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Orlicz-Lorentz spaces and their multiplication
operators

René Erlin Castillo ∗ , Héctor Camilo Chaparro† and Julio César Ramos
Fernández‡

Abstract
The boundedness, closed range, invertibility, compactness and closed-
ness of multiplication operators on Orlicz-Lorentz spaces are character-
ized in this paper.
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1. Introduction
Let f a complex-valued measurable function defined on a σ-finite measure space

(X,A, µ). For λ ≥ 0, define Df (λ) the distribution function of f as

(1.1) Df (λ) = µ ({x ∈ X : |f(x)| > λ}) .
Observe that Df depends only on the absolute value |f | of the function f and Df may
assume the value +∞.

The distribution function Df provides information about the size of f but not about
the behavior of f itself near any given point. For instance, a function on Rn and each
of its translates have the same distribution function. It follows from (1.1) that Df is a
decreasing function of λ (not necessarily strictly) and continuous from the right.

Let (X,µ) be a measurable space and f and g be a measurable functions on (X,µ)
then Df enjoy the following properties for all λ1, λ2 ≥ 0:

(1) |g| ≤ |f | µ-a.e. implies that Dg ≤ Df ;
(2) Dcf (λ) = Df

(
λ
|c|

)
for all c ∈ C r {0};

∗Universidad Nacional de Colombia, Departamento de Matemáticas, Bogotá, Colombia
Email: recastillo@unal.edu.co
†Universidad Nacional de Colombia, Departamento de Matemáticas, Bogotá, Colombia

Email:hcchaparrog@unal.edu.co
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(3) Df+g(λ1 + λ2) ≤ Df (λ1) +Dg(λ2);
(4) Dfg(λ1λ2) ≤ Df (λ1) +Dg(λ2).

For more details on distribution function see [7].
By f∗ we mean the non-increasing rearrangement of f given as

f∗(t) = inf{λ > 0 : Df (λ) ≤ t}, t ≥ 0

where we use the convention that inf ∅ = ∞. f∗ is decreasing and right-continuous.
Notice

f∗(0) = inf{λ > 0 : Df (λ) ≤ 0} = ‖f‖∞,

since

‖f‖∞ = inf{α ≥ 0 : µ({x ∈ X : |f(x)| > α}) = 0}.

Also observe that if Df is strictly decreasing, then

f∗(Df (t)) = inf{λ > 0 : Df (λ) ≤ D(f)t} = t.

This fact demonstrates that f∗ is the inverse function of the distribution functionDf . Let
F(X,A) denote the set of all A-measurable functions on X. Let (X,A0, µ) and (Y,A1, ν)
be two measure spaces.

Two functions f ∈ F (X,A0) and g ∈ F (X,A1) are said to be equimeasurable if they
have the same distribution function, that is, if

(1.2) µ ({x ∈ X : |f(x)| > λ}) = ν ({y ∈ Y : |g(y)| > λ}) , for all λ ≥ 0.

So then there exists only one right-continuous decreasing function f∗ equimeasurable
with f . Hence the decreasing rearrangement is unique.

In what follows, we gather some useful properties of the decreasing rearrangement
function:

a) f∗ is decreasing.
b) f∗(t) > λ if and only if Df (λ) > t.
c) f and f∗ are equimeasurables, that is

Df (λ) = Df∗(λ) for all λ ≥ 0.

d) If |f | ≤ lim infn→∞ |fn| then f∗ ≤ lim infn→∞ f
∗
n.

e) If E ∈ A, then (χE)∗ (t) = χ[0,µ(E))(t).
f) If E ∈ A, then (fχE)∗ (t) ≤ f∗(t)χ[0,µ(E))(t).

A weight is a nonnegative locally integrable function on Rn that takes values in (0,∞)
almost everywhere. Therefore, weights are allowed to be zero or infinite only on a set of
Lebesgue measure zero.

Let ϕ : [0,∞)→ [0,∞) be a convex function such that

(1) ϕ(x) = 0 if and only if x = 0;
(2) limx→∞ ϕ(x) =∞.

Such as function is known as a Young function. A Young function is strictly increasing,
in fact, let 0 < x < y then 0 < x

y
< 1 and hence, we might write

x =

(
1− x

y

)
0 +

x

y
y.
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Since ϕ is convex, we have

ϕ(x) = ϕ

((
1− x

y

)
0 +

x

y
y

)
≤
(

1− x

y

)
ϕ(0) +

x

y
ϕ(y)

< ϕ(y).

A Young function is said to satisfy the ∆2-condition if there exists a nonnegative
constant x0 and k such that

(1.3) ϕ(2x) ≤ kϕ(x) for x ≥ x0.

If x0 = 0, we say that ϕ satisfy globally the ∆2-condition. The smaller constant k which
satisfy (1.3) is denoted by k∆.

1.1. Claim. If ϕ is a Young function such that satisfy the ∆2-condition, then for each
r ≥ 0 there exists a constant k∆(r) such that

(1.4) ϕ(rx) ≤ k∆(r)ϕ(x)

for x > 0 large enough.

Proof of the claim. If r > 0, we can choose n ∈ N such that r ≤ 2n. Then we can applied
(1.3) n-times and use the fact that ϕ is increasing to obtain

ϕ(rx) ≤ ϕ(2nx) ≤ knϕ(x),

and hence we have (1.4). �

1.2. Example. The function ϕ1(x) = xp

p
with p > 1 is a Young function which satisfy

globally the ∆2-condition with k∆ = 2p

p
.

1.3. Example. The function ϕ2(t) = tp log(1 + t) with p ≥ 1 and t ≥ 0 is a Young
function which satisfy the ∆2-condition, indeed, since

lim
t→∞

ϕ2(2t)

ϕ2(t)
= lim
t→∞

2ptp log(1 + 2t)

tp log(1 + t)
= 2p−1.

Also, ϕ2 satisfy globally the ∆2-condition.
In fact, since for each t ≥ 0 we have (1 + t)2 ≥ 1 + 2t, then

ϕ2(2t) = 2ptp log(1 + 2t)

≤ 2p+1tp log(1 + 2t)

≤ 2p+1ϕ2(2t).

1.4. Lemma. A Young function ϕ satisfy the ∆2-condition if and only if there exist
constants λ > 1 and t0 > 0 such that

tp(t)

ϕ(t)
< λ

for all t ≥ t0, where p is the right derivate of ϕ.

Proof. Suppose that ϕ satisfy the ∆2-condition, then there exists a constant k > 0 such
that

kϕ(t) ≥ ϕ(2t) =

∫ 2t

0

p(s) ds >

∫ 2t

t

p(s) ds
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for t large enough, since p is increasing, then we have∫ 2t

t

p(s) ds > tp(t);

hence, for t large enough, we obtain

tp(t)

ϕ(t)
≤ k.

Conversely, if

tp(t)

ϕ(t)
< λ

for all t ≥ t0, then∫ 2t

t

p(s)

ϕ(s)
ds < λ

∫ 2t

t

ds

s
= λ log 2.

Since p(s) = ϕ′(s), we have

log

(
ϕ(2t)

ϕ(t)

)
< λ log 2,

which implies that

ϕ(2t) < 2λϕ(t). �

The following result show us that the Young functions which satisfy the ∆2-condition
have a cross rate less than the function tp for some p > 1.

1.5. Theorem. If ϕ is a Young function which satisfy the ∆2-condition, then there exist
constants λ > 1 and C > 0 such that

ϕ(t) ≤ Ctλ

for t large enough.

Proof. By (1.4) we can write∫ t

t0

p(s)

ϕ(s)
ds < λ

∫ t

t0

ds

s

where t ≥ t0. Then

log

(
ϕ(t)

ϕ(t0)

)
< λ log

(
t

t0

)
,

therefore

ϕ(t) <
ϕ(t0)

tλ0
tλ.

And the proof is complete. �

1.6. Example. The following are Young functions:

(1) ϕ(x) = |x|p
p

with p > 1.
(2) ϕ(x) = e|x| − |x| − 1.
(3) ϕ(x) = e|x|

δ

− 1 with δ > 1.

(4) ϕ(x) =

{
0, if 0 ≤ x ≤ 1

+∞, otherwise.
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Related with the Young function ϕ, we define, for t ≥ 0 the complementary function
of Young function as

ψ(t) = sup{ts− ϕ(s) : s ≥ 0}.

1.7. Example. If ϕ(t) = 1
p
tp with p > 1 and t ≥ 0, then its complementary function is

ψ(t) = 1
q
tq where 1

p
+ 1

q
= 1.

Indeed, by definition we have

ψ(t) = sup

{
ts− 1

p
sp : s ≥ 0

}
,

next, for t > 0 fixed, we can consider the function

g(s) = ts− 1

p
sp, with s ≥ 0.

It is not hard to check that g achieved its maximum at s = t
1
p−1 which is given by

g
(
t

1
p−1

)
=

1

q
tq.

Hence

ψ(t) = sup

{
ts− 1

p
sp : s ≥ 0

}
=

1

q
tq.

1.8. Proposition. If ϕ is a Young function, then its complementary function ψ is also
a Young function.

Proof. It is clear that ψ(0) = 0 if and only if x = 0. Now, we just need to show that ψ
is a convex function. To this end, let us choose t1, t2 ∈ [0,+∞) and λ ∈ [0, 1]. Then, by
definition of ψ we have

ψ(λt1 + (1− λ)t2) = sup{s(λt1 + (1− λ)t2)− ϕ(s) : s ≥ 0}.

On the other hand

λψ(t1) = λ sup{st1 − ϕ(s) : s ≥ 0} ≥ λ(st1 − ϕ(s)) ∀ s ≥ 0

and

(1− λ)ψ(t2) = (1− λ) sup{st2 − ϕ(s) : s ≥ 0} ≥ (1− λ)(st2 − ϕ(s)) ∀ s ≥ 0.

From the last two inequalities, we have

s(λt1 + (1− λ)t2)− ϕ(s) = λ(st1 − ϕ(s)) + (1− λ)(st2 − ϕ(s))

≤ λψ(t1) + (1− λ)ψ(t2)

for all s ≥ 0. Which means that λψ(t1) + (1− λ)ψ(t2) is an upper bound of the set

{s(λt1 + (1− λ)t2)− ϕ(s) : s ≥ 0},

then

ψ(λt1 + (1− λ)t2)) ≤ ψ(t1) + (1− λ)ψ(t2),

and so ψ is convex. �

1.9. Theorem (Young’s Inequality). Let ψ be the complementary function of ϕ. Then

ts ≤ ϕ(s) + ψ(t)

where t, s ∈ [0,+∞).
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Proof. Let t, s ∈ [0,+∞). Then

ψ(t) = sup{st− ϕ(s) : s ≥ 0}
≥ st− ϕ(s) ∀ s ≥ 0,

then

ψ(t) + ϕ(s) ≥ st,

and the proof is complete. �

For more details on Young functions see [10].

2. Weighted Lorentz-Orlicz Spaces
The aim of this section is to present basic results about Lorentz-Orlicz spaces. We

have tried to make the proofs as self-contained and synthetic as possible.

2.1. Definition (Luxemburg norm). Let ϕ be a Young function. For any measurable
function f on X,

‖f‖ϕ,w = inf

{
ε > 0 :

∫ ∞
0

ϕ

(
f∗(t)

ε

)
w(t) dt ≤ 1

}
∈ [0,∞).

Where it is understood that inf(∅) = +∞.

2.2. Remark. In this article, we will not always require that the Luxemburg norm actually
be a norm. ‖ · ‖ϕ,w is indeed a quasinorm. A quasinorm is a functional that is like a
norm except that it does only satisfy the triangle inequality with a constant C ≥ 1, that
is, ‖f + g‖ ≤ C(‖f‖+ ‖g‖) where C ≥ 1.

2.3. Lemma. For any measurable function f on X, ‖f‖ϕ,w = 0 if and only if f = 0
µ-almost everywhere.

Proof. Clearly ‖f‖ϕ,w = 0 if and only if
∫∞

0
ϕ
(
f∗(t)
ε

)
w(t) dt ≤ 1 ∀ ε > 0. It follows that

‖f‖ϕ,w = 0 if and only if
∫ ∞

0

ϕ (αf∗(t))w(t) dt = 0 ∀ α > 0

if and only if ϕ (αf∗(t))w(t) = 0 µ− a.e. ∀ α > 0

if and only if f∗(t) = 0 µ− a.e.

if and only if Df (λ) = 0 µ− a.e.
if and only if f = 0 µ− a.e. �

Identification of almost everywhere equal functions. As with Lp spaces, one identifies
the function which are µ-almost everywhere equal. This means that one works with
the equivalence classes of the equivalence relation defined by the µ-almost everywhere
equality. From now on, this will be done without further mention. Consequently, one
write:

(2.1) ‖f‖ϕ,w = 0 if and only if f = 0.

2.4. Lemma. If 0 < ‖f‖ϕ,w < ∞ then
∫∞

0
ϕ
(

f∗(t)
‖f‖ϕ,w

)
w(t) dt ≤ 1. In particular,

‖f‖ϕ,w ≤ 1 is equivalent to
∫∞

0
ϕ (f∗(t))w(t) dt ≤ 1.
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Proof. For all b > ‖f‖ϕ,w, we have∫ ∞
0

ϕ

(
f∗(t)

b

)
w(t) dt ≤ 1.

Letting b decrease to ‖f‖ϕ,w, one obtains the first result by monotone convergence. The
second statement follows from this and lemma 2.8. �

2.5. Proposition. The gauge ‖ · ‖ϕ,w is a quasinorm on the vector space of all the
measurable functions f such that ‖f‖ϕ,w <∞.

Proof. It is already seen that (2.1) holds under identification of a.e. equal functions.
It is clear that for all real λ, ‖λf‖ϕ,w = |λ|‖f‖ϕ,w.
It remains to prove the triangle inequality. Let f and g be two measurable functions

such that 0 < ‖f‖ϕ,w + ‖g‖ϕ,w <∞. Then∫ ∞
0

ϕ

(
(f + g)∗(t)

2(‖f‖ϕ,w + ‖g‖ϕ,w)

)
w(t) dt

≤
∫ ∞

0

ϕ

(
f∗(t/2) + g∗(t/2)

2(‖f‖ϕ,w + ‖g‖ϕ,w)

)
w(t) dt

=

∫ ∞
0

ϕ

(
‖f‖ϕ,w

2(‖f‖ϕ,w + ‖g‖ϕ,w)

f∗(t/2)

‖f‖ϕ,w
+

‖g‖ϕ,w
2(‖f‖ϕ,w + ‖g‖ϕ,w)

g∗(t/2)

‖g‖ϕ,w

)
w(t) dt

≤ ‖f‖ϕ,w
2(‖f‖ϕ,w + ‖g‖ϕ,w)

∫ ∞
0

ϕ

(
f∗(t/2)

‖f‖ϕ,w

)
w(t) dt

+
‖g‖ϕ,w

2(‖f‖ϕ,w + ‖g‖ϕ,w)

∫ ∞
0

ϕ

(
g∗(t/2)

‖f‖ϕ,w

)
w(t) dt

=
‖f‖ϕ,w

2(‖f‖ϕ,w + ‖g‖ϕ,w)
2

∫ ∞
0

ϕ

(
f∗(t)

‖f‖ϕ,w

)
w(2t) dt

+
‖g‖ϕ,w

2(‖f‖ϕ,w + ‖g‖ϕ,w)
2

∫ ∞
0

ϕ

(
g∗(t)

‖f‖ϕ,w

)
w(2t) dt

≤ ‖f‖ϕ,w
‖f‖ϕ,w + ‖g‖ϕ,w

∫ ∞
0

ϕ

(
f∗(t)

‖f‖ϕ,w

)
w(t) dt

+
‖g‖ϕ,w

‖f‖ϕ,w + ‖g‖ϕ,w

∫ ∞
0

ϕ

(
g∗(t)

‖f‖ϕ,w

)
w(t) dt

≤ 1.

Where the last but one inequality follows from the convexity of ϕ and the fact that w is
nonincreasing and the last inequality from lemma 2.4. Therefore

‖f + g‖ϕ,w ≤ 2 (‖f‖ϕ,w + ‖g‖ϕ,w) .

As a consequence, the set of all measurable functions f such that ‖f‖ϕ,w <∞ is a vector
space. �

2.6. Definition. Let ϕ be a Young function. We define the weighted Lorenz-Orlicz
spaces

Lϕ,w =

{
f : X → C measurable :

∫ ∞
0

ϕ(αf∗(t))w(t) dt <∞, for some α > 0

}
.

It follows from proposition 1.8 that if Lϕ,w is a weighted Lorentz-Orlicz space, then
Lψ,w is also a weighted Lorenz-Orlicz space.
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2.7. Proposition (Hölder’s type inequality). For f ∈ Lϕ,1 and g ∈ Lψ,1∫
X

|fg| dµ ≤ 2‖f‖ϕ,1‖g‖ψ,1.

In particular, fg ∈ L1.

Proof. If ‖f‖ϕ,1 = 0 or ‖g‖ψ,1 = 0, one concludes with lemma 2.8.
Assume now that 0 < ‖f‖ϕ,1, ‖g‖ψ,1. Because of Young’s inequality: st ≤ ϕ(s) +ϕ(t)

we have ∫
X

|fg|
‖f‖ϕ,1‖g‖ψ,1

dµ ≤
∫ ∞

0

f∗(t)g∗(t)

‖f‖ϕ,1‖g‖ψ,1
dt

≤
∫ ∞

0

ϕ

(
f∗(t)

‖f‖ϕ,1

)
dt+

∫ ∞
0

ψ

(
g∗(t)

‖g‖ψ,1

)
dt

≤ 2.

Therefore∫
X

|fg| dµ ≤ 2‖f‖ϕ,1‖g‖ψ,1. �

2.8. Lemma. Let {fn}n∈N be a sequence in Lϕ,w. Then, the following assertions are
equivalent:
(a) limn→∞ ‖fn‖ϕ,w = 0;
(b) For all α > 0, lim supn→∞

∫∞
0
ϕ(αf∗n(t))w(t) dt ≤ 1;

(c) For all α > 0, limn→∞
∫∞

0
ϕ(αf∗n(t))w(t) dt = 0.

Proof. The equivalence (a)⇔ (b) is a direct consequence of the definition of ‖ · ‖ϕ,w. Off
course (c)⇒ (b) is obvious. As ϕ is convex and ϕ(0) = 0 for all t ≥ 0 and 0 < ε ≤ 1, we
have

ϕ(t) = ϕ

(
(1− ε)0 + ε

t

ε

)
≤ (1− ε)ϕ(0) + εϕ

(
t

ε

)
,

that is

ϕ(t) ≤ εϕ
(
t

ε

)
t ≥ 0, 0 < ε ≤ 1.

From which (b)⇒ (c) follows easily. �

2.9. Theorem. The space Lϕ,w is a quasi-Banach space.

Proof. Let {fn}n∈N be a Cauchy sequence in Lϕ,w. Let us choose ε̃ > 0 such that
ε̃ϕ−1

(
ε
k0

)
< 1

n+m
for n,m ∈ N and ε > 0, k0 > 0. For such ε̃ there exists n0 ∈ N such

that

‖fn − fm‖ϕ,w < ε̃.

If n,m ≥ n0. By the definition of the Luxemburg quasi-norm we can use k0 > 0 in such
a way that k0 < ε̃ and∫ ∞

0

ϕ

(
(fn − fm)∗(t)

k0

)
w(t) dt ≤ 1.

Let E = {x ∈ X : |fn(x)− fm(x)| > ε}, then

εχE(x) ≤ |fn(x)− fm(x)|.
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And hence

εχ∗E(t) ≤ (fn − fm)∗(t),

εχ(0,µ(E))(t) ≤ (fn − fm)∗(t).

Therefore∫ ∞
0

ϕ

(
ε

k0
χ(0,µ(E))(t)

)
w(t) dt ≤

∫ ∞
0

ϕ

(
(fn − fm)∗(t)

k0

)
w(t) dt.

Then ∫ µ(E)

0

ϕ

(
ε

k0

)
w(t) dt ≤

∫ ∞
0

ϕ

(
(fn − fm)∗(t)

k0

)
w(t) dt

⇒ ε̃

∫ Dfn−fm(ε)

0

w(t) dt ≤ ε̃ϕ−1

(
ε

k0

)∫ ∞
0

ϕ

(
(fn − fm)∗(t)

k0

)
w(t) dt

⇒ ε̃

∫ Dfn−fm(ε)

0

w(t) dt ≤ 1

n+m

⇒ ε̃ lim
n,m→∞

∫ Dfn−fm(ε)

0

w(t) = 0.

Since w > 0, we must have limn,m→∞Dfn−fm(ε) = 0 which means that {fn}n∈N is a
Cauchy sequence in measure, then some subsequence {fnk}k∈N converges almost every-
where to a measurable function f , that is, fnk → f µ-a.e.

Let α > 0. By lemma 2.8 there exists a large enough integer n(α) such that∫ ∞
0

ϕ (α(fn − fm)∗(t))w(t) dt ≤ 1, ∀ m,n ≥ n(α).

With Fatou’s lemma this gives∫ ∞
0

ϕ (α(fn − f)∗(t))w(t) dt ≤ lim inf

∫ ∞
0

ϕ (α(fn − fm)∗(t))w(t) dt ≤ 1

∀ m ≥ n(α). Therefore fn − f belongs to Lϕ,w, but fn ∈ Lϕ,w, so that f ∈ Lϕ,w.
Moreover, as lim supm→∞

∫∞
0
ϕ (α(fm − f)∗(t))w(t) dt ≤ 1 for all α > 0, we have

limm→∞ ‖fm − f‖ϕ,w = 0. This proves that Lϕ,w is complete. �

2.10. Theorem. Simple functions are dense in Lϕ,w.

Proof. Suppose f ∈ Lϕ,w. We may assume that f ≥ 0. Note that if Df (λ) = ∞, then
limt→∞ f

∗(t) = 0. It follows that Df (λ) <∞.
Hence, given ε, δ > 0, we can find a simple function sn ≥ 0 such that sn(x) = 0 when

f(x) ≤ ε and f(x) − ε ≤ sn(x) ≤ f(x) when f(x) > ε except on a set of measure less
than δ. It follows that

µ ({x ∈ X : |f(x)− sn(x)| > ε}) < δ.

Next, choose n ∈ N such that n ≥ 1
ε
, then

(f − sn)∗(t) = inf{ε > 0 : Df−sn(ε) < δ ≤ t}.

Thus

(f − sn)∗(t) ≤ 1

n
for t ≥ δ,

since sn ≤ f , then s∗n(t) ≤ f∗(t), for each t > 0. Since n > 1
ε
, we have

(f − sn)∗(t) ≤ 1

n
< ε,



1000

next, ∫ ∞
0

ϕ

(
(f − sn)∗(t)

k

)
w(t) dt ≤

∫ ∞
0

ϕ

(
1

nk

)
w(t) dt.

Let a =
∫∞

0
w(t) dt, then

‖f − sn‖ϕ,w = inf

{
k > 0 :

∫ ∞
0

ϕ

(
(f − sn)∗(t)

k

)
w(t) dt ≤ 1

}
=

1

nϕ−1
(

1
a

) → 0 as n→∞. �

3. Multiplication Operator
Let F (X) be a function space on non-empty set X. Let u : X → C be a function such

that u · f ∈ F (X) whenever f ∈ F (X).
Then, the transformation f 7→ u · f on F is denoted by Mu. In case F (X) is a

topological space and Mu is continuos, we call it a multiplication operator induced by u.
Multiplication operators generalize the notion of operator given by a diagonal ma-

trix. More precisely, one of the results of operator theory is a spectral theorem, which
states that every self-adjoint operator on a Hilbert space is unitarily equivalent to a
multiplication operator on an L2 space.

These operators received considerable attention over the past several decades specially
on Lp spaces and Bergman spaces and they played an important role in the study of
operators on Hilbert spaces.

For more details on these operators we refer to Abrahamese [1], Axler [4], Douglas [6],
Halmos [8] and Takagi [12].

3.1. Example. Consider the Hilbert space X = L2[−1, 3] of complex-valued square
integrable functions on the interval [−1, 3]. Define the operator

Mu(x) = u(x)x2,

for any function u ∈ X. This will be a self-adjoint bounded linear operator with norm
9. Its spectrum will be the interval [0, 9] (the range of the function x → x2 defined on
[−1, 3]). Indeed, for any complex number λ, the operator Mu − λ is given by

(Mu − λ)(x) = u(x)(x2 − λ).

It is invertible if and only if λ is not in [0, 9], and then its inverse is

(Mu − λ)−1(x) =
u(x)

x2 − λ .

which is another multiplication operator.

For a systematic study of the multiplication operators on different spaces we refer to
[1, 3, 4, 5, 9, 11].

3.2. Remark. In general, the multiplication operators on measurable spaces is not 1−1.
Indeed, let (X,A, µ) be a measure space and

A = X r supp(u) = {x ∈ X : u(x) = 0}.
If µ(A) 6= 0 and f = χA then for any x ∈ X we have f(x)u(x) = 0 which implies that
Mu(f) = 0, therefore ker(Mu) 6= {0} and hence Mu is not 1−1.

If, on the contrary, Mu is 1−1, then µ(X r supp(u)) = 0. On the other hand, if
µ(X r supp(u)) = 0 and µ is a complete measure, then Mu(f) = 0 implies f(x)u(x) =
0 ∀ x ∈ X, then {x ∈ X : f(x) 6= 0} ⊆ X r supp(u) and so f = 0 µ-a.e. on X.

Hence, if µ(X r supp(u)) = 0 and µ is a complete measure, then Mu is 1−1.
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3.3. Proposition. Mu is 1−1 on Y = Lϕ,w(suppu).

Proof. Let Y = Lϕ,w(suppu) = {fχsuppu : f ∈ Lϕ,w}. Indeed, if Mu(f̃) = 0 with
f̃ = fχsuppu ∈ Y , then f(x)χsuppu(x)u(x) = 0 for all x ∈ X, and so

f(x)u(x) = 0 ∀ x ∈ supp(u),

⇒ f(x) = 0 ∀ x ∈ supp(u),

⇒ f(x)χsuppu(x)(x) = 0 ∀ x ∈ X.

Then f̃ = 0 and the proof is complete. �

In what follows, boundedness and invertibility of the multiplication Mu are charac-
terized in terms of the boundedness and invertibility of the complex valued measurable
function u respectively.

3.4. Theorem. The linear transformation Mu : f → u · f on the Orlicz-Lorentz space
Lϕ,w is bounded if and only if u is essentially bounded. Moreover

‖Mu‖ = ‖u‖∞.

Proof. Let u ∈ L∞(µ), note |(uf)(x)| ≤ ‖u‖∞|f(x)|, thus
{x : |(uf)(x)| > λ} ⊆ {x : ‖u‖∞|f(x)| > λ}

=

{
x : |f(x)| > λ

‖u‖∞

}
then

Duf (λ) ≤ Df
(

λ

‖u‖∞

)
and so {

λ > 0 : Df

(
λ

‖u‖∞

)
≤ t
}
⊆ {λ > 0 : Duf (λ) ≤ t}.

From this we have

inf{λ > 0 : Duf (λ) ≤ t} ≤ inf

{
λ > 0 : Df

(
λ

‖u‖∞

)
≤ t
}

≤ inf{α‖u‖∞ > 0 : Df (α) ≤ t}
= ‖u‖∞ inf{α > 0 : Df (α) ≤ t}.

Hence

(uf)∗(t) ≤ ‖u‖∞f∗(t).
Then ∫ ∞

0

ϕ

(
(uf)∗(t)

‖u‖∞‖f‖ϕ,w

)
w(t) dt ≤

∫ ∞
0

ϕ

(
‖u‖∞f∗(t)
‖u‖∞‖f‖ϕ,w

)
w(t) dt

=

∫ ∞
0

ϕ

(
f∗(t)

‖f‖ϕ,w

)
w(t) dt ≤ 1.

Hence f ∈ Lϕ,w and

(3.1) ‖Muf‖ϕ,w ≤ ‖u‖∞‖f‖ϕ,w.
Conversely, suppose Mu is a bounded operator. If u is not essentially bounded function,
then for every n ∈ N, the set En = {x ∈ X : |u(x)| > n} has a positive measure. Now,
we know that

χ∗En(t) = χ0,µ(En)(t),
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and note

{x : nχEn(x) > λ} ⊆ {x : |uχEn(x)| > λ},
then

DnχEn (λ) ≤ DuχEn (λ),

from this we have

{λ > 0 : DuχEn (λ) ≤ t} ⊆ {λ > 0 : DnχEn (λ) ≤ t}.
Hence

inf{λ > 0 : DnχEn (λ) ≤ t} ≤ inf{λ > 0 : DuχEn (λ) ≤ t}.
That is,

(uχEn)∗(t) ≥ n(χEn)∗(t).

This gives us

1 ≥
∫ ∞

0

ϕ

(
(uχEn)∗(t)

k

)
w(t) dt

≥
∫ ∞

0

ϕ

(
(nχEn)∗(t)

k

)
w(t) dt,

and so {
k > 0 :

∫ ∞
0

ϕ

(
(uχEn)∗(t)

k

)
w(t) dt ≤ 1

}
⊆
{
k > 0 :

∫ ∞
0

ϕ

(
(nχEn)∗(t)

k

)
w(t) dt ≤ 1

}
,

thus

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(nχEn)∗(t)

k

)
w(t) dt ≤ 1

}
≤

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(uχEn)∗(t)

k

)
w(t) dt ≤ 1

}
,

which means that

‖MuχEn‖ϕ,w ≥ n‖χEn‖ϕ,w,
this contradicts the boundedness of Mu. Hence u must be essentially bounded.

Next, clearly by (3.1) we obtain

(3.2) ‖Mu‖ ≤ ‖u‖∞.
For ε > 0, let E = {x ∈ X : |u(x)| ≥ ‖u‖∞ − ε} (observe that µ(E) > 0), then

{x ∈ X : (‖u‖∞ − ε)χE(x) > λ} ⊆ {x ∈ X : |uχE(x)| > λ},
then

D(‖u‖∞−ε)χE (λ) ≤ DuχE (λ)

and so

{λ > 0 : DuχE (λ) ≤ t} ⊆ {λ > 0 : D(‖u‖∞−ε)χE ≤ t}
from this we have

inf{λ > 0 : D(‖u‖∞−ε)χE ≤ t} ≤ inf{λ > 0 : DuχE (λ) ≤ t}.
Therefore

(uχE)∗(t) ≥ (‖u‖∞ − ε)(χE)∗(t),
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then ∫ ∞
0

ϕ

(
(‖u‖∞ − ε)(χE)∗(t)

‖MuχE‖ϕ,w

)
w(t) dt ≤

∫ ∞
0

ϕ

(
(uχE)∗(t)

‖MuχE‖ϕ,w

)
w(t) dt ≤ 1,

which implies that

‖(‖u‖∞ − ε)χE‖ϕ,w ≤ ‖MuχE‖ϕ,w,

and

(‖u‖∞ − ε)‖χE‖ϕ,w ≤ ‖MuχE‖ϕ,w,

hence

‖u‖∞ − ε ≤
‖MuχE‖ϕ,w
‖χE‖ϕ,w

,

which provide that

‖Mu‖ ≥ ‖u‖∞ − ε ∀ ε > 0

and so

‖Mu‖ ≥ ‖u‖∞.

Therefore

‖Mu‖ = ‖u‖∞. �

We will need the following well known result.

3.5. Theorem. Let T ∈ B(X,Y ) whereX and Y are Banach spaces. Then T is bounded
below if and only if T is 1−1 and has closed range.

For the proof of theorem 3.5 see [2].

3.6. Corollary. Mu : Lϕ,w(suppu) → Lϕ,w(suppu) has closed range if and only if Mu

is bounded below on Lϕ,w(suppu).

This result is clear since Mu is 1−1 on Lϕ,w(suppu). Moreover, if u 6= 0 µ-a.e. on X
with µ a complete measure, then we have the following result.

3.7. Corollary. If µ 6= 0 µ-a.e. on X and µ is a complete measure, then

Mu : Lϕ,w(X,A, u)→ Lϕ,w(X,A, u)

has a closed range if and only if Mu is bounded below on Lϕ,w(X,A, u).

3.8. Theorem. Mu : Lϕ,w(suppu) → Lϕ,w(suppu) has a closed range if and only if
there exists δ > 0 such that |u(x)| > δ µ-a.e. on suppµ.

Proof. If there exists a δ > 0 such that |u(x)| ≥ δ µ-a.e. on supp(u), then for f ∈ Lϕ,w
and t > 0 we have

{x : |δfχsupp(u)(x)| > λ} ⊆ {x : |ufχsupp(u)(x)| > λ},

and so

Dδfχsupp(u)
(λ) ≤ Dufχsupp(u)

(λ),

then

{λ > 0 : Dufχsupp(u)
(λ) ≤ t} ⊆ {λ > 0 : Dδfχsupp(u)

(λ) ≤ t},

from this we have

inf{λ > 0 : Dδfχsupp(u)
(λ) ≤ t} ≤ inf{λ > 0 : Dufχsupp(u)

(λ) ≤ t},
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thus

(ufχsupp(u))
∗(t) ≥ δfχ∗supp(u)(t),

then we shall note that{
k > 0 :

∫ ∞
0

ϕ

(
(ufχsupp(u))

∗(t)

k

)
w(t) dt ≤ 1

}
⊆{

k > 0 :

∫ ∞
0

ϕ

(
(δfχsupp(u))

∗(t)

k

)
w(t) dt ≤ 1

}
.

Hence

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(δfχsupp(u))

∗(t)

k

)
w(t) dt ≤ 1

}
≤

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(ufχsupp(u))

∗(t)

k

)
w(t) dt ≤ 1

}
,

which means that

‖δfχsupp(u)‖ϕ,w ≤ ‖Mufχsupp(u)‖ϕ,w,

thus

‖Mufχsupp(u)‖ϕ,w ≥ δ‖fχsupp(u)‖ϕ,w.

Therefore Mu has closed range.
Conversely, assume thatMu has closed range on Lϕ,w(supp(u)). SinceMu : Lϕ,w(supp(u))→

Lϕ,w(supp(u)) is 1−1, then Mu is bounded below, then there exists an ε > 0 such that

‖Muf‖ϕ,w ≥ ε‖f‖ϕ,w

for all f ∈ Lϕ,w(supp(u)). Let E = {x ∈ supp(u) : |u(x)| < ε/2}.
If µ(E) > 0, then we can find a measurable set F ⊆ E such that χF ∈ Lϕ,w(supp(u)).

Then

{x : |uχF | > λ} ⊆
{
x :
∣∣∣ ε
2
χF

∣∣∣ > λ
}

and so

DuχF (λ) ≤ D ε
2
χF (λ),

from this we have

{λ > 0 : D ε
2
χF (λ) ≤ t} ⊆ {λ > 0 : DuχF (λ) ≤ t},

then

inf{λ > 0 : DuχF (λ) ≤ t} ≤ inf{λ > 0 : D ε
2
χF (λ) ≤ t}

that is,

(uχF )∗(t) ≤
( ε

2
χF
)∗

(t),

and so

(uχF )∗(t) ≤ ε

2
(χF )∗(t).
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Therefore

‖MuχF ‖ϕ,w = inf

{
ε > 0 :

∫ ∞
0

ϕ

(
(uχF )∗(t)

ε

)
w(t) dt ≤ 1

}
≤ inf

{
ε > 0 :

∫ ∞
0

ϕ

( ε
2
(χF )∗(t)

ε

)
w(t) dt ≤ 1

}
=
ε

2
‖χF ‖ϕ,w,

which is a contradiction. Therefore µ(E) = 0. This completes the proof. �

3.9. Corollary. If µ 6= 0 µ-a.e. on X, and µ is a complete measure, then Mu has a
closed range on Lϕ,w(X,A, µ) if and only if there exists δ > 0 such that |u(x)| ≥ δ µ-a.e.
on X.

Proof. The result follows as a consequence of

Lϕ,w(X,A, µ) = Lϕ,w(suppu) �

3.10. Theorem. The set of all multiplication operators on Lϕ,w is a maximal abelian
subalgebra of the set B(Lϕ,w), the algebra of all bounded linear operators on Lϕ,w.

Proof. Let

H = {Mu : u ∈ L∞}
and consider the operator product

Mu ·Mv = Muv,

where Mu,Mv ∈ H. Let us check that it is a Banach algebra. Let u, v ∈ L∞, then
|u| ≤ ‖u‖∞ and |v| ≤ ‖v‖∞, therefore

‖uv‖∞ ≤ ‖u‖∞‖v‖∞,
this implies that the product is an inner operation, moreover the usual function product
is associative, commutative and distributive respect to the sum and the scalar product,
thus we conclude that H is a subalgebra of B(Lϕ,w). Now, we like to check that it is a
maximal subalgebra, that is, given N ∈ B(Lϕ,w), if N commute with H, we have to prove
that N ∈ H. Consider the unit function e : X → C defined by e(x) = 1 for all x ∈ X.
Let N ∈ B(Lϕ,w) be an operator which commute with H and let χE the characteristic
function of a measurable set E. Then

N(χE) = N [MχE (e)]

= MχE [N(e)]

= χE ·N(e)

= N(e) · χE
= Mw · χE ,

where w = N(e). Similarly

(3.3) N(s) = Mw(s)

for any simple function.
Now, let us check that w ∈ L∞. By way of contradiction, assume that w /∈ L∞, then

the set

En = {x ∈ X : |w(x)| > n}
has a positive measure for each n ∈ N. Note that

Mw(χEn)(x) = wχEn(x) ≥ nχEn(x)
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for all x ∈ X. By the monotonicity property of the distribution function we have

DwχEn (λ) ≥ DχEn

(
λ

n

)
.

From this

{λ > 0 : DwχEn (λ) ≤ t} ⊆
{
λ > 0 : DχEn

(
λ

n

)
≤ t
}
.

Then

inf

{
λ > 0 : DχEn

(
λ

n

)
≤ t
}
≤ inf{λ > 0 : DwχEn (λ) ≤ t}.

Putting α = λ
n
, we have

‖wχEn‖ϕ,w ≥ n‖χEn‖ϕ,w,
since χE is a simple function, then by (3.3) we have

Mw(χEn) = N(χEn).

Hence

‖N(χEn)‖ϕ,w ≥ n‖χEn‖ϕ,w.
Therefore N is an unbounded operator. This is a contradiction to the fact that N is
bounded.

So then w ∈ L∞ and by theorem 3.4 Mw is bounded.
Next, given f ∈ Lϕ,w, there exists a nondecreasing sequence {sn}n∈N of measurable

simple functions such that limn→∞ sn = f , then by (3.3) we have

N(f) = N(lim sn)

= limN(sn)

= limMw(sn)

= Mw(lim sn)

= Mw(f).

Therefore N(f) = Mw(f) for all f ∈ Lϕ,w and thus we conclude that N ∈ H. �

3.11. Corollary. The multiplication operator is invertible on B(Lϕ,w) if and only if is
invertible on L∞.

Proof. Let Mu be invertible. Then there exists N ∈ B(Lϕ,w) such that

(3.4) Mu ·N = N ·Mu = I

where I represent the identity operator. Let us check that N commute with H.
Let Mw ∈ H, then

(3.5) Mw ·Mu = Mu ·Mw.

Applying N to (3.5) and by (3.4) we obtain

N ·Mw ·Mu ·N = N ·Mu ·Mw ·N,
N ·Mw · I = I ·Mw ·N,
N ·Mw = Mw ·N,

and thus we conclude that N commute with H. By theorem 3.10 N ∈ H, then there
exists g ∈ L∞ such that N = Mg, hence

Mu ·Mg = Mg ·Mu = I,

this implies that ug = gu = 1 µ-a.e., which means that u is invertible on L∞.
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On the other hand, assume u is invertible on L∞, that is, 1
u
∈ L∞, then

Mu ·M 1
u

= M 1
u
·Mu

= M( 1
u )u

= M1 = I,

which means that Mu is invertible on B(Lϕ,w). �

For the sake of completeness and the convenience of the reader, we gives here one
definition and one lemma which will play an important role on the coming results.

3.12. Definition. Let T be an operator. A subspace V of X is said to be invariant
under T (or simply T -invariant) whenever

T (V ) ⊆ V.

3.13. Lemma. Let T : X → X be an operator. If T is compact and M is a closed
T -invariant subspace of X, then T |M is compact.

Proof. Let {xn}n∈N be a subsequence inM ⊆ X. Then {xn}n∈N ⊆ X, thus there exists a
subsequence {xnk}k∈N of {xn}n∈N such that T (xnk ) converges in X, but T (xnk ) ⊆ T (M)

since {xnk}k∈N ⊆ M . Then T (xnk ) converges on T (M) ⊆ M = M . Therefore T (xnk )
converges on M , hence T |M is compact. �

3.14. Theorem. Let Mu be a compact operator. For ε > 0 define

Aε(u) = {x ∈ X : |u(x)| ≥ ε},
and

Lϕ,w(Aε(u)) = {fχAε(u) : f ∈ Lϕ,w}.
Then Lϕ,w(Aε(u)) is a closed invariant subspace of Lϕ,w under Mu. Moreover

Mu

∣∣
Lϕ,w(Aε(u))

is a compact operator.

Proof. Let h, s ∈ Lϕ,w(Aε(u)) and α, β ∈ R. Then h = fχAε(u) and s = gχAε(u) where
f, g ∈ Lϕ,w thus

αh+ βs = α(fχAε(u)) + β(gχAε(u))

= (αf + βg)χAε(u) ∈ Lϕ,w(Aε(u)),

which means that Lϕ,w(Aε(u)) is a subspace of Lϕ,w.
Next, for all h ∈ Lϕ,w(Aε(u)) we have

Muh = uh

= u(fχAε(u))

= (uf)χAε(u),

where uf ∈ Lϕ,w. Therefore Mu ∈ Lϕ,w(Aε(u)), which means that Lϕ,w(Aε(u)) is an
invariant subspace of Lϕ,w under Mu.

Now, let us show that Lϕ,w(Aε(u)) is a closed set. Indeed, let g a function belonging
to the closure of Lϕ,w(Aε(u)) then there exists a sequence {gn}n∈N in Lϕ,w(Aε(u)) such
that

gn → g in Lϕ,w
Just remain to exhibit that g belongs to Lϕ,w(Aε(u)). Note that

g = gχAε(u) + gχAcε(u).



1008

Next, we want to show that gχAcε(u) = 0. In fact, given ε1 > 0 there exists n0 ∈ N such
that

‖gχAcε(u)‖ϕ,w = ‖(g − gn0 + gn0)χAcε(u)‖ϕ,w
= ‖(g − gn0)χAcε(u)‖ϕ,w
≤ ‖g − gn0‖ϕ,w < ε1.

Thus, gχAcε(u) = 0 which means that g = gχAε(u), that is, g ∈ Lϕ,w(Aε(u)). Finally by
lemma 3.13 we have

Mu

∣∣
Lϕ,w(Aε(u))

is a compact operator. And the proof is now complete. �

3.15. Theorem. Let Mu ∈ B(Lϕ,w). Then Mu is compact if and only if Lϕ,w(Aε(u))
is finite dimensional for each ε > 0.

Proof. If |u(x)| ≥ ε, we should note that

|ufχAε(x)| ≥ εfχAε(u)(x)

and so

{x : εfχAε(u)(x) > λ} ⊆ {x :
∣∣ufχAε(u)(x)

∣∣ > λ},

thus

DεfχAε(u)(λ) ≤ DufχAε(u)(λ),

then

{λ > 0 : DufχAε(u)(λ) ≤ t} ⊆ {λ > 0 : DεfχAε(u)(λ) ≤ t}

from this we have

inf{λ > 0 : DεfχAε(u)(λ) ≤ t} ≤ inf{λ > 0 : DufχAε(u)(λ) ≤ t}

that is

(εfχAε(u))
∗(t) ≤ (ufχAε(u))

∗(t).

Hence {
k > 0 :

∫ ∞
0

ϕ

(
(ufχAε(u))

∗(t)

k

)
w(t) dt ≤ 1

}
⊆{

k > 0 :

∫ ∞
0

ϕ

(
ε(fχAε(u))

∗(t)

k

)
w(t) dt ≤ 1

}
.

Therefore

inf

{
k > 0 :

∫ ∞
0

ϕ

(
ε(fχAε(u))

∗(t)

k

)
w(t) dt ≤ 1

}
≤

inf

{
k > 0 :

∫ ∞
0

ϕ

(
(ufχAε(u))

∗(t)

k

)
w(t) dt ≤ 1

}
.

And hence

(3.6) ‖MufχAε(u)‖ϕ,w ≥ ε‖fχAε(u)‖ϕ,w.

Now, if Mu is a compact operator, then Lϕ,w(Aε(u)) is a closed invariant subspace of
Lϕ,w under Mu and by lemma 3.13

Mu

∣∣
Lϕ,w(Aε(u))
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is a compact operator. Then by (3.6) Mu

∣∣
Lϕ,w(Aε(u)) has a closed range in Lϕ,w(Aε(u))

and it is invertible, being compact Lϕ,w(Aε(u)) is finite dimensional.
Conversely, suppose that Lϕ,w(Aε(u)) is finite dimensional for each ε > 0. In partic-

ular, for each n, Lϕ,w(A 1
u

(u)) is finite dimensional, then for each n, define un : X → C
as

un(x) =

{
u(x) if |u(x)| ≥ 1

n

0 if |u(x)| < 1
n
.

Then we find that

((un − u) · f)∗(t) ≤ ‖un − u‖∞f∗(t) ∀ t > 0.

Consequently

‖Munf −Muf‖ϕ,w ≤ ‖un − u‖∞‖f‖ϕ,w

≤ 1

n
‖f‖ϕ,w,

which implies thatMun converges toMu uniformly. As Lϕ,w(Aε(u)) is finite dimensional
so Mun is a finite rank operator. Therefore, Mun is a compact operator and hence Mu

is a compact operator. �
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1. INTRODUCTION
Digital topology [19, 17] has been used in different image processing and computer

graphics algorithms for several decades. It addresses the fundamental properties of binary
object connectivity in two dimensional (2D) and three dimensional (3D) digital images.
Concepts and results of Digital Topology are used to specify and justify some important
low-level image processing algorithms including algorithms for thinning, boundary extrac-
tion, object counting, and contour filling. The properties of digital images with tools from
Topology (including Algebraic Topology) are used by many researchers [1−12, 16, 17, 19].

Homology is a powerful topological invariant which characterizes an object by its
p-dimensional holes. Intuitively the 0-dimensional holes can be seen as "tiny holes",
1-dimensional holes can be seen as tunnels, and 2-dimensional holes can be seen as
cavities. The usage of homology groups is a new topic and is not widely spread. Simplicial
homology groups of digital images have been studied by several researchers [1, 10, 16].
Boxer et al. [10] extend results of [1] about computing simplicial homology groups of
digital images. In this work, we compute simplicial homology groups of certain minimal
simple closed surfaces.

This paper is organized as follows. Section 2 provides some basic notions used in
this paper. In section 3, we compute the simplicial homology groups of certain digital
surfaces.
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2. PRELIMINARIES
Let Zn be the set of lattice points in the n-dimensional Euclidean space where Z is

the set of integers. For a positive integer l with 1 ≤ l ≤ n and two distinct points
p = (p1, p2, ..., pn), q = (q1, q2, ..., qn) ∈ Zn, p and q are cl-adjacent [8] if

(1) there are at most l indices i such that |pi − qi| = 1; and
(2) for all other indices i such that |pi − qi| 6= 1, pi = qi.

Another commonly used notation for cl-adjacency reflects the number of neighbors
q ∈ Zn that a given point p ∈ Zn may have under the adjacency. For example, if n = 1
we have c1 = 2-adjacency; if n = 2 we have c1 = 4-adjacency and c2 = 8-adjacency; if
n = 3 we have c1 = 6-adjacency, c2 = 18-adjacency, and c3 = 26-adjacency [8]. Given
a natural number l in conditions (1) and (2) with 1 ≤ l ≤ n, l determines each of the
κ-adjacency relations of Zn in terms of (1) and (2) [14] as follows.

(2.1) κ ∈
{
2n (n ≥ 1), 3n − 1 (n ≥ 2), 3n −

r−2∑
t=0

Cnt 2
n−t − 1 (2 ≤ r ≤ n− 1, n ≥ 3)

}
The pair (X,κ) is considered in a digital picture (Zn, κ, κ,X) for n ≥ 1 in [3, 4, 6, 13],

which is called a digital image where (κ, κ) ∈ {(κ, 2n), (2n, 3n − 1)}. Each of κ and κ is
one of the general κ-adjacency relations. We usually do not permit that κ and κ both
equal 2n when n > 1, because of the digital connectivity paradox [18]. For instance,
(κ, κ) ∈ {(4, 8), (8, 4)} and {(6, 18), (6, 26), (26, 6), (18, 6)} are usually considered in Z2

and Z3, respectively [6, 13, 19, 20].
A digital interval is a set of the form [a, b]Z = {z ∈ Z | a ≤ z ≤ b} where a, b ∈ Z with

a < b.
Let κ be an adjacency relation on Zn. A κ-neighbor of a lattice point p is κ-adjacent

to p. A digital image X ⊂ Zn is κ-connected [15] if and only if for every pair of different
points x, y ∈ X, there is a set {x0, x1, ..., xr} of points of a digital image X such that
x = x0, y = xr and xi and xi+1 are κ-neighbors where i = 0, 1, ..., r − 1. A κ-component
of a digital image X is a maximal κ-connected subset of X.

Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0 and κ1-adjacency respectively.
Then the function f : X → Y is called (κ0, κ1)-continuous [6, 20] if for every κ0-connected
subset U ofX, f(U) is a κ1-connected subset of Y . We say that such a function is digitally
continuous. Similar notions are defined on discrete manifolds in [11]: Let D1 and D2 be
two discrete manifolds and f : D1 → D2 be a mapping. f is said to be an immersion
from D1 to D2 or a gradually varied operator if x and y are adjacent in D1 implies either
f(x) = f(y) or f(x), f(y) are adjacent in D2.

Let X be a digital image with κ-adjacency. If f : [0,m]Z → X is a (2, κ)-continuous
function such that f(0) = x and f(m) = y, then f is called a digital path from x to y
in X. If f(0) = f(m) then the κ-path is said to be closed, and the function is called a
κ-loop. Let f : [0,m − 1]Z → X be a (2, κ)-continuous function such that f(i) and f(j)
are κ-adjacent if and only if j = i±1mod m. Then the set f([0,m−1]Z) is called a simple
closed κ-curve. A point x ∈ X is called a κ-corner, if x is κ-adjacent to two and only two
points y, z ∈ X such that y and z are κ-adjacent to each other [4]. Moreover, the κ-corner
x is called simple if y, z are not κ-corners and if x is the only point κ-adjacent to both
y, z [3]. X is called a generalized simple closed κ-curve if what is obtained by removing
all simple κ-corners of X is a simple closed κ-curve [4]. If (X,κ) is a κ-connected digital
image in Z3, |X|x = N∗3 (x) ∩ X, where N∗3 (x) = {x′ ∈ Z3 : x and x′ are 26-adjacent}
[3, 4]. Generally, if (X,κ) is a κ-connected digital image in Zn, |X|x = N∗n(x)∩X, where
N∗n(x) = {x′ ∈ Zn : x and x′ are cn-adjacent} [13].

Let X ⊂ Zn0 and Y ⊂ Zn1 be digital images with κ0 and κ1-adjacency respectively.
A function f : X → Y is a (κ0, κ1)-isomorphism [9] (called (κ0, κ1)-homeomorphism in
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[5]) if f is (κ0, κ1)-continuous, bijective and f−1 : Y → X is (κ1, κ0)-continuous, in which
case we write X ≈(κ0,κ1) Y .

2.1. Definition. [13] Let c∗ := {x0, x1, ..., xn} be a closed κ-curve in Z2 where {κ, κ} =
{4, 8}. A point x of the complement c∗ of a closed κ-curve c∗ in Z2 is said to be in the
interior of c∗ if it belongs to the bounded κ-connected component of c∗. The set of all
interior points of c∗ is denoted by Int(c∗).

2.2. Definition. [13] Let (X,κ) be a digital image in Zn, n ≥ 3 and X = Zn−X. Then
X is called a closed κ-surface if it satisfies the following.

(1) In case that (κ, κ) ∈ {(κ, 2n), (2n, 3n − 1)}, where the κ-adjacency is taken from
(2.1) with κ 6= 3n − 2n − 1 and κ is the adjacency on X, then

(a) for each point x ∈ X, |X|x has exactly one κ-component κ-adjacent to x;
(b) |X|x has exactly two κ-components κ-adjacent to x; we denote by Cxx and

Dxx these two components; and
(c) for any point y ∈ Nκ(x) ∩ X, Nκ(y) ∩ Cxx 6= ∅ and Nκ(y) ∩ Dxx 6= ∅, where

Nκ(x) means the κ-neighbors of x.
Further, if a closed κ-surface X does not have a simple κ-point, then X is called simple.

(2) In case that (κ, κ) = (3n − 2n − 1, 2n), then
(a) X is κ-connected,
(b) for each point x ∈ X, |X|x is a generalized simple closed κ-curve.

Further, if the image |X|x is a simple closed κ-curve, then the closed κ-surface X is called
simple.

For a closed κ-surface Sκ, we denote by Sκ the complement of Sκ in Zn. Then a point
x of Sκ is said to be interior of Sκ if it belongs to the bounded κ-connected component
of Sκ. The set of all interior points of Sκ is denoted by int(Sκ).

The 3-dimensional digital images MSS∗18 and MSS∗6 which are obtained from the
minimal simple closed curves MSC8 and MSC4 in Z2, respectively, are essentially used
in establishing the notion of a connected sum [13].

Figure 1. Minimal simple closed curves MSC4 and MSC8.

• MSS∗6 :=MSS6 ∪ Int(MSS6) where

MSS6 ≈(6,6) (MSC4 × [0, 2]Z) ∪ (Int(MSC4)× {0, 2})
and MSC4 is 4-isomorphic to the set

{(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)}.

• MSS∗18 :=MSS18 ∪ Int(MSS18) where

MSS18 ≈(18,18) (MSC8 × {1}) ∪ (Int(MSC8)× {0, 2})
and MSC8 is 8-isomorphic to the set

{(0, 0), (−1, 1), (−2, 0), (−2,−1), (−1,−2), (0,−1)}.
2.3. Definition. [13] Let Sκ0 be a closed κ0-surface in Zn0 and Sκ1 be a closed κ1-surface
in Zn1 for n0, n1 ≥ 3. Consider A′κ0

⊂ Aκ0 ⊂ Sκ0 such that

A′κ0
≈(κ0,8) Int(MSC∗8 ), A

′
κ0
≈(κ0,4) Int(MSC∗4 ) or A

′
κ0
≈(κ0,8) Int(MSC′∗8 ).

Let f : Aκ0 → f(Aκ0) ⊂ Sκ1 be a (κ0, κ1)-isomorphism. Let S′κi
= Sκi \ A′κi , i ∈ {0, 1}.

Then the connected sum, denoted by Sκ0]Sκ1 , is the quotient space S
′
κ0
∪S′κ1

/ ∼, where
i : Aκ0 \A′κ0

→ S′κ0
is the inclusion map and i(x) ∼ f(x) for x ∈ Aκ0 \A′κ0

.
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2.4. Definition. [21] Let S be a set of nonempty subsets of a digital image (X,κ). The
members of S are called simplexes of (X,κ) if the following holds:

(i) If p and q are distinct points of s ∈ S, then p and q are κ-adjacent.
(ii) If s ∈ S and ∅ 6= t ⊂ s, then t ∈ S (note this implies every point p that belongs

to a simplex determines a simplex {p}).
An m-simplex is a simplex S such that |S| = m+ 1.

Let P be a digital m-simplex. If P ′ is a nonempty proper subset of P , then P ′ is
called a face of P .

Since computing homology groups is easier than computing higher degree homotopy
groups in algebraic topology, for the same reason computing homology groups of digi-
tal images is preferred to computing homotopy groups of digital images. The simplicial
homology groups of n-dimensional digital images from algebraic topology have been in-
troduced in [1].

2.5. Definition. [1] Let (X,κ) be a finite collection of digital m-simplices, 0 ≤ m ≤ d
for some nonnegative integer d. If the following statements hold, then (X,κ) is called a
finite digital simplicial complex:

(1) If P belongs to X, then every face of P also belongs to X.
(2) If P,Q ∈ X, then P ∩Q is either empty or a common face of P and Q.

The dimension of a digital simplicial complex X is the biggest integer m such that X
has an m-simplex.

Cκq (X) is a free abelian group with basis all digital (κ, q)-simplices in X [1].

2.6. Corollary. [10] Let (X,κ) ⊂ Zn be a digital simplicial complex of dimension m.
Then for all q > m, Cκq (X) is a trivial group.

Let (X,κ) ⊂ Zn be a digital simplicial complex of dimension m. The homomorphism
∂q : C

κ
q (X)→ Cκq−1(X) defined by

∂q(< p0, p1, ..., pq >) =


q∑
i=0

(−1)i < p0, p1, ..., p̂i, ..., pq >, q ≤ m;

0, q>m
is called a boundary homomorphism where p̂i means deleting the point pi. Then for all
1 ≤ q ≤ m, we have ∂q−1 ◦ ∂q = 0 [1].

2.7. Theorem. [1] Let (X,κ) ⊂ Zn be a digital simplicial complex of dimension m.
Then

Cκ∗ (X) : 0
∂m+1 // Cκm(X)

∂m // Cκm−1(X)
∂m−1 // ...

∂1 // Cκ0 (X)
∂0 // 0

is a chain complex.

Let (X,κ) be a digital simplicial complex. The group of digital simplicial q-cycles
is Zκq (X) = Ker ∂q = {σ ∈ Cκq (X)|∂q(σ) = 0} and the group of digital simplicial q-
boundaries is Bκq (X) = Im ∂q+1 = {τ ∈ Cκq (X)|∂q+1(σ) = τ for σ ∈ Cκq+1(X)}. The qth
digital simplicial homology group is Hκ

q (X) = Zκq (X)/Bκq (X) [1].

2.8. Theorem. [1] If f : X → Y is a digital (κ0, κ1)-isomorphism, then for all q
Hκ0
q (X) ∼= Hκ1

q (Y ).

2.9. Theorem. [10] Let (X,κ) be a directed digital simplicial complex of dimension m.
(1) Hκ

q (X) is a finitely generated abelian group for every q ≥ 0.
(2) Hκ

q (X) is a trivial group for all q > m.
(3) Hκ

q (X) is a free abelian group, possibly zero.
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2.10. Definition. [10] Let (X,κ) be a digital image of dimension m, and for each q ≥ 0,
let αq be the number of digital (κ, q)-simplexes in X. The Euler characteristic of X,
denoted by χ(X,κ), is defined by

χ(X,κ) =

m∑
q=0

(−1)qαq.

2.11. Theorem. [10] If (X,κ) is a digital image of dimension m, then

χ(X,κ) =

m∑
q=0

(−1)qrank Hκ
q (X).

2.12. Example. [10] By the definition of Euler characteristic, we have
χ(MSS6, 6) = α0 − α1 = 26− 48 = −22
χ(MSS6]MSS6, 6) = α0 − α1 = 42− 80 = −38
χ(MSS18, 18) = α0 − α1 + α2 = 10− 20 + 8 = −2
χ(MSS18]MSS18, 18) = α0 − α1 + α2 = 14− 28 + 8 = −6

3. MAIN RESULTS
Simplicial homology groups of several digital surfaces have been computed in [10]. By

using an argument similar to that of [10], we have the following theorems.

3.1. Theorem. The digital simplicial homology groups of MSS18]MSS18 are

H18
q (MSS18]MSS18) =


Z, q = 0;
Z7, q = 1;
0, q ≥ 2.

Figure 2. MSS18]MSS18

Proof. Let
MSS18]MSS18 = {c0 = (1, 0, 1), c1 = (1, 1, 1), c2 = (1, 2, 1),

c3 = (0, 3, 1), c4 = (−1, 2, 1), c5 = (−1, 1, 1),
c6 = (−1, 0, 1), c7 = (0,−1, 1), c8 = (0, 2, 2),

c9 = (0, 1, 2), c10 = (0, 0, 2), c11 = (0, 2, 0),

c12 = (0, 1, 0), c13 = (0, 0, 0)}.
Then we can direct MSS18]MSS18 by the ordering c6 < c5 < c4 < c7 < c13 < c10 <

c12 < c9 < c11 < c8 < c3 < c0 < c1 < c2. We have the following simplicial chain
complexes:
C18

0 (MSS18]MSS18) has for a basis {〈c0〉, 〈c1〉, ..., 〈c13〉},
C18

1 (MSS18]MSS18) has for a basis
{〈c7c0〉, 〈c10c0〉, 〈c13c0〉, 〈c0c1〉, 〈c9c1〉, 〈c12c1〉, 〈c1c2〉, 〈c8c2〉, 〈c11c2〉, 〈c3c2〉, 〈c4c3〉,
〈c8c3〉, 〈c11c3〉, 〈c5c4〉, 〈c4c8〉, 〈c4c11〉, 〈c6c5〉, 〈c5c9〉, 〈c5c12〉, 〈c6c7〉, 〈c6c10〉, 〈c6c13〉,
〈c7c10〉, 〈c7c13〉, 〈c9c8〉, 〈c10c9〉, 〈c12c11〉, 〈c13c12〉},

and C18
2 (MSS18]MSS18) has for a basis

{〈c7c13c0〉, 〈c7c10c0〉, 〈c8c3c2〉, 〈c11c3c2〉, 〈c4c8c3〉, 〈c4c11c3〉, 〈c6c7c10〉, 〈c6c7c13〉}.
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Thus, we obtain the following short sequence:

0
∂3−→ C18

2 (MSS18]MSS18)
∂2−→ C18

1 (MSS18]MSS18)
∂1−→ C18

0 (MSS18]MSS18)
∂0−→ 0.

By Theorem 2.9, H18
q (MSS18]MSS18) is a trivial group for all q > 2.

We determine the kernel of ∂2. If
∂2(a1〈c7c13c0〉+ a2〈c7c10c0〉+ a3〈c8c3c2〉+ a4〈c11c3c2〉+ a5〈c4c8c3〉+ a6〈c4c11c3〉

+ a7〈c6c7c10〉+ a8〈c6c7c13〉) = a1〈c13c0〉+ (−a1 − a2)〈c7c0〉+ (a1 + a8)〈c7c13〉
+ a2〈c10c0〉+ (a2 + a7)〈c7c10〉+ (a3 + a4)〈c3c2〉 − a3〈c8c2〉+ (a3 + a5)〈c8c3〉
− a4〈c11c2〉+ (a4 + a6)〈c11c3〉+ (−a5 − a6)〈c4c3〉+ a5〈c4c8〉
+ a6〈c4c11〉 − a7〈c6c10〉+ (a7 + a8)〈c6c7〉 − a8〈c6c13〉 = 0,

then one easily sees that a1 = a2 = a3 = a4 = a5 = a6 = a7 = a8 = 0. Therefore,
Z18

2 (MSS18]MSS18) = {0} and hence H18
2 (MSS18]MSS18) = {0}.

Since Ker ∂2 = Z18
2 (MSS18]MSS18) = {0}, Im ∂2 ∼= C8

2 (MSS18]MSS18), and so
B18

1 (MSS18]MSS18) ∼= Z8.
We can use standard methods to determine that Z18

1 (MSS18]MSS18) ∼= Z15, from
which it follows easily that B18

0 (MSS18]MSS18) ∼= Z13. However, the direct calculation
of Z18

1 (MSS18]MSS18) is very long. Since our goal is to calculate H18
1 (MSS18]MSS18),

we will do so below without showing a direct calculation of Z18
1 (MSS18]MSS18).

By using the short sequence again, we have

Z18
0 (MSS18]MSS18) =

{ 13∑
i=0

ai〈ci〉 | ai ∈ Z, i = 0, 1, ..., 13
}
∼= Z14

Any 0-cycle w0 =

13∑
i=0

ai〈ci〉 can be written as

w0 = ∂1((−a7)〈c7c0〉+ (a1 + a2 + a3)〈c0c1〉+ (a2 + a3)〈c1c2〉
+ (−a3)〈c3c2〉+ a11〈c4c11〉+ (a4 + a11)〈c5c4〉+ a12〈c5c12〉
+ (a4 + a5 + a11 + a12)〈c6c5〉+ a13〈c6c13〉
+ (−a4 − a5 − a6 − a11 − a12 − a13)〈c6c10〉+ a8〈c9c8〉

+ (a8 + a9)〈c10c9〉+ (a0 + a1 + a2 + a3 + a7)〈c10c0〉) +
13∑
i=0

ai〈c10〉.

So w0 is homologous to 0-chain
13∑
i=0

ai〈c10〉. Hence the 0-chain is homologous to an

integral multiple of 〈c10〉. Thus we deduce H18
0 (MSS18]MSS18) ∼= Z.

To compute the H18
1 (MSS18]MSS18), we can use the results in [10]. By Example

2.12, we know that χ(MSS18]MSS18, 18) = −6. From Theorem 2.11,

χ(MSS18]MSS18, 18) =

2∑
q=0

(−1)qrank H18
q (MSS18]MSS18)

−6 = 1− rank H18
1 (MSS18]MSS18) + 0

Thus we get rank H18
1 (MSS18]MSS18) = 7 which in turn gives us

H18
1 (MSS18]MSS18) ∼= Z7.

�

3.2. Theorem. The digital simplicial homology groups of MSS6 are
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H6
q (MSS6) =


Z, q = 0;
Z23, q = 1;
0, q 6= 0, 1.

Figure 3. MSS6

Proof. If we take

MSS6 = {c0 = (−1,−1, 0), c1 = (0,−1, 0), c2 = (1,−1, 0), c3 = (1, 0, 0),

c4 = (0, 0, 0), c5 = (−1, 0, 0), c6 = (−1, 1, 0), c7 = (0, 1, 0),

c8 = (1, 1, 0), c9 = (1, 1, 1), c10 = (0, 1, 1), c11 = (−1, 1, 1),
c12 = (−1, 0, 1), c13 = (1, 0, 1), c14 = (1,−1, 1), c15 = (0,−1, 1),
c16 = (−1,−1, 1), c17 = (−1,−1, 2), c18 = (0,−1, 2), c19 = (1,−1, 2),
c20 = (1, 0, 2), c21 = (0, 0, 2), c22 = (−1, 0, 2), c23 = (−1, 1, 2),
c24 = (0, 1, 2), c25 = (1, 1, 2)},

then we can direct MSS6 by the ordering c0 < c16 < c17 < c5 < c12 < c22 < c6 < c11 <
c23 < c1 < c15 < c18 < c4 < c21 < c7 < c10 < c24 < c2 < c14 < c19 < c3 < c13 < c20 <
c8 < c9 < c25.

We have the following simplicial chain complexes:
C6

0 (MSS6) has for a basis {〈c0〉, 〈c1〉, ..., 〈c25〉}, and C6
1 (MSS6) has for a basis

{〈c0c1〉, 〈c0c5〉, 〈c0c16〉, 〈c1c2〉, 〈c1c4〉, 〈c1c15〉, 〈c2c14〉, 〈c2c3〉, 〈c4c3〉, 〈c3c8〉, 〈c3c13〉,
〈c5c4〉, 〈c4c7〉, 〈c5c6〉, 〈c5c12〉, 〈c6c7〉, 〈c6c11〉, 〈c7c8〉, 〈c7c10〉, 〈c8c9〉, 〈c10c9〉, 〈c13c9〉,
〈c9c25〉, 〈c11c10〉, 〈c10c24〉, 〈c12c11〉, 〈c11c23〉, 〈c16c12〉, 〈c12c22〉, 〈c14c13〉, 〈c13c20〉,
〈c15c14〉, 〈c14c19〉, 〈c16c15〉, 〈c15c18〉, 〈c16c17〉, 〈c17c18〉, 〈c17c22〉, 〈c18c19〉, 〈c18c21〉,
〈c19c20〉, 〈c21c20〉, 〈c20c25〉, 〈c22c21〉, 〈c21c24〉, 〈c22c23〉, 〈c23c24〉, 〈c24c25〉}.

Thus we get the following short sequence:

0
∂2 // C6

1 (MSS6)
∂1 // C6

0 (MSS6)
∂0 // 0.

By Theorem 2.9, we have H6
q (MSS6) = {0} for every q > 1.

Direct calculation yields that Z6
1 (MSS6) ∼= Z23, from which it follows easily that

B6
0(MSS6) ∼= Z25. However, direct calculation of Z6

1 (MSS6) is very long. Since our
goal is to calculate H6

1 (MSS6), we do so below without showing a direct calculation of
Z6

1 (MSS6).
By using the short sequence, we have

Z6
0 (MSS6) =

{ 25∑
i=0

ai〈ci〉 | ai ∈ Z, i = 0, 1, ..., 25
}
∼= Z26.

Any 0-cycle w0 =
25∑
i=0

ai〈ci〉 can be written as
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w0 = ∂1((−a6)〈c6c11〉+ (−a6 − a11)〈c11c23〉+ (a6 + a11 + a23)〈c22c23〉
+ (a6 + a11 + a22 + a23)〈c12c22〉+ (a6 + a11 + a12 + a22 + a23)〈c5c12〉
+ (a5 + a6 + a11 + a12 + a22 + a23)〈c0c5〉
+ (−a0 − a5 − a6 − a11 − a12 − a22 − a23)〈c0c16〉
+ (−a0 − a5 − a6 − a11 − a12 − a16 − a22 − a23)〈c16c17〉
+ (−a0 − a5 − a6 − a11 − a12 − a16 − a17 − a22 − a23)〈c17c18〉
+ a15〈c1c15〉+ (−a1 − a15)〈c1c4〉
+ (−a1 − a4 − a15)〈c4c7〉+ (−a1 − a4 − a7 − a15)〈c7c10〉
+ (−a1 − a4 − a7 − a10 − a15)〈c10c24〉
+ (a1 + a4 + a7 + a10 + a15 + a24)〈c21c24〉
+ (a1 + a4 + a7 + a10 + a15 + a21 + a24)〈c18c21〉+ (−a8)〈c8c9〉
+ (−a8 − a9)〈c9c25〉+ (a8 + a9 + a25)〈c20c25〉
+ (a8 + a9 + a20 + a25)〈c13c20〉+ (a8 + a9 + a13 + a20 + a25)〈c3c13〉
+ (a3 + a8 + a9 + a13 + a20 + a25)〈c2c3〉
+ (−a2 − a3 − a8 − a9 − a13 − a20 − a25)〈c2c14〉
+ (−a2 − a3 − a8 − a9 − a13 − a14 − a20 − a25)〈c14c19〉

+ (a2 + a3 + a8 + a9 + a13 + a14 + a19 + a20 + a25)〈c18c19〉) +
25∑
i=0

ai〈c18〉.

So w0 is homologous to 0-chain
25∑
i=0

ai〈c18〉. Hence the 0-chain is homologous to an

integral multiple of 〈c18〉. Thus we get

H6
0 (MSS6) ∼= Z.

We use the results in [10] to compute the H6
1 (MSS6). From Example 2.12, we have

χ(MSS6, 6) = −22. From Theorem 2.11,

χ(MSS6, 6) =

1∑
q=0

(−1)qrank H6
q (MSS6)

−22 = 1− rank H6
1 (MSS6)

Thus we get rank H6
1 (MSS6) = 23 which gives us

H6
1 (MSS6) ∼= Z23.

�

3.3. Theorem. The digital simplicial homology groups of MSS6]MSS6 are

H6
q (MSS6]MSS6) =


Z, q = 0;
Z39, q = 1;
0, q 6= 0, 1.
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Figure 4. MSS6]MSS6

Proof. Let

MSS6]MSS6 = {c0 = (0, 0, 0), c1 = (1, 0, 0), c2 = (2, 0, 0), c3 = (2, 1, 0),

c4 = (1, 1, 0), c5 = (0, 1, 0), c6 = (0, 2, 0), c7 = (1, 2, 0),

c8 = (2, 2, 0), c9 = (2, 3, 0), c10 = (1, 3, 0), c11 = (0, 3, 0),

c12 = (0, 4, 0), c13 = (1, 4, 0), c14 = (2, 4, 0), c15 = (2, 4, 1),

c16 = (1, 4, 1), c17 = (0, 4, 1), c18 = (0, 3, 1), c19 = (2, 3, 1),

c20 = (2, 2, 1), c21 = (0, 2, 1), c22 = (0, 1, 1), c23 = (2, 1, 1),

c24 = (2, 0, 1), c25 = (1, 0, 1), c26 = (0, 0, 1), c27 = (0, 0, 2),

c28 = (1, 0, 2), c29 = (2, 0, 2), c30 = (2, 1, 2), c31 = (1, 1, 2),

c32 = (0, 1, 2), c33 = (0, 2, 2), c34 = (1, 2, 2), c35 = (2, 2, 2),

c36 = (2, 3, 2), c37 = (1, 3, 2), c38 = (0, 3, 2), c39 = (0, 4, 2),

c40 = (1, 4, 2), c41 = (2, 4, 2)}.

We can direct MSS6]MSS6 by the ordering c0 < c26 < c27 < c5 < c22 < c32 < c6 <
c21 < c33 < c11 < c18 < c38 < c12 < c17 < c39 < c1 < c25 < c28 < c4 < c31 < c7 < c34 <
c10 < c37 < c13 < c16 < c40 < c2 < c24 < c29 < c3 < c23 < c30 < c8 < c20 < c35 < c9 <
c19 < c36 < c14 < c15 < c41.

We have the following simplicial chain complexes:
C6

0 (MSS6]MSS6) has for a basis {〈c0〉, 〈c1〉, ..., 〈c41〉}, and
C6

1 (MSS6]MSS6) has for a basis

{〈c0c1〉, 〈c0c5〉, 〈c0c26〉, 〈c1c4〉, 〈c1c2〉, 〈c1c25〉, 〈c2c3〉, 〈c2c24〉, 〈c4c3〉, 〈c3c8〉, 〈c3c23〉,
〈c4c7〉, 〈c5c4〉, 〈c5c6〉, 〈c5c22〉, 〈c6c11〉, 〈c6c21〉, 〈c6c7〉, 〈c7c10〉, 〈c7c8〉, 〈c8c9〉, 〈c8c20〉,
〈c9c14〉, 〈c10c9〉, 〈c9c19〉, 〈c10c13〉, 〈c11c10〉, 〈c11c12〉, 〈c11c18〉, 〈c12c13〉, 〈c12c17〉,
〈c13c16〉, 〈c13c14〉, 〈c14c15〉, 〈c16c15〉, 〈c19c15〉, 〈c15c41〉, 〈c17c16〉, 〈c16c40〉, 〈c18c17〉,
〈c17c39〉, 〈c21c18〉, 〈c18c38〉, 〈c20c19〉, 〈c19c36〉, 〈c23c20〉, 〈c20c35〉, 〈c22c21〉, 〈c21c33〉,
〈c26c22〉, 〈c22c32〉, 〈c24c23〉, 〈c23c30〉, 〈c25c24〉, 〈c24c29〉, 〈c26c25〉, 〈c25c28〉, 〈c26c27〉,
〈c27c28〉, 〈c27c32〉, 〈c28c29〉, 〈c28c31〉, 〈c29c30〉, 〈c30c35〉, 〈c31c30〉, 〈c32c31〉, 〈c31c34〉,

〈c32c33〉, 〈c33c34〉, 〈c33c38〉, 〈c34c35〉, 〈c34c37〉, 〈c35c36〉, 〈c31c34〉, 〈c32c33〉, 〈c33c34〉,
〈c33c38〉, 〈c34c35〉, 〈c34c37〉, 〈c35c36〉, 〈c31c34〉, 〈c32c33〉, 〈c33c34〉, 〈c33c38〉, 〈c34c35〉,
〈c34c37〉, 〈c35c36〉, 〈c27c32〉, 〈c28c29〉, 〈c28c31〉, 〈c29c30〉, 〈c30c35〉, 〈c31c30〉, 〈c32c31〉,
〈c31c34〉, 〈c32c33〉, 〈c33c34〉, 〈c33c38〉, 〈c34c35〉, 〈c34c37〉, 〈c35c36〉, 〈c37c36〉, 〈c36c41〉,
〈c38c37〉, 〈c37c40〉, 〈c38c39〉, 〈c39c40〉, 〈c40c41〉}.

Thus we obtain the following short sequence:

0
∂2 // C6

1 (MSS6]MSS6)
∂1 // C6

0 (MSS6]MSS6)
∂0 // 0.

By Theorem 2.9, H6
q (MSS6]MSS6) is a trivial group for q > 1.

Direct calculation yields that Z6
1 (MSS6]MSS6) ∼= Z39, from which it follows easily

thatB6
0(MSS6]MSS6) ∼= Z41. However, direct calculation of the group Z6

1 (MSS6]MSS6)
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of digital simplicial 1-cylces is very long. Since our goal is to calculate H6
1 (MSS6]MSS6),

we do so below without showing a direct calculation of Z6
1 (MSS6]MSS6).

By using the short sequence again, we have

Z6
0 (MSS6]MSS6) =

{ 41∑
i=0

ai〈ci〉 | ai ∈ Z, i = 0, 1, ..., 41
}
∼= Z42.

Any 0-cycle w0 =
∑41
i=0 ai〈ci〉 can be written as

w0 = ∂1(− a12〈c12c17〉+ (−a12 − a17)〈c17c39〉+ (a12 + a17 + a39)〈c38c39〉
+ (a12 + a17 + a38 + a39)〈c18c38〉
+ (a12 + a17 + a18 + a38 + a39)〈c11c18〉
+ (a11 + a12 + a17 + a18 + a38 + a39)〈c6c11〉
+ (−a6 − a11 − a12 − a17 − a18 − a38 − a39)〈c6c21〉
+ (−a6 − a11 − a12 − a17 − a18 − a21 − a38 − a39)〈c21c33〉
+ (a6 + a11 + a12 + a17 + a18 + a21 + a33 + a38 + a39)〈c32c33〉
+ (a6 + a11 + a12 + a17 + a18 + a21 + a32 + a33 + a38 + a39)〈c22c32〉
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+ (a6 + a11 + a12 + a17 + a18 + a21 + a22 + a32 + a33 + a38 + a39)〈c5c22〉
+ (a5 + a6 + a11 + a12 + a17 + a18 + a21 + a22 + a32 + a33

+ a38 + a39)〈c0c5〉+ (−a0 − a5 − a6 − a11 − a12 − a17 − a18 − a21
− a22 − a32 − a33 − a38 − a39)〈c0c26〉+ (−a0 − a5 − a6 − a11−
− a12 − a17 − a18 − a21 − a22 − a26 − a32 − a33 − a38 − a39)〈c26c27〉
+ (−a0 − a5 − a6 − a11 − a12 − a17 − a18 − a21 − a22 − a26 − a27 − a32
− a33 − a38 − a39)〈c27c28〉+ a25〈c1c25〉+ (−a1 − a25)〈c1c4〉
+ (−a1 − a4 − a25)〈c4c7〉+ (−a1 − a4 − a7 − a25)〈c7c10〉
+ (−a1 − a4 − a7 − a10 − a25)〈c10c13〉
+ (−a1 − a4 − a7 − a10 − a13 − a25)〈c13c16〉
+ (−a1 − a4 − a7 − a10 − a13 − a16 − a25)〈c16c40〉
+ (a1 + a4 + a7 + a10 + a13 + a16 + a25 + a40)〈c37c40〉
+ (a1 + a4 + a7 + a10 + a13 + a16 + a25 + a37 + a40)〈c34c37〉
+ (a1 + a4 + a7 + a10 + a13 + a16 + a25 + a34 + a37 + a40)〈c31c34〉
+ (a1 + a4 + a7 + a10 + a13 + a16 + a25 + a31 + a34 + a37 + a40)〈c28c31〉
+ (−a14)〈c14c15〉+ (−a14 − a15)〈c15c41〉+ (a14 + a15 + a41)〈c36c41〉
+ (a14 + a15 + a36 + a41)〈c19c36〉+ (a14 + a15 + a19 + a36 + a41)〈c9c19〉
+ (a9 + a14 + a15 + a19 + a36 + a41)〈c8c9〉
+ (−a8 − a9 − a14 − a15 − a19 − a36 − a41)〈c8c20〉
+ (−a8 − a9 − a14 − a15 − a19 − a20 − a36 − a41)〈c20c35〉
+ (a8 + a9 + a14 + a15 + a19 + a20 + a35 + a36 + a41)〈c30c35〉
+ (a8 + a9 + a14 + a15 + a19 + a20 + a30 + a35 + a36 + a41)〈c23c30〉
+ (a8 + a9 + a14 + a15 + a19 + a20 + a23 + a30 + a35 + a36 + a41)〈c3c23〉
+ (a3 + a8 + a9 + a14 + a15 + a19 + a20 + a23 + a30 + a35 + a36 + a41)〈c2c3〉
+ (−a2 − a3 − a8 − a9 − a14 − a15 − a19 − a20 − a23 − a30 − a35 − a36
− a41)〈c2c24〉+ (−a2 − a3 − a8 − a9 − a14 − a15 − a19 − a20 − a23 − a24 − a30
− a35 − a36 − a41)〈c24c29〉+ (a2 + a3 + a8 + a9 + a14 + a15 + a19

+ a20 + a23 + a24 + a29 + a30 + a35 + a36 + a41)〈c28c29〉) +
41∑
i=0

ai〈c28〉.

So w0 is homologous to 0-chain
41∑
i=0

ai〈c28〉. Hence the 0-cycle is homologous to an integral

multiple of 〈c28〉. Thus we get H6
0 (MSS6]MSS6) ∼= Z.

From Example 2.12, Theorem 2.11, and the above, we have

−38 = χ(MSS6]MSS6) =rank H
6
0 (MSS6]MSS6)− rank H6

1 (MSS6]MSS6)

=1− rank H6
1 (MSS6]MSS6).

Therefore, rank H6
1 (MSS6]MSS6) = 39. It follows from Theorem 2.9 thatH6

1 (MSS6]MSS6) ∼=
Z39. �
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Abstract
We propose and analyse a one step explicit iteration scheme for a pair
of nonexpansive mappings in a uniformly convex metric space. Our
results refine and generalize several recent and comparable results in
uniformly convex Banach spaces and CAT (0) spaces, simultaneously.
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1. Introduction and preliminaries
The fixed point theory of nonexpansive mappings proposed in the setting of Banach

spaces extremly depends on the linear structure of the underlying space. A nonlinear
framework for theory of iterative construction of fixed points of nonexpansive mappings
is a metric space embedded with a "convex structure". In the literature, different notions
of convexity in metric spaces are provided (see, for example, Kirk [10, 11], Penot [15] and
Takahashi [20]).

Takahashi [20] introduced the notion of a convex structure in a metric space X as a
mapping W : X2 × I → X satisfying

(1.1) d (u,W (x, y, α)) ≤ αd(u, x) + (1− α)d(u, y)
for all x, y, u ∈ X and α ∈ I = [0, 1]. A metric space X together with a convex structure
W is known as a convex metric space. For the sake of simplicity, we also denote a
convex metric space by X. A nonempty subset C of X is convex if W (x, y, α) ∈ C for all
x, y ∈ C and α ∈ I.There are many examples of convex metric spaces which cannot be
imbedded in any Banach space (see [20]). Some other examples of convex metric spaces
are Hadamard manifolds [3] and CAT (0) spaces [2, 9].
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A convex metric space X is uniformly convex [5, 19] if for any ε > 0, there exists
α > 0 such that d

(
z,W

(
x, y, 1

2

))
≤ r (1− α) < r for all r > 0 and x, y, z ∈ X with

d (z, x) ≤ r, d (z, y) ≤ r and d (x, y) ≥ rε.
A closed subset X of the unit ball S1 (0) = {x ∈ H : ‖x‖ ≤ 1} in a Hilbert space

H with diameter δ (X) ≤
√
2, turns out to be a uniformly convex metric space with

d (x, y) = cos−1 〈x, y〉 for all x, y ∈ X and W (x, y, α) = αx+(1−α)y
‖αx+(1−α)y‖ for all x, y ∈ X and

α ∈ I.
Amapping T on a subset C ofX is nonexpansive if d(Tx, Ty) ≤ d(x, y) for all x, y ∈ C.

A point x ∈ C is a fixed point of T if Tx = x. Denote by F (T ), the set of all fixed points
of T.

Ishikawa iterative scheme [6] is a two step iterative scheme and has been extensively
used to approximate common fixed points of nonexpansive mappings by a number of
researchers (see, for example, [7, 13, 21, 22]).

In order to reduce the computational cost of a two step iterative scheme, we propose a
one step iterative scheme for a pair of nonexpansive mappings S, T : C → C in a convex
metric space as follows:

(1.2) xn+1 =W

(
Txn,W

(
Sxn, xn,

βn
1− αn

)
, αn

)
where 0 < a ≤ αn, βn ≤ b < 1 and satisfy αn + βn < 1(see also [1]).

In Banach space setting, (1.2) becomes one step iterative scheme [23]:

(1.3) xn+1 = αnTxn + βnSxn + (1− αn − βn)xn.

When S = I in (1.2), it reduces to Mann iterative scheme [14]:

(1.4) xn+1 =W (Txn, xn, αn) .

One of the interesting and important aspect of approximation theory of fixed points is
to consider an iterative scheme with bounded error term and therefore such an iterative
scheme has been widely studied by a number of researchers in various frames of work;
see, for instance, [7] and references therein. It is remarked that the scheme (1.2) can
be reshaped as Mann iteration scheme with errors by replacing {Sxn} or {Txn} with
{un}(i.e., the error term).

Let {xn} be a bounded sequence in a metric space X. For x ∈ X, define r(x, {xn}) =
lim supn→∞ d(x, xn). Then (i) r({xn}) = inf{r(x, {xn}) : x ∈ C} is called the asymptotic
radius of {xn} with respect to C ⊆ X, (ii) For any y ∈ C, the set A({xn}) = {x ∈ X :
r(x, {xn} ≤ r(y, {xn})} is called the asymptotic center of {xn} with respect to C ⊆ X.

A subset C of a metric space X is Chebyshev if for every x ∈ X, there exists z ∈ C
such that d (z, x) < d (c, x) for all c ∈ C and c 6= z. If C is a Chebyshev subset of a
metric space X, then we define the nearest point projection P : X → C by sending x
to z. This is consistent with the notion of orthogonal projection onto a subspace of a
Euclidean space. It has been shown in [4] that every closed convex subset of a uniformly
convex metric space is Chebyshev.

A sequence {xn} inX is said to4−converge to x ∈ X [12] if x is the unique asymptotic
center of {un} for every subsequence {un} of {xn}. In this case, we write4−limn xn = x.

It has been shown in the literature that the notion of 4−convergence and weak
convergence in Banach spaces share many useful properties.

In this manuscript, we approximate the common fixed points of two nonexpansive
mappings by one step iterative scheme (1.2) in a convex metric space.

For the development of our main results, some key results are listed in the form of
lemmas:
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1.1. Lemma. ([4]). Let C be a nonempty closed convex subset of a uniformly convex met-
ric space and {xn} a bounded sequence in C such that A({xn}) = {y} and r({xn}) = ρ. If
{ym} is another sequence in C such that limm→∞ r(ym, {xn}) = ρ, then limm→∞ ym = y.

1.2. Lemma. ([18]). Let X be a uniformly convex metric space with continuous convex
structure W. Then for any ε > 0 and r > 0, there exists δ > 0 such that

d (z,W (x, y, α)) ≤ r (1− 2min {α, 1− α} δ)

for all x, y, z ∈ X, d (z, x) ≤ r, d (z, y) ≤ r, d (x, y) ≥ rε and α ∈ I.

From now onwards, for a pair of nonexpansive mappings S, T : C → C , we set
F = F (T ) ∩ F (S).

2. Main Results
We start with the following lemma.

2.1. Lemma. Let C be a closed and convex subset of a convex metric space X and let
S, T be nonexpansive mappings on C such that F 6= φ. Then for the sequence {xn} defined
in (1.2), limn→∞ d(xn, p) exists for each p ∈ F.

Proof. Let p ∈ F. Applying (1.1) to (1.2), we have

d (xn+1, p) = d

(
W

(
Txn,W

(
Sxn, xn,

βn
1− αn

)
, αn

)
, p

)
≤ αnd (Txn, p) + (1− αn) d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
≤ αnd (xn, p) + (1− αn)

[
βn

1− αn
d (Sxn, p) +

(
1− βn

1− αn

)
d (Sxn, p)

]
≤ αnd (xn, p) + (1− αn)

[
βn

1− αn
d (xn, p) +

(
1− βn

1− αn

)
d (xn, p)

]
= αnd (xn, p) + βnd (xn, p) + (1− αn − βn) d (xn, p)
= d (xn, p) .

That is,

(2.1) d (xn+1, p) ≤ d (xn, p) for all p ∈ F.

This gives that {xn} is a decreasing and bounded below sequence of nonnegative real
numbers, therefore limn→∞ d(xn, p) exists.

The following lemma provides an analogue of Schu Lemma [16] in the setting of convex
metric spaces and is needed in the next lemma.

2.2. Lemma. Let X be a uniformly convex metric space with continuous convex structure
W. Let x ∈ X and {an} be a sequence in [b, c] for some b, c ∈ (0, 1). If {un} and {vn}
are sequences in X such that lim supn−→∞ d(un, x) ≤ r, lim supn−→∞ d(vn, x) ≤ r and
limn−→∞ d(W (un, vn, an), x) = r for some r ≥ 0, then limn→∞ d(un, vn) = 0.

Proof. The case r = 0 is trivial. Suppose r > 0 and assume limn→∞ d(un, vn) 6= 0.
If n0 ≥ 1, then d(uni , vni) ≥ α

2
> 0 for some α ∈ (0, r] and for ni ≥ n0. Since

lim supi−→∞ d(uni , x) ≤ r and lim supn−→∞ d(vni , x) ≤ r, so max {d(uni , x), d(vni , x)} ≤
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r+ 1
ni

for ni ≥ n0 and d(uni , vni) ≥ α
2
=
(
r + 1

ni

)
αni

2(nir+1)
≥
(
r + 1

ni

)
α

2(r+1)
. Therefore

Lemma 1.2 gives that

d(W (uni , vni , ani) , x) ≤
(
r +

1

ni

)
(1− 2min {ani , 1− ani} δ)

≤
(
r +

1

ni

)
(1− 2ani (1− ani) δ)

≤
(
r +

1

ni

)
(1− 2b (1− c) δ) .

Thus, by letting i→∞, we obtain

lim
i→∞

d(W (uni , vni , ani) , x) ≤ (1− 2b (1− c) δ) r < r,

a contradiction.

2.3. Lemma. Let C be a nonempty, closed and convex subset of a uniformly convex met-
ric space X with continuous convex structure W and let S, T be nonexpansive mappings
on C such that F 6= φ. Then for the sequence {xn} in (1.2), we have

lim
n→∞

d (xn, Sxn) = 0 = lim
n→∞

d (xn, Txn) .

Proof. It follows from Lemma 2.1 that limn→∞ d(xn, p) exists for each p ∈ F. Assume
that limn→∞ d(xn, p) = c. If c = 0, the result is trivial. For c > 0, limn→∞ d(xn+1, p) = c
gives that

(2.2) lim
n→∞

d

(
W

(
Txn,W

(
Sxn, xn,

βn
1− αn

)
, αn

)
, p

)
= c.

Nonexpansiveness of T gives that

(2.3) lim sup
n→∞

d(Txn, p) ≤ lim sup
n→∞

d(xn, p) = c.

Since

d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
≤ βn

1− αn
d(Sxn, p) +

(
1− βn

1− αn

)
d(xn, p)

≤ d(xn, p),

therefore

(2.4) lim sup
n→∞

d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
≤ c.

Using Lemma 2.2
(
with x = p, r = c, an = αn, un = Txn, vn =W

(
Sxn, xn,

βn
1−αn

))
to-

gether with (2.2-2.4), we get

(2.5) lim
n→∞

d

(
Txn,W

(
Sxn, xn,

βn
1− αn

))
= 0.

Now the estimate

d(xn+1, Txn) ≤ d

(
W

(
Txn,W

(
Sxn, xn,

βn
1− αn

)
, αn

)
, Txn

)
≤ (1− αn)d

(
W

(
Sxn, xn,

βn
1− αn

)
, Txn

)
≤ (1− b)d

(
W

(
Sxn, xn,

βn
1− αn

)
, Txn

)
,
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together with (2.5) implies that

(2.6) lim
n→∞

d(xn+1, Txn) = 0.

Since S is nonexpansive, lim supn→∞ d(Sxn, p) ≤ c.
By triangle inequality, we have

d(xn+1, p) ≤ d(xn+1, Txn) + d

(
Txn,W

(
Sxn, xn,

βn
1− αn

))
+d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
.

Taking lim infn→∞ on both sides in the above inequality, we have

c ≤ lim inf
n→∞

d

(
W

(
Sxn, xn,

βn
1− αn

)
, p

)
.

Therefore

(2.7) lim
n→∞

d

(
W

(
Sxn, xn,

αn
1− βn

)
, p

)
= c.

Again by Lemma 2.2 (with x = p, r = c, an = αn
1−βn , un = Snxn, vn = xn), we get

(2.8) lim
n→∞

d(xn, Sxn) = 0.

Further note that

d(xn+1, xn) ≤ d(xn+1, Txn) + d

(
Txn,W

(
Sxn, xn,

αn
1− βn

))
+d

(
W

(
Sxn, xn,

αn
1− βn

)
, xn

)
≤ d(xn+1, Txn) + d

(
Txn,W

(
Sxn, xn,

αn
1− βn

))
+(1− αn

1− βn
)d(xn, Sxn)

≤ d(xn+1, Txn) + d

(
Txn,W

(
Sxn, xn,

αn
1− βn

))
+

(
1− 2a

1− b

)
d(xn, Sxn).

Letting n→∞ in the above estimate, we have

(2.9) lim
n→∞

d(xn+1, xn) = 0.

As a direct consequence of (2.6) and (2.9), the inequality

d(xn, Txn) ≤ d (xn, xn+1) + d (xn+1, Txn)

provides that

lim
n→∞

d(xn, Txn) = 0.

Hence

lim
n→∞

d(xn, Sxn) = 0 = lim
n→∞

d(xn, Txn).



1028

The conclusion of Lemma 2.3 is interesting because the sequence generated by (1.2)
gives an approximate fixed point sequence for both S and T without assuming that these
mappings commute.

Now we state a result concerning 4−convergence of the iterative scheme (1.2). The
method of proof is closely related to Theorem 3.1 in [8].

2.4. Theorem. Let C be a nonempty, closed and convex subset of a uniformly convex
complete metric space X with continuous convex structure W and S, T : C → C be
nonexpansive mappings with F 6= φ. Then the sequence {xn} in (1.2), 4−converges to
an element of F.

Proof. In the proof of Lemma 2.1, it has been shown that {xn} is bounded. There-
fore {xn} has a unique asymptotic centre, that is, A({xn}) = {x}. Let {un} be any
subsequence of {xn} such that A({un}) = {u}. First, we show that u ∈ C. Suppose
u /∈ C. As C is a Chebyshev set, we can define a nearest point projection P : X →
C.Therefore d (Pu, un) < d (u, un) =⇒ r (Pu, {un}) < r (u, {un}) =⇒ u is not the as-
ymptotic center of {un}, a contradiction. Hence u ∈ C. Also by Lemma 2.2, we have
limn→∞ d(un, Tun) = 0 = limn→∞ d(un, Sun). Define {zm} in C by zm = Tmu.
Observe that

d(zm, un) ≤ d(Tmu, Tmun) +

m∑
j=1

d(T jun, T
j−1un)

≤ d(u, un) +md(Tun, un).

Therefore, we have

r(zm, {un}) = lim sup
n→∞

d(zm, un) ≤ lim sup
n→∞

d(u, un) = r(u, {un}).

This implies that |r(zm, {un})− r(u, {un})| → 0 as m→∞. It follows from Lemma 1.1
that limm→∞ T

mu = u. Since C is closed, so limm→∞ T
mu = u ∈ C and limm→∞ T

m+1u =
Tu.That is, Tu = u. Similarly we have Su = u. Therefore limn→∞ d(xn, u) exists by
Lemma 2.1. If x 6= u, then by the uniqueness of asymptotic centres, we have

lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, x)

≤ lim sup
n→∞

d(xn, x)

< lim sup
n→∞

d(xn, u)

= lim sup
n→∞

d(un, u),

a contradiction. Hence x = u.
Therefore, A({un}) = {u} for all subsequences {un} of {xn}. This proves that {xn}
4−converges to x.

Using the concept of near point projection, we establish the following theorem.

2.5. Theorem. Let C be a nonempty, closed and convex subset of a complete uniformly
convex metric space X and S, T : C → C be nonexpansive mappings. Let P be the nearest
point projection of C onto F. For an initial value x1, define {xn} as given in (1.2) where
αn, βn ∈ [a, b] for some a, b ∈ R with 0 < a ≤ b < 1. Then {Pxn} converges strongly to
a point of F.

Proof. It follows from (2.1) that, for any n ≥ 1,m ≥ 1, we have

d (Pxn, xn+m) ≤ d (Pxn, xn+m−1) ≤ d (Pxn, xn+m−2) ≤ ... ≤ d (Pxn, xn+1) .
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That is,

(2.10) d (Pxn, xn+m) ≤ d (Pxn, xn) for n ≥ 1,m ≥ 1.

In order to prove the result, we show that {Pxn} is a Cauchy sequence. By definition of
nearest point projection and (2.10), we have

d (Pxn+1, xn+1) ≤ d (Pxn, xn+1) ≤ d (Pxn, xn) .

Hence d (Pxn, xn)→ c(say). If c = 0, then for an arbitrary ε > 0, there exists an integer
n0 ≥ 1 such that

(2.11) d (Pxn, xn) < ε for all n ≥ n0.

By (2.11), for m > n ≥ n0,we have

d (Pxn, Pxm) ≤ d (Pxn, Pxn0) + d (Pxn0 , Pxm)

≤ d (Pxn, xn) + d (xn, Pxn0) + d (Pxn0 , xm) + d (xm, Pxm)

< 4ε.

This proves that {Pxn} is a Cauchy sequence. Assume that c > 0 and {Pxn} is not a
Cauchy sequence. Then there exists ε > 0 and two subsequences {Pxni} and {Pxmi}
of {Pxn} such that d (Pxni , Pxmi) ≥ ε for all i ≥ 1. Since {d (Pxn, xn)} is a decreasing
sequence and d (Pxn, xn)→ c, therefore we have

c ≤ d (Pxn, xn) ≤ c+
1

n
for n ≥ n0.

Let n0 ≤ ni,mi ≤ l. By (2.10), we have

d (Pxni , xl) ≤ d (Pxni , xni) < c+
1

n
and d (Pxmi , xl) ≤ d (Pxmi , xmi) < c+

1

n
.

Moreover,

d (Pxni , Pxmi) ≥
(

ε

c+ 1
n

)(
c+

1

n

)
≥
(

ε

c+ 1

)(
c+

1

n

)
.

By uniform convexity of X, there exists δ
(

ε
c+1

)
> 0 such that

d

(
xl,

1

2
Pxni ⊕

1

2
Pxmi

)
≤
(
c+

1

n

)(
1− δ

(
ε

c+ 1

))
.

Let n→∞ in the above inequality, we have

c ≤ d (Pxl, xl) ≤ d
(
xl,

1

2
Pxni ⊕

1

2
Pxmi

)
≤ c

(
1− δ

(
ε

c+ 1

))
< c,

a contradiction.
This proves that {Pxn} is a Cauchy sequence in F. As F is closed, therefore it con-

verges to a point of F.

Recall that a mapping T : C → C is semi-compact if every bounded sequence {xn}
has a convergent subsequence whenever d(xn, Txn)→ 0.

Let f : [0,∞) → [0,∞) be a nondecreasing function with f(0) = 0 and f(t) > 0 for
all t ∈ (0,∞).The mappings S, T : C → C with F 6= φ, satisfy Condition (I) [7] (see also
[17]) if

1

2
[d (x, Tx) + d (x, Sx)] ≥ f(d(x, F )) for x ∈ C,

where d(x, F ) = infp∈F d (x, p) .
Using Lemma 2.3, we obtain the following strong convergence theorem.
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2.6. Theorem. Let C be a nonempty, closed and convex subset of a uniformly convex
complete metric space with continuous convex structure W and let S, T : C → C be
nonexpansive mappings with F 6= φ. If S and T satisfy Condition (I), then the sequence
{xn} defined in (1.2), converges strongly to an element of F.

Proof. By Lemma 2.3, we have

lim
n→∞

d(xn, Sxn) = 0 = lim
n→∞

d(xn, Txn).

Using Condition (I), we get that that limn→∞ d(xn, F ) = 0. For a given ε > 0, there
exists Nε ≥ 1 and yε ∈ F such that d (xn, yε) < ε for all n ≥ Nε.Thus, if εk = 2−k

for k ≥ 1, then corresponding to each εk, there exist Nk ≥ 1 and yk ∈ F such that
d (xn, yk) ≤ εk

4
for all n ≥ Nk. On choosing Nk+1 ≥ Nk for any k ≥ 1,we have that

d (yk, yk+1) ≤ d
(
yk, xNk+1

)
+ d

(
xNk+1 , yk+1

)
<

εk
4

+
εk+1

4
=

3

4
εk+1.

If x ∈ S [yk+1, εk+1] , then

d (x, yk) ≤ d (x, yk+1) + d (yk+1, yk)

< εk+1 +
3

4
εk+1 =

7

4
εk+1 < 2εk+1 = εk.

That is, x ∈ S [yk, εk] .Hence {S [yk, εk] : k ≥ 1} is a decreasing sequence of nonempty,
bounded, closed and convex subsets in a uniformly convex complete metric space and so
∩∞k=1S [yk, εk] 6= ∅ by Theorem 1([19], p. 200). Now there exists a p ∈ X such that

d (yk, p) ≤
1

2k
→ 0 as k →∞.

That is, yk → p. Since F is closed, therefore p ∈ F.
In view of the inequality

d (xn, yk) ≤
εk
4

for all n ≥ Nk,

we get that xn → p.

We can also prove the following strong convergence theorem.

2.7. Theorem. Let C be a closed and convex subset of a uniformly convex complete
metric space X and let S, T : C → C be nonexpansive mappings with F 6= φ. If, either S
or T is semi-compact, then the sequence {xn} defined in (1.2), converges strongly to an
element of F.

2.8. Remark. (1) Our results can be extended for two finite families of nonexpansive
mappings (2) Our results are valid in uniformly convex Banach spaces and CAT (0)
spaces, simultaneously.
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Abstract
In this paper, we investigate suborbital graphs formed by the action of
Γ2 which is the group generated by the second powers of the elements
of the modular group Γ on Q̂. Firstly, conditions for being an edge,
self-paired and paired graphs are provided, then we give necessary and
sufficient conditions for the suborbital graphs to contain a circuit and
to be a forest. Finally, we examine the connectivity of the subgraph
Fu,N and show that it is connected if and only if N ≤ 2.
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1. Introduction
Let PSL(2,R) denote the group of all linear fractional transformations

T : z → az + b

cz + d
,where a, b, c and d are real and ad− bc = 1.

In terms of matrix representation, the elements of PSL(2,R) correspond to the matrices

±
(
a b
c d

)
; a, b, c, d ∈ R and ad− bc = 1.

This is the automorphism group of the upper half plane H := {z ∈ C : Im(z) > 0} .
The modular group Γ=PSL(2,Z), is the subgroup of PSL(2,R) such that a, b, c and d

are integers. It is generated by the matrices

U =

(
0 −1
1 0

)
; V =

(
0 −1
1 1

)
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with defining relationships U2 = V 3 = I, where I is the identity matrix. Γ is a Fuchsian
group of signature (0; 2, 3,∞), so it is isomorphic to a free product C2 ∗ C3.

Define Γm as the subgroup of Γ generated by the mth powers of all elements of Γ.
Especially, Γ2 and Γ3 have been studied extensively by Newman [13,14,15]. It turns out
that,

Γ2 =

{(
a b
c d

)
∈ Γ : ab+ bc+ cd ≡ 0 (mod 2)

}
,

by Rankin [Eq. 1.7.1, 16]. From the equation ab + bc + cd ≡ 0 (mod 2), we see that at
least one of the integers a, b, c, d must be even. Suppose first that a = 2a0. Then using
the determinant, we have that b and c are odd. So, d must be odd as well. Hence, we

get the elements of Γ2 as the matrices
(

2a b
c d

)
. Similarly, supposing d = 2d0, we can

get the elements of the form
(
a b
c 2d

)
. Lastly, if a or d is not even, then both b and

c will be even. To sum up, Γ2 has three types of elements(
2a b
c d

)
,

(
a 2b
2c d

)
,

(
a b
c 2d

)
where b, c and d of the first, a and d of the second and a, b, c of the third matrix are odd.

1.1. Theorem. [13] The group Γ2 is the free product of two cyclic groups of order 3,
and

|Γ : Γ2| = 2 , Γ = Γ2 +

(
0 −1
1 0

)
Γ2.

The elements of Γ2 may be characterized by the requirement that the sum of the exponents

of
(

0 −1
1 0

)
be divisible by 2.

The idea of a suborbital graph has been used mainly by finite group theorists. In
[7], Jones, Singerman and Wicks showed that this idea is also useful in the study of the
modular group, where they proved that the well-known Farey Graph is an example of a
suborbital graph. Furthermore, they proved the following result:

Theorem A. The suborbital graph Gu,n of Γ contains directed triangles if and only
if u2 ± u+ 1 ≡ 0 (mod n).

Morever they posed the conjecture: Gu,n is a forest if and only if it contains no
triangles, that is, if and only if u2 ± u + 1 6≡ 0 (mod n). Akbas proved in [2] that this
conjecture is true. By similar arguments, we concern with suborbital graphs of Picard
group P, which is the subgroup of PSL(2,C) with entries coming from Z[i] in [3]. Since
Z[i] is a unique factorization domain with finitely many units, our expectation was to
find similar formulas. Consequently, theorem A was improved as

Theorem B. The suborbital graph Gu,N of P contains directed triangles if and only
if ε2u2 ∓ εu± 1 ≡ 0 (mod N).

In this study, we will continue to investigate the combinatorial properties of these
graphs for the group Γ2. It is an important subgroup of Γ since all the groups Γm can
be expressed in the terms of Γ,Γ2,Γ3. The purpose of this paper is to characterize all
circuits in the suborbital graph and connectedness for Γ2. As it can be seen from Section
3, we show that the main difference is in connectedness of related graphs.
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2. The action of Γ2 on Q̂
Every element of Q̂ can be represented as a reduced fraction x

y
with x, y ∈ Z and

(x, y) = 1. This representation is not unique, because x
y

= −x
−y . We represent ∞ as

1
0

= −1
0
. The action of the matrix

(
a b
c d

)
on x

y
is(

a b
c d

)
:
x

y
−→ ax+ by

cx+ dy
.

Hence, the actions of a matrix on x
y
and on −x−y are identical. If the determinant of the

matrix
(
a b
c d

)
is 1 and (x, y) = 1, then (ax+ by, cx+ dy) = 1.

2.1. Transitive Action.

2.1. Lemma. (i) The action of Γ2 on Q̂ is transitive.
(ii) The stabilizer of a point is an infinite cyclic group.

Proof. (i) Here we only prove the case that any element of the form a
2b

of Q̂ is sent ∞
by an element of Γ2. The rest are similar. Let a

2b
∈ Q̂, (a, 2b) = 1. There exist integers

x0 and y0 such that ay0 − 2bx0 = 1 (known as Bezout’s identity [8]). Hence, we have

that T :=

(
a x0
2b y0

)
∈ Γ. All solutions of the equation ay − 2bx = 1 are x = x0 + an

, y = y0 + 2bn for n ∈ Z. If x0 is odd, x would be even by taking n-odd. So, x0 can be
chosen as an even number. Hence, T ∈ Γ2 and T (∞) = a

2b
means that a

2b
is in the orbit

of ∞.
(ii) By (i), since the stabilizers of any two points in Q̂ are conjugate in Γ2, it is

sufficient to consider the stabilizer Γ2
∞ of ∞. It is clear that Γ2

∞ =

〈(
1 2
0 1

)〉
.

We remark that Lemma 2.1 (i) can be proven by using the signature of Γ2 as well.
There is a homomorphism θ : Γ −→ C2 = {e, α} defined by θ(U) = α, and θ(V ) = e. The
kernel is Γ2. By the permutation theorem [19], Γ2 has signature (0; 3, 3,∞). It means
that there is only one orbit, so the action is transitive.

2.2. Imprimitive Action. We now discuss the imprimitivity of the action of Γ2 on Q̂.
For this, let (G,Ω) be a transitive permutation group, consisting of a group G acting on
a set Ω transitively. An equivalence relation ≈ on Ω is called G-invariant if, whenever
α, β ∈ Ω satisfy α ≈ β, then g(α) ≈ g(β) for all g ∈ G. The equivalence classes are called
blocks.

We call (G,Ω) imprimitive if Ω admits some G-invariant equivalence relation different
from

(i) the identity relation, α ≈ β if and only if α = β;

(ii) the universal relation, α ≈ β for all α, β ∈ Ω.

Otherwise, (G,Ω) is called primitive. These two relations are supposed to be trivial
relations.

2.2. Lemma. [4] Let (G,Ω) be a transitive permutation group. (G,Ω) is primitive if
and only if Gα, the stabilizer of α ∈ Ω, is a maximal subgroup of G for each α ∈ Ω.

From the above lemma we see that whenever, for some α, Gα � H � G, then Ω admits
some G-invariant equivalence relation other than the trivial one and the universal one.
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Because of the transitivity, every element of Ω has the form g(α) for some g ∈ G. Thus
one of the non-trivial G-invariant equivalence relations on Ω by H is given as follows:

g(α) ≈ g′(α) if and only if g′ ∈ gH.

The number of blocks ( equivalence classes ) is the index |G : H| and the block containing
α is just the orbit H(α).

Let N ∈ N and let Γ2
0(N) be defined by

Γ2
0(N) :=

{(
a b
c d

)
∈ Γ2 : c ≡ 0 (mod N)

}
.

Then Γ2
0(N) is a subgroup of Γ2. It is clear that Γ2

∞ ≤ Γ2
0(N) ≤ Γ2 for N ∈ N and

Γ2
∞ � Γ2

0(N) � Γ2 for N > 1.

2.3. Lemma. |Γ0(N) : Γ2
0(N)| = 2. In fact,

Γ0(N) =


Γ2
0(N) ∪

(
1 0
N 1

)
Γ2
0(N), N is odd

Γ2
0(N) ∪

(
N + 1 −1
N 1

)
Γ2
0(N), N is even

Proof. First, we suppose that N is even. Let’s show that Γ2
0(N)∪(

N + 1 −1
N 1

)
Γ2
0(N) = Γ0(N). We have that T :=

(
a b
cN d

)
∈ Γ0(N) with ad −

bcN = 1. Here, a and d are odd. If b is even, T would be an element of Γ2
0(N). We

suppose that b is odd. Hence, it can be written as T =

(
N + 1 −1
N 1

)(
x y
cN z

)
.

Then, we have that
(

1 1
−N N + 1

)(
a b
cN d

)
=

(
x y
cN z

)
. Let’s say that(

a+ cN b+ d
−aN + cN(N + 1) −bN + dN(N + 1)

)
︸ ︷︷ ︸

A

=

(
x y
cN z

)
.

As b+ d is even, A ∈ Γ2
0(N).

Now, let N be odd. In this case, assume that b and c are even in T . Then a
and d are odd. Hence, T is an element of Γ2

0(N). Moreover, it can be written as

T =

(
1 0
N 1

)(
x y
cN z

)
. As above, let’s say that

(
a b

(c− a)N d− bN

)
︸ ︷︷ ︸

B

=

(
x y
cN z

)
. Since d − bN is even, B ∈ Γ2

0(N). In the case: b-even and c-odd, it is

clear that B ∈ Γ2
0(N). If a and d are even in the equation ad − bcN = 1, B ∈ Γ2

0(N)
again. Finally if a is odd and d is even (or vice versa), the result is the same. Conse-
quently, we obtain that |Γ0(N) : Γ2

0(N)| = 2.

Therefore, from the above constructed equivalence relation “≈", we get Γ2-invariant
equivalence relation on Q̂ by Γ2

0(N). It is clear that, by Lemma 2.3, Γ2 acts imprimitively
on Q̂.

Let v = r
s
and w = x

y
be elements of Q̂. Because of the transitive action, we have

that v = g1(∞) and w = g2(∞) for some elements g1, g2 ∈ Γ2 of the form
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g1 :=

(
r ∗
s ∗

)
, g2 :=

(
x ∗
y ∗

)
.

From the relation
v ≈ w if and only if g−1

1 g2 ∈ Γ2
0(N),

we get
v ≈ w if and only if ry − sx ≡ 0 (mod N).

By our general discussion of imprimitivity, the number of blocks under ≈ is given by
Ψ(N) =

∣∣Γ2 : Γ2
0(N)

∣∣. So the block of ∞ is obtained as

[∞] :=

{
x

y
∈ Q̂ | y ≡ 0 (mod N)

}
.

2.4. Lemma. Ψ(N) = N
∏
p|N

(
1 +

1

p

)
where the product is over the distinct primes p

dividing N .

Proof. To calculate Ψ(N) we use two decomposition of the index
∣∣Γ : Γ2

0(N)
∣∣ as the

following

|Γ : Γ2||Γ2 : Γ2
0(N)| = |Γ : Γ0(N)||Γ0(N) : Γ2

0(N)|.

Here, |Γ : Γ2| = 2 and |Γ : Γ0(N)| = N
∏
p|N

(
1 + 1

p

)
are well-known by [13,16] and

[16,17] respectively. We prove that the index of |Γ0(N) : Γ2
0(N)| is equal to 2 in Lemma

2.3. Writing these values in above equation, the result is obvious.

3. Suborbital Graphs for Γ2 on Q̂
In[18], Sims introduced the idea of the suborbital graphs of a permutation group G act-

ing on a set ∆ , these are graphs with vertex-set ∆, on which G induces automorphisms.
We summarise Sims’theory as follows:

Let (G,∆) be transitive permutation group. Then G acts on ∆ × ∆ by g(α, β) =
(g(α), g(β))(g ∈ G,α, β ∈ ∆). The orbits of this action are called suborbitals of G. The
orbit containing (α, β) is denoted by O(α, β). From O(α, β) we can form a suborbital
graph G(α, β) : its vertices are the elements of ∆, and there is a directed edge from γ to δ
if (γ, δ) ∈ O(α, β). A directed edge from γ to δ is denoted by γ → δ. If (γ, δ) ∈ O(α, β),
then we will say that there exists an edge γ → δ in G(α, β). In this paper our calculation
concerns Γ2, so we can draw this edge as a hyperbolic geodesic in the upper half-plane
H, that is, as euclidean semi-circles or half-lines perpendicular to the real line.

The orbit O(β, α) is also a suborbital graph and it is either equal to or disjoint from
O(α, β). In the latter case G(β, α) is just G(α, β) with the arrows reversed and we call,
in this case, G(α, β) and G(β, α) paired suborbital graphs. In the former case G(α, β) =
G(β, α) and the graph consists of pairs of oppositely directed edges; it is convenient to
replace each such pair by a single undirected edge, so that we have an undirected graph
which we call self paired.

3.1. Definition. By a directed circuit in a graph we mean a sequence v1, v2, . . . , vm of
different vertices such that v1 −→ v2 −→ . . . −→ vm −→ v1, where m ≥ 3.

If m = 3, then the circuit, directed or not, is called a triangle.
If m = 2, then we will say the configuration v1 −→ v2 −→ v1 is self paired.
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A graph which contains no circuit is called a forest.

The above ideas are also described in a paper by Neumann [12] and in books by
Tsuzuku [20] and by Biggs and White [4], the emphasis being on applications to finite
groups. The reader is refereed to [1, 2, 3, 6, 7, 9, 10, 11] for some relevant previous work
on suborbital graphs.

If α = β, then O(α, α) = {(γ, γ) | γ ∈ ∆} is the diagonal of ∆×∆. The corresponding
suborbital graph G(α, α), called the trivial suborbital graph, is self-paired: it consists
of a loop based at each vertex γ ∈ ∆. We shall be mainly interested in the remaining
non-trivial suborbital graphs.

Since Γ2 acts transitively on Q̂, each suborbital contains a pair (∞, v) for some v ∈ Q̂;
writing v = u

N
, (u,N) = 1 and N ≥ 0. We denote this suborbital by Ou,N and the

corresponding suborbital graph by Gu,N .

3.1. Graph Gu,N . If v = ∞, we would have the simplest suborbital graph, namely
G1,0 = G−1,0. Therefore, we can take v ∈ Q. Let v′ = u′

N′ ∈ Q. The necessary and
sufficient condition for O(∞, v) = O(∞, v′) is that v and v′ are in the same orbit of Γ2

∞.
Since Γ2

∞ is generated by z : v → v + 2, then z
(
u
N

)
= u+2N

N
= u′

N′ . Therefore, we have
that N = N ′ and u ≡ u′ (mod 2N). Hence, Gu,N = Gu′,N′ if and only if N = N ′

and u ≡ u′ (mod 2N). Consequently, for a fixed N there are 2ϕ(N) distinct suborbital
graphs Gu,N where ϕ(N) is Euler’s phi function.

3.2. Theorem. r
s
→ x

y
∈ Gu,N if and only if

(i) If r is even, then x ≡ ±ur (mod N), y ≡ ±us (mod N), y 6≡ ±us (mod 2N)
and ry − sx = ∓N .

(ii) If s is even, then x ≡ ±ur (mod 2N), y ≡ ±us (mod N) and ry − sx = ∓N .
(iii) If r and s are odd, then x ≡ ±ur (mod N), y ≡ ±us (mod 2N) and ry − sx =

∓N .

Proof. (i) Let r be even. By the transitivity of Γ2, without loss of generality, we assume
that r

s
< x

y
where all letters are positive integers. Thus, we have that ry− sx < 0. Since

r
s
→ x

y
∈ Gu,N , there exist some T =

(
a b
c d

)
∈ Γ2 such that T

(
1
0
, u
N

)
=
(
r
s
, x
y

)
.

As ry − sx < 0, the multiplication of
(
a b
c d

)(
1 u
0 N

)
is equal to

(
−r x
−s y

)
or(

r −x
s −y

)
. If the first case is valid, we have that a = −r, c = −s, au + bN = x and

cu + dN = y. That is, x ≡ −ur (mod N) and y ≡ −us (mod N). Since r is even, then
a is also even. To have T ∈ Γ2, d must be odd. From −us + dN = y, we have that
y 6≡ ±us (mod 2N).

(ii) Suppose s is even. In a similar way, we see that b and c must be even because

T
(
1
0

)
= −r
−s = a

c
. As in (i), we may assume that

(
a b
c d

)(
1 u
0 N

)
=

(
−r x
−s y

)
.

Hence, we have that a = −r, c = −s, au+bN = x, cu+dN = y and ry−sx = −N . That
is, −ur + bN = x and −us+ dN = y. Since b is even, we have that x ≡ −ur (mod 2N)
and y ≡ −us (mod N).

(iii) Let r and s be odd. With similar argument, it can be seen that d must be
even. From the same matrix equation in (ii), we obtain that x ≡ −ur (mod N) and
y ≡ −us (mod 2N).
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In the opposite direction, we shall prove (i) for minus sign. Suppose that r is even,
x ≡ −ur (mod N), y ≡ −us (mod N), y 6≡ −us (mod 2N) and ry − sx = −N . In
this case, there exist integers b, d such that x = −ur − bN , y = −us − dN . So, it is

clear that
(
−r −b
−s −d

)
∈ Γ2 which means r

s
→ x

y
∈ Gu,N . Because −N = ry − sx =

r(−us− dN)− s(−ur − bN). This implies −rd+ sb = 1. As r is even, d must be even.
Otherwise, it contradicts our hypothesis. With similar argument, we obtain the elements

of Γ2 which are
(
−r 2b
−s d

)
and

(
−r −b
−s −2d

)
for (ii) and (iii) respectively.

3.3. Theorem. All suborbital graphs for Γ2 on Q̂ are paired.

Proof. Because of the transitivity of Γ2, it is sufficient to show that G
(
∞, u

N

)
6=

G
(
u
N
,∞
)
. It means that there is no T ∈ Γ2 which sends the pair

(
∞, u

N

)
to the pair(

u
N
,∞
)
. On the contrary, assume that T (∞) = u

N
and T

(
u
N

)
= ∞. By comparing the

determinants, we have that(
a b
c d

)(
1 u
0 N

)
=

(
−u 1
−N 0

)
or
(
a b
c d

)(
1 u
0 N

)
=

(
u −1
N 0

)
.

In the first case, we obtain a = −u, c = −N , au + bN = 1 and cu + dN = 0. That

is, d = u and u2 = −1 + bN . Taking T =

(
−u b
−N u

)
we see that the only case for

T to be an element of Γ2 is that N and b must be even. Since u2 = −1 + bN , then
u2 ≡ −1 (mod bN). As N and b are even, u2 ≡ −1 (mod 4) which has no solution. For

the second case, taking T =

(
u b
N −u

)
, similar contradiction is obtained.

3.4. Corollary. There are no self-paired suborbital graphs for Γ2 on Q̂.

In section 2 we introduced, for each integer N , a Γ2-invariant equivalence relation ≈
N

on Q̂, with r
s
≈
N

x
y
if and only if ry − sx ≡ 0 (mod N). If r

s
→ x

y
in Gu,N , then Theorem

3.2 implies that ry− sx = ±N , so r
s
≈
N

x
y
. Thus, each connected component of Gu,N lies

in a single block for ≈
N
, of which there are Ψ(N), so we have:

3.5. Corollary. The graph Gu,N is a disjoint union of Ψ(N) subgraphs.

3.2. Subgraph Fu,N . We represent the subgraph of Gu,N whose vertices form the block
[∞] = {x/y ∈ Q̂ | y ≡ 0 (mod N)} by Fu,N .

3.6. Corollary. The graph Gu,N consists of Ψ(N) disjoint copies of Fu,N .

Proof. The vertices of each subgraph form a single block with respect to the Γ2-invariant
equivalence relation ≈

N
defined by ry− sx ≡ 0 (mod N). Therefore, if x1 → x2 is an edge

in the subgraph Fu,N , T (x1)→ T (x2) is also an edge in any other subgraph with T ∈ Γ2

because of the transitivity of Γ2 on Q̂.
Now, Theorem 3.2 immediately gives:

3.7. Theorem. r
s
→ x

y
∈ Fu,N if and only if

(i) If r is even, then x ≡ ±ur (mod N), y ≡ ±us (mod N), y 6≡ ±us (mod 2N)
and ry − sx = ∓N .

(ii) If s is even, then x ≡ ±ur (mod 2N), y ≡ ±us (mod N) and ry − sx = ∓N .
(iii) If r and s are odd, then x ≡ ±ur (mod N), y ≡ ±us (mod 2N) and ry − sx =

∓N .



1040

3.8. Theorem. Γ2
0(N) permutes the vertices and the edges of Fu,N transitively.

Proof. Let v, w be any vertices of Fu,N . Since Γ2 acts on Q̂ transitively, there exist

T ∈ Γ2 such that T (v) = w. Taking T =

(
a b
c d

)
, v = k1

l1N
and w = k2

l2N
we see that

N |c. It means that Γ2
0(N) permutes the vertices of Fu,N .

Let x1
y1N

e1−→ b1 and x2
y2N

e2−→ b2 be any edges of Fu,N . We can give following diagram:(
1
0
, u
N

) T2−→
(
x2
y2N

, b2
)

↓T1 ↗T2◦T−1
1(

x1
y1N

, b1
)

By this representation, we have T1 =

(
x1 ∗
y1N ∗

)
and T2 =

(
x2 ∗
y2N ∗

)
. Since

T2 ◦T−1
1 has the form

(
∗ ∗
kN ∗

)
for some integer k, then T := T2 ◦T−1

1 ∈ Γ2
0(N). It is

clear that T
(
x1
y1N

)
= x2

y2N
and T (b1) = b2. Since T is an element of a group of hyperbolic

isometries of H, geodesics are sent to geodesics under its action. So, T transform the
edges e1 to e2. Consequently, Γ2

0(N) permutes the edges of Fu,N .

3.9. Lemma. There is an isomorphism Fu,N −→ F−u,N given by v −→ −v.

Proof. It is clear that v −→ −v is one-to-one and onto. Let’s show that the structure
is preserved. Here, it means that if a → b ∈ Fu,N , then −a → −b ∈ F−u,N . Suppose
that r

s
→ x

y
∈ Fu,N and r is even. By Theorem 3.7(i), taking r

s
< x

y
, we have that

x ≡ −ur (mod N), y ≡ −us (mod N), y 6≡ −us (mod 2N) and ry − sx = −N .
Since r

s
< x

y
, then −r

s
> −x

y
. Taking −x ≡ (−u)(−r) (mod N), y ≡ (−u)s (mod N),

y 6≡ (−u)s (mod 2N) and −ry + sx = N , we have that −r
s
→ −x

y
∈ Fu,N . For other

conditions, the rest are similar.

3.10. Lemma. If M |N , then there is a homomorphism Fu,N −→ F−u,M given by v −→
−Nv/M .

Proof. We suppose that r
sN

, x
yN

are adjacent vertices in Fu,N and r
sN

< x
yN

and

that is written as r
sN

<−→ x
yN
∈ Fu,N . If r is even, then x ≡ −ur (mod N), yN ≡

−usN (mod N), yN 6≡ −us (mod 2N) and ry−sx = −1. SinceM |N , x ≡ −ur (mod M),
yM ≡ −usM (mod M), yM 6≡ −us (mod 2M). ry − sx = −1 is also true for M . For
other conditions, the rest are similar.

3.11. Theorem. Fu,N contains directed triangles if and only if u2∓u+1 ≡ 0 (mod N).

Proof. Suppose that Fu,N contains a directed triangle. Because of the transitive action,
the form of directed triangle can be taken as ∞ → u

N

<−→ r
N
→ ∞ for some integer r.

First, let u be even. From the second edge, we have u−r = −1 and r ≡ −u2 (mod N) by
Theorem 3.2. So, we obtain u2 + u+ 1 ≡ 0 (mod N). Similarly, if u

N

>−→ r
N
, then we see

that u2 − u+ 1 ≡ 0 (mod N). Now, N is even. By applying Theorem 3.2 to the second
edge, we have u− r = −1 and r ≡ −u2 (mod 2N), giving u2 + u+ 1 ≡ 0 (mod 2N). It is
impossible, because there is no solution for this equivalence. Finally, suppose that u,N
are odd. Again, from the second edge, we have u− r = −1 and r ≡ −u2 (mod N), giving
u2 + u+ 1 ≡ 0 (mod N). If u

N

>−→ r
N
, it would be u2 − u+ 1 ≡ 0 (mod N). Combining

all of the equivalences, we obtain u2 ∓ u+ 1 ≡ 0 (mod N).
Conversely, if u2 ∓ u + 1 ≡ 0 (mod N), we see that either u + 1 ≡ −u2 (mod N) or

−u + 1 ≡ −u2 (mod N). Theorem 3.2. implies that there is an edge u
N
→ u+1

N
with
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u
N
< u+1

N
in Fu,N or u

N
→ u−1

N
with u

N
> u+1

N
in Fu,N . Consequently, there is a directed

triangle ∞→ u
N
→ u±1

N
→∞ in Fu,N .

Let us give some examples. For u,N -odd, 1
0
→ 3

13
→ 4

13
→ 1

0
or 1

13
→ 10

9·13 →
9

8·13 →
1
13

is a directed triangle in F3,13. For u-even and N -odd, 1
0
→ 2

7
→ 3

7
→ 1

0
or

1
7
→ 5

4·7 →
4
3·7 →

1
7
is a directed triangle in F2,7. For N -even, we know that there is no

triangle.

Observation. We know that there is no triangle in Fu,2N0 for N -even by Theorem 3.11.
Because of the relationships between elliptic elements with circuits, our expectation is

that there is no elliptic element of order 3 of the form
(

u 2b
2N0 d

)
∈ Γ2. Indeed, being

an elliptic element of order 3, it is well-known that u + d = ±1. Taking determinant

of
(

1− d 2b
2N0 d

)
, we have d − d2 − 4bN0 = 1. It is clear that there is no solution for

d− d2 ≡ 1 (mod 4).
On the other hand, we know that the suborbital graph for modular group is a forest if

and only if it contains no triangles [2]. Using this fact, we can give the following result;

3.12. Corollary. The graph Gu,N is a forest if and only if u2 ± u+ 1 6≡ 0 (mod N).

3.3. Connectedness. In this last section, we examine the connectedness of Fu,N .

3.13. Definition. A subgraph K of Gu,N is called connected if any pair of its vertices
can be joined by a path in K.

3.14. Theorem. The subgraphs F0,1 and F1,1 are connected.

Proof. Here, to see the situation better, we write the edge conditions for F0,1 and F1,1

by Theorem 3.2 explicitly.

Case F0,1: r
s
→ x

y
∈ F0,1 if and only if

(i) If r-even, then y-odd and ry − sx = ∓1.
(ii) If s-even, then x-even and ry − sx = ∓1.
(iii) If r, s-odd, then y-even and ry − sx = ∓1.

We will show that each vertex a
b
of F0,1 can be joined to ∞ by a path in F0,1. It is clear

for b = 1. Since (a, b) = 1, we can write the equation ad− bc = −1 by Bezout’s identity.
For this pair (c, d) satisfying the equation we claim that a

b
can be joined with c

d
by above

edge condition.

Subcase1. Suppose a-even. By the equation we have that b, c must be odd and there are
two possibilities for d. If d-odd, then a

b

i−→ c
d
(means that we have c

d
→ a

b
by (i) ). If

d-even, then c
d

ii−→ a
b
.

Subcase2. Let b-even. By the equation we have that a, d must be odd and there are two
possibilities for c. If c-odd, then c

d

iii−→ a
b
. If d-even, then a

b

ii−→ c
d
.

Subcase3. Assume that a-odd and b-odd. By the equation it is impossible that c, d are
odd or even at once, so there are two possibilities. If c-odd and d-even, then a

b

iii−→ c
d
. If

c-even and d-odd, then c
d

i−→ a
b
.

Consequently F0,1 is connected.

Case F1,1: r
s
→ x

y
∈ F1,1 if and only if

(i) If r-even, then y-even and ry − sx = ∓1.
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(ii) If s-even, then x-odd and ry − sx = ∓1.
(iii) If r, s-odd, then y-odd and ry − sx = ∓1.

Taking a vertex a
b
in F1,1, there exists the equation ad − bc = −1 by Bezout’s identity.

We shall show that a
b
is adjacent to vertex c

d
in F1,1.

Subcase1. Suppose a-even. By the equation we have that b, c must be odd and there are
two possibilities for d. If d-odd, then c

d

iii−→ a
b
. If d-even, then a

b

i−→ c
d
.

Subcase2. Let b-even. By the equation we have that a, d must be odd and there are two
possibilities for c. If c-odd, then a

b

ii−→ c
d
. If c-even, then c

d

i−→ a
b
.

Subcase3. Assume that a-odd and b-odd. By the equation it is impossible that c, d are
odd or even at once, so there are two possibilities. If c-odd and d-even, then c

d

ii−→ a
b
. If

c-even and d-odd, then a
b

iii−→ c
d
.

Consequently, F1,1 is connected.

3.15. Theorem. The subgraphs F1,2 and F3,2 are connected.

Proof. We shall show that each vertex v = a
2b

(b ≥ 1) of F1,2 is joined to ∞ by a path
in F1,2. Since the pattern is periodic with period 2, we can show by induction on b. If
b = 1, then v = a

2
can be joined with ∞. If a = 1, it is clear that 1

0
→ 1

2
. If a = 1, then

3
2
→ 1

0
because 1 ≡ −3 (mod 4) and 3 · 0− 2 · 1 = −2. If a = 5, then 1

0
→ 5

2
. The same

holds for the rest periodically. So we can assume that b ≥ 2.
To complete the proof, we show that v is adjacent to a vertex w = a

2b1
with b1 < b.

It means that, w is connected by a path to ∞, and hence so is v. As (a, b) = 1, there
exist integers c, d such that ad− bc = 1. For some k ∈ Z, replacing c and d by c+ ka and
d+ kb, we can suppose 0 < d < b.

(i) If c is odd, then w = c
2d

can be joined with a
2b
. Indeed, a

2b

>−→ c
2d

gives that
a · 2d− c · 2b = 2 and c ≡ a (mod 4). If c 6≡ a (mod 4), taking c ≡ −a (mod 4) we obtain
a
2b

<←− c
2d

by 2bc− 2ad = −2. Hence, if c is odd, a
2b

is adjacent to c
2d

in F1,2.
(ii) If c is even, then a − c is odd. As 0 < b − d < b, we can take w = a−c

2(b−d) ,
adjacent to a

2b
because 2(bc− cd) = −2. Here, if 2a− c 6≡ 0 (mod 4), then we have that

a− c ≡ a (mod 4) and 2(ad− bc) = 2.
Consequently, F1,2 is connected. By the isomorphism F1,2

v

−→
→

F−1,2
−v

= F3,2, F3,2 is

also connected.

3.16. Corollary. All graphs Fu,2 are connected.

3.17. Corollary. The graph Gu,2 has 2 · ψ(2) = 6 connected components. Its blocks are
[∞], [1], [0]. The connected components of [∞] are F1,2 and F3,2.

3.18. Theorem. The subgraphs F1,3, F2,3, F4,3 and F5,3 are not connected.

Proof. It is sufficient to study with F1,3 and F2,3. Because there is an isomorphism from
F1,3(F2,3) to F5,3(F4,3) respectively.
Case F1,3: If F1,3 is connected, then each vertex v = a

3b
would be joined to ∞. We shall

show that no vertices of F1,3 where 1 < v < 2 are adjacent to∞. Further, we assert that
there is no such a vertex v adjacent to vertices outside this interval. Of course, there is
at least some vertex of F1,3 in this strip. Suppose 2

3
≤ c

3d
< 1 < a

3b
< 2. Then we have

c
d
< 3 < a

b
. This is impossible because cd− ad = −1. Similarly, if 1 < k

3l
< f

3e
≤ 7

3
, then

k
l
< 4 < f

e
contradicts ke− lf = −1. It means that no vertices of F1,3 between 1 and 2

are adjacent to ∞ and that F1,3 is not connected.



1043

Figure 1. The subgraph F1,3

Case F2,3: As above, let’s show that no vertices of F2,3 between 3
2
and 2 are adjacent to

vertices outside this interval. Suppose that 1 ≤ x
3y
< 3

2
< a

3b
< 2 and x

3y

<−→ a
3b
∈ F2,3.

Then we have that x
y
< 9

2
< a

b
and xb − ay = −1. By [7], we obtain that x = 4, y = 1,

a = 5 and b = 1. But 4
3
→ 5

3
is not in F2,3. If 2

3
< x

3y
< 2 < a

3b
< 8

3
and x

3y

<−→ a
3b
∈ F2,3,

then we would have x
y
< 6 < a

b
and xb−ay = −1. It is impossible because of well-known

Farey sequence. Consequently, F2,3 is not connected.

3.19. Corollary. All graphs Fu,3 are not connected.

Figure 2. The subgraph F2,3

3.20. Theorem. The subgraphs F1,4, F3,4, F5,4 and F7,4 are not connected.

Proof. As remarked in the proof of Theorem 3.18, it is sufficient to study with F1,4 and
F3,4.
Case F1,4: We will show that no vertices in F1,3 between 1

2
and 1 are adjacent to vertices

outside this interval. Suppose 1
4
≤ a

4b
< 1

2
< x

4y
< 1. Then we have a

b
< 2 < x

y
. This is
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impossible because ay − bx = −1. Similarly, if a
4b
< 1 < x

4y
≤ 7

4
, then a

b
< 4 < x

y
< 7 is

a contradiction. So F1,4 is not connected.
Case F3,4: As above, it is seen that no vertices of F3,4 between 1 and 2 are adjacent to
vertices outside this interval. Consequently, F3,4 is not connected.

3.21. Theorem. The subgraph Fu,N is connected if and only if N ≤ 2.

Proof. If Fu,N is connected, we know that N ≤ 4 by [7]. For N = 3, 4, we proved
that Fu,N is not connected by Theorem 3.18 and 3.20. Conversely, if N ≤ 2, the result
immediately follows from Theorem 3.14 and 3.15.
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Abstract
In this paper we study some new converses of the Jensen and the Lah-
Ribarič operator inequality regarding convex functions. First we give
two series of converses in a general setting. The general results are then
applied to quasi-arithmetic operator means with a particular emphasis
to power operator means. The obtained results are also compared with
some related results, known from the literature.
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1. Introduction
The Jensen inequality is one of the most important inequalities in modern mathemat-

ics since it implies the whole series of other classical inequalities (e.g. those by Hölder,
Minkowski, Beckenbach-Dresher, Young, the arithmetic-geometric mean inequality etc.).
Applications of this inequality in various branches of mathematics, especially in math-
ematical analysis and statistics, have certainly contributed to its importance. During
decades, the Jensen inequality was extensively studied by some famous authors and was
generalized in numerous directions. For a comprehensive inspection of the Jensen in-
equality including history, proofs and diverse applications, the reader is referred to [10].

In this paper we refer to a quite general operator form of the Jensen inequality. In
order to present such result, we first introduce the appropriate setting.
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Let T be a locally compact Hausdorff space and let A be a C∗-algebra. We say that a
field (xt)t∈T of elements in A is continuous if the function t→ xt is norm continuous on
T . Additionally, if T is equipped with a Radon measure µ and the function t→ ||xt|| is
integrable, then, the so-called Bochner integral

∫
T
xtdµ(t) can be formed. More precisely,

the Bochner integral is the unique element in A such that the relation

ϕ

(∫
T

xtdµ(t)

)
=

∫
T

ϕ (xt) dµ(t)

holds for every linear functional ϕ in the norm dual A∗ (see [5]).
Assume furthermore that there is a field (φt)t∈T of positive linear mappings φt : A→ B

from A to another C∗-algebra B. Such field is said to be continuous if the function
t → φt(x) is continuous for every x ∈ A. If the C∗-algebras are unital and the field
t → φt(1) is integrable with integral 1, we say that (φt)t∈T is unital. We assume that
such field is continuous.

If f : I → R is operator convex function, where I is a real interval of any type, and
(φt)t∈T is a unital field, then the Jensen operator inequality (see Hansen et.al., [6]) asserts
that

(1.1) f

(∫
T

φt(xt)dµ(t)

)
≤
∫
T

φt(f(xt))dµ(t)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in I. If f : I → R is operator concave function, then the sign of inequality in
(1.1) is reversed.

Observe that the above inequality refers to an operator convex function. Recall that
a continuous function f : I → R is operator convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

holds for each λ ∈ [0, 1] and every pair of self-adjoint operators x and y (acting) on an
infinite dimensional Hilbert space H with spectra in I (the ordering is defined by setting
x ≤ y if y − x is positive semi-definite).

In the same paper, Hansen et.al. obtained the following inequality which holds for an
usual convex function f : [m,M ]→ R (see [6], proof of Theorem 2):

(1.2)
∫
T

φt(f(xt))dµ(t) ≤ αf
∫
T

φt(xt)dµ(t) + βf1.

In this matter, the usual notation is used:

αf =
f(M)− f(m)

M −m and βf =
Mf(m)−mf(M)

M −m .

Inequality (1.2) will be referred to as the Lah-Ribarič operator inequality. Observe that
the operator inequality (1.2) is established by applying the functional calculus to the
well-known inequality

(1.3) f(t) ≤ αf t+ βt,

which holds for every convex function on the interval [m,M ]. Recall that l(t) = αf t+βt
is the linear function limiting convex function f(t) on interval [m,M ] from the above.

The main objective of this paper is to derive converses of the above inequalities (1.1)
and (1.2). Although inequality (1.1) holds for an operator convex function, both series
of converses will be established for convex functions in the classical real sense.

The paper is organized in the following way: after this Introduction, in Section 2
we derive our main results, that is, we obtain two series of converses that correspond
to the Jensen and the Lah-Ribarič operator inequality. Further, in Sections 3 and 4
general results are then applied to quasi-arithmetic operator means, with a particular
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emphasis to power operator means. In such a way, we obtain converse inequalities for
quasi-arithmetic and power operator means.

The techniques that will be used in the proofs are mainly based on the classical real and
functional calculus, especially on the well-known monotonicity principle for self-adjoint
elements of a C∗-algebra A: If x ∈ A with a spectra Sp(x), then

(1.4) f(t) ≥ g(t), t ∈ Sp(x) =⇒ f(x) ≥ g(x),

where f and g are real valued continuous functions.

2. Basic results
In this section we give our main results, that is, converses of the Jensen and the Lah-

Ribarič operator inequality in a general setting presented in the Introduction. As we have
already discussed, the results that follow refer to an usual convex function. Although
regarding different inequalities, it appears that these two series of converses are closely
connected.

First we give a series of converses for the Jensen operator inequality. It should be
noticed here that the following theorem in the classical real case was proved by Dragomir
in the recent paper [2]. In fact, such series of scalar inequalities will be exploited in
establishing the corresponding operator form.

2.1. Theorem. Let f : I → R be a continuous convex function, and let m,M ∈ R,
m < M , be such that interval [m,M ] belongs to the interior of interval I. Further,
suppose A and B are unital C∗-algebras, and (φt)t∈T is a unital field of positive linear
mappings φt : A → B defined on a locally compact Hausdorff space T with a bounded
Radon measure µ. Then the series of inequalities∫

T

φt(f(xt))dµ(t)− f
(∫

T

φt(xt)dµ(t)

)
≤ f ′−(M)− f ′+(m)

M −m

(
M1−

∫
T

φt(xt)dµ(t)

)(∫
T

φt(xt)dµ(t)−m1

)
≤ 1

4
(M −m)(f ′−(M)− f ′+(m))1(2.1)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M ]. If f is concave on I, then the signs of inequalities in (2.1) are
reversed.

Proof. Taking into account the operator version of the Lah-Ribarič inequality (1.2), it
follows that ∫

T

φt(f(xt))dµ(t)− f
(∫

T

φt(xt)dµ(t)

)
≤ αf

∫
T

φt(xt)dµ(t) + βf1− f
(∫

T

φt(xt)dµ(t)

)
.(2.2)

On the other hand, regarding convexity of f , we have the so-called gradient inequality,

f(t)− f(M) ≥ f ′−(M)(t−M),

which holds for every t ∈ [m,M ], that is,

(t−m)f(t)− (t−m)f(M) ≥ f ′−(M)(t−M)(t−m), t ∈ [m,M ],

after multiplying with t−m. In the same way, it follows that

(M − t)f(t)− (M − t)f(m) ≥ f ′+(m)(M − t)(t−m), t ∈ [m,M ].
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Now, adding the above two inequalities, and then, dividing by m−M , we have

(2.3) αf t+ βf − f(t) ≤
f ′−(M)− f ′+(m)

M −m (M − t)(t−m).

Moreover, taking into account the arithmetic-geometric mean inequality, the following
series of inequalities holds for all t ∈ [m,M ] (see also [2]):

αf t+ βf − f(t) ≤
f ′−(M)− f ′+(m)

M −m (M − t)(t−m)

≤ 1

4
(M −m)(f ′−(M)− f ′+(m)).(2.4)

Now, since m1 ≤ xt ≤ M1 for every t ∈ T , it follows that mφt(1) ≤ φt(xt) ≤ Mφt(1),
that is, m1 ≤

∫
T
φt(xt)dµ(t) ≤M1. Hence, applying the functional calculus to the above

series of inequalities, that is, setting
∫
T
φt(xt)dµ(t) instead of t, we have

αf

∫
T

φt(xt)dµ(t) + βf1− f
(∫

T

φt(xt)dµ(t)

)
≤ f ′−(M)− f ′+(m)

M −m

(
M1−

∫
T

φt(xt)dµ(t)

)(∫
T

φt(xt)dµ(t)−m1

)
≤ 1

4
(M −m)(f ′−(M)− f ′+(m))1.(2.5)

Finally, comparing (2.2) and (2.5), we obtain (2.1), as claimed. �

2.2. Remark. Observe that in the statement of Theorem 2.1 the interval [m,M ] be-
longs to the interior of the interval I. This condition assures finiteness of the one-sided
derivatives in (2.1). Without this assumption these derivatives might be infinite.

2.3. Remark. It should be noticed here that the first expression in the series of inequal-
ities (2.1), that is, the element

∫
T
φt(f(xt))dµ(t) − f

(∫
T
φt(xt)dµ(t)

)
is not positive in

general. This element is positive if f is in addition operator convex function, due to the
Jensen operator inequality (1.1).

The following result represents converses of the Lah-Ribarič operator inequality (1.2):

2.4. Theorem. Suppose f : I → R is a continuous convex function, and m,M ∈ R,
m < M , are such that interval [m,M ] belongs to the interior of interval I. Further, let
(φt)t∈T be a unital field of positive linear mappings φt : A → B, where A and B are
unital C∗-algebras, defined on a locally compact Hausdorff space T with a bounded Radon
measure µ. Then the series of inequalities

0 ≤ αf

∫
T

φt(xt)dµ(t) + βf1−
∫
T

φt(f(xt))dµ(t)

≤ f ′−(M)− f ′+(m)

M −m

∫
T

φt ([M1− xt][xt −m1]) dµ(t)

≤ f ′−(M)− f ′+(m)

M −m

(
M1−

∫
T

φt(xt)dµ(t)

)(∫
T

φt(xt)dµ(t)−m1

)
≤ 1

4
(M −m)(f ′−(M)− f ′+(m))1(2.6)

holds for every bounded continuous field (xt)t∈T of self-adjoint elements in A with spectra
contained in [m,M ]. If f is concave on I, then the signs of inequalities in (2.6) are
reversed.
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Proof. The first inequality in (2.6) holds by virtue of the Lah-Ribarič inequality (1.2).
Further, starting from the scalar inequality (2.3), it follows that relation

αfxt + βf1− f(xt) ≤
f ′−(M)− f ′+(m)

M −m (M1− xt)(xt −m1)

holds for every t ∈ T . Now, applying the positive linear mappings φt to the above
relation, we obtain

αfφt(xt) + βfφt(1)− φt(f(xt)) ≤
f ′−(M)− f ′+(m)

M −m φt([M1− xt][xt −m1]),

while integrating yields

αf

∫
T

φt(xt)dµ(t) + βf1−
∫
T

φt(f(xt))dµ(t)

≤ f ′−(M)− f ′+(m)

M −m

∫
T

φt ([M1− xt][xt −m1]) dµ(t),

so that the second inequality in (2.6) holds.
Taking into account Theorem 2.1, it is enough to justify the third inequality sign in

(2.6). To prove our assertion, we note that the function

h(t) = (M − t)(t−m) = −t2 + (M +m)t−Mm, t ∈ [m,M ]

is operator concave (see e.g. [3]). Finally, applying the Jensen operator inequality (1.1)
to the above function h, it follows that∫

T

φt ([M1− xt][xt −m1]) dµ(t)

≤
(
M1−

∫
T

φt(xt)dµ(t)

)(∫
T

φt(xt)dµ(t)−m1

)
,

and the proof is completed. �

Below, series of inequalities in (2.1) and (2.6) will be applied to quasi-arithmetic and
power operator means.

3. Applications to quasi-arithmetic operator means
Roughly speaking, an arbitrary C∗-algebra is isomorphic to a C∗-algebra of bounded

operators on a Hilbert space H, denoted by B(H). It is a consequence of the well-known
Gelfand-Naimark theorem (see [4]). Hence, for the reader convenience, from now on,
C∗-algebras will be regarded as algebras of bounded operators on a Hilbert space.

Now, for the Hilbert spaces H and K, let P [B(H),B(K)] denotes the set of all fields
(φt)t∈T of positive linear mappings φt : B(H) → B(K), defined on a locally compact
Hausdorff space T with a bounded Radon measure µ, which are unital.

A generalized quasi-arithmetic operator mean is defined by

(3.1) Mψ (x, φ) = ψ−1

(∫
T

φt(ψ(xt))dµ(t)

)
,

where (xt)t∈T is a continuous field of operators in B(H) with spectra in [m,M ] ⊆ R,
(φt)t∈T ∈ P [B(H),B(K)], and ψ : [m,M ] → R is a continuous strictly monotone func-
tion.

Throughout this section we also use the notation

ψm = min{ψ(m), ψ(M)}, ψM = max{ψ(m), ψ(M)},

for a continuous strictly monotone function ψ : [m,M ]→ R.
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In paper [9], Mićić et.al. investigated an order among the above quasi-arithmetic
means. More precisely, they obtained that the inequality

(3.2) Mψ (x, φ) ≤Mχ (x, φ)

holds if one of the following two conditions is fulfilled:
(i) χ ◦ ψ−1 is operator convex and χ−1 is operator monotone,
(ii) χ ◦ ψ−1 is operator concave and −χ−1 is operator monotone.
On the other hand, if
(i’) χ ◦ ψ−1 is operator concave and χ−1 is operator monotone,
(ii’) χ ◦ ψ−1 is operator convex and −χ−1 is operator monotone,
then the sign of inequality in (3.2) is reversed.

Moreover, if ψ−1 is operator convex and χ−1 is operator concave, then

(3.3) Mψ (x, φ) ≤M1 (x, φ) ≤Mχ (x, φ) ,

while for operator concave function ψ−1 and operator convex function χ−1 the signs of
inequalities in series (3.3) are reversed.

As we see, the above relations (3.2) and (3.3), regarding order among quasi-arithmetic
means, are derived via operator convexity and operator monotonicity. For more details
about an order among operator means, the reader is referred to papers [7], [8] and [9].

As distinguished from the above relations (3.2) and (3.3), converses of quasi-arithmetic
operator means are derived by virtue of the convexity and monotonicity in the classical
real sense. The corresponding result can be carried out by virtue of our Theorem 2.1.

3.1. Theorem. Let χ, ψ : I → R be continuous strictly monotone functions and let the
interval [m,M ] belongs to the interior of interval I. Further, suppose that χ ◦ ψ−1 is
well-defined and convex on ψ(I). If (φt)t∈T ∈ P [B(H),B(K)], where H, K are Hilbert
spaces and T is a locally compact Hausdorff space with a bounded Radon measure µ, then
the series of inequalities

χ (Mχ(x, φ))− χ (Mψ(x, φ))

≤ (χ ◦ ψ−1)′−(ψM )− (χ ◦ ψ−1)′+(ψm)

ψM − ψm
[ψM1− ψ (Mψ(x, φ))]

× [ψ (Mψ(x, φ))− ψm1]

≤ 1

4
(ψM − ψm)

[
(χ ◦ ψ−1)′−(ψM )− (χ ◦ ψ−1)′+(ψm)

]
1(3.4)

holds for every continuous field (xt)t∈T of operators in B(H) with spectra in [m,M ].
Further, if χ◦ψ−1 is concave on ψ(I), then the signs of inequalities in (3.4) are reversed.

Proof. Since ψ : I → R is a continuous strictly monotone function, it follows that ψm ≤
ψ(t) ≤ ψM , for all t ∈ [m,M ]. Moreover, by virtue of the functional calculus, it follows
that ψm1 ≤ ψ(xt) ≤ ψM1 for every t ∈ T . This means that the spectra of the field
(yt)t∈T = (ψ(xt))t∈T is contained in the interval [ψm, ψM ].

On the other hand, since the function χ ◦ ψ−1 is obviously continuous on ψ(I), the
interval [ψm, ψM ] belongs to the interior of ψ(I).

Finally, utilizing Theorem 2.1, that is, the series of inequalities in (2.1) with ψm, ψM ,
χ ◦ ψ−1, (yt)t∈T respectively instead of m, M , f , (xt)t∈T , and with definition (3.1) of
quasi-arithmetic means, we obtain (3.4). �

3.2. Remark. Clearly, with assumptions as in Theorem 3.1, the operator χ (Mχ(x, φ))−
χ (Mψ(x, φ)) is not positive in general. It is positive if the function χ ◦ ψ−1 is operator
convex on the corresponding interval. Moreover, applying operator convexity and mono-
tonicity to suitable functions, one obtains relations (3.2) and (3.3). For more details the
reader is referred to [9].
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With the same setting as in the previous result, Theorem 2.4 can also be exploited
in deriving converses of the Lah-Ribarič operator inequality involving quasi-arithmetic
means.

3.3. Theorem. Let χ, ψ : I → R be continuous strictly monotone functions and let the
interval [m,M ] belongs to the interior of interval I. Further, suppose that χ ◦ ψ−1 is
well-defined and convex on ψ(I). If (φt)t∈T ∈ P [B(H),B(K)], where H, K are Hilbert
spaces and T is a locally compact Hausdorff space with a bounded Radon measure µ, then
the series of inequalities

0 ≤ χ(M)− χ(m)

ψ(M)− ψ(m)
ψ (Mψ(x, φ)) +

ψ(M)χ(m)− ψ(m)χ(M)

ψ(M)− ψ(m)
1− χ (Mχ(x, φ))

≤ (χ ◦ ψ−1)′−(ψM )− (χ ◦ ψ−1)′+(ψm)

ψM − ψm

×
∫
T

φt ([ψM1− ψ(xt)][ψ(xt)− ψm1]) dµ(t)

≤ (χ ◦ ψ−1)′−(ψM )− (χ ◦ ψ−1)′+(ψm)

ψM − ψm
[ψM1− ψ (Mψ(x, φ))]

× [ψ (Mψ(x, φ))− ψm1]

≤ 1

4
(ψM − ψm)

[
(χ ◦ ψ−1)′−(ψM )− (χ ◦ ψ−1)′+(ψm)

]
1(3.5)

holds for every continuous field (xt)t∈T of operators in B(H) with spectra in [m,M ]. If
χ ◦ ψ−1 is concave on ψ(I), then the signs of inequalities in (3.5) are reversed.

Proof. Considering the same setting as in the proof of Theorem 3.1 and with notation
as in Theorem 2.4, we have

αχ◦ψ−1 =
χ(M)− χ(m)

ψ(M)− ψ(m)
, βχ◦ψ−1 =

ψ(M)χ(m)− ψ(m)χ(M)

ψ(M)− ψ(m)
,

so the result is an immediate consequence of the series of inequalities in (2.6). �

3.4. Remark. The first inequality in (3.5) can be rewritten in the following form:

(ψ(M)− ψ(m))χ (Mχ(x, φ))− (χ(M)− χ(m))ψ (Mψ(x, φ))

≤ (ψ(M)χ(m)− ψ(m)χ(M))1.(3.6)

The above inequality (3.6) can be regarded as an operator analogue of the corresponding
relation for linear functionals (see [10], Theorem 4.3, p. 108).

3.5. Remark. With notations as in Theorems 3.1 and 3.3, suppose that the function
χ ◦ ψ−1 is differentiable in points ψm and ψM . In this case expressions ψm and ψM in
(3.4) and (3.5) can respectively be replaced by ψ(m) and ψ(M), due to the symmetry.
In addition, utilizing a chain rule, the expression

(χ ◦ ψ−1)′−(ψ(M))− (χ ◦ ψ−1)′+(ψ(m))

can be rewritten in a more suitable form, that is,

(3.7) (χ ◦ ψ−1)′−(ψ(M))− (χ ◦ ψ−1)′+(ψ(m)) =
χ′(M)

ψ′(M)
− χ′(m)

ψ′(m)
.
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4. Applications to power operator means
As a particular case of a quasi-arithmetic mean defined by (3.1), we may consider a

power operator mean (see e.g. [8]):

(4.1) Mr (x, φ) =

{ (∫
T
φt(x

r
t )dµ(t)

) 1
r , r 6= 0

exp
(∫
T
φt(log xt)dµ(t)

)
, r = 0.

By virtue of relations (3.2) and (3.3), Mićić et.al. [9], established the following order
among power operator means:

(4.2) Mr (x, φ) ≤Ms (x, φ) ,

for either r ≤ s, r, s ∈ R \ [−1, 1] or 1
2
≤ r ≤ 1 ≤ s or r ≤ −1 ≤ s ≤ − 1

2
. However, a

class of inequalities in (4.2) is a consequence of operator convexity and monotonicity of
the corresponding power functions.

On the other hand, regarding the method developed in this paper, converses for power
operator means are established via the classical convexity. The following result appears
to be a consequence of Theorem 3.1 when considering the above power operator means.

4.1. Theorem. Let (φt)t∈T ∈ P [B(H),B(K)], where H, K are Hilbert spaces and T is
a locally compact Hausdorff space with a bounded Radon measure µ, and let (xt)t∈T be a
continuous field of positive operators in B(H) with spectra in [m,M ] ⊆ R+.

(i) If either s ≤ 0 < r or r < 0 ≤ s or 0 < r < s or s < r < 0, then the following
series of inequalities holds:

[Ms (x, φ)]
s − [Mr (x, φ)]

s

≤ s

r
· M

s−r −ms−r

Mr −mr
[Mr1− [Mr (x, φ)]

r] [[Mr (x, φ)]
r −mr1]

≤ s

4r
(Mr −mr)

(
Ms−r −ms−r)1.(4.3)

Further, if 0 ≤ s < r or r < s ≤ 0, then the signs of inequalities in (4.3) are
reversed.

(ii) If r < 0 then

0 ≤ log [M0 (x, φ)]− log [Mr (x, φ)]

≤ − 1

rMrmr
[Mr1− [Mr (x, φ)]

r] [[Mr (x, φ)]
r −mr1]

≤ − (Mr −mr)2

4rMrmr
1,(4.4)

while for r > 0 the signs of inequalities in (4.4) are reversed.
(iii) If s ∈ R, then the following series of inequalities holds:

[Ms (x, φ)]
s − [M0 (x, φ)]

s

≤ s (Ms −ms)

logM − logm
[logM1− log [M0 (x, φ)]] [log [M0 (x, φ)]− logm1]

≤ s

4
(logM − logm) (Ms −ms)1.(4.5)

Proof. The proof is a simple consequence of Theorem 3.1, that is, the series of inequalities
in (3.4) with particular choices of functions χ and ψ.

More precisely, let χ(t) = ts and ψ(t) = tr, where s and r are mutually different real
parameters not equal to zero. Then the function

(
χ ◦ ψ−1

)
(t) = t

s
r is convex on R+ if

s
r
≤ 0 or s

r
≥ 1. It is possible in each of the following four cases: s < 0 < r or r < 0 < s
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or 0 < r < s or s < r < 0. Finally, since
(
χ ◦ ψ−1

)′
(t) = s

r
t
s−r
r , considering (3.4) with

the above functions χ and ψ on the interval [m,M ], we obtain (4.3).
On the other hand, the function

(
χ ◦ ψ−1

)
(t) = t

s
r is concave on R+ if 0 ≤ s

r
≤ 1,

hence if 0 < s < r or r < s < 0 we obtain series (4.3) with reversed signs of inequalities.
Clearly, the series of inequalities in (4.3), as well as the series with reversed signs of
inequalities, holds also for s = 0.

It remains to consider the cases when one of the parameters r and s is equal to zero.
If s = 0, then setting χ(t) = log t and ψ(t) = tr, it follows that

(
χ ◦ ψ−1

)
(t) = 1

r
log t.

Clearly, this function is convex for r < 0, while it is concave for r > 0. Moreover, since(
χ ◦ ψ−1

)′
(t) = 1

rt
, after a straightforward computation we obtain (4.4) without the

first inequality sign in the convex case, while in the concave case the reversed series of
inequalities holds. The first inequality sign in (4.4), as well as in the reversed series of
inequalities, holds due to the operator convexity of the function 1

r
log t when r < 0, that

is, operator concavity when r > 0.
Finally, if r = 0, then setting χ(t) = ts and ψ(t) = log t, it follows that the function(

χ ◦ ψ−1
)
(t) = exp(st) is convex for every s 6= 0. In addition,

(
χ ◦ ψ−1

)′
(t) = s exp(st),

which yields (4.5) after a straightforward computation. Of course, the series of inequali-
ties in (4.5) holds also for s = 0. �

4.2. Remark. Observe that the function
(
χ ◦ ψ−1

)
(t) = 1

r
log t is simultaneously convex

and operator convex, that is, concave and operator concave depending on whether r < 0
or r > 0. Hence, the first expression in (4.4) is the positive operator yielding the inequality

log [Mr (x, φ)] ≤ log [M0 (x, φ)]

for r < 0. On the other hand, if r > 0 then the following inequality holds:

log [M0 (x, φ)] ≤ log [Mr (x, φ)] .

It is well-known that the function f(t) = tr is operator convex on R+ if either 1 ≤
r ≤ 2 or −1 ≤ r ≤ 0, and is operator concave on R+ when 0 ≤ r ≤ 1. Hence,
discussing the operator convexity of the function

(
χ ◦ ψ−1

)
(t) = t

s
r (see the proof of

Theorem 4.1), we obtain conditions on parameters r and s under which the operator
[Ms (x, φ)]

s − [Mr (x, φ)]
s is positive in the series of inequalities (4.3).

4.3. Corollary. With the same assumptions as in the statement of Theorem 4.1, the
series of inequalities

0 ≤ [Ms (x, φ)]
s − [Mr (x, φ)]

s

≤ s

r
· M

s−r −ms−r

Mr −mr
[Mr1− [Mr (x, φ)]

r] [[Mr (x, φ)]
r −mr1]

≤ s

4r
(Mr −mr)

(
Ms−r −ms−r)1(4.6)

holds if either 0 < r ≤ s ≤ 2r or 2r ≤ s ≤ r < 0 or 0 ≤ s+r ≤ r 6= 0 or 0 6= r ≤ r+s ≤ 0.
Further, if 0 6= r ≤ s ≤ 0 or 0 ≤ s ≤ r 6= 0, then the signs of inequalities in (4.6) are
reversed.

Proof. Regarding the proof of Theorem 4.1, it follows that the first inequality sign in (4.6)
holds when

(
χ ◦ ψ−1

)
(t) = t

s
r is operator convex function. This function is operator

convex if either 1 ≤ s
r
≤ 2 or −1 ≤ s

r
≤ 0, that is, when either 0 < r ≤ s ≤ 2r or

2r ≤ s ≤ r < 0 or 0 ≤ s+ r ≤ r 6= 0 or 0 6= r ≤ r + s ≤ 0. Moreover, since the operator
convexity of the function

(
χ ◦ ψ−1

)
(t) = t

s
r implies its usual convexity, it follows that

the remaining signs of inequalities in (4.6) are also valid under the above conditions.
On the other hand, function

(
χ ◦ ψ−1

)
(t) = t

s
r is operator concave if 0 ≤ r

s
≤ 1,

that is, when 0 6= r ≤ s ≤ 0 or 0 ≤ s ≤ r 6= 0. Under these conditions
(
χ ◦ ψ−1

)
(t) =
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t
s
r is concave in the classical sense, as well. This gives (4.6) with reversed signs of
inequalities. �

4.4. Remark. With the conditions as in Corollary 4.3, we obtain the order among
operators [Ms (x, φ)]

s and [Mr (x, φ)]
s. Moreover, applying the operator monotonicity of

suitable power functions, one obtains conditions as in (4.2). In fact, it is a more specific
use of relations (3.2) and (3.3), for more details see [9].

4.5. Remark. It should be noticed here that the above discussion as in Corollary 4.3 and
Remark 4.2 can not be applied to the series of inequalities in (4.5) since the exponential
function f(t) = exp t is not operator convex (see e.g. [1]).

Guided by the proof of Theorem 4.1, we also obtain an interesting consequence of
Theorem 3.3, that is, the converses of the Lah-Ribarič inequality that correspond to
power operator means.

4.6. Theorem. Let (φt)t∈T ∈ P [B(H),B(K)], where H, K are Hilbert spaces and T is
a locally compact Hausdorff space with a bounded Radon measure µ, and let (xt)t∈T be a
continuous field of positive operators in B(H) with spectra in [m,M ] ⊆ R+.

(i) If either s ≤ 0 < r or r < 0 ≤ s or 0 < r < s or s < r < 0, then the following
series of inequalities holds:

0 ≤ Ms −ms

Mr −mr
[Mr (x, φ)]

r +
Mrms −mrMs

Mr −mr
1− [Ms(x, φ)]

s

≤ s

r
· M

s−r −ms−r

Mr −mr

∫
T

φt ([M
r1− xrt ][xrt −mr1]) dµ(t)

≤ s

r
· M

s−r −ms−r

Mr −mr
[Mr1− [Mr (x, φ)]

r] [[Mr (x, φ)]
r −mr1]

≤ s

4r
(Mr −mr)

(
Ms−r −ms−r)1.(4.7)

Moreover, if 0 ≤ s < r or r < s ≤ 0, then the signs of inequalities in (4.7) are
reversed.

(ii) If r < 0 then

0 ≤ logM − logm

Mr −mr
[Mr (x, φ)]

r +
Mr logm−mr logM

Mr −mr
1− log [M0(x, φ)]

≤ − 1

rMrmr

∫
T

φt ([M
r1− xrt ][xrt −mr1]) dµ(t)

≤ − 1

rMrmr
[Mr1− [Mr (x, φ)]

r] [[Mr (x, φ)]
r −mr1]

≤ − (Mr −mr)2

4rMrmr
1,(4.8)

while for r > 0 the signs of inequalities in (4.8) are reversed.
(iii) The series of inequalities

0 ≤ Ms −ms

logM − logm
log [M0 (x, φ)] +

ms logM −Ms logm

logM − logm
1− [Ms(x, φ)]

s

≤ s (Ms −ms)

logM − logm

∫
T

φt ([logM1− log xt][log xt − logm1]) dµ(t)

≤ s (Ms −ms)

logM − logm
[logM1− log [M0 (x, φ)]] [log [M0 (x, φ)]− logm1]

≤ s

4
(logM − logm) (Ms −ms)1(4.9)

holds for all s ∈ R.
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Proof. We use the same procedure as in the proof of Theorem 4.1, applied to the series
of inequalities in (3.5). �
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In this paper, we study a class of toric ideals obtained by using some
geometric data of ADE trees which are the minimal resolution graphs
of rational surface singularities. We compute explicit Gröbner bases
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1. Introduction
Algebraic varieties having squarefree initial ideals are of special interest. Many authors

have presented squarefree initial ideals arising from different contexts, see for instance
[5, 11, 13, 14, 16]. Normal toric ideals are known to have at least one squarefree term in
each minimal binomial generator by [19, Proposition 4.1] and [17, Lemma 6.1]. They have
Cohen-Macaulay initial ideals when their configurations are ∆-normal, see [18]. These
suggest that they have (at least simplicial ones) squarefree initial ideals with respect
to a term order. The challenge lies in the choice of a correct term order. Motivated
by fundamental questions in combinatorial commutative algebra and its applications to
statistics and optimization, recently, with the aid of Gale diagrams, Dueck et al. [8] have
succeeded to show the existence of a term order with respect to which normal toric ideals
of codimension 2 have squarefree initial ideals. They have also proven that the Gröbner
bases giving rise to these initial ideals constitute minimal generating sets for the toric
ideals.
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The aim of the present paper is to extend the discussion to certain examples of normal
toric ideals of higher codimension. As a case study, we concentrate on certain toric
ideals of higher codimension arising from singularity theory that are promising because
of the speciality of the corresponding singularities. These are the simplicial normal toric
ideals corresponding to the simple or ADE surface singularities. In section 3, we prove
that toric ideals of DE type singularities have squarefree initial ideals. Our methods
are computational and use the configurations given in [1]. The reduced Gröbner bases
we obtain are also shown to be minimal generating sets containing a large number of
binomials of degree at most 4, see section 4. In the last section, we speculate on initial
ideals of An-type trees whose configurations seem impossible to give a closed form.

2. Preliminaries
2.1. Gröbner basis. Let A = {a1, . . . ,aN} be a configuration in Zn and K[A] :=
K[{xa |a ∈ A}] denote the polynomial ring in variables xa with a ∈ A over the field
K. Consider the affine semigroup NA = {λ1a1 + · · · + λNaN : λi ∈ N} and let
K[NA] := K[{ua |a ∈ A}] be the associated semigroup ring. The toric ideal IA of A is
the kernel of the following K-algebra epimorphism:

π : K[A]→ K[NA], π(xa) := ua = ua11 · · ·u
an
n .

It is known that IA is a prime ideal generated by binomials xa − xb with π(xa) = π(xb)
[20]. The zero set of IA is called the toric variety VA of A.

The initial monomial, in(f), of a polynomial f ∈ IA \ {0} is the greatest monomial
of f with respect to a term order on the monomials of K[A]. The initial ideal, in(IA),
of IA is a monomial ideal generated by all initial monomials of polynomials in IA. A
finite subset G ⊂ IA is called a Gröbner basis of IA if in(IA) = in(G), where in(G) is the
monomial ideal generated by initial monomials of polynomials in G. The following is the
key in proving our main results.

2.1. Lemma. [2, Lemma 1.1] With the preceding notation, let M and M ′ be monomials
in K[A]. The finite set G is a Gröbner basis of IA if and only if π(M) 6= π(M ′) for all
M /∈ in(G) and M ′ /∈ in(G) with M 6= M ′.

2.2. ADE-trees. Here, we briefly review basics of ADE-trees, see [4, 3, 23, 9, 10] for
more details. Let Γ be a weighted graph without loops, with vertices C1, . . . , Cn and with
weight wi ≥ 2 at each vertex Ci. The incidence matrix M(Γ) = [cij ], associated with Γ
is a symmetric matrix and defined in the following way: cii = −wi and cij is the number
of edges linking the vertices Ci and Cj whenever i 6= j. On the free abelian group L

generated by the vertices Ci of Γ, M(Γ) defines a symmetric bilinear form (Y · Z) for a
pair (Y,Z) of elements in L via (Ci · Cj) := cij . The elements C =

∑n
i=1miCi of L will

be called cycles of the graph Γ where mi ∈ Z. A positive cycle is a non-zero cycle with
non-negative coefficients.

If wi = 2 for all i and C · C ≤ −2 for any cycle then Γ is of type An, Dn, E6, E7

and E8. It is well known that these are the Dynkin diagrams obtained as the minimal
resolution graphs of the rational singularities of complex surfaces. The semigroup of
Lipman is the set

E
+(Γ) := {C ∈ L | (C · Ci) ≤ 0 for 1 ≤ i ≤ n}.

which is not empty since M(Γ) is negative definite in this case. By [15], each element of
this set corresponds to a function in the maximal ideal of the local ring of the singularity
on the surface having Γ as the minimal resolution graph.
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In [22] and [1], the authors have studied the structure of this semigroup and provided
an algorithm to find a generating set over Z by associating an affine toric variety VA, c.f.
also [21]. This toric variety corresponds to the configuration A of the smallest n-tuples
(d1, . . . , dn) ∈ Nn such that (C ·Ci) = −di for C ∈ E+(Γ). The interested reader can see
[1] for the details.

3. Squarefree initial ideals
In this section, we obtain reduced Gröbner bases for toric ideals of affine toric varieties

corresponding to DE-type singularities. Throughout the section, we assume that the first
term of a binomial is its initial monomial for a fixed term order. In order to find the set
A which determines the parametrization of the toric variety VA, we use Proposition 3.9
and 3.12 in [1].

3.1. Dn-type singularities. We have n ≥ 4. Since toric ideals behave in a different
manner when n is even and odd, we discuss two cases separately.
When n = 2m: Let J = {3, 5, . . . , n−1} and Jc = {2, 4, . . . , n−2}. Consider the subset

D2m := {2ei, ej , 2e1, 2en, ek + e`, ei + e1 + en | i, k, ` ∈ J, j ∈ Jc and k < `},

where {e1, . . . , en} is the canonical basis of Zn. Then we introduce one variable for each
element in the set D2m and define the polynomial ring K[D2m] to be the K-algebra
generated by the set of these variebles

{x1, . . . , xn, xj,k, yi | where i, j, k ∈ J and j < k}.

Similarly we define the semigroup ring K[ND2m] to be the K-algebra generated by

{u2
i , uj , u

2
1, u

2
n, uku`, uiu1un | i, k, ` ∈ J, j ∈ Jc and k < `}.

The toric ideal ID2m is thus the kernel of π : K[D2m]→ K[ND2m] which is defined as:

π(xi) = u2
i , π(xj) = uj , π(x1) = u2

1, π(xn) = u2
n, π(xk,`) = uku`,

π(yi) = uiu1un

for all i, k, ` ∈ J, j ∈ Jc with k < `.
We next define the ordering �even to be the reverse lexicographic ordering imposed

by:
x1 � · · · � xn−1 � xn � xj1,j2 � xj3,j4 � yk1 � yk2

where j1, j2, j3, j4, k1, k2 ∈ J with j2 < j4 or j2 = j4, j1 < j3; and k1 < k2.
Then a squarefree initial ideal for ID2m is given by the following theorem, since the

first monomial of a binomial is its initial term.

3.1. Theorem. The following set GD2m

xi,kxj,` − xi,jxk,` xi,`xj,k − xi,jxk,` i < j < k < `
xi,jxi,k − xixj,k xjxi,k − xi,jxj,k i < j < k
xkxi,j − xi,kxj,k xj,kyi − xi,jyk i < j < k
xi,kyj − xi,jyk i < j < k
xixj − x2i,j xjyi − xi,jyj i < j
xi,jyi − xiyj xi,jx1xn − yiyj i < j
xix1xn − y2i i ∈ J

is a Gröbner basis of ID2m with respect to the ordering �even defined above.
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Proof. Let M and M ′ be two monomials in K[D2m] with M /∈ in(GD2m) and M ′ /∈
in(GD2m), where in(GD2m) is the monomial ideal generated by initial terms of binomials
in GD2m . Since xixj ∈ in(GD2m), we may assume that

M = xpax
α1
1 xαn

n xb1,c1 · · ·xbq,cqyd1 · · · ydr and

M ′ = xp
′

a′x
α′1
1 x

α′n
n xb′1,c′1 · · ·xb′q′ ,c′q′ yd′1 · · · yd′r′ , where

xa � xb1,c1 � · · · � xbq,cq � yd1 � · · · � ydr ,
xa′ � xb′1,c′1 � · · · � xb′q′ ,c′q′ � yd′1 � · · · � yd′r′ .

First, we observe that the ordering above implies that c1 ≤ · · · ≤ cq, c′1 ≤ · · · ≤ c′q′
and d1 ≤ · · · ≤ dr, d′1 ≤ · · · ≤ d′r′ . Moreover, we have b1 < c1 ≤ b2 < c2 ≤ · · · ≤ bq < cq
and b′1 < c′1 ≤ b′2 < c′2 ≤ · · · ≤ b′q′ < c′q′ , since xi,kxj,`, xi,`xj,k, xi,jxi,k ∈ in(GD2m).

The images of M and M ′ are found easily as

π(M) = u2p
a u

2α1+r
1 u2αn+r

n ub1uc1 · · ·ubqucqud1 · · ·udr

π(M ′) = u2p′

a′ u
2α′1+r

′

1 u
2α′n+r′

n ub′1uc′1 · · ·ub′q′uc′q′ud′1 · · ·ud′r′ .

In what follows we will prove that π(M) = π(M ′) ⇒ M = M ′, by the virtue of Lemma
2.1. It follows from π(M) = π(M ′) that we have the following identities

2α1 + r = 2α′1 + r′(3.1)
2αn + r = 2α′n + r′(3.2)

2p+ 2q + r = 2p′ + 2q′ + r′(3.3)
α1 − αn = α′1 − α′n (follows directly from (3.1) and (3.2)).(3.4)

To accomplish our goal M = M ′, we will assume now that M 6= M ′ to obtain a
contradiction in all possible cases considered below. Since M 6= M ′, we may suppose
further that they have no variable in common without loss of generality. This is because
in(GD2m) is an ideal and M,M ′ /∈ in(GD2m) implies that the new monomials obtained
by dividingM andM ′ by their greatest common divisor will also lie outside of in(GD2m).

If α1 > 0 and αn > 0 then α′1 = α′n = 0, asM andM ′ have no common variable. Since
xi,jx1xn, xkx1xn ∈ in(GD2m), we have p = q = 0. This implies that r = 2p′ + 2q′ + r′

by (3.3) and thus 2p′ + 2q′ + 2α1 = 0 by (3.1), a contradiction.
If α1 > 0 and αn = 0 then α′1 = 0 which implies together with (3.4) that α1 = −α′n ≤

0, contradiction. The case α1 = 0 and αn > 0 is done similarly. So, we have only the
case where α1 = 0 and αn = 0. A similar argument shows that α′1 = α′n = 0. In this
case r = r′ by (3.1).

Case I: Assume r = r′ > 0. Since xjyi ∈ in(GD2m), for all i < j, it follows that a ≤ dr.
Again by xi,jyi, xj,kyi, xi,kyj ∈ in(GD2m), for all i < j < k, we have (bq <)cq ≤ dr and
(b′q′ <)c′q′ ≤ d′r′ . Hence, dr (resp. d′r) is the biggest index appearing in π(M) (resp.
π(M ′)). Since π(M) = π(M ′), it follows that dr = d′r. But this implies that ydr is a
variable appearing in both M and M ′, contradiction.

Case II: Assume r = r′ = 0. If q = 0 then π(M) = π(M ′) implies that u2p
a =

u2p′

a′ ub′1uc′1 · · ·ub′q′uc′q′ , which is possible only if q′ = 0 as b′q′ < c′q′ . But in this case

a = a′ and xa is a common variable of M and M ′, a contradiction. Thus q > 0 and
q′ > 0.

Since xjxi,k, xkxi,j ∈ in(GD2m), we have a ≤ cq and a′ ≤ c′q′ . Since bq < cq and
b′q′ < c′q′ , we observe that cq (resp. c′q′) is the biggest index appearing in π(M) (resp.
π(M ′)) which yields together with π(M) = π(M ′) that cq = c′q′ . In this case ubq and
ub′

q′
appear in π(M) = π(M ′). Clearly bq > b′q′ or bq < b′q′ , as otherwise M and M ′

would have a common variable xbq,cq . If bq > b′q′(> · · · > b′1) then bq = a′ as ubq
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appears in π(M ′). This forces that b′q′ < bq = a′ < cq = c′q′ which is impossible, since
xjxi,k ∈ in(GD2m). The other case bq < b′q′ is impossible by a similar argument. �

3.2. Remark. Note that we have

|GD2m | = 2

(
m− 1

4

)
+ 5

(
m− 1

3

)
+ 4

(
m− 1

2

)
+

(
m− 1

1

)
.

dimVD2m = 2m, codimVD2m = m− 1 +
(
m−1

2

)
.

When n = 2m+ 1 : Let J = {2, 4, . . . , n− 1} and Jc = {3, 5, . . . , n− 2}. Consider the
subset D2m+1 defined by

{2ei, ej , 4e1, 4en, ek + e`, e1 + en, ei + 2e1, ei + 2en, ei + 3e1 + en, ei + e1 + 3en

| i, k, ` ∈ J, j ∈ Jc and k < `},
where {e1, . . . , en} is the canonical basis of Zn. As before we introduce one variable for
each member of D2m+1 and define the polynomial ring K[D2m+1] to be the K-algebra
generated by the set

{x1, . . . , xn, xj,k, x1,n, xi,1, xi,n, yi,1, yi,n | where i, j, k ∈ J and j < k}
and the semigroup ring K[ND2m+1] to be the K-algebra generated by

{u2
i , uj , u

4
1, u

4
n, uku`, u1un, uiu

2
1, uiu

2
n, uiu

3
1un, uiu1u

3
n | i, k, ` ∈ J, j ∈ Jc and k < `}.

The toric ideal ID2m+1 is thus the kernel of π : K[D2m+1]→ K[ND2m+1] which is defined
as follows:

π(xi) = u2
i , π(xj) = uj , π(x1) = u4

1, π(xn) = u4
n, π(xk,`) = uku`, π(x1,n) = u1un

π(xi,1) = uiu
2
1, π(xi,n) = uiu

2
n, π(yi,1) = uiu

3
1un, π(yi,n) = uiu1u

3
n

for all i, k, ` ∈ J, j ∈ Jc with k < `.
Finally, we define the ordering �odd to be the reverse lexicographic ordering imposed

by:
yi1,1 � yi2,1 � yi1,n � yi2,n � x1 � · · · � xn �

� xj1,j2 � xj3,j4 � xk1,1 � xk2,1 � x`1,n � x`2,n � x1,n
where j1, j2, j3, j4, k1, k2, `1, `2 ∈ J with j2 < j4 or j2 = j4, j1 < j3 and k1 < k2 and
`1 < `2.

Then a squarefree initial ideal for ID2m+1 is given by the following theorem as the first
monomials are the initial terms with respect to the ordering �odd.

3.3. Theorem. The following set GD2m+1

xi,kxj,` − xi,jxk,` xi,`xj,k − xi,jxk,` i < j < k < ` ∈ J
xj,kxi,n−1 − xi,jxk,n−1 xi,kxj,n−1 − xi,jxk,n−1 i < j < k ∈ J
xj,kxi,n − xi,jxk,n xi,kxj,n − xi,jxk,n i < j < k ∈ J
xjxi,k − xi,jxj,k xi,jxi,k − xixj,k i < j < k ∈ J
xkxi,j − xi,kxj,k i < j < k ∈ J
xixj − x2i,j xi,jx1 − xi,n−1xj,n−1 i < j ∈ J
xi,jxn − xi,nxj,n xi,jxi,n−1 − xixj,n−1 i < j ∈ J
xi,jxi,n − xixj,n xjxi,n−1 − xi,jxj,n−1 i < j ∈ J
xjxi,n − xi,jxj,n xj,n−1xi,n − xi,n−1xj,n i < j ∈ J
xi,n−1xj,n − x21,nxi,j i < j ∈ J
xix1 − x2i,n−1 xixn − x2i,n i ∈ J
xi,n−1xi,n − x21,nxi xi,nx1 − x21,nxi,n−1 i ∈ J
yi,1 − x1,nxi,1 yi,n − x1,nxi,n i ∈ J
xi,n−1xn − x21,nxi,n x1xn − x41,n i ∈ J
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is a Gröbner basis of ID2m+1 with respect to the ordering �odd.

Proof. Let M and M ′ be two monomials in K[D2m+1] with M /∈ in(GD2m+1) and
M ′ /∈ in(GD2m+1), where in(GD2m+1) is the monomial ideal generated by initial terms of
binomials in GD2m+1 . Since yi,1, yi,n, xixj ∈ in(GD2m+1), we may assume that

M = xpax
α1
1 xαn

n xβ1,nxb1,c1 · · ·xbq,cqxd1,n−1 · · ·xdr,n−1xe1,n · · ·xes,n and

M ′ = xp
′

a′x
α′1
1 x

α′n
n xβ

′

1,nxb′1,c′1 · · ·xb′q′ ,c′q′xd′1,n−1 · · ·xd′
r′ ,n−1xe′1,n · · ·xe′s′ ,n,

where the variables are ordered with respect to

xa � xb1,c1 � · · · � xbq,cq � xd1,n−1 � · · · � xdr,n−1 � xe1,n � · · · � xes,n,

xa′ � xb′1,c′1 � · · · � xb′q′ ,c′q′ � xd′1,n−1 � · · · � xd′
r′ ,n−1 � xe′1,n � · · · � xe′s′ ,n.

First, we observe that the ordering above implies that c1 ≤ · · · ≤ cq, c′1 ≤ · · · ≤ c′q′ ,
d1 ≤ · · · ≤ dr, d′1 ≤ · · · ≤ d′r′ and e1 ≤ · · · ≤ er, e′1 ≤ · · · ≤ e′r′ . Moreover, we have
b1 < c1 ≤ b2 < c2 ≤ · · · ≤ bq < cq and b′1 < c′1 ≤ b′2 < c′2 ≤ · · · ≤ b′q′ < c′q′ , since
xi,kxj,`, xi,`xj,k, xi,jxi,k ∈ in(GD2m+1).

The images of M and M ′ are found as follows

π(M) = u2p
a u

4α1+β+2r
1 u4αn+β+2s

n ub1uc1 · · ·ubqucqud1 · · ·udrue1 · · ·ues
π(M ′) = u2p′

a′ u
4α′1+β

′+2r′

1 u
4α′n+β′+2s′

n ub′1uc′1 · · ·ub′q′uc′q′ud′1 · · ·ud′r′ue′1 · · ·ue′s′ .

It follows from π(M) = π(M ′) that we have the following identities

2p+ 2q + r + s = 2p′ + 2q′ + r′ + s′(3.5)
4α1 + β + 2r = 4α′1 + β′ + 2r′(3.6)
4αn + β + 2s = 4α′n + β′ + 2s′(3.7)

2α1 − 2αn + r − s = 2α′1 − 2α′n + r′ − s′ (follows from (3.6) and (3.7)).(3.8)

To accomplish our goal M = M ′, we will assume contrarily that M 6= M ′ and obtain
a contradiction in all possible cases considered below. Since M 6= M ′, we may suppose
further that they have no variable in common without loss of generality.

Since x1xn ∈ in(GD2m+1), it follows that α1 and αn can not be positive simultaneously.
If α1 > 0 then αn = 0 and α′1 = 0 immediately. That p = q = s = 0 follows respectively
from xix1, xi,jx1, xi,nx1 ∈ in(GD2m+1). Thus equations 3.5 and 3.8 become

r = 2p′ + 2q′ + r′ + s′

2α1 + r = −2α′n + r′ − s′

and we have 2α1 = −2(p′+q′+s′+α′n) ≤ 0, contradiction. If αn > 0 then clearly α′n = 0
and α1 = 0. That p = q = r = 0 follows respectively from xixn, xi,jxn, xi,n−1xn ∈
in(GD2m+1). Thus equations 3.5 and 3.8 become

s = 2p′ + 2q′ + r′ + s′

−2αn − s = 2α′1 + r′ − s′

and we have 2αn = −2(p′ + q′ + r′ +α′1) ≤ 0, contradiction. So, both α1 = αn = 0. One
can show that α′1 = 0 and α′n = 0 by a similar argument.

Now, xj,n−1xi,n, xi,n−1xj,n, xi,n−1xi,n ∈ in(GD2m+1) implies that r and s (resp. r′

and s′) can not be positive at the same time.
If r > 0, then s = 0 in which case equation 3.8 becomes r = r′ − s′. If r′ > 0, then

s′ = 0 and we have r = r′ > 0, which is impossible as in this case, dr would be equal to
d′r′ since these are the biggest indices of variables in M and M ′, xdr would be a common
variable. If s′ > 0, then r′ = 0 and we have r = −s′, contradiction as r > 0 and s′ > 0.
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If s > 0, then r = 0 in which case equation 3.8 becomes −s = r′ − s′. If r′ > 0, then
s′ = 0 and we have −s = r′, which contradicts the assumption that s > 0 and r′ > 0. If
s′ > 0, then r′ = 0 and we have s = s′ > 0, which is impossible as in this case es would
be e′s′ and since these are the biggest indices of variables in M and M ′, xes would be a
common variable.

Hence, r = s = 0 and this implies together with equation 3.8 that r′ = s′. Since they
can not be positive simultaneously, r′ = s′ = 0 as well. After all these observations,
equation 3.6 reveals that β = β′. Since M and M ′ have no common variable, it follows
that β = β′ = 0.

If q = 0 then π(M) = π(M ′) implies that u2p
a = u2p′

a′ ub′1uc′1 · · ·ub′q′uc′q′ , which is

possible only if q′ = 0 as b′q′ < c′q′ . But in this case a = a′ and xa is a common variable
of M and M ′, a contradiction. Similarly, q′ = 0 gives rise to a contradiction. Thus q > 0
and q′ > 0.

Since xjxi,k, xkxi,j ∈ in(GD2m+1), we have a ≤ cq and a′ ≤ c′q′ . Since bq < cq and
b′q′ < c′q′ , we observe that cq (resp. c′q′) is the biggest index appearing in π(M) (resp.
π(M ′)) which yields together with π(M) = π(M ′) that cq = c′q′ . In this case ubq and
ub′

q′
appear in π(M) = π(M ′). Clearly bq > b′q′ or bq < b′q′ , as otherwise M and M ′

would have a common variable xbq,cq . If bq > b′q′(> · · · > b′1) then bq = a′ as ubq
appears in π(M ′). This forces that b′q′ < bq = a′ < cq = c′q′ which is impossible, since
xjxi,k ∈ in(GD2m+1). The other case bq < b′q′ is impossible by a similar argument. �

3.4. Remark. Note that if n = 2m+ 1 we have,

|GD2m+1 | = 2

(
m

4

)
+ 7

(
m

3

)
+ 9

(
m

2

)
+ 7

(
m

1

)
+

(
m

0

)
.

dimVD2m+1 = 2m+ 1, codimVD2m+1 = 2m+ 1 +
(
m
2

)
.

3.2. En-type Singularities. We will give Gröbner bases of toric ideals IEn , where
n = 6, 7, 8, without proofs, as they can easily be checked by a computation in Cocoa [7].
To begin with, let us define the set E6 ⊂ Z6:

{3e1, 3e2, e3, 3e4, 3e5, e6, e1+e2, e1+e5, e2+e4, e4+e5, 2e2+e5, e2+2e5, 2e1+e4, e1+2e4}.

Let K[E6] be the polynomial ring K[x1, . . . , x14] with 14 variables and K[NE6] be the
semigroup ring generated over K by monomials ua with a ∈ E6. Then, as before, the
toric ideal IE6 is the kernel of the epimorphism defined by sending the i-th variable xi
to uai , where ai denotes the i-th element in E6, for all i = 1, . . . , 14. Similarly, we define
the set E7 ⊂ Z7:

{e1, e2, e3, 2e4, e5, 2e6, 2e7, e4 + e6, e4 + e7, e6 + e7}.

Again, K[E7] denotes the polynomial ring K[x1, . . . , x10] with 10 variables and K[NE7]
be the semigroup ring generated over K by monomials ua with a ∈ E7. Thus, the toric
ideal IE7 is the kernel of the epimorphism defined by sending the i-th variable xi to uai ,
where ai denotes the i-th element in E7, for all i = 1, . . . , 10. Finally, the set E8 ⊂ Z8 is
defined as {e1, . . . , e8}.

3.5. Theorem. With the notations above we have the following:
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(1) A Gröbner basis for IE6 with respect to lexicographic ordering with x1 > x2 >
x3 > x4 > x5 > x6 > x11 > x12 > x13 > x14 > x7 > x8 > x9 > x10 is given by

x7x10 − x8x9, x13x10 − x14x8, x13x9 − x14x7, x12x14 − x8x9x10,
x12x13 − x28x9, x11x10 − x12x9, x11x8 − x12x7, x11x14 − x8x29,
x11x13 − x7x8x9, x5x9 − x12x10, x5x7 − x12x8, x5x14 − x8x210,
x5x13 − x28x10, x5x11 − x212, x4x8 − x14x10, x4x7 − x14x9,
x4x13 − x214, x4x12 − x9x210, x4x11 − x29x10, x4x5 − x310,
x2x10 − x11x9, x2x8 − x11x7, x2x14 − x7x29, x2x13 − x27x9,
x2x12 − x211, x2x5 − x11x12, x2x4 − x39, x1x10 − x13x8,
x1x9 − x13x7, x1x14 − x313, x1x11 − x7x28, x1x11 − x27x8,
x1x5 − x38, x1x4 − x13x14, x1x2 − x37.

(2) A Gröbner basis for IE7 with respect to lexicographic ordering with x1 > x2 >
x3 > x4 > x5 > x6 > x7 > x8 > x9 > x10 is given by the following binomials

x7x8 − x9x10, x6x9 − x8x10, x6x7 − x210, x4x10 − x8x9, x4x7 − x29, x4x6 − x28.

(3) The toric ideal IE8 = (0).

4. Minimal generating sets
In this part, using [6] we show that the Gröbner bases obtained in the previous section

are in fact minimal generating sets for each toric ideal. This will be achieved as follows.
Since our semigroups NA are pointed, there is a partial order on them given by

c ≤ d⇔ there is a c′ ∈ NA such that c + c′ = d.
As IA is generated by binomials xa−xb with π(xa) = π(xb), xa and xb will have the

same A-degree. Recall that for p = (p1, . . . , pN ) ∈ NN , the A-degree of the monomial
xp := xp11 . . . xpNN is degA(xp) = p1a1 + · · · + pNaN ∈ NA. A vector b ∈ NA is called a
Betti A-degree, if IA has a minimal generating set containing an element of A-degree b.
Since Betti A-degrees are independent of the minimal generating sets our Gröbner bases
will determine all the candidate vectors b ∈ NA.

For a vector b ∈ NA, G(b) is the graph with vertices the elements of the fiber

deg−1
A (b) = {xp | degA(xp) = b}

and edges all the sets {xp, xq} , whenever xp−xq ∈ IA,b, where the ideal IA,b is defined
by IA,b = 〈xp − xp | degA(xp) = degA(xq) � b〉.

For each possible Betti A-degree b, we consider the complete graph Sb with vertices
G(b)i, the connected components of G(b). Let Tb be a spanning tree of Sb. Then FTb is
the collection of binomials xp−xq corresponding to edges {xp, xq} of Tb with xp ∈ G(b)i
and xq ∈ G(b)j . We will use the following to show the minimality of the generating sets
given by the Gröbner bases presented in section 3.

4.1. Theorem. [6, Theorem 2.6]. F =
⋃

b∈NA FTb is a minimal generating set of IA.

Notice that if b is not a BettiA-degree, then FTb = ∅ and that the number of possible
spanning trees determine the number of different minimal generating sets.

4.1. Even Case D2m. We consider the subset D2m defined by,

D2m := {2ei, ej , 2e1, 2en, ek + e`, ei + e1 + en | i, k, ` ∈ J, j ∈ Jc and k < `},

where J = {3, 5, . . . , n − 1} , Jc = {2, 4, . . . , n − 2} and {e1, . . . , en} is the canonical
basis of Zn . Recall that the elements of D2m are the D2m-degrees of the variables
xi, xj , x1, xn, xk,l and yi respectively.

By Theorem 3.1, we see that ID2m is generated by the set GD2m
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xi,kxj,` − xi,jxk,` xi,`xj,k − xi,jxk,` i < j < k < ` ∈ J
xi,jxi,k − xixj,k xjxi,k − xi,jxj,k i < j < k ∈ J
xkxi,j − xi,kxj,k xj,kyi − xi,jyk i < j < k ∈ J
xi,kyj − xi,jyk i < j < k ∈ J
xixj − x2i,j xjyi − xi,jyj i < j ∈ J
xi,jyi − xiyj xi,jx1xn − yiyj i < j ∈ J
xix1xn − y2i i ∈ J.

Therefore, possible Betti D2m-degrees are

b1 = 2ei + 2ej , b2 = ei + ej + 2e1 + 2en,
b3 = 2ei + ej + e1 + en, b4 = ei + 2ej + e1 + en,
b5 = 2ei + ej + ek, b6 = ei + 2ej + ek,
b7 = ei + ej + 2ek, b8 = ei + ej + ek + e1 + en,
b9 = 2ei + 2e1 + 2en, b10 = ei + ej + ek + e`

Next we prove that these binomials constitute a minimal generating set for ID2m .

4.2. Proposition. The set GD2m is a minimal generating set of ID2m .

Proof. Since there is no binomial in ID2m,b1 , G(b1) consists of two connected components
{xixj} and {x2i,j}. Similarly, G(b2) has {xi,jx1xn} and {yiyj}, G(b3) has {xi,jyi} and
{xiyj}, G(b4) has {xjyi} and {xi,jyj}, G(b5) has {xi,jxi,k} and {xixj,k}, G(b6) has
{xjxi,k} and {xi,jxj,k}, G(b7) has {xkxi,j} and {xi,kxj,k}, G(b9) has {xix1xn} and
{y2i } as its connected components.

By Corollary 2.10 in [6], these graphs determine all indispensable binomials of ID2m .
Since these binomials are indispensable, they must belong to any minimal generating set.
Let us find the other binomials needed to obtain a minimal generating set for ID2m .
G(b8) and G(b10) have three connected components: {xi,jyk} ∪ {xj,kyi} ∪ {xi,kyj}

and {xi,jxk,`} ∪ {xi,kxj,`} ∪ {xi,`xj,k}, respectively. Since each connected component of
these graphs is a singleton, the complete graphs Sb8 and Sb10 are triangles obtained by
joining connected components of G(b8) and G(b10), respectively. Thus, spanning trees
of these complete graphs can be obtained by deleting one edge from the triangle.

Therefore, in a minimal generating set only one of the following three binomial couples
may appear corresponding to G(b8);

xi,jyk − xj,kyi and xi,jyk − xi,kyj , or
xj,kyi − xi,jyk and xj,kyi − xi,kyj , or
xi,kyj − xi,jyk and xi,kyj − xj,kyi

and similarly for G(b10);

xi,jxk,` − xi,kxj,` and xi,jxk,` − xi,`xj,k, or
xi,kxj,` − xi,jxk,` and xi,kxj,` − xi,`xj,k, or
xi,`xj,k − xi,jxk,` and xi,`xj,k − xi,kxj,`.

Hence, there are many different minimal generating sets for the toric ideal ID2m , and in
particular the set GD2m is a minimal generating set of ID2m . �

4.2. Odd Case D2m+1. In this case, we consider the set D2m+1 ⊂ Zn given by

{2ei, ej , 4e1, 4en, ek + e`, e1 + en, ei + 2e1, ei + 2en, ei + 3e1 + en, ei + e1 + 3en

| i, k, ` ∈ J, j ∈ Jc and k < `},
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where J = {2, 4, . . . , n− 1}, Jc = {3, 5, . . . , n− 2} and {e1, . . . , en} is the canonical basis
of Zn. Again, the D2m+1-degrees of the variables are exactly the elements of D2m+1 as
before.

By Theorem 3.3, we see that ID2m+1 is generated by the set GD2m+1 of binomials

xi,kxj,` − xi,jxk,` xi,`xj,k − xi,jxk,` i < j < k < ` ∈ J
xj,kxi,n−1 − xi,jxk,n−1 xi,kxj,n−1 − xi,jxk,n−1 i < j < k ∈ J
xj,kxi,n − xi,jxk,n xi,kxj,n − xi,jxk,n i < j < k ∈ J
xjxi,k − xi,jxj,k xi,jxi,k − xixj,k i < j < k ∈ J
xkxi,j − xi,kxj,k i < j < k ∈ J
xixj − x2i,j xi,jx1 − xi,n−1xj,n−1 i < j ∈ J
xi,jxn − xi,nxj,n xi,jxi,n−1 − xixj,n−1 i < j ∈ J
xi,jxi,n − xixj,n xjxi,n−1 − xi,jxj,n−1 i < j ∈ J
xjxi,n − xi,jxj,n xj,n−1xi,n − xi,n−1xj,n i < j ∈ J
xi,n−1xj,n − x21,nxi,j i < j ∈ J
xix1 − x2i,n−1 xixn − x2i,n i ∈ J
xi,n−1xi,n − x21,nxi xi,nx1 − x21,nxi,n−1 i ∈ J
yi,1 − x1,nxi,1 yi,n − x1,nxi,n i ∈ J
xi,n−1xn − x21,nxi,n x1xn − x41,n i ∈ J

Therefore, possible Betti D2m+1-degrees are

b1 = 2ei + 2ej , b2 = 4e1 + ei + ej ,
b3 = ei + ej + 4en, b4 = 2e1 + 2ei + ej ,
b5 = 2ei + ej + 2en, b6 = 2e1 + ei + 2ej ,
b7 = ei + 2ej + 2en, b8 = 2e1 + ei + ej + 2en,
b9 = 2e1 + ei + ej + ek, b10 = ei + ej + ek + 2en,
b11 = ei + 2ej + ek, b12 = 2ei + ej + ek,
b13 = ei + ej + 2ek, b14 = ei + ej + ek + e`,
b15 = 4e1 + 2ei, b16 = 2ei + 4en,
b17 = 2e1 + 2ei + 2en, b18 = 4e1 + ei + 2en,
b19 = 3e1 + ei + en, b20 = e1 + ei + 3en
b21 = 2e1 + ei + 4en, b22 = 4e1 + 4en.

Next we prove that these binomials constitute a minimal generating set for ID2m+1 .

4.3. Proposition. The set GD2m+1 is a minimal generating set of ID2m+1 .

Proof. There is no binomial in ID2m+1,b1 . Thus, the graph G(b1) consists of two con-
nected components {xixj} and {x2i,j}. Similarly, G(b2) has {xi,jx1} and {xi,n−1xj,n−1},
G(b3) has {xi,jxn} and {xi,nxj,n}, G(b4) has {xi,jxi,n−1} and {xixj,n−1}, G(b5) has
{xi,jxi,n} and {xixj,n}, G(b6) has {xjxi,n−1} and {xi,jxj,n−1}, G(b7) has {xjxi,n}
and {xi,jxj,n}, G(b11) has {xjxi,k} and {xi,jxj,k}, G(b12) has {xi,jxi,k} and {xixj,k},
G(b13) has {xkxi,j} and {xi,kxj,k}, G(b15) has {xi, x1} and {x2i,n−1}, G(b16) has
{xi, xn} and {x2i,n}, G(b17) has {xi,n−1xi,n} and {x21,nxi}, G(b18) has {xi,nx1} and
{x21,nxi,n−1}, G(b19) has {yi,1} and {x1,nxi,1}, G(b20) has {yi,n} and {x1,nxi,n}, G(b21)

has {xi,n−1xn} and {x21,nxi,n}, and finally G(b22) has {x1xn} and {x41,n} as its connected
components.

Indispensable binomials of ID2m+1 are all determined by these graphs by Corollary
2.10 in [6] and hence, corresponding binomials belong to any minimal generating set.

The other graphs G(b8), G(b9), G(b10) and G(b14) have three connected compo-
nents:

{xi,n−1xj,n} ∪ {xj,n−1xi,n} ∪ {x21,nxi,j}, {xj,kxi,n−1} ∪ {xi,jxk,n−1} ∪ {xi,kxj,n−1},



1067

{xj,kxi,n} ∪ {xi,jxk,n} ∪ {xi,kxj,n} and {xi,kxj,`} ∪ {xi,jxk,`} ∪ {xi,`xj,k}
respectively. Each connected component of these graphs is a singleton. Therefore, the
complete graphs are triangles obtained by joining the connected components of the graphs
G(b8), G(b9), G(b10) and G(b14), respectively. Thus, we obtain the spanning trees by
deleting one edge from each triangle.

Therefore, in a minimal generating set only one of the following three binomial couples
may appear corresponding to G(b8);

xi,n−1xj,n − x21,nxi,j and xi,n−1xj,n − xj,n−1xi,n,
x21,nxi,j − xi,n−1xj,n and x21,nxi,j − xj,n−1xi,n,
xj,n−1xi,n − xi,n−1xj,n and xj,n−1xi,n − x21,nxi,j

and the same is true for the following couples corresponding to G(b9);

xj,kxi,n−1 − xi,jxk,n−1 and xj,kxi,n−1 − xi,kxj,n−1,
xi,jxk,n−1 − xj,kxi,n−1 and xi,jxk,n−1 − xi,kxj,n−1,
xi,kxj,n−1 − xj,kxi,n−1 and xi,kxj,n−1 − xi,jxk,n−1

and similarly for G(b10);

xj,kxi,n − xi,jxk,n and xj,kxi,n − xi,kxj,n,
xi,jxk,n − xj,kxi,n and xi,jxk,n − xi,kxj,n,
xi,kxj,n − xj,kxi,n and xi,kxj,n − xi,jxk,n

and for G(b14);

xi,kxj,` − xi,jxk,` and xi,kxj,` − xi,`xj,k,
xi,jxk,` − xi,kxj,` and xi,jxk,` − xi,`xj,k,
xi,`xj,k − xi,jxk,` and xi,`xj,k − xi,kxj,`.

These discussions show that there are many minimal generating sets for ID2m+1 and in
particular, the set GD2m+1 is a minimal generating set of ID2m+1 . �

4.3. En-type. In this case, it is easy to check that the Gröbner basis given in Theorem
3.5 constitutes a minimal generating set for each n = 6, 7, 8. Indeed, there is nothing
to prove for the case of n = 8, as the corresponding toric ideal is trivial. In the case
of n = 7, the corresponding toric ideal is generated minimally by the 6 binomials given
in Theorem 3.5 (2) as we explain now. Let b be the E7-degree of a binomial given in
Theorem 3.5 (2). Since the graph G(b) has two connected components, the complete
graph Sb (and its spanning tree Tb) is a line segment and thus FTb is a singleton. As the
connected components of G(b) are singletons, FTb must consist of the binomial we have
started with. This means that the binomial is indispensable, i.e. appears in any minimal
generating set. Therefore the toric ideal has a unique minimal generating set provided
by Theorem 3.5 (2).

As for the case of n = 6, we have a generating set given in Theorem 3.5 (1) consisting of
35 binomials. Let b = 2e1 +2e2 +e4 +e5 which is the E6-degree of the binomial x11x13−
x7x8x9. The graph G(b) has two connected components {x11x13} and {x7x8x9, x27x10}.
As before the complete graph Sb (and its spanning tree Tb) is a line segment and thus
FTb is a singleton but it changes according to which monomial we choose from the second
component of G(b). So, FTb is either {x11x13 − x7x8x9} or {x11x13 − x27x10}. We have
the same situation for the following degrees:

b = e1 + 2e2 + 2e4 + e5,
b = 2e1 + e2 + e4 + 2e5,
b = e1 + e2 + 2e4 + 2e5.
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It is a standard procedure to check that the other 31 binomials given in Theorem 3.5
(1) are indispensable, so there are 8 different minimal generating sets for the toric ideal
including the one provided by Theorem 3.5 (1).

5. What about An-type?
There are two ways to study the question of whether or not toric ideals of these

configurations have squarefree initial ideals. The first one is to produce an example with
no squarefree initial ideal using computer programs. In order to achieve this goal one has
to find all possible initial ideals for a fixed configuration. The toric ideal corresponding to
A2 is generated by a binomial with a squarefree monomial. One can compute 29 different
initial ideals for the toric ideal of A3 and obtain the unique squarefree one generated by
6 monomials by using e.g. Gfan [12]. As long as n gets larger values listing all the
possible initial ideals (or regular triangulations of the corresponding convex polytope)
using computer programs becomes problematic. In the second way, one has to determine
the correct term order with respect to which the initial ideal is generated by squarefree
monomials by heuristic/experimental methods. For the toric ideal of A4 the lexicographic
ordering with x14 > x12 > x10 > x9 > x7 > x4 > x8 > x6 > x5 > x3 > x11 > x1 > x2
gives a Gröbner basis consisting of 54 binomials with a squarefree initial ideal. Similarly,
the toric ideal of A5 has a squarefree initial ideal generated by 105 monomials which are
obtained as the initial terms with respect to the lexicographic ordering with x19 > x18 >
x17 > x11 > x10 > x3 > x16 > x13 > x7 > x15 > x14 > x12 > x8 > x5 > x9 > x4 > x6 >
x2 > x1. However, for larger values of n, proving the existence of squarefree initial ideals
is difficult as well. This is due to the fact that there is no general formula for the vector
configuration as in the case of D-type, although one can compute them one by one with
e.g. CoCoA using the algorithm described in [21].
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1. INTRODUCTION
Let G denote a connected Lie group with Lie algebra L (G) (the set of right invariant

vector fields on G). Let us denote by Af(G) the affine group on G. An affine singular
control system S on G is a family of differential equations

(1.1) Eg(t)

( .

g (t)
)

= F (g (t)) +

d∑
j=1

uj (t)F j (g (t)) , g (t) ∈ G,

where u ∈ U is the class of unrestricted piecewise constant admissible controls with values
on Rd, i.e., the set

U =
{
u : [0, Tu]→ Rd | u is a piecewise constant function

}
.

Here, the vector fields F, F 1, ..., F d belong to the affine algebra af(G) and E is a non-
invertible derivation on L(G). The operator Eg : TgG → TgG is defined by Eg =
(lg)∗ ◦ E ◦

(
lg−1

)
∗, where(

lg−1

)
∗ : TgG→ TeG, E : TeG→ TeG, (lg)∗ : TeG→ TgG.

∗Department of Mathematics, Faculty of Arts and Sciences,University of 7 Aralık, 79000 Kilis,
Turkey, Email: memetkule@kilis.edu.tr
†Corresponding Author.
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The singular control system on Euclidean spaces was introduced by Dai [5]. The
system has been well developed on Lie groups, see [3, 4] . Thus, there exist the basic
ingredients to start with the study of affine singular control systems on Lie groups.

Throughout this paper H, which is the subgroup of G will be assumed to be closed,
because in this case the quotient set G/H is a homogeneous space. We also assume that
the vector fields F, F 1, . . . , F d are projectable on the homogeneous space G/H leads to a
decomposition of (1.1) in two systems, one onG/H and the one other onH. The algebraic-
differential subsystem plays a crucial role in the understanding of the trajectories for affine
singular control systems on Lie groups. Actually, the solvability of (1.1) depends just on
when we are able to solve (3.1). Furthermore, we establish a special solution of (3.1) and
hence the solution of (1.1).

This paper is organized as follows. In the next section we introduce the notion of
an affine control system on a connected Lie group G. In Section 3, vector fields of the
affine singular control system on homogeneous space are introduced, and we obtain the
decomposition for the affine singular control system S on G, as well as the solution of
the decomposition (3.1).

2. Affine Control Systems

In this section, the definition of affine vector fields are recalled. More details can found
in [2, 8, 7] .

Let G denote a connected Lie group of dimension n with Lie algebra L(G). The affine
group Af(G) of G is the semidirect product of Aut(G) and G, i.e., Af(G) = Aut(G)×sG.
The semidirect product consists of all pairs (φ, g) ∈ Af(G), with the group structure given
by

(φ, g1) · (ψ, g2) = (φ ◦ ψ, g1φ (g2)) ,

that (Id, e) is the group identity and that
(
φ−1, φ−1

(
g−1

))
is the inverse of (φ, g) . Then,

the mapping g → (Id, g) embeds G into Af(G) and φ → (φ, e) embeds Aut(G) into
Af(G). Therefore, G and Aut(G) are subgroups of Af(G). There is a natural action

Af(G)×G→ G

defined by

(φ, g1) · g2 → g1φ (g2) ,

where (φ, g1) ∈ Af(G) and g2 ∈ G. This action is transitive. Indeed, if it is taken g2 = e,
then (φ, g1) · e = g1 since φ (g2) = e.

Denote by AutL(G) the automorphism group of L(G) and whose Lie algebra is
DerL(G), the Lie algebra of derivations of L(G). If G is simply connected, then Aut(G)
and AutL(G) are isomorphic. In fact, there is an isomorphism Φ which assigns to each
automorphism φ of G its differential dφ |Id at the identity. Any automorphism φ of
L(G) extends to an automorphism of G, therefore, Φ is indeed an isomorphism between
Aut(G) and AutL(G). Thus, in this case, the Lie algebra of Aut(G) is DerL(G).

The Lie bracket in af(G) is given by[(
D

1, Y 1) , (D2, Y 2)] =
([
D

1,D2] ,D1Y 2 −D
2Y 1 +

[
Y 1, Y 2]) ,

where the first coordinate in the bracket is that of DerL(G), while the second is that of
L(G) and DX denotes the derived action of DerL(G) on L(G). The Lie algebra af(G)
of Af(G) is the semidirect product DerL(G)×s L(G). An affine vector field F on G can
be exclusively separated decomposed into a sum

F = D + Y,
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where D ∈ DerL(G) and Y ∈ L(G). Thus, an affine control system on G is determined
by the dynamic parametrized by u ∈ U,

·
g (t) = (D + Y )(g (t)) +

d∑
j=1

uj (t)
(
D

j + Y j
)

(g (t)) , g (t) ∈ G,

where right invariant vector fields Y, Y 1, ..., Y d ∈ L(G) and D,D1, ...,Dd ∈ DerL(G).
As usual, for any g ∈ G, denote by rg the right translation on G by g; that is,

rg(x) = xg for all x in G. lg will denote the left translation by g; that is, lg(x) = gx. We
recall that L(G) is isomorphic to the tangent space TeG of G at the identity element e.
Thus, a right invariant vector field Y on G is determined by its value at e. In particular,
Y (g) = (rg)∗Y (e) and its flow is given by Y (g (t)) = rg(Y (e(t))), where (rg)∗ is derivative
of rg.

Let X be an infinitesimal automorphism of the Lie group G, that is, the flow (Xt)t∈R
induced by the vector field X is a one-parameter subgroup of Aut(G). Then, X induces a
derivation D = −adX on L(G) for D ∈DerL(G). This condition on ad means

DY = − [X, Y ]

for ∀Y ∈ L(G) and verifies X (e) = 0.

3. Affine Singular Control Systems
Throughout this section, we can always assume that G is simply connected and Π∗Y

is one-to-one.
Let G denote a Lie group and let H denote a closed Lie subgroup of G with Lie algebra

L(H). For closed subgroupH of G, G/H = {gH : g ∈ G} denotes the homogeneous space
of left cosets of H, and we denote by Π the natural projection of G onto G/H. In order
to any right invariant vector field Y ∈ L(G), Y projects to Π∗Y on G/H, will be induced
to as a well-defined invariant vector field on G/H. Furthermore, Π∗L(G) = {Π∗Y ; Y ∈
L(G)} is a Lie algebra and Π∗ is a Lie algebra morphism from L(G) onto Π∗L(G). Also
the projection Π∗Y of Y ∈ L(G) vanishes at the point H iff Y ∈ L(H).

We consider an affine singular control system S with derivation E ∈ Der(L(G)) and
vector field X induced by a derivation D ∈ Der(L(G)). Now, we wish to show the
existence of a vector field Π-related to X on G/H. There exists a vector field π-related
to X on G/H such that

Π(X(g(t)x(t))) = Π(X(g(t)))

for ∀g ∈ G,∀x ∈ H and ∀t ∈ R. On the other hand, the corresponding flows on G/H are
related by

Π (X(g(t)x(t))) = Π (X(g(t))X(x(t))) = Π (X(g(t)))X(x(t))H,

where X(x(t)) is the one-parameter subgroup in H. Because of the existence of the pro-
jection, the subgroup H is invariant under the flow of X; thus, X is tangent to H.

Now, let H be connected. Because of the elements of H, which are products of
exponentials, the invariance of H under X writes

∀Y ∈ L(H), ∀t ∈ R Xt(expY ) = exp(etDY ) ∈ H,

or equivalently as

∀Y ∈ L(H), ∀t ∈ R etDY ∈ L(H).

Finally, its Lie algebra L(H) is invariant under D.
Under the above assumptions, the projection of X onto G/H will be denoted by Π∗X.
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Now, we take an affine vector field F = X + Y on G. This decomposition is chosen in
order to ensure that the projection Π∗Y of Y onto G/H is well defined. If Π∗X exists,
then F is Π-related to a vector field on G/H. It follows that Π∗F = Π∗X + Π∗Y will
stand for the projection of F onto G/H. Then, there exists an affine control system on
G

·
g (t) = Π (F (g (t))) +

d∑
j=1

uj (t) Π
(
F j (g (t))

)
, g (t) ∈ G,

which projects down onto G/H.
Now, it follows that (Π∗E)−1D ∈ Der(L(G)/L(H)) since E,D ∈ Der(L(G)) and

L(H)-invariant. Let us denote by Π∗
(
(Π∗E)−1D

)
∈ Der(L(G)) such that its restriction

to L(G)/L(H) coincide with (Π∗E)−1D. Thus, Π∗ (Π∗E)−1
X = Π∗X on G/H. On the

other hand, we define Π∗
(
(Π∗E)−1 Y

)
as the only invariant vector fields determined by

(Π∗E)−1 Y (e) ∈ L(G)/L(H). Thus, the mapping Eg : TgG → TgG is invertible on the
homogeneous space G/H for any g ∈ G. In particular, we can consider the affine control
system Π (S) on G/H in the following way:
·

y (t) =
(
Ey(t)

)−1 ◦Π (X (y (t))) +
(
Ey(t)

)−1 ◦Π (Y (y (t))) +(
Ey(t)

)−1 ◦
d∑

j=1

uj (t) Π
(
X

j (y (t))
)

+
(
Ey(t)

)−1 ◦
d∑

j=1

uj (t) Π
(
Y j (y (t))

)
,

where y (t) ∈ G/H is an integral curve of the projected affine control system on the ho-
mogeneous space G/H. Also

.

y (t) has a well-defined solution for each piecewise admissible
control u and any initial condition in G.

3.1. Theorem. Let G be a connected Lie group with Lie algebra L(G) and assume that
the connected Lie subgroup H of G with Lie algebra L(H) is closed. The curve g (t) is
solution of the affine singular control system S for the initial condition y(0) = y ∈ G/H
associated to the control u ∈ U. Then, there exists a one parameter group x(t) of the
closed subgroup H which together satisfies the algebraic-differential equation

Eg(t)

(
y (t)

.

x (t)
)

=
(
ly(t)

)
∗

(
XL(H) (x (t)) +

d∑
j=1

uj (t)Xj
L(H) (x (t))

)

+

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
,(3.1)

where XL(H),X
1
L(H), . . . ,X

d
L(H) are infinitesimal automorphisms of the Lie subgroup H

and YL(H),Y 1
L(H), ..., Y

d
L(H) ∈ L(H).

Proof. Assume there exists a solution g (t) of the affine singular control system S with
control u and initial condition y (0) = y. Then, for almost every t, there exists a curve
x (t) ∈ H, with x (0) = e, where e is the identity on G, such that

g (t) = y (t)x (t)
.

y (t)x (t) =
(
ly(t)

)
∗

.

x (t) +
(
rx(t)

)
∗

.

y (t)

Applying Eg(t) on both sides, equation takes form,

Eg(t)

( .

g (t)
)

= Eg(t)

(
y (t)

.

x (t)
)

+ Eg(t)

( .

y (t)x (t)
)
.
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Hence, we get

X (g (t)) + Y (g (t))

d

+
∑
j=1

uj (t)Xj (g (t)) +

d∑
j=1

uj (t)Y j (g (t))

= Eg(t)

(
y (t)

.

x (t)
)

+

(
rx(t)

)
∗

(
Π (X) (y (t)) + Π (Y ) (y (t))

d

+
∑
j=1

uj (t) Π
(
X

j
)

(y (t)) +

d∑
j=1

uj (t) Π
(
Y j
)

(y (t))

)
.

Since Y ,Y 1, ..., Y d are elements of the Lie algebra L(G), we can project this dynamic on
any homogeneous space of G. In particular,(

rx(t)
)
∗

(
Π (Y ) (y (t)) +

d∑
j=1

uj (t) Π
(
Y j
)

(y (t))

)
= Π (Y ) (g (t))+

d∑
j=1

uj (t) Π
(
Y j
)

(g (t)) .

Thus, it follows that

Eg(t)

(
y (t)

.

x (t)
)

= X (g (t))−
(
rx(t)

)
∗Π (X) (y (t)) +

d∑
j=1

uj (t)Xj (g (t))−
(
rx(t)

)
∗

d∑
j=1

uj (t) Π
(
X

j
)

(y (t))

+Y (g (t))−Π (Y ) (g (t)) +

d∑
j=1

uj (t)Y j (g (t))−
d∑

j=1

uj (t) Π
(
Y j
)

(g (t))

On the other hand, Xt ∈ Aut (G) for any real number t, and therefore,

X (g (t)) = X (y (t)x (t)) = X (y (t))X (x (t)) .

By taking a derivative of the product X (g (t)) at time t, we obtain

X (y (t)x (t)) =
(
rx(t)

)
∗ X (y (t)) +

(
ly(t)

)
∗ X (x (t)) .

By construction for each t ∈ R : X (y (t)) = Π (X (y (t))) and X (x (t)) = Π (X (x (t)))x (t) =
x(t). Thus, we conclude that

Eg(t)

(
y (t)

.

x (t)
)

=
(
ly(t)

)
∗

(
XL(H) (x (t)) +

d∑
j=1

uj (t)Xj
L(H) (x (t))

)

+

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
,

which completes the proof. �

3.2. Theorem. Under the conditions of theorem3.1, if the derivation E is nilpotent,
then the solution of (3.1) is given by

.

x (t) = −
k−1∑
i=0

Ei
x(t) ◦

(
ly(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)

−
k−1∑
i=0

d∑
j=1

uj (t)Ei
x(t) ◦ Xj

L(H) (x (t)) .

Proof. Suppose E is nilpotent whose nilpotent index is denoted by k. Let x (t) ∈ H be
such that x (0) = e. Taking the left hand side term of (3.1):

Eg(t)

(
y (t)

.

x (t)
)

=
(
lg(t)

)
∗◦E◦

(
lg(t)−1

)
∗
◦
(
ly(t)

)
∗

.

x (t) =
(
lg(t)

)
∗◦E◦

(
lx(t)−1

)
∗

.

x (t)
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because
(
lg(t)

)
∗ =

(
ly(t)

)
∗ ◦
(
lx(t)

)
∗ . Otherwise, we have

.

x (t) = XL(H) (x (t)) where the

vector field XL(H) is induced by a derivation D ∈ Der(L(H)) and applying
(
lg(t)−1

)
∗
on

both sides of (3.1),

E ◦
(
lx(t)−1

)
∗

.

x (t) =
(
lx(t)−1

)
∗

.

x (t) +
(
lx(t)−1

)
∗
◦

(
d∑

j=1

uj (t)Xj
L(H) (x (t))

)

+
(
lg(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
.

If k = 1, the algebraic-differential equation (3.1) becomes

.

x (t) = −
d∑

j=1

uj (t)Xj
L(H) (x (t))−

(
ly(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
.

Now, let k > 1. Then, left multiplying both sides by E, we obtain the following equations:

E2 ◦
(
lx(t)−1

)
∗

.

x (t) = E ◦
(
lx(t)−1

)
∗

.

x (t) + E ◦
(
lx(t)−1

)
∗
◦

(
d∑

j=1

uj (t)Xj
L(H) (x (t))

)

+E ◦
(
lg(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
· · ·

Ek ◦
(
lx(t)−1

)
∗

.

x (t) = Ek−1 ◦
(
lx(t)−1

)
∗

.

x (t) + Ek−1 ◦
(
lx(t)−1

)
∗
◦

(
d∑

j=1

uj (t)Xj
L(H) (x (t))

)

+Ek−1 ◦
(
lg(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)
.

From the addition of these equations and the fact Ek = 0, Ek−1 6= 0, we have

.

x (t) = −
k−1∑
i=0

(
lx(t)

)
∗ ◦ E

i ◦
(
lg(t)−1

)
∗
◦

(
YL(H) (g (t)) +

d∑
j=1

uj (t)Y j
L(H) (g (t))

)

−
k−1∑
i=0

d∑
j=1

(
lx(t)

)
∗ ◦ E

i ◦
(
lx(t)−1

)
∗
◦
(
uj (t)Xj

L(H) (x (t))
)
,

which proves our claim. �
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Abstract
In this paper we continue to develop a theory on a new reproducing
kernel Hilbert space related to the decomposition theorem for harmonic
functions on a domain of the form Ω\K, where Ω is an open subset of
Rn and K a compact subset of Ω.
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1. Introduction
There is a lot of papers about reproducing kernel Hilbert spaces since [1]. This theory

found her place also in the area of applied mathematics (see [4]). There are also results
about reproducing kernel Hilbert spaces in the framework of real harmonic functions (see
[2]) and in the framework of harmonic Bergman spaces (see [3]). In [3] there are explicit
formulas for reproducing kernels in the case of a unit ball and a half space. There is no
explicit formula for the general case of a reproducing kernels for a harmonic Bergman
space on arbitrary domain. In [5] we introduced a new spaces Ap (Ω\K) of harmonic
functions on Ω\K, where Ω is an open subset of Rn and K is a compact subset of Ω.
For these spaces we introduced a new norm and a new inner product (in the case p = 2).
Then we obtained a new reproducing kernel for the space A2 (Ω\K) and found a relation
to the standard reproducing kernel on harmonic Bergman space.
This paper is a continuation of [5]. First of all, for an arbitrary nonempty open set E of
Ω\K we introduce a new space Ap (E) and we consider the problem of equalness of Ap (E)
and bp (E) and find it’s connection to the harmonic extendability. Then we consider the
problem of equivalence of norms on the space Ap (Ω\K). In some cases norms under
consideration are equivalent, so we restrict ourselves to those that are equivalent and find
some useful properties. For the standard L2 inner product on A2 (Ω\K) we obtain a new
reproducing kernel KΩ\K on A2 (Ω\K) and prove that this kernel is actually a projection

∗Department of Mathematics University of Sarajevo, Bosnia and Herzegovina
Email: alem.memic@pmf.unsa.ba
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of a kernel RΩ\K on A2 (Ω\K). After that, we introduce a new integral operator on
L2 (Ω\K) related to the reproducing kernel SΩ\K and obtain some useful properties. In
final, a new kind of a boundary value problem related to the space Ap (Ω\K) is introduced
in the last section. This new boundary value problem is a new type of a boundary value
problem for harmonic functions on domains of the form Ω\K. On annular regions we
show that this problem has a unique solution. A general case remains open.

2. Preliminaries
Let n ≥ 2, Ω an open subset of Rn and K a compact subset of Ω. If u is a harmonic

function on Ω\K, there exists functions v and w such that u = v + w on Ω\K, where
v is harmonic on Ω and w is harmonic on Rn\K. If we impose condition on w that
lim|x|→∞ w (x) = 0 in the case n > 2, or lim|x|→∞ w (x)−α log |x| = 0 (for some constant
α) in the case n = 2, then the decomposition u = v + w is unique. The proof of this
can be found in [3]. Let 1 ≤ p < ∞. If E is a nonempty open subset of Rn, we denote
by bp (E) a set of all functions from Lp (E) that are harmonic on E. This is a Banach
space called harmonic Bergman space. More on these spaces can be found in [3]. In [5]
we introduced a space Ap (Ω\K) of all functions u ∈ bp (Ω\K) such that u = v + w on
Ω\K, where v ∈ bp (Ω) and w ∈ bp (Rn\K). In [5] we proved that

A
p (Ω\K) = bp (Ω) |Ω\K ⊕ bp (Rn\K) |Ω\K .

This is the motivation for the following definition.

2.1. Definition. Let 1 ≤ p < ∞, Ω an open subset of Rn and K a compact subset of
Ω. Let E be an arbitrary nonempty open subset of Ω\K. We define

A
p (E) = bp (Ω) |E ⊕ bp (Rn\K) |E .

2.2. Remark. We should use notation A
p
Ω,K (E) instead of Ap (E) because the previous

definition depends also on Ω and K, not just of E. We will continue to use notation
Ap (E) because Ω and K will be seen from the context.

2.3. Lemma. For every open set E in Ω\K it holds

A
p (Ω\K) |E = A

p (E) .

Proof. Let u ∈ Ap (E). There are v ∈ bp (Ω) and w ∈ bp (Rn\K) such that u = v +w on
E. Obviously v+w is harmonic on Ω\K. Let U = v+w on Ω\K. We have U ∈ Ap (Ω\K)
and u = U |E , so u ∈ Ap (Ω\K) |E . The other direction is obvious. �

In [5] we introduced a problem to find all (n, p,Ω,K) such that Ap (Ω\K) = bp (Ω\K).
Here we introduce an analogous problem, to see when Ap (E) = bp (E) for some open set
E in Ω\K. We now prove the following theorem.

2.4. Theorem. Let E be a nonempty open subset of Ω\K. Then Ap (E) = bp (E) if and
only if Ap (Ω\K) = bp (Ω\K) and bp (Ω\K) |E = bp (E).

Proof. Suppose Ap (E) = bp (E). By previous lemma we have Ap (Ω\K) |E = bp (E).
Let u ∈ bp (Ω\K). Then u|E ∈ bp (E) = Ap (Ω\K) |E , so there is ũ ∈ Ap (Ω\K) such
that u|E = ũ|E . This and the fact that u and ũ are harmonic on Ω\K, implies u = ũ on
Ω\K. So, u = ũ ∈ Ap (Ω\K). We conclude that Ap (Ω\K) = bp (Ω\K). From this we
get bp (E) = Ap (Ω\K) |E = bp (Ω\K) |E , so one direction of the theorem is proved.
Suppose now that Ap (Ω\K) = bp (Ω\K) and bp (Ω\K) |E = bp (E). We have Ap (E) =
Ap (Ω\K) |E = bp (Ω\K) |E = bp (E), so the other direction of the theorem also holds,
and the proof is finished. �

This theorem is a motivation for the following definition.
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2.5. Definition. Let n ≥ 2 and 1 ≤ p < ∞. Let Ω be an open subset of Rn and K
a compact subset of Ω. We say that a nonempty open subset E of Ω\K is harmonic
p-extendable to Ω\K if bp (Ω\K) |E = bp (E).

So, the last theorem says that Ap (E) = bp (E) if and only if E is a harmonic p-
extendable to Ω\K and Ap (Ω\K) = bp (Ω\K).

2.6. Corollary. If Ap (Ω\K) 6= bp (Ω\K), then Ap (E) 6= bp (E) for every nonempty
open subset E of Ω\K.

2.7. Corollary. If Ap (Ω\K) = bp (Ω\K), then Ap (E) = bp (E) if and only if E is
harmonic p-extendable to Ω\K.

It would be interesting to characterize all harmonic p-extendable sets E to Ω\K.

3. Equivalence of norms
In [5] we proved the following lemma.

3.1. Lemma. Let 1 ≤ p <∞ and u ∈ Ap (Ω\K) is arbitrarily chosen. Then

‖u‖bp(Ω\K) ≤ 2
p−1
p ‖u‖Ap(Ω\K).

From this lemma we could ask: Is there a C > 0 such that ‖u‖Ap(Ω\K) ≤ C‖u‖bp(Ω\K)

for every u ∈ Ap (Ω\K)?

3.2. Remark. If Ω = Rn and K an arbitrary compact set of Rn, then these norms are
equal because u = v + w, where v = 0 on Rn. Also, in the case when K = {a}, where
a ∈ Ω, we have u = v + w, where v ∈ bp (Ω), w ∈ bp (Rn\ {a}) = {0}. So, w = 0 on
Rn\ {a} and ‖u‖Ap(Ω\{a}) = ‖v‖bp(Ω) = ‖v‖bp(Ω\{a}) = ‖u‖bp(Ω\{a}). In both cases we
have C = 1. A general case remains open.

In this section we will consider the case of (n, p,Ω,K) such that

‖u‖Ap(Ω\K) ≤ C‖u‖bp(Ω\K)

for every u ∈ Ap (Ω\K). This condition with the previous lemma is equivalent that
‖ · ‖Ap(Ω\K) and ‖ · ‖bp(Ω\K) are equivalent. So, without further assumption, we suppose
that this equivalence of norms is satisfied in the rest of this section.

3.3. Theorem. If ‖ ·‖Ap(Ω\K) and ‖ ·‖bp(Ω\K) are equivalent, then Ap (Ω\K) is a closed
subspace of bp (Ω\K).

Proof. We proved in [5] that Ap (Ω\K) is a Banach space with respect to ‖ · ‖Ap(Ω\K). If
these norms are equivalent, then Ap (Ω\K) is a Banach space with respect to ‖·‖bp(Ω\K).
Since bp (Ω\K) is a Banach space with respect to ‖ · ‖bp(Ω\K) and Ap (Ω\K) is a Banach
space with respect to ‖ · ‖bp(Ω\K), this implies that Ap (Ω\K) is a closed subspace of
‖ · ‖bp(Ω\K) and the proof is finished. �

In [5] we proved the following theorem

3.4. Theorem. Suppose x ∈ Ω\K. Then

|u (x) | ≤
2

p−1
p ‖u‖Ap(Ω\K)

V (B)1/p d (x, ∂ (Ω\K))n/p

for every u ∈ Ap (Ω\K) .
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If we impose condition that the norms ‖ · ‖Ap(Ω\K) and ‖ · ‖bp(Ω\K) are equivalent,
then we have

|u (x) | ≤
2

p−1
p C‖u‖bp(Ω\K)

V (B)1/p d (x, ∂ (Ω\K))n/p

In the case p = 2 this means that point evaluation is a bounded linear functional on
the Hilbert space A2 (Ω\K) with respect to ‖ · ‖b2(Ω\K). This implies that A2 (Ω\K)
is a reproducing kernel Hilbert space. If x ∈ Ω\K is arbitrarily chosen, there is a
KΩ\K (x, ·) ∈ A2 (Ω\K) such that

u (x) = 〈u,KΩ\K (x, ·)〉

for all u ∈ A2 (Ω\K) with respect to inner product from b2 (Ω\K).
Because A2 (Ω\K) is a closed subspace of b2 (Ω\K) and b2 (Ω\K) is a closed subspace of
L2 (Ω\K), we have that A2 (Ω\K) is a closed subspace of the Hilbert space L2 (Ω\K),
which implies that there is a unique orthogonal projection of L2 (Ω\K) onto A2 (Ω\K).
We denote this projection by PΩ\K . Let RΩ\K be a reproducing kernel for b2 (Ω\K). So,

u (x) = 〈u,RΩ\K (x, ·)〉

for every u ∈ b2 (Ω\K). If we use the fact that A2 (Ω\K) ⊆ b2 (Ω\K), we get that KΩ\K
is a projection of RΩ\K to A2 (Ω\K).

3.5. Theorem. If x ∈ Ω\K, then

PΩ\K [u] (x) =

∫
Ω\K

u (y)KΩ\K (x, y) dy

for all u ∈ L2 (Ω\K).

Proof. Let x ∈ Ω\K and u ∈ L2 (Ω\K). Then

PΩ\K [u] (x) = 〈PΩ\K [u] ,KΩ\K (x, ·)〉
= 〈u,KΩ\K (x, ·)〉

=

∫
Ω\K

u (y)KΩ\K (x, y) dy,

where the first equality follows from the reproducing property of KΩ\K (x, ·), the sec-
ond equality holds because PΩ\K is a self-adjoint projection onto a subspace containing
KΩ\K (x, ·), and the third equality follows from the definition of the inner product and
the part 1. of the following theorem. �

3.6. Theorem. The reproducing kernel KΩ\K has the following properties:
1. KΩ\K is real valued.
2. If (um) is an orthonormal basis of A2 (Ω\K) with respect to ‖ · ‖b2(Ω\K), then

KΩ\K (x, y) =

∞∑
m=1

um (x)um (y)

for all x, y ∈ Ω\K, where the convergence is pointwise.
3. KΩ\K (x, y) = KΩ\K (y, x) for all x, y ∈ Ω\K.
4.

‖KΩ\K (x, ·) ‖2b2(Ω\K) = KΩ\K (x, x)
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Proof. 1. Let u be a real valued function from A2 (Ω\K). Then we have

0 = Im (u (x)) = Im

(∫
Ω\K

u (y)KΩ\K (x, y)dy

)

= −
∫

Ω\K
u (y) Im

(
KΩ\K (x, y)

)
dy

If we take u = Im
(
KΩ\K (x, ·)

)
then we obtain

∫
Ω\K

(
Im
(
KΩ\K (x, y)

))2
dy = 0, which

implies Im
(
KΩ\K

)
≡ 0, so KΩ\K is real valued.

2. Let (um (x)) be any orthonormal basis of A2 (Ω\K). It exists because of the sepa-
rability of this space with respect to ‖ · ‖b2(Ω\K) (norms are equivalent). By standard
Hilbert space theory

KΩ\K (x, ·) =

∞∑
m=1

〈KΩ\K (x, ·) , um〉 =

∞∑
m=1

um (x)um,

where the infinite sum converges in the norm from b2 (Ω\K) restricted to A2 (Ω\K).
Since point evaluation is a continuous linear functional on A2 (Ω\K), the equation above
implies that 2. holds.
3. This part follows immidiately from 1. and 2.
4. Let x ∈ Ω\K. Then ‖KΩ\K (x, ·) ‖2b2(Ω\K) = 〈KΩ\K (x, ·) ,KΩ\K (x, ·)〉 = KΩ\K (x, x),
where the second equality follows from the reproducing property of KΩ\K (x, ·).

�

3.7. Remark. In [5], for x ∈ Ω\K we introduced a reproducing kernel SΩ\K (x, ·) for a
Hilbert space A2 (Ω\K) with respect to ‖ · ‖A2(Ω\K) as a consequence of a boundedness
of a linear functional u 7→ u (x) on A2 (Ω\K). It is shown in [5] that for x ∈ Ω\K,
SΩ\K (x, ·) = RΩ (x, ·) + RRn\K (x, ·) , where RΩ (x, ·) and RRn\K (x, ·) are reproducing
kernels for b2 (Ω) and b2 (Rn\K), respectively, obtained as a consequence of boundedness
of a linear functional u 7→ u (x) on these spaces. It would be interesting to see connection
between KΩ\K and SΩ\K .

3.8. Remark. Notations KΩ\K and SΩ\K are not good in the sense that in reality these
kernels depend on Ω and K, not just on Ω\K. We will use these notations because they
are easier to write and we can see what are Ω and K from the context.

4. Integral operators
4.1. Definition. For u ∈ L2 (Ω\K) we define MΩ\K [u] by

MΩ\K [u] (x) =

∫
Ω\K

u (y)SΩ\K (x, y) dy

for all x ∈ Ω\K.

4.2. Lemma. If ∫
Ω\K

∫
Ω\K
|SΩ\K (x, y) |2dxdy <∞,

then MΩ\K is a bounded linear operator on L2 (Ω\K).

Proof. Linearity is obvious. A boundedness is an immidiate consequence of a Schwartz
inequality. �
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4.3. Remark. Condition on SΩ\K in the previous lemma is trivially satisfied in the case
Ω = Rn and K = {a} for any a ∈ Rn. It would be interesting to characterize all Ω and
K such that this condition is satisfied. We can consider also the question on conditions
on Ω and K that imply boundedness of MΩ\K on L2 (Ω\K).

4.4. Lemma. MΩ\K [u] = u for all u ∈ A2 (Ω\K) if and only if KΩ\K (x, ·) = SΩ\K (x, ·)
for every x ∈ Ω\K.

Proof. ” =⇒ ”. If MΩ\K [u] = u for all u ∈ A2 (Ω\K) then∫
Ω\K

u (y)SΩ\K (x, y) dy =

∫
Ω\K

u (y)KΩ\K (x, y) dy,

for all x ∈ Ω\K. This implies that KΩ\K (x, ·) − SΩ\K (x, ·) belongs to an orthogonal
complement of A2 (Ω\K) and to the space A2 (Ω\K) itself. So, it belongs to their inter-
section and this is a zero set. From this we conclude that KΩ\K (x, ·) = SΩ\K (x, ·).
”⇐= ”. This direction follows immidiately from the reproducing property of KΩ\K . �

From the fact that SΩ\K (x, y) = RΩ (x, y) +RRn\K (x, y) for all x, y ∈ Ω\K (see [5]),
we obtain

MΩ\K [u] (x) =

∫
Ω\K

u (y)RΩ (x, y) dy +

∫
Ω\K

u (y)RRn\K (x, y) dy.

5. A new type of a boundary value problem
Let Ω be an open subset of Rn andK a compact subset of Ω. Suppose f is a continuous

function on ∂Ω and g a continuous function on ∂K. Let us consider the following problem.
Problem: Can we find a harmonic function u on Ω\K that is continuous on Ω\K and that
has a decomposition u = v+w on Ω\K, where v is a solution to a Dirichlet problem of Ω
with boundary data f , and w is a solution to a Dirichlet problem of Rn\K with boundary
data g? Here v and w are from the decomposition theorem for harmonic functions that
we consider in this paper. We will call this problem an (Ω,K) boundary value problem
with boudary data f and g.

5.1. Definition. For an (Ω,K) boundary value problem we say it is solvable if for every
continuous function f on ∂Ω and every continuous function g on ∂K there is a solution
to the (Ω,K) boundary value problem with boundary data f and g.

5.2. Theorem. Let n > 2, 0 < r0 < r1. Consider an annular region A = Ω\K, where
Ω = {x ∈ Rn, |x| < r1} and K = {x ∈ Rn, |x| ≤ r0}. Then an (Ω,K) boundary value
problem is solvable with a unique solution.

Proof. We will use the following lemma which is a Theorem 4.11 in [3].

5.3. Lemma. Suppose f ∈ C (S). Then there is a unique function u harmonic on B∗

and continuous on B
∗ such that u|S = f . Moreover, u = Pe [f ] on B∗\ {∞}.

If we modify the proof of this lemma we can prove an analogous theorem for arbitrary
ball (see exercise 8 in the same chapter). Let us consider now an (Ω,K) boundary value
problem for an annular region Ω\K. Let f and g be a continuous functions on ∂Ω = r1S
and ∂K = r0S, respectively, where S is a unit sphere. In this case we obtain a unique
solution v to a Dirichlet problem for Ω with boundary data f and a unique solution w
to a Dirichlet problem for Rn\K with boundary data g. By the previous lemma w is
harmonic at infinity and in the case n > 2 this is equivalent to the fact that a limit of
w (x) is zero when |x| −→ ∞. Let u = v + w. Then u is a harmonic function on Ω\K
and a condition at infinity of w is satisfied in the decomposition theorem for harmonic
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functions. Continuity of v on Ω and w on Rn\K imply continuity of u on Ω\K. We
conclude that in the case of an annular region in Rn, where n > 2, (Ω,K) boundary
value problem is solvable with a unique solution, so the proof is finished. �

In general we don’t have a solution to (Ω,K)-boundary value problem because the
Dirichlet problem is not solvable for an arbitrary open set. If Ω is a bounded open set
and if there is a solution to the Dirichlet problem (here we suppose that the boundary
data is a continuous function), then this solution is unique, which is a consequence of a
maximum principle for harmonic functions. There are unbounded open sets where we
still have a unique solution to a Dirichlet problem, as it is the case for a half space (see
chapter 7 in [3]), but in general if a Dirichlet problem is solvable for unbounded regions,
we cannot conclude that it is unique because maximum principle for harmonic functions
is not satisfied for unbounded regions (see [3]).

5.4. Remark. Let 1 ≤ p <∞. If u = v + w is a solution to the (Ω,K) boundary value
problem and if v ∈ Lp (Ω), w ∈ Lp (Rn\K), then u ∈ Ap (Ω\K). It would be interesting
to consider the space Ap (Ω\K) in the framework of this (Ω,K) boundary value problem
for harmonic functions.

5.5. Remark. We could apply these results also in the case of parabolic partial differ-
ential equations because there is an analogous decomposition theorem in that case also.
(see [6]).
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1. Introduction
In this paper we are concerned with the following parabolic integrodifferential equation

(1.1)
∂v

∂t
(x, t)− ∂2v

∂x2
(x, t) =

t∫
0

a (t− s) v (x, s) ds, 0 < x < 1, 0 < t ≤ T,

subject to the initial condition

(1.2) v (x, 0) = Φ (x) , 0 < x < 1,
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and the purely nonlocal (integral) conditions
1∫

0

v (x, t) dx = r (t) , 0 < t ≤ T,(1.3)

1∫
0

xv (x, t) dx = q (t) , 0 < t ≤ T,

where v is an unknown function, r, q, and Φ (x) are given functions supposed to be
sufficiently regular, a is suitably defined function satisfying certain some conditions that
will be specified later and T is a positive constant number.

Some problems from modern physics and science can be described in terms of partial
differential equations with nonlocal conditions. For instance, the nonlocal term of our

problem ( i.e
t∫
0

a (t− s) v (x, s) ds ) appears in the modeling of the quasi-static flexure of

a thermo-elastic rod [10, 12]. First this problem with the more general second-order par-
abolic equation or a 2m-parabolic equation has been studied by the second author using
the energy-integral methods and the Rothe method in [10, 12, 14] and [28] respectively.
For other models we refer to [7, 12, 13, 15], [16]-[19],[20]-[27], [29]-[34]. The problem
(1.1) − (1.3) is studied by using the Rothe method in [21]. On the other hand Ang in
[2] considered a one-dimensional heat equation with nonlocal integral conditions and ap-
plied the Laplace transform to the problem. Then he used some numerical techniques to
obtain a numerical solution of the inverse Laplace transform.

Recently the various types of the partial differential equations with nonlocal conditions
have been studied by [3], [4] and [5], [6] and [8], [9].

This paper is organized as follows. In Section 2, we introduce some certain function
spaces what we need in this work, and also give a reduction of our problem to another
equivalent problem with the homogeneous integral conditions. In Section 3, we establish
the existence of the solution by the Laplace transform method. In Section 4, we deal
with a priori estimate which gives the uniqueness and continuous dependence upon the
given data.

2. Statement of the Problem and Notations
Since integral conditions are not homogenous, it is convenient to convert the problem

(1.1)− (1.3) to an equivalent problem with the homogenous integral conditions. For this
reason, we introduce a new function u (x, t) representing the deviation of the function
v (x, t) as

(2.1) u (x, t) = v (x, t)− w (x, t) , 0 < x < 1, 0 < t ≤ T,

where

(2.2) w (x, t) = 6 (2q (t)− r (t))x− 2 (3q (t)− 2r (t)) .

The problem (1.1)−(1.3) with non-homogenous integral conditions (1.3) can be equiv-
alently reduced to the problem of finding a function u satisfying

(2.3)
∂u

∂t
(x, t)− ∂2u

∂x2
(x, t) =

t∫
0

a (t− s)u (x, s) ds, 0 < x < 1, 0 < t ≤ T,

u (x, 0) = ϕ (x) , 0 < x < 1,
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1∫
0

u (x, t) dx = 0, 0 < t ≤ T,(2.4)

1∫
0

xu (x, t) dx = 0, 0 < t ≤ T,

where

ϕ (x) = Φ (x)− w (x, 0) .

The solution of problem (1.1)− (1.3) will be obtained by the relation (2.1) and (2.2).
Let H be the Hilbert space with the norm ‖.‖H and L2 (0, 1) be the space of all the
square integrable functions on the interval (0, 1). Now we are ready to introduce some
appropriate function spaces what we need in this work.

2.1. Definition. (i) We denote by L2 (0, T ;H) the set of all measurable functions u (., t)
from (0, T ) into H equipped with the norm

(2.5) ‖u‖L2(0,T ;H) =

 T∫
0

‖u (., t)‖2H dt

1/2

<∞.

(ii) The space C (0, T ;H) is the set of all continuous functions u (., t) : (0, T ) −→ H
equipped with the norm

‖u‖C(0,T ;H) = max
0≤t≤T

‖u (., t)‖H <∞.

We denote by C0 (0, 1) the space of all continuous functions with a compact support
in (0, 1). Since such functions are Lebesgue integrable with respect to x, we can define a
bilinear form on C0 (0, 1) given by

(2.6) (u,w) =

1∫
0

Jmx u.J
m
x wdx, m ≥ 1,

where

(2.7) Jmx u =

x∫
0

(x− ζ)m−1

(m− 1)!
u (ζ, t) dζ; for m ≥ 1.

We know that the bilinear form (2.6) is a scalar product on C0 (0, 1) but C0 (0, 1) is
not a complete space.

2.2. Definition. Denote by Bm2 (0, 1), the completion of C0 (0, 1) for the scalar product
(2.6), which is denoted by (., .)Bm

2 (0,1) , introduced in [11]. By the norm of a function u
from Bm2 (0, 1), m ≥ 1, we understand the nonnegative number:

(2.8) ‖u‖Bm
2 (0,1) =

 1∫
0

(Jmx u)2 dx

1/2

= ‖Jmx u‖ , for m ≥ 1.

From [11] we have the following lemma.

2.3. Lemma. For all m ∈ Z+ the following inequality

(2.9) ‖u‖2Bm
2 (0,1) ≤

1

2
‖u‖2

Bm−1
2 (0,1)

holds.
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2.4. Corollary. For all m ∈ Z+ we have the elementary inequality

(2.10) ‖u‖2Bm
2 (0,1) ≤

(
1

2

)m
‖u‖2L2(0,1) .

2.5. Definition. We denote by L2(0, T ;Bm2 (0, 1)) the space of functions which are square
integrable in the Bochner sense with the scalar product

(2.11) (u,w)L2(0,T ;Bm
2 (0,1)) =

∫ T

0

(u (., t) , w (., t))Bm
2 (0,1) dt.

Since the space Bm2 (0, 1) is a Hilbert space, it can be shown that L2(0, T ;Bm2 (0, 1)) is
also a Hilbert space. The set of all continuous functions in [0, T ] equipped with the norm

sup
0≤t≤T

‖u (., t)‖Bm
2 (0,1)

will be denoted by C(0, T ;Bm2 (0, 1)).

2.6. Corollary. The following imbedding L2 (0, 1) −→ Bm2 (0, 1) is continuous for m ≥ 1.

By Lemma 1.3.19 in [25], we have the following result.

2.7. Lemma (Gronwall Lemma). Let f1 (t) , f2 (t) ≥ 0 be two integrable functions on
[0, T ], let us suppose that f2 (t) is nondecreasing. If we have

(2.12) f1 (τ) ≤ f2 (τ) + c

∫ τ

0

f1 (t) dt, ∀τ ∈ [0, T ] ,

where c ∈ R+ then we have

(2.13) f1 (t) ≤ f2 (t) exp (ct) , ∀t ∈ [0, T ] .

.

3. Existence of the Solution.
The Laplace transform method is an efficient way to solve many ordinary and partial

differential equations. But the main difficulty with the Laplace transform method is in
the inverting the Laplace domain solution into the real domain. In this section we will
carry out the Laplace transform techniques to find solutions of the partial differential
equations.

Suppose that v (x, t) is defined and is of exponential order for t ≥ 0 i.e. there exists A,
γ > 0 and t0 > 0 such that |v (x, t) | ≤ A exp (γt) for t ≥ t0. Then the Laplace transform
V (x, s) exists and it is given by

(3.1) V (x, s) = {v (x, t) ; t −→ s} =

∫ ∞
0

v (x, t) exp (−st) dt,

where s is a positive real parameter. Applying the Laplace transform on both sides of
(1.1), we have

(3.2) (s−A (s))V (x, s)− d2

dx2
V (x, s) = sΦ (x) ,

where G (x, s) = {g (x, t) ; t −→ s} . Similarly, we have∫ 1

0

V (x, s) dx = R(s),(3.3) ∫ 1

0

xV (x, s) dx = Q(s),
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where

R (s) = {r(t); t −→ s} ,
Q (s) = {q(t); t −→ s} .

Now we have three distinguished cases:
Case 1. s−A (s) > 0.
Case 2. s−A (s) < 0.
Case 3. s−A (s) = 0.
Here we consider only Case 2 and 3, because Case 1 can be dealt as like in [2]. For

(s−A (s)) = 0, we have

(3.4)
d2

dx2
V (x, s) = −sΦ (x) .

The general solution for Case 3 is given by

(3.5) V (x, s) = −
∫ x

0

∫ y

0

[sΦ (x)] dzdy + C1 (s)x+ C2 (s) .

Putting the integral conditions (3.3) in (3.5) we get

1

2
C1 (s) + C2 (s)(3.6)

=

∫ 1

0

∫ x

0

∫ y

0

[sΦ (x)] dzdy +R(s),

1

3
C1 (s) +

1

2
C2 (s)

=

∫ 1

0

∫ x

0

∫ y

0

x [sΦ (x)] dzdy +Q(s),

and

C1 (s) = 12

∫ 1

0

∫ x

0

∫ y

0

x [sΦ (x)] dzdy −(3.7)

6

∫ 1

0

∫ x

0

∫ y

0

[sΦ (x)] dzdy +

12Q(s)− 6R(s),

C2 (s) = 4

∫ 1

0

∫ x

0

∫ y

0

[sΦ (x)] dzdy −

6

∫ 1

0

∫ x

0

∫ y

0

x [sΦ (x)] dzdy −

6Q(s) + 4R(s).

For Case 2, that is, when (s−A (s)) < 0, using the method of variation of parameters,
we have the general solution as

V (x, s) =
1√

A (s)− s2

∫ x

0

(sΦ (x)) ·(3.8)

sin
(√

A (s)− s
)

(x− τ) dτ + d1 (s) cos
√

(A (s)− s)x+

d2 (s) sin
√

(A (s)− s)x.
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From the integral conditions (3.3) we get

d1 (s)

∫ 1

0

cos
√

(A (s)− s)xdx+ d2 (s)

∫ 1

0

sin
√

(A (s)− s)xdx(3.9)

= R(s)− 1√
A (s)− s2

∫ 1

0

∫ x

0

(sΦ (x)) ·

sin
(√

A (s)− s
)

(x− τ) dτdx,

d1 (s)

∫ 1

0

x cos
√

(A (s)− s)xdx+ d2 (s)

∫ 1

0

x sin
√

(A (s)− s)xdx

= Q(s)− 1√
A (s)− s

∫ 1

0

∫ x

0

x (sΦ (x)) ·

sin
(√

A (s)− s
)

(x− τ) dτdx.

Thus d1, d2 are given by

(3.10)
(
d1 (s)
d2 (s)

)
=

(
a11 (s) a12 (s)
a21 (s) a22 (s)

)−1

·
(
b1 (s)
b2 (s)

)
,

where

a11 (s) =

∫ 1

0

cos
√

(A (s)− s)xdx,(3.11)

a12 (s) =

∫ 1

0

sin
√

(A (s)− s)xdx,

a21 (s) =

∫ 1

0

x cos
√

(A (s)− s)xdx,

a22 (s) =

∫ 1

0

x sin
√

(A (s)− s)xdx,

b1 (s) = R(s)− 1√
A (s)− s

∫ 1

0

∫ x

0

(sΦ (x)) ·

sin
(√

A (s)− s
)

(x− τ) dτdx,

b2 (s) = Q(s)− 1√
A (s)− s

∫ 1

0

∫ x

0

x (sΦ (x)) ·

sin
(√

A (s)− s
)

(x− τ) dτdx.

If it is not possible to calculate the integrals directly, then we can calculate them
numerically. So we can approximate them similarly as done in [2]. If the Laplace inversion
is possibly computed directly for (3.5) and (3.8), then we reach the solution explicitly.
Otherwise we have to use the suitable approximate technique to get numerical solution,
therefore we need the numerical inversion of the Laplace transform. Considering A (s)−
s = k (s) and using Gauss’s formula given in [1] we have the following appoximations of
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the integrals ∫ 1

0

(
1

x

)
cos
√
k (s)xdx(3.12)

' 1

2

N∑
i=1

wi

(
1

1
2

[xi + 1]

)
cos

(√
k (s)

1

2
[xi + 1]

)
,

∫ 1

0

(
1

x

)
sin
√
k (s)xdx

' 1

2

N∑
i=1

wi

(
1

1
2

[xi + 1]

)
sin

(√
k (s)

1

2
[xi + 1]

)
,∫ x

0

(sΦ (x)) sin
(√

k (s)
)

(x− τ) dτ

' x

2

N∑
i=1

wi
[
sΦ
(x

2
[xi + 1]

)]
sin
(√

k (s)
[
x− x

2
[xi + 1]

])
,∫ 1

0

[
[sΦ (τ)]

∫ 1

τ

(
1

x

)
sin
(√

k (s)
)

(x− τ) dx

]
dτ

' 1

2

N∑
i=1

wi

[
sΦ

(
1

2
[xi + 1]

)]
(

1− 1
2

[xi + 1]

2

) N∑
i=1

wj

(
1

1− 1
2
[xi+1]

2
xj +

1− 1
2
[xi+1]

2

)
·

sin

(√
k (s)

[
1− 1

2
[xi + 1]

2
xj +

1 + 1
2

[xi + 1]

2
− 1

2
(xi + 1)

])
,

where xi and wi are the abscissa and weights defined as

xi : ith zero of Pn (x) , ωi = 2/
(
1− x2i

) [
P
′
n (x)

]2
.

Their tabulated values can be found in [1] for different values of N.

3.1. A numerical inversion of a Laplace transform. Sometimes an analytical in-
version of the Laplace domain solution is difficult to obtain. Therefore, a numerical
inversion method has to be required. An important comparison of four frequently used
numerical Laplace inversion algorithms is given by H. Hassanzadeh et al in [24]. Here we
use the Stehfest algorithm [34] that is easy to implement. This numerical technique was
first introduced by Graver [22] and then its algorithm is improved by [34]. The Stehfest
algorithm approximates the time domain solution as

(3.13) v (x, t) ≈ ln 2

t

2m∑
n=1

βnV

(
x;
n ln 2

t

)
,

where m is a positive integer,

(3.14) βn = (−1)n+m
min(n,m)∑
k=[n+1

2 ]

km (2k)!

(m− k)!k! (k − 1)! (n− k)! (2k − n)!
,

and [q] is the integer part of the real number q.
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4. A Numerical Example
In this section we perform some results of numerical computations using the Laplace

transform method proposed in the previous section. This technique can be carried out to
solve the problem defined by the problem (1.1)− (1.3). The method is easily applicable
via Matlab 7.9.3 program. So we can give the following example.

4.1. Example. We take the integrodifferential equation

∂v

∂t
(x, t)− ∂2v

∂x2
(x, t) =

t∫
0

exp(t− s)u (x, s) ds, 0 < x < 1, 0 < t ≤ T,

v (x, 0) = sinx, 0 < x < 1,
1∫

0

v (x, t) dx = 0, 0 < t ≤ T,

1∫
0

xv (x, t) dx = 0, 0 < t ≤ T.

In this case the exact solution is given by

v (x, t) = exp(−t). cos t. sinx, 0 < x < 1, 0 < t ≤ T .

The method of solution is easily implemented on the computer, and numerical results
obtained by N = 8 in (3.12) andm = 5 in (3.13). Now we can compare the exact solution
with numerical solution. For t = 0.10 and x ∈ [0.10, 0.90], we calculate v numerically
using the proposed method of solution and compare it with the exact solution as in Table
1.

The relative error computed by the formula v numerical−v exact
v exact

.

x 0.10 0.30 0.50 0.70 0.90

v exact 0.0898817 0.2660619 0.4316350 0.5800001 0.7052425

v numerical 0.0898818 0.2660623 0.4316355 0.5800058 0.7052395

relativ error −0, 0000058 0, 0000017 0, 0000012 0, 0000099 −0, 0000043
Table1

5. Uniqueness and Continuous Dependence of the Solution.
First we establish a priori estimate, then the uniqueness and continuous dependence

of the solution with respect to the given data are immediately obtained.

5.1. Theorem. If u (x, t) is a solution of the Problem (2.3) − (2.4), then we have the
following inequalities

‖u (., τ)‖2L2(0,1) ≤ c1
(
‖ϕ‖2L2(0,1)

)
and(5.1) ∥∥∥∥∂u (., τ)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
≤ c2

(
‖ϕ‖2L2(0,1)

)
,

where c1 = exp (a0T ) , c2 = exp(a0T )
1−a0

, 1 < a (x, t) < a0, and 0 ≤ τ ≤ T.
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Proof. If we take the scalar product of the both side of equation (2.3) by u, and integrate
over (0, τ), then we have∫ τ

0

(
∂u (., t)

∂t
, u

)
B1

2(0,1)

dt−(5.2) ∫ τ

0

(
∂2u (., t)

∂x2
, u

)
B1

2(0,1)

dt

=

∫ τ

0

 t∫
0

a (t− s)u (x, s) ds,
∂u (., t)

∂t


B1

2(0,1)

dt.

Integrating by parts on the left-hand side of (5.2) we obtain

1

2

∥∥∥∥∂u (., t)

∂t

∥∥∥∥2
B1

2(0,1)

+(5.3)

1

2
‖u (., τ)‖2L2(0,1) −

1

2
‖ϕ‖2L2(0,1)

=

∫ τ

0

 t∫
0

a (t− s)u (x, s) ds,
∂u (., t)

∂t


B1

2(0,1)

dt.

By the Cauchy inequality, the right-hand side of (5.3) is bounded by

(5.4)
a0
2

t∫
0

‖u (x, s)‖2
L2(0,T ; B1

2(0,1))
ds+

a0
2

∥∥∥∥∂u (., t)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
.

Substitution of (5.4) into (5.3) yields

(5.5) (1− a0)

∥∥∥∥∂u (., t)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
+ ‖u (., τ)‖2L2(0,1) ≤

‖ϕ‖2L2(0,1) +

a0
2

t∫
0

‖u (x, s)‖2
L2(0,T ; B1

2(0,1))
ds.

By the Gronwall Lemma we have

(1− a0)

∥∥∥∥∂u (., t)

∂t

∥∥∥∥2
L2(0,T ; B1

2(0,1))
+ ‖u (., τ)‖2L2(0,1)(5.6)

≤ exp (a0T )
(
‖ϕ‖2L2(0,1)

)
.

From (5.6) , we obtain the estimates (5.1). �

5.2. Corollary. If Problem (2.3)− (2.4) has a solution, then this solution is unique and
depends continuously on ϕ.
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Signed degree sequences in signed multipartite
graphs
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Abstract
A signed k-partite graph (signed multipartite graph) is a k-partite
graph in which each edge is assigned a positive or a negative
sign. If G(V1, V2, · · · , Vk) is a signed k-partite graph with Vi =
{vi1, vi2, · · · , vini}, 1 ≤ i ≤ k, the signed degree of vij is sdeg(vij) =
dij = d+ij − d−ij , where 1 ≤ i ≤ k, 1 ≤ j ≤ ni and d+ij(d

−
ij) is the

number of positive (negative) edges incident with vij . The sequences
αi = [di1, di2, · · · , dini ], 1 ≤ i ≤ k, are called the signed degree se-
quences of G(V1, V2, · · · , Vk). The set of distinct signed degrees of the
vertices in a signed k-partite graph G(V1, V2, · · · , Vk) is called its signed
degree set. In this paper, we characterize signed degree sequences of
signed k-partite graphs. Also, we give the existence of signed k-partite
graphs with given signed degree sets.

Keywords: Signed graphs, signed multipartite graph, signed degree, signed set.
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1. Introduction

A signed graph is a graph in which each edge is assigned a positive or a negative sign.
The concept of signed graphs is given by Harary [3]. Let G be a signed graph with vertex
set V = {v1, v2, · · · , vn}. The signed degree of vi is sdeg(vi) = di = d+i − d

−
i , where

1 ≤ i ≤ n and d+i (d
−
i ) is the number of positive(negative) edges incident with vi. A signed

degree sequence σ = [d1, d2, · · · , dn] of a signed graph G is formed by listing the vertex
signed degrees in non-increasing order. An integral sequence is s-graphical if it is the
signed degree sequence of a signed graph. Also, a non-zero sequence σ = [d1, d2, · · · , dn]
is a standard sequence if σ is non-increasing,

∑n
i=1 di is even, d1 > 0, each |di| < n and
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†Department of Mathematics, Islamia College for Science and Commerce, Srinagar, Kashmir,
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|d1| ≥ |dn|.

The following result, due to Charttrand et al. [1], gives a necessary and sufficient
condition for an integral sequence to be s-graphical, and this is similar to Hakimi’s result
for degree sequences in graphs [2].

Theorem 1. A standard integral sequence σ = [d1 , d2, · · · , dn] is s-graphical if and only
if

σ′ = [d2 − 1, d3 − 1, · · · , dd1+s+1 − 1, dd1+s+2, · · · , dn−s, dn−s+1 + 1, · · · , dn + 1]

is s-graphical for some s, 0 ≤ s ≤ n−1−d1
2

.

The next result [12] provides a good candidate for parameter s in Theorem 1.

Theorem 2. A standard integral sequence σ = [d1, d2, · · · , dn] is s-graphical if and only
if
σ′m = [d2 − 1, d3 − 1, · · · , dd1+m+1 − 1, dd1+m+2, · · · , dn−m, dn−m+1 + 1, · · · , dn + 1]

is s-graphical, where m is the maximum non-negative integer such that dd1+m+1 >
dn−m+1.

The set of distinct signed degrees of the vertices in a signed graph G is called its
signed degree set. In [6], it is proved that every set of positive (negative) integers is the
signed degree set of some connected signed graph and the smallest possible order for such
a signed graph is also determined. Hoffman and Jordan [4] have shown that the degree
sequences of signed graphs can be characterized by a system of linear inequalities. The
set of all n-tuples satisfying this system of linear inequalities is a polytope Pn. In [5],
Jordan et al. have proved that Pn is the convex hull of the set of degree sequences of
signed graphs of order n. We can find more results on signed degrees in [4,5].

A signed bipartite graph is a bipartite graph in which each edge is assigned a positive
or a negative sign. Let G(U, V ) be a signed bipartite graph with U = {u1, u2, · · · , up}
and V = {v1, v2, · · · , vq}. Then signed degree of ui is sdeg(ui) = di = d+i − d

−
i , where

1 ≤ i ≤ p and d+i (d
−
i ) is the number of positive (negative) edges incident with ui and

signed degree of vj is sdeg(vj) = ej = e+j − e
−
j , where 1 ≤ j ≤ q and e+j (e

−
j ) is the

number of positive (negative) edges incident with vj . The sequences α = [d1, d2, · · · , dp]
and β = [e1, e2, · · · , eq] are called the signed degree sequences of the signed bipartite
graph G(U, V ). Two sequences α = [d1, d2, · · · , dp] and β = [e1, e2, · · · , eq] are standard
sequences if α is non-zero and non-increasing, |d1| ≥ |dp|,

∑p
i=1 di =

∑q
j=1 ej , d1 > 0,

each |di| ≤ q, each |ej | ≤ p and |ej | ≤ |d1|.

The following result due to Pirzada et al. [8], gives necessary and sufficient conditions
for two sequences of integers to be the signed degree sequences of some signed bipartite
graph. .

Theorem 3. Let α = [d1, d2, · · · , dp] and β = [e1, e2, · · · , eq] be standard sequences.
Then, α and β are the signed degree sequences of a signed bipartite graph if and only if
there exist integers r and s with d1 = r − s and 0 ≤ s ≤ q−d1

2
such that α′ and β′ are

the signed degree sequences of a signed bipartite graph, where α′ is obtained from α by
deleting d1 and β′ is obtained from β by reducing r greatest entries of β by 1 each and
adding s least entries of β by 1 each.
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The set of distinct signed degrees of the vertices in a signed bipartite graph G(U, V )
is called its signed degree set. The work for signed degree sets in signed bipartite graphs
can be found in [7]. Also the work on signed degrees in signed tripartite graphs can be
found in [10, 11].

2. Signed degree sequences in signed k-partite graphs

A signed k-partite graph (signed multipartite graph) is a k-partite graph in which
each edge is assigned a positive or a negative sign. Let G(V1, V2, · · · , Vk) be a signed
k-partite graph with Vi = {vi1, vi2, · · · , vini}, 1 ≤ i ≤ k. The signed degree of vij is
sdeg(vij) = dij = d+ij − d

−
ij , where 1 ≤ i ≤ k, 1 ≤ j ≤ ni and d+ij (d−ij) is the number

of positive (negative) edges incident with vij . The sequences αi = [di1, di2, · · · , dini ],
1 ≤ i ≤ k, are called the signed degree sequences of G(V1, V2, · · · , Vk). Also the se-
quences αi = [di1, di2, · · · , dini ], 1 ≤ i ≤ k, of integers are s-graphical if α′is are the
signed degree sequences of some signed k-partite graph. Denote a positive edge xy by
xy+ and a negative edge xy by xy−. Several results on signed degree sequences in signed
multipartite graphs can be found in [9]. We start with the following observation.

Theorem 4. LetG(V1, V2, · · · , Vk) be a signed k-partite graph with Vi = {vi1, vi2, · · · , vini},
1 ≤ i ≤ k and having q edges. Then

p =
∑k

i=1

∑ni
j=1 sdeg(vij) ≡ 2q(mod 4),

and the number of positive edges and negative edges of G(V1, V2, · · · , Vk) are respectively
2q+p

4
and 2q−p

4
.

Proof. Let vij (1 ≤ i ≤ k, 1 ≤ j ≤ ni) be incident with d+ij positive edges and d−ij
negative edges so that

sdeg(vij) = d+ij − d
−
ij while deg(vij) = d+ij + d−ij .

Obviously,
∑k

i=1

∑ni
j=1 deg(vij) = 2q.

Let G(V1, V2, · · · , Vk) have g positive edges and h negative edges. Then q = g + h,∑k
i=1

∑ni
j=1 d

+
ij = 2g and

∑k
i=1

∑ni
j=1 d

−
ij = 2h.

Further,
k∑

i=1

ni∑
j=1

sdeg(vij) =

k∑
i=1

ni∑
j=1

(d+ij − d
−
ij)

=

k∑
i=1

ni∑
j=1

d+ij −
k∑

i=1

ni∑
j=1

d−ij

= 2g − 2h.

Hence,

p =

k∑
i=1

ni∑
j=1

sdeg(vij) ≡ 2g − 2h

= 2(q − h)− 2h

= 2q − 4h,

so that p ≡ 2q(mod 4). Again, from g + h = q and 2g − 2h = p, we have g = 2q+p
4

and
h = 2q−p

4
. �
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Corollary 5. A necessary condition for the k sequences αi = [di1, di2, · · · , dini ], 1 ≤ i ≤
k, of integers to be s-graphical is that

∑k
i=1

∑ni
j=1 dij is even.

A zero sequence is a finite sequence each term of which is 0. Clearly, every k fi-
nite zero sequences are the signed degree sequences of a signed k-partite graph. If
β = [a1, a2, · · · , an] is a sequence of integers, then the negative of β is the sequence
β = [−a1,−a2, · · · ,−an].

The next result follows by interchanging positive edges with negative edges.

Theorem 6. The sequences αi = [di1, di2, · · · , dini ], 1 ≤ i ≤ k, are the signed degree
sequences of some signed k-partite graph if and only if −αi = [−di1,−di2, · · · ,−dini ] are
the signed degree sequences of some signed k-partite graph.

Assume without loss of generality, that a non-zero sequence β = [a1, a2, · · · , an] is
non-increasing and |a1| ≥ |an|, for we can always replace β by −β if necessary. The
k sequences of integers αi = [di1, di2, · · · , dini ], 1 ≤ i ≤ k, are said to be standard
sequences if α1 is non-zero and non-increasing,

∑k
i=1

∑ni
j=1 dij is even, d11 > 0, each

|dij | ≤
∑k

r=1,r 6=i nr, 1 ≤ i ≤ k, 1 ≤ j ≤ ni, |d11| ≥
∣∣d1n1

∣∣ and |d11| ≥ |dij | for each
2 ≤ i ≤ k,1 ≤ j ≤ ni.

A complete signed k-partite graph is a complete k-partite graph in which each edge is
assigned a positive or a negative sign. The following result provides a useful recursive test
whether the k sequences of integers form the signed degree sequences of some complete
signed k-partite graph.

Theorem 7. Let αi = [di1, di2, · · · , dini ], 1 ≤ i ≤ k, be standard sequences and let
r = 1

2

(
d11 +

∑k
j=2 nj

)
. Let α′1 be obtained from α1 by deleting d11 and α′2, α′3, · · · , α′k

be obtained from α2, α3, · · · , αk by reducing r greatest entries of α2, α3, · · · , αk by 1 each
and adding remaining entries of α2, α3, · · · , αk by 1 each. Then αi are the signed degree
sequences of some complete signed k-partite graph if and only if α′i are also signed degree
sequences of some complete signed k-partite graph, 1 ≤ i ≤ k.
Proof. Let G′(V ′1 , V ′2 , · · · , V ′k) be a complete signed k-partite graph with signed degree
sequences α′i, 1 ≤ i ≤ k. Let V ′1 = {v12, v13, · · · , v1n1} and V ′i = {vi1, vi2, · · · , vini},
2 ≤ i ≤ k. Then a complete signed k-partite graph with signed degree sequences αi ,
1 ≤ i ≤ k, can be obtained by adding a vertex v11 to V ′1 so that there are r positive edges
from v11 to those r vertices of V ′2 , V ′3 , · · · , V ′k , whose signed degrees were reduced by 1 in
going from αi to α′i, and there are negative edges from v11 to the remaining vertices of
V ′2 , V

′
3 , · · · , V ′k , whose signed degrees were increased by 1 in going from αi to α′i. Note

that the signed degree of v11 is r −
(∑k

j=2 nj − r
)
= 2r −

∑k
j=2 nj = d11.

Conversely, let αi , 1 ≤ i ≤ k, be the signed degree sequences of a complete signed
k-partite graph. Let the vertex sets of the complete signed k-partite graph be Vi =
{vi1, vi2, · · · , vini} such that sdeg(vij) = dij , 1 ≤ i ≤ k, 1 ≤ j ≤ ni.

Among all the complete signed k-partite graphs with αi, 1 ≤ i ≤ k, as the signed
degree sequences, let G(V1, V2, · · · , Vk) be one with the property that the sum S of the
signed degrees of the vertices of V2, V3, · · · , Vk joined to v11 by positive edges is max-
imum. Let d+11 and d−11 be respectively the number of positive edges and the number
of negative edges incident with v11. Then sdeg(v11) = d11 = d+11 − d−11, deg(v11) =

d+11 + d−11 =
∑k

j=2 nj , and hence d+11 = 1
2

(
d11 +

∑k
j=2 nj

)
= r. Let U be the set of r
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vertices of V2, V2, · · · , Vk with highest signed degrees and let W = ∪k
j=2Vj − U . We

claim that v11 must be joined by positive edges to the vertices of U . If this is not true,
then there exist vertices vgh ∈ U and vij ∈W such that the edge v11vgh is negative and
the edge v11vij is positive. Since sdeg (vgh) ≥ sdeg (vij), there exist vertices vmn and vpq
such that the edge vghvmn is positive and the edge vijvpq is negative. If the edge vghvpq
is positive, then change the signs of the edges v11vgh, vghvpq, vpqvij , vijv11 so that the
edges v11vgh and vpqvij are positive and the edges v11vijand vghvpq are negative. But if
the edge vghvpq is negative, then sdeg (vgh) < sdeg (vij), which is a contradiction. The
case when vmn = vpq follows by the same argument as in above.

Hence we obtain a complete signed k-partite graph with signed degree sequences αi,
1 ≤ i ≤ k, in which the sum of the signed degrees of the vertices of V2, V3, · · · , Vk joined
to v11 by positive edges exceeds S, a contradiction.

Thus we may assume that v11 is joined by positive edges to the vertices of U and
by negative edges to the vertices of W . So G(V1, V2, · · · , Vk) − v11 is a complete signed
k-partite graph with α′i, 1 ≤ i ≤ k, as the signed degree sequences. �

Theorem 7 provides an algorithm of checking whether the standard sequences αi,
1 ≤ i ≤ k, are the signed degree sequences, and for constructing a corresponding
complete signed k-partite graph. Suppose αi = [di1, di2, · · · , dini ], 1 ≤ i ≤ k, be
the standard signed degree sequences of a complete signed k-partite graph with parts
Vi = {vi1, vi2, · · · , vini}. Deleting d11 and reducing r = 1

2

(
d11 +

∑k
j=2 nj

)
greatest en-

tries of α2, α3, · · · , αk by 1 each and adding remaining entries of α2, α3, · · · , αk by 1 each
to form α′2, α

′
3, · · · , α′k. Then edges are defined by v11 v+ij if d′ijs are reduced by 1 and

v11v
−
ij if d

′
ijs are increased by 1. For −αi, 1 ≤ i ≤ k, edges are defined by v11v−ij if d

′
ijs are

reduced by 1 and v11v+ij if d
′
ijs are increased by 1. If the conditions of standard sequences

do not hold, then we delete di1 for that i for which the conditions of standard sequences
get satisfied. If this method is applied recursively, then a complete signed k-partite graph
with signed degree sequences αi, 1 ≤ i ≤ k, is constructed.

The next result gives necessary and sufficient conditions for the k sequences of integers
to be the signed degree sequences of some signed k-partite graph.

Theorem 8. Let αi = [di1, di2, · · · , dini ], 1 ≤ i ≤ k, be standard sequences. Then αi ,
1 ≤ i ≤ k, are the signed degree sequences of a signed k-partite graph if and only if there
exist integers r and s with d11 = r − s and 0 ≤ s ≤ 1

2

(∑k
j=2 nj − d11

)
such that α′i are

the signed degree sequences of a signed k-partite graph, where α′1 is obtained from α1 by
deleting d11 and α′2, α′3, · · · , α′k are obtained from α2, α3, · · · , αk by reducing r greatest
entries of α2, α3, · · · , αk by 1 each and adding s least entries of α2, α3, · · · , αk by 1 each.
Proof. Let r and s be integers with d11 = r − s and ≤ s ≤ 1

2

(∑k
j=2 nj − d11

)
such

that α′i, 1 ≤ i ≤ k, are the signed degree sequences of a signed k-partite graph G′(V ′1 ,
V ′2 , ′, V ′k).

Let V ′1 = {v12, v13, · · · , v1n1} and V ′i = {vi1, vi2, · · · , vini}, 2 ≤ i ≤ k. Let U be the
set of r vertices of V ′2 , V ′3 , · · · , V ′k with highest signed degrees, W be the set of s vertices
of V ′2 , V ′3 , · · · , V ′k with least signed degrees and let Z = ∪k

j=2V
′
j −U −W . Then a signed

k-partite graph with signed degree sequences αi, 1 ≤ i ≤ k, can be obtained by adding
a vertex v11 to V ′1 so that there are r positive edges from v11 to the vertices of U and
s negative edges from v11 to the vertices of W . Note that the signed degree of v11 is
r − s = d11.

Conversely, let αi, 1 ≤ i ≤ k, be the signed degree sequences of a signed k-partite
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graph. Let the vertex sets of the signed k-partite graph be Vi = {vi1, vi2, · · · , vini} such
that sdeg(vij) = dij , 1 ≤ i ≤ k, 1 ≤ j ≤ ni.

Among all the signed k-partite graphs with αi, 1 ≤ i ≤ k, as the signed degree se-
quences, let G(V1, V2, · · · , Vk) be one with the property that the sum S of the signed
degrees of the vertices of V2, V3, · · · , Vk joined to v11 by positive edges is maximum.
Let d+11 = r and d−11 = s be respectively the number of positive edges and the num-
ber of negative edges incident with v11. Then sdeg(v11) = d11 = d+11 − d

−
11 = r − s and

deg(v11) = d+11+d
−
11 = r+s ≤

∑k
j=2 nj , and hence 0 ≤ s ≤ 1

2

(∑k
j=2 nj − d11

)
. Let U be

the set of r vertices of V2, V3, · · · , Vk with highest signed degrees and letW = ∪k
j=2Vj−U .

We claim that v11 must be joined by positive edges to the vertices of U . If this is
not true, then there exist vertices vgh ∈ U and vmn ∈ W such that the edge v11vmn is
positive and either (i) v11vgh is a negative edge or (ii) v11 and vgh are not adjacent in
G(V1, V2, · · · , Vk). As sdeg(vgh) ≥ sdeg(vmn), that is dgh ≥ dmn , therefore we consider
only (i) and then (ii) is similar to (i).

We note that if there exists a vertex vpq ( 6= v11) such that vpqvgh is a positive edge and
vpqvmn is a negative edge, then change the signs of these edges so that v11vgh and vpqvmn

are positive, and v11vmn and vpqvgh are negative. Hence we obtain a signed k-partite
graph with signed degree sequences αi, 1 ≤ i ≤ k, in which the sum of the signed degrees
of the vertices of V2, V3, · · · , Vk joined to v11 by positive edges exceeds S, a contradiction.
So assume that no such vertex vpq exists.

Now, suppose that vgh is not incident to any positive edge. Since sdeg(vgh) ≥
sdeg(vmn), that is dgh ≥ dmn, then there exist at least two vertices vpq and vlt (both
distinct from v11) such that vpqvmn and vltvmn are negative edges and both vpq and vlt
are not adjacent to vgh. Then by changing the edges so that v11vgh is a positive edge,
and v11vmn,vghvpq, vghvlt are negative edges, we again get a contradiction. Hence vgh is
incident to at least one positive edge.

We claim that there exists at least one vertex vyz such that vyzvgh is a positive edge
and vyz is not adjacent to vmn. Suppose on contrary that whenever vgh is joined to
a vertex by a positive edge, then vmn is also joined to this vertex by a positive edge.
Since sdeg(vgh) ≥ sdeg(vmn), that is dgh ≥ dmn, then again we have the same situation
as above, from which we get a contradiction. Thus there exists a vertex vyz such that
vyzvgh is a positive edge and vyz is not adjacent to vmn. Similarly, it can be shown that
there exists a vertex vpq such that vpqvmn is a negative edge and vpq is not adjacent to
vgh. By changing the edges so that v11vgh,vmnvyz are positive edges, and v11vmn, vghvpq
are negative edges, we again get a contradiction. Hence v11 is joined by positive edges
to the vertex of U .

In a similar way, it can be shown that v11 is joined by negative edge to the s vertices
of V2,V3,· · · , Vk with least signed degrees.

Hence G(V1, V2, · · · , Vk) − v11 is a signed k-partite graph with α′i, 1 ≤ i ≤ k, as the
signed degree sequences. �

Theorem 8 also provides an algorithm for determining whether or not the standard se-
quences αi, 1 ≤ i ≤ k, are the signed degree sequences, and for constructing a correspond-
ing signed k-partite graph. Suppose αi = [di1, di2, · · · , dini ], 1 ≤ i ≤ k, be the standard
signed degrees sequences of a signed k-partite graph with parts Vi = {vi1, vi2, · · · , vini}.
Let d11 = r − s and 0 ≤ s ≤ 1

2

(∑k
j=2 nj − d11

)
. Deleting d11 and reducing r greatest

entries of α2, α3, · · · , αk by 1 each and adding s least entries of α2, α3, · · · , αk by 1 each
to form α′2, α

′
3, · · · , α′k. Then edges are defined by v11v+ij if d′ijs are reduced by 1 ; v11v−1j

if d′ij s are increased by 1, and v11 and vijare not adjacent if d′ij s are unchanged. For
αi, edges are defined by v11v−ij if d′ij s are reduced by 1; v11v+ij if d′ij s are increased by
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1, and v11 and vij are not adjacent if d′ij s are unchanged. If the conditions of standard
sequences do not hold, then we delete di1 for that i for which the conditions of standard
sequences get satisfied. If this method is applied recursively, then a signed k-partite
graph with signed degree sequences αi, 1 ≤ i ≤ k, is constructed.

3. Signed degree sets in signed k-partite graphs

Let G(V1, V2, · · · , Vk) be a signed k-partite graph with X ⊆ Vi, Y ⊆ Vj (i 6= j). If
each vertex of X is joined to every vertex of Y by a positive (negative) edge, then it is
denoted by X ⊕ Y (X 	 Y ).

The set S of distinct signed degrees of the vertices in a signed k-partite graph
G(V1, V2, · · · , Vk) is called its signed degree set. Also, a signed k-partite graph
G(V1, V2, · · · , Vk) is said to be connected if each vertex vi ∈ Vi; is connected to every
vertex vj ∈ Vj .

The following result shows that every set of positive integers is a signed degree set of
some connected signed k-partite graph.

Theorem 9. Let d1, d2, · · · , dt be positive integers. Then there exists a connected signed
k-partite graph with signed degree set

S = {d1,
2∑

i=1

di, · · · ,
t∑

i=1

di}.

Proof. We consider the following two cases. (i) k even, (ii) k odd.
Case (i). Let k = 2m, wherem ≥ 1. Construct a signed k-partite graphG(V1, V2, · · · , V2m)
as follows.
Let

V1 = P1∪Q1∪R1∪S1∪X1∪X ′1∪X ′′1 ∪X2∪X ′2∪X ′′2 ∪· · ·∪Xt−1∪X ′t−1∪X ′′t−1,

V2 = P2 ∪Q2 ∪R2 ∪ S2 ∪ Y1 ∪ Y ′1 ∪ Y2 ∪ Y ′2 ∪ · · · ∪ Yt−1 ∪ Y ′t−1,

V3 = P3 ∪Q3,

...
V2m−1 = P2m−1 ∪Q2m−1,

V2m = P2m ∪Q2m,

where
(a) P1, Q1, R1, S1, X1, X

′
1, X

′′
1 , X2, X

′
2, X

′′
2 , · · · , Xt−1, X

′
t−1, X

′′
t−1 are pairwise disjoint,

(b) P2, Q2, R2, S2, Y1, Y
′
1 , Y2, Y

′
2 , · · · , Yt−1, Y

′
t−1 are pairwise disjoint,

(c) For all i, Pi ∩Qi = φ, 3 ≤ i ≤ 2m and |Pi| = |Qi| = d1, 1 ≤ i ≤ 2m; |Ri| = |Si| = d1,
1 ≤ i ≤ 2; |Xi| = |X ′i| = |Yi| = |Y ′i | = d1, 1 ≤ i ≤ t − 1; |X ′′i | = d2 + d3 + · · · + di+1,
1 ≤ i ≤ t− 1.

For all i, let Pi ⊕Qi+1, 1 ≤ i ≤ 2m − 1; Qi ⊕ Pi+1 , 1 ≤ i ≤ 2m − 1; Q1 ⊕ R2, R1 ⊕
Q2, R1 ⊕ S2, S1 ⊕ R2, X1 ⊕ S2, X

′
1 ⊕ R2, Xi ⊕ Y ′i , 1 ≤ i ≤ t − 1; X ′i ⊕ Yi, 1 ≤ i ≤ t − 1;

X ′′i ⊕ Y ′i , 1 ≤ i ≤ t− 1; Xi ⊕ Y ′i−1, 2 ≤ i ≤ t− 1; X ′i ⊕ Yi−1, 2 ≤ i ≤ t− 1;
for all even i, Pi 	 Pi+1, 2 ≤ i ≤ 2m− 2; Qi 	Qi+1, 2 ≤ i ≤ 2m− 2;
and for all i, Q1 	Q2, R1 	 R2, X1 	 R2, X

′
1 	 S2, Xi 	 Yi−1, 2 ≤ i ≤ t − 1; X ′i 	 Y ′i−1,

2 ≤ i ≤ t− 1.
Then the signed degrees of the vertices of G(V1, V2, · · · , V2m) are as follows.
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sdeg(p1) = |Q2| − 0 = d1 for all p1 ∈ P1;
for even i, 2 ≤ i ≤ 2m− 2
sdeg(pi) = |Qi−1|+ |Qi+1| − |Pi+1| = d1 + d1 − d1 = d1, for all pi ∈ Pi;
for odd i, 3 ≤ i ≤ 2m− 1
sdeg(pi) = |Qi−1|+ |Qi+1| − |Pi−1| = d1 + d1 − d1 = d1, for all pi ∈ Pi,
sdeg(p2m) = |Q2m−1| − 0 = d1, for all p2m ∈ P2m;
sdeg(q1) = |P2|+ |R2| − |Q2| = d1 + d1 − d1 = d1, for all q1 ∈ Q1;
sdeg(q2) = |P1| + |R1| + |P3| − (|Q1| + |Q3|) = d1 + d1 + d1 − (d1 + d1) = d1, for all
q2 ∈ Q2;
for odd i, 3 ≤ i ≤ 2m− 1
sdeg(qi) = |Pi−1|+ |Pi+1| − |Qi−1| = d1 + d1 − d1 = d1, for all qi ∈ Qi;
for even i, 4 ≤ i ≤ 2m− 2
sdeg(qi) = |i−1| + |Pi+1| − |Qi+1| = d1 + d1 − d1 = d1, for all qi ∈ Qi, sdeg(q2m) =
|P2m−1| − 0 = d1, for all q2m ∈ Q2m, sdeg(r1) = |Q2|+ |S2| − |R2| = d1 + d1 − d1 = d1,
for all r1 ∈ R1,
sdeg(s1) = |R2| − 0 = d1, for all s1 ∈ S1,
sdeg(r2) = |Q1| + |S1| + |X ′1| − (|R1| + |X1|) = d1 + d1 + d1 − (d1 + d1) = d1, for all
r2 ∈ R2,
sdeg(s2) = |R1|+ |X1| − |X ′1| = d1 + d1 − d1 = d1, for all s2 ∈ S2,
sdeg(x1) = |S2|+ |Y ′1 | − |R2| = d1 + d1 − d1 = d1, for all x1 ∈ X1,
sdeg(x′1) = |R2|+ |Y1| − |S2| = d1 + d1 − d1 = d1, for all x′1 ∈ X ′1,
sdeg(x′′1 ) = |Y ′1 | − 0 = d1, for all x′′1 ∈ X ′′1 ;
for 2 ≤ i ≤ t− 1
sdeg(xi) = |Y ′i−1|+ |Y ′i | − |Yi−1| = d1 + d1 − d1 = d1, for all xi ∈ Xi;
for 2 ≤ i ≤ t− 1
sdeg(x′i) = |Yi−1|+ |Yi| − |Y ′i−1| = d1 + d1 − d1 = d1, for all x′i ∈ X ′i;
for 2 ≤ i ≤ t− 1
sdeg(x′′i ) = |Y ′i | − 0 = d1, for all x′′i ∈ X ′′i ;
for 1 ≤ i ≤ t− 2
sdeg(yi) = |X ′i|+ |X ′i+1| − |Xi+1| = d1 + d1 − d1 = d1, for all yi ∈ Yi

sdeg(yt−1) = |X ′t−1| − 0 = d1, for all yt−1 ∈ Yt−1;
for 1 ≤ i ≤ t− 2
sdeg(y′i) = |Xi|+ |X ′′i |+ |Xi+1| − |X ′i+1| = d1 + d2 + d3 + · · ·+ di+1 + d1− d1 =

∑i+1
j=1 dj ,

for all y′i ∈ Y ′i ,
and sdeg(y′t−1) = |Xt−1|+ |X ′′t−1| = d1+d2+d3+ · · ·+dt =

∑t
j=1 dj , for all y

′
t−1 ∈ Y ′t−1.

Therefore signed degree set of G(V1, V2, ′, V2m) is S = {d1,
∑2

i=1 di, ′,
∑t

i=1 di}.
Case (ii). Let k = 2m + 1, where m ≥ 1. This follows by using the construction as in
case (i), and taking another partite set V2m+1 = P2m+1 ∪Q2m+1 with P2m+1 ∩Q2m+1 =
φ, |P2m+1| = |Q2m+1| = d1, P2m⊕Q2m+1, Q2m⊕P2m+1, P2m+1⊕P1, P2m+1⊕R2, Q2m+1⊕
S1,Q1 ⊕ S2 and P2m 	 P2m+1, Q2m 	Q2m+1, P2m+1 	Q1, P1 	R2, S1 	 S2.
Clearly, by construction , the above signed k-partite graphs are connected. Hence the
result follows. �

By interchanging positive edges with negative edges in Theorem 9, we obtain the fol-
lowing result.

Corollary 10. Every set of negative integers is a signed degree set of some connected
signed k-partite graph.
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Finally, we have the following result.

Theorem 11. Every set of integers is a signed degree set of some connected signed
k-partite graph.
Proof. Let S be a set of integers. Then we have the following five cases.
Case (i). S is a set of positive (negative) integers. Then the result follows by Theorem
9 (Corollary 10).
Case (ii). S = {0}. Then a signed k-partite graph G(V1, V2, · · · , Vk) with Vi = {vi, v′i}
for all i, 1 ≤ i ≤ k, in which viv′i+1, v

′
ivi+1 for all i, 1 ≤ i ≤ k − 1, are positive edges and

vivi+1, v
′
iv
′
i+1 for all i, 1 ≤ i ≤ k − 1, are negative edges has signed degree set S.

Case (iii). S is a set of non-negative (non-positive) integers. Let S = S′ ∪ {0}, where
S′ be a set of positive(negative) integers. Then by Theorem 9(Corollary 10), there is a
connected signed k-partite graph G′(V ′1 , V ′2 , · · · , V ′k) with signed degree set S′. Construct
a new signed k-partite graph G(V1, V2, · · · , Vk) as follows.
Let V1 = V ′1 ∪ {x1} ∪ {y1}, V2 = V ′2 ∪ {x2} ∪ {y2}, V3 = V ′3 , · · · , Vk = V ′k , with
V ′1∩{x1} = φ, V ′1∩{y1} = φ, {x1}∩{y1} = φ, V ′2∩{x2} = φ, V ′2∩{y2} = φ, {x2}∩{y2} = φ.
Let v′1x2, x1v′2, y1y2 be positive edges, v′1y2, x1x2, y1v′2 be negative edges, where v′1 ∈
V ′1 , v

′
2 ∈ V ′2 and let there be all the edges of G′(V ′1 , V ′2 , · · · , V ′k). Then G(V1, V2, · · · , Vk)

has signed degree set S. We note that addition of the positive edges v′1x2, x1v′2, y1y2
and negative edges v′1y2, x1x2, y1v′2 do not effect the signed degrees of the vertices of
G′(V ′1 , V

′
2 , · · · , V ′k), and the vertices x1, y1, x2, y2 have signed degrees zero each.

Case (iv). S is a set of non-zero integers. Let S = S′ ∪ S′′, where S′ and S′′ are
sets of positive and negative integers respectively. Then by Theorem 9 (Corollary 10),
there are connected signed k-partite graphs G′(V ′1 , V ′2 , · · · , V ′k) and G′′(V ′′1 , V ′′2 , · · · , V ′′k )
with signed degree sets S′ and S′′ respectively. Suppose G′1(V

′
11, V

′
21, · · · , V ′k1) and

G′′2 (V
′′
12, V

′′
22, · · · , V ′′k2) are the copies of G′(V ′1 , V ′2 , · · · , V ′k) and G′′(V ′′1 , V ′′2 , · · · , V ′′k ) with

signed degree sets S′ and S′′ respectively. Construct a new signed k-partite graph
G(V1, V2, · · · , Vk) as follows.
Let

V1 = V ′1 ∪ V ′11 ∪ V ′′1 ∪ V ′′12,

V2 = V ′2 ∪ V ′21 ∪ V ′′2 ∪ V ′′22,

V3 = V ′3 ∪ V ′31 ∪ V ′′3 ∪ V ′′32,

...

Vk = V ′k ∪ V ′k1 ∪ V ′′k ∪ V ′′k2,
with V ′i ∩ V ′i1 = φ, V ′i ∩ V ′′i = φ, V ′i ∩ V ′′i2 = φ, V ′i1 ∩ V ′′i = φ, V ′i1 ∩ V ′′i2 = φ, V ′′i ∩ V ′′i2 = φ.
Let v′1v

′′
22, v

′
11v
′′
2 be positive edges, v′1v′2, v′11v′′22 be negative edges, where v′1 ∈ V ′1 , v′11 ∈

V ′11, v
′′
2 ∈ V ′′2 , v′′22 ∈ V ′′22 and let there be all the edges of

G′(V ′1 , V
′
2 , · · · , V ′k), G′1(V ′11, V ′21, · · · , V ′k1), G′′(V ′′1 , V ′′2 , · · · , V ′′k ) andG′′2 (V ′′12, V ′′22, · · · , V ′′k2).

Then G(V1, V2, · · · , Vk) has signed degree set S.
We note that addition of the positive edges v′1v′′22, v′11v′′2 and negative edges v′1v′′2 , v′11v′′22 do
not effect the signed degrees of the vertices of G′(V ′1 , V ′2 , · · · , V ′k), G′1(V ′11, V ′21, · · · , V ′k1),
G′′(V ′′1 , V

′′
2 , · · · , V ′′k ) and G′′2 (V ′′12, V ′′22, · · · , V ′′k2).

Case (v). S is the set of all integers. Let S = S′ ∪ S′′ ∪ {0}, where S′ and S′′

are sets of positive and negative integers respectively. Then by Theorem 9(Corollary 10),
there exist connected signed k-partite graphs G′(V ′1 , V ′2 , · · · , V ′k) and G′′(V ′′1 , V ′′2 , · · · , V ′′k )
with signed degree sets S′ and S′′ respectively. Construct a new signed k-partite graph
G(V1, V2, · · · , Vk) as follows.
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Let

V1 = V ′1 ∪ V ′′1 ∪ {x},
V2 = V ′2 ∪ V ′′2 ∪ {y},
V3 = V ′3 ∪ V ′′3 ,
...
Vk = V ′k ∪ V ′′k ,

with V ′i ∩ V ′′i = φ, V ′1 ∩ {x} = φ, V ′′1 ∩ {x} = φ, V ′2 ∩ {y} = φ, V ′′2 ∩ {y} = φ. Let
v′1v
′′
2 , v
′′
1 y, xv

′
2 be positive edges, v′1y, v′′1 v′2, xv′′2 be negative edges, where v′1 ∈ V ′1 , v′′1 ∈

V ′′1 , v
′
2 ∈ V ′2 , v′′2 ∈ V ′′2 , and let there be all the edges of G′(V ′1 , V ′2 , · · · , V ′k) and

G′′(V ′′1 , V
′′
2 , · · · , V ′′k ). Therefore G(V1, V2, · · · , Vk) has signed degree set S. We note that

addition of the positive edges v′1v′′2 , v′′1 y, xv′2 and negative edges v′1y, v′′1 v′2, xv′′2 do not
effect the signed degrees of the vertices of G′(V ′1 , V ′2 , · · · , V ′k) and G′′(V ′′1 , V ′′2 , · · · , V ′′k ),
and the vertices x and y have signed degrees zero each.
Clearly, by construction, all the signed k-partite graphs are connected. This proves the
result. �
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1. Introduction
Estimation of the parameter(s) of the selected population is an important estimation

problem and arises in various practical problems. For example, we wish to select the
treatment with the highest cure rate and then estimate the actual probability of success
with this treatment, see Tappin [30]. A car manufacturer, who has selected the most
reliable model of engine for his cars, would like to know the reliability of the selected
engine during actual use, see Kumar and Kar [12]. A textile designer chooses the best
quality cloth from k available varieties for his usage. Naturally, he would be interested in
estimating the durability of the best cloth that he has selected, see Gangopadhyay and
Kumar [10].

The problem of estimation after selection is related to ranking and selection method-
ology. Readers may refer to Sarkadi [28], Dahiya [9], Sackrowitz and Cahn [26,27], Misra
and Singh [17], Kumar and Kar [12], Balakrishnan et al. [5] and Kumar et al. [14].

During the past three decades, a lot of work has been done on estimation after se-
lection from Gamma populations. Some of the main results are as follows: For positive
integer value shape parameter, Vellaisamy and Sharma [35] derived the UMVUE of the
scale parameter of the larger selected population and obtained estimators which are ad-
missible (or inadmissible) within a subclass of equivariant estimators under the Squared
Error Loss (SEL) function. Some of their results were extended to real valued shape
parameter by Vellaisamy and Sharma [36]. Later, Vellaisamy [33] obtained estimators
which dominates natural estimators under the SEL function. Vellaisamy [34] showed that
the UMVUE of the selected scale parameters are inadmissible under the SEL function.
Misra et al. [18,19] extended the admissibility and inadmissibility results of Vellaisamy
and Sharma [35] to the case of known and arbitrary shape parameter. Motamed-Shariati
and Nematollahi [20] derived the minimax estimator of the scale parameter of the larger
selected population under the Scale Invariant Squared Error Loss (SISEL) function. Ne-
matollahi and Motamed-Shariati [22] dealt with estimating the scale parameter of the
selected gamma population under the entropy loss function and extended their results to
a subclass of exponential family.

Let X1 and X2 be two independent random variables from populations Π1 and Π2,
respectively, where Πi has probability density function (pdf)

f(x|θi, α) =
1

θαi Γ(α)
xα−1 e

− x
θi , x > 0, α > 0, θi > 0, i = 1, 2,(1.1)

where α is the common known shape parameter and θ1, θ2 are unknown scale parameters.
Let X(1) = min(X1, X2) and X(2) = max(X1, X2). For selecting the population corre-
sponding to the larger (or smaller) θi’s, we use the natural selection rule and select the
population corresponding to the X(2) (or X(1)). Therefore the scale parameter associated
with the larger and smaller selected population are given by

θM =

{
θ1 X1 ≥ X2

θ2 X1 < X2
and θJ =

{
θ2 X1 ≥ X2

θ1 X1 < X2.

In literature the estimation of the selected gamma scale parameters θM and θJ con-
sidered under SEL, SISEL and entropy loss functions, which are either symmetric or
asymmetric and unbounded. In some estimation problems, the use of unbounded loss
function may be inappropriate. For example in estimating the mean life θ of a component,
the amount of loss for estimating θ by an estimator is essentially bounded.

For estimation of the parameter of the selected population under a bounded loss
function, see Naghizadeh Qomi et al. [21]. They estimate the mean of the selected
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Figure 1. Plot of the RNL function for k = 1 and certain values of γ

normal population under Reflected Normal Loss (RNL) function given by

L(∆) = k

{
1− e−

∆2

2γ2

}
,

where ∆ = δ − θ, k > 0 is the maximum loss and γ > 0 is a shape parameter. The RNL
function is a symmetric and bounded function of ∆ (see Figure 1).

Although the RNL function is bounded, but it is symmetric and give the same penalty
for underestimation and overestimation. Also, it is appropriate for location parameter θ.
In some estimation problem, underestimation may be more serious than overestimation
or vise versa. For example, in estimating the average life of the components of an aircraft,
overestimation is usually more serious than underestimation. In such cases, for estimation
the average life, which is a multiple of a scale parameter, an asymmetric bounded scale
invariant loss function is appropriate to use.

In this paper, we discuss the estimation of the scale parameter of the selected gamma
population under Reflected Gamma Loss (RGL) function. The RGL function is a sim-
ple transformation of the gamma density and introduced by Spiring and Yeung [29] in
response to the criticisms of the SISEL function and is defined by

L(θ, δ) = k

{
1−

(
δ

θ

)γ
e−γ(

δ
θ
−1)

}
= k

{
1− e−γ

(
δ
θ
−ln δ

θ
−1
)}

(1.2)

where k > 0 is the maximum loss and γ > 0 is a shape parameter. The RGL function
is a bounded and asymmetric function of δ but not convex in δ and is essentially a
gamma density flipped upside down, whence its name (see Figure 2). This loss is scale
invariant, which is appropriate for estimating scale parameter θ, and it penalizes heavily
underestimation. Towhidi and Behboodian [31,32] used this loss in some problem of scale
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parameter estimation. Clearly the value of k > 0 does not have any influence on our
results, therefore without loss of generality, we shall take k = 1 in the rest of the paper.

Since the RGL function is bounded, so by a result of Basu [6], Uniformly Minimum
Risk Unbiased estimator of any unknown parameter does not exist under the RGL func-
tion. We are interested in estimation of the random parameters θM and θJ of the selected
gamma population under the RGL function and we concentrate our attention on admis-
sible and inadmissible estimators of θM and θJ . To this end, in section 2, we employ the
technique of Brewster and Zidek [7] for finding dominating estimators for some intended
scale and permutation invariant estimators. In section 3, we discuss the admissibility of
invariant estimators of the form cX(2) and dX(1) for estimating θM and θJ , respectively.
In section 4, applications on k-records, censored data and extension of the problem to a
subclass of exponential family are considered.

2. Sufficient Conditions for Inadmissibility
Let X1 and X2 be two independent random variables, where Xi, i = 1, 2 has pdf

(1.1). In estimation of unknown random parameters θM and θJ under the RGL func-
tion, the problem is invariant under the scale and permutation groups of transforma-
tions. Therefore, it is natural to consider only those estimators which are permutation
and scale invariant, i.e, estimators satisfying δ(X1, X2) = δ(X2, X1) and δ(cX1, cX2) =
cδ(X1, X2), ∀c > 0. For this purpose, consider the following classes of invariant estima-
tors

DU = {δψ : δψ(X1, X2) = X(2)ψ(Y )},(2.1)
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and

DL = {δϕ : δϕ(X1, X2) = X(1)ϕ(T )},(2.2)

for θM and θJ respectively, where Y =
X(1)

X(2)
, T = 1

Y
and ψ and ϕ are some real valued

functions defined on (0, 1] and [1,∞), respectively. In this section, we will employ the
technique of Brewster and Zidek [7] to derive dominating estimators to show the inad-
missibility of some scale and permutation invariant estimators of θM and θJ , under the
RGL function. As a consequence, we show that several of the proposed estimators are
inadmissible and present improved estimators for those.

The following lemma will be useful in deriving the improved estimators on estimating
θM and θJ .

2.1. Lemma Let Y =
X(1)

X(2)
, T = 1

Y
, µ = max(θ1,θ2)

min(θ1,θ2)
and ψ and ϕ are real valued

functions defined on (0, 1] and [1,∞), respectively. Define the functions ηy,ψ(µ) and
ξt,ϕ(µ) as

ηy,ψ(µ) = (2α+ γ)

[
µ

(1+γψ(y))µ+y

]2α+γ+1

+ 1
µγ+1

[
µ

1+γψ(y)+µy

]2α+γ+1

[
µ

(1+γψ(y))µ+y

]2α+γ
+ 1

µγ

[
µ

1+γψ(y)+µy

]2α+γ , 0 < y ≤ 1, µ ≥ 1,

and

ξt,ϕ(µ) = (2α+ γ)

[
µ

(1+γϕ(t))µ+t

]2α+γ+1

+ 1
µγ+1

[
µ

1+γϕ(t)+µt

]2α+γ+1

[
µ

(1+γϕ(t))µ+t

]2α+γ
+ 1

µγ

[
µ

1+γϕ(t)+µt

]2α+γ , t ≥ 1, µ ≥ 1.

(i) For y ∈ (0, 1], the conditional pdf of S =
X(2)

θM
given Y = y is

fS|Y=y(s) =
yα−1s2α−1

Γ2(α)fY (y)

[
µ−αe

−( y
µ
+1)s

+ µαe−(1+µy)s

]
, s > 0,

where fY (y) denotes the pdf of Y .

(ii) For t ∈ [1,∞), the conditional pdf of U =
X(1)

θJ
given T = t is

fU|T=t(u) =
tα−1u2α−1

Γ2(α)fT (t)

[
µ−αe

−( t
µ
+1)u

+ µαe−(1+µt)u

]
, u > 0,

where fT (t) denotes the pdf of T .
(iii) For y ∈ (0, 1]

sup
µ≥1

ηy,ψ(µ) =
2α+ γ

1 + γψ(y)
=

1

ψ?(y)
.(2.3)

(iv) For t ∈ [1,∞]

sup
µ≥1

ξt,ϕ(µ) =
2α+ γ

1 + γϕ(t)
=

1

ϕ?(t)
.(2.4)

Proof. (i),(ii) For a proof, see Lemma 16(i) and 16(ii) of Misra et al. [18].
(iii) Note that

lim
µ↑∞

ηy,ψ(µ) =
2α+ γ

1 + γψ(y)
.



1114

So, we need to show that ηy,ψ(µ) ≤ 2α+γ
1+γψ(y)

. But this inequality is equivalent to:

[1 + γψ(y)]ηy,ψ(µ) ≤ (2α+ γ)

⇔ [1 + γψ(y)]µγ+1{[1 + γψ(y)]µ+ y
}−(2α+γ+1)

+[1 + γψ(y)]
{

1 + γψ(y) + yµ
}−(2α+γ+1)

≤ µγ
{

[1 + γψ(y)]µ+ y
}−(2α+γ)

+
{

1 + γψ(y) + yµ
}−(2α+γ)

⇔
{

[1 + γψ(y)]µ+ y
}−(2α+γ+1)

{
µγ+1[1 + γψ(y)]− µγ

{
[1 + γψ(y)]µ+ y

}}
+

{
1 + γψ(y) + yµ

}−(2α+γ+1)
{

1 + γψ(y)− [1 + γψ(y) + yµ]

}
≤ 0

⇔ −yµγ
{

[1 + γψ(y)]µ+ y
}−(2α+γ+1) − yµ

{
1 + γψ(y) + yµ

}−(2α+γ+1) ≤ 0

which is always true for µ ≥ 1 and y ∈ (0, 1]. So, the result follows.
(iv) Similar to the proof of (iii).

The following theorem provides a sufficient condition for invariant estimators δψ(X1,
X2) ∈ DU to be inadmissible under the RGL function.

2.2. Theorem Let δψ(X1, X2) ∈ DU be an invariant estimator of θM , ψ11(y) be any
function defined on (0, 1] such that Pθ

(
ψ(Y ) < ψ11(Y ) ≤ ψ?(Y )) > 0, ∀θ = (θ1, θ2) ∈

(0,∞) × (0,∞) = <2
+. Then under the RGL function, the invariant estimator δψ is

inadmissible for estimating θM , and is dominated by δψ1(X1, X2) = X(2)ψ1(Y ), where

ψ1(Y ) =


ψ11(Y ) ψ(Y ) < ψ11(Y ) ≤ ψ?(Y )

ψ(Y ) o.w.

Proof. For µ ≥ 1, the risk difference of δψ and δψ1 is

∆(µ) = R(θM , δψ)−R(θM , δψ1)

= Eθ

[
e
−γ
(X(2)ψ1(Y )

θM
− ln

X(2)ψ1(Y )

θM
−1
)]
− Eθ

[
e
−γ
(X(2)ψ(Y )

θM
− ln

X(2)ψ(Y )

θM
−1
)]

= eγEθ

[
e−γ
(
Sψ1(Y )−lnSψ1(Y )

)
− e−γ

(
Sψ(Y )−lnSψ(Y )

)]
= eγEθ[Dθ(Y )],

where

Dθ(y) = Eθ

[
e−γ
(
Sψ1(y)−lnSψ1(y)

)
− e−γ

(
Sψ(y)−lnSψ(y)

)
|Y = y

]
, y ∈ (0, 1].

Using the fact that ea − eb ≥ (a− b)eb, ∀a, b ∈ <, we have

Dθ(y) ≥ γEθ

{[
(Sψ(y)− lnSψ(y))− (Sψ1(y)− lnSψ1(y))

]
×e−γ(Sψ(y)−lnSψ(y))|Y = y

}
= γ(ψ(y)− ψ1(y)) Eθ

{
e−γ(Sψ(y)−lnSψ(y))|Y = y

}
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×
[

lnψ1(y)− lnψ(y)

ψ(y)− ψ1(y)
+
Eθ
{
Se−γ(Sψ(y)−lnSψ(y))|Y = y

}
Eθ
{
e−γ(Sψ(y)−lnSψ(y))|Y = y

} ]
.(2.5)

Let K(y, µ) = Eθ
{
e−γ(Sψ(y)−lnSψ(y))|Y = y

}
, then from Lemma 2.1(i), we have

K(y, µ) = [ψ(y)]γ
∫ ∞
0

sγe−γψ(y)sfS|Y=y(s)ds

=
[ψ(y)]γyα−1Γ(2α+ γ)µα

Γ2(α)fY (y)

×
[

µγ

[(1 + γψ(y))µ+ y]2α+γ
+

1

[1 + γψ(y) + yµ]2α+γ

]
(2.6)

and

Eθ
{
Se−γ(Sψ(y)−lnSψ(y))|Y = y

}
= [ψ(y)]γ

∫ ∞
0

sγ+1e−γψ(y)sfS|Y=y(s)ds

=
[ψ(y)]γyα−1Γ(2α+ γ + 1)µα

Γ2(α)fY (y)

×
[

µγ+1

[(1 + γψ(y))µ+ y]2α+γ+1
+

1

[1 + γψ(y) + yµ]2α+γ+1

]
.(2.7)

Now, substituting (2.6) and (2.7) in (2.5), we have

Dθ(y) ≥ γK(y, µ)(ψ(y)− ψ1(y))

[
ln ψ1(y)

ψ(y)

ψ(y)− ψ1(y)
+ ηy,ψ(µ)

]
,

where ηy,ψ(µ) is defined in Lemma 2.1. Clearly, if the condition ψ(y) < ψ11(y) ≤ ψ?(y)
does not hold, then Dθ(y) = 0, ∀θ ∈ <2

+ and ∀y ∈ (0, 1]. For ψ(y) < ψ11(y) ≤ ψ?(y),
using (2.3) and the inequality ln a > 1− 1

a
, ∀a > 0, we have

Dθ(y) ≥ γK(y, µ)(ψ(y)− ψ11(y))

[
ln ψ11(y)

ψ(y)

ψ(y)− ψ11(y)
+

1

ψ?(y)

]
> 0, ∀θ ∈ <2

+ and ∀y ∈ (0, 1].

Since Pθ(ψ(Y ) < ψ11(Y ) ≤ ψ?(Y )) > 0, ∀θ ∈ <2
+, it follows that ∆(µ) > 0, ∀θ ∈ <2

+.

2.3. Remark In Theorem 2.2 we have the condition ψ(Y ) < ψ11(Y ) ≤ ψ?(Y ) with pos-
itive probability. So, Pθ(ψ(Y ) < ψ?(Y )) = Pθ(ψ(Y ) < 1

2α
) > 0. Therefore, a necessary

condition on the function ψ(Y ) for Theorem 2.2 to actually offer an improved estimator
(i.e., ψ1(Y ) is different than ψ(Y ) with positive probability) is that Pθ(ψ(Y ) < 1

2α
) > 0.

The following Corollary is an immediate consequence of the Theorem 2.2.

2.4. Corollary Let δψ(X1, X2) ∈ DU be an invariant estimator of θM such that
Pθ(ψ(Y ) < 1

2α
) > 0. If for some function ψ??(Y ), Pθ

(
ψ??(Y ) ≤ ψ(Y ) < 1+γψ??(Y )

2α+γ

)
>

0, ∀θ ∈ <2
+, then under the RGL function, the invariant estimator δψ is inadmissible for

estimating θM , and is dominated by δψ?1 (X1, X2) = X(2)ψ
?
1(Y ), where

ψ?1(Y ) =


1+γψ??(Y )

2α+γ
ψ??(Y ) ≤ ψ(Y ) < 1+γψ??(Y )

2α+γ

ψ(Y ) o.w.

Proof. Use Theorem 2.2 with ψ11(Y ) = 1+γψ??(Y )
2α+γ

≤ ψ?(Y ).
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2.5. Corollary Let δψ(X1, X2) ∈ DU be an invariant estimator of θM such that
Pθ(ψ(Y ) < 1

2α
) > 0. Define

ψ1(Y ) =


1+γψ(Y )
2α+γ

ψ(Y ) < 1
2α

ψ(Y ) o.w.

Then the estimator δψ1(X1, X2) = X(2)ψ1(Y ) dominates δψ(X1, X2).

Proof. Apply Corollary 2.4 with ψ??(Y ) = ψ(Y ).
2.6. Remark Consider the following mixed estimators of θM

δp,ψ(X1, X2) = pX(2) + (1− p)X(1)

= X(2)[p+ (1− p)Y ]

where p ≥ 0. Following the Corollary 2.4 and taking ψ??(y) = y
2α

for α > 1
2
, this

estimator is inadmissible and is dominated by

δ?p,ψ(X1, X2) =


2αX(2)+γX(1)

2α(2α+γ)
Y
2α

< p+ (1− p)Y < 2α+γY
2α(2α+γ)

δp,ψ(X1, X2) o.w.

Also, using Corollary 2.5 one can get another improved estimator of δp,ψ(X1, X2), which
is given by

δp,ψ1(X1, X2) =


X(2)+γ[pX(2)+(1−p)X(1)]

2α+γ
p+ (1− p)Y < 1

2α

δp,ψ(X1, X2) o.w.

The following Theorem gives a sufficient condition for inadmissibility of invariant
estimators δϕ in DL under the RGL function.

2.7. Theorem Let δϕ(X1, X2) ∈ DL be an invariant estimator of θJ , ϕ11(t) be any
function defined on [1,∞) such that Pθ

(
ϕ(T ) < ϕ11(T ) ≤ ϕ?(T )

)
> 0, ∀θ ∈ <2

+. Then
under the RGL function, the invariant estimator δϕ is inadmissible for estimating θJ ,
and is dominated by δϕ1(X1, X2) = X(1)ϕ1(T ), where

ϕ1(T ) =


ϕ11(T ) ϕ(T ) < ϕ11(T ) ≤ ϕ?(T )

ϕ(T ) o.w.

Proof. The proof is similar to the proof of Theorem 2.2 by replacing Y, ψ, ψ?, ψ1 and ψ11

by T, ϕ, ϕ?, ϕ1 and ϕ11, respectively.

2.8. Remark In Theorem 2.7 we have the condition ϕ(T ) < ϕ11(T ) ≤ ϕ?(T ) with
positive probability. So, Pθ(ϕ(T ) < ϕ?(T )) = Pθ(ϕ(T ) < 1

2α
) > 0. Therefore, a necessary

condition on the function ϕ(T ) for Theorem 2.7 to actually offer an improved estimator
(i.e., ϕ1(T ) is different than ϕ(T ) with positive probability) is that Pθ(ϕ(T ) < 1

2α
) > 0.

The following Corollary is an immediate consequence of the Theorem 2.7.

2.9. Corollary Let δϕ(X1, X2) ∈ DL be an invariant estimator of θJ such that
Pθ(ϕ(T ) < 1

2α
) > 0. If for some function ϕ??(T ), Pθ

(
ϕ??(t) ≤ ϕ(T ) < 1+γϕ??(t)

2α+γ

)
>
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0, ∀θ ∈ <2
+, then under the RGL function, the invariant estimator δϕ is inadmissible for

estimating θJ , and is dominated by δϕ?1 (X1, X2) = X(1)ϕ
?
1(T ), where

ϕ?1(T ) =


1+γϕ??(T )

2α+γ
ϕ??(T ) ≤ ϕ(T ) < 1+γϕ??(T )

2α+γ

ϕ(T ) o.w.

Proof. Use Theorem 2.7 with ϕ11(T ) = 1+γϕ??(T )
2α+γ

≤ ϕ?(T ).

2.10. Corollary Let δϕ(X1, X2) ∈ DL be an invariant estimator of θJ such that
Pθ(ϕ(T ) < 1

2α
) > 0. Define

ϕ1(T ) =


1+γϕ(T )
2α+γ

ϕ(T ) < 1
2α

ϕ(T ) o.w.

Then the estimator δϕ1(X1, X2) = X(2)ϕ1(T ) dominates δϕ(X1, X2).

Proof. Apply Corollary 2.9 with ϕ??(T ) = ϕ(T ).

2.11. Remark Consider the following mixed estimators of θJ

δp,ϕ(X1, X2) = pX(1) + (1− p)X(2)

= X(1)[1 + (1− p)(T − 1)]

where p ≥ 0. Following the Corollary 2.9 and taking ϕ??(t) = 1 for α < 1
2
, this estimator

is inadmissible and is dominated by

δ?p,ϕ(X1, X2) =


1+γ
2α+γ

X(1) 1 ≤ p+ (1− p)T < 1+γ
2α+γ

δp,ϕ(X1, X2) o.w.

Also, using Corollary 2.10 we get another improved estimator of δp,ϕ(X1, X2), which is
given by

δp,ϕ1(X1, X2) =


X(1)+γ[pX(1)+(1−p)X(2)]

2α+γ
p+ (1− p)T < 1

2α

δp,ϕ(X1, X2) o.w.

3. Discussion on Admissible Estimators
An important problem in estimation of θM and θJ in the family of scale distributions,

is to determine admissible estimators of the form cX(2) and dX(1) in the class of scale
invariant estimators of the form

D1U = {δ1c : δ1c(X1, X2) = cX(2), c > 0}(3.1)

and

D1L = {δ2d : δ2d(X1, X2) = dX(1), d > 0},(3.2)

respectively. In this section, we discuss the admissibility of δ1c and δ2d within the subclass
D1U and D1L, respectively under the RGL function.

The following lemma will be useful in characterization of admissible estimators of θM
and θJ within the subclasses D1U and D1L, respectively, under the RGL function.
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Table 1. Values of c?(1, γ) for α = 1, 2, 4 and certain values of γ

γ
α 0.25 0.5 0.75 1 5 10
1 0.6693 0.6714 0.6732 0.6747 0.6843 0.6874
2 0.3643 0.3650 0.3655 0.3660 0.3702 0.3721
4 0.1965 0.1966 0.1968 0.1969 0.1983 0.1992

3.1. Lemma Let X1 and X2 be two independent random variables such that Xi, i = 1, 2
has pdf (1.1) and X(1) ≤ X(2) be the ordered statistics of X1 and X2.
(i) If S =

X(2)

θM
, then the pdf of S is

fS(s) =

[
Fα(µs) + Fα

(
s

µ

)]
fα(s), s > 0,(3.3)

where µ = max(θ1,θ2)
min(θ1,θ2)

≥ 1, Fα and fα denote the cumulative distribution function (cdf)
and the pdf of Gamma(α, 1)-distribution, respectively.
(ii) If U =

X(1)

θJ
, then the pdf of U is given by

fU (u) =

[
2− Fα(µu)− Fα

(
u

µ

)]
fα(u), u > 0.(3.4)

Proof. For a proof, see Lemma 7(i) and 7(ii) of Misra et al. [18].

3.1. Admissibility of δ1c. For deriving admissible estimators of θM in the class of
invariant estimators (3.1), we find values of c that minimizes the risk function δ1c = cX(2)

which is

R(θM , δ1c) = 1− E
[
e
−γ(

cX(2)
θM

−ln
cX(2)
θM

−1)
]

= 1− E
[
e−γ(cS−ln cS−1)

]
,(3.5)

where S =
X(2)

θM
. The risk function (3.5) is not necessarily convex, but has a unique

minimum w.r.t. c. Figure 3 shows the graph of the risk function as a function of c
for certain values of µ, γ = 1 and α = 1, 2, 4. It seems that the minimum point c,
which depends on the values of µ and γ, of the risk function is near to α−1 when µ
gets larger and larger. Therefore R(θM , cX(2)) will be minimized at the point c given by
∂R(θM ,δ1c)

∂c
= 0 which reduces to

E

[(
S − 1

c(µ, γ)

)
e−γ(c(µ,γ)S−ln(c(µ,γ)S)−1)

]
= 0(3.6)

The behavior of c(µ, γ) can not be determined analytically. The graph of c(µ, γ) as a
function of µ ≥ 1 for α = 1, 2, 4 and certain values of γ are shown in Figure 4. It is
seen from Figure 4 (and also from numerical solution of equation (3.6)) that for fixed γ,
c(µ, γ) increases as µ increases and c(µ, γ)→ α−1 as µ→∞. So

inf
µ≥1

c(µ, γ) = c(1, γ) = c? and sup
µ≥1

c(µ, γ) = lim
µ→∞

c(µ, γ) = α−1.

where c? = c?(1, γ) is the root of equation (3.6) with µ = 1. Table 1 shows the root
c? = c?(1, γ) for certain values of γ > 0. Therefore for each c ∈ [c?, α−1] there is a µ for
which R(θM , δ1c) is minimum, which implies that for c ∈ [c?, α−1], δ1c is admissible in
the class of estimators (3.1). So, we have the following conjecture.
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Figure 3. Plots of risk function for γ = 1, α = 1, 2, 4 and certain values of µ
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3.2. Conjecture Let c? be the root of equation (3.6) with µ = 1. Then, under the RGL
function, the estimators δ1c(X1, X2) = cX(2) are admissible within the subclass D1U of
invariant estimators of θM , if and only if c ∈ [c?, α−1].

3.3. Remark From Corollary 2.5 the estimator δ1c(X1, X2) = cX(2) for c < 1
2α

is inadmissible and is dominated by δ1(X1, X2) = 1+γc
2α+γ

X(2). Note that from Table 1,
c? > 1

2α
for certain values of γ, which satisfy the condition of Conjecture 3.2.

3.4. Remark Based on the Conjecture 3.2, the natural and generalized Bayes estima-
tor

X(2)

α
of θM , which is the analog of the maximum likelihood and best scale invariant

estimators of θ2, is admissible within the subclass D1U of invariant estimators of θM .

3.2. Admissibility of δ2c. Similarly, the risk function of δ2d = dX(1) as an estimator
of θJ has a unique minimum w.r.t. d, and can be yield from

∂R(θJ ,dX(1))

∂d
= 0 which is

E

[(
U − 1

d(µ, γ)

)
e−γ(d(µ,γ)U−ln(d(µ,γ)U)−1)

]
= 0.(3.7)

For µ = 1, the root d? = d?(1, γ) of this equation are summarized in Table 2 for the values
α = 1, 2, 4 and for certain values of γ. Note that we are able to prove analytically that
the root d?(1, γ) for α = 1 and arbitrary γ > 0 is always equal to 2 (see the Appendix).
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Table 2. Values of d?(1, γ) for α = 1, 2, 4 and certain values of γ

γ
α 0.25 0.5 0.75 1 5 10
1 2 2 2 2 2 2
2 0.7982 0.7967 0.7954 0.7944 0.7870 0.7845
4 0.3437 0.3433 0.3430 0.3427 0.3400 0.3386

The graph of d(µ, γ) as a function of µ ≥ 1 (and also numerical solution of equation
(3.7)) shows that for fixed γ > 0, d(µ, γ) decreases as µ increases and d(µ, γ) → α−1 as
µ→∞. So

inf
µ≥1

d(µ, γ) = lim
µ→∞

d(µ, γ) = α−1 and sup
µ≥1

d(µ, γ) = d(1, γ) = d?

Therefore, we conjecture that the estimators δ2d(X1, X2) = dX(1) are admissible within
the subclass D1L of invariant estimators of θJ , under the RGL function, if and only if
d ∈ [α−1, d?].

3.5. Remark Let Xi1, Xi2, . . . , Xin, i = 1, 2, be a pair of independent random samples
from Πi, i = 1, 2, and Πi has p.d.f. (1.1). Then Ti(Xi) =

∑n
i=1Xij , i = 1, 2, is

complete sufficient statistic for θi and has gamma distribution with parameters (nα, θi),
respectively, where Xi = (Xi1, . . . , Xin). Therefore, the results of Sections 2-3 hold true
upon replacing α by nα and Xi by Ti(Xi), i = 1, 2, in this case.

4. Applications and Extensions
In this section, we apply the results of Sections 2 and 3 to k-records and Type-II

censored data and extend these results to a subclass of exponential family.

4.1. Estimation After Selection Based on k-Record Data. In statistical inference,
a rich literature has developed on record data since Chandler [8] formulated the theory of
records. Let Xi1, Xi2, . . . , Xin, i = 1, 2, be a pair of independent random samples from
negative exponential populations Π1,Π2 with Πi having the associated pdf

f(x|θi) =
1

θi
e
− x
θi , θi > 0, i = 1, 2,(4.1)

where θ1, θ2 are unknown scale parameters. Let Rim(k) be upper k-records of i-th sam-
ple, i = 1, 2. It is easy to verify that the mth k-Records, Rim(k), has a Gamma

(
m, θi

k

)
-

distribution and kRim(k) has a Gamma
(
m, θi

)
-distribution, see Arnold et al. [4], Nevzorov

[23], Ahmadi et al. [1] and Ahmadi et al. [2,3] and references therein. Let R(1)

m(k) ≤ R
(2)

m(k)

represent the ordered statistics of R1
m(k) and R

2
m(k). Suppose the population correspond-

ing to largest R(2)

m(k) (or the smallest R(1)

m(k)) observation is selected. The problems that
we are interested here are the estimation of the following random parameters:

θmM =

{
θ1 R1

m(k) ≥ R2
m(k)

θ2 R1
m(k) < R2

m(k)

and θmJ =

{
θ2 R1

m(k) ≥ R2
m(k)

θ1 R1
m(k) < R2

m(k).

Since kRim(k) has Gamma
(
m, θi

)
-distribution, therefore the results of Sections 2-3, except

Remark 2.11, hold for this case upon replacing α by m and Xi by kRim(k), i = 1, 2.



1121

4.2. Estimation after Selection using Type-II Censored Data. The most com-
mon censoring scheme which is of importance in the field of reliability and life-testing, is
Type-II censoring. In this scheme, after starting the life-testing experiment with n items,
the experiment continues until a pre-specified number of failures , say r(≤ n) occur. For
more details about this scheme, see Lawless [16].

Let Xi1, Xi2, . . . , Xin, i = 1, 2, be a pair of independent random samples from neg-
ative exponential populations with pdf (4.1). It is easy to show that in this scheme
Ti =

∑r
j=1Xi(j) + (n− r)Xi(r), i = 1, 2, has a Gamma(r, θi)-distribution, see Lehmann

and Romano [15]. Now, Suppose T(1) = min(T1, T2) and T(2) = max(T1, T2) and the pop-
ulation corresponding to the largest T(2) (or smallest T(1)) is selected. We are interested
in estimation of the random parameters

θM =

{
θ1 T1 ≥ T2

θ2 T1 < T2
and θJ =

{
θ2 T1 ≥ T2

θ1 T1 < T2.

Since Ti, i = 1, 2, has Gamma
(
r, θi

)
-distribution, therefore the results of Sections 2-3,

except Remark 2.11, hold true upon replacing α by r and Xi by Ti, i = 1, 2, in this case.

4.3. Extension to a Subclass of Exponential Family. LetXi = (Xi1, Xi2, · · · , Xin),
i = 1, 2, be a random sample of size n from the ith population Πi, i = 1, 2, with the
joint scale probability density function

f(xi, τi) =
1

τni
f
(xi
τi

)
, i = 1, 2,

where xi = (xi1, · · · , xin). In some cases the above model reduces to

f(xi, θi) = C(xi, n)θ−γi e−Ti(xi)/θi , i = 1, 2,(4.2)

where C(xi, n) is a function of xi and n, θi = τri for some r > 0, γ is a function of
n and Ti(Xi) is a complete sufficient statistic for θi with Gamma(γ, θi)-distribution.
For example Exponential(βi), Gamma(ν, βi), Inverse Gaussian(∞, λi), Normal(0, σ2

i ),
Weibull(ηi, β), Rayleigh(βi), Generalized Gamma(α, λi, pi), Generalized laplace(λi, k)
belong to the family of distributions (4.2), see Parsian and Nematollahi [24] and references
therein.

Since Ti = Ti(Xi), i = 1, 2, has a Gamma(γ, θi)-distribution, therefore we can extend
the results of Sections 2-3 to the subclass of exponential family (4.2) by replacing α and
Xi by γ and Ti(Xi), respectively.

The results of Section 2-3 can also be extended to the family of transformed chi-square
distributions which is introduced by Rahman and Gupta [25] and includes Pareto and
beta distributions. For details see Jafari Jozani et al. [11].

5. Appendix
In this section, we show analytically that the root d?(1, γ) for α = 1 and arbitrary

γ > 0 is always equal to 2. To see this, note that the pdf of U given in (3.4), for
µ = α = 1, reduces to

fU (u) = 2e−2u, u > 0.

Therefore R(θJ , dX(1)) will be minimized at the point d given by ∂R(θJ ,δ2d)
∂d

= 0 which
reduces to (3.7) and for µ = 1 can be written as∫ ∞

0

(
u− 1

d(1, γ)

)
e−γ(d(1,γ)u−ln(d(1,γ)u)−1)fU (u)d(u) = 0
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and with simple computations is equivalent to

2(ed(1, γ))γ
(

1

γd(1, γ) + 2

)γ+1{
Γ(γ + 2)

γd(1, γ) + 2
− Γ(γ + 1)

d(1, γ)

}
= 0.

The root of the above equation is simply equal to d?(1, γ) = 2.
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s-pure extensions of locally compact abelian groups

H.Sahleh∗ and A.A. Alijani†

Abstract
A subgroup H of a locally compact abelian (LCA) group G is called
s-pure if H

⋂
nG = H for every positive integer n. A proper short

exact sequence 0 → A
φ→ B → C → 0 in the category of LCA groups

is said to be s-pure if φ(A) is an s-pure subgroup of G. We establish
conditions under which the s-pure exact sequences split and determine
those LCA groups which are s-pure injective. We also gives a necessary
condition for an LCA group to be s-pure projective in £.

Keywords: s-pure injective ;s-pure projective;s-pure extension.
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All groups considered in this paper are Hausdorff topological abelian groups and they
will be written additively. For a group G and a positive integer n, we denote by nG, the
subgroup of G defined by nG = {nx : x ∈ G} and G[n], the subgroup of G defined by
G[n] = {x ∈ G;nx = 0}. In a multiplicative group, we will use Gn instead of nG and
define Gn = {xn : x ∈ G}. Let £ denote the category of locally compact abelian (LCA)
groups with continuous homomorphisms as morphisms. A morphism is called proper if
it is open onto its image, and a short exact sequence 0 → A

φ−→ B
ψ−→ C → 0 in £ is

said to be an extension of A by C if φ and ψ are proper morphism. We let Ext(C,A)

denote the group of extensions of A by C [6]. Let S denotes the closure of S ⊆ G. We say
that a closed subgroup H of an LCA group G is s-pure if H

⋂
nG = H for every positive

integer n. A subgroup H of a group G is said to be pure if H
⋂
nG = nH for every

positive integer n [3]. A pure subgroup need not be s-pure and vice versa (Example 1.9).
In Section 1, we show that an s-pure subgroup is pure if and only if it is densely divisible
(Lemma 1.10). An LCA group G is said to be pure simple if G contains no nontrivial
closed pure subgroup [1]. Armacost [1] has determined the pure simple LCA group G.
Also, Armacost has determined the LCA group G such that every closed subgroup of G
is pure [1]. We say that an LCA group G is s-pure simple if G contains no nonzero s-pure
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subgroup. We say that a LCA group G is s-pure full if every closed subgroup of G is
s-pure. We show that a LCA group G is s-pure full if and only if it is divisible (Theorem
1.15). Also, we show that a compact group G is s-pure simple if and only if it is totally
disconnected(Theorem 1.16). A proper short exact sequence 0→ A

φ−→ B → C → 0 in £
is said to be s-pure if φ(A) is s-pure in B. In section 2, we study s-pure exact sequence in
£. In [4], Fulp studied pure injective and pure projective in £. In section 3, we study s-
pure injective and s-pure projective in £. An LCA group G is an s-pure injective group in
£ if and only if G ∼= Rn

⊕
(R/Z)σ (Theorem 3.2). If G is an s-pure projective group in £

then G ∼= Rn
⊕
G′ where G′ is a discrete torsion-free, non divisible group (Theorem 3.4).

The additive topological group of real numbers is denoted by R, Q is the group of
rationals with the discrete topology and Z is the group of integers. Also, Z(n) is the cyclic
group of order n and Z(p∞) denotes the quasicyclic group. For any group G, G0 is the
identity component of G, tG is the maximal torsion subgroup of G and 1G is the identity
map G→ G. An element g ∈ G is called compact if the smallest closed subgroup which
its contains is compact [8, Definition 9.9]. We denote by bG, the subgroup of all compact
elements of G. If {Gi}i∈I is a family of groups in £, then we denote their direct product
by

∏
i∈I Gi. If all the Gi are equal, we will write G

I instead of
∏
i∈I Gi. For any group G

and H, Hom(G,H) is the group of all continuous homomorphisms from G to H, endowed
with the compact-open topology. The dual group of G is Ĝ = Hom(G,R/Z) and (Ĝ, S)

denotes the annihilator of S ⊆ G in Ĝ. For a group G, we define G(1) =
⋂∞
n=1 nG.

1. s-pure subgroups
Let G ∈ £. In this section, we introduce the concept and study some properties of an

s-pure subgroup of G.

1.1. Definition. A closed subgroup H of a group G is called s-pure if H
⋂
nG = H

for every positive integer n.

1.2. Note.

(a) A closed divisible subgroup of a group is s-pure.
(b) A closed subgroup of a divisible group is s-pure.

1.3. Remark. Let G ∈ £. Then G has two trivial subgroups,{0} and G. Clearly,
{0} is s-pure. But G need not be an s-pure in itself.

Recall that a group G is said to be densely divisible if it has a dense divisible subgroup.

1.4. Lemma. A group G is densely divisible if and only if nG = G for every positive
integer n.

Proof. See [2, 4.16(a)].

1.5. Corollary. Let G ∈ £. Then, G is s-pure in itself if and only if G is densely
divisible.

Proof. It is clear by Lemma 1.4.
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1.6. Lemma. Let G ∈ £. Then, G(1) is an s-pure subgroup of G.

Proof. It is clear that G(1) ⊆ G(1)
⋂
mG for every positive integer m. So, G(1) ⊆

G(1)
⋂
mG ⊆ G(1) for all m. Hence, G(1) is an s-pure subgroup.

1.7. Remark. Let G ∈ £ and H be an s-pure subgroup of G. Then, H ⊆ nG for all
positive integers n. Hence, H ⊆

⋂∞
n=1 nG = (G, tĜ) [8].

Now, we present an example of a LCA group G and a closed subgroup H of G such
that H ⊆ (G, tĜ), but H is not an s-pure subgroup.

1.8. Example. Let S1 be the (multiplicative) circle group of unitary complex numbers
and σ any infinite cardinal number. Let G be the subgroup of (S1)σ consisting of all (xι)
such that xι = ±1 for all but a finite number of ι. Let K be the subgroup of G consisting
of all (xι) such that xι = 1 for all but a finite number of ι. By [8, section 24.44(a)],
G is a locally compact abelian group, and Ĝ is torsion-free. Let H = {(x)ι, (y)ι} where
xι = 1 and yι = −1 for ι 6= ι1, ..., ιm and xι = yι = 0 for ι = ι1, ..., ιm. Then, H is
a closed subgroup of G, and H ⊆ G = (G, tĜ). Now, suppose that n is even. Then,
H

⋂
Gn = H

⋂
K = {(x)ι}. Hence, H is not s-pure.

Recall that a subgroup H of a group G is called pure if nH = H
⋂
nG for every positive

integer n[3]. A pure subgroup need not be s-pure, and an s-pure subgroup need not be pure.

1.9. Example. Since R is divisible, so the subgroup Z of R is s-pure. But it is not a
pure subgroup. Let p be a prime and G =

∏∞
n=1 Z(pn), with discrete topology. Then, tG

is a pure subgroup of G. Since (1, 0, 0, ...) ∈ tG and (1, 0, 0, ...) /∈ p(tG), so it is not s-pure.

1.10. Lemma. A pure subgroup is s-pure if and only if it is densely divisible.

Proof. Let H be a pure subgroup of G. If H is an s-pure subgroup, then nH = H for
every positive integer n. So, by Lemma 1.4, H is densely divisible. Conversely, let H be
a densely divisible, pure subgroup of G. Then, H

⋂
nG = nH for every positive integer

n. By Lemma 1.4, nH = H for all n. So, H
⋂
nG = H for all n. Hence, H is an s-pure

subgroup in G.

Let G be a group in £. Then G is called s-pure simple if G contains no nonzero s-pure
subgroups. Similarly, G is called s-pure full if every closed subgroup of G is s-pure.

1.11. Lemma. Let G1 and G2 be two groups in £. If G1 × G2 is s-pure full, then
G1 and G2 are s-pure full.

Proof. Let G1,G2 ∈ £ and H be a closed subgroup of G1. Then, H × G2 is a closed
subgroup of G1 × G2. So, (H ×G2)

⋂
(nG1 × nG2) = H × G2 for any positive integer

n. Hence, (H
⋂
nG1)× (G2

⋂
nG2) = H × G2. Therefore, π1((H

⋂
nG1)× (nG2)) =

π1(H × G2) where π1 is the first projection map of G1 × G2 onto G1. Consequently,
H

⋂
nG1 = H. Similarly, it can be show that G2 is s-pure full.

1.12. Remark. Recall that a discrete group is densely divisible if and only if it is
divisible.
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1.13. Remark. Let G be a densely divisible group and H a closed subgroup of G.
Since (Ĝ,H) is a subgroup of Ĝ and Ĝ is torsion-free, so G/H is densely divisible.

1.14. Remark. Let G be a densely divisible group and H an open, pure subgroup of
G. An easy calculation shows that H is divisible.

1.15. Theorem. Let G ∈ £. Then, G is s-pure full if and only if G is divisible.

Proof. Let G be an s-pure full group in £. By [8, Theorem 24.30], G ∼= Rn
⊕
G′ ,

where G′ is an LCA group which contains a compact open subgroup. By Lemma 1.11, G′

is s-pure full. So, by Corollary 1.5, G′ is densely divisible. By Remark 1.13 , G′/bG′ is
densely divisible. On the other hand, G′/bG′ is discrete and torsion-free (see the proof
of Theorem 2.7 [9]). Hence, by Remark 1.12, G′/bG′ is divisible. By Remark 1.14, bG′

is divisible. Consequently, the short exact sequence 0→ bG′ → G′ → G′/bG′ → 0 splits.
Hence, G′ ∼= bG′

⊕
G′/bG′ and G′ is divisible. Therefore, G is divisible. The converse

is clear by Note 1.2.b.

1.16. Theorem. A compact group G is an s-pure simple group if and only if it is
totally disconnected.

Proof. Let G be a compact group. If G is an s-pure simple group, then by Note 1.2(a),
G0 = 0 because G0 is a closed divisible subgroup of G. So G is totally disconnected.
Conversely, Let G be a compact, totally disconnected group and H an s-pure subgroup of
G. By Remark 1.7, H ⊆ (G, tĜ). Since Ĝ is a discrete and a torsion group, so tĜ = Ĝ.
Hence, H = 0.

2. s-pure exact sequence
In this section, we introduce the concept and study some properties of s-pure exten-

sions in £.

2.1. Definition. An extension 0 −→ A
φ−→ B −→ C −→ 0 in £ is called s-pure if

φ(A) is s-pure in B.

2.2. Remark. Let A be a divisible group in £ and E : 0 −→ A
φ−→ B −→ C −→ 0

an extension in £. Then φ(A) is a closed divisible subgroup of B. So, by Note 1.2(a),E
is an s-pure extension.

2.3. Lemma. Let A,C be groups in £. Then the extension 0→ A→ A
⊕
C → C →

0 is an s-pure extension if and only if A is densely divisible.

Proof. The extension 0 → A → A
⊕
C → C → 0 is pure. Hence, by Lemma 1.10, it

is s-pure if and only if A is densely divisible.

2.4. Remark. Lemma 2.3 shows that the set of all s-pure extensions of A by C need
not be a subgroup of Ext(C,A).

The dual of an extension E : 0 → A → B → C → 0 is defined by Ê : 0 → Ĉ → B̂ →
Â → 0. The following example shows that the dual of an s-pure extension need not be
s-pure.
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2.5. Example There exists a non splitting extension

E : 0→ Z(p∞)→ B → C → 0

of Z(p∞) with compact group C which is not torsion-free [2, Example 6.4]. By Note
1.2(a), E is s-pure. Since Ẑ(p∞) is torsion-free, so Ê is pure. By Lemma 1.10, Ê is
s-pure if and only if Ĉ is densely divisible. But C is compact. So, Ĉ is discrete. Hence,
Ê is s-pure if and only if Ĉ is a discrete divisible group. Consequently, Ê is s-pure if and
only if C is a compact torsion-free group. Since C is not torsion-free, it follows that Ê
is not s-pure.

Recall that two extensions 0 → A
φ1−→ B

ψ1−→ C → 0 and 0 → A
φ2−→ X

ψ2−→ C → 0
is said to be equivalent if there is a topological isomorphism β : B → X such that the
following diagram

0 // A
φ1 //

1A

��

B
ψ1 //

β

��

C //

1C

��

0

0 // A
φ2 // X

ψ2 // C // 0

is commutative.

2.6. Lemma An extension equivalent to an s-pure extension is s-pure.

Proof. Suppose that

E1 : 0→ A
φ1−→ B → C → 0, E2 : 0→ A

φ2−→ X → C → 0

be two equivalent extension such that E1 is s-pure. Then there is a topological isomor-
phism β : B → X such that βφ1 = φ2 . Since E1 is s-pure, φ1(A) = φ1(A)

⋂
nB. Then

βφ1(A) = β(φ1(A)
⋂
nB). So, φ2(A) = φ2(A)

⋂
nX. Hence, E2 is s-pure.

2.7. Corollary. If the s-pure extension 0 → A → B → C → 0 splits, Then A is
densely divisible.

Proof. Let 0 → A → B → C → 0 be a split, s-pure extension. Then, it is equivalent
to 0 → A → A

⊕
C → C → 0. So, 0 → A → A

⊕
C → C → 0 is s-pure. Hence, by

Lemma 2.3, A is densely divisible.

2.8. Remark. The converse of Corollary 2.7 may not hold. Consider Example 2.5.

We will now show that a pullback or pushout of an s-pure extension need not be s-pure.
For more on a pullback and a pushout of an extension in £, see [6].

2.9. Example Let α be the map α : Z → Z : n 7−→ 2n. Consider the s-pure extension
E : 0 → Z2 → R/Z → R/Z → 0 which is the dual of 0 → Z

α−→ Z → Z2 → 0. Let
f : Q→ R/Z be any continuous homomorphism. Since Q is torsion-free, so the standard
pullback of E is pure, but not s-pure by Lemma 1.10 because Z2 is not densely divisible.
Now consider the s-pure extension E′ : 0 → Z → Q → Q/Z → 0 . Then the map α
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induces a pushout diagram

E′ : 0 // Z //

α

��

Q //

��

Q/Z //

1Q/Z

��

0

αE′ : 0 // Z
µ// (Z

⊕
Q)/H // Q/Z // 0

Where H = {(2n,−n);n ∈ Z} and µ : n 7−→ (n, 0) + H. If αE′ is s-pure, then
µ(Z) ⊆ 2((Z

⊕
Q)/H) which is a contradiction.

3. s-pure injectives and s-pure projectives
In this section, we define the concept of s-pure injective and s-pure projective in £ and

express some of their properties .

3.1. Definition Let G be a group in £. We call G an s-pure injective group in £ if
for every s-pure exact sequence

0→ A
φ−→ B → C → 0

and continuous homomorphism f : A → G, there is a continuous homomorphism f̄ :
B −→ G such that f̄φ = f . Similarly, we call G an s-pure projective group in £ if for
every s-pure exact sequence

0→ A→ B
ψ−→ C → 0

and continuous homomorphism f : G → C, there is a continuous homomorphism f̄ :
G→ B such that ψf̄ = f .

3.2. Theorem Let G ∈ £. The following statements are equivalent:
(1) G is an s-pure injective in £.
(2) G ∼= Rn

⊕
(R
Z

)σ where σ is a cardinal number.

Proof. 1 =⇒ 2: Let G be an s-pure injective in £. For a group X in £, consider the
s-pure extension

E : 0→ G
φ−→ B −→ X → 0

Then there is a continuous homomorphism φ̄ : B → G such that φ̄φ = 1G. Consequently,
E splits. In particular, the s-pure extension 0→ G −→ G∗ → G∗/G→ 0 splits where G∗

is the minimal divisible extension of G. Hence, G is divisible. So, by Remark 2.2, every
extension of G by X is an s-pure extension. On the other hand, every s-pure extension
of G by X splits. Hence, Ext(X,G) = 0. By [10, Theorem 3.2], G ∼= Rn

⊕
(R/Z)σ.

2 =⇒ 1: It is clear.

Recall that a discrete group G is called reduced if it has no nontrivial divisible subgroup.

3.3. Lemma Q is not an s-pure projective group.

Proof. Consider the s-pure exact sequence 0 → Z −→ R
π−→ R/Z → 0 where π is

the natural mapping. Assume that Q is an s-pure projective group and f ∈ Hom(Q,R/Z).
Then, there is f̄ ∈ Hom(Q,R) such that πf̄ = f . Hence, π∗ : Hom(Q,R)→ Hom(Q,R/Z)
is surjective. Now consider the following exact sequence

0→ Hom(Q,Z)→ Hom(Q,R)
π∗−→ Hom(Q,R/Z)→ Ext(Q,Z)→ Ext(Q,R)
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Since Q is divisible and Z is reduced, so Hom(Q,Z) = 0. Hence, π∗ is one to one. This
shows that π∗ is an isomorphism. On the other hand, Ext(Q,R) = 0. Consequently,
Ext(Q,Z) = 0 which is a contradiction.

3.4. Theorem Let G ∈ £. If G is an s-pure projective in £, then G ∼= Rn
⊕
G′

where G′ is a discrete torsion-free , reduced group.

Proof. It is known that an LCA group G can be written as G ∼= Rn
⊕
G′ where

G′ contains a compact open subgroup [8, Theorem 24.30]. An easy calculation shows
that if G is an s-pure projective group, then G′ is an s-pure projective in £. Let f ∈
Hom(G′,R

Z
). Then there exists a continuous homomorphism f̃ : G′ → R such that the

following diagram is commutative:

G′

f̃

}}
f

��
0 // Z // R π // R/Z // 0

Consider the following exact sequence

0→ Hom(G′, Z)→ Hom(G′, R)
π∗−→ Hom(G′, R/Z)→ Ext(G′, Z)→ 0

Since π∗ is surjective, so Ext(G′, Z) = 0. Let K be a compact open subgroup of G′. Then
the inclusion map i : K → G′ induces the surjective homomorphism i∗ : Ext(G′, Z) →
Ext(K,Z). So, Ext(K,Z) = 0. Hence, Ext(R/Z, K̂) = 0. By [7, Proposition 2.17],
K̂ = 0. So, K = 0. Hence, G′ is discrete. If G′ contains a subgroup of the form Z(n),
then Z(n) is a nontrivial compact open subgroup of G′ which is a contradiction. So G′

is torsion-free. Suppose G′ has a nontrivial divisible subgroup. Then G′ has a direct
summand H ∼= Q. But then H is s-pure projective, contradicting Lemma 3.3. Therefore,
G′ is reduced.
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Abstract
For dealing with uncertainties researchers introduced the concept of
soft sets. Georgiou et al. [10] defined several basic notions on soft
θ-topology and they studied many properties of them. This paper con-
tinues the study of the theory of soft θ-topological spaces and presents
for this theory new definitions, characterizations, and results concern-
ing soft θ-boundary, soft θ-exterior, soft θ-generalized closed sets, soft
Λ-sets, and soft strongly pu-θ-continuity.
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1. Introduction
In 1999, Molodtsov [20] initiated the theory of soft sets as a new mathematical tool

for dealing with uncertainties. Also, he applied this theory to several directions (see,
for example, [21-23]). The soft set theory has been applied to many different fields (see,
for example, [1-2], [4-5], [7-8], [13-18], [24], [26], [28], [30]). Later, few researches (see,
for example, [3], [6], [11-12], [19], [25], [27], [29]) introduced and studied the notion of
soft topological spaces. Recently, in 2013, D. N. Georgiou, A. C. Megaritis, and V. I.
Petropoulos [10] initiated the study of soft θ-topology. They proved that the family
of all soft θ-open sets defines a soft topology on X. Consequently, they defined some
basic notions of soft θ-topological spaces such as soft θ-interior point, soft θ-closure set,
and soft θ-continuity and established some of their properties. This paper continues the
study of the theory of soft θ-topology. It is organized as follows . The first section is
the introduction. In section 2 known basic notions and results concerning the theory of
soft sets, soft topological spaces and soft θ-topological spaces are given. In section 3 the
notions of soft θ-boundary and soft θ-exterior are defined and some of their properties
are studied. Also, some other characterizations of soft θ-closure and soft θ-interior are

∗Department of Mathematics, Faculty of Science, Assiut University Assiut, 71516, Egypt
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†Department of Mathematics, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
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given. In section 4 the basic properties of soft θ-generalized closed sets, soft θ-generalized
open sets, and soft Λ-sets are introduced. Finally, in section 5, the basic properties of
soft strongly pu-θ-continuity are introduced and studied.

2. preliminaries
2.1. Definition. [20]. Let X be an initial universe set, P (X) the power set of X, that
is the set of all subsets of X, and A a set of parameters. A pair (F,A), where F is a map
from A to P (X), is called a soft set over X.
In what follows by SS(X,A) we denote the family of all soft sets (F,A) over X.

2.2. Definition. [20]. Let (F,A), (G,A) ∈ SS(X,A). We say that the pair (F,A) is a
soft subset of (G,A) if F (p) ⊆ G(p), for every p ∈ A. Symbolically, we write (F,A) v
(G,A). Also, we say that the pairs (F,A) and (G,A) are soft equal if (F,A) v (G,A)
and (G,A) v (F,A). Symbolically, we write (F,A) = (G,A).

2.3. Definition. [20]. Let I be an arbitrary index set and {(Fi, A) : i ∈ I} ⊆ SS(X,A).
Then

(1) The soft union of these soft sets is the soft set (F,A) ∈ SS(X,A), where the
map F : A → P (X) is defined as follows: F (p) = ∪{Fi(p) : i ∈ I}, for every p ∈ A.
Symbolically, we write (F,A) = t{(Fi, A) : i ∈ I}.

(2) The soft intersection of these soft sets is the soft set (F,A) ∈ SS(X,A), where
the map F : A → P (X) is defined as follows: F (p) = ∩{Fi(p) : i ∈ I}, for every p ∈ A.
Symbolically, we write (F,A) = u{(Fi, A) : i ∈ I}.

2.4. Definition. [29]. Let (F,A) ∈ SS(X,A). The soft complement of (F,A) is the
soft set (H,A) ∈ SS(X,A), where the map H : A → P (X) defined as follows: H(p) =

X\F (p), for every p ∈ A. Symbolically, we write (H,A) = (F,A)
c

. Obviously, (F,A)
c

=

(F
c

, A) [10]. For two given subsets (M,A), (N,A) ∈ SS(X,A) [27], we have
(i) ((M,A) t (N,A))c = (M,A)cu (N,A)c;
(ii) ((M,A) u (N,A))c = (M,A)ct (N,A)c.

2.5. Definition. [20]. The soft set (F,A) ∈ SS(X,A), where F (p) = φ, for every p ∈ A is
called the A-null soft set of SS(X,A) and denoted by 0A. The soft set (F,A) ∈ SS(X,A),
where F (p) = X, for every p ∈ A is called the A-absolute soft set of SS(X,A) and denoted
by 1A.

2.6. Definition. [29]. The soft set (F,A) ∈ SS(X,A) is called a soft point in X, denoted
by eF , if for the element e ∈ A,F (e) 6= 0A and F (e′) = 0A for all e′ ∈ A\{e}. The set of
all soft points of X is denoted by SP(X). The soft point eF is said to be in the soft set
(G,A), denoted by eF ∈̃(G,A), if for the element e ∈ A and F (e) ⊆ G(e).

2.7. Definition. [29]. Let SS(X,A) and SS(Y,B) be families of soft sets. Let u : X → Y
and p : A → B be mappings. Then the mapping fpu : SS(X,A) → SS(Y,B) is defined
as:

(1) The image of (F,A) ∈ SS(X,A) under fpu is the soft set fpu(F,A) = (fpu(F ), B)
in SS(Y,B) such that

fpu(F )(y) =

{
∪

x∈p−1(y)
u(F (x)), p−1(y) 6= φ

φ, otherwise

for all y ∈ B.
(2) The inverse image of (G,B) ∈ SS(Y,B) under fpu is the soft set f−1

pu (G,B) =

(f−1
pu (G), A) in SS(X,A) such that f−1

pu (G)(x) = u−1(G(p(x))) for all x ∈ A.
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2.8. Proposition. [9]. Let (F,A), (F1, A) ∈ SS(X,A) and (G,B), (G1, B) ∈ SS(Y,B).
The following statements are true:

(1) If (F,A) v (F1, A), then fpu(F,A) v fpu(F1, A).
(2) If (G,B) v (G1, B), then f −1

pu (G,B) v f −1
pu (G1, B).

(3) (F,A) v f −1
pu (fpu(F,A)).

(4) fpu(f −1
pu (G,B)) v (G,B).

(5) f −1
pu ((G,B)

c

) = (f −1
pu (G,B))

c

.
(6) fpu((F,A) t (F1, A)) = fpu(F,A) t fpu(F1, A).
(7) fpu((F,A) u (F1, A)) v fpu(F,A) u fpu(F1, A).
(8) f −1

pu ((G,B) t (G1, B)) = f −1
pu (G,B) t f −1

pu (G1, B).
(9) f −1

pu ((G,B) u (G1, B)) = f −1
pu (G,B) u f −1

pu (G1, B).

2.9. Definition. [29]. Let X be an initial universe set, A a set of parameters, and
τ̃ ⊆ SS(X,A). We say that the family τ̃ defines a soft topology on X if the following
axioms are true:

(1) 0A,1A ∈ τ̃ .
(2) If (G,A), (H,A) ∈ τ̃ , then (G,A) u (H,A) ∈ τ̃ .
(3) If (Gi, A) ∈ τ̃ for every i ∈ I, then t{(Gi, A) : i ∈ I} ∈ τ̃ .

The triplet (X, τ̃ , A) is called a soft topological space. The members of τ̃ are called soft
open sets in X. Also, a soft set (F,A) is called soft closed if the complement (F,A)

c

belongs to τ̃ . The family of all soft closed sets is denoted by τ̃
c

.

2.10. Definition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A).
(1) The soft closure of (F,A) [27] is the soft set

ClS (F,A) = u{(S,A) : (S,A) ∈ τ̃
c

, (F,A) v (S,A)}.
(2) The soft interior of (F,A) [29] is the soft set

IntS (F,A) = t{(S,A) : (S,A) ∈ τ̃ , (S,A) v (F,A)}.

2.11. Definition. [29]. A soft set (G,A) in a soft topological space (X, τ̃ , A) is called a
soft neighborhood (briefly: nbd) of a soft point eF ∈ SP(X) if there exists a soft open
set (H,A) such that eF ∈̃(H,A) v (G,A). The soft neighborhood system of a soft point
eF , denoted by Nτ̃ (eF ), is the family of all of its soft neighborhoods.

2.12. Definition. [3]. Let (X, τ̃ , A) be a soft topological space.
(1) A subcollection B of τ̃ is called a base for τ̃ if every member of τ̃ can be expressed

as a union of members of B.
(2) A subcollection S of τ̃ is said to be a subbase for τ̃ if the family of all finite

intersections of members of S forms a base for τ̃ .

2.13. Definition. [29]. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces,
u : X → Y and p : A→ B be mappings, and eF ∈ SP(X).

(1) The map fpu : SS(X,A) → SS(Y,B) is soft pu-continuous at eF ∈ SP(X) if for
each (G,B) ∈ Nτ̃∗(fpu(eF )), there exists (H,A) ∈ Nτ̃ (eF ) such that fpu(H,A) v (G,B).

(2) The map fpu : SS(X,A) → SS(Y,B) is soft pu-continuous on X if fpu is soft
pu-continuous at each soft point in X.

2.14. Definition. [12]. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A).
(1) (F,A) is said to be a soft generalized closed set in (X, τ̃ , A) if ClS (F,A) v (G,A)

whenever (F,A) v (G,A) and (G,A) ∈ τ̃ . The set of all soft generalized closed sets of X
is denoted by (GC)S (X).
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(2) (F,A) is said to be a soft generalized open set in (X, τ̃ , A) if (F,A)
c

is a soft
generalized closed set. The set of all soft generalized open sets of X is denoted by
(GO)S (X).

2.15. Definition. [10]. Let (X, τ̃ , A) be a soft topological space. The soft θ-interior
of a soft subset (F,A) ∈ SS(X,A) is the soft union of all soft open sets over X whose
soft closures are soft contained in (F,A), and is denoted by Int

θ

S
(F,A). The soft subset

(F,A) is called soft θ-open if Int
θ

S
(F,A) = (F,A). The complement of a soft θ-open set

is called soft θ-closed. Alternatively, a soft set (F,A) of X is called soft θ-closed set if
Cl

θ

S
(F,A) = (F,A), where Cl

θ

S
(F,A) is the soft θ-closure of (F,A) and is defined to be

the soft intersection of all soft closed soft subsets ofX whose soft interiors contain (F,A)c

[10, Proposition 5.18 (3) and Definitions 5.10 and 5.11]. We observe that Cl
θ

S
(F,A) =

(Int
θ

S
(F,A)c)c [10, Corollary 5.17 (1)]. The family of all soft θ-open sets forms a soft

topology on X, denoted by τ̃ θ , and is called soft θ-topology. The set of all soft θ-closed
sets over X is denoted by τ̃

c

θ
.

2.16. Definition. [10]. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces, u :
X → Y and p : A→ B be mappings, and eF ∈ SP(X).

(1) The map fpu : SS(X,A) → SS(Y,B) is soft pu-θ-continuous at eF if for each
(G,B) ∈ Nτ̃∗(fpu(eF )), there exists (H,A) ∈ Nτ̃ (eF ) such that fpu(ClS (H,A)) v ClS (G,B).

(2) The map fpu : SS(X,A) → SS(Y,B) is soft pu-θ-continuous on X if fpu is soft
pu-θ-continuous at each soft point in X.

3. Soft θ-boundary and soft θ-exterior
3.1. Definition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). The
soft θ-boundary of soft set (F,A) over X is denoted by Bd

θ

S
(F,A) and is defined as

Bd
θ

S
(F,A) = Cl

θ

S
(F,A) u Cl

θ

S
(F

c

, A).

3.2. Remark. From the above definition it follows directly that the soft sets (F,A) and
(F

c

, A) have same soft θ-boundary.

3.3. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A), (G,A) ∈ SS(X,A).
Then:

(1) Int
θ

S
(0A) = 0A and Int

θ

S
(1A) = 1A;

(2) Int
θ

S
(F,A) v (F,A);

(3) Int
θ

S
(Int

θ

S
(F,A)) v Int

θ

S
(F,A);

(4) (F,A) v (G,A) implies Int
θ

S
(F,A) v Int

θ

S
(G,A);

(5) Int
θ

S
(F,A) u Int

θ

S
(G,A) = Int

θ

S
((F,A) u (G,A));

(6) Int
θ

S
(F,A) t Int

θ

S
(G,A) v Int

θ

S
((F,A) t (G,A)).

Proof. Obvious.

The following example shows that the equalities do not hold in Proposition 3.3 (3)
and (6).

3.4. Example. (1) Let X = {h1, h2}, A = {e1, e2} and τ̃ = {0A,1A, (F1, A), (F2, A),
(F3, A), (F4, A)}, where (F1, A) = {(e1, X), (e2, {h2})}, (F2, A) = {(e1, {h1}), (e2, φ)} ,
(F3, A) = {(e1, {h2}), (e2, φ)}, and (F4, A) = {(e1, X), (e2, φ)}. Then τ̃ defines a soft
topology on X. Let (F,A) = {(e1, {h1}), (e2, X)} . One observe that Int

θ

S
(Int

θ

S
(F,A))

v Int
θ

S
(F,A) and Int

θ

S
(F,A) 6= Int

θ

S
(Int

θ

S
(F,A)).
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(2) LetX = {h1, h2, h3}, A = {e1, e2} and τ̃ = {0A,1A, (F1, A), (F2, A)}, where (F1, A) =
{(e1, {h1}), (e2, {h1, h2})} , and (F2, A) = {(e1, {h2, h3}), (e2, {h3})} . Then τ̃ defines a
soft topology on X. Suppose that (F,A) ={(e1, {h1, h3}), (e2, {h1, h2})}, and (G,A) =

{(e1, {h2}), (e2, {h3})}. One can deduce that Int
θ

S
(F,A) t Int

θ

S
(G,A) < Int

θ

S
((F,A) t

(G,A)) and Int
θ

S
((F,A) t (G,A)) 6= Int

θ

S
(F,A) t Int

θ

S
(G,A).

3.5. Proposition. Let (X, τ̃ , A) be a soft topological space and (H,A), (M,A) ∈ SS(X,A).
Then:

(1) Cl
θ

S
(0A) = 0A and Cl

θ

S
(1A) = 1A;

(2) (H,A) v Cl
θ

S
(H,A);

(3) Cl
θ

S
(H,A) v Cl

θ

S
(Cl

θ

S
(H,A));

(4) (H,A) v (M,A) implies Cl
θ

S
(H,A) v Cl

θ

S
(M,A);

(5) Cl
θ

S
((H,A) t (M,A)) = Cl

θ

S
(H,A) t Cl

θ

S
(M,A);

(6) Cl
θ

S
((H,A) u (M,A)) v Cl

θ

S
(H,A) u Cl

θ

S
(M,A).

Proof. (1), (2) and (4) are obvious.
(3) Follows from [10, Proposition 5.13 (3)].
(5) Follows from (2) above and [10, Proposition 5.13 (2)].
(6) Follows from (4) above.

The following example shows that the equalities do not hold in Proposition 3.5 (3)
and (6).

3.6. Example. (1) The soft topological space (X, τ̃ , A) is the same as in Example 3.4
(1). Let (R,A) = (F,A)c. We have Cl

θ

S
(Cl

θ

S
(R,A)) = {(e1, X), (e2, X)} 6= Cl

θ

S
(R,A) =

{(e1, {h2}), (e2, X)}.
(2) The soft topological space (X, τ̃ , A) is the same as in Example 3.4 (2). Suppose that
(H,A) = (F,A)c and (M,A) = (G,A)c. So Cl

θ

S
((H,A) u (M,A)) = 0A < Cl

θ

S
(H,A) u

Cl
θ

S
(M,A) = {(e1, {h2, h3}), (e2, {h3})}. Therefore Cl

θ

S
(H,A)uCl

θ

S
(M,A) 6= Cl

θ

S
((H,A)u

(M,A)).

3.7. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). Then
the following statements are true.

(1) Bd
θ

S
(F,A) = Cl

θ

S
(F,A)\Int

θ

S
(F,A).

(2) Bd
θ

S
(F,A) u Int

θ

S
(F,A) = 0A.

(3) (F,A) tBd
θ

S
(F,A) = Cl

θ

S
(F,A).

(4) Bd
θ

S
(F,A) /∈ τ̃

c

θ
.

Proof. (1), (2) and (3) are obvious.
(4) Let (X, τ̃ , A) be a soft topological space, where X = {h1, h2, h3}, A = {e1, e2} and

τ̃ = {0A,1A, {(e1, {h1}), (e2, {h1})}, {(e1, {h2}), (e2, {h2})}, {(e1, {h1, h2}), (e2, {h1, h2})}}.
Then Bd

θ

S
({(e1, X), (e2, {h1, h3})}) = {(e1, {h2, h3}), (e2, {h2, h3})} /∈ τ̃

c

θ
.

3.8. Theorem. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). Then
Bd

θ

S
(F,A) = 0A if and only if (F,A) is soft θ-closed and soft θ-open.

Proof. Obvious.

3.9. Theorem. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). Then
(1) (F,A) is soft θ-open if and only if (F,A) uBd

θ

S
(F,A) = 0A.

(2) (F,A) is soft θ-closed if and only if Bd
θ

S
(F,A) v (F,A).
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Proof. (1) Necessity. Follows from Proposition 3.7 (2).
Sufficiency. Follows from [29, Proposition 3.6 (1)].
(2) Necessity. Obvious.
Sufficiency. Follows from (1) above.

3.10. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A).
Then the following statements are true.

(1) (F,A)\Bd
θ

S
(F,A) = Int

θ

S
(F,A).

(2) If (F,A) is soft θ-closed, then (F,A)\Int
θ

S
(F,A) = Bd

θ

S
(F,A).

Proof. (1) Obvious.
(2) Follows from Proposition 3.7 (1).

3.11. Definition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). The
soft θ-exterior of (F,A) over X is denoted by Ext

θ

S
(F,A) and is defined as Ext

θ

S
(F,A) =

Int
θ

S
(F,A)

c

.

3.12. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A).
Then the following statements are true.

(1) Ext
θ

S
(0A) = 1A and Ext

θ

S
(1A) = 0A.

(2) Ext
θ

S
((F,A) t (G,A)) = Ext

θ

S
(F,A) u Ext

θ

S
(G,A).

(3) Ext
θ

S
(F,A) t Ext

θ

S
(G,A) v Ext

θ

S
((F,A) u (G,A)).

(4) Ext
θ

S
((Ext

θ

S
(F,A))

c

) v Ext
θ

S
(F,A).

(5) Ext
θ

S
(F,A) /∈ τ̃

θ
.

Proof. (1), (2), (3) and (4) are obvious.
(5) See Example 3.13.

The following example shows that the equalities do not hold in Proposition 3.12 (3)
and (4).

3.13. Example. In Example 3.4 (1), we have Ext
θ

S
((Ext

θ

S
(F3, A))

c

) 6= Ext
θ

S
(F3, A)

and Ext
θ

S
(F3, A) /∈ τ̃

θ
. In Example 3.4 (2), we obtain Ext

θ

S
(F,A) t Ext

θ

S
(G,A) <

Ext
θ

S
((F,A) u (G,A)) and Ext

θ

S
((F,A) u (G,A)) 6= Ext

θ

S
(F,A) t Ext

θ

S
(G,A).

4. Basic properties of soft θ-generalized closed sets
4.1. Definition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). (F,A)

is said to be a soft θ-generalized closed set in (X, τ̃ , A) if Cl
θ

S
(F,A) v (G,A) whenever

(F,A) v (G,A) and (G,A) ∈ τ̃ . The set of all soft θ-generalized closed sets over X is
denoted by (GC)

θ

S
(X).

4.2. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). Then
the following statement are true.

(1) If (F,A) ∈ τ̃
c

θ
, then (F,A) ∈ (GC)

θ

S
;

(2) If (F,A) ∈ (GC)
θ

S
, then (F,A) ∈ (GC)S .

Proof. (1) Obvious.
(2) Follows from [10, Definition 5.11].

The converses of (1) and (2) in Proposition 4.2 are not true as illustrated by the
following examples.
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4.3. Example. Let (X, τ̃ , A) be the soft topological space of Example 3.4 (2) and Ex-
ample 3.6 (2). Since (F2, A) ∈ τ̃ , (H,A) v (F2, A) and Cl

θ

S
(H,A) v (F2, A), we have

(H,A) ∈ (GC)
θ

S
. But (H,A) /∈ τ̃

c

θ
.

4.4. Example. Let X = {h1, h2}, A = {e1, e2} and τ̃ = {0A,1A, (F1, A), (F2, A),
(F3, A)} where (F1, A) = {(e1, X), (e2, {h2})}, (F2, A) = {(e1, {h1}), (e2, X)}, and (F3, A) =
{(e1, {h1}), (e2, {h2})} . Then (X, τ̃ , A) is a soft topological space over X. We have
(H2, A) = (F2, A)c is a soft closed set and hence soft generalized-closed. But (H2, A) /∈
(GC)

θ

S
.

4.5. Proposition. Let (X, τ̃ , A) be a soft topological space and (F1, A), (F2, A) ∈ SS(X,A).
If (F1, A), (F2, A) ∈ (GC)

θ

S
, then (F1, A) t (F2, A) ∈ (GC)

θ

S
.

Proof. Follows from Proposition 3.5 (5).

4.6. Corollary. Let (X, τ̃ , A) be a soft topological space and (F,A), (G,A) ∈ SS(X,A).
Then the following statement are true.

(1) If (F,A) ∈ τ̃
c

θ
and (G,A) ∈ (GC)

θ

S
, then (F,A) t (G,A) ∈ (GC)

θ

S
.

(2) If (F,A) ∈ (GC)
θ

S
and (G,A) ∈ (GC)S , then (F,A) t (G,A) ∈ (GC)S .

Proof. (1) Follows from Proposition 4.2 (1) and Proposition 4.5.
(2) Follows from Proposition 4.2 (2) and [12, Theorem 3.5].

4.7. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). Then
the following statement are true.

(1) If (F,A) ∈ τ̃ and (F,A) ∈ (GC)
θ

S
, then (F,A) ∈ τ̃

c

θ
.

(2) If τ̃ = τ̃
c

θ
, then every soft subset of X is in (GC)

θ

S
.

Proof. Clear.

4.8. Proposition. Let (X, τ̃ , A) be a soft topological space and (G,A) ∈ SS(X,A). Then
(G,A) ∈ (GC)

θ

S
if and only if the only soft closed soft subset of Cl

θ

S
(G,A)\(G,A) is

0A.

Proof. Necessity. Let (F,A) ∈ τ̃
c

such that (F,A) v Cl
θ

S
(G,A)\(G,A) = Cl

θ

S
(G,A) u

(G,A)
c

which implies that (F,A) v Cl
θ

S
(G,A), (F,A) v (G,A)

c

. Thus (G,A) v (F,A)
c

.
Since (G,A) ∈ (GC)

θ

S
and (F,A)

c

∈ τ̃ , we have Cl
θ

S
(G,A) v (F,A)

c

or (F,A) v
(Cl

θ

S
(G,A))

c

. Since (F,A) v Cl
θ

S
(G,A), we have (F,A) v (Cl

θ

S
(G,A))

c

u Cl
θ

S
(G,A) =

0A. This shows that (F,A) = 0A.
Sufficiency. Suppose that (G,A) v (U,A) and that (U,A) ∈ τ̃ . If Cl

θ

S
(G,A) 6v (U,A),

then Cl
θ

S
(G,A) u (U,A)

c

is a non-A-null soft closed soft subset of Cl
θ

S
(G,A)\(G,A), a

contradiction. Therefore Cl
θ

S
(G,A) v (U,A) and (G,A) ∈ (GC)

θ

S
.

4.9. Corollary. Let (X, τ̃ , A) be a soft topological space, (F,A) ∈ SS(X,A) and (F,A) ∈
(GC)

θ

S
. Then (F,A) ∈ τ̃

c

θ
if and only if Cl

θ

S
(F,A)\(F,A) ∈ τ̃

c

.

4.10. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A).
Then (F,A) ∈ (GC)

θ

S
if and only if (F,A) t (Cl

θ

S
(F,A))

c

∈ (GC)
θ

S
.

Proof. Follows from Proposition 4.8.

4.11. Lemma. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). If
(F,A) ∈ τ̃

c

θ
, then (F,A) ∈ τ̃

c

.
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The converse of Lemma 4.11 is not true in general as illustrated by the following
example.

4.12. Example. Let X = {h1, h2}, A = {e1, e2} and τ̃ = {0A,1A, (F1, A)} is a soft
topology over X, where (F1, A) = {(e1, X), (e2, {h2})}. We observe that (H1, A) =

(F1, A)c ∈ τ̃
c

. But (H1, A) /∈ τ̃
c

θ
.

4.13. Proposition. Let (X, τ̃ , A) be a soft topological space and (G,A) ∈ SS(X,A).
Then (G,A) ∈ (GC)

θ

S
if and only if (G,A) = (F,A)\(H,A), where (F,A) ∈ τ̃

c

θ
and the

only soft closed soft subset of (H,A) is 0A.

Proof. Necessity. Follows from Proposition 4.8.
Sufficiency. Follows from Lemma 4.11.

4.14. Definition. Let (X, τ̃ , A) be a soft topological space and (G,A) ∈ SS(X,A).
(G,A) is said to be a soft θ-generalized open set in (X, τ̃ , A) if (G,A)

c

is soft θ-generalized
closed. The set of all soft θ-generalized open sets over X is denoted by (GO)

θ

S
(X).

4.15. Proposition. Let (X, τ̃ , A) be a soft topological space and (G,A), (F,A) ∈ SS(X,A).
Then (G,A) ∈ (GO)

θ

S
if and only if (F,A) v Int

θ

S
(G,A) whenever (F,A) v (G,A) and

(F,A) ∈ τ̃
c

.

Proof. Obvious.

As a direct consequence of Proposition 4.2 we have

4.16. Proposition. Let (X, τ̃ , A) be a soft topological space and (G,A) ∈ SS(X,A).
Then

(1) If (G,A) ∈ τ̃ θ , then (G,A) ∈ (GO)
θ

S
;

(2) If (G,A) ∈ (GO)
θ

S
, then (G,A) ∈ (GO)S .

The converses of (1) and (2) in Proposition 4.16 are not true as illustrated by the
following examples.

4.17. Example. Let (X, τ̃ , A) be the soft topological space of Example 3.4 (2) and
Example 3.6 (2). Since (R2, A) ∈ τ̃

c

, (R2, A) v (F,A) and (R2, A) v Int
θ

S
(F,A), we

have (F,A) ∈ (GO)
θ

S
. But (F,A) /∈ τ̃ θ .

4.18. Example. The soft topological space (X, τ̃ , A) is the same as in Example 4.4. We
observe that (F2, A) ∈ (GO)S . But (F2, A) /∈ (GO)

θ

S
.

4.19. Proposition. Let (X, τ̃ , A) be a soft topological space and (G1, A), (G2, A) ∈
SS(X,A). If (G1, A), (G2, A) ∈ (GO)

θ

S
, then (G1, A) u (G2, A) ∈ (GO)

θ

S
.

Proof. Follows from Proposition 3.3 (5).

4.20. Corollary. Let (X, τ̃ , A) be a soft topological space and (F,A), (G,A) ∈ SS(X,A).
(1) If (F,A) ∈ τ̃ θ and (G,A) ∈ (GO)

θ

S
, then (F,A) u (G,A) ∈ (GO)

θ

S
.

(2) If (F,A) ∈ (GO)
θ

S
and (G,A) ∈ (GO)S , then (F,A) u (G,A) ∈ (GO)S .

Proof. (1) Follows from Proposition 4.16 (1) and Proposition 4.19 .
(2) Follows from Proposition 4.16 (2) and [12, Theorem 4.5].

4.21. Proposition. Let (X, τ̃ , A) be a soft topological space and (G,A) ∈ SS(X,A).
Then (G,A) ∈ (GO)

θ

S
if and only if (U,A) = 1A whenever (U,A) ∈ τ̃ and Int

θ

S
(G,A) t

(G,A)
c

v (U,A).
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Proof. Necessity. Follows from Proposition 4.8.
Sufficiency. Obvious.

4.22. Proposition. Let (X, τ̃ , A) be a soft topological space and (G,A) ∈ SS(X,A).
Then (G,A) ∈ (GC)

θ

S
if and only if Cl

θ

S
(G,A)\(G,A) ∈ (GO)

θ

S
.

Proof. Necessity. Follows from Propositions 4.8 and 4.15.
Sufficiency. Suppose that (U,A) ∈ τ̃ such that (G,A) v (U,A) or (U,A)

c

v (G,A)
c

.

Now, Cl
θ

S
(G,A)u(U,A)

c

v Cl
θ

S
(G,A)u(G,A)

c

= Cl
θ

S
(G,A)\(G,A) and since Cl

θ

S
(G,A)u

(U,A)
c

∈ τ̃
c

and Cl
θ

S
(G,A)\(G,A) ∈ (GO)

θ

S
, it follows that Cl

θ

S
(G,A) u (U,A)

c

v
Int

θ

S
(Cl

θ

S
(G,A)\(G,A)) = 0A. Therefore Cl

θ

S
(G,A) u (U,A)

c

= 0A or Cl
θ

S
(G,A) v

(U,A). Hence (G,A) ∈ (GC)
θ

S
.

4.23. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A), (G,A) ∈ SS(X,A).
If (G,A) ∈ τ̃

c

and (G,A) ∈ (GO)
θ

S
, then (G,A) ∈ τ̃ θ .

Proof. Obvious.

4.24. Definition. A soft set (F,A) in a soft topological space (X, τ̃ , A) is said to be soft
Λ-set if (F,A) = (F,A)Λ, where (F,A)Λ = u{(G,A) ∈ τ̃ : (F,A) v (G,A)}.

4.25. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A), (H,A), (Fi, A) ∈
SS(X,A), i ∈ I. Then the following statements are true.

(1) (F,A) v (F,A)Λ.
(2) If (F,A) v (H,A), then (F,A)Λ v (H,A)Λ.
(3) ((F,A)Λ)Λ = (F,A)Λ.
(4) (u

i∈I
(Fi, A))Λ v u

i∈I
(Fi, A)Λ.

(5) (t
i∈I

(Fi, A))Λ = t
i∈I

(Fi, A)Λ.

Proof. Clear.

The following example shows that the equality does not hold in Proposition 4.25 (4).

4.26. Example. Let us consider the soft topological space (X, τ̃ , A) over X in Example
3.4 (2). One can deduce that (F,A)Λ u (G,A)Λ 6= ((F,A) u (G,A))Λ.

4.27. Proposition. Let (X, τ̃ , A) be a soft topological space. Then the following state-
ments are true.

(1) 0A and 1A are soft Λ-sets.
(2) Every soft union of soft Λ-sets is a soft Λ-set.
(3) Every soft intersection of soft Λ-sets is a soft Λ-set.

Proof. Follows from Proposition 4.25.

4.28. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A).
Then (F,A) ∈ (GC)

θ

S
if and only if Cl

θ

S
(F,A) v (F,A)Λ.

Proof. Clear.

4.29. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). Let
(F,A) be a soft Λ-set. Then (F,A) ∈ (GC)

θ

S
if and only if (F,A) ∈ τ̃

c

θ
.

Proof. Necessity. Follows from Proposition 4.28.
Sufficiency. Follows from the fact that every soft θ-closed set is soft θ-generalized

closed (Proposition 4.2(1)).
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4.30. Proposition. Let (X, τ̃ , A) be a soft topological space and (F,A) ∈ SS(X,A). If
(F,A)Λ ∈ (GC)

θ

S
, then (F,A) ∈ (GC)

θ

S
.

Proof. Clear.

5. Soft strongly pu-θ-continuity
In this section, we introduce the notion of soft strongly pu-θ-continuity of functions

induced by two mappings u : X → Y and p : A→ B on soft topological spaces (X, τ̃ , A)

and (Y, τ̃∗, B).

5.1. Definition. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces, u : X → Y
and p : A→ B be mappings, and eF ∈ SP(X).

(1) The map fpu : SS(X,A) → SS(Y,B) is soft strongly pu-θ-continuous at eF if for
each (G,B) ∈ Nτ̃∗(fpu(eF )), there exists (H,A) ∈ Nτ̃ (eF ) such that fpu(ClS (H,A)) v
(G,B).

(2) The map fpu : SS(X,A) → SS(Y,B) is soft strongly pu-θ-continuous on X if fpu
is soft strongly pu-θ-continuous at each soft point in X.

5.2. Proposition. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces. Then the
following statements are equivalent.

(1) The map fpu : SS(X,A)→ SS(Y,B) is soft strongly pu-θ-continuous;
(2) For each (G,B) ∈ τ̃∗, f −1

pu (G,B) ∈ τ̃ θ ;
(3) For each (H,B) ∈ (τ̃∗)

c

, f −1
pu (H,B) ∈ τ̃

c

θ
.

Proof. Similar to the proof of [29, Theorem 6.3].

5.3. Proposition. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces, u : X → Y,
p : A → B and fpu : SS(X,A) → SS(Y,B) be mappings. Then the following statements
are true.

(1) If fpu is soft strongly pu-θ-continuous, then fpu is soft pu-continuous.
(2) If fpu is soft strongly pu-θ-continuous, then fpu is soft pu-θ-continuous.

Proof. (1) Obvious.
(2) Follows from (1) and [10, Proposition 5.26].

The converses of (1) and (2) in Proposition 5.3 are not true as illustrated by the
following example.

5.4. Example. Let X = {h1, h2, h3}, Y = {m1,m2,m3}, A = {e1, e2}, and B =
{u1, u2}. We consider the soft topology τ̃ = {0A,1A, {(e1, {h3}), (e2, {h1, h2})} , {(e1, φ),

(e2, {h3})}, {(e1, {h3}), (e2, X)}} overX and the soft topology τ̃∗ = {0B ,1B , {(u1, {m1}),
(u2, {m3})}, {(u1, {m1,m2}), (u2, {m3})}} over Y. Let u : X → Y be the map such that
u(h1) = u(h2) = m1 and u(h3) = m3 and p : A → B be the map such that p(e1) = u2

and p(e2) = u1. Then, the map fpu : SS(X,A) → SS(Y,B) is both soft pu-continuous
and soft pu-θ-continuous but it is not soft strongly pu-θ-continuous.

5.5. Proposition. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces and S
∗
be

a soft subbase of τ̃∗. A map fpu : SS(X,A)→ SS(Y,B) is soft strongly pu-θ-continuous
if and only if for each (G,B) ∈ S

∗
, f −1
pu (G,B) ∈ τ̃ θ .

Proof. Necessity. Follows from Proposition 5.2.
Sufficiency. Follows from [10, Proposition 5.7] and Proposition 5.2.
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5.6. Proposition. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces. Then the
following statements are equivalent.
(1) The map fpu : SS(X,A)→ SS(Y,B) is soft strongly pu-θ-continuous;
(2) For each (F,A) ∈ SS(X,A), fpu(Cl

θ

S
(F,A)) v ClS (fpu(F,A));

(3) For each (G,B) ∈ SS(Y,B), Cl
θ

S
(f −1
pu (G,B)) v f −1

pu (ClS (G,B)).

Proof. (1)⇒(2) Follows from Proposition 5.2 (3).
(2)⇒(3) This is trivial.
(3)⇒(1) Let eF ∈ SP(X) and (M,B) ∈ Nτ̃∗(fpu(eF )). Since (M,B)

c

∈ (τ̃∗)
c

,

we have Cl
θ

S
(f−1
pu (M,B)

c

) v f−1
pu (ClS (M,B)

c

) = f−1
pu (M,B)

c

. Therefore f−1
pu (M,B)

c

=

(f−1
pu (M,B))

c

∈ τ̃
c

θ and so f−1
pu (M,B) ∈ τ̃θ. Moreover, eF ∈̃f−1

pu (M,B). There exists
(U,A) ∈ Nτ̃ (eF ) such that ClS (U,A) v f−1

pu (M,B). Therefore fpu(ClS (U,A)) v (M,B).
Hence fpu is soft strongly pu-θ-continuous.

5.7. Definition. A soft set (F,A) in a soft topological space (X, τ̃ , A) is called a soft
θ-neighborhood of a soft point eF ∈ SP(X) if there exists a soft open set (G,A) such
that eF ∈̃(G,A) v Cl

S
(G,A) v (F,A). The soft θ-neighborhood system of a soft point

eF , denoted by Nτ̃
θ

(eF ), is the family of all its soft θ-neighborhoods.

Note that a soft θ-neighborhood is not necessarily a soft neighborhood in the soft
θ-topology.

5.8. Proposition. The soft θ-neighborhood system Nτ̃
θ

(eF ) at eF in a soft topological
space (X, τ̃ , A) has the following properties:
(1) If (F,A) ∈ Nτ̃

θ
(eF ), then eF ∈̃(F,A).

(2) If (F,A) ∈ Nτ̃
θ

(eF ) and (F,A) v (G,A), then (G,A) ∈ Nτ̃
θ

(eF ).
(3) If (F,A), (G,A) ∈ Nτ̃

θ
(eF ), then (F,A) u (G,A) ∈ Nτ̃

θ
(eF ).

(4) If (F,A) ∈ Nτ̃
θ

(eF ), then there is a (H,A) ∈ Nτ̃
θ

(eF ) such that (F,A) ∈ Nτ
θ

(e′M )

for each e′M ∈̃(H,A).

Proof. Similar to the proof of [29, Theorem 4.10].

The main results can be paraphrased as follows: soft pu-θ-continuity corresponds to
f −1
pu (soft θ-neighborhood)= soft θ-neighborhood and strong pu-θ-continuity corresponds

to f −1
pu (soft neighborhood)= soft θ-neighborhood.

5.9. Proposition. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces, u : X → Y
and p : A→ B be mappings. Then the following statements are equivalent.
(1) fpu is soft pu-θ-continuous;
(2) For each eF ∈ SP(X) and (H,B) ∈ Nτ̃∗(fpu(eF )), f −1

pu (H,B) ∈ Nτ̃
θ

(eF ).

Proof. (1)⇒(2) Follows from Proposition 2.8 (2) and (3).
(2)⇒(1) Follows from Propositions 5.8 (2) and 2.8 (1) and (4).

5.10. Proposition. Let (X, τ̃ , A) and (Y, τ̃∗, B) be two soft topological spaces, u : X → Y
and p : A→ B be mappings. Then the following statements are equivalent.

(1) fpu is soft strongly pu-θ-continuous;
(2) For each eF ∈ SP(X) and (H,B) ∈ Nτ̃∗(fpu(eF )), f −1

pu (H,B) ∈ Nτ̃
θ

(eF ).

Proof. Similar to the proof of Proposition 5.9.
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Some results on σ-ideal of σ-prime ring

Selin Türkmen∗ and Neşet Aydın†

Abstract
Let R be a σ-prime ring with characteristic not 2, Z(R) be the center of
R, I be a nonzero σ-ideal of R, α, β : R→ R be two automorphisms, d
be a nonzero (α, β)-derivation of R and h be a nonzero derivation of R.
In the present paper, it is shown that (i) If d (I) ⊂ Cα,β and β commutes
with σ then R is commutative. (ii) Let α and β commute with σ. If
a ∈ I ∩ Sσ (R) and [d(I), a]α,β ⊂ Cα,β then a ∈ Z(R). (iii) Let α, β
and h commute with σ. If dh (I) ⊂ Cα,β and h (I) ⊂ I then R is
commutative.

Keywords: σ-prime ring, σ-ideal, (α, β)-derivation
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1. Introduction
LetR be an associative ring with center Z (R) . R is said to be 2-torsion free if whenever

2x = 0 with x ∈ R, then x = 0. Recall that a ring R is prime if aRb = 0 implies a = 0 or
b = 0. An involution σ of a ring R is an additive mapping satisfying σ (xy) = σ (y)σ (x)
and σ2 (x) = x for all x, y ∈ R. A ring R equipped with an involution σ is said to be σ-
prime if aRb = aRσ(b) = 0 implies a = 0 or b = 0. Note that every prime ring which has
an involution σ is a σ-prime but the converse is in generally not true. An example, due to
Shuliang [8], if R0 denotes the opposite ring of a prime ring R, then R×R0 equipped with
the exchange involution σex, defined by σex(x, y) = (y, x), is σex-prime but not prime.
An additive subgroup I of R is said to be an ideal of R if xr, rx ∈ I for all x ∈ I and
r ∈ R. An ideal I which satisfies σ (I) = I is called a σ- ideal of R. An example, due to

Rehman [8], Set R =

{(
a b
0 c

)
| a, b, c ∈ Z

}
. We define a map σ : R→ R as follows:

σ

(
a b
0 c

)
=

(
c −b
0 a

)
. It is easy to check that I =

{(
0 b
0 0

)
| b ∈ Z

}
is a

∗Çanakkale Onsekiz Mart University, Dept. Math. Çanakkale - Turkey
Email: selinvurkac@gmail.com

†Çanakkale Onsekiz Mart University, Dept. Math. Çanakkale - Turkey
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σ-ideal of R. Note that an ideal I of a ring R may be not a σ-ideal. Let R = Z × Z.
Consider a map σ : R → R defined by σ((a, b)) = (b, a) for all (a, b) ∈ R. For an ideal
I = Z×{0} of R, I is not a σ-ideal of R since σ(I) = {0}×Z 6= I. Sσ (R) will denote the
set of symmetric and skew symmetric elements of R. i.e. Sσ (R) = {x ∈ R | σ (x) = ±x} .
As usual the commutator xy − yx will be denoted by [x, y] = xy − yx. An additive
mapping h : R → R is called a derivation if h (xy) = h (x) y + xh (y) holds for all
x, y ∈ R. For a fixed a ∈ R, the mapping Ia : R → R is given by Ia (x) = [a, x] is a
derivation which is said to be an inner derivation which is determined by a. Let α and
β be two maps of R. Set Cα,β = {c ∈ R | cα (r) = β (r) c for all r ∈ R} and known as
(α, β)-center of R. In particular, C1,1 = Z (R) is the center of R, where 1 : R → R
is identity map. As usual the (α, β)-commutator aα (b) − β (b) a will be denoted by
[a, b]α,β = aα (b)− β (b) a. An additive mapping d : R→ R is called an (α, β)-derivation
if d (xy) = d (x)α (y) + β (x) d (y) holds for all x, y ∈ R. For a fixed a ∈ R, the mapping
Ia : R→ R is given by Ia (x) = [a, x]α,β is an (α, β)-inner derivation which is determined
by a.

Many studies have been objected the relationship between commutativity of a ring and
the act of derivations defined on this ring. These results have been generalized by many
authors in several ways. Herstein [2] proved that if R is a prime ring of characteristic
not 2, d is a nonzero derivation of R and a ∈ R such that [a, d (R)] = 0 then a ∈
Z (R) . N. Aydın and K. Kaya [1] proved that if R is a prime ring of characteristic not
2, I is a nonzero right ideal of R, σ and τ are two automorphisms of R, d : R → R
is a nonzero (σ, τ)-derivations of R and a ∈ R such that (i) d(I) ⊂ Z (R) then R is
commutative. (ii) [d (R) , a]σ,τ ⊂ Cα,β then a ∈ Z (R) . In [5], this result was extended
to on a σ-ideal of a σ-prime ring by L. Oukhtite and S. Salhi. On the other hand, Posner
[7] proved that if R is a prime ring of characteristic not 2 and d1, d2 are derivations of R
such that the composition d1d2 is also a derivation; then one at least of d1, d2 is zero. K.
Kaya [3] proved that if R is a prime ring of characteristic not 2, I is a nonzero ideal of
R, σ and τ are two automorphisms of R, d1 : R→ R is a nonzero (σ, τ)-derivations of R
and d2 is a nonzero derivation of R such that d1d2(I) ⊂ Cσ,τ then R is commutative. In
[4], Posner’s result was extended to a nonzero σ-ideal of a σ-prime ring by L. Oukhtite
and S. Salhi. Motivated by these results, we follow this line of investigation.

In this paper, our main goal is to extend these results on a σ-ideal of a σ-prime ring.
Throughout the present paper, R is a σ-prime ring, Z (R) is the center of R and α, β

are two automorphisms of R. We use the following basic commutator identities:

[x, yz] = y [x, z] + [x, y] z
[xy, z] = x [y, z] + [x, z] y
[xy, z]α,β = x [y, z]α,β + [x, β (z)] y = x [y, α (z)] + [x, z]α,β y

[x, yz]α,β = β (y) [x, z]α,β + [x, y]α,β α (z)[
[x, y]α,β , z

]
α,β

=
[
[x, z]α,β , y

]
α,β

+ [x, [y, z]]α,β

The material in this work is a part of first author’s PH. Dissertation which is supervised
by Prof. Dr. Neşet Aydın.

2. Results
For the proof of our theorems, we give the following known Lemmas.

2.1. Lemma. [6, Theorem 2.2] Let I be a nonzero σ-ideal of σ-prime ring R. If a, b in
R are such that aIb = 0 = aIσ (b) then a = 0 or b = 0.
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2.2. Lemma. [5, Lemma 4] Let R be a σ-prime ring with characteristic not two, d be a
derivation of R satisfying dσ = ±σd and I be a nonzero σ-ideal of R. If d2 (I) = 0 then
d = 0.

2.3. Lemma. Let I be a nonzero σ-ideal of R and a ∈ R. If Ia = 0 (or aI = 0) then
a = 0.

Proof. Since I is a σ-ideal, we know that IR ⊂ I. By hypothesis, we have IRa ⊂ Ia = 0.
Thus, we get IRa = 0. Moreover, since I is invariant under σ, we have σ (I)Ra = 0. It
follows that

IRa = σ (I)Ra = 0

Using σ-primeness of R, we get

a = 0

Similarly, using RI ⊂ I, one can show that if aI = 0 then a = 0. �

2.4. Lemma. Let a, b ∈ R.
i) If b, ab ∈ Cα,β and a (or b) ∈ Sσ (R) then a ∈ Z (R) or b = 0.
ii) If a, ab ∈ Cα,β and a (or b) ∈ Sσ (R) then a = 0 or b ∈ Z (R) .

Proof. i) By the hypothesis, we have [ab, r]α,β = 0 for all r ∈ R. Expanding this equation
by using b ∈ Cα,β , holding for all r ∈ R

0 = [ab, r]α,β = a [b, r]α,β + [a, β (r)] b

= [a, β (r)] b

Since b ∈ Cα,β , we get

(2.1) [a,R]Rb = 0

In the event of a ∈ Sσ (R) , we derive σ ([a,R])Rb = 0. Using the last obtained equation
together with (2.1) , we yield

[a,R]Rb = σ ([a,R])Rb = 0

Applying the σ-primeness of R, we have

a ∈ Z (R) or b = 0

In case of b ∈ Sσ (R) , from (2.1) , we get [a,R]Rσ (b) = 0. Using the last obtained
equation together with (2.1) , we find

[a,R]Rb = [a,R]Rσ (b) = 0

Applying the σ-primeness of R,

a ∈ Z (R) or b = 0

is obtained.
ii) Since ab ∈ Cα,β , we have [ab, r]α,β = 0 for all r ∈ R. Expanding this equation by

using a ∈ Cα,β , holding for all r ∈ R

0 = [ab, r]α,β = a [b, α (r)] + [a, r]α,β b

= a [b, α (r)]

Since a ∈ Cα,β ,

aR [b,R] = 0

is obtained. After here, it is similar as above. �
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2.5. Lemma. Let I be a nonzero σ-ideal of R and h be a nonzero derivation of R. If
h (I) ⊂ Z (R) then R is commutative.

Proof. For any x, y ∈ I and r ∈ R, using hypothesis,

0 = [r, h (xy)] = [r, h (x) y + xh (y)]

= h (x) [r, y] + [r, h (x)] y + x [r, h (y)] + [r, x]h (y)

= h (x) [r, y] + [r, x]h (y)

And so,

h (x) [r, y] + [r, x]h (y) = 0, ∀x, y ∈ I, r ∈ R
is obtained. In the last equality, x is taken instead of r and we obtain h (x) [x, y] = 0 for
all x, y ∈ I. Substituting y by zy where z ∈ I, it holds that
(2.2) h (x) I [x, y] = 0, ∀x, y ∈ I
It is supposed that x ∈ I∩Sσ (R) . In (2.2) , replacing y with σ (y) , we get h (x) Iσ ([x, y]) =
0 for all y ∈ I. According to Lemma 2.1, it is derived that

(2.3) h (x) = 0 or x ∈ Z (R) , ∀x ∈ I ∩ Sσ (R)
Assume that x ∈ I. In this case, x − σ (x) ∈ I ∩ Sσ (R) . So, from (2.3) , we have
h (x− σ (x)) = 0 or x−σ (x) ∈ Z (R) for all x ∈ I.We set A = {x ∈ I | h (x− σ (x)) = 0}
and B = {x ∈ I | x− σ (x) ∈ Z (R)} . It is clear that A and B are additive subgroups of
I such that I = A∪B. But, a group can not be an union of two of its proper subgroups.
Therefore, it is implied I = A or I = B. In the former case, h (x) = h (σ (x)) for all x ∈ I.
In (2.2) , replacing y by σ (y) and x by σ (x) , we have h (x) Iσ ([x, y]) = 0 for all x, y ∈ I.
And so,

h (x) I [x, y] = h (x) Iσ ([x, y]) = 0, ∀x, y ∈ I
is obtained. By Lemma 2.1, get h (x) = 0 or x ∈ Z (R) for all x ∈ I. In the latter case,
x−σ (x) ∈ Z (R) for all x ∈ I. This means [x, r] = [σ (x) , r] for all x ∈ I, r ∈ R. In (2.2) ,
taking σ (y) instead of y, we get h (x) Iσ ([x, y]) = 0 for all x, y ∈ I. And so,

h (x) I [x, y] = h (x) Iσ ([x, y]) = 0, ∀x, y ∈ I
is derived. According to Lemma 2.1, we have h (x) = 0 or x ∈ Z (R) for all x ∈ I. So,
both the cases yield either

h (x) = 0 or x ∈ Z (R) , ∀x ∈ I
Now, we set K = {x ∈ I | h (x) = 0} and L = {x ∈ I | x ∈ Z (R)} . Each of K and L is
an additive subgroup of I. Moreover, I is the set-theoretic union of K and L. But a
group can not be the set-theoretic union of two proper subgroups, hence I = K or I = L.
In the former case, h (I) = 0. So, we have h = 0. But, h is a nonzero derivation of R. So,
from the latter case, we get I ⊆ Z(R). Therefore, R is commutative. �

2.6. Lemma. Let I be a nonzero σ-ideal of R, d be a (α, β)-derivation of R and
a ∈ R. If ad (I) = σ (a) d (I) = 0 and β commutes with σ (or d (I) a = d (I)σ (a) =
0 and α commutes with σ) then a = 0 or d = 0.

Proof. For any x ∈ I and r ∈ R, using ad (I) = 0, we get

0 = ad (xr) = ad (x)α (r) + aβ (x) d (r)

= aβ (x) d (r)

It becomes

aβ (I) d (r) = 0, ∀r ∈ R
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Similarly, using σ (a) d (I) = 0, we derive

σ (a)β (I) d (r) = 0, ∀r ∈ R
And so,

aβ (I) d (r) = σ (a)β (I) d (r) = 0, ∀r ∈ R
is obtained. Since β commutes with σ, β (I) is a nonzero σ-ideal ofR. Therefore, according
to Lemma 2.1, we have

a = 0 or d = 0

Let us consider d (I) a = d (I)σ (a) = 0 and α commutes with σ. Since α (I) is a nonzero
σ-ideal of R, one can show that a = 0 or d = 0 similarly as above. �

2.7. Lemma. Let I be a nonzero σ-ideal of R and d be a (α, β)-derivation of R. If
d (I) = 0 and α (or β) commutes with σ then d = 0.

Proof. By hypothesis, it holds that for all x ∈ I and r ∈ R
0 = d (rx) = d (r)α (x) + β (r) d (x)

= d (r)α (x)

Thus, we get

d (r)α (I) = 0, ∀r ∈ R
Since α commutes with σ, α (I) is a nonzero σ-ideal of R. Therefore, by Lemma 2.3, we
have d = 0.

Suppose that β commutes with σ. For any x ∈ I and r ∈ R, from the hypothesis, we
get

0 = d (xr) = d (x)α (r) + β (x) d (r)

= β (x) d (r)

So, it yields that

β (I) d (r) = 0, ∀r ∈ R
Since β commutes with σ, β (I) is a nonzero σ-ideal of R. Therefore, by Lemma 2.3, we
have d = 0. �

2.8. Theorem. Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-
ideal of R and d be a nonzero (α, β)-derivation of R such that β commutes with σ. If
d (I) ⊂ Cα,β then R is commutative.

Proof. By hypothesis, d
(
x2
)
= d (x)α (x)+β (x) d (x) ∈ Cα,β for all x ∈ I. Using d (x) ∈

Cα,β , we get 2β (x) d (x) ∈ Cα,β . Since charR 6= 2, we obtain β (x) d (x) ∈ Cα,β which
means [β (x) d (x) , r]α,β = 0 for all r ∈ R, x ∈ I. Expanding this equation by using
d (x) ∈ Cα,β , we arrive

0 = [β (x) d (x) , r]α,β = β (x) [d (x) , r]α,β + β ([x, r]) d (x)

= β ([x, r]) d (x)

Since d (x) ∈ Cα,β , it follows that
(2.4) β ([x, r])Rd (x) = 0, ∀x ∈ I, r ∈ R
Assume that x ∈ I ∩ Sσ (R) . In (2.4) taking σ (r) instead of r and using the fact that
β commutes with σ, we have σ (β ([x, r]))Rd (x) = 0 for all x ∈ I, r ∈ R. Since R is
σ-prime, we derive

x ∈ Z (R) or d (x) = 0, ∀x ∈ I ∩ Sσ (R)
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Assume that x ∈ I. In this case, x− σ (x) ∈ I ∩ Sσ (R) . Therefore, we have x− σ (x) ∈
Z (R) or d (x− σ (x)) = 0 for all x ∈ I. Set A = {x ∈ I | d (x− σ (x)) = 0} and B =
{x ∈ I | x− σ (x) ∈ Z (R)} . It is clear that A and B are additive subgroups of I such
that I = A ∪ B. But, a group can not be an union of two of its proper subgroups.
Therefore, we yield either I = A or I = B. In the former case, d (x) = d (σ (x)) for all
x ∈ I. In (2.4) substituting x by σ (x) and r by σ (r) and using the fact that β commutes
with σ, we have σ (β ([x, r]))Rd (x) = 0 for all x ∈ I, r ∈ R. Since R is σ-prime, we arrive
x ∈ Z (R) or d (x) = 0 for all x ∈ I. In the latter case, x − σ (x) ∈ Z (R) for all x ∈ I.
This means, [x, r] = [σ (x) , r] for all r ∈ R. In (2.4) , replacing r by σ (r) and using the
fact that β commutes with σ, we get σ (β ([x, r]))Rd (x) = 0 for all x ∈ I, r ∈ R. Since R
is σ-prime, we have x ∈ Z (R) or d (x) = 0 for all x ∈ I. As a result, both the cases yield
either

x ∈ Z (R) or d (x) = 0, ∀x ∈ I

Now, we set K = {x ∈ I | d (x) = 0} and L = {x ∈ I | x ∈ Z (R)} . Each of K and L is an
additive subgroup of I. Moreover, I is the set-theoretic union of K and L. But a group
can not be the set-theoretic union of two of its proper subgroups, hence I = K or I = L.
In the former case, d (I) = 0. Since β commutes with σ, by Lemma 2.7, we obtain d = 0.
But, d is a nonzero (α, β)-derivation of R, then I must be contained in Z (R) . So, R is
commutative. �

2.9. Lemma. Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-ideal
of R, d be a (α, β)-derivation of R such that β commutes with σ and h be a derivation
of R satisfying hσ = ±σh. If dh (I) = 0 and h (I) ⊂ I then d = 0 or h = 0.

Proof. By hypothesis, it holds that for all x, y ∈ I

0 = dh (xy)

= dh (x)α (y) + β (h (x)) d (y) + d (x)α (h (y)) + β (x) dh (y)

= β (h (x)) d (y) + d (x)α (h (y))

And so,

β (h (x)) d (y) + d (x)α (h (y)) = 0, ∀x, y ∈ I

Since h (I) ⊂ I, we take h (x) instead of x. Using the hypothesis, we get

β
(
h2 (x)

)
d (I) = 0, ∀x ∈ I

Moreover, replacing x by σ (x) in the above obtained relation and using the fact that β
commute with σ and hσ = ±σh, we derive

σ
(
β
(
h2 (x)

))
d (I) = 0, ∀x ∈ I

And so,

β
(
h2 (x)

)
d (I) = σ

(
β
(
h2 (x)

))
d (I) = 0, ∀x ∈ I

Since β commutes with σ, by Lemma 2.6, we yield either h2 (I) = 0 or d = 0. Since
hσ = ±σh, by Lemma 2.2, we have h = 0 or d = 0. �

2.10. Lemma. Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-ideal
of R, d be a nonzero (α, β)-derivation of R such that β commutes with σ. If a ∈ I∩Sσ (R)
and [d(I), a]α,β = 0 then a ∈ Z (R) .
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Proof. For any x, y ∈ I, from the hypothesis, we have [d([x, y]), a]α,β = 0. Since d([x, y]) =
[d(x), y]α,β − [d (y) , x]α,β , we get[

[d (y) , x]α,β , a
]
α,β

=
[
[d(x), y]α,β , a

]
α,β

, ∀x, y ∈ I

In the above obtained relation, applying
[
[a, b]α,β , c

]
α,β

=
[
[a, c]α,β , b

]
α,β

+ [a, [b, c]]α,β

for all a, b, c ∈ R and using the hypothesis, it becomes[
[d (y) , x]α,β , a

]
α,β

=
[
[d(x), y]α,β , a

]
α,β

=
[
[d(x), a]α,β , y

]
α,β

+ [d (x) , [y, a]]α,β

= [d (x) , [y, a]]α,β

And so, [
[d (y) , x]α,β , a

]
α,β

= [d (x) , [y, a]]α,β , ∀x, y ∈ I

is obtained. In the last equation, substituting x by a and using the hypothesis, we yield

[d(a), [y, a]]α,β = 0, ∀y ∈ I

The mapping Id(a) : R→ R is given by Id(a) (r) = [d(a), r]α,β is a (α, β)-derivation which
is determinated by d (a) and Ia : R → R is given by Ia (r) = [r, a] is a derivation which
is determinated by a. So, we derive(

Id(a)Ia
)
(I) = 0

Since a ∈ I ∩ Sσ (R) , we have Iaσ = ±σIa. Therefore, by Lemma 2.9, we have

d (a) ∈ Cα,β or a ∈ Z (R)

Assume that a 6∈ Z (R) which means that d (a) ∈ Cα,β . From the hypothesis, we get
d ([x, a]) = [d (x) , a]α,β − [d (a) , x]α,β = 0 for all x ∈ I. That is,

(2.5) d ([I, a]) = 0

On the other hand, by hypothesis, we have [d(xy), a]α,β = 0 for x, y ∈ I. Expanding
this equation, it becomes d (x)α ([y, a]) + β ([x, a]) d (y) = 0 for all x, y ∈ I. Taking [x, a]
instead of x and using (2.5) , we derive β ([[x, a] , a]) d (I) = 0 for all x ∈ I. In this
equation, replacing x by σ (x) and using the fact that β commutes with σ, we obtain
σ (β [[x, a] , a]) d (I) = 0 for all x ∈ I. And so, we yield

β ([[x, a] , a]) d (I) = σ (β ([[x, a] , a])) d (I) = 0, ∀x ∈ I
Since β commutes with σ, by Lemma 2.6, it implies that d = 0 or [[x, a] , a] = 0 for all
x ∈ I. That is, d = 0 or I2a (I) = 0. Since a ∈ I ∩ Sσ (R) , we have Iaσ = ±σIa. So, by
Lemma 2.9, we have d = 0. This is a contradiction which completes the proof. �

2.11. Theorem. Let R be a σ-prime ring with characteristic not 2, I be a nonzero
σ-ideal of R, d be a nonzero (α, β)-derivation of R such that α, β commute with σ. If
a ∈ I ∩ Sσ (R) and [d(I), a]α,β ⊂ Cα,β then a ∈ Z (R) .

Proof. By hypothesis,
[
d(a2), a

]
α,β
∈ Cα,β . Expanding this, it becomes[

d(a2), a
]
α,β

= [d(a)α (a) + β (a) d (a) , a]α,β

= d (a)α [a, a] + [d(a), a]α,β α (a) + β (a) [d (a) , a]α,β

+ β ([a, a]) d (a)

= [d(a), a]α,β α (a) + β (a) [d (a) , a]α,β ∈ Cα,β
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And so,

[d(a), a]α,β α (a) + β (a) [d (a) , a]α,β ∈ Cα,β
is obtained. In the above obtained relation, using [d(a), a]α,β ∈ Cα,β , we have 2β (a) [d (a) , a]α,β ∈
Cα,β . Since charR 6= 2, we get

(2.6) β (a) [d (a) , a]α,β ∈ Cα,β
Since a ∈ I ∩ Sσ (R) , it is clear that β (a) ∈ Sσ (R) . Using the hypothesis together with
(2.6), according to Lemma 2.4 (i) , we yield either

a ∈ Z (R) or [d (a) , a]α,β = 0

Assume that a 6∈ Z (R) which means [d (a) , a]α,β = 0. On the other hand, by hypothesis,
it holds that [d ([a, x]) , a]α,β ∈ Cα,β . So,

[d ([a, x]) , a]α,β =
[
[d (a) , x]α,β , a

]
α,β
−
[
[d (x) , a]

α,β
, a
]
α,β
∈ Cα,β

is obtained. Using the hypothesis, we have[
[d (a) , x]α,β , a

]
α,β
∈ Cα,β , ∀x ∈ I

Replacing x by ax and using [d (a) , a]α,β = 0, it becomes

β (a)
[
[d (a) , x]α,β , a

]
α,β
∈ Cα,β , ∀x ∈ I

We know that β (a) ∈ Sσ (R) and
[
[d (a) , x]α,β , a

]
α,β
∈ Cα,β . Therefore, by Lemma 2.4

(i) , we derive
[
[d (a) , x]α,β , a

]
α,β

= 0 for all x ∈ I.Applying the identity
[
[a, b]α,β , c

]
α,β

=[
[a, c]α,β , b

]
α,β

+ [a, [b, c]]α,β for all a, b, c ∈ R and using the assumption, we arrive

[d (a) , [x, a]]α,β = 0, ∀x ∈ I

The mapping Id(a) : R→ R is given by Id(a) (r) = [d(a), r]α,β is a (α, β)-derivation which
is determinated by d (a) and Ia : R → R is given by Ia (r) = [r, a] is a derivation which
is determinated by a. So,(

Id(a)Ia
)
(I) = 0

is obtained. Since a ∈ I ∩ Sσ (R) , we have Iaσ = ±σIa. According to Lemma 2.9, we
yield either

Id(a) = 0 or Ia = 0

which means d (a) ∈ Cα,β . On the other hand, by hypothesis, we have [d(ax), a]α,β ∈ Cα,β
for all x ∈ I. So, we get

(2.7) d (a)α ([x, a]) + β (a) [d (x) , a]α,β ∈ Cα,β , ∀x ∈ I

Commuting (2.7) with a, it follows that

0 =
[
d (a)α ([x, a]) + β (a) [d (x) , a]α,β , a

]
α,β

= [d (a)α ([x, a]) , a]α,β +
[
β (a) [d (x) , a]α,β , a

]
α,β

= d (a)α ([[x, a] , a]) + [d (a) , a]α,β α ([x, a])

+ β (a)
[
[d (x) , a]α,β , a

]
α,β

+ β ([a, a]) [d (x) , a]α,β

= d (a)α ([[x, a] , a]) + β (a)
[
[d (x) , a]α,β , a

]
α,β
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And so, it becomes

d (a)α ([[x, a] , a]) + β (a)
[
[d (x) , a]α,β , a

]
α,β

= 0, ∀x ∈ I

Using [d (x) , a]α,β ∈ Cα,β , we have d (a)α ([[x, a] , a]) = 0 for all x ∈ I. Since d (a) ∈ Cα,β ,

d (a)Rα ([[x, a] , a]) = 0, ∀x ∈ I
is obtained. In the above obtained relation, taking σ (x) instead of x and using the fact
that α commutes with σ, we derive

d (a)Rσ (α ([[x, a] , a])) = 0, ∀x ∈ I
And so, we yield

d (a)Rα ([[x, a] , a]) = d (a)Rσ (α ([[x, a] , a])) = 0, ∀x ∈ I
Since R is σ-prime, we get d (a) = 0 or [[x, a] , a] = 0 for all x ∈ I. That is, d (a) =
0 or I2a(I) = 0. Since Iaσ = ±σIa, by Lemma 2.9, we have d (a) = 0. In (2.7), using
d (a) = 0, it becomes

β (a) [d (x) , a]α,β ∈ Cα,β , ∀x ∈ I

We know that β (a) ∈ Sσ (R) and [d(x), a]α,β ∈ Cα,β from the hypothesis. Therefore,
according to Lemma 2.4 (i) , we have [d (x) , a]α,β = 0 for all x ∈ I. Since a ∈ I ∩ Sσ (R)
and β commutes with σ, by Lemma 2.10, we derive a ∈ Z (R) . This is a contradiction
which completes the proof. �

2.12. Theorem. Let R be a σ-prime ring with characteristic not 2, I be a nonzero σ-
ideal of R, d be a nonzero (α, β)-derivation of R such that α and β commute with σ and
h be a nonzero derivation of R which commutes with σ. If dh (I) ⊂ Cα,β and h (I) ⊂ I
then R is commutative.

Proof. For any x, y ∈ I, from the hypothesis, we have dh ([x, y]) ∈ Cα,β . Expanding this
identity, it follows that

dh ([x, y]) = d ([h (x) , y] + [x, h (y)])

= [(dh) (x) , y]α,β − [d (y) , h (x)]α,β + [d (x) , h (y)]α,β

− [(dh) (y) , x]α,β

= [d (x) , h (y)]α,β − [d (y) , h (x)]α,β ∈ Cα,β
And it becomes

[d (x) , h (y)]α,β − [d (y) , h (x)]α,β ∈ Cα,β , ∀x, y ∈ I

Since h (I) ⊂ I, we replace y by h (y) . So, we arrive
[
d (x) , h2 (y)

]
α,β
∈ Cα,β for all

x, y ∈ I. That is,[
d (I) , h2 (I)

]
α,β
⊂ Cα,β

Using the fact that h (I) ⊂ I and h commutes with σ, we assure h2 (I) ⊂ I ∩ Sσ (R) .
In additional, we know that from the hypothesis α and β commute with σ. Thereby,
according to Theorem 2.11, it yields h2 (I) ⊂ Z (R) . So, for all x, y ∈ I

h2 ([x, y]) = h ([h (x) , y] + [x, h (y)])

=
[
h2 (x) , y

]
+ 2 [h (x) , h (y)] +

[
x, h2 (y)

]
= 2 [h (x) , h (y)] ∈ Z (R)

is obtained. Since charR 6= 2, we have [h (x) , h (y)] ∈ Z (R) for all x, y ∈ I. Thus,
[h (I) , h (I)] ⊂ Z (R)
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Using h (I) ⊂ I∩Sσ (R) , by Theorem 2.11, we derive h (I) ⊂ Z (R) . According to Lemma
2.5, it implies that R is commutative. �

Acknowledgement. The first author thanks to TÜBİTAK (The Scientific and Tech-
nical Research Council of Turkey) for financial support of BİDEB 2211 National Research
Fellowship.

References
[1] Aydın N., Kaya K.: Some Generalizations in Prime Rings with (σ, τ)-Derivation, Doğa-Tr.

J. Mathematics, vol 16 (1992) 169− 176.
[2] Herstein I. N. : A Note on Derivation II, Canad. Math. Bull., 22, 4, (1979) 509− 511.

[3] Kaya K. : (σ, τ)-Türevli Asal Halkalar Üzerine, Doğa-Tr. J. Mathematics, (1988) 42− 45.

[4] Oukhtite L., Salhi S.: On Commutativity of σ-Prime Rings, Glasnik Matematicki, vol. 41 no.
1 (2006) 57− 64.

[5] Oukhtite L., Salhi S.: Derivations and Commutativity of σ-Prime Rings, Int. J. Contemp.
Sci., vol. 1 no. 9 (2006) 439− 448.

[6] Oukhtite L., Salhi S.: σ-Prime Rings with a special kind of automorphism, Int. J. Contemp.
Math. Sci., vol. 2 no. 3 (2007) 127− 133.

[7] Posner E. : Derivations in Prime Rings, Proc. Amer. Math. Soc., 8, (1957).
[8] Shuliang H.: Some Generalizations in Certain Classes of Rings with Involution, Bol. Soc.

Paran. Mat., 29, 1, (2011) 9− 16.



Hacettepe Journal of Mathematics and Statistics
Volume 44 (5) (2015), 1157 – 1162

An asymptotic criterion for third-order dynamic
equations with positive and negative coefficients

Nadide Utku∗ , Tongxing Li† and M. Tamer Şenel‡

Abstract
We establish a criterion for the asymptotic properties of all bounded
solutions to a class of third-order linear dynamic equations with positive
and negative coefficients. New theorem improves and complements the
related results reported in the literature. An example is provided to
illustrate the main results.

Keywords: asymptotic behavior, third-order dynamic equation, linear equation,
positive and negative coefficients, time scale.

Received 20/05/2014 : Accepted 19/08/2014 Doi : 10.15672/HJMS.2015449666

1. Introduction
In this paper, we deal with the asymptotic behavior of all bounded solutions to a class

of third-order linear dynamic equations with positive and negative coefficients

(1.1)
(
rx∆∆

)∆

(t) +B(t)x(β(t))− C(t)x(γ(t)) = 0,

where t0 ∈ T and t ∈ [t0,∞)T. Throughout the paper, we always assume that the follow-
ing hypotheses are satisfied:

(h1) r ∈ C1
rd([t0,∞)T, (0,∞)), B,C ∈ Crd([t0,∞)T, [0,∞)), and∫ ∞

t0

∆t

r(t)
=∞;(1.2)

(h2) β, γ ∈ Crd([t0,∞)T,T) are strictly increasing functions such that limt→∞ β(t) =
limt→∞ γ(t) =∞;

(h3) δ := γ−1◦β ∈ C1
rd([t0,∞)T,T) is strictly increasing with δ([t0,∞)T) = [δ(t0),∞)T

and δ(t) < t, the notation γ−1 stands for the inverse of the function γ;
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(h4) D ∈ Crd([t0,∞)T, (0,∞)), where D(t) := B(t)− δ∆(t)C(δ(t)).

A solution of (1.1) is said to be oscillatory if it is neither eventually positive nor
eventually negative; otherwise, it is called nonoscillatory. Hilger [11] initiated the theory
of time scales (which unifies continuous and discrete analysis). Agarwal et al. [3] and
Bohner and Peterson [5] summarize and organize much of the time scale calculus and
advances in dynamic equations on time scales.

In recent years, there has been an increasing interest in obtaining sufficient conditions
for the oscillatory and asymptotic behavior of solutions to various classes of differential
and dynamic equations on time scales. We refer the reader to [1,2,4,6–10,12–27] and the
references cited therein. For the study of asymptotic properties of third-order dynamic
equations, Agarwal et al. [1] and Erbe et al. [8] established Hille and Nehari type criteria
for third-order dynamic equations

(a(rx∆)∆)∆(t) + p(t)x(τ(t)) = 0

and
x∆3

(t) + p(t)x(t) = 0,

respectively. Assuming that γ is a quotient of odd positive integers, Agarwal et al. [4],
Hassan [10], and Li et al. [21] studied a third-order nonlinear delay dynamic equation

(a((rx∆)∆)γ)∆(t) + f(t, x(τ(t))) = 0.

Şenel [26] examined a third-order dynamic equation

(a(rx∆)∆)∆(t) + p(t, x(t), x∆(t)) + F (t, x(t)) = 0.

Grace et al. [9] considered a third-order neutral delay dynamic equation

(r(t)(x(t)− a(t)x(τ(t)))∆∆)∆ + p(t)xγ(δ(t)) = 0.

So far, there are few results regarding the oscillation of dynamic equations with pos-
itive and negative coefficients. Karpuz and Öcalan [14] investigated a first-order delay
dynamic equation

x∆(t) +B(t)x(β(t))− C(t)x(γ(t)) = 0.

Chen et al. [7] considered a second-order nonlinear dynamic equation

(rx∆)∆(t) + p(t)f(x(ξ(t)))− q(t)h(x(δ(t))) = 0.

Karpuz and Öcalan [16] and Karpuz et al. [17] studied the first-order neutral delay
dynamic equations

[x(t)−A(t)x(α(t))]∆ +B(t)x(β(t))− C(t)x(γ(t)) = 0

and

[x(t) +A(t)x(α(t))]∆ +B(t)F (x(β(t)))− C(t)G(x(γ(t))) = ϕ(t),

respectively. Karpuz et al. [19] obtained some necessary and sufficient conditions which
guarantee that every solution y of a neutral differential equation

(y(t)− p(t)y(r(t)))(n) + q(t)G(y(g(t)))− u(t)H(y(h(t))) = f(t)

is either oscillatory or satisfies limt→∞ y(t) = 0.
In the real world, one can predict dynamic behavior of solutions of third-order partial

differential equations by using the qualitative behavior of the third-order differential
equations; see, for instance, Agarwal et al. [2]. In order to develop oscillation theory
of third-order dynamic equations with positive and negative coefficients, we present an
asymptotic test for equation (1.1) in the next section. As usual, all functional equalities
and inequalities considered in the paper are assumed to hold for all t large enough.
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2. Main results
In what follows, the notation δ−1 stands for the inverse of the function δ and

z(t) := x(t)−
∫ ∞
t

∫ ∞
v

1

r(u)

∫ u

δ(u)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s∆u∆v

for t ∈ [t0,∞)T.

2.1. Theorem. Assume that conditions (h1)–(h4) are satisfied and let

(2.1) lim
t→∞

∫ ∞
t

[σ(v)− t]F (v)∆v <∞,

where

F (v) :=
1

r(v)

∫ v

δ(v)

B(δ−1(s))

δ∆(δ−1(s))
∆s.

Then every bounded solution x of (1.1) is either oscillatory or limt→∞ x(t) exists (finite).

Proof. Without loss of generality, we may assume that x is a bounded eventually
positive solution of (1.1). Then there exists a t1 ∈ [t0,∞)T such that x(t) > 0, x(β(t)) >
0, and x(γ(t)) > 0 for all t ∈ [t1,∞)T. Differentiation of z yields

z∆(t) = x∆(t) +

∫ ∞
t

1

r(u)

∫ u

δ(u)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s∆u

and

z∆∆(t) = x∆∆(t)− 1

r(t)

∫ t

δ(t)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s.

Writing the latter equality in the form

r(t)z∆∆(t) = r(t)x∆∆(t)−
∫ t

δ(t)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s.

Using (1.1) and [5, Theorem 1.93], we deduce that

(rz∆∆)∆(t) = (rx∆∆)∆(t)− B(δ−1(t))

δ∆(δ−1(t))
x(γ(t)) +B(t)x(β(t))

= −B(t)x(β(t)) + C(t)x(γ(t))− B(δ−1(t))

δ∆(δ−1(t))
x(γ(t)) +B(t)x(β(t))

= C(t)x(γ(t))− B(δ−1(t))

δ∆(δ−1(t))
x(γ(t))

= −
(
B(δ−1(t))

δ∆(δ−1(t))
− C(t)

)
x(γ(t)).

Then, we obtain

(rz∆∆)∆(t) = − D(δ−1(t))

δ∆(δ−1(t))
x(γ(t)) < 0,(2.2)

which implies that rz∆∆ is decreasing, and thus the sign of z∆∆ is fixed. Next, we assert
that there exists a t2 ∈ [t1,∞)T such that z∆∆(t) > 0 for t ∈ [t2,∞)T. If z∆∆ < 0, then
there exist a t3 ∈ [t1,∞)T and a constant M > 0 such that, for t ∈ [t3,∞)T,

z∆∆(t) ≤ − M

r(t)
< 0.
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Integrating the latter inequality from t3 to t, we obtain

z∆(t) ≤ z∆(t3)−M
∫ t

t3

∆s

r(s)
.

Letting t→∞ and using condition (1.2), we have limt→∞ z
∆(t) = −∞. It follows from

inequalities z∆∆ < 0 and z∆ < 0 that

lim
t→∞

z(t) = −∞,

which contradicts the fact that z is bounded. Hence, there exists a t4 ∈ [t1,∞)T such
that, for t ∈ [t4,∞)T,

(2.3) z(t) > 0, z∆(t) < 0, z∆∆(t) > 0, (rz∆∆)∆(t) < 0,

or

(2.4) z(t) < 0, z∆(t) < 0, z∆∆(t) > 0, (rz∆∆)∆(t) < 0.

Assume first that (2.3) holds. Using condition (2.1) and the definition of z, we conclude
that there exists a constant ` ≥ 0 such that limt→∞ x(t) = limt→∞ z(t) = `. Assume
now that (2.4) holds. Then

x(t) ≤
∫ ∞
t

∫ ∞
v

1

r(u)

∫ u

δ(u)

B(δ−1(s))

δ∆(δ−1(s))
x(γ(s))∆s∆u∆v.

On the other hand, by virtue of [12, Lemma 2.1],∫ ∞
t

∫ ∞
v

1

r(u)

∫ u

δ(u)

B(δ−1(s))

δ∆(δ−1(s))
∆s∆u∆v =

∫ ∞
t

[σ(v)− t]F (v)∆v.

It follows now from condition (2.1) that limt→∞ x(t) = 0. This completes the proof.

2.2. Example. For t ≥ t0, consider a third-order differential equation

x′′′(t) +
b

t4
x(t)− c

t5
x(2t) = 0,(2.5)

where b and c are positive constants. It is not difficult to verify that all assumptions of
Theorem 2.1 are satisfied. Hence, every bounded solution x of (2.5) is either oscillatory
or limt→∞ x(t) exists (finite).

3. Conclusions
Most oscillation and asymptotic results reported in the literature for third-order dy-

namic equation (1.1) and its particular cases have been obtained in the case where
C(t) = 0. In this paper, we establish an asymptotic criterion for equation (1.1) un-
der the assumption that C(t) ≥ 0, which, in a certain sense, improves and complements
the related results in the cited papers.

We stress that the study of asymptotic behavior of equation (1.1) in the case C(t) ≥ 0
brings additional difficulties. The main difficulty one encounters lies in how to obtain
inequality such as (2.2). Since z∆ < 0, it is hard to establish criteria which ensure that
all bounded solutions of (1.1) are just oscillatory. The question regarding the study of
sufficient conditions which guarantee that all bounded solutions of (1.1) tend to zero
remains open at the moment.

It is not easy to use the technique exploited in this paper for deriving similar results
for the odd-order dynamic equation

(3.1)
(
rx∆n−1

)∆

(t) +B(t)x(β(t))− C(t)x(γ(t)) = 0,
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where n ≥ 3 is an odd natural number. Therefore, an interesting problem for future
research can be formulated as follows.

(P ) Is it possible to establish similar asymptotic tests for equation (3.1)?
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1. Introduction

Leibniz algebras are introduced by Cuvier and Loday [11,17], motivated by the study
of algebraic K-theory. Such algebras are a non-antisymmetric version of Lie algebras.
Active investigations on Leibniz algebras show that many results of Lie algebras can
be extended to Leibniz algebras [1,5-7,18-19]. Leibniz superalgebras, originally were
introduced by Dzhumadil’daev in [12], can be seen as a direct generalization of Leibniz
algebras. Some theories of superdialgebras and (co)homology of Leibniz superalgebras
are investigated [14-16].

During the past decades, there is an increasing interest in exploring some exotic al-
gebraic structures [9-10]. In particular, Casas and Datuashoili considered algebras with
brackets [8]. Such algebras are called noncommutative Leibniz Poisson algebras. On
the other hand the dual algebraic operads of the classical operads provide some kinds of
algebraic structures: Dialgebras, Dendriform algebras and Trialgebras [20].

Recently, Leibniz algebras are generalized to Hom-Leibniz algebras by Makhlouf and
Silvestrov in [21]. Some structure theories of Hom-Leibniz algebras are developed [22].
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Moreover, the dialgebras are also generalized to Hom-dialgebras by Yau in [26], which give
rise to Hom-Leibniz algebras. Hom-Lie algebras, Hom-Lie superalgebras and Hom-Lie
color algebras have been widely investigated [13,25,3,4,2,27,23-24]. The purpose of this
paper is to introduce and study Hom-Leibniz superalgebras and Hom-Leibniz Poisson
superalgebras.

The paper is organized as follows. In section 2, we give the definition and some
important constructions of Hom-Leibniz superalgebras. In section 3, the notion of Hom-
superdialgebras is proposed, the construction of Hom-Leibniz superalgebras is provided.
Moreover, we give the definition of representation of Hom-superdialgebras and show that
the representation of Hom-superdialgebras gives rise to the representation of Hom-Leibniz
superalgebras via a special bracket. In section 4, we introduce the notions of Hom-Leibniz
Poisson superalgebras, Hom-associative supertrialgebras and Hom-dendriform superalge-
bras, furthermore, construct several classes of Hom-Leibniz Poisson superalgebras. Sec-
tion 5 and Section 6 are devoted to dealing with the derivations and representations of
Hom-Leibniz Poisson superalgebras.

Throughout this paper, K denotes a field of characteristic zero. All vector spaces and
algebras are Z2-graded over K.

2. Hom-Leibniz Superalgebras

In this section, we introduce the notion of Hom-Leibniz superalgebras, and then give
the construction of Hom-Leibniz superalgebras.

2.1. Definition. ([3]) A Hom-associative superalgebra is a triple (V, ◦, α) consist-
ing of a superspace V , an even bilinear map ◦ : V × V → V and an even superspace
homomorphism α : V → V satisfying

(0.1) α(x ◦ y) = α(x) ◦ α(y),

(0.2) α(x) ◦ (y ◦ z) = (x ◦ y) ◦ α(z),
for all homogeneous elements x, y, z ∈ V.

2.2. Definition. ([3]) A Hom-Lie superalgebra is a triple (V, [., ], α) consisting of a
superspace V , an even bilinear map [., .] : V ×V → V and an even superspace homomor-
phism α : V → V satisfying

(0.3) α([x, y]) = [α(x), α(y)],

(0.4) [x, y] = −(−1)|x‖y|[y, x],

(0.5) (−1)|x||z|[α(x), [y, z]] + (−1)|z||y|[α(z), [x, y]] + (−1)|x||y|[α(y), [z, x]] = 0,

for all homogeneous elements x, y, z ∈ V.

2.3. Definition. A Hom-Leibniz superalgebra is a triple (V, [., ], α) consisting of a
superspace V , an even bilinear map [., .] : V ×V → V and an even superspace homomor-
phism α : V → V satisfying

(0.6) α([x, y]) = [α(x), α(y)],

(0.7) [[x, y], α(z)] = [α(x), [y, z]] + (−1)|y||z|[[x, z], α(y)],
for all homogeneous elements x, y, z ∈ V.

Let (V, [., .], α) and (V ′, [., .]′, α′) be two Hom-Leibniz superalgebras. An even homo-
morphism f : V → V ′ is said to be a morphism of Hom-Leibniz superalgebras if

(0.8) f ◦ α = α′ ◦ f, [f(x), f(y)]′ = f([x, y]), ∀x, y ∈ V.
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2.4. Remark. We recover the classical Leibniz superalgebra when α is an identity map
and reduces to a Hom-Leibniz algebra when the part of parity one is trivial. Obviously, a
Hom-Lie superalgebra is a Hom-Leibniz superalgebra. While a Hom-Leibniz superalgebra
is a Hom-Lie superalgebra if and only if [x, x] = 0, for all homogeneous element x ∈ V.

Suppose that (V, [., .], α) is a Hom-Leibniz superalgebra. For any x ∈ V , define Ady ∈
End(V ) by

(0.9) Ady(x) = (−1)|x||y|[x, y].

Then the Hom-Leibniz superalgebra identity (0.7) is written into

(0.10) Adα(z)([x, y]) = (−1)|x||z|[α(x), Adz(y)] + [Adz(x), α(y)],

or into pure operation form

(0.11) Adα(z)Ady = AdAdz(y) ◦ α+ (−1)|y||z|Adα(y) ◦Adz.

The following proposition provides a method to construct a Hom-Leibniz superalgebra
by a Leibniz superalgebra and an even endomorphism.

2.5. Proposition. Let (V, [., .]) be a Leibniz superalgebra and α : V → V be an even
Leibniz superalgebra endomorphism. Then (V, [., .]α, α) is a Hom-Leibniz superalgebra,
where [x, y]α = α([x, y]).

Moreover, suppose that (V ′, [., .]′) is another Leibniz superalgebra and α′ : V ′ → V ′ is
a Leibniz superalgebra endomorphism. If f : V → V ′ is a Leibniz superalgebra morphism
that satisfies f ◦ α = α′ ◦ f , then

(0.12) f : (V, [., .]α, α)→ (V ′, [., .]′α′ , α
′)

is a morphism of Hom-Leibniz superalgebras.

Proof. We show that (V, [., .]α, α] satisfies the Hom-Leibniz superalgebra identity (0.7).
In fact,

[α(x), [y, z]α]α + (−1)|y||z|[[x, z]α, α(y)]α

= α([α(x), α([y, z])]) + (−1)|y||z|α([α([x, z]), α(y)])

= α2([x, [y, z]] + (−1)|y||z|[[x, z], y])

= α2([[x, y], z])

= [[x, y]α, α(z)]α

The second assertion follows from

f([x, y]α) = f([α(x), α(y)])

= [f ◦ α(x), f ◦ α(y)]′

= [α′ ◦ f(x), α′ ◦ f(y)]′

= [f(x), f(y)]′α′ .

2

2.6. Example. (3-dimensional Hom-Leibniz superalgebras) Let A = A0̄ ⊕ A1̄

be a 3-dimensional superspace, where A0̄ is generated by e1 and A1̄ is generated by e2, e3

and the nonzero product is given by [e2, e1] = e2. For any a, b ∈ K, we consider the
homomorphism α : A → A defined by α(e1) = ae1, α(e3) = be2. By Proposition 2.5, for
any a ∈ K, there is the corresponding Hom-Leibniz superalgebra Aα = (A, [., .]α, α) with
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the nonzero product [e2, e1]α = ae2. It is not a Leibniz superalgebra when a 6= 0, 1.

2.7. Lemma. Let V be a Hom-Lie superalgebra, then the bracket

[x⊗ y, a⊗ b] = [[x, y], α(a)]⊗ b+ (−1)|a||x|+|a||y|a⊗ [[x, y], α(b)]

definies a Hom-Leibniz superalgebra structure on the vector superspace V ⊗ V.

2.8. Definition. A representation (module) of the Hom-Leibniz superalgebra (V, [., .], α)
is a Hom-supermodule (U,αU ) equipped with two even V -actions (left and right)

[., .] : U × V → U ((u, x) 7→ [u, x]) and [., .] : V × U → U ((x, u) 7→ [x, u])

satisfying the following axioms,

(0.13) [Uα, Vβ ] ⊆ Uα+β ,∀α, β ∈ Z2,

(0.14) [Vα, Uβ ] ⊆ Uα+β ,∀α, β ∈ Z2,

(0.15) αU ([u, x]) = [αU (u), α(x)],

(0.16) αU ([x, u]) = [α(x), αU (u)],

(0.17) [[u, x], α(y)] = [αU (u), [x, y]] + (−1)|x||y|[[u, y], α(x)],
(0.18) [[x, u], α(y)] = [α(x), [u, y]] + (−1)|u||y|[[x, y], αU (u)],
(0.19) [[x, y], αU (u)] = [α(x), [y, u]] + (−1)|u||y|[[x, u], α(y)],
for all homogeneous elements x, y ∈ V and u ∈ U.

Note that the last two relations imply the following identity

[α(x), [u, y]] + (−1)|u||y|[α(x), [y, u]] = 0.

3. Hom-Superdialgebras

In this section, we extend in one hand superdialgebras and the Hom-dialgebras in-
troduced in [14] and [26] to Hom-superdialgebras. In the other hand we describe some
constructions of Hom-Leibniz superalgebras.

3.1. Definition. ([14]) A superdialgebra is a triple (V,a,`) consisting of a superspace
V , two even bilinear maps a,`: V × V → V satisfying

(0.20) x ` (y a z) = (x ` y) a z,
(0.21) x a (y a z) = (x a y) a z = x a (y ` z),
(0.22) x ` (y ` z) = (x ` y) ` z = (x a y) ` z,
for all homogeneous elements x, y, z ∈ V.

3.2. Definition. A Hom-superdialgebra is a tuple (V,a,`, α) consisting of a super-
space V , two even bilinear maps a,`: V ×V → V and an even superspace homomorphism
α : V → V satisfying

(0.23) α(x a y) = α(x) a α(y), α(x ` y) = α(x) ` α(y),
(0.24) α(x) a (y a z) = (x a y) a α(z) = α(x) a (y ` z),
(0.25) α(x) ` (y ` z) = (x ` y) ` α(z) = (x a y) ` α(z),
(0.26) α(x) ` (y a z) = (x ` y) a α(z),
for all homogeneous elements x, y, z ∈ V.

3.3. Remark. We recover the classical superdialgebra [14] when α is an identity
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map and reduces to a Hom-dialgebra [26] when the part of parity one is trivial. Any
Hom-associative superalgebra is a Hom-superdialgebra if a ` b = a a b = ab.

3.4. Proposition. If (V1, ◦1, α1) and (V2, ◦2, α2) are two Hom-superdialgebras, then
the tensor product V1 ⊗ V2 is a Hom-superdialgebra with

α = α1 ⊗ α2,

and
(v1 ⊗ v2) ? (u1 ⊗ u2) = (−1)|v2||u1|(v1 ? u1)⊗ (v2 ? u2)

for all homogeneous elements v1, v2 ∈ V1, u1, u2 ∈ V2 and ? =a, ` .

3.5. Definition. Let (V,a,`, α) and (V ′,a′,`′, α′) be two Hom-superdialgebras. An
even homomorphism f : V → V ′ is said to be a morphism of Hom-superdialgebras if
f ◦α = α′ ◦f, and f(x) a′ f(y) = f(x a y), and f(x) `′ f(y) = f(x ` y) for any x, y ∈ V.

3.6. Proposition. Let (V,a,`) be a superdialgebra and α : V → V be an even super-
dialgebra endomorphism. Then (V,aα,`α, α) is a Hom-superdialgebra, where x aα y =
α(x a y) and x `α y = α(x ` y).

Moreover, suppose that (V ′,a′,`′) is another superdialgebra and α′ : V ′ → V ′ is a
superdialgebra endomorphism. If f : V → V ′ is a superdialgebra morphism that satisfies
f ◦ α = α′ ◦ f , then

(0.27) f : (V,aα,`α, α)→ (V ′,a
′

α
′ ,`
′

α
′ , α′)

is a morphism of Hom-superdialgebras.

Proof. We only need to show that (V,aα,`α, α) satisfies the Hom-superdialgebra iden-
tity (0.24)-(0.26). Direct calculations show that

α(x) aα (y `α z) = α(α(x) a α(y a z))
= α2(x a (y a z))
= α2((x a y) a z)
= (x aα y) aα α(z),

and

α(x) aα (y `α z) = α2(x a (y a z))
= α2(x a (y ` z))
= α(α(x) a (y `α z))
= α(x) aα (y `α z),

thus (0.24) holds. Similarly, we can prove (0.25) and (0.26).
Setting ?α =aα and ?α =`α . The second assertion follows from

f ◦ ?α = f ◦ α ◦ ? = α′ ◦ f ◦ ? = α′ ◦ ?′ ◦ f = ?α′ ◦ f.

2

3.7. Proposition. Let (V,a,`, α) be a Hom-superdialgebra. Define an even bilinear
map [., .] : V × V → V by

(0.28) [x, y] = x a y − (−1)|x||y|y ` x,∀x, y ∈ V.

Then (V, [., .], α) is a Hom-Leibniz superalgebra.
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Proof. We only need to show that (V, [., .], α) satisfies the Hom-Leibniz superalgebra
identity (0.7). Direct calculations show that

[α(x), [y, z]] + (−1)|y||z|[[x, z], α(y)]

= α(x) a (y a z)− (−1)|x||y|+|x||z|(y a z) ` α(x)

− (−1)|y||z|α(x) a (z ` y) + (−1)|x||y|+|x||z|+|y||z|(z ` y) ` α(x)

+ (−1)|y||z|(x a z) a α(y)− (−1)|x||y|α(y) ` (x a z)

− (−1)|x||z|+|y||z|(z ` x) a α(y) + (−1)|x||y|+|x||z|α(y) ` (z ` x)

= (x a y) a α(z)− (−1)|x||z|+|y||zα(z) ` (x a y)

− (−1)|x||y|(y ` x) a α(z) + (−1)|x||y|+|x|||z|+|y||z|α(z) ` (y ` x)

+ (−1)|y||z|{(x a z) a α(y)− α(x) a (z ` y)}

+ (−1)|x||y|+|x||z|{α(y) ` (z ` x)− (y a z) ` α(x)}

= [x a y, α(z)]− (−1)|x||y|[y ` x, α(z)]
= [[x, y], α(z)].

2

3.8. Proposition. Let (V, [., .], α1) be a Hom-Leibniz superalgebra , (U,a,`, α2) be
a super commutative Hom-superdialgebra and let g = V ⊗ U . Define the operations
α : g → g and [., .] : g⊗2 → g by

(0.29) α = α1 ⊗ α2,

(0.30) [x⊗ a, y ⊗ b] = (−1)|a||y|[x, y]⊗ (a ` b).
Then (g, [., .], α) is a Hom-Leibniz superalgebra.

Proof. We only need to show that (g, [., .], α) satisfies the Hom-Leibniz superalgebra
identity (0.7). Direct calculations show that

[α(x⊗ a), [y ⊗ b, z ⊗ c]] + (−1)|y||z|+|y||c|+|b||z|+|b||c|[[x⊗ a, z ⊗ c], α(y ⊗ b)]

= [α1(x)⊗ α2(a), (−1)|b||z|[y, z]⊗ (b ` c)]

+ (−1)|y||z|+|y||c|+|b||z|+|b||c|+|a||z|[[x, z]⊗ (a ` c), α1(y)⊗ α2(b)]

= (−1)|a||y|+|a||z|+|b||z|[α1(x), [y, z]]⊗ (α2(a) ` (b ` c))

+ (−1)|a||y|+|a||z|+|b||z|+|b||c|+|y||z|[[x, z], α1(y)]⊗ ((a ` c) ` α2(b))

= (−1)|a||y|+|a||z|+|b||z|[α1(x), [y, z]]⊗ (α2(a) ` (b ` c))

+ (−1)|a||y|+|a||z|+|b||z|+|y||z|[[x, z], α1(y)]⊗ (α2(a) ` (b ` c))

= (−1)|a||y|+|a||z|+|b||z|{[α1(x), [y, z]]

+ (−1)|y||z|[[x, z], α1(y)]} ⊗ (α2(a) ` (b ` c))

= (−1)|a||y|+|a||z|+|b||z|[[x, y], α1(z)]⊗ (α2(a) ` (b ` c)).
and

[[x⊗ a, y ⊗ b], α(z ⊗ c)] = [(−1)|a||y|[x, y]⊗ (a ` b), α1(z)⊗ α2(c)]

= (−1)|a||y|+|a||z|+|b||z|[[x, y], α1(z)]⊗ ((a ` b) ` α2(c))

= (−1)|a||y|+|a||z|+|b||z|[[x, y], α1(z)]⊗ (α2(a) ` (b ` c)).
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This shows that (g, [., .], α) is a Hom-Leibniz superalgebra. 2

3.9. Definition. Let (V,a,`, α) be a Hom-superdialgebra and (U,αU ) be a Hom-
superspace. The pair (U,αU ) is said to be a V -supermodule if (U,αU ) is a Hom-supermodule
equipped with four actions (left and right) of V

V ⊗ U → U (x⊗ u 7→ x a u or x ` u),
U ⊗ V → U (u⊗ x 7→ u a x or u ` x)

satisfying the following axioms
αU (x a u) = α(x) a αU (u),
αU (x ` u) = α(x) ` αU (u),
αU (u a x) = αU (u) a α(x),
αU (u ` x) = αU (u) ` α(x),

α(x) a (y a u) = (x a y) a αU (u) = α(x) a (y ` u),
(x ` y) a αU (u) = α(x) ` (y a u),
(x a y) ` αU (u) = α(x) ` (y ` u) = (x ` y) ` αU (u),
α(x) a (u a y) = (x a u) a α(y) = α(x) a (u ` y),
(x ` u) a α(y) = α(x) ` (u a y),
(x a u) ` α(y) = α(x) ` (u ` y) = (x ` u) ` α(y),

αU (u) a (x a y) = (u a x) a α(y) = αU (u) a (x ` y),
(u ` x) a α(y) = αU (u) ` (x a y),
(u a x) ` α(y) = αU (u) ` (x ` y) = (u ` x) ` α(y),

for all x, y ∈ V and u ∈ U.

3.10. Proposition. Let (V,a,`, α) be a Hom-superdialgebra, (V, [., .], α) be a Hom-
Leibniz superalgebra, where [x, y] = x a y − (−1)|x||y|y ` x for any x, y ∈ V, and (U,αU )
be a representation of (V,a,`, α). Then (U,αU ) is also a representation of (V, [., .], α).

Proof. We just check

[[x, y], αU (u)] = [α(x), [y, u]] + (−1)|y||u|[[x, u], α(y)].
Using the axioms of the supermodule of Hom-superdialgebra, we have

[α(x), [y, u]] + (−1)|y||u|[[x, u], α(y)]

= α(x) a (y a u)− (−1)|x||y|+|x||u|((y a u) ` α(x))

− (−1)|y||u|α(x) a (u ` y) + (−1)|x||y|+|x||u|+|y||u|(u ` y) ` α(x)

+ (−1)|y||u|(x a u) a α(y)− (−1)|x||y|α(y) ` (x a u)

− (−1)|x||u|+|y||u|(u ` x) a α(y) + (−1)|x||y|+|x||u|α(y) ` (u ` x)

= (x a y) a αU (u)− (−1)|x||u|+|y||u|αU (u) ` (x a y)

− (−1)|x||y|(y ` x) ` αU (u) + (−1)|x||y|+|y||u|+|x||u|αU (u) ` (y ` x)
= [[x, y], αU (u)].

2

4. Hom-Leibniz Poisson Superalgebras
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In this section, we introduce the notions of Hom-Leibniz Poisson superalgebras, Hom-
associative supertrialgebras and Hom-dendriform superalgebras. Moreover, we construct
several classes of Hom-Leibniz Poisson superalgebras.

4.1. Definition. A Hom-Poisson superalgebra is a tuple (A, ◦, [., .], α) consisting of
a superspace V , two even bilinear maps ◦, [., .] : V × V → V and an even superspace
homomorphism α : V → V satisfying the following axioms

(1) (A, ◦, α) is a Hom-associative superalgebra ,
(2) (A, [., .], α) is a Hom-Lie superalgebra,
(3) the Hom-Leibniz superidentity

[x ◦ y, α(z)] = α(x) ◦ [y, z] + (−1)|y||z|[x, z] ◦ α(y)
holds, for all homogeneous elements x, y, z ∈ A.

4.2. Theorem. Let (A, ·, [., .]) be a Poisson superalgebra and α : A → A be an even
Poisson superalgebra endomorphism. Then (A, ·α, [., .]α, α) is a Hom-Poisson superalge-
bra, where x ·α y = α(x · y) and [x, y]α = α([x, y]).

Proof. It is straightforward. 2

This theorem provides a method to construct Hom-Poisson superalgebra by a Poisson
superalgebra and an even Poisson superalgebra endomorphism.

4.3. Example. Let A = A0̄⊕A1̄ be a 2-dimensional superspace, where A0̄ is generated
by e1 and A1̄ is generated by e2 and nonzero products are given by

e1 · e1 = e1, e2 · e2 = e1, e1 · e2 = e2 · e1 = e2, [e2, e2] = 2e1.

For any a ∈ K, we consider the homomorphism α : A→ A defined by

α(e1) = ae1, α(e2) = ae2.

By Theorem 4.2, for any a ∈ K, there is the corresponding Hom-Poisson superalgebra
Aa = (A, ·α, [., .]α, α) with the nonzero products

e1 ·α e1 = ae1, e2 ·α e2 = ae1, e1 ·α eα = ae2, [e2, e2]α = 2ae1.

It is not a Poisson superalgebra when a 6= 0, 1.

4.4. Example. Let A = A0̄⊕A1̄ be a 3-dimensional superspace, where A0̄ is generated
by e1, e2 and A1̄ is generated by e3 and the nonzero products are given by

e1 · e2 = e1, e2 · e2 = e2, e3 · e2 = e3, [e1, e2] = ae1.

For any a ∈ K, we consider the homomorphism α : A→ A defined by

α(e1) = ae1, α(e2) = e1 + e2.

By Theorem 4.2, for any a ∈ K, there is the corresponding Hom-Poisson superalgebra
Aα = (A, ·α, [., .]α, α) with the nonzero products

e1 ·α e2 = ae1, e2 ·α e2 = e1 + e2, [e1, e2]α = ae1.

It is not a Poisson superalgebra when a 6= 0, 1.

4.5. Definition. A Hom-Leibniz Poisson superalgebra is a tuple (V, ◦, [., .], α) consist-
ing of a superspace V , two even bilinear maps ◦, [., .] : V ×V → V and an even superspace
homomorphism α : V → V satisfying the following axioms

(1) (V, ◦, α) is a Hom-associative superalgebra,
(2) (V, [., .], α) is a Hom-Leibniz superalgebra,
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(3) the Hom-Leibniz superidentity

[x ◦ y, α(z)] = α(x) ◦ [y, z] + (−1)|y||z|[x, z] ◦ α(y)

holds, for all homogeneous elements x, y, z ∈ V.

4.6. Definition. Let (V, ◦, [., .], α) and (V ′, ◦′, [., .]′, α′) be two Hom-Leibniz Poisson
superalgebras. An even homomorphism f : V → V ′ is said to be a morphism of Hom-
Leibniz Poisson superalgebras if

(0.31) f ◦ α = α′ ◦ f

(0.32) f(x) ◦′ f(y) = f(x ◦ y), [f(x), f(y)]′ = f([x, y]), ∀x, y ∈ V.

4.7. Remark. Any Hom-Poisson superalgebra is a Hom-Leibniz Poisson superalge-
bra. Any Hom-Leibniz Poisson superalgebra (V, ◦, [., .], α) is a Hom-Poisson superalgebra
if and only if [x, y] + (−1)|x||y|[y, x] = 0 holds, for all homogeneous elements x, y ∈ V.
If α = Id, then a Hom-Leibniz Poisson superalgebra becomes a Leibniz-Poisson superal-
gebra. On the other hand, any Hom-associative superalgebra is a Hom-Leibniz Poisson
superalgebra with usual bracket [x, y] = x ◦ y − (−1)|x||y|y ◦ x.

4.8. Proposition. Let (V,a,`, α) be a Hom-superdialgebra and ◦, [., .] : V × V → V
be two binary operations on V defined by

x ◦ y = x ` y, [x, y] = x a y − (−1)|x||y|y ` x,∀x, y ∈ V.

Then (V, ◦, [., .], α) is a Hom-Leibniz Poisson superalgebra.

Proof. It is obvious that (V, ◦, α) is a Hom-associative superalgebra. Moreover, from
Proposition 3.7, it follows that (V, [., .], α) is a Hom-Leibniz superalgebra. Next we show
the remaining Hom-Leibniz superidentity. In fact

α(x) ◦ [y, z] + (−1)|y||z|[x, z] ◦ α(y)

= α(x) ` (y a z)− (−1)|y||z|α(x) ` (z ` y)

+ (−1)|y||z|(x a z) ` α(y)− (−1)|x||z|+|y||z|(z ` x) ` α(y)

= (x ` y) a α(z)− (−1)|x||z|+|y||z|α(z) ` (x ` y)
= [x ◦ y, α(z)].

2

Taking α = Id in Proposition 4.8, we obtain the following result about Leibniz-Poisson
superalgebras.

4.9. Corollary. Let (V,a,`) be a superdialgebra and ◦, [., .] : V × V → V be two
binary operations on V defined by

x ◦ y = x ` y, [x, y] = x a y − (−1)|x||y|y ` x, ∀x, y ∈ V.

Then (V, ◦, [., .]) is a Leibniz-Poisson superalgebra.

4.10. Proposition. Let (V, ◦, [., .]) be a Leibniz-Poisson superalgebra and α : V → V
be an even Leibniz-Poisson superalgebras endomorphism. Then (V, ◦α, [., .]α, α) is a Hom-
Leibniz Poisson superalgebra, where x ◦α y = α(x ◦ y) and [x, y]α = α([x, y]).

Moreover, suppose that (V ′, ◦′, [., .]′) is another Leibniz superalgebra and α′ : V ′ →
V ′ is a Leibniz superalgebras endomorphism. If f : V → V ′ is a Leibniz superalgebra
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morphism that satisfies f ◦ α = α′ ◦ f, then

f : (V, ◦α, [., .]α, α)→ (V ′, ◦α′ , [., .]α′ , α′)

is a morphism of Hom-Leibniz superalgebras.

Proof. It is obvious that (V, ◦α, α) is a Hom-associative superalgebra. Moreover, from
Proposition 2.5, we have (V, [., .]α, α) is a Hom-Leibniz superalgebra. Next we will show
that the Hom-Leibniz superidentity holds. In fact

α(x) ◦α [y, z]α + (−1)|y||z|[x, z]α ◦α α(y)

= α(α(x) ◦ α([y, z])) + (−1)|y||z|α(α([x, z]) ◦ α(y))

= α2(x ◦ [y, z] + (−1)|y||z|[x, z] ◦ y)

= α2[x ◦ y, z]
= α([x ◦α y, α(z)])
= [x ◦α y, α(z)]α.

By Proposition 2.5, the second assertion is straightforward. 2

4.11. Definition. An Hom-associative supertrialgebra is a quintuple (V,a,`,⊥, α)
consisting of a superspace V , three even bilinear maps a,`,⊥: V × V → V and an even
superspace homomorphism α : V → V satisfying the following axioms

α(x a y) = α(x) a α(y), α(x ` y) = α(x) ` α(y),
α(x ⊥ y) = α(x) ⊥ α(y), (x a y) a α(z) = α(x) a (y a z),

(x a y) a α(z) = α(x) a (y ` z), (x ` y) a α(z) = α(x) ` (y a z),
(x a y) ` α(z) = α(x) ` (y ` z), (x ` y) ` α(z) = α(x) ` (y ` z),
(x a y) a α(z) = α(x) a (y ⊥ z), (x ⊥ y) a α(z) = α(x) ⊥ (y a z),
(x a y) ⊥ α(z) = α(x) ⊥ (y ` z), (x ` y) ⊥ α(z) = α(x) ` (y ⊥ z),
(x ⊥ y) ` α(z) = α(x) ` (y ` z), (x ⊥ y) ⊥ α(z) = α(x) ⊥ (y ⊥ z).

4.12. Remark. We recover the classical associative trialgebra when α = Id and the
part of parity one is trivial in [14,20]. The associative supertrialgebra is obtained when
α = Id. Any Hom-associative supertrialgebra gives rise to a Hom-associative superdial-
gebra by forgetting the operation ⊥ .

4.13. Proposition. Let (V,a,`,⊥, α) be a Hom-associative supertrialgebra and
◦, [., .] : V × V → V be two binary operations on V defined by

x ◦ y = x ⊥ y, [x, y] = x a y − (−1)|x||y|y ` x, ∀x, y ∈ V.

Then (V, ◦, [., .], α) is a Hom-Leibniz Poisson superalgebra.

Proof. It is obvious that (V, ◦, α) is a Hom-associative superalgebra. Moreover, from
Proposition 3.7, we have (V, [., .], α) is a Hom-Leibniz superalgebra. Next we will show
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that the remaining Hom-Leibniz superidentity holds. In fact,

[α(x), y ◦ z] + (−1)|y||z|[x ◦ z, α(y)] = α(x) ⊥ (y a z)
− (−1)|y||z|α(x) ⊥ (z ` y)
+ (−1)|y||z|(x a z) ⊥ α(y)
− (−1)|x||z|+|y||z|(z ` x) ⊥ α(y)
= (x ⊥ y) a α(z)− (−1)|x||z|+|y||z|α(z) ` (x ⊥ y)
= [x ◦ y, α(z)].

2

4.14. Definition. [24] A Hom-dendriform superalgebra is a tuple (V,≺,�, α) consist-
ing of a superspace V , two even bilinear maps ≺,�: V × V → V and an even superspace
homomorphism α : V → V satisfying the following axioms

α(x < y) = α(x) < α(y),

α(x > y) = α(x) > α(y),

(x ≺ y) ≺ α(z) = α(x) ≺ (y ≺ z) + α(x) ≺ (y � z),
(x � y) ≺ α(z) = α(x) � (y ≺ z),

(x ≺ y) � α(z) + (x � y) � α(z) = α(x) � (y � z),
for all homogeneous elements x, y, z ∈ V .

4.15. Lemma. Let (V,≺,�, α) be a Hom-dendriform superalgebra, define the product
on homogeneous elements by

x ∗ y = x ≺ y + x � y.
Then (V, ∗, α) is a Hom-associative superalgebra.

4.16. Proposition. Let (V,≺,�, α) be a Hom-dendriform superalgebra. Define the
products on homogeneous elements by

x ∗ y = x ≺ y + x � y, [x, y] = x ∗ y − (−1)|x||y|y ∗ x.
Then (V, ∗, [., .], α) is a Hom-Leibniz Poisson superalgebra.

Proof. It is straightforward. 2

5. Derivation of Hom-Leibniz Poisson Superalgebras

In this section, we extend the α-derivations of Hom-Lie algebras introduced in [25] to
Hom-Leibniz Poisson superalgebras.

Let (V, ◦, [., .], α) be a Hom-Leibniz Poisson superalgebra, denote by αk the k-times
composition of α, i.e., αk = α ◦ α · · · · · · ◦ α (k-times). In particular, α−1 = 0, α0 = Id,
and α1 = α.

5.1. Definition. For any k ≥ −1, we call D ∈ (EndV)i, where i ∈ Z2, an αk-
derivation of the Hom-Leibniz Poisson superalgebra (V, ◦, [., .], α) if
(0.33) α ◦D = D ◦ α,

(0.34) D([x, y]) = [D(x), αk(y)] + (−1)|x||D|[αk(x), D(y)],

(0.35) D(x ◦ y) = D(x) ◦ αk(y) + (−1)|x||D|αk(x) ◦D(y),
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for all homogeneous elements x, y ∈ V.
We denote by Derαk (V ) = Derαk (V )0̄ ⊕ Derαk (V )1̄ the set of αk-derivations of the

Hom-Leibniz Poisson superalgebra (V, ◦, [., .], α), and Der(V ) = ⊕k≥−1Derαk (V ).
For any homogeneous elements a ∈ V, satisfying α(a) = a, define adk(a) ∈ End(V ) by

adk(a)(x) = −(−1)|a||x|[αk(x), a], ∀x ∈ V.

Notice that |adk(a)| = |a|.

5.2. Proposition. Let (V, ◦, [., .], α) be a Hom-Leibniz Poisson superalgebra. Then
adk(a) is an αk+1-derivation, which is said to be an inner αk+1-derivation.

Proof. Direct calculations show that

adk(a) ◦ α(x) = −(−1)|a||x|[αk+1(x), a]

= −(−1)|a||x|[αk+1(x), α(a)]

= −(−1)|a||x|α([αk(x), a]
= α ◦ adk(a)(x),

and

adk(a)([x, y]) = −(−1)|a||x|+|a||y|[αk([x, y]), a]
= −(−1)|a||x|+|a||y|[[αk(x), αk(y)], α(a)]
= −(−1)|a||x|+|a||y|[αk+1(x), [αk(y), a]]− (−1)|a||x|[[αk(x), a], αk+1(y)]

= (−1)|a||x|[αk+1(x), adk(a)(y)] + [adk(a)(x), α
k+1(y)],

and

adk(a)(x ◦ y) = −(−1)|a||x|+|a||y|[αk(x ◦ y), a]
= −(−1)|a||x|+|a||y|[αk(x) ◦ αk(y), α(a)]
= −(−1)|a||x|+|a||y|αk+1(x) ◦ [αk(y), a]]− (−1)|a||x|[αk(x), a] ◦ αk+1(y)

= (−1)|a||x|αk+1(x) ◦ adk(a)(y) + adk(a)(x) ◦ αk+1(y).

Therefore, adk(a) is an αk+1-derivation. 2

We denote by Innαk (V ) the set of inner αk-derivations, i.e.,

Innαk (V ) = {adk(a)|a ∈ V0̄ ∪ V1̄, α(a) = a}.

For any D ∈ Der(V ) and D′ ∈ Der(V ), define their commutator [D,D′] as usual:

[D,D′] = D ◦D′ − (−1)|D||D
′|D′ ◦D.

5.3. Lemma. For any D ∈ (Derαk (V ))i and D′ ∈ (Derαk (V ))j, then [D,D′] ∈
Derαk+s(V )|D|+|D′|, where k + s ≥ −1 and (i, j) ∈ Z2

2.
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Proof. For any x, y ∈ V , we have

[D,D′]([x, y]) = D ◦D′([x, y])− (−1)|D||D
′|D′ ◦D([x, y])

= D([D′(x), αs(y)] + (−1)|D
′||x|[αs(x), D′(y)])

− (−1)|D||D
′|D′([D(x), αk(y)] + (−1)|D||x|[αk(x), D(y)])

= [DD′(x), αk+s(y)] + (−1)|D||D
′|+|D||x|[αk(D′(x)), Dαs(y)]

+ (−1)|D
′||x|[Dαs(x), αkD′(y)] + (−1)|D

′||x|+|D||x|[αk+s(x), DD′(y)]

− (−1)|D||D
′|[D′D(x), αk+s(y)]− (−1)|D

′||x|[αsD(x), D′αk(y)]

− (−1)|D||D
′|+|D||x|[D′αk(x), αsD(y)]

− (−1)|D||D
′|+|D||x|+|D′||x|[αk+s(x), D′D(y)].

Since D and D′ satisfy D ◦ α = α ◦D and D′ ◦ α = α ◦D′, we obtain

[D,D′]([x, y]) = [DD′(x)− (−1)|D||D
′|D′D(x), αk+s(y)]

+ (−1)|D||x|+|D
′||x|[αk+s(x), DD′(y)− (−1)|D||D

′|D′D(y)]

= [[D,D′](x), αk+s(y)] + (−1)|[D,D
′]||x|[αk+s(x), [D,D′](y)].

It is not difficult to show that

[D,D′](x ◦ y) = D ◦D′(x ◦ y)− (−1)|D||D
′|D′ ◦D(x ◦ y)

= D(D′(x) ◦ αs(y) + (−1)|D
′||x|αs(x) ◦D′(y))

− (−1)|D||D
′|D′(D(x) ◦ αk(y) + (−1)|D||x|αk(x) ◦D(y))

= DD′(x) ◦ αk+s(y) + (−1)|D||D
′|+|D||x|αkD′(x) ◦Dαs(y)

+ (−1)|D
′||x|Dαs(x) ◦ αkD′(y) + (−1)|D

′||x|+|D||x|αk+s(x) ◦DD′(y)

− (−1)|D||D
′|D′D(x) ◦ αk+s(y)− (−1)|D

′||x|αsD(x) ◦D′αk(y)

− (−1)|D||D
′|+|D||x|D′αk(x) ◦ αsD(y)

− (−1)|D||D
′|+|D||x|+|D′||x|αk+s(x) ◦D′D(y)

= (DD′ − (−1)|D||D
′|D′D)(x) ◦ αk+s(y)

+ (−1)|[D,D
′]||x|(DD′ − (−1)|D||D

′|D′D)(y)

= [D,D′](x) ◦ αk+s(y) + (−1)|[D,D
′]||x|αk+s(x) ◦ [D,D′](y).

It is easy to verify that α◦[D,D′] = [D,D′]◦α, which leads to [D,D′] ∈ Derαk+s(V )|D|+|D′|.

5.4. Remark. Obviously, we have

Derα−1(V ) = {D ∈ End(V )|D ◦ α = α ◦D,D([x, y]) = 0, D(x ◦ y) = 0,∀x, y ∈ V }.

Thus for any D,D′ ∈ Derα−1(V ), we have [D,D′] ∈ Derα−1(V ).

5.5. Proposition. With the above notations, Der(V ) is a Hom-Leibniz Poisson su-
peralgebra, in which the bracket is given by [D,D′] = DD′− (−1)|D||D

′|D′D and an even
endomorphism α′ is defined by α′(D) = α ◦D.

6. Representations of Hom-Leibniz Poisson Superalgebras
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Let (V, ◦, [., .], α) be a Hom-Leibniz Poisson superalgebra, then (V, ◦, α) is a Hom-
associative superalgebra and (V, [., .], α) a Hom-Leibniz superalgebra, so we can study
V − V -bimodules, and the representation of Hom-Leibniz superalgebras over V .

6.1. Definition. Let (V, ◦, [., .], α) be a Hom-Leibniz Poisson superalgebra. A V − V -
bimodule (M,αM ) is two K-module homomorphisms

[., .] : V ⊗M →M, [., .] :M ⊗ V →M

such that the following axioms hold:

[Vα,Mβ ] ⊆Mα+β , [Mα, Vβ ] ⊆Mα+β , ∀α, β ∈ Z2,

αM ([v,m]) = [α(v), αM (m)],

αM ([m, v]) = [αM (m), α(v)],

[[v1, v2], αM (m)] = [α(v1), [v2,m]] + (−1)|v2||m|[[v1,m], α(v2)],

[[v1,m], α(v2)] = [α(v1), [m, v2]] + (−1)|v2||m|[[v1, v2], αM (m)],

[[m, v1], α(v2)] = [αM (m), [v1, v2]] + (−1)|v1||v2|[[m, v2], α(v1)],

[v1 ◦m,α(v2)] = α(v1) ◦ [m, v2] + (−1)|m||v2|[v1, v2] ◦ αM (m),

[m ◦ v1, α(v2)] = αM (m) ◦ [v1, v2] + (−1)|v1||v2|[m, v2] ◦ α(v1),

[v1 ◦ v2, αM (m)] = α(v1) ◦ [v2,m] + (−1)|v2||m|[v1,m] ◦ α(v2),

for all homogeneous elements m ∈M, v1, v2 ∈ V.
A representation over V is defined by a V − V -bimodule (M,αM ).

6.2. Proposition. Let (V1, ◦1, [., .]1, α1) and (V2, ◦2, [., .]2, α2) be Hom-Leibniz Pois-
son superalgebras and ϕ : V1 → V2 be a morphism of Hom-Leibniz Poisson superalgebras,
then V2 is a representation over V1 with respect to the operations

v1 ·m = ϕ(v1) ·m, m · v1 = m · ϕ(v1),

[v1,m] = [ϕ(v1),m], [m, v1] = [m,ϕ(v1)], ∀v1 ∈ V1, m ∈ V2.

Proof. For any v1, v2 ∈ V1,m ∈ V2, We just check

[[v1, v2], α2(m)] = [α1(v1), [v2,m]] + (−1)|v2||m|[[v1,m], α1(v2)]

and

[v1 · v2, α2(m)] = α1(v1) · [v2,m] + (−1)|v2||m|[v1,m] · α1(v2).

By the definition of the operations, we have

[[v1, v2], α2(m)] = [ϕ([v1, v2]), α2(m)]

= [[ϕ(v1), ϕ(v2)], α2(m)]

= [α2ϕ(v1), [ϕ(v2),m]] + (−1)|v2||m|[[ϕ(v1),m], α2ϕ(v2)]

= [ϕα1(v1), [ϕ(v2),m]] + (−1)|v2||m|[[ϕ(v1),m], ϕα1(v2)]

= [α1(v1), [v2,m]] + (−1)|v2||m|[[v1,m], α1(v2)].
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and

[v1 · v2, α2(m)] = [ϕ(v1 · v2), α2(m)]

= [ϕ(v1) · ϕ(v2), α2(m)]

= α2ϕ(v1) · [ϕ(v2),m] + (−1)|v2||m|[ϕ(v1),m] · α2ϕ(v2)

= ϕα1(v1) · [v2,m] + (−1)|v2||m|[v1,m] · ϕα1(v2)

= α1(v1) · [v2,m] + (−1)|v2||m|[v1,m] · α1(v2).

2

6.3. Proposition. Let (V, ◦, [., .], α) be a Hom-Leibniz Poisson superalgebra, then
(End(V ), α′) can be endowed with a representation over V by means of the operations

α′(f) = α ◦ f, (v · f)(a) = v · f(a), (f · v)(a) = (−1)|f ||a|f(a) · v,

[v, f ](a) = [v, f(a)], [f, v](a) = (−1)|v||a|[f(a), v],

for any a, v ∈ V, f ∈ End(V ).

Proof. For any v1, v2 ∈ V, f ∈ End(V ), We just check

[[v1, v2], α
′(f)] = [α(v1), [v2, f ]] + (−1)|v2||f |[[v1, f ], α(v2)]

and

[v1 · v2, α
′(f)] = α(v1) · [v2, f ] + (−1)|v2||f |[v1, f ] · α(v2).

By the definition of the operations, we have

[[v1, v2], α
′(f)](a) = [[v1, v2], α

′(f)(a)]

= [[v1, v2], α ◦ f(a)]
= [α(v1), [v2, f(a)]] + (−1)|v2||f |+|v2||a|[[v1, f(a)], α(v2)]

= [α(v1), [v2, f ](a)] + (−1)|v2||f |+|v2||a|[[v1, f ](a), α(v2)]

= [α(v1), [v2, f ]](a) + (−1)|v2||f |[[v1, f ], α(v2)](a).

Then [[v1, v2], α
′(f)] = [α(v1), [v2, f ]] + (−1)|v2||f |[[v1, f ], α(v2)]. Since

[v1 · v2, α
′(f)](a) = [v1 · v2, α(f(a))]

= α(v1) · [v2, f(a)] + (−1)|v2||f |+|v2||a|[v1, f(a)] · α(v2)

= α(v1) · [v2, f ](a) + (−1)|v2||f |+|v2||a|[v1, f ](a) · α(v2)

= (α(v1) · [v2, f ])(a) + (−1)|v2||f |([v1, f ] · α(v2))(a).

We obtain [v1 · v2, α
′(f)] = α(v1) · [v2, f ] + (−1)|v2||f |[v1, f ] · α(v2). 2
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We study the estimation of the mean θ of a multivariate normal dis-
tribution Np

(
θ, σ2Ip

)
in Rp, σ2is unknown and estimated by the chi-

square variable S2 ∼ σ2χ2
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lower bound Bm =
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1. Introduction
Since the papers of Stein [10],[11] and James and Stein [6], many studies were car-

ried out in the direction of shrinkage estimators, of the mean θ of a multivariate normal
distribution X ∼ Np

(
θ, σ2Ip

)
in Rp. In these works one estimates the mean θ of a multi-

variate normal distribution Np
(
θ, σ2Ip

)
in Rp by shrinkage estimators deduced from the

empirical mean estimator, which are better in quadratic loss than the empirical mean
estimator. A summary of these proceedings is made by Hoffmann [5] who presents an
expository development of Stein estimation in several distribution families. He consid-
ered both the point estimation and confidence interval cases. Emphasis is laid on the
chronological development. In our work we are interested only in the case where the
observation X is Gaussian.

More precisely, if X represents an observation or a sample of multivariate normal
distribution Np

(
θ, σ2Ip

)
, the aim is to estimate θ by an estimator δ relatively at the

quadratic loss function :

(1.1) L (δ, θ) = ‖δ − θ‖2p
where‖.‖p is the usual norm in Rp. To this loss we associate its risk function:

R (δ, θ) = Eθ (L (δ, θ)) .

James and Stein [6] introduced a class of estimators improving δ0 = X, when the dimen-
sion of the space of the observations p is > 3, denoted by

(1.2) δJS =

(
1− (p− 2)S2

(n+ 2) ‖X‖2

)
X ,

in the case where σ2 is unknown where S2 ∼ σ2χ2
n is an estimate of σ2, independent of

X.
Baranchik [1] proposed the positive-part version of the James-Stein estimator, an

estimator dominating the James-Stein estimator when p > 3:

(1.3) δ+
JS

= max

(
0, 1− (p− 2)S2

(n+ 2) ‖X‖2

)
X.

Robert [9] gives an explicit formula of its quadratic risk. We give a simple demonstration
of this domination in Section 4.

Casella and Hwang [4] studied the case where σ2 is known
(
σ2 = 1

)
and showed that

if the limit of the ratio ‖θ‖
2

p
, when p tends to infinity, is a constant c > 0, then

lim
p→+∞

R(δJS (X) , θ)

R(X, θ)
= lim
p→+∞

R(δ+JS (X) , θ)

R(X, θ)
=

c

1 + c
, c > 0.

Li Sun [7] has considered the following ANOVA1 model :
(Xij | θj , σ2) ∼ N( θj , σ

2) i = 1, ..., n, j = 1, ...,m where E(Xij) = θj for
the group j and var(Xij) = σ2 is unknown. In this case it is clear that the maximum

likelihood estimator, denoted by δ0, has risk R(δ0, θ) =
mσ2

n
.

The James-Stein estimators are written in this case

δJS = (δ1JS , δ
2
JS , ..., δ

m
JS)t

with

δjJS =

(
1− (m− 3)S2

(N + 2)T 2

)
(Xij −X) +X, j = 1, ...,m
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and

S2 =

n∑
i=1

m∑
j=1

(Xij −Xj)
2 , T 2 = n

m∑
j=1

(Xj −X)2 ,

Xj =

∑n
i=1Xij

n
, X =

∑m
j=1 Xj

m
, N = (n− 1)m .

He shows that for any estimator of the form

δ = (δ1, ..., δm)t where δj =
[
1− ψ

(
S2, T 2)] (Xj −X) + X, j = 1, ...,m ,

if lim
m→+∞

1
m

(
m∑
j=1

(
θj − θ

)2)
= c exists, then lim

m→+∞

R(δ, θ)

R (δ0, θ)
>

c

c+ σ2

n

and also lim
m→+∞

R(δJS , θ)

R(δ0, θ)
=

c

c+ σ2

n

. On the other hand
c

c+ σ2

n

constitutes a lower bound for the ratio lim
m→+∞

R(δ, θ)

R (δ0, θ)

and is equal to lim
m→+∞

R(δJS , θ)

R(δ0, θ)
.

Li Sun [7] also shows that this bound is attained for a class of estimators defined by

δ = (δ1, ..., δm)t where δj =

[
1− ψ

(
S2, T 2) S2

T 2

]
(Xj −X) + X, j = 1, ...,m

and ψ satisfies certain conditions.
This bound is also attained for any estimator dominating the James-Stein estimator,

in particular the positive-part version of the James-Stein estimator.
Finally, we note that if n tends to infinity then the ratio

c

c+ σ2

n

tends to 1, and thus

the risk of the James-Stein estimator is that of δ0 ( when m and n tend to infinity).
Maruyama [8] considered the following model : Z ∼ Nd (θ, Id) and the so-called lp-

norm given by: ‖z‖p =
{∑i=d

i=1 |zi|
p
} 1
p , p > 0.

He also notes:‖z‖mp =
{∑i=d

i=1 |zi|
p
}m
p
. He defined a new class of James-Stein estima-

tors with ‘lp-norm based shrinkage factor, defined as follows :
θ̂φ = (θ̂1φ, θ̂2φ, ..., θ̂dφ) with: θ̂iφ =

(
1− φ(‖z‖p)/ ‖z‖

2−α
p |zi|α

)
zi where 0 ≤ α <

(d− 2)/d− 1), p > 0. (Since some components of the estimator can be exactly zero, the
choice between a full model and reduced models is possible).

When d ≥ 3, he establishes minimaxity and sparsity simultaneously, of this class of
estimators with ‘lp-norm based shrinkage factor, under conditions on θ̂φ, and any positive
p.

Note that the risk functions of these estimators are calculated relatively to the usual
quadratic loss function (1.1).

The calculation of risk ratios in this case, and the conditions on the report of the
lp-norm of θ to the dimension of its space, change completely. Extension of our work to
this type of estimators presents technical difficulties.

In our work we consider a different model and we obtain for several classes of shrink-
age estimators ( in particular the James-Stein estimator and its positive-part) that if

lim
p→+∞

‖θ‖2

σ2p
= c then the risk ratios tend to

c

1 + c
< 1, when n and p tend to infinity.

In the following we denote the general form of a shrinkage estimator as follows:

(1.4) δ =
(
1− ψ

(
S2, ‖X‖2

))
X.
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We adopt the model X ∼ Np
(
θ, σ2Ip

)
and independently of the observations X, we

observe S2 ∼ σ2χ2
n an estimator of σ2. Note that R(X, θ) = pσ2 is the risk of the

maximum likelihood estimator.
In Section 2, we recall two results obtained in the paper of Benmansour and Ham-

daoui [2]. The authors showed, that if limp→∞
‖θ‖2

pσ2
= c (> 0) , then the risk ratio of

James-Stein estimator δJS to the maximum likelihood estimator X, tends to the value
2

n+2
+ c

1 + c
when p tends to infinity and n is fixed. The second result indicates that un-

der the condition limp→∞
‖θ‖2

pσ2
= c (> 0) , the risk ratio of James-Stein estimator δJS

to the maximum likelihood estimator X, tends to the value
c

1 + c
when n and p tend

simultaneously to infinity. We also get the same results with James-Stein positive-part
estimator.

In the first part of Section 3 we show that under condition lim
p→+∞

‖θ‖2

σ2p
= c, lim

n,p→+∞

R(δ, θ)

R(X, θ)
≥

c

1 + c
and we prove by an argument which is different from the one in Benmansour and

Hamdaoui [2], that under the same condition lim
p→+∞

‖θ‖2

σ2p
= c , lim

n,p→+∞

R(δJS , θ)

R(X, θ)
=

c

1 + c
.

We deduce that any shrinkage estimator defined in (1.4) dominating the James-Stein es-
timator also satisfies this property. In the second part of this section, we show that

if lim
p→+∞

‖θ‖2

σ2p
= c, then lim

n,p→+∞

R(δ, θ)

R(X, θ)
≥ c

1 + c
on the one hand, and for certain forms

of ψ, we show that lim
n,p→+∞

R(δ, θ)

R(X, θ)
=

c

1 + c
.

In Section 4 we consider conditions of minimaxity of an estimator, and show that for
certain forms of minimax δ, we have the same result as above.

By taking a class of estimators proposed by Benmansour and Mourid [3] (Proposition
4.4), estimators dominating the James-Stein estimator in the case σ2 is known, we propose
a simple proof of the domination of the James Stein estimator by its positive-part in the
case σ2 is unknown.

Finally, we graph the corresponding risks ratios for estimators of James-Stein δJS , its
positive-part δ+JS , that of a minimax estimator, and an estimator dominating the James-
Stein estimator in the sense of the quadratic risk ( polynomial estimators proposed by
Tze Fen Li and Hou Wen Kuo [13] ) for various values of n and p.

2. Preliminaries
We recall that if X is a multivariate Gaussian random Np

(
θ, σ2Ip

)
in Rp, then U =

‖X‖2

σ2
∼ χ2

p (λ) where χ2
p (λ) denotes the non-central chi-square distribution with p

degrees of freedom and non-centrality parameter λ =
‖θ‖2

2σ2
.

In this case, for σ2 = 1, Casella and Hwang [4] have shown the inequalities

1(
p− 2 + ‖θ‖2

) ≤ E(
1

‖X‖2
) ≤ p

(p− 2)
(
p+ ‖θ‖2

) , p ≥ 3

that we generalize in the following lemma, in the case σ2 is unknown.

2.1. Lemma. Let X ∼ Np(θ, σ2Ip); if p ≥ 3 then
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(2.1)
1

σ2
(
p− 2 + ‖θ‖2

σ2

) ≤ E(
1

‖X‖2
) ≤ p

σ2 (p− 2)
(
p+ ‖θ‖2

σ2

)

Proof. It follows immediately from the inequalities of Casella and Hwang [4], since
X

σ
∼

Np
(
θ
σ
, Ip
)

�

From Robert [9], it is clear that the risk of the James-Stein estimator given in (1.2) is

R(δJS , θ) = σ2

{
p− n

n+ 2
(p− 2)2E

(
1

p− 2 + 2K

)}

with K ∼ P
(
‖θ‖2

2σ2

)
being the Poisson distribution of parameter

‖θ‖2

2σ2
.

2.2. Theorem. If lim
p→+∞

‖θ‖2

pσ2
= c(> 0) , we have

(2.2) lim
p→+∞

R(δJS , θ)

R (X, θ)
=
c+ 2

n+2

c+ 1
.

Proof. See Benmansour and Hamdaoui [2]. �

2.3. Corollary. If lim
p→+∞

‖θ‖2

pσ2
= c (> 0) , we have

(2.3) lim
n,p→+∞

R(δJS , θ)

R (X, θ)
=

c

c+ 1
.

Proof. See Benmansour and Hamdaoui [2]. �

3. Lower bound of shrinkage estimators
To calculate the risk function, we recall a lemma similar to Lemma 2.1 of Li Sun [7].

3.1. Lemma. Let K ∼ P
(
‖θ‖2

2σ2

)
. Then

(a) E
{
f
(
S2, ‖X‖2

)}
= E

{
f
(
σ2χ2

n, σ
2χ2

p+2K

)}

(b) E

{
g
(
S2, ‖X‖2

) p∑
j=1

θjXj

}
= 2σ2 E

{
K g

(
σ2χ2

n, σ
2χ2

p+2K

)}
for any functions of two variables such that all expectations of (a) and (b) exist.

Proof. Analogous to the proof of Lemma 2.1 of Li Sun [7]. �

In the case of our model, Theorem 2.1 of Li Sun [7] is written as follows:
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3.2. Theorem. The risk of the estimator given in (1.4) is

R (δ , θ) = σ2E
{
ψ2
K χ2

p+2K − 2ψK
(
χ2
p+2K − 2K

)
+ p
}

where ψK = ψ
(
σ2χ2

n, σ
2χ2

p+2K

)
and K ∼ P

(
‖θ‖2

2σ2

)
.

Furthermore R (δ , θ) ≥ Bp (θ) with

Bp (θ) = σ2

{
p− 2− E

{
(p− 2)2

p− 2 + 2K

}}
.

Proof. Analogous to the proof of Theorem 2.1 of Li Sun [7], using Lemma 2.1. �

We set bp (θ) =
Bp (θ)

R(θ,X)
, then using Lemma 3.1 of Li Sun [7] and the fact that

R(θ,X) = pσ2, we have

p− 2

p
− (p− 2)2

p2
1

p−4
p

+ ‖θ‖2
pσ2

≤ bp (θ) ≤ p− 2

p
− (p− 2)2

p2
1

p−2
p

+ ‖θ‖2
pσ2

.

It is clear that if limp→∞
‖θ‖2

pσ2
= c, then

(3.1) lim
p→∞

bp (θ) =
c

1 + c

In the case where ψ(S2, ‖X‖2) = d
S2

‖X‖2
, we have δd =

(
1− d S2

‖X‖2

)
X hence

(3.2) R(δd, θ) = σ2

{
p+ n

[
d2(n+ 2)− 2d(p− 2)

]
E

(
1

p− 2 + 2K

)}
.

For d =
(p− 2)

(n+ 2)
we obtain the James-Stein estimator ( defined in (1.2)) which minimizes

the risk of δd whose quadratic risk is

(3.3) R(δJS , θ) = σ2

{
p− n

n+ 2
(p− 2)2E

(
1

p− 2 + 2K

)}
.

Next we are interested in the ratios
R(δ, θ)

R(X, θ)
in particular when n and p tend to in-

finity. Casella and Hwang [4], showed in the case σ2 = 1 that if limp→∞
‖θ‖2

p
=

c(c > 0) then limp→+∞
R(δJS (X) , θ)

R(X, θ)
=

c

1 + c
. Li Sun [7] in his case showed that

if lim
p→+∞

∑p
j=1 (θj−θ)2

p
= c(c > 0), then limp→+∞

R(δ, θ)

R(δ0, θ)
≥ c

σ2

n
+ c

and also limp→∞
R(δJS , θ)

R(δ0, θ)
=

c
σ2

n
+ c

and therefore limn,p→∞
R(δJS , θ)

R(δ0, θ)
= 1.

We show in our work that if limp→∞
‖θ‖2

σ2p
= c, then limn,p→∞

R(δ, θ)

R(X, θ)
≥ c

1 + c
on

the one hand, and for some forms of δ, we show that limn,p→∞
R(δ, θ)

R(X, θ)
=

c

1 + c
.

Thus we ameliorate the result of Li Sun [7], obtaining a limit strictly less than 1.
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3.3. Proposition. If limp→∞
‖θ‖2

σ2p
= c, then

(3.4) lim
n,p→∞

R(δ, θ)

R(X, θ)
≥ c

1 + c
,

(3.5) lim
n,p→∞

R(δJS , θ)

R(X, θ)
=

c

1 + c
.

Proof. Formula (3.4) follows immediately from Theorem 3.2 and Formula (3.1). For-
mula (3.5) follows immediately from Corollary 2.3. Indeed Theorem 3.2 implies that
R(δJS , θ)

R(X, θ)
≥ Bp(θ)

R(X, θ)
= bp(θ), and from (3.3), Lemma (2.1) and (3.1) we have

2
n+2

+ c

1 + c
≥ lim
p→∞

R(δJS , θ)

R(X, θ)
≥ c

1 + c

thus

lim
n→∞

2
n+2

+ c

1 + c
≥ lim
n,p→∞

R(δJS , θ)

R(X, θ)
≥ c

1 + c

hence

(3.6) lim
n,p→∞

R(δJS , θ)

R(X, θ)
=

c

1 + c
.

Thus we find exactly the same limit ratio Casella and Hwang [4], in the case where σ2 is
unknown. �

In the following we study the families of estimators written as follows

(3.7) δψ = δJS + lψ
(
S2, ‖X‖2

) S2

‖X‖2
X , l > 0

and we give simple conditions on ψ so that the limiting ratio limn,p→∞
R(δψ, θ)

R(X, θ)
equals

c

1 + c
, when limp→∞

‖θ‖2

σ2p
= c, where ψ is a measurable function such that E

[
ψ2
(
σ2χ2

n, σ
2χ2

p (λ)
)]
<

∞.
In this case, the difference of risks denoted by ∆ψ

JS
= R(δψ, θ)−R(δJS , θ) is:

∆ψ
JS

= E

[
l2
(
σ2χ2

n

)2
ψ2
(
σ2χ2

n, σ
2χ2

p(λ
)
)

σ2χ2
p(λ)

+ 2lσ2χ2
nψ
(
σ2χ2

n, σ
2χ2

p(λ
)]

(3.8) −2ldE

[(
σ2χ2

n

)2
ψ
(
σ2χ2

n, σ
2χ2

p(λ
)

σ2χ2
p(λ

]
− 4lλE

[
σ2χ2

n(ψ(σ2χ2
n, σ

2χ2
p+2(λ))

χ2
p+2(λ)

]
,

where λ =
‖θ‖2

2σ2
and d =

p− 2

n+ 2
, see ( Benmansour and Mourid [3]).

For estimators of the form (3.7), which are not necessarily minimax we give the fol-
lowing two results which are analogous to Theorem 3.2 of Li Sun [7] , with different
conditions on ψ and whose risks ratios attain the lower bound Bm.
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3.4. Theorem. Assume that δψ is given in (3.7) and that ψ
(
S2, ‖X‖2

)
satisfies

a)
∣∣ψ (S2, ‖X‖2

)∣∣ ≤ g (S2
)
a.s; where E

{(
g2
(
S2
))1+γ} ≤ (M (n))1+γ for someγ > 0.

If limp→∞
‖θ‖2

pσ2
= c (> 0) then

(3.9) lim
n,p→+∞

R (δψ, θ)

R (X, θ)
=

c

1 + c

for all l such that l (M(n))1/2 = O

(
1

n

)
in the neighborhood of +∞. Note that l

may depend on n .

Proof. Relation (3.8) and condition a) give

∆ψ
JS

≤ E

[
l2
(
S2
)2
g2(S2)

‖X‖2
+ 2lS2g(S2) +

2ld
(
S2
)2
g(S2)

‖X‖2

]

+4lλE(S2g(S2))E

(
1

χ2
p+2(λ)

)
thus

∆ψ
JS

≤ l2

σ2(p− 2)

(
E
[(
σ2χ2

n

)2(1+γ)/γ])γ/(1+γ)
M(n)

+2l
[
E
((
σ2χ2

n

)2)]1/2
(M(n))1/2

+
2l

σ2(n+ 2)

[
E
((
σ2χ2

n

)4)]1/2
(M(n))1/2

+4lλ

[
E
((
σ2χ2

n

)2)]1/2
(M(n))1/2

p
.

The last inequality follows from Holder inequality, Schwarz inequality, the independence

of ‖X‖2 and S2 and that E
(

1

χ2(p, λ)

)
≤ 1

p− 2
. Thus, for n close to infinity we have

∆ψ
JS

≤ 4σ2l2M(n)

p− 2

Γ
(
n
2

+ 2
γ

+ 2
)

Γ
(
n
2

)
γ/(1+γ)

+ 2lσ2(M(n))1/2[n(n+ 2)]1/2

+
2σ2l(M(n))1/2[(n+ 6)(n+ 4)(n+ 2)n]1/2

(n+ 2)

+
4lλσ2(M(n))1/2[n(n+ 2)]1/2

p
.

Now from Stirling’s formula which expresses that in the neighborhood of +∞, we have:
Γ (y + 1) '

√
2πyy+

1
2 e−y and the fact that ey = limn→+∞

(
1 + y

n

)n , we have

(3.10)

Γ
(
n
2

+ 2
γ

+ 2
)

Γ
(
n
2

)
γ/(1+γ)

'
(
n

2
+

2

γ
+ 1

)2
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thus

lim
n,p→+∞

∆ψ
JS

R (X, θ)
≤ 4l2M(n)

p(p− 2)

(
n

2
+

2

γ
+ 1

)2

+
2l(M(n))1/2[n(n+ 2)]1/2

p

+
2l(M(n))1/2[(n+ 6)(n+ 4)(n+ 2)n]1/2

p(n+ 2)

+
4lλ(M(n))1/2[n(n+ 2)]1/2

p2

Since limp→∞
2λ

p
= c and l(M(n))1/2 = O

(
1

n

)
we finally obtain

lim
n,p→+∞

∆ψ
JS

R (X, θ)
= lim
n,p→∞

R(δψ, θ)

R(X, θ)
− lim
n,p→∞

R(δJS , θ)

R(X, θ)
≤ 0

and thus from (3.4) and (3.5)

lim
n,p→∞

R(δψ, θ)

R(X, θ)
=

c

1 + c
,

hence the result. �

3.5. Example. Let ψ1

(
S2, ‖X‖2

)
=

‖X‖2

S2
(
‖X‖2 + 1

) . In this case it suffices to take

g
(
S2
)

= 1
S2 and to choose l = 1 .

The following proposition gives the same result as Theorem 3.4 for a particular class
of the shrinkage function ψ

(
S2, ‖X‖2

)
. Indeed, we will choose g in L2 and not in L2(1+γ)

but with the constraint that g(S2) is monotone non-increasing.

3.6. Proposition. Assume that δψ is given in (3.7) and that ψ satisfies:
a)
∣∣ψ (S2, ‖X‖2

)∣∣ ≤ g(S2) a.s where g(S2) is monotone non-increasing such that
E
[
g2(S2)

]
≤ M (n).

If limp→∞
‖θ‖2

σ2p
= c, then

(3.11) lim
n,p→∞

R(δψ, θ)

R(X, θ)
=

c

1 + c

for all l such that l (M(n))1/2 = O

(
1

n

)
in the neighborhood of +∞ ( l may depend

on n).

Proof. Analogous to the proof of Theorem 3.4, so we give a brief idea.(3.8) and condition
a) give

∆ψ
JS

≤ l2

σ2

E
[(
σ2χ2

n

)2]
E
[
g2(σ2χ2

n)
]

p− 2
+ 2lE

[
σ2χ2

n

]
E
[
g(σ2χ2

n)
]

+
2l

σ2(n+ 2)
E
[(
σ2χ2

n

)2]
E
[
g(σ2χ2

n)
]

+ 4lλ
E(σ2χ2

n)E
[
g(σ2χ2

n)
]

p
.

The last inequality comes from the fact that E
(

1

χ2(p, λ)

)
≤ 1

p− 2
and that the covari-

ance of two functions, one increasing and the other decreasing, is negative. Thus,

lim
n,p→∞

∆ψ
JS

R(X, θ)
≤ lim

n,p→∞

nl(M(n))1/2

p

(
l
(n+ 2)(M(n))1/2

(p− 2)
+ 4 +

4λ

p

)
≤ 0
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because limp→∞
2λ

p
= c , and l(M(n))1/2 = O

(
1

n

)
. We finally obtain

lim
n,p→∞

∆ψ
JS

R(X, θ)
= lim
n,p→∞

R(δψ, θ)

R(X, θ)
− lim
n,p→∞

R(δJS , θ)

R(X, θ)
≤ 0

and from (3.4) and (3.5)

lim
n,p→∞

R(δψ, θ)

R(X, θ)
=

c

1 + c
,

hence the result. �

3.7. Example. Let ψ1

(
S2, ‖X‖2

)
=

‖X‖2

S2
(
‖X‖2 + 1

) , and therefore

(3.12) δψ1 = δJS +
1

‖X‖2 + 1
X.

In this case we simply take g
(
S2
)

= 1
S2 and choose l = 1.

4. Minimaxity
Now, we recall a result of Strawderman [12] about the minimaxity of the following

class of estimators. Let:

(4.1) δφ =

(
1− lφ

(
S2, ‖X‖2

) S2

‖X‖2

)
X , l > 0

4.1. Theorem. If :
a) φ

(
S2, ‖X‖2

)
is monotone non-increasing in S2 and non-decreasing in ‖X‖2 ,

b) 0 ≤ φ
(
S2, ‖X‖2

)
≤ 2(p− 2)

l(n+ 2)
, then δφ is minimax.

Proof. A simple proof of this result is as follows: For U = ‖X‖2
σ2 , we have

R(δφ, θ) = pσ2 + σ2lE

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]

−σ2E

[
4l
S2∂φ

(
S2, σ2U

)
∂U

]
,

by using the equality of Stein [11]. Since φ
(
S2, ‖X‖2

)
is non-decreasing in U it suffices

to have

E

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]
≤ 0 .

Setting C0 =
2(p− 2)

l(n+ 2)
, we have

E

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]

= E

[
φ
(
S2, σ2U

)
U

S2 [lS2φ
(
S2, σ2U

)
− 2(p− 2)

]]
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≤ E

[
φ
(
S2, σ2U

)
U

S2 [lS2C0 − 2(p− 2)
]]
.

Because φ
(
S2, ‖X‖2

)
is non-increasing in S2, therefore in both cases where φ

(
S2, ‖X‖2

)
>

C0 and φ
(
S2, ‖X‖2

)
≤ C0, we have

E

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]

≤ E

[
φ
(
C0, σ

2U
)

U
S2 [lS2C0 − 2(p− 2)

]]
.

As S2 and U are independent we obtain

E

[
l

(
S2
)2
φ2
(
S2, σ2U

)
U

− 2(p− 2)
S2φ

(
S2, σ2U

)
U

]

≤ E

[
φ
(
C0, σ

2U
)

U

]
E
[
l
(
S2)2 C0 − 2(p− 2)S2

]
≤ 0

hence the result. �

Note that this class of minimax estimators admits as lower bound Bm =
c

1 + c
(Propo-

sition 3.3) but does not attain it.
Then we have the following proposition which gives a class of minimax estimators

whose risks ratios attains the lower bound.

4.2. Proposition. Assume that δψ is as given in (3.7), i.e.,

(4.2) δψ = δJS + lψ
(
S2, ‖X‖2

) S2

‖X‖2
X

=

(
1−

[
S2

‖X‖2

(
p− 2

n+ 2
− lψ

(
S2, ‖X‖2

))])
X, l > 0.

If ψ satisfies the following conditions:
1) ψ

(
S2, ‖X‖2

)
is monotone non-decreasing in S2 and non-increasing in ‖X‖2 .

2)
∣∣lψ (S2, ‖X‖2

)∣∣ ≤ p− 2

n+ 2
,

then limp→∞
‖θ‖2

σ2p
= c implies

lim
n,p→∞

R(δψ, θ)

R(X, θ)
=

c

1 + c

for all l such that limn→∞ l (p− 2) = 0 ( l depends on n).

Proof. It follows immediately from Theorems 3.4 and 4.1. 2 �

4.3. Example. Let the estimator

(4.3) δψ2 = δJS + lψ2

(
S2, ‖X‖2

) S2

‖X‖2
X

such that lψ2

(
S2, ‖X‖2

)
=
p− 2

n+ 2

S2

S2 + 1
exp

(
−‖X‖2

)
.
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Note that the function ψ2 satisfies the conditions of Proposition 4.2.
We note that the estimators of the form (4.1) are minimax but do not necessarily

dominate the James-Stein estimator under the usual quadratic risk.
A class of estimators dominating the James Stein estimator is given as follows:
Let:

(4.4) δφ = δJS +mφ
(
S2, ‖X‖2

)
X m > 0

where φ is a measurable positive function, such that E
[
φ2
(
S2, ‖X‖2

)]
< ∞. In this

case, the difference of risks denoted by ∆φ
JS

= R(δφ, θ)−R(δJS , θ) is:

∆φ
JS

= E
[
m2 (‖X‖2)φ2 (S2, ‖X‖2

)
+ 2m

(
‖X‖2

)
φ
(
S2, ‖X‖2

)]
−E

[
2mdS2φ

(
S2, ‖X‖2

)
+ 4mλ(φ(S2, σ2χ2

p+2(λ))
]

thus

(4.5) ∆φ
JS
≤ E

[
mφ

(
S2, ‖X‖2

) [
m ‖X‖2 φ

(
S2, ‖X‖2

)
+ 2 ‖X‖2 − 2dS2]] ,

where d =
p− 2

n+ 2
.

Then we have the following proposition.

4.4. Proposition. Estimators given in (4.2) dominate the James-Stein estimator if

1) 0 ≤ φ
(
S2, ‖X‖2

)
≤ 2

m

(
d
S2

‖X‖2
− 1

)
I(

p−2
n+2

s2

‖X‖2
−1≥0

).
2) If in addition, limp→∞

‖θ‖2

σ2p
= c, then limn,p→∞

R(δφ, θ)

R(X, θ)
=

c

1 + c
.

Proof. 1) It follows from inequality (4.5). 2) Immediate from (3.4) and (3.5). �

We observe that any estimator dominating the James-Stein estimator satisfies the
property 2 of Proposition 4.3. Thus the class of estimators:

δm = δJS + mφ
(
S2, ‖X‖2

)
= δJS + m

(
p− 2

n+ 2

S2

‖X‖2
− 1

)
I(

p−2
n+2

s2

‖X‖2
−1≥0

) = δJS +

mδ−
JS

(S2, ‖X‖2)X, dominates the James Stein estimator. And for m = 1 we have
δφ = δJS + δ−

JS
(S2, ‖X‖2)X , hence δφ = δ+

JS

(
S2, ‖X‖2

)
X dominates δJS

(
S2, ‖X‖2

)
according to Proposition 4.3.

Moreover, its risk is minimal at λ = 0, relative to the whole family of the class of
estimators δm = δJS +mδ−

JS
(S2, ‖X‖2)X.

5. Simulation
We recall the form of the estimator introduced by Tze Fen Li and Wen Hou Kuo [13].

Let X ∼ Np
(
θ, σ2Ip

)
, Y =

X

σ
∼ Np

(
θ

σ
, Ip

)
.

For all r
(

2 < r <
p+ 2

2

)
, we consider the family of polynomial estimators:

(5.1) δTZ = δJS + α(S2)
r
2X ‖X‖−r

where

α =
(r − 2)

2

(n+ p)

(n+ 2)

Γ
(
n+r
2

)
Γ
(
n+2r

2

) Γ
(
p−r
2

)
Γ
(
p−2r+2

2

) .
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It is known by Tze Fen Li and Wen Hou Kuo [13], that the risk of the estimator δTZ
is

R (δTZ , θ) = R (δJS , θ) +σ2 2α2
r
2 Γ
(
n+r
2

)
Γ
(
n
2

) [
(p− r)− (p− 2)(n+ r)

n+ 2

]
E
(
‖Y ‖−r

)
(5.2) +σ2α22r

Γ
(
n+2r

2

)
Γ
(
n
2

) E
(
‖Y ‖−2r+2) .

We recall the form of the estimators given in Example 3.7 (3.12), i.e., δψ1 = δJS +

‖X‖2

S2
(
‖X‖2 + 1

) S2

‖X‖2
X = δJS +

X

‖X‖2 + 1
, as well as in Example 4.3 (4.3), i.e., δψ2 =

δJS +
p− 2

n+ 2

S4

(S2 + 1) ‖X‖2
exp

(
−‖X‖2

)
X, of which we graph their risks ratios as well

as those of Tze Fen Li, James-Stein and the positive part- of James-Stein denoted re-
spectively:

R(δψ1 , θ)

R(X, θ)
,
R(δψ2 , θ)

R(X, θ)
,
R (δTZ , θ)

R(X, θ)
,
R(δJS , θ)

R(X, θ)
,
R(δ+

JS
, θ)

R(X, θ)
,for various values of n and p.

Fig. 1 Graph of risk ratios
R(δψ1

,θ)

R(X,θ)
,
R(δψ2

,θ)

R(X,θ)
, R(δTZ ,θ)
R(X,θ)

,
R(δ

JS
,θ)

R(X,θ)
,
R(δ+

JS
,θ)

R(X,θ)
as functions

of λ = ‖θ‖2
2σ2 for n = 10 and p = 4.
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Fig. 2 Graph of risk ratios
R(δψ1

,θ)

R(X,θ)
,
R(δψ2

,θ)

R(X,θ)
, R(δTZ ,θ)
R(X,θ)

,
R(δ

JS
,θ)

R(X,θ)
,
R(δ+

JS
,θ)

R(X,θ)
as functions

of λ = ‖θ‖2
2σ2 for n = 30 and p = 8.

We note that in both graphs, the risk ratios tend to the same limit less than 1 where
λ increases as well as n and p.

6. Conclusion
In the case of the estimate of the mean θ of a multivariate gaussian random Np (θ, Ip)

in Rp, Casella and Hwang [4] showed that if lim
p→+∞

‖θ‖2

p
= c > 0 then the ratio

R(δJS , θ)

R(X, θ)

and
R(δ+JS , θ)

R(X, θ)
tend to

c

1 + c
. In our work by taking the same model, namely X ∼

Np
(
θ, σ2Ip

)
with σ2 unknown, and estimated by the statistic S2 ∼ σ2χ2

n independent of
X, we have showed that for the shrinkage estimators of the form δ =

(
1− ψ

(
S2, ‖X‖2

))
X,

we obtain a similar ratio dependent of the sample size n, as soon as lim
p→+∞

‖θ‖2

pσ2
= c > 0.

Moreover, we obtain a ratio constant less than 1, when n and p tend simultaneously to
+∞, without assuming any order relation or functional relation between n and p. We
obtained the same result for particular forms of δ, which are not necessarily minimax,
and for other forms of δ which are minimax. Finally we concluded that any shrinkage
estimator dominating the James-Stein estimator has a risk ratio tending to

c

1 + c
when

n and p tend to infinity.
Li Sun [7] was also interested in the case where σ2 is unknown, but he studied the

behaviour of the ratio
R(δ, θ)

R(X, θ)
,
R(δJS , θ)

R(X, θ)
and

R(δ+JS , θ)

R(X, θ)
, when only p tends to infinity.

The simulations in the case of selected examples, show that the asymptotic behaviour
of risk ratios are identical and converge to the same limit that is strictly less than 1.
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An idea would be to see whether one can obtain similar ratios in the general case of the
symmetrical spherical models. Expanding our work to minimax estimators proposed by
Maruyama [8] is also an idea that we currently explore.
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Abstract
In this article, a testing procedure based on computational approach
testis proposed for the equality of coefficients of variation in k normal
populations. We compare this procedure to some of the existing tests;
the likelihood ratio, modified Bennett’s, score, generalized p-value tests
in terms of the estimated type I error rates and powers by using Monte
Carlo simulation. Furthermore, applications of these tests are given on
a real dataset.
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1. Introduction
The ratio of population standard deviation to the population mean is called coefficient

of variation (CV) of a population which is free from the unit of measurement. CV
has a wide range of applications in many physical, biological, medical sciences, etc.
For example, in haematology and serology, CV values of the measurement of the blood
sample taken from the different laboratories are compared to determine performances
of these laboratories [19]. Also the usage of CV includes other applications such as the
determination of instrumental precision and the homogeneity of test samples.

A very common problem in applied statistics is to test equality of coefficients of vari-
ation. Many methods are developed for this problem. Miller and Karson [14] proposed a
test for the equality of coefficients of variation in two normal populations. Doornbos and
Dijkstra [6] presented two tests which are called likelihood ratio test and non-central t
test for testing equality of coefficients of variation in k normal populations. Likelihood
ratio test involves estimators of parameters which can be only obtained from iteration
method. Gupta and Ma [11] used a better iteration method called bisection method to

∗Gazi University, Department of Statistics, Ankara,Turkey.
Email: fikri@gazi.edu.tr Corresponding author.
†Gazi University, Department of Statistics, Ankara,Turkey.
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obtain these estimators of parameters. Bennet [1] proposed a test for k normal popula-
tions using transformed sample CV’s. Afterwards, this test was modified by Shafer and
Sullivan [17]. Gupta and Ma [11] developed score test for the case of k normal popula-
tions and compared their test to some of the existing tests. Fung and Tsang [8] compared
parametric and nonparametric tests by using simulation studies for the equality of coef-
ficients of variation in k normal populations. All of the test statistics mentioned above
have asymptotic chi-squared distributions with k -1 degrees of freedom. Thus, there is
no exact statistical test for the equality of coefficients of variation in k normal popu-
lations. Approximate methods have been applied to solve a number of problems when
conventional methods are difficult to apply or fail to provide exact solutions. Exact dis-
tributions of approximate methods are not known and the p-values can be only found
by simulation. One of these methods is introduced by Tsui and Weerahandi [21], which
is called the generalized p-value approach. Many researchers developed test procedures
based on the generalized p-value for hypothesis testing [22, 12, 18, 24, 13]. Liu et al.
[13] applied the generalized p-value approach for the equality of coefficients of variation
in k normal populations and compared this approach to some of the existing tests; the
likelihood ratio, modified Bennett’s, score tests.

In this paper, a computational approach test (CAT) which is one of the most popular
approximate methods is proposed for the equality of coefficients of variation in k normal
populations. The CAT method based on simulation and numerical computations uses
the maximum likelihood estimates (MLEs), and does not require the knowledge of any
sampling distribution. This approach provides an algorithmic framework based on the
Monte-Carlo simulation and numerical computations when a suitable parametric model
is assumed for a given dataset [16]. Some papers related to CAT can be given as fol-
lows. Chang et al. [3, 5] showed how the CAT can be applied to Poisson and Gamma
models for hypothesis testing. Chang and Pal [2] applied CAT to test the equality of
two population means when the variances are unknown and arbitrary. Also Chang et
al. [4] demonstrated that the CAT is as powerful as the classical F test for one-way
ANOVA under homoscedasticity. Gokpinar and Gokpinar [9] modified CAT to test the
equality of k population means when the variances are unequal. Also Gokpinar et al.
[10] proposed a test based on CAT for the equality of several inverse Gaussian means
under heterogeneity.

This article is organized as follows. In Section 2, the likelihood ratio, modified Ben-
nett’s, score tests used for the equality of coefficients of variation in k normal populations,
are presented. In Section 3, the general CAT procedure and its algorithm are given in
detail. Also in the third section the application of the CAT procedure for equality of coef-
ficients of variation in k normal populations is presented. In Section 4, simulation results
of estimated type I error rates and powers are obtained by using Monte Carlo studies.
In section 5, CAT procedure is applied to a real life dataset. Concluding remarks are
summarized in Section 6.

2. Tests for equality of coefficients of variation

In this section, the likelihood ratio, modified Bennett’s, score, generalized p-value tests
for testing equality of coefficients of variation in k normal populations, are presented.
Initially, we need to give some notations and assumptions.

Let Xi1,Xi2, · · · ,Xini be a random sample with size ni fromN
(
µi, σ

2
i

)
, i = 1, · · · , k

where µi and σ2
i are the mean and variance of ith population, respectively and the

coefficients of variation for ith population are defined as Ri = σi/µi, i = 1, ..., k. The
problem of interest involves testing:

(2.1) H0 : R1 = R2 = . . . = Rk = R against HA : ∃Ri 6= Rj i = 1, . . . , k .
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Let X̄i =
∑ni
j=1 Xij/ni, S

2
i =

∑ni
j=1

(
Xij − X̄i

)2/
ni and ri = Si

/
X̄i denote the ith

sample mean, variance and coefficients of variation for i = 1, · · · , k, respectively. Let x̄i
and s2

i denote the ith observed sample mean and variance for i = 1, · · · , k, respectively.
Similar to Liu et. al. [13], we assume,

(1) µi > 0;
(2) P

(
X̄i < 0

)
,for each of i = 1, · · · , k is very small.

2.1. Likelihood ratio test
Likelihood ratio test is proposed by Doornbos and Dijkstra [6]. The likelihood function

under H 0 is given as follows:

(2.2) L0 =
∏k
i=1

(
1√

2πµiR

)ni
exp

(
−
∑k
i=1

∑ni
j=1

(Xij−µi)
2

2µ2
iR

2

)
Differentiating the Equation (2.2) with respect to µi and R yields the following results:

(2.3) ∂ lnL0
∂R

= −
∑k
i=1

ni
R

+
∑k
i=1

∑ni
j=1

(Xij−µi)
2

µ2
iR

3 = 0,

(2.4) ∂ lnL0
∂µi

= −ni
µi

+
∑ni
j=1

Xij(Xij−µi)
µ3
iR

2 = 0, i = 1, · · · , k .

The Equation (2.3) and Equation (2.4) are simplified as follows:

(2.5)
∑k
i=1

ni

(
1+
√

1+4(1+r2i )R2

)
2(1+r2i )

−
∑k
i=1 ni = 0

(2.6) µi =
2(1+r2i )X̄i

1+
√

1+4(1+r2i )R2
, i = 1, ..., k.

As seen from Equation (2.5) and Equation (2.6), the restricted MLEs (RMLEs) of
the R and µi have no closed forms. Therefore, the numerical method called bisection
method, which is proposed by Gupta and Ma [11], could be used for the RMLEs of these
parameters. Hence, the likelihood ratio test statistic is given as follows:

(2.7) − 2 lnλ =
∑k
i=1 ni ln

(
µ̂2
i(RML)R̂

2
RML

S2
i

)
∼ χ2

k−1,

where µ̂i(RML) and R̂RML are the RMLEs of µi and R. For a given level α, this test
rejects the H 0 in Equation (2.1) if −2 lnλ > χ2

k−1,α.

2.2. Modified Bennett’s test
Shafer and Sullivan [17] modified Bennett’s test given as

(2.8) − 2 lnλ = (N − k) ln
∑k
i=1

(
di
N−k

)
−
∑k
i=1 (ni − 1) ln

(
di

ni−k

)
∼ χ2

k−1.

Here N =
∑k
i=1 ni and di = nir

2
i

/ (
r2
i + 1

)
. For a given level α, this test rejects the null

hypothesis in Equation (2.1) if −2 lnλ > χ2
k−1,α.

2.3. Score test
To test the null hypothesis in Equation (2.1), the explicit value of test statistic is given

by

(2.9) S =

[
R̂2
RML(2R̂2

RML+1)
2

]∑k
i=1

a2i
ni
∼ χ2

k−1,
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where ai =
∑ni
j=1

(
Xij − µ̂i(RML)

)2
/
µ̂2
i(RML)R̂

3
RML − ni

/
R̂RML (see [11] for details).

For a given level α, this test rejects the null hypothesis in Equation (2.1) if −2 lnλ >
χ2
k−1,α.

2.4. Generalized p-value test
Tsui and Weerahandi [21] presented the concept of generalized p-value for some

statistical testing problems. A parallel test for the equality of coefficients of variation in
k normal populations is developed as follows [13]. The null hypothesis in Equation (2.1)
can be rewritten as follows:

(2.10) H10: µ1/σ1= µ2/σ2= . . . = µk/σk .

Put C = (µ1/σ1, µ2/σ2,..., µk/σk)′ and

A =


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...
0 0 . . . 1

−1
−1
...
−1


(k−1)×k

.

Thus, the null hypothesis in Equation (2.7) is equivalent to H20 : AC = 0. The
generalized pivotal quantities for µi and σi are given as follows:

Rµi = x̄i − si
Si

(Xi − µi) and Rσi = Si
si
σi

[23]. The generalized pivotal quantity for AC could be written as follows.

RAC = ARc = A

(
Rµ1

Rσ1

, ...,
Rµk
Rσk

)′
.

Here Rµi
Rσi

=
x̄i−si/Si(X̄i−µi)

si/Siσi
= x̄i√

nisi
Ui − Zi√

ni
and U2

i ∼ χ2
(ni−1), Zi ∼ N (0, 1) , i =

1, ..., k.

The conditional expectation and covariance matrix of RAC for given (x̄, s) can be written

as:

µR = A

(
E

(
Rµ1

Rσ1

(x̄, s)

)
, ..., E

(
Rµk
Rσk

(x̄, s)

))′
,

ΣR = Adiag

(
V ar

(
Rµ1

Rσ1

(x̄, s)

)
, ..., V ar

(
Rµk
Rσk

(x̄, s)

))
A′,

where

E

(
Rµ1

Rσ1

(x̄, s)

)
=

x̄i√
nisi

E (Ui) ,

V ar

(
Rµ1

Rσ1

(x̄, s)

)
=

x̄2
i

nis2
i

V ar (Ui) +
1

ni
,

and

E (Ui) =

{ √
2
π

(ni−2)!!
(ni−3)!!

, ni ≥ 3 and ni is odd√
π
2

(ni−2)!!
(ni−3)!!

, ni ≥ 4 and ni is even
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V ar (Ui) = ni − 1− (E(Ui))
2 .

The standardized expression of RAC is D = (ΣR)−1/2 (RAC − µR)and d is the observed
value of D for

(
X̄, S

)
= (x̄, s). Then ‖D‖2 = (RAC − µR)

′
Σ−1
R (RAC − µR) and the

observed value ‖d‖2under H20 : AC = 0 is equal to µ′RΣ−1
R µR. The generalized p-value

based on ‖D‖2could be given as follows:

p = P
(
‖D‖2 ≥ ‖d‖2 /H20

)
= P

(
(RAC − µR)

′
Σ−1
R (RAC − µR) ≥ µ′RΣ−1

R µR

)
= P

(∑k
i=1

[x̄i(Ui−E(Ui))−siZi]2

x̄2iV ar(Ui)+s
2
i

− 1∑k
j=1 njs

2
j/(x̄2iV ar(Ui)+s2i )

×
(∑k

i=1

[x̄i(Ui−E(Ui))−siZi]
√
nisi

x̄2iV ar(Ui)+s
2
i

)2

(2.11) ≥
∑k
i=1

(x̄iE(Ui))
2

x̄2iV ar(Ui)+s
2
i
− 1∑k

j=1 njs
2
j/(x̄2iV ar(Ui)+s2i )

(∑k
i=1

x̄iE(Ui)
√
nisi

x̄2iV ar(Ui)+s
2
i

)2
)
.

H 10 in Equation (2.10) is rejected if p< α.

3. The computational approach test
In this section, initially we introduce the general framework of CAT procedure. By

using this procedure, we give an algorithm for testing equality of coefficients of variation
in k normal populations. The algorithm of CAT based on the paper of Pal et al. [16]
can be given as follows:
Let X 1, X 2,...,X nbe random sample having a probability density function f (x/θ), where
the functional form of f is assumed to be known and θ=(θ(1),θ(2) ) is an unknown vector
in parameter space Θ. θ(1) is the parameter of interest and θ(2) is the nuisance parameter.
The problem of interest is to testH ′0 : θ(1) = θ

(1)
0 against a suitable alternativeH ′1∗. To do

this, initially we express H ′0 as H ′0∗ : η
(
θ(1), θ

(1)
0

)
= 0 where η is a scalar valued function.

The general methodology of the proposed CAT for testing H ′0∗ : η
(
θ(1), θ

(1)
0

)
= 0 against

H ′1
∗ at a desired level α is given through the following steps.

1. Calculate θ̂ML =
(
θ̂

(1)

ML, θ̂
(2)

ML

)
, where θ̂MLis maximum likelihood estimation

(MLE) of θ. Thus,η̂ML = η
(
θ̂

(1)

ML, θ
(1)
0

)
is estimated.

2. Find the MLE of θ(2) under H ′0 or H ′0∗ from the data which is called the restricted
MLE (RMLE) of θ(2) and denoted by θ̂

(2)

RML.

3. Generate artificial sample X 1, X 2,...,X n from f
(
x/θ

(1)
0 , θ̂

(2)

RML

)
a large number

of times (say m times). For each of these data, recalculate the MLE of θ(1) , i.e.,
θ̃

(1)

1 , θ̃
(1)

2 , ..., θ̃
(1)

m and η̃(j)
ML = η

(
θ̃

(1)

j , θ
(1)
0

)
, j = 1, ...,m.

4. For testing H ′0∗ : η
(
θ(1), θ

(1)
0

)
= 0 versus H ′1∗ : η

(
θ(1), θ

(1)
0

)
> 0, calculate the

p-value as p = #
(
η̃

(j)
ML > η̂ML

)/
m. In the case of p<α, H 0 is rejected.

Remark 3.1: The success of CAT depends heavily on the selection of η. For this pur-
pose, the choice of η needs a little clarification. According to Chang et. al.[5], CAT
works best (in terms of maintaining the desired level and attaining a high power) for
two different situations as follows. When we have location parameters which can take
values over the real line, we can use the standard quadratic expression for η as it is
done in classical one-way ANOVA under normality assumption. When our parameters
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are nonnegative, and so are the observations, the logarithmic transformation makes the
parameters behave like location parameters as it is done in gamma model [5]. Thus, inter-
ested parameters take nonnegative values, as we have here, firstly we use the logarithmic
transformation of parameters, and after that standard quadratic (or squared) expression

of these transformed parameters is used for η, i.e. η =
∑k
i=1 ni

(
log θ

(1)
i − log θ(1)

)2

,

where θ(1) =
∑k
i=1 θ

(1)
i

/
k.

Remark 3.2:The CAT procedure borrows ideas from the classical likelihood ratio test
as well as parametric bootstrap [2]. It is well known that the classical likelihood ratio
test is based on MLE under H0, that is, RMLE. Score test is also based on RMLE. Both
the classical likelihood ratio test and Score test use test statistics which are asymptot-
ically distributed as Chi-square under H0. However, the CAT method uses the idea of
replicating data from f

(
x/θ

(1)
0 , θ̂

(2)

RML

)
.

In the rest of this section, a test procedure based on CAT is given for testing equality
of coefficients of variation in k normal populations based on algorithm given above.

Initially, the null hypothesis given in Equation (2.1) should be expressed in terms of
suitable scalar η based on the criteria given in Remark. Thus, η is defined as shown in
Equation (3.1):

(3.1) η = η (R1, R2..., Rk) =
∑k
i=1 ni

(
log Ri − log R̄

)2
,

where R̄ =
∑k
i=1 Ri/k. It is clear that testing H 0 against H 1 is equivalent to testing

H ∗0 : η = 0against H ∗1 : η > 0. With the general idea of CAT which is given above, its
application for testing equality of coefficients of variation in k normal populations can
be given as below:

1.The sample coefficient of variation for the ith group is ri = Si
/
X̄i. Therefore,

the η̂ML is obtained η̂ML =
∑k
i=1 ni (log ri − log r̄)2 by using these sample coefficient of

variation. Here r̄ =
∑k
i=1 ri/k. The observed value of η̂ML is η̂∗ML.

2.Under H 0or H ∗0 , the restricted MLEs
(
µ̂i(RML), R̂RML

)
of (µi, R) are obtained

iteratively from Equation (2.5) and Equation (2.6) by using bisection method given in
Gupta and Ma [11].

3.Generate artificial sample Xi1, Xi2, . . . , Xini , 1 ≤ i ≤ k i.i.d. from
N
(
µ̂i(RML), µ̂

2
i(RML) × R̂2

RML

)
a large of number of times (say m times). For each

of these replicated samples, recalculate the values of η̃(j)
ML (j = 1, ...,m).

4. Calculate the p-value as p = #
(
η̃

(j)
ML > η̂∗ML

)/
m. In the case of p<α, H 0 is

rejected.

Remark 3.3: By generating artificial sample we are trying to mimic the null distribution
of η̂ML. Thus the cut-off point η̃C = η̃ML((1−α)m) is an approximation of the true critical
value based on the null model. η̂ML acts as an automatic test statistic, and helps us make
a decision based on the value of η̃C [3].

4. A simulation study
In this section for testing equality of coefficients of variation in k normal populations,

the likelihood ratio test (LRT), modified Bennett’s test (MBT), score test (SCT), gener-
alized p-value test (GPT) and CAT are compared according to type I errors and powers
for different combinations of parameters (µi, σi) and sample sizes. For this purpose, we
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consider some cases from smaller to larger sample sizes with different number of groups
as k=3, 4, 5, 6, 7. For specified nominal level of α=0.05, 5000 replications are used to
calculate the estimated type I error rates and powers of each tests. Also 5000 replications
are used to obtain the p values of GPT and CAT.

Firstly, we calculate the type I error rates of tests under null hypothesis for (µi = 3, σi = 1, i = 1, 2, . . . , k) .The
numerical results for estimated type I error rates are given as in Table 1 to Table 5.

Table 1. Estimated type I error rates of tests for k=3
n CAT GPT LRT MBT SCT

6,6,6 0.058 0.026 0.109 0.070 0.053
6,8,10 0.049 0.032 0.086 0.055 0.044

10,10,10 0.048 0.039 0.073 0.055 0.047
15,15,20 0.050 0.041 0.066 0.051 0.046
20,20,20 0.050 0.042 0.061 0.053 0.050
10,15,20 0.049 0.041 0.068 0.054 0.047
10,20,30 0.046 0.038 0.063 0.051 0.047
30,30,30 0.051 0.048 0.057 0.051 0.050

Table 2. Estimated type I error rates of tests for k=4
n CAT GPT LRT MBT SCT

6,6,6,6 0.051 0.019 0.103 0.060 0.056
6,8,10,12 0.054 0.035 0.095 0.063 0.056

10,15,20,25 0.055 0.042 0.073 0.056 0.051
10,10,10,10 0.052 0.035 0.081 0.058 0.054
10,10,15,15 0.053 0.038 0.079 0.057 0.055
20,20,20,20 0.050 0.042 0.061 0.052 0.051
15,15,20,20 0.053 0.045 0.069 0.053 0.057
10,20,20,30 0.051 0.044 0.071 0.057 0.057
30,30,30,30 0.047 0.041 0.055 0.046 0.048

Table 3. Estimated type I error rates of tests for k=5
n CAT GPT LRT MBT SCT

6,6,6,6,6 0.051 0.020 0.122 0.065 0.068
6,8,10,12,14 0.051 0.033 0.091 0.058 0.059

10,15,20,25,30 0.049 0.038 0.070 0.051 0.051
10,10,10,10,10 0.050 0.031 0.092 0.058 0.065
20,20,20,20,20 0.052 0.043 0.068 0.053 0.053
15,15,15,20,20 0.053 0.043 0.067 0.054 0.056
10,10,10,15,15 0.052 0.033 0.082 0.056 0.058
10,10,20,30,30 0.053 0.042 0.075 0.055 0.057
30,30,30,30,30 0.055 0.050 0.064 0.056 0.058

Table 4. Estimated type I error rates of tests for k=6
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n CAT GPT LRT MBT SCT
6,6,6,6,6,6 0.053 0.017 0.127 0.064 0.075

6,8,10,10,12,14 0.052 0.028 0.094 0.057 0.060
10,15,20,20,25,30 0.055 0.041 0.075 0.057 0.055
10,10,10,10,10,10 0.050 0.028 0.091 0.057 0.064
20,20,20,20,20,20 0.055 0.043 0.069 0.055 0.057
15,15,15,20,20,20 0.054 0.042 0.071 0.054 0.059
10,10,10,15,15,15 0.056 0.035 0.087 0.061 0.060
10,10,20,20,30,30 0.049 0.038 0.070 0.050 0.054
30,30,30,30,30,30 0.052 0.046 0.062 0.053 0.053

Table 5. Estimated type I error rates of tests for k=7
n CAT GPT LRT MBT SCT

6,6,6,6,6,6 0.052 0.016 0.136 0.066 0.079
6,8,10,10,10,12,14 0.053 0.029 0.099 0.063 0.073

10,15,20,20,20,25,30 0.051 0.041 0.071 0.054 0.064
10,10,10,10,10,10,10 0.052 0.030 0.095 0.058 0.073
20,20,20,20,20,20,20 0.055 0.044 0.074 0.057 0.061
15,15,15,20,20,20,20 0.052 0.038 0.067 0.052 0.056
10,10,10,15,15,15,15 0.053 0.033 0.082 0.058 0.066
10,10,20,20,20,30,30 0.049 0.036 0.069 0.054 0.058
30,30,30,30,30,30,30 0.048 0.044 0.058 0.048 0.055

As seen from Table 1-Table 5, the GPT seems to have lower the estimated type I error
rates than nominal level, especially for small sample size. Contrary to GPT, LRT has
estimated type I error rates greater than the nominal level. In the case of small sample
size, the estimated type I error rates of MBT exceed the nominal level for all k. In the
case of small sample size, the estimated type I error rates of SCT get larger than nominal
level, especially when k is large. Also, it is observed that the MBT and SCT have the
estimated type I error rates close to the nominal level for other cases. However, the CAT
seems to have the estimated type I error rates close to nominal level in all cases.

After calculating the type I error rates of five methods, we calculate the estimated
powers of the tests for different combinations of parameters and sample sizes.

Table 6. Estimated powers of tests for µi=3 (i=1,2,3)
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n R1, R2, R3 CAT GPT LRT MBT SCT
1/9,1/6,1/6 0.109 0.057 0.207 0.138 0.102

6,6,6 1/9,2/9,2/9 0.246 0.133 0.387 0.287 0.179
1/9,1/3,1/3 0.592 0.346 0.718 0.612 0.290
1/4,1/2,1/2 0.215 0.122 0.336 0.235 0.150
1/9,1/6,1/6 0.144 0.054 0.196 0.124 0.073

6,8,10 1/9,2/9,2/9 0.326 0.122 0.396 0.275 0.117
1/9,1/3,1/3 0.718 0.314 0.765 0.625 0.188
1/4,1/2,1/2 0.267 0.118 0.366 0.252 0.116
1/9,1/6,1/6 0.175 0.132 0.231 0.185 0.137

10,10,10 1/9,2/9,2/9 0.477 0.359 0.545 0.477 0.290
1/9,1/3,1/3 0.885 0.797 0.913 0.880 0.617
1/4,1/2,1/2 0.403 0.319 0.478 0.406 0.265
1/9,1/6,1/6 0.312 0.237 0.341 0.299 0.208

15,15,20 1/9,2/9,2/9 0.748 0.646 0.764 0.728 0.536
1/9,1/3,1/3 0.990 0.977 0.990 0.988 0.938
1/4,1/2,1/2 0.652 0.576 0.685 0.636 0.478
1/9,1/6,1/6 0.382 0.334 0.410 0.382 0.309

20,20,20 1/9,2/9,2/9 0.848 0.798 0.855 0.838 0.742
1/9,1/3,1/3 0.999 0.998 0.999 0.999 0.994
1/4,1/2,1/2 0.781 0.736 0.796 0.767 0.676
1/9,1/6,1/6 0.557 0.514 0.571 0.552 0.484

30,30,30 1/9,2/9,2/9 0.975 0.963 0.974 0.971 0.948
1/9,1/3,1/3 1.000 1.000 1.000 1.000 1.000
1/4,1/2,1/2 0.940 0.925 0.945 0.936 0.900

Table 7. Estimated powers of tests for µi=3 (i=1,2,3,4)
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n R1, R2, R3, R4 CAT GPT LRT MBT SCT
1/9,1/6,1/6,1/6 0.095 0.044 0.197 0.122 0.105

6,6,6,6 1/9,2/9,2/9,2/9 0.220 0.093 0.360 0.250 0.160
1/9,1/3,1/3,1/3 0.543 0.215 0.682 0.545 0.247
1/4,1/2,1/2,1/2 0.195 0.092 0.330 0.213 0.159
1/9,1/6,1/6,1/6 0.147 0.054 0.204 0.125 0.082

6,8,10,12 1/9,2/9,2/9,2/9 0.324 0.096 0.377 0.249 0.111
1/9,1/3,1/3,1/3 0.708 0.218 0.727 0.564 0.159
1/4,1/2,1/2,1/2 0.253 0.093 0.345 0.214 0.115
1/9,1/6,1/6,1/6 0.169 0.118 0.230 0.184 0.139

10,10,10,10 1/9,2/9,2/9,2/9 0.450 0.299 0.521 0.444 0.255
1/9,1/3,1/3,1/3 0.886 0.701 0.906 0.862 0.431
1/4,1/2,1/2,1/2 0.391 0.272 0.469 0.380 0.238
1/9,1/6,1/6,1/6 0.305 0.207 0.323 0.279 0.175

15,15,20,20 1/9,2/9,2/9,2/9 0.743 0.576 0.743 0.689 0.394
1/9,1/3,1/3,1/3 0.994 0.967 0.992 0.990 0.769
1/4,1/2,1/2,1/2 0.635 0.494 0.666 0.596 0.341
1/9,1/6,1/6,1/6 0.365 0.294 0.385 0.355 0.252

20,20,20,20 1/9,2/9,2/9,2/9 0.477 0.359 0.545 0.477 0.290
1/9,1/3,1/3,1/3 1.000 0.999 1.000 1.000 0.981
1/4,1/2,1/2,1/2 0.769 0.694 0.783 0.747 0.562
1/9,1/6,1/6,1/6 0.551 0.476 0.552 0.528 0.412

30,30,30,30 1/9,2/9,2/9,2/9 0.977 0.958 0.976 0.973 0.914
1/9,1/3,1/3,1/3 1.000 1.000 1.000 1.000 1.000
1/4,1/2,1/2,1/2 0.941 0.917 0.942 0.931 0.850
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Table 8. Estimated powers of tests for µi=3 (i=1,2,...,5)
n R1, R2, R3, R4, R5 CAT GPT LRT MBT SCT

1/9,1/6,1/6,1/6,1/6 0.093 0.040 0.194 0.121 0.108
6,6,6,6,6 1/9,2/9,2/9,2/9,2/9 0.190 0.076 0.338 0.221 0.161

1/9,1/3,1/3,1/3,1/3 0.491 0.165 0.639 0.481 0.227
1/4,1/2,1/2,1/2,1/2 0.186 0.073 0.333 0.205 0.167
1/9,1/6,1/6,1/6,1/6 0.143 0.047 0.184 0.114 0.075

6,8,10,12,14 1/9,2/9,2/9,2/9,2/9 0.323 0.088 0.361 0.233 0.109
1/9,1/3,1/3,1/3,1/3 0.695 0.180 0.686 0.509 0.147
1/4,1/2,1/2,1/2,1/2 0.234 0.083 0.316 0.190 0.101
1/9,1/6,1/6,1/6,1/6 0.150 0.094 0.225 0.166 0.136

10,10,10,10,10 1/9,2/9,2/9,2/9,2/9 0.416 0.234 0.482 0.401 0.222
1/9,1/3,1/3,1/3,1/3 0.879 0.609 0.897 0.845 0.358
1/4,1/2,1/2,1/2,1/2 0.345 0.220 0.425 0.328 0.216
1/9,1/6,1/6,1/6,1/6 0.256 0.168 0.282 0.235 0.155

15,15,15,20,20 1/9,2/9,2/9,2/9,2/9 0.709 0.495 0.705 0.645 0.330
1/9,1/3,1/3,1/3,1/3 0.993 0.948 0.991 0.984 0.606
1/4,1/2,1/2,1/2,1/2 0.588 0.435 0.618 0.540 0.293
1/9,1/6,1/6,1/6,1/6 0.346 0.261 0.369 0.339 0.234

20,20,20,20,20 1/9,2/9,2/9,2/9,2/9 0.844 0.729 0.840 0.814 0.541
1/9,1/3,1/3,1/3,1/3 1.000 0.995 0.999 0.999 0.918
1/4,1/2,1/2,1/2,1/2 0.748 0.644 0.758 0.714 0.481
1/9,1/6,1/6,1/6,1/6 0.531 0.449 0.535 0.506 0.377

30,30,30,30,30 1/9,2/9,2/9,2/9,2/9 0.974 0.944 0.970 0.965 0.858
1/9,1/3,1/3,1/3,1/3 1.000 1.000 1.000 1.000 0.999
1/4,1/2,1/2,1/2,1/2 0.928 0.891 0.930 0.913 0.777
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Table 9. Estimated powers of tests for µi=3 (i=1,2,...,6)
n R1, R2, R3, R4, R5, R6 CAT GPT LRT MBT SCT

1/9,1/6,1/6,1/6,1/6,1/6 0.083 0.036 0.195 0.112 0.118
6,6,6,6,6,6 1/9,2/9,2/9,2/9,2/9,2/9 0.196 0.067 0.359 0.226 0.176

1/9,1/3,1/3,1/3,1/3,1/3 0.465 0.139 0.637 0.448 0.237
1/4,1/2,1/2,1/2,1/2,1/2 0.165 0.058 0.320 0.176 0.156
1/9,1/6,1/6,1/6,1/6,1/6 0.132 0.051 0.196 0.114 0.092

6,8,10,10,12,14 1/9,2/9,2/9,2/9,2/9,2/9 0.273 0.075 0.331 0.207 0.107
1/9,1/3,1/3,1/3,1/3,1/3 0.620 0.150 0.641 0.454 0.145
1/4,1/2,1/2,1/2,1/2,1/2 0.222 0.076 0.305 0.177 0.110
1/9,1/6,1/6,1/6,1/6,1/6 0.147 0.089 0.209 0.159 0.129

10,10,10,10,10,10 1/9,2/9,2/9,2/9,2/9,2/9 0.402 0.214 0.476 0.384 0.230
1/9,1/3,1/3,1/3,1/3,1/3 0.863 0.534 0.876 0.810 0.338
1/4,1/2,1/2,1/2,1/2,1/2 0.329 0.182 0.418 0.310 0.206
1/9,1/6,1/6,1/6,1/6,1/6 0.246 0.153 0.278 0.224 0.151

15,15,15,20,20,20 1/9,2/9,2/9,2/9,2/9,2/9 0.682 0.449 0.678 0.612 0.305
1/9,1/3,1/3,1/3,1/3,1/3 0.991 0.923 0.987 0.979 0.513
1/4,1/2,1/2,1/2,1/2,1/2 0.559 0.395 0.586 0.506 0.271
1/9,1/6,1/6,1/6,1/6,1/6 0.306 0.218 0.330 0.292 0.203

20,20,20,20,20,20 1/9,2/9,2/9,2/9,2/9,2/9 0.680 0.439 0.671 0.605 0.290
1/9,1/3,1/3,1/3,1/3,1/3 0.999 0.991 0.998 0.997 0.818
1/4,1/2,1/2,1/2,1/2,1/2 0.718 0.590 0.727 0.673 0.418
1/9,1/6,1/6,1/6,1/6,1/6 0.507 0.407 0.499 0.471 0.331

30,30,30,30,30,30 1/9,2/9,2/9,2/9,2/9,2/9 0.971 0.919 0.964 0.955 0.776
1/9,1/3,1/3,1/3,1/3,1/3 1.000 1.000 1.000 1.000 0.999
1/4,1/2,1/2,1/2,1/2,1/2 0.922 0.863 0.919 0.894 0.695



1209

Table 10. Estimated powers of tests for µi=3 (i=1,2,...,7)
n R1, R2, R3, R4, R5, R6,R7 CAT GPT LRT MBT SCT

1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.084 0.035 0.203 0.113 0.124
6,6,6,6,6,6,6 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.168 0.059 0.339 0.203 0.173

1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.439 0.120 0.607 0.422 0.226
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.157 0.060 0.309 0.172 0.167
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.119 0.044 0.182 0.109 0.084

6,8,10,10,10,12,14 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.265 0.071 0.323 0.192 0.111
1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.584 0.134 0.597 0.407 0.141
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.200 0.067 0.281 0.151 0.106
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.134 0.077 0.212 0.151 0.137

10,10,10,10,10,10,10 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.364 0.183 0.440 0.341 0.201
1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.835 0.462 0.849 0.774 0.312
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.302 0.163 0.388 0.283 0.189
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.239 0.145 0.267 0.214 0.154

15,15,15,20,20,20,20 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.665 0.409 0.645 0.577 0.273
1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.987 0.877 0.981 0.969 0.455
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.539 0.357 0.566 0.470 0.246
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.303 0.217 0.323 0.284 0.202

20,20,20,20,20,20,20 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.818 0.624 0.799 0.760 0.420
1/9,1/3,1/3,1/3,1/3,1/3,1/3 0.999 0.986 0.998 0.997 0.713
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.705 0.550 0.715 0.648 0.372
1/9, 1/6,1/6,1/6,1/6,1/6,1/6 0.493 0.383 0.489 0.458 0.301

30,30,30,30,30,30,30 1/9,2/9,2/9,2/9,2/9,2/9,2/9 0.963 0.905 0.954 0.948 0.714
1/9,1/3,1/3,1/3,1/3,1/3,1/3 1.000 1.000 1.000 1.000 0.993
1/4,1/2,1/2,1/2,1/2,1/2,1/2 0.904 0.827 0.898 0.875 0.631

The numerical results for estimated powers of the tests are presented as above in Table
6 to Table 10. In most cases, the LRT can be disregarded because of its estimated type
I error rates exceeding the nominal level. Although the estimated type I error rates of
MBT and SCT are close to each other, the MBT performs better than the SCT in terms
of their powers.

MBT performs slightly better than the CAT in terms of powers for small sample size.
However the estimated type I error rates of MBT exceed the estimated type I error rates
of CAT for in this case. If both of the MBT and CAT are compared for other all cases,
the CAT appears to be more powerful than MBT does.

5. An application with real life dataset

In this section, the LRT, MBT, SCT, GPT and CAT are applied for two real life datasets
given as follows.

Example 5.1.The first analysis uses data collected by Nairy and Rao [15]. The data
related to survival times of patients collected from 4 hospitals, which was a part of
the data by given Fleming and Harrington [7]. The data containing failure time of the
patients and their summary statistics are presented in Table 11. 5000 replications are
used to obtain the p values of GPT and CAT. The obtained test statistics are given in
Table 12.
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Table 11. Survival time of patients from 4 hospitals and their means, standard devia-
tions and coefficient of variations
Hospitals Survival time of patients x̄i s2

i ri = si/x̄i
1 176, 105, 266, 227, 66 168 74.19 0.051
2 24, 5, 155, 54 59.5 57.84 0.128
3 58, 64, 15 45.7 21.82 0.102
4 147, 42, 305, 92, 30, 82, 265, 237, 208, 147 155.5 90.53 0.062

Table 12. The results of tests statistics
Tests Values of test statistics p
LRT 1.753 0.625
MBT 1.396 0.707
SCT 2.064 0.559
GPT - 0.699
CAT 1.621 0.754

The values in Table 12 indicate that the tests do not reject the H 0 given in Equation
(2.1) at nominal level 0.05.

Example 5.2. The second analysis uses data collected by Tsou [20]. Table 13 gives
the respective numbers of birth in 1978 on Monday, Thursday, and Saturday in the
United Kingdom and their means, standard deviations and coefficient of variations. 5000
replications are used to obtain the p values of GPT and CAT. 5000 replications are used
to obtain the p values of GPT and CAT.The obtained test statistics are given in Table
14.
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Table 13. Numbers of birth in 1978 on Monday, Thursday, and Saturday in the United
Kingdom and their means, standard deviations and coefficient of variations

Number of birth on Monday Number of birth on Thursday Number of birth on Saturday
7527 9172 9458 9252 9043 9259 9226 9387 8084 8299 7954 7946
9184 9225 8966 9021 9218 9247 9103 9268 8065 8144 8167 8313
9262 9294 9022 9135 9304 9218 9327 9159 8008 8144 7965 7874
9100 9114 8870 8702 8902 8696 8724 8582 8069 7890 7527 7787
9017 8900 8987 9195 8839 8672 8903 9044 7750 7718 7762 8064
9089 7780 9127 9201 9180 9435 9075 9175 8005 7971 8040 8233
9543 9348 9284 9877 9405 9630 10184 9984 8122 8209 8773 8859
10026 9960 9890 10206 10386 10192 10128 10284 9062 8677 8738 8951
10127 9967 9998 8481 10377 10152 9489 10292 9023 9170 8735 8648
9927 9765 9531 9425 9949 9824 9502 9501 8605 8554 8411 8415
9457 9507 9606 9592 9245 9609 9568 7915 8246 8352 8432 8275
9825 8676 9686 10196 9396 9480 9524 9398 8528 8335 8507 7939
10154 10304 10414 7846 10265 10499 10175 10177 8904 8782 8580 8474

x̄1 =9350.3 x̄2 =9471.5 x̄3 =8309.3
s2

1 =376030 s2
2 =307890 s2

3 =152300
r1 = s1

/
x̄1 =0.066 r2 = s2

/
x̄2 =0.056 r3 = s3

/
x̄3 =0.047

Table 14. The results of tests statistics
Tests Values of test statistics p
LRT 5.708 0.058
MBT 5.598 0.061
SCT 5.220 0.074
GPT - 0.064
CAT 3.014 0.057

The Table 14 shows that all of tests lead to the same conclusion, that is, all of tests
do not reject the H 0 given in Equation (2.1) at nominal level 0.05.

6. Conclusion

In this article, we propose the CAT for testing the equality of coefficients of variation
in k normal populations. We compare the CAT to some of the existing tests; the LRT,
MBT, SCT, GPT. For a different sample sizes and number of groups, we investigate the
performance of these tests using Monte Carlo simulation.

It could be observed from the simulation results that for small sample size the LRT
approach seems to have the estimated type I error rates exceeding the nominal level
and the GPT performs contrary to the LRT that its estimated type I error rates are
lower than the nominal level. However, the estimated type I error rates of CAT are
generally more conservative than other tests for all the sample size. Therefore, we could
mention that the CAT is not affected from the changes in the sample size. Furthermore,
according to power comparison results, the CAT appears to be more powerful than the
other tests when the differences between coefficients of variation in k normal populations
are increased.

Consequently, in respect to our simulation study, even when comparing different num-
ber of groups (as k=3, 4, 5, 6, 7), CAT could be suggested as a good alternative for testing
the equality of coefficients of variation in k normal populations.
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Abstract
The finite distributed lag models include highly correlated variables
as well as lagged and unlagged values of the same variables. Some
problems are faced for this model when applying the ordinary least
squares (OLS) method or econometric models such as Almon and Koyck
models. The primary aim of this study is to compare the performances
of alternative estimators to the OLS estimator defined by combining
the Almon estimator with some other estimators according to the mean
square error (MSE) criterion. We use Almon [2] data to illustrate our
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1. Introduction
Consider the finite distributed lag model,

yt = β0xt + β1xt−1 + · · · + βpxt−p + ut, t = p+ 1, · · ·, T

(1.1) =

p∑
i=0

βixt−i + ut

where ut are IN
(
0, σ2

u

)
. The coeffients βi are called lag weights. The model in Eq.(1.1)

can be written in the matrix notation as

(1.2) y = Xβ + u
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where

y =


yp+1

yp+2

...
yT

 , β =


β0
β1
...
βp

 , X =


xp+1

xp+2

...
xT

xp
xp+1

...
xT−1

. . .

. . .

. . .

. . .

x1
x2
...

xT−p

 , u =


up+1

up+2

...
uT

 .
In case of estimating the model (1.1) by OLS, the following problems are encountered:

a) Multicollinearity problem among the explanatory variables may be occured. Be-
cause there are p lags of the same variables in the model.

b) The length of the lag, p, isn’t known. Even if p is known, if this number is large
and amount of the sample is small, it is unable to estimate the parameters.

To overcome these problems, some kind of distributed lag models have been suggested
such as Koyck and Almon models (Yurdakul [21]). The most of these estimators require
some prior information about the behavior of the β’s in (1.1). In general, the two sources
of prior information can be classified as nonstochastic and stochastic smoothness prior
(Vinod and Ullah, [19]; Gujarati, [5]).

Irving Fisher [4] initially introduced nonstochastic smoothness prior information of
the following type:

(1.3) βi = (p+ 1 − i)α 0 ≤ i ≤ p

= 0 i > p

where α is any unknown parameter. Substituting (1.3) in (1.1) gives,

yt =

[
p∑
i=0

(p+ 1 − i)xt−i

]
α+ ut

(1.4) = ztα+ ut

Thus the OLS estimate of α can be obtained from (1.4) and then using (1.3), the estimate

of βi can be obtained. A generalization of the linear nonstochastic prior on βi can be

written as

(1.5) βi = α0 + α1i+ α2i
2 + . . .+ αri

r p ≥ r ≥ 0

which is a polynomial of the rth degree. This structure on lag weights βi was proposed

by Almon [2] and is known as the Almon polynomial lag. Again, substituting (1.5) in

(1.1) we can get estimates of the α’s and then using (1.5) we can obtain the estimates of

βi . Eq. (1.5) can be written in the matrix notation as

(1.6) β = Aα

where β is given before, and

A =


1 0 0 . . . 0
1 1 1 . . . 1
...

...
...

. . .
...

1 p p2
... pr

 , α =

 α0

...
αr





1217

are A : (p+ 1) × (r + 1) matrix and α : (r + 1) × 1 vector. The ranks of matrices X and

A are assume to be (p+ 1) < (T − p) and (r + 1) < (p+ 1), respectively. If r < p, then

the rank of A is r+ 1. We estimate β in (1.2), under the nonstochastic prior information

on β is given by (1.6), using Almon estimation method. By substituting (1.6) in (1.2),

y = XAα+ u

(1.7) = Zα+ u, u ∼ N
(
0, σ2

u

)
is obtained. This model can be called a linear Almon distributed lag model. Then, OLS

estimator of α in model (1.7) is

(1.8) α̂A =
(
Z′Z

)−1
Z′y =

(
A′X ′XA

)−1
A′X ′y .

In this case,

(1.9) β̂A = Aα̂A

is the Almon estimator of β. β̂A is the best linear unbiased estimator (BLUE).

2. Alternative methods

In this section some alternative biased estimators to the Almon estimator are defined

for the distributed lag model.

2.1. The Almon-modified ridge estimator. Hoerl and Kennard’s ridge regression

estimator has been discussed as an alternative approach to resolve problems encountered

in due to some disadvantages of Almon estimator (Maddala [14], Vinod and Ullah [19],

Chanda and Maddala [3]). Distributed lag estimation seems tractable only when prior in-

formation on the lag coefficients is incorporated. Ridge regression introduces yet another

representation of such prior information and hence is a possible estimation procedure

(Yeo and Trivedi [20]).

The Almon-ridge estimator of α in model (1.7) is

(2.1) α̂k =
(
Z′Z + kI

)−1
Z′y

=
(
A′SA+ kI

)−1
A′X ′y k > 0

where S = X ′X. Thus

(2.2) β̂k = Aα̂k

is the Almon-ridge estimator for the model (1.2). However, the ridge estimator and the

extension given by Lindley and Smith [12] are not as promising for the distributed lag

models (Maddala, [14]). They tried various values of the k. But they are not satisfied the
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results of some empirical examples with this method. Because the selection of k reveals

several problems. Therefore, alternative estimation methods must be considered.

Swindel [16] introduced a modified ridge estimator based on prior information b0.

Almon-modified ridge estimator of α in model (1.7) is defined,

(2.3) α̂ (k, b0) =
(
Z′Z + kI

)−1 (
Z′y + kb0

)
.

As pointed out by Swindel [16], it seems more useful and reasonable in the applications

to consider the prior information. To overcome multicollinearity problem, if we take

b0 = α̂k, (2.3) is reduced to

α̂m (k) =
(
Z′Z + kI

)−1 (
Z′y + kα̂k

)
= Tkα̂A + k

(
Z′Z + kI

)−1
α̂k

(2.4) = Tkα̂A + (I − Tk) α̂k

where Tk = (Z′Z + kI)
−1
Z′Z. Substituting α̂k for b0, it is expected that α̂m (k) has

advantage according to the Almon-ridge and Almon estimators. Thus, Almon-modified

ridge estimator of β in model (1.2) is β̂m (k) = Aα̂m (k). In application b0 might well be

chosen to reflect as well as possible the prior information or restricted on β.

2.2. The Almon-modified Liu estimator. In order to overcome the multicollinearity

problem, ridge estimator that we have discussed before is widely used in practice, but

selection of k poses some problems. To overcome this problem an estimator is defined

by combining Ridge and Stein type estimators in Liu [13]. This estimator was called

Liu estimator in Akdeniz and Kaçıranlar [1]. The advantage of Liu estimator over ridge

estimator is a linear function of d and therefore selection of d is easier. Liu estimator of

β in (1.2) is

β̂d =
(
X ′X + I

)−1 (
X ′y + db

)
(2.5) =

(
X ′X + I

)−1 (
X ′X + dI

)
b, 0 < d < 1

where b is the OLS estimator for model (1.2). To overcome multicollinearity problem, if

we take α̂A instead of b, Almon-Liu estimator of α in model (1.7) is

α̂d =
(
Z′Z + I

)−1 (
Z′y + dα̂A

)
(2.6) =

(
A′SA+ I

)−1 (
A′X ′y + dα̂A

)
obtained. This estimator can be given,

α̂d =
(
Z′Z + I

)−1 (
Z′Z + dI

)
α̂A

=
(
A′SA+ I

)−1 (
A′SA+ dI

)
α̂A
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(2.7) = Fdα̂A

where Fd = (Z′Z + I)
−1

(Z′Z + dI). Thus, the Almon-Liu estimator of β is

β̂d = Aα̂d. Comparison of α̂A with α̂d and selection of d are given in Kaçıranlar [9].

Li and Yang [11] introduced a modified Liu estimator based on prior information

similar to (2.3). Almon-modified Liu estimator of α in model (1.7) is defined,

(2.8) α̂ (d, b0) =
(
Z′Z + I

)−1 (
Z′Z + dI

)
α̂A + (1 − d)

(
Z′Z + I

)−1
b0.

To overcome multicollinearity problem, if we take b0 = α̂d, (2.8) is reduced to

(2.9) α̂m (d) = Fdα̂A + (I − Fd) α̂d.

Substituting α̂d for b0, it is expected that Almon-modified Liu estimator has advantage

according to the Almon-Liu and the Almon estimators.

3. Matrix mean square error comparisons

Bias and variance of an estimator β̃ are measured simultaneously by the MSE matrix,

MSE
(
β̃
)

= E
[(
β̃ − β

)(
β̃ − β

)′]
= V

(
β̃
)

+Bias(β̃)Bias(β̃)
′

where

V
(
β̃
)

= E
[(

(β̃ − E(β̃)
)(

(β̃ − E(β̃)
)′]

and

Bias
(
β̃
)

= E
(
β̃
)
− β.

For a given value of β, β̃2 is preferred to an alternative estimator, β̃1, whenMSE
(
β̃1
)
−

MSE
(
β̃2
)
is a nonnegative definite (n.n.d) matrix. Another criterion measure of good-

ness of an estimator is

smse
(
β̃
)

= tr
(
V
(
β̃
))

+
[
Bias(β̃)

]′ [
Bias(β̃)

]
,

which is called as the scalar mean squared error (smse) value of β̃.

IfMSE
(
β̃1
)
−MSE

(
β̃2
)
is a n.n.d., then smse

(
β̃1
)
−smse

(
β̃2
)
≥ 0. The converse

is not generally true (Theobald, [17]).

4. Superiority of the biased estimators under the MSE criterion

Almon-modified ridge and Almon-modified Liu estimators are biased alternatives to

the Almon estimator in the presence of multicollinearity. In the following five subsections

we compare Almon-modified ridge estimator with the Almon-ridge and Almon estimators.

Also, Almon-modified Liu estimator is compared to the Almon-Liu and Almon estimators.

In addition to these, Almon-modified ridge and Almon-Liu estimators are compared under
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the MSE criterion. Canonical form of the estimators will be discussed in order to make

these comparisons.

Model (1.7) can be written in canonical form

(4.1) y = Wγ + u, u ∼ N
(
0, σ2

u

)
where W = ZQ, γ = Q′α and Q is the orthogonal matrix whose columns constitute the

eigenvectors of Z′Z. Then

(4.2) W ′W = Q′Z′ZQ = Λ = diag (λ1, λ2, . . . , λr+1)

where λ1 ≥ λ2 ≥ . . . ≥ λr+1 > 0 are ordered eigenvalues of Z′Z. For model (4.1), we get

the following representations.

Almon estimator is,

(4.3) γ̂A = Λ−1W ′y = C1y.

Almon-ridge estimator is,

(4.4) γ̂k = (Λ + kI)−1W ′y

= GkW
′y = C2y

where Gk = (Λ + kI)−1. Here Gk is the diagonal and symmetric matrix.

Almon-modified ridge estimator is,

(4.5) γ̂m (k) = (Λ + kI)−1 (W ′y + kγ̂k
)

= (Λ + kI)−1 Λγ̂A + k (Λ + kI)−1 γ̂k

=
[
(Λ + kI)−1 + k (Λ + kI)−2]W ′y

=
[
Gk + kG2

k

]
W ′y = C3y.

Almon-Liu estimator is,

(4.6) γ̂d = (Λ + I)−1 (Λ + dI) Λ−1W ′y

= LdΛ
−1W ′y = C4y

where Ld = (Λ + I)−1 (Λ + dI). Here Ld is diagonal and symmetric matrix.

Almon-modified Liu estimator is,

(4.7) γ̂m (d) =
[
(Λ + I)−1 (Λ + dI)

]
γ̂A +

[
I − (Λ + I)−1 (Λ + dI)

]
γ̂d

= Ldγ̂A + (I − Ld) γ̂d

=
(
2Ld − L2

d

)
γ̂A

=
(
2Ld − L2

d

)
Λ−1W ′y = C5y.
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It is evident that the above mentioned estimators are homogeneous linear. For the sake

of convenience, we have an important Lemma needed in the following comparisons.

Lemma.(Trenkler, [18]). Let β̃1 and β̃2 be two homogeneous linear estimators of β

such that D = V
(
β̃1
)
− V

(
β̃2
)
is positive definite (p.d.).

If Bias
(
β̃2
)′
D−1Bias

(
β̃2
)
< σ2 then MSE

(
β̃1
)
−MSE

(
β̃2
)
is p.d..

4.1. The comparison of Almon-modified ridge estimator and Almon estima-

tor. In this section, we will discuss the superiority of Almon-modified ridge estimator

over the Almon estimator by the MSE criterion. Also, we want to show that for any

k > 0, we can always find k so that Almon-modified ridge estimator has less MSE as

compared with Almon estimator.

As regards the performance by the variance-covariance matrix, we have the following

theorem.

4.1. Theorem. Let k be fixed and k > 0.

If b′1D−1
1 b1 < σ2

u, then MSE (γ̂A) −MSE (γ̂m (k)) is p.d.,

where D1 = C1C
′
1 − C3C

′
3, C1 = Λ−1W ′, C3 =

[
Gk + kG2

k

]
W ′ and

b1 = Bias (γ̂m (k)) = −k2G2
kγ.

Proof. Using the estimators γ̂A and γ̂m (k) in (4.3) and (4.5), the variance-covariance

matrix of unbiased γ̂A is

(4.8) V (γ̂A) = σ2
uΛ−1

and the variance-covariance matrix and bias of γ̂m (k) are respectively,

V (γ̂m (k)) = σ2
u

(
Gk + kG2

k

)
Λ
(
Gk + kG2

k

)
(4.9) = σ2

uGk (I − kGk) (I + kGk)2 ,

(4.10) Bias (γ̂m (k)) = −k2G2
kγ

obtained. Then using (4.9) and (4.10), MSE matrix of γ̂m (k) is,

(4.11) MSE (γ̂m (k)) = σ2
uGk (I − kGk) (I + kGk)2 + k4G2

kγγ
′G2

k.

Considering the following difference from (4.8) and (4.9), we obtain

∆1 = V (γ̂A) − V (γ̂m (k)) = σ2
u

(
C1C

′
1 − C3C

′
3

)
(4.12) = σ2

uk
2Gk

[
Gk + Λ−1 + kG2

k

]
Gk.

Since
[
Gk + Λ−1 + kG2

k

]
> 0, ∆1 > 0, namely D1 will be p.d. for k > 0. By the Lemma,

the proof is completed. �
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4.2. The comparison of Almon-modified ridge estimator and Almon-ridge

estimator. We have already seen in the previous section that Almon-modified ridge es-

timator is superior to the Almon estimator. Now, the aim is to compare the performance

of Almon-modified ridge to the Almon-ridge estimator according to the MSE criterion .

In the following theorem, we have obtained sufficient condition for the Almon-modified

ridge estimator to outperform the Almon-ridge estimator in terms of MSE criterion.

4.2. Theorem. Let k be fixed and k > 0.

If b′1D−1
2 b1 < σ2

u, then MSE (γ̂k) −MSE (γ̂m (k)) is p.d.,

where D2 = C2C
′
2 − C3C

′
3, C2 = GkW

′.

Proof. Using the estimator γ̂k in (4.4), the variance-covariance matrix of this estimator

is,

V (γ̂k) = σ2
uGkΛG′k

(4.13) = σ2
u (I − kGk)Gk

and bias is,

(4.14) Bias (γ̂k) = −kGkγ.

Then using (4.13) and (4.14), MSE matrix of γ̂k is,

(4.15) MSE (γ̂k) = σ2
u (I − kGk)Gk + k2Gkγγ

′G′k

obtained. Then considering the following difference from (4.13) and (4.9) we obtain

∆2 = V (γ̂k) − V (γ̂m (k)) = σ2
u

(
C2C

′
2 − C3C

′
3

)
(4.16) = σ2

uGkΛGk
(
2kGk + k2G2

k

)
.

Since
[
2kGk + k2G2

k

]
> 0, ∆2 > 0. Then D2 will be p.d. for k > 0. By the Lemma, the

proof is completed. �

4.3. The comparison of Almon-modified Liu estimator and Almon estimator.

Li and Yang [11] compared the modified Liu estimator with OLS, Liu, ridge and modified

ridge estimators according to the MSE criterion in linear regression model. Now, our goal

is to compare the Almon-modified Liu estimator that we have proposed here, with the

Almon estimator for the distributed lag model.

Here we show that Almon-modified Liu estimator outperform to the Almon estimator

in terms of MSE criterion by the following theorem.
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4.3. Theorem. Let d be fixed and 0 < d < 1.

If b′2D−1
3 b2 < σ2

u , then MSE (γ̂A) −MSE (γ̂m (d)) is p.d.

where D3 = C1C
′
1 − C5C

′
5, C5 =

(
2Ld − L2

d

)
Λ−1W ′ and

b2 = Bias (γ̂m (d)) = − (1 − d)2 (Λ + I)−2 γ.

Proof. Using the estimator γ̂m (d) in (4.7), the variance-covariance matrix of this esti-

mator is,

(4.17) V (γ̂m (d)) = σ2
u

[
2Ld − L2

d

]
Λ−1 [2Ld − L2

d

]
and bias is,

(4.18) Bias (γ̂m (d)) = − (1 − d)2 (Λ + I)−2 γ

Then using (4.17) and (4.18), MSE matrix of γ̂m (d) is,

(4.19) MSE (γ̂m (d)) = σ2
u

[
2Ld − L2

d

]
Λ−1 [2Ld − L2

d

]
+(1 − d)4 (Λ + I)−2 γγ′ (Λ + I)−2

The variance-covariance matrix of γ̂m (d) can be rewrite in the following:

(4.20) V (γ̂m (d)) =
[
2Ld − L2

d

]2
V (γ̂A) .

Here matrix
[
2Ld − L2

d

]
is the diagonal and symmetric matrix. Let B defined as

(4.21) B =
[
2Ld − L2

d

]2
= diag (b1, b2, . . . , bp) .

We can see that V (γ̂m (d)) is decreasing due to the factor B in equation (4.20). The

i− th element of matrix B in (4.21) is

(4.22) bi =

[
λ2
i + 2λi + 2d− d2

(λi + 1)2

]2
.

From (4.22), we have the conclusions that λ2
i + 2λi + 2d− d2 > 0 and

λ2
i+2λi+2d−d2

(λi+1)2
< 1 for 0 < d < 1. Therefore, 0 < bi < 1 is ensured for the i− th element

of matrix B. Consequently, we obtain V (γ̂A) − V (γ̂m (d)) > 0, namely, D3 is p.d. for

0 < d < 1. By the Lemma, the proof is completed. �

4.4. The comparison of Almon-modified Liu estimator and Almon-Liu esti-

mator. Modified Liu estimator has smaller estimated MSE values than Liu, ridge and

modified ridge estimators, respectively, in Liu and Yang [11]. In this section, we show

that Almon-Liu estimator is better than Almon-modified Liu estimator according to the

MSE criterion.

In the following theorem, we have obtained a sufficient condition for the Almon-Liu

estimator to be superior to the Almon-modified Liu estimator in terms of MSE criterion.
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4.4. Theorem. Let d be fixed and 0 < d < 1.

If b′3D−1
4 b3 < σ2

u, then MSE (γ̂m (d)) −MSE (γ̂d) is p.d.,

where D4 = C5C
′
5 − C4C

′
4, C4 = LdΛ

−1W ′, Ld = (Λ + I)−1 (Λ + dI) and

b3 = Bias (γ̂d) = − (1 − d) (Λ + I)−1 γ.

Proof. Using the estimator γ̂d in (4.6), the variance-covariance matrix and the bias of

this estimator are obtained respectively in the following:

(4.23) V (γ̂d) = σ2
uLdΛ

−1Ld

(4.24) Bias (γ̂d) = − (1 − d) (Λ + I)−1 γ.

Then using (4.23) and (4.24), MSE matrix of γ̂d is,

(4.25) MSE (γ̂d) = σ2
uLdΛ

−1Ld + (1 − d)2 (Λ + I)−1 γγ′ (Λ + I)−1 .

Considering the following difference from (4.17) and (4.23), we obtain

∆3 = V (γ̂m (d)) − V (γ̂d) = σ2
u

(
C5C

′
5 − C4C

′
4

)
= σ2

uLd
[(
I + (1 − d) (Λ + I)−1)Λ−1 (I + (1 − d) (Λ + I)−1)− Λ−1]Ld

(4.26) = σ2
uLd

[
2 (1 − d) Λ−1 (Λ + I)−1 + (1 − d)2 (Λ + I)−1 Λ−1 (Λ + I)−1]Ld.

Since the last equation in (4.26) is p.d. for 0 < d < 1, V (γ̂m (d))−V (γ̂d) > 0. Therefore,

D4 = C5C
′
5−C4C

′
4 will be p.d. for 0 < d < 1. By the Lemma, the proof is completed. �

4.5. The comparison of Almon-modified ridge estimator and Almon-Liu es-

timator. Now, we compare the second order moment matrices of Almon-modified ridge

and Almon-Liu estimators. Let now d be fixed for the moment, we may state the following

theorem.

4.5. Theorem. Let d be fixed and 0 < d < 1.

a.If b′3 (C3C
′
3 − C4C

′
4)
−1
b3 < σ2

u, then MSE (γ̂m (k)) −MSE (γ̂d) is p.d. for

0 < k < kj.

b.If b′1 (C4C
′
4 − C3C

′
3)
−1
b1 < σ2

u, then MSE (γ̂d) −MSE (γ̂m (k)) is p.d. for

0 < kj < k, where kj =
λj(1−d)
λj+d

, j = 1, 2, . . . , r + 1 b1 = Bias (γ̂m (k)) and

b3 = Bias (γ̂d).

Proof. Using (4.9) and (4.23), we obtain

∆3 = V (γ̂m (k)) − V (γ̂d) = σ2
u

(
C3C

′
3 − C4C

′
4

)
= σ2

u

[(
Gk + kG2

k

)
Λ
(
Gk + kG2

k

)
− LdΛ

−1Ld
]
.
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Evidently, C3C
′
3 −C4C

′
4 will be p.d. if and only if Ψj > 0, for all j = 1, 2, . . . , r+ 1 where

Ψj =
λj

(λj + k)2
− (λj + d)2

λj (λj + 1)2
+

2kλj

(λj + k)3
+

k2λj

(λj + k)4
.

For k > 0, since 2kλj

(λj+k)
3 and k2λj

(λj+k)
4 are positive, a sufficient condition for

C3C
′
3 − C4C

′
4 being p.d. is

(4.27)
λj

(λj + k)2
− (λj + d)2

λj (λj + 1)2

greater than zero. So, this inequality requires than C3C
′
3 − C4C

′
4 is p.d. for

0 < k < kj . Similarly, C4C
′
4 − C3C

′
3 will be p.d. for 0 < kj < k (see also Sakallioglu et

al. [15]). By the Lemma, the proof is completed. �

Let now k be fixed for the moment and let be 0 < k < 1. Thus we have the following

theorem.

4.6. Theorem. Let k be fixed and 0 < k < 1.

a.If b′3 (C3C
′
3 − C4C

′
4)
−1
b3 < σ2

u, then MSE (γ̂m (k)) −MSE (γ̂d) is p.d. for

0 < d < dj < 1.

b.If b′1 (C4C
′
4 − C3C

′
3)
−1
b1 < σ2

u, then MSE (γ̂d) −MSE (γ̂m (k)) is p.d. for

0 < dj < d < 1 where dj = 1 − k(λj+1)
λj+k

, j = 1, 2, . . . , r + 1.

Proof. From the above theorem’s proof, we know that C3C
′
3 − C4C

′
4 will be p.d. if and

only if Ψj > 0, for all j = 1, 2, . . . , r+1. For fixed k > 0, (4.27) requires that C3C
′
3−C4C

′
4

is p.d. for 0 < d < dj < 1 and C4C
′
4 − C3C

′
3 will be p.d. for 0 < dj < d < 1. By the

Lemma, the proof is completed. �

To illustrate our theoretical results, it is easy to use smse in practical applications.

Therefore, the smse formulas for the γ̂A, γ̂k, γ̂m (k) , γ̂d and γ̂m (d) are given respectively:

(4.28) smse (γ̂A) = σ2
u

r+1∑
i=1

1

λi

(4.29) smse (γ̂k) = σ2
u

r+1∑
i=1

λi

(λi + k)2
+ k2

r+1∑
i=1

γ2
i

(λi + k)2

(4.30) smse (γ̂m (k)) = σ2
u

r+1∑
i=1

λi (λi + 2k)2

(λi + k)4
+ k4

r+1∑
i=1

γ2
i

(λi + k)4

(4.31) smse (γ̂d) = σ2
u

r+1∑
i=1

(λi + d)2

λi (λi + 1)2
+ (1 − d)2

r+1∑
i=1

γ2
i

(λi + 1)2
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(4.32) smse (γ̂m (d)) = σ2
u

r+1∑
i=1

bi
λi

+ (1 − d)4
r+1∑
i=1

γ2
i

(λi + 1)4

where bi is defined in (4.22). A very important issue in the study of ridge regression is how

to find an appropriate biasing parameter k. Hoerl and Kennard [6], [7], Hoerl, Kennard

and Baldwin [8] and Lawless and Wang [10] suggested the following ridge parameters,

that we can estimate for the model (4.1) respectively;

(4.33) k̂HK =
σ̂2
u∑r+1

i=1 γ̂
2
i

(4.34) k̂HKB =
(r + 1) σ̂2

u∑r+1
i=1 γ̂

2
i

(4.35) k̂LW =
(r + 1) σ̂2

u∑r+1
i=1 λiγ̂

2
i

where γ̂ and σ̂2
u are the OLS estimates of γ and σ2

u. On the other hand Liu [13] gave the

some estimates of d by analogy with the estimate of k in ridge estimate. Two of these

estimates are defined as for the model (4.1):

(4.36) d̂mm = 1 − σ̂2
u

[
r+1∑
i=1

1

λi (λi + 1)

/r+1∑
i=1

γ̂2
i

(λi + 1)2

]

(4.37) d̂CL = 1 − σ̂2
u

[
r+1∑
i=1

1

λi + 1

/r+1∑
i=1

λiγ̂
2
i

(λi + 1)2

]
where γ̂ and σ̂2

u are the OLS estimates of γ and σ2
u.

5. A numeric example with Almon data

To illustrate our theoretical results we now consider a dataset due to Almon [2]. These

data was taken in the years 1953-1967 using quarterly data where independent variable is

appropriations and dependent variable is expenditures. Consideration of these data, the

following results were obtained. Firstly, the smallest value of SIC was obtained 12.75 if

the length of lag is p=8 using “Schwartz Information Criteria (SIC) ”. Starting from

the assumption that the prior information on βi is fifth degree (r = 5) polynomial in

(1.5), after testing the significance of the coefficient then, the optimal polynomial degree

(r = 2) is obtained. Here, in order to obtain the form (1.7), Z matrix is obtained by

means of X matrix produced by multiplying matrix A defined earlier. The condition

number of Z matrix is 63.5 which imply the existence of highly multicollinearity in the
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data set. In this case, the results of Almon method that based on the OLS will not be

appropriate.

Theoretical comparisons for the alternative estimators to the Almon estimator have

been made in terms of the MSE criterion. Also, smse formulas have been given for these

estimators. Using smse is generally the most convenient for applications or simulation

studies. Then, we decided that which one is the best estimator for distributed lag models.

For this data, we find the following results:

(a) The eigenvalues of Z′Z : (0.0007, 0.0634, 2.9359)

(b) The Almon estimates of

α : (α̂A)′ = (0.0962, 0.0320, −0.0052)

β̂A = (Aα̂A)′ = (0.096, 0.123, 0.140, 0.146, 0.142, 0.127, 0.102, 0.067, 0.021) .

(c) The estimate of σ2 : σ̂2
u = 0.0164

The 3×3 matrix Q is the matrix of normalized eigenvectors, Λ is a 3×3 diagonal matrix

of eigenvalues of Z′Z such that Z′Z = QΛQ′. Then, W = ZQ and γ = Q′α so that,

y = Zα+ u = Wγ + u, where

Q =

 −0.2478
0.7934

−0.5559

−0.7818
0.1751
0.5985

0.5722
0.5829
0.5769


and

W ′W = Λ =

 0.0007 0 0
0 0.0634 0
0 0 2.9359


In orthogonal coordinates the OLS estimator of the regression coefficients is

γ̂ = Λ−1W ′y = [1.2297, −1.0754, 0.5580]′

obtained. Using the equations in (4.33)-(4.35) estimators of k obtained for the evaluate

the estimated smse values of Almon-ridge and Almon-modified ridge estimators. Then,

for the practical purposes various values of k and the corresponding estimated smse

values of the estimators are shown in Table 1. In Figure 1, the graph of estimated

smse values of the Almon-ridge and Almon-modified ridge estimators is illustrated for

the range of k values that performance of Almon-modified ridge estimator is better than

Almon-ridge estimator.

Let us consider the Almon-Liu and Almon-modified Liu estimators various values of

d and the corresponding estimated smse values of the estimators are shown in Table 2.
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Also, the performances of Almon-Liu and Almon-modified Liu estimators are illustrated

for the various values of d in Figure 2.

In Table 3, we compared the Almon-modified ridge, Almon-modified Liu and also

Almon-Liu estimators and comparisons are shown on the graph for the common values

of k and d in Figure 3.

Table 1. Estimated smse values of Almon, Almon-ridge and Almon-
modified ridge estimators

ŝmse (γ̂A) ŝmse (γ̂k) ŝmse (γ̂m (k))

k = 0 23.6928 23.6928 23.6928
kHK=0.0055 23.6928 1.7206 2.2609
k = 0.01 23.6928 1.6411 1.7840
kHKB=0.0165 23.6928 1.6481 1.6743
k = 0.02 23.6928 1.6599 1.6605
k = 0.03 23.6928 1.7002 1.6524
kLW = 0.0498 23.6928 1.7855 1.6649
k = 0.1 23.6928 1.9700 1.7440
k = 0.2 23.6928 2.1898 1.9286
k = 0.3 23.6928 2.3086 2.0675
k = 0.4 23.6928 2.3823 2.1662
k = 0.5 23.6928 2.4328 2.2384
k = 0.6 23.6928 2.4699 2.2931
k = 0.7 23.6928 2.4985 2.3359
k = 0.8 23.6928 2.5215 2.3702
k = 0.9 23.6928 2.5406 2.3984
k = 1 23.6928 2.5569 2.3310
k = 2 23.6928 2.6510 2.4949

When we compare Almon, Almon-ridge and Almon-modified ridge estimators, we ob-

serve that as k increases, Almon-modified ridge estimator always gives better performance

than the other estimators. On the other hand, the performance of Almon-ridge estimator

is better than Almon estimator with in the wide range k values. The plot of ŝmse (γ̂k)

and ŝmse (γ̂m (k)) vs. k in the interval [0,1] has been presented in Fig.1. This figure

indicates that ŝmse (γ̂k) and ŝmse (γ̂m (k)) increase as k increases. The Almon-modified

ridge estimator dominates Almon-ridge estimator when k > 0.02. These findings have

supported the results in Section 4.1 and 4.2.

Considering the performance of the other alternative estimators we can see that

Almon-modified Liu estimator outperforms to the Almon-Liu and Almon estimator for

all values of d satisfying 0 < d < 1. The plot of ŝmse (γ̂d) and ŝmse (γ̂m (d)) has been

presented in Fig.2. This figure indicates that ŝmse (γ̂d) and ŝmse (γ̂m (d)) increase as
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Figure 1. Estimated smse of Almon-ridge and Almon-modified ridge
estimators versus k

Table 2. Estimated smse values of Almon, Almon-Liu and Almon-
modified Liu estimators

ŝmse (γ̂A) ŝmse (γ̂d) ŝmse (γ̂m (d))

d = 0 23.6928 0.1721 0.0161
d = 0.001 23.6928 0.1718 0.0160
d = 0.01 23.6928 0.1688 0.0156
d = 0.1 23.6928 0.1403 0.0119
d = 0.2 23.6928 0.1118 0.0089
d = 0.3 23.6928 0.0867 0.0069
d = 0.4 23.6928 0.0650 0.0056
d = 0.5 23.6928 0.0467 0.0049
d = 0.6 23.6928 0.0318 0.0045
dCL = 0.712 23.6928 0.0192 0.0043
d = 0.8 23.6928 0.0122 0.0042
d = 0.9 23.6928 0.0076 0.0042

d increases and large value of d Almon-modified Liu estimator dominates the Almon-

Liu estimator. On the other hand the increasing of ŝmse (γ̂m (d)) is slowly than the

ŝmse (γ̂d).

Finally, comparison of the three estimators is illustrated in Figure 3. It can be seen

that not only Almon-modified Liu estimator but also Almon-Liu estimator outperforms

Almon-modified ridge estimator in Figure 3.

From Table 3 and Figure 3, we can also obtain the following conclusions:
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Figure 2. Estimated smse of Almon-Liu and Almon-modified Liu es-
timators versus d

Table 3. Comparisons between Almon-modified ridge, Almon Liu and
Almon-modified Liu estimators in smse sense

k = d ŝmse (γ̂d) ŝmse (γ̂m (k)) ŝmse (γ̂m (d))

0.01 0.1688 1.7840 0.0156
0.1 0.1403 1.7440 0.0119
0.2 0.1118 1.9286 0.0089
0.3 0.0867 2.0675 0.0069
0.4 0.0650 2.1662 0.0056
0.5 0.0467 2.2384 0.0049
0.6 0.0318 2.2931 0.0045
0.7 0.0192 2.3359 0.0043
0.8 0.0122 2.3702 0.0042
0.9 0.0076 2.3984 0.0042

(i) Let d = 0.1 be fixed. We get values of kj by using Theorem 4.5.

kj : 0.8704, 0.3492, 0.0062.

Comparing ŝmse (γ̂d=0.1) = 0.1403 with ŝmse (γ̂m (k = 0.005)) = 2.4019 for 0 < k <

0.0062, we see that γ̂d has a smaller estimated smse value than γ̂m (k) (see also Figure

3). Comparing ŝmse (γ̂d=0.1) = 0.1403 with ŝmse (γ̂m (k = 0.9)) = 2.3984 is obtained for

0 < 0.8704 < k. Since the sufficient condition in Theorem 4.5.(b) is not satisfied, γ̂m (k)

does not have estimated smse value than γ̂d.
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Figure 3. Estimated smse of Almon-modified ridge, Almon-Liu,
Almon-modified Liu estimators versus k − d

(ii) Let d = 0.9 be fixed. By using Theorem 4.5 kj values are obtained as

kj : 0.00765, 0.00658, 0.000077.

Comparing ŝmse (γ̂d=0.9) = 0.0076 with ŝmse (γ̂m (k = 0.00007)) = 23.235 for 0 <

k < 0.000077, we see that γ̂d has a smaller estimated smse value than γ̂m (k) (see also

Figure 3). Comparing ŝmse (γ̂d=0.9) = 0.0076 with ŝmse (γ̂m (k = 0.008)) = 1.8979 is

obtained for 0 < 0.00765 < k. Since the sufficient condition in Theorem 4.5.(b) is not

satisfied, γ̂m (k) does not have smaller estimated smse value than γ̂d.

(iii) Let k = 0.2 be fixed. We get values of dj by using Theorem 4.6.

dj : 0.749, 0.1926, 0.0028.

Comparing ŝmse (γ̂m (k = 0.2)) = 1.9286 with ŝmse (γ̂d=0.002) = 0.1715 for 0 < d <

0.0028 < 1. So γ̂d has a smaller estimated smse value than γ̂m (k) as it is indicated

in (a) part of the Theorem 4.6 (see also Figure 3). On the other hand, comparing

ŝmse (γ̂m (k = 0.2)) = 1.9286 with ŝmse (γ̂d=0.8) = 0.0122 is obtained for 0 < 0.749 <

d < 1. Since the sufficient condition in Theorem 4.6.(b) is not satisfied, γ̂m (k) does not

have smaller estimated smse value than γ̂d.

(iv) Let k = 0.8 be fixed. By using Theorem 4.6 dj values are obtained as

dj : 0.1572, 0.0147, 0.0002.
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Comparing ŝmse (γ̂m (k = 0.8)) = 2.3702 with ŝmse (γ̂d=0.0001) = 0.1721 for 0 < d <

0.0002 < 1. So γ̂d has a smaller estimated smse value than γ̂m (k) as it is indicated in (a)

part of the Theorem 4.6 (see also Figure 3). Beside this, comparing ŝmse (γ̂m (k = 0.8)) =

2.3712 with ŝmse (γ̂d=0.2) = 0.1118 is obtained for 0 < 0.1572 < d < 1. Since the

sufficient condition in Theorem 4.6.(b) is not satisfied, γ̂m (k) does not have estimated

smse value than γ̂d.

6. Conclusions

In this study, we have compared theoretical performances of Almon-ridge (γ̂k), Almon-

modified ridge (γ̂m (k)), Almon-Liu (γ̂d), Almon-modified Liu (γ̂m (d)) estimators to the

Almon (γ̂A) estimator according to the MSE criterion with using some theorems. These

alternative estimators showed quite good performance to the Almon estimator. Also,

some of the alternative estimators compared with each other. The performances of the

estimators depends on biasing parameters k and d. To see more detailed results of the

comparisons we plotted estimated smse values of these estimators using k and d values

in Figure 1-3.

Liu and Yang [11] showed with the increasing of the levels of multicollinearity, the

smse values of ridge, Liu, modified ridge and modified Liu estimators are decreasing in

general for the linear regression model. Moreover, they showed that the smse values of

these estimators outperformed to the OLS estimator for all cases. Also, for most cases,

modified Liu estimator has smaller smse values than those of the Liu, ridge, and modified

ridge estimator, respectively. In this study, we find similar results for the distributed lag

models. Theoretical results suggested that, for an appropriate value of k and d Almon-

modified ridge and Almon-modified Liu estimator give better estimates than the other

alternative estimators in terms of MSE criterion for the distributed lag models.

The theoretical section is supported by a numerical example based on widely analyzed

Almon [2] dataset. Almon-modified Liu estimator has been showed as the best estimator

in distributed lag models.
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Abstract
This paper discusses likelihood and Bayesian estimations for partially
accelerated step-stress life test model under Type-I censoring assum-
ing Pareto distribution of the second kind. The posterior means and
posterior variances are obtained under the squared error loss function
using Lindley’s approximation procedure. It has been observed that
Lindley’s method usually provides posterior variances and mean square
errors smaller than those of the maximum likelihood estimators. Fur-
thermore, the highest posterior density credible intervals of the model
parameters based on Gibbs sampling technique are computed. For il-
lustration, simulation studies and an illustrative example based on a
real data set are provided.
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1. Introduction
For most practical tests, it may be not easy to gather data on failure-time of a device

under use conditions when this device is a highly reliable. Consequently, such devices
should be tested under accelerated (i.e. harsher-than-use) conditions to obtain failures
quickly. According to Pathak et al. [33], "the model of acceleration is chosen so that
the relationship between the parameters of the failure distribution and the accelerated
stress conditions is known. Such relationship is used to extrapolate the accelerated
data to the design stress to estimate the life distribution. The tests performed under
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accelerated stress conditions are called fully accelerated life tests (FALT or simply ALT)".
Involved persons may refer to "Meeker and Escobar [30] and Nelson [31], which are two
comprehensible sources for ALT".

Sometimes, such relationship (the life-stress relationship) may not be known or can’t
be assumed. So, in this case, ALT can’t be applied to predict products’ reliability because
the cumulative exposure model in this case can’t be assumed. Instead, as proposed
by DeGroot and Goel [13], "another type of tests called partially accelerated life tests
(PALT) is used according to a tampered random variable model".

As Nelson [31] shows, "the stress can be applied in various ways, commonly used
method is step-stress. Under step-stress PALT, a test item is first run at use condition
and, if it does not fail for a specified time, then it is run at accelerated condition until
failure occurs or the test is terminated. Accelerated test stresses involve higher than
usual temperature, voltage, pressure, load, humidity, . . . , etc., or some combination of
them".

Most of literature performed on PALT discussed non-Bayesianl approaches to make
some statistical inferences, for example, see Goel [15], Bhattacharyya and Soejoeti [10],
Bai and Chung [6], Bai et al. [7], Attia et al. [5], Abdel-Ghaly et al. [2], Madi [28], Abdel-
Ghani [3], Aly and Ismail [4], Ismail and Sarhan [24], Ismail [22], Ismail and Abu-Youssef
[23], Ismail [20-21] and Abd-Elfattah et al. [1].

Few of Bayesian researches had been made on PALT. Goel [15] "used the Bayesian
approach for estimating the acceleration factor and the parameters in the case of step-
stress PALT (SSPALT) with complete sampling for items having exponential and uniform
distributions". DeGroot and Goel [13] "investigated the optimal Bayesian design of a
PALT in the case of the exponential distribution under complete sampling". Abdel-Ghani
[3] "considered the Bayesian approach to estimate the parameters of Weibull distribution
in SSPALT with censoring". Ismail [19] "considered the Bayesian approach to estimate
the parameters of Gompertz distribution with time-censoring".

In this paper, our objective is to apply a Bayesian analysis of SSPALT considering two-
parameter Pareto distribution with Type-I censoring assuming the squared error (SE)
loss function. The Bayes estimators (BEs) of the acceleration factor and the distribution
parameters are derived and compared with the maximum likelihood estimators (MLEs)
counterparts by Monte Carlo simulations.

The rest of this paper is organized as follows. In Section 2, the model and test method
are described. Approximate BEs of the parameters under consideration are derived in
Section 3. In Section 4, BEs derived in Section 3 are obtained numerically using Lindley’s
approximation and compared with the MLEs. Also, the highest posterior density credible
intervals of the model parameters based on Gibbs sampling technique are presented in
Section 3. In Section 4 Monte Carlo simulation study is made for investigating and
comparing the methods of ML and Bayes estimators. Section 5 considers an illustrative
example with real data set. Finally, a conclusion is presented in Section 6.

2. The model and test method
2.1. The Pareto distribution as a lifetime model. The lifetimes of the test items
are assumed to follow two-parameter Pareto distribution of the second kind. Pareto [32]"
introduced a distribution (Pareto distribution) as a model for the distribution of income".
Many authors, for example, Davis and Feldstein [12], Cohen and Whitten [11], Grimshaw
[17] among others "studied its models in several different forms". According to Johnson
et al. [25], "Pareto distribution of the second kind also know as Lomax or Pearson’s Type
VI distribution". Bain and Engelhardt [8] said that "it has been found as a good model
in biomedical problems, such as survival time following a heart transplant". Using the
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Pareto distribution, Dyer [14] "studied annual wage data of production line workers in
a large industrial firm". Lomax [27] "used this distribution in the analysis of business
failure data". In addition, Bain and Engelhardt [8] indicated that "the length of wire
between flaws also follows a Pareto distribution". Moreover, Howlader and Hossain [18]
showed that "since Pareto distribution has a decreasing hazard or failure rate, it has
often been used to model incomes and survival times".

The used PDF is expressed by

f(t; θ, α) =
αθα

(θ + t)α+1
, t ≥ 0, θ > 0, α > 0,(2.1)

Its reliability function is given by

R(t) =
θα

(θ + t)α
,(2.2)

and its failure-rate function is

h(t) =
α

θ + t
.(2.3)

McCune and McCune [29] indicated that "Pareto distribution has classically been used
in economic studies of income, size of cities and firms, service time in queuing systems
and so on". Also, according to Davis and Feldstein [12], "it has been used in connection
with reliability theory and survival analysis".

2.2. The Test Method. Fundamental Assumptions

(1) Two levels of stress x1 and x2 (normal and severe) are applied.
(2) The distribution is Pareto for each stress level.
(3) The total lifetime Y of an item is given by

Y =

{
T, if T ≤ t
τ + β−1(T − τ), if T > τ ,(2.4)

where T is the lifetime of an item under normal condition. According to the
litrature, "DeGroot Goel [13] proposed this model which is called a tampered
random variable (TRV) model". For the tampered random variable models, the
readers may also refer to Tang et al. [35].

(4) The failure times yi; i = 1, . . . , n are i.i.d. r.v.’s.

Test Process

(1) Each of the n test items is first operate under design stress.
(2) If it does not fail by a pre-specified time τ then it is put on severe condition and

run until it fails or the experiment is ended.
The PDF of total lifetime Y of an item under SSPALT is expressed by

Y =


0, if y ≤ 0

f1(y) ≡ fT (t; θ, α) = αθα

(θ+y)α+1 , if 0 < y ≤ τ

f2(y) = βαθα

(θ+τ+β(y−τ))α+1 , if y > τ ,
(2.5)

where θ > 0 and α > 0 .
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3. Bayesian estimation
3.1. Posterior means and posterior variances. In this section, the SE loss func-
tion is used. Under SE loss function, the Bayes estimator of a parameter is its posterior
expectation. The Bayes estimators can’t be given in explicit forms. Approximate Bayes
estimators will be discussed under the assumption of non-informative priors using Lind-
ley’s approximation. Basu et al. [9] showed that " in many practical situations, the
information about the parameters are available in an independent manner". Thus, here
it is assumed that the parameters are independent a priori and let the non-informative
prior (NIP) for each parameter be represented by the limiting form of the appropriate
natural conjugate prior.

Therefore, the joint NIP of the three parameters can be expressed by

π(β,θ,α)(βθα)−1, β > 1, θ > 0, α > 0. (3.1)

The observed values of the total lifetime Y are given by

y(1) ≤ . . . ≤ y(nu) ≤ τ ≤ y(nu+1) ≤ . . . ≤ y(nu+na) ≤ η

where nu is the number of items failed at use condition and na is the number of items
failed at accelerated condition.

Since the total lifetimes y1, . . . , yn of n items are independent and identically dis-
tributed random variables, then the total likelihood function for them is given by

L(y |β, θ, α ) =
nu∏
i=1

[ αθα

(θ+y{(i)})
α+1 ].

na∏
i=1

[ βαθα

(θ+τ+β(y{(i+nu)}−τ))α+1 ].
nc∏
i=1

[ θα

(θ+τ+β(η−τ))α
],(3.2)

where nc = n - nu - na.

Forming the product of (3.1) and (3.2), the joint posterior density function of β , θ
and α given the data can be written as

g(β, θ, α
∣∣y ) ∝ L(y |β, θ, α ).Π(β, θ, α)

∝ βna−1θαn−1αnu+na−1

(θ+τ+β(η−τ))αnc
[
nu∏
i=1

1
(θ+y{(i)})

α+1 ].[
nu+na∏
i=nu+1

1
(θ+τ+β(y{(i)}−τ))α+1 ].

(3.3)

According to Lindley [26], "an approximation via an asymptotic expansion of the ratio
of two non-tractable integrals is used to obtain approximate Bayes estimators".

Now, let Θ be a set of parameters {Θ1, Θ2, . . . , Θm }, where m is the number of
parameters, then the posterior expectation of an arbitrary function u(Θ) can be asymp-
totically estimated by

E(u(Θ)) =

∫
Θ
u(Θ)π(Θ)elnL(y|Θ)dΘ∫
Θ
π(Θ)elnL(y|Θ)dΘ

≈ [u+ (1/2)
∑
i,j

(u
(2)
ij + 2u

(1)
i ρ

(1)
j )σij + (1/2)

∑
i,j,k,s

L
(3)
ijkσijσksu

(1)
s ] ↓ Θ̂,

(3.4)
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which is the Bayes estimator of u(Θ) under a squared error loss function, where π(Θ)
is the prior distribution of Θ

,u ≡ u(Θ), L ≡ L(Θ) is the likelihood function, ρ ≡ ρ(Θ) = log π(Θ), σij are the
elements of the inverse of the asymptotic Fisher’s information matrix of β , θ and α ,
and

u(1)
i = ∂u

∂Θi
, u

(2)
ij = ∂2u

∂Θi∂Θj
,ρ

(1)
j = ∂logπ(Θ)

∂Θj
andL

(3)
ijk = ∂3lnL(y|Θ)

∂Θi∂Θj∂Θk

According to Green [16], "the linear Bayes estimator in (3.4) is a very good and
operational approximation for the ratio of multi-dimension integrals". Also, as pointed
out by Sinha [34], "it has led to many useful applications".

Bayesian interval estimators, called credible intervals, for the model parameters are
derived from their posterior distributions. We propose the following Markov Chain Monte
Carlo (MCMC) method to draw samples from the posterior density function and then to
compute the Bayes estimates and the highest posterior density (HPD) credible intervals.
We use the Gibbs sampling procedure to compute HPD credible intervals.

3.2. Credible intervals using Gibbs sampling. Assume that the priori are Gamma
distributions and that they are independent. Therefore, samples of β , θ and α can be
easily generated using any of the gamma generating routines. We use the Gibbs sampling
procedure to generate a sample from the posterior density function and then to compute
the Bayes estimates and HPD credible intervals. To run the Gibbs sampler algorithm,
it is appropriate to start with the approximate BEs. The following algorithm is used for
this purpose.

Step 1: Start with an(θ(0) = θ̃ and β(0) = β̃) and set I = 1.
Step 2: Generate α(I) from the conditional Gamma distribution (g(α

∣∣∣θ(I−1), β(I−1), y))

Step 3: Generate θ(I) from the conditional Gamma distribution (g(θ
∣∣∣α(I−1), β(I−1), y))

Step 4: Generate β(I) from the conditional Gamma distribution (g(β
∣∣∣θ(I−1), α(I−1), y))

Step 5: Set I = I +1.
Step 6: Repeat steps 2-4 M times and obtain αi, θi and βi for i=1,. . . , M.
Step 7: The Bayes MCMC point estimates of β , θ and α with respect to the squared

error function are then

β̃ = Ẽ(β |data ) = 1
M

M∑
k=1

βk, θ̃ = Ẽ(θ |data ) = 1
M

M∑
k=1

θk and α̃ = Ẽ(α |data ) =

1
M

M∑
k=1

αk.

Step 8: The posterior variances of β , θ and α are

Ṽ (β |data ) = 1
M

M∑
k=1

{βk − Ẽ(β |data )}2, Ṽ (θ |data ) = 1
M

M∑
k=1

{θk − Ẽ(θ |data )}2 and

Ṽ (α |data ) = 1
M

M∑
k=1

{αk − Ẽ(α |data )}2.

Step 9: To compute the credible intervals (CRIs) of φl (φ1 = α, φ2 = θandφ3 = β),
the quantiles of the sample is usually taken as the endpoints of the intervals. Order
φ

(1)
l , φ

(2)
l , ..., φ

(M)
l , as φl(1) , φl(2) ,..., φl(M) .

Then, the 100(1− 2γ)% CRIs for φl become (φl(γM) , φl((1−γ)M) ).



1240

4. Simulation results and discussion
Simulation results are made for comparing the methods of ML and Bayes estimators,

using a SE loss function. The posterior means and posterior variances of the model
parameters are obtained suggesting a NIP for each parameter under a SE loss function
with time-censored data. Since the BEs of the model parameters can’t be found in
closed form, approximate BEs are determined numerically using Lindley techniuqe. The
performance of the approximate BEs is assessed and compared with the MLEs in Tables
1 and 2 via their variances, MSEs and average confidence interval lengths (CIL) for
different settings of true parameter values and sample sizes.

95% confidence intervals of the model parameters are constructed with average CIL
presented in Tables 1 and 2. It is shown from the results presented in Tables 1 and 2 that
the CRIs obtained under Bayes method (via Gibbs sampling approach) are narrower than
those obtained using the ML approach. Also, we observed that the computed coverage
probabilities (CP) of the CRIs for each parameter are very close to the nominal level.
On the other hand, it was found that these CP using the ML approach are lower than
the nominal level in general.
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Table 1: Average values of MLEs, BEs, variances and MSEs, when β =2, θ = 0.2, α =
0.5, τ = 3 and η = 7

n parameter Method estimate MSE variance CIL CP

30 β
ML

Bayes
2.4633
2.2863

0.1569
0.1328

0.0843
0.0669

1.1382
0.9824

92
94.1

θ
ML

Bayes
0.5154
0.4289

0.0264
0.0185

0.0376
0.0115

0.7601
0.3214

92.3
94.3

α
ML

Bayes
0.7232
0.6821

0.0172
0.0093

0.0169
0.0081

0.5096
0.2972

93
94.4

50 β
ML

Bayes
2.3954
2.1627

0.1143
0.0881

0.0548
0.0333

0.9176
0.6302

93
94.3

θ
ML

Bayes
0.3653
0.3102

0.0784
0.0113

0.0218
0.0071

0.5788
0.2733

94
94.4

α
ML

Bayes
0.5563
0.5382

0.0132
0.0047

0.0074
0.0034

0.3372
0.1765

94.5
94.8

75 β
ML

Bayes
2.2233
2.0793

0.0911
0.0578

0.0273
0.0099

0.6477
0.3140

94.1
94.7

θ
ML

Bayes
0.2977
0.2286

0.0546
0.0078

0.0079
0.0052

0.3484
0.2261

94.3
94.8

α
ML

Bayes
0.4796
0.4836

0.0082
0.0023

0.0025
0.0015

0.1960
0.1103

94.6
95.1

100 β
ML

Bayes
2.1143
2.0371

0.0366
0.0206

0.0057
0.0046

0.2960
0.1874

94.3
94.9

θ
ML

Bayes
0.2384
0.2178

0.0281
0.0037

0.0047
0.0016

0.2687
0.1210

94.4
94.9

α
ML

Bayes
0.4885
0.4913

0.0026
0.0014

0.0011
0.0006

0.1300
0.0411

94.8
95.0
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Table 2: Average values of MLEs, BEs, variances and MSEs, when β =3 , θ = 1.5, α
= 2, τ = 3 and η = 7

n parameter Method estimate MSE variance CIL CP

30 β
ML

Bayes
3.4943
3.3511

0.0951
0.0722

0.0639
0.0403

0.9909
0.6820

92.5
94.4

θ
ML

Bayes
1.9411
1.7101

0.0689
0.0522

0.0289
0.0233

0.6664
0.5147

93
94.5

α
ML

Bayes
2.2677
2.2153

0.0645
0.0529

0.0119
0.0075

0.4276
0.2655

93.5
94.7

50 β
ML

Bayes
3.4461
3.3289

0.0552
0.0373

0.0519
0.0329

0.8930
0.5918

93.2
94.8

θ
ML

Bayes
1.6533
1.5790

0.0487
0.0307

0.0112
0.0074

0.4149
0.2413

93.6
94.8

α
ML

Bayes
2.1791
2.1342

0.0213
0.0128

0.0043
0.0031

0.2571
0.1643

94
94.8

75 β
ML

Bayes
3.1731
3.0944

0.0375
0.0187

0.0297
0.0163

0.6756
0.4101

94.2
94.9

θ
ML

Bayes
1.5832
1.5346

0.0215
0.0117

0.0038
0.0025

0.2416
0.1386

94.4
94.9

α
ML

Bayes
2.0773
2.0522

0.0085
0.0052

0.0020
0.0016

0.1753
0.0982

94.5
94.9

100 β
ML

Bayes
3.0891
3.0343

0.0156
0.0092

0.0112
0.0074

0.4149
0.2283

94.6
94.9

θ
ML

Bayes
1.5421
1.5117

0.0082
0.0064

0.0022
0.0014

0.1839
0.0922

94.7
94.9

α
ML

Bayes
2.0463
2.0144

0.0036
0.0028

0.0007
0.0004

0.1037
0.0415

94.6
95.0

5. Data analysis: A numerical example
To demonstrate the applicability of the methodology introduced in this paper, a nu-

merical example is provided. Pareto model is used to fit the data set. To verify the
power of the model, we calculate the Kolmogorov-Smirnov (K-S) distance between the
empirical distribution function and the fitted distribution function when the parameters
estimates are determined by the maximum likelihood method. The result of K-S test
is D=0.0764 with p-value = 0.542. This result obviously shows that the Pareto model
provides excellent fit to the data set. So, it can be served successfully for modeling this
data set. Assuming Pareto distribution with time-censoring we use n = 76, β =2, θ =
2.5, α = 1.5, τ = 3 and η = 7. The number of failures gained at use and accelerated
conditions are nu=13 and na=46, respectively, with censored items nc=17. The MLEs
of the model parameters β,θ and α are respectively 2.09, 2.57 and 1.54, while the BEs
are 2.04, 2.53 and 1.52. The MSEs associated with the MLEs of β,θ and α are 0.0241,
0.0207 and 0.0071, respectively, while those associated with the BEs are respectively
0.0156, 0.0111 and 0.0043. In addition, the 95% confidence intervals of β,θ and α using
the approaches ML and MCMC are (1.7650, 2.4150), (2.4402, 2.6198), (1.4570, 1.6232)
and (1.7976, 2.2824), (2.5040, 2.5760), (1.4467, 1.5933), respectively.

6. Conclusion
In this paper the ML and Bayes estimations of the SSPALT model parameters have

been considered. Bayes estimations have been found assuming squared error loss func-
tions and non-informative priors. Lindley approach has been applied to find BEs. It has
been seen that the approach acts very well even for small sample sizes. The approach
usually provides smaller posterior variances. That is, it gives improved estimates. In the
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MCMC approach, it has been noted that the CRIs are shorter than the ML intervals and
always include the population parameter values.
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Abstract
In successive sampling, the use of auxiliary information for estimation
of population mean on current occasion is a well explored area. In
the present work, the information on an auxiliary variable, which is
available on both the occasions, is used along with the information on
the study variable from the previous occasion and the current occa-
sion. Consequently, chain regression-type estimator for estimating the
population mean are proposed in two occasions successive sampling.
The optimal replacement policy is also discussed. We have also given
an empirical study along with pictorial representation to examine the
merit of the proposed estimator.

2000 AMS Classification: 62DO5.

Keywords: Successive sampling, Chain type ratio estimator, Optimal replace-
ment policy, Rotation pattern, Auxiliary information, Double sampling.

Received 28/02/2014 : Accepted 03/09/2014 Doi : 10.15672/HJMS.2014287479

1. Introduction
When a population is subject to change over time, a survey on a single occasion

does not provide information about the nature of change or the rate of change of the
characteristics over different occasions and the average value of the characteristic for the
most recent occasion or current occasion. To meet these objectives, sampling is done on
successive occasions by retaining some units, drawn on the first occasion for its use on the
second occasion and replacing the remaining by units drawn on fresh from the current
occasion. The related theory and methods are called successive sampling which has
drawn considerable attention of survey statisticians. This provides a strong mechanism to
produce a reliable estimate of the population mean at the current occasion. In successive
sampling over two occasions, the information on the study variable on the first occasion
has been utilized as auxiliary information, which provides a strong mechanism to produce
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a reliable estimate of the population mean on the current occasion. Some of the reference
in this area are Jessen (1942), Yates (1949), Patterson (1950), Tikkiwal (1951), Eckler
(1955), Rao and Graham (1964), Singh and Kathuria (1969), Sen (1971, 1972, 1973a,
1973b), Cochran (1977) and Chaturvedi and Tripathi (1983).

Sometimes, the information on auxiliary variables, which are strongly related to the
study variable, is available so that their population means are known. The question arises
that whether it is possible to utilize the information on the auxiliary variables, which are
available on both the occasions, to increase the precision for estimating the population
mean on the current occasion. For example in agriculture, the crop infestation due to a
pest or disease during a week, in a particular area, may be associated with infestation
and ancillary factors such as rainfall, temperature and humidity during the preceding
week. Similarly, the yield of a crop during a season in a farm is known to depend to a
great extend on the climatic factors, prevailing during the previous season. In biological
populations we may be interested to estimate the kill of birds during a season by a hunter
in a locality, which is known to be related to the hunter’s kill and his disposable income
during the previous season. Utilizing the auxiliary information on both the occasions,
Feng and Zou (1997), Biradar and Singh (2001), Singh and Priyanka (2007) have proposed
a variety of estimators of population mean on the current occasion.

Motivated by Chand’s (1975) chain technique, Singh and Priyanka (2008) used the
auxiliary information on both the occasions and developed estimators for estimating the
population mean on the current occasion in two occasions successive sampling and have
discussed their properties.

In the present paper, a chain regression-type difference estimator is proposed for esti-
mating the population mean on the current occasion. Through an empirical investigation
the proposed estimator is shown to perform better than Singh and Priyanka (2008) esti-
mator in terms of efficiency. It is noted that higher optimum value of µ (the fraction of
the sample taken afresh on the second (current) occasion) is required for the proposed
estimator than for Singh and Priyanka estimator when relationship between study vari-
ables over two occasions is weak, however, the proposed estimator reports high gain in
efficiency. Thus, in case of efficiency is a priority and budget is not a limitation, it is
shown that the proposed estimator is superior to Singh and Priyanka (2008) estimator
more particularly when relationship between study variables over two occasions is weak.

2. Formulation of Estimator
2.1. Notations and Sampling scheme. Consider a finite population U = (U1, U2, · · · , UN )
with N(< ∞) identifiable units. Let the character under study be denoted by x(y) on
the first (second) occasion, respectively. It is assumed that information on an auxiliary
variable z is known on the first and second occasions both. We assume that the variable
z is closely and positively related with the study variable y . The objective of the present
paper is to estimate population mean at the current occasion. For this a sample of size n
is drawn from the population on the first occasion by simple random sampling without
replacement (SRSWOR) scheme. The observations on z and x are taken for every unit
selected in the sample. Out of this sample a subsample of size m is retained (matched
subsample) for its use on the second occasion. The y observations are taken on the re-
tained units of the matched subsample on the current occasion. Further, a fresh sample
of size u = n−m = nµ is drawn on the second occasion from the remaining N − n units
of the population by simple random sampling without replacement scheme so that total
sample size on the second occasion is maintained at n . It is assumed that population is
large enough so that finite population correction terms can be ignored. Following nota-
tions are used in the present work.
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X̄, Ȳ , Z̄ : Population mean of x, y and z respectively.
x̄n, x̄m, ȳu, ȳm, z̄n, z̄m, z̄u : Sample means of the respective variables based on sample
sizes shown in suffices
ρyx, ρxz, ρyz : Correlation coefficient between the variables given in the subscript.
S2
x, S

2
y , S

2
z : Population variance for the variables and .

2.2. Proposed Chain Regression-Type Estimator. Two independent regression-
type estimators are suggested for estimating the population mean Ȳ on the current
occasion. The first estimator is based on sample of size u drawn afresh on the second
occasion. The first estimator is a regression estimator defined as

(2.1) T1u = ȳu + byz(u)(Z̄ − z̄u)

where byz(u) is the sample regression coefficient of y on z based on sample of size u . The
second estimator is based on matched subsample of size m which is the common to both
the occasions. Motivated by Tripathi and Ahmed (1995) and Ahmad (1998) we define a
regression-type estimator based on the sample of size m = (nλ) common with both the
occasions as ,

(2.2) T2m = ȳm + byx·z(m)(x̄n − x̄m) + byz·x(m)(z̄n − z̄m) + byz(n)(Z̄ − z̄n)

where byx·z(m) and byz·x(m) are the sample partial regression coefficients between the
variables shown in suffices and based on sample of size m; and byz(n) is the sample
regression coefficient between the variables y and z based on sample of size n. The
estimator (i.e.T2m) can be also obtained from the equation (9.7.2) in , Sarndal Swensson
and Wretman (1992). Combining the estimators T1u and T2m, we have the final estimator
of the population mean Ȳ as

(2.3) Tc = φT1u + (1− φ)T2m

where φ is a constant to be determined such that the variance of Tc is minimum.
Adopted the standard techniques given in Cochran (1977, pp.193-194), the variance of

the regression–type estimators T1u and T2m to the first degree of approximation (ignoring
finite population correction terms) can be easily obtained as

(2.4) V (T1u) = (S2
y/u)(1− ρ2

yz)

and

(2.5) V (T2m) = (S2
y/m)[1− ρ2

y·xz + (m/n)(ρ2
y·xz − ρ2

yz)

where

ρ2
y·xz =

(ρ2
yx + ρ2

yz − 2ρyzρyxρxz

(1− ρ2
xz)

Thus the variance of the combined estimator Tc is given by

(2.6) V (Tc) = φ2V (T1u) + (1− φ)2V (T2m)

which is minimum when

φ =
V (T2m)

V (T1u) + V (T2m)
= φopt(say)

=
µ(A+ µB)

A+ µ2B
(2.7)

where, λ = m/n, µ = u/n,A = (1− ρ2
yz), B =

(ρyx−ρyzρxz)2

(1−ρ2xz)
.

Here we note that in the expression (2.6), we have not taken the term cov(T1u, T2m)



1250

into account because for large population size (i.e. N is very-very large), the term
cov(T1u, T2m) is negligible. (i.e. limN→∞ cov(T1u, T2m)→ 0.

Substitution of (2.7) in (2.6) yields the variance of Tc as

V (Tc)opt =
V (T2u)V (T2m)

V (T1u) + V (T2m)

=
S2
y

n

A(A+ µB)

A+ µ2B
(2.8)

. Under the assumption ρxz = ρyz, which has been earlier considered by Cochran (1977),
Feng and Zou (1997) and Singh and Priyanka (2008); the expression in (2.8) reduces to

(2.9) V (Tc)opt =
S2
y

n

A(A+ µB∗)

A+ µ2B∗

where

B∗ = −(ρyx − ρ2
yz)

2/(1− ρ2
yz)

2.3. Comparison of Tc with chain regression-type estimator T (1)
c due to Singh

and Priyanka (2008). Using the technique due to Chand (1975), Singh and Priyanka
(2008) proposed a chain type regression estimator of population mean on the current
occasion by

(2.10) T (1)
c = φT

(1)
1u + (1− φ)T

(1)
2m

with

T
(1)
1u = ȳu + byz(u)(Z̄ − z̄u)(2.11)

T
(1)
2m = ȳ∗m + byx(m)(x̄∗n − x̄∗m)(2.12)

where

ȳ∗m = ȳm + byz(m)(Z̄ − z̄m),

x̄∗n = x̄n + bxz(n)(Z̄ − z̄n),

x̄∗m = x̄m + bxz(m)(Z̄ − z̄m),

The variances of the estimators T (1)
1u and T

(1)
2m to the first degree of approximation

(ignoring finite population correction terms) are respectively given by .

V (T
(1)
1u ) =

(
S2
y

u

)(
1− ρ2

yz

)
V (T

(1)
2m) = S2

y

[(
1

m

)
(1− ρ2

yz) +

(
1

m
− 1

n

){
2ρ2
yzρyx − ρ2

yx(1 + ρ2
yz)
}]

The variance of V (T
(1)
2m) is derived under the assumption that ρxz = ρyz which has

been earlier considered by Cochran (1977) and Feng and Zou (1997). Thus the variance
of the estimator T (1)

c is given by

(2.13) V (T (1)
c ) =

1

µ(1− µ)
[φ2(1− µ)A+ (1− φ)2µ(A+ µB1)]

S2
y

n

where B1 = 2ρ2
yzρyx − ρ2

yx(1 + ρ2
yz) and µ = u/n is the fraction of the sample taken a

fresh on the second (current) occasion.
The variance of the estimator T (1)

c in (2.13) is minimum for

(2.14) φ∗ =
µ(A+ µB1)

A+ µ2B1
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Thus, the resulting variance of T (1)
c is given by

(2.15) minV (T (1)
c ) =

S2
y

n

A(A+ µB1)

A+ µ2B1

From (2.9) and (2.15), we have

(2.16) minV (T (1)
c )−minV (Tc) =

(S2
y

n

)Aµ(1− µ)ρ4
yz(1− ρyx)2

(A+ µ2B1)(A+ µ2B∗)

which is always positive.
It follows that the proposed chain regression- type estimator Tc is superior to the chain
regression-type estimator T (1)

c due to Singh and Priyanka (2008).

3. Optimum Replacement Policy for Tc

To determine the optimum value of the sample fraction for the required sample to be
drawn afresh on the second occasion to estimate population mean Ȳ we minimize the
minimum variance of the combined estimator in equation (2.9) with respect to µ . The
resulting quadratic equation in µ is given by

(3.1) B∗µ2 + 2Aµ−A = 0

Solving equation (3.1) we get the optimum value for µ

(3.2) µ̂ =
−A±

√
A(A+B∗)

B∗

provided A(A+B∗) ≥ 0 .
Only those value of µ are admissible for which 0 ≤ µ ≤ 1 . Otherwise, it is stated

that µ does not exist. With this optimum value of µ say µ0 the minimum M(Tc)opt is
given by

(3.3) M(Tc)opt =
S2
y

n

A[A+ µ0B
∗]

[A+ µ2
0B
∗]

4. Efficiency Comparison
The proposed estimator Tc is compared with the two estimators namely ȳn , and

combined regression-type estimator ȳCD . The estimator ȳn refers to a situation when
there is no matching, and , ȳCD = ψȳu+(1−ψ)ȳld, refers to a situation when no auxiliary
information is used at any occasion. Here, ȳld is the regression estimator defined by
ȳld = ȳm + byx(m)(x̄n − x̄m) .
The variance of ȳn (ignoring fpc terms) is given by

(4.1) V (ȳn) =
S2
y

n

and the variance of the estimator ȳCD to the first degree of approximation (ignoring fpc
terms) under optimum condition is given by

(4.2) Vopt(ȳCD) =
S2
y

n
[1 +

√
1− ρ2

yx]
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The percent relative efficiencies of the proposed estimator Tc and T (1)
c with respect to ȳn

and ȳCD have been calculated for different values of ρyx and ρyz

E1(Tc) =
V ȳn

V (Tc)opt|µ0

× 100 and E2(Tc) =
VoptȳCD

V (Tc)opt|µ0
× 100

E1(T (1)
c ) =

V ȳn

V (T
(1)
c )opt|µ0

× 100 andE2(T
(1)
c ) =

VoptȳCD

V (T
(1)
c )opt|µ0

× 100(4.3)

Findings are shown in Table 4.1. A pictorial representation of Ei(Tc) and Ei(T (1)
c ), i =

1, 2 is given in figure 4.1.
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Table 1. Relative Efficiencies (%) of Tc and T (1)
c with respect to ȳn and ȳCD

ρyx
0.3 0.4 0.5 0.6 0.7 0.8

ρyz Tc T
(1)
c Tc T

(1)
c Tc T

(1)
c Tc T

(1)
c Tc T

(1)
c Tc T

(1)
c

µ0 0.5068 0.5062 0.5154 0.5149 0.5283 0.5279 0.5470 0.5467 0.6152 0.6151 0.6869 0.6869
0.3 E0 111.39 111.25 113.28 113.17 116.12 116.03 120.22 120.16 135.21 135.18 150.97 150.96

E2 108.83 108.69 108.55 108.44 108.34 108.26 108.02 108.14 108.17 108.15 108.39 108.38
µ0 0.5035 0.5013 0.5106 0.5089 0.5224 0.5210 0.5400 0.5390 0.6069 0.6065 0.6788 0.6786

0.4 E1 119.89 119.35 121.58 121.16 124.37 124.05 128.57 128.34 144.50 144.40 161.62 161.57
E2 117.30 116.60 116.51 116.10 116.04 115.74 115.72 115.50 115.60 115.52 116.03 116.00
µ0 0.5011 0.4829 0.5005 0.4870 0.5061 0.4962 0.5189 0.5118 0.5793 0.5764 0.6507 0.6495

0.6 E1 156.59 150.92 156.40 152.17 158.17 155.05 162.17 159.93 181.03 118.13 203.35 202.96
E2 152.99 147.44 149.87 145.82 147.57 144.66 145.95 143.94 144.83 144.10 146.00 145.72
µ0 0.5187 0.4660 0.5040 0.4671 0.5001 0.4741 0.5060 0.4880 0.5574 0.5504 0.6271 0.6240

0.7 E1 203.32 182.73 197.62 183.19 196.10 185.92 198.41 191.35 218.58 215.83 245.91 244.72
E2 198.72 178.52 189.38 175.54 182.96 173.47 178.57 172.22 174.87 172.66 176.55 175.70
µ0 0.7526 0.4372 0.5730 0.4345 0.5205 0.4386 0.5016 0.4500 0.5275 0.5092 0.5911 0.5834

0.8 E1 418.13 242.91 315.37 241.41 288.86 243.64 278.63 250.02 293.02 282.90 328.39 324.10
E2 408.50 237.31 302.02 231.33 269.79 227.32 250.78 225.02 234.44 226.32 235.78 232.69
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Remark 4.1 However, if one is able to conduct a well designed simulation study it
may throw some more light on the behavior of the suggested estimator in comparison
to other existing estimators. Due to authors limitations we have not conducted the
simulation study which is one of the criterion to examine the merit of the estimator.

5. Conclusions
The performance of an estimator in successive sampling is generally judged on the basis

of relative efficiency and cost of the survey involved in terms of optimum value of µ for
using the considered estimator since same is directly associated to the cost of the survey.
It is observed from Table 4.1 that the values of E1(Tc), E2(Tc), E1(T (1)) and E2(T (1)) are
more than 100. Thus, the chain regression type estimators Tc and T (1)

c are better than
usual unbiased estimators ȳn and the estimator ȳCD . The proposed estimator utilizes
the information on relationship between auxiliary and study variables more efficiently
as compared to Singh and Priyanka (2008) estimator. It is further observed from the
Table 4.1 that the proposed estimator results into high gain in efficiency at the cost
of increased optimum value of µ as compared to that for Singh and Priyanka (2008)
estimator particularly when the relationship between study variables over two occasions
is weak and between study and auxiliary variables is strong. The price that we pay
for using the proposed estimator, in this case, for increased efficiency, is in terms of
high cost of survey since more fresh sampling units are required on the current occasion.
However, the difference in cost of using proposed and Singh and Priyanka estimators is
marginal when the relationship between study variables is strong. Moreover, the proposed
estimator continues to be more efficient than Singh and Priyanka (2008) estimator even
if it is used with µ which is optimum for Singh and Priyanka estimator. In other words,
the proposed estimator continues to be superior to Singh and Priyanka estimator even at
a fixed cost. The above observations on the performance of the proposed estimator can
easily be seen by considering fixed high value of ρyx = 0.8 and low values of ρyx = 0.3
. The proposed estimator results in 72% gain in efficiency over Singh and Priyanka
(2008) estimator but with increased cost of the survey that is with increased optimum
value of µ about 75%. Further, the proposed estimator continues to report high relative
efficiency about 56% at a fixed cost that is when the proposed estimator is used at
44% of an optimum value of µ for Singh and Priyanka estimator. One may thus notice
that the proposed estimator addresses the problem of weak relationship between study
variables on two occasions and compensates for this situation by allowing for more fresh
units on the current occasion while continuing to yield high efficiencies by exploiting
strong relationship between study and auxiliary variables. Thus a survey statistician
can use the proposed estimator over Singh and Priyanka (2008) estimator in case of
strong relationship between study variables over two occasions. However, in case of weak
relationship between study variables over two occasions, a survey statistician can use the
proposed estimator over Singh and Priyanka (2008) estimator for higher gain in efficiency
but with increased cost if efficiency is the priority and budget is not a limitation. Even if
the budget is limited, statistician can use the proposed estimator at a fixed cost in terms
of optimum value of µ for Singh and Priyanka (2008) estimator for better efficiency.
Thus, the proposed estimator is justified.
Acknowledgements.The authors are thankful to the Editor – in- Chief - Professor Cem
Kadilar, and to the anonymous learned referees for their valuable suggestions regarding
improvement of the paper.
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Abstract
This paper presents a double sampling version of Yadav and Kadilar
(2013) estimator alongwith its properties under large sample approxi-
mation. Cost aspect is also discussed. We have compared the proposed
estimator with usual unbiased estimator and usual double sampling
ratio estimator and shown that the proposed estimator is better than
usual unbiased estimator and other existing estimators under some re-
alistic conditions to two-phase sampling.
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1. Introduction
The use of auxiliary information has been dealt with at great length for improving

estimators of population parameters in sample surveys. Various estimation procedures in
sample surveys need advance knowledge of some auxiliary variable which is then used to
increase the precision of estimates. For example, the ratio - type estimator due to Isaki
(1983) need the advance knowledge of population variance S2

x of the auxiliary variable x.
When the population variance S2

xis not known, it is sometimes estimated from a prelim-
inary large sample on which only the auxiliary characteristic x is observed. The value
of S2

xin the estimator is then replaced by its estimate. A smaller second phase sample
of the variate under study y is then taken. This technique, known as double sampling
or two-phase sampling, is especially appropriate if the x values are easily accessible and
much cheaper to collect than the yi values see. Hidiroglou and Sarandal (1998). The
use of double sampling is necessary if the x - value is obtained by performing a non-
destructive experiment where as to obtain a y - value of a unit, a destructive experiment
has to be performed, see UnniKrishan and Kunte (1995). Double sampling is also an able
alternative to simple random sampling when there are expected to be gains from using

∗School of Studies in Statistics,Vikram University, Ujjain - 456010 - India
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auxiliary information.
let U = (U1, U2, ...UN ) denote the population of N units and let (y, x) be the variate

defined on U taking values (yi, xi) on Ui(i = 1, 2, ..., N). It is desired to estimate S2
y of

the study variate y. A simple random sample of size n is drawn without replacement
(SRSWOR) from the population U . The usual unbiased estimator of based on SRSWOR
is given by :

S2
y =

1

n− 1

n∑
i=1

(yi − ȳ)2,(1.1)

where ȳ =
1

n

n∑
i

yi is the sample mean based on n observations.

To improve the usual unbiased estimator s2y, using the known population variance S2
x

of the auxiliary variate x, Isaki (1983) suggested a ratio-type estimator for the population
variance S2

y as

tl =s2y
S2
x

s2x
,(1.2)

where s2x =
1

n− 1

n∑
i=1

(xi − x̄)2, is an unbiased estimator of the population variance s2x

and x̄ =
1

n

n∑
i=1

xi is the sample mean.

Singh et al. (2011) proposed the exponential ratio estimator for the population vari-
ance S2

y as

(1.3) ts = s2yexp(
S2
x − s2x
S2
x + s2x

).

when the population varianceS2
x of the auxiliary character x, the usual linear regression

estimator for population variance S2
x is defined by

(1.4) tlr = s2y + β̂(S2
x − s2x)

where β̂=
s2y(λ̂22 − 1)

s2x(λ̂04 − 1)
is sample regression coefficient,

λ̂04 =
µ̂04

µ̂2
02

, λ̂22 =
µ̂22

µ̂20µ̂02
,

µ̂04 =
1

n

n∑
i=1

(xi − x̄)4, µ̂02 =
1

n

n∑
i=1

(xi − x̄)2,

µ̂20 =
1

n

n∑
i=1

(yi − ȳ)4, µ̂22 =
1

n

n∑
i=1

(yi − ȳ)2(xi − x̄)2.

Motivated by Upadhyaya et al. (2011), Yadav and Kadilar (2013) suggested the following
class of estimators of the population variance S2

y as

(1.5) ty = s2yexp[
S2
x − s2x

S2
x + (α− 1)s2x

],

where (α ≥ 0).
In this paper we have studied the properties of the above estimators t1, ts, tlr and

tyin the case of double sampling (i.e. when the population variance S2
x of the auxiliary

variable x is not known). Cost aspects are also discussed. Numerical illustration is given
in support of the present study.
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2. Two-phase sampling estimators
When the population variance S2

xof x is not known, a first phase sample of n1is drawn
from the population on which only the x-characteristic is measured in order to furnish a
good estimate of S2

x.Then a second phase sample of size n is drawn on which both the vari-
ates y and x are measured [see Singh and Ruiz Espejs (2007)].Let (x1, x2, ..., xn1)be the
first phase sample drawn by simple random sampling without replacement (SRSWOR)
from the given population U and only auxiliary variable x be measured.
Also, let (y1, y2, ..., yn) and (x1, x2, ..., xn),(n < n1)denote respectively, the second phase
sample for the study variable y and the auxiliary variable x respectively.

Let us write x̄1 =
1

n1

n1∑
i=1

xi , s2x1
=

1

n1 − 1

n1∑
i=1

(xi−x̄1)2 , x̄ =
1

n

n∑
i=1

xi , s2x =
1

n− 1

n∑
i=1

(xi−

x̄)2 , ȳ =
1

n

n∑
i=1

yi , s2y =
1

n− 1

n∑
i=1

(yi − ȳ)2 ,

Then the two-phase sampling (or double sampling) estimators of population variance S2
y

are given by

(2.1) tld = s2y[
s2x1
s2x

],

(2.2) tsd = s2yexp[
s2x1 − s2x
s2x1 + s2x

],

and

(2.3) tyd = s2yexp[
s2x1 − s2x

s2x1 + (α− 1)s2x
].

It is to be mentioned that the estimators tld, tsd and tyd are double sampling versions
of Isaki (1983) estimator, Singh et al. (2011) estimator and Yadav and Kadilar (2013)
estimator. For α = 2 in (8),tyd reduces to the estimator tsd.

3. The first Degree Approximation to the Biases and Variances
of the Suggested Estimators.
In order to study the large sample properties of the proposed estimators, we define.

s2y = S2
y(1 + ε0), s2x = S2

x(1 + ε1),s2x1 = S2
x(1 + ε2)

such that E(ε0) = E(ε1) = E(ε2) = 0
The following two cases will be considered separately.

Case - I : When the second phase sample of size n is a subsample of the first phase
of size n1.

Case - II : When the second phase sample of size n is drawn independently of the
first phase sample of size n1 see Bose (1943)

Case I - When the second phase sample of size n is a subsample of the first phase
sample of size n1 (n < n1), the expected values are :

E(ε20) =
1

n
(λ40−1), E(ε21) =

1

n
(λ04−1), E(ε0ε1) =

1

n
(λ22−1), E(ε22) =

1

n1
(λ04−1),

(3.1) E(ε0ε2) =
1

n1
(λ22 − 1), E(ε1ε2) =

1

n1
(λ40 − 1),

where λrs =
µrs

(µ
r/2
20 )(µ

s/2
02 )

, µrs =
1

N

N∑
i=1

(yi − ȳ)r(xi − x̄)s

(r, s) being non-negative integers,
Case II - When the second phase sample of size n is independent of the first phase
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sample of size n1 , the expected value are :

E(ε20) =
1

n
(λ40 − 1), E(ε21) =

1

n
(λ04 − 1), E(ε0ε1) =

1

n
(λ22 − 1),

(3.2) E(ε22) =
1

n1
(λ04 − 1), E(ε0ε2) = E(ε1ε2) = 0,

Expressing tld, tsd and tyd in terms of ε′is, (i = 0, 1, 2) , we have

(3.3) tld = s2y(1 + ε0)(1 + ε1)−1(1 + ε2)

(3.4) tsd = s2y(1 + ε0)exp[− (ε1 − ε2)

2
(1 +

ε1 + ε2
2

)−1]

(3.5) tyd = s2y(1 + ε0)exp[− (ε1 − ε2)

α
(1 +

(α− 1)ε1 + ε2
α

)−1]

Expanding the right hand side of (11), (12) and (13) multiplying out and neglecting
terms of e′s having power greater than two we have

tld ∼= S2
y(1 + ε0 + ε2 − ε1 + ε0ε2 − ε0ε1 − ε1ε2 + ε21)

or

(3.6) (tld − S2
y) ∼= S2

y(ε0 + ε2 − ε1 + ε0ε2 − ε0ε1 − ε1ε2 + ε21)

tsd ∼= S2
y [(1 + ε0 −

(ε1 − ε2)

2
− (ε0ε1 − ε0ε2)

2
+

(3ε21 − ε22 − 2ε1ε2)

8
]

or

(3.7) (tsd − S2
y) ∼= S2

y [(ε0 −
(ε1 − ε2)

2
− (ε0ε1 − ε0ε2)

2
+

(3ε21 − ε22 − 2ε1ε2)

8
]

tyd ∼= S2
y [1 + ε0 −

(ε1 − ε2)

α
− (ε0ε1 − ε0ε2)

α
+

((2α− 1)ε21 − ε22 − αε1ε2)

2α2
]

or

(3.8) (tyd − S2
y) ∼= S2

y [ε0 −
(ε1 − ε2)

α
− (ε0ε1 − ε0ε2)

α
+

((2α− 1)ε21 − ε22 − 2ε1ε2)

2α2
]

Now squaring both sides of (14), (15) and (16) and neglecting terms of ε′shaving power
greater than two we have

(3.9) (tld − s2y) = S4
y(ε20 + (ε2 − ε1)2 − 2(ε0ε1 − ε0ε2)]

(3.10) (tsd − S2
y)2 = S4

y(ε20 +
(ε1 − ε2)2

4
− (ε0ε1 − ε0ε2)]

and

(3.11) (tyd − S2
y)2 = S4

y(ε20 +
(ε1 − ε2)2

α2
− (2ε0ε1 − ε0ε2)

α
)]

Taking expectations of both sides of (14), (15), (16) and (17), (18), (19) and using the
results in (9), we get the biases and mean squared errors of t1d, tsdand tyd to the first
degree of approximation under case-I respectively as

(3.12) B(tld)1 = (
1

n
− 1

n1
)(λ04 − 1)S2

y(1− C)

(3.13) B(tsd)1 =
1

8
(

1

n
− 1

n1
)(λ04 − 1)S2

y(3− 4C)
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(3.14) B(tyd)1 =
(λ04 − 1)

2α2
[
1

n
[2α(1− c)− 1]− 1

n1
(1 + α(1− 2c))]

(3.15) MSE(t1d)1 = S4
y [

1

n
(λ40 − 1) + (

1

n
− 1

n1
)(λ04 − 1)(1− 2c)]

(3.16) MSE(tsd)1 = S4
y [

1

n
(λ40 − 1) + (

1

n
− 1

n1
)
1

4
(λ04 − 1)(1− 4c)]

(3.17) MSE(tyd)1 = S4
y [

1

n
(λ40 − 1) + (

1

n
− 1

n1
)

1

α2
(λ04 − 1)(1− 2αc)]

where c =
λ22 − 1

λ04 − 1
, and B(.)1 and MSE(.)1stand the bias of (.) under case-I (i.e. when

the second phase sample is a subsample of the first phase sample) respectively.
Now taking the expectations of both sides of (14), (15), (16) and (17), (18) and (19) and
using results in (10) we get the biases and mean squared errors of the estimators t1d, tsd
and tyd to the first degree of approximation under case-II respectively as

(3.18) B(tld)11 =
S2
y(λ04 − 1)

n
(1− c)

(3.19) B(tsd)11 =
S2
y(λ04 − 1)

8
[
3− 4c

n
− 1

n1
]

(3.20) B(tyd)11 =
S2
y(λ04 − 1)

2α2
[
(2α− 2αc− 1)

n
− 1

n1
]

(3.21) MSE(tld)11 = S4
y [(

1

n
)[(λ40 − 1) + (λ04− 1)(1− 2c)] +

λ04 − 1

n1
]

(3.22) MSE(tsd)11 = S4
y [(

1

n
)[(λ40 − 1) +

(λ04 − 1)

4
(1− 4c)] +

λ04 − 1

4n1
]

(3.23) MSE(tyd)11 = S4
y [(

1

n
)[(λ40 − 1) +

(λ04 − 1)

α2
(1− 2αc)] +

λ04 − 1

α2n1
]

where B(.)11 and MSE(.)11stand the bias of (.) and MSE of (.) under case-II.

4. Optimum choice of the scalar ′α′

Case - I The MSE(tyd)1 at (25)is minimized for

(4.1) α =
1

c
= αopt(say)

Substitution (32) in (8) yields the asymptotically optimum estimator (AOE) of S2
y as

(4.2) tyd(0) = s2yexp[
c(s2x1 − s2x)

cs2x1 + (1− c)s2x
]

The value of ′c′ can be guessed quite accurately from the past data or experience gathered
in due course of time see Yadav and Kadilar (2013, p. 148). In case c is not known, it

is worth advisable to replace c by its consistent estimate ĉ =
(λ̂22 − 1)

λ̂04 − 1
based on sample

data at hand, where λ̂22 and λ̂04 are same as defined earlier. Thus replacing ′c′ by its
estimate ′ĉ′in (33) , we get an estimator of S2

y based on estimated optimum as

(4.3) t̂yd(0) = s2yexp[
ĉ(s2x1 − s2x)

ĉs2x1 + (1− ĉs2x)
]
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It can be shown to the first degree of approximation that

(4.4) MSE(tyd(0))1 = MSE(t̂yd(0))1 =
s4y
n

[(λ40 − 1)− (
n1 − 1

n1
)
(λ22 − 1)2

(λ04 − 1)
]

which equals to the approximate variance / MSE of the regression estimator

tlrd = s2y +
s2y((λ̂)22 − 1)

s2x((λ̂)04 − 1)
(s2x1 − s2x)

Thus the proposed t̂yd(0) is an alternative to the regression estimator tlrd It is well known
under SRSWOR that to the first degree of approximation (ignoring fpc term) that

(4.5) V (s2y) = MSE(s2y) =
1

n
S4
y(λ40 − 1)

From (23), (24), (35) and (36) we have

(4.6) MSE(s2y)−MSE(t̂yd(0)) = (
1

n
− 1

n1
)S4

y
(λ22 − 1)2

(λ04 − 1)
≥ 0

(4.7) MSE(tld)−MSE(t̂yd(0)) = (
1

n
− 1

n1
)S4

y(λ04 − 1(1− c)2 ≥ 0

(4.8) MSE(tsd)−MSE(t̂yd(0)) = (
1

n
− 1

n1
)S4

y
(λ04 − 1)

4
(1− 2c)2 ≥ 0

It follows from (37), (38) and (39) that the proposed estimator t̂d(0) is more efficient than
the usual unbiased estimator S2

y , tld and tsd. Thus the proposed estimator t̂yd(0) is an
appropriate choice among the estimator S2

y , tld, tsd and t̂yd(0) to be used in practice.
case - II: The MSE(tyd)11 at (31) is minimized for

(4.9) α =
n+ n1

n1c
= α∗opt

Substitution of (40) is (8) yields the asymptotically optimum estimator (AOE) under
case-II as

(4.10) t∗yd(0) = s2yexp[
c(s2x1 − s2x)

cs2x1 + (δ − c)s2x
]

where δ = (n+ n1)/n1

if c is not known, then we replace c by its consistent estimate ĉ. thus the estimator based
on estimated optimum value ĉ of c is given by

(4.11) (t̂)∗yd(0) = s2yexp[
(ĉ)(s2x1 − s2x)

(ĉ)s2x1 + (δ − (ĉ))s2x)
]

To the first degree of approximation (ignoring fpc terms), it can be shown that

(4.12) MSE(t∗yd(0)) =
S4
y

n
[(λ40 − 1)− n1

(n+ n1)
(λ04 − 1)c2]

From (29), (30), (36) and (43), we have

(4.13) MSE(s2y)−MSE(t̂∗yd(0)) =
n1

n(n+ n1)
S4
y(λ04 − 1)c2 ≥ 0

(4.14) MSE(tld)11 −MSE(t̂∗yd(0)) =
S4
y(λ04 − 1n+ n1(1− c)2)

n(n+ n1)
≥ 0
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(4.15) MSE(tsd)11 −MSE(t̂∗yd(0)) =
S4
y(λ04 − 1)(n+ n1 − 2n1c

2)

4nn1(n+ n1)
≥ 0

Thus the proposed estimator t̂∗yd(0) is more efficient than the usual unbiased estimator
s2y, tld and tsd under case - II.
From (35) and (43), we have

(4.16) [MSE(t∗yd(0))1 −MSE(t∗yd(0))11] =
ns4y(λ04 − 1)c2)

n1(n+ n1)
≥ 0

which shows that the proposed estimator tyd(0) under case -I is better than the proposed
estimator t∗yd(0) under case - II.

5. EFFICIENCY COMPARISON OF THE PROPOSED ESTI-
MATOR WHEN THE SCALAR ıα DOES NOT COINCIDE
EXACTLY WITH ITS OPTIMUM VALUE.
In this section we compare the proposed estimator tydwith the estimators s2y, tld, tsd

under case - I and II.
Case - I:From (25) and (36) we have

(5.1) MSE(s2y)−MSE(tyd)1 = (
1

n
− 1

n1
)s4y

1

α2
(2αc− 1)

which is positive if

2αc− 1 > 0

i.e. if

(5.2) α >
1

2c

From (23) and (25) we have

MSE(tld)1 −MSE(tyd)1 = (
1

n
− 1

n1
)s4y(λ04 − 1)[1− 2c− 1

α2
+

2c

α
]

which is positive if [(1− 1

α2
)− 2c(1− 1

α
)] > 0

i.e. if

(5.3) eithermin.[1,
1

(2c− 1)
] < α < max.[1,

1

(2c− 1)
], c >

1

2

or

(5.4) α > 1, 0 ≤ c ≤ 1

2

Further from (24) and (25) we have

MSE(tsd)1 −MSE(tyd)1 = (
1

n
− 1

n1
)s4y(λ04 − 1)(

1

2
− 1

α
)(

1

2
+

1

α
− 2c)

which is greater than ’ zero’ if

(
1

2
− 1

α
)(

1

2
+

1

α
− 2c)
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i.e. if

(5.5) eithermin.[2,
2

4c− 1
] < α < max.[2,

2

4c− 1
]

or

α > 2, 0 ≤ c ≤ 1

4

Thus we established the following theorem.
Theorem - 5.1 The proposed estimator tyd in case-I is more efficient than :
(i) the usual unbiased estimators2y if

α >
1

2c

(ii)the Isaki (1983) double sampling ratio estimator tld if

eithermin.[1,
1

(2c− 1)
] < α < max.[1,

1

(2c− 1)
], c >

1

2

or

(5.6) α > 1, 0 ≤ c ≤ 1

2

(iii)the double sampling version of Singh et al (2011) estimator tsd if

eithermin.[2,
2

4c− 1
] < α < max.[2,

2

4c− 1
]

or

α > 2, 0 ≤ c ≤ 1

4

Case II-From (31) and (36) we have

MSE(s2y)−MSE(tyd)11 = −s4y(λ04 − 1)
1

α2
[
1

n
(1− 2αc) +

1

n1
]

which is positive if

(5.7) [
1

n
(1− 2αc) +

1

n1
] ≤ 0

i.e. if α >
δ

2c
,

where δ =
(n+ n1)

n1
.

From (29) and (31) we have

MSE(tld)11 −MSE(tyd)11 = S4
y(λ04 − 1)[

1

n
(1− 2c) +

1

n1
− (1− 2αc)

nα2
− 1

α2n1
]

which is positive if

[(
1

n
+

1

n1
)(1− 1

α2
)− 2

n
(1− 1

α
)c] > 0

i.e. if
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either 1 < α <
δ

2c− δ or
δ

(2c− δ) < α < 1

or equivalently,

(5.8) min.[1,
δ

(2c− δ) ] < α < max.[1,
δ

2c− δ ].

Also the difference

(5.9) [MSE(tld)11 −MSE(tyd)11] ispositiveif α > 1, c <
δ

2

From (30) and (31) we have

[MSE(tsd)11−MSE(tyd)11] = S4
y(λ04− 1)[

1

n
[
1− 4c

4
− 1− 2αc

α2
] + (

1

4
− 1

α2
)

1

n1
]

= S4
y(λ04 − 1)(1− 2

α
)[
δ

4
(1 +

2

α
− c]

which is positive if

either 2 < α <
2δ

4c− δ or
2δ

(4c− δ) < α < 2

or equivalently,

(5.10) min.[2,
2δ

(4c− δ) ] < α < max.− [2,
2δ

4c− δ ].

Now established the following theorem.
Theorem - 5.2 The proposed estimator tyd under case II is more efficient than :
(i) the usual unbiased estimator s2y if

α >
δ

2c

(ii)the Isaki’s (1983) ratio type double (two phase) sampling estimator tsd if

either [min.1,
δ

(2c− δ) ] < α < max.[1,
δ

2c− δ ].

(iii) the Singh et al.’s (2011) estimator tsd if

either [2,
2δ

4c− δ ] < α < max.[2,
2δ

4c− δ ]

6. Comparison with single phase sampling
In this section following Singh and Ruiz Espejo (2007) the comparisons between dou-

ble and Single-phase sampling have been made for fixed cost. We shall consider the cases
separately.
Case - I - In this case we consider the following cost function:

(6.1) c∗ = nc1 + n1c2

where c∗ equals the total cost of the survey and (c1, c2) are the costs per unit of collecting
information on the study variate y and the auxiliary variate x respectively.
In this case, we express the minimum MSE of tyd(or the MSE of t̂yd(0)) as

(6.2) My =
My1

n
+
My2

n1
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(6.3) My1 = [(λ40 − 1)− (λ22 − 1)2

(λ04 − 1)
= (λ40 − 1)(1− ρ∗2)S4

y

(6.4) My2 = (
(λ40 − 1)2

(λ04 − 1)
= (λ40 − 1)ρ∗2)S4

y

where ρ∗ =
(λ22 − 1)√

(λ22 − 1)(λ04 − 1)
The optimum values of n and n1 for fixed cost c∗ , which minimizes the mean squared
error My is given by

(6.5) nyopt =

C∗
√
My1

c1√
My1c1 +

√
My2c2

ny1opt =

C∗
√
My2

c2√
My1c1 +

√
My2c2

The mean squared error of ŷyd(0)corresponding to optimal double sampling estimator is

MSEopt(tyd)1 = (
1

c∗
)(
√
c1My1 +

√
c2My2)2

(6.6) (
S4
y

c∗
)(λ40 − 1)(

√
c1(1− ρ∗2 + ρ∗

√
c2)2

Case - II In case II, we assume that x is measured on y on n∗=n+n1 units andy units.
Motivated by Srivastava (1970) we shall consider a simple cost function:

(6.7) c∗ = c1n+ c∗2n
∗

where c1 andc∗2 denote costs per unit of observing the study variate y and the auxiliary
variatex values respectively. The expression of mean squared error oft̂yd(0) (under case
II) can now be written as

(6.8) M∗y =
My1

n
+
My2

n∗
,

where n∗ = n+ n1

To obtain the optimum allocation of sample between phases for a fixed cost c∗, we
minimize equation (65) with the condition (64). It is easily obtained that this minimum
is attained for

(6.9)
n

n∗
= (

My1c
∗
2

My2c1
)1/2 =

c∗2(1− ρ∗2)

c1ρ∗2

1/2

Thus the minimum MSE corresponding to these optimum values of n and n1 are given
by

(6.10) MSEopt(t̂yd(0))11 = [
S4
y(λ40 − 1)

c∗
][
√

(1− ρ∗2)c1 + ρ∗
√
c∗2]2

Had all the resources been diverted towards the study variate y only, then we would have
optimum sample size as given below

(6.11) n∗∗ =
c∗

c1

Thus the variance of the usual unbiased estimator s2y for a given fixed cost cin case of
large population is given by

(6.12) MSEopt(s
2
y) = (

c1
c∗

)s4y(λ40 − 1)
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Case - I : From (63) and (69), the suggested double sampling strategy would be profitable
if

MSEopt(t̂yd(0)) < MSEopt(S
2
y)

i.e. if

c2
c1
<

(1−
√

1− ρ∗2)2

ρ∗2

Thus we established the following theorem.
Theorem 6.1 The suggested double sampling strategy t̂yd(0) would be more efficient
than the strategy s2y as long as

c2
c1
<

(1−
√

1− ρ∗2)2

ρ∗2

Case-II From (67) and (69) it is observed that the double sampling estimator t̂yd(0) is
better than the sample mean square s2y for the same fixed cost, if

MSE(t̂yd(0))11 < MSEopt(s
2
y)

i.e. if

ρ∗2 >
4c1c

∗
2

(c1 + c∗2)2

7. Empirical Study
The appropriateness of the proposed estimator has been examined with the help of

the four data sets, given in Table1 earlier considered by Subramani and Kumarapandiyan
(2012).
We have computed the percent relative efficiencies of the estimators s2y, tld, tsdand t̂yd(0)
with respect to the usual unbiased estimator s2y by using the following formulae:

(i)PRE(tld, s
2
y)1 =

(
1

n
)((λ40)− 1)

[(
1

n
)((λ40)− 1) + (

1

n
− 1

n1
)(λ04 − 1)(1− 2c)]

× 100

(ii)PRE(tsd, s
2
y)1 =

(
1

n
)((λ40)− 1)

[(
1

n
)((λ40)− 1) + (

1

n
− 1

n1
)(

1

4
)(λ04 − 1)(1− 4c)]

× 100

(iii)PRE(t̂yd(0), s
2
y)1 =

((λ40)− 1)

[((λ40)− 1)− n1 − n
n1

c2(λ04 − 1)]
× 100

(iv)PRE(t1d, s
2
y)11 =

(
1

n
)((λ40)− 1)

[(
1

n
)[(λ40 − 1) + (λ04 − 1)(1− 2c) + (

1

n1
)(λ04 − 1)]

× 100

(v)PRE(tsd, s
2
y)11 =

(
1

n
)((λ40)− 1)

[(
1

n
)[(λ40 − 1) +

(λ04 − 1)

4
(1− 4c) + (

1

n1
)
(λ04 − 1)

4
]

×100
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(vi)PRE(t̂∗yd(0), s
2
y)11 =

((λ40)− 1)

[((λ40)− 1) +
n1

n+ n1
c2(λ04 − 1)]

× 100

Findings are shown in Table 2.
It is observed from Table 2 that the performance of the proposed estimator t̂yd(0)(t̂∗yd(0))
is more efficient than the estimators s2y ,tld and tsd . The percent relative efficiency of the
proposed estimator t̂yd(0) (under case I) is larger than the proposed estimator (t̂∗yd(0)).
Table 3, exhibits the range of α in which the proposed class of estimators t̂yd(0) is more
efficient than the usual unbiased estimator s2y , Isaki (1983) ratio type estimator tid in
double sampling and the estimator tsd which is double sampling version of Singh et al.’s
(2011) exponential type estimator.

8. Conclusion
We have suggested an improved exponential ratio estimator for estimating the popu-

lation variance in two phase sampling. It has been shown theoretically and numerically
that the proposed estimator is better than the existing estimators in literature, the usual
sample variance, traditional ratio estimator due to Isaki (1983), Yadav and Kadilar (2013)
and Singh et al. (2011) exponential ratio estimator in the sense of having lesser mean
square error. We have also given the range α of along with its optimum value for the
proposed estimator to be more efficient than other competitors. Hence, the proposed
estimator is recommended for its practical use for estimating the population variance
when the auxiliary information is available. For the sake of completeness we have also
discussed the cost aspect.
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Table 1. Parameters of the population

Parameters Population 1 Population 2 Population 3 Population 4

N 103 103 80 49
Ȳ 626.2123 62.6212 51.8264 116.1633
X̄ 557.1909 556.5541 11.2646 98.6765
ρ 0.9936 0.7298 0.9413 0.6904
sy 913.5488 91.3549 18.3569 98.8286
cy 1.4588 1.4588 0.3542 0.8508
sx 818.1117 610.1643 8.4563 102.9709
cx 1.4683 1.0963 0.7507 1.0435
λ04 37.3216 17.8738 2.8664 5.9878
λ40 37.1279 37.1279 2.2667 4.9245
λ22 37.2055 17.2220 2.2209 4.6977
c 0.9969 0.9635 0.7748 0.7846

Table 2. Percent relative efficiencies (PREs) of different estimators of
population variance S2

y with respect to the unbiased estimator s2y .

Estimator PRE(., s2y)

Population
I I II II III III IV IV

Case I Case II Case I Case II Case I Case II Case I Case II
n1=60 n1=60 n1=60 n1=60 n1=30 n1=30 n1=25 n1=25
n=40 n=40 n=40 n=40 n=20 n=20 n=20 n=20

s2y 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
tld 149.90 99.38 116.92 96.71 130.34 63.62 112.90 69.78
tsd 133.41 199.80 112.54 127.65 128.62 153.73 112.00 140.10
t̂yd(0) 149.91 - 116.92 - 134.11 - 114.13 -
t̂∗yd(0) - 249.73 - 135.22 - 184.23 - 152.45



1270Table 3. Range of α for tyd to be more efficient than different estimators of the population variance S2
y .

Estimator Population
I I II II III III IV IV

Case I Case II Case I Case II Case I Case II Case I Case II
n1=60 n1=60 n1=60 n1=60 n1=30 n1=30 n1=25 n1=25
n=40 n=40 n=40 n=40 n=20 n=20 n=20 n=20

s2y α > 0.50 α > 0.84 α > 0.52 α > 0.87 α > 0.65 α > 1.08 α > 0.64 α > 1.15
tld αε(1.00, 1.01) αε(1.00, 1.68) αε(1.00, 1.08) αε(1.00, 1.79) αε(1.00, 1.83) αε(1.00, 3.03) αε(1.00, 1.76) αε(1.00, 3.17)
tsd αε(0.67, 2.01) αε(1.44, 2.00) αε(0.70, 2.00) αε(1.52, 2.00) αε(0.95, 2.00) αε(2.00, 2.32) αε(0.94, 2.00) αε(2.00, 2.68)

common
range
of α
for
tyd
to be
more

efficient
sy, tld,tsd
t̂yd(0)

αε(1.00, 1.01) αε(1.43, 1.68) αε(1.00, 1.08) αε(1.52, 1.79) αε(1.00, 1.83) αε(2.00, 3.03) αε(1.00, 1.76) αε(2.00, 2.68)
Optimum
value of α 1.003 1.672 1.038 1.73 1.291 2.152 1.275 2.295
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1. Introduction
Acceptance sampling plan is a statistical quality control technique. In such plans, a

sample is taken from a lot and the lot will either be rejected or accepted or inspection
continues upon the results of the sample taken. The purpose of acceptance sampling
plan is to determine the quality level of an incoming lot or the end production and
also ensure that the quality level of the lot satisfies the predetermined requirement.
Many types of acceptance sampling plans have been proposed. One approach to design
acceptance sampling plans is minimum angle method (Fallahnezhad [7]). In this research,
a new acceptance sampling plan is developed based on minimum angle method using
cumulative conforming run length. This idea is based on the concept of cumulative
conforming control charts. Design of cumulative conforming control charts is a favorable
issue for many authors. Cumulative conforming control charts (CCC-charts) usually are
constructed by using geometric and negative binomial variables (Chan et al. [5]). Calvin
[7] presented a control chart by using run-length of successive conforming items. Goh [12]
presented a method to control the production with low-nonconformity by (CCC-charts).
Lai [15] proposed a discrete time renewal event process when a success is preceded by a
failure and introduced modified CCC-chart. Also he calculated ANI (average number
inspected) and other indicators for this modified chart. Some authors also refer CCC-
charts as CRL-type (conforming run length) control charts or SCRL (sum of CRL) chart
(Wu et al. [17]). A CCC-chart which is based on number of inspected items until
detection of rth defective item is called CCCr-charts. Calvin [4], Goh [12], Xie and Goh
[18] and many other authors have applied CCC1-charts. Chan et al. [5] denoted that
CCCr-chart is more reliable than CCC1-chart but it takes more time and inspection items
than CCC1-charts for detecting change in fraction of non-conforming. He also presented a
two-stage decision procedure for monitoring processes with low fraction of nonconforming
and introduced CCC1 + γ chart for this purpose and presented an economical model for
minimizing total cost of the system. Di Bucchianico et al. [6] presented a case study
for monitoring the packing process in coffee production based on choosing optimal value
of r when using CCCr-charts. Aslo Bourke [2] has applied the concept of conforming
run length in designing the acceptance sampling plans. In this research, we used Markov
model in designing the sampling plan based on the concept of conforming run length. An
absorbing Markov model is developed for this sampling system (Bowling et al. [3]). In this
subject, Fallahnezhad et al. [9] developed a Markov model based on sum of run-lengths
of successive conforming items. Fallahnezhad and Niaki [11] proposed a sampling plan
using Markov model based on control threshold policy. They considered the run-lengths
of successive conforming items as a measure for process performance. Fallahnezhad et
al.[10] proposed an economical model for sampling based on decision tree. Fallahnezhad
and Hosseininasab [8] proposed a one stage economical acceptance sampling model based
on the control threshold policy. In our sampling plan we used the concept of minimum
angle method that its purpose is to reach ideal OC curve in order to decrease the risk of
sampling plan. Bush et al. [1] analyzed the sampling systems by comparing operation
characteristic (OC) curve against the ideal OC curve. His study was a motivation for
constructing the concept of minimum angle method. Soundararajan and Christina [16]
proposed a method for the selection of optimal single stage sampling plans based on the
minimum angle method. They were first authors who used minimum angle method for
designing a sampling plan. But little studies have been done on designing a sampling plan
based on minimum angle method. Soundararajan and Christina [16] used the tangent of
angle between the lines that joins [AQL,Pa(AQL)] to [LQL,Pa(LQL)] in order to reach
ideal OC curve. Pa(AQL) is the probability of acceptance when the percentage of the
defective items of the lot is AQL. This angle (θ) is denoted in Figure 1 It is obvious that
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minimizing (θ) is favorable because the OC curve approaches to ideal OC curve. tan(θ)
is obtained as follows,

tan(θ) =
LQL−AQL

Pa(AQL)− Pa(LQL)

Since (θ) should be minimized, thus the value of tan(θ) should be minimized also since
LQL−AQL is constant thus the value of [Pa(AQL)− Pa(LQL)] should be maximized.
In this paper, a nonlinear model for acceptance sampling plans by developing a Markov

Figure 1. Tangant angle minimizing using AQL, LQL [16]

model is presented. To design this model, we considered some important concepts like
number of conforming items until rth nonconforming item in inspection, first and second
type of error, average number inspected (ANI), AQL and LQL. Also derivative of
(ANI) function in point AQL is used for optimization. The objective function of this
model was constructed based on minimum angle method. The model has been solved for
4 scenarios in the cases r = 1 or r = 2 or r = 3 by using visual basic 6 in Microsoft excel
2013. Then the optimal solutions have been collected and analyzed in order to determine
which one of these sampling plans is more desirable in practical environment. The rest
of the paper is organized as follows. We present the model in Section 2. A case study
is solved in Section 3. Section 4 provides a sensitivity analysis for illustrating the effect
of different parameters on the objective function. In section 5, a comparison study is
carried out in 50 different data sets.

2. Model Development
The purpose of this model is to develop an optimization model for determining the

optimum value of thresholds of an acceptance sampling design. This acceptance sampling
design is based on run length of conforming items. Assume that in an acceptance sampling
plan, Y is defined as the number of inspected items until detecting rtk nonconforming
item. It is obvious that Y follows negative binomial distribution.
The decision making method is as follows,
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If Y ≥ U then the lot is accepted and if Y ≤ L then the lot is rejected. If U > Y > L
then inspection of the items continues where U is an upper control threshold and L is a
lower control threshold. Thus states of the decision making method are as follows,
State 1: U > Y > L, continue inspecting.
State 2: Y ≥ U , the lot is accepted.
State 3: Y ≤ L, the lot is rejected.
If pkl denotes the probability of going from state k to state l then transition probabilities
are obtained as follows, [7]

p11 = P {U > Y > L} , p12 = P {Y ≥ U} , p13 = P {Y ≤ L}(2.1)

where P (Y |r, p ) =
(

i− 1
r − 1

)
(1− p)i−r pr; for i = r, r + 1, ... is the negative binomial

distribution and p denotes the proportion of nonconforming items in the lot.
Fallahnezhad [7] proposed a new optimization model for designing sampling plans based
on minimum angle method and run length of inspected items with considering minimum
angle method and average number of inspection (ANI) in the optimization model. He
tried to solve his model by search procedure just for r = 1 (r is number of nonconforming
items in inspection process). In the proposed model, we try to optimize some important
criteria of sampling plans simultaneously. The objective function is constructed using
minimum angle method which optimizes the producer risk and consumer risk simulta-
neously. Also the constraints of average number inspected (ANI) and first derivative of
ANI function and risks are included in the model. Then we tried to solve the proposed
model by search method for r = 1, 2, 3 with considering all mentioned concepts.
The transition probability matrix is as follows (Fallahnezhad [7]),

P =
1
2
3

 1
p11

2
p12

3
p13

0 1 0
0 0 1

(2.2)

States 2 and 3 are absorbing state and state 1 is transient. The transition probability ma-
trix should be rewritten in the following form in order to calculate long run probabilities
of absorption:[

A O
R Q

]
(2.3)

where Q is transition probability matrix among non-absorbing states and R is the matrix
containing probabilities of going from non-absorbing states to absorbing states and A is an
identity matrix and O is matrix of zeros. Thus following matrix is obtained (Fallahnezhad
[7]),

2
3
1

 2

1
3

0
1

0
0 1 0
p12 p13 p11

(2.4)

The fundamental matrix M can be determined as follows (Bowling et al [3]):

M = m11(p) = (I −Q)−1 =
1

1− p11
=

1

1− P {U > Y > L}(2.5)

where I is the identity matrix. The value m11(p) denotes the expected number of visiting
the transient state 1 until absorption occurs. The absorption probability matrix, F is
calculated as follows (Bowling et al. [3]):

F =M ×R = 1
[

2

f12(p)
3

f13(p)

]
= 1

[
2

p12
1−p12

3
p13

1−p13

]
(2.6)
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where f12(p) and f13(p) denote the probabilities of accepting and rejecting the lot, re-
spectively.
The objective function of this model is written by using minimum angle method. In
this approach, our goal is to maximize the value of {Pa(AQL) − Pa(LQL)} where
Pa(LQL) and Pa(AQL) are the probabilities of accepting the lot when the proportion
of nonconforming items in the lot is respectively LQL and AQL. It is obvious that
1− Pa(AQL) is risk of producer thus maximizing Pa(AQL) is favorable. Also Pa(LQL)
is the risk of consumer thus minimizing Pa(LQL) is favorable. Consequently maximizing
{Pa(AQL)−Pa(LQL)} for a sampling system would be desired. The values of Pa(LQL)
and Pa(AQL) are determined as follows,

p = AQL→ Pa(AQL) = f12(AQL) =
P{U ≤ Y }

1− P{U > Y > L}(2.7)

p = LQL→ Pa(LQL) = f12(LQL) =
P{U ≤ Y }

1− P{U > Y > L}(2.8)

The objective function in minimum angle method is as follows, (Fallahnezhad [7])

Z =Max
L,U
{Pa(AQL)− Pa(LQL)}(2.9)

An important performance measure of sampling plans is the average number inspected
(ANI) . Since sampling and inspecting has cost, therefore designs with minimum ANI
are preferred. Therefore we try to consider the ANI in constraint of optimization model
so that its value does not get more that a control threshold. These constraints are written
for both cases of acceptable and unacceptable lots where the proportion of nonconforming
items in lot is equal to AQL and LOL, respectively. This constraint is written based
on the value of m11(p). As mentioned, m11(p) is the expected number of times that the
transient state 1 is visited until absorption occurs, since in each visit to transient state,
the average number of inspections is r

p
which is the mean value of negative binomial

distribution, consequently the value of ANI is given by r
p
m11(p). Now these constraints

are obtained for both cases of acceptable lot (p = AQL) and unacceptable lot (p = LQL)
respectively,

ANI(AQL) ≤W(2.10)

ANI(LQL) ≤M(2.11)

where W and M are upper control limits for these constraints and,

ANI(AQL) =
r

AQL
m11(AQL)(2.12)

ANI(LQL) =
r

LQL
m11(LQL)(2.13)

It is very important that acceptance sampling plans satisfy the constraints of first and
second type errors. These two types of errors are important performance measure of
acceptance sampling plans. First type error probability is the probability of rejecting an
acceptable lot and Second type error probability is the probability of accepting an unac-
ceptable lot. So we have included these two concepts as the constraints of optimization
model.
Thus we added following constraints to the optimization model for both cases of accept-
able lot (p = AQL) and unacceptable lot (p = LQL) respectively,

Pa(AQL) ≥ 1− α(2.14)
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Pa(LQL) ≤ β(2.15)

where α is the value of first type error probability and β value of second type error
probability. According to the ANI graph, when the percentage of the defectives in lot is
equal to the AQL, the ideal is that the derivation of the function at this point be equal
to zero, or in other words, reaches its minimum value. We try to consider this concept
as a constraint and examine its impact on the optimal solution of the model. The first
derivative of ANI function is written as follows (Chen [13]),

ANIp(p) =
∂

∂p

r

k(p)
=
−rkp(p)
k2(p)

(2.16)

where
k(p) = p {1− [F (U − 1 |r, p)− F (L |r, p )]}
kp(p) = 1− F (U − 1 |r, p)− F (L |r, p ) + (L− 1)f(L− 1 |r, p )− Uf(U |r, p )(2.17)

We considered upper and lower limits for derivative of ANI when the percentage of the
defective in lot is equal to AQL in order to apply this constraint in the model. Since AQL
is an important parameter in decision making about the lot thus this value is selected as
reference value in constraint of ANI derivative. It is obvious that lower limit is negative
and upper limit is positive. As much as the interval of these limits would be tighter
then it will be closer to zero that is more favorable for us. This constraint is obtained as
follows,

λ1 ≤ ANIp(AQL) ≤ λ2(2.18)

where λ1 and λ2 are lower and upper limits for the first derivation of ANI function,
respectively. Now the optimization problem can be defined as follows,

Max
L,U

Z

s.t.
ANI(AQL) ≤W
ANI(LQL) ≤M
Pa(AQL) ≥ 1− α
Pa(LQL) ≤ β
λ1 ≤ ANIp(AQL) ≤ λ2

(2.19)

Optimal values of L,U, r can be determined by solving above nonlinear optimization prob-
lem using search procedures or other optimization tools. The parameters like W,M,α, β,
λ1, λ2, AQL,LQL are predetermined for solving the model in order to reach the optimal
values of L,U, r. The advantage of this sampling system is to consider most important
critical factors affecting on performance of sampling methods in an optimization model
which optimizes them simultaneously.

3. Case Study
A case study is solved using Visual basic codes in Microsoft excel 2013 in order to

demonstrate the application of the proposed methodology in designing acceptance sam-
pling models. The following example is intended to provide illustrations about application
of the model in a juice factory. The quality engineer tries to design an acceptance sam-
pling plan for accepting or rejecting an incoming lot received from suppliers. The values
of AQL and LQL and other important parameters are specified as required quality stan-
dards by both sides (consumer and producer).
This case is solved and the values in intervals L = [0, 20] and U = [1, 90] and r = [1, 2, 3]
are searched for optimal solution in each scenario, while L and U are integer. In the
other words, we restricted our search space in order to reach optimal value of L and U



1277

Table 1. Optimal solution of case study

r L U Z ANI(AQL) ANI(LQL) ANIp(AQL) Pa(AQL) Pa(LQL)

2 3 35 0.94 83.45 37.59 52.44 0.98011 0.00574

Table 2. Input Parameters of Different scenarios

Scenarios M W λ2 λ1 β α LQL AQL

1 70 80 250 -250 0.2 0.15 0.3 0.06
2 100 130 200 -200 0.2 0.1 0.2 0.04
3 60 70 400 -400 0.1 0.05 0.2 0.05
4 50 105 100 -100 0.1 0.05 0.2 0.05

Table 3. Number of feasible solutions for each scenario

Scenarios r = 1 r = 2 r = 3

Scenario 1 10 48 11
Scenario 2 1 33 28
Scenario 3 0 6 0
Scenario 4 0 3 6

and r. It is observed that optimal solution lies in the specified intervals in all consid-
ered practical cases. Thus first the feasible value of L and U will be determined and
the optimal solution which maximizes the objective function is determined among them.
It is assumed that AQL = 0.05, LQL = 0.2, λ1 = −80, λ2 = 80, M = 50, W = 90,
α = 0.05, β = 0.1. We solved the proposed model with these input parameters. The
results show that there are just 3 feasible solutions in the solution space. Table 1 shows
the optimal solutions. It is obvious that the result of the proposed model is applicable
in any production environment.
In the cases that required sample size is limited then we can easily consider this limi-
tation in the constraints of the model. It is observed that ANI of proposed method is
large for r = 3, 4, ... but when small sample size is an important criterion, we may apply
r = 1, 2 for sampling system. It is obvious that optimal solution of optimization model
for r = 1 or r = 2 with tighter intervals for ANI function would result in smaller values
for required number of inspected items.

4. Sensitivity Analysis
In this section, a sensitivity analysis is done for illustrating the effect of different

parameters on the results of the model. This model was solved in several scenarios with
different assumptions. Table 2 shows the input parameters of different scenarios.
Each scenario is solved in the cases, r = 1, r = 2 and r = 3 and the number of feasible
solutions are summarized in Table 3.
As can be seen in Table 2, the number of feasible solutions for each scenario is not the
same in cases, r = 1, r = 2 and r = 3. For example, case r = 1 will not have any feasible
solutions in Scenario 3 and 4. Also case r = 3 will not have any feasible solutions in
Scenario 3. Table 4 shows the optimal solution of the model for each scenario.



1278

Table 4. Optimal solution for each scenario

Scenarios r L U Z ANI(AQL) ANI(LQL) ANIp(AQL) pa(AQL) pa(LQL)

Scenario 1 3 4 34 0.98 78.31 28.30 -200.67 0.99014 0.00099
Scenario 2 3 5 58 0.99 131.42 73.79 190.35 0.9946 0.00095
Scenario 3 2 3 29 0.92 69.43 36.60 -286.97 0.96 0.04
Scenario 4 3 7 46 0.97 103.70 46.28 14.74 0.98011 0.00574

Table 5. Input Parameters

Scenarios M W λ2 λ1 β α LQL AQL

1 70 80 250 0 0.2 0.15 0.3 0.06
2 100 130 200 0 0.2 0.1 0.2 0.04

Table 6. Optimal Solution

Scenarios r L U Z ANI(AQL) ANI(LQL) ANIp(AQL) pa(AQL) pa(LQL)

Scenario 1 2 1 28 0.97 68.82 30.80 49.60 0.978592 0.00199
Scenario 2 3 5 57 0.99 129 73.77 85.93 0.9947 0.00115

According to Table 4, the case r = 3 will be optimal in most of the scenarios and case
r = 2 will be optimal in scenario 3. Since we saw that the model could not find any
feasible solution in case r = 3 for scenarios 3 thus this result was justified. Also the case
r = 1 has not been optimal in any of the scenarios. So we can say that the case r = 3 is
suitable for practical real world problems. But since we have not investigated the cases
with the values of r > 3, this is suggested as future studies but in general, it seems that
the value of r > 4 need so much more inspections and may not be feasible as can be seen
in Table 3, where the number of feasible solution has decreased significantly by changing
r = 2 to r = 3.
The first derivative of ANI function is included in the model to minimize the number
of inspected items. It is needed to analyze the effect of lower limit and upper limit for
first derivative of ANI function in order to investigate the behavior of optimal solution
by changing them. It is obvious that when the first derivative of a convex function at a
point is zero then that point is minimum value of a convex function. Thus considering
negative and positive bounds for first derivative is logical which results in finding near
optimal solution. We used this concept for monitoring the ANI value by calculating its
first derivative. Then we defined an interval for the first derivative of ANI(ANIp(AQL)).
We defined two scenarios for λ1 = 0 and λ2 > 0 inorder to check the effects of λ1 and
λ2. Table 5 shows the input parameters and Table 6 shows the optimal solutions.

The results shows that when we consider λ1 = 0 and λ2 > 0, then the variations
of objective function is negligible. In this state, a better optimal solution is obtained
according to the values of ANI(AQL), ANI(LQL) and ANIp(AQL).

5. Comparison Study
After constructing proposed method optimization model, it is very beneficial to com-

pare this new model with traditional single stage sampling method. For illustrating the
effect of different data sets on the results of the proposed model and discussion about
the application of the model in the different practical environments, we carried out a
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simulation study with 50 different random data sets. Then we compared the proposed
model withtraditional single stage sampling methodassuming the same constraints. It
is tried to search all feasible points of solution space in order to obtain general optimal
values for L,U, r. The optimization model for traditional single stage sampling method
is as follows;

Z′ =Max
n,c
{Pa(AQL)− Pa(LQL)}

s.t.
Pa(AQL) ≥ 1− α
Pa(LQL) ≤ β

(5.1)

where Pa(p) denotes the probability of accepting the lot which is obtained by cumulative
function of binomial distribution as follows;

Pa(p) =

c∑
x=0

(
n
x

)
px (1− p)n−x(5.2)

It is obvious that the constraints regarding first derivation of ANI function, ANI(AQL)
, and have not been considered in the optimization model because ANI in the traditional
single stage sampling method is fixed (ANI = n).
50 different scenarios of parameters are randomly generated by uniform distribution. The
results are summarized in Table 7. According to Table 7, proposed method has better
value of objective function in 28% of cases but proposed model is worse than traditional
method in 14% of cases and for the rest of the cases, the objective function of these two
methods are equal.
The results shows that since proposed model has more constraints than the traditional
single stage sampling method but it has better value for objective function in 28% of
cases and both methods have equal objective function in 58% of cases. Also in most
of cases, ANI(LQL) in the proposed model is less value than the sample size, n in the
traditional method but ANI(AQL) of proposed model is often more than sample size, n
in the traditional method. Thus we can assume tighter intervals for constraint regarding
ANI(AQL) in order to decrease the average number of inspected items. In general, the
results show the advantages of proposed methodology over existing methods and this
model can be efficiently applied in practical environment.

6. Conclusion
In this paper, we proposed a general nonlinear model for acceptance sampling based

on cumulative count of conforming using minimum angle method. Number of inspected
items until rth defective items was selected as criteria for decision making. We presented
our model using Markov model and derivative of ANI (average number inspected) in
AQL point to ensure that ANI chart behavior is in desired level. It’s ideal that the de-
rivative of ANI in AQL point to be equal zero in order to ensure that ANI is minimized.
This approach is suitable when our plan for accepting or rejecting a lot is based on num-
ber of inspected items until rth nonconforming item. Also it is tried that constraint of
first and second type of errors to be included in the model simultaneously. We concluded
that the case r = 3 which denotes the method of sampling until the third defective item
is suitable for practical real world problems. But since we have not investigated the cases
with the values of r > 3, thus this is suggested as future studies but in general, it seems
that the value of r > 4 needs so much more inspections and it may not be feasible. As
can be seen in Table 3, the number of feasible solution has decreased significantly by
changing r = 2 to r = 3. For analyzing the behavior of proposed model in different
data sets, we solved the model for 50 different random scenarios and also we compared
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Table 7. Proposed method VS. Traditional single sampling

Scenarios Input parameters Proposed Model Traditional Single
Sampling Method

AQL LQL W M λ1 λ2 1− α β L U r ANI(AQL) ANI(LQL) Z n c Z′

1 0.04 0.27 241 99 -400 190 0.7 0.2 2 53 3 121 87 0.99 88 10 0.99
2 0.04 0.14 289 66 -311 218 0.72 0.11 12 64 3 141 65 0.95 90 6 0.91
3 0.04 0.31 237 130 -217 156 0.89 0.14 1 52 3 118 110 0.99 79 10 0.99
4 0.03 0.23 181 63 -357 443 0.82 0.25 1 60 2 145 61 0.99 90 8 0.99
5 0.03 0.31 128 68 -372 219 0.87 0.21 0 33 1 84 10 0.99 88 10 0.99
6 0.04 0.12 187 57 -246 464 0.79 0.14 16 61 3 130 57 0.92 90 6 0.85
7 0.03 0.16 216 86 -454 453 0.72 0.16 8 88 3 196 74 0.90 90 6 0.98
8 0.03 0.23 274 120 -319 179 0.80 0.21 3 67 3 151 92 0.99 90 9 0.99
9 0.02 0.15 135 78 -72 223 0.83 0.14 0 49 1 126 41 0.99 90 6 0.98
10 0.04 0.28 278 120 -90 352 0.73 0.11 2 62 3 140 76 0.93 88 10 0.99
11 0.05 0.16 135 113 0 266 0.76 0.17 7 52 3 117 87 0.99 90 8 0.94
12 0.03 0.27 286 112 -231 260 0.79 0.16 2 72 3 162 90 0.96 90 10 0.99
13 0.04 0.25 152 127 -324 161 0.74 0.22 2 59 3 133 109 0.99 90 10 0.99
14 0.03 0.11 284 57 -425 470 0.92 0.23 9 69 2 158 54 0.99 90 5 0.90
15 0.04 0.28 249 57 -46 331 0.88 0.23 3 56 3 127 50 0.93 86 10 0.99
16 0.03 0.21 122 86 -459 214 0.78 0.10 1 49 2 119 85 0.99 90 8 0.99
17 0.04 0.24 255 79 -494 154 0.90 0.12 1 46 3 105 71 0.99 71 10 0.99
18 0.04 0.27 128 124 0 438 0.70 0.13 2 51 2 116 85 0.99 84 10 0.99
19 0.05 0.21 276 67 -440 408 0.89 0.11 5 53 3 121 71 0.99 90 9 0.98
20 0.03 0.18 205 103 -236 182 0.85 0.22 5 73 3 164 85 0.99 90 7 0.98
21 0.04 0.2 170 61 -277 478 0.78 0.18 6 61 3 137 64 0.99 90 8 0.99
22 0.04 0.32 203 143 -355 410 0.88 0.12 1 56 3 127 97 0.99 79 10 0.99
23 0.04 0.33 194 104 -307 151 0.72 0.14 1 48 3 109 55 0.99 73 10 0.99
24 0.04 0.18 237 133 -268 221 0.71 0.12 5 61 3 138 96 0.99 90 8 0.97
25 0.04 0.15 261 57 -72 419 0.92 0.16 11 61 3 136 81 0.99 90 7 0.93
26 0.05 0.29 178 141 -436 265 0.82 0.23 2 45 3 103 105 0.95 78 10 0.99
27 0.02 0.1 169 103 -267 357 0.87 0.11 0 53 1 137 93 0.99 90 4 0.91
28 0.03 0.23 211 84 0 447 0.78 0.21 4 68 3 153 60 0.91 90 9 0.99
29 0.03 0.26 115 74 -358 354 0.85 0.23 0 33 3 84 14 0.99 90 10 0.99
30 0.05 0.28 191 66 -93 166 0.83 0.13 3 49 3 111 50 0.92 82 10 0.99
31 0.03 0.14 128 83 -256 177 0.88 0.15 0 39 3 99 49 0.99 90 6 0.94
32 0.02 0.31 195 66 -108 493 0.81 0.19 1 72 1 174 29 0.89 90 10 0.99
33 0.04 0.28 282 104 -457 161 0.91 0.22 2 48 1 109 74 0.99 81 10 0.99
34 0.03 0.34 239 94 -156 270 0.80 0.12 1 83 2 186 79 0.99 83 10 0.99
35 0.02 0.14 176 78 -177 335 0.79 0.22 0 52 3 135 52 0.99 90 5 0.97
36 0.03 0.26 233 135 -456 231 0.76 0.16 2 63 3 142 95 0.94 90 10 0.99
37 0.05 0.19 205 78 -257 369 0.91 0.22 6 49 3 111 66 0.99 90 9 0.96
38 0.03 0.15 130 110 -192 402 0.85 0.13 3 53 3 127 82 0.98 90 6 0.95
39 0.03 0.25 112 68 -368 228 0.74 017 0 29 1 74 15 0.98 90 10 0.99
40 0.03 0.31 122 92 -161 250 0.87 0.21 0 34 1 86 10 0.92 85 10 0.99
41 0.03 0.20 157 112 -289 369 0.79 0.15 4 67 1 151 107 0.91 90 8 0.99
42 0.05 0.22 158 60 -234 332 0.73 0.22 5 50 2 114 52 0.99 90 10 0.99
43 0.04 0.15 181 84 -113 334 0.79 0.14 9 60 3 134 257 0.99 90 7 0.94
44 0.02 0.30 221 91 -470 349 0.74 0.2 0 72 2 174 74 0.96 90 10 0.99
45 0.03 0.34 249 147 -243 124 0.75 0.2 1 64 3 144 72 0.99 76 10 0.99
46 0.05 0.26 115 147 -156 256 0.90 0.18 2 47 3 108 97 0.99 82 10 0.99
47 0.04 0.12 164 76 -199 441 0.91 0.24 14 71 3 156 72 0.94 90 6 0.88
48 0.04 0.25 205 145 -52 262 0.76 0.22 2 53 3 121 11 0.99 89 10 0.99
49 0.04 0.22 124 103 -297 497 0.72 0.1 1 45 2 110 72 0.99 90 9 0.99
50 0.04 0.15 226 92 -131 464 0.82 0.2 8 62 3 140 81 0.97 90 7 0.95

the results with traditional single sampling method. The results show that the proposed
model has better performance.
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1. INTRODUCTION
Admissibility of estimator is an important problem in statistical decision theory; Con-

sequently, this problem has been considered by many authors under various types of loss
functions both in an exponential and in a non-regular family of distributions. For exam-
ple under squared error loss function (Karlin [5], Ghosh & Meeden [3], Ralescu & Ralescu
[10], Sinha & Gupta [13], Hoffmann [4], Pulskamp & Ralescu [9], Kim [6] and Kim &
Meeden [7]), under entropy loss function (Sanjari Farsipour [11, 12]) and under LINEX
loss function (Tanaka [14, 15, 16]) and squared-log error loss function (Zakerzadeh &
Moradi Zahraie [18]).

In Bayesian statistical inference arbitrariness of a unique prior distribution is a per-
manent question. Robust Bayesian inference deals with the problem of expressing un-
certainty of the prior information. A gamma-admissible approach is used which allows
to take into account vague prior information on the distribution of the unknown param-
eter θ. The uncertainty about a prior is assumed by introducing a class Γ of priors.
If prior information is scarce, the class Γ under consideration is large and a decision is
close to a admissible decision. In the extreme case when no information is available the
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Γ-admissible setup is equivalent to the usual admissible setup. If, on the other hand, the
statistician has an exactly prior information and the class Γ contains a single prior, then
the Γ-admissible decision is an usual Bayes decision. So it is a middle ground between
the subjective Bayes setup and full admissible. See Berger [1] for useful references on
robust Bayesian analysis.

Eichenauer-Herrmann [2] gained a sufficient conditions for an estimator of the form
(aX + b)/(cX + d) to be Γ-admissible under the squared error loss in a one-parameter
exponential family.

The most popular convex and symmetric loss function is the squared error loss func-
tion which is widely used in decision theory due to its simple mathematical properties.
However in some cases, it does not represent the true loss structure. This loss function is
symmetric in nature i.e. it gives equal weightage to both over and under estimation. In
real life, we encounter many situations where over-estimation may be more serious than
under-estimation or vice versa. As an example, in construction an underestimate of the
peak water level is usually much more serious than an overestimation.

The LINEX loss function was initially introduced by Varian [17] in the context of real
estate assessment; estimation under this loss from the Bayesian perspective was studied
by Zellner [19]. Subsequently, it became a workhorse in the literature on asymmetric
loss. For an estimator δ of estimand h(θ), it is given by

(1.1) L(δ, h(θ)) = b
{
ec(δ−h(θ)) − c(δ − h(θ))− 1

}
,

where c 6= 0 and b > 0. If we define ∇ := δ − h(θ), then L(∇) = b
{
ec∇ − c∇− 1

}
.

Some properties of the loss (1.1) are as follows:
(i) The constant b serves to scale this loss and without loss of generality we can

assume that it is equal 1.
(ii) The constant c determines the shape of the loss; For c > 0 this loss function

is quite asymmetric about 0 with overestimation being more costly than under-
estimation. As |∇| → ∞, L(∇) increases almost exponentially when ∇ > 0 and
almost linearly when ∇ < 0. For c < 0, the linearity-exponentially phenomenon
is reversed.

(iii) For |c| → 0, this loss is almost symmetric and not far from a squared error loss
function; In fact since ec∇ ≈ 1 + c∇+ c2∇2/2, thus L(∇) ≈ c2∇2/2.

(iv) It is everywhere differentiable and its derivatives are continuous.

1.1. Remark. Linear-exponential where the name LINEX is justified by the fact that
is this loss function rises approximately linearly on one side of zero and approximately
exponentially on the other side.

A full discussion of the properties of this loss, may be found in Zellner [19] and Parsian
& Kirmani [8].

In this paper we consider the Γ-admissibility of generalized Bayes estimators in a
non-regular family of distributions under the loss (1.1) where class Γ consists of all
distributions which are compatible with the vague prior information. To this end, in
Section 2, we state some preliminary definitions and results. In Section 3, main theorem
will obtain. Finally, in Section 4, we give an application of the Γ-admissibility in proof
the Γ-minimaxity of estimators. Some examples are given.

2. Preliminaries
2.1. Definition of Γ-admissibility. In the present paper it is assumed that vague
prior density on the distribution of the unknown parameter θ is available. Let Π denote
the set of all priors, i.e. Borel probability measures on the parameter interval Θ and Γ
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be a non-empty subset of Π. Suppose that the available vague prior information can be
described by the set Γ, in the sense that Γ contains all prior which are compatible with
the vague prior information.

Eichenauer-Herrmann [2] has defined the Γ-admissibility of an estimator as follows.

2.1. Definition. An estimator δ∗ is called Γ-admissible, if

r(π, δ) ≤ r(π, δ∗), π ∈ Γ,

for some estimator δ implies that

r(π, δ) = r(π, δ∗), π ∈ Γ,

where r(π, δ) is the Bayes risk of δ.

2.2. Remark. From Definition 2.1, it is obvious that
- A Π-admissible estimator is admissible.
- A {π}-admissible estimator is simply a Bayes strategy with respect to the prior π.
- In general neither Γ-admissibility implies admissibility nor admissibility implies Γ-admissibility.

Hence, the available results on admissibility cannot be applied in order to prove the
Γ-admissibility of an estimator. Consequently, it is necessary to study the problem of
Γ-admissibility of estimators.

2.2. A non-regular family of distributions. Let X be a random variable whose
probability density function with respect to some σ-finite measure µ is given by

fX(x; θ) =

{
q(θ)r(x), θ < x < θ

0, otherwise

where θ ∈ Θ =: (θ, θ̄) and Θ is a nondegenerate interval (possibly infinite) on the real
line. Also r(x) is a positive µ-measurable function of x and

q−1(θ) =

∫ θ

θ

r(x)dµ(x) <∞

for θ ∈ Θ. This family is known as a non-regular family of distributions.
Suppose π(θ) be a prior (possibly improper) by its Lebesgue density pπ(θ) over Θ

which is positive and continuous. Let h(θ) be a continuous function to be estimated from
Θ to R and the loss to be (1.1). The generalized Bayes estimator of h(θ) with respect to
π(θ) is given by δπ(X), where

(2.1) δπ(x) = −1

c
ln

{∫ θ̄
x
e−ch(θ)q(θ)pπ(θ)dθ∫ θ̄
x
q(θ)pπ(θ)dθ

}
for θ < x < θ̄, provided that the integrals in (2.1) exist and are finite.

3. Main results
In this section, main results will obtain.
For some real number λ0 let a, b : [λ0,∞) 7→ Θ be continuously differentiable functions

with a(λ0) < b(λ0), where a and b are supposed to be strictly decreasing and strictly
increasing, respectively. For λ ≥ λ0 a prior πλ is defined by its Lebesgue density pπλ of
the form

pπλ(θ) :=

(∫ b(λ)

a(λ)

pπ(t)dt

)−1

I[a(λ),b(λ)](θ)pπ(θ).

Throughout this paper, we restrict estimators to the class
∆ := {δ|(A1) and (A2) are satisfied},
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where
(A1) Eθ[|δ(X)|] <∞ and Eθ

[
eaδ(X)

]
<∞ for all θ ∈ Θ,

(A2)
∫ b(λ)

a(λ)
Eθ [|δ(X)− h(θ)|] pπ(θ)dθ <∞ and

∫ b(λ)

a(λ)
Eθ
[
ea(δ(X)−h(θ))

]
pπ(θ)dθ for λ ≥

λ0 and all θ which θ < a(λ) < θ < b(λ) < θ̄.

3.1. Remark. In the statistical game (Γ,∆, r), a Γ-admissible estimator is an admissible
strategy of the second player.

The next lemma is essential to obtain our results.

3.2. Lemma. Let S(θ) be a continuous and non-negative function over Θ = (θ, θ̄). Let
G(λ) :=

∫ b(λ)

a(λ)
S(θ)dθ. Suppose that there exists a positive function R(θ) such that

G(λ) ≤ 4
(
min

{
R(b(λ))b′(λ),−R(a(λ))a′(λ)

})− 1
2
(
G′(λ)

) 1
2

for λ ≥ λ0. If ∫ ∞
λ0

min
{
R(b(λ))b′(λ),−R(a(λ))a′(λ)

}
dλ =∞,

then S(θ) = 0 for a.a. θ ∈ Θ.

Proof. See Eichenauer-Herrmann [2]. �

Now, the main result of the present paper can be stated.

3.3. Theorem. Suppose that δπ ∈ ∆ and put

K(x, θ) :=

∫ θ

x

{
e−cδπ(x) − e−ch(t)

}
q(t)pπ(t)dt,

and

γ(θ) :=
ech(θ)

pπ(θ)q(θ)

∫ θ

θ

r(x)ecδπ(x)K2(x, θ)dµ(x).

If πλ ∈ Γ for all λ ≥ λ0 and∫ ∞
λ0

min{γ−1(b(λ))b′(λ),−γ−1(a(λ))a′(λ)}dλ =∞,(3.1)

then δπ(X) is Γ-admissible under the loss (1.1).

Proof. Let δ ∈ ∆ be an estimator such that r(π, δ) ≤ r(π, δπ) for every prior π ∈ Γ.
Since πλ ∈ Γ for λ ≥ λ0, we must have

0 ≤

(∫ b(λ)

a(λ)

pπ(t)dt

)
{r(πλ, δπ)− r(πλ, δ)}

=

∫ b(λ)

a(λ)

Eθ [L(δπ, h(θ))− L(δ, h(θ))] pπ(θ)dθ

for all θ ∈ Θ. From Condition (A1), we see that it is equivalent to

0 ≤
∫ b(λ)

a(λ)

Eθ

[{
e
cδ(X)

2 − e
cδπ(X)

2

}2
]
e−ch(θ)pπ(θ)dθ

≤
∫ b(λ)

a(λ)

Eθ [c{δ(X)− δπ(X)}] pπ(θ)dθ

− 2

∫ b(λ)

a(λ)

Eθ

[
e−ch(θ)e

cδπ(X)
2

{
e
cδ(X)

2 − e
cδπ(X)

2

}]
pπ(θ)dθ.
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An application of the Fubini’s theorem gives

0 ≤
∫ b(λ)

a(λ)

∫ θ

θ

{
e
cδ(x)

2 − e
cδπ(x)

2

}2

r(x)dµ(x)e−ch(θ)pπ(θ)q(θ)dθ

≤
∫ b(λ)

θ

∫ b(λ)

x

{c(δ(x)− δπ(x))}r(x)q(θ)pπ(θ)dθdµ(x)

− 2

∫ b(λ)

θ

∫ b(λ)

x

e−ch(θ)e
cδπ(x)

2

{
e
cδ(x)

2 − e
cδπ(x)

2

}
r(x)q(θ)pπ(θ)dθdµ(x)

−
∫ a(λ)

θ

∫ a(λ)

x

{c(δ(x)− δπ(x))} r(x)q(θ)pπ(θ)dθdµ(x)

+ 2

∫ a(λ)

θ

∫ a(λ)

x

e−ch(θ)e
cδπ(x)

2

{
e
cδ(x)

2 − e
cδπ(x)

2

}
r(x)q(θ)pπ(θ)dθdµ(x)

(3.2)

which is guaranteed by Condition (A2).
Using the inequality x−y ≤ e−y(ex−ey) for all x and y, the first term of the right-hand

side in (3.2) is less than

2

∫ b(λ)

θ

∫ b(λ)

x

e−
cδπ(x)

2

{
e
cδ(x)

2 − e
cδπ(x)

2

}
r(x)q(θ)pπ(θ)dθdµ(x).

By Schwartz inequality, sum of the first and the second terms of the right-hand side in
(3.2) is less than

2

{∫ b(λ)

θ

(
e
cδ(x)

2 − e
cδπ(x)

2

)2

r(x)dµ(x)

} 1
2
{∫ b(λ)

θ

ecδπ(x)K2(x, b(λ))r(x)dµ(x)

} 1
2

.

Hence, if we define

T (θ) :=

∫ θ

θ

{
e
cδ(x)

2 − e
cδπ(x)

2

}2

r(x)dµ(x),

and

M(θ) := T (θ)e−cb(θ)q(θ)pπ(θ),

then Equation (3.2) implies

0 ≤
∫ b(λ)

a(λ)

T (θ)e−ch(θ)q(θ)pπ(θ)dθ

≤ 2
{
T (b(λ))e−ch(b(λ))q(b(λ))pπ(b(λ))b′(λ)

} 1
2 {
γ−1(b(λ))b′(λ)

}− 1
2

+ 2
{
−T (a(λ))e−ch(a(λ))q(a(λ))pπ(a(λ))a′(λ)

} 1
2 {−γ−1(a(λ))a′(λ)

}− 1
2

≤ 4
(
min{γ−1(b(λ))b′(λ),−γ−1(a(λ))a′(λ)}

)− 1
2 ×

(
M(b(λ))b′(λ)−M(a(λ))a′(λ)

) 1
2

(3.3)

for λ ≥ λ0, where the definition of the function γ(θ) has been used. Now a continuous,
differentiable and increasing function H : [λ0,∞]→ R is defined by

H(λ) :=

∫ b(λ)

a(λ)

T (θ)e−ch(θ)q(θ)pπ(θ)dθ.
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So (3.3) can be written in the form

H(λ) ≤ 4
(
min{γ−1(b(λ))b′(λ),−γ−1(a(λ))a′(λ)}

)− 1
2 (H ′(λ))

1
2

for λ ≥ λ0. Therefore, from Lemma 3.2 we obtain T (θ) = 0 for a.a.θ ∈ Θ, and conse-
quently from (A1), we have δ(x) = δπ(x) a.e.µ. This completes the proof. �

3.4. Remark. K(x, θ) can expressed as

K(x, θ) =
1∫ θ̄

x
q(u)pπ(u)du

∫ θ

x

∫ θ̄

θ

{
e−ah(s) − e−ah(t)

}
q(s)pπ(s)q(t)pπ(t)dsdt,

by (2.1) and the symmetry of the integrand.

3.5. Example. As Example 1 in [18], suppose that X1, ..., Xn are i.i.d. random variables
according to an exponential distribution whose probability distribution function is given
by

f(x; θ) =

{
ex−θ, x < θ

0, x > θ

where θ(∈ R) is unknown. X = X(n) is sufficient for θ and its probability distribution
function is given by

fX(x; θ) =

{
nen(x−θ), x < θ

0, x > θ

The generalized Bayes estimator of h(θ) = θ with respect to the Lebesgue prior is given
by

δπ(X) = X +
1

c
ln
n+ c

n
,

if n+ c > 0. A direct calculation gives

K(x, θ) =
1

n+ c
e−nθ

(
e−cθ − e−cx

)
,

and

γ(θ) =
2c2

n(n+ c)2(n− c) .

Let class Γ0 consists of all priors with mean 0, i.e., Γ0 := {π ∈ Π|
∫

Θ
θpπ(θ)dθ = 0}.

Define functions a and b by a(λ) = −λ and b(λ) = λ for λ ≥ λ0 > 0, i.e., the prior πλ
is the uniform distribution on the interval [−λ, λ]. Hence, πλ ∈ Γ0 for all λ ≥ λ0. Since
(3.1) is satisfied, Theorem 3.3 implies that δπ(X) is Γ0-admissible under the loss (1.1).

3.6. Remark. It is difficult to express γ(θ) explicitly and it can have a complicated
form, so to apply Theorem 3.3, we have to seek the suitable upper bound of γ(θ). For
the case when h(θ) is bounded, we can get the next corollary.

3.7. Corollary. Suppose that h(θ) is bounded and δπ ∈ ∆. Put

K̃(x, θ) :=

∫ θ̄
θ
q(s)pπ(s)ds

∫ θ
x
q(t)pπ(t)dt∫ θ̄

x
q(u)pπ(u)du

,

and

γ̃(θ) :=
1

pπ(θ)q(θ)

∫ θ

θ

r(x)K̃2(x, θ)dµ(x).



1289

If πλ ∈ Γ for all λ ≥ λ0 and∫ ∞
λ0

min{γ̃−1(b(λ))b′(λ),−γ̃−1(a(λ))a′(λ)}dλ =∞,

then δπ(X) is Γ-admissible under the loss (1.1).

Proof. It can be shown that there exist constants C and C̄ such that C < ecδπ(x) < C̄
for all x ∈ (θ, θ̄). Further, since h(θ) is bounded, there exists a constant C such that
|K(x, θ)| ≤ CK̃(x, θ) for all (x, θ) ∈ {(x, θ)|θ < x < θ < θ̄}. This completes the proof by
Theorem 3.3. �

3.8. Example. As Example 2 in [18], suppose that X1, ..., Xn are i.i.d. random variables
according to a uniform distribution over the interval (0, θ) where θ(∈ R+) is unknown.
Then the probability distribution function of the sufficient statistic X = X(n) is given by

fX(x; θ) =

{
n
θn
xn−1, 0 < x < θ
0, otherwise

Let h(θ) = Pθ(X1 ≤ 1) = 1
θ
I{1<θ}(θ) + I{θ<1}(θ), where IA(θ) is the indicator function

of the set A. Then the generalized Bayes estimator of h(θ) with respect to π(θ) by its
density pπ(θ) = 1/θ is given by δπ(X), where

δπ(x) =

 −
1
c

ln
{
e−c(1− xn) + n

∫ x
0
yn−1e−c

y
x dy

}
, 0 < x < 1

− 1
c

ln
{
n
∫ 1

0
yn−1e−c

y
x dy

}
, 1 < x

We can easily obtain

K̃(x, θ) =
1

nθn

{
1−

(x
θ

)n}
,

and

γ̃(θ) =
θ

3n2
.

Let Γm := {π ∈ Π|
∫

Θ
θpπ(θ)dθ = m}, i.e., Γm consists of all priors with mean m. Define

functions a and b by a(λ) = m ln(λ)/(λ− 1) and b(λ) = λa(λ) for λ ≥ λ0 > 1. Since∫
Θ

θpπλ(θ)dθ =

(∫ b(λ)

a(λ)

1

t
dt

)−1

(b(λ)− a(λ)) = m

for all λ ≥ λ0, so that πλ ∈ Γm. A short calculation yields

a′(λ) = m
λ− 1− λ ln(λ)

λ(λ− 1)2
< 0,

and

b′(λ) = m
λ− 1− ln(λ)

(λ− 1)2
> 0,

for λ ≥ λ0. Because of λ− 1− ln(λ) < λ ln(λ)− λ+ 1 for λ ≥ λ0 and limλ→∞ b(λ) =∞,
one obtains∫ ∞
λ0

min{γ̃−1(b(λ))b′(λ),−γ̃−1(a(λ))a′(λ)}dλ = (3n2)

∫ ∞
λ0

min

{
b′(λ)

b(λ)
,−a

′(λ)

a(λ)

}
dλ

= (3n2)

∫ ∞
λ0

b′(λ)

b(λ)
dλ =∞

which implies, according to Corollary 3.7 that δπ(X) is Γm-admissible under the loss
(1.1).
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3.9. Remark. Typically all the result in this paper go through with some modifications
for the density

fX(x, θ) =

{
q(θ)r(x), θ < x < θ̄

0, otherwise

where θ ∈ Θ = (θ, θ̄) is unknown.

4. An application
In the presence of vague prior information frequently the Γ-minimax approach is used

as underlying principle. In this section, we provide the definition of the Γ-minimaxity of
an estimator and then express the relation between this concept and the Γ-admissibility.
Finally, we give an example.

4.1. Definition. A Γ-minimax estimator is a minimax strategy of the second player in
the statistical game (Γ,∆, r); δ∗ is called a Γ-minimax estimator, if

sup
π∈Γ

r(π, δ∗) = inf
δ∈∆

sup
π∈Γ

r(π, δ),

where r(π, δ) is the Bayes risk of δ.

4.2. Definition. A Γ-minimax estimator δ∗ is said to be unique, if

r(π, δ) = r(π, δ∗), π ∈ Γ,

for any other Γ-minimax estimator δ.

4.3. Remark.
- From Definition 4.2, it is obvious that a unique Γ-minimax estimator is Γ-admissible.
- If a Γ-admissible estimator δ is an equalizer on Γ, i.e., r(., δ) is constant on Γ, then δ is
a unique Γ-minimax estimator.

4.4. Example. In Example 3.5, we have Eθ[X] = θ−(1/n) and Eθ[ecX ] = (n/(n+c))ecθ.
Thus, the risk function of δπ is equal to

R(δπ, θ) = bEθ
[
ec(δπ−θ) − c(δπ − θ)− 1

]
= b

{ c
n
− ln

(n+ c

n

)}
.

So, δπ is an equalizer on Γ0, since its risk function is constant. Hence, δπ(X) is the
unique Γ0-minimax estimator for θ.
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