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Multiplicative (generalized)-derivations and left
ideals in semiprime rings

Asma Ali∗, Basudeb Dhara†‡, Shahoor Khan§ and Farhat Ali¶

Abstract

Let R be a semiprime ring with center Z(R). A mapping F : R → R
(not necessarily additive) is said to be a multiplicative (generalized)-
derivation if there exists a map f : R→ R (not necessarily a derivation
nor an additive map) such that F (xy) = F (x)y + xf(y) holds for all
x, y ∈ R. The objective of the present paper is to study the following
identities: (i) F (x)F (y)± [x, y] ∈ Z(R), (ii) F (x)F (y)± x ◦ y ∈ Z(R),
(iii) F ([x, y]) ± [x, y] ∈ Z(R), (iv) F (x ◦ y) ± (x ◦ y) ∈ Z(R), (v)
F ([x, y]) ± [F (x), y] ∈ Z(R), (vi) F (x ◦ y) ± (F (x) ◦ y) ∈ Z(R), (vii)
[F (x), y] ± [G(y), x] ∈ Z(R), (viii) F ([x, y]) ± [F (x), F (y)] = 0, (ix)
F (x ◦ y) ± (F (x) ◦ F (y)) = 0, (x) F (xy) ± [x, y] ∈ Z(R) and (xi)
F (xy)±x◦y ∈ Z(R) for all x, y in some appropriate subset of R, where
G : R → R is a multiplicative (generalized)-derivation associated with
the map g : R→ R.
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1. Introduction
Throughout the paper R will denote an associative ring with center Z(R). Recall

that a ring R is prime if for any a, b ∈ R, aRb = {0} implies that either a = 0 or
b = 0 and is called semiprime if for any a ∈ R, aRa = {0} implies that a = 0. We
shall write for any pair of elements x, y ∈ R the commutator [x, y] = xy − yx and
skew-commutator x ◦ y = xy + yx. We will frequently use the basic commutator and
skew-commutator identities: (i) [xy, z] = x[y, z]+ [x, z]y, [x, yz] = y[x, z]+ [x, y]z and (ii)
x◦yz = (x◦y)z−y[x, z] = y(x◦z)+[x, y]z, xy◦z = x(y◦z)− [x, z]y = (x◦z)y+x[y, z] for
all x, y, z ∈ R. Let S be a nonempty subset of R. A map F : R→ R is called centralizing
on S if [F (x), x] ∈ Z(R) for all x ∈ S and is called commuting on S if [F (x), x] = 0 for
all x ∈ S. The first well-known result on commuting maps is Posner’s second theorem
in [15]. This theorem states that the existence of a nonzero commuting derivation on
a prime ring R implies R to be commutative. By a derivation, we mean an additive
mapping d : R → R such that d(xy) = d(x)y + xd(y) for all x, y ∈ R. The concept of
derivation was extended to generalized derivation in [6] by Brešar. An additive mapping
g : R → R is said to be a generalized derivation if there exists a derivation d : R → R
such that g(xy) = g(x)y + xd(y) holds for all x, y ∈ R. In [13], Hvala gave the algebraic
study of generalized derivation in prime rings. Obviously every derivation is a generalized
derivation of R.

Many papers in literature have investigated the commutativity of prime and semiprime
rings satisfying certain functional identities involving derivations or generalized deriva-
tions (see [1], [3], [4], [5], [9], [10], [11], [16], [17]).

In [5], Ashraf and Rehman proved that if R is a prime ring with a nonzero ideal I
of R and d is a derivation of R such that either d(xy) − xy ∈ Z(R) for all x, y ∈ I or
d(xy) + xy ∈ Z(R) for all x, y ∈ I, then R is commutative. Recently, Ashraf et al. [3]
have studied the situations replacing derivation d with a generalized derivation F . More
precisely, they proved that the prime ring R must be commutative, if R satisfies any one
of the following conditions : (i) F (xy)−xy ∈ Z(R) for all x, y ∈ I, (ii) F (xy)+xy ∈ Z(R)
for all x, y ∈ I, (iii) F (xy) − yx ∈ Z(R) for all x, y ∈ I, (iv) F (xy) + yx ∈ Z(R) for all
x, y ∈ I, (v) F (x)F (y) − xy ∈ Z(R) for all x, y ∈ I, (vi) F (x)F (y) + xy ∈ Z(R) for all
x, y ∈ I; where F is a generalized derivation of R associated with a nonzero derivation d
and I is a nonzero two-sided ideal of R.

On the other hand, in [9], Daif and Bell proved that if R is a semiprime ring with a
nonzero ideal K and d is a derivation of R such that d([x, y]) = ±[x, y] for all x, y ∈ K,
then K is a central ideal. In particular, if K = R, then R is commutative. Recently,
Quadri et al. [16] generalized this result replacing derivation d with a generalized deriva-
tion in a prime ring R. More precisely, they proved the following:

Let R be a prime ring and I a nonzero ideal of R. If R admits a generalized derivation
F associated with a nonzero derivation d such that any one of the following holds :
(i) F ([x, y]) = [x, y] for all x, y ∈ I; (ii) F ([x, y]) = −[x, y] for all x, y ∈ I; (iii)
F (x ◦ y) = (x ◦ y) for all x, y ∈ I; (iv) F (x ◦ y) = −(x ◦ y) for all x, y ∈ I; then R is
commutative.

Recently in [11], Dhara proved the following result: Let R be a semiprime ring, I be
a nonzero ideal of R and F be a generalized derivation of R with associated derivation
d satisfying F ([x, y]) ± [x, y] = 0 or F (x ◦ y) ± (x ◦ y) = 0 for all x, y ∈ I, then R
must contain a nonzero central ideal, provided d(I) 6= (0). In case R is prime satisfying
F ([x, y]) ± [x, y] ∈ Z(R) or F (x ◦ y) ± (x ◦ y) ∈ Z(R) for all x, y ∈ I, then R must be
commutative, provided d(Z) 6= (0).

In this line of investigation, recently, Asma et al. [1] have studied the following
situations: (i) F (xy) ∈ Z(R), (ii) F ([x, y]) = 0, (iii) (F (xy) ± yx) ∈ Z(R) and (iv)
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(F (xy)± [x, y]) ∈ Z(R); for all x, y in some nonzero left ideal of semiprime ring R, where
F is a generalized derivation of R.

Recently, Dhara and Ali [10] studied the above mentioned results of Ashraf et al. [3]
in semiprime rings replacing two-sided ideal I with left sided ideal λ and generalized
derivation with multiplicative (generalized)-derivation.

Let us introduce the background of investigation about multiplicative (generalized)-
derivation. A mapping D : R→ R which satisfies D(xy) = D(x)y+xD(y) for all x, y ∈ R
is called a multiplicative derivation of R. Of course these mappings are not additive. To
the best of my knowledge, the concept of multiplicative derivations appeared for the first
time in the work of Daif [7]. Then the complete description of those maps was given by
Goldmann and Šemrl in [12].

Further, Daif and Tammam-El-Sayiad [8] extended the notion of multiplicative deriva-
tion to multiplicative generalized derivation as follows: a mapping F : R → R is called
a multiplicative generalized derivation if there exists a derivation d such that F (xy) =
F (x)y+xd(y) for all x, y ∈ R. In [10], Dhara and Ali make a slight generalization of Daif
and Tammam-El-Sayiad’s definition of multiplicative generalized derivation by consider-
ing d as any map. In [10], the authors defined that a mapping F : R→ R (not necessarily
additive) is said to be multiplicative (generalized)-derivation if F (xy) = F (x)y + xf(y)
holds for all x, y ∈ R, where f is any mapping (not necessarily a derivation nor an additive
map). For examples of such maps we refer to [10]. Moreover, multiplicative (generalized)-
derivation with f = 0 covers the notion of multiplicative centralizers (not necessarily addi-
tive). Obviously, every generalized derivation is a multiplicative (generalized)-derivation
on R.

In this line of investigation, it is more interesting to study the identities replacing
generalized derivation with multiplicative (generalized)-derivation. In the present paper,
our main object is to investigate the cases when a multiplicative (generalized)-derivations
F and G satisfies the identities: (i) F (x)F (y)±[x, y] ∈ Z(R), (ii) F (x)F (y)±x◦y ∈ Z(R),
(iii) F ([x, y])±[x, y] ∈ Z(R), (iv) F (x◦y)±(x◦y) ∈ Z(R), (v) F ([x, y])±[F (x), y] ∈ Z(R),
(vi) F (x ◦ y) ± (F (x) ◦ y) ∈ Z(R), (vii) [F (x), y] ± [G(y), x] ∈ Z(R), (viii) F ([x, y]) ±
[F (x), F (y)] = 0, (ix) F (x ◦ y) ± (F (x) ◦ F (y)) = 0, (x) F (xy) ± [x, y] ∈ Z(R) and (xi)
F (xy)± x ◦ y ∈ Z(R) for all x, y in some appropriate subset of R.

2. Main Results
2.1. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F (x)F (y) ± [x, y] ∈ Z(R) for all x, y ∈ λ, then λ[λ, λ] = (0) and λ[f(x), x] = (0) for all
x ∈ λ.

Proof. First we consider the case

(2.1) F (x)F (y) + [x, y] ∈ Z(R) for all x, y ∈ λ.

Substituting yz for y in (2.1), we have

(2.2) F (x)F (yz) + [x, yz] = F (x)F (y)z + F (x)yf(z) + y[x, z] + [x, y]z
= (F (x)F (y)z + [x, y])z + y[x, z] + F (x)yf(z) ∈ Z(R) for all x, y, z ∈ λ.

Commuting both sides with z in (2.2) and using (2.1), we obtain

(2.3) [F (x)yf(z), z] + [y[x, z], z] = 0 for all x, y, z ∈ λ.

Putting x = xz in the above relation, we get

(2.4) [F (x)zyf(z), z] + [xf(z)yf(z), z] + [y[x, z], z]z = 0 for all x, y, z ∈ λ.
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Replacing y by zy in (2.3), we obtain

(2.5) [F (x)zyf(z), z] + z[y[x, z], z] = 0 for all x, y, z ∈ λ.
Subtracting (2.5) from (2.4), we get

(2.6) [xf(z)yf(z), z] + [[y[x, z], z], z] = 0 for all x, y, z ∈ λ.
Putting x = xz, the above relation yields that

(2.7) [xzf(z)yf(z), z] + [[y[x, z], z], z]z = 0 for all x, y, z ∈ λ.
Right multiplying (2.6) by z and then subtracting it from (2.7), we get

(2.8) [x[f(z)yf(z), z], z] = 0 for all x, y, z ∈ λ.
Now we substitute f(z)yf(z)x for x in (2.8), to get

(2.9)
0 = [f(z)yf(z)x[f(z)yf(z), z], z]
= f(z)yf(z)[x[f(z)yf(z), z], z] + [f(z)yf(z), z]x[f(z)yf(z), z]
for all x, y, z ∈ λ.

Using (2.8), it reduces to

(2.10) [f(z)yf(z), z]x[f(z)yf(z), z] = 0 for all x, y, z ∈ λ.
Since λ is a left ideal of R, it follows that x[f(z)yf(z), z]Rx[f(z)yf(z), z] = (0) for all
x, y, z ∈ λ. Since R is semiprime, we have

(2.11) x[f(z)yf(z), z] = 0 for all x, y, z ∈ λ,
that is,

(2.12) x(f(z)yf(z)z − zf(z)yf(z)) = 0 for all x, y, z ∈ λ.
Replacing y by yf(z)u in (2.12), we obtain

(2.13) x(f(z)yf(z)uf(z)z − zf(z)yf(z)uf(z)) = 0 for all u, x, y, z ∈ λ.
Using (2.12), this can be written as

(2.14) x(f(z)yzf(z)uf(z)− f(z)yf(z)zuf(z)) = 0 for all u, x, y, z ∈ λ,
which gives

(2.15) xf(z)y[f(z), z]uf(z) = 0 for all u, x, y, z ∈ λ.
This implies that x[f(z), z]y[f(z), z]u[f(z), z] = 0 for all u, x, y, z ∈ λ and so (λ[f(z), z])3 =
(0) for all z ∈ λ. Since a semiprime ring contains no nonzero nilpotent left ideals (see
[2]), it follows that λ[f(z), z] = (0) for all z ∈ λ.

Now replacing y by yz in (2.3), we get

(2.16) [F (x)yzf(z), z] + [yz[x, z], z] = 0 for all x, y, z ∈ λ.
Right multiplying (2.3) by z and then subtracting from (2.16), we get

(2.17) [F (x)y[f(z), z], z] + [y[x, z]2, z] = 0 for all x, y, z ∈ λ.
By using λ[f(z), z] = (0) for all z ∈ λ, (2.17) yields [y[x, z]2, z] = 0 for all x, y, z ∈
λ. Substituting y by xy, we obtain 0 = [xy[x, z]2, z] = x[y[x, z]2, z] + [x, z]y[x, z]2 =
[x, z]y[x, z]2 and hence y[x, z]2Ry[x, z]2 = (0) for all x, y, z ∈ λ. Since R is semiprime
ring, λ[x, z]2 = (0) for all x, z ∈ λ. Linearizing the last relation with respect to z,
we have (0) = λ[[x, u], v] + λ[[x, v], u] for all x, u, v ∈ λ. Now we put u = uv and
get (0) = λ([[x, u], v]v + [u[x, v], v]) + λ([[x, v], u]v + u[[x, v], v]) = λ[u[x, v], v] for all
x, u, v ∈ λ. Now we put u = xu in this last relation and then get (0) = λ[xu[x, v], v] =
λx[u[x, v], v] + λ[x, v]u[x, v] = λ[x, v]u[x, v] for all x, u, v ∈ λ. Thus λ[x, v]Rλ[x, v] = (0)
for all x, v ∈ λ. Since R is semiprime, it yields λ[λ, λ] = (0), as desired.
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Similarly we can prove the result for the case F (x)F (y)− [x, y] ∈ Z(R) for all x, y ∈
λ. �

2.2. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F (x)F (y)± (x ◦ y) ∈ Z(R) for all x, y ∈ λ, then λ[λ, λ] = (0) and λ[f(x), x] = (0) for all
x ∈ λ.

Proof. First we consider that

(2.18) F (x)F (y)− (x ◦ y) ∈ Z(R) for all x, y ∈ λ.

Substituting yz for y in (2.18), we have

(2.19) F (x)F (yz)− (x ◦ yz) = F (x)F (y)z + F (x)yf(z)− (x ◦ y)z + y[x, z]
= (F (x)F (y)− x ◦ y)z + y[x, z] + F (x)yf(z) ∈ Z(R) for all x, y, z ∈ λ.

Commuting both sides with z in (2.19) and using (2.18), we obtain

(2.20) [F (x)yf(z), z] + [y[x, z], z] = 0 for all x, y, z ∈ λ.

This is same as (2.3) in Theorem 2.1. Then by same argument of Theorem 2.1, we
conclude the result.

Similarly, we can prove the result for the case F (x)F (y) + (x ◦ y) ∈ Z(R) for all
x, y ∈ λ. �

2.3. Corollary. Let R be a semiprime ring and F : R→ R a multiplicative (generalized)-
derivation associated with the map f : R → R. If R satisfies any one of the following
conditions:

(1) F (x)F (y)± [x, y] ∈ Z(R) for all x, y ∈ R;
(2) F (x)F (y)± (x ◦ y) ∈ Z(R) for all x, y ∈ R;

then R must be commutative.

Note that the map G(r) = F (r) ± r for all r ∈ R is a multiplicative (generalized)-
derivation of R.

2.4. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F ([x, y])± [x, y] = 0 for all x, y ∈ λ, then λ[f(x), x] = (0) for all x ∈ λ.

Proof. By hypothesis, we have

(2.21) G([x, y]) = 0 for all x, y ∈ λ.

Replacing y by yx in (2.21) and using (2.21), we obtain

(2.22)
0 = G([x, yx]) = G([x, y]x) = G([x, y])x+ [x, y]f(x) = [x, y]f(x) for all x, y ∈ λ.

This gives that

(2.23) [x, y]f(x) = 0 for all x, y ∈ λ.

Substituting f(x)y for y in (2.23), we get

(2.24) [x, f(x)]yf(x) = 0 for all x, y ∈ λ.



1298

Replace y by yx in (2.24), to get

(2.25) [x, f(x)]yxf(x) = 0 for all x, y ∈ λ.
Right multiplying (2.24) by x and then subtracting from (2.25), we obtain

(2.26) [x, f(x)]y[f(x), x] = 0 for all x, y ∈ λ.
This implies that λ[f(x), x]Rλ[f(x), x] = (0) for all x ∈ λ. Hence the semiprimeness of
R forces that λ[f(x), x] = (0) for all x ∈ λ. �

2.5. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F (x ◦ y)± (x ◦ y) = 0 for all x, y ∈ λ, then λ[f(x), x] = (0) for all x ∈ λ.

Proof. By hypothesis, we have

(2.27) G(x ◦ y) = 0 for all x, y ∈ λ.
Replacing y by yx in (2.27) and using (2.27), we obtain

(2.28)
0 = G(x ◦ yx) = G((x ◦ y)x) = G(x ◦ y)x+ (x ◦ y)f(x) = (x ◦ y)f(x) for all x, y ∈ λ.

This implies that

(2.29) (x ◦ y)f(x) = 0 for all x, y ∈ λ.
Substituting f(x)y for y in (2.29) and using (2.29), we obtain

(2.30) 0 = (x ◦ f(x)y)f(x) = f(x)(x ◦ y)f(x) + [x, f(x)]yf(x) for all x, y ∈ λ.
This implies that

(2.31) [x, f(x)]yf(x) = 0 for all x, y ∈ λ.
Replace y by yx in (2.31), to get

(2.32) [x, f(x)]yxf(x) = 0 for all x, y ∈ λ.
Right multiplying (2.31) by x and then subtracting from (2.32), we obtain

(2.33) [x, f(x)]y[f(x), x] = 0 for all x, y ∈ λ.
Since λ is a left ideal of R, it follows that λ[f(x), x]Rλ[f(x), x] = (0) for all x ∈ λ.
Semiprimeness of R yields that λ[f(x), x] = (0) for all x ∈ λ. �

2.6. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F ([x, y])± [x, y] ∈ Z(R) for all x, y ∈ λ, then one of the following holds:

(1) λ[f(x), x] = (0) for all x ∈ λ;
(2) λ[λ, f(Z)] = (0).

Proof. By hypothesis, we have G([x, y]) ∈ Z(R) for all x, y ∈ λ. If G([x, y]) = 0 for all
x, y ∈ λ, then by Theorem 2.4, λ[f(x), x] = (0) for all x ∈ λ, as desired. Assume that
there exist some x, y ∈ λ such that 0 6= G([x, y]) ∈ Z(R). This gives Z(R) 6= (0). Let
z ∈ Z(R). Replacing y by yz in our hypothesis, we have

(2.34) G([x, y]z) = G([x, y])z + [x, y]f(z) = G([x, y])z + [x, y]f(z) ∈ Z(R),
which implies [x, y]f(z) ∈ Z(R) for all x, y ∈ λ. Thus 0 = [[x, y]f(z), r] for all x, y ∈ λ and
r ∈ R. Replacing x with yx, we get 0 = [[yx, y]f(z), r] = [y[x, y]f(z), r] = [y, r][x, y]f(z),
Since [x, y]f(z) ∈ Z(R) for all x, y ∈ λ. Replacing r with sr, we get 0 = [y, sr][x, y]f(z) =
s[y, r][x, y]f(z)+ [y, s]r[x, y]f(z) = [y, s]r[x, y]f(z) for all x, y ∈ λ and r, s ∈ R and hence
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(0) = [y, x]f(z)R[x, y]f(z) for all x, y ∈ λ. Since R is semiprime, above relation yields
0 = [x, y]f(z) for all x, y ∈ λ. Replacing y with f(z)y, we obtain 0 = [x, f(z)y]f(z) =
f(z)[x, y]f(z) + [x, f(z)]yf(z) = [x, f(z)]yf(z)and hence (0) = y[x, f(z)]Ry[x, f(z)] for
all x, y ∈ λ. Semiprimeness of R yields λ[λ, f(Z)] = (0). �

2.7. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F (x ◦ y)± (x ◦ y) ∈ Z(R) for all x, y ∈ λ, then one of the following holds:

(1) λ[f(x), x] = (0) for all x ∈ λ;
(2) λ[λ, f(Z)] = (0).

Proof. By hypothesis, we have G(x ◦ y) ∈ Z(R) for all x, y ∈ λ. If G(x ◦ y) = 0 for all
x, y ∈ λ, then by Theorem 2.5, λ[f(x), x] = (0) for all x ∈ λ, as desired. Assume that
there exist some x, y ∈ λ such that 0 6= G(x ◦ y) ∈ Z(R). This gives Z(R) 6= (0). Let
z ∈ Z(R). Substituting yz for y in our hypothesis, we have

(2.35) G(x ◦ yz) = G(x ◦ y)z + (x ◦ y)f(z) = (x ◦ y)f(z) ∈ Z(R).
This implies that (x ◦ y)f(z) ∈ Z(R) for all x, y ∈ λ and hence

(2.36) [(x ◦ y)f(z), r] = 0 for all x, y ∈ λ, for all r ∈ R.
Replacing x by yx in (2.36) and then using the fact that (x ◦ y)f(z) ∈ Z(R) for all
x, y ∈ λ, we get

(2.37) 0 = [y(x ◦ y)f(z), r] = [y, r](x ◦ y)f(z) for all x, y ∈ λ,
that is

(2.38) [y, r](x ◦ y)f(z) = 0 for all x, y ∈ λ, for all r ∈ R.
Substituting sx for x in (2.38) and using (x◦y)f(z) ∈ Z(R) for all x, y ∈ λ, we obtain

(2.39) 0 = [y, r](sx ◦ y)f(z) = [y, r]s(x ◦ y)f(z)− [y, r][s, y]xf(z)
= [y, r](x ◦ y)f(z)s+ [r, y][s, y]xf(z) for all x, y ∈ λ, for all r, s ∈ R.

Using (2.38), the above relation yields that

(2.40) [r, y][s, y]xf(z) = 0 for all x, y ∈ λ, for all r, s ∈ R.
Replacing r with rt and using (2.40) we have

(2.41) [r, y]t[s, y]xf(z) = 0 for all x, y ∈ λ, for all r, s, t ∈ R.
In the same manner, replacing s with sp, we obtain

(2.42) [r, y]t[s, y]pxf(z) = 0 for all x, y ∈ λ, for all r, s, t, p ∈ R.
Now replacing x with xy and right multiplying (2.42) by y respectively, and then subtract
one from another to get

(2.43) [r, y]t[s, y]px[f(z), y] = 0 for all x, y ∈ λ, for all r, s, t, p ∈ R.
In particular, we have

(2.44) x[f(z), y]Rx[f(z), y]Rx[f(z), y] = (0) for all x, y ∈ λ,
that is (x[f(z), y]R)3 = (0) for all x, y ∈ λ. Since a semiprime ring contains no nonzero
nilpotent left ideals (see [2]), it follows that x[f(z), y]R = (0), that is x[f(z), y] = 0 for
all x, y ∈ λ and z ∈ Z(R). Thus we have λ[λ, f(Z)] = (0). �

2.8. Corollary. Let R be a semiprime ring and F : R → R be a multiplicative
(generalized)-derivation associated with the map f : R→ R. If F ([x, y])± [x, y] ∈ Z(R)
for all x, y ∈ R or F (x ◦ y)± (x ◦ y) ∈ Z(R) for all x, y ∈ R, then either f is commuting
on R or f : Z(R)→ Z(R).
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2.9. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F ([x, y])± [F (x), y] ∈ Z(R) for all x, y ∈ λ, then one of the following holds:

(1) λ[f(x), x] = (0) for all x ∈ λ;
(2) λ[λ, f(Z)] = (0).

Proof. By our hypothesis, we have

(2.45) F ([x, y])± [F (x), y] = 0 for all x, y ∈ λ.
Then replacing y by yx in (2.45), we get

(2.46)
0 = F ([x, yx])± [F (x), yx] = F ([x, y]x)± ([F (x), y]x+ y[F (x), x])
= F ([x, y])x+ [x, y]f(x)± ([F (x), y]x+ y[F (x), x])
for all x, y ∈ λ.

Using (2.45) in the above relation, we obtain

(2.47) [x, y]f(x)± y[F (x), x] = 0 for all x, y ∈ λ.
Substituting f(x)y for y in (2.47), we get

(2.48) f(x)[x, y]f(x) + [x, f(x)]yf(x)± f(x)y[F (x), x] = 0 for all x, y ∈ λ.
Left multiplying (2.47) by f(x) and then comparing with (2.48), we get

(2.49) [x, f(x)]yf(x) = 0 for all x, y ∈ λ.
Then by similar argument as in the proof of Theorem 2.4, we have λ[f(x), x] = (0) for
all x ∈ λ.
Next, we assume that there exist some x, y ∈ λ such that 0 6= F ([x, y])±[F (x), y] ∈ Z(R).
This implies that Z(R) 6= (0). Let z ∈ Z(R). Substituting y by yz in our hypothesis, we
have

(2.50) F ([x, y]z)± [F (x), y]z = F ([x, y])z + [x, y]f(z)± [F (x), y]z
= (F ([x, y])± [F (x), y])z + [x, y]f(z) ∈ Z(R),

which implies that [x, y]f(z) ∈ Z(R) for all x, y ∈ λ. Then by the same argument as in
the proof of Theorem 2.6, we conclude that λ[λ, f(Z)] = (0). �

2.10. Theorem. Let R be a semiprime ring, λ be a nonzero left ideal of R and F : R→ R
be a multiplicative (generalized)-derivation associated with the map f : R → R. If
F (x ◦ y)± (F (x) ◦ y) ∈ Z(R) for all x, y ∈ λ, then one of the following holds:

(1) λ[f(x), x] = (0) for all x ∈ λ;
(2) λ[λ, f(Z)] = (0).

Proof. By hypothesis, we have

(2.51) F (x ◦ y)± (F (x) ◦ y) = 0 for all x, y ∈ λ.
Then replacing y by yx in (2.51), we have

(2.52) 0 = F (x ◦ yx)± (F (x) ◦ yx) = F ((x ◦ y)x)± ((F (x) ◦ y)x− y[F (x), x])
= F (x ◦ y)x+ (x ◦ y)f(x)± ((F (x) ◦ y)x− y[F (x), x]) for all x, y ∈ λ.

Using (2.51) in the above relation, we get

(2.53) (x ◦ y)f(x)∓ y[F (x), x] = 0 for all x, y ∈ λ.
Substituting f(x)y for y in (2.53), we have

(2.54) f(x)(x ◦ y)f(x) + [x, f(x)]yf(x)∓ f(x)y[F (x), x] = 0 for all x, y ∈ λ.
Left multiplying (2.53) by f(x) and then subtracting from (2.54), we obtain

(2.55) [x, f(x)]yf(x) = 0 for all x, y ∈ λ.
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Then by similar argument of Theorem 2.4, λ[f(x), x] = (0) for all x ∈ λ.
Next, assume that there exist some x, y ∈ λ such that 0 6= F (x ◦ y)± (F (x) ◦ y) ∈ Z(R).
This gives Z(R) 6= (0). Let z ∈ Z(R). Substituting yz for y in our hypothesis, we have

(2.56) F ((x ◦ y)z)± (F (x) ◦ y)z = F (x ◦ y)z + (x ◦ y)f(z)± (F (x) ◦ y)z
= (F (x ◦ y)± F (x) ◦ y)z + (x ◦ y)f(z) ∈ Z(R).

This implies that (x ◦ y)f(z) ∈ Z(R) for all x, y ∈ λ and hence

(2.57) [(x ◦ y)f(z), r] = 0 for all x, y ∈ λ, for all r ∈ R.

Then by the same argument as in the proof of Theorem 2.7, we get λ[λ, f(Z)] = (0), as
desired. �

2.11. Corollary. Let R be a semiprime ring and F : R → R be a multiplicative
(generalized)-derivation associated with the map f : R → R. If F ([x, y]) ± [F (x), y] ∈
Z(R) for all x, y ∈ R or F (x ◦ y) ± (F (x) ◦ y) ∈ Z(R) for all x, y ∈ R, then either f is
commuting on R or f : Z(R)→ Z(R).

2.12. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F,G : R→ R
are multiplicative (generalized)-derivations associated with the maps f, g : R → R. If
[F (x), y]± [G(y), x] ∈ Z(R) for all x, y ∈ λ, then one of the following holds:

(1) λ[g(x), x] = (0) for all x ∈ λ;
(2) λ[λ, g(Z)] = (0).

Proof. By hypothesis, we have [F (x), y]± [G(y), x] ∈ Z(R) for all x, y ∈ λ. If

(2.58) [F (x), y]± [G(y), x] = 0 for all x, y ∈ λ,

then replacing y by yx in (2.58), we get

(2.59)
0 = [F (x), yx]± [G(yx), x] = [F (x), y]x+ y[F (x), x]± ([G(y), x]x+ [yg(x), x])
= ([F (x), y]± [G(y), x])x+ y[F (x), x]± [yg(x), x]
for all x, y ∈ λ.

Using (2.58) in the above relation, we obtain

(2.60) y[F (x), x]± [yg(x), x] = 0 for all x, y ∈ λ.

Substituting g(x)y for y in (2.60), we get

(2.61) g(x)y[F (x), x]± g(x)[yg(x), x]± [g(x), x]yg(x) = 0 for all x, y ∈ λ.

Left multiplying (2.60) by g(x) and then comparing with (2.61), we get

(2.62) [g(x), x]yg(x) = 0 for all x, y ∈ λ.

This is the same as (2.24) in Theorem 2.4, we obtain λ[g(x), x] = (0).
Next, we assume that there exist some x, y ∈ λ such that 0 6= [F (x), y]±[G(y), x] ∈ Z(R).
This implies that Z(R) 6= (0). Let z ∈ Z(R). Substituting y by yz in our hypothesis, we
have

(2.63) [F (x), yz]± [G(yz), x] = [F (x), y]z ± [G(y), x]z
+[yg(z), x] = ([F (x), y]± [G(y), x])z ± [yg(z), x] ∈ Z(R),

For any r ∈ R, this implies that

(2.64) [[yg(z), x], r] = 0 for all x, y ∈ λ.

Replacing y by wy in the above expression and using it, we get

(2.65)
[w, r][yg(z), x] = [w, x][yg(z), r]+[[w, x], r]yg(z) = 0 for all x, y, w ∈ λ, for all r ∈ R.
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Taking x = w in (2.65), we obtain

(2.66) [w, r][yg(z), w] = 0 for all y, w ∈ λ, for all r ∈ R.
Replacing r by yg(z)r in the above relation, we get

(2.67) [yg(z), w]r[yg(z), w] = 0 for all y, w ∈ λ, for all r ∈ R.
Semiprimeness of R yields that

(2.68) [yg(z), w] = 0 for all y, w ∈ λ.
Substituting g(z)y for y in (2.68), we obtain

(2.69) [g(z)yg(z), w] = 0 for all y, w ∈ λ.
This implies that

(2.70) g(z)yg(z)w − wg(z)yg(z) = 0 for all y, w ∈ λ.
Replacing y by yg(z)x in the above expression, we have

(2.71) g(z)yg(z)xg(z)w − wg(z)yg(z)xg(z) = 0 for all x, y, w ∈ λ.
Using (2.70), we get

(2.72) g(z)y[g(z), x]wg(z) = 0 for all x, y, w ∈ λ.
This implies that (λ[λ, g(z)])3 = (0) for any z ∈ Z(R). Since a semiprime ring contains
no nonzero nilpotent left ideals (see [2]), it follows that λ[λ, g(z)] = (0). �

Using the similar arguments and taking G = F or G = −F in Theorem 2.12, one can
prove the following theorem:

2.13. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R→ R
are multiplicative (generalized)-derivations associated with the maps f : R → R. If
[F (x), y]± [F (y), x] ∈ Z(R) for all x, y ∈ λ, then one of the following holds:

(1) λ[f(x), x] = (0) for all x ∈ λ;
(2) λ[λ, f(Z)] = (0).

2.14. Corollary. Let R be a semiprime ring and F : R → R be a multiplicative
(generalized)-derivation associated with the map f : R → R. If [F (x), y] ± [F (y), x] ∈
Z(R) for all x, y ∈ R, then either f is commuting on R or f : Z(R)→ Z(R).

2.15. Theorem. Let R be a semiprime ring with Z(R) 6= (0), λ a nonzero left ideal
of R and F : R → R a multiplicative (generalized)-derivation associated with the map
f : R→ R. If F ([x, y])± [F (x), F (y)] = 0 for all x, y ∈ λ, then λ[λ, f(Z)] = (0).

Proof. Suppose that

(2.73) F ([x, y])± [F (x), F (y)] = 0 for all x, y ∈ λ.
Since Z(R) 6= (0), replacing y by yz in (2.73), where z ∈ Z(R), we get

(2.74)

0 = F ([x, yz])± [F (x), F (yz)] = F ([x, y]z)± ([F (x), y]z + y[F (x), f(z)])
+[F (x), y]f(z) = F ([x, y])z + [x, y]f(z)± ([F (x), f(y)]z + y[F (x), f(z)])
+[F (x), y]f(z) = [x, y]f(z) + y[F (x), f(z)] + [F (x), y]f(z)
for all x, y ∈ λ.

Using (2.73) in the above relation, we obtain

(2.75) [x, y]f(z)± y[F (x), f(z)] + [F (x), y]f(z) = 0 for all x, y ∈ λ.
Replacing ry for y in (2.75), we get

(2.76) r[x, y]f(z) + [x, r]yf(z)± ry[F (x), f(z)] + r[F (x), y]f(z) + [F (x), r]yf(z) = 0
for all x, y ∈ λ, for all r ∈ R.
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Left multiplying (2.75) by r and then subtracting from (2.76), we get

(2.77) [x, r]yf(z)± [F (x), r]yf(z) = 0 for all x, y ∈ λ, for all r ∈ R.
Replacing x by xz in (2.77), where z ∈ Z(R), we have

(2.78)
z[x, r]yf(z)±z[F (x), r]yf(z)+[xf(z), r]yf(z) = 0 for all x, y ∈ λ, for all r ∈ R.

Using (2.77), we get

(2.79) [xf(z), r]yf(z) = 0 for all x, y ∈ λ, for all r ∈ R.
Replacing r by sr in the above relation and using it, we get

(2.80) [xf(z), s]ryf(z) = 0 for all x, y ∈ λ, for all r ∈ R.
Substituting y by ty in (2.80), we obtain

(2.81) [xf(z), s]rtyf(z) = 0 for all x, y ∈ λ, for all r, t ∈ R
Right multiplying (2.80) by t and then subtracting from (2.81), we get

(2.82) [xf(z), s]r[yf(z), t] = 0 for all x, y ∈ λ, for all r, s, t ∈ R.
Semiprimeness of R yields that [xf(z), r] = 0 for all x ∈ λ and r ∈ R. Replacing x by

f(z)x in the above relation, we get

(2.83) [f(z)xf(z), r] = 0 for all x ∈ λ, for all r ∈ R,
that is

(2.84) f(z)xf(z)r − rf(z)xf(z) = 0 for all x ∈ λ, for all r ∈ R.
Replacing x by xf(z)y in (2.84), we obtain

(2.85) f(z)xf(z)yf(z)r − rf(z)xf(z)yf(z) = 0 for all x, y ∈ λ, for all r ∈ R.
Using (2.84) in the above relation, we get

(2.86) f(z)xrf(z)yf(z)− f(z)xf(z)ryf(z) = 0 for all x, y ∈ λ, for all r ∈ R.
We find that f(z)x[f(z), r]yf(z) = 0 for all x, y ∈ λ, r ∈ R. Which implies that
(λ[λ, f(z)])3 = (0) for any z ∈ Z(R). Since a semiprime ring contains no nonzero
nilpotent left ideals (see [2]), we obtain λ[λ, f(z)] = (0) for any z ∈ Z(R). �

2.16. Theorem. Let R be a semiprime ring with Z(R) 6= (0), λ a nonzero left ideal
of R and F : R → R a multiplicative (generalized)-derivation associated with the map
f : R→ R. If F (x ◦ y)± (F (x) ◦ F (y)) = 0 for all x, y ∈ λ, then λ[λ, f(Z)] = (0).

Proof. By hypothesis, we have

(2.87) F (x ◦ y)± F (x) ◦ F (y) = 0 for all x, y ∈ λ.
Since Z(R) 6= (0). Let z ∈ Z(R). Replacing y by yz in (2.87), we have

(2.88)
0 = F (x ◦ yz)± F (x) ◦ F (yz) = F ((x ◦ y)z)± (F (x) ◦ y)z + (F (x) ◦ y)f(z)
−y[F (x), f(z)] = (x ◦ y)f(z)± ((F (x) ◦ y)f(z)− y[F (x), f(z)]) for all x, y ∈ λ.

Using (2.87) in the above relation, we get

(2.89) (x ◦ y)f(z)∓ [F (x), y]f(z) = 0 for all x, y ∈ λ.
Substituting ry for y in (2.89), we obtain

(2.90) r(x ◦ y)f(z) + [x, r]yf(z)∓ r[F (x), y]f(z) + [F (x), r]yf(z) = 0 for all x, y ∈ λ.
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Left multiplying (2.89) by r and then subtracting from (2.90), we get

(2.91) [x, r]yf(z)∓ [F (x), r]yf(z) = 0 for all x, y ∈ λ.
Arguing in the similar manner as in the proof of Theorem 2.15, we get the result.

�

2.17. Corollary. Let R be a semiprime ring with Z(R) 6= (0) and F : R → R
be a multiplicative (generalized)-derivation associated with the map f : R → R. If
F ([x, y]) ± [F (x), F (y)] = 0 or F (x ◦ y) ± (F (x) ◦ F (y)) = 0 for all x, y ∈ R, then
f : Z(R)→ Z(R).

2.18. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F (xy)± [x, y] ∈ Z(R) for all x, y ∈ λ, then λ ⊆ Z(R) for all x ∈ λ and F (xy) ∈ Z(R) for
all x, y ∈ λ.

Proof. By hypothesis, we have

(2.92) F (xy)± [x, y] = G(xy)∓ yx ∈ Z(R)
for all x, y ∈ λ. By [10, Theorem 2.11], we obtain that x[x, λ] ⊆ Z(R) for all x ∈ λ.
Replacing y with xy in (2.92) and then using the fact x[x, λ] ⊆ Z(R) for all x ∈ λ, we
get F (x2y) ∈ Z(R) for all x, y ∈ λ. Now we put x = x2 in (2.92) and then obtain

(2.93) F (x2y)± x[x, y]± [x, y]x ∈ Z(R) for all x, y ∈ λ.
This implies [x, y]x ∈ Z(R) for all x, y ∈ λ. Therefore we can write that x[y, x]− [y, x]x ∈
Z(R) for all x ∈ λ, that gives [y, x]3 = [[[y, x], x], x] = 0 for all x, y ∈ λ. Then by [14,
Theorem 2], we get λ ⊆ Z(R). Thus our hypothesis reduces to F (xy) ∈ Z(R) for all
x, y ∈ λ. �

2.19. Theorem. Let R be a semiprime ring, λ a nonzero left ideal of R and F : R →
R a multiplicative (generalized)-derivation associated with the map f : R → R. If
F (xy)± (x◦y) ∈ Z(R) for all x, y ∈ λ, then λ ⊆ Z(R) and F (xy) ∈ Z(R) for all x, y ∈ λ.

Proof. By hypothesis, we have

(2.94) F (xy)± (x ◦ y) = G(xy)± yx ∈ Z(R)
for all x, y ∈ λ. By [10, Theorem 2.11], we obtain that x[x, λ] ⊆ Z(R) for all x ∈ λ. Now
replacing y with xy in (2.94) and then using the fact x[x, λ] ⊆ Z(R) for all x ∈ λ, we get
F (x2y)± 2xyx ∈ Z(R) for all x, y ∈ λ. Now we put x = x2 in (2.94) and then obtain

(2.95) F (x2y)± (x2 ◦ y) ∈ Z(R)
that is

(2.96) F (x2y)± (2xyx+ x[x, y] + [y, x]x) ∈ Z(R) for all x, y ∈ λ.
This implies [x, y]x ∈ Z(R) for all x, y ∈ λ. Therefore we can write that x[y, x]− [y, x]x ∈
Z(R) for all x ∈ λ, which gives [y, x]3 = [[[y, x], x], x] = 0 for all x, y ∈ λ. Then by
[14, Theorem 2], we get λ ⊆ Z(R). Thus our hypothesis gives F (xy) ∈ Z(R) for all
x, y ∈ λ. �

2.20. Corollary. Let R be a semiprime ring and F : R → R be a multiplicative
(generalized)-derivation associated with the map f : R→ R. If

(1) F (xy)± [x, y] ∈ Z(R) for all x, y ∈ R;
(2) F (xy)± (x ◦ y) ∈ Z(R) for all x, y ∈ R;

then R is commutative.
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3. Examples
The following examples demonstrate that the restrictions in the hypothesis of the

results are not superfluous.

3.1. Example. Consider R =


 0 a b

0 0 c
0 0 0

 |a, b, c ∈ Z

, where Z is the set of all

integers. Since

 0 1 1
0 0 0
0 0 0

R

 0 1 1
0 0 0
0 0 0

 = (0), so R is not semiprime ring. We

define maps F, f : R → R, by F

 0 a b
0 0 c
0 0 0

 =

 0 0 bc
0 0 0
0 0 0

, f

 0 a b
0 0 c
0 0 0

 = 0 0 a2

0 0 0
0 0 0

 . Then F is a multiplicative (generalized)-derivation associated with the

map f .
It is very easy to verify that R satisfies (i) F (x)F (y)± [x, y] ∈ Z(R); (ii) F (x)F (y)±

(x ◦ y) ∈ Z(R), (iii) F (xy) ± [x, y] ∈ Z(R); (iv) F (xy) ± (x ◦ y) ∈ Z(R); Since R is not
commutative, the hypothesis of semiprimeness in Corollary 2.3 and Corollary 2.20 can
not be omitted.

3.2. Example. Consider R =


 0 a b

0 0 c
0 0 0

 | a, b, c ∈ Z2

. Note that R is not a

semiprime ring. Define maps F, f : R → R by F

 0 a b
0 0 c
0 0 0

 =

 0 0 b
0 0 c
0 0 0


and f

 0 a b
0 0 c
0 0 0

 =

 0 b2 a2

0 0 c
0 0 0

 . Then it is verified that F is a multiplicative

(generalized)-derivation associated with the map f . It is easy to see that F ([x, y])±[x, y] ∈
Z(R) and F (x◦y)± (x◦y) ∈ Z(R) for all x, y ∈ R. But neither f is commuting on R nor
f : Z(R)→ Z(R). Hence R to be semiprime in the hypothesis of Corollary 2.8 is essential.

3.3. Example. Let R =


 0 a b

0 0 c
0 0 0

 | a, b, c ∈ S

, where S is any ring. Note that

R is not a semiprime ring. Define maps F and f : R → R by F

 0 a b
0 0 c
0 0 0

 = 0 0 bc
0 0 0
0 0 0

 and f

 0 a b
0 0 c
0 0 0

 =

 0 a2 0
0 0 0
0 0 0

 . Then F is a multiplicative

generalized derivation associated with the map f . It is easy to see that (i) [F (x), y] ±
[F (y), x] ∈ Z(R) and (ii)F ([x, y]) ± [F (x), y] = 0 or F (x ◦ y) ± (F (x) ◦ y) = 0 for all
x, y ∈ R. But neither f is commuting nor f : Z(R) → Z(R). Hence R to be semiprime
in the hypothesis of Corollary 2.11 and Corollary 2.14 are essential.

Moreover, it satisfies F ([x, y])± [F (x), F (y)] = 0 or F (x◦y)± (F (x)◦F (y)) = 0 for all
x, y ∈ R. But f does not map Z(R) to Z(R). Hence R to be semiprime in the hypothesis
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of Corollary 2.17 is essential.
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Abstract
In this paper we introduce and investigate M -cofaithful modules. A
module N ∈ σ[M ] is called M -cofaithful if for every o 6= f ∈
HomR(N,X) with X ∈ σ[M ], HomR(X,M)f 6= 0. We show that if N
is anM -cofaithful weak supplemented module andHomR(N,M) a noe-
therian S-module, then there exists an order-preserving correspondence
between the cocolsed R-submodules of N and the closed S-submodules
of HomR(N,M), where S = EndR(M). Some applications are: (1) the
connection between M

,

s being a lifting module and EndR(M)
,

s being
an extending ring; (2) the equality between the hollow dimension of a
quasi-injective coretractable module M and the uniform dimension of
EndR(M).
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1. Introduction
Throughout this paper, R will denote an arbitrary associative ring with identity, M

and N unitary right R-modules with U = HomR(N,M) the set of R-homomorphisms of
N in M and S = EndR(M) the ring of all R-endomorphisms of M ; U is then a left S-
module. By σ[M ] we mean the full subcategory of Mod-R whose objects are submodules
of M -generated modules.

Following [5], a module N ∈ σ[M ] is said to be M-faithful if for every 0 6= f ∈
HomR(X,N) with X ∈ σ[M ], fHomR(M,X) 6= 0. When M is itself M -faithful, M is
called a self-faithful module. Self-faithful modules have been studied by some authors
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(see, for example, [5, 6, 7, 8]). It is of obvious interest to investigate the dual notion
of M -faithful modules. We call a right R-module N ∈ σ[M ] M-cofaithful if for every
0 6= f ∈ HomR(N,X) with X ∈ σ[M ], HomR(X,M)f 6= 0. When M is itself M -
cofaithful, M is called a self-cofaithful module. Example of self-cofaithful modules is
quasi-injective coretractable modules (Theorem 3.1). In this paper, we investigate M -
cofaithful modules.

It is known that there exists a correspondence between the closed submodules of a
suitably restricted module and the closed one-side ideals of its endomorphism ring. Such
a correspondence is known to hold for semisimple modules, for free modules (see [2]),
and for nonsingular modules M when EndR(E(M)) is the maximal right quotient ring
of EndR(M) (see [13]), hence in particular, for nonsingular retractable modules (see [9]).
Some properties of the endomorphism rings of modules, such as being Baer, extending,
etc., were then obtained by means of the above lattice isomorphism. Zelmanowitz showed
in [12, Theorem 1.2] that when N is an M -faithful R-module, then there exists an order-
preserving correspondence between the closed R-submodules of N and the closed S-
submodules of HomR(M,N), where S = EndR(M). In this paper, we give conditions
under which there exists a correspondence between the coclosed R-submodules of an
M -cofaithful module N and the closed S-submodules of HomR(N,M).

In section 2, we characterize M -cofaithful modules (Proposition 2.1) and study some
properties of M -cofaithful modules. For an M -cofaithful module N , we show that
u.dim(SU) = h.dim(NR), where U = HomR(N,M) (Theorem 2.12). We show that there
is a correspondence between the coclosed R-submodules of an M -cofaithful weak supple-
mented module N and the closed S-submodules ofHomR(N,M) wheneverHomR(N,M)
is a noetherian S-module. (Theorem 2.13). This result is used in proving that if
HomR(N,M) is a noetherian S-module, then an M -cofaithful M -cogenerated amply
supplemented module N is a lifting right R-module if and only if HomR(N,M) is a left
extending S-module, where S = EndR(M) (Theorem 2.15). In section 3, we show that
M -coretractability characterizesM -cofaithfulness for some important families of modules
and conclude that if either (i) M is an amply supplemented quasi-injective coretractable
module and S is noetherian, or (ii) M is an amply supplemented

∑
-self-cogenerator

module and S is noetherian, then:
(a) There exist mutually inverse lattice correspondences between the coclosed sub-

modules of M and the closed left ideals of S = EndR(M).
(b) M is a lifting module if and only if S is a left extending ring.
We will use the notation N ≤e M to indicate that N is essential in M (i.e., N ∩ L 6=

0 ∀0 6= L ≤ M); N � M means that N is small in M (i.e. ∀L � M,L + N 6= M). For
K ≤ NR and A ≤ SU we denote:
An(K) = {f ∈ HomR(N,M) | f(K) = 0}(' HomR(N/K,M)),
Ke(A) =

⋂
{Keg | g ∈ A}.

A submodule N of M is called a closed submodule of M if it is not contained as
a proper essential submodule of any other submodule of M . We recall that L is a
cosmall submodule of K in M (denoted by L cs

↪→ K in M) if K/L�M/L. Recall that a
submodule L of M is called coclosed if L has no proper cosmall submodule (denoted by
L

cc
↪→M). A coclosure of a submodule L of M (denoted by L̃) is a cosmall submodule of

L in M which is also a coclosed submodule of M .
If N and L are submodules of the module M , then N is called a supplement (weak

supplement) of L, if N+L = M and N ∩L� N (N ∩L�M). M is called supplemented
(weakly supplemented) if each of its submodules has a supplement (weak supplement) in
M . M is called amply supplemented, if for all submodules N and L ofM with N+L = M ,
N contains a supplement of L in M.
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2. M-Cofaithful Modules
A module N ∈ σ[M ] is called M-cofaithful if for every 0 6= f ∈ HomR(N,X) with

X ∈ σ[M ], HomR(X,M)f 6= 0.

2.1. Proposition. An R-module N isM-cofaithful if and only if HomR(N, Ke(HomR(X,M))) =
0 for every X ∈ σ[M ].

Proof. Let h : N → Ke(HomR(X,M)) be a nonzero homomorphism. Composing with
the natural inclusion map i : Ke(HomR(X,M)) → X we get a nonzero homomorphism
g : N → X such that Im g ⊆ Ke(HomR(X,M)). Then for every f : X → M, Im g ⊆
Ke(HomR(X,M)) ⊆ ker f . Thus fg = 0 which is a contradiction.

Conversely, let ∀X ∈ σ[M ], HomR(N,Ke(HomR(X,M))) = 0 and 0 6= g : N → X be
a nonzero homomorphism. If HomR(X,M)g = 0, then Im g ⊆ Ke(HomR(X,M)). This
gives a nonzero homomorphism h : N → Ke(HomR(X,M)) which is a contradiction. �

2.2. Proposition. If N is an M-cofaithful module, then HomR(N, KeAn(K)
K

) = 0 for
every K ≤ N .

Proof. It is a direct consequence of Proposition 2.1, because KeAn(K)
K

= Ke(HomR(N
K
,M)).
�

2.3. Proposition. Let M be an R-module. If M is a cogenerator in σ[M ], then every
N ∈ σ[M ] is M-cofaithful.

Proof. Suppose that M is a cogenerator in σ[M ]. Then for every X ∈ σ[M ], X is M -
cogenerated. Thus Ke(HomR(X,M)) = 0. So HomR(N,Ke(HomR(X, M))) = 0 for
every N ∈ σ[M ]. Hence every N ∈ σ[M ] is M -cofaithful. �

2.4. Proposition. Let M be an R-module. Then every generator in σ[M ] is an M-
cofaithful module if and only if every R-module in σ[M ] is an M-cofaithful module.

Proof. Let every generator in σ[M ] is an M -cofaithful module. Suppose that N ∈ σ[M ]
and 0 6= f ∈ HomR(N,X) is given with X ∈ σ[M ]. Then there is a generator F and an
epimorphism g : F → N . Since F is M -cofaithful, there exists h ∈ HomR(X,M) with
hfg 6= 0. Thus hf 6= 0 and this proves that N is M -cofaithful. The converse is clear. �

2.5. Proposition. Let {Nα | α ∈ I} be a family of M-cofaithful modules. Then N =
⊕α∈INα is M-cofaithful.

Proof. Let 0 6= f ∈ HomR(N,X) for X ∈ σ[M ]. Since Nα is M -cofaithful for any α ∈ I,
hence there exists hα : X → M such that hαfiα 6= 0, where iα : Nα → N is the natural
injection map. Then hαf 6= 0 and so N is M -cofaithful. �

2.6. Proposition. Let N be an M-cofaithful R-module. Then every supplement sub-
module of N is M-cofaithful.

Proof. Let K be a supplement submodule of N and 0 6= g ∈ HomR(K,X) for X ∈ σ[M ].
Then there exists L ≤ N such that K+L = N and K∩L� K. Put X ′ = g(K∩L)� X

and let g′ denote the composition N π→ (K + L)/K ∼= K/(K ∩ L)
g→ X/X ′. Then

0 6= g′ : N → X/X ′. By assumption, there exists 0 6= h ∈ HomR(X/X ′,M) with
hg′ 6= 0. Then hg 6= 0 and so HomR(X,M)g 6= 0 because hπ′ 6= 0, where π′ : X → X/X ′

denotes the natural map. �

2.7. Corollary. Let N be an M-cofaithful R-module. Then:
(i) Every direct summand of N is M-cofaithful.
(ii) Every weak supplement coclosed submodule of N is M-cofaithful.
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Proof. (i) By Proposition 2.6.
(ii) Since every weak supplement coclosed submodule is a supplement submodule, it

follows by Proposition 2.6. �

2.8. Lemma. Let N be an M-cofaithful R-module. Then for every proper submodule K
of N , K cs

↪→ KeAn(K) in N and KeAn(K) � N ; in particular, HomR(N/K,M) 6= 0.

Proof. IfK � N and π : N → N/K is the natural epimorphism, thenHomR(N/K,M)π 6=
0 since N/K ∈ σ[M ]. Thus KeAn(K) � N . Let K ≤ L � N , then KeAn(K) + L ≤
KeAn(L) � N . Therefore K cs

↪→ KeAn(K) in N . �

2.9. Proposition. Assume that N is an M-cofaithful R-module. Let K ≤ N and L be
a weak supplement coclosed submodule of N such that L ⊆ KeAn(K). Then L ⊆ K.
In particular, if K is a weak supplement coclosed submodule of N , then K is the unique
coclosure of KeAn(K) in N .

Proof. Let K ≤ N and L be a weak supplement coclosed submodule of N such that
L ⊆ KeAn(K). Suppose that g denotes the composition L

⊆→ KeAn(K) π→ KeAn(K)
K

.
Then by Proposition 2.2 and Corollary 2.7, g = 0, and so L ⊆ K. �

2.10. Proposition. Let N be an M-cofaithful R-module. Then the following conditions
hold:

(1) For every finitely generated S-submodule A ≤ SU , A ≤e HomR(N/Ke(A),M)
(equivalently, A ≤e AnKe(A)).

(2) Let L ≤ K ≤ N . If An(K) ≤e An(L), then L cs
↪→ K in N . The converse holds if

HomR(N,M) is a noetherian S-module.
(3) Let A ≤ B ≤ SU and HomR(N,M) be a noetherian S-module. Then A ≤e B if

and only if Ke(B)
cs
↪→ Ke(A) in N .

Proof. (1) Let 0 6= f ∈ HomR(N/Ke(A),M). Set A = Sg1 + Sg2 + ... + Sgk with
gi ∈ HomR(N,M). Then Ke(A) =

⋂
i≤kKegi. Let P = {(f(n+Ke(A)), (

∏k
i=1 gi)(n+

Ke(A))) | n ∈ N} and let ī1 : M (k) →M ⊕M (k) → M⊕M(k)

P
and ī2 : M →M ⊕M (k) →

M⊕M(k)

P
be the canonical maps. We have the following commutative diagram:

0 −→ N/Ke(A)
↓ f

∏k
i=1 gi−→ M (k)

↓ −ī1

M
ī2−→ (M ⊕M (k))/P .

Then 0 6= ī2f = −ī1(
∏k
i=1 gi) : N/Ke(A) → (M ⊕M (k))/P . By hypothesis, there

exists h ∈ HomR(M⊕M
(k)

P
,M) with hī2f 6= 0. We may consider h(−ī1) as

∑k
i=1 si

for some si ∈ S. Thus 0 6= hī2f = h(−ī1)(
∏k
i=1 gi) =

∑k
i=1 sigi ∈ A. Therefore

A ≤e HomR(N/Ke(A),M).
(2) Let An(K) ≤e An(L) for L ≤ K ≤ N . Suppose that K/L + X/L = N/L, where

L ≤ X ≤ N . If X 6= N , then by hypothesis, there exists 0 6= f ∈ U with f(X) = 0. Thus
f(L) = 0 and so 0 6= f ∈ An(L). As An(K) ≤e An(L), there exists g ∈ S such that
0 6= gf ∈ An(K). Hence gf(N) = gf(K + X) = 0, which is a contradiction. Therefore
L

cs
↪→ K in N . Conversely, assume that L cs

↪→ K in N and let 0 6= A ≤ An(L). Then
L ≤ Ke(A) � N and soK+Ke(A) � N . Thus 0 6= An(K+Ke(A)) = An(K)∩AnKe(A).
But A ≤e AnKe(A) from (1), so An(K) ∩A 6= 0. Therefore An(K) ≤e An(L).

(3) It is clear that A is essential in B if and only if AnKe(A) is essential in AnKe(B),
by (1) (because A and B are finitely generated, so (1) can be applied). By using (2), the
claimed property holds. �
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Recall that a module M is said to have uniform (or Goldie) dimension n, denoted by
u.dim(M) = n for some n ∈ N, if sup{k ∈ N |M contains k independent submodules } =
n [4]. A module M is said to have hollow dimension n, denoting this by h.dim(M) = n
for some n ∈ N, if sup{k ∈ N | M has k coindependent submodules } = n [3].

2.11. Lemma. Let N ∈ σ[M ] be a nonzero R-module and K,L ≤ N . If K + L = N ,
then An(K ∩ L) = An(K) +An(L).

Proof. It follows from [1, Lemma 4.9]. �

2.12. Theorem. Let N be an M-cofaithful module. Then u.dim(SU) = h.dim(NR).

Proof. Assume first that Sf1, Sf2, ..., Sfn is an independent family of submodules of
SU and 0 6= fi ∈ SU for all 1 ≤ i ≤ n. Since Sfi ∩ Sfj = 0 for any i 6= j, and
Sfi ≤e AnKe(Sfi) for all 1 ≤ i ≤ n, AnKe(Sfi)∩AnKe(Sfj) = 0. Thus An(Ke(Sfi)+
Ke(Sfj)) = 0. Since N is M -cofaithful, Ke(Sfi) + Ke(Sfj) = N . By Lemma 2.11,
An(Ke(Sfi) ∩ Ke(Sfj)) = AnKe(Sfi) + AnKe(Sfj) for each i 6= j. Let i, j, k ∈
{1, 2, ..., n} be distinct. Since Sfi∩(Sfj+Sfk) = 0 and Sfi∩(Sfj+Sfk) ≤e AnKe(Sfi)∩
(AnKe(Sfj) + AnKe(Sfk)), hence 0 = AnKe(Sfi) ∩ (AnKe(Sfj) + AnKe(Sfk)) =
AnKe(Sfi) ∩ An(Ke(Sfj) ∩Ke(Sfk)) = An(Ke(Sfi) + (Ke(Sfj) ∩Ke(Sfk))). There-
fore Ke(Sfi) + (Ke(Sfj) ∩Ke(Sfk)) = N . It is easy to see by induction that for every
1 ≤ i ≤ n, Ke(Sfi) + (

⋂
j 6=iKe(Sfj)) = N. Hence {Ke(Sfi), ...,Ke(Sfn)} is coindepen-

dent. Thus u.dim(SU) ≤ h.dim(NR). On the other hand, from [1, Proposition 4.10],
u.dim(SU) ≥ h.dim(NR) and the proof is completed. �

2.13. Theorem. Assume that N is an M-cofaithful weak supplemented module and
HomR(N,M) is a noetherian S-module. Then for every A ≤c SU = HomR(N,M),
Ke(A) has a unique coclosure K̃e(A) in N and the maps K → An(K) and A→ K̃e(A)
determine mutually inverse correspondences between the coclosed R-submodules of N and
the closed S-submodules of U = HomR(N,M).

Proof. Let K cc
↪→ N and An(K) ≤e A ≤ SU . By Zorn

,

s Lemma, we may assume that
A is closed in SU . From Proposition 2.10, Ke(A)

cs
↪→ KeAn(K) in N . By Proposition

2.9, K cs
↪→ Ke(A) in N . Hence A ⊆ AnKe(A) ⊆ An(K). Thus A = An(K); that is,

An(K) ≤c SU . Also, K = ˜KeAn(K).
Assume that A ≤c SU . We show that Ke(A) has a unique coclosure in N . Let

K
cc
↪→ N and K cs

↪→ Ke(A) in N . By using Proposition 2.10, A ≤e AnKe(A) ≤e An(K),
and so A = An(K). Thus Ke(A) = KeAn(K). Therefore K is a unique coclosure of
Ke(A) (by Proposition 2.9). So A = An(K) = An(K̃e(A)). �

2.14. Corollary. Let N be an M-cofaithful module and HomR(N,M) be a noetherian
S-module. Then, K̃e(A) = Ke(A) for every A ≤c SU if and only if every K cc

↪→ N is
M-cogenerated.

Proof. Assume that for every A ≤c SU , K̃e(A) = Ke(A) and let K cc
↪→ N . Then

An(K) ≤c SU . From Theorem 2.13 and hypothesis, K = ˜KeAn(K) = KeAn(K).
Thus K is M -cogenerated. Conversely, suppose that every K

cc
↪→ N is M -cogenerated

and A ≤c SU . By Theorem 2.13, A = An(K̃e(A)). On the other hand, by hypothesis,
K̃e(A) = KeAn(K̃e(A)). Therefore K̃e(A) = Ke(A). �

Recall that an R-module M is an extending module if for every submodule K of M
there exists a direct summand L of M such that K ≤e L, or equivalently, every closed
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submodule ofM is a direct summand. A left extending ring is a ring which is a extending
module over itself. Dually, a module M is called a lifting module if, every submodule
N of M can be written in the form N = K ⊕ D where K is a direct summand of M
and D � M . By [10, 4.8], M is lifting if and only if it is amply supplemented and its
coclosed submodules are direct summands.

2.15. Theorem. Let N be an M-cofaithful module and HomR(N,M) be a noetherian
S-module. If NR is a lifting module, then SU is an extending module; and the converse
holds when N is M-cogenerated and amply supplemented.

Proof. Let N be a lifting module and let A ≤c SU . Then, by Theorem 2.13, N =

K̃e(A)⊕D for some D ≤ N . Thus U = An(K̃e(A))⊕An(D) = A⊕An(D). Conversely,
suppose that N is M -cogenerated and amply supplemented and let SU be an extending
module and K cc

↪→ N . Then, by Theorem 2.13 again, U = An(K)⊕B for some B ≤ SU .
Thus 0 = Ke(U) = KeAn(K)∩Ke(B) = K∩Ke(B). On the other hand, N = K+Ke(B)
since if K + Ke(B) � N , then 0 6= An(K + Ke(B)) = An(K) ∩ AnKe(B), whence
An(K) ∩ B 6= 0, which is a contradiction. Therefore N = K ⊕ Ke(B) and so N is
lifting. �

3. Applications to coretractable modules
Recall that an R-module N is called M-coretractable if, for any proper submodule

K of N , there exists a nonzero homomorphism f : N → M with f(K) = 0, that
is, HomR(N/K,M) 6= 0. An R-module M is called coretractable if M is itself M -
coretractable [3]. By Lemma 2.8, every M -cofaithful module N is M -coretractable.

3.1. Theorem. Let M be a quasi-injective R-module. Then N ∈ σ[M ] is M-cofaithful
if and only if N is M-coretractable.

Proof. By Lemma 2.8, every M -cofaithful module N is M -coretractable. Conversely,
suppose that N is M -coretractable. It suffices to show that for every X ∈ σ[M ],
HomR(N,Ke(HomR(X,M))) = 0. Assume that there exists a nonzero homomorphism
f : N → Ke(HomR(X,M)). Then 0 6= if : N → X, where i : Ke(HomR(X,M)) → X
is the inclusion map. Since if 6= 0, there exists Z = Im (if) 6= 0. Now, HomR(Z,M) 6= 0
because Z is a quotient of N and N is M -coretractable. But every homomorphism
g : Z → M can be extended to a homomorphism h : X → M because M is quasi-
injective and X ∈ σ[M ] (by [11, 16.3]). Since Z ⊆ Ke(HomR(X,M)) ⊆ X, h(Z) = 0,
which is a contradiction. �

3.2. Corollary. Let S = EndR(M) be a noetherian ring and M an amply supplemented
module with one of the following properties:

(i) M is a quasi-injective coretractable module;
(ii) M is a

∑
-self-cogenerator module (that is, any direct sum of copies of M is a

self-cogenerator). Then:
(a) There exist mutually inverse lattice correspondences between the coclosed submod-

ules of M and the closed left ideals of S = EndR(M).
(b) M is a lifting module if and only if S is a left extending ring.

Proof. By combining Theorems 2.13, 2.15, 3.1, and in the special case when N = M and
U = S. �

3.3. Corollary. Let M be an R-module. If any of the following conditions is satisfied,
then the hollow dimension of M is equal to n if and only if the right uniform dimension
of S is n:
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(i) M is a quasi-injective coretractable module.
(ii) M is a

∑
-self-cogenerator.

Proof. Using Theorems 2.12 and 3.1 in the special case when N = M and U = S. �
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The main purpose of this paper is to determine the fine spectrum with
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1. Introduction
Let X and Y be Banach spaces, and T : X → Y also be a bounded linear operator.

By R(T ), we denote the range of T , i.e.,

R(T ) = {y ∈ Y : y = Tx, x ∈ X}.
By B(X), we also denote the set of all bounded linear operators on X into itself. If X is
any Banach space and T ∈ B(X) then the adjoint T ∗ of T is a bounded linear operator
on the dual X∗ of X defined by (T ∗f) (x) = f (Tx) for all f ∈ X∗ and x ∈ X.

Given an operator T ∈ B(X), the set

ρ(T ) := {λ ∈ C : Tλ = λI − T is a bijection}
is called the resolvent set of T and its complement with respect to the complex plain

σ(T ) := C\ρ(T )
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is called the spectrum of T . By the closed graph theorem, the inverse operator

R(λ;T ) := (λI − T )−1, (λ ∈ ρ(T ))(1.1)

is always bounded and is usually called resolvent operator of T at λ.

2. Subdivisions of the spectrum
In this section, we give the definitions of the parts point spectrum, continuous spec-

trum, residual spectrum, approximate point spectrum, defect spectrum and compression
spectrum of the spectrum. There are many different ways to subdivide the spectrum of
a bounded linear operator. Some of them are motivated by applications to physics, in
particular, quantum mechanics.

2.1. The point spectrum, continuous spectrum and residual spectrum. Asso-
ciated with each complex number λ is the perturbed operator Tλ = λI − T , defined on
the same domain D(T ) as T . The spectrum σ(T,X) consist of those λ ∈ C for which Tλ
is not invertible, and the resolvent is the mapping from the complement σ(T,X) of the
spectrum into the algebra of bounded linear operators on X defined by λ 7→ T−1

λ . The
name resolvent is appropriate, since T−1

λ helps to solve the equation Tλx = y. Thus,
x = T−1

λ y provided T−1
λ exists. More important, the investigation of properties of T−1

λ

will be basic for an understanding of the operator T itself. Naturally, many properties
of Tλ and T−1

λ depend on λ, and spectral theory is concerned with those properties. For
instance, we shall be interested in the set of all λ’s in the complex plane such that T−1

λ

exists. Boundedness of T−1
λ is another property that will be essential. We shall also ask

for what λ’s the domain of T−1
λ is dense in X, to name just a few aspects. A regular

value λ of T is a complex number such that T−1
λ exists and bounded and whose domain

is dense in X. For our investigation of T , Tλ and T−1
λ , we need some basic concepts in

spectral theory which are given as follows (see [30, pp. 370-371]):
The resolvent set ρ(T,X) of T is the set of all regular values λ of T . Furthermore,

the spectrum σ(T,X) is partitioned into three disjoint sets as follows:
The point (discrete) spectrum σp(T,X) is the set such that T−1

λ does not exist. An
λ ∈ σp(T,X) is called an eigenvalue of T .

The continuous spectrum σc(T,X) is the set such that T−1
λ exists and is unbounded

and the domain of T−1
λ is dense in X.

The residual spectrum σr(T,X) is the set such that T−1
λ exists (and may be bounded

or not) but the domain of T−1
λ is not dense in X.

Therefore, these three subspectras form a disjoint subdivisions

σ(T,X) = σp(T,X) ∪ σc(T,X) ∪ σr(T,X).(2.1)

To avoid trivial misunderstandings, let us say that some of the sets defined above, may
be empty. This is an existence problem which we shall have to discuss. Indeed, it is
well-known that σc(T,X) = σr(T,X) = ∅ and the spectrum σ(T,X) consists of only the
set σp(T,X) in the finite dimensional case.

2.2. The approximate point spectrum, defect spectrum and compression spec-
trum. In this subsection, following Appell et al. [9], we define the three more subdi-
visions of the spectrum called as the approximate point spectrum, defect spectrum and
compression spectrum.

Given a bounded linear operator T in a Banach space X, we call a sequence (xk) in
X as a Weyl sequence for T if ‖xk‖ = 1 and ‖Txk‖ → 0, as k →∞.

In what follows, we call the set

σap(T,X) := {λ ∈ C : there exists a Weyl sequence for λI − T}(2.2)
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the approximate point spectrum of T . Moreover, the subspectrum

σδ(T,X) := {λ ∈ C : λI − T is not surjective}(2.3)

is called defect spectrum of T .
The two subspectra given by (2.2) and (2.3) form a (not necessarily disjoint) subdivi-

sions

σ(T,X) = σap(T,X) ∪ σδ(T,X)

of the spectrum. There is another subspectrum,

σco(T,X) = {λ ∈ C : R(λI − T ) 6= X}

which is often called compression spectrum in the literature. The compression spectrum
gives rise to another (not necessarily disjoint) decomposition

σ(T,X) = σap(T,X) ∪ σco(T,X)

of the spectrum. Clearly, σp(T,X) ⊆ σap(T,X) and σco(T,X) ⊆ σδ(T,X). Moreover,
comparing these subspectra with those in (2.1) we note that

σr(T,X) = σco(T,X)\σp(T,X),

σc(T,X) = σ(T,X)\[σp(T,X) ∪ σco(T,X)].

Sometimes it is useful to relate the spectrum of a bounded linear operator to that
of its adjoint. Building on classical existence and uniqueness results for linear operator
equations in Banach spaces and their adjoints.

2.1. Proposition. [9, Proposition 1.3, p. 28] Spectra and subspectra of an operator
T ∈ B(X) and its adjoint T ∗ ∈ B(X∗) are related by the following relations:

(a) σ(T ∗, X∗) = σ(T,X).
(b) σc(T ∗, X∗) ⊆ σap(T,X).
(c) σap(T ∗, X∗) = σδ(T,X).
(d) σδ(T ∗, X∗) = σap(T,X).
(e) σp(T ∗, X∗) = σco(T,X).
(f) σco(T ∗, X∗) ⊇ σp(T,X).
(g) σ(T,X) = σap(T,X) ∪ σp(T ∗, X∗) = σp(T,X) ∪ σap(T ∗, X∗).

The relations (c)–(f) show that the approximate point spectrum is in a certain sense
dual to defect spectrum, and the point spectrum dual to the compression spectrum.

The equality (g) implies, in particular, that σ(T,X) = σap(T,X) if X is a Hilbert
space and T is normal. Roughly speaking, this shows that normal (in particular, self-
adjoint) operators on Hilbert spaces are most similar to matrices in finite dimensional
spaces (see [9]).

2.3. Goldberg’s classification of spectrum. If X is a Banach space and T ∈ B(X),
then there are three possibilities for R(T ):

(A) R(T ) = X.
(B) R(T ) 6= R(T ) = X.
(C) R(T ) 6= X.

and

(1) T−1 exists and is continuous.
(2) T−1 exists but is discontinuous.
(3) T−1 does not exist.
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If these possibilities are combined in all possible ways, nine different states are created.
These are labelled by: A1, A2, A3, B1, B2, B3, C1, C2, C3. If an operator is in state C2

for example, then R(T ) 6= X and T−1 exist but is discontinuous (see [22]).
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B2

B1

A3

A2

A1

C3C2C1B3B2B1A3A2A1

-

6

T

T ∗

Table 1.1: State diagram for B(X) and B(X∗) for a non-reflective Banach space X

If λ is a complex number such that Tλ = λI − T ∈ A1 or Tλ = λI − T ∈ B1, then
λ ∈ ρ(T,X). All scalar values of λ not in ρ(T,X) comprise the spectrum of T . The further
classification of σ(T,X) gives rise to the fine spectrum of T . That is, σ(T,X) can be
divided into the subsets A2σ(T,X) = ∅, A3σ(T,X), B2σ(T,X), B3σ(T,X), C1σ(T,X),
C2σ(T,X), C3σ(T,X). For example, if Tλ = λI − T is in a given state, C2 (say), then
we write λ ∈ C2σ(T,X).

By the definitions given above, we can illustrate the subdivisions (2.1) in the following
table:
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1 2 3
T−1
λ exists T−1

λ exists T−1
λ

and is bounded and is unbounded does not exist
λ ∈ σp(T,X)

A R(λI − T ) = X λ ∈ ρ(T,X) – λ ∈ σap(T,X)

λ ∈ σc(T,X) λ ∈ σp(T,X)

B R(λI − T ) = X λ ∈ ρ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σδ(T,X) λ ∈ σδ(T,X)

λ ∈ σr(T,X) λ ∈ σr(T,X) λ ∈ σp(T,X)

C R(λI − T ) 6= X λ ∈ σδ(T,X) λ ∈ σap(T,X) λ ∈ σap(T,X)
λ ∈ σδ(T,X) λ ∈ σδ(T,X)

λ ∈ σco(T,X) λ ∈ σco(T,X) λ ∈ σco(T,X)

Table 1.2: Subdivisions of spectrum of a linear operator
Observe that the case in the first row and second column cannot occur in a Banach

space X, by the closed graph theorem. If we are not in the third column, i.e., if λ is not
an eigenvalue of T , we may always consider the resolvent operator T−1

λ (on a possibly
“thin” domain of definition) as “algebraic” inverse of λI − T .

From now on, we should note that the index p has different meanings in the notation
of the spaces `p, `∗p and the point spectrums σp[B(r̃, s̃), `p], σp[B(r̃, s̃)∗, `∗p] which occur
in theorems given in Section 3.

By a sequence space, we understand a linear subspace of the space ω = CN1 of all
complex sequences which contains φ, the set of all finitely non–zero sequences, where
N1 denotes the set of positive integers. We write `∞, c, c0 and bv for the spaces of all
bounded, convergent, null and bounded variation sequences which are the Banach spaces
with the sup-norm ‖x‖∞ = supk∈N |xk| and ‖x‖bv =

∑∞
k=0 |xk − xk+1| while φ is not a

Banach space with respect to any norm, respectively, where N = {0, 1, 2, . . . }. Also by
`p, we denote the space of all p–absolutely summable sequences which is a Banach space
with the norm ‖x‖p =

(∑∞
k=0 |xk|

p
)1/p, where 1 ≤ p <∞.

Let A = (ank) be an infinite matrix of complex numbers ank, where n, k ∈ N, and
write

(Ax)n =
∑
k

ankxk ; (n ∈ N, x ∈ D00(A)),(2.4)

where D00(A) denotes the subspace of w consisting of x ∈ w for which the sum exists as a
finite sum. For simplicity in notation, here and in what follows, the summation without
limits runs from 0 to ∞ and we shall use the convention that any term with negative
subscript is equal to naught. More generally if µ is a normed sequence space, we can
write Dµ(A) for the x ∈ w for which the sum in (2.4) converges in the norm of µ. We
write

(λ : µ) = {A : λ ⊆ Dµ(A)}
for the space of those matrices which send the whole of the sequence space λ into µ in
this sense.

We give a short survey concerning with the spectrum and the fine spectrum of the
linear operators defined by some particular triangle matrices over certain sequence spaces.
The fine spectrum of the Cesàro operator of order one on the sequence space `p studied
by Gonzàlez [23], where 1 < p < ∞. Also, weighted mean matrices of operators on
`p investigated by Cartlidge [15]. The spectrum of the Cesàro operator of order one
on the sequence spaces bv0 and bv investigated by Okutoyi [32, 33]. The spectrum and



1320

fine spectrum of the Rhally operators on the sequence spaces c0, c and `p examined by
Yıldırım [41, 42, 43, 44]. The fine spectrum of the difference operator ∆ over the sequence
spaces c0 and c studied by Altay and Başar [5]. The same authors also worked the fine
spectrum of the generalized difference operator B(r, s) over c0 and c, in [6].

The fine spectra of ∆ over `1 and bv studied by Kayaduman and Furkan [29]. The
fine spectra of the difference operator ∆ over the sequence spaces `p and bvp studied by
Akhmedov and Başar [2, 3], where bvp is the space of p-bounded variation sequences and
introduced by Başar and Altay [10] with 1 ≤ p < ∞. The fine spectrum of B(r, s, t)
over the sequence spaces c0 and c studied by Furkan et al. [20]. de Malafosse [31]
studied the spectrum and the fine spectrum of the difference operator on the sequence
spaces sr, where sr denotes the Banach space of all sequences x = (xk) normed by
‖x‖sr = supk∈N

|xk|
rk

, (r > 0). Altay and Karakuş [7] determined the fine spectrum of
the Zweier matrix which is a band matrix as an operator over the sequence spaces `1
and bv. Farés and de Malafosse [19] studied the spectra of the difference operator on
the sequence spaces `p(α), where (αn) denotes the sequence of positive reals and `p(α) is
the Banach space of all sequences x = (xn) normed by ‖x‖`p(α) =

[∑∞
n=1 (|xn|/αn)p

]1/p
with p ≥ 1. The fine spectrum of the operator B(r, s) over `p and bvp studied by Bilgiç
and Furkan [11]. Besides, the fine spectrum with respect to the Goldberg’s classification
of the operator B(r, s, t) defined by a triple band matrix over the sequence spaces `p and
bvp with 1 < p < ∞ studied by Furkan et al. [21]. In 2010, Srivastava and Kumar [36]
determined the spectra and the fine spectra of generalized difference operator ∆ν on `1,
where ∆ν is defined by (∆ν)nn = νn and (∆ν)n+1,n = −νn for all n ∈ N, under certain
conditions on the sequence ν = (νn) and they generalized these results by the generalized
difference operator ∆uv defined by ∆uvx = (unxn + vn−1xn−1)n∈N for all n ∈ N, (see
[38]).

Recently, Altun [8] have obtained the fine spectra of the Toeplitz operators, which are
represented by upper and lower triangular n-band infinite matrices, over the sequence
spaces c0 and c. Later, Karaisa [26, 25] have determined the fine spectrum of the gen-
eralized difference operator A(r̃, s̃), defined as an upper triangular double-band matrix
with the convergent sequences r̃ = (rk) and s̃ = (sk) having certain properties, over the
sequence space `p, where (1 ≤ p <∞).

Quite recently, Akhmedov and El-Shabrawy [4], and El-Shabrawy [28] have obtained
the fine spectrum of the generalized difference operator ∆a,b, defined as a double band
matrix with the convergent sequences ã = (ak) and b̃ = (bk) having certain properties,
over the sequence spaces c and c0. Karaisa and Başar [13, 14, 27] have determined the fine
spectrum of the upper triangular triple band matrix A(r, s, t) over some sequence spaces.
Yeşilkayagil and Başar [40] have computed the fine spectrum with respect to Goldberg’s
classification of the operator defined by the lambda matrix over the sequence spaces c0
and c. Finally, Dündar and Başar [18] have studied the fine spectrum of the matrix
operator ∆+ defined by an upper triangle double band matrix acting on the sequence
space c0 with respect to the Goldberg’s classification. At this stage, the following table
may be useful:
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σ(A, λ) σp(A, λ) σc(A, λ) σr(A, λ) refer to:
σ(Cp1 , c) - - - [39]
σ(W, c) - - - [35]
σ(C1, c0) - - - [34]
σ(C1, c0) σp(C1, c0) σc(C1, c0) σr(C1, c0) [1]
σ(C1, bv) - - - [33]
σ(Cp1 , c0) - - - [16]
σ(∆, sr) - - - [31]
σ(∆, c0) - - - [31]
σ(∆, c) - - - [31]
σ(∆(1), c) σp(∆

(1), c) σc(∆
(1), c) σr(∆

(1), c) [5]
σ(∆(1), c0) σp(∆

(1), c0) σc(∆
(1), c0) σr(∆

(1), c0) [5]
σ(B(r, s), `p) σp(B(r, s), `p) σc(B(r, s), `p) σr(B(r, s), `p) [12]
σ(B(r, s), bvp) σp(B(r, s), bvp) σc(B(r, s), bvp) σr(B(r, s), bvp) [12]
σ(B(r, s, t), `p) σp(B(r, s, t), `p) σc(B(r, s, t), `p) σr(B(r, s, t), `p) [21]
σ(B(r, s, t), bvp) σp(B(r, s, t), bvp) σc(B(r, s, t), bvp) σr(B(r, s, t), bvp) [21]

σ(∆a,b, c) σp(∆a,b, c) σc(∆a,b, c) σr(∆a,b, c) [4]
σ(∆ν , `1) σp(∆ν , `1) σc(∆ν , `1) σr(∆ν , `1) [36]
σ(∆2

uv, c0) σp(∆
2
uv, c0) σc(∆

2
uv, c0) σr(∆

2
uv, c0) [37]

σ(∆uv, `1) σp(∆uv, `1) σc(∆uv, `1) σr(∆uv, `1) [38]
σ(Λ, c0) σp(Λ, c0) σc(Λ, c0) σr(Λ, c0) [40]
σ(∆+, c0) σp(∆

+, c0) σc(∆
+, c0) σr(∆

+, c0) [18]

Table 1.3: Spectrum and fine spectrum of some triangle matrices in certain sequence
spaces.

In this paper, we study the fine spectrum of the generalized difference operator B(r̃, s̃)
defined by a double sequential band matrix acting on the sequence space `p with respect
to the Goldberg’s classification, where 1 < p <∞. Additionally, we give the approximate
point spectrum, defect spectrum and compression spectrum of the matrix operator B(r̃, s̃)
over the space `p.

We quote some lemmas which are needed in proving the theorems given in Section 3.

2.2. Lemma. [17, p. 253, Theorem 34.16] The matrix A = (ank) gives rise to a bounded
linear operator T ∈ B(`1) from `1 to itself if and only if the supremum of `1 norms of
the columns of A is bounded.

2.3. Lemma. [17, p. 245, Theorem 34.3] The matrix A = (ank) gives rise to a bounded
linear operator T ∈ B(`∞) from `∞ to itself if and only if the supremum of `1 norms of
the rows of A is bounded.

2.4. Lemma. [17, p. 254, Theorem 34.18] Let 1 < p <∞ and A ∈ (`∞ : `∞)∩ (`1 : `1).
Then, A ∈ (`p : `p).

Let r̃ = (rk) and s̃ = (sk) be sequences whose entries either constants or distinct
none-zero real numbers satisfying the following conditions:

lim
k→∞

rk = r,

lim
k→∞

sk = s 6= 0

|rk − r| 6= |s|.
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Then, we define the sequential generalized difference matrix B(r̃, s̃) by

B(r̃, s̃) =


r0 0 0 0 . . .
s0 r1 0 0 . . .
0 s1 r2 0 . . .
0 0 s2 r3 . . .
...

...
...

...
. . .

 .

Therefore, we introduce the operator B(r̃, s̃) from `p to itself by

B(r̃, s̃)x = (rkxk + sk−1xk−1)∞k=0 with x−1 = 0, where x = (xk) ∈ `p.

3. The Fine spectrum of the Operator B(r̃, s̃) on the Operator
sequence space `p

3.1. Theorem. The operator B(r̃, s̃) : `p → `p is a bounded linear operator and

(|rk|p + |sk|p)1/p ≤ ‖B(r̃, s̃‖p ≤ ‖s̃‖∞ + ‖r̃‖∞.(3.1)

Proof. Since the linearity of the operator B(r̃, s̃) does not hard, we omit the detail.
Now we prove that (3.1) holds for the operator B(r̃, s̃) on the space `p. It is trivial

that B(r̃, s̃)e(k) = (0, 0, . . . , rk, sk, 0, 0, . . .) for e(k) ∈ `p. Therefore, we have

‖B(r̃, s̃)e(k)‖p
‖e(k)‖p

= (|rk|p + |sk|p)1/p

which implies that

(|rk|p + |sk|p)1/p ≤ ‖B(r̃, s̃)‖p.(3.2)

Let x = (xk) ∈ `p, where p > 1. Then, since (sk−1xk−1), (rkxk) ∈ `p it is easy to see
by Minkowski’s inequality that

‖B(r̃, s̃)x‖p =

(
∞∑
k=0

|sk−1xk−1 + rkxk|p
)1/p

≤

(
∞∑
k=0

|sk−1xk−1|p
)1/p

+

(
∞∑
k=0

|rkxk|p
)1/p

≤ (‖s̃‖∞ + ‖r̃‖∞)‖x‖p

which leads us to the the result that

‖B(r̃, s̃)‖p ≤ ‖s̃‖∞ + ‖r̃‖∞.(3.3)

Therefore, by combining the inequalities in (3.2) and (3.3) we have (3.1), as desired. �

3.2. Theorem. Let A = {α ∈ C : |r − α| ≤ |s|} and B = {rk : k ∈ N, |r − rk| > |s|}.
Then, the set B is finite and σ[B(r̃, s̃), `p] = A ∪B.

Proof. We firstly prove that

σ[B(r̃, s̃), `p] ⊆ A ∪B(3.4)

which is equivalent to show that α ∈ C such that |r − α| > |s| and α 6= rk for all k ∈ N
implies α /∈ σ[B(r̃, s̃), `p]. It is easy to see that B is finite and {rk ∈ C : k ∈ N} ⊆ A∪B.
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It is immediate that B(r̃, s̃)−αI is a triangle and so has an inverse. Let y = (yk) ∈ `1.
Then, by solving the equation

[B(r̃, s̃)− αI]x =


r0 − α 0 0 . . .
s0 r1 − α 0 . . .
0 s1 r2 − α . . .
...

...
...

. . .



x0
x1
x2
...



=


(r0 − α)x0

s0x0 + (r1 − α)x1
s1x1 + (r2 − α)x2

...

 =


y0
y1
y2
...


for x = (xk) in terms of y, we obtain

x0 =
y0

r0 − α
,

x1 =
y1

r1 − α
+

−s0y0
(r1 − α)(r0 − α)

,

x2 =
y2

r2 − α
+

−s1y1
(r2 − α)(r1 − α)

+
s0s1y0

(r2 − α)(r1 − α)(r0 − α)
,

...

xk =
(−1)ks0s1s2 · · · sk−1y0

(r0 − α)(r1 − α)(r2 − α) · · · (rk − α)
+ · · · − sk−1yk−1

(rk − α)(rk−1 − α)
+

yk
rk − α

,

...

Therefore, we obtain B = (bnk) = [B(r̃, s̃)− αI]−1 as follows:

(bnk) =


1

r0−α
0 0 . . .

−s0
(r1−α)(r0−α)

1
r1−α

0 . . .
s0s1

(r0−α)(r1−α)(r2−α)
−s1

(r2−α)(r1−α)
1

r2−α
. . .

...
...

...
. . .

 .
Then,

∑
k |xk| ≤

∑
k S

k|yk|, where

Sk =

∣∣∣∣ 1

rk − α

∣∣∣∣+

∣∣∣∣ sk
(rk − α)(rk+1 − α)

∣∣∣∣+

∣∣∣∣ sksk+1

(rk − α)(rk+1 − α)(rk+2 − α)

∣∣∣∣+ · · · .

Skn =

∣∣∣∣ 1

rk − α

∣∣∣∣+

∣∣∣∣ sk
(rk − α)(rk+1 − α)

∣∣∣∣+

∣∣∣∣ sksk+1

(rk − α)(rk+1 − α)(rk+2 − α)

∣∣∣∣+ · · ·

+

∣∣∣∣ sksk+1 · · · sn+k
(rk − α)(rk+1 − α)(rk+2 − α) · · · (rk+n+1 − α)

∣∣∣∣ for all k, n ∈ N.

Then, since

Sn = lim
k→∞

Skn =

∣∣∣∣ 1

r − α

∣∣∣∣+

∣∣∣∣ s

(r − α)2

∣∣∣∣+

∣∣∣∣ s2

(r − α)3

∣∣∣∣+ · · ·+
∣∣∣∣ sn+1

(r − α)n+2

∣∣∣∣ ,
we have

S = lim
n→∞

Sn =

∣∣∣∣ 1

r − α

∣∣∣∣
(

1 +

∣∣∣∣ s

r − α

∣∣∣∣+

∣∣∣∣ s

r − α

∣∣∣∣2 + · · ·

)
<∞,(3.5)

since |r − α| > |s|. Then we have

lim
n→∞

lim
k→∞

Skn = lim
k→∞

lim
n→∞

Skn = S
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and (Sk)k ∈ c. Thus,∑
k

|xk| ≤
∑
k

Sk|yk| ≤ ‖(Sk)‖∞
∑
k

|yk| <∞,

since y ∈ `1. This shows that [B(r̃, s̃)− αI]−1 ∈ (`1 : `1).
Suppose that y = (yk) ∈ `∞. By solving the equation [B(r̃, s̃)−αI]x = y, for x = (xk)

in terms of y, we get

|xk| ≤ Sk
(

sup
k∈N
|yk|
)
,

where;

Sk =

∣∣∣∣ 1

rk − α

∣∣∣∣+

∣∣∣∣ sk−1

(rk−1 − α)(rk − α)

∣∣∣∣+

∣∣∣∣ sk−1sk−2

(rk−2 − α)(rk−1 − α)(rk − α)

∣∣∣∣
+ · · ·+

∣∣∣∣ s0s1 . . . sk−1

(r0 − α)(r1 − α) · · · (rk − α)

∣∣∣∣ .
Now, we prove that (Sk) ∈ `∞. Since limk→∞ |sk/(rk − α)| = |s/(r − α)| = p < 1, then
there exists k0 ∈ N such that |sk/(rk − α)| < p0 with p0 < 1, for all k ≥ k0 + 1,

Sk =
1

|rk − α|

[
1 +

∣∣∣∣ sk−1

rk−1 − α

∣∣∣∣+

∣∣∣∣ sk−1sk−2

(rk−1 − α)(rk−2 − α)

∣∣∣∣
+ · · ·+

∣∣∣∣ sk−1sk−2 . . . sk0+1sk0 . . . s0
(rk−1 − α)(rk−2 − α) · · · (rk0+1 − α)(rk0 − α) · · · (r0 − α)

∣∣∣∣ ]
≤ 1

|rk − α|

[
1 + p0 + p20 + · · ·+ pk−k00 + pk−k00

|sk0−1|
|rk0−1 − α|

+ · · ·+ pk−k00

∣∣∣∣ sk0−1sk0−2 . . . s0
(rk0−1 − α)(rk0−2 − α) · · · (r0 − α)

∣∣∣∣] .
Therefore;

Sk ≤
1

|rk − α|

(
1 + p0 + p20 + · · · pk−k00 + pk−k00 Mk0

)
,

where

Mk0 = 1 +

∣∣∣∣ sk0−1

rk0−1 − α

∣∣∣∣+

∣∣∣∣ sk0−1sk0−2

(rk0−1 − α)(rk0−2 − α)

∣∣∣∣+ · · ·+
∣∣∣∣ sk0−1sk0−2 . . . s0
(rk0−1 − α)(rk0−2 − α) · · · (r0 − α)

∣∣∣∣ .
Then, Mk0 ≥ 1 and so

Sk ≤
Mk0
|rk − α|

(
1 + p0 + p20 + · · ·+ pk−k00

)
.

But there exists k1 ∈ N and a real number p1 such that 1
|rk−α|

< p1 for all k ≥ k1. Then,
Sk ≤ (Mp1k0)/(1−p0) for all k > max{k0, k1}. Hence, supk∈N Sk <∞. This shows that
‖x‖∞ ≤ ‖(Sk)‖∞‖y‖∞ <∞ which means [B(r̃, s̃)− αI]−1 ∈ (`∞ : `∞). By Lemma 2.4,
we have

[B(r̃, s̃)− αI]−1 ∈ (`p : `p) for |r − α| > |s| and α 6= rk.(3.6)

Hence,

σ[B(r̃, s̃), `p] ⊆ A ∪ B.(3.7)

Now we show that A ∪ B ⊆ σ[B(r̃, s̃), `p]. We assume that α 6= rk for all k ∈ N and
α ∈ C with |r − α| ≤ |s|. Clearly, B(r̃, s̃)−αI is a triangle and so, [B(r̃, s̃)−αI]−1 exists.
For e(0) = (1, 0, 0, . . .) ∈ `p, [B(r̃, s̃) − αI]−1e(0) = S0 /∈ `p, and so [B(r̃, s̃) − αI]−1 /∈
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B(`p). Then, α ∈ σ[B(r̃, s̃), `p]. Case rk = α for some k. We then have either α = r or
α = rk 6= r for some k. We have

[B(r̃, s̃)− rkI]x =


r0 − rk 0 0 . . .
s0 r1 − rk 0 . . .
0 s1 r2 − rk . . .
...

...
...

. . .



x0
x1
x2
...



=



(r0 − rk)x0
s0x0 + (r1 − rk)x1
s1x1 + (r2 − rk)x2

...
sk−2xk−2 + (rk−1 − rk)xk−1

sk−1xk−1 + (rk − rk)xk
skxk + (rk+1 − rk)xk+1

...


.

Let α = rk = r for all k and solving the equation [B(r̃, s̃)−αI]x = θ we obtain x0 = x1 =
x2 = · · · = 0 which shows that B(r̃, s̃)−αI is one to one but its range R[B(r̃, s̃)−αI] =
{y = (yk) ∈ ω : y ∈ `p, y1 = 0} is not dense in `p and α = r ∈ σ[B(r̃, s̃), `p]. Now let
α = rk for some k. Then the equation [B(r̃, s̃)− αI]x = θ yields

x0 = x1 = x2 = · · · = xk−1 = 0 and xn =
sn−1

rk − rn
xn−1 for all n ≥ k + 1.

This shows that B(r̃, s̃)−αI is not injective for α = rk such that |α− r| > |s|. Therefore
[B(r̃, s̃)− αI]−1 does not exist. So rk ∈ σ[B(r̃, s̃), `p] for all k ∈ N. Thus,

A ∪ B ⊆ σ[B(r̃, s̃), `p].(3.8)

Combining the inclusions (3.7) and (3.8), we get σ[B(r̃, s̃), `p] = A ∪B.
This completes the proof. �

Throughout the paper, by C and SD we denote the set of constant sequences and the
set of sequences of distinct none-zero real numbers, respectively.

3.3. Theorem. σp[B(r̃, s̃), `p] =

{
∅ , r̃, s̃ ∈ C,
B , r̃, s̃ ∈ SD,

Proof. We prove the theorem by dividing into two parts.
Part 1. Assume that r̃, s̃ ∈ C. Consider B(r̃, s̃)x = αx for x 6= θ = (0, 0, 0, . . .) in `p.

Then, by solving the system of linear equations

rx0 = αx0
sx0 + rx1 = αx1
sx1 + rx2 = αx2

...
sxk−1 + rxk = αxk

...

Case α = r. Let xn0 is the first non zero entry of the sequence x = (xn) and α = r, then
we get sxn0 + rxn0+1 = αxn0+1 which implies xn0 = 0 which contradicts the assumption
xn0 6= 0. Hence, the equation B(r̃, s̃)x = αx has no solution x 6= θ.

Part 2. Assume that r̃, s̃ ∈ SD. Then, by solving the equation B(r̃, s̃)x = αx for
x 6= θ = (0, 0, 0, . . .) in `p we obtain (r0−α)x0 = 0 and (rk+1−α)xk+1 + skxk = 0 for all
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k ∈ N. Hence, for all α /∈ {rk : k ∈ N}, we have xk = 0 for all k ∈ N, which contradicts our
assumption. So, α /∈ σp[B(r̃, s̃), `p]. This shows that σp[B(r̃, s̃), `p] ⊆ {rk : k ∈ N}\{r}.
Now, we prove that

α ∈ σp[B(r̃, s̃), `p] if and only if α ∈ B.

Let α ∈ σp[B(r̃, s̃), `p]. We consider the case α = r0 and α = rk for some k ≥ 1. Then,
by solving the equation B(r̃, s̃)x = αx for x 6= θ = (0, 0, 0, . . .) in `p with α = r0

xk =
s0s1s2 . . . sk−1

(r0 − rk)(r0 − rk−1)(r0 − rk−2) · · · (r0 − r1)
x0 for all k ≥ 1

which can expressed by the recursion relation

xk =
sk−1

r0 − rk
xk−1 for all k ∈ N1.

Therefore, since

lim
k→∞

∣∣∣∣ xkxk−1

∣∣∣∣p = lim
k→∞

∣∣∣∣ sk−1

rk − r0

∣∣∣∣p =

∣∣∣∣ s

r − r0

∣∣∣∣p ≤ 1,

But
∣∣∣ s
r−r0

∣∣∣p 6= 1. Then α = r0 ∈ {rk : k ∈ N, |rk − r| > |s|} = B.
If we choose α = rk 6= r for all k ∈ N1, then we get x0 = x1 = x2 = · · · = xk−1 = 0 and

xn+1 =
snsn−1sn−2 . . . sk

(rk − rn+1)(rk − rn)(rk − rn−1) · · · (rk − rk+1)
xk for all n ≥ k

which can also be expressed by the recursion relation

xn+1 =
sn

rk − rn+1
xn for all n ≥ k.

Therefore, we have

lim
n→∞

∣∣∣∣xn+1

xn

∣∣∣∣p = lim
n→∞

∣∣∣∣ sn
rn+1 − rk

∣∣∣∣p =

∣∣∣∣ s

r − rk

∣∣∣∣p ≤ 1.

But
∣∣∣ s
r−rk

∣∣∣ 6= 1. Then α = rk ∈ {rk : k ∈ N, |rk−r| > |s|} = B. Thus σp[B(r̃, s̃), `p] ⊆ B.
Conversely, let α ∈ B. Then, there exists k ∈ N, α = rk 6= r and

lim
n→∞

∣∣∣∣ sn
rn+1 − rk

∣∣∣∣ =

∣∣∣∣ s

r − rk

∣∣∣∣ < 1,

so we have x ∈ `p. Thus B ⊆ σp[B(r̃, s̃), `p]. This completes the proof. �

3.4. Theorem. σp[B(r̃, s̃)∗, `∗p] =

{
{α ∈ C : |r − α| < |s|} , r̃, s̃ ∈ C,
{α ∈ C : |r − α| ≤ |s|} ∪ B , r̃, s̃ ∈ SD.

Proof. By solving the equation B(r̃, s̃)∗f = αf for θ 6= f ∈ `∗p ∼= `q, we derive the system
of linear equations

r0f0 + s0f1 = αf0
r1f1 + s1f2 = αf1
r2f2 + s2f3 = αf2

...
rk−1fk−1 + sk−1fk = αfk−1

...
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This gives fk =
(
α−rk−1

sk−1

)
fk−1 for all k ≥ 1. Therefore, we have

|fk| =
∣∣∣∣α− rk−1

sk−1

∣∣∣∣ |fk−1| for all k ∈ N1.(3.9)

We also prove this theorem by dividing into two parts.
Part 1. Assume that r̃, s̃ ∈ C with rk = r and sk = s for all k ∈ N. Using (3.9), we

get

fk =
(α− r

s

)k
f0 for all k ∈ N1.

Then, since

lim
k→∞

∣∣∣∣fk+1

fk

∣∣∣∣q =
∣∣∣α− r

s

∣∣∣q < 1 provided
∣∣∣r − α

s

∣∣∣ < 1

the series
∑∞
k=1 |fk|

q =
∑∞
k=1 |(α−r)/s|

q(k−1)|f0| converges by the ratio test, i.e., f ∈ `q.
If α ∈ C with |α− r| = |s|, then the ratio test fails. But, since limk→∞ |fk| = |f0| 6= 0

the series
∑∞
k=0 |fk|

q is divergent. This means that f ∈ `q if and only if f0 6= 0 and
|r − α| < |s|. Hence, σp[B(r̃, s̃)∗, `∗p] = {α ∈ C : |r − α| < |s|}.

Part 2. Let r̃, s̃ ∈ SD. It is clear that for all k ∈ N, the vector f = (f0, f1, . . . . . . , fk, 0, 0, . . .)
is an eigenvector of the operator B(r̃, s̃)∗ corresponding to the eigenvalue α = rk, where
f0 6= 0 and fn =

(
α−rn−1

sn−1

)
fn−1 for all k ∈ {1, 2, 3, . . . , n}. Thus B ⊆ σp[B(r̃, s̃)∗, `∗p]. If

|r − α| < |s| and α = rk, by taking into account (3.9), since

lim
k→∞

∣∣∣∣ fkfk−1

∣∣∣∣q = lim
k→∞

∣∣∣∣α− rk−1

sk−1

∣∣∣∣q =
∣∣∣r − α

s

∣∣∣q < 1,

the ratio test gives that f ∈ `q. If α ∈ C with |r − α| = |s|, the ratio test fails. But
one can easily find a decreasing sequence of positive real numbers f = (fk) ∈ `q such
that limk→∞(|fk/fk−1|) = 1, for example f = (fk) = (1/k2). Hence, |r − α| ≤ s implies
f ∈ `q.

Conversely, we have to show that f ∈ `q implies |r−α| ≤ s. If the condition |r−α| ≤ |s|
does not hold, then |r− α| > |s| which implies that

∑∞
k=0 |fk|

q is divergent. This means
that f ∈ `q if and only if f0 6= 0 and |r − α| ≤ |s|. Hence,

σp[B(r̃, s̃)∗, `∗p] = {α ∈ C : |r − α| ≤ |s|} ∪ B.

This completes the proof. �

3.5. Lemma. [22, p. 59] T has a dense range if and only if T ∗ is one to one.

3.6. Lemma. [22, p. 60] The adjoint operator T ∗ of T is onto if and only if T is a
bounded operator.

3.7. Theorem. σr[B(r̃, s̃), `p] =

{
{α ∈ C : |r − α| < |s|} , r̃, s̃ ∈ C,
{α ∈ C : |r − α| ≤ |s|} , r̃, s̃ ∈ SD.

Proof. We prove the theorem by dividing into two parts.
Part 1. Let r̃, s̃ ∈ C. We show that the operator B(r̃, s̃) − αI has an inverse and

R(B(r̃, s̃)− αI) 6= `p for α satisfying |r − α| < |s|. For α 6= r B(r̃, s̃)− αI is triangle so
has an inverse. For α = r, the operator B(r̃, s̃)−αI is one to one by Theorem 3.3. So it
has a inverse. By Theorem 3.4, the operator [B(r̃, s̃)− αI)]∗ = B(r̃, s̃)∗ − αI is not one
to one for α ∈ C such that |r − α| < |s|. Hence the range of the operator B(r̃, s̃)− αI is
not dense in `p by Lemma 3.5. So, σr[B(r̃, s̃), `p] = {α ∈ C : |r − α| < |s|}.

Part 2. Let r̃, s̃ ∈ SD with rk −→ r and sk −→ s as k −→ ∞ for α ∈ C such that
|r − α| ≤ |s|. Then, the operator B(r̃, s̃) − αI is triangle with α 6= rk for all k ∈ N. So,
the operator B(r̃, s̃) − αI has an inverse. By Theorem 3.3 the operator B(r̃, s̃) − αI is
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one to one for α = rk for all k ∈ N. Thus, [B(r̃, s̃)− αI]−1 exists. But by Theorem 3.4,
[B(r̃, s̃) − αI]∗ = B(r̃, s̃)∗ − αI is not one to one with α ∈ C such that |r − α| ≤ |s|.
Hence, the range of the operator B(r̃, s̃) − αI is not dense in `p, by Lemma 3.5. So,
σr[B(r̃, s̃), `p] = {α ∈ C : |r − α| ≤ |s|}.

This completes the proof. �

3.8. Theorem. σc[B(r̃, s̃), `p] =

{
{α ∈ C : |r − α| = |s|} , r̃, s̃ ∈ C,

∅ , r̃, s̃ ∈ SD.

Proof. We prove the theorem by dividing into two parts.
Part 1. Let r̃, s̃ ∈ C for α ∈ C such that |r − α| = |s|. Since σ[B(r̃, s̃), `p] is the

disjoint union of the parts σp[B(r̃, s̃), `p], σr[B(r̃, s̃), `p] and σc[B(r̃, s̃), `p], we must have
σc[B(r̃, s̃), `p] = {α ∈ C : |r − α| = |s|}.

Part 2. Let r̃, s̃ ∈ SD. It is known that σp[B(r̃, s̃), `p], σr[B(r̃, s̃), `p] and σc[B(r̃, s̃), `p]
are mutually disjoint sets and their union is σ[B(r̃, s̃), `p]. Therefore, it is immediate from
Theorems 3.2, 3.3 and 3.7 that σ[B(r̃, s̃), `p] = σp[B(r̃, s̃), `p] ∪ σr[B(r̃, s̃), `p] and hence
σc[B(r̃, s̃), `p] = ∅.

This completes the proof. �

3.9. Theorem. When |r − α| > |s| for α 6= rk, [B(r̃, s̃)− αI] ∈ A1.

Proof. We show that the operator B(r̃, s̃)− αI is bijective and has a continuous inverse
for α ∈ C such that |r−α| > |s|. Since α 6= rk, then B(r̃, s̃)−αI is a triangle. So, it has
an inverse. The inverse of the operator B(r̃, s̃) − αI is continuous for α ∈ C such that
|r− α| > |s|, by equation (3.6). Thus for every y ∈ `p, we can find that x ∈ `p such that

[B(r̃, s̃)− αI]x = y, since [B(r̃, s̃)− αI]−1 ∈ (`p : `p).

This shows that the operator B(r̃, s̃)− αI is onto and so B(r̃, s̃)− αI ∈ A1. �

3.10. Theorem. Let r̃, s̃ ∈ C with rk = r and sk = s for all k ∈ N. Then, r ∈
σ[B(r̃, s̃), `p]C1.

Proof. We have σr[B(r̃, s̃), `p] = {α ∈ C : |r − α| < |s|}, by Theorem 3.7. Clearly, r ∈
σr[B(r̃, s̃), `p]. It is sufficient to show that the operator [B(r̃, s̃) − rI]−1 is continuous.
By Lemma 3.6, it is enough to show that [B(r̃, s̃)− Ir]∗ is onto and for given y = (yk) ∈
`∗p = `q, we have to find x = (xk) ∈ `q such that [B(r̃, s̃)− Ir]∗x = y. Solving the system
of linear equations

s0x1 = y0
s1x2 = y1
s2x3 = y2

...
sk−1xk = yk−1

...

one can easily observe that sxk = yk−1 for all k ≥ 1 which implies that (xk) ∈ `q, since
y = (yk) ∈ `q. This shows that [B(r̃, s̃)− Ir]∗ is onto. Hence, r ∈ σ[B(r̃, s̃), `p]C1. �

3.11. Theorem. Let r̃, s̃ ∈ C with rk = r and sk = s for all k ∈ N and α ∈ σr[B(r̃, s̃), `p]
for all r 6= α. Then, α ∈ σ[B(r̃, s̃), `p]C2.

Proof. It is sufficient to show that the operator [B(r̃, s̃)−Iα]−1 is discontinuous for r 6= α
and α ∈ σr[B(r̃, s̃), `p]. It is obvious that the operator [B(r̃, s̃)− Iα]−1 is discontinuous
for r 6= α and α ∈ C such that |r − α| < |s| with rk 6= α, by (3.5). �
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3.12. Theorem. If r̃, s̃ ∈ SD and α ∈ σr[B(r̃, s̃), `p], then α ∈ σ[B(r̃, s̃), `p]C2.

Proof. It is sufficient to show that the operator [B(r̃, s̃) − Iα]−1 is discontinuous for
α ∈ σr[B(r̃, s̃), `p]. By (3.5), the operator [B(r̃, s̃) − Iα]−1 is discontinuous for rk 6= α
and α ∈ C with |r − α| ≤ |s|. �

3.13. Theorem. Let r̃, s̃ ∈ C with rk = r, sk = s for all k ∈ N. Then, the following
statements hold:

(i) σap[B(r̃, s̃), `p] = A\ {r}.
(ii) σδ[B(r̃, s̃), `p] = A.
(iii) σco[B(r̃, s̃), `p] = A◦.

Proof. (i) From Table 1.2, we get

σap[B(r̃, s̃), `p] = σ [B(r̃, s̃), `p] \σ [B(r̃, s̃), `p]C1.

We have by Theorem 3.10 and Theorem 3.2 that

σap[B(r̃, s̃), `p] = (A ∪B) \ {r} = A\ {r} .

(ii) Since the following equality

σδ[B(r̃, s̃), `p] = σ[B(r̃, s̃), `p]\σ [B(r̃, s̃), `p]A3

holds from Table 1.2, we derive by Theorem 3.2 and Theorem 3.3 that σδ[B(r̃, s̃), `p] = A.
(iii) From Table 1.2, we have

σδ[B(r̃, s̃), `p] = σ [B(r̃, s̃), `p]C1 ∪ σ [B(r̃, s̃), `p]C2 ∪ σ [B(r̃, s̃), `p]C3

and since σ [B(r̃, s̃), `p]C3 = ∅ by Theorem 3.3 it is immediate that σco[B(r̃, s̃), `p] =
σr [B(r̃, s̃), `p]. Therefore, we obtain by Theorem 3.11 that σco[B(r̃, s̃), `p] = A◦. �

3.14. Theorem. Let r̃, s̃ ∈ SD. Then

σap[B(r̃, s̃), `p] = σδ[B(r̃, s̃), `p] = σco[B(r̃, s̃), `p] = A ∪B.

Proof. We have by Theorem 3.4 and Part (e) of Proposition 2.1 that

σp[B
∗(r̃, s̃), `∗p] = σco[B(r̃, s̃), `p] = {α ∈ C : |r − α| ≤ |s|} .

Furthermore, because of σp[B(r̃, s̃), `p] = {rk} by Theorem 3.3 and the subdivisions in
Goldberg’s classification are disjoint, we must have

σ [B(r̃, s̃), `p]A3 = σ [B(r̃, s̃), `p]B3 = ∅.

Hence, σ [B(r̃, s̃), `p]C3 = {rk}. Additionally, since σ [B(r̃, s̃), `p]C1 = ∅ by Theorem 3.7
and Theorem 3.12, we have

σ [B(r̃, s̃), `p] = σ [B(r̃, s̃), `p]C2 ∪ σ [B(r̃, s̃), `p]C3.

Therefore, we derive from Table 1.2 that

σap[B(r̃, s̃), `p] = σ [B(r̃, s̃), `p] \σ [B(r̃, s̃), `p]C1 = σ [B(r̃, s̃), `p]

σδ[B(r̃, s̃), `p] = σ [B(r̃, s̃), `p] \σ [B(r̃, s̃), `p]A3 = σ [B(r̃, s̃), `p]

σδ[B(r̃, s̃), `p] = σ [B(r̃, s̃), `p]C2 ∪ σ [B(r̃, s̃), `p]C3 = σ [B(r̃, s̃), `p] .

�
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4. Conclusion
In the present work, as a natural continuation of Akhmedov and El-Shabrawy [4] and,

Srivastava and Kumar [38], we have determined the spectrum and the fine spectrum of
the double sequential band matrix B(r̃, s̃) on the space `p. Many researchers determine
the spectrum and fine spectrum of a matrix operator in some sequence spaces. In addition
to this, we add the definition of some new divisions of spectrum called as approximate
point spectrum, defect spectrum and compression spectrum of the matrix operator and
give the related results for the matrix operator B(r̃, s̃) on the space `p which is a new
development for this type works giving the fine spectrum of a matrix operator on a
sequence space with respect to the Goldberg’s classification.

Finally, we should note that in the case rk = r and sk = s for all k ∈ N since the
operator B(r̃, s̃) defined by a double sequential band matrix reduces to the operator
B(r, s) defined by the generalized difference matrix our results are more general and
more comprehensive than the corresponding results obtained by Furkan et al. [12] and
Bilgiç and Furkan [11], respectively. We record from now on that our next paper will be
devoted to the investigation of the fine spectrum of the matrix operator B(r̃, s̃) on the
space bvp.
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Using the theory of group corings, we study (graded) Morita contexts
associated to a comodule over a group coring, which generalize and
unify some classical morita contexts. Some applications of our theory
are also discussed.
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1. Introduction
An A-coring is a coalgebra in the monoidal category of A-bimodules over an arbitrary

ring A. The concept was introduced by M. Sweedler [14]. In 2000, Takeuchi pointed
out that to each entwining structure (A,C, ψ) over a commutative ring k, which was
introduced by T. Brzezinski and S. Majid [2], there corresponds an A-coring structure
on C := A ⊗k C. This motivated the revival of the theory of corings and comodules
and Brzezinski’s paper [3] was the engine behind the revival of the theory of corings
and comodules over corings. Many examples of classical categories in noncommutative
algebra are special cases of comodules over corings. Let us mention a few of them: the
category of a descent datum of a ring extension, graded modules, Hopf modules, Long
dimodules, Yetter-Drinfeld modules, Doi-Koppinen modules or entwined modules, and
several other categories studied earlier by Hopf algebraists.

One of the important observations is that coring theory provides an elegant approach
to descent theory and Galois theory. A systematic study of coring has been carried out
in [1, 3, 6, 7, 15]. As the generalization of coring, Caenepeel, Janssen and Wang [5]
introduced the group coring and developed Galois theory for group corings.
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It is well-known that the Morita context plays a important role in the theory of Hopf
algebras. The first Morita context was constructed by Chase and Sweedler [9], which
was generalized by Doi [12]. Morita contexts similar to the one of Doi were studied
by Cohen, Fischman and Montgomery in [11]. As the generalization of both contexts,
Caenepeel, Vercruysse and Wang associate different types of Morita contexts to a coring
with a fixed grouplike element, which was generalized by Caenepeel, Janssen and Wang
to group coring with a grouplike family [5]. Without the assumption of a coring with a
fixed grouplike element, Caenepeel, De Groot and Vercruysse associated a Morita context
to a comodule over a coring in [8]. Morita theory for group corings with fixed grouplike
family is a remarkable tool to discuss Hopf-Galois extensions. In order to further discuss
coalgebra-Galois extensions, we need to generalize the Morita context for group corings.
Naturally, it occurs to us to how to develop (graded) Morita context associated to a
comodule over a group coring. This is the motivation of this paper.

The paper is organized as follows.
In Section 2, we recall some basic definitions such as group corings, comodules over a

group coring and graded Morita contexts. In Section 3, we associate a Morita context to
a comodule over a group coring. In Section 4, we will discuss the graded Morita contexts
and their relationship. Some applications of our theory are discussed in Section 5.

2. Preliminaries
Throughout this paper, let G be a group with unit e, and A a ring with unit 1A,

and M an A-module. We will often need collections of A-modules isomorphic to M and
indexed by G. We will consider these modules as isomorphic, but distinct. Let M ×{α}
be the module with index α. We then have isomorphisms

µα : M →M × {α}, µα(m) = (m,α).

We can then write M × {α} = µα(M). µ can be considered as a dummy variable, and
we will also use the symbols ν, κ, · · · . We will identify M and M × {e} using µe.

2.1. Group Corings. Let A be an algebra. Recall from [5] that a G-group A-coring
(or shortly a G-A-coring) C is a family {Cα}α∈G of A-bimodules together with a family
of A-bimodule maps

∆α,β : Cαβ → Cα ⊗A Cβ , ε : Ce → A

such that the following conditions hold:

(∆α,β ⊗A id) ◦∆αβ,γ = (id⊗A ∆β,γ) ◦∆α,βγ ,

(id⊗A ε) ◦∆α,e = id = (ε⊗A id) ◦∆e,α

for all α, β, γ ∈ G.
For a G-A-coring C, we also use the following Sweedler-type notation for the comul-

tiplication maps ∆α,β :
∆α,β(c) = c(1,α) ⊗A c(2,β)

for all c ∈ Cαβ .
A morphism between two G-A-corings C and D consists of a family of A-bimodule

maps f = {fα : Cα → Dα}α∈G such that

(fα ⊗A fβ) ◦∆α,β = ∆α,β ◦ fαβ , ε ◦ fe = ε.

Over a G-A-coring C, we can define two different types of comodules. A right C-
comodule is a right A-module M together with a family of right A-linear maps ρM =
{ρMα : M →M ⊗A Cα}α∈G such that

(id⊗A ∆α,β) ◦ ρMαβ = (ρMα ⊗A id) ◦ ρβ , (id⊗A ε) ◦ ρMe = id.
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We use the following Sweedler-type notation:

ρMα (m) = m[0,α] ⊗A m[1,α]

for all m ∈Mα.
A morphism of right C-comodules is a right A-linear map f : M → N satisfying the

condition
(f ⊗A id) ◦ ρMα = ρNα ◦ f

for all α ∈ G. Let MC denote the category of right C-comodules.
Similarly, we can define the left C-comodule and the category CM of all left C-

comodules. We use the following Sweedler-type notation for the left C-comodule structure
maps Mρα:

Mρα(m) = m[−1,α] ⊗A m[0,α]

for all m ∈Mα.
A right G-C-comoduleM is a family of right A-modules {Mα}α∈G(meaning that each

Mα is right A-module), together with a family of right A-linear maps ρ = {ρα,β}α,β∈G,
where ρα,β : Mαβ →Mα ⊗A Cβ , such that the following conditions hold:

(id⊗A ∆β,γ) ◦ ρα,βγ = (ρα,β ⊗A id) ◦ ραβ,γ , (id⊗A ε) ◦ ρα,e = id

for all α, β, γ ∈ G.
We use the following standard notation:

ρα,β(m) = m[0,α] ⊗A m[1,β]

for m ∈Mαβ .
A morphism between two right G-C-comodules M = {Mα}α∈G and N = {Nα}α∈G is

a family of right A-linear maps f = {fα : Mα → Nα}α∈G such that

(fα ⊗A id) ◦ ρα,β = ρα,β ◦ fαβ .

The category of right G-C-comodules will be denoted by MG,C .
Let C be a G-A-coring. A family g = (gα)α∈G ∈

∏
α∈G Cα is called grouplike, if

∆α,β(gαβ) = gα ⊗A gβ and ε(ge) = 1 for all α, β ∈ G.
Let C be a G-A-coring with a fixed grouplike family g = (gα)α∈G. Then A can be

endowed with a structure of right C-comodule via the coaction maps

ρα : A→ A⊗A Cα, ρα(a) = 1A ⊗A gα · a.

For M ∈MC , we define

McoC = {m ∈M |ρα(m) = m⊗A gα,∀α ∈ G}.

In particular,
AcoC = {a ∈ A|a · gα = gα · a,∀α ∈ G}.

Let A⊗B A be the canonical Sweedler coring associated to the ring morphism B → A
with its comultiplication and counit given by the formulas

∆(a⊗B b) = (a⊗B 1A)⊗A (1A ⊗B b), ε(a⊗B b) = ab.

2.2. Graded Rings and Modules. Let A be a ring and R =
⊕

α∈G Rα a G-graded
ring. Suppose that we have a ring morphism i : A → Re. Then we call R a G-graded
A-ring. Every Rα is then an A-bimodule and the decomposition of R is a decomposition
of A-bimodules. The category of G-graded right R-modules will be denoted by MG

R .
Let C be a G-A-coring. For every α ∈ G, Rα =AHOM(Cα−1 , A) is an A-bimodule via

(a · fα · b)(c) = fα(c · a)b
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for all fα ∈ Rα, a, b ∈ A and c ∈ Cα−1 . Take fα ∈ Rα, gβ ∈ Rβ and define fα ? gβ ∈ Rαβ
by the following formula:

(fα ? gβ)(c) = gβ(c(1,β−1) · fα(c(2,α−1)))

for all c ∈ C(αβ)−1 . This defines mapsmα,β : Rα⊗ARβ → Rαβ , which make R = ⊕α∈GRα
into a G-graded ring with the unit ε. Define i : A → Re, i(a)(c) = ε(c)a is a ring
homomorphism, which make R =

⊕
α∈G Rα be a G-graded A-ring, called the (left) dual

(graded) ring of the group coring C. We will also write R =∗C.

2.3. Graded Morita Contexts. Let R be a G-graded ring, and M,N ∈MG
R . A right

R-linear map f : M → N is called homogeneous of degree σ, if f(Mα) ⊂ Mσα for all
α ∈ G. HOMR(M,N)σ denotes the additive group of all right R-module maps of degree
σ.

Let S and R be G-graded rings. A G-graded Morita context connecting S and R is
a Morita context (S,R, P,Q, ϕ, ψ) with the following additional structure: P and Q are
graded bimodules, and the maps

ϕ : P ⊗R Q→ S, ψ : Q⊗S P → R

are homogeneous of degree e.
Given two graded Morita contexts (S,R, P,Q, ϕ, ψ) and (S̃.R̃, P̃ , Q̃, ϕ̃, ψ̃), if there exist

two graded ring morphism Φ : S → S̃, Ψ : R → R̃ and two graded bimodule morphism
Θ : Q→ Q̃, Ξ : P → P̃ such that the following two diagrams

P ⊗R Q

Ξ⊗Θ

��

ϕ // S

Φ

��
P̃ ⊗R̃ Q̃

ϕ̃ // S̃

Q⊗S P

Θ⊗Ξ

��

ψ // R

Ψ

��
Q̃⊗S̃ P̃

ψ̃ // R̃

are communicative, then we say a quadruple Υ̃ = (Φ,Ψ,Θ,Ξ) a morphism from (S,R, P,Q, ϕ, ψ)

to (S̃, R̃, P̃ , Q̃, ϕ̃, ψ̃)
Let P be a G-graded right R-module. Then S =ENDR(P ) is a G-graded ring, and

Q=HOMR(P,R) ∈RMG
S with structure

(r · q · s)(p) = rq(s(p))

for all r ∈ R, s ∈ S, q ∈ Q and p ∈ P . The connecting maps are the following

ϕ : P ⊗R Q→ S, ϕ(p⊗R q)(p
′) = pq(p′),

ψ : Q⊗S P → R, ψ(q ⊗S p) = q(p).

Then (S,R, P,Q, ϕ, ψ) is a graded Morita context.

2.4. Cofree Group Corings. A G-A-coring C = {Cα}α∈G is called cofree, if there
exist A-bimodule isomorphisms γα : Ce → Cα such that

∆α,β(γαβ(c)) = γα(c(1,e))⊗A γβ(c(2,e))

for all c ∈ Ce. If C is a cofree group coring, then, for every α ∈ G, we have A-bimodule
isomorphisms

γα−1 : Ce → Cα−1 ,
∗γα−1 : Rα → Re,

and
χα = (∗γα−1)−1 : Re → Rα.

From Proposition 4.6 in [5], the left dual R =∗C is the group ring Re[G].
Let C = Ce〈G〉 be a cofree G-A-coring and M be a right C-comodule. Recall from

[10] that we call that M is a cofree C-comodule, if (id⊗A γα) ◦ ρMe = ρMα .
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2.1. Example. If C = Ce〈G〉 is a cofree G-A-coring and g = (gα)α∈G a grouplike family
of C such that gα = γα(ge). Then A can be endowed with a structure of right C-comodule
via the coaction maps

ρAα : A→ A⊗A Cα, ρAα (a) = 1A ⊗A gα · a.
For all a ∈ A, we have

(id⊗A γα) ◦ ρAe (a) = 1A ⊗A γα(ge · a) = 1A ⊗A gα · a = ρAα (a),

this shows that A is a cofree C-module.

2.5. Group Entwining Structures. Let C = {Cα}α∈G be a G-coalgebra and A an
algebra. We say that the G-coalgebra C and the algebra A are G-entwined, if there is a
family of linear maps ψ = {ψα : Cα ⊗A→ A⊗ Cα}α∈G such that

• (ab)ψα ⊗ cψα = aψαbψ′α ⊗ c
ψαψ

′
α ,

• 1Aψα ⊗ cψα = 1A ⊗ c, for any c ∈ Cα,
• aψαβ ⊗ c

ψαβ
(1,α) ⊗ cψαβ(2,β) = aψβψα ⊗ c(1,α)

ψα ⊗ c(2,β)
ψβ ,

• aψeε(cψe) = aε(c), for any c ∈ Ce and a ∈ A.
where, we set ψα(c⊗a) = aψα⊗cψα = aψ′α⊗c

ψ′α = · · · , for a ∈ A and c ∈ Cα. The triple
(A,C, ψ) is called a right and right G-entwining structure and is denoted by (A,C)G−ψ.

Given a right-right G-entwining structure (A,C)G−ψ, then U
C
A(ψ) is the category of

right (A,C)ψ. The object of U
C
A(ψ) are right C-comodules (M,ρMα ) which is also A-

module such that
ρMα (m · a) = m[0,α] · aψα ⊗m[1,α]

ψα

for allm ∈M and a ∈ A. Morphisms in U
C
A(ψ) are right C-comodule and right A-module

maps and let UG,CA (ψ) be the category of right (A,C)G−ψ of which the objects are right
G-C-comodules (M,ρ

M
α,β) which is also right A-module, i.e., each Mα is right A-module,

such that
ρMα,β(m · a) = m[0,α] · aψβ ⊗m[1,β]

ψβ

for all m ∈ Mαβ and a ∈ A. Morphisms in U
G,C
A (ψ) are right G-C-comodule and right

A-module maps.

2.6. Group Coalgebra Galois Extensions. Let C be aG-coalgebra andA an algebra.
Let A be a right C-comodule. Let

B = AcoC = {a ∈ A|ρAα (ab) = aρAα (b), ∀b ∈ A,α ∈ G}.
We say that A is a right G-C-Galois extension of B, if the canonical left A-module right
G-C-comodule map can = {canα : A ⊗B A → A ⊗ Cα}, by a ⊗B b 7→ ab[0,α] ⊗ b[1,α] for
all a, b ∈ A is bijective, i.e., every map canα is bijective for al α ∈ G.

3. Morita Context associated to a Comodule over a Group Coring
Let C be a G-A-coring, and M ∈ CM. We can associate a Morita context to M . The

context will connect T =CEND(M)op and ∗C = R.
For every α ∈ G, Qα =AHOM(Cα−1 ,M) ∈RMT is a left A-module with

(a · fα)(c) = fα(c · a)

for all fα ∈ Qα, a ∈ A and c ∈ Cα−1 . Let

Q = {q ∈
⊕
α∈G

Qα|qαβ(c)[−1,β−1]⊗Aqαβ(c)[0,β−1]

= c(1,β−1) ⊗A qα(c(2,α−1)),∀c ∈ Cβ−1α−1}.
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3.1. Lemma. With the notation as above, ∗M =AHOM(M,A) ∈T MR and Q ∈RMT .

Proof. Let ζ ∈∗M , fα ∈ Rα, t ∈ T , qβ ∈ Qβ and m ∈ M . We define the bimodule
structure on ∗M as follows:

(ζ · fα)(m) = fα(m[−1,α−1] · ζ(m[0,α−1])) and t · ζ = ζ ◦ t.

For all gβ ∈ Rβ , we have

((ζ · fα) · gβ)(m)

= gβ(m[−1,β−1] · fα(m[0,β−1][−1,α−1] · ζ(m[0,β−1][0,α−1])))

= gβ(m[−1,β−1α−1](1,β−1) · fα(m[−1,β−1α−1](2,α−1) · ζ(m[0,β−1α−1])))

= (fα ? gβ)(m[−1,β−1α−1] · ζ(m[0,β−1α−1]))

= (ζ · (fα ? gβ))(m).

This shows that ∗M is a G-graded right R-module. Let us show that the two actions
commute. Indeed, we compute

(t · (ζ · fα))(m) =(ζ · fα)(t(m))

=fα(t(m)[−1,α−1] · ζ(t(m)[0,α−1]))

=fα(m[−1,α−1] · ζ(t(m[0,α−1])))

=(t · ζ) · fα.

The bimodule structure on Q is defined by

(fα · qβ)(c) = qβ(c(1,β−1) · fα(c(2,α−1)))

for all c ∈ Cβ−1α−1 and qβ · t = t ◦ qβ . �

3.2. Lemma. With the notation as above, we have well-defined bimodule maps

µ : Q⊗T ∗M → R, µ((q ⊗T ζ) =
∑
α∈G

ζ ◦ qα,

τ :∗M ⊗R Q→ T, τ(ζ ⊗R q)(m) =
∑
α∈G

qα(m[−1,α−1] · ζ(m[0,α−1])).

3.3. Theorem. With the notation as above, we have a Morita context (T,R,∗M, Q, τ,
µ).

Proof. Here we only check that, for ζ, ζ′ ∈∗M , q, q′ ∈ Q and m ∈M ,

(3.1) q′ · τ(ζ ⊗R q) = µ(q′ ⊗T ζ) · q, ζ · µ(q ⊗T ζ′) = τ(ζ ⊗R q) · ζ′

hold. Indeed, for all c ∈ C(αγ)−1 , we compute

(q′αγ · τ(ζ ⊗R q))(c) = τ(ζ ⊗R q)(q
′
αγ(c))

=
∑
β∈G

qβ(q′αγ(c)[−1,β−1] · ζ(q
′
αγ(c)[0,β−1]))

=
∑
β∈G

qβ(c(1,β−1) · ζ(q
′
αγβ−1(c(2,βγ−1α−1))))

=
∑
β∈G

((ζ ◦ q′αγβ−1) · qβ)(c)

= (µ(q′αγ ⊗T ζ) · q)(c).

Thus we show that the first identity in (3.1) holds. The other identity can be checked
similarly. �
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Next, we want to make an application of Theorem 3.3 in order to get a new Morita
context.

Let M be a right C-comodule. Assume that M is finitely generated and projective
with the finite dual basis {ei, e∗i } or {e′i, e′∗i }. M∗ =HomA(M,A) can be viewed as a left
A-module via (a ·f)(m) = af(m). ThenM∗ is a left C-comodule with the coaction maps

M∗ρα : M∗ → Cα ⊗AM∗, M
∗
ρα(f) =

∑
i

f(ei[0,α]) · ei[1,α] ⊗A e∗i

Indeed, we compute

(id⊗M
∗
ρβ) ◦M

∗
ρα(f) = (id⊗M

∗
ρβ)(

∑
i

f(ei[0,α]) · ei[1,α] ⊗A e∗i )

=
∑
i,j

f(ei[0,α]) · ei[1,α] ⊗A e∗i (e′j[0,β]) · e′j[1,β] ⊗A e′∗j

=
∑
i,j

f(ei[0,α]) · ei[1,α] · e∗i (e′j[0,β])⊗A e′j[1,β] ⊗A e′∗j

=
∑
i

f(ei[0,β][0,α]]) · ei[0,β][1,α] ⊗A ei[1,β] ⊗A e∗i

=
∑
i

f(ei[0,αβ]) · ei[1,αβ](1,α) ⊗A ei[1,αβ](2,β) ⊗A e∗i .

This shows that M
∗
ρ = {M

∗
ρα}α∈G is C-colinear.

3.4. Lemma. Let M be a right C-comodule. Assume that M is finitely generated and
projective. Then

CEND(M∗)op ∼= ENDC(M).

Proof. Let {ei, e∗i } be the dual basis of M . We construct the desired maps as follows:

Φ :C END(M∗)op → ENDC(M), Φ(f)(m) =
∑
i

ei · f(e∗i )(m)

and
Ψ : ENDC(M)→C END(M∗)op, Ψ(f)(g)(m) = g(f(m)).

The other verifications are straightforward. �

From Lemma 3.4 and Theorem 3.3, we have the following result.

3.5. Corollary. Let M be a right C-comodule. Assume that M is finitely generated and
projective. We obtain a Morita context

(ENDC(M),R,M,Q =C HOM(C,M∗), τ, µ)

with M ∈TMR by

m · fα = m[0,α−1] · fα(m[1,α−1]) and t ·m = t(m)

for all m ∈M , f ∈ Rα, t ∈ T , and Q ∈R MT by

(fα · qβ)(c) = qβ(c(1,β−1) · fα(c(2,α−1)))

for all c ∈ Cβ−1α−1 and qβ ∈ Qβ and (qβ · t)(c′) = qβ(c′) ◦ t for all c′ ∈ Cβ−1 , and

µ : Q⊗T M → R, µ(q ⊗T m)α(c) = qα(c)(m), ∀c ∈ Cα−1

τ : M ⊗R Q→ T, τ(m⊗R q)(m′) =
∑
α∈G

m[0,α−1] · (qα(m[0,α−1])(m
′)).
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3.6. Example. Let C be a G-A-coring with a grouplike family g = (gα)α∈G. Then A is
a right C-comodule via

ρAα : A→ A⊗A Cα, ρAα (a) = 1A ⊗A gα · a.

By [10], T = ENDC(A) is nothing but the AcoC . Since A∗ ∼= A, we have

Q = {q ∈ R|qαβ(c)gβ−1 = c(1,β−1) · qα(c(2,α−1)), ∀c ∈ Cβ−1α−1}.

Applying Corollary 3.5, we have a Morita context as in [5].

4. Graded Morita Context associated to a Comodule over a Group
Coring
In this section, we assume that M ∈MC is finitely generated and projective with the

dual basis {ei, e∗i }. We say that a G-A-coring C is left homogeneously finite, if each Cα
is finitely generated and projective as a left A-module. For M ∈ MC , it follows that
{µα(M)}α∈G ∈MG,C with the coaction maps

ρα,β : µαβ(M)→ µα(M)⊗A Cβ , ρα,β(µαβ(m)) = µα(m[0,β])⊗A m[1,β].

From Proposition 4.1 in [5], we then obtain that

M{G} =
⊕
α∈G

µα(M) ∈M
G
R .

The right R-action is defined by the following formula,

µα(m) · fβ = µαβ(m[0,β−1]) · fβ(m[1,β−1])

for all fβ ∈ Rβ and m ∈M .
Next, we will compute the graded Morita context associated to the graded right R-

module M{G}. Consider the ring

S = {f = (fα)α∈G ∈
∏
α∈G

ENDA(M)|fα(m)[0,β−1] ⊗A fα(m)[1,β−1]

= fαβ(m[0,β−1])⊗A m[1,β−1]}.

Observe that we have a ring monomorphism

i : T → S, i(f) = f = (f)α.

On S, we have the following right G-action:

fσ = f · σ = (fσα)α∈G.

Indeed, if f ∈ S, we have f · σ ∈ S, since

fσα(m)[0,β−1] ⊗A fσα(m)[1,β−1] = fσαβ(m[0,β−1])⊗A m[1,β−1],

Now, we consider the twisted group ring G ∗ S =
⊕

α∈G µαS with multiplication

µαfµβg = µαβ((f · β)g).

4.1. Proposition. If G-A-coring C is left homogeneously finite, We then have a graded
ring isomorphism

Ω : ENDR(M{G})→ G ∗ S.
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Proof. For each σ ∈ G, we construct a map by

Ωσ : ENDR(M{G})α → µσS, Ωσ(h) = µσf

with fα(m) = µ−1
σα(h(µα(m))). Since h is right R-linear, we have, for all m ∈ M and

g ∈ Rβ that
h(µα(m) · gβ) = h(µαβ(m[0,β−1]) · gβ(m[1,β−1]))

= µσαβ(fαβ(m[0,β−1])) · gβ(m[1,β−1])).

Since
h(µα(m) · gβ) = h(µα(m)) · gβ

= µσα(fα(m)) · gβ
= µσαβ((fα(m)[0,β−1]) · gβ(fα(m)[1,β−1])),

it follows that

(fα(m)[0,β−1]) · gβ(fα(m)[1,β−1]) = fαβ(m[0,β−1]) · gβ(m[1,β−1]).

Since C is left homogeneously finite (also see Lemma 4.2 in [5]), we have

(fα(m)[0,β−1])⊗A fα(m)[1,β−1]) = fαβ(m[0,β−1])⊗A m[1,β−1].

This means f ∈ S. Next, we define a map

Υσ : µσS → ENDR(M{G})α, Υσ(f) = h

where h satisfies h(µα(m)) = µσα(fα(m)). It is straightforward to check that Υσ and
Ωσ are mutually inverses. It is routine to check that

Ω =
⊕
α∈G

Ωα : ENDR(M{G})→ G ∗ S

preserves the multiplication and the unit. �

Our next aim is to describe HOMR(M{G},R). Consider

Q = {q = (qα)α∈G ∈
∏
α∈G

AHOM(Cα−1 ,M
∗)|

c(1,β−1) ⊗A qα(c(2,α−1)) = qαβ(c)(ei[0,β−1]) · ei[1,β−1] ⊗A e
∗
i , c ∈ C(αβ)−1}.

4.2. Lemma. If fγ ∈ Rγ and q ∈ Q, then

fγ · q = (fγ · qγ−1α)α∈G ∈ Q.

Proof. For all c ∈ C(αβ)−1 and m ∈M , we have

c(1,β−1) ⊗A (fγ · qγ−1α)(c(2,α−1))

= c(1,β−1) ⊗A qγ−1α(c(2,α−1γ) · fγ(c(3,γ−1)))

= (c(1,β−1α−1γ) · fγ(c(2,γ−1)))(1,β−1) ⊗A qγ−1α((c(1,β−1α−1γ) · fγ(c(2,γ−1)))(2,α−1γ))

=
∑
i

qγ−1αβ(c(1,β−1α−1γ) · fγ(c(2,γ−1)))(ei[0,β−1]) · ei[1,β−1] ⊗A e
∗
i

= (fγ · qγ−1αβ)(c)(ei[0,β−1]) · ei[1,β−1] ⊗A e
∗
i .

�

4.3. Lemma. If q ∈ Q and f ∈ S, then q · f = (qα · fα)α∈G ∈ Q, where

(qα · fα)(c) = qα(c) ◦ fα
for all c ∈ Cα−1 .
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4.4. Lemma.
QG =

⊕
α∈G

ωα(Q) ∈RM
G
G∗S

with bimodule structures defined as follows: for all f ∈ Rβ, q ∈ Q and b ∈ S,

fβ · ωα(q) = ωβα(fβ · q), ωα(q) · µτ b = ωατ (q · (b · (ατ)−1)).

4.5. Proposition. If G-A coring C is left homogeneously finite, and M ∈MC is finitely
generated and projective as a right A-module. We then have an isomorphism of graded
bimodules

Ψ : HOMR(M{G},R)→ QG

Proof. For each σ ∈ G, we construct a map by

Ψσ : HOMR(M{G},R)σ → ωσ(Q), Ψσ(g) = ωσ(q)

with qα(c)(m) = g(µσ−1α(m))(c) for all c ∈ Cα−1 and m ∈M . Take β ∈ G and fβ ∈ Rβ .
Since g is right R-linear, we have, for all m ∈M that

g(µσ−1α(m) · fβ) = g(µσ−1αβ(m[0,β−1]) · fβ(m[1,β−1]))

= g(µσ−1αβ(m[0,β−1])) · fβ(m[1,β−1]).

Notice that
g(µσ−1α(m) · fβ) = g(µσ−1α(m)) · fβ .

Thus, for all c ∈ C(αβ)−1 , we have

(g(µσ−1αβ(m[0,β−1])) · fβ(m[1,β−1]))(c)

= (g(µσ−1αβ(m[0,β−1])))(c)fβ(m[1,β−1])

= qαβ(c)(m[0,β−1])fβ(m[1,β−1])

and
(g(µσ−1α(m)) · fβ)(c) = fβ(c(1,β−1) · (qα(c(2,α−1)))(m)),

it follows that

f(qαβ(c)(m[0,β−1]) ·m[1,β−1]) = f(c(1,β−1) · g(µσ−1α(m))(c(2,α−1))).

Since C is left homogeneously finite, we have

qαβ(c)(m[0,β−1]) ·m[1,β−1] = c(1,β−1) · (qα(c(2,α−1)))(m).

Using the above equation and by M being finitely generated and projective (also see
Lemma 4.2 in [5]), we have

c(1,β−1) ⊗A qα(c(2,α−1)) = qαβ(c)(ei[0,β−1]) · ei[1,β−1] ⊗A e
∗
i .

This means q ∈ Q. Next, we define a map

Φσ : ωσ(Q)→ HOMR(M{G},R)σ, Φσ(ωσ(q)) = g

where g satisfies g(µσ−1α(m))(c) = qα(c)(m) for all c ∈ Cα−1 with α ∈ G. It is straight-
forward to check that Ψσ and Φσ are mutually inverse. It is routine to check that the
bijection

Ψ =
⊕
α∈G

Ψα : HOMR(M{G},R)→ QG

preserves the bimodule structure. �

Now, we will achieve the main goal in this section.
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4.6. Theorem. If G-A coring C is left homogeneously finite, andM ∈MC is finitely gen-
erated and projective as a right A-module. Consider the graded Morita context (ENDR(M{G}),R,M{G},
HOMR(M{G},R),R, ϕ, ψ) associated to the graded R-module M{G}. Using the isomor-
phism Ω and Ψ from Proposition 4.1 and 4.5, we find an isomorphic graded Morita
context GM = (G ∗ S,R,M{G}, QG, ω′, ν′) with connecting map ω′ and ν′ given by the
formulas

ω′ : M{G} ⊗R QG→ G ∗ S,
ω′(µα(m)⊗R ωσ(q)) = µασ({fσβ}β∈G),

fσβ(m′) = m[0,(σβ)−1] · qσβ(m[1,(σβ)−1])(m
′)

ν′ : QG⊗G∗S M{G} → R,

ν′(ωσ(q)⊗G∗S µα(m))(c) = qσα(c)(m), ∀c ∈ C(σα)−1 .

Proof. It is routine to check that the following two diagrams are commutative

M{G} ⊗R HOMR(M{G},R)

id⊗RΨ

��

// ENDR(M{G})

Ω

��
M{G} ⊗R QG

ω′ // G ∗ S

HOMR(M{G},R)⊗ENDR(M{G}) M{G}

Ψ⊗Rid

��

// R

=

��
QG⊗G∗S M{G} ν′ // R

This ends the proof. �

4.7. Remark. Let (C, x) be a G-A-coring with a fixed grouplike family x = (xα)α∈G.
The Morita context in Theorem 4.6 is just the Morita context studied in [5].

Let Ce be an A-coring and M a Ce-comodule such that M is finitely generated and
projective as right A-module. Recall from [8] that we have a Morita context

Me = (T = ENDCe(M),Re,M,Qe =CeHOM(Ce,M
∗), τe, µe)

with M ∈TMRe by

m · fe = m[0,e] · fe(m[1,e]) and t ·m = t(m)

for all m ∈M , fe ∈ Re, t ∈ T , and Qe ∈ReMT by

(fe · qe)(c) = qe(c(1,e) · fe(c(2,e)))
for all c ∈ Ce and qe ∈ Qe and (qe · t)(c′) = qe(c

′) ◦ t for all c′ ∈ Ce, and
µe : Qe ⊗T M → Re, µe(qe ⊗T m)(c) = qe(c)(m),∀c ∈ Ce

τe : M ⊗Re Qe → T, τe(m⊗Re qe)(m
′) = m[0,e] · (qe(m[1,e])(m

′)).

4.8. Proposition. Let Me be the Morita context defined as above. Consider the group
rings T [G] and Re[G]. ThenM [G] =

⊕
σ∈GMµσ ∈T [G] M

G
Re[G] and Qe[G] =

⊕
σ∈GQeµσ ∈Re[G]

MG
T [G] with

fµσ ·mµα · reµβ = (f ·m · re)µσαβ , reµβ · qeµα · fµσ = (re · qe · f)µβασ

for all σ, α, β ∈ G, f ∈ T , re ∈ Re, m ∈M and qe ∈ Qe. We have well-defined maps

µ : Qe[G]⊗T [G] M [G]→ Re[G], µ(qeµσ ⊗T [G] mµα) = µe(qe ⊗T m)µσα,

τ : M [G]⊗Re[G] Qe[G]→ T [G], τ(mµσ ⊗Re[G] qeµα) = τe(m⊗Re qe)µσα.
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Then Me[G] = (T [G],Re[G],M [G], Qe[G], τ, µ) is a graded Morita context.

4.9. Lemma. Let C be a cofree group coring and M a cofree C-comodule such that M is
finitely generated and projective. Then i : T → S is isomorphism, and ENDR(M{G}) ∼=
G ∗ S is isomorphic as a graded ring to the group ring T [G].

Proof. It suffices to show that i is surjective. For f ∈ S, we have that

fα(m)[0,e] ⊗A γβ−1(fα(m)[1,e]) = fα(m)[0,β−1] ⊗A fα(m)[1,β−1]

= fαβ(m[0,β−1])⊗A m[1,β−1]

= fαβ(m[0,e])⊗A γβ−1(m[1,e]).

Applying id ⊗A ε ◦ γ−1
β−1 , we have fα(m) = fαβ(m), hence fe = fβ for all β ∈ G, and

f = i(fe). �

4.10. Proposition. Let C be a cofree group coring and M a cofree C-comodule. Then
we have an isomorphism of G-graded (G ∗ S,R)-bimodules

ϑ : M{G} →M [G], ϑ(µα(m)) = mµα.

Proof. Straightforward. �

4.11. Lemma. Let C be a cofree group coring and M a cofree C-comodule such that
M is finitely generated and projective. Then Q ∼= Qe. Consequently HOMR(M{G},
R) ∼= Qe[G].

Proof. Let us take q = {qα}α∈G ∈ Q. Then for all α, β ∈ G and c ∈ Ce, we have

γβ−1(c(1,e))⊗A qα(γα−1(c(2,e)))

=γ(αβ)−1(c)(1,β−1) ⊗A qα(γ(αβ)−1(c)(2,α−1))

=qαβ(γ(αβ)−1(c))(ei[0,e]) · γβ−1(ei[1,e])⊗A e∗i

Taking α = β = e, we find that qe ∈ Qe. For all m ∈M , it follows that

γβ−1(c(1,e)) · qα(γα−1(c(2,e)))(m) = qαβ(γ(αβ)−1(c))(m[0,e]) · γβ−1(m[1,e]).

Applying γ−1
β−1 to both sides of the equation above, we have

c(1,e) · qα(γα−1(c(2,e)))(m) = qαβ(γ(αβ)−1(c))(m[0,e]) ·m[1,e].

Applying ε to both sides, we find that

qα(γα−1(c))(m) = qαβ(γ(αβ)−1(c))(m),

and
qe(c) = qβ(γβ−1(c)).

Hence, we have qβ = qe ◦ γ−1
β−1 . These arguments show that the map

j : Qe → Q, j(q) = (σα(q))α∈π

is a well-defined isomorphism. �

4.12. Theorem. Let C be a cofree group coring and M a cofree C-comodule such that
M is finitely generated and projective. Then the graded Morita contexts GM and Me[G]
are isomorphic.
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Proof. Let Ξ : G ∗ S → T [G] be the isomorphism in Lemma 4.9. We will show that the
diagram

M{G} ⊗R QG

ϑ⊗j−1G

��

ω′ // G ∗ S

Ξ

��
M [G]⊗Re[G] Qe[G]

ϕ // T [G]

commutes. Indeed, for α, σ ∈ G, a ∈ A and q ∈ Q, we have

(Ξ ◦ ω′)(µα(m)⊗ ωσ(q)) =Ξ(µασ((fσβ)β∈G))

=fσµασ

where fσβ(m′) = m[0,(σβ)−1] · qσβ(m[1,(σβ)−1])(m
′), and

(ϕ ◦ (ϑ⊗ j−1G))(µα(m)⊗ ωσ(q))

= ϕ(mµα ⊗ qeµσ)

= ϕe(m⊗ qe)µασ,

for all m′ ∈M , since

fσ(m′) =m[0,σ−1] · qσ(m[1,σ−1])(m
′)

=m[0,e] · qσ(γσ−1(m[1,e]))(m
′)

=m[0,e] · qe(m[1,e])(m
′)

=ϕe(m⊗ qe)(m′),

it follows that Ξ ◦ ω = ϕ ◦ (ϑ⊗ j−1G). Let

Γ : Re[G]→ R, Γ(fµα) = f ◦ γ−1
α−1

be the isomorphism from Proposition 4.6 in [5]. We will show that the diagram

QG⊗G∗S M{G}

j−1G⊗ϑ
��

ν′ // R

Γ−1

��
Qe[G]⊗T [G] M [G]

ψ // Re[G]

commutes. Take σ, α ∈ G, q ∈ Q and a ∈ A,

(Γ ◦ ψ ◦ (j−1G⊗ ϑ))(ωσ(q)⊗ µα(m))

= (Γ ◦ ψ)(qeµσ ⊗mµα)

= Γ(qe(−)(m)µσα)

= qe(−)(m) ◦ γ−1
(σα)−1

and
ν′(ωσ(q)⊗G∗S µα(m))(−) = qσα(−)(m).

For γ(σα)−1(c) ∈ C(σα)−1 , we compute that

(qe(−)(m) ◦ γ−1
(σα)−1)(γ(σα)−1(c)) =qe((γ

−1
(σα)−1 ◦ γ(σα)−1)(c))(m)

=qσα(γ(σα)−1(c))(m)

=ν′(ωσ(q)⊗G∗S µα(m))(γ(σα)−1(c)).

Thus we have ψ ◦ (j−1G⊗ ϑ) = Γ−1 ◦ ν′. �
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5. Applications
In this section, we will give the application of our theory to G-entwining structure.
Given a G-entwining structure (A,C)G−ψ, then we have a G-A-coring {A⊗ Cα}α∈G

arising from (A,C)G−ψ. First observe that

Rα =AHOM(A⊗ Cα−1 , A) ∼= HOM(Cα−1 , A)

as spaces. This graded ring structure on R induces a graded ring structure on
⊕

α∈GHOM(Cα−1 , A),
and this graded ring is denoted by ](C,A). The product is given by the formula

(fα]gβ)(c) = fα(c(2,α−1))ψβ−1 gβ(c(1,β−1)
ψ
β−1 )

for all fα ∈ HOM(Cα−1 , A), gβ ∈ HOM(Cβ−1 , A) and c ∈ C(αβ)−1 .
Fix a grouplike family x = {xα}α∈G of C, then we have that A ∈ U

C
A(ψ) with right

C-coaction ρAα (a) = aψα ⊗ xαψα .
Generally, let A be a right C-comodule. Suppose that A is an object of UCA(ψ) with

the structure maps mA and ρA = {ρAα}. Then we have ρAα (ab) = a[0,α]bψα ⊗ a[1,α]
ψα .

Specially, the coaction can be written as ρAα (b) = 1A[0,α]bψα ⊗ 1A[1,α]
ψα . The ring of

coinvariants is

B = {a ∈ A|1A[0,α]aψα ⊗ 1A[1,α]
ψα = a1A[0,α] ⊗ 1A[1,α], ∀α ∈ G}.

Q and S can be described as follows:

Q ={q = (qα)α∈G ∈
∏
α∈G

](Cα−1 , A)α|

qα(c(2,α−1))ψβ−1 ⊗ c(1,β−1)
ψ
β−1 = qαβ(c)1A[0,β−1] ⊗ 1A[1,β−1], c ∈ C(αβ)−1}

and

S = {b =(bα)α∈G ∈
∏
α∈G

A|

1A[0,β−1]bαψβ−1 ⊗ 1A[0,β−1]
ψ
β−1 = 1A[0,β−1]bαβ ⊗ 1A[1,β−1]}.

Then we have the twisted group ring G ∗ S =
⊕

α∈G µαS with the multiplication given
by µαbµβc = µαβ(bβc), where bβ = (bβα)α∈G.

From Theorem 4.6, we have the following result.

5.1. Theorem. With the notation as above, we have a graded Morita context GM =
(G ∗ S, ](C,A), A{G}, QG, ω′, ν′) with connecting map ω′ and ν′ given by the formulas

ω′ : A{G} ⊗](C,A) QG→ G ∗ S,

ω′(µα(a)⊗](C,A) ωσ(q)) = µασ(1A[0,(σβ)−1]aψ(σβ)−1 qσβ(1A[1,(σβ)−1]
(σβ)−1

)),

ν′ : QG⊗G∗S A{G} → ](C,A),

ν′(ωσ(q)⊗G∗S µα(a))(c) = qσα(c)a,∀c ∈ C(σα)−1 .

As was stated above, if we fix a grouplike family x = {xα}α∈G of C, then we have
that A ∈ U

C
A(ψ) with right G-C-coaction ρAα (a) = aψα ⊗ xαψα . In particular, it follows

that ρAα (1A) = 1A ⊗ xα. Then B, S and Q have the following forms:

B = {a ∈ A|aψα ⊗ xα
ψα = a⊗ xα, ∀α ∈ G},

Q ={q = (qα)α∈G ∈
∏
α∈G

](Cα−1 , A)α|

qα(c(2,α−1))ψβ−1 ⊗ c(1,β−1)
ψ
β−1 = qαβ(c)⊗ xβ−1 , c ∈ C(αβ)−1}
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and

S = {b =(bα)α∈G ∈
∏
α∈G

A|bαψ
β−1 ⊗ xβ−1

ψ
β−1 = bαβ ⊗ xβ−1}.

From Theorem 5.1, we have a graded Morita context GM = (G ∗ S, ](C,A), A{G},
QG, ω′, ν′) with connecting map ω′ and ν′ given by the formulas

ω′ : A{G} ⊗](C,A) QG→ G ∗ S,

ω′(µα(a)⊗](C,A) ωσ(q)) = µασ(aψ
(σβ)−1 qσβ(x(σβ)−1

(σβ)−1

)),

ν′ : QG⊗G∗S A{G} → ](C,A),

ν′(ωσ(q)⊗G∗S µα(a))(c) = qσα(c)a,∀c ∈ C(σα)−1 .

Furthermore, if G is a trivial group, then B = S and the graded Morita context GM =
(G∗S, ](C,A), A{G}, QG, ω′, ν′) recovers to the Morita context in the sense of [7, Section
4].

In order to proceed the further discussion, we need the following result [10].

5.2. Proposition. Let A and E be rings, and C a G-A-coring, andM both a C-comodule
and a (E,A)-bimodule such that the comodule maps ρα are left E-linear. Then we have
a pair of adjoint functors (F,U):

F : ME →M
G,C , F (N) = {µα(N ⊗E M)}α∈G.

The coaction maps are

ρα,β : µαβ(N ⊗E M)→ µα(N ⊗E M)⊗A Cβ ,

ρα,β(µαβ(n⊗E m)) = µα(n⊗E m[0,β])⊗A m[1,β].

For X ∈MG,C , define U as follows:

U : MG,C →ME , U2(X) = HOMG,C(µα(M), X).

Next, we apply Proposition 5.2 to the particular G-A-coring {A ⊗ Cα}α∈G arising
from (A,C)G−ψ. Under the assumption that A is an object of UCA(ψ) with the structure
maps mA and ρA = {ρAα}, we have a special pair of adjoint functors (F̃ , Ũ):

F̃ : MB → U
G,C
A (ψ), F̃(N) = {µα(N ⊗B A)}α∈G.

The coaction maps are

ρα,β : µαβ(N ⊗B A)→ µα(N ⊗B A)⊗A Cβ ,

ρα,β(µαβ(n⊗B a)) = µα(n⊗B 1A[0,β]aψβ )⊗A 1A[1,β]
ψβ .

For X ∈ U
G,C
A (ψ), define Ũ as follows:

Ũ : U
G,C
A (ψ)→MB , Ũ(X) = HOMC

A(µα(A), X).

For M ∈ U
G,C
A , we define

Mco = {m = (mα)α∈G ∈
∏
α∈G

Mα|m[0,α] ⊗m[1,β] = m · 1A[0,β] ⊗ 1A[1,β]}.

Then we have

5.3. Lemma. There exists an isomorphism

HOMC
A(µα(A),M) ∼= Mco

as right B-modules.
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Proof. For any f ∈ HOMC
A(µα(A),M), since f is a right C-comodule, then we have

ρ
M
αβ(fαβ(µαβ(1A))) = fα(µα(1A[0,β]))⊗ 1A[1,β].

Set m = (mα)α∈G, where mα = fα(µα(1A)). Straightforward calculation can show that
m ∈Mco. Thus we define a map

Φ̂ : HOMC
A(µα(A),M)→Mco, Φ̂(f) = (fα(µα(1A)))α∈G.

Take m ∈Mco, we define a map

Ψ̂ : Mco → HOMC
A(µα(A),M), Ψ̂(m)α(µα(a)) = mα · a.

It follow easily that Φ̂ and Ψ̂ are both B-linear and mutually inverses. �

From Lemma 5.3 and what was discussed above, we have a pair of adjoint functors
(F̃ , Ũ):

F̃ : MB → U
G,C
A (ψ), F̃(N) = {µα(N ⊗B A)}α∈G.

Ũ : U
G,C
A (ψ)→MB , Ũ(X) = Xco.

By the discussion as above, and [7, Theorem 9.2], we can achieve the main goal in this
section.

5.4. Theorem. Let (A,C) be a G-entwined structure. Suppose that A ∈ U
C
A(ψ). Con-

sider the map

can : (A⊗B A)〈G〉 → A⊗ C, canα(a⊗B b) = a1A[0,α]bψβ ⊗ 1A[1,α]
ψβ .

Then the following statements are equivalent:
(1) can is an isomorphism of group corings, and A is faithfully flat as a left B-

module,
(2) ∗can is an isomorphism of graded rings and A is a left B-progenerator,
(3) The graded Morita context GM = (G ∗ S, ](C,A), A{G}, QG, ω′, ν′) is strict,
(4) (F̃ , Ũ) is an equivalence of categories.

As the end of this paper, we discuss the (H,A)-Hopf module for an H-comodule
algebra A over a Hopf G-coalgebra H.

Let H = ({Hα,mα, 1α,∆, ε}) be a Hopf G-coalgebra in the sense of [16] and A an
algebra. We recall from [16] that a right H-comodule algebra is a right H-comodule
(A, ρA = {ρAα}), such that the following conditions are satisfied:

• ρAα (ab) = a[0,α]b[0,α] ⊗ a[1,α]b[1,α] for all a, b ∈ A and α ∈ G,
• ρAα (1A) = 1A ⊗ 1α for all α ∈ G.

Given an H-comodule algebra A, we have a G-entwined structure ψα : Hα ⊗ A →
A ⊗ Hα, ψα(h ⊗ a) = a[0,α] ⊗ ha[1,α]. We call a special (A,C)ψ-module a (right-right)
(H,A)-Hopf module and denote the category of (H,A)-Hopf modules by U

H
A . It is easy

to see that A ∈ U
H
A . Let us take the grouplike family {1α}α∈G. Then we have a graded

Morita context GM = (G ∗ S, ](H,A), A{G}, QG, ω′, ν′) with connecting map ω′ and ν′

given by the formulas
ω′ : A{G} ⊗](H,A) QG→ G ∗ S,

ω′(µα(a)⊗](H,A) ωσ(q)) = µασ(a[0,(σβ)−1]qσβ(a[1,(σβ)−1])),

ν′ : QG⊗G∗S A{G} → ](H,A),

ν′(ωσ(q)⊗G∗S µα(a))(c) = qσα(c)a,∀c ∈ C(σα)−1 ,
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where

Q ={q = (qα)α∈G ∈
∏
α∈G

](Hα−1 , A)α|

qα(h(2,α−1))[0,β−1] ⊗ h(1,β−1)qα(h(2,α−1))[1,β−1] = qαβ(h)⊗ 1β−1 , h ∈ H(αβ)−1}

and

S = {b =(bα)α∈G ∈
∏
α∈G

A|bα[0,β−1] ⊗ bα[1,β−1] = bαβ ⊗ 1β−1}.

5.5. Remark. If π is a trivial group, then S = AcoH and

Q = {q ∈ ](H,A)|q(h(2))[0] ⊗ h(1)q(h)[1] = q(h)⊗ 1H , h ∈ H}.

Hence, the graded Morita context GM = (G ∗ S, ](H,A), A{G}, QG, ω′, ν′) is just the
Morita context of Doi in [12].
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[13] L. EI Kaoutit, J. Gómez Torrecillas, Comatrix corings: Galois corings, descent theory, and
structure Theorem for cosemisimple corings, Math. Z., 224(2003), 887-906.

[14] M. E. Sweedler, The predual theorem to the Jacobson-bourbaki theorem, Trans. Amer. Math.
Soc., 213(1975), 391-406.



1350

[15] R. Wisbauer, On the category of comodules over corings, in “Mathematics and mathematics
education(Bethlehem, 2000)", World Sci. Publishing, River Edge, NJ, 2002, 325-336.

[16] V. G. Turaev, Homotopy field theory in dimension3 and crossed group-categories, Preprint
math.GT/000529, 2000.



Hacettepe Journal of Mathematics and Statistics
Volume 44 (6) (2015), 1351 – 1359

On strongly and nicely almost ω1-pω+n-projective
Abelian p-groups

Peter Danchev∗

Abstract

We define the classes of strongly almost ω1-pω+n-projective abelian p-
groups and nicely almost ω1-pω+n-projective abelian p-groups as well as
we study their crucial properties. Our results support those obtained
by us in Hacettepe J. Math. Stat. (2014) and Korean J. Math. (2014).

Keywords: almost Σ-cyclic groups, almost pω+n-projective groups, almost ω1-
pω+n-projective groups, strongly almost ω1-pω+n-projective groups, nicely almost
ω1-pω+n-projective groups.

2000 AMS Classification: 20K10.

Received : 17.09.2014 Accepted : 13.11.2014 Doi : 10.15672/HJMS.2015449676

1. Introduction and Terminology
Let all groups into consideration be p-primary abelian, where p is a fixed prime integer,

written additively as it is customary. As usual, for some ordinal α ≥ 0 and a group G,
we state the α-th Ulm subgroup pαG, consisting of all elements of G with height ≥ α,
inductively as follows: p0G = G, pG = {pg | g ∈ G}, pαG = p(pα−1G) if α− 1 exists (so
α is non-limit) and pαG = ∩β<αpβG if α − 1 does not exist (so α is limit). The group
G is called pα-bounded if pαG = {0}; note that these groups are necessarily reduced. We
shall say that G is separable if it is pω-bounded. Most of the important unexplained here
notations and notions will follow mainly those from [9].

In their seminal work [12], Hill and Ullery have given the following critical concept.

• The reduced group G is called almost totally projective if it has a collection C

consisting of nice subgroups of G satisfying the following three conditions:
(1) {0} ∈ C;
(2) C is closed with respect to ascending unions, i.e., if Hi ∈ C with Hi ⊆ Hj whenever

i ≤ j (i, j ∈ I) then ∪i∈IHi ∈ C;
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Email : pvdanchev@yahoo.com, peter.danchev@yahoo.com



1352

(3) If K is a countable subgroup of G, then there is L ∈ C (that is, a nice subgroup L
of G) such that K ⊆ L and L is countable.

This concept generalizes the notion of an almost direct sum of cyclic groups, defined
in [11], hereafter abbreviated as almost Σ-cyclic. Actually separable almost totally pro-
jective groups are almost Σ-cyclic. Moreover, the direct sum of a divisible group and
an almost totally projective group is called almost simply presented. It readily follows
that a group is almost simply presented if and only if its reduced part is almost simply
presented as well as that the direct sum of almost simply presented groups is again an
almost simply presented group.

Extending the meaning of almost Σ-cyclic groups, the current author defines in [2]
(see also [4], [5] and [7]) the following:

• The group G is said to be almost pω+n-projective if there is B ≤ G[pn] such that
G/B is almost Σ-cyclic.

Observe that when n = 0 we obtain almost Σ-cyclic groups, i.e., the almost pω-
projective groups. Moreover, note that P is of necessity nice in G because G/P is
separable.

• If there exists a countable subgroup C ≤ G of a group G with the property that
G/C is almost pω+n-projective, then we will say that G is almost ω1-pω+n-projective –
see [7]. Note that by Theorem 2.15 of [7] the subgroup C can be taken to be nice in G.

The following two notions were stated in [4].

• A group G is said to be almost weak pω·2+n-projective if there is an almost pω+n-
projective subgroup H ≤ G such that G/H is almost Σ-cyclic.

• A group G is said to be almost ω1-weak pω·2+n-projective if there is a countable
subgroup K ≤ G such that G/K is almost weak pω·2+n-projective.

On the other hand, in [2] it was formulated the following:

• The group G is said to be almost n-simply presented if there is H ≤ G[pn] such that
G/H is almost simply presented.

If G/H is almost totally projective, then we will say that G is almost n-totally pro-
jective.

In case that H is nice in G, we give

• The group G is called nicely almost n-simply presented if there exists a pn-bounded
nice subgroup N ≤ G with G/N almost simply presented.

On the other hand these groups could be termed as strongly almost n-simply presented
and strongly almost n-totally projective, respectively.

Apparently almost pω+n-projective groups are nicely almost n-totally projective.
We will now state our new machinery like this:
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1.1 Definition. A group G is said to be strongly almost ω1-pω+n-projective if it contains
a pn-bounded nice subgroup P such that G/P is the sum of a countable group and an
almost Σ-cyclic group.

1.2 Definition. A group G is said to be nicely almost ω1-pω+n-projective if it contains
a nice subgroup X such that X is almost pω+n-projective and G/X is countable.

The goal of the present paper is to give a comprehensive study of these two concept.
The work is organized as follows: In the next section, we establish our basic results which
are stated in two different subsections. In the final section, we list some interesting left-
open questions.

And so, we come to

2. Main Results
We distribute the chief results into two subsections. We start with

2.1. Strongly Almost ω1-pω+n-Projective p-Groups. We begin here with two useful
necessary and sufficient conditions when a group is strongly almost ω1-pω+n-projective.
First, we need two more preliminaries.

The following can be seen in [2].

2.1. Lemma. If C is a countable subgroup of a group A such that A/C is almost Σ-cyclic,
then A is the sum of a countable group and an almost Σ-cyclic group.

The following somewhat extends the corresponding result from [13] (see [8] and [2],
too).

2.2. Proposition. The group A is almost simply presented with countable pωA if and
only if A is the sum of a countable group and an almost Σ-cyclic group.

Proof. "Necessity". In conjunction with [12], one may write that A/pωA is almost
Σ-cyclic. We furthermore appeal to Lemma 2.1 to get the desired decomposition of the
group A.

"Sufficiency". Write A = C+S, where C is countable and S is almost Σ-cyclic. Since
C ∩S ⊆ S is countable, there is a nice countable subgroup K of S such that C ∩S ⊆ K.
Therefore, A/K = [(C + K)/K] ⊕ [S/K]. But pω(S/K) = (pωS + K)/K = {0}, so
that pω(A/K) = pω((C + K)/K) is countable because it is obvious that the same is
(C +K)/K. Thus pωA/(pωA∩K) ∼= (pωA+K)/K ⊆ pω(A/K) is countable, whence so
is pωA as asserted, since pωA ∩K is countable.

The last can be slightly extended to the following one:

2.3. Lemma. Suppose G is a group. Then the following are equivalent:
(1) G is almost simply presented with countable pωG;
(2) G/pωG is almost Σ-cyclic such that pωG is countable;
(3) G is the sum of a countable group and an almost Σ-cyclic group.

Proof. The implication (1)⇒ (2) follows from [12]. The implication (2)⇒ (3) follows
from Lemma 2.1. The implication (3) ⇒ (1) follows from Proposition 2.2.

As a helpful consequence we derive:
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2.4. Corollary. (a) A subgroup of the sum of a countable group and an almost Σ-cyclic
group is again the sum of a countable group and an almost Σ-cyclic group.

(b) If G is the sum of a countable group and an almost Σ-cyclic group, then for each
α ≥ ω the quotient G/pαG is also the sum of a countable group and an almost Σ-cyclic
group.

Proof. (a) By the usage of Lemma 2.3 (2), let A ≤ G where G/pωG is almost Σ-cyclic
and pωG is countable. Thus

A/(A ∩ pωG) ∼= (A+ pωG)/pωG ⊆ G/pωG

is almost Σ-cyclic with the aid of [1]. But A∩pωG ≤ pωG is countable. Hence we employ
Lemma 2.1 to deduce the desired claim.

(b) By virtue of Lemma 2.3 (2) we have that G/pωG is almost Σ-cyclic and pωG is
countable. Consequently,

G/pωG ∼= (G/pαG)/(pωG/pαG) = (G/pαG)/(pω(G/pαG))

is almost Σ-cyclic with pω(G/pαG) = pωG/pαG being countable. Again an application
of point (2) in Lemma 2.3 gives the wanted claim.

The next assertion gives two new necessary and sufficient conditions when a group is
strongly almost ω1-pω+n-projective.

2.5. Proposition. (a) A group G is strongly almost ω1-pω+n-projective if and only if
there exists a pn-bounded nice subgroup N ≤ G such that pω(G/N) is countable and
G/(N + pωG) is almost Σ-cyclic.

(b) A group G is strongly almost ω1-pω+n-projective if and only if there exists a count-
able subgroup K and a pn-bounded nice subgroup N such that G/(K + N) is almost
Σ-cyclic.

Proof. (a) "⇒". By definition G/P is the sum of a countable group and an almost
Σ-cyclic group for some nice subgroup P of G which is bounded by pn. Since G/P is
almost simply presented in conjunction with Proposition 2.2 (see [2] as well), we deduce
that

(G/P )/pω(G/P ) = (G/P )/((pωG+ P )/P ) ∼= G/(pωG+ P )

is almost Σ-cyclic, as stated. That pω(G/P ) is countable again follows directly from
Proposition 2.2.

"⇐". Since G/(N + pωG) ∼= [G/N ]/[(N + pωG)/N ] is almost Σ-cyclic with countable
quotient (N + pωG)/N = pω(G/N), Lemma 2.1 leads us to this that G/N is the sum of
a countable group and an almost Σ-cyclic subgroup, as expected.

(b) "⇒". Write G/P = (A/P ) + (B/P ), where the first term A/P is countable and
the second term B/P is almost Σ-cyclic for some A,B ≤ G and some nice subgroup P of
G with pnP = {0}. Since (A/P ) ∩ (B/P ) ⊆ B/P is countable, there is a countable nice
subgroup C/P of B/P for some C ≤ B such that (A/P )∩ (B/P ) ⊆ C/P . In accordance
to [7], the factor-group (B/P )/(C/P ) ∼= B/C is always almost Σ-cyclic. We also may
write twice A = K1 + P and C = K2 + P , where both K1 and K2 are countable groups.
Furthermore, one can decompose

(G/P )/(C/P ) = [((A/P ) + (C/P ))/(C/P )]⊕ [(B/P )/(C/P )].
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Since (G/P )/(C/P ) ∼= G/C as the first term of the above decomposition is isomorphic
to (A + C)/C while the second one is isomorphic to B/C, it is routinely seen that
G/(K + P ) = G/(A + C) ∼= B/C is almost Σ-cyclic for some countable subgroup K =
K1 +K2, as required.

"⇐". Suppose that G/(K + N) is almost Σ-cyclic, for some countable subgroup
K ≤ G and some bounded by pn nice subgroup N ≤ G. Observing that G/(K + N) ∼=
(G/N)/((K+N)/N), where (K+N)/N ∼= K/(K∩N) is obviously countable, Lemma 2.1
allows us to conclude that G/N is the sum of a countable group and an almost Σ-cyclic
group, as required in Definition 1.1.

2.6. Corollary. If G is strongly almost ω1-pω+n-projective, then so are both pαG and
G/pαG for every ordinal α.

Proof. Assume that G/P = (L/P ) + (S/P ), where L, S ≤ G and L/P is countable
while S/P is an almost Σ-cyclic group, for some nice subgroup P ≤ G with pnP = {0}.
Thus, with Corollary 2.4 at hand, all of

G/P ⊇ (pαG+ P )/P ∼= pαG/(pαG ∩ P )

are also sums of countable groups and almost Σ-cyclic groups, where pαG ∩ P is nice in
pαG, as needed.

Concerning the second half-part, it follows directly from Corollary 2.4, because the
isomorphism sequence

(G/pαG)/((P + pαG)/pαG) ∼= G/(P + pαG) ∼= (G/P )/((P + pαG)/P ).

holds.

2.7. Corollary. If G is a group such that pω+nG = {0}, then G is strongly almost
ω1-pω+n-projective if and only if G is almost pω+n-projective.

Proof. In accordance with Proposition 2.5, the quotient G/(N + pωG) is almost Σ-
cyclic for some N ≤ G[pn]. Thus pn(N + pωG) = {0} and the claim follows at once by
definition.

We are now ready to proceed by proving one of our basic results, which reduces
the investigation of strongly almost ω1-pω+n-projective groups to groups of lengths not
exceeding ω + n.

2.8. Theorem. For every n ≥ 1 the group G is strongly almost ω1-pω+n-projective if
and only if

(1) pω+nG is countable;
(2) G/pω+nG is almost pω+n-projective.

Proof. "⇒". According to Proposition 2.5, one may write that pωG/(pωG ∩ N) is
countable for some pn-bounded nice subgroup N of G. Thus pωG = pωG∩N +C where
C ≤ pωG is countable. Furthermore, pω+nG = pnC is countable, so that clause (1)
follows.

Next, point (2) follows directly from Corollary 2.6.
"⇐". Suppose that P ≤ G such that pω+nG ⊆ P , pnP ⊆ pω+nG (thereby P/pω+nG

is pn-bounded) and G/P is Σ-cyclic. Let Y be a maximal pn-bounded summand of pωG;
so there is a decomposition pωG = X ⊕ Y and thus the inclusions X ⊆ pωG ⊆ P hold.
We may assume without loss of generality that X is countable; in fact, pω+nG = pnX
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is countable and so we can decompose X = K ⊕ T where K is countable and T is pn-
bounded (whence T is a pn-bounded summand of pωG and thereby T ⊆ Y ; then even
T = T ∩ Y ⊆ X ∩ Y = {0} and X = K - in any case pωG = K ⊕ (T ⊕ Y ) where T ⊕ Y is
pn-bounded). That is why pωG = K ⊕ Y with a countable summand K, as desired. An
other verification of this fact is like this: Note that X[p] = (pω+nG)[p] = (pnX)[p], and
hence X[p] is countable. So X will be countable, provided that it is reduced.

Let us now H be a pω+n-high subgroup of G containing Y (thus H is maximal with
respect toH∩pω+nG = {0}). We next assert that (G/pω+nG)[pn] = (X⊕H[pn])/pω+nG.
To this aim, given v ∈ G with pnv ∈ pω+nG, it suffices to prove that v ∈ X ⊕H[pn]. If
x ∈ X is chosen such that pnx = pnv, then replacing v by v − x, we may assume that
pnv = 0. Since G[p] = (pω+nG)[p] ⊕ H[p] = X[p] ⊕ H[p] and H is pure in G, it easily
follows that G[pn] = X[pn]⊕H[pn]. Therefore, v = x′+h where x′ ∈ X[pn] and h ∈ H[pn]
as required. Moreover, X ∩H = {0} because as noted above X[p] = (pω+nG)[p], which
substantiates our assertion. Furthermore, by what we have just shown above, P/pω+nG ⊆
(G/pω+nG)[pn] implies that P ⊆ X ⊕H[pn]. Note also the fact from above that X ≤ P .
Let L = P ∩H[pn] ⊆ H[pn] ⊆ G[pn]; so pnL = {0}. Clearly, the inclusion L ⊆ H forces
that L∩pω+nG = {0}. Likewise, P ⊆ X⊕H[pn] yields that P = X+(P∩H[pn]) = X+L;
indeed the modular law applies to get that P = (X⊕H[pn])∩P = X+P∩H[pn] as stated.
Consequently, we conclude that P = pωG+ P = pωG+L. Thus G/P = G/(pωG+L) is
Σ-cyclic.

We next will show that L is nice in G. Since L ∩ pω+nG = {0}, it readily follows via
some technical efforts that L ∩ pωG is nice in pωG and so nice in G. But L + pωG = P
is also nice in G because G/(pωG + L) is separable, and these two conditions together
imply that L is nice in G, as wanted (see, e.g., Section 79, Exercise 10 of [9]).

Furthermore, we claim that pω(G/L) = (pωG + L)/L = P/L is countable. In fact,
P/L = P/(P ∩ H[pn]) ∼= (P + H[pn])/H[pn] = (pωG + H[pn])/H[pn] ∼= pωG/(pωG ∩
H[pn]). But pωG = X ⊕ Y and since Y ⊆ H, one may have in view of the modular
law that pωG ∩ H = (X ⊕ Y ) ∩ H = (X ∩ H) ⊕ Y = Y . We therefore establish that
P/L ∼= (X ⊕ Y )/Y [pn] ∼= X ⊕ (Y/Y [pn]) ∼= X ⊕ pnY = X, because pnY = {0}. As
noticed above, X is countable, so that pω(G/L) is really countable as claimed. Finally,
Proposition 2.5 (a) allows us to infer that G is strongly ω1-pω+n-projective, as required.

As a direct consequence, we obtain the following:

2.9. Corollary. The group G is strongly almost n-simply presented with countable pω+nG
if and only if G is strongly almost ω1-pω+n-projective.

Proof. Concerning the necessity, in conjunction with [2], the quotient G/pω+nG is
almost pω+n-projective. We next apply Theorem 2.8 to get the desired assertion.

As for the sufficiency, it follows immediately from either Proposition 2.2 or Lemma 2.3
accomplished with Theorem 2.8.

Another immediate consequence is the following one:

2.10. Corollary. Strongly almost n-simply presented groups are almost ω1-pω+n-projective
if and only if they are strongly almost ω1-pω+n-projective.

Proof. The "if" part being elementary, we concentrate on the "and only if" part. To
this aim, owing to [7], the Ulm subgroup pω+nG has to be countable. On the other
hand, according to [2], the factor-group G/pω+nG must be almost pω+n-projective. We
therefore with Theorem 2.8 at hand deduce that G is strongly almost ω1-pω+n-projective
groups, as claimed.
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2.11. Proposition. The countable direct sum of strongly almost ω1-pω+n-projective
groups is again a strongly almost ω1-pω+n-projective group.

Proof. Write G = ⊕i∈IGi, where all summands Gi are strongly almost ω1-pω+n-
projective groups, and |I| = ℵ0. Thus, in view of Theorem 2.8, pω+nG = ⊕i∈Ipω+nGi
remains countable. On the other vein, in virtue of [7] along with Theorem 2.8, the
quotient G/pω+nG ∼= ⊕i∈IGi/pω+nGi remains almost pω+n-projective. We finally again
take into account Theorem 2.8 to get the wanted assertion that G is a strongly almost
ω1-pω+n-projective group.

2.12. Proposition. Let G = H ⊕ K, where K is a countable subgroup of a group G.
Then G is a strongly almost ω1-pω+n-projective group if and only if H is a strongly almost
ω1-pω+n-projective group.

Proof. The "if" part follows directly from Proposition 2.11.
To treat the "and only if" part, since by Theorem 2.8 the group pω+nG is countable,

it follows at once that so is its subgroup pω+nH. Moreover, the direct decomposition
G/pω+nG ∼= (H/pω+nH) ⊕ (K/pω+nK) implies with the aid of [7] that H/pω+nH is
almost pω+n-projective, because by virtue of Theorem 2.8 the same is G/pω+nG. We
consequently may now employ once again Theorem 2.8 to obtain that H is strongly
almost ω1-pω+n-projective, as expected.

2.13. Proposition. (i) Suppose H ≤ G with G/H finite. If H is strongly almost ω1-
pω+n-projective, then G is strongly almost ω1-pω+n-projective.

(ii) Suppose F ≤ G is finite. If G is strongly almost ω1-pω+n-projective, then G/F is
strongly almost ω1-pω+n-projective.

Proof. (i) Write G = H+F where F ≤ G is finite. By definition, let H/P = (C/P ) +
(S/P ), where the first term is countable while the second one is almost Σ-cyclic, for some
pn-bounded nice subgroup P of H. It follows that G/P = [(C/P )+((F+P )/P )]+(S/P ),
where the first term remain countable. Owing to [2] or [3] it follows that P is nice in
H + F = G, as required.

(ii) With Theorem 2.8 in hand, we know that pω+nG is countable and G/pω+nG is
almost Σ-cyclic. But F being finite is nice in G, so that pω+n(G/F ) = (pω+nG+F )/F ∼=
pω+nG/(F ∩ pω+nG) is also countable. Moreover,

(G/F )/pω+n(G/F ) ∼= G/(pω+nG+ F ) ∼= (G/pω+nG)/((pω+nG+ F )/pω+nG).

Since (pω+nG + F )/pω+nG) ∼= F/(pω+nG ∩ F ) is finite, we refer to [2] or to [7]
to obtain that (G/pω+nG)/((pω+nG + F )/pω+nG) is almost Σ-cyclic, and hence so is
(G/F )/pω+n(G/F ) thus getting the wanted claim.

2.2. Nicely Almost ω1-pω+n-Projective p-Groups.

2.14. Proposition. If G is nicely almost ω1-pω+n-projective, then so is pαG for any
ordinal α.

Proof. Letting G/X be countable for some nice subgroup X ≤ G such that X is
almost pω+n-projective, one sees that pα(G/X) = (pαG + X)/X ∼= pαG/(pαG ∩ X)
remains also countable. Besides, in accordance to [9], pαG ∩ X is nice in pαG as well
as pαG ∩X ⊆ X is almost pω+n-projective by application of [7]. Thus Definition 1.2 is
satisfied, as required.
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2.15. Proposition. The countable direct sum of nicely almost ω1-pω+n-projective groups
is again a nicely almost ω1-pω+n-projective group.

Proof. Write G = ⊕i∈IGi, where all summands Gi are strongly almost ω1-pω+n-
projective groups, and |I| = ℵ0. By definition, for each index i ∈ I, there is a nice
subgroup Xi ≤ Gi such that Gi/Xi is countable and Xi is almost pω+n=projective.
Setting X = ⊕i∈IXi, one can see that X is nice in G, and X is almost pω+n-projective
by [7]. Moreover, G/X ∼= ⊕i∈IGi/Xi is countable, so that Definition 1.2 is applicable to
obtain that G is a nicely almost ω1-pω+n-projective group, as promised.

2.16. Proposition. (i) Suppose H ≤ G with G/H finite. If H is nicely almost ω1-pω+n-
projective, then G is nicely almost ω1-pω+n-projective.

(ii) Suppose F ≤ G is finite. If G is nicely almost ω1-pω+n-projective, then G/F is
nicely almost ω1-pω+n-projective.

Proof. (i) Letting H/X be countable for some nice subgroup X ≤ H such that X is
almost pω+n-projective and writing G = H + F , where F is a finite subgroup of G, we
observe that G/X = (H/X) + ((F +X)/X) is countable. By [2] or [3], we have that X
is nice in H + F = G, as required.

(ii) Let G/X be countable for some nice subgroup X ≤ G such that X is almost
pω+n-projective. Thus, as being its epimorphic image, G/(X+F ) ∼= (G/F )/((X+F )/F )
remains countable as well. But, in virtue of [2] or [3], X + F is nice in G whence by [9]
the factor-group (X + F )/F is nice in G/F . Finally, [7] enables us that (X + F )/F ∼=
X/(F ∩X) is almost pω+n-projective, because F ∩X is finite. Consequently, Definition
1.2 leads us to G/F is nicely almost ω1-pω+n-projective, as claimed.

3. Open Problems
We state here two problems of interest.

Problem 1. Does it follow that strongly almost ω1-pω+n-projective groups are nicely
almost ω1-pω+n-projective?

Removing off the word "almost" this is true (see [3]). However, the same proof does
not work directly in the current case, because the two definitions are almost identical.

Problem 2. Decide whether or not nicely almost ω1-pω+n-projective groups are nicely
almost n-simply presented.

Acknowledgment. The author would like to thank the referee for the valuable com-
ments on the present work.
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Abstract

In this paper, we investigated the periodic nature and the form of the
solutions of nonlinear di�erence equations systems of order three

xn+1 =
xn−2yn−1

yn (±1± xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (±1± yn−2xn−1)
,

with initial conditions x−2, x−1, x0, y−2, y−1 and y0 are nonzero real
numbers.
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1. Introduction

In this paper we deal with the existence of solutions and the periodicity character of
the following systems of rational di�erence equations with order three

xn+1 =
xn−2yn−1

yn (±1± xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (±1± yn−2xn−1)
,

with initial conditions x−2, x−1, x0, y−2, y−1 and y0 are nonzero real numbers.
In recent years, rational di�erence equations have attracted the attention of many

researchers for varied reasons. On the one hand, they provide examples of nonlinear
equations which are, in some cases, treatable but whose dynamics present some new
features with respect to the linear case. On the other hand, rational equations frequently
appear in some biological models, and, hence, their study is of interest also due to their
applications. A good example of both facts is Ricatti di�erence equations; the richness of
the dynamics of Ricatti equations is very well-known ( see, e.g., [10, 29]), and a particular
case of these equations provides the classical Beverton-Holt model on the dynamics of

∗King Abdulaziz University, Faculty of Science, Mathematics Department, P. O. Box 80203,
Jeddah 21589, Saudi Arabia and Mathematics Department, Faculty of Science, Mansoura Uni-
versity, Mansoura 35516, Egypt.
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exploited �sh populations [5]. Obviously, higher-order rational di�erence equations and
systems of rational equations have also been widely studied but still have many aspects
to be investigated. The reader can �nd in the following books [1, 29, 30], and the works
cited therein, many results, applications, and open problems on higher-order equations
and rational systems.

There are many papers related to the di�erence equations systems for example, The
global asymptotic behavior of the positive solutions of the rational di�erence system

xn+1 = 1 +
xn

yn−m
, yn+1 = 1 +

yn
xn−m

,

has been studied by Camouzis et al. in [6].
The periodicity of the positive solutions of the rational di�erence equations systems

xn+1 =
m

yn
, yn+1 =

pyn
xn−1yn−1

,

xn+1 =
1

zn
, yn+1 =

yn
xn−1yn−1

, zn+1 =
1

xn−1
,

has been obtained by Cinar in [7-8].
In [9] Clark and Kulenovic investigated the global asymptotic stability

xn+1 =
xn

a+ cyn
, yn+1 =

yn
b+ dxn

.

Elsayed [14] has got the solutions of the following systems of the di�erence equations

xn+1 =
xn−1

±1 + xn−1yn
, yn+1 =

yn−1

∓1 + yn−1xn
.

Grove et al. [23] has studied existence and behavior of solution of the rational system

xn+1 =
a

xn
+

b

yn
, yn+1 =

c

xn
+

d

yn
.

The behavior of positive solutions of the following system

xn+1 =
xn−1

1 + xn−1yn
, yn+1 =

yn−1

1 + yn−1xn
.

has been studied by Kurbanli et al. [31].
Özban [32] has investigated the positive solution of the system of rational di�erence
equations

xn+1 =
a

yn−3
, yn+1 =

byn−3

xn−qyn−q
.

Also, Touafek et al. [36] studied the periodicity and gave the form of the solutions of the
following systems

xn+1 =
yn

xn−1(±1± yn)
, yn+1 =

xn

yn−1(±1± xn)
.

In [37] Yalç�nkaya investigated the su�cient condition for the global asymptotic stability
of the following system of di�erence equations

xn+1 =
xn + yn−1

xnyn−1 − 1
, yn+1 =

yn + xn−1

ynxn−1 − 1
.

Similar to di�erence equations and nonlinear systems of rational di�erence equations
were investigated see [1]-[43].

1.1. De�nition. (Periodicity)

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p = xn for all n ≥ −k.
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2. The First System: xn+1 =
xn−2yn−1

yn(1+xn−2yn−1)
, yn+1 =

yn−2xn−1

xn(1+yn−2xn−1)

In this section, we investigate the solutions of the system of two di�erence equations

(1) xn+1 =
xn−2yn−1

yn (1 + xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (1 + yn−2xn−1)
,

where n ∈ N0 and the initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary
nonzero real numbers.

2.1. Theorem. Assume that {xn, yn} are solutions of system (1). Then for n =
0, 1, 2, ..., we see that all solutions of system (1) are given by the following formula

x4n−2 =
xn
0 y

n
0

yn
−2x

n−1
−2

n−1∏
i=0

(1 + (2i)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)
,

x4n−1 =
x−1x

n
−2y

n
−2

xn
0 y

n
0

n−1∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i)x−1y0)

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)
,

x4n =
xn+1
0 yn

0

xn
−2y

n
−2

n−1∏
i=0

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)
,

x4n+1 =
y−1x

n+1
−2 yn

−2

xn
0 y

n+1
0 (1 + x−2y−1)

n−1∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

(1 + (2i+ 3)x−2y−1)(1 + (2i+ 2)x−1y−2)
,

and

y4n−2 =
xn
0 y

n
0

xn
−2y

n−1
−2

n−1∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i)x−1y0)
,

y4n−1 =
y−1x

n
−2y

n
−2

xn
0 y

n
0

n−1∏
i=0

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)
,

y4n =
xn
0 y

n+1
0

xn
−2y

n
−2

n−1∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)
,

y4n+1 =
x−1x

n
−2y

n+1
−2

xn+1
0 yn

0 (1 + x−1y−2)

n−1∏
i=0

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 3)x−1y−2)
.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1. that is,

x4n−6 =
xn−1
0 yn−1

0

yn−1
−2 xn−2

−2

n−2∏
i=0

(1 + (2i)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)
,

x4n−5 =
x−1x

n−1
−2 yn−1

−2

xn−1
0 yn−1

0

n−2∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i)x−1y0)

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)
,

x4n−4 =
xn
0 y

n−1
0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)
,

x4n−3 =
y−1x

n
−2y

n−1
−2

xn−1
0 yn

0 (1 + x−2y−1)

n−2∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

(1 + (2i+ 3)x−2y−1)(1 + (2i+ 2)x−1y−2)
,
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y4n−6 =
xn−1
0 yn−1

0

xn−1
−2 yn−2

−2

n−2∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i)x−1y0)
,

y4n−5 =
y−1x

n−1
−2 yn−1

−2

xn−1
0 yn−1

0

n−2∏
i=0

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)
,

y4n−4 =
xn−1
0 yn

0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)
,

y4n−3 =
x−1x

n−1
−2 yn

−2

xn
0 y

n−1
0 (1 + x−1y−2)

n−2∏
i=0

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 3)x−1y−2)
.

Now it follows from Eq.(1) that

x4n−2 =
x4n−5y4n−4

y4n−3 (1 + x4n−5y4n−4)

=

(
x−1x

n−1
−2 yn−1

−2

xn−1
0 yn−1

0

n−2∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i)x−1y0)

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)

)
(

xn−1
0 yn

0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

)
(

x−1x
n−1
−2 yn

−2

xn
0 yn−1

0 (1+x−1y−2)

n−2∏
i=0

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 3)x−1y−2)

)
 1 +

(
x−1x

n−1
−2 yn−1

−2

xn−1
0 yn−1

0

n−2∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i)x−1y0)

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)

)
(

xn−1
0 yn

0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

)


=

(
x−1y0

n−2∏
i=0

(1+(2i)x−1y0)

)(
n−2∏
i=0

1
(1+(2i+2)x−1y0)

)
(

x−1x
n−1
−2 yn

−2

xn
0 yn−1

0 (1+x−1y−2)

n−2∏
i=0

(1+(2i+2)x0y−1)(1+(2i+1)x−1y0)

(1+(2i+2)x−2y−1)(1+(2i+3)x−1y−2)

)
(
1 +

(
x−1y0

n−2∏
i=0

(1 + (2i)x−1y0)

)(
n−2∏
i=0

1
(1+(2i+2)x−1y0)

))

=

(
x−1y0

(1+(2n−2)x−1y0)

)
 x−1x

n−1
−2 yn

−2

xn
0 yn−1

0 (1+x−1y−2)

n−2∏
i=0

(1+(2i+2)x0y−1)(1+(2i+1)x−1y0)

(1+(2i+2)x−2y−1)(1+(2i+3)x−1y−2)

(1+( x−1y0
(1+(2n−2)x−1y0)

))

=
xn
0 yn−1

0 (1+x−1y−2)

(
x−1y0

1+(2n−2)x−1y0

)
x−1x

n−1
−2 yn

−2

(
1+

x−1y0
1+(2n−2)x−1y0

) n−2∏
i=0

(1+(2i+2)x−2y−1)(1+(2i+3)x−1y−2)

(1+(2i+2)x0y−1)(1+(2i+1)x−1y0)

=
xn
0 yn

0 (1+x−1y−2)

xn−1
−2 yn

−2(1+(2n−2)x−1y0+x−1y0)

n−2∏
i=0

(1+(2i+2)x−2y−1)(1+(2i+3)x−1y−2)

(1+(2i+2)x0y−1)(1+(2i+1)x−1y0)

=
xn
0 yn

0 (1+x−1y−2)

xn−1
−2 yn

−2(1+(2n−1)x−1y0)

n−2∏
i=0

(1+(2i+2)x−2y−1)(1+(2i+3)x−1y−2)

(1+(2i+2)x0y−1)(1+(2i+1)x−1y0)

=
xn
0 y

n
0

xn−1
−2 yn

−2

n−2∏
i=0

(1 + (2i)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)
,
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y4n−2 =
y4n−5x4n−4

x4n−3 (1 + y4n−5x4n−4)

=

(
y−1x

n−1
−2 yn−1

−2

xn−1
0 yn−1

0

n−2∏
i=0

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)

)
(

xn
0 y

n−1
0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

)
(

y−1x
n
−2y

n−1
−2

xn−1
0 yn

0 (1 + x−2y−1)

n−2∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

(1 + (2i+ 3)x−2y−1)(1 + (2i+ 2)x−1y−2)

)


1 +

(
y−1x

n−1
−2 yn−1

−2

xn−1
0 yn−1

0

n−2∏
i=0

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)

)
(

xn
0 y

n−1
0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

)


=

(
x0y−1

n−2∏
i=0

(1+(2i)x0y−1)

)(
n−2∏
i=0

1
(1+(2i+2)x0y−1)

)
(

y−1x
n
−2y

n−1
−2

xn−1
0 yn

0 (1+x−2y−1)

n−2∏
i=0

(1+(2i+1)x0y−1)(1+(2i+2)x−1y0)

(1+(2i+3)x−2y−1)(1+(2i+2)x−1y−2)

)
(
1 +

(
x0y−1

n−2∏
i=0

(1 + (2i)x0y−1)

)(
n−2∏
i=0

1
(1+(2i+2)x0y−1)

))

=

(
x0y−1

(1+(2n−2)x0y−1)

)
 y−1x

n
−2y

n−1
−2

xn−1
0 yn

0 (1+x−2y−1)

n−2∏
i=0

(1+(2i+1)x0y−1)(1+(2i+2)x−1y0)

(1+(2i+3)x−2y−1)(1+(2i+2)x−1y−2)

(1+( x0y−1

(1+(2n−2)x0y−1)

))

=
x0y−1x

n−1
0 yn

0 (1+x−2y−1)

y−1x
n
−2y

n−1
−2 (1+(2n−1)x0y−1)

n−2∏
i=0

(1+(2i+3)x−2y−1)(1+(2i+2)x−1y−2)

(1+(2i+1)x0y−1)(1+(2i+2)x−1y0)

=
xn
0 y

n
0

xn
−2y

n−1
−2

n−1∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i)x−1y0)
.
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Also, we see from Eq.(1) that

x4n−1 =
x4n−4y4n−3

y4n−2 (1 + x4n−4y4n−3)

=

(
xn
0 y

n−1
0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

)
(

x−1x
n−1
−2 yn

−2

xn
0 y

n−1
0 (1 + x−1y−2)

n−2∏
i=0

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 3)x−1y−2)

)
(

xn
0 y

n
0

xn
−2y

n−1
−2

n−1∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i)x−1y0)

)


1 +

(
xn
0 y

n−1
0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

)
(

x−1x
n−1
−2 yn

−2

xn
0 y

n−1
0 (1 + x−1y−2)

n−2∏
i=0

(1 + (2i+ 2)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 3)x−1y−2)

)


=

(
n−2∏
i=0

(1+(2i+1)x−1y−2)

)(
x−1y−2

(1+x−1y−2)

n−2∏
i=0

1
(1+(2i+3)x−1y−2)

)
(

xn
0 yn

0

xn
−2y

n−1
−2

n−1∏
i=0

(1+(2i+1)x−2y−1)(1+(2i)x−1y−2)

(1+(2i+1)x0y−1)(1+(2i)x−1y0)

)
(
1 +

(
n−2
i=0 (1 + (2i+ 1)x−1y−2)

)( x−1y−2

(1+x−1y−2)

n−2∏
i=0

1
(1+(2i+3)x−1y−2)

))

=

(
x−1y−2

(1+(2n−1)x−1y−2)

)
(

xn
0 yn

0

xn
−2y

n−1
−2

n−1∏
i=0

(1+(2i+1)x−2y−1)(1+(2i)x−1y−2)

(1+(2i+1)x0y−1)(1+(2i)x−1y0)

)(
1+

(
x−1y−2

(1+(2n−1)x−1y−2)

))
=

x−1y−2(
xn
0 yn

0

xn
−2y

n−1
−2

n−1∏
i=0

(1+(2i+1)x−2y−1)(1+(2i)x−1y−2)

(1+(2i+1)x0y−1)(1+(2i)x−1y0)

)
(1+(2n−1)x−1y−2+x−1y−2)

=
xn
−2y

n−1
−2 x−1y−2

xn
0 yn

0 (1+(2n)x−1y−2)

n−1∏
i=0

(1+(2i+1)x0y−1)(1+(2i)x−1y0)

(1+(2i+1)x−2y−1)(1+(2i)x−1y−2)

=
x−1x

n
−2y

n
−2

xn
0 yn

0

n−1∏
i=0

(1+(2i+1)x0y−1)(1+(2i)x−1y0)

(1+(2i+1)x−2y−1)(1+(2i+2)x−1y−2)
,
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and

y4n−1 =
y4n−4x4n−3

x4n−2 (1 + y4n−4x4n−3)

=

(
xn−1
0 yn

0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

)
(

y−1x
n
−2y

n−1
−2

xn−1
0 yn

0 (1 + x−2y−1)

n−2∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

(1 + (2i+ 3)x−2y−1)(1 + (2i+ 2)x−1y−2)

)
(

xn
0 y

n
0

yn
−2x

n−1
−2

n−1∏
i=0

(1 + (2i)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

)


1 +

(
xn−1
0 yn

0

xn−1
−2 yn−1

−2

n−2∏
i=0

(1 + (2i+ 1)x−2y−1)(1 + (2i+ 2)x−1y−2)

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

)
(

y−1x
n
−2y

n−1
−2

xn−1
0 yn

0 (1 + x−2y−1)

n−2∏
i=0

(1 + (2i+ 1)x0y−1)(1 + (2i+ 2)x−1y0)

(1 + (2i+ 3)x−2y−1)(1 + (2i+ 2)x−1y−2)

)


=

(
n−2∏
i=0

(1+(2i+1)x−2y−1)

) y−1x−2

(1 + x−2y−1)

n−2∏
i=0

1

(1 + (2i+ 3)x−2y−1)

(
xn
0 y

n
0

yn
−2x

n−1
−2

n−1∏
i=0

(1 + (2i)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

)
(
1 +

(
n−2∏
i=0

(1 + (2i+ 1)x−2y−1)

)(
y−1x−2

(1 + x−2y−1)

n−2∏
i=0

1

(1 + (2i+ 3)x−2y−1)

))

=

(
y−1x−2

(1 + (2n− 1)x−2y−1)

)
(

xn
0 y

n
0

yn
−2x

n−1
−2

n−1∏
i=0

(1 + (2i)x−2y−1)(1 + (2i+ 1)x−1y−2)

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

)
(
1 +

(
y−1x−2

(1 + (2n− 1)x−2y−1)

))
=

yn
−2x

n−1
−2 y−1x−2

xn
0 y

n
0 (1 + (2n− 1)x−2y−1 + y−1x−2)

n−1∏
i=0

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i)x−2y−1)(1 + (2i+ 1)x−1y−2)

=
y−1y

n
−2x

n
−2

xn
0 y

n
0

n−1∏
i=0

(1 + (2i)x0y−1)(1 + (2i+ 1)x−1y0)

(1 + (2i+ 2)x−2y−1)(1 + (2i+ 1)x−1y−2)
.

Also, we can prove the other relations. The proof is complete.

The following Theorems can be proved similarly:

2.2. Theorem. Assume that {xn, yn} are solutions of the system

xn+1 =
xn−2yn−1

yn (1− xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (1− yn−2xn−1)
.
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Then for n = 0, 1, 2, ...,

x4n−2 =
xn
0 y

n
0

yn
−2x

n−1
−2

n−1∏
i=0

(1− (2i)x−2y−1)(1− (2i+ 1)x−1y−2)

(1− (2i)x0y−1)(1− (2i+ 1)x−1y0)
,

x4n−1 =
x−1x

n
−2y

n
−2

xn
0 y

n
0

n−1∏
i=0

(1− (2i+ 1)x0y−1)(1− (2i)x−1y0)

(1− (2i+ 1)x−2y−1)(1− (2i+ 2)x−1y−2)
,

x4n =
xn+1
0 yn

0

xn
−2y

n
−2

n−1∏
i=0

(1− (2i+ 2)x−2y−1)(1− (2i+ 1)x−1y−2)

(1− (2i+ 2)x0y−1)(1− (2i+ 1)x−1y0)
,

x4n+1 =
y−1x

n+1
−2 yn

−2

xn
0 y

n+1
0 (1− x−2y−1)

n−1∏
i=0

(1− (2i+ 1)x0y−1)(1− (2i+ 2)x−1y0)

(1− (2i+ 3)x−2y−1)(1− (2i+ 2)x−1y−2)
,

and

y4n−2 =
xn
0 y

n
0

xn
−2y

n−1
−2

n−1∏
i=0

(1− (2i+ 1)x−2y−1)(1− (2i)x−1y−2)

(1− (2i+ 1)x0y−1)(1− (2i)x−1y0)
,

y4n−1 =
y−1x

n
−2y

n
−2

xn
0 y

n
0

n−1∏
i=0

(1− (2i)x0y−1)(1− (2i+ 1)x−1y0)

(1− (2i+ 2)x−2y−1)(1− (2i+ 1)x−1y−2)
,

y4n =
xn
0 y

n+1
0

xn
−2y

n
−2

n−1∏
i=0

(1− (2i+ 1)x−2y−1)(1− (2i+ 2)x−1y−2)

(1− (2i+ 1)x0y−1)(1− (2i+ 2)x−1y0)
,

y4n+1 =
x−1x

n
−2y

n+1
−2

xn+1
0 yn

0 (1− x−1y−2)

n−1∏
i=0

(1− (2i+ 2)x0y−1)(1− (2i+ 1)x−1y0)

(1− (2i+ 2)x−2y−1)(1− (2i+ 3)x−1y−2)
.

2.3. Theorem. Let {xn, yn} are solutions of the following system

xn+1 =
xn−2yn−1

yn (−1 + xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (−1− yn−2xn−1)
.

Then for n = 0, 1, 2, ...,

x4n−2 =
xn
0 y

n
0

yn
−2x

n−1
−2

n−1∏
i=0

(−1 + (2i)x−2y−1)(−1− (2i+ 1)x−1y−2)

(−1− (2i)x0y−1)(−1 + (2i+ 1)x−1y0)
,

x4n−1 =
x−1x

n
−2y

n
−2

xn
0 y

n
0

n−1∏
i=0

(−1− (2i+ 1)x0y−1)(−1 + (2i)x−1y0)

(−1 + (2i+ 1)x−2y−1)(−1− (2i+ 2)x−1y−2)
,

x4n =
xn+1
0 yn

0

xn
−2y

n
−2

n−1∏
i=0

(−1 + (2i+ 2)x−2y−1)(−1− (2i+ 1)x−1y−2)

(−1− (2i+ 2)x0y−1)(−1 + (2i+ 1)x−1y0)
,

x4n+1 =
y−1x

n+1
−2 yn

−2

xn
0 y

n+1
0 (−1 + x−2y−1)

n−1∏
i=0

(−1− (2i+ 1)x0y−1)(−1 + (2i+ 2)x−1y0)

(−1 + (2i+ 3)x−2y−1)(−1− (2i+ 2)x−1y−2)
,
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y4n−2 =
xn
0 y

n
0

xn
−2y

n−1
−2

n−1∏
i=0

(−1 + (2i+ 1)x−2y−1)(−1− (2i)x−1y−2)

(−1− (2i+ 1)x0y−1)(−1 + (2i)x−1y0)
,

y4n−1 =
y−1x

n
−2y

n
−2

xn
0 y

n
0

n−1∏
i=0

(−1− (2i)x0y−1)(−1 + (2i+ 1)x−1y0)

(−1 + (2i+ 2)x−2y−1)(−1− (2i+ 1)x−1y−2)
,

y4n =
xn
0 y

n+1
0

xn
−2y

n
−2

n−1∏
i=0

(−1 + (2i+ 1)x−2y−1)(−1− (2i+ 2)x−1y−2)

(−1− (2i+ 1)x0y−1)(−1 + (2i+ 2)x−1y0)
,

y4n+1 =
x−1x

n
−2y

n+1
−2

xn+1
0 yn

0 (−1− x−1y−2)

n−1∏
i=0

(−1− (2i+ 2)x0y−1)(−1 + (2i+ 1)x−1y0)

(−1 + (2i+ 2)x−2y−1)(−1− (2i+ 3)x−1y−2)
.

2.4. Theorem. The solutions of the following system of di�erence equations

xn+1 =
xn−2yn−1

yn (−1− xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (−1 + yn−2xn−1)
.

are given by the following formula for n = 0, 1, 2, ...,

x4n−2 =
xn
0 y

n
0

yn
−2x

n−1
−2

n−1∏
i=0

(−1− (2i)x−2y−1)(−1 + (2i+ 1)x−1y−2)

(−1 + (2i)x0y−1)(−1− (2i+ 1)x−1y0)
,

x4n−1 =
x−1x

n
−2y

n
−2

xn
0 y

n
0

n−1∏
i=0

(−1 + (2i+ 1)x0y−1)(−1− (2i)x−1y0)

(−1− (2i+ 1)x−2y−1)(−1 + (2i+ 2)x−1y−2)
,

x4n =
xn+1
0 yn

0

xn
−2y

n
−2

n−1∏
i=0

(−1− (2i+ 2)x−2y−1)(−1 + (2i+ 1)x−1y−2)

(−1 + (2i+ 2)x0y−1)(−1− (2i+ 1)x−1y0)
,

x4n+1 =
y−1x

n+1
−2 yn

−2

xn
0 y

n+1
0 (−1− x−2y−1)

n−1∏
i=0

(−1 + (2i+ 1)x0y−1)(−1− (2i+ 2)x−1y0)

(−1− (2i+ 3)x−2y−1)(−1 + (2i+ 2)x−1y−2)
,

y4n−2 =
xn
0 y

n
0

xn
−2y

n−1
−2

n−1∏
i=0

(−1− (2i+ 1)x−2y−1)(−1 + (2i)x−1y−2)

(−1 + (2i+ 1)x0y−1)(−1− (2i)x−1y0)
,

y4n−1 =
y−1x

n
−2y

n
−2

xn
0 y

n
0

n−1∏
i=0

(−1 + (2i)x0y−1)(−1− (2i+ 1)x−1y0)

(−1− (2i+ 2)x−2y−1)(−1 + (2i+ 1)x−1y−2)
,

y4n =
xn
0 y

n+1
0

xn
−2y

n
−2

n−1∏
i=0

(−1− (2i+ 1)x−2y−1)(−1 + (2i+ 2)x−1y−2)

(−1 + (2i+ 1)x0y−1)(−1− (2i+ 2)x−1y0)
,

y4n+1 =
x−1x

n
−2y

n+1
−2

xn+1
0 yn

0 (−1 + x−1y−2)

n−1∏
i=0

(−1 + (2i+ 2)x0y−1)(−1− (2i+ 1)x−1y0)

(−1− (2i+ 2)x−2y−1)(−1 + (2i+ 3)x−1y−2)
.

2.5. Example. For con�rming the results of this section, we consider numerical example
for the di�erence system (1) with the initial conditions x−2 = 3, x−1 = 5, x0 = −4, y−2 =
2, y−1 = 6 and y0 = 7. (See Fig. 1).

3. The Second System: xn+1 =
xn−2yn−1

yn(−1+xn−2yn−1)
, yn+1 =

yn−2xn−1

xn(1+yn−2xn−1)

In this section, we obtain the form of the solutions of the system of two di�erence
equations

(2) xn+1 =
xn−2yn−1

yn (−1 + xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (1 + yn−2xn−1)
,
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where n ∈ N0 and the initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary

non zero real numbers with x−1y0, x−2y−1 6= 1,
1

2
, and x0y−1, x−1y−2 6= ±1.

The following theorem is devoted to the expression of the form of the solutions of
system (2).

3.1. Theorem. Let {xn, yn}+∞n=−2 be solutions of system (2). Then {xn}+∞n=−2 and

{yn}+∞n=−2 are given by the formulae for n = 0, 1, 2, ...,

x8n−2 =
x2n
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n−1
−2 (−1 + x−1y0)2n

,

x8n−1 =
x−1y

2n
−2x

2n
−2(−1 + 2x−1y0)

n(−1 + x0y−1)
n(1 + x0y−1)

n

x2n
0 y2n

0 (−1 + x−2y−1)2n
,

x8n =
x2n+1
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n
−2(−1 + x−1y0)2n

,

x8n+1 =
y−1y

2n
−2x

2n+1
−2 (−1 + 2x−1y0)

n(−1 + x0y−1)
n(1 + x0y−1)

n

x2n
0 y2n+1

0 (−1 + x−2y−1)2n+1
,

x8n+2 =
x2n+1
0 y2n+1

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n+1

y2n+1
−2 x2n

−2(−1 + x−1y0)2n+1
,

x8n+3 = −
x−1y

2n+1
−2 x2n+1

−2 (−1 + 2x−1y0)
n(−1 + x0y−1)

n(1 + x0y−1)
n+1

x2n+1
0 y2n+1

0 (−1 + x−2y−1)2n+1
,

x8n+4 = −x2n+2
0 y2n+1

0 (−1 + 2x−2y−1)
n+1(−1 + x−1y−2)

n(1 + x−1y−2)
n+1

y2n+1
−2 x2n+1

−2 (−1 + x−1y0)2n+1
,

x8n+5 =
y−1y

2n+1
−2 x2n+2

−2 (−1 + 2x−1y0)
n+1(−1 + x0y−1)

n(1 + x0y−1)
n+1

x2n+1
0 y2n+2

0 (−1 + x−2y−1)2n+2
,
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y8n−2 =
x2n
0 y2n

0 (−1 + x−2y−1)
2n

y2n−1
−2 x2n

−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n
,

y8n−1 =
y−1y

2n
−2x

2n
−2(−1 + x−1y0)

2n

x2n
0 y2n

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n
,

y8n =
x2n
0 y2n+1

0 (−1 + x−2y−1)
2n

y2n
−2x

2n
−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n

,

y8n+1 =
x−1y

2n+1
−2 x2n

−2(−1 + x−1y0)
2n

x2n+1
0 y2n

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n+1
,

y8n+2 =
x2n+1
0 y2n+1

0 (−1 + x−2y−1)
2n+1

y2n
−2x

2n+1
−2 (−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n+1

,

y8n+3 =
y−1y

2n+1
−2 x2n+1

−2 (−1 + x−1y0)
2n+1

x2n+1
0 y2n+1

0 (−1 + 2x−2y−1)n+1(−1 + x−1y−2)n(1 + x−1y−2)n+1
,

y8n+4 = − x2n+1
0 y2n+2

0 (−1 + x−2y−1)
2n+1

y2n+1
−2 x2n+1

−2 (−1 + 2x−1y0)n+1(−1 + x0y−1)n(1 + x0y−1)n+1
,

y8n+5 = −
x−1y

2n+2
−2 x2n+1

−2 (−1 + x−1y0)
2n+1

x2n+2
0 y2n+1

0 (−1 + 2x−2y−1)n+1(−1 + x−1y−2)n+1(1 + x−1y−2)n+1
.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our assumption
holds for n− 1. that is,

x8n−10 =
x2n−2
0 y2n−2

0 (−1 + 2x−2y−1)
n−1(−1 + x−1y−2)

n−1(1 + x−1y−2)
n−1

y2n−2
−2 x2n−3

−2 (−1 + x−1y0)2n−2
,

x8n−9 =
x−1y

2n−2
−2 x2n−2

−2 (−1 + 2x−1y0)
n−1(−1 + x0y−1)

n−1(1 + x0y−1)
n−1

x2n−2
0 y2n−2

0 (−1 + x−2y−1)2n−2
,

x8n−8 =
x2n−1
0 y2n−2

0 (−1 + 2x−2y−1)
n−1(−1 + x−1y−2)

n−1(1 + x−1y−2)
n−1

y2n−2
−2 x2n−2

−2 (−1 + x−1y0)2n−2
,

x8n−7 =
y−1y

2n−2
−2 x2n−1

−2 (−1 + 2x−1y0)
n−1(−1 + x0y−1)

n−1(1 + x0y−1)
n−1

x2n−2
0 y2n−1

0 (−1 + x−2y−1)2n−1
,

x8n−6 =
x2n−1
0 y2n−1

0 (−1 + 2x−2y−1)
n−1(−1 + x−1y−2)

n−1(1 + x−1y−2)
n

y2n−1
−2 x2n−2

−2 (−1 + x−1y0)2n−1
,

x8n−5 = −
x−1y

2n−1
−2 x2n−1

−2 (−1 + 2x−1y0)
n−1(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n−1

0 (−1 + x−2y−1)2n−1
,

x8n−4 = −x2n
0 y2n−1

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n−1(1 + x−1y−2)
n

y2n−1
−2 x2n−1

−2 (−1 + x−1y0)2n−1
,

x8n−3 =
y−1y

2n−1
−2 x2n

−2(−1 + 2x−1y0)
n(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n

0 (−1 + x−2y−1)2n
,
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and

y8n−10 =
x2n−2
0 y2n−2

0 (−1 + x−2y−1)
2n−2

y2n−3
−2 x2n−2

−2 (−1 + 2x−1y0)n−1(−1 + x0y−1)n−1(1 + x0y−1)n−1
,

y8n−9 =
y−1y

2n−2
−2 x2n−2

−2 (−1 + x−1y0)
2n−2

x2n−2
0 y2n−2

0 (−1 + 2x−2y−1)n−1(−1 + x−1y−2)n−1(1 + x−1y−2)n−1
,

y8n−8 =
x2n−2
0 y2n−1

0 (−1 + x−2y−1)
2n−2

y2n−2
−2 x2n−2

−2 (−1 + 2x−1y0)n−1(−1 + x0y−1)n−1(1 + x0y−1)n−1
,

y8n−7 =
x−1y

2n−1
−2 x2n−2

−2 (−1 + x−1y0)
2n−2

x2n−1
0 y2n−2

0 (−1 + 2x−2y−1)n−1(−1 + x−1y−2)n−1(1 + x−1y−2)n
,

y8n−6 =
x2n−1
0 y2n−1

0 (−1 + x−2y−1)
2n−1

y2n−2
−2 x2n−1

−2 (−1 + 2x−1y0)n−1(−1 + x0y−1)n−1(1 + x0y−1)n
,

y8n−5 =
y−1y

2n−1
−2 x2n−1

−2 (−1 + x−1y0)
2n−1

x2n−1
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n−1(1 + x−1y−2)n
,

y8n−4 = − x2n−1
0 y2n

0 (−1 + x−2y−1)
2n−1

y2n−1
−2 x2n−1

−2 (−1 + 2x−1y0)n(−1 + x0y−1)n−1(1 + x0y−1)n
,

y8n−3 = −
x−1y

2n
−2x

2n−1
−2 (−1 + x−1y0)

2n−1

x2n
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n
.

Now it follows from Eq.(2) that

x8n−2 =
x8n−5y8n−4

y8n−3 (−1 + x8n−5y8n−4)

=

(
−
x−1y

2n−1
−2 x2n−1

−2 (−1 + 2x−1y0)
n−1(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n−1

0 (−1 + x−2y−1)2n−1

)
(
− x2n−1

0 y2n
0 (−1 + x−2y−1)

2n−1

y2n−1
−2 x2n−1

−2 (−1 + 2x−1y0)n(−1 + x0y−1)n−1(1 + x0y−1)n

)
(
−

x−1y
2n
−2x

2n−1
−2 (−1 + x−1y0)

2n−1

x2n
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n

)

−1 +

(
−
x−1y

2n−1
−2 x2n−1

−2 (−1 + 2x−1y0)
n−1(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n−1

0 (−1 + x−2y−1)2n−1

)
(
− x2n−1

0 y2n
0 (1− x−2y−1)

2n−1

y2n−1
−2 x2n−1

−2 (−1 + 2x−1y0)n(−1 + x0y−1)n−1(1 + x0y−1)n

)


=

(
x−1y0

(−1 + 2x−1y0)

)
(

−x−1y
2n
−2x

2n−1
−2 (−1 + x−1y0)

2n−1

x2n
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n

)(
−1 + x−1y0

−1 + 2x−1y0

)
= −x−1y0x

2n
0 y2n−1

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

x−1y2n
−2x

2n−1
−2 (−1 + x−1y0)2n−1 (1− 2x−1y0 + x−1y0)

=
x2n
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n−1
−2 (−1 + x−1y0)2n

,
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y8n−2 =
y8n−5x8n−4

x8n−3 (1 + y8n−5x8n−4)

=

(
y−1y

2n−1
−2 x2n−1

−2 (−1 + x−1y0)
2n−1

x2n−1
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n−1(1 + x−1y−2)n

)
(
−x2n

0 y2n−1
0 (−1 + 2x−2y−1)

n(−1 + x−1y−2)
n−1(1 + x−1y−2)

n

y2n−1
−2 x2n−1

−2 (−1 + x−1y0)2n−1

)
(
y−1y

2n−1
−2 x2n

−2(−1 + 2x−1y0)
n(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n

0 (−1 + x−2y−1)2n

)


1 +

(
y−1y

2n−1
−2 x2n−1

−2 (−1 + x−1y0)
2n−1

x2n−1
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n−1(1 + x−1y−2)n

)
(
−x2n

0 y2n−1
0 (−1 + 2x−2y−1)

n(−1 + x−1y−2)
n−1(1 + x−1y−2)

n

y2n−1
−2 x2n−1

−2 (−1 + x−1y0)2n−1

)


=
−x0y−1y−1y

2n−1
−2 x2n

−2(−1 + 2x−1y0)
n(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n

0 (−1 + x−2y−1)2n

(1−x0y−1)

=
x0y−1x

2n−1
0 y2n

0 (−1 + x−2y−1)
2n

y−1y
2n−1
−2 x2n

−2(−1 + 2x−1y0)n(−1 + x0y−1)n−1(1 + x0y−1)n (−1 + x0y−1)

=
x2n
0 y2n

0 (−1 + x−2y−1)
2n

y2n−1
−2 x2n

−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n
.

Also, we see from Eq.(2) that

x8n−1 =
x8n−4y8n−3

y8n−2 (−1 + x8n−4y8n−3)

=

(
−x2n

0 y2n−1
0 (−1 + 2x−2y−1)

n(−1 + x−1y−2)
n−1(1 + x−1y−2)

n

y2n−1
−2 x2n−1

−2 (−1 + x−1y0)2n−1

)
(
−

x−1y
2n
−2x

2n−1
−2 (−1 + x−1y0)

2n−1

x2n
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n

)
(

x2n
0 y2n

0 (−1 + x−2y−1)
2n

y2n−1
−2 x2n

−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n

)

−1 +

(
−x2n

0 y2n−1
0 (−1 + 2x−2y−1)

n(−1 + x−1y−2)
n−1(1 + x−1y−2)

n

y2n−1
−2 x2n−1

−2 (−1 + x−1y0)2n−1

)
(
−

x−1y
2n
−2x

2n−1
−2 (−1 + x−1y0)

2n−1

x2n
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n

)


=

( x−1y−2

(−1 + x−1y−2)

)
(

x2n
0 y2n

0 (−1+x−2y−1)
2n

y2n−1
−2 x2n

−2(−1+2x−1y0)n(−1+x0y−1)n(1+x0y−1)n

)(
−1+

x−1y−2

(−1 + x−1y−2)

)

=
x−1y−2y

2n−1
−2 x2n

−2(−1 + 2x−1y0)
n(−1 + x0y−1)

n(1 + x0y−1)
n

x2n
0 y2n

0 (−1 + x−2y−1)2n (1− x−1y−2 + x−1y−2)

=
x−1y

2n
−2x

2n
−2(−1 + 2x−1y0)

n(−1 + x0y−1)
n(1 + x0y−1)

n

x2n
0 y2n

0 (−1 + x−2y−1)2n
,
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and

y8n−1 =
y8n−4x8n−3

x8n−2 (1 + y8n−4x8n−3)

=

(
− x2n−1

0 y2n
0 (−1 + x−2y−1)

2n−1

y2n−1
−2 x2n−1

−2 (−1 + 2x−1y0)n(−1 + x0y−1)n−1(1 + x0y−1)n

)
(
y−1y

2n−1
−2 x2n

−2(−1 + 2x−1y0)
n(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n

0 (−1 + x−2y−1)2n

)
(
x2n
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n−1
−2 (−1 + x−1y0)2n

)


1 +

(
− x2n−1

0 y2n
0 (−1 + x−2y−1)

2n−1

y2n−1
−2 x2n−1

−2 (−1 + 2x−1y0)n(−1 + x0y−1)n−1(1 + x0y−1)n

)
(
y−1y

2n−1
−2 x2n

−2(−1 + 2x−1y0)
n(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n

0 (−1 + x−2y−1)2n

)


=

(
−x−2y−1

(−1 + x−2y−1)

)
(
x2n
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n−1
−2 (−1 + x−1y0)2n

)
(
1 +

(
−x−2y−1

(−1 + x−2y−1)

))
=

−x−2y−1y
2n
−2x

2n−1
−2 (−1+x−1y0)

2n

x2n
0 y2n

0 (−1+2x−2y−1)n(−1+x−1y−2)n(1+x−1y−2)n(−1+x−2y−1−x−2y−1)

=
y−1y

2n
−2x

2n
−2(−1 + x−1y0)

2n

x2n
0 y2n

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n
.
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We get from Eq.(2) that

x8n =
x8n−3y8n−2

y8n−1 (−1 + x8n−3y8n−2)

=

(
y−1y

2n−1
−2 x2n

−2(−1 + 2x−1y0)
n(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n

0 (−1 + x−2y−1)2n

)
(

x2n
0 y2n

0 (−1 + x−2y−1)
2n

y2n−1
−2 x2n

−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n

)
(

y−1y
2n
−2x

2n
−2(−1 + x−1y0)

2n

x2n
0 y2n

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n

)

−1 +

(
y−1y

2n−1
−2 x2n

−2(−1 + 2x−1y0)
n(−1 + x0y−1)

n−1(1 + x0y−1)
n

x2n−1
0 y2n

0 (−1 + x−2y−1)2n

)
(

x2n
0 y2n

0 (−1 + x−2y−1)
2n

y2n−1
−2 x2n

−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n

)


=

( x0y−1

(−1 + x0y−1)

)
(

y−1y
2n
−2x

2n
−2(−1+x−1y0)

2n

x2n
0 y2n

0 (−1+2x−2y−1)n(−1+x−1y−2)n(1+x−1y−2)n

)(
−1+

x0y−1

−1 + x0y−1

)

=
x0y−1x

2n
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y−1y2n
−2x

2n
−2(−1 + x−1y0)2n (1− x0y−1 + x0y−1)

=
x2n+1
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n
−2(−1 + x−1y0)2n

,

and

y8n =
y8n−3x8n−2

x8n−1 (1 + y8n−3x8n−2)

=

(
−

x−1y
2n
−2x

2n−1
−2 (−1 + x−1y0)

2n−1

x2n
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n

)
(
x2n
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n−1
−2 (−1 + x−1y0)2n

)
(
x−1y

2n
−2x

2n
−2(−1 + 2x−1y0)

n(−1 + x0y−1)
n(1 + x0y−1)

n

x2n
0 y2n

0 (−1 + x−2y−1)2n

)


1 +

(
−

x−1y
2n
−2x

2n−1
−2 (−1 + x−1y0)

2n−1

x2n
0 y2n−1

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n

)
(
x2n
0 y2n

0 (−1 + 2x−2y−1)
n(−1 + x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n−1
−2 (−1 + x−1y0)2n

)


=
x2n
0 y2n

0 (−1+x−2y−1)
2n

(
−

x−1y0
(−1 + x−1y0)

)

x−1y
2n
−2x

2n
−2(−1+2x−1y0)n(−1+x0y−1)n(1+x0y−1)n

(
1−

x−1y0
−1 + x−1y0

)

=
−x−1y0x

2n
0 y2n

0 (−1+x−2y−1)
2n

x−1y
2n
−2x

2n
−2(−1+2x−1y0)n(−1+x0y−1)n(1+x0y−1)n(−1+x−1y0−x−1y0)

=
x2n
0 y2n+1

0 (−1 + x−2y−1)
2n

y2n
−2x

2n
−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n

.

Also, we can prove the other relations. This completes the proof.
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Here, we consider the following systems and the proof of the theorems are similarly
to above theorem and so, left to the reader.

xn+1 =
xn−2yn−1

yn (−1− xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (1− yn−2xn−1)
.3(3.1)

xn+1 =
xn−2yn−1

yn (1 + xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (−1− yn−2xn−1)
.4(3.2)

xn+1 =
xn−2yn−1

yn (1− xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (−1 + yn−2xn−1)
.5(3.3)

The following theorems is devoted to the expressions of the form of the solutions of
systems (3), (4), (5).

3.2. Theorem. Let {xn, yn}+∞n=−2 be solutions of system (3) and x−1y0, x−2y−1 6=

−1,−1

2
, and x0y−1, x−1y−2 6= ±1. Then for n = 0, 1, 2, ...,

x8n−2 =
x2n
0 y2n

0 (1 + 2x−2y−1)
n(1− x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n−1
−2 (1 + x−1y0)2n

,

x8n−1 =
x−1y

2n
−2x

2n
−2(1 + 2x−1y0)

n(1− x0y−1)
n(1 + x0y−1)

n

x2n
0 y2n

0 (1 + x−2y−1)2n
,

x8n =
x2n+1
0 y2n

0 (1 + 2x−2y−1)
n(1− x−1y−2)

n(1 + x−1y−2)
n

y2n
−2x

2n
−2(1 + x−1y0)2n

,

x8n+1 = −
y−1y

2n
−2x

2n+1
−2 (1 + 2x−1y0)

n(1− x0y−1)
n(1 + x0y−1)

n

x2n
0 y2n+1

0 (1 + x−2y−1)2n+1
,

x8n+2 = −x2n+1
0 y2n+1

0 (1 + 2x−2y−1)
n(1− x−1y−2)

n+1(1 + x−1y−2)
n

y2n+1
−2 x2n

−2(1 + x−1y0)2n+1
,

x8n+3 =
x−1y

2n+1
−2 x2n+1

−2 (1 + 2x−1y0)
n(1 + x0y−1)

n(1− x0y−1)
n+1

x2n+1
0 y2n+1

0 (1 + x−2y−1)2n+1
,

x8n+4 = −x2n+2
0 y2n+1

0 (1 + 2x−2y−1)
n+1(1 + x−1y−2)

n(1− x−1y−2)
n+1

y2n+1
−2 x2n+1

−2 (1 + x−1y0)2n+1
,

x8n+5 = −
y−1y

2n+1
−2 x2n+2

−2 (1 + 2x−1y0)
n+1(1 + x0y−1)

n(1− x0y−1)
n+1

x2n+1
0 y2n+2

0 (1 + x−2y−1)2n+2
,
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and

y8n−2 =
x2n
0 y2n

0 (1 + x−2y−1)
2n

y2n−1
−2 x2n

−2(1 + 2x−1y0)n(1− x0y−1)n(1 + x0y−1)n
,

y8n−1 =
y−1y

2n
−2x

2n
−2(1 + x−1y0)

2n

x2n
0 y2n

0 (1 + 2x−2y−1)n(1− x−1y−2)n(1 + x−1y−2)n
,

y8n =
x2n
0 y2n+1

0 (1 + x−2y−1)
2n

y2n
−2x

2n
−2(1 + 2x−1y0)n(1− x0y−1)n(1 + x0y−1)n

,

y8n+1 =
x−1y

2n+1
−2 x2n

−2(1 + x−1y0)
2n

x2n+1
0 y2n

0 (1 + 2x−2y−1)n(1 + x−1y−2)n(1− x−1y−2)n+1
,

y8n+2 = − x2n+1
0 y2n+1

0 (1 + x−2y−1)
2n+1

y2n
−2x

2n+1
−2 (1 + 2x−1y0)n(1 + x0y−1)n(1− x0y−1)n+1

,

y8n+3 =
y−1y

2n+1
−2 x2n+1

−2 (1 + x−1y0)
2n+1

x2n+1
0 y2n+1

0 (1 + 2x−2y−1)n+1(1 + x−1y−2)n(1− x−1y−2)n+1
,

y8n+4 = − x2n+1
0 y2n+2

0 (1 + x−2y−1)
2n+1

y2n+1
−2 x2n+1

−2 (1 + 2x−1y0)n+1(1 + x0y−1)n(1− x0y−1)n+1
,

y8n+5 =
x−1y

2n+2
−2 x2n+1

−2 (1 + x−1y0)
2n+1

x2n+2
0 y2n+1

0 (1 + 2x−2y−1)n+1(1 + x−1y−2)n+1(1− x−1y−2)n+1
.

3.3. Theorem. Assume that {xn, yn} are solutions of system (4) with x−1y0, x−2y−1 6=
−1,−1

2
, and x0y−1, x−1y−2 6= ±1. Then for n = 0, 1, 2, ...,

x8n−2 =
x2n
0 y2n

0 (1 + 2x−2y−1)
n(−1 + x−1y−2)

n(−1− x−1y−2)
n

y2n
−2x

2n−1
−2 (1 + x−1y0)2n

,

x8n−1 =
x−1y

2n
−2x

2n
−2(1 + 2x−1y0)

n(−1 + x0y−1)
n(−1− x0y−1)

n

x2n
0 y2n

0 (1 + x−2y−1)2n
,

x8n =
x2n+1
0 y2n

0 (1 + 2x−2y−1)
n(−1 + x−1y−2)

n(−1− x−1y−2)
n

y2n
−2x

2n
−2(1 + x−1y0)2n

,

x8n+1 =
y−1y

2n
−2x

2n+1
−2 (1 + 2x−1y0)

n(−1 + x0y−1)
n(−1− x0y−1)

n

x2n
0 y2n+1

0 (1 + x−2y−1)2n+1
,

x8n+2 =
x2n+1
0 y2n+1

0 (1 + 2x−2y−1)
n(−1 + x−1y−2)

n(−1− x−1y−2)
n+1

y2n+1
−2 x2n

−2(1 + x−1y0)2n+1
,

x8n+3 = −
x−1y

2n+1
−2 x2n+1

−2 (1 + 2x−1y0)
n(−1 + x0y−1)

n(−1− x0y−1)
n+1

x2n+1
0 y2n+1

0 (1 + x−2y−1)2n+1
,

x8n+4 =
x2n+2
0 y2n+1

0 (1 + 2x−2y−1)
n+1(−1 + x−1y−2)

n(−1− x−1y−2)
n+1

y2n+1
−2 x2n+1

−2 (1 + x−1y0)2n+1
,

x8n+5 = −
y−1y

2n+1
−2 x2n+2

−2 (1 + 2x−1y0)
n+1(−1 + x0y−1)

n(−1− x0y−1)
n+1

x2n+1
0 y2n+2

0 (1 + x−2y−1)2n+2
,
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and

y8n−2 =
x2n
0 y2n

0 (1 + x−2y−1)
2n

y2n−1
−2 x2n

−2(1 + 2x−1y0)n(−1 + x0y−1)n(−1− x0y−1)n
,

y8n−1 =
y−1y

2n
−2x

2n
−2(1 + x−1y0)

2n

x2n
0 y2n

0 (1 + 2x−2y−1)n(−1 + x−1y−2)n(−1− x−1y−2)n
,

y8n =
x2n
0 y2n+1

0 (1 + x−2y−1)
2n

y2n
−2x

2n
−2(1 + 2x−1y0)n(−1 + x0y−1)n(−1− x0y−1)n

,

y8n+1 =
x−1y

2n+1
−2 x2n

−2(1 + x−1y0)
2n

x2n+1
0 y2n

0 (1 + 2x−2y−1)n(−1 + x−1y−2)n(−1− x−1y−2)n+1
,

y8n+2 =
x2n+1
0 y2n+1

0 (1 + x−2y−1)
2n+1

y2n
−2x

2n+1
−2 (1 + 2x−1y0)n(−1 + x0y−1)n(−1− x0y−1)n+1

,

y8n+3 = −
y−1y

2n+1
−2 x2n+1

−2 (1 + x−1y0)
2n+1

x2n+1
0 y2n+1

0 (1 + 2x−2y−1)n+1(−1 + x−1y−2)n(−1− x−1y−2)n+1
,

y8n+4 =
x2n+1
0 y2n+2

0 (1 + x−2y−1)
2n+1

y2n+1
−2 x2n+1

−2 (1 + 2x−1y0)n+1(−1 + x0y−1)n(−1− x0y−1)n+1
,

y8n+5 = −
x−1y

2n+2
−2 x2n+1

−2 (1 + x−1y0)
2n+1

x2n+2
0 y2n+1

0 (1 + 2x−2y−1)n+1(−1 + x−1y−2)n+1(−1− x−1y−2)n+1
.

3.4. Theorem. Suppose that {xn, yn} are solutions of system (5) such that x−1y0,

x−2y−1 6= 1,
1

2
, and x0y−1, x−1y−2 6= ±1. Then for n = 0, 1, 2, ...,

x8n−2 =
x2n
0 y2n

0 (−1 + x−1y−2)
2n

y2n
−2x

2n−1
−2 (−1 + 2x0y−1)n(−1 + x−1y0)n(1 + x−1y0)n

,

x8n−1 =
x−1y

2n
−2x

2n
−2(−1 + x0y−1)

2n

x2n
0 y2n

0 (−1 + 2x−1y−2)n(−1 + x−2y−1)n(1 + x−2y−1)n
,

x8n =
x2n+1
0 y2n

0 (−1 + x−1y−2)
2n

y2n
−2x

2n
−2(−1 + 2x0y−1)n(−1 + x−1y0)n(1 + x−1y0)n

,

x8n+1 =
y−1y

2n
−2x

2n+1
−2 (−1 + x0y−1)

2n

x2n
0 y2n+1

0 (−1 + 2x−1y−2)n(−1 + x−2y−1)n(1 + x−2y−1)n+1
,

x8n+2 =
x2n+1
0 y2n+1

0 (−1 + x−1y−2)
2n+1

y2n+1
−2 x2n

−2(−1 + 2x0y−1)n(−1 + x−1y0)n(1 + x−1y0)n+1
,

x8n+3 =
x−1y

2n+1
−2 x2n+1

−2 (−1 + x0y−1)
2n+1

x2n+1
0 y2n+1

0 (−1 + 2x−1y−2)n+1(−1 + x−2y−1)n(1 + x−2y−1)n+1
,

x8n+4 = − x2n+2
0 y2n+1

0 (−1 + x−1y−2)
2n+1

y2n+1
−2 x2n+1

−2 (−1 + 2x0y−1)n+1(−1 + x−1y0)n(1 + x−1y0)n+1
,

x8n+5 = −
y−1y

2n+1
−2 x2n+2

−2 (−1 + x0y−1)
2n+1

x2n+1
0 y2n+2

0 (−1 + 2x−1y−2)n+1(−1 + x−2y−1)n+1(1 + x−2y−1)n+1
,
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and

y8n−2 =
x2n
0 y2n

0 (−1 + x−2y−1)
2n

y2n−1
−2 x2n

−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n
,

y8n−1 =
y−1y

2n
−2x

2n
−2(−1 + x−1y0)

2n

x2n
0 y2n

0 (−1 + 2x−2y−1)n(−1 + x−1y−2)n(1 + x−1y−2)n
,

y8n =
x2n
0 y2n+1

0 (−1 + x−2y−1)
2n

y2n
−2x

2n
−2(−1 + 2x−1y0)n(−1 + x0y−1)n(1 + x0y−1)n

,

y8n+1 =
x−1y

2n+1
−2 x2n

−2(−1 + x−1y0)
2n

x2n+1
0 y2n

0 (−1 + 2x−2y−1)n(1 + x−1y−2)n(−1 + x−1y−2)n+1
,

y8n+2 = − x2n+1
0 y2n+1

0 (−1 + x−2y−1)
2n+1

y2n
−2x

2n+1
−2 (−1 + 2x−1y0)n(1 + x0y−1)n(−1 + x0y−1)n+1

,

y8n+3 = −
y−1y

2n+1
−2 x2n+1

−2 (−1 + x−1y0)
2n+1

x2n+1
0 y2n+1

0 (−1 + 2x−2y−1)n+1(1 + x−1y−2)n(−1 + x−1y−2)n+1
,

y8n+4 =
x2n+1
0 y2n+2

0 (−1 + x−2y−1)
2n+1

y2n+1
−2 x2n+1

−2 (−1 + 2x−1y0)n+1(1 + x0y−1)n(−1 + x0y−1)n+1
,

y8n+5 =
x−1y

2n+2
−2 x2n+1

−2 (−1 + x−1y0)
2n+1

x2n+2
0 y2n+1

0 (−1 + 2x−2y−1)n+1(1 + x−1y−2)n+1(−1 + x−1y−2)n+1
.

3.5. Example. We consider interesting numerical example for the di�erence system
(2) with the initial conditions x−2 = 0.3, x−1 = 0.15, x0 = −0.4, y−2 = 0.2, y−1 =
−0.16 and y0 = 0.17. (See Fig. 2).

4. The Third System: xn+1 =
xn−2yn−1

yn(1+xn−2yn−1)
, yn+1 =

yn−2xn−1

xn(−1+yn−2xn−1)

In this section, we get the solutions of the system of the di�erence equations

(6) xn+1 =
xn−2yn−1

yn (1 + xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (−1 + yn−2xn−1)
,

where n = 0, 1, 2, ... and the initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary

nonzero real numbers with x−1y0, x−2y−1 6= ±1, and x0y−1, x−1y−2 6= 1,
1

2
.

The following Theorems can be proved similarly as the previous section.
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4.1. Theorem. If {xn, yn} are solutions of di�erence equation system (6). Then for
n = 0, 1, 2, ...,

x8n−2 =
x2n
0 y2n

0 (−1 + x−1y−2)
2n

y2n
−2x

2n−1
−2 (−1 + x−1y0)n(1 + x−1y0)n(−1 + 2x0y−1)n

,

x8n−1 =
x−1y

2n
−2x

2n
−2(−1 + x0y−1)

2n

x2n
0 y2n

0 (−1 + x−2y−1)n(1 + x−2y−1)n(−1 + 2x−1y−2)n
,

x8n =
x2n+1
0 y2n

0 (−1 + x−1y−2)
2n

y2n
−2x

2n
−2(−1 + x−1y0)n(1 + x−1y0)n(−1 + 2x0y−1)n

,

x8n+1 =
y−1y

2n
−2x

2n+1
−2 (−1 + x0y−1)

2n

x2n
0 y2n+1

0 (−1 + x−2y−1)n(1 + x−2y−1)n+1(−1 + 2x−1y−2)n
,

x8n+2 =
x2n+1
0 y2n+1

0 (−1 + x−1y−2)
2n+1

y2n+1
−2 x2n

−2(−1 + x−1y0)n(1 + x−1y0)n+1(−1 + 2x0y−1)n
,

x8n+3 =
x−1y

2n+1
−2 x2n+1

−2 (−1 + x0y−1)
2n+1

x2n+1
0 y2n+1

0 (−1 + x−2y−1)n(1 + x−2y−1)n+1(−1 + 2x−1y−2)n+1
,

x8n+4 = − x2n+2
0 y2n+1

0 (−1 + x−1y−2)
2n+1

y2n+1
−2 x2n+1

−2 (−1 + x−1y0)n(1 + x−1y0)n+1(−1 + 2x0y−1)n+1
,

x8n+5 = −
y−1y

2n+1
−2 x2n+2

−2 (−1 + x0y−1)
2n+1

x2n+1
0 y2n+2

0 (−1 + x−2y−1)n+1(1 + x−2y−1)n+1(−1 + 2x−1y−2)n+1
,

and

y8n−2 =
x2n
0 y2n

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n(−1 + 2x−1y−2)
n

y2n−1
−2 x2n

−2(−1 + x0y−1)2n
,

y8n−1 =
y−1y

2n
−2x

2n
−2(−1 + x−1y0)

n(1 + x−1y0)
n(−1 + 2x0y−1)

n

x2n
0 y2n

0 (−1 + x−1y−2)2n
,

y8n =
x2n
0 y2n+1

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n(−1 + 2x−1y−2)
n

y2n
−2x

2n
−2(−1 + x0y−1)2n

,

y8n+1 =
x−1y

2n+1
−2 x2n

−2(−1 + x−1y0)
n(1 + x−1y0)

n(−1 + 2x0y−1)
n

x2n+1
0 y2n

0 (−1 + x−1y−2)2n+1
,

y8n+2 =
x2n+1
0 y2n+1

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n+1(−1 + 2x−1y−2)
n

y2n
−2x

2n+1
−2 (−1 + x0y−1)2n+1

,

y8n+3 = −
y−1y

2n+1
−2 x2n+1

−2 (−1 + x−1y0)
n(1 + x−1y0)

n+1(−1 + 2x0y−1)
n

x2n+1
0 y2n+1

0 (−1 + x−1y−2)2n+1
,

y8n+4 = −x2n+1
0 y2n+2

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n+1(−1 + 2x−1y−2)
n+1

y2n+1
−2 x2n+1

−2 (−1 + x0y−1)2n+1
,

y8n+5 =
x−1y

2n+2
−2 x2n+1

−2 (−1 + x−1y0)
n(1 + x−1y0)

n+1(−1 + 2x0y−1)
n+1

x2n+2
0 y2n+1

0 (−1 + x−1y−2)2n+2
.

4.2. Theorem. If {xn, yn} are solutions of the following di�erence equation system

xn+1 =
xn−2yn−1

yn (−1− xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (1 + yn−2xn−1)
,

where the initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real

numbers with x−1y0, x−2y−1 6= ±1, and x0y−1, x−1y−2 6= −1,−1

2
. Then for n =
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0, 1, 2, ...,

x8n−2 =
x2n
0 y2n

0 (1 + x−1y−2)
2n

y2n
−2x

2n−1
−2 (−1 + x−1y0)n(1 + x−1y0)n(−1− 2x0y−1)n

,

x8n−1 =
x−1y

2n
−2x

2n
−2(1 + x0y−1)

2n

x2n
0 y2n

0 (−1 + x−2y−1)n(1 + x−2y−1)n(−1− 2x−1y−2)n
,

x8n =
x2n+1
0 y2n

0 (1 + x−1y−2)
2n

y2n
−2x

2n
−2(−1 + x−1y0)n(1 + x−1y0)n(−1− 2x0y−1)n

,

x8n+1 = −
y−1y

2n
−2x

2n+1
−2 (1 + x0y−1)

2n

x2n
0 y2n+1

0 (−1 + x−2y−1)n(1 + x−2y−1)n+1(−1− 2x−1y−2)n
,

x8n+2 = − x2n+1
0 y2n+1

0 (1 + x−1y−2)
2n+1

y2n+1
−2 x2n

−2(−1 + x−1y0)n(1 + x−1y0)n+1(−1− 2x0y−1)n
,

x8n+3 = −
x−1y

2n+1
−2 x2n+1

−2 (1 + x0y−1)
2n+1

x2n+1
0 y2n+1

0 (−1 + x−2y−1)n(1 + x−2y−1)n+1(−1− 2x−1y−2)n+1
,

x8n+4 =
x2n+2
0 y2n+1

0 (1 + x−1y−2)
2n+1

y2n+1
−2 x2n+1

−2 (−1 + x−1y0)n(1 + x−1y0)n+1(−1− 2x0y−1)n+1
,

x8n+5 = −
y−1y

2n+1
−2 x2n+2

−2 (1 + x0y−1)
2n+1

x2n+1
0 y2n+2

0 (−1 + x−2y−1)n+1(1 + x−2y−1)n+1(−1− 2x−1y−2)n+1
,

and

y8n−2 =
x2n
0 y2n

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n(−1− 2x−1y−2)
n

y2n−1
−2 x2n

−2(1 + x0y−1)2n
,

y8n−1 =
y−1y

2n
−2x

2n
−2(−1 + x−1y0)

n(1 + x−1y0)
n(−1− 2x0y−1)

n

x2n
0 y2n

0 (1 + x−1y−2)2n
,

y8n =
x2n
0 y2n+1

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n(−1− 2x−1y−2)
n

y2n
−2x

2n
−2(1 + x0y−1)2n

,

y8n+1 =
x−1y

2n+1
−2 x2n

−2(−1 + x−1y0)
n(1 + x−1y0)

n(−1− 2x0y−1)
n

x2n+1
0 y2n

0 (1 + x−1y−2)2n+1
,

y8n+2 = −x2n+1
0 y2n+1

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n+1(−1− 2x−1y−2)
n

y2n
−2x

2n+1
−2 (1 + x0y−1)2n+1

,

y8n+3 =
y−1y

2n+1
−2 x2n+1

−2 (−1 + x−1y0)
n(1 + x−1y0)

n+1(−1− 2x0y−1)
n

x2n+1
0 y2n+1

0 (1 + x−1y−2)2n+1
,

y8n+4 =
x2n+1
0 y2n+2

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n+1(−1− 2x−1y−2)
n+1

y2n+1
−2 x2n+1

−2 (1 + x0y−1)2n+1
,

y8n+5 = −
x−1y

2n+2
−2 x2n+1

−2 (−1 + x−1y0)
n(1 + x−1y0)

n+1(−1− 2x0y−1)
n+1

x2n+2
0 y2n+1

0 (1 + x−1y−2)2n+2
.

4.3. Theorem. If {xn, yn} are solutions of the di�erence equations system

xn+1 =
xn−2yn−1

yn (1− xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (−1− yn−2xn−1)
,

where the initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real

numbers with x−1y0, x−2y−1 6= ±1, and x0y−1, x−1y−2 6= −1,−1

2
. Then for n =
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0, 1, 2, ...,

x8n−2 =
x2n
0 y2n

0 (1 + x−1y−2)
2n

y2n
−2x

2n−1
−2 (1− x−1y0)n(1 + x−1y0)n(1 + 2x0y−1)n

,

x8n−1 =
x−1y

2n
−2x

2n
−2(1 + x0y−1)

2n

x2n
0 y2n

0 (1− x−2y−1)n(1 + x−2y−1)n(1 + 2x−1y−2)n
,

x8n =
x2n+1
0 y2n

0 (1 + x−1y−2)
2n

y2n
−2x

2n
−2(1− x−1y0)n(1 + x−1y0)n(1 + 2x0y−1)n

,

x8n+1 =
y−1y

2n
−2x

2n+1
−2 (1 + x0y−1)

2n

x2n
0 y2n+1

0 (1− x−2y−1)n+1(1 + x−2y−1)n(1 + 2x−1y−2)n
,

x8n+2 = − x2n+1
0 y2n+1

0 (1 + x−1y−2)
2n+1

y2n+1
−2 x2n

−2(1 + x−1y0)n(1− x−1y0)n+1(1 + 2x0y−1)n
,

x8n+3 =
x−1y

2n+1
−2 x2n+1

−2 (1 + x0y−1)
2n+1

x2n+1
0 y2n+1

0 (1 + x−2y−1)n(1− x−2y−1)n+1(1 + 2x−1y−2)n+1
,

x8n+4 = − x2n+2
0 y2n+1

0 (1 + x−1y−2)
2n+1

y2n+1
−2 x2n+1

−2 (1 + x−1y0)n(1− x−1y0)n+1(1 + 2x0y−1)n+1
,

x8n+5 =
y−1y

2n+1
−2 x2n+2

−2 (1 + x0y−1)
2n+1

x2n+1
0 y2n+2

0 (1 + x−2y−1)n+1(1− x−2y−1)n+1(1 + 2x−1y−2)n+1
,

and

y8n−2 =
x2n
0 y2n

0 (1 + x−2y−1)
n(1− x−2y−1)

n(1 + 2x−1y−2)
n

y2n−1
−2 x2n

−2(1 + x0y−1)2n
,

y8n−1 =
y−1y

2n
−2x

2n
−2(1 + x−1y0)

n(1− x−1y0)
n(1 + 2x0y−1)

n

x2n
0 y2n

0 (1 + x−1y−2)2n
,

y8n =
x2n
0 y2n+1

0 (1 + x−2y−1)
n(1− x−2y−1)

n(1 + 2x−1y−2)
n

y2n
−2x

2n
−2(1 + x0y−1)2n

,

y8n+1 = −
x−1y

2n+1
−2 x2n

−2(1 + x−1y0)
n(1− x−1y0)

n(1 + 2x0y−1)
n

x2n+1
0 y2n

0 (1 + x−1y−2)2n+1
,

y8n+2 = −x2n+1
0 y2n+1

0 (1 + x−2y−1)
n(1− x−2y−1)

n+1(1 + 2x−1y−2)
n

y2n
−2x

2n+1
−2 (1 + x0y−1)2n+1

,

y8n+3 =
y−1y

2n+1
−2 x2n+1

−2 (1 + x−1y0)
n(1− x−1y0)

n+1(1 + 2x0y−1)
n

x2n+1
0 y2n+1

0 (1 + x−1y−2)2n+1
,

y8n+4 = −x2n+1
0 y2n+2

0 (1 + x−2y−1)
n(1− x−2y−1)

n+1(1 + 2x−1y−2)
n+1

y2n+1
−2 x2n+1

−2 (1 + x0y−1)2n+1
,

y8n+5 = −
x−1y

2n+2
−2 x2n+1

−2 (1 + x−1y0)
n(1− x−1y0)

n+1(1 + 2x0y−1)
n+1

x2n+2
0 y2n+1

0 (1 + x−1y−2)2n+2
.

4.4. Theorem. Assume that {xn, yn} are solutions of the following system with the
initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary nonzero real numbers

with x−1y0, x−2y−1 6= ±1, and x0y−1, x−1y−2 6= 1,
1

2

xn+1 =
xn−2yn−1

yn (−1 + xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (1− yn−2xn−1)
.
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Then for n = 0, 1, 2, ...,

x8n−2 =
x2n
0 y2n

0 (−1 + x−1y−2)
2n

y2n
−2x

2n−1
−2 (−1 + x−1y0)n(1 + x−1y0)n(−1 + 2x0y−1)n

,

x8n−1 =
x−1y

2n
−2x

2n
−2(−1 + x0y−1)

2n

x2n
0 y2n

0 (−1 + x−2y−1)n(1 + x−2y−1)n(−1 + 2x−1y−2)n
,

x8n =
x2n+1
0 y2n

0 (−1 + x−1y−2)
2n

y2n
−2x

2n
−2(−1 + x−1y0)n(1 + x−1y0)n(−1 + 2x0y−1)n

,

x8n+1 =
y−1y

2n
−2x

2n+1
−2 (−1 + x0y−1)

2n

x2n
0 y2n+1

0 (−1 + x−2y−1)n+1(1 + x−2y−1)n(−1 + 2x−1y−2)n
,

x8n+2 =
x2n+1
0 y2n+1

0 (1− x−1y−2)
2n+1

y2n+1
−2 x2n

−2(−1 + x−1y0)n+1(1 + x−1y0)n(−1 + 2x0y−1)n
,

x8n+3 =
x−1y

2n+1
−2 x2n+1

−2 (1− x0y−1)
2n+1

x2n+1
0 y2n+1

0 (−1 + x−2y−1)n+1(1 + x−2y−1)n(−1 + 2x−1y−2)n+1
,

x8n+4 =
x2n+2
0 y2n+1

0 (1− x−1y−2)
2n+1

y2n+1
−2 x2n+1

−2 (1 + x−1y0)n(−1 + x−1y0)n+1(−1 + 2x0y−1)n+1
,

x8n+5 = −
y−1y

2n+1
−2 x2n+2

−2 (1− x0y−1)
2n+1

x2n+1
0 y2n+2

0 (−1 + x−2y−1)n+1(1 + x−2y−1)n+1(−1 + 2x−1y−2)n+1
,

and

y8n−2 =
x2n
0 y2n

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n(−1 + 2x−1y−2)
n

y2n−1
−2 x2n

−2(1− x0y−1)2n
,

y8n−1 =
y−1y

2n
−2x

2n
−2(−1 + x−1y0)

n(1 + x−1y0)
n(−1 + 2x0y−1)

n

x2n
0 y2n

0 (1− x−1y−2)2n
,

y8n =
x2n
0 y2n+1

0 (−1 + x−2y−1)
n(1 + x−2y−1)

n(−1 + 2x−1y−2)
n

y2n
−2x

2n
−2(1− x0y−1)2n

,

y8n+1 =
x−1y

2n+1
−2 x2n

−2(−1 + x−1y0)
n(1 + x−1y0)

n(−1 + 2x0y−1)
n

x2n+1
0 y2n

0 (1− x−1y−2)2n+1
,

y8n+2 =
x2n+1
0 y2n+1

0 (1 + x−2y−1)
n(−1 + x−2y−1)

n+1(−1 + 2x−1y−2)
n

y2n
−2x

2n+1
−2 (1− x0y−1)2n+1

,

y8n+3 = −
y−1y

2n+1
−2 x2n+1

−2 (1 + x−1y0)
n(−1 + x−1y0)

n+1(−1 + 2x0y−1)
n

x2n+1
0 y2n+1

0 (1− x−1y−2)2n+1
,

y8n+4 = −x2n+1
0 y2n+2

0 (1 + x−2y−1)
n(−1 + x−2y−1)

n+1(−1 + 2x−1y−2)
n+1

y2n+1
−2 x2n+1

−2 (1− x0y−1)2n+1
,

y8n+5 =
x−1y

2n+2
−2 x2n+1

−2 (1 + x−1y0)
n(−1 + x−1y0)

n+1(−1 + 2x0y−1)
n+1

x2n+2
0 y2n+1

0 (1− x−1y−2)2n+2
.

5. The Fourth System: xn+1 =
xn−2yn−1

yn(1+xn−2yn−1)
, yn+1 =

yn−2xn−1

xn(1−yn−2xn−1)

In this section, we get the form of the solutions of the system of the di�erence equations

(7) xn+1 =
xn−2yn−1

yn (1 + xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (1− yn−2xn−1)
,

where n = 0, 1, 2, ... and the initial conditions x−2, x−1, x0, y−2, y−1 and y0 are arbitrary
nonzero real numbers with x−1y−2, x0y−1 6= 1, x−2y−1, x−1y0 6= −1.
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5.1. Theorem. If {xn, yn} are solutions of di�erence equation system (7). Then for
n = 0, 1, 2, ...,

x4n−2 =
xn
0 y

n
0 (1− x−1y−2)

n

yn
−2x

n−1
−2 (1 + x−1y0)n

, x4n−1 =
x−1y

n
−2x

n
−2(1− x0y−1)

n

xn
0 y

n
0 (1 + x−2y−1)n

,

x4n =
xn+1
0 yn

0 (1− x−1y−2)
n

yn
−2x

n
−2(1 + x−1y0)n

, x4n+1 =
y−1y

n
−2x

n+1
−2 (1− x0y−1)

n

xn
0 y

n+1
0 (1 + x−2y−1)n+1

,

and

y4n−2 =
xn
0 y

n
0 (1 + x−2y−1)

n

yn−1
−2 xn

−2(1− x0y−1)n
, y4n−1 =

y−1y
n
−2x

n
−2(1 + x−1y0)

n

xn
0 y

n
0 (1− x−1y−2)n

,

y4n =
xn
0 y

n+1
0 (1 + x−2y−1)

n

yn
−2x

n
−2(1− x0y−1)n

, y4n+1 =
x−1y

n+1
−2 xn

−2(1 + x−1y0)
n

xn+1
0 yn

0 (1− x−1y−2)n+1
.

Proof. For n = 0 the result holds. Now suppose that n > 1 and that our assumption
holds for n− 1. that is,

x4n−6 =
xn−1
0 yn−1

0 (1− x−1y−2)
n−1

yn−1
−2 xn−2

−2 (1 + x−1y0)n−1
, x4n−5 =

x−1y
n−1
−2 xn−1

−2 (1− x0y−1)
n−1

xn−1
0 yn−1

0 (1 + x−2y−1)n−1
,

x4n−4 =
xn
0 y

n−1
0 (1− x−1y−2)

n−1

yn−1
−2 xn−1

−2 (1 + x−1y0)n−1
, x4n−3 =

y−1y
n−1
−2 xn

−2(1− x0y−1)
n−1

xn−1
0 yn

0 (1 + x−2y−1)n
,

y4n−6 =
xn−1
0 yn−1

0 (1 + x−2y−1)
n−1

yn−2
−2 xn−1

−2 (1− x0y−1)n−1
, y4n−5 =

y−1y
n−1
−2 xn−1

−2 (1 + x−1y0)
n−1

xn−1
0 yn−1

0 (1− x−1y−2)n−1
,

y4n−4 =
xn−1
0 yn

0 (1 + x−2y−1)
n−1

yn−1
−2 xn−1

−2 (1− x0y−1)n−1
, y4n−3 =

x−1y
n
−2x

n−1
−2 (1 + x−1y0)

n−1

xn
0 y

n−1
0 (1− x−1y−2)n

.

It follows from Eq.(7) that

x4n−2 =
x4n−5y4n−4

y4n−3 (+x4n−5y4n−4)

=

(
x−1y

n−1
−2 xn−1

−2 (1− x0y−1)
n−1

xn−1
0 yn−1

0 (1 + x−2y−1)n−1

)(
xn−1
0 yn

0 (1 + x−2y−1)
n−1

yn−1
−2 xn−1

−2 (1− x0y−1)n−1

)
(
x−1y

n
−2x

n−1
−2 (1 + x−1y0)

n−1

xn
0 y

n−1
0 (1− x−1y−2)n

)
(
1 +

(
x−1y

n−1
−2 xn−1

−2 (1− x0y−1)
n−1

xn−1
0 yn−1

0 (1 + x−2y−1)n−1

)(
xn−1
0 yn

0 (1 + x−2y−1)
n−1

yn−1
−2 xn−1

−2 (1− x0y−1)n−1

))
=

x−1y0(
x−1y

n
−2x

n−1
−2 (1 + x−1y0)

n−1

xn
0 y

n−1
0 (1− x−1y−2)n

)
(1 + x−1y0)

=
x−1y0x

n
0 y

n−1
0 (1− x−1y−2)

n

x−1yn
−2x

n−1
−2 (1 + x−1y0)n−1 (1 + x−1y0)

=
xn
0 y

n
0 (1− x−1y−2)

n

yn
−2x

n−1
−2 (1 + x−1y0)n

,
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y4n−2 =
y4n−5x4n−4

x4n−3 (1− y4n−5x4n−4)

=

(
y−1y

n−1
−2 xn−1

−2 (1 + x−1y0)
n−1

xn−1
0 yn−1

0 (1− x−1y−2)n−1

)(
xn
0 y

n−1
0 (1− x−1y−2)

n−1

yn−1
−2 xn−1

−2 (1 + x−1y0)n−1

)
(
y−1y

n−1
−2 xn

−2(1− x0y−1)
n−1

xn−1
0 yn

0 (1 + x−2y−1)n

)
(
1−

(
y−1y

n−1
−2 xn−1

−2 (1 + x−1y0)
n−1

xn−1
0 yn−1

0 (1− x−1y−2)n−1

)(
xn
0 y

n−1
0 (1− x−1y−2)

n−1

yn−1
−2 xn−1

−2 (1 + x−1y0)n−1

))

=
x0y−1x

n−1
0 yn

0 (1 + x−2y−1)
n

y−1y
n−1
−2 xn

−2(1− x0y−1)n−1 (1− x0y−1)
=

xn
0 y

n
0 (1 + x−2y−1)

n

yn−1
−2 xn

−2(1− x0y−1)n
.

Also, we see from Eq.(7) that

x4n−1 =
x4n−4y4n−3

y4n−2 (1 + x4n−4y4n−3)

=

(
xn
0 y

n−1
0 (1− x−1y−2)

n−1

yn−1
−2 xn−1

−2 (1 + x−1y0)n−1

)(
x−1y

n
−2x

n−1
−2 (1 + x−1y0)

n−1

xn
0 y

n−1
0 (1− x−1y−2)n

)
(

xn
0 y

n
0 (1 + x−2y−1)

n

yn−1
−2 xn

−2(1− x0y−1)n

)
(
1 +

(
xn
0 y

n−1
0 (1− x−1y−2)

n−1

yn−1
−2 xn−1

−2 (1 + x−1y0)n−1

)(
x−1y

n
−2x

n−1
−2 (1 + x−1y0)

n−1

xn
0 y

n−1
0 (1− x−1y−2)n

))

=

(
x−1y−2

(1− x−1y−2)

)
(

xn
0 y

n
0 (1 + x−2y−1)

n

yn−1
−2 xn

−2(1− x0y−1)n

)(
1 +

x−1y−2

(1− x−1y−2)

)

=
yn−1
−2 xn

−2(1− x0y−1)
nx−1y−2

xn
0 y

n
0 (1 + x−2y−1)n (1− x−1y−2 + x−1y−2)

=
x−1y

n
−2x

n
−2(1− x0y−1)

n

xn
0 y

n
0 (1 + x−2y−1)n

,

and

y4n−1 =
y4n−4x4n−3

x4n−2 (1− y4n−4x4n−3)

=

(
xn−1
0 yn

0 (1 + x−2y−1)
n−1

yn−1
−2 xn−1

−2 (1− x0y−1)n−1

)(
y−1y

n−1
−2 xn

−2(1− x0y−1)
n−1

xn−1
0 yn

0 (1 + x−2y−1)n

)
(

xn
0 y

n
0 (1− x−1y−2)

n

yn
−2x

n−1
−2 (1 + x−1y0)n

)
(
1−

(
xn−1
0 yn

0 (1 + x−2y−1)
n−1

yn−1
−2 xn−1

−2 (1− x0y−1)n−1

)(
y−1y

n−1
−2 xn

−2(1− x0y−1)
n−1

xn−1
0 yn

0 (1 + x−2y−1)n

))

=

(
y−1x−2

(1 + x−2y−1)

)
(

xn
0 y

n
0 (1− x−1y−2)

n

yn
−2x

n−1
−2 (1 + x−1y0)n

)(
1−

(
y−1x−2

(1 + x−2y−1)

))

=
yn
−2x

n−1
−2 (1 + x−1y0)

ny−1x−2

xn
0 y

n
0 (1− x−1y−2)n (1 + x−2y−1 − x−2y−1)

=
y−1y

n
−2x

n
−2(1 + x−1y0)

n

xn
0 y

n
0 (1− x−1y−2)n

.

Also, the other relations can be proved similarly. This completes the proof.
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We consider the following systems and the proof of the theorems are similarly to above
theorem and so, left to the reader.

xn+1 =
xn−2yn−1

yn (1− xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (1 + yn−2xn−1)
.8(5.1)

xn+1 =
xn−2yn−1

yn (−1 + xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (−1 + yn−2xn−1)
.9(5.2)

xn+1 =
xn−2yn−1

yn (−1− xn−2yn−1)
, yn+1 =

yn−2xn−1

xn (−1− yn−2xn−1)
.10(5.3)

The following theorems is devoted to the expressions of the form of the solutions of
systems (8), (9), (10).

5.2. Theorem. Let {xn, yn}+∞n=−2 be solutions of system (8) and x−1y−2, x0y−1 6= −1,
x−2y−1, x−1y0 6= 1. Then for n = 0, 1, 2, ...,

x4n−2 =
xn
0 y

n
0 (1 + x−1y−2)

n

yn
−2x

n−1
−2 (1− x−1y0)n

, x4n−1 =
x−1y

n
−2x

n
−2(1 + x0y−1)

n

xn
0 y

n
0 (1− x−2y−1)n

,

x4n =
xn+1
0 yn

0 (1 + x−1y−2)
n

yn
−2x

n
−2(1− x−1y0)n

, x4n+1 =
y−1y

n
−2x

n+1
−2 (1 + x0y−1)

n

xn
0 y

n+1
0 (1− x−2y−1)n+1

,

y4n−2 =
xn
0 y

n
0 (1− x−2y−1)

n

yn−1
−2 xn

−2(1 + x0y−1)n
, y4n−1 =

y−1y
n
−2x

n
−2(1− x−1y0)

n

xn
0 y

n
0 (1 + x−1y−2)n

,

y4n =
xn
0 y

n+1
0 (1− x−2y−1)

n

yn
−2x

n
−2(1 + x0y−1)n

, y4n+1 =
x−1y

n+1
−2 xn

−2(1− x−1y0)
n

xn+1
0 yn

0 (1 + x−1y−2)n+1
.

5.3. Theorem. Assume that {xn, yn} are solutions of system (9) with x−1y−2, x0y−1,
x−2y−1, x−1y0 6= 1. Then for n = 0, 1, 2, ...,

x4n−2 =
xn
0 y

n
0 (−1 + x−1y−2)

n

yn
−2x

n−1
−2 (−1 + x−1y0)n

, x4n−1 =
x−1y

n
−2x

n
−2(−1 + x0y−1)

n

xn
0 y

n
0 (−1 + x−2y−1)n

,

x4n =
xn+1
0 yn

0 (−1 + x−1y−2)
n

yn
−2x

n
−2(−1 + x−1y0)n

, x4n+1 =
y−1y

n
−2x

n+1
−2 (−1 + x0y−1)

n

xn
0 y

n+1
0 (−1 + x−2y−1)n+1

,

y4n−2 =
xn
0 y

n
0 (−1 + x−2y−1)

n

yn−1
−2 xn

−2(−1 + x0y−1)n
, y4n−1 =

y−1y
n
−2x

n
−2(−1 + x−1y0)

n

xn
0 y

n
0 (−1 + x−1y−2)n

,

y4n =
xn
0 y

n+1
0 (−1 + x−2y−1)

n

yn
−2x

n
−2(−1 + x0y−1)n

, y4n+1 =
x−1y

n+1
−2 xn

−2(−1 + x−1y0)
n

xn+1
0 yn

0 (−1 + x−1y−2)n+1
.

5.4. Theorem. Suppose that {xn, yn} are solutions of system (10) such that x−1y−2,
x0y−1, x−2y−1, x−1y0 6= −1. Then for n = 0, 1, 2, ...,

x4n−2 =
xn
0 y

n
0 (−1− x−1y−2)

n

yn
−2x

n−1
−2 (−1− x−1y0)n

, x4n−1 =
x−1y

n
−2x

n
−2(−1− x0y−1)

n

xn
0 y

n
0 (−1− x−2y−1)n

,

x4n =
xn+1
0 yn

0 (−1− x−1y−2)
n

yn
−2x

n
−2(−1− x−1y0)n

, x4n+1 =
y−1y

n
−2x

n+1
−2 (−1− x0y−1)

n

xn
0 y

n+1
0 (−1− x−2y−1)n+1

,

y4n−2 =
xn
0 y

n
0 (−1− x−2y−1)

n

yn−1
−2 xn

−2(−1− x0y−1)n
, y4n−1 =

y−1y
n
−2x

n
−2(−1− x−1y0)

n

xn
0 y

n
0 (−1− x−1y−2)n

,

y4n =
xn
0 y

n+1
0 (−1− x−2y−1)

n

yn
−2x

n
−2(−1− x0y−1)n

, y4n+1 =
x−1y

n+1
−2 xn

−2(−1− x−1y0)
n

xn+1
0 yn

0 (−1− x−1y−2)n+1
.

5.5. Lemma. The solution of system (7) is unbounded except in the following case.
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5.6. Theorem. System (7) has a periodic solution of period four i� y−2 = −y0, x−2 =

−x0 and it will be taken the following form {xn} =
{
x−2, x−1, x0,

y−1x−2

y0(1+x−2y−1)
, x−2, x−1, x0, ...

}
,

{yn} =
{
y−2, y−1, y0,

x−1y−2

x0(1+y−2x−1)
, y−2, y−1, y0, , ...

}
.

Proof. First suppose that there exists a prime period four solution

{xn} =
{
x−2, x−1, x0,

y−1x−2

y0(1+x−2y−1)
, x−2, x−1, x0, ...

}
,

{yn} =
{
y−2, y−1, y0,

x−1y−2

x0(1+y−2x−1)
, y−2, y−1, y0, , ...

}
,

of system (7), we see from the form of the solution of system (7) that

x4n−2 = x−2 =
xn
0 y

n
0 (1− x−1y−2)

n

yn
−2x

n−1
−2 (1 + x−1y0)n

, x4n−1 = x−1 =
x−1y

n
−2x

n
−2(1− x0y−1)

n

xn
0 y

n
0 (1 + x−2y−1)n

,

x4n = x0 =
xn+1
0 yn

0 (1− x−1y−2)
n

yn
−2x

n
−2(1 + x−1y0)n

, x4n+1 =
y−1x−2

y0(1+x−2y−1)
=

y−1y
n
−2x

n+1
−2 (1−x0y−1)

n

xn
0 yn+1

0 (1+x−2y−1)n+1
,

y4n−2 = y−2 =
xn
0 y

n
0 (1 + x−2y−1)

n

yn−1
−2 xn

−2(1− x0y−1)n
, y4n−1 = y−1 =

y−1y
n
−2x

n
−2(1 + x−1y0)

n

xn
0 y

n
0 (1− x−1y−2)n

,

y4n = y0 =
xn
0 y

n+1
0 (1 + x−2y−1)

n

yn
−2x

n
−2(1− x0y−1)n

, y4n+1 =
x−1y−2

x0(1+y−2x−1)
=

x−1y
n+1
−2 xn

−2(1+x−1y0)
n

xn+1
0 yn

0 (1−x−1y−2)n+1
.

Then we get

y−2 = −y0, x−2 = −x0.

Second assume that y−2 = −y0, x−2 = −x0. Then we see from the form of the solution
of system (7) that

x4n−2 = x−2, x4n−1 = x−1, x4n = x0, x4n+1 =
y−1x−2

y0(1+x−2y−1)
,

y4n−2 = y−2, y4n−1 = y−1, y4n = y0, y4n+1 =
x−1y−2

x0(1+y−2x−1)
.

Thus we have a periodic solution of period four and the proof is complete.

Also, we can prove the following Theorems:

5.7. Lemma. The solutions of all systems (8), (9) and (10) are unbounded except in
the following cases.

5.8. Theorem. System (8) has a periodic solution of period four i� y−2 = −y0, x−2 =

−x0 and it will be taken the following form {xn} =
{
x−2, x−1, x0,

y−1x−2

y0(1−x−2y−1)
, x−2, x−1, x0, ...

}
,

{yn} =
{
y−2, y−1, y0,

x−1y−2

x0(1−y−2x−1)
, y−2, y−1, y0, , ...

}
.

5.9. Theorem. All Solutions of the di�erence equations system (9) are periodic solution
with period four i� y−2 = y0, x−2 = x0 and it will be taken the following form {xn} ={
x−2, x−1, x0,

y−1x−2

y0(−1+x−2y−1)
, x−2, ...

}
, {yn} =

{
y−2, y−1, y0,

x−1y−2

x0(−1+y−2x−1)
, y−2, , ...

}
.

5.10. Theorem. If {xn}, {yn} are solutions of system (10), then {xn}, {yn} are periodic
solutions of period four i� y−2 = y0, x−2 = x0 and it will be in the following form {xn} ={
x−2, x−1, x0,

y−1x−2

y0(−1−x−2y−1)
, x−2, ...

}
, {yn} =

{
y−2, y−1, y0,

x−1y−2

x0(−1−y−2x−1)
, y−2, , ...

}
.

5.11. Example. We consider interesting numerical example for the di�erence system
(7) with the initial conditions x−2 = 0.3, x−1 = 0.15, x0 = −0.4, y−2 = 0.2, y−1 =
−0.16 and y0 = 0.17. See Figure (3).



1388

0 10 20 30 40 50 60
−1.5

−1

−0.5

0

0.5

1

1.5

n

x(
n)

,y
(n

)

plot of X(n+1)=Y(n−1)X(n−2)/Y(n)(1+Y(n−1)X(n−2)),Y(n+1)=X(n−1)Y(n−2)/X(n)(1−X(n−1)Y(n−2))

 

 
x(n)
y(n)

Figure 3

0 5 10 15 20 25 30 35 40
−10

−5

0

5

10

15

n

x(
n)

,y
(n

)

plot of X(n+1)=Y(n−1)X(n−2)/Y(n)(1+Y(n−1)X(n−2)),Y(n+1)=X(n−1)Y(n−2)/X(n)(1−X(n−1)Y(n−2))

 

 
x(n)
y(n)

Figure 4

5.12. Example. See Figure (4) when we take system (7) with the initial conditions
x−2 = 3, x− = 11, x0 = −3, y−2 = 5, y−1 = −7 and y0 = −5.
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1. Introduction
It is a well-known fact that σ-locally finite collections are σ-closure-preserving (see

[5] or [15]). Thus the characterization of metrizable spaces by Bing-Nagata-Smirnov
[15, Theorem 23.9] in terms of σ-locally finite bases motivated Ceder to study spaces
with σ-closure preserving bases. In his paper [3], Ceder gave examples of non-metrizable
M1-spaces and got researchers on their feet by asking whether the implications M1 ⇒
M2 ⇒ M3 are reversible. See the definitions of these concepts at the bottom of the
preliminaries section below. Many researchers have worked on this problem and have
produced a number of partial results but, as far as we know, no general solution yet.
In 1966, C. J. R. Borges [1] reviewed Ceder’s work on M3-spaces and improved some of
his results, and he generally illustrated the importance of M3-spaces and thus renamed
them stratifiable spaces. In 1973, following Ceder’s efforts [3, Theorem 7.6, p. 117], F.
G. Slaughter, Jr established that if f is a closed continuous mapping from a metric space
X onto a topological space Y then Y is an M1-space [14].

2. Preliminaries
Following Priestley [13], we denote the intersection of all lower sets containing a subset

S of an ordered set X by d(S). Dually, the intersection of all upper sets containing S is
denoted by i(S). Then we say that an ordered topological space (X,T,≤) is a C-space if
d(F ) and i(F ) are closed whenever F is a closed subset of X. Similarly, (X,T,≤) is called
an I-space if d(G) and i(G) are open whenever G is an open subset of X. A collection
B of subsets of a topological space (X,T) is said to be T-closure-preserving if for each
subcollection B′ ⊆ B, we have

⋃
B∈B′

B =
⋃

B∈B′
B.

For brevity, we are going to refer to bitopological spaces as bispaces. A bispace (X,T1,T2)
is said to be T1-regular with respect to T2

§ if and only if for each point x ∈ X and each
T1-closed set F with x /∈ F , there are a T1-open set U and a T2-open set V such that
x ∈ U, F ⊆ V and U ∩ V = ∅. Similarly, a bispace (X,T1,T2) is said to be T2-regular
with respect to T1 if and only if for each point x ∈ X and each T2-closed set F with
x /∈ F , there are a T2-open set U and a T1-open set V such that x ∈ U, F ⊆ V and
U ∩ V = ∅. We say that a bispace (X,T1,T2) is pairwise regular if and only if it is both
T1-regular with respect to T2 and T2-regular with respect to T1. We define T\ and T[ like
this: T\ := {U ∈ T |U is an upper set} and T[ := {L ∈ T |L is a lower set}.
Let J be the Euclidean topology on the unit interval [0, 1], carrying its usual order.
A bispace (X,T1,T2) is pairwise completely regular if and only if for each x ∈ X and
each T1-closed set F with x /∈ F , there exists a bicontinuous function f : (X,T1,T2) →
([0, 1], J\, J[) such that f(x) = 1 and f(F ) = {0}; and for each T2-closed set Q with
x /∈ Q, there exists a bicontinuous function g : (X,T1,T2) → ([0, 1], J\, J[) such that
g(x) = 0 and g(Q) = {1} (see [9]).

Furthermore, recall that a topological space X is called an M1-space if it is regular and
has a σ-closure preserving base. In a bispace setting we follow Gutierrez and Romaguera
[6] and say that a bispace (X,T1,T2) is T1-M1 with respect to T2 if and only if it is T1-
regular with respect to T2 and there exists a base of T1 which is T2-σ-closure preserving.
A T2-M1 with respect to T1 bispace is defined similarly. Then a bispace (X,T1,T2) is
said to be pairwise M1 if and only if it is both T1-M1 with respect to T2 and T2-M1 with
respect to T1.

§Alternatively, some authors say that in the bispace (X, T1, T2), the topology T1 is regular
with respect to T2 whenever the condition given above holds.
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We also need the notion of stratifiability. A bispace (X,T1,T2) is said to be pairwise
semi-stratifiable if and only if for each Ti-closed set F ⊆ X there exists a sequence of
Tj-open sets (Fn)n∈N satisfying the following two conditions ( i, j ∈ {1, 2} and i 6= j ):
(i) If F ⊆ K then Fn ⊆ Kn for all n ∈ N ; (ii) F =

⋂∞
n=1 Fn. If, in addition, we also

have (iii) F =
⋂∞

n=1 clTiFn, then (X,T1,T2) is said to be pairwise stratifiable. It has
been established that a bispace is pairwise M3 if and only if it is pairwise stratifiable [6,
Proposition 1(b)]. Hence the terms pairwise stratifiable and pairwise M3 shall be used
exchangeably below.

3. Closure-Preserving Collections
In this section we prove some facts about closure-preserving collections which are

interesting in their own right, and we will apply them in the next section. As usual, A
and clT\A denote the closure of A in (X,T), and in T\ respectively.

1. Lemma. If (X,T,≤) is an ordered topological C-space and A ⊆ X then
clT\A = d(A) = d(d(A)).

Proof. Let A be a subset of an ordered topological C-space (X,T,≤). Then d(A) is
closed. Since A ⊆ A ⊆ d(A), A ⊆ d(A). Then we have

d(A) ⊆ d(d(A)) ⊆ clT\ (clT\(clT\(A))) = clT\(A) ⊆ clT\(d(A)) = d(A),

the last equality because d(A) is a closed lower set given that X is a C-space. Therefore
the result holds. 2

A similar argument proves the following:

2. Lemma. If (X,T,≤) is an ordered topological C-space and A ⊆ X then
clT[A = i(A) = i(i(A)). 2

1. Proposition. If (X,T,≤) is an ordered topological C- and I-space and B is an open
and closure-preserving collection in (X,T) then Bd = {d(B) |B ∈ B} is an open collection
in (X,T[) which is closure-preserving in (X,T\).

Proof. Suppose (X,T,≤) is an ordered topological C- and I-space. Let B be an
open and closure-preserving collection in (X,T). Since X is an I-space, d(B) is an open
lower set for each B ∈ B. Hence Bd is open in (X,T[). It remains to show that Bd is
closure-preserving in (X,T\). Note that the operator d commutes with set union. Let
B′ ⊆ B. Then by Lemma 1, we get

clT\

( ⋃
B∈B′

d(B)

)
= d

( ⋃
B∈B′

d(B)

)
= d

(
d(
⋃

B∈B′
B)

)
= d

( ⋃
B∈B′

B

)

= d

( ⋃
B∈B′

B

)
=

⋃
B∈B′

d(B) =
⋃

B∈B′
d(d(B)) =

⋃
B∈B′

clT\d(B). So,

clT\(
⋃

B∈B′
d(B)) =

⋃
B∈B′

clT\d(B). Hence Bd is closure-preserving in (X,T\). 2

Similarly, the following result emerges.

2. Proposition. If (X,T,≤) is an ordered topological C- and I-space and B is an open
and closure-preserving collection in (X,T) then Bi = {i(B) |B ∈ B} is an open collection
in (X,T\) which is closure-preserving in (X,T[). 2
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4. On Pairwise M1- versus Pairwise M3- (Stratifiable) Bispaces
In 1986, A. Gutierrez and S. Romaguera [6] introduced the concepts of pairwise Mi-

spaces into the theory of bispaces as a generalization of Ceder’s Mi-spaces (i=1,2,3).
We recall the following nice result.

3. Proposition. ([10]) If (X,T,≤) is a stratifiable ordered topological C-space then the
bispace (X,T\,T[) is pairwise stratifiable. 2

The reader is referred to [7] for the definition and basic properties of monotonically
normal spaces. For these in the bispace setting, see [12]. It is known that a (bi) space
is (pairwise) stratifiable if and only if it is (pairwise) semi-stratifiable and (pairwise)
monotonically normal. K. Li and F. Lin showed that one can relax the assumption of
the above proposition and obtain:

4. Proposition. ([11]) If (X,T,≤) is a monotonically normal ordered topological C-
space then the bispace (X,T\,T[) is pairwise monotonically normal. 2

We are now ready to present the following observation.

1. Theorem. If (X,T,≤) is an M1 ordered topological C- and I-space then the bispace
(X,T\,T[) is pairwise M1.

Proof. Let (X,T,≤) be an M1 ordered topological C- and I-space. We first show
that (X,T\,T[) is pairwise regular. Let x ∈ X, and F ⊆ X be a closed lower set such
that x /∈ F . Then G := X \ F is a open neighbourhood of x. Since (X,T,≤) is M1, it is
regular. Hence there exists an open neighbourhood H of x such that H ⊆ G. Since X
is an I-space, the upper set U = i(H) is an open neighbourhood of x. By Lemma 2, we
have

U = i(H) ⊆ i(i(H)) = i(H) ⊆ i(G) = G.

Since X is a C-space, i(H) is closed and hence V := X \ i(H) is an open lower set
containing F and U ∩ V = ∅. Thus the bispace (X,T\,T[) is T\-regular with respect to
T[. Similarly, one can easily show that (X,T\,T[) is T[-regular with respect to T\ and
hence pairwise regular. Since (X,T,≤) is anM1-space, T has a σ-closure-preserving base,
say B. Let B =

⋃
n∈N

Bn where each Bn is a T-closure-preserving subcollection of B. Now

we need to produce σ-closure-preserving bases for T\ and T[. Let Dn = {d(B) |B ∈ Bn }
and put D =

⋃
n∈N

Dn. Then D is a base for T[ which is, by Proposition 1, σ-closure-

preserving in T\. Similarly, let In = {i(B) |B ∈ Bn} and I =
⋃

n∈N
In. Then I is a base for

T\ which is, by Proposition 2, σ-closure-preserving in T[. Hence the bispace (X,T\,T[) is
T\-M1 with respect to T[ and T[-M1 with respect to T\. Therefore (X,T\,T[) is pairwise
M1. 2.

Since every pairwise M1-bispace is pairwise stratifiable [6], we get:

1. Corollary. If (X,T,≤) is an M1 ordered topological C- and I-space then the bispace
(X,T\,T[) is pairwise stratifiable. 2

Finally, we briefly turn our minds to the following result involving countability. Recall
that a bispace (X,T1,T2) is doubly first countable if both topologies T1 and T2 are first
countable (see for instance J. Deak [4]).

5. Proposition. ([10]) If (X,T,≤) is a first countable ordered topological I-space then
(X,T\,T[) is doubly first countable. 2
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Since any metric space is first countable and stratifiable, the following fact follows
immediately and it fits in here.

2. Corollary. If (X,T,≤) is a metrizable ordered topological C- and I-space then
(X,T\,T[) is pairwise M1 (and thus pairwise stratifiable) and doubly first countable.

2

Remark. As mentioned in the introduction above, F. G. Slaughter, Jr showed that if
f is a closed continuous mapping from a metric space X onto the space Y , then Y is an
M1-space [14, Theorem 6]. It is therefore natural to wonder whether, in the same vein,
the assumption of the above theorem can be relaxed without destroying the theorem in
the sense that the bispace (X,T\,T[) is pairwiseM1 whenever (X,T,≤) is anM1 ordered
topological C-space.
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1. Introduction Definition and Notation
The classical Bernoulli polynomials Bn (x) and the classical Euler polynomials En (x)

are usually defined by means of the following generating functions;

t

et − 1
ext =

∞∑
n=0

Bn (x)
tn

n!
, |t| < 2π

and
2

et + 1
ext =

∞∑
n=0

En (x)
tn

n!
, |t| < π,

respectively. The corresponding Bernoulli numbers Bn and Euler numbers En are given
by

Bn := Bn (0) = (−1)nBn (1) =
(
21−n − 1

)−1
Bn

(
1

2

)
∗Department of Mathematics, Faculty of Science, University of Akdeniz, TR-07058 Antalya,

Turkey.
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and

En := 2nEn

(
1

2

)
, n ∈ N0 = N ∪ {0} ,

respectively.
Many mathematicians investigated these polynomials in ([2]-[17]). They proved some

theorems and gave some interesting recurrences relations. Firstly, Carlitz in [2] gave
q-Bernoulli polynomials.

In this work we give some recurrences relations and properties for two-variable q-
Bernoulli polynomials and q-Euler polynomials.

Throughout this paper, we make use of the following notations; N denotes the set of
natural numbers, C denotes the set of complex numbers and q ∈ C with |q| < 1. The
q-basic numbers and q-factorials are defined ([2], [7]-[15]) by

[a]q =
1− qa

1− q = 1 + q + . . .+ qa−1, (q 6= 1) ,

[n]q! = [n]q [n− 1]q . . . [2]q [1]q ,

respectively, where [0]q! = 1 and n ∈ N, a ∈ C.
The q-binomial formula is defined ([8], [14]) by

(x+ y)nq =

n∑
k=0

[
n
k

]
q

q
k(k−1)

2 xn−kyk,

where
[
n
k

]
q

is the q-binomial coefficient (or Gaussian binomial coefficient) given by

[
n
k

]
q

=
(q; q)n

(q; q)n−k (q; q)k
=

[n]q!

[n− k]q! [k]q!
.

The q-exponential functions are given ([1], [8], [12], [13]) by

eq (z) =

∞∑
n=0

zn

[n]q!
=

∞∏
k=0

1

(1− (1− q) qkz) , 0 < |q| < 1, |z| < 1

|1− q|

and

Eq (z) =

∞∑
n=0

q(
n
2) zn

[n]q!
=

∞∏
k=0

(
1 + (1− q) qkz

)
, 0 < |q| < 1, z ∈ C.

From the last equations, we can easliy see that eq (z)Eq (−z) = 1.
The Jack-derivative Dq is defined ([7], [10], [13], [14]) by

Dqf (z) =
f (qz)− f (z)

qz − z , 0 < |q| < 1, 0 6= z ∈ C.

The derivative of the product of two functions and the derivative of the division of two
functions are given by the following equations in [7], respectively.

Dq

(
f (z)

g (z)

)
=

g (qz)Dqf (z)− f (qz)Dqg (z)
g (z) g (qz)

,(1.1)

Dq (f (z) g (z)) = f (qz)Dqg (z) + g (z)Dqf (z) .

Carlitz was the first to extend the classical Bernoulli numbers and polynomials, Euler
numbers and polynomials ([2], [3]). Cheon in [5] gave explicit expansions for the classical
Bernoulli polynomials and the classical Euler polynomials. Srivastava et al [16] proved
some formulae for the Bernoulli polynomials and the Euler polynomials. Also, they gave
the addition-formulae between the Bernoulli polynomials and the Euler polynomials.
There are numerous recent investigations on the q-Bernoulli polynomials and q-Euler
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polynomials by many mathematicians, including as Cenkci et al [4], Choi et al [6], Kim
([8], [9]), Kim et al [10], Luo [11], Luo and Srivastava [12], Srivastava et al ([16], [17]),
Tremblay et al [18] and Mahmudov ([13], [14]).

Mahmudov defined and studied properties of the following generalized q-Bernoulli
polynomials B

(α)
n,q (x, y) of order α and q-Euler polynomials E

(α)
n,q (x, y) of order α as

follows ([13], [14]).
Let q ∈ C, α ∈ N and 0 < |q| < 1. The q-Bernoulli numbers B

(α)
n,q and polynomials

B
(α)
n,q (x, y) in x, y of order α are defined by means of the generating functions:

(1.2)
∞∑
n=0

B(α)
n,q

tn

[n]q!
=

(
t

eq (t)− 1

)α
, |t| < 2π

and

(1.3)
∞∑
n=0

B(α)
n,q (x, y)

tn

[n]q!
=

(
t

eq (t)− 1

)α
eq (xt)Eq (yt) , |t| < 2π.

The q-Euler numbers E
(α)
n,q and polynomials E

(α)
n,q (x, y) in x, y of order α are defined by

means of the generating functions:

(1.4)
∞∑
n=0

E(α)
n,q

tn

[n]q!
=

(
2

eq (t) + 1

)α
, |t| < π

and

(1.5)
∞∑
n=0

E(α)
n,q (x, y)

tn

[n]q!
=

(
2

eq (t) + 1

)α
eq (xt)Eq (yt) , |t| < π.

The q-Genocchi numbers G
(α)
n,q and polynomials G

(α)
n,q (x, y) in x, y of order α are defined

by means of the generating functions:

∞∑
n=0

G(α)
n,q

tn

[n]q!
=

(
2t

eq (t) + 1

)α
, |t| < π

and
∞∑
n=0

G(α)
n,q (x, y)

tn

[n]q!
=

(
2t

eq (t) + 1

)α
eq (xt)Eq (yt) , |t| < π.

It is obvious that

lim
q→1−

B(α)
n,q (x, y) = B(α)

n (x+ y) ,

lim
q→1−

E(α)
n,q (x, y) = E(α)

n (x+ y) ,

lim
q→1−

G(α)
n,q (x, y) = G(α)

n (x+ y)

and

D(α)
q,xBn,q (x, y) = [n]qB

(α)
n−1,q (x, y) , Dq,yB

(α)
n,q (x, y) = [n]qB

(α)
n−1,q (x, qy) ,

Dq,teq (xt) = xeq (xt) , Dq,tEq (yt) = yEq (qyt) .
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2. Main Theorems
In this section, we give some relations for q-Bernoulli polynomials B

(α)
n,q (x, y) and

q-Euler polynomials E(α)
n,q (x, y) . By applying the derivative operator to q-Bernoulli poly-

nomials and q-Euler polynomials, we have recurrences relations for these polynomials.

2.1. Proposition. The generalized q-Bernoulli polynomials satisfy the following relation.

(2.1)
n∑
l=0

[
n
l

]
q

B
(α)
n−l,q (x, y)−B(α)

n,q (x, y) = [n]qB
(α−1)
n−1,q (x, y) .

Proof. From (1.3), we have

∞∑
n=0

B(α)
n,q (x, y)

tn

[n]q!
=

(
t

eq (t)− 1

)α
eq (xt)Eq (yt)

∞∑
n=0

B(α)
n,q (x, y)

tn

[n]q!
(eq (t)− 1) = t

(
t

eq (t)− 1

)α−1

eq (xt)Eq (yt)

∞∑
n=0

B(α)
n,q (x, y)

tn

[n]q!

∞∑
n=0

tn

[n]q!
−
∞∑
n=0

B(α)
n,q (x, y)

tn

[n]q!
= t

∞∑
n=0

B(α)
n,q (x, y)

tn

[n]q!
.

By using Cauchy product and comparing the coefficient of tn

[n]q !
we have (2.1).

The following equations can be obtained easily from (1.2)-(1.5).

B(α−β)
n,q (x, y) =

n∑
k=0

[
n
k

]
q

B
(α−β)
k,q (0, 0) (x+ y)n−kq ,(2.2)

B(α−β)
n,q (x, y) =

n∑
k=0

[
n
k

]
q

B
(α)
k,q (x, 0)B

(−β)
n−k,q (0, y) ,(2.3)

(x+ y)nq =

n∑
k=0

[
n
k

]
q

E
(α)
n−k,q (x, y)E

(−α)
k,q (0, 0) ,(2.4)

2E(α−1)
n,q (x, y) =

n∑
k=0

[
n
k

]
q

E
(α)
n−k,q (x, y) + E(α)

n,q (x, y) ,(2.5)

where α, β ∈ N.

2.2. Theorem. The generalized q-Bernoulli polynomials satisfy the following recurrence
relation.

Bn+1,q (x, y) = Bn,q (x, y) + [n+ 1]q {qyBn,q (qx, y) + qxBn,q (x, y)}(2.6)

−
n+1∑
k=0

[
n+ 1
k

]
q

Bk,q (x, y) q
kBn+1−k,q (1, 0) .

Proof. In (1.3), for α = 1, we take the q-Jackson derivative of the generalized q-Bernoulli
polynomials Bn,q (x, y) according to t, then we have

∞∑
n=0

Dq,tBn,q (x, y)
tn

[n]q!
= Dq,t

(
teq (xt)Eq (yt)

eq (t)− 1

)
.
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By using the equalities (1.1) in the last expression we have

∞∑
n=0

Dq,tBn,q (x, y)
tn

[n]q!

=
(eq (qxt)− 1)Dq,t [teq (xt)Eq (yt)]− qteq (qxt)Eq (qyt)Dq,t [eq (t)− 1]

(eq (t)− 1) (eq (qt)− 1)
,

∞∑
n=0

1

[n+ 1]q
Bn+1,q (x, y)

tn

[n]q!
=

∞∑
n=0

qyBn,q (qx, qy) + qxBn,q (x, y)
tn

[n]q!

+
1

[n+ 1]q

{
Bn,q (x, y) +

n+1∑
k=0

[
n+ 1
k

]
q

Bk,q (x, y) q
kBn+1−k,q (1, 0)

tn

[n]q!

}
.

Comparing the coefficient of tn

[n]q !
we obtain (2.6).

2.3. Theorem. The generalized q-Euler polynomials En,q (x, y) satisfy the following re-
lation.

En+1,q (x, y) = [n+ 1]q

×

{
yEn,q (qx, qy) + xEn,q (x, y)−

1

4

n∑
k=0

[
n
k

]
q

Ek,q (x, y) q
kEn−k,q (1, 0)

}

Proof. In (1.5), for α = 1, by using the equalities (1.1), the proof can be obtained.

2.4. Theorem. There is the following relation.

(2.7)

B(α)
n,q (x, y) =

m−n

[n+ 1]q

n+1∑
k=0

[
n+ 1
k

]
q

{[
B

(α)
k,q

(
1

m
, 0

)
−B

(α)
k,q (0, 0)

]
Bn+1−k,q (x, y)m

k

}
.

Proof. From (1.2), we have

∞∑
n=0

B(α)
n,q

tn

[n]q!
=

(
t

eq (t)− 1

)α eq ( tm)− 1
t
m

t
m

eq
(
t
m

)
− 1

=
m

t

{(
t

eq (t)− 1

)α
eq

(
t

m

) t
m

eq
(
t
m

)
− 1
−
(

t

eq (t)− 1

)α t
m

eq
(
t
m

)
− 1

}

=
m

t

∞∑
n=0

[
B(α)
n,q

(
1

m
, 0

)
−B(α)

n,q (0, 0)

]
tn

[n]q!

∞∑
n=0

B(α)
n,q (0, 0)

tn

mn [n]q!
.

Using the Cauchy product and comparing the coefficient of tn

[n]q !
we obtain (2.7).

2.5. Theorem. The generalized q-Euler numbers E(α)
n,q (0, 0) satisfy the following relation.

E(α)
n,q =

1

2 [n+ 1]q

n+1∑
k=0

[
n+ 1
k

]
q

{[
E
(α)
k,q

(
1

m
, 0

)
+ E

(α)
k,q (0, 0)

]
Gn+1−k,q (0, 0)m

k−n
}
.
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3. Some Relations Between the q-Bernoulli Polynomials and q-
Euler Polynomials
In this section, we prove an interesting relationship between the q-Bernoulli polyno-

mials B(α)
n,q (x, y) of order α and q-Euler polynomials E(α)

n,q (x, y) of order α.

3.1. Theorem. There is the following relation between the q-Euler polynomials and
q-Bernoulli polynomials.

(3.1)

B(α)
n,q (x, y) =

1

2

n∑
k=0

[
n
k

]
q

{
p∑
r=0

[
p
r

]
q

B(α)
r,q (x, 0)mr−n +B

(α)
n−k,q (x, 0)m

−k

}
Ek,q (0,my) .

Proof. From (1.3), we have

∞∑
n=0

B(α)
n,q (x, y)

tn

[n]q!
=

2

eq (t) + 1
Eq

(
my

t

m

)
eq
(
t
m

)
+ 1

2

(
t

eq (t)− 1

)α
eq (xt)

=
1

2

2

eq
(
t
m

)
+ 1

Eq

(
my

t

m

)
eq

(
t

m

)(
t

eq (t)− 1

)α
eq (xt)

+
1

2

2

eq
(
t
m

)
+ 1

Eq

(
my

t

m

)(
t

eq
(
t
m

)
− 1

)α
eq (xt)

=
1

2

∞∑
n=0

En,q (0,my)
tn

mn [n]q!

∞∑
n=0

tn

mn [n]q!

∞∑
n=0

B(α)
n,q (x, 0)

tn

[n]q!

+
1

2

∞∑
n=0

En,q (0,my)
tn

mn [n]q!

∞∑
n=0

B(α)
n,q (x, 0)

tn

[n]q!

=
1

2

[
∞∑
n=0

En,q (0,my)
tn

mn [n]q!

]

×

[
∞∑
p=0

p∑
r=0

[
p
r

]
q

B(α)
r,q (x, 0)mr−p tp

[p]q!
+

∞∑
p=0

B(α)
p,q (x, 0)

tp

[p]q!

]
.

Comparing the coefficient of tn

[n]q !
we obtain

B(α)
n,q (x, y) =

1

2

n∑
k=0

[
n
k

]
q

{
p∑
r=0

[
p
r

]
q

mathfrakB(α)
r,q (x, 0)mr−n +B

(α)
n−k,q (x, 0)m

−k

}
Ek,q (0,my) .

3.2. Theorem. There is the following relation between the q-Bernoulli polynomials and
q-Euler polynomials.

E(α)
n,q (x, y) =

m

[n+ 1]q

n+1∑
k=0

[
n+ 1
k

]
q

(3.2)

×

{
n+1−k∑
r=0

[
n+ 1− k

r

]
q

E(α)
r,q (x, 0)mr−n−1 − E

(α)
n+1−k,q (x, 0)m

−k

}
Bk,q (0,my) .
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Proof. From (1.5), we write
∞∑
n=0

E(α)
n,q (x, y)

tn

[n]q!
=

t
m

eq
(
t
m

)
− 1

Eq

(
my

t

m

)
eq
(
t
m

)
− 1

t
m

(
2

eq (t) + 1

)α
eq (xt)

=
m

t

∞∑
n=0

Bn,q (0,my)
tn

mn [n]q!

∞∑
n=0

tn

mn [n]q!

∞∑
n=0

E(α)
n,q (x, 0)

tn

[n]q!

−m
t

∞∑
n=0

Bn,q (0,my)
tn

mn [n]q!

∞∑
n=0

E(α)
n,q (x, 0)

tn

[n]q!

=
m

t

∞∑
k=0

Bk,q (0,my)
tk

mk [k]q!

{
∞∑
p=0

p∑
r=0

[
p
r

]
q

E(α)
r,q (x, 0)mr−p − E(α)

r,q (x, 0)

}
tp

[p]q!
.

Using the Cauchy product and comparing the the coefficient of tn

[n]q !
we obtain (3.2).

3.3. Corollary. The following relations holds

(3.3)

B(α)
n,q =

1

[n+ 1]q

n+1∑
k=0

[
n+ 1
k

]
q

mk−n
{
B

(α)
k,q

(
1

m
, 0

)
+B

(α)
k,q (0, 0)

}
En+1−k,q (0, 0)

and

(3.4)

E(α)
n,q =

1

[n+ 1]q

n+1∑
k=0

[
n+ 1
k

]
q

mk−n
{
E
(α)
k,q

(
1

m
, 0

)
− E

(α)
k,q (0, 0)

}
B

(α)
n+1−k,q (0, 0) .

3.4. Corollary. From (3.3) and (3.4), we have{
B

(α)
k,q

(
1

m
, 0

)
+B

(α)
k,q (0, 0)

}
En+1−k,q (0, 0)E

(α)
n,q (0, 0)

=

{
E
(α)
k,q

(
1

m
, 0

)
− E

(α)
k,q (0, 0)

}
B

(α)
n+1−k,q (0, 0)B

(α)
n,q (0, 0) .
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1. Introduction
In real analysis there are many characterization theorems of the type- if f : R −→ R,

then F , the set of discontinuities of f , is a closed set and conversely, if F is any closed
subset of R then there exists a function f : R −→ R, whose set of discontinuities is
precisely F .

R.C. Buck ( [1] , [2] , [3] ), in a series of articles considered similar questions concerning
subsequential limit points of a given sequence. Pratulananda Das [5], at the suggestion of
Brian Thompson, continued the inquiries of Buck [1].Our initial result showed that if (xn)
is a bounded sequence of reals, having L as its set of (subsequential) limit points, and if
M , M 6= ∅, is any closed subset of L, then there is a subsequence (xnk ) of (xn), whose
set of (subsequential) limit points is precisely M . Fortunately Cihan Orhan pointed out
to us, that in fact, we had rediscovered a known result, pointing us to Theorem 1.62 II,
on page 142 in Cooke [4].

Here we consider statistical cluster point analogues of the result mentioned above.
Statistical limit points and statistical cluster points were first considered by Fridy in
[6]. Our results are concerned with single sequences as well as with double sequences.
Similarities between our results and core theorems (for example [10], [12]) will be apparent
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71000 Bosnia-Herzegovina
Email : himiller@hotmail.com
†Faculty of Engineering and Natural Sciences International University of Sarajevo Sarajevo,
71000 Bosnia-Herzegovina
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to the reader. Also we present a result about stretchings of sequences. Miller and
Patterson have previously had stretching results.

2. Preliminaries
If K is a subset of the positive integers N, then following Fridy [6], Kn denotes the set

{k ∈ K : k ≤ n} and |Kn| denotes the number of elements in Kn. The natural density of
K (see [4] , Chapter 11) is given by δ(K) = limn→∞ n

−1|Kn|. In the case that δ(K) = 0
we say that K is thin, and otherwise we say that K is non-thin. We continue following
Fridy [6] .

2.1. Definition. We say that a number λ is a statistical limit point of a sequence of
reals (xn) if limk→∞ xnk = λ for some non-thin subsequence (xnk ) of (xn).

2.2. Definition. Given a sequence of reals (xn), a stretching of that sequence is any
sequence of the form x1, x1, . . . x1, x2, x2 . . . , x2, . . . , xn, xn, . . . , xn . . ..

2.3. Definition. We say that a number γ is a statistical cluster point of a sequence of
reals (xn) if for every ε > 0 the set {k ∈ N : |xk − γ| < ε} is non-thin.

We also consider bounded double sequences x = (xn,k) and 4-dimensional bounded
regular matrix transformations.

2.4. Definition. A double sequence x = (xn,k) of reals is said to be bounded if there
exists an M such that |xn,k| < M for all n, k.

2.5. Definition. A double sequence x = (xn,k) has Pringsheim limit L (or in what
follows, just limit L) denoted by limxn,k = L, if given any ε > 0, there exists N ∈ N
such that |xn,k −L| < ε whenever n, k > N. Briefly, we say that x is convergent and has
limit L.

Let A = (as,t,n,k), denote a four dimensional summability method (see [8]) that maps
the double real sequence x into the double real sequence Ax where the s,t-th term of Ax
is defined as follows:

(Ax)s,t =

∞,∞∑
n,k=1,1

as,t,n,kxn,k

and is called an A-mean. For the above definition and for what follows see Móricz [11].
We say that a double sequence is A-summable to the limit L if the A-means exist for

all s, t = 1, 2, 3 . . . and
lim
s,t

(Ax)s,t = L.

2.6. Definition. The four dimensional real matrix A is said to be bounded regular if
every bounded convergent double sequence with real entries x is A-summable to the same
limit and the A-means are also bounded.

Finally, a classical theorem, ( [8], [13]) characterizes bounded regular four dimensional
matrices.

2.7. Theorem. Necessary and sufficient conditions for A = (as,t,n,k) to be bounded
regular are

lims,t as,t,n,k = 0 for each n and k
lims,t

∑∞,∞
n.k=1,1 as,t,n,k = 1

lims,t

∑∞
n=1 |as,t,n,k| = 0

lims,t

∑∞
k=1 |as,t,n,k| = 0∑∞

n=1

∑∞
k=1 |as,t,n,k| is convergent; and

there exist positive integers A and B such that
∑

n,k>B |as,t,n,k| < A for each
s, t.
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3. Results
Our first result is the statistical cluster point analogue of the result (see [4] ) mentioned

in our introduction.

3.1. Theorem. Suppose x = (xn) is a bounded sequence and L is the set of limit points
of x. If M ⊆ L, M is closed and nonempty, there exists a subsequence y = (yn) of x such
that M is the set of statistical cluster points of y.

Proof. Since M is closed and separable, there is a countable subset of M , {am : m ∈ N}
such that its closure is M . Now for m ∈ N, fix a subsequence of (xn), (xnk,m)∞k=1),
converging to am and contained in (am − 1

m
, am + 1

m
).

We construct y = (yn) as follows:
y1, y3, y5, . . . , y2j+1, . . . will be chosen from (xnk,1),
y2, y6, y10, . . . , y2(2j+1), . . . will be chosen from (xnk,2),
y4, y12, y20, . . . , y4(2j+1), . . . will be chosen from (xnk,3),
. . .
y2m−1 , y2m−1·3, y2m−1·5, . . . , y2m−1·(2j+1), . . .
will be chosen from (xnk,m),
. . .

where
y1 = xn1,1 , and
y2 = xnk,2 where k is the smallest number so that nk,2 > n1,1

if y1, y2 . . . yi−1 have been chosen, and i = 2m−1(2j + 1) we choose yi = xnk,m

so that k is the smallest number such that the index nk,m is bigger than the
indices of y1, y2 . . . yi−1 in terms of x.

Hence (yn) is a subsequence of x. Also (y2m−1·(2j+1))
∞
j=0 has density 1

2m
in (yn) so am

is a statistical limit point (and cluster point) of (yn). Also it is clear that every a ∈ M
is a statistical cluster point of (yn). Likewise for every a ∈ R \M , there is a sufficiently
small neighborhood around it that is disjoint from (yn) (since M is closed), so the set M
is precisely the set of statistical cluster points of (yn). �

3.2. Corollary. If x = (xn) is bounded and M ⊂ L, M closed and nonempty, where
L is the limit point set of (xn), then there exists a regular summability method A such
that M is the set of statistical cluster points of (Ax).

Proof. Suppose that (xnk ) is the subsequence of (xn) with M as the set of its statistical
cluster points from Theorem 3.1. If A = (akm) has entries aknk = 1 for all k and akm = 0
otherwise, then (Ax) = (xnk ) and the corollary follows. �

Next, we show the analogous result for stretchings of sequences.

3.3. Theorem. Suppose x = (xn) is a bounded sequence and L is the set of limit points
of x. If M ⊆ L, M is closed and nonempty, there exists a stretching of x, y such that M
is the set of statistical cluster points of y.

Proof. Suppose that (xnk ) is the subsequence of (xn) with M as the set of its statistical
cluster points constructed in the proof of Theorem 3.1. We construct the following
stretching of the sequence (xn):

x1, x2, x3, . . . , xn1−1 remain as before,
xn1 , xn1 , xn1 , . . . , xn1 , . . . will be repeated 2n2 times, followed by
xn1+1, xn1+2, xn1+3, . . . , xn2−1 ,
xn2 , xn2 , xn2 , . . . , xn2 , . . . will be repeated 4n3 times, followed by
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xn2+1, xn2+2, xn2+3, . . . , xn3−1

. . .
xnk−1 , xnk−1 , xnk−1 , . . . , xnk−1 , . . . will be repeated 2k−1 · nk times, followed by
xnk−1+1, xnk−1+2, xnk−1+3, . . . , xnk−1 ,
xnk , xnk , xnk , . . . , xnk , . . . will be repeated 2k · nk+1 times, ,
. . .

It is easy to check that the part of the new sequence that was not stretched (the
odd numbered rows above) is thin (has density 0). Also since 2 · n2 < 4 · n3 < . . . <
2k−1 · nk < 2k · nk+1 < . . . we see that M is still the set of all statistical cluster points of
the stretched part of the new sequence (even rows) and consequently of the whole new
sequence (stretching).

�

Now, as mentioned in the introduction, we consider the two-dimensional analogue of
our corollary. First we mention that we say l is a limit point of (xn,k) if there exist
nj →∞ and kj →∞ such that limj→∞ xnj ,kj = l and we notice that L the set of limit
points of (xn,k) is always closed.

3.4. Theorem. If x = (xn,k) is a bounded double sequence, andM is a closed nonempty
subset of L, the set of limit points of x, then there exists a four dimensional bounded
regular matrix transformation A of double sequences such that the set of limit points of
Ax is exactly M .

Proof. Without loss of generality, assume that x is contained in the interval [0, 1]. We
define

I1 = [0, 1
2
], I2 = [ 1

2
, 1];

I3 = [0, 1
4
], I4 = [ 1

4
, 1
2
], I5 = [ 1

2
, 3
4
], I6 = [ 3

4
, 1];

I7 = [0, 1
8
], I8 = [ 1

8
, 1
4
], etc.

and so on. . . .
Let (si) be the sequence of integers satisfying Isi

⋂
M 6= ∅. For each i, pick a yi ∈

Isi
⋂
M . Since yi ∈M ⊆ L, for each i, there exists ui →∞, vi →∞, such that

|yi − xui,vi | <
1

i
.

Now we define the required matrix A = (am,n,u,v). For any m,n, if m + n = i (i =
2, 3, . . .), let am,n,ui,vi = 1 for (i = 2, 3, . . .), and am,n,u,v = 0 otherwise. It is easy to see
that A satisfies the conditions in Theorem 2.7 and that the set of limit points of Ax is
exactly M . �
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1. Introduction

Probabilistic limit spaces go back to the work of Florescu [3] and a formulation by

means of filter convergence was given by Richardson and Kent [15]. These spaces are

extensions of probabilistic metric spaces and probabilistic topological spaces as studied

by Menger [12], Schweizer and Sklar [16] and Frank [4]. The category of probabilistic

limit spaces is a Cartesian closed, extensional and topological category in the sense of

[1]. Triangular norms (t-norms for short) were already used in [16] to model a triangular

inequality in probabilistic metric spaces and it therefore seems appropriate to include

t-norms in the generalizations of such spaces. This was, consequently, done by Nusser

[14] who studied various categories of probabilistic spaces under t-norms.

Ultra-approach limit spaces were introduced by Lowen and Lowen [8] under the name

convergence approach spaces. The category of these spaces is a Cartesian closed, ex-

tensional and topological category and forms a common framework that encompasses

metric spaces and classical convergence spaces. The category of ultra-approach limit

spaces contains the category of approach spaces [9, 10] (which form a common frame-

work for topological, metric and uniform spaces) as a reflective subcategory.

In order to study the relationship between probabilistic limit spaces and ultra-approach

limit spaces, Brock and Kent [2] introduced the category of limit tower spaces. They

could show that the category of probabilistic limit spaces (under the minimum t-norm)

is isomorphic to the category of ultra-approach limit spaces.

In this paper, we are extending the results of Brock and Kent [2] to probabilistic limit

spaces under a t-norm. In order to do so, we generalize the definition of a limit tower

space and introduce a certain subclass of these spaces. It turns out that for certain

classes of t-norms, all probabilistic limit spaces under these t-norms are isomorphic.

Similar results can be shown for probabilistic Cauchy spaces under a t-norm and for

probabilistic uniform limit spaces under a t-norm.

We are finally going to introduce the basic concepts that we need later and fix the

notation. A t-norm ∗ : [0, 1] × [0, 1] −→ [0, 1] is a binary operation on [0, 1] which is

associative, commutative, non-decreasing in each argument and which has 1 as the unit.

A t-norm is called continuous if it is continuous as a mapping from [0, 1] × [0, 1] −→

[0, 1]. A special class of t-norms is given by continuous Archimedean t-norms. These

are determined by continuous, strictly decreasing additive generators S : [0, 1] −→ [0,∞]

with S(1) = 0 such that

α ∗ β = S(−1)(S(α) + S(β))
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with the pseudo-inverse S(−1)(u) =
∨
{x ∈ [0, 1] : S(x) > u} =

 v if S(v) = u

0 if u > S(0)
.

Note that
∨
∅ =

∧
[0, 1] = 0 here.

We further note that the pseudo-inverse S(−1) : [0,∞] −→ [0, 1] is continuous, surjec-

tive and strictly decreasing on [0, S(0)] and that S(S(−1)(u)) = u if u ≤ S(0) and that

S(−1)(S(u)) = u for all u ∈ [0, 1]. Continuous Archimedean t-norms can be separated

into two classes.

• S(0) = ∞. These are the strict t-norms. In this case S(−1) = S−1. A typical

example is the product t-norm α∗β = αβ with additive generator S(x) = − ln(x)

(and S(0) =∞).

• S(0) < ∞. These are the nilpotent t-norms. Noting that for an additive gener-

ator S for a continuous Archimedean t-norm and for all a > 0, S(x) = aS(x)

defines an additive generator for the same t-norm, we can always assume for a

nilpotent t-norm that S(0) = 1. A typical example for a nilpotent t-norm is the

Lukasiewicz t-norm α∗β = (α+β−1)∨0 with additive generator S(x) = 1−x.

An example of a non-Archimediean t-norm is the minimum t-norm α ∗ β = α ∧ β. For

further results on t-norms we refer to Schweizer and Sklar [16] and to [6].

We finally fix some notation. For a set X, we denote P (X) its power set. We denote

the set of all filters F,G,H, ... on the set X by F(X). We order this set by set inclusion

and we denote for x ∈ X the point filter by [x] = {F ⊆ X : x ∈ F}. For a subset A

of an ordered set X we write, in case of existence,
∨
A for its supremum and

∧
A for its

infimum. If A = {α, β}, then we write α ∧ β =
∧
A and α ∨ β =

∨
A. For notions from

category theory we refer to [1].

2. Probabilistic limit spaces, limit tower spaces and approach con-

vergence spaces

A probabilistic limit space under a t-norm ∗ [14] is a pair (X, q) of a set X and a non-

empty family of mappings q = (qλ : F(X) −→ P (X))λ∈[0,1] that satisfies the following

axioms.

(PL1) x ∈ qα([x]) for all α ∈ [0, 1], x ∈ X;

(PL2) qα(F) ⊆ qα(G), whenever F ≤ G;

(PL3) qβ(F) ⊆ qα(F) whenever α ≤ β;

(PL4) q0(F) = X;

(PL5) x ∈ qα∗β(F ∧G) whenever x ∈ qα(F) and x ∈ qβ(G);

(PLLC) qα(F) =
⋂
β<α qβ(F); for all α, β ∈ [0, 1],F,G ∈ F(X).
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The condition (PLLC) is called left-continuity. It is not required in the original def-

inition by Nusser [14], however we will need it later. A mapping f : X −→ X ′ between

the probabilistic limit spaces under the t-norm ∗, (X, q), (X ′, q′), is continuous if for all

α ∈ [0, 1] and all F ∈ F(X) we have f(qα(F)) ⊆ q′α(f(F)). The category of all probabilistic

limit spaces under the t-norm ∗ with the continuous mappings as morphisms is denoted

by PLIM∗. It is shown in [14] that PLIM∗ is a topological and extensional construct

and for ∗ = ∧, PLIM∧ is Cartesian closed.

2.1. Lemma. Let (X, q) be a probabilistic limit space under the minimum t-norm ∧.

Then (PL5) is equivalent to the axiom

(uPL5) x ∈ qα(F ∧G) whenever x ∈ qα(F) and x ∈ qα(G).

Proof. If (PL5) is true, then we simply choose α = β. If (uPL5) is true, then for

x ∈ qα(F) ∩ qβ(G) we have, because α ∧ β ≤ α, β and (PL3) that x ∈ qα∧β(F) ∩ qα∧β(G)

and hence, by (uPL5), also x ∈ qα∧β(F ∧G). �

Therefore, probabilistic limit spaces under the minimum t-norm ∧ are (left-continuous)

componentwise probabilistic limit spaces in the definition of [14].

A limit tower space is a pair (X, p) of a set X and a non-empty family of mappings

p = (pε : F(X) −→ P (X))ε∈[0,∞] that satisfies the following axioms.

(LT1) x ∈ pε([x]) for all ε ∈ [0,∞], x ∈ X;

(LT2) pε(F) ⊆ pε(G), whenever F ≤ G;

(LT3) pδ(F) ⊆ pε(F) whenever δ ≤ ε;

(LT4) p∞(F) = X;

(LT5) x ∈ pε+δ(F ∧G) whenever x ∈ pε(F) and x ∈ pδ(G);

(LTLC) pε(F) =
⋂
ε<δ pδ(F), for all ε, δ ∈ [0,∞],F,G ∈ F(X).

The condition (LTLC) is again called left-continuity. A mapping f : X −→ X ′

between the limit tower spaces (X, p), (X ′, p′) is continuous if for all ε ∈ [0,∞] and all

F ∈ F(X) we have f(pε(F)) ⊆ p′ε(f(F)). The category of all limit tower spaces with the

continuous mappings as morphisms is denoted by LTS.

If we replace the axiom (LT5) by the axiom

(uLT5) x ∈ pε∨δ(F ∧G) whenever x ∈ pε(F) and x ∈ pδ(G);

then we speak of a ultra-limit tower space. The category of ultra-limit tower spaces with

continuous mappings as morphisms is denoted by uLTS.

2.2. Lemma. Let (X, p) be an ultra-limit tower space. Then (uLT5) is equivalent to the

axiom

(uLT5’) x ∈ pε(F ∧G) whenever x ∈ pε(F) and x ∈ pε(G).

Proof. Similar to the proof of Lemma 2.1. �
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The preceding Lemma shows that ultra-limit tower spaces are the same as limit tower

spaces as originally introduced and studied in [2]. We prefer to rename them in the light

of the subsequent sections.

An approach limit space [11] is a pair (X,λ) of a set X and a mapping λ : F(X) −→

[0,∞]X that satisfies the following axioms.

(AL1) λ([x])(x) = 0 for all x ∈ X;

(AL2) λ(G)(x) ≤ λ(F)(x) whenever F ≤ G;

(AL3) λ(F ∧G)(x) ≤ λ(F)(x) + λ(G)(x).

The value λ(F)(x) has the interpretation as the distance that x is away from being a

limit point of F [10]. A mapping f : X −→ X ′ between two approach limit spaces (X,λ),

(X ′, λ′) is called a contraction if for all F ∈ F(X) and all x ∈ X we have λ′(f(F))(f(x)) ≤

λ(F)(x)

If we replace the axiom (AC3) by the stronger axiom

(uAL3) λ(F ∧G)(x) ≤ λ(F)(x) ∨ λ(G)(x)

then we call the pair (X,λ) an ultra-approach limit space. Note that these spaces were

originally called convergence approach spaces and introduced and studied by Lowen and

Lowen [8]. What we call here an approach limit space is called weak convergence approach

space in [11]. Again we prefer to change the names in order to reach consistency with

other notations. The category of approach limit spaces with contractions as morphisms

is denoted by ALS, the subcategory of ultra-approach limit spaces is denoted by uALS.

The category uALS is topological, extensional and Cartesian closed [8] and whereas ALS

is topological and contains uALS as a bireflective subcategory [11].

3. Isomorphisms between the categories ALS and LTS

The following isomorphism functors between the categories of ultra-approach limit

spaces and ultra-limit tower spaces were introduced in [2]. We extend their definition to

the categories of approach limit spaces and limit tower spaces.

For (X,λ) ∈ |uALS| we define ηλ = ((ηλ)ε)ε∈[0,∞] by

x ∈ (ηλ)ε(F) ⇐⇒ λ(F)(x) ≤ ε.

It is shown in [2] that η : uALS −→ uLTS, (X,λ) 7−→ (X, ηλ), f 7−→ f is a functor.

For (X, p) ∈ |uLTS| we define ρp : F(X) −→ [0,∞]X by

(ρp)(F)(x) =
∧
{ε ∈ [0,∞] : x ∈ pε(F)}.

It is shown in [2] that ρ : uLTS −→ uALS, (X, p) 7−→ (X, ρp), f 7−→ f is a functor and

that η ◦ ρ = iduLTS and ρ ◦ η = iduACP . Hence both functors are isomorphism functors

and the categories uALS and uLTS are isomorphic. We will show with the next two
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lemmas that both functors can be extended to the categories ALS and LTS. To this end,

we simply use for (X,λ) ∈ |ALS|, resp. for (X, p) ∈ |LTS| the same definitions of ηλ and

ρp, i.e. we extend the domains of the functors η and ρ to ALS and LTS, respectively. We

will show that the co-domains then are again the categories LTS and ALS, respectively.

3.1. Lemma. Let (X,λ) ∈ |ALS|. Then (X, ηλ) satisfies the axiom (LT5).

Proof. Let x ∈ (ηλ)ε(F) and x ∈ (ηλ)δ(G). Then λ(F)(x) ≤ ε and λ(G)(x) ≤ δ. By

(AC3) then λ(F ∧G)(x) ≤ ε+ δ, i.e. x ∈ (ηλ)ε+δ(F ∧G). �

3.2. Lemma. Let (X, p) ∈ |LTS|. Then (X, ρp) satisfies the axiom (AC3).

Proof. Let ρp(F)(x) = ε and ρp(G)(x) = δ. For ε′ > ε and δ′ > δ then x ∈ pε′(F) and

x ∈ pδ′(G). By (LT5) then x ∈ pε′+δ′(F∧G) and hence ρp(F∧G)(x) ≤ ε′ + δ′. As ε′ > ε

and δ′ > δ are arbitrary we conclude ρp(F ∧G)(x) ≤ ε+ δ = ρp(F)(x) + ρp(G)(x). �

3.3. Theorem. The categories ALS and LTS are isomorphic.

4. The case of strict t-norms

Let now ∗ be a strict t-norm with additive generator S : [0, 1] −→ [0,∞]. Brock

and Kent [2] have defined the following isomorphism functors between the categories

PLIM∧ and uLTS. For an ultra-limit tower space (X, p) we define (ΦSp)α = pS(α).

Then ΦS : uLTS −→ PLIM∧, (X, p) 7−→ (X,ΦSp), f 7−→ f is a functor. For a levelwise

probabilistic limit space (X, q) we define (ΨSq)ε = qS−1(ε). Then ΨS : PLIM∧ −→

uLTS, (X, q) 7−→ (X,ΨSq), f 7−→ f is a functor and ΦS ◦ΨS = idPLIM∧ and ΨS ◦ΦS =

iduLTS . Hence both functors are isomorphism functors and PLIM∧ and uLTS are

isomorphic. We will show with the next two lemmas that these functors can be extended

to the categories PLIM∗ and LTS, provided that ∗ is the strict t-norm generated by S.

4.1. Lemma. Let the strict t-norm ∗ have the additive generator S and let (X, q) ∈

|PLIM∗|. Then (X,ΨSq) satisfies the axiom (LT5).

Proof. Let x ∈ (ΨSq)ε(F) and x ∈ (ΨSq)δ(G). Then x ∈ qS−1(ε)(F) and x ∈ qS−1(δ)(G)

and by (PL5) then x ∈ qS−1(ε)∗S−1(δ)(F∧G). By the definition of the t-norm ∗ it is easily

verified that S−1(ε) ∗ S−1(δ) = S−1(ε+ δ) and hence x ∈ qS−1(ε+δ)(F∧G), which means

x ∈ (ΨSq)ε+δ(F ∧G). �

4.2. Lemma. Let the strict t-norm ∗ have the additive generator S and let (X, p) ∈

|LTS|. Then (X,ΦSp) satisfies the axiom (PL5).
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Proof. Let x ∈ (ΦSp)α(F) and x ∈ (ΦSp)β(G). Then x ∈ pS(α)(F) and x ∈ pS(β)(G)

and hence by (LT5) x ∈ pS(α)+S(β)(F ∧ G). By definition of the t-norm ∗ we see that

S(α) + S(β) = S(α ∗ β) and hence x ∈ pS(α∗β)(F ∧ G). But this means that x ∈

(ΦSp)α∗β(F ∧G). �

4.3. Corollary. For a strict t-norm ∗, the categories PLIM∗ and LTS are isomorphic.

We conclude the following main result of this section.

4.4. Theorem. For strict t-norms, all categories PLIM∗ are isomorphic.

5. The case of nilpotent t-norms

We are now showing similar results for the class of nilpotent t-norms. To this end, we

first introduce a subcategory of LTS.

For ω ∈ (0,∞] we call (X, p) ∈ |LTS| an ω-limit tower space if the following strength-

ening of (LT4) is valid:

(LT4ω) pε(F) = X whenever ω ≤ ε.

We see that a limit tower space is the same as an ∞-limit tower space. The subcategory

of LTS with objects the ω-limit tower spaces is denoted by LTSω. It is not difficult to

show that LTSω is a bireflective subcategory of LTS.

We consider now a nilpotent t-norm with additive generator S. We will show that

PLIM∗ and LTSS(0) are isomorphic. To this end, we generalize the two functors of the

previous section. For (X, q) ∈ |PLIM∗| we define (Ψq)ε = qS(−1)(ε).

5.1. Lemma. For (X, q) ∈ |PLIM∗| we have that (X,Ψq) ∈ |LTSS(0)|.

Proof. (LT1) and (LT2) are easy. For (LT3) we may assume ε ≤ δ < S(0). Then

S(−1)(ε) ≥ S(−1)(δ) and hence (Ψq)ε = qS(−1)(ε) ⊆ qS(−1)(δ) = (Ψq)δ.

For (LT4S(0)), let ε ≥ S(0). Then S(−1)(ε) = 0 and hence (Ψq)ε(F) = q0(F) = X.

For (LT5), let x ∈ (Ψq)ε(F) ∩ (Ψq)δ(G). If ε+ δ ≥ S(0), then there is nothing to prove.

If ε + δ < S(0), then both ε, δ < 0 and hence S(−1)(ε) ∗ S(−1)(δ) = S(−1)(ε + δ) and we

conclude

(Ψq)ε(F) ∩ (Ψq)δ(G) = qS(−1)(ε)(F) ∩ qS(−1)(δ)(G) ⊆ qS(−1)(ε)∗S(−1)(δ)(F ∧G)

= qS(−1)(ε+δ)(F ∧G) = (Ψq)ε+δ(F ∧G).

We finally show (LTLC). If ε ≥ S(0) then for δ > ε we have (Ψq)δ(F) = X and hence

(Ψq)ε(F) = X =
⋂
δ>ε(Ψq)δ(F). If ε < S(0) then by continuity and surjectivity of S(−1)
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and because S(−1) is strictly decreasing on [0, S(0)], for β < S(−1)(ε) there is a unique

δ ∈ (ε, S(0)] such that β = S(−1)(δ). Hence

(Ψq)ε(F) = qS(−1)(ε)(F) =
⋂

β<S(−1)(ε)

qβ(F) =
⋂

S(−1)(δ)<S(−1)(ε)

qS(−1)(δ)(F).

Now for ε < δ ≤ S(0), S(−1)(δ) < S(−1)(ε) is equivalent to ε < δ and hence we obtain

(Ψq)ε(F) =
⋂
ε<δ

qS(−1)(δ)(F) =
⋂
ε<δ

(Ψq)δ(F).

�

It follows easily from this that Ψ : PLIM∗ −→ LTSS(0), (X, q) 7−→ (X,Ψq), f 7−→ f

is a functor.

For (X, p) ∈ |LTSS(0)| we define now (Φp)α = pS(α).

5.2. Lemma. For (X, p) ∈ |LTSS(0)| we have that (X,Φp) ∈ |PLIM∗|.

Proof. (PL1) and (PL2) are again easy. (PL3) follows because S is order-reversing. For

(PL4) we note that (Φp)0(F) = pS(0)(F) = X. For (PL5), we have

(Φp)α(F) ∩ (Φp)β(G) = pS(α)(F) ∩ pS(β)(G) ⊆ PS(α)+S(β)(F ∧G).

By definition of the t-norm we have S(α ∗ β) = S(S(−1)(S(α) + S(β))). We distinguish

two cases. If S(α) + S(β) ≤ S(0), then S(α ∗ β) = S(α) + S(β). Then

(Φp)α(F) ∩ (Φp)β(G) ⊆ pS(α∗β)(F ∧G) = (Φp)α∗β(F ∧G).

If S(α) + S(β) > S(0), then S(α ∗ β) = S(0) and hence

(Φp)α(F) ∩ (Φp)β(G) ⊆ pS(α)+S(β)(F ∧G) = X

= pS(0)(F ∧G) = pS(α∗β)(F ∧G) = (Φp)α∗β(F ∧G).

The axiom (PLLC) finally follows with similar arguments as the proof of (LTLC) in the

previous Lemma. �

It follows easily from this that Φ : LTSS(0) −→ PLIM∗, (X, p) 7−→ (X,Φp), f 7−→ f

is a functor. Now we note that (Φ ◦ Ψq)α = qS(−1)(S(α)) = qα. If ε ≤ S(0), then

S(S(−1)(ε)) = ε and hence (Ψ ◦ Φp)ε = pS(S(−1)(ε)) = pε. If ε > S(0) then trivially

(Ψ ◦ p)ε = X = pε. Hence both functors, Ψ and Φ are isomorphism functors and we can

state the following result.

5.3. Lemma. PLIM∗ and LTSS(0) are isomorphic categories.

As noted above, for a nilpotent t-norm, we can always assume that S(0) = 1 for an

additive generator. Hence we obtain the following result.
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5.4. Theorem. For nilpotent t-norms, all categories PLIM∗ are isomorphic.

6. Probabilistic Cauchy spaces, Cauchy tower spaces and approach

Cauchy spaces

A probabilistic Cauchy space under the t-norm ∗ [14] is a pair (X,C) of a set X and a

non-empty family of subsets of F(X), C = (Cα)α∈[0,1], that satisfies the following axioms.

(PC1) [x] ∈ Cα for all x ∈ X and all α ∈ [0, 1];

(PC2) G ∈ Cα whenever F ∈ Cα and F ≤ G;

(PC3) Cβ ⊆ Cα whenever α ≤ β;

(PC4) C0 = F(X);

(PC5) F ∧G ∈ Cα∗β whenever F ∈ Cα, G ∈ Cβ and F ∨G exists;

(PCLC) Cα =
⋂
β<α Cβ .

A mapping f : X −→ X ′ between two probabilistic Cauchy spaces under the t-norm

∗, (X,C), (X,C
′
), is called Cauchy-continuous if for all α ∈ [0, 1] we have f(Cα) ⊆ C′α.

The category of probabilistic Cauchy spaces under the t-norm ∗ and Cauchy continuous

mappings is denoted by PChy∗.

6.1. Lemma. Let (X,C) be a probabilistic Cauchy space under the t-norm ∧. Then

(PC5) is equivalent to the axiom

(uPC5) F ∧G ∈ Cα whenever F ∈ Cα and G ∈ Cα and F ∨G exists.

Proof. If (PC5) is true, then we simply choose α = β. If (uPC5) is true, then for F ∈ Cα
and G ∈ Cβ we conclude with (PC3) that F ∈ Cα∧β and G ∈ Cα∧β . Therefore, if F ∨ G

exists, by (uPC5) then F ∧G ∈ Cα∧β . �

Therefore, probabilistic Cauchy spaces under the t-norm ∧ are (left-continuous) com-

ponentwise probabilistic Cauchy spaces in the definition of [14]. The category PChy∗ is

topological but it is not hereditary and quotients are not productive, not even for ∗ = ∧.

However, PChy∧ is Cartesian closed, see [14].

A Cauchy tower space is a pair (X,D) of a set X and a non-empty family of subsets

of F(X), D = (Dε)ε∈[0,∞], that satisfies the following axioms.

(CT1) [x] ∈ Dε for all x ∈ X and all ε ∈ [0,∞];

(CT2) G ∈ Dε whenever F ∈ Dε and F ≤ G;

(CT3) Dε ⊆ Dδ whenever ε ≤ δ;

(CT4) D∞ = F(X);

(CT5) F ∧G ∈ Dε+δ whenever F ∈ Dε, G ∈ Dδ and F ∨G exists;

(CTLC) Dε =
⋂
ε<δ Cδ.
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A mapping f : X −→ X ′ between two Cauchy tower spaces, (X,D), (X,D
′
), is called

Cauchy-continuous if for all ε ∈ [0,∞] we have f(Dε) ⊆ D′ε. The category of Cauchy

tower spaces and Cauchy continuous mappings is denoted by ChyTS.

If we replace the axiom (CT5) by the axiom

(uCT5) F ∧G ∈ Dε∨δ whenever F ∈ Dε, G ∈ Dδ and F ∨G exists;

then we speak of a ultra-Cauchy tower space. The category of ultra-Cauchy tower spaces

with continuous mappings as morphisms is denoted by uChyTS.

6.2. Lemma. Let (X,D) be an ultra-Cauchy tower space. Then (uCT5) is equivalent to

the axiom

(uCT5’) F ∧G ∈ Dε whenever F ∈ Dε and G ∈ Dε and F ∨G exists.

Proof. Similar to the proof of Lemma 6.1. �

We note that Cauchy tower spaces are defined in a different way in [13]. We define for

0 < ω ≤ ∞ an ω-Cauchy tower space as a Cauchy tower space that satisfies the following

strengthening of (CT4)

(CT4ω) Dε = F(X) whenever ω ≤ ε.

We denote the subcategory of CTS with objects the ω-Cauchy tower spaces by CTSω.

It is not difficult to prove that CTSω is bireflective in CTS.

An approach Cauchy space [11] is a pair (X, γ) of a set X and a mapping γ : F(X) −→

[0,∞] that satisfies the following axioms.

(AChy1) γ([x]) = 0 for all x ∈ X;

(AChy2) γ(G) ≤ γ(F) whenever F ≤ G;

(AChy3) γ(F ∧G) ≤ γ(F) + γ(G) whenever F ∨G exists.

A mapping f : X −→ X ′ between two approach Cauchy spaces (X, γ), (X ′, γ′) is

called a Cauchy contraction if for all F ∈ F(X) we have γ′(f(F)) ≤ γ(F)

If we replace the axiom (AChy3) by the stronger axiom

(uAChy3) γ(F ∧G) ≤ γ(F) ∨ γ(G) whenever F ∨G exists;

then we call the pair (X, γ) an ultra-approach Cauchy space.

The category of approach Cauchy spaces with Cauchy contractions as morphisms is

denoted by AChy, the subcategory of ultra-approach convergence spaces is denoted by

uAChy. The category uAChy is a bireflective subcategory of AChy. AChy is topological

and uAChy is also Cartesian closed [11].

We can define isomorphism functors between the categories in a similar way as in the

previous section. For (X, γ) ∈ |AChy| we define the Cauchy tower σγ by

F ∈ (σγ)ε ⇐⇒ γ(F) ≤ ε.
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For (X,D) ∈ |CTS| we define the mapping τD : F(X) −→ [0,∞] by

τD(F) =
∧
{ε ∈ [0,∞] : F ∈ Dε}.

The following result is not difficult to prove.

6.3. Lemma. (1) σ : AChy −→ CTS, (X, γ) 7−→ (X,σγ), f 7−→ f is a functor.

(2) τ : CTS −→ AChy, (X,D) 7−→ (X, τD), f 7−→ f is a functor.

(3) σ ◦ τ = idCTS and τ ◦ σ = idAChy.

(4) σ(uAChy) = uCTS and τ(uCTS) = uAChy.

6.4. Corollary. The categories AChy and CTS are isomorphic and the categories

uAChy and uCTS are isomorphic.

We can also define isomorphism functors between the categories PChy∗ and CTSS(0)
provided that the t-norm ∗ is continuous Archimedean with additive generator S :

[0, 1] −→ [0,∞]. For (X,C) ∈ |PChy∗| we define ΓSC by

F ∈ (ΓSC)ε ⇐⇒ F ∈ CS(−1)(ε),

and for (X,D) ∈ |CTSS(0)| we define ∆SD by

F ∈ (∆SD)α ⇐⇒ F ∈ DS(α).

The following result is then not difficult to prove.

6.5. Lemma. (1) ΓS : PChy∗ −→ CTSS(0), (X,C) 7−→ (X,ΓSC), f 7−→ f is a

functor.

(2) ∆S : CTSS(0) −→ PChy∗, (X,D) 7−→ (X,∆SD), f 7−→ f is a functor.

(3) ΓS ◦∆S = idCTSS(0)
and ∆S ◦ ΓS = idPChy∗ .

(4) ΓS(PChy∧) = uCTS and ∆S(uCTS) = PChy∧.

Noting that CTS∞ = CTS we can state the following results.

6.6. Corollary. For a strict t-norm ∗, the categories PChy∗ and CTS are isomorphic.

For a nilpotent t-norm ∗, the categories PChy∗ and CTSS(0) are isomorphic. Further-

more, the categories PChy∧ and uCTS are isomorphic.

6.7. Theorem. For strict t-norms, all categories PChy∗ are isomorphic. For nilpotent

t-norms all categories PChy∗ are isomorphic.
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7. Probabilistic uniform limit spaces, uniform limit tower spaces

and approach uniform limit spaces

A probabilistic uniform limit space under the t-norm ∗ [14] is a pair (X,L) of a set X

and a non-void family of subsets of F(X×X), L = (Lα)α∈[0,1] that satisfies the following

axioms.

(PUL1) [x]× [x] ∈ Lα for all x ∈ X and all α ∈ [0, 1];

(PUL2) G ∈ Lα whenever F ≤ G and F ∈ Lα;

(PUL3) Lα ⊆ Lβ whenever β ≤ α;

(PUL4) L0 = F(X ×X);

(PUL5) F ∧G ∈ Lα whenever F,G ∈ Lα;

(PUL6) F−1 ∈ Lα whenever F ∈ Lα;

(PUL7) F ◦G ∈ Lα∗β whenever F ∈ Lα, G ∈ Lβ and F ◦G exists;

(PULLC) Lα =
⋂
β<α Lβ .

A mapping f : X −→ X ′ between two probabilistic uniform limit spaces (X,L) and

(X ′, L
′
) is called uniformly continuous if (f×f)(Lα) ⊆ L′α for all α ∈ [0, 1]. The category

of all probabilistic uniform limit spaces under the t-norm ∗ with uniformly continuous

mappings as morphisms is denoted by PULIM∗.

7.1. Lemma. Let (X,L) be a probabilistic uniform limit space under the t-norm ∧. Then

(PUL7) is equivalent to the axiom

(uPUL7) F ◦G ∈ Lα whenever F ∈ Lα and G ∈ Lα and F ◦G exists.

Proof. Similar to the proof of Lemma 4.1. �

Therefore, probabilistic uniform limit spaces under the t-norm ∧ are (left-continuous)

componentwise probabilistic uniform limit spaces in the definition of [14]. The category

PULIM∗ is topological and not hereditary and products of quotients are quotients.

PULIM∧ is Cartesian closed [14].

A uniform limit tower space [7] is a pair (X,M) of a set X and a non-void family of

subsets of F(X ×X), M = (Mε)ε∈[0,∞] that satisfies the following axioms.

(ULT1) [x]× [x] ∈Mε for all x ∈ X and all ε ∈ [0,∞];

(ULT2) G ∈Mε whenever F ≤ G and F ∈Mε;

(ULT3) Mε ⊆Mδ whenever ε ≤ δ;

(ULT4) M∞ = F(X ×X);

(ULT5) F ∧G ∈ε whenever F,G ∈Mε;

(ULT6) F−1 ∈Mε whenever F ∈Mε;

(ULT7) F ◦G ∈Mε+δ whenever F ∈Mε, G ∈Mδ and F ◦G exists;

(ULTLC) Mε =
⋂
ε<δMδ.
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A mapping f : X −→ X ′ between two uniform limit tower spaces (X,M) and (X ′,M
′
)

is called uniformly continuous if (f × f)(Mε) ⊆M ′ε for all ε ∈ [0,∞]. The category of all

uniform limit tower spaces with uniformly continuous mappings as morphisms is denoted

by ULTS.

If we replace the axiom (ULT6) by the axiom

(uULT6) F ◦G ∈Mε∨δ whenever F ∈Mε, G ∈Mδ and F ◦G exists;

then we speak of a ultra-uniform limit tower space. The category of ultra-uniform limit

tower spaces with uniformly continuous mappings as morphisms is denoted by uULTS.

7.2. Lemma. Let (X,M) be an ultra-uniform limit tower space. Then (uULT6) is

equivalent to the axiom

(uULT6’) F ◦G ∈Mε whenever F ∈Mε and G ∈Mε and F ◦G exists.

Proof. Similar to the proof of Lemma 7.1. �

We again define, for 0 < ω ≤ ∞, an ω-uniform limit tower space (X,M) as a uniform

limit tower space that satisfies the following strengthening of the axiom (ULT4):

(ULT4ω) Mε = F(X ×X) whenever ω ≤ ε.

The subcategory of ULTS with objects the ω-uniform limit tower spaces is denoted by

ULTSω.

An approach uniform limit space [7] is a pair (X, η) of a set X and a mapping η :

F(X ×X) −→ [0,∞] that satisfies the following axioms.

(AULS1) η([x]× [x]) = 0 for all x ∈ X;

(AULS2) η(G) ≤ η(F) whenever F ≤ G;

(AULS3) η(F ∧G) ≤ η(F) ∨ η(G);

(AULS4) η(F−1) = η(F);

(AULS5) η(F ◦G) ≤ η(F) + η(G) whenever F ◦G exists.

A mapping f : X −→ X ′ between two approach uniform limit spaces (X, η), (X ′, η′)

is called a uniform contraction if for all F ∈ F(X×) we have η′((f × f)(F)) ≤ η(F)

If we replace the axiom (AULS5) by the stronger axiom

(uAULS5) η(F ◦G) ≤ η(F) ∨ η(G) whenever F ◦G exists;

then we call the pair (X, η) an ultra-approach uniform limit space.

The category of approach uniform limit spaces with uniform contractions as morphisms

is denoted by AULS, the subcategory of ultra-approach convergence spaces is denoted

by uAULS. It is shown in [7] that uAULS is a bireflective subcategory of AULS and

that it is a topological construct and is Cartesian closed. It is mentioned that AULS is

a topological construct.
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We can again define isomorphism functors between these categories. Lee and Windels

[7] mention the following. For (X, η) ∈ |AULS| we define the uniform limit tower κη by

F ∈ (κη)ε ⇐⇒ η(F) ≤ ε.

For (X,M) ∈ |ULTS| we define the approach uniform limit χM : F(X ×X) −→ [0,∞]

by

χM(F) =
∧
{ε ∈ [0,∞] : F ∈Mε}.

This again gives rise to two isomorphism functors, κ : AULS −→ ULTS and χ :

ULTS −→ AULS and we obtain the following result.

7.3. Lemma. (1) κ : AULS −→ ULTS, (X, η) 7−→ (X,κη), f 7−→ f is a functor.

(2) χ : ULTS −→ AULS, (X,M) 7−→ (X,χM), f 7−→ f is a functor.

(3) κ ◦ χ = idULTS and χ ◦ κ = idAULS.

(4) κ(uAULS) = uULTS and χ(uULTS) = uAULS.

We obtain as a corollary the following theorem.

7.4. Theorem. The categories AULS and ULTS are isomorphic and the categories

uAULS and uULTS are isomorphic.

Now, once again let the continuous Archimedean t-norm ∗ have the additive generator

S. For (X,L) ∈ |PULIM∗| we define the S(0)-uniform limit tower ΩSL by

F ∈ (ΩSL)ε ⇐⇒ F ∈ LS(−1)(ε)

and for (XM) ∈ |ULTSS(0)| we define the probabilistic uniform limit structure ΛSM by

F ∈ (ΛSM)α ⇐⇒ F ∈MS(α).

This gives rise to two isomorphism functors and we can prove the following result.

7.5. Lemma. (1) ΩS : PULIM∗ −→ ULTSS(0), (X,L) 7−→ (X,ΩSL), f 7−→ f is a

functor.

(2) ΛS : ULTSS(0) −→ PULIM∗, (X,M) 7−→ (X,ΛSM), f 7−→ f is a functor.

(3) ΩS ◦ ΛS = idULTSS(0)
and ΛS ◦ ΩS = idPULIM∗ .

(4) ΩS(PULIM∧) = uULTS and ΛS(uULTS) = PULIM∧.

Noting again that ULTS∞ = ULTS we obtain the following results.

7.6. Corollary. For a strict t-norm ∗, the categories PULIM∗ and ULTS are isomor-

phic. For a nilpotent t-norm ∗, the categories PULIM∗ and ULTSS(0) are isomorphic.

Furthermore, the categories PULIM∧ and uULTS are isomorphic.
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7.7. Theorem. For strict t-norms, all categories PULIM∗ are isomorphic. For nilpo-

tent t-norms all categories PULIM∗ are isomorphic.

8. Conclusions

We showed in this paper, that for certain classes of t-norms, all categories of proba-

bilistic limit spaces under these t-norms are isomorphic. We could show this for the class

of strict t-norms and for the class of nilpotent t-norms. This essentially means that it

is sufficient to study “prototype spaces”, i.e. it would be sufficient to study probabilis-

tic limit spaces under the product t-norm (as a prototype for probabilistic limit spaces

under strict t-norms) or probabilistic limit spaces under the Lukasiewics t-norm (as a

prototype for probabilistic limit spaces under nilpotent t-norms). The proofs depend on

the existence of an additive generator. It would be interesting to know if there are other

classes of t-norms for which the categories of probabilistic limit spaces are isomorphic.

It shall be further remarked that we considered only left-continuous probabilistic limit

spaces. This restriction was used in order to accomodate approach limit spaces. The

isomorphism functors between the categories of limit tower spaces and of probabilistic

limit spaces, however, also work without imposing the left-continuity condition on the

spaces.
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On coefficient estimates for a certain class of
starlike functions
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Abstract

The purpose of this paper is to consider coefficient estimates in a class of
functions S∗(q) consisting of analytic functions f normalized by f(0) =
f ′(0)− 1 = 0 in the open unit disk U which satisfies the subordination
condition that

zf ′(z)/f(z) ≺ q(z), z ∈ U,
where q(z) =

√
1 + z2 + z.

Keywords: Analytic functions; Convex functions; Starlike functions; Subordi-
nation; Coefficient estimates; Hankel determinant.
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1. Introduction
Let H denote the class of analytic functions in the open unit disc U = {z : |z| < 1}

on the complex plane C. Also, let A denote the subclass of H comprising of functions f
normalized by f(0) = 0, f ′(0) = 1, and let S ⊂ A denote the class of functions which are
univalent in U. We say that an analytic function f is subordinate to an analytic function
g, and write f(z) ≺ g(z), if and only if there exists a function ω, analytic in U such that
ω(0) = 0, |ω(z)| < 1 for |z| < 1 and f(z) = g(ω(z)). In particular, if g is univalent in U,
then we have the following equivalence:

f(z) ≺ g(z) ⇐⇒ f(0) = g(0) and f(|z| < 1) ⊂ g(|z| < 1).
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Let a function f be analytic univalent in the unit disc U = {z : |z| < 1} on the complex
plane C with the normalization f(0) = 0, then f maps U onto a starlike domain with
respect to w0 = 0 if and only if

(1.1) Re

{
zf ′(z)

f(z)

}
> 0 (z ∈ U).

It is well known that if an analytic function f satisfies (1.1) and f(0) = 0, f ′(0) 6= 0,
then f is univalent and starlike in U.

A set E is said to be convex if and only if it is starlike with respect to each of its
points, that is if and only if the linear segment joining any two points of E lies entirely
in E. Let f be analytic and univalent in Ur = {z : |z| < r ≤ 1}. Then f maps Ur onto a
convex domain E if and only if

Re

{
1 +

zf ′′(z)

f ′(z)

}
> 0 (z ∈ Ur).

If r = 1, then the function f is said to be convex in U (or briefly convex). The set of all
functions f ∈ A that are starlike univalent in U will be denoted by S∗ and the set of all
functions f ∈ A that are convex univalent in U by K.

1. Definition. [8] Let S∗(q) denote the class of analytic functions f in the unit disc U
normalized by f(0) = f ′(0)− 1 = 0 and satisfying the condition that

(1.2)
zf ′(z)

f(z)
≺
√

1 + z2 + z =: q(z), z ∈ U,

where the branch of the square root is chosen to be q(0) = 1.

We now mention some geometrical facts of curves defined in the open unit disk. For in-
stance, the function w(z) =

√
1 + z maps U onto a set bounded by a Bernoulli lemniscate,

and a corresponding class of functions f ∈ A such that zf ′(z)/f(z) ≺
√
1 + z was consid-

ered in [10], while the class generated by the subordination that zf ′(z)/f(z) ≺
√
1 + cz

was considered in [1]. This way the known class of k-starlike functions was seen to be
connected with certain conic domains. For some recent results for k-starlike functions,
we refer to [11]. In recent papers [2, 3, 4, 5, 6],certain function classes were considered
and were defined by means of the subordination that zf ′(z)/f(z) ≺ q̂(z), where q̂(z) was
not univalent and this obviously made the consideration of certain geometric properties
for such classes of functions much more difficult. It may be noted from (1.2) of Definition
1 that the set q(U) lies in the right half-plane and it is not a starlike domain with respect
to the origin, see Fig. 1 (below).
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Fig. 1. The boundary of the set q(U).

2. Main result
We first note the following result:

2.1. Lemma. [8] S∗(q) ⊂ S∗.

Therefore, if f ∈ S∗(q) and

(2.1) f(z) = z +

∞∑
n=2

anz
n (z ∈ U),

then |an| ≤ n.
In this paper, we shall find estimations of first few coefficients of functions f of the

form (2.1) belonging to S∗(q) and also consider the estimations of the familiar functionals
like |a3 − λa22| and |a2a4 − a23|.

2.1. Theorem. Let the function f defined by (2.1) belong to the class S∗(q), then

(2.2) |a2| ≤ 1, |a3| ≤ 3/4, |a4| ≤ 1/2.

Proof. Since the function f defined by (2.1) belongs to the class S∗(q), therefore from
(1.2), we have

(2.3) zf ′(z)− ω(z)f(z) = f(z)
√
ω2(z) + 1,

where ω is such that ω(0) = 0 and |ω(z)| < 1 for |z| < 1.
Let us denote the function ω(z) by

(2.4) ω(z) =

∞∑
k=1

ckz
k.

Then, (2.3) and (2.4) readily give

(2.5)
√
ω2(z) + 1 = 1 +

1

2
c21z

2 + c1c2z
3 +

(
c1c3 +

1

2
c22 −

1

8
c21

)
z4 + · · ·

and

(2.6) f(z)
√
ω2(z) + 1 = z + a2z

2 +

(
1

2
c21 + a3

)
z3 +

(
c1c2 +

1

2
c21a2 + a4

)
z4 + · · · .
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Moreover,

(2.7)

zf ′(z)−ω(z)f(z) = z+(2a2−c1)z2+(3a3−c1a2−c2)z3+(4a4−c1a3−c2a2−c3)z4+· · · .
Equating now the second, third and fourth coefficients in (2.6) and (2.7), we have

(i) a2 = 2a2 − c1,
(ii) 1

2
c21 + a3 = 3a3 − c1a2 − c2,

(iii) c1c2 + 1
2
c21a2 + a4 = 4a4 − c1a3 − c2a2 − c3.

From (i), we get

(2.8) a2 = c1.

It is well known that the coefficients of the bounded function ω(z) satisfies the inequality
that |ck| ≤ 1, so from (2.8), we have the first inequality that |a2| ≤ 1. Now, from (ii),
we have

|2a3| =

∣∣∣∣12c21 + c1a2 + c2

∣∣∣∣
=

∣∣∣∣12c21 + c21 + c2

∣∣∣∣
=

∣∣∣∣c2 + 3

2
c21

∣∣∣∣ .(2.9)

Using the estimate (see [7]) that if ω(z) has the form (2.4), then

(2.10) |c2 − µc21| ≤ max {1, |µ|} , for all µ ∈ C,

and we obtain from (2.9) and (2.10) that

|2a3| ≤
3

2
,

which gives the second inequality that |a3| ≤ 3/4. Also, from (i)− (iii), we find that

|3a4| =

∣∣∣∣c1a3 + c2a2 + c3 + c1c2 +
1

2
c21a2

∣∣∣∣
=

∣∣∣∣c1(3

4
c21 +

1

2
c2

)
+ c2c1 + c3 + c1c2 +

1

2
c31

∣∣∣∣
=

∣∣∣∣54c31 + 5

2
c1c2 + c3

∣∣∣∣
=

∣∣∣∣54 (c31 + 2c1c2 + c3
)
− 1

4
c3

∣∣∣∣
≤

∣∣∣∣54 (c31 + 2c1c2 + c3
)∣∣∣∣+ ∣∣∣∣14c3

∣∣∣∣
≤

∣∣∣∣54 (c31 + 2c1c2 + c3
)∣∣∣∣+ 1

4
.(2.11)

Next, we establish some properties of ck involved in (2.4). It is known that the function
p(z) given by

(2.12)
1 + ω(z)

1− ω(z) = 1 + p1z + p2z
2 + · · · =: p(z)

defines a Caratheodory function with the property that Re{p(z)} > 0 in U and that
|pk| ≤ 2 (k = 1, 2, 3, . . .). Equating of the coefficients in (2.12) yields that

p2 = 2(c21 + c2)
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and

p3 = 2(c31 + 2c1c2 + c3).

Hence

(2.13) |c21 + c2| ≤ 1

and

(2.14) |c31 + 2c1c2 + c3| ≤ 1.

By applying (2.11) and (2.14), we find that

|3a4| ≤
∣∣∣∣54 (c31 + 2c1c2 + c3

)∣∣∣∣+ 1

4

≤ 5

4
+

1

4

=
3

2
,

which gives the third inequality that |a4| ≤ 1/2. �

2.2. Theorem. If the function defined by (2.1) belongs to the class S∗(q), then

(2.15) |a3 − λa22| ≤ max {1/2, |λ− 3/4|} (λ ∈ C).

Furthermore, (2.15) is sharp.

Proof. Applying the notations used in the proof of Theorem 2.1, we obtain from (2.8)
and (2.9) that

(2.16) |a3 − λa22| =
∣∣∣∣12c2 + 3

4
c21 − λc21

∣∣∣∣ = ∣∣∣∣12c2 −
(
λ− 3

4

)
c21

∣∣∣∣ .
In view of (2.10), we have then

|a3 − λa22| =

∣∣∣∣12c2 −
(
λ− 3

4

)
c21

∣∣∣∣
=

1

2

∣∣∣∣c2 − (4λ− 3

2

)
c21

∣∣∣∣
≤ 1

2
max

{
1,

∣∣∣∣4λ− 3

2

∣∣∣∣}
= max {1/2, |λ− 3/4|} .

If

(2.17)
zf ′1(z)

f1(z)
= q(z) =

√
1 + z2 + z, f1(z) = z +

∞∑
n=2

bnz
n,

then f1 ∈ S∗(q). Moreover, we have from (2.17) that

(2.18) zf ′1(z)− zf1(z) = f1(z)
√

1 + z2.

Hence,

z+(2b2−1)z2+(3b3−b2)z3+· · · = (z+b2z
2+b3z

3+· · · )(1+z2/2−z4/8+z6/16+· · · ).

Equating the coefficients of like powers of z, we obtain the following first few coefficients
of the series involved in (2.18):

b2 = 1, b3 = 3/4, b4 = 5/12.
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Upon integrating (2.17), we can express the function f1(z) by

f1(z) = z exp

∫ z

0

√
1 + t2 + t− 1

t
dt

=
2
√
1 + z2 − 2

z
exp

{
z − 1 +

√
1 + z2

}
= z + z2 +

3

4
z3 +

5

12
z4 +

2

9
z5 + · · · (z ∈ U).(2.19)

For the above function f1, we have∣∣b3 − λb22∣∣ = |λ− 3/4| .

Next, if a function f2 is such that

(2.20)
zf ′2(z)

f2(z)
= q(z2) =

√
1 + z4 + z2,

then f2 ∈ S∗(q) and

f2(z) = z exp

∫ z

0

√
1 + t4 + t2 − 1

t
dt

= z +
1

2
z3 + · · ·

= z +

∞∑
n=2

dnz
n (z ∈ U).(2.21)

Evidently, then for f2 given by (2.21), we have∣∣d3 − λd22∣∣ = |1/2|.
�

Conjecture. Let f ∈ S∗(q) and f(z) = z +
∑∞

n=2 anz
n. Then

(2.22) |an| ≤ |bn|, n = 2, 3, 4, . . . ,

where the coefficients bn are those given in (2.17).

From (2.19), we have

b2 = 1, b3 = 3/4, b4 = 5/12, b5 = 2/9, . . . ,

and from (2.22), we get |a3| ≤ 3/4, as is in Theorem 2.1. Also, for n = 4, the inequality
(2.22) gives |a4| ≤ 5/12 = 0.416 . . ., while Theorem 2.1 gives |a4| ≤ 5/10.

The second Hankel determinant for the function f(z) = z+ a2z
2 + a3z

3 + · · · is given
by a2a4−a23. For more details and applications of this determinant, we refer to the recent
paper [9]. We next find the second Hankel determinant estimation in the class S∗(q).

2.3. Theorem. If the function defined by (2.1) belongs to the class S∗(q), then

|a2a4 − a23| ≤ 39/48.

Proof. Applying the notations used in the proof of Theorem 2.1, we obtain the following
relations from (2.8), (2.9) and (2.11):

a2 = c1, a3 =
1

2

(
c2 +

3

2
c21

)
and

a4 =
1

3

(
5

4
c31 +

5

2
c1c2 + c3

)
,
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where ck are coefficients of a Schwarz function. Therefore, we have

a2a4 − a23 =
c1
3

(
5

4
c31 +

5

2
c1c2 + c3

)
− 1

4

(
c2 +

3

2
c21

)2

=
c1
3

(
c21 + 2c1c2 + c3

)
− 1

4

(
c2 + c21

)2 − 1

12
c21
(
c2 + c21

)
− 7

48
c41.

From (2.13) and (2.14), we obtain that

|a2a4 − a23|

=

∣∣∣∣c13 (c31 + 2c1c2 + c3
)
− 1

4

(
c2 + c21

)2 − 1

12
c21
(
c2 + c21

)
− 7

48
c41

∣∣∣∣
≤

∣∣∣c1
3

(
c31 + 2c1c2 + c3

)∣∣∣+ ∣∣∣∣14 (c2 + c21
)2∣∣∣∣+ ∣∣∣∣ 112c21 (c2 + c21

)∣∣∣∣+ ∣∣∣∣ 748c41
∣∣∣∣

≤ 1

3
+

1

4
+

1

12
+

7

48
= 39/48.

�

Remark. In view of (2.22), it may be observed that the value of the Hankel deter-
minant |b2b4 − b23| is 7/48 for the function f1 (defined above by (2.17)).

References
[1] M. K. Aouf, J. Dziok, J. Sokół, On a subclass of strongly starlike functions, Appl. Math.

Letters 24(2011) 27-32.
[2] J. Dziok, R. K. Raina, J. Sokół, On alpha-convex functions related to shell-like functions

connected with Fibonacci numbers, Appl. Math. Comput. 218(2011) 966-1002.
[3] J. Dziok, R. K. Raina, J. Sokół, Certain results for a class of convex functions related to

a shell-like curve connected with Fibonacci numbers, Comput. Math. Appl. 61(9)(2011)
2605-2613.

[4] J. Dziok, R. K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve
connected with Fibonacci numbers, Math. Comput. Modelling 57(2013) 1203-1211.

[5] J. Dziok, R. K. Raina, J. Sokół, Differential subordinations and alpha-convex functions,
Acta Math. Scientia 33B(2013) 609-620.

[6] R. Jurasińnska, J. Sokół, Some problems for certain family of starlike functions, Math.
Comput. Modelling 55(2012) 2134-2140.

[7] F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic func-
tions, Proc. Amer. Math. Soc. 20(1969) 8–12.

[8] R. K. Raina, J. Sokół, On some class of starlike functions, submitted.
[9] See K. Lee, V. Ravichandran, S. Supramaniam, Bounds for the second Hankel determinant

of certain univalent functions, J. Ineq. Appl. 2013, 2013:281.
[10] J. Sokół, Coeffcient Estimates in a Class of Strongly Starlike Functions, Kyungpook Math.

J. 49(2009) 349–353.
[11] J. Sokół, A. Wiśniowska-Wajnryb, On certain problem in the clases of k-starlike functions,

Comput. Math. Appl. 62(2011) 4733-4741.





Hacettepe Journal of Mathematics and Statistics
Volume 44 (6) (2015), 1435 – 1443
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Abstract
Over a commutative noetherian ring, we introduce a generalization of
Gorenstein projective and injective modules, which we call, respectively,
n-Gorenstein projective and injective modules. These last two classes
of modules give us a new characterization of Gorenstein rings in terms
of top local cohomology modules of flat modules. We also utilize the
n-Gorenstein injective dimension to study an open question of Taka-
hashi. Furthermore, we prove that a nonzero finite module with finite
n-Gorenstein projective dimension satisfies the Auslander-Bridger for-
mula.
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n-Gorenstein projective dimension; n-Gorenstein injective dimension.
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1. Introduction
Throughout this paper, R is a commutative noetherian ring with identity element,

and all R-modules are unital. Also, for any R-module M , Z(M) denotes the set of all
zerodivisors of M .

When R is two-sided and noetherian, Auslander and Bridger [1] introduced the G-
dimension for finitely generated modules. Several decades later, over a general ring R,
Enochs and Jenda in [7] extended this homological dimension to Gorenstein projective
dimension for arbitrary (non-finite) modules. Dually, they defined in [7] the Gorenstein
injective dimension. The Gorenstein projective, injective dimension of a module is defined
in terms of resolutions by Gorenstein projective, injective modules, respectively. Those
modules are constructed from some special acyclic complexes. A complex of R-modules
A = · · · → Ai+1 → Ai → Ai−1 → Ai−2 → · · · is acyclic if H(A)= 0.

∗College of Science, Guilin University of Technology, Guilin, Guangxi 541004, China.
Email : tx5259@sina.com.cn
†Corresponding Author.
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1.1. Definition. (1) An R-module M is said to be Gorenstein projective, if there exists
an acyclic complex of projective modules P = · · · → P1 → P0 → P−1 → P−2 → · · · such
that M ∼= Im(P0 → P−1) and such that the complex HomR(P,Q) is acyclic whenever Q
is projective.

(2) An R-moduleM is said to beGorenstein injective, if there exists an acyclic complex
of injective modules I = · · · → I1 → I0 → I−1 → I−2 → · · · such that M ∼= Im(I0 → I−1)
and such that the complex HomR(E,I) is acyclic whenever E is injective.

Inspired by the definitions of Gorenstein projective/injective modules and sesqui-
acyclic complexes in [13], the main idea of this paper is to introduce and study two
new classes of modules called n-Gorenstein projective/injective modules and related ho-
mological dimensions.

The structure of the paper is summarized below. Section 2 is devoted to introducing
the concept of n-Gorenstein projective (resp., injective) modules. We will find some use-
ful properties of these classes of modules. Section 3 discusses the n-Gorenstein projective
(resp., injective) dimension. We prove that a module of finite n-Gorenstein projective
dimension can be approximated by a module, for which the corresponding classical ho-
mological dimension is finite. Section 4 consists of three applications. Theorem 4.2 states
that if a local ring R admits a nonzero finitely generated R-module M with n-GidRM
finite and dimRM = dimR, then R is Cohen-Macaulay. This result in fact gives a partial
answer to the following question of Takahashi: Is a local ring Cohen-Macaulay if it admits
a nonzero finitely generated module of finite Gorenstein injective dimension? Theorem
4.3 can be regarded as the following expansion of a result of Yoshizawa (see [18, Theo-
rem 2.6]). It shows that a complete Cohen-Macaulay local ring R of Krull dimension d is
Gorenstein if and only if Hd

m(R) is n-Gorenstein injective for some positive integer n. The
last Theorem 4.7, is in fact a generalized version of the Auslader-Bridge formula, which
is proved by Lars in [4, Theorem 1.4.8]. However the method we use here is somewhat
different from theirs.

Let X be a class of R-modules and M an R-module. Following [10], a left X-resolution
of M is an exact sequence of R-modules in X of the form X = · · · → Xn → Xn−1 → · · · →
X0 →M → 0. Now let X be any left X-resolution of M . We say that X is proper if the
sequence HomR(Y, X) is exact for all Y ∈ X. The X-projective dimension of M is defined
as X-pdR(M) = inf{sup{n > 0 | Xn 6= 0} | X is an X-resolution of M}. The right X-
resolution, co-proper right X-resolution and X-injective dimension are defined dually. We
write P(R), I(R) for the classes of projective, injective R-modules, respectively. Following
established conventions, we use abbreviations (pd, id) for the homological dimensions
(P(R)-pd, I(R)-id). For each positive integer n, we denote X⊥n := {M | ExtiR(X,M) = 0
for any X ∈ X and 1 ≤ i ≤ n}. Dually, we have the class ⊥nX.

2. n-Gorenstein projective and injective modules

We begin with the following

2.1. Definition. (1) Suppose that n is a positive integer, an R-module M is said to
be n-Gorenstein projective, if there exists an acyclic complex of projective modules P =
· · · → P1 → P0 → P−1 → P−2 → · · · such that M ∼= Im(P0 → P−1) and such that for any
projective module Q the complex HomR(P, Q) = · · · → P ∗1 → P ∗0 → P ∗−1 → P ∗−2 → · · ·
is exact at P ∗i for all i ≥ −n, where P ∗i = HomR(P−i, Q). The class of n-Gorenstein
projective modules is denoted by n-GP(R).

(2) Suppose that n is a positive integer, an R-module M is said to be n-Gorenstein
injective, if there exists an acyclic complex of injective modules I = · · · → I1 → I0 →
I−1 → I−2 → · · · such that M ∼= Im(I0 → I−1) and such that for any injective module
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E the complex HomR(E, I) = · · · → I∗1 → I∗0 → I∗−1 → I∗−2 → · · · is exact at I∗i for
all i ≥ −n, where I∗i = HomR(E, Ii). The class of n-Gorenstein injective modules is
denoted by n-GI(R).

Almost by the definitions we have that Gorenstein projective (resp., injective) modules
are n-Gorenstein projective (resp., injective) modules. However, there are n-Gorenstein
projective (resp., injective) modules which are not Gorenstein projective (resp., injec-
tive)(see Example 2.4 below).

2.2. Proposition. Suppose that M is an R-module, and m, n are positive integers such
that m < n, then the following statements hold.

(1) M is n-Gorenstein projective if and only if M belongs to the class ⊥nP(R), and
admits a co-proper right P(R)-resolution.

(2) n-Gorenstein projective modules are m-Gorenstein projective modules.
(3) GP(R) =

⋂∞
n=1 n-GP(R).

(4) If M is n-Gorenstein projective, then there is an exact sequence 0→M → P →
G→ 0 such that P is projective and G is (n + 1)-Gorenstein projective.

Proof. (1). Since every module has a left P(R)-resolution, the statement is clear from
the definition of n-Gorenstein projective modules.

(2) follows immediately from (1).
(3) is true by [10, Proposition 2.3].
(4). Also by the definition of n-Gorenstein projective modules. �

Next we discuss some connections between n-Gorenstein projective modules and n-
Gorenstein injective modules.

2.3. Proposition. Let M and E be R-modules. Then the following statements hold.

(1) If M is a finitely generated n-Gorenstein projective module and E is injective,
then HomR(M,E) is n-Gorenstein injective.

(2) If R is a complete local ring with the residue field k, M is an artinian n-
Gorenstein injective module, then HomR(M,E(k)) is n-Gorenstein projective.

(3) If M is finitely generated, then M is n-Gorenstein projective module if and only
if M is reflexive, ExtiR(M,R) = 0 for 1 ≤ i ≤ n, and ExtiR(M∗, R) = 0 for
i ≥ 1, where M∗ = HomR(M,R).

Proof. (1). Since M is n-Gorenstein projective and finitely generated, there exists an
exact sequence 0→M → P−1 → L→ 0 such that P−1 is a finitely generated projective
module and such that the exact sequence remains exact after applying HomR(−,P(R))
to it. Hence we obtain that Ext1R(L,Q) = 0 for all projective modules Q. Since M is
n-Gorenstein projective, there also exists an exact sequence 0→M → P → G′ → 0 with
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P ∈ P(R), G′ ∈ n-GP(R). Consider the following pushout diagram.

0

��

0

��
0 // M //

��

P−1
//

��

L // 0

0 // P //

��

G //

��

L // 0

G′

��

G′

��
0 0

So L is n-Gorenstein projective by Proposition 2.6 and Corollary 2.7 below. Continu-
ing in this way gives a co-proper right P(R)-resolution P = 0 → M → P−1 → P−2 →
· · · with each term finitely generated. Because R is commutative, for each injective
R-module I, HomR(I,HomR(P, E)) ∼= HomR(I⊗RP, E) ∼= HomR(P, HomR(I, E)).
Note that HomR(I, E) is flat by [8, Theorem 3.2.16] and every flat module is a direct
limit of finitely generated projective modules. Hence HomR(P,E) becomes a proper
left I(R)-resolution of HomR(M,E) by [9, Lemma 3.1.6]. For each i ≥ 1, we have
ExtiR(I,HomR(M,E)) ∼= ExtiR(TorRi (I,M), E) ∼= ExtiR(M,HomR(I, E)) by [8, Theorem
3.2.1]. Therefore HomR(M,E) is n-Gorenstein injective by a dual statement of Proposi-
tion 2.2(1) and [9, Lemma 3.1.6].

(2) is proved in a fashion similar to [6, Theorem 4.8].
(3) is easy by the definition of n-Gorenstein projective modules.

�

2.4. Example. Let R be the local artinian ring in [14], there exists a family {Ms}s≥1

of reflexive modules such that
(1) ExtiR(Ms, R) = 0 if and only if 1 ≤ i ≤ s− 1.
(2) ExtiR(M∗s , R) = 0 for all i > 0.
Then the following statements hold for any s > 1.
(a) Ms is (s− 1)-Gorenstein projective but not s-Gorenstein projective.
(b) HomR(Ms, E(k)) is (s− 1)-Gorenstein injective but not s-Gorenstein injective.

Proof. (a) is easy since the reflexive module Ms satisfies conditions (1) and (2).
(b). Since Ms is (s-1)-Gorenstein projective by (a), it is deduced from Proposition

2.3(1) that HomR(Ms, E(k)) is (s-1)-Gorenstein injective. Now suppose that HomR(Ms, E(k))
is s-Gorenstein injective. Indeed, since artinian local rings are complete and Ms

∼=
HomR(HomR(Ms, E(k)), E(k)), the Matlis duality between noetherian modules and ar-
tinian modules implies that Ms must be s-Gorenstein projective. It is impossible. So
HomR(Ms, E(k)) is not s-Gorenstein injective for s > 1. �

2.5. Remark. From the construction of Ms (see [14]), we know that there is an exact
sequence 0 → Ms → R2 → Ms+1 → 0 such that Ms+1 is s-Gorenstein projective, Ms is
(s-1)-Gorenstein projective but not s-Gorenstein projective. This implies that n-GP(R) is
not closed under kernels of epimorphisms. Hence n-GP(R) is not a projectively resolving
class (see [10, 1.1]).

The next proposition provides ways to create n-Gorenstein projective modules.
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2.6. Proposition. n-GP(R) is closed under direct sums and extensions.

Proof. By [10, Proposition 1.6], [15, Proposition 7.21] and Proposition 2.2(1), n-GP(R) is
closed under direct sums. It follows from [10, 1.7] that n-GP(R) is closed under extensions.

�

Although n-GP(R) is not projectively resolving, we may show that the class of n-
Gorenstein projective modules is closed under direct summands without using Eilenberg’s
technique (see [10, Proposition 1.4]). This technique is applied by Holm in [10, Theo-
rem 2.5] to show that the class of Gorenstein projective modules is closed under direct
summands.

2.7. Corollary. n-GP(R) is closed under direct summands.

Proof. Let G be an n-Gorenstein projective module and H be a direct summand of G.
Since G ∈ ⊥nP(R), H ∈ ⊥nP(R). By [12, Theorem 4.6(1)], one sees that H has a
co-proper right P(R)-resolution. Now Proposition 2.2(1) gives the result. �

3. n-Gorenstein projective and injective dimensions

In this section, we turn to studying n-Gorenstein projective and injective dimensions.
For an R-module M , we use n-GpdRM (resp., n-GidRM) to denote the n-Gorenstein
projective (resp., injective) dimension of M . Holm in [10, Theorem 2.10] showed that
an R-module M with Gorenstein projective dimension n admits such an exact sequence
0 → K → G → M → 0 with G Gorenstein projective and pdRK = n − 1. The proof
of this result depends on the fact that for an R-module M with Gorenstein projective
dimension n every projective resolution of M has its nth syzygy Gorenstein projective.
However we don’t know weather the same fact is true for modules with finite n-Gorenstein
projective dimension. But by showing in a different way we still have the following result
which is similar to that of Holm.

3.1. Proposition. Let M be an R-module with finite n-Gorenstein projective dimension
m. Then there exists an exact sequence 0→ K → G→M → 0, where G is n-Gorenstein
projective and pdRK = m− 1.

Proof. If m = 0, our claim clearly holds. If m = 1, we have an exact sequence 0 →
G1 → G0 →M → 0 with G0, G1 ∈ n-GP(R). Since G1 is n-Gorenstein projective, there
also exists an exact sequence 0 → G1 → P → G′ → 0 with P ∈ P(R), G′ ∈ n-GP(R).
Consider the following pushout diagram.

0

��

0

��
0 // G1

//

��

G0
//

��

M // 0

0 // P //

��

G //

��

M // 0

G′

��

G′

��
0 0
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According to Proposition 2.6, G is n-Gorenstein projective. Therefore 0 → P → G →
M → 0 is the desired sequence. Now suppose m > 1. We will use induction to show
this statement. Since n-GpdRM = m, we have such an exact sequence 0→ K → G0 →
M → 0 with G0 ∈ n-GP(R) and n-GpdFK = m−1. Hence there exists an exact sequence
0→ K1 → G1 → K → 0 with pdFK1 = m−2 and G1 ∈ n-GP(R) by induction. Observe
that G1 is n-Gorenstein projective, there is an exact sequence 0→ G1 → P ′ → G2 → 0
with P ′ ∈ P(R), G2 ∈ n-GP(R). Similarly, consider the following pushout diagram.

0

��

0

��
ε1 : 0 // K1

// G1
//

��

G0
//

��

M // 0

ε2 : 0 // K1
// P ′ //

��

G //

��

M // 0

G2

��

G2

��
0 0

Since G0, G2 ∈ n-GP(R), G ∈ n-GP(R). Let K = Ker(G→M), 0→ K → G→M → 0
is the desired sequence. �

A complement to Proposition 2.6 is given below.

3.2. Corollary. Let 0→ G′ → G→ M → 0 be an exact sequence, where G and G′ are
n-Gorenstein projective and Ext1R(M,Q) = 0 for all projective modules Q. Then M is
n-Gorenstein projective.

If M is n-Gorenstein projective, ExtiR(M,L) = 0 for all i ≥ 1 and all modules L with
finite injective dimension. If N is n-Gorenstein injective, ExtiR(H,N) = 0 for all i ≥ 1
and all modules H with finite projective dimension. Using this fact, we may provide the
following results. Their proofs are similar to those in [11, Theorem 2.1, 2.2].

3.3. Corollary. Let M be an R-module, then:
(1) If pdRM <∞, n-GidRM = idRM .
(2) If idRM <∞, n-GpdRM = pdRM .

Using Propositions 2.2 and 3.1, we get the following result which is analogous to [5,
Lemma 2.17].

3.4. Proposition. Let M be an R-module with n-GpdRM < ∞. There is an exact
sequence 0 → M → H → A → 0, where A is n-Gorenstein projective and pdRH =
n-GpdRM .

4. Applications

For an R-module M , the ith local cohomology module of M with respect to an ideal I
is defined as Hi

I(M) = lim−→n
ExtiR(R/In,M). Let (R,m, k) be a local ring. We say that

R is Cohen-Macaulay if depthR = dimR. R is Gorenstein if it has finite self-injective
dimension.
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A careful reading of the proof in [17, Lemma 1.1], combined with some basic facts
about the n-Gorenstein injective dimension, gives the following vanishing result of local
cohomology modules.

4.1. Lemma. Let M be an R-module with n-GidRM finite, and let I be a nonzero ideal
of R. Then Hi

I(M) = 0 for all i > n-GidRM .

With the aid of Lemma 4.1, We are now in a position to give one of the main results
in this paper, which partially answers a question of Takahashi in [16]. A similar result
was proved by Yassemi([17, Theorem 1.3]).

4.2. Theorem. Let (R,m, k) be a local ring. If R admits a nonzero finitely generated
R-module M with n-GidRM finite and dimRM = dimR, then R is Cohen-Macaulay.

Proof. Since n-GidRM is finite, by Lemma 4.1, Hi
m(M) = 0 for all i > n-GidRM . On the

other hand, we have HdimRM
m (M) 6= 0 by [2, Theorem 7.3.2]. Hence dimRM 6 n-GidRM

follows. Also by a dual argument of Proposition 3.4, the finiteness of n-Gorenstein
injective dimension of M means that there is an R-module L such that idRL = n-GidRM .
But idRL = sup{depthRp − widthRpLp | p ∈ Supp(L)} by [3, 3.1]. Thus dimR = dimRM
≤ n-GidRM = idRL ≤ depthRp ≤ dimRp for some prime ideal p. Hence p must be the
maximal ideal m. So we get that depthR = dimR, and R is Cohen-Macaulay. �

Enochs and Jenda in [8, Corollary 9.5.13] proved that a local ring R is Gorenstein if
and only if R is Cohen-Macaulay and the top local cohomology module of R, HdimR

m (R),
is isomorphic to E(k). Recently, Yoshizawa in [18] generalized this result. It says that a
complete Cohen-Macaulay local ring R of krull dimension d is Gorenstein if and only if
the top local cohomology module HdimR

m (R) is Gorenstein injective. Motivated by these
established facts, an extended version of this result is presented as follows.

4.3. Theorem. Let R be a complete Cohen-Macaulay local ring of krull dimension d,
then the following statements are equivalent.

(1) R is Gorenstein.
(2) For any positive integer n, Hd

m(F ) is n-Gorenstein injective for every flat R-
module F .

(3) For some positive integer n, Hd
m(F ) is n-Gorenstein injective for every flat R-

module F .
(4) For some positive integer n, Hd

m(R) is n-Gorenstein injective.

Proof. (1) ⇒ (2). Since flat modules are direct limits of finitely generated free modules
and the local cohomology functors commute with direct limits, the result follows from
[18, Theorem 2.6].

(2) ⇒ (3) and (3) ⇒ (4) are trivial.
(4) ⇒ (1). By assumption, Hd

m(R) is n-Gorenstein injective for some positive integer
n. Since Hd

m(R) is artinian, by Proposition 2.3, n-GpdR(HomR(Hd
m(R),E(k))) = 0 .

By [8, Theorem 9.5.16], we know that HomR(Hd
m(R),E(k)) is a dualizing module. Now

Corollary 3.3 says that HomR(Hd
m(R),E(k)) is projective. Note that projective modules

over local rings are free. Hence HomR(Hd
m(R),E(k)) ∼= Rn. Thus R is Gorenstein. �

Now it is natural to ask what can we say about R when the top local cohomology
module has finite n-Gorenstein injective dimension?

4.4. Corollary. The following statements are equivalent for a commutative artinian local
ring R.

(1) R is quasi-Frobenius.
(2) For any positive integer n, H0

m(R) is n-Gorenstein injective.
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(3) For some positive integer n, all modules are n-Gorenstein injective.
(4) For some positive integer n, all modules are n-Gorenstein projective.

Proof. (1) ⇔ (2) is easy directly by Theorem 4.3.
(1)⇒ (4). Because all n-Gorenstein projective modules are Gorenstein projective over

Gorenstein rings, it is a consequence of [8, Exercise 10.3.5].
(4)⇒ (1). Since all modules are n-Gorenstein projective, all injective modules are also

n-Gorenstein projective. Thus every injective module can be embedded into a projective
module. So every injective module is projective. It means that R is quasi-Frobenius.

(1) ⇔ (3) can be shown dually. �

Finally we aim at investigating some applications of n-Gorenstein projective dimen-
sions among the category of all finitely generated R-modules. For convenience, all mod-
ules appeared below are finitely generated.

4.5. Lemma. Let M be an R-module, and let x be an M- and R-regular element. If M
is n-Gorenstein projective, then M/xM is n-Gorenstein projective R/(x)-module.

Proof. Set M̄ = M/xM and R̄ = R/(x). Since M is n-Gorenstein projective, there is an

exact complex of free modules F = · · · → F1
d1→ F0

d0→ F−1
d−1→ F−2 → · · · such that M ∼=

Im(F0 → F−1) and such that the complex F∗ = · · · → F ∗1 → F ∗0 → F ∗−1 → F ∗−2 → · · ·
is exact at F ∗i for all i ≥ −n, where F ∗i = HomR(F−i, R). Let Mi = Imdi for each i.
Since x is Mi-regular for each i, by [4, Lemma 1.3.4(a)], applying − ⊗R R̄ to the exact
complex F gives an exact complex F̄ = · · · → F̄1 → F̄0 → F̄−1 → F̄−2 → · · · . Again by
[4, Lemma 1.3.4(a)], there is a complex · · · → F ∗1 → F ∗0 → F ∗−1 → F ∗−2 → · · · , which is
exact at F ∗i for all i ≥ −n. It is deduced from [4, Lemma 1.3.4(b)] that HomR̄(F̄−i, R̄)
∼= F ∗i . Therefore M̄ is n-Gorenstein projective R̄-module. �

4.6. Proposition. If R is a local ring, and suppose that there exists an exact sequence
0 → M → N → H → 0 with n-GpdRM ≤ pdRN < ∞ and H n-Gorenstein projective.
Then depthRM = depthRN .

Proof. Case 1: depthR=0. Since pdRN < ∞, we infer by the Auslander-Buchsbaum
formula that N is projective and depthRN = 0, and hence M is n-Gorenstein projec-
tive. Now assume that depthRM ≥ 1, so there is a regular element x of M . Note that
M is n-Gorenstein projective. Applying HomR(−, R) to the exact sequence 0 → M

x→
M → M̄ → 0 yields an exact sequence 0 → M̄∗ → M∗

x→ M∗ → Ext1R(M̄,R) → 0.
Applying HomR(−, R) to this exact sequence gives the following exact sequence 0 →
Ext1R(M̄,R)∗ → M∗∗

x→ M∗∗. As M is reflexive by Proposition 2.3(3), Ext1R(M̄,R)∗ =
0. We get from the formula Ass(Ext1R(M̄,R)∗) = Supp(Ext1R(M̄,R)) ∩ AssR that
Ext1R(M̄,R) = 0. Therefore M∗ = xM∗. It follows from the Nakayama’s lemma that
M∗ = 0. Hence M = 0, which is a contradiction.

Case 2: depthR ≥ 1. Because M is a submodule of N , depthRM = 0 implies that
depthRN = 0. So we may assume that depthRM ≥ 1. Since depthR ≥ 1, there must be
an element x ∈ R\Z(M)∪Z(R). Moreover x is H-regular element as H can be embedded
into a free module. By Lemma 4.5 and [4, Lemma 1.3.4(a)], tensoring the exact sequence
0 → M → N → H → 0 gives an exact sequence 0 → M̄ → N̄ → H̄ → 0 such that H̄
is n-Gorenstein projective and n-GpdR̄M̄ ≤ n-GpdRM . Note that pdR̄(N̄) = pdRN .
We have that n-GpdR̄M̄ ≤ pdR̄(N̄). Hence, as depthR̄ = depthR −1, we obtain, by
induction on depthR, depthR̄M̄ = depthR̄N̄ . Therefore depthRM = depthRN . �

4.7. Theorem. If R is a local ring, M is a nonzero R-module with n-GpdRM finite.
Then n-GpdRM+depthRM = depthR.
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Proof. There exists an exact sequence 0→ M → H → A→ 0 with n-GpdRM = pdRH
and A n-Gorenstein projective by Proposition 3.4. Then by Proposition 4.6 we have
that depthRM = depthRH. But we know from the Auslander-Buchsbaum formula that
pdRH+depthRH = depthR. Hence we get the result. �

We end this section with the following corollary.

4.8. Corollary. If R is a Gorenstein local ring and M is a nonzero R-module. Then
GpdRM = n-GpdRM .

Proof. Since R is Gorenstein, GpdRM < ∞ by [8, Theorem 12.3.1]. Furthermore we
have GpdRM = depthR − depthRM by [4, Theorem 1.4.8]. But n-GpdRM < GpdRM ,
it now follows from Theorem 4.7 that n-GpdRM = depthR − depthRM . Hence the
result is true. �
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Effect of hall current on the MHD fluid flow and
heat transfer due to a rotating disk with uniform

radial electric field
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Abstract
In this paper the steady Von Kármán flow of incompressible fluid in
which the Hall effect exists is analyzed over the infinite rotating disk with
additional assumptions: the uniform magnetic field applied normally to
the disk and the radial electric field imposed to the disk. Therefore,
the stability equations and energy equation have been modified in the
presence of Hall effect, uniform magnetic field and radial electric field.
The system of equations generated by stability and energy equations has
been solved using Chebyshev collocation technique for varying values of
Hall parameters, magnetic interaction and radial electric parameters.
Accuracy of the method is verified comparing results in the literature.
Effects of parameters are depicted graphically and are analyzed.
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1. Introduction
Rotating disk flow has been extensively studied in the literature. An interesting problem

from both engineering and mathematical point of view has been investigated for the last
half of the century using experimental, analytical and numerical means. Rotating disk
flows are important in many applications such as turbomachinery, oceanography, computer
storage devices, nuclear reactors, lubrication, and so on.

Von Kármán [13] has carried out the pioneering study of fluid flow, triggered further
studies, many explanations are initiated on infinite rotating disk. Cochran [7] and Benton
[5] have considered by Kármán [13], they investigated the steady motion of an incompress-
ible viscous fluid. The effect of uniform magnetic field on the flow over a rotating infinite
disk has been studied by many researchers [8], [12], [19], [20], [22], [23], [24], [25]. Hall
effect has been taken into consideration in some of the works in the literature. To the best
of our knowledge Attia[2] has initiated in his studies examining Hall effect on the flow over
a infinite rotating disk. The study has been followed by Attia & Aboul-Hassan[1], and
Siddiqui, Rana & Naseer[19]. The case without Hall effect on the rotating infinite disk has
been investigated [4], [6], [8], [9], [12], [14], [15], [16], [19], [20], [21], [22], [23], [24], [25].

Millsaps & Pohlhausen[15] have considered the heat transfer problem on the rotating
infinite disk. After their work, the heat transfer on a flat plate was analyzed by Sparrow

∗Mathematics Department, University of Abant Izzet Baysal,Bolu/Turkey.
Email : nuygun@ibu.edu.tr
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& Gregg[21] for Prandtl numbers. Sparrow & Cess[20], Riley[16], Kumar & Thacker &
Watson[14] studied the effects of magnetic field to the heat transfer over a infinite rotating
disk. Finally, effects of the uniform radial electric field on the MHD heat and fluid flow
due to a rotating disk was investigated by Turkyilmazoglu[22].

In most of the studies, the Hall term is neglected for small or moderate values of the
magnetic field in applying Ohm’s law in the analysis. When a strong magnetic field is
applied, the influence of electromagnetic force is noticeable as stated by Cramer and Pai
[8]. Therefore, the Hall current is important and it has a marked effect on the magnitude
and direction of the current density and consequently on the magnetic force term.

In this work, following the above approach, steady hydromagnetic flow of viscous, in-
compressible fluid over rotating infinite disk is examined with the radial electric field taking
Hall effect into consideration. An external uniform magnetic field is imposed on the nor-
mal direction. The radial electric field is produced by electric potential. In the rotating
infinite disk, the magnetic Reynolds number is assumed to be very small. Navier-Stokes
equations and energy equation are solved by using Chebyshev collocation method. The
effects of Hall parameters, magnetic field and electric field are analyzed.

2. Basic Equations
Let us consider the three-dimensional steady viscous incompressible conducting fluid over
infinite rotating disk. The disk is assumed to be rotating about z-axis with a constant
angular velocity Ω in the cylindrical coordinates (r, θ, z). An external uniform magnetic
field is applied in the z-direction and has a constant magnetic flux density B0. The
magnetic Reynolds number is assumed to be very small, therefore, the effect on the imposed
magnetic field is negligible. The disk is taken electrically conducting with e = (er, eθ, ez)
denoting the electric field, in which eθ = 0 due to axisymmetric flow assumption, by
the work of Kármán [13]. Moreover, the effect of uniform electric field on the disk flow
is produced by electrical potential is given by er = −B0Ωγr [10]. In magnetic field,
the electric current can be written by Ohm’s law j = σ(e + v × B − β(j × B)) where
j = (jr, jθ, jz) is the current density vector, σ is the electrical conductivity, and the last
term defines the Hall effect as β is the Hall factor. The disk flow motion is governed by
Maxvell’s equation, continuity equation, the Navier-Stokes equations including the Lorentz
force as follows

(2.1) ∇ · j = 0,

(2.2) ∇ · v = 0,

(2.3) ρ
[∂v
∂t

+ (v · ∇)v
]

= −∇p+
1

Re

[
∇2v

]
+Mn(j ×B)i

Lorentz force terms Mn(j × B)i represents the existence of magnetic field in the fluid
motion equations. The presence of the force, originating from magnetic field, on the flow
of conducting fluids can alter the velocity and pressure characteristics of the flow.

In general Maxwell’s equation is defined by

(2.4) ∇× e = −∂B
∂t
.

In the case of time-independent flow, the equation(2.4) is turned into the equation below,

∇× e = 0.

Therefore, there is a conservative electric field which arises by electric potential Φ, arriving
to e = −∇Φ.

Several parameters appearing in equations (2.1-2.3) are defined as follows, ρ is the den-
sity, v = (u, v, w) is the velocity vector, ∇ is the usual gradient operator in cylindrical
coordinates, p is the pressure, Re is the Reynolds number characterizing the flow defined
by Re = Ω

ν
, ν is the kinematic viscosity of the fluid. Finally Mn is the magnetic inter-

action parameter, which represents the ratio between the magnetic force and the fluid
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inertia force. In component form of Maxvell’s equation, continuity equation and momen-
tum equations with Lorentz force can be written as

(2.5)
∂jr
∂r

+
∂jz
∂z

+
jr
r

= 0,

(2.6)
∂u

∂r
+
∂w

∂z
+
w

r
= 0,

(2.7) u
∂u

∂r
+ w

∂u

∂z
− v2

r
= −∂p

∂r
+

1

Re

[
∇2u− u

r2

]
+

Mn

1 +m2
[mer − u+mv] ,

(2.8) u
∂v

∂r
+ w

∂v

∂z
+
uv

r
+ 2u =

1

Re

[
∇2v − v

r2

]
+

Mn

1 +m2
[−er −mu− v] ,

(2.9) u
∂w

∂r
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

[
∇2w

]
,

where m = σβB0 is the Hall parameter. The Hall parameter can take any value. In case
of positive values of m, B0 is upwards and the electrons of the conducting fluid gyrate in
the same sense as the rotating disk. On the other hand, when m takes negative values, B0

is downwards and the electrons gyrate in an opposite sense to the disk.

In equations(2.7-2.8), Lorentz force terms are j × B = B0(jθ,−jr, 0), and the compo-
nents of current density vector are easily derived by Ohm’s law as

(jr, jθ, jz) =
σ

1 +m2

(
er +mu+ v,mer − u+mv, (1 +m2)ez

)
.

Because of imposing radial electric field in velocity at infinity, the tangential direction
velocity is given by v = Ωγr. Furthermore, existence of potential flow due to radial electric
field at the edge of the boundary layer implies that pressure gradient in the radial direction
is ∂p

∂r
= ρΩ2γ2r (see Evans[10]). When these are taken into consideration, boundary

conditions become

(2.10) u = 0, v = rΩ, w = 0, jz = 2rΩB0Cγ, at z = 0,
u→ 0, v → rΩγ, as z →∞,

where C is the wall conduction ratio of the electrical conductance of the wall to electrical
conductivity of the fluid.

The basic flow of incompressible case, which is also called as Von Kármán’s steady state
flow is well known. The Von Kármán’s[13] flow will be considered here, which means that
the disk flow is assumed to evolve alongside the boundary layer coordinate η = Re1/2z, in
conformity with the self similarity variables (see Hossain,Hossain& Wilson[11])

(2.11)
(u, v, w, p) = (rΩF (η), rΩG(η), Re−1/2H(η), ρΩ2P (η)),

(jr, jθ, jz) = (B0rΩJr(η), B0rΩJθ(η), BoΩRe
−1/2Jz(η)),

(er, eθ, ez) = (B0rΩEr(η), 0, B0ΩRe−1/2Ez(η)).

These quantities substitute into the governing equations (2.5-2.9), and also neglect terms
of O(Re−1), the disk flow quantities are determined from the subsequent equations and
boundary conditions(2.10) as

(2.12) 2Jr + J ′z = 0,

(2.13) 2F +H ′ = 0,

(2.14) F 2 −G2 + F ′H − F ′′ − Mn

1 +m2

[
−mγ − F +mG

]
+ γ2 = 0,

(2.15) 2FG+G′H −G′′ − Mn

1 +m2

[
γ −G−mF

]
= 0,

(2.16) P ′ +H ′H −H ′′ = 0,

(2.17) F = 0, G = 1, H = 0, Jz = 2Cγ at η = 0,
F → 0, G→ γ as η →∞,
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a prime denotes derivative with respect to η. The initial and boundary conditions(3.3)
show the no-slip boundary conditions of governing equations at the surface of disk and a
far field disk flow, respectively.

3. Analysis of the Heat Transfer
Due to the difference in the temperature between the surface of the disk and the ambient

fluid, heat transfer takes place. The energy equation, with viscous dissipation and Joule
heating depending on the Hall effect, takes the form

(3.1)
ρ
[
∂T
∂t

+(v · ∇)T
]

= M2
∞(Γ− 1)

[
∂p
∂t

+ (v · ∇)p
]

+ 1
Pr

1
Re

[
∇2T

]
+ Γ−1

Re
M2
∞
[
Φ
]

+Mn(Γ− 1)M2
∞
j2

σ

where T is the temperature of the fluid, Pr =
µcp
k

is the Prandtl number cp is the specific
heat capacity, µ is the dynamical viscosity and k is thermal conductivity of the fluid.
Moreover, Γ is the ratio of the specific heats,M∞ is the free stream Mach number. Finally,
the last two terms in the right-hand-side of Eq.(3.1) represent

Φ = (
∂u

∂z
)2 + (

∂v

∂z
)2,

the viscous dissipation and

j2

σ
=

1

(1 +m2)2

[
(er +mu+ v)2 + (mer − u+mv)2 + (1 +m2)2e2

z

]
Joule heating terms respectively.

Using the Von Kármán [13] assumptions, similarities of (2.11) and also neglecting terms
of O(Re−1), equation(3.1) becomes

(3.2)
1
Pr
T ′′ −HT ′ +M2

∞(Γ− 1)
[
γ2F + F ′2 +G′2

]
+M2

∞(Γ− 1) Mn
(1+m2)2

[
(−γ +mF +G)2 + (−mγ − F +mG)2

]
= 0,

and the initial and boundary conditions for the energy equation are

(3.3) T = Tw, at η = 0,
T → T∞, as η →∞,

recalling that a prime indicates derivative in term of η. In the last two equations, Tw is
the temperature at the surface of the disk, T∞ is the temperature of the ambient fluid at
a large distance from the disk. Introducing the non-dimensional variable θ = T−T∞

Tw−T∞ , the
equation(3.2), the initial and boundary conditions(3.3) take the forms

(3.4)
1
Pr
θ′′ −Hθ′ + Ec

[
γ2F + F ′2 +G′2

]
+ MnEc

(1+m2)2

[
(−γ +mF +G)2 + (−mγ − F +mG)2

]
= 0,

(3.5) θ = 0, at η = 0,
θ → 1, as η →∞,

where Ec =
M2
∞(Γ−1)

Tw−T∞ is the Eckert number. The heat transfer from the disk surface to
the fluid is computed by the application of the Fourier’s law, and using transformation for
heat term we have

(3.6)
q = −k

(
∂T
∂z

)
w

= −k(Tw − T∞)
√

Ω
ν
dθ(0)
dη

,

by rephrasing the heat transfer result in terms of the Nusselt number, defined as

Nu =
q
√

ν
Ω

k(Tw − T∞)

Therefore the second part of the equation (3.6) turns into



1449

(3.7) Nu = −dθ(0)

dη

The action of viscosity in the fluid adjacent to the disk tends to set up tangential shear
stress, which opposes the rotation of the disk. There is also a surface shear stress in the
radial direction. Consequently, it is necessary to provide a torque at the shaft to maintain a
steady rotation. Applying the Newtonian formula, the radial component τr and tangential
component τθ of the shear stress are respectively expressed by

(3.8) τr =

(
∂u

∂z

)
w

= rΩ

√
Ω

ν
F ′(0)

(3.9) τθ =

(
∂v

∂z

)
w

= rΩ

√
Ω

ν
G′(0)

Of physical interest is also the magnitude of the constant axial velocity at infinity, given
by H(∞) and the resisting the turning moment (or torque) T0 on the disk of radius R

(3.10) T0 = −
∫ R

0

µ

(
∂v

∂z

)
w

2πr2dr = −ρΩπ

2

√
ΩνG′(0)

In this study, a matrix method called Chebyshev collocation method is presented for
numerical solution of the equations (2.12-2.16) and (3.3) under the initial and bound-
ary conditions (2.17) and (3.4) respectively by a truncated Chebyshev series. Using the
Chebyshev collocation points, this method transforms the differential-integral equations
to a matrix equation which corresponds to a system of linear algebraic equations with
unknown Chebyshev coefficients. Therefore, this allows us to use computer for solution of
the equations. In addition, the Chebyshev collocation method can be used for differential
and integral equations.

4. Results and Discussions
In this section, we numerically solved the system of differential equations (2.12-2.16) under
the initial and boundary conditions (2.17). The energy equation (3.3) relating to the initial
and boundary conditions (3.4) was calculated using velocity profiles which were given in
the previous case. The numerical results were obtained by utilizing Spectral Chebyshev
collocation scheme.

In many boundary layer problems different methods have been applied to solve the
system of the equations. For example, Sahoo [17], Attia [2], Jasmine & Gajjar [12] and
Turkyilmazoglu [22], [25] reached their results using finite-difference method, a special
technique, and also Chebyshev collocation method respectively.

In this work we use spectral Chebyshev collocation scheme based on the Chebsyhev
polynomials. We briefly summarize the numerical scheme as follows: Nonlinear terms
are linearized with the Newton linearization technique in the given equations. Using the
Chebyshev collocation points, the linearized equations are transformed to a matrix equa-
tions with unknown Chebyshev coefficients and matrix system is solved by decomposition
technique.

To verify the accuracy of the numerical scheme, as well as, to validate the code, we
compared our results with the outcome of the studies by Sahoo [17] and Turkyilmazoglu
[22]. For comparison purpose, the results of Sahoo [17], and Turkyilmazoglu [22] are
tabulated in Table 1 and Table 2, which presents a clear evidence for accuracy of the
numerical method. Moreover, Figure 1, which demonstrates the velocity profiles of the
generalized Von Kármán’s flow for the boundary layer over the rotating disk, is given
below. This figure has been included in many relevant studies, as well.

Equations (2.13-2.15) under the conditions (2.17) are solved to compute the various
velocity profiles in relation with the several Magnetic interaction parameters, Hall param-
eters and the radial electric parameters, as depicted in Figures (2-7). It is observed that
if the radial electric parameter γ becomes larger than unity, the radial velocity profile
decreases as the Hall parameter increases, if not, that is, the radial electric parameter γ
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Mn F ′(0) −G′(0)

Present Sahoo Present Sahoo
0.0 0.510232 0.510214 0.615922 0.615909

Table 1. Comparison of the numerical solutions of shear stress coeffi-
cients in radial and tangential directions F ′(0), −G′(0) respectively.

Mn Pr Γ H(∞) -θ′(0)

Present Turkyilmazoglu Present Turkyilmazoglu
0.5 1.0 0.0 -0.458880064 -0.45888005 0.282655934 0.28265593

Table 2. Comparison of numerical solutions of the vertical velocity,
H(∞) and coefficients of the heat transfer, −θ′(0).

η
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Figure 1. Velocity profiles of the generalized Von Kármán’s flow are
shown against the coordinate η.

gets less than unity a reverse effect takes place. It should be noted that, in both cases
the size of the interval of η decreases as Hall parameter increases in Figures (2(a)-4(a)).
Similarly, the size of the interval of ν decreases while a Magnetic interaction parameter
increases according to graphs (2(a)-5(a)). These figures delineate that the negative Hall
parameter has prominent effect on the radial component of velocity. It is interesting to
find out from Figures (2(a)-7(a)) that F reverses its sign for some values of η, which proves
that radial reverse flow can occur near the surface. This interesting phenomenon is in-
terpreted as follows: the decelerated fluid particles in the boundary layer do not, in all
cases, remain the thin layer which adheres to the disk along the whole wetted length of
the surface. In some cases the boundary layer increases its thickness considerably in the
downstream direction and the flow in the boundary layer becomes reversed. This causes
the decelerated fluid particles to be forced outwards (see Schlicting[18]). Similar effect is
observed in figures (2(a)-7(a)) and also in the paper by Turkyilmazoglu [22] for negative
radial electric parameters.

In graphs (2(b)-7(b)), there is no meaningful change in the tangential velocity profile
when the Hall parameter or the magnetic interaction parameter increases or decreases.
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Figure 2. Velocity profiles of the generalized Von Karman‘s flow are
shown for Mn = 1.0 and m = 0.0 at six different radial electric parame-
ters, respectively in (a) for radial F , in (b) for tangential G, and in (c)
for axial H components.

The effect of the Hall parameter on the axial component of the velocity can be visualized
as in Figures (2(c)-7(c)). In case of having positive radial electric parameter values, it does
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Figure 3. Velocity profiles of the generalized Von Kármán’s flow are
shown for Mn = 1.0 and m = −0.5 at six different radial electric param-
eters, respectively in (a) for radial F , in (b) for tangential G, and in (c)
for axial H components.

not matter whether the change on the axial velocity profile as Hall parameter increases or
decreases. On the other hand, while the radial electric parameter takes negative values, the
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Figure 4. Velocity profiles of the generalized Von Kármán are shown
for Mn = 1.0 and m = 0.5 at six different radial electric parameters,
respectively in (a) for radial F , in (b) for tangential G, and in (c) for
axial H components.

axial component of the velocity profiles decreases as Hall parameter increases. Above all,
when the Hall parameter has a small negative value, H may become positive. Meanwhile,
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Figure 5. Velocity profiles of the generalized Von Kármán are shown
for Mn = 3.0 and m = 0.0 at six different radial electric parameters,
respectively in (a) for radial F , in (b) for tangential G, and in (c) for
axial H components.

the impacts of magnetic interaction parameter are depicted in graphs(2(c)-7(c)). These
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Figure 6. Velocity profiles of the generalized Von Kármán are shown
for Mn = 3.0 and m = −1.0 at six different radial electric parameters,
respectively in (a) for radial F , in (b) for tangential G, and in (c) for
axial H components.

graphs demonstrate that the increment in the magnetic interaction parameter causes in-
crement in the axial velocity values depending on positive electric parameters in radial
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Figure 7. Velocity profiles of generalized Von Kármán are shown for
Mn = 3.0 and m = 1.0 at six different radial electric parameters, respec-
tively in (a) for F radial, in (b) for G tangential, and in (c) for H axial
components.

direction and also depending on negative electric parameters in the same direction. All of
these relations can be fairly seen in Table (3-4).
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Figure 8. Temperature profile corresponding to heat transfer case is
shown for Mn = 1.0 and Ec = 0.0 at different radial electric parameters
respectively in (a) for m = 0.0, in (b) for m = −0.5, and in (c) for
m = 0.5.

Temperature profiles, depending on the velocity components, are demonstrated in
Figures(8-10), which are evaluated by using the equations (3.4-3.5) for different Eckert
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Figure 9. Temperature profile corresponding to heat transfer case is
shown for Mn = 1.0 and Ec = 3.0 at different radial electric parameters
respectively in (a) for m = 0.0, in (b) for m = −0.5, and in (c) for
m = 0.5.

numbers, Hall parameters, magnetic interaction parameters with varying electric parame-
ter in the radial direction at the fixed Prandtl number Pr = 1.0.
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Figure 10. Temperature profile corresponding to heat transfer case is
shown for Mn = 3.0 at different radial electric parameters respectively
in (a) for m = 0.0, Ec = 0.0, in (b) for m = 1.0, Ec = 0.0, in (c) for
m = 0.0, Ec = 3.0, and in (d) for m = 1.0, Ec = 3.0.

The effect of the Hall parameter is emphasized in Figures (8-10). It can be fairly inferred
from the figures that for increasing Hall parameters the size of the interval of η shrinks, then
this seems to occur for increasing Eckert numbers, as well. The case can also be observed
easily for large magnetic interaction parameters. Furthermore, whenever Hall parameter
increases, it is more temperature profiles are likely to be present for negative radial electric
parameters. Table(5) also confirms the case, that is, the number of the presence of the
more temperature profiles increases for the negative radial electric parameters.

It is also apparent from graphs (8) and (10) that when the Eckert number increases
temperature profile increases too. Finally, the impacts of magnetic interaction numbers
is given for increasing magnetic interaction numbers. As illustrated in Figures (8-10), the
size of interval of η extends as magnetic interaction parameter increases.

Variations of the radial shear stress F ′(0), tangential shear stress G′(0), the velocity
in the radial direction H(∞) and coefficients of heat transfer −θ′(0) have been tabulated
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Mn m γ F ′(0) G′(0) H(∞)

-0.6 -0.546781 -1.314478 2.707162
-0.3 -0.102931 -1.113456 1.202871

-0.5 0.0 0.145142 -0.913193 9.205420E-002
0.3 0.236486 -0.684928 -0.291948
0.9 6.565356E-002 -0.111510 -7.689249E-002
1.5 -0.457895 0.624115 0.403455
-0.6 -0.112813 -1.538095 1.236077
-0.3 0.170415 -1.315308 0.216396
0.0 0.309257 -1.069053 -0.253314

1.0 0.0 0.3 0.328034 -0.790558 -0.348514
0.9 7.445934E-002 -0.125180 -6.913082E-002
1.5 -0.489523 0.685647 0.361547
-0.6 0.233191 -1.447853 0.621125
-0.3 0.432856 -1.283261 -0.282036
0.0 0.495221 -1.062616 -0.509727

0.5 0.3 0.447946 -0.793985 -0.453959
0.9 8.918274E-002 -0.126886 -7.328618E-002
1.5 -0.554112 0.696890 0.363279

Table 3. Shear stress coefficients F ′(0) and G′(0), vertical velocity
H(∞) are tabulated at some chosen Hall parameters, radial electric pa-
rameters for fixed Magnetic interaction number Mn = 1.0.

Mn m γ F ′(0) G′(0) H(∞)

-0.6 -1.020161 -2.088827 1.243738
-0.3 -0.640020 -1.649686 0.914910

-1.0 0.0 -0.338087 -1.241569 0.565473
0.3 -0.124081 -0.858124 0.247915
0.9 1.484372E-002 -0.123473 -1.746047E-002
1.5 -0.226986 0.645086 0.275293
-0.6 -6.191555E-002 -2.760873 0.208113
-0.3 9.987538E-002 -2.254771 4.168429E-002

3.0 0.0 0.0 0.190502 -1.747685 -6.176540E-002
0.3 0.211255 -1.235386 -0.103263
0.9 5.157919E-002 -0.180893 -2.865252E-002
1.5 -0.358583 0.931506 0.190445
-0.6 0.795771 -2.175726 -0.472718
-0.3 0.805884 -1.834793 -0.522486
0.0 0.734807 -1.462603 -0.472049

1.0 0.3 0.590146 -1.059327 -0.361939
0.9 0.104282 -0.161279 -5.608166E-002
1.5 -0.612114 0.854623 0.285565

Table 4. Shear stress coefficients F ′(0) and G′(0), vertical velocity
H(∞) are tabulated at some chosen Hall parameters, radial electric pa-
rameters for fixed Magnetic interaction number Mn = 3.0.

for various radial electric parameter γ for the two different magnetic interaction numbers
Mn = 1.0, Mn = 3.0, and Eckert numbers Ec = 0.0, Ec = 3.0 respectively in Tables (3-5).
Because of increasing the Hall number m, the radial shear stress increases as the radial
electric parameter gets less than unity. However, radial shear stress decreases when radial
electric parameter gets larger than unity. It is apparent that reverse effect as a Magnetic
interaction parameter is getting bigger.
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Mn Ec m γ = −0.6 γ = −0.3 γ = 0.0 γ = 0.3 γ = 0.9

1.0 0.0 -0.5 - - - 0.204831 8.911136E-002
0.0 - - 0.193041 0.239180 7.320891E-002
0.5 - 0.222168 0.310924 0.294007 8.858441E-002

3.0 -0.5 - - - -1.086214 -2.805792E-002
0.0 - - -2.661671 -1.250502 -2.820800E-002
0.5 - -4.106938 -2.312196 -1.162085 -3.069879E-002

3.0 0.0 -1.0 - - - - 5.775309E-002
0.0 - - 8.285834E-002 0.107275 6.388499E-002
1.0 0.319910 0.341921 0.322544 0.269701 7.936438E-002

3.0 -1.0 - - - - 2.106896E-003
0.0 - - -5.020784 -2.411661 -2.226743E-002
1.0 -8.848756 -5.836229 -3.493386 -1.762939 -3.213039E-002

Table 5. Heat transfer parameter −θ′(0) is tabulated at some chosen
Hall parameters, radial electric parameters for the two different Magnetic
interaction numbersMn = 1.0,Mn = 3.0, and Eckert numbers Ec = 0.0,
Ec = 3.0 respectively, and fixed Prandtl number Pr = 1.0.

Impact of Hall numbers on tangential shear stress can be deduced from these tables.
It can be seen that the tangential shear stress increases in the case of increasing or de-
creasing Hall parameters values. In the event of the radial electric parameter becomes less
than unity, when the magnetic interaction parameter increases the tangential shear stress
decreases. On the other hand, if the radial electric parameter gets larger than unity, the
effect on the shear stress in tangential direction becomes reversed.

5. Conclusions
The velocity and temperature profiles governing the steady-incompressible boundary layer
flow over a rotating disk have been obtained using self-consistent assumptions. The result-
ing equations have then been solved numerically by using Chebyshev collocation method,
and then the behavior of the velocity and temperature profiles are displayed graphically.

The effects of Hall parameter, radial electric parameter, Eckert parameter and magnetic
interaction parameter are tabulated. One of the main outcomes of the present study is
defining the effect of the Hall parameters on temperature profiles. This has been observed
throughout for varying magnetic interaction parameters and radial electric parameters.
Although the positive values of Hall parameter reveal the more temperature profiles for
negative radial electric parameters, negative Hall parameter reverses the effect.

In this paper the effect of Hall parameter on the rotating disk is studied. Following
this, we believe that, it would be interesting to study the effect of the electric field and
also Hall parameter on instability mechanisms over rotating disk. For similar works, we
refer to Jasmine &Gajjar [12] and Turkyilmazoglu [25]
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1. Introduction
Soft set theory has been considered as an effective mathematical tool for modeling

uncertainties [21]. Different from traditional mathematical tools for dealing with uncer-
tainties, such as probability theory, fuzzy set theory [34] and rough set theory [25], soft
set theory is free from the inadequacy of the parametrization tools of these theories [21].
Molodtsov demonstrated that soft set theory has potential applications in many direc-
tions, including function smoothness, Riemann integration, measurement theory, game
theory and operations research [21]. Also, soft set theory has been applied to forecasting
[32], decision making [6, 17, 39], association rules mining [13] and mobile cloud computing
[31].

In theoretical aspect of soft sets, after Molodtsov’s pioneer work [21], Maji et al. [20]
gave further a detailed theoretical study on soft sets. Based on the analysis of several
operations on soft sets introduced in [20], Ali et al. [3] proposed some new operations.
In [4], Çağman and Enginoǧlu defined the soft matrices, which are representative of soft
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sets, and Gong et al. [12] presented the bijective soft sets, which are special soft sets.
As an extended concept of bijective soft sets, the exclusive disjunctive soft sets [33] were
introduced. Furthermore, Jiang et al. [14] presented an extended soft set theory by
using the concepts of description logics to act as the parameters of soft sets. Recently,
many researchers studied the algebraic structures of soft sets. Aktaş and Çaǧman [2]
defined soft groups and showed that fuzzy groups can be considered a special case of soft
groups. Moreover, some basic properties of soft semirings [11] and soft rings [1] were
introduced. Also, Sun et al. [28] presented the soft modules, and Li [19] analyzed the
soft lattices. In addition, Jun et al. [15, 16, 26, 38] considered the applications of soft
sets in BCK/BCI-algebras, BCH-algebras, WS-algebras and BL-algebras, and considered
their related properties.

On the other hand, the theory of algebraic hyperstructures, introduced by Marty in
1934 [23], is a natural generalization of the theory of algebraic structures. It has been
applied to many areas [5], such as probabilities, geometry, fuzzy sets, automata, cryptog-
raphy, combinatorics, and artificial intelligence. Several books on hyperstructure theory
have been published [5, 7, 29]. The book [7] was devoted especially to the study of
hyperring theory and applications, in which several kinds of hyperrings were introduced
and investigated. Krasner hyperring [18], which is a well known type of hyperring, has
been studied by many authors. In what follows, by a hyperring we mean a Krasner
hyperring. In [8], Davvaz and Salasi defined the notions of normal hyperideal, prime
hyperideal, maximal hyperideal, and Jacobson radical of a hyperring and obtained some
related results. Furthermore, Davvaz [9] established three isomorphism theorems of hy-
perrings, and derived the Jordan-Holder theorem for hyperrings. Moreover, Vougiouklis
[30] considered the fundamental relation on a hyperring as the smallest equivalence re-
lation so that the quotient is the fundamental ring. In [35], Zhan et al. applied fuzzy
sets to hyperrings and introduced the concept of fuzzy hyperideals of a hyperring. By
using the normal fuzzy hyperideals of a hyperring, Ma and Zhan [22] derived three fuzzy
isomorphism theorems of hyperrings. Also, they considered isomorphism theorems and
fuzzy isomorphism theorems of hypermodules [36, 37].

In this paper, we apply the notion of soft sets to hyperrings. Some related notions,
such as soft hyperrings, idealistc soft hyperrings, soft subhyperrings, soft hyperideals,
are defined, and several basic properties are investigated. Furthermore, we consider the
isomorphism of soft hyperrings, and establish three (fuzzy) isomorphism theorems of soft
hyperrings.

2. Preliminaries
In this section, we review some notions and results about hyperrings and soft sets. A

hypergroupoid (H, ◦) is a non-empty set H together with a hyperoperation ◦ defined on
H, i.e., a mapping H ×H → P∗(H), where P∗(H) is the set of all non-empty subsets
of H. If x ∈ H and A,B are subsets of H, then A ◦ B =

⋃
a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x}

and x ◦ B = {x} ◦ B. (H, ◦) is called a hypergroup if for all x, y, z ∈ H, we have
x ◦ (y ◦ z) = (x ◦ y) ◦ z and x ◦H = H ◦ x = H [27].

2.1. Definition. [18] A hyperring is an algebraic structure (R,+, ·) which satisfies the
following axioms:

(1) (R,+) is a canonical hypergroup, i.e.,
(a) for every x, y, z ∈ R, (x+ y) + z = x+ (y + z);
(b) for every x, y ∈ R, x+ y = y + x;
(c) there exists 0 ∈ R such that 0 + x = x for all x ∈ R;
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(d) for every x ∈ R there exists a unique element x′ ∈ R such that 0 ∈ x+ x′

(we shall write −x for x′ and we call it the oposite of x);
(e) z ∈ x+ y implies y ∈ −x+ z and x ∈ z − y.

(2) Relating to the multiplication, (R, ·) is a semigroup having zero as a bilaterally
absorbing element, i.e., 0 · x = x · 0 = 0 for all x ∈ R.

(3) The multiplication is distributive with respect to the hyperoperation +.

The following elementary facts follow easily from the axioms: −(−x) = x and
−(x+ y) = −x− y for all x, y ∈ R.

2.2. Example. [18] Let (R,+, ·) be a ring and N a normal subgroup of its multiplica-
tive semigroup. Then the multiplicative classes x = x · N(x ∈ R) form a partition of
R, and let R = R/N be the set of these classes. Define the hyperaddition and the mul-
tiplication on R by x⊕y = {z|z ∈ x+y} and x�y = x · y. Then (R,⊕,�) is a hyperring.

A non-empty subset S of a hyperring (R,+, ·) is called a subhyperring of R if (S,+, ·)
itself is a hyperring. A subhyperring I of R is a left (right) hyperideal of R if r · a ∈
I(a · r ∈ I) for all r ∈ R and a ∈ I. A subhyperring I is called a hyperideal if I is both
left and right hyperideal [9].

2.3. Lemma. [9] A non-empty subset I of a hyperring R is a left (right) hyperideal if
and only if (1) a, b ∈ I implies a− b ⊆ I; (2) a ∈ I, r ∈ R imply r · a ∈ I(a · r ∈ I).

A subhyperring I of a hyperring R is normal if and only if x+ I−x ⊆ I for all x ∈ R.
Let I be a normal hyperideal of a hyperring R, then for all x, y ∈ R, (I + x) + (I + y) =
I + x+ y = I + z for all z ∈ x+ y and I + x = I + y for all y ∈ I + x. If K and N are
hyperideals of a hyperring R with N normal in R, then K ∩N is a normal hyperideal of
K, and N is a normal hyperideal of K +N [9].

If I is a normal hyperideal of a hyperring R, then the relation I∗ defined by x ≡
y(mod I) if and only if (x − y) ∩ I 6= ∅ is an equivalence relation [9]. Let I∗[x] be the
equivalence class of the element x ∈ R. Then I + x = I∗[x] for all x ∈ R. On the set
of all classes R/I = {I∗[x] | x ∈ R}, the hyperoperation ⊕ and the multiplication �
are defined by I∗[x] ⊕ I∗[y] = {I∗[z] | z ∈ I∗[x] + I∗[y]}, and I∗[x] � I∗[y] = I∗[x · y],
respectively. Then (R/I,⊕,�) is a hyperring. For all I + x, I + y ∈ R/I, we have
(I + x)⊕ (I + y) = {I + z | z ∈ x+ y}.

Let R1 and R2 be two hyperrings. A mapping ϕ from R1 into R2 is called a strong
homomorphism if ϕ(a + b) = ϕ(a) + ϕ(b), ϕ(a · b) = ϕ(a) · ϕ(b), and ϕ(0) = 0, for
all a, b ∈ R1. A strong homomorphism ϕ is an isomorphism if ϕ is one to one and
onto. If ϕ is a strong homomorphism from R1 into R2, then the kernel of ϕ is the set
kerϕ = {x ∈ R1 | ϕ(x) = 0}. It is trivial that kerϕ is a hyperideal of R1, but in general
it is not normal in R1 [9].

Let U be an initial universe set and E be a set of parameters. P(U) denotes the
power set of U and A ⊆ E.

2.4. Definition. [21] A pair (F,A) is called a soft set over U , where F is a mapping
given by F : A→P(U).

In fact, a soft set over U is a parameterized family of subsets of the universe U . For
e ∈ A, F (e) may be considered as the set of e-approximate elements of the soft set (F,A).
Please readers see the reference [20] for some examples.
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2.5. Definition. [20] For two soft sets (F,A) and (G,B) over U , we say that (F,A) is
a soft subset of (G,B), denoted by (F,A)⊆̃(G,B), if the following conditions hold: (1)
A ⊆ B; (2) for all e ∈ A, F (e) ⊆ G(e). Two soft sets (F,A) and (G,B) over U are called
soft equal if (F,A)⊆̃(G,B) and (G,B)⊆̃(F,A).

2.6. Definition. [3, 20] The extended intersection (or union) of two soft sets (F,A)
and (G,B) over U is the soft set (H,C) = (F,A) ∩E (G,B) (or (F,A)∪̃(G,B)), where
C = A ∪ B, and for all e ∈ C, if e ∈ A− B, H(e) = F (e); if e ∈ B − A, H(e) = G(e); if
e ∈ A ∩B, H(e) = F (e) ∩G(e) (or F (e) ∪G(e)).

2.7. Definition. [3] The restricted intersection (or restricted union) of two soft sets
(F,A) and (G,B) over U such that A∩B 6= ∅, is the soft set (H,C) = (F,A)∩R(G,B) (or
(F,A)∪R(G,B)), where C = A∩B and for all e ∈ C, H(e) = F (e)∩G(e) (or F (e)∪G(e)).

2.8. Definition. [20] If (F,A) and (G,B) are two soft sets over U , then “(F,A) AND
(G,B) (or (F,A) OR (G,B))”, denoted by (F,A)∧̃(G,B) (or (F,A)∨̃(G,B)), is defined
as (F,A)∧̃(G,B) (or (F,A)∨̃(G,B))=(H,A × B), where H(x, y) = F (x) ∩ G(y) (or
F (x) ∪G(y)) for all (x, y) ∈ A×B.

2.9. Definition. [11] Let (F,A) be a soft set. The set Supp(F,A) = {x ∈ A | F (x) 6= ∅}
is called the support of the soft set (F,A). A soft set (F,A) is non-null if Supp(F,A) 6= ∅.

3. (Idealistic) soft hyperrings
In what follows, R denotes a hyperring and A is a nonempty set. A set-valued function

F : A → P(R) can be defined as F (x) = {y ∈ R | (x, y) ∈ ρ} for all x ∈ A, where ρ
is an arbitrary binary relation between an element of A and an element of R, i.e., ρ is a
subset of A×R, then (F,A) is a soft set over R.

3.1. Definition. Let (F,A) be a non-null soft set over R. Then (F,A) is called an
(idealistic) soft hyperring over R if F (x) is a subhyperring (hyperideal) of R for all x ∈
Supp(F,A).

3.2. Example. Suppose that R = {0, 1, 2, 3} and define the operations + and · on R as
follows:

+ 0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 2 3 0 1
3 3 2 1 0

· 0 1 2 3

0 0 0 0 0
1 0 1 2 3
2 0 1 2 3
3 0 0 0 0

Then (R,+, ·) is a hyperring [10]. Let (F,A) be a soft set over R, where A = R and
F : A→P(R) is a set-valued function defined by F (x) = {0} ∪ {y ∈ R | xρy ⇔ x+ y =
{2}} for all x ∈ A. Then F (0) = {0, 2}, F (1) = {0, 3}, F (2) = {0} and F (3) = {0, 1} are
subhyperrings of R. Hence (F,A) is a soft hyperring over R.

Let B = R and G : B → P(R) be a set-valued function defined by G(x) =
{0, 3} ∪ {y ∈ R | xρ′y ⇔ x + y ⊆ {0, 3}} for all x ∈ B. Then G(0) = G(3) = {0, 3}
and G(1) = G(2) = {0, 1, 2, 3} are hyperideals of R. Thus (G,B) is an idealistic soft
hyperring over R.
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Clearly, every idealistic soft hyperring over R is a soft hyperring over R, but the
converse is not true in general. In Example 3.2, the (F,A) is not an idealistic soft
hyperring over R since {0, 1} and {0, 2} are not hyperideals of R.

(F,A) is an (idealistic) soft hyperring over R and B ⊆ A. From the Definition 3.1,
we have that (F |B , B) is an (idealistic) soft hyperring over R when it is non-null. Next,
we give an example to show that (F,A) is not an (idealistic) soft hyperring over R, but
there exists a subset B of A such that (F |B , B) is an (idealistic) soft hyperring over R.

3.3. Example. Let R = {0, 1, 2, 3} be a set with the hyperoperation + and the multi-
plication · defined as follows:

+ 0 1 2 3

0 0 1 2 3
1 1 {0, 1} 3 {2, 3}
2 2 3 0 1
3 3 {2, 3} 1 {0, 1}

· 0 1 2 3

0 0 0 0 0
1 0 0 0 0
2 0 0 2 2
3 0 0 2 2

It follows that (R,+, ·) is a hyperring [24]. Let (F,A) be the soft set over R where
A = R and F : A → P(R) is a set-valued function defined by F (x) = {y ∈ R | xρy ⇔
x + y ⊆ {1, 3}} for all x ∈ A. Then F (1) = F (3) = {0, 2} is a hyperideal of R, but
F (0) = F (2) = {1, 3} is not a hyperideal of R, and also is not a subhyperring of R since
1 + 3 = {2, 3} * {1, 3}. Therefore, (F,A) is not an idealistic soft hyperring over R, and
also is not a soft hyperring over R. However, if we take B = {1, 3} ⊆ A, then (F |B , B)
is an idealistic soft hyperring over R. Also, it is a soft hyperring over R.

3.4. Theorem. Let (F,A) and (G,B) be two (idealistic) soft hyperrings over R, then

(1) (F,A) ∩E (G,B) is an (idealistic) soft hyperring over R if it is non-null;
(2) if A ∩ B 6= ∅, then (F,A) ∩R (G,B) is an (idealistic) soft hyperring over R

whenever it is non-null;
(3) if A ∩B = ∅, then (F,A)∪̃(G,B) is an (idealistic) soft hyperring over R;
(4) (F,A)∧̃(G,B) is an (idealistic) soft hyperring over R.

Proof. We only prove (1), and the proofs of (2)-(4) are similar. By Definition 2.6, we
have (H,C) = (F,A) ∩E (G,B). For all x ∈ Supp(H,C), if x ∈ A−B, because (F,A) is
an (idealistic) soft hyperring over R, we have H(x) = F (x) is a subhyperring (hyperideal)
of R; if x ∈ B −A, because (G,B) is an (idealistic) soft hyperring over R, H(x) = G(x)
is a subhyperring (hyperideal) of R; if x ∈ A∩B, H(x) = F (x)∩G(x) is a subhyperring
(hyperideal) of R, since the intersection of any two subhyperrings (hyperideals) of R is
also a subhyperring (hyperideal) of R. Therefore, (H,C) = (F,A) ∩E (G,B) is an (ide-
alistic) soft hyperring over R.

If A and B are not disjoint, Theorem 3.4(3) is not true in general.

3.5. Example. Consider the hyperring R defined in Example 3.3. Let A = R and
F : A → P(R) be a set-valued function defined by F (x) = {0, 1} ∪ {y ∈ R | xρy ⇔
x+ y ⊆ {2, 3}} for all x ∈ A. Then F (0) = F (1) = {0, 1, 2, 3} and F (2) = F (3) = {0, 1}
are hyperideals of R. Thus (F,A) is an idealistic soft hyperring over R.

Let B = {0, 2} and G : B → P(R) be the set-valued function defined by G(x) =
{y ∈ R | xρ′y ⇔ x + y ⊆ {0, 2}} for all x ∈ B. Then G(0) = G(2) = {0, 2} is
a hyperideal of R. Hence, (G,B) is an idealistic soft hyperring over R. However,
(H,C) = (F,A)∪̃(G,B) is not an idealistic soft hyperring over R and also is not a
soft hyperring, since H(2) = F (2) ∪ G(2) = {0, 1, 2} is not a subhyperring of R for
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1 + 2 = {3} * H(2).

3.6. Corollary. Let (Fi, Ai)i∈Λ be a non-empty family of (idealistic) soft hyperrings
over R, where Λ is an index set, then

(1) (∩E )i∈Λ(Fi, Ai) is an (idealistic) soft hyperring over R if it is non-null;
(2) if ∩i∈ΛAi 6= ∅, then (∩R)i∈Λ(Fi, Ai) is an (idealistic) soft hyperring over R

whenever it is non-null;
(3) if Ai ∩Aj = ∅ for all i, j ∈ Λ and i 6= j, then ∪̃i∈Λ(Fi, Ai) is an (idealistic) soft

hyperring over R;
(4) ∧̃i∈Λ(Fi, Ai) is an (idealistic) soft hyperring over R.

3.7. Definition. Let (F,A) be an idealistic soft hyperring over R, then (F,A) is called
an identity idealistic soft hyperring over R if F (x) = {0} for all x ∈ A; (F,A) is called
an absolute idealistic soft hyperring over R if F (x) = R for all x ∈ A.

3.8. Example. Consider the hyperring R defined in Example 3.3. Let A = R and
F : A→P(R) be the set-valued function defined by F (x) = {y ∈ R | xρy ⇔ x+y = {x}}
for all x ∈ A. Then F (0) = F (1) = F (2) = F (3) = {0} and so (F,A) is an identity
idealistic soft hyperring over R.

Let B = R and G : B → P(R) be the set-valued function defined by G(x) = {y ∈
R | xρ′y ⇔ x+ y ⊆ R} for all x ∈ B. Then G(x) = R for all x ∈ B and so (G,B) is an
absolute idealistic soft hyperring over R.

3.9. Theorem. Let ϕ be a strong homomorphism from hyperring R1 to hyperring R2.
If (F,A) is a soft hyperring over R1, then (ϕ(F ), A) is a soft hyperring over R2; if ϕ is
onto and (F,A) is an idealistic soft hyperring over R1, then (ϕ(F ), A) is an idealistic soft
hyperring over R2, where ϕ(F )(x) = ϕ(F (x)) for all x ∈ A.

Proof. Clearly, Supp(ϕ(F ), A) = Supp(F,A). For all x ∈ Supp(ϕ(F ), A), ϕ(F )(x) =
ϕ(F (x)). Since (F,A) is a soft hyperring over R1, it follows that F (x) is a subhyperring
of R1, so ϕ(F (x)) is also a subhyperring of R2. Hence, (ϕ(F ), A) is a soft hyperring over
R2. Moreover, for every x ∈ Supp(ϕ(F ), A), because F (x) is a hyperideal of R1 and ϕ is
onto, we have that ϕ(F )(x) = ϕ(F (x)) is a hyperideal of R2. Therefore, (ϕ(F ), A) is an
idealistic soft hyperring over R2.

3.10. Theorem. Let ϕ be a strong homomorphism from hyperring R1 to hyperring
R2, and (F,A) be an idealistic soft hyperring over R1. If F (x) = kerϕ for all x ∈ A,
then (ϕ(F ), A) is an identity idealistic soft hyperring over R2. If ϕ is onto and (F,A) is
an absolute idealistic soft hyperring over R1, then (ϕ(F ), A) is an absolute idealistic soft
hyperring over R2.

Proof. It is straightforward.

3.11. Definition. Let (F,A) and (G,B) be two soft hyperrings over R. Then (G,B) is
called a soft subhyperring (hyperideal) of (F,A) if B ⊆ A, and G(x) is a subhyperring
(hyperideal) of F (x) for all x ∈ Supp(G,B).

3.12. Example. Consider the hyperring R given in Example 3.2. Let A = R and
F : A → P(R) be the set-valued function defined by F (x) = {0, 2} ∪ {y ∈ R | xρy ⇔
x+ y ⊆ {1, 3}} for all x ∈ A. Then F (0) = F (2) = {0, 1, 2, 3}, and F (1) = F (3) = {0, 2}
are subhyperrings of R. Therefore, (F,A) is a soft hyperring over R.
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Let B = {1, 2, 3} ⊆ A and G : B → P(R) be the set-valued function defined by
G(x) = {0} ∪ {y ∈ R | xρ′y ⇔ x + y = {1}} for all x ∈ B. Then G(1) = {0},
G(2) = {0, 3} and G(3) = {0, 2} are hyperideals of F (1), F (2) and F (3), respectively, so
(G,B) is a soft hyperideal of (F,A).

3.13. Theorem. Let (F,A) and (G,B) be soft hyperrings over R. For all x ∈
Supp(G,B), if B ⊆ A and G(x) ⊆ F (x), then (G,B) is a soft subhyperring of (F,A). Fur-
thermore, if (G,B) is an idealistic soft hyperring over R, then (G,B) is a soft hyperideal
of (F,A).

Proof. Straightforward.

3.14. Theorem. Let (F,A) be a soft hyperring over R, and (Gi, Bi)i∈Λ be a non-empty
family of soft subhyperrings (hyperideals) of (F,A), where Λ is an index set, then

(1) (∩E )i∈Λ(Gi, Bi) is a soft subhyperring (hyperideal) of (F,A) if it is non-null;
(2) if ∩i∈ΛBi 6= ∅, then (∩R)i∈Λ(Gi, Bi) is a soft subhyperring (hyperideal) of

(F,A) whenever it is non-null;
(3) if Bi∩Bj = ∅ for all i, j ∈ Λ and i 6= j, then ∪̃i∈Λ(Gi, Bi) is a soft subhyperring

(hyperideal)of (F,A);
(4) ∧̃i∈Λ(Gi, Bi) is a soft subhyperring (hyperideal) of the soft hyperring ∧̃i∈Λ(F,A)

if it is non-null.

Proof. We only prove (1), and the proofs of (2)-(4) are similar. By Definition 2.6,
we have (H,C) = (∩E )i∈Λ(Gi, Bi), where C =

⋃
i∈Λ Bi, H(x) =

⋂
i∈Λ(x) Gi(x) and

Λ(x) = {i ∈ Λ|x ∈ Bi}, for all x ∈ C. Since (Gi, Bi)i∈Λ be a non-empty family
of soft subhyperrings (hyperideals) of (F,A), we have that C =

⋃
i∈Λ Bi ⊆ A, and

H(x) =
⋂
i∈Λ(x) Gi(x) is a subhyperring (hyperideal) of F (x), for all x ∈ Supp(H,C).

Therefore, (H,C) = (∩E )i∈Λ(Gi, Bi) is a soft subhyperring (hyperideal) of (F,A).

3.15. Theorem. Let ϕ be a strong homomorphism from hyperring R1 to hyperring R2.
If (F,A) is a soft hyperring over R1, and (G,B) is a soft subhyperring (hyperideal) of
(F,A), then (ϕ(G), B) is a soft subhyperring (hyperideal) of (ϕ(F ), A).

Proof. From Theorem 3.9, we have that (ϕ(F ), A) and (ϕ(G), B) are soft hyperrings
over R2. Clearly, Supp(ϕ(G), B) = Supp(G,B). It follows that B ⊆ A and G(x) is a
subhyperring of F (x) for all x ∈ Supp(G,B), because (G,B) is a soft subhyperring of
(F,A). So ϕ(G)(x) ⊆ ϕ(F )(x) for all x ∈ Supp(ϕ(G), B). According to Theorem 3.13,
(ϕ(G), B) is a soft subhyperring of (ϕ(F ), A).

Now, for all x ∈ Supp(ϕ(G), B), r′ ∈ ϕ(F )(x), a′ ∈ ϕ(G)(x), there exists r ∈ F (x),
a ∈ G(x) such that ϕ(r) = r′, ϕ(a) = a′. Because G(x) is a hyperideal of F (x), we have
that r′ · a′ = ϕ(r) · ϕ(a) = ϕ(r · a) ∈ ϕ(G(x)) = ϕ(G)(x) and a′ · r′ = ϕ(a) · ϕ(r) =
ϕ(a · r) ∈ ϕ(G(x)) = ϕ(G)(x). It follows that ϕ(G)(x) is a hyperideal of ϕ(F )(x) for all
x ∈ Supp(ϕ(G), B). Therefore, (ϕ(G), B) is a soft hyperideal of (ϕ(F ), A).

4. Isomorphism theorems of soft hyperrings
In this section, we consider the isomorphism theorems of soft hyperrings. First, we

give the notions of soft homomorphism, soft monomorphism, soft epimorphism, and soft
isomorphism.

4.1. Definition. Let (F,A) and (G,B) be soft hyperrings over hyperring R1 and hy-
perring R2, respectively, and ϕ : R1 → R2 and ψ : A → B be two mappings. If ϕ is a
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strong homomorphism and for all x ∈ A, ϕ(F (x)) = G(ψ(x)), then (ϕ,ψ) is called a soft
homomorphism, and (F,A) is soft homomorphic to (G,B), denoted by (F,A) ∼ (G,B).
If ϕ is a monomorphism (resp. epimorphism, isomorphism) and ψ is a injective (resp.
surjective, bijective) mapping, then (ϕ,ψ) is called a soft monomorphism (resp. epimor-
phism, isomorphism), and (F,A) is soft monomorphic (resp. epimorphic, isomorphic) to
(G,B). (F,A) ' (G,B) is used to denote that (F,A) is soft isomorphic to (G,B).

4.2. Theorem. Let (F,A) and (G,B) be soft hyperrings over hyperring R1 and hyper-
ring R2, respectively, and (F,A) be soft epimorphic to (G,B). If (F,A) is an idealistic
soft hyperring over R1, then (G,B) is an idealistic soft hyperring over R2.

Proof. Suppose that (ϕ,ψ) is a soft epimorphism from (F,A) to (G,B). For every x ∈
Supp(F,A), F (x) is a hyperideal of R1, by Theorem 3.9, we have that ϕ(F (x)) a hy-
perideal of R2. For every y ∈ Supp(G,B), there exists x ∈ A such that ψ(x) = y, so
G(y) = G(ψ(x)) = ϕ(F (x)) is a hyperideal of R2. It follows that (G,B) is an idealistic
soft hyperring over R2.

In what follows, we say that (F/I,A) is a soft hyperring over R/I, which means
(F/I)(x) = F (x)/I for all x ∈ A, I ⊆ F (x) for all x ∈ Supp(F,A), and (F/I)(x) = ∅ for
x ∈ A− Supp(F,A), where (F,A) is a soft hyperring over R, and I is a normal hyperideal
of R.

4.3. Theorem. Let I be a normal hyperideal of R, and (F,A) be a soft hyperring over
R, then (F,A) is soft epimorphic to (F/I,A).

Proof. Since I ⊆ F (x) for all x ∈ Supp(F,A), it follows that F (x)/I is a subhyperring
of R/I. So (F/I,A) is a soft hyperring over R/I. Define ϕ : R → R/I by ϕ(x) = I∗[x],
for all x ∈ R, then ϕ is an epimorphism. Define ψ : A → A by ψ(x) = x for all x ∈ A.
Clearly, ψ is surjective. For all x ∈ A, ϕ(F (x)) = F (x)/I = F (ψ(x))/I. Therefore, (ϕ,ψ)
is a soft epimorphism, and (F,A) is soft epimorphic to (F/I,A).

4.4. Theorem. (First Isomorphism Theorem) Let (F,A) and (G,B) be soft hyperrings
over hyperring R1 and hyperring R2, respectively. If (ϕ,ψ) is a soft epimorphism from
(F,A) to (G,B) with kernel I such that I is a normal hyperideal of R1, then (F/I,A) '
(ϕ(F ), A). Moreover, if ψ is bijective, then (F/I,A) ' (G,B).

Proof. Clearly, (F/I,A) and (ϕ(F ), A) are soft hyperrings over R1/I and R2, respec-
tively. We define ϕ′ : R1/I → R2 by ϕ′(I∗[x]) = ϕ(x), for all x ∈ R1. According to the
first isomorphism theorem of hyperrings, ϕ′ is an isomorphism. Define ψ′ : A → A by
ψ′(x) = x for all x ∈ A, then ψ′ is bijective. Also ϕ′(F (x)/I) = ϕ(F (x)) = ϕ(F (ψ′(x)))
for all x ∈ A. It follows that (ϕ′, ψ′) is a soft isomorphism, and (F/I,A) ' (ϕ(F ), A).
Moreover, since ϕ′ is an isomorphism, ψ is bijective and for all x ∈ A, ϕ′(F (x)/I) =
ϕ(F (x)) = G(ψ(x)). So (ϕ′, ψ) is a soft isomorphism, and (F/I,A) ' (G,B).

4.5. Theorem. (Second Isomorphism Theorem) Let I and K be hyperideals of R, with
I normal in R. If (F,A) is a soft hyperring of K, then (F/(I ∩K), A) ' ((I + F )/I,A).

Proof. Clearly, (F/(I ∩K), A) and ((I+F )/I,A) are soft hyperring over (K/(I ∩K) and
(I+K)/I, respectively. ϕ : K → (I+K)/I is defined by ϕ(x) = I∗[x] for all x ∈ K. Then
ϕ is an epimorphism. ψ : A→ A is defined by ψ(x) = x for all x ∈ A. Then ψ is bijective.
For all x ∈ A, we have ϕ(F (x)) = {I∗[a] | a ∈ F (x)} = (I + F (x))/I = (I + F (ψ(x)))/I.
For {I∗[a] | a ∈ F (x)} = (I + F (x))/I, the proof is showed as follows.
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Clearly, {I∗[a] | a ∈ F (x)} ⊆ (I + F (x))/I. For any I∗[b] ∈ (I + F (x))/I, where
b ∈ I + F (x), which implies that there exist i ∈ I and k ∈ F (x) such that b ∈ i + k, so
I∗[b] = I + b = I + i+ k = I + k = I∗[k] ∈ {I∗[a] | a ∈ F (x)}.

Therefore, (ϕ,ψ) is a soft epimorphism from (F,A) to ((I+F )/I,A). Since I ∩K is a
normal hyperideal of K, if kerϕ = I ∩K, then, by Theorem 4.4, (F/(I ∩K), A) ' ((I +
F )/I,A). For any x ∈ K, x ∈ kerϕ ⇔ ϕ(x) = I∗[0] = I ⇔ I∗[x] = I + x = I ⇔ x ∈ I
(since x ∈ K)⇔ x ∈ I ∩K.

4.6. Theorem. (Third Isomorphism Theorem) Let K and I be normal hyperideals of
R such that I ⊆ K. If (F,A) is a soft hyperring over R, and K ⊆ F (x) for all x ∈
Supp(F,A), then ((F/I)/(K/I), A) ' (F/K,A).

Proof. We have that K/I is a normal hyperideal of R/I, because K and I are normal
hyperideals of R with I ⊆ K. Thus, (R/I)/(K/I) is defined. Since F (x) is a subhyperring
of R and I ⊆ K ⊆ F (x) for all x ∈ Supp(F,A), (F (x)/I)/(K/I) is defined and is a
subhyperring of (R/I)/(K/I). Clearly, Supp((F/I)/(K/I), A)= Supp(F,A). It follows
that ((F/I)/(K/I), A) is a soft hyperring over (R/I)/(K/I). Also, it is easy to obtain
that (F/I,A) and (F/K,A) are soft hyperrings over R/I and R/K, respectively. ϕ :
R/I → R/K, defined by ϕ(I∗[x]) = K∗[x], is an epimorphism, and ψ : A → A, defined
by ψ(x) = x for all x ∈ A, is bijective. Moreover, for all x ∈ A, ϕ(F (x)/I) = F (x)/K =
F (ψ(x))/K. So (ϕ,ψ) is a soft epimorphism from (F/I,A) to (F/K,A). By Theorem
4.4, if kerf = K/I, then ((F/I)/(K/I), A) ' (F/K,A). For any I∗[x] ∈ R/I, I∗[x] ∈
kerf ⇔ f(I∗[x]) = K∗[0] = K ⇔ K∗[x] = K + x = K ⇔ x ∈ K ⇔ I∗[x] ∈ K/I.

5. Fuzzy isomorphism theorems of soft hyperrings
In this scetion, we eatablish three fuzzy isomorphism theorems of soft hyperrings.

Firstly, we review some related results about fuzzy hyperideal of hyperrings [22, 35].
A fuzzy set µ of a hyperring R is called a fuzzy hyperideal of R if the following

conditions hold: (1) min{µ(x), µ(y)} ≤ infz∈x+y µ(z) for all x, y ∈ R; (2) µ(x) ≤ µ(−x)
for all x ∈ R; (3) max{µ(x), µ(y)} ≤ µ(xy) for all x, y ∈ R. A fuzzy hyperideal µ of R is
called normal if µ(y) ≤ infα∈x+y−x µ(α) for all x, y ∈ R.

Let µ be a normal fuzzy hyperideal of R. Define the relation on R: x ≡ y(mod µ) if
and only if there exists α ∈ x − y such that µ(α) = µ(0), denoted by xµ∗y, and µ∗ is
an equivalence relation. If xµ∗y, then µ(x) = µ(y). Let µ∗[x] be the equivalence class
containing x ∈ R, and R/µ be the set of all equivalence classes, i.e., R/µ = {µ∗[x] | x ∈
R}. Define operations ⊕ and � in R/µ by µ∗[x] ⊕ µ∗[y] = {µ∗[z] | z ∈ µ∗[x] + µ∗[y]},
and µ∗[x]� µ∗[y] = µ∗[x · y], respectively. Then (R/µ,⊕,�) is a hyperring.

Let I be a normal hyperideal of R, and µ be a normal fuzzy hyperideal of R. If µ is
restricted to I, then µ is a normal fuzzy hyperideal of I, and I/µ is a normal hyperideal of
R/µ. If µ and ν are normal fuzzy hyperideals of R, then µ∩ν is normal fuzzy hyperideals
of R.

IfX and Y are two non-empty sets, ϕ : X → Y is a mapping, and µ and ν are the fuzzy
sets of X and Y , respectively, then the image ϕ(µ) of µ is the fuzzy subset of Y defined as
follows: for all y ∈ Y , if ϕ−1(y) 6= ∅, ϕ(µ)(y) = sup

x∈ϕ−1(y)

{µ(x)}; otherwise, ϕ(µ)(y) = 0.

The inverse image ϕ−1(ν) of ν is the fuzzy subset of X defined by ϕ−1(ν)(x) = ν(ϕ(x))
for all x ∈ X.

Let R1 and R2 be two hyperrings, and ϕ : R1 → R2 be a strong homomorphism. If
µ and ν are (normal) fuzzy hyperideals of R1 and R2, respectively, then (1) ϕ(µ) is a
(normal) fuzzy hyperideal of R2; (2) if ϕ is onto, then ϕ−1(ν) is a (normal) fuzzy hyper-
ideal of R1. If µ and ν are normal fuzzy hyperideals of R1 and R2, respectively, then (1)
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if ϕ is onto, then ϕ(ϕ−1(ν)) = ν; (2) if µ is a constant on kerϕ, then ϕ−1(ϕ(µ)) = µ.
Let µ be a normal fuzzy hyperideal of R, then Rµ = {x ∈ R | µ(x) = µ(0)} is a normal
hyperideal of R.

5.1. Theorem. (First Fuzzy Isomorphism Theorem) Let (F,A) and (G,B) be soft hy-
perrings over hyperring R1 and hyperring R2, respectively. If (ϕ,ψ) is a soft epimorphism
from (F,A) to (G,B) and µ is a normal fuzzy hyperideal of R1 with (R1)µ ⊇ kerϕ, then
(F/µ,A) ' (ϕ(F )/ϕ(µ), A), where (F/µ)(x) = F (x)/µ for all x ∈ A. Moreover, if ψ is
bijective, then (F/µ,A) ' (G/ϕ(µ), B).

Proof. We obtain that (F/µ,A) is a soft hyperring over R1/µ, since (F,A) is soft hy-
perring over R1, and µ is a normal fuzzy hyperideal of R1. For all x ∈ Supp(F,A),
ϕ(F (x)) = G(ψ(x)) is a subhyperring of R2, so (ϕ(F )/ϕ(µ), A) is a soft hyperring over
R2/ϕ(µ). ϕ′ : R1/µ → R2/ϕ(µ) defined by ϕ′(µ∗[x]) = ϕ(µ)∗[ϕ(x)], for all x ∈ R1,
is an isomorphism, by the first fuzzy isomorphism theorem of hyperrings. ψ′ : A → A
defined by ψ′(x) = x for all x ∈ A, is bijective. Moreover, ϕ′(F (x)/µ) = {ϕ(µ)∗[a] | a ∈
ϕ(F (x))} = ϕ(F (x))/ϕ(µ) = ϕ(F (ψ′(x)))/ϕ(µ), for all x ∈ A. It follows that (ϕ′, ψ′) is
a soft isomorphism, and (F/µ,A) ' (ϕ(F )/ϕ(µ), A).

Moreover, for all x ∈ A, we have that ϕ′(F (x)/µ) = {ϕ(µ)∗[a] | a ∈ ϕ(F (x))} =
ϕ(F (x))/ϕ(µ) = G(ψ(x))/ϕ(µ). ϕ′ is an isomorphism, and ψ is bijective. It follows that
(ϕ′, ψ) is a soft isomorphism, and (F/µ,A) ' (G/ϕ(µ), B).

5.2. Theorem. Let (F,A) and (G,B) be soft hyperrings over hyperring R1 and hy-
perring R2 respectively. If (ϕ,ψ) is a soft epimorphism from (F,A) to (G,B) and ν is
a normal fuzzy hyperideal of R2, then (F/ϕ−1(ν), A) ' (ϕ(F )/ν,A). Moreover, if ψ is
bijective, then (F/ϕ−1(ν), A) ' (G/ν,B).

Proof. Since ν is a normal fuzzy hyperideal of R2 and ϕ is an epimorphism, we have
that ϕ(ϕ−1(ν)) = ν and ϕ−1(ν) is a normal fuzzy hyperideal of R1. Thus, (F/ϕ−1(ν), A)
and (ϕ(F )/ν,A) are soft hyperrings over hyperrings R1/ϕ

−1(ν) and R2/ν, respectively.
For any x ∈ kerϕ, ϕ(x) = ϕ(0). It follows that ν(ϕ(x)) = ν(ϕ(0)), i.e., ϕ−1(ν)(x) =
ϕ−1(ν)(0), which implies that x ∈ (R1)ϕ−1(ν). So (R1)ϕ−1(ν) ⊇ kerϕ. By Theorem
5.1, we have (F/ϕ−1(ν), A) ' (ϕ(F )/ν,A). Furthermore, if ψ is bijective, then we have
(F/ϕ−1(ν), A) ' (G/ν,B).

5.3. Theorem. (Second Fuzzy Isomorphism Theorem) Let (F,A) be a soft hyperring
over R. If µ and ν are two normal fuzzy hyperideals with µ(0) = ν(0), then (Fµ/(µ ∩
ν), A) ' ((Fµ + Fν)/ν,A).

Proof. We have that µ ∩ ν and ν are normal fuzzy hyperideal of Rµ and Rµ + Rν ,
respectively. It follows that Rµ/(µ ∩ ν) and (Rµ +Rν)/ν are hyperrings. Since (F,A) is
a soft hyperring over R, we can obtain easily that (Fµ/(µ ∩ ν), A) and ((Fµ + Fν)/ν,A)
are soft hyperrings over Rµ/(µ ∩ ν) and (Rµ + Rν)/ν, respectively. ϕ : Rµ/(µ ∩ ν) →
(Rµ+Rν)/ν is defined by ϕ((µ∩ν)∗[x]) = ν∗[x] for all x ∈ Rµ. If (µ∩ν)∗[x] = (µ∩ν)∗[y],
then (µ∩ν)(x) = (µ∩ν)(y), i.e., min{(µ(x), ν(x)} = min{(µ(y), ν(y)}. Because x, y ∈ Rµ
and µ(0) = ν(0), we have µ(x) = µ(0) = ν(0) and µ(y) = µ(0) = ν(0). So ν(x) = ν(y).
It follows that ν∗(x) = ν∗(y). Thus, ϕ is well-defined. Moreover, we have

ϕ((µ ∩ ν)∗[x]⊕ (µ ∩ ν)∗[y]) = ϕ({(µ ∩ ν)∗[z] | z ∈ (µ ∩ ν)∗[x] + (µ ∩ ν)∗[y]})

= {ν∗[z] | z ∈ (µ ∩ ν)∗[x] + (µ ∩ ν)∗[y]} = ν∗((µ ∩ ν)∗[x])⊕ ν∗((µ ∩ ν)∗[y])

= ϕ((µ ∩ ν)∗[x])⊕ ϕ((µ ∩ ν)∗[y]),
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ϕ((µ ∩ ν)∗[x]� (µ ∩ ν)∗[y]) = ϕ((µ ∩ ν)∗[x · y]) = ν∗[x · y]

= ν∗[x]� ν∗[y] = ϕ((µ ∩ ν)∗[x])� ϕ((µ ∩ ν)∗[y])

and ϕ((µ ∩ ν)∗[0]) = ν∗[0] = 0. Consequently, ϕ is a homomorphism.
If (µ∩ν)∗[x] 6= (µ∩ν)∗[y], we have (µ∩ν)(x) 6= (µ∩ν)(y). It follows that ν(x) 6= ν(y),

so ν∗[x] 6= ν∗[y]. Hence, ϕ is a monomorphism. For any ν∗[x] ∈ (Rµ + Rν)/ν, where
x ∈ Rµ + Rν , which implies that there exist a ∈ Rµ and b ∈ Rν such that x ∈ a + b,
there is α ∈ x− a ⊆ a+ b− a ⊆ Rν , i.e., ν(α) = ν(0). Hence we have ν∗[x] = ν∗[a]. So
ϕ((µ ∩ ν)∗[a]) = ν∗[x], and ϕ is an epimorphism. Thus, ϕ is an isomorphism.
ψ : A→ A defined by ψ(x) = x for all x ∈ A, is bijective. For all x ∈ A, ϕ(Fµ(x)/(µ∩

ν)) = Fµ(x)/ν = (Fµ + Fν)(x)/ν = (Fµ + Fν)(ψ(x))/ν. The proof of Fµ(x)/ν = (Fµ +
Fν)(x)/ν is showed as follows.

Clearly, Fµ(x)/ν ⊆ (Fµ + Fν)(x)/ν. For all ν∗[a] ∈ (Fµ + Fν)(x)/ν, where a ∈
(Fµ + Fν)(x), which implies that there exist m ∈ Fµ(x) and n ∈ Fν(x) such that a ∈
m + n, there is α ∈ a − m ⊆ m + n − m ⊆ Fν(x), i.e., ν(α) = ν(0). It follows that
ν∗[a] = ν∗[m] ∈ Fµ(x)/ν.

Therefore, (ϕ,ψ) is a soft isomorphism and (Fµ/µ ∩ ν,A) ' ((Fµ + Fν)/ν,A).

5.4. Theorem. (Third Fuzzy Isomorphism Theorem) Let (F,A) be a soft hyperring
over a hyperring R. If µ and ν are two normal fuzzy hyperideals with ν ≤ µ, µ(0) = ν(0)
and Fµ(x) = Rµ for all x ∈Supp(F,A), then ((F/ν)/(Fµ/ν), A) ' (F/µ,A).

Proof. We can easily deduce that Rµ/ν is a normal hyperideal of R/ν. Because (F,A) be
a soft hyperring over R, we have that (F/ν,A), ((F/ν)/(Fµ/ν), A) and (F/µ,A) are soft
hyperrings over R/ν, (R/ν)/(Rµ/ν) and R/µ, respectively. ϕ : R/ν → R/µ is defined
by ϕ(ν∗[x]) = µ∗[x] for all x ∈ R. If ν∗[x] = ν∗[y] for all x, y ∈ R, then there exists
α ∈ x− y such that ν(α) = ν(0). Because ν ≤ µ and µ(0) = ν(0), we get µ(α) ≥ ν(α) =
ν(0) = µ(0), which implies that µ(α) = µ(0). So we have µ∗[x] = µ∗[y]. Thus, ϕ is
well-defined. Clearly, ϕ is an epimorphism. ψ : A→ A defined by g(x) = x for all x ∈ A,
is bijective. For all x ∈ A, ϕ(F (x)/ν) = F (x)/µ = F (ψ(x))/µ. Hence, (ϕ,ψ) is a soft
epimorphism from (F/ν,A) to (F/µ,A). Moreover, kerϕ = {ν∗[x] ∈ R/ν | ϕ(ν∗[x]) =
µ∗[0]} = {ν∗[x] ∈ R/ν | µ∗[x] = µ∗[0]} = {ν∗[x] ∈ R/ν | µ(x) = µ(0)} = {ν∗[x] ∈ R/ν |
x ∈ Rµ} = Rµ/ν. By Theorem 4.4, we have ((F/ν)/(Fµ/ν), A) ' (F/µ,A).

6. Conclusions
In this paper, we define soft hyperrings, idealistic soft hyperrings, soft subhyperrings

and soft hyperideals, and introduce homomorphism and isomorphism of soft hyperrings.
Furthermore, we generalize three (fuzzy) isomorphism theorems of hyperrings to three
(fuzzy) isomorphism theorems of soft hyperrings. Based on these results, we will apply
the notion of soft sets to other algebraic hyperstructures, and consider some applications
of soft hyperrings in decision making problems.
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In this paper we study the oscillation of the fractional neutral differen-
tial equation

Dα
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t (x(t) + p(t)x(τ(t)))] + q(t)x(σ(t)) = 0,

where Dα
t is a modified Riemann-Liouville derivative. The obtained

results are based on the new comparison theorems, which enable us to
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1. Introduction
In this paper, we shall study the oscillation behavior of a class of fractional neutral

differential equations with the form

(1.1) Dα
t [a(t)Dα

t (x(t) + p(t)x(τ(t)))] + q(t)x(σ(t)) = 0, t ≥ t0 > 0, 0 < α < 1,

where Dα
t denotes the modified Riemann-Liouville derivative [1] with respect to the vari-

able t, q(t) ∈ C([t0,+∞)), Dα
t a(t) ∈ C([t0,+∞)), D2α

t p(t) ∈ C([t0,+∞)), and we define
z(t) = x(t) + p(t)x(τ(t)). The equation also satisfies that:

(H1) a(t) > 0, q(t) > 0, 0 ≤ p(t) ≤ p0 <∞;
(H2) lim

t→+∞
τ(t) = +∞, lim

t→+∞
σ(t) = +∞;

(H3) τ ′(t) ≥ τ0 > 0, τ ◦ σ = σ ◦ τ ;
(H4) t

τ(t)
≥ l > 0.

In recent years, there has been much research activity concerning the fractional differ-
ential equation and many useful achievement have been obtained. Due to the fractional
differential equation is more realistic in describing some practical models, it has been used
widely in establishing mathematical models in electrochemistry, control, electromagnetic
field theories and other natural phenomena and physical problems. Furthermore, it can
also provide an excellent instrument for the description of memory and hereditary prop-
erties of various materials and processes due to the existence of a “memory" term in the
model. Its initial and boundary value problems, stability of solutions, explicit and nu-
merical solutions and many other properties have obtained significant development [2–6].
Particularly, the oscillation of fractional differential equations as a new research field has
been received attention, and some interesting results have already been obtained. The
relative works we refer to [7–17].

In 2012, Grace et al. [7] studied the oscillation theory for fractional differential equa-
tions by considering equations of the form

Dq
ax+ f1(t, x) = v(t) + f2(t, x), lim

t→a+
J1−q
a x(t) = b1,

under the conditions

xfi(t, x) > 0 for i = 1, 2, x 6= 0, and t ≥ a,

and

|f1(t, x)| > p1(t)|x|β and |f2(t, x)| > p2(t)|x|γ for x 6= 0, and t ≥ a,

where Dq
a denotes the Riemann-Liouville differential operator of order q with 0 < q ≤ 1,

and the operator Jpa is the Rieman-Liouville fractional integral operator. The authors
obtained some new oscillation criteria by reducing the fractional differential equation to
the equivalent Volterra fractional integral equation and by applying inequality technique.

In 2012, Chen et al. [8] studied the oscillatory behavior of the following fractional
differential equation

[r(t)(Dα
−y)η(t)]′ − q(t)f(

∫ ∞
t

(v − t)−αy(v)dv) = 0 for t > 0,

where Dα
−y denotes the Liouville right-sided fractional derivative of order α with the

form

(Dα
−y)(t) := − 1

Γ(1− α)

d

dt

∫ ∞
t

(v − t)−αy(v)dv for t ∈ R+ := (0,∞).

By the Riccati transformation technique the authors obtained some sufficient conditions,
which guarantee that every solution of the equation is oscillatory.
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Using the same method, in 2013, Chen [9] studied oscillatory behavior of the fractional
differential equation in the form

(D1+α
− y)(t)− p(t)(Dα

−y)(t) + q(t)f(

∫ ∞
t

(v − t)−αy(v)dv) = 0 for t > 0,

where Dα
−y is the Liouville right-sided fractional derivative of order α ∈ (0, 1) of y.

Zheng [10] considered the oscillation of the nonlinear fractional differential equation
with damping term

[a(t)(Dα
−x(t))γ ]′ + p(t)(Dα

−x(t))γ − q(t)f(

∫ ∞
t

(ξ − t)−αx(ξ)dξ) = 0, t ∈ [t0,∞),

where Dα
−x(t) denotes the Liouville right-sided fractional derivative of order α of x.

Using a generalized Riccati function and inequality technique, he established some new
oscillation criteria.

Han et al. [11] considered the oscillation for a class of fractional differential equation[
r(t)g ((Dα

−y)(t))
]′ − p(t)f (∫ ∞

t

(s− t)−αy(s)ds

)
= 0, for t > 0,

where 0 < α < 1 is a real number, Dα
−y is the Liouville right-sided fractional derivative

of order α of y. By generalized Riccati transformation technique, oscillation criteria for
the nonlinear fractional differential equation are obtained.

In this paper we focus on the fractional neutral differential equations involving a
modified Riemann-Liouville derivative, which is given by Jumarie in [1] (see also in [18–
22]). The modified Riemann-Liouville derivative is defined as

Dα
t f(t) =

{
1

Γ(1−α)
d
dt

∫ t
0

(t− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1,

(f (n)(t))(α−n), n ≤ α < n+ 1, n ≥ 1.

And it has some properties that

(1.2) Dα
t t
r =

Γ(1 + r)

Γ(1 + r − α)
tr−α,

(1.3) Dα
t (f(t)g(t)) = g(t)Dα

t f(t) + f(t)Dα
t g(t),

(1.4) Dα
t f [g(t)] = f ′g[g(t)]Dα

t g(t) = Dα
g f [g(t)](g′(t))α.

Due to having these especial properties, it can be more appropriately used in studying
the oscillatory behavior of the fractional differential equations.

In [12], Feng et al. considered the fractional differential equation involving the deriv-
ative of this type in the form

Dα
t [r(t)ψ(x(t))Dα

t x(t)] + q(t)f(x(t)) = e(t), t ≥ t0 > 0, 0 < α < 1,

where Dα
t (·) denotes the modified Riemann-Liouville derivative. Based on a transfor-

mation of variables and properties of the modified Riemann-Liouville derivative, they
transformed the fractional differential equation into a second-order ordinary differential
equation. Then by a generalized Riccati transformation, inequalities, and an integration
average technique, they established some oscillation criteria for the fractional differential
equation.

In [13], Liu et al. concerned with oscillation of a class of fractional differential equa-
tions under the modified Riemann-Liouville derivative

Dα
t [a(t)(Dα

t (r(t)Dα
t x(t)))γ ] + q(t)f(x(t)) = 0, t ≥ t0 > 0, 0 < α < 1,
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where Dα
t (·) denotes the modified Riemann-Liouville derivative and they put some suf-

ficient conditions about the oscillation of the equation.
Although the oscillation of fractional differential equation has been initiated to study

by some authors, to the best of our knowledge very little is known in the literature
regarding the oscillatory behavior of fractional neutral differential equations up to now.

Regarding the integer case of our equation (1.1), that is, α = 1, B. Baculíková et al.
in their article [23] have studied the second-order neutral differential equation

(1.5) (r(t)[x(t) + p(t)x(τ(t))]′)′ + q(t)x(σ(t)) = 0.

By comparison theorem, they established some oscillation criteria for the equation (1.5).
They proved that: when σ(t) ≤ t, if

lim inf
t→∞

∫ t

σ(t)

Q(s)R(σ(s))ds >
τ0 + p0

τ0e
,

where Q(t) = min{q(t), q(τ(t))}, R(t) =
∫ t
t0

1
r(s)

ds, then (1.5) is oscillatory.
Moreover, in article [24], B. Baculíková et al. investigated the oscillation for the

nonlinear case. They studied the equation in the form

(1.6) (a(t)[z′(t)]γ)′ + q(t)xβ(σ(t)) = 0,

where z(t) = x(t) + p(t)x(τ(t)). Also by comparison theorem, they established some
sufficiently conditions for the oscillation of equation (1.6).

In this paper we will consider the oscillation of fractional neutral differential equation
(1.1). Comparing to the method used by Feng and Liu [12,13], we will reduce a fractional
differential equations to an integer one by appropriate variable transforms and establish
some new comparison theorems and then use them to reduce the problem of the fractional
order differential equation to the problem of second-order differential equations. In order
to treat the delay or advance term in our equations, in this paper, we establish some
new variable transformations so that the variable transformation method in [12, 13] can
be applied for more classes of fractional differential equations, such as fractional neutral
differential equations and fractional differential equations with delays. We also extend
B. Baculíková and J. Džurina’s results to the fractional order differential equations.

We organize this article as follows. In the next section, we give a transformation of
variables to the fractional differential equation similar to that in the references [12, 13],
and provide a new transformation on account of the delay term. So we can translate our
fractional neutral differential equation to a second-order neutral differential equation. In
Section 3, we first establish some new comparison theorems and then use them to get
some sufficient conditions for oscillation of all solutions of (1.1). At the last we provide
some examples to show applications of our criteria.

A solution of the equation is said to be oscillatory if it is neither eventually positive
nor eventually negative. Otherwise it is nonoscillatory. Equation is said to be oscillatory
if all its solutions are oscillatory.

2. Some preliminary lemmas

First we will use a variable substitution. Denote ξ = y(t) = tα

Γ(1+α)
, ξi = y(ti) =

tαi
Γ(1+α)

, i = 0, 1, x(t) = x̃(ξ), a(t) = ã(ξ), p(t) = p̃(ξ), q(t) = q̃(ξ).

Towards to τ(t), σ(t), we have the next transformations.

2.1. Lemma. Suppose (H3), (H4) hold, we define the functions τ̃(ξ), σ̃(ξ) as the fol-
lowing forms

τ̃(ξ) = y(τ(y−1(ξ))),
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σ̃(ξ) = y(σ(y−1(ξ))),

then it satisfies
x(τ(t)) = x̃(τ̃(ξ)), x(σ(t)) = x̃(σ̃(ξ));

and a new condition

(H ′3) : τ̃ ′(ξ) ≥ τ0l1−α = τ̃0 > 0, τ̃ ◦ σ̃ = σ̃ ◦ τ̃ .

Proof. From the defines of τ̃ , σ̃ we get

x̃(τ̃(ξ)) = x̃(y(τ(y−1(ξ)))) = x̃(y(τ(t))).

Due to
x(t) = x̃(ξ) = x̃(y(t)),

substituting t with τ(t) we get

x̃(y(τ(t))) = x(τ(t)).

Thus
x̃(τ̃(ξ)) = x(τ(t)).

The same is
x̃(σ̃(ξ)) = x(σ(t)).

On the other hand, from H3, H4 and the defines of τ̃ we get

τ̃◦σ̃ = y(τ(y−1(σ̃(ξ)))) = y(τ(y−1(y(σ(y−1(ξ)))))) = y(τ(σ(y−1(ξ)))) = y(σ(τ(y−1(ξ)))) = σ̃◦τ̃ .
Also we have that,

τ̃ ′(ξ) = ∂
∂ξ
y(τ(y−1(ξ))) = ∂y(τ(y−1(ξ)))

∂τ(y−1(ξ))
× ∂τ(y−1(ξ))

∂y−1(ξ)
× ∂y−1(ξ)

∂ξ

= ∂y(τ(t))
∂τ(t)

× ∂τ(t)
∂t
× ∂y−1(ξ)

∂ξ

≥ α(τ(t))α−1

Γ(1+α)
× τ0 × 1

α
(Γ(1 + α))

1
α ξ

1
α
−1

= α(τ(t))α−1

Γ(1+α)
× τ0 × 1

α
(Γ(1 + α))

1
α ( tα

Γ(1+α)
)

1
α
−1

= τ0( t
τ(t)

)1−α

≥ τ0l1−α = τ̃0.

The proof is complete.

2.2. Lemma. If x(t) is a eventually positive solution of (1.1), and a sufficient large t1
such that

(2.1) R(t) =

∫ t

t1

1

a(s)
ds→ +∞ as t→ +∞,

then the corresponding function z(t) = x(t) + p(t)x(τ(t)) satisfies

z(t) > 0, a(t)Dα
t (z(t)) > 0, Dα

t [a(t)Dα
t (z(t))] < 0,

eventually.

Proof. Let x(t) = x̃(ξ), where ξ = tα

Γ(1+α)
. Then from (1.2) we get Dα

t ξ(t) = 1, and
furthermore by use of (1.4) and Lemma 2.1 we have

Dα
t x(t) = Dα

t x̃(ξ) = x̃′(ξ)Dα
t ξ(t) = x̃′(ξ),

Dα
t x(τ(t)) = Dα

t x̃(τ̃(ξ)) = (x̃(τ̃(ξ)))′Dα
t ξ(t) = (x̃(τ̃(ξ)))′.
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Similarly we have Dα
t a(t) = ã′(ξ), Dα

t p(t) = p̃′(ξ), Dα
t q(t) = q̃′(ξ) and Dα

t x(σ(t)) =
(x̃(σ̃(ξ)))′. Then we get Dα

t z(t) = (x̃(ξ) + p̃(ξ)x̃(τ̃(ξ)))′. We define z̃(ξ) = x̃(ξ) +
p̃(ξ)x̃(τ̃(ξ)), then Dα

t z(t) = z̃′(ξ). So the equation (1.1) can be transformed into the
following form:

(2.2) (ã(ξ)z̃′(ξ))′ + q̃(ξ)x̃(σ̃(ξ)) = 0, ξ ≥ ξ0 > 0.

Since x(t) is an eventually positive solution of (1.1), x̃(ξ) is an eventually positive solution
of (2.2). Hence there exists ξ1 > ξ0 such that x̃(ξ) > 0 on [ξ1,∞). Also we know z̃(ξ) > 0
on [ξ1,∞). It follows from (2.2) that

(ã(ξ)z̃′(ξ))′ = −q̃(ξ)x̃(σ̃(ξ)) < 0,

holds eventually. Consequently, ã(ξ)z̃′(ξ) is decreasing and thus either z̃′(ξ) > 0 or
z̃′(ξ) < 0 eventually. We claim z̃′(ξ) > 0. Otherwise if z̃′(ξ) < 0, then also ã(ξ)z̃′(ξ) <
−c < 0 and integrating this from ξ1 to ξ, we have

z̃(ξ) ≤ z̃(ξ1)− c
∫ ξ

ξ1

1

ã(s)
ds = z̃(ξ1)− c

∫ t

t1

1

a(s)
ds→ −∞ as t→ +∞.

This contradicts the positivity of z̃(ξ) and the proof is complete.

3. Main results
To simplify our notation, let us denote

(3.1) Q(ξ) = min{q̃(ξ), q̃(τ̃(ξ))}, Q∗(ξ) = Q(ξ)

∫ ξ

ξ1

1

ã(s)
ds,

where ξ1 is defined in Lemma 2.2.

3.1. Theorem. If the first order neutral differential inequality

(3.2) (u(t) +
p0

τ̃0
u(τ̃(t)))′ +Q∗(t)u(σ̃(t)) ≤ 0, t ≥ ξ1 =

tα1
Γ(1 + α)

,

where τ̃(t) is defined in Lemma 2.1, Q∗(t) is defined in (3.1), has no positive solution,
then (1.1) is oscillatory.

Proof. Assume to the contrary that there exists a non-oscillatory solution x of equa-
tion (1.1). Without loss of generality, we only consider the case when x(t) is eventually
positive, since the case when x(t) is eventually negative is similar. Then let x(t) > 0
on [t1,∞). It is equivalent to x̃(ξ) > 0 on [ξ1,∞). Then from (H1) and (H ′3) the
corresponding function z̃(ξ) satisfies

(3.3)
z̃(σ̃(ξ)) = x̃(σ̃(ξ)) + p̃(σ̃(ξ))x̃(τ̃(σ̃(ξ)))

≤ x̃(σ̃(ξ)) + p0x̃(σ̃(τ̃(ξ))).

On the other hand from (2.2) we have

(3.4) 0 = (ã(ξ)z̃′(ξ))′ + q̃(ξ)x̃(σ̃(ξ)),

which in view of (H1) and (H ′3) yields

(3.5)
0 = p0

τ̃ ′(ξ) (ã(τ̃(ξ))z̃′(τ̃(ξ)))′ + p0q̃(τ̃(ξ))x̃(σ̃(τ̃(ξ)))

≥ p0
τ̃0

(ã(τ̃(ξ))z̃′(τ̃(ξ)))′ + p0q̃(τ̃(ξ))x̃(σ̃(τ̃(ξ))).

Then combining (3.4) and (3.5) we get

(3.6) (ã(ξ)z̃′(ξ))′ + q̃(ξ)x̃(σ̃(ξ)) +
p0

τ̃0
(ã(τ̃(ξ))z̃′(τ̃(ξ)))′ + p0q̃(τ̃(ξ))x̃(σ̃(τ̃(ξ))) ≤ 0.
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Furthermore using (3.1) and (3.3) we obtain

(3.7) (ã(ξ)z̃′(ξ))′ +
p0

τ̃0
(ã(τ̃(ξ))z̃′(τ̃(ξ)))′ +Q(ξ)z̃(σ̃(ξ)) ≤ 0,

where Q(ξ) is defined in (3.1). Now we denote u(ξ) = ã(ξ)z̃′(ξ). From Lemma 2.2 we
get u(ξ) > 0 eventually. Also we have

(3.8) z̃(ξ) ≥
∫ ξ

ξ1

ã(s)z̃′(s)

ã(s)
ds ≥ ã(ξ)z̃′(ξ)

∫ ξ

ξ1

1

ã(s)
ds = u(ξ)

∫ ξ

ξ1

1

ã(s)
ds.

Then taking (3.8) into (3.7) we get that u(ξ) is a positive solution of

(u(ξ) +
p0

τ̃0
u(τ̃(ξ)))′ +Q∗(ξ)u(σ̃(ξ)) ≤ 0,

which is a contradiction and the proof is complete.
Next, by using the conclusion of Theorem 3.1, we will deduce oscillatory problem of

our equation into the problem of first-order nonlinear delay differential equations, and
establish some new oscillatory criteria for equation (1.1). We shall discuss both cases
when τ is a delayed or advanced argument.

3.2. Theorem. Assume that τ(t) ≥ t and σ(t) ≤ t is increasing. Assumptions (H1) −
(H4) hold. Then if the first-order delay differential equation

(3.9) w′(ξ) +
τ̃0

τ̃0 + p0
Q∗(ξ)w(σ̃(ξ)) = 0

is oscillatory, the equation (1.1) is oscillatory.

Proof. We assume that x(t) is a positive solution of (1.1) eventually. Then it follows
from Lemma 2.2 and the proof of Theorem 3.1 that u(ξ) = ã(ξ)z̃′(ξ) > 0 is decreasing
eventually and satisfies (3.2). We define

(3.10) w(ξ) = u(ξ) +
p0

τ̃0
u(τ̃(ξ)).

From the definition of τ̃(ξ) and τ(t) ≥ t, we can easily get that τ̃(ξ) ≥ ξ. Similarly we
have σ̃(ξ) ≤ ξ. Then

w(ξ) ≤ u(ξ)(1 +
p0

τ̃0
),

τ̃0
τ̃0 + p0

w(ξ) ≤ u(ξ).

Substituting this into (3.2), we get that w(ξ) is the positive solution of the delay differ-
ential inequality

(3.11) w′(ξ) +
τ̃0

τ̃0 + p0
Q∗(ξ)w(σ̃(ξ)) ≤ 0.

Then from [25, Theorem 1] we know that the equation (3.9) also has a positive solution,
which is a contradiction. The proof is complete.

3.3. Theorem. Assume that τ(t) ≤ t and σ(t) ≤ τ(t) ≤ t. Conditions (H1)−(H4) hold.
Then if the first-order delay differential equation

(3.12) w′(ξ) +
τ̃0

τ̃0 + p0
Q∗(ξ)w(τ̃−1(σ̃(ξ))) = 0

is oscillatory, the equation (1.1) is oscillatory.
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Proof. We assume that x(t) is a positive solution of (1.1) eventually. Then it follows
from Lemma 2.2 and the proof of Theorem 3.1 that u(ξ) = ã(ξ)z̃′(ξ) > 0 is decreasing
eventually and satisfies (3.2). Also from Lemma 2.1 we have

σ̃(ξ) ≤ τ̃(ξ) ≤ ξ.

Then it follows from (3.10) that

w(ξ) ≤ u(τ̃(ξ))(1 +
p0

τ̃0
),

which is equivalent to

u(σ̃(ξ)) ≥ τ̃0
τ̃0 + p0

w(τ̃−1(σ̃(ξ))).

Substituting this into (3.2), we obtain that w(ξ) is a positive solution of the delay differ-
ential inequality

w′(ξ) +
τ̃0

τ̃0 + p0
Q∗(ξ)w(τ̃−1(σ̃(ξ))) ≤ 0.

Then from [25, Theorem 1] we know that the equation (3.12) also has a positive solution,
and a contradiction. The proof is complete.

Next we will give some sufficient conditions such that equations (3.9) and (3.12) have
only oscillatory solutions.

3.4. Lemma. Assume that e(ξ) is a positive continuous function on [ξ0,∞). If

(3.13) lim
ξ→∞

inf

∫ ξ

σ̃(ξ)

e(s)ds >
1

e
,

then the first-order delay differential equation

(3.14) w′(ξ) + e(ξ)w(σ̃(ξ)) = 0

is oscillatory.

Proof. From (3.13) we can get that

(3.15)
∫ ∞
ξ0

e(s)ds = +∞.

Then assume to the contrary that there exists a positive solution w(ξ) of equation (3.14)
on [ξ1,∞). Since w(ξ) is decreasing, there exists lim

ξ→+∞
w(ξ) = k ≥ 0. If k > 0, then

integrating (3.14) from t1 to t. We have

w(ξ1) ≥
∫ ξ

ξ1

e(s)w(σ̃(s))ds ≥ k
∫ ξ

ξ1

e(s)ds→ +∞ as ξ → +∞.

This is a contradiction. So we get that lim
ξ→+∞

w(ξ) = 0. But from the Theorem 2.1.1

in [26], the condition (3.13) yields that the equation (3.14) has no positive solution,
which is a contradiction. The proof is complete.

3.5. Theorem. Let τ(t) ≥ t and σ(t) ≤ t. Conditions (H1)− (H4) hold. If

(3.16) lim
ξ→∞

inf

∫ ξ

σ̃(ξ)

Q∗(s)ds >
τ̃0 + p0

τ̃0e
,

then (1.1) is oscillatory.

Proof. From the condition (3.16) and Lemma 3.4 we get that equation (3.9) is
oscillatory. Then from Theorem 3.2 we have equation (1.1) is oscillatory, the proof is
complete.
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3.6. Theorem. Let σ(t) ≤ τ(t) ≤ t and conditions (H1)− (H4) hold. If

(3.17) lim
ξ→∞

inf

∫ ξ

τ̃−1(σ̃(ξ))

Q∗(s)ds >
τ̃0 + p0

τ̃0e
,

then (1.1) is oscillatory.

Proof. The proof is similar to the proof of Theorem 3.5.

4. Examples
In this section, we will show the application of our main results.
Example 4.1 Consider the fractional differential equation

(4.1) D
1
2
t [
√
tD

1
2
t (x(t) +

1

t
x(t+ 3))] + tx(t− 5) = 0, t ∈ [5,+∞),

where Dα
t x(t) is the modified Riemann-Liouville differential operator. In (4.1), we set

a(t) =
√
t, p(t) = 1

t
, τ(t) = t + 3, q(t) = t, σ(t) = t − 5. Then using a variable

substitution we have

ξ = y(t) =
t
1
2

Γ( 3
2
)
, y−1(ξ) = Γ2(

3

2
)ξ2, ξ1 =

√
5

Γ( 3
2
)
.

And we also have

ã(ξ) = a(y−1(ξ)) = Γ(
3

2
)ξ,

σ̃(ξ) = y(σ(y−1(ξ))) =
(Γ2( 3

2
)ξ2 − 5)

1
2

Γ( 3
2
)

= (ξ2 − 5

Γ2( 3
2
)
)
1
2 ,

q̃(ξ) = q(y−1(ξ)) = Γ2(
3

2
)ξ2.

Easily we see the equation (4.1) satisfies (H1)− (H4), furthermore we have
0 ≤ p(t) = 1

t
≤ 1

5
= p0,

τ0 = (t+ 3)′ = 1,

lim
t→∞

t
τ(t)

= t
t+3

= l = 1,

τ̃0 = τ0l
1− 1

2 = 1.

We know q̃(ξ) is increasing and τ(t) > t, τ̃(ξ) > ξ, so

Q(ξ) = q̃(ξ) = Γ2(
3

2
)ξ2,

Q∗(ξ) = Γ2( 3
2
)ξ2
∫ ξ
ξ1

1

Γ( 3
2

)s
ds

= Γ2( 3
2
)ξ2( 1

Γ( 3
2

)
ln ξ − 1

Γ( 3
2

)
ln ξ1).
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Then we have

lim
ξ→∞

inf
∫ ξ
σ̃(ξ)

Q∗(s)ds

= lim
ξ→∞

inf
∫ ξ
σ̃(ξ)

Γ( 3
2
)(s2 ln s− s2 lnm)ds

= lim
ξ→∞

inf[
Γ( 3

2
)

3
(ξ3 ln ξ

m
− σ̃3(ξ) ln σ̃(ξ)

m
)− 5

9Γ( 3
2

)
]

≥ lim
ξ→∞

inf[
Γ( 3

2
)

3
(ξ3 − σ̃3(ξ)) ln σ̃(ξ)

m
)− 5

9Γ( 3
2

)
]

≥ lim
ξ→∞

inf[
Γ( 3

2
)

3
(ξ2 − σ̃2(ξ)) ln σ̃(ξ)

m
− 5

9Γ( 3
2

)
]

=≥ lim
ξ→∞

inf[
Γ( 3

2
)

3
5

Γ2( 3
2

)
ln σ̃(ξ)

m
− 5

9Γ( 3
2

)
]

=∞ >
1+ 1

5
e
,

where m = ξ1 = 5
1
2

Γ( 3
2

)
. From Theorem 3.5 we get that (4.1) is oscillatory.

Example 4.2 Consider the fractional differential equation

(4.2) D
1
3
t [tD

1
3
t (x(t) + 2x(

t

2
))] + tx(

t

8
) = 0, t ∈ [1,+∞),

where Dα
t x(t) is the modified Riemann-Liouville differential operator. In (4.2), we set

a(t) = t, p(t) = 2, q(t) = t, τ(t) = t
2
, σ(t) = t

8
. Then using a variable substitution we

have

ξ = y(t) =
t
1
3

Γ( 4
3
)
, y−1(ξ) = Γ3(

4

3
)ξ3, ξ1 =

1

Γ( 4
3
)
.

Then we get

ã(ξ) = a(y−1(ξ)) = Γ3(
4

3
)ξ3,

σ̃(ξ) = y(σ(y−1(ξ))) = y(
Γ3( 4

3
)ξ3

8
) =

ξ

2
,

q̃(ξ) = q(y−1(ξ)) = Γ3(
4

3
)ξ3,

τ̃(ξ) = y(τ(y−1(ξ))) = y(
Γ3( 4

3
)ξ3

2
) =

ξ

2
1
3

,

τ̃−1(σ̃(ξ)) = 2
1
3 σ̃(ξ) =

ξ

2
2
3

.

Easily we see the equation (4.2) satisfies (H1)− (H4), and
0 ≤ p(t) = 2 = p0,

τ0 = ( t
2
)′ = 1

2
,

lim
t→∞

t
τ(t)

= t
t
2

= 2 = l,

τ̃0 = τ0l
1− 1

3 = 2−
1
3 .

In this time q̃(ξ) is increasing and τ(t) < t, τ̃(ξ) < ξ, so

Q(ξ) = q̃(σ̃(ξ)) = Γ3(
4

3
)
ξ3

2
,
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Q∗(ξ) = Γ3( 4
3
) ξ

3

2

∫ ξ
ξ1

1

Γ3( 4
3

)s
ds

= ξ3

2
(ln ξ − ln ξ1).

Following from (3.17) we have

lim
ξ→∞

inf
∫ ξ
τ̃−1(σ̃(ξ))

Q∗(s)ds

= lim
ξ→∞

inf
∫ ξ
τ̃−1(σ̃(ξ))

s3

2
(ln s− ln s1)ds

= lim
ξ→∞

inf[ 1
8
ξ4(ln ξ − 1

4
− ln ξ1)− 1

8
· 1

2
8
3
t4(ln ξ − 2

3
ln 2− 1

4
− ln ξ1)]

=∞ > 2
− 1

3 +2

2
− 1

3 e
.

According to Theorem 3.6 we get that (4.2) is oscillatory.

5. Conclusion
We have established some new oscillation criteria for a fractional neutral differential

equation. First we can see, the variable transformation used in ξ is very important, trans-
forms a fractional differential equation into an ordinary differential equation of integer
order. Then toward to this differential equation with neutral term, we solve it by the
comparison theorem, such that we can judge whether its solutions oscillatory by inves-
tigating some first-order delay differential equations. And some classical results can be
used easily. Finally, we note that the oscillation for other fractional differential equations
possessing the modified Riemann-Liouville derivative can also be used this method.
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1. Introduction
Recently, some attempts have been made to define new families of distributions that

extend well-known distributions and at the same time provide great flexibility in mod-
elling data in practice. So, several classes by adding one or more parameters to generate
new distributions have been proposed in the statistical literature. Some well-known gen-
erators are the Marshall-Olkin generated family (MO-G) by Marshall and Olkin (1997),
the beta-G by Eugene et al. (2002), the Kumaraswamy-G (Kw-G for short) by Cordeiro
and de Castro (2011), the McDonald-G (Mc-G) by Alexander et al. (2012), the gamma-G
by Zografos and Balakrishanan (2012), the transformer (T-X) by Alzaatreh et al. (2013),
the Weibull-G by Bourguignon et al. (2014) and the exponentiated half-logistic family
by Cordeiro et al. (2014).

Let G(x; ξ) be a baseline cumulative distribution function (cdf) and ξ the p×1 vector
of associated parameters. Recently, Gleaton and Lynch (2006) and da Cruz et al. (2014)
introduced a class of distributions named the odd log-logistic family with one extra shape
parameter α > 0 defined by the cdf

H(x) =
G(x; ξ)α

G(x; ξ)α + Ḡ(x; ξ)α
,(1.1)

where Ḡ(x; ξ) = 1−G(x; ξ).
Let r(t) be the probability density function (pdf) of a random variable T ∈ [c, d] for

−∞ ≤ c < d <∞ and let W [G(x)] be a function of the cdf of a random variable X such
that W [G(x)] satisfies the following conditions:

(1.2)


(i) W [G(x)] ∈ [c, d],

(ii) W [G(x)] is differentiable and monotonically non-decreasing, and
(iii) W [G(x)]→ c as x→ −∞ andW [G(x)]→ d as x→∞.

Alzaatreh et al. (2013) defined the T-X family of distributions by

(1.3) F (x) =

∫ W [G(x)]

c

r(t) dt,

where W [G(x)] satisfies the conditions (1.2). The pdf corresponding to (1.3) is given by

(1.4) f(x) =

{
d

dx
W [G(x)]

}
r {W [G(x)]} .

In this paper, we propose a new wider class of continuous distributions called the
Kumaraswamy odd log-logistic-G (“KwOLL-G” for short) family by taking W [G(x)] =

G(x;ξ)α

G(x;ξ)α+Ḡ(x;ξ)α
and r(t) = a b ta−1 (1− ta)b−1, 0 < t < 1. Its cdf is given by

F (x) =

∫ G(x;ξ)α

G(x;ξ)α+Ḡ(x;ξ)α

0

a b ta−1(1− ta)b−1dt

= 1−
{

1−
[

G(x, ξ)α

G(x, ξ)α + Ḡ(x, ξ)α

]a}b
,(1.5)

where α > 0, a > 0 and b > 0 are three extra shape parameters to the baseline cdf G(x, ξ).
The KwOLL-G family (1.5) includes the Kumaraswamy generalized family (Cordeiro and
de Castro, 2011), the proportional and reversed hazard rate models, the odd log-logistic
family (Gleaton and Lynch, 2006 and da Cruz et al., 2014), among others. Some special
models of (1.5) are listed in Table 1.

The paper is organized as follows. In Section 2, we provide a physical interpretation
of the KwOLL-G family. Four special cases are described in Section 3 with some details.
In Section 4, the asymptotes and shapes of the density and hazard rate functions are
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Table 1. Some special models.

a b α Reduced distribution

- - 1 Kumaraswamy generalized family of distributions (Cordeiro and de Castro, 2011)

1 1 - Odd log-logistic family (Gleaton and Lynch 2006 and da Cruz et al. 2014)

1 - 1 Proportional hazard rate model (Gupta et al., 1998)

- 1 1 Proportional reversed hazard rate model (Gupta and Gupta, 2007)

1 1 1 G(x)

investigated analytically. Some useful expansions are obtained in Section 5. In Section 6,
we derive a power series for the quantile function (qf). In Sections 7 and 8, we obtain the
ordinary and incomplete moments and the generating function, respectively. The order
statistics are derived in Section 9.
In Section 10, we introduce a bivariate extension of the new family. The estimation of the
model parameters by maximum likelihood is performed in Section 11. Two applications
to real data illustrate the potentiality of the proposed family in Section 12. Section 13
provides some conclusions.

2. The new family
The pdf corresponding to (1.5) is

f(x; a, b, α, ξ) =
a bα g(x, ξ)G(x, ξ)αa−1Ḡ(x, ξ)α−1[

G(x, ξ)α + Ḡ(x, ξ)α
]a+1

{
1−

[
G(x, ξ)α

G(x, ξ)α + Ḡ(x, ξ)α

]a}b−1

,

(2.1)

where g(x; ξ) = dG(x; ξ)/dx. Hereafter, X ∼ KwOLL-G(a, b, α, ξ) denotes a random
variable having the density function (2.1). Further, we sometimes omit the dependence
on the vector ξ and write simply G(x) = G(x; ξ).

A physical interpretation of the KwOLL-G cdf (for a and b positive integers) is as
follows. Equation (1.5) denotes the cdf of the lifetime of a series-parallel system consisting
of independent components with the common cdf H(x) given by (1.1). Consider that a
system is formed by b independent series subsystems and that each of the subsystems
is made up of a independent parallel components. Let Xij ∼ H(x), for 1 ≤ i ≤ a and
1 ≤ j ≤ b, denote the lifetime of the ith component in the jth subsystem and X denotes
the lifetime of the entire system. We have

Pr(X ≤ x) = 1− {1− Pr(X11 ≤ x, · · · , X1a ≤ x)}b = 1− {1− Pra(X11 ≤ x)}b ,

and then X has pdf (2.1).
The hazard rate function (hrf) of X is given by

(2.2) h(x; a, b, α, ξ) =
a bα g(x, ξ)G(x, ξ)αa−1Ḡ(x, ξ)α−1[

G(x, ξ)α + Ḡ(x, ξ)α
] {[

G(x, ξ)α + Ḡ(x, ξ)α
]a −G(x, ξ)aα

} .
The KwOLL-G family is simulated by inverting F (x) = u in (1.5) as follows: if u has

a uniform U(0, 1) distribution, the solution of the nonlinear equation

(2.3) xu = G−1


[
1− (1− u)

1
b

] 1
aα

[
1− (1− u)

1
b

] 1
aα

+

{
1−

[
1− (1− u)

1
b

] 1
a

} 1
α
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has the pdf (2.1).

3. Three special cases of the KwOLL-G family
Equation (2.1) will be most tractable when G(x; ξ) and g(x; ξ) have closed-forms.

Now, we provide only three cases of so many distributions which can be special models
of the KwOLL-G family.

3.1. The Kumaraswamy odd log-logistic-normal (KwOLLN) distribution. By
taking G(x; ξ) and g(x; ξ) in (2.1) to be the cdf and pdf of the normal N(µ, σ2) distri-
bution, where ξ = (µ, σ)T , the KwOLLN pdf follows as

f(x; a, b, α, µ, σ) =
a bαφ(x−µ

σ
)
[
Φ
(
x−µ
σ

)]αa−1 [
1− Φ

(
x−µ
σ

)]α−1

σ
{[

Φ
(
x−µ
σ

)]α
+
[
1− Φ

(
x−µ
σ

)]α}a+1

×

{
1−

[ [
Φ
(
x−µ
σ

)]α[
Φ
(
x−µ
σ

)]α
+
[
1− Φ

(
x−µ
σ

)]α
]a}b−1

,(3.1)

where x ∈ R, µ ∈ R is a location parameter, σ > 0 is a scale parameter, and φ(·) and
Φ(·) are the pdf and cdf of the standard normal distribution, respectively. We denote
by X ∼ KwOLLN(a, b, α, µ, σ) a random variable with pdf (3.1). For µ = 0 and σ = 1,
we obtain the standard KwOLLN distribution, and for a = b = α = 1, it reduces to the
normal distribution. For α = 1, we have the Kumaraswamy normal (KwN) (Cordeiro
and de Castro, 2011) distribution. Further, if α = 1 in addition to b = 1, it gives
the exponentiated-normal (EN) distribution. Plots of the KwOLLN pdf for selected
parameter values are displayed in Figure 1.

3.2. The Kumaraswamy odd log-logistic-Weibull (KwOLLW) distribution. By
taking G(x; ξ) = 1 − e−(βx)λ to be the Weibull distribution with scale parameter β > 0
and shape parameter λ > 0, where ξ = (λ, β)T , we obtain the KwOLLW pdf (for x > 0)
as

f(x) = f(x; a, b, α, λ, β) =
a bαλβλ xλ−1

{
1− exp

[
− (β x)λ

]}αa−1 {
exp

[
− (β x)λ

]}α
{[

1− exp
[
− (β x)λ

]]α
+
[
exp

[
− (β x)λ

]]α}a+1

×

1−


{

1− exp
[
− (β x)λ

]}α
{

1− exp
[
− (β x)λ

]}α
+
{

exp
[
− (β x)λ

]}α
a

b−1

.

(3.2)

The Weibull distribution (with parameters λ and β) is a basic exemplar for a = b =
α = 1. Other special models include the Kumaraswamy Weibull (KwW) (Cordeiro et al.,
2010) for α = 1 and the exponentiated Weibull (EW) (Mudholkar et al., 1995; Mudholkar
et al., 1996; Nassar and Eissa, 2003; Nadarajah et al., 2013) and exponentiated expo-
nential (EE) (Gupta and Kundu, 2001) distributions for b = α = 1 and b = α = β = 1,
respectively. Plots of the pdf and hrf of the KwOLLW distribution for selected parameter
values are displayed in Figures 2 and 3, respectively. Further, it allows for five major
hazard shapes: constant, increasing, decreasing, bathtub and unimodal hazard rates .



1495

(a) (b)

−5 0 5 10 15 20

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

x

f(
x)

a = 0.5; α= 3.5

a = 1.5; α= 2.5

a = 2.5; α= 1.5

a = 3.5; α= 0.5

a = 3.0; α= 0.3

−30 −20 −10 0 10

0.
00

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

x

f(
x)

b = 1.5; α= 0.9

b = 2.5; α= 0.7

b = 3.5; α= 0.5

b = 4.5; α= 0.3

b = 5.5; α= 0.1

(c)

−5 0 5

0.
00

0.
05

0.
10

0.
15

x

f(
x)

α = 0.08

α = 0.10

α = 0.15

α = 0.20 

α = 0.25 

Figure 1. The KwOLLN pdf: (a) For b = 0.5, µ = 0 and σ = 3. (b)
For a = 1.5, µ = 0 and σ = 3. (c) For a = 1.5, b = 2.0, µ = 0 and
σ = 1.

3.3. The Kumaraswamy odd log-logistic-Gumbel (KwOLLGu) distribution.
Let G(x; ξ) for x ∈ R be the Gumbel distribution with parameters (µ, σ), where µ ∈ R
is the location parameter and σ > 0 is the scale parameter, and cdf given by

G(x; ξ) = exp
[
− exp

(
−x− µ

σ

)]
, x ∈ R.

Inserting these expressions in equation (2.1) yields the KwOLLGu pdf

f(x; a, b, α, µ, σ) =
abα exp{−x−µ

σ
− exp(−x−µ

σ
)}
(
exp

{
− exp

(
−x−µ

σ

)})αa−1

σ
{[

exp{− exp(−x−µ
σ

)}
]α

+
[
1− exp{− exp(−x−µ

σ
)}
]α}a+1

×

{
1−

[ [
exp

{
− exp

(
−x−µ

σ

)}]α[
exp

{
− exp

(
−x−µ

σ

)}]α
+
[
1− exp

{
− exp

(
−x−µ

σ

)}]α
]a}b−1

×(1− exp{− exp(−x− µ
σ

)})α−1,(3.3)

where x ∈ R. The Kumaraswamy Gumbel (KwGu) (Cordeiro et al., 2010) model corres-
ponds to α = 1. The Lehmann type I Gumbel distribution refers to b = α = 1. This
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Figure 2. The KwOLLW pdf: (a) For b = 0.5, α = 0.5 and β = 1.
(b) For λ = 1.5 and β = 1.5.

case is usually called the exponentiated Gumbel (EGu) model. Indeed, the EGu cdf is
defined by (for λ > 0)

F (x;λ, ξ) = 1− [1−G(x; ξ)]λ.

Plots of the KwOLLGu pdf for some parameter values are displayed in Figure 4.

4. Asymptotes and Shapes
4.1. Proposition. The asymptotics of equations (1.5), (2.1) and (2.2) as x → 0 are
given by

F (x) ∼ bG(x)aα as G(x)→ 0,

f(x) ∼ a bα g(x)G(x)aα−1 as G(x)→ 0,

h(x) ∼ a bα g(x)G(x)aα−1 as G(x)→ 0.

4.2. Proposition. The asymptotics of equations (1.5), (2.1) and (2.2) as x → ∞ are
given by

1− F (x) ∼
[
aα Ḡ(x)

]b
as x→∞,

f(x) ∼ b (aα)b g(x) Ḡ(x)b−1 as x→∞,

h(x) ∼ b g(x)

Ḡ(x)
as x→∞.

The shapes of the density and hazard rate functions can be described analytically.
The critical points of the KwOLL-G pdf are the roots of the equation:

g′(x)

g(x)
+ (aα− 1)

g(x)

G(x)
+ (1− α)

g(x)

Ḡ(x)
− α(a+ 1)g(x)

G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α

= a(b− 1)αg(x)
G(x)aα−1Ḡ(x)α−1[

G(x)α + Ḡ(x)α
] {[

G(x)α + Ḡ(x)α
]a −G(x)aα

} .
(4.1)
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Figure 3. The KwOLLW hrf: (a) Constant, increasing and decreasing
hrf. (b) Bathtub hrf. (c) Unimodal hrf.

There may be more than one root to (4.1). Let λ(x) = d2 log[f(x)]

dx2 . Then,

λ(x) =
g′′(x)g(x)− g′(x)2

g(x)2
+ (aα− 1)

g′(x)G(x)− g(x)2

G(x)2
+ (1− α)

g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

− α(a+ 1)g′(x)
G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α
− α(α− 1)(a+ 1)g(x)2 G(x)α−2 + Ḡ(x)α−2

G(x)α + Ḡ(x)α

+ (a+ 1)

{
αg(x)

G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α

}2

− a(b− 1)αg′(x)
G(x)aα−1Ḡ(x)α−1[

G(x)α + Ḡ(x)α
] {[

G(x)α + Ḡ(x)α
]a −G(x)aα

}
− a(aα− 1)(b− 1)α

g(x)2G(x)aα−2Ḡ(x)α−1[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}

+ a(b− 1)(α− 1)α
g(x)2G(x)aα−1Ḡ(x)α−2[

G(x)α + Ḡ(x)α
] {[

G(x)α + Ḡ(x)α
]a −G(x)aα

}
+ aα2(b− 1)

g(x)2
[
G(x)α−1 − Ḡ(x)α−1

]
G(x)aα−1Ḡ(x)α−1[

G(x)α + Ḡ(x)α
]2 {[

G(x)α + Ḡ(x)α
]a −G(x)aα

}
+

a2α2(b− 1) g(x)G(x)aα−1Ḡ(x)α−1
{[
G(x)α−1 − Ḡ(x)α−1

] [
G(x)α + Ḡ(x)α

]a−1
}

[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}2

− a2α2(b− 1) g(x)G(x)2aα−2Ḡ(x)α−1[
G(x)α + Ḡ(x)α

] {[
G(x)α + Ḡ(x)α

]a −G(x)aα
}2 .
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Figure 4. The KwOLLGu pdf: (a) For a = 1.5, µ = 0 and σ = 2.5;
(b) For b = 1.5, µ = 0 and σ = 2.5.

If x = x0 is a root of (4.1) then it corresponds to a local maximum (minimum) if
λ(x) > 0(< 0) for all x < x0 and λ(x) < 0(> 0) for all x > x0. It yields points of
inflexion if either λ(x) > 0 for all x 6= x0 or λ(x) < 0 for all x 6= x0.

The critical points of the hrf h(x) are obtained from the equation:

g′(x)

g(x)
+ (aα− 1)

g(x)

G(x)
+ (1− α)

g(x)

Ḡ(x)
− αg(x)

[
G(x)α−1 − Ḡ(x)α−1

]
G(x)α + Ḡ(x)α

= aαg(x)

[
G(x)α−1 − Ḡ(x)α−1

] [
G(x)α + Ḡ(x)α

]a−1 −G(x)aα−1[
G(x)α + Ḡ(x)α

]a −G(x)aα
.

(4.2)
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There may be more than one root to (4.2). Let τ(x) = d2 log[h(x)]/dx2. We have

τ(x) =
g′′(x)g(x)− g′(x)2

g(x)2
+ (aα− 1)

g′(x)G(x)− g(x)2

G(x)2
+ (1− α)

g′(x)Ḡ(x) + g(x)2

Ḡ(x)2

− αg′(x)
G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α
− α(α− 1)g(x)2 G(x)α−2 + Ḡ(x)α−2

G(x)α + Ḡ(x)α

+

{
αg(x)

G(x)α−1 − Ḡ(x)α−1

G(x)α + Ḡ(x)α

}2

− aαg′(x)

[
G(x)α−1 − Ḡ(x)α−1

] [
G(x)α + Ḡ(x)α

]a−1 −G(x)aα−1[
G(x)α + Ḡ(x)α

]a −G(x)aα

− aα(α− 1)g(x)2

[
G(x)α−2 + Ḡ(x)α−2

] [
G(x)α + Ḡ(x)α

]a−1[
G(x)α + Ḡ(x)α

]a −G(x)aα

− aα2(a− 1)g(x)2

[
G(x)α−1 − Ḡ(x)α−1

]2 [
G(x)α + Ḡ(x)α

]a−2[
G(x)α + Ḡ(x)α

]a −G(x)aα

+ aα(aα− 1)g(x)2 G(x)aα−2[
G(x)α + Ḡ(x)α

]a −G(x)aα

+

{
aα g(x)

[
G(x)α−1 − Ḡ(x)α−1

] [
G(x)α + Ḡ(x)α

]a−1 −G(x)aα−1[
G(x)α + Ḡ(x)α

]a −G(x)aα

}2

.

If x = x0 is a root of (4.2) then it refers to a local maximum (minimum) if τ(x) > 0(< 0)
for all x < x0 and τ(x) < 0(< 0) for all x > x0. It gives an inflexion point if either
τ(x) > 0 for all x 6= x0 or τ(x) < 0 for all x 6= x0.

5. Some useful expansions
The cdf (1.5) of X admits the expansion

F (x) = 1−
∞∑
m=0

(−1)m
(
b

m

)
G(x)aαm[

G(x)α + Ḡ(x)α
]am

= 1−
∞∑
m=0

(−1)m
(
b

m

) ∑∞
k=0 δ

(m)
1,k G(x)k∑∞

k=0 δ
(m)
2,k G(x)k

= 1−
∞∑
m=0

(−1)m
(
b

m

)
∞∑
k=0

β
(m)
k G(x)k,

where β(m)
0 =

δ
(m)
1,0

δ
(m)
2,0

and for k ≥ 1

β
(m)
k =

1

δ
(m)
2,0

(
δ

(m)
1,k −

1

δ
(m)
2,0

k∑
r=1

δ
(m)
2,k β

(m)
k−r

)
, δ

(m)
1,k =

∞∑
i=k

(−1)i+k
(
aαm

i

)(
i

k

)
and δ(m)

2,k = hk(α, am) is defined in the Appendix. Then, we can write

F (x) =

∞∑
k=0

bkG(x)k,(5.1)

where

b0 = 1−
∞∑
m=0

(−1)m
(
b

m

)
β

(m)
0 , and for k ≥ 1, bk =

∞∑
m=0

(−1)m+1

(
b

m

)
β

(m)
k .
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So, the pdf of X can be expressed as an infinite mixture of exponentiated-G (“exp-G”)
densities

(5.2) f(x) = f(x; a, b, α, ξ) =

∞∑
k=0

bk+1 hk+1(x),

where hk+1(x) = (k + 1)G(x)k g(x) denotes the exp-G pdf with power parameter k +
1. Structural properties of some exp-G distributions were studied by Mudholkar et al.
(1996), Gupta and Kundu (2001), Nadarajah and Kotz (2006), Nadarajah and Gupta
(2007) and Nadarajah et al. (2013), among others. So, some mathematical quantities of
X can be derived from (5.2) and those exp-G properties. For example, the ordinary and
incomplete moments and moment generating function (mgf) of X can be easily obtained
from those of the exp-G quantities.

The formulae derived in the next sections can be easily handled in most symbolic com-
putation software platforms such as MAPLE, MATHEMATICA and MATLAB. These
platforms have currently the ability to deal with complex expressions. Established closed-
form statistical measures can be more efficient than calculating them by numerical inte-
gration. The infinity limit in these sums can be substituted by a large positive integer
such as twenty or thirty for most applications.

6. Quantile power series
Here, we derive a power series for the qf x = Q(u) = F−1(u) of X by expanding (2.3).

First, if QG(u) (the baseline qf) does not have an explicit expression, it can usually be
expressed as a power series given by

QG(u) =

∞∑
i=0

ai u
i,(6.1)

where the coefficients ai’s are suitably chosen real numbers which depend on the pa-
rameters of the G distribution. For several important distributions, such as the normal,
Student t, gamma and beta distributions, QG(u) does not have explicit expressions but
it can be expanded as in equation (6.1).

Here and from now on, we use a result by Gradshteyn and Ryzhik (2007, Section
0.314) for a power series raised to a positive integer n (for n ≥ 1)

QG(u)n =

(
∞∑
i=0

ai u
i

)n
=

∞∑
i=0

cn,i u
i,(6.2)

where the coefficients cn,i (for i = 1, 2, . . .) can be obtained from the recurrence equation

(6.3) cn,i = (i a0)−1
i∑

m=1

[m(n+ 1)− i] am cn,i−m,

and cn,0 = an0 . Clearly, the quantity cn,i can be determined numerically in any algebraic
or numerical software from the quantities a0, . . . , ai.

Second, we derive an expansion for the argument A of QG(·) in equation (2.3)

A =

[
1− (1− u)

1
b

] 1
aα

[
1− (1− u)

1
b

] 1
aα

+

{
1−

[
1− (1− u)

1
b

] 1
a

} 1
α

=

∑∞
k=0 a

∗
k u

k∑∞
k=0 b

∗
k u

k
,

where a∗k =
∑∞
i=0(−1)i+k

(
1
αa

i

)(
i
b

k

)
and b∗k = a∗k +

∑∞
i,j=0(−1)i+j+k

(
1
α

i

)(
i
a

j

)(
j
b

k

)
.
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The quotient of the two power series is given by

A =

∞∑
k=0

c∗k u
k,(6.4)

where c∗0 =
a∗0
b∗0

and the coefficients c∗k’s ( k ≥ 1) are determined from the recurrence
equation

c∗k =
1

b∗0

(
a∗k −

1

b∗0

k∑
r=1

b∗r c
∗
k−r

)
.

Then, the qf of the KwOLL-G family can be reduced to

(6.5) Q(u) = QG

(
∞∑
k=0

c∗k u
k

)
.

By combining (6.1) and (6.5) gives

Q(u) =

∞∑
i=0

ai

(
∞∑
k=0

c∗k u
k

)i
,

and then using (6.2) and (6.3), we have

(6.6) Q(u) =

∞∑
k=0

ek u
k,

where ek =
∑∞
i=0 ai di,k, di,0 = c∗i0 and (for k > 1)

di,k = (k c∗0)−1
k∑

m=1

[m(i+ 1)− k] c∗m di,k−m.

Hence, equation (6.6) reveals that the qf of the KwOLL-G family can be expressed
as a power series. So, several mathematical quantities of X can be reduced to integrals
over (0, 1) based on this power series. For the great majority of these quantities, we can
adopt twenty terms in this power series.

Let W (·) be any integrable function in the real line. We can write

(6.7)
∫ ∞
−∞

W (x) f(x)dx =

∫ 1

0

W

(
∞∑
k=0

ek u
k

)
du.

Equations (6.6) and (6.7) are the main results of this section since we can obtain from
them various KwOLL-G mathematical properties. In fact, they can follow by using the
integral on the hight-hand side for special W (·) functions, which are usually more simple
than if they are based on the left-hand integral. For example, a formula for the nth
moment of X follows from (6.7) combined with (6.2) and (6.3) as

µ′n =

∫ 1

0

(
∞∑
k=0

ek u
k

)n
du =

∞∑
k=0

fn,k
(k + 1)

,

where (for n ≥ 0) fn,0 = en0 and, for k ≥ 1, fn,k = (k e0)−1 ∑k
r=1 [r (n+ 1)−k] er fn,k−r.
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7. Moments
Let Yk+1(k ≥ 0) be a random variable having the pdf hk+1(x). A first formula for the

nth moment of X is obtained from (5.2) as

E(Xn) =

∞∑
k=0

bk+1 E(Y nk+1).(7.1)

Moments of some exp-G distributions are given by Nadarajah and Kotz (2006), which
can be used to obtain E(Xn).

A second formula for E(Xn) can be expressed from (7.1) as

E(Xn) =

∞∑
k=0

(k + 1) bk+1 τ(n, k),(7.2)

where τ(n, k) =
∫ 1

0
QG(u)n ukdu.

The nth incomplete moment of X is determined from (5.2) as

mn(y) =

∫ y

0

xn f(x)dx =

∞∑
k=0

(k + 1) bk+1

∫ G(y)

0

QG(u)n ukdu.

Using (6.2), we obtain

mn(y) =

∞∑
i,k=0

(k + 1) bk+1 cn,i
(k + i+ 1)

G(y)k+i+1(7.3)

Equations (7.1)-(7.3) are the main results of this section.

8. Generating function
Here, we provide two formulae for the mgf M(t) = E(et X) of X. Clearly, the first one

simply comes from (5.2) as

M(t) =

∞∑
k=0

bk+1 Mk+1(t),(8.1)

where Mk+1(t) is the mgf of Yk+1. Hence, M(t) can be determined from the exp-G
generating function. A second formula for M(t) can be derived from (5.2) as

M(t) =
∞∑
i=0

(k + 1) bk+1 ρ(t, k),(8.2)

where ρ(t, k) =
∫ 1

0
exp[tQG(u)]ukdu can be computed numerically for most G distribu-

tions.
So, we can obtain the mgfs of several generated distributions from (3.2) directly from

equations (8.1) and (8.2).

9. Order statistics
Order statistics make their appearance in many areas of statistical theory and practice.

Suppose that X1, . . . , Xn is a random sample from X and let Xi:n denote the ith order
statistic. From equations (5.1) and (5.2), the pdf of Xi:n becomes

fi:n(x) = C

n−i∑
j=0

(−1)j
(
n− i
j

) (
∞∑
r=0

(r + 1) br+1 G(x)r g(x)

) (
∞∑
k=0

bkG(x)k
)j+i−1

,
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where C = n!/[(i− 1)! (n− i)!]. Using (6.2) and (6.3), we can write

(
∞∑
k=0

bkG(x)k
)j+i−1

=

∞∑
k=0

ej+i−1,k G(x)k,

where ej+i−1,0 = bj+i−1
0 and

ej+i−1,k = (k b0)−1
k∑

m=1

[m(j + i)− k] bm ej+i−1,k−m.

Hence,

fi:n(x) =

∞∑
k=0

dk hk+1(x),(9.1)

where dk = C
∑n−i
j=0

∑k
m=0 bm+1 ej+i−1,k−m.

Equation (9.1) gives the pdf of the KwOLL-G order statistics as a linear combination
of exp-G densities.

10. A bivariate extension
Here, we construct a bivariate version of the proposed model. The joint cdf of (X1, X2)

is given by

FX1,X2(x1, x2; a, b, α, ξ) =

∫ G(x1,x2;ξ)α

G(x1,x2;ξ)α+[1−G(x1,x2;ξ)]α

0

a b ta−1(1− ta)b−1dt

= 1−
{

1−
[

G(x1, x2, ξ)α

G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]α

]a}b
,

whereG(x1, x2; ξ) is a bivariate continuous distribution with marginal cdfsG1(x1; ξ) and G2(x2; ξ).
This distribution is called the bivariate Kumaraswamy odd log-logistic (BKwOLL) family
of distributions. The marginal cdfs are given by

FXi(xi; a, b, α, ξ) = 1−
{

1−
[

Gi(xi, ξ)α

Gi(xi, ξ)α + Ḡi(xi, ξ)α

]a}b
, i = 1, 2.

The joint pdf of (X1, X2) can be expressed as fX1,X2(x1, x2) =
∂2FX1,X2(x1, x2)

∂x1∂x2
and

then

fX1,X2(x1, x2; a, b, α, ξ) =
abαA(x1, x2; a, b, α, ξ)G(x1, x2, ξ)αa−1 [1−G(x1, x2, ξ)]α−1

{G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]α}a+1

×
{

1−
[

G(x1, x2, ξ)α

G(x, y, ξ)α + [1−G(x1, x2, ξ)]α

]a}b−1

,
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where

A(x1, x2; a, b, α, ξ) = g(x1, x2; ξ)

+
∂G(x1, x2, ξ)

∂x1

∂G(x1, x2, ξ)

∂x2

[
aα− 1

G(x1, x2, ξ)
+

1− α
1−G(x1, x2, ξ)

]
− (a+ 1)α

∂G(x1, x2, ξ)

∂x1

∂G(x1, x2, ξ)

∂x2

G(x1, x2, ξ)α−1 − [1−G(x1, x2, ξ)]α−1

G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]α

+
aα(1− b)G(x1, x2, ξ)aα−1 [1−G(x1, x2, ξ)]α−1

{G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]α}

×
∂G(x1,x2,ξ)

∂x1

∂G(x1,x2,ξ)
∂x2

{{G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]α}a −G(x1, x2, ξ)aα} .

The marginal pdfs are given by

fXi(xi) =
abαgi(xi, ξ)Gi(xi, ξ)αa−1Ḡi(xi, ξ)α−1[

Gi(xi, ξ)α + Ḡi(xi, ξ)α
]a+1

{
1−

[
Gi(xi, ξ)α

Gi(xi, ξ)α + Ḡi(xi, ξ)α

]a}b−1

, i = 1, 2.

The conditional cdfs are given by

FXi|Xj (xi|xj) =
1−

{
1−

[
G(x1,x2,ξ)α

G(x1,x2,ξ)α+[1−G(x1,x2,ξ)]α

]a}b
1−

{
1−

[
Gj(xj ,ξ)α

Gj(xj ,ξ)α+Ḡj(xj ,ξ)α

]a}b for i, j = 1, 2 and i 6= j.

The conditional pdfs are given by

fXi|Xj (xi|xj) =
A(x1, x2; a, b, α, ξ)G(x1, x2, ξ)αa−1 [1−G(x1, x2, ξ)]α−1

{G(x1, x2, ξ)α + [1−G(x1, x2, ξ)]α}a+1

×
{

1−
[

G(x1, x2, ξ)α

G(x, y, ξ)α + [1−G(x1, x2, ξ)]α

]a}b−1

×

{
gj(xj , ξ)Gj(xj , ξ)αa−1Ḡj(xj , ξ)α−1[

Gj(xj , ξ)α + Ḡj(xj , ξ)α
]a+1

{
1−

[
Gj(xj , ξ)α

Gj(xi, ξ)α + Ḡj(xj , ξ)α

]a}b−1
}−1

for i, j = 1, 2 and i 6= j.

11. Estimation
We determine the maximum likelihood estimates (MLEs) of the parameters of the

new family from complete samples only. Let x1, . . . , xn be the observed values from the
KwOLL-G distribution with parameters a, b, α and ξ. Let θ = (a, b, α, ξ)> be the r × 1
parameter vector. Then, the total log-likelihood function for θ is given by

`n(θ) = n log[abα] +

n∑
i=1

log [g(xi; ξ)] + (aα− 1)

n∑
i=1

log [G(xi; ξ)]

+(α− 1)

n∑
i=1

log
[
Ḡ(xi; ξ)

]
− (a+ 1)

n∑
i=1

log
{
G(xi; ξ)α + Ḡ(xi; ξ)α

}
+(b− 1)

n∑
i=1

log

{
1−

[
G(xi, ξ)α

G(xi, ξ)α + Ḡ(xi, ξ)α

]a}
.(11.1)
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The components of the score function are given by

Ua(θ) =
n

a
+

n∑
i=1

log

[
G(xi, ξ)α

G(xi, ξ)α + Ḡ(xi, ξ)α

]

+ (1− b)
n∑
i=1

[
G(xi,ξ)α

G(xi,ξ)α+Ḡ(xi,ξ)α

]a
log
[

G(xi,ξ)α

G(xi,ξ)α+Ḡ(xi,ξ)α

]
1−

[
G(xi,ξ)α

G(xi,ξ)α+Ḡ(xi,ξ)α

]a ,

Ub(θ) =
n

b
+

n∑
i=1

log

{
1−

[
G(xi, ξ)α

G(xi, ξ)α + Ḡ(xi, ξ)α

]a}
,

Uα(θ) =
n

α
+ a

n∑
i=1

log [G(xi; ξ)] +

n∑
i=1

log
[
Ḡ(xi; ξ)

]
−(a+ 1)

n∑
i=1

G(xi, ξ)α log [G(xi, ξ)] + Ḡ(xi, ξ)α log
[
Ḡ(xi, ξ)

]
G(xi, ξ)α + Ḡ(xi, ξ)α

−a(b− 1)

n∑
i=1

G(xi, ξ)aαḠ(xi, ξ)α log
[
G(xi,ξ)

Ḡ(xi,ξ)

]
{[
G(xi, ξ)α + Ḡ(xi, ξ)α

]a −G(xi, ξ)aα
}

[G(xi, ξ)α + Ḡ(xi, ξ)α]

and

Uξ(θ) =

n∑
i=1

g(ξ)(xi, ξ)

g(xi, ξ)
+ (aα− 1)

n∑
i=1

G(ξ)(xi, ξ)

G(xi, ξ)
+ (1− α)

n∑
i=1

G(ξ)(xi, ξ)

Ḡ(xi, ξ)

−α(a+ 1)

n∑
i=1

G(ξ)(xi, ξ)
G(xi, ξ)α−1 − Ḡ(xi, ξ)α−1

G(xi, ξ)α + Ḡ(xi, ξ)α

−aα(b− 1)

n∑
i=1

G(ξ)(xi, ξ)G(xi, ξ)aα−1Ḡ(xi, ξ)α−1{[
G(xi, ξ)α + Ḡ(xi, ξ)α

]a −G(xi, ξ)aα
}

[G(xi, ξ)α + Ḡ(xi, ξ)α]
.

Numerical maximization of (11.1) is performed by using the RS method (Rigby and
Stasinopoulos, 2005) which is available in the gamlss package (R Development Core Team,
2013), SAS (Proc NLMixed) or the Ox program (sub-routine MaxBFGS) (see, Doornik,
2007) or by solving the nonlinear likelihood equations obtained by differentiating (11.1).
Setting these equations to zero, Ua(θ) = Ub(θ) = Uα(θ) = Uξ(θ) = 0, and solving them
simultaneously yields the MLE θ̂ of θ.

For interval estimation and hypothesis tests on the parameters in θ, we require the
(p+ 3)× (p+ 3) total observed information matrix J(θ) = −{Urs}, where the elements
Urs for r, s = a, b, α, ξ are calculated numerically. The estimated multivariate normal
Np+3(θ,J(θ̂)−1) distribution can be used to construct approximate confidence regions
for the parameters in θ̂. An asymptotic confidence interval (ACI) with significance level
γ for each parameter θr is given by

ACI(θr, 100(1− γ)%) = (θ̂r − zγ/2
√
κ̂θr,θr , θ̂r + zγ/2

√
κ̂θr,θr ),

where κ̂θr,θr is the rth diagonal element of J(θ)−1 estimated at θ̂ and zγ/2 is the quantile
1− γ/2 of the standard normal distribution.

We can compute the maximum values of the unrestricted and restricted log-likelihoods
to construct likelihood ratio (LR) statistics for testing some sub-models of the KwOLL-G
distribution. For example, we may use LR statistics to check if the fit using the KwOLLW
distribution is statistically “superior” to the fits using the KwW, EW, EE and Weibull
distributions for a given data set. In any case, considering the partition θ = (θT1 ,θ

T
2 )T ,
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tests of hypotheses of the type H0 : θ1 = θ
(0)
1 versus HA : θ1 6= θ

(0)
1 can be performed

using the LR statistic w = 2{`(θ̂)−`(θ̃)}, where θ̂ and θ̃ are the estimates of θ under HA
and H0, respectively. Under the null hypothesis H0, w

d→ χ2
q, where q is the dimension of

the vector θ1 of interest. The LR test rejects H0 if w > ξγ , where ξγ denotes the upper
100γ% point of the χ2

q distribution.

12. Applications
We illustrate the importance of the proposed family in two applications to real data.

In the last few years, several extensions of the normal and Weibull distributions have
been introduced in the literature. For example, Silva et al. (2010) studied the beta
modified Weibull (BMW) distribution, Cordeiro et al. (2012b) proposed the McDon-
ald normal (McN) distribution, Cordeiro et al. (2014b) defined the Libby-Novick beta
Weibull (LNBW) distribution, Cordeiro et al. (2014c) studied the McDonald Weibull
(McW) distribution and Cordeiro et al. (2014d) introduced the Kummaraswamy modi-
fied Weibull (KwMW) distribution.

We compare the fits of the KwOLLN and KwOLLW distributions with those of other
known models, namely the McN, beta normal (BN), Kumaraswamy normal (KwN),
McW, BMW, KwMW, LNBW, beta Weibull (BW), Kumaraswamy Weibull (KwW) and
their baseline distributions themselves, see Alexander et al. (2012) and Cordeiro et al.
(2010) for more details.

12.1. Aarset data. We consider the lifetimes of 50 industrial devices put on life test
at time zero presented by Aarset (1987). These data also reported in Mudholkar and
Srivastava (1993), Mudholkar et al. (1996) and Silva et al. (2010) exhibit a bathtub-
shaped failure rate property. These authors consider that the data are generated by a
Weibull distribution. So, we adopt this distribution as the baseline model for our family.

Table 2 lists the MLEs and their standard errors (in parentheses) of the parameters
from the fitted KwOLLW, McW, KwMW, BMW, LNBW, BW, KwW, EW and Weibull
models and the values of the statistics: Akaike Information Criterion (AIC), Consistent
Akaike Information Criterion (CAIC) and Bayesian Information Criterion (BIC). The
computations are performed using the statistical software R. The results indicate that
the KwOLLW model has the smallest values of these statistics among the fitted models,
and therefore it could be chosen as the best model.

A comparison of the KwOLLW distribution with some of its sub-models using LR
statistics is given in Table 3. Clearly, we reject the null hypotheses for the three LR
tests in favor of the KwOLLW distribution. In order to assess if the new model is
appropriate, Figures 5a and 5b display the histogram of the data and the fitted KwOLLW
density function and the densities of some of its sub-models and non-nested models,
respectively. Further, Figures 5c and 5d display plots of the empirical and estimated
survival functions of the KwOLLW distribution and of some sub-models and non-nested
models, respectively. We can conclude that the KwOLLW distribution is a very suitable
model to fit to the current data.

We shall apply formal goodness-of-fit tests in order to verify which distribution fits
the data better. We consider the Cramér-Von Mises (W ∗) and Anderson-Darling (A∗)
statistics defined by Chen and Balakrishnan (1995).

The values of these statistics for the fitted models are listed in Table 4. Overall, by
comparing the measures of these formal goodness-of-fit tests in Table 4, we conclude that
the KwOLLW distribution yields a better fit than the Weibull, EW, KwW, BW and McW
distributions and therefore it can be an interesting alternative to these distributions for
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Table 2. MLEs and information criteria.

Aarset λ β a b α AIC CAIC BIC

KwOLLW 5.4771 0.0203 3.0532 4.9020 0.0514 441.0 442.3 450.5
(0.0100) (0.0010) (1.2819) (4.5062) (0.0188)

KwW 5.5025 0.0165 0.0602 0.2510 1 449.5 450.4 457.2
(0.0043) (0.0013) (0.0205) (0.0796) (-)

EW 4.6978 0.0108 0.1381 1 1 464.3 464.8 470.0
(0.00002) (0.0008) (0.0206) (-) (-)

Weibull 0.9488 0.0222 1 1 1 486.0 486.2 489.8
(0.1195) (0.0034) (-) (-) (-)

λ β a b c

McW 5.4712 0.0202 0.0880 0.0876 0.8457 447.5 448.8 457.0
(0.0086) (0.0028) (0.0195) (0.0640) (0.6682)

BW 5.3386 0.0212 0.0864 0.0731 1 445.7 446.5 453.3
(0.0146) (0.0019) (0.0181) (0.0306) (-)

λ β a1 b1 c1

LNBW 5.4514 0.0217 0.0838 0.0620 2.1512 447.3 448.7 456.9
(0.0109) (0.0041) (0.0187) (0.0618) (14.3571)
α2 λ2 γ2 a2 b2

BMW 0.0028 0.0403 1.1337 0.2455 0.1400 453.9 455.2 463.4
(0.0009) (0.0125) (0.2873) (0.0623) (0.0671)
α3 λ3 γ3 a3 b3

KwMW 0.0038 0.03724 0.9403 0.2654 0.3195 457.7 459.0 467.2
(0.0020) (0.0106) (0.2650) (0.1058) (0.1649)

Table 3. LR tests.

Aarset Hypotheses Statistic w p-value
KwOLLW vs KwW H0 : α = 1 vs H1 : H0 is false 10.55 0.0011
KwOLLW vs EW H0 : b = α = 1 vs H1 : H0 is false 27.33 <0.0001

KwOLLW vs Weibull H0 : a = b = α = 1 vs H1 : H0 is false 51.00 <0.0001

modeling lifetime data. These results illustrate the importance of the additional shape
parameters of the new distribution to analyze real data.

12.2. Respiratory data. Now, we use a real data set to compare the fits of the
KwOLLN distribution with those of the McN, BN, KwN and normal distributions. The
McN pdf (Cordeiro et al., 2012b) is given by

f(x;µ, σ, a, b, c) =
c

B(a, b)σ
φ
(
σ−1(x− µ)

) {
Φ
(
σ−1(x− µ)

)}ac−1
{

1− Φ
(
σ−1(x− µ)

)c}b−1

,

where x ∈ R, µ ∈ R is the location parameter, σ > 0 is the scale parameter and a, b and
c are positive shape parameters.

We consider 630 observations on respiratory rate (Alexander et al., 2012) and a parent
normal distribution. These data were taken from a study by the University of São Paulo,
ESALQ (Laboratory of Physiology and Post-Harvest Biochemistry), which evaluate the
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Figure 5. (a) Estimated densities of the KwOLLW, BW, KwW, EW
and Weibull models. (b) Estimated densities of the KwOLLW, McW,
KwMW, BMW and LNBW models. (c) Empirical and estimated sur-
vival functions of the KwOLLWBW, KwW, EW and Weibull. (d)
Empirical and estimated survival functions of the KwOLLW, McW,
KwMW, BMW and LNBW models.

effects of mechanical damage on banana fruits (genus Musa spp.); see Saavedra del Aguila
et al. (2010) for more details. The major problem affecting bananas during and after har-
vest is the susceptibility of the mature fruit to physical damage caused during transport
and marketing. The extent of the damage is measured by the respiratory rate.

Initial values for a, b, µ and σ are taken from the fitted KwN model with α = 1;
see, for example, Cordeiro et al. (2012b). The computations are performed using the
subroutine NLMIXED in SAS. Table 5 lists the MLEs and their standard errors (in
parentheses) of the parameters of the fitted models and the AIC, CAIC and BIC values.
The computations are performed using the subroutine NLMixed in SAS. These results
indicate that the KwOLLN model has the lowest AIC, CAIC and BIC values among
those values of the fitted models, and therefore it could be chosen as the best model.

More information is provided by a visual comparison of the histogram of the data
with the fitted densities. In Figure 6, we plot the histogram of the respiratory data and
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Table 4. Formal goodness-of-fit tests for Aarset data.

Model Statistic
W ∗ A∗

KwOLLW 0.0833 0.7477
KwW 0.1454 1.1324
EW 0.2740 1.8111

Weibull 0.4963 3.0079
BW 0.1041 0.9043
McW 0.1047 0.9056

LNBW 0.1028 0.8972
BMW 0.1677 1.2697

KwMW 0.1912 1.3995

Table 5. MLEs and information criteria.

Respiratory µ σ a b α AIC CAIC BIC

KwOLLN 6.5396 113.18 2.2642 0.2778 11.2953 5547.0 5547.1 5569.3
(2.7772) (14.6040) (0.3356) (0.0147) (2.3128)

KwN -32.7704 29.4031 13.4721 0.4520 1 5775.1 5775.2 5792.9
(2.5507) (0.8140) (1.4283) (0.0329) (-)

Normal 34.3166 27.7500 1 1 1 5979.3 5979.4 5988.2
(1.1056) (0.7818) (-) (-) (-)

a b c µ σ AIC CAIC BIC

McN 10021.0 0.4681 4.6369 -186.04 47.9945 5638.3 5638.4 5660.5
(8.8561) (0.0305) (0.6311) (7.9203) (1.7718)

BN 50.9335 0.4135 1 -56.1790 32.2426 5709.9 5710.0 5727.7
(2.5794) (0.0296) - (2.1684) (0.9699)

the fitted KwOLLN, McN, BN, KwN and normal densities. The KwOLLN and McN
distributions provide reasonable fits, but it is clear that the KwOLLN model provides a
more adequate fit to the histogram and better captures its extreme bathtub shape.

13. Conclusions
We introduce and study a new class of distributions called the Kumaraswamy odd log-

logistic-G (KwOLL-G) family, which includes as special cases some classical generators
of distributions such as the Kumaraswamy-generalized and exponentiated families. For
each baseline G distribution, we define the corresponding KwOLL-G distribution with
three additional shape parameters using simple formulas to extend widely-known models
such as the normal, Weibull and Gumbel distributions in order to provide more flexibility.
Some characteristics of the new family, such as the ordinary moments, generating function
and mean deviations, have tractable mathematical properties. The role of the generator
parameters is related to the skewness and kurtosis of the new family. We estimate the
parameters using maximum likelihood and determine the observed information matrix.
Inference on the model parameters is conducted based on likelihood ratio statistics for
testing nested models and other formal statistics for non-nested models. Two applications
to real data demonstrate the importance of the new family.
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Figure 6. Fitted densities of the KwOLLN, McN and BW models for
the respiratory data. (b) Fitted densities of the KwOLLN, KwN and
normal models for the respiratory data.
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Appendix A
We present four power series expansions required for the proof of the general result

in Section 4. First, for b > 0 real non-integer and 0 < u < 1, we have the binomial
expansion

(13.1) (1− u)a =

∞∑
j=0

(−1)j
(
a

j

)
uj ,

where the binomial coefficient is defined for any real.
Second, the following expansion holds for any α > 0 real non-integer

(13.2) G(x)α =

∞∑
r=0

sr(α)G(x)r,

where sr(α) =
∑∞
j=r(−1)r+j

(
α
j

) (
j
r

)
.

Third, by expanding zλ in Taylor series, we obtain

(13.3) zλ =

∞∑
k=0

(λ)k (z − 1)k/k! =

∞∑
i=0

fi z
i,

where

fi = fi(λ) =
∞∑
k=i

(−1)k−i (λ)k
k!

(
k

i

)
and (λ)k = λ(λ− 1) . . . (λ− k + 1) is the descending factorial.



1511

Fourth, we consider equations (6.2) and (6.3) to obtain an expansion for [G(x)a +
Ḡ(x)a]c. We can write from equations (13.1) and (13.2)

[G(x)a + Ḡ(x)a] =

∞∑
j=0

tj G(x)j ,

where tj = tj(a) = sj(a) + (−1)j
(
a
j

)
. Then, using (13.3), we can write

[G(x)a + Ḡ(x)a]c =

∞∑
i=0

fi

(
∞∑
j=0

tj G(x)j
)i
,

where fi = fi(c). Finally, based on equations (6.2) and (6.3), we have

[G(x)a + Ḡ(x)a]c =

∞∑
j=0

hj G(x)j ,(13.4)

where hj = hj(a, c) =
∑∞
i=0 fimi,j and mi,j = (j t0)−1∑j

m=1[m(j + 1) − j] tmmi,j−m

(for j ≥ 1) and mi,0 = ti0.
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Abstract
Ranked set sampling is used when the measurement or quantification
of units of the variable under study is difficult but the ranking of units
of sets of small sizes can be done easily by an inexpensive method. Dell
and Clutter (1972) showed that the sample mean based on ranked set
sample is more efficient than the sample mean based on simple ran-
dom sample with replacement sampling procedure for estimation of the
population mean. In this paper Dell and Clutter estimator has been im-
proved further by using the ranking variable x as an auxiliary variable
when µx, the population mean of x is unknown. An empirical investiga-
tion based on life data shows all proposed estimators are approximately
unbiased and bring gain in efficiency of up to 50 percent.
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1. Introduction

Ranked set sampling (RSS) was introduced by McIntyre (1952) to estimate the mean
pasture and forage yield. The RSS is used when precise measurement of the variable of
interest is difficult or expensive but the variable can be ranked easily without measuring
the actual variable by an inexpensive method such as visual perception, judgment and
auxiliary information. For example, in estimating the mean height of trees in a forest,
the heights of a small sample of two or three trees standing nearby can be ranked easily
by visual inspection without measuring them. In estimating the number of bacterial cells
per unit volume, we can rearrange two or three test tubes easily in order of concentration
using optical instruments without measuring exact values. In a ranked set sampling,
instead of selecting a single sample of sizem, we selectm-sets of samples each of sizem. In
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each of the sets all the elements are ranked but only one is measured. Finally, an average
of them-measured units is taken as an estimate of the population mean. Dell and Clutter
(1972) proved that the sample mean based on the RSS is unbiased for the population
mean regardless of the errors of ranking. The RSS mean is at least as precise as the sample
mean of the simple random sampling with replacement (SRSWR) sampling scheme of
the same size. Stokes (1980, 1980a, 1988) showed that RSS provides precise estimators
for cumulative distribution function, population variance and correlation coefficient.

1.1. Rank set sampling by SRSWR method. First we choose a small number m
(set-size) such that one can easily rank the m elements of the population with sufficient
accuracy. Then the selection of RSS is as follows: Select a sample of m2 units from a
population U by SRSWR method. Allocate these m2 units at random into m sets each of
size m. Rank all the units in a set with respect to the values of the variable of interest y
from 1 (minimum) tom (maximum) by a very inexpensive method such as eye inspection.
No actual measurement is done at this stage. After the ranking has been completed, the
unit holding rank 1 of the set-1, unit holding rank-2 of the set 2, . . . , and finally the
unit holding rank m of the set m is measured accurately by using a suitable instrument.
This completes a cycle of the sampling. The process is repeated for r cycles to obtain
the desired sample of size n = mr units. Thus in a RSS a total of m2r units have been
drawn from the population but only mr of them are measured and the rest mr (m− 1)
are discarded. These measured mr observations are called “ranked set sample”. Since the
ordering of a large number of observations is difficult, increase of sample size n = mr is
done by increasing the number of cycles r.

It is obvious that the variable used for ranking x (say) e.g. eye estimation, judgment or
auxiliary information is expected to have high correlation with the variable of interest y.
Stokes (1977) considered ranking as an auxiliary variable. Prasad (1989), Kadilar et al.
(2009) and Singh et al. (2014) used the estimation of the population mean µy assuming
the population mean µx is known. In our present paper we have proposed improved
methods of estimation of the population mean using the ranking variable as an auxiliary
variable when the population mean µx is unknown. The proposed estimators fare better
than the traditional estimator-sample mean. We also compared the performances of the
proposed estimators through simulation studies based on live data collected by Platt et
al. (1988), given by Chen et al. (2003). The simulation revealed that all the proposed
estimators are approximately unbiased and bring gain in efficiency of up to 50%.

1.2. A fundamental equality. Let yi1|k, . . . , yij|k, . . . , yim|k and xi1|k, . . . , xij|k,
. . . , xim|k be the value of the variable of interest y and x of the ith set of elements of the
kth cycle, i = 1, . . . ,m; k = 1, . . . , r. Further, let yi(j)|k and xi(j)|k be the smallest jth
observation (order statistic) of yi1|k, . . . , yij|k, . . . , yim|k and xi1|k, . . . , xij|k, . . . , xim|k re-
spectively. Here we first assume that y increases with x i.e. xij|k > xi′j′|k′ implies
yij|k > yi′j′|k′ . Ranking of heights of two and three trees nearby through visual inspec-
tion, the eye estimates (x) is expected to provide perfect ranking. Obviously, perfect
ranking is not always possible. So, the theory of judgement ranking has been introduced
in section 2.6. Let yi1|k, . . . , yij|k, . . . , yim|k be a random sample from a population with
cumulative distribution function (cdf) F (y) and probability density function (pdf) f(y).
Similarly xi1|k, . . . , xij|k, . . . , xim|k are the random sample from a population with cdf
F (x)and pdf f(x) respectively. Let the mean and variance of x and y be µx, µy and
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σ2
x, σ

2
y respectively. Then we have the following equalities following Stokes (1980):

m∑
j=1

yij|k =

m∑
j=1

yi(j)|k,

m∑
j=1

xij|k =

m∑
j=1

xi(j)|k(1.1)

m∑
j=1

(xij|k − µx)2 =

m∑
j=1

, (xi(j)|k − µx)2,

m∑
j=1

(yij|k − µy)2 =

m∑
j=1

(yi(j)|k − µy)2(1.2)

and

(1.3)
m∑

j=1

(xij|k − µx)(yij|k − µy) =

m∑
j=1

(xi(j)|k − µx)(yi(j)|k − µy)

Let µx(j)|m = E{xi(j)|k} and µy(j)|m = E{yi(j)|k} be the mean of the jth order-
statistic of random samples of size m of the variables x and y for the cycle k. The order
statistics µx(j)|m and µy(j)|m depend on m but is independent of the set i and the cycle
k.

The equation (1.1) yields

E

{
1

m

m∑
j=1

xij|k

}
= E

{
1

m

m∑
j=1

xi(j)|k

}

i.e. µx =
1

m

m∑
j=1

µx(j)|m(1.4)

Similarly,

(1.5) µy =
1

m

m∑
j=1

µy(j)|m

the equation (1.2) yields
m∑

j=1

E(xij|k − µx)2 =

m∑
j=1

E(xi(j)|k − µx)2

i.e. mσ2
x =

m∑
j=1

{
σ2
x(j)|m + (µx(j)|m − µx)2

}
(where σ2

x(j)|m = variance of xi(j)|m)

i.e. σ2
x =

1

m

m∑
j=1

σ2
x(j)|m +

1

m

m∑
j=1

(µx(j)|m − µx)2(1.6)

Similarly,

σ2
y =

1

m

m∑
j=1

σ2
y(j)|m +

1

m

m∑
j=1

(µy(j)|m − µy)2(1.7)

(where σ2
y(j)|m = variance of yi(j)|m)

Let us assume that the variables x and y from the same unit are correlated while from
the different units are uncorrelated so that

(1.8) Cov(xij|k, yij|k) = µxy and Cov(xij|k, yi′j′|k′) = 0 for (i, j, k) 6= (i′, j′, k′)
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1.3. Estimation of the mean. Let ȳ[m]|k =
1

m

m∑
i=1

yi(i)|k = arithmetic mean of the m

quantified values of the variable y for the cycle k and

(1.9) µ̂y(rss) =
1

r

r∑
k=1

ȳ[m]|k =
1

n

r∑
k=1

m∑
i=1

yi(i)|k

is the mean of n = mr quantified variables based on all the r cycles. The following
theorem due to Dell and Clutter (1972)and Kaur et al. (1997) show that the estimator
µ̂y(rss) is unbiased for µy and possesses a lower variance than µ̂y(srs), the sample mean
based on an SRSWR sample of the same size n. An unbiased estimator of the variance
is also presented here.

1.1. Theorem.

(i) E(µ̂y(rss)) = µy

(ii) V (µ̂y(rss)) =
σ2
y[m]

n

=
1

n

[
σ2
y −

1

m

m∑
i=1

(µy(j)|m − µy)2
]

≤ σ2
y/n = V (µ̂y(srs))

(iii) An unbiased estimator of the variance of V (µ̂y(rss)) is

V̂ (µ̂y(rss)) =
1

r(r − 1)

r∑
k=1

(ȳ[m]|k − µ̂y(rss))
2.

where σ2
y[m] =

1

m

m∑
j=1

σ2
y(j)|m

1.4. Precision of the rank-set sampling. The relative precision of µ̂y(rss) compared
to µ̂y(srs), sample mean of an SRSWR sample of size n = mr is

(1.10) RPrss/srs =
V (µ̂y(srs))

V (µ̂y(rss))
=

σ2
y

σ2
y[m]

2. Proposed estimator of the population mean
From the ith set of the kth cycle, we construct an estimator for µy as follows:

ti|k = yi(i)|k − λxi(i)|k + λx̄i|k for i = 1, ..,m

= yi(i)|k − λ(xi(i)|k − x̄i|k)(2.1)

where x̄i|k =
1

m

m∑
j=1

xij|k and λ is a suitably chosen constant to be determined opti-

mally.
The proposed estimator of the population mean µy based on the kth cycle is

tk =
1

m

m∑
i=1

ti|k

=

(
1

m

m∑
i=1

yi(i)|k

)
− λ

(
1

m

m∑
i=1

xi(i)|k −
1

m

m∑
i=1

x̄i|k

)
(2.2)



1517

and the overall estimator for µy is

(2.3) t̄ =
1

r

r∑
k=1

tk

2.1. Mean and variance of t̄.

E(ti|k) = E(yi(i)|k)− λE(xi(i)|k − x̄i|k)

= µy(i)|k − λ(µx(i)|k − µx)

= µy(i) − λ(µx(i) − µx)(2.4)

(noting µy(i)|k = µy(i) for every k)
Now using (2.2), we get

E(tk) =
1

m

m∑
i=1

[(µy(i) − λµx(i)) + λµx]

= µd + λµx (where µd = µy − λµx)

= µy(2.5)

The variance of tk is

V (tk) = V

(
1

m

m∑
i=1

ti|k

)

=
1

m2

m∑
i=1

V (ti|k)(2.6)

Now

(2.7) V (ti|k) = V (yi(i)|k) + λ2V (xi(i)|k − x̄i|k)− 2λCov(yi(i)|k, xi(i)|k − x̄i|k)

Further,

V (xi(i)|k − x̄i|k) = V (xi(i)|k) + V
(
x̄i|k

)
− 2Cov(xi(i)|k,x̄i|k)

= σ2
x(i) +

σ2
x

m
− 2

m

V (xi(i)|k) +
∑
j(6=i)

Cov(xi(i)k, xi(j)|k)]

(2.8)

Cov(yi(i)|k, xi(i)|k − x̄i|k) = Cov(yi(i)|k, xi(i)|k)− Cov

(
yi(i)|k,

1

m

m∑
j=1

xi(j)||k

)

= σxy(i)|k −
1

m

Cov(xi(i)|k, yi(i)|k) +
1

m

m∑
j(6=1)

Cov(yi(i)|k, xi(j)|k)

(2.9)

where σxy(i) is the covariance between xi(i)k and yi(i)k.
Now substituting(2.8) and (2.9) in (2.7), we get

V (ti|k) = σ2
y(i) + λ2

[
σ2
x(i) +

σ2

m
− 2

m

V (xi(i)) +
∑
j(6=i)

Cov(xi(i), xi(j))




−2λ

[
σxy(i) −

1

m

Cov(xi(i), yi(i)) +
1

m

m∑
j(6=i)

Cov(yi(i), xi(j))
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The equation (2.6) yields

V (tk)

=
1

m2

m∑
i=1

σ2
y(i) +

λ2

m2

[
m∑
i=1

σ2
x(i) + σ2

x −
2

m
m∑
i=1

V (xi(i)|k) +

m∑
i=1

∑
j(6=i)

Cov(xi(i)k, xi(j)|k)




−2
λ

m2

[
m∑
i=1

σxy(i) −
1

m
m∑
i=1

Cov(xi(i)|k, yi(i)k) +
1

m

m∑
i=1

m∑
j(6=i)

Cov(yi(i)|k, xi(j)|k)




=
1

m2

m∑
i=1

σ2
yi +

λ2

m2

[
m∑
i=1

σ2
x(i) − σ2

x

]
− 2

λ

m2

[
m∑
i=1

σxy(i) − σxy

]
(2.10)

Further, the equation (2.3) yields the variance of t̄ as

V (t̄)

=
1

r2

r∑
k=1

V (tk)

=
1

rm2

[
m∑
i=1

σ2
y(i) + λ2

(
m∑
i=1

σ2
x(i) − σ2

x

)
−2λ

(
m∑
i=1

σxy(i) − σxy

)]
(2.11)

=
1

n

[
1

m

m∑
i=1

σ2
y(i) + λ2 1

m

m∑
i=1

σ2
x(i) −2

λ

m

m∑
i=1

σxy(i)

]
(2.12)

− 1

nm

[
λ2σ2

x − 2λσxy

]
(noting n = rm)

Now using (1.6), (1.7) and (1.8),we get

V (t̄) =
1

n

[(
σ2
y −

1

m

m∑
i=1

λ2
y(i)

)
+ λ2

(
σ2
x −

1

m

m∑
i=1

µ2
x(i)

)

−2λ

(
σxy −

1

m

m∑
i=1

µxy(i)

)]
− 1

rm2
[λ2σ2

x − 2λσxy]

=
1

n

[(
σ2
d −

1

m

m∑
i=1

µ2
d(i)

)
− 1

rm

(
λ2σ2

x − 2λσxy

)]
(2.13)

The above results are summarized as follows:

2.1. Theorem.
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(i) The estimator t̄ is unbiased for µy

(ii) The variance of t̄ is

V (t̄) =
1

nm

[
m∑
i=1

σ2
y(i) + λ2

(
m∑
i=1

σ2
x(i) − σ2

x

)
− 2λ

(
m∑
i=1

σxy(i) − σxy

)]

=
1

rn

[
σ2
d −

1

m

m∑
i=1

(µd(i) − µd)2 +
2λρσxσy − λ2σ2

x

m

]
where µd(i) = µy(i) − λµx(i).

(iii) An unbiased estimator of V (t̄) is

V̂ (t̄) =
1

r(r − 1)

r∑
k=1

(tk − t̄)2

The part (iii) of the Theorem 2.1 follows from the fact that the estimators tk(k =
1, . . . , r) are independently identically distributed random variables.

2.2. Optimum value of λ. The optimum value of λ that minimizes V (t̄) is obtained
from the equation

(2.14)
∂V (t̄)

∂λ
= 0

and it is given by

optλ = λ0 =

m∑
i=1

σxy(i) − σxy

m∑
i=1

σ2
x(i) − σ2

x

(2.15)

= δ

√
m∑
i=1

σ2
y(i)√

m∑
i=1

σ2
x(i) − σ2

x

(2.16)

where δ is the correlation coefficient between
1

rm

r∑
k=1

k∑
i=1

yi(i)|k and
1

rm

r∑
k=1

k∑
i=1

(
xi(i)|k − x̄i|k

)
.

Finally, the variance t̄0, the optimum value of t̄ with λ = λ0 is given by

V0 = (1− δ2)
1

m2r

m∑
i=1

σ2
y(i)

= (1− δ2)
1

n

[
σ2
y −

1

m

m∑
i=1

(µy(i) − µy)2
]

(2.17)

2.3. Precision of the proposed optimum estimator t̄0. The relative precision of
t̄0 with respect to the conventional estimator µ̂y(rss) based on an SRSWR sample mean
of size n = mr is given by

(2.18) RPt0|rss =
V (µ̂y(rss))

V (t̄0)
=

1

1− δ2

From the expression (2.18), we note that the modified estimator is more efficient than
the conventional RSS estimator µ̂y(rss) since δ2 ≤ 1 .
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2.4. Estimator of λ0. The optimum estimator t0 cannot be used in practice since the
value λ0 is generally unknown. The following estimators for λ0 may be used

(2.19) λ̂0 =

r∑
k=1

(gk − ḡ)(hk − h̄)

r∑
k=1

(hk − h̄)2

and

(2.20) λ̂1 =

r∑
k=1

m∑
i=1

yi(i)|kxi(i)|k −
(

r∑
k=1

m∑
i=1

yi(i)|k

)(
r∑

k=1

m∑
i=1

xi(i)|k

)
/ (rm)

r∑
k=1

m∑
i=1

x2i(i)|k −
(

r∑
k=1

m∑
i=1

xi(i)|k)

)2

/rm

where gk =
1

m

m∑
i=1

yi(i)|k, hk =
1

m

m∑
i=1

(xi(i)|k − x̄i|k), ḡ =
1

r

r∑
k=1

gk and

h̄ =
1

r

r∑
k=1

hk.

2.5. Ratio and difference estimators. Instead of the optimum value of λ0, one may
use the following ratio and difference estimators:

(2.21) t̄R =

(
µ̂y(rss)

µ̂x(rss)

)(
1

mr

r∑
k=1

m∑
i=1

x̄i|k

)
and

(2.22) t̄d = µ̂y(rss) − (µ̂x(rss) − x̄)

where µ̂x(rss) =
1

mr

(
r∑

k=1

m∑
i=1

xi(i)|k

)
, µ̂y(rss) =

1

mr

(
r∑

k=1

m∑
i=1

yi(i)|k

)
and x̄ =

(
1

m2r

r∑
k=1

m∑
j=1

m∑
i=1

xij|k

)
For large n = mr, the ratio estimator is appropriately unbiased and an approximate

estimator of the mean square of µ̂x(rss) is obtained by using Cochran (1977) as

M(t̄R) ∼= µ2
xV

(
1

n

r∑
k=1

m∑
i=1

yi(i)|k − θ
1

n

r∑
k=1

m∑
i=1

xi(i)|k

)
∼=

µ2
x

n

[(
σ2
y − 2θρxyσxσy + θ2σ2

x

)
− 1

m

m∑
i=1

{(
µy(i) − θµx(i)

)
− (µy − θµx)

}2](2.23)

where θ =
µy

µx
.

From the expression (2.23), we note that the ratio estimator based on ranked set
sample is more precise than the conventional ratio estimator based on the same sample
size.

A reasonably good estimator of M(t̄R) is

(2.24) M̂(t̄R) ∼= µ̂2
x(rss)

1

n− 1

r∑
k=1

m∑
i=1

(
zi(i)|k − z̄

)2
where zi(i)|k = yi(i)|k − θ̂xi(i)|k, z̄ =

r∑
k=1

m∑
i=1

zi(i)|k/n and θ̂ =
µ̂y<rss>

µ̂x(rss)

.
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It is easy to note that the difference estimator t̄d is always unbiased and it is more
efficient than the conventional difference estimator of the same sample size.

2.6. Judgment ranking. Sometimes ranking may be imperfect. Let yi<j>|k be the
smallest jth “judgment order statistic” corresponding to order statistic xi(j)|k in the ith
set of the cycle k. In case the judgment ranking is perfect yi<j>|k becomes equal to yi(j)k,
otherwise if the judgment process is imperfect, we find yi<j>|k 6= yi(j)|k. Here we assume
that the expectation of yi<j>|k over the judgment process is the true ranking so that
E(yi<j>|k) = yi(j)|k. In this case we modify the estimators µ̂y(rss), t̄0, t̄1, t̄R and t̄d by
replacing yi(j)|k with yi<j>|k. The modified estimators become respectively as follows:

µ̂y<rss> =
1

n

r∑
k=1

m∑
i=1

yi<i>|k

t̄<0> =
1

mr

[
r∑

k=1

m∑
i=1

yi<i>|k − λ<0>

(
r∑

k=1

m∑
i=1

xi(i)|k −
r∑

k=1

m∑
i=1

x̄i|k

)]
,

t̄<1> =
1

mr

[
r∑

k=1

m∑
i=1

yi<i>|k − λ<1>

(
r∑

k=1

m∑
i=1

xi(i)|k −
r∑

k=1

m∑
i=1

x̄i|k

)]
,

t̄<R> =

(
µ̂y〈rss〉

µ̂x(rss)

)(
1

mr

r∑
k=1

m∑
i=1

x̄i|k

)
and

t̄d = µ̂y<rss> − (µ̂x(rss) − x̄)(2.25)

where λ̂<0> =

r∑
k=1

(g<k> − ḡ<>)(hk − h̄)

r∑
k=1

(hk − h̄)2
,

λ̂<1> =

r∑
k=1

m∑
i=1

yi<i>|kxi(i)|k −
(

r∑
k=1

m∑
i=1

yi<i>|k

)(
r∑

k=1

m∑
i=1

xi(i)|k

)
/ (rm)

r∑
k=1

m∑
i=1

x2i(i)|k −
(

r∑
k=1

m∑
i=1

xi(i)|k

)2

/ (rm)

,

g<k> =
1

m

m∑
i=1

yi<i>|k, ḡ<> =
1

r

r∑
k=1

g<k> with hk and h̄ as defined in section 2.4.

The modified estimator µ̂y<rss> remains exactly unbiased for µy while the remain-
ing modified estimators based on the judgment order statistics remains approximately
unbiased for µy.

3. Simulation studies
In the proposed simulation study we consider the tree data set originally collected by

Platt et al. (1988) and cited by Chen et al. (2003). The data comprises of diameters in
centimetre (cm) at breastheights (x) and entire height (y) in feet of 396 trees. The mean
diameter and height of the 396 trees are µx = 20.9641 and µy = 52.6768 respectively.
Treating the 396 trees as a population, initially a sample ofm2 trees is selected by SRSWR
sampling procedures. The selection of the sample (cycle) is repeated r times. Since,
for this data y does not always increase with x, we have compared performances with
the proposed five estimators µ̂y<rss>, t̄<0>, t̄<1>, t̄<R> and t̄<d> based on judgement
order statistic. However, as per suggestions from one of the referees, we have considered
the following ratio estimator (Kadilar et al., 2009) and regression estimators when the
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population mean µx is known

(3.1) t̄∗<R> =
µ̂y<rss>

µ̂x(rss)

µx and t̄∗<1> = µ̂y<rss> − λ̂<1>(µ̂x(rss) − µx)

We call the process of selection ofm2 trees and replication r times as an iteration. The
iteration is repeated R = 100, 000 times. Let the values of the µ̂y<rss>, t̄<0>, t̄<1>, t̄<R>,
t̄<d>, t̄

∗
<R> and t̄∗<1> based on the qth iteration be denoted by µ̂y<rss>(q), t̄<0>(q),

t̄<1>(q), t̄<R>(q), t̄<d>(q), t̄∗<R>(q) and t̄∗<1>(q) respectively.
The percentage relative biases (RB) and mean square errors (MSE) of the seven esti-

mators are computed by the following formula:

(3.2) RB(θ̂) =
1

µy

(
1

R

R∑
q=1

θ̂ (q)− µy

)
and MSE(θ̂) =

1

R

R∑
q=1

(θ̂(q)− µy)2

where µy = 52.6768 and θ̂ = µ̂y<rss>, t̄<0>, t̄<1>, t̄<R>, t̄<d>, t̄
∗
<R>, t̄

∗
<1>.

The relative efficiency of the estimator θ̂ compared with the conventional estimator
µy<rss>(q) is given by

(3.3) RE(θ̂) = 100×MSE(µ̂y<rss>)/MSE(θ̂)%

The values of RB(θ̂) and RE(θ̂) are computed for different combinations of m(=
3, 4, 6, 10) and r = (3, 6, 8, 9, 12, 15, 18, 20, 36). These are presented in the following Table-
1 and Table-2. The simulation study shows for unknown, µx, the population mean of x,
all the proposed estimators are approximately unbiased. The maximum absolute relative
bias was 1.25. The minimum standard error (which is approximately

√
MSE ) is 3.69

(not shown in the table). The biases of all the estimators are ignorable since the maximum
of the ratio of bias of an estimator to its standard error is 0.0034 << 0.1(see Cochran
(1977)). For a given sample size n(= mr) the biases of all the estimators increase with
m. As per efficiency, all the proposed estimators are more efficient than the conventional
estimator µ̂y<rss> in all situations considered here. The estimator t̄<1> performed the
best, closely followed by t<R> and t<0>. The estimator t<d> performed least among the
proposed five estimators. The maximum relative efficiency 147.70 was attained by t̄<1>

with m = 10, r = 9 and it attained the minimum 133.66 when m = 3, r = 12. This
shows that the estimator t̄<1> brings gains in efficiency over the conventional estimator
µ̂y<rss> between 33% and 48% for estimating the population mean µy. However, in case
µx, the population mean is known one should use the estimators t∗<R> and t̄∗<1> as they
perform much better than all the proposed estimators with respect to bias and mean
square errors.
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Table-1: Relative Bias of the proposed estimators

Sample B
(
θ̂
)

size n m r µ̂y<rss> t̄<0> t̄<1> t̄<R> t̄<d> t̄∗<1> t̄∗<R>

3 12 0.29 −0.35 0.20 0.21 0.30 −0.24 −0.19
36 4 9 0.43 0.38 0.29 0.31 0.42 −0.14 −0.09

6 6 0.67 0.45 0.52 0.54 0.67 −0.05 0.03

54 3 18 0.26 −0.15 0.20 0.20 0.27 −0.15 −0.11
6 9 0.66 0.51 0.55 0.56 0.66 0.04 0.10

60 4 15 0.44 0.17 0.33 0.34 0.43 −0.02 0.02
10 6 1.19 1.14 1.12 1.12 1.19 0.06 0.21

3 24 0.30 −0.02 0.24 0.25 0.30 −0.11 −0.07
72 4 18 0.42 0.20 0.34 0.35 0.41 −0.00 0.04

6 12 0.66 0.54 0.58 0.59 0.66 0.07 0.13

80 4 20 0.41 0.21 0.34 0.34 0.41 0.00 0.04
10 8 1.19 1.18 1.15 1.15 1.19 0.10 0.24

3 30 0.30 0.06 0.28 0.28 0.31 −0.08 −0.04
90 6 15 0.65 0.57 0.59 0.59 0.65 0.10 0.16

10 9 1.21 1.20 0.16 1.17 1.21 0.11 0.26

108 3 36 0.32 0.12 0.30 0.30 0.33 −0.05 −0.01

120 6 20 0.65 0.57 0.60 0.60 0.64 0.13 0.19
10 12 1.21 1.21 1.19 1.19 1.22 0.14 0.28
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Table-2: Relative Efficiencies of the proposed estimators

Sample E
(
θ̂
)

size n m r µ̂y<rss> t̄<0> t̄<1> t̄<R> t̄<d> t̄∗<1> t̄∗<R>

3 12 100 119.29 133.66 132.87 115.94 427.32 410.01
36 4 9 100 118.63 139.52 138.29 117.99 394.42 380.69

6 6 100 109.33 145.55 143.67 119.70 356.66 342.76

54 3 18 100 125.59 134.50 133.27 116.05 434.01 409.9
6 9 100 125.52 146.00 143.67 119.70 363.26 343.26

60 4 15 100 129.13 140.14 138.46 118.05 401.35 379.73
10 6 100 111.93 147.67 144.93 119.97 320.61 301.68

3 24 100 127.54 134.09 132.81 115.94 440.94 412.61
72 4 18 100 130.61 139.48 137.83 117.87 402.2 378.78

6 12 100 132.17 146.41 143.77 119.69 366.35 343.37

80 4 20 100 132.37 140.18 138.39 118.05 403.1 378.85
10 8 100 124.22 147.28 144.39 119.78 323.22 302.52

3 30 100 129.53 134.71 133.33 116.13 441.11 411.54
90 6 15 100 135.51 146.19 143.50 119.63 368.25 344.19

10 9 100 127.61 147.70 144.69 119.86 322.81 302.05

108 3 36 100 130.82 134.74 133.26 116.06 443.02 411.38

120 6 20 100 138.59 145.93 143.15 119.49 366.84 341.58
10 12 100 133.46 146.66 143.75 119.59 325.82 303.93
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with correlated errors

Bronisław Ceranka∗ and Małgorzata Graczyk†‡

Abstract
The problems linked with an A-optimal spring balance weighing design
with correlated errors are discussed. The topic is focus on the deter-
mining the lowest bound of the trace of inverse information matrix in
a special class of design matrices. The constructing method of the op-
timal design, based on the incidence matrices of balanced incomplete
block designs, is presented.
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1. Introduction
Consider the linear model

(1.1) y = Xw + e,

where
(a) y is an n× 1 random vector of the observations,
(b) X ∈ Φn×p(0, 1), where Φn×p(0, 1) denotes the class of n× p matrices X = (xij)

of known elements xij = 1 or 0 according as in the ith weighing operation the
jth object is placed on the pan or not. Any matrix X belonging to the class
Φn×p(0, 1) is called the design matrix of the spring balance weighing design.

(c) w is a p× 1 vector of unknown weights of objects,
(d) e is an n × 1 random vector of errors for that E(e) = 0n and Var(e) = σ2G,

where 0n denotes the n× 1 vector with zero elements everywhere, G is a known
positive definite matrix.
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For the estimation of w we use the normal equations X
′
G−1Xw = X

′
G−1y. Any

spring balance weighing design is singular or nonsingular, depending on whether X
′
G−1X

is singular or nonsingular, respectively. Since G is a known positive definite matrix
then X

′
G−1X is nonsingular if and only if X has a full column rank. However, if

X
′
G−1X is nonsingular, then the generalized least squares estimator of w is given by

ŵ =
(
X
′
G−1X

)−1

X
′
G−1y and Var(ŵ) = σ2

(
X
′
G−1X

)−1

.

There are several problems concerning to the optimality criteria of experimental de-
signs. The best general references here are books [14] and [11]. The study results of
determining the optimal weighing designs are shown in many papers, see for instance
[12]. The standard work on A-, D- and E-optimality is the paper [5]. The deliberation
related to A-optimal criterion for G = In is presented in many papers. In [8] the robust-
ness optimal designs are considered, whereas in [3] the problem of adding additionally
weighing operation is presented. For a recent account on the theory of weighing designs,
for G being any positive definite diagonal matrix, we refer the reader to [4].
The problems of determining of the regular D-optimal designs are included in several
papers: in [10] some infinite families of D-optimal matrices based on Hadamard matrices
are considered, however in [7] the deliberation on D-optimal designs under correlated
structure of errors is presented. The construction of optimal design for eight objects is
given in [9], while D-optimal weighing designs with autoregressive errors in [6]. Moreover,
weighing designs as 2n factorial designs were presented in [1] and [2].

2. The main result
In this paper, we emphasize a special interest of the existence conditions for A-

optimal criterion. For given matrix G, the problem is to determine such matrix X

that tr
(
X
′
G−1X

)−1

takes the minimal value over all possible matrices in Φn×p(0, 1).

2.1. Definition. For given variance matrix of errors σ2G, any X ∈ Φn×p(0, 1) is

A-optimal if tr
(
X
′
G−1X

)−1

is minimal. Moreover, if tr
(
X
′
G−1X

)−1

attains the
lower bound then X is called regular A-optimal.

It’s worth underlining that for given variance matrix of errors σ2G and in any class
Φn×p(0, 1) A-optimal spring balance weighing design exists always, whereas regular A-
optimal design may exist.

In order to determine the lower bound of tr
(
X
′
G−1X

)−1

the following theorems will
be required.

2.2. Theorem. Let M be any positive definite p × p matrix and Π be the set of all
p × p permutation matrices. The average of M over all elements of Π, i.e. M̄ =
1
p!

∑
P∈Π P

′
MP and

(2.1) M̄ =
ptr(M)− 1

′
pM1p

p(p− 1)
Ip +

1
′
pM1p − tr(M)

p(p− 1)
1p1

′
p.

Besides, tr(M) = tr(M̄) and 1
′
pM1p = 1

′
pM̄1p.
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Proof. Let us consider p! elements of the set of all p× p permutation matrices Π. When
we put all matrices into

∑
P∈Π P

′
MP an easy computation makes it obvious that

M̄ =
1

p!


(p− 1)! tr(M) (p− 2)! Q(M) ... (p− 2)! Q(M)
(p− 2)! Q(M) (p− 1)! tr(M) ... (p− 2)! Q(M)

... ... ... ...
(p− 2)! Q(M) (p− 2)! Q(M) ... (p− 1)! tr(M)

 ,
where Q(M) denotes the sum of all offdiagonal elements. Because 1

′
pM1p = tr(M) +

Q(M) we obtain 2.1. Moreover, the form the matrix M̄ indicates that it has two eigenval-

ues µ1 =
ptr(M)−1

′
pM1p

p(p−1)
with the multiplicity p−1 and µ2 =

1
′
pM1p

p
with the multiplicity

1.
�

2.3. Theorem. Let t1 be the eigenvalue with the multiplicity p− 1, t2 be the eigenvalue
with the multiplicity 1 of any positive definite p×p matrix M and let q1 be the eigenvalue
with the multiplicity p− 1 and q2 be the eigenvalue with the multiplicity 1 of the matrix
M̄. If (p− 1)t1 + t2 = (p− 1)q1 + q2, t1 ≤ t2, q1 ≤ q2, t1 ≤ q1 then tr(M−1) ≥ tr(M̄−1).
The equality is satisfied if and only if the eigenvalues of matrices M and M̄ are the same.

Proof. tr(M−1)− tr(M̄−1) = p−1
t1

+ 1
t2
− p−1

q1
− 1
q2

= (p−1)t2q1q2−(p−1)t1t2q2+t1q1q2−t1t2q1
t1t2q1q2

.
Because (p − 1)q1 = (p − 1)t1 + t2 − q2 then tr(M−1) − tr(M̄−1) = (t2−q2)(t2q2−t1q1)

t1t2q1q2
.

We observe t2
t1
≥ 1, q1

q2
≤ 1. Thus t2q2 − t1q1 ≥ 0. Finally tr(M−1) ≥ tr(M̄−1). It is

obvious the equality is satisfied if and only if the eigenvalues of the matrices M and M̄
are equal. �

To aim at a target determining the regular A-optimal design let us consider the class
of all design matrices of the spring balance weighing design Φn×p(0, 1). For positive
definite matrix G and any X ∈ Φn×p(0, 1) we take M = X

′
G−1X. Let m1, m2, ... mp,

m1 ≤ m2 ≤ ... ≤ mp be the eigenvalus of the matrix M−1. Then tr(M−1) = m1 +m2 +
... + mp ≥ pm1. The minimum of tr(M−1) is attained if m1 = m2 = ... = mp and m1

attains the minimal value. The equality is fulfilled if and only if M−1 is proportional to
identity matrix. Such form of the matrix M = X

′
G−1X is not interesting from the point

of view of experiment as in each measurement only one object is included. Therefore,
let m1 = m2 = ... = mp−1 ≤ mp and tr(M−1) = (p − 1)m1 + mp and its minimum is
attained if and only if m1 and mp are minimal. So, we consider the matrix M with two
different eigenvalues, only.

Here, we consider the subclass of the spring balance weighing designs in the following
form

Ωξ
n×p(0, 1) ={
X : X ∈ Φn×p(0, 1), X1p = ξ1n, X

′
1n = nξ

p
1p,

nξ
p
∈ N, ξ ≤ p

}
.

Moreover, from now on until the end of the paper we consider G to be of the form

(2.2) G = g
[
(1− ρ)In + ρ1n1

′
n

]
, g > 0,

−1

n− 1
< ρ < 1.

Condition on the values of g and ρ is equivalent to the matrix G being positive definite.
When the variance matrix of errors σ2G is given by the matrix of the form 2.2 then we
say that the errors are equally correlated and they have the same variances. Let note,
G−1 = 1

g(1−ρ)

[
In − ρ

1+ρ(n−1)
1n1

′
n

]
. Next let us consider
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M = X
′
G−1X =

1

g(1− ρ)

[
X
′
X− ρ

1 + ρ(n− 1)
X
′
1n1

′
nX

]
.

We will denote by s the the number of elements equal to 1 in any row of the design
matrix X ∈ Ωξ

n×p(0, 1). It is evident that tr(M) = ns
g(1−ρ)

[
1− nsρ

p(1+ρ(n−1))

]
and

1
′
pM1p = ns2

g(1+ρ(n−1))
. From the above considerations and Theorem 2.2, eigenvalues

of M̄ are µ1 = ns(p−s)
p(p−1)g(1−ρ) and µ2 = ns2

pg(1+ρ(n−1))
. Thus the matrix M̄−1 has also

two eigenvalues 1
µ1

with the multiplicity p − 1 and 1
µ2

with the multiplicity 1. Then
tr(M̄−1) = p−1

µ1
+ 1

µ2
. Furthermore, to determine A-optimal spring balance weighing

design, we need to find the smallest value of tr(M̄−1). The tr(M̄−1) attains the lowest
bound when p−1

µ1
and 1

µ2
are minimized. We have

(2.3) tr(M̄−1) =
pg

n
φ(s),

where φ(s) = (p−1)2(1−ρ)
s(p−s) + 1+ρ(n−1)

s2
, s = 1, 2, ..., p− 1.

2.4. Theorem. Let p be even. In any nonsingular spring balance weighing design
X ∈ Ωξ

n×p(0, 1) with the variance matrix of errors σ2G

(i) if ρ ∈
(
−1
n−1

, P1

)
then

(2.4) tr
(
M−1) ≥ 4g

np

(
1 + ρ(n− 1) + (p− 1)2(1− ρ)

)
,

the equality in 2.4 is satisfied if and only if X1p = p
2
1n,

(ii) if ρ ∈ (Pa, Pa+1) then

(2.5) tr
(
M−1) ≥ 4pg

n(p+ 2a)

(
1 + ρ(n− 1)

p+ 2a
+

(p− 1)2(1− ρ)

p− 2a

)
,

the equality in 2.5 is satisfied if and only if X1p = p+2a
2

1n,

(iii) if ρ = Pa then

(2.6) tr
(
M−1) ≥ n(p− 1)2 ((p+ 2a− 2)(2a− 1) + (p+ 2a− 1)(p− 2a+ 2))

(p+ 2a) (n(p+ 2a− 1)(p− 2a)(p− 2a+ 2) + L(a))

the equality in 2.6 is satisfied if and only if X1p = p+2a−2
2

1n or X1p = p+2a
2

1n,

where Pa = L(a)
n(p+2a−1)(p−2a)(p−2a+2)+L(a)

, L(a) = (p− 1)2(2a− 1)(p+ 2a− 2)(p+ 2a)−
(p+ 2a− 1)(p− 2a)(p− 2a+ 2), a = 1, 2, ..., p−2

2
.

Proof. Based on the delibarations given above, we will consider the matrix M with two
eigenvalues. Theorem 2.3 implies tr(M−1) ≥ tr(M̄−1). Thus we have to asses the
equality 2.3. For given n, p, ρ and g, 2.3 is the function of s. Furthermore, to deter-
mine A-optimal spring balance weighing design, we need to find s for which φ(s) takes
the smallest value. Because s = 1, 2, ..., p − 1, then we should investigate the sequence
φ(1), φ(2), ..., φ(p− 1). Therefore we study the difference

(2.7) φ(s)− φ(s+ 1) =
(2s+ 1)(1 + ρ(n− 1))

s2(s+ 1)2
+

(p− 2s− 1)(p− 1)2(1− ρ)

s(s+ 1)(p− s− 1)(p− s) .
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For s = 1, 2, ..., p−2
2

and any n, p, ρ, we have φ(s) ≥ φ(s + 1). Thus, we investigate the
sequence for s = p−2

2
+a, a = 1, 2, ..., p−2

2
.We denote Pa = L(a)

n(p+2a−1)(p−2a)(p−2a+2)+L(a)
,

L(a) = (p − 1)2(2a − 1)(p + 2a − 2)(p + 2a) − (p + 2a − 1)(p − 2a)(p − 2a + 2). Next,
let us consider the interval ρ ∈

(
−1
n−1

, P1

)
. If s < p

2
then φ(s) ≥ φ(s + 1), if s > p

2
,

then φ(s) ≤ φ(s + 1). The smallest value of 2.3 is attained if s = p
2
and then we obtain

(i). Thus, we study ρ ∈ (Pa, Pa+1). If s < p+2a
2
, then φ(s) ≥ φ(s + 1). The inequality

s > p+2a
2

implies φ(s) ≤ φ(s+ 1). The smallest value of 2.3 is attained for s = p+2a
2
, thus

(ii). If ρ = Pa, then φ(s) = φ(s+ 1) and for s = p+2a−2
2

or s = p+2a
2
, we receive (iii). �

2.5. Theorem. Let p be even. Any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G is regular A-optimal

(i) for fixed ρ ∈
(
−1
n−1

, P1

)
if and only if X1p = p

2
1n,

(ii) for fixed ρ ∈ (Pa, Pa+1) if and only if X1p = p+2a
2

1n,

(iii) for fixed ρ = Pa if and only if X1p = p+2a−2
2

1n or X1p = p+2a
2

1n,

where a = 1, 2, ..., p−2
2

.

Proof. Any spring balance weighing design is regular A-optimal if and only if the equal-
ities in 2.4-2.6 hold, i.e. if and only if the design matrix X ∈ Ωξ

n×p(0, 1) is given as
above. �

2.6. Theorem. Let p be even. Any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G is regular A-optimal

(i) for fixed ρ ∈
(
−1
n−1

, P1

)
if and only if

M = 1
g(1−ρ)

[
np

4(p−1)
Ip + n(p−2)

4(p−1)
1p1

′
p − ρn2

4(1+ρ(n−1))
1p1

′
p

]
(ii) for fixed ρ ∈ (Pa, Pa+1) if and only if

M = 1
g(1−ρ)

[
n(p+2a)(p−2a)

4p(p−1)
Ip + n(p+2a)(p−2a−2)

4p(p−1)
1p1

′
p + φa1p1

′
p

]
,

(iii) for fixed ρ = Pa if and only if
M = 1

g(1−ρ)

[
n(p+2a)(p−2a)

4p(p−1)
Ip + n(p+2a)(p−2a−2)

4p(p−1)
1p1

′
p + φa1p1

′
p

]
or

M = 1
g(1−ρ)

[
n(p+2a+2)(p−2a−2)

4p(p−1)
Ip + n(p+2a+2)(p−2a−4)

4p(p−1)
1p1

′
p + φa+11p1

′
p

]
where φa = n(p+2a)(4ap(1−ρ)−ρn(p(p−1)−2a(p+1)))

4p2(p−1)(1+ρ(n−1))
, a = 1, 2, ..., p−2

2
.

Proof. From Theorem 2.3, we obtain tr(M−1) = tr(M̄−1) if and only if the eigenvalues of
M and M̄ are equal. Hence for G in the form 2.2 and X ∈ Ωξ

n×p(0, 1) the best design for
which minimum of tr(M−1) is attained if the M̄ = M one. Thus to prove this Theorem

it is worthy to notice that from 2.1 we have M̄ =
ptr(M)−1

′
pM1p

p(p−1)
Ip +

1
′
pM1p−tr(M)

p(p−1)
1p1

′
p.

Moreover, taking s = p+2a
2

we obtain
ptr(M)−1

′
pM1p

p(p−1)
= n(p+2a)(p−2a)

4p(p−1)g(1−ρ) and
1
′
pM1p−tr(M)

p(p−1)
= 1

g(1−ρ)

(
n(p+2a)(p−2a−2)

4p(p−1)
+ n(p+2a)(4ap(1−ρ)−ρn(p(p−1)−2a(p+1)))

4p2(p−1)(1+ρ(n−1))

)
, thus

(ii). For a = 0 we obtain (i). The above consideration and the condition (iii) of Theorem
2.5 imply formulas given in (iii). �

2.7. Corollary. In the special case, g = 1 and ρ = 0, the Condition (i) of Theorem
2.6 is equivalent to equality given in [5]. If additionally, a = 0 then the condition (ii) of
Theorem 2.6 is the same as given in [5] one.
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2.8. Theorem. Let p be odd. In any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G

(i) if ρ ∈
(
−1
n−1

, R1

)
then

(2.8) tr
(
M−1) ≥ 4pg

n(p+ 1)2
(
1 + ρ(n− 1) + (p2 − 1)(1− ρ)

)
,

the equality in 2.8 is satisfied if and only if X1p = p+1
2

1n,

(ii) if ρ ∈ (Ra, Ra+1) then

(2.9) tr
(
M−1) ≥ 4pg

n(p+ 2a+ 1)

(
1 + ρ(n− 1)

p+ 2a+ 1
+

(p− 1)2(1− ρ)

p− 2a− 1

)
,

the equality in 2.9 is satisfied if and only if X1p = p+2a+1
2

1n,

(iii) if ρ = Ra then

(2.10) tr
(
M−1) ≥ 4pg(p− 1)2 (2a(p+ 2a+ 1) + (p+ 2a)(p− 2a− 1))

(p+ 2a− 1) (n(p+ 2a)(p− 2a+ 1)(p− 2a− 1) +N(a))

the equality in 2.10 is satisfied if and only if X1p = p+2a−1
2

1n or X1p =
p+2a+1

2
1n,

where Ra = N(a)
n(p+2a)(p−2a+1)(p−2a−1)+N(a)

, N(a) = 2(p− 1)2a(p+ 2a− 1)(p+ 2a+ 1)−
(p+ 2a)(p− 2a+ 1)(p− 2a− 1), a = 1, 2, ..., p−3

2
.

Proof. The proof of Theorem is similar to that given in Theorem 2.4. Since, we will
give the most important steps, only. For s = 1, 2, ..., p+1

2
, φ(s) ≥ φ(s + 1), for any

n, p, ρ. Thus, we investigate the sequence for s = p
2

+ a, a = 1, 2, ..., p−3
2
. We denote

Ra = N(a)
n(p+2a)(p−2a+1)(p−2a−1)+N(a)

, N(a) = 2(p−1)2a(p+2a−1)(p+2a+1)−(p+2a)(p−

2a+ 1)(p− 2a− 1), a = 1, 2, ..., p−3
2
. Next, let us consider the interval ρ ∈

(
−1
n−1

, R1

)
.

If s < p+1
2

then φ(s) ≥ φ(s + 1), if s > p+1
2
, then φ(s) ≤ φ(s + 1). The smallest

value of 2.8 is attained if s = p+1
2
. When we put s = p+1

2
in 2.3 we obtain (i). Now,

we study ρ ∈ (Ra, Ra+1). If s < p+2a+1
2

, then φ(s) ≥ φ(s + 1). If s > p+2a+1
2

, then
φ(s) ≤ φ(s+1). The smallest value of 2.3 is attained for s = p+2a+1

2
, thus (ii). If ρ = Ra,

then φ(s) = φ(s+ 1) and for s = p+2a−1
2

or s = p+2a+1
2

, we receive (iii). �

2.9. Theorem. Let p be odd. Any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G is regular A-optimal

(i) for fixed ρ ∈
(
−1
n−1

, R1

)
if and only if X1p = p+1

2
1n,

(ii) for ρ ∈ (Ra, Ra+1) if and only if X1p = p+2a+1
2

1n,

(iii) for fixed ρ = Ra if and only if X1p = p+2a−1
2

1n or X1p = p+2a+1
2

1n,

where a = 1, 2, ..., p−3
2

.

Proof. According to the investigation given above, a spring balance weighing design is
regular A-optimal if and only if the equalities in 2.8-2.10 are satisfied, i.e. if and only if
the design matrix X ∈ Ωξ

n×p(0, 1) is given as in Theorem 2.8. �

2.10. Theorem. Let p be odd. Any nonsingular spring balance weighing design X ∈
Ωξ
n×p(0, 1) with the variance matrix of errors σ2G is regular A-optimal
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(i) for fixed ρ ∈
(
−1
n−1

, R1

)
if and only if

M = 1
g(1−ρ)

[
n(p+1)

4p
Ip + n(p+1)

4p
1p1

′
p − ρn2(p+1)2

4p2(1+ρ(n−1))
1p1

′
p

]
(ii) for ρ ∈ (Ra, Ra+1) if and only if

M = 1
g(1−ρ)

[
n(p+2a+1)(p−2a−1)

4p(p−1)
Ip + n(p+2a+1)(p−2a−1)

4p(p−1)
1p1

′
p − ψa1p1

′
p

]
,

(iii) for ρ = Ra if and only if
M = 1

g(1−ρ)

[
n(p+2a+1)(p−2a−1)

4p(p−1)
Ip + n(p+2a+1)(p−2a−1)

4p(p−1)
1p1

′
p − ψa1p1

′
p

]
or

M = 1
g(1−ρ)

[
n(p+2a+3)(p−2a−3)

4p(p−1)
Ip + n(p+2a+3)(p−2a−3)

4p(p−1)
1p1

′
p − ψa+11p1

′
p

]
,

where ψa = n(p+2a+1)(ρn(p2−1)−4ap(1−ρ)−2anρ(p+1))

4p2(p−1)(1+ρ(n−1))
, a = 1, 2, ..., p−3

2
.

Proof. The proof is similar to given in Theorem 2.6 one. It is sufficient to show that

taking s = p+2a+1
2

we obtain
ptr(M)−1

′
pM1p

p(p−1)
= n(p+2a+1)(p−2a−1)

4p(p−1)g(1−ρ) and
1
′
pM1p−tr(M)

p(p−1)
=

1
g(1−ρ)

(
n(p+2a+1)(p−2a−1)

4p(p−1)
− n(p+2a+1)(ρn(p2−1)−4ap(1−ρ)−2anρ(p+1)))

4p2(p−1)(1+ρ(n−1))

)
. Thus (ii). For a =

0 we obtain (i). Moreover, the above considerations and the condition (iii) of Theorem
2.9 imply the formulas presented in (iii). �

2.11. Corollary. In the special case, g = 1 and ρ = 0, the Condition (i) of Theorem
2.10 is equivalent to equality given in [5]. If additionally, a = 0 then (ii) of Theorem 2.10
is the same as given in [5] one.

3. Examples

Take into the consideration X = N
′
, where N is the incidence matrix of balanced

incomplete block design with the parameters v, b, r, k, λ, see [13]. To simplify the
notation it is customary to write v instead of p and b instead of n. It is obvious that
we are not able to give the construction of regular A-optimal spring balance weighing
design for any combination of p, n and ρ. With the results obtained until now we can
establish the following corollaries which indicate the series of the parameters of balanced
incomplete block designs. Based on that incidence matrices we form the design matrices
of regular A-optimal designs for an appropriate ρ.

3.1. Corollary. Let v be even. If exists the balanced incomplete block design with the
parameters v, b = v(v − 1), r = 0.5(v − 1)(v + 2a − 2), k = 0.5(v + 2a − 2), λ =
0.25(v + 2a− 2)(v + 2a− 4), a = 1, 2, ..., v−2

2
, given by the incidence matrix N then any

X ∈ Ωξ
v(v−1)×v(0, 1) in the form X = N

′
is regular A-optimal spring balance weighing

with the variance matrix of errors σ2G for ρ ∈
(
−1
n−1

, P1

]
or ρ ∈ [Pa, Pa+1) .

3.2. Corollary. Let v be even. If exists the balanced incomplete block design with the
parameters v = 2(t+ 1), b = 2(2t+ 1), r = 2t+ 1, k = t+ 1, λ = t, t = 1, 2, ..., given by
incidence matrix N, then any X ∈ Ωξ

2(2t+1)×2(t+1)(0, 1) in the form X = N
′
is regular

A-optimal spring balance weighing design with the variance matrix of errors σ2G for
ρ ∈

(
−1

4t+1
, 2t3+5t2+3t+1

6t3+13t2+6t+1

]
.

3.3. Corollary. Let v be even. Any X ∈ Ωξ
b×v(0, 1) in the form X = N

′
, where N

is the incidence matrix of balanced incomplete block design with the parameters v, b =(
v

0.5(v + 2a− 2)

)
, r =

(
v − 1

0.5(v + 2a− 4)

)
, k = v+2a−2

2
, λ =

(
v − 2

0.5(v + 2a− 6)

)
,

a = 1, 2, ..., v−2
2
, is regular A-optimal spring balance weighing design with the variance
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matrix of errors σ2G for ρ ∈
(
−1
n−1

, P1

]
or ρ ∈ [Pa, Pa+1), where

(
η
τ

)
denotes binomial

coefficient.

3.4. Corollary. Let v be odd. If exists the balanced incomplete block design with the
parameters v, b = 0.5v(v − 1), r = 0.25(v − 1)(v + 2a − 1), k = 0.5(v + 2a − 1), λ =
0.125(v+ 2a−1)(v+ 2a−3), a = 1, 2, ..., v−3

2
, given by the incidence matrix N, then any

X ∈ Ωξ
0.5v(v−1)×v(0, 1) in the form X = N

′
is regular A-optimal spring balance weighing

design with the variance matrix of errors σ2G for ρ ∈
(
−1
n−1

, R1

]
or ρ ∈ [Ra, Ra+1) .

3.5. Corollary. Let v be odd. If exists the balanced incomplete block design with the
parameters v = 2t+ 1, b = 2(2t+ 1), r = 2(t+ 1), k = t+ 1, λ = t+ 1, t = 2, 3, ..., given
by the incidence matrix N, then any X ∈ Ωξ

2(2t+1)×(2t+1)(0, 1) in the form X = N
′
is

regular A-optimal spring balance weighing design with the variance matrix of errors σ2G

for ρ ∈
(
−1

4t+1
, 8t3+22t2+15t+3

16t3+30t2+5t−3

]
.

3.6. Corollary. Let v be odd. Any X ∈ Ωξ
b×v(0, 1) in the form X = N

′
, where N

is the incidence matrix of balanced incomplete block design with the parameters v, b =(
v

0.5(v + 2a− 1)

)
, r =

(
v − 1

0.5(v + 2a− 3)

)
, k = v+2a−1

2
, λ =

(
v − 2

0.5(v + 2a− 5)

)
,

a = 1, 2, ..., v−1
2
, is regular A-optimal spring balance weighing design with the variance

matrix of errors σ2G for ρ ∈
(
−1
n−1

, R1

]
or ρ ∈ [Ra, Ra+1).

3.7. Corollary. Any X ∈ Ωξ
v×v(0, 1) in the form X = N

′
, where N is the incidence

matrix of balanced incomplete block design with the parameters v = b, r = k = v − 1,
λ = v − 2, v = 3, 4, ..., is regular A-optimal spring balance weighing design with the
variance matrix of errors σ2G for ρ ∈

[
v4−8v3+24v2−34v+19
(v−1)(v3−7v2+17v−13)

, 1
)
.

3.8. Example. Let X ∈ Ωξ
30×6(0, 1) and let for G, g > 0, ρ ∈ (−0.034, 1), ξ ≤ 6.

(i) If ρ ∈ (−0.034, 0.170) then X = N
′
1,

(ii) if ρ ∈ (0.170, 0.733) then X = N
′
2,

(iii) if ρ ∈ (0.733, 1) then X = N
′
3,

(iv) if ρ = 0.170 then X = N
′
h, h = 1, 2,

(v) if ρ = 0.733 then X = N
′
h, h = 2, 3,

is regular A-optimal spring balance weighing design, where Nh, h = 1, 2, 3, is the in-
cidence matrix of the balanced incomplete block design with parameters v = 6, b1 =
30, r1 = 15, k1 = 3, λ1 = 6, v = 6, b2 = 30, r2 = 20, k2 = 4, λ2 = 12,
v = 6, b3 = 30, r3 = 25, k3 = 5, λ3 = 20, respectively.
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Abstract
A generalized intuitionistic fuzzy set (GIFSB) is proposed. It is shown
that Atanassov’s intuitionistic fuzzy set, intuitionistic fuzzy sets of root
type and intuitionistic fuzzy sets of second type are special cases of
this new one. Some important notions, basic algebraic properties of
GIFSB , three operators and their relationship are discussed. The al-
gebraic properties include being closed under union, being closed under
intersection, being closed under a necessity measure, being closed under
a possibility measure and de Morgan type identities.
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1. Introduction
The concept of fuzzy sets was introduced by Zadeh [22] whose basic component is

only a degree of membership. Atanassov [2] generalized this idea to intuitionistic fuzzy
sets (IFS) using a degree of membership and a degree of non-membership, under the
constraint that the sum of the two degrees does not exceed one. A fuzzy set can be
considered as IFS, since the sum of these grades is one. However, there are different
situations when the sum of two degrees is smaller than one, which means that there is a
certain ambiguity in the decision of membership or non-membership. For such cases the
IFS is an appropriate tool.

A generalized intuitionistic fuzzy set (GIFS) were proposed by Mondal and Samanta
[14] under the constraint that the minimum of the two degrees does not exceed half.
Following the definition of IFS, Atanassov [3] [4] and Atanassov and Gargov [5] introduced
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interval valued IFSs, IFSs of second type, and temporal IFS. Srinivasan and Palaniappan
[19] introduced IFSs of root type.

Some other extensions of the IFSs have also been introduced: IF soft sets due to Maji
et al. [12]; IF rough sets due to Samanta and Mondal [18]; rough IFSs due to Rizvi et
al. [17].

Some recent applications of IFSs have been: sustainable energy planning in Malaysia
(Abdullah and Najib [1]); image fusion (Balasubramaniam and Ananthi [6]); agricultural
production planning from a small farm holder perspective (Bharati and Singh [7]); medi-
cal diagnosis (Bora et al. [8]); pattern recognition (Chu et al. [9]); reservoir flood control
operation (Hashemi et al. [10]); reliability optimization of complex system (Mahapatra
and Roy [11]); fault diagnosis using dissolved gas analysis for power transformer (Mani
and Jerome [13]); prioritizing the components of SWOT matrix in the Iranian insur-
ance industry (Nikjoo and Saeedpoor [15]); prediction of the best quality of two-wheelers
(Pathinathan et al. [16]); study of the decision framework of wind farm project plan
selection (Wu et al. [21]).

The aim of this paper is to introduce new generalized IFSs and to derive their proper-
ties. The derived properties include: i) if A and B are generalized IFSs then their union
and intersection are also generalized IFSs; ii) if A, B and C are generalized IFSs, A is a
subset of B and B is a subset of C then A is a subset of C; iii) if A is a generalized IFS
then its necessity and possibility measures are also generalized IFSs; iv) if the degree of
non-determinacy of an element of a generalized IFS is zero then that for the nth power
of the set is also zero; v) if A is a generalized IFS then the necessity measure of the nth
power of A is the same as the nth power of the necessity measure of A; vi) if A is a
generalized IFS then the possibility measure of the nth power of A is the same as the
nth power of the necessity measure of A; vii) if A is a generalized IFS and m ≥ n then
the mth power of A is a subset of the nth power of A; viii) if A is a generalized IFS
and m ≥ n then nA is a subset of mA; ix) if A and B are generalized IFSs and A is a
subset of B then nA is a subset of nB; x) if A and B are generalized IFSs and A is a
subset of B then the nth power of A is a subset of nth power of B; xi) if A and B are
generalized IFSs then the nth power of the union of A and B is the same as the union
of the nth powers of A and B; xii) if A and B are generalized IFSs then the nth power
of the intersection of A and B is the same as the intersection of the nth powers of A
and B; xiii) if A and B are generalized IFSs then n times the union of A and B is the
same as the union of nA and nB; xiv) if A and B are generalized IFSs then n times the
intersection of A and B is the same as the intersection of nA and nB.

2. Preliminaries
In this section, we give some definitions of various types of IFS. We also define trian-

gular norms and triangular conorms. Let X denote a non-empty set.

1. Definition. (Atanassov [2]). An IFS A in X is defined as an object of the form
A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions µA : X → [0, 1] and νA : X → [0, 1]
denote, respectively, the degree of membership and degree of non-membership functions
of A, and 0 ≤ µA(x) + νA(x) ≤ 1 for each x ∈ X.

2. Definition. (Atanassov [3]). An intuitionistic fuzzy set of second type (IFSST) A inX
is defined as an object of the form A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions
µA : X → [0, 1] and νA : X → [0, 1] denote, respectively, the degree of membership
and degree of non-membership functions of A, and 0 ≤ [µA(x)]

2 + [νA(x)]
2 ≤ 1 for each

x ∈ X.
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3. Definition. (Srinivasan and Palaniappan [20]). An intuitionistic fuzzy set of root
type (IFSRT) A in X is defined as an object of the form

A = {〈x, µA(x), νA(x) : x ∈ X〉} ,

where the functions µA : X → [0, 1] and νA : X → [0, 1] denote, respectively, the degree
of membership and degree of non-membership functions of A, and 0 ≤ 1

2

√
µA(x) +

1
2

√
νA(x) ≤ 1 for each x ∈ X.

4. Definition. (Atanassov [4]). A temporal IFS A in X is defined as an object of the
form A(T ) = {(x, t), µA(x, t), νA(x, t) : (x, t) ∈ E × T}, where the functions µA(x, t) and
νA(x, t) denote, respectively, the degree of membership and degree of non-membership
functions of A of the element x ∈ X at the time-moment t ∈ T , A ⊂ E is a fixed set and
0 ≤ µA(x, t) + νA(x, t) ≤ 1 for each (x, t) ∈ E × T .

5. Definition. A triangular norm is a binary operation on [0, 1], i.e., an operator T :
[0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1] the following conditions are satisfied:

i) Communicativity: T (x, y) = T (y, x),
ii) Associativity: T (x, T (y, z)) = T (T (x, y), z),
iii) Monotonicity: T (x, y) ≤ T (x, z) whenever y ≤ z,
iv) Boundary condition: T (x, 1) = x.

6. Definition. A triangular conorm is a binary operation on [0, 1], i.e., an operator
S : [0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1] the following conditions are satisfied:

i) Communicativity: S(x, y) = S(y, x),
ii) Associativity: S (x, T (y, z)) = S (T (x, y), z),
iii) Monotonicity: S(x, y) ≤ S(x, z) whenever y ≤ z,
iv) Boundary condition: T (x, 0) = x.

Generalized fuzzy intuitionistic metric spaces can be defined based on triangular norms
and triangular conorms.

3. New generalized intuitionistic fuzzy sets
7. Definition. Let X denote a non-empty set. Our generalized IFS A in X is defined
as an object of the form A = {〈x, µA(x), νA(x)〉 : x ∈ X}, where the functions µA : X →
[0, 1] and νA : X → [0, 1] denote, respectively, the degree of membership and degree
of non-membership functions of A, and 0 ≤ µA(x)

δ + νA(x)
δ ≤ 1 for each x ∈ X and

δ = n or 1
n
, n = 1, 2, . . . , N . The collection of all of our generalized IFSs is denoted by

GIFSB(δ,X).

One of the geometrical interpretations of the GIFSB(δ,X) is shown in Figures 1 and
2. Let X denote a universal set and F a subset in the Euclidean plane with cartesian
coordinates. For a GIFSBA, a function fA from X to F can be constructed such that if
x ∈ X then p = (νA(x), µA(x)) = fA(x) ∈ F , 0 ≤ µA(x), νA(x) ≤ 1.

Let X be a set of ages of men over [0, 75]. Let A be a set of young men whose ages
are between 20 and 30. Define the membership and non membership functions of A as

µA(x) =



(
x− 10

10

)1/2

, if 10 ≤ x ≤ 20,

1, if 20 ≤ x ≤ 30,(
40− x
10

)1/2

, if 30 ≤ x ≤ 40,

0, otherwise,
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Figure 1. A geometrical interpretation of GIFSB with δ = 1 and 2.

Figure 2. A geometrical interpretation of GIFSB with δ = 0.5.

and

νA(x) =



(
20− x
15

)1/2

, if 5 ≤ x ≤ 20,

0, if 20 ≤ x ≤ 30,(
x− 30

15

)1/2

, if 30 ≤ x ≤ 45,

1, otherwise.

Since 0 ≤ µA(x)2+νA(x)2 ≤ 1, ∀x ∈ X, A = {〈x, µA(x), νA(x)〉 : x ∈ X} is a GIFSB(2).
Also, we can define the membership and non membership functions of A as

µA(x) =



(
x− 10

10

)2

, if 10 ≤ x ≤ 20,

1, if 20 ≤ x ≤ 30,(
40− x
10

)2

, if 30 ≤ x ≤ 40,

0, otherwise,
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and

νA(x) =



(
20− x
15

)2

, if 5 ≤ x ≤ 20,

0, if 20 ≤ x ≤ 30,(
x− 30

15

)2

, if 30 ≤ x ≤ 45,

1, otherwise.

Since 0 ≤ µA(x)
0.5 + νA(x)

0.5 ≤ 1, ∀x ∈ X, A = {〈x, µA(x), νA(x)〉 : x ∈ X} is a
GIFSB(0.5).

3.1. Remark. It is obvious that for all real numbers α, β ∈ [0, 1],
(i) if 0 ≤ α+β ≤ 1 and δ ≥ 1 then we have 0 ≤ αδ+βδ ≤ 1. With this consideration

if A ∈ IFS then A ∈ GIFSB .
(ii) if 0 ≤ αδ + βδ ≤ 1 and δ ≤ 1 then 0 ≤ α + β ≤ 1. With this consideration if

A ∈ GIFSB then A ∈ IFS.
(iii) if δ1 ≤ δ2 then αδ2 ≤ αδ1 and βδ2 ≤ βδ1 . It follows that GIFSB (δ1) ⊂

GIFSB (δ2).

3.2. Remark. GIFSB(1) = IFS, GIFSB(2) = GIFSST , andGIFSB
(
1
2

)
= GIFSRT .

8. Definition. Let X denote a non-empty set. Let A and B denote two GIFSBs such
that A = {〈x, µA(x), νA(x)〉 : x ∈ X} and B = {〈x, µB(x), νB(x)〉 : x ∈ X}. Define the
following relations and operations on A and B:

i. A ⊂ B if and only if µA(x) ≤ µB(x) and νA(x) ≥ νA(x), ∀x ∈ X,
ii. A = B if and only if µA(x) = µB(x) and νA(x) = νB(x), ∀x ∈ X,
iii. A ∪B = {〈x,max (µA(x), µB(x)) ,min (νA(x), νB(x))〉 : x ∈ X},
iv. A ∩B = {〈x,min (µA(x), µB(x)) ,max (νA(x), νB(x))〉 : x ∈ X},
v. A+B =

{〈
x, µA(x)

δ + µB(x)
δ − µA(x)δµB(x)δ, νA(x)δνB(x)δ

〉
: x ∈ X

}
, so

2A =

{〈
x, 1−

(
1− µA(x)δ

)2
, νA(x)

2δ

〉
: x ∈ X

}
and

nA =
{〈
x, 1−

(
1− µA(x)δ

)n
, νA(x)

nδ
〉
: x ∈ X

}
,

vi. A.B =
{〈
x, µA(x)

δ.µB(x)
δ, νA(x)

δ + νB(x)
δ − νA(x)δνB(x)δ

〉
: x ∈ X

}
, so

A2 =

{〈
x, µA(x)

2δ, 1−
(
1− νA(x)δ

)2〉
: x ∈ X

}
and

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
,

vii. A = {〈x, νA(x), µA(x)〉 : x ∈ X}.

Proposition 3.1 For A,B,C ∈ GIFSB , we have

i. A = A,
ii. A ⊂ B, B ⊂ C ⇒ A ⊂ C.

Proof. The proof is obvious. �

Proposition 3.2 For A,B ∈ GIFSB , we have
i. A ∪B ∈ GIFSB ,
ii. A ∩B ∈ GIFSB ,
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iii. δ ≥ 1⇒ A+B ∈ GIFSB , δ < 1⇒ A+B ∈ IFS,
iv. δ ≥ 1⇒ A.B ∈ GIFSB , δ < 1⇒ A.B ∈ IFS.

Proof. (i) Suppose max (µA(x), µB(x)) = µA(x). Since min (νA(x), νB(x)) ≤ νA(x), we
have

0 ≤ µA∪B(x)
δ + νA∪B(x)

δ

= (max (µA(x), µB(x)))
δ + (min (νA(x), νB(x)))

δ

= µA(x)
δ + (min (νA(x), νB(x)))

δ

≤ µA(x)
δ + νA(x)

δ ≤ 1.

Suppose now max (µA(x), µB(x)) = µB(x). Since min (νA(x), νB(x)) ≤ νB(x), we have

0 ≤ (max (µA(x), µB(x)))
δ + (min (νA(x), νB(x)))

δ

= µB(x)
δ + (min (νA(x), νB(x)))

δ

≤ µB(x)
δ + νB(x)

δ ≤ 1.

The proof of (i) is complete.
(ii) Proof of (i) is similar.

(iii) Since

A+B =
{〈
x, µA(x)

δ + µB(x)
δ − µA(x)δµB(x)δ, νA(x)δνB(x)δ

〉
: x ∈ X

}
,

we have

µA+B(x)
δ + νA+B(x)

δ

=
(
µA(x)

δ + µB(x)
δ − µA(x)δµB(x)δ

)δ
+
(
νA(x)

δνB(x)
δ
)δ

=
(
µA(x)

δ
(
1− µB(x)δ

)
+ µB(x)

δ
)δ

+
(
νA(x)

δνB(x)
δ
)δ
≥ 0

and

µA+B(x)
δ + νA+B(x)

δ

=
(
µA(x)

δ + µB(x)
δ − µA(x)δµB(x)δ

)δ
+
(
νA(x)

δνB(x)
δ
)δ

≤
((

1− νA(x)δ
)
+
(
1− νB(x)δ

)
−
(
1− νA(x)δ

)(
1− νB(x)δ

))δ
+
(
νA(x)

δνB(x)
δ
)δ

=
(
1− νA(x)δνB(x)δ

)δ
+
(
νA(x)

δνB(x)
δ
)δ

= (1− u)δ + uδ,

where u = νA(x)
δνB(x)

δ. If δ ≥ 1 then (1 − u)δ + uδ ≤ 1, hence A + B ∈ GIFSB . If
δ < 1 then (1 − u)δ + uδ ≤ 1, if and only if νA(x) = 0 or νB(x) = 0. But for any δ, we
have

µA+B(x) + νA+B(x)

= µA(x)
δ + µB(x)

δ − µA(x)δµB(x)δ + νA(x)
δνB(x)

δ

≤ µA(x)
δ + µB(x)

δ − µA(x)δµB(x)δ +
(
1− µA(x)δ

)(
1− µB(x)δ

)
= 1,

hence A+B ∈ IFS. The proof of (iii) is complete.
(iv). The proof of (iii) is similar. �
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9. Definition. The degree of non-determinacy (uncertainty) of an element x ∈ X to the
GIFSBA is defined by

πA(x) =
(
1− µA(x)δ − νA(x)δ

) 1
δ
.

3.3. Remark. It can be easily shown that πA(x)δ + µA(x)
δ + νA(x)

δ = 1.

10. Definition. For every GIFSBA = {〈x, µA(x), νA(x)〉 : x ∈ X}, we define the modal
logic operators, the necessity measure on A and the possibility measure on A, as

2A =

{〈
x, µA(x),

(
1− µA(x)δ

) 1
δ

〉
: x ∈ X

}
and

3A =

{〈
x,
(
1− νA(x)δ

) 1
δ
, νA(x)

〉
: x ∈ X

}
,

respectively.

11. Definition. Let X denote a non-empty finite set. For every GIFSB as

A = {〈x, µA(x), νA(x)〉 : x ∈ X} ,
two analogues of the topological operators, closure (C) and intersection (I), can be
defined on GIFSBs as

C(A) = {〈x,K,L〉 : x ∈ X} , K = max
y∈X

µA(y), L = min
y∈X

νA(y)

and

I(A) = {〈x, k, l〉 : x ∈ X} , k = min
y∈X

µA(y), l = max
y∈X

νA(y).

It is obvious that both C(A) and I(A) are GIFSB . These two operators transform a
given GIFSB to a new GIFSB .

12. Definition. Let X denote a non-empty finite set and let A denote a finite GIFSB .
The normalization of A denoted by NORM(A) is defined by

NORM(A) =

{〈
x,

µA(x)
δ

supµA(x)δ
,
νA(x)

δ − inf νA(x)
δ

1− inf νA(x)δ

〉
: x ∈ X

}
.

Proposition 3.3 Let A,B ∈ GIFSB . We have
i. 2A ∈ GIFSB ,
ii. 3A ∈ GIFSB ,
iii. πA(x) = 0⇒ πAn(x) = 0.

Proof. (i) Follows by noting that

µ2A(x)
δ + ν2A(x)

δ = µA(x)
δ +

((
1− µA(x)δ

) 1
δ

)δ
= 1.

Proof of (ii) is similar to that of (i). (iii) Since

πA(x) =
(
1− µA(x)δ − νA(x)δ

) 1
δ
,

we have

πA(x) = 0

⇒
(
1− µA(x)δ − νA(x)δ

) 1
δ
= 0

⇒ µA(x)
δ + νA(x)

δ = 1

⇒ µA(x)
δ = 1− νA(x)δ.
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By using this result, we have

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
=

{〈
x, µA(x)

nδ, 1− µA(x)nδ
〉
: x ∈ X

}
.

It is now obvious that πAn(x) = 0. �

3.4. Proposition. Let A denote a GIFSB and n any positive real number. Then, the
following relations are true at the extreme values of µA(x) and νA(x):

i. 2An = (2A)n,
ii. 3An = (3A)n.

Proof. (i) Since

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
,

we have

2An =

{〈
x, µA(x)

nδ,
(
1− µA(x)nδ

2
) 1
δ

〉
: x ∈ X

}
.

Also since

2A =

{〈
x, µA(x),

(
1− µA(x)δ

) 1
δ

〉
: x ∈ X

}
,

we have

(2A)n =
{〈
x, µA(x)

nδ, 1−
(
1−

(
1− µA(x)δ

))n〉
: x ∈ X

}
=

{〈
x, µA(x)

nδ, 1− µA(x)nδ
〉
: x ∈ X

}
.

Assume 2An = (2A)n. Consequently, we must have(
1− µA(x)nδ

2
) 1
δ
= 1− µA(x)nδ,(

1− µA(x)nδ
2
)
=
(
1− µA(x)nδ

)δ
,

1− uδ = (1− u)δ, u =
(
1− µA(x)nδ

)
.

Hence, (i) is true if and only if µA(x) = 0 or 1, ∀x ∈ X.
(ii) We know that

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
and

3An =

{〈
x,

(
1−

(
1−

(
1− νA(x)δ

)n)δ) 1
δ

, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
.

Also

3A =

{〈
x,
(
1− νA(x)δ

) 1
δ
, νA(x)

〉
: x ∈ X

}
,

so

(3A)n =

{〈
x,
(
1− νA(x)δ

)nδ
δ
, 1−

(
1− νA(x)δ

)n〉
: x ∈ X

}
=

{〈
x,
(
1− νA(x)δ

)n
, 1−

(
1− νA(x)δ

)n〉
: x ∈ X

}
.
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Assume 3An = (3A)n. Consequently, we must have(
1−

(
1−

(
1− νA(x)δ

)n)δ) 1
δ

=
(
1− νA(x)δ

)n
,(

1−
(
1− νA(x)δ

)n)δ
= 1−

(
1− νA(x)δ

)nδ
,

(1− u)δ = 1− uδ, u =
(
1− νA(x)δ

)n
.

Hence, (ii) is true if and only if νA(x) = 0 or 1, ∀x ∈ X. �

3.5. Proposition. For every GIFSBA, we have
i. m ≥ n⇒ Am ⊂ An,
ii. m ≥ n⇒ nA ⊂ mA,
iii. An = nA,

where m and n are both positive numbers.

Proof. (i) Since

An =
{〈
x, µA(x)

nδ, 1−
(
1− νA(x)δ

)n〉
: x ∈ X

}
,

we have

Am =
{〈
x, µA(x)

mδ, 1−
(
1− νA(x)δ

)m〉
: x ∈ X

}
.

Since m ≥ n, we have µA(x)n ≥ µA(x)m, so µA(x)nδ ≥ µA(x)mδ and µAn(x) ≥ µAm(x).
Also since νA(x) ≤ 1, we have

(
1− νA(x)δ

)m ≤ (1− νA(x)δ)n, so
1−

(
1− νA(x)δ

)n
≤ 1−

(
1− νA(x)δ

)m
⇒ νAn(x) ≤ νAm(x),

completing the proof. The proof of (ii) is similar to that of (i). The proof of (iii) is
immediate. �

3.6. Proposition. Let A,B ∈ GIFSB . We have
i. A ⊂ B ⇒ nA ⊂ nB,
ii. A ⊂ B ⇒ An ⊂ Bn,
iii. (A ∪B)n = An ∪Bn,
iv. (A ∩B)n = An ∩Bn,
v. n (A ∪B) = nA ∪ nB,
vi. n (A ∩B) = nA ∩ nB.

Proof. (i) Since A ⊂ B, we have µA(x) ≤ µB(x) and

µA(x)
δ ≤ µB(x)δ ⇒ 1− µB(x)δ ≤ 1− µA(x)δ ⇒

(
1− µB(x)δ

)n
≤
(
1− µA(x)δ

)n
,

so

1−
(
1− µA(x)δ

)n
≤ 1−

(
1− µB(x)δ

)n
⇒ µnA(x) ≤ µmB(x).

Also since A ⊂ B, we have νB(x) ≤ νA(x) and

νB(x)
nδ ≤ νA(x)nδ ⇒ νnB(x) ≤ νnA(x),

completing the proof.
(ii) follows since

A ⊂ B ⇒ B ⊂ A⇒ nB ⊂ nA⇒ nA ⊂ nB ⇒ An ⊂ Bn.
(iii) follows since

A ∪B = {〈x,max (µA(x), µB(x)) ,min (νA(x), νB(x))〉 : x ∈ X}
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and
(A ∪ B)

n

=
{〈
x, (max (µA(x), µB(x)))

nδ
, 1−

(
1−min (νA(x), νB(x))

δ
)n〉

: x ∈ X
}

=
{〈
x,max

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−

(
1−min

(
νA(x)

δ
, νB(x)

δ
))n〉

: x ∈ X
}

=
{〈
x,max

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−

(
max

(
1− νA(x)

δ
, 1− νB(x)

δ
))n〉

: x ∈ X
}

=
{〈
x,max

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−max

((
1− νA(x)

δ
)n

,
(
1− νB(x)

δ
)n)〉

: x ∈ X
}

=
{〈
x,max

(
µA(x)

nδ
, µB(x)

nδ
)
,min

(
1−

(
1− νA(x)

δ
)n

, 1−
(
1− νB(x)

δ
)n)〉

: x ∈ X
}

= A
n ∪ Bn.

(iv) follows since

A ∩B = {〈x,min (µA(x), µB(x)) ,max (νA(x), νB(x))〉 : x ∈ X}
and

(A ∩ B)
n

=
{〈
x, (min (µA(x), µB(x)))

nδ
, 1−

(
1−max (νA(x), νB(x))

δ
)n〉

: x ∈ X
}

=
{〈
x,min

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−

(
1−max

(
νA(x)

δ
, νB(x)

δ
))n〉

: x ∈ X
}

=
{〈
x,min

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−

(
min

(
1− νA(x)

δ
, 1− νB(x)

δ
))n〉

: x ∈ X
}

=
{〈
x,min

(
µA(x)

nδ
, µB(x)

nδ
)
, 1−min

((
1− νA(x)

δ
)n

,
(
1− νB(x)

δ
)n)〉

: x ∈ X
}

=
{〈
x,min

(
µA(x)

nδ
, µB(x)

nδ
)
,max

(
1−

(
1− νA(x)

δ
)n

, 1−
(
1− νB(x)

δ
)n)〉

: x ∈ X
}

= A
n ∩ Bn.

(v) follows since
n (A ∪ B)

=
{〈
x, 1−

(
1−max (µA(x), µB(x))

δ
)n

,min (νA(x), νB(x))
nδ
〉

: x ∈ X
}

=
{〈
x, 1−

(
1−max

(
µA(x)

δ
, µB(x)

δ
))n

,min
(
νA(x)

nδ
, νB(x)

nδ
)〉

: x ∈ X
}

=
{〈
x, 1−

(
min

(
1− µA(x)

δ
, 1− µB(x)

δ
))n

,min
(
νA(x)

nδ
, νB(x)

nδ
)〉

: x ∈ X
}

=
{〈
x, 1−min

((
1− µA(x)

δ
)n

,
(
1− µB(x)

δ
)n)

,min
(
νA(x)

nδ
, νB(x)

nδ
)〉

: x ∈ X
}

=
{〈
x,max

(
1−

(
1− µA(x)

δ
)n

, 1−
(
1− µB(x)

δ
)n)

,min
(
νA(x)

nδ
, νB(x)

nδ
)〉

: x ∈ X
}

= nA ∪ nB.

The proof of (vi) is similar to that of (v). �

4. The operators Dα(A), Fα,β(A) and Gα,β(A)

Let A = {〈x, µA(x), νA(x)〉 : x ∈ X} denote a GIFSB .

13. Definition. Let α ∈ [0, 1] and A ∈ GIFSB . We define the operator of Dα(A) as

Dα(A) =

{〈
x,
(
µA(x)

δ + απA(x)
δ
) 1
δ
,
(
νA(x)

δ + (1− α)πA(x)δ
) 1
δ

〉
: x ∈ X

}
.

Clearly, Dα(A) is a GIFSB .

4.1. Theorem. For every GIFSBA and for every α, β ∈ [0, 1], we have
i. α ≤ β ⇒ Dα(A) ⊂ Dβ(A),
ii. D0(A) = 2A,
iii. D1(A) = 3A.
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Proof. The proof of (i) is immediate.
(ii) We have

D0(A) =

{〈
x,
(
µA(x)

δ + 0× πA(x)δ
) 1
δ
,
(
νA(x)

δ + (1− 0)πA(x)
δ
) 1
δ

〉
: x ∈ X

}
=

{〈
x, µA(x),

(
νA(x)

δ + πA(x)
δ
) 1
δ

〉
: x ∈ X

}
=

{〈
x, µA(x),

(
1− µA(x)δ

) 1
δ

〉
: x ∈ X

}
= 2A,

where the penultimate equality follows since πA(x)δ = 1 − µA(x)
δ − νA(x)

δ. So, (ii)
follows.
(iii) We have

D1(A) =

{〈
x,
(
µA(x)

δ + 1× πA(x)δ
) 1
δ
,
(
νA(x)

δ + (1− 1)πA(x)
δ
) 1
δ

〉
: x ∈ X

}
=

{〈
x,
(
µA(x)

δ + πA(x)
δ
) 1
δ
, νA(x)

〉
: x ∈ X

}
=

{〈
x,
(
1− νA(x)δ

) 1
δ
, νA(x)

〉
: x ∈ X

}
= 3A,

completing the proof. �

14. Definition. Let α.β ∈ [0, 1], where α + β ≤ 1. Let A ∈ GIFSB . We define the
operator of Fα,β(A) as

Fα,β(A) =

{〈
x,
(
µA(x)

δ + απA(x)
δ
) 1
δ
,
(
νA(x)

δ + βπA(x)
δ
) 1
δ

〉
: x ∈ X

}
.

4.2. Theorem. For every GIFSBA and for any α, β ∈ [0, 1], where α+ β ≤ 1, we have
i. Fα,β(A) ∈ GIFSB ,
ii. 0 ≤ γ ≤ α⇒ Fγ,β(A) ⊂ Fα,β(A),
iii. 0 ≤ γ ≤ β ⇒ Fα,β(A) ⊂ Fα,γ(A),
iv. Dα(A) = Fα,1−α(A),
v. 2A = F0,1(A),
vi. 3A = F1,0(A),
vii. Fα,βA = Fβ,α(A).

Proof. (i) follows since

µFα,β(A)(x)
δ + νFα,β(A)(x)

δ

=

[(
µA(x)

δ + απA(x)
δ
) 1
δ

]δ
+

[(
νA(x)

δ + βπA(x)
δ
) 1
δ

]δ
= µA(x)

δ + νA(x)
δ + πA(x)

δ(α+ β)

≤ µA(x)
δ + νA(x)

δ + πA(x)
δ = 1.

The proofs of (ii) and (iii) are immediate.
(iv) follows since

Fα,1−α(A)

=

{〈
x,
(
µA(x)

δ + απA(x)
δ
) 1
δ
,
(
νA(x)

δ + (1− α)πA(x)δ
) 1
δ

〉
: x ∈ X

}
= Dα(A).
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(v) follows by Theorem 4.1 after noting that D0(A) = F0,1(A) and D1(A) = F1,0(A)
from (iv).
(vi) follows by Theorem 4.1 after noting that D0(A) = F0,1(A) and D1(A) = F1,0(A)
from (iv).
(vii) since

Fβ,α(A) =

{〈
x,
(
µA(x)

δ + βπA(x)
δ
) 1
δ
,
(
νA(x)

δ + απA(x)
δ
) 1
δ

〉
: x ∈ X

}
and

Fα,β
(
A
)
=

{〈
x,
(
νA(x)

δ + απA(x)
δ
) 1
δ
,
(
µA(x)

δ + βπA(x)
δ
) 1
δ

〉
: x ∈ X

}
,

we have

Fα,β
(
A
)
=

{〈
x,
(
µA(x)

δ + βπA(x)
δ
) 1
δ
,
(
νA(x)

δ + απA(x)
δ
) 1
δ

〉
: x ∈ X

}
and Fα,β

(
A
)
= Fβ,α(A). �

15. Definition. Let α, β ∈ [0, 1] and A ∈ GIFSB . We define the operator of Gα,β(A)
as

Gα,β(A) =
{〈
x, α

1
δ µA(x), β

1
δ νA(x)

〉
: x ∈ X

}
.

4.3. Theorem. For every GIFSBA, and for any real numbers α, β, γ ∈ [0, 1], we have
i. Gα,β(A) ∈ GIFSB ,
ii. α ≤ γ ⇒ Gα,β(A) ⊂ Gγ,β(A),
iii. β ≤ γ ⇒ Gα,β(A) ⊃ Gα,γ(A),
iv. τ ∈ [0, 1]⇒ Gα,β (Gγ,τ (A)) = Gαγ,βτ (A) = Gγ,δ (Gα,β(A)),
v. Gα,β (C(A)) = C (Gα,β(A)),
vi. Gα,β (I(A)) = I (Gα,β(A)),
vii. Gα,β

(
A
)
= Gβ,α(A).

Proof. (i) follows since

Gα,β(A) =
{〈
x, α

1
δ µA(x), β

1
δ νA(x)

〉
: x ∈ X

}
and

µGα,β(A)(x)
δ + νGα,β(A)(x)

δ =
(
α

1
δ µA(x)

)δ
+
(
β

1
δ νA(x)

)δ
= αµA(x)

δ + βνA(x)
δ

≤ µA(x)
δ + νA(x)

δ ≤ 1.

(ii) We have

Gα,β(A) =
{〈
x, α

1
δ µA(x), β

1
δ νA(x)

〉
: x ∈ X

}
and

Gγ,β(A) =
{〈
x, γ

1
δ µA(x), β

1
δ νA(x)

〉
: x ∈ X

}
.

Since α ≤ γ, we have α
1
δ ≤ γ

1
δ and so α

1
δ µA(x) ≤ γ

1
δ µA(x), completing the proof of (ii).

The proof of (iii) is similar to that of (ii).
(iv) We have

Gγ,τ (A) =
{〈
x, γ

1
δ µA(x), τ

1
δ νA(x)

〉
: x ∈ X

}
,
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Gα,β (Gγ,τ (A)) =
{〈
x, α

1
δ γ

1
δ µA(x), β

1
δ τ

1
δ νA(x)

〉
: x ∈ X

}
=

{〈
x, (αγ)

1
δ µA(x), (βτ)

1
δ νA(x)

〉
: x ∈ X

}
= Gαγ,βτ (A)

and

Gγ,τ (Gα,β(A)) =
{〈
x, γ

1
δ α

1
δ µA(x), τ

1
δ β

1
δ νA(x)

〉
: x ∈ X

}
=

{〈
x, (γα)

1
δ µA(x), (τβ)

1
δ νA(x)

〉
: x ∈ X

}
=

{〈
x, (αγ)

1
δ µA(x), (βτ)

1
δ νA(x)

〉
: x ∈ X

}
= Gαγ,βτ (A),

so

Gα,β (Gγ,τ (A)) = Gαγ,βτ (A) = Gγ,τ (Gα,β(A)) .

(v) follows since

C(A) =

{〈
x,max

y∈X
µA(y),min

y∈X
νA(y)

〉
: x ∈ X

}
and

Gα,β (C(A)) =

{〈
x, α

1
δ max
y∈X

µA(y), β
1
δ min
y∈X

νA(y)

〉
: x ∈ X

}
=

{〈
x,max

y∈X
α

1
δ µA(y),min

y∈X
β

1
δ νA(y)

〉
: x ∈ X

}
= C (Gα,β(A)) .

(vi) follows since

I(A) =

{〈
x,min
y∈X

µA(y),max
y∈X

νA(y)

〉
: x ∈ X

}
and

Gα,β (I(A)) =

{〈
x, α

1
δ min
y∈X

µA(y), β
1
δ max
y∈X

νA(y)

〉
: x ∈ X

}
=

{〈
x,min
y∈X

α
1
δ µA(y),max

y∈X
β

1
δ νA(y)

〉
: x ∈ X

}
= I (Gα,β(A)) ,

where α, β ∈ [0, 1].
(vii) Let A = {〈x, µA(x), νA(x)〉 : x ∈ X} denote a GIFSB . Then,

A = {〈x, νA(x), µA(x)〉 : x ∈ X} ,

Gβ,α(A) =
{〈
x, β

1
δ µA(x), α

1
δ νA(x)

〉
: x ∈ X

}
,

Gα,β
(
A
)
=
{〈
x, α

1
δ νA(x), β

1
δ µA(x)

〉
: x ∈ X

}
,

Gα,β
(
A
)
=
{〈
x, β

1
δ µA(x), α

1
δ νA(x)

〉
: x ∈ X

}
,

and so Gα,β
(
A
)
= Gβ,α(A). �
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5. Conclusions
We have introduced a new generalized IFS (GIFSB) as an extension to the IFS. The

basic algebraic properties of GIFSB have been presented. Some operators on GIFSB
are defined and their relationship have been proved. A list of open problems is as follows:
i) define the generalized fuzzy intuitionistic number, norms, distances, metrics, metric
spaces, etc for the generalized IFS and study of their properties; ii) develop statistical
and probabilistic tools for the generalized IFS; iii) construct an axiomatic system for the
generalized IFS; iv) develop efficient algorithms and computer software for the construc-
tion of degrees of membership and nonmembership of a given generalized IFS; v) define
and study the properties of generalized IF boolean algebras; vi) develop information and
entropy measures corresponding to generalized IFSs; vii) develop preference theory and
utility theory for the generalized IFS; viii) compare with other generalizations of the IFS.
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Abstract
A new five-parameter model called the modified beta Weibull proba-
bility distribution is being introduced in this paper. This model turns
out to be quite flexible for analyzing positive data and has bathtub and
upside down bathtub hazard rate function.
Our main objectives are to obtain representations of certain statistical
functions and to estimate the parameters of the proposed distribution.
As an application, the probability density function is utilized to model
two actual data sets. The new distribution is shown to provide a better
fit than related distributions.
The proposed distribution may serve as a viable alternative to other
distributions available in the literature for modeling positive data aris-
ing in various fields of scientific investigation such as reliability theory,
hydrology, medicine, meteorology, survival analysis and engineering.
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1. Introduction
The Weibull distribution is a very popular distribution named after Waloddi Weibull,

a Swedish physicist. He used it in 1939 to analyze the breaking strength of materi-
als. Ever since, it has been widely used for analyzing lifetime data. However, this
distribution does not have a bathtub or upside–down bathtub shaped hazard rate func-
tion, that is why it cannot be utilized to model the life time of certain systems. To
overcome this shortcoming, several generalizations of the classical Weibull distribution
have been discussed by different authors in recent years. Many authors introduced flex-
ible distributions for modeling complex data and obtaining a better fit. Extensions
of Weibull distribution arise in different areas of research as discussed for instance in
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[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 19, 20, 21, 24] and [27]. Many extended Weibull models
have an upside–down bath tub shaped hazard rate, which is the case of the extensions
discussed by [4], [14], [18] and [25], among others.
Adding parameters to an existing distribution enables one to obtain classes of more flex-
ible distributions. Nadarajah et al. [17] introduced an interesting method for adding
three new parameters to an existing distribution. The new distribution provides more
flexibility to model various types of data. The baseline distribution has the cdf G(x),
then the new distribution is

F (x) =
1

B(a , b)

∫ {
cG(x)

(c−1)G(x)+1

}
0

xa−1(1− x)b−1 dx .(1.1)

The Modified beta Weibull probability density function obtained from (1.1) can be ex-
pressed in the following form:

f(x) =
cag(x){G(x)}a−1{1−G(x)}b−1

B(a, b){1− (1− c)G(x)}a+b .(1.2)

The cdf and pdf of Weibull distribution are defined as follows:

G(x) = 1− e−( xλ )k , λ > 0 , k > 0 , x > 0(1.3)

and

g(x) =
k

λ

(x
λ

)k−1

e−( xλ )k .(1.4)

We further generalize this model by applying the modified beta technique [17], which
results in what we are referring to as the modified beta Weibull (MBW) distribution.
The cdf, survival function, pdf and hazard rate function of the modified beta Weibull
distribution, for which G(x) is the baseline function, are respectively given by

F (x) =
1

B(a, b)
B

 1

1− 1
c

+
(
c− c

(
e−

x
λ

)k)−1 ; a, b

 ,(1.5)

S(x) = 1− 1

B(a, b)
B

 1

1− 1
c

+
(
c− c

(
e−

x
λ

)k)−1 ; a, b

 ,(1.6)

f(x) = ca k (x)−1+k
(

e−λ
−k xk

)b (
1− e−λ

−k xk
)−1+a

×

{
1− (1− c)

(
1− e−λ

−k xk
)}−a−b

λk B(a, b)
(1.7)

and

h(x) = k ca x−1+k λ−k
(

e−x
kλ−k

)b (
1− e−x

kλ−k
)−1+a

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b

 , x > 0 ,(1.8)

where B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt, Re(a) > 0, Re(b) > 0 and B(z; a, b) =

∫ z
0
ta−1(1−

t)b−1dt.
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Also λ > 0 , k > 0 , a > 0 , b > 0 , c > 0 . Equations (1.5) to (1.8) can be easily evalu-
ated numerically using computational packages such as Mathematica, Maple, MATLAB
and R. The following Mathematica code can be used for integration purposes: Inte-
grate[f(x),{x, 0, Infinity}]. Further, Figure 1 shows the correctness of the defined cdf.

0 2 4 6 8

0.2

0.4

0.6

0.8

1.0

Figure 1. The MBW cdf. λ = 0.8, k = 1.6, a = 1.4, b = 1.5, c = 0.8,
(dotted line), λ = 4.8, k = 2.6, a = 3.4, b = 2.5, c = 1.8, (dashed
line), λ = 10, k = 6, a = 4, b = 5, c = 5, (solid line), λ = 1, k =
1.2, a = 1, b = 2, c = 0.1, (thick line).

Note that on making use of the identity

(1− z)−τ =

∞∑
n=0

Γ(τ + n)

Γ(τ)n!
zn , |z| < 1 , τ > 0 ,(1.9)

one has the following series representations of the pdf specified by (1.7)

f(x) =
ca x−1+kk

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
(

e−λ
−kxk

)m+b

.(1.10)
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Moreover, the first derivative of h(x), which is used to study the shapes of hazard rate
functions as explained in [13] is

d

dx
h(x) = c1+a k2 x−1+k λ−1−k

(
e−

x
λ

)k (
1− e−x

kλ−k
)−1+a (

e−x
kλ−k

)b
×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

{
c− c

(
e−

x
λ

)k}2

B(a, b)−B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b


2

×

 1

1− 1
c

+
(
c− c

(
e−

x
λ

)k)−1


1+a

×

1− 1

1− 1
c

+
(
c− c

(
e−

x
λ

)k)−1


−1+b

+ k2x−2+2kλ−2k(a+ b)(1− c)ca
(

e−x
kλ−k

)1+b (
1− e−x

kλ−k
)−1+a

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−1−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b


+ cak2λ−2k(a− 1)x−2+2k

(
e−x

kλ−k
)1+b (

1− e−x
kλ−k

)−2+a

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b


− b ca

(
e−x

kλ−k
)b (

1− e−x
kλ−k

)−1+a

k2x−2+2kλ−2k

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b


+ ca(k − 1)k λ−kx−2+k

(
e−x

kλ−k
)b (

1− e−x
kλ−k

)−1+a

×

{
1− (1− c)

(
1− e−x

kλ−k
)}−a−b

B(a, b)− B

 1

1− 1
c
+

(
c−c

(
e
− x
λ
)k)−1 ; a, b

 .

Fig. 2, 3 and 4 plots some MBW curves for different choices of parameters for pdf and
hazard rate function. Figures 2 and 3 indicate how the new parameters a, b and c affect
the MBW density. These graphs illustrate the versatility of the MBW distribution. As
can be seen from left panel of Figure 2 that a is a scale parameter and from the right
panel of Figure 2 and left panel of Figure 3 that b and c are shape parameters. Similarly
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Figure 2. The MBW pdf. Left panel: λ = 0.5, k = 3.5, b = 2.8, c =
2.1 and a = 30 (dotted line) a = 50 (dashed line), a = 70 (solid line),
a = 100 (thick line). Right panel: λ = 0.5, k = 1, a = 1.5, c = 1.5 and
b = 1 (dotted line) b = 2 (dashed line), b = 3 (solid line), b = 4 (thick
line).
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Figure 3. Left panel: The MBW pdf. λ = 0.8, k = 1.6, a = 1.4, b =
1.5 and c = 0.8 (dotted line), c = 2 (dashed line), c = 4 (solid line),
c = 6 (thick line). Right panel: The MBW hazard rate function.
λ = 1.7, k = 1.2, b = 1.5, c = 3.5 and a = 1.2 (dotted line) a = 1.6
(short dashes), a = 2 (long dashes), a = 2.5 (solid line), a = 3 (thick
line).

right panel of Figure 3 and left and right panels of Figure 4 represent bathtub shaped
and upside down bathtub shaped hazard rate function.

The rest of the paper is organized as follows. Representations of certain statistical
functions are provided in Section 2. The parameter estimation technique described in
Section 3 is utilized in connection with the modeling of two actual data sets originat-
ing from the engineering and biological sciences in Section 4, where the new model is
compared with several related distributions.
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Figure 4. Left panel: The MBW hazard rate function. λ = 1.7, k =
1.2, a = 1.5, c = 3.5 and b = 1 (dotted line), b = 1.5 (dashed line),
b = 1.9 (long dashes), b = 2.3 (solid line), b = 2.8 (thick line). Right
panel: The MBW hazard rate function. λ = 2, k = 4, a = 2, b = 1.5
and c = 1.6 (dashed line), c = 2 (long dashes), c = 2.4 (solid line),
c = 2.8 (thick line).

2. Statistical Functions of the MBW Distribution
Here, we derive computable representations of some statistical functions associated

with the MBW distribution whose probability density function can be represented by
(1.10). The resulting expressions can be evaluated exactly or numerically with sym-
bolic computational packages such as Mathematica, MATLAB or Maple. In numerical
applications, infinite sum can be truncated whenever convergence is observed.

2.1. Moments. We now derive closed form representations of the positive, negative
and factorial moments of a MBW random variable. The rth raw moment of the MBW
distribution is

E(Xr) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
∫ ∞
0

xr x−1+k
(

e−λ
−k xk

)m+b

dx .(2.1)

Which gives

E(Xr) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
(
(b+m)λ−k

)− k+r
k Γ

(
k+r
k

)
k

.(2.2)

The hth order negative moment can readily be determined by replacing r with −h in
(2.1):

E(X−h) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
∫ ∞
0

x−h x−1+k
(

e−x
k/λk

)m+b

dx
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Which gives,

E(X−h) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

×
(
(b+m)λ−k

)−1+h
k Γ
(
1− h

k

)
k

.(2.3)

The factorial moments of X are

E(X(X − 1)(X − 2) · · · (X − γ + 1)) ≡
γ−1∑
m=0

φm(−1)j E(Xγ−m) ,(2.4)

where E(Xγ−m) can be evaluated by replacing r by γ −m in (2.1).

2.2. Moment Generating Function. The moment generating function of the MBW
distribution whose density function is specified by (1.10) will be derived here. First, we
consider a result developed in [23]:∫ ∞

0

xη−1e−θ x
k

es xdx =
(2π)1−(q+p)/2q1/2pη−1/2

(−s)η

×Gq,pp,q

((
−p
s

)p(θ
q

)q ∣∣∣∣∣ 1− i+η
p
, i = 0, 1, ...., p− 1

j/q, j = 0, 1, ...., q − 1

)
,(2.5)

where <(η),<(θ),<(s) < 0 and k is rational number such that k = p/q, where p and
q 6= 0 are integers.

The moment generating function of the MBW distribution whose density function is
specified by (1.10) is

M(t) =
ca

B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ ∞
0

xk−1e−(λ−k (m+b))xk et x dx

On replacing η with k, θ with λ−k (m + b)) and s with t. In the integrand of integral
and making use of (2.5), we have the following representation of the moment generating
function when k = p/q:

M(t) =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

× (2π)1−(q+p)/2 q1/2p k−1/2

(−t)k

×Gq,pp,q

((−p
t

)p(λ−k (m+ b)

q

)q ∣∣∣∣∣ 1− i+k
p
, i = 0, 1, . . . , p− 1

j/q , j = 0, 1, . . . , q − 1

)
(2.6)

2.3. Entropy. Entropy is a concept encountered in Physics and Engineering. An ex-
tension of Shannon’s entropy for the continuous case can be defined as follows:

H(f) = −
∫ ∞
0

f(x) log(f(x)) dx .(2.7)
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Combining (1.10) with (2.7), one has the following representation:

H(f) = − cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

× log

(
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

)

×
∫ ∞
0

x−1+k
(

e−λ
−k xk

)m+b

dx

− cak(−1 + k)

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ ∞
0

x−1+k
(

e−λ
−k xk

)m+b

log (x) dx

+
cak (m+ b)

λ2kB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ ∞
0

x−1+2k
(

e−λ
−k xk

)m+b

dx .

H(f) = − ca

(m+ b)B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

× log

(
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b+ n)(1− c)n

Γ(a+ b)n!

Γ(1− a− n+m)

Γ(1− a− n)m!

)

− cak(−1 + k)

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ ∞
0

(x)−1+k
(

e−λ
−k xk

)m+b

log (x) dx

+
ca

(m+ b)B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!
.(2.8)

Note that, the integral on the right–hand side of (2.8) can be evaluated by numerical
integration.

2.4. Mean Residue Life Function. The mean residue life function is defined as

K(x) =
1

S(x)

∫ ∞
x

(y − x) f(y) dy

=
1

S(x)

∫ ∞
x

y f(y) dy − x

=
1

S(x)

[
E(Y )−

∫ x

0

y f(y) dy

]
− x ,
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where f(y), S(x) and E(Y ) are as given in (1.10), (1.6) and (2.2), respectively and∫ x

0

yf(y)dy =
cak

λkB(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n)Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ x

0

yk
(

e−λ
−k yk

)m+b

dy .

=
ca k λ−k

B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ x

0

e−(m+b)λ−k yk yk dy

=
ca k λ−k

B(a, b)

∞∑
n=0

∞∑
m=0

Γ(a+ b + n) Γ(1− a− n+m)(1− c)n

Γ(a+ b) Γ(1− a− n)n!m!

×
∫ x

0

ykG1,0
0,1

(
(m+ b)λ−k yp/q

∣∣∣∣∣ −0
)

dy ,(2.9)

where e−g(x) = G1,0
0,1

(
g(x)

∣∣∣∣∣ −0
)
, k = p/q , p ≥ 1 , q ≥ 1 are natural co-prime numbers

and ∫ x

0

ytG1,0
0,1

(
(m+ b)β yp/q

∣∣∣∣∣ −0
)

dy

=
q xp (t+1)

p(2π)(q−1)/2
Gq,pp,p+q

(
((m+ b)λ−k)q xp

qq

∣∣∣∣∣ −tp , 1−t
p
, . . . , p−t−1

p
,−

0 , −t−1
p

, t
p
, . . . , p−t−2

p

)
.(2.10)

Equation (2.10) is obtained by making use of Equation (13) of [5].

2.5. Mean Deviation. The mean deviation about the mean is defined by

δ(X) =

∫ ∞
0

|x− E(X)| f(x) dx

=

∫ E(X)

0

(E(X)− x) f(x) dx+

∫ ∞
E(X)

(x− E(X)) f(x) dx .

where E(X) can be evaluated by letting r = 1 in (2.2). The mean deviation can easily
be evaluated by numerical integration.

3. Parameter Estimation
In this section, we will make use of the MBW, Transmuted–Weibull(TW) [1], Ku-

maraswamy modified Weibull (KwMW) [9], Extended Weibull (ExtW) [21], Exponential–
Weibull (EW) [5], Gamma–Weibull (GW) [22], Generalized modified Weibull (GMW)
[4], Modified Weibull (MW) [15], Generalized gamma (GG) [26], Two parameter Weibull
(Weibull) and Two parameter gamma (Gamma) distributions to model two well–known
real data sets, namely the ‘Carbon fibres’ [19] and the ‘Cancer patients’ [16] data sets.
The parameters of the MBW distribution can be estimated from the loglikelihood of
the samples in conjunction with the NMaximize command in the symbolic computa-
tional package Mathematica. Additionally, three goodness-of-fit measures are proposed
to compare the density estimates.
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3.1. Maximum Likelihood Estimation. In order to estimate the parameters of the
proposed MBW density function as defined in Equation (1.7), the loglikelihood of the
sample is maximized with respect to the parameters. Given the data xi, i = 1, . . . , n,
the loglikelihood function is

`(λ, k, a, b, c) = n {a log(c) + log(k)− k log(λ)− log(B(a, b))}

+ (k − 1)

n∑
i=1

log (xi) + b

n∑
i=1

log
(

e−xi
k/λk

)
+ (a− 1)

n∑
i=1

log
(

1− e−xi
k/λk

)
− (a+ b)

n∑
i=1

log
{

1− (1− c)
(

1− e−xi
k/λk

)}
(3.1)

where f(x) is as given in (1.7). The associated nonlinear loglikehood system ∂`(θ)
∂θ

= 0
for MLE estimator derivation reads as follows:

∂`(θ)

∂λ
= −k n

λ
+ b

n∑
i=1

k λ−1−k xki + (a− 1)

n∑
i=1

−e−λ
−k xki k λ−1−k xki

1− e−λ
−k xki

− (a+ b)

n∑
i=1

(1− c) e−λ
−k xki k λ−1−k xki

1− (1− c)
(

1− e−λ
−k xki

) = 0

∂`(θ)

∂k
= n

{
1

k
− log(λ)

}
+

n∑
i=1

log (xi)

+ b

n∑
i=1

{
λ−k log(λ)xki − λ−k log (xi)x

k
i

}
− (a− 1)

n∑
i=1

e−λ
−kxki

{
λ−k log(λ)xki − λ−k log (xi) x

k
i

}
1− e−λ

−k xki

− (a+ b)

n∑
i=1

(1− c)e−λ
−kxki

{
λ−k log(λ)xki − λ−k log (xi)x

k
i

}
1− (1− c)

(
1− e−λ

−kxki

) = 0

∂`(θ)

∂a
= n{log(c)− ψ(0)(a) + ψ(0)(a+ b)}+

n∑
i=1

log
(

1− e−λ
−kxki

)
−

n∑
i=1

log
{

1− (1− c)
(

1− e−λ
−k xki

)}
= 0

∂`(θ)

∂b
= n {−ψ(0)(b) + ψ(0)(a+ b)}

+

n∑
i=1

log
(

e−λ
−k xki

)
−

n∑
i=1

log
{

1− (1− c)
(

1− e−λ
−kxki

)}
= 0

∂`(θ)

∂c
=
an

c
− (a+ b)

n∑
i=1

1− e−λ
−k xki

1− (1− c)
(

1− e−λ
−k xki

) = 0 .(3.2)

Where ψ(0)(·) is the polygamma function. The above equations cannot be solved analyt-
ically and statistical software can be used to solve them numerically.



1563

3.2. Goodness-of-Fit Statistics. To verify the goodness-of-fit of certain statistical
models, some goodness-of-fit statistics shall be used. They are computed using the
symbolic computation package Mathematica. The following goodness-of-fit statistics are
considered: the Anderson-Darling, Cramér-von Mises and Akaike Information Criterion
(AIC) statistics for comparison purposes. The Anderson-Darling and Cramér-von Mises
statistics are widely utilized to determine how closely a specific distribution whose asso-
ciated cumulative distribution function denoted by cdf(·) fits the empirical distribution
associated with a given data set. Upper tail percentiles of the asymptotic distributions
of Anderson-Darling and Cramér-von Mises statistics were tabulated in [19]. The distri-
bution having the better fit will be the one whose goodness-of-fit statistic is the smallest.

4. Empirical illustrations
In this section, we present two applications where the MBW model is compared with

other related models, namely Transmuted–Weibull(TW) [1], Kumaraswamy modified
Weibull (KwMW) [9] Extended Weibull (ExtW) [21], Exponential–Weibull (EW) [5],
Gamma–Weibull (GW) [22], Generalized modified Weibull (GMW) [4], Modified Weibull
(MW) [15], Generalized gamma (GG) [26], Two parameter Weibull (Weibull) and Two
parameter gamma (Gamma) distributions. We make use of two data sets: first, the
Carbon fibres data set [19] and, secondly, the Cancer patients data set [16].

• The classical gamma (Gamma) distribution with density function

f(x) =
xξ−1 e−x/φ

φξ Γ(ξ)
, x > 0, φ, ξ > 0 .

• The classical Weibull (Weibull) distribution with density function

f(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k , x > 0, k, λ > 0 .

• The generalize gamma (GG) distribution [26] with density function

f(x) =
k λ−ξ xξ−1 e−λ

−k xk

Γ(ξ/k)
, x > 0, ξ, k, λ > 0 .

• The modified Weibull (MW) distribution [15] with density function

f(x) = αxγ−1(γ + λx) e(λx− αx γ eλ x), x > 0, γ, α > 0, λ ≥ 0.

• The generalized modified Weibull (GMW) distribution [4] with density function

f(x) = ϕαxγ−1 (γ + λx) e(λx−αxγ eλx)
{

1− e(−αxγ eλx)
}ϕ−1

,

x > 0, γ, α, ϕ > 0, λ ≥ 0.

• The gamma–Weibull distribution [22] with density function

f(x) =
k λ−k−ξ x ξ+k−1e−λ

−k xk

Γ(1 + ξ/k)
, x > 0, ξ + k > 0, λ > 0 .

• The exponential–Weibull (EW) distribution [5] with density function

f(x) =
(
λ+ β k xk−1

)
e−λx−β x

k

, x > 0, λ, β, k > 0 .

• The Transmuted–Weibull(TW) [1] with density function

f(x) =
ηe−( xσ )η ( x

σ

)η−1
{

2λ e−( xσ )η − λ+ 1
}

σ
, x > 0, σ, η, λ > 0 .
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• The extended Weibull (ExtW) distribution [21] with density function

f(x) = a (c+ b x)x−2+b e−c/x−ax
be−c/x , x > 0, a, b > 0, c ≥ 0 .

• The Kumaraswamy modified Weibull (KwMW) distribution [9] with density
function

f(x) = a bαxγ−1 (γ + λx) e(λx−αxγ eλ x)
{

1− e(−αx
γ eλ x)

}a−1

×
[
1−

{
1− e(−αx

γ eλ x)
}a]b−1

, x > 0, a, b, α, γ > 0, λ ≥ 0 .
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Figure 5. Left panel: The MBW density estimate superimposed on
the histogram for Carbon fibres data . Right panel: The MBW cdf
estimates and empirical cdf.

Note that: The empirical cdf can be plotted using the following code in mathematica.
ListPlot[Table[{data[[i]], i/n-1/(2n)},{i, 1,n}]].

4.1. The Carbon Fibres Data Set. The first data set represents the uncensored real
data set on the breaking stress of carbon fibres (in Gba) as reported in [5]. The data are
(n = 66): 3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19,
3.22, 1.69, 3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55,
3.31, 3.31, 2.85, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88,
2.82, 2.05, 3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15,
1.08, 2.56, 1.80, 2.53.

4.2. The Cancer Patients Data Set. The second data set represents the remission
times (in months) of a random sample of 128 bladder cancer patients as reported in [16].
The data are 0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97,
9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26,
9.47, 14.24, 25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32,
7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90 , 2.69, 4.18, 5.34,
7.59, 10.66, 15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26,
5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62,
7.87, 11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98,
19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02,
3.36, 6.76, 12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

The pdf and cdf estimates of the MBW distribution are plotted in Figures 5 and
6 for the Carbon fibres and Cancer patients data, respectively. The estimated hazard
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Table 1. Estimates of the Parameters, Goodness-of-Fit Statistics and
Loglikelihood for the Carbon Fibres Data

Distributions Estimates
Gamma (ξ , φ) 7.48803 0.368528
Weibull (k , λ) 3.4412 47.0505
GG (k , λ , ξ) 4.0735 3.34592 3.09225
MW(α , γ , λ) 0.021813 2.709212 0.248518
GMW(ϕ, α , γ , λ ) 5.49894 0.436399 0.148117 0.516284
GW (k , ξ , λ) 3.4412 1.6 × 10−7 3.06226
EW (k , λ , β) 3.73666 0.0170948 0.01401
TW (η , σ , λ ) 3.441197 3.745584 1
ExtW ( a , b , c) 16.1979 1 × 10−7 8.05671
KwMW(α , γ , λ , a , b) 0.14981 1.7994 0.49987 0.64975 0.17111
MBW (λ, k, a , b , c) 1.65934 2.23218 0.78685 0.55408 0.07248

Distributions A∗0 W∗0 AIC `(Θ̂)
Gamma (ξ , φ) 1.32674 0.248153 186.335 -91.1675
Weibull (k , λ) 0.491678 0.0843011 176.135 -86.0676
GG (k , λ , ξ) 0.487573 0.0811144 177.835 -85.9175
MW(α , γ , λ) 0.485662 0.0793299 177.727 -85.8636
GMW(ϕ, α , γ , λ ) 0.385439 0.0627953 178.746 -85.3731
GW (k , ξ , λ) 0.491678 0.0843011 178.135 -86.0676
EW (k , λ , β) 0.403649 0.06479 177.044 -85.5218
TW (η , σ , λ ) 0.491678 0.0843011 178.135 -86.0676
ExtW ( a , b , c) 2.26745 0.416152 207.47 -100.735
KwMW(α , γ , λ , a , b) 1.29338 0.213215 185.980 -87.9902
MBW (λ, k, a , b , c) 0.24516 0.034375 179.226 -84.613
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Figure 6. Left panel: The MBW density estimate superimposed on
the histogram for Cancer patients data . Right panel: The MBW cdf
estimates and empirical cdf.

rate function of MBW distribution are plotted in Figure 7. It can be seen that both
shapes of hazard rate function, for carbon fibers and cancer patients data sets are like
bathtub shaped hazard rate function. The estimates of the parameters and the values
of AIC, Anderson-Darling and Cramér-von Mises goodness–of–fit statistics are given in
Tables 1 and 2 for the Carbon fibres and Cancer patients data, respectively. It is seen
that the proposed MBW model provides the best fit for both data sets when considering
Anderson-Darling and Cramér-von Mises goodness–of–fit statistics and is a competitive
model when considering AIC.
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Table 2. Estimates of the Parameters, Goodness-of-Fit Statistics and
Loglikelihood for the Cancer Patients Data

Distributions Estimates
Gamma (ξ , φ) 1.17251 7.98766
Weibull (k , λ) 1.04783 10.651
GG (k , λ , ξ) 0.520095 0.595104 1.94927
MW(α , γ , λ) 0.093887 1.047834 3.6 × 10−11

GMW(ϕ, α , γ , λ ) 2.796005 0.453691 0.654409 5.8 × 10−13

GW (k , ξ , λ) 0.520095 1.42917 0.595104
EW (k , λ , β) 1.04783 1 × 10−7 0.093887
TW (η , σ , λ ) 1.133310 14.61979 0.744922
ExtW ( a , b , c) 1.9621 1 × 10−21 3.74383
KwMW(α , γ , λ , a , b) 0.639622 0.381865 0.029602 0.375 0.322843
MBW (λ , k, a , b , c) 0.32113 0.52381 1.29997 0.41823 0.053809
Distributions A∗0 W∗0 AIC `(Θ̂)
Gamma (ξ , φ) 0.77625 0.136063 830.736 -413.368
Weibull (k , λ) 0.963452 0.154303 832.174 -414.087
GG (k , λ , ξ) 0.300873 0.04526 827.708 -410.854
MW(α , γ , λ) 0.963452 0.154303 834.174 -414.087
GMW(ϕ, α , γ , λ ) 0.271984 0.04050 829.36 -410.68
GW (k , ξ , λ) 0.300873 0.045261 827.708 -410.854
EW (k , λ , β) 0.963452 0.154303 834.174 -414.087
TW (η , σ , λ ) 0.563397 0.0882597 829.916 -411.958
ExtW ( a , b , c) 13.3317 2.49818 1034.9 -514.498
KwMW(α , γ , λ , a , b) 18.8864 3.68568 979.652 -484.826
MBW (λ , k, a , b , c) 0.076133 0.0119393 828.612 -409.306
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Figure 7. Left panel: The estimated MBW hazard rate function for
carbon data . Right panel: The estimated MBW hazard rate function
for cancer patients data .

5. Discussion
There has been a growing interest among statisticians and applied researchers in

constructing flexible lifetime models in order to improve the modeling of survival data.
As a result, significant progress has been made towards the generalization of some well–
known lifetime models, which have been successfully applied to problems arising in several
areas of research. In particular, several authors have proposed new distributions which
are based on the traditional Weibull model. In this paper, we introduce a five–parameter
distribution which is obtained by applying the modified beta technique to the Weibull
model. Interestingly, our proposed model has bathtub and up side down bathtub shaped
hazard rate function.We studied some of its statistical properties. We also provided
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computable representations of the positive and negative moments, the factorial moments,
the moment generating function, the mean residue life function, the mean deviation and
the associated Shannon’s entropy. The proposed distribution was applied to two data
sets and shown to provide a better fit than other related models. The distributional
results developed in this article should find numerous applications in the physical and
biological sciences, reliability theory, hydrology, medicine, meteorology, engineering and
survival analysis.
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Abstract
In this study, the group sequential test is suggested for the mean direction
parameter of the von Mises distribution when the concentration parameter
is known and unknown. An application of the proposed test is illustrated
by using a medical data of the patients, who were complained about in-
ternal rotation angles of the shoulder and treated in a rehabilitation and
physical therapy center in Eskisehir, Turkey. It is shown that the results of
the study demonstrate that the group sequential test can provide a great
advantage not only for linear data but also for circular data in terms of
sample size.
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1. Introduction
Circular data often arise in many scientific disciplines like meteorology, geography, biology,

geology and medicine etc. As an example, meteorological events are periodical, that’s why it
is convenient to analyze them by using directional methods. It is shown that the distribution
of the wind direction can be approximated by a specific circular model.

Ecologists consider the prevailing wind direction as an important factor in many studies
including those of which involve pollutant transport. In Geology, geologists study paleocur-
rents to find out about the direction of flow of rivers in the past [16] and analyze paleomag-
netic directions of the earth’s magnetic pole to investigate the phenomenon of pole-reversal
as well as in support of the hypothesis of continental drift. In Biology, biologists who study
bird-migrations record the flight directions of just-released birds as they disappear over the
horizon. Batschelet [2] presented a number of noteworthy applications of circular statistics
in Biology. Also, any periodic phenomenon which is known and may be a day, a month or a
year, can be represented on a circle by aggregating the necessary data of several individuals
or periods if the circumferences corresponds to this period. Examples include arrival times
of patients to a hospital over the day, or the time of patients at a hospital in the day. As
a last example, the circle may represent the 365 days in the year and could be plotted the
occurrence of crash accidents in a specific roadway junction to see if they are uniformly
distributed over the different seasons of the year [8].
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†Corresponding Author.
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Circular data take values on the circumference of a circle and they form the angles in
the range (0o, 360o) or (0, 2π) radians [7]. The circular probability distributions are used
to fit the distribution of circular data. The von Mises distribution is the most common
probability distribution for circular data. A comprehensive discussion of circular statistics
as well as examples of the applications and general properties of the von Mises distribution
can be found in [11] and [8].

There are many practical situations in which it is desirable to update the decision with
every incoming observation, by sequentially, either in the temporal or in the spatial mode of
collecting the circular data.

As an example of using a sequential test for circular data, observations on the imbalanced
directions of individually produced wheels can provide for the information of whether the
procedure is under control.

Gadsden & Kanji [5] developed a sequential probability ratio test (SPRT) of Wald [17]
for the mean direction (µVM ) of the von Mises distribution with a known and an unknown
concentration parameter (κ). Gadsden & Kanji [6] represents the applications of SPRT for
circular data.

The sample size is a predetermined fixed value in fixed sample size test procedure. In
practice, this test cause, the practitioner, to spend more resources such as money and time.
When the sequential tests are used, these difficulties can be removed. The test begins with
a single observation value and stops when there is sufficient data for statistical comparison
and for making a decision on the hypothesis. Thus, it leads to a great saving in the sample
size [17].

However, in some cases, when a new data is obtained, testing the data by grouping is an
easier way than applying SPRT. A test which is performed sequentially by grouping data
is called a group sequential test (GST ). Various group sequential testing procedures have
been proposed to achieve the desired levels of type I error. Pocock [14], O’Brien & Fleming
[12] and Lan & DeMets [10] were among the first scholars to develop group sequential test.
A great part of the progress of group sequential tests are reviewed in detail by Jennison &
Turnbull [9].

Group sequential tests are widely used in medicine. On the other hand, medical events are
convenient to be analyzed using directional methods since many of them are periodical. The
occurrences of deaths caused by some disease in several times of year is a typical example
for circular data observations. However, none of these studies consider group sequential test
for von Mises distribution. In this study, a group sequential test is suggested for the mean
direction of the von Mises distribution with known and unknown concentration parameter.

This article is organized as follows: The von Mises distribution and the sequential proba-
bility ratio test (SPRT ) are briefly reviewed in the second and the third sections, respectively.
In the fourth section, Pocock’s group sequential test is described for the mean of the normal
distribution. In the fifth section, it is indicated that Pocock’s group sequential test can be
used for the mean direction of the von Mises distribution. An application of medical data
and conclusions are given in the sixth and the seventh sections, respectively.

2. The Von Mises Distribution
The von Mises distribution is a symmetric distribution which is the most important

model for unimodal samples of circular data and it plays the same role in circular statistical
inference as the normal distribution on the line.

If a circular random variable θ has a von Mises distribution (θ ∼ VM(µ, κ)), its probability
density function (pdf) is given by

(2.1) f(θ;µ, κ) = 1
2πIo(κ)

eκcos(θ−µ) , 0 ≤ θ < 2π

where κ ≥ 0 and 0 ≤ µ < 2π. Here, Io(κ) is a particular function of κ and it denotes the
modified Bessel function of the first kind and order zero, and is defined by

(2.2) Io(κ) = 1
2π

∫ 2π

0
eκcosθdθ =

∑∞
r=0 ( 1

r!
)2(κ

2
)2r

This function has the effect of scaling the distribution.
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For sufficiently large κ, the von Mises distribution is related to the normal distribution. If
κ→∞ and ξ = κ1/2(θ− µ), ξ is approximately distributed as standard normal distribution
(N(0, 1)) [11], [8].

Several properties of the von Mises distribution are similar to those of the normal distri-
bution. For instance, it is completely determined by two parameters. The parameter µ is
the mean direction. The von Mises density is unimodal and symmetrical about the mean
direction µ. The mode of the distribution is at θ = µ and antimode is at θ = µ + π. The
parameter κ is the concentration parameter which measures the concentration around the
mean direction. As κ approaches zero, the von Mises pdf approaches a uniform distribution
and as κ increases, the distribution increasingly concentrated at µ. Due to these properties,
the concentration parameter is similar to the variance of a normal distribution.

By giving a random sample θ1, θ2, ..., θn from VM(µ, κ), the log-likelihood function is
given by

(2.3) logL(µ, κ; θ1, θ2, ..., θn) = n[log2π + κR̄cos(θ̄ − µ)− logIo(κ)].

Then the maximum likelihood estimate µ̂ of µ is

(2.4) µ̂ = θ̄

where

(2.5) θ̄ =


tan−1(

∑n
i=1 sinθi∑n
i=1 cosθi

),
∑n
i=1 cosθi ≥ 0

tan−1(
∑n

i=1 sinθi∑n
i=1 cosθi

) + π,
∑n
i=1 cosθi < 0.

Differentiating (2.3) with respect to κ gives

(2.6)
logL(µ, κ; θ1, θ2, ...θn)

∂κ
= n{R̄cos(θ̄ − µ)−A(κ)}

where A(κ) = I1(κ)/Io(κ) is the ratio of two modified Bessel functions and I1(κ) is the
imaginary Bessel function of order one. The maximum likelihood estimate κ̂ of κ is the
solution of

(2.7) A(κ̂) = R̄

i.e.

(2.8) κ̂ = A−1(R̄)

where R̄ is the mean resultant length of the sample and is given by;

(2.9) R̄ =

√√√√( 1

n

n∑
i=1

cosθi

)2

+

(
1

n

n∑
i=1

sinθi

)2

.

Values of functions A and A−1 are taken from the tables, such as Mardia and Jupp (2000,
p. 362-363) and Fisher (1993, p. 224-225). A reasonable approximation to the solution of
(2.8) can, also, be obtained by

(2.10) κ̂ =


2R̄+ R̄3 + 5R̄5/6, R̄ < 0.53
−0.4 + 1.39R̄+ 0.43/(1− R̄), 0.53 ≤ R̄ < 0.85
1/(R̄3 − 4R̄2 + 3R̄), R̄ ≥ 0.85

[4, 11].
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3. Sequential Probability Ratio Test for the Mean Direction
Let θ be a von Mises distributed random variable with a mean direction µ0 and a con-

centration parameter. For testing H0 : µ = µ0 against H1 : µ = µ1, sequential probability
ratio test is defined as follows; If the values of θ random variable is defined as θ1, θ2, ..., θn,
likelihood ratio is defined as,

(3.1) Ln =

n∏
i=1

f(θi;µ1)

f(θi;µ0)
=

1
[2πI0(κ)]n

eκ
∑n

i=1 cos(θi−µ1)

1
[2πI0(κ)]n

eκ
∑n

i=1 cos(θi−µ0)
.

Then by taking logarithm and simplifying, (3.1) can be written as;

(3.2) lnLn =

n∑
i=1

Zi = 2κ

n∑
i=1

sin(θi − v1)sin(−v2)

where v1 = µ0+µ1
2

and v2 = µ0−µ1
2

.
At each stage of the test process, the value of

∑n
i=1 Zi is computed and compared with

lnA and lnB critical values which depend on type-1(α) and type-2(β) errors. A and B values
are computed as A = 1−β

α
, B = β

1−α . Then, one of the following decision is made.

(1) If
∑n
i=1 Zi ≤ lnB, the process is terminated with the acceptance of H0.

(2) If
∑n
i=1 Zi ≥ lnA, the process is terminated with the rejection of H0.

(3) If lnB <
∑n
i=1 Zi < lnA, the experiment is continued by taking an additional

observation.

[17].
When µ is the test parameter for the von Mises distribution, the approximate formula for

the operating characteristic (OC) function P (µ) is given by;

(3.3) P (µ) =
Ah − 1

Ah −Bh

where h = sin(µ−v1)
sinv2

[5, 6].
In linear data, acceptance probabilities are computed for the various values of h. Apart

from the linear data, minimum and maximum values of operating characteristic function are
obtained in circular data. Differentiating OC function with respect to µ, it is obtained that
µ = 900 + v1 and µ = 2700 + v1, and these can be shown to be a minimum and maximum,
respectively.

An approximation to the average sample number function ASN(µ), which is the expected
number of observations, is given by;

(3.4) ASN(µ) =
P (µ)lnB + [1− P (µ)]lnA

2A(κ)sinv1sinv2
.

It is possible to compute maximum and minimum values of the average sample number
in circular data. Therefore, the average sample numbers, which are obtained when H0 or H1

is true in linear data, are computed for the maximum and minimum values in circular data.
Differentiating the average sample number with respect to v2 and setting that equal to zero
gives;

(3.5) ASN(µ)min =
P (µ)lnB + [1− P (µ)]lnA

2A(κ)sinv1
.

Since a minimum can be obtained in only one turning point, the ends of the range of v2
will give the maximum. This leads to the point 00 and it gives

(3.6) ASN(µ)max =∞

[5, 13].
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4. Pocock’s Group Sequential Test
The basic concepts of Pocock’s group sequential test in one sample are described as

follows. Consider K groups (stages) of normally distributed observations with an unknown
mean µ and a known variance σ2, where in group k,k = 1, 2, ...,K and n1 = n2 = ...nK = n
observations are obtained. It is planned as a test of the null hypothesis H0 : µ = µ0 against
the two sided alternative H1 : µ 6= µ0. Let x̄j denote the mean response of the sample in
the jth group of n observations. In the jth stage, the normal score Zj is given by

(4.1) Zj =
√
n(x̄j − µ0)/

√
σ2.

The cumulative normal score

(4.2) Sk =
∑k
j=1 Zj , k = 1, 2, ...K

is the usual statistic for testing the hypothesis of the mean at type-I error probability α.
Zj is N(0, 1) and N(∆, 1) distributed, under H0 and H1 respectively. Where ∆ is given as

(4.3) ∆ = E(Zj) =
√
n(µ1 − µ0)/

√
σ2

[1, 9]. Formally the test process is as follows:

(1) After group k = 1, 2, ...,K − 1

If |Sk| ≥ zp(K,α)
√
k, stop, reject H0

otherwise, continue to group k + 1
(2) After group K

If |SK | ≥ zp(K,α)
√
K, stop, reject H0

otherwise, stop, acceptH0.

Where zp(K,α) is the Pocock’s critical value as in Table 1. The sample size per group is
obtained as

(4.4) n = ∆2

( √
σ2

µ1 − µ2

)2

where ∆ is the value of noncentrality parameter and it can be determined by a given value
of 1 − β. The maximum sample size is nmax = nK. If K = 1 is taken as fixed sample size
design (4.4) becomes the familiar sample size for a normal response. The average sample
number, under H1 is ASN = nK̄∗, where K̄∗ is the average number of stages.
zp(K,α), ∆ and K̄∗ values are given in Table 1 for k = 1, 2, .., 5, α = 0, 05, 1− β = 0, 95.

More complete tabulations of various values can be found in [14] and [9].

Table 1. Pocock’s Critical Values zp(K,α), ∆ and K̄∗ for k = 1, 2, ..., 5,
α = 0, 05, 1− β = 0, 95

k zp(K,α) ∆ K̄∗

1 1,645 3,290 1
2 1,875 1,875 2,445 1,282
3 1,993 1,993 1,993 2,035 1,656
4 2,067 2,067 2,067 2,067 1,782 2,056
5 2,122 2,122 2,122 2,122 2,122 1,605 2,460

When the variance σ2 is unknown, group sequential t-test is used. Test procedure is
the same as the one with known σ2. Since σ2 is unknown, the pooled sample variance is
estimated of n observations and is used for σ2 in (4.1). Furthermore, sample size per group
can not be calculated with (4.4) in group sequential t-test. Thus, the researcher supposed
that each group contains n observations, in this case [9].
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5. Group Sequential Test for the Mean Direction of the Von Mises
Distribution
In this section, it is shown that Pocock’s group sequential test can be used for the mean

direction of the von Mises distribution both for known κ and unknown κ cases.
It is assumed that θ1, ϑ2, ..., ϑn is a random sample from a von Mises distribution VM(µ, κ).
Let the concentration parameter be known as κ = κ0(κ0 ≥ 2). Then, the population mean

resultant length of a von Mises distribution is ρ. The hypothesis to be tested is H0 : µ = µ0

against H1 : µ 6= µ0. From (2.3), the score statistic is defined as

(5.1)
∂logL(µ, κ; θ1, θ2, ..., θn)

∂µ

∣∣∣∣
µ=µ0

= nκR̄sin(θ̄ − µ0).

[3]. Under H0, the score statistic is equal to

(5.2)
√
nκ0ρsin(θ̄ − µ0)

and it has approximately the distribution N(0, 1), for large n. The circular standard error
of the mean direction for the von Mises distribution is

(5.3) σVM =
1

√
nκ0ρ

.

Thus, the test statistic for the score test is given by

(5.4) ZVM =
sin(θ̄ − µ0)

σVM

[4]. Let zα/2 indicates the upper 100(α/2)% point and zα indicates 100(α)% point of the
standard normal distribution. Then the test of H0 : µ = µ0 against the alternatives are at
the 100α% level are follows:

(1) When H1 : µ 6= µ0: if |ZVM | > zα/2, then reject H0.
(2) When H1 : µ < µ0: if µ0 − π < θ̄ < µ0 and ZVM < −zα, then reject H0.
(3) When H1 : µ > µ0: if θ̄ < µ0 + π and ZVM > −zα, then reject H0.

In the sense of the information given above, the group sequential test statistic for the von
Mises distribution can be defined as:

(5.5) SVMk =
∑k
j=1 ZVMj , k = 1, ...,K

where

(5.6) ZVMj =
√
nκ0ρsin(θ̄j − µ0)

where θ̄j is computed from the data of n observations for the jth group. For K = 1, the
test statistic (5.5) transforms into fixed sample test in the von Mises distribution. Therefore,
since ZVMj has approximately the distribution N(0, 1) under H0, the group sequential test
can be used for testing the mean direction of the von Mises distribution with the known
concentration parameter. The test statistic SVMk is compared with zp(K,α) as follows:

After group k = 1, 2, ...,K − 1
For H1 : µ 6= µ0, if |SVMk| ≥ zp(K,α)

√
k, stop, reject H0

For H1 : µ < µ0 and µ0 − π < θ̄k < µ0, if |SVMk| < −zp(K,α)
√
k, stop, reject H0

For H1 : µ > µ0 and θ̄k < µ0 + π, if |SVMk| > −zp(K,α)
√
k, stop, reject H0

otherwise continue to group k + 1
After group K
For H1 : µ 6= µ0, if |SVMk| ≥ zp(K,α)

√
K, stop, reject H0

For H1 : µ < µ0 and µ0 − π < θ̄k < µ0, if |SVMk| < −zp(K,α)
√
K, stop, reject H0

For H1 : µ > µ0 and θ̄k < µ0 + π, if |SVMk| > −zp(K,α)
√
K, stop, reject H0

otherwise stop, accept H0.
For this test, the group size nVM is obtained from the expected value of the test statistic

(5.6) under H1;
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(5.7) ∆ = E(ZVMj|H1
) =
√
nVMρκsin(µ1 − µ0).

Therefore, the value of nVM for this test is

(5.8) nVM = ∆2 1

[sin(µ1 − µ0)]2κρ
.

The maximum sample size can be defined as

(5.9) nmax = nVMN

and the average sample number is

(5.10) ASNVM = nVMK̄
∗.

Now, let the concentration parameter κ be unknown, and then the test statistic for the
score test can be defined as

(5.11) ZVM =
sin(θ̄ − µ0)

σ̂VM
where

(5.12) σ̂VM =
1√
nκ̂R̄

.

Therefore, ZVM is approximately distributed as N(0, 1) under H0. This approximation
is satisfactory for the values of estimated concentration parameter (κ̂) and sample size (n)
which are given in Table 2 [4, 11].

Table 2. κ̂ and n values for the test

κ̂ n
0, 4 ≤ κ̂ < 1 n ≥ 25

1, 0 ≤ κ̂ < 1, 5 n ≥ 15
1, 5 ≤ κ̂ < 2, 0 n ≥ 10

κ̂ ≥ 2, 0 All n

Then, as for group sequential test statistic, it can be defined as

(5.13) ZVMj =
√
nR̄j κ̂jsin(θ̄j − µ0)

where θ̄j ,R̄j and κ̂j values are computed from the data of n observations for the jth
group. The test proceeds as in the same way of known κ. Since κ is unknown, group size
can not be calculated in (5.8). Therefore, group size is supposed by researchers.

To give an instance for the application of real-life data on wind directions, the following
example compares the group sequential test for the von Mises distribution with known κ,
with fixed sample test and SPRT.

Example 5.1: Wind directions, in Anadolu University Airport Eskisehir, are measured
sequentially (hourly) in university’s weather station. For this data set, κ is known as κ = 4, 58
(corresponding ρ = 0, 88263) and α = β = 0, 05 is supposed and the hypothesis is tested
H0 : µ = 1410 against H1 : µ = 1300. Table 3 gives the maximum sample sizes and the
expected sample sizes for the fixed sample, the sequential probability ratio, and the group
sequential test.

Other examples can be presented that have the same general principle with different
choices of α,β,µ0,µ1 and κ. Pocock [15] compared those tests for the mean of the normal
distribution and showed that GST is more advantageous than the fixed sample test and SPRT
in terms of sample size; in addition , Bacanlı & Demirhan [1] proposed the group sequential
test for the mean of the inverse Gaussian distribution, in a similar way and showed that this
test is more advantageous than the others.
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Table 3. Comparison of the Fixed Sample, Sequential Probability Ratio
and Group Sequential Tests for κ = 4, 58, α = β = 0, 05, H0 : µ = 1410,
H1 : µ = 1300 (von Mises response with known κ)

Tests Maximum Sample Size Average Sample Number
Fixed Sample Test 73,545 73,545

minimum maximum
SPRT ∞ 2,380 ∞

Group Sequential Test

Group sizes nmax

K = 2 40,618 81,236 52,072
K = 3 28,138 84,413 46,596
K = 4 21,576 86,305 44,361
K = 5 17,503 87,515 43,057

Thus, it is seen that these results are, also, valid for circular normal distribution that is
known as Von-mises distribution.

6. Application to Medical Data
In this section, the group sequential test is applied to a medical circular data set. The

medical data were collected from sequentially patients who was male and female and between
the age of 44 and 75 in Eskisehir Private Fizyomer Rehabilitation and Physical Therapy
Center between the years of 2010 and 2013. These patients were admitted to the center with
complaints of pain in their shoulders. After the physical examination, some problems were
detected in patients such as shoulder joint motions are painful and, also, partially restrictive
and so on. Then, the range of motion the shoulder joints of patients were measured. These
measurements include active and passive angular values for flexion, extension, abduction,
internal rotation and external rotation variables. After the patients were diagnosed with the
adhesive capsulitis of shoulder (also known as the frozen shoulder), 30 sessions of physical
therapy and rehabilitation were applied to them and the range of motion of the shoulder
joints were measured again. After the therapy, it is aimed that the patients will reach a
complete joint range of motion in all of the shoulder motions. In this study, the group
sequential test is applied for the internal rotation (passive) variable which is obtained after
the therapy in the data set. In anatomy, internal rotation (also known as medial rotation) is
a term that refers to the rotation towards the center of the body [18] and the term passive
means that the patient moves with an external support or assistance.

It is theorized that a healthy, "perfect" shoulder should have 90 degrees of internal rotation
[19]. Therefore, the group sequential test is applied for H0 : µ = 900 against the alternative
H1 : µ = 800 with α = β = 0, 05 and K = 4. The concentration parameter is unknown, so
the group sizes are supposed as n = 5. GST results are given in Table 4.

Table 4. Group Sequential Test Results for (passive) Internal Rotation Data Set

j 1 2 3 4
n 5 5 5 5
θ̄j 84,133 85,031 86,012 85,031
κ̂j 11,486 27,181 47,768 27,181
R̄j 0,978 0,991 0,995 0,991

ZVMj -0,766 -1,005 -1,072 -1,005
SVMk -0,766 -1,771 -2,843 -3,848

Zp(4; 0, 05)
√
k 2,067 2,923 3,580 4,134

Decision Continue Continue Continue Accept H0

When Table 4 results are examined, it can be seen that, in stage 4;

SVM4 = 3, 848 > −ZP (4; 0, 05)
√

4 = −2, 067(2) = −4, 134
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hence we stop and accept H0.
Therefore, researchers can apply the group sequential test for predetermined α, β, N and

n values.

7. Discussion and Conclusions
As in many scientific fields, the most common probability distribution in medical appli-

cations of circular data is the von Mises distribution. However, the group sequential tests
are often used in medical researches which the data is collected sequentially. Therefore, the
group sequential test for the mean of the distributed von Mises data is proposed in this
study.

In medical studies, a significant amount of the collected data is in the form of circular.
In the literature, there are fixed sample and sequential probability ratio tests for circular
data. However, in medical studies, the use of these tests is very difficult in terms of obtaining
required sample sizes. The reason of this is that, when SPRT is used in the studies in which
the data is collected sequentially, the expected sample size and the maximum sample size
are infinite (see Table 3). Therefore, these values cannot be predetermined before the test.
In this study, the group sequential test have been proposed for circular data. An application
of this test for a medical data set (shoulder internal rotation angles) is carried out and it is
shown that the advantages of the test are also valid for circular data.

In GST, researchers can determine required maximum sample size and expected sample
size values for their hypotheses, determined α and β probabilities and K values. In this
respect, using GST provides a great advantage. GST was generated for linear data in the
literature. In this study, GST is defined for circular data and it is indicated that GST can be
used for the mean of the von Mises distribution which is frequently encountered in medical
studies.
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Abstract
A new four-parameter model called the Marshall–Olkin exponential–
Weibull probability distribution is being introduced in this paper, gen-
eralizing a number of known lifetime distributions. This model turns
out to be quite flexible for analyzing positive data. The hazard rate
functions of the new model can be increasing and bathtub shaped.
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1. Introduction
The Weibull distribution is a popular life time distribution model in reliability en-

gineering. However, this distribution does not have a bathtub or upside–down bathtub
shaped hazard rate function, which is why it cannot be utilized to model the life time
of certain systems. To overcome this shortcoming, several generalizations of the classical
Weibull distribution have been discussed by different authors in recent years. Many au-
thors introduced flexible distributions for modeling complex data and obtaining a better
fit. Extensions of the Weibull distribution arise in different areas of research as is often
pointed out in the literature, see for instance [2] and the references therein. Various
extended Weibull models have an upside–down bathtub shaped hazard rate, which is the
case for the extensions discussed by [11] and [20], among others.

Adding parameters to an existing distribution enables one to obtain classes of more
flexible distributions. Marshall and Olkin [9] introduced a method for adding a new
parameter to an existing distribution, which results in improved flexibility to model dif-
ferent types of data. They consider the so–called baseline distribution having cumulative
distribution function (CDF) Gb, with the associated probability density function (PDF)
gb(x), being the Radon-Nikodým derivative of the CDF Gb with respect to the ordinary
Lebesgue measure. Then, the associated Marshall–Olkin extended distribution CDF F
is given by

F (x) =
Gb(x)

Gb(x) + αGb(x)
,

where Gb = 1−Gb stands for the survival function of the baseline CDF Gb. Accordingly,
via the baseline PDF gb the Marshall–Olkin PDF becomes

f(x) =
αgb(x)(

Gb(x) + αGb(x)
)2 .

Recently Cordeiro et al. [2] introduced a type of exponential–Weibull distribution by
considering the baseline CDF ¶

(1.1) Gb(x) =
(

1− e−λx−β x
k
)
· I(0,∞)(x), λ > 0 , β > 0 , k > 0 ,

with the associated PDF

(1.2) gb(x) =
(
λ+ β k xk−1

)
e−λx−β x

k

· I(0,∞)(x) .

Now, we generalize the model (1.1) by Cordeiro et al. by applying the Marshall–Olkin
technique, which results in what we are referring to as the Marshall–Olkin Exponential–
Weibull (MOEW) distribution. Another implementation of the Marshall–Olkin technique
was recently considered by Saboor and Pogány, see [20].

Let θ = (λ, β, k, α) be a vector parameter having positive coordinates. The random
variable (rv) ξ defined on a fixed probability space (Ω,F,P) possesses the Marshall–Olkin
exponential–Weibull distribution when its CDF and PDF are respectively given by

F (x) =
1− e−(λx+β xk)

1− (1− α) e−(λx+β xk)
· I(0,∞)(x) ,(1.3)

f(x) =
α
(
λ+ β k xk−1

)
e−λx−β x

k(
1− (1− α) e−(λx+β xk)

)2 · I(0,∞)(x) , λ, β, k, α > 0 ;(1.4)

¶In this paper, IA(x) denotes the indicator function of the set A.
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and we write ξ ∼ MOEW(θ) with θ = (λ, β, k, α) to indicate that the rv ξ follows this
distribution.

One of the main reasons for introducing the MOEW distribution is the following. Con-
sider a sequence of random variables

(
Xn
)
, n ∈ N with IID elements from G(x) distribu-

tion, the rv N which possesses geometric distribution with parameter α ∈ [0, 1], that is
with probability mass function α(1−α)n−1 for n ∈ N, andmN = min

{
X1, X2, · · · , XN

}
.

Then

P
{
mN < x

}
= 1−

∑
n≥1

P
{
mN ≥ x

∣∣N = n
}
P
{
N = n

}
=

G(x)

G(x) + αG(x)
.

Graphical illustrations of the effect of the parameter α, considered on the whole set
R+ are included in Section 2. Representations of certain statistical functions are provided
in Section 3. The parameter estimation technique described in Section 4 is utilized in
Section 5 in connection with the modeling of two actual data sets originating from the
engineering and biological sciences, where the new model is compared with several related
distributions.

2. Graphical Presentations of the MOEW Distribution
Graphs of the PDF (1.4) and the hazard rate function (2.1) are presented in this

section for certain values of the parameters.

0.0 0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

0.0 0.5 1.0 1.5 2.0

1

2

3

4

Figure 1. The MOEW PDF. Left panel: λ = 0.5, β = 2.1, k = 2,
and α = 0.5 (dotted line) α = 1.5 (dashed line), α = 30 (solid line),
α = 100 (thick line). Right panel: λ = 2, k = 2, β = 2.1 and α = 0.5
(dotted line) α = 1.5 (dashed line), α = 30 (solid line), α = 100 (thick
line).

Figures 1 and 2 illustrate how the additional parameter α affect the MOEW(θ) density
(1.4). The graphs illustrate the versatility of the MOEW distribution and indicate that
the new parameter α has a noticeable effect on the skewness and kurtosis. Both Figures
1 and 2 suggest that the parameter α acts somewhat as a location parameter. The left
and right panels of Figure 3 indicate that the hazard rate function

(2.1) h(x) =
λ+ β k xk−1

1− (1− α) e−(λx+β xk)
· I(0,∞)(x)

can be increasing or bathtub shaped for certain values of the parameters.
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Figure 2. The MOEW PDF. Left panel: λ = 0.5, k = 5, β = 2.1, and
α = 5 (dotted line), α = 15 (dashed line), α = 50 (solid line), α = 100
(thick line). Right panel: λ = 0.5, β = 0.5, k = 2, and α = 0.5 (dotted
line) α = 1.5 (dashed line), α = 3 (solid line), α = 10 (thick line).

Figure 3. The MOEW hazard rate function. Left panel: λ = 0.5, β =
1, k = 2.5 and α = 1 (dotted line), α = 2 (short dashes), α = 5 (long
dashes), α = 20 (solid line). Right panel: λ = 0.5, β = 1, α = 5, and
k = 0.2 (dotted line) k = 0.8 (small dashed line), k = 1.5 (long dashed
line), k = 5 (solid line).

3. Special Cases
We point out some special cases of the MOEW(λ, β, k, α) distribution which are ob-

tained by specifying some of its parameters values. For example, the MOEW(λ, β, k, 1)
corresponds to the exponential–Weibull distribution [2], the MOEW(λ, β, 2, 1) is the mod-
ified Rayleigh distribution, the MOEW(λ, β, 1, 1) turns out to be the modified exponen-
tial distribution and finally the MOEW(0, β, k, 1) stands for the classical two-parameter
Weibull distribution. If k = 1 and k = 2 in addition to α = 1 and λ = 0, it coincides
with the exponential and Rayleigh distributions, respectively.

4. Moments, Quantile Function, Modality Analysis and Mixture
representation of the MOEW Distribution
In this section, we derive computable representations of some general order moments

associated with the MOEW(θ) distribution having the PDF specified by (1.4). The
Fox–Wright generalized hypergeometric 1Ψ0, function has been used to obtain the series
representations; in the case k = 1, the Goyal–Laddha generalized Hurwitz–Lerch Zeta
function provides a closed form for the general order moments; in this case, the MOEW
distribution is close to the classical Gamma distribution. The resulting expressions can
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be evaluated exactly or numerically with symbolic computational packages such as Math-
ematica, MATLAB or Maple. In numerical applications, infinite sum can be truncated
whenever convergence is observed.

4.1. Moments. Before concentrating on the derivation of the rth raw moment of the
MOEW(θ) distribution, we introduce the Fox-Wright function pΨq, which is a general-
ization of the familiar generalized hypergeometric function pFq, with p ∈ N0 numerator
parameters a1, · · · , ap ∈ C and q ∈ N0 denominator parameters b1, · · · , bq ∈ C \ Z−0 ,
defined by

pΨq

[ (a1, A1) , · · · , (ap, Ap)

(b1, B1) , · · · , (bq, Bq)

∣∣∣∣∣ z
]

=
∑
n≥0

Γ(a1 +A1n) · · ·Γ(ap +Apn)

Γ(b1 +B1n) · · ·Γ(bq +Bqn)

zn

n!
,

where the empty products are conventionally taken to be equal 1, while

Aj > 0, j = 1, p; Bk > 0, k = 1, q; ∆ = 1 +

q∑
j=1

Bj −
p∑
j=1

Aj ≥ 0 ,

(see, for instance [5, p. 56]). Convergence will occur for suitably bounded values of |z|
such that

|z| < ∇ :=

(
p∏
j=1

A
−Aj
j

)
·

(
q∏
j=1

B
Bj
j

)
.

We now derive closed form representations of the real order moments of a r.v. ξ ∼
MOEW(θ). First, we expand the denominator of the PDF (1.4) into a power series in
exp{−

(
λx+ β xk

)
}. Then, interchanging the integral and the sum, we have

E ξr = α
∑
n≥0

(2)n (1− α)n

n!

∫ ∞
0

xr
(
λ+ β k xk−1

)
e−(n+1)λx−(n+1) β xk dx

= αλ
∑
n≥0

(2)n (1− α)n

n!

∫ ∞
0

xr e−(n+1)λx−(n+1) β xk dx

+ αβ k
∑
n≥0

(2)n (1− α)n

n!

∫ ∞
0

xr+k−1 e−(n+1)λx−(n+1) β xk dx ,

where the Pochhammer symbol (a)b := Γ(a + b)/Γ(a), min(a, a + b) > 0, and conven-
tionally (0)0 = 1. The rth moment is a linear combination of integrals I(ω) (considered
already for a similar purpose by Nadarajah and Kotz in [12, Eq. (2.1)]) where

I(ω) =

∫ ∞
0

xκ−1 e−(µx+axη) dx , ω = (κ, µ, a, η) > 0 .

The following representation of this integral for general parameter values was obtained
by Pogány and Saxena in [16, p. 515, Corollary 1.1]:

I(ω) =



µ−κ 1Ψ0

[
(κ, η)

∣∣∣∣∣− a

µη

]
0 < η < 1

Γ(κ)

(µ+ a)κ
η = 1

1

ηaκ/η
1Ψ0

[ (κ
η
,

1

η

) ∣∣∣∣∣− µ

a1/η

]
η > 1

.



1584

Thus, for all k ∈ (0, 1), we have

E ξr = αλ
∑
n≥0

(2)n (1− α)n

n!
I(r + 1, (n+ 1)λ, (n+ 1)β, k)

+ αβ k
∑
n≥0

(2)n (1− α)n

n!
I(r + k − 1, (n+ 1)λ, (n+ 1)β, k)

=
α

λr

∑
n≥0

(2)n (1− α)n

(n+ 1)r+1 n!
1Ψ0

[
(r + 1, k)

∣∣∣∣∣− λβ−k

(n+ 1)k−1

]

+
αβ k

λr+k

∑
n≥0

(2)n (1− α)n

(n+ 1)r+k n!
1Ψ0

[
(r + k, k)

∣∣∣∣∣− λβ−k

(n+ 1)k−1

]
.(4.1)

When k = 1, we have

(4.2) E ξr =
αΓ(r + 1)

(λ+ β)r

∑
n≥0

(2)n
n!

(1− α)n

(n+ 1)r+1
.

Now, consider the Goyal–Laddha generalized Hurwitz–Lerch Zeta function [4, p. 100, Eq.
(1.5)] defined by the series

(4.3) Φ∗µ(z, s, a) =
∑
n≥0

(µ)n
n!

zn

(n+ a)s
,

where µ ∈ C; a ∈ C \ Z−0 , s ∈ C when |z| < 1; <(s − µ) > 1 for |z| = 1. Applying (4.3)
to the moment expression (4.2) for all α ∈ (0, 2), while for α ∈ {0, 2}, r > 2, we obtain

E ξr =
αΓ(r + 1)

(λ+ β)r
Φ∗2(1− α, r + 1, 1) .

The remaining values of the parameter k > 1 lead to the expected value

E ξr =
αλ

kβ
r+1
k

∑
n≥0

(2)n (1− α)n

(n+ 1)
r+1
k n!

1Ψ0

[ (r + 1

k
,

1

k

) ∣∣∣∣∣− (n+ 1)1−
1
k λ

β
1
k

]

+
α

β
r
k

∑
n≥0

(2)n (1− α)n

(n+ 1)
r
k
+1 n!

1Ψ0

[ ( r
k

+ 1,
1

k

) ∣∣∣∣∣− λ

(n+ 1)k−1βk

]
.

Thus, the following result:



1585

4.1. Theorem. Let the rv ξ ∼ MOEW(θ), θ = (λ, β, k, α) > 0. Then, for all r > −1,
we have

(4.4) E ξr =



α

λr

∑
n≥0

(2)n (1− α)n

(n+ 1)r+1 n!
1Ψ0

[
(r + 1, k)

∣∣∣∣∣ −λβ−k(n+ 1)k−1

]

+
αβ k

λr+k

∑
n≥0

(2)n (1− α)n

(n+ 1)r+k n!
1Ψ0

[
(r + k, k)

∣∣∣∣∣ −λβ−k(n+ 1)k−1

]
0 < k < 1

αΓ(r + 1)

(λ+ β)r
Φ∗2(1− α, r + 1, 1) k = 1

αλ

kβ
r+1
k

∑
n≥0

(2)n (1− α)n

(n+ 1)
r+1
k n!

1Ψ0

[ (
r+1
k
, 1
k

) ∣∣∣∣∣ −λβ−
1
k

(n+ 1)
1
k
−1

]

+
α

β
r
k

∑
n≥0

(2)n (1− α)n

(n+ 1)
r
k
+1 n!

1Ψ0

[ (
r
k

+ 1, 1
k

) ∣∣∣∣∣ −λβ−
1
k

(n+ 1)
1
k
−1

]
k > 1

,

where in the case k = 1, the additional conditions α ∈ (0, 2), or when α ∈ {0, 2}, r > 2,
have to be satisfied.

Proof. It only remains to verify the convergence conditions of the Fox–Wright series
which depend only on the parameter k. Note that, when k ∈ (0, 1), ∆ = 1 − k > 0,
so that both series in (4.1) converge. So does the Goyal–Laddha function when k = 1.
Finally, when k > 1, the value ∆ = 1− 1

k
> 0 ensures that the moment E ξr is finite for

any r > −1. �

4.2. Remark. For certain integer and rational values of the parameter k, we can make
use of a representation of the Fox–Wright 1Ψ0 in terms of generalized hypergeometric
pFq functions, which is discussed in detail in [10]. By their [10, Eq. (3.3)], for all positive
rational A = m

M
, one has

1Ψ0

[
(a, m

M
)
∣∣∣∣∣z
]

= Γ(a) +

M∑
j=1

Γ(a+ m
M
j) zj

j!

× m+1FM

[
1, j

M
+ a

m
, · · · , j

M
+ a+m−1

m

∣∣∣∣∣mm zM

MM

]
,

where pFq stands for the generalized hypergeometric function which is a built–in Math-
ematica function specified by

HypergeometricPFQ[{a_1, ..., a_p},{b_1, ..., b_q},z].

The same authors also transform Fox–Wright Ψ functions into Meijer G–functions
for rational arguments. Referring to [10, Eq. (5.1)], one has

1Ψ0

[
(a, m

M )
∣∣∣∣∣z
]

=
2
√
Mma

Γ(a)
√
mπ

M+m−1
2

× GM,m
m,M

(
mm (−z)M

MM

∣∣∣∣∣ 1− a
m , · · · , 1−

a+m−1
m

0, 1
M , · · · , M−1

M

)
.

The G–function in Mathematica code reads
MeijerG[{{a_1,...,a_n},{a_{n+1},...,a_p}},{{b_1,...,b_m},{b_{m+1},...,b_q}},z].
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See, for example, the monographs [8, Ch. V] and [5] for an introduction to the
G–function. �

The factorial moments of order N ∈ N for a r.v. ξ are

ΦN = E(ξ(ξ − 1)(ξ − 2) · · · (ξ −N + 1)) =
dN
(
E tξ
)

dtN

∣∣∣∣∣
t=1

.

By virtue of the Viète–Girard formulae for expanding ξ(ξ − 1)(ξ − 2) · · · (ξ −N + 1), we
obtain

ΦN =

N∑
r=1

(−1)N−r

 ∑
1≤`1<···<`r≤N−1

`1 · · · `r

 Eξr ,

where the second sum represents elementary symmetric polynomials:

er = er(`1, · · · , `r) =
∑

1≤`1<···<`r≤N−1

`1 · · · `r, r = 0, N − 1.

This in conjunction with the positive integer rth order moment expression given in for-
mula (4.4) provides an exact series representation for the fractional order moments.

4.2. Quantile Function. The next statistical function being considered is the quantile
function Qξ for the rv ξ ∼ MOEW(θ). The rv ξ possesses the CDF F (x) given by (1.3)
and its quantile function is

Qξ(p) = inf{x ∈ R : p ≤ F (x)} , p ∈ (0, 1) ;

it consists of the generalized inverse of the CDF for a fixed probability p. A closed form
is given in the next theorem for the MOEW distribution.

4.3. Theorem. Let ξ ∼ MOEW(θ), θ = (λ, β, k, α) with parameter space θ ∈ R4
+. For

all p ∈ (0, 1), the quantile function of ξ is

(4.5) Qξ(p) = ln
(1− (1− α)p

1− p

) 1
λ
{

1 +
∑
n≥1

(
kn

n− 1

)
wn

n!

}
,

where

w =

(
− 1

λ

)k [
ln

1− p
1− (1− α)p

]kβ
.

Moreover, for k > 1 we have

(4.6) Qξ(p) = ln
(1− (1− α)p

1− p

) 1
λ ·
{

1 + w · 1Ψ2

[ (k + 1, k)
(k + 1, k − 1), (2, 1)

∣∣∣w]} .

Proof. The quantile function is the solution of F (x) = p in x. Thus, for p ∈ (0, 1) fixed,
one has

βxk + λx+ ln
1− p

1− (1− α)p
= 0 ,

which is equivalent to

(4.7) 1− t+ wtk = 0; t = −λ
c

; c = ln
1− p

1− (1− α)p
.

Applying the Bürmann–Lagrange series expansion [17, p. 153, p. 348, 211.] for the
three-term equation (4.7), we obtain

t = 1 +
∑
n≥1

(
kn

n− 1

)
wn

n!
,
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which leads to the solution (4.5).
Further, assuming k > 1, transforming and writing the generalized binomial coefficient

in (4.7) in terms of gamma function, that is,(
a

`

)
=

Γ(a+ 1)

Γ(a− `+ 1) `!
, ` ∈ N ,

we have

t = 1 +
∑
n≥1

(
kn

n− 1

)
wn

n!
= 1 +

∑
n≥0

(
kn+ k

n

)
wn+1

(n+ 1)!

= 1 + w
∑
n≥0

Γ(k + 1 + kn)

Γ(k + 1 + (k − 1)n) Γ(2 + n)

wn

n!
.

Since ∆ = 1 +k−1 + 2−k = 2 and all coefficients of the running indices are positive, we
recognize the sum as the appropriate converging Fox–Wright generalized 1Ψ2 function as
stated in (4.6). �

The distribution of ξ being absolutely continuous, the corresponding median turns out
to be mξ = Qξ(

1
2
). Therefore we have

4.4. Corollary. Under the assumptions made in the Theorem 3.3 we have

(4.8) mξ =
1

λ
ln(1 + α) ·

1 +
∑
n≥1

(
kn

n− 1

)
wn

n!

 ,

where

w =
(−1)k(β+1)

λk
[

ln(1 + α)
]kβ

.

Accordingly, for k > 1 we have

(4.9) mξ =
1

λ
ln(1 + α) ·

{
1 + w · 1Ψ2

[ (k + 1, k)
(k + 1, k − 1), (2, 1)

∣∣∣w]} .

Finally, we point out that Theorem 4.1 yields the characteristic function φξ(t) = E eitξ

via the well–known Maclaurin series expansion φξ(t) =
∑
n≥0(it)n E ξn/n!. Further, the

moment generating function Mξ(t) = φξ(−it), while the hazard rate function h(x) and
the survival function F (x) = 1− F (x) can be expressed in obvious ways in terms of the
PDF and the CDF of the rv ξ ∼ MOEW(θ).

4.3. Modality Analysis. To close this section, we carry out a modality analysis for
the MOEW(θ) distribution.

Let us recall that in the case of continuous distributions having PDF f , the argument
value x0 belonging to its support supp(f) := {x : f(x) > 0} for which f(x0) = max,
is called the mode (peak)‖. The PDF can attain local maximum at several values from
supp(f); the distributions with a single mode are unimodal. The following theorem gives
certain sufficient conditions for the unimodality of a MOEW(θ) distribution for different
cases.

4.5. Theorem. Let ξ ∼ MOEW(θ), θ = (λ, β, k, α) where (λ, β, k) ∈ R3
+, α ∈ (0, 1].

Then
(i) k ∈ (0, 1]. No mode.

‖Let us mention that there are other definitions of the modality in terms of the related CDF
or the characteristic function or its Laplace–Stieltjes transform [22]
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(ii) k ∈ (1, 2). The rv ξ ∼ MOEW(θ) is unimodal with x0 ∈ (0, 1), when

βk[(β − 1)k + 2λ+ 1] + λ2 > 0 .

(iii) k = 2. No mode exists when λ ≥
√

2β. For λ <
√

2β the distribution is unimodal
with the peak at x0 ∈ (0, x∗), where

x∗ =

√
2β − λ
2β

.

(iv) k ∈ (2, 4). The rv ξ ∼ MOEW(θ) is unimodal with x0 ∈ (0, 1), when

(βk + λ)2 < (4− k)β .

Proof. For MOEW distribution supp(f) = R+. As for the peak value of the PDF (1.4),
we consider its logarithmic derivative

∂ ln f(x)

∂x
=
βk(k − 1)xk−2

λ+ βkxk−1
−
(
λ+ βkxk−1)

− 2(1− α)(λ+ βkxk−1)

1− (1− α)e−λx−βkxk
e−λx−βkx

k

.(4.10)

The case (i), when k ∈ (0, 1) is obvious, since

f ′(x) = f(x)
∂ ln f(x)

∂x
< 0, x > 0 ,

that is, f(x) monotonically decreases from f(0+) = +∞ to zero. The case k = 1 is
actually generated by the exponential baseline distribution with parameter λ + β, see
(1.1). In all those cases no mode exists.

As for the case (ii), when k ∈ (1, 2), we consider the first two terms on the right-
hand-side expression

hk(x) =
βk(k − 1)xk−2

λ+ βkxk−1
−
(
λ+ βkxk−1)

= −β
2k2x2k−2 + 2λβkxk−1 − βk(k − 1)xk−2 + λ2

λ+ βkxk−1
=:

−qk(x)

λ+ βkxk−1
,

say. For α ∈ (0, 1] the third term in (4.10) is negative for all x > 0. Since qk(0+) = −∞,
but qk(1) = βk[(β − 1)k + 2λ+ 1] + λ2 > 0 and

q′k(x) = βk(k − 1)xk−3(2βkxk + 2λx+ 2− k) > 0

exactly one sign change occurs inside (0, 1), so x0 ∈ (0, 1).
Consider now

q2(x) = 4β2x2 + 4λβx− 2β + λ2 = 0 .

The roots of q2(x) = 0 are

x1 = −
√

2β + λ

2β
< 0 , x∗ =

√
2β − λ
2β

.

The solution x∗ > 0 for
√

2β − λ > 0, which confirms the assertion (iii).
Finally, for k > 2, qk(0+) = λ2 > 0 and qk(1) = (βk + λ)2 − βk(k − 1) should be

negative. However,

(βk + λ)2 − βk(k − 1) < (βk + λ)2 − (4− k)β ,

which can take negative values for k ∈ (2, 4). For k ≥ 4, the last estimate becomes
redundant. �
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4.6. Remark. Obviously, the modality analysis in the cases α ∈ (0, 1], k > 4 and α > 1
requires another approach to be solved, since in the latter case the third right-hand-side
addend in (4.10) becomes

2(α− 1)(λ+ βkxk−1)

1 + (α− 1)e−λx−βkxk
e−λx−βkx

k

> 0 . �

We now show that the density (1.4) can be expressed as a mixture of EW densities.
Using the identity

(1− z)−τ =

∞∑
n=0

(τ)n
n!

zn , |z| < 1 , τ > 0 ,

one has the following mixture representation for the density function (1.4):

f(x) = α
∑
n≥0

(2)n (1− α)n

(n+ 1)!
gn+1(x),

where gn+1(x) denotes the PDF of the EW model with parameters λ? = (n + 1)λ,
β? = (n+ 1)β and k. Thus, the MOEW density function is a mixture of EW densities.

5. Parameter Estimation
This section provides a system of equations that can be utilized to determine the max-

imum likelihood estimates of the parameters of the MOEW distribution. Additionally,
two goodness-of-fit measures are proposed to compare the density estimates.

5.1. Maximum Likelihood Estimation. In order to estimate the parameters of the
proposed MOEW density function as defined in Equation (6), the loglikelihood of the
sample is maximized with respect to the parameters. Given the data x = (x1, · · · , xn),
the loglikelihood function is

`(θ) = n logα+

n∑
i=1

log
(
λ+ β k xk−1

i

)
−

n∑
i=1

(
λxi + β xki

)
−

n∑
i=1

log

((
1− (1− α) e−(λxi+β xki )

)2)
,

where f(x) is as given in (1.4). The associated nonlinear loglikelihood system ∂`(θ)
∂θ

= 0
for MLE’s is

∂`(θ)

∂λ
= −

n∑
i=1

xi −
n∑
i=1

2e−λxi−βx
k
i (1− α)xi

1− e−λxi−βxki (1− α)
+

n∑
i=1

1

λ+ kβx−1+k
i

= 0

∂`(θ)

∂β
= −

n∑
i=1

xki −
n∑
i=1

2e−λxi−βx
k
i (1− α)xki

1− e−λxi−βxki (1− α)
+

n∑
i=1

kx−1+k
i

λ+ kβx−1+k
i

= 0

∂`(θ)

∂k
= −β

n∑
i=1

xki log xi −
n∑
i=1

2e−λxi−βx
k
i (1− α)βxki log xi

1− e−λxi−βxki (1− α)

+

n∑
i=1

βx−1+k
i + kβx−1+k

i log xi

λ+ kβx−1+k
i

= 0

∂`(θ)

∂α
=
n

α
−

n∑
i=1

2e−λxi−βx
k
i

1− e−λxi−βxki (1− α)
= 0 .

Solving these equations simultaneously yields the maximum likelihood estimates (MLEs)
of the four parameters. Numerical iterative techniques are then necessary to estimate the
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model parameters. It is possible to determine the global maximum of the log-likelihood
by taking different initial values for the parameters. However, we observed that the MLEs
for this model are not very sensitive to the initial estimates. For interval estimation on
the model parameters, we require the Fisher information matrix; however in this article
we leave this routine calculation to the interested reader.

5.2. Goodness-of-Fit Statistics. The Anderson-Darling and the Cramér-von Mises
statistics are widely utilized to determine how closely a specific distribution whose asso-
ciated cumulative distribution function fits the empirical distribution associated with a
given data set. These statistics are

A∗0 = −
(

9

4n2
+

3

4n
+ 1

){
n+

1

n

n∑
j=1

(2j − 1) log (zj (1− zn−j+1))

}

W ∗0 =

(
1

2n
+ 1

){ n∑
j=1

(
zj −

2j − 1

2n

)2

+
1

12n

}
,

respectively, where zj = F (yj), the yj values being the ordered observations. The smaller
these statistics are, the better the fit. Upper tail percentiles of the asymptotic distribu-
tions of these goodness–of–fit statistics were tabulated in [13].

6. Applications
Now, we will make use of the MOEW, beta transmuted Weibull (BTW) [14], Ku-

maraswamy modified Weibull (KMW) [3], extended Weibull (ExtW) [15], exponential–
Weibull (EW) [2], gamma–Weibull (GW) [18] ∗∗, generalized gamma (GG) [21], two pa-
rameter Weibull (Weibull) and two parameter gamma (Gamma) distributions to model
two well–known real data sets, namely the ‘Carbon fibres’ [13] and the ‘Cancer patients’
[6] data sets. The parameters of the MOEW distribution can be estimated from the log-
likelihood of the samples in conjunction with the NMaximize command in the symbolic
computational package Mathematica. More specifically, the models being considered are:

• The classical gamma distribution with PDF

f(x) =
xξ−1 e−x/φ

φξ Γ(ξ)
· I(0,∞)(x), φ, ξ > 0 .

• The classical Weibull distribution with PDF

f(x) =
k

λ

(x
λ

)k−1

e−(x/λ)k · I(0,∞)(x), k, λ > 0 .

• The generalized gamma (GG) distribution [21] with PDF

f(x) =
k λ−ξ xξ−1 e−λ

−k xk

Γ(ξ/k)
· I(0,∞)(x), k, λ > 0 .

• The gamma–Weibull (GW) distribution [18] with PDF

f(x) =
k λ−k−ξ x ξ+k−1e−λ

−k xk

Γ(1 + ξ/k)
· I(0,∞)(x), ξ + k, λ > 0 .

∗∗It is worth mentioning that following another approach, that is, renormalizing the product
of the gamma and the Weibull distribution’s PDF, Leipnik and Pearce [7] introduced a five–
parameter gamma–Weibull distribution; for further results on this type of investigations consult
also [12] and [16]. In turn, the independently introduced, different type of PDF proposed by
Provost et al. [18] is actually a specific case of Leipnik–Pearce type gamma-Weibull distribution.
Fortunately, the both turn out to be good candidates for various applications.
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• The gamma exponentiated exponential (GEE) distribution [19] with PDF

f(x) =
λαδ

Γ(δ)
e−λx

(
1− e−λx

)α−1 (
− log

(
1− e−λx

))δ−1

· I(0,∞)(x) ,

where λ, α, δ > 0 .
• The exponential–Weibull (EW) distribution [1] with PDF

f(x) =
(
λ+ β k xk−1

)
e−λx−β x

k

· I(0,∞)(x), λ, β, k > 0 .

• The extended Weibull (ExtW) distribution [15] with PDF

f(x) = a (c+ b x)x−2+b e−c/x−ax
be−c/x · I(0,∞)(x), a, b, c ≥ 0 .

• The Kumaraswamy modified Weibull (KMW) distribution [3] with PDF

f(x) = a bαxγ−1(γ + λx) exp
(
λx− αxγ eλx

)(
1− exp (−αxγ eλx)

)a−1

·
(

1−
(

1− exp (−αxγ eλx)
)a)b−1

· I(0,∞)(x)

where a, b, α, γ > 0 , λ ≥ 0.

• The beta transmuted Weibull (BTW) distribution [14] with PDF

f(x) =
αβxβ−1

B(a, b)
e−αx

β

(1− λ+ 2λ e−αx
β

)(1− e−αx
β

)a−1(1 + λe−αx
β

)a−1

· (1− (1− e−αx
β

)(1 + λ e−αx
β

))b−1 · I(0,∞)(x)

where a, b, α, β > 0, |λ| ≤ 1.
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Figure 4. The Carbon fibres data fitted using the maximum likelihood
approach; Left panel: The MOEW PDF estimate superimposed on the
histogram for Carbon fibres data. Right panel: The MOEW CDF
estimate and empirical CDF.

6.1. The Carbon Fibres Data Set. We shall consider the uncensored real data set on
the breaking stress of carbon fibres (in Gba) as reported in [13]. The data are (n = 66):

3.70, 2.74, 2.73, 2.50, 3.60, 3.11, 3.27, 2.87, 1.47, 3.11, 3.56, 4.42, 2.41, 3.19, 3.22, 1.69,
3.28, 3.09, 1.87, 3.15, 4.90, 1.57, 2.67, 2.93, 3.22, 3.39, 2.81, 4.20, 3.33, 2.55, 3.31, 3.31,
2.85, 1.25, 4.38, 1.84, 0.39, 3.68, 2.48, 0.85, 1.61, 2.79, 4.70, 2.03, 1.89, 2.88, 2.82, 2.05,
3.65, 3.75, 2.43, 2.95, 2.97, 3.39, 2.96, 2.35, 2.55, 2.59, 2.03, 1.61, 2.12, 3.15, 1.08, 2.56,
1.80, 2.53.
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Table 1. Estimates of the Parameters and Goodness-of-Fit Statistics
for the Carbon Fibres Data

Distributions Estimates A∗0 W∗0

Gamma(ξ, φ) 7.48803 0.36853 1.32674 0.24815
Weibull(k, λ) 3.44120 47.0505 0.49168 0.08430
GG(k, λ, ξ) 4.07350 3.34592 3.09225 0.48757 0.08111
GW(k, ξ, λ) 3.44120 1.6 ∗ 10−7 3.06226 0.49168 0.08430
GEE(λ, α, δ) 0.26555 10.0365 7.23658 1.43415 0.26682
EW(k, λ, β) 3.73666 0.01710 0.01402 0.40365 0.06479
ExtW(a, b, c) 16.1979 1 ∗ 10−7 8.05671 2.26745 0.41615
KMW(α, γ, λ, a, b) 0.14981 1.79940 0.49987 0.64975 0.17111 1.29338 0.21322
BTW(α, β, λ, a, b) 0.00395 3.49999 0.99982 0.95052 2.39533 0.51603 0.09143
MOEW(λ, β, k, α) 1.62267 1 ∗ 10−6 0.61610 25.3808 0.2565 0.0374
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Figure 5. The Cancer Patients data fitted using the maximum likeli-
hood approach; Left panel: The MOEW PDF estimate superimposed
on the histogram for Cancer patients data. Right panel: The MOEW
CDF estimate and empirical CDF.

6.2. The Cancer Patients Data Set. The second data set represents the remission
times (in months) of a random sample of 128 bladder cancer patients as reported in [6].
The data are

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 3.52, 4.98, 6.97, 9.02, 13.29,
0.40, 2.26, 3.57, 5.06, 7.09, 9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24,
25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 2.62, 3.82, 5.32, 7.32, 10.06,
14.77, 32.15, 2.64, 3.88, 5.32, 7.39, 10.34, 14.83, 34.26, 0.90 , 2.69, 4.18, 5.34, 7.59, 10.66,
15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 43.01, 1.19, 2.75, 4.26, 5.41, 7.63,
17.12, 46.12, 1.26, 2.83, 4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 11.64,
17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 4.40, 5.85, 8.26, 11.98, 19.13, 1.76,
3.25, 4.50, 6.25, 8.37, 12.02, 2.02, 3.31, 4.51, 6.54, 8.53, 12.03, 20.28, 2.02, 3.36, 6.76,
12.07, 21.73, 2.07, 3.36, 6.93, 8.65, 12.63, 22.69.

The PDF and CDF estimates of the MOEW distribution are plotted in Figures 4 and
5 for the Carbon fibres and Cancer patients data, respectively. The estimates of the
parameters and the values of the Anderson-Darling and Cramér-von Mises goodness–of–
fit statistics are given in Tables 1 and 2. It is seen that the proposed MOEW model
provides the best fit for the both data sets.

To compare MOEW model with its sub-model EW, the likelihood-ratio (LR) test is
applied to both data sets. The LR in this case is L∗ = L0(k, λ, β)/La(k, λ, β), where L0

and La are the likelihood values for the EW and MOEW distributions, respectively. The
LR statistic −2 logL∗ follows a chi-square distribution (asymptotically) with 1 degrees



1593

Table 2. Estimates of the Parameters and Goodness-of-Fit Statistics
for the Cancer Patients Data

Distributions Estimates A∗0 W∗0

Gamma(ξ, φ) 1.17251 7.98766 0.77625 0.13606
Weibull(k, λ) 1.04783 10.6510 0.96345 0.15430
GG(k, λ, ξ) 0.52010 0.59510 1.94927 0.30087 0.04526
GW(k, ξ, λ) 0.52001 1.42917 0.59510 0.30087 0.04526
GEE(λ, α, δ) 0.12117 1.21795 1.00156 0.71819 0.12840
EW(k, λ, β) 1.04780 1 ∗ 10−7 0.09389 0.96345 0.15430
ExtW(a, b, c) 1.96210 1 ∗ 10−21 3.74383 13.3317 2.49818
KMW(α, γ, λ, a, b) 0.63962 0.38186 0.02960 0.37500 0.32284 18.8864 3.68568
BTW(α, β, λ, a, b) 0.21333 0.99990 0.97623 1.52665 0.32699 0.16057 0.02367
MOEW(λ, β, k, α) 0.12080 0.01234 10.9988 1 ∗ 106 0.09052 0.0141

of freedom. For the first data set −2 logL∗ = 1.613 with a p-value of 0.2041 whereas
for the second data set −2 logL∗ = 9.344 with a p-value of 0.0022. Both values of the
LR statistics suggest that in both cases the MOEW model performs significantly better
when compared with its sub-model EW.

7. Discussion
There has been a growing interest among statisticians and applied researchers in

constructing flexible lifetime models in order to improve the modeling of survival data.
As a result, significant progress has been made towards generalizing some well–known
lifetime models, which have been successfully applied to problems arising in several areas
of research. In particular, several authors proposed new distributions that are based on
the traditional Weibull model. In this paper, we introduce a four–parameter distribution
which is obtained by applying the Marshall–Olkin technique to the exponential Weibull
model. We studied some of its mathematical and statistical properties. We also provided
computable representations of the moments of order r > −1, the factorial moments and
the quantile function. Also the unimodality analysis was performed for suitable sub-
domains of the parameter space of the MOEW(θ) distribution.

The proposed distribution was utilized to model two data sets; it was shown to provide
a better fit than several other related models, including some with more parameters.
The distributional results developed in this article should find numerous applications in
reliability theory, hydrology, medicine, meteorology, survival analysis and engineering.
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