+1(ϕ(

r
c
)),

= Fy2n, y2n+1(ϕ(
r
c
))

Similarly,

Fy2n+1, y2n(s) ≥ Fy2n, y2n−1(ϕ(
r

c
)).

Thus

Fyn+1, yn(s) ≥ Fyn, yn−1(ϕ(
r

c
)) ≥ · · · ≥ Fy1, y0(ϕ(

r

cn
)).

Hence from Lemma 1.15 , {yn} is Cauchy.
Suppose g(M) is complete.
Then there exist z, v ∈M such that y2n+1 = gx2n+1 → z = gv.
Since {yn} is Cauchy , we have yn → z.
Again for given s > 0 there exists r > 0 such that s

2
> ϕ(r). Now,

Fz, Qv(s) ≥ t(Fz, y2n+1(ϕ(r)), Fy2n+1, Qv(s− ϕ(r))),
≥ t(Fz, y2n+1(ϕ(r)), FPx2n, Qv(ϕ(r))),
≥ t(Fz, y2n+1(ϕ(r)), Ffx2n, gv(ϕ(

r
c
))), from (2.1.1)

= t(Fz, y2n+1(ϕ(r)), Fy2n, gv(ϕ(
r
c
))),

→ 1 as n→∞.
since yn → z and t is a continuous Hadzic type t-norm .
Thus z = Qv. Hence

(2.1) gv = z = Qv.

Since z = Qv ∈ Q(M) ⊆ f(M), there exists u ∈M such that

(2.2) z = fu.

Now

FPu, z(ϕ(s)) = FPu, Qv(ϕ(s)) ≥ Ffu, gv(ϕ(
s

c
)) = Fz, z(ϕ(

s

c
)) = 1.

Thus Pu = z. Hence

(2.3) Pu = z = fu.
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Since (f, P ) is weakly compatible and from (2.3), we have Pz = fz .
Now from (2.1.1), we have
FPz, z(ϕ(s)) = FPz, Qv(ϕ(s)) ≥ Ffz, gv(ϕ(

s
c
)) = FPz, z(ϕ(

s
c
))

≥ FPz, z(ϕ(
s

c2
)) · · · ≥ FPz, z(ϕ(

s

cn
))→ 1 as n→∞.

Thus Pz = z. Hence

(2.4) z = Pz = fz.

Since (g,Q) is weakly compatible, from(2.1), we have gz = Qz.
From (2.1.1), we have
Fz, Qz(ϕ(s)) = FPu, Qz(ϕ(s)) ≥ Ffu, gz(ϕ(

s
c
)) = Fz, Qz(ϕ(

s
c
))

≥ Fz, Qz(ϕ(
s

c2
)) · · · ≥ Fz, Qz(ϕ(

s

cn
))→ 1 as n→∞.

Thus Qz = z. Hence

(2.5) z = Qz = gz.

From (2.4) and (2.5), z is a common fixed point of P,Q, f and g.
Suppose z′ is another common fixed point of P,Q, f and g. Then
From (2.1.1), we have
Fz, z′(ϕ(s)) = FPz, Qz′(ϕ(s)) ≥ Ffz, gz′(ϕ(

s
c
)) = Fz, z′(ϕ(

s
c
))

≥ Fz, z′(ϕ(
s

c2
)) · · · ≥ Fz, z′(ϕ(

s

cn
))→ 1 as n→∞.

Thus z′ = z. Hence z is the unique common fixed point of P,Q, f and g.
Similarly the theorem holds when f(M) is complete. �

Recently, Sastry et.al. [8] proved the following theorem for a multivalued map in a
complete Menger space with Hadzic type t-norm.

2.2. Theorem. ([8]). Let (M,F, t) be a complete Menger space with a continuous Hadzic
type t - norm ’t’ , ϕ be an altering distance function of type (S) and P be a multivalued
map of M into the class of nonempty subsets of M . Suppose that there exists 0 < c < 1
such that for any x, y ∈ M , Fu, v(ϕ(s)) ≥ Fx, y(ϕ(

s
c
)) for all s > 0, whenever u ∈ Px,

v ∈ Py.
Then P has a unique fixed point z ∈M and Pz = {z}.

Now we extend this theorem for two pairs of hybrid mappings.

2.3. Definition. Let (M,F, t) be a Menger space and f :M →M , P be a multi valued
map of M into the class of nonempty subsets of M . Then f is said to be P - weakly
commuting at x ∈M if f2x ∈ Pfx.
2.4. Theorem. Let (M,F, t) be a Menger space with a continuous Hadzic type t - norm
’t’ and ϕ be an altering distance function of type (S). Let P and Q be multivalued maps
of M into the class of nonempty subsets of M and f and g be self maps on M . Suppose
that there exists 0 < c < 1 such that for any x, y ∈M ,
(2.4.1) Fu, v(ϕ(s)) ≥ Ffx, gy(ϕ(

s
c
)) for all s > 0, whenever u ∈ Px , v ∈ Qy.

(2.4.2) P (M) ⊆ g(M), Q(M) ⊆ f(M),
(2.4.3) either f(M) or g(M) is complete,
(2.4.4) f is P -weakly commuting and g is Q-weakly commuting at their coincidence

points.
Then the pairs (f, P ) and (g,Q) have a common coincidence point in M .
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Proof. Let x0 ∈M .
Since P (x0) ⊆ g(M), there exists x1 ∈M such that y1 = gx1 ∈ Px0.
Since Q(x1) ⊆ f(M), there exists x2 ∈M such that y2 = fx2 ∈ Qx1.
Continuing in this way, we get sequences {xn} and {yn} inM such that y2n+1 = gx2n+1 ∈
Px2n and y2n+2 = fx2n+2 ∈ Qx2n+1, n = 0, 1, 2 · · ·

Fy2n+1, y2n+2(ϕ(s)) ≥ Ffx2n, gx2n+1(ϕ(
s
c
)),

= Fy2n, y2n+1(ϕ(
s
c
))

Similarly,

Fy2n, y2n+1(ϕ(s)) ≥ Fy2n−1, y2n(ϕ(
s

c
)).

Thus

Fyn, yn+1(ϕ(s)) ≥ Fyn−1, yn(ϕ(
s

c
))

Since ϕ is continuous at 0 and vanishes only at 0, it follows that for given s > 0 there
exists r > 0 such that s

2
> ϕ(r). Now

Fyn, yn+1(s) ≥ Fyn, yn+1(ϕ(r)) ≥ Fyn−1, yn(ϕ(
r

c
)) ≥ · · · ≥ Fy0, y1(ϕ(

r

cn
)).

Hence from Lemma 1.15 , {yn} is Cauchy sequence in M .
Suppose f(M) is complete.
Then there exist z, p ∈M such that yn → z = fp.
Let z1 ∈ Pp . Since y2n+2 = fx2n+2 ∈ Qx2n+1, from (2.4.1),we have

Ffp, z1(s) ≥ t(Ffp, fx2n+2(ϕ(r)), Ffx2n+2, z1(s− ϕ(r))),
≥ t(Fz, y2n+2(ϕ(r)), Ffx2n+2, z1(ϕ(r))),
≥ t(Fz, y2n+2(ϕ(r)), Ffp, gx2n+1(ϕ(

r
c
))),

= t(Fz, y2n+2(ϕ(r)), Fz, y2n+1(ϕ(
r
c
))),

→ 1 as n→∞.
since yn → z and t is a continuous Hadzic type t-norm .
Thus Ffp, z1(s) = 1 for s > 0 so that fp = z1. Thus

(2.6) fp ∈ Pp.
Since z = fp ∈ Pp ⊆ g(M), there exists q ∈M such that z = fp = gq.
Let z2 ∈ Qq. Since y2n+1 = gx2n+1 ∈ Px2n, from (2.4.1), we have

Fgq, z2(s) ≥ t(Fgq, gx2n+1(ϕ(r)), Fgx2n+1, z2(s− ϕ(r))),
≥ t(Fz, y2n+1(ϕ(r)), Fgx2n+1, z2(ϕ(r))),
≥ t(Fz, y2n+1(ϕ(r)), Ffx2n, gq(ϕ(

r
c
))),

= t(Fz, y2n+1(ϕ(r)), Fy2n, z(ϕ(
r
c
))),

→ 1 as n→∞.
since yn → z and t is a continuous Hadzic type t-norm .
Thus Fgq, z2(s) = 1 for s > 0 so that gq = z2. Thus

(2.7) gq ∈ Qq.
From (2.6) and (2.7), p is a coincidence point of f and P ; q is a concidence point of g
and Q.
From (2.4.4), fz ∈ Pz and gz ∈ Qz. Thus z is a common coincidence point of the hybrid
pairs (f, P ) and (g,Q).

�

Acknowledgement . The authors are thankful to the referee for his valuable sug-
gestions.

968



References
[1] Choudhury, B.S. and Das, Krishnapada. A new contraction principle in Menger spaces ,

Acta Mathematica Sinica , English Series, 24(8),(2008), 1379-1386.
[2] Choudhury,B.S.,Das,K. and Dutta,P.N.,A fixed point result in Menger spaces using a real

function, Acta Math.Hungarica,122(3),(2009),203-216.
[3] Dutta,P.N.,Choudhury,B.S. and Das,K.,Some fixed point results in Menger spaces using a

control function , Surveys in Mathematics and its applications,4,(2009),41-52.
[4] Hadzic, O. On (ε − λ) - topology in probabilistic locally convex spaces, Glasnik Matem 13

(33), (1978), 193 - 297.
[5] Jungck,G and Rhoades,B.E. , Fixed points for set valued functions without continuity con-

dition , Indian.J.Pure.Appl.Math., 29(3),(1998),227-238.
[6] Menger, K. Statistical metrics, Proc.of the National Academy of Sciences of the United

States of America , 28,(1942),535-537.
[7] Mihet,D,Altering distances in probabilistic Menger spaces, Nonlinear Anal.,71,(2009),2734-

2738.
[8] Sastry, K.P.R., Babu, G.V.R. and Sandhya, M.L. Fixed point theorems in Menger

spaces for a contractive map under the influence of an altering distace function of
type(S)(Communicated).

[9] Schweizer, B. and Sklar, A. Statistical metric spaces, Pacific J.Math., 10 (1960), 313 - 334.
[10] Sehgal, V.M. and Bharucha - Reid, A.T. Fixed points of contraction mappings on proba-

bilistic metric spaces, Math. Systems theory, 6 (1972), 97 - 102.

969



970



Hacettepe Journal of Mathematics and Statistics
Volume 43 (6) (2014), 971 – 984

An investigation on homomorphisms and
subhyperalgebras of Σ-hyperalgebras

S. Rasouli∗ , D. Heidari† and B. Davvaz‡

Abstract
In this paper, we introduce the notion of Σ-hyperalgebras for an ar-
bitrary signature Σ and provide some examples. Then we extend the
notions of several kinds of homomorphisms and study their properties.
Also, we study subhyperalgebras of a Σ-hyperalgebra A, Sub(A), under
algebraic closure operators S, H and I. Finally, we introduce the notions
of closed, invertible, ultraclosed and conjugable subhyperalgebras and
investigate their connections to each other.
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1. Introduction
The theory of hypergroups was introduced by F. Marty in 1934,(see [22]). Hyperal-

gebras (or multialgebras) are particular relational systems which generalize the concept
of universal algebras. The hyperstructure theory and its applications so far, have been
investigated by many mathematicians in various fields, for example in graphs and hyper-
graphs theory [4], in categories theory [12, 25] and in n-ary hyperalgebras [8, 21]. Recent
book [7] contains wealthy applications. There are also applications to the following
subjects: geometry, hypergraphs, binary relations, combinatorics, codes, cryptography,
probability, etc.

There are several types of homomorphisms have been considered since the first papers
on hypergroups (for instance, by M. Dresher, O. Ore [11], M. Krasner [18], J. Kuntzmann
[19]) and later by M. Koskas [17]. However, the first explicit construction of hypergroup
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homomorphisms was given by P. Corsini [2]. A unified theory of various types of ho-
momorphisms was given by J. Jantosciak [16]. Some other types of homomorphisms
and connections among them were studied by V. Leoreanu [20]. There are more than
10 types of hypergroup homomorphisms. A detailed presentation of all these homomor-
phisms, connections between them and various examples can be found in [3].

Also, in the hypergroup theory there are several kinds of subhypergroups. Among
the mathematicians who studied this topic, we mention F. Marty [22], M. Dresher, O.
Ore [11], M. Krasner [18] who analyzed closed and invertible subhypergroups. Later Y.
Sureau [32] has studied ultraclosed, invertible and conjugable subhypergroups.

On the other hand, in 1962 G. Grätzer began to study of multialgebras [12] and
it follows by H. E. Pickett [26] who investigated homomorphisms and subalgebras of
multialgebras. Then H. Höft and P. E. Howard [14] and G. E. Hansoul [15] studied mul-
tialgebras and T. Vougiouklis [33] discussed about the representations of hyperstructures.
Furthermore, C. Pelea studied the fundamental relation of multialgebras [23] and inves-
tigated them on the universal algebras point of view in [24, 25]. Thus it seems adequate
to undertake a study of multialgebras in the spirit of universal algebras.

In this article, we introduce the notion of Σ-hyperalgebra, A, for an arbitrary signature
Σ. Then we generalize notions of various types of homomorphisms and subhyperalgebras
of A and we study their properties.

2. A brief excursion into hyperalgebras
This section contains a survey of the basic elements of universal algebras and hyper-

algebras which will be used in the next sections. In fact, we explain what is meant by a
hyperalgebra and then give several examples of familiar hyperalgebras. These examples
show that different hyperalgebras may have several common properties. This observation
provides a motivation for the study of Σ-hyperalgebras.

In the sequel A is a fixed nonempty set, P∗(A) is the family of all nonempty subsets
of A, w is the set of positive integers and for n ∈ w we denote the set of n-tuples over A,
By An. Also, by B ⊆w A we mean that B is a finite subset of A.

Let A be a nonempty set. A family C of subsets of A that is closed under the intersec-
tion of arbitrary subfamilies is called a closed-set system over A. If C is also closed under
the union of subfamilies that are directed under inclusion, then it is called an algebraic
closed-set system. An algebraic closed set system C forms an algebraic lattice (C,∩,∨)
under set-theoretic inclusion. The closure operator associated with a given closed set
system C is denoted by ClC.

An n-ary hyperoperation (or function) on A is a function σ from An to P∗(A); n is the
arity (or rank) of σ. A finitary hyperoperation is an n-ary hyperoperation, for some n.
The image of (a1, · · · , an) under an n-ary hyperoperation σ is denoted by σ(a1, · · · , an).
A hyperoperation σ on A is called a nullary hyperoperation (or constant) if its arity is
zero; in fact, A nullary hyperoperation on A is just an element of P∗(A); i.e. a nonvoid
subset of A. A hyperoperation σ on A is unary, binary or ternary if its arity is 1, 2 or 3,
respectively.

A signature or language type is a set Σ together with a mapping ρ : Σ −→ w. The
elements of Σ are called hyperoperation symbols. For each σ ∈ Σ, ρ(σ) is called the arity
or rank of σ. In the sequel, for each n ∈ w, Σn = {σ|ρ(σ) = n}.

Let Σ be a signature. A Σ-hyperalgebraic structure is an ordered couple A = (A, (σA :

σ ∈ Σ)) , where A is a nonempty set and σA is a function from Aρ(σ) to P∗(A), for all
σ ∈ Σ. The set A is called the universe (or underlying set) of A and the σA’s are called
the fundamental hyperoperations of A. In the following, we prefer to write just σ for σA

if this convention creates an ambiguity which seldom causes a problem.
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In this paper we shall use the following abbreviated notations: the sequence xi, · · · , xj
will be denoted by xji . For j < i is the empty symbol. In this convention

σA(x1, · · · , xi, yi+1, · · · , yj , zj+1, · · · , zρ(σ))
will be written as σA(xi1, y

j
i+1, z

ρ(σ)
j+1 ). In this case when yi+1 = · · · = yj = y the last

expression will be written in the form σA(xi1,
(j−i)
y , z

ρ(σ)
j+1 ). Similarly, for subsets Bρ(σ)1 of

A we define

σA(B
ρ(σ)
1 ) = ∪{σA(b

ρ(σ)
1 )|bi ∈ Bi, ∀i ∈ Iρ(σ)}.

Also, for each i ∈ Iρ(σ) and aρ(σ)1 ∈ A we define

σA
i (a

ρ(σ)
1 ) = {z ∈ A : ai ∈ σA(ai−1

1 , z, a
ρ(σ)
i+1 )}

and for each i ∈ Iρ(σ) and Bρ(σ)1 ⊆ A we define

σA
i (B

ρ(σ)
1 ) = ∪{σA

i (b
ρ(σ)
1 )|bi ∈ Bi}.

A hyperalgebra A is unary if all hyperoperations are unary and it is mono-unary if
it has just one unary hyperoperation. A is a hypergroupoid if it has just one binary
hyperoperation σ. According to [9],Σ-hyperalgebra A is called an n-ary hypergroupoid
if Σ = {σ} and ρ(σ) = n. If σ is a binary hyperoperation, we write aσb for the image
of (a, b) under σ. A hyperalgebra A is finite if |A| is finite. Let A be a Σ-hyperalgebra.
Hyperoperation σA is called trivial hyperoperation if for any (a

ρ(σ)
1 ) ∈ Aρ(σ), we have

|σA(a
ρ(σ)
1 )| = 1. A is called a trivial Σ-hyperalgebra if for any σ ∈ Σ, σA is trivial.

Let A = (A, (σA : σ ∈ Σ)) be a Σ-hyperalgebra and σ ∈ Σ. Now, we extend an
n-ary hyperoperation σA to an n-ary operation σPA on P∗(A) by setting for all (A

ρ(σ)
1 ) ∈

P∗(A)ρ(σ)

σPA(A
ρ(σ)
1 ) =

⋃
{σA(a

ρ(σ)
1 )|ai ∈ Ai, i ∈ Iρ(σ))}.

It is easy to see that PA = (P∗(A), < σP∗(A) : σ ∈ Σ >) is a Σ-algebra.

2.1. Definition. Let A be a Σ-hyperalgebra, σ ∈ Σ and j < i < ρ(σ). We say that σ is
weakly (i, j)-associative if for each a2ρ(σ)−1

1 ∈ A we have

σA(ai−1
1 , σA(a

ρ(σ)+i−1
i ), a

2ρ(σ)−1

ρ(σ)+i ) ∩ σA(aj−1
1 , σA(a

ρ(σ)+j−1
j ), a

2ρ(σ)−1

ρ(σ)+j ) 6= ∅,
and (i, j)-associative if

σA(ai−1
1 , σA(a

ρ(σ)+i−1
i ), a

2ρ(σ)−1

ρ(σ)+i ) = σA(aj−1
1 , σA(a

ρ(σ)+j−1
j ), a

2ρ(σ)−1

ρ(σ)+j ).

We say that σ is (weakly) associative if it is (weakly) (i, j)-associative for each i, j ∈ Iρ(σ).
Definition 2.1 is a generalization of associative binary hyperoperation. An n-ary hy-

pergroupoid A is called an n-ary semihypergroup (n-ary Hv semigroup) if σ is (weakly)
associative.

2.2. Examples. (i) [9] Let A = {a, b, c} with the hyperoperation ◦ defined by the
following table

◦ a b c

a a b c
b b {a, c} {a, b}
c c {a, b} {a, b}

Now, we define the ternary hyperoperation σ on A by σ(x, y, z) = x ◦ y ◦ z, for
each x, y, z ∈ A. One can see that A = (A, σ) is a 3-ary semihypergroup.
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(ii) Let A = {a, b, c} with the hyperoperation ◦ defined by the following table

◦ a b c

a a b c
b b c {a, b}
c c b {a, b}

It is easy to check that A = (A, ◦) is a Hv semigroup but it is not a semihyper-
group.

2.3. Definition. [8, 9] Let A be a Σ-hyperalgebra, σ ∈ Σ and B ⊆ A. We say that B has
the reproduction axiom with respect to σ if for each bi−1

1 , b, b
ρ(σ)
i+1 ∈ B and 1 ≤ i ≤ ρ(σ)

the relation

(2.1) b ∈ σA
i (bi−1

1 , x, b
ρ(σ)
i+1 )

has a solution x ∈ B. Observe that condition (1) can be reformulated as follows

(2.2) B = σA(bi−1
1 , B, b

ρ(σ)−i
i+1 ).

An n-ary semihypergroup (Hv semigroup) A is called an n-ary hypergroup (Hv group)
if A satisfies the reproduction axiom. An n-ary hypergropouid which satisfies the repro-
duction axiom is called n-ary hyperquasigroup.

2.4. Examples. (1) [8] Let A = {a, b, c} be a set with a 3-ary hyperoperation σ as
follows:
σ(a, a, a) = a σ(b, b, a) = {a, c} σ(c, a, a) = c
σ(a, a, b) = b σ(b, b, b) = {b, c} σ(c, a, b) = {b, c}
σ(a, a, c) = c σ(b, b, c) = A σ(c, a, c) = {a, b}
σ(a, b, a) = b σ(b, a, a) = b σ(c, b, a) = {b, c}
σ(a, b, b) = {a, c} σ(b, a, b) = {a, c} σ(c, b, b) = A
σ(a, b, c) = {b, c} σ(b, a, c) = {b, c} σ(c, b, c) = A
σ(a, c, a) = c σ(b, c, a) = {b, c} σ(c, c, a) = {a, b}
σ(a, c, b) = {b, c} σ(b, c, b) = A σ(c, c, b) = A
σ(a, c, c) = {a, b} σ(b, c, c) = A σ(c, c, c) = {b, c}

One can see that A = {A, σ} is a 3-ary hypergroup.
(2) [9] Let B = {a, b, c}. We define hyperoperation σ as follows

σ(x, y, z) =





x x = y = z
b x 6= y 6= z
z x = y, x 6= z, x 6= b
{a, c} x = y = b, z 6= b

One can see that B = {B, σ} is a 3-ary hypergroup.

2.5. Definition. Let A be a Σ-hyperalgebra, σ ∈ Σ and {i, j} ⊆ Iρ(σ). We say that σ is
{i, j}-commutative if for each aρ(σ)1 ∈ A we have

σA(a
ρ(σ)
1 ) = σA(at−1

1 , as, a
s−1
t+1 , at, a

ρ(σ)
s+1 )

where t = min{i, j} and s = max{i, j} We say that σ is commutative if it is {i, j}-
commutative for each i, j ∈ Iρ(σ).

Obviously, the 3-ary hypergroup A = (A, σ) in Example 2.4 is commutative, too.

2.6. Definition. [9] Let A be a Σ-hyperalgebra and σ ∈ Σ. We say that A has a weak
neutral element with respect to σ if there exists an element e ∈ A such that

x ∈ σA(
(i−1)
e , x,

(ρ(σ)−i)
e )
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holds for all x ∈ A and i ∈ Iρ(σ). If for all x ∈ A and i ∈ Iρ(σ), we have

x = σA(
(i−1)
e , x,

(ρ(σ)−i)
e )

then “e” is called a neutral element. The set of weak neutral elements is denoted by
WNA and the set of neutral elements is denoted by NA. Clearly, NA ⊆WNA.

An n-ary semihypergroup A is called an n-ary W-hypermonoid if WNA 6= ∅ and it is
called an n-ary hypermonoid if NA 6= ∅. Obviously, if A is a 2-ary hypermonoid, then
|NA| = 1.

2.7. Definition. Let A be a Σ-hyperalgebra and σ ∈ Σ. We say that σA satisfies the

weak idempotent property if x ∈ σ(
ρ(σ)
x ), for each x ∈ A. Also, we say that σA has the

idempotent property if x = σ(
ρ(σ)
x ).

An n-ary commutative semihypergroup A = (A, σ) is called an n-ary hypersemilattice
if “ ◦ ” satisfies the weak idempotent property and A is called an n-ary semihyperlattice
if “ ◦ ” satisfies the idempotent property.

2.8. Examples. 1) Let A = {a, b, c, d} with the hyperoperation ◦ defined by the
following table

◦ a b c d

a {a} {b} {c} {d}
b {b} {a, b} {d} {c, d}
c {c} {d} {a, c} {b, d}
d {d} {c, d} {b, d} A

One can see that A = (A, ◦) is a 2-ary hypersemilattice. Also, if we define the
ternary hyperoperation ◦′ on A by ◦′(x, y, z) = x ◦ y ◦ z for all x, y, z ∈ A, then
one can see easily that A′ = (A, ◦′) is a 3-ary hypersemilattice.

2) Let B = {a, b, c, d} with the hyperoperation ◦ defined by the following table

◦ a b c d

a {a} {b, c, d} {c, d} {d}
b {b, c, d} {b} {c, d} {d}
c {c, d} {c, d} {c} {d}
d {d} {d} {d} {d}

One can see that B = (B, ◦) is a 2-ary semihyperlattice. Also, if we define the
ternary hyperoperation ◦′ on B by ◦′(x, y, z) = x ◦ y ◦ z for all x, y, z ∈ B, then
one can see easily that B′ = (B, ◦′) is a 3-ary semihyperlattice.

2.9. Example. Consider Examples 2.8. One can see that A′ is a 3-ary W-hypermonoid
and B′ is a 3-ary hypermonoid.

2.10. Examples. i) A commutative hypermonoid A = (A, ◦, e) is called canonical
hypergroup if

– every element has a unique inverse, which means that for all x ∈ A, there
exists a unique x−1 ∈ A, such that e ∈ x ◦ x−1,

– it is reversible, which means that if x ∈ y◦z, then y ∈ x◦z−1 and z ∈ y−1◦x.
ii) A Krasner hyperring is a hyperalgebraic structure R = (R,+, .) which (R,+, 0)

is a canonical hypergroup, (R, .) is a semiring and the multiplication, ., is dis-
tributive with respect to the hyperoperation +.

One can find definitions of hyperlattices [27, 28], hyper-MV algebras [29, 31], hyper-
BCK algebras [30] and etc.
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3. Homomorphisms
In the universal algebra theory, the concepts of congruence, quotient algebra and

homomorphism are closely related. In this section, we give some ideas about homomor-
phisms of hyperalgebras and we state connection between them.

3.1. Definition. Let A and B be Σ-algebras. A map f : A −→ B is a homomorphism
(resp. dual homomorphism), in symbols f : A −→ B, if, for all σ ∈ Σ and all aρ(σ)1 ∈ A,

f(σA(a
ρ(σ)
1 )) ⊆ σB(f(a1), · · · , f(aρ(σ))))

(resp. f(σA(a
ρ(σ)
1 )) ⊇ σB(f(a1), · · · , f(aρ(σ))))

Also, f is called a good homomorphism if

f(σA(a
ρ(σ)
1 )) = σB(f(a1), · · · , f(aρ(σ)))

Hom(A,B) will denote the set of all homomorphisms and HomG(A,B) will denote
the set of all good homomorphisms from A to B. f : A −→ B is called an isomorphism
if f ∈ Hom(A,B) and f−1 ∈ Hom(B,A), too.

3.2. Example. Let M = {0, a, b, 1}. Consider the following tables:

⊕ 0 a b 1

0 {0} {a} {b} {1}
a {a} {b} {1} {1}
b {b} {1} {1} {1}
1 {1} {1} {1} {1}

* 0 a b 1
1 b a 0

It is easy to see that M = (M,⊕,∗ , 0) is a trivial hyper-MV algebra which is totally
ordered as an MV-algebra. Also, let HS3 = (S3,⊕,∗ , 0) is the hyper-MV algebra where
S3 = {0, 1

3
, 2
3
, 1}, x⊕ y := [0,min(1, x+ y)]∩S3 and x∗ = 1−x. Now, let f : M −→ HS3

be a map that f(0) = 0, f(a) = 1
3
, f(b) = 2

3
and f(1) = 1. It is easy to check that

f is a hyper-MV algebra homomorphism. For example f(a ⊕ a) = f({b}) = { 2
3
} and

f(a) ⊕ f(a) = 1
3
⊕H3

1
3

= {0, 1
3
, 2
3
} so f(a ⊕ a) ( f(a) ⊕ f(a). Also, if we define

g : HS3 −→ M such that g(0) = 0, g( 1
3
) = a, g( 2

3
) = b and g(1) = 1, then g is

a dual homomorphism that is not a homomorphism, since g( 1
3
⊕H3

1
3
) = {0, a, b} but

g( 1
3
)⊕ g( 1

3
) = {b}.

3.3. Theorem. A bijective homomorphism of Σ-hyperalgebras is an isomorphism if and
only if it is good.

Proof. Let A,B be Σ-hyperalgebras, f : A −→ B is a bijection, σ ∈ Σ and a
ρ(σ)
1 ∈

A. First, suppose that f is an isomorphism and b ∈ σB(f(a1), · · · , f(aρ(σ))). So
f−1(b) ∈ f−1(σB(f(a1), · · · , f(aρ(σ)))) and since f−1 ∈ Hom(B,A) we obtain that
b ∈ f(σA(a

ρ(σ)
1 )) and it implies that f ∈ HomG(A,B). Conversely, suppose that f

is a bijective good homomorphism. Let σ ∈ Σ and bρ(σ)1 ∈ B. Since, f is onto, there are
a
ρ(σ)
1 ∈ A, such that f(ai) = bi, for each i ∈ Iρ(σ). Now, we have

f−1(σB(b
ρ(σ)
1 )) = f−1(σB(f(a1), · · · , f(aρ(σ))))

= f−1(f(σA(a
ρ(σ)
1 )))

= σA(f−1(b1), · · · , f−1(bρ(σ)))).

�

If there is a good isomorphism between A and B, then we write A ∼= B. Clearly, ∼= is
an equivalence relation on the set of all Σ-hyperalgebras.

3.4. Definition. Let A,B be two Σ-hyperalgebras. A map f : A −→ B, is called
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• a very good homomorphism if it is good and for each σ ∈ Σ, aρ(σ)1 ∈ A and
i ∈ Iρ(σ), we have
f(σA

i (a
ρ(σ)
1 )) = σB

i (f(a1), · · · , f(aρ(σ))).

• a 2-homomorphism if for each σ ∈ Σ and aρ(σ)1 ∈ A, we have
f−1(σB(f(a1), · · · , f(aρ(σ)))) = f−1(f(σA(a

ρ(σ)
1 ))).

• an almost strong homomorphism if for each σ ∈ Σ and aρ(σ)1 ∈ A, we have
f−1(σB(f(a1), · · · , f(aρ(σ)))) = σA(f−1(f(a1)), · · · , f−1(f(aρ(σ)))).

3.5. Theorem. Let A,B be two Σ-hyperalgebras. If f : A −→ B is a good homomor-
phism, then f is a 2-homomorphism. Furthermore, if f is a very good homomorphism,
then f is an almost strong homomorphism.

Proof. Let σ ∈ Σ and aρ(σ)1 ∈ A. First let f ∈ HomG(A,B). Let a ∈ f−1(f(σA(a
ρ(σ)
1 ))),

so f(a) ∈ f(σA(a
ρ(σ)
1 )) and it implies that there is a′ ∈ σA(a

ρ(σ)
1 ) such that f(a) = f(a′).

Since f is good we obtain that a ∈ f−1(σB(f(a1), · · · , f(aρ(σ)))). Conversely, assume
that a ∈ f−1(σB(f(a1), · · · , f(aρ(σ)))), so f(a) ∈ σB(f(a1), · · · , f(aρ(σ))) and it shows
that f is a 2 -homomorphism.

Now, suppose that f is a very good homomorphism. Since f ∈ Hom(A,B) we obtain
that f(σA(f−1(f(a1)), · · · , f−1(f(aρ(σ))))) ⊆ σB(f(a1), · · · , f(aρ(σ))). It shows that

σA(f−1(f(a1)), · · · , f−1(f(aρ(σ))))) ⊆ f−1(σB(f(a1), · · · , f(aρ(σ)))).

Conversely, assume that a ∈ f−1(σB(f(a1), · · · , f(aρ(σ)))). Hence, f(a) ∈
σB(f(a1), · · · , f(aρ(σ))), so for each i ∈ Iρ(σ) we have

f(ai) ∈ σB
i (f(a1), · · · , f(ai−1), f(a), f(ai+1), · · · , f(aρ(σ))).

Since, f is very good we obtain that

f(ai) ∈ f(σA
i (ai−1

1 , a, a
ρ(σ)
i+1 )).

Hence, there is a′i ∈ σA
i (ai−1

1 , a, a
ρ(σ)
i+1 ) such that f(ai) = f(a′i). It implies that a ∈

σA(ai−1
1 , f−1(f(ai)), a

ρ(σ)
i+1 ). Since i is arbitrary, continuing the above method shows that

f is an almost strong homomorphism. �

3.6. Definition. Let A,B be two Σ-hyperalgebras, f ∈ Hom(A,B), σ ∈ Σ and i ∈
Iρ(σ). f is called strong on the i-th component respect to σ if for all aρ(σ)1 ∈ A, f(a) ∈
σB(f(a1), · · · , f(aρ(σ))) implies that there exists a′i ∈ A such that f(ai) = f(a′i) and
a ∈ σA(ai−1

1 , a′i, a
ρ(σ)
i+1 ). f is called strong respect to σ if for all i ∈ Iρ(σ), f is strong on

the i-th component. f is called strong if for each σ ∈ Σ, f is strong respect to σ.

3.7. Theorem. Any strong homomorphism is almost strong.

Proof. Let f ∈ Hom(A,B) be a strong homomorphism, σ ∈ Σ and a
ρ(σ)
1 ∈ A. Since

f ∈ Hom(A,B), similar to Theorem 3.5, we can obtain that
σA(f−1(f(a1)), · · · , f−1(f(aρ(σ)))) ⊆ f−1(σB(f(a1), · · · , f(aρ(σ)))). Now, assume
that a ∈ f−1(σB(f(a1), · · · , f(aρ(σ)))). So f(a) ∈ σB(f(a1), · · · , f(aρ(σ))). Since
f is strong respect to σ, for each i ∈ Iρ(σ), there exists a′i ∈ A such that
f(ai) = f(a′i) and a ∈ σA(ai−1

1 , a′i, a
ρ(σ)
i+1 ), whence a ∈ σA(ai−1

1 , f−1(f(ai)), a
ρ(σ)
i+1 ) ⊆

σA(f−1(f(a1)), · · · , f−1(f(aρ(σ)))). �
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4. Subhyperalgebras
There are several important methods of constructing new hyperalgebras from given

ones. Three of the most fundamental are the formation of subhyperalgebras, homomor-
phic images, and direct products. In this section, subhyperalgebras will occupy us.

4.1. Definition. Let A be a Σ-hyperalgebra and B ⊆ A. Then B is called a subhy-
peruniverse of A, if for all σ ∈ Σ and bρ(σ)1 ∈ B we have σA(b

ρ(σ)
1 ) ⊆ B. The set of all

subhyperuniverses of A will be denoted by Sub(A).

Note that this implies σA ⊆ B for every σ ∈ Σ0, and that the empty set is a subhy-
peruniverse of A if and only if Σ0 = ∅, i.e., A has no distinguished constants.

4.2. Example. Consider hypersemilattice A in Examples 2.8. It is easy to see that
B = {a, b} is a subhyperuniverse of A.

4.3. Theorem. (A,Sub(A)) is an algebraic closed set system for every Σ-hyperalgebra
A.

Proof. Let K ⊆ Sub(A). Let σ ∈ Σ and a
ρ(σ)
1 ∈ ∩K. Then for every K ∈ K, we have

a
ρ(σ)
1 ∈ K and hence σA(a

ρ(σ)
1 ) ⊆ K. So σA(a

ρ(σ)
1 ) ⊆ ∩K. Therefore, ∩K ∈ Sub(A).

Now, assume that K is a directed subset of Sub(A). Let aρ(σ)1 ∈ ∪K. Since there is
only a finite number of ai and K is directed, they are all contained in a single K ∈ K.
Hence σA(a

ρ(σ)
1 ) ⊆ K. Therefore, ∪K ∈ Sub(A). �

The closure operator associated with the closed set system (A,Sub(A)) is denoted by
SgA. Thus SgA : P(A) −→ Sub(A) and SgA(X) = ∩{K ∈ Sub(A) : X ⊆ K}; this is
called the subhyperuniverse generated by X. Hyperalgebra A is called finitely generated
if there exists a finite subset X of A such that SgA(X) = A.
B is a maximal proper subhyperuniverse of A if B 6= A and there does not exist a

C ∈ Sub(A) such thatB ( C ( A.

4.4. Theorem. Let A be a finitely generated Σ-algebra. Then every proper subhyperuni-
verse of A is included in a maximal proper one.

Proof. Let A = SgA(X), for X ⊆w A. Assume that B is a proper subhyperuniverse of A.
Let K = {K ∈ Sub(A) : B ⊆ K ( A}. Since K contains B, it is nonempty. Suppose that
C ⊆ K be a chain. Clearly, C is directed so by Theorem 4.3, ∪C ∈ Sub(A). Because X is
finite and K is directed, one can see that ∪C is a proper subhyperuniverse of A. hence,
by Zorn’s lemma K has a maximal element. �

4.5. Theorem. (Principle of Structural Induction) Let A be a Σ-hyperalgebra generated
by X. To prove that a property P holds for each element of A, it suffices to show that

induction basis. P holds for each element of X.
induction step. If σ ∈ Σ and P holds for each of elements aρ(σ)1 ∈ A, then P

holds for each elements of σA(a
ρ(σ)
1 ).

Proof. Let P = {x ∈ A : P holds for x}. X ⊆ P and P is closed under the hyperopera-
tions of A. Hence, P ∈ Sub(A) and it implies that A = SgA(X) ⊆ P . �

Let A be a Σ-hyperalgebra and X ⊆ A. We define

E(X) = X ∪ {t ∈ σA(a
ρ(σ)
1 ) : ∀σ ∈ Σ, a

ρ(σ)
1 ∈ X}.

Now, we define En(X) for n ≥ 0 by

E0(X) = X,
En(X) = E(En−1(X)).
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4.6. Theorem. Let A be a Σ-hyperalgebra and X ⊆ A. Then
SgA(X) = ∪∞i=0E

i(X).

Proof. Let P = {x ∈ SgA(X) : x ∈ I = ∪∞i=0E
i(X)}. Clearly, X ⊆ P . Now, let

σ ∈ Σ and x1, · · · , xρ(σ) ∈ P . One can see that Ei(X) ⊆ Ei+1(X) for each i ∈ w, so it
implies that there is a n ∈ w such that x1, · · · , xρ(σ) ∈ En(X). Thus σA(x1, · · · , xρ(σ)) ⊆
En+1(X) ⊆ I. Therefore by Theorem 4.5, we get the result. �

4.7. Definition. Let A and B be two Σ-hyperalgebras. Then B is a subhyperalgebra of
A if B ⊆ A and every fundamental operation of B is the restriction of the corresponding
operation of A, i.e., for each function symbol σ ∈ Σ, σB is σA restricted to B; we write
simply B ≤ A. If B ≤ A, then B ∈ Sub(A). Conversely, if B ∈ Sub(A) and B 6= ∅, then
there is a unique B ≤ A such that B is the universe of B.

4.8. Theorem. Let A,B be Σ-hyperalgebras, f ∈ HomG(A,B) and h ∈ Hom(A,B).
Then

(i) For each K ∈ Sub(A), f(K) ∈ Sub(B).
(ii) For each L ∈ Sub(B), h−1(L) ∈ Sub(A), if h−1(L) 6= ∅.
(iii) For each X ⊆ A, f(SgA(X)) ∈ SgA(f(X)).

Proof. (i) Let σ ∈ Σ and b
ρ(σ)
1 ∈ f(K). Choose aρ(σ)1 ∈ K such that f(a1) =

b1, · · · , f(aρ(σ)) = bρ(σ). Then σB(b
ρ(σ)
1 ) = σB(f(a1), · · · , f(aρ(σ))) = f(σA(a

ρ(σ)
1 )) ⊆

f(K).
(ii) Assume that h−1(L) 6= ∅. Let σ ∈ Σ and aρ(σ)1 ∈ h−1(L). So f(a1), · · · , f(aρ(σ)) ∈

L. Then h(σA(a
ρ(σ)
1 )) ⊆ σB(h(a1), · · · , h(aρ(σ))) ⊆ L. Hence, σA(a

ρ(σ)
1 )) ⊆

h−1(L).
(iii) f(X) ⊆ f(SgA(X)) ∈ Sub(B), by part (i). Therefore, SubB(f(X)) ⊆ f(SgA(X)).

For the reverse inclusion, X ⊆ f−1(f(X)) ⊆ f−1(SgA(f(X)) ∈ Sub(A), by part
(ii). Hence, SgA(X) ⊆ f−1(SgA(f(X))).

�

Let AlgH(Σ) be the class of all Σ-hyperalgebras. ≤ is a partial ordering of AlgH(Σ).
Clearly, it is reflexive and antisymmetric. If C ≤ B and B ≤ A, then C ⊆ A and for each
σ and cρ(σ)1 ∈ C, we have σC(c

ρ(σ)
1 ) = σB(c

ρ(σ)
1 ) = σA(c

ρ(σ)
1 ). Hence, ≤ is transitive.

For any class K of AlgH(Σ) we define

S(K) = {B ∈ AlgH(Σ) : ∃ A ∈ K(B ≤ A)}.
4.9. Theorem. S is an algebraic closure operator on AlgH(Σ).

Proof. Clearly, K ⊆ S(K) by the reflexivity of ≤ and by transitivity of ≤, we obtain that
SS(K) = (K). Also, K ⊆ L implies S(K) ⊆ S(L). Furthermore, S(K) = ∪{S(A) : A ∈
S(K)} and it implies that S is algebraic closed. �

Define the binary relation 4 on AlgH(Σ) by B 4 A if there is an onto good homo-
morphism f : A −→ B. Clearly, 4 is reflexive and transitive.

For any class K of AlgH(Σ) we define

H(K) = {B ∈ AlgH(Σ) : ∃ A ∈ K(B 4 A)},
I(K) = {B ∈ AlgH(Σ) : ∃ A ∈ K(B ∼= A)},

the classes respectively of homomorphic and isomorphic images of algebras of K. Similar
to Theorem 4.9, we can show that H and I are algebraic closure operators on AlgH(Σ).

4.10. Theorem. For any class K of Σ-hyperalgebras, we have
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(i) SH(K) ⊆ HS(K),
(ii) HS is an algebraic closure operator on AlgH(Σ).

Proof. (i) Let C ∈ SH(K) so for some A ∈ K and onto good homomorphism f :
A −→ B we have C ≤ B. By Theorem 4.8, we have f−1(C) ≤ A. Since f is onto
we have C ∈ HS(K).

(ii) Obviously, HS is extensive. By part (i), we have HSHS(K) ⊆ HHSS(K) = HS(K)
so we get that HS is idempotent. Finally, monotonicity of S and H imply that
HS is monotonic. Also, B ∈ HS(K) if and only if there is a A ∈ K such that
B ∈ HS(A) so we have HS(K) ⊆ ∪{HS(A) : A ∈ K} and it implies that HS is
algebraic.

�

5. Some type of subhyperalgebras
There are several kinds of subhyperalgebras. In what follows, we introduce closed,

invertible, ultraclosed and conjugable subhyperalgebras and some connections among
them. Let us present now the definition of these types of subhyperalgebras.

5.1. Definition. Let A be a Σ-hyperalgebra, B ∈ Sub(A), σ ∈ Σ and 1 ≤ i ≤ ρ(σ). We
say that B is

(1) i-closed with respect to σ if for each x ∈ A and bρ(σ)1 ∈ B, from x ∈ σAi (b
ρ(σ)
1 ) it

follows that x ∈ B.

(2) i-invertible with respect to σ if for each x, y ∈ A, from x ∈ σA(
(i−1)

B , y,
(ρ(σ)−i)
B )

it follows that y ∈ σA(
(i−1)

B , x,
(ρ(σ)−i)
B ).

(3) ultraclosed on the right (on the left) with respect to σ if for each x ∈ A we have

σA(x,
(ρ(σ)−1)

B )∩σA(x,
(ρ(σ)−2)

B ,Bc) = ∅ (σA(
(ρ(σ)−1)

B , x)∩σA(Bc,
(ρ(σ)−2)

B , x) = ∅).
(4) i-conjugable with respect to σ if it is i-closed with respect to σ and for each

x ∈ A there exist xρ(σ)−1
1 ∈ A such that σA(xi−1

1 , x, x
ρ(σ)−1
i+1 ) ⊆ B.

We say that B is closed (resp. invertible, conjugable) with respect to σ,
if it is i-closed (resp. invertible, conjugable) with respect to σ, for each 1 ≤
i ≤ ρ(σ). Also, we say that B is closed (resp. invertible, conjugable) if it is
closed (resp. invertible, conjugable) for each σ ∈ Σ. Sets of closed, invertible
and conjugable subhyperalgebra of hyperalgebra A are denoted by Subcl(A),
Subin(A) and Subco(A), respectively.

5.2. Examples. (1) Consider 3-hypergroup A in Examples 2.4. Let I = {a}.
Clearly, I is a subhyperalgebra of A which it is closed and invertible but it
is not ultraclosed, since σ(b, a, a) ∩ σ(b, a, c) = b, and it is not conjugable.

(2) Consider commutative 3-ary hypergroup B in Examples 2.4. Let J = {b}. One
can see that J is a subhyperalgebra of B which it is closed, invertible, ultraclosed
and conjugable.

The following theorems present some connections among the above types of subhy-
peralgebras.

5.3. Theorem. Let A be a Σ-hyperalgebra. Then (Subcl(A),⊆) and (Subin(A),⊆) are
algebraic closed set systems. Furthermore, Subin(A) ⊆ Subcl(A).

Proof. Obviously, (Subcl(A),⊆) and (Subin(A),⊆) are closed set systems. Also, similar
to Theorem 4.3, we can conclude that (Subcl(A),⊆) and (Subin(A),⊆) are algebraic.

Now, suppose that σ ∈ Σ and 1 ≤ i ≤ ρ(σ), bρ(σ)1 ∈ B and x ∈ A such that x ∈
σA
i (b

ρ(σ)
1 ). By hypothesis x ∈ σA(b

ρ(σ)
1 ) ⊆ B and it holds the result. �
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5.4. Lemma. Let A be a Σ-hyperalgebra, B ∈ Sub(A) and σ ∈ Σ such that it is (1, ρ(σ))-

associative. Then B is 1(ρ(σ))-invertible if and only if {σA(x,
(ρ(σ)−1)

B )}x∈A ({σA(
(ρ(σ)−1)

B
, x)}x∈A) is a disjoint family of subsets of A.

Proof. Suppose that σ ∈ Σ, B is 1-invertible with respect to σ and z ∈ σA(x,
(ρ(σ)−1)

B

)) ∩ σA(y,
(ρ(σ)−1)

B )), for some x, y ∈ A. Then we have

σA(z,
(ρ(σ)−1)

B ) ⊆ σA(σA(x,
(ρ(σ)−1)

B ),
(ρ(σ)−1)

B )

= σA(x,
(ρ(σ)−2)

B , σA(
(ρ(σ))

B ))

⊆ σA(x,
(ρ(σ)−1)

B )

By hypothesis x ∈ σA(z,
(ρ(σ)−1)

B ) and similarly we can conclude that σA(x,
(ρ(σ)−1)

B ) ⊆
σA(z,

(ρ(σ)−1)

B ). So σA(x,
(ρ(σ)−1)

B ) = σA(z,
(ρ(σ)−1)

B ). Also, we can get σA(y,
(ρ(σ)−1)

B ) =

σA(z,
(ρ(σ)−1)

B ) and it shows that {σA(x,
(ρ(σ)−1)

B )}x∈A is a disjoint family of subsets of A.

Conversely, suppose that x ∈ σA(y,
(ρ(σ)−1)

B ). Then σA(x,
(ρ(σ)−1)

B ) ⊆ σA(z,
(ρ(σ)−1)

B )

whence σA(x,
(ρ(σ)−1)

B ) = σA(z,
(ρ(σ)−1)

B ). Thus we have x ∈ σA(x,
(ρ(σ)−1)

B ) hence we

obtain that y ∈ σA(y,
(ρ(σ)−1)

B ) = σA(x,
(ρ(σ)−1)

B ). Similarly, we can show that B is ρ(σ)-

invertible if and only if {σA(
(ρ(σ)−1)

B , x)}x∈A is a disjoint family of subsets of A. �

5.5. Lemma. Let A be a Σ-hyperalgebra, σ ∈ Σ and B ∈ Sub(A) such that A,B satisfies

the reproduction axiom with respect to σ and B be ρ(σ)(1)-closed. Then σA(
(ρ(σ)−1)

B

,Bc) = Bc, (σA(Bc,
(ρ(σ)−1)

B ) = Bc).

Proof. We have

A = σA(
(ρ(σ)−1)

B ,A)

= σA(
(ρ(σ))

B ) ∪ σA(
(ρ(σ)−1)

B ,Bc)

= B ∪ σA(
(ρ(σ)−1)

B ,Bc).

On the other hand, assume that b ∈ B ∩ σA(
(ρ(σ)−1)

B ,Bc). So there exist c ∈ Bc and
b
ρ(σ)−1
1 ∈ B such that b ∈ σA(b

ρ(σ)−1
1 , c). Now, since B is ρ(σ)-closed we obtain that

c ∈ B. It is a contradiction. �

5.6. Theorem. Let A be a Σ-hyperalgebra, σ ∈ Σ and B ∈ Sub(A) such that A,B satis-
fies the reproduction axiom with respect to σ and B be conjugable. Then B is ultraclosed
on the right (on the left).

Proof. Suppose that x ∈ A. Denote C = σA(x,
(ρ(σ)−1)

B ) ∩ σA(x,
(ρ(σ)−2)

B ,Bc). Since
B is conjugable it follows that B is closed and there exist xρ(σ)−1

1 ∈ A such that
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σA(x
ρ(σ)−1
1 , x) ⊆ B. By Lemma 5.5, we obtain that

σA(x
ρ(σ)−1
1 , C) ⊆ σA(x

ρ(σ)−1
1 , σA(x,

(ρ(σ)−1)

B )) ∩ σA(x
ρ(σ)−1
1 , σA(x,

(ρ(σ)−2)

B ,Bc))

⊆ B ∩ σA(σA(x
ρ(σ)−1
1 , x),

(ρ(σ)−2)

B ,Bc)

⊆ B ∩ σA(B,
(ρ(σ)−2)

B ,Bc)
= B ∩Bc = ∅.

Hence σA(x,
(ρ(σ)−1)

B )∩ σA(x,
(ρ(σ)−2)

B ,Bc) = ∅, which means that B is ultraclosed on the
right. Similarly, we can show that B is ultraclosed on the left. �

5.7. Lemma. Let A be a Σ-hyperalgebra, σ ∈ Σ and B be an ultraclosed subhyperalgebra
on the right (on the left) which satisfies the reproduction axiom with respect to σ. Then
B is ρ(σ)(1)-closed with respect to σ.

Proof. Let x ∈ A \ B and b ∈ B. Suppose that b ∈ σA(b
ρ(σ)−1
1 , x) ⊆ σA(b1,

(ρ(σ)−2)

B ,Bc).

Since B is ultraclosed on the right we have b /∈ σA(b1,
(ρ(σ)−1)

B ). By the reproduction
axiom we conclude that b /∈ B. It is a contradiction. �

5.8. Theorem. Let A be a Σ-hyperalgebra, σ ∈ Σ such that it is (1, ρ(σ))-associative
and B be an ultraclosed subhyperalgebra on the right (on the left) which satisfies the
reproduction axiom with respect to σ. Then B is 1(ρ(σ))-invertible with respect to σ.

Proof. Suppose that B is ultraclosed on the right. Let y ∈ σA(x,
(ρ(σ)−1)

B ), for some
x, y ∈ A. By associativity we have

σA(y,
(ρ(σ)−1)

B ) ⊆ σA(σA(x,
(ρ(σ)−1)

B ),
(ρ(σ)−1)

B ) ⊆ σA(x,
(ρ(σ)−1)

B ).

On the other hand, By Lemma 5.7 we get that B is ρ(σ)-closed and then we obtain
Lemma 5.5 and by this lemma we have

σA(y,
(ρ(σ)−2)

B ,Bc) ⊆ σA(σA(x,
(ρ(σ)−1)

B ),
(ρ(σ)−2)

B ,Bc)

= σA(x,
(ρ(σ)−2)

B , σA(
(ρ(σ)−1)

B ,Bc))

= σA(x,
(ρ(σ)−2)

B ,Bc)

Thus, by the reproduction axiom we have

A = σA(x,
(ρ(σ)−1)

B ) ∪ σA(x,
(ρ(σ)−2)

B ,Bc) = σA(y,
(ρ(σ)−1)

B ) ∪ σA(y,
(ρ(σ)−2)

B ,Bc)

Since, B is ultraclosed on the right we get that σA(x,
(ρ(σ)−1)

B ) = σA(y,
(ρ(σ)−1)

B ). It shows
that {σA(x,Bρ(σ)−1)}x∈A is a disjoint family of subsets of A so by Lemma 5.4 we conclude
that B is 1-invertible with respect to σ. Similarly, we can show that B is ρ(σ)-invertible,
if it is ultraclosed on the left. �

Let A be a Σ-hyperalgebra and σ ∈ Σ. We denote

Iσ = {eρ(σ)1 ∈ A | ∃x ∈ A, such that x ∈ σA(ei11 , x, e
ρ(σ)−1
i ), for some 1 ≤ i ≤ ρ(σ)}.

5.9. Lemma. Let A be a Σ-hyperalgebra, σ ∈ Σ such that it is (1, ρ(σ))-associative and
B be ρ(σ)(1)-closed with respect to σ which satisfies the reproduction axiom with respect
to σ such that Iσ ⊆ B. Then B is 1(ρ(σ))-invertible.
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Proof. Let y ∈ σA(x,
(ρ(σ)−1)

B ), for some x, y ∈ A. Suppose that x /∈ σA(y,
(ρ(σ)−1)

B ).

Since, x ∈ A = σA(y,
(ρ(σ)−1)

B ) ∪ σA(y,
(ρ(σ)−2)

B ,Bc), we get x ∈ σA(y,
(ρ(σ)−2)

B ,Bc). Now,
by Lemma 5.5, we have

x ∈ σA(y,
(ρ(σ)−2)

B ,Bc) ⊆ σA(σA(x,
(ρ(σ)−1)

B ),
(ρ(σ)−2)

B ,Bc)

= σA(x,
(ρ(σ)−2)

B , σA(
(ρ(σ)−1)

B ,Bc))

= σA(x,
(ρ(σ)−2)

B ,Bc).

So there exist bρ(σ)−2
1 ∈ B and c ∈ Bc such that x ∈ σA(x, b

ρ(σ)−2
1 , c). Hence c ∈ Iσ ∩Bc

and it is a contradiction. �

5.10. Theorem. Let A be a Σ-hyperalgebra, σ ∈ Σ such that it is (1, ρ(σ))-associative
and B ∈ Sub(A) which satisfies the reproduction axiom with respect to σ. If B is 1-closed
and ρ(σ)-close with respect to σ and Iσ ⊆ B then B is ultraclosed.

Proof. Let B is ρ(σ)-close with respect to σ and Iσ ⊆ B. Suppose that z ∈ σA(x,
(ρ(σ)−1)

B

) ∩ σA(x,
(ρ(σ)−2)

B ,Bc). By Lemma 5.9, associativity and Lemma 5.5, we obtain that

x ∈ σA(z,
(ρ(σ)−1)

B ) ⊆ σA(σA(x,
(ρ(σ)−2)

B ,Bc),
(ρ(σ)−1)

B ) = σA(x,
(ρ(σ)−2)

B ,Bc).

Thus, there exist bρ(σ)−2
1 ∈ B and c ∈ Bc such that x ∈ σA(x, b

ρ(σ)−2
1 , c) and it implies

that c ∈ Iσ ∩ Bc. It shows that σA(x,
(ρ(σ)−1)

B ) ∩ σA(x,
(ρ(σ)−2)

B ,Bc) = ∅. Hence B is
ultraclosed on the right. �

6. Conclusion
The above discussion shows that we can extend some notions of hypergroup theory

to a Σ-hyperalgebra for an arbitrary signature Σ. This paper provides suitable tools
for doing more research in the area of hyperstructures, such as on homomorphisms and
subhyperalgebras. Also, by consideration the operator P one can research on a variety
of an arbitrary Σ-hyperalgebras. Acknowledgements

Authors are extremely grateful to the referees for giving them many valuable comments
and helpful suggestions which helped to improve the presentation of this paper.
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[14] H. Höft, P. E. Howard, Representing multi-algebras by algebras, the axiom of choice, and

the axiom of dependent choice, Algebra Universalis, 13 (1981) 69-77.
[15] G. E. Hansoul, A subdirect decomposition theorem for multialgebras, Algebra universalis,

16 (1983) 275-281.
[16] J. Jantosciak, Homomorphisms, equivalences and reductions in hypergroups, Riv. Mat. Pura

Appl., 9 (1991) 23-47.
[17] M. Koskas, Equivalences et homomorphismes des demi-hypergroupes, C. R. Acad. Sci. Paris,

t. 256, (1963).
[18] M. Krasner, Hypergroups extramoduliformeset moduli forms, C. R. Acad. Sci.(paris) 219

(1944) 473-476.
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Abstract

In this paper, we study the behavior of endomorphism rings of a cyclic,
finitely presented module of projective dimension ≤ 1. This class of
modules extends to arbitrary rings the class of couniformly presented
modules over local rings.
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1. Introduction
Throughout this paper, all rings will be associative with identity and modules will be

unital right modules. For any ring R, the Jacobson radical of R will be denoted by J(R)
Recall that MR is couniform if it has dual Goldie dimension one (if and only if it

is non-zero and the sum of any two proper submodules of MR is a proper submodule
of MR). It is well know that a projective right module PR is couniform if and only if
End(PR) is a local ring, if and only if there exists an idempotent e ∈ R with PR ∼= eR
and eRe a local ring, if and only if is a finitely generated module with a unique maximal
submodule.

In [7], Facchini and Girardi introduced and studied the notion of couniformly presented
modules. A module MR is called couniformly presented if it is non-zero and there exists
an exact sequence

0→ CR
ι−→ PR →MR → 0
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Email: ssahinkaya@gyte.edu.tr
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with PR projective and both CR and PR couniform modules. In this case, every endo-
morphism f of MR lifts to an endomorphism f0 of its projective cover PR, and we will
denote by f1 the restriction to CR of f0. Hence we have a commutative diagram

0 → CR
ι−→ PR → MR → 0

f1 ↓ ↓ f0 ↓ f
0 → CR

ι−→ PR → MR → 0.

In [7, Theorem 2.5], Facchini and Girardi proved that:

• Let 0 → CR → PR → MR → 0 be a couniform presentation of a couniformly
presented module MR. Set K := { f ∈ End(MR) | f is not surjective } and I := { f ∈
End(MR) | f1 : CR → CR is not surjective }. Then K and I are completely prime two-
sided ideals of End(MR), and the union K ∪ I is the set of all non-invertible elements of
End(MR). Moreover, one of the following two conditions holds:
(a) Either End(MR) is a local ring, or
(b) K and I are the two maximal right, maximal left ideals of End(MR).

If MR and M ′
R are two couniformly presented modules with couniform presentations

0 → CR → PR → MR → 0 and 0 → C′
R → P ′

R → M ′
R → 0, we say that MR and M ′

R

have the same lower part, and we write [MR]` = [M ′
R]`, if there are two homomorphisms

f0 : PR → P ′
R and f ′

0 : P
′
R → PR such that f0(CR) = C′

R and f ′
0(C

′
R) = CR.

Recall that a ring R is semilocal if R/J(R) is semisimple artinian, that is, isomorphic
to a finite direct product of rings Mni(Di) of ni × ni matrices over division rings Di. A
ring R is homogeneous semilocal if R/J(R) is simple artinian, that is, isomorphic to the
ring Mn(D) of all n × n matrices for some positive integer n and some division ring D
[2, 4]. Examples of such rings include all local rings and all simple Artinian rings. If R is a
homogeneous semilocal ring, then so are the rings eRe and Mn(R), where e is a nonzero
idempotent element of R and Mn(R) is the matrix ring over R. Also, homogeneous
semilocal rings appear in a natural way when one localizes a right Noetherian ring with
respect to a right localizable prime ideal.

In [4], Corisello and Facchini showed that:

• a homogeneous semilocal ring has a unique maximal proper two-sided ideal and
a unique simple module up to isomorphism. Similarly, as in the case of local rings, a
homogeneous semilocal ring has only one indecomposable projective module PR up to
isomorphism, and all projective modules are direct sums of copies of this PR.
• for a module M over any ring R, the Krull-Schmidt theorem holds for M provided
EndR(M) is homogeneous semilocal—that is, the direct sum decomposition of M into
indecomposable summands is unique up to isomorphism.

In [2], Barioli-Facchini-Raggi proved that:

• The later result fails to extend to modules MR with finite direct sum decom-
positions whose indecomposable summands have homogeneous semilocal endomorphism
rings,
• If a module M over a ring R has two decompositions M = M1 ⊕ · · · ⊕Mt =

N1 ⊕ · · · ⊕Ns where all the summands are indecomposable with homogeneous semilocal
endomorphism rings, then these two decompositions are isomorphic.
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2. The endomorphism ring
The following results describe the endomorphism ring of a cyclic, finitely presented

module of projective dimension ≤ 1 over a local ring. Throughout this paper, we will
assume that MR 6= 0.

2.1. Theorem. Let R be a local ring and let MR := RR/I be a cyclic, finitely presented
module of projective dimension ≤ 1. Suppose Ext1R(MR, RR) = 0.

Assume 0 6= I 6= R and let E be the idealizer of the right ideal I of R, that is, the set
of all r ∈ R with rI ⊆ I, so that End(MR) ∼= E/I. Set L := { r ∈ R | rI ⊆ IJ(R) } and
K := E ∩ J(R). Let ψ : E → EndR(I/IJ(R)) be the ring morphism defined by

ψ(e)(x+ IJ(R)) = ex+ IJ(R),

for every e ∈ E and x ∈ I. Let n be the dimension of the right vector space I/IJ(R)
over the division ring R/J(R). Then:

(1) L and K are prime two-sided ideals of E containing I and K is a completely
prime ideal of E;

(2) For every e ∈ E, the element e + I of E/I is invertible in E/I if and only if
e+ J(R) is invertible in R/J(R) and ψ(e) is invertible in EndR(I/IJ(R)).

(3) The quotient ring E/L is isomorphic to the ring Mn(R/J(R)) of all n× n ma-
trices over the division ring R/J(R).

(4) Exactly one of the following two conditions holds:
(a) Either K ⊆ L, in which case E/I is a homogeneous semilocal ring with
Jacobson radical L/I, or
(b) L and K are not comparable.

Proof. (1) and (3). Notice that L is contained in E and is the kernel of ψ, so that L is
a two-sided ideal of E. Trivially, I is contained in L. Let us prove that ψ is onto. Let
f : I/IJ(R) → I/IJ(R) be a morphism. Since MR := RR/I is of projective dimension
≤ 1, the ideal IR is projective, so that f lifts to a morphism f ′ : IR → IR. Apply the
functor Hom(−, RR) to the exact sequence 0 → IR → RR → MR → 0, getting a short
exact sequence

0→ Hom(MR, RR)→ Hom(RR, RR)→ Hom(IR, RR)→ 0

because Ext1R(MR, RR) = 0. Hence f ′ can be extended to a morphism f ′′ : RR → RR,
which is necessarily left multiplication by an element r ∈ R. Since f ′′ restricts to the
endomorphism f ′ of IR, we get that r ∈ E, and ψ(e) = f . This proves that ψ is an onto
ring morphism, so that

E/L = E/ kerψ ∼= EndR(I/IJ(R)) ∼=Mn(R/J(R)).

This proves (3).
As EndR(I/IJ(R)) ∼=Mn(R/J(R)) is a simple ring, it follows that L is a prime ideal

and a maximal two-sided ideal. Similarly, K is the kernel of the composite morphism
ϕ : E → R/J(R) of the embedding E → R and the canonical projection R → R/J(R).
Since R/J(R) is a division ring, we get that K is a completely prime, two-sided ideal of
E containing I. This concludes the proof of (1).
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(2). (:⇒) Since ϕ(I) = 0 and ψ(I) = 0, the morphisms ϕ and ψ induce morphisms
ϕ̃ : E/I → R/J(R) and ψ̃ : E/I → End(I/IJ(R)), respectively. Hence e + I invertible
implies ϕ(e) = e+ J(R) invertible in R/J(R) and ψ(e) is invertible in EndR(I/IJ(R)).
(⇐:)Assume that e ∈ E and that ϕ(e) and ψ(e) are invertible inR/J(R) and EndR(I/IJ(R)),
respectively. Then we have a commutative diagram with exact rows

0 // I //

e

��

RR
π //

e

��

RR/I

e

��

// 0

0 // I // RR
π // RR/I // 0.

Now ϕ(e) = e + J(R) invertible implies that e ∈ R \ J(R), and so e is invertible in
R. Hence the middle vertical arrow is an isomorphism. Since ψ(e) is invertible, it is an
automorphism of I/IJ(R), and so e(I/IJ(R)) = I/IJ(R), that is, eI + IJ(R) = I. By
Nakayama’s Lemma, eI = I. Hence the left vertical arrow is an epimorphism. By the
Snake Lemma, the right vertical arrow is a monomorphism, hence an isomorphism. That
is, e+ I is invertible in E/I.
(4) We have the three cases (a) L ⊂ K, (b) K ⊆ L, and (c) L 6⊆ K and K 6⊆ L.

Assume L ⊂ K. In this case, L ⊂ K ⊂ E implies that 0 ⊂ K/L ⊂ E/L, so that
E/L ∼= Mn(R/J(R)) has a proper non-zero two-sided ideal. This is impossible, because
Mn(R/J) is a simple ring. Hence this case cannot occur.

Assume K ⊆ L. From (2), it follows that an element e+ I of E/I is invertible in E/I
if and only if e+ J(R) is invertible in R/J(R) and e+ L is invertible in E/L. Hence, in
order to prove (4) in this case K ⊆ L, it suffices to prove that J(E/I) = L/I.
(⊆) If e + I ∈ J(E/I), then 1 − xey + I is invertible in E/I for every x, y ∈ E. Thus
1 − xey + L is invertible in E/L for all x, y ∈ E, so that e + L ∈ J(E/L).But E/L ∼=
Mn(R/J(R)) has Jacobson radical 0 so that e ∈ L.
(⊇) Take l + I ∈ L/I with l ∈ L. Then 1− xly + L = 1 + L in E/L for every x, y ∈ E.
Hence 1 − xly + L is invertible in E/L. In particular, 1 − xly /∈ L. Thus 1 − xly /∈ K,
so that 1 − xly /∈ J(R). As R/J(R) is a division ring, it follows that 1 − xly + J(R) is
invertible in R/J(R). Thus 1− xly + I is invertible in E/I, and l ∈ J(E/I). �

It is known that a finitely presented module over a semilocal ring always has a semilocal
endomorphism ring. We have the following natural question.

2.2. Question. Characterize J(E/I). This was done in [1] for cyclically presented
modules.

As far as Question 2.2 is concerned, notice that, in the proof of Theorem 2.1(2), we
have seen that the mapping

ϕ̃× ψ̃ : E/J → R/J(R)× End(I/IJ(R))

is a local morphism, so that its kernel K/I ∩ L/I is contained in J(E/I). In particular,
when K ⊆ L, we have that L/I = J(E/I) as we have seen in Theorem 2.1(4)(a). We are
not able to describe J(E/I) when K and K are not comparable.

2.3. Remark. Let R be a local right self-injective ring. Let MR be a cyclic and finitely
presented module of projective dimension ≤ 1. Since RR is injective, we have that
Ext1R(MR, RR) = 0. Thus, Theorem 2.1 can be applied.

Let A and B be two modules. We say that:
• A and B have the same monogeny class, and write [A]m = [B]m, if there exist a

monomorphism A→ B and a monomorphism B → A [5];
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• A and B have the same epigeny class, and write [A]e = [B]e, if there exist an
epimorphism A→ B and an epimorphism B → A;

It is clear that a module A has the same monogeny (epigeny) class as the zero module
if and only if A = 0.

• Two cyclically presented modules R/aR and R/bR over a local ring R are said to
have the same lower part , denoted [R/aR]l = [R/bR]l, if there exist r, s ∈ R such that
raR = bR and sbR = aR [1].

• If MR and M ′
R are two couniformly presented modules with couniform presenta-

tions
0→ CR → PR →MR → 0

and
0→ C′

R → P ′
R →M ′

R → 0,

we say that MR and M ′
R have the same lower part, and we write [MR]` = [M ′

R]`, if there
are two homomorphisms f0 : PR → P ′

R and f ′
0 : P

′
R → PR such that f0(CR) = C′

R and
f ′
0(C

′
R) = CR [7].

2.4. Theorem. Let R be a semiperfect ring and let RR/L be a cyclic uniform right
R-module with L 6= 0. Let E be the idealizer of the right ideal L of R, that is, the set of
all r ∈ R with rL ⊆ L, so that

End(RR/L) ∼= E/L.

Similarly, let E′ be the idealizer of the right ideal L+ J(R) of R, so that

End(RR/(L+ J(R))) ∼= E′/(L+ J(R)).

Set I := { e ∈ E | left multiplication by e+ I is a non-injective endomorphism of RR/L }
and K := E ∩ (L+ J(R)). Then:

(1) I and K are two two-sided ideals of E containing L, and I is completely prime
in E.

(2) For every e ∈ E, the element e + L of E/L is invertible in E/L if and only if
e+ L+ J(R) is invertible in E′/L+ J(R) and e /∈ I.

(3) Moreover:
(a) If I ⊆ K, then every epimorphism RR/L → RR/L is an automorphism of
RR/L,
(b) K 6⊆ I if and only if [RR/L]m = [L+ J(R)/L]m.

Proof. (1) We know that End(RR/L) ∼= E/L. Every endomorphism e + L of RR/L ex-
tends to an endomorphism e1 of the injective envelope E(RR/L). Define a ring morphism

ϕ : E → End(E(RR/L))/J(End(E(RR/L)))

by ϕ(e) = e1 + J(End(E(RR/L))) for every e ∈ E. Since RR/L is uniform, the injective
envelope E(RR/L) is indecomposable, the endomorphism ring End(E(RR/L)) is a local
ring, and the Jacobson radical J(End(E(RR/L))) consists of all non-injective endomor-
phisms of E(RR/L). It follows that I, which is equal to the kernel of the ring morphism
ϕ, whose range is the division ring

End(E(RR/L))/J(End(E(RR/L))),

must be a completely prime two-sided ideal of E. The remaining part of statement (1)
is easily checked.
(2) We have already seen that there is a ring morphism

ϕ : E → End(E(RR/L))/J(End(E(RR/L)))

989



whose kernel is I. Hence if e ∈ E and e + L is invertible in E/L, then ϕ(e) must be
invertible in the division ring End(E(RR/L))/J(End(E(RR/L))). Thus ϕ(e) 6= 0, that
is, e /∈ kerϕ = I. Similarly, we can consider the ring morphism

ψ : E → End(RR/L+ J(R))

defined by ψ(e)(r + L + J(R)) = er + L + J(R) for every e ∈ E and every r ∈ R. Its
kernel is K, which contains L. Hence e + L invertible in E/L implies ψ(e) invertible in
End(RR/L+ J(R)). But

End(RR/(L+ J(R))) ∼= E′/(L+ J(R)),

so that e+ L+ J(R) must be invertible in E′/L+ J(R).
Conversely, assume e ∈ E, e+L+J(R) invertible in E′/L+J(R) and e /∈ I. We want

to show that e+ L is invertible in E/L. Since E/L ∼= End(RR/L), this is equivalent to
showing that left multiplication µe : RR/L → RR/L by e is an automorphism of RR/L.
Now e /∈ I is equivalent to µe is injective by definition of I. In order to show that µe is
onto as well, it suffices to prove that µe induces an onto endomorphism

(RR/L)/(RR/L)J(R)→ (RR/L)/(RR/L)J(R)

by Nakayama’s Lemma. But (RR/L)J(R) = L+ J(R)/L, so that

(RR/L)/(RR/L)J(R) ∼= RR/L+ J(R).

Hence e + L + J(R) invertible in E′/L + J(R) ∼= End(RR/(L + J(R))) means that the
endomorphism ψ(e) of RR/L+ J(R) induced by µe is onto, as desired.
(3) (a) Assume I ⊆ K. Let e+L : RR/L→ RR/L be an epimorphism with e ∈ E. Then
the induced morphism ψ(e) : RR/L + J(R) → RR/L + J(R) is also an epimorphism, so
that it is an automorphism because RR/L+J(R) is a semisimple module of finite Goldie
dimension. In the isomorphism

End(RR/(L+ J(R))) ∼= E′/(L+ J(R)),

we obtain that e+L+ J(R) is invertible in the ring E′/(L+ J(R)). Thus e /∈ K. Hence
e /∈ I. It follows from (2) that e+L is invertible, that is, it is an automorphism of RR/L.
(b) Assume K 6⊆ I. Then there is an element f ∈ K, f /∈ I. Thus f ∈ E induces an
endomorphism f of RR/L. Now f /∈ I means that f is injective, and f ∈ K means that
the image of f is contained in L+J(R)/L. Hence [RR/L]m = [L+J(R)/L]m. Conversely,
if [RR/L]m = [L + J(R)/L]m, then there is a monomorphism f : RR/L → L + J(R)/L.
If we compose it with the inclusion L + J(R)/L → RR/L we get an endomorphism of
RR/L which is in K but not in I. Hence K 6⊆ I. �

We finish this study with the following result.

2.5. Theorem. Let R be a semiperfect ring, let R/L,R/L′ be two cyclic uniform modules
with L 6= 0 and L′ 6= 0 proper right ideals of R. Assume that either

(1) every monomorphism RR/L→ RR/L is an automorphism of RR/L, or
(2) every epimorphism RR/L→ RR/L is an automorphism of RR/L, or
(3) [RR/L]m = [L+ J(R)/L]m.

Then the followings are equivalent.
(a) RR/L ∼= RR/L

′

(b) [RR/L]m = [RR/L
′]m and [RR/L]e = [RR/L

′]e.

Proof. Assume [RR/L]m = [RR/L
′]m and [RR/L]e = [RR/L

′]e. Then there are monomor-
phisms α : RR/L → RR/L

′ and β : RR/L
′ → RR/L and epimorphisms α : RR/L →

RR/L
′ and β : RR/L′ → RR/L. Then βα is a monomorphism RR/L→ RR/L and β′α′

is an epimorphism RR/L→ RR/L. If hypothesis (a) holds, then βα is an automorphism
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of RR/L that factors through RR/L′, so that RR/L is isomorphic to a direct summand of
RR/L

′. But RR/L 6= 0 and RR/L′ is uniform, so that RR/L ∼= RR/L
′. This proves our

theorem under hypothesis (a). Dually one proves that the theorem holds when hypothesis
(b) holds.

Assume now that hypothesis (c) holds, i.e., [RR/L]m = [L+ J(R)/L]m. Equivalently,
there exists a monomorphism γ : RR/L→ RR/L whose image is contained in L+J(R)/L.
Now if either α or α′ are isomorphisms, then the existence of α or α′ shows that RR/L ∼=
RR/L

′. This allows us to conclude. Thus we can assume that α is not an epimorphism
and α′ is not a monomorphism. Then α′ + αγ : RR/L → RR/L

′ is an isomorphism,
because:

(1) It is injective, because it is the sum of the injective morphism αγ : RR/L→ RR/L
′

and the non-injective morphism α′ : RR/L→ RR/L
′, and RR/L is uniform.

(2) The ideal J(R) is superfluous in RR by Nakayama’s Lemma. Considering the
canonical projection RR → RR/L, it follows that L + J(R)/L is superfluous in RR/L.
Applying the morphism α : R/L → R/L′, we get that the image of αγ is contained in
α(L+ J(R)/L), hence is a superfluous submodule of R/L′. Thus the sum of αγ and the
surjective morphism α′ : R/L→ R/L′ is a surjective morphism α′+αγ : RR/L→ RR/L

′.
Thus α+ α′γ is an isomorphism of RR/L onto RR/L′. �

2.6. Remark. By Theorem 2.4, the only case in which we cannot apply Theorem 2.5 is
when K is properly contained in I. Namely, if K 6⊆ I, then [RR/L]m = [L + J(R)/L]m
and we can apply Theorem 2.5(a); if K ⊆ I, then either K is properly contained in I,
which is the case still unknown, or K = I, but in the latter case every epimorphism
RR/L→ RR/L is an automorphism of RR/L by Theorem 2.4(1).
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Abstract
In this paper, we study Riemannian, anti-invariant Riemannian and
Lagrangian submersions. We prove that the horizontal distribution of
a Lagrangian submersion from a Kählerian manifold is integrable. We
also give some applications of this result. Moreover, we investigate the
effect of the submersion to the geometry of its total manifold and its
fibers.
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1. Introduction
The theory of Riemannian submersions was initiated by O’Neill [11]. In [18], the Rie-

mannian submersions were considered between almost Hermitian manifolds by Watson
under the name of almost Hermitian submersions. In this case, the Riemannian sub-
mersion is also an almost complex mapping and consequently the vertical and horizontal
distribution are invariant with respect to the almost complex structure of the total man-
ifold of the submersion. Afterwards, almost Hermitian submersions have been actively
studied between different kind of subclasses of almost Hermitian manifolds, for example,
see [5]. We note that almost Hermitian submersions have been extended to different
kind of subclasses of almost contact manifolds, for example, see [14]. Most of the studies
related to Riemannian or almost Hermitian submersions can be found in the book [4].
The study of anti-invariant Riemannian submersions from almost Hermitian manifolds
were initiated by S. ahin [15]. In this case, the fibres are anti-invariant with respect to the
almost complex structure of the total manifold. A Lagrangian submersion is a special
case of an anti-invariant Riemannian submersion such that the almost complex structure
of the total manifold reverses the vertical and horizontal distributions. In this paper, we
consider Riemannian, anti-invariant Riemannian and Lagrangian submersions. We will
focus Lagrangian submersions from a Kählerian manifold onto a Riemannian manifold
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and prove that the horizontal distribution of such a submersion is integrable and totally
geodesic. Using this result we obtain that such a submersion is a totally geodesic map
if and only if it has totally geodesic fibers. We also obtained other applications of the
result. In the last section, we show that non-existence of a Lagrangian submersion with
totally geodesic fibers from a non-flat Kählerian manifold. We also proved that if the
fibers of a Lagrangian submersion are totally umbilical, then the fibers are minimal.

2. Riemannian submersions
In this section, we give necessary background for Riemannian submersions.

Let (M, g) and (N, gN ) be Riemannian manifolds, where dim(M) > dim(N). A sur-
jective mapping π : (M, g)→ (N, gN ) is called a Riemannian submersion [11] if:

(S1) π has maximal rank, and

(S2) π∗, restricted to (kerπ∗)
⊥, is a linear isometry.

In this case, for each q ∈ N , π−1(q) is a k-dimensional submanifold of M and called
fiber, where k = dim(M)−dim(N). A vector field on M is called vertical (resp. horizon-
tal) if it is always tangent (resp. orthogonal) to fibers. A vector field X on M is called
basic if X is horizontal and π-related to a vector field X∗ on N, i.e., π∗Xp = X∗π(p) for
all p ∈ M. As usual, we denote by V and H the projections on the vertical distribution
kerπ∗ and the horizontal distribution (kerπ∗)

⊥, respectively. The geometry of Riemann-
ian submersions is characterized by O’Neill’s tensors T and A, defined as follows:

(2.1) TEF = V∇VEHF +H∇VEVF,

(2.2) AEF = V∇HEHF +H∇HEVF

for any vector fields E and F on M, where ∇ is the Levi-Civita connection of gM . It is
easy to see that TE and AE are skew-symmetric operators on the tangent bundle of M
reversing the vertical and the horizontal distributions. We summarize the properties of
the tensor fields T and A. Let V,W be vertical and X,Y be horizontal vector fields on
M , then we have

(2.3) TVW = TWV,

(2.4) AXY = −AYX =
1

2
V[X,Y ].

On the other hand, from (2.1) and (2.2), we obtain

(2.5) ∇VW = TVW + V∇VW,

(2.6) ∇VX = TVX +H∇VX,

(2.7) ∇XV = AXV + V∇XV,

(2.8) ∇XY = H∇XY +AXY,

and if X is basic, then H∇VX = AXV. It is not difficult to observe that T acts on the
fibers as the second fundamental form while A acts on the horizontal distribution and
measures of the obstruction to the integrability of this distribution. For details on the
Riemannian submersions, we refer to O’Neill’s paper [11] and to the book [4].
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3. Anti-invariant Riemannian submersions
A smooth manifold M is called almost Hermitian [19] if its tangent bundle has an

almost complex structure J and a Riemannian metric g such that

(3.1) g(E,F ) = g(JE, JF )

for any vector fields E and F on M. Let M be a 2m-dimensional almost Hermitian man-
ifold with Hermitian metric g and almost complex structure J , and N be a Riemannian
manifold with Riemannian metric gN . Suppose that there exists a Riemannian submersion
π :M → N such that kerπ∗ is anti-invariant with respect to J, i.e., J(kerπ∗) ⊆ (kerπ∗)

⊥.
Then the Riemannian submersion π is called an anti-invariant Riemannian submersion.
For the details, see [15].

There are some other recent paper which involve other structures such as almost prod-
uct [6], almost contact [9], Sasakian [7] and cosymplectic [8]. In any cases, the definition
of anti-invariant Riemannian submersion is the same as the above definition. Besides
there are many other notions related with that of anti-invariant Riemannian submersion,
such as slant submersion [16] and semi-invariant submersion [17]. The key of this defini-
tions consists on considering the fibres as submanifolds of the almost Hermitian manifold
M having the corresponding property. Because of that, we may consider that the follow-
ing names are more convenient: totally real, instead of anti-invariant, but semi-invariant
(cfr. [17]) of CR-submersion (cfr. e.g. [10]) because definition of a CR-submersion de-
pends on certain CR-submanifold of the total manifold, instead of the fact the fibres are
CR-submanifolds. As one can see, names are quite complex in this field.

An almost Hermitian manifold M is called a Kählerian manifold if

(3.2) (∇EJ)F = 0

for any vector fields E and F on M, where ∇ is the Levi-Civita connection on M. Let
(M, g, J) be a Kählerian manifold. The Riemannian curvature tensor [19] of (M, g, J) is
defined by R(E,F )G = ∇[E,F ]G − [∇E ,∇F ]G for vector fields E,F and G on M . We
put R(E,F,G,K) = g(R(E,F )G,K) where K is a vector field on M . The holomorphic
sectional curvature [19] of M is defined for any unit vector field E tangent to M via

(3.3) H(E) = R(E, JE,E, JE).

We note that a Kählerian manifold with vanishing holomorphic sectional curvature is
flat [19]. The manifold M is called a complex space form if it is of constant holomorphic
sectional curvature. We denote by M(c) a complex space form of constant holomorphic
sectional curvature c. Then the Riemannian curvature tensor R of M(c) is given by

(3.4) R(E,F )G = c
4
{g(F,G)E − g(E,G)F + g(JF,G)JE

−g(JE,G)JF + 2g(E, JF )JG}
for any vector fields E,F and G on M(c) [19]. In this point, we give the following
proposition.

3.1. Proposition. Let π : M(c) → N be a Riemannian submersion from a complex
space form M(c) with c 6= 0 onto a Riemannian manifold N. Then the fibers of M(c) are
invariant or anti-invariant with respect to the almost complex structure J of M(c) if and
only if

(3.5) g((∇UT)VW,X) = g((∇V T)UW,X),

where U, V and W are vertical vector fields and X is a horizontal vector field on M(c).
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Proof. Let U, V and W be vertical vector fields and X be a horizontal vector field on
M(c). Then from (3.4), we have

(3.6) R(U, V )W = c
4
{g(V,W )U − g(U,W )V + g(JV,W )JU

−g(JU,W )JV + 2g(U, JV )JW} .

From (14), we see that R(U, V )W is vertical, if the fibers are invariant or anti-invariant
with respect to the almost complex structure J ofM(c). So, we get easily, R(U, V,W,X) =
0. Therefore, (3.5) follows from the following O’Neill curvature formula {1} [11]:

R(U, V,W,X) = g((∇V T)UW,X)− g((∇UT)VW,X).

Conversely, assume that (3.5) holds. Then for U, V and W , it is not difficult to see
that R(U, V )W is vertical from the above O’Neill curvature formula. If we put W = U
in (3.6), then we have

(3.7) R(U, V )U =
c

4
{g(V,U)U − g(U,U)V + g(U, JV )JU}.

Thus, we see that g(U, JV )JU is vertical from (15), since R(U, V )U is vertical. So, we
conclude that either JU is vertical or g(U, JV ) = 0. It means that either J(kerπ∗) ⊆
kerπ∗ or J(kerπ∗) ⊆ (kerπ∗)

⊥, i.e., either the fibers are invariant or anti-invariant with
respect to the almost complex structure J of M(c). �

3.2. Corollary. Let π :M(c)→ N be an anti-invariant Riemannian submersion from a
complex space form M(c) with c 6= 0 onto a Riemannian manifold N. Then the equality
(3.5) holds.

4. Lagrangian submersions
Let M be a 2m-dimensional almost Hermitian manifold with Hermitian metric g

and almost complex structure J , and N be a Riemannian manifold with Riemannian
metric gN and let π : M → N be an anti-invariant Riemannian submersion. Then
we call π a Lagrangian Riemannian submersion or briefly, a Lagrangian submersion,
if dim(kerπ∗) = dim((kerπ∗)

⊥). In this case, the almost complex structure J of M
reverses the vertical and the horizontal distributions, i.e., J(kerπ∗) = (kerπ∗)

⊥ and
J((kerπ∗)

⊥) = kerπ∗.

In Symplectic Geometry, a Lagrangian submersion π : (M,ω)→ N from a symplectic
manifold onto a manifold is a submersion having the fibres Lagrangian submanifolds (see,
e.g. [1]), i.e., ω|π−1(q) = 0.

An almost Hermitian structure (J, g) defines an almost symplectic structure ω(X,Y ) =
g(JX, Y ), and then we can consider compare both definitions. It is easily shown that
they coincide:

4.1. Lemma. Let π : (M,J, g)→ N be a submersion from an almost Hermitian manifold
onto a manifold. Then the following conditions are equivalent:

(1) The fibres of π are Lagrangian submanifolds.
(2) J(kerπ∗) = (kerπ∗)

⊥.
Moreover, the horizontal distribution (kerπ∗)

⊥ is also Lagrangian.

Proof. (1) ⇒ (2). Let X and Y be vertical, that is; X,Y ∈ kerπ∗. Then g(JX, Y ) =
ω(X,Y ) = 0, thus proving (2). Reversing the reasoning, one has the other implication.

�
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In order to have a Lagrangian submersion π : (M,J, g) → N dimensions must be re-
lated in the following way: dim(M) = 2dim(N). The most natural examples of manifolds
having this relation are given by the tangent (resp. cotangent) bundle of M = TN → N
(resp. M = T ∗N → N). In the seminal paper [2], Dombrowski introduces the almost
complex structure J on the tangent bundle TN of a manifold N having a linear connec-
tion, which is given by the conditions J(XH) = XV ; J(XV ) = −XH , H and V being
the horizontal and vertical lifts. On the other hand, Sasaki [13] introduced the diagonal
lift gD, or Sasaki metric, over the tangent bundle of a Riemannian manifold (N, g), given
by g(XH , Y H) = g(XV , Y V ) = g(X,Y ); g(XH , Y V ) = 0. Thus, the tangent bundle
(TN, J, gD) of a Riemannian manifold (N, g) is an almost Hermitian manifold. Then one
easily obtains:

4.2. Lemma. With the above notation, π : (TN, J, gD) → (N, g) is a Lagrangian sub-
mersion.

We want to emphasize that the same considerations can be done about the cotangent
bundle.

LetM be a Kählerian manifold with Hermitian metric g and almost complex structure
J , and N be a Riemannian manifold with Riemannian metric gN . Now we examine
how the Kählerian structure on M places restrictions on the tensor fields T and A of a
Lagrangian submersion π :M → N .

4.3. Lemma. Let π : M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then we have

a) TV JE = JTV E b) AXJE = JAXE

where V is a vertical vector field, X is a horizontal vector field, and E is a vector field
on M.

Proof. Using (2.5)-(2.8), we obtain easily both assertions from (3.2). �

We remark that Lemma 4.3 was proved partially in [15].

4.4. Corollary. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then we have

AXJY = −AY JX
where X and Y are any horizontal vector fields on M.

Proof. Let X and Y be any horizontal vector fields on M, from Lemma 4.3-b), we have
AXJY = JAXY. Since the tensor A has the alternation property, we get JAXY =
−JAYX = −AY JX. �

4.1. The Horizontal Distribution. We now prove that the horizontal distribution
(kerπ∗)

⊥ is integrable and totally geodesic. It is well-known that the vertical distribution
kerπ∗ is always integrable.

4.5. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then the horizontal distribution (kerπ∗)

⊥ is integrable
and totally geodesic.

Proof. Let X and Y be any horizontal vector fields on M, since AXY = 1
2
V[X,Y ], it is

sufficient to show that AX = 0. If Z is a horizontal vector field on M, then using (2.4),
(2.8), (3.1), (3.2) and Corollary 4.4, we have
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g(AXJY, Z) = −g(AY JX,Z) = −g(∇Y JX,Z) = −g(J∇YX,Z)
= g(∇YX, JZ) = −g(AXY, JZ) = g(AXJZ, Y ) = −g(AZJX, Y )
= g(AZY, JX) = −g(AY Z, JX) = g(AY JX,Z) = −g(AXJY, Z).

Therefore AXJY = 0. By Proposition 2.7-(e) ([18]), we get AX = 0. �

4.2. Applications. In this subsection, we give some applications of Theorem 4.5.

4.6. Corollary. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then we have

(∇π∗)(X, JY ) = (∇π∗)(JX, Y ) = 0,

where X and Y are any horizontal vector fields on M, and ∇π∗ is the second fundamental
form [15] of π.

Proof. It follows immediately from our main result Theorem 4.5, Corollary 3.1([15]) and
Corollary 3.2([15]). �

It is well-known that a differential map π between two Riemannian manifolds is called
totally geodesic if ∇π∗ = 0. Now we give a necessary and sufficient condition for a
Lagrangian submersion to be a totally geodesic map.

4.7. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then π is a totally geodesic map if and only if it has
totally geodesic fibers.

Proof. Let V andW be any vertical vector fields onM, if TV JW = 0, then from Lemma
4.3, we get TVW = 0. On the other hand, from Proposition 2.7-(d)([18]), it follows that
TV = 0, which means that the Lagrangian submersion π has totally geodesic fibers. Thus
the assertion follows from Theorem 4.5 and Theorem 3.4([15]). �

Now, we simply decompose theorems given in [15]. First, we recall the following facts
given in [12].

Let B =M ×N be a Riemannian manifold with metric g. Assume that the canonical
foliations DM and DN intersect perpendicularly everywhere. Then g is the metric tensor
of

(i) a twisted product M ×f N if and only if DM is a totally geodesic foliation and
DN is a totally umbilical foliation,

(ii) a usual product of Riemannian manifolds if and only if DM and DN are totally
geodesic foliations.

Thus, from Theorem 4.5, Theorem 4.2([15]) and Theorem 4.3([15]), we have the fol-
lowing result.

4.8. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then
a) M is a locally twisted product manifold of the form M(kerπ∗)⊥ ×f Nkerπ∗ if and only
if π has totally umbilical fibers,
b) M is a locally product of manifold if and only if π has totally geodesic fibers.

998



5. The Geometry of Total Manifold and Fibers
In this section, we prove some characterization results for a Lagrangian submersion

from a Kählerian manifold onto a Riemannian manifold.

Let M be a Kählerian manifold with Hermitian metric g and almost complex struc-
ture J and let π : M → N be a Lagrangian submersion from the manifold M onto a
Riemannian manifold N. Since A ≡ 0, the O’Neill’s curvature formula {2} [11] reduces
to

(5.1) R(X,V, Y,W ) = g((∇XT)VW,Y )− g(TVX,TWY ),

where V and W are vertical, and X and Y are horizontal vector fields on M.

5.1. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. Then the holomorphic sectional curvature H of M
satisfies

a) H(X) = gM ((∇XT)JXJX,X)− ‖TJXX‖2,

b) H(V ) = gM ((∇JV T)V V, JV )− ‖TV V ‖2,

where X is a unit horizontal and V is a unit vertical vector field on M.

Proof. Both assertion a) and assertion b) follow easily from (3.3), (5.1), Lemma 4.3 and
(3.1). �

We know from Proposition 1.2([3]) that if T is parallel, i.e., ∇ET = 0, for any vector
field E on M , then T = 0. Therefore, by Theorem 5.1 we obtain the following result.

5.2. Theorem. Let π :M → N be a Lagrangian submersion from a Kählerian manifold
M onto a Riemannian manifold N. If the tensor field T is parallel, then the holomorphic
sectional curvature H of M vanishes. Namely, M is flat.

We remark that Theorem 5.2 describes the geometry of the total manifold of the
Lagrangian submersion studied above. On the other hand, if the tensor T vanishes, then
the fibers are totally geodesic. Thus, from Theorem 5.1 and Theorem 5.2, we have the
following result.

5.3. Corollary. Let M be a non-flat Kählerian manifold. Then there is no Lagrangian
submersion π with totally geodesic fibers from M onto a Riemannian manifold N.

Now, we recall that any fiber of a Riemannian submersion π : (M, g) → (N, gN ) is
called totally umbilical if

(5.2) TUV = g(U, V )η

for any U, V ∈ kerπ∗, where η is the mean curvature vector field of the fiber in M. The
fiber is called minimal, if η = 0, identically [4].

5.4. Proposition. Let π : M → N be a Lagrangian submersion from a Kählerian
manifold M onto a Riemannian manifold N. If the fibers of M are totaly umbilical, then
either kerπ∗ = {0} or 1-dimensional or the mean curvature vector field η vanishes, i.e.,
the fibers are minimal.

Proof. If kerπ∗ = {0} orDim(kerπ∗) = 1, then the conclusion is obvious. IfDim(kerπ∗) ≥
2, then we can choose U, V ∈ kerπ∗, such that g(U, V ) = 0 and ‖U‖ = 1. By Lemma
4.3-(a) and (5.2), we have
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g(η, JV ) = g(TUU, JV ) = −g(TUJV, U) = −g(JTUV,U) = 0. Hence, it follows that
η = 0. �
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tions and valuable comments.
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and permanents of one type of Hessenberg
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Abstract
At this paper, we derive some relationships between permanents of one
type of lower-Hessenberg matrix family and the Fibonacci and Lucas
numbers and their sums.
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1. Introduction
The well-known Fibonacci and Lucas sequences are recursively defined by

Fn+1 = Fn + Fn−1, n ≥ 1

Ln+1 = Ln + Ln−1, n ≥ 1

with initial conditions F0 = 0, F1 = 1 and L0 = 2, L1 = 1. The first few values of the
sequences are given below:

n 0 1 2 3 4 5 6 7 8 9

Fn 0 1 1 2 3 5 8 13 21 34
Ln 2 1 3 4 7 11 18 29 47 76

The permanent of a matrix is similar to the determinant but all of the signs used in
the Laplace expansion of minors are positive. The permanent of an n-square matrix is
defined by

perA =
∑

σ∈Sn

n∏

i=1

aiσ(i)
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where the summation extends over all permutations σ of the symmetric group Sn [1].
Let A = [aij ] be an m × n matrix with row vectors r1, r2, . . . , rm. We call A is

contractible on column k, if column k contains exactly two non zero elements. Suppose
that A is contractible on column k with aik 6= 0, ajk 6= 0 and i 6= j. Then the (m− 1)×
(n− 1) matrix Aij:k obtained from A replacing row i with ajkri+ aikrj and deleting row
j and column k is called the contraction of A on column k relative to rows i and j. If A
is contractible on row k with aki 6= 0, akj 6= 0 and i 6= j, then the matrix Ak:ij = [ATij:k]

T

is called the contraction of A on row k relative to columns i and j. We know that if B
is a contraction of A[6], then

(1.1) perA = perB.

It is known that there are a lot of relationships between determinants or
permanents of matrices and well-known number sequences. For example, the authors [2]
investigate relationships between permanents of one type of
Hessenberg matrix and the Pell and Perrin numbers.

In [3], Lee defined a (0− 1)− matrix whose permanents are Lucas numbers.
In [4], the author investigate general tridiagonal matrix determinants and permanents.

Also he showed that the permanent of the tridiagonal matrix based on {ai}, {bi}, {ci} is
equal to the determinant of the matrix based on
{−ai}, {bi}, {ci}.

In [5], the authors give (0, 1,−1) tridiagonal matrices whose determinants and perma-
nents are negatively subscripted Fibonacci and Lucas numbers. Also, they give an n×n
(−1, 1) matrix S, such that perA=det(A ◦ S), where A ◦ S denotes Hadamard product
of A and S.

In the present paper, we consider a particular case of lower Hessenberg
matrices. We show that the permanents of this type of matrices are related with Fi-
bonacci and Lucas numbers and their sums.

2. Determinantal representation of Fibonacci and Lucas numbers
and their sums
Let Hn = [hij ]n×n be an n-square lower Hessenberg matrix as below:

(2.1) Hn = [hij ]n×n =





2, if i = j, for i, j = 1, 2, . . . , n− 1
1, if j = i− 2 and i = j = n
(−1)i, if j = i+ 1
0, otherwise

Then we have the following theorem.

2.1. Theorem. Let Hn be as in (2.1), then

perHn = perH(n−2)
n = Fn+1

where Fn is the nth Fibonacci number.
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Proof. By definition of the matrix Hn, it can be contracted on column n. Let H(r)
n be

the rth contraction of Hn. If r = 1, then

H(1)
n =




2 −1
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)n−2

1 (−1)n−1 2




.

Since H(1)
n also can be contracted according to the last column,

H(2)
n =




2 −1
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)n−3

2 (−1)n−2 3




.

Continuing this method, we obtain the rth contraction

H(r)
n =




2 −1
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)r−1

Fr+1 (−1)r(Fr+2 − Fr+1) Fr+2




, n is even

H(r)
n =




2 −1
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)r
Fr+1 (−1)r−1(Fr+2 − Fr+1) Fr+2




, n is odd

where 2 ≤ r ≤ n− 4. Hence

H(n−3)
n =




2 −1 0
0 2 1

Fn−2 (Fn−2 − Fn−1) Fn−1




by contraction of H(n−3)
n on column 3,

H(n−2)
n =

(
2 −1

Fn−2 Fn

)
.

By (1.1), we have perHn = perH
(n−2)
n = Fn+1. �

Let Kn = [kij ]n×n be an n-square lower Hessenberg matrix in which the superdiagonal
entries are alternating −1s and 1s starting with 1, except the first one which is −3, the
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main diagonal entries are 2s, except the last one which is 1, the subdiagonal entries are
0s, the lower-subdiagonal entries are 1s and otherwise 0. Clearly:

(2.2) Kn =




2 −3
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)n−1

1 0 1




2.2. Theorem. Let Kn be as in (2.2), then

perKn = perK(n−2)
n = Ln−2

where Ln is the nth Lucas number.

Proof. By definition of the matrix Kn, it can be contracted on column n. By consecutive
contraction steps, we can write down,

K(r)
n =




2 −3
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)r−1

Fr+1 (−1)r−2(Fr+2 − Fr+1) Fr+2




, n is even

K(r)
n =




2 −3
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)r
Fr+1 (−1)r−1(Fr+2 − Fr+1) Fr+2




, n is odd

for 1 ≤ r ≤ n− 4. Hence

K(n−3)
n =




2 −3 0
0 2 1

Fn−2 Fn−2 − Fn−1 Fn−1




by contraction of K(n−3)
n on column 3, gives

K(n−2)
n =

(
2 −3

Fn−2 Fn

)
.

By applying (1.1), we have perKn = perK
(n−2)
n = 2Fn − 3Fn−2 = Ln−2, which is

desired. �

Let Mn = [mij ]n×n be an n-square lower Hessenberg matrix as below:

(2.3) Mn = [mij ]n×n =





2, if i = j, for i, j = 1, 2, . . . , n
1, if j = i− 2
(−1)i, if j = i+ 1
0, otherwise

1004



2.3. Theorem. Let Mn be as in (2.3), then

perMn = perM (n−2)
n =

n+1∑

i=0

Fi = Fn+3 − 1

where Fn is the nth Fibonacci number.

Proof. By contraction method on column n, we have

M (r)
n =




2 −1
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)r
r+1∑
i=0

Fi (−1)r−1
r∑
i=0

Fi
r+2∑
i=0

Fi




, n is odd

M (r)
n =




2 −1
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)r−1

r+1∑
i=0

Fi (−1)r−2
r∑
i=0

Fi
r+2∑
i=0

Fi




, n is even

for 1 ≤ r ≤ n− 4. Hence

M (n−3)
n =




2 −1 0
0 2 1

n−2∑
i=0

Fi −
n−3∑
i=0

Fi
n−1∑
i=0

Fi




by contraction of M (n−3)
n on column 3, gives

M (n−2)
n =




2 −1
n−2∑
i=0

Fi
n∑
i=0

Fi


 .

By applying (1.1), we have

perMn = perM (n−2)
n =

n+1∑

i=0

Fi = Fn+3 − 1

which is desired. �

Let Nn = [nij ]n×n be an n-square lower Hessenberg matrix in which the superdiagonal
entries are alternating −1s and 1s starting with 1, except the first one which is −2, the
main diagonal entries are 2s, except the first one is 3, the subdiagonal entries are 0s, the
lower-subdiagonal entries are 1s and otherwise 0. In this content:

1005



(2.4) Nn =




3 −2
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)n−1

1 0 2




2.4. Theorem. Let Nn be an n-square matrix (n ≥ 2) as in (2.4), then

perNn = perN (n−2)
n =

n∑

i=0

Li = Ln+2 − 1

where Ln is the nth Lucas number.

Proof. By contraction method on column n, we have

N (r)
n =




3 −2
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)r
r+1∑
i=0

Fi (−1)r−1
r∑
i=0

Fi
r+2∑
i=0

Fi




, n is odd

N (r)
n =




3 −2
0 2 1
1 0 2 −1

1 0 2 1

. . .
. . .

. . .
. . .

1 0 2 (−1)r−1

r+1∑
i=0

Fi (−1)r
r∑
i=0

Fi
r+2∑
i=0

Fi




, n is even

for 1 ≤ r ≤ n− 4. Hence

N (n−3)
n =




3 −2 0
0 2 1

n−2∑
i=0

Fi −
n−3∑
i=0

Fi
n−1∑
i=0

Fi




by contraction of N (n−3)
n on column 3, gives

N (n−2)
n =




3 −2
n−2∑
i=0

Fi
n∑
i=0

Fi


 .

By applying (1.1), we have

perNn = perN (n−2)
n =

n∑

i=0

Li = Ln+2 − 1

by the identity Fn−1 + Fn+1 = Ln. �
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Abstract
In the paper, we extend the definition of generalized derivations to su-
peralgebras and prove that a generalized superderivation g on a prime
superalgebra A is represented as g(x) = ax+d(x) for all x ∈ A, where a
is an element of Qmr (the maximal right ring of quotients of A) and d is
a superderivation on A. Using the result we study two generalized su-
perderivations when their product is also a generalized superderivation
on a prime superalgebra A.
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1. Introduction
Let R be a prime ring. According to Hvala [9] an additive mapping g : R → R

is said to be a generalized derivation of R if there exists a derivation δ of R such that
g(xy) = g(x)y+xδ(y) for all x, y ∈ R. In [14] Lee proved that every generalized derivation
of A can be uniquely extended to Qmr and there exists an element a ∈ Qmr such that
g(x) = ax+ δ(x) for all x ∈ R.

The study of the product of derivations in prime rings was initiated by Posner [18]. He
proved that the product of two nonzero derivations can not be a derivation on a prime ring
of characteristic not 2. Later a number of authors studied the problem in several ways (see
[2], [4], [5], [9], [10], [12], [13], and [15]). Hvala [9] studied two generalized derivations f1,
f2 when the product is also a generalized derivation on a prime ring R of characteristic not
2 in 1998. In 2001 Lee [13] gave a description of Hvala’s Theorem without the assumption
of charR 6= 2. In 2004 Fošner [5] extended Posner’s Theorem to prime superalgebras.
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Superalgebras first appeared in physics, in the Theory of Supersymmetry, to create an
algebraic structure representing the behavior of the subatomic particles known as bosons
and fermions ([11]). Recently there has been a considerable authors who are interested
in superalgebras. They extended many results of rings to superalgebras (see [3], [5], [6],
[7], [8], [11], [16], [17] and [19]).

In Section 3, we will extend the definition of generalized derivations to superalge-
bras and prove that every generalized superderivation of a prime superalgebra A can
be extended to Qmr (the maximal right ring of quotients of A). Further, we will prove
that a generalized superderivation of a prime superalgebra is a sum of a left multipli-
cation mapping and a superderivation. Using the result we will study two generalized
superderivations when their product is also a generalized superderivation on a prime su-
peralgebra. As a result, Fošner’s theorem [5, Theorem 4.1] is the special case of the
main theorem of the paper.

2. preliminaries
Let Φ be a commutative ring with 1

2
∈ Φ. An associative algebra A over Φ is said

to be an associative superalgebra if there exist two Φ-submodules A0 and A1 of A such
that A = A0

⊕
A1 and AiAj ⊆ Ai+j , i, j ∈ Z2. A superalgebra is called trivial if

A1 = 0. The elements of Ai are homogeneous of degree i and we write |ai| = i for all
ai ∈ Ai. We define [a, b]s = ab − (−1)|a||b|ba for all a, b ∈ A0 ∪ A1. Thus, [a, b]s =
[a0, b0]s + [a1, b0]s + [a0, b1]s + [a1, b1]s, where a = a0 + a1, b = b0 + b1 and ai, bi ∈ Ai
for i = 0, 1. It follows that [a, b]s = [a, b] if one of the elements a and b is homogeneous
of degree 0. Let k ∈ {0, 1}. A superderivation of degree k is actually a Φ-linear mapping
dk : A→ A which satisfies dk(Ai) ⊆ Ak+i for i ∈ Z2 and dk(ab) = dk(a)b+(−1)k|a|adk(b)
for all a, b ∈ A0 ∪A1. If d = d0 + d1, then d is a superderivation on A. For example, for
a = a0 + a1 ∈ A the mapping ads(a)(x) = [a, x]s = [a0, x]s + [a1, x]s is a superderivation,
which is called the inner superderivation induced by a. For a superalgebra A, we define
σ : A → A by (a0 + a1)σ = a0 − a1, then σ is an automorphism of A such that σ2 = 1.
On the other hand, for an algebra A, if there exists an automorphism σ of A such that
σ2 = 1, then A becomes a superalgebra A = A0

⊕
A1, where Ai = {x ∈ A|xσ = (−1)ix},

i = 0, 1. Clearly a superderivation d of degree 1 is a σ-derivation, i.e., it satisfies d(ab) =
d(a)b + aσd(b) for all a, b ∈ A. A superalgebra A is called a prime superalgebra if and
only if aAb = 0 implies a = 0 or b = 0, where at least one of the elements a and b is
homogeneous. The knowledge of superalgebras refers to [3], [5], [6], [7], [8], [16], [17] and
[19].

In [17] Montaner obtained that a prime superalgebra A is not necessarily a prime
algebra but a semiprime algebra. Hence one can define the maximal right ring of quotients
Qmr of A, and the useful properties of Qmr can be found in [1]. By [1, proposition 2.5.3] σ
can be uniquely extended to Qmr such that σ2 = 1. Therefore Qmr is also a superalgebra.
Further, we can get that Qmr is a prime superalgebra.

3. the product of generalized superderivations
Firstly, we extend the definition of generalized derivations to superalgebras.

3.1. Definition. Let A be a superalgebra. For i ∈ {0, 1}, a Φ-linear mapping gi : A→ A
is called a generalized superderivation of degree i if gi(Aj) ⊆ Ai+j , j ∈ Z2, and gi(xy) =

gi(x)y + (−1)i|x|xdi(y) for all x, y ∈ A0 ∪ A1, where di is a superderivation of degree i
on A. If g = g0 + g1, then g is called a generalized superderivation on A.

Let A be a prime superalgebra and Q = Qmr be the maximal right ring of quotients
of A. Next, we prove that a generalized superderivation of a prime superalgebra is a sum
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of a left multiplication mapping and a superderivation. By [20, proposition 2] we have
every σ-derivation d of a semiprime ring A can be uniquely extended to a σ-derivation
of Q.

3.2. Theorem. Let A be a prime superalgebra and g : A → A be a generalized su-
perderivation. Then g can be extended to Q and there exist an element a ∈ Q and a
superderivation d of A such that g(x) = ax+ d(x) for all x ∈ A, where both a and d are
determined by g uniquely.

Proof. To prove that the generalized superderivation g on a prime superalgebra A can be
extended to Q, it suffices to prove that g0 and g1 can be extended to Q, respectively. The
generalized superderivation of degree 1 g1 is represented as g1(xy) = g1(x)y + xσd1(y)
for all x, y ∈ A, where d1 is a superderivation of degree 1 on A. Note that d1(xy) =
d1(x)y+xσd1(y). So combining the two equations we have (g1−d1)(xy) = (g1−d1)(x)y.
Let g1 − d1 = f . Clearly f is a right A-module mapping. Then there exists a1 ∈ Q such
that f(x) = a1x. So g1(x) = a1x+d1(x) for all x ∈ A. Since d1 can be extended toQ, then
it follows that g1 can be extended to Q. It is easy to prove that g0(x) = a0x+ d0(x) and
g0 can be extended to Q similarly, where a0 is an element of Q and d0 is a superderivation
of degree 0 on A. So g can be extended to Q. Clearly ai ∈ Qi, i ∈ {0, 1}. Let a = a0 +a1
and d = d0 + d1. Then g(x) = g0(x) + g1(x) = a0x+ d0(x) + a1x+ d1(x) = ax+ d(x) for
all x ∈ A, where a is an element of Q and d is a superderivation of A.

Now we claim both a and d are determined by g uniquely. It suffices to prove that
a = 0 and d = 0 when g = 0. Since g = 0, we have g0 = g1 = 0. By g1 = 0, we obtain
0 = g1(yr) = a1yr + d1(yr) = a1yr + d1(y)r + yσd1(r) = g1(y)r + yσd1(r) = yσd1(r) for
all y, r ∈ A. Then Aσd1(A) = 0. So Ad1(A) = 0. Clearly d1(A) = 0. Since g1(A) = 0, it
follows that a1A = 0. Hence a1 = 0. Similarly we can prove the case when g0 = 0. So
a = 0 and d = 0. �

Next, we give two results which are used in the proof of the main result.

3.3. Lemma. Let A be a prime superalgebra. If A satisfies

(3.1) ([a0, x] + d0(x))yk0(z) + ([b0, x] + k0(x))yd0(z) = 0 for all x, y, z ∈ A,
where a0, b0 ∈ Q0 and both d0 and k0 are superderivations of degree 0 on A. Then one
of the following cases is true:

(i) There exists 0 6= µ ∈ C0 such that µk0(x) + d0(x) = 0;
(ii) [a0, x] + d0(x) = 0;
(iii) [b0, x] + k0(x) = 0

for all x ∈ A.

Proof. Let d0 = k0 = 0. Clearly there exists 0 6= µ ∈ C0 such that µk0(x) + d0(x) = 0.
Hence (i) is true.

Next we assume either d0 6= 0 or k0 6= 0. By [5, Theorem 3.3] there exist λ1 and λ2

not all zero such that λ1([a0, x] +d0(x)) +λ2([b0, x] +k0(x)) = 0. Let λ1 = λ10 +λ11 and
λ2 = λ20 + λ21. Then λ10([a0, x] + d0(x)) + λ11([a0, x] + d0(x)) + λ20([b0, x] + k0(x)) +
λ21([b0, x]+k0(x)) = 0 for all x ∈ A, where λ10, λ20 ∈ C0, λ11, λ21 ∈ C1. By A0∩A1 = 0,
we have

(3.2) λ11([a0, x0] + d0(x0)) + λ21([b0, x0] + k0(x0)) = 0 for all x0 ∈ A0,

(3.3) λ11([a0, x1] + d0(x1)) + λ21([b0, x1] + k0(x1)) = 0 for all x1 ∈ A1.

Using (3.2) and (3.3) we obtain

(3.4) λ11([a0, x] + d0(x)) + λ21([b0, x] + k0(x)) = 0 for all x ∈ A.
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We proceed by dividing three cases. Only one of λ11 and λ21 is nonzero. If λ21 6= 0,
then [b0, x] + k0(x) = 0. If λ11 6= 0, then [a0, x] + d0(x) = 0. Hence either (ii) or (iii) is
true.

Both λ11 6= 0 and λ21 6= 0. By (3.4) and [5, Lemma 3.1] we arrive at [a0, x] + d0(x) =
λ([b0, x] + k0(x)), where λ = −λ−1

11 λ21 6= 0. Using (3.1) we get λ([b0, x] + k0(x))yk0(z) +
([b0, x] + k0(x))yd0(z) = 0. That is, ([b0, x] + k0(x))y(λk0(z) + d0(z)) = 0. If there exists
z ∈ A such that λk0(z)+d0(z) 6= 0, then [b0, x]+k0(x) = 0 for all x ∈ A0∪A1. It follows
that [b0, x] + k0(x) = 0 for all x ∈ A. Hence either (i) or (iii) is true. Similarly, when
ρ([a0, x] + d0(x)) = [b0, x] + k0(x), where ρ = −λ−1

21 λ11 6= 0, we have either (i) or (ii) is
true by using (3.1) again.

When λ11 = λ21 = 0, i.e., λ1, λ2 ∈ C0. If one of λ1 and λ2 is zero, then either
(ii) or (iii) is true. If both λ1 and λ2 are nonzero, the proof is similar to the above
paragraph. �

Similar to the proof of Lemma 3.3, we can get the following result.

3.4. Lemma. Let A be a prime superalgebra. If A satisfies

([a1, x]s + d1(x))yk1(z)− ([b1, x]s + k1(x))yd1(z) = 0 for all x, y, z ∈ A,

where a1, b1 ∈ Q1 and both d1 and k1 are superderivations of degree 1 on A. Then one
of the following cases is true:

(i) There exists 0 6= ν ∈ C0 such that νk1(x) + d1(x) = 0;
(ii) [a1, x]s + d1(x) = 0;
(iii) [b1, x]s + k1(x) = 0

for all x ∈ A.

Now, we are in a position to give the main result of this paper.

3.5. Theorem. Let A be a prime superalgebra and let f = a + d and g = b + k be
two nonzero generalized superderivations on A, where a, b ∈ Q and both d and k are
superderivations on A. If fg is also a generalized superderivation on A. Then one of the
following cases is true:

(i) There exists 0 6= ω ∈ C0 such that ωkj(x) + dj(x) = 0;
(ii) [ai, x]s + di(x) = 0;
(iii) [bi, x]s + ki(x) = 0

for all x ∈ A, where i, j ∈ {0, 1}, ai, bi ∈ Qi and both di and ki are superderivations of
degree i on A, as well as dj and kj.

Proof. According to Theorem 3.2 we assume h(x) = fg(x) = cx + l(x) for all x ∈ A,
where c ∈ Q and l is a superderivation on A, then

fg(x) =a(bx+ k(x)) + d(bx+ k(x))

=abx+ ak(x) + d0(b)x+ bd0(x) + d1(b)x+ bσd1(x) + d0k(x) + d1k(x).

Hence

c =ab+ d0(b) + d1(b) = ab+ d(b),

l(x) =ak(x) + bd0(x) + bσd1(x) + d0k(x) + d1k(x),

l0(x) =a0k0(x) + a1k1(x) + b0d0(x)− b1d1(x) + d0k0(x) + d1k1(x),

l1(x) =a1k0(x) + a0k1(x) + b1d0(x) + b0d1(x) + d0k1(x) + d1k0(x).
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On the one hand we get

l0(xy) =a0k0(xy) + a1k1(xy) + b0d0(xy)− b1d1(xy) + d0k0(xy) + d1k1(xy)

=a0k0(x)y + a0xk0(y) + a1k1(x)y + a1x
σk1(y)

+ b0d0(x)y + b0xd0(y)− b1d1(x)y − b1xσd1(y)

+ d0k0(x)y + k0(x)d0(y) + d0(x)k0(y) + xd0k0(y)

+ d1k1(x)y + k1(x)σd1(y) + d1(xσ)k1(y) + xd1k1(y)

and on the other hand we get

l0(xy) =a0k0(x)y + a1k1(x)y + b0d0(x)y − b1d1(x)y + d0k0(x)y + d1k1(x)y

+ x[a0k0(y) + a1k1(y) + b0d0(y)− b1d1(y) + d0k0(y) + d1k1(y)].

Combining the two equations we have

(3.5)
0 =[a0, x]k0(y) + a1x

σk1(y)− xa1k1(y) + [b0, x]d0(y)− b1xσd1(y)

+ xb1d1(y) + k0(x)d0(y) + d0(x)k0(y) + k1(x)σd1(y)− d1(x)σk1(y).

In particular, replacing y by yz in (3.5) we get

0 =[a0, x]k0(yz) + a1x
σk1(yz)− xa1k1(yz) + [b0, x]d0(yz)− b1xσd1(yz)

+ xb1d1(yz) + k0(x)d0(yz) + d0(x)k0(yz) + k1(x)σd1(yz)− d1(x)σk1(yz).

Extending the identity above we arrive at

0 =[a0, x]k0(y)z + [a0, x]yk0(z) + a1x
σk1(y)z + a1x

σyσk1(z)

− xa1k1(y)z − xa1yσk1(z) + [b0, x]d0(y)z + [b0, x]yd0(z)

− b1xσd1(y)z − b1xσyσd1(z) + xb1d1(y)z + xb1y
σd1(z)

+ k0(x)d0(y)z + k0(x)yd0(z) + d0(x)k0(y)z + d0(x)yk0(z)

+ k1(x)σd1(y)z + k1(x)σyσd1(z)− d1(x)σk1(y)z − d1(x)σyσk1(z).

Using (3.5) we have

0 =[a0, x]yk0(z) + a1x
σyσk1(z)− xa1yσk1(z) + [b0, x]yd0(z)− b1xσyσd1(z)

+ xb1y
σd1(z) + k0(x)yd0(z) + d0(x)yk0(z) + k1(x)σyσd1(z)− d1(x)σyσk1(z).

[5, Corollary 3.6] gives

(3.6) pij = [a0, xi]yk0(zj) + [b0, xi]yd0(zj) + k0(xi)yd0(zj) + d0(xi)yk0(zj) = 0,

(3.7)
qij =a1x

σ
i yk1(zj)− xia1yk1(zj)− b1xσi yd1(zj) + xib1yd1(zj)

+ k1(xi)
σyd1(zj)− d1(xi)

σyk1(zj) = 0.

for all xi ∈ Ai, y ∈ A, zj ∈ Aj , i, j ∈ {0, 1}. Therefore

(3.8)
p00 + p01 + p10 + p11 =[a0, x]yk0(z) + [b0, x]yd0(z) + k0(x)yd0(z)

+ d0(x)yk0(z) = 0,

(3.9)
q00 + q01 + q10 + q11 =a1x

σyk1(z)− xa1yk1(z)− b1xσyd1(z) + xb1yd1(z)

+ k1(x)σyd1(z)− d1(x)σyk1(z) = 0.

According to (3.8) and Lemma 3.3 we see that either (i) or (ii) or (iii) is true.
By (3.9) we get

[a1, x0]yk1(z)− [b1, x0]yd1(z)−k1(x0)yd1(z)

+d1(x0)yk1(z) = 0 for all x0 ∈ A0, y, z ∈ A,
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−[a1, x1]syk1(z) + [b1, x1]syd1(z)+k1(x1)yd1(z)

−d1(x1)yk1(z) = 0 for all x1 ∈ A1, y, z ∈ A.
Combining the identities above we give

[a1, x]syk1(z)− [b1, x]syd1(z)− k1(x)yd1(z) + d1(x)yk1(z) = 0 for all x, y, z ∈ A.
By Lemma 3.4 we have that either (i) or (ii) or (iii) is true. Similarly, using the same
way to l1(xy) we have

[a0, x]yk1(z) + [b0, x]yd1(z) + k0(x)yd1(z) + d0(x)yk1(z) = 0,

(3.10)
a1xyk0(z)− xσa1yk0(z) + b1xyd0(z)

−xσb1yd0(z) + k1(x)yd0(z) + d1(x)yk0(z) = 0

and either (i) or (ii) or (iii) is true. �

In particular, taking a = b = 0 in Theorem 3.5 we obtain

3.6. Corollary. ([5, Theorem 4.1]) Let A be a prime associative superalgebra and let d =
d0 + d1 and k = k0 + k1 be nonzero superderivations on A. Then dk is a superderivation
if and only if d0 = k0 = 0 and k1 = λ0d1 for some nonzero λ0 ∈ C0.

Proof. We assume that both d0 and k0 are nonzero. Since d and k are nonzero su-
perderivations and dk is also a superderivation of A, then there exists 0 6= µ ∈ C0 such
that k0(x) = µd0(x) by Theorem 3.5. We have 2µd0(x)yd0(x) = 0 by taking z = x in
(3.8), that is, d0(x)Ad0(x) = 0. Since A is a semiprime algebra, then d0(x) = 0. But it
contradicts d0 6= 0. We set d0 = 0. Then d1 6= 0. When k1 6= 0. There exists 0 6= λ0 ∈ C0

such that k1(x) = λ0d1(x) and k0(x) = d0(x) = 0 by Theorem 3.5. When k1 = 0 and
k0 6= 0, we have d1(x) = 0 by (3.10). It contradicts that d is a nonzero superderivation.
So d0 = k0 = 0 and k1 = λ0d1 for some nonzero λ0 ∈ C0 when dk is a superderivation.
It is easy to prove that dk is a superderivation when d0 = k0 = 0 and k1 = λ0d1 for some
nonzero λ0 ∈ C0 �
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binomial case
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Abstract
The aim of this study is to present the fuzzy statistics into group se-
quential test when response variable has binomial case. Confidence
intervals for fuzzy parameter estimation in group sequential test pro-
cedure is applied to construct the related fuzzy test statistic with the
help of Buckley’s approach with r-cuts. Afterwards, this present study
is completed with a numerical application to real data. Finally it is con-
cluded that the fuzzy approach is also applicable for group sequential
tests when response variable has binomial case.
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1. Introduction
One of the most important problems in medicine is the uncertainty between patients

and medical relations. These relations are considered as inexact medical entities [2,3].
According to fuzzy set theory suggested by Zadeh [35], inexact medical entities can be
defined as fuzzy sets. Theory of fuzzy sets is widely used for solving problems in which
parameter or quantities cannot be expressed precisely. Buckley [6,7,8] introduced an
approach that uses a set of confidence intervals. Furthermore, fuzzy sets present a number
of powerful reasoning methods that can handle approximate inferences for medical data
[9,19]. Several authors have proposed fuzzy approaches for medical researches. Reis [26]
proposed a fuzzy expert model. This model could be used as a teaching or training tool
that helps midwives, residents and medical students to identify and evaluate clinical
risk factors. Duarte [11] tested a model to select patients for myocardial perfusion
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scintigraphy (MPS) based on fuzzy sets. Zolnoori [33,34] developed a fuzzy expert
system for prediction of fatal asthma and evaluation of the level in asthma exacerbation.

Group sequential tests are not only used in clinical trials but also in medical studies due
to their ethical, economical and administrative benefits. There is an extensive literature
on group sequential tests and their application in clinical trials: an excellent summary is
provided in Jennison and Turmbull [15]. As for medical studies, Pasternak and Shoe [23]
demonstrated that the group sequential test had generally higher efficiency in a cohort
study. Satagoban et al. [29] explain the use of a two stage group sequential test for
gene-disease association studies. Aplenc et al. [4] give a description of group sequential
test for molecular epidemiology study.

Group sequential tests have been applied to the normal, Binomial, inverse Gaussian
and survival response variables [15,5]. Various group sequential test procedures have
been suggested to analyze accumulated data in the literature [15]. Originally they were
defined on the basis of a normalized Z statistic [24], or partial sum statistic [21,32]. Later,
Kim and DeMets [16], Lan and DeMets [18], Pampallona and Anastasios [22], Chang,
Hwang and Shih [10] proposed their designs based on error spending functions. Any of
these procedures can have the overall type I (α) and type II (β) error while providing an
opportunity for early stopping critical values [28].

Asthma is a chronic inflammatory disorder of the respiratory tract characterized by
the infiltration of inflammatory cells, including mast cells, eosinophils, and lymphocytes
[13,14,27]. It is a major cause of disability, utilization of health resource and poor quality
of life around the world. In addition, asthma is the most common chronic disease among
children and young adults. It causes considerable health care costs and loss of work
productivity [31].

There is an epidemic of asthma affecting approximately 4% to 5% of people in
developed countries. In United States, 20.1 million individuals are affected due to asthma
and 6.3 million of them are children [1,30]. Emri [13] researched asthma prevalence in five
urban regions in Turkey. It is found that the asthma prevalence 6.6%. After that, Kurt
[17] evaluated the prevalence of risk factors for asthma and allergic diseases in Turkey.

In this study, it is indicated that group sequential test with α∗(t) functions for binomial
response is applied to asthma data under the light of fuzzy approach. In many cases of
real life, most of the data are approximately known. In addition to this, effects of
measurement errors or unrecognized interactions are inevitable in every field of science.
That is why, we use Buckley’s fuzzy approach for estimating the asthma prevalence.
Subsequently, fuzzy approach for group sequential test is applied to asthma prevalence
in five Turkish urban regions. More information is used in the process of estimation and
hypothesis testing with Buckley’s approach than classical approach.

This paper is organized as follows; The definitions of fuzzy sets, triangular shaped
fuzzy numbers, r-cut of triangular shaped fuzzy number and fuzzy probability are
explained Section 2.1. Later, Buckley’s approach for hypothesis testing is briefly reviewed
in Section 2.2. Group sequential test based on α∗(t) spending functions and the
adaptation of group sequential test according to Buckley’s approach for a binomial case
are given in Section 2.3. An illustrative example of the application of the fuzzy group
sequential test to real asthma data from five Turkish urban regions is given in Section 3.
Finally, concluding remarks are summarized in Section 4.

2. Theory and Methods
2.1. Fuzzy Sets and Triangular Shaped Fuzzy Numbers. A class of objects whose
boundaries are not sharply defined is called as a fuzzy set. If X = {x} denote a collection
of objects, a fuzzy set Ñ in X is a set of ordered pairs Ñ = {x, µÑ (x)}, x ∈ X where µÑ is
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the grade of membership of x in Ñ , µÑ (x) : X →M is a function from X to membership
space M and produces values in [0, 1] for all x. Hence the degree of membership of x in
Ñ is represented by µÑ (x) which is a function having values between 0 and 1 [12].

The r-cuts of a fuzzy number, slices through a fuzzy number, is a non-fuzzy set defined
as Ñ(r) = {x ∈ R,µÑ (x) ≥ r}. Hence r-cut of a triangular shaped fuzzy number can be
shown as Ñ(r) = [NL(r), NU (r)], where NL(r) is the minimum value and NU (r) is the
maximum value of the r-cut [12].

2.2. Hypothesis Testing using Buckley’s Approach with r-cuts. One of the
primary purposes of this statistical inference is to test the hypothesis. The problem
of testing a hypothesis may be about the decision, since the decisions have to be made
about the truth of two propositions, the null hypothesis H0 and the alternative H1.
Furthermore, in traditional statistics, all parameters of the mathematical model should
be very well defined. Sometimes these assumptions may appear too rigid for the real-life
problems, especially dealing with imprecise requirements in medical studies. To lessen
this rigidity, fuzzy methods are incorporated into statistics. In this section, Buckley’s
[6,7,8] approach for hypothesis testing that the parameter of crisp binomial distribution
is defined as a triangular fuzzy number is summarized.

Let P be the probability of a success so that Q = 1−P is the probability of a failure.
It is obtained x successes in a random sample size n so p = x/n is the point estimate of
P . The classical hypothesis for binomial distribution is defined as H0 : P = P0 versus
H1 : P 6= P0. The test statistic

(2.1) Z0 =
p− P0√
P0 Q0/n

is approximately standard normal distribution if n is sufficiently large. Then, decision
rule is: (1) reject H0 if Z0 ≥ zα/2 or Z0 ≤ −zα/2; and (2) do not reject H0 when
−zα/2 ≤ Z0 ≤ zα/2. In the above decision rule ±zα/2 are called critical values (CV ) for
the test. In the decision rule zα/2 is the z value so that probability of random variable
having the N(0, 1) probability density, exceeding z is α/2.

It is known that (p − P )/
√
PQ/n is approximately N(0, 1) if n is sufficiently large.

At that case

(2.2) P
(
p− zα/2

√
p q/n ≤ P ≤ p+ zα/2

√
p q/n

)
= (1− α).

This interval can be arranged according to the method proposed by Buckley [7,8] with
substituting (1 − α)100% confidence interval for all 0.01 ≤ α ≤ 1. So equation (2.2) is
defined by the following equation,

(2.3) [pL(α), pU (α)] = [p− zα/2
√
pq/n, p+ zα/2

√
pq/n].

By placing these confidence intervals one after the other, a triangular shaped fuzzy
number p̃ whose r-cuts are the confidence intervals as

(2.4) p̃[r] = [pL(r), pU (r)],

is given

(2.5) p̃[r] = [p− zr/2
√
pq/n, p+ zr/2

√
pq/n]

for 0.01 ≤ r ≤ 1. Hence the fuzzy parameter estimation of P as triangular shaped
fuzzy number is obtained.
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By substituting equation (2.5) for p into equation (2.1), r-cuts of fuzzy test statistic
are obtained as

(2.6)

Z̃[r] = p̃[r]−P0√
P0Q0/n

=
[
Z0 − zr/2

√
pq

P0Q0
, Z0 + zr/2

√
pq

P0Q0

]
.

Each r-cut is put one over the other, in order to get a triangular fuzzy test statistic Z̃[r].
Calculations are performed by r-cuts and interval arithmetic. Since test statistic is fuzzy,
the critical values C̃V i, i = 1, 2, which are given with equation (2.7) and equation (2.8),
will also be fuzzy. Let C̃V 1 correspond to −zγ/2; and let C̃V 2 go with zγ/2, in this way
it is possible to write C̃V 1 = −C̃V 2.

(2.7) C̃V 2[r] =

[
zα/2 − zr/2

√
p q

P0Q0
; zα/2 + zr/2

√
p q

P0Q0

]

(2.8) C̃V 1[r] =

[
− zα/2 − zr/2

√
p q

P0Q0
;−zα/2 + zr/2

√
p q

P0Q0

]

Both C̃V 1 and C̃V 2 are triangular shaped fuzzy numbers. In addition to this, r ranges in
the interval [0.01, 1]. Final decision rule depends on the positions of fuzzy critical values:
(1) C̃V 2 < Z̃ reject H0; (2) C̃V 1 < Z̃ ≈ C̃V 2 no decision; (3) C̃V 1 < Z̃ < C̃V 2 do not
reject H0; (4) C̃V 1 ≈ Z̃ < C̃V 2 no decision; (5) Z̃ < C̃V 1 reject H0 [6,7,8].

2.3. Group sequential test for a binomial case using Buckley’s approach
with r-cuts. Several authors have proposed group sequential tests according to the
significance levels:(i) constant levels for Pocock [24] and (ii) slowly increasing levels for
O’Brien and Flemmnig [21]. These tests can be used when the group sizes are equal.
In 1980s, first generation methods were generalized by Kim and DeMets [16] with the
α∗(t) which allows one to characterize the rate at which the α risk is spent. The time
t is the so-called information fraction in which the information is observed at a given
time and divided by the total information which is at the end of the study. For example:
t = n/N can be given as a quantitative endpoint which represents the division of the
number of patients at a given time with the number of patients at the end of the study
[30]. In this group sequential test, it is determined that a discrete sequential critical
value (c1, c2, ..., cK) is constructed by choosing positive constants α1, ..., αK so

∑
αi = α,

P (Z1 ≥ c1) = α1 and i = 2, ...,K, P (Zi ≥ ci, Zj ≤ cj , j = 1, ..., i− 1) = αi [18]. Several
examples of functions are existed in the literature. In this study α∗

i (t)’s (i = 1, 2, ..., 5)
are used as follows;

1. α∗
1(t) = 2[1− ϕ(Z1−α/2/

√
t)] 0 ≤ t ≤ 1

2. α∗
2(t) = α[ln[1 + (e− 1)t]] 0 ≤ t ≤ 1

3. α∗
3(t) = α t 0 ≤ t ≤ 1

4. α∗
4(t) = α t3/2 0 ≤ t ≤ 1

5. α∗
5(t) = α t2 0 ≤ t ≤ 1.

When the group sizes are equal, it generates α∗
1(t), discrete ck approximate

to those of O’Brien and Fleming [21] and it generates α∗
2(t), ck approximate to

those of Pocock [24]. Reboussin et al. [25] introduced a program to perform
computations related to the design and analysis of group sequential clinical tests using
[16] spending functions. The program and detailed information are publicly available at
http://www.biostat.wisc.edu/landemets[25].

Firstly, it is considered that the primary outcome of group sequential test is
binary. A sequence of independent Bernoulli random variables X1, X2, . . . is taken into
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consideration with P (Xi = 1) = P and P (Xi = 0) = 1 − P . If data are divided with
the total numbers of observations n1, n2, . . . , nK as group sequentially in analysis 1 to
K, the usual estimate of P in analysis k is given as such:

(2.9) p(k) =
1

nk

nk∑

i=1

Xi

which has variance P (1 − P )/nk and expectation P . The standardized statistics which
are given in equation (2.10), may be used for constructing a two sided test

(2.10) Zk = (p(k) − P0)
√
Ik , k = 1, . . . ,K

in which Ik = nk/{P0(1− P0)}. The test statistic Zk, is compared with ck as follows; 1.
After group k = 1, 2, . . . ,K − 1, if Zk ≥ ck stop reject H0, otherwise continue to k + 1.
2. After group K, if ZK ≥ cK stop reject H0, otherwise accept H0.

After the classical approach of group sequential test is reviewed, let us proceed to
fuzzy approach in which the estimate of P is a triangular shaped fuzzy number and its
r-cuts are given with equation (2.5).

In order to perform H0 : P = P0 versus H1 : P > P0, equation (2.9) is calculated
in every step of group sequential test. The uncertainty of this parameter is taken into
account during the process and is taken as triangular shaped fuzzy number. Hence for
each stage of the process in group sequential tests, fuzzy parameter estimation of p(k) is
calculated with equation (2.11) for 0.01 ≤ r ≤ 1.

(2.11) p̃(k)[r] =

[
p(k) − zr/2

√
p(k) q(k)

nk
; p(k) + zr/2

√
p(k) q(k)

nk

]

Better results can be attained with fuzzy approach which considers all confidence intervals
as (p̃(k)[r], 0.01 ≤ r ≤ 1) for unknown parameter p(k) in the process of group sequential
test rather than classical approach for unknown parameter p(k). Calculations are
performed with interval arithmetic. Substituting r-cuts of p̃(k) into the equation (2.10)
makes it possible to simplify by using interval arithmetic to produce Z̃k[r] which is given
below

(2.12)
Z̃k[r] = (p̃(k)[r]− P0)

√
Ik

= [Zk − zr/2
√

p(k)q(k)

P0Q0
;Zk + zr/2

√
p(k)q(k)

P0Q0
], for k = 1, 2, . . . ,K.

Each r-cut is placed one after the other in order to get a fuzzy test statistic Z̃k[r] at
each step of group sequential test. Since the test statistic is fuzzy, the critical values will
also, be fuzzy. Thus, substituting ck for α∗

i (t) functions for zα continues and then, each
r-cut of fuzzy critical value C̃V

∗
(i)k[r] = [cv1ik(r); cv2ik(r)] can be evaluated with given

calculations below

(2.13) P

(
Zk + zr/2

√
p(k)q(k)

P0 Q0
≥ cv2ik(r)

)
= α

Therefore, fuzzy critical values of group sequential tests for binomial case can be defined
as

(2.14) C̃V
∗
(i)k[r] =

[
ck − zr/2

√
p(k) q(k)

P0 Q0
; ck + zr/2

√
p(k) q(k)

P0 Q0

]

Therefore, the fuzzy test process is as follows; 1. After group k = 1, 2, . . . ,K − 1, if
Z̃k[r] > C̃V

∗
(i)k[r] stop reject H0, otherwise continue to k + 1. 2. After group K, if
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Z̃K [r] > C̃V
∗
(i)K [r] stop reject H0, if Z̃K [r] < C̃V

∗
(i)K [r] accept H0, if Z̃K [r] ≈ C̃V ∗

(i)K [r]
no decision.

Figure 1. Decision criteria of r-cuts approach in group sequential test
for binomial case

These situations are detailed in Figure 1. As a result final decision depends on the
relationship between Z̃k[r] and C̃V

∗
(i)k[r] for k = 1, 2, ..,K: (a) Z̃k[r] > C̃V

∗
(i)k[r] reject

H0 (Fig.1-a), (b) Z̃K [r] > C̃V
∗
(i)K [r] stop reject H0 (Fig.1-b), (c) Z̃K [r] < C̃V

∗
(i)K [r]

accept H0 (Fig.1-c), (d) Z̃K [r] ≈ C̃V ∗
(i)K [r] no decision (Fig.1-d,e).

In Figure 1, height of the intersection between two triangular shaped fuzzy number is
given as y0. Buckley and some of the works that uses Buckley’s approach state that if
y0 = 0.8 than it is impossible to compare these two numbers [6,7,8]. Hence it is taken into
account that y0 = 0.8 value for the fuzzy test process decides how much Z̃k[r] is bigger
than or less than C̃V

∗
(i)k[r] for k = 1, 2, ..,K. In some cases it is possible to calculate

Z̃k[r] ≈ C̃V
∗
(i)k[r] (Fig.1-d,e) for k = 1, 2, ..,K, so the final decision is "no decision"

on H0. That is the result of the fuzzy numbers that incorporate all the uncertainty in
confidence intervals [6,7,8]. It is also possible to describe the fuzzy hypothesis testing
procedure in more detailed and realistic way when the value of the test statistic is very
close to the quantile of the test statistic.

Within the framework of the information given in Section 2.2, group sequential test is
modified based on α-spending function for binomial case according to Buckley’s approach.
In Buckley’s approach, fuzzy test statistic is obtained by using more than one confidence
interval as the r-cut of triangular shaped fuzzy number. Thus; in this hypothesis testing
procedure, group sequential test is done by taking into consideration more than one r
value instead of just one value (r = 1) and that is the advantage of Buckley’s fuzzy
approach. Therefore, in this study, it is intended to demonstrate how to use fuzzy
approach proposed by Buckley, in group sequential test based on α-spending function for
binomial case.

3. An illustrative example
In this section, the use of fuzzy approach to medical data in group sequential test

based on α∗
i (t) functions will be described. The medical data of this study is taken
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from a representative sample of adult population of Turkey which takes parts in the first
national fluid and food consumption survey. It is also indicated that, applied survey is
intended to reveal the general health status of a representative Turkish population [13].
Emri at al. [13] researched asthma prevalence in five urban centers in Turkey. In Table
1, the prevalence of asthma is shown for five urban regions. Asthma prevelance is 5.6%
in Kütahya, 9% in Eskisehir, 5.2% in Mersin, 8.7% in Aksaray and 4.3% in Sakarya. On
the whole, one hundred and seven (6.6%) participants stated that they are diagnosed
with asthma by a physician in Turkey.

Table 1. Prevalence of asthma cases by region (five urban regions, 2002)

Kutahya Eskisehir Mersin Aksaray Sakarya Total
n(%) 19(5.6) 32(9.0) 19(5.2) 26(8.7) 11(4.3) 107(6.6)
Total 337 357 365 300 255 1614

Traditional statistical analysis is based on crispness of data, random variable, point
estimation and so on. However, in real life, it is known that there are many different
situations in which the above mentioned concepts are imprecise. Moreover, effects of
measurement errors or unrecognized interactions in the estimations of prevalence are
inevitable [2,3]. In Buckley’s approach, fuzzy asthma prevalence is obtained by using
more than one confidence interval as the r-cut of triangular shaped fuzzy number. Thus,
more information is used than in the classical approach.

The fuzzy estimations of asthma prevalence for each region are given in Table2. Cal-
culations are performed within the scope of Maple 9 [20]. The fuzzy asthma prevalence
for each region is estimated. For example, it is appropriate to say that the asthma preva-
lence for Kütahya is almost 5.6%, whose r-cuts are represented in Table2. Moreover, it is
possible to see both lower (L) and upper (U) values of the estimated asthma prevalence
for each region. Here, more information is used regarding not only one value but also
all the confidence levels for the estimation of ashtma prevalence under the guidance of
Buckley’s approach. In more detail, the lower and upper values of estimated asthma
prevalence are given such as r = 0.01, r = 0.20, r = 0.40, r = 0.60, r = 0.80 and lastly
r = 1 for each region. In Table 2, it can be seen that, if r-cuts increase, lower and
upper bounds get closer. If r = 1 is taken for each region, the classical results of asthma
prevalence which are given in Table 1 is achieved. By estimating the fuzzy prevalence
of asthma for each region, more information is used compared to the classical method.
Besides, the measurement errors in calculation mistakes can be avoided by using these
estimations.

Classical group sequential test is applied for H0 : P = 0.06 versus H1 : P > 0.06 with
significance level α = 0.05, K = 3. Classical group sequential test results are given for
different α∗

i (t) functions in Table 3. In this study, α∗
2(t) values are taken into account to

test hypothesis at each stage for each region.
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Table 2. Fuzzy prevalence of asthma cases by region (five urban re-
gions, 2002))

p r = 0.01 r = 0.20 r = 0.40 r = 0.60 r = 0.80 r = 1.00

Kutahya 5.6
L 5.580 5.584 5.590 5.593 5.597 5.600
U 5.620 5.616 5.610 5.607 5.604 5.600

Eskisehir 9.0
L 8.975 8.980 8.987 8.992 8.996 9.000
U 9.025 9.020 9.013 9.008 9.004 9.000

Mersin 5.2
L 5.181 5.186 5.191 5.195 5.198 5.200
U 5.219 5.215 5.210 5.206 5.203 5.200

Aksaray 8.7
L 8.674 8.679 8.687 8.692 8.696 8.700
U 8.728 8.728 8.714 8.708 8.704 8.700

Sakarya 4.3
L 4.278 4.284 4.289 4.294 4.297 4.300
U 4.322 4.317 4.311 4.307 4.303 4.300

Total 6.6
L 6.589 6.592 6.595 6.597 6.598 6.600
U 6.611 6.608 6.605 6.604 6.602 6.600

Table 3. Classical Group Sequential Test Results for different α∗
i (t) functions

Stage
Region k=1 k=2 k=3

Kutahya

ti =
ni

Ni
200/337 = 0.594 270/337 = 0.801 337/337 = 1.000

pi =
nasthma

ni
4/200 = 0.020 11/270 = 0.041 19/337 = 0.056

Zi −2.381 -1.335 -0.773
α∗
1(t) 2.292 1.195 1.739

ααα∗
2(t) 1.810 1.996 2.020
α∗
3(t) 1.886 1.966 1.922
α∗
4(t) 1.988 1.950 1.836
α∗
5(t) 2.106 1.958 1.782

Eskisehir

ti =
ni

Ni
150/357 = 0.420 214/357 = 0.599 357/357 = 1.000

pi =
nasthma

ni
6/150 = 0.040 15/214 = 0.070 32/357 = 0.089

Zi −1.031 0.616 1.796
α∗
1(t) 2.807 2.305 1.681

ααα∗
2(t) 1.924 2.074 1.950
α∗
3(t) 2.033 2.093 1.857
α∗
4(t) 2.208 2.136 1.774
α∗
5(t) 2.373 2.201 1.727

Mersin

ti =
ni

Ni
76/365 = 0.208 220/365 = 0.603 365/365 = 1.000

pi =
nasthma

ni
3/76 = 0.039 12/220 = 0.055 19/365 = 0.052

Zi −0.753 −0.344 −0.636
α∗
1(t) 4.139 2.271 1.680

ααα∗
2(t) 2.162 1.969 1.951
α∗
3(t) 2.311 1.999 1.856
α∗
4(t) 2.594 2.048 1.770
α∗
5(t) 2.853 2.125 1.723

Aksaray

ti =
ni

Ni
100/300 = 0.333 200/300 = 0.667 300/300 = 1.000

pi =
nasthma

ni
2/100 = 0.02 10/200 = 0.05 26/300 = 0.087

zi −1.853 −0.595 1.969
α∗
1(t) 3.200 2.141 1.695

ααα∗
2(t) 2.002 1.994 1.980
α∗
3(t) 2.128 1.998 1.881
α∗
4(t) 2.341 2.019 1.792
α∗
5(t) 2.539 2.069 1.741

Sakarya

ti =
ni

Ni
119/255 = 0.467 194/255 = 0.761 255/255 = 1.000

pi =
nasthma

ni
1/119 = 0.008 4/187 = 0.021 11/255 = 0.043

Zi −2.389 −2.228 −1.136
α∗
1(t) 2.642 1.989 1.722

ααα∗
2(t) 1.889 1.988 2.015
α∗
3(t) 1.989 1.966 1.913
α∗
4(t) 2.150 1.957 1.822
α∗
5(t) 2.294 1.977 1.768
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When the results for Kütahya are examined, it can be seen that asthma prevelance is
2% at stage 1 and test statistic is obtained as −2.381, this value is compared with the crit-
ical value α∗

2(t) = 1.81. It takes us to the next step because Z1 = −2.381 < α∗
2(t) = 1.81.

Then, in stage 2, it can bee seen that Z2 = −1.335 < α∗
2(t) = 1.9964, hence this leads us

to next stage. In stage 3, Z3 = −0.773 < α∗
2(t) = 2.020 hence we stop and accept H0.

Test statistic for Eskisehir is calculated as Z1 = −1.031 in the first step and then
comes the next step because Z1 = −1.031 < α∗

2(t) = 1.9241. In the second step, it is
calculated that Z2 = 0.616 < α∗

2(t) = 2.074. Therefore it is proceeded with step 3. It is
obtained that Z3 = 1.796 < α∗

2(t) = 1.950, thus we stop and accept H0.
Test statistic for Mersin is calculated as Z1 = −0.753 in the first stage, later, it leads

us to the next step because Z1 = −0.753 < α∗
2(t) = 2.162. In the second step, it is

obtained that Z2 = −0.344 < α∗
2(t) = 1.969 hence this takes us to last step. Calculation

is performed as such Z3 = −0.636 < α∗
2(t) = 1.951 in the third step so we stop and

accept H0.
Test statistic and critical value is obtained as Z1 = −1.853 < α∗

2(t) = 2.002 for Ak-
saray so it proceeds to second step. It is calculated as Z2 = −0.595 < α∗

2(t) = 1.994,
therefore this takes us to step 3. It is obtained that Z3 = 1.969 < α∗

2(t) = 1.9802, thus
we stop and accept H0.

Test statistic for Sakarya is calculated as Z1 = −2.389 in the first stage, then this
leads us to the next step because Z1 = −2.389 < α∗

2(t) = 1.889. In the second step
it is obtained that Z2 = −2.228 < α∗

2(t) = 1.988 hence it carries us to last step. It is
calculated that Z3 = −1.136 < α∗

2(t) = 2.015 in the third step so we stop and accept H0.
In Buckley’s approach, fuzzy test statistic is obtained with using more than one con-

fidence interval as the r-cut of triangular shaped fuzzy number. Thus, more information
is used in hypothesis testing procedure. However, sample size is fixed in this approach.
Fixed sample size is not beneficial in the medical studies in which data comes sequentially.
For this purpose, it is illustrated in this section how to use fuzzy approach proposed by
Buckley in group sequential test based on α-spending function for binomial case for the
prevalence of asthma. Table 4-8 show the results of fuzzy group sequential test based
on α∗

i (t) functions for asthma prevalence for Kütahya, Eskisehir, Mersin, Aksaray and
Sakarya respectively by using fuzzy test statistics. In all regions, no matter which α∗

i (t)
function has been used, (H0) hypothesis has been accepted at the end of step 3. How-
ever, in Eskisehir and Aksaray regions, only of α∗

2(t) function is used, (H0) hypothesis
has been accepted at the end of step 3. If other functions are used, H0 hypothesis has
been rejected at the end of step 3. These tables give fuzzy estimations of asthma preva-
lence p̃i[r], fuzzy test statistics Z̃i[r] and fuzzy critical values α̂∗

i (t) with the help of
equation (2.11), (2.12) and (2.14) for each urban regions in every stage of group sequen-
tial test. As a result, Table 4-8 indicate fuzzy group sequential test for different r-cuts
(r = 0.01, 0.20, 0.40, 0.60, 0.80, 1.00).
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Table 4. Fuzzy Group Sequential Test Results for different α̃∗
i (t) func-

tions for Kutahya.

Stage r = 0.01 r = 0.20 r = 0.40 r = 0.60 r = 0.80 r = 1.00

p̃i[r]
L -0.005 0.001 0.004 0.005 0.019 0.020
U 0.043 0.042 0.040 0.022 0.020 0.020

Z̃i[r]
L -3.911 -3.513 -3.106 -2.977 -2.412 -2.381
U -0.089 -1.912 -1.588 -2.103 -2.297 -2.381

α̃∗
1(t)

L 0.765 1.531 1.784 1.973 2.156 2.292
k = 1 U 3.794 3.040 2.786 2.592 2.431 2.292

(t1 = 0.594)
α̃∗
2(t)

L 0.291 0.932 1.302 1.645 1.713 1.810
U 3.330 3.018 2.970 2.677 2.364 1.810

α̃∗
3(t)

L 0.364 1.119 1.383 1.566 1.728 1.886
U 3.404 2.628 2.385 2.191 2.035 1.886

α̃∗
4(t)

L 0.467 1.226 1.491 1.692 1.827 1.988
U 3.491 2.738 2.478 2.299 2.136 1.988

α̃∗
5(t)

L 0.579 1.345 1.595 1.786 1.959 2.106
U 3.608 2.859 2.595 2.428 2.255 2.106

p̃i[r]
L 0.005 0.012 0.022 0.031 0.039 0.041
U 0.077 0.062 0.053 0.052 0.042 0.041

Z̃i[r]
L -3.552 -3.098 -2.365 -2.131 -1.612 -1.335
U 0.653 0.077 -0.879 -0.978 -1.091 -1.335

α̃∗
1(t)

L -0.954 0.144 0.485 0.755 0.973 1.195
U 3.319 2.259 1.886 1.622 1.391 1.195

k = 2
α̃∗
2(t)

L -0.084 0.715 1.210 1.764 1.874 1.996
(t2 = 0.801) U 4.072 3.614 3.089 2.606 2.037 1.996

α̃∗
3(t)

L -0.179 0.901 1.259 1.518 1.776 1.966
U 4.069 2.996 2.658 2.359 2.154 1.966

α̃∗
4(t)

L -0.191 0.891 1.234 1.531 1.736 1.950
U 4.073 2.997 2.647 2.383 2.159 1.950

α̃∗
5(t)

L -0.212 0.886 1.250 1.535 1.753 1.958
U 4.061 3.016 2.652 2.401 2.156 1.958

p̃i[r]
L -0.003 0.021 0.042 0.050 0.052 0.056
U 0.081 0.080 0.074 0.061 0.058 0.056

Z̃i[r]
L -3.192 -2.658 -1.889 -1.367 -0.978 -0.773
U 1.591 1.356 0.017 -0.029 -0.589 -0.773

α̃∗
1(t)

L -0.778 0.486 0.935 1.225 1.461 1.739
U 4.233 3.007 2.551 2.233 1.994 1.739

k = 3
α̃∗
2(t)

L -0.390 0.007 0.908 1.209 1.906 2.020
(t1 = 1.000) U 4.540 3.968 3.307 3.0281 2.783 2.020

α̃∗
3(t)

L -0.572 0.677 1.103 1.423 1.675 1.922
U 4.402 3.145 2.711 2.444 2.147 1.922

α̃∗
4(t)

L -0.644 0.560 1.017 1.314 1.603 1.836
U 4.315 3.020 2.708 2.334 2.075 1.836

α̃∗
5(t)

L -0.721 0.551 0.963 1.290 1.557 1.782
U 4.276 3.050 2.593 2.296 2.104 1.782
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Table 5. Fuzzy Group Sequential Test Results for different α̃∗
i (t) func-

tions for Eskisehir

Stage r = 0.01 r = 0.20 r = 0.40 r = 0.60 r = 0.80 r = 1.00

p̃i[r]
L -0.001 0.019 0.027 0.032 0.036 0.040
U 0.081 0.061 0.053 0.048 0.044 0.040

Z̃i[r]
L -3.064 -2.010 -1.685 -1.435 -1.226 -1.031
U 0.986 -0.007 -0.349 -0.643 -0.832 -1.031

α̃∗
1(t)

L 0.779 1.793 2.141 2.397 2.613 2.807
U 4.827 3.804 3.451 3.204 2.997 2.807

k = 1
α̃∗
2(t)

L -1.116 0.901 1.262 1.515 1.731 1.924
t1 = 0.420 U 3.949 2.940 2.588 2.326 2.107 1.924

α̃∗
3(t)

L 0.004 1.023 1.372 1.614 1.861 2.033
U 4.053 3.039 2.704 2.443 2.232 2.033

α̃∗
4(t)

L 0.175 1.225 1.542 1.789 2.014 2.208
U 4.228 3.262 2.905 2.631 2.407 2.208

α̃∗
5(t)

L 0.344 1.372 1.711 1.958 2.170 2.373
U 4.393 3.449 3.043 2.787 2.580 2.373

p̃i[r]
L 0.026 0.047 0.055 0.060 0.066 0.070
U 0.114 0.092 0.085 0.087 0.074 0.070

Z̃i[r]
L -2.026 -0.712 -0.259 0.081 0.358 0.616
U 3.236 1.954 1.497 1.135 0.858 0.616

α̃∗
1(t)

L -0.321 0.996 1.450 1.792 2.058 2.305
U 4.927 3.615 3.145 2.839 2.573 2.305

k = 2
α̃∗
2(t)

L -0.563 0.769 1.208 1.530 1.805 2.074
t2 = 0.599 U 4.690 3.368 2.939 2.612 2.311 2.074

α̃∗
3(t)

L -0.549 0.758 1.228 1.560 1.830 2.093
U 4.725 3.408 2.954 2.642 2.351 2.093

α̃∗
4(t)

L -0.501 0.816 1.255 1.587 1.883 2.136
U 4.758 3.461 3.001 2.675 2.404 2.136

α̃∗
5(t)

L -0.446 0.902 1.325 1.678 1.938 2.201
U 4.817 3.505 3.071 2.734 2.448 2.201

p̃i[r]
L 0.051 0.071 0.077 0.082 0.086 0.089
U 0.27 0.108 0.102 0.097 0.094 0.089

Z̃i[r]
L -1.161 0.313 0.844 1.189 1.528 1.796
U 4.736 3.245 2.754 2.398 2.104 1.796

α̃∗
1(t)

L -1.277 0.206 0.693 1.103 1.415 1.681
U 4.649 3.144 2.630 2.280 1.973 1.681

k = 3
α̃∗
2(t)

L -1.008 0.467 1.015 1.355 1.695 1.950
t3 = 1.000 U 4.897 3.438 2.918 2.550 2.238 1.950

α̃∗
3(t)

L -1.100 0.394 0.908 1.247 1.565 1.857
U 4.804 3.332 2.812 2.495 2.139 1.857

α̃∗
4(t)

L -1.178 0.298 0.835 1.186 1.418 1.774
U 4.720 3.194 2.745 2.378 2.034 1.774

α̃∗
5(t)

L -1.231 0.246 0.772 1.149 1.428 1.727
U 4.673 3.185 2.703 2.309 2.019 1.727
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Table 6. Fuzzy Group Sequential Test Results for different α̃∗
i (t) func-

tions for Mersin

Stage r = 0.01 r = 0.20 r = 0.40 r = 0.60 r = 0.80 r = 1.00

p̃i[r]
L -0.018 0.010 0.021 0.028 0.034 0.039
U 0.097 0.068 0.058 0.051 0.045 0.039

Z̃i[r]
L -2.774 -1.676 -1.416 -1.172 -0.954 -0.753
U 1.264 0.247 -0.097 -0.350 -0.583 -0.753

α̃∗
1(t)

L 2.126 3.121 3.475 3.731 3.918 4.139
U 6.153 5.152 4.766 4.547 4.332 4.139

k = 1
α̃∗
2(t)

L 0.138 1.177 1.498 1.754 1.957 2.162
t1 = 0.208 U 4.171 3.147 2.872 2.567 2.368 2.162

α̃∗
3(t)

L 0.294 1.306 1.651 1.919 2.110 2.311
U 4.308 3.284 2.971 2.728 2.504 2.311

α̃∗
4(t)

L 0.573 1.608 1.925 2.189 2.409 2.594
U 4.602 3.595 3.237 3.002 2.815 2.594

α̃∗
5(t)

L 0.836 1.872 2.225 2.436 2.660 2.853
U 4.865 3.866 3.492 3.265 3.058 2.853

p̃i[r]
L 0.015 0.035 0.042 0.047 0.051 0.055
U 0.094 0.074 0.067 0.063 0.058 0.055

Z̃i[r]
L -2.686 -1.507 -1.108 -0.811 -0.572 -0.344
U 1.993 0.850 0.420 0.132 -0.138 -0.344

α̃∗
1(t)

L -0.083 1.106 1.498 1.806 2.036 2.271
U 4.611 3.412 3.030 2.731 2.516 2.271

k = 2
α̃∗
2(t)

L -0.382 0.802 1.223 1.474 1.730 1.969
t2 = 0.603 U 4.310 3.136 2.733 2.435 2.198 1.969

α̃∗
3(t)

L -0.361 0.813 1.225 1.537 1.769 1.999
U 4.344 3.142 2.754 2.470 2.247 1.999

α̃∗
4(t)

L -0.302 0.891 1.265 1.577 1.814 2.048
U 4.389 3.206 2.808 2.515 2.283 2.048

α̃∗
5(t)

L -0.237 0.962 1.342 1.664 1.901 2.125
U 4.470 3.300 2.844 2.617 2.347 2.125

p̃i[r]
L 0.022 0.037 0.043 0.046 0.049 0.052
U 0.082 0.067 0.062 0.058 0.055 0.052

Z̃i[r]
L -2.374 -1.217 -0.817 -0.525 -0.282 -0.636
U 2.224 1.081 0.681 0.398 0.173 -0.636

α̃∗
1(t)

L -0.621 0.524 0.954 1.243 1.467 1.680
U 3.972 2.808 2.425 2.145 1.907 1.680

k = 3
α̃∗
2(t)

L -0.345 0.799 1.196 1.453 1.729 1.951
t3 = 1.000 U 4.242 3.074 2.701 2.416 2.159 1.951

α̃∗
3(t)

L -0.449 0.733 1.116 1.319 1.620 1.856
U 4.148 3.003 2.606 2.321 2.101 1.856

α̃∗
4(t)

L -0.526 0.605 1.016 1.357 1.553 1.770
U 4.026 2.936 2.534 2.230 2.011 1.170

α̃∗
5(t)

L -0.578 0.590 0.978 1.263 1.501 1.723
U 4.015 2.884 2.468 2.197 1.964 1.723
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Table 7. Fuzzy Group Sequential Test Results for different α̃∗
i (t) func-

tions for Aksaray

Stage r = 0.01 r = 0.20 r = 0.40 r = 0.60 r = 0.80 r = 1.00

p̃i[r]
L -0.016 0.002 0.009 0.012 0.017 0.020
U 0.056 0.038 0.032 0.027 0.024 0.020

Z̃i[r]
L -3.302 -2.573 -2.314 -2.150 -1.979 -1.853
U -0.415 -1.129 -1.388 -1.564 -1.709 -1.853

α̃∗
1(t)

L 1.748 2.479 2.718 2.894 3.056 3.200
U 4.646 3.914 3.675 3.492 3.351 3.200

k = 1
α̃∗
2(t)

L 0.557 1.309 1.153 1.703 1.844 2.002
t1 = 0.333 U 3.433 2.716 2.491 2.315 2.125 2.002

α̃∗
3(t)

L 0.697 1.421 1.688 1.829 1.984 2.128
U 3.566 2.828 2.603 2.420 2.272 2.128

α̃∗
4(t)

L 0.902 1.599 1.845 2.021 2.197 2.341
U 3.758 3.055 2.752 2.633 2.492 2.341

α̃∗
5(t)

L 1.101 1.818 2.057 2.226 2.395 2.539
U 3.964 3.267 3.000 2.817 2.690 2.539

p̃i[r]
L 0.011 0.030 0.037 0.042 0.046 0.050
U 0.089 0.069 0.062 0.058 0.054 0.050

Z̃i[r]
L -2.856 -1.723 -1.345 -1.085 -0.825 -0.595
U 1.643 0.509 0.131 -0.152 -0.412 -0.595

α̃∗
1(t)

L -0.116 1.033 1.381 1.678 1.949 2.141
U 4.363 3.266 2.480 2.598 2.375 2.141

k = 2
α̃∗
2(t)

L -0.287 0.873 1.248 1.498 1.772 1.994
t2 = 0.667 U 4.193 3.095 2.270 2.483 2.209 1.994

α̃∗
3(t)

L -0.275 0.874 1.324 1.536 1.774 1.998
U 4.234 3.073 2.698 2.448 2.261 1.998

α̃∗
4(t)

L -0.238 0.891 1.293 1.569 1.795 2.019
U 4.218 3.138 2.774 2.485 2.184 2.019

α̃∗
5(t)

L -0.203 0.978 1.333 1.600 1.816 2.069
U 4.304 3.200 2.819 2.565 2.311 2.069

p̃i[r]
L 0.045 0.066 0.073 0.079 0.082 0.087
U 0.129 0.108 0.100 0.095 0.091 0.087

Z̃i[r]
L -0.985 0.557 1.015 1.412 1.687 1.969
U 4.847 3.442 2.908 2.542 2.236 1.969

α̃∗
1(t)

L -1.244 0.237 0.725 1.092 1.443 1.695
U 4.558 3.153 2.619 2.298 1.932 1.695

k = 3
α̃∗
2(t)

L -0.959 0.492 0.980 1.347 1.698 1.980
t3 = 1.000 U 4.874 3.423 2.965 2.568 2.263 1.980

α̃∗
3(t)

L -1.008 0.465 0.940 1.278 1.569 1.881
U 4.713 3.302 2.873 2.458 2.121 1.881

α̃∗
4(t)

L -1.132 0.334 0.853 1.158 1.509 1.792
U 4.655 3.250 2.731 2.380 2.059 1.792

α̃∗
5(t)

L -1.168 0.282 0.863 1.122 1.458 1.741
U 4.619 3.245 2.695 2.328 1.947 1.741
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Table 8. Fuzzy Group Sequential Test Results for different α̃∗
i (t) func-

tions for Sakarya

Stage r = 0.01 r = 0.20 r = 0.40 r = 0.60 r = 0.80 r = 1.00

p̃i[r]
L -0.013 -0.003 0.001 0.004 0.006 0.008
U 0.029 0.019 0.015 0.012 0.010 0.008

Z̃i[r]
L -3.30 -2.820 -2.670 -2.579 -2.472 -2.389
U -1.480 -1.936 -2.075 -2.198 -2.284 -2.389

α̃∗
1(t)

L 1.734 2.179 2.331 2.444 2.553 2.642
U 3.556 3.122 2.949 2.829 2.715 2.642

k = 1
α̃∗
2(t)

L 0.970 1.433 1.591 1.728 1.788 1.889
t1 = 0.467 U 2.807 2.332 2.185 2.076 1.995 1.889

α̃∗
3(t)

L 1.071 1.537 1.667 1.786 1.905 1.989
U 2.892 2.447 2.252 2.160 2.062 1.989

α̃∗
4(t)

L 1.222 1.682 1.854 1.959 2.056 2.150
U 3.054 2.615 2.441 2.333 2.225 2.150

α̃∗
5(t)

L 1.359 1.837 1.996 2.110 2.208 2.294
U 3.209 2.758 2.586 2.593 2.374 2.294

p̃i[r]
L 0.009 0.015 0.017 0.019 0.020 0.021
U 0.033 0.027 0.025 0.024 0.023 0.021

Z̃i[r]
L -3.726 -2.982 -2.735 -2.545 -2.371 -2.228
U -0.739 -1.507 -1.759 -1.920 -2.086 -2.228

α̃∗
1(t)

L 0.498 1.238 1.497 1.668 1.854 1.989
U 3.472 2.744 2.477 2.284 2.131 1.989

k = 2
α̃∗
2(t)

L 0.487 1.241 1.496 1.682 1.839 1.988
t2 = 0.761 U 3.475 2.706 2.477 2.258 2.131 1.988

α̃∗
3(t)

L 0.468 1.222 1.467 1.643 1.810 1.966
U 3.435 2.695 2.441 2.245 2.114 1.966

α̃∗
4(t)

L 0.459 1.192 1.460 1.642 1.794 1.957
U 3.433 2.679 2.440 2.258 2.106 1.957

α̃∗
5(t)

L 0.486 1.226 1.480 1.662 1.821 1.977
U 3.453 2.758 2.489 2.256 2.119 1.977

p̃i[r]
L 0.027 0.035 0.038 0.040 0.042 0.043
U 0.060 0.051 0.049 0.046 0.045 0.043

Z̃i[r]
L -3.210 -2.176 -1.183 -1.153 -1.329 -1.136
U 0.949 -0.118 -0.481 -0.734 -0.954 -1.136

α̃∗
1(t)

L -0.438 0.685 1.033 1.314 1.482 1.722
U 3.795 2.762 2.369 2.156 1.920 1.722

k = 3
α̃∗
2(t)

L -0.073 0.955 1.366 1.608 1.789 2.015
t3 = 1.000 U 4.085 3.046 2.719 2.417 2.224 2.015

α̃∗
3(t)

L -0.189 0.884 1.214 1.467 1.721 1.913
U 3.973 2.923 2.570 2.310 2.122 1.913

α̃∗
4(t)

L -0.288 0.795 1.129 1.383 1.590 1.822
U 3.872 2.846 2.489 2.235 2.028 1.822

α̃∗
5(t)

L -0.329 0.693 1.057 1.352 1.545 1.768
U 3.863 2.807 2.398 2.170 1.977 1.768

The results from r = 1 are the same as the classical group sequential test. Thus,
fuzzy group sequential test is carried out regarding more than one r value instead of just
one (r = 1), which is the advantage of fuzzy approach. Furthermore, researcher can test
hypothesis in different levels. If researcher thinks that uncertainty level is high, then
hypothesis can be tested at r=0.01. However, if s/he thinks uncertainty is low, then
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hypothesis can be tested at r=0.80. Besides, it is indicated that crisp values are obtained
for group sequential test if r = 1 is taken for each step. These values are given in Table
4-8.

For example, fuzzy asthma prevalence for Kütahya is calculated as p̃1[r = 0.20] =
[0.001, 0.042] which gets narrower at r = 0.80 as p̃1[r = 0.80] = [0.019, 0.020] at stage
one. Furthermore, at r = 1.00 it is obtained that p̃1[r = 1.00] = [0.020, 0.020] which
is equal to the classical approach results for Kütahya in stage one. Besides, fuzzy test
statistic is obtained as Z̃1[0.20] = [−3.513,−1.912] and fuzzy critical value C̃V

∗
(2)1[0.20] =

[0.932, 3.018] for r = 0.20. It is obtained that Z̃1[0.20] < C̃V
∗
(2)1[0.20], then with the

framework of the test procedure, we continue to the next step. In the second step, it is cal-
culated that Z̃2[0.20] = [−3.098, 0.077] < C̃V

∗
(2)2[0.20] = [0.715, 3.614] this takes us to the

last step. It is obtained that Z̃3[0.20] = [−2.658, 1.356] < C̃V
∗
(2)3[0.20] = [0.007, 3.968]

so we stop and accept H0. Here H0 is tested according to r = 0.20 level.
Fuzzy prevalence of ashthma (p̃i[r]), fuzzy test statistics (Z̃i[r]), fuzzy critical values

are given in detail with Figure 2 for Kütahya in all r-cuts (0.01 ≤ r ≤ 1).

Figure 2. Membership functions of the values in Table 5 for Kutahya

In general, taking into consideration of all the r-cuts for each step with Figure 2, it
is clear that Z̃1 < C̃V

∗
(2)1 for stage 1 (k = 1). In this case, it will proceed to the sec-

ond stage (k = 2). In second stage Z̃2 < C̃V
∗
(2)2 hence this leads us to the last step

(k = 3). When last stage is examined, it is obtained that Z̃3 < C̃V
∗
(2)3. It is possible to
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accept the null hypothesis (H0 : P = 0.06 versus H1 : P > 0.06) at the third stage for
Kütahya by taking into consideration of the all uncertainty within the process of using
r-cuts. Moreover, as the number of steps increases, fuzzy group sequential test statistic
and fuzzy critical value get closer to each other. Hence, closer results to the real values
can be achieved in the fuzzy group sequential tests rather than classical group sequential
tests.

Same calculations are done for other regions. Therefore, fuzzy asthma prevalence
(p̃i[r]), fuzzy test statistic (Z̃i[r]) and fuzzy critical values (α̃∗

1(t),α̃∗
2(t),α̃∗

3(t),α̃∗
4(t),α̃∗

5(t))
are obtained in each step for each region. These results can be seen in Table 5-8.

4. Conclusion
In this study, hypothesis testing is adapted by using r-cuts for group sequential test

based on α-spending function under the guidance of the information given in Section 1.
The advantage of r-cuts (fuzzy) approach is that, instead of generating and processing
a single confidence interval, all the confidence intervals are calculated in the process of
corresponding fuzzy test statistics. Therefore, in this study it is intended to show that
this advantage is also valid for the process of group sequential test based on α-spending
function. Thus, the advantages of fuzzy set theory is combined with the advantages of
group sequential test. If r = 1 is taken in each step, fuzzy group sequential test turns
into the classical group sequential test procedure.

Consequently, in this paper fuzzy set theory and Buckley’s approach are used to solve
problems of impreciseness arising in group sequential test for binomial case. Since, in the
traditional statistical tests, the parameters are assumed to be precise values, difficulties
arise when the parameters become imprecise, especially in the field of medicine. Hence,
the vagueness of p usually comes from personal judgment, experiment or estimation,
whose accuracy is limited by the experimental or observational errors. It is clear that
Buckley’s approach, which uses several confidence intervals rather than only one value
for estimating and testing fuzzy parameter, is a well known tool. Additionally, group
sequential test provide ethical, economical and administrative advantages. As a result,
in this study the benefits of two methodologies are combined and it leads us to propose
group sequential test for binomial case under the light of Buckley’s approach with r-cuts.
It is intended to illustrate that how the fuzzy group sequential test could be applied to
real life by using asthma data for five urban regions in Turkey.
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Abstract
This work deals with solutions of ordinary differential equations as
approximations of some discrete-time stochastic processes. Similarly,
these stochastic processes may be seen as schemes of approximation for
this solution. Indeed, these stochastic schemes are defined and their
convergence to the solution of a differential equation is proven. More-
over, the asymptotic distribution of the fluctuations about the limit
solution is studied. This fact gives the asymptotic distribution of a
random global error of approximation. Main results are illustrated by
means of the so called SIS epidemic model and numerical simulations
are carried out.
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1. Introduction
Often processes associated to population dynamics are mathematically modeled by dif-

ferential equations and/or stochastic processes, which are of continuous or discrete time.
Because the analysis of a model based on differential equations is less cumbersome and
more efficient, both from a mathematical point of view as computational, by introducing
a stochastic model for a given process is desirable that it can be approximated by the
solution of an Ordinary Differential Equation (ODE), as is also the case studied in this
work. Some authors such as Kurtz [9, 10, 11] and Darling and Norris [3] have studied the
approximation of continuous-time Markov processes with pure jump by solving an ODE.
The convergence shown by these authors is almost surely and based on the Markov prop-
erty of these processes. Our interest is to analyze such an approach for a class of discrete
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time stochastic processes which are not necessarily Markovian, but including discrete-
time Markov chains. Conversely, given an ordinary differential equation, it is possible to
approximate its solution through this kind of processes. Indeed, our class of stochastic
processes can be seen as a stochastic variant of the Euler scheme to approximate the
solution to an ODE. These schemes of approximation are presented as discrete-time sto-
chastic processes, which includes but are not limited to Markov chains. Recently some
authors, such as Abbasbandy and Bervillier in [1], Eslahchi et al. in [4] Parand et al. in
[5], among others, have studied the problem of approximation for ordinary differential
equations by different deterministic methods. Also, stochastic schemes of approximation
have been developed by Fierro and Torres in [6] and Kloeden and Platen in [8]. This
latter reference deals with schemes of approximation for stochastic differential equations
(SDE). In [12], Kushner and Dupuis present a stochastic scheme of approximation for
SDE based on a Markov chain, which, in particular, can be applied for approximating
solutions to ODEs. Even though, in general, our schemes need not be Markovian, this
model can be included in our setting, whenever the noise part of the equation is zero.

The main results presented in this work are the convergence of the mentioned schemes
to the solution to the ODE and a central limit theorem, which allows to know the asymp-
totic distribution of the global error of the approximation. These results are applied to an
example coming from the biomathematical literature. Indeed, the differential equation
modeling the well-known SIS epidemic model is analyzed under our framework by means
of two natural schemes of approximation.

In order to quantify the probability of error in the approximation, the central limit
theorem presented allows to know the asymptotic distribution of the global error, i.e.
of the fluctuations of the process around the solution to the ODE. By this result it is
possible to establish confidence bands around this solution, which are determined by a
preassigned probability. Therefore, when a particular heuristic model is defined by a
solution to an ODE, it is possible to perform an asymptotical statistical test to validate
the model. Indeed, by considering the stochastic model as the observed process, these
observations should be close to the solution to the ODE insofar this solution to be a good
model for the heuristic situation. Hence, the asymptotic distribution of the global error
allows to carry out a goodness of fit test for both the random and deterministic model.

The plan of this paper is as follows. In Section 2, by means of a recursive condition,
we define a family of discrete-time stochastic processes, which approximate the solution
of the ODE. Main results of this work, along with their proofs, are stated in Section 3.
Since our schemes are stochastic, the global error is so. The asymptotic distribution of
it is analyzed in Section 4. Moreover, some dispersion measures and their estimators are
defined in this section. An example is included in Section 5. Indeed, the solution to the
differential equation defining the so called SIS epidemic model is approximated through
two schemes included in our framework. Both schemes are compared and numerical
simulations are carried out.

2. Preliminaries
Let x0 ∈ Rd and b : R+ × Rd → Rd be a continuous function satisfying the following

Lipchitz condition:
(L) ‖b(t, x)− b(t, y)‖ ≤ K‖x− y‖, for all t ∈ R+,

where K is a positive constant and ‖ · ‖ stands for the usual norm in Rd. Hence, the
initial value problem

(2.1) ẋ(t) = b(t, x(t)) x(0) = x0,

has one and only one solution.
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In this work, a stochastic scheme of approximation for the solution to (2.1) is stated.
Let (Ω,F, IP) be a probability space and {tnk}k∈N the sequence of non-negative real

numbers defined as tnk = Ck/n, (C > 0, n ∈ N \ {0}). In what follows and without loss
of generality, we assume C = 1. An approximation of the solution to (2.1) is obtained
by means of a sequence {Zn}n∈N of stochastic processes defined on R+ × Ω. Such an
approximation is obtained by defining Fnk = σ(Zn(tn1 ), . . . , Zn(tnk )) as the sigma alge-
bra generated by Zn(tn1 ), . . . , Zn(tnk ), xn = xn(0) + 1

n
Zn and assuming the following

condition:
(C) IE(∆Zn(tnk )|Fnk−1) = b(tnk−1, x

n(tnk−1)), (k ≥ 1),
where for any stochastic process Z, ∆Z(tnk ) = Z(tnk )− Z(tnk−1).

For a real number x, [x] stands for the integer part of x and

Ln(t) =
1

n

[nt]∑

k=1

ξnk , (t ≥ 0),

where ξnk = ∆Zn(tnk )− b(tnk−1, x
n(tnk−1)). By defining Fnt = Fn[nt], (t ≥ 0), we have Ln is

a d-dimensional Fnt −martingale and

(2.2) Zn(t) = Zn(0) + n

[nt]∑

k=1

b(tnk−1, x
n(tnk−1))∆tn + nLn(t), (t > 0).

Given any d-dimensional martingale L, its predictable quadratic variation, at time t, is
denoted by 〈L〉(t). Thus, 〈L〉(t) is a d× d-matrix and it directly follows that

(2.3) 〈Ln〉(t) =
1

n2

[nt]∑

k=1

IE(ξnk ξ
n
k
>|Fnk−1), (t ≥ 0)

From (2.1) and (2.2), we have

(2.4) xn(t)−x(t) = xn(0)−x(0)+

∫ [nt]/n

0

{b([nu]/n, xn(u))−b(u, x(u))} du+Ln(t)+εn(t),

where, εn(t) = x([nt]/n) − x(t). Note that sup0≤u≤t ‖εn(s)‖ ≤ St/n, where St =
sup0≤u≤t ‖b(u, x(u))‖.

3. Main results
In the sequel, x stands for the solution to (2.1). In this section, the convergence of

xn to x is stated, which means {xn}n∈N converges uniformly in probability, on compact
subsets of R+, to x as n goes to ∞.

3.1. Theorem. Assume conditions (C) and (L) are satisfied. Moreover, suppose the
following two conditions hold:

(3.1.1): xn(0)
IP−→x0.

(3.1.2): For each t ≥ 0,

1

n2

[nt]∑

k=1

IE(‖ξnk ‖2|Fnk−1)
IP−→ 0, as n→∞.

Then, for each T > 0, sup
0≤t≤T

‖xn(t)− x(t)‖ IP−→ 0, as n→∞.

Proof. Fix T > 0 and let gn(t) = sup0≤s≤t ‖xn(s) − x(s)‖, (t ∈ [0, T ]). From (2.4) and
(L), we obtain

gn(t) ≤ αn +K

∫ t

0

gn(u) du,
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where αn = gn(0)+sup0≤t≤T ‖Ln(t)‖+ST /n. Since, by (3.1.1), {gn(0)}n∈N converges in
probability to zero, by Gronwall’s inequality, it suffices to verify that {sup0≤t≤T ‖Ln(t)‖}n∈N
converges in probability to zero.

From Theorem 1 by Lenglart [13], for any ε, η > 0, we have

IP(sup0≤t≤T ‖Ln(t)‖2 > ε) ≤ 1

ε
IE(tr〈Ln〉(T ) ∧ η) + IP(tr〈Ln〉(T ) > η)

<
η

ε
+ IP(

1

n2

[nT ]∑

k=1

tr IE(ξnk ξ
n
k
>|Fnk−1) > η)

=
η

ε
+ IP(

1

n2

[nT ]∑

k=1

IE(‖ξnk ‖2|Fnk−1) > η)

and hence, by (3.1.2),
lim
n→∞

IP( sup
0≤t≤T

‖Ln(t)‖2 > ε) = 0,

which concludes the proof.

For each t ∈ R+, let b̃t : Rd → Rd be such that b̃t(x) = b(t, x) and suppose for each
t ∈ R+, b̃t has continuous partial derivatives. The following result aims to the problem
of finding confident bands for the approximate solution to (2.1). Before stating it, for
each (t, a) ∈ R+ × Rd, let D(b)(t, a) denote the Jacobian matrix of b̃t at a.

A function v : R+ → Rd×d is said to be a positive-definite, if for each θ ∈ Rm,
fθ : R+ → R defined as fθ(t) = θ>v(t)θ is continuous, increasing and fθ(0) = 0.

3.2. Theorem. Let v be a positive-definite function and yn =
√
n(xn − x). Suppose the

following conditions hold:

(3.2.1): The partial derivatives of b̃t exist and are continuous in Rd.

(3.2.2): For each ε > 0 and t ≥ 0,
1

n

[nt]∑

k=1

IE(‖ξnk ‖2I{‖ξn
k
‖>ε√n}|Fnk−1)

IP−→ 0, as n

goes to ∞.
(3.2.3): {yn(0)}n∈N converges in distribution to a random variable η.

(3.2.4): For each t ≥ 0, sup
0≤s≤t

‖ 1

n

[ns]∑

k=1

IE(ξnk ξ
n
k
>|Fnk−1)−v(s)‖ IP−→ 0, as n goes to ∞.

Then, the sequence {yn}n∈N converges in law to the solution y satisfying the following
stochastic differential equation:

(3.1) dy(t) = D(b)(t, x(t))y(t)dt+ dm(t), y(0) = η,

where m is a d-dimensional continuous martingale starting at zero with predictable qua-
dratic variation, at t ≥ 0, given by 〈m〉(t) = v(t).

Proof. Condition (3.2.2) implies the jump asymptotic rarefaction condition in [14, The-
orem 8, Chapter II.5] by Rebolledo, for the sequence of martingales {mn}n∈N, where
mn =

√
nLn. This fact along with condition (3.2.4) imply {mn}n∈N converges in law to

a continuous martingale m starting at zero and having predictable quadratic variation
〈m〉 given by 〈m〉(t) = v(t).

Let bi be the i-th coordinate of b, (i = 1, . . . , d). By the Value Mean Theorem,
there exists θni (t) ∈ Rd between x(t) and xn(t) such that bi(t, xn(t)) − bi(t, x(t)) =
D(bi)(t, θ

n
i (t))(xn(t)−x(t)), where D(bi)(t, a) is the Jacobian matrix of bi(t, ·) at a ∈ Rd.
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From (2.4), it is derived

(3.2) yn(t) = yn(0) +

∫ t

0

Dn(u)yn(s) ds+mn(t) +
√
nεn(t),

where Dn(u) = (D(b1)(u, θn1 (u)), . . . ,D(bd)(u, θ
n
d (u)))>.

Consequently,

sup
0≤u≤t

‖yn(u)‖ ≤ ‖yn(0)‖+ C(t)

∫ t

0

sup
0≤u≤s

‖yn(u)‖ds+ sup
0≤u≤t

‖mn(u)‖+
St√
n
,

where Cn(t) = sup0≤u≤t sup‖y‖=1 ‖Dn(u)y‖ and C(t) = supn∈N Cn(t). From (3.2.1) and
Theorem 3.1, {sup0≤u≤t ‖Dn(u)‖}n∈N converges in probability to sup0≤u≤t ‖D(b)(u, x(u))‖
and thus, C(t) <∞.

Hence, from a standard application of the Gronwall inequality, we obtain

(3.3) sup
0≤u≤t

‖yn(u)‖ ≤ (‖yn(0)‖+ sup
0≤u≤t

‖mn(u)‖+ St/
√
n) etC(t) .

In order to prove the convergence in law of {yn}n∈N and that its limit has continuous
trajectories, Theorem 15.5 by Billingsley (1968) is used. Since {yn(0)}n∈N converges
in distribution, Theorem 6.2 in Billingsley (1968) implies this sequence is tight, which
means for each ε > 0, there exists a > 0 such that supn∈N IP(‖yn(0)‖ > a) < ε. Hence

(3.4) lim
a→∞

sup
n∈N

IP(‖yn(0)‖ > a) = 0.

Fix T > 0 and let us define the modulus of continuity ωT as

ωT (z, δ) = sup
|s−t|<δ

‖z(s)− z(t)‖,

where δ > 0 and z : [0, T ]→ Rd is right continuous and left-hand limited.
From (3.2) we have

(3.5) ωT (yn, δ) ≤ δC(T ) sup
0≤t≤T

‖yn(t)‖+ ωT (mn, δ) + 2ST /
√
n.

Since {mn}n∈N converges in distribution tom, it follows from Theorem 15.2 in Billings-
ley [2] that for each ε > 0, limδ→0 supn∈N IP(ωT (mn, δ) > ε) = 0. Hence, from (3.3), for
each ε > 0,

(3.6) lim
δ→0

sup
n∈N

IP(ωT (yn, δ) > ε) = 0.

Conditions (3.4) and (3.6) imply the sequence {Pn}n∈N of probabilities measures, where
Pn is the law of yn, satisfies the hypotheses of Theorem 15.5 in Billingsley [2] and hence,
{Pn}n∈N is tight and every limit point P of this sequence satisfies P (C) = 1, where C
is the space of continuous functions from R+ to Rd. This fact, along Theorem 6.1 in
Billingsley [2], imply that {Pn}n∈N is relatively compact. Let {ynk}k∈N a subsequence
converging in distribution to a process y. Since, by Theorem 3.1, {Dn}n∈N converges
uniformly in probability to D(b)(·, x(·)), {mn}n∈N converges in law to m and {√nεn}n∈N
converges uniformly to 0, it follows from (3.2) that y is a solution to (3.1). Finally,
uniqueness of solutions to (3.1) implies {yn}n∈N converges in distribution to this solution
y, which concludes the proof.

Remarks
R1: By Itô’s rule, the unique solution to (3.1) is given by

y(t) = Ψ(t)

(
η +

∫ t

0

Ψ(s)−1 dm(s)

)
, 0 ≤ t ≤ 1,
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where Ψ is the unique solution to the matrix differential equation

Ψ′(t) = D(b)(t, x(t))Ψ(t), Ψ(0) = identity matrix.

R2: Condition (3.2.4) holds whenever for each t ≥ 0 and ε > 0,

1

n

[nt]∑

k=1

IE(‖ξnk ‖2I{‖ξn
k
‖>ε√n})

IP−→ 0, as n goes to ∞. (Lindeberg condition).

4. Random global discretization error

In this section, we assume the partial derivatives of b̃t exist and are continuous in Rd
and for each n ∈ N, xn(0) = x(0).

4.1. Some definitions. In order to analyze the error produced by the discretization
scheme introduced here, for a fixed T > 0, we define the random global error to be
ênT = ‖xn(T )− x(T )‖ and, for p ≥ 1, the p-mean global error to be enT (p) = IE(‖xn(T )−
x(T )‖p)1/p, whenever IE(‖xn(T )‖p) < ∞, i.e. enT (p) is the usual norm of ênT defined on
Lp(Ω,F, IP), the space of random variables x such that IE(|xp|) <∞. We refer to enT (2)
as the square mean global error. Since, even in simple cases, it is not possible to know
or calculate enT (p), an estimator of this one is obtained by defining

ênT (p,m) =

(
1

m

m∑

i=1

ênT (i)p
)1/p

,

where ênT (1), . . . , ênT (m) are independent random variables with the same distribution
than ênT . Anyway the distribution of ênT needs to be known. Theorem 3.2 allows to
obtain an approximation of this distribution.

It follows from the Strong Law of Large Numbers by Kolmogorov that the estimator
ênT (p,m) is strongly consistent, i.e.

lim
m→∞

ênT (p,m) = enT (p).

Consequently, by carrying out simulations of ênT , an approximation of enT (p) can be
obtained. In particular, the sample variance of ênT can be consistently estimated by means
of

Sn,2m =
1

m

m∑

i=1

(
ênT (i)− 1

m

m∑

i=1

ênT (i)

)2

= ênT (2,m)2 − ênT (1,m)2.

Since (Sn,2m ;m ∈ N) converges IP-a.s. to Var(ênT ) = enT (2)2 − enT (1)2 and Var(ênT ) is
a measure of dispersion, small values of Sn,2m suggest no much simulations of ênT are
necessary to carry out a suitable estimation of the square mean global error.

4.2. Asymptotic distribution of the global error. In this subsection we examine
the asymptotical distribution of ênT . Indeed, let yn be as in Theorem 3.2 and suppose
the hypotheses of this theorem hold. Thus, ênT = (∆tn)1/2‖yn(T )‖ and from Theorem
3.2, ênT is asymptotically distributed as ‖y(T )‖/√n, where y is the solution to (3.1) with
y(0) = 0. From Remark R1,

y(T ) =

∫ T

0

B(T, s) dm(s)

where B(t, s) = Ψ(t)Ψ(s)−1. Hence, by taking into account that, for almost sure s ≥ 0,
there exists v′(s), the derivative of v at s, we have

(4.1) IE(‖y(T )‖2) =

∫ T

0

B(T, s)v′(s)B(T, s)> ds

1040



and for large values of n, enT (2), the square mean global error can be approximated by√
IE(‖y(T )‖2)/n, whenever {‖yn(T )‖2}n∈N is uniformly integrable (see Theorem 5.4 in

Billingsley [2] ).

4.3. Hypothesis testing. Fix T > 0. The global error could be used to develop an
asymptotic hypothesis testing to reject or not the validity of the model. This procedure
is performed in the following natural manner: given a significance level α ∈ (0, 1), we
choose tα > 0 such that IP(‖y(T )‖ > tα) = α. Then, we compare the statistic

√
nênT

with tα. If
√
nênT > tα we reject the hypothesis as false, while if

√
nênT ≤ tα, we conclude

that there is no sufficient evidence that the model is incorrect. In this case, although the
null hypothesis need not to be true, no change in the model is recommended.

5. An example
In this section, we apply the results of this work to a known differential equation

coming from the biomathematical literature. A brief description of this model is given
in the first subsection and two probabilistic schemes, which are approximated by the
solution to this equation, are presented. Results of this work are illustrated by means
numerical simulations in Subsection 2.

5.1. The SIS epidemic model. One of the most commonly used differential equations
in the biomathematical literature is that correspondig to the SIS epidemic model. In this
model it is assumed that at time t ≥ 0, x(t) and y(t) represent the densities of infective
and susceptible individuals, respectively, and they satisfy the following system of ordinary
differential equations:

dx
dt

(t) = βx(t)y(t)− γy(t)

dy
dt

(t) = −βx(t)y(t) + γy(t).

Since for each t ≥ 0, x(t)+y(t) = 1, this model is completely determined by the ordinary
differential equation:

(5.1)
dx

dt
(t) = β(1− x(t))x(t)− γx(t).

This test equation, given x(0) = x0 ∈]0, 1[, has the unique solution

x(t) =





x0
x0βt+1

if β = γ

x0(β−γ) e(β−γ)t
β−γ+x0β(e(β−γ)t −1)

if β 6= γ.

Let xn(0) = [nx0]/n. In accordance with our setting, let Zn = An − Bn and
xn = xn(0) + 1

n
Zn, where An and Bn are independent. Two probability distribu-

tions are defined below, in order to Zn takes values in the nonnegative integers. The
first one, which is labeled by distribution D1 is recursively defined as follows. Let
In(tnk−1) = [nx0]+Zn(tnk−1) and Sn(tnk−1) = n−In(tnk−1), conditional on Fnk−1, ∆An(tnk )
and ∆Bn(tnk ) have Binomial distribution with parameters (Sn(tnk−1), βxn(tnk−1)∆tn) and
(In(tnk−1), γ∆tn). I.e., for each a ∈ {0, . . . , Sn(tnk−1)} and b ∈ {0, . . . , In(tnk−1)},

IP(∆An(tnk ) = a|Fnk−1) =

(
Sn(tnk−1)

a

)
pan,k−1(1− pn,k−1)S

n(tnk−1)−a

and

IP(∆Bn(tnk ) = b|Fnk−1) =

(
In(tnk−1)

b

)
qbn(1− qn)I

n(tnk )−b,
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where pn,k−1 = βxn(tnk−1)∆tn and qn = γ∆tn. Here, it is suppose n is large enough to
β/n ≤ 1 and γ/n ≤ 1.

Since for each k ∈ N, 0 ≤ ∆An(tnk ),∆Bn(tnk ) ≤ n, IP-a.s., on a time interval [0, T ],
(T > 0), the state space of xn is a finite subset of 1

n
Z+ = {k/n : k ∈ Z+}.

By using notations before, we have

ξnk = ∆An(tnk )−∆Bn(tnk )− {βSn(tnk−1)xn(tnk−1)∆tn − γIn(tnk−1)∆tn}

and consequently,

IE(|ξnk |2|Fnk−1) = β(1− xn(tnk−1))xn(tnk−1)(1− βxn(tnk−1)∆tn) + γxn(tnk−1)(1− γ∆tn).

Since

IE(|ξnk |3|Fnk−1) = Sn(tnk−1)pn,k−1(1− pn,k−1)2 + In(tnk−1)qn(1− qn)2 ≤ β + γ,

{|ξnk |2;n, k ≥ 1} is uniformly integrable and Lindeberg condition stated in R2 holds. In
addition, IE(|ξnk |2|Fnk−1) ≤ 1 and hence conditions (3.1.2) and (3.2.2) of Theorem 3.1 and
3.2, respectively, are satisfied. Consequently, Theorem 3.1 implies for each t ≥ 0,

sup
0≤s≤t

| 1
n

[ns]∑

k=1

IE(|ξnk |2|Fnk−1)− v1(s)| IP−→ 0, as n goes to ∞,

where

(5.2) v1(s) =

∫ s

0

{β(1− x(u)) + γ}x(u) du.

As shown in [7], the distribution of xn has a biomathematical sense, where n denotes
the population size. However, other distributions allow xn is approximated by the solu-
tion to (5.1). Indeed, a second distribution for xn, which has less variability, and we label
by D2, is defined as follows. Assumed that, conditional to Fnk−1, ∆An(tnk ) and ∆Bn(tnk )
have Bernoulli distribution with parameters βSn(tnk−1)xn(tnk−1)∆tn and γIn(tnk−1)∆tn,
respectively. For large enough values of n, these conditional parameters are equal or
less than one and it is easy to see the hypotheses of Theorems 3.1 and 3.2 hold with a
positive-definite function v2 defined by

(5.3) v2(s) =

∫ s

0

{β(1− x(u))(1− β(1− x(u))x(u)) + γ(1− γx(u))}x(u) du

and satisfying, for each t ≥ 0,

sup
0≤s≤t

| 1
n

[ns]∑

k=1

IE(|ξnk |2|Fnk−1)− v2(s)| IP−→ 0, as n goes to ∞,

This latter probabilistic scheme has some advantages regarding the conditional Bino-
mial jumps case, labeled by D1. One of them is that, according to D2 distribution, ∆Zn

takes values in the set {−1, 0, 1} instead of {−n, . . . , 0, . . . , n} as in the D1 distribution.
In addition, from (5.2) and (5.3), for each s ≥ 0,

(5.4) v′1(s)− v′2(s) = {β(1− x(s))x(s)}2 + {γx(s)}2 ≥ 0.

This inequality and (4.1) imply the square mean global error is lesser, for the D2 distri-
bution, than the corresponding error for the D1 distribution.
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Figure 1. Approximations of the equilibrium solution with n = 50,
β = 2 and γ = 1.
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Figure 2. Approximations for the solution and confidence bounds
with n = 7, 000, β = 2 and γ = 1.

5.2. Numerical simulations. In the sequel, some of the concepts presented before are
applied to the solution to (5.1) with the scheme of approximations labeled by D1 and
D2. First, in order to appreciate the difference in variability of the schemes D1 and D2,
the equilibrium solution to (5.1) is considered, i.e. x0 = 1 − γ/β. We simulated both
approximations for T = 10, β = 2, γ = 1 and n = 50; see Figure 1.

Let a(t) = β − γ − 2βx(t) and, v1 and v2 defined by (5.2) and (5.3), respectively.
From (4.1), V ar1(y(t)) and V ar2(y(t)), the variances of y(t) according to the D1 and D2
distribution, respectively, are given by

V ari(y(t)) =

∫ t

0

v′i(u) e2
∫ t
u a(s) ds du,
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where v′1(u) = {β(1 − x(u)) + γ}x(u) and v′2(u) = {β(1 − x(u))(1 − β(1 − x(u))x(u)) +
γ(1− γx(u))}x(u).

Let 0 < α < 1 and Φ be the cumulative function of a standard normal distribu-
tion. Since for the D1 approximation scheme and for large n,

√
n(xn(t) − x(t)) has

approximately normal distribution with mean zero and variance V ar1(y(t)), by defining
u±α (t) = x(t)±wα/2

√
V ar1(y(t))/n, we have xn(t) ∈ [u−α (t), u+

α (t)] with an approximate
probability 1−α for large values of n. Analogously, x(t)±wα/2

√
V ar2(y(t))/n allow to

obtain confidence bands for the scheme of approximation based upon the D2 distribution.
In Figure 2, simulations of xn, starting at x0 = 5/8, are carried out according to the
D1 and D2 distributions with n = 7, 000, T = 10, β = 2 and γ = 1. In both cases, the
bounds u−α and u+

α are pictured with dash lines for α = .05, which gives wα/2 = 1.96.

5.3. About the appropriate value of n. In order to choose an appropriate value of
n that provides a good approximation for the global error to a normal distribution, a
goodness-of-fit test is developed for each of the both distributions we are considering.

Let CHI2i (n) = n(ênT )2/V ari(y(T )), (i = 1, 2). The values of the variances are given
by V ar1(y(T )) = 0.5016656 and V ar2(y(T )) = 0.2508328. For large enough values of n,
it is expected CHI2i (n), (i = 1, 2), has an approximate χ2-distribution with one degree of
freedom, whether is D1 or D2, respectively, the assumed distribution for the model. Let
F be the accumulative distribution function corresponding to a χ2-distribution with one
degree of freedom. Consequently, we expect F (CHI2i (n)) has an approximately uniform
distribution for large values of n. We use the goodness-of-fit χ2-test to evaluate this
concordance. For this purpose, we partition the positive part of the real straight line by
m subintervals determined by 0 = t0 < t1 < · · · < tm−1 < tm = ∞, where t0, . . . , tm
have been chosen in such a way that F (tv) − F (tv−1) = 1/m. Then, CHI2i (n) is simu-
lated repeatedly, recording the number of times that CHI2i (n) fall into each subinterval
[tv−1, tv[, for each v = 1, . . . ,m. By choosing m = 10, we have t1 = 0.016, t2 = 0.064,
t3 = 0.148, t4 = 0.275, t5 = 0.455, t6 = 0.708, t7 = 1.074, t8 = 1.642 and t9 = 2.706. In
addition, for m = 10, the expected percentage falling into each subinterval is 10%. A χ2

test is performed for different values of n.
First, we analyzed the approximate normality of CHI21 (n). To this end, CHI21 (n) is

simulated 103 times and the percentages of CHI21 (n) falling into these subintervals are
determined by the values in Table 1.

Table 1. Percentages of observations of CHI22 (n) for the indicated
value of n and p-values of the corresponding χ2 test (β = 2, γ = 1 and
T = 10).

n [t0, t1[ [t1, t2[ [t2, t3[ [t3, t4[ [t4, t5[ [t5, t6[ [t6, t7[ [t7, t8[ [t8, t9[ [t9, t10[ p-value
40 7.3 0.0 15.9 14.7 13.6 0.0 14.4 7.5 12.4 14.2 0.00015575
50 8.3 15.7 0.0 14.5 13.9 10.1 7.5 8.5 10.8 10.7 0.03813725
60 6.1 13.8 13.1 0.0 11.3 10.8 9.4 15.0 9.9 10.6 0.05308202
70 6.8 11.9 11.8 12.9 0.0 9.0 15.8 9.0 11.1 11.7 0.05671326
80 5.8 15.0 11.0 10.4 9.4 9.2 9.3 11.6 8.8 9.5 0.83829960
90 5.6 12.3 10.1 11.2 8.7 9.1 9.7 13.0 11.2 9.1 0.91180700
100 6.7 12.1 9.0 8.8 9.5 10.5 12.8 13.1 7.6 9.9 0.90154290
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Observed percentages of the values of CHI22 (n) falling in the corresponding time
intervals, for the seven values of n given in Table 1, are organized in the matrix

A = (Auv) =




7.3 0.0 15.9 14.7 13.6 0.0 14.4 7.5 12.4 14.2
8.3 15.7 0.0 14.5 13.9 10.1 7.5 8.5 10.8 10.7
6.1 13.8 13.1 0.0 11.3 10.8 9.4 15.0 9.9 10.6
6.8 11.9 11.8 12.9 0.0 9.0 15.8 9.0 11.1 11.7
5.8 15.0 11.0 10.4 9.4 9.2 9.3 11.6 8.8 9.5
5.6 12.3 10.1 11.2 8.7 9.1 9.7 13.0 11.2 9.1
6.7 12.1 9.0 8.8 9.5 10.5 12.8 13.1 7.6 9.9




.

For the purpose of carrying out the test, the statistics

χ2
u =

10∑

v=1

(Ouv − Euv)2

Euv
∼ χ2(9), u = 1, . . . , 7,

have been defined, where Ouv = 10 × Auv and Euv = 100, for u = 1, . . . , 7 and v =
1, . . . , 10. For each u = 1, . . . ,, the rejection region is defined as {χ2

u > c}, where c is
chosen in such a way that IP(χ2

u > c) = .05.
We compute the p-values associated with the χ2 test statistic to evaluate the goodness-

of-fit of CHI21 (n); see Table 1. Since for n = 60 the p-value is approximately the
significance level .05, we think, the distribution of CHI21 (60) is well approximated by the
χ2 distribution with one degree of freedom.

Next, the former test is performed for D2 distribution and 9 values of n are considered.
The simulated values of CHI22 (n), along with the corresponding p-values for each n, are
shown in Table 2.

Table 2. Percentages of observations of CHI22 (n) for the indicated
value of n and p-values of the corresponding χ2 test (β = 2, γ = 1 and
T = 10).

n [t0, t1[ [t1, t2[ [t2, t3[ [t3, t4[ [t4, t5[ [t5, t6[ [t6, t7[ [t7, t8[ [t8, t9[ [t9, t10[ p-value
50 9.7 0.0 20.5 0.0 21.3 0.0 14.9 10.3 8.9 14.4 0.000
80 9.0 17.5 0.0 13.8 15.3 0.0 13.9 9.1 12.7 8.7 0.000
100 7.0 14.5 0.0 15.7 15.3 10.8 9.8 6.7 11.0 9.2 0.01612624
110 6.6 14.0 14.5 0.0 13.0 12.1 9.1 7.6 12.4 10.7 0.04275268
115 15.9 0.0 13.8 11.5 10.7 11.3 9.4 7.1 9.8 10.5 0.06137558
120 8.4 14.8 11.7 0.0 12.5 11.5 8.0 13.9 10.1 9.1 0.07337148
150 6.0 13.4 10.5 11.4 11.6 10.9 8.2 5.6 13.1 9.3 0.68034140
200 5.0 9.5 10.2 11.9 10.8 10.8 13.6 9.7 7.4 11.1 0.82372460
500 10.6 7.9 13.7 6.6 11.3 11.2 8.1 11.3 9.1 10.2 0.91595900

It is obtained for n between 110 and 115 the p-value of the corresponding χ2 test is
approximately the significance level .05. Hence, for these values of n, it is reasonable to
assume CHI22 (60) has an approximated χ2 distribution with one degree of freedom.

Although, under D1, xn has more variability than under D2, the conducted simulation
shows that the global error, under D1, attains approximate normality for lower values on
n than under D2.

6. Conclusions
A family of discrete-time stochastic processes is presented and it is proven that these

processes can be approximate by means of the solution to an ODE. Conversely, these
processes may be seen as schemes of approximation for this solution. For this reason,
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a stochastic version of the global error associated to these schemes are defined and its
asymptotic distribution is studied. The uniform convergence in probability, on compact
subsets of the positive real numbers, is proven and a central limit theorem for the fluc-
tuations of the stochastic processes is derived. This fact allows us to find confidence
bands, where with a preassigned probability the trajectories of the stochastic processes
are bounded by these bands. Our results are illustrated by an emblematic model coming
from the mathematical literature. Indeed, two discrete time stochastic processes are ap-
proximated by the solution of the differential equation corresponding to the SIS epidemic
model. Simulations of their trajectories are carried out and compared with the solution of
the SIS deterministic model. Moreover, χ2 tests are carried out to evaluate the goodness
of the discretization, in order to obtain approximate normality for the global error.
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Abstract
Assuming a bivariate prior distribution for the two risk parameters
appearing in the distribution of the total claim amount when the pri-
mary distribution is geometric and the secondary one is exponential, we
derive Bayesian premiums which can be written as credibility formu-
las. These expressions can be used to compute bonus-malus premiums
based on the distribution of the total claim amount but not for the
claims which produce the amounts. The methodology proposed is easy
to perform, and the maximum likelihood method is used to compute
the bonus-malus premiums for a real set of automobile insurance data,
one that is well known in actuarial literature.
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1. Introduction
Bayesian methods have been successfully applied in actuarial statistics, and have

proved to be a good tool for resolving problems related to credibility theory and the
setting of insurance premiums. Given a risk group, it is usual to assume that the level of
risk of each policy is represented by a risk parameter, or risk profile. It is also assumed
that across the group there exists a random variable whose realizations are the values
of the risk parameter for policies belonging to that group; its distribution or density
function is called the prior distribution or structure function. Most automobile insurance
schemes employ Bonus-Malus Systems (BMS). In this context, there is a finite number
of classes and the premium applicable depends on the class to which the policyholder
belongs. In each period (usually a year), a policyholder’s class is determined on the basis
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of that assigned for the previous period and on the number of claims made during the
period. The main purpose of a BMS is to decrease the premiums for good risks and to
increase them for bad ones. With Bayesian methodology, this is achieved by dividing a
posterior expectation by a prior expectation according to an estimate derived by means
of an appropriate loss function (see Lemaire, 1979, 1985, 1995; Gómez-Déniz et al., 2002;
Sarabia et al., 2004; Denuit et al., 2007, among others).

Nevertheless, it is obvious that not all accidents produce the same individual claim
size and thus it does not seem fair to penalize all policyholders in the same way when
they present a claim. In other words, when the bonus-malus premium is based only on
the number of claims a policyholder who has an accident with an individual claim size
of 100$ is penalized by the same amount as if the accident had produced an individual
claim size of 500$. As different claims produce different claim amounts, it would seem
that the best way to build a BMS would be based on both the number of claims and on
the individual claim size. As Lemaire (2004) points out, when the claim amount is not
incorporated into the bonus-malus premium this implies an assumption of independence
between the variables "number of claims" and "claim amount", an assumption that is
open to question.

In recent years, attempts have been made to include factors other than the number
of claims in calculating bonus-malus premiums. Thus, Frangos and Vrontos (2001) and
Mert and Saykan (2005) introduced a model where the number of claims and the indi-
vidual claim size were used jointly to compute the bonus-malus premiums. Based on the
independence assumption assumed in the collective risk model between these two random
variables, they computed the premium by multiplying the bonus-malus premiums based
only on the number of claims with the bonus-malus premiums based only on the individ-
ual claim size. Their empirical results show there is a positive correlation between these
two random variables, and thus the assumption of some kind of dependence between
them should be taken into account in calculating bonus-malus premiums.

If we wish to replace the distribution of the number of claims by the distribution of
the total claim amount, this will depend on two parameters, one related to the random
variable "number of claims" and the other related to the random variable "claim cost".
It is possible to transfer a relation of dependence between these risk profiles, by assuming
that both profiles fit a joint bivariate prior distribution.

Apart from looking for some kind of dependence, the bivariate prior distribution can
be justified in the following manner. The aim of the actuary is to design a tariff sys-
tem that will distribute the exact weight of each risk fairly within the portfolio when
policyholders present different risks. For instance, in the automobile insurance market,
the first approach to solving this problem, called tariff segmentation, consists in divid-
ing policyholders into homogeneous classes according to certain variables believed to be
influencing factors (a priori factors), such as the model and use of the car, the age and
sex of the driver, the duration of the driving licence, etc. Once the actuary has classified
policyholders, the premium can be established for each type of risk. However, some fac-
tors cannot be measured or introduced into the rates to calculate premiums according
to tariff-segmentation methods. Consequently, heterogeneity continues to exist in every
class defined with a priori factors. Some of these unmeasured or unknown characteristics
probably have a significant effect on the number of claims and also on the individual
claim size; for instance, in automobile insurance, swiftness of reflexes, knowledge of the
Highway Code or the behaviour patterns of the driver. Given that many claims could be
explained by these hidden features, they should be included in the tariff system. This is
the goal of experience rating or credibility theory, the underlying idea of which is that
past experience reveals information about hidden features.
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In this paper, we assume a bivariate prior distribution for the two risk parameters
appearing in the distribution of the total claim amount when the distribution of the
random variable number of claims (primary distribution) is geometric and the distribution
of the random variable individual claim size (secondary distribution) is exponential. This
allows us to use the unconditional distribution of the total claim amount to compute the
premiums, which can then be written as a credibility formula. These premiums are
then used to obtain the bonus-malus premiums, based on the distribution of the total
claim amount and not only on the claims which produced the amounts. The maximum
likelihood method is used to estimate the parameters of the distribution in a real data
set concerning automobile insurance and well known in actuarial literature.

The rest of this paper is structured as follows. Section ?? presents the basic collective
risk model based on the geometric and the exponential distribution as the primary and
the secondary distribution, respectively. The bivariate prior distribution is presented in
Section ??, where we also show the marginal and the unconditional distribution of the
claim size. Credibility premiums are obtained in Section ?? and the parameters of the
unconditional distribution of the claim amount are estimated in Section ??. A numerical
application with a real data set is presented in Section ?? and the main conclusions are
drawn in the last Section.

2. The basic model
One of the main objectives of risk theory is to model the distribution of the aggregate

claim amount for portfolios of policies, so that the insurance firm can take decisions
taking into account just two aspects of the insurance business: the number of claims and
the individual claim size. Therefore, the total claim amount over a fixed time period is
modelled by considering the number of claims and the individual claim size separately. In
this paper, we assume that the premiums in a bonus-malus system should be computed
by taking into account both the number of claims and the individual claim size.

In the collective risk theory, the random variable of interest is the aggregate claim
defined by X =

∑N
i=1Xi, where N is the random variable denoting the number of claims

and Xi, for i = 1, 2, ... is the random variable denoting the individual claim size of the i-th
claim. Assuming that X1, X2, . . . , are independent and identically distributed random
variables which are also independent of the random variable number of claims N , it is
well-known (see Klugman et al. (2008) and Rolski et al. (1999), among others) that
the probability density function of the aggregate claim (total claim amount) is given
by fX(x) =

∑∞
n=0 pnf

n∗(x), where pn denotes the probability of n claims (primary
distribution) and fn

∗
(x) is the n-th fold convolution of f(x), the probability density

function of the claim amount (secondary distribution).
In automobile insurance, when the portfolio is considered to be heterogeneous, all

policyholders have a constant but unequal underlying risk of having an accident. That
is, the expected number of claims varies from policyholder to policyholder. As the mixed
Poisson distributions have thicker tails than the Poisson distribution, the former provide a
good fit to claim frequency data when the portfolio is heterogeneous. Frangos and Vrontos
(2001), Gómez-Déniz (2002), Mert and Saykan (2005), among many others, consider the
Poisson parameter, i.e. the expected number of claims, to follow a Gamma distribution.
In this case, the unconditional distribution of the number of claims follows a negative
binomial distribution. The advantage of this model is that the distribution of the total
claim amount can be obtained in closed form expression when the secondary distribution
is assumed to be exponential. Other models considered in the actuarial literature are
the Poisson-inverse Gaussian distribution (Willmot (1987)) and the negative binomial-
inverse Gaussian distribution (Gómez-Déniz et al. (2008)). Both models provide a good
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fit to the claim frequency data, and a recursive computation of the total claim amount
can be obtained using Panjer’s algorithm or a simple modification.

Assuming that the number of claims is represented by random variable N and that
it follows a Poisson distribution with parameter λ > 0 denoting the differing underlying
risk of each policyholder reporting a claim. Assume, moreover, that λ is distributed
according to the exponential distribution with parameter θ1/(1 − θ1), with 0 < θ1 < 1,
i.e. π(λ) ∝ exp

(
− θ1λ

1−θ1

)
, where π(λ) represents the prior distribution of λ. It is a simple

exercise to show that the unconditional distribution of the number of claims is given by

Pr(N = n) = θ1(1− θ1)n, n = 0, 1, . . . ,

and therefore a geometric distribution with parameter θ1.
Assuming that the individual claim size follows an exponential distribution (secondary

distribution) with parameter θ2 > 0, the n-th fold convolution of exponential distribution
has a closed form that is given as follows (see Klugman et al. (2008) and Rolski et al.
(1999))

f∗n(x) =
θn2

(n− 1)!
xn−1e−θ2x, n = 1, 2, . . .

i.e. it is a gamma distribution with shape parameter n and scale parameter θ2. Now, it
is easy to see that the probability density function of the random variable X =

∑N
i=1Xi

is given by

fX(x|θ1, θ2) =





θ1, x = 0,

θ1(1− θ1)θ2 exp(−θ1θ2x), x > 0.
(2.1)

Observe that the probability density function of the claim amount has a jump of size
θ1 at the origin.

3. A suitable bivariate distribution
In this section we introduce a new continuous probability density function that will

be used to derive, by mixing, the unconditional probability density function of the total
claim amount in (??) and also to compute the bonus-malus premiums proposed in this
paper.

We begin by introducing the new continuous bivariate probability density function,
as follows. It can be shown straightforwardly that

f(x, y) =
σγ

B(α− γ, β)Γ(γ)
xα−1(1− x)β−1yγ−1 exp(−σxy),(3.1)

for 0 < x < 1, y > 0, α > 0, β > 0, γ > 0, σ > 0 and α > γ is a proper bivariate
probability density function. In (??) we have that

Γ(z) =

∫ ∞

0

tz−1e−t dt

is the gamma function and B(z1, z2) is the beta function given by

B(z1, z2) =

∫ 1

0

tz1−1(1− t)z2−1 dt.

To the best of our knowledge, the bivariate distribution presented here has not been
previously addressed in statistical literature.
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Some computations provide that the distribution is unimodal with modal value at the
point

x =
α− γ

α+ β − γ − 1
,

y =
(γ − 1)(α+ β − γ − 1)

σ(α− γ)
.

Now by a straightforward calculation we see that

E(XY ) =
γ

σ
.(3.2)

The marginal distribution of X and Y , which can be obtained by integrating (??)
with respect to y and x, respectively, can be shown to be a known univariate distribution.
Thus, the marginal distribution of X is a beta distribution with parameters α − γ and
β, i.e.

fX(x) =
1

B(α− γ, β)
xα−γ−1(1− x)β−1.(3.3)

The marginal distribution of Y is given by

fY (y) =
σγΓ(α+ β − γ)

Γ(α+ β)B(α− γ, γ)
yγ−1

1F1(α, α+ β,−σy),(3.4)

where 1F1(·, ·, ·) is the confluent hypergeometric function, also called Kummer’s function,
given by

1F1(m,n, z) =

∞∑

k=0

(m)kz
k

(n)kk!
,

and (m)j = Γ(m+ j)/Γ(m), j ≥ 1, (m)0 = 1 is the Pochhammer symbol.
Using Kummer’s first theorem we have that (??) can be rewritten as

fY (y) =
σγΓ(α+ β − γ)

Γ(α+ β)B(α− γ, γ)
yγ−1e−σy 1F1(β, α+ β, σy).(3.5)

Expression (??) is reminiscent of the generalized exponential distribution given in
Bhattacharya (1966), see expression (3.1) in this paper.

Since

EY (Y ) =
γ(α+ β − γ − 1)

σ(α− γ − 1)
,(3.6)

by using (??) together with (??) and the mean of the distribution given in (??) we obtain
the covariance of (??), which is given by

cov(X,Y ) =
βγ

σ(α+ β − γ)(γ − α+ 1)
,(3.7)

which admits correlation of any sign. Thus, we have

cov(X,Y )

{
> 0 if 0 < α− γ < 1,
> 0 if α− γ > 1.
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Let us now assume that the two parameters of the distribution of the total claim
amount in (??) are random and that they follow a bivariate prior distribution as in (??),
i.e. we have that

π(θ1, θ2) =
σγ

B(α− γ, β)Γ(γ)
θα−1
1 (1− θ1)β−1θγ−1

2 exp(−σθ1θ2),(3.8)

for 0 < θ1 < 1, θ2 > 0, α > 0, β > 0, γ > 0, σ > 0 and α > γ. The unconditional
distribution of the total claim amount in (??) can be obtained by mixing, by computing
the following integral

fX(x|α, β, γ, σ) =

∫ ∞

0

∫ 1

0

fX(x|θ1, θ2)π(θ1, θ2) dθ1 dθ2.

Some algebra provides the following probability density function for the unconditional
distribution of the total claim amount.

f(x|α, β, γ, σ) =





α− γ
α+ β − γ , x = 0,

βγσγ

α+ β − γ
1

(x+ σ)γ+1
, x > 0,

(3.9)

which is obviously a two piece distribution with a jump of size α−γ
α+β−γ at the origin.

Moments of order r of (??) are as follows:

E(Xr) =
βσrr!Γ(γ − r)

(α+ β − γ)Γ(γ)
, γ > r.(3.10)

In particular, we have that

E(X) =
βσ

(α+ β − γ)(γ − 1)
, γ > 1,

E(X2) =
2βσ2

(α+ β − γ)(γ − 1)(γ − 2)
, γ > 2,

from which we can obtain the variance of the distribution, given by

var(X) =
βσ2(2α(γ − 1) + β − 2(γ − 1)γ)

(α+ β − γ)2(γ − 2)(γ − 1)2
, γ > 2.

4. Credibility premiums
When the premiums are based only on the number of claims, the distribution to

be considered is, in this case, the geometric distribution with parameter 0 < θ1 < 1.
Suppose now that the prior distribution on θ1 is the beta distribution given in (??).
Given a sample information n1, . . . , nt the posterior distribution is a beta distribution
with parameters α − γ + t and β + tn̄ and it is simple to see that the unconditional
distribution of the number of claims is given by

Pr(N = n) =
B(α− γ + 1, β + n)

B(α− γ, β)
,(4.1)

which is the geometric–beta distribution.
In the actuarial context, the premium charged to a policyholder is computed on the

basis of the past claims made and on that of the accumulated past claims of the corre-
sponding portfolio of policyholders. To obtain an appropriate formula for this, various
methods have been proposed, mostly in the field of Bayesian decision methodology. The
procedure for premium calculation is modelled as follows. The number of claims made
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with respect to a given contract in a given period is specified by a random variable X
following a probability density function f(x|θ) depending on an unknown risk parameter
θ. A premium calculation principle (Gómez-Déniz et al. (2006) and Heilmann (1989))
assigns to each risk parameter θ a premium within the set P ∈ IR , the action space. Let
L : Θ× P → IR be a loss function that assigns to any (θ, P ) ∈ Θ× P the loss sustained
by a decision-maker who takes the action P and is faced with the outcome θ of a random
experience. The premium must be determined such that the expected loss is minimized.

From this parameter, the unknown premium µ(θ), called the risk premium, can be
obtained by minimizing the expected loss Ef [L(θ, P )]. L is usually taken as the weighted
squared-error loss function, i.e. L(a, x) = h(x)(x− a)2. Using different functional forms
for h(x) different premium principles are obtained. For example, for h(x) = 1 we obtain
the net premium principle (Heilmann (1989), Gerber (1979) and Klugman et al. (2008);
among others). For a review of the net premium and the different premiums defined
in the actuarial setting, see Bühlmann and Gisler (2005), Gerber (1979), Gómez et al.
(2002, 2006), Heilmann (1989) and Rolski et al. (1999).

If experience is not available, the actuary computes the collective premium, µ, which
is given by minimizing the risk function, i.e. minimizing Eπ [L(µ(θ), θ)], where π(θ) is
the prior distribution on the unknown parameter θ. On the other hand, if experience is
available, the actuary takes a sample x from the random variables Xi, i = 1, 2, . . . , t,
assuming Xi i.i.d., and uses this information to estimate the unknown risk premium µ(θ),
through the Bayes premium µ∗, obtained by minimizing the Bayes risk, i.e. minimizing
Eπx [L(µ(θ), θ)]. Here, πx is the posterior distribution of the risk parameter, θ, given the
sample information x.

Thus, in our case, if L(x, a) = (x − a)2, the net risk, collective and Bayes premiums
are given by

µC(θ1) =
1− θ1
θ1

,

µC =
β

α− γ − 1
,

µ∗C =
β + k

α− γ + t− 1
= Z(t)n̄+ (1− Z(t))µC ,(4.2)

where the credibility factor is given by Z(t) = t/(α − γ + t − 1) and n̄ is the sample
mean based only on the claim frequency observed. The subscript C indicates that the
premiums are based on the number of claims.

Now suppose that the practitioner chooses to compute the premium according to
the individual claim size, assuming that this follows an exponential distribution with
parameter θ2 > 0 and that the prior distribution on θ2 is the distribution given in (??)
with β → 0 and α = 1. In this case, (??) reduces to the gamma distribution with shape
parameter γ and scale parameter σ. Given a sample information x1, . . . , xt the posterior
distribution is a gamma distribution with parameters γ+ t and σ+ tx̄. Again, it is simple
to see that the unconditional distribution of the individual claim size is given by

f(x) =
γσγ

(σ + x)γ+1
,

and that the risk, collective and Bayes premiums are as follows:

µCC(θ2) =
1

θ2
,

µCC =
σ

γ
,

µ∗CC =
σ + tx̄

γ + t
= Z(t)x̄+ (1− Z(t))µ,(4.3)
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where the credibility factor is given by Z(t) = t/(γ + t) and x̄ is the sample mean based
only on the size observed. The subscript CC denotes that the premiums are based on
the individual claim size.

Frangos and Vrontos (2001) and Mert and Saykan (2005) introduced a model where the
number of claims and the individual claim size were used jointly to compute the bonus-
malus premiums. According to the independence assumption assumed in the collective
risk model between the two random variables, they computed the premium by multiplying
the bonus-malus premiums based only on the number of claims by the bonus-malus
premiums based only on the individual claim size, i.e. multiplying (??) by (??).

The most reasonable model consists in working with both random variables but not in
a separate way. To do so, let xi, i = 1, 2, . . . , t be independent and identically distributed
random variables following the probability density function (??), i.e.

f(x1, . . . , xt) = θt1θ
t
2(1− θ1)t exp(−tx̄θ1θ2),

provided that xi > 0, i = 1, 2, . . . , t. Let us suppose that (θ1, θ2) follows the prior distri-
bution π(θ1, θ2) given in (??), then the posterior distribution of (θ1, θ2) given the sample
information (x1, . . . , xt) is of the same form as in (??) with the updated parameters
(α∗, β∗, γ∗, σ∗) given by

α∗ = α+ t,

β∗ = β + t,

γ∗ = γ + t,

σ∗ = σ + κ,

where κ =
∑t
i=1 xi.

When xi = 0, i = 1, 2, . . . , t then the posterior distribution has the following updated
parameters

α∗ = α+ t,

β∗ = β,

γ∗ = γ,

σ∗ = σ,

Now, denoting the unknown risk premium by µ(θ1, θ2) = µ(Θ), and again using the
square–error loss function, the net risk, collective and Bayes premiums are given by

µ(Θ) =

∫
xf(x|Θ)dx,(4.4)

µ =

∫
µ(Θ)π(Θ)dΘ,(4.5)

µ∗ =

∫
µ(Θ)π(Θ|x)dΘ,(4.6)

respectively.
As mentioned above, it is clear that under the model Assumed, the net risk premium

(??) is given by

µ(Θ) = E(X|Θ) =
1− θ1
θ1θ2

while the net collective premium in (??) is described by

µ =

∫ ∞

0

∫ 1

0

µ(Θ)π(θ1, θ2) dθ1 dθ2 =
βσ

(α+ β − γ)(γ − 1)
, γ > 1.

(4.7)
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Finally, the net Bayes premium in (??) is given by

µ∗ =
(β + t)(σ + tx̄)

(α+ β − γ + t)(γ + t− 1)
, γ > 1,(4.8)

for xi > 0, i = 1, 2, . . . , t. When xi = 0, i = 1, 2, . . . , t, the net Bayes premium is

µ∗ =
βσ

(α+ β − γ + t)(γ − 1)
, γ > 1,(4.9)

Observe that (??) can be rewritten in the two following ways. Firstly, some simple
computations provide that

µ∗ = H(α, β, γ, t)µ∗CC ,

where

H(α, β, γ, t) =
(β + t)(γ + t)

(α+ β − γ + t)(γ + t− 1)
.

And secondly,

µ∗ = Z(t)h1(x̄) + (1− Z(t))h2(µ),

where the credibility factor Z(t) is given by

Z(t) =
t

t+ α+ β − γ(4.10)

and the functions h1(·) and h2(·) are given by

h1(x) =
(β + t)x+ σ

γ + t− 1
,

h2(x) =
γ − 1

γ + t− 1
x.

When t → ∞ we have that, since h1(x̄) → x̄ and Z(t) → 1, then µ∗ → x̄ and when
t → 0 it is easy to see that µ∗ → µ. Thus, it is reasonable to assume that when the
sample size tends to infinity the Bayes premium converges to the sample mean, and it
converges to the collective premium when the sample size tends to zero.

The credibility factor for expression (??) is as in (??) where now h1(x) = 0 and
h2(x) = (γ − 1)x.

5. Inference
Moment estimators can be obtained by equating the sample moments to the popula-

tion moments in (??). Furthermore, the parameters of the unconditional distribution of
the total claim amount can be estimated via maximum likelihood. To do so, consider a
random sample {x1, x2, . . . , xt}. The likelihood function can be written as

f(x1, . . . , xt|α, β, γ, σ) =

(
α− γ

α+ β − γ

)t0 ( βγσγ

α+ β − γ

)t∗ ∏

xi>0

1

(xi + σ)γ+1
,

(5.1)

where t0 is the number of zero-observations and t∗ = t − t0 is the number of non-zero
sample observations, where t is the sample size. Finally

∏
xi>0 denotes the product over

the t∗ non-zero observations.
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Taking logarithms of (??) we have the log-likelihood equation given by

` ≡ `(α, β, γ, σ|x1, . . . , xt) = t0 log

(
α− γ

α+ β − γ

)
+ t∗ log

(
βγσγ

α+ β − γ

)

− (γ + 1)
∑

xi>0

log(xi + σ).(5.2)

Now, differentiating (??) with respect to the four parameters in turn, and equating
to zero, we obtain the maximum likelihood estimating equations given by

∂`

∂α
=

t0
α− γ −

t

α+ β − γ = 0,(5.3)

∂`

∂β
=

t∗

β
− t

α+ β − γ = 0,(5.4)

∂`

∂γ
=

t0
α− γ −

t∗

γ
+

t

α+ β − γ − t
∗ log σ +

∑

xi>0

log(xi + σ) = 0,(5.5)

∂`

∂σ
=

t∗

σ
− (γ + 1)

∑

xi>0

1

xi + σ
= 0.(5.6)

The second partial derivatives are as follows:

∂2`

∂α2
=

t

(α+ β − γ)2
− t0

(α− γ)2
,

∂2`

∂αβ
=

t

(α+ β − γ)2
,

∂2`

∂α∂γ
=

t0
(α− γ)2

− t

(α+ β − γ)2
,

∂2`

∂α∂σ
= 0,

∂2`

∂β2
=

t

(α+ β − γ)2
− t∗

β2
,
∂2`

∂βγ
= − t

(α+ β − γ)2
,

∂2`

∂β∂σ
= 0,

∂2`

∂γ2
=

t0
(α− γ)2

+
t∗

γ2
+

t

(α+ β − γ)2
,

∂2`

∂γ∂σ
=
∑

xi>0

1

xi + σ
,

∂2`

∂σ2
= − t

∗

σ2
+ (γ + 1)

∑

xi>0

1

(xi + σ)2
.

It is easy to see that

E

(
1

X + σ

)
=

α+ (−1 + α+ β)γ − γ2

(α+ β − γ)(1 + γ)σ
,

E

[
1

(X + σ)2

]
=

(−2 + β − γ)γ + α(2 + γ)

(α+ β − γ)(2 + γ)σ2
.

Therefore, Fisher’s information matrix (not reproduced here) can be obtained easily,
in closed form expression.

6. An application to a real data set
In order to compare the premiums based only on the number of claims with the

premiums obtained when the total claim amount distribution is used, we examined a
data set based on one-year vehicle insurance policies taken out in 2004 or 2005. This
data set is available on the website of the Faculty of Business and Economics, Macquarie
University (Sydney, Australia), see also Jong and Heller (2008). The first 100 observations
of this data set are shown in Table ??, with the following elements: from left to right,
the policy number, the number of claims and the size of the claims. The total portfolio
contains 67856 policies of which 4624 have at least one claim. Some descriptive statistics
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for this data set are shown in Table ??. It can be seen that the standard deviation is very
large for the size of the claims, which means that a premium based only on the mean size
of the claims is not adequate for computing the bonus-malus premiums. The covariance
between the claims and sizes is positive and takes the value 141.574.

Table 1. First 100 observations of the data set

1 0 0 21 0 0 41 2 1811.71 61 0 0 81 0 0
2 0 0 22 0 0 42 0 0 62 0 0 82 0 0
3 0 0 23 0 0 43 0 0 63 0 0 83 0 0
4 0 0 24 0 0 44 0 0 64 0 0 84 0 0
5 0 0 25 0 0 45 0 0 65 1 5434.44 85 0 0
6 0 0 26 0 0 46 0 0 66 1 865.79 86 0 0
7 0 0 27 0 0 47 0 0 67 0 0 87 0 0
8 0 0 28 0 0 48 0 0 68 0 0 88 0 0
9 0 0 29 0 0 49 0 0 69 0 0 89 0 0

10 0 0 30 0 0 50 0 0 70 0 0 90 0 0
11 0 0 31 0 0 51 0 0 71 0 0 91 0 0
12 0 0 32 0 0 52 0 0 72 0 0 92 0 0
13 0 0 33 0 0 53 0 0 73 0 0 93 0 0
14 0 0 34 0 0 54 0 0 74 0 0 94 0 0
15 1 669.51 35 0 0 55 0 0 75 0 0 95 0 0
16 0 0 36 0 0 56 0 0 76 0 0 96 1 1105.77
17 1 806.61 37 0 0 57 0 0 77 0 0 97 0 0
18 1 401.80 38 0 0 58 0 0 78 0 0 98 0 0
19 0 0 39 0 0 59 0 0 79 0 0 99 1 200
20 0 0 40 0 0 60 0 0 80 0 0 100 0 0

Figure ?? shows the complete number of claims and the total claim amount concerning
these claims. It can be seen that the larger claim values appear in the case of single claims
and that these values fall with larger numbers of claims. It is probable that a first severe
accident encourages the driver to be more careful, which tends to reduce the size of the
claims in future accidents. For this reason, we believe the bonus-malus premiums should
not be based only on the number of claims but also on their size.

LISTPLOT-eps-converted-to.pdf

Figure 1. Number of claims and their costs

We used (??) to estimate the α and β parameters of this distribution when only the
number of claims was used, and assumed that α ≡ α − γ. The maximum likelihood
method does not provide a solution in this case, and so α = 1/β was assumed, which
produced β̂ = 0.2528 and −18684.10 for the value of the maximum of the log-likelihood
function. The bonus-malus premiums (BMP) are computed according to the expression

BMP =
β + k

α+ t− 1

α− 1

β
,
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Table 2. Some descriptive data of claims and claim size for the data set

Number of
claims

Total claim
amount

Mean 0.072 137.27
Standard deviation 0.278 1056.30

min 0 0
max 4 55922.10

where k = tn̄. The resulting bonus-malus premiums are shown in Table ??.
Now, using the expressions given in (??), (??), (??) and (??) we computed the

maximum likelihood estimates of the parameters when the claim amount distribution
is used to compute the bonus-malus premiums. In order to simplify the computations
the values of the total claim amounts have been divided by 1000. These are given by
α̂ = 2.4282, β̂ = 0.0299, γ̂ = 2.0465 and σ̂ = 2.2051. Now, the value of the maximum of
the log-likelihood function is −24111.80 and the estimated value of the covariance, using
expression (??), is 0.1072. Observe that for these estimates the net collective premium
based on both, the number of claims and the individual claim size, which is given in (??),
is provided by 1000 × 0.153068 = 153.068, the latter value is close to the sample mean
appearing in Table ??.

Let us now compute the bonus-malus premiums using the expression

BMP =
(β + t)(σ + κ)

(α+ β − γ + t)(γ + t− 1)

(α+ β − γ)(γ − 1)

βσ
,

for κ = tx̄ > 0. When κ = 0 the bonus-malus premiums are given by

BMP =
βσ

(α+ β − γ + t)(γ − 1)

(α+ β − γ)(γ − 1)

βσ
.

Table ?? shows the bonus-malus premiums obtained with the aggregate model, taking
into account the number of claims and the individual claim size.

Observe that the premiums based only on the number of claims and on the total
claim amount have several levels of premiums, but these levels have different meanings.
Although the first is based on k and the second on κ we can consider both levels used
by the insurance firm to move a policyholder from one column to another, i.e. to move
the policyholder from one class to another. The first column is usually termed the bonus
class and the other, the malus class.

Tables ?? and ?? show that the bonus-malus premiums under the model based on
the total claim amount distribution are slightly lower for the bonus class and larger for
the classes k = 1, 2 and 3, in comparison with the bonus-malus premiums based only
on the number of claims. It seems reasonable that policyholders with no claims should
pay less, taking into account that those reporting claims are now going to pay more. It
could be said that the new bonus-malus system is very generous to drivers in the bonus
class and very strict with those in the malus classes. The drivers in the bonus class,
for the first claim free year, will receive 70.94% of the basic premium, while drivers who
report one accident in the first year will have to pay a malus of 695.400% of the basic
premium. It might be thought that this is dangerous for the insurance firm, because
most policyholders would look for another company with more competitive prices, but it
should be recalled that most of the policyholders in the portfolio do not make a claim.
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Table 3. Bonus-malus premiums based only on the frequency compo-
nent and the net premium principle

Year Number of claims, k

0 1 2 3 4 5

0 1.00000
1 0.74712 3.70161 6.65609 9.61058 12.5651 15.5196
2 0.59632 2.95449 5.31265 7.67081 10.0290 12.3871
3 0.49617 2.45831 4.42044 6.38257 8.34470 10.3068
4 0.42483 2.10482 3.78481 5.46480 7.14480 8.82479
5 0.37142 1.84021 3.30900 4.77780 6.24659 7.71538
6 0.32994 1.63471 2.93947 4.24423 5.54899 6.85376
7 0.29679 1.47049 2.64418 3.81787 4.99156 6.16525
8 0.26970 1.33625 2.40280 3.46935 4.53589 5.60244
9 0.24714 1.22447 2.20180 3.17913 4.15646 5.13379
10 0.22806 1.12995 2.03184 2.93373 3.83561 4.73750

Table 4. Bonus-malus premiums based on the severity component and
the net premium principle

Year Total claim amount, κ

0 1 2 3 4 5

0 1000.00
1 290.57 7953.99 10435.70 12917.40 15399.10 17880.80
2 169.98 6166.55 8090.54 10014.50 11938.5 13862.50
3 120.12 4898.92 6427.41 7955.90 9484.40 11012.90
4 92.88 4040.46 5301.11 6561.76 7822.41 9083.06
5 75.71 3431.31 4501.90 5572.48 6643.07 7713.66
6 63.90 2979.23 3908.77 4838.31 5767.84 6697.38
7 55.27 2631.28 3452.25 4273.22 5094.20 5915.17
8 48.70 2355.53 3090.47 3825.41 4560.35 5295.29
9 43.52 2131.79 2796.92 3462.05 4127.18 4792.30
10 39.34 1946.68 2554.05 3161.43 3768.80 4376.18

In fact, for the policyholder studied here, 93.18% of the policyholders did not report any
claim.

Conditional distributions form the theoretical basis of all regression analysis and there-
fore it is important to examine them. The conditional distribution of X|Y = y is given
by

fX|Y (x|y) =
xα−1(1− x)β−1 exp(−σxy)

B(α, β) 1F1(α, α+ β,−σy)
, 0 < x < 1,(6.1)
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which is the confluent hypergeometric distribution with parameters α, β and σy according
to Gordy (1998).

The conditional distribution of Y |X = x is given by

fY |X(y|x) =
(σx)γ

Γ(γ)
yγ−1 exp(−σxy), y > 0,(6.2)

which is a gamma distribution with shape parameter γ and scale parameter σx.
Furthermore, some algebra on (??) and (??) provides the conditional expectations

(the regression of x on y and the regression of y on x), which are given by

E(X|Y = y) =
α

α+ β
1F1(α+ 1, α+ β + 1,−σy)

1F1(α, α+ β,−σy)
,

E(Y |X = x) =
γ

αx
.(6.3)

7. Conclusions
This paper presents an optimal BMS based on both random variables, i.e., the number

of claims and the individual claim size. This model was constructed using a bivariate
prior distribution for the two risk profiles on which the total claim amount depends. In
consequence, we obtained premiums which can be written as credibility formula and are
suitable for the computation of bonus-malus premiums. These premiums appear to be of
most benefit to policyholders who report claims with a low individual claim size, while
a larger premium is charged to those who produce a high individual claim size. It is
concluded that it is fairer to charge policyholders premiums which not only take into
account the number of claims, but also the total claim amount (which depends on both
the number of claims and the individual claim size).
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analysis and its properties
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Abstract
In this paper, we introduce a new compounding distribution, named the
Lindley-Poisson distribution. We investigate its characterization and
statistical properties. The maximum likelihood inference using EM al-
gorithm is developed. Asymptotic properties of the MLEs are discussed
and simulation studies are performed to assess the performance of pa-
rameter estimation. We illustrate the proposed model with two real
applications and it shows that the new distribution is appropriate for
lifetime analyses.
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1. Introduction
The Lindley distribution was originally introduced by [16] to illustrate a difference

between fiducial distribution and posterior distribution. It has attracted a wide applica-
bility in survival and reliability. Its density function is given by

(1.1) f(t) =
θ2

1 + θ
(1 + t)e−θt, t, θ > 0.

We denoted this by writing LD(θ). The density in (1.1) indicates that the Lindley distri-
bution is a mixture of an exponential distribution with scale θ and a gamma distribution
with shape 2 and scale θ, where the mixing proportion is θ/(1 + θ).
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[11] provided a comprehensive treatment of the statistical properties of the Lindley
distribution and showed that in many ways it performs better than the well-known ex-
ponential distribution. [20] discussed the discrete Poisson–Lindley distribution by com-
pounding the Poission distribution and the Lindley distribution. [10] investigated the
properties of the zero-truncated Poisson—Lindley distribution. [3] extended the Lindley
distribution by exponentiation. [22] introduced and analyzed a three-parameter general-
ization of the Lindley distribution, which was used by [17] to derive an extended version
of the compound Poisson distribution. [21] introduced a two-parameter Lindley distri-
bution of which the one-parameter LD(θ) is a particular case, for modeling waiting and
survival times data. [9] introduced a two-parameter power Lindley distribution (PL)
and discussed its properties. [18] proposed a generalized Lindley distribution (GL) and
provided comprehensive account of the mathematical properties of the distribution.

On the other hand, the studies and analysis of lifetime data play a central role in a
wide variety of scientific and technological fields. There have been developed several dis-
tributions by compounding some useful life distributions. [1] introduced a two-parameter
exponential-geometric (EG) distribution with decreasing failure rate by compounding an
exponential with a geometric distribution. [15] proposed an exponential-Poisson (EP)
distribution by mixing an exponential and zero truncated Poisson distribution and dis-
cussed its various properties. [5] introduced a new two-parameter distribution family with
decreasing failure rate by mixing power-series distribution and exponential distribution.

The aim of this paper is to propose an extension of the Lindley distribution which
offers a more flexible distribution for modeling lifetime data. In this paper, we introduce
an extension of the Lindley distribution by mixing Lindley and zero truncated Poisson
distribution. It differs from the discrete Poisson–Lindley distribution proposed by [20].
Since the Lindley distribution is not a generalization of exponential distribution, the
model EP in [15] can not be obtained as a particular case of the new model in this paper.
An interpretation of the proposed model is as follows: a situation where failure occurs
due to the presence of an unknown number, Z, of initial defects of same kind. Z is a zero
truncated Poisson variable. Their lifetimes, Y’s, follow a Lindley distribution. Then for
modeling the first failure X, the distribution leads to the Lindley–Poisson distribution.
We aim to discuss some properties of the proposed distribution.

The rest of this paper is organized as follows: in Section 2, we present the new
Lindley-Poisson distribution and investigate its basic properties, including the shape
properties of its density function and the hazard rate function, stochastic orderings and
representation, moments and measurements based on the moments. Section 3 discusses
the distributions of some extreme order statistics. The maximum likelihood inference
using EM algorithm and asymtotical properties of the estimates are discussed in Section
4. Simulation studies are also conducted in this Section. Section 5 gives a real illustrative
application and reports the results. Our work is concluded in Section 6.

2. Lindley-Poisson Distribution and its Properties
2.1. Density and hazard function. The new distribution can be constructed as fol-
lows. Suppose that the failure of a device occurs due to the presence of Z (unknown
number) initial defects of some kind. Let Y1, Y2, ..., YZ denote the failure times of the
initial defects, then the failure time of this device is given by X = min(Y1, ..., YZ).

Suppose the failure times of the initial defects Y1, Y2, ..., YZ follow a Lindley distri-
bution LD(θ) and Z has a zero truncated Poisson distribution with probability mass
function as follows:

(2.1) p(Z = z) =
λze−λ

z!(1− e−λ)
, λ > 0, z = 1, 2, ...
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By assuming that the random variables Yi and Z are independent, then the density of
X|Z = z is given by

f(x|z) =
θ2(x+ 1)ze−xzθ(θ + θx+ 1)z−1

(θ + 1)z
, x > 0,

and the marginal probability density function of X is

(2.2) f(x) =
θ2λ(x+ 1)e

λe−θx(θ+θx+1)
θ+1

−θx

(θ + 1) (eλ − 1)
, θ > 0, λ > 0, x > 0.

In the sequel, the distribution of X will be refered to as the LP, which is customary for
such a name given to the distribution arising via the operation of compounding in the
literature.

2.1. Theorem. Considering the LP distribution with the probability density function in
(2.2), we have the following properties:

(1) As λ goes to zero, LP (θ, λ) leads to the Lindley distribution LD(θ).
(2) If θ2(λ + 1) ≥ 1, f(x) is decreasing in x. If θ2(λ + 1) < 1, f(x) is a unimodal

function at x0, where x0 is the solution of the equation θ2λ(x+1)2+(θ+1)eθx(θ+
θx− 1) = 0.

Proof. 1. As λ goes to zero, then

lim
λ→0

f(x) = lim
λ→0

θ2λ(x+ 1)e
λe−θx(θ+θx+1)

θ+1
−θx

(θ + 1) (eλ − 1)

=
θ2(x+ 1)e−θx

θ + 1
,

which is the probability density distribution of LD(θ).

2. f(0) = θ2eλλ

(θ+1)(eλ−1)
and f(∞) = 0. The first derivative of log f(x) is

d log f(x)

dx
= −e

−θx [θ2λ(x+ 1)2 + (θ + 1)eθx(θ + θx− 1)
]

(θ + 1)(x+ 1)
.

Let s(x) = θ2λ(x+1)2+(θ+1)eθx(θ+θx−1), then s(0) = θ2(λ+1)−1 and s(∞) =∞,
s′(x) = θ2(x+ 1)

[
2λ+ (θ + 1)eθx

]
> 0.

If θ2(λ + 1) ≥ 1, then s(x) ≥ 0, d log f(x)
dx

≤ 0, i.e., f(x) is decreasing in x. If
θ2(λ+ 1) < 1, f(x) is a unimodal function at x0, where x0 is the solution of the equation
s(x) = 0.

�

The cumulative distribution of the LP distribution is given by

F (x) =
eλ − e

λe−θx(θ+θx+1)
θ+1

eλ − 1
, x > 0.(2.3)

The hazard rate function of the LP (θ, λ) distribution is given by

(2.4) h(x) =
θ2λ(x+ 1)e

λe−θx(θ+θx+1)
θ+1

−θx

(θ + 1)

[
e
λe−θx(θ+θx+1)

θ+1 − 1

] , x > 0.

2.2. Theorem. Considering the hazard function of the LP distribution, we have the
following properties:
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Figure 1. Plots of the LP density and hazard function for some pa-
rameter values.

(1) If −θ3λ+θ2λ+θ+1 > 0 and the equation (θ+1)eθx−θ2λ(x+1)2(θ+θx−1) = 0
has no real roots, then the hazard function is increasing.

(2) If −θ3λ+θ2λ+θ+1 < 0 and the equation (θ+1)eθx−θ2λ(x+1)2(θ+θx−1) = 0
has one real roots, then the hazard function is bathtub shaped.

Proof. h(0) = θ2eλλ
(θ+1)(eλ−1)

. For the LP distribution, we have

η(x) = −f
′(x)

f(x)
=
e−θx

[
θ2λ(x+ 1)2 + (θ + 1)eθx(θ + θx− 1)

]

(θ + 1)(x+ 1)
,

and its first derivative is

η′(x) =
e−θx

[
(θ + 1)eθx − θ2λ(x+ 1)2(θ + θx− 1)

]

(θ + 1)(x+ 1)2
.

Let t(x) = (θ + 1)eθx − θ2λ(x + 1)2(θ + θx − 1), then t(0) = −θ3λ + θ2λ + θ + 1 and
t(∞) =∞, the sign of η′(x) is the sign of t(x) and η′(x) = 0 if t(x) = 0. The properties
follow from the results in [12]. �

For the Lindley distribution LD(θ), its hazard function h(x) = θ2(1+x)
θ+1+θx

which is in-
creasing. For the exponential distribution, its hazard function h(x) = θ which is a con-
stant. (2.4) shows the flexibility of the LP distribution over the Lindley and exponential
distribution.

Figure 1a shows some density functions of the LP (θ, λ) distribution with various
parameters. Figure 1b shows some shapes of the LP (θ, λ) hazard function with various
parameters.

2.2. Stochastic Ordering. In probability theory and statistics, a stochastic order
quantifies the concept of one random variable being “bigger" than another. A ran-
dom variable X is less than Y in the ususal stochastic order (denoted by X ≺st Y )
if FX(x) ≥ FY (x) for all real x. X is less than Y in the hazard rate order (denoted by
X ≺hr Y ) if hX(x) ≥ hY (x), for all x ≥ 0. X is less than Y in the likelihood ratio order
(denoted by X ≺lr Y ) if fX(x)/fY (x) increases in x over the union of the supports of X
and Y . It is known that X ≺lr Y ⇒ X ≺hr⇒ X ≺st Y , see [19].
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2.3. Theorem. If X ∼ LP (θ, λ1) and Y ∼ LP (θ, λ2), and λ1 < λ2, then Y ≺lr X,
Y ≺hr X and Y ≺st X.

Proof. The density ratio is given by

U(x) =
fX(x)

fY (x)
=

(
eλ2 − 1

)
λ1 exp

(
λ1e
−θx(θ+θx+1)

θ+1
− λ2e

−θx(θ+θx+1)
θ+1

)

(eλ1 − 1)λ2
.

Taking the derivative with respect to x,

U ′(x) = −
θ2
(
eλ2 − 1

)
λ1 (λ1 − λ2) (x+ 1) exp

(
− e
−θx(−λ1(θ+θx+1)+λ2(θ+θx+1)+θ(θ+1)xeθx)

θ+1

)

(θ + 1) (eλ1 − 1)λ2
.

If λ1 < λ2, U ′(x) > 0, U(x) is an increasing function of x. The results follow. �

2.3. Moments and Measures based on moments. In this section, we consider the
moments and measures of the LP distribution X ∼ LP (θ, λ). The k-th raw moment of
X is given by, for k = 1, 2, ...,

µk = E(Xk) = k

∫ ∞

0

xk−1Ḡ(x)dx =

∫ ∞

0

kxk−1[e
λe−θx(θ+θx+1)

θ+1 − 1]

eλ − 1
dx.

E(Xk) cannot be expressed in a simple closed-form and need be calculated numerically.
Using numerical integration, we can find some measures based on the moments such as
mean, variance, skewness and kurtosis etc. For the skewness and kurtosis coefficients,√
β1 =

µ3−3µ1µ2+2µ3
1

(µ2−µ2
1)

3/2 and β2 =
µ4−4µ1µ3+6µ2

1µ2−3µ4
1

(µ2−µ2
1)

2 .
The cumulative distribution of the LP distribution is given in (2.3). The qth (0 ≤ q ≤

1) quantile xq = F−1(q) of the LP (θ, λ) distribution is

xq =

−θ −W
(
− e
−θ−1(θ+1) log(eλ−eλq+q)

λ

)
− 1

θ
,

where W (a) giving the principal solution for w in a = wew is pronounced as Lambert W
function, see [14].

In particular, the median of the LP (θ, λ) distribution is given by

xm =

−θ −W
(
− e
−θ−1(θ+1) log( 1

2 (eλ+1))
λ

)
− 1

θ
.(2.5)

Figure 2a displays the mean and variance of the LP (θ, λ = 1) distribution. Figure 2b
shows the skewness and kurtosis coefficients of the LP (θ, λ = 1) distribution. From the
figures, it is found that the LP (θ, λ = 1) distribution has positive skewness and kurtosis
coefficients. The coefficients are increasing functions of θ.

3. Distributions of Order Statistics
Let X1, X2, ..., Xn be a random sample of size n from the LP (θ, λ) distribution. By

the usual central limit theorem, the same mean (X1 + ...+Xn)/n approaches the normal
distribution as n → ∞. Sometimes one would be interested in the asymptotics of the
sample minima X1:n = min(X1, ..., Xn) and the sample maxima Xn:n = max(X1, ..., Xn).
These extreme order statistics represent the life of series and parallel system and have
important applications in probability and statistics.
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Figure 2. (a) Plot of mean and variance of the LP (θ, λ = 1) distribu-
tion; (b) Plot of skewness and kurtosis coefficients of the LP (θ, λ = 1)
distribution.

3.1. Theorem. Let X1:n and Xn:n be the smallest and largest order statistics from the
LP (θ, λ) distribution. Then
(1) lim

n→∞
P (X1:n ≤ b∗nt) = 1− e−t, t > 0, where b∗n = F−1(1/n).

(2) lim
n→∞

P (Xn:n ≤ bnt) = e−t
−1

, t > 0, where bn = F−1(1− 1/n).

Proof. We apply the following asymptotical results for X1:n and Xn:n ([2]).
(1) For the smallest order statistic X1:n, we have

lim
n→∞

P (X1:n ≤ a∗n + b∗nt) = 1− e−tc , t > 0, c > 0,

(of the Weibull type) where a∗n = F−1(0) and b∗n = F−1(1/n) − F−1(0) if and only if
F−1(0) is finite and for all t > 0 and c > 0,

lim
ε→0+

F (F−1(0) + εt)

F (F−1(0) + ε)
= tc.

For the LP (θ, λ) distribution, its cumulative distribution function is

F (x) =
eλ − e

λe−θx(θ+θx+1)
θ+1

eλ − 1
, θ > 0, λ > 0, x > 0.

Let F (x) = 0, we have θ+θx+1 = eθx(θ+1) ≥ (1+θx)(θ+1), θx2 ≤ 0. Thus F−1(0) = 0
is finite. Furthermore,

lim
ε→0+

F (0 + εt)

F (0 + ε)
= t lim

ε→0+

f(εt)

f(ε)
= t.

Therefore, we obtain that c = 1, a∗n = 0 and b∗n = F−1(1/n) which is the 1
n
th quantile.

(2) For the largest order statistic Xn:n, we have

lim
n→∞

P (Xn:n ≤ an + bnt) = e−t
−d
, t > 0, d > 0
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(of the Fréchet type) where an = 0 and b∗n = F−1(1 − 1/n) if and only if F−1(1) = ∞
and there exists a constant d > 0 such that

lim
x→∞

1− F (xt)

1− F (x)
= t−d.

For the LP (θ, λ) distribution, let F (x) = 1, then λe−θx(θ+θx+1)
θ+1

= 0, we have the solution
x =∞. Thus F−1(1) =∞. Furthermore,

lim
x→∞

1− F (xt)

1− F (x)
= t−1.

Therefore, we obtain that d = 1, an = 0 and bn = F−1(1−1/n) which is the the (1− 1
n

)th
quantile.

�

3.2. Remark. Let Q∗(t) and Q(t) denote the limiting distributions of the random vari-
ables (X1:n − a∗n)/b∗n and (Xn:n − an)/bn respectively, then for k > 1, the limiting
distributions of (Xk:n − a∗n)/b∗n and (Xn−k+1:n − an)/bn are given by, see [2],

lim
n→∞

P (Xk:n ≤ a∗n + b∗nt) = 1−
k−1∑

j=0

(1−Q∗(t)) [− log(1−Q∗(t))]j
j!

,

lim
n→∞

P (Xn−k+1:n ≤ an + bnt) =

k−1∑

j=0

Q(t)
[− logQ(t)]j

j!
.

4. Estimation and inference
4.1. Maximum likelihood estimation. Here, we consider the maximum likelihood
estimation about the parameters (θ, λ) of the LP model. Suppose yobs = {x1, x2, ..., xn}
is a random sample of size n from the LP (θ, λ) distribution. Then the log-likelihood
function is given by

l = log

n∏

i=1

fX(xi)

= λ

n∑

i=1

e−θxi +
θλ
∑n
i=1 xie

−θxi

θ + 1
− θ

n∑

i=1

xi +

n∑

i=1

log (xi + 1)

+2n log(θ)− n log(θ + 1)− n log
(
eλ − 1

)
+ n log(λ).(4.1)

The associated gradients are found to be

∂l

∂θ
= −

n∑

i=1

xi +
2n

θ
− n

θ + 1
− θ(θ + 2)λ

∑n
i=1 xie

−θxi

(θ + 1)2
− θλ

∑n
i=1 x

2
i e
−θxi

θ + 1
,(4.2)

∂l

∂λ
=

n∑

i=1

e−θxi +
θ
∑n
i=1 xie

−θxi

θ + 1
− neλ

eλ − 1
+
n

λ
.(4.3)

The estimates of the parameters maximize the likelihood function. Equalizing the
obtained gradients expressions to zero yield the likelihood equations. However, they do
not lead to explicit analytical solutions for the parameters. Thus, the estimates can
be obtained by means of numerical procedures such as Newton-Raphson method. The
program R provides the nonlinear optimization routine optim for solving such problems.
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The equation ∂l
∂θ

= 0 could be solved exactly for λ, namely

λ̂ =
(θ̂ + 1)

[
θ̂(θ̂ + 1)

∑n
i=1 xi − (θ̂ + 2)n

]

θ̂
[
−(θ̂ + 1)2

∑n
i=1 xie

−θ̂xi − θ̂(θ̂ + 1)
∑n
i=1 x

2
i e
−θ̂xi +

∑n
i=1 xie

−θ̂xi
] ,(4.4)

conditional on the value of θ̂, where θ̂ and λ̂ are the maximum likelihood estimators for
the parameters θ and λ, respectively.

In the following, Theorem 4.1 gives the condition for the existence and uniqueness of
λ̂ when θ is known.

4.1. Theorem. For the MLEs, let l2(λ; θ, yobs) denote the function on the RHS of the
expression in (4.3), if θ is known, then the root of l2(λ; θ, yobs) = 0, λ̂ , uniquely exists if
∑n
i=1 e

−θxi +
θ
∑n
i=1 xie

−θxi
θ+1

> n
2
.

Proof. Notice that limλ→0 l2(λ; θ, yobs) =
∑n
i=1 e

−θxi +
θ
∑n
i=1 xie

−θxi
θ+1

− n
2
> 0 when

∑n
i=1 e

−θxi+
θ
∑n
i=1 xie

−θxi
θ+1

> n
2
. On the other hand, we can show that limλ→∞ l2(λ; θ, yobs) =

∑n
i=1 e

−θxi +
θ
∑n
i=1 xie

−θxi
θ+1

− n. Consider g(x) = e−θx + θ
θ+1

xe−θx − 1, g(0) = 0 and

g(∞) = −1, g′(x) = − θ2(x+1)eθ(−x)

θ+1
< 0, therefore, limλ→∞ l2(λ; θ, yobs) < 0, there is at

least one root of l2(λ; θ, yobs) = 0. We need to prove that the function l2(λ; θ, yobs) is
decreasing in λ. Taking the first derivative

l′2(λ; θ, yobs) = −
[
−eλ

(
λ2 + 2

)
+ e2λ + 1

]
n

(eλ − 1)2 λ2
= −e

λ
[
−
(
λ2 + 2

)
+ eλ + e−λ

]
n

(eλ − 1)2 λ2
< 0.

This completes the proof.
�

4.2. An EM algorithm. An expectation–maximization (EM) algorithm ([7]) is a pow-
erful method for finding maximum likelihood estimates of parameters in statistical mod-
els, where the model depends on unobserved latent variables. The EM iteration alternates
between performing an expectation (E) step, which creates a function for the expectation
of the log-likelihood evaluated using the current estimate for the parameters, and a max-
imization (M) step, which computes parameters maximizing the expected log-likelihood
found on the E step. These parameter estimates are then used to determine the distribu-
tion of the latent variables in the next E step. We propose the use of the EM algorithm
in this section.

Assume that (X,Z) denotes a random vector, where X denotes the observed data
and Z denotes the missing data. To implement the algorithm we define the hypothetical
complete–data distribution with density function

f(x, z) = p(z)f(x|z) =
θ2(x+ 1)ze−xzθ(θ + θx+ 1)z−1

(θ + 1)z
λze−λ

z!(1− e−λ)
, x > 0, z = 1, 2, ...,

where θ > 0 and λ > 0 are parameters. It is straightforward to verify that the computa-
tion of the conditional expectation of (Z|X) using the pdf

p(z|x) =
(θ + 1)1−zλz−1(θ + θx+ 1)z−1 exp

(
−λe−θx(θ+θx+1)

θ+1
+ θx− θxz

)

(z − 1)!
, z = 1, 2, ...

Then we have

E(Z|X) = 1 +
λe−θx(θ + θx+ 1)

θ + 1
.
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The cycle is completed with the M–step which is essentially-full data maximum likelihood
over the parameters, with the missing Z′s replaced by their conditional expectations
E(Z|X). Thus, an EM iteration is given by

θ(t+1) = 2n[

n∑

i=1

xi + 1

θ(t) + θ(t)xi + 1
−

n∑

i=1

(xi + 1)w
(t)
i

θ(t) + θ(t)xi + 1
+

n∑

i=1

xiw
(t)
i +

∑n
i=1 w

(t)
i

θ(t) + 1
]−1,

λ(t+1) = n−1[1− e−λ(t)

]

n∑

i=1

w
(t)
i ,

where w(t)
i = 1 + λ(t)e−θ

(t)xi (θ(t)+θ(t)xi+1)

θ(t)+1
.

4.3. Asymtotic variance and covariance of MLEs. It is known that under some
regular conditions, as the sample size increases, the distribution of the MLE tends to the
bivariate normal distribution with mean (θ, λ) and covariance matrix equal to the inverse
of the Fisher information matrix, see [6]. The bivariate normal distribution can be used
to construct approximate confidence intervals for the parameters θ and λ.

Let I = I(θ, λ; yobs) be the observed matrix with elements Iij with i, j = 1, 2. The
elements of the observed information matrix are found as follows:

I11 = −
(
(θ + 1)2 − 2λ

)∑n
i=1 x

2
i e
−θxi

(θ + 1)2
− θλ

∑n
i=1 x

3
i e
−θxi

θ + 1
+

2λ
∑n
i=1 xie

−θxi

(θ + 1)3
+

2n

θ2
− n

(θ + 1)2
,

l12 = l21 =
θ(θ + 2)

∑n
i=1 xie

−θxi

(θ + 1)2
+
θ
∑n
i=1 x

2
i e
−θxi

θ + 1
,

l22 = − eλn

(eλ − 1)2
+

n

λ2
.

The expectation J = E(I(θ, λ; yobs)) is taken with respect to the distribution of X. The
Fisher information matrix is given by

J(θ, λ) = n

(
J11 J12
J21 J22

)

where

J11 = −
(
(θ + 1)2 − 2λ

)
E(X2e−θX)

(θ + 1)2
− θλE(X3e−θX)

θ + 1
+

2λE(Xe−θX)

(θ + 1)3
+

2

θ2
− 1

(θ + 1)2
,

J12 = J21 =
θ(θ + 2)E(Xe−θX)

(θ + 1)2
+
θE(X2e−θX)

θ + 1
,

J22 =
1

λ2
− eλ

(eλ − 1)2
.

The inverse of J(θ, λ), evaluated at θ̂ and λ̂ provides the asymptotic variance–covariance
matrix of the MLEs. Alternative estimates can be obtained from the inverse of the ob-
served information matrix since it is a consistent estimator of J−1.
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4.4. Simulation study. The random data X from the proposed distribution can be
generated as follows:

(1) Generate Z ∼ zero truncated Poisson (λ).
(2) Generate Ui ∼ Uniform(0, 1), i = 1, ..., Z.
(3) Generate Vi ∼ Exponential(θ), i = 1, ..., Z.
(4) Generate Wi ∼ Gamma(2, θ), i = 1, ..., Z.
(5) If Ui ≤ θ/(1 + θ), then set Yi = Vi, otherwise, set Yi = Wi, i = 1, ..., Z.
(6) Set X = min(Y1, ..., YZ).

In order to assess the performance of the approximation of the variances and covari-
ances of the MLEs determined from the information matrix, a simulation study (based
on 10000 simulations) has been conducted.

For each value of (θ, λ), the parameter estimates have been obtained by the EM
iteration in Section 4.2 with different initial values. The convergence is assumed when
the absolute differences between successive estimates are less than 10−5.

The simulated values of V ar(θ̂), V ar(λ̂) and Cov(θ̂, λ̂) as well as the approximate
values determined by averaging the corresponding values obtained from the expected and
observed information matrices are given in Table 1. We can see that for large values of
n, the approximate values determined from expected and observed information matrices
are quite close to the corresponding simulated values. The approximation becomes quite
accurate as n increases. As expected, variances and covariances of the MLEs obtained
from the observed information matrix are quite close to that of the expected information
matrix for large values of n.

Table 1. Variances and covariances of the MLEs.

n (θ, λ)
Simulated From expected information From observed information
V ar(θ̂) V ar(λ̂) Cov(θ̂, λ̂) V ar(θ̂) V ar(λ̂) Cov(θ̂, λ̂) V ar(θ̂) V ar(λ̂) Cov(θ̂, λ̂)

50 (0.5, 1.0) 0.1263 5.1246 -0.5943 0.0669 4.6146 -0.5249 0.0675 5.5077 -0.5827
50 (1.0, 0.5) 0.1809 2.3515 -0.7432 0.2009 2.6355 -0.8070 0.1112 1.9026 -0.7148
50 (0.5, 2.0) 0.0854 3.0085 -0.4022 0.0755 3.4085 -0.4615 0.0503 2.6381 -0.3235
50 (2.0, 0.5) 0.7783 3.3421 -1.5915 0.7578 3.0401 -1.3959 0.8382 3.6288 -1.6234
50 (2.0, 2.0) 0.7069 2.5474 -1.1334 0.7001 2.0854 -1.0336 0.7149 3.4743 -1.2402

100 (0.5, 1.0) 0.0365 2.9019 -0.3419 0.0476 2.9411 -0.3599 0.0334 2.3195 -0.3281
100 (1.0, 0.5) 0.0901 1.7915 -0.3829 0.0996 1.9011 -0.4122 0.0925 1.643 -0.3645
100 (0.5, 2.0) 0.0234 1.4168 -0.1738 0.0289 1.4896 -0.1882 0.0252 1.2935 -0.162
100 (2.0, 0.5) 0.2743 1.2773 -0.5513 0.2824 1.2676 -0.5510 0.2605 1.2929 -0.511
100 (2.0, 2.0) 0.3602 1.0218 -0.5014 0.3588 1.0148 -0.5218 0.349 0.9358 -0.4904

500 (0.5, 1.0) 0.0064 0.4256 -0.0506 0.0063 0.4238 -0.0496 0.0065 0.4462 -0.052
500 (1.0, 0.5) 0.0545 0.943 -0.2255 0.0522 0.9426 -0.2201 0.0567 0.9446 -0.2278
500 (0.5, 2.0) 0.0028 0.2001 -0.0211 0.0027 0.2009 -0.0209 0.0029 0.1998 -0.0213
500 (2.0, 0.5) 0.0899 0.3562 -0.1753 0.0888 0.3596 -0.1761 0.0938 0.3548 -0.1749
500 (2.0, 2.0) 0.0419 0.1672 -0.0723 0.0418 0.1672 -0.0733 0.0416 0.1673 -0.0723

In addition, simulations have been conduced to investigate the convergence of the
proposed EM algorithm in Section 4.2. Ten thousand samples of size 100 and 500 of
which are randomly sampled from the LP distribution for each of the five values of (θ, λ)
are generated.

The results are presented in Table 2, which gives the averages of the 10000 MLEs,
av(θ̂), av(λ̂), and average number of iterations to convergence, av(h), together with their
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standard errors, where

av(θ̂) =
1

10000

10000∑

i=1

θ̂i, se(θ̂) =

√√√√ 1

10000

10000∑

i=1

(θ̂i − av(θ̂))2,

av(λ̂) =
1

10000

10000∑

i=1

λ̂i, se(λ̂) =

√√√√ 1

10000

10000∑

i=1

(λ̂i − av(λ̂))2,

av(ĥ) =
1

10000

10000∑

i=1

ĥi, se(ĥ) =

√√√√ 1

10000

10000∑

i=1

(ĥi − av(ĥ))2.

From Table 2, it is observed that convergence has been achieved in all cases, even when
the initial values are far from the true values and this endorses the numerical stability of
the proposed EM algorithm. The EM estimates performed consistently. Standard errors
of the MLEs decrease when sample size n increases.

Table 2. The means and standard errors of the EM estimator and iter-
ations to convergence with initial values (θ(0), λ(0)) from 10000 samples.

n θ λ θ(0) λ(0) av(θ̂) av(λ̂) se(θ̂) se(λ̂) av(h) se(h)

100 0.5 1 0.5 1 0.470 1.493 0.103 1.206 481.949 423.532
100 1 0.5 1 0.5 0.897 0.733 0.171 1.070 435.405 363.209
100 0.5 2 0.5 2 0.525 2.061 0.142 1.469 516.551 318.547
100 2 0.5 2 0.5 1.840 0.854 0.364 1.078 404.442 412.249
100 2 2 2 2 2.093 2.123 0.593 1.346 484.928 489.149

100 0.5 1 0.1 0.1 0.481 1.406 0.107 1.249 537.204 452.071
100 1 0.5 0.1 0.1 0.920 0.807 0.179 1.086 453.290 382.990
100 0.5 2 0.1 0.1 0.523 2.011 0.133 1.288 589.371 498.996
100 2 0.5 0.1 0.1 1.780 0.724 0.366 1.143 445.348 379.776
100 2 2 0.1 0.1 2.130 1.981 0.583 1.271 534.251 462.154

500 0.5 1 0.5 1 0.496 1.106 0.068 0.781 443.485 405.746
500 1 0.5 1 0.5 0.977 0.631 0.085 0.415 327.897 145.757
500 0.5 2 0.5 2 0.507 2.061 0.094 0.979 592.532 380.115
500 2 0.5 2 0.5 1.970 0.576 0.165 0.341 293.798 112.133
500 2 2 2 2 2.020 2.087 0.387 0.954 560.947 576.358

500 0.5 1 0.1 0.1 0.495 1.097 0.066 0.705 572.473 428.584
500 1 0.5 0.1 0.1 0.989 0.586 0.083 0.453 377.760 171.738
500 0.5 2 0.1 0.1 0.508 2.057 0.096 0.952 823.717 605.764
500 2 0.5 0.1 0.1 1.969 0.591 0.167 0.383 347.611 175.877
500 2 2 0.1 0.1 2.041 2.053 0.401 0.962 736.315 735.316

5. Illustrative Examples
In this section, we consider two numerical applications to test the performance of the

new distribution. First, we consider the time intervals of the successive earthquakes taken
from University of Bosphoros, Kandilli Observatory and Earthquake Research Institute-
National Earthquake Monitoring Center. The data set has been previously studied by

1073



[15]. The second dataset originally due to [4], which has also been analyzed previously
by [13]. The data represent the survival times of guinea pigs injected with different doses
of tubercle bacilli.

Table 3. Maximum likelihood parameter estimates(with (SE)) of the
LP, LD, PL and GL models for the two datasets.

Example Model Estimations loglik AIC K-S statistic p-value

1 (n = 24)

LP 0.6515 2.7778 −32.0766 68.1532 0.1667 0.9024
(0.2112) (0.1578)

LD 1.0420 − −34.5092 71.0184 0.2500 0.4490
(0.1612) −

PL 0.6215 1.0898 −32.6134 69.2268 0.2083 0.6860
(0.1026) (0.1745)

GL 0.5940 0.7701 −32.3633 68.7266 0.1667 0.9024
(0.1567) (0.1895)

2 (n = 72)

LP 0.0112 2.9545 −392.4274 788.8548 0.1111 0.7658
(0.0033) (0.1496)

LD 0.0198 − −394.5197 791.0394 0.1528 0.3701
(0.0016) −

PL 0.8451 0.0387 −396.8082 797.6164 0.1667 0.2700
(0.0503) (0.1745)

GL 1.1389 0.0212 −394.2822 792.5644 0.1528 0.3701
(0.2101) (0.0026)

We fit the data sets with the Lindley–Poisson distribution LP (θ, λ), Lindley distri-
bution LD(θ), Power Lindley distribution PL(α, β) and generalized Lindley distribution
GL(α, λ) and examine the performances of the distributions.

Those probability density functions are given below:

PL : f(x|Θ1) =
αβ2

β + 1
(1 + xα)xα−1e−βx

α

, Θ1 = (α, β), x > 0,

GL : f(x|Θ2) =
αλ2

1 + λ
(1 + x)[1− 1 + λ+ λx

1 + λ
e−λx]α−1, Θ2 = (α, λ), x > 0.

The maximum likelihood estimates of the parameters are obtained and the results are
reported in Table 3. The Akaike information criterion (AIC) is computed to measure the
goodness of fit of the models. AIC = 2k − 2 logL, where k is the number of parameters
in the model and L is the maximized value of the likelihood function for the estimated
model. Given a set of candidate models for the data, the preferred model is the one
with the minimum AIC value. The Kolmogorov-Smirnov (K-S) statistics and the p-
values for these models are also presented. The K-S test compares an empirical and a
theoretical model by computing the maximum absolute difference between the empirical
and theoretical distribution functions: D = maxx |Fn(x) − F (x)|. The associated the
p-value is the chance that the value of the Komogorov-Smirnov D statistic would be as
large or larger than observed. The computation of p-value can be found in [8].

For the first dataset, the K-S statistics for the LP and GL models are same and smaller
than those for the LD and PL models. For the LP model, AIC=68.1532 is smaller than
that obtained for the GL model. Log-likelihood value=−32.0766 is larger than those for
the GL model. It indicates that the LP model performs a best fit for this dataset. The
good performance of the LP model can also be supported by the second dataset.
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Figure 3. P-P plots for the first dataset.

Figure 3 and 4 display the probability-probability (P-P) plot for the two datasets.

6. Concluding Remarks
In this article, we have introduced a continuous Lindley-Poisson distribution by com-

pounding the Lindley distribution and zero truncated Poisson distribution. The proper-
ties, including the shape properties of its density function and the hazard rate function,
stochastic orderings, moments and measurements based on the moments are investigated.
The distributions of some extreme order statistics are also derived. Maximum likelihood
estimation method using EM algorithm is developed for estimating the parameters. As-
ymptotic properties of the MLEs are studied. We conduct intensive simulations and the
results show that the estimation performance is satisfied as expected. We apply the model
to two real datasets and the results demonstrate that the proposed model is appropriate
for the datasets.
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Figure 4. P-P plots for the second dataset.
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pling. Expressions for biases and mean squared errors of the proposed
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1. Introduction
The auxiliary information is frequently used to increase precision of the population

estimates by taking advantage of the correlation between the study variable and the aux-
iliary variable. Several authors including Kadilar and Cingi [4], Kadilar and Cingi [5],
Kadilar and Cingi [6], Kadilar and Cingi [7] and Gupta and Shabbir [3] have proposed
different estimators by utilizing information on the auxiliary variable for estimation of
the population mean.

In this paper, we propose some improved exponential type estimators for estimating
finite population mean using complete and partial auxiliary information. Explicit expres-
sions for biases and mean squared errors (MSEs) of the proposed estimators are derived
up to the first order of approximation. An empirical study is conducted to assess the
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performance of the proposed estimators. It is observed that the proposed estimators are
more precise than the existing estimators of the finite population mean.

Consider a finite population comprises of N units. We draw a sample of size n from
this population by using simple random sampling without replacement (SRSWOR). Let
y and x be the study and the auxiliary variables of the characteristics yi and xi, re-

spectively, for the ith unit. Let ȳ = 1
n

n∑
i=1

yi and x̄ = 1
n

n∑
i=1

xi be the sample means

corresponding to the population means Ȳ = 1
N

N∑
i=1

yi and X̄ = 1
N

N∑
i=1

xi, respectively. Let

s2
y = 1

n−1

n∑
i=1

(yi − ȳ)2 and s2
x = 1

n−1

n∑
i=1

(xi − x̄)2 be the sample variances correspond-

ing to the population variances S2
y = 1

N−1

N∑
i=1

(
yi − Ȳ

)2 and S2
x = 1

N−1

N∑
i=1

(
xi − X̄

)2,

respectively. Let ρ be the correlation coefficient between y and x. Let Cy =
Sy

Ȳ
and

Cx = Sx
X̄

be the coefficients of variation of y and x, respectively.

The rest of the paper is organized as follows: Section 2 includes the estimators adopted
by several authors when using complete auxiliary information. In Section 3, the proposed
estimators based on complete information are discussed in detail. Theoretical compar-
isons of the proposed estimators with the existing estimators are given in Section 4.
Section 5 contains some suggested estimators when partial auxiliary information is avail-
able. The work on the proposed estimators is extended to two-phase sampling in Section
6. Section 7 contains theoretical comparisons of the suggested estimators and existing
estimators. For numerical comparisons of estimators, we consider three real data sets in
Section 8, and concluding remarks are given in Section 9.

2. Estimators based on complete auxiliary information
In the following subsequent sections, we discuss the properties of the difference,

difference-ratio-type and exponential-type estimators of finite population mean suggested
by several authors.

2.1. Usual difference estimator of population mean. The unbiased difference es-
timator of population mean is

(2.1) ˆ̄YD = ȳ + k
(
X̄ − x̄

)
,

where k is an unknown constant.
The minimum variance of ˆ̄YD, at optimum value of k, i.e., k(opt) =

Ȳ ρCy

X̄Cx
, is given by

(2.2) V armin

(
ˆ̄YD
)
∼= Ȳ 2λ

(
1− ρ2)C2

y ,

where λ = 1−f
n

and f = n
N
.

2.2. Gupta and Shabbir [3] family of estimators. Gupta and Shabbir [3] introduced
the following family of estimators for estimating finite population mean:

(2.3) ˆ̄YGS =
{
s1ȳ + s2

(
X̄ − x̄

)}(aX̄ + b

ax̄+ b

)
,

where s1 and s2 are two unknown constants. Here a and b are the known population
parameters which may be coefficient of skewness (β1x), coefficient of kurtosis (β2x), co-
efficient of variation (CV ) and correlation coefficient (ρ).
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Expressions for Bias and MSE of ˆ̄YGS , to first order of approximation, are given by

(2.4) Bias
(

ˆ̄YGS
)
∼= −Ȳ + Ȳ {1 + λτCx (τCx − ρCy)} s1 + X̄λτC2

xs2

and

MSE
(

ˆ̄YGS
)
∼= Ȳ 2 + Ȳ 2 {1 + λ

(
3τ2C2

x − 4ρτCxCy + C2
y

)}
s2

1 + X̄λC2
xs2

(
−2Ȳ τ + X̄s2

)

−2Ȳ s1

[
Ȳ + λCx

{
τCx

(
Ȳ τ − 2X̄s2

)
+ ρCy

(
−Ȳ τ + X̄s2

)}]
,(2.5)

where τ = aX̄
aX̄+b

.

The optimum values of s1 and s2, obtained by minimizing the MSE of ˆ̄YGS , are given by

s1(opt) =
−1+λτ2C2

x

−1+λτ2C2
x+λ(−1+ρ2)C2

y

and s2(opt) =
Ȳ [−ρCy+τCx{1−λτ2C2

x+λρτCxCy+λ(−1+ρ2)C2
y}]

X̄Cx{−1+λτ2C2
x+λ(−1+ρ2)C2

y} .

The minimum MSE of ˆ̄YGS , at optimum values of s1 and s2, is given by

(2.6) MSEmin

(
ˆ̄YGS

)
∼=
Ȳ 2λ

(
1− ρ2

) (
−1 + λτ2C2

x

)
C2
y

−1 + λτ2C2
x + λ (−1 + ρ2)C2

y

.

Gupta and Shabbir [3] estimator ˆ̄YGS will perform better than the difference estimator
ˆ̄YD, if

Ȳ 2λ2
(
−1 + ρ2

)2
C4
y

1− λτ2C2
x + λ (1− ρ2)C2

y

> 0.

2.3. Grover and Kaur [2] estimator. Grover and Kaur [2] proposed the following
estimator of finite population mean:

(2.7) ˆ̄YGK =
{
t1ȳ + t2

(
X̄ − x̄

)}
exp

(
X̄ − x̄
X̄ + x̄

)
,

where t1 and t2 are two unknown constants, whose values are to be determined later on.
Expressions for Bias and MSE of ˆ̄YGK , to first order of approximation, are given by

(2.8) Bias
(

ˆ̄YGK
)
∼= 1

8

[
−8Ȳ + Ȳ {8 + λCx (3Cx − 4ρCy)} t1 + 4X̄λC2

xt2
]

and

MSE
(

ˆ̄YGK
)
∼= Ȳ 2 + Ȳ 2 {1 + λ

(
C2
x − 2ρCxCy + C2

y

)}
t21 + X̄λC2

xt2
(
−Ȳ + X̄t2

)

+
1

4
Ȳ t1

[
−8Ȳ + λCx

{
4ρCy

(
Ȳ − 2X̄t2

)
+ Cx

(
−3Ȳ + 8X̄t2

)}]
.(2.9)

The optimum values of t1 and t2, obtained by minimizing the MSE of ˆ̄YGK , are given by

t1(opt) =
−8+λC2

x

−8+8λ(−1+ρ2)C2
y

and t2(opt) =
Ȳ [−8ρCy+Cx{4−λC2

x+λρCxCy+4λ(−1+ρ2)C2
y}]

8X̄Cx{−1+λ(−1+ρ2)C2
y} .

The minimum MSE of ˆ̄YGK , at optimum values of t1 and t2, is given by

(2.10) MSEmin

(
ˆ̄YGK

)
∼=
Ȳ 2λ

{
λC4

x − 16
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

}

64
{
−1 + λ (−1 + ρ2)C2

y

} .

Grover and Kaur [2] estimator ˆ̄YGK will perform better than the difference estimator ˆ̄YD,
if

Ȳ 2λ2
{
C2
x − 8

(
−1 + ρ2

)
C2
y

}2

64
{

1 + λ (1− ρ2)C2
y

} > 0.
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Gupta and Shabbir [3] estimator ˆ̄YGS will perform better than the Grover and Kaur [2]
estimator ˆ̄YGK , if

Ȳ 2λ

( (
−1 + ρ2

) (
−1 + λτ2C2

x

)
C2
y

−1 + λτ2C2
x + λ (−1 + ρ2)C2

y

+
λC4

x − 16
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

64
{
−1 + λ (−1 + ρ2)C2

y

}
)
> 0.

3. Proposed estimators
In this section, we propose some improved exponential type estimators for estimating

finite population mean when complete auxiliary information is available.

3.1. First proposed estimator. On the lines of Singh and Espejo [8], the average
ratio-product estimator is given by

(3.1) ˆ̄YSE =
1

2
ȳ

(
X̄

x̄
+
x̄

X̄

)
.

By replacing ˆ̄YSE in place of ȳ in (2.7), the proposed estimator becomes

(3.2) ˆ̄YP1 =
{
u1

ˆ̄YSE + u2

(
X̄ − x̄

)}
exp

(
X̄ − x̄
X̄ + x̄

)
,

where u1 and u2 are two unknown constants, whose values are determined for optimality.
Expressions for Bias and MSE of ˆ̄YP1, to first order of approximation, are given by

(3.3) Bias
(

ˆ̄YP1

)
∼= 1

8

[
−8Ȳ + Ȳ {8 + λCx (7Cx − 4ρCy)}u1 + 4X̄λC2

xu2

]

and

MSE
(

ˆ̄YP1

)
∼= Ȳ 2+Ȳ 2 {1 + λ

(
2C2

x − 2ρCxCy + C2
y

)}
u2

1+X̄λC2
xu2

(
−Ȳ + X̄u2

)

(3.4) +
1

4
Ȳ u1

[
−8Ȳ + λCx

{
4ρCy

(
Ȳ − 2X̄u2

)
+ Cx

(
−7Ȳ + 8X̄u2

)}]
.

The optimum values of u1 and u2, obtained by minimizing the MSE of ˆ̄YP1, are given by

u1(opt) =
8+3λC2

x

8{1+λC2
x+λ(1−ρ2)C2

y} and u2(opt) =
Ȳ [8ρCy+Cx{−4+λ(C2

x+3ρCxCy−4(−1+ρ2)C2
y)}]

8X̄Cx{1+λC2
x+λ(1−ρ2)C2

y} .

The minimum MSE of ˆ̄YP1, at optimum values of u1 and u2, is given by

(3.5) MSEmin

(
ˆ̄YP1

)
∼=
Ȳ 2λ

{
−25λC4

x + 16
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

}

64
{

1 + λC2
x + λ (1− ρ2)C2

y

} .

3.2. Second proposed estimator. On the line of Bahl and Tuteja [1], we can define
the average exponential ratio-product type estimator, given by

(3.6) ˆ̄YBTW =
1

2
ȳ

{
exp

(
X̄ − x̄
X̄ + x̄

)
+ exp

(
x̄− X̄
X̄ + x̄

)}
,

By replacing ˆ̄YBTW in place of ȳ in (2.7), the proposed estimator becomes

(3.7) ˆ̄YP2 =
{
v1

ˆ̄YBTW + v2

(
X̄ − x̄

)}
exp

(
X̄ − x̄
X̄ + x̄

)
,

where v1 and v2 are two unknown constants.
Expressions for Bias and MSE of ˆ̄YP2, to first order of approximation, are given by

(3.8) Bias
(

ˆ̄YP2

)
∼= 1

2

[
−2Ȳ + Ȳ {2 + λCx (Cx − ρCy)} v1 + X̄λC2

xv2

]
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and

MSE
(

ˆ̄YP2

)
∼= Ȳ 2 +

1

4
Ȳ 2 (4 + 5λC2

x − 8λρCxCy + 4λC2
y

)
v2

1 + X̄λC2
xv2

(
−Ȳ + X̄v2

)

+Ȳ v1

{
−2Ȳ − λCx (Cx − ρCy)

(
Ȳ − 2X̄v2

)}
.(3.9)

The optimum values of v1 and v2, obtained by minimizing the MSE of ˆ̄YP2, are given by

v1(opt) = 4

4+λC2
x−4λ(−1+ρ2)C2

y

and v2(opt) = Ȳ
2X̄

(
1 +

−8Cx+8ρCy

Cx{4+λC2
x−4λ(−1+ρ2)C2

y}

)
.

The minimum MSE of ˆ̄YP2, at optimum values of v1 and v2, is given by

(3.10) MSEmin

(
ˆ̄YP2

)
∼=
Ȳ 2λ

{
−λC4

x + 4
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

}

4
{

4 + λC2
x − 4λ (−1 + ρ2)C2

y

} .

3.3. Third proposed estimator. Replacing ˆ̄YSE from (3.1) in place of ȳ given in (3.6),
the estimator becomes

(3.11) ˆ̄YBTSEW = ȳ
1

4

(
X̄

x̄
+
x̄

X̄

){
exp

(
X̄ − x̄
X̄ + x̄

)
+ exp

(
x̄− X̄
X̄ + x̄

)}
.

Also replacing ˆ̄YBTSEW in place of ȳ in (2.7), the proposed estimator turns out to be

(3.12) ˆ̄YP3 =
[
w1

ˆ̄YBTSEW + w2

(
X̄ − x̄

)]
exp

(
X̄ − x̄
X̄ + x̄

)
,

where w1 and w2 are two unknown constants.
Expressions for Bias and MSE of ˆ̄YP3, to first order of approximation, are given by

(3.13) Bias
(

ˆ̄YP3

)
∼= 1

2

[
−2Ȳ + Ȳ {2 + λCx (2Cx − ρCy)}w1 + X̄λC2

xw2

]

and

MSE
(

ˆ̄YP3

)
∼= Ȳ 2 +

1

4
Ȳ 2 (4 + 9λC2

x − 8λρCxCy + 4λC2
y

)
w2

1 + X̄λC2
xw2

(
−Ȳ + X̄w2

)

+Ȳ w1

[
−2Ȳ + λCx

{
ρCy

(
Ȳ − 2X̄w2

)
− 2Cx

(
Ȳ − X̄w2

)}]
.(3.14)

The optimum values of w1 and w2, obtained by minimizing the MSE of ˆ̄YP3, are given by

w1(opt) =
4+2λC2

x

4+5λC2
x−4λ(−1+ρ2)C2

y

and w2(opt) =
Ȳ [8ρCy+Cx{−4+λ(C2

x+4ρCxCy−4(−1+ρ2)C2
y)}]

2X̄Cx{4+5λC2
x−4λ(−1+ρ2)C2

y} .

The minimum MSE of ˆ̄YP3, at optimum values of w1 and w2, is given by

(3.15) MSEmin

(
ˆ̄YP3

)
∼=
Ȳ 2λ

{
−9λC4

x + 4
(
−1 + ρ2

) (
−4 + λC2

x

)
C2
y

}

4
{

4 + 5λC2
x − 4λ (−1 + ρ2)C2

y

} .

Remarks: Expressions given in (3.5), (3.10) and (3.15) contain unknown population
parameters, which can be estimated either from the sample values or through repeated
survey or by experience gathered in due course of time.

4. Efficiency comparisons under simple random sampling
In this section, we compare the proposed estimators with the existing estimators.
(a) Comparison with difference type estimator

(i) From (2.2) and (3.5), MSEmin

(
ˆ̄YP1

)
< V armin

(
ˆ̄YD
)
, if

Ȳ 2λ2
{

5C2
x − 8

(
−1 + ρ2

)
C2
y

}2

64
{

1 + λC2
x + λ (1− ρ2)C2

y

} > 0.
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(ii) From (2.2) and (3.10), MSEmin

(
ˆ̄YP2

)
< V armin

(
ˆ̄YD
)
, if

Ȳ 2λ2
{
C2
x − 4

(
−1 + ρ2

)
C2
y

}2

4
{

4 + λC2
x + 4λ (1− ρ2)C2

y

} > 0.

(iii) From (2.2) and (3.15), MSEmin

(
ˆ̄YP3

)
< V armin

(
ˆ̄YD
)
, if

Ȳ 2λ2
{

3C2
x − 4

(
−1 + ρ2

)
C2
y

}2

4
{

4 + 5λC2
x + 4λ (1− ρ2)C2

y

} > 0.

Note: Conditions (i)-(iii) are always true.
(b) Comparison with Gupta and Shabbir [3] estimator

(iv) From (2.6) and (3.5), MSEmin

(
ˆ̄YP1

)
< MSEmin

(
ˆ̄YGS

)
, if

Ȳ 2λ2C2
x

[
25C2

x(−1+λτ2C2
x)−5(−1+ρ2){−16+λ(−5+16τ2)C2

x}C2
y+16λ(−1+ρ2)2(−1+4τ2)C4

y

]

64{−1+λτ2C2
x+λ(−1+ρ2)C2

y}{1+λC2
x+λ(1−ρ2)C2

y} >

0.

(v) From (2.6) and (3.10), MSEmin

(
ˆ̄YP2

)
< MSEmin

(
ˆ̄YGS

)
, if

1

4
Ȳ 2

{
λ
(
1− 4τ2)C2

x +
16

4 + λC2
x − 4λ (−1 + ρ2)C2

y

+
4
(
−1 + λτ2C2

x

)2

−1 + λτ2C2
x + λ (−1 + ρ2)C2

y

}
> 0.

(vi) From (2.6) and (3.15), MSEmin

(
ˆ̄YP3

)
< MSEmin

(
ˆ̄YGS

)
, if

Ȳ 2λ2C2
x

[
9C2

x(−1+λτ2C2
x)−3(−1+ρ2){−8+λ(−3+8τ2)C2

x}C2
y+4λ(−1+ρ2)2(−1+4τ2)C4

y

]

4{4+5λC2
x−4λ(−1+ρ2)C2

y}{−1+λτ2C2
x+λ(−1+ρ2)C2

y} >

0.
Note: The proposed estimators ˆ̄YPi(i = 1, 2, 3) perform better than the Gupta
and Shabbir [3] if conditions (iv)-(vi) are satisfied.

(c) Comparison with Grover and Kaur [2] estimator
(vii) From (2.10) and (3.5), MSEmin

(
ˆ̄YP1

)
< MSEmin

(
ˆ̄YGK

)
, if

Ȳ 2λ2C2
x

{
C2
x

(
−24 + λC2

x

)
+ 8

(
−1 + ρ2

) (
8 + λC2

x

)
C2
y

}

64
{
−1 + λ (−1 + ρ2)C2

y

}{
1 + λC2

x + λ (1− ρ2)C2
y

} > 0.

(viii) From (2.10) and (3.10), MSEmin

(
ˆ̄YP2

)
< MSEmin

(
ˆ̄YGK

)
, if

Ȳ 2

(
4

4 + λC2
x − 4λ (−1 + ρ2)C2

y

+

(
−8 + λC2

x

)2

−64 + 64λ (−1 + ρ2)C2
y

)
> 0.

(ix) From (2.10) and (3.15), MSEmin

(
ˆ̄YP3

)
< MSEmin

(
ˆ̄YGK

)
, if

5Ȳ 2λ2C2
x

{
C2
x

(
−28 + λC2

x

)
+ 4

(
−1 + ρ2

) (
16 + 3λC2

x

)
C2
y

}

64
{

4 + 5λC2
x − 4λ (−1 + ρ2)C2

y

}{
−1 + λ (−1 + ρ2)C2

y

} > 0.

Note: The proposed estimators ˆ̄YPi(i = 1, 2, 3) perform better than the
Grover and Kaur (2011) if conditions (vii)-(ix) are satisfied.

(d) Comparisons among proposed estimators
(x) From (3.5) and (3.10), MSEmin

(
ˆ̄YP2

)
< MSEmin

(
ˆ̄Yp1
)
, if

Ȳ 2

(
4

4 + λC2
x + 4λ (1− ρ2)C2

y

−
(
8 + 3λC2

x

)2

64
{

1 + λC2
x + λ (1− ρ2)C2

y

}
)
> 0.
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(xi) From (3.5) and (3.15), MSEmin

(
ˆ̄YP3

)
< MSEmin

(
ˆ̄Yp1
)
, if

Ȳ 2λ2C2
x

{
C2
x

(
44 + 19λC2

x

)
+ 4

(
1− ρ2

) (
16 + 7λC2

x

)
C2
y

}

64
{

4 + 5λC2
x + 4λ (1− ρ2)C2

y

}{
1 + λC2

x + λ (1− ρ2)C2
y

} > 0.

(xii) From (3.10) and (3.15), MSEmin

(
ˆ̄YP3

)
< MSEmin

(
ˆ̄Yp2
)
, if

Ȳ 2λ2C2
x

{
C2
x

(
8 + λC2

x

)
+ 4

(
1− ρ2

) (
4 + λC2

x

)
C2
y

}
{

4 + λC2
x + 4λ (1− ρ2)C2

y

}{
4 + 5λC2

x + 4λ (1− ρ2)C2
y

} > 0.

Note: Conditions (xi) and (xii) are always true.

5. Estimators under two-phase sampling (partial information)
When the population mean of the auxiliary variable, x, is unknown, it is customary to

apply the two-phase sampling procedure. The two-phase sampling scheme is explained
as follows

(i) In first-phase, a sample of size (n1 < N) is selected from the population using
SRSWOR to estimate X̄.

(ii) In second-phase, a sample of size (n < n1) is selected to observe both y and x.
Let x̄1 be the sample mean based on first-phase sample of size n1, and let ȳ and x̄ be
the sample means based on second-phase sample of size n. Let (x̄1, x̄) and ȳ are the
unbiased estimators of X̄ and Ȳ , respectively. Now we discuss different estimators of
finite population mean based on two-phase sampling.

5.1. Unbiased difference estimator. The unbiased difference estimator of population
mean under two-phase sampling is

(5.1) ˆ̄Y ∗D = ȳ + k∗ (x̄1 − x̄) ,

where k∗ is an unknown constant.
The expression for variance of ˆ̄Y ∗D, at optimum value of k∗, i.e., k∗(opt) =

Ȳ ρCy

X̄Cx
is given

by

(5.2) V armin

(
ˆ̄Y ∗D
)
∼= Ȳ 2 (λ− λρ2 + λ1ρ

2)C2
y ,

where λ1 = 1
n
− 1

n1
.

5.2. Gupta and Shabbir [3] family of estimators. Under two-phase sampling,
Gupta and Shabbir [3] family of estimators for estimating finite population mean, is
given by

(5.3) ˆ̄Y ∗GS = {s∗1ȳ + s∗2 (x̄1 − x̄)}
(
ax̄1 + b

ax̄+ b

)
,

where s∗1 and s∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗GS , to first order of approximation, are given by

(5.4) Bias
(

ˆ̄Y ∗GS
)
∼= −Ȳ + Ȳ {1 + (λ− λ1) τCx (τCx − ρCy)} s∗1 + X̄λτC2

xs
∗
2

and

MSE
(

ˆ̄Y ∗GS
)
∼= Ȳ 2 + Ȳ 2 {1 + 3 (λ− λ1) τ2C2

x + 4 (−λ+ λ1) ρτCxCy + λC2
y

}
s∗21

+X̄ (λ− λ1)C2
xs
∗
2

(
−2Ȳ τ + X̄s∗2

)
− 2Ȳ s∗1

[
Ȳ + (λ− λ1)Cx

{
τCx

(
Ȳ τ − 2X̄s∗2

)
+ ρCy

(
−Ȳ τ + X̄s∗2

)}]
,(5.5)

where τ is defined earlier.
The optimum values of s∗1 and s∗2, obtained by minimizing the MSE of ˆ̄Y ∗GS , are given by
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s∗1(opt) =
−1+(λ−λ1)τ2C2

x
−1+(λ−λ1)τ2C2

x+{−λ+(λ−λ1)}C2
y
and

s∗2(opt) =
Ȳ [−ρCy+τCx{1+(−λ+λ1)τ2C2

x+(λ−λ1)ρτCxCy+{−λ+(λ−λ1)ρ2}C2
y}]

X̄Cx{−1+(λ−λ1)τ2C2
x+{−λ+(λ−λ1)ρ2}C2

y} .

The minimum MSE of ˆ̄Y ∗GS , at optimum values of s∗1 and s∗2, is given by

(5.6) MSEmin

(
ˆ̄Y ∗GS

)
∼=
Ȳ 2
{
−λ+ (λ− λ1) ρ2

}{
1− (λ− λ1) τ2C2

x

}
C2
y

−1 + (λ− λ1) τ2C2
x + {−λ+ (λ− λ1) ρ2}C2

y

.

Gupta and Shabbir [3] estimator ˆ̄Y ∗GS will perform better than the difference estimator
ˆ̄Y ∗D, if

Ȳ 2
(
λ− λρ2 + λ1ρ

2
)2
C4
y

1− (λ− λ1) τ2C2
x − {−λ+ (λ− λ1) ρ2}C2

y

> 0.

5.3. Grover and Kaur [2] estimator. Grover and Kaur [2] estimator under double
sampling for estimation of the population mean is given by

(5.7) ˆ̄Y ∗GK = {t∗1ȳ + t∗2 (x̄1 − x̄)} exp

(
x̄1 − x̄
x̄1 + x̄

)
,

where t∗1 and t∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗GK , to first order of approximation, are given by

(5.8)

Bias
(

ˆ̄Y ∗GK
)
∼= 1

8

[
−8Ȳ + Ȳ {8 + (λ− λ1)Cx (3Cx − 4ρCy)} t∗1 + 4X̄ (λ− λ1)C2

xt
∗
2

]

and

MSE
(

ˆ̄Y ∗GK
)
∼= Ȳ 2 + Ȳ 2 {1 + (λ− λ1)C2

x + 2 (−λ+ λ1) ρCxCy + λC2
y

}
t∗21

+X̄ (λ− λ1)C2
xt
∗
2

(
−Ȳ + X̄t∗2

)
+

1

4
Ȳ t∗1

[
−8Ȳ + (λ− λ1)Cx

{
4ρCy

(
Ȳ − 2X̄t∗2

)
+ Cx

(
−3Ȳ + 8X̄t∗2

)}]
.(5.9)

The optimum values of t∗1 and t∗2, obtained by minimizing the MSE of ˆ̄Y ∗GK , are given by

t∗1(opt) =
−8+(λ−λ1)C2

x

−8+8{−λ+(λ−λ1)ρ2}C2
y

and t∗2(opt) =
Ȳ [8ρCy+Cx{−4+(λ−λ1)C2

x+(−λ+λ1)ρCxCy+4(λ−λρ2+λ1ρ
2)C2

y}]
8X̄Cx{1+(λ−λρ2+λ1ρ2)C2

y} .

The minimum MSE of ˆ̄Y ∗GK , at optimum values of t∗1 and t∗2, is given by

(5.10)

MSEmin

(
ˆ̄Y ∗GK

)
∼=
Ȳ 2
{

(λ− λ1)2 C4
x − 16

{
−λ+ (λ− λ1) ρ2

} (
−4 + (λ− λ1)C2

x

)
C2
y

}

−64 + 64 {−λ+ (λ− λ1) ρ2}C2
y

.

Grover and Kaur [2] estimator ˆ̄Y ∗GK will perform better than the difference estimator ˆ̄Y ∗D,
if

Ȳ 2
{

(λ− λ1)C2
x + 8

(
λ− λρ2 + λ1ρ

2
)
C2
y

}2

64
{

1 + (λ− λρ2 + λ1ρ2)C2
y

} > 0.

Gupta and Shabbir [3] estimator ˆ̄Y ∗GS will perform better than the Grover and Kaur [2]
estimator ˆ̄Y ∗GK , if

Ȳ 2

[{
−λ+ (λ− λ1) ρ2

} (
−1 + (λ− λ1) τ2C2

x

)
C2
y

−1 + (λ− λ1) τ2C2
x + {−λ+ (λ− λ1) ρ2}C2

y

+
(λ− λ1)2 C4

x − 16
{
−λ+ (λ− λ1) ρ2

}{
−4 + (λ− λ1)C2

x

}
C2
y

64
{
−1 + {−λ+ (λ− λ1) ρ2}C2

y

}
]
> 0.
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6. Proposed estimators under two-phase sampling
In this section, we derive the mathematical expressions of the biases and MSEs of

the proposed estimators of finite population mean when partial auxiliary information is
available.

6.1. First proposed estimator. Similar to (3.2), the proposed estimator under double
sampling is given by

(6.1) ˆ̄Y ∗P1 =

{
u∗1

1

2
ȳ

(
x̄1

x̄
+

x̄

x̄1

)
+ u∗2 (x̄1 − x̄)

}
exp

(
x̄1 − x̄
x̄1 + x̄

)
,

where u∗1 and u∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗P1, to first order of approximation, are given by

(6.2)

Bias
(

ˆ̄Y ∗P1

)
∼= 1

8

[
−8Ȳ + Ȳ {8 + (λ− λ1)Cx (7Cx − 4ρCy)}u∗1 + 4X̄ (λ− λ1)C2

xu
∗
2

]

and

MSE
(

ˆ̄Y ∗P1

)
∼= Ȳ 2 + Ȳ 2 {1 + 2 (λ− λ1)C2

x + 2 (−λ+ λ1) ρCxCy + λC2
y

}
u∗21 + X̄ (λ− λ1)C2

xu
∗
2

(
−Ȳ + X̄u∗2

)

+
1

4
Ȳ u∗1

[
−8Ȳ + (λ− λ1)Cx

{
4ρCy

(
Ȳ − 2X̄u∗2

)
+ Cx

(
−7Ȳ + 8X̄u∗2

)}]
.(6.3)

The optimum values of u∗1 and u∗2, obtained by minimizing the MSE of ˆ̄Y ∗P1, are given by
u∗1(opt) =

8+3(λ−λ1)C2
x

8{1+(λ−λ1)C2
x+(λ−λρ2+λ1ρ2)C2

y} and

u∗2(opt) =
Ȳ [8ρCy+Cx{−4+(λ−λ1)C2

x+3(λ−λ1)ρCxCy+4(λ−λρ2+λ1ρ
2)C2

y}]
8X̄Cx{1+(λ−λ1)C2

x+(λ−λρ2+λ1ρ2)C2
y} .

The minimum MSE of ˆ̄Y ∗P1, at optimum values of u∗1 and u∗2, is given by

(6.4)

MSEmin

(
ˆ̄Y ∗P1

)
∼=
Ȳ 2
{
−25 (λ− λ1)2 C4

x + 16
{
−λ+ (λ− λ1) ρ2

}{
−4 + (λ− λ1)C2

x

}
C2
y

}

64
{

1 + (λ− λ1)C2
x + (λ− λρ2 + λ1ρ2)C2

y

} .

6.2. Second proposed estimator. On the line of (3.7), the second proposed estimator
under double sampling is given by

(6.5) ˆ̄Y ∗P2 =

[
v∗1

1

2
ȳ

{
exp

(
x̄1 − x̄
x̄1 + x̄

)
+ exp

(
x̄− x̄1

x̄1 + x̄

)}
+ v∗2 (x̄1 − x̄)

]
exp

(
x̄1 − x̄
x̄1 + x̄

)
,

where v∗1 and v∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗P2, to first order of approximation, are given by

(6.6) Bias
(

ˆ̄Y ∗P2

)
∼= 1

2

[
−2Ȳ + Ȳ {2 + (λ− λ1)Cx (Cx − ρCy)} v∗1 + X̄ (λ− λ1)C2

xv
∗
2

]

and

MSE
(

ˆ̄Y ∗P2

)
∼= Ȳ 2 +

1

4
Ȳ 2 {4 + 5 (λ− λ1)C2

x + 8 (−λ+ λ1) ρCxCy + 4λC2
y

}
v∗21

+X̄ (λ− λ1)C2
xv
∗
2

(
−Ȳ + X̄v∗2

)
+ Ȳ v∗1

{
−2Ȳ − (λ− λ1)Cx (Cx − ρCy)

(
Ȳ − 2X̄v∗2

)}
.(6.7)

The optimum values of v∗1 and v∗2 , obtained by minimizing the MSE of ˆ̄Y ∗P2, are given by

v∗1(opt) = 4

4+(λ−λ1)C2
x+4(λ−λρ2+λ1ρ2)C2

y

and v∗2(opt) = Ȳ
2X̄

(
1 +

−8Cx+8ρCy

Cx{4+(λ−λ1)C2
x+4(λ−λρ2+λ1ρ2)C2

y}

)
.

The minimum MSE of ˆ̄Y ∗P2, at optimum values of v∗1 and v∗2 , is given by

(6.8)
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MSEmin

(
ˆ̄Y ∗P2

)
∼= 1

4
Ȳ 2

{
4 + (−λ+ λ1)C2

x −
16

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

}
.

6.3. Third proposed estimator. On the line of (3.12), the third proposed estimator
of the population mean under double sampling is given by

(6.9)

ˆ̄Y ∗P3 =

[
w∗1

1

4
ȳ

(
x̄1

x̄
+

x̄

x̄1

){
exp

(
x̄1 − x̄
x̄1 + x̄

)
+ exp

(
x̄− x̄1

x̄1 + x̄

)}
+ w∗2 (x̄1 − x̄)

]
exp

(
x̄1 − x̄
x̄1 + x̄

)
,

where w∗1 and w∗2 are two unknown constants.
The expressions for Bias and MSE of ˆ̄Y ∗P3, to first order of approximation, are given by

(6.10)

Bias
(

ˆ̄Y ∗P3

)
∼= 1

2

[
−2Ȳ + Ȳ {2 + (λ− λ1)Cx (2Cx − ρCy)}w∗1 + X̄ (λ− λ1)C2

xw
∗
2

]

and

MSE
(

ˆ̄Y ∗P3

)
∼= Ȳ 2 +

1

4
Ȳ 2 (4 + 9 (λ− λ1)C2

x + 8 (−λ+ λ1) ρCxCy + 4λC2
y

)
w∗21

+X̄ (λ− λ1)C2
xw
∗
2

(
−Ȳ + X̄w∗2

)
+ Ȳ w∗1

[
−2Ȳ + (λ− λ1)Cx

{
ρCy

(
Ȳ − 2X̄w∗2

)
− 2Cx

(
Ȳ − X̄w∗2

)}]
.(6.11)

The optimum values of w∗1 and w∗2 , obtained by minimizing the MSE of ˆ̄Y ∗P3, are given by

w∗1(opt) =
4+2(λ−λ1)C2

x

4+5(λ−λ1)C2
x+4(λ−λρ2+λ1ρ2)C2

y

and w∗2(opt) =
Ȳ [8ρCy+Cx{−4+(λ−λ1)C2

x+4(λ−λ1)ρCxCy+4(λ−λρ2+λ1ρ
2)C2

y}]
2X̄Cx{4+5(λ−λ1)C2

x+4(λ−λρ2+λ1ρ2)C2
y} .

The minimum MSE of ˆ̄Y ∗P3, at optimum values of w∗1 and w∗2 , is given by

(6.12)

MSEmin

(
ˆ̄Y ∗P3

)
∼=
Ȳ 2
{
−9 (λ− λ1)2 C4

x + 4
{
−λ+ (λ− λ1) ρ2

} (
−4 + (λ− λ1)C2

x

)
C2
y

}

4
{

4 + 5 (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

} .

Remarks: Expressions given in (6.4), (6.8) and (6.12) contain the unknown population
parameters, which can be estimated either from the sample values or through repeated
survey or by experience gathered in due course of time.

7. Efficiency comparisons under two-phase sampling
In this section, we compare the proposed estimators with the existing estimators of

population mean based on double sampling scheme.
(a) Comparison with difference type estimator

(i) From (5.2) and (6.4), MSEmin

(
ˆ̄Y ∗P1

)
< V armin

(
ˆ̄Y ∗D
)
, if

{
5Ȳ (λ− λ1)C2

x + 8Ȳ
(
λ− λρ2 + λ1ρ

2
)
C2
y

}2

64
{

1 + (λ− λ1)C2
x + (λ− λρ2 + λ1ρ2)C2

y

} > 0.

(ii) From (5.2) and (6.8), MSEmin

(
ˆ̄Y ∗P2

)
< V armin

(
ˆ̄Y ∗D
)
, if

Ȳ 2

4

[
−4 + (λ− λ1)C2

x + 4
(
λ− λρ2 + λ1ρ

2)C2
y +

16

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

]
> 0.

(iii) From (5.2) and (6.12), MSEmin

(
ˆ̄Y ∗P3

)
< V armin

(
ˆ̄Y ∗D
)
, if

{
3Ȳ (λ− λ1)C2

x + 4Ȳ
(
λ− λρ2 + λ1ρ

2
)
C2
y

}2

4
{

4 + 5 (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

} > 0.
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Note: When conditions (i)-(iii) are satisfied, the proposed estimators
ˆ̄Y ∗Pi(i = 1, 2, 3) perform better than difference type estimator ˆ̄Y ∗D.

(b) Comparison with Gupta and Shabbir [3] estimator
(iv) From (5.6) and (6.4), MSEmin

(
ˆ̄Y ∗P1

)
< MSEmin

(
ˆ̄Y ∗GS

)
, if

Ȳ 2
{
−λ+ (λ− λ1) ρ2

}{
−1 + (λ− λ1) τ2C2

x

}
C2
y

1− (λ− λ1) τ2C2
x + {λ− (λ− λ1) ρ2}C2

y

− Ȳ
2
[
−25 (λ− λ1)2 C4

x + 16
{
−λ+ (λ− λ1) ρ2

}{
−4 + (λ− λ1)C2

x

}
C2
y

]

64
{

1 + (λ− λ1)C2
x + (λ− λρ2 + λ1ρ2)C2

y

} > 0.

(v) From (5.6) and (6.8), MSEmin

(
ˆ̄Y ∗P2

)
< MSEmin

(
ˆ̄Y ∗GS

)
, if

1

4
Ȳ 2

(
−4 + (λ− λ1)C2

x −
4
{
−λ+ (λ− λ1) ρ2

}{
−1 + (λ− λ1) τ2C2

x

}
C2
y

−1 + (λ− λ) τ2C2
x + {−λ+ (λ− λ1) ρ2}C2

y

+
16

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

)
> 0.

(vi) From (5.6) and (6.12), MSEmin

(
ˆ̄Y ∗P3

)
< MSEmin

(
ˆ̄Y ∗GS

)
, if

Ȳ 2

4

(
4
{
λ− (λ− λ1) ρ2

}{
−1 + (λ− λ1) τ2C2

x

}
C2
y

−1 + (λ− λ1) τ2C2
x + {−λ+ (λ− λ1) ρ2}C2

y

−−9 (λ− λ1)2 C4
x + 4

{
−λ+ (λ− λ1) ρ2

}{
−4 + (λ− λ1)C2

x

}
C2
y

4 + 5 (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

)
> 0,

Note: When conditions (iv)-(vi) are satisfied, the proposed estimators
ˆ̄Y ∗Pi(i = 1, 2, 3) perform better than the Gupta and Shabbir [3] estimator
ˆ̄Y ∗GS .

(c) Comparison with Grover and Kaur [2] estimator
(vii) From (5.10) and (6.4), MSEmin

(
ˆ̄Y ∗P1

)
< MSEmin

(
ˆ̄Y ∗GK

)
, if

Ȳ 2 (λ− λ1)2 C2
x

[
(λ− λ1)C2

x

{
24 + (−λ+ λ1)C2

x

}
− 8

{
−λ+ (λ− λ1) ρ2

}{
8 + (λ− λ1)C2

x

}
C2
y

]

64
[
−1 + {−λ+ (λ− λ1) ρ2}C2

y

] [
−1 + (−λ+ λ1)C2

x + {−λ+ (λ− λ1) ρ2}C2
y

] > 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P1 is more efficient than
ˆ̄Y ∗GK .

(viii) From (5.10) and (6.8), MSEmin

(
ˆ̄Y ∗P2

)
< MSEmin

(
ˆ̄Y ∗GK

)
, if

Ȳ 2

4

(
−4 +

16 (−λ+ λ1)C2
x + (λ− λ1)2 C4

x + 64
{
−λ+ (λ− λ1) ρ2

}
C2
y

−16 + 16 {−λ+ (λ− λ1) ρ2}C2
y

+
16

4 + (λ− λ1)C2
x + 4 {λ− λρ2 + λ1ρ2}C2

y

)
> 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P2 is more efficient than
ˆ̄Y ∗GK .

(ix) From (5.10) and (6.12), MSEmin

(
ˆ̄Y ∗P3

)
< MSEmin

(
ˆ̄Y ∗GK

)
, if

5Ȳ 2 (λ− λ1)C2
x

[
(λ− λ1)C2

x

{
28 + (−λ+ λ1)C2

x

}
− 4

{
−λ+ (λ− λ1) ρ2

}{
16 + 3 (λ− λ1)C2

x

}
C2
y

]

64
[
1− {−λ+ (λ− λ1) ρ2}C2

y

] [
4 + 5 (λ− λ1)C2

x + 4 (λ− λρ2 + λ1ρ2)C2
y

] > 0,
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Note: When conditions (vii)-(ix) are satisfied, the proposed estimators
ˆ̄Y ∗Pi(i = 1, 2, 3) perform better than the Grover and Kaur [2] estimator
ˆ̄Y ∗GK .

(d) Comparisons among proposed estimators
(x) From (6.4) and (6.8), MSEmin

(
ˆ̄Y ∗P2

)
< MSEmin

(
ˆ̄Y ∗p1
)
, if

Ȳ 2

64

(
−64 +

256

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

+
(λ− λ1)C2

x

{
16 + 9 (−λ+ λ1)C2

x

}
+ 64

(
λ− λρ2 + λ1ρ

2
)
C2
y

1 + (λ− λ1)C2
x + (λ− λρ2 + λ1ρ2)C2

y

)
> 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P2 is more efficient than
ˆ̄Y ∗P1.

(xi) From (6.4) and (6.12), MSEmin

(
ˆ̄Y ∗P3

)
< MSEmin

(
ˆ̄Y ∗P1

)
, if

Ȳ 2 (λ− λ1)C2
x

[
(λ− λ1)C2

x

{
44 + 19 (λ− λ1)C2

x

}
− 4

{
−λ+ (λ− λ1) ρ2

}{
16 + 7 (λ− λ1)C2

x

}
C2
y

]

64
[
1 + (λ− λ1)C2

x + {λ− λρ2 + λ1ρ2}C2
y

] [
4 + 5 (λ− λ1)C2

x + 4 {λ− λρ2 + λ1ρ2}C2
y

] > 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P3 is more efficient than
ˆ̄Y ∗P1.

(xii) From (6.8) and (6.12), MSEmin

(
ˆ̄Y ∗p3
)
< MSEmin

(
ˆ̄Y ∗p2
)
, if

Ȳ 2

4

(
4− 16

4 + (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

+
4
[
(−λ+ λ1)C2

x + (λ− λ1)2 C4
x + 4

{
−λ+ (λ− λ1) ρ2

}
C2
y

]

4 + 5 (λ− λ1)C2
x + 4 (λ− λρ2 + λ1ρ2)C2

y

)
> 0,

when above condition is satisfied, the estimator ˆ̄Y ∗P3 is more efficient than
ˆ̄Y ∗P2.

8. Empirical Study
The empirical study is based on three populations under: (i) complete information

case and (ii) incomplete information case.

8.1. Complete auxiliary information. In this section, we compare the estimators
numerically by using different real life data sets. The values of minimum MSEs of the
estimators are given in Tables 1-3 based on the Populations I-III, respectively.

Population 1: [source: Kadilar and Cingi [5]].
The summary statistics are: N = 200, n = 50, Ȳ = 500, X̄ = 25, Cy = 15, Cx = 2,
ρ = 0.90, β2x = 50, λ = 0.015.

Population 2: [source: Kadilar and Cingi [6]].
Let y =level of apple production (1 unit = 100 tones) and x =number of trees (1 unit
= 100 trees). The data statistics are: N = 106, n = 20, Ȳ = 2212.59, X̄ = 27421.70,
Cy = 5.22, Cx = 2.10, ρ = 0.86, β2x = 34.57, λ = 0.040566.

Population 3: [source: Kadilar and Cingi [7]].
Let y =level of apple production (1 unit = 100 tones) and x = number of trees. The data
statistics are: N = 104, n = 20, Ȳ = 6.254, X̄ = 13931.683, Cy = 1.866, Cx = 1.653,
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ρ = 0.865, β2x = 17.516, λ = 0.040385.

Under complete information case, the minimum MSE values of the proposed and ex-
isting estimators are given in Table 1.
For ˆ̄YGS(1) with (a = 1, b = ρ), ˆ̄YGS(2) with (a = 1, b = Cx), ˆ̄YGS(3) with (a = 1, β2x),

Table 1. Minimum MSE values of different estimators (complete in-
formation).

Estimator Population-I Population-II Population-III
ˆ̄YD 160313.00 1409112.00 1.38
ˆ̄YGS(1) 95468.40 1043370.00 1.33
ˆ̄YGS(2) 95650.43 1043380.00 1.33
ˆ̄YGS(3) 97421.62 1043510.00 1.33
ˆ̄YGS(4) 95308.27 1043370.00 1.33
ˆ̄YGS(5) 97099.35 1043440.00 1.33
ˆ̄YGK 96203.40 1043340.00 1.29
ˆ̄YP1 92612.00 876024.00 1.01
ˆ̄YP2 95306.60 1002810.00 1.24
ˆ̄YP3 91712.50 832286.00 0.92

ˆ̄YGS(4) with (a = β2x, b = Cx), and ˆ̄YGS(5) with (a = Cx, b = β2x).

8.2. Summary statistics under two-phase sampling (partial information). Pop-
ulation 1: [source: Kadilar and Cingi [5]].
The summary statistics are: N = 200, n1 = 90, n = 50, Ȳ = 500, X̄ = 25, Cy = 15,
Cx = 2, ρ = 0.90, β2x = 50, λ = 0.015.

Population 2: [source: Kadilar and Cingi [6]].
Let y =level of apple production (1 unit = 100 tones) and x =number of trees (1 unit
= 100 trees). The summary statistics are: N = 106, n1 = 40, n = 20, Ȳ = 2212.59,
X̄ = 27421.70, Cy = 5.22, Cx = 2.10, ρ = 0.86, β2x = 34.57, λ = 0.040566.

Population 3: [source: Kadilar and Cingi [7]].
Let y =level of apple production (1 unit = 100 tones) and x = number of trees. The sum-
mary statistics are: N = 104, n1 = 40, n = 20, Ȳ = 6.254, X̄ = 13931.683, Cy = 1.866,
Cx = 1.653, ρ = 0.865, β2x = 17.516, λ = 0.040385.

The values of minimum MSEs of the proposed and existing estimators constructed
under two-phase sampling for all populations are given in Table 2. For ˆ̄Y ∗GS(1) with

(a = 1, b = ρ), ˆ̄Y ∗GS(2) with (a = 1, b = Cx), ˆ̄Y ∗GS(3) with (a = 1, β2x), ˆ̄Y ∗GS(4) with (a = β2x, b = Cx),

and ˆ̄Y ∗GS(5) with (a = Cx, b = β2x).
It is worth mentioning here that for each of the three populations, the proposed estimators
ˆ̄YPi and ˆ̄Y ∗Pi (i = 1, 2, 3) perform better than the existing estimators. It is observed that
the proposed estimator ˆ̄YP3 and ˆ̄Y ∗P3 are more efficient than their counterparts considered
here.
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Table 2. Minimum MSE values of different estimators in double sam-
pling (partial information)

Estimator Population-I Population-II Population-III
ˆ̄Y ∗D 438750.00 2944860.00 2.95
ˆ̄Y ∗GS(1) 155854.00 1757000.00 2.73
ˆ̄Y ∗GS(2) 156129.00 1757010.00 2.73
ˆ̄Y ∗GS(3) 158855.00 1757220.00 2.73
ˆ̄Y ∗GS(4) 155613.00 1757000.00 2.73
ˆ̄Y ∗GS(5) 158351.00 1757100.00 2.73
ˆ̄Y ∗GK 157838.00 1787510.00 2.67
ˆ̄Y ∗P1 155785.00 1659340.00 2.47
ˆ̄Y ∗P2 157326.00 1755550.00 2.65
ˆ̄Y ∗P3 155271.00 1627170.00 2.41

9. Conclusion
In this paper, we proposed some improved exponential type estimators of finite popu-

lation mean when complete and partial auxiliary information is available. The proposed
estimators perform better than all other competitor estimators considered here. It is to
be noted the suggested estimators although biased but are always better than the unbi-
ased difference type estimator of the finite population mean. Based on both theoretical
and numerical comparisons, the proposed estimators are more precise than their coun-
terparts. The work can easily be extended to improve the estimation of finite population
mean using information on auxiliary attributes, stratified random sampling and other
sampling designs. Finally, we recommend the use of ˆ̄YP3 and ˆ̄Y ∗P3 for efficient estimation
of the population mean under simple and two-phase sampling schemes, respectively.
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Abstract
In this paper, the author discusses the distribution of the jump-diffusion
CIR model (JCIR) and its applications in credit risk. Applying the
piecewise deterministic Markov process theory and martingale theory,
we first obtain the closed forms of the Laplace transforms for the dis-
tribution of the jump-diffusion CIR model and its integrated process.
Based on the obtained Laplace transforms, we derive the pricing of the
defaultable zero-coupon bond and the fair premium of a Credit Default
Swap (CDS) in a reduced form model of credit risk. Some numerical
calculations are also provided.
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1. Introduction
As we know, Cox et al. (1985) proposed the classical Cox-Ingersoll-Ross (CIR)

process which is defined by an equation of the form

dyt = λ(η − yt)dt+ θ
√
yt dWt, (1.1)

where λ is the rate of mean reversion, η is the long-run level, θ is the volatility coefficient
and Wt is a standard Brownian motion.

Compared with the Vasicek process (Vasicek, 1977), although the CIR equation (1.1)
does not have a closed-form solution, the CIR process is always positive. If yt reaches
zero, the diffusion term dWt disappears and the positive drift term pushes the process in
the positive territory. The precise behavior of the CIR process near zero depends on the
values of parameters. If θ2 ≤ 2λη, the positive drift term will always drive the process yt
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away from zero before it will come too close. If θ2 > 2λη, the process yt will occasionally
touch zero and reflect. On the other hand, the CIR process also has the character of
mean-reverting. Due to the characters of non-negativity and mean-reverting, the CIR
process is better for modelling the interest rate or default intensity in credit risk than
the Vasicek model.

Over the recent years, some authors put their attention to the CIR processes and their
applications in finance and insurance. We can refer the reader to Chen and Scott (1992),
Delbaen (1993), Heston (1993), Berardi (1995), Chou and Lin (2006), Guo (2008), Wu et
al. (2009), Ewald and Wang (2010), Trutnau (2011), Song et al. (2012), Bao and Yuan
(2013).

In practice, there are primary events such as the governments fiscal and monetary
policies, the release of corporate financial reports, some natural disasters and terrorist
attacks etc., that will possibly result in some positive jumps in a firm’s default intensity
process. As time passes, the default intensity process decreases as the firm tries its best
to avoid being in bankruptcy after the arrival of a primary event. This decrease will
continue until another event occurs, which will result in another positive jump in its
intensity processes. In order to describe the appearance of positive jumps in the default
intensity process, we consider the jump-diffusion CIR model which has the following
structure

dyt = λ(η − yt)dt+ θ
√
yt dWt + dJt, (1.2)

where λ, η, θ and Wt are as in the previous model (1.1). We assume that λ > 0, η ≥ 0
and θ ≥ 0. Jt is a compound Poisson process which is given by

Jt =

Mt∑

j=1

Xj , (1.3)

where Mt is a Poisson process with frequency ρ and stands for the total number of
jumps up to time t. {Xj , j ≥ 1} are the jump sizes and assumed to be independent and
identically distributed random variables with distribution function F (x) (x > 0).

Clearly (1.1) is a special case of (1.2) for ρ = 0. In addition, we can find that η = θ = 0
would lead to shot noise processes for yt. It is well known that shot noise models have
been applied to diverse areas such as finance, insurance and electronics. Therefore, from
an applied point of view, it is very significant to investigate the wider class of jump-
diffusion CIR models.

Let Yt =
∫ t
0
yudu be the integrated process of yt. In this work, we will first study the

Laplace transforms of the distributions of the processes yt and Yt. Then we will discuss
the applications of these Laplace transforms in credit risk.

The rest of this article is organized as follows. In Section 2, we obtain the Laplace
transforms for jump-diffusion CIR models and their integrated processes. In section 3,
based on the result of the previous section, we derive the pricing of the defaultable zero-
coupon bond and the fair premium of a Credit Default Swap (CDS) in a reduced form
model of credit risk. Some numerical calculations and concluding remarks are presented
in Section 4.

2. The Laplace transforms of the distribution of jump-diffusion
CIR model

In this section, by applying the piecewise deterministic Markov process theory and
martingale theory, we first derive the joint Laplace transform of the distribution of the
vector process (yt, Yt). Then we obtain the Laplace transforms of the distribution of
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the jump-diffusion CIR model. The piecewise deterministic Markov process theory was
developed by Davis (1984) and has been proved to be a very powerful mathematical tool
for examining non-diffusion models. More details on this theory can be found in Davis
(1984).

The (infinitesimal) generator A of the unique solution to SDE (1.1), is given by

(2.1) Af(y) = λ(η − y)
∂f

∂y
+

1

2
θ2 y

∂2f

∂y2
,

where f is an arbitrary twice continuously differentiable function. We assume that yt is a
jump-diffusion CIR model which is a solution of the SDE (1.2). With the aid of piecewise
deterministic Markov process theory and using Theorem 5.5 in Davis (1984), one can see
that the (infinitesimal) generator of the process (Yt, yt, t) acting on a function f(Y, y, t)
is given by

Af(Y, y, t) =
∂f

∂t
+ y

∂f

∂Y
+ λ(η − y)

∂f

∂y
+

1

2
θ2 y

∂2f

∂y2

+ρ

{∫ ∞

0

f(Y, y + x, t)dF (x)− f(Y, y, t)

}
,(2.2)

where f : (0, ∞)× (0, ∞)× R+ → (0, ∞) satisfies:
(1) f(Y, y, t) is bounded on arbitrary finite time intervals;
(2) f(Y, y, t) is differentiable with respect to all t, y, Y ;
(3) ∣∣∣∣

∫ ∞

0

f(Y, y + x, t)dF (x)− f(Y, y, t)

∣∣∣∣<∞.

For the sake of simplicity in the presentations throughout the rest of this article, we
will use the following functions which are given by

cothx =
ex + e−x

ex − e−x
, sinhx =

ex − e−x

2
, coshx =

ex + e−x

2
.

In order to obtain the joint Laplace transform for the distribution of the vector
process(yt, Yt), we first present the following lemma.
Lemma 2.1. Assume that m, k are two constants such that m > 0 and k ≥ 0. Then
for 0 ≤ t < m/

√
λ2 + 2kθ2,

(2.3) exp

{
−A(t)yt − kYt + ρ

∫ t

0

[
1− h(A(v))

]
dv + λη

∫ t

0

A(v)dv

}

is a martingale where

(2.4) h(ξ) =

∫ ∞

0

e−ξxdF (x),

(2.5) A(t) = − λ

θ2
−
√
λ2 + 2kθ2

θ2
coth

(√
λ2 + 2kθ2t−m

2

)
.

Proof. Let

(2.6) f(Y, y, t) = exp
{
−A(t)y − kY +R(t)

}
.

From Theorem 7.6.1 in Jacobsen (2006), f(Y, y, t) has to satisfy Af(Y, y, t) = 0 for it
to be a martingale. Hence by (2.2), it should hold

(2.7) −A′(t)y +R
′
(t)− ky − λ(η − y)A(t) +

1

2
θ2yA2(t) + ρ

[
h(A(t))− 1

]
= 0.
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Solving the equation (2.7), we get

(2.8) A(t) =

(√
λ2 + 2kθ2 − λ

)
+
(√
λ2 + 2kθ2 + λ

)
exp
(√
λ2 + 2kθ2t−m

)

θ2
(
1− exp

(√
λ2 + 2kθ2t−m

))

and

(2.9) R(t) = ρ

∫ t

0

[
1− h(A(v))

]
dv + λη

∫ t

0

A(v)dv.

By the definition of cothx, it holds

(2.10) coth

(√
λ2 + 2kθ2t−m

2

)
=

exp
(√
λ2 + 2kθ2t−m

)
+ 1

exp
(√
λ2 + 2kθ2t−m

)
− 1

.

Combining (2.8) and (2.10), we get (2.5). Plugging (2.5) and (2.9) into (2.6), (2.3)
follows immediately. The proof is completed.

Let Gt = σ(ys, 0 ≤ s ≤ t). Now by means of Lemma 2.1, we give the joint Laplace
transform of the distribution of the vector process (yt, Yt).

Theorem 2.1. Assume that µ, k are two constants such that µ ≥ 0, k ≥ 0. Then the
joint Laplace transform of the distribution of (yt, Yt) is given by

E
{

e−µyte−k(Yt−Ys)
∣∣Gs
}

= exp
(
−Bµ,k(s, t)ys

)
exp
(
λ2η(t− s)/θ2

)

(
Cµ,k(s, t)

)− 2λη

θ2 exp
(
−ρ
∫ t−s

0

[
1− h(Bµ,k(0, u))

]
du
)
,(2.11)

where

(2.12) Bµ,k(s, t) =
(2k − λµ) + µ

√
λ2 + 2kθ2 coth

(√
λ2 + 2kθ2 (t− s)/2

)

(θ2µ+ λ) +
√
λ2 + 2kθ2 coth

(√
λ2 + 2kθ2 (t− s)/2

) ,

Cµ,k(s, t) = cosh
(√

λ2 + 2kθ2 (t− s)/2
)

+(θ2µ+ λ)(λ2 + 2kθ2)−1/2sinh
(√

λ2 + 2kθ2 (t− s)/2
)
.(2.13)

Proof. By Lemma 2.1, for an arbitrary fixed time t∗ (0 ≤ s ≤ t∗ < m/
√
λ2 + 2kθ2), we

have

E

{
exp

{
−A(t∗)yt∗ − kYt∗ + ρ

∫ t∗

0

[
1− h(A(v))

]
dv + λη

∫ t∗

0

A(v)dv

}∣∣∣∣Gs
}

= exp

{
−A(s)ys − kYs + ρ

∫ s

0

[
1− h(A(v))

]
dv + λη

∫ s

0

A(v)dv

}
.(2.14)

Then

E

{
exp
{
−A(t∗)yt∗ − k(Yt∗ − Ys)

} ∣∣∣Gs
}

= exp
(
−A(s)ys

)
exp
(
−ρ
∫ t∗

s

[
1− h(A(v))

]
dv
)

exp
(
−λη

∫ t∗

s

A(v)dv
)
.(2.15)

Set A(t∗) = µ ≥ 0. By (2.8), we get

(2.16) m =
√
λ2 + 2kθ2t∗ − ln

µθ2 + λ−
√
λ2 + 2kθ2

µθ2 + λ+
√
λ2 + 2kθ2

.
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Clearly m >
√
λ2 + 2kθ2t∗, i.e., t∗ < m/

√
λ2 + 2kθ2. Plugging (2.16) into A(s) and A(v)

respectively, by direct computation, we have

A(s) =
(
√
λ2 + 2kθ2 − λ) + (

√
λ2 + 2kθ2 + λ) exp(

√
λ2 + 2kθ2s−m)

θ2
(
1− exp(

√
λ2 + 2kθ2s−m)

)

=
(2k − λµ+ µ

√
λ2 + 2kθ2) + (µ

√
λ2 + 2kθ2 + λµ− 2k) exp

(√
λ2 + 2kθ2(s− t∗)

)

(θ2µ+ λ)
(
1− exp

(√
λ2 + 2kθ2(s− t∗)

))
+
√
λ2 + 2kθ2

(
1 + exp

(√
λ2 + 2kθ2(s− t∗)

))

=
(2k − λµ) + µ

√
λ2 + 2kθ2 coth(

√
λ2 + 2kθ2 (t∗ − s)/2)

(θ2µ+ λ) +
√
λ2 + 2kθ2 coth(

√
λ2 + 2kθ2 (t∗ − s)/2)

= Bµ,k(s, t∗)

(2.17)

and

A(v) =
(
√
λ2 + 2kθ2 − λ) + (

√
λ2 + 2kθ2 + λ) exp(

√
λ2 + 2kθ2v −m)

θ2
(
1− exp(

√
λ2 + 2kθ2v −m)

)

= Bµ,k(v, t∗).(2.18)

From (2.15), (2.17) and (2.18), we have

E

{
exp
{
−µyt∗ − k(Yt∗ − Ys)

} ∣∣∣Gs
}

= exp
(
−Bµ,k(s, t∗)ys

)
exp
(
−ρ
∫ t∗

s

[
1− h(Bµ,k(v, t∗))

]
dv
)

exp
(
−λη

∫ t∗

s

Bµ,k(v, t∗)dv
)
.

(2.19)

Let u = t∗ − v in the integral of (2.19), then

E

{
exp
{
−µyt∗ − k(Yt∗ − Ys)

} ∣∣∣Gs
}

= exp
(
−Bµ,k(s, t∗)ys

)
exp
(
−ρ
∫ t∗−s

0

[
1− h(Bµ,k(0, u))

]
du
)

exp
(
−λη

∫ t∗−s

0

Bµ,k(0, u)du
)
.

(2.20)

Since t∗ is arbitrary, (2.20) remains true for all 0 ≤ s ≤ t < m/
√
λ2 + 2kθ2, then

E

{
exp
{
−µyt − k(Yt − Ys)

} ∣∣∣Gs
}

= exp
(
−Bµ,k(s, t)ys

)
exp
(
−ρ
∫ t−s

0

[
1− h(Bµ,k(0, u))

]
du
)

exp
(
−λη

∫ t−s

0

Bµ,k(0, u)du
)
.

(2.21)

By standard integral calculation, then

exp
(
−λη

∫ t−s

0

Bµ,k(0, u)du
)

= exp

(
−λη

∫ t−s

0

(2k − λµ) + µ
√
λ2 + 2kθ2 coth(

√
λ2 + 2kθ2 u/2)

(θ2µ+ λ) +
√
λ2 + 2kθ2 coth(

√
λ2 + 2kθ2 u/2)

du

)

= exp
(
λ2η(t− s)/θ2

)(
cosh

(√
λ2 + 2kθ2 (t− s)/2

)

+(θ2µ+ λ)(λ2 + 2kθ2)−1/2sinh
(√

λ2 + 2kθ2 (t− s)/2
))− 2λη

θ2 .(2.22)
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Plugging (2.22) into (2.21), (2.11) follows immediately. The proof is completed.

Setting k = 0 and µ = 0 in (2.11) respectively, we obtain the following corollaries.

Corollary 2.1. Assume that µ, k are two constants such that µ ≥ 0, k ≥ 0. Then the
Laplace transforms of the distributions of yt and Yt are respectively given by

E
{

e−µyt
∣∣Gs
}

= exp
(
−Bµ,0(s, t)ys

)
exp
(
λ2η(t− s)/θ2

)(
Cµ,0(s, t)

)− 2λη

θ2 exp
(
−ρ
∫ t−s

0

[
1− h(Bµ,0(0, u))

]
du
)

(2.23)

and

E
{

e−k(Yt−Ys)
∣∣Gs
}

= exp
(
−B0,k(s, t)ys

)
exp
(
λ2η(t− s)/θ2

)(
C0,k(s, t)

)− 2λη

θ2 exp
(
−ρ
∫ t−s

0

[
1− h(B0,k(0, u))

]
du
)
.

(2.24)

To make later calculation somewhat easier, we assume that jumps size in (1.3) follows
exponential distribution, i.e., F (x) = 1− e−αx (x > 0, α > 0). Then from Corollary 2.1,
we get the following result.

Corollary 2.2. Assume that µ, k are two constants such that µ ≥ 0, k ≥ 0 and that
F (x) = 1− e−αx (x > 0, α > 0). Then the Laplace transforms of the distributions of yt
and Yt are respectively given by

E
{

e−µyt
∣∣Gs
}

= exp
(
−Bµ,0(s, t)ys + λ2η(t− s)/θ2

)(
Cµ,0(s, t)

)− 2λη

θ2

(
2λ(α+ µ) exp(λ(t− s))

α(θ2µ+ 2λ) exp(λ(t− s)) + (2λµ− αθ2µ)

)− 2ρ

2λ−αθ2

(2.25)

and

E
{

e−k(Yt−Ys)
∣∣Gs
}

= exp
(
−B0,k(s, t)ys

)
exp
{
M1(k) (t− s) +M2(k) lnDk(s, t)−M3 lnC0,k(s, t)

}
,

(2.26)

where

Dk(s, t) = cosh
(√

λ2 + 2kθ2 (t− s)/2
)

+
αλ+ 2k

α
√
λ2 + 2kθ2

sinh
(√

λ2 + 2kθ2 (t− s)/2
)
,

M1(k) =
λ2η

θ2
− 2kρ

α
(√
λ2 + 2kθ2 + λ

)
+ 2k

− αρ
√
λ2 + 2kθ2

2k + 2αλ− α2θ2
,

M2(k) =
2αρ

2k + 2αλ− α2θ2
, M3 =

2λη

θ2
.

3. Applications in credit risk
In this section, based on the results of previous section, we derive the pricing of the

defaultable zero-coupon bond and the fair premium of a Credit Default Swap (CDS) in a
reduced form model of credit risk. Reduced form models of credit risk were pioneered by
Artzner and Delbaen (1995). For the literature on the reduced form model, we can refer
to Jarrow and Turnbull (1995), Duffie and Singleton (1999), Bai, Hu, and Ye (2007),

1100



Liang and Wang (2012), Su and Wang (2013). In some literature on the reduced form
model of credit risk, the default arrival time for the firm is defined as the first jump
time of the Cox process. Due to some primary events which will possibly result in some
positive jumps in a firm’s default intensity process, we employ the jump-diffusion CIR
model to describe the firm’s default intensity.

We first state the definition of Cox process. Many alternative definitions of a Cox
process can be found in the previous literature. We adopted the one used by Brémaud
(1981).

Definition 3.1. Let {Ω, F, P} be a probability space with information structure given
by {Gt, t ∈ [0, T ]}. Let Nt be a point process adapted to {Gt, t ∈ [0, T ]}. Let yt be a
nonnegative process adapted to {Gt, t ∈ [0, T ]} such that

∫ t

0

yudu <∞ a. s. (no explosions).

If for all u ∈ R and 0 ≤ t1 ≤ t2,

(3.1) E
{

eiu(Nt2−Nt1 )
∣∣Gt2

}
= exp

{
(eiu − 1)

∫ t2

t1

yudu
}
,

where Gt = σ(yu, u ≤ t), then Nt is called a Cox process with intensity yt.
From this definition, we can consider a Cox process as a two-step randomisation

procedure. Nt is a Poisson process conditional to yt and yt is used to generate Nt by
acting as its intensity. Therefore, a Cox process is also called a doubly stochastic Poisson
process.

In the following we assume that yt is a jump-diffusion CIR model satisfying (1.2) and
y0 = 0. Denote τ = inf{t ≥ 0, Nt = 1

∣∣N0 = 0}, where Nt is a Cox process with intensity
yt defined as (1.2). Then from (3.1), we have

(3.2) P
(
Nt −Ns = k

∣∣Gt
)

=
1

k!

(∫ t

s

yudu
)k

exp
(
−
∫ t

s

yudu
)
.

Let Ht := σ({τ ≤ s}, s ≤ t), i.e. the σ-algebra generated by τ up to time t and
Ft = Gt ∨ Ht. By the definition of τ and (3.2), the conditional distributions of τ are
given by

(3.3) P
(
τ > t

∣∣Gt
)

= P
(
Nt −N0 = 0

∣∣Gt
)

= e−Yt .

Now we present the survival probability of a firm which has a default intensity process
yt.

Theorem 3.1. Let yt be a jump-diffusion CIR model satisfying y0 = 0, and Nt be a
Cox process with intensity yt. Then the survival probability is given by

P
(
τ > t

)
= exp

{(λ2η

θ2
− ρ
)
t− 2λη

θ2
ln
[
C0,1(0, t)

]
+ ρ

∫ t

0

h(B0,1(0, u))du

}

=: exp{Φ(t)}.(3.4)

Proof. By the definition of the default arrival time τ and (2.24), we have

P
(
τ > t

∣∣Gs
)

= P
(
Nt −Ns = 0

∣∣Gs
)

= E
{

e−(Yt−Ys)∣∣Gs
}

= exp
(
−B0,1(s, t)ys

)
exp
(
λ2η(t− s)/θ2

)(
C0,1(s, t)

)− 2λη

θ2 exp
(
−ρ
∫ t−s

0

[
1− h(B0,1(0, u))

]
du
)
.

(3.5)
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Note that y0 = 0 and P
(
τ > t

)
= P

(
τ > t

∣∣G0

)
, we can easily get (3.4). The proof is

completed.

Remark 3.1. Taking the derivative in (3.4), we can obtain the default probability
density as

(3.6) P
(
τ ∈ dt

)
= − exp{Φ(t)}∂tΦ(t) dt.

If we assume that F (x) = 1− e−αx (x > 0, α > 0), we can get the following corollary.

Corollary 3.1. Let yt be a jump-diffusion CIR model satisfying y0 = 0, and Nt be a
Cox process with intensity yt. Assume that F (x) = 1 − e−αx (x > 0, α > 0). Then the
survival probability is given by

P
(
τ > t

)
= exp

{
M1(1) t+M2(1) lnD1(0, t)−M3 lnC0,1(0, t)

}

=: exp{Ψ(t)}.(3.7)

By some similar arguments as in the proof of Theorem 3.1, we can prove this corollary.
Here we omit the details.

Next we will derive the pricing of the defaultable zero-coupon bond and the fair
premium of a CDS. In recent years, the rapid expansion of market for credit derivatives
has led to a growing interest in investigation of the pricing of the defaultable zero-coupon
bond and the fair premium of CDS. A CDS is in fact a contract agreement between
protection buyer and seller. Assume that firm A issues a defaultable zero-coupon bond
and investor B holds the bond. Then B faces the credit risk arising from default of firm A.
In order to protect from this credit risk, B buys a CDS contract which requires B to pay
periodic premium to party C (CDS protection seller). In exchange, C will compensate B
for his loss in the event of default of the bond.

The following definition of the price process of CDS can be found in Crépey et al.
(2009).

Definition 3.2. The model price process of a CDS is given by Pt = E
{
pT (t)

}
, where

pT (t) corresponds to the CDS cumulative discounted cash flows on the time interval (t, T ]
and satisfies

(3.8) β(t)pT (t) = (1−R)β(τ)I(t<τ<T ) − κ
∫ τ∧T

t

β(v)dv.

In equation (3.8), τ is the default arrival time of firm A, β(t) = e−
∫ t
0 rudu is the

discount factor. Here we assume that the market interest rate rt is a deterministic
function of the time and that the recovery rate is R. (3.8) describes the change trend
of cash flow for investor B. The first term on the right-hand side of (3.8) corresponds
to the present value of the investor B’s loss (1 − R) resulted by the default of firm A.
The second term on the right-hand side of (3.8) corresponds to the present value of the
premiums which B pays to C.

We first state the pricing of the defaultable zero-coupon bond and the fair premium
of CDS based on the conclusion of Theorem 3.1.

Theorem 3.2. Let B(0, T ) be the present value of the defaultable zero-coupon bond
at time 0 paying 1 at time T and κ be the fair premium of CDS. Then the following
statements hold:
(1) The formula for calculating the value of B(0, T ) is given by

(3.9) B(0, T ) = e−
∫ T
0 rudu exp{Φ(T )} −R

∫ T

0

e−
∫ t
0 rudu exp{Φ(t)} ∂tΦ(t) dt.
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(2) The pricing of CDS at time t is given by

(3.10) Pt = I(τ>t)E

{∫ T

t

(
(1−R)yv − κ

)
e−

∫ v
t (ru+yu)dudv

∣∣∣Gt
}
.

(3) The fair premium of CDS is given by

(3.11) κ =
−(1−R)

∫ T
0

e−
∫ v
0 rudu exp{Φ(v)} ∂tΦ(v) dv

∫ T
0

e−
∫ v
0 rudu exp{Φ(v)}dv

.

Proof. (1) By (3.4), (3.6) and the definition of the defaultable zero-coupon bond, we
obtain immediately

B(0, T ) = e−
∫ T
0 ruduP (τ > T ) +R

∫ T

0

e−
∫ t
0 rududP (τ ≤ t)

= e−
∫ T
0 rudu exp{Φ(T )} −R

∫ T

0

e−
∫ t
0 rudu exp{Φ(t)} ∂tΦ(t) dt.

(2) By Definition 3.2, we get

Pt = E
{
pT (t)

∣∣Ft
}

= E

{
(1−R)β(τ)β−1(t)I(t<τ<T ) − κ

∫ T

t

β(v)β−1(t)I(τ>v)dv
∣∣∣Ft
}

= (1−R)E

{
e−

∫ τ
t ruduI(t<τ<T )

∣∣∣Ft
}
− κ

∫ T

t

e−
∫ v
t ruduE

{
I(τ>v)

∣∣Ft
}

dv

=: P
′
t − P

′′
t .(3.12)

By Theorem 9.23 in McNeil et al. (2005), we have

(3.13) P
′
t = I(τ>t)(1−R)E

{∫ T

t

yve−
∫ v
t (ru+yu)dudv

∣∣∣Gt
}
.

By Lemma 7.4.1.1 in Jeanblanc et al. (2009) (taking X ≡ 1 and T = v) and (3.3), for
v ≥ t, we have

E
{
I(τ>v)

∣∣Ft
}

= I(τ>t)
E
{
I(τ>v)

∣∣Gt
}

E
{
I(τ>t)

∣∣Gt
} = I(τ>t)

E
{
I(τ>v)

∣∣Gt
}

P
(
τ > t

∣∣Gt
)

= I(τ>t)e
∫ t
0 yuduE

{
E
{
I(τ>v)

∣∣Gv
}∣∣Gt

}

= I(τ>t)e
∫ t
0 yuduE

{
P
(
τ > v

∣∣Gv
)∣∣Gt

}

= I(τ>t)e
∫ t
0 yuduE

{
e−

∫ v
0 yudu

∣∣Gt
}

= I(τ>t)E
{

e−
∫ v
t yudu

∣∣Gt
}
.(3.14)

Plugging (3.14) into P
′′
t , we get

(3.15) P
′′
t = I(τ>t) κE

{∫ T

t

e−
∫ v
t (ru+yu)dudv

∣∣∣∣Gt
}
.

Then (3.10) follows by (3.12), (3.13) and (3.15).

(3) Note that

P (τ > v) = P (τ > v|G0) = E

{
e−

∫ v
0 yudu

∣∣∣∣G0

}

and

− ∂

∂v
P (τ > v) = E

{
yve−

∫ v
0 yudu

∣∣∣∣G0

}
.
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Then (3.11) follows by setting P0 = 0 in (3.10). The proof is completed.

For the sake of the numerical calculations in next section, we present the following
corollary based on the conclusion of Corollary 3.1.

Corollary 3.2. Let B(0, T ) be the present value of the defaultable zero-coupon bond
at time 0 paying 1 at time T and κ be the fair premium of CDS. Then the following
statements hold:
(1) The formula for calculating the value of B(0, T ) is given by

(3.16) B(0, T ) = e−
∫ T
0 rudu exp{Ψ(T )} −R

∫ T

0

e−
∫ t
0 rudu exp{Ψ(t)} ∂tΨ(t) dt.

(2) The fair premium of CDS is given by

(3.17) κ =
−(1−R)

∫ T
0

e−
∫ v
0 rudu exp{Ψ(v)} ∂tΨ(v) dv

∫ T
0

e−
∫ v
0 rudu exp{Ψ(v)}dv

.

4. Numerical results and conclusions
In this section, using the conclusions of Corollary 3.2, let us illustrate the price

calculations of the defaultable zero-coupon bond and the fair premium of CDS. We also
analyse the dynamic relationships between B(0, T ), κ and the maturity date T respec-
tively.

Example 4.1. The parameter values used to calculate the pricing of the defaultable
zero-coupon bond and the fair premium of CDS are

λ = 0.1, η = 0, θ = 0.2, α = 15, ρ = 1, R = 0.4, rt = 0.05.

Note that Corollary 3.2 is based on Corollary 3.1. The expressions of exp{Ψ(T )},
exp{Ψ(t)}, ∂tΨ(t), exp{Ψ(v)} and ∂tΨ(v) in Corollary 3.2 can be obtained from the
conclusion of Corollary 3.1. Therefore, after substituting the above parameter values
into exp{Ψ(T )}, exp{Ψ(t)}, ∂tΨ(t), exp{Ψ(v)} and ∂tΨ(v), one can obtain the numbers
showed in the following Table 4.1 and 4.2 by means of the conclusions of Corollary 3.2
and MATLAB software.

Table 4.1. The dynamic relationship between B(0, T ) and T
T 2 4 6 8 10

B(0, T ) 0.7613 0.5861 0.4733 0.4058 0.3669

Table 4.2. The dynamic relationship between κ and T
T 2 4 6 8 10

κ 0.0950 0.1040 0.1093 0.1123 0.1140

Table 4.1 shows that the dynamic relationship between the pricing of the default-
able zero-coupon bond and the maturity date T . Table 4.2 shows that the dynamic
relationship between the fair premium of CDS and the maturity date T .

We can find from Table 4.1 that the price of the defaultable zero-coupon bond is mono-
tonically decreasing function respect to the maturity date T . However, it is indicated
from Table 4.2 that the price of the fair premium of CDS is monotonically increasing
function respect to the maturity date T . The reason for this monotonically increasing
trend is that the ruin probability of firm A increases with prolonged maturity date T .

In this paper, for the sake of simplifying calculation, we assume that the jump sizes are
exponentially distributed. It is of interest and challenging to employ other heavy-tailed
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distributions for the jump sizes, such as Pareto distribution, Gumbel distribution and
Fréchet distribution. However, since it is unlikely for us to obtain explicit expressions for
the joint Laplace transform of the distribution of the vector process (yt, Yt), numerical
methods need to be used to calculate the price of the defaultable zero-coupon and the
fair premium of CDS.
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