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Abstract

We present some numerical results for the linear dynamics of nanobeams modulated by an axial
force, basing on a recent proposal of literature that encompasses both the standard nonlocal elas-
ticity, according to Eringen, and second-order strain elasticity. Three different possibilities for the
elastic potential energy provide different responses that highlight the contributions of nonlocality
and strain gradient, plus their combination. An axial force affects the linear stationary dynamics
of such nanobeams, inducing suitable variation of the natural angular frequencies for benchmark
cases, until static buckling occurs when the natural angular frequency vanishes. Effects of the
various elastic potentials on this modulation are investigated and thoroughly commented.

1 Introduction

In recent years the use of nanobeams as sensors or actuators in many fields of physics and applied
physics has seen a remarkable increase, see e.g. [1, 2, 3, 4]. Going down to such a small length scale,
the usual structural models are not sufficient, even in the usual approximation of ‘small’ displacements
and strain with respect to the length of the considered specimen. Several models attempting to describe
the constitutive response of elastic nanobeams have been proposed in the literature, among which we
may quote innovative nonlocal strategies [5, 6, 7, 8, 9, 10, 11], gradient theories [12, 13, 14, 15, 16, 17],
couple stress and surface energy approaches [18, 19, 20, 21]. A comprehensive collection of results
on nanostructures can be found in recent review articles and books [22, 23, 24, 25, 26] and references
therein. Recently, three of the authors of the present paper proposed an elastic potential encompassing
both the effects of the usual Eringen model of nonlocal elasticity and a reasonable formulation of strain
gradient elasticity [27]. This potential manages to see both effects as additional curvatures and second-
order strains in a standard quadratic expression. Some results of this proposal have been proposed to
look for the static solutions of benchmark cases [28].

In this paper we rely on a standard purely flexible (a.k.a. Euler-Bernoulli) beam model, and adopt
the elastic potential energy densities introduced in [27]. By means of usual variational procedures we
derive the field equations for the linear dynamics of nanobeams subjected to an axial force, which is
known to act as a modulating factor for the apparent global stiffness of the beam. Indeed, the effects
of an axial load on the natural vibration of beams is known since Woinowsky-Krieger [29], and has
been investigated also in the more recent contributions by Bishop and Price [30], Bokaian [31, 32], and
Stephen [33]. Roughly speaking, an axial load adds a geometric contribution to the material stiffness of
the beam, thus affecting its natural frequencies. Tensile forces increase the total stiffness of the beam,
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compressive forces do the opposite, and make the natural frequencies decrease until they vanish and
induce static buckling (see, e.g., Bazant and Cedolin [34]). Thus, the axial force works as a control
parameter for the natural angular frequencies of the beams, which depend directly on the stiffness of
the beam, and which we find by means of a Galerkin approach in some benchmark cases.

In the following, we will resume the essentials of the beam model, we will present the derivation of
the field equations for the considered problems, then we will present the results that we obtained for
the fundamental natural angular frequency and for its variation with respect to the variation of some
meaningful material parameters under some usual boundary conditions. We will thoroughly comment
the obtained results in the light of the known results of literature for the usual Eringen model, as well
as for strain gradient elasticity, and we will sketch some future developments of this research.

2 A purely flexible model for nanobeams

Let us consider a nanobeam that in its reference configuration has the centroidal axis occupying a
straight segment of length l on the x−axis of a Cartesian coordinate system with the origin at the
left end of the beam. We will study a plane behaviour, and assume that the scalar components of the
infinitesimal displacements of the beam, seen as a three-dimensional cylinder, are described by

u(x, y, z, t) = −ydv(x, t)

dx
, v(x, y, z, t) = v(x, t), w(x, y, z, t) = 0 (1)

where t is the time. The functions in eq. (1) express the planarity of the motion, plus the conservation
of plane cross-sections. The latter rotate by the same amount expressing the slope of the deflected
axis of centroids, thus remain orthogonal to the beam axis in every deformed shape. The standard
definitions for the infinitesimal three-dimensional strain, i.e.,

εij =
1

2

(
∂ui(x, y, z, t)

∂xj
+
∂uj(x, y, z, t)

∂xi

)
, i, j = 1, 2, 3 (2)

provide that all deformation measures vanish but the elongation of the beam along its axis, given by

εii = ε(x, y, z, t) = ε(x, y, t) =
∂u(x, y, z, t)

∂x
= −yd

2v(x, t)

dx2
= −yχ(x, t) (3)

where χ(x, t) is the bending curvature of the beam at the point corresponding to the abscissa x. For
the sake of simplicity of notation, the subscripts were dropped in the definition of the elongation in eq.
(3), since no other strain measure is present. In addition, for the same reason the variables on which
the indicated fields depend will be dropped from notation when no ambiguity arises.

Basing on the proposal in [27], we suppose that the material response of the nanobeam is given by
three different elastic potential energy densities Ui, i = 1, 2, 3, which are given by U1U2

U3

 =
1

2
Eε2

 1

1

1

+
1

2
E
dε

dx

2

 c2

α2c2

α2c2

+
q

A
χ(ε)

 α2c2

c2

c2

+
dq

dx

1

A

dχ(ε)

dx

 0

0

α2c4

 (4)

where E is Young’s modulus of local elasticity, c is the material parameter accounting for nonlocal
elasticity, according to Eringen, α is a participation factor among the three energetic forms, A is the
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area of the cross-section S of the beam, and q(x) is the static load, directly proportional to the second
derivative of the contact bending couple, thus of the axial stress; more details can be found in [27]. It is
apparent from eq. (4) that the effect of nonlocal elasticity is taken into account as a kind of non-elastic
additional curvature, in the third addend of the potential energy densities Ui; moreover, strain gradient
elasticity is introduced in the second and fourth addend of the potential energy densities Ui, and is
reduced to the same form as the first and third addend, simply through a material length that is made
to depend on Eringen nonlocal constitutive parameter c by the non-dimensional participation factor α.
This choice implies the assumption that no strain gradient elasticity effects arise if nonlocal elasticity
is not present, thus reducing to ordinary local, first gradient elasticity.

The equations of mechanical balance are obtained by standard calculus of variations, employing
Hamilton’s principle of least action over a time interval t ∈ [0, T ]∫ T

0
(δU − δW − δK) dt = 0 (5)

where δU is the variation of potential energy, δW is the work spent by the external loads, and δK is
the variation of kinetic energy. The potential energy is simply the integral sum of the potential energy
density over the domain D = S × [0, l] occupied by the cylinder constituting the beam, thus, with
regard to eq. (4), its variation is given by

δU=

∫
D

Eεδε
1

1

1

+E
dε

dx
δ
dε

dx

 c2

α2c2

α2c2

+
q(x)

A

∂χ

∂ε
δε

α
2c2

c2

c2

+
dq(x)

dx

1

A

∂
dχ

dx

∂
dε

dx

δ
dε

dx

 0

0

α2c4


 dV (6)

The work spent by the external loads consists of two addends, one of which is the contribution
provided by transverse distributed load p(x, t) per unit length of the beam, and the other is the
contribution of a modulating axial load N0. The latter is known to be linear in the square of the slope
of the beam axis [35], so that the work spent by the external loads is

δW =

∫ l

0
p(x, t)δv(x, t)

 1

1

1

 dx+

∫ l

0
N0

dδv(x, t)

dx

 1

1

1

 dx (7)

where N0 is assumed positive if it acts in compression, and p(x, t) is the sum of a permanent load q(x)

and of a load possibly varying with time qe(x, t), that is,

p(x) = q(x) + qe(x, t) = af(x) + aefe(x, t) (8)

where the factors a, ae, both having dimensions of a force per unit length, act as magnifying multipliers,
while the functions f(x), fe(x, t) provide the shape of the external load along the beam axis, with
no physical dimensions. This multiplicative decomposition will be useful later for the analysis of
benchmark cases by non-dimensional equations, providing results independent of particular values for
the involved physical quantities.
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The kinetic energy is assumed to take into account both axial and transverse variations of infinites-
imal displacements with time, so that its variation is given by

δK =

∫
D
ρ

u̇δu̇
 1

1

1

+v̇δv̇

 1

1

1


 dV =

∫ l

0

∫
S
ρ

y2 dv̇
dx
δ
dv̇

dx

 1

1

1

+v̇δv̇

 1

1

1


 dAdx=

=

∫ l

0
ρ

I dv̇
dx
δ
dv̇

dx

 1

1

1

+Av̇δv̇

 1

1

1


 dx

(9)

where a superimposed dot stands for the derivative with respect to time, ρ is the mass density per
unit volume of the material of the beam, and I is the second moment of area of the cross-section of
the beam with respect to the z−axis of the chosen coordinate system. Remark that, owing to this
constitutive position for the inertia actions, in eq. (9) both transverse (i.e., relative to the deflection
of the beam axis) and rotary (i.e., relative to the rigid rotation of the beam cross-sections) inertia are
accounted for, thus presenting a general outlook on the possibilities of natural vibration.

Performing an usual variational procedure, by standard operations, integration by parts, and lo-
calisation arguments, one obtains the field equation for the modulated linear dynamics of nanobeams,
that is, the mechanical balance equation in terms of the displacement fields, having accounted for the
constitutive representations of elastic potential, work of external loads, and kinetic energy

EI
d6v

dx6

 c2

α2c2

α2c2

− EI d4v
dx4

 1

1

1

− d2q

dx2

 α2c2

c2

c2

+
d4q

dx4

 0

0

α2c4

+

+ρI
d2v̈

dx2

 1

1

1

−ρAv̈
 1

1

1

−N0
d2v

dx2

 1

1

1

+ p

 1

1

1

 = 0

(10)

The field equation (10) is completed by the boundary equations, either of kinematic

δv
∣∣∣l
0

= 0,
d(δv)

dx

∣∣∣l
0

= 0,
d2(δv)

dx2

∣∣∣l
0

= 0 (11)

or mechanic nature at the ends of the beam, i.e., x = 0, x = l

EI

d5v
dx5

 c2

α2c2

α2c2

− d3v
dx3

1

1

1


− dq

dx

α
2c2

c2

c2

+
d3q

dx3

 0

0

α2c4

+ρI
dv̈

dx

1

1

1

−N0
dv

dx

1

1

1

=T

1

1

1


EI

d4v
dx4

 c2

α2c2

α2c2

− d2v
dx2

1

1

1


−q

α
2c2

c2

c2

+
d2q

dx2

 0

0

α2c4

=−M

1

1

1


EI

d3v

dx3

 c2

α2c2

α2c2

+
dq

dx

 0

0

α2c4

=0

(12)

where T,M are the transverse force and bending moment applied at the ends of the beam by contact.
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Remark that the introduction of a constitutive relation accounting for both nonlocal and strain
gradient elasticity turned the usual fourth-order ordinary differential equation in space for Euler-
Bernoulli beams, a.k.a. “elastica”, into a sixth-order ordinary differential equation in space. Eq. (10)
presents only even derivatives with respect to space and time, thus has the same structure of Euler’s
“elastica”. This implies that, in principle, similar strategies may be adopted in the search of a solution in
both cases. The external load contributes in the field equation (10) firstly by the whole quantity p(x, t),
coming from the work δW ; secondly by the conservative part q(x), which enters the elastic potential
energy (4). It is worth noting that when the nonlocal elasticity parameter c and the participation
factor α of strain gradient elasticity vanish, the field equation (10) reduces to Euler’s “elastica”.

Note that the natural boundary conditions enlarge those for the “elastica”. On the one hand, there
are kinematical conditions for the displacement and the slope of the beam axis, plus a condition on the
second spatial derivative of the transverse displacement, deriving from the strain gradient elasticity
in the potential energy densities (4). On the other hand, there are mechanical conditions expressing
the contact force and couple in terms of the static load q(x) entering the constitutive relations, of the
transverse displacement, the modulating axial force, and inertia, plus a condition on the third spatial
derivative of the transverse displacement and the first spatial derivative of the static load. Again, it is
apparent that when the nonlocal elasticity parameter c and the participation factor α of strain gradient
elasticity vanish, the boundary conditions (11), (12) reduce to those of Euler’s “elastica”.

It is usual to perform parametric investigations by reducing the field equations and the boundary
conditions of a given mechanical problem to a non-dimensional form, in order to abstract from par-
ticular values of the physical quantities involved and to follow global behaviour depending on suitable
non-dimensional ratios. On this purpose, let us introduce the following non-dimensional quantities

ξ =
x

l
, v̂ =

v

l
, τ =

c

l
, t̂ = t

√
EI

ρAl4
, β =

al3

EI
, βe =

ael
3

EI
, N̂ =

N0l
2

EI
, γ =

I

Al2
(13)

The non-dimensional abscissa ξ spans the fixed domain [0, 1]; the non-dimensional transverse displace-
ment v̂ is rescaled with respect to the length of the beam axis; the non-dimensional time is rescaled
with respect to a characteristic time interval depending on the material and geometric characteristics
of the beam; the non-dimensional load amplitudes β, βe and modulating force N̂ are rescaled with
respect to the bending stiffness of the beam in local elasticity; and the slenderness ratio γ equals the
square of the ratio of the gyration radius of the cross-section to the length of the beam axis.

Keeping into account the positions (13), the non-dimensional form of the field equation (10) is

d6v̂

dξ6

 τ2

α2τ2

α2τ2

− d4v̂
dξ4

 1

1

1

− βd2f(ξ)

dξ2

 α2τ2

τ2

τ2

+ βe
d4f(ξ)

dξ4

 0

0

α2τ4

+

+γ

d2
(
d2v̂

dt̂2

)
dξ2

 1

1

1

− d2v̂
dt̂2

 1

1

1

−N̂ d2v̂

dξ2

 1

1

1

+ (βf(ξ) + βefe(ξ, t̂))

 1

1

1

 = 0

(14)

where the load shape functions f, fe of eq. (8) are now expressed in terms of non-dimensional quantities.
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The kinematic boundary conditions (11) read

δv̂
∣∣∣l
0

= 0,
d(δv̂)

dξ

∣∣∣l
0

= 0,
d2(δv̂)

dξ2

∣∣∣l
0

= 0 (15)

The mechanical boundary conditions (12) read

d5v̂

dξ5

 τ2

α2τ2

α2τ2

− d3v̂
dξ3

1

1

1

−β df
dξ

α
2τ2

τ2

τ2

+β
d3f

dξ3

 0

0

α2τ4

+γ

d

(
d2v̂

dt̂2

)
dξ

1

1

1

−N̂ dv̂

dξ

1

1

1

= T̂

1

1

1


d4v̂

dξ4

 τ2

α2τ2

α2τ2

− d2v̂
dξ2

1

1

1

−βf
α

2τ2

τ2

τ2

+ β
d2f

dξ2

 0

0

α2τ4

= −M̂

1

1

1


d3v̂

dξ3

 τ2

α2τ2

α2τ2

+β
df

dξ

 0

0

α2τ4

=0

(16)

where the non-dimensional contact actions at the beam ends are defined as

T̂ =
T l2

EI
, M̂ =

Ml

EI
. (17)

The system of the non-dimensional field equation and boundary conditions (14), (15), (16) will be solved
by a Galerkin approach in benchmark cases. The dependence of the non-dimensional natural angular
frequencies on the quantities accounting for the physical properties of the beam will be discussed.

3 Benchmark cases

It is well known that Galerkin approach for the approximated solution of a differential problem needs
a set of suitable comparison functions. The following benchmark cases will be investigated, for which
known sets of comparison functions are at ease: a) a simply supported beam; b) a beam with two sliders,
both orthogonal to the beam axis; c) a beam with a hinge at the left end and a slider orthogonal to
the beam axis at the right end.

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

ψ1

ψ2

ψ3

ψ4

Figure 1: Set of comparison functions: sinus.

In the first case, it is known that the set of sinus functions in the domain [0, 1] is complete and
provides well-working comparison functions. In addition, such functions verify also the non-standard
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kinematical boundary condition on the second derivative of the transverse displacement expressed by
eq. (15)3. The considered set, limited to four functions, is represented in fig. 1 and is given by

{sin(πx), sin(2πx), sin(3πx), sin(4πx)} (18)

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

ψ1

ψ2

ψ3

ψ4

Figure 2: Set of comparison functions: cosinus.

In the second case, the set of cosinus functions in the domain [0, 1] will be adopted, which satisfies
the non-standard mechanical boundary condition expressed by eq. (16)3. The considered set, limited
to four functions, is expressed by

{1, cos(πx), cos(2πx), cos(3πx)} (19)

and is represented in fig. 2. Remark that the first function of the set, denoted ψ1, is associated with
the rigid body motion permitted to the beam.

0.2 0.4 0.6 0.8 1.0

-1.5

-1.0

-0.5

0.5

1.0

1.5

ψ1

ψ2

ψ3

ψ4

Figure 3: Set of comparison functions: rescaled sinus.

The third case is a combination of the first and the second, and a set of four suitable comparison
functions on the domain [0, 1], represented in fig. 3, is given by{

sin

(
3πx

2

)
, sin

(
5πx

2

)
, sin

(
7πx

2

)
, sin

(
9πx

2

)}
(20)

3.1 Modulating linear dynamics

The first investigation is about finding the first natural angular frequency (fundamental frequency)
for the three benchmark cases, which are provided by the non-trivial solution of the homogeneous
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problems constituted by the system of eqs. (14), (15), (16), i.e., by assuming q(x) ≡ af(ξ) ≡ 0. In
the three cases, Galerkin approach by the help of four comparison functions, those in eqs. (18), (19),
(20). Note that the comparison functions verify the boundary conditions, while they verify the field
equation approximately; the approximated solution is attained by projecting the field equation onto the
comparison functions, then solving the corresponding set of algebraic equations. When investigating
natural vibration, the set of algebraic equations so obtained will have the form Mq̈ + Kq = 0, where
M is called matrix of masses, K is called matrix of stiffnesses, and q is the vector of the amplitudes
of the chosen comparison functions. In the cases investigated here, the non-dimensional axial force
works as a modulating action on the fundamental frequency, in terms of the non-dimensional nonlocal
Eringen parameter τ and of the participation factor between nonlocal and strain gradient elasticity
α. Thus, the stiffness matrix will be the sum of a purely elastic term and of a geometric term, as it
is well known in the literature (e.g., Pignataro, Rizzi and Luongo [36]). By following the path of the
fundamental frequency versus the modulating axial force, it is also possible to find the non-dimensional
critical load inducing elastic static buckling. In the following, the mass and stiffness matrices for the
three different boundary conditions that were investigated will be reported, and the relevant results
for the fundamental frequency will be presented and shown in graphics.

3.1.1 Hinged beam

In this case, by the comparison functions of the set (18) provide the matrixes of masses and stiffnesses,
as follows. According to the potential energy density U1, it is

M1=

 1
2

(
−π2γ − 1

)
0 0 0

0 1
2

(
−4π2γ − 1

)
0 0

0 0 1
2

(
−9π2γ − 1

)
0

0 0 0 1
2

(
−16π2γ − 1

)


K1=

 − 1
2
π2

(
π4τ2 + π2 − N̂

)
0 0 0

0 2π2
(
N̂ − 4

(
4π4τ2 + π2

))
0 0

0 0 9
2
π2

(
N̂ − 9

(
9π4τ2 + π2

))
0

0 0 0 8π2
(
N̂ − 16

(
16π4τ2 + π2

))

 (21)

while according to the potential energy density U2 it is

M2=

 1
2

(
−π2γ − 1

)
0 0 0

0 1
2

(
−4π2γ − 1

)
0 0

0 0 1
2

(
−9π2γ − 1

)
0

0 0 0 1
2

(
−16π2γ − 1

)


K2=

− 1
2
π2

(
π4α2τ2 + π2 − N̂

)
0 0 0

0 2π2
(
N̂ − 4

(
4π4α2τ2 + π2

))
0 0

0 0 9
2
π2

(
N̂ − 9

(
9π4α2τ2 + π2

))
0

0 0 0 8π2
(
N̂ − 16

(
16π4α2τ2 + π2

))


(22)

and according to the potential energy density U3 it is

M3 =

 1
2

(
−π2γ − 1

)
0 0 0

0 1
2

(
−4π2γ − 1

)
0 0

0 0 1
2

(
−9π2γ − 1

)
0

0 0 0 1
2

(
−16π2γ − 1

)


K3=

− 1
2
π2

(
π4α2τ2 + π2 − N̂

)
0 0 0

0 2π2
(
N̂ − 4

(
4π4α2τ2 + π2

))
0 0

0 0 9
2
π2

(
N̂ − 9

(
9π4α2τ2 + π2

))
0

0 0 0 8π2
(
N̂ − 16

(
16π4α2τ2 + π2

))


(23)
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It is apparent that the stiffness matrix associated with the potential energy density U1 does not
contain the participation factor α, hence it is not affected by strain gradient elasticity. On the other
hand, the mass and stiffness matrices associated with the potential energy densities U2,U3 are the
same, and would coincide with those in eq. (21) when α = 1.

By standard operations, the approximated non-dimensional fundamental angular frequencies are

Ω1 =
π
√
−N̂ + π4τ2 + π2√

π2γ + 1
, Ω2 =

π
√
π4α2τ2 − N̂ + π2√

π2γ + 1
, Ω3 =

π
√
π4α2τ2 − N̂ + π2√

π2γ + 1
, (24)

i.e., in closed form, where the subscript refers to the relevant potential energy density in eq. (4).

(a) τ = 0.1 (b) τ = 0.2

(c) τ = 0.3 (d) τ = 0.4

(e) τ = 0.5

Figure 4: Fundamental angular frequencies in terms of N̂ , α, parametrised by τ , for U1.
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In order to present some graphics for the fundamental frequencies provided by eq. (24), with no
restrictions in generality it was set γ = .01. Indeed, the Euler-Bernoulli, purely flexible, model is
descriptive enough of beam behaviour when the beams are slender enough, that is, if the characteristic
dimension of their cross-section is much smaller than the length of its axis. If we admit, for the sake
of simplicity, this ratio to be one tenth, the chosen value for γ, see eq. (13), appears to be reasonable
enough. Then, it is possible to plot the variation of the non-dimensional fundamental frequencies Ω as
a function of N̂ and α as τ varies; the set of plots is shown in fig.4, pertaining to the potential energy
density U1, and in fig. 5 and fig. 6, pertaining to the potential energy densities U2,U3, respectively.

(a) τ = 0.1 (b) τ = 0.2

(c) τ = 0.3 (d) τ = 0.4

(e) τ = 0.5

Figure 5: Fundamental angular frequencies in terms of N̂ , α, parametrised by τ , for U2.

A look at the field equation (10) and to the closed-form expression of the approximated non-

10



dimensional fundamental frequencies in eq. (24) shows that the results provided by the potential
energy densities U2,U3 shall be the same, and this is confirmed by the graphs presented in figs. 5, 6.

(a) τ = 0.1 (b) τ = 0.2

(c) τ = 0.3 (d) τ = 0.4

(e) τ = 0.5

Figure 6: Fundamental angular frequencies in terms of N̂ , α, parametrised by τ , for U3

Remark that, as already pointed out, the graphs in fig. 5 put into evidence that the fundamental
frequency corresponding to the potential energy density U1 does not depend on the participation factor
α, and is monotonically decreasing with the modulating force (remember that N̂ is positive in com-
pression). This behaviour is maintained for increasing non-dimensional nonlocal elasticity parameter
τ , and the apparent effect is an increase in the fundamental frequency, i.e., a higher stiffness of the
system. This is physically reasonable, since nonlocal effects, usually seen as softening, are activated
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by a transverse static (conservative) load, see the potential energy densities (4), while here no static
transverse load is present, and the only transverse force is inertia. Roughly speaking, a greater value
of the Eringen parameter implies the interaction of ever increasing long-range springs all on the same
material point, thus a greater apparent material rigidity, and a greater fundamental frequency.

On the other hand, for the other potential energy densities, the fundamental frequency is in general
non-monotonic with respect to both the participation factor α and the modulating force N̂ , while it is
monotonically increasing with the nonlocal parameter τ , for the same reason pointed out just above.
The fundamental frequency decreases, then increases, passing from negative to positive values of the
participation factor α, and attains a minimum for α = 0, i.e., when no strain gradient effect is present.
Indeed, the fundamental frequency depends on α2, see eq. (24), then its behaviour is symmetric with
respect to α = 0. The fundamental frequency is quickly decreasing with the modulating force for small
values of the nonlocal elasticity parameter, while this decrease is quite slow for high values of τ , thus
confirming once again that the material exhibits an apparent higher stiffness.

When α = 1, the three energy densities coalesce into a single one, and the variation of Ω with
N̂ , parametrised by τ , is shown in fig. 7: as the modulating force grows, the fundamental frequency
decreases until it vanishes, as foreseen by the theory; the nonlocal parameter renders a stiffer behaviour.

-10 10 20 30
N


5

10

15

20

Ω

τ2=0.1

τ2=0.2

τ2=0.3

τ2=0.4

τ2=0.5

Figure 7: Variation of Ω with N̂ , with τ as a parameter.

The value of N̂ inducing a null fundamental frequency is the buckling critical load; eq. (24) yields

N̂c1 = π4τ2 + π2 N̂c2 = π4α2τ2 + π2 N̂c3 = π4α2τ2 + π2 (25)

and the variation of the critical loads with the material parameters of interest is shown in fig. 8. Once
again, the results for the second and the third potential energy densities are undistinguishable, while
those for U1 do not depend on the participation factor α. The effect of nonlocal elasticity is stiffening,
since here no static transverse load is present, and the only transverse force is inertia.
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(a) U1 (b) U2 (c) U3

Figure 8: Critical load in terms of τ, α for the three potential energy densities.

3.1.2 A beam with two transverse sliders

In this case, by the comparison functions of the set (19) provide the matrixes of masses and stiffnesses,
as follows. According to the potential energy density U1, it is

M1 =

(
−1 0 0 0

0 −π2γ − 1 0 0

0 0 −4π2γ − 1 0

0 0 0 −9π2γ − 1

)

K1 =

 0 0 0 0

0 −π2
(
π4τ2 + π2 − N̂

)
0 0

0 0 4π2
(
N̂ − 4

(
4π4τ2 + π2

))
0

0 0 0 9π2
(
N̂ − 9

(
9π4τ2 + π2

))

 (26)

while according to the potential energy density U2 it is

M2 =

(
−1 0 0 0

0 −π2γ − 1 0 0

0 0 −4π2γ − 1 0

0 0 0 −9π2γ − 1

)

K2 =

 0 0 0 0

0 −π2
(
π4α2τ2 + π2 − N̂

)
0 0

0 0 4π2
(
N̂ − 4

(
4π4α2τ2 + π2

))
0

0 0 0 9π2
(
N̂ − 9

(
9π4α2τ2 + π2

))

 (27)

and according to the potential energy density U3 it is

M3 =

(
−1 0 0 0

0 −π2γ − 1 0 0

0 0 −4π2γ − 1 0

0 0 0 −9π2γ − 1

)

K3 =

 0 0 0 0

0 −π2
(
π4α2τ2 + π2 − N̂

)
0 0

0 0 4π2
(
N̂ − 4

(
4π4α2τ2 + π2

))
0

0 0 0 9π2
(
N̂ − 9

(
9π4α2τ2 + π2

))

 (28)

to which the following expressions of the fundamental frequency correspond

Ω1 =
π
√
−N̂ + π4τ2 + π2√

π2γ + 1
, Ω2 =

π
√
π4α2τ2 − N̂ + π2√

π2γ + 1
, Ω3 =

π
√
π4α2τ2 − N̂ + π2√

π2γ + 1
(29)

It is worth remarking that, even though we face a different benchmark scheme from the preceding one
(doubly hinged beam), the expressions for the approximated non-dimensional fundamental frequencies,
hence also of the critical loads, are the same. This is due to the fact that the comparison functions are
simply shifted with respect to those for the doubly hinged beam, and the field equation, involving only
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even derivatives, acts in the same way on sinus and cosinus functions; Galerkin approach operates in
the same way, hence it is reasonable to expect the same results.

3.1.3 A beam with a transverse slider and a hinge

This benchmark case may be seen as a combination of the preceding two. By the comparison functions
of the set (20) provide the matrixes of masses and stiffnesses, as follows. According to the potential
energy density U1, it is

M1 =

 1
8

(
−9π2γ − 4

)
0 0 0

0 1
8

(
−25π2γ − 4

)
0 0

0 0 1
8

(
−49π2γ − 4

)
0

0 0 0 1
8

(
−81π2γ − 4

)



K1=

 9
128

(
16N̂π2 − 9π4

(
9π2τ2 + 4

))
0 0 0

0 25
128

(
16N̂π2 − 25π4

(
25π2τ2 + 4

))
0 0

0 0 49
128

(
16N̂π2 − 49π4

(
49π2τ2 + 4

))
0

0 0 0 81
128

(
16N̂π2 − 81π4

(
81π2τ2 + 4

))


(30)

while according to the potential energy density U2 it is

M2 =

 1
8

(
−9π2γ − 4

)
0 0 0

0 1
8

(
−25π2γ − 4

)
0 0

0 0 1
8

(
−49π2γ − 4

)
0

0 0 0 1
8

(
−81π2γ − 4

)



K2=

 9
128

(
16N̂π2−9π4

(
9π2α2τ2+4

))
0 0 0

0 25
128

(
16N̂π2−25π4

(
25π2α2τ2+4

))
0 0

0 0 49
128

(
16N̂π2−49π4

(
49π2α2τ2+4

))
0

0 0 0 81
128

(
16N̂π2−81π4

(
81π2α2τ2+4

))


(31)

while according to the potential energy density U3 it is

M3 =

 1
8

(
−9π2γ − 4

)
0 0 0

0 1
8

(
−25π2γ − 4

)
0 0

0 0 1
8

(
−49π2γ − 4

)
0

0 0 0 1
8

(
−81π2γ − 4

)



K3=

 9
128

(
16N̂π2−9π4

(
9π2α2τ2+4

))
0 0 0

0 25
128

(
16N̂π2−25π4

(
25π2α2τ2+4

))
0 0

0 0 49
128

(
16N̂π2−49π4

(
49π2α2τ2+4

))
0

0 0 0 81
128

(
16N̂π2−81π4

(
81π2α2τ2+4

))


(32)

that provide the following expressions for the approximated non-dimensional fundamental frequencies

Ω1=
3π
√

81π4τ2 + 36π2 − 16N̂

4
√

9π2γ + 4
, Ω2=

3π
√

81π4α2τ2 − 16N̂ + 36π2

4
√

9π2γ + 4
, Ω3 = Ω2 (33)

As it was made for the case of the doubly hinged beam, the values provided by eq. (33) are plotted
as a function of N̂ and α, as τ varies, in fig. 9, fig. 10 and fig. 11 for the three potential energy
densities, respectively.
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(a) τ = 0.1 (b) τ = 0.2

(c) τ = 0.3 (d) τ = 0.4

(e) τ = 0.5

Figure 9: Fundamental angular frequencies in terms of N̂ , α, parametrised by τ , for U1.

Remarks similar to those provided for the doubly hinged beam can be produced in this case as
well, confirming that the model is robust, and that the obtained results are reliable. Remark that the
fundamental frequency is always higher in this case with respect to that of the doubly hinged case,
which was to be expected, since a slider is a stiffer constraint with respect to a hinge, and the global
rigidity of the system is expected to be higher with respect to the simply supported beam.
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(a) τ = 0.1 (b) τ = 0.2

(c) τ = 0.3 (d) τ = 0.4

(e) τ = 0.5

Figure 10: Fundamental angular frequencies in terms of N̂ , α, parametrised by τ , for U2.

Also in this case, the results provided by U2 and U3 coincide, due to the shape of the potential
energy density; again, remarks similar to those provided for the simply supported case can be brought,
and the fundamental frequency is again higher; the values of the modulating forces are also rematkably
greater than in the simply supported case.
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(a) τ = 0.1 (b) τ = 0.2

(c) τ = 0.3 (d) τ = 0.4

(e) τ = 0.5

Figure 11: Fundamental angular frequencies in terms of N̂ , α, parametrised by τ , for U3.

When α = 1, the three Ui coalesce into a single one, and the variation of Ω with N̂ , parametrised
by τ , is shown in fig. 12: as the modulating force grows, the fundamental frequency decreases until it
vanishes, as foreseen by the theory; the nonlocal parameter renders a stiffer behaviour again.
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Figure 12: Variation of Ω with N̂ , with τ as a parameter.

The value of N̂ inducing a null fundamental frequency is the buckling critical load; eq. (33) provides
its values by making the denominator of the fundamental frequency vanish. The results are depicted
in fig.13 as α and τ vary.

(a) U1 (b) U2 (c) U3

Figure 13: Critical load in terms of τ, α for the three potential energy densities.

Similar to what was said on behalf of the fundamental frequencies, the critical load for the first
potential energy density does not depend on the participation factor, and it grows as the nonlocal
factor increase, for the reasons commented and thoroughly discussed above. The critical loads for the
potential energy densities U2,U3 coincide, hence their graph is the same: the system grows stiffer when
the nonlocal parameter increases, while it exhibits a non-monotonic behaviour with respect to the
participation factor, attaining a minimum when α = 0, i.e., when no strain gradient effect is activated.

4 Final remarks

In this paper, we presented a first set of approximated results, obtained by means of a Galerkin
approach, on the fundamental frequency and the critical loads of nanobeams for which a recent proposal
of potential energy density combines the effects of nonlocal and strain gradient elasticity. By means of
a set of few comparison functions, three benchmark cases were investigated, and the relevant results
were presented and discussed. In this sense, these results are new, since they derive from an innovative
proposal of combined constitutive relation. Thus, a comparison with existing literature is still under
investigation, since the combination of nonlocality and strain gradient elasticity is still a debated topic.
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As a general result, there is a potential energy density for which the fundamental frequency and the
critical load do not depend on the strain gradient elasticity participation factor; the other densities
provide equal result, and the nonlocal effect has a stiffening effect on the fundamental frequencies and
the critical loads, since the only transverse force is inertia.

Further developments of this investigation are in due course, and will consider the linear response
to harmonic excitation, when the material properties vary, in a way similar to that examined here.
The results will be reported elsewhere.
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