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Abstract —This paper investigates single machine earliness/tardiness problem 
considering the decision maker’s tolerances for earliness and tardiness durations in 
case of a restrictive common due date. In many classical or basic earliness/tardiness 
problems, due dates are accepted as deterministic or rigid numbers. In this paper, 
common due date in a single machine scheduling problem is relaxed with lower and 
upper bounds and these bounds are used for illustrating the decision maker’s 
tolerances or satisfaction levels by using fuzzy sets. As a complementary set of 
satisfaction levels, dissatisfaction levels can be encoded with fuzzy sets. Then, this 
paper uses dissatisfaction levels in order to introduce a new objective criterion that 
minimizes the products of earliness and tardiness durations with dissatisfaction 
levels. 
 
Keywords: Earliness, tardiness, single machine, scheduling, fuzzy sets, 
dissatisfaction levels, common due date 
Mathematics Subject Classification: 65K05, 90C70. 

1 Introduction 
Earliness/tardiness (E/T) problems are significant for the companies having the Just-in-
Time philosophy. Determining earliness and tardiness weights or penalties may not 
always be an easy task. The decision maker (DM) uses E/T weights in order to show 
his/her biased importance factors. In some cases, DM may use real penalty costs in 
currencies as important factors for scheduling problems. In this paper, dynamic weights 
for E/T durations are introduced as decision variables in a single machine E/T problem 
with a common due date by using fuzzy membership functions of relaxed common due 
date with upper and lower bounds. Arık and Toksarı [1] considered a multi-objective 
fuzzy parallel machine scheduling problem under effects of fuzzy learning and 
deterioration where the objectives are to minimize earliness cost, to minimize tardiness 
cost and to minimize the cost of setting due dates. In their study, due dates are in form of 
fuzzy numbers as decision variables. They proposed a Local Search algorithm.  
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Jayanthi et al. [2] investigated a single machine scheduling problem with trapezoidal 
processing times and triangular due dates. In order to solve their problem where the 
objective is to minimize total weighted earliness and tardiness costs, they proposed a 
Quantum Particle Swarm Optimization algorithm. Niroomand et al. [3] considered a 
single machine scheduling problem with a fuzzy common due date by proposing hybrid 
greedy algorithms in order to minimize fuzzy earliness/tardiness costs. Geng et al. [4] 
investigated flow shop scheduling problems for earliness/tardiness minimization with 
uncertain processing times and distinct due windows. They proposed a Scatter Search 
Based Particle Swarm Optimization. Kır and Yazgan [5] used Fuzzy Axiomatic Design to 
determine earliness and tardiness penalty costs in a single machine scheduling problem 
where dairy products are considered. They proposed a two-stage solution method that 
firstly creates an initial solution with Tabu Search and then improves that initial solution 
with Genetic Algorithm. Li and Zhang [6] considered single machine due date assignment 
problems where the objective is to minimize the possibilistic mean of total E/T cost with 
fuzzy processing times and precedence constraints. Behnamian and Fatemi Ghomi [7] 
considered a bi-objective hybrid flow shop scheduling problems with fuzzy tasks' 
operation times, due dates and sequence-dependent setup times. The objectives in their 
problem are to minimize makespan and the total sum of E/T cost simultaneously. In the 
study of Engin et al. [8], fuzzy sets were used to encode uncertainties in processing times 
and due dates in a fuzzy job shop scheduling problem with availability constraints. They 
proposed a Scatter Search (SS) method to solve these problems. Yan et al. [9] 
investigated flow shop scheduling problems with fuzzy processing times and due 
windows in order to minimize total weighted E/T cost by proposing a hybrid algorithm 
consist of quantum genetic algorithm and particle swarm optimization. Xu and Gu [10] 
considered a zero-wait multiproduct scheduling with due dates under uncertainty, where 
the total weighted earliness/tardiness penalty is to be minimized. Li et al. [11] 
investigated single machine scheduling problems where the objective is to minimize total 
weighted possibilistic mean of E/T cost with fuzzy processing time and they investigated 
how to predict due dates of jobs. Lu et al. [12] studied a multi-objective scheduling 
problem for a single batch-processing machine with non-identical job sizes with fuzzy 
processing times and fuzzy due dates. The objectives in their study are to minimize cost 
combination of makespan, earliness/tardiness penalties and processing cost. Wang and 
Shi [13] considered a multi-objective job shop scheduling problem with fuzzy processing 
times and due windows for E/T performance criterion and they proposed a genetic 
algorithm for their problem.  
 
Wang et al. [14] proposed different genetic algorithms including different crossover 
operator a for single machine E/T problem with fuzzy processing times. Wang et al. [14] 
investigated a multi-objective job shop scheduling problem with fuzzy processing times 
and flexible due dates by proposing a genetic simulated annealing algorithm. Wu [15] 
considered fuzzy earliness and fuzzy tardiness in scheduling problems by using extension 
principle of fuzzy set theory for triangular fuzzy processing times and trapezoidal fuzzy 
due dates. Li et al. [16] proposed a due date assignment problem with fuzzy processing 
times and precedence constraints. They showed that their problem can be polynomially 
solvable without precedence constraints and the problem with precedence constraints is 
NP-hard. Lai and Wu [17] investigated fuzzy earliness and tardiness by using the concept 
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of possibility and necessity measures in fuzzy set theory with fuzzy processing times and 
fuzzy due dates. They considered lots of E/T combinations in view of possibility and 
necessity measures and proposed a genetic algorithm approach for these different E/T 
combinations.  
 
Dong [18] considered a fuzzy single machine scheduling problem with fuzzy processing 
times in order to minimize weighted E/T and resource costs. Dong [19] proposed a two-
stage solution approach for the problem. Lam and Cai [20] considered a single machine 
weighted E/T problem with a fuzzy triangular common due date and they introduced job 
dependent weights for their objective function. Furthermore, they stated an optimal job 
sequence must be V-shaped in terms of weighted processing time when the problem is 
agreeably weighted. In another study of Lam and Cai [21], they used genetic algorithm 
and fuzzy distance function for solving a single machine E/T problem with fuzzy due 
dates. Murata et al. [22] examined the characteristic features of multi-objective 
scheduling problems formulated with the concept of fuzzy due-date. Ishibuchi et al. [23] 
investigated fuzzy scheduling problems and conventional scheduling problems with 
earliness and tardiness penalties. They showed the relations between fuzzy scheduling 
problems and conventional scheduling problems by solving them with a proposed genetic 
algorithm. Some of other recent papers about fuzziness in scheduling are conducted by 
Toksarı and Arık [24], Arık and Toksarı [25], Jia et al. [26], Golneshini and 
Fazlollahtabar [27], Arık [28], Saraçoğlu and Süer [29], Liao and Su [30], Liu et al. [31] 
and Arık and Toksarı [32]. 

2 Problem formulation  
The earliness penalties or costs of early jobs in scheduling problems are considered as 
deterministic in scheduling problems. With classical set theory; if a job completed before 
its due date, then this job belongs to the set of early jobs, else this job is not a member of 
the set of early jobs. Belonging to the set of early jobs is not a desired situation and this 
does not satisfy DM.  Equation (1) shows the classical membership function 
𝜇𝜇𝐸𝐸𝑖𝑖 (𝐶𝐶𝑖𝑖):ℝ+ → [0,1] of DM’s satisfaction level for an early  job with respect to 
completion time of that job considering a common due date for all jobs.     

 

𝜇𝜇𝐸𝐸𝑖𝑖 (𝐶𝐶𝑖𝑖) = �1,     𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 ≥ 𝑑𝑑,
0,     𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 < 𝑑𝑑,

�                   (1) 
 

where 𝐶𝐶𝑖𝑖  is the completion time of job 𝑖𝑖 and 𝑑𝑑 is common due date for all jobs in the 
scheduling environment. Figure 1 illustrates classical membership function in Equation 
(1).  
 
The early job’s satisfaction level in Equation (1) is a rigid number. Like the most cases of   
the real life, this rigid approach for earliness may be tolerated in view of DM’s tolerance 
degree or satisfaction degree to an unacceptable situation. In order to evaluate DM’s 
satisfaction degree, common due date 𝑑𝑑 may be relaxed with a lower bound 𝑑𝑑𝑖𝑖  of 
common due date. Thus, if job 𝑖𝑖 is completed on the interval between 𝑑𝑑𝑖𝑖  and 𝑑𝑑, DM may 
not be fully satisfied because of this earliness amount but  he/she may tolerate this 
earliness amount. 
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Figure 1. Classical earliness membership function 

 
The degree of DM’s satisfaction with respect to completion time of that job considering a 
relaxed common due date with a lower bound  𝑑𝑑𝑖𝑖   for job 𝑖𝑖 can be encoded with fuzzy sets 
as illustrated in Figure  2 and Equation (2).    
 

 
Figure 2: Fuzzy earliness membership function 

 
 

𝜇𝜇𝐸𝐸�𝑖𝑖 (𝐶𝐶𝑖𝑖) = �

1,            𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 ≥ 𝑑𝑑,         
𝐶𝐶𝑖𝑖−𝑑𝑑𝑖𝑖
𝑑𝑑−𝑑𝑑𝑖𝑖

,      𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 < 𝑑𝑑,

0,            𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 < 𝑑𝑑𝑖𝑖,         

�                 (2) 

 
where 𝜇𝜇𝐸𝐸�𝑖𝑖(𝐶𝐶𝑖𝑖):ℝ+ → [0,1] is the membership function of DM’s satisfaction level for 
earliness with respect to completion time of that job considering a relaxed common due 
date with a lower bound  𝑑𝑑𝑖𝑖  for job 𝑖𝑖.  With classical scheduling triple notation, 1|𝑑𝑑𝑖𝑖 =
𝑑𝑑|∑𝛼𝛼𝑖𝑖𝐸𝐸𝑖𝑖  denotes a single machine scheduling problem where the objective is to 
minimize total weighted earliness costs for all jobs by considering jobs’ weight 
coefficients 𝛼𝛼𝑖𝑖 .  The weight coefficients for earliness or tardiness (E/T) are mostly 
assumed as deterministic values. This paper proposes dynamic weight coefficients for 
scheduling problems, especially for E/T problems. Furthermore, dissatisfaction levels of 
jobs for earliness of tardiness are proposed as dynamic penalty weights in this paper. The 
dissatisfaction level 𝛼𝛼�𝑖𝑖  of DM for any early job 𝑖𝑖 is a complementary fuzzy set of fuzzy 
satisfaction level 𝐸𝐸�𝑖𝑖  such as 𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖) = 1 − 𝜇𝜇𝐸𝐸�𝑖𝑖(𝐶𝐶𝑖𝑖). Satisfaction or dissatisfaction level is 
on the closed interval between 0 and 1. The complementary part of satisfaction level can 
be called as dissatisfaction level. Figure  (3) and Equation (3) show the membership 
function of DM’s dissatisfaction level 𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖):ℝ+ → [0,1]  for earliness with respect to 
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completion time of that job considering a relaxed common due date with a lower bound  
𝑑𝑑𝑖𝑖   for job 𝑖𝑖.   
 

 
Figure 3: Fuzzy earliness weight membership function 

 
 

𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖) = �

0,            𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 ≥ 𝑑𝑑,         
𝑑𝑑−𝐶𝐶𝑖𝑖
𝑑𝑑−𝑑𝑑𝑖𝑖

,      𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖 ≤ 𝐶𝐶𝑖𝑖 < 𝑑𝑑,

1,            𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 < 𝑑𝑑𝑖𝑖 .        

�                (3) 

 
 
By following the same approach, the classic tardiness classical membership function 
𝜇𝜇𝑇𝑇𝑖𝑖(𝐶𝐶𝑖𝑖):ℝ+ → [0,1] of DM’s satisfaction level for an tardy  job with respect to 
completion time of that job considering a common due date for all jobs can be illustrated 
as in Figure  4 and Equation (4).  
 

 
 

Figure 4: Classical tardiness membership function 
 
 

𝜇𝜇𝑇𝑇𝑖𝑖(𝐶𝐶𝑖𝑖) = �0,     𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 > 𝑑𝑑,
1,     𝑖𝑖𝑖𝑖 𝐶𝐶𝑖𝑖 ≤ 𝑑𝑑,

�                   (4) 
 
equation (4) can be relaxed with an upper bound 𝑑𝑑𝑖𝑖  of common due date for any tardy job 

𝑖𝑖 as seen in Figure  5 and Equation (5). 
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Figure 5: Fuzzy tardiness membership function 

 
 

𝜇𝜇𝑇𝑇� (𝐶𝐶𝑖𝑖) = �

1,            𝑖𝑖𝑖𝑖 𝑑𝑑 ≤  𝐶𝐶𝑖𝑖 ,        
𝐶𝐶𝑖𝑖−𝑑𝑑
𝑑𝑑𝑖𝑖−𝑑𝑑

,      𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖 > 𝑑𝑑,

0,            𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖 < 𝐶𝐶𝑖𝑖 ,         

�                 (5) 

 
with classical scheduling triple notation, 1|𝑑𝑑𝑖𝑖 = 𝑑𝑑|∑𝛽𝛽𝑖𝑖𝑇𝑇𝑖𝑖  denotes a single machine 
scheduling problem where the objective is to minimize total weighted tardiness costs for 
all jobs by considering jobs’ weight coefficients  𝛽𝛽𝑖𝑖 .  The complementary set of the 
satisfaction level  𝑇𝑇�𝑖𝑖  for tardiness is dissatisfaction level 𝛽𝛽�𝑖𝑖  with a membership function 
such as 𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖) = 1 − 𝜇𝜇𝑇𝑇�𝑖𝑖(𝐶𝐶𝑖𝑖) as shown in Figure  6 and Equation (6).  
 

 
Figure 6: Fuzzy tardiness weight membership function 

 
 

𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖) = �

0,            𝑖𝑖𝑖𝑖 𝑑𝑑 ≤  𝐶𝐶𝑖𝑖,        
𝑑𝑑𝑖𝑖−𝐶𝐶𝑖𝑖
𝑑𝑑𝑖𝑖−𝑑𝑑

,      𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖 ≥ 𝐶𝐶𝑖𝑖 > 𝑑𝑑,

1,            𝑖𝑖𝑖𝑖 𝑑𝑑𝑖𝑖 < 𝐶𝐶𝑖𝑖.         

�                 (6) 

 
The weighted single machine E/T problem 1|𝑑𝑑𝑖𝑖 = 𝑑𝑑|∑𝛼𝛼𝑖𝑖𝐸𝐸𝑖𝑖 + ∑𝛽𝛽𝑖𝑖𝑇𝑇𝑖𝑖  can be expressed as  
1|𝑑𝑑𝑖𝑖 < 𝑑𝑑 < 𝑑𝑑𝑖𝑖| ∑ 𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖)𝐸𝐸𝑖𝑖 + ∑𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖)𝑇𝑇𝑖𝑖  for minimizing earliness and tardiness amounts 
and dissatisfaction of DM, simultaneously. This new performance criterion aims to 
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minimize the sum of the products of earliness/tardiness durations and dissatisfaction 
levels of them in view of DM. 
 

3 Mixed integer non-linear mathematical model  
 
In this section of the paper, a mixed integer non-linear mathematical programming 
(MINLP) model is proposed. 𝜇𝜇𝛼𝛼�𝑖𝑖 (𝐶𝐶𝑖𝑖) and ∑𝜇𝜇𝛽𝛽�𝑖𝑖(𝐶𝐶𝑖𝑖) are piecewise linear functions, 
𝑇𝑇𝑖𝑖 = max⁡(0, 𝐶𝐶𝑖𝑖 − 𝑑𝑑) and 𝐸𝐸𝑖𝑖 = max⁡(0, 𝑑𝑑 − 𝐶𝐶𝑖𝑖). ∑𝜇𝜇𝛼𝛼�(𝐶𝐶𝑖𝑖)𝐸𝐸𝑖𝑖 + ∑𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖)𝑇𝑇𝑖𝑖 is a non-linear 
objective function. Each of  𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖) and ∑𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖) functions has three intervals on the real 
axis as shown in Figures 7 and 8.  In order to simplify mathematical model, these 
intervals are used in the proposed MINLP. The completion time 𝐶𝐶𝑖𝑖  can be placed on any 
of these intervals in Figure 7 and Figure 8.  
 

 
 

Figure 7: Intervals of 𝜇𝜇𝛼𝛼�(𝐶𝐶𝑖𝑖) functions on the real axis 
 

In case of earliness, 𝐶𝐶𝑖𝑖  can be represented with 𝐴𝐴𝑖𝑖,𝑘𝑘 , where 𝑘𝑘 =1,2,3 and 𝑘𝑘 is index for 
intervals in Figure  7.  In order to determine the interval that 𝐶𝐶𝑖𝑖  is on, assignment 
variables 𝑎𝑎𝑖𝑖,𝑘𝑘  can be used as follows: 
 
𝐶𝐶𝑖𝑖 = ∑ 𝑎𝑎𝑖𝑖,𝑘𝑘𝐴𝐴𝑖𝑖,𝑘𝑘3

𝑘𝑘=1  ∀𝑖𝑖                      (7) 
 
∑ 𝑎𝑎𝑖𝑖,𝑘𝑘𝑘𝑘=3
𝑘𝑘=1 = 1 ∀𝑖𝑖                       (8) 

 
𝐴𝐴𝑖𝑖,1 ≤ 𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖,1 ∀𝑖𝑖                             (9) 
 
 𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖,2 ≤ 𝐴𝐴𝑖𝑖,2 ≤ 𝑑𝑑𝑎𝑎𝑖𝑖,2 ∀𝑖𝑖                 (10) 
 
𝐴𝐴𝑖𝑖,3 ≥ 𝑑𝑑𝑎𝑎𝑖𝑖,3 ∀𝑖𝑖                 (11) 
 
where 𝑎𝑎𝑖𝑖,𝑘𝑘 ∈ {0,1} and 𝐴𝐴𝑖𝑖,𝑘𝑘 ≥ 0 ∀ 𝑖𝑖, 𝑘𝑘.  𝜇𝜇𝛼𝛼�𝑖𝑖 (𝐶𝐶𝑖𝑖) value is simply obtained by using 𝑎𝑎𝑖𝑖,𝑘𝑘  
decision variables as follows:  
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𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖) =  𝑎𝑎𝑖𝑖,1 ∗ 1 +   𝑎𝑎𝑖𝑖,2 ∗
𝑑𝑑−𝐶𝐶𝑖𝑖
𝑑𝑑−𝑑𝑑𝑖𝑖

+  𝑎𝑎𝑖𝑖,3 ∗ 0 ∀𝑖𝑖.                (12) 

 
Equation (12) can be written as follows:  
 
𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖) =  𝑎𝑎𝑖𝑖,1 +   𝑎𝑎𝑖𝑖,2 ∗

𝑑𝑑−𝐶𝐶𝑖𝑖
𝑑𝑑−𝑑𝑑𝑖𝑖

  ∀𝑖𝑖.                         (13) 
 
Equation (13) can be simply regulated as  𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖) = min(1, 𝐸𝐸𝑖𝑖 𝑃𝑃𝑖𝑖ℎ𝑖𝑖⁄ ). 
 
In case of tardiness, 𝐶𝐶𝑖𝑖  can be represented with 𝐵𝐵𝑖𝑖,𝑡𝑡 , where 𝑡𝑡 =1,2,3 and 𝑡𝑡 is index for 
intervals in Figure  8.  In order to determine the interval that 𝐶𝐶𝑖𝑖  is on, assignment 
variables 𝑏𝑏𝑖𝑖,𝑡𝑡  can be used as follows: 
 
𝐶𝐶𝑖𝑖 = ∑ 𝑏𝑏𝑖𝑖,𝑡𝑡𝐵𝐵𝑖𝑖,𝑡𝑡3

𝑡𝑡=1  ∀𝑖𝑖                          (14) 
 
∑ 𝑏𝑏𝑖𝑖,𝑡𝑡𝑡𝑡=3
𝑡𝑡=1 = 1 ∀𝑖𝑖                                                                                  (15) 

 
𝐵𝐵𝑖𝑖,1 ≤ 𝑑𝑑𝑏𝑏𝑖𝑖,1 ∀𝑖𝑖                                                                                   (16) 
 
 𝑑𝑑𝑏𝑏𝑖𝑖,2 ≤ 𝐵𝐵𝑖𝑖,2 ≤ 𝑑𝑑𝑖𝑖𝑏𝑏𝑖𝑖,2 ∀𝑖𝑖                                                                                  (17) 
 
𝐵𝐵𝑖𝑖,3 ≥ 𝑑𝑑𝑖𝑖𝑏𝑏𝑖𝑖,3 ∀𝑖𝑖                                                                                   (18) 
 
where 𝑏𝑏𝑖𝑖,𝑡𝑡 ∈ {0,1} and 𝐵𝐵𝑖𝑖,𝑡𝑡 ≥ 0 ∀ 𝑖𝑖, 𝑡𝑡.  𝜇𝜇𝛽𝛽�𝑖𝑖(𝐶𝐶𝑖𝑖) value is simply obtained by using 𝑏𝑏𝑖𝑖,𝑡𝑡  
decision variables as follows:  
𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖)  =  𝑏𝑏𝑖𝑖,1 ∗ 0 +   𝑏𝑏𝑖𝑖,2 ∗

𝑑𝑑𝑖𝑖−𝐶𝐶𝑖𝑖
𝑑𝑑𝑖𝑖−𝑑𝑑

+  𝑏𝑏𝑖𝑖,3 ∗ 1 ∀𝑖𝑖.                                                              (19) 
 
Equation (19) can be written as follows: 
 
 𝜇𝜇𝛽𝛽�𝑖𝑖(𝐶𝐶𝑖𝑖) =  𝑏𝑏𝑖𝑖,2 ∗

𝑑𝑑𝑖𝑖−𝐶𝐶𝑖𝑖
𝑑𝑑𝑖𝑖−𝑑𝑑

+  𝑏𝑏𝑖𝑖,3 ∀𝑖𝑖.                                                                     (20) 
 
Equation (20) can be simply regulated as  𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖) = min(1, 𝑇𝑇𝑖𝑖 𝑃𝑃𝑖𝑖ℎ𝑖𝑖⁄ ). 

 
Figure 8: Intervals of 𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖) functions on the real axis 
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The mathematical model can be structured by using Equations (7-11) and Equations (14-
18) as follows:  
 
Indices: 
𝑖𝑖: index for jobs ( 𝑖𝑖 = 1,2, … , 𝑛𝑛) 
𝑟𝑟: index for position numbers ( 𝑖𝑖 = 1,2, … , 𝑛𝑛) 
𝑘𝑘: index for earliness time interval ( 𝑘𝑘 = 1,2,3) 
𝑡𝑡: index for tardiness time interval ( 𝑡𝑡 = 1,2,3) 

 
Parameters: 
𝑃𝑃𝑖𝑖: processing time of job 𝑖𝑖 
ℎ𝑖𝑖: relaxing factor for upper and lower bounds of common due date for job 𝑖𝑖 
ℎ:  restrictive factor for common due date 
 
Decision Variables:  
𝐶𝐶𝑖𝑖:  completion time of job 𝑖𝑖 
𝐸𝐸𝑖𝑖:  earliness time of job 𝑖𝑖 
𝑇𝑇𝑖𝑖:  tardiness time of job 𝑖𝑖 
𝐶𝐶𝑟𝑟 : completion time of the job assigned on position 𝑟𝑟 
𝑃𝑃𝑟𝑟 : processing time of the job assigned on position 𝑟𝑟 
𝐴𝐴𝑖𝑖,𝑘𝑘 :  completion time of job 𝑖𝑖 on 𝑘𝑘th earliness interval  
𝐵𝐵𝑖𝑖,𝑡𝑡 :  completion time of job 𝑖𝑖 on 𝑡𝑡th tardiness interval  
𝑑𝑑: common due date for all jobs  
𝑑𝑑𝑖𝑖:lower bound of common due date for job 𝑖𝑖 
𝑑𝑑𝑖𝑖: upper bound of common due date for job 𝑖𝑖 
𝑋𝑋𝑖𝑖,𝑟𝑟 : if job 𝑖𝑖 is assigned on position 𝑟𝑟 on the  machine, 𝑋𝑋𝑖𝑖,𝑟𝑟 = 1;  otherwise, 𝑋𝑋𝑖𝑖,𝑟𝑟 = 0   
𝑎𝑎𝑖𝑖,𝑘𝑘 : if 𝐶𝐶𝑖𝑖  is on 𝑘𝑘th earliness interval, 𝑎𝑎𝑖𝑖,𝑘𝑘 = 1;  otherwise, 𝑎𝑎𝑖𝑖,𝑘𝑘 = 0  
𝑏𝑏𝑖𝑖,𝑡𝑡 : if 𝐶𝐶𝑖𝑖  is on 𝑡𝑡th tardiness interval, 𝑏𝑏𝑖𝑖,𝑘𝑘 = 1;  otherwise, 𝑏𝑏𝑖𝑖,𝑘𝑘 = 0  
𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖): dissatisfaction level of DM in case of tardiness for job 𝑖𝑖 
𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖): dissatisfaction level of DM in case of earliness for job 𝑖𝑖 

 
Objective Function:  
 
𝑀𝑀𝑀𝑀𝑀𝑀 ∑ 𝜇𝜇𝑎𝑎�𝑖𝑖 (𝐶𝐶𝑖𝑖)𝐸𝐸𝑖𝑖  

𝑛𝑛
𝑖𝑖 + ∑ 𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖)𝑇𝑇𝑖𝑖 

𝑛𝑛
𝑖𝑖                 (21) 

 
Subject to: 
 
𝑑𝑑 = ℎ∑ 𝑃𝑃𝑖𝑖𝑛𝑛

𝑖𝑖=1                     (22) 
 
𝑑𝑑𝑖𝑖 = 𝑑𝑑 − 𝑃𝑃𝑖𝑖ℎ𝑖𝑖                    (23) 
 
𝑑𝑑𝑖𝑖 = 𝑑𝑑 + 𝑃𝑃𝑖𝑖ℎ𝑖𝑖                    (24) 
 
𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖) =  𝑎𝑎𝑖𝑖,1 +   𝑎𝑎𝑖𝑖,2

𝑑𝑑−𝐶𝐶𝑖𝑖
𝑑𝑑−𝑑𝑑𝑖𝑖

  ∀𝑖𝑖                 (25) 
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𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖) =  𝑏𝑏𝑖𝑖,2

𝑑𝑑𝑖𝑖−𝐶𝐶𝑖𝑖
𝑑𝑑𝑖𝑖−𝑑𝑑

+  𝑏𝑏𝑖𝑖,3 ∀𝑖𝑖                 (26) 
 
𝐶𝐶𝑖𝑖 ≥ ∑ 𝑎𝑎𝑖𝑖,𝑘𝑘𝐴𝐴𝑖𝑖,𝑘𝑘3

𝑘𝑘=1  ∀𝑖𝑖                   (27) 
 
∑ 𝑎𝑎𝑖𝑖,𝑘𝑘𝑘𝑘=3
𝑘𝑘=1 = 1 ∀𝑖𝑖                   (28) 

 
𝐴𝐴𝑖𝑖,1 ≤ 𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖,1 ∀𝑖𝑖                   (29) 
 
 𝑑𝑑𝑖𝑖𝑎𝑎𝑖𝑖,2 ≤ 𝐴𝐴𝑖𝑖,2  ∀𝑖𝑖                    (30) 
 
𝐴𝐴𝑖𝑖,2 ≤ 𝑑𝑑𝑎𝑎𝑖𝑖,2 ∀𝑖𝑖                    (31) 
 
𝐴𝐴𝑖𝑖,3 ≥ 𝑑𝑑𝑎𝑎𝑖𝑖,3 ∀𝑖𝑖                   (32) 
 
𝐶𝐶𝑖𝑖 ≥ ∑ 𝑏𝑏𝑖𝑖,𝑡𝑡𝐵𝐵𝑖𝑖,𝑡𝑡3

𝑡𝑡=1  ∀𝑖𝑖                   (33) 
 
∑ 𝑏𝑏𝑖𝑖,𝑡𝑡𝑡𝑡=3
𝑡𝑡=1 = 1 ∀𝑖𝑖                   (34) 

 
𝐵𝐵𝑖𝑖,1 ≤ 𝑑𝑑𝑏𝑏𝑖𝑖,1 ∀𝑖𝑖                   (35) 
 
 𝑑𝑑𝑏𝑏𝑖𝑖,2 ≤ 𝐵𝐵𝑖𝑖,2  ∀𝑖𝑖                    (36) 
 
𝐵𝐵𝑖𝑖,2 ≤ 𝑑𝑑𝑖𝑖𝑏𝑏𝑖𝑖,2 ∀𝑖𝑖                    (37) 
 
𝐵𝐵𝑖𝑖,3 ≥ 𝑑𝑑𝑖𝑖𝑏𝑏𝑖𝑖,3 ∀𝑖𝑖                   (38) 
 
∑ 𝑋𝑋𝑖𝑖,𝑟𝑟𝑛𝑛
𝑟𝑟=1 = 1 ∀𝑖𝑖                   (39) 

 
∑ 𝑋𝑋𝑖𝑖,𝑟𝑟𝑛𝑛
𝑖𝑖=1 = 1 ∀𝑟𝑟                (40) 

 
𝐶𝐶𝑖𝑖 +  𝐸𝐸𝑖𝑖 − 𝑇𝑇𝑖𝑖 = 𝑑𝑑 ∀𝑖𝑖                 (41) 
 
𝐶𝐶𝑖𝑖 = ∑ 𝑋𝑋𝑖𝑖,𝑟𝑟𝑛𝑛

𝑟𝑟=1 𝐶𝐶𝑟𝑟  ∀𝑖𝑖                 (42) 
 
𝐶𝐶𝑟𝑟 = 𝐶𝐶𝑟𝑟−1 + 𝑃𝑃𝑟𝑟  ∀𝑟𝑟                 (43) 
 
𝑃𝑃𝑟𝑟 =  ∑ 𝑋𝑋𝑖𝑖,𝑟𝑟𝑛𝑛

𝑖𝑖=1 𝑃𝑃𝑖𝑖  ∀𝑟𝑟                  (44) 
 
𝐶𝐶𝑟𝑟=0 = 0                  (45) 
 
𝜇𝜇𝛼𝛼�𝑖𝑖(𝐶𝐶𝑖𝑖) ≤ 1                  (46) 
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𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖) ≤ 1                  (47) 
 
𝐶𝐶𝑟𝑟 , 𝑃𝑃𝑟𝑟 ≥ 0 ∀𝑟𝑟                  (48) 
 
𝐶𝐶𝑖𝑖 ≥ 0 ∀𝑖𝑖                   (49) 
 
𝐴𝐴𝑖𝑖,𝑘𝑘 ≥ 0 ∀ 𝑖𝑖, 𝑘𝑘                   (50) 
 
𝐵𝐵𝑖𝑖,𝑡𝑡 ≥ 0 ∀ 𝑖𝑖, 𝑡𝑡                   (51) 
 
𝑎𝑎𝑖𝑖,𝑘𝑘  ∈ {0,1} ∀ 𝑖𝑖, 𝑘𝑘                   (52) 
 
𝑏𝑏𝑖𝑖,𝑡𝑡  ∈ {0,1} ∀ 𝑖𝑖, 𝑡𝑡                   (53) 
 
𝑋𝑋𝑖𝑖,𝑟𝑟  ∈ {0,1} ∀ 𝑖𝑖, 𝑟𝑟                   (54) 
 
Objective function (21) is to minimize the products of earliness/tardiness with 
dissatisfaction levels of DM simultaneously.  Constraint (22) shows that common due 
date d is equal to the product of the sum of processing times with a restrictive factor that 
is predetermined by DM. Constraints (23-24) shows that upper and lower bounds of 
common due date for job i  are relaxed with the same amount that is equal to the product 
of processing time of job i with a predetermined relaxing factor hi.  Constraints (25-26) 
are dissatisfaction levels of DM for earliness and tardiness, respectively. These 
constraints are introduced in Equations (13-20) previously. Constraints (27-32) are to 
determine the earliness interval where 𝐶𝐶𝑖𝑖  is placed on and these constraints are 
introduced in Equations (7-11). Constraints (33-38) are to determine the tardiness interval 
where 𝐶𝐶𝑖𝑖   is placed on and these constraints are introduced in Equations (14-18). 
Constraint (39) assures that only one job can be assigned to any position of the machine. 
Constraint (40) guarantees that only one position number can be used to assign a job. 
Constraint (41) shows that completion time, earliness duration and tardiness duration 
must be balanced with the common due date. Constraint (42) is decision variable 
transformation between completion times that are dependent on job index and position 
index, respectively.  Constraint (43) shows that completion time of the job on position 𝑟𝑟 
is equal to sum of previous position’s completion time and processing time of the job on 
position 𝑟𝑟. Constraint (44) is to determine which job is assigned to position 𝑟𝑟. Constraint 
(45) assures that the machine is ready to process jobs at the beginning and all jobs have 
same release date. Constraints (46-47) assure that dissatisfaction levels are not more than 
1. Constraints (48-54) define domains of decision variables.  

4 Numerical example  
In this section, a numerical example for the proposed problem is given for the readers. 
The numerical example in this section has 10 jobs that are ready to be processed on a 
single machine. Processing times of jobs are in Table 1. Preemption is not allowed and 
ready times of all jobs are equal to zero. Each job has same relaxing factor hi=0.5. The 
restrictive factor h for common due date are predetermined by DM. For different 
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restrictive factors between 0.1 and 1.5 by incrementing ℎ with 0.1, the problem is solved 
and solutions of the problem for these restrictive factors are given in Table 2 and Figure 
9.  Solutions were obtained via Dicopt Solver in Gams 21.6 software.   
 

Table 1: Processing times of the numerical example 
 

𝑖𝑖 1 2 3 4 5 6 7 8 9 10 
𝑃𝑃𝑖𝑖  5 6 16 8 9 16 10 12 23 11 

 
Table 2: Solutions of the numerical example for different ℎ levels 

 
Restrictive 
factor 𝒉𝒉 

Common 
due date 𝒅𝒅 

 
The optimal sequence 

Objective 
Function 

0.1 11.6 1,2,4,5,7,10,8,3,6,9 394.920 
0.2 23.2 8,5,2,4,7,1,10,6,3,9 330.676 
0.3 34.8 3,6,1,5,2,10,7,4,8,9 302.116 
0.4 46.4 3,1,5,2,4,7,10,8,6,9 257.040 
0.5 58.0 6,1,3,8,10,2,7,4,9,5 268.727 
0.6 69.6 9,3,5,6,4,2,1,8,7,10 233.160 
0.7 81.2 9,2,7,10,8,3,6,5,4,1 303.480 
0.8 92.8 9,3,6,7,5,10,8,2,4,1 270.340 
0.9 104.4 9,3,6,8,10,7,5,2,1,4 299.653 
1.0 116.0 9,3,6,8,10,7,5,4,2,1 381.000 
1.1 127.6 9,3,6,8,10,7,5,4,2,1 497.000 
1.2 139.2 9,3,6,8,10,7,5,4,2,1 613.000 
1.3 150.8 9,3,6,8,10,7,5,4,2,1 719.000 
1.4 162.4 9,3,6,8,10,7,5,4,2,1 845.000 
1.5 174.0 9,3,6,8,10,7,5,4,2,1 961.000 

 
 

As seen in Table 2, while restrictive factor h is increasing and the problem is still 
restricted (d < ∑Pi), the sequence is changing and objective function values fluctuate 
because the common due date is increasing with restrictive factor. Increasing the common 
due date leads the schedule is changed because there is a similar v-shaped property for 
the problem. The v-shaped property presents a sequence where jobs are ordered in 
decreasing order of their weighted processing times until the common due date and then 
the remaining jobs are ordered in increasing order of their weighted processing times. 
This property is common for classical single machine weighted earliness/tardiness 
scheduling problems and as seen from Table 2, this property can be seen for 1|di < 𝑑𝑑 <
di| ∑ μα�i

(Ci)Ei + ∑μβ�i
(Ci)Ti problem.  While problem is a non-restricted (d ≥ ∑Pi) and h 

is increasing, the sequence stays same and objective function values are increasing 
because of earliness.  
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Figure 9: Solutions of the numerical example for different h levels and common due dates 
 

5 Conclusion  

In this paper, a new performance criterion 1|𝑑𝑑𝑖𝑖 < 𝑑𝑑 < 𝑑𝑑𝑖𝑖| ∑ 𝜇𝜇𝛼𝛼�𝑖𝑖 (𝐶𝐶𝑖𝑖)𝐸𝐸𝑖𝑖 + ∑𝜇𝜇𝛽𝛽�𝑖𝑖 (𝐶𝐶𝑖𝑖)𝑇𝑇𝑖𝑖  that 
minimizes the sum of the products of earliness/tardiness durations and dissatisfaction 
levels of them in view of DM is introduced. Dissatisfaction levels denote tolerances for 
earliness and tardiness durations considering a common due date. This approach may be 
used for different due dates of jobs. A numerical example for different restrictive levels is 
given in this paper. Single machine scheduling problems are basic of scheduling 
problems. Therefore, this approach can be used in more complex production systems that 
are mainly considered as a part of the companies having Just-in-time philosophy. The 
extending of this performance criterion for more complex scheduling environments and 
fuzzification of other parameters such as processing times can be considered in future 
researches. 
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Abstract — In this study, a comprehensive hybrid formula was developed for some 

known algorithms of “Three-Term Conjugate Gradient (TTCG) methods” for solving 

problems of unconstrained optimization by combining the three most important vec-

tors ( 1,, kkk gdy  ) in an exceedingly new vector denoted by kz  defined in section 

two. The proposed vector kz can also be considered as a special case or modified 

variant of the vector kp  within the general versions of Yasushi, Yabe, and Ford. As a 

theoretical aspect, global convergence, sufficient descend and conjugacy were stud-

ied in the presence of strong Wolfe condition. On the practical side, the proposed 

formula was compared with its counterpart to the researchers Yasushi, Yabe, and 

Ford. Where the results were encouraging and proved the efficiency of proposed al-

gorithms than comparative algorithms using 35 nonlinear functions. 

 

Keywords Unconstrained optimization, Conjugate gradient, Global convergence. 
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1 Introduction 

The discus problem is   “unconstrained optimization”: 

                             nRxxf ),(min                                                                  

(1)                                                     

where RRf n :  is continuously differentiable and f gradient at x, which is represented 

by )()( xfxg   is existing. There exist many types of numerical methods to solve equa-

tion (1) including Steepest Descent (SD), Newton, CG and Quasi-Newton (QN) methods. 

Because of being simple and having requirement of very low memory, CG method plays 

a significant role, particularly when there is a large scale, the method of CG is very effec-
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tive.  Let nRx 0
 be a primary solution for problem (1). The nonlinear method of CG is 

generally planned by this iterative formula: [12] 

                            ,1 kkkk dxx                                                                             

(2)       

where kx the current is iterate point, 0k  represents a step length that is determined by 

a line search, and kd refers to the search direction, defined by: 

                        









   ,0    if        ,

,0    if                       

1 kdg

kg
d

kkk

k

k


         

(3)  

 where Rk   is a parameter ( 10  k ) and 1kg  denotes )( 1kxg . Some familiar for-

mulas for k   exist. They are shown below: [5] 

                  ,11

k

T

k

k

T

kFR

k
gg

gg                      (Fletcher-Reeves (FR), 1964) 

                  ,1

k

T

k

k

T

kHS

k
yd

yg                        (Hestenes -Stiefel (HS), 1952) 

                  ,1

k

T

k

k

T

kPR

k
gg

yg                         (Polak- Ribiere (PR), 1969) 

where . stands for the Euclidean norm of vectors and kkk ggy  1 . In this paper, 

three term CG methods were proposed, which are based on Yasushi, Yabe and Ford 

(2009) [10].  Generally, in the convergence analysis of CG methods, one hopes the ILS, 

such as the Strong Wolfe Conditions (SWC), which is shown as follows [6]:  

Definition 1. Strong Wolfe Conditions (SWC) aims at finding line search k
where: 

                 

.1,)(

2

1
0,)()(









k

T

kkkk

T

k

k

T

kkkkkk

gddxgd

dgxfdxf
   

(4)       

Definition 2. Convex combination gives a finite number of points (which can be vectors, 

scalars) where all coefficients are non-negative and sum to 1 such that [13] 

 

nn xxx   ..............2211  and  .1..............21  n  

 

This article is organized as follows: in the second section, a general review is presented 

on three term CG algorithms. In section 3, new hybrid TTCG techniques are presented. In 

section 4, the properties of global convergence for the proposed new methods of CG are 

analysed. In section 5, some numerical comparisons were reported against general for-

mula of Yasushi, Yabe and Ford 3TCG by substituting ( kkk gdy ,, ) instead of the vector 
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   in each case by using 35-test problems in the CUTE [7]; in addition, general conclu-

sions are given in section 5. 

 

2 Three-term CG methods 

Recently, researchers widely examined methods of three-term conjugate gradient for im-

proving the classical conjugate gradient method efficiency.  Beale presented the initial 

three-term nonlinear method of CG in [8], in which the following formula determines 

search direction: 

.11 tkkkk dgd     

In Beale’s algorithm [8], the parameter FR

kk   or { PR

k

HS

k  , …, etc.}. In [9], another 

method of “three-term conjugate gradient was proposed by Nazareth”, in which the com-

putation of search direction is done using this formula: 

.1

11

1
1 




  k

k

T

k

k

T

k
k

k

T

k

k

T

k
kk d

dy

yy
d

dy

yy
yd  

 

In [4], a descent modified algorithm of PRP conjugate gradient was developed, in which 

the following formula of three-term is used to obtain the search direction: 

.11
11 k

k

T

k

k

T

k
k

k

T

k

k

T

k
kk y

gg

dg
d

gg

yg
gd 

   

In [3], the modification of method of HS conjugate gradient was done by employing a 

method of descent three-term conjugate gradient, which is read 

.11
11 k

k

T

k

k

T

k
k

k

T

k

k

T

k
kk y

gs

sg
s

gs

yg
gd 

   

More recently in [10], a general form of three-term conjugate gradient methods, which 

always generate a sufficient descent direction by formula: 

.1
k

k

T

k

k

T

k
kkkkk p

pg

dg
dgd    

The parameter k  like Beale‘s form. 

 

3 New Direction for TTCG 

`The general idea of the hybrid was built by combining theoretical and reasonable 

advantages within completely different methods. As shown below, the motivation behind 

this hybrid is to select a set of good qualities for some known three-term conjugate gradi-

ent methods   and generate new generic formulas for TTCG methods. Installing a method 

with high specifications is achieved by picking two parameters 21  and  with the cre-

ated convex combination between typically used vectors in optimization ( kkk sgy ,, ) and 

place it rather than of kP  in Yasushi, Yabe and Ford and attached to the form of the most 

important features as following: 
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











 
 ,,

,00,

1
1 otherwisez

zg

dg
dg

zgorkifg

d
T

k

k

T

k
kkkk

T

kk

k 
 

  

(5) 

,)1( 121211   kkk dgyz   (6) 

where 1  and 
2 are scalars that take values in the interval [0, 1] and 12   . The vector 

nRz  as defined above is convex combination from type three which join  the vectors 

11 ,  kkk dandgy .This proposed method is reduced to the standard HS or PRP method 

in the case of exact line search since 01 k

T

k dg . In this case, also it should be noticed 

that the proposed method includes “the three-term conjugate gradient methods proposed 

by Zhang et al.” [1-3]. The methods (5),(6) with FR

kk   , 021    and kgz  be-

comes the method by [2] and if oyg k

T

k  , the methods (5),(6) with PR

kk   ,

0,1 21    and kyz  becomes the method by [1]. If  oyg k

T

k  , the method (5)-(6) 

with HS

kk    0,1 21    and kyz  becomes the method by [3]. In addition, the 

method (5)-(6) with PR

kk    and kgz  becomes the method by [4]. More important, it 

can be considered as a key when selecting vectors 11 ,  kkk dandgy  as switch from 

formula to formula and considered a special instance of the formula three-term conjugate 

gradient algorithm given by Narushima et al. [10], when putting kyz  , it means 

0,1 21    , as mentioned above. 

 

2.1 The New Three-Term CG-Algorithms: 

Step1 (Initializing): Given an initial point nRx 0
 and positive parameters,   

10 12    , 2.0 , 1and5.00   . Set the initial search direction 

00 gd   and let k = 0. 

Step2 (Criterion of Termination): When kg , after that stop.                          

Step 3 (Line search): Determine step length 0k  satisfies “the Strong Wolfe condi-

tion” (4) with Acceleration scheme [5]: “compute zkkkkk ggydxz  , , 

)(zfg z  , and Compute ,, k

T

kkkk

T

kkk dybdga    if 0kb ,  then  compute 

k

k
k

b

a
   and update the variables as  kkkkk dxx 1 ;  otherwise update the vari-

ables as .1 kkkk dxx   

 

Step4 (Finding the direction): Compute the new search direction (5),(6), where the sca-

lar parameter k  is indecently chosen (in practice, FR

k  is substituted).                          

Step5 (Restart procedure): If
2

11   kk

T

k ggg  , then go to Step (1) else continue (this 

is Powell restart). 
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Step6 (Loop): Let k = k +1 and go to Step (2). 

 

4 Convergence Analysis 

Now, the basic global convergence property of the new three-term CG-Algorithms must 

be proved under the condition that the following assumption is held. 

  

Assumption (A): 

(i) The level set )}()(,:{ 0xfxfRxxS n   is bounded, where 0x  is the start-

ing point, and there exists a positive constant such that, for all: 0B  and defined 

below. 

(ii) In a neighbourhood Ω of S, f  is differentiable continuously and its gradient g  is 

continuously Lipchitz, namely, a constant 0L  exists, where 

                      
Obviously, Assumption (A, i) results in “a positive constant D, where: 

                    }.,,max{ SxxxxB kk                                                        (8) 

Here B refers to Ω diameter. From Assumption (A, ii), it is also known that a constant

0  exists, where: 

                   )9(,)( Sxxg      

In a number of studies on methods of CG, the descent condition or sufficient descent has 

a significant role; however, this condition is sometimes difficult to be achieved [1]  

 

Theorem 4.1. (Descent property)[1: Suppose that the assumption (A) is held, independ-

ently of choice the parameter k  and line search, consider the search directions kd gener-

ated from (5-6), it is proved that the search direction easily satisfies the sufficient method 

with 1c , 

.
2

kk

T

k gcgd   

Proof.  Start with multiplying the direction kd  in (5-6) by the gradient kg  

 

                   ,1
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k
kk

T

kkkk

T

k gz
zg

dg
gdggd 

                                          (10) 

         ,1
1

2
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T

k
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T

k
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T

k
kk

T

kkkk

T

k zg
zg

dg
gdggd 

                                        (11) 

                      .
2

kk

T

k ggd   

Hence, by comparing the result with standard sufficiently descent condition, the proposed 

direction held this condition by the value of 1c . 

 

)7(xx, ||,x-x ||L  ||)g(x - g(x)|| kkk 
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Theorem 4.2. (Conjugacy Property): Suppose that the step-size k satisfies the standard 

Wolfe conditions, consider the search directions kd  generated from (5-6), then the search 

directions 1kd  are conjugate for all k that is  

,101 k

T

kk

T

k sgcyd    

where 0c  positive constant. 

 

Proof. Begin by multiplying the proposed direction by the vector ky   

                zy
zg

dg
dygydy T

kT

k

k

T

k
kk

T

kkk

T

kk

T

k

1

1
11




                                 (12) 

By using the following reality to get 

  kkk ggy 1          zgzgzy T

k

T

k

T

k 1
        zgzy T

k

T

k 1   

Taking the last one and put it in (12) 

                               zg
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dg
dygy T
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                               k
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k dgdygy 11     

                               )( 111 k
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k dgdgdggy     

                               k
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k dggy  1  
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T

kk dgggg   )( 1

2

1  

                               k
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kkk

T

kk dgggg   1

2

1  

                               k

T

kkkk dggg  

2

1

2

1  

using curvature inequality in (4) 

                                k

T

kk dg      .1 k

T

k
k sg 




 

Hence the conjugacy condition k

T

kk

T

k sgcyd 101    is done with .0 c  

Property 4.1. Consider a general CG method and suppose that [11]  

                   0,0  kg k                                                 

(13) 

It can be said that a CG method has the property (4.1) if there exists two constants b>1 

and  0    such that for all k,  

                  bk                                                                  (14) 

             If  ks  then 
b

k
2

1
   for all  .0                                                  (15)  

Lemma 4.2. Assume that 1kd  is a descent direction and kg  satisfies the Lipchitz condi-

tion kk xxLxgxg  )()(  for all x  on the line segment connecting x  and kx , where 

L is constant if the line search  direction satisfies Strong Wolfe condition, then[6]:                                
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                   .
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


                                                    (16) 

Proof.  Using curvature inequality in (4)  

                              k
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T

k gdgdgd   1  

                            .1 k

T
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k gdgd                                                            (17) 

Subtracting k

T

k gd  from both sides of (35) and using Lipchitz condition yields:                                                                                                              

                 
2

1 )()1( kkkk

T

kk

T

k dLggdgd                                         (18) 

As kd  is a descent direction” and 1 , so (16) holds:  

                         .
)1(

2

k

k

T

k

k

dL

gd



  

The conclusion of the following Lemma, often called the Zoutendijk condition, is used to 

prove the global convergence of any nonlinear CG method. Zoutendijk [18] originally 

gave it under the Strong Wolfe line search (4). In the following Lemma, this condition 

will be proved. 

Lemma 4.3. Suppose Assumption (A) holds. Consider the iteration process of the form 

(5),(6), where 1kd  satisfies the descent condition ( 0k

T

k gd ) for all 1k  and k  

satisfies (4). Then  

                      .
)(

1
2

2
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
k k
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T
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d

dg
                                              (19) 

Proof: From the first inequality in (4), the following equation can be obtained: 

                    .1 k

T

kkkk dgff   

Combining this with the results in Lemma (4.2), yields 
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                                          (20) 

Using the bound-ness of function f in Assumption (A), hence  

                     .
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



k k
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T
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d

dg
                                               (21) 

Theorem 4.3. Suppose that assumption A holds and consider the new algorithm obtained 

by (3-1,3-2) where k is computed by Wolf  Line Search , then  

 .0inf 
k

kgLim  

Proof. The proof is well done by contradiction, so it is supposed that the conclusion is not 

true, then 0kg  , as mentioned above, there exists a constants 0,   such that  

0,0  kg k   

Now by taking the square norm of both sides of the proposed new direction 
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Which is in contrary to Lemma 4.3, then 0inf kgLim . 

5  Numerical Results 

To evaluate the reliability of the proposed methods, they were tested against the Yasushi, 

Yabe and Ford 3TCG methods with different options of 
kp  such as ( 1,, kkk gdy )  using 

the same test problems as shown in Table (1). The comparison includes some of the 

known test functions that contributed to CUTE [7] in different dimensions (100, 400, 600, 

1000). The program was written with a double precision account using Fortran 6.6. The 

comparative performance of the algorithm is evaluated by considering both the total 

number of function evaluations that is normally assumed as the usually factor in each 

iteration, total number of iterations and the time. The standard of convergence criterion 

was 

                       .101 6

1



 kg                                                                (22) 

 

Percentage Performance of each New algorithm was against 100% Yasushi,Yabe and Ford 

3TCG  algorithms with different choice of  kp  by 1,, kkk gdy  respectively, as shown in 

Table 4.2. 

 

Based on the above tables, it can be concluded that the new algorithm beats Yasushi, 

Yabe and Ford 3TCG methods in all NOI; NOFG and Time. NOI is about (35-70) % per-

centages. However, the new algorithm also beats Yasushi, Yabe and Ford 3TCG methods 

in all NOFG about (8-52) % percentages. In addition, the new algorithm also beats Yasu-

shi, Yabe and Ford 3TCG methods time about (27-73) % percentages. 
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Table 1: Show the Comparison between New and Yasushi,Yabe and Ford 3TCG methods 

for the total of  n different dimensions  n= 100, 400, 700,1000, for each test problem (

4.0,3.0 21   , 6101x ). 

Number 

of Problem 

New method by Z 

vectors 

NOI/NOFG/TIME 

3TCG by yk vectors 

(Yasushi,Yabe, Ford) 
NOI/NOFG/TIME 

3TCG by gk+1vectors 

(Yasushi,Yabe, Ford) 
NOI/NOFG/TIME 

3TCG by dk vectors 

(Yasushi,Yabe, Ford) 
NOI/NOFG/TIME 

1 235    365      0.17 265    388      0.22 348    480      0.28 425    556      0.30 

2 84    161      0.02 84    161      0.01 84    161      0.02 84    161      0.00 

3 35     78      0.02 35     78      0.02 35     78      0.01 35     78      0.01 

4 348    389      0.19 388    429      0.22 494    536      0.26 2305   2351      1.73 

5 228    265      0.04 302    339      0.05 236    273      0.03 373    406      0.04 

6 176    188      0.14 214    226      0.17 75     87      0.06 179    189      0.13 

7 250    260      0.03 60     70      0.02 2176   2188   0.06 6016   6107      0.46 

8 66     79      0.08 66     79      0.06 66     79      0.08 66     79      0.08 

9 126    174      0.01 141    187      0.02 90    138      0.01 151    203      0.02 

10 75    116      0.05 83    118      0.05 75     94      0.05 75     94      0.04 

11 178    233      0.05 228    283      0.06 165    220      0.03 248    300      0.07 

12 95    135      0.01 2069   2113      0.17 95    135      0.01 2069   2113      0.18 

13 14     28      0.00 14     28      0.01 14     28      0.00 14     28      0.02 

14 516    548      0.05 450    493      0.07 478    514      0.06 2909   2970      0.55 

15 373    402      0.07 348    377      0.06 1420   1449      0.28 435    464      0.07 

16 49    117      0.03 43    112      0.01 47     55      0.01 2033   2122      0.35 

17 36     48      0.00 36     47      0.02 36     48      0.00 36     48      0.02 

18 43     52      0.00 43     54      0.01 43     52      0.00 43     52      0.02 

19 353    388      0.06 43     54      0.01 294    329      0.03 424    459      0.06 

20 29     38      0.02 29     38      0.01 29     38      0.00 29     38      0.01 

21 274    307      0.03 320    353      0.05 247    277      0.03 364    393      0.05 

22 174    209      0.03 183    198      0.06 251    273      0.10 191    219      0.04 

23 220    263      0.08 219    261      0.08 183    209      0.05 308    387      0.09 

24 49     77      0.00 45     82      0.02 51     79      0.02 47     84      0.00 

25 101    127      0.02 101    127      0.01 101    127      0.01 101    127      0.03 

26 216    227      0.06 207    218      0.06 234    245      0.08 333    352      0.08 

27 49     80      0.00 49     80      0.02 55     84      0.00 55     84      0.00 

28 49     80      0.00 32     66      0.02 32     66      0.01 32     66      0.02 

29 35     43      0.01 35     43      0.02 35     43      0.03 35     43      0.03 

30 18     30      0.00 18     30      0.00 18     30      0.02 18     30      0.02 

31 75     94      0.03 75     94      0.03 75     94      0.03 75     94      0.03 

32 285    333      0.04 287    331      0.03 294    342      0.02 364    448      0.06 

33 8     28      0.00 11     34      0.00 11     34      0.00 11     34      0.00 

34 32     44      0.00 32     44      0.00 32     44      0.01 32     44      0.02 

35 2064    2100    0.04 4082     4135      0.46 4036     4064      0.19 2138     2245      0.29 

Total 
 6958    8106    

2:18 
   10637   11770     3:33 11955   12993     3:08     22053  23468      8:18      
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Table 2: Performance of the new algorithm against 100% of Yasushi, Yabe and Ford al-

gorithm, as followed in Table 1. 

Tools 
3TCG 

By y 
New 

3TCG 

By g 
New 

3TCG 

By s 
New 

NOI 100% 65.41% 100% 58.20% 100% 31.55% 

NOFG 100% 68.87% 100% 62.38% 100% 34.54% 

Time 100% 64.78% 100% 73.40% 100% 28.04% 

 

6 Conclusions 

In this paper, a three-term conjugate gradient method was projected. The good property of 

these methods is that this algorithm can produce sufficient descent with conjugancy direc-

tion, under a few assumptions. The proposed CG methods are shown to be globally con-

vergent for uniformly convex and general functions, respectively. Some numerical results 

are reported against Yasushi, Yabe and Ford 3TCG algorithm which demonstrated the 

viability of the new proposed CG algorithms with the scalars 1  and 2 . 

6 Appendix  

The details of the 35-test functions used are:  

 1-Extended Trigonometric Function. 2-Extended Penalty Function. 3-Raydan2 Function.  

   4-Hager Function. 5-Generalized Tridiagonal-1 Function. 6-Extended Three Exponen-

tial Function. 7-Diagonal 4 Function. 8-Diagonal5 Function. 9-Extended Himmelblau 

Function. 10-Generalized PSC1 Function. 11- Extended Block Diagonal BD1 Function. 

12-Extended Quadratic Penalty QP1 Function. 13-Extended Quadratic  QF2 Function. 14- 

Extended EP1 Function.15-Extended Tri-diagonal 2 Function. 16- DIXMAANA Func-

tion. 17-DIXMAANB Function. 18- DIXMAANC Function. 19-EDENSCH Function. 20-

DIAGONAL 6 Function. 21-ENGVALI Function. 22-DENSCHNA Function.  23-

DENSCHNC Function. 24-DENSCHNB Function. 25-DENSCHNF Function. 26-

Extended Block–Diagonal BD2 Function. 27-Generalized quadratic GQ1 Function. 28-

DIAGONAL 7 Function. 29- DIAGONAL 8 Function. 30- Full Hessian Function.        

31-SINCOS Function. 32- Generalized quadratic GQ2 Function. 33-ARGLINB Function. 

34-HIMMELBG Function. 35-HIMMELBH Function 
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1 Introduction
Recently, fractional differential equations have revealed to be great worth in the modeling
of many phenomena in several fields of sciences, economics and engineering. For this
purpose, we find many applications in electrochemistry, viscoelasticity, control theory,
electrical networks, signal process. see [10-13]. Significant developments in fractional
differential equations can be found in the monographs [11,12,13,15]. Different methods
are introduced in the investigation of fractional differential equations, such as the theory
of fixed points, see [1-11,15-17].

In [7], the authors proved the existence of at least one or three positive solutions of the
following problem, by applying the Guo-Krasnosel’skii and Avery-Peterson fixed-point
theorems and under growing conditions on the nonlinear term f :{

Dq
0+u(t) = a (t) f (u(t)) , 0 ≤ t ≤ 1, 2 < q ≤ 3

u (0) = u′(0) = 0, u′′ (0) = αu (1) ,

here Dq
0+ denotes the fractional derivative of Riemann-Liouville type, f is a given real

function and the function a is continuous on [0, 1] .

In [14], Matar studied the positivity of solution for the following boundary value prob-
lem:
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Dq
0+u(t) = f (t, u(t)) , 0 < t < 1, 1 < q ≤ 2

u (0) = 0, u′(0) = θ > 0,

here the function f is continuous on [0, 1] × R. By introducing the so-called upper and
lower control functions and applying a fixed-point theorem on a cone, the author was able
to establish the existence and uniqueness of the positive solution.

The purpose of this work is to establish sufficient conditions for the existence and
uniqueness of the positive solution of the following fractional boundary value problem
(P ) {

cDq
0+u(t) = f (t, u(t)) , 0 ≤ t ≤ T, 2 < q < 3
u (0) = u′(0) = 0, u′′ (0) = α > 0,

where the function f is continuous and nonnegative on [0, T ]×R. We denote by cDq
0+ the

fractional derivative of Caputo type.
This work is organized as follows. We expose the tools that will be used later in the

next section. The third section is devoted to the study of the existence of at least one
positive solution of the problem (P) by the help of Schauder’s theorem fixed on the cone,
then we prove the uniqueness of positive solutions of the problem (P) by using Banach’s
contraction principle. We end this section with an example that elucidates the results
obtained.

2 Preliminaries
In this section, we present some definitions and lemmas from fractional calculus theory,
which will be needed later.

Definition 2.1. For a continuous function g on [a, b], we define the Riemann-Liouville
fractional integral of order α by

Iαa+g(t) =
1

Γ (α)

∫ t

a

(t− s)α−1g(s)ds, α > 0

Definition 2.2. The Caputo fractional derivative of order α of a function f is defined by

cDα
a+g(t) =

1

Γ (n− α)

∫ t

a

gn(s)

(t− s)α−n+1
ds

where n = [α] + 1, ([α] is the entire part of α).

Lemma 2.3. The solution of the homogenous differential equation cDα
a+g(t) = 0 is given

by g(t) = c1 + c2t+ c3t
2 + ...+ cnt

n−1, with ci ∈ R, i = 0, ..., n,if g ∈ C ([0, 1]) .

Lemma 2.4. We have Ip0+I
q
0+f(t) = Ip+q0+ f(t) = Iq0+I

p
0+f(t) and cDq

a+I
q
0+f(t) = f(t), for

all t ∈ [a, b], p, q ≥ 0 and f ∈ L1[a, b].

Now, we transform the problem (P) to an equivalent integral equation.
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Lemma 2.5. u is a solution of the problem (P) if and only if u is a solution of the integral
equation

u(t) =
α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds.

Proof. The proof is standard, then we omit it.

Define E = C [0, T ] equipped with the norm ‖u‖ = maxt∈[0,T ] |u (t)| . Define the
subspace K of E as the set of nonnegative functions. Let a and b be two nonnegative real
such that b > a. Define the upper control function and the lower control function of a
function u ∈ [a, b] , respectively by

U (t, u) = sup
λ∈[a,u]

f (t, λ) , L (t, u) = inf
λ∈[u,b]

f (t, λ)

Obviously, U (t, u) and L (t, u) are nondecreasing according to u, monotonous and satisfy
L (t, u) ≤ f (t, u) ≤ U (t, u) .

We make the following hypotheses:
(H1) There exist u∗, u∗ two elements in K, verifying a ≤ u∗ (t) ≤ u∗ (t) ≤ b and{

u∗ (t) ≥ 1
Γ(q)

∫ t
0
(t− s)q−1U (s, u∗ (s)) ds+ α

2
t2

u∗(t) ≤ 1
Γ(q)

∫ t
0
(t− s)q−1L (s, u∗ (s)) ds+ α

2
t2.

(H2) For any x, y belonging to E and t ∈ [0, T ] , we can find a number 0 < η < 1 such
that

|f (t, y)− f (t, x)| ≤ η ‖y − x‖ .

The function u∗ is called lower solution for problem (P) and u∗ is called upper solutions.
Define the integral operator A on E as

Au(t) =
α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds. (1)

Definition 2.6. We say that u is a positive solution of problem (P ) if u(t) > 0, for all
t ∈ [0, T ] and the boundary conditions in (P ) are satisfied.

Theorem 2.7. Under the hypothesis (H1) the fractional boundary value problem (P ) has
at least one positive solution u belonging to E and satisfying u∗ (t) ≤ u (t) ≤ u∗ (t).

Proof. Let
C = {u ∈ K, u∗ (t) ≤ u (t) ≤ u∗ (t) , 0 ≤ t ≤ T} ,

remark that if u ∈ C, then ‖u‖ ≤ b. Hence, C is bounded, convex and closed subset of E.
Claim 1. A is uniformly bounded on C.
The operator A is continuous on C since f is continuous. Set

M = max {f (t, u(t)) , t ∈ [0, T ] , ‖u‖ ≤ b} .
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Let u ∈ C, then ‖u‖ ≤ b and we have

|Au(t)| ≤ α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds,

≤ α

2
T 2 +

MT q

Γ (q + 1)
.

Thus
‖Au‖ ≤ α

2
T 2 +

MT q

Γ (q + 1)
.

Hence A is uniformly bounded.
Claim 2. Au is equicontinuous. In fact, for 0 ≤ t1 < t2 ≤ T , it yields

|Au (t2)− Au (t1)| ≤ α

2

(
t22 − t21

)
+∣∣∣∣ 1

Γ (q)

∫ t1

0

(t1 − s)q−1f(s, u(s)ds− 1

Γ (q)

∫ t2

0

(t2 − s)q−1f(s, u(s)ds

∣∣∣∣
≤ αT (t2 − t1) +

1

Γ (q)

∫ t1

0

(
(t2 − s)q−1 − (t1 − s)q−1

)
f(s, u(s)ds

+
1

Γ (q)

∫ t2

t1

(t2 − s)q−1f(s, u(s)ds

≤ αT (t2 − t1) +
MT (t2 − t1)

Γ (q − 1)
+

(t2 − t1)q

Γ (q + 1)
→ 0, as t1 → t2.

Thanks to Arzela-Ascoli Theorem we deduce the compacity of A.
Let u ∈ C, then by the definition of the control functions and the hypothesis (H1), it

yields

Au(t) =
α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds

≤ α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1U (t, u∗ (t)) ds

≤ u∗ (t) ,

and

Au(t) =
α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1f (s, u (s)) ds

≥ α

2
t2 +

1

Γ (q)

∫ t

0

(t− s)q−1L (s, u∗ (s)) ds

≥ u∗ (t) .

Hence, u∗ (t) ≤ Au(t) ≤ u∗ (t) , 0 ∈ t ≤ T, from which we deduce A (C) ⊆ C.
Finally, we conclude by Schauder fixed point theorem, that A has at least one fixed point
and consequently, the problem (P ) has at least one positive solution u in E between the
lower and upper solutions.
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The uniqueness of the positive solution of (P ) is given in the following theorem.

Theorem 2.8. The problem (P ) has a unique positive solution u ∈ E, if the hypotheses
(H1) and (H2) and the inequality

ηT q

Γ (q + 1)
< 1, (2)

are satisfied.

Proof. Since the hypothesis (H1) is satisfied then, we conclude by Theorem 3.2 that the
problem (P ) has at least one positive solution in E. We claim that the operator A is a
contraction on E. In fact, for any u, v ∈ E, we have

|Au(t)− Av(t)| ≤ 1

Γ (q)

∫ t

0

(t− s)q−1 |f (s, u (s))− f (s, v (s))| ds

≤ ηT q

Γ (q + 1)
‖u− v‖ ,

finally, taking (2) into account, then A is a contraction and thus the problem (P ) has a
unique positive solution u ∈ C.

Example 2.9. Let us choose in the problem (P), q = 8
3
, T = 1, f (t, u) = 1 + t

2(u+1)
,

0 ≤ t ≤ 1, u ≥ 0, [a, b] = [0, 1] and α = 1. Since f is decreasing according to u, then

U (t, u) = 1 +
t

2
, L (t, u) = 1 +

t

4
,

If we set

u∗ (t) =
t
8
3

Γ
(

11
3

) +
t
11
3

Γ
(

14
3

) +
1

2
t2

≥ 1

Γ
(

8
3

) ∫ t

0

(t− s)
5
3U (s, u∗ (s)) ds+

1

2
t2

=
t
8
3

Γ
(

11
3

) +
t
11
3

2Γ
(

14
3

) +
1

2
t2

and

u∗(t) =
t
8
3

Γ
(

11
3

) +
t
11
3

8Γ
(

14
3

) +
1

2
t2

≤ 1

Γ
(

8
3

) ∫ t

0

(t− s)
5
3L (s, u∗ (s)) ds+

1

2
t2

=
t
8
3

Γ
(

11
3

) +
t
11
3

4Γ
(

14
3

) +
1

2
t2.

0 ≤ u∗ (t) ≤ u∗ (t) ≤ 1.
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Figure 1: u∗ in red, u∗ in black.

hence assumption (H1) holds, then the problem (P ) has at least one positive solution.
Moreover, there exists η = 1

4
, such that hypothesis (H2) is satisfied and

ηT q

Γ (q + 1)
=

1

4Γ
(

11
3

) = 6.231 0× 10−2 < 1.

We conclude by Theorem 3.3, the uniqueness of positive solution u satisfying u∗ (t) ≤
u (t) ≤ u∗ (t), 0 ≤ t ≤ 1.
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Abstract — In this paper, we investigate the solution of the problem of finding the
global minimizer for the unconstrained objective function, for that, a new algorithm
developed, this algorithm based on two steps. First, we transform the problem into a
one-dimensional according to the number of directions. Second, we construct a new
filled function at each direction in order to minimize the one-dimensional problem
and then to find the global minimizer of the multi-dimensional function. We present
the results of numerical experiments using test problems taken from literature studies.
The experiment results indicate the effectiveness and accuracy of the purposed filled
function methods.

Keywords: global optimization, dimensional search, filled function method.
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1 Introduction
Global optimizations are important tools for examining complicated function spaces such
as these located in modern high-fidelity engineering models. Those models present in-
creasingly accurate insights within system behaviours but are usually costly to estimate
and difficult to search. While methods exist for determining global optimization problems
there is yet room for improving faster, more reliable, and easier to implement algorithms
[1]. The filled function method that firstly introduced via Ge(1987) [2,3], and then re-
viewed in various searches, is an efficient method for determining the global optimization
approaches. It modifies the objective function as a filled function and then obtains a best
local minimizer frequently by optimizing the filled function formed on the minimizer
found previously [4]. The main purpose of this paper is to introduce and formalize a
new filled function in two parameters. Firstly, we provide formal definitions and assump-
tions. Next, we offer and investigate the theoretical prosperities of the filled function and
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propose the solution algorithm. Finally, we report experimental results by applying the
algorithm on several test problems to confirm the effectiveness of the new method.

2 Basic Concepts
Suppose the unconstrained problem:

minf(x) s.t x ∈ S, S ⊂ Rn (1)

where f : S −→ R is a continuously differentiable function. Now, we introduce the
following definitions.

Definition 2.1. [5] A point x∗ ∈ S is said to be a global minimizer of the function f on
S if:

f(x∗) ≤ f(x) ∀x ∈ S,
and it is called a strict global minimizer point of f on S if:

f(x∗) < f(x) ∀x ∈ S, x 6= x∗.

Definition 2.2. [5] A point x∗k ∈ S is said to be a local minimizer of f on S if there exists
a neighborhood B(x∗k; ε), with ε > 0 such that

f(x∗k) ≤ f(x) ∀x ∈ S ∩B(x∗k; ε)

and it is called a strict local minimizer of f on S if there exists a neighborhood B(x∗k; ε),
with ε > 0 such that

f(x∗k) < f(x) ∀x ∈ S ∩B(x∗k; ε), x 6= x∗k.

Definition 2.3. [5] A basin of f(x) at an isolated minimizer x∗k is a connected domain
B(x∗k) which contains x∗k and in which starting from any point the steepest descent tra-
jectory of f(x) converges to x∗k. but outside which the steepest descent trajectory of f(x)
does not converge to x∗k. A hill of f(x) at x∗k is the basin of −f(x) at its minimizer x∗k, if
x∗k is a maximizer of f(x).

Definition 2.4. [2] Let x∗k is a current minimizer of f . Let B(x∗k) is the basin of f at x∗k
over S. A function F : S → R is said to be a filled function of f at x∗k if it satisfies the
following properties:

– x∗k is a maximizer of F and whole basin B(x∗k) of f at x∗k over S becomes a part of
a hill of F ;

– F has no stationary points in any basin of f higher than B(x∗k);

– If f has a basin B(x∗k+1) at x∗k+1 lower than B(x∗k), then there exists a point x′ ∈
B(x∗k+1) is a minimizer of F .

The evolution of the filled functions supports the subsequent periods. The typical mod-
els of the filled functions as a first creation are the function (2) and (3) [6] which offered
as following

F (x, a, β) = exp(−‖x− x
∗
k‖

β2
)

1

(a+ f(x))
(2)
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D(x, a, β) = −[β2 ln(a+ f(x)) + ‖x− x∗k‖p] (3)

These functions have a common feature, there are two flexible parameters a and β. How-
ever, the task of modifying these parameters is extremely challenging. Due to this restric-
tion, the next creation filled functions were introduced which have only a single parameter.
For instance, the function introduced in (4)[6] is performed by

E(x, r) = −(f(x)− f(x∗k))exp(r‖x− x∗k‖2). (4)

The function given in (4) is much simpler than the those presented in the prior generation.
Furthermore, as the parameter r grows larger and larger, the swiftly growing of the expo-
nential function value could lead to an influx of the computation [7]. To beat this lack,
another filled function suggested as follows:

Q(x, r) =
1

ln(1 + f(x)− f(x∗k))
− r‖x− x∗k‖2, (5)

this filled function still holds the feature of function (5) with one parameter, in addition
to that, it has no exponential terms. It can be considered as the third generation filled
functions(for more samples see [9-11]).
Throughout the rest of this paper, we assume that the following assumptions are satisfied:
Assumption 1. The function f(x) is differential in Rn and the number of minimizers can
be infinite, but the number of the different value of minimizers is finite.
Assumption 2. f(x) : Rn → R is coercive, i.e., f(x)→ +∞ as ‖x‖ → +∞.

3 Transforming the problem into one-dimensional
Directional search method is based on the directions dk, k = 1, ...,m. If we have an
objective function f(x) with n-dimensions, we can use the line lα = x0 + αdk, α ∈ R
to construct a one-dimensional problem L(α). Moreover, we might want to choose α∗k as
the answer of

minαL(α) = f(x0 + αdk), (6)

that means α∗k at the direction dk can be a result of a one-dimensional minimization prob-
lem (for more information see [8]). We obtain a local minimizer α1

k of L(α) then we
construct the filled function on L(α), next, we take an initial point as a starting to find
the second minimizer α2

k of L(α). By repeat the above process we will obtain the global
minimizer α∗k at the direction dk as a solution of one-dimensional problem L(α), and by
using x̂k = x0 + α∗kdk we can minimize f(x) when we use x̂k as a starting point. Con-
sequently, by comparing all minimizer points x̂k, k = 1, ...,m with each other we will
obtain the global minimizer of the problem f .
In the next section, we introduce a new filled function to minimize the one-dimensional
problem L(α).

4 A new filled function
We suppose that the point α1

k is a local minimizer of the function L(α) that can be deter-
mined by any efficient method.
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Reducing the objective function from a multi-dimensional as a one-dimensional function
making the minimization process easier and more efficient. For this purpose, we offer a
new filled function as follows:

Iα(α, α
1
k) = G(L(α)− L(α1

k))U(|α− α1
k|2), (7)

and

G(u) =

 cos(βu), u < 0;

1, othewise,

where u = L(α) − L(α1
k), β > 1, and U(κ) is an escape function. The private form of

U(κ) presented in literature into several forms, for instance,κρ ,exp(κρ) and arctan(κρ),
where ρ is a positive integer. In the proposed paper the function U will be selected as
−ρ|α− α1

k|2,ρ > 0, that is the final form of the filled function will be as following:

Iα(α, α
1
k) = −ρ|α− α1

k|2G(L(α)− L(α1
k)), (8)

where the parameters β and ρ require to be adjusted appropriately.
The proposed filled function is continuously differentiable with two parameters. the new
idea and advantages of the proposed algorithm are: First, this algorithm converts the
objective function from multi-dimensional as a one-dimensional function this allows us to
obtain the global minimizer easier. Second, the trigonometric function cos(βu) allows to
add many stationary points in the lower basin, this idea has many advantages, for example,
it helps to reduce the time and the function evaluations which are very important in cases
like this as we see can clearly in the experimental results. Now, let α1

k be the current local
minimizer of L(α), then we can define:

LS1 = {α|L(α) ≥ L(α1
k), α ∈ R,α 6= α1

k}, and LS2 = {α|L(α) < L(α1
k), α ∈ R}.

The next theorems show that the function Iα(α, α1
k) achive Definition 2.4.

Theorem 4.1. Let α1
k be a local minimizer of Iα(α, α1

k), then α1
k is a strictly local maxi-

mizer of Iα(α, α1
k).

Proof. Since α1
k is a local minimizer of L(α), there exists a neighborhood N(α1

k, ε
∗) of

α1
k, ε∗ > 0 such that L(α) ≥ L(α1

k) for all α ∈ N(α1
k, ε
∗). Then, for all α ∈ N(α1

k, ε
∗) ,

α 6= α1
k, we have:

Iα(α, α
1
k) = −ρ|α− α1

k|2 < 0 = Iα(α
1
k, α

1
k).

Thus, α1
k is a strict local maximizer of Iα(α, α1

k).

Theorem 4.2. Assume that α1
k is a local minimizer of L(α) and α is any point in LS1 then

Iα(α, α
1
k) has no a stationary point on LS1 .

Proof. Since L(α) ≥ L(α1
k) and α 6= α1

k, we have:
Iα(α, α

1
k) = −ρ|α− α1

k|2,∇Iα(α, α1
k) = −2ρ(α− α1

k).
This means that∇Iα(α, α1

k) 6= 0, i.e. α is not a stationary point of Iα(α, α1
k).
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Theorem 4.3. Suppose α1
k is a local minimizer of L(α) but not a global minimizer, and

LS2 = {α|L(α) < L(α1
k), α ∈ R} is not empty, then there exists a point α′ ∈ LS2 is a

local minimizer of Iα(α, α1
k).

Proof. Let LS3 = {α|L(α) ≤ L(α1
k), α ∈ R} and ∂LS2 = {α|L(α) = L(α1

k), α ∈ R},
then LS3 = LS2

⋃
∂LS2 , that means ∂LS2 is the boundary of the sets LS2 and LS3 . Since

L(α) is continuous, then ∂LS2 and LS3 are bounded and closed sets.
Now for any α ∈ ∂LS2 we have

Iα(α, α
1
k) = −ρ|α− α1

k|2,

also, for any α ∈ LS2 we have

Iα(α, α
1
k) = −ρ|α− α1

k|2 cos(β(L(α)− L(α1
k))).

Since Iα(α, α1
k) is continuously differentiable and has the term cos(β(L(α) − L(α1

k))),
β > 1 then there is at least one point exists α′ ∈ LS2 is a minimizer of the function
Iα(α, α

1
k).

Algorithm
According to the investigation and hypotheses in the earlier section, a new algorithm to
obtaining the global minimizer of the function f(x) will be proposed, and the experimen-
tal results will be provided as follows.

Step 1 (Initialization) Determine the parameters β > 1 and ρ > 0, choose a starting point
x0 ∈ S, generate direction dk,k = 1, 2, ...,m, and set ε = 10−2;

Step 2 Create L(α) = f(x0 + αdk) as a one-dimensional function;

Step 3 1. Obtain the local minimizer αik of L(α) starting from α0 and then choose
% = −1.

2. Construct the filled function Iα(α, αik) at αik;
3. Start from α0 = αik + %ε to find a minimizer υ1 of Iα(α, αik);
4. If υ1 in S go to (5) otherwise go to (7);
5. Minimize L(α) start from υ1 to obtain αik+1 and then, go to (6);
6. If the point αik+1 in S let αik = αik+1, and go to (2).
7. If % = 1 terminate the iteration and give α∗k = αik otherwise; let % = 1 go to(3).

Step 4 Calculate x̂k using x̂k = x0 + α∗kdk, and consequently, find x∗k of f(x) by using
x̂k as the initial point.

Step 5 If k < m, let k = k + 1 and produce dk+1 as a new search direction and go to
(Step 2) otherwise; go to (Step 6).

Step 6 Pick out the global minimizer of f(x) using :

x∗ = min{f(x∗1), f(x∗2), ..., f(x∗m)}.
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5 The Experimental Results
In order to achieve the merit of the proposed algorithm in this paper, we selected test
functions taken from literature. The algorithm is examined on all proposed problems
and the results are submitted in Tables 1. and a comparative with the algorithm in [8]
submitted in Tables 2. The following symbols are used in this paper:

x0 The starting point.

feval total number of functions evaluations f(x), L(α) and Iα(α, α1
k).

T the mean of sum running time.

fmean the mean of the best value in the 10 runs.

fbest the best value in 10 runs.

ratio the rate of successfully obtaining true optimal solution among 10 runs.

Problem 1. (Two-dimensional function)

minf(x) = (1− 2x2 + csin(4πx2)− x1)2 + (x2 + 0.5sin(2πx1))
2

s.t 0 ≤ x1 ≤ 10, −10 ≤ x2 ≤ 0,

where c = 0.2, 0.5, 0.05. The global minimum function value f(x∗) = 0 for all c.

Problem 2. (Three-hump back camel function)

minf(x) = 2x21 − 1.05x41 +
1

6
x61 − x1x2 + x22

s.t |xi| ≤ 3, i = 1, 2.

The global minimizer is x∗ = (0, 0)T .

Problem 3. (Six-hump back camel function)

minf(x) = 4x21 − 2.1x41 +
1

3
x61 − x1x2 − 4x22 + 4x42

s.t |xi| ≤ 3, i = 1, 2.

The global minimizer is x∗ = (−0.0898,−0.7127)T or x∗ = (0.0898, 0.7127)T .

Problem 4. (Treccani function)

minf(x) = x41 + 4x31 + 4x21 + x22

s.t |xi| ≤ 3, i = 1, 2.

The global minimizers are x∗ = (0, 0)T and x∗ = (−2, 0)T .

39



A. Sahiner, I. Abdulhamid and S. A. Ibrahem

Table 1: The results obtained by our algorithm

No n T feval x∗ fmean fbest ratio

1. 2(c=0.2) 0.1658 128 (0.4091; 0.2703) 1.0004e-15 4.6810e-16 100

2(c=0.5) 0.2742 56 (1.0000; 0.0000) 8.8150e-13 7.3282e-31 100

2(c=0.05) 0.2464 56 (1.0000; 0.0000) 2.9313e-14 2.4652e-31 100

2. 2 0.2699 28 (0.0000; 0.0000) 3.9199e-15 1.0793e-32 100

3. 2 0.2786 364 (0.0898; 0.7127) -1.0316 -1.0316 100

4. 2 0.2382 280 (0.0000; 0.000) 3.0507e-16 1.5866e-32 100

5. 2 0.2942 224 (0.0000; -1.0000) 3.0000 3.0000 100

6. 2 0.7117 414 (-1.4251; -0.8003) -186.7309 -186.7309 100

7. 2 0.2927 336 (1.0000; 1.0000) 1.1647e-14 1.0980e-15 100

3 0.4143 216 (1.000; 1.000; 1.000) 3.7328e-08 7.0755e-16 100

Table 2: The results obtained by algorithm [8] and our algorithm on the problems 1-7

No n
The algorithm in [8] The proposed algorithm

T feval fbest T feval fbest

1(c=0.2) 2 0.648842 518 1.0707e-30 0.1658 128 4.6810e-16

1(c=0.5) 2 0.721799 522 1.0707e-30 0.2742 56 7.3282e-31

1(c=0.05) 2 0.644013 306 1.4252e-18 0.2464 56 2.4652e-31

2 2 0.762039 360 2.1294e-16 0.2699 28 1.0793e-32

3 2 0.900348 384 -1.0316 0.2786 364 -1.0316

4 2 0.920637 364 2.7399e-17 0.2382 280 1.5866e-32

5 2 0.996568 400 3.0000 0.2942 224 3.0000

6 2 2.003763 480 -186.7309 0.7117 414 -186.7309

7 2 0.856628 244 2.3558e-31 0.2927 336 1.0980e-15

7 3 1.31539 244 1.5705e-31 0.4143 216 7.0755e-16

Problem 5. (Goldstein and Price function)

minf(x) = g(x)h(x)

s.t |xi| ≤ 3, i = 1, 2.
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where

g(x) = 1 + (x1 + x2 + 1)2(19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22)

and

h(x) = 30 + (2x1 − 3x2)
2(18− 32x1 + 12x21 − 48x2 − 36x1x2 + 27x22)

x∗ = (0,−1)T .

Problem 6. (Two-dimensional Shubert function)

minf(x) = (
5∑
i=1

icos[(i+ 1)x1] + i)(
5∑
i=1

icos[(i+ 1)x2] + i)

s.t 0 ≤ xi ≤ 10, i = 1, 2, 3, 4.

This problem has 760 local minimizers in total. The global minimum value isf(x∗) =
−186.7309.

Problem 7. ( n-dimensional function)

minf(x) =
π

n
[10sin2(πx1) + g(x) + (xn − 1)2]

s.t |xi| ≤ 10, i = 1, · · · , 10

where

g(x) =
n−1∑
i=1

[(xi − 1)2(1 + 10sin2(πxi+1))].

The global minimizer of this problem is x∗ = (1, · · · , 1) for all n.

It is seen from Tables 1 and 2 that the introduced algorithm has many advantages, for
instance, the global minimizers of all test problems listed above can be found, this implies
the effectiveness of the introduced algorithm. Moreover, from column ratio in Table 1,
the ratio of the successful runs are 100%, which confirms that the introduced algorithm
is stable. In addition, the difference between fmean and fbest is small this implies that the
introduced algorithm is stable and robust to the initial points and parameter variation.

6 Conclusion
In this paper, a new filled function introduced for global optimization. The main approach
was to transform the objective function into one-dimensional function depending on the
directional search and minimize it in each direction. The computational results confirm
that this algorithm is actually effective and reliable and the comparison with an actual
algorithm confirmed that the introduced method was more efficient and relevant.
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Abstract — The basic idea of this article is to study the solution of the Gardner-
Kawahara equation which is modelled to investigate the waves in magnetized 
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are obtained, if the parameters were taken at special values, periodic, solitary, and 
rational results will obtained.  
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1 Introduction 
Here in this research, we will gain the solitary wave solution of nonlinear Gardner –
Kawahara equation (1.1) in the shape [1,2]  
 

∂ψ
∂t

+ a
∂ψ
∂x

+ λψ
∂ψ
∂x

− αψ2 ∂ψ
∂x

+ μ
∂3ψ
∂x3

+ β
∂5ψ
∂x5

= 0                                                          (1.1) 

 
It is one more particular case of equation extended KdV equation  

∂ψ
∂t

+ a
∂ψ
∂x

+ λψ
∂ψ
∂x

+ μ
∂3ψ
∂x3

+ β
∂5ψ
∂x5

− αψ2 ∂ψ
∂x

+ γ1ψ 
∂3ψ
∂x3

+ γ2
∂ψ
∂x

∂2ψ
∂x2

= 0        
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  when γ1 = γ2 = 0.  The extended KdV equation leads to the Kawahara equation, when 
α = γ1 = γ2 = 0. 
Eq. (1.1) happens in the notion in plasmas and in notion of shallow water waves with sur-
face tension and notion of magneto-acoustic waves. Eq. (1.1) describing solitary-wave 
propagation in media, was first proposed by Kawahara in 1972 [3]. Lately, Wang et al. 
[4] introduced that the traveling wave results can be explained by a polynomial in �G

′

G
� , 

where G=G(η) satisfies the following second-order ordinary linear differential equation 
G′′(η) + γG′(η) + δG(η) = 0 , where η = x − kt , and  γ, δ, and k are constants. Actually, 
�G

′

G
�–standard method has been successfully stratified to acquire exact solution for an 

assortment of nonlinear evolution equations, see [5,6,7,8,9,10,11,12,13,14,15]. This re-
port is systematized as follows: In part 2, we offer the synopsis of the �G

′

G
� –expansion 

technique. In part 3, we explain the applications of the �G
′

G
�–standard method. Finally, the 

conclusions are present in part 4. 

2  The Synopsis of the �𝑮
′

𝑮
� –Standard Method 

In this part, we explain the�G
′

G
�–standard method to explore traveling wave results of 

nonlinear equations, let us consider a nonlinear evolution equation in two variables  xt in 
the form:           
ℒ (ψ,ψt,ψx,ψxt,ψtt,ψxx, … … … ) = 0,                                                                           (2.1) 

where  ψ = ψ(x, t)  is an unknown function and ℒ is a polynomial in  ψ = ψ(x, t) , in 
which highest order derivatives and nonlinear terms are involved. The major procedures 
of this method are presented in this research as follows:  

Step 1. Collecting the separate variables x and t into one variable η = x − kt, we as-
sume that   

 
 ψ(x, t) = ψ(η), η = x − kt                                                                                          (2.2)    
     
When k is constant. Replacing (2.2) into (2.1), then we will gain the following differ-

ential ordinary equation (ODE):  
 

𝒪 (ψ, kψ′,ψ′, kψ′′, k2ψ′′,ψ′′, … … … ) = 0                                                                     (2.3) 
 
Step 2. In case of need, we integrate (2.3) as many times as possible and assume the 

solution of (2.3) which can be expressed of the form 
 

ψ(η) = �bi

N

i=0

�
G′

G
�
i

 ,                                                                                                            (2.4) 

 
where G = G(η) satisfies the second order linear equation (ODE) 
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 G′′(η) + γG′(η) + δG(η) = 0,                                                                                        (2.5) 
 
Where  bi, γ and δ are real constant with bN ≠ 0. Next, the prime denotes the derivative 

respective to η .Using the general solutions of (2.5), we get 
 

�
G′

G
�

=

⎩
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎧

−
γ
2

+
�γ2 − 4δ

2

⎝

⎜
⎛

r1sinh ��γ
2 − 4δ η

2 � + r2cosh ��γ
2 − 4δ η

2 �

r1cosh ��γ
2 − 4δ η

2 � + r2sinh ��γ
2 − 4δ η

2 �
⎠

⎟
⎞

  ,    when γ2 − 4δ > 0

−
γ
2

+
�4δ − γ2

2

⎝

⎜
⎛
−r1sin ��4δ − γ2 η

2 � + r2cos ��4δ − γ2 η
2 �

r1cos ��4δ − γ2 η
2 � + r2sin ��4δ − γ2 η

2 �
⎠

⎟
⎞

  ,    when γ2 − 4δ < 0

�
r2

r1 + r2η
� −

γ
2

  ,                                                                                                     when   γ2 − 4δ = 0  

� 

 
Step 3. We determine the positive integer N by considering the homogeneous balance 

between nonlinear terms and the highest order derivatives showing in ODE (2.3) and 
replacing (2.4) into (2.3), then we use the general solutions of (2.5), and summation all 
terms with the similar order of �G

′

G
� together, next setting each coefficient of this polyno-

mial to zero yields a group of algebraic equations for bi, k, y, and δ. 
 
Step 4. We solve the nonlinear algebraic equations of step3 by maple to find the con-

stants bi, k, γ, and δ. Substituting these values into (2.4) and using the general solutions 
of (2.5). 

 

  3    Applications of the Method 
 
In this part, the �𝐺

′

𝐺
�–standard method has been used it to check the results leading to 

solitary wave solutions to the Gardner –Kawahara equation. In order to explore the soli-
tary wave result of (1.1), we are applying the transformations 

 
𝜓(𝑥, 𝑡) = 𝜓(𝜂)             ,       𝜂 = 𝑥 − 𝑘𝑡                                                            

 
Then, (1.1) for 𝜓(𝑥, 𝑡) = 𝜓(𝜂)  become 
 

−𝑘𝜓′ + 𝑎𝜓′ + 𝜆𝜓𝜓′ − 𝛼𝜓2𝜓′ + 𝜇𝜓′′′ − 𝛽𝜓′′′′′ = 0                                                 (3.1) 
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Integrating (3.1) with respect to η once and putting the integration constant equal to ze-
ro, we obtain 

 

−𝑘𝜓 + 𝑎𝜓 +
𝜆
2
𝜓2 −

𝛼
3
𝜓3 + 𝜇𝜓′′ − 𝛽𝜓′′′′ = 0                                                                  (3.2) 

 
 By balancing between 𝜓3and 𝜓′′′′ we get N=2, then Eq. (3.2) has the following solu-

tion: 
 

𝜓(𝜂) = 𝑏0 + 𝑏1 �
𝐺′

𝐺
� + 𝑏2 �

𝐺′

𝐺
�
2

,                 𝑏2 ≠ 0                                                            (3.3) 

 
where 𝑏0, 𝑏1,𝑎𝑛𝑑 𝑏2 are unknown constants. Substituting (3.3) along with (2.5) into 

(3.2) and summation each terms with the similar power of �𝐺
′

𝐺
� , the left side of (3.2) is 

transmuted into a polynomial in �𝐺
′

𝐺
� . Putting the coefficients of all powers of �𝐺

′

𝐺
� to 

zero yields a group of nonlinear equations (3.4) for 𝑏0, 𝑏1, 𝑏2,𝑎, 𝜆,𝛼, 𝜇,𝛽 & 𝛾 as follows: 
 

�
𝐺′

𝐺
�
6

:
−1
  3

𝛼𝑏2
3 + 120𝛽𝑏2 = 0     

�
𝐺′

𝐺
�
5

:−𝛼𝑏1𝑏2
2 + 𝛽(336𝑏2𝛾 + 24𝑏1) = 0 

�
𝐺′

𝐺
�
4

:
−1
  3

𝛼 �𝑏0𝑏2
2 + 2𝑏1

2𝑏2 + 𝑏2�2𝑏0𝑏2 + 𝑏1
2�� +

1
 2
𝜆𝑏2

2 + 6𝜇𝑏2

+ 𝛽(330𝑏2𝛾2 + 60𝑏1𝛾 + 240𝑏2𝛿) = 0 

�
𝐺′

𝐺
�
3

: 𝜆𝑏1𝑏2 −
1
3
𝛼 �4𝑏0𝑏1𝑏2 + 𝑏1�2𝑏0𝑏2 + 𝑏1

2�� + 𝜇(10𝑏2𝛾 + 2𝑏1)

+ 𝛽(130𝑏2𝛾3 + 50𝑏1𝛾2 + 440𝑏2𝛾𝛿 + 40𝑏1𝛿) = 0 

�
𝐺′

𝐺
�
2

:
−1
  3

𝛼�𝑏0�2𝑏0𝑏2 + 𝑏1
2� + 2𝑏1

2𝑏2 + 𝑏2𝑏0
2� − 𝑘𝑏2

+ 𝛽(16𝑏2𝛾4 + 15𝑏1𝛾3 + 𝑏2𝛾2𝛿 + 60𝑏1𝛾𝛿 + 136𝑏2𝛿2) + 𝑎𝑏2
+

1
2
𝜆�2𝑏0𝑏2 + 𝑏1

2� + 𝜇(4𝑏2𝛾2 + 3𝑏1𝛾 + 8𝑏2𝛿) = 0 

�
𝐺′

𝐺
�
1

:𝑎𝑏1 − 𝑘𝑏1 − 𝛼𝑏0
2𝑏1 + 𝜆𝑏0𝑏1

+ 𝛽(𝑏1𝛾4 + 30𝑏2𝛾3𝛿 + 22𝑏1𝛾2𝛿 + 120𝑏2𝛾𝛿2 + 16𝑏1𝛿2)
+ 𝜇(𝑏1𝛾2 + 6𝑏2𝛾𝛿 + 2𝑏1𝛿) = 0 

�𝐺
′

𝐺
�
0

:−𝑏0𝑘 + 𝜇(𝑏1𝛾𝛿 + 2𝑏2𝛿2) + 1
2
𝑏0

2𝜆 + 𝑏0𝑎 + 𝛽(𝑏1𝛾3𝛿 + 14𝑏2𝛾2𝛿2 + 8𝑏1𝛾𝛿2 +
16𝑏2𝛿3+232−13𝑏03𝛼=0. 

 
Solving the above system of algebraic equations by Maple, we get the following result: 
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𝑏1 = ±6√10�
𝛽
𝛼
𝛾    ,   𝑏2 = ±6√10�

𝛽
𝛼

    , 𝛿 = 0  ,   𝑘 = 𝑘    

λ =
2
3

3𝑏0
2𝛼𝛾2√10�𝛽𝛼 − 12𝛽𝛾4𝑏0 − 2𝑏0

3𝛼 − 696𝛽

𝑏0 �√10�𝛽𝛼 𝛾
2 − 𝑏0�

   , 

λ =
2
3

−3𝑏0
2𝛼𝛾2√10�𝛽𝛼 − 12𝛽𝛾4𝑏0 − 2𝑏0

3𝛼 − 696𝛽

𝑏0 �−√10�𝛽𝛼 𝛾
2 − 𝑏0�

 

𝜇 =
−1
  3

 
3√10�𝛽𝛼 𝑏0𝛽𝛾

4 + √10�𝛽𝛼 𝑏0
3𝛼 − 15𝑏0

2𝛽𝛾2 − 696√10�𝛽𝛼 𝛽

𝑏0 �√10�𝛽𝛼 𝛾
2 − 𝑏0�

 

𝜇 =
−1
  3

 
−3√10�𝛽𝛼 𝑏0𝛽𝛾

4 − √10�𝛽𝛼 𝑏0
3𝛼 − 15𝑏0

2𝛽𝛾2 + 696√10�𝛽𝛼 𝛽

𝑏0 �−√10�𝛽𝛼 𝛾
2 − 𝑏0�

 

 a = 

−1
  3

 
2√10�βα b0

3αγ2 − 12b0
2βγ4 − 3√10�βα b0γ2k − b0

4α + 696√10�βαγ
2 + 3b0

2k − 1392b0β

b0 �√10�βαγ
2 − b0�

 

 a = 

−1
  3

 
−2√10�βα b0

3αγ2 − 12b0
2βγ4 + 3√10�βα b0γ2k − b0

4α − 696√10�βαγ
2 + 3b0

2k − 1392b0β

b0 �−√10�βαγ
2 − b0�

 

 Now, Eq. (3.3) becomes 
 

𝜓(𝜂) = 𝑏0 ± 6√10�
𝛽
𝛼
𝛾 �

𝐺′

𝐺
� ± 6√10�

𝛽
𝛼
�
𝐺′

𝐺
�
2

  ,                                                       (3.5) 

 
Using the public solutions of Eq. (2.5) into Eq. (3.5), we have three kinds of traveling 

wave solutions. When  𝛾2 − 4𝛿 > 0 , we get the hyperbolic function solution of Eq. (1.1) 
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 𝜓1,2(𝜂) = 𝑏0 ± 6√10�𝛽
𝛼
𝛾

⎝

⎜⎜
⎛
−𝛾

2
+ �𝛾2−4𝛿

2

⎝

⎜
⎛
𝑟1𝑠𝑖𝑛ℎ�

�𝛾2−4𝛿 𝜂

2 �+𝑟2𝑐𝑜𝑠ℎ�
�𝛾2−4𝛿 𝜂

2 �

𝑟1𝑐𝑜𝑠ℎ�
�𝛾2−4𝛿 𝜂

2 �+𝑟2𝑠𝑖𝑛ℎ�
�𝛾2−4𝛿 𝜂

2 �
⎠

⎟
⎞

⎠

⎟⎟
⎞

±

6√10�𝛽
𝛼

⎝

⎜⎜
⎛
−𝛾

2
+ �𝛾2−4𝛿

2

⎝

⎜
⎛
𝑟1𝑠𝑖𝑛ℎ�

�𝛾2−4𝛿 𝜂

2 �+𝑟2𝑐𝑜𝑠ℎ�
�𝛾2−4𝛿 𝜂

2 �

𝑟1𝑐𝑜𝑠ℎ�
�𝛾2−4𝛿 𝜂

2 �+𝑟2𝑠𝑖𝑛ℎ�
�𝛾2−4𝛿 𝜂

2 �
⎠

⎟
⎞

⎠

⎟⎟
⎞

2

  ,                                  (3.6) 

 
In particular, if  𝑟1 ≠ 0 , 𝑟2 = 0 , 𝛾 > 0  , 𝛿 = 0 , then Eq. (3.6) becomes 
 

𝜓1,2(𝜂) = 𝑏0 ± 3
2
�10𝛽

𝛼
𝛾2 ± 3

2
�10𝛽

𝛼
(𝛾2 − 4𝛿)𝑡𝑎𝑛ℎ2 �1

2
𝛾𝜂� ,                                         (3.7) 

 
When  𝛾2 − 4𝛿 < 0 , we get the trigonometric function solution of Eq. (1.1) 
 

 𝜓3,4(𝜂) = 𝑏0 ± 6√10�𝛽
𝛼
𝛾

⎝

⎜⎜
⎛
−𝛾

2
+ �4𝛿−𝛾2

2

⎝

⎜
⎛
−𝑟1𝑠𝑖𝑛�

�4𝛿−𝛾2 𝜂

2 �+𝑟2𝑐𝑜𝑠�
�4𝛿−𝛾2 𝜂

2 �

𝑟1𝑐𝑜𝑠�
�4𝛿−𝛾2 𝜂

2 �+𝑟2𝑠𝑖𝑛�
�4𝛿−𝛾2 𝜂

2 �
⎠

⎟
⎞

⎠

⎟⎟
⎞

±

6√10�𝛽
𝛼

⎝

⎜⎜
⎛
−𝛾

2
+ �4𝛿−𝛾2

2

⎝

⎜
⎛
𝑟1𝑠𝑖𝑛�

�4𝛿−𝛾2 𝜂

2 �+𝑟2𝑐𝑜𝑠�
�4𝛿−𝛾2 𝜂

2 �

𝑟1𝑐𝑜𝑠�
�4𝛿−𝛾2 𝜂

2 �+𝑟2𝑠𝑖𝑛�
�4𝛿−𝛾2 𝜂

2 �
⎠

⎟
⎞

⎠

⎟⎟
⎞

2

,                                             (3.8) 

 
If  𝑟1 = 0 , 𝑟2 ≠ 0 , 𝛾 = 0  , 𝛿 > 0 , then Eq. (3.8) becomes 
 

𝜓3,4(𝜂) = 𝑏0 ± 6�
10𝛽
𝛼

𝛿cot2(𝜂)   ,                                                                                    (3.9) 

 
when  𝛾2 − 4𝛿 = 0 , we get the rational function solution of Eq. (1.1) 
 

𝜓5,6(𝜂) = 𝑏0 ± 6√10�
𝛽
𝛼
𝛾 ��

𝑟2
𝑟1 + 𝑟2𝜂

� −
𝛾
2
�

± 6√10�
𝛽
𝛼
��

𝑟2
𝑟1 + 𝑟2𝜂

� −
𝛾
2
�
2

 ,                  (3.10) 
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If  𝑟1 = 0 , 𝑟2 ≠ 0 , 𝛾 = 2  , 𝛿 = 1 , then Eq. (3.10) becomes 

𝜓5,6(𝜂) = 𝑏0 ± 12√10�
𝛽
𝛼
�

1
𝜂
− 1�

± 6√10�
𝛽
𝛼
�

1
𝜂
− 1�

2

  ,                                                (3.11) 

 
 

  
 

Figure 1. The wave solution given by (3.7) in 3D- and 2D-plots, when  𝑘 = −0.5 ,𝛽 = 1 

                𝛾 =  2 , 𝛿 = 0.5 , 𝑏0 = 0.5 ,𝛼 = 1. 

 

Remark 1. We have verified all the gained solutions by setting them back into the equa-

tions (3.4) with the aid of Maple. 
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Figure 2. The wave solution given by (3.9) in 3D- and 2D-plots, when  k = 0.5 ,β = 1 

γ =  2 , δ =
1
3

 , b0 = 0.5 ,α = 1. 
 

4    Conclusion 
 
In this research, the �G

′

G
�–standard method is efficiently and successfully utilized on the 

Gardner-Kawahara to find new solitary waves solutions. The kind of accurate solitary 
wave result is variety along with different value of appropriate choice of 
parameters ( r1 and   r2) . We note that the special case contains the trigonometric 
functions, the hyperbolic functions, and the rational functions. It is also a beneficial 
technique to solve other nonlinear evolution equations. 
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