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Abstract 
 

This paper deals with the determination of second-order statistics (the mean of each component and correlations 

between components) of the quasi-static temperature distribution and thermal stresses on a thick plate under thermal 

load.  The heated thick circular plate with random internal heat generation acting at random instants of time, in 

addition to sectional heat supply in the form of random impulses on the upper face, while the lower face is kept at 

zero temperature, and the fixed circular edge thermally insulated in considered for investigation. A type of Laplace 

transform method is employed to obtain the analytical solutions for the temperature and stresses statistics. The 

effects of the statistics of the random temperature distribution and its associated stresses are signified graphically 

that highlight the developments proposed in this paper. 
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1. Introduction 

Usually forecasting the mechanical or thermal loads 

acting on structural elements is incredibly troublesome. 

There's no doubt that their material properties are random 

variables and so are sometimes explicit in terms of average 

values with hooked up uncertainties. Thus, the 

consideration of safety was familiarized into the operational 

design. The present design methods based on the safety 

parameters cannot quantitatively estimate the safety of 

structures. To sidestep such a problem, the probability 

theory and mathematical statistics have been applied to 

many engineering problems. At this time, the application of 

probabilistic methods to engineering problems has been 

broadened to the segment of heat transfer. As structures 

subjected to extreme thermal load currently hold a 

prominent position in industries, the heat conduction 

analysis and associated thermal stresses in solids have 

drawn attention.  

In studies on the thermoelastic responses of the bodies 

subjected to random pulse, solely stationary random 

processes have been targeted so far. Thus, when time 

functions included as a random internal heat supply or/and 

the thermal boundary conditions are equipped with 

sectional random heat supply, then the mathematical 

complicity further increases. Therefore, the analyses treated 

in the framework of the theory of a stationary random 

process ought to be extended to nonstationary random 

processes was explained in the highly cited review paper 

[1]. A short history of the research work associated with 

random pulse and application of probabilistic methods are 

discussed in detail as a prerequisite. Mathews and 

Srinivasan [2] studied physical processes which can be 

represented by symbolic differential equations involving 

random functions. Parkus [3] studied random thermal 

stresses in which he successfully analyzed the thermoelastic 

problem of a semi-infinite body using probabilistic 

methods.  Samuels [4] conducted a study on heat 

conduction analysis using probabilistic methods. He 

analyzed heat conduction in a plate and sphere with 

randomly fluctuating surface temperature and 

spatiotemporally random internal heat generation. 

Srinivasan et al. [5] discussed the unsteady motion of a 

viscous fluid subjected to random pulses. Hung [6] 

presented the temperature distribution of straight and 

circular fins with stochastic root temperature. He obtained 

the response autocorrelation functions and power spectral 

densities of temperatures with stationary Gaussian 

excitation temperatures. Heller [7] developed statistical 

relations for the temperature response in an infinitely thick 

slab subjected to randomly varying surface temperatures. 

Lenyuk et al. [8,9] investigated the case of an elastic half-

space by taking random boundary conditions and an 

isotropic homogeneous symmetric body by taking the 

external medium temperature to be an arbitrary function of 

time and determined the stresses.  Becus [10] bestowed a 

solution to the heat conduction problem with random heat 

supply and random boundary conditions. Vasseur and 

Singh [11] analytically obtained relationships between the 

autocorrelation functions of heat generation and heat flow 

within the three-dimensional steady heat conduction of a 

solid body. Nielsen [12] proposed the work to deal with the 

case of heat conduction with random heat generation and 

obtained cross-correlation between them. Val'kovskaya and 

Lenyuk [13] analyzed the stochastic temperature field in a 

two-layer solid disk subjected to heat sources for which 

power is a random function of time and radial coordinates. 

Recently, Sugano et al. [14] used probability theory to 

analyze the heat conduction and thermal stress problems of 

functionally graded plates with randomly varying surface 

temperature assumed to be a homogeneous random field. 
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Chiba and Sugano [15-19] analyzed the thermoelastic 

problem of homogeneous bodies, functionally graded plates 

and nonhomogeneous plates with a random thermal 

conductivity and coefficient of thermal expansion using 

various boundary conditions. They have not however 

considered any thermoelastic problem subjected to random 

temperature distribution, which satisfies the time-dependent 

heat conduction equation. From the previous literature 

regarding thick plate, as well-thought-out, it was observed 

by the author that no analytical procedure has been 

reported, considering thick clamped plate subjected to 

random heat inputs on its upper face. Thus, our study 

highlights the behaviour of thermal stresses in a two-

dimensional thick elastic body with random internal heat 

sources and subjected to an additional random sectional 

heat supply impacted on the upper layer.  The success of 

this novel analysis lays with the mathematical methods with 

a way more straightforward approach for improvement for 

the design in terms of material usage and performance in 

engineering drawbacks, significantly within the 

determination of thermoelastic behaviour in thick plate. 

Thus, motivated by applications to physical and biological 

problems in thick structural profile subjected to random 

temperature, the author considered the probabilistic aspects 

of the thermal problem for this paper. During the design 

and building of nuclear reactors and the fabrication of 

foundation of furnaces, pressure vessels, et cetera, subjected 

to random temperature are often attributed to thermal 

stresses. 

 

2. Formulation of the Problem  

Let us consider a thick circular plate with a radius a  

and constant thickness ,  with random internal heat 

generation acting at random instants of time, in addition to 

sectional heat supply in the form of random impulses on the 

upper face, while the lower face was kept at zero 

temperature, and the fixed circular edge thermally insulated 

in considered for investigation. The plate material is 

considered to be isotropic, and the material properties are 

assumed to be constant, as shown in figure 1. 

 

 

Figure 1. The physical configuration of a thick plate. 

 

2.1 Temperature Distribution 

We assume that the plate is subjected to pulses of 

random strength acting at random instants of time. At the 

time 0t  , a temperature gradient which is a transient 

function is set-up, the system being initially at rest. Thus, 

we assume that the temperature distribution ( , , )T T r z t  in 

terms of the stochastic integral as 
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in which ( )N   presents the number of pulses in time ,  

( )dN   is the number of pulses in the interval ( , )d    

that can be represented as ( ) exp( ) / ! ,dN y y d     

with ( 0)y y   is a parameter of distribution, 

( 0,1,2,...)    is a random variable. Let , ,...1 2   be the 

roots of the transcendental equation ( ) 0,1J a   Bessel 

functions 0J  and 1J  is of the first kind of order zero and 

one,   being a constant, m  will be determined later, and 

the constant 2A n  can be found from the nature of the 

temperature prescribed on the upper face, respectively. 

 

The heat conduction  equation for plate [20] is  
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where the thermal diffusivity of the material is 

/ ,k Cv   with k  as the thermal conductivity,   is the 

density and Cv
 is the calorific capacity, respectively. 

The boundary conditions for temperature are 
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Substituting Eq. (1) into Eq. (2), one obtains 

2 2 /m                                                                    (4) 

 

We use the Bessel-Dini formula which has the following 

form  
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Since the upper surface is subjected to random temperature 

distribution in a concentric circular region, we assume 
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Hence, we get   
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From Eq. (1), Eq. (3) and Eq. (7), one obtains 
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The temperature change    from the initial temperature 
iT  

can be obtained as  
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2.2 Thermoelastic Formulation 

The components of strain [20] for an axisymmetric 

deformation is taken as  

1
, , ,

2

r r z r z
rr zz zr

u u u u u

r r z z r
   

    
     
    

     (10) 

and the constitutive equations or the generalized Hooke’s 

law is taken as 
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in which the dilatation ,rr zze       ru  and zu  is 

the displacement components in the radial and axial 

directions, G being the shear modulus,   is the Poisson’s 

ratio and T  as the thermal expansion coefficient, 

respectively.  Thus, Eq. (11) can be re-written as 
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in which / [2(1 )] ,E G     2 / (1 2 ),G     

(3 2 )      and ( , )   are the Lame’s constant, 

respectively. Furthermore, the equilibrium equations in the 

radial and axial directions disregarding the body forces 

(i.e. 0)r zF F   are given by the relationships 
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Substituting Eqs. (10) and (12) into Eq. (13), one obtains 

Navier’s equations for axisymmetric thermoelastic equation 

as 
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in which 2  in axisymmetrical case denotes 
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The displacement function is represented by the Goodier’s 

thermoelastic displacement potential and Love’s function 

[20] as 
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in which Goodier’s thermoelastic displacement potential 

( , , )r z t  and Love’s function ( , , )L r z t  must satisfy the 

following governing equations  
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The stress components are represented by the use of the 

( , , )r z t  and ( , , )L r z t  as 
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For traction free surface stress functions 
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The other stress components depend only on r  and t  at 

/ 2z   as a special case. Then, the set of equations (1) to 

(20) constitutes the mathematical formulation for 

temperature distribution, displacement and thermal stresses 

developed within solid at any instant. 

 

3. The Solution of the Problem 

3.1 Thermoelastic Analysis 

We assume Goodier’s displacement potential ( , , )r z t  as  
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Similarly, the solution for Love’s function ( , , )L r z t  is 

assumed as 
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Substitute Eqs. (21) and (22) in Eq. (16), one obtains 
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Substituting Eqs. (21) and (22) in Eq. (19), one obtains the 

stresses as 
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Using Eqs. (25)-(28) in Eq. (20), one obtains 

0, 1/1 2K Km m m                                                  (29) 

 

3.2 Product Densities 

We assume that the probability of occurrence of one 

pulse in d is proportional to d  while the probability 

that there occur ( 1)n n   pulses in d  is of a negligible 

smaller order of magnitude than .d  If ( )p N  is the 

probability that n  pulses occur in ,d  then 
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                  (30) 

The expectation values of the power of the random variable 

( )dN  are taken as follows 

{ ( )} (1) ( ) ( ) ( ),1

{[ ( )] } (1) ( ) ( ) ( )1

{ ( )} ( )

dN p o d d o d

ndN p o d d o d

dN o d

      

      

  

   

   

 

       (31) 

in which 
1( )   is the product density of degree one and 

note that the 
1( )d    is probability magnitude it is integral 

over   yields only the mean number of pulses distributed 

over the range of integration.  

Now consider 
2 1 2( , )    as a product density of degree 

two when the intervals do not overlap 

( , ) { ( ) ( )}2 1 2 1 2 1 2d d dN dN                          (32) 

which is also equal to the joint probability that a pulse lies 

in 1d  and a pulse lies in 2d  when ,1 2d d   do not 

overlap. But when the intervals overlap, a degeneracy 

occurs, and 
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3.3 Correlation of Temperature 

The product densities are useful in obtaining the moments 

as well as the correlation of temperature distribution. Let 

assume that the ( )F   characterizing the temperature is a 

random function of  . The points of the time axis 

corresponding to the time of occurrence of pulses are 

expected to be distributed by Poisson’s law with a constant 

average density .   

The product density is given by 

2( ) , ( )1 2 1, 2                                                     (34) 

On the distribution of ( )F   the following restriction is 

imposed taking  0, 2 1     as  

{ ( )} , a constant
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F I

F F
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The expression for { ( , , )}T r z   is given by 
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            (36) 

Similarly, in case of product density of degree two 
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(37) 

3.4 Moments Subjected to Random Pulses 

The required statistics are obtained for the pulse in the 

interval ( , )d   . The general expression derived for the 

moments and correlation of the pulse requires neither 

independence of intervals between time base points nor 

independence of the pulses. When the time base is a 

Poisson point process, and the pulse shapes are 

independent, stronger results become available and hence 

we will be able to calculate joint characteristic functions for 

the pulse process, thus providing a more complete statistical 

description. The technique used here results in general 

expressions for the moments and correlation of temperature 

distribution and thermal stresses of such pulse. Now 

following [5], in case of product density of degree one, we 

assume 

{ ( )}dN C d                                                              (38) 

{ ( )} D    , a constant.                                                 (39) 

in which C  is the constant average density and   denotes 

the correlation function. 

Since the probability of occurrence of one pulse in ( )dN   

is proportional to ,d but for more than one pulse in 

( )dN   is of a negligible smaller order of magnitude in 

.d  Hence moments of temperature distribution and its 

thermal stresses can be obtained as 
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where  [1 exp( t )]{ }/Imn         

 

3.5 Correlation Subjected to Random Pulses 

Similarly, in the case of product density of degree two, 

we assume 
2

1 2{ ( ) ( )} ,dN dN C                                                    (44) 

1 2 2 1{ ( ) ( )} exp{ ( )}                                   (45) 

where C  is the constant average density and 
2 10,    . 

Hence the correlation of temperature distribution and its 

thermal stresses can be obtained as 
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4. Numerical Results and Discussion  

Introducing non-dimensional variables as  

2
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          (51) 

with parameters 1a  m, 0.8  m and the reference 

temperature is o32RT C . The thermo-mechanical 

properties are considered as modulus of elasticity E  = 70 

GPa, Poisson’s ratio   = 0.35, thermal expansion 

coefficient T  = 2310-6 /0C, thermal diffusivity   = 

84.1810-6 m2s−1 and thermal conductivity  = 204.2 

Wm−1K−1, Shear modulus 25.5G   GPa, 1 0.5 sec,t   

2 0.9 sec,t   
0 0.6  , 1( 0)   .  

Here 3.831, 7.015, 10.173, 13.323, 16.470, 19.615, 22.76, 

25.903, 29.047, 32.189, 35.332, 38.474, 41.617, 44.789, 

47.905 are the real and positive roots of the transcendental 

equation 
1( ) 0nJ a  . In order to portray the temperature 

solution to be meaningful, the series expressed in Eq. (1), 

ought to converge for all 0 r a   and 

/ 2 / 2z   . However, it should be noted that the 

Bessel series ( )0A J rn n  of ( )f r  behaves precisely 

like the Fourier series of ( ),f r  at any point to 0 ,r a   

provided ( ) 0( ),0A J r rn n    and also ( )0J rn  is 

bounded function of  ,r  where the numbers 

, ,... ,...1 2 n    form a monotone increasing succession 

tending to infinity, and are determined as the positive roots 

of the transcendental equation 
1( ) 0.nJ a   By using the 

Maclaurin series for ( )f z  and Ratio test, it is observed 

that the radius of convergence is less than 1 (regardless of 

the value of z ). Thus from above, it is clear that 

( ) 00A J rn n   and sinh( ) 0zm   as n  and 

,m  which shows that  ( , , )T r z t  also converges to the 

finite value as n  and .m  Numerically it had 

been determined that the series solutions converge provided 

if we have a tendency to take an adequate range of terms 

within the series. Irrespective of the thickness of the plate, 

the series solution is given here will be definitely 

convergent. To summarize, our convergence statement says 

that series solutions collapse onto the exact solution with 

the error tending to zero at all indices if we tend to take an 

adequate range of terms. In other words, the convergence 

rate is faster if we shrink the step smaller and smaller. Thus, 

for computational simplicity, we have considered 15 

eigenvalues, and the numerical results were obtained for the 

figures with the help of MATHEMATICA software.  

Figure 2 shows the correlation of temperature distribution 

in the thick plate plotted against the dimensionless axial 

coordinate (i.e.   direction) for different values of the 

dimensionless radius 0.2, 0.4, 0.6,0.8,1  . This figure 

indicates that in the initial state the correlation of 

temperature is zero then gradually increases up to the 

central part and start decreasing to the other part till it 

reaches 0.6   as in agreement with Ahmadi [11], due to 

the randomness of temperature. The temperature in the 

lower curved surface again starts gradually increasing due 

to the external random sectional heat supply at 0.8  .  

 

 
Fig. 2 Correlation of dimensionless temperature 

distribution in the axial direction. 
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Fig. 3 Correlation of dimensionless temperature 

distribution in the radial direction. 

 

 
Fig. 4 Correlation of dimensionless radial stress in the 

axial direction. 

 

 
Fig. 5 Correlation of dimensionless radial stress in the 

radial direction. 

 

 
Fig. 6 Correlation of the dimensionless tangential stress 

in the axial direction. 

 

 

 

 

 

 

 

Fig. 7 Correlation of dimensionless tangential stress in the 

radial direction. 
 

 
Fig. 8 Correlation of dimensionless axial stress in the 

axial direction. 

 

 
Fig. 9 Correlation of dimensionless axial stress in the 

radial direction. 

 

 
Fig. 10 Correlation of the dimensionless shear stress in 

the axial direction. 
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Fig. 11 Correlation of the dimensionless shear stress in the 

radial direction. 

 

Figure 3 shows the correlation of temperature distribution 

in the dimensionless radial coordinate (  direction) for 

five different locations of dimensionless thickness 

0, 0.2, 0.4,0.6,0.8.   It is observed from the figure that 

due to random surface temperature distribution on the upper 

surface; it is observed that the correlation of temperature is 

high in the central region 
0(0 )    of the plate, as 

expected. Moreover, a small temperature gradient appears 

towards the outer insulated radius due to the accumulation 

of thermal energy dissipated by the internal heat source and 

the sectional heat supply. The influence of dimensionless 

temperature is well observed in figure 4 which displays the 

high correlation of radial stresses along the axial direction, 

and moderate correlation can be seen around the unheated 

region. Figure 5 shows radial stresses along the radial 

direction that was found to be maximum due to the tensile 

stress on the curved surface at 0   and the compressive 

stress occurring at the curved part at 1   of the thick 

plate and its absolute value increases at different location of 

the axial direction. The effects of random temperature were 

also well observed in figure 6, which illustrates the 

distribution of the correlation of tangential stress along the 

axial direction for different values of   . It can be seen that 

the nature of the graph is sinusoidal that could be owing 

due to thermal expansion. Figure 7 displays the distribution 

of tangential stress along the radial direction at various 

location of thickness, and very well versed similarity was 

found with the radial stress in the radial direction as shown 

in figure 5. Figure 8 thoroughly demonstrates the 

correlation of the axial stress in the axial direction for 

different values of .  It is seen that the axial stress attains 

the maximum expansion then gradually decreases up to 

0.7   at different locations 0.2,0.4,0.6,0.8,1  , then 

gradually increases until it reaches 0.8   along the  

direction. Figure 9 illustrates that the absolute value of axial 

stresses decreases towards the mid part of thick plate with 

the different axial points, but increase at the outer edge. 

Similar radial inherent nature was also found in figures 3,5 

and 7 along the radial direction for various value of .  

Figure 10 expresses the correlation of shear stress at 

different location of    and it was found that the nature of 

the distribution is sinusoidal and increases monotonically 

along the axial direction. These changes could owe due to 

thermal expansion. Fig. 11 shows the correlation of shear 

stress in a radial direction for different values of .  It is 

observed that the nature of the graph is bell-shaped. The 

correlation is initially zero at 0   and it slowly increases 

from the centre of the plate and is attaining peak value in 

the region 0.5  , then slows down to zero at 1  . It 

might occur due to the accumulation of heat energy 

dissipated by sectional and internal heat supply which 

further decreases at the two extreme ends. 

 

5. Conclusion 

In the present work, we have investigated thermal 

stresses in a thick circular plate subjected to the random 

temperature distribution. Moments and correlation of 

temperature distribution and thermal stresses are obtained 

using Poisson’s distribution. Generally, due to the random 

nature of temperature, the accurate prediction of thermal or 

mechanical loads on structural components is difficult. 

Hence, we have adopted the technique of moments and 

correlation for thermoelastic analysis. During the 

investigation, all the critical factors are taken in 

experimental favour. It is clearly observed that the nature of 

the figures of temperature and all stresses are sinusoidal 

when plotted for axial direction and exponentially decayed 

when plotted for radial direction except for shear stress, 

which is observed to be a bell-shaped curve. 

The under given future scope can be taken for pursuing 

further studies 

 This study can further be applied to multiple time 

intervals using multivariate correlation analysis.  

 Particular cases of special interest can be studied by 

taking the material properties in the equations of 

temperature and thermal stresses to be nonhomogeneous 

as well as by keeping the size of the time interval low 

and high for numerical analysis.  

 This type of theoretical analysis may be used for the 

high cycle temperature fluctuations in reactors, gas 

turbines and fluctuating voltages in thermionic valves. 
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Nomenclature 

( , , )r z  = Cylindrical coordinates 

( , , )x y z  = Cartesian coordinates 

r              = 
2 2x y  

             = 
1tan ( / )y x

 

k             = Thermal conductivity. 

( , , )T r z t  = Temperature distribution at any time. 

( , )       =  Lame’s constant 

0J            
= First kind Bessel functions with order zero 

1J            
= First kind Bessel functions with order one 

0Y            
= Second kind Bessel functions with order zero 
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