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The fractional airy transform

Alireza Ansari ∗

Abstract
In this note, we introduce the fractional Airy transform using the higher
order derivatives of the Airy function and the Airy polynomials. Then,
we show that the new integral transform is coincided to the natural Airy
transform in particular case of the scaling parameter. Some properties
of this transform are also given.

2000 AMS Classification: Primary 33C10; Secondary 65R10.

Keywords: Airy function, Airy polynomials, Airy transform.
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1. Introduction and Preliminaries
The general solution of the Airy differential equation

(1.1) y′′ − xy = 0, x ∈ R,

is given by

(1.2) y(x) = c1Ai(x) + c2Bi(x),

where Ai(x) and Bi(x) are the Airy functions of first and second kinds, respectively, such
that [2, 10]

Ai(x) =
1

π

∫ ∞
0

cos(xt+
t3

3
)dt,(1.3)

Bi(x) =
1

π

∫ ∞
0

(
ext−

t3

3 + sin(xt+
t3

3
)

)
dt.(1.4)

In view of the Airy function of first kind Ai(x), Widder in [12] introduced the Airy trans-
form with scaling parameter α in terms of the convolution product of Fourier transform
as follows

(1.5) Âα{f(ξ);x} =
1

|α|

∫ ∞
−∞

f(ξ)Ai(
x− ξ
α

)dξ, α ∈ R.

∗Department of Applied Mathematics, Faculty of Mathematical Sciences, Shahrekord Univer-
sity, P. O. Box 115, Shahrekord, Iran
Email: alireza_1038@yahoo.com
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The inversion formula of the above transform is easily obtained via the orthogonality
relation of the Airy function

(1.6)
1

α2

∫ ∞
−∞

Ai(
x− y
α

)Ai(
x− z
α

)dx = δ(y − z),

as Â−1
α = Â−α.

Later, Hunt in [6] and Bertoncini et al. in [4] used this transform in molecular physics
and in evaluation of quantum transport, respectively. For more contributions of the Airy
transform, for example, Babusci et al. [3] obtained the formal solution of the third order
PDE

(1.7)
∂u

∂t
=
∂3u

∂x3
, u(x, 0) = f(x), t > 0

with respect to the Airy transform of the function f(x), that is

(1.8) u(x, t) =
1

3
√
3t

∫ ∞
−∞

Ai(
x− ξ
3
√
3t

)f(ξ)dξ.

For more details of the above solution in the Airy diffusion equation, see [10]. As another
application of this transform, Jiang et al. [5] used the two dimensional Airy transform
with kernel wαβ(xy) = 1

|αβ|Ai(
x
α
)Ai( y

β
) for analyzing the Airy beams in optics and Torre

[9] applied the Airy transform to derive the three-variable Hermite polynomials and their
generating functions. Also, Varlamov [11] obtained the Riesz fractional derivative of the
product of Airy transforms and presented this product in terms of the Bessel function of
zero order J0(x) and the Riesz fractional derivative of the Airy function.
Now in this paper, among the Airy transform of the elementary functions (which can be
found in [10]), we concern to the function xn, n ∈ N, which its Airy transform leads us
to the Airy polynomials Pin(x),

(1.9) Âα{ξn;x} = αnPin(
x

α
) =

1

|α|

∫ ∞
−∞

ξnAi(
x− ξ
α

)dξ.

Some important properties of the Airy polynomials can be written by the following
relations which leads us to the definition of fractional Airy transform in Section 2.

Property 1: The bi-orthogonality relation between the Airy polynomials and the
higher order derivatives of Airy function is given by [1]

(1.10)
∫ ∞
−∞

Pin(x)Ai
(n)(x)dx = (−1)nn!.

Property 2: The Airy transform of the Airy polynomials is given in terms of the
Airy polynomials as follows [9]

(1.11) Âα{Pin(ξ);x} = (1 + α3)
n
3 Pin

(
x

(1 + α3)
1
3

)
.

Property 3: The higher order derivatives of the Airy function in Property 1, can
be simplified into the following relation [7, 8]

(1.12) Ai(n)(x) = pn(x)Ai(x) + qn(x)Ai
′(x), n ∈ N,

where the polynomials pn and qn are given by the recurrence relations

pn+2(x) = xpn(x) + npn(x),(1.13)
qn+2(x) = xqn(x) + nqn(x),(1.14)
pn+1(x) = p′n(x) + xqn(x),(1.15)
qn+1(x) = q′n(x) + pn(x),(1.16)
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with the generating functions formulas

π[Bi′(x)Ai(x+ t)−Ai′(x)Bi(x+ t)] =

∞∑
n=0

pn(x)
tn

n!
,(1.17)

π[Ai(x)Bi(x+ t)−Bi(x)Ai(x+ t)] =

∞∑
n=0

qn(x)
tn

n!
.(1.18)

2. The Fractional Airy Transform
Now in this section, using the obtained results in Section 1, we introduce the fractional

Airy transform. In the following lemma, the Airy function is applied as a generating
function.

2.1. Lemma. For a, b ∈ R, the following series holds for the Airy polynomials and the
higher order derivatives of Airy function

(2.1)
∞∑
n=0

Pin(bx)Ai
(n)(y)

an

n!
=

1

(a3 − 1)
1
3

Ai

(
−abx− y
(a3 − 1)

1
3

)
.

Proof: Setting the relations (1.9) and (1.12) in the left hand side of (2.1), we get the
above series as

S =

∫ ∞
−∞

[
Ai(y)

(
∞∑
n=0

(aξ)n

n!
pn(y)

)
+

(
Ai′(y)

∞∑
n=0

(aξ)n

n!
qn(y)

)]
Ai(bx− ξ)dξ

= πAi(y)

∫ ∞
−∞

[
Bi′(y)Ai(y + aξ)−Ai′(y)Bi(y + aξ)

]
Ai(bx− ξ)dξ

+ πAi′(y)

∫ ∞
−∞

[Ai(y)Bi(y + aξ)−Bi(y)Ai(y + aξ)]Ai(bx− ξ)dξ

= π
(
Ai(y)Bi′(y)−Ai′(y)Bi(y)

) ∫ ∞
−∞

Ai(y + aξ)Ai(bx− ξ)dξ.(2.2)

Since theWronskian of functionsAi(y) andBi(y) is equal toW (Ai(y), Bi(y)) = Ai(y)Bi′(y)−
Ai′(y)Bi(y) = 1

π
, the last integral in (2.2) is simplified to

(2.3) S =
1

(a3 − 1)
1
3

Ai

(
−abx− y
(a3 − 1)

1
3

)
,

where we used the following identity for simplification [10]

(2.4)
∫ ∞
−∞

Ai(
ξ + a

α
)Ai(

ξ + b

β
)dξ =

|αβ|
|β3 − α3| 13

Ai

(
b− a

(β3 − α3)
1
3

)
, β 6= α.

2.2. Theorem. The following relation

(2.5) Âαβ{f(ξ);x} =
1

|(1 + α3)β − 1|

∫ ∞
−∞

Ai

(
(1 + α3)

β−1
3 x− ξ

(1 + α3)β − 1

)
f(ξ)dξ,

is the fractional Airy transform of order β ∈ R.

Proof: According to the relation (1.11), we intend to find the fractional Airy trans-
form such that

(2.6) Âαβ{Pin(ξ);x} = (1 + α3)
βn
3 Pin

(
x

(1 + α3)
1
3

)
, β ∈ R.
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For this purpose, we suppose that the function f(x) can be expanded in terms of the
Airy polynomials as

(2.7) f(x) =

∞∑
n=0

anPin(x),

where the coefficients an are found from the bi-orthogonal property of Airy polynomials
(1.10)

(2.8) an =
(−1)n

n!

∫ ∞
−∞

Ai(n)(y)f(y)dy.

Finally, on account of equation (2.6), the effect of Âαβ on f(x) is

(2.9) Âαβ{f(ξ);x} =
∞∑
n=0

an(1 + α3)
βn
3 Pin

(
x

(1 + α3)
1
3

)
,

which by substituting the coefficients (2.8) into (2.9), we get Âαβ as

(2.10) Âαβ{f(ξ);x} =
∫ ∞
−∞

(
∞∑
n=0

Pin

(
x

(1 + α3)
1
3

)
Ai(n)(ξ)

[−(1 + α3)
β
3 ]n

n!

)
f(ξ)dξ.

Now, by using Lemma 2.1 and setting a = | − (1 + α3)
β
3 |, b = | 1

(1+α3)
1
3
|, we obtain the

fractional Airy transform Âαβ in the following form

(2.11) Âαβ{f(ξ);x} =
1

|(1 + α3)β − 1|

∫ ∞
−∞

Ai

(
(1 + α3)

β−1
3 x− ξ

(1 + α3)β − 1

)
f(ξ)dξ.

2.3. Remark. It is obvious that, by setting β = 1, α3 = λ in (2.5), we obtain the natural
Airy transform with scaling parameter λ.

2.4. Remark. The relation (2.5) shows the fractional Airy transform is a natural Airy
transform with the modified scaling parameter 1

(1+α3)β−1
, that is

(2.12) Âαβ{f(ξ);x} = Â 1

(1+α3)β−1

{f(ξ); (1 + α3)
β−1
3 x}.

2.5. Remark. According to the relation (1.6), the inversion formula of fractional Airy
transform (2.5) is presented by

(2.13) f(ξ) =
1

|(1 + α3)β − 1|

∫ ∞
−∞

Ai

(
(1 + α3)

β−1
3 x− ξ

(1 + α3)β − 1

)
Âαβ{f(ξ);x}dx,

which implies that for the value γ = 1
(1+α3)β−1

, Â−1
γ = Â−γ .

2.6. Example. Using the Airy transform of f(ξ) = eikξ for k ∈ R, [10]

Âαβ{e
ikξ;x} =

1

(1 + α3)β − 1

∫ ∞
−∞

Ai

(
(1 + α3)

β−1
3 x− ξ

(1 + α3)β − 1

)
eikξdξ,

= e
i

(
k(1+α3)

β−1
3 x+ 1

3
1

((1+α3)β−1)3
k3

)
,(2.14)

the fractional Airy transform of the trigonometric functions sin(kξ) and cos(kξ) are given
by the following relations

(2.15) Âαβ{cos(kξ);x} = cos

(
k(1 + α3)

β−1
3 x+

1

3

1

((1 + α3)β − 1)3
k3
)
,
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(2.16) Âαβ{sin(kξ);x} = sin

(
k(1 + α3)

β−1
3 x+

1

3

1

((1 + α3)β − 1)3
k3
)
.

2.7. Corollary. Let Fαβ (x) be the fractional Airy transform of f(ξ), then the fractional
Airy transform of ξf(ξ) is

(2.17) Âαβ{ξf(ξ);x} = δxFαβ (x)−
γ3

δ2
F ′′αβ (x),

where the parameters γ and δ are given by

(2.18) γ =
1

(1 + α3)β − 1
, δ = (1 + α3)

β−1
3 .

Proof: According to the definition of fractional Airy transform of F ′′αβ (x) and relation
(1.1), we easily arrive at (2.17).

2.8. Example. Setting f(ξ) = 1
ξ
in Corollary 2.7 and using the fact that Âαβ{1;x} = 1,

we get the fractional Airy transform of f(ξ) = 1
ξ
in terms of the Scorer function [10]

(2.19) Gi(x) =
1

π

∫ ∞
0

sin(xt+
t3

3
)dt,

as follows

(2.20) Âαβ{
1

ξ
;x} = π

γ
Gi(

δ

γ
x).

2.9. Corollary. The Parseval identity for the fractional Airy transform is

(2.21)
∫ ∞
−∞

f(ξ)g(ξ)dξ =

∫ ∞
−∞

Âαβ{f(ξ);x}Âαβ{g(ξ);x}dx.

Proof: Using the orthogonality relation of the Airy function (1.6), the proof is com-
pleted.

2.10. Example. Setting f(ξ) = 1
ξ
and g(ξ) = sin(kξ) in Corollary 2.9, and using the

relations (2.16) and (2.23), we get the value of following well-known integral in terms of
the Scorer function [10]

(2.22)
∫ ∞
−∞

Gi(
δ

γ
x) sin

(
kδx+

k3

3γ3

)
dx = γ sgn(k),

where we used the following fact for computation

(2.23)
∫ ∞
−∞

sin(kξ)

ξ
dξ = πsgn(k).

3. Concluding Remarks
This paper provides a fractionalization form of the Airy transform. On the base of

the Airy polynomials, we introduced a generalized form of the natural Airy transform
and named it as the fractional Airy transform. Some properties of this transform such
as transformations of elementary functions and Parseval identity were also obtained. It
is hope that the employed integral transform can be considered as a promising approach
in a fairly wide context of applied mathematics and physics in near future.
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Abstract
The notion of conjugate connection is introduced in the almost tangent
geometry and its properties are studied from a global point of view.
Two variants for this type of connections are also considered in order
to find the linear connections making parallel a given almost tangent
structure.
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Introduction
Let F be a tensor field of (1, 1)-type on a given smooth manifold M . An interesting

object in the geometry of pair (M,F ) is provided by the class of F -linear connections i.e.
linear connections ∇ making F parallel: ∇F = 0. In order to determine this class, in [9]
is introduced the notion of F -conjugate connection associated to a fixed (non-necessary
F -connection) ∇. By denoting ∇(F ) this F -conjugate connection we have studied the
geometry of (M,F,∇,∇(F )) until now for two cases: almost complex structures in [1]
and almost product structures in [2].

The present work is devoted to another remarkable type of tensor fields of (1, 1)-
type, namely almost tangent structures. These structures were introduced by Clark and
Bruckheimer [5] and Eliopoulos [10] around 1960 and have been investigated by several
authors, see [3], [6]-[8], [16], [18]. As it is well-known, the tangent bundle of a manifold
carries a canonical integrable almost tangent structure, hence the name. This tangent
structure plays an important rôle in the Lagrangian description of analytical mechanics,
[7]-[8], [12].

Recall that we are interested in the class of J-linear connections since, according to
[15, p. 120], the existence of a symmetric (torsion-free) one in this class implies the
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integrability of J in the sense of G-structures as is discussed below; for example, J-linear
connections of Levi-Civita type are studied in [11]. An important difference between
the former structures (almost complex, almost product) and the later (almost tangent)
is given by the fact that an almost tangent structure J is a degenerate tensor field due
to its nilpotence J2 = 0, see the following Section. An example where this difference is
obvious is the duality property (∇(F ))(F ) = ∇ which holds for a non-degenerate F while
for almost tangent structures we have ii) of our Proposition 2.1.

The content of paper is as follows. After a short survey in almost tangent geometry
we introduce the tangent conjugate connection ∇(J) in Section 2 following the pattern
of [1]-[2]. Its properties are studied following the same way as in the cited papers; for
example the difference ∇(J)−∇ is expressed again in terms of two tensor fields of (1, 2)-
types called structural and virtual tensor fields. We study also the behavior of the tangent
conjugate connections for a family of anti-commuting almost tangent structures. In the
last two Sections we generalize ∇(J), firstly through an exponential process and secondly
with a general tensor field of (1, 2)-type.

1. Almost tangent geometry revisited
Let M be a smooth, m-dimensional real manifold for which we denote: C∞ (M)-the

real algebra of smooth real functions onM , Γ(TM)-the Lie algebra of vector fields onM ,
T rs (M)-the C∞ (M)-module of tensor fields of (r, s)-type on M . An element of T 1

1 (M)
is usually called vector 1-form or affinor.

Recall the concept of almost tangent geometry:

1.1. Definition. J ∈ T 1
1 (M) is called almost tangent structure on M if it has constant

rank and:
ImJ = ker J. (1.1)

The pair (M,J) is called almost tangent manifold.

The name is motivated by the fact that (1.1) implies the nilpotence J2 = 0 exactly as
the natural tangent structure of tangent bundles. Denoting rankJ = n it results m = 2n.
If in addition, we suppose that J is integrable i.e.:

NJ (X,Y ) := [JX, JY ]− J [JX, Y ]− J [X, JY ] + J2 [X,Y ] = 0 (1.2)

then J is called tangent structure and (M,J) is called tangent manifold.

From [17, p. 3246] we get some features of tangent manifolds:
(i) the distribution ImJ (= ker J) defines a foliation denoted V (M) and called the vertical
distribution.

1.2. Example. M = R2, Je (x, y) = (0, x) is a tangent structure with ker Je the Y -axis,
hence the name. The subscript e comes from "Euclidean".
(ii) there exists an atlas on M with local coordinates (x, y) =

(
xi, yi

)
1≤i≤n such that

J = ∂
∂yi
⊗ dxi i.e.:

J

(
∂

∂xi

)
=

∂

∂yi
, J

(
∂

∂yi

)
= 0. (1.3)

We call canonical coordinates the above (x, y) and the change of canonical coordinates
(x, y)→ (x̃, ỹ) is given by: {

x̃i = x̃i (x)

ỹi = ∂x̃i

∂xa
ya +Bi (x) .

(1.4)
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It results an alternative description in terms of G-structures. Namely, a tangent structure
is a G-structure with:

G = {C =

(
A On
B A

)
∈ GL(2n,R); A ∈ GL(n,R), B ∈ gl(n,R)} (1.5)

and G is the invariance group of matrix J =

(
On On
In On

)
i.e. C ∈ G if and only if

C · J = J · C.

The natural almost tangent structure J ofM = TN is an example of tangent structure
having exactly the expression (1.3) if (xi) are the coordinates on N and (yi) are the
coordinates in the fibers of TN → N . Also, Je of Example 1.2 has the above expression
(1.3) with n = 1, whence it is integrable. A third class of examples is obtained by duality:
if J is an (integrable) endomorphism with J2 = 0 then its dual J∗ : Γ(T ∗M)→ Γ(T ∗M),
given by J∗α := α ◦ J for α ∈ Γ(T ∗M), is (integrable) endomorphism with (J∗)2 = 0.

2. Basic properties of tangent conjugate connections
Let ∇ be a linear connection on the almost tangent manifold (M,J) and define the

tangent conjugate connection of ∇ by:

∇(J) := ∇− J ◦ ∇J. (2.1)

Remark that ∇(J) coincides with ∇ if and only if ∇J ⊆ ker J = ImJ which means the
inclusion ∇(Γ(TM)× ker J) ⊆ ker J = ImJ , in particular if ∇ is a J-linear connection;
for another case see i) of Proposition 2.3. For any X,Y ∈ Γ(TM) we get:

∇(J)
X Y = ∇XY − J(∇XJY ). (2.2)

A first set of properties for this linear connection are given by:

2.1. Proposition. The tangent conjugate connection ∇(J) satisfies:
i) ∇(J)J = ∇J , which means that ∇ and ∇(J) are simultaneous J-linear connections or
not;
ii) ∇2(J) =: (∇(J))(J) = 2∇(J)−∇; more generally ∇n(J) = n∇(J)−(n−1)∇ for n ∈ N∗;
iii) its torsion is T∇(J) = T∇ − J ◦ d∇J where d∇ is the exterior covariant derivative
induced by ∇, namely (d∇J)(X,Y ) := (∇XJ)Y − (∇Y J)X;
iv) its curvature is

R∇(J)(X,Y, Z) = R∇(X,Y, Z)−∇XJ(∇Y JZ) +∇Y J(∇XJZ)−

−J [∇XJ(∇Y Z)−∇Y J(∇XZ)−∇[X,Y ]JZ]. (2.3)

In particular:

R∇(J)(X,Y, JZ) = R∇(X,Y, JZ)− J [∇XJ(∇Y JZ)−∇Y J(∇XJZ)]. (2.4)

Proof The general part of ii) follows by induction while for iii) a direct calculus yields
T∇(J)(X,Y ) = T∇(X,Y )− J(∇XJY −∇Y JX). 2

Let f : M →M be a tangentomorphism, that is an automorphism of the G-structure
defined by J :

f∗ ◦ J = J ◦ f∗. (2.5)

Recall that f is an affine transformation for ∇ if for any X,Y ∈ Γ(TM):

f∗(∇XY ) = ∇f∗Xf∗Y. (2.6)

These notions are connected by:
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2.2. Proposition. If the tangentomorphism f is an affine transformation for ∇ then f
is also affine transformation for ∇(J).

Proof We have:

f∗(∇(J)
X Y ) = f∗(∇XY )− (f∗ ◦ J)(∇XJY ) = ∇f∗Xf∗Y − J(f∗(∇XJY )) =

= ∇f∗Xf∗Y − J((∇f∗Xf∗(JY ))) = ∇f∗Xf∗Y − J((∇f∗XJ(f∗Y ))) = ∇(J)
f∗X

f∗Y

which yields the conclusion. 2

A second class of properties for the tangent conjugate connection is provided by:

2.3. Proposition. i) If J is ∇-recurrent i.e. ∇J = η⊗J for η a 1-form, then ∇(J) = ∇.
ii) If ∇ is symmetric and ∇J = η ⊗ I then ∇(J) = ∇ − η ⊗ J and ∇(J) is a quarter-
symmetric connection.

Proof i) In this case we have J ◦ ∇J = 0.
ii) Recall after [1, p. 122] that the quarter-symmetry means the existence of a 1-form
π and a tensor field F of (1, 1)-type such that T∇(J) = F ∧ π := F ⊗ π − π ⊗ F .
From Proposition 2.1 we have T∇(J)(X,Y ) = T∇(X,Y ) − η(X)JY + η(Y )JX, and the
hypothesis T∇ = 0 yields the previous equation with F = J and π = η. 2

2.4. Example. Let N be a smooth n-dimensional manifold and M = TN its tangent
bundle; hence m = 2n. Let {xi; 1 ≤ i ≤ n} be a local system of coordinates on N and
consider its lift to M given by {xi, yi; 1 ≤ i ≤ n} with yi the coordinates on the fibres of
TN . The canonical almost tangent structure J of M has the local expression (1.3) and
it is integrable. Fix a general linear connection ∇ on M with local Christoffel symbols Γ
as follows: 

∇ ∂
∂xi

∂
∂xj

= Γ
(1)k
ij

∂
∂xk

+ Γ
(2)k
ij

∂
∂yk

∇ ∂
∂xi

∂
∂yj

= Γ
(3)k
ij

∂
∂xk

+ Γ
(4)k
ij

∂
∂yk

∇ ∂
∂yi

∂
∂xj

= Γ
(5)k
ij

∂
∂xk

+ Γ
(6)k
ij

∂
∂yk

∇ ∂
∂yi

∂
∂yj

= Γ
(7)k
ij

∂
∂xk

+ Γ
(8)k
ij

∂
∂yk

.

(2.7)

Then its tangent conjugate connection has the expression:

∇(J)
∂
∂xi

∂
∂xj

= Γ
(1)k
ij

∂
∂xk

+
(

Γ
(2)k
ij − Γ

(3)k
ij

)
∂
∂yk

∇(J)
∂
∂xi

∂
∂yj

= Γ
(3)k
ij

∂
∂xk

+ Γ
(4)k
ij

∂
∂yk

∇(J)
∂
∂yi

∂
∂xj

= Γ
(5)k
ij

∂
∂xk

+
(

Γ
(6)k
ij − Γ

(7)k
ij

)
∂
∂yk

∇(J)
∂
∂yi

∂
∂yj

= Γ
(7)k
ij

∂
∂xk

+ Γ
(8)k
ij

∂
∂yk

.

(2.8)

A special case is important in applications: the initial connection ∇ is called distinguished
or d-connection if it preserves the linear structure of the fibres of M which means that:

Γ(2) = Γ(3) = Γ(6) = Γ(7) = 0. (2.9)

It results that∇ is a J-connection and then its tangent conjugate connection is∇(J) = ∇.



771

3. The structural and the virtual tensor fields
Remark that the tangent conjugate connection ∇(J) of ∇ can be written in another

form as:
∇(J) = ∇+ CJ∇ −BJ∇ (3.1)

where: {
CJ∇(X,Y ) := 1

2
[(∇JXJ)Y + (∇XJ)JY ]

BJ∇(X,Y ) := 1
2
[(∇JXJ)Y − (∇XJ)JY ].

(3.2)

which we call respectively, the structural and the virtual tensor field of ∇. We obtain
also the following expressions for them:{

CJ∇(X,Y ) = 1
2
[∇JXJY − J(∇JXY +∇XJY )]

BJ∇(X,Y ) = 1
2
[∇JXJY − J(∇JXY −∇XJY )].

(3.3)

We notice that they satisfy the following properties:
CJ∇(JX, Y ) = CJ∇(X, JY ) = − 1

2
J(∇JXJY ); CJ∇(JX, JY ) = 0

BJ∇(JX, Y ) = −BJ∇(X, JY ) = 1
2
J(∇JXJY ); BJ∇(JX, JY ) = 0

CJ∇(JX, Y ) = −BJ∇(JX, Y )

(3.4)

and the skew-symmetry (3.42) means that BJ∇(J ·, ·) is a vectorial 2-form. Another im-
portant property is that these tensor fields are invariant with respect to J-conjugation
of linear connections:

CJ∇(J) = CJ∇; BJ∇(J) = BJ∇. (3.5)

With respect to the invariance of these associated tensor fields under projective changes
we get that only CJ is invariant:

3.1. Proposition. Let ∇ and ∇′ be two linear projectively equivalent connections:

∇′ = ∇+ η ⊗ I + I ⊗ η (3.6)

for η a 1-form. Then CJ∇′ = CJ∇ and BJ∇′ = BJ∇+J ⊗ (η ◦J) while the tangent conjugate
connection ∇′(J) of ∇′ satisfies:

∇′(J) = ∇(J) + η ⊗ I + I ⊗ η − J ⊗ (η ◦ J) (3.7)

and so it is not invariant under projective equivalence.

Proof Follows form a direct computation. 2

4. Invariant distributions
Let D ⊂ TM be a fixed distribution considered as a vector subbundle of TM . As

usually, we denote by Γ(D) its C∞(M)-module of sections.

4.1. Definition. i) D is called J-invariant if X ∈ Γ(D) implies JX ∈ Γ(D).
ii) The linear connection ∇ restricts to D if Y ∈ Γ(D) implies ∇XY ∈ Γ(D) for any
X ∈ Γ(TM).

4.2. Example. The distribution DJ = ker J = ImJ is J-invariant.

If ∇ restricts to D then it may be considered as a connection in the vector bundle D.
From this fact, a connection which restricts to D is called sometimes adapted to D.
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4.3. Proposition. If the distribution D is J-invariant and the linear connection ∇
restricts to D then ∇(J) also restricts to D.

Proof Fix Y ∈ Γ(D). Then JY ∈ Γ(D) and for any X ∈ Γ(TM) we have ∇XY ,
∇XJY ∈ Γ(D). Therefore, J(∇XJY ) ∈ Γ(D) and so∇(J)

X Y = ∇XY−J(∇XJY ) ∈ Γ(D).
2

4.4. Example. Returning to Example 4.2 we have that ∇X = ∇(J)
X on DJ = ker J =

ImJ .

A more general notion like restricting to a distribution is that of geodesically invariance
[4, p. 118]. The distribution D is ∇-geodesically invariant if for every geodesic γ : [a, b]→
M of ∇ with γ̇(a) ∈ Dγ(a) it follows γ̇(t) ∈ Dγ(t) for any t ∈ [a, b]. The cited book gives
a necessary and sufficient condition for a distribution D to be ∇-geodesically invariant:
for any X, Y ∈ Γ(D), the symmetric product 〈X : Y 〉∇ := ∇XY + ∇YX to belong to
Γ(D) or equivalently, for any X ∈ Γ(D) to have ∇XX ∈ Γ(D).

A direct computation gives:

〈· : ·〉∇(J) = 〈· : ·〉∇ − J ◦ d∇J (4.1)

and then the ∇-geodesically invariance and ∇(J)-geodesically invariance for D coincides
if and only if J ◦ d∇J is zero on D×D. In particular, DJ is ∇-geodesically invariant if
and only if is ∇(J)-geodesically invariant.

5. Affine combination of tangent conjugate connections
In what follows we shall see what happens to the tangent conjugate connection for

families of almost tangent structures. Let J1, J2 be two almost tangent structures;
conditions for their simultaneous integrability are given in [13]-[14]. Then for any a,
b ∈ R the tensor field Jab := aJ1 + bJ2 is an almost tangent structure if and only if
J1J2 = −J2J1. Then its tangent conjugate connection is given by:

∇(Jab)
X Y = a2∇(J1)

X Y + b2∇(J2)
X Y + (1− a2 − b2)∇XY − ab[J1(∇XJ2Y ) + J2(∇XJ1Y )].

(5.1)

5.1. Proposition. Let ∇ be a linear connection and J1 and J2 two anti-commuting
almost tangent structures. If (∇, J1, J2) is a mixed-recurrent structure i.e. ∇Ji = η⊗ Jj
for i 6= j then ∇ is the average of the two tangent conjugate connections:

∇ =
1

2
[∇(J1) +∇(J2)] (5.2)

and ∇(Jab) is an affine combination of them:

∇(Jab) =
1 + a2 − b2

2
∇(J1) +

1− a2 + b2

2
∇(J2). (5.3)

Proof Applying Ji to ∇XJiY − Ji(∇XY ) = η(X)JjY with i 6= j and the anti-
commuting hypothesis we obtain:

J1(∇XJ1Y ) = −J2(∇XJ2Y ). (5.4)

Summing the expression of the tangent conjugate connections we get (5.2) and from a
previous computation, the relation (5.3). 2
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6. Exponential tangent conjugate connections
For θ a real number we define the exponential tangent conjugate connection of ∇ as:

∇(J,θ) := ∇− exp(−θJ) ◦ ∇ ◦ exp(θJ) (6.1)

where exp(±θJ) := cos(θ) · I ± sin(θ) · J . Explicitly we get:

∇(J,θ) = sin2(θ)∇− 1

2
sin(2θ)∇J+sin2(θ)J◦∇J = 2 sin2(θ)∇− 1

2
sin(2θ)∇J−sin2(θ)∇(J)

(6.2)
and then:

∇(J,θ)J = sin2(θ)∇J +
1

2
sin(2θ)J ◦ ∇J. (6.3)

It follows:

6.1. Proposition. Let ∇ be a symmetric linear connection.
i) If J is ∇-recurrent with η the 1-form of recurrence then:

∇(J,θ) = sin2(θ)∇− 1

2
sin(2θ) · η ⊗ J (6.4)

and ∇(J,θ) is a quarter-symmetric connection.
ii) If ∇J = η ⊗ I then:

∇(J,θ) = sin2(θ)∇− sin(θ) · η ⊗ exp(−θJ) (6.5)

and:
T∇(J,θ) = sin(θ)⊗ exp(−θJ) ∧ η. (6.6)

Proof i) Follows from the fact that the hypothesis implies J ◦ ∇J = 0. The quarter-
symmetry elements are F = J and π = sin(θ) cos(θ) · η.
ii) From cos(θ) · η ⊗ I − sin(θ) · η ⊗ J = η ⊗ exp(−θJ) we get:
T∇(J,θ) = − sin(θ) · [η ⊗ exp(−θJ)− exp(−θJ)⊗ η]. 2

7. Generalized tangent conjugate connections
In this section we present a natural generalization of the tangent conjugate connection.

7.1. Definition. A generalized tangent conjugate connection of ∇ is:

∇(J,C) = ∇(J) + C (7.1)

with C ∈ T 1
2 (M) an arbitrary (1, 2)-tensor field.

Let us search for tensor fields C such that the duality (∇(J,C))(J,C) = 2∇(J,C) − ∇
holds as is given by Proposition 2.1. It results that we are interested in finding solutions
C to the equation:

J(C(X, JY )) = 2C(X,Y ) (7.2)

for all X,Y ∈ Γ(TM) and let us remark that: i) C0 = 0 is a particular solution of (7.2);
ii) applying J to (7.2) gives that ImC ⊆ ker J = ImJ . Then returning to (7.2) it follows
from the left-hand-side that C0 is the unique solution of (7.2).

Also, we have:
∇(J,C)J = ∇(J)J + C(·, J ·)− J ◦ C (7.3)

and then:
i) ∇(J,C)J = ∇J as in i) of Proposition 2.1 if and only if: C(·, J ·) = J ◦ C(·, ·),
ii) ∇(J,C) is a J-linear connection if and only if:

∇J + C(·, J ·) = J ◦ C. (7.4)
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Abstract
Starting from the definition of a weightable quasi-metric we observe
that several functional equations are induced in a natural way. Study-
ing these equations we characterize weightable quasi-metrics and show
that they define representable total preorders. We also analyze how to
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1. Introduction
In the last years, (weightable) quasi-metric spaces have proven to be useful in mod-

eling many processes that arise in Theoretical Computer Science and that involve some
situation of asymmetry . The aforementioned usefulness is due to the fact that quasi-
metric spaces lack the symmetry and the Hausdorffness enjoyed by metric spaces. This
fact allows to introduce techniques of measuring that, contrarily to the metric ones,
reflect the asymmetry inherent to the computational process. It is then possible to de-
velop a “metric” foundation for partial orders reasoning techniques in the spirit of D.
Scott ([40, 34, 25]). Recent applications of the aforesaid metric tools based on the use
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of (weightable) quasi-metrics to Complexity Analysis of Algorithms, Denotational Se-
mantics and Program Correctnes can be found in [33, 32, 34, 17, 23, 37, 38, 26] and
[25].

Inspired in part by its utility in Theoretical Computer Science, we focus our at-
tention on the definition of a (weightable) quasi-metric ([10, 21]) and we immediately
encounter some functional equation that appears in a natural way. As a matter of fact
weightable quasi-metrics are characterized as the quasi-metrics that satisfy a certain
functional equation that we call circuit invariance. In addition, the disymmetry function
(defined in Section 2) of a weightable quasi-metric satisfies Sincov’s functional equation
and induces a total preorder, different, in general, from the specialization order directly
induced by the given quasi-metric. To conclude, we analyze the possibility of retrieving
a weightable quasi-metric from a real-valued bivariate function that satisfies Sincov’s
functional equation. This allows us to establish a link between apparently disparate no-
tions, namely: i) weightable quasi-metrics, ii) real-valued bivariate functions that satisfy
Sincov’s functional equation, and iii) total preorders that are representable through a
real-valued utility function.

This possibility of relating weightable quasi-metrics, functional equations and repre-
sentable total preorders is undoubtedly an important motivation, besides their aforemen-
tioned usefulness in Theoretical Computer Science, for the study of this particular kind
of quasi-metrics.

The structure of the manuscript goes as follows.
The key definitions and notations are listed and discussed in Section 2. In Section 3 we

consider and analyze different functional equations in two variables that are closely asso-
ciated to the concept of a quasi-metric. In Section 4 we relate those functional equations
to some kinds of orderings. In Section 5 we characterize when a positively weightable
quasi-metric can be retrieved from a real-valued bivariate function that satisfies either
the circuit invariance functional equation or Sincov’s functional equation.

2. Preliminaries
In what follows, X will denote a nonempty set and R will stand for the set of real

numbers.
The definition of a metric space is usually attributed to M. Fréchet (see [13]). However,

asymmetric distances had already been implicitly considered by Pompeiu in [28], as
mentioned in the seminal book by F. Hausdorff issued in 1914 (see [16]). Hausdorff
introduced a wide sort of ideas in this direction. Having these ideas in mind, the formal
definition of a quasi-metric space was issued by W. A. Wilson in 1931. (See [44, 18]).
Other miscellaneous extensions, special cases and variations of the concept of a metric
space (e.g. partial metric spaces, pseudo-metric spaces, etc.) are often encountered in
the specialized literature [41, 25, 19].

2.1. Definition. Let X be a nonempty set. Following the modern terminology ([20]),
by a quasi-metric on X we mean a function d : X × X → [0,+∞) such that for all
x, y, z ∈ X the following conditions hold:

(i) d(x, y) = d(y, x) = 0⇔ x = y;
(ii) d(x, y) + d(y, z) ≥ d(x, z).

Of course a metric on a set X is a quasi-metric d on X satisfying, in addition, the
following condition for all x, y ∈ X :

(iii) d(x, y) = d(y, x).
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By a quasi-metric space we mean a pair (X, d) such that X is a nonempty set and d
is a quasi-metric on X.

If d is a quasi-metric on a set X, then the relation ≤d on X given by x ≤d y ⇔
d(x, y) = 0, is an order on X (see Definition 4.1 in Section 4) called the specialization
order of d.

Given a quasi-metric d on X, and an ordered pair (x, y) ∈ X × X, the real number
F (x, y) = d(x, y)− d(y, x) is said to be the disymmetry of the pair (x, y). The function
F : X × X → R defined by F (x, y) = d(x, y) − d(y, x) (x, y ∈ X) is said to be the
disymmetry function associated to the quasi-metric d on X.

2.2. Remark. The original definition of a quasi-metric, due to Wilson ([44]) is a bit
more restrictive than Definition 2.1 above. Namely, in the sense of Wilson ([44]), a quasi-
metric d on X is a quasi-metric in the sense of Definition 2.1 which satisfies in addition
that d(x, y) = 0 ⇔ x = y for every x, y ∈ X. Obviously condition (i) in Definition
2.1 is less restrictive than the preceding condition (see also Example 2.3 below, due to
Hausdorff [16]). Nowadays, according, for instance, to [29], quasi-metrics in the sense of
Wilson are called T1 quasi-metrics. As a matter of fact, any quasi-metric generates a
topology in a natural way. This topology will satisfy the separation axiom T1 if and only
if the given quasi-metric is a quasi-metric in the sense of Wilson. This is the reason why
quasi-metrics in the sense of Wilson are called T1-quasi-metrics.

2.3. Example. ([16]) Let H denote the family of non-empty compact sets of the real
plane R2. Let dE denote the usual Euclidean distance on the real plane R2. Given
A,B ∈ H, consider the non-negative real number dH(A,B) defined as follows:

dH(A,B) = max
a∈A
{min
b∈B

dE(a, b)}.

It is well-known that dH is a quasi-metric (in the sense of Definition 2.1 above) on
the real plane. Moreover, it is not a metric, that is dH(A,B) could be different from
dH(B,A) (A,B ∈ H). This quasi-metric dH is said to be the Hausdorff quasi-metric on
H. By the way, note that this quasi-metric is not T1, i.e., dH does not satisfy Wilson’s
original definition, since if A ( B ∈ H, we have that dH(A,B) = 0 but dH(B,A) 6= 0 as
well.

(A very important use in Pure Mathematics of the Hausdorff quasi-metric dH appears
in the definition and study of fractal sets. See Chapter II, Section 6 in [6] for further
details).

2.4. Example. Let dS : R× R→ [0,+∞) be the function defined by

dS(x, y) =

{
min{y − x, 1} if x ≤ y
1 if x > y

.

It is easy to check that dS is a quasi-metric ([29]), known as the Sorgenfrey quasi-metric,
which is T1.

2.5. Definition. ([10, 25, 20]) Let X be a nonempty set. A quasi-metric d on X, as
well as the associated quasi-metric space (X, d), are said to be weightable if there exists
a function w : X → R such that d(x, y) +w(x) = d(y, x) +w(y) holds for every x, y ∈ X.
The function w is called a weighting function for d.

In the particular case in which there is at least one weighting function that only
takes non-negative values (w(X) ⊆ [0,+∞)) we say that the quasi-metric d is positively
weightable. (See Example 2.8 below).
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2.6. Example. Let d : R×R→ [0,+∞) be the function given by d(x, y) = max{y−x, 0}
for all x, y ∈ R. It is clear that (R, d) is a quasi-metric space which is weightable with
weighting function w : R→ R given by w(x) = x for all x ∈ R.

2.7. Remarks.
(1) Note that if (X, d) is a weightable quasi-metric space with weighting function w,

then the disymmetry function F associated to d is given by F (x, y) = w(y)−w(x)
for all x, y ∈ X.

(2) The original definition of a weightable quasi-metric ([10, 25]) does not force the
weighting functions to take non-negative values. However, inspired by the appli-
cations in Theoretical Computer Science, other authors (see e.g. [21]) define a
weightable quasi-metric by imposing the weighting functions to be non-negative.
By this reason, we have pointed out this nuance, distinguishing accordingly be-
tween “weightable quasi-metrics" and “positively weightable quasi-metrics" in
Definition 2.5.

In the next examples we provide a few weightable quasi-metrics which play a central
role in several fields of Theoretical Computer Science.

2.8. Examples. We introduce now several well-known examples of weightable quasi-
metrics.

1. The domain of words Σ∞ (see e.g. [20, 25, 31, 35]) consists of all finite and
infinite sequences over a nonempty set Σ, ordered by x v y ⇔ x is a prefix of y,
where we assume that the empty sequence φ is an element of Σ∞.

For each x, y ∈ Σ∞ denote by xuy the longest common prefix of x and y, and
for each x ∈ Σ∞ denote by `(x) the length of x. Thus `(x) ∈ [1,∞] whenever
x 6= φ, and `(φ) = 0. Then ([20, 25]) the function d : Σ∞×Σ∞ → [0,+∞) given
by

d(x, y) = 2−`(xuy) − 2−`(x),

is a positively weightable quasi-metric on Σ∞ with weighting function w given
by w(x) = 2−`(x) for all x ∈ Σ∞. Note that the specialization order ≤d coincides
with v .Moreover, the disymmetry function associated to d is given by F (x, y) =

2−`(y) − 2−`(x) for all x, y ∈ Σ∞.
2. The interval domain I([0, 1]) ([11, 22, 25]) consists of the nonempty closed in-

tervals of [0, 1] ordered by reverse inclusion, i.e., [a, b] v [c, d] ⇔ [a, b] ⊇ [c, d] .
In particular, points of [0,1] are identified with the singleton intervals. Then,
the function d defined on I([0, 1])× I([0, 1]) by

d([a, b], [c, d]) = max{b, d} −min{a, c} − (b− a),

is a weightable quasi-metric on I([0, 1]) with weighting function w given by
w([a, b]) = b−a, for all [a, b] ∈ I([0, 1]) (see e.g. [25, 31, 35]). The specialization
order ≤d coincides with v . Moreover, the disymmetry function associated to d
is given by F ([a, b], [c, d]) = d+ a− b− c for all [a, b], [c, d] ∈ I([0, 1]).

3. Denote by ω the set of non-negative integer numbers. The complexity quasi-
metric space [34] is the pair (C, dC), where

C = {f : ω → (0,+∞] |
+∞∑
n=0

2−n
1

f(n)
< +∞},
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and dC is the quasi-metric on C defined by

dC(f, g) =

+∞∑
n=0

2−n
[
max

(
1

g(n)
− 1

f(n)
, 0

)]
.

Furthermore, (C, dC) is weightable with weighting function wC given by wC(f) =∑+∞
n=0(2−n/f(n)) for all f ∈ C. The specialization order of dC coincides with the

pointwise order of C. Moreover, the disymmetry function associated to dC is
given by F (f, g) =

∑+∞
n=0 2−n[1/g(n)− 1/f(n)] for all f, g ∈ C.

3. Functional equations defined through quasi-metrics
Let us see now how the definition of a weightable quasi-metric gives rise to the con-

sideration of several functional equations. To this end, let us denote by N the set of
positive integer numbers. The following Lemma 3.1 hangs from a well known result of
the classical theory of functional equations in two variables.

3.1. Lemma. Let (X, d) be a quasi-metric space. Assume that the quasi-metric d satisfies
the functional equation of the 3-circuit, namely d(x, y) + d(y, z) + d(z, x) = d(x, z) +
d(z, y) + d(y, x), for every x, y, z ∈ X. Then d is weightable.

Proof. By hypothesis we observe that the disymmetry function F : X×X → R given by
F (x, y) = d(x, y)− d(y, x) (x, y ∈ X) satisfies F (x, y) + F (y, z) = F (x, z), (x, y, z ∈ X).
It is well known (see e.g. [4, 5, 15]) that in this case there exists a function w : X → R
such that F (x, y) = w(y)− w(x) = d(x, y)− d(y, x), for every x, y ∈ X. Therefore d is a
weightable quasi-metric. �

The converse of Lemma 3.1 is also true, as well as some other equivalences stated in
the following Theorem 3.2.

3.2. Theorem. Let (X, d) be a quasi-metric space. The following statements are equiv-
alent:

i) The quasi-metric d is weightable.
ii) The quasi-metric d satisfies the functional equation of the 3-circuit, namely

d(x, y) + d(y, z) + d(z, x) = d(x, z) + d(z, y) + d(y, x), for every x, y, z ∈ X.
iii) For every n ≥ 3, n ∈ N, the quasi-metric d satisfies the functional equation of the

n-circuit, namely d(x1, x2)+d(x2, x3)+. . .+d(xn−1, xn)+d(xn, x1) = d(x1, xn)+
d(xn, xn−1) + . . .+ d(x3, x2) + d(x2, x1), for every x1, x2, x3, . . . , xn ∈ X.

iv) For some k ≥ 3, k ∈ N, the quasi-metric d satisfies the functional equation of the
k-circuit, namely d(x1, x2)+d(x2, x3)+. . .+d(xk−1, xk)+d(xk, x1) = d(x1, xk)+
d(xk, xk−1) + . . .+ d(x3, x2) + d(x2, x1), for every x1, x2, x3, . . . , xk ∈ X.

Proof. i)⇒ iii):
Since d is weightable by hypothesis, there exists a function w : X → R such that

d(x, y)+w(x) = d(y, x)+w(y), for every x, y ∈ X. Thus, for every x1, x2, x3, . . . , xn ∈ X
we have that [d(x1, x2) + w(x1)] + [d(x2, x3) + w(x2)] + . . .+ [d(xn−1, xn) + w(xn−1)] +
[d(xn, x1) + w(xn)] = [d(x2, x1) + w(x2)] + [d(x3, x2) + w(x3)] + . . . + [d(xn, xn−1) +
w(xn)]+ [d(x1, xn)+w(x1)]. Hence d(x1, x2)+d(x2, x3)+ . . .+d(xn−1, xn)+d(xn, x1) =
d(x2, x1) + d(x3, x2) + . . . + d(xn, xn−1) + d(x1, xn) = d(x1, xn) + d(xn, xn−1) + . . . +
d(x3, x2) + d(x2, x1).
iii)⇒ ii) and iii)⇒ iv):
These implications are obvious.
iv)⇒ ii):
It follows immediately, by taking x3 = x4 = . . . = xk.
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ii)⇒ i): This has already been stated in Lemma 3.1.
This finishes the proof. �

Now we introduce a necessary definition concerning functional equations.

3.3. Definition. Let X be a nonempty set.
a) A bivariate function F : X × X −→ R is said to satisfy Sincov’s functional

equation if F (x, y) + F (y, z) = F (x, z) holds for every x, y, z ∈ X.
b) A bivariate function F : X ×X −→ R is said to satisfy the separability equation

if F (x, y) + F (y, z) = F (x, z) + F (y, y) holds for every x, y, z ∈ X.

Observe that the notion of Sincov’s functional equation is already involved in the
previous Theorem 3.2.

The following result is well-known (see e.g. [5], pp. 122 and ff.).

3.4. Proposition. Let X be a nonempty set. A bivariate function F : X × X −→ R
satisfies the separability equation if and only if F (x, y) = G(x) + H(y) (x, y ∈ X), for
some functions G,H : X → R that depend of only one variable.

3.5. Theorem. Let (X, d) be a quasi-metric space. Let F be the dysymmetry function
associated to d. The following statements are equivalent:

i) The quasi-metric d is weightable.
ii) The disymmetry function F associated to d satisfies Sincov’s functional equation

F (x, y) + F (y, z) = F (x, z), for every x, y, z ∈ X.
iii) The disymmetry function F satisfies the functional equation of separability F (x, y)+

F (y, z) = F (x, z) + F (y, y), for every x, y, z ∈ X.
iv) The disymmetry function F satisfies the functional equation F (x, y) +F (y, z) =

F (x, z) + F (t, t), for every x, y, z, t ∈ X.

Proof. i)⇔ ii):
By Theorem 3.1, d is weightable, if and only if d(x, y) + d(y, z) + d(z, x) = d(x, z) +

d(z, y) + d(y, x) holds for every x, y, z ∈ X. But this is equivalent to say that [d(x, y)−
d(y, x)] + [d(y, z)− d(z, y)] = [d(x, z)− d(z, x)], or, just changing the notation, F (x, y) +
F (y, z) = F (x, z) (x, y, z ∈ X).
ii)⇔ iii)⇔ iv):
Just notice that, for all x ∈ X, F (x, x) = d(x, x)− d(x, x) = 0 holds. �

4. Orderings induced by functional equations related to weightable
quasi-metrics
In this Section 4 we study orderings that are induced in a natural way by weightable

quasi-metrics. First we recall some basic definitions concerning orderings.

4.1. Definition. A preorder - on an arbitrary nonempty set X is a binary relation on
X which is reflexive and transitive. If - is a preorder on X, then the pair (X,-) is
said to be a preordered set. An antisymmetric preorder is said to be an order . A total
preorder - on a set X is a preorder such that [x - y] ∨ [y - x] holds for every x, y ∈ X.

4.2. Definition. Let X be a nonempty set. Let ≺ be an asymmetric binary relation
defined on X. Associated to ≺ we define the reflexive and total binary relation - given
by x - y ⇔ ¬(y ≺ x) (x, y ∈ X).

An interval order ≺ is an asymmetric binary relation such that [(x ≺ y) ∧ (z ≺ t)]⇒
[(x ≺ t) ∨ (z ≺ y)] (x, y, z, t ∈ X). An interval order ≺ is said to be a semiorder if
[(x ≺ y) ∧ (y ≺ z)]⇒ [(x ≺ w) ∨ (w ≺ z)], for every x, y, z, w ∈ X.
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4.3. Remark. Interval orders are perhaps the best class of ordered structures to build
models of uncertainty or to represent and manipulate vague or imperfectly described
pieces of knowledge. The notion of an interval order was introduced¶ by Peter C. Fish-
burn (see [12]), in order to study models of preference or measurement orderings whose
associated indifference may fail to be transitive.

The concept of a semiorder was introduced in [24] to deal with innacuracies in mea-
surements where a nonnegative threshold of discrimination is involved. Semiordered
structures are often encountered in a wide range of applications (see e.g. [2] for further
details).

We can generate total preorders, interval orders and semiorders from particular solu-
tions of suitable functional equations, as stated in the next straightforward Proposition
4.4, whose proof is omitted for the sake of brevity. (For similar results see e.g. [3])

4.4. Proposition. Let X be a nonempty set.

i) If F : X×X → R satisfies Sincov’s functional equation, then the binary relation
- defined on X by x - y ⇔ F (y, x) ≤ 0 (x, y ∈ X) is a total preorder.

ii) If F : X ×X → R satisfies the separability equation and, in addition F (t, t) ≤
0 (t ∈ X), then the binary relation defined on X by x ≺ y ⇔ F (x, y) > 0 (x, y ∈
X) is an interval order.

iii) If F : X × X → R satisfies the separability equation and, in addition, there
exists a non-positive real constant K ≤ 0 such that F (t, t) = K (t ∈ X), then
the binary relation defined on X by x ≺ y ⇔ F (x, y) > 0 (x, y ∈ X) is a
semiorder.

The following result is a direct consequence of Proposition 4.4 (part i), Theorem 3.2
and Theorem 3.5 in Section 3 above.

4.5. Corollary. Let X be a nonempty set. Let d be a weightable quasi-metric defined
on X. Let F be the dysymmetry function associated to d. Then, the binary relation -F
defined on X as x -F y ⇔ F (y, x) ≤ 0⇔ F (x, y) ≥ 0 (x, y ∈ X) is a total preorder.

4.6. Remark. Observe that given a quasi-metric space (X, d), then the following easy
relationship is satisfied: If x ≤d y, then x -F y ⇔ x = y. Moreover, note that the order
relation -F is total whereas that the specialization oder ≤d is not. This property could
be an advantage to model certain processes in applied contexts in the sense that the
order relation -F allows to compare elements of X that are not comparable with respect
to ≤d. For instance, coming back to Example 2.8 (2) we observe that [a, b] ≤d [c, d] ⇔
[c, d] ⊆ [a, b], whereas [a, b] -F [c, d]⇔ b+ c ≤ a+ d.

4.7. Remark. Suppose that we want to induce interval orders or semiorders from the
disymmetry function of a quasi-metric. Taking into account Proposition 4.4, we should
look for disymmetry functions that satisfy the separability equation. However, if F (x, y)+
F (y, z) = F (x, z) + F (y, y) holds for every x, y, z ∈ X, we immediately get Sincov’s
functional equation F (x, y) + F (y, z) = F (x, z) (x, y, z ∈ X) because by definition of
F , we have that F (y, y) = d(y, y) − d(y, y) = 0, for every y ∈ X. Thus, even if the
separability equation is accomplished, we would induce an interval order or a semiorder
that coincides with the asymmetric part of a total preorder. That is, if ≺ is the induced
interval order or semiorder, in this case we have that the binary relation - given by

¶Under a different name, the concept of an interval order, as well as the concept of a semiorder,
was already implicit much earlier, in the work of Norbert Wiener. (See e.g. [43]).
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x - y ⇔ ¬(y ≺ x) (x, y ∈ X) is actually a total preorder‖. Notice also that this fact is
the “expected one", taking into account the result stated in Theorem 3.5.

Furthermore, if the disymmetry function F of a quasi-metric satisfies the separability
equation F (x, y) + F (y, z) = F (x, z) + F (y, y) (x, y, z ∈ X), by Proposition 3.4 we have
that F can be decomposed as F (x, y) = G(x) + H(y) for every x, y ∈ X. But here we
have that F (x, y) = −F (y, x). Hence G(x) +H(y) = −G(y)−H(x), for every x, y ∈ X.
Thus G(x) + H(x) = G(y) + H(y), for every x, y ∈ X. But G(x) + H(x) = F (x, x) =
d(x, x)− d(x, x) = 0, for every x ∈ X. Therefore G(x) = −H(x), for every x ∈ X. Thus
we have that F (x, y) = G(x)−G(y) = H(y)−H(x)⇔ d(x, y)−d(y, x) = H(y)−H(x)⇔
d(x, y) + H(x) = d(y, x) + H(y) (x, y ∈ X). This is an alternative argument to show
that the quasi-metric d must be weightable, as stated in Theorem 3.5.

Inspired by Proposition 4.4, we may pay attention to the following important detail:
the total preorders associated to a weightable quasi-metric can be framed by means of
the disymmetry function F as well as by the weighting function w. Indeed, the fact
x -F y ⇔ F (x, y) ≥ 0⇔ w(x) ≤ w(y) (x, y ∈ X) is crucial. This inspires the following
definition.

4.8. Definition. Let - denote a total preorder defined on a nonempty set X. We say
that - is representable if there exists a function u : X → R such that x - y ⇔ u(x) ≤ u(y)
for every x, y ∈ X. The function u is called a numerical isotony, or, mainly in contexts
coming from Economics, a utility function.

The kind of numerical representation involved in Definition 4.8 is actually equivalent to
a representation that uses a bivariate function accomplishing Sincov’s functional equation,
as the next well-known result shows. (See e.g. Theorem 1 in [7]).

4.9. Proposition. Let - be a total preorder defined on a nonempty set X. Then - is
representable if and only if there exists a bivariate function F : X × X → R such that
F satisfies Sincov’s functional equation and, in addition, x - y ⇔ F (x, y) ≥ 0 holds for
every x, y ∈ X.

The following definition is inspired by Proposition 4.9, and it is equivalent to Definition
4.8.

4.10. Definition. Let - be a representable total preorder defined on a nonempty set
X. A bivariate function F : X × X → R satisfying Sincov’s functional equation, and
such that x - y ⇔ F (x, y) ≥ 0 holds for every x, y ∈ X, is called a bivariate numerical
representation of -.

4.11. Remark. Not every total preorder is representable. A well known example is the
lexicographic order -L on the real plane R2: Given (a, b), (c, d) ∈ R2, then (a, b) -L
(c, d)⇔ [(a < c) ∨ (a = c, b ≤ d)]. (See e.g [9] for further details).

Looking again at Corollary 4.5 we may observe that from a weightable quasi-metric
we get a representable total preorder. Looking for a converse result, we may start from a
representable total preorder - defined on a nonempty set X, and search for a weightable
quasi-metric whose disymmetry function constitutes a bivariate numerical representation
of -. We get a positive answer to this question, as the next Proposition 4.12 states.

4.12. Proposition. Let X be a nonempty set. Let - be a representable total preorder
defined on X. Then there exists a positively weightable quasi-metric d : X×X → [0,+∞)

‖In this case the corresponding interval order or semiorder is said to be degenerate or non-
typical. An interval order or semiorder ≺ defined on a set X is said to be typical provided that
its a associated symmetric part - fails to be transitive.
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whose disymmetry function F is a bivariate numerical representation of the given total
preorder -.

Proof. Since - is representable, there exists a function u : X → R such that x - y ⇔
u(x) ≤ u(y). We may assume without loss of generality that u takes strictly positive
values: indeed, if h(t) = 3 + 2

π
arctan(t) for t ∈ R, we have that h is a strictly increasing

function whose range is (2, 4), and such that x - y ⇔ h(u(x)) ≤ h(u(y)), for every
x, y ∈ X, so that the composition h◦u is another utility function that represents the total
preorder -. Thus, already assuming that u : X → (0,+∞) is a strictly positive utility
representation for -, given x, y ∈ X we may define d(x, y) = 0 if x = y and d(x, y) = u(y)
otherwise. It is straightforward to see that d is a (T1) quasi-metric. Moreover, it is
positively weightable: just observe that d(x, y)+u(x) = d(y, x)+u(y) for every x, y ∈ X.
Finally, its disymmetry function F satisfies that F (x, y) = d(x, y)−d(y, x) = u(y)−u(x)
for every x, y ∈ X, so that x - y ⇔ u(x) ≤ u(y) ⇔ u(y) − u(x) ≥ 0 ⇔ F (x, y) ≥ 0.
Therefore F is a bivariate numerical representation for -. �

4.13. Remark. Notice that the quasi-metric d that appears in the statement of Propo-
sition 4.12 is not unique, in general. As a matter of fact, to get d we may use any strictly
positive utility function u that represents the total preorder -.

To summarize this Section 4, we may notice that in Corollary 4.5 we get a representable
total preorder from a weightable quasi-metric, whereas in Proposition 4.12 we retrieve
a positively weightable quasi-metric from a representable total preorder. By Theorem
3.5, in both results the disymmetry functions associated to the weightable quasi-metrics
involved satisfy Sincov’s functional equation.

To complete the panorama, we may wonder if it is also possible to retrieve a (posi-
tively) weightable quasi-metric directly from a bivariate function that satisfies Sincov’s
functional equation. We answer this question throughout the next Section 5.

5. Retrieving positively weightable quasi-metrics from functional
equations
The main questions to be analyzed throughout this Section 5 are the following:

i) Suppose that X is a nonempty set and D : X ×X → R is a bivariate function
that satisfies the 3-circuit invariance functional equation. Can we induce from
D, in a natural way, a positively weightable quasi-metric∗∗ on X?

ii) Suppose that F : X × X → R is a bivariate function that satisfies Sincov’s
functional equation. Can we induce from F a positively weightable quasi-metric
on X whose disymmetry function is F?

To study the former question, let X denote a nonempty set, and let D : X×X → R be
a bivariate function such that D(a, b)+D(b, c)+D(c, a) = D(a, c)+D(c, b)+D(b, a) holds
for every a, b, c ∈ X. Define F : X×X → R by declaring that F (x, y) = D(x, y)−D(y, x)
for every x, y ∈ X. We immediately realize that F satisfies Sincov’s functional equation
F (a, b) +F (b, c) = F (a, c), for every a, b, c ∈ X. Therefore, we pass to consider the latter
question, since its solution would immediately lead to a solution for the former one.

Next Lemma 5.1, Theorem 5.2 and their subsequent corollaries provide us with a
positive answer.

5.1. Lemma. Let X be a nonempty set. Let F : X×X → R be a bivariate function that
satisfies Sincov’s functional equation. Suppose, in addition, that there exists a strictly
positive function G : X → (0,+∞) such that F (x, y) = G(y) − G(x), for every x, y ∈

∗∗Notice that we are not imposing D to be the solution, not even to be a quasi-metric.
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X. Then there exists a positively weightable quasi-metric d : X × X → [0,+∞) whose
disymmetry fuction is F .

Proof. Given x, y ∈ X, we define d(x, y) = 0 if x = y and d(x, y) = G(y) otherwise.
Notice that both d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y hold by definition of d. To check
the triangle inequality, given x, y, z ∈ X we distinguish the following cases:

Case 1: x = y. In this case we have that 0 = d(x, y) ≤ d(x, z) + d(z, y) because,
by definition of d, we have that d(x, z) ≥ 0 and d(z, y) ≥ 0.
Case 2: x 6= y; y = z. In this case we have that G(y) = d(x, y) ≤ d(x, z) +
d(z, y) = d(x, y) + d(y, y) since d(y, y) = 0 and d(x, y) = G(y) by definition of d.
Case 3: x 6= y; x = z. In this case the proof runs as in Case 2.
Case 4: x 6= y; y 6= z. In this case we have that G(y) = d(x, y) ≤ G(y) +
d(x, z) = d(z, y) + d(x, z) = d(x, z) + d(z, y) since d(x, z) ≥ 0 and d(x, y) =
d(z, y) = G(y) by definition of d.

Therefore d is a quasi-metric on X.
It is straightforward to check that F is the disymmetry function associated to d, so

that G is a weighting function for d. Hence d is positively weightable. �

From Lemma 5.1, we finally reach the main result in this Section 5, namely Theorem
5.2, which is a characterization of real-valued bivariate functions that can be identified
to the disymmetry function of some positively weightable quasi-metric.

5.2. Theorem. Let X be a nonempty set. Let F : X ×X → R be a bivariate function
that satisfies Sincov’s functional equation. The following statements are equivalent:

i) For every a ∈ X, the trace function Fa : X → R defined by Fa(t) = F (a, t) for
every t ∈ X, is bounded by below (i.e.: there exists a constant A ∈ R such that
F (a, t) > A for every t ∈ X).

ii) There exists an element a ∈ X such that Fa is bounded by below.
iii) There exists a positively weightable quasi-metric d : X × X → [0,+∞) whose

disymmetry function is F .

Proof. The implication i)⇒ ii) is trivial.
To prove the fact ii) ⇒ iii), let A ∈ R be such that F (a, t) > A for every t ∈ X.

Given x, y ∈ X, we define the function w : X → R as w(t) = F (a, t) + |A| for every
t ∈ X. Notice that w(t) > 0 holds for every t ∈ X, since A + |A| ≥ 0. Moreover,
for every x, y ∈ X we have that F (x, y) = F (x, a) + F (a, y) = F (a, y) − F (a, x) =
(F (a, y) + |A|) − (F (a, x) + |A|) = w(y) − w(x), so that by Lemma 5.1 there exists a
positively weightable quasi-metric d whose disymmetry function is F .

To conclude, we prove the implication iii)⇒ i). To do so, suppose that d : X ×X →
[0,+∞) is a positively weightable quasi-metric whose disymmetry function is F . By
Remark 2.7, we have that F (x, y) = w(y)− w(x) for every x, y ∈ X, where w stands for
the weighting function associated to d. Fix any element a ∈ X. Now, given t ∈ X, we
have that F (a, t) = w(t)− w(a) > −w(a). In other words: Fa is bounded by below. �

5.3. Example. Accordingly to Theorem 5.2, it is now easy to find an example of a
nonempty set X and a function F : X ×X → R such that F satisfies Sincov’s functional
equation, but there is no positively weightable quasi-metric on X whose disymmetry
function is F . Consider for instance X = R and F (x, y) = x − y for every (x, y) ∈ R2.
As a matter of fact, we may notice that no trace of F is bounded by below.

5.4. Corollary. Let X be a finite nonempty set. Let F : X×X → R be a bivariate func-
tion that satisfies Sincov’s functional equation. Then there exists a positively weightable
quasi-metric d : X ×X → R whose disymmetry function is F .
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Proof. This is an immediate consequence of Theorem 5.2, because F is bounded since X
is finite. �

5.5. Corollary. Let X be a nonempty set, endowed with a topology τ for which X is
a compact set. Let F : X × X → R be a continuous†† bivariate function that satisfies
Sincov’s functional equation. Then there exists a positively weightable quasi-metric d :
X ×X → R whose disymmetry function is F .

Proof. Again, this is an immediate consequence of Theorem 5.2, because F is a continuous
real-valued function defined on a compact set, so it is bounded (see e.g. [41], p. 20). �

To finish this Section 5 we analyze the posibility of retrieving a weightable quasi-
metric (in this case, not necessarily a positively weightable one) from a bivariate function
satisfying Sincov’s functional equation. Unlike Theorem 5.2 and Example 5.3, the answer
is always positive, as next Theorem 5.6 proves.

5.6. Theorem. Let X be a nonempty set. Let F : X×X → R be a bivariate function that
satisfies Sincov’s functional equation. Then there exists a weightable (T1) quasi-metric
d : X ×X → [0,+∞) whose disymmetry function is F .

Proof. Since F satisfies Sincov’s functional equation, there exists a function G : X → R
such that F can be decomposed as F (x, y) = G(y)−G(x), for every x, y ∈ X.

Define d : X ×X → R as follows:
i) d(x, y) = 0 if x = y ∈ X.
ii) d(x, y) = 1 +G(y)−G(x) if x 6= y ∈ X are such that G(x) ≤ G(y).
iii) d(x, y) = 1 if x 6= y ∈ X are such that G(x) > G(y).

By definition, d(x, y) ≥ 0 and d(x, y) = 0⇔ x = y, for every x, y ∈ X.
Let us see now that d satisfies the triangle inequality. To see this, given x, y, z ∈ X

we consider the following cases:
Case 1: If there is at least a coincidence between x, y, z then d(x, z) ≤ d(x, y) +
d(y, z) trivially holds.
Case 2: If x 6= y; y 6= z; x 6= z and G(x) ≤ G(y) ≤ G(z) then we have that
d(x, z) = 1 +G(z)−G(x) < 2 +G(z)−G(x) = (1 +G(y)−G(x)) + (1 +G(z)−
G(y)) = d(x, y) + d(y, z).
Case 3: If x 6= y; y 6= z; x 6= z and G(x) ≤ G(z) < G(y) then we have that
d(x, z) = 1 + G(z) − G(x) < 1 + G(y) − G(x) < (1 + G(y) − G(x)) + 1 =
d(x, y) + d(y, z).
Case 4: If x 6= y; y 6= z; x 6= z and G(y) < G(x) ≤ G(z) then we have that
d(x, z) = 1 + G(z) − G(x) < 1 + G(z) − G(y) < 1 + (1 + G(z) − G(y)) =
d(x, y) + d(y, z).
Case 5: If x 6= y; y 6= z; x 6= z and G(y) ≤ G(z) < G(x) then we have that
d(x, z) = 1 < 1 + d(y, z) = d(x, y) + d(y, z).
Case 6: If x 6= y; y 6= z; x 6= z and G(z) < G(x) ≤ G(y) then we have that
d(x, z) = 1 < d(x, y) + 1 = d(x, y) + d(y, z).
Case 7: If x 6= y; y 6= z; x 6= z and G(z) < G(y) < G(x) then we have that
d(x, z) = 1 < 2 = 1 + 1 = d(x, y) + d(y, z).

Therefore d is a quasi-metric.
A final checking shows that d(x, y)−d(y, x) = G(y)−G(x) for every x, y ∈ X, so that

d is indeed weightable (T1).
�

††Here we consider that X ×X is endowed with the product topology τ × τ , whereas the real
line R is given the usual Euclidean topology.
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6. Final comments and some suggestions for further research
Weightable quasi-metrics are closely related to several functional equations stated for

real-valued bivariate functions on a nonempty set.
As shown in the main results stated in Section 4 and Section 5, there is a close rela-

tionship between the concepts of weightable quasi-metrics, representable total preorders
and solutions of Sincov’s functional equation. Each of these concepts gives rise to any of
the two other ones.

We leave as an open question the study of similar functional equations in the frame-
work of generalized metric spaces of any kind (see e.g. [39]), as, in particular, cone metric
spaces (see e.g. [1]), pseudo-metrics, quasi-pseudo metrics (see e.g. [19]), probabilistic
and statistical metric and quasi-metric spaces (see e.g. [27, 42, 36, 14]), and/or partial
metrics, as well as to extend some results arising in the classical crisp context to the
fuzzy setting (see e.g. [30]).
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Abstract
A variety of mathematical inequalities have been utilised to obtain ap-
proximation and bounds of the Gini mean difference.The Gini mean
difference or the related index is a widely used measure of inequality
in numerous areas such as in health, finance and population attributes
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1. Introduction
Let f : R→[0,∞) be a probability density function (pdf), meaning that f is integrable

on R and
∫∞
−∞ f (t) dt = 1, and define

(1.1) F (x) :=

∫ x

−∞
f (t) dt, x ∈ R and E (f) :=

∫ ∞
−∞

xf (x) dx,

to be its cumulative distribution function and the expectation or mean provided that the
integrals exist and are finite.

The mean difference

(1.2) RG (f) :=
1

2

∫ ∞
−∞

∫ ∞
−∞
|x− y| dF (x) dF (y)

was proposed by Gini in 1912 [14], after whom it is usually named, but it was discussed
by Helmert and other German writers in the 1870’s (cf. H.A. David [12]). The mean
difference has a certain theoretical attraction, being dependent on the spread of the
variate values among themselves rather than on the deviations from some central value

∗Department of Mathematics and Statistics,La Trobe University,Bundoora VIC 3086, Aus-
tralia.
Email: p.cerone@latrobe.edu.au
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([21, p. 48]). Further, as noted by Kendall and Stuart ([21, p. 48]), its defining integral
(1.2) may converge when the variance σ2 (f) ,

(1.3) σ2 (f) :=

∫ ∞
−∞

(x− E (f))2 dF (x) ,

does not. It can, however, be more difficult to compute than (1.3).
Another useful concept is the mean deviation MD (f) , defined by [21, p. 48]

(1.4) MD (f) :=

∫ ∞
−∞
|x− E (f)| dF (x) = 2

∫ ∞
µ

(x− E (f)) dF (x) .

As G.M. Giorgi noted in [15], some of the many reasons for the success and the
relevance of the Gini mean difference or Gini index IG (f) ,

(1.5) IG (f) =
RG (f)

E (f)
,

are their simplicity, certain interesting properties and useful decomposition possibilities,
and these attributes have been analysed in an earlier work by Giorgi [16]. For a biblio-
graphic portrait of the Gini index, see [15] where numerous references are given.

The Gini index given by (1.5) is a measure of relative inequality since it is a ratio of
the Gini mean difference, a measure of dispersion, to the average value µ = E (f) . Other
measures are the coefficient of variation V = σ

µ
and half the relative mean deviation

MD(f)
2µ

where MD (f) is as defined in (1.4).
From (1.1), F (x) is assumed to strictly increase on its support and its mean µ = E (f)

exist. These assumptions imply that F−1 (p) is well defined and is the population’s pth

quantile. The theoretical Lorenz curve (Gastwirth [13]) corresponding to a given F (x)
is defined by

(1.6) L (p) =
1

µ

∫ p

0

F−1 (x) dx, 0 ≤ p ≤ 1.

Now F−1 (x) is non decreasing and so from (1.6) L (p) is convex and L′ (p) = 1 at
p = F (µ) .

The area between the Lorenz curve and the line p, is known as the area of concentra-
tion.

The most common measure of inequality is the Gini index defined by (1.5) which may
be shown to be equivalent to twice the area of concentration ([13])

(1.7) C =

∫ 1

0

c (p) dp, c (p) = p− L (p) .

c (p) vanishes at p = 0 or 1 and is concave since L (p) is convex. Further, there is a point
of maximum discrepancy p∗ between the Lorenz curve and the line of equality which
satisfies

(1.8) c (p∗) ≥ c (p) for all p ∈ [0, 1] .

The point p∗ = F (µ) and c (p∗) = MD(f)
2µ

where MD (f) is given by (1.4).
The study of income inequality has gained considerable importance and the the Lorenz

curve and the associated Gini mean or Gini index are certainly the most popular meausres
of income inequality. These have also however found application in many other problems
within the health, finance and population arenas.

In a sequence of four papers, Cerone and Dragomir ([6] – [10]) developed approxima-
tion and bounds from identities involving the Gini mean difference RG (f) . Some of these
results involved using the well known Sonin and Korkine identities. Cerone [3] procured
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some approximations and bounds utilising the well known Steffensen and Karamata in-
equalities. Further, the characteristics of the Lorenz curve, L (p) and its connection to
the Gini index via (1.7) to obtain upper and lower bounds for both L (p) and IG (f) was
analysed by the author in [4]. This was accomplished by utilising the well known Young’s
integral inequality and some less well known reverse inequalities.

The main aim of the current paper is to develop generalisations and extensions of the
Iyengar inequality to allow the approximation and bounds of Riemann-Stieltjes integrals
and weighted integrals in a less restrictive framework.These developments are then used
to procure novel results for the approximation and bounds of the Gini mean difference.

2. Some identities Associated with the Gini mean difference

Some identities for the Gini mean difference, RG (f) through which results for the
Gini index IG (f) may be procured via the relationship (1.5) will be stated here. These
have been used in [6] – [10] to obtain approximations and bounds. The reader is referred
to the book [21], Exercise 2.9, p. 94 or [6].

The following results hold (see for instance [21, p. 54] or [6];[7],using the well known
Sonin identity; and [8] using the Korkine identity respectively.

2.1. Theorem. With the above notation, the identities

(2.1) RG (f)=

∫ ∞
−∞

(1− F (y))F (y) dy=2

∫ ∞
−∞
xf (x)F (x) dx− E (f) ;

RG (f) = 2

∫ ∞
−∞

(x− E (f)) (F (x)− γ) f (x) dx(2.2)

= 2

∫ ∞
−∞

(x− δ)
(
F (x)− 1

2

)
f (x) dx

for any γ, δ ∈ R; and

(2.3) RG (f) =

∫ ∞
−∞

∫ ∞
−∞

(x− y) (F (x)− F (y)) f (x) f (y) dxdy,

hold.

The following lemma was proven in [4] bounding the Gini index via the Lorenz curve
and the area of concentration C. The identity is also proven in [21, p. 49] in a different
way.

2.2. Lemma. The following identity holds

(2.4) RG (f) = µIG (f) = 2µC,

where the quantities are defined by (1.2), (1.5), (1.6) – (1.7).

3. Iyengar Inequality for Riemann-Stieltjes Integrals

In 1938 Iyegar using geometric arguments developed the following result in the paper
[18] .
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3.1. Theorem. Let h : [a, b]→ R be a differentiable function such that for all x ∈ [a, b]

and for some M > 0 we have
∣∣∣h′(x)

∣∣∣ ≤M then,

(3.1)
∣∣∣∣∫ b

a

h (x) dx − h(a) + h(b)

2
(b− a)

∣∣∣∣ ≤ M

4
(b− a)2 − (h(b)− h(a))2

4M
.

Remark
It should be noted that for m ≤ h

′
(x) ≤M then

∣∣∣h′(x)− m+M
2

∣∣∣ ≤ M−m
2

so that the

Iyengar’s result may be extended by applying it to k(x) = h (x) − m+M
2

x with bound
Mk = M−m

2
.

The following result extends the Iyengar inequality to involve Riemann-Stieltjes inte-
grals while also relaxing the differentiability condition.

3.2. Theorem. Let h, g : [a, b]→ R be such that g is non decreasing function and for
all x ∈ [a, b] and M > 0 the following conditions hold,

(3.2) |h(x)− h(a)| ≤M · (x− a) and |h(x)− h(b)| ≤M · (b− x) .

Then for any t ∈ [a, b]∣∣∣∣∫ b

a

h (x) dg(x) − {[g(t)− g(a)]h(a) + [g(b)− g(t)]h(b)}
∣∣∣∣(3.3)

≤ M

[∫ t

a

(x− a)dg(x) +

∫ b

t

(b− x)dg(x)

]
.(3.4)

Proof. We have from (3.2)

h(a)−M(x− a) ≤ h(x) ≤ h(a) +M(x− a) and
h(b)−M(b− x) ≤ h(x) ≤ h(b) +M(b− x)

so that since g(x) is non decreasing on [a, b] it follows that

h(a)

∫ t

a

dg(x)−M
∫ t

a

(x−a)dg(x) ≤
∫ t

a

h(x)dg(x) ≤ h(a)

∫ t

a

dg(x) +M

∫ t

a

(x−a)dg(x)

and

h(b)

∫ b

t

dg(x)−M
∫ b

t

(b−x)dg(x) ≤
∫ b

t

h(x)dg(x) ≤ h(b)

∫ b

t

dg(x)+M

∫ b

t

(b−x)dg(x).

Combining the last two results produces

−M
[∫ t

a

(x− a)dg(x) +

∫ b

t

(b− x)dg(x)

]
(3.5)

≤
∫ b

a

h(x)dg(x) −
{
h(a)

∫ t

a

dg(x) + h(b)

∫ b

t

dg(x)

}
≤ M

[∫ t

a

(x− a)dg(x) +

∫ b

t

(b− x)dg(x)

]
.

Simplifying and using the properties of the modulus produces (3.3). �

3.3. Corollary. Let the conditions of Theorem 3.2 persist then the coarser but simpler
bound is given by, ∣∣∣∣∫ b

a

h (x) dg(x) − {[g(t)− g(a)]h(a) + [g(b)− g(t)]h(b)}
∣∣∣∣(3.6)

≤ M

[
b− a

2
+

∣∣∣∣t− a+ b

2

∣∣∣∣] (g(b)− g(a)),
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with the smallest bound occuring at t = a+b
2
.

Proof. Let the bound from (3.3) be denoted by

B(t) :=

∫ t

a

(x− a)dg(x) +

∫ b

t

(b− x)dg(x)

so that

|B(t)| =

∣∣∣∣∫ b

a

K(x, t)dg(x)

∣∣∣∣ ≤ ∫ b

a

|K(x, t)| dg(x)

≤ sup
x∈[a,b]

|K(x, t)|
∫ b

a

dg(x) = max {t− a, b− t} (g(b)− g(a)).

Now, using the fact that max {X,Y } = X+Y
2

+
∣∣Y−X

2

∣∣ produces (3.6) and the fact that
the best of these occurs at t = a+b

2
is obvious. �

3.4. Theorem. Let h, g : [a, b]→ R be such that g is non decreasing for all x ∈ [a, b]
and for M > 0 the following conditions hold,

(3.7) |h(x)− h(a)| ≤M · (x− a) and |h(x)− h(b)| ≤M · (b− x) .

Then for t ∈ [a, b] the tightest bound is given by

(3.8) −MD(t∗) ≤
∫ b

a

h (x) dg(x) − [h(b)g(b)− h(a)g(a)] ≤MD(t∗),

or

(3.9) −2Mδ(tm)g(tm) ≤
∫ b

a

h (x) dg(x) − [h(b)g(b)− h(a)g(a)] ≤ 2M∆(tm)g(tm),

where for α = a+b
2

and β = h(b)−h(a)
2

; t∗ = α− β
M

and t∗ = α+ β
M

or D(tm) = 0 with

D(t) =

∫ b

t

g(x)dx−
∫ t

a

g(x)dx and

δ(t) =
h(b)− h(a)

2M
−
(
t− a+ b

2

)
,

∆(t) = −
[
h(b)− h(a)

2M
+

(
t− a+ b

2

)]
.

Here, t∗ ∈ [a, a+b
2

] and t∗ ∈ [a+b
2
, b].

Proof. From (3.5) we have on integration by parts of the Riemann-Stieltjes integrals∫ b
t

(b− x)dg(x) and
∫ t
a

(x− a)dg(x),

(3.10) L(t) ≤
∫ b

a

h (x) dg(x) − [h(b)g(b)− h(a)g(a)] ≤ R(t)

where

L(t,−M) = −2M

[
h(b)− h(a)

2M
−
(
t− a+ b

2

)]
g(t)(3.11)

−M
[∫ b

t

g(x)dx−
∫ t

a

g(x)dx

]
and R(t) = L(t,M).

We notice that (3.11) may be simplified by choosing t = t∗ = α− β
M

or t = tmwhere
D(tm) = 0 to produce the two lower bounds in (3.8) and (3.9). A similar reasoning
provides the two upper bounds where t = t∗ = α+ β

M
.



794

The best bounds may be procured from the supremum of the lower bounds and the
infimum of the upper bounds for t ∈ [a, b] .Further, using the conditions in (3.7) it may
be demonstrated that t∗ ∈ [a, a+b

2
] and t∗ ∈ [a+b

2
, b]. �

The following theorem develops a weighted Iyengar inequality.

3.5. Theorem. Let h,w : [a, b]→ R be such that w(x) > 0 for x ∈ (a, b) and for M > 0
the following conditions hold,

(3.12) |h(x)− h(a)| ≤M · (x− a) and |h(x)− h(b)| ≤M · (b− x) .

Then for t ∈ (a, b) the tightest bound is given by∣∣∣∣∫ b

a

w(x)h (x) dx − {h(b)W (b) +M [I(t∗)− I(t∗)]}
∣∣∣∣(3.13)

≤ M

{∫ b

a

(b− x)w(x)dx − [I(t∗) + I(t∗)]

}
,

where for α = a+b
2

and β = h(b)−h(a)
2

; t∗ = α− β
M

and t∗ = α+ β
M

with

(3.14) I(t) =

∫ t

a

(t− x)w(x)dx .

If w(a) = 0 then the bounds at t = a need to be compared with L(t∗) and R(t∗) and
similarly for w(b) = 0.

Proof. Let g(x) =
∫ x
a
w(u)du in (3.5) then

(3.15) H(t)−M ·K(t) ≤
∫ b

a

w(x)h (x) dx ≤ H(t) +M ·K(t)

where

W (t) =

∫ t

a

w(x)dx ,(3.16)

H(t) = h(a)W (t) + h(b) [W (b)−W (t)] and,(3.17)

K(t) =

∫ t

a

(x− a)w(x)dx +

∫ b

t

(b− x)w(x)dx.

If we now let L(t,−M) represent the lower bound (3.15) L(t), namely

(3.18) L(t) = H(t)−M ·K(t)

and R(t) = L(t,M) represent the upper bound,

(3.19) R(t) = H(t) +M ·K(t).

so that (3.15) may be written in the form

(3.20)
∣∣∣∣∫ b

a

w(x)h (x) dx− R(t) + L(t)

2

∣∣∣∣ ≤ R(t)− L(t)

2
.

Then we have that

L
′
(t) = {[h(a)− h(b)]−M · [2t− (a+ b)]}w(t)

and so the largest lower bound occurs at t∗ = a+b
2
− h(b)−h(a)

2M
since w(t) > 0 for t ∈ (a, b).

In a similar fashion we have that the smallest upper bound occurs at t∗ = a+b
2

+ h(b)−h(a)
2M

.
Thus we have from (3.15) that

(3.21) L(t∗) ≤
∫ b

a

w(x)h (x) dx ≤ R(t∗)
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and so

(3.22)
∣∣∣∣∫ b

a

w(x)h (x) dx− R(t∗) + L(t∗)

2

∣∣∣∣ ≤ R(t∗)− L(t∗)

2
.

where after some simplification,

(3.23) L(t∗) = h(b)W (b)−M
∫ b

a

(b− x)w(x)dx+ 2M

∫ t∗

a

(t∗ − x)w(x)dx

and,

(3.24) R(t∗) = h(b)W (b) +M

∫ b

a

(b− x)w(x)dx− 2M

∫ t∗

a

(t∗ − x)w(x)dx.

The result (3.13) is procured following some straight forward algebra from (3.22). �

Remark
It should be noted that taking w(x) = 1 in Theorem 3.5 recaptures the Iyengar result

of Theorem 3.1 under less restrictive conditions (3.12) rather than
∣∣∣h′(x)

∣∣∣ < M. It should

be further emphasised that for m ≤ h(x)−h(a)
x−a ≤ M and m ≤ h(b)−h(x)

b−x ≤ M the above
results may be extended by taking k(x) = h(x)− M+m

2
x to produce the conditions of the

above results for |k(x)− k(a)| ≤ M−m
2
· (x− a) and |k(x)− k(b)| ≤ M−m

2
· (b− x).

4. Application of Extended Iyengar Results to Gini Mean Differ-

ence
We are now in a positition to obtain bounds utilising the Iyengar type inequalities

developed above to obtain approximation and bounds for the Gini mean difference. We
shall make use of the following identities, where f is the pdf and F its corresponding
distribution,

(4.1) RG (f)=

∫ b

a

(1− F (x))F (x) dx=2

∫ b

a

xf (x)F (x) dx− E (f) .

4.1. Theorem. Let f (x) be a pdf on [a, b] , f(x) ≤M and F (x) =
∫ x
a
f(u)du then the

Gini Mean Difference RG (f) satisfies

|RG (f) + E(f)− 2 {bf(b)E(f) +M [I(t∗)− I(t∗)]}|(4.2)

≤ 2M

{∫ b

a

(b− x)xf(x)dx − [I(t∗) + I(t∗)]

}
where t∗ = a+b

2
− bf(b)−af(a)

2M
and t∗ = a+b

2
+ bf(b)−af(a)

2M
with,

I(t) =

∫ t

a

(t− x)xf(x)dx .

For f(a) = 0 we have

(4.3) |RG (f) − [2bf(b)− 1]E(f)| ≤ 2M

∫ b

a

(b− x)xf(x)dx.

For f(b) = 0 we have

(4.4) |RG (f) − [2af(a)− 1]E(f)| ≤ 2M

∫ b

a

(x− a)xf(x)dx.

Finally, for f(a) = f(b) = 0 we have

(4.5) |RG (f) + E(f)| ≤ 2M

{
b− a

2
E(f)−

∣∣∣∣M2 −
b+ a

2
E(f)

∣∣∣∣}
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where M2 =
∫ b
a
x2f(x)dx, the second moment of f(x).

Proof. In Theorem 3.5 let w(x) = xf(x) and h(x) = F (x) so that
∣∣∣h′(x)

∣∣∣ = f(x) ≤M.

Now from (4.1) we have

(4.6)
RG (f)+ E (f)

2
=

∫ b

a

xf (x)F (x) dx,

and so we have three possible cases to consider.
The first is that w(x) = xf(x) > 0 for x ∈ [a, b] which we have from (3.20) that∣∣∣∣∫ b

a

xf(x)F (x) dx − {bf(b)E(f) +M [I(t∗)− I(t∗)] }
∣∣∣∣

≤ M

{∫ b

a

(b− x)xf(x)dx − [I(t∗) + I(t∗)]

}
where t∗ = a+b

2
− bf(b)−af(a)

2M
and t∗ = a+b

2
+ bf(b)−af(a)

2M
with,

I(t) =

∫ t

a

(t− x)xf(x)dx .

Using the identity (4.6) produces the result as stated in (4.2).
Now for w(a) = af(a) = 0 we have from (3.15)- (3.20),

L(a) = bf(b)E(f)−M
∫ b

a

(b− x)xf(x)dx and,

R(a) = bf(b)E(f) +M

∫ b

a

(b− x)xf(x)dx

and so R(a) + L(a)
2

= bf(b)E(f) and R(a) − L(a)
2

= M
∫ b
a

(b− x)xf(x)dx which results in
(4.3) on using (3.20) .

For w(b) = bf(b) = 0 we have from (3.15)- (3.20),

L(b) = af(a)E(f)−M
∫ b

a

(x− a)xf(x)dx and,

R(b) = af(a)E(f) +M

∫ b

a

(x− a)xf(x)dx

and so R(b) + L(b)
2

= af(a)E(f) and R(b) − L(b)
2

= M
∫ b
a

(x− a)xf(x)dx from which we
obtain (4.4) on using (3.20) .

Finally, for w(a) = w(b) = 0 so that f(a) = f(b) = 0 then from (4.3) and (4.4) on
choosing the minimum of the bounds produces the stated result. �

4.2. Theorem. Let f (x) be a pdf on [a, b] , f(x) ≤M and F (x) =
∫ x
a
f(u)du then the

Gini Mean Difference RG (f) satisfies

|RG (f)− {E(f) +M [J(t∗)− J(t∗)]}|(4.7)

≤ M

{
1

2

[
(b− a)2 − (t∗ − a)2 − (t∗ − a)2

]
−J(b) + [ J(t∗) + J(t∗)]}(4.8)

where t∗ = a+b
2
− 1

2M
and t∗ = a+b

2
+ 1

2M
with

J(t) =

∫ t

a

(t− x)F (x)dx .



797

Further, for F (b) = 1 we have

(4.9) |RG (f)| ≤ M

2

∫ b

a

(x− a)2f(x)dx =
M

2
{M2 − a [2E(f)− a]} .

where M2 =
∫ b
a
x2f(x)dx.

Proof. In Theorem 3.5 let w(x) = 1 − F (x) and h(x) = F (x) so that
∣∣∣h′(x)

∣∣∣ = f(x) ≤
M.Now from (4.1) we have

(4.10) RG (f)=

∫ b

a

(1− F (x))F (x) dx,

and so we have two possible cases to consider namely, that w(x) = 1− F (x) > 0 for x ∈
[a, b) and w(b) = 0.

Now for t ∈ [a, b) we have from (3.22) that

|RG (f)− {E(f) +M [I(t∗)− I(t∗)]}|

≤ M

{∫ b

a

(b− x)(1− F (x))dx − [ I(t∗) + I(t∗)]

}
where t∗ = a+b

2
− 1

2M
and t∗ = a+b

2
+ 1

2M
with,

I(t) =

∫ t

a

(t− x)(1− F (x))dx .

After some algebraic simplification the results as depicted in (4.7) are establisted.
Now, for w(b) = 1− F (b) = 0 we have from (3.18) - (3.20),

L(b) = −M
∫ b

a

(x− a)(1− F (x))dx and R(b) = M

∫ b

a

(x− a)(1− F (x))dx

and so R(b)+L(b)
2

= 0 and R(b)−L(b)
2

= M
∫ b
a

(x − a)(1 − F (x))dx from which we obtain
(4.9) on using (3.20) and some simplification. �

An investigation of bounds for the Gini mean difference from the Iyengar inequality
(3.1) and the identity depicted in Lemma 2.2 reproduces a the result

0 ≤ RG (f) ≤ 1

b− a (b− E (f)) (E (f)− a) ,

obtained by Gastwirth [13, p. 308] by a different approach.

Conclusion
The paper has extended results relating to the Ingear inequality to less restrictive

conditions and involving Reimann-Stieltjes integrals. This in turn has let to a weighted
version in form of Theorem 3.5 which recaptures the Iyengar result when the weight
function is 1. The generalised Iyengar results are then used in the final section to obtain
approximation and bounds for the Gini Mean Difference.The novel bounds for realistic
pdfs such as those contained in (4.5) and (4.9) involve the first and second moments.
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Quasi-primary submodules satisfying the primeful
property II
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Abstract
In this paper we continue our study about quasi-primary submodules
(probably satisfying the primeful property), that was defined and stud-
ied in Part I (see [8]). We define a quasi-primary decomposition for
submodules of a module over a commutative ring with identity and
study various types of the corresponding minimal forms. In particu-
lar, we discuss these decompositions for submodules of multiplication
modules and also arbitrary modules over Noetherian rings.
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1. INTRODUCTION
Throughout this paper all rings are commutative with identity, and all modules are uni-
tary. Recently, the decomposition theory associated with various generalizations of prime
and primary ideals has been the domain of concerns of many researches (see for example
[18, 21, 24]). Here we follow this topic in the context of quasi-primary submodules; the
recent generalization of quasi-primary ideals. Some concepts which are used frequently
in this paper have been gathered in the following definition.

1.1. Definition. Let N be a proper submodule of an R-module M .
(1) N is prime(resp. primary) if rx ∈ N for r ∈ R and x ∈ M implies either

r ∈ (N : M) (resp. r ∈
√

(N : M)) or x ∈ N (see [5, 14, 22, 15, 17]).
(2) The intersection of all prime submodules of M containing N , denoted radN , is

called prime radical of N (see [3, 10, 13, 16, 19, 26]).
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(3) N is quasi-primary if rx ∈ N for r ∈ R and x ∈M , then either r ∈
√

(N : M) or
x ∈ radN . Clearly every primary submodule is quasi-primary, but not conversely
in general (see Example 1.2 and Example 2.3).

(4) N satisfies the primeful property provided that for every prime ideal p containing
(N : M) there exists a prime submodule P contains N such that (P : M) = p.
In particular, M is primeful if the zero submodule of M satisfies the primeful
property. Every submodule of a finitely generated module satisfies the primeful
property (see [8, 12]).

(5) N has a quasi-primary decomposition if N = N1 ∩N2 ∩ · · · ∩Ns, where each Ni
is a quasi-primary submodule of M . If Ni # N1 ∩ · · · ∩Ni−1 ∩Ni+1 ∩ · · · ∩Ns,
then the above quasi-primary decomposition is called
(5.1) reduced, if the ideals

√
(Ni : M) are distinct primes.

(5.2) module-reduced, if the submodules radNi are distinct primes.
(5.3) shortest, if none of the intersection (Ni1 : M)∩ (Ni2 : M)∩ · · · ∩ (Nit : M)

(t > 1) is a quasi-primary ideal.
(6) An R-module M is said to be a multiplication module, if every submodule of

M has the form IM for some ideal I of R. For example any cyclic module is a
multiplication module. However, there is a multiplication module which is not
finitely generated [7, p.770]. Also, free modules with finite rank greater than
one are finitely generated modules which are not multiplication modules [15,
Corollary 2.5 and Theorem 3.5]. It is well-known that M is a multiplication
R-module if and only if for each submodule N of M , N = (N : M)M . (see for
more study [1, 7, 23]).

(7) The support of M, written Supp(M), is defined to be the set of prime ideals p
of R such that Mp 6= 0 (see [6, 20]).

(8) A prime ideal p of R is associated to M if p is the annihilator of an element of
M . The set of all primes associated to M is denoted by Ass(M) (see [6, 20]).

1.2. Example. Indeed, every power of a prime ideal as well as that of a primary or
a quasi-primary ideal is quasi-primary; but a power of a prime ideal is not necessarily
primary (for example see [2, Example after proposition 4.1, part 3]). Now we follow
this fact to give an example in the module setting. It is well-known that if F is a free
R-module and I is an ideal of R, then (IF : F ) = I and rad(IF ) =

√
IF [25, Proposition

2.2]. It is routine to verify that q is a quasi-primary (resp. primary, prime) ideal of R if
and only if qF is a quasi-primary (resp. primary, prime) submodule of F [8, Theorem
2.19]. These show that there is a rich supply of quasi-primary submodules which are not
primary.

Recall that a proper ideal q of R is quasi-primary if rs ∈ q for r, s ∈ R implies r ∈ √q
or s ∈ √q (see [8, 9]). It is well-known that q is a quasi-primary ideal of R if and only
if √q is a prime ideal of R [9, p.176]. For a submodule N of a multiplication R-module
M which satisfies the primeful property, we prove that N is a quasi-primary submodule
of M if and only if (N : M) is a quasi-primary ideal of R if and only if radN is a
prime submodule of M if and only if N = qM for some quasi-primary ideal q of R with
ann(M) ⊆ q (Theorem 2.2). We use this fact to investigate the relationships between
reduced and module-reduced and shortest quasi-primary decompositions of submodules
of multiplication modules (Corollary 2.6 and Proposition 2.11 and Theorem 2.13). Also
we give some uniqueness theorems as follow:
Theorem 2.13. Let M be a multiplication R-module and N a submodule of M . Let
N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two reduced quasi-primary decompositions
of N as intersection of quasi-primary submodules satisfying the primeful property. Then
s = t and the prime ideals pi =

√
(Ni : M) must be, without regard to their order,
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identical to the prime ideals p′j =
√

(N ′j : M).
Theorem 3.5. Let R be a Noetherian ring and M an R-module. Let N be a submodule
ofM such that N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two reduced quasi-primary
decompositions of N where Ni(resp. N ′j) is pi-quasi-primary (resp. pj-quasi-primary).
Then s = t and (after reordering if necessary) pi = pi and radNi = radN ′i for 1 ≤ i ≤ s.
Theorem 3.7. Let N be a proper submodule of a module M over a Noetherian ring
R. If N = ∩si=1Ni is a module-reduced quasi-primary decomposition and Ni (1 ≤ i ≤ s)
satisfies the primeful property such that radN = ∩si=1radNi, then Ass(M/radN) ⊆
{p1, · · · , ps} ⊆ Supp(M/radN). In particular, Ass(M/radN) = {pi1 , pi2 , · · · , pit} where
pij 1 ≤ j ≤ t are minimal elements of {p1, · · · , ps}.
Theorem 3.11. Let M be a module over a Noetherian ring R. Let N be a proper
submodule of M satisfying the primful property. If N = ∩si=1Ni is a module-reduced
quasi-primary decomposition and Ni satisfies the primeful property, 1 ≤ i ≤ s, such that
radN = ∩si=1radNi. If pj =

√
(Nj : M) is a minimal element of {p1, · · · , ps}, then radNj

is uniquely determined by N .

2. QUASI-PRIMARY SUBMODULES OF MULTIPLICATION
MODULES
Let M be a multiplication R-module. If p is a prime ideal containing ann(M), then

(pM : M) = p [7, Lemma 2.10]. In particular a proper submodule pM is a prime
submodule of M if and only if p is a prime ideal containing ann(M) [7, Corollary 2.11].
Now we have the following result:

2.1. Lemma. Let R be a ring and I an ideal of R. Let M be a multiplication R-module.
If IM satisfies the primeful property, then so does

√
IM . In this case

√
(IM : M) =√

(
√
IM : M).

Proof. Let p be a prime ideal containing (
√
IM : M). Since IM satisfies the primeful

property, there exists a prime submodule P containing IM such that (P : M) = p. By [7,
Corollary 2.11], P = p′M for some prime ideal p′ containing ann(M). Since IM ⊆ p′M ,
by [7, Lemma 2.10] I ⊆ p′. Hence

√
IM ⊆ P , as required. Also the similar argument

follows that rad(IM) = rad(
√
IM) and so we have the second part. �

2.2. Theorem. Let N be a submodule of a multiplication R-module M which satisfies
the primeful property. Then the following statements are equivalent:

(i) N is a quasi-primary submodule of M ;
(ii) (N : M) is a quasi-primary ideal of R;
(iii) radN is a prime submodule of M ;
(iv) N = qM for some quasi-primary ideal q of R with ann(M) ⊆ q.

Proof. (i)⇒ (ii) is clear, since
√

(N : M) = (radN : M).
(ii)⇒ (iii). It is easy to check that radN is a proper submodule of M , since N satisfies
the primeful property. Now the proof is completed by [7, Corollary 2.11 and Theorem
2.12].
(iii)⇒ (i) is obtained by a direct application of the definition of quasi-primary submodules.
(ii)⇒ (iv) is clear.
(iv)⇒ (iii). Let q be a quasi-primary ideal of R containing (0 : M) and N = qM . By
[7, Theorem 2.12] and Lemma 2.1, we have radN =

√
(N : M)M =

√
(qM : M)M =√

(
√
qM : M)M =

√√
qM =

√
qM . Thus by [7, Corollary 2.11], radN is a prime

submodule of M . �
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2.3. Example. Let M be a finitely generated faithful multiplication R-module (for
example M can be considered as a non-zero ideal of a principal ideal domain R). Then
for each ideal I of R, (IM : M) = I [7, Theorem 3.1]. Thus if q is a quasi-primary ideal
of R which is not primary, then qM is a quasi-primary submodule of M which is not
primary (see Theorem 2.2 above.)

2.4. Proposition. Let M be a non-zero multiplication R-module. If ann(x) = 0 for
some x ∈M , then every submodule of M satisfies the primeful property.

Proof. Assume N is a submodule of M and p a prime ideal of R containing (N : M). It
suffices to show that pM is a prime submodule of M . By [7, Corollary 2.11], we must
prove that pM 6= M . Assume on the contrary that pM = M . Suppose x ∈ M and
ann(x) = 0. Since M is multiplication, there exists an ideal J of R such that Rx = JM .
Thus Rx = JM = JpM = pJM = px and so 1 − r ∈ ann(x) for some r ∈ p, a
contradiction. �

It is well-known that if M is a finitely generated multiplication R-module, then M
is weak cancellation, i.e. IM ⊆ JM , for ideals I, J of R, implies I ⊆ J + ann(M) ([1,
Theorem 3] and [22, Corollary to Theorem 9]). By combining this fact and Theorem 2.2,
we have the following immediate result.

2.5. Corollary. Let N be a submodule of a finitely generated multiplication R-module
M . Then

(i) N is a minimal quasi-primary submodule of M if and only if there exists a
minimal quasi-primary ideal q of R containing ann(M) such that N = qM 6= M .

(ii) Every quasi-primary submodule ofM contains a minimal quasi-primary submod-
ule.

Proof. (i) is clear.
(ii). It suffices to show that every quasi-primary ideal of R contains a minimal quasi-
primary ideal. Let q be a quasi-primary ideal of R and Λ = {q : q is a quasi-primary ideal
of R with q ⊆ q}. Since q ∈ Λ, we have Λ 6= ∅. We define a partially order by reverse
inclusion, that is, for qi, qj ∈ Λ, qi � qj if and only if qi ⊇ qj, so that a maximal member
of this partially ordered set is just a minimal member of Λ with respect to inclusion. Let
Ω be a non-empty subset of Λ which is totally ordered with respect to the above partial
order. It is easy to verify that Q = ∩q∈Ωq is an upper bound for Ω in Λ. Now Zorn’s
lemma completes the proof. �

In [7, Corollary 1.7], it has shown that ifM is a multiplication module, then ∩λ∈Λ(IλM) =
(∩λ∈Λ[Iλ + annM ])M for every non-empty collection of ideals Iλ (λ ∈ Λ) of R. Using
this fact, we have the following result:

2.6. Corollary. Let M be a multiplication R-module and N a submodule of M . Let Ni
(1 ≤ i ≤ s) be a collection of submodules of M satisfying the primeful property. Then the
following statements are equivalent:

(i) (N : M) = (N1 : M) ∩ · · · ∩ (Ns : M) is a reduced quasi-primary decomposition
of I;

(ii) N = N1 ∩ · · · ∩Ns is a reduced quasi-primary decomposition of N ;
(iii) N = N1 ∩ · · · ∩Ns is a module-reduced quasi-primary decomposition of N .

2.7. Corollary. Let I be an ideal of R containing ann(M). Let M be a multiplication
R-module. If I = q1 ∩ · · · ∩ qs is a reduced quasi-primary decomposition of I, then
IM = q1M ∩ · · · ∩ qsM is a reduced and module-reduced quasi-primary decomposition of
IM .
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The following is an immediate consequence of Theorem 2.2 and [9, Theorem 1].

2.8. Corollary. Let M be a multiplication R-module and N a submodule M . Let Ni =
qiM , (1 ≤ i ≤ s) be a collection of quasi-primary submodules of M satisfying the primeful
property. Then N1 ∩ · · · ∩ Ns is a quasi-primary submodule of M if and only if among
the prime ideals

√
(Ni : M) there is a

√
(Nk : M) such that

√
(Nk : M) ⊆

√
(Ni : M).

Recall that a representation N = N1 ∩ N2 ∩ · · · ∩ Ns of a submodule N of an R-
module M is shortest, if none of the Ni can be omitted and none of the intersection
(Ni1 : M) ∩ (Ni2 : M) ∩ · · · ∩ (Nit : M) (t > 1) is a quasi-primary ideal.

2.9. Proposition. Let M be a multiplication R-module and N a submodule M . Let
Ni = qiM (1 ≤ i ≤ s) be a collection of submodules of M satisfying the primeful property.
Then every quasi-primary decomposition N = N1 ∩ N2 ∩ · · · ∩ Ns has a shortest quasi-
primary decomposition.

Proof. First we omit every superfluous term Ni. Second, assume there exist submodules
Ni1 , Ni2 , · · · , Nit such that

√
(Ni1 : M) ⊆

√
(Ni2 : M) ⊆ · · · ⊆

√
(Nit : M). Put N ′i =

Ni1 ∩ Ni2 ∩ · · · ∩ Nit . Then by Corollary 2.8, N ′i is a quasi-primary submodule of M .
Thus N = N ′1 ∩N ′2 ∩ · · · ∩N ′r is a shortest quasi-primary decomposition of N . �

2.10. Corollary. Let M be a multiplication module with a submodule N . If N = N1 ∩
N2 ∩ · · · ∩ Ns is a shortest quasi-primary decomposition such that each Ni (1 ≤ i ≤ s)
satisfies the primeful property, then all the prime ideals belonging to the quasi-primary
submodules which occur in a shortest quasi-primary decomposition of N are isolated.

2.11. Proposition. Let M be a multiplication R-module and N a submodule of M . Let
Ni (1 ≤ i ≤ s) be a collection of submodules of M satisfying the primeful property. If
N = N1 ∩ N2 ∩ · · · ∩ Ns is a shortest quasi-primary decomposition, then it is a reduced
and module-reduced quasi-primary decomposition of N .

Proof. It is clear that the ideals
√

(Ni : M) are prime for every i (1 ≤ i ≤ t). Assume,
on the contrary, there exists j 6= i such that

√
(Nj : M) =

√
(Ni : M). Then (Ni :

M) ∩ (Nj : M) is a quasi-primary ideal of R, since
√

(Ni ∩Nj : M) =
√

(Ni : M) is a
prime ideal of R, a contradiction. Therefor N = N1 ∩N2 ∩ · · · ∩Nt is a reduced quasi-
primary decomposition and by Corollary 2.6 is also a module-reduced quasi-primary
decomposition. �

In general, the converse of the above proposition is not true. For instance, let R =
K[x, y] be the ring of polynomials in x, y with coefficients in a field K. Consider the
ideal I = (x2y, xy2) of R. It is clear that radI = (xy) is not a prime ideal and so I is not
quasi-primary. I = (x) ∩ (y) ∩ (x2, y2) is a reduced quasi-primary decomposition that is
not shortest [9, p. 181].

The following is an immediate result of Proposition 2.6 and Proposition 2.11.

2.12. Corollary. Let M be a multiplication R-module and N a submodule of M . Let Ni
(1 ≤ i ≤ s) be a collection of submodules ofM satisfying the primeful property. If N has a
quasi-primary decomposition, then it has both reduced and module-reduced quasi-primary
decompositions.

2.13. Theorem. Let M be a multiplication R-module and N a submodule of M . Let
Ni = qiM , (1 ≤ i ≤ s) be a collection of submodules ofM satisfying the primeful property.
Then N = N1∩N2∩ ...∩Ns is a shortest quasi-primary decomposition of N if and only if
(N : M) = (N1 : M)∩(N2 : M)∩ ...∩(Ns : M) is a shortest quasi-primary decomposition
of the ideal (N : M).
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Proof. ⇒) Assume, on the contrary, that (N : M) = (N1 : M) ∩ (N2 : M) ∩ · · · ∩ (Ns :
M) is not shortest. Then either (Nt : M) may be omitted for some 1 ≤ t ≤ s or
(Ni1 : M) ∩ (Ni2 : M) ∩ · · · ∩ (Nir : M) is a quasi-primary ideal for some r > 1. Firstly,
assume (Nt : M) ⊇ (N1 : M) ∩ · · · ∩ (Nt−1 : M) ∩ (Nt+1 : M) ∩ · · · ∩ (Ns : M). Therefor√

(Nt : M) ⊇
√

(N1 : M)∩ · · · ∩
√

(Nt−1 : M)∩
√

(Nt+1 : M)∩ · · · ∩
√

(Nm : M). Since√
(Nt : M) is a prime ideal, there exists k 6= t such that

√
(Nk : M) ⊆

√
(Nt : M). Now

Corollary 2.10 shows that
√

(Nk : M) =
√

(Nt : M). Thus N = N1∩N2∩ ...∩Ns is not a
reduced quasi-primary decomposition, which contradicts the Proposition 2.11. Secondly,
if (Ni1 : M) ∩ (Ni2 : M) ∩ · · · ∩ (Nir : M) is a quasi-primary ideal for some r > 1,
then there is a minimal prime ideal

√
(Nik : M) among the prime ideals

√
(Nij : M)

(1 ≤ j ≤ r), which contradicts the Corollary 2.10.
⇐) Suppose (N : M) = (N1 : M) ∩ (N2 : M) ∩ ... ∩ (Ns : M) is a shortest quasi-primary
decomposition of the ideal (N : M) in R. Multiplying byM , we get N = N1∩N2∩...∩Ns.
It is easy to check that the above representation is a shortest quasi-primary decomposition
of N . �

2.14. Theorem. Let M be a multiplication R-module and N a submodule of M . Let
N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two reduced quasi-primary decompositions
of N as intersection of quasi-primary submodules satisfying the primeful property. Then
s = t and the prime ideals pi =

√
(Ni : M) must be, without regard to their order,

identical to the prime ideals p′j =
√

(N ′j : M).

Proof. Let N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two shortest quasi-primary de-
compositions ofN . By Theorem 2.13, we have two shortest quasi-primary decompositions
(N : M) = (N1 : M)∩ (N2 : M)∩ · · · ∩ (Ns : M) = (N ′1 : M)∩ (N ′2 : M)∩ · · · ∩ (N ′t : M)
of the ideal (N : M). Now the proof is completed by [9, Theorem 6]. �

2.15. Proposition. Let N and K be quasi-primary submodules of a multiplication R-
module M satisfying the primeful property. Then N ∩K is quasi-primary if and only if
radN ⊆ radK or radK ⊆ radN .

Proof. Since N ∩ K is a quasi-primary submodule,
√

(N ∩K : M) =
√

(N : M) ∩√
(K : M) is a prime ideal of R and so

√
(N : M) ⊆

√
(K : M) or

√
(K : M) ⊆√

(N : M). Equivalently (radN : M) ⊆ (radK : M) or (radK : M) ⊆ (radN : M).
Therefore radN ⊆ radK or radK ⊆ radN , since M is a multiplication module. The
reverse argument implies that (N ∩K : M) is a quasi-primary ideal and so by Theorem
2.2, N ∩K is a quasi-primary submodule of M . �

3. QUASI-PRIMARY DECOMPOSITION OF SUBMODULES
OF MODULES OVER NOETHERIAN RINGS
In [6, Theorem 3.10], it has been shown that every proper submodule of a Noetherian

module has a primary decomposition and so a fortiori quasi-primary decomposition. In
particular, every submodule of finitely generated modules or faithful multiplication mod-
ules over Noetherian rings has a quasi-primary decomposition [7, p.764]. This gives rise
to the question: is there a submodule of a module which has a quasi-primary decompo-
sition, but has not any primary decomposition. Let us now present positive answer to
this question below.

3.1. Example. Since the set of ideals of a valuation domain is totally ordered under
inclusion, we conclude that every proper ideal of a valuation domain is quasi-primary
[11, Theorem 5.10]. On the other hand, it is proved that for a local domain R, every
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proper ideal of R is primary if and only if dimR = 1 [4, Theorem2.4]. Now let R be a
valuation domain with dimR > 1. Then there exists a quasi-primary ideal q of R which
is not primary. Now if q = q1∩q2∩· · ·∩qn is a reduced primary decomposition of q, then
there is 1 ≤ j ≤ n such that qj ⊆

√
q ⊆ √qj . Thus √qj is a minimal element of the set

{√q1,
√
q2, · · · ,

√
qn}. We claim that qj is minimal among the ideals q1, q2, · · · , qn and

so q = qj . This contradicts the choice of q. Let qi ⊆ qj for some i 6= j. By minimality of√
qj we must have √qi =

√
qj , which contradicts the fact that q = q1 ∩ q2 ∩ · · · ∩ qn is

a reduced primary decomposition of q. Thus qi * qj for every i 6= j. Now since the set
of ideals of R is totally ordered under inclusion, we must have qj ⊆ qi for every i 6= j, as
required.

It has been shown that a reduced primary decomposition is unique in the sense of
the set of prime ideals belonging to primary submodules of two primary decompositions
are the same and the set of primary submodules with isolated associated primes are
also identical [6, Theorem 3.10]. In this section we study quasi-primary submodules of
modules over Noetherian rings. In particular, we give some uniqueness theorems for
reduced and module-reduced quasi-primary decomposition (Theorem 3.6, Theorem 3.8
and Theorem 3.12).

3.2. Lemma. Let R be a Noetherian ring and N a p-quasi-primary submodule of an
R-module M . Then there exists a positive integer n such that pn ⊆ (N : M).

Proof. Taking p = (r1, · · · , rt). For each generator ri, there is a positive integer ni such
that rni

i ∈ (N : M). Let n has the value n =
∑t
i=1(ni − 1) + 1. Now pn is generated

by monomials rm1
1 · · · rmt

t with
∑t
j=1 mj = n, because at least for one of the subscripts

j we have sj ≥ n. Hence pn ⊆ (N : M). �

Since a faithful multiplication module M over a Noetherian ring R is Noetherian ([7,
p.764]), then every submodule of M satisfies the primeful property. Thus we can replace
"satisfying the primeful property" for these submodules of M with "faithfulness" for M
in Theorem 3.3 and and Theorem 3.5.

3.3. Theorem. Let R be a Noetherian ring and M a multiplication R-module. Let N
be a submodule of M which satisfies the primeful property. Then N is quasi-primary if
and only if there exists a unique prime ideal p of R such that pt ⊆ (N : M) ⊆ p for some
positive integer t.

Proof. (⇒) By Theorem 2.2, (N : M) is a quasi primary ideal. If p =
√

(N : M), then
by Lemma 3.2 pt ⊆ (N : M) ⊆ p for some positive integer t. If p′ is a prime ideal of R
and p′s ⊆ (N : M) ⊆ p′, then p′ =

√
(N : M) = p.

(⇐) It is clear that (N : M) is quasi-primary ideal. Now the proof is completed by
Theorem 2.2. �

3.4. Lemma. Let M be a multiplication R-module and N1 a submodule of M . Let
N2 be a quasi-primary submodule of M satisfying the primeful property such that p =√

(N1 : M) =
√

(N2 : M) and N1 ⊆ N ⊆ N2. Then N is a p-quasi-primary submodule
of M .

Proof. It is clear that
√

(N1 : M) =
√

(N : M) =
√

(N2 : M) = p and so (N : M)
is a p-quasi-primary ideal of R. Now if p is a prime ideal containing (N : M), then
(N2 : M) ⊆ p. Since N2 satisfies the primeful property, there exists a prime submodule
P containing N2 and so N such that (P : M) = p. Thus N satisfies the primeful property.
Now by Theorem 2.2, N is a p-quasi-primary submodule of M . �
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3.5. Theorem. Let R be a Noetherian ring and M a multiplication R-module. Let Ni
(1 ≤ i ≤ t) be a collection of quasi-primary submodules of M with

√
(Ni : M) = pi. If N1

satisfies the primeful property and p1 ⊆ pi for each 1 ≤ i ≤ t, then N = (Πt
i=1(Ni : M))M

is also p1-quasi-primary.

Proof. Since R is a Noetherian ring there are positive integers si (1 ≤ i ≤ t) such that
ps1+s2···+st

1 M ⊆ ps11 p
s2
2 · · · p

st
t M ⊆ (N1 : M)(N2 : M) · · · (Nt : M)M ⊆ p1p2 · · · ptM ⊆

p1M . Thus

p1 ⊆
√

(ps1+s2···+st
1 M : M) ⊆

√
(p1p2 · · · ptM : M) ⊆ p1

and so
√

(p1p2 · · · ptM : M) = p1. Now by a similar consideration of Lemma 3.4, it
can be shown that p1p2 · · · ptM satisfies the primeful property. Hence by Theorem 2.2,
N = (Πt

i=1(Ni : M))M is p1-quasi-primary. �

.

3.6. Theorem. Let R be a Noetherian ring and M an R-module. Let N be a submodule
of M such that N = N1∩N2∩· · ·∩Ns = N ′1∩N ′2∩· · ·∩N ′t be two reduced quasi-primary
decompositions of N where Ni(resp. N ′j) is pi-quasi-primary (resp. pj-quasi-primary).
Then s = t and (after reordering if necessary) pi = pi and radNi = radN ′i for 1 ≤ i ≤ s.

Proof. Without loss of generality we may assume that p1 is one of the minimal elements of
the set {p1, · · ·ps, p1, · · · pt}. Since N1 is p1-quasi-primary, there exists a positive integer
t such that pt1M ⊆ N1 and hence

pt1(N2 ∩N3 ∩ · · · ∩Ns) ⊆ N = N ′1 ∩N ′2 ∩ · · · ∩N ′t .

If N2 ∩ N3 ∩ · · · ∩ Ns ⊆ radN ′1, then we have ∩si=2pi ⊆ p1 and so pi ⊆ p1 for some
2 ≤ i ≤ s. Thus by assumption pi = p1 for some 2 ≤ i ≤ s. In the other case, suppose
N2 ∩ N3 ∩ · · · ∩ Ns * radN ′1. Since N ′1 is quasi-primary, we have pt1 ⊆ p1 and hence
p1 ⊆ p1. Now by minimality of p1, we conclude that p1 = p1. Since {p1, p2 · · · , ps} and
{p1, p2 · · · , pt} are sets of distinct prime ideals, with a similar argument we have s = t
and pi = pi for 1 ≤ i ≤ s.

For the second part, since pi are all distinct, there exists ri ∈ pi\p1 for each 2 ≤ i ≤ s.
Then r = r2r3 · · · rs ∈ pi for i > 1, but r /∈ p1. Since Ni(resp. N ′i) is pi-quasi-primary,
there exists an integer ni(resp. mi) such that rni ∈ (Ni : M)(resp. rmi ∈ (N ′i : M))
for each 2 ≤ i ≤ s. Let n = max{n2, · · · , ns,m2 · · · ,ms}. Then rn ∈ (Ni : M) and
rn ∈ (N ′i : M) for each 2 ≤ i ≤ s. Now if x ∈ N1, then rnx ∈ N whence rnx ∈ N ′1. It
follows from the definition that x ∈ radN ′1. Therefore N1 ⊆ radN ′1. A similar argument
shows that N ′1 ⊆ radN1 and hence radN1 = radN ′1. �

3.7. Lemma. Let M be an R-module. If {Ni : 1 ≤ i ≤ t} is a finite collection of
submodules of M which satisfy the primeful property, then so does ∩ti=1Ni.

Proof. Clear. �

3.8. Theorem. Let N be a proper submodule of a module M over a Noetherian ring
R. If N = ∩ti=1Ni is a module-reduced quasi-primary decomposition and Ni (1 ≤ i ≤ t)
satisfies the primeful property such that radN = ∩ti=1radNi, then Ass(M/radN) ⊆
{p1, · · · , pt} ⊆ Supp(M/radN). In particular, Ass(M/radN) = {pi1 , pi2 , · · · , pis} where
pij (1 ≤ j ≤ s) are minimal elements of {p1, · · · , pt}.
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Proof. Let p be an associated prime of M/radN , so that p = ann(x + radN), 0 6=
x+ radN ∈M/radN . Renumber the Ni so that x /∈ radNi for 1 ≤ i ≤ j and x ∈ radNi
for j+1 ≤ i ≤ t. Since Ni is a quasi-primary submodule satisfying the primeful property,
pi =

√
(Ni : M) is a prime ideal of R (1 ≤ i ≤ t). Since pi is finitely generated, pni

i M ⊆
Ni for some ni ≥ 1. Therefore (∩ji=1p

ni
i )x ⊆ ∩ti=1radNi = radN , so ∩ji=1p

ni
i ⊆ ann(x+

radN) = p. Since p is prime, pi ⊆ p for some i ≤ j. We claim that pi = p, so that every
associated prime must be one of the pi’s. To verify this, let r ∈ p. Then r(x+ radN) =

radN and x /∈ radNi and since radNi is prime we have r ∈
√

(Ni : M) = pi, as claimed.
By [8, Lemma 3.4], M/radNi is a primeful R-module. Now since pi ⊇ (radN : M) for
each 1 ≤ i ≤ t, we have Ass(M/radN) ⊆ {p1, p2, · · · , pt} ⊆ Supp(M/radN), by [12,
Proposition 3.4]. For the second part, we show that minimal elements of {p1, · · · , pt}
are equal to minimal elements of Supp(M/radN). Let pj be a minimal element of
{p1, · · · , pt} and p ⊆ pj for some p ∈ Supp(M/radN). By [8, Lemma 3.4] and Lemma 3.7
radN satisfies the primeful property and hence by [12, Proposition 3.4] p ⊇ (radN : M).
Thus ∩ti=1pi ⊆ p ⊆ pj . Since p is prime, there exists pi (1 ≤ i ≤ t) such that pi ⊆ p ⊆ pj
and so pi = p = pj , by minimality of pj . Now the proof is completed by [20, Theorem
9.39]. �

Noth that, by the proof of Theorem 3.8, the minimal prime ideals of the set {p1, · · · , pt}
are uniquely determined by N , as follows.

3.9. Corollary. Let N be a proper submodule of a module M over a Noetherian ring
R. Let N = ∩ti=1Ni be a module-reduced quasi-primary decomposition and Ni satisfies
the primeful property, 1 ≤ i ≤ t, such that radN = ∩ti=1radNi. Let pi =

√
(Ni : M)

for 1 ≤ i ≤ t. Then the minimal primes which occur in the set {p1, · · · , pt} are uniquely
determined by N .

3.10. Corollary. Let N be a proper submodule of a module M over a Noetherian
ring R which satisfies the primeful property. Then N is p-quasi-primary if and only
if Ass(M/radN) = p.

3.11. Lemma. Let M be a module over a Noetherian ring R, and N a quasi-primary
submodule of M satisfying the primeful property with p =

√
(N : M). Let p′ be any prime

ideal of R.
(i) If p * p′, then Mp′ = (radN)p′ .
(ii) If p ⊆ p′, then radN = f−1((radN)p′) where f is the mapping x 7→ x/1 from

M into Mp′ .

Proof. (i). It is easy to verify that there is a bijection between AssRp′ (M/radN)p′ (which
coincide with AssRp′ (Mp′/(radN)p′)) and the intersection AssR(M/radN)∩S, where S
is the set of prime ideals contained in p′. By Corollary 3.10, there is only one associated
prime of M/radN over R, namely p, which is not contained in p′ by hypothesis. Thus
AssR(M/radN) ∩ S is empty, so by [20, Corollary 9.35], Mp′/(radN)p′ = 0, and the
result follows.
(ii). As in Corollary 3.10, AssR(M/radN) = {p}. Since p ⊆ p′, we have R\p′ ⊆
R\p. By [20, Corollary 9.36], R\p′ contains no zero-divisors of M/radN , because all
such zero-divisors belong to p. Thus the natural map g : x → x/1 from M/radN to
(M/radN)p′ ∼= (Mp′/(radN)p′) is injective. Assume x ∈ f−1((radN)p′). Then f(x) ∈
(radN)p′ , so f(x) + (radN)p′ is 0 in Mp′/(radN)p′ . By injectivity of the natural map
M/radN → (M/radN)p′ , x + radN is 0 in M/radN , in other words, x ∈ radN . Thus
f−1((radN)p′) ⊆ radN and the reverse inclusion is clear. �
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3.12. Theorem. Let N be a proper submodule of a module M over a Noetherian ring
R satisfying the primeful property. If N = ∩ti=1Ni is a module-reduced quasi-primary
decomposition and Ni satisfies the primeful property, 1 ≤ i ≤ t, such that radN =
∩ti=1radNi. If pj =

√
(Nj : M) is a minimal element of {p1, · · · , pt}, then radNj is

uniquely determined by N .

Proof. Suppose that pj is minimal, so that pj + pi, i 6= j. By Lemma 3.11(i) with
p = pi, p′ = pj , we have (radNi)pj = Mpj for i 6= j. By Lemma 3.11(ii), we have
radNj = f−1((radNj)pj ), where f is the natural map from M to Mpj . Hence we have

(radN)pj = (radNj)pj ∩ (∩i 6=j(radNi)pj )

= (radNj)pj ∩Mpj = (radNj)pj .

Thus radNj = f−1((radNj)pj ) = f−1((radN)pj ) depends only on N and pj , and since
pj is the minimal prime associated with N , it follows that radNj depends only on N . �
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Abstract
The aim of this paper is to present Korovkin type theorems on approxi-
matin of continuous functions with the use of A−statistical convergence
and matrix summability method which includes both convergence and
almost convergence. Since statistical convergence and almost conver-
gence methods are incompatible, we conclude that these methods can
be used alternatively to get some approximation results.
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1. Introduction
The so-called Bohman-Korovkin theorem on approximation of continuous functions

on a compact interval provides conditions in order to make a decision whether a sequence
of positive linear operators converges to the identity operator [2],[7],[14], and so on many
proofs have appeared in a variety of settings of this result (see[15],[18],
[20],[27]). In [27], Uchiyama have given an alternate proof of it by using inequali-
ties related to variance. If the sequence of positive linear operators does not conver-
gence to the identity operator then it might be benefical to use summability methods
([1],[13],[16],[22],[26],[28]).

The main point of using summability theory has always been to make a nonconvergent
sequence to converge. This was the motivation behind Fèjer’s famous theorem showing
Cesàro method being effective in making the Fourier series of a continuous periodic
function to converge [29]. In this paper, using Uchiyama’s idea [27], we give quite simple
proofs of the Korovkin type approximation theorems studied in ([9],[13],[23]). And also
we develop some Korovkin type results with the use of summation process and statistical
convergence methods respectively.

We pause to collect some notation.

∗Pamukkale University, Faculty of Science and Letters, Department of Mathematics, Kınıklı
20070, Denizli, TURKEY.
Email: oatlihan@pau.edu.tr
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Let C [a, b] be the vector space of all real-valued continuous functions on [a, b] and let
L be a linear operator on C [a, b] . We say that L is positive if Lf ≥ 0 whenever f ≥ 0 on
[a, b] . Note that C [a, b] is a Banach space with norm ‖f‖ = max

x∈[a,b]
|f(x)| and we denote

norm of L operator by ‖L‖ = max {‖Lf‖ : ‖f‖ ≤ 1} .
A subsequence B of C [a, b] is called a subalgebra if f.g belongs to B whenever f and

g are members of B.
We first recall the following lemma introduced in [27], which is useful in proving our

results.
[A] Lemma. Let B be a norm-closed subalgebra of C [a, b] that contains 1. If L is a

positive linear operator on B with L(1) ≤ 1, then

V (h) := L(h2)− (L(h))2 ≥ 0

for every h in B. Morever, for f, g and k in B:

(1.1) |L(fg)− L(f)L(g)|2 ≤ V (f)V (g)

(1.2) ‖L(fg)− L(f)L(g)‖ ≤ ‖V (f)‖
1
2 ‖V (g)‖

1
2

(1.3) ‖L(fg)− L(f)L(g)‖ ≤ ‖V (f)‖
1
2 ‖V (g) + V (k)‖

1
2

We now turn our attention to matrix summability method.
Let A :=

{
A(n)

}
=
{
a
(n)
kj

}
be a sequence of infinite matrices with non-negative real

entries. A sequence {Lj} of positive linear operators of C [a, b] into C [a, b] is called an
A - summation process on C [a, b] if {Lj (f)} is A- convergent to f for every f ∈ C [a, b] ,
i.e.,

(1.4) lim
k

∥∥∥∥∥
∞∑
j=1

a
(n)
kj Lj(f)− f

∥∥∥∥∥ = 0, uniformly in n,

where it is assumed that the series in (1.4) converges for each k, n and f. Recall that
a sequence of real numbers {xj} is said to be A−convergent (or A−summable) to L if

limk

∞∑
j=1

a
(n)
kj xj = L, (uniformly in n), ([19],[25]).

If A(n) = A for some matrix A, then A−summability is the ordinary matrix summa-
bility by A. If a(n)kj = 1/k for n ≤ j < k + n, (n = 1, 2, ...), and a(n)kj = 0 otherwise, then
A−summability reduces to almost convergence method [18]. Let {Lj} be a sequence of
positive linear operators of C [a, b] into C [a, b] such that for each k, n ∈ N

(1.5)
∞∑
j=1

a
(n)
kj ‖Lj(1)‖ <∞.

Furthermore, for each k, n ∈ N and f ∈ C [a, b] , let

B
(n)
k (f ;x) =

∞∑
j=1

a
(n)
kj Lj(f ;x)

which is well defined by (1.5), and belongs toB [a, b] .Observe that
∥∥∥B(n)

k

∥∥∥ = maks
{∥∥∥B(n)

k (f)
∥∥∥ : ‖f‖ ≤ 1

}
.Hence∥∥∥B(n)

k

∥∥∥ =
∥∥∥B(n)

k (1)
∥∥∥ .Some unification on Korovkin-type results through the use of a

summability method may be found in ([3],[4],[5],[6],[8]).
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2. Korovkin Type Approximation Theorems via Summation Pro-
cess
This section is motivated by that of Uchiyama [27]. We give quite simple proof of a

Korovkin type theorem which has been developed by Nishishiraho via A− summation
process, with the use of inequalities related to variance. And also we obtain Korovkin
type results for positive linear operators over C2π and C(D) respectively with the use of
A− summation process which includes both convergence and almost convergence.

2.1. Theorem. Let A :=
{
A(n)

}
be a sequence of infinite matrices with non-negative

real entries. Assume that {Lj} be a sequence of positive linear operators from C [a, b]
into C [a, b] for which (1.5) holds. If,

(2.1) lim
k

∥∥∥B(n)
k h− h

∥∥∥ = 0, uniformly in n,

for all h = 1, x, x2 then {Lj} is A− summation process on C [a, b] i.e., for every f ∈
C [a, b] ,

lim
k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n.

Proof. We proceed as in [27]. Since lim
k

∥∥∥B(n)
k 1− 1

∥∥∥ = 0, (uniformly in n), we have

lim
k

∥∥∥B(n)
k 1

∥∥∥ = 1, (uniformly in n). Without loss of generality we may assume that∥∥∥B(n)
k

∥∥∥ 6= 0 for all n and k.By considering B
(n)
k∥∥∥B(n)
k

∥∥∥ in place of B(n)
k , without loss of

generality we assume that B(n)
k (1) ≤ 1 for all n, k. This implies that

∥∥∥B(n)
k

∥∥∥ ≤ 1 for all
n, k. Using (1.2) , for every f in C [a, b] and for all n, k ,

we can write∥∥∥B(n)
k (xf)−B(n)

k (x).B
(n)
k (f)

∥∥∥2
(2.2) ≤

∥∥∥B(n)
k (x2)− (B

(n)
k (x))2

∥∥∥∥∥∥B(n)
k (f2)− (B

(n)
k (f))2

∥∥∥ .
Since

∥∥∥B(n)
k

∥∥∥ ≤ 1, we get∥∥∥B(n)
k (f2)− (B

(n)
k (f))2

∥∥∥ ≤ ∥∥∥B(n)
k

∥∥∥{∥∥f2
∥∥+ ‖f‖2} ≤ 2 ‖f‖2 .

Considering hypothesis we conclude that

lim
k
B

(n)
k (x2) = x2 = lim

k
(B

(n)
k (x))2, uniformly in n,

this implies that the right-hand side of (2.2) tends to zero (uniformly in n). We see that∥∥∥B(n)
k (xf)− xf

∥∥∥ ≤ ∥∥∥B(n)
k (xf)−B(n)

k (x).B
(n)
k (f)

∥∥∥∥∥∥B(n)
k (x).B

(n)
k (f)− xf

∥∥∥ .
If lim

k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n, then it follows from (2.2) that

lim
k

∥∥∥B(n)
k (xf)− xf

∥∥∥ = 0, uniformly in n.

Here by taking h = 1, x, x2 instead of f. We obtain (2.1) holds for h = xm for m =

0, 1, 2, ....Since B(n)
k is linear, (2.1) holds for every polynomial p. From the Weierstrass
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theorem asserting the norm-density of polynomials in C [a, b] (see [24],p.159), we have
for every f ∈ C [a, b]∥∥∥B(n)

k f − f
∥∥∥ ≤ ∥∥∥B(n)

k f −B(n)
k p

∥∥∥+ ∥∥∥B(n)
k p− p

∥∥∥+ ‖f − p‖
≤ 2 ‖f − p‖+

∥∥∥B(n)
k p− p

∥∥∥ .
Taking supremum over n and letting k →∞, result follows. �

Let C2π be the space of real-valued continuous functions f on [−π, π] such that
f(−π) = f(π). Then C2π is closed subalgebra of C [−π, π] and 1 belongs to C2π.

In the following theorem, we extend Korovkin type approximation theorem for a se-
quence of positive linear operators over C2π via A− summation process.

2.2. Theorem. Let A :=
{
A(n)

}
be a sequence of infinite matrices with non-negative

real entries. Assume that {Lj} be a sequence of positive linear operators from C2π into
C2π for which (1.5) holds. If,

lim
k

∥∥∥B(n)
k h− h

∥∥∥ = 0, uniformly in n,

for all h = 1, sinx, cosx, then {Lj} is A− summation process on C2π i.e., for every
f ∈ C2π,

lim
k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n.

Proof. As in the proof of Theorem 2.1, without loss generality we assume that B(n)
k (1) ≤

1. By (1.3), for every f in C2π,we have∥∥∥B(n)
k (f sinx)−B(n)

k (f).B
(n)
k (sinx)

∥∥∥2
≤
∥∥∥B(n)

k (f2)− (B
(n)
k (f))2

∥∥∥ ∥∥∥B(n)
k ( sin2 x)− (B

(n)
k ( sinx))2+B

(n)
k ( cos2 x)− (B

(n)
k ( cosx))2

∥∥∥
=
∥∥∥B(n)

k (f2)− (B
(n)
k (f))2

∥∥∥ ∥∥∥B(n)
k (1)− (B

(n)
k ( sinx))2−(B(n)

k ( cosx))2
∥∥∥

≤ 2 ‖f‖2 .
∥∥∥B(n)

k (1)− (B
(n)
k ( sinx))2−(B(n)

k ( cosx))2
∥∥∥ .

Considering hypothesis we conclude that

lim
k

∥∥∥B(n)
k (f sinx)−B(n)

k (f).B
(n)
k (sinx)

∥∥∥ = 0, uniformly in n.

Observe now that∥∥∥B(n)
k (f sinx)− f sinx

∥∥∥
≤
∥∥∥B(n)

k (f sinx)−B(n)
k (f).B

(n)
k (sinx)

∥∥∥∥∥∥B(n)
k (f).B

(n)
k (sinx)− f sinx

∥∥∥ .
If lim

k

∥∥∥B(n)
k f − f

∥∥∥ = 0,(uniformly in n) then lim
k

∥∥∥B(n)
k (f sinx)− f sinx

∥∥∥ = 0,

(uniformly in n). We obtain similarly that lim
k

∥∥∥B(n)
k (f cosx)− f cosx

∥∥∥ = 0, (uniformly

in n). By taking h = 1, sinx, cosx instead of f then (2.1) holds for h = sinm x cost x
for all nonnegative integers m and t, which ensures that it is valid for h = sinmx. cos tx
for all such m and t. Thus (2.1) holds for every trigonometric polynomial p, and since
the latter functions are dense in C2π. (see [24],p:190) we have for every f in C2π that
lim
k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n. �



817

We next consider the space C(D) of complex-valued continuous functions f on the
closed unit disk D = {z : |z| ≤ 1} in the complex plane.

In what follows we require the following
[B] Lemma. [27] If L is a positive linear operators on C(D) with L(1) ≤ 1, then

V (h) := L(|h|2)− |L(h)|2 ≥ 0

for every h in C(D). Morever, for f and g in C(D) it is the case that

|L(fg)− L(f)L(g)|2 ≤ V (f)V (g)

‖L(fg)− L(f)L(g)‖ ≤ ‖V (f)‖
1
2 ‖V (g)‖

1
2(2.4)

We now give a Korovkin type approximation theorem for a sequence of positive linear
operators defined on C(D) via A− summation process.

2.3. Theorem. Let A :=
{
A(n)

}
be a sequence of infinite matrices with non-negative

real entries. Assume that {Lj} be a sequence of positive linear operators from C(D) into
C(D) for which (1.5) holds. If,

lim
k

∥∥∥B(n)
k h− h

∥∥∥ = 0, uniformly in n,

for all h = 1, z, |z|2 , then {Lj} is A− summation process on C(D) i.e., for every f ∈
C(D),

lim
k

∥∥∥B(n)
k f − f

∥∥∥ = 0, uniformly in n.

Proof. We may assume that B(n)
k (1) ≤ 1 for all n, k. Since (2.4), we have∥∥∥B(n)

k (zf)−B(n)
k (z).B

(n)
k (f)

∥∥∥2 ≤ ∥∥∥∥B(n)
k ( |z|2 )−

∣∣∣B(n)
k (z)

∣∣∣2∥∥∥∥ ∥∥∥∥B(n)
k ( |f |2 )−

∣∣∣B(n)
k (f)

∣∣∣2∥∥∥∥
≤ 2 ‖f‖2

∥∥∥∥B(n)
k ( |z|2 )−

∣∣∣B(n)
k (z)

∣∣∣2∥∥∥∥ .
By the hypothesis we get

lim
k
B

(n)
k (|z|2) = |z|2 = lim

k

∣∣∣B(n)
k (z)

∣∣∣2 , uniformly in n,

this implies that

lim
k

∥∥∥B(n)
k (zf)−B(n)

k (z).B
(n)
k (f)

∥∥∥ = 0, uniformly in n.

We can write∥∥∥B(n)
k (zf)− zf

∥∥∥ ≤ ∥∥∥B(n)
k (zf)−B(n)

k (z).B
(n)
k (f)

∥∥∥∥∥∥B(n)
k (z).B

(n)
k (f)− zf

∥∥∥
if lim

k

∥∥∥B(n)
k f − f

∥∥∥ = 0, (uniformly in n) then lim
k

∥∥∥B(n)
k (zf)− zf

∥∥∥ = 0, (uniformly in

n). We obtain that (2.1) holds for h whenever it holds for h. Here by taking h =

1, z, |z|2 instead of f , (2.1) holds for h = zm.zk for all non-negative integers m and k,
hence for every polynomial in z and z. By Stone’s theorem (see [24],p:165) the set of all
such polynomials is dense in C(D), so (2.1) holds for every f in C(D).

�
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3. A Korovkin Type Approximation Theorem via Statistical Con-
vergence
In this section we give simple proofs for statistical analog of Korovkin’s theorems

considered in [9] and [13], also using A−statistically convergence, we extend a Korovkin
type result for positive linear operators over the space C(D).
First we recall the concept of A−statistical convergence. Let A := (ajn), j, n = 1, 2, ...,
be an infinite summability matrix. For a given sequence x := (xn), the A−transform
of x, denoted by Ax := ((Ax)j), is given by (Ax)j :=

∑
n

ajnxn, provided the series

converges for each j. The matrix A is said to be regular if limj(Ax)j = L whenever
limx = L [12].Suppose that A is a non-negative regular summability matrix. Then x is
A−statistically convergent to L if for every ε > 0

lim
j

∑
n:|xn−L|≥ε

ajn = 0.

In this case we write stA − limx = L ([11],[17]). The case in which A = C1, the Cesaro
matrix of order one, reduces to the statistical convergence ([10],[11]). Also if A = I, the
identity matrix, then it reduces to the ordinary convergence.
Note that, if A = (ajn) is a non-negative regular matrix such that limj maxn {ajn} = 0,
then A−statistical convergence is stonger than convergence [17].

3.1. Theorem.Let A = (ajn) be a non-negative regular summability matrix. Assume
that {Ln} be a sequence of positive linear operators from C [a, b] into C [a, b] . If,

(3.1) stA − lim
n
‖Lnh− h‖ = 0.

for all h = 1, x, x2, then, for every f ∈ C [a, b]

stA − lim
n
‖Lnf − f‖ = 0.

Proof. As in the proof of Theorem 2.1 , without loss of generality we assume that in
Ln(1) ≤ 1 for all n. By (1.2) , for every f in C [a, b] and for all n , we can write

(3.2) ‖Ln(xf)− Ln(x).Ln(f)‖2 ≤
∥∥Ln(x2)− (Ln(x))

2
∥∥ ∥∥Ln(f2)− (Ln(f))

2
∥∥ .

Since ‖Ln‖ ≤ 1, we get∥∥Ln(f2)− (Ln(f))
2
∥∥ ≤ ‖Ln‖{∥∥f2

∥∥+ ‖f‖2} ≤ 2 ‖f‖2

by hypothesis we obtain that

stA − lim
n
Ln(x

2) = x2 = stA − lim
n
(Ln(x))

2

this implies that the right-hand side of (3.2) isA−statistically convergent to zero. Observe
that

‖Ln(xf)− xf‖ ≤ ‖Ln(xf)− Ln(x).Ln(f)‖ . ‖Ln(x).Ln(f)− xf‖ .

If stA − lim
n
‖Lnf − f‖ = 0, then it follows from (3.2) that

stA − lim
n
‖Ln(xf)− xf‖ = 0.

Here by taking h = 1, x, x2 instead of f. We see that (3.1) holds for h = xm for m =
0, 1, 2, ....Since Ln is linear, (3.1) holds for every polynomial p. Since ‖Ln‖ ≤ 1 for every n,
theorem follows from the Weierstrass theorem asserting the norm-density of polynomials
in C [a, b] . �
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3.2. Theorem. Let A = (ajn) be a non-negative regular summability matrix. As-
sume that {Ln} be a sequence of positive linear operators from C2π into C2π. If,

stA − lim
n
‖Lnh− h‖ = 0.

for all h = 1, sinx, cosx, then, for every f ∈ C2π

stA − lim
n
‖Lnf − f‖ = 0.

Proof. As in the proof of Theorem 2.2, there is no loss of generality in assuming that
Ln(1) ≤ 1. By (1.3), we have for every f in C2π,

‖Ln(f sinx)− Ln(f).Ln(sinx)‖2

≤
∥∥Ln(f2)− (Ln(f))

2
∥∥∥∥Ln(sin2 x)− (Ln(sinx))

2 + Ln(cos
2 x)− (Ln(cosx))

2
∥∥

=
∥∥Ln(f2)− (Ln(f))

2
∥∥∥∥Ln(1)− (Ln(sinx))

2 − (Ln(cosx))
2
∥∥

≤ 2 ‖f‖2 .
∥∥Ln(1)− (Ln(sinx))

2 − (Ln(cosx))
2
∥∥

By the hypothesis we have

stA − lim
n
‖Ln(f sinx)− Ln(f)Ln(sinx)‖ = 0.

This implies that stA − limn ‖Ln(f sinx)− f sinx‖ = 0 whenever
stA − lim

n
‖Lnf − f‖ = 0.We see similarly that stA − limn ‖Ln(f cosx)− f cosx‖ = 0 in

this situtation. Thus (3.1) holds for h = sinm x cost x for all nonnegative integers m and
t, which ensures that it is valid for h = sinmx. cos tx for all such m and t.Thus (3.1)
holds for every trigonometric polynomial p, and since the latter functions are dense in
C2π.(see [24],p:190) we have for every f ∈ C2π that

stA − lim
n
‖Lnf − f‖ = 0.

�

3.3. Theorem. Let A = (ajn) be a non-negative regular summability matrix. As-
sume that {Ln} be a sequence of positive linear operators from C(D) into C(D). If,

stA − lim
n
‖Lnh− h‖ = 0.

for all h = 1, z, |z|2, then, for every f ∈ C(D)

stA − lim
n
‖Lnf − f‖ = 0.

Proof. We may assume that Ln(1) ≤ 1 for all n. It is evident that (3.1) holds for h
whenever it holds for h. The estimate (2.4) guarantees that (3.1) holds for h = zm.zk

for all nonnegative integers m and k, hence for every polynomial in z and z. By Stone’s
theorem the set of all such polynomials is dense in C(D), so (3.1) holds for every f in
C(D).

�

Note that if we replace A by the identity matrix we get the complex Korovkin theorem.
3.1. Remark. Now we exhibit two examples of sequences of positive linear operators.

The first one shows that Theorem 3.3 does not work, so the classical Korovkin theorem
does not work either; but Theorem 2.3 works. The second one gives that Theorem 2.3
does not work but Theorem 3.3 does work. In order to see this let {Lj} be a sequence of
positive linear operators from C(D) into C(D) satisfying the hypothesis of the classical
complex Korovkin theorem. Assume now that A =

{
A(n)

}
=
{
a
(n)
kj

}
is a sequence of
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infinite matrices defined by a(n)kj = 1/k if n ≤ j < n + k, and a
(n)
kj = 0 otherwise. In

this case A−summability method reduces to almost convergence.. We also take A =
C1 in Theorem 3.3. In this case A− statistical convergence reduces to the statistical
convergence. Then consider the following two examples.
(a) Take (uj) = {(−1)j}. Note that u is almost convergent to zero [19], but it is not
statistically convergent [11]. Now define

Tj(f ;x) = (1 + uj)Lj(f ;x) for all f ∈ C(D).

Then observe that {Tj} satisfies Theorem 2.3, but it satisfies neither the classical Ko-
rovkin theorem nor the present Theorem 3.3.
(b) Consider a non-negative sequence (uj) which is statistically convergent to zero but
not almost convergent. Such an example may be found in [21]. Proceeding exactly as in
the case (a) we can construct a sequence of positive linear operators so that it is statisti-
cally convergent to the identity operator but not almost convergent. These two methods
are incompatible [21].

The examples given above suggest that if the sequence of positive linear operators
does not converge then we can use alternatively either almost convergence method or
statistical convergence method to get some Korovkin type approximation results.
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The paper studies the structure of restricted hom-Lie algebras. More
specifically speaking, we first give the equivalent definition of restricted
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1. Introduction
The concept of a restricted Lie algebra is attributable to N. Jacobson in 1943. It is

well known that the Lie algebras associated with algebraic groups over a field of charac-
teristic p are restricted Lie algebras [14]. Now, restricted theories attract more and more
attentions. For example: restricted Lie superalgebras[6], restricted Lie color algebras[2],
restricted Leibniz algebras[4], restricted Lie triple systems[8] and restricted Lie algebras
[5] were studied, respectively.

However, The notion of hom-Lie algebras was introduced by Hartwig, Larsson and
Silvestrov in [7] as part of a study of deformations of the Witt and the Virasoro algebras.
In a hom-Lie algebra, the Jacobi identity is twisted by a linear map, called the hom-Jacobi
identity. Some q-deformations of the Witt and the Virasoro algebras have the structure
of a hom-Lie algebra [7]. Because of close relation to discrete and deformed vector
fields and differential calculus [7, 9, 10], hom-Lie algebras are widely studied recently
[1, 3, 11, 12, 16, 17, 18]. As a natural generalization of a restricted Lie algebra, it seems
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desirable to investigate the possibility of establishing a parallel theory for restricted
hom-Lie algebras. As is well known, restricted Lie algebras play predominant roles in
the theories of modular Lie algebras [15]. Analogously, the study of restricted hom-Lie
algebras will play an important role in the classification of the finite-dimensional modular
simple hom-Lie algebras.

The paper study the structure of restricted hom-Lie algebras. Let us briefly describe
the content and setup of the present article. In Sec. 2, the equivalent definition of
restricted hom-Lie algebras is given. In Sec. 3, we obtain some properties of p-mappings
and restrictable hom-Lie algebras. In Sec. 4, we research the cohomology of restricted
hom-Lie algebras.

In the paper, F is a field of prime characteristic. Let L denote a finite-dimensional
restricted hom-Lie algebra over F.

1.1. Definition. [14] Let L be a Lie algebra over F. A mapping [p] : L→ L, a 7→ a[p] is
called a p-mapping, if

(1) ada[p] = (ada)p, ∀a ∈ L,
(2) (ka)[p] = kpa[p], ∀a ∈ L, k ∈ F,

(3) (a+ b)[p] = a[p] + b[p] +
p−1∑
i=1

si(a, b),

where (ad(a⊗X + b⊗ 1))p−1(a⊗ 1) =
p−1∑
i=1

isi(a, b)⊗Xi−1 in L⊗F F[X], ∀a, b ∈ L, The

pair (L, [p]) is referred to as a restricted Lie algebra.

1.2. Definition. [13] (1) A hom-Lie algebra is a triple (L, [·, ·]L, α) consisting of a linear
space L, a skew-symmetric bilinear map [·, ·]L : Λ2L → L and a linear map α : L → L
satisfying the following hom-Jacobi identity:

[α(x), [y, z]L]L + [α(y), [z, x]L]L + [α(z), [x, y]L]L = 0

for all x, y, z ∈ L;
(2) A hom-Lie algebra is called a multiplicative hom-Lie algebra if α is an algebraic

morphism, i.e., for any x, y ∈ L, we have α([x, y]L) = [α(x), α(y)]L;
(3) A sub-vector space η ⊂ L is called a hom-Lie subalgebra of (L, [·, ·]L, α) if α(η) ⊂ η

and η is closed under the bracket operation [·, ·]L, i.e., [x, y]L ∈ η for all x, y ∈ η;
(4) A sub-vector space η ⊂ L is called a hom-Lie ideal of (L, [·, ·]L, α) if α(η) ⊂ η and

[x, y]L ∈ η for all x ∈ η, y ∈ L.

2. The equivalent definition of restricted hom-Lie algebras
Let (L, [·, ·]L, α) be a multiplicative hom-Lie algebra over F. For c ∈ L satisfying α(c) =

c, we define adc(a) := [α(a), c]. Put L0 := {x|α(x) 6= x} ∪ {0} and L1 := {x|α(x) = x}.
Then L = L0 ∪ L1 and L1 is a hom-Lie subalgebra of L.

2.1. Definition. Let (L, [·, ·]L, α) be a multiplicative hom-Lie algebra over F. A mapping
[p] : L1 → L1, a 7→ a[p] is called a p-mapping, if

(1) [α(y), x[p]] = (adx)p(y), ∀x ∈ L1, y ∈ L,
(2) (kx)[p] = kpx[p], ∀x ∈ L1, k ∈ F,

(3) (x+ y)[p] = x[p] + y[p] +
p−1∑
i=1

si(x, y),

where (ad(x⊗X+y⊗1))p−1(x⊗1) =
p−1∑
i=1

isi(x, y)⊗Xi−1 in L⊗FF[X],∀x, y ∈ L1, α(x⊗

X) = α(x)⊗X. The pair (L, [, ]L, α, [p]) is referred to as a restricted hom-Lie algebra.
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From the above definition, we may see that (i) α(x[p]) = (α(x))[p] for all x ∈ L1, i.e.,
α ◦ [p] = [p] ◦ α; (ii) By (1) of the definition, one gets adx[p] = (adx)p for all x ∈ L1.

Let (L,α) be a hom-Lie algebra over F and f : L → L be a mapping. f is called a
p-semilinear mapping, if f(kx+y) = kpf(x)+f(y), ∀x, y ∈ L, ∀k ∈ F. Let S be a subset
of a hom-Lie algebra (L,α). We put CL(S) := {x ∈ L| [α(y), x] = 0, ∀y ∈ S}. CL(S) is
called the centralizer of S in L. Put C(L) := {x ∈ L| [α(y), x] = 0, ∀y ∈ L}. C(L) is
called the center of L.

2.2. Definition. Let (L, [·, ·]L, α) be a restricted hom-Lie algebra over F. A hom-Lie
subalgebra H of L is called a p-subalgebra, if x[p] ∈ H1 for all x ∈ H1, where H1 = {x ∈
H|α(x) = x}.

2.3. Proposition. Let L be a hom-Lie subalgebra of a restricted hom-Lie algebra (G, [·, ·]G,
α, [p]) and [p]1 : L1 → L1 a mapping. Then the following statements are equivalent:

(1) [p]1 is a p-mapping on L1.
(2) There exists a p-semilinear mapping f : L1 → CG(L) such that [p]1 = [p] + f.

Proof. (1)⇒(2). Consider f : L1 → G, f(x) = x[p]1−x[p]. Since adf(x)(y) = [α(y), f(x)] =
0, ∀x ∈ L1, y ∈ L, f actually maps L1 into CG(L). For x, y ∈ L1, k ∈ F, we obtain

f(kx+ y)

= kpx[p]1 + y[p]1 +

p−1∑
i=1

si(kx, y)− kpx[p] − y[p] −
p−1∑
i=1

si(kx, y)

= kpf(x) + f(y),

which proves that f is p-semilinear.
(2)⇒(1). We next will check three conditions of the definition step and step. For

x, y ∈ L1, we have

(x+ y)[p]1 = (x+ y)[p] + f(x+ y)

= x[p] + f(x) + y[p] + f(y) +

p−1∑
i=1

si(x, y)

= x[p]1 + y[p]1 +

p−1∑
i=1

si(x, y)

and

(kx)[p]1 = (kx)[p] + f(kx)

= kpx[p] + kpf(x)

= kp(x[p] + f(x))

= kpx[p]1 .

For x ∈ L1, z ∈ L, one gets

adx[p]1(z) = ad(x[p] + f(x))(z)

= adx[p](z) + adf(x)(z)

= adx[p](z)

= (adx)p(z).

The proof is complete. �
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2.4. Corollary. The following statements hold.
(1) If C(L) = 0, then L admits at most one p-mapping.
(2) If two p-mappings coincide on a basis, then they are equal.
(3) If (L, [·, ·]L, α, [p]) is restricted, then there exists a p-mapping [p]

′
of L such that

x[p]
′

= 0, ∀x ∈ C(L1).

Proof. (1) We set G = L. Then CG(L) = C(L), the only p-semilinear mapping occurring
in Proposition 2.3 is the zero mapping.

(2) If two p-mappings coincide on a basis, their difference vanishes since it is p-
semilinear.

(3) [p]|C(L1) defines a p-mapping on C(L1). Since C(L1) is abelian, it is p-semilinear.
Extend this to a p-semilinear mapping f : L1 → C(L1). Then [p]

′
:= [p]−f is a p-mapping

of L, vanishing on C(L1). �

From the proof of Theorem 2 in [18], we see the following definition:

2.5. Definition. Let (L, [·, ·]L, αL) be a hom-Lie algebra, and let j : L → UHLie(L)
be the composition of the maps L ↪→ FHNAs(L) � UHLie(L). The pair (UHLie(L), j) is
called a universal enveloping algebra of L if for every hom-associative algebra (A,µA, αA)
and every morphism f : L → HLie(A) of hom-Lie algebras, there exists a unique mor-
phism h : UHLie(L)→ A of hom-associative algebras such that f = h ◦ j (as morphisms
of F-modules).

In the special case of G = UHLie(L)− ⊃ L, where UHLie(L) is the universal enveloping
algebra of hom-Lie algebra L (see [18]) and UHLie(L)− denotes a hom-Lie algebra given
by hom-associative algebra UHLie(L) via the commutator bracket. We have the following
theorem:

2.6. Theorem. Let (ej)j∈J be a basis of L1 such that there are yj ∈ L1 with (adej)
p =

adyj . Then there exists exactly one p-mapping [p] : L1 → L such that e[p]
j = yj , ∀j ∈ J.

Proof. For z ∈ L1, we have 0 = ((adej)
p − adyj)(z) = [α(z), epj − yj ]. Then epj − yj ∈

CUHLie(L1)(L1),∀j ∈ J. We define a p-semilinear mapping f : L1 → CUHLie(L1)(L1) by
means of

f(
∑

αjej) :=
∑

αpj (yj − e
p
j ).

Consider V := {x ∈ L1|xp + f(x) ∈ L1}. The equation

(kx+ y)p + f(kx+ y) = kpxp + yp +

p−1∑
i=1

si(kx, y) + kpf(x) + f(y)

ensures that V is a subspace of L1. Since it contains the basis (ej)j∈J , we conclude that
xp + f(x) ∈ L1, ∀x ∈ L1. By virtue of Proposition 2.3, [p] : L1 → L, x[p] := xp + f(x)

is a p-mapping on L1. In addition, we obtain e
[p]
j = epj + f(ej) = yj , as asserted. The

uniqueness of [p] follows from Corollary 2.4. �

2.7. Definition. A multiplicative hom-Lie algebra (L, [·, ·]L, αL) is called restrictable, if
(adx)p ∈ adL1 for all x ∈ L1, where adL1 = {adx|x ∈ L1}.

2.8. Theorem. L is a restrictable hom-Lie algebra if and only if there is a p-mapping
[p] : L1 → L1 which makes L a restricted hom-Lie algebra.

Proof. (⇐) By the definition of p-mapping [p], for x ∈ L1, there exists x[p] ∈ L1 such
that (adx)p = adx[p] ∈ adL1. Hence L is restrictable.

(⇒) Let L be restrictable. Then for x ∈ L1, we have (adx)p ∈ adL1, that is, there
exists y ∈ L1 such that (adx)p = ady. Let (ej)j∈J be a basis of L1. Then there exists
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yj ∈ L1 such that (adej)
p = adyj(j ∈ J). By Theorem 2.6, there exists exactly one

p-mapping [p] : L1 → L1 such that e[p]
j = yj , ∀j ∈ J, which makes L a restricted hom-Lie

algebra. �

3. Properties of p-mappings and restrictable hom-Lie algebras
In the section, we will discuss some properties of p-mappings and restrictable hom-Lie

algebras.

3.1. Definition. [13] Let (L, [·, ·]L, α) and (Γ, [·, ·]Γ, β) be two hom-Lie algebras. A lin-
ear map φ : L→ Γ is said to be a morphism of hom-Lie algebras if

(3.1) φ[u, v]L = [φ(u), φ(v)]Γ, ∀u, v ∈ L,
(3.2) φ ◦ α = β ◦ φ.

Denote by Gφ = {(x, φ(x))|x ∈ L} ⊆ L⊕ Γ the graph of a linear map φ : L→ Γ.

3.2. Definition. Amorphism of hom-Lie algebras φ : (L, [·, ·]L, α, [p]1)→ (Γ, [·, ·]Γ, β, [p]2)

is said to be restricted if φ(x[p]1) = (φ(x))[p]2 for all x ∈ L.

3.3. Proposition. Given two restricted hom-Lie algebras (L, [·, ·]L, α, [p]1) and (Γ, [·, ·]Γ, β,
[p]2), there is a restricted hom-Lie algebra (L⊕ Γ, [·, ·]L⊕Γ, α+ β, [p]), where the bilinear
map [·, ·]L⊕Γ : ∧2(L⊕ Γ)→ L⊕ Γ is given by

[u1 + v1, u2 + v2]L⊕Γ = [u1, u2]L + [v1, v2]Γ, ∀u1, u2 ∈ L, v1, v2 ∈ Γ,

and the linear map (α+ β) : L⊕ Γ→ L⊕ Γ is given by

(α+ β)(u+ v) = α(u) + β(v), ∀u ∈ L, v ∈ Γ,

the p-mapping [p] : L⊕ Γ→ L⊕ Γ is given by

(u+ v)[p] = u[p]1 + v[p]2 , ∀u ∈ L, v ∈ Γ.

Proof. Recall that L1 = {x ∈ L|α(x) = x} and Γ1 = {x ∈ Γ|β(x) = x}. For any
u1, u2 ∈ L, v1, v2 ∈ Γ, we have

[u2 + v2, u1 + v1]L⊕Γ = [u2, u1]L + [v2, v1]Γ
= −[u1, u2]L − [v1, v2]Γ
= −[u1 + v1, u2 + v2]L⊕Γ.

The bracket is obviously skew-symmetric. By a direct computation we have

[(α+ β)(u1 + v1), [u2 + v2, u3 + v3]L⊕Γ]L⊕Γ

+c.p.((u1 + v1), (u2 + v2), (u3 + v3))

= [α(u1) + β(v1), [u2, u3]L + [v2, v3]Γ]L⊕Γ + c.p.

= [α(u1), [u2, u3]L]L + c.p.(u1, u2, u3) + [β(v1), [v2, v3]Γ]Γ

+c.p.(v1, v2, v3)

= 0,

where c.p.(a, b, c) means the cyclic permutations of a, b, c. For any u1 ∈ L1, v1 ∈ Γ1, u2 ∈
L, v2 ∈ Γ, we obtain

ad(u1 + v1)[p](u2 + v2) = [(α+ β)(u2 + v2), (u1 + v1)[p]]L⊕Γ

= [α(u2) + β(v2), u
[p]1
1 + v

[p]2
1 ]L⊕Γ

= [α(u2), u
[p]1
1 ]L + [β(v2), v

[p]2
1 ]Γ

= adu
[p]1
1 (u2) + adv

[p]2
1 (v2)
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= (adu1)p(u2) + (adv1)p(v2)

and

(ad(u1 + v1))p(u2 + v2)

= [[[αp(u2) + βp(v2),

p︷ ︸︸ ︷
u1 + v1], u1 + v1], · · · , u1 + v1]L⊕Γ

= [[[αp(u2),

p︷ ︸︸ ︷
u1], u1], · · · , u1]L + [[[βp(v2),

p︷ ︸︸ ︷
v1], v1], · · · , v1]Γ

= (adu1)p(u2) + (adv1)p(v2).

Hence ad(u1+v1)[p](u2+v2) = (ad(u1+v1))p(u2+v2), thus ad(u1+v1)[p] = (ad(u1+v1))p.
Moreover, for any u1, u2 ∈ L1, v1, v2 ∈ Γ1, one gets

((u1 + v1) + (u2 + v2))[p] = ((u1 + u2) + (v1 + v2))[p] = (u1 + u2)[p]1 + (v1 + v2)[p]2

= u
[p]
1 + u

[p]
2 +

p−1∑
i=1

si(u1, u2) + v
[p]
1 + v

[p]
2 +

p−1∑
i=1

si(v1, v2)

= (u
[p]
1 + v

[p]
1 ) + (u

[p]
2 + v

[p]
2 ) + (

p−1∑
i=1

si(u1, u2) +

p−1∑
i=1

si(v1, v2))

= (u1 + v1)[p] + (u2 + v2)[p] +

p−1∑
i=1

(si(u1, u2)) + si(v1, v2))

= (u1 + v1)[p] + (u2 + v2)[p] +

p−1∑
i=1

si((u1, v1) + (u2, v2))

and

(k(u1 + v1))[p] = (ku1 + kv1)[p] = (ku1)[p]1 + (kv1)[p]2

= kpu
[p]1
1 + kpv

[p]2
1 = kp(u

[p]1
1 + v

[p]2
1 )

= kp(u1 + v1)[p].

Therefore, (L⊕ Γ, [·, ·]L⊕Γ, α+ β, [p]) is a restricted hom-Lie algebra. �

3.4. Proposition. A linear map φ : (L, [·, ·]L, α, [p]1)→ (Γ, [·, ·]Γ, β, [p]2) is a restricted
morphism of restricted hom-Lie algebras if and only if the graph Gφ ⊆ L⊕Γ is a restricted
hom-Lie subalgebra of (L⊕ Γ, [·, ·]L⊕Γ, α+ β, [p]).

Proof. Let φ : (L, [·, ·]L, α)→ (Γ, [·, ·]Γ, β) be a restricted morphism of restricted hom-Lie
algebras. By (3.1), we have

[u+ φ(u), v + φ(v)]L⊕Γ = [u, v]L + [φ(u), φ(v)]Γ = [u, v]L + φ[u, v]L.

Then the graph Gφ is closed under the bracket operation [·, ·]L⊕Γ. Furthermore, by (3.2),
we have

(α+ β)(u+ φ(u)) = α(u) + β ◦ φ(u) = α(u) + φ ◦ α(u),

which implies that (α + β)(Gφ) ⊆ Gφ. Thus, Gφ is a hom-Lie subalgebra of (L ⊕
Γ, [·, ·]L⊕Γ, α+ β). Moreover, for u+ φ(u) ∈ Gφ, one gets

(u+ φ(u))[p] = u[p]1 + (φ(u))[p]2 = u[p]1 + φ(u[p]1) ∈ Gφ.

Thereby, the graph Gφ ⊆ L⊕Γ is a restricted hom-Lie subalgebra of (L⊕Γ, [·, ·]L⊕Γ, α+
β, [p]).
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Conversely, if the graph Gφ ⊆ L ⊕ Γ is a restricted hom-Lie subalgebra of (L ⊕
Γ, [·, ·]L⊕Γ, α+ β, [p]), then we have

[u+ φ(u), v + φ(v)]L⊕Γ = [u, v]L + [φ(u), φ(v)]Γ ∈ Gφ,

which implies that
[φ(u), φ(v)]Γ = φ[u, v]L.

Furthermore, (α+ β)(Gφ) ⊂ Gφ yields that

(α+ β)(u+ φ(u)) = α(u) + β ◦ φ(u) ∈ Gφ,

which is equivalent to the condition β ◦φ(u) = φ ◦α(u), i.e. β ◦φ = φ ◦α. Therefore, φ is
a morphism of restricted hom-Lie algebras. Since Gφ is a restricted hom-Lie subalgebra
of (L⊕ Γ, [·, ·]L⊕Γ, α+ β, [p]), we have

(u+ φ(u))[p] = u[p]1 + (φ(u))[p]2 ∈ Gφ.

Thus, (φ(u))[p]2 = φ(u[p]1) for u ∈ L, i.e., φ is a restricted morphism. �

One advantage in considering restrictable hom-Lie algebras instead of restricted ones
rests on the following theorem.

3.5. Theorem. Let f : (L, [·, ·]L, α, [p]1) → (L
′
, [·, ·]L′ , β, [p]2) be a surjective restricted

morphism of hom-Lie algebras. If L is restrictable, so is L
′
.

Proof. It follows from f is a surjective mapping that L
′

= f(L). Then for x ∈ L1, we
have β(f(x)) = f(α(x)) = f(x) and f(x) ∈ L

′
1, where L1 = {x ∈ L|α(x) = x} and

L
′
1 = {x ∈ L

′
|β(x) = x}. For y ∈ L, one gets

(adf(x))p(f(y)) = (adf(x))p−1[β(f(y)), f(x)]

= (adf(x))p−2[[β2(f(y)), β(f(x))], f(x)]

= [[[βpf(y), f(x)], f(x)], · · · , f(x)]︸ ︷︷ ︸
p

= βp[[[f(y), f(x)], f(x)], · · · , f(x)]︸ ︷︷ ︸
p

= βp ◦ f [[[y, x], x], · · · , x]︸ ︷︷ ︸
p

= f [[[αp(y), x], x], · · · , x]︸ ︷︷ ︸
p

= f((adx)p(y)) = f((adx[p]1)(y)) = f [α(y), x[p]1 ]

= f [α(y), α(x[p]1)] = f ◦ α[y, x[p]1 ] = β ◦ f [y, x[p]1 ]

= β[f(y), f(x[p]1)] = [β(f(y)), β(f(x[p]1))]

= [β(f(y)), f(x[p]1)] = adf(x[p]1)(f(y))

= ad(f(x))[p]2(f(y)).

We have (adf(x))p = ad(f(x))[p]2 ∈ adL1
′
. Hence L

′
is restrictable. �

3.6. Theorem. Let A and B be hom-Lie ideals of hom-Lie algebra (L, [·, ·]L, α) such
that L = A⊕B. Then L is restrictable if and only if A,B are restrictable.

Proof. (⇐) If A,B are restrictable, for x ∈ L1 with α(x) = x, we may suppose that
x = x1 + x2, where x1 ∈ A, x2 ∈ B. Then α(x1 + x2) = α(x1) + α(x2) = x1 + x2. Since
A and B are hom-Lie ideals, one gets α(x1) ∈ A,α(x2) ∈ B. we obtain α(x1) = x1 and
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α(x2) = x2. As A,B are restrictable, then there exists y1 ∈ A1, y2 ∈ B1 with α(y1) = y1

and α(y2) = y2, such that (adx1)p = ady1 and (adx2)p = ady2. Thus,

(ad(x1 + x2))p = (adx1 + adx2)p

= (adx1)p + (adx2)p = ady1 + ady2

= ad(y1 + y2).

Therefore, L is restrictable.
(⇒) If L is restrictable , so are A ∼= L/B, B ∼= L/A by Theorem 3.5. �

3.7. Corollary. Let A,B be restrictable hom-Lie ideals of a restricted hom-Lie algebra
(L, [·, ·]L, α, [p]) such that L = A+B and [A,B] = 0. Then L is restrictable.

Proof. Define a mapping f : A ⊕ B → L, (x, y) 7→ x + y. Clearly, f is a surjection. For
(x1, y1), (x2, y2) ∈ A⊕B, by [A,B] = 0, one gets [x1, y2] = [y1, x2] = 0. We have

f [(x1, y1), (x2, y2)] = f([x1, x2], [y1, y2])

= [x1, x2] + [y1, y2] = [x1, x2] + [x1, y2] + [y1, x2] + [y1, y2]

= [x1 + y1, x2 + y2] = [f(x1, y1), f(x2, y2)].

Moreover, one gets

α ◦ f(x, y) = α(x+ y)

= α(x) + α(y) = f((α(x), α(y)))

= f ◦ α(x, y).

Therefore, α ◦ f = f ◦ α. For x ∈ A, y ∈ B, α(x, y) = (x, y), we have

f((x, y)[p]) = f((x[p]1 , y[p]2))

= x[p]1 + y[p]2 = (x+ y)[p]

= (f(x, y))[p].

Thus, f is a restricted morphism. By Theorem 3.6, we have A ⊕ B is restrictable. By
Theorem 3.5, one gets L is restrictable. �

3.8. Definition. Let (L, [·, ·]L, α) be a hom-Lie algebra and ψ be a symmetric bilinear
form on L. ψ is called associative, if ψ(x, [z, y]) = ψ([α(z), x], y).

3.9. Definition. Let (L, [·, ·]L, α) be a hom-Lie algebra and ψ a symmetric bilinear form
on L. Set L⊥ = {x ∈ L|ψ(x, y) = 0, ∀ y ∈ L}. L is called nondegenerate, if L⊥ = 0.

3.10. Theorem. Let L be a subalgebra of the restricted hom-Lie algebra (G, [·, ·]G, α, [p])
with C(L) = {0}. Assume λ : G × G → F to be an associative symmetric bilinear form,
which is nondegenerate on L× L. Then L is restrictable.

Proof. Since λ is nondegenerate on L × L, every linear form f on L is determined by a
suitably chosen element y ∈ L : f(z) = λ(y, z), ∀z ∈ L. Let x ∈ L1. Then there exists
y ∈ L such that

λ(x[p], z) = λ(y, z), ∀z ∈ L.
This implies that 0 = λ(x[p] − y, [L,L]) = λ([α(L), x[p] − y], L) and [α(L), x[p] − y] = 0.

Therefore, x[p] − y ∈ C(L) = {0} and y = x[p] ∈ L1. Moreover, we obtain

(adx|L)p = adx[p]|L = ady|L,

which proves that L is restrictable. �
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3.11. Proposition. Let (L, [·, ·]L, α) be a restrictable hom-Lie algebra and H a subalgebra
of L. Then H is a p-subalgebra for some mapping [p] on L if and only if (adH1|L)p ⊆
adH1|L.

Proof. (⇒) If H is a p-subalgebra, then for x ∈ H1, x
[p] ∈ H1, and (adx)p = adx[p] ⊆

adH1|L. Hence, (adH1|L)p ⊆ adH1|L.
(⇐) If (adH1|L)p ⊆ adH1|L, then H is restrictable. By Theorem 2.8, H is restricted.

Thereby, H is a p-subalgebra of L. �

4. Cohomology of restricted hom-Lie algebras
In this section, we will discuss the cohomology of restricted hom-Lie algebras in the

abelian case, which is similar to the reference [5].

4.1. Definition. [12] A hom-associative algebra is a triple (V, µ, α) consisting of a linear
space V, a bilinear map µ : V × V −→ V and a linear space homomorphism α : V −→ V
satisfying

µ(α(x), µ(y, z)) = µ(µ(x, y), α(z)).

There is a functor from the category of hom-associative algebras in the category of
hom-Lie algebras.

4.2. Proposition. [12] Let (A,µ, α) be a hom-associative algebra defined on the linear
space A by the multiplication µ and a homomorphism α. Then the triple (A, [·, ·], α) where
the bracket is defined for x, y ∈ A by [x, y] = µ(x, y)− µ(y, x), is a hom-Lie algebra. We
also denote it by (A−, [·, ·], α).

The following definition is analogous to that of the restricted universal enveloping
algebra in the reference [14].

4.3. Definition. Let (L, [·, ·]L, α, [p]) be a restricted hom-Lie algebra. The (u(L), µ
′
, α
′
, i)

consisting of a hom-associative algebra (u(L), µ
′
, α
′
) with unity and a restricted hom-

morphism i : (L, [·, ·]L, α, [p]) → (u(L)−, µ
′
, α
′
) is called a restricted hom-universal en-

veloping algebra of L if given any hom-associative algebra (A,µ
′′
, α
′′

) with unity and
any restricted hom-morphism f : (L, [·, ·]L, α, [p]) → (A−, µ

′′
, α
′′

), there exists a unique
morphism f̄ : (u(L), µ

′
, α
′
)→ (A,µ

′′
, α
′′

) of hom-associative algebras such that f̄ ◦i = f.

4.4. Definition. [11] Let A = (V, µ, α) be a hom-associative F-algebra. An A-module
is a triple (M, f, γ) where M is F-vector space and f, γ are F-linear maps, f : M −→M
and γ : V ⊗M −→M, such that the following diagram commutes:

V ⊗M γ−−−−−→ Mxα⊗γ xγ
V ⊗ V ⊗M µ⊗f−−−−−→ V ⊗M

We let S∗(L) and Λ∗(L) denote the symmetric and alternating algebras of restricted
hom-Lie algebra (L, [·, ·]L, α, [p]), respectively. Bases for the homogeneous subspaces of
degree k for these spaces consist of monomials eµ = eµ1

1 · · · eµnn and e~i = ei1 ∧ · · · ∧ eik ,
respectively, where
µ = (µ1, · · · , µn) ∈ Zn satisfies µj ≥ 0, |µ| =

∑
j µj = k;

~i = (i1, · · · , ik) ∈ Zk satisfies 1 ≤ i1 < · · · < ik ≤ n.
Let γ : λ 7→ λp denote the Frobenius automorphism of F. If V is an abelian group with
an F-vector space structure given by F→ End(V ), then the composition

F γ−1

−−−→ F→ End(V )
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gives another vector space structure on V which we will denote by V . Of course V is
isomorphic to V as an F-vector space (they have the same dimension). We note that if
W is any other F-vector space, then a p-semilinear map V →W is a linear map V →W
and vice versa.

In sequel, (L, [·, ·]L, α, [p]) denotes a finite-dimensional restricted hom-Lie algebra over
F such that [gi, gj ] = 0 for all gi, gj ∈ L and (u(L), α

′
, i) denotes the restricted hom-

universal enveloping algebra of L. Here we take α = α
′
and α satisfies α(u1u2) =

α(u1)α(u2) for u1, u2 ∈ u(L). For s, t ≥ 0, we define

Cs,t = StL1 ⊗ ΛsL⊗ u(L)

with the u(L)-module structure given by

u(h1 · · ·ht ⊗ g1 ∧ · · · ∧ gs ⊗ x) = h1 · · ·ht ⊗ g1 ∧ · · · ∧ gs ⊗ α(u)x,

where hi, gj ∈ L and u, x ∈ u(L). If either s < 0 or t < 0, we put Cs,t = 0 and define

Ck =
⊕

2t+s=k

Cs,t

for all k ∈ Z. Note that each Ck is a free u(L)-module. If not both t = 0 and s = 0, we
then define a map

ds,t : Cs,t → Ct,s−1 ⊕ Ct−1,s+1

by the formulas
dt,s(h1 · · ·ht ⊗ g1 ∧ · · · ∧ gs ⊗ x)

=

s∑
i=1

(−1)i−1h1 · · ·ht ⊗ α(g1) ∧ · · · α̂(gi) · · · ∧ α(gs)⊗ α(gi)x(4.1)

+

t∑
j=1

h1 · · · ĥj · · ·ht ⊗ h[p]
j ∧ α(g1) ∧ · · · ∧ α(gs)⊗ α(x)(4.2)

−
t∑
j=1

h1 · · · ĥj · · ·ht ⊗ hj ∧ α(g1) ∧ · · · ∧ α(gs)⊗ hp−1
j x.(4.3)

For k ≥ 1, we define the map dk : Ck → Ck−1 by dk =
⊕

2t+s=k ds,t. Then we obtain the
following theorem.

4.5. Theorem. The maps dk defined above satisfy dk−1dk = 0 for k ≥ 1, so that
C = (Ck, dk) is an augmented complex of free u(g)-modules.

Proof. The terms in the sum (4.1) are elements of Ct,s−1 whereas the terms in the sums
(4.2) and (4.3) lie in Ct−1,s+1. Therefore, in order to compute dk−1dk = 0, we must apply
dt,s−1 to (4.1) and dt−1,s+1 to (4.2) and (4.3). Applying dt,s−1 to (5), we have

dt,s
( s∑
i=1

(−1)i−1h1 · · ·ht ⊗ α(g1) ∧ · · · α̂(gi) · · · ∧ α(gs)⊗ α(gi)x
)

=

s∑
i=1

(−1)i−1(∑
σ<i

(−1)σ−1h1 · · ·ht ⊗ α2(g1) ∧ · · · α̂2(gσ) · · · α̂2(gi) · · · ∧ α2(gs)

⊗α2(gσ)(α(gi)x)

+
∑
σ>i

(−1)σh1 · · ·ht ⊗ α2(g1) ∧ · · · α̂2(gi) · · · α̂2(gσ) · · · ∧ α2(gs)⊗ α2(gσ)(α(gi)x)
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+

t∑
j=1

h1 · · · ĥj · · ·ht ⊗ h[p]
j ∧ α

2(g1) ∧ · · · α̂2(gi) · · · ∧ α2(gs)⊗ α(α(gi)x)

−
t∑

j=1

h1 · · · ĥj · · ·ht ⊗ hj ∧ α2(g1) ∧ · · · α̂2(gi) · · · ∧ α2(gs)⊗ hp−1
j (α(gi)x)

)
=

s∑
i=1

(−1)i−1(∑
σ<i

(−1)σ−1h1 · · ·ht ⊗ α2(g1) ∧ · · · α̂2(gσ) · · · α̂2(gi) · · · ∧ α2(gs)

⊗(α(gσ)α(gi))α(x)

+
∑
σ>i

(−1)σh1 · · ·ht ⊗ α2(g1) ∧ · · · α̂2(gi) · · · α̂2(gσ) · · · ∧ α2(gs)⊗ (α(gσ)α(gi))α(x)

+

t∑
j=1

h1 · · · ĥj · · ·ht ⊗ h[p]
j ∧ α

2(g1) ∧ · · · α̂2(gi) · · · ∧ α2(gs)⊗ α(α(gi)x)(4.4)

−
t∑

j=1

h1 · · · ĥj · · ·ht ⊗ hj ∧ α2(g1) ∧ · · · α̂2(gi) · · · ∧ α2(gs)⊗ (hp−1
j α(gi))α(x)

)
.(4.5)

Since α(gi)α(gj) = α(gj)α(gi) in u(g), the terms in the first two sums in the parentheses
cancel in pairs when summed over all i. This leaves the sum over i of (4.4) and (4.5).
Now we apply dt−1,s+1 to (4.2).

dt−1,s+1

( t∑
j=1

h1 · · · ĥj · · ·ht ⊗ h[p]
j ∧ α(g1) ∧ · · · ∧ α(gs)⊗ α(x)

)
=

t∑
j=1

( s∑
σ=1

(−1)σh1 · · · ĥj · · ·ht ⊗ h[p]
j ∧ α

2(g1) ∧ · · · α̂2(gσ) · · · ∧ α2(gs)⊗ α2(gσ)α(x)(4.6)

+h1 · · · ĥj · · ·ht ⊗ α2(g1) ∧ · · · ∧ α2(gs)⊗ α(h
[p]
j )α(x)(4.7)

+
∑
τ 6=j

h1 · · · ĥτ · · · ĥj · · ·ht ⊗ h[p]
τ ∧ h

[p]
j ∧ α

2(g1) ∧ · · · ∧ α2(gs)⊗ α2(x)(4.8)

−
∑
τ 6=j

h1 · · · ĥτ · · · ĥj · · ·ht ⊗ hτ ∧ h[p]
j ∧ α

2(g1) ∧ · · · ∧ α2(gs)⊗ hp−1
τ α(x)

)
.(4.9)

We note that the terms in (4.8) cancel in pairs since interchanging the first two terms in
the alternating product multiplies the term by −1. Finally, we apply dt−1,s+1 to (4.3) to
get

dt−1,s+1

(
−

t∑
j=1

h1 · · · ĥj · · ·ht ⊗ hj ∧ α2(g1) ∧ · · · ∧ α(gs)⊗ hp−1
j x

)
= −

t∑
j=1

( s∑
σ=1

(−1)σh1 · · · ĥj · · ·ht ⊗ hj ∧ α2(g1) ∧ · · · ∧ α2(gs)⊗ α2(gσ)(hp−1
j x)

+h1 · · · ĥj · · ·ht ⊗ α2(g1) ∧ · · · ∧ α2(gs)⊗ α2(hj)(h
p−1
j x)

+
∑
τ 6=j

h1 · · · ĥτ · · · ĥj · · ·ht ⊗ h[p]
τ ∧ hj ∧ α2(g1) ∧ · · · ∧ α2(gs)⊗ α(hp−1

j x)

−
∑
τ 6=j

h1 · · · ĥτ · · · ĥj · · ·ht ⊗ hτ ∧ hj ∧ α2(g1) ∧ · · · ∧ α2(gs)⊗ hp−1
τ (hp−1

j x)
)
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= −
t∑

j=1

( s∑
σ=1

(−1)σh1 · · · ĥj · · ·ht ⊗ hj ∧ α2(g1) ∧ · · · ∧ α2(gs)⊗ α(gσh
p−1
j )α(x)(4.10)

+h1 · · · ĥj · · ·ht ⊗ α2(g1) ∧ · · · ∧ α2(gs)⊗ hpjα(x)(4.11)

+
∑
τ 6=j

h1 · · · ĥτ · · · ĥj · · ·ht ⊗ h[p]
τ ∧ hj ∧ α2(g1) ∧ · · · ∧ α2(gs)⊗ α(hp−1

j x)(4.12)

−
∑
τ 6=j

h1 · · · ĥτ · · · ĥj · · ·ht ⊗ hτ ∧ hj ∧ α2(g1) ∧ · · · ∧ α2(gs)⊗ (hp−1
τ hp−1

j )α(x)
)
.(4.13)

This time the terms in (4.13) cancel in pairs. Moreover, the terms in (4.4) and (4.6)
are identical (with σ = i) except for sign and hence they cancel. The terms in (4.5)
and (4.10) cancel in pairs since α(hp−1

i )α(gj) = α(gj)α(hp−1
i ). The terms in (4.9) and

(4.12) have the same sign but are equal apart from interchanging the first two terms
in the alternating part. Finally the terms in (4.7) and (4.11) match except for sign
since h[p]

j = hpj in u(g) and hence the entire sum is zero as claimed. This completes the
proof. �

We next will consider the cohomology of restricted hom-Lie algebras in the case of
simpleness. A basis for the space Ct,s consists of the monomials

eµ ⊗ eI ⊗ er = eµ1
1 · · · e

µn
n ⊗ ei1 ∧ · · · ∧ eis ⊗ e

r1
1 · · · e

rn
n ,

where µ = (µ1, · · · , µn), I = (i1, · · · , is), r = (r1, · · · , rn) and

µj ≥ 0, |µ| =
∑
j

µj = t, 1 ≤ i1 < · · · < is ≤ n, 0 ≤ rj ≤ p− 1.

For each i = 1, · · · , n and ei ∈ L1, we let

ci = 1⊗ e[p]
i ⊗ 1− 1⊗ ei ⊗ ep−1

i

and we easily note that ci ∈ C0,1 is a cycle for all i. Now we define

(∂/∂ei ⊗ ci) : Ct,s −→ Ct−1,s+1

by the formula

(
∂

∂ei
⊗ ci)(eµ ⊗ eI ⊗ er) =

∂eµ

∂ei
⊗ e[p]

i ∧ α(eI)⊗ α(er)− ∂eµ

∂ei
⊗ ei ∧ α(eI)⊗ ep−1

i α(er).

If µ = (µ1, · · · , µn) satisfies |µ| = t and I = (i1, · · · , is) is increasing, then by the
definition we write

eµ ⊗ cI =
∑

J⊂{1,··· ,s}

(−1)|J|eµ ⊗ fi1 ∧ · · · ∧ fis ⊗ e
qi1
i1
· · · eqisis

and

eµ ⊗ α(cI) =
∑

J⊂{1,··· ,s}

(−1)|J|eµ ⊗ α(fi1) ∧ · · · ∧ α(fis)⊗ α(e
qi1
i1

) · · ·α(e
qis
is

),

where

fij =

{
eij , j ∈ J
e

[p]
ij
, j /∈ J ;

qij =

{
p− 1, j ∈ J
0, j /∈ J.

We then define Ct,s to be the F-subspace of Ct,s spanned by the elements {eµ ⊗ α(cI) :
|µ| = t and I is increasing } and

Ck =
⊕

2t+s=k

Ct,s.
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The boundary operator ∂k = ∂ : Ck −→ Ck−1 is defined by

∂ =

n∑
j=1

∂

∂ej
⊗ cj .

Then we may show that ∂2 = 0. In fact,

∂2(eµ ⊗ cI) = ∂(∂(eµ ⊗ cI))

= ∂(

n∑
j=1

∂

∂ej
⊗ cj(

∑
J⊂{1,··· ,s}

(−1)|J|eµ ⊗ fi1 ∧ · · · ∧ fis ⊗ e
qi1
i1
· · · eqisis ))

= ∂(

n∑
j=1

∑
J⊂{1,··· ,s}

(−1)|J|(
∂eµ

∂ej
⊗ e[p]

j ∧ α(fi1) ∧ · · · ∧ α(fis)⊗ α(e
qi1
i1

) · · ·α(e
qis
is

)

−∂e
µ

∂ej
⊗ ej ∧ α(fi1) ∧ · · · ∧ α(fis)⊗ e

p−1
j α(e

qi1
i1

) · · ·α(e
qis
is

)))

=

n∑
l=1

n∑
j=1

∑
J⊂{1,··· ,s}

(−1)|J|{ ∂
∂el
⊗ cl(

∂eµ

∂ej
⊗ e[p]

j ∧ α(fi1) ∧ · · · ∧ α(fis)⊗ α(e
qi1
i1

) · · ·

α(e
qis
is

))− ∂

∂el
⊗ cl(

∂eµ

∂ej
⊗ ej ∧ α(fi1) ∧ · · · ∧ α(fis)⊗ e

p−1
j α(e

qi1
i1

) · · ·α(e
qis
is

))}

=

n∑
l=1

n∑
j=1

∑
J⊂{1,··· ,s}

(−1)|J|{
∂( ∂e

µ

∂ej
)

∂el
⊗ e[p]

l ∧ α(e
[p]
j ) ∧ α2(fi1) ∧ · · · ∧ α2(fis)

⊗α2(e
qi1
i1

) · · ·α2(e
qis
is

)(4.14)

−
∂( ∂e

µ

∂ej
)

∂el
⊗ el ∧ α(e

[p]
j ) ∧ α2(fi1) ∧ · · · ∧ α2(fis)⊗ e

p−1
l α2(e

qi1
i1

) · · ·α2(e
qis
is

)(4.15)

−
∂( ∂e

µ

∂ej
)

∂el
⊗ e[p]

l ∧ α(ej) ∧ α2(fi1) ∧ · · · ∧ α2(fis)⊗ α(ep−1
j )α2(e

qi1
i1

) · · ·α2(e
qis
is

)(4.16)

+
∂( ∂e

µ

∂ej
)

∂el
⊗ el ∧ α(ej) ∧ α2(fi1) ∧ · · · ∧ α2(fis)⊗ e

p−1
l α(ep−1

j )α2(e
qi1
i1

) · · ·α2(e
qis
is

)}.

(4.17)

This time the terms in (4.14) cancel in pairs, and the terms in (4.17) cancel in pairs
since ep−1

l α(ep−1
j ) = α(ep−1

l )ep−1
j . Moreover, the terms in (4.15) and (4.16) are identical

except for sign and hence they cancel, so that C = {Ck, ∂k}k≥0 is a complex.

4.6. Theorem. If C is the complex defined above, we define Hk(C) := Ker∂k/Im∂k. Then

Hk(C) =

{
Ures.(g), k = 0
0, 0 < k < p.

Proof. Define a map D : Ck → Ck+1 by the formula

D(eµ ⊗ α(cI)) =

s∑
a=1

(−1)a−1eµeia ⊗ ci1 · · · ĉia · · · cis

and compute for any monomial eµ ⊗ α(cI) :
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D∂(eµ ⊗ α(cI)) = D(
n∑
j=1

( ∂
∂ej
⊗ cj)(eµ ⊗ α(cI)))

=

n∑
j=1,j 6=i1,··· ,is

D(µje
µ1
1 · · · e

µj−1

j · · · eµnn ⊗ cjα2(cI))

=

n∑
j=1,j 6=i1,··· ,is

D(µje
µ1
1 · · · e

µj−1

j · · · eµnn ⊗ α(cj)α
2(cI))

=
( n∑
j=1,j 6=i1,··· ,is

µj
)
eµ ⊗ α(cI)

+

n∑
j=1,j 6=i1,··· ,is

s∑
a=1

(−1)aµje
µ1
1 · · · e

µj−1

j · · · eµia+1

ia
· · · eµnn

⊗α(cj)α(ci1) · · · α̂(cia) · · ·α(cis)(4.18)

and ∂D(eµ ⊗ α(cI)) = ∂(
s∑
a=1

(−1)a−1eµeia ⊗ ci1 · · · ĉia · · · cis)

=

s∑
a=1

(−1)a−1∂(eµ1
1 · · · e

µia+1

ia
· · · eµnn ⊗ ci1 · · · ĉia · · · cis)

=
( s∑
a=1

µia + 1
)
eµ ⊗ α(cI)

−
s∑
a=1

(−1)a
n∑

j=1,j 6=i1,··· ,is

µje
µ1
1 · · · e

µj−1

j · · · eµia+1

ia
· · · eµnn

⊗α(cj)α(ci1) · · · α̂(cia) · · ·α(cis).(4.19)

Clearly the terms (4.18) and (4.19) are identical apart from sign so that we have

(D∂+∂D)(eµ⊗α(cI)) =
( n∑
j=1,j 6=i1,··· ,is

µj+

s∑
a=1

µia +s
)
(eµ⊗α(cI)) = (t+s)(eµ⊗α(cI)).

Therefore we see that every cycle in Ck(k = 2t+ s) is a boundary provided that t+ s 6=
0(modp). In particular, if 0 < k < p, then 0 < t + s < p so that Hk(C) = 0. Moreover,
C1 = C0,1 is spanned by the ci and ∂ci = 0 for all i. Therefore H0(C) = C0 = Ures.(g),
the proof of the theorem is complete. �
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In this paper, Hermite-Hadamard inequality for differentiable preinvex
functions is generalized and refined for n-times differentiable functions
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1. Introduction
The following definition for convex functions is well known in mathematical literature:

1.1. Definition. A function f : I → R, ∅ 6= I ⊆ R, is said to be convex on I if inequality

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y),

holds for all x, y ∈ I and t ∈ [0, 1].

∗School of Computational and Applied Mathematics, University of the Witwatersrand, Pri-
vate Bag 3, Wits 2050, Johannesburg, South Africa, Email: m_amer_latif@hotmail.com
†Corresponding Author.
‡School of Engineering and Science, Victoria University, PO Box 14428 Melbourne City, MC

8001, Australia,
§School of Computational and Applied Mathematics, University of the Witwatersrand, Private

Bag 3, Wits 2050, Johannesburg, South Africa, Email: sever.dragomir@vu.edu.au



840

A number of inequalities have been established for convex functions but the following
double inequalites, known as Hermite-Hadmard inequalities, are famous in mathematical
literature

(1.1) f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
,

where f : I ⊆ R→ R is a convex mapping and a, b ∈ I ⊆ R with a < b. The inequalities
(1.1) hold in reversed direction if f is concave. A number of papers have been written on
this inequality providing new proofs, noteworthy extensions, generalizations, refinements,
counterparts and new Hermite-Hadamard-type inequalities and numerous applications,
see for instance [7]-[11], [13], [15], [20]-[23], [29], [31], [32]-[34], [36], [37] and the references
therein.

In recent years, the classical convexity has been generalized and extended in a diverse
manner. One of them is the preinvexity, introduced by Weir et al. [38] as a significant
generalization of convex functions. Many researchers have studied the basic properties
of the preinvex functions and their role in optimization, variational inequalities and
equilibrium problems, for example see the work of Mohn et al. [24], Noor [26] and
Yang et al. [41]. It is well known that the preinvex functions and invex sets may not be
convex functions and convex sets respectively.

Let us recall some definitions and known results concerning invexity and preinvexity

1.2. Definition. [41] A set K ⊆ Rn is said to be invex with respect to η : K ×K → Rn
if

x+ tη(y, x) ∈ K,∀x, y ∈ K, t ∈ [0, 1].

The invex set K is also called an η-connected set.

1.3. Definition. [38] Let K ⊆ Rn be an invex set with respect to η : K × K → Rn.
A function f : K → R is said to be preinvex with respect to η, if for all u, v ∈ K and
t ∈ [0, 1], the following inequality holds

f(u+ tη(v, u)) ≤ (1− t) f(u) + tf(v).

The function f is said to be preincave if and only if −f is preinvex.

It is to be noted that every preinvex function is convex with respect to the map
η (x, y) = x− y but the converse is not true see for instance [38].

Noor [28], proved the following Hermite-Hadamard type inequalities.

1.4. Theorem. [28] Let f : K = [a, a+ η(b, a)] → (0,∞) be a preinvex function on the
interval of the real numbers K◦ (the interior of K) and a, b ∈ K◦ with η(b, a) > 0. Then
the following inequalities holds:

(1.2) f

(
2a+ η(b, a)

2

)
≤ 1

η(b, a)

∫ a+η(b,a)

a

f (x) dx ≤ f (a) + f (b)

2
.

Barani et al. in [5], presented the following estimates of the right-side of a Hermite-
Hadamard type inequality in which preinvex functions are involved.

1.5. Theorem. [5] Let K ⊆ R be an open invex subset with respect to η : K ×K → R.

Suppose that f : K → R is a differentiable function .Assume p ∈ R with p > 1. If
∣∣∣f ′ ∣∣∣ p

p−1
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is preinvex on K, for every a, b ∈ K with η (b, a) 6= 0, then the following inequality holds:

(1.3)

∣∣∣∣∣f(a) + f(a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f(x)dx

∣∣∣∣∣
≤ |η (b, a)|

2 (1 + p)
1
p


∣∣∣f ′ (a)∣∣∣ p

p−1
+
∣∣∣f ′ (b)∣∣∣ p

p−1

2


p−1
p

.

1.6. Theorem. [5]Let K ⊆ R be an open invex subset with respect to η : K ×K → R.
Suppose that f : K → R is a differentiable function. If

∣∣∣f ′ ∣∣∣ is preinvex on K, for every
a, b ∈ K with η (b, a) 6= 0, then the following inequality holds:

(1.4)

∣∣∣∣∣f(a) + f(a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f(x)dx

∣∣∣∣∣
≤ |η (b, a)|

8

(∣∣∣f ′ (a)∣∣∣+ ∣∣∣f ′ (b)∣∣∣) .
Most recently, Li [42] introduced the notion of s-preinvexity and established Hermite-

Hadamard type inequalities for this class of functions.

1.7. Definition. [42] Let K ⊆ [0,∞) be an invex set with respect to η : K ×K → R. A
function f : K → R is said to be s-preinvex with respect to η, if for all u, v ∈ K, t ∈ [0, 1]
and s ∈ (0, 1], the following inequality holds

f(u+ tη(v, u)) ≤ (1− t)s f(u) + tsf(v).

The function f is said to be s-preincave if and only if −f is s-preinvex.

1.8. Theorem. [42] Let f : K = [a, a+ η(b, a)] ⊆ [0,∞) → (0,∞) be a s-preinvex
function on the interval of the real numbers K◦ (the interior of K) and a, b ∈ K◦ with
η(b, a) > 0. Then the following inequalities holds:

(1.5) 2s−1f

(
2a+ η(b, a)

2

)
≤ 1

η(b, a)

∫ a+η(b,a)

a

f (x) dx ≤ f (a) + f (b)

s+ 1
.

For more recent results on Hermite-Hadamard type and Simpson’s type inequalities
for preinvex, log-preinvex functions, s-preinvex functions, prequasiinvex functions and
n-times differentiable preinvex functions, we refer the interested readers to [4, 16, 17, 18,
19, 35, 39, 40, 42].

The main purpose of the present paper is to establish new Hermite-Hadamard type
inequalities in Section 2 that are connected with the right-side and left-side of Hermite-
Hadamard inequality for n-times differentiable s-preinvex functions which generalize
those results established for n-times differentiable preinvex functions and n-times dif-
ferentiable convex functions.

2. Main Results
In order to prove our main results, we need the following lemmas:

2.1. Lemma. [16] Let K ⊆ R be an open invex subset with respect to η : K ×K → R.
Suppose that f : K → R is a function such that f (n) exists on K for n ∈ N, n ≥ 1. If f (n)
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is integrable on [a, a+ η (b, a)], then for every a, b ∈ K with η (b, a) > 0, the following
equality holds:

(2.1) − f (a) + f (a+ η (b, a))

2
+

1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

+

n−1∑
k=2

(−1)k (k − 1) (η (b, a))k

2 (k + 1)!
f (k)(a+ η (b, a))

=
(−1)n−1 (η (b, a))n

2n!

∫ 1

0

tn−1 (n− 2t) f (n)(a+ tη (b, a))dt,

where the sum above takes 0 when n = 1 and n = 2.

2.2. Lemma. [16] Let K ⊆ R be an open invex subset with respect to η : K ×K → R.
Suppose that f : K → R is a function such that f (n) exists on K for n ∈ N, n ≥ 1. If f (n)

is integrable on [a, a+ η (b, a)], then for every a, b ∈ K with η (b, a) > 0, the following
equality holds:

(2.2)
n−1∑
k=0

[
(−1)k + 1

]
(η (b, a))k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

=
(−1)n+1 (η (b, a))n

n!

∫ 1

0

Kn(t)f
(n)(a + tη (b, a))dt,

where

Kn(t) :=


tn, t ∈

[
0, 1

2

]
(t− 1)n , t ∈

(
1
2
, 1
] .

We are now ready to present our first result.

2.3. Theorem. Let K ⊆ [0,∞) be an open invex subset with respect to η : K ×K → R.
Suppose that f : K → R is a function such that f (n) exists on K and f (n) is integrable
on [a, a+ η (b, a)] for n ∈ N, n ≥ 2. If

∣∣∣f (n)
∣∣∣q is s-preinvex on K for q ≥ 1, then for

every a, b ∈ K with η (b, a) > 0, we have the following inequality:

(2.3)

∣∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

−
n−1∑
k=2

(−1)k (k − 1) (η (b, a))k

2 (k + 1)!
f (k)(a+ η (b, a))

∣∣∣∣∣
≤ (η (b, a))n

2n!

(
n− 1

n+ 1

)1− 1
q (

Q
∣∣∣f (n)(a)

∣∣∣q + P
∣∣∣f (n)(b)

∣∣∣q) 1
q
,

where

P =
n (n− 1) + s (n− 2)

(n+ s) (n+ s+ 1)
, Q = nB (n, s+ 1)− 2B (n+ 1, s+ 1)

and

B(x, y) =

∫ 1

0

tx−1 (1− t)y−1

for x > 0, y > 0 is the Beta function.
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Proof. Suppose n ≥ 2 and q = 1. By s-preinvexity of
∣∣∣f (n)

∣∣∣ on K and lemma 2.1, we get

(2.4)

∣∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

−
n−1∑
k=2

(−1)k (k − 1) (η (b, a))k

2 (k + 1)!
f (k)(a+ η (b, a))

∣∣∣∣∣
≤ (η (b, a))n

2n!

∫ 1

0

tn−1 (n− 2t)
∣∣∣f (n)(a+ tη (b, a))

∣∣∣ dt
≤ (η (b, a))n

2n!

∫ 1

0

tn−1 (n− 2t)
(
(1− t)s

∣∣∣f (n)(a)
∣∣∣+ ts

∣∣∣f (n)(b)
∣∣∣) dt

=
(η (b, a))n

2n!

(∣∣∣f (n)(b)
∣∣∣ ∫ 1

0

tn+s−1 (n− 2t) dt+
∣∣∣f (n)(a)

∣∣∣ ∫ 1

0

tn−1 (n− 2t) (1− t)s dt
)
.

Since ∫ 1

0

tn+s−1 (n− 2t) dt =
n (n− 1) + s (n− 2)

(n+ s) (n+ s+ 1)
= P

and ∫ 1

0

tn−1 (n− 2t) (1− t)s dt = n

∫ 1

0

tn−1 (1− t)s dt− 2

∫ 1

0

tn (1− t)s dt

= nB (n, s+ 1)− 2B (n+ 1, s+ 1) = Q.

Using the above observations in (2.4), we get (2.3). The proof for the case q = 1 is
complete.

Assume now that q > 1, then by the s-preinvexity of
∣∣∣f (n)

∣∣∣q on K, lemma 2.1 and the
Hölder’s inequality, we have

(2.5)

∣∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

−
n−1∑
k=2

(−1)k (k − 1) (η (b, a))k

2 (k + 1)!
f (k)(a+ η (b, a))

∣∣∣∣∣
≤ (η (b, a))n

2n!

(∫ 1

0

tn−1 (n− 2t) dt

)1− 1
q
(∫ 1

0

tn−1 (n− 2t)
∣∣∣f (n)(a+ tη (b, a))

∣∣∣q dt) 1
q

≤ (η (b, a))n

2n!

(∫ 1

0

tn−1 (n− 2t) dt

)1− 1
q

×
(∣∣∣f (n)(b)

∣∣∣q ∫ 1

0

tn+s−1 (n− 2t) dt+
∣∣∣f (n)(a)

∣∣∣q ∫ 1

0

tn−1 (n− 2t) (1− t)s
) 1
q

which is the inequality (2.3). Hence the proof of the theorem is completed. �

2.4. Remark. If in Theorem 2.3, we take s = 1, we get Theorem 8 from [16].
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2.5. Corollary. Suppose that the assumptions of Theorem 2.3 are satisfied. Then for
n = 2, we have

(2.6)

∣∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (η (b, a))2

2

(
1

6

)1− 1
q


∣∣∣f ′′(a)∣∣∣q + ∣∣∣f ′′(b)∣∣∣q

(s+ 3) (s+ 2)


1
q

.

2.6. Remark. If in Corollary 2.5 s = 1, we get a result proved in Corollary 1 from [16].

2.7. Remark. If in Theorem 2.3, we take η (b, a) = b−a. Then one gets a result proved
in Theorem 1.1 from [11].

2.8. Theorem. Let K ⊆ [0,∞) be an open invex subset with respect to η : K ×K → R.
Suppose that f : K → R is a function such that f (n) exists on K and f (n) is integrable
on [a, a+ η (b, a)] for n ∈ N, n ≥ 2. If

∣∣∣f (n)
∣∣∣q is s-preinvex on K for q ≥ 1, then for

every a, b ∈ K with η (b, a) > 0, we have the following inequality:

(2.7)

∣∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

−
n−1∑
k=2

(−1)k (k − 1) (η (b, a))k

2 (k + 1)!
f (k)(a+ η (b, a))

∣∣∣∣∣
≤ (η (b, a))n (n− 1)1−1/q

2n!

[
{nB (nq − q + 1, s+ 1)− 2B (nq − q + 2, s+ 1)}

∣∣∣f (n)(a)
∣∣∣q

+

{
n

nq − q + s+ 1
− 2

nq − q + s+ 2

} ∣∣∣f (n)(b)
∣∣∣q]1/q ,

where

B(x, y) =

∫ 1

0

tx−1 (1− t)y−1

for x > 0, y > 0 is the Beta function.

Proof. The case when q = 1 is easy to prove so we assume that q > 1. By making use of
Lemma 2.1, the Hölder inequality and the s-preinvexity of

∣∣∣f (n)
∣∣∣q, we have

(2.8)

∣∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

−
n−1∑
k=2

(−1)k (k − 1) (η (b, a))k

2 (k + 1)!
f (k)(a+ η (b, a))

∣∣∣∣∣ ≤ (η (b, a))n

2n!

(∫ 1

0

(n− 2t) dt

)1−1/q

×
[∫ 1

0

tq(n−1) (n− 2t)
(
(1− t)s

∣∣∣f (n)(a)
∣∣∣q + ts

∣∣∣f (n)(b)
∣∣∣q) dt]1/q = (η (b, a))n (n− 1)1−1/q

2n!

×
[
{nB (nq − q + 1, s+ 1)− 2B (nq − q + 2, s+ 1)}

∣∣∣f (n)(a)
∣∣∣q

+

{
n

nq − q + s+ 1
− 2

nq − q + s+ 2

} ∣∣∣f (n)(b)
∣∣∣q]1/q .

This completes the proof of the theorem. �
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2.9. Corollary. Suppose that the conditions of Theorem 2.8 are fulfilled and n = 2.
Then

(2.9)

∣∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (η (b, a))2

22−1/q
×
[
{B (q + 1, s+ 1)−B (q + 2, s+ 1)}

∣∣∣f ′′(a)∣∣∣q
+

∣∣∣f ′′(b)∣∣∣q
(q + s+ 1) (q + s+ 2)

1/q

,

where B(x, y), x, y > 0 is the Beta’s function.

2.10. Corollary. If we take q = 1 and s = 1 in Corollary 2.10. Then

(2.10)

∣∣∣∣∣f (a) + f (a+ η (b, a))

2
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (η (b, a))2

24

[∣∣∣f ′′(a)∣∣∣q + ∣∣∣f ′′(b)∣∣∣] .
2.11. Remark. For η (b, a) = b−a, we obtain new bounds of the difference between the
middle and right-side of Hermite-Hadamard inequalities (1.1) in terms of second order
derivatives.

Now we give some results related to left-side of Hermite-Hadamard’s inequality for
n-times differentiable s-preinvex functions.

2.12. Theorem. Let K ⊆ [0,∞) be an open invex subset with respect to η : K×K → R.
Suppose that f : K → R is a function such that f (n) exists on K and f (n) is integrable
on [a, a+ η (b, a)]. If

∣∣∣f (n)
∣∣∣q is s-preinvex on K for q > 1, n ∈ N, n ≥ 1, s ∈ (0, 1], then

for every a, b ∈ K with η (b, a) > 0, we have the following inequality:

(2.11)

∣∣∣∣∣∣
n−1∑
k=0

[
(−1)k + 1

]
(η (b, a))k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)

− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣ ≤ (η (b, a))n

2nn! (np+ 1)
1
p


∣∣∣f (n)(a)

∣∣∣q + ∣∣∣f (n)(b)
∣∣∣q

s+ 1


1
q

,

where 1
p
+ 1

q
= 1.

Proof. Suppose n ≥ 1. By using lemma 2.2 and the s-preinvexity of
∣∣∣f (n)

∣∣∣q on K for
n ∈ N, n ≥ 1, q > 1, we have

(2.12)

∣∣∣∣∣∣
n−1∑
k=0

[
(−1)k + 1

]
(η (b, a))k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣∣
≤ (η (b, a))n

n!

∫ 1

0

|Kn(t)|
∣∣∣f (n)(a+ tη (b, a))

∣∣∣ dt
≤ (η (b, a))n

n!

(∫ 1

0

|Kn(t)|p
) 1
p
(∫ 1

0

∣∣∣f (n)(a+ tη (b, a))
∣∣∣q dt) 1

q

.
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Since ∫ 1

0

|Kn(t)|p =

∫ 1
2

0

tnpdt+

∫ 1

1
2

(1− t)np dt = 1

2np (np+ 1)

and ∫ 1

0

∣∣∣f (n)(a+ tη (b, a))
∣∣∣q dt ≤ ∫ 1

0

(1− t)s
∣∣∣f (n)(a)

∣∣∣q dt+ ∫ 1

0

ts
∣∣∣f (n)(b)

∣∣∣q dt
=

∣∣∣f (n)(a)
∣∣∣q + ∣∣∣f (n)(b)

∣∣∣q
s+ 1

An application of the above observations in (2.12), we get the desired inequality (2.11).
This completes the proof of the theorem. �

2.13. Corollary. Under the assumptions of Theorem 2.12, if n = 2, then we obtain the
following inequality:

(2.13)

∣∣∣∣∣f
(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (η (b, a))2

8 (2p+ 1)
1
p


∣∣∣f ′′(a)∣∣∣q + ∣∣∣f ′′(b)∣∣∣q

s+ 1


1
q

,

where 1
p
+ 1

q
= 1.

2.14. Corollary. In Corollary 2.13, if we take s = 1, then one gets the following result:

(2.14)

∣∣∣∣∣f
(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (η (b, a))2

8 (2p+ 1)
1
p


∣∣∣f ′′(a)∣∣∣q + ∣∣∣f ′′(b)∣∣∣q

2


1
q

,

where 1
p
+ 1

q
= 1.

2.15. Corollary. In Theorem 2.12, if η (b, a) = b− a, we have the following inequality:

(2.15)

∣∣∣∣∣∣
n−1∑
k=0

[
(−1)k + 1

]
(b− a)k

2k+1 (k + 1)!
f (k)

(
a+ b

2

)
− 1

b− a

∫ b

a

f (x) dx

∣∣∣∣∣∣
≤ (b− a)n

2nn! (np+ 1)
1
p


∣∣∣f (n)(a)

∣∣∣q + ∣∣∣f (n)(b)
∣∣∣q

s+ 1


1
q

,

where 1
p
+ 1

q
= 1.

A different approach leads us to the following result:

2.16. Theorem. Let K ⊆ [0,∞) be an open invex subset with respect to η : K×K → R.
Suppose that f : K → R is a function such that f (n) exists on K and f (n) is integrable
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on [a, a+ η (b, a)]. If
∣∣∣f (n)

∣∣∣q is s-preinvex on K for n ∈ N, n ≥ 1, q ∈ R, q > 1 and
s ∈ (0, 1], then for every a, b ∈ K with η (b, a) > 0, we have the following inequality:

(2.16)

∣∣∣∣∣∣
n−1∑
k=0

[
(−1)k + 1

]
(η (b, a))k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣∣
≤ (η (b, a))n

2
n+ 1

p (np+ 1)
1
p n!


(2s+1 − 1

) ∣∣∣f (n)(a)
∣∣∣q + ∣∣∣f (n)(b)

∣∣∣q
2s+1 (s+ 1)


1
q

+


∣∣∣f (n)(a)

∣∣∣q + (2s+1 − 1
) ∣∣∣f (n)(b)

∣∣∣q
2s+1 (s+ 1)


1
q
 ,

where 1
p
+ 1

q
= 1.

Proof. From lemma 2.2 and the power-mean integral inequality, we have

(2.17)

∣∣∣∣∣∣
n−1∑
k=0

[
(−1)k + 1

]
(η (b, a))k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣∣
≤ (η (b, a))n

n!

(∫ 1
2

0

tnpdt

) 1
p
(∫ 1

2

0

∣∣∣f (n)(a+ tη (b, a))
∣∣∣q dt) 1

q

+

(∫ 1

1
2

(1− t)np dt

) 1
p
(∫ 1

1
2

∣∣∣f (n)(a+ tη (b, a))
∣∣∣q dt) 1

q

 .
Since

∣∣∣f (n)
∣∣∣q is s-preinvex on K in the second sense for n ∈ N, n ≥ 1, q ∈ R, q > 1 and

s ∈ (0, 1]. Hence for every a, b ∈ K with η (b, a) > 0, we have

(2.18)
∫ 1

2

0

tn
∣∣∣f (n)(a+ tη (b, a))

∣∣∣q dt ≤ ∣∣∣f (n)(a)
∣∣∣q ∫ 1

2

0

(1− t)s dt+
∣∣∣f (n)(b)

∣∣∣q ∫ 1
2

0

tsdt

=
2s+1 − 1

2s+1 (s+ 1)

∣∣∣f (n)(a)
∣∣∣q + 1

2s+1 (s+ 1)

∣∣∣f (n)(b)
∣∣∣q

and

(2.19)
∫ 1

2

0

∣∣∣f (n)(a+ tη (b, a))
∣∣∣q dt ≤ ∣∣∣f (n)(a)

∣∣∣q ∫ 1

1
2

(1− t)s dt+
∣∣∣f (n)(b)

∣∣∣q ∫ 1

1
2

tsdt

=
1

2s+1 (s+ 1)

∣∣∣f (n)(a)
∣∣∣q + 2s+1 − 1

2s+1 (s+ 1)

∣∣∣f (n)(b)
∣∣∣q .

Also

(2.20)
∫ 1

2

0

tnpdt =

∫ 1

1
2

(1− t)np dt = 1

2np+1 (np+ 1)
.

Using (2.18), (2.19) and (2.20) in (2.17), we get the required inequality (2.16). This
completes the proof of the theorem. �

2.17. Remark. For s = 1, Theorem 2.16 becomes Theorem 11 from [16].
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2.18. Corollary. For s = 1 and n = 2, we get the following inequality from [16]:

(2.21)

∣∣∣∣∣f
(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (η (b, a))2

8 · 2
1
p (2p+ 1)

1
p


3

∣∣∣f ′′(a)∣∣∣q + ∣∣∣f ′′(b)∣∣∣q
8


1
q

+


∣∣∣f ′′(a)∣∣∣q + 3

∣∣∣f ′′(b)∣∣∣q
8


1
q
 ,

where 1
p
+ 1

q
= 1.

2.19. Theorem. Let K ⊆ [0,∞) be an open invex subset with respect to η : K×K → R.
Suppose that f : K → R is a function such that f (n) exists on K and f (n) is integrable
on [a, a+ η (b, a)]. If

∣∣∣f (n)
∣∣∣q is s-preinvex on K for n ∈ N, n ≥ 1, q ∈ R, q ≥ 1 and

s ∈ (0, 1], then for every a, b ∈ K with η (b, a) > 0, we have the following inequality:

(2.22)

∣∣∣∣∣∣
n−1∑
k=0

[
(−1)k + 1

]
(η (b, a))k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣∣
≤ (η (b, a))n (n+ 1)

1
q

2
(n+1)

(
1− 1

q

)
(n+ 1)!

[(
L
∣∣∣f (n)(a)

∣∣∣q +M
∣∣∣f (n)(b)

∣∣∣q) 1
q

+
(
M
∣∣∣f (n)(a)

∣∣∣q +N
∣∣∣f (n)(b)

∣∣∣q) 1
q

]
,

where

L = B

(
1

2
;n+ 1, s+ 1

)
,M =

1

2n+s+1 (n+ s+ 1)
,

N = B (s+ 1, n+ 1)−B
(
1

2
; s+ 1, n+ 1

)
,

B(x, y) =

∫ 1

0

tx−1 (1− t)y−1

for x > 0, y > 0 is the Beta function and

B(z;x, y) =

∫ z

0

tx−1 (1− t)y−1

is the generalized of the Beta function B(x, y).
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Proof. It is not difficult to see that (2.22) holds true for q = 1. Suppose that q > 1.
From lemma 2.2 and the Hölder’s integral inequality, we have

(2.23)

∣∣∣∣∣∣
n−1∑
k=0

[
(−1)k + 1

]
(η (b, a))k

2k+1 (k + 1)!
f (k)

(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣∣
≤ (η (b, a))n

n!

(∫ 1
2

0

tndt

)1− 1
q
(∫ 1

2

0

tn
∣∣∣f (n)(a+ tη (b, a))

∣∣∣q dt) 1
q

+

(∫ 1

1
2

(1− t)n dt

)1− 1
q
(∫ 1

1
2

(1− t)n
∣∣∣f (n)(a+ tη (b, a))

∣∣∣q dt) 1
q

 .
Since

∣∣∣f (n)
∣∣∣q is s-preinvex on K in the second sense for n ∈ N, n ≥ 1, q ∈ R, q ≥ 1 and

s ∈ (0, 1]. Hence for every a, b ∈ K with η (b, a) > 0, we have

(2.24) ∫ 1
2

0

tn
∣∣∣f (n)(a+ tη (b, a))

∣∣∣q dt ≤ ∣∣∣f (n)(a)
∣∣∣q ∫ 1

2

0

tn (1− t)s dt+
∣∣∣f (n)(b)

∣∣∣q ∫ 1
2

0

tn+sdt

= B

(
1

2
;n+ 1, s+ 1

) ∣∣∣f (n)(a)
∣∣∣q +

∣∣∣f (n)(b)
∣∣∣q

2n+s+1 (n+ s+ 1)

and

(2.25)
∫ 1

2

0

(1− t)n
∣∣∣f (n)(a+ tη (b, a))

∣∣∣q dt
≤
∣∣∣f (n)(a)

∣∣∣q ∫ 1

1
2

(1− t)n+s dt+
∣∣∣f (n)(b)

∣∣∣q ∫ 1

1
2

ts (1− t)n dt

=

∣∣∣f (n)(a)
∣∣∣q

2n+s+1 (n+ s+ 1)
+

[
B (s+ 1, n+ 1)−B

(
1

2
; s+ 1, n+ 1

)] ∣∣∣f (n)(b)
∣∣∣q .

Using (2.24), (2.25) and

(2.26)
∫ 1

2

0

tndt =

∫ 1

1
2

(1− t)n dt = 1

2n+1 (n+ 1)
.

we get the required inequality (2.22). This completes the proof of the theorem. �

2.20. Corollary. If we choose n = 2 and s = 1 in the Theorem 2.19, we get the following
inequality:

(2.27)

∣∣∣∣∣f
(
a+

1

2
η (b, a)

)
− 1

η (b, a)

∫ a+η(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (η (b, a))2 · 3

1
q
−1

2
4− 3

q


5

∣∣∣f ′′(a)∣∣∣q + 3
∣∣∣f ′′(b)∣∣∣q

192


1
q

+

3
∣∣∣f ′′(a)∣∣∣q + 5

∣∣∣f ′′(b)∣∣∣q
192


1
q
 .
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Proof. Since for n = 2 and s = 1, L = B
(
1
2
; 3, 2

)
= 5

192
, M = 1

64
and N = B (2, 3) −

B
(
1
2
; 2, 3

)
= 5

192
and hence proof follows. �

3. Applications to Special Means
In the following we give certain generalizations of some notions for a positive valued

function of a positive variable.

3.1. Definition. [3]A function M : R2
+ → R+, is called a Mean function if it has the

following properties:

(1) Homogeneity: M(ax, ay) = aM(x, y), for all a > 0,
(2) Symmetry : M(x, y) =M(y, x),
(3) Reflexivity : M(x, x) = x,
(4) Monotonicity: If x ≤ x

′
and y ≤ y

′
, then M(x, y) ≤M(x

′
, y
′
),

(5) Internality: min{x, y} ≤M(x, y) ≤ max{x, y}.

We consider some means for arbitrary positive real numbers α, β (see for instance [3]).

(1) The arithmetic mean:

A := A (α, β) =
α+ β

2

(2) The The geometric mean:

G := G (α, β) =
√
αβ

(3) The harmonic mean:

H := H (α, β) =
2

1
α
+ 1

β

(4) The power mean:

Pr := Pr (α, β) =

(
αr + βr

2

) 1
r

, r ≥ 1

(5) The identric mean:

I := I (α, β) =

{
1
e

(
ββ

αα

)
, α 6= β

α, α = β

(6) The logarithmic mean:

L := L (α, β) =
α− β

ln |α| − ln |β| , |α| 6= |β|

(7) The generalized log-mean:

Lp := Lp (α, β) =

[
βp+1 − αp+1

(p+ 1) (β − α)

]
, α 6= β, p ∈ R\ {−1, 0} .

It is well known that Lp is monotonic nondecreasing over p ∈ R, with L−1 := L and
L0 := I. In particular, we have the following inequality H ≤ G ≤ L ≤ I ≤ A.

Now, let a and b be positive real numbers such that a < b. Consider the function
M :=M(a, b) : [a, a+η(b, a)]× [a, a+η(b, a)]→ R+, which is one of the above mentioned
means, therefore one can obtain various inequalities for these means as follows:
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Setting η(b, a) = M(b, a) in (2.6), (2.13), one can obtain the following interesting
inequalities involving means:

(3.1)

∣∣∣∣∣f (a) + f (a+M(b, a))

2
− 1

M(b, a)

∫ a+M(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (M(b, a))2

2

(
1

6

)1− 1
q


∣∣∣f ′′(a)∣∣∣q + ∣∣∣f ′′(b)∣∣∣q

(s+ 3) (s+ 2)


1
q

.

(3.2)

∣∣∣∣∣f
(
a+

1

2
M(b, a)

)
− 1

M(b, a)

∫ a+M(b,a)

a

f (x) dx

∣∣∣∣∣
≤ (M(b, a))2

8 (2p+ 1)
1
p


∣∣∣f ′′(a)∣∣∣q + ∣∣∣f ′′(b)∣∣∣q

s+ 1


1
q

,

Letting M = A, G, H, Pr, I, L, Lp in (3.1) and in (3.2), we get the inequalities
involving means for a particular choice of a twice differentiable s-preinvex function f ,
and the details are left to the interested reader.
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Below N, Z and R denote the sets of all natural numbers, integers and real numbers re-
spectively. k is a positive integer. For any a, b ∈ Z, define Z(a) = {a, a+1, · · · }, Z(a, b) =
{a, a+ 1, · · · , b} when a < b. Besides, * denotes the transpose of a vector.

The present paper considers the fourth-order nonlinear difference equation

(1.1) ∆2 (pn−1∆2un−2

)
−∆ (qn∆un−1) = f(n, un+1, un, un−1), n ∈ Z(1, k),

with boundary value conditions

(1.2) u−1 = u0 = 0, uk+1 = uk+2 = 0,

where ∆ is the forward difference operator ∆un = un+1 − un, ∆2un = ∆(∆un), pn is
nonzero and real valued for each n ∈ Z(0, k+1), qn is real valued for each n ∈ Z(1, k+1),
f ∈ C(R4,R).

In recent years the study of boundary value problems for differential equations de-
velops at relatively rapid rate. By using various methods and techniques, such as fixed
point theory, topological degree theory, coincidence degree theory, a series of existence
results of nontrivial solutions for differential equations have been obtained in literatures,
we refer to [1-3,5,15,30]. And critical point theory is also an important tool to deal with
problems on differential equations [9,11,20,25,35]. Only since 2003, critical point theory
has been employed to establish sufficient conditions on the existence of periodic solutions
of difference equations. By using the critical point theory, Guo and Yu [12-14] and Shi
et al. [28] have successfully proved the existence of periodic solutions of second-order
nonlinear difference equations. We also refer to [32,33] for the discrete boundary value
problems. Compared to first-order or second-order difference equations, the study of
higher-order equations, and in particular, fourth-order equations, has received consider-
ably less attention (see, for example, [7,8,10,23,24,26,29,31] and the references contained
therein). Yan, Liu [31] in 1997 and Thandapani, Arockiasamy [29] in 2001 studied the
following fourth-order difference equation of form,

(1.3) ∆2 (pn∆2un
)

+ f(n, un) = 0, n ∈ Z,

and obtained criteria for the oscillation and nonoscillation of solutions for equation (1.3).
In 2005, Cai, Yu and Guo [4] have obtained some criteria for the existence of periodic
solutions of the fourth-order difference equation

(1.4) ∆2 (pn−2∆2un−2

)
+ f(n, un) = 0, n ∈ Z.

In 1995, Peterson and Ridenhour considered the disconjugacy of equation (1.7) when
pn ≡ 1 and f(n, un) = qnun (see [23]).

The boundary value problem (BVP) for determining the existence of solutions of
difference equations has been a very active area of research in the last twenty years, and
for surveys of recent results, we refer the reader to the monographs by Agarwal et al.
[17,21,27]. As far as we know results obtained in the literature for the BVP (1.1) with
(1.2) are very scarce. Since f in (1.1) depends on un+1 and un−1, the traditional ways
of establishing the functional in [12-14,32-34] are inapplicable to our case. As a result,
the goal of this paper is to fill the gap in this area.

Motivated by the above results, we use the critical point theory to give some sufficient
conditions for the existence and nonexistence of solutions for the BVP (1.1) with (1.2).
We shall study the superlinear and sublinear cases. The main idea in this paper is
to transfer the existence of the BVP (1.1) with (1.2) into the existence of the critical
points of some functional. The proof is based on the notable Mountain Pass Lemma in
combination with variational technique. The purpose of this paper is two-folded. On one
hand, we shall further demonstrate the powerfulness of critical point theory in the study
of solutions for boundary value problems of difference equations. On the other hand, we
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shall complement existing results. The motivation for the present work stems from the
recent paper in [7].

Let

p̄ = max{pn : n ∈ Z(0, k + 1)}, p = min{pn : n ∈ Z(0, k + 1)},

q̄ = max{qn : n ∈ Z(1, k + 1)}, q = min{qn : n ∈ Z(1, k + 1)}.

Our main results are as follows.

Theorem 1.1. Assume that the following hypotheses are satisfied:
(p) for any n ∈ Z(0, k + 1), pn < 0;
(q) for any n ∈ Z(1, k + 1), qn ≤ 0;
(F1) there exists a functional F (n, ·) ∈ C1(Z×R2,R) with F (0, ·) = 0 such that

∂F (n− 1, v2, v3)

∂v2
+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3), ∀n ∈ Z(1, k);

(F2) there exists a constant M0 > 0 such that for all (n, v1, v2) ∈ Z(1, k)×R2∣∣∣∣∂F (n, v1, v2)

∂v1

∣∣∣∣ ≤M0,

∣∣∣∣∂F (n, v1, v2)

∂v2

∣∣∣∣ ≤M0.

Then the BVP (1.1) with (1.2) possesses at least one solution.

Remark 1.1. Assumption (F2) implies that there exists a constant M1 > 0 such that
(F ′2) |F (n, v1, v2)| ≤M1 +M0(|v1|+ |v2|), ∀(n, v1, v2) ∈ Z(1, k)×R2.

Theorem 1.2. Suppose that (F1) and the following hypotheses are satisfied:
(p′) for any n ∈ Z(0, k + 1), pn > 0;
(q′) for any n ∈ Z(1, k + 1), qn ≥ 0;
(F3) there exists a functional F (n, ·) ∈ C1(Z×R2,R) such that

lim
r→0

F (n, v1, v2)

r2
= 0, r =

√
v2

1 + v2
2 , ∀n ∈ Z(1, k);

(F4) there exists a constant β > 2 such that for any n ∈ Z(1, k),

0 <
∂F (n, v1, v2)

∂v1
v1 +

∂F (n, v1, v2)

∂v2
v2 < βF (n, v1, v2), ∀(v1, v2) 6= 0.

Then the BVP (1.1) with (1.2) possesses at least two nontrivial solutions.

Remark 1.2. Assumption (F4) implies that there exist constants a1 > 0 and a2 > 0
such that
(F ′4) F (n, v1, v2) > a1

(√
v2

1 + v2
2

)β
− a2, ∀n ∈ Z(1, k).

Theorem 1.3. Suppose that (p′), (q′), (F1) and the following assumption are satisfied:

(F5) there exist constants R > 0 and 1 < α < 2 such that for n ∈ Z(1, k) and
√
v2

1 + v2
2 ≥

R,

0 <
∂F (n, v1, v2)

∂v1
v1 +

∂F (n, v1, v2)

∂v2
v2 ≤ αF (n, v1, v2).

Then the BVP (1.1) with (1.2) possesses at least one solution.

Remark 1.3. Assumption (F5) implies that for each n ∈ Z(1, k) there exist constants
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a3 > 0 and a4 > 0 such that

(F ′5) F (n, v1, v2) ≤ a3

(√
v2

1 + v2
2

)α
+ a4, ∀(n, v1, v2) ∈ Z(1, k)×R2.

Theorem 1.4. Suppose that (p), (q), (F1) and the following assumption are satisfied:

(F6) v2f(n, v1, v2, v3) > 0, for v2 6= 0, ∀n ∈ Z(1, k).

Then the BVP (1.1) with (1.2) has no nontrivial solutions.

Remark 1.4. In the existing literature, results on the nonexistence of solutions of
discrete boundary value problems are scarce. Hence, Theorem 1.4 complements existing
ones.

The remainder of this paper is organized as follows. First, in Section 2, we shall
establish the variational framework for the BVP (1.1) with (1.2) and transfer the problem
of the existence of the BVP (1.1) with (1.2) into that of the existence of critical points
of the corresponding functional. Some related fundamental results will also be recalled.
Then, in Section 3, we shall complete the proof of the results by using the critical point
method. Finally, in Section 4, we shall give three examples to illustrate the main results.

For the basic knowledge of variational methods, the reader is referred to [20,22,25,35].

2. Variational structure and some lemmas
In order to apply the critical point theory, we shall establish the corresponding vari-
ational framework for the BVP (1.1) with (1.2) and give some lemmas which will be
of fundamental importance in proving our main results. Firstly, we state some basic
notations.

Let Rk be the real Euclidean space with dimension k. Define the inner product on
Rk as follows:

(2.1) 〈u, v〉 =

k∑
j=1

ujvj , ∀u, v ∈ Rk,

by which the norm ‖ · ‖ can be induced by

(2.2) ‖u‖ =

(
k∑
j=1

u2
j

) 1
2

, ∀u ∈ Rk.

On the other hand, we define the norm ‖ · ‖r on Rk as follows:

(2.3) ‖u‖r =

(
k∑
j=1

|uj |r
) 1
r

,

for all u ∈ Rk and r > 1.
Since ‖u‖r and ‖u‖2 are equivalent, there exist constants c1, c2 such that c2 ≥ c1 > 0,

and

(2.4) c1‖u‖2 ≤ ‖u‖r ≤ c2‖u‖2, ∀u ∈ Rk.

Clearly, ‖u‖ = ‖u‖2. For any u = (u1, u2, · · · , uk)∗ ∈ Rk, for the BVP (1.1) with
(1.2), consider the functional J defined on Rk as follows:

(2.5) J(u) =
1

2

k∑
n=−1

pn+1

(
∆2un

)2
+

1

2

k∑
n=0

qn+1 (∆un)2 −
k∑
n=1

F (n, un+1, un),
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where
∂F (n− 1, v2, v3)

∂v2
+
∂F (n, v1, v2)

∂v2
= f(n, v1, v2, v3),

u−1 = u0 = 0, uk+1 = uk+2 = 0.

Clearly, J ∈ C1(Rk,R) and for any u = {un}kn=1 = (u1, u2, . . . , uk)∗, by using u−1 =
u0 = 0, uk+1 = uk+2 = 0, we can compute the partial derivative as

∂J

∂un
= ∆2 (pn−1∆2un−2

)
−∆ (qn∆un−1)− f(n, un+1, un, un−1), ∀n ∈ Z(1, k).

Thus, u is a critical point of J on Rk if and only if

∆2 (pn−1∆2un−2

)
−∆ (qn∆un−1) = f(n, un+1, un, un−1), ∀n ∈ Z(1, k).

We reduce the existence of the BVP (1.1) with (1.2) to the existence of critical points of
J on Rk. That is, the functional J is just the variational framework of the BVP (1.1)
with (1.2).

Let P and Q be the k × k matrices defined by

P =



6 −4 1 0 0 · · · 0 0 0
−4 6 −4 1 0 · · · 0 0 0
1 −4 6 −4 1 · · · 0 0 0
0 1 −4 6 −4 · · · 0 0 0
· · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0 0 0 · · · 6 −4 1
0 0 0 0 0 · · · −4 6 −4
0 0 0 0 0 · · · 1 −4 6


,

Q =


2 −1 0 · · · 0 0
−1 2 −1 · · · 0 0
0 −1 2 · · · 0 0
· · · · · · · · · · · · · · · · · ·
0 0 0 · · · 2 −1
0 0 0 · · · −1 2

 .

Clearly, P and Q are positive definite. Let λ1, λ2, · · · , λk be the eigenvalues of P ,
λ̃1, λ̃2, · · · , λ̃k be the eigenvalues of Q. Applying matrix theory, we know λj > 0, λ̃j >
0, j = 1, 2, · · · , k. Without loss of generality, we may assume that

(2.6) 0 < λ1 ≤ λ2 ≤ · · · ≤ λk,

(2.7) 0 < λ̃1 ≤ λ̃2 ≤ · · · ≤ λ̃k.
Let E be a real Banach space, J ∈ C1(E,R), i.e., J is a continuously Fréchet-

differentiable functional defined on E. J is said to satisfy the Palais-Smale condition
(P.S. condition for short) if any sequence

{
u(l)
}
⊂ E for which

{
J
(
u(l)
)}

is bounded

and J ′
(
u(l)
)
→ 0(l→∞) possesses a convergent subsequence in E.

Let Bρ denote the open ball in E about 0 of radius ρ and let ∂Bρ denote its boundary.

Lemma 2.1 (Mountain Pass Lemma [25]). Let E be a real Banach space and J ∈
C1(E,R) satisfy the P.S. condition. If J(0) = 0 and
(J1) there exist constants ρ, a > 0 such that J |∂Bρ ≥ a, and
(J2) there exists e ∈ E \Bρ such that J(e) ≤ 0.
Then J possesses a critical value c ≥ a given by

(2.8) c = inf
g∈Γ

max
s∈[0,1]

J(g(s)),
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where

(2.9) Γ = {g ∈ C([0, 1], E)|g(0) = 0, g(1) = e}.

Lemma 2.2. Suppose that (p′), (q′), (F1), (F3) and (F4) are satisfied. Then the
functional J satisfies the P.S. condition.

Proof. Let u(l) ∈ Rk, l ∈ Z(1) be such that
{
J
(
u(l)
)}

is bounded. Then there exists
a positive constant M2 such that

−M2 ≤ J
(
u(l)
)
≤M2, ∀l ∈ N.

By (F ′4), we have

−M2 ≤ J
(
u(l)
)

=
1

2

k∑
n=−1

pn+1

(
∆2u(l)

n

)2

+
1

2

k∑
n=0

qn+1

(
∆u(l)

n

)2

−
k∑
n=1

F
(
n, u

(l)
n+1, u

(l)
n

)

≤ 1

2
p̄

k∑
n=−1

(
u

(l)
n+2 − 2u

(l)
n+1 + u(l)

n

)2

+
1

2
q̄

k∑
n=0

(
u

(l)
n+1 − u

(l)
n

)2

−a1

k∑
n=1

[√(
u

(l)
n+1

)2

+
(
u

(l)
n

)2
]β

+ a2k

≤ 1

2
p̄
(
u(l)
)∗
Pu(l) +

1

2
q̄
(
u(l)
)∗
Qu(l) − a1c

β
1

∥∥∥u(l)
∥∥∥β + a2k

≤ 1

2
p̄λk

∥∥∥u(l)
∥∥∥2

+
1

2
q̄λ̃k

∥∥∥u(l)
∥∥∥2

− a1c
β
1

∥∥∥u(l)
∥∥∥β + a2k,

where u(l) =
(
u

(l)
1 , u

(l)
2 , · · · , u(l)

k

)∗
, u(l) ∈ Rk. That is,

a1c
β
1

∥∥∥u(l)
∥∥∥β − 1

2

(
p̄λk + q̄λ̃k

)∥∥∥u(l)
∥∥∥2

≤M2 + a2k.

Since β > 2, there exists a constant M3 > 0 such that∥∥∥u(l)
∥∥∥ ≤M3, ∀l ∈ N.

Therefore,
{
u(l)
}

is bounded on Rk. As a consequence,
{
u(l)
}

possesses a convergence

subsequence in Rk. Thus the P.S. condition is verified. 2

3. Proof of the main results
In this Section, we shall prove our main results by using the critical point theory.

3.1. Proof of Theorem 1.1

Proof. By (F ′2), for any u = (u1, u2, · · · , uk)∗ ∈ Rk, we have

J(u) =
1

2

k∑
n=−1

pn+1

(
∆2un

)2
+

1

2

k∑
n=0

qn+1 (∆un)2 −
k∑
n=1

F (n, un+1, un)

≤ 1

2
p̄

k∑
n=−1

(un+2 − 2un+1 + un)2+
1

2
q̄

k∑
n=0

(un+1 − un)2+M0

k∑
n=1

(|un+1|+ |un|)+M1k

≤ 1

2
p̄u∗Pu+

1

2
q̄u∗Qu+ 2M0

k∑
n=1

|un|+M1k
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≤ 1

2
p̄λ1‖u‖2 +

1

2
q̄λ̃1‖u‖2 + 2M0

√
k‖u‖+M1k

→ −∞ as ‖u‖ → +∞.
The above inequality means that −J(u) is coercive. By the continuity of J(u), J attains
its maximum at some point, and we denote it ǔ, that is,

J(ǔ) = max
{
J(u)|u ∈ Rk

}
.

Clearly, ǔ is a critical point of the functional J . This completes the proof of Theorem
1.1. 2

3.2. Proof of Theorem 1.2

Proof. By (F3), for any ε = 1
8

(
pλ1 + qλ̃1

)
(λ1 and λ̃1 can be referred to (2.6) and (2.7)),

there exists ρ > 0, such that

|F (n, v1, v2)| ≤ 1

8

(
pλ1 + qλ̃1

) (
v2

1 + v2
2

)
,∀n ∈ Z(1, k),

for
√
v2

1 + v2
2 ≤
√

2ρ.
For any u = (u1, u2, · · · , uk)∗ ∈ Rk and ‖u‖ ≤ ρ, we have |un| ≤ ρ, n ∈ Z(1, k).
For any n ∈ Z(1, k),

J(u) =
1

2

k∑
n=−1

pn+1

(
∆2un

)2
+

1

2

k∑
n=0

qn+1 (∆un)2−
k∑
n=1

F (n, un+1, un)

≥ 1

2
p

k∑
n=−1

(un+2 − 2un+1 + un)2+
1

2
q

k∑
n=0

(un+1 − un)2−1

8

(
pλ1 + qλ̃1

) k∑
n=1

(
u2
n+1 + u2

n

)
≥ 1

2
pu∗Pu+

1

2
qu∗Qu− 1

4

(
pλ1 + qλ̃1

)
‖u‖2

≥ 1

2
pλ1‖u‖2 +

1

2
qλ̃1‖u‖2 −

1

4

(
pλ1 + qλ̃1

)
‖u‖2

=
1

4

(
pλ1 + qλ̃1

)
‖u‖2,

where u = (u1, u2, · · · , uk)∗, u ∈ Rk.

Take a = 1
4

(
pλ1 + qλ̃1

)
ρ2 > 0. Therefore,

J(u) ≥ a > 0, ∀u ∈ ∂Bρ.
At the same time, we have also proved that there exist constants a > 0 and ρ > 0 such
that J |∂Bρ ≥ a. That is to say, J satisfies the condition (J1) of the Mountain Pass
Lemma.

For our setting, clearly J(0) = 0. In order to exploit the Mountain Pass Lemma in
critical point theory, we need to verify all other conditions of the Mountain Pass Lemma.
By Lemma 2.2, J satisfies the P.S. condition. So it suffices to verify the condition (J2).

From the proof of the P.S. condition in Lemma 2.2, we know

J(u) ≤ 1

2

(
p̄λk + q̄λ̃k

)
‖u‖2 − a1c

β
1‖u‖

β + a2k.

Since β > 2, we can choose ū large enough to ensure that J(ū) < 0.
By the Mountain Pass Lemma, J possesses a critical value c ≥ a > 0, where

c = inf
h∈Γ

sup
s∈[0,1]

J(h(s)),

and
Γ = {h ∈ C([0, 1],Rk) | h(0) = 0, h(1) = ū}.
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Let ũ ∈ Rk be a critical point associated to the critical value c of J , i.e., J(ũ) = c.
Similar to the proof of the P.S. condition, we know that there exists û ∈ Rk such that

J(û) = cmax = max
s∈[0,1]

J(h(s)).

Clearly, û 6= 0. If ũ 6= û, then the conclusion of Theorem 1.2 holds. Otherwise, ũ = û.
Then c = J(ũ) = cmax = max

s∈[0,1]
J(h(s)). That is,

sup
u∈Rk

J(u) = inf
h∈Γ

sup
s∈[0,1]

J(h(s)).

Therefore,
cmax = max

s∈[0,1]
J(h(s)), ∀h ∈ Γ.

By the continuity of J(h(s)) with respect to s, J(0) = 0 and J(ū) < 0 imply that
there exists s0 ∈ (0, 1) such that

J (h (s0)) = cmax.

Choose h1, h2 ∈ Γ such that {h1(s) | s ∈ (0, 1)} ∩ {h2(s) | s ∈ (0, 1)} is empty, then
there exists s1, s2 ∈ (0, 1) such that

J (h1 (s1)) = J (h2 (s2)) = cmax.

Thus, we get two different critical points of J on Rk denoted by

u1 = h1 (s1) , u2 = h2 (s2) .

The above argument implies that the BVP (1.1) with (1.2) possesses at least two non-
trivial solutions. The proof of Theorem 1.2 is finished. 2

3.3. Proof of Theorem 1.3

Proof. We only need to find at least one critical point of the functional J defined as in
(2.5).

By (F ′5), for any u = (u1, u2, · · · , uk)∗ ∈ Rk, we have

J(u) =
1

2

k∑
n=−1

pn+1

(
∆2un

)2
+

1

2

k∑
n=0

qn+1 (∆un)2 −
k∑
n=1

F (n, un+1, un)

≥ 1

2
p

k∑
n=−1

(un+2 − 2un+1 + un)2+
1

2
q

k∑
n=0

(un+1 − un)2−a3

k∑
n=1

(√
u2
n+1 + u2

n

)α
−a4k

=
1

2
pu∗Pu+

1

2
qu∗Qu− a3


[

k∑
n=1

(√
u2
n+1 + u2

n

)α] 1
α


α

− a4k

≥ 1

2
pλ1‖u‖2 +

1

2
qλ̃1‖u‖2 − a3c

α
2


[

k∑
n=1

(
u2
n+1 + u2

n

)] 1
2


α

− a4k

≥ 1

2

(
pλ1 + qλ̃1

)
‖u‖2 − 2αa3c

α
2 ‖u‖α − a4k

→ +∞ as ‖u‖ → +∞.
By the continuity of J , we know from the above inequality that there exist lower bounds
of values of the functional. And this means that J attains its minimal value at some
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point which is just the critical point of J with the finite norm. 2

3.4. Proof of Theorem 1.4

Proof. Assume, for the sake of contradiction, that the BVP (1.1) with (1.2) has a
nontrivial solution. Then J has a nonzero critical point u?. Since

∂J

∂un
= ∆2 (pn−1∆2un−2

)
−∆ (qn∆un−1)− f(n, un+1, un, un−1),

we get
k∑
n=1

f(n, u?n+1, u
?
n, u

?
n−1)u?n =

k∑
n=1

[
∆2 (pn−1∆2u?n−2

)
−∆ (qn∆u?n−1)

]
u?n

(3.1) =

k∑
n=−1

pn+1

(
∆2u?n

)2
+

k∑
n=0

qn+1 (∆u?n)
2 ≤ 0.

On the other hand, it follows from (F6) that

(3.2)
k∑
n=1

f(n, u?n+1, u
?
n, u

?
n−1)u?n > 0.

This contradicts (3.1) and hence the proof is complete. 2

4. Examples
As an application of Theorems 1.2, 1.3 and 1.4, we give three examples to illustrate our
main results.

Example 4.1. For n ∈ Z(1, k), assume that

(4.1)

∆4un−2−∆ (9n∆un−1) = βun

[
ϕ(n)

(
u2
n+1 + u2

n

) β
2
−1

+ ϕ(n− 1)
(
u2
n + u2

n−1

) β
2
−1
]
,

with boundary value conditions (1.2), where β > 2, ϕ is continuously differentiable and
ϕ(n) > 0, n ∈ Z(1, k) with ϕ(0) = 0.

We have

pn ≡ 1, qn = 9n, f(n, v1, v2, v3) = βv2

[
ϕ(n)

(
v2

1 + v2
2

) β
2
−1

+ ϕ(n− 1)
(
v2

2 + v2
3

) β
2
−1
]

and
F (n, v1, v2) = ϕ(n)

(
v2

1 + v2
2

) β
2 .

It is easy to verify all the assumptions of Theorem 1.2 are satisfied and then the BVP
(4.1) with (1.2) possesses at least two nontrivial solutions.

Example 4.2. For n ∈ Z(1, k), assume that

(4.2)

∆2 (8n−1∆2un−2

)
−∆ (6n∆un−1) = αun

[
ψ(n)

(
u2
n+1 + u2

n

)α
2
−1

+ ψ(n− 1)
(
u2
n + u2

n−1

)α
2
−1
]
,

with boundary value conditions (1.2), where 1 < α < 2, ψ is continuously differentiable
and ψ(n) > 0, n ∈ Z(1, k) with ψ(0) = 0.

We have

pn = 8n, qn = 6n, f(n, v1, v2, v3) = αv2

[
ψ(n)

(
v2

1 + v2
2

)α
2
−1

+ ψ(n− 1)
(
v2

2 + v2
3

)α
2
−1
]
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and
F (n, v1, v2) = ψ(n)

(
v2

1 + v2
2

)α
2 .

It is easy to verify all the assumptions of Theorem 1.3 are satisfied and then the BVP
(4.2) with (1.2) possesses at least one solution.

Example 4.3. For n ∈ Z(1, k), assume that

(4.3) −∆4un−2 + ∆ (7n∆un−1) =
8

5
un

[(
u2
n+1 + u2

n

)− 1
5 +

(
u2
n + u2

n−1

)− 1
5

]
,

with boundary value conditions (1.2).
We have

pn ≡ −1, qn = −7n, f(n, v1, v2, v3) =
8

5
v2

[(
v2

1 + v2
2

)− 1
5 +

(
v2

2 + v2
3

)− 1
5

]
and

F (n, v1, v2) =
(
v2

1 + v2
2

) 4
5 .

It is easy to verify all the assumptions of Theorem 1.4 are satisfied and then the BVP
(4.3) with (1.2) has no nontrivial solutions.
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Abstract
In this paper, a self adjoint boundary value problem with a piecewise
continuous coefficient on the positive half line [0,∞) is considered. The
resolvent operator is constructed and the expansion formula with re-
spect to eigenfunctions or equivalently Parseval equality is obtained.
The spectrum of the operator is discussed.
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1. Introduction
Here, we consider the boundary value problem on the half line 0 < x <∞ generated

by the differential equation

(1.1) −y′′ + q(x)y = λ2ρ(x)y

and the boundary condition

(1.2) y′(0)− hy(0) = 0,

where λ is a spectral parameter, q(x) is a real valued function satisfying the condition

(1.3)
∫ ∞

0

(1 + x) |q(x)| dx <∞
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and

ρ(x) =

{
α2, 0 ≤ x < a,
1, x ≥ a,

where 0 < α 6= 1. It is not hard to verify that the function

f0(x, λ) =
1

2

(
1 +

1√
ρ(x)

)
eiλµ

+(x) +
1

2

(
1− 1√

ρ(x)

)
eiλµ

−(x)

is the solution of equation (1.1) when q(x) ≡ 0, where

µ±(x) = ±x
√
ρ(x) + a(1∓

√
ρ(x)).

As it is known from [5, 8] that for λ from the closed upper half plane equation (1.1) has
a unique solution f(x, λ) which can be represented in the form

(1.4) f(x, λ) = f0(x, λ) +

∫ ∞
µ+(x)

K(x, t)eiλtdt,

where K(x, ·) ∈ L1(µ+(x),+∞). The function f(x, λ) is called the Jost solution of
equation (1.1).

Note that, a singular Sturm-Liouville problem in the form of (1.1), (1.2) is encoun-
tered when applying separation of variables to mathematical physics problems in non-
homogeneous media, e. g. when q(x) ≡ 0 an application of electric prospecting problem,
was given in [13, 15]. In this works, expansion formula was obtained by using Titch-
marsh’s [14] method with the help of integral representation (1.4), for the solution of
equation (1.1). When ρ(x) ≡ 1 spectral expansion formula, for singular differantial oper-
ators on the interval [0,∞) was investigated with different methods in [14, 10], etc. When
ρ(x) 6= 1, spectral properties of similar problems were considered in [4, 3, 5, 7, 8, 9]. Also,
in this case the direct and inverse problem in a finite interval were examined in [1, 11].

Using (1.4) we have for real λ 6= 0 that the functions f(x, λ) and f(x, λ) form the
fundamental system of solutions of equation (1.1) and the Wronskian of this system is
equal to 2iλ:

W
{
f(x, λ), f(x, λ)

}
= f ′(x, λ)f(x, λ)− f(x, λ)f ′(x, λ) = 2iλ.

By ω(x, λ), we denote the solutions of equation (1.1) satisfying the initial data

ω(0, λ) = 1, ω′(0, λ) = h.

Proof of the following propositions can be done analoguously to [8].
1.1. Proposition. For real λ 6= 0 the following identity

(1.5) 2iλ
ω(x, λ)

f ′(0, λ)− hf(0, λ)
= f(x, λ)− S(λ)f(x, λ)

holds, here

S(λ) =
f ′(0, λ)− hf(0, λ)

f ′(0, λ)− hf(0, λ)
and |S(λ)| = 1.

S(λ) is called the scattering function of the boundary value problem (1.1), (1.2).
1.2. Proposition. The function ϕ(λ) ≡ f ′(0, λ) − hf(0, λ) 6= 0 may have only a finite
number of zeros λk, (k = 1, 2, ..., n) in the half plane Imλ > 0. These zeros are all simple
and lie on the imaginary axis. For λ = iλj (λj > 0), j = 1, n, we get

m−2
j ≡

∫ ∞
0

ρ(x) |f(x, iλj)|2 dx = − 1

2iλj
ϕ̇(iλj)f(0, iλj).
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These values are called the norming constants of the boundary value problem (1.1), (1.2).

2. Spectrum
This section is devoted to examine the properties of the eigenvalues of the boundary

value problem (1.1), (1.2).
2.1. Theorem. The operator L has no eigenvalues on the positive half line.
Proof. Let λ2

0 > 0 be an eigenvalue of the operator L and y0(x) = y(x, λ0) be the
corresponding eigenfunction. Since f(x, λ0) and f(x, λ0) form the fundamental system
of solutions, the general solution of (1.1) can be written in the form

y0(x) = c1f(x, λ0) + c2f(x, λ0).

As x→∞,

f(x, λ0)→ eiλ0x and f(x, λ0)→ e−iλ0x,

hence

y0(x) = c1e
iλ0x + c2e

−iλ0x + o(1).

Since, its principal part is periodic this function does not belong to L2(0,∞) for any
values of c1 and c2. �
2.2. Theorem. For −λ2

0 (λ0 6= 0) to be an eigenvalue it is necessary and sufficient that
ϕ(λ0) = 0.
Proof. Indeed, let ϕ(λ0) = 0 (Imλ0 > 0). Thus, f ′(0, λ0) − hf(0, λ0) = 0. Therefore,
f(x, λ0) is a solution of the boundary value problem (1.1), (1.2). While x→∞ f(x, λ0)
decreases exponentially. Hence, f(x, λ0) ∈ L2(0,∞) and for the corresponding eigenvalue
−λ2

0 f(x, λ0) is the eigenfunction of operator L. On the other hand, let −λ2
0 (λ0 6=

0) be an eigenvalue and y(x, λ0) be the suitable eigenfunction of operator L. Then
y′(0, λ0)−hy(0, λ0) = 0. It is clear that, y(0, λ0) 6= 0. Without loss of generality assume
that y(0, λ0) = 1, then y′(0, λ0) = h. Since, f(x, λ0) and f̂(x, λ0) form the fundamental
system of solutions of equation (1.1) (see [12] p. 297), we can write

y(x, λ0) = c1f(x, λ0) + c2f̂(x, λ0).

As x→∞, we obtain c2 = 0, then c1 6= 0. Substituting x = 0 in the last relation, we get

y′(0, λ0)− hy(0, λ0) = c1

i.e.,

f ′(0, λ0)− hf(0, λ0) = ϕ(λ0) = 0.

Thus, for each eigenvalue −λ2
0, there is one and only one adequate (up to a multiplicative

constant) eigenfunction:

y(x, λ0) = cf(x, λ0), (c 6= 0).

�
The proof of the following theorem can be obtained directly form Theorem 2.1 and
Theorem 2.2. 2.3. Theorem. The operator L has a finite number of eigenvalues:
−λ2

1,−λ2
2, ...,

−λ2
n.

Therefore, it is appropriate at this point to note that the spectral problem (1.1), (1.2) has
a finite number of negative eigenvalues and it fills positive half line with its continuous
spectrum.
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3. The Resolvent Operator and Expansion Formula for the Eigen-
functions
In the space L2,ρ(0,∞), we define an inner product by

< f, g >:=

∫ ∞
0

f(x)g(x)ρ(x)dx,

where f(x), g(x) ∈ L2,ρ(0,∞).

Let us define

D(L) =

{
f(x) ∈ L2,ρ(0,∞) : f(x), f ′(x) ∈ AC [0,∞) , l(f) ∈ L2,ρ(0,∞),

f ′(0)− hf(0) = 0

}
,

as L : f → l(f) where

l(f) =
1

ρ(x)

{
−f ′′(x) + q(x)f(x)

}
.

The boundary value problem (1.1), (1.2) is equivalent to the equation Ly = λ2y and
the operator L is self-adjoint in the space L2,ρ(0,∞).

Let us assume that λ2 is not a spectrum point of operator Rλ2(L) = (L−λ2I)−1 and
find the expression of the operator Rλ2(L) as all numbers λ2 (Imλ ≥ 0, ϕ(λ) 6= 0) belong
to the resolvent set of the operator L.
3.1. Theorem. The resolvent Rλ2(L) is the integral operator

Rλ2(L) =

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

with the kernel,

(3.1) G(x, t;λ) = − 1

ϕ (λ)

{
ω (x, λ) f (t, λ) , t ≥ x,
f (x, λ)ω (t, λ) , t ≤ x.

Proof. Let g(x) ∈ D(L) and assume that it is a finite function at infinity. To construct
the resolvent operator of L we need to solve the boundary value problem

(3.2) −y′′ + q(x)y = λ2ρ(x)y + g(x)ρ(x),

(3.3) y′(0)− hy(0) = 0.

We know that the functions w(x, λ) and f(x, λ) are the solutions of homogeneous
problem for Imλ > 0. Now let us find the solutions of the problem (3.2), (3.3) which has
the form

(3.4) y(x, λ) = c1(x, λ)w(x, λ) + c2(x, λ)f(x, λ).

By applying the method of variation of constants, we get the system of equations

(3.5)
{

c′1 (x, λ)w (x, λ) + c′2 (x, λ) f (x, λ) = 0,
c′1 (x, λ)w′ (x, λ) + c′2 (x, λ) f ′ (x, λ) = −ρ (x) g (x) .

Since y (x, λ) ∈ L2,ρ (0,∞), then c1 (0,∞) = 0. By using this relation and the system
equations (3.5), we obtain

c1(x, λ) = − 1

ϕ(λ)

∫ ∞
x

f(t, λ)g(t)ρ(t)dt,
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(3.6) c2(x, λ) = c2(0, λ)− 1

ϕ(λ)

∫ x

0

w(t, λ)g(t)ρ(t)dt.

Substituting (3.6) into (3.4) and taking (3.3) into consideration, the proof of Theorem
3.1 is completed. �
3.2. Lemma. Let g(x) be a twice continuously differential function vanishing outside of
some finite interval and g(x) ∈ D(L). Then, as |λ| → ∞, Imλ > 0 the following holds:

(3.7)
∫ ∞

0

G(x, t;λ)g (t) ρ (t) dt = −g (x)

λ2
+
Z(x, λ)

λ2
,

where

Z(x, λ) =

∫ ∞
0

G(x, t, λ)g̃(t)ρ(t)dt

as g̃(t) = −g′′(t) + q(t)g(t).
Proof. The proof can be easily seen by using Theorem 3.1 and integrating by parts. �

Bounded solutions of boundary value problem (1.1), (1.2) are given in the following
way:

u(x, λ) =

√
1

2π

[
f(x, λ)− S(λ)f(x, λ)

]
, 0 < λ2 <∞,

u(x, iλj) = mjf(x, iλj), j = 1, 2, ..., n.

By using the contour integration, it can be shown that they form a complete system.
3.3. Theorem. The expansion formula which is equivalent to Parseval equality

(3.8) δ(x− t) =

n∑
j=1

u(x, iλj)u(t, iλj)ρ(t) +

∫ ∞
0

u(x, λ)u(t, λ)ρ(t)dλ

holds, where δ (x) is Dirac delta function, also when x → ∞ the following asymptotic
formulae are true:

(3.9)
u(x, λ) = e−iλx − S(λ)eiλx + o(1), (0 < λ2 <∞)

u(x, iλj) = mje
−λjx [1 + o(1)] , (j = 1, ..., n).

Proof. Let ΓR denote the circle of radius R and center zero which boundary contour
is positive oriented. Assume D = {z : |z| ≤ R, |Imz| ≥ ε}, denote the positive oriented
boundary contour of D as ΓR,ε and take integration along this contour. By multiplying
both sides of (3.7) by 1

2πi
λ and integrating it with respect to λ, we obtain

1

2πi

∫
ΓR,ε

λdλ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt = − 1

2πi

∫
ΓR,ε

g(x)

λ
dλ+ ZR,ε(x),

where

ZR,ε(x) =
1

2πi

∫
ΓR,ε

Z(x, λ)

λ
dλ.

It can be shown from the properties of the functions w(x, λ), f(x, λ) that, as R → ∞
and ε→ 0, ZR,ε → 0 holds for ∀x ∈ [0, T ] ⊂ [0,∞) uniformly. From the last relation, as
R→∞, ε→ 0 we can write

1

2πi

∫
ΓR,ε

λdλ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt→ −g(x)+

+
1

2πi

∫ ∞
−∞

λdλ

∫ ∞
0

[G(x, t;λ+ i0)−G(x, t;λ− i0)]g(t)ρ(t)dt.
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On the other hand, using the residue calculus, we get

1

2πi

∫
ΓR,ε

λdλ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt =

n∑
j=1

Res
λ=iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
+

+

n∑
j=1

Res
λ=−iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
.

From the last two relations we obtain

g(x) = −
n∑
j=1

Res
λ=iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
−

−
n∑
j=1

Res
λ=−iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
+

+
1

2πi

∫ ∞
−∞

dλ

∫ ∞
0

[G(x, t;λ+ i0)−G(x, t;λ− i0)]g(t)ρ(t)dt.

Let ψ(x, λ) be the solution of (1.1) satisfying the initial conditions

ψ(0, λ) = 0, ψ′(0, λ) = 1

and W {ω(x, λ), f(x, λ)} = 1. From here, we can write

f(x, λ) = f(0, λ)ω(x, λ)− ϕ(λ)ψ(x, λ).

Therefore, from (3.1) we have

G(x, t;λ) = −f (0, λ)

ϕ (λ)
ω(x, λ)ω(t, λ)−

{
ω (x, λ)ψ(t, λ), x ≤ t,
ψ(x, λ)ω(t, λ), t ≤ x.

Accordingly for Imλ ≥ 0, we obtain∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt = − 1

ϕ (λ)
f (0, λ)ω (x, λ)

∫ ∞
0

ω (t, λ) g(t)ρ(t)dt−

− ψ(x, λ)

∫ x

0

ω (t, λ) g(t)ρ(t)dt−

− ω(x, λ)

∫ ∞
x

ψ (t, λ) g(t)ρ(t)dt.

Therefore, we get

Res
λ=iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
+ Res
λ=−iλj

[
λ

∫ ∞
0

G(x, t;λ)g(t)ρ(t)dt

]
=

= − 2iλj
ϕ̇(iλj)

f(0, iλj)ω(x, iλj)

∫ ∞
0

ω(t, iλj)g(t)ρ(t)dt =

= u(x, iλj)

∫ ∞
0

u(t, iλj)g(t)ρ(t)dt.

We can write

G(x, t;λ+ i0)−G(x, t;λ− i0) =

[
−f(0, λ+ i0)

ϕ(λ+ i0)
+
f(0, λ− i0)

ϕ(λ− i0)

]
ω(x, λ)ω(t, λ) =

=
ϕ(λ)f(0, λ)− ϕ(λ)f(0, λ)

|ϕ(λ)|2
ω(x, λ)ω(t, λ) =

=
2iλ

|ϕ(λ)|2
ω(x, λ)ω(t, λ).



873

It follows that
1

2πi

∫ ∞
−∞

λdλ

∫ ∞
0

[G(x, t;λ+ i0)−G(x, t;λ− i0)]g(t)ρ(t)dt =

=
2

π

∫ ∞
0

λ2

|ϕ(λ)|2
ω(x, λ)

∫ ∞
0

ω(t, λ)g(t)ρ(t)dtdλ =

=

∫ ∞
0

u(x, λ)

∫ ∞
0

u(t, λ)g(t)ρ(t)dtdλ.

Therefore, from (3.10) we get the expansion formula for the eigenfunctions:

(3.11) g(x) =

n∑
j=1

u(x, iλj)

∫ ∞
0

u(t, iλj)g(t)ρ(t)dt+

+

∫ ∞
0

u(x, λ)

∫ ∞
0

u(t, λ)g(t)ρ(t)dtdλ

or we obtain (3.8) that is equivalent to the Parseval equality. Asymptotic expressions
(3.9) can be obtained from (1.5) when x→∞. �

Writing the expansion formula (3.11) in the form of Stieltjes integral we have

g(x) =

∫ ∞
−∞

ω(x, λ)

(∫ ∞
0

ω(t, λ)g(t)ρ(t)dt

)
dσ(λ),

where

dσ(λ) =


2
π

λ2dλ
|ϕ(λ)|2 , λ ≥ 0,

∑n
j=1

(2iλj)
2δ(λ−iλj)

m2
j ϕ̇(iλj)2

, λ < 0

is the spectral function of operator L.
Now taking

G(λ) =

∫ ∞
0

ω(x, λ)g(x)ρ(x)dx,

we get

g(x) =

∫ ∞
−∞

G(λ)ω(x, λ)dσ(λ).

Multiplying both sides of this equivalence by g(x), we obtain the Parseval equality∫ ∞
0

g2(x)dx =

∫ ∞
−∞

G2(λ)dσ(λ).
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Abstract
Let G be a group and π(G) be the set of primes p such that G contains
an element of order p. Let nse(G) be the set of numbers of elements
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1. Introduction

Let G be a group. By π(G), we denote the set of primes p such that G contains an
element of order p and by πe(G) we mean the set of element orders of G. If k ∈ πe(G),
then mk denotes the number of elements of order k in G and we define the set nse(G) =
{mk | k ∈ πe(G)}.

During the classification of the finite simple groups, it has been observed that some of
the known simple groups are characterizable by some of their properties and up to now,
different characterizations are investigated for the finite simple groups. For instance, in
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[16], motivated by one of the Thompson’s problem, the authors introduced a new char-
acterization for the finite simple group G, by nse(G) and |G|. In fact, they proved that if
G is a finite simple K4-group, then G is characterizable by nse(G) and |G| (The simple
group G is called simple Kn-group if |π(G)| = n). Following this result, in [7] and [17],
it is proved that the group L2(q), where q ∈ {3, 4, 5, 7, 8, 9, 11, 13} is determined only by
nse(G). Up to the present time, it has been investigated that some other simple groups
can be characterized by nse(G) and |G| or only by nse(G) (see for instance [9]-[12]). In
this paper, our aim is to show that the simple K4-group L2(2

m) is characterizable by
nse(L2(2

m)). In fact, we improve the results of [16] in the following main theorem:

Main Theorem. Let G be a group. If nse(G) = nse(L2(2
m)), where m, 2m − 1

and (2m + 1)/3 are primes greater than 3, then G ∼= L2(2
m).

2. Notation and Preliminaries

For a natural number n, by π(n), we mean the set of all prime divisors of n, so it
is obvious that if G is a finite group, then π(G) = π(|G|). A Sylow p-subgroup of G is
denoted by Gp and by np(G), we mean the number of Sylow p-subgroups of G. Also, the
largest element order of Gp is denoted by exp(Gp). Moreover, we denote by ϕ, the Euler
totient function and by (a, b) the greatest common divisor of integers a and b.

In the following, we bring some useful lemmas which will be used in the proof of the
main theorem.

2.1. Lemma. [2, 6, 15, 20] Let G be a finite simple Kn-group.
(1) If n = 3, then G is isomorphic to one of the following groups:

A5, A6, L2(7), L2(8), L2(17), L3(3), U3(3), U4(2).
(2) If n = 4, then G is isomorphic to one of the following groups:

(a) A7, A8, A9, A10, M11, M12, J2, L2(16), L2(25), L2(49),
L2(81), L2(97), L2(243), L2(577), L3(4), L3(5), L3(7),
L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9), S6(2),
O+

8 (2), G2(3), U3(4), U3(5), U3(7), U3(8), U3(9), U4(3),
U5(2), Sz(8), Sz(32),

3D4(2),
2F4(2)

′;
(b) L2(r), where r is a prime, r2 − 1 = 2a.3b.v, v > 3 is a prime, a, b ∈ N;
(c) L2(2

m), where m, 2m − 1 and (2m + 1)/3 are primes greater than 3;
(d) L2(3

m), where m, (3m − 1)/2 and (3m + 1)/4 are odd primes.

2.2. Lemma. [4] Let G be a finite group and m be a positive integer dividing |G|. If
Lm(G) = {g ∈ G | gm = 1}, then m | |Lm(G)|.

2.3. Lemma. [17] Let G be a group containing more than two elements. Let k ∈ πe(G)
and mk be the number of elements of order k in G. If s = sup{mk | k ∈ πe(G)} is finite,
then G is finite and |G| ≤ s(s2 − 1).

2.4. Lemma. [13] Let G be a finite group and p ∈ π(G)\{2}. Suppose that P is a Sylow
p-subgroup of G and n = psm, where (p,m) = 1. If P is not cyclic and s > 1, then the
number of elements of order n is always a multiple of ps.

2.5. Lemma. [18, Theorem 3] Let G be a finite group. Then the number of elements
whose orders are multiples of n is either zero, or a multiple of the greatest divisor of order
G that is prime to n.

2.6. Lemma. [14] Let the finite group G acts on the finite set X. If the action is
semiregular, then |G| | |X|.
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2.7. Lemma. [5] Let G be a solvable group and π be any set of primes. Then
(1) G has a Hall π-subgroup.
(2) If H is a Hall π-subgroup of G and V is any π-subgroup of G, then V ≤ Hg for

some g ∈ G. In particular, the Hall π-subgroups of G form a single conjugacy
class of subgroups of G.

2.8. Lemma. Let G be an unsolvable finite group. Then there is a normal series 1 �

N �M �G, such that N is a solvable normal subgroup of G and M/N is an unsolvable
simple group or the direct product of isomorphic unsolvable simple groups.

Proof. Since G is a finite group, it has a chief series 1 =M0�M1� . . .�Mn−1�Mn = G.
Also, since G is unsolvable, there is a maximal i < n, such that Mi−1 is solvable. Ac-
cording to the maximality of i, we can easily conclude that the chief factor Mi

Mi−1
is

unsolvable. Since each chief factor is a simple group or the direct product of isomorphic
simple groups, it is enough to set N :=Mi−1 and M :=Mi. 2

The following number theoretic lemmas play a role in the proof of the main theorem:

2.9. Lemma. [19] Let q, k, l be natural numbers. Then
(1) (qk − 1, ql − 1) = q(k,l) − 1;

(2) (qk + 1, ql + 1) =

{
q(k,l) + 1 if both k

(k,l)
and l

(k,l)
are odd,

(2, q + 1) otherwise;

(3) (qk − 1, ql + 1) =

{
q(k,l) + 1 if k

(k,l)
is even and l

(k,l)
is odd,

(2, q + 1) otherwise;

In particular, for every q ≥ 2, k ≥ 1 the inequality (qk − 1, qk + 1) ≤ 2 holds.

2.10. Lemma. Let m be a natural number. Then
(1) 3 divides 2m − 1 if and only if m is even.
(2) 3 divides 2m + 1 if and only if m is odd.

Proof. On account of Lemma 2.9, the proof is straightforward. 2

2.11. Lemma. [3, Remark 1] The only solution of the equation pm − qn = 1, where p, q
are primes and m,n > 1, is 32 − 23 = 1.

2.12. Lemma. [1] Let p be a prime number.
(1) If p 6= 3, then x2 ≡ −3 (mod p) is solvable if and only if p ≡ 1 (mod 3).
(2) The equation x2 ≡ −1 (mod p) is solvable if and only if p ≡ 1 (mod 4).

2.13. Lemma. [8] Let p 6= 3 be a prime number.
(1) If the diophantine equation 3x2 + 1 = tpk has a solution, then p ≡ 1 (mod 3).
(2) If the diophantine equation x2n +xn +1 = tpk or x2n−xn +1 = tpk is solvable,

then p ≡ 1 (mod 3).

2.14. Lemma. Let m be a natural number such that{
2m − 1 = u

2m + 1 = 3t

with m ≥ 2, u and t are primes, t > 3. Then the following hold:
(a) (u− 1, t) = 1, (u− 1, t− 1) = t− 1, (u− 1, 2m) = 2, (u+ 1, t) = 1;
(b) (t− 1, u) = 1, (t− 1, 2m) = 2, (t+ 1, u) = 1;
(c) (u, t) = 1, (u, 3) = 1, (u, 2) = 1, (t, 3) = 1, (t, 2) = 1;
(d) π(t− 1) \ {2, 3, t, u} 6= ∅;
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(e) 3 | (1 + 2mu) but 9 - (1 + 2mu).

Proof. (a) Since t is a prime, (u− 1, t) = 1 or t. If (u− 1, t) = t, then t | (u− 1). Hence
(2m+1) | 3(2m−2) = 3(2m+1)−9. Therefore (2m+1) | 9 which implies that m ∈ {1, 3}
but this contradicts t > 3. So (u− 1, t) = 1. We have (u− 1, t− 1) = (2m − 2, 2m−2

3
) =

2m−2
3

= (t − 1). Since (2m−1 − 1, 2m−1) = 1, we conclude that (2m − 2, 2m) = 2 and
hence, (u− 1, 2m) = 2. Since t is odd, (2m, t) = 1 which implies that (u+ 1, t) = 1.
(b) Since u is a prime, (t−1, u) = 1 or u. If (t−1, u) = u, then u | (t−1) | (u−1), which
is a contradiction. So (t−1, u) = 1. Since (2m−1−1, 2m−1) = 1, we have (2m−2, 2m) = 2
and hence (t− 1, 2m) = 2. According to the hypothesis, u is a prime number and hence,
(t+ 1, u) = 1 or u. If (t+ 1, u) = u, then (2m − 1) | (2m−2 + 1) because u is odd. Thus
(2m − 1) ≤ (2m−2 + 1), which is a contradiction. So (u, t+ 1) = 1.
(c) It is obvious.
(d) By (b), (t − 1, u) = 1. Thus u /∈ π(t − 1). Also, it is obvious that t /∈ π(t − 1). If
π(t − 1) = {2, 3}, then 2m − 2 = 2.3k. Thus 2m−1 − 1 = 3k. Therefore 2m−1 − 3k = 1,
that by Lemma 2.11, is a contradiction. If π(t − 1) = {2}, then 2m−2

3
= 2. Hence

2m−1 − 1 = 3. Therefore m = 3, which is a contradiction. If π(t − 1) = {3}, then t − 1
is odd but we have 2 | (t− 1), which is a contradiction. So there is a prime p ∈ π(t− 1)
such that p 6= 2, 3, t, u.
(e) Since 2m+1 = 3t, 3 | (2m+1) and hence 3 | (22m−1). Thus 3 | (22m−1−2m−1+3) =
(22m − 2m + 1) = (1 + 2mu). Now, we are going to prove that 9 - (1 + 2mu). First we
claim that (m, 3) = 1. If not, then (m, 3) = 3 and since 3 | (2m + 1), according to
Lemma 2.10(2), we have m is odd and hence, m = 3k, where k is an odd number. Thus
u = (2m−1) = (23k−1) = (8k−1) = (8−1)(8k−1+8k−2+. . .+8+1) and since u = 2m−1
is a prime number, we conclude that k = 1 andm = 3, which contradicts t > 3. Therefore
(m, 3) = 1. If 9 | (1+2mu) = (22m−2m+1), then 27 | (2m+1)(22m−2m+1) = (23m+1).
Thus 27 | (23m + 1, 218 − 1). Since (m, 3) = 1, we have (18, 3m) = 3 and hence Lemma
2.9 (3) implies that (23m + 1, 218 − 1) = 9, which is a contradiction. 2

2.15. Lemma. Assume that the hypotheses of Lemma 2.14 are fulfilled. Further let
x = 2m and let p be a prime number such that p /∈ {2, 3, t, u} and (p, u− 1) = 1.

(1) Let p | x3 − 3x2 + 2x+ 3.
(a) If p | x+ 4, then p = 13;
(b) If p | x2 + x− 4, then p = 101;
(c) If p | x2 + x+ 3, then p = 23;
(d) If p | x2 + 4x+ 6, then p = 43;
(e) If p | x2 − 2, then p = 23;
(f) p - 2x+ 1.

(2) Let p | x2 − 4x+ 6.
(a) If p | 2x+ 1, then p = 11;
(b) If p | x+ 4, then p = 19;
(c) If p | x2 + x− 4, then p = 5;
(d) If p | x2 + x+ 3, then p = 11;
(e) p - x2 + 4x+ 6 and p - x2 − 2.

(3) Let p | x2 − 2.
(a) If p | 2x+ 1, then p = 7;
(b) If p | x+ 4, then p = 7 and p | 2x+ 1;
(c) p - x2 + x− 4.

Proof.
• Let p | x3 − 3x2 + 2x+ 3.
If p | x+4, then p | (x3−3x2+2x+3)−(x2−7x)(x+4) = 3(10x+1) and since (p, 3) = 1,
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we conclude that p | 10x+1. Therefore, p | (10x+1)− 10(x+4) = −3(13) which implies
that p = 13. If p | x2+x−4, then p | (x3−3x2+2x+3)− (x−4)(x2+x−4) = 10x−13.
Thus p | −13(x2 +x− 4)+4(10x− 13) = −x(13x− 27) and since (p, x) = 1, we conclude
that p | 13x− 27. Therefore, p | 10(13x− 27)− 13(10x− 13) = −101 which implies that
p = 101. If p | x2 + x+ 3, then p | (x3 − 3x2 + 2x+ 3)− (x− 4)(x2 + x+ 3) = 3(x+ 5).
Thus p | (x2 + x + 3) − (x − 4)(x + 5) = 23 and hence, p = 23. If p | x2 + 4x + 6,
then p | −2(x3 − 3x2 + 2x + 3) + (x2 + 4x + 6) = x2(−2x + 7). Thus p | −2x + 7. On
the other hand, p | (x3 − 3x2 + 2x + 3) − (x − 7)(x2 + 4x + 6) = 24x + 45. Therefore,
p | (24x + 45) + 12(−2x + 7) = 3(43) which implies that p = 43. If p | x2 − 2, then
p | (x3 − 3x2 + 2x + 3) − (x − 3)(x2 − 2) = 4x − 3. On the other hand, p | (x2 −
2) + (4x − 3) = (x − 1)(x + 5) and since (p, x − 1) = 1, we conclude that p | x + 5.
Thus p | −4(x + 5) + (4x − 3) = −23 which implies that p = 23. If p | 2x + 1, then
p | (x3 − 3x2 + 2x + 3) − 3(2x + 1) = x(x + 1)(x − 4) and since (p, x) = (p, x + 1) = 1,
we conclude that p | x− 4. Thus p | (2x+ 1)− 2(x− 4) = 9, which is a contradiction to
the fact that (p, 3) = 1.
• Let p | x2 − 4x+ 6.
If p | 2x + 1, then p | −2(x2 − 4x + 6) + x(2x + 1) = 3(3x − 4) and since (p, 3) = 1, we
conclude that p | 3x−4. Therefore, p | 3(2x+1)−2(3x−4) = 11 which implies that p = 11.
If p | x+4, then p | (x2−4x+6)−x(x+4) = −2(4x−3) and since (p, 2) = 1, we conclude
that p | 4x− 3. Thus p | (4x− 3)− 4(x+ 4) = −19 and hence, p = 19. If p | x2 + x− 4,
then p | 4(x2 − 4x+ 6) + 6(x2 + x− 4) = 10x(x− 1) and since (p, x− 1) = (p, 2) = 1, we
conclude that p = 5. If p | x2 + x+ 3, then p | −(x2 − 4x+ 6) + (x2 + x+ 3) = (5x− 3).
Thus p | (x2+x+3)+(5x−3) = x(x+6) and since (p, 2) = 1, we conclude that p | x+6.
Therefore, p | 5(x+ 6)− (5x− 3) = 3(11) which implies that p = 11. If p | x2 + 4x+ 6,
then p | −(x2 − 4x+ 6) + (x2 + 4x+ 6) = 8x. Thus p | 2 which is a contradiction to the
fact that (2, p) = 1. If p | x2 − 2, then p | (x2 − 4x + 6) − (x2 − 2) = −4(x − 2). Since
(p, 2) = (p, x− 2) = 1, we get a contradiction.
• Let p | x2 − 2.
If p | 2x+1, then p | −2(x2−2)+x(2x+1) = (x+4). Therefore, p | (2x+1)−2(x+4) = −7
which implies that p = 7. If p | x+4, then p | −(x2− 2)+x(x+4) = 2(2x+1) and since
(p, 2) = 1, we conclude that p | 2x + 1. Thus p | (2x + 1) − 2(x + 4) = −7 and hence,
p = 7. If p | x2 + x− 4, then p | −(x2 − 2) + (x2 + x− 4) = (x− 2). Since (p, x− 2) = 1,
we get a contradiction. 2

3. Proof of the Main Theorem

We know that nse(G) = nse(L2(2
m)), where m satisfies{

2m − 1 = u

2m + 1 = 3t

m ≥ 2, u and t are primes, t > 3. Denote x = 2m. According to [16], we know that
π(L2(2

m)) = {2, 3, t, u} and
nse(L2(2

m)) = {1, 3tu, 2mu, (t− 1)2mu, 1/2(t− 1)2mu, 1/2(u− 1)2m3t} .
We have divided the proof into a sequence of lemmas.

3.1. Lemma. The group G is finite. If i ∈ πe(G), then{
ϕ(i) | mi

i |
∑

d|imd

(3.1)

and if i > 2, then mi is even.
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Proof. Since nse(G) = nse(L2(2
m)), according to Lemma 2.3, G is a finite group. Now,

if i ∈ πe(G), then Lemma 2.2 implies that i |
∑

d|imd. We know that the number of
elements of order i in a cyclic group of order i is equal to ϕ(i). Thus mi = ϕ(i)k, where k
is the number of cyclic subgroups of order i in G and hence, ϕ(i) | mi. Also, it is known
that if i > 2, then ϕ(i) is even and since ϕ(i) | mi, we conclude that mi is even as well.
2

3.2. Lemma. |π(G)| ≥ 2.

Proof. Since 3tu ∈ nse(G), Lemma 3.1 yields 2 ∈ π(G) and m2 = 3tu. Let π(G) = {2}.
Then |G| = 2k. If exp(G2) > 2m+2, then 2m+3 ∈ πe(G) and hence 2m+2 = ϕ(2m+3) |
m2m+3 , which is a contradiction. Thus exp(G2) ≤ 2m+2 and we have

|G| = 1 + 3tu+ k12
mu+ k2(t− 1)2mu+(3.2)

k31/2(t− 1)2mu+ k41/2(u− 1)2m3t

where k1, k2, k3 and k4 are natural numbers and k1+k2+k3+k4 ≤ m+1. Since u = x−1
and t = (x+ 1)/3, we can conclude that |G| divides

(2k2 + k3 + 3k4)x
3 + (6 + 6k1 − 6k2 − 3k3 − 3k4)x

2 + (−6k1 + 4k2 + 2k3 − 6k4)x.

Moreover, since 1 +m2 = 22m, we conclude that 22m < 2k and hence x2 | |G|. Thus x2

divides

(2k2 + k3 + 3k4)x
3 + (6 + 6k1 − 6k2 − 3k3 − 3k4)x

2 + (−6k1 + 4k2 + 2k3 − 6k4)x

which implies that x | 6k1 − 4k2 − 2k3 + 6k4. Since

6k1 − 4k2 − 2k3 + 6k4 < 6(k1 + k2 + k3 + k4) ≤ 6(m+ 1),

we conclude that 2m ≤ (6m + 6). Thus m = 5 which implies that u = 31 and t = 11.
From (3.2) we have

2k = 1 + 1023 + 992k1 + 9920k2 + 4960k3 + 15840k4,

where k1 + k2 + k3 + k4 ≤ 6 and it is easy to check that this equation has no solution. 2

3.3. Lemma. π(G) 6= {2, 3}.

Proof. Let π(G) = {2, 3}. If G3 is a cyclic group of order 3k, then n3(G) =
m

3k

ϕ(3k)
=

m
3k

2(3k−1)
and hence, according to nse(G) and Lemma 2.14(c), we can conclude that t or u

divides n3(G). On the other hand, since n3(G) divides |G|, we can get a contradiction.
Thus G3 is not cyclic and according to Lemmas 2.2 and 2.4, we have 9 | 1 + m3. If
m3 = 2mu, then since by Lemma 2.14, 9 - 1 + 2mu, we can get a contradiction. Also,
since (3,m3) = 1, we conclude thatm3 6= 1/2(u−1)2m3t. Thusm3 ∈ {(t−1)2mu, 1/2(t−
1)2mu} which implies that

(3, t− 1) = 1.(3.3)

If 6 /∈ πe(G), then by Lemma 2.6, |G3| | m2. According to Lemma 3.2, m2 = 3tu and
hence Lemma 2.14 implies that G3 is cyclic, which is a contradiction. Thus 6 ∈ πe(G).
Since 6 | 1+m2+m3+m6 and 3 | 1+m2+m3, we conclude that 3 | m6. Now according
to nse(G) and (3.3), we have m6 = 1/2(u− 1)2m3t and hence, 9 | m6.
Now we have the following two cases:
Case 1. Let exp(G3) = 3. Then by Lemma 2.5, 9 |

∑
i≥2m2i +

∑
i≥2m2i3 and

9 |
∑

i≥1m2i +
∑

i≥1m2i3. Thus 9 | m2 + m6 and since 9 | m6, we conclude that
9 | m2, which is a contradiction.
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Case 2. Let exp(G3) > 3. If 18 /∈ πe(G), then similar to Case 1, we can get a contradic-
tion. If 18 ∈ πe(G), then according to Lemma 2.4, 9 | m2i3j , where i ≥ 0, j ≥ 2. Since
18 ∈ πe(G), we have 18 | 1 +m2 +m3 +m6 +m9 +m18. On the other hand, 9 | m6 and
according to Lemma 3.1, 9 | 1 +m3 +m9 and hence, 9 | m2, which is a contradiction. 2

3.4. Lemma. π(G) ⊆ {2, 3, t, u}.

Proof. Suppose, contrary to our claim, that p ∈ π(G) \ {2, 3, t, u}. To obtain a contra-
diction, in the following six steps we will prove that there is no choice for mp in nse(G).
Step 1. mp 6= 2mu and (p, t− 1) = 1.
If mp = 2mu, then according to (3.1), p | (1 + mp) = (22m − 2m + 1). Thus Lemma
2.13 implies that 3 | (p − 1). On the other hand, by (3.1), we have p − 1 | mp

and hence, 3 | mp, which is impossible according to Lemma 2.14. Therefore, mp ∈
{(t − 1)2mu, 1/2(t − 1)2mu, 1/2(u − 1)2m3t}. Since (p,mp) = 1, we conclude that
(p, t− 1) = 1.
Step 2. exp(Gp) = p.
If exp(Gp) > p, then p2 ∈ πe(G). Since p(p − 1) = ϕ(p2) | mp2 , we conclude that p
divides one of the numbers 2, 3, t, u, (t− 1), which is a contradiction. So exp(Gp) = p.
Step 3. If q ∈ πe(G) \ {1} and (q, p) = 1, then qp ∈ πe(G) and p | mq +mqp.
If qp /∈ πe(G), then Lemma 2.6 implies that |Gp| | mq. Now according to nse(G),
we conclude that p divides one of the numbers 2, 3, t, u, (t − 1), which is a contradic-
tion. Thus qp ∈ πe(G). Let q = qs11 . . . q

sk
k , where q1, . . . , qk are distinct prime num-

bers and k, s1, . . . , sk are natural numbers. We prove p | mq + mqp by induction on
s = s1 + . . . + sk. Let s = 1. Then q is a prime number and according to (3.1),
we have p | 1 + mp + mq + mqp and since p | 1 + mp, we can easily conclude that
p | mq +mqp. Let s = 2. Then there exist 1 ≤ i < j ≤ k such that q = qiqj or q = q2i . If
q = qiqj , then we have p | 1+mp +mqi +mqj +mqip +mqjp +mqiqj +mqiqjp and since
p | 1+mp, mqi +mqip, mqj +mqjp, we conclude that p | mqiqj +mqiqjp, as desired. The
case q = q2i is similar and we omit the details for the sake of convenience. Now, assume
the statement is true for the values less than s. We have

p |
∑
d|qp

md =
∑
d|qp

d6=q,qp

md +mq +mqp.

Moreover, according to induction hypothesis, p |
∑

d|qp
d6=q,qp

md. Therefore, p | mq +mqp.

Step 4. There is q ∈ πe(G) such that (q, p) = 1, mq = 2mu or mqp = 2mu. Moreover,
we have p | mq +mpq.
According to nse(G), there exists i ∈ πe(G) such that mi = 2mu. If (i, p) = 1, then
according to Step 3, we have p | mi +mip. So it is enough to assume q := i. If (i, p) 6= 1,
then since according to Step 2, exp(Gp) = p, we have i = qp, where (q, p) = 1 and
q ∈ πe(G) \ {1}. According to Step 3, we have p | mi +mip.
Step 5. mp 6= (t− 1)2mu.
If mp = (t− 1)2mu, then since p | 1 +mp, we have p | x3 − 3x2 + 2x+ 3. By using Step
4, we have the following five cases:
Case 1. If {mq,mqp} = {2mu, 3tu}, then p | mq +mqp and hence p | 2x + 1, which is
impossible according to Lemma 2.15(1).
Case 2. If {mq,mqp} = {2mu, 2mu}, then p | mq +mqp and hence p = 2 or u, which is
contradiction.
Case 3. If {mq,mqp} = {2mu, (t − 1)2mu}, then p | mq +mqp and hence p = 2 or t or
u, which is contradiction.
Case 4. If {mq,mqp} = {2mu, 1/2(t − 1)2mu}, then p | mq +mqp and hence p | x + 4.
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Thus Lemma 2.15(1) implies that p = 13. On the other hand, in this case q 6= 2 and
hence Step 3 implies that p | m2 + m2p. Thus p divides one of the numbers (2x + 1),
(x2+x+3), (x2+4x+6) or (x2−2). Lemma 2.15 now yields p ∈ {23, 43}, a contradiction.
Case 5. If {mq,mqp} = {2mu, 1/2(u−1)2m3t}, then p | mq+mqp and hence p | x2+x−4.
Thus Lemma 2.15(1) implies that p = 101. On the other hand, similar to Case 4,
p | m2 +m2p and hence p = 23 or 43, which is a contradiction.
Step 6. mp /∈ {1/2(t− 1)2mu, 1/2(u− 1)2m3t}.
Ifmp = 1/2(t−1)2mu ormp = 1/2(u−1)2m3t, then since p | 1+mp, we have p | x2−4x+6
or p | x2−2, respectively. In the former case, similar argument as stated in Step 5 leads us
to a contradiction. So, it is enough to consider the case p | x2−2 formp = 1/2(u−1)2m3t.
According to Step 4, we have the following five cases:
Case 1. If {mq,mqp} = {2mu, 3tu}, then p | mq + mqp and hence p | 2x + 1. Thus
Lemma 2.15(3) implies that p = 7. On the other hand, p | 2x + 1, hence Lemma 2.12
implies that 4 | (p− 1) = 6, which is contradiction.
Case 2. If {mq,mqp} = {2mu, 2mu}, then p | mq +mqp and hence p = 2 or u, which is
contradiction.
Case 3. If {mq,mqp} = {2mu, (t − 1)2mu}, then p | mq +mqp and hence p = 2 or t or
u, which is contradiction.
Case 4. If {mq,mqp} = {2mu, 1/2(t − 1)2mu}, then p | mq +mqp and hence p | x + 4.
Thus Lemma 2.15(3) implies that p = 7. On the other hand, p | 2x + 1, hence Lemma
2.12 implies that 4 | (p− 1) = 6, which is contradiction.
Case 5. If {mq,mqp} = {2mu, 1/2(u−1)2m3t}, then p | mq+mqp and hence p | x2+x−4.
Thus Lemma 2.15(3) implies a contradiction. 2

3.5. Lemma. If t ∈ π(G), then u ∈ π(G).

Proof. The proof will be divided into the following four steps.
Step 1. mt = 1/2(t− 1)2mu.
According to Lemma 3.1, we have mt 6= 1 and (mt, t) = 1 and hence mt 6= 3tu, 1/2(u−
1)2m3t. If mt = 2mu, then Lemma 3.1 implies that t | 1 + mt and hence x + 1 |
3x2− 3x+3 = (x+1)(3x− 6)+9. Thus x+1 | 9. So m = 3, which is a contradiction. If
mt = (t−1)2mu, then t | 1+mt and hence x+1 | x3−3x2+2x+3 = (x+1)(x2−4x+6)−3.
Thus x+ 1 | 3. So m = 1, which is a contradiction. Therefore, mt = 1/2(t− 1)2mu.
Step 2. t2 /∈ πe(G).
If t2 ∈ πe(G), then by (3.1), we have t(t − 1) = ϕ(t2) | mt2 . Hence Lemma 2.14 im-
plies that mt2 = 1/2(u − 1)2m3t. Since t2 | 1 +mt +mt2 , we conclude that (x + 1)2 |
(x+ 1)2(6x− 21) + 30(x+ 1). So (x+ 1) | 30, which is a contradiction.
Step 3. |Gt| = t and nt(G) = mt

ϕ(t)
= 1/2(2mu).

Since t2 /∈ πe(G), Lemma 2.2 implies that |Gt| | 1 + mt. If t2 | |Gt|, then 2(x + 1)2 |
(x + 1)2(3x − 15) + 33(x + 1). Thus (x + 1) | 33 which implies that m = 5, t = 11 and
nse(G) = {1, 992, 1023, 4960, 9920, 15840}. Since 2 ∈ π(G), there is the largest element
2 ≤ i of πe(G) such that (i, 11) = 1. By Step 2, 112 /∈ πe(G). Thus

∑
i|dmd = mi +m11i

or mi and hence Lemma 2.5 implies that 112 | |G11| | mi + m11i or mi. But accord-
ing to nse(G), we can get a contradiction. Therefore, |Gt| = t which implies that
nt(G) = mt

ϕ(t)
= 1/2(2mu).

Step 4. u ∈ π(G).
According to Step 3, since nt(G) = 1/2(2mu) and nt(G) | |G|, we conclude that u ∈ π(G).
2

3.6. Lemma. π(G) = {2, 3, t, u}.
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Proof. According to Lemmas 3.2-3.5, we can conclude that {2, u} ⊆ π(G) ⊆ {2, 3, t, u}.
In the following three steps, we show nu(G) = 2m−13t which completes the proof.
Step 1. mu = 1/2(u− 1)2m3t.
According to Lemma 3.1, we have mu 6= 1 and (mu, u) = 1 and hence, according to
nse(G), it is obvious that mu = 1/2(u− 1)2m3t.
Step 2. u2 /∈ πe(G).
If u2 ∈ πe(G), then by (3.1), u(u− 1) = ϕ(u2) | mu2 . But according to Lemma 2.14 and
nse(G) we can easily see that there is no choice for mu2 . Therefore, u2 /∈ πe(G).
Step 3. |Gu| = u.
Since u2 /∈ πe(G), Lemma 2.2 implies that |Gu| | 1 + mu. If u2 | 1 + mu, then
(x − 1)2 | (x − 1)2(x + 1) − (x − 1) which implies that (x − 1) | 1, a contradiction.
So |Gu| = u and nu(G) = mu

ϕ(u)
= 2m−13t. 2

3.7. Lemma. m3 = 2mu.

Proof. According to Lemma 3.1, we have m3 6= 1 and (m3, 3) = 1 and hence, m3 6=
3tu, 1/2(u − 1)2m3t. If m3 = 1/2(t − 1)2mu, then by (3.1), we have 3 | 1 +m3. Thus
18 | (x+ 1)(x2 − 4x+ 6). Lemma 2.14 now yields 3 | (x2 − 4x+ 6) and hence, 3 | (x− 4)
which implies that 3 | (2m−2 − 1). Thus according to Lemma 2.10, 3 | (2m − 1) = u,
which contradicts Lemma 2.14(c). Also, if m3 = (t − 1)2mu, then by (3.1), we have
3 | 1 +m3 and hence, 9 | 3 + (x− 2)x(x− 1). This implies that 3 | (x− 2)x(x− 1) and
9 - (x − 2)x(x − 1). Since according to Lemma 2.14(c), we have (2, 3) = (u, 3) = 1, so
3 | (x − 2) and 9 - (x − 2). Now we claim that 3t 6∈ πe(G). Indeed, if 3t ∈ πe(G), then
m3t = ϕ(3t)nt(G)k, where k is the number of cyclic subgroups of order 3 in CG(Gt).
Actually, this follows from the fact that all centralizers of Sylow t-subgroups of G in
G are conjugate in G. So we have (t − 1)2mu = ϕ(3t)nt(G) | m3t which implies that
m3t = (t− 1)2mu. Since by (3.1), 3t | 1 +m3 +mt +m3t and t | 1 +mt and m3 = m3t,
we conclude that t | (2m3) = (t− 1)2m+1u, which is a contradiction according to Lemma
2.14(c). Therefore, 3t 6∈ πe(G) which implies that G3 acts fixed point freely on the set of
elements of order t by conjugation. Lemma 2.6 now leads to |G3| | mt. Now, according
to Lemma 2.14(c), we conclude that |G3| | 1/3(x − 2). Since 3 | (x − 2) but 9 - (x − 2),
we conclude that |G3| = 1, which is a contradiction. 2

3.8. Lemma. 9 /∈ πe(G).

Proof. If 9 ∈ πe(G), then according to (3.1), we have 6 = ϕ(9) | m9 and by Lemma 2.14
and nse(G), we conclude that m9 ∈ {(t− 1)2mu, 1/2(t− 1)2mu, 1/2(u− 1)2m3t}. So we
have the following two cases:
Case 1. If m9 = 1/2(u−1)2m3t = 1/2(t−1)2m9t, then 9 | m9. On the other hand, (3.1)
implies that 9 | 1 +m3 +m9 and hence, 9 | 1 +m3, which contradicts Lemma 2.14(e).
Case 2. If m9 = (t − 1)2mu or 1/2(t − 1)2mu, then by (3.1), 9 | 1 +m3 +m9. Since
by Lemma 2.14(e), 3 | 1 +m3 and 9 - 1 +m3, we conclude that 3 | m9 and 9 - m9 and
hence 3 | (t − 1) and 9 - (t − 1). Lemma 2.4 yields G3 is a cyclic group of order 3k,
where k ≥ 2. Thus by (3.1), n3(G) =

m
3k

ϕ(3k)
=

m
3k

2(3k−1)
and also, from (3.1) and Lemma

2.14, we conclude that m3k ∈ {(t − 1)2m−19t, (t − 1)2m−1u, (t − 1)2mu}. Therefore,
n3(G) ∈ { (t−1)2m−29t

3k−1 , (t−1)2m−2u

3k−1 , (t−1)2m−1u

3k−1 }. Moreover, according to Lemma 2.14(d),
there is a prime p ∈ π(t − 1) \ {2, 3, t, u} which implies that p | n3(G). But since
n3(G) | |G|, we conclude that p ∈ π(G), a contradiction. 2

3.9. Lemma. |Gu| = u, |Gt| = t, |G2| | 2m, |G3| = 3 and hence, |G| = 2k3tu, where
k ≤ m.
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Proof. According to Lemmas 3.5 and 3.6, we have |Gu| = u and |Gt| = t. Since 9 /∈ πe(G),
Lemma 2.2 implies |G3| | 1 +m3 and hence, Lemma 2.14(e) leads to |G3| = 3. We know
that 2u 6∈ πe(G). Actually, this follows by the same method as in Lemma 3.7. Therefore,
G2 acts fixed point freely on the set of elements of order u by conjugation and Lemma
2.6 implies that |G2| | mu and hence, according to Lemma 2.14, we have |G2| | 2m. 2

3.10. Lemma. G is unsolvable.

Proof. If G is solvable, then by Lemma 2.7, G has a Hall π-subgroup H, where π =
{3, t, u} and all the Hall π-subgroups of G are conjugate and hence, |G : NG(H)| | 2m.
Since |H| = 3tu, we conclude that nu(H) ∈ {1, 3, t, 3t} and according to Sylow theorem,
we have nu(H) ≡ 1 (mod u) and hence Lemma 2.14 implies that nu(H) = 1. On the
other hand, we can easily see that

nu(G) | nu(H).|G : NG(H)|.|NG(H) : H| | 2m+k.

Also, since the Sylow u-subgroups of G are cyclic, we havemu = (u−1).nu(G) and hence,
mu | 2m+k(u− 1), but according to Lemma 3.6, Step 1, we have mu = 1/2(u− 1)2m3t,
which is a contradiction. 2

3.11. Lemma. G ∼= L2(2
m).

Proof. Since G is a finite unsolvable group, according to Lemma 2.8, there is a normal
series 1�N �M �G, such that N is a normal solvable subgroup of G and M/N is an
unsolvable simple group or the direct product of isomorphic unsolvable simple groups.
Let M/N ∼= S1 × . . . × Sr, where S1 is an unsolvable simple group and S1

∼= . . . ∼= Sr.
According to |G| = 2k.3.t.u, where k ≤ m and the structure of M/N , we can easily
conclude that r = 1 and M/N is a simple K3-group or a simple K4-group.
Case 1. IfM/N is a simple K3-group, then according to Lemma 2.1, we have π(M/N)∩
{5, 7, 13, 17} 6= ∅. But since π(M/N) ⊆ π(G) and |G| = 2k.3.t.u, where k ≤ m, we can
get a contradiction.
Case 2. If M/N is a simple K4-group, then by Lemma 2.1, M/N is isomorphic to one
of the following groups:
• If M/N ∼= A7, A8, A9, A10, M11, M12, J2, L2(81), L2(243), L2(577),
L3(4), L3(7), L3(8), L3(17), L4(3), S4(4), S4(5), S4(7), S4(9), S6(2),
O+

8 (2), G2(3), U3(5), U3(8), U3(9), U4(3), U5(2),
3D4(2),

2F4(2)
′ or L2(3

m), where m,
(3m − 1)/2 and (3m + 1)/4 are odd primes, then 32 | |M/N |, a contradiction.
• If M/N ∼= L2(25), L2(49), L3(5), U3(4), Sz(32), then 52 | |M/N |, a contradiction.
• If M/N ∼= L2(97), U3(7), then 72 | |M/N |, a contradiction.
• If M/N ∼= Sz(8), then 3 - |M/N |, a contradiction.
• If M/N ∼= L2(16), then t = 5, a contradiction.
• If M/N ∼= L2(r), where r is a prime, r2 − 1 = 2a.3b.v, v > 3 is a prime, a, b ∈ N, then
|M/N | = |L2(r)| = 1

(r−1,2)
r(r2 − 1) = 1

(r−1,2)
r.2a.3b.v and hence, π(M/N) = {2, 3, r, v}.

Since π(M/N) ⊆ π(G), we have v = t, r = u or v = u, r = t. But since v is a prime
number which divides r2 − 1, according to Lemma 2.14(a-b) we can get a contradiction.
• If M/N ∼= L2(2

m′), where m′ satisfies{
2m
′
− 1 = u′

2m
′
+ 1 = 3t′

with m′ ≥ 2, u′, t′ are primes, t′ > 3, then |M/N | = 2m
′
.3.t′.u′. Since |M/N | | |G| and

|G| = 2k.3.t.u, where k ≤ m, we conclude that m′ ≤ m and t′ = t or u. If t′ = u, then
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2m
′
+1

3
= 2m − 1. Thus 2m

′
(3.2m−m′ − 1) = 4, which is a contradiction . So we conclude

t′ = t and this implies that m = m′ and u′ = u. Therefore, M/N ∼= L2(2
m), where m

satisfies {
2m − 1 = u

2m + 1 = 3t

with m ≥ 2, u, t are primes, t > 3.

Since 2m.3tu = |M/N | | |G| = 2k.3.t.u, where k ≤ m, we conclude that N = 1 and
M = G = L2(2

m). 2

According to the main theorem, we pose the following problem:

Problem: Is a groupG isomorphic to L2(2
m)(m ≥ 2) if and only if nse(G) = nse(L2(2

m))?
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In this paper we study some maps which are skew-commuting on rings.
Also we present some results concerning derivations in generalized case.
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1. Introductions and Preliminaries
Throughout this paper, R be a ring with center Z(R). For an integer n > 1, a ring

R is called n-torsion free if nx = 0, (x ∈ R) implies x = 0. As usual we write [x, y] for
xy − yx and use the identities [xy, z] = x[y, z] + [x, z]y and [x, yz] = y[x, z] + [x, y]z for
x, y, z ∈ R. Recall that a ring R is prime if xRy = {0} implies x = 0 or y = 0 and is
semiprime if xRx = {0} implies x = 0. An additive mapping d from R into itself is called
a derivation if d(xy) = d(x)y + xd(y) for all x, y ∈ R. An additive mapping f : R → R
is said to be a generalized derivation if there exists a derivation d : R → R such that
f(xy) = f(x)y + xd(y) for all x, y ∈ R. A mapping f : R→ R is called skew-commuting
on R if f(x)x+ xf(x) = 0 and is called commuting on R if [f(x), x] = 0 for all x ∈ R.
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2. Main Results
We shall make use of the following results.

2.1. Theorem. [2] Let R be a 2-torsion free semiprime ring. If an additive mapping
f : R→ R is skew-commuting on R, then f = 0.

2.2. Theorem. [3] Let R be a semiprime ring, I a nonzero ideal of R and F a nonzero
generalized derivation of R associated with a derivation D. If F (xy) = F (x)F (y) for all
x, y ∈ R, then D(I) = 0.

2.3. Lemma. [5] Let R be a semiprime ring. Suppose that the relation axb + bxc = 0
holds for all x ∈ R and some a, b, c ∈ R. In this case, (a + c)xb = 0 is satisfied for all
x ∈ R.

2.4. Lemma. [6] Let R be a semiprime ring and D be a derivation on R. If D(x)D(y) =
0 for all x, y ∈ R, then D = 0.

2.5. Theorem. Let R be a 2-torsion free semiprime ring, D be a derivation and α be
a homomorphism on R. Suppose that the mapping x 7→ (D(x) + (α(x) − x)) is skew-
commuting on R. In this case α = I and D = 0.

Proof. Put G(x) = α(x)−x. By Theorem 2.1, we have D = −G. Therefore D(x)D(y) =
0 for all x, y ∈ R. Hence D = 0 by Lemma 2.4. So we get α = I. �

2.6. Theorem. Let R be a nonzero 2-torsion free semiprime ring, D be a derivation
and α be a homomorphism on R. Suppose that the mapping x 7→ D(x) + α(x) is skew-
commuting on R. In this case α = D = 0.

Proof. The result follows by Theorems 2.1 and 2.2. �

In [4] Vukman proved that on a 2-torsion free semiprime ring R, if the mapping
x 7→ D(x)x + xα(x) is commuting on R, then D and α − I map R into Z(R). The
next theorem is a version of this result in case of skew-commuting map. We will use the
following lemmas in the proofs of next theorems.

2.7. Lemma. [4] Let R be a semiprime ring and let f : R→ R be an additive mapping.
If either f(x)x = 0 or xf(x) = 0 holds for all x ∈ R, then f = 0.

2.8. Lemma. [4] Let R be a 2-torsion free semiprime ring and α : R → R be an
automorphism such that x[α(x), x] = 0 or [α(x), x]x = 0 for all x ∈ R. Then α− I maps
R into Z(R).

2.9. Lemma. [1] Let R be a prime ring and let F : R→ R be an additive map. If there
exists a positive integer n such that F (x)xn = 0 for all x ∈ R, then F = 0.

2.10. Theorem. Let R ba a 2 and 3-torsion free semiprime ring. Suppose that D is
a derivation and α : R → R is an onto homomorphism such that the mapping x 7→
D(x)x+ xα(x) is skew-commuting on R. In this case α− I maps R into Z(R).

Proof. The assumption of the theorem can be written in the form

(D(x)x+ xα(x))x+ x(D(x)x+ xα(x)) = 0, x ∈ R.(2.1)

Using the linearization of (2.1), a routine calculation gives

A(x)y +D(x)yx+D(y)x2 + xα(y)x+ yα(x)x+ xα(x)y + xD(y)x

+ x2α(y) + xyα(x) + yD(x)x+ yxα(x) = 0, x, y ∈ R,
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where A(x) = D(x)x+ xD(x). Replacing y by yx in the above relation, we get

A(x)yx+D(x)yx2 +D(y)x3 + yD(x)x2 + xα(y)α(x)x+ yxα(x)x+ xα(x)yx

+ xD(y)x2 + xyD(x)x+ x2α(y)α(x) + xyxα(x) + yxD(x)x+ yx2α(x) = 0.

It follows from the above relations that

(xy + yx)D(x)x+ x2α(y)G(x) + xα(y)G(x)x+ xy[x, α(x)](2.2)

+ yx[x, α(x)] + y[x, α(x)]x = 0, x, y ∈ R,

where G(x) = α(x)− x. Replacing y by xy in (2.2), we get

(2.3)
x(xy + yx)D(x)x+ x2α(x)α(y)G(x) + xα(x)α(y)G(x)x

+ x2y[x, α(x)] + xyx[x, α(x)] + xy[x, α(x)]x = 0.

Multiplying the left side of (2.2) by x and then subtracting the obtained relation from
(2.3), we obtain

x2G(x)α(y)G(x) + xG(x)α(y)G(x)x = 0, x, y ∈ R.
Since α is onto, therefore

x2G(x)yG(x) + xG(x)yG(x)x = 0, x, y ∈ R.
Hence

x2G(x)yxG(x) + xG(x)yxG(x)x = 0, x, y ∈ R.
By Lemma 2.3, we have

(2.4) (x2G(x) + xG(x)x)yxG(x) = 0, x, y ∈ R.
Replacing y by yx in (2.4), we get

(x2G(x) + xG(x)x)yx2G(x) = 0, x, y ∈ R.(2.5)

It follows from (2.4) and (2.5) that

(x2G(x) + xG(x)x)y(x2G(x) + xG(x)x) = 0, x, y ∈ R.
Since R is semiprime, this implies

x(xG(x) +G(x)x) = 0, x ∈ R.(2.6)

Using the linearization of (2.6), a routine calculation gives

x(xG(y) + yG(x) +G(x)y +G(y)x) + y(xG(x) +G(x)x) = 0.(2.7)

Replacing y by xy in (2.7), we obtain

(2.8)
x(xG(xy) + xyG(x) +G(x)xy +G(xy)x)

+ xy(xG(x) +G(x)x) = 0, x, y ∈ R.

Multiplying the left side of (2.7) by x and then subtracting the obtained relation from
(2.8), we get

x[α(x), x]y + x2G(x)α(y) + xG(x)α(y)x = 0, x, y ∈ R.

Using (2.6), we get

x[α(x), x]y + xG(x)[α(y), x] = 0, x, y ∈ R.(2.9)

Replacing y by yz in (2.9), we obtain

0 = x[α(x), x]yz + xG(x)α(y)[α(z), x] + xG(x)[α(y), x]α(z)

= −xG(x)[α(y), x]z + xG(x)α(y)[α(z), x] + xG(x)[α(y), x]α(z)

= xG(x)[α(y), x]G(z) + xG(x)α(y)[α(z), x], x, y, z ∈ R.
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Since α is onto, we have

xG(x)[y, x]G(z) + xG(x)y[α(z), x] = 0, x, y, z ∈ R.

Putting y = x in the above relation, we infer xG(x)x[z, x] = 0 for all x, z ∈ R. If we
replace z by zy, then xG(x)xz[y, x] = 0 for all x, y, z ∈ R. Putting y = G(x), we have

(2.10) xG(x)xz[G(x), x] = 0, x, z ∈ R.

Replacing z by xz in (2.10), we get xG(x)x2z[G(x), x] = 0 for all x, z ∈ R. On the other
hand (2.10) gives x2G(x)xz[G(x), x] = 0. Subtracting these two recent relations, we
obtain

x[G(x), x]xz[G(x), x] = 0, x, z ∈ R.

Hence x[G(x), x]x = 0 by semiprimeness of R. According to (2.6), we get x2G(x)x = 0
for all x ∈ R. Therefore x2[G(x), x] = 0 for all x ∈ R. The linearization with a simple
calculation leads to

x2[G(y), y] + (xy + yx)([G(x), y] + [G(y), x]) + y2[G(x), x] = 0, x, y ∈ R.

Replacing y by x+ y in the above relation, we get

(2.11) x2([G(x), y] + [G(y), x]) + (xy + yx)[G(x), x] = 0, x, y ∈ R.

Left multiplication (2.11) by x[G(x), x] and using x[G(x), x]x = 0, we get

x[G(x), x]yx[G(x), x] = 0, x, y ∈ R.

Since R is semiprime, x[G(x), x] = 0 for all x ∈ R. So x[α(x), x] = 0 for all x ∈ R.
Therefore α− I maps R into Z(R) by Lemma 2.8. �

2.11. Theorem. Let R ba a 2 and 3-torsion free prime ring. Suppose that D is a
derivation and α : R→ R is an onto homomorphism such that the mapping x 7→ D(x)x+
xα(x) is skew-commuting on R. The only case for R is R = {0}.

Proof. By Theorem 2.10 we obtain that α− I maps R into Z(R). So relation (2.6) gives
us G(x)x2 = 0. Hence α = I by Lemma 2.9. Therefore (2.1) and (2.2) give

D(x)x2 + xD(x)x = −2x3, x2D(x)x = 0, x ∈ R.(2.12)

Hence we have

D(x3)− x2D(x) = −2x3, x ∈ R.(2.13)

It follows from (2.12) that

xD(x)x2 = −2x4, x ∈ R.(2.14)

Right multiplication of (2.12) by x and then using (2.14), we get D(x)x3 = 0. Hence
D = 0 by Lemma 2.9. So (2.14) implies x4 = 0 for all x ∈ R. So we get R = {0} by
Lemma 2.9. �

Vukman [4] proved the result below.

2.12. Theorem. [4] Let R be a 2-torsion free semiprime ring and D : R → R be a
derivation such that x[D(x), x] = 0 or [D(x), x]x = 0 for all x ∈ R. Then D maps R into
Z(R).

In the following theorem we generalize this result.

2.13. Theorem. Let R be a 2-torsion free semiprime ring and F be a generalized deriva-
tion associated with a derivation D on R. Also let [F (x), x]x = 0 for all x ∈ R. In this
case D maps R into Z(R).
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Proof. The linearization of [F (x), x]x = 0 gives

[F (x), y]x+ [F (y), x]x+ [F (x), x]y = 0, x, y ∈ R.(2.15)

Replacing y by yx in (2.15), we get

[F (x), y]x2 + [F (y), x]x2 + y[D(x), x]x+ [y, x]D(x)x+ [F (x), x]yx = 0.

Right multiplication of (2.15) by x and subtracting the obtained relation from the above
relation, gives

y[D(x), x]x+ [y, x]D(x)x = 0, x, y ∈ R.(2.16)

Replacing y by D(x)y in (2.16), we have

D(x)y[D(x), x]x+D(x)[y, x]D(x)x+ [D(x), x]yD(x)x = 0, x, y ∈ R.

Using (2.16), we infer [D(x), x]yD(x)x = 0. Hence (2.16) implies that [D(x), x]xy[D(x), x]x =
0 for all x, y ∈ R. Since R is semiprime, [D(x), x]x = 0 for all x ∈ R. Therefore D maps
R into Z(R) by Theorem 2.12. �

2.14. Theorem. Let R be a 2-torsion free semiprime ring and let D and G be two
derivations on R. Suppose that (D(x)x+ xG(x))x = 0 for all x ∈ R. In this case D and
G map R into Z(R).

Proof. A routine calculation shows that

(2.17) D(x)yx+D(y)x2 + xG(y)x+ yG(x)x+D(x)xy + xG(x)y = 0.

Let y be yx in (2.17). Then

D(x)yx2 +D(y)x3 + yD(x)x2 + xG(y)x2

+ xyG(x)x+ yxG(x)x+D(x)xyx+ xG(x)yx = 0, x, y ∈ R.

Multiplying (2.17) from the right by x and then subtracting the obtained relation from
the above relation, we get

y(D(x)x2 + xG(x)x) + xyG(x)x− yG(x)x2 = 0, x, y ∈ R.
Hence by the assumption, we get

xyG(x)x− yG(x)x2 = 0, x, y ∈ R.

Replacing y by G(x)xy, we get

xG(x)xyG(x)x+G(x)xy(−G(x)x2) = 0, x, y ∈ R.
By Lemma 2.3 we get

[G(x), x]xyG(x)x = 0, x, y ∈ R.(2.18)

If we replace y by yx in (2.18), then

[G(x), x]xyxG(x)x = 0, x, y ∈ R.

Multiplying (2.18) from the right by x and subtracting the obtained relation from the
above relation, we obtain

[G(x), x]xy[G(x), x]x = 0, x, y ∈ R.

Since R is semiprime, [G(x), x]x = 0 for all x ∈ R. Hence G maps R into Z(R) by
Theorem 2.12. Also using same argument shows that D maps R into Z(R). �

2.15. Theorem. Let R be a 2-torsion free prime ring and let D and G be two derivations
on R. Suppose that (D(x)x+ xG(x))x = 0 for all x ∈ R. In this case D = −G and R is
commutative, unless D = G = 0.
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Proof. By Theorem 2.14 we get that G maps R into Z(R). So by the assumption, we
obtain (D + G)(x)x2 = 0 for all x ∈ R. Therefore D + G = 0 by Lemma 2.9, and we
conclude that D maps R into Z(R). �

Our last result generalizes a result of [4].

2.16. Theorem. Let R be a semiprime ring, F be a generalized derivation associated with
a derivation D on R and α : R→ R be an onto homomorphism. If F (x)x+x(α(x)−x) = 0
holds for all x ∈ R, then α = I and F = D = 0.

Proof. The linearization of F (x)x+ x(α(x)− x) = 0 gives

(2.19) F (x)y + F (y)x+ xG(y) + yG(x) = 0,

where G(x) = α(x)− x. Substituting yx for y in (2.19), we have

0 = F (x)yx+ F (y)x2 + yD(x)x+ xα(y)α(x)− xyx+ yxG(x)

= (F (x)y + F (y)x− xy)x+ yD(x)x+ xα(y)α(x) + yxG(x)

= −xα(y)x− yG(x)x+ yD(x)x+ xα(y)α(x) + yxG(x).

Therefore

xα(y)G(x) + y[x,G(x)] + yD(x)x = 0, x, y ∈ R.(2.20)

Replacing y by xy in (2.20), we get

xα(x)α(y)G(x) + xy[x,G(x)] + xyD(x)x = 0, x, y ∈ R.

Multiplying (2.20) from the left by x and subtracting the obtained relation from the
above relation, we get

xG(x)α(y)G(x) = 0, x, y ∈ R.

Since α is onto, xG(x)yG(x) = 0 for all x, y ∈ R. Hence xG(x)yxG(x) = 0 for all
x, y ∈ R. Since R is semiprime, xG(x) = 0 for all x ∈ R. By Lemma 2.7 we get G = 0,
which implies that α = I. Now by (2.19) we have F (x)x = 0 for all x ∈ R. Hence F = 0
by Lemma 2.7. On the other hand, we have F (xy) = F (x)y+ xD(y) for all x, y ∈ R. So
xD(y) = 0 for all x, y ∈ R. Since R is semiprime, we infer D = 0. �
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The notion of autoisoclinism was first introduced by Moghaddam et.
al., in 2013. In this article we derive more properties of autoisoclinism
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1. Introduction
If G is a finite group then the commutativity degree d(G) of G is defined as

d(G) =
1

|G|2 |{(x, y) ∈ G×G|[x, y] = 1}| ,

which is the probability that two randomly chosen elements of G commute, where [x, y] =
x−1y−1xy. The commutative degree first studied by Gustafson in 1973, where he showed
that d(G) ≤ 5

8
for every non-abelian finite group G. The equality holds when G/Z(G) '

Z2×Z2. In 1995, Lescot investigated this concept by considering the notion of isoclinism
of groups. Whence he obtained certain results in this regard. In 2007, Erfanian et. al.,
introduced the concept of relative commutativity degree d(H,G) of a subgroup H in a
given group G as

d(H,G) =
1

|H||G| |{(x, y) ∈ H ×G|[x, y] = 1}| ,
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which is the probability that an arbitrary element of H commutes with an element of G.
In this article, we introduce the autocommutativity degree and the relative autocommu-
tativity degree of a subgroup H of G, denoted by daut(G) and daut(H,G), respectively,
which are defined as follows:

daut(G) =
1

|G||Aut(G)| |{(x, α) ∈ G×Aut(G)|[x, α] = 1}| ,

and

daut(H,G) =
1

|H||Aut(G)| |{(x, α) ∈ H ×Aut(G)|[x, α] = 1}| ,

where [x, α] = x−1xα. Clearly, daut(G) = 1 if and only if Aut(G) = {1}, that is, if and
only if |G| ≤ 2.
In Hegarty [5], the characteristic subgroups K(G) and L(G) of G are defined as follows:

K(G) = 〈 [x, α] | x ∈ G,α ∈ Aut(G) 〉 ,

and

L(G) = { x | [x, α] = 1, ∀α ∈ Aut(G) },

which are called autocommutator subgroup and absolute centre of G, respectively. One
can easily check that K(G) contains the derived subgruop G′ of G and L(G) is contained
in the centre, Z(G), of G.

2. Results on the relative autocommutativity degree
Let G be a group, and α be an automorphism of G. The subgroup CG(α) of G is

defined by

CG(α) = { x ∈ G | [x, α] = 1 }.

The following lemma gives an upper bound for daut(G), which is similar to Lemma
1.3 of [6].

2.1. Lemma. Let G be a finite nontrivial group. If p is the smallest prime divisor of
|G|, then daut(G) ≤ p−1

p|Aut(G)| + 1
p
.

Proof. Let p be the smallest prime divisor of |G|. Then |CG(α)| ≤ |G|/p for α 6= 1 which
α ∈ Aut(G) and hence

|G||Aut(G)|daut(G) =
∑
α∈Aut(G) |CG(α)|

=
∑
α=1 |CG(α)|+

∑
α∈Aut(G)\{1} |CG(α)|

= |G|+ |CG(α)|(|Aut(G)| − 1)

≤ |G|+ |G|
p

(|Aut(G)| − 1)

=
|G|
p

((p− 1) + |Aut(G)|) .

Therefore

daut(G) ≤ p− 1

p|Aut(G)| +
1

p
.

�
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2.2. Example. Consider the Klein four-group,

V4 =
〈
a, b | a2 = b2 = (ab)2 = 1

〉
.

It is easy to see that |Aut(V4)| = 6. Thus

daut(V4) =
|{(1, α)|α(1) = 1}|+ 3|{(b, α)|α(b) = b}|

|V4||Aut(V4)|

=
6 + 6

24
=

1

2
<

7

12
,

(α ∈ Aut(V4)) which satisfies Lemma 2.1.

The following theorem is a generalization of Lemma 2.1 of [1]. Moreover its first part
implies Lemma 2.2, Proposition 2.1 and Theorem 2.2 of [8].

2.3. Theorem. Let G be a finite group and H ≤ K ≤ G. Then daut(K,G) ≤ daut(H,G),
and equality holds if and only if K = HCK(α) for all α ∈ Aut(G).

Proof. Put A = {h ∈ H|hα = h} and B = {k ∈ K|kα = k}. Clearly the map
{hA|h ∈ H} → {kB|k ∈ K}, with hA 7→ hB is one-to-one. So we have |H|

|{ h | hα=h }| ≤
|K|

|{ k | kα=k }| , that is
|CK(α)|
|K| ≤ |CH (α)|

|H| for each α ∈ Aut(G). Hence

daut(K,G) =
1

|Aut(G)|
∑

α∈Aut(G)

|CK(α)|
|K|

≤ 1

|Aut(G)|
∑

α∈Aut(G)

|CH(α)|
|H|

= daut(H,G).

Also daut(K,G) = daut(H,G) if and only if |CK(α)|
|K| = |CH (α)|

|H| for all α ∈ Aut(G), which
is equivalent to K = HCK(α) for all α ∈ Aut(G). �

Clearly for any subgroup H ≤ G, we have daut(G) ≤ daut(H,G). For example, in the
Klein four-group we have daut(V4) = 1

2
≤ 2

3
= daut(< a >, V4).

2.4. Definition. Two groups G and H are autoisoclinic, (written G ∼aut H), if there
exists isomorphisms α, β and γ, as follows:

α :
G

L(G)
−→ H

L(H)

β : K(G) −→ K(H)

γ : Aut(G) −→ Aut(H),

where α induces β in following sense: if g ∈ G, h ∈ α(gL(G)) and if ϕH = γ(ϕG) , then
β([g, ϕG]) = [h, ϕH ].
The pair (α× γ, β) is called an autoisoclinism between G and H, see also [7] (and [6] for
isoclinism).

Let (α× γ, β) be an autoisoclinism between the groups G and H, then the following
diagram is commutative:
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G

L(G)
×Aut(G) - H

L(H)
×Aut(H)

K(G) - K(H)

? ?

α× γ

β

Next, we present the following lemma which is similar to Lemma 2.4 of [6].

2.5. Lemma. Let G and H be two autoisoclinic finite groups, then daut(G) = daut(H).

Proof. Let pair (α× γ, β) be an autoisoclinism from G to H, then one has

| G

L(G)
||Aut(G)|daut(G) =

1

|L(G)| |G||Aut(G)|daut(G)

=
1

|L(G)| |{(g, ϕG) ∈ G×Aut(G)| [g, ϕG] = 1 }|

= |{(gL(G), ϕG) ∈ G

L(G)
×Aut(G)| β([g, ϕG]) = 1 }|

= |{(hL(H), ϕH) ∈ H

L(H)
×Aut(H)| [h, ϕH ] = 1 }|

=
1

|L(H)| |{(h, ϕH) ∈ H ×Aut(H)| [h, ϕH ] = 1 }|

=
1

|L(H)| |H||Aut(H)|daut(H)

= | H

L(H)
||Aut(H)|daut(H).

But G
L(G)

and H
L(H)

are isomorphic, so | G
L(G)
| = | H

L(H)
|. From the fact that Aut(G)

and Aut(H) are isomorphic, we conclude |Aut(G)| = |Aut(H)|, from which the equality
daut(G) = daut(H) follows. �

3. Results on autoisoclinism
We begin this section by establishing some elementary lemmas which will be used to

derive the results on autoisoclinism (see also [2, 6]). Now, we present the following lemma
which is similar to Lemma 2.6 of [6].

3.1. Lemma. Let S be a characteristically simple group of order more than two, then
any group G autoisoclinic to S is isomorphic to S × L(G).

Proof. By order of S we have K(S) 6=< 1 > and L(S) 6= S. Suppose G ∼aut S. Hence
K(G) ' K(S). Since S is a characteristically simple group, then K(S) = S ' K(G).
Thus K(G) ∩ L(G) ⊆ L(K(G)) = {1}. On the other hand G

L(G)
' S

L(S)
' S because

G ∼aut S and S is a characteristically simple group. Hence

K(
G

L(G)
) ' K(S) = S ' G

L(G)

⇒ L(G)K(G)

L(G)
= K(

G

L(G)
) =

G

L(G)

⇒ G = K(G)L(G) = K(G)× L(G) ' S × L(G).

�
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3.2. Lemma. Let H be a finite subgroup of G, where H and G are autoisoclinic, then
G = HL(G).

Proof. If H is finite group autoisoclinic to G, then G
L(G)

' H
L(H)

is also finite. But

| G

L(G)
| ≥ |HL(G)

L(G)
|

= | H

H ∩ L(G)
|

= | H

L(H)
|| L(H)

H ∩ L(H)
|

≥ | H

L(H)
|

= | G

L(G)
|.

This implies that G = HL(G). �

3.3. Lemma. Let H be a characteristic subgroup of finite group G, and G = HL(G)
such that Aut(H) ' Aut(G). Then G and H are autoisoclinic.

Proof. If H is a characteristic subgroup of G, then H ∩ L(G) ⊆ L(H). Also L(H) '
H ∩ L(G) because Aut(H) ' Aut(G), and

H

L(H)
=

H

L(G) ∩H

' HL(G)

L(G)

=
G

L(G)
,

the isomorphism i1 : H/L(H) −→ G/L(G) being induced by the inclusion i : H −→ G.
Furthermore, let g ∈ G, α ∈ Aut(G), then g = lh for some l ∈ L(G) and h ∈ H. Hence
[g, α] = [lh, α] = (lh)−1(lh)α = h−1l−1lαhα = h−1hα = [h, α] ∈ K(H), On the other
hand K(H) ' 〈[h, α] | h ∈ H,α ∈ Aut(G)〉 ⊆ K(G), and so K(G) = K(H). This argu-
ment shows that (i1 × 1Aut(G), 1K(G)) is an autoisoclinism from H to G. �

3.4. Theorem. Let G be a finite group such that G = HL(G) where H is a characteristic
subgroup of G with Aut(H) ' Aut(G). Then daut(G) = daut(H).

Proof. It follows from Lemma 2.5 and Lemma 3.3 . �

The following lemma is similar to Lemma 1.3 of [2], will be used in the next theorem.

3.5. Lemma. Let G be a group with characteristic subgroup N. Then
G/N ∼aut G/(N ∩K(G)). In particular, if N ∩K(G) = {1} , then G ∼aut G/N .
Conversely, if |K(G)| <∞ and G ∼aut G/N , then N ∩K(G) = {1}.

Proof. We set Ḡ = G/N and Ĝ = G/(N ∩K(G)). For any k1, k2 ∈ K(G), k̄1 = k̄2 ⇔
k̂1 = k̂2. For g ∈ G and ϕ ∈ Aut(G), we have therefore, [ḡ, ϕ̄] = 1̄ ⇔ [ĝ, ϕ̂] = 1̂(because
N is characteristic subgroup of G), where ϕ̄ : gN → ϕ(g)N and ϕ̂ : g(N ∩ K(G)) →
ϕ(g)(N ∩K(G)). This implies that ḡ ∈ L(Ḡ) if and only if ĝ ∈ L(Ĝ). Let α(ḡL(Ḡ)) =

ĝL(Ĝ). Then α is an isomorphism of Ḡ/L(Ḡ) onto Ĝ/L(Ĝ). If γ(ϕ̄Ḡ) = ϕ̂Ĝ, then γ is
an isomorphism of Aut(Ḡ) onto Aut(Ĝ). Let k ∈ K(G) and denote β(k̄) = k̂. Then β

defines an isomorphism of K(Ḡ) onto K(Ĝ) and β is induced by α in Definition 2.4 .
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Conversely, if N E G and G ∼aut G/N , then

K(G) ' K(G/N) = K(G)N/N ' K(G)/(N ∩K(G)).

Thus, if |K(G)| <∞, then N ∩K(G) = {1}. �

The following theorem follows from the above lemma and is similar to Theorem 1.4
of [2].

3.6. Theorem. Let G and H be finite groups. Then G and H are autoisoclinic if and
only if there exists finite groups C, LG, LH , CG and CH such that G ' C/LH and
H ' C/LG and the following two (equivalent) properties hold:

(i) G ' C/LH ∼aut C ∼aut C/LG ' H,
(ii) C/LH × C/K(C) ∼aut CH ' C ' CG ∼aut C/LG × C/K(C), where CH and

CG are subgroups of C/LH × C/K(C) and C/LG × C/K(C) respectively.

Proof. One part of the theorem is trivial. Assume that G ∼aut H, and let β be the
isomorphism between K(G) and K(H) given in Definition 2.4. Finally, let C be the
direct product of G and H with identified factor groups G/L(G) and H/L(H). If

LH = {(1, l) | l ∈ L(H) } and LG = {(l, 1) | l ∈ L(G) },

then we have C/LH ' G and C/LG ' H, where LH ' L(H) and LG ' L(G).

(i) It follows from Definition 2.4 that K(C) is generated by elements of the form

([g, ϕG], β([g, ϕG]))

where g ∈ G,ϕG ∈ Aut(G). We claim that

K(C) ∩ LG = K(C) ∩ LH = 1.

For, if (1, l) = (g, h) ∈ K(C), then h = β(g) = 1. Similarly for K(C) ∩ LG. By
Lemma 3.5 we therefore have

C/LH ∼aut C ∼aut C/LG.

(ii) Let
CG = {(cLG, cK(C) | c ∈ C}.

CG is a group, isomorphic to C, since K(C) ∩ LG = {1}. Moreover, it follows
from Lemma 3.3 that CG ∼aut C/LG × C/K(C). Now we have the equality

CGL(C/LG × C/K(C)) = C/LG × C/K(C).

To see this, let x = (c1LG, c2K(C)) be an element of the direct product of
the groups C/LG and C/K(C). Then x = yl, where y = (c1LG, c1K(C)) ∈
CG, and l = (LG, c1

−1c2K(C)). Since C/K(C) is an autoabelian group, then
L(C/K(C)) = C/K(C) and LG is identity of C/LG. It follows that l ∈
L(C/LG × C/K(C)).
Similarly

C ' CH ∼aut C/LH × C/K(C).

�
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Abstract
If S is a numerical semigroup with embedding dimension equal to three
whose minimal generators are pairwise relatively prime numbers, then
S = 〈a, b, cb − da〉 with a, b, c, d positive integers such that gcd(a, b) =
gcd(a, c) = gcd(b, d) = 1, c ∈ {2, . . . , a−1}, and a < b < cb−da. In this
paper we give formulas, in terms of a, b, c, d, for the genus, the Frobenius
number, and the set of pseudo-Frobenius numbers of 〈a, b, cb − da〉 in
the case in which the interval

[
a
c
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1. Introduction
Let Z and N be the set of integers and the set of nonnegative integers, respectively. A

numerical semigroup is a subset S of N such that it is closed under addition, 0 ∈ S, and
N \ S is finite. The elements of N \ S are the gaps of S, and the cardinality of such set is
called the genus of S, denoted by g(S). The Frobenius number of S is the largest integer
that does not belong to S and it is denoted by F(S).

If A ⊆ N is a nonempty set, we denote by 〈A〉 the submonoid of (N,+) generated by
A, that is,

〈A〉 = {λ1a1 + . . .+ λnan | n ∈ N \ {0}, a1, . . . , an ∈ A, and λ1, . . . , λn ∈ N}.
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In [16] it is proved that 〈A〉 is a numerical semigroup if and only if gcd(A) = 1, where
gcd means greatest common divisor.

It is well known (see [16]) that every numerical semigroup S is finitely generated, that
is, there exists a finite subset G ⊆ S such that S = 〈G〉. In addition, if no proper subset
of G generates S, then we say that G is a minimal system of generators of S. In [16] it is
proved that every numerical semigroup admits a unique minimal system of generators.
The cardinality of such a set is known as the embedding dimension of S, denoted by e(S).

The Frobenius problem (see [8]) consists of finding formulas that allow us to compute,
in terms of the minimal system of generators of a numerical semigroup, the Frobenius
number and the genus of such a numerical semigroup. This problem was solved by
Sylvester and Curran Sharp (see [18, 19, 20]) when the embedding dimension is equal to
two. In fact, if S is a numerical semigroup with minimal system of generators {n1, n2},
then F(S) = n1n2 − n1 − n2 and g(S) = (n1−1)(n2−1)

2
.

At present, the Frobenius problem is open for the case of embedding dimension equal
to three. To be precise, Curtis proved in [2] that it is impossible to find a polynomial
formula that solves the problem of Frobenius number. On the other hand, algorithms
that compute Frobenius number, quasi-formulas, and upper bounds for such number are
the topic of several contributions (see [4, 8, 9, 11, 12]). In addition, the authors showed
in [10] that, if the multiplicity of S is fixed, then it is possible to give explicit formulas
for the Frobenius number. In this paper, our purpose is to give simple formulas in a
particular but extensive case (in the line of [7] and some results collected in [8]).

If {n1, n2, n3} is the minimal system of generators of a numerical semigroup S and
d = gcd(n1, n2), then we have (see [6, 11]) that F(S) = dF

(
〈n1
d
, n2
d
, n3〉

)
+ (d − 1)n3

and g(S) = d g
(
〈n1
d
, n2
d
, n3〉

)
+ (d−1)(n3−1)

2
. Therefore, in order to solve the Frobenius

problem for numerical semigroups with embedding dimension equal to three, we focus our
attention on numerical semigroups whose three minimal generators are pairwise relatively
prime numbers.

If S is a numerical semigroup and m ∈ S \{0}, then the Apéry set of m in S (see [1]) is
Ap(S,m) = {s ∈ S | s−m 6∈ S}. Obviously, Ap(S,m) = {w(0) = 0, w(1), . . . , w(m−1)},
where w(i) is the least element of S congruent with i modulom, for all i ∈ {0, . . . ,m−1}.
It is clear that F(S) = max{Ap(S,m)}−m, and a formula for g(S) in terms of Ap(S,m)
is given in [17] (see Lemma 3.1).

Following the notation introduced in [14], we say that x ∈ Z \S is a pseudo-Frobenius
number of S if x+ s ∈ S for all s ∈ S \ {0}. We will denote by PF(S) the set of pseudo-
Frobenius numbers of S, and its cardinality is the type of S, denoted by t(S). From the
definition it follows that F(S) = max{PF(S)}.

In [15] it is shown that, if S is a numerical semigroup with embedding dimension
equal to three whose three minimal generators are pairwise relatively prime numbers, it
is possible to describe S in function of six positive integers r12, r13, r21, r23, r31, r32. Then,
it is possible to give formulas for F(S), g(S), and PF(S) in terms of such parameters. In
this paper we will show that we can reduce the number of parameters to four (a, b, c, d) and
we will give the formulas for F(S), g(S), and PF(S) in the case in which

[
a
c
, b
d

]
∩N 6= ∅.

We left as an open problem the case
[
a
c
, b
d

]
∩ N = ∅.

We summarize the content of this paper. Let us denote

F = {〈a, b, cb− da〉 | a, b, c, d ∈ N \ {0}, gcd(a, b) = gcd(a, c) = gcd(b, d) = 1,

2 ≤ c ≤ a− 1, and a < b < cb− da} .

First of all, we observe that F is the set of all numerical semigroups with embedding
dimension equal to three whose minimal generators are pairwise relatively prime numbers.
Let us consider S = 〈a, b, cb − da〉 ∈ F. The main result in Section 2 is Theorem 2.8,
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where we give Ap(S, a) in an explicit way when
[
a
c
, b
d

]
∩ N 6= ∅. As a consequence of

this result, in Section 3, we give the formulas for F(S), g(S), and PF(S) in the above
mentioned case.

2. The Apéry set
Our purpose in this section is to prove Theorem 2.8, where we will show explicitly

an Apéry set for a particular family of numerical semigroups with embedding dimension
three. It is well known that the Apéry set allows us to solve easily the Frobenius problem,
as well as simplify many questions about numerical semigroups, such as the membership
problem (that is, determine if a positive integer belongs to a numerical semigroup).

First we need to introduce some results. The following lemma has an immediate proof
(see [16, Lemma 2.6]).

2.1. Lemma. Let S be a numerical semigroup and m ∈ S \ {0}. Then, for every x ∈ Z,
there exist a unique (λ,w) ∈ Z × Ap(S,m) such that x = λm + w. Moreover, x ∈ S if
and only if λ ∈ N.

Let p, q be two integers such that q 6= 0. We denote by
⌊
p
q

⌋
and p mod q the quotient

and the remainder of the integer division of p by q, respectively. The next result follows
from [13, Lemma 3.3].

2.2. Lemma. Let m be a positive integer. Let {X(0) = 0, X(1), . . . , X(m − 1)} be
a subset of N such that X(i) mod m = i, for all i ∈ {0, 1, . . . ,m − 1}. Let S =
〈m,X(1), . . . , X(m − 1)〉. Then Ap(S,m) = {X(0), X(1), . . . , X(m − 1)} if and only
if X(i) +X(j) ≥ X((i+ j) mod m), for all i, j ∈ {1, . . . ,m− 1}.

The following lemma is well known (see, for instance, [17]).

2.3. Lemma. Let n1, n2 be two positive integers such that gcd(n1, n2) = 1. Let S =
〈n1, n2〉. Then Ap(S, n1) = {0, n2, 2n2, . . . , (n1 − 1)n2}.
2.4. Lemma. Let S be a numerical semigroup with minimal system of generators given by
{n1, n2, n3}. If gcd(n1, n2) = 1, then there exist two unique numbers k ∈ {2, . . . , n1 − 1}
and t ∈ {1, . . . , n2 − 1} such that n3 = kn2 − tn1.

Proof. Since n3 /∈ 〈n1, n2〉, by Lemmas 2.1 and 2.3, we deduce that there exist unique
numbers k ∈ {0, 1, . . . , n1 − 1} and t ∈ N \ {0} such that n3 = kn2 − tn1. Since n3 > 0,
it is obvious that t ∈ {1, . . . , n2 − 1}. In order to finish the proof we have to see that
k /∈ {0, 1}. If k = 0, then n3 = −tn1, which is a contradiction to the positiveness of n3.
If k = 1, then n2 = n3 + tn1 ∈ 〈n1, n3〉, which is a contradiction because {n1, n2, n3} is
a minimal system of generators. �

2.5. Remark. By using Euclidean algorithm, we have that, if gcd{n1, n2} = 1, then
there exist two positive integers u, v such that un2 − vn1 = 1. Thus, n3 = (un3)n2 −
(vn3)n1 =

(⌊
un3
n1

⌋
n1 + (un3) modn1

)
n2− (vn3)n1. Therefore n3 = ((un3) modn1)n2−(

vn3 −
⌊
un3
n1

⌋
n2

)
n1. We conclude that, in Lemma 2.4, k = (un3) modn1 and t =

vn3 −
⌊
un3
n1

⌋
n2.

2.6. Remark. Let S be a numerical semigroup with minimal system of generators
{n1, n2, n3}. If n1, n2, n3 are pairwise relatively prime numbers and n1 < n2 < n3,
taking a = n1, b = n2, c = k, d = t, and cb − da = kn2 − tn1 = n3, we deduce from
Lemma 2.4 that S ∈ F. On the other hand, it is easy to see that any element of F is a
numerical semigroup with embedding dimension equal to three whose minimal generators
are pairwise relatively prime numbers.
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2.7. Lemma. Let a, b, c, d be four positive integers such that gcd(a, b) = 1 and cb−da ≥
d((−a) mod c). Let S =

〈{
αb−

⌊
α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
∪ {a}

〉
. Then

Ap(S, a) =
{
αb−

⌊α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
.

Proof. Since cb − da ≥ 0, it follows that αb −
⌊
α
c

⌋
da ∈ N, for all α ∈ {0, . . . , a − 1}.

Moreover,
{
αb−

⌊
α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
is a subset of N such that it has the form

{X(0) = 0, X(1), . . . , X(a− 1)} with X(i) mod a = i, for all i ∈ {0, 1, . . . , a− 1}. Then,
by using Lemma 2.2, we conclude the proof if we show both of the next two statements.

(1) If α, β ∈ {1, . . . , a− 1} and α+ β ≤ a− 1, then

αb−
⌊α
c

⌋
da+ βb−

⌊
β

c

⌋
da ≥ (α+ β)b−

⌊
α+ β

c

⌋
da.

(2) If α, β ∈ {1, . . . , a− 1} and α+ β ≥ a, then

αb−
⌊α
c

⌋
da+ βb−

⌊
β

c

⌋
da ≥ (α+ β − a)b−

⌊
α+ β − a

c

⌋
da.

The first one follows from the inequality
⌊
α+β
c

⌋
≥
⌊
α
c

⌋
+
⌊
β
c

⌋
. The second one is equivalent

to b
d
≥
⌊
α
c

⌋
+
⌊
β
c

⌋
−
⌊
α+β−a

c

⌋
. Since

⌊
x
c

⌋
c = x − x mod c, for all x ∈ N, if we multiply

both sides of the inequality by c, then it suffices to prove that
cb

d
≥ α− α mod c+ β − β mod c− (α+ β − a) + (α+ β − a) mod c,

or equivalently, that
cb

d
≥ a+ (α+ β − a) mod c− α mod c− β mod c.

Now, let us observe that (α + β − a) mod c ≤ α mod c + β mod c + (−a) mod c. Since
cb− da ≥ d((−a) mod c), we conclude that

cb

d
≥ a+ (−a) mod c

= a+ (−a) mod c+ α mod c+ β mod c− α mod c− β mod c

≥ a+ (α+ β − a) mod c− α mod c− β mod c. �

Let q be a rational number. As usual, we denote by dqe the minimum of the set
{z ∈ Z | q ≤ z}. At this point, we are in a position to prove the main result of this
section.

2.8. Theorem. Let S = 〈a, b, cb− da〉 ∈ F. If
[
a
c
, b
d

]
∩ N 6= ∅, then

Ap(S, a) =
{
αb−

⌊α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
.

Proof. First of all, let us observe that, since
⌈
x
c

⌉
c = x+ (−x)mod c, for all x ∈ N, then

cb− da ≥ d((−a) mod c)⇔ cb− da ≥ d
(⌈a
c

⌉
c− a

)
⇔ b

d
≥
⌈a
c

⌉
.

Obviously, the last inequality is precisely the condition
[
a
c
, b
d

]
∩ N 6= ∅.

Now, from Lemma 2.7, if S̄ =
〈{
αb−

⌊
α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
∪ {a}

〉
, then we

have that Ap(S̄, a) =
{
αb−

⌊
α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
. Therefore, to finish the proof,

it is enough to show that S = S̄.
Since c ≥ 2, then

⌊
1
c

⌋
= 0 and b = b −

⌊
1
c

⌋
da ∈ S̄. Moreover, it is obvious that

a ∈ S̄ and cb − da = cb −
⌊
c
c

⌋
da ∈ S̄. Therefore, S = 〈a, b, cb − da〉 ⊆ S̄. For the other

inclusion, let us take x ∈ S̄. From Lemma 2.1, we deduce that there exist λ ∈ N and
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α ∈ {0, . . . , a−1} such that x = λa+
(
αb−

⌊
α
c

⌋
da
)
. Since x = λa+

(⌊
α
c

⌋
c+ αmod c

)
b−⌊

α
c

⌋
da = λa+ (αmod c)b+

⌊
α
c

⌋
(cb− da), then x ∈ 〈a, b, cb− da〉 = S. �

2.9. Remark. Let us observe that F contains infinitely many numerical semigroups (in
fact, as it is pointed out in Remark 2.6, all numerical semigroups with embedding di-
mension equal to three whose minimal generators are pairwise relatively prime numbers)
but not all of them satisfy the condition of Theorem 2.8, that is,

[
a
c
, b
d

]
contains some

integer. For example, the numerical semigroup S = 〈16, 19, 7×19−7×16〉 = 〈16, 19, 21〉
does not satisfy that condition. Even more (see Remark 3.8 and Example 3.13), no
possible combination of a, b, c, d for this numerical semigroup satisfies the condition of
Theorem 2.8.

2.10. Example. Let S = 〈5, 7, 3×7−2×5〉 = 〈5, 7, 11〉. Since 7
2
≥
⌈
5
3

⌉
, by Theorem 2.8,

we have that

Ap(S, 5) =
{
α× 7−

⌊α
3

⌋
× 2× 5 | α ∈ {0, 1, 2, 3, 4}

}
= {0, 7, 14, 11, 18}.

3. The genus and the pseudo-Frobenius numbers
Along this section S is a numerical semigroup which belongs to F. Therefore, S =

〈a, b, cb−da〉 with a, b, c, d positive integers such that gcd(a, b) = gcd(a, c) = gcd(b, d) = 1,
2 ≤ c ≤ a − 1, and a < b < cb − da. Moreover, we suppose that b

d
≥
⌈
a
c

⌉
. Our purpose

is to give formulas for g(S), PF(S), and F(S).
The following result appears in [17].

3.1. Lemma. If T is a numerical semigroup and m ∈ T \ {0}, then

g(T ) =

 1

m

∑
w∈Ap(T,m)

w

− m− 1

2
.

Let us show a formula to compute g(S).

3.2. Proposition. Let S be a numerical semigroup which satisfies the conditions stated
at the beginning of this section. Then

g(S) =
(b− 1)(a− 1)

2
− d

⌊
a− 1

c

⌋(
a− c

2

(⌊
a− 1

c

⌋
+ 1

))
.

Proof. From Theorem 2.8 and Lemma 3.1, we have that

g(S) =
1

a

a−1∑
α=1

(
αb−

⌊α
c

⌋
da
)
− a− 1

2
=

1

a

(
b

a−1∑
α=1

α− da
a−1∑
α=1

⌊α
c

⌋)
− a− 1

2

=
1

a

(
b
a(a− 1)

2
− da

a−1∑
α=1

⌊α
c

⌋)
− a− 1

2
=

(b− 1)(a− 1)

2
− d

a−1∑
α=1

⌊α
c

⌋
.

In order to finish the proof we need to show that

a−1∑
α=1

⌊α
c

⌋
=

⌊
a− 1

c

⌋(
a− c

2

(⌊
a− 1

c

⌋
+ 1

))
.
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Let us observe that α ∈ {ic, ic+ 1, . . . , ic+ (c− 1)} if and only if
⌊
α
c

⌋
= i. Therefore,

a−1∑
α=1

⌊α
c

⌋
=

b a−1
c c−1∑
j=1

(
c−1∑
α=0

j

)
+

a−1−b a−1
c cc∑

α=0

⌊
a− 1

c

⌋

= c

b a−1
c c−1∑
j=1

j +

⌊
a− 1

c

⌋(
a−

⌊
a− 1

c

⌋
c

)

=

⌊
a− 1

c

⌋(
c

2

(⌊
a− 1

c

⌋
− 1

)
+ a− c

⌊
a− 1

c

⌋)
. �

3.3. Example. Let S = 〈5, 7, 3 × 7 − 2 × 5〉 = 〈5, 7, 11〉. Since 7
2
≥
⌈
5
3

⌉
, applying

Proposition 3.2, we have that

g(S) =
6× 4

2
− 2

⌊
4

3

⌋(
5− 3

2

(⌊
4

3

⌋
+ 1

))
= 12− 4 = 8.

In [3] it is shown that, if T is a numerical semigroup with embedding dimension equal
to three, then t(T ) ∈ {1, 2}. Moreover, t(T ) = 1 if and only if T is a symmetric numerical
semigroup. In [5] it is proved that a numerical semigroup T with embedding dimension
equal to three is symmetric if and only if is a complete intersection numerical semigroup,
and then the minimal generators of T can not be pairwise relatively prime numbers.
Therefore, if S is a numerical semigroup such as at the beginning of this section, then
t(S) = 2. We can give explicitly the elements of PF(S). But first we need a lemma.

Let T be a numerical semigroup. We define in T the partial order

x ≤T y if y − x ∈ T.
If A ⊆ T , we denote by max≤T {A} the set of maximals elements of A with respect to
the previous partial order. From [3, Proposition 7] we deduce the following result.

3.4. Lemma. Let T be a numerical semigroup andm ∈ T\{0}. If we set {wi1, . . . , wit} =
max≤T {Ap(T,m)}, then PF(T ) = {wi1 −m, . . . , wit −m}.

3.5. Proposition. Let S be a numerical semigroup such as at the beginning of this
section. Then

PF(S) =

{⌊
a− 1

c

⌋
(cb− da) + da− b− a, (a− 1)b−

⌊
a− 1

c

⌋
da− a

}
.

Proof. From Theorem 2.8 we know that

Ap(S, a) =
{
αb−

⌊α
c

⌋
da | α ∈ {0, . . . , a− 1}

}
.

Since αb −
⌊
α
c

⌋
da =

(⌊
α
c

⌋
c+ α mod c

)
b −

⌊
α
c

⌋
da =

⌊
α
c

⌋
(cb − da) + (α mod c) b and

(a− 1) mod c 6= c− 1 (in case of equality, we have a mod c = 0, and then c|a, which is a
contradiction with gcd(a, c) = 1), we have that max≤S{Ap(S, a)} ={(⌊

a− 1

c

⌋
− 1

)
(cb− da) + (c− 1)b,

⌊
a− 1

c

⌋
(cb− da) + ((a− 1) mod c) b

}
.

Having in mind that (a− 1) mod c = a− 1−
⌊
a−1
c

⌋
c, then⌊

a− 1

c

⌋
(cb− da) + ((a− 1) mod c) b = −

⌊
a− 1

c

⌋
da+ (a− 1)b.

Therefore,

max≤S{Ap(S, a)} =

{⌊
a− 1

c

⌋
(cb− da) + da− b, (a− 1)b−

⌊
a− 1

c

⌋
da

}
.
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From Lemma 3.4 we conclude the proof. �

3.6. Example. Let S = 〈5, 7, 3 × 7 − 2 × 5〉 = 〈5, 7, 11〉. Since 7
2
≥
⌈
5
3

⌉
, applying

Proposition 3.5, we have that PF(S) = {9, 13}.

3.7. Corollary. Let S be a numerical semigroup such as at the beginning of this section.
Then

F(S) =

{
(a− 1)b−

⌊
a−1
c

⌋
da− a, if 1 >

⌊
a−1
c

⌋
c
a

+ d
b
,⌊

a−1
c

⌋
(cb− da) + da− b− a, in other case.

Proof. Since F(S) = max{PF(S)}, then it is enough to apply Proposition 3.5 and note
that (a−1)b−

⌊
a−1
c

⌋
da−a >

⌊
a−1
c

⌋
(cb−da)+da−b−a if and only if 1 >

⌊
a−1
c

⌋
c
a

+ d
b
. �

3.8. Remark. It is possible to improve the results of this paper. Indeed, we only need to
impose the conditions 0 < cb− da and e(S) = 3 instead of the condition a < b < cb− da.
This way, if we consider the set

F
∗ = {〈a, b, cb− da〉 | a, b, c, d ∈ N \ {0}, gcd(a, b) = gcd(a, c) = gcd(b, d) = 1,

2 ≤ c ≤ a− 1, cb− da > 0, and e(〈a, b, cb− da〉) = 3} ,

it is easy to see that S = 〈a, b, cb − da〉 ∈ F∗ is a numerical semigroup with minimal
system of generators whose elements are pairwise relatively prime numbers. Reciprocally,
following the ideas of Remarks 2.5 and 2.6, if S is a numerical semigroup with minimal
system of generators {n1, n2, n3} and n1, n2, n3 are pairwise relatively prime numbers,
then S ∈ F∗. Moreover, if we make some minor changes at the exposed reasonings in
this section and the previous one, we get that Theorem 2.8, Propositions 3.2 and 3.5,
and Corollary 3.7 remain true.

3.9. Remark. In fact, as sets, F = F∗. The difference between both of them is that, if S
is a numerical semigroup with embedding dimension three and minimal system of gener-
ators formed by pairwise relatively prime numbers, then S has a unique representation in
F and six representations in F∗. On the other hand, we have that all the numerical semi-
groups in F has dimension three automatically, but in F∗ we have to impose explicitly
such a condition.

3.10. Example. Let S = 〈6, 7, 11〉. We have that (6, 7, 5, 4) is the unique combina-
tion associated to S in F. The six combinations for S in F∗ are (6, 7, 5, 4), (6, 11, 5, 8),
(7, 6, 3, 1), (7, 11, 5, 7), (11, 6, 3, 1), and (11, 7, 4, 2).

3.11. Example. If we take the combination (a, b, c, d) = (3, 7, 2, 4), we have the numer-
ical semigroup S = 〈3, 7, 2× 7− 4× 3〉 = 〈3, 7, 2〉 = 〈2, 3〉. If we try to apply our results,
we will have wrong answers.

3.12. Example. Let S = 〈6, 7, 11〉. If we take a = 6, b = 7, c = 5, and d = 4, then
7
4
<
⌈
6
5

⌉
. Therefore, we can not apply the results. However, if we take a = 7, b = 6,

c = 3, and d = 1, then 6
1
≥
⌈
7
3

⌉
. In this case we have that,

• by Theorem 2.8,

Ap(S, 7) =
{
α× 6−

⌊α
3

⌋
× 1× 7 | α ∈ {0, 1, . . . , 6}

}
=

{0, 6, 12, 11, 17, 23, 22};
• by Proposition 3.2,

g(S) =
5× 6

2
− 1

⌊
6

3

⌋(
7− 3

2

(⌊
6

3

⌋
+ 1

))
= 15− 5 = 10;

• by Proposition 3.5, PF(S) = {16, 15}.
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3.13. Example. Let S be the numerical semigroup generated by {16, 19, 21}. It is easy
to check that there not exists a combination of a, b, c, d (associated to S) such that the
condition

[
a
c
, b
d

]
∩ N 6= ∅ is satisfied.

Let S be a numerical semigroup. We denote by m(S) = min(S \ {0}), which it is
called the multiplicity of S. We finish this paper with the following conjecture.

3.14. Conjecture. Let S be a numerical semigroup such that m(S) ≤ 15. Then it is
possible to find a combination of a, b, c, d (associated to S) in such a way the condition[
a
c
, b
d

]
∩ N 6= ∅ is satisfied.
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Analysis of ruin measures for two classes of risk
processes with stochastic income

Wuyuan Jiang∗ †‡ and Chaoqun Ma§

Abstract
In this paper, we consider the ruin measures for two classes of risk pro-
cesses. We assume that the claim number processes are independent
Poisson and generalized Erlang(n) processes, respectively. Historically,
it has been assumed that the premium size is a constant. In this con-
tribution, the premium income arrival process is a Poisson process. In
this framework, both the integro-differential equation and the Laplace
transform for the expected discounted penalty function are established.
Explicit expressions for the expected discounted penalty function are
derived when the claim amount distributions belong to the rational
family. Finally, Numerical examples are considered.
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1. Introduction
In the actuarial literature, many researchers studied the ruin measures for a risk model

involving two independent classes of risks. Among them, [9] considered the expected dis-
counted penalty functions for two classes of risk processes by assuming that the two claim
number processes are independent Poisson and generalized Erlang(2) processes, respec-
tively. A system of integro-differential equations for the expected discounted penalty
functions were derived and explicit results when the claim sizes are exponentially dis-
tributed were obtained. [13] extended the model of [9], by considering the claim number
process of the second class to be a renewal process with generalized Erlang(n) inter-arrival

∗School of Business Administration, Hunan University, Changsha 410082, China,
†Department of Mathematics, Hunan Institute of Science and Technology, Yueyang 414006,

China Email: csujw@163.com
‡Corresponding Author.
§School of Business Administration, Hunan University, Changsha 410082, China, Email:

cqma1998@hnu.edu.cn



910

times. The authors derived an integro-differential equation system for the expected dis-
counted penalty functions, and obtained their Laplace transforms when the corresponding
Lundberg equation has distinct roots. [5] investigated the risk model with two classes
of renewal risk processes by assuming that both of the two claim number processes have
phase-type inter-claim times. A system of integro-differential equations for the expected
discounted penalty function was derived and solved. For more related references on two
classes of risk processes problem, the reader may consult the following publications and
references therein, [12], [8], [3], etc.

Under the above risk models, premiums are assumed to be received by insurance
companies at a constant rate over time. In fact, the insurance company may have lump
sums of income. For example, insurances of traveling art collections or ship and plane
insurances might be expected to have a significant impact on the premium income. [2]
first considered the risk model with stochastic premium income by adding a compound
Poisson process with positive jumps to the classical risk model. Subsequently, [1] and [10]
studied the ruin probabilities for the risk models with stochastic premiums. Recently,
[6] considered a risk model with stochastic premium income, where both premiums and
claims follow compound Poisson processes. Both a defective renewal equation and an
integral equation satisfied by the expected discounted penalty function are established.
[14] extended the model in [6] by assuming that there exists a dependence structure
among the claim sizes, inter-claim times and premium sizes. [11] studied a risk model
with a dependence setting where there exists a specific structure among the time between
two claim occurrences, premium sizes and claim sizes. Given that the premium size is
exponentially distributed, both the Laplace transforms and defective renewal equations
for the expected discounted penalty functions are obtained.

To the best of our knowledge, there is less work in the literature on two classes of risk
models with stochastic premiums. Henceforth, the purpose of this paper is to investigate
the expected discounted penalty functions in a risk model involving two independent
classes of risks and the premium income arrival process is a Poisson process, in which the
claim number processes are independent Poisson and generalized Erlang(n) processes,
respectively. The structure of the paper is as follows. Section 2 describes two classes
of risk processes with stochastic income. In Section 3, we derive the system of integro-
differential equations for the expected discounted penalty functions. Then Section 4
presents the Laplace solutions of the expected discounted penalty functions and pro-
vides closed forms for rational family claim-size distribution. Numerical examples are
considered in Section 5. Last, Section 6 concludes.

2. Model and assumptions
The surplus process R(t) is given by

(2.1) R(t) = u+

M(t)∑
i=1

Xi − S(t), t ≥ 0,

where u ≥ 0 is the initial surplus, M(t) denotes the number of insurer’s premium income
up to time t and follows a Poisson process with intensity µ > 0. {X1, X2, · · · } are inde-
pendent and identically distributed (i.i.d.) positive random variables (r.v.’s) representing
the individual premium amounts with common distribution P , probability density func-
tion (p.d.f.) p and Laplace transform (LT) p̃(s) =

∫∞
0
e−sxp(x)dx. The aggregate-claim

process {S(t) : t ≥ 0} is defined by

S(t) =

N1(t)∑
i=1

Yi +

N2(t)∑
i=1

Zi, t ≥ 0,
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where {Y1, Y2, · · · } are i.i.d. positive r.v.’s representing the successive individual claim
amounts from the first class. These r.v.’s are assumed to have common cumulative
distribution function F (x), x ≥ 0, with p.d.f. f(x) = F ′(x), of which the LT is f̃(s) =∫∞
0
e−sxf(x)dx, while {Z1, Z2, · · · } are i.i.d. positive r.v.’s representing the claim amounts

from the second class with common cumulative distribution function G(x), x ≥ 0 and
p.d.f. g(x) = G′(x), of which the LT is g̃(s) =

∫∞
0
e−sxg(x)dx.

The counting process {N1(t); t ≥ 0} is assumed to be a Poisson process with parameter
λ, representing the number of claims from the first class up to time t. While the counting
process {N2(t); t ≥ 0}, representing the number of claims from the second class up to time
t, is defined as follows. N2(t) = sup{n : W1 +W2 + · · ·+Wn ≤ t}, where {W1,W2, · · · }
are the i.i.d. positive r.v.’s representing the second class inter-claim times. In this paper,
we suppose that W ′i s are generalized Erlang(n) distributed with n possibly different
parameters λ1, λ2, . . . , λn, then Wi can be expressed as Wi = Wi1 + Wi2 + · · · + Win,
where Wij is exponentially distributed with parameter 1

λi
.

In addition, we assume that {X1, X2, · · · }, {Y1, Y2, · · · }, {Z1, Z2, · · · }, {N1(t); t ≥ 0}
and {N2(t); t ≥ 0} are mutually independent, and µE(X1) > λE(Y1) + E(Z1)

n∑
i=1

1
λi

, providing

a positive safety loading factor.
The time of (ultimate) ruin is T = inf{t|R(t) < 0}, where T = ∞ if R(t) ≥ 0 for all

t ≥ 0. The probability of ruin is ψ(u) = Pr(T <∞).
For x1, x2 ≥ 0, k = 1, 2, let wk(x1, x2) be two possibly distinct non-negative value

functions. For δ ≥ 0, the expected discounted penalty function at ruin if the ruin is
caused by a claim from class k is defined by

mk(u) = E[e−δTwk(R(T−), |R(T )|)I(T <∞, J = k)|R(0) = u], u ≥ 0,

where J is defined to be the cause-of-ruin random variable, and J = k if the ruin is
caused by a claim of class k, k = 1, 2. R(T−) is the surplus immediately before ruin,
|R(T )| is the deficit at ruin, I(·) is an indicator function.

When δ = 0 and wk(R(T−), |R(T )|) = 1, let

ψk(u) = E[I(T <∞, J = k)|R(0) = u], u ≥ 0, k = 1, 2,

is the ruin probability due to a claim from class k. The probability of ruin ψ(u) can be
decomposed as ψ(u) = ψ1(u) + ψ2(u).

3. System of integro-differential equations
In this section, we derive the integro-differential equations for the expected discounted

penalty function. Since every inter-claim time with generalized Erlang(n) distribution
can be decomposed into the independent sum of n exponential r.v.’s with parameters
λ1, λ2, . . . , λn, each causing a sub-claim of size 0 and at the time of the nth sub-claim an
actual claim with distribution function G occurs. This can be realized by considering n
states of the risk process (2.1) for the second class claim. Starting at time 0 in state 1,
every sub-claim causes a transition to the next state and at the time of the occurrence
of the nth sub-claim, an actual claim with distribution function G occurs and the risk
process jumps into state 1 again. We define the corresponding expected discounted
penalty function by mkj , j = 1, 2, . . . , n, when ruin is caused by a claim from class
k, k = 1, 2 and the risk process is in state j. Obviously, mk1(u) = mk(u).

Considering an infinitesimal time interval (0, dt), there are five possible events regard-
ing to the occurrence of the premium and claim and change of the state: (1) no premium
and claim arrival and no change of state; (2) a premium arrival but no claim arrival and
no change of state; (3) a claim arrival but no premium arrival and no change of state;
(4) a change of state but no claim and premium arrival; (5) two or more events occur.
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By conditioning on the above five events in (0, dt) when j = 1, 2, . . . , n− 1, we have

(3.1)

m1j(u) = (1− µdt)(1− λdt)(1− λjdt)e−δdtm1j(u)

+ µdt(1− λdt)(1− λjdt)e−δdt
∫∞
0
m1j(u+ x)p(x)dx

+ (1− µdt)λdt(1− λjdt)e−δdt×[∫ u
0
m1j(u− x)f(x)dx+

∫∞
u
w1(u, x− u)f(x)dx

]
+ (1− µdt)(1− λdt)λjdte−δdtm1,j+1(u) + o(dt).

From (3.1) it follows that

(3.2)

m1j(u) = µ
λ∗j+δ

∫∞
0
m1j(u+ x)p(x)dx

+ λ
λ∗j+δ

[∫ u
0
m1j(u− x)f(x)dx+ ζ1(u)

]
+

λj
λ∗j+δ

m1,j+1(u),

where λ∗j = µ+ λ+ λj , ζ1(u) =
∫∞
u
w1(u, x− u)f(x)dx.

When j = n, we obtain

(3.3)

m1n(u) = (1− µdt)(1− λdt)(1− λndt)e−δdtm1n(u)

+ µdt(1− λdt)(1− λndt)e−δdt
∫∞
0
m1n(u+ x)p(x)dx

+ (1− µdt)λdt(1− λndt)e−δdt×[∫ u
0
m1n(u− x)f(x)dx+

∫∞
u
w1(u, x− u)f(x)dx

]
+ (1− µdt)(1− λdt)λndte−δdt

∫ u
0
m1(u− x)g(x)dx+ o(dt).

Which results in

(3.4)
m1n(u) = µ

λ∗n+δ

∫∞
0
m1n(u+ x)p(x)dx

+ λ
λ∗n+δ

[∫ u
0
m1n(u− x)f(x)dx+ ζ1(u)

]
+ λn

λ∗n+δ

∫ u
0
m1(u− x)g(x)dx,

where λ∗n = µ+ λ+ λn.
By similar arguments, we get

(3.5)

m2j(u) = µ
λ∗j+δ

∫∞
0
m2j(u+ x)p(x)dx

+ λ
λ∗j+δ

∫ u
0
m2j(u− x)f(x)dx

+
λj
λ∗j+δ

m2,j+1(u), j = 1, 2, . . . , n− 1.

and

(3.6)
m2n(u) = µ

λ∗n+δ

∫∞
0
m2n(u+ x)p(x)dx

+ λ
λ∗n+δ

∫ u
0
m2n(u− x)f(x)dx

+ λn
λ∗n+δ

[∫ u
0
m2(u− x)g(x)dx+ ζ2(u)

]
,

where ζ2(u) =
∫∞
u
w2(u, x− u)g(x)dx.

4. Analysis of the integro-differential equations with exponential
premiums
In this section, we assume that the premium sizes are exponentially distributed with

p.d.f. p(x) = βe−βx, β > 0, x ≥ 0. Throughout this paper, we will use a hat ∼ to
designate the Laplace transform of a function f , namely, f̃(s) =

∫∞
0
e−sxf(x)dx. Now,

we introduce a complex operator Tr of an integrable real-valued function f which will be
necessary in order to obtain the main results. Tr is defined as

Trf(x) =

∫ ∞
x

e−r(u−x)f(u)du, r ∈ C, x ≥ 0,
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where r has a non-negative real part, <(r) ≥ 0. [7] provide a list of properties of the
operator Tr and we recall two of them that will be used in the following:

(1) Trf(0) =
∫∞
0
e−ruf(u)du = f̃(r), r ∈ C, is the Laplace transform of f .

(2) TrTsf(x) = TsTrf(x) = Tsf(x)−Trf(x)
r−s , s 6= r ∈ C, x ≥ 0.

4.1. Laplace transform. In the following, for notational convenience, Let Hkj(u) =∫∞
0
mkj(u + x)p(x)dx, k = 1, 2, j = 1, 2, . . . , n. Taking Laplace transforms on both sides

of (3.2) and (3.4) yields

(4.1) m̃1j(s) =
µ

λ∗j + δ
H̃1j(s) +

λ

λ∗j + δ
m̃1j(s)f̃(s) +

λ

λ∗j + δ
ζ̃1(s) +

λj
λ∗j + δ

m̃1,j+1(s),

and

(4.2) m̃1n(s) =
µ

λ∗n + δ
H̃1n(s) +

λ

λ∗n + δ
m̃1n(s)f̃(s) +

λ

λ∗n + δ
ζ̃1(s) +

λn
λ∗n + δ

m̃1(s)g̃(s).

Since, for j = 1, 2, . . . , n, s 6= β,

(4.3)

H̃1j(s) =
∫∞
0
e−su

∫∞
0
m1j(u+ x)βe−βxdxdu

=
∫∞
0
{
∫∞
0
e−sum1j(u+ x)du}βe−βxdx

=
∫∞
0
Tsm1j(x)βe−βxdx = βTβTsm1j(0)

= β
m̃1j(s)−m̃1j(β)

β−s .

Substituting (4.3) into (4.1) and (4.2), respectively, we have

(4.4)
[
µβ

β − s − λ
∗
j − δ + λf̃(s)

]
m̃1j(s) + λjm̃1,j+1(s) =

µβ

β − sm̃1j(β)− λζ̃1(s),

and

(4.5)
[
µβ

β − s − λ
∗
n − δ + λf̃(s)

]
m̃1n(s) + λng̃(s)m̃1(s) =

µβ

β − sm̃1n(β)− λζ̃1(s).

Let m̃k(s) = (m̃k1(s), m̃k2(s), . . . , m̃kn(s))>, m̃k(β) = (m̃k1(β), m̃k2(β), . . . , m̃kn(β))>,
k = 1, 2, m> denotes the transpose of m, and

Aδ(s) =



µβ
β−s − λ

∗
1 − δ + λf̃(s) λ1 0 · · · 0

0 µβ
β−s − λ

∗
2 − δ + λf̃(s) λ2 · · · 0

...
...

...
. . .

...
0 0 0 · · · λn−1

λng̃(s) 0 0 · · · µβ
β−s − λ

∗
n − δ + λf̃(s)

 .

Then (4.4) and (4.5) can be rewritten as the following matrix form

(4.6) Aδ(s)m̃1(s) =
µβ

β − sm̃1(β)− λζ̃1(s)e1,

where e1 denotes a column vector of length n with all elements being one.
Similarly, from (3.5) and (3.6) we can obtain the following matrix form for m̃2(s)

(4.7) Aδ(s)m̃2(s) =
µβ

β − sm̃2(β)− λnζ̃2(s)e2,

where e2 = (0, 0, . . . , 0, 1)> denotes a n× 1 column vector.
When det[Aδ(s)] 6= 0, solving the linear systems (4.6) and (4.7), we obtain

(4.8) m̃1(s) =
A?
δ(s)

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
det[Aδ(s)]

,
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and

(4.9) m̃2(s) =
A?
δ(s)

[
µβ
β−sm̃2(β)− λnζ̃2(s)e2

]
det[Aδ(s)]

,

where A?
δ(s) is the adjoint matrix of Aδ(s).

4.1. Theorem. For δ > 0, the generalized Lundberg’s fundamental equation det[Aδ(s)] =
0 has exactly n roots, say ρ1, ρ2, . . . , ρn with <(ρi) > 0.

Proof. det[Aδ(s)] = 0 can be rewritten as

1

(β − s)n

{
n∏
i=1

{µβ − [λ∗i + δ − λf̃(s)](β − s)} − (

n∏
i=1

λi)g̃(s)(β − s)n
}

= 0.

Thus, it is only needed to prove

(4.10)
n∏
i=1

{µβ − [λ∗i + δ − λf̃(s)](β − s)} − (

n∏
i=1

λi)g̃(s)(β − s)n = 0

has exactly n roots in the right half complex plane. Let z = (β − s)/β, then (4.10) may
be expressed as

(4.11)
n∏
i=1

{µ− [λ∗i + δ − λf̃(β(1− z))]z} − (

n∏
i=1

λi)g̃(β(1− z))zn = 0.

When δ > 0, choose r ∈ (0, 1) such that (µ+ δ)r > µ, and denote Cz = {z ∈ C||z| = r}.

Obviously,
n∏
i=1

{µ − [λ∗i + δ − λf̃(β(1 − z))]z} and (
n∏
i=1

λi)g̃(β(1 − z))zn are analytic on

and inside the contour Cz.
We first prove that each of equations µ − [λ∗i + δ − λf̃(β(1 − z))]z = 0, i = 1, · · · , n

has exactly one root in the interior of Cz. For any z ∈ Cz, we have

|(λ∗i + δ)z − µ| ≥ |(λ∗i + δ)z| − µ > (λi + λ)|z| > λ|z| ≥ |λf̃(β(1− z))]z|.

By virtue of Rouché’s theorem, (λ∗i + δ)z − µ = 0 and µ− [λ∗i + δ − λf̃(β(1− z))]z = 0

have the same number of roots inside Cz. Thus µ − [λ∗i + δ − λf̃(β(1 − z))]z = 0 has
exactly one root inside Cz. It implies that

(4.12)
n∏
i=1

{µ− [λ∗i + δ − λf̃(β(1− z))]z} = 0

has exactly n roots inside Cz.
Furthermore, for any z ∈ Cz,

|
n∏
i=1

{µ− [λ∗i + δ − λf̃(β(1− z))]z}|

=
n∏
i=1

|(λ∗i + δ)z − µ− λf̃(β(1− z))z|

≥
n∏
i=1

{|(λ∗i + δ)z − µ| − |λf̃(β(1− z))z|}

≥
n∏
i=1

{|(λ∗i + δ)z − µ| − |λz|}

=
n∏
i=1

{|(λi + λ)z + (µ+ δ)z − µ| − |λz|}

>
n∏
i=1

|λiz| ≥ |(
n∏
i=1

λi)g̃(β(1− z))zn|.

In the last second step, we use z ∈ Cz = {z ∈ C||z| = r} and r ∈ (µ/(µ+ δ), 1).
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By Rouché’s theorem, both Eq. (4.12) and Eq. (4.11) have the same number of
roots inside Cz. Then, we conclude that the equation Eq. (4.11) has exactly n roots
inside Cz. That is to say, Lundberg’s equation det[Aδ(s)] = 0 has exactly n roots in
Cs = {s ∈ C||β − s| = rβ}. From r ∈ (µ/(µ + δ), 1), the interior of Cs is entirely
contained in the right half complex plane. This completes the proof. �

4.2. Remark. If δ → 0+ then ρi(δ)→ ρi(0) for i = 1, · · · , n, and we have that s = 0 is
one of the roots from Lundberg’s equation det[Aδ(s)] = 0.

In what follows, we assume that ρ1, ρ2, . . . , ρn are distinct.
Divided difference plays an important role in the present paper. Now we recall divided

differences of a matrix L(s) with respect to distinct numbers r1, r2, · · · , which are defined
recursively as follows:

L[r1, s] =
L(s)− L(r1)

s− r1
, L[r1, r2, s] =

L[r1, s]− L[r1, r2]

s− r2
,

and so on.

4.3. Theorem. m̃1(β) and m̃2(β) are given by

(4.13)

m̃1(β) =
λ

µβ

 n∑
i=1

A?
δ [ρ1, · · · , ρi]

1
n∏
l=i

(β − ρl)


−1(

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn]

)
e1,

(4.14)

m̃2(β) =
λn
µβ

 n∑
i=1

A?
δ [ρ1, · · · , ρi]

1
n∏
l=i

(β − ρl)


−1(

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃2[ρi, · · · , ρn]

)
e2.

Proof. Since m̃kj(s) is finite for k = 1, 2, j = 1, 2, . . . , n, from (4.8), we have, for distinct
numbers ρ1, ρ2, . . . , ρn,

A?
δ(ρi)

µβ

β − ρi
m̃1(β) = A?

δ(ρi)ζ̃1(ρi)λe1.

Hence[
A?
δ(ρ1)

µβ

β − ρ1
−A?

δ(ρ2)
µβ

β − ρ2

]
m̃1(β) = [A?

δ(ρ1)ζ̃1(ρ1)−A?
δ(ρ2)ζ̃1(ρ2)]λe1.

Namely [
A?
δ(ρ1) 1

β−ρ1
−A?

δ(ρ1) 1
β−ρ2

+ A?
δ(ρ1) 1

β−ρ2
−A?

δ(ρ2) 1
β−ρ2

]
µβm̃1(β)

= [A?
δ(ρ1)ζ̃1(ρ1)−A?

δ(ρ1)ζ̃1(ρ2) + A?
δ(ρ1)ζ̃1(ρ2)−A?

δ(ρ2)ζ̃1(ρ2)]λe1.

Using the divided difference, we derive[
A?
δ(ρ1) 1

(β−ρ1)(β−ρ2)
+ A?

δ [ρ1, ρ2] 1
β−ρ2

]
µβm̃1(β)

= {A?
δ(ρ1)ζ̃1[ρ1, ρ2] + A?

δ [ρ1, ρ2]ζ̃1(ρ2)}λe1.

We finally have by recursively deriving

(4.15)
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i=1

A?
δ [ρ1, · · · , ρi]

1
n∏
l=i

(β − ρl)

µβm̃1(β) = λ

(
n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn]

)
e1,

which leads to (4.13).
Similarly, we can obtain (4.14) from (4.9). �

Applying the divided difference repeatedly to the numerators of (4.8) and (4.9), re-
spectively, we obtain the following theorem.

4.4. Theorem. The Laplace transforms of the expected discounted penalty function are
given by

(4.16)

m̃1(s) =

n∏
i=1

(s−ρi)

det[Aδ(s)]

{
A?
δ [ρ1, · · · , ρn, s]

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+

n∑
i=1

A?
δ [ρ1, · · · , ρi] 1

n∏
l=i

(β−ρl)

(
µβ
β−sm̃1(β)

)
−

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1)

}
,

and

(4.17)

m̃2(s) =

n∏
i=1

(s−ρi)

det[Aδ(s)]

{
A?
δ [ρ1, · · · , ρn, s]

[
µβ
β−sm̃2(β)− λnζ̃2(s)e2

]
+

n∑
i=1

A?
δ [ρ1, · · · , ρi] 1

n∏
l=i

(β−ρl)

(
µβ
β−sm̃2(β)

)
−

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃2[ρi, · · · , ρn, s](λne2)

}
.

Proof. By the fact that s = ρ1 is a root of the numerator in (4.8), we have

(4.18)

A?
δ(s)

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
= A?

δ(s)
[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
−A?

δ(ρ1)
[

µβ
β−ρ1

m̃1(β)− λζ̃1(ρ1)e1

]
= (s− ρ1)

 A?
δ [ρ1, s]

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+

A?
δ(ρ1) 1

(β−ρ1)

(
µβ
β−sm̃1(β)

)
−A?

δ(ρ1)ζ̃1[ρ1, s](λe1)

 .

Since s = ρ2 is also a root of numerator in (4.8), it shows that s = ρ2 is a zero of the
expression within the brace in (4.18), namely

(4.19) (
A?
δ [ρ1, s] + A?

δ(ρ1) 1
β−ρ1

)
µβ
β−sm̃1(β)−

(
A?
δ [ρ1, s]ζ̃1(s) + A?

δ(ρ1)ζ̃1[ρ1, s]
)
λe1

=
(
A?
δ [ρ1, s] + A?

δ(ρ1) 1
β−ρ1

)
µβ
β−sm̃1(β)−

(
A?
δ [ρ1, s]ζ̃1(s) + A?

δ(ρ1)ζ̃1[ρ1, s]
)
λe1

−
(
A?
δ [ρ1, ρ2] + A?

δ(ρ1) 1
β−ρ1

)
µβ
β−ρ2

m̃1(β) +
(
A?
δ [ρ1, ρ2]ζ̃1(ρ2) + A?

δ(ρ1)ζ̃1[ρ1, ρ2]
)
λe1

= (s− ρ2)


A?
δ [ρ1, ρ2, s]

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+

2∑
i=1

A?
δ [ρ1, ρi]

1
2∏
l=i

(β−ρl)

(
µβ
β−sm̃1(β)

)
−

2∑
i=1

A?
δ [ρ1, ρi]ζ̃1[ρi, ρ2, s](λe1)

 ,

where we denote A?
δ [ρ1, ρi] = A?

δ(ρ1), when i = 1.
Substituting (4.19) into (4.18), recursively from the fact s = ρ3, . . . , ρn are roots of

the numerator in (4.8), (4.16) is derived.
By similar arguments, we obtain (4.17) from (4.9). �
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4.2. Closed forms for rational family claim-size distribution. Now, we restrict
the further analysis to the case of the claim amount distributions F (x) and G(x) both
with rational Laplace transforms, viz,

f̃(s) =
fr1−1(s)

fr1(s)
, g̃(s) =

gr2−1(s)

gr2(s)
, r1, r2 ∈ N+,

where fr1−1(s), gr2−1(s) are polynomials of degree r1− 1 and r2− 1 or less, respectively,
while fr1(s) and gr2(s) are polynomials of degree r1 and r2 with only negative roots, and
satisfy fr1−1(0) = fr1(0), gr2−1(0) = gr2(0). Without loss of generality, we assume that
fr1(s) and gr2(s) have leading coefficient 1. This wide class of distributions includes the
phase-type distributions, and in particular, it includes the Erlang, Coxian and exponential
distribution and all the mixtures of them.

In what follows, let h(s) = (s − β)n[fr1(s)]ngr2(s). Multiplying both numerator and
denominator of (4.16) by h(s), we get

(4.20)

m̃1(s) =

n∏
i=1

(s−ρi)

h(s)det[Aδ(s)]

{
A?
δ [ρ1, · · · , ρn, s]h(s)

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+h(s)

n∑
i=1

A?
δ [ρ1, · · · , ρi] 1

n∏
l=i

(β−ρl)

(
µβ
β−sm̃1(β)

)
−h(s)

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1)

}
.

It is obvious that the factor h(s)det[Aδ(s)] of the denominator is a polynomial of degree

n(r1+1)+r2 with leading coefficient
n∏
i=1

(λ∗i +δ). Therefore, the equation h(s)det[Aδ(s)] =

0 has n(r1+1)+r2 roots on the complex plane. We can factorize h(s)det[Aδ(s)] as follows

(4.21) h(s)det[Aδ(s)] =

n∏
i=1

(λ∗i + δ)

n∏
j=1

(s− ρj)
nr1+r2∏
j=1

(s+Rj),

where Rj for each j has positive real part and we assume that all of them are distinct
from each other.

Substituting (4.21) into (4.20) then canceling the same factor
n∏
j=1

(s− ρlj), we derive

from (4.20) that

(4.22)

m̃1(s) = 1
n∏
i=1

(λ∗i+δ)
nr1+r2∏
j=1

(s+Rj)

{
A?
δ [ρ1, · · · , ρn, s]h(s)

[
µβ
β−sm̃1(β)− λζ̃1(s)e1

]
+h(s)

n∑
i=1

A?
δ [ρ1, · · · , ρi] 1

n∏
l=i

(β−ρl)

(
µβ
β−sm̃1(β)

)
−h(s)

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1)

}
.

It is easy to find that the elements in matrix h(s)A?
δ [ρ1, · · · , ρn, s] are polynomials of

degree less than nr1 + r2, of course, the elements in matrix h(s)A?
δ [ρ1, · · · , ρn, s] 1

β−s are
polynomials of degree less than nr1 + r2 − 1, and each A?

δ [ρ1, · · · , ρi] for i = 1, 2, · · · , n
is constant. Therefore, we have the following partial fractions:

h(s)A?
δ [ρ1, · · · , ρn, s]

nr1+r2∏
j=1

(s+Rj)

=

nr1+r2∑
j=1

Qj

s+Rj
,
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h(s)A?
δ [ρ1, · · · , ρn, s] 1

β−s
nr1+r2∏
j=1

(s+Rj)

=

nr1+r2∑
j=1

Dj

s+Rj
,

and
h(s) 1

β−s
nr1+r2∏
j=1

(s+Rj)

=

nr1+r2∑
j=1

ςj
s+Rj

,
h(s)

nr1+r2∏
j=1

(s+Rj)

= 1 +

nr1+r2∑
j=1

τj
s+Rj

,

where Qj , Dj , τj and ςj are given respectively by

(4.23) Qj =
h(−Rj)Aδ

?[ρ1, · · · , ρn,−Rj ]
nr1+r2∏
i=1,i 6=j

(Ri −Rj)
,

(4.24) Dj =
h(−Rj)Aδ

?[ρ1, · · · , ρn,−Rj ] 1
β+Rj

nr1+r2∏
i=1,i 6=j

(Ri −Rj)
,

and

(4.25) ςj =
h(−Rj) 1

β+Rj

nr1+r2∏
i=1,i 6=j

(Ri −Rj)
, τj =

h(−Rj)
nr1+r2∏
i=1,i 6=j

(Ri −Rj)
.

In view of the above partial fractions, (4.22) can be rewritten as

(4.26)

m̃1(s) = 1
n∏
i=1

(λ∗i+δ)

nr1+r2∑
j=1

1
s+Rj

{
Djµβm̃1(β)−Qjλζ̃1(s)e1

+ςj
n∑
i=1

A?
δ [ρ1, · · · , ρi] µβ

n∏
l=i

(β−ρl)
m̃1(β)

−τj
n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1)

}
− 1

n∏
i=1

(λ∗i+δ)

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃1[ρi, · · · , ρn, s](λe1).

By the same arguments, we have

(4.27)

m̃2(s) = 1
n∏
i=1

(λ∗i+δ)

nr1+r2∑
j=1

1
s+Rj

{
Djµβm̃2(β)−Qjλnζ̃2(s)e2

+ςj
n∑
i=1

A?
δ [ρ1, · · · , ρi] µβ

n∏
l=i

(β−ρl)
m̃2(β)

−τj
n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃2[ρi, · · · , ρn, s](λne2)

}
− 1

n∏
i=1

(λ∗i+δ)

n∑
i=1

A?
δ [ρ1, · · · , ρi]ζ̃2[ρi, · · · , ρn, s](λne2).

From [4], we have the Laplace inverse of ζ̃[ρ1, ρ2, · · · , ρn, s] as follows

(4.28) L
−1
(
ζ̃[ρ1, ρ2, · · · , ρn, s]

)
= (−1)n

(
n∏
i=1

Tρi

)
ζ(x).

Thus, by inverting (4.26) and (4.27) results in the following theorem
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4.5. Theorem. If the claim-size distributions F (x) and G(x) both belong to the rational
family, the expected discounted penalty function are given by

(4.29)

m1(u) = 1
n∏
i=1

(λ∗i+δ)

nr1+r2∑
j=1

{
e−RjuDjµβm̃1(β)−Qjλ[e−Rju ~ ζ1(u)]e1

+ςje
−Rju

n∑
i=1

A?
δ [ρ1, · · · , ρi] µβ

n∏
l=i

(β−ρl)
m̃1(β)

+τje
−Rju ~

(
n∑
i=1

A?
δ [ρ1, · · · , ρi](−1)n−i

(
n∏
l=i

Tρl

)
ζ1(u)

)
(λe1)

}
+ 1

n∏
i=1

(λ∗i+δ)

n∑
i=1

A?
δ [ρ1, · · · , ρi](−1)n−i

(
n∏
l=i

Tρl

)
ζ1(u)(λe1), u ≥ 0,

and

(4.30)

m2(u) = 1
n∏
i=1

(λ∗i+δ)

nr1+r2∑
j=1

{
e−RjuDjµβm̃2(β)−Qjλn[e−Rju ~ ζ2(u)]e2

+ςje
−Rju

n∑
i=1

A?
δ [ρ1, · · · , ρi] µβ

n∏
l=i

(β−ρl)
m̃2(β)

+τje
−Rju ~

(
n∑
i=1

A?
δ [ρ1, · · · , ρi](−1)n−i

(
n∏
l=i

Tρl

)
ζ2(u)

)
(λne2)

}
+ 1

n∏
i=1

(λ∗i+δ)

n∑
i=1

A?
δ [ρ1, · · · , ρi](−1)n−i

(
n∏
l=i

Tρl

)
ζ2(u)(λne2), u ≥ 0,

where ~ represents the convolution operator. Qj, Dj, τj and ςj are given respectively by
(4.23)-(4.25).

5. Numerical illustrations
In this section, we present a numerical example to illustrate an application of the main

results in this paper. We suppose that the claim amounts from class 1 and class 2 have
density functions, respectively,

f(x) = µ1e
−µ1x, µ1 > 0, x > 0, g(y) = µ2e

−µ2y, µ2 > 0, y > 0.

Hence, LTs f̃(s) = µ1
s+µ1

, g̃(s) = µ2
s+µ2

. The inter-claim times from class 1 occur following
a Poisson process with parameter λ, and inter-claim times from class 2 occur following
a generalized Erlang(2) distribution with parameters λ1, λ2. In addition, the number of
insurer’s premium income M(t) follows a Poisson process with parameter µ > 0 and the
premium sizes are exponentially distributed with parameter β > 0.

In order to obtain the probability of ultimate ruin, we assume δ = 0 and w1(x1, x2) =
w2(x1, x2) = 1. Thus

A0(s) =

(
µβ
β−s − λ

∗
1 + λf̃(s) λ1

λ2g̃(s) µβ
β−s − λ

∗
2 + λf̃(s)

)
.

Now,mkj(u), k = 1, 2, j = 1, 2, . . . , n simplify to the probability of ultimate ruin ψkj(u), k =
1, 2, j = 1, 2, . . . , n. Eventually, we are only interested in ψk(u) = ψk1(u), k = 1, 2.

For illustration purpose, we set µ1 = 1, µ2 = 2, λ = 2, λ1 = 1, λ2 = 3, µ = 3, β = 1.
It is easy to check that the positive security loading conditions are satisfied. Un-
der this hypothesis, the solutions of h(s)det[A0(s)] = 0 are −R1 = −1.9087,−R2 =
−0.7394,−R3 = −0.1222, ρ1 = 0, ρ2 = 0.6037. From Theorem 4.2, we have m̃1(β) =
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m̃1(1) =

(
0.6906
0.5948

)
and m̃2(β) = m̃2(1) =

(
0.0911
0.2267

)
. Substituting m̃1(1), m̃2(1)

into (4.29) and (4.30), respectively, we obtain the probability of ruin due to a claim from
class k,

(5.1) ψ1(u) = −0.0214e−1.9087u−0.2504e−0.7394u+0.8202e−0.1222u+0.3333e−u, u ≥ 0,

(5.2) ψ2(u) = 0.0040e−1.9087u − 0.0303e−0.7394u + 0.0958e−0.1222u, u ≥ 0.

Thus, in view of ψ(u) = ψ1(u) + ψ2(u), we can obtain the probability of ruin ψ(u).
Figure 1 shows the probabilities of ruin ψ1(u), ψ2(u) and ψ(u) for different values of
u ∈ [0, 10].
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Figure 1. Ruin probabilities for different values of u ∈ [0, 10].

6. Concluding remarks
In present paper, we investigate the expected discounted penalty functions in a risk

model involving two independent classes of risks with stochastic income, in which the
claim number processes are independent Poisson and generalized Erlang(n) processes,
respectively. Namely, we extend the model in [13] by assuming that the premium income
arrival process is a Poisson process. The integro-differential equations for the expected
discounted penalty functions are established. By aid of Dickson-Hipp operator and di-
vided difference, the Laplace transforms for the expected discounted penalty functions
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are obtained, and explicit expressions are derived when the claim amount distributions
belong to the rational family.

The results in our paper can be extended. For example, the premium income ar-
rival process may be a renewal process, the model can also be perturbed by diffusion.
We remark that it is very challenging to obtain closed form solutions for the expected
discounted penalty functions if we move away from the exponential assumption for the
premium sizes. Of course, we can find the solutions numerically for some complicated
premium size distributions.
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1. Introduction
A lot of work has been done for the estimation of finite population mean using auxiliary

information for improving the efficiency of the estimators. Das and Tripathi (1980, 1981),
Uphadhyaya and Singh (1999), Singh (2004), Sisodia and Dwivedi (1981) proposed ratio
estimator using coefficient of variation of an auxiliary variable. Kadilar and Cingi (2005)
suggested ratio estimators in stratified random sampling. In the same way, Kadilar and
Cingi (2006) proposed an improvement in estimating the population mean by using the
correlation coefficient. Khan and Shabbir (2013) proposed a ratio-type estimator for the
estimation of population variance using the knowledge of quartiles and their functions
as auxiliary information. They proposed different modified estimators for the estimation
of finite population mean using maximum and minimum values. Recently Hossain and
Khan (2014) worked on the estimation of population mean using maximum and minimum
values under simple random sampling by incorporating the knowledge of two auxiliary
variables.

Let us consider a finite population of size N of different units U = {U1, U2, U3,
....., UN}. Let y and x be the study and the auxiliary variable with corresponding values
yi and xi respectively for the i-th unit i = {1, 2, 3, ...., N} defined on a finite population
U . Let Y = (1/N)

∑N
i=1 yi and X = (1/N)

∑N
i=1 xi be the population means of the

study and the auxiliary variable, respectively. Also S2
y = (1/N − 1)

∑N
i=1(yi − Y )2 and

S2
x = (1/N − 1)

∑N
i=1(xi − X)2 be the corresponding population mean square error of

the study and the auxiliary variable respectively, and let Cy = Sy/Y and Cx = Sx/X
be the coefficients of variation of the study and the auxiliary variable respectively, and
ρyx = Syx/SySx be the population correlation coefficient between x and y.

In order to estimate the unknown population parameters we take a random sample
of size n units from the finite population U by using simple random sample without
replacement. Let y = (1/n)

∑n
i=1 yi and x = (1/n)

∑n
i=1 xi be the corresponding sample

means of the study and the auxiliary variable respectively, and their corresponding sample
variances are Ŝ2

y = (1/n−1)
∑n

i=1(yi−y)
2 and Ŝ2

x = (1/n−1)
∑n

i=1(xi−x)
2 respectively.

When there is no auxiliary information the usual unbiased estimator for the population
mean of the study variable is:

(1.1) y =

∑n
i=1 yi

n

The variance of the estimator y is given by:

(1.2) var (y) = θ S2
y , where θ =

1

n
− 1

N
.

In many populations there exist some large (ymax) or small (ymin) values and to
estimate the population parameters without considering this information is very sensitive.
In either case the result will be overestimated or underestimated. In order to handle this
situation Sarndal (1972) suggested the following unbiased estimator for the assessment
of finite population mean:

(1.3) ys =


y + c if sample contains ymin but not ymax

y − c if sample contains ymax but not ymin

y for all other samples,

were c is a constant whose value is to be found for minimum variance.
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The minimum variance of the estimator ys up to first order of approximation is given
as under:

(1.4) var (ys)min = var (y)− θ(ymax − ymin)
2

2(N − 1)
,

where the optimum value of copt is

copt =
(ymax − ymin)

2n
.

The classical ratio estimator for finding the population mean of the study variable is
given by:

(1.5) Ŷ R = y
X

x

The bias and mean square errors of the estimator Ŷ R up to first order of approximation
are given by:

(1.6) Bias
(
Ŷ R

)
=

θ

X
(RS2

x − Syx)

(1.7) MSE
(
Ŷ R

)
= θ(S2

y +R2S2
x − 2RSyx)

Similarly, Sisodid and Dwivedi (1981) suggested the following ratio estimator using
the knowledge of coefficient of variation of the auxiliary variable:

(1.8) Ŷ SD = y
(X + Cx

x+ Cx

)
The bias and mean square errors of the estimator Ŷ SD up to first order of approxi-

mation are as follows:

(1.9) Bias
(
Ŷ SD

)
=

θ α1

Y
(Rα1S

2
x − Syx),

(1.10) MSE
(
Ŷ SD

)
= θ(S2

y + α2
1S

2
x − 2α1Syx), where α1 =

Y

X + Cx

.

2. The proposed class of estimators
On the lines of Sarndal (1972), we propose a class of ratio-type estimators for the

estimation of finite population mean using knowledge of the coefficient of variation and
coefficient of correlation of an auxiliary variable. Usually when the correlation between
the study variable (y) and the auxiliary variable (x) is positive, then the selection of
the larger value of the auxiliary variable (x), the larger value of study variable (y) is to
be expected, and the smaller the value of auxiliary variable (x), the smaller the value
of study variable (y). Using such type of information, we propose the following class of
estimators given by:

(2.1) Ŷ P1 = yc1

( X + Cx

xc2 + Cx

)
,

(2.2) Ŷ P2 = yc1

( X + ρyx
xc2 + ρyx

)
,

(2.3) Ŷ P3 = yc1

( XCx + ρyx
xc2Cx + ρyx

)
,
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(2.4) Ŷ P4 = yc1

( Xρyx + Cx

xc2ρyx + Cx

)
,

where (yc1 = y + c1, xc2 = x+ c2), also c1 and c2 are unknown constants.

To obtain the properties of Ŷ Pi in terms of Bias and Mean square error, we define the
following relative error terms and their expectations:

ζ0 =
yc1 − Y
Y

, ζ1 =
xc2 −X

X
, such that E(ζ0) = E(ζ1) = 0,

Also,

E
(
ζ20

)
=

θ

Y
2

(
S2
y−

2nc1
N − 1

(ymax−ymin−nc1)
)
, E

(
ζ21

)
=

θ

X
2

(
S2
x−

2nc2
N − 1

(xmax−xmin−nc2)
)

and E(ζ0ζ1) =
θ

Y X

(
Syx −

n

N − 1
(c2(ymax − ymin) + c1(xmax − xmin)− 2nc1c2)

)
.

Where θ =
1

n
− 1

N
, R =

Y

X
, αP1 =

X

X + Cx

, αP2 =
X

X + ρyx
, αP3 =

XCx

XCx + ρyx
,

αP4 =
Xρyx

Xρyx + Cx

, kP1 =
Y

X + Cx

, kP2 =
Y

X + ρyx
, kP3 =

Y Cx

XCx + ρyx

and kP4 =
Y ρyx

Xρyx + Cx

.

Rewriting Ŷ Pi in terms of ζi’s, we have

Ŷ Pi = Y
(
1 + ζ0

)(
1 + αPiζ1

)−1

,

where Ŷ Pi represent the proposed class of estimators for i=1, 2, 3, 4.

Expanding the right hand side of the equation given above and including terms up to
second powers of ζi’s i.e., up to first order of approximation, we have:

(2.5) Ŷ Pi − Y = Y
(
ζ0 − αPiζ1 + α2

Piζ
2
1 − αPiζ0ζ1

)
Taking expectation on both sides of (2.5), we get bias up to first order of approximation

which is given as:

Bias(Ŷ Pi) =
θ kPi

Y

[
kPi

(
S2
x −

2nc2
N − 1

(xmax − xmin − nc2)
)
− Syx

+
n

N − 1
(c2(ymax − ymin) + c1(xmax − xmin)− 2nc1c2)

]
(2.6)

On squaring both sides of (2.5), and keeping ζi’s powers up to first order of approxi-
mation, we get:

(2.7)
(
Ŷ Pi − Y

)2
= Y

2
(
ζ20 + α2

Pi
ζ21 − 2αPiζ0ζ1

)
Taking expectation on both sides of (2.7), we get mean square error up to first order

of approximation, given as under:

MSE
(
Ŷ Pi

)
= θ

[(
S2
y + k2Pi

S2
x − 2kPiSyx

)
− 2n

N − 1

{
(c1 − c2kPi)((ymax − ymin)

−n(c1 − c2kPi)− kPi(xmax − xmin))
}]

(2.8)
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The optimum values of c1 and c2 are given in the following lines:

(2.9)


c1 = (ymax−ymin)

2n

c2 = (xmax−xmin)
2n

On substituting the optimum value of c1 and c2 in (2.8), we get the minimum mean
square error of the proposed estimators as follows:

MSE
(
Ŷ Pi

)
min

= θ
[(
S2
y + k2Pi

S2
x − 2kPiSyx

)
− 1

2(N − 1)

(
(ymax − ymin)− kPi(xmax − xmin)

)2]
(2.10)

3. Comparison of estimators
In this section, we compare the proposed class of estimators with other existing esti-

mators and some of their efficiency comparison conditions have been carried out under
which the proposed class of estimators perform better than the other existing estimators
discussed in the literature above.

(i) By (1.2) and (2.10),[
MSE (y) − MSE (Ŷ Pi)min

]
≥ 0, if[ 1

2(N − 1)

{
(ymax − ymin)− kPi(xmax − xmin)

}2

− k2Pi
S2
x + 2kPiSyx

]
≥ 0.

(ii) By (1.4) and (2.10),[
MSE (ys) − MSE (Ŷ Pi)min

]
≥ 0, if[

kPi

( (xmax − xmin)
2

2(N − 1)
− S2

x

)
−
( (ymax − ymin)(xmax − xmin)

N − 1
− 2Syx

)]
≥ 0.

(iii) By (1.7) and (2.10),[
MSE (Ŷ R) − MSE (Ŷ Pi)min

]
≥ 0, if[ 1

2(N − 1)

(
(ymax − ymin)− kPi(xmax − xmin)

)2
+ S2

x(R− kPi)(R+ kPi − 2 δ)
]
≥ 0.

(iv) By (1.10) and (2.10),[
MSE (Ŷ SD) − MSE (Ŷ Pi)min

]
≥ 0, if[ 1

2(N − 1)

(
(ymax − ymin)− kPi(xmax − xmin)

)2
+ S2

x(Rα1 − kPi)(Rα1 + kPi − 2δ)
]
≥ 0.

Where

δ =
ρyxSy

Sx
.
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4. Numerical illustration
In this section, we illustrate the performance of the proposed class of estimators in

comparison with various other existing estimators through three natural populations.
The description and the necessary data statistics are given by:

Population-1: [Source: Singh and Mangat (1996), p.193]

Y : be the milk yield in kg after new food, and

X: be the yield in kg before new yield.

N = 27, n = 12, X = 10.4111, Y = 11.2519, ymax = 14.8, ymin = 7.9, xmax = 14.5,

xmin = 6.5, S2
y = 4.103 , S2

x = 4.931, Syx = 4.454, ρyx = 0.990.

Population-2: [Source: Murthy (1967), p.399]

Y : be the area under wheat crop in 1964, and

X: be the area under wheat crop in 1963.

N = 34, n = 12, X = 208.882, Y = 199.441, ymax = 634, ymin = 6, xmax = 564,

xmin = 5, S2
y = 22564.56, S2

x = 22652.05, Syx = 22158.05, ρyx = 0.980.

Population-3: [Source: Cochran (1977), p.152]

Y : be the population size in 1930 (in 1000), and

X: be the population size in 1920 (in 1000).

N = 49, n = 12, X = 103.1429, Y = 127.7959, ymax = 634, ymin = 46, xmax = 507,

xmin = 2, S2
y = 15158.83, S2

x = 10900.42, Syx = 12619.78, ρyx = 0.98.

The mean squared error of the proposed class and the existing estimators are shown
in Table-1.
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For the percent relative efficiencies (PREs) of the proposed class and the existing
estimators, we use the following expression for efficiency comparison. The results are,
then, shown in Table-2.

PRE
(
Ŷ g, y

)
=

MSE (y)

MSE
(
Ŷ g

) × 100, where g = S, R, SD, P1, P2, P3 and P4.
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5. Conclusion
In this study, we have developed some ratio-type estimators under maximum and

minimum values using knowledge of the coefficient of variation and coefficient of cor-
relation of the auxiliary variable. We have found some theoretical possibilities under
which the proposed class of estimators have smaller mean squared errors than the usual
unbiased estimator; the classical ratio estimator; and the other competing estimators
suggested by statisticians. Theoretical results are also verified with the help of three
natural populations and their statistics are shown in table 1 and table 2, which clearly
indicates that the proposed estimators have smaller mean squared errors and larger per-
cent relative efficiency than the other estimators discussed in the literature. Thus the
proposed estimators under maximum and minimum values may be preferred over the
existing estimators for the use of practical applications.
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to xα−1 (1− x)β−1 (1 + ξx)−γ , 0 < x < 1 arises in connection with the
prior distribution of the parameter ρ (0 < ρ < 1) representing traffic
intensity in aM/M/1 queue system. In this article, we define and study
a multivariate generalization of this distribution and derive some of its
properties like marginal densities, joint moments, and factorizations. A
data application is given.

2000 AMS Classification: Primary 33E99; Secondary 62H99.

Keywords: Beta function; Dirichlet function; Gamma function; Gauss hyper-
geometric function; Liouville integral; Multivariate; Transformation.

Received 15/11/2013 : Accepted 01/09/2014 Doi : 10.15672/HJMS.2014277478

1. Introduction
A random variable X is said to have a Gauss hypergeometric distribution with

parameters α > 0, β > 0, −∞ < γ < ∞ and ξ > −1, denoted by X ∼ GH(α, β, γ, ξ), if
its probability density function (p.d.f.) is given by

(1.1) fGH(x;α, β, γ, ξ) = C(α, β, γ, ξ)
xα−1(1− x)β−1

(1 + ξx)γ
, 0 < x < 1,

where the normalizing constant C(α, β, γ, ξ) is given by

(1.2) C(α, β, γ, ξ) = [B(α, β) 2F1(γ, α;α+ β;−ξ)]−1,
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with B(α, β) being the beta function is defined by

B(α, β) =
Γ(α)Γ(β)

Γ(α+ β)
,

and 2F1 is the Gauss hypergeometric function (Luke [13]). Note that the Gauss hyperge-
ometric function 2F1 in (1.2) can be expanded in series form if −1 < ξ < 1. If ξ > 1, then
the function can be suitably transformed such that the absolute value of its argument is
less than one, see (2.5).

The above distribution was suggested by Armero and Bayarri [1] in connection with
the prior distribution of the parameter ρ, 0 < ρ < 1 representing the traffic intensity
in a M/M/1 queueing system. A brief introduction of this distribution is given in the
encyclopedic work of Johnson, Kotz and Balakrishnan [10, p. 253]. In the context of
Bayesian analysis of unreported Poisson count data, while deriving the marginal posterior
distribution of the reporting probability p, Fader and Hardie [5] have shown that q = 1−p
has a Gauss hypergeometric distribution. The Gauss hypergeometric distribution has also
been used by Dauxois [4] to introduce conjugate priors in the Bayesian inference for linear
growth birth and death processes. Sarabia and Castillo [21] have pointed out that this
distribution is conjugate prior for the binomial distribution.

When either γ or ξ equals to zero, the Gauss hypergeometric p.d.f. reduces to a beta
type 1 p.d.f. given by (Johnson, Kotz and Balakrishnan [10]),

(1.3) fB1(x;α, β) =
xα−1(1− x)β−1

B(α, β)
, 0 < x < 1.

Further, for γ = α + β and ξ = 1 the Gauss hypergeometric distribution simplifies to a
beta type 3 distribution given by the p.d.f. (Cardeño, Nagar and Sánchez [3], Sánchez
and Nagar [20]),

(1.4) fB3(x;α, β) =
2αxα−1(1− x)β−1

B(α, β)(1 + x)α+β
, 0 < x < 1.

The matrix variate generalizations of beta type 1 and beta type 3 distributions have been
defined and studied extensively. For example, see Gupta and Nagar [6, 7]. For γ = α+β
and ξ = −(1− λ) the GH distribution slides to a three parameter generalized beta type
1 distribution (Libby and Novic [12], Pham-Gia and Duong [19], Nadarajah [15], Nagar
and Rada-Mora [17]) defined by the p.d.f.

(1.5) fGB1(x;α, β;λ) =
λαxα−1(1− x)β−1

B(α, β)[1− (1− λ)x]α+β
, 0 < x < 1,

where α > 0 and β > 0.
In this article, we propose a multivariate generalization of the Gauss hypergeometric

distribution which is a new members of the Liouville family of distributions. We define
the multivariate generalization of (1.1) and study some of its properties such as marginal
p.d.f.s, joint moments, variance and covariances. We also derive the distribution of
partial sums of random variables jointly distributed as multivariate Gauss hypergeometric
and several results on factorizations in terms of known distributions. Finally, a data
application of the multivariate Gauss hypergeometric p.d.f. is illustrated.

Multivariate Liouville family of distributions was proposed by Marshall and Olkin [14].
Sivazlian [22] introduced Liouville distributions as generalizations of gamma and Dirichlet
distributions. The Dirichlet and Liouville distributions arise in a variety of context
including Bayesian analysis, modeling of multivariate data, order statistics, limit laws,
multivariate analysis, reliability theory and stochastic processes. These distributions have
been widely used in geology, biology, chemistry, forensic science, and statistical genetics.
A comprehensive account of some applications and other aspects of these distributions
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can be found in Gupta and Song [9], Gupta and Richards [8], Marshall and Olkin [14],
Nagar, Bran-Cardona and Gupta [16], Nagar and Sepúlveda-Murillo [18], and Song and
Gupta [23].

2. Preliminaries
In this section we give definitions and results that will be used in subsequent sections.

Throughout this work we will use the Pochhammer symbol (a)n defined by (a)n =
a(a+ 1) · · · (a+ n− 1) = (a)n−1(a+ n− 1) for n = 1, 2, . . . , and (a)0 = 1.

The generalized hypergeometric function of scalar argument is defined by

(2.1) pFq (a1, . . . , ap; b1, . . . , bq;x) =

∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

xk

k!
,

where ai, i = 1, . . . , p; bj , j = 1, . . . , q are complex numbers with suitable restrictions
and x is a complex variable.

Conditions for the convergence of the series in (2.1) are available in the literature, see
Luke [13]. From (2.1) it is easy to see that

(2.2) 2F1(a, b; c;x) =

∞∑
k=0

(a)k(b)k
(c)k

xk

k!
, |x| < 1.

The integral representation of the Gauss hypergeometric function is

(2.3) 2F1(a, b; c;x) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1(1− xt)−b dt,

where Re(c) > Re(a) > 0 and | arg(1 − x)| < π. Note that, the series expansion for 2F1

given in (2.2) can be obtained by expanding (1−xt)−b, |xt| < 1, in (2.3) and integrating
t. Substituting x = 1 in (2.3) and integrating, we obtain

(2.4) 2F1(a, b; c; 1) =
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) , Re(c− a− b) > 0,

c 6= 0,−1,−2, . . . . The Gauss’ hypergeometric function 2F1 satisfies the following rela-
tions

2F1(a, b; c;x) = (1− x)−b 2F1(c− a, b; c;−x(1− x)−1)(2.5)

= (1− x)c−a−b 2F1(c− a, c− b; c;x).

Let f be a continuous function and Re(αi) > 0, i = 1, . . . , n, the integral

Dn(α1, . . . , αn; f) =

∫
· · ·
∫

x1>0,...,xn>0∑n
i=1 xi<1

n∏
i=1

xαi−1
i f

(
n∑
i=1

xi

)
n∏
i=1

dxi,

is known as the Liouville-Dirichlet integral. Making the substitution yi = xi/x, i =
1, . . . , n− 1 and x =

∑n
i=1 xi with the Jacobian J(x1, . . . , xn → y1, . . . , yn−1, x) = xn−1

and integrating, we obtain

(2.6) Dn(α1, . . . , αn; f) =

∏n
i=1 Γ(αi)

Γ
(∑n

i=1 αi
) ∫ 1

0

x
∑n

i=1 αi−1f(x) dx.

In particular, for f(x) = (1− x)β−1/(1 + ξx)γ , we obtain

(2.7) Dn (α1, . . . , αn; f) =

∏n
i=1 Γ(αi)Γ(β)

Γ
(∑n

i=1 αi + β
) 2F1

(
γ,

n∑
i=1

αi;

n∑
i=1

αi + β;−ξ

)
.
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3. The Density Function
We propose a multivariate generalization of the Gauss hypergeometric distribution as

follows.

3.1. Definition. The random variablesX1, . . . , Xn are said to have a multivariate Gauss
hypergeometric distribution with parameters αi > 0, i = 1, . . . , n, β > 0, −∞ < γ < ∞
and ξ > −1, denoted as (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ), if their joint p.d.f. is

C(α1, . . . , αn, β, γ, ξ)

∏n
i=1 x

αi−1
i

(
1−

∑n
i=1 xi

)β−1(
1 + ξ

∑n
i=1 xi

)γ ,(3.1)

xi > 0, i = 1, . . . , n,

n∑
i=1

xi < 1,

where C(α1, . . . , αn, β, γ, ξ) is the normalizing constant.

Since, the integration of the p.d.f. (3.1) over its support set is one, we have

C(α1, . . . , αn, β, γ, ξ)

∫
· · ·
∫

x1>0,...,xn>0∑n
i=1 xi<1

∏n
i=1 x

αi−1
i

(
1−

∑n
i=1 xi

)β−1(
1 + ξ

∑n
i=1 xi

)γ dx1 · · ·dxn = 1,

and, using (2.7), we obtain the expression for C(α1, . . . , αn, β, γ, ξ) as

(3.2) [C(α1, . . . , αn, β, γ, ξ)]
−1 =

∏n
i=1 Γ(αi)Γ(β)

Γ
(∑n

i=1 αi + β
) 2F1

(
n∑
i=1

αi, γ;

n∑
i=1

αi + β;−ξ

)
.

For specific values of the parameters, we obtain several known multivariate distribu-
tions. For ξ = 0 or γ = 0, the p.d.f. (3.1), takes the form of a Dirichlet type 1 p.d.f.,
(X1, . . . , Xn) ∼ D1(α1, . . . , αn;β), given by

Γ
(∑n

i=1 αi + β
)∏n

i=1 Γ(αi)Γ(β)

n∏
i=1

xαi−1
i

(
1−

n∑
i=1

xi

)β−1

, xi > 0, i = 1, . . . , n,

n∑
i=1

xi < 1.

For γ =
∑n
i=1 αi + β and ξ = 1, the p.d.f. (3.1) reduces to a Dirichlet type 3 p.d.f.,

(X1, . . . , Xn) ∼ D3(α1, . . . , αn;β), stated as

2
∑n

i=1 αiΓ
(∑n

i=1 αi + β
)∏n

i=1 Γ(αi)Γ(β)

∏n
i=1 x

αi−1
i

(
1−

∑n
i=1 xi

)β−1(
1 +

∑n
i=1 xi

)∑n
i=1 αi+β

,

xi > 0, i = 1, . . . , n,

n∑
i=1

xi < 1.

The Dirichlet type 1 and Dirichlet type 3 distributions have been studied extensively in
the literature. For example, see, Kotz, Balakrishnana and Johnson [11] and Cardeño,
Nagar and Sánchez [3].

In Bayesian probability theory, if the posterior distribution belongs to the same family
as the prior distribution, then the prior and posterior are called conjugate distributions,
and the prior is called a conjugate prior. In case of multinomial distribution, the usual
conjugate prior is the Dirichlet distribution. In the present case, if

p(s1, . . . , sn, f |x1, . . . , xn) =

(
s1 + · · ·+ sn + f

s1, . . . , sn, f

)
xs11 · · ·x

sn
n (1− x1 − · · · − xn)f

and

p(x1, . . . , xn) = C(α1, . . . , αn, β, γ, ξ)
xα1−1
1 · · ·xαn−1

n (1− x1 − · · · − xn)β−1

[1 + ξ(x1 + · · ·+ xn)]γ
,



937

where x1 > 0, . . . , xn > 0, and x1 + · · ·+ xn < 1, then

p(x1, . . . , xn|s1, . . . , sn, f) = C(α1 + s1, . . . , αn + sn, β + f, γ, ξ)

× xα1+s1−1
1 · · ·xαn+sn−1

n (1− x1 − · · · − xn)β+f−1

[1 + ξ(x1 + · · ·+ xn)]γ
.

Thus, the multivariate family of distributions considered in this article is conjugate prior
for the multinomial distribution.

Figure 1 gives some graphs of the p.d.f. define by (3.1) for different values of the
parameters. A wide range of shapes arise out of the multivariate Gauss hypergeometric
p.d.f.

In the next theorem, by applying a linear transformation to the multivariate Gauss
hypergeometric variables, we define a generalization of the Dirichlet type 2 distribution.

3.2. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). Define Y1, . . . , Yn as Yi =
Xi/(1−

∑n
i=1Xi), i = 1, . . . , n. Then, the p.d.f. of (Y1, . . . , Yn) is

C(α1, . . . , αn, β, γ, ξ)

∏n
i=1 y

αi−1
i

(
1 +

∑n
i=1 yi

)γ−∑n
i=1 αi−β[

1 + (1 + ξ)
∑n
i=1 yi

]γ ,

where yi > 0, i = 1, . . . , n and C(α1, . . . , αn, β, γ, ξ) is the normalizing constant given in
(3.2).

Proof. TransformingXi = Yi/(1+
∑n
i=1 Yi) with the Jacobian J(x1, . . . , xn → y1, . . . , yn)

= (1 +
∑n
i=1 yi)

−(n+1) in the p.d.f. (3.1), we obtain the desired result. �

Note that, if ξ = 0 or γ = 0, then the p.d.f. given in the above theorem slides to a
Dirichlet type 2 p.d.f. given by

Γ
(∑n

i=1 αi + β
)∏n

i=1 Γ(αi)Γ(β)

∏n
i=1 y

αi−1
i(

1 +
∑n
i=1 yi

)∑n
i=1 αi+β

, yi > 0, i = 1, . . . , n,

and in this case we write (Y1, . . . , Yn) ∼ D2(α1, . . . , αn;β).

4. Marginal Distribution
It is well known that if (X1, . . . , Xn) ∼ D1(α1, . . . , αn;β), then for 1 ≤ s ≤ n,

(X1, . . . , Xs) ∼ D1(α1, . . . , αs;β +
∑n
i=s+1 αi). In this section, we derive similar re-

sult for multivariate generalization of the Gauss hypergeometric distribution defined by
the p.d.f. (3.1).

4.1. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). Then, for 1 ≤ s ≤ n, the
joint p.d.f. of X1, . . . , Xs is

K1(α1, . . . , αn, β, γ, ξ)

∏s
i=1 x

αi−1
i

(
1−

∑s
i=1 xi

)β+∑n
i=s+1 αi−1(

1 + ξ
∑s
i=1 xi

)γ(4.1)

× 2F1

(
n∑

i=s+1

αi, γ;
n∑

i=s+1

αi + β;−
ξ
(
1−

∑s
i=1 xi

)
1 + ξ

∑s
i=1 xi

)
,

for x1 > 0, . . . , xs > 0 and
∑s
i=1 xi < 1, where

[K1(α1, . . . , αn, β, γ, ξ)]
−1

=

∏s
i=1 Γ(αi)Γ

(∑n
i=s+1 αi + β

)
Γ
(∑n

i=1 αi + β
) 2F1

(
n∑
i=1

αi, γ;

n∑
i=1

αi + β;−ξ

)
.
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Graph 1 Graph 2

α1 = 3, α2 = 1.2, β = 1, γ = −2, ξ = 0.5 α1 = 1, α2 = 1.2, β = 1.5, γ = −2, ξ = 0.5

Graph 3 Graph 4

α1 = 3, α2 = 1.2, β = 1.5, γ = −2, ξ = 0.5, α1 = 2, α2 = 1.2, β = 3.5, γ = −2, ξ = 0.5

Graph 5 Graph 6

α1 = 2, α2 = 1.1, β = 1.5, γ = −2, ξ = 0.5, α1 = 2, α2 = 2.1, β = 1.5, γ = −2, ξ = 0.5

Figure 1. p.d.f. of the multivariate Gauss hypergeometric distribution.
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Proof. To calculate the marginal p.d.f. of X1, . . . , Xs, we integrate (3.1) with respect to
xs+1, . . . , xn, to obtain

C(α1, . . . , αn, β, γ, ξ)

s∏
i=1

xαi−1
i

×
∫
· · ·
∫

xs+1>0,...,xn>0∑n
i=s+1 xi<1−

∑s
i=1 xi

∏n
i=s+1 x

αi−1
i (1−

∑s
i=1 xi −

∑n
i=s+1 xi)

β−1

(1 + ξ
∑s
i=1 xi + ξ

∑n
i=s+1 xi)

γ
dxs+1 · · ·dxn,

where 0 < xi, i = 1, . . . , s. Now, substituting zj = xj/(1−
∑s
i=1 xi) for j = s+ 1, . . . , n

with the Jacobian J(xs+1, . . . , xn → zs+1, . . . , zn) =
(
1−

∑s
i=1 xi

)n−s, the marginal
p.d.f. of X1, . . . , Xs is obtained as

C(α1, . . . , αn, β, γ, ξ)

∏s
i=1 x

αi−1
i

(
1−

∑s
i=1 xi

)β+∑n
i=s+1 αi−1(

1 + ξ
∑s
i=1 xi

)γ(4.2)

×
∫
· · ·
∫

zs+1>0,...,zn>0∑n
i=s+1 zi<1

∏n
i=s+1 z

αi−1
i (1−

∑n
i=s+1 zi)

β−1[
1 + ξ(1−

∑s
i=1 xi)

∑n
i=s+1 zi/(1 + ξ

∑s
i=1 xi)

]γ dzs+1 · · ·dzn.

Further, using the Liouville-Dirichlet integral (2.7), we can evaluate the above integral
as ∏n

i=s+1 Γ(αi)

Γ
(∑n

i=s+1 αi
) ∫ 1

0

z
∑n

i=s+1 αi−1(1− z)β−1[
1 + ξ

(
1−

∑s
i=1 xi

)
z/(1 + ξ

∑s
i=1 xi)

]γ dz

=

∏n
i=s+1 Γ(αi)Γ(β)

Γ
(∑n

i=s+1 αi + β
) 2F1

(
n∑

i=s+1

αi, γ;

n∑
i=s+1

αi + β;−
ξ
(
1−

∑s
i=1 xi

)
1 + ξ

∑s
i=1 xi

)
.

Finally, substituting this last expression, as well as the value of C(α1, . . . , αn, β, γ, ξ), in
(4.2) and simplifying, we obtain the desired result. �

Note that the marginal p.d.f. of X1, . . . , Xs, obtained in the previous theorem, differs
from the multivariate Gauss hypergeometric p.d.f. by a factor that involves the 2F1

function.

4.2. Corollary. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). Then, for k=1, . . . , n, the
p.d.f. of Xk is

K2(α1, . . . , αn, β, γ, ξ)
x
αk−1
k (1− xk)

β+
∑n

i(6=k)=1 αi−1

(1 + ξxk)γ

× 2F1

 n∑
i(6=k)=1

αi, γ;

n∑
i(6=k)=1

αi + β;−ξ (1− xk)

1 + ξxk

 ,

for 0 < xk < 1, where

[K2(α1, . . . , αn, β, γ, ξ)]
−1

=
Γ(αk)Γ(

∑n
i(6=k)=1 αi + β)

Γ
(∑n

i=1 αi + β
) 2F1

(
n∑
i=1

αi, γ;

n∑
i=1

αi + β;−ξ

)
.

4.3. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ) and for s = 1, . . . , n − 1,
define the random variables Yi = Xi/(1−

∑s
i=1Xi), i = s+ 1, . . . , n. Then, the p.d.f. of
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(Ys+1, . . . , Yn) is

K3(α1, . . . , αn, β, γ, ξ)

∏n
i=s+1 y

αi−1
i (1−

∑n
i=s+1 yi)

β−1(
1 + ξ

∑n
i=s+1 yi

)γ
× 2F1

(
s∑
i=1

αi, γ;

n∑
i=1

αi + β;−
ξ(1−

∑n
i=s+1 yi)

1 + ξ
∑n
i=s+1 yi

)
, yi > 0, i = 1, . . . , n,

where

[K3(α1, . . . , αn, β, γ, ξ)]
−1 =

∏n
i=s+1 Γ(αi)Γ(β)

Γ(
∑n
i=s+1 αi + β)

2F1

(
n∑
i=1

αi, γ;

n∑
i=1

αi + β;−ξ

)
.

Proof. Applying the transformation Yi = Xi/(1 −
∑s
i=1Xi), i = s + 1, . . . , n with the

Jacobian J(xs+1, . . . , xn → ys+1, . . . , yn) = (1 −
∑s
i=1 xi)

n−s in (3.1) and integrating
with respect to x1, . . . , xs, we obtain the p.d.f. of (Ys+1, . . . , Yn) as

C(α1, . . . , αn, β, γ, ξ)

∏n
i=s+1 y

αi−1
i (1−

∑n
i=s+1 yi)

β−1

(1 + ξ
∑n
i=s+1 yi)

γ

×
∫
· · ·
∫

x1>0,...,xs>0,∑s
i=1 xi<1

∏s
i=1 x

αi−1
i (1−

∑s
i=1 xi)

∑n
i=s+1 αi+β−1 dx1 · · ·dxs[

1 + ξ(1−
∑n
i=s+1 yi)

∑s
i=1 xi/(1 + ξ

∑n
i=s+1 yi)

]γ ,
where 0 < yi, i = s + 1, . . . , n and

∑n
i=s+1 yi < 1. Now, evaluating the above integral

using the Liouville-Dirichlet integral (2.7), we get

C(α1, . . . , αn, β, γ, ξ)

∏n
i=s+1 y

αi−1
i (1−

∑n
i=s+1 yi)

β−1

(1 + ξ
∑n
i=s+1 yi)

γ

×
∏s
i=1 Γ(αi)

Γ(
∑s
i=1 αi)

Γ(
∑s
i=1 αi)Γ(

∑n
i=s+1 αi + β)

Γ(
∑n
i=1 αi + β)

× 2F1

(
s∑
i=1

αi, γ;

n∑
i=1

αi + β;−
ξ(1−

∑n
i=s+1 yi)

1 + ξ
∑n
i=s+1 yi

)
.

Finally, substituting for C(α1, . . . , αn, β, γ, ξ) in the above expression and simplifying,
we obtain the desired result. �

The following theorem gives the distribution of partial sums of random variables whose
joint distribution is multivariate Gauss hypergeometric.

4.4. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ) and n1, . . . , n` be non-negative
integers such as

∑`
i=1 ni = n. Define, α(i) =

∑n∗i
j=n∗i−1+1 αi, n

∗
0 = 0, n∗i =

∑i
j=1 nj,

i = 1, . . . , `, Zj = Xj/X(i), j = n∗i−1 + 1, . . . , n∗i − 1 and X(i) =
∑n∗i
j=n∗i−1+1Xj,

i = 1, . . . , `. Then
(i) (X(1), . . . , X(`)) and (Zn∗i−1+1, . . . , Zn∗i−1), i = 1, . . . , `, are independently distributed,
(ii) (X(1), . . . , X(`)) ∼ GH(α(1), . . . , α(`), β, γ, ξ) and
(iii) (Zn∗i−1+1, . . . , Zn∗i−1) ∼ D1(αn∗i−1+1, . . . , αn∗i−1;αn∗i ), i = 1, . . . , `.

Proof. Transforming Zj = Xj/X(i) and X(i) =
∑n∗i
j=n∗i−1+1Xj , j = n∗i−1 + 1, . . . , n∗i − 1,

i = 1, . . . , `, with the Jacobian

J(x1, . . . , xn → z1, . . . , zn1−1, x(1), . . . , zn∗`−1
+1, . . . , zn∗

`
−1, x(`)) =

∏̀
i=1

xni−1
(i) ,
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in the p.d.f. (3.1), we obtain the joint p.d.f. of Zn∗i−1+1, . . . , Zn∗i−1, X(i), i = 1, . . . , `, as
being proportional to

(4.3)

∏`
i=1 x

α(i)−1

(i) (1−
∑`
i=1 x(i))

β−1

(1 + ξ
∑`
i=1 x(i))

γ

∏̀
i=1

 n∗i−1∏
j=n∗i−1+1

z
αj−1

j

1−
n∗i−1∑

j=n∗i−1+1

zj

αn∗
i
−1 ,

where x(i) > 0, i = 1, . . . , `,
∑`
i=1 x(i) < 1, zj > 0, j = n∗i−1 + 1, . . . , n∗i − 1,∑n∗i−1

j=n∗i−1+1zj<1, i = 1, . . . , `. From the factorization (4.3), it is clear that (X(1), . . . , X(`))

and (Zn∗i−1+1, . . . , Zn∗i−1), i = 1, . . . , `, are independently distributed. (X(1), . . . , X(`)) ∼
GH(α(1), . . . , α(`), β, γ, ξ) and (Zn∗i−1+1, . . . , Zn∗i−1) ∼ D1(αn∗i−1+1, . . . , αn∗i−1;αn∗i ),
i = 1, . . . , `. �

4.5. Corollary. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ) and define Zi = Xi/Z for
i = 1, . . . , n − 1 and Z =

∑n
j=1Xj. Then, (Z1, . . . , Zn−1) and Z are independent,

(Z1, . . . , Zn−1) ∼ D1 (α1, . . . , αn−1;αn) and Z ∼ GH(
∑n
i=1 αi, β, γ, ξ).

4.6. Corollary. If (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ), then∑s
i=1Xi∑n
j=1Xj

∼ B1

(
s∑
i=1

αi,

n∑
i=s+1

αi

)
, s < n.

4.7. Corollary. If (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ), then (X1, . . . , Xi+Xj , . . . , Xn)
∼ GH(α1, . . . , αi + αj , . . . , αn, β, γ, ξ).

4.8. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ) and n1, . . . , n` be non-negative
integers such as

∑`
i=1 ni = n. Define, α(i) =

∑n∗i
j=n∗i−1+1 αi, n

∗
0 = 0, n∗i =

∑i
j=1 nj,

i = 1, . . . , `, Wj = Xj/Xn∗i , j = n∗i−1 + 1, . . . , n∗i − 1 and X(i) =
∑n∗i
j=n∗i−1+1Xj,

i = 1, . . . , `. Then

(i) (X(1), . . . , X(`)) and (Wn∗i−1+1, . . . ,Wn∗i−1), i = 1, . . . , `, are independently dis-
tributed,

(ii) (X(1), . . . , X(`)) ∼ GH(α(1), . . . , α(`), β, γ, ξ) and
(iii) (Wn∗i−1+1, . . . ,Wn∗i−1) ∼ D2(αn∗i−1+1, . . . , αn∗i−1;αn∗i ), i = 1, . . . , `.

4.9. Corollary. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ) and define Wi = Xi/Xn for
i = 1, . . . , n − 1 and Z =

∑n
j=1Xj. Then, (W1, . . . , Wn−1) and Z are independent,

(Z1, . . . , Zn−1) ∼ D2 (α1, . . . , αn−1;αn) and Z ∼ GH(
∑n
i=1 αi, β, γ, ξ).

4.10. Corollary. If (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ), then∑s
i=1Xi∑n

j=s+1Xj
∼ B2

(
s∑
i=1

αi,

n∑
i=s+1

αi

)
, s < n.

5. Joint Moments
We derive the joint moments of random variables jointly distributed as multivariate

Gauss hypergeometric. These moments will facilitate us to compute several expected
values such as mean and variance.
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Using (3.1) and (3.2), the the joint moments of X1, . . . , Xn are obtained as

E(Xr1
1 · · ·X

rn
n ) =

C(α1, . . . , αn, β, γ, ξ)

C(α1 + r1, . . . , αn + rn, β, γ, ξ)

=
Γ
(∑n

i=1 αi + β
)∏n

i=1 Γ(αi + ri)

Γ
[∑n

i=1(αi + ri) + β
]∏n

i=1 Γ(αi)

× 2F1(
∑n
i=1(αi + ri), γ;

∑n
i=1(αi + ri) + β;−ξ)

2F1(
∑n
i=1 αi, γ;

∑n
i=1 αi + β;−ξ) .

By substituting appropriately in the above expression, the following expected values can
easily be obtained:

E(Xi) =
αi∑n

i=1 αi + β

2F1(
∑n
i=1 αi + 1, γ;

∑n
i=1 αi + β + 1;−ξ)

2F1(
∑n
i=1 αi, γ;

∑n
i=1 αi + β;−ξ) ,

E(X2
i ) =

αi(αi + 1)

(
∑n
i=1 αi + β)(

∑n
i=1 αi + β + 1)

× 2F1(
∑n
i=1 αi + 2, γ;

∑n
i=1 αi + β + 2;−ξ)

2F1(
∑n
i=1 αi, γ;

∑n
i=1 αi + β;−ξ) ,

Var(Xi) =
αi∑n

i=1 αi + β

[
(αi + 1) 2F1(

∑n
i=1 αi + 2, γ;

∑n
i=1 αi + β + 2;−ξ)

(
∑n
i=1 αi + β + 1) 2F1(

∑n
i=1 αi, γ;

∑n
i=1 αi + β;−ξ)

− αi∑n
i=1 αi + β

{
2F1(

∑n
i=1 αi + 1, γ;

∑n
i=1 αi + β + 1;−ξ)

2F1(
∑n
i=1 αi, γ;

∑n
i=1 αi + β;−ξ)

}2]
,

E(XiXj) =
αiαj

(
∑n
i=1 αi + β)(

∑n
i=1 αi + β + 1)

× 2F1(
∑n
i=1 αi + 2, γ;

∑n
i=1 αi + β + 2;−ξ)

2F1(
∑n
i=1 αi, γ;

∑n
i=1 αi + β;−ξ) , i 6= j,

and finally for i 6= j,

Cov(Xi, Xj) =
αiαj∑n
i=1αi+β

[
2F1(

∑n
i=1 αi + 2, γ;

∑n
i=1 αi + β + 2;−ξ)

(
∑n
i=1αi + β + 1)2F1(

∑n
i=1αi, γ;

∑n
i=1αi + β;−ξ)

− 1∑n
i=1 αi + β

{
2F1(

∑n
i=1 αi + 1, γ;

∑n
i=1 αi + β + 1;−ξ)

2F1(
∑n
i=1 αi, γ;

∑n
i=1 αi + β;−ξ)

}2]
.

Using the definition and the above expressions, one can calculate the correlation between
Xi and Xj .

6. Factorizations
In this section we give several factorizations of the multivariate Gauss hypergeometric

p.d.f..

6.1. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). For i = 1, . . . , n− 1 define
Yi =

∑i
j=1Xj/

∑i+1
j=1Xj and Yn =

∑n
j=1Xj. Then, the random variables Y1, . . . , Yn are

independent, Yi ∼ B1(
∑i
j=1 αj , αi+1), i = 1, . . . , n− 1 and Yn ∼ GH(

∑n
i=1 αi, β, γ, ξ).

Proof. From the transformation given in the theorem, we obtain x1 = yn
∏n−1
i=1 yi,

x2 = yn(1 − y1)
∏n−1
i=2 yi, . . . , xn−1 = yn(1 − yn−2)yn−1, and xn = yn(1 − yn−1). with
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the Jacobian J(x1, . . . , xn → y1, . . . , yn) =
∏n
i=2 y

i−1
i . Now, making appropriate substi-

tutions in the joint p.d.f. of X1, . . . , Xn, we obtain

C(α1, . . . , αn, β, γ, ξ)

(
yn

n−1∏
i=1

yi

)α1−1 n∏
j=2

[
yn(1− yj−1)

n−1∏
i=j

yi

]αj−1

× (1− yn)β−1

(1 + ξyn)γ

n∏
i=2

yi−1
i .

Further, writing

C(α1, . . . , αn, β, γ, ξ) =

n−1∏
j=1

[
B

(
j∑
i=1

αi, αj+1

)]−1

×

[
B

(
n∑
i=1

αi, β

)
2F1

(
n∑
i=1

αi, γ;

n∑
i=1

αi + β;−ξ

)]−1

,

the above expression is simplified asn−1∏
j=1

y
∑j

i=1 αi−1

j (1− yj)αj+1−1

B(
∑j
i=1 αi, αj+1)

C( n∑
i=1

αi, β, γ, ξ

)
y
∑n

i=1 αi−1
n (1− yn)β−1

(1 + ξyn)γ
,

where 0 < y1, . . . , yn < 1. Now, from the above factorization, we get the result. �

6.2. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). Define Zn =
∑n
j=1Xj

and Zi = Xi+1/
∑i
j=1Xj, for i = 1, . . . , n − 1. Then, Z1, . . . , Zn are independent,

Zi ∼ B2(αi+1,
∑i
j=1 αj), i = 1, . . . , n− 1 and Zn ∼ GH(

∑n
i=1 αi, β, γ, ξ).

Proof. This result is obtain from Theorem 6.1, by observing that Zi = (1 − Yi)/Yi,
for i = 1, . . . , n − 1, Zn = Yn and (1 − Yi)/Yi ∼ B2(αi+1,

∑i
j=1 αj), where Yi ∼

B1(
∑i
j=1 αj , αi+1). �

6.3. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). Define Wn =
∑n
j=1Xj

and Wi =
∑i
j=1Xj/Xi+1, for i = 1, . . . , n − 1. Then, W1, . . . , Wn, are independent,

Wi ∼ B2(
∑i
j=1 αj , αi+1) for i = 1, . . . , n− 1 and Wn ∼ GH(

∑n
i=1 αi, β, γ, ξ).

Proof. The result is obtained from Theorem 6.2 by taking into account thatWi = 1/Zi for
i = 1, . . . , n−1,Wn = Zn and 1/Zi ∼ B2(

∑i
j=1 αj , αi+1), where Zi ∼ B2(αi+1,

∑i
j=1 αj).

�

6.4. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). Define Yn =
∑n
j=1Xj

and for i = 1, . . . , n − 1 Yi = Xi/
∑n
j=iXj. Then, Y1, . . . , Yn are independent, Yi ∼

B1(αi,
∑n
j=i+1 αj), for i = 1, . . . , n− 1 and Yn ∼ GH(

∑n
i=1 αi, β, γ, ξ).

Proof. Making the substitution x1 = yny1, x2 = yny2(1− y1), . . . , xn−1 = ynyn−1 (1−
y1) · · · (1 − yn−2) and xn = yn(1 − y1) · · · (1 − yn−1) with the Jacobian
J(x1, . . . , xn → y1, . . . , yn) = yn−1

n

∏n−2
i=1 (1− yi)n−i−1 in (3.1), we obtain the joint p.d.f.

of Y1, . . . , Yn as

C(α1, . . . , αn, β, γ, ξ)

n−1∏
i=1

[
ynyi

i−1∏
j=1

(1− yj)

]αi−1 [
yn

n−1∏
j=1

(1− yj)

]αn−1

× (1− yn)β−1

(1 + ξyn)γ
yn−1
n

n−2∏
i=1

(1− yi)n−i−1,
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which can be re-written as[
n−1∏
i=1

yαi−1
i (1− yi)

∑n
j=i+1 αj−1

B(αi,
∑n
j=i+1 αj)

]
C

(
n∑
i=1

αi, β, γ, ξ

)
y
∑n

i=1 αi−1
n (1− yn)β−1

(1 + ξyn)γ
.

Now, the desired result follows from the above factorization. �

6.5. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). Define Zn =
∑n
j=1Xj

and Zi = Xi/
∑n
j=i+1Xj, for i = 1, . . . , n − 1. Then, Z1, . . . , Zn, are independent,

Zi ∼ B2(αi,
∑n
j=i+1 αj), for i = 1, . . . , n− 1 and Zn ∼ GH(

∑n
i=1 αi, β, γ, ξ).

Proof. The result is obtained from Theorem 6.4, by noting that Zi = Yi/(1− Yi) for i =
1, . . . , n− 1, Zn = Yn and Yi/(1− Yi) ∼ B2(αi,

∑n
j=i+1 αj) for Yi ∼ B1(αi,

∑n
j=i+1 αj).

�

6.6. Theorem. Let (X1, . . . , Xn) ∼ GH(α1, . . . , αn, β, γ, ξ). Define Wn =
∑n
j=1Xj

and Wi =
∑n
j=i+1Xj/Xi, for i = 1, . . . , n − 1. Then, W1, . . . , Wn are independent,

Wi ∼ B2(
∑n
j=i+1 αj , αi) for i = 1, . . . , n− 1 and Wn ∼ GH(

∑n
i=1 αi, β, γ, ξ).

Proof. This result follows from Theorem 6.5, by observing that Wi = 1/Zi for i =
1, . . . , n−1,Wn = Zn and 1/Zi ∼ B2(

∑n
j=i+1 αj , αi), where Zi ∼ B2(αi,

∑n
j=i+1 αj). �

7. Data application
Here, we illustrate the use of the multivariate Gauss hypergeometric p.d.f. We use

the following data taken from Aitchison [2]:
sand silt clay

1 0.775 0.195 0.030
2 0.719 0.249 0.032
3 0.507 0.361 0.132
4 0.522 0.409 0.066
5 0.700 0.265 0.035
6 0.665 0.322 0.013
7 0.431 0.553 0.016
8 0.534 0.368 0.098
9 0.155 0.544 0.301
10 0.317 0.415 0.268
11 0.657 0.278 0.065
12 0.704 0.290 0.006
13 0.174 0.536 0.290
14 0.106 0.698 0.196
15 0.382 0.431 0.187
16 0.108 0.527 0.365
17 0.184 0.507 0.309
18 0.046 0.474 0.480
19 0.156 0.504 0.340
20 0.319 0.451 0.230
21 0.095 0.535 0.370
22 0.171 0.480 0.349
23 0.105 0.554 0.341
24 0.048 0.547 0.410
25 0.026 0.452 0.522
26 0.114 0.527 0.359
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27 0.067 0.469 0.464
28 0.069 0.497 0.434
29 0.040 0.449 0.511
30 0.074 0.516 0.409
31 0.048 0.495 0.457
32 0.045 0.485 0.470
33 0.066 0.521 0.413
34 0.067 0.473 0.459
35 0.074 0.456 0.469
36 0.060 0.489 0.451
37 0.063 0.538 0.399
38 0.025 0.480 0.495
39 0.020 0.478 0.502

The data are on the sediment composition in an Arctic lake. The second column gives
relative frequencies of sand. The third column gives relative frequencies of silt. The
fourth column gives relative frequencies of clay.

We fitted the multivariate Gauss hypergeometric p.d.f. in (3.1) to the pairwise data
on (sand, clay) and (silt, clay). We also fitted the Dirichlet p.d.f., the particular case of
(3.1) for γ = 0 and ξ = 0. The method of maximum likelihood was used for the fitting.

For the first pair, we obtained the estimates:

• α̂1 = 6.574 × 10−1(1.330 × 10−1), α̂2 = 7.957 × 10−1(1.686 × 10−1), β̂ =

10.452(2.339), γ̂ = −11.033(2.818), ξ̂ = 24540.9(1288584) with logL = 60.7
for the bivariate Gauss hypergeometric p.d.f.

• α̂1 = 1.021(1.698 × 10−1), α̂2 = 1.299(2.186 × 10−1), β̂ = 2.319(4.004 × 10−1)
with logL = 39.5 for the Dirichlet p.d.f.

For the second pair, we obtained the estimates:

• α̂1 = 4.182(9.407× 10−1), α̂2 = 2.168(4.617× 10−1), β̂ = 7.802× 10−1(1.638×
10−1), γ̂ = 4.072(1.635), ξ̂ = 302.0(5031.1) with logL = 44.6 for the bivariate
Gauss hypergeometric p.d.f.

• α̂1 = 2.316(3.999× 10−1), α̂2 = 1.297(2.183× 10−1), β̂ = 1.019× 10−1(1.695×
10−1) with logL = 39.5 for the Dirichlet p.d.f.

Here, logL denotes the maximized log-likelihood value and the numbers within brackets
are the standard errors computed by inverting the observation information matrices.

It follows by the standard likelihood ratio test that the bivariate Gauss hypergeometric
distribution provides a significantly better fit for both data sets. Contours of the fitted
bivariate Gauss hypergeometric p.d.f.s are shown in Figures 2 and 3. Also shown in the
figures are the actual observed data. The fitted p.d.f.s do appear to capture the pattern
in the data.
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1. Introduction
In reliability theory the main parameter is the reliability of a system. The system

fails if the applied stress X is greater than strength Y , so R = P{X ≤ Y } is a measure
of system performance. Its estimation is one of the main goals and it has been widely
studied in statistical literature.

The problem was first introduced by Birnbaum [4]. The estimation of R when X
and Y are normally distributed has been considered by Downtown [7], Govidarajulu [9],
Woodward and Kelley [26] and Owen [20]. Tong [24],[25], studied the case when X and
Y were exponentially distributed. Exponential case with common location parameter
was examined by Baklizi and Quader El-Masri [2]. The gamma case was studied by Con-
stantine and Karson [5], Ismail et al. [12] and Constantine et al. [6]. Kundu and Gupta
considered generalized exponetial case [16]. Kakade et al. [14] studied the exponentiated
Gumbel case. Gompertz distribution was examined by Saraçoglu et al. [22], and the
generalized Pareto case was considered by Rezaei et al. [21]. Kundu and Gupta [17]
examined the case of Weibull distribution. Recently, the Topp-Leone distribution was
studied by Genç [8]. Most of results are collected in Kotz et al. [15].

The majority of papers in this area deal with continuous probability distributions.
However, there are some applications where stress and strength can have discrete dis-
tributions. For example, this is the case when the stress is the number of shocks the
product undergoes and the strength is the number of shocks the product can withstand.
Maiti [19] and Ahmad et al. [1] studied the geometric case. The negative binomial dis-
tribution was considered by Ivshin and Lumelskii [13] and Sathe and Dixit [23]. Belyaev
and Lumelskii [3] examined the Poisson case.

In all mentioned papers both stress and strength come from the same type of dis-
tribution. In this paper we focus on the case when X and Y follow different types of
distribution, namely geometric and Poisson distribution.

If we consider the stress to be the demand for some product, and the strength its
supply, which are discrete in nature, then it might be convenient to model them with
geometric and Poisson distributions.

Another motivating example can be the following. An employer is interviewing po-
tential candidates for a vacant position. The number of interviews he needs to conduct
until he finds suitable candidate follows geometric distribution, while the number of per-
sons that apply for that job during a certain period of time follows Poisson distribution.
Therefore R is the probability that the employer will find the right candidate.

Let X and Y be independent random variables with geometric G(p) and Poisson
P(λ) distribution, respectively, where probability p and positive value λ are unknown
parameters. Their probability mass functions are

P{X = x} = (1− p)x−1p, x = 1, 2, . . . ,

and

P{Y = y} =
e−λλy

y!
, y = 0, 1, . . . .
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Then the reliability of the system is

R = P{X ≤ Y } =

∞∑
y=1

y∑
x=1

P{X = x, Y = y}

=

∞∑
y=1

y∑
x=1

(1− p)x−1p
e−λλy

y!
=

∞∑
y=1

e−λλy

y!
(1− (1− p)y)

= 1− e−λ −
∞∑
y=1

e−λ(λ(1− p))y

y!

= 1− e−λ − e−λp
∞∑
y=1

e−λ(1−p)(λ(1− p))y

y!

= 1− e−λp.(1.1)

In the following sections we study various estimators of R. In section 2 the maximum
likelihood estimator (MLE) of R and its asymptotic distribution are derived. We use that
to construct asymptotic and bootstrap confidence intervals. The uniformly minimum
variance unbiased estimator (UMVUE) of R and UMVUE of its variance are obtained in
section 3. Bayes estimator of R with respect to mean square error is found in section 4.
In section 5 we perform a simulation study and compare the obtained estimators.

2. MLE of R and its Asymptotics
Let X = (X1, . . . , Xn) and Y = (Y1, . . . , Ym) be the samples from the distributions of

random variables X and Y . Therefore, the log-likelihood function of combined sample is

lnL(p, λ) =
( n∑
k=1

xk − n
)

ln(1− p) + n ln p−mλ+ lnλ

m∑
k=1

yk − ln

m∏
k=1

yk! .

Solving the likelihood equations with respect to p and λ we get that the MLEs for p and
λ are

p̃ =
1

X
, λ̃ = Y .

Using the invariance property of MLE, from (1.1) we get the MLE of R

(2.1) R̃ = 1− e−
Y
X .

2.1. Asymptotic Distribution. In the following two theorems we shall find the as-
ymptotic distributions of (p̃, λ̃) and R̃.

2.1. Theorem. Let the ratio n
m

converge to a positive number s when both n and m
tend to infinity. Then

(
√
n(p̃− p),

√
n(λ̃− λ))

D−→
n→∞

N2(0, J(p, λ)),

where

J(p, λ) =

[
p2(1− p) 0

0 sλ

]
.
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Proof. Since

−E
(∂2 lnL

∂p2

)
=

n

p2(1− p)
and

−E
(∂2 lnL

∂λ2

)
=
m

λ
,

from the asymptotic normality of maximum likelihood estimator (see [11]) it follows that
√
n(p̃− p) D−→

n→∞
N(0, p2(1− p))

and
√
m(λ̃− λ)

D−→
m→∞

N(0, λ).

Then
√
n(λ̃− λ)

D−→
n→∞

N(0, sλ).

From the independence of p̃ and λ̃ we get the statement of the theorem. 2

2.2. Theorem. Let the ratio n
m

converge to a positive number s when both n and m
tend to infinity. Then

√
n(R̃−R)

D→ N(0, e−2λpp2λ(λ(1− p) + s)).

Proof. In order to prove this theorem we shall use the method from [11]. Since
R = R(p, λ) is the transformation such that the matrix of partial derivatives

B =
[
∂R
∂p

∂R
∂λ

]
=
[
λe−λp pe−λp

]
has continuous elements and does not vanish in the neighbourhood of (p, λ), then we
have

√
n(R̃−R)

D→ N(0, BJB′).

Inserting the values of B and J we get the statement of the theorem. 2

Using this theorem we can construct the asymptotic confidence interval for R. Denote
σ̃2 = e−2λ̃p̃p̃2λ̃(λ̃(1− p̃) + s). Then the estimator of the variance of R̃ is

(2.2) Ṽ ar(R̃) =
σ̃2

n
.

The interval of confidence level 1− α is given by

(2.3) IR =

(
R̃−

z1−α
2
σ̃

√
n

, R̃+
z1−α

2
σ̃

√
n

)
,

where zγ is the γth quantile from standard normal distribution.

2.2. Bootstrap-t Confidence Interval. The confidence intervals based on the asymp-
totic distribution do not perform very well for small sample sizes. Therefore, we propose
a construction of the confidence interval based on bootstrap-t method (see [10]). The
algorithm is illustrated below.
Step 1: From initial samples x = (x1, x2, ..., xn) and y = (y1, y2, ..., ym) calculate MLEs

p̃ and λ̃.
Step 2: Use those estimates to generate bootstrap samples x∗ and y∗ and compute

bootstrap sample estimates R∗ of R using (2.1).
Step 3: Repeat step 2, N boot times.
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Step 4: For each R∗i , 1 ≤ i ≤ N , calculate the following statistic

T ∗i =
R∗i − R̃√
V ar(R∗)

,

where V ar(R∗) =

N∑
i=1

(R∗i−R∗)
2

N−1
and R∗ =

N∑
i=1

R∗i

N
.

Step 5: For sample of T ∗i obtained in step 4, calculate sample quantiles of order α
2
(tα

2
)

and 1− α
2
(t1−α

2
). Then, the bootstrap-t confidence interval is given by

(2.4)
(
R̃− t1−α

2

√
V ar(R∗), R̃− tα

2

√
V ar(R∗)

)
.

3. UMVUE of R

In this section we find the UMVUE of R, denoted by R̂, and UMVUE of the variance
of R̂.

The complete sufficient statistics for p and λ are TX =
n∑
j=1

Xj and TY =
m∑
j=1

Yj . The

statistic TX , as a sum of n independent identically distributed random variables with
geometric distribution, has negative binomial distribution with parameters n and p, and
the statistic TY , as a sum of m independent identically distributed random variables with
Poisson distribution, has Poisson distribution with parameter mλ.

An unbiased estimator for R is I{X1 ≤ Y1}. Then

E(I{X1 ≤ Y1}|TX = tX , TY = tY ) = P{X1 ≤ Y1|TX = tX , TY = tY }

=

P{X1 ≤ Y1,
n∑
j=1

Xj = tX ,
m∑
j=1

Yj = tY }

P{
n∑
j=1

Xj = tX ,
m∑
j=1

Yj = tY }

=

tY∑
y=1

M∑
x=1

P{X1 = x}P{Y1 = y}P{
n∑
j=2

Xj = tX − x}P{
m∑
j=2

Yj = tY − y}

P{
n∑
j=1

Xj = tX}P{
m∑
j=1

Yj = tY }

=

tY∑
y=1

M∑
x=1

(1− p)x−1p e
−λλy

y!

(
tX−x−1
n−2

)
pn−1(1− p)tX−x−n+1 e

−(m−1)λ((m−1)λ)tY −y

(tY −y)!(
tX−1
n−1

)
pn(1− p)tX−n e−mλ(mλ)

tY

tY !

=

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

M∑
x=1

(
tX−x−1
n−2

)
(
tX−1
n−1

)
mtY

,

where M = min{tX − n+ 1, y}.
Using the identity

n∑
s=0

(
s

c

)
=

(
n+ 1

c+ 1

)
,
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we get that

E(I{X1 ≤ Y1}|TX=tX , TY=tY ) =

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

M∑
x=1

(
tX−x−1
n−2

)
(
tX−1
n−1

)
mtY

=

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

tX−2∑
s=tX−M−1

(
s

n−2

)
(
tX−1
n−1

)
mtY

=

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

( tX−2∑
s=0

(
s

n−2

)
−
tX−M−2∑
s=0

(
s

n−2

))
(
tX−1
n−1

)
mtY

=

tY∑
y=1

(
tY
y

)
(m− 1)tY −y

((
tX−1
n−1

)
−
(
tX−M−1
n−1

))
(
tX−1
n−1

)
mtY

.

Using Rao-Blackwell and Lehmann-Sheffé theorems we get that the UMVUE of R is

(3.1) R̂ = 1−
(

1− 1

m

)TY
−

TY∑
y=1

(
TY
y

)(
TX−M−1
n−1

)(
TX−1
n−1

) (
1− 1

m

)TY −y ( 1

m

)y
.

This formula is valid for TY > 0. If TY = 0, then R̂ = 0.
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Now, in order to find the UMVUE of variance of R̂, we calculate the UMVUE of R2.
An unbiased estimator for R2 is I{X1 ≤ Y1, X2 ≤ Y2}. Then

E(I{X1 ≤ Y1, X2 ≤ Y2}|TX = tX , TY = tY )

=

P{X1 ≤ Y1, X2 ≤ Y2,
n∑
j=1

Xj = tX ,
m∑
j=1

Yj = tY }

P{
n∑
j=1

Xj = tX ,
m∑
j=1

Yj = tY }

=
1

P{
n∑
j=1

Xj = tX}P{
m∑
j=1

Yj = tY }

×
tY −1∑
y1=1

tY −y1∑
y2=1

M1∑
x1=1

M2∑
x2=1

P{X1 = x1}P{X2 = x2}P{Y1 = y1}P{Y2 = y2}

× P
{ n∑
j=3

Xj = tX − x1 − x2
}
P
{ m∑
j=3

Yj = tY − y1 − y2
}

=
1(

tX−1
n−1

)
pn(1− p)tX−n e−mλ(mλ)

tY

tY !

×
tY −1∑
y1=1

tY −y1∑
y2=1

M1∑
x1=1

M2∑
x2=1

p(1− p)x1−1p(1− p)x2−1 e
−λλy1

y1!

e−λλy2

y2!

×

(
tX − x1 − x2 − 1

n− 3

)
pn−2(1− p)tx−x1−x2−n+2 e

−(m−2)λ((m− 2)λ)tY −y1−y2

(tY − y1 − y2)!

=

tY −1∑
y1=1

tY −y1∑
y2=1

(
tY

y1+y2

)(
y1+y2
y1

)
(m− 2)tY −y1−y2

M1∑
x1=1

M2∑
x2=1

(
tX−x1−x2−1

n−3

)
(
tX−1
n−1

)
mtY

,(3.2)

where M1 = min{y1, tX − n + 1} and M2 = min{y2, tX − n + 2 − x1}. Using similar
technique as when finding R̂, we get that

M1∑
x1=1

M2∑
x2=1

(
tX − x1 − x2 − 1

n− 3

)
=

M1∑
x1=1

tX−x1−2∑
s=tX−x1−M2−1

(
s

n− 3

)

=

M1∑
x1=1

((
tX − x1 − 1

n− 2

)
−

(
tX − x1 −M2 − 1

n− 2

))

=

tX−2∑
s=0

(
s

n− 2

)
−
tX−M1−2∑

s=0

(
s

n− 2

)
−

M1∑
x1=1

(
tX − x1 −M2 − 1

n− 2

)

=

(
tX − 1

n− 1

)
−

(
tX −M1 − 1

n− 1

)
−

M1∑
x1=1

(
tX − x1 −M2 − 1

n− 2

)
.
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Inserting this into (3.2) and using Rao-Blackwell and Lehmann-Sheffé theorems we get
that the UMVUE of R2 is

R̂2 =
1(

TX−1
n−1

)
mTY

TY −1∑
y1=1

TY −y1∑
y2=1

(
TY

y1 + y2

)(
y1 + y2
y1

)
(m− 2)TY −y1−y2

×

((
TX−1

n− 1

)
−

(
TX −M1 − 1

n− 1

)
−

M1∑
x1=1

(
TX − x1 −M2 − 1

n− 2

))
.(3.3)

This formula is valid for TY > 1. If TY ≤ 1, then R̂2 = 0.
Finally, we obtain the UMVUE of variance of R̂ using the following theorem.

3.1. Theorem. The UMVUE of V ar(R̂) is given by

(3.4) V̂ ar(R̂) = (R̂)2 − R̂2,

where R̂ and R̂2 are given by (3.1) and (3.3).

The proof follows from general result obtained in [18] and [13].

4. Bayes Estimator of R

In this section we shall find the Bayes estimator of R with respect to mean square
error. Let us suppose that p and λ have conjugate prior distributions, beta B(a, b),
a, b ∈ N, and gamma Γ (α, β), α ∈ N, β > 0, with the following joint density:

π(p, λ) =
pa−1(1− p)b−1

B(a, b)

λα−1βαe−βλ

Γ(α)
, p ∈ (0, 1), λ > 0.

Then the joint posterior density given the sample (x,y), or, equivalently, given the suf-
ficient statistics (tX , tY ) is

π(p, λ|tX , tY ) = Kpa−1+n(1− p)tX−n+b−1λα−1+tY e−λ(β+m), p ∈ (0, 1), λ > 0,

where

K =

(∫ 1

0

∫ ∞
0

pa−1+n(1− p)tX−n+b−1λα−1+tY e−λ(β+m)dλ dp

)−1

is the proportionality constant.
Denote, for simplicity, A = a + n − 1, B = tX − n + b − 1, C = α − 1 + tY and

D = β +m. Since R = 1− e−λp, we get that p = − ln(1−R)
λ

. Using the transformation of
random variables (p, λ) to (R, λ) we get

π(r, λ|tX , tY ) = π
(
p(r, λ), λ(r, λ)|tX , tY

) ∣∣∣∣ ∂p
∂r

∂p
∂λ

∂λ
∂r

∂λ
∂λ

∣∣∣∣
= π

(
p(r, λ), λ(r, λ)|tX , tY

) ∣∣∣∣ 1
λ

1
1−r

ln(1−r)
λ2

0 1

∣∣∣∣
= K

(
− ln(1− r)

λ

)A(
1 +

ln(1− r)
λ

)B
λCe−λD

1

λ

1

1− r

= K (− ln(1− r))A
(

1 +
ln(1− r)

λ

)B
λC−A−1 e

−λD

1− r ,

r ∈ (0, 1), λ > − ln(1− r).
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Then the marginal posterior density of R is

πR(r|tX , tY ) = K

∞∫
− ln(1−r)

(− ln(1− r))A
B∑
j=0

(
B

j

)(
ln(1− r)

λ

)j
λC−A−1 e

−λD

1− r dλ

= K

B∑
j=0

(
B

j

)
(−1)j

(− ln(1− r))A+j

1− r

∞∫
− ln(1−r)

λC−A−j−1e−λDdλ

= K

B∑
j=0

(
B

j

)
(−1)j

(− ln(1− r))A+j

(1− r)DC−A−j

∞∫
−D ln(1−r)

tC−A−j−1e−tdt, r ∈ (0, 1).

The Bayes estimator Ř of R for mean square loss function is the posterior mean. After
some calculations (see Appendix) we obtain

(4.1) Ř = 1−K

I{C−A>0}

min{C−A−1,B}∑
j=0

W1 + I{0≤C−A≤B}W2 + I{C−A<B}

B∑
j=max{0,C−A+1}

W3

 ,
where

W1 = (−1)j
(
B

j

)
(C − 1)!(
C−1
A+j

) C−A−j−1∑
i=0

(
A+j+i

i

)
DC−A−j−i(D + 1)A+j+i+1

,

W2 = (−1)C−A−1

(
B

C −A

)
C!

[
lnD +

∞∑
i=1

(−1)i

i

(
Di

(
C + i

i

)
−

(
C

i

))]
,

W3 =

(
B

j

)
(C − 1)!

A−C+j∑
i=1

(−1)i+j+1 Di−1
(
C+i−1

i

)
(D + 1)C+i

(
A−C+j

i

) +
(−1)A−C+1

DC−A−j

×

(
B

j

)(
A+ j

C

)
C!

[
lnD +

∞∑
i=1

(−1)i

i

(
Di

(
A+ j + i

i

)
−

(
A+ j

i

))]
.

It is possible to generalize this estimator for real values of the hyperparametres, but
it would be much more complicated and not practical for presentation.

5. Simulation Study
In this section we perform a simulation study for various sample sizes and different

values of unknown parameters.
For fixed values of n, m, p and λ we do the following procedure. We choose a sample

and calculate the MLE and its variance using (2.1) and (2.2), and the UMVUE and its
variance using (3.1), (3.3) and (3.4). Since we do not know the prior distributions and
to get better comparison with other types of estimates, we obtain Bayes estimates using
non-informative Jeffreys’ priors where π(p) ∼ p−1(1 − p)−

1
2 and π(λ) ∼ λ−

1
2 . We find

the estimates from posterior distribution for R using Monte Carlo method with 5000
replicates.

We also calculate 95% asymptotic confidence interval using (2.3) and 95% bootstrap-t
confidence interval using (2.4) with N = 1000 boot times.

This procedure is repeated for 500 samples and the averages for each estimate are
calculated.

In table 1 we present point estimates for R and their standard errors. In table 2 we
present 95% asymptotic and bootstrap-t confidence intervals as well as 95% Bayes credible
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intervals based on a Monte Carlo method mentioned above. The coverage percentages of
these intervals (the percentage of intervals that contain true value of R) are also shown.

In table 1 we can notice that in most cases the UMVUE has the value closest to R as
expected due to its unbiasedness. However, its standard error is the largest. For most
values of R the standard error of Bayes estimate is the smallest, while for larger values
of R, the standard error of MLE has that property. In the last case (R = 0.7981), the
standard error of Bayes estimate is even larger than the UMVUE one.

From table 2 we can see that in almost all cases the asymptotic intervals have the
worst coverage percentages, which is expected because we have small sample sizes, while
Bayes credible intervals and bootstrap-t confidence intervals both perform very well.
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Table 1. Point estimates for R and their standard errors

samples parameters reliability MLE UMVUE Bayes
n m p λ R R̃ σ(R̃) R̂ σ̂(R̂) Ř σ(Ř)

10 15

0.5 0.5 0.2212 0.2226 0.0813 0.2176 0.0825 0.2133 0.0778
0.25 1 0.2212 0.2324 0.0742 0.2215 0.0746 0.2257 0.0719
0.3 1 0.2592 0.2634 0.0809 0.2527 0.0821 0.2552 0.0782
0.5 1 0.3935 0.3986 0.1003 0.3929 0.1047 0.3824 0.0966
0.8 1 0.5507 0.5398 0.1024 0.5454 0.1069 0.5146 0.1007
0.4 2 0.5507 0.5550 0.1045 0.5478 0.1106 0.5353 0.1023
0.67 1.5 0.6340 0.6415 0.0972 0.6343 0.1023 0.6162 0.0975
0.5 2 0.6340 0.6369 0.1011 0.6346 0.1067 0.6137 0.1006
0.8 1.5 0.6988 0.6918 0.0891 0.6987 0.0964 0.6648 0.0915
0.6 2 0.6988 0.7019 0.0927 0.7008 0.0982 0.6767 0.0945
0.8 2 0.7981 0.7868 0.0737 0.7940 0.1043 0.7611 0.0790

20 15

0.5 0.5 0.2212 0.2236 0.0762 0.2228 0.0774 0.2174 0.0735
0.25 1 0.2212 0.2229 0.0625 0.2202 0.0625 0.2190 0.0612
0.3 1 0.2592 0.2648 0.0706 0.2605 0.0712 0.2596 0.0689
0.5 1 0.3935 0.3914 0.0899 0.3921 0.0923 0.3818 0.0872
0.8 1 0.5507 0.5597 0.0970 0.5573 0.0998 0.5324 0.0949
0.4 2 0.5507 0.5561 0.0881 0.5547 0.0910 0.5436 0.0864
0.67 1.5 0.6340 0.6260 0.0895 0.6312 0.0920 0.6093 0.0884
0.5 2 0.6340 0.6374 0.0864 0.6392 0.0891 0.6226 0.0854
0.8 1.5 0.6988 0.6894 0.0834 0.6977 0.0848 0.6712 0.0835
0.6 2 0.6988 0.6975 0.0813 0.7021 0.0832 0.6812 0.0813
0.8 2 0.7981 0.7895 0.0668 0.7975 0.0668 0.7725 0.0688

20 20

0.5 0.5 0.2212 0.2256 0.0680 0.2240 0.0688 0.2200 0.0660
0.25 1 0.2212 0.2277 0.0579 0.2225 0.0580 0.2241 0.0569
0.3 1 0.2592 0.2665 0.0649 0.2616 0.0654 0.2617 0.0636
0.5 1 0.3935 0.3965 0.0817 0.3948 0.0836 0.3872 0.0796
0.8 1 0.5507 0.5449 0.0865 0.5500 0.0887 0.5297 0.0850
0.4 2 0.5507 0.5469 0.0823 0.5491 0.0848 0.5358 0.0809
0.67 1.5 0.6340 0.6350 0.0802 0.6352 0.0823 0.6201 0.0798
0.5 2 0.6340 0.6348 0.0798 0.6341 0.0822 0.6215 0.0793
0.8 1.5 0.6988 0.6951 0.0738 0.7010 0.0749 0.6791 0.0744
0.6 2 0.6988 0.6924 0.0751 0.6949 0.0770 0.6779 0.0754
0.8 2 0.7981 0.7960 0.0593 0.8018 0.0593 0.7809 0.0614

50 50

0.5 0.5 0.2212 0.2214 0.0432 0.2207 0.0434 0.2192 0.0427
0.25 1 0.2212 0.2226 0.0364 0.2205 0.0364 0.2212 0.0362
0.3 1 0.2592 0.2605 0.0410 0.2585 0.0411 0.2586 0.0406
0.5 1 0.3935 0.3960 0.0522 0.3953 0.0527 0.3923 0.0517
0.8 1 0.5507 0.5489 0.0552 0.5509 0.0558 0.5426 0.0548
0.4 2 0.5507 0.5494 0.0528 0.5483 0.0535 0.5449 0.0524
0.67 1.5 0.6340 0.6355 0.0513 0.6348 0.0518 0.6294 0.0512
0.5 2 0.6340 0.6327 0.0514 0.6338 0.0521 0.6273 0.0512
0.8 1.5 0.6988 0.6964 0.0472 0.6997 0.0475 0.6908 0.0474
0.6 2 0.6988 0.6952 0.0482 0.6962 0.0487 0.6892 0.0483
0.8 2 0.7981 0.7974 0.0379 0.7977 0.0379 0.7912 0.0385

6. Conclusion
In this paper we considered the estimation of the probability P{X ≤ Y } when X

and Y are two independent random variables from geometric and Poisson distribution
respectively. We determined MLE, UMVUE and Bayes point estimator. The asymptotic
and bootstrap-t confidence intervals were constructed.

A simulation study was performed. The obtained point estimates were compared and
in most cases UMVUEs have the smallest bias, while Bayes estimates have the smallest
standard error. Comparison of interval estimates was also done and we concluded that
bootstrap-t and Bayes intervals had notably higher coverage percentages than asymptotic
ones.
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Table 2. Interval estimates for R and their coverage percentages

samples parameters reliability asymptotic bootstrap Bayes
n m p λ R CI cov. CI cov. CI cov.

10 15

0.5 0.5 0.2212 (0.06, 0.38) 91.4 (0.09, 0.40) 93.2 (0.09, 0.39) 94.0
0.25 1 0.2212 (0.09, 0.38) 92.0 (0.12, 0.41) 93.4 (0.11, 0.38) 94.0
0.3 1 0.2592 (0.11, 0.42) 93.0 (0.14, 0.45) 95.2 (0.12, 0.42) 94.8
0.5 1 0.3935 (0.20, 0.60) 91.4 (0.22, 0.61) 93.8 (0.21, 0.58) 94.2
0.8 1 0.5507 (0.34, 0.74) 92.6 (0.32, 0.76) 91.6 (0.32, 0.71) 93.8
0.4 2 0.5507 (0.35, 0.76) 89.6 (0.36, 0.76) 93.2 (0.33, 0.73) 93.8
0.67 1.5 0.6340 (0.45, 0.83) 90.6 (0.44, 0.81) 94.8 (0.41, 0.79) 94.8
0.5 2 0.6340 (0.44, 0.83) 92.8 (0.44, 0.83) 96.4 (0.40, 0.79) 94.6
0.8 1.5 0.6988 (0.52, 0.87) 92.2 (0.50, 0.84) 94.6 (0.47, 0.83) 93.4
0.6 2 0.6988 (0.52, 0.88) 90.2 (0.51, 0.86) 94.2 (0.47, 0.84) 94.4
0.8 2 0.7981 (0.64, 0.93) 92.8 (0.62, 0.90) 94.0 (0.58, 0.89) 94.4

20 15

0.5 0.5 0.2212 (0.07, 0.37) 91.6 (0.09, 0.38) 93.0 (0.09, 0.38) 93.4
0.25 1 0.2212 (0.10, 0.35) 94.6 (0.12, 0.36) 95.2 (0.11, 0.35) 95.4
0.3 1 0.2592 (0.13, 0.40) 93.6 (0.14, 0.42) 93.8 (0.14, 0.41) 94.4
0.5 1 0.3935 (0.22, 0.57) 93.0 (0.22, 0.57) 94.8 (0.22, 0.56) 94.0
0.8 1 0.5507 (0.35, 0.73) 93.6 (0.33, 0.74) 92.0 (0.34, 0.71) 94.8
0.4 2 0.5507 (0.38, 0.73) 93.2 (0.39, 0.73) 95.0 (0.37, 0.71) 94.4
0.67 1.5 0.6340 (0.45, 0.80) 95.2 (0.44, 0.78) 97.4 (0.43, 0.77) 96.4
0.5 2 0.6340 (0.47, 0.81) 94.2 (0.46, 0.79) 95.6 (0.45, 0.78) 95.8
0.8 1.5 0.6988 (0.53, 0.85) 93.4 (0.50, 0.83) 94.2 (0.50, 0.82) 95.0
0.6 2 0.6988 (0.54, 0.86) 93.8 (0.52, 0.84) 95.6 (0.51, 0.83) 94.6
0.8 2 0.7981 (0.66, 0.92) 92.4 (0.63, 0.89) 93.0 (0.62, 0.89) 93.6

20 20

0.5 0.5 0.2212 (0.09, 0.36) 92.8 (0.10, 0.37) 94.0 (0.11, 0.36) 93.8
0.25 1 0.2212 (0.12, 0.34) 94.0 (0.13, 0.36) 93.8 (0.13, 0.35) 94.2
0.3 1 0.2592 (0.14, 0.39) 93.0 (0.16, 0.41) 92.4 (0.15, 0.40) 93.4
0.5 1 0.3935 (0.24, 0.56) 94.2 (0.24, 0.56) 95.2 (0.24, 0.55) 95.4
0.8 1 0.5507 (0.37, 0.71) 93.8 (0.36, 0.70) 95.0 (0.36, 0.69) 94.8
0.4 2 0.5507 (0.40, 0.71) 92.6 (0.39, 0.71) 93.8 (0.38, 0.69) 93.2
0.67 1.5 0.6340 (0.48, 0.79) 95.0 (0.47, 0.78) 95.8 (0.46, 0.77) 96.8
0.5 2 0.6340 (0.48, 0.79) 91.6 (0.47, 0.78) 93.2 (0.50, 0.77) 94.0
0.8 1.5 0.6988 (0.55, 0.84) 91.6 (0.53, 0.82) 93.0 (0.52, 0.81) 94.0
0.6 2 0.6988 (0.55, 0.84) 90.8 (0.53, 0.83) 93.4 (0.52, 0.81) 92.6
0.8 2 0.7981 (0.68, 0.91) 91.8 (0.66, 0.89) 94.6 (0.65, 0.89) 95.2

50 50

0.5 0.5 0.2212 (0.14, 0.31) 95.4 (0.14, 0.31) 95.8 (0.14, 0.31) 95.8
0.25 1 0.2212 (0.15, 0.30) 94.6 (0.16, 0.31) 95.0 (0.16, 0.30) 95.0
0.3 1 0.2592 (0.18, 0.34) 92.6 (0.19, 0.35) 94.2 (0.18, 0.34) 94.2
0.5 1 0.3935 (0.29, 0.50) 93.2 (0.30, 0.50) 94.2 (0.29, 0.50) 94.0
0.8 1 0.5507 (0.44, 0.66) 96.0 (0.44, 0.65) 95.2 (0.43, 0.65) 95.6
0.4 2 0.5507 (0.45, 0.65) 93.6 (0.45, 0.65) 94.8 (0.44, 0.65) 94.4
0.67 1.5 0.6340 (0.53, 0.74) 93.6 (0.53, 0.73) 93.4 (0.53, 0.73) 93.2
0.5 2 0.6340 (0.53, 0.73) 94.0 (0.53, 0.73) 95.4 (0.52, 0.72) 94.4
0.8 1.5 0.6988 (0.60, 0.79) 93.6 (0.60, 0.78) 94.0 (0.59, 0.78) 94.4
0.6 2 0.6988 (0.60, 0.79) 94.2 (0.60, 0.78) 94.2 (0.59, 0.78) 94.8
0.8 2 0.7981 (0.72, 0.87) 93.0 (0.72, 0.86) 93.6 (0.71, 0.86) 94.4

Appendix

Ř = E(R|tX , tY ) = 1− E(1−R|tX , tY ) = 1−
1∫

0

(1− r)πR(r|tX , tY )dr

= 1−
1∫

0

(1− r)K
B∑
j=0

(
B

j

)
(−1)j

(− ln(1− r))A+j

(1− r)DC−A−j

∞∫
−D ln(1−r)

tC−A−j−1e−tdtdr

= 1−K
B∑
j=0

(
B

j

)
(−1)j

DC−A−j

1∫
0

(− ln(1− r))A+j

∞∫
−D ln(1−r)

tC−A−j−1e−tdtdr

= 1−K
B∑
j=0

(
B

j

)
(−1)j

DC−A−j

∞∫
0

sA+je−s
∞∫

Ds

tC−A−j−1e−tdtds.(.1)
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We need to calculate the integral Lq(z) =
∞∫
z

tq−1e−tdt, z > 0, q ∈ Z. Depending on q we

have the following three possibilities:
(1) q > 0

Lq(z) = Γ(q, z) = (q − 1)!e−z
q−1∑
i=0

zi

i!
,

where Γ(q, z) is the incomplete gamma function.
(2) q = 0

Lq(z) = −Ei(−z) = −γ − ln z +

∞∑
i=1

(−1)i+1 zi

i · i! ,

where Ei(x) is the exponetial integral and γ is Euler’s constant.
(3) q < 0

Using integration by parts |q| times we get

Lq(z) = e−z
−q∑
i=1

(−1)i+1 z
i+q−1

(−q)! (−q − i)! +
(−1)−q

(−q)! L0(z).

Thus, the summands in (.1) can be expressed as(
B

j

)
(−1)j

DC−A−j

∞∫
0

sA+je−sLC−A−j(Ds)ds,

and depending on j, we have three types of summands:
(1) j < C −A

W1 =

(
B

j

)
(−1)j

DC−A−j

∞∫
0

sA+je−s(C −A− j − 1)!e−Ds
C−A−j−1∑

i=0

(Ds)i

i!
ds

= (−1)j
(
B

j

)
(C −A− j − 1)!

DC−A−j

C−A−j−1∑
i=0

Di

i!

∞∫
0

sA+j+ie−(D+1)sds

= (−1)j
(
B

j

)
(C − 1)!(
C−1
A+j

) C−A−j−1∑
i=0

(
A+j+i

i

)
DC−A−j−i(D + 1)A+j+i+1

.

This type of summand appears in (.1) whenever C −A > 0.
(2) j = C −A

W2 =

(
B

C−A

)
(−1)C−A

∞∫
0

sCe−s(−γ − ln(Ds) +

∞∑
i=1

(−1)i+1 (Ds)i

i · i! )ds

=

(
B

C−A

)
(−1)C−A−1

(
(γ + lnD)

∞∫
0

sCe−sds+

∞∫
0

ln s sCe−sds

+

∞∑
i=1

(−1)i
Di

i · i!

∞∫
0

sC+ie−sds

)

=

(
B

C−A

)
(−1)C−A−1

(
(γ + lnD)C! + ψ(C + 1)C!



962

+

∞∑
i=1

(−1)i
Di

i · i! (C + i)!

)

=

(
B

C−A

)
(−1)C−A−1

(
(γ + lnD)C! + C!

(
− γ −

∞∑
i=1

(−1)i

i

(
C

i

))

+

∞∑
i=1

(−1)i
Di

i · i! (C + i)!

)

= (−1)C−A−1

(
B

C−A

)
C!

[
lnD +

∞∑
i=1

(−1)i

i

(
Di

(
C+i

i

)
−

(
C

i

))]
,

where ψ(x) is digamma function.
This type of summand appears in (.1) whenever 0 ≤ C −A ≤ B.

(3) j > C −A

W3 =

(
B

j

)
(−1)j

DC−A−j

∞∫
0

sA+je−s

×
(
e−Ds

A−C+j∑
i=1

(−1)i+1 (Ds)C−A−j+i−1

(A− C + j)!
(A− C + j − i)!

+
(−1)A−C+j

(A− C + j)!

(
− γ − ln(Ds) +

∞∑
i=1

(−1)i+1 (Ds)i

i · i!

))
ds

=

(
B

j

)
A−C+j∑
i=1

(−1)i+j+1Di−1(A− C + j − i)!
(A− C + j)!

×
∞∫
0

sC+i−1e−(D+1)sds+

(
B

j

)
(−1)A−C+1

(A− C + j)!

1

DC−A−j

×
(

(γ + lnD)

∞∫
0

sA+je−sds+

∞∫
0

ln s sA+je−sds

+

∞∑
i=1

(−1)i
Di

i · i!

∞∫
0

sA+j+ie−sds

)

=

(
B

j

)
A−C+j∑
i=1

(−1)i+j+1Di−1(A− C + j − i)!
(A− C + j)!

(C + i− 1)!

(D + 1)C+i

+

(
B

j

)
(−1)A−C+1

(A− C + j)!

1

DC−A−j

(
(γ + lnD)(A+ j)!

+ ψ(A+ j + 1)(A+ j)! +

∞∑
i=1

(−1)i
Di

i · i! (A+ j + i)!

)

=

(
B

j

)
(C − 1)!

A−C+j∑
i=1

(−1)i+j+1 Di−1
(
C+i−1

i

)
(D + 1)C+i

(
A−C+j

i

) +
(−1)A−C+1

DC−A−j

×

(
B

j

)(
A+ j

C

)
C!

[
lnD +

∞∑
i=1

(−1)i

i

(
Di

(
A+ j + i

i

)
−

(
A+ j

i

))]
.

This type of summand appears in (.1) whenever C −A < B.
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Expressing (.1) via these summands we get (4.1).
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A multiset based forecasting model for fuzzy time
series
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Abstract
Since the pioneering work of Song and Chissom (1993a, b) on fuzzy
time series to model and forecast processes whose values are described
by linguistic values, a number of techniques have been proposed by
researchers for forecasting. In most of the realistic situation the du-
plicates of data are significant. This paper presents a new fuzzy time
series method, which employs multiset theory. The historical data of
daily average temperature in Taipei, Taiwan (central weather bureau
1996) are adopted to illustrate the forecasting process of the proposed
method.
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1. Introduction
Forecasting using fuzzy time series has been widely used in many activities. It

arises in forecasting the weather, earthquakes, stock fluctuations and any phenomenon
indexed by variables that change unpredictably in time. The classical time series methods
can not deal with forecasting problems in which the values of time series are linguistic
terms represented by fuzzy sets. Therefore in 1993, Song and Chissom proposed the
concepts of fuzzy time series and outlined equations and approximate reasoning based
on the fuzzy set theory introduced by Zadeh (1965). They also presented the models on
time - variant and time invariant fuzzy time series [21], [22], [23] to deal with forecasting
problems in which the historical data is represented by linguistic values. They asserted
that all traditional forecasting methods fail when the historical enrollment data are com-
posed of linguistic values.Sullivan and Woodall (1994) described a Markov model using
linguistic values directly but with membership function of the fuzzy approach replaced by
analogus probability function. Instead of complicated maximum - minimum composition
operations Chen (1996) used a simple arithmetic operation for time series forecasting.
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Hwang, Chen and Lee (1998) presented a method of forecasting enrollments using fuzzy
time series based on the concept that the variation of enrollment of this year is related
to the trend of the enrollments of the past years. Huarng (2001) pointed out that the
length of intervals will affect the forecasting accuracy rate and a proper choice of length
of intervals can greatly improve the forecasting result. He presented the distribution
based length approach and the average based length approach to deal with forecasting
problems based on the intervals with different lengths. In recent years researchers fo-
cused on the research topic of using fuzzy time series for handling forecasting problems.
A number of works have been reported on order one [2],[3],[7]-[9], [24],[25], high order
[4],[5],[10],[12]-[14],single factor [2], [3], [8], [10], [24],[25], two factor [5], [7], [12]-[14] and
multifactor [9] models. The formulation of fuzzy relation is one of the key issues affecting
forecasting results. Li and Chen [15] proposed a forecasting model based on the hidden
Markov model by enhancing Sullivan and woodall’s [24] work to allow handling of two
factor forecasting problems. In most of the realistic situation, we have to deal with col-
lection of objects in which repetition of elements is significant. In this situation bags
(multisets) are very useful structures. Multiset theory (Bag) was introduced by Cerf et
al. [1] in 1971.Peterson [19] and Yager [26] made contributions to it. Further study was
carried out by Jena et al. [11]. In this paper, we propose an efficient fuzzy time series
forecasting model based on the concept of characterization of Bag to form the intervals of
different length. Then based on the obtained intervals and the concept of list we present
a method to deal with the temperature prediction. The remainder of this paper is organ-
ised as follows. In section 2, the basic concept of fuzzy time series is briefly introduced.
In section 3, the concept of multiset is introduced and in section 4, the new forecasting
model based on multiset (Bag) is proposed. Section 5 presents a performance evaluation
of the model and a comparison of the results. The conclusions are discussed in section 6.

2. Fuzzy Time Series :
In the following, we briefly review some basic concepts of fuzzy time series and its

forecasting frame work. The definition of fuzzy time series used in this paper was first
proposed by Song and Chissom [20].

2.1. Definition. Let Y (t) (t = . . . , 0, 1, 2 . . . ), a subset of R, be the universe of discourse
on which fuzzy sets fi(t) (i = 1, 2 . . . ) are defined, and let F (t) be a collection of fi(t).
Then, F (t) is called a fuzzy time series on Y (t) (t = . . . , 0, 1, 2 . . . ).

Song and Chissom employed a fuzzy relational equation to develop their forecasting
model under the assumption that the observations at time t are dependent only upon
the accumulated results of the observation at previous times, which is defined as follows.

2.2. Definition. If, for any fj(t) ∈ F (t) , where j ∈ J , there exist an
fi(t − 1) ∈ F (t − 1), where i ∈ I, and a fuzzy relation Rij(t, t − 1), such that fj(t) =
fi(t − 1) ◦Rij(t, t − 1), let R(t, t − 1) =

⋃
i,j Rij(t, t − 1), where ” ∪ ” is the union op-

erator and "◦" is the composition. R(t, t − 1) is called the fuzzy relation between F (t)
and F (t − 1), which can be represented using the following fuzzy relational equation:
F (t) = F (t− 1) ◦R(t, t− 1).

2.3. Definition. If we suppose that F (t) is caused by F (t−1), F (t−2). . . or F (t−m)(m >
0), then the first - order model of F (t) can be expressed as F (t) = F (t−1)◦R(t, t−1)(or)
F (t) = (F (t− 1) ∪ F (t− 2) ∪ · · · ∪ F (t−m)) ◦R◦(t, t−m)
where ” ∪ ” is the union operator and ”o” is the composition. R(t, t − 1) is called

the fuzzy relation between F (t) and F (t− 1), and R◦(t, t− k) is the fuzzy relation that
joins F (t) with F (t − 1), F (t − 2) . . . , orF (t − k), where the subscript ” ◦ ” denotes the
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relationship ”or”. In the literature, the fuzzy relation Rij(t, t− 1) is usually represented
by a fuzzy logical relationship rule.

3. Multiset(Bag) :
In the following, we briefly review some basic concepts on Multiset (Bag) [11].

3.1. Definition. A collection of elements which may contain duplicates is called a Mul-
tiset (bag). Formally if X is a set of elements, a bag drawn from the set X is represented
by a function count B or CB defined as CB : X → N , where N represents the set of
non -negative integers. For each x ∈ X, CB(x) is a characteristic value of x in B and
indicates the number of occurrences of the elements x in B.

3.2. Definition. A list L drawn from a set X is represented by a position function PL
defined as PL : X → P (N), where P (N), denotes the power set of non-negative integers
subject to the following conditions:
1. PL(x) = ∅ iff x 6∈ L
2. PL(x) ∩ PL(y) = ∅ for all x 6= y ∈ L
3. P[ ] (x) = ∅ for each x ∈ X, where[ ] is an empty set.

3.3. Definition. For any finite list L drawn from X, we define |PL(x)| is the number of
occurrences of the element x in L.

Note : The notion of list can be considered as a generalization of notion of bag in the
sense that the order of occurrence of elements is unimportant in the case of bag whereas
incase of a list, it is significant.

3.4. Notation. Let M be a multiset from which x appearing n times in M and denoted
by x ∈ nM . The counts of the members of the domain and codomain vary in relation
to the counts of the x co-ordinate and y co-ordinate in (m|x, n|y)|k, where (m|x, n|y)|k
denotes that x is repeated m-times, y is repeated n-times and the pair (x, y) is repeated
k times. Let C1(x, y) and C2(x, y) be the count of the first and second co-ordinate in the
ordered pair (x, y) respectively.

3.5. Definition. Let M1 and M2 be two multisets drawn from a set X. Then the
Cartesian product of M1 and M2 is defined as
M1 ×M2 = {(m|x, n|y)|mn : x ∈ mM1, y ∈ nM2}.

3.6. Definition. A sub multiset R of M ×M is said to be a multiset relation on M
if every member (m|x, n|y) of R has a count C1(x, y). C2(x, y). We denote m|x related
to n|y by m|xRn|y .

3.7. Example. For example, let M1 = {1, 2, 2} and M2 = {3, 3, 3, 3}. M1 × M2 =
{(1|1, 4|3)|4, (2|2, 4|3)|8}. Consider (1|1, 4|3). C1(x, y) = 1 and C2(x, y) = 4. Then
(1|1, 4|3) has a count 4.

4. The Multiset Based Forecasting Model :
In this section we present a new method for forecasting daily average temperature

based on the multiset concepts. The proposed method is now presented as follows :
Step 1 : Let U be the universe of discourse, defined by U = [Dmin −D1, Dmax +D2]
where D1 and D2 are two proper positive numbers. Partition the universe of discourse
into seven intervals u1, u2, . . . , u7 with equal length [17].
Step 2 : Collect the historical data into a crisp set X. Construct a multiset B with all
entries in ascending order. Find the characteristic value of each x ∈ B.
Step 3 : Choose ui, i = 1 to 7 and xj ∈ X which lies in ui. If CB(xj) = 1then there
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is no change in the interval where xj lies. If CB(xj) > 1 and k =
∑
j CB(xj) then re

divide the interval where xj lies into k intervals with equal length. Rename the obtained
intervals as v1, v2, . . . , vn where v1, v2, . . . , vn are of different length.
Step 4 : Construct the fuzzy sets Ai in accordance with the intervals in step 3. Fuzzify
the historical data. For n fuzzy sets, A1, A2, . . . , An can be defined on U [20] as follows:

Ai =
∑n
j=1

µij

vj
where µij is the membership degree of Ai belonging to vj and is de-

fined by

µij =


1, if j = i

0.5, if j = i− 1 or i+ 1

0, if otherwise

Then, for a given historical datum Yt, its membership degree belonging to interval vi is
determined by the following heuristic rules.

Rule 1 : if Yt is located at v1, the membership degrees are 1 for v1,
0.5 for v2 and 0 otherwise.

Rule 2 : if Yt belongs to vi, 1 < i < n, then the degrees are 1, 0.5 and
0.5 for vi, vi−1 and vi+1, respectively and 0 otherwise.

Rule 3 : if Yt is located at vn, the membership degrees are 1 for
vn, 0.5 for vn−1 and 0 otherwise. Then, Yt is fuzzified as Aj , where the

membership degree in interval j is maximal
Step 5 : Collect the fuzzy sets into a set Y . Form a list with all entries as in the
fuzzy time series. Find the position function PL defined as PL : Y → P (N) where P (N)
denotes the power set of non - negative integers.
Step 6 : Construct the multiset relation R which is a subset of L× L.
Step 7 : Forecast the values by the following principles.

Principle 1: If |PL(Ai)| = 1, then for PL(Aj) = PL(Ai) + 1 the
forecasted value of Aj is the midvale of vj .

Principle 2: Consider the weighted factor [Yu (2005)] and the between
the actual data and the mid values of the intervals. When
|PL(Ai)| > 1 and the multiset relation is of the form (Ai, Aj),
(Ai, Ak), (Ai, Al),. . . , (Ai, An) assign numbers as follows.
j = a1.k = a2, l = a3, . . . , n = an.
Then the corresponding weights are defined as wj = a1∑n

i=1 ai
,

wk = a2∑n
i=1 ai

, wl = a3∑n
i=1 ai

,. . . , wn = an∑n
i=1 ai

where
wj + wk + wl + · · ·+ wn = 1. Then the forecasted value of
Aj is equal to G1(t) +G2(t)), where G1(t) = [mj ,mk, . . . ,mn]
[wj , wk, . . . wn]

T and G2(t) = [Auctual value of Aj−Average
of midvalues of mj ,mk, . . . ,mn] Similarly the forecasted
values for Ak, Al, . . . , An.

5. Model Verification :
The experiment consisted of forecasting temperature in Taipei, Taiwan, to verify

the forecasting performance of the proposed model. We compare with some existing mod-
els. In the following, we apply the proposed method to forecast the daily average tempera-
ture based on multiset context. Based on the daily average temperature from June 1, 1996
to June 30, 1996 shown in Table 5, the universe of discourse of the daily average tempera-
ture is
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U = [26, 31] and the seven intervals with equal length are as follows.
u1 = [26, 26.71) ; u2 = [26.71, 27.42) ; u3 = [27.42, 28.13)
u4 = [28.13, 28.84); u5 = [28.84, 29.55); u6 = [29.55, 30.26)
u7 = [30.26, 31].
We have X = {26.1, 27.1, 27.4, 27.5, 27.6, 27.7, 27.8, 28.4, 28.5, 28.7, 28.8,

29, 29.3, 29.4, 29.5, 29.7, 30, 30.2, 30.3, 30.5, 30.8, 30.9}
and the bag
B = {26.1, 27.1, 27.4, 27.5, 27.6, 27.7, 27.8, 27.8, 28.4, 28.5, 28.7, 28.7, 28.8,

28.8, 29, 29, 29, 29.3, 29.4, 29.4,29.5, 29.5, 29.7, 30, 30.2, 30.2, 30.3,
30.5, 30.8, 30.9}

The characteristic values of xj in X are given in Table 1. By step 3, the intervals of
different length and the midpoints of the intervals are given in Table 2. Now the fuzzy
sets are defined and the time series is fuzzified by step 4 are given in Table 3.
Based on the fuzzy time series presented in Table 3 and step 5
we have Y = {A1, A2, A3, A4, A6, A7, A8, A10, A13, A14, A15, A16, A17, A18} and the list as
L = [A1, A3, A10, A18, A17, A15, A16, A14, A8, A14, A13, A7, A8, A3, A15, A8, A10,

A18, A17, A18, A18, A8, A4, A2, A3, A2, A6, A4, A10, A17]
The position functions PL are as follows:
PL(A1) = {1}; PL(A2) = {24, 26}; PL(A3) = {2, 14, 25};
PL(A4) = {23, 28}; PL(A6) = {27}; PL(A7) = {12}; PL(A8) = {9, 13, 16, 22}; PL(A10) =
{3, 17, 29}; PL(A13) = {11}; PL(A14) = {8, 10}
PL(A15) = {6, 15}; PL(A16) = {7}; PL(A17) = 5, 19, 30;
PL(A18) = {4, 18, 20, 21}
The multiset relation of order 1 obtained from step 6 is

R ={(A1, A3), (A2, A6), (A2, A3), (A3, A10), (A3, A2), (A3, A15), (A4, A2),
(A4, A10), (A6, A4), (A7, A8), (A8, A14), (A8, A3), (A8, A10), (A8, A4),
(A10, A18), (A10, A18), (A10, A17), (A13, A7), (A14, A8), (A14, A13),
(A15, A16), (A15, A8), (A16, A14), (A17, A15), (A17, A18), (A18, A17),
(A18, A17), (A18, A18), (A18, A8)}.

By the principles in step 7, the forecasted values are given in Table 3.

Evaluate the performance of the proposed fuzzy time series model with the forecasting
results by predicting the temperature and comparing with the models of Lee et al’s
(2006) and Li et al (2010). The average forecasting error rate (AFER) and Mean square
error (M.S.E) are used in this section to compare the forecasted accuracy rate of the
daily average temperature of the proposed method with the existing models where the
historical data is shown in Table 5.

Average forecasting error rate (AFER) =
|Ai−Fi|

Ai
n

*100

Mean square error (M.S.E) =
∑n

i=1[Ai−Fi]
2

n
where Ai denotes the actual temperature of

day i , Fi denotes the forecasting temperature of day i and n is the number of errors
respectively.

Table 3 : Forecasting Results of the Proposed Model for
June 1 to June 30,1996.
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Day Actual
Temp.

Fuzzified
Temp.

Forecasted
Temp.

(Ai − Fi)2 |Ai−Fi|
Ai

*100

1 26.1 A1 - - -
2 27.6 A3 27.5975 0.000006 0.00905
3 29.0 A10 29.6151 0.378469 0.12137
4 30.5 A18 30.5068 0.000047 0.02258
5 30.0 A17 30.1797 0.032300 0.59908
6 29.5 A15 29.5514 0.002647 0.17440
7 29.7 A16 29.8627 0.026484 0.54795
8 29.4 A14 29.3978 0.000005 0.00726
9 28.8 A8 28.8649 0.004212 0.22536
10 29.4 A14 29.8212 0.177451 1.43282
11 29.3 A13 29.3649 0.004212 0.22151
12 28.5 A7 28.5737 0.005439 0.25877
13 28.7 A8 28.7512 0.002627 0.17857
14 27.5 A3 27.9212 0.177451 1.53182
15 29.5 A15 30.1151 0.378469 2.08542
16 28.8 A8 28.9627 0.026485 0.56507
17 29.0 A10 29.4212 0.177451 1.45259
18 30.3 A18 30.3068 0.000047 0.02273
19 30.2 A17 30.3797 0.032301 0.59511
20 30.9 A18 30.9514 0.002647 0.16650
21 30.8 A18 30.9797 0.032301 0.58352
22 28.7 A8 28.8797 0.032301 0.62621
23 27.8 A4 28.2212 0.177451 1.51529
24 27.4 A2 28.0423 0.412585 2.34426
25 27.7 A3 27.8331 0.017729 0.48069
26 27.1 A2 27.7151 0.378469 2.27010
27 28.4 A6 28.5331 0.017729 0.46884
28 27.8 A4 27.9525 0.023256 0.54856
29 29.0 A10 29.6423 0.412585 2.21492
30 30.2 A17 30.2068 0.000047 0.02280

M.S.E =
0.10115

AFER =
0.80323

In Table 4 the forecasted daily average temperatures of the proposed
method is compared with the existing methods.

Table 4 :(AFER)(In percentage)

Month Lee et.al(2006) Li.et.al(2010) Proposed Method
June 1.44 2.2669 0.8052
July 1.59 2.5855 0.8196

August 1.26 2.5352 1.0243
September 1.89 2.9656 0.8163

Table 1: Characteristic value of xj ∈ X
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xj CB(xj) xj CB(xj)
26.1 1 29.0 3
27.1 1 29.3 1
27.4 1 29.4 2
27.5 1 29.5 2
27.6 1 29.7 1
27.7 1 30.0 1

xj CB(xj) xj CB(xj)
27.8 2 30.2 2
28.4 1 30.3 1
28.5 1 30.5 1
28.7 2 30.8 1
28.8 2 30.9 1

Table 2 :The intervals of different length and the midpoints of the intervals

Intervals Midpoints Intervals Midpoints
v1=[26,26.71) m1=26.355 v10=[28.94143,29.04286) m10=28.992145
v2=[27.71,27.42) m2=27.065 v11=[29.04286,29.14429) m11=29.093575
v3=[27.42,27.775) m3=27.5975 v12=[29.14429,29.24572) m12=29.195005
v4=[27.775,28.13) m4=27.9525 v13=[29.24572,29.34715) m13=29.296435
v5=[28.13,28.3075) m5=28.21875 v14=[29.34715,29.44858) m14=29.397865
v6=[28.3075,28.485) m6=28.39625 v15=[29.44858,29.55) m15=29.49929
v7=[28.485,28.6625) m7=28.57375 v16=[29.55,29.905) m16=29.7275
v8=[28.6625,28.84) m8=28.75125 v17 = [29.905, 30.26) m17=30.0825
v9=[28.84,28.94143) m9=28.890715 v18=[30.26,31) m18=30.63

6. Conclusion
In this paper, we have presented a new method for forecasting the daily average

temperature of the Taipei, Taiwan in which duplicates of data are significant, given in
Table 5, based on the characterization of bag and multiset relations. First we compute
the intervals of different length using characterization of bag. Then the daily average
temperature value using list and multiset relation are forecasted. From the experimental
results the proposed method provides the smallest AFER and MSE and improves on
other methods using fuzzy times series forecasting methods.

Table 5 : Historical data of the daily average temperature from June 1, 1996 to
September 30, 1996 in Taipei, Taiwan(unit :0 C)
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(Central weather bureau, 1996)
Month

Day June July August September
1 26.1 29.9 27.1 27.5
2 27.6 28.4 28.9 26.8
3 29.0 29.2 28.9 26.4
4 30.5 29.4 29.3 27.5
5 30.0 29.9 28.8 26.6
6 29.5 29.6 28.7 28.2
7 29.7 30.1 29.0 29.2
8 29.4 29.3 28.2 29.0
9 28.8 28.1 27.0 30.3
10 29.4 28.9 28.3 29.9
11 29.3 28.4 28.9 29.9
12 28.5 29.6 28.1 30.5
13 28.7 27.8 29.9 30.2
14 27.5 29.1 27.6 30.3
15 29.5 27.7 26.8 29.5

16 28.8 28.1 27.6 28.3
17 29.0 28.7 27.9 28.6
18 30.3 29.9 29.0 28.1
19 30.2 30.8 29.2 28.4
20 30.9 31.6 29.8 28.3
21 30.8 31.4 29.6 26.4
22 28.7 31.3 29.3 25.7
23 27.8 31.3 28.0 25.0
24 27.4 31.3 28.3 27.0
25 27.7 28.9 28.6 25.8
26 27.1 28.0 28.7 26.4
27 28.4 28.6 29.0 25.6
28 27.8 28.0 27.7 24.2
29 29.0 29.3 26.2 23.3
30 30.2 27.9 26.0 23.5
31 - 26.9 27.7 -
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Abstract
In this paper, we consider Ornstein-Uhlenbeck process

dXH
t = −XH

t dt+ vdSHt , XH
0 = x,

driven by a subfractional Brownian motion SH . We prove that the
subfractional Ornstein-Uhlenbeck process XH is local nondeterministic
and give some properties of this process. As an application, assume
d ≥ 2, we prove that the intersection local time of two independent,
d−dimensional subfractional Ornstein-Uhlenbeck process,XH and X̃H ,
exists in L2 if and only if Hd < 2.
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1. Introduction
The classical Ornstein-Uhlenbeck process (see Revuz and Yor[23]) has a remarkable

history in physics. It was introduced to model the velocity of the particle diffusion
process and later it has been heavily used in finance, and thus in econophysics. It can
be constructed as the unique strong solution of Itô stochastic differential equation

(1.1) dXt = −Xtdt+ vdBt, X0 = x,

where B is a standard Brownian motion starting at 0.
On the other hand, extensions of the classical Ornstein-Uhlenbeck process have been

suggested mainly on demand of applications. The fractional Ornstein-Uhlenbeck process
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was an extension of the classical Ornstein-Uhlenbeck process, where fractional Brownian
motion BH was used as integrator

(1.2) dXH
t = −XH

t dt+ vdBHt , X0 = x.

The equation (1.2) has a unique solution XH
t = {XH

t , 0 ≤ t ≤ T}, which can be expressed
as

(1.3) XH
t = e−t(x+ v

∫ t

0

esdBHs ),

and the solution was called the fractional Ornstein-Uhlenbeck process. Recall that frac-
tional Brownian motion BH with Hurst index H ∈ (0, 1) is a central Gaussian process
with BH0 = 0 and the covariance function

(1.4) E[BHt B
H
s ] =

1

2
[t2H + s2H − |t− s|2H ],

for all t, s > 0. This process was first introduced by Kolmogorov and studied by Mandel-
brot and Van Ness [19]. Clearly, when H = 1

2
the fractional Ornstein-Uhlenbeck process

is the classical Ornstein-Uhlenbeck process X with parameter v starting at x ∈ R. A
class of superpositions of Ornstein-Uhlenbeck type processes is constructed in terms of
integrals with respect to independently scattered random measures in Barndorff-Nielsen
[3]. Barndorff-Nielsen and Shephard [4] construct continuous time stochastic volatility
models for financial assets where the volatility processes are superpositions of positive
Ornstein-Uhlenbeck processes, and they study these models in relation to financial data
and theory. Recently, Habtemicael and SenGupta [12] shown that the Gamma-Ornstein-
Uhlenbeck process is a possible candidate for earthquake data modeling. SenGupta
[25] uses Ornstein-Uhlenbeck process in forming a partial integro differential equations
in finance. More works for the fractional Ornstein-Uhlenbeck process can be found in
Cheridito et al. [9], Hu and Nualart [15], Es-Sebaiy [11], Yan et al. [32, 33].

The intersection properties of Brownian motion paths have been investigated since the
forties (see lévy [17]), and since then a large number of results on intersection local times
of Brownian motion have been accumulated (see Albeverio et al. [1] and the references
therein). The intersection local time of independent fractional Brownian motions has
been studied by Chen and Yan [8], Jiang and Wang [16], Nualart and Ortiz-Latorre [22],
Rosen [24], Wu-Xiao [30] and the references therein.

Motivated by all these results, in this paper, we will study the Ornstein-Uhlenbeck
process

dXH
t = −XH

t dt+ vdSHt , XH
0 = x,

driven by a subfractional Brownian motion SH(see section 2 for a precise definition).
The solution

(1.5) XH
t = e−t(x+ v

∫ t

0

esdSHs ),

is called the subfractional Ornstein-Uhlenbeck process (see Mendy [20]).
The rest of this paper is organized as follows. In section 2 we briefly recall the

subfractional Brownian motion and the related Wiener-Itô integral. In section 3 we
show that the subfractional Ornstein-Uhlenbeck process XH is local nondeterministic
and establish some estimates for the increments of the process, that is, there exist two
constant cH,T , CH,T > 0 depending on H,T only which may not be the same in each
occurrence such that the estimates

cH,T v
2(t− s)2H ≤ E(XH

t −XH
s )2 ≤ CH,T v2(t− s)2H ,

and
cH,T v

2G(t, s) ≤ E(XH
t X

H
s ) ≤ CH,T v2G(t, s),
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hold for all 0 < s < t < T, where G(t, s) = t2H + s2H − 1
2
[(t + s)2H + (t − s)2H ].

In section 4 we consider the intersection local time of two independent subfractional
Ornstein-Uhlenbeck process XH = {XH

t , 0 ≤ t ≤ T} and X̃H = {X̃H
t , 0 ≤ t ≤ T} on

Rd, d ≥ 2 with the same indices H ∈ (0, 1). The intersection local time is formally defined
as

(1.6) `T =

∫ T

0

∫ T

0

δ(XH
t − X̃H

s )dsdt,

where δ denotes the Dirac delta function. It is a measure of the amount of time that the
trajectories of the two processes, XH and X̃H , intersect on the time interval [0, T ]. In
order to give a rigorous meaning to `T we approximate the Dirac function by the heat
kernel

pε(x) = (2πε)−
d
2 e−

|x|2
2ε , x ∈ Rd.

Then, we can consider the following family of random variables indexed by ε > 0

(1.7) `ε,T =

∫ T

0

∫ T

0

pε(X
H
t − X̃H

s )dsdt.

We get the convergence of `ε,T as ε tends to zero in the L2(Ω).

2. Preliminaries
In this section, we briefly recall the definition and properties of the Wiener-Itô integer

with respect to the subfractional Brownian motion. As an extension of Brownian motion,
Bojdecki et al. [6] introduced and studied a rather special class of self-similar Gaussian
processes which preserves many properties of the fractional Brownian motion, which is
called the subfractional Brownian motion. This process arised from occupation time
fluctuations of branching particle systems with Poisson initial condition, and it also
appeared independently in a different context in Dzhaparidze and Van Zanten[10]. The
so-called subfractional Brownian motion (subfBm in short) with index H ∈ (0, 1) is a
mean zero Gaussian process SH = {SHt , t ≥ 0} with SH0 = 0 and

(2.1) E
[
SHt S

H
s

]
= s2H + t2H − 1

2

[
(s+ t)2H + |t− s|2H

]
for all s, t ≥ 0. For H = 1/2, SH coincides with the standard Brownian motion B. SH is
neither a semimartingale nor a Markov process unless H = 1/2, so many of the powerful
techniques from stochastic analysis are not available when dealing with SH . The subfBm
has properties analogous to those of fractional Brownian motion (self-similarity, long-
range dependence, Hölder paths). However, in comparison with fractional Brownian mo-
tion, the subfBm has non-stationary increments and the increments over non-overlapping
intervals are more weakly correlated and their covariance decays polynomially as a higher
rate in comparison with fractional Brownian motion (for this reason in Bojdecki et al. [6]
it is called subfBm). The properties mentioned above make the subfBm a possible candi-
date for models which involve long-range dependence, self-similarity and non-stationary
increment. More studies on the subfBm can be found in Bardina and Bascompte [2],
Bojdecki et al. [7], Liu and Yan [18], Shen et al. [26, 27, 28], Yan and Shen [31] and the
references therein.

Consider the integral representation of the subfBm SHt of the form

(2.2) SHt =

∫ t

0

KH(t, u)dBu, 0 ≤ t ≤ T,
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where KH(t, u) is the kernel

(2.3) KH(t, s) =
cH
√
π

2HΓ(H + 1
2
)
s3/2−H

(
(t2 − s2)H−

1
2

t
+

∫ t

s

(u2 − s2)H−
1
2

u2
du

)
1(0,t)(s).

In particular, when 1
2
< H < 1, the kernel KH(t, s) can be written in a less complicated

form:

(2.4) KH(t, s) =
cH
√
π

2H−1Γ(H − 1
2
)
s3/2−H

∫ t

s

(u2 − s2)H−
3
2 du1(0,t)(s),

where c2H = Γ(1+2H)sinπH
π

. Using the idea in Hu [14], the kernel KH(t, s) defines an
operator ΓH,T in L2([0, T ]) given by

ΓH,Th(t) =

∫ t

0

KH(t, u)h(u)du, h ∈ L2([0, T ]),

and the function ΓH,Th(t) is continuous and vanishes at zero. The transpose Γ∗H,t of
ΓH,T restricted to the interval [0, t](0 ≤ t ≤ T ) is

Γ∗H,tg(s) = CHs
3/2−H [(t2 − s2)H−

1
2 t−1g(t)−

∫ t

s

(u2 − s2)H−
1
2 u−1g′(u)du

+

∫ t

s

(u2 − s2)H−
1
2 u−2g(u)du],

for g ∈ S, the set of all smooth functions on [0, T ] with bounded derivatives, where
CH = cH

√
π

2H−1Γ(H− 1
2

)
.

In particular, for 1
2
< H < 1, we have

Γ∗H,tg(s) = CHs
3
2
−H
∫ t

s

(u2 − s2)H−
3
2 g(u)du.

Now, we recall the definition of the Wiener-Itô integral with respect to the subfBm,
more work can be found in Nualart[21], Tudor[29].

2.1. Definition. Let

ΘH = {f ∈ S : ||f || =
∫ T

0

[Γ∗H,T f(t)]2dt <∞}.

For f ∈ ΘH , we define∫ t

0

f(u)dSH =

∫ t

0

Γ∗H,tf(u)dBu, 0 ≤ t ≤ T,

where B = {Bt, 0 ≤ t ≤ T} is a standard Brownian motion with B0 = 0.

By applying the operator Γ∗H,t, we can write the subfractional Ornstein-Uhlenbeck
process XH = {XH

t , t ≥ 0} starting from zero as

XH
t = v

∫ t

0

F (t, u)dBu, 0 ≤ t ≤ T.

For 0 < u < t,

(2.5) F (t, u) = CH,T e
−tu

3
2
−H
∫ t

u

(m2 − u2)H−
3
2 emdm,
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with 1
2
< H < 1, and

(2.6)
F (t, u) = CH,Tu

3
2
−H [−e−t

∫ t

u

(m2 − u2)H−
1
2m−1emdm

+ (t2 − u2)H−
1
2 t−1 + e−t

∫ t

u

(m2 − u2)H−
1
2m−2emdm],

with 0 < H < 1
2
.

3. Some properties of subfractional Ornstein-Uhlenbeck process
In this section, we show that the subfractional Ornstein-Uhlenbeck process XH is local

nondeterministic and establish some estimates for the increments of the process.
The concept of local nondeterminism was first introduced by Berman[5] to unify and

extend his methods for studying local times of real-valued Gaussion process. Define the
relative prediction error:

Vn =
Var(X(tn)−X(tn−1))|X(t1), ..., X(tn−1))

Var(X(tn)−X(tn−1))

which is the ratio of the conditional to the unconditional variance. We consider this to
be a measure of the relative predictability of the increment X(tn) − X(tn−1) based on
the knowledge of the finite set of data X(t1), ..., X(tn−1). It follows from the elemen-
tary property of conditional variance that 0 ≤ Vn ≤ 1. If Vn = 1, then the increment
is relatively completely unpredictable because the variance is not reduced by the infor-
mation about X(t1), ..., X(tn−1). On the other extreme, if Vn = 0, then the increment
is relatively predictable. The process X is called locally nondeterministic on an interval
J ⊂ R+ if for every integer n ≥ 2,

(3.1) lim
ε→0

inf
tn−t1≤ε

Vn > 0,

where the infimum in Eq. (3.1) is taken over all ordered points t1 < t2 < ... < tn in J
with tn − t1 ≤ ε. This condition means that a small increment of the process X is not
almost relatively predictable based on a finite number of observations from the immediate
past.

It is well known that Eq.(3.1) is equivalent to the following property which says that
X has locally approximately independent increments: for any positive integer n ≥ 2,
there exist positive constants Cn and δ (both may depend on n) such that

(3.2) Var

(
n∑
j=1

uj [X(tj)−X(tj−1)]

)
≥ Cn

n∑
j=1

u2
jVar [X(tj)−X(tj−1)]

for all ordered points 0 = t0 < t1 < t2 < ... < tn in J with tn − t1 < δ and all
uj ∈ R(1 ≤ j ≤ n). Xiao [34] give the properties of local nondeterminism of Gaussion
and stable random fields.

By Berman[5], a process Xt =
∫ t

0
K(t, u)dBu, t ∈ J is local nondeterministic if and

only if

(3.3) lim
c↓0

inf
0<t−s<c:s,t∈J

∫ t
s
K2(t, u)du∫ s

0
[K(t, u)−K(s, u)]2du

> 0,

where K is a measurable function of (t, u) such that
∫ t

0
K2(t, u)du <∞ for all t ∈ J.

In order to prove that the subfractional Ornstein-Uhlenbeck process XH is local non-
deterministic, we firstly give the following Lemma.



980

3.1. Lemma. Let F (·, ·) be given by (2.5)and (2.6). Then we have∫ s

0

[F (t, u)− F (s, u)]2du ≤ CH,T (t− s)2H , 0 ≤ s ≤ t,

for all 0 < H < 1.

Proof. Firstly, for 1
2
< H < 1 and 0 < s < t < T , we have

|F (t, u)− F (s, u)| ≤ CH,T |e−t − e−s|u
3
2
−H
∫ s

u

(m2 − u2)H−
3
2 emdm

+ CH,T e
−tu

3
2
−H
∫ t

s

(m2 − u2)H−
3
2 emdm

:= CH,Tu
3
2
−H(I1 + I2).

It is obvious that I2 ≤
∫ t
s

(m2 − u2)H−
3
2 dm, and

I1 ≤ (t− s)
∫ s

u

(m2 − u2)H−
3
2 dm ≤ CH(t− s)uH−

3
2 (s− u)H−

1
2 .

So, we have∫ s

0

[F (t, u)− F (s, u)]2du ≤ CH
∫ s

0

u3−2HI2
1du+ CH

∫ s

0

u3−2HI2
2du

≤ CH(t− s)2

∫ s

0

(s− u)2H−1du

+ CH

∫ t

s

∫ t

s

∫ s

0

u3−2H(m2 − u2)H−
3
2 (n2 − u2)H−

3
2 dmdndu

≤ CHs2H(t− s)2 + CH,T

∫ t

s

∫ t

s

|m− n|2H−2dmdn

= CHs
2H(t− s)2 + CH,T (t− s)2H ≤ CH,T (t− s)2H .

In the following, we consider the case 0 < H < 1
2
, we have

F (t, u)− F (s, u) = CHu
3
2
−H(M1 +M2 +M3),

where
M1 := (t2 − u2)H−

1
2 t−1 − (s2 − u2)H−

1
2 s−1,

M2 := e−s
∫ s

u

(m2 − u2)H−
1
2m−1emdm− e−t

∫ t

u

(m2 − u2)H−
1
2m−1emdm,

M3 := e−t
∫ t

u

(m2 − u2)H−
1
2m−2emdm− e−s

∫ s

u

(m2 − u2)H−
1
2m−2emdm.

Elementary calculus can show that

(3.4)
∫ s

0

u3−2H |M1|2du ≤ CH,T (t− s)2H .

For the term M2, we have

|M2| ≤ (e−s − e−t)
∫ s

u

(m2 − u2)H−
1
2m−1emdm+ e−t

∫ t

s

(m2 − u2)H−
1
2m−1emdm

≤ CH,TuH−
3
2

[
(t− s)(s− u)H+ 1

2 + (t− s)H+ 1
2

]
.

Hence,

(3.5)
∫ s

0

u3−2H |M2|2du ≤ CH,T (t− s)2H .
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For the term M3. Noting that

|M3| ≤ (t− s)
∫ s

u

(m2 − u2)H−
1
2m−2dm+

∫ t

s

(m2 − u2)H−
1
2m−2dm

:= (t− s)M3,1 +M3,2

On the one hand,∫ s

0

u3−2H |M3,1|2du =

∫ s

0

u3−2Hdu
∫ s

u

∫ s

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdn

≤
∫ s

0

du
∫ s

u

∫ s

u

(m− u)H−
3
2 (n− u)H−

3
2 dmdn

≤ CH
∫ s

0

(s− u)2H−1du ≤ CHs2H .

On the other hand,∫ s

0

u3−2H |M3,2|2du

=

∫ s

0

u3−2Hdu
∫ t

s

∫ t

s

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdn

≤
∫ t

s

∫ t

s

(mn)H−
1
2 dmdn

∫ m∧n

0

u1−2(H+ 1
2

)(m− u)(H+ 1
2

)− 3
2 (n− u)(H+ 1

2
)− 3

2 du

≤ CH,T
∫ t

s

∫ t

s

(mn)−
1
2 |m− n|2H−1dmdn ≤ CH,T (t− s)2H .

Hence,

(3.6)

∫ s

0

u3−2H |M3|2du ≤ CH,T (t− s)2H

∫ s

0

u3−2H |M3,1|2du+

∫ s

0

u3−2H |M3,2|2du

≤ CH,T (t− s)2H .

Combing with (3.4), (3.5) and (3.6), this completes the proof. �

3.2. Theorem. The subfractional Ornstein-Uhlenbeck process XH is local nondetermin-
istic.

Proof. Consider the integral representation of the subfractional Ornstein-Uhlenbeck pro-
cess XH

t = v
∫ t

0
F (t, u)dBu, 0 ≤ t ≤ T.

When 1
2
< H < 1, we get

F (t, u) ≥ CHe−t+uu
3
2
−H
∫ t

u

(m2 − u2)H−
3
2 dm

≥ CHe−t+uu
3
2
−H(t2 − u2)H−

3
2 (t− u)

≥ CH,T (t− u)H−
1
2 .

Hence,
∫ t
s
F 2(t, u)du ≥ CH,T

∫ t
s

(t− u)2H−1du ≥ CH,T (t− s)2H .

When 0 < H < 1
2
, without loss of generality, one may assume 0 < T < 1. By (2.6) we

get that
F (t, u) ≥ CH,T (t2 − u2)H−

1
2 t−1u

3
2
−H .

Hence, ∫ t

s

F 2(t, u)du ≥ CH,T
∫ t

s

u1−2H(t2 − u2)2H−1du ≥ CH,T (t− s)2H .

It follows from Lemma 3.1 and (3.3) that the Theorem3.2 holds. �
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Next, we will study the variance of increment of the subfractional Ornstein-Uhlenbeck
process. Let XH = {XH

t , 0 ≤ t ≤ T} be the subfractional Ornstein-Uhlenbeck process
starting from zero. Then we have

XH
t = v

∫ t

0

e−t+udSHu = v

∫ t

u

F (t, u)dBu.

Hence,

E[XH
t X

H
s ] = v2

∫ t∧s

0

F (t, u)F (s, u)du.

In particular, for 1
2
< H < 1 we have

EXH
t X

H
s = v2e−t−s

∫ t

0

∫ s

0

eu+vφ(u, v)dudv,

where φ(u, v) = H(2H − 1)(|u− v|2H−2 − |u+ v|2H−2).
First, we give the following Lemmas.

3.3. Lemma. Let 0 < H < 1/2. Then∫ s

0

F (t, u)F (s, u)du ≥ CH,TG(t, s).

Proof. Without loss of generacity, one can assume that 0 < s < t < 1. It follows from
(2.6) that

F (t, u) ≥ CH,Tu
3
2
−H
∫ t

u

(m2 − u2)H−
1
2m−2dm.

So, ∫ s

0

F (t, u)F (s, u)du

≥ CH,T
∫ s

0

∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2u3−2Hdmdndu

≥ CH,T
∫ s

0

∫ s

0

(mn)−2dmdn
∫ m∧n

0

(m2 − u2)H−
1
2 (n2 − u2)H−

1
2 u3−2Hdu

≥ CH,T
∫ s

0

m2H−4dm
∫ m

0

n2dn = CH,T s
2H .

Using the inequality s2H ≥ t2H − (t− s)2H , we get∫ s

0

F (t, u)F (s, u)du ≥ CH,T [s2H + t2H − (t− s)2H ]

≥ CH,T [s2H + t2H − 1

2
(t− s)2H − 1

2
(t+ s)2H ]

= CH,TG(t, s).

This completes the proof. �

3.4. Lemma. Let 0 < H < 1
2
. Then for all 0 < s ≤ t < T , we have∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−1(n2 − u2)H−

1
2 n−1dmdn ≤ CH,TG(t, s),∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1(s2 − u2)H−

1
2 s−1du ≤ CH,TG(t, s),∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1du

∫ s

u

(m2 − u2)H−
1
2m−1dm ≤ CH,TG(t, s),
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0

u3−2H(s2 − u2)H−
1
2 s−1du

∫ t

u

(m2 − u2)H−
1
2m−1dm ≤ CH,TG(t, s),∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdn ≤ CH,TG(t, s).

Proof. We only prove the first and the third estimate, the other estimates can be proved
similarily. On the one hand∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−1(n2 − u2)H−

1
2 n−1dmdn

≤ CH,T
∫ s

0

du
∫ t

u

∫ s

u

(m− u)H−
1
2 (n− u)H−

1
2 dndm

≤ CH,T
∫ s

0

[(t+ u)2H+1 + (t− u)2H+1]du

≤ CH,T [(t+ s)2H − (t− s)2H ] ≤ CH,TG(t, s).

On the other hand∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1du

∫ s

u

(m2 − u2)H−
1
2m−1dm

≤
∫ s

0

(t− u)H−
1
2 du

∫ s

u

(m− u)H−
1
2 dm

≤ CH,T
∫ s

0

(t− u)2H−1du ≤ CH,TG(t, s).

This completes the proof. �

3.5. Proposition. Let 0 < H < 1. Then for all 0 < s < t < T , we have

(3.7) cH,T v
2G(t, s) ≤ E[XH

t X
H
s ] ≤ CH,T v2G(t, s).

Proof. For 0 < H < 1/2, the left inequality in (3.7) follows from Lemma 3.3. Next, we
prove the right estimate in (3.7) holds.

E[XH
t X

H
s ] = v2

∫ s

0

F (t, u)F (s, u)du

≤ v2

∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−1(n2 − u2)H−

1
2 n−1dmdn

+ v2

∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1(s2 − u2)H−

1
2 s−1du

+ v2

∫ s

0

u3−2H(t2 − u2)H−
1
2 t−1du

∫ s

u

(m2 − u2)H−
1
2m−1dm

+ v2

∫ s

0

u3−2H(s2 − u2)H−
1
2 s−1du

∫ t

u

(m2 − u2)H−
1
2m−1dm

+ v2

∫ s

0

u3−2Hdu
∫ t

u

∫ s

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdn.

Thus, Lemma 3.4 yields the right estimate in (3.7).
For 1/2 < H < 1, by an elementary calculus we have

1

2
e−t−sv2G(t, s) ≤ EXH

t X
H
s ≤

1

2
v2G(t, s).

This completes the proof. �
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3.6. Lemma. Let 0 < H < 1, then∫ t

s

F 2(t, u)du ≤ CH,T (t− s)2H , 0 ≤ s ≤ t.

Proof. Let 1
2
< H < 1, then∫ t

s

F 2(t, u)du = CH,T e
−2t

∫ t

s

u3−2Hdu
∫ t

u

∫ t

u

(m2 − u2)H−
3
2 (n2 − u2)H−

3
2 em+ndmdn

≤ CH,T
∫ t

s

∫ t

s

∫ m∧n

s

u3−2H(m2 − u2)H−
3
2 (n2 − u2)H−

3
2 dudmdn

≤ CH,T
∫ t

s

∫ t

s

∫ m∧n

0

u3−2H(m2 − u2)H−
3
2 (n2 − u2)H−

3
2 dudmdn

≤ CH,T (t− s)2H .

Let 0 < H < 1
2
, we have

|F (t, u)| ≤ CH,Tu
3
2
−H
(∫ t

u

(m2 − u2)H−
1
2m−1dm+ (t2 − u2)H−

1
2 t−1

+

∫ t

u

(m2 − u2)H−
1
2m−2dm

)
:= CH,Tu

3
2
−H(I + II + III).

Since, ∫ t

s

u3−2HI2du =

∫ t

s

u3−2H

∫ t

u

∫ t

u

(m2 − u2)H−
1
2m−1(n2 − u2)H−

1
2 n−1dmdndu

≤
∫ t

s

du
[∫ t

u

(m− u)H−
1
2 dm

]2

= CH(t− s)2H+2.

∫ t

s

u3−2H(t2 − u2)2H−1t−2du ≤
∫ t

s

(t− u)2H−1du = CH(t− s)2H .

and ∫ t

s

u3−2HIII2du =

∫ t

s

u3−2H

∫ t

u

∫ t

u

(m2 − u2)H−
1
2m−2(n2 − u2)H−

1
2 n−2dmdndu

≤
∫ t

s

u3−2H

∫ t

u

∫ t

u

(m− u)H−
3
2 (n− u)H−

3
2 u2H−3dmdndu

=

∫ t

s

[∫ t

u

(m− u)H−
3
2 dm

]2

du = CH

∫ t

s

(t− u)2H−1du = CH(t− s)2H .

Hence,
∫ t
s
F 2(t, u)du ≤ CH,T (t− s)2H . This completes the proof. �

3.7. Theorem. For all 0 ≤ s < t < T . Let

(3.8) σ2
t,s = E[(XH

t −XH
s )2].

Then,

(3.9) v2cH,T (t− s)2H ≤ σ2
t,s ≤ v2CH,T (t− s)2H .
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Proof. By Theorem 3.2, we have

σ2
t,s = v2

∫ t

0

[F (t, u)− F (s, u)1[0,s](u)]2du

= v2

∫ s

0

[F (t, u)− F (s, u)]2du+ v2

∫ t

s

F 2(t, u)du

≥ v2

∫ t

s

F 2(t, u)du ≥ cH,T v2(t− s)2H .

The right inequality follows from Lemma 3.1 and Lemma 3.6. This completes the proof.
�

The following result show the subfractional Ornstein-Uhlenbeck process is not of long
range dependence.

3.8. Proposition. Let 0 < H < 1, and let

ρH(n) = E[XH
1 (XH

n+1 −XH
n )],

for every positive integer n. Then
∑∞
n=1 |ρH(n)| <∞.

Proof. Let first consider 1
2
< H < 1. Clearly, we have

e−1

∫ n+1

u

(m2 − u2)H−
3
2 emdm−

∫ n

u

(m2 − u2)H−
3
2 emdm ∼ enn2H−3, n→∞.

It follows that

|ρH(n)| = v2

∣∣∣∣∫ n+1

0

F (1, u)[F (n+ 1, u)− F (n, u)]dBu

∣∣∣∣ ∼ n2H−3.

Thus,
∞∑
n=1

|ρH(n)| <∞.

On the other hand, if 0 < H < 1/2, we have

e−1

∫ n+1

u

(m2−u2)H−
1
2m−1emdm−

∫ n

u

(m2−u2)H−
1
2m−1emdm ∼ enn2H−2, n→∞,

[(n+ 1)2 − u2]H−
1
2 (n+ 1)−1 − (n2 − u2)H−

1
2 n−1 ∼ n2H−2, n→∞,

e−1

∫ n+1

u

(m2−u2)H−
1
2m−2emdm−

∫ n

u

(m2−u2)H−
1
2m−2emdm ∼ enn2H−2, n→∞.

So,

|ρH(n)| = E[XH
1 (XH

n+1 −XH
n )]

= v2

∣∣∣∣∫ n+1

0

F (1, u)[F (n+ 1, u)− F (n, u)]dBu

∣∣∣∣ ≤ CHv2n2H−2.

which leads to
∑∞
n=1 |ρH(n)| <∞. �
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4. Existence of the intersection local time
The aim of this section is to prove the existence of the intersection local time of two in-

dependent subfractional Ornstein-Uhlenbeck processXH = {XH
t = (XH,1

t , ···, XH,d
t ), 0 ≤

t ≤ T} and X̃H = {X̃H
t = (X̃H,1

t , · · ·, X̃H,d
t ), 0 ≤ t ≤ T} on Rd, d ≥ 2 with the same

index H ∈ (0, 1). The intersection local time is formally defined as : for every T > 0

(4.1) `T =

∫ T

0

∫ T

0

δ(XH
t − X̃H

s )dsdt,

where δ denotes the Dirac delta function. As we pointed out, this definition is only formal.
In order to give a rigorous meaning to `T , we approximate the Dirac delta function by
the heat kernel

pε(x) = (2πε)−
d
2 e−

|x|2
2ε , x ∈ Rd.

Then, we consider the following family of random variables indexed by ε > 0

(4.2) `ε,T =

∫ T

0

∫ T

0

pε(X
H
t − X̃H

s )dsdt.

Using the following classical equality

pε(x) =
1

(2πε)d/2
e−
|x|2
2ε =

1

(2π)d

∫
Rd
ei〈ξ,x〉e−

|ξ|2
2
εdξ,

we have

`ε,T =

∫ T

0

∫ T

0

pε(X
H
t − X̃H

s )dsdt =
1

(2π)d

∫ T

0

∫ T

0

∫
Rd
ei〈ξ,X

H
t −X̃

H
s 〉e−

|ξ|2
2
εdξdsdt.

Let σ̄2
t,s := E(XH,i

t − X̃H,i
s )2, σ2

t := E(XH,i
t )2, i = 1, 2. We have

E(`ε,T ) =
1

(2π)d

∫ T

0

∫ T

0

∫
Rd
E(ei〈ξ,X

H
t −X̃

H
s 〉)e−

|ξ|2
2
εdξdsdt

=
1

(2π)d

∫ T

0

∫ T

0

∫
Rd
e−

1
2

(ε+σ̄2
t,s)|ξ|2dξdsdt

=
1

(2π)d/2

∫ T

0

∫ T

0

(ε+ σ̄2
t,s)
− d

2 dsdt,

where we have used the fact that∫
Rd
e−

1
2

(ε+σ̄2
t,s)|ξ|2dξ =

(
2π

ε+ σ̄2
t,s

)d/2
.

We also have

(4.3)

E(`2ε,T ) =
1

(2π)2d

∫
R2d

E[ei〈ξ,X
H
t −X̃

H
s 〉+i〈η,X

H
u −X̃

H
v 〉]× e−

ε(|ξ|2+|η|2)
2 dξdηdsdtdudv.

Let we introduce some notations that will be used throughout this paper

λ = V ar(XH,1
t − X̃H,2

s ), ρ = V ar(XH,1
t′ − X̃

H,2
s′ ),

and

µ = Cov(XH,1
t − X̃H,2

s , XH,1
t′ − X̃

H,2
s′ ).
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Using the above notation, we can rewrite (4.3) as followings:

(4.4)

E(`2ε,T ) =
1

(2π)2d

∫
[0,T ]4

∫
R2d

exp{−1

2
[(λ+ ε)|ξ|2 + (ρ+ ε)|η|2

+ 2µ〈ξ, η〉]}dξdηdsdtds′dt′

=
1

(2π)d

∫
[0,T ]4

[(λ+ ε)(ρ+ ε)− µ2]−
d
2 dsdtds′dt′.

Using the local nondeterminism of subfractional Ornstein-Uhlenbeck process, we have
the follows Lemmas (see also Hu [13]).

4.1. Lemma. (1) For 0 < s < s′ < t < t′ < T , we have

λρ− µ2 ≥ kv2[t2H + s2H ][(t′ − t)2H + (s′ − s)2H ],

(2) For 0 < s′ < s < t < t′ < T , we have

λρ− µ2 ≥ kv2[(t2H + s2H)(t′ − t)2H + (t′2H + s′2H)(s− s′)2H ],

(3) For 0 < s < t < s′ < t′ < T , we have

λρ− µ2 ≥ kv2[(t2H + s2H)(t′ − t)2H + (t′2H + s′2H)(s− s′)2H ].

where k > 0 is an enough small constant.

4.2. Lemma. Let

AT :=

∫
[0,T ]4

(λρ− µ2)−
d
2 dsdtds′dt′.

Then AT <∞ if and only if Hd < 2.

Proof. First, we give the proof of sufficient condition. Let Hd < 2. We have

AT = 2

(∫
I1

+

∫
I2

+

∫
I3

)
(λρ− µ2)−

d
2 dsdtds′dt′,

where
I1 = {(s, t, s′, t′) : 0 < s < s′ < t < t′ < T},
I2 = {(s, t, s′, t′) : 0 < s′ < s < t < t′ < T},
I3 = {(s, t, s′, t′) : 0 < s < t < s′ < t′ < T}.

For (s, t, s′, t′) ∈ I1, we have∫
I1

(λρ− µ2)−
d
2 dsdtds′dt′

≤ CH,T kv2

∫ T

0

∫ T

s

∫ T

s′

∫ T

t

t−
Hd
2 s−

Hd
2 (t′ − t)−

Hd
2 (s′ − s)−

Hd
2 dt′dtds′ds

≤ CH,T kv2

∫ T

0

∫ T

s

∫ T

s′
t−

Hd
2 s−

Hd
2 (s′ − s)−

Hd
2 dtds′ds

≤ CH,T kv2

∫ T

0

∫ s′

0

s−
Hd
2 (s′ − s)−

Hd
2 dsds′ ≤ CH,T kv2

∫ T

0

s1−Hdds <∞.

By a similar way, we can prove that∫
I2

(λρ− µ2)−
d
2 dsdtds′dt′ <∞,

∫
I3

(λρ− µ2)−
d
2 dsdtds′dt′ <∞.

Now, we turn to the proof of the necessary condition. By Proposition 3.5 one can get

λ ≤ CH,T v2(t2H + s2H), ρ ≤ CH,T v2(t′2H + s′2H),
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and

µ2 ≥ cH,T v2[t2H + s2H + t′2H + s′2H

− 1

2
((t+ s)2H + (t′ + s′)2H + |t− s|2H + |t′ − s′|2H)].

So,

λρ− µ2 ≤ CH,T v2{(t2H + s2H)(t′2H + s′2H)− [t2H + s2H + t′2H + s′2H

− 1

2
((t+ s)2H + (t′ + s′)2H + |t− s|2H + |t′ − s′|2H)]}.

Hence, making a change to spherical coordinates, as the integrand is always positive, we
have

AT =

∫
[0,T ]4

(λρ− µ2)−
d
2 dsdtds′dt′ ≥

∫
DT

(λρ− µ2)−
d
2 dsdtds′dt′

≥
∫ T

0

r3−2Hd

∫
Θ

φ(θ)dθ,

where DT := {(s + t + s′ + t′) ∈ R4
+ : s2 + t2 + s′2 + t′2 ≤ ε2}. Note that the angular

integral is different from zero thanks to the positivity of the integrand. It follows that if
AT <∞, then Hd < 2. Thus completes the proof. �

From Lemma 4.2, we get the following Theorem.

4.3. Theorem. Let H ∈ (0, 1). Then `ε,T converges in L2(Ω) as ε → 0 if and only if
Hd < 2. Morever, if the limits denoted by `T , then `T ∈ L2(Ω).

Proof. A slight extension of (4.4) yields

E(`ε,T `η,T ) =
1

(2π)d

∫
[0,T ]4

[(λ+ ε)(ρ+ ε)− µ2]−
d
2 dsdtds′dt′.

Consequently, a necessary and sufficient condition for the convergence in L2(Ω) of `ε,T
is that

AT :=

∫
[0,T ]4

(λρ− µ2)−
d
2 dsdtds′dt′ <∞.

Thus, it is sufficient to prove that AT < ∞ if and only if Hd < 2. By Lemma 4.2, this
complete the proof. �

Conclusions. In this paper, we discuss and analyze the subfractional Ornstein-
Uhlenbeck process and show that this process is local nondeterministic. At the same time,
we establish several estimates for the increments of the process, and give the sufficient and
necessary conditions for the existence of the intersection local time of two independent
subfractional Ornstein-Uhlenbeck process. In a sequel of this paper we will study the
Ornstein-Uhlenbeck process driven by general Gaussian process.
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