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Abstract  
 

The bubble pump is an essential part of diffusion absorption cooling systems where heating, pumping of the binary 

solution, and the separation occur. The existing theoretical models of the bubble pump were initially developed for 

air lift pumps where neither heating nor separation occurs. Thus, the experimental results for a bubble pump did not 

correlate well with the theoretical models. Empirical values were suggested in some of the models; however, their 

values varied from one system to another and could not be predicted analytically. In this work a modified model based 

on mass, energy, momentum, and heat balances is presented with the utilization of the drift flux model with laminar 

flow assumption. The objective of the work was to develop a theoretical model that can predict the mass flow rates 

for a given geometry, operational conditions and applied heat.   Unlike previous works for the first time the applied 

heat is expressed in the model. The suggested model fits better with the experimental results than the previous models. 
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1. Introduction  

Diffusion absorption cooling systems are heat driven and 

contain no moving parts such as a compressor or a pump. 

The working fluid is a mixture of a coolant and a solvent 

together with an inert gas. The main part of such systems is 

the bubble pump where heating, pumping of the solution, and 

the separation occur. The bubble pump is a heated tube 

(length L and diameter D) connecting two reservoirs (Fig. 1). 

Initially, the level of the liquid in the lift tube is the same as 

in the lower reservoir (H). Heat is supplied at the bottom of 

the bubble pump (generator) and causes the gaseous coolant 

bubbles to flow up the lifting tube. The heat causes reduction 

in the bulk density of the fluid in the tube in comparison to 

that in the lower reservoir, which creates a buoyancy effect. 

At the upper reservoir (the separator), the gas is separated 

from the liquid solution. In diffusion absorption refrigeration 

(DAR) systems the bubble pump is responsible for the 

circulation of the binary solution containing a coolant 

(usually a refrigerant) and an absorbent (usually an organic 

solution). Coefficient of performance (COP) values of DAR 

systems are low and in the range of 0.1-0.15. 

DARs were first presented by Platen and Munters in 1921 

and later by Einstein and Szilard in 1930. Despite the DAR 

potential, there are not many works in the literature that focus 

on the bubble pump. A more covered topic in the literature 

is the air-lift pump that operates with the same principles as 

vapor-lift pumps with the exception of air being injected to 

increase the buoyancy of the fluid instead of bubbles forming 

from liquid vaporization. 

Stenning and Martin [1] were the first to develop an 

analytical model for an airlift pump. In their model one-

dimensional mass and momentum equations together with 

the basic equations of two-phase flow, taking into 

consideration the effects of friction and slip between the gas 

and liquid phases (drift flux model), were used. Liquid 

volume flow rates were plotted versus air volume flow rates 

for various submergence ratios (H/L). A comparison with 

experimental work was carried out, and the authors predicted 

that the theory of one-dimensional flow is sufficient for the 

analysis of airlift pump performance. 

Delano [2] studied theoretically and experimentally the 

vapor bubble pump used in the Einstein System. The model of 

Stenning and Martin [1] was first modified to analyze the 

performance of the bubble pump. All the supplied heat was 

assumed to evaporate the water without any heat loss. The 

velocity of the bubbles was assumed to be constant. Delano 

[2] also used a constant value of slip factor (the ratio of 

velocities of the vapor and the water). Later, Koyfman et al. 

[3] showed that the velocities of water and vapor change with 

the operating parameters. Since single-phase flow was 

assumed, the gas void fraction was avoided. The model 

results indicated that the mass flow rate of the liquid varied 

with heat input and tube diameter. Instead of using the drift 

flux model to find the void fraction slip value, S was 

assigned. 

Sathe [4] studied theoretically and experimentally the 

bubble pump performance assuming that the flow in the vertical 

lift tube was laminar and using K adjustable parameter to 

account for losses other than friction in the tube. The mass 

flow rate of vapor increased linearly with the heat input while 

the mass flow rate of the pumped liquid first increased, 

reached a maximum value, and then decreased with the 

increase in the heat input. A larger diameter pump tube was 

assumed to be advantageous. However, increasing the 

diameter with a fixed liquid flow eventually caused transition 

from the assumed slug flow [5] to bubbly flow. 

Shihab and Morad [6] performed a theoretical and 

experimental study on the vapor bubble pump. The theoretical 

prediction of the pumping capacities was lower than the 

experimental results for all values of tube diameter and 
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submergence ratio. A new K-factor equation was introduced to 

correlate the theoretical result with the experimental data. 

 

Figure 1. Schematic drawing of the bubble pump. 

 

The work of Gurevich et al. [7] experimentally studied the 

performance of three parallel bubble pumps operating with a 

solution of R134a-DMAC. The results revealed that in 

comparison to a single lift tube, the use of two or three 

parallel lift tubes at optimal operating conditions (heat input 

and concentration of the refrigerant) could double or triple, 

correspondingly, the quantity of desorbed refrigerant. There 

was not a good correlation with the theoretical model of 

Delano [2]. 

A mathematical model that was developed by Pffaf et al. 

[8] was based on the manometer principle. A transparent 

experimental rig was built to visualize the flow behavior and 

to validate the analytical model. The experimental results 

were lower than the predicted results. 

Aman et al. [9] presented a theoretical model using the 

drift flux model and assuming a turbulent flow regime. The 

submergence ratio was presented as a function of 

dimensionless Froude numbers and frictional pressure drop. 

Heat losses from the lift tube were considered and were 

calculated based on an empirical correlation [10]. The 

theoretical results were correlated with the experimental 

results of water. 

The current models are not accurate enough to predict the 

experimental results. Empirical values are widely used; 

however, these values vary from one system to another and 

cannot be generalized. Also, the heat input that drives the 

whole system is not presented in the models. 

  

2. Theoretical Model  

The theoretical model is based on mass balances, energy 

balances, and one-dimensional momentum balances with 

additional models. richm  is the mass flow the rich solution. 

Referring to Figure 1, applying the mass balance equation from 

point 0 to point 1: 

richo mmm   1                                                                     (1) 

where richm  containing the solvent and the gas (coolant or 

refrigerant), assuming that its value doesn't change along 

section 0-1. 

0P is the system pressure, the sub-index DC refers to 

the down comer (down comer diameter DCD ). Heights H 

and genZ  are shown in Figure 1. Appling the Bernoulli 

equation from the liquid surface (0) at the down comer to point 

(1) taking into consideration head loss due to friction: 
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Assuming that the level of the solution in the reservoir is 

maintained constant ( 00 V ). The densities in points (0) 

and (1) are assumed to be equal to the density of the rich 

solution, rich  ( richo   1 ) which is in liquid phase, 

but consists of two fluids, the refrigerant and the solvent.  

The velocity of the fluid in section (1) can be expressed as:  
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Note that genA is the cross section of the generator where 

heating occurs.  Thus the pressure difference between sections 

(1) and (0) is: 
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Mass and momentum conservation equations are applied for 

the generator. Point (1) is the entrance to the generator and point 

(2) is the outlet of the generator. Let us assume that at the outlet 

of the generator there is a two-phase flow consisting of the 

evaporated refrigerant as the gas phase refm and the poor 

solution containing poorm  the solvent with residues of gas as 

the liquid phase. The sub-index gen refers to the generator. 

The density along the generator is consistent of the gas 

density and the liquid (poor solution containing the solvent and 

refrigerant that was not separated due to heating) density, thus it 

is described with TP sub index-two phase.  

Consequently, the pressure drop along the generator 

neglecting friction can be expressed as: 

 1221 VV
A

m
PP

gen

rich 


                                                 (5) 

The area of interest is the lifting tube. Therefore, mass 

and momentum balances are applied between points (2) and 

(3). Two phase solution flows upward in the lifting tube. Let 

us assume that the mass flow rates of the refrigerant, refm ,  

and the poor solution, poorm  , are constant along the lift tube 

(points (2) and (3)). The sub-index LT refers to the lift tube.  

refpoorrich mmmmm   32                                       (6) 

At point (3) the pressure is assumed to be system pressure 

(Po(. The overall pressure drop along the lift tube (length L, area 
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LTA , LTD  the inner diameter of the lift tube where two 

phase occurs) can be expressed as a function of the acceleration 

pressure drop, accP , gravitational pressure drop, gravP , and 

frictional pressure drop, fricP . 
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Assuming that the velocities of the two phases 2V  and 3V  

along the lift tubes do not vary, the acceleration pressure drop 

can be neglected ( accP =0). The expression for the pressure 

drop can be written in the following manner: 

fricgrav PPPP  32                                                        (8) 

The gravitational term ( gravP ) represents the weight of the 

refrigerant (gas) and the solvent (liquid) mixture column in the 

lifting tube. 

LgP TPgrav                                                               (9) 

The density of the two phase solution is calculated by 

using the drift flux model. The drift-flux approach is based 

on the consideration of two fluids as a mixture of the phases 

in which properties are represented as an average of the 

properties of the two phases. The slug mixture density,  TP

,is defined as the average of the liquid and gas phase densities 

weighted by the void fraction α: 

  GLTP   1                                                (10) 

The one-dimensional drift flux model assumes that the 

two-phase flow properties do not change across the pipe 

cross-section, and hence yield the values that are averaged 

across the pipe cross-section for any given axial pipe 

location. The void fraction in this model is a function of the 

phase superficial velocity GSV , 0C  the distribution 

parameter, mV  the average mixture velocity, and GMV  the 

local drift velocity: 
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The superficial velocity is defined as gas volumetric 

flowrate, GQ , divided by the pipe cross-section A: 
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The average mixture velocity is defined as: 
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There are several correlations to calculate the distribution 

parameter and the local drift velocity. For laminar flows 

20 C .[10-14]. According to Bonnecaze et al. [15] the local 

drift velocity is: 
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Sub-indexes of the density are L for liquid and G for gas. In 

the present model the liquid refers to the poor solution and 

the gas refers to the refrigerant.   

The friction pressure drop of the two phase solution 

in the lift tube is:  
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Assuming laminar flow: 
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The Reynolds number is defined as: 

TP

LTTPm
m

DV




Re                                                                (17) 

mV  is the total average superficial velocity, TP  and TP are 

the density and the dynamic viscosity of the two-phase solution. 

By summing Eqs. (4), (5), and (8): 
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The density and the dynamic viscosity of the binary solution 

(poor solution and rich solution) at equilibrium with respect 

to temperature T and  , the concentration is given by [16]: 
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Thus, the submergence ratio can be expressed as: 
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For a fixed submergence ratio there are two unknown 

parameters, richm the mass flow rate of the rich solution and 

refm the mass flow rate of the separated coolant (expressed 

in the void fraction calculation). 

We express the mass flow rate of the refrigerant as a 

function of the inlet heat input. To do so we apply heat 

balance on the generator with the assumption that the inlet 

temperature to the generator is equal to the reservoir 

temperature. The supplied heat input Q  heats the rich 

solution in the generator, increasing its temperature from the 

equilibrium temperature 0T  to the generator temperature 

genT . 

  0TTcmQ genprich                                                   (22) 

     The heat capacity of the solution can be considered as the 

average of the heat capacity of the rich solution at the inlet 

to the generator (point (1)) and the heat capacity of the poor 

solution leaving the generator (point (2)). 
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The heat capacity values were based on Yokozeki’s [17] 

experimental results. Thus the model can be rewritten: 
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     Note that the geometrical and operational conditions are 

known and the only variable in the model is TP , which is a 

function of the void fraction, which is a function of 

refrigerant and poor solutions mass flowrates. By applying 

mass conservation (Eq. 6), the void fraction can be expressed 

as a function of the rich mass flow rate and poor mass flow 

rate. Rich mass flow rate can be expressed as a function of 

the applied heat. Thus from the model one can calculate the 

poor solution mass flow rate and the refrigerant mass flow 

rate.   

 

3. Experimental Results 

The model was compared with the experimental results 

of Gurevich et al. [7]. Based on the presented model flow 

rates of the rich, poor and refrigerant were calculated and 

plotted as a function of the applied heat in comparison to the 

experimental results (Fig.2). Rich and poor solutions mass 

flow rates depend on the amount of applied heat, whereas the 

refrigerant solution is almost independent of the amounts of 

the applied heat. Experimental results of the rich and poor 

solutions show a reasonable correlation with the model 

results.    

Figure 2. Experimental and calculated mass flow rates 

based on the model in Eq. (24) vs. the experimental results 

of Gurevich et al. [7], H/L=0.7. 

 

It can be seen from Figure 2 that the higher the flow rates 

the more accurate the model is. The assumption is that low 

flow rates, there is less probability for slug flow in the lifting 

tubes, thus the lifting effect is no efficient [2].   

 

 
Fig. 3: Calculated rich solution mass flow rate based on the 

model in Eq. (24) vs. the experimental results Gurevich et 

al.[7], h/L=0.7. 

 

   The difference can be seen more clearly in Figure 3. The 

increase in the flow rates occurs with an increase in the heat 

input. For low flow rates (less than 150 Watts per pipe and 

450 Watts for three parallel lifting tubes [7]) the 

experimental results do no correlate well with the model due 

to the inefficient lifting.  

    It can be seen from Figure 4 that the current model that 

uses the drift flux model with the assumption of laminar 

flow fits more accurately to the experimental results 

Figure 4. Separated mass flow rate of the refrigerant vs. heat 

input for experimental results, model with laminar flow 

assumption, and model with turbulent flow assumption, 

h/L=0.7. 

 

The results in Table 1 confirm that the assumption of 

laminar flow was correct for the current system when 

referring to the liquid and the mixture flow regimes. 
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Table 1. Reynolds numbers of the two-phase mixture, the 

poor solution, the rich solution, and the gas as a function of 

input heat. 

 Reynolds Number 

Heat[Watt] Mixture Poor 

Solution 

Rich 

solution 

Gas 

150 286.9 131.8 94.92 3536 

200 412.9 204.6 133.6 3342 

250 558.7 284.0 174.7 3344 

300 671.9 347.8 202.8 3264 

350 798.3 420.3 232.7 3193 

400 969.2 519.4 275 3017 

450 1133.0 605.2 313.9 3216 

500 1282.0 702.0 350.2 2882 

550 1420.0 768.1 377.3 3159 

600 1445.0 783.9 368.6 3236 

650 1614.0 874.5 407.0 3290 

700 1822.0 996.3 454.9 3114 

 

4. Conclusions 

A theoretical model based on Stenning and Martin’s 

model1 was presented. The presented model is based on the 

drift flux model together with laminar flow assumption. 

Experimental results show that the flow of the poor solution 

(the liquid phase) is indeed laminar. The model allows 

prediction of the amounts of the separated refrigerant for a 

certain submergence value within the values of heat input 

where lifting occurs. In addition, the present model correlates 

between the amount of the applied heat and the rich solution 

mass flow rate. It is important to state that the previous 

models were developed for adiabatic all-water lift tubes 

where heat did not play any significant role. The present 

model correlates the geometrical and the operational 

parameters of the bubble pump and fits better to the 

experimental results. 
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