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Generalized statistical convergence and some
sequence spaces in 2-normed spaces

Cemal Belen ∗ and Mustafa Yildirim †

Abstract
In this work, we first define the concepts of A-statistical convergence
and AI-statistical convergence in a 2-normed space and present an
example to show the importance of generalized form of convergence
through an ideal. We then introduce some new sequence spaces in a
2-Banach space and examine some inclusion relations between these
spaces.
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1. Introduction
The idea of statistical convergence was first introduced by Fast [6] and also indepen-

dently by Buck [2] and Schoenberg [22] for real and complex sequences, but the rapid
developments started after the papers of Šalát [18], Fridy [8] and Connor [3].

Let K ⊆ N and Kn = {k ≤ n : k ∈ K} . Then the natural density of K is defined by
δ(K) = limn n

−1 |Kn| if the limit exists, where |Kn| denotes the cardinality of Kn.
The number sequence x = (xk) is said to be statistically convergent to the number L

provided that for every ε > 0 the set K (ε) := {k ∈ N : |xk − L| ≥ ε} has natural density
zero. In this case we write st− limx = L.

LetX,Y be two sequence spaces and A = (ank) be an infinite matrix. If for each x ∈ X
the series An (x) =

∑∞
k=1 ankxk converges for all n and the sequence Ax = (An (x)) ∈ Y ,

then we say that A maps X into Y . By (X,Y ) we denote the set of all matrices which
maps X into Y, and in addition if the limit is preserved then we denote the class of such
matrices by (X,Y )reg. A matrix A is called regular if A ∈ (c, c)reg, where c denotes the
space of all convergent sequences.

∗Ordu University, Faculty of Education, 52200 Ordu, Turkey
Email: cbelen52@gmail.com

†Department of Mathematics, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey
Email:yildirim@cumhuriyet.edu.tr
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The well-known Silverman-Toeplitz theorem asserts that A is regular if and only if
(R1) ‖A‖ = supn

∑
k |ank| <∞;

(R2) limn ank = 0, for each k;
(R3) limn

∑
k |ank| = 1.

Following Freedman and Sember [7], we say that a set K ⊂ N has A-density if

δA(K) = lim
n

∑
k∈K

ank

exists, where A = (ank) is nonnegative regular matrix.
The idea of statistical convergence was extended to A-statistical convergence by Con-

nor [3] and also independently by Kolk [12]. A sequence x is said to be A-statistically
convergent to L if δA(K (ε)) = 0 for every ε > 0. In this case we write stA − limx = L.

Let X 6= ∅. A class I ⊂ 2X of subsets of X is said to be an ideal in X provided; (i)
∅ ∈ I; (ii) A,B ∈ I implies A ∪ B ∈ I; (iii) A ∈ I, B ⊂ A implies B ∈ I. I is called a
nontrivial ideal if X /∈ I, and a nontrivial ideal I in X is called admissible if {x} ∈ I for
each x ∈ X.

Let I ⊂ 2N be a nontrivial ideal. Then the sequence x = (xk) of real numbers is
said to be ideal convergent or I-convergent to a number L if for each ε > 0 the set
{k ∈ N : |xk − L| ≥ ε} ∈ I (see [15]).

Note that if I is an admissible ideal in N, then usual converges implies I-convergence.
If we take I=If , the ideal of all finite subsets of N, then If−convergence coincides

with usual convergence. We also note that the ideals Iδ = {B ⊂ N : δ (E) = 0} and IδA =
{B ⊂ N : δA (B) = 0} are admissible ideals in N, also Iδ-convergence and IδA -convergence
coincide with statistical convergence and A-statistical convergence respectively.

Savaş et al. (see [21]) have generalized A -statistical convergence by using ideals.
Let A = (ank) be a nonnegative regular matrix. A sequence x = (xk) is said to be
AI-statistically convergent (or SA (I) -convergent) to L if for any ε > 0 and δ > 0,n ∈ N :

∑
k∈K(ε)

ank ≥ δ

 ∈ I.

In this case we shall write SA (I)− limx = L.
Note that if we take I=If , then AI-statistical convergence coincides with A-statistical

convergence. Furthermore, the choice of I=If and A = C1, the Cesàro matrix of order
one, give us I-statistical convergence introduced in [5] and [20].

Let X be a real vector space of dimension d, where 2 ≤ d < ∞. A 2-norm on X
is a function ‖., .‖ : X × X → R which satisfies (i) ‖x, y‖ = 0 if and only if x and
y are linearly dependent; (ii) ‖x, y‖ = ‖y, x‖; (iii) ‖αx, y‖ = |α| ‖x, y‖ , α ∈ R; (iv)
‖x, y + z‖ ≤ ‖x, y‖ + ‖x, z‖. The pair (X, ‖., .‖) is then called a 2-normed space [9]. As
an example of a 2-normed space we may take X = R2 being equipped with the 2-norm
‖x, y‖ := the area of parellelogram spanned by the vectors x and y, which may be given
explicitly by the formula

(1.1) ‖x, y‖ = |x1y2 − x2y1| , x = (x1, x2), y = (y1, y2).

Recall that (X, ‖., .‖) is a 2-Banach space if every Cauchy sequence in X is convergent
to some x in X.

The concept of statistical convergence in 2-normed spaces has been introduced and ex-
amined by Gürdal and Pehlivan [10]. Let (xn) be a sequence in 2-normed space (X, ‖., .‖).
The sequence (xn) is said to be statistically convergent to L if for every ε > 0

lim
n

1

n
|{n : ‖xn − L, z‖ ≥ ε}| = 0
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for each nonzero z in X. In this case we write st− limn ‖xn, z‖ = ‖L, z‖.
Finally, we recall that a modulus f is a function from [0,∞) to [0,∞) such that (i)

f(x) = 0 if and only if x = 0; (ii) f(x+ y) ≤ f(x) + f(y) for all x ≥ 0 and y ≥ 0; (iv) f
is increasing and (iv) f is continuous from the right at 0.

2. AI-statistical convergence in 2-normed spaces

In this section we introduce the concepts of A-statistical convergence and AI-
statistical convergence in a 2-normed space when A = (ank) is a nonnegative regular
matrix and I is an admissible ideal of N.

2.1. Definition. Let (xk) be a sequence in 2-normed space (X, ‖., .‖). Then (xk) is said
to be A-statistically convergent to L if for every ε > 0

lim
n

∑
k:‖xk−L,z‖≥ε

ank = 0

for each nonzero z in X, in other words, (xk) is said to be A-statistically convergent to
L provided that δA ({k ∈ N : ‖xk − L, z‖ ≥ ε}) = 0 for every ε > 0 and each nonzero z
in X. In this case we write stA − limk ‖xk, z‖ = ‖L, z‖.

We remark that if we take A = C1 in Definition 2.1, then A-statistical convergence
coincides with the concept of statistical convergence introduced in [10].

Now we introduce the concept of AI-statistical convergence in a 2-normed space.

2.2. Definition. A sequence (xk) in 2-normed space (X, ‖., .‖) is said to beAI-statistically
convergent to L provided that for every ε > 0 and δ > 0n ∈ N :

∑
k:‖xk−L,z‖≥ε

ank ≥ δ

 ∈ I

for each nonzero z in X. In this case we write SA (I)− limk ‖xk, z‖ = ‖L, z‖.

We shall denote the space of all A-statistically convergent and AI-statistically con-
vergent sequences in a 2-normed space (X, ‖., .‖) by SA (‖., .‖) and SA (I, ‖., .‖) , respec-
tively. It is clear that if I = If , then the space SA (I, ‖., .‖) is reduced to SA (‖., .‖).

Example. Let X = R2 be equipped with the 2-norm by the formula (1.1). Let
I ⊂ 2N be an admissible ideal, C = {p1 < p2 < . . .} ∈ I be an infinite set and define the
matrix A = (ank) and the sequence (xk) by

ank =


1 ; if n = pi, (i ∈ N) , k = 2pi
1 ; if n 6= pi, k = 2n+ 1
0 ; otherwise.

and

xk =

{
(0, k) ; if k is even
(0, 0) ; otherwise

respectively. Also let L = (0, 0) and z = (z1, z2). If z1 = 0 then

{k : ‖xk − L, z‖ ≥ ε} = ∅

for each z in X. Then δA ({k ∈ N : ‖xk − L, z‖ ≥ ε}) = 0. Hence we have z1 6= 0. For
each ε > 0

{k : ‖xk − L, z‖ ≥ ε}
if k is even

=

{
k : k ≥ ε

|z1|

}
,
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hence for each δ > 0 we obtainn ∈ N :
∑

k:‖xk−L,z‖≥ε

ank ≥ δ

 = {n ∈ N : n = pi} = C ∈ I.

This means that SA (I) − limk ‖xk, z‖ = ‖(0, 0), z‖, but stA − limk ‖xk, z‖ 6= ‖(0, 0), z‖
since

lim
n

∑
k:‖xk−L,z‖≥ε

ank = 1 6= 0.

This example also shows that AI-statistical convergence is more general than A-statistical
convergence in a 2-normed space.

3. Some New Sequence Spaces
Following the study of Maddox [16], who introduced the notion of strongly Cesàro

summability with respect to a modulus, several authors used modulus function to con-
struct some new sequence spaces by using different methods of summability. For instance,
see [4], [19] and [1]. Also in [11, 13, 14, 17] some new sequence spaces are defined in a
Banach space by means of sequence of modulus functions F = (fk).

In this section, we introduce some new sequence spaces in a 2-Banach space by using
sequence of modulus functions and ideals. We further examine the inclusion relations
between these sequence spaces.

Let A = (ank) be a nonnegative regular matrix, I be an admissible ideal of N and
let p = (pk) be a bounded sequence of positive real numbers. By s(2−X) we denote the
space of all sequences defined over (X, ‖., .‖). Throughout the paper F = (fk) is assumed
to be a sequence of modulus functions such that limt→0+ supk fk (t) = 0 and further let
(X, ‖., .‖) be a 2-Banach space. Now we define the following sequence space:

wI (A,F, p, ‖., .‖) =
{
x ∈ s(2−X) :

{
n ∈ N :

∑
k

ank [fk (‖xk − L, z‖)]pk ≥ δ
}
∈ I

for each δ > 0 and z ∈ X, for some L ∈ X
}
.

If x ∈ wI (A,F, p, ‖., .‖) then x is said to be strongly (A,F, ‖., .‖)-summable to L ∈ X.
Note that if 0 < pk ≤ supk pk =: H, D := max(1, 2H−1), then

(3.1) |ak + bk|pk ≤ D {|ak|pk + |bk|pk}

for all k and ak, bk ∈ C.

3.1. Theorem. wI (A,F, p, ‖., .‖) is a linear space.
Proof. Assume that the sequences x and y are strongly (A,F, ‖., .‖)-summable to L and
L′, respectively and let α, β ∈ C. By using the definitions of modulus function and 2-norm
and also from ( 3.1), we have

∞∑
k=1

ank [fk (‖(αxk + βyk)− (αL+ βL′) , z‖)]pk ≤ DMH
α

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk

+DMH
β

∞∑
k=1

ank [fk (‖yk − L, z‖)]pk

where Mα and Mβ are positive numbers such that |α| ≤ Mα and |β| ≤ Mβ. From the
last inequality, we conclude that αx+ βy ∈ wI (A,F, p, ‖., .‖).
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If we take fk(t) = t for all k and t, then the space wI (A,F, p, ‖., .‖) is reduced to

wI (A, p, ‖., .‖) =
{
x ∈ s(2−X) :

{
n ∈ N :

∑
k

ank (‖xk − L, z‖)pk ≥ δ
}
∈ I

for each δ > 0 and z ∈ X, for some L ∈ X
}
.

If x ∈ wI (A, p, ‖., .‖) then we say that x is strongly (A, ‖., .‖)-summable to L ∈ X.

3.2. Lemma. Let f be any modulus function and 0 < δ < 1. Then for each t ≥ δ we
have f(t) ≤ 2f(1)δ−1t [16].

3.3. Theorem. If x is strongly (A, ‖., .‖)-summable to L then x is strongly (A,F, ‖., .‖)-
summable to L, i.e. the inclusion

wI (A, p, ‖., .‖) ⊂ wI (A,F, p, ‖., .‖)
holds.
Proof. Let x = (xk) ∈ wI (A, p, ‖., .‖). Since a modulus function is continuous at t = 0
from the right and limt→0+ supk fk(t) = 0, then for any ε > 0 we can choose 0 < δ < 1
such that for every t with 0 ≤ t ≤ δ, we have fk (t) < ε (k ∈ N). Then, from Lemma 3.2,
we have

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk =
∑

k:‖xk−L,z‖≤δ

ank [fk (‖xk − L, z‖)]pk

+
∑

k:‖xk−L,z‖>δ

ank [fk (‖xk − L, z‖)]pk

≤ max
(
εinf pk , εsup pk

) ∞∑
k=1

ank

+max (M1,M2)

∞∑
k=1

ank (‖xk − L, z‖)pk

whereM1 =
(
2 sup fk(1)δ

−1
)inf pk andM2 =

(
2 sup fk(1)δ

−1
)sup pk . LetM := max (M1,M2)

and N := max
(
εinf pk , εsup pk

)
. Now by considering the inequality

∑
k ank ≤ ‖A‖ for each

n ∈ N, choose a σ > 0 such that σ −N ‖A‖ > 0. Then we obtain{
n ∈ N :

∑
k

ank [fk (‖xk − L, z‖)]pk ≥ σ

}

⊂

{
n ∈ N :

∑
k

ank [fk (‖xk − L, z‖)]pk ≥
σ −N ‖A‖

M

}
From the assumption we conclude that x ∈ wI (A,F, p, ‖., .‖).

3.4. Theorem. Let F = (fk) be the sequence of modulus functions such that limt→∞ infk
fk(t)
t

>

0. Then wI (A,F, p, ‖., .‖) ⊂ wI (A, p, ‖., .‖) .
Proof. Let x ∈ wI (A,F, p, ‖., .‖). If limt→∞ infk

fk(t)
t

> 0 then there exists a c > 0 such
that fk (t) > ct for every t > 0 and for all k ∈ N. Thus, for each δ > 0 we have{

n ∈ N :

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk ≥ δ

}

⊃

{
n ∈ N : min

(
cinf pk , csup pk

) ∞∑
k=1

ank (‖xk − L, z‖)pk ≥ δ

}
.



518

Hence x ∈ wI (A, p, ‖., .‖) and this compltes the proof of theorem.

Finally, we establish the relations betwen the spaces SA (I, ‖., .‖) and wI (A,F, p, ‖., .‖).

3.5. Theorem. Let F = (fk) be a sequence of modulus functions such that infk fk (t) > 0.
Then wI (A,F, p, ‖., .‖) ⊂ SA (I, ‖., .‖) .
Proof. Let x ∈ wI (A,F, p, ‖., .‖) and ε > 0. If infk fk (t) > 0 then there exists c > 0
such that fk (ε) > c for all k. If we write K(ε) = {k : ‖xk − L, z‖ ≥ ε}, then

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk ≥ min
(
cinf pk , csup pk

) ∑
k∈K(ε)

ank.

Let C := min
(
cinf pk , csup pk

)
. Thus we haven ∈ N :

∑
k∈K(ε)

ank ≥ δ

 ⊂
{
n ∈ N :

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk ≥
δ

C

}
for all δ > 0. Since the set on the right-hand of the above inclusion belongs to I, we
conclude that x ∈ SA (I, ‖., .‖) . This completes the proof.

3.6. Theorem. Let F = (fk) be a sequence of modulus functions such that supt supk fk (t) >
0. Then SA (I, ‖., .‖) ⊂ wI (A,F, p, ‖., .‖) .
Proof. Let x ∈ SA (I, ‖., .‖) and h(t) := supk fk (t), M := supt h(t). Then for every
ε > 0, we have

∞∑
k=1

ank [fk (‖xk − L, z‖)]pk =
∑

k:‖xk−L,z‖≥ε

ank [fk (‖xk − L, z‖)]pk

+
∑

k:‖xk−L,z‖<ε

ank [fk (‖xk − L, z‖)]pk

≤ max
(
M inf pk ,M sup pk

) ∑
k:‖xk−L,z‖≥ε

ank

+h(ε)
∑

k:‖xk−L,z‖<ε

ank

≤M0

∑
k:‖xk−L,z‖≥ε

ank + ε1 ‖A‖ ,

whereM0 = max
(
M inf pk ,M sup pk

)
and ε1 is a positive number such that h(ε) < ε1, which

can be obtained from the condition limt→0+ h(t) = 0. Hence, from the last inequality we
obtain that x ∈ wI (A,F, p, ‖., .‖).
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Abstract
The aim of this paper is to investigate n-coherent rings using complexes.
To this end, the concepts of n-injective complexes and n-flat complexes
are introduced and studied.
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1. Introduction. The notion of coherent rings was first appear in Chase’s paper [[3]]
without being mentioned by name. The term coherent was first used by Bourbaki in [[2]].
Since then, coherent rings have became a vigorously active area of research, see [[13]].

Coherent rings have been characterized in various ways using modules by many authors
such as Chase, Cheatham, Ding, Stone, Stenström and Vasconcelos (see [[3, 4, 8, 14, 16]]).
For example, a ring R is left coherent if and only if the direct product of any flat right
R-modules is flat if and only if the direct limit of FP -injective left R-modules is FP -
injective [[3, 14]]. In [[4], Theorem 1], Cheatham and Stone characterized coherent rings
using the notion of character module as follows:
The following statements are equivalent:
(1) R is a left coherent ring;
(2) A left R-module M is injective if and only if M+ is flat;
(2) A left R-module M is injective if and only if M++ is injective;
(2) A right R-module M is flat if and only if M++ is flat.

The homological theory of complexes of modules has been studied by many authors
such as Christensen, Enochs, Foxby, Garcß́a Rozas, Holm, Liu and Wang. Several char-
acterizations of coherent rings also have been done in various ways using complexes. For
instance, a ring R is right coherent if and only if any complex of left R-modules has a flat
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preenvelope [[12], Theorem 5.2.2]; a ring R is right coherent if and only if the direct limit
of FP -injective complexes of left R-modules is FP -injective [[17], Proposition 2.30].

The concept of n-coherent rings was introduced by Costa in [[7]]. In [[1]], Bennis
introduced the notion of n-X -coherent rings and gave some characterizations of it using
n-X -injective and n-X -flat modules for a class of R-modules X .

Motivated by the above work, the object of this paper is to characterize left n-coherent
rings using complexes. To this end, we firstly introduce and study n-injective and n-flat
complexes for a fixed positive integer n. We show the following results as our main results
in this note (cf. Theorem 4.11).

1.1. Theorem. Let R be a ring and n a fixed positive integer. Then the following are
equivalent:
(1) R is left n-coherent;
(2) Every direct product of n-flat complexes of right R-modules is n-flat;
(3) Every direct limit of n-injective complexes of left R-modules is n-injective;
(4) Extn(A, lim

→
Ci) ∼= lim

→
Extn(A,Ci) for every n-presented complex A of left R-modules

and direct system {Ci}i∈I of complexes of left R-modules;
(5) Torn(

∏
α∈I

Dα, A) ∼=
∏
α∈I

Torn(Dα, A) for any family {Dα}α∈Λ of complexes and any

n-presented complex A of left R-modules;
(6) A complex C of left R-modules is n-injective if and only if C+ is n-flat;
(7) A complex C of left R-modules is n-injective if and only if C++ is n-injective;
(8) A complex C of right R-modules is n-flat if and only if C++ is n-flat;
(9) For any ring S, Hom(Extn(A,B), D) ∼= Torn(Hom(B,D), A) for any n-presented
complex A of left R-modules, any complex B of (R,S)-bimodules, any injective complex
D of right S-modules.

The paper is organized as follows:
In section 2 of this article, some notations are given.
In section 3, some isomorphisms are established which will be used to prove the main

results of this paper.
In section 4, we firstly introduce and study n-injective and n-flat complexes for a fixed

positive integer n. We give various equivalent conditions for a ring to be left n-coherent
using n-injective and n-flat complexes.

2. Preliminaries. Throughout this paper, R denotes a ring with unity, R-Mod denotes
the category of R-modules and C (R) denotes the abelian category of complexes of R-
modules. A complex

· · · δ2−→ C1
δ1−→ C0

δ0−→ C−1
δ−1−→ · · ·

of R-modules will be denoted by (C, δ) or C.
We will use superscripts to distinguish complexes. So if {Ci}i∈I is a family of com-

plexes, Ci will be

· · · δ2−→ Ci1
δ1−→ Ci0

δ0−→ Ci−1

δ−1−→ · · · .
Given a left R-module M , we use Dm(M) to denote the complex

· · · −→ 0 −→M
id−→M −→ 0 −→ · · ·

with M in the mth and (m − 1)th positions and set M = D0(M). We also use Sm(M)
to denote the complex with M in the mth place and 0 in the other places and set
M = S0(M).

Given a complex C and an integerm,
∑m C denotes the complex such that (

∑m C)l =
C(l−m), and whose boundary operators are (−1)mδl−m. The mth homology module of C
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is the module Hm(C) = Zm(C)/Bm(C) where Zm(C) = Ker(δCm) and Bm(C) =Im(δCm+1).
We set Hm(C) = H−m(C).

Let C be a complex of left R-modules (resp., of right R-modules), and let D be a
complex of left R-modules. We will denote by Hom·(C,D) (resp., C ⊗· D) the usual
homomorphism complex (resp., tensor product) of the complexes C and D.

Given two complexes C and D, let Hom(C,D) = Z(Hom·(C,D)). We then see that
Hom(C,D) can be made into a complex with Hom(C,D)m the abelian group of mor-
phisms from C to

∑−mD and with boundary operator given by f ∈ Hom(C,D)m, then
δm(f) : C →

∑−(m−1) D with δm(f)l = (−1)mδDfl for any l ∈ Z. For any complex C,
C+ = Hom(C,Q/Z). Let C be a complex of right R-modules and D be a complex of left
R-modules. We define C⊗D to be (C⊗·D)

B(C⊗·D)
. Then with the maps

(C ⊗· D)m
Bm(C ⊗· D)

→ (C ⊗· D)m−1

Bm−1(C ⊗· D)
, x⊗ y 7−→ δC(x)⊗ y,

where x⊗y is used to denote the coset in (C⊗·D)m
Bm(C⊗·D)

, we get a complex. We note that the
new functor Hom(C,D) will have right derived functors whose values will be complexes.
These values should certainly be denoted Exti(C,D). It is not hard to see that Exti(C,D)
is the complex

· · · → Exti(C,Σ−(m+1)D)→ Exti(C,Σ−mD)→ Exti(C,Σ−(m−1)D)→ · · ·
with boundary operator induced by the boundary operator of D. For a complex C of left
R-modules we have two functors −⊗C : CR → CZ and Hom(C,−) : RC → CZ, where CR
(resp., RC ) denotes the category of complexes of right R-modules (resp., left R-modules).
Since −⊗C : CR → CZ is a right exact functor, we can construct left derived functors,
which we denote by Tor1(−, C).

3. n-Presented complexes and some isomorphisms. In this section, we first in-
troduce and study the concept of n-presented complexes. Moreover, some isomorphisms
which are used to prove the following results are shown.

3.1. Definition ([[10]]). A complex C is called finitely generated if, in the case where we
can write C =

∑
i∈I D

i with Di ∈ C (R) subcomplexes of C, there exists a finite subset
J ⊆ I such that C =

∑
i∈J D

i.
A complex C is called finitely presented if C is finitely generated and for every exact

sequence of complexes 0→ K → L→ C → 0 with L finitely generated, K is also finitely
generated.

3.2. Lemma ([[10]]). A complex C is finitely generated if and only if C is bounded and
Cm is finitely generated in R-Mod for all m ∈ Z.

A complex C is finitely presented if and only if C is bounded and Cm is finitely pre-
sented in R-Mod for all m ∈ Z.

It is clear that we have the following results:

3.3. Lemma. Let 0→ A→ B → C → 0 be a short exact sequence of complexes. Then
the following statements hold:
(1) If A is finitely generated and B is finitely presented, then C is finitely presented;
(2) If A and C are finitely presented, then so is B;
(3) If R is left coherent ring, and B, C are finitely presented, then so is C.

3.4. Lemma. Let C be a complex. Then the following statements are equivalent:
(1) C is finitely presented;
(2) There exists an exact sequence 0→ L→ P → C → 0 of complexes, where P is finitely
generated projective, and L is finitely generated;
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(3) There exists an exact sequence P 1 → P 0 → C → 0 of complexes, where P 0, P 1 are
finitely generated projective, and P 0

m, P
1
m are free for all m ∈ Z.

An R-module M is called n-presented if it has a finite n-presentation, i.e., there is an
exact sequence

Fn → Fn−1 → . . .→ F1 → F0 →M → 0

in which each Fi is finitely generated free.
Now, we extend the notion of n-presented modules to that of complexes and charac-

terize such complexes.

3.5. Definition. Let n ≥ 0 be an integer. A complex C is said to be n-presented if there
is an exact sequence Pn → Pn−1 → · · · → P 1 → P 0 → C → 0 of complexes, where P i is
finitely generated projective, and P im is free for i = 0, 1, · · · , n and all m ∈ Z.

3.6. Remark. (1) A complex C is n-presented if and only if C is bounded and Cm is
n-presented in R-Mod for all m ∈ Z;
(2) A complex C is n-presented if and only if there is an exact sequence of complexes

0→ Kn → Pn−1 → · · · → P 1 → P 0 → C → 0

where P i is finitely generated projective, P im is free for i = 0, 1, · · · , n− 1 and all m ∈ Z,
Kn is finitely generated;
(3) A complex C is n-presented (n ≥ 1) if and only if there is an exact sequence of
complexes

0→ K → P → C → 0,

where K is (n− 1)-presented and P is finitely generated projective.

3.7. Lemma. Let n ≥ 1 be an integer and 0→ K → P → C → 0 an exact sequence of
complexes. Then

(1) If P is n-presented and K is (n− 1)-presented, then C is n-presented;
(2) If K and C are n-presented, then so is P;
(3) If C is n-presented and P is (n− 1)-presented, then K is (n− 1)-presented.

Proof. It is similar to the proof of [[13], Theorem 2.1.2] by Remark 3.6 (1). �

Let I be a set. An R-module M is called I-graded if there exists a family {Mi}i∈I of
submodules of M such that M =

⊕
i∈I

Mi. A Z-graded module is simply called a graded

module. General background about graded modules can be found in [[6]].

3.8. Lemma. Let {Ci}i∈I be a family of complexes, D a finitely generated complex.
Then Hom(D,

⊕
i∈I

Ci) ∼=
⊕
i∈I

Hom(D,Ci) as complexes.

Proof. Firstly,

α :
⊕
i∈I

Hom·(D,Ci)→ Hom·(D,
⊕
i∈I

Ci)

is an isomorphism by x = (xi)i∈I 7−→
∑
i∈I

Hom·(D, εi)(xi) =
∑
i∈I

εixi, where x = (xi)i∈I ∈

(
⊕
i∈I

Hom·(D,Ci))l =
⊕
i∈I

(Hom·(D,Ci))l with xi ∈ Hom·(D,Ci)l and εj : Cj 7−→
⊕
i∈I

Ci

is the natural embedding (see [[6],Proposition 2.5.16]).
Secondly, we will show that Hom(D,

⊕
i∈I

Ci) ∼=
⊕
i∈I

Hom(D,Ci). We define a morphism
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γ = α|⊕
i∈I

Hom(D,Ci) :
⊕
i∈I

Hom(D,Ci)→ Hom(D,
⊕
i∈I

Ci).

Then γ is a graded isomorphism of graded modules with degreeγ = 0. On the other
hand, for any (xi)i∈I ∈ (

⊕
i∈I

Hom(D,Ci))l,

γδ

⊕
i∈I

Hom(D,Ci)

(xi)i∈I = αδ

⊕
i∈I

Hom(D,Ci)

(xi)i∈I = α(δHom(D,Ci)(xi))i∈I =

∑
i∈I

Hom(D, εi)δHom(D,Ci)(xi) =
∑
i∈I

εi(−1)lδC
i

(xi) = (−1)l
∑
i∈I

εiδC
i

(xi),

and

δ
Hom(D,

⊕
i∈I

Ci)

γ(xi)i∈I = δ
Hom(D,

⊕
i∈I

Ci)

α(xi)i∈I = δ
Hom(D,

⊕
i∈I

Ci)

(
∑
i∈I

εixi)

= (−1)lδ

⊕
i∈I

Ci

(
∑
i∈I

εixi) = (−1)l
∑
i∈I

δ

⊕
i∈I

Ci

εixi = (−1)l
∑
i∈I

εiδC
i

(xi).

Thus γ is an isomorphism of complexes, and hence Hom(D,
⊕
i∈I

Ci) ∼=
⊕
i∈I

Hom(D,Ci).

�

3.9. Lemma. Let {Ci}i∈I be any direct system of complexes. Then a finitely generated
complex D is finitely presented if and only if Hom(D, lim

→
Ci) ∼= lim

→
Hom(D,Ci).

Proof. (⇒) It follows from Stenström [[15], Chap. V, Proposition 3.4].
(⇐) Let {Mi}i∈I be a family of R-modules. Then

∑−nMi is a complex for all n ∈ Z
and i ∈ I. Hence Hom(D, lim

→

∑−nMi) ∼= lim
→

Hom(D,
∑−nMi) for all n ∈ Z, which

implies that
Hom(D, lim

→
Mi) ∼= lim

→
Hom(D,Mi).

Since Hom(D, lim
→
Mi) ∼= Hom(D, lim

→
Mi) ∼= HomR(D, lim

→
Mi) and Hom(D,Mi) ∼= HomR(D,Mi),

we have that HomR(Dk, lim
→
Mi) ∼= lim

→
HomR(Dk,Mi) for all k ∈ Z, then Dk is a finitely

presented R-module. Therefore, D is finitely presented. �

3.10. Lemma. Let {Ci}i∈I be a family of complexes, D a finitely presented complex.
Then D⊗

∏
i∈I

Ci ∼=
∏
i∈I

(D⊗Ci) as complexes.

Proof. Firstly,

α : D ⊗·
∏
i∈I

Ci −→
∏
i∈I

(D ⊗· Ci)

is an isomorphism by x 7−→ ((D ⊗· πi)(x))i∈I , where x = d ⊗ c ∈ (D ⊗·
∏
i∈I

Ci)l and

πj :
∏
i∈I

Ci −→ Cj is the natural projection (see [[6], Proposition 2.5.17]).

Secondly, we will show that D⊗
∏
i∈I

Ci ∼=
∏
i∈I

(D⊗Ci). Since we have the following

commutative diagram:
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(D ⊗·
∏
i∈I

Ci)l −−−−−→
(D⊗·

∏
i∈I

Ci)l

Bl(D⊗·
∏
i∈I

Ci)
−−−−−→ 0

αl

y βl

y
(
∏
i∈I

D ⊗· Ci)l −−−−−→
(D⊗·

∏
i∈I

Ci)l

Bl(
∏
i∈I

D⊗·Ci)
−−−−−→ 0,

where β :
(D⊗·

∏
i∈I

Ci)l

Bl(D⊗·
∏
i∈I

Ci)
−→

(D⊗·
∏
i∈I

Ci)l

Bl(
∏
i∈I

D⊗·Ci)
is given by the assignment

d⊗ c+B(D ⊗·
∏
i∈I

Ci) −→ α(d⊗ c) +B(
∏
i∈I

D ⊗· Ci)

for any d⊗ c ∈ (D ⊗·
∏
i∈I

Ci)l. Thus β is a graded isomorphism of graded modules with

degree 0. Moreover,

βδ
D⊗

∏
i∈I

Ci

(d⊗ c+B(D ⊗·
∏
i∈I

Ci))

= β(δD(d)⊗ c) = α(δD(d)⊗ c) = (δD(d)⊗ πi(c))i∈I

and

δ

∏
i∈I

(D⊗Ci)

β(d⊗ c+B(D ⊗·
∏
i∈I

Ci))

= δ

∏
i∈I

(D⊗Ci)

(α(d⊗ c) +B(D ⊗·
∏
i∈I

Ci))

= δ

∏
i∈I

(D⊗Ci)

α(d⊗ c) = (δD⊗C
i

α(d⊗ c))i∈I = (δD(d)⊗ πi(c))i∈I .

Therefore, β is an isomorphism of complexes. �

3.11. Lemma. Let n ≥ 1 be an integer, D an n-presented complex and {Ci}i∈I a direct
system of complexes. Then Extn−1(D, lim

→
Ci) ∼= lim

→
Extn−1(D,Ci).

Proof. We do an induction on n. If n = 1, then the result follows from Lemma 3.9.
Let n = 2 and D be an 2-presented complex. Then there exists an exact sequence

of complexes 0 → L → P → D → 0 with P finitely generated projective and L finitely
presented. Thus there is a commutative diagram with exact rows:

Hom(P, lim
→
Ci) −−−−−→ Hom(L, lim

→
Ci) −−−−−→ Ext1(D, lim

→
Ci) −−−−−→ 0

∼=
y ∼=

y y
lim
→

Hom(P,Ci) −−−−−→ lim
→

Hom(L,Ci) −−−−−→ lim
→

Ext1(D,Ci) −−−−−→ 0.

Since Hom(P, lim
→
Ci) ∼= lim

→
Hom(P,Ci) and Hom(L, lim

→
Ci) ∼= lim

→
Hom(L,Ci) by Lemma

3.9, we have Ext1(D, lim
→
Ci) ∼= lim

→
Ext1(D,Ci).

If n > 2, then it follows from the standard homological method. Therefore, Extn−1(D, lim
→
Ci) ∼=

lim
→

Extn−1(D,Ci). �
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3.12. Lemma. Let n ≥ 1 be an integer, D an n-presented complex and {Nα}α∈I a
family of complexes. Then Torn−1(

∏
α∈I

Nα, D) ∼=
∏
α∈I

Torn−1(Nα, D).

Proof. We do an induction on n. If n = 1, then the result follows from Lemma 3.10.
Let n = 2 and D be an 2-presented complex. Then there exists an exact sequence

of complexes 0 → L → P → D → 0 with P finitely generated projective and L finitely
presented. Thus there is a commutative diagram with exact rows:

0 −−−−−→ Tor1(
∏
α∈I

Nα, D) −−−−−→ (
∏
α∈I

Nα)⊗L −−−−−→ (
∏
α∈I

Nα)⊗Py ∼=
y ∼=

y
0 −−−−−→

∏
α∈I

Tor1(Nα, D) −−−−−→
∏
α∈I

(Nα⊗L) −−−−−→
∏
α∈I

(Nα⊗P ).

Since (
∏
α∈I

Nα)⊗L ∼=
∏
α∈I

(Nα⊗L) and (
∏
α∈I

Nα)⊗P ∼=
∏
α∈I

(Nα⊗P ) by Lemma 3.10, we

have Tor1(
∏
α∈I

Nα, D) ∼=
∏
α∈I

Tor1(Nα, D).

If n > 2, then it follows from the standard homological method. Therefore, Torn−1(
∏
α∈I

Nα, D) ∼=∏
α∈I

Torn−1(Nα, D). �

3.13. Lemma ([[12]]). Let R and S be rings, L a complex of right S-modules, K a
complex of (R,S)-bimodules and P a complex of left R-modules. Suppose that P is finitely
presented and L is injective as complexes of right S-modules. Then Hom(K,L)⊗P ∼=
Hom(Hom(P,K), L) as complexes. This isomorphism is functorial in P, K and L.

3.14. Lemma. (1) Let R and S be rings, n a fixed positive integer, A an n-presented
complex of left R-modules, B a complex of (R,S)-bimodules, C an injective complex of
right S-modules. Then Hom(Extn−1(A,B), C) ∼= Torn−1(Hom(B,C), A).
(2) Let R and S be rings, n a fixed positive integer, A a complex of left R-modules, B
a complex of right (R,S)-bimodules, C an injective complex of right S-modules. Then
Extn(A,Hom(B,C) ∼= Hom(Torn(B,A), C).

Proof. (1) We do an induction on n. If n = 1, then the result follows from Lemma 3.13.
Let n = 2 and A be an 2-presented complex. Then there exists an exact sequence of

complexes 0 → K → P → A → 0 with P finitely generated projective and K finitely
presented in C (R). Thus we have the commutative diagram with exact rows by Lemma
3.13:
0 −−−−−→ Hom(Ext1(A,B), C) −−−−−→ Hom(Hom(K,B), C) −−−−−→ Hom(Hom(P,B), C)y ∼=

y ∼=
y

0 −−−−−→ Tor1(Hom(B,C), A) −−−−−→ Hom(B,C)⊗K −−−−−→ Hom(B,C)⊗ P.

Hence, Hom(Ext1(A,B), C) ∼= Tor1(Hom(B,C), A).
If n > 2, then it follows from the standard homological method. Therefore, Hom(Extn−1(A,B), C) ∼=

Torn−1(Hom(B,C), A).
(2) It follows by similar arguments since Hom(A⊗B,C) ∼= Hom(A,Hom(B,C)) for

any complex A,B and C. �

3.15. Remark. It is not hard to see that

Hom(D,
∏
i∈I

Ci) ∼=
∏
i∈I

Hom(D,Ci),
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D⊗
⊕
i∈I

Ci ∼=
⊕
i∈I

(D⊗Ci),

Extn(D,
∏
i∈I

Ci) ∼=
∏
i∈I

Extn(D,Ci),

and

Torn(
⊕
α∈I

Nα, D) ∼=
⊕
α∈I

Torn(Nα, D)

for a fixed positive integer n, any complex D and any family {Ci}i∈I of complexes by
analogy with the proof of the results above.

4. n-Injective complexes and n-flat complexes. In what follows, if A is n-presented,
i.e., there is a finite n-presentation Fn → Fn−1 → · · · → F 1 → F 0 → A → 0, we will
write K0 = A,K1=Ker(F 0 → A), Ki=Ker(F i−1 → F i−2) for 2 ≤ i ≤ n. Clearly, each
Ki is (n− i)-presented for 0 ≤ i < n.

A complex E is said to be FP -injective if Ext1(P,C) = 0 for any finitely presented
complex P , if and only if Ext1(P,C) = 0 for any finitely presented complex P [[17]]. A
complex F is flat if and only if Tor1(F,C) = 0 (Tori(F,C) = 0 for any i ≥ 1) for any
complex C if and only if Tor1(F, P ) = 0 (Tori(F, P ) = 0 for any i ≥ 1) for any finitely
presented complex P [[9]].

To characterize left n-coherent rings for a fixed positive integer n, we introduce the
following definitions.

4.1. Definition. (1) A complex C is called n-injective if Extn(D,C) = 0 for any n-
presented complex D;
(2) A complex C is called n-flat if Torn(C,D) = 0 for any n-presented complex D.

4.2. Remark. (1) It is obvious that a complex D is 1-injective (resp. 1-flat) if and only if
D is FP-injective (resp. flat); and any n-injective (resp. n-flat) complex is n+ 1-injective
(resp. n+ 1-flat). However, the converse is not true in general (see Example 4.12).
(2) It is clear that the class of all n-injective complexes and the class of all n-flat complexes
are closed under extensions and summands.
(3) A complex C is n-injective if and only if Extn(D,C)=0 for any n-presented complex
D.
(4) If R is a left coherent ring and C is an n-flat (resp. n-injective) complex, then
Tori(C,F ) = 0 (resp. Exti(F,C) = 0) for each n-presented complex F and i ≥ 1.

4.3. Proposition. Let {Ci}i∈I be a family of complexes of R-modules. Then

(1)
∏
i∈I

Ci is n-injective if and only if each Ci is n-injective;

(2)
⊕
i∈I

Bi is n-flat if and only if each Bi is n-flat.

Proof. (1) It follows from the isomorphism Extn(N,
∏
i∈I

Ci) ∼=
∏
i∈I

Extn(N,Ci), where N

is a complex of R-modules.
(2) It follows from the isomorphism Torn(

⊕
i∈I

Bi, N) ∼=
⊕
i∈I

Torn(Bi, N), where N is a

complex of R-modules. �

4.4. Proposition. Let C be a complex of right R-modules and n a fixed positive integer.
Then C is n-flat if and only if C+ is n-injective.
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Proof. It follows from the isomorphism Extn(D,C+) ∼= Torn(C,D)+ for any complex
D. �

4.5. Lemma. A complex C is n-injective if and only if, for every n-presentation Fn →
Fn−1 → · · · → F 1 → F 0 → A→ 0 of a complex A, every f : Kn → C can be extended a
map g : Fn−1 → C.

Proof. We have an exact sequence of complexes 0 → Kn → Fn−1 → Kn−1 → 0, and
an isomorphism Extn(A,C) ∼= Ext1(Kn−1, C) for any complex C. Therefore, the result
follows by definition of n-injective complexes. �

4.6. Lemma. Consider the commutative diagram with exact rows in C (R):

M1

ϕ1

��

f1 // M2

ϕ2

��

f2 // M3

ϕ3

��

// 0

0 // N1
g1 // N2

g2 // N3.

Then the following assertions are equivalent:
(a) there exists α : M3 → N2 with αg2 = ϕ3;
(b) there exists β : M2 → N1 with f1β = ϕ1.

Proof. (b)⇒(a) If β : M2 → N1 has the given propery, then g1βf1 = g1ϕ1 = ϕ2f1,
i.e. (ϕ2g1β)f1 = 0. Since f2 is the cokernel of f1, there exists α : M3 → N2 with
αf2 = ϕ2 − g1β. This implies g2αf2 = g2ϕ2 − g2g1β = g2ϕ2 = ϕ3f2. f2 being epic we
conclude g2α = ϕ3.

(a)⇒(b) is obtained similarly. �

4.7. Proposition. The class of all n-injective complexes and the class of all n-flat com-
plexes are closed under pure subcomplexes.

Proof. Let C1 be a pure subcomplex of an n-injective complex C. For any finite n-
presentation Fn → Fn−1 → · · · → F 1 → F 0 → A→ 0 of A and any map f : Kn → C1,
by Lemma 4.5 and Lemma 4.6, we get the following diagram with exact rows:

0 // Kn

f

��

i // Fn−1

g

||
k

��

p // Kn−1

h

{{
l

��

// 0

0 // C1
j // C

q // C/C1
// 0

where i and j are inclusion maps. So C1 is n-injective by Lemma 4.5 again.
Let S be a pure subcomplex of an n-flat complex C. Then the pure exact sequence

0→ S → C → C/S → 0 induces the split exact sequence 0→ (C/S)+ → C+ → S+ → 0.
Thus S+ is n-injective since C+ is n-injective by Proposition 4.4. So S is n-flat by
Proposition 4.4 again. �

4.8. Lemma. Let {Ci}i∈I be a family of complexes. Then
(1)

⊕
i∈I

Ci is a pure subcomplex of
∏
i∈I

Ci;

(2)
∏
i∈I

Ci is a pure subcomplex of
∏
i∈I

(Ci)++.
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Proof. (1) Since for any finitely presented complex P , we have (
∏
i∈I

Ci)⊗P ∼=
∏
i∈I

(Ci⊗P )

by Lemma 3.10. Thus we get the following commutative diagram:

(
⊕
i∈I

Ci)⊗P

∼=

��

// (
∏
i∈I

Ci)⊗P

∼=

��
0 // ⊕

i∈I
(Ci⊗P ) // ∏

i∈I
(Ci⊗P ).

Hence,
⊕
i∈I

Ci is a pure subcomplex of
∏
i∈I

Ci.

(2) It is similar to the proof of (1) since Ci is a pure subcomplex of (Ci)++ for each
i ∈ I. �

4.9. Lemma. The following are equivalent for a bounded complex C of right R-modules:
(1) C is finitely generated;
(2) C⊗

∏
Λ A

λ →
∏

Λ(C⊗Aλ) is an epimorphism for every family {Aλ}Λ of complexes
of left R-modules.

Proof. (1) ⇒ (2) Let 0 → K → F → C → 0 be an exact sequence of complexes with F
finitely generated projective. Then we have the following commutative diagram:

K⊗
∏

Λ A
λ −−−−−→ F⊗

∏
Λ A

λ −−−−−→ C⊗
∏

Λ A
λ −−−−−→ 0

τK

y τF

y τC

y∏
Λ(K⊗Aλ) −−−−−→

∏
Λ(F⊗Aλ) −−−−−→

∏
Λ(C⊗Aλ) −−−−−→ 0

with exact rows. But τF is isomorphism by Lemma 3.10. So τC is onto.
(2)⇒ (1) Since C is bounded, we can assume that C has the following form:

· · · −→ 0 −→ Cm −→ Cm−1 −→ · · · −→ C1 −→ C0 −→ 0 −→ · · · .

It is enough to prove that Cj is finitely generated in R-Mod for j = 1, · · · ,m. Let
{Mi}i∈I be a family of left R-modules. Then

(C ⊗·
∏
i∈I

Mi)m =
⊕
t∈Z

Ct ⊗ (
∏
i∈I

Mi)m−t = Cm ⊗
∏
i∈I

Mi

and

(
∏
i∈I

C ⊗·Mi)m =
∏
i∈I

⊕
t∈Z

Ct ⊗ (Mi)m−t =
∏
i∈I

Cm ⊗Mi.

C ⊗·
∏
i∈I

Mi : · · · → 0
δm+1−→ Cm ⊗

∏
i∈I

Mi
δm−→ · · · δ2−→ C1 ⊗

∏
i∈I

Mi
δ1−→ 0→ · · · .

∏
i∈I

C ⊗·Mi : · · · → 0
σm+1−→

∏
i∈I

Cm ⊗Mi
σm−→ · · · σ2−→

∏
i∈I

C1 ⊗Mi
σ1−→ 0→ · · · .

Hence C⊗
∏
i∈I

Mi and
∏
i∈I

(C⊗Mi) have the following form:

C⊗
∏
i∈I

Mi :

· · · → 0 −→ Cm ⊗
∏
i∈I

Mi −→
Cm−1⊗

∏
i∈I

Mi

Imδm
−→ · · · −→

C1⊗
∏
i∈I

Mi

Imδ2
−→ 0→ · · · .∏

i∈I
(C⊗Mi) :
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· · · → 0 −→
∏
i∈I

(Cm ⊗Mi) −→
∏
i∈I

(Cm−1⊗Mi)

Imσm
−→ · · · −→

∏
i∈I

(C1⊗Mi)

Imσ2
−→ 0→ · · · .

Since C⊗
∏
i∈I

Mi →
∏
i∈I

(C⊗Mi) is epic, Cm ⊗
∏
i∈I

Mi →
∏
i∈I

(Cm ⊗Mi) is epic, then

Cm is finitely generated in R-Mod by [[11], Lemma 3.2.21]. If we replace the complex
Mi with Mi, we have Cm−1 is finitely generated in R-Mod. If we replace Mi with
· · · → 0 → M0 → M1 → M2 → 0 → · · · , we have Cm−2 is finitely generated in R-Mod.
We continue the process, we can get Cj is finitely generated in R-Mod for j = 1, · · · ,m
by [[11], Lemma 3.2.21]. �

4.10. Lemma. The following are equivalent for a bounded complex C of right R-modules:
(1) C is finitely presented;
(2) C⊗

∏
Λ A

λ →
∏

Λ(C⊗Aλ) is an isomorphism for every family {Aλ}Λ of complexes
of left R-modules.

Proof. (1)⇒ (2) It follows by Lemma 3.10.
(2) ⇒ (1) C is finitely generated by the Lemma 4.9 above. So let 0 → K → F →

C → 0 be exact with F finitely generated projective. It now suffices to show that K is
finitely generated. But for any Λ, we have a commutative diagram:

K⊗
∏

Λ A
λ −−−−−→ F⊗

∏
Λ A

λ −−−−−→ C⊗
∏

Λ A
λ −−−−−→ 0

τK

y τF

y τC

y∏
Λ(K⊗Aλ) −−−−−→

∏
Λ(F⊗Aλ) −−−−−→

∏
Λ(C⊗Aλ) −−−−−→ 0

with exact rows where τF and τC are isomorphisms. So τK is onto and hence K is finitely
generated by Lemma 4.9.

A ring R is left coherent if and only if the direct limit of FP -injective complexes of left
R-modules is FP -injective [[17]]. Now we will give some characterizations of n-coherent
rings using the results above.

4.11. Theorem. Let R be a ring and n a fixed positive integer. Then the following are
equivalent:
(1) R is left n-coherent;
(2) Every direct product of n-flat complexes of right R-modules is n-flat;
(3) Every direct limit of n-injective complexes of left R-modules is n-injective;
(4) Extn(A, lim

→
Ci) ∼= lim

→
Extn(A,Ci) for every n-presented complex A of left R-modules

and direct system {Ci}i∈I of complexes of left R-modules;
(5) Torn(

∏
α∈I

Dα, A) ∼=
∏
α∈I

Torn(Dα, A) for any family {Dα}α∈Λ of complexes and any

n-presented complex A of left R-modules;
(6) A complex C of left R-modules is n-injective if and only if C+ is n-flat;
(7) A complex C of left R-modules is n-injective if and only if C++ is n-injective;
(8) A complex C of right R-modules is n-flat if and only if C++ is n-flat;
(9) For any ring S, Hom(Extn(A,B), D) ∼= Torn(Hom(B,D), A) for any n-presented
complex A of left R-modules, any complex B of (R,S)-bimodules, any injective complex
D of right S-modules.

Proof. (1)⇒ (4) It follows by Lemma 3.11.
(4)⇒ (3) It is trivial.
(3) ⇒ (1) Let A be an n-presented complex of left R-modules. It is sufficient to

show that Kn is finitely presented. Let {Ci}i∈I be a family of n-injective complexes of
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left R-modules, where I is a directed set. Then lim
→
Ci is n-injective by (3), and hence

Ext1(Kn−1, lim
→
Ci) = Extn(A, lim

→
Ci) = 0.

Thus there is a commutative diagram with exact rows:

Hom(Kn−1, lim
→
Ci)

f1−−−−−→ lim
→

Hom(Kn−1, Ci)y y
Hom(Fn−1, lim

→
Ci)

f2−−−−−→ lim
→

Hom(Fn−1, Ci)y y
Hom(Kn, lim

→
Ci)

f3−−−−−→ lim
→

Hom(Kn, Ci)y y
0 0 .

Since both Kn−1 and Fn−1 are finitely presented, f1 and f2 are isomorphisms by Lemma
3.9. Hence f3 is an isomorphism. Kn is finitely generated, so Kn is finitely presented by
Lemma 3.9. Thus A is (n+ 1)-presented. Therefore, R is left n-coherent.

(1)⇒ (5) It holds by Lemma 3.12.
(5)⇒ (2) It is obvious.
(2)⇒ (1) Let A be an n-presented complex of left R-modules. We will show thatKn−1

is 2-presented. For any family {Ai}i∈I of n-flat complexes of right R-modules,
∏
i∈I

Ai is

an n-flat complex. Thus the exact sequence of complexes 0→ Kn → Fn−1 → Kn−1 → 0
gives rise to the following commutative diagram with exact rows:

0 −−−−−→ (
∏
i∈I

Ai)⊗Kn −−−−−→ (
∏
i∈I

Ai)⊗Fn−1 −−−−−→ (
∏
i∈I

Ai)⊗Kn−1 −−−−−→ 0

φ1

y φ2

y φ3

y
0 −−−−−→

∏
i∈I

(Ai⊗Kn) −−−−−→
∏
i∈I

(Ai⊗Fn−1) −−−−−→
∏
i∈I

(Ai⊗Kn−1) −−−−−→ 0.

By Lemma 4.10, φ2 and φ3 are isomorphisms, and hence φ1 is an isomorphism. Thus
Kn is finitely presented, and so Kn−1 is 2-presented, hence A is n+ 1-presented.

(6)⇒ (7) Let C be a complex of left R-modules. If C is n-injective, then C+ is n-flat
by (6), and so C++ is n-injective by Proposition 4.4. Conversely, if C++ is n-injective,
then C is a pure subcomplex of C++ (see [[12], Proposition 5.1.4]). So C is n-injective
by Proposition 4.7.

(7) ⇒ (8) If C is an n-flat complex of right R-modules, then C+ is an n-injective
complex of left R-modules by Proposition 4.4. Hence C+++ is n-injective by (7). Thus
C++ is n-flat by Proposition 4.4. Conversely, if C++ is n-flat, then C is n-flat by
Proposition 4.7.

(8)⇒ (2) Let {Ci}i∈I be a family of n-flat complexes of right R-modules. By Propo-
sition 4.3,

⊕
i∈I

Ci is n-flat, so (
⊕
i∈I

Ci)++ ∼= (
∏
i∈I

Ci
+

)+ is n-flat by (8). But
⊕
i∈I

(Ci)
+ is

a pure subcomplex of
∏
i∈I

(Ci)
+ by Lemma 4.8, and so (

∏
i∈I

(Ci)
+

)+ → (
⊕
i∈I

(Ci)
+

)+ → 0

splits. Thus
∏
i∈I

(Ci)
++ ∼= (

⊕
i∈I

(Ci)
+

)+ is n-flat. Since
∏
i∈I

Ci is a pure subcomplex of∏
i∈I

(Ci)++ by Lemma 4.8,
∏
i∈I

Ci is n-flat by Proposition 4.7.

(1)⇒ (9) It follows from Lemma 3.14.
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(9)⇒ (6) Let S = Z, D = Q/Z and B = C. Then

Torn(C+, A) ∼= Extn(A,C)+

for all n-presented complexes A of left R-modules by (9), and hence (6) holds. �

4.12. Example. If R is n + 1-coherent but not n-coherent, then we can form a direct
limit lim

→
Ci of n-injective complexes {Ci}i∈I , which is not n-injective but is necessary

n + 1-injective; we can also form a direct product
∏
α∈I

Ci of n-flat complexes {Ci}i∈I ,

which is not n-flat but is necessary n+ 1-flat.

Acknowledgements
The authors would like to thank the referees for useful comments and suggestions that

improved the paper.

References
[1] D. Bennis, n-X -coherent rings, Int. Electron. J. Algebra. 7 (2010) 128-139.
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Abstract
In this paper we use the two-variable Hermite polynomials and their
operational rules to derive integral representations of Chebyshev poly-
nomials. The concepts and the formalism of the Hermite polynomials
Hn(x, y) are a powerful tool to obtain most of the properties of the
Chebyshev polynomials. By using these results, we also show how it is
possible to introduce relevant generalizations of these classes of poly-
nomials and we derive for them new identities and integral representa-
tions. In particular we state new generating functions for the first and
second kind Chebyshev polynomials.
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1. Introduction
The Hermite polynomials [1] can be introduced by using the concept and the formalism

of the generating function and related operational rules. In the following we recall the
main definitions and properties.

1.1. Definition. The two-variable Hermite Polynomials H(2)
m (x, y) of Kampé de Fériet

form [2, 3] are defined by the following formula

(1.1) H(2)
m (x, y) =

[m2 ]∑
n=0

m!

n!(m− 2n)!
ynxm−2n

∗Faculty of Engineering, International Telematic University UNINETTUNO Corso Vittorio
Emanuele II, 39 – 00186 – Roma (Italy)
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We will indicate the two-variable Hermite polynomials of Kampé de Fériet form by
using the symbol Hm(x, y) instead than H(2)

m (x, y).
The two-variable Hermite polynomials Hm(x, y) are linked to the ordinary Hermite

polynomials by the following relations

Hm

(
x,−1

2

)
= Hem(x),

where

Hem(x) = m!

[m2 ]∑
r=0

(−1)rxn−2r

r!(n− 2r)!2r

and

Hm (2x,−1) = Hm(x),

where

Hm(x) = m!

[m2 ]∑
r=0

(−1)r(2x)n−2r

r!(n− 2r)!

and it is also important to note that the Hermite polynomialsHm(x, y) satisfy the relation

(1.2) Hm(x, 0) = xm.

1.2. Proposition. The polynomials Hm(x, y) solve the following partial differential equa-
tion:

(1.3)
∂2

∂x2
Hm(x, y) =

∂

∂y
Hm(x, y).

Proof. By deriving, separately with respect to x and to y, in the (1), we obtain

∂

∂x
Hm(x, y) = mHm−1(x, y)

∂

∂y
Hm(x, y) = Hm−2(x, y).

From the first of the above relation, by deriving again with respect to x and by noting
the second identity, we end up with the (7). �

The Proposition 1 help us to derive an important operational rule for the Hermite
polynomials Hm(x, y). In fact, by considering the differential equation (7) as linear ordi-
nary in the variable y and by remanding the (6) we can immediately state the following
relation:

(1.4) Hm(x, y) = e
y ∂2

∂x2 xm.

The generating function of the above Hermite polynomials can be state in many ways,
we have in fact:
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1.3. Proposition. The polynomials Hm(x, y) satisfy the following differential difference
equation:

d

dz
Yn(z) = anYn−1(z) + bn(n− 1)Yn−2(z)(1.5)

Yn(0) = δn,0

where a and b are real numbers.

Proof. By using the generating function method, by putting:

G (z; t) =

+∞∑
n=0

tn

n!
Yn(z),

with t continuous variable,we can rewrite the (9) in the form

d

dz
G (z; t) =

(
at+ bt2

)
G (z; t)

G (0; t) = 1

that is a linear ordinary differential equation and then its solution reads

G (z; t) = exp
(
xt+ yt2

)
where we have putted az = x and bz = y. Finally, by exploiting the r.h.s of the previous
relation we find the thesis and also the relation linking the Hermite polynomials and their
generating function

(1.6) exp
(
xt+ yt2

)
=

+∞∑
n=0

tn

n!
Hn(x, y).

�

The use of operational identities, may significantly simplify the study of Hermite
generating functions and the discovery of new relations, hardly achievable by conventional
means.

By remanding that the following identity

(1.7) e
− 1

4
d2

dx2 (2x)n =

(
2x− d

dx

)n

(1)

is linked to the standard Burchnall identity [4], we can immediately state the following
relation.

1.4. Proposition. The operational definition of the polynomials Hn(x) reads:

(1.8) e
− 1

4
d2

dx2 (2x)n = Hn(x).

Proof. By exploiting the r.h.s of the (13), we immediately obtain the Burchnall identity

(1.9)
(
2x− d

dx

)n

= n!

n∑
s=0

(−1)s 1

(n− s)!s!Hn−s(x)
ds

dxs
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after using the decoupling Weyl identity [4, 5, 6], since the commutator of the operators
of l.h.s. is not zero. The derivative operator of the (15) gives a not trivial contribution
only in the case s = 0 and then we can conclude with(

2x− d

dx

)n

(1) = Hn(x)

which prove the statement. �

The Burchnall identity can be also inverted to give another important relation for the
Hermite polynomials Hn(x). We find in fact:

1.5. Proposition. The polynomials Hn(x) satisfy the following operational identity:

(1.10) Hn

(
x+

1

2

d

dx

)
=

n∑
s=0

(
n

s

)
(2x)n−s d

s

dxs
.

Proof. By multiplying the l.h.s. of the above relation by tn

n!
and then summing up, we

obtain:

+∞∑
n=0

tn

n!
Hn

(
x+

1

2

d

dx

)
= e2(x+

1
2 )(

d
dx )t−t2 .

By using the Weyl identity, the r.h.s. of the above equation reads:

e2(x+
1
2 )(

d
dx )t−t2 = e2xtet

d
dx

and from which (17) immediately follows, after expanding the r.h.s and by equating the
like t−powers. �

The previous results can be used to derive some addition and multiplication relations
for the Hermite polynomials.

1.6. Proposition. The polynomials Hn(x) satisfy the following identity, ∀ n,m ∈ N :

(1.11) Hn+m(x) =

min(n,m)∑
s=0

(−2)s
(
n

s

)(
m

s

)
s!Hn−s(x)Hm−s(x).

Proof. By using the Proposition 3, we can write:

Hn+m(x) =

(
2x− d

dx

)n(
2x− d

dx

)m

=

(
2x− d

dx

)n

Hm(x)

and by exploiting the r.h.s. of the above relation, we find:

Hn+m(x) =

n∑
s=0

(−1)s
(
n

s

)
Hn−s(x)

ds

dxs
Hm(x).

After noting that the following operational identity holds:

ds

dxs
Hm(x) =

2sm!

(m− s)!Hm−s(x)

we obtain immediately the statement. �
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From the above proposition we can immediately derive as a particular case, the fol-
lowing identity:

(1.12) H2n(x) = (−1)n2n(n!)2
n∑

s=0

(−1)s [Hs(x)]
2

2s(s!)2(n− s)! .

The use of the identity (17), stated in Proposition 4, can be exploited to obtain the
inverse of relation contained in (24). We have indeed:

1.7. Proposition. Given the Hermite polynomial Hn(x), the square [Hn(x)]
2 can be

written as:

(1.13) Hn(x)Hn(x) = [Hn(x)]
2 = 2n(n!)2

n∑
s=0

H2n(x)

2s(s!)2(n− s)! .

Proof. We can write:

[Hn(x)]
2 = e

− 1
4

d2

dx2

[
Hn

(
x+

1

2

d

dx

)
Hn

(
x+

1

2

d

dx

)]
,

by using the relation (17), we find, after manipulating the r.h.s.:

[Hn(x)]
2 = e

− 1
4

d2

dx2

[
2n(n!)2

n∑
s=0

(2x)2n

2s(s!)2(n− s)!

]
and then, from the Burchnall identity (16), the thesis. �

A generalization of the identities stated for the one variable Hermite polynomials can
be easily done for the polynomials Hn(x, y).

We have in fact:

1.8. Proposition. The following identity holds

(1.14)
(
x+ 2y

∂

∂x

)n

(1) =

n∑
s=0

(2y)s
(
n

s

)
Hn(x, y)

∂s

∂xs
(1).

Proof. By multiplying the l.h.s. of the above equation by tn

n!
and then summing up, we

find

+∞∑
n=0

tn

n!

(
x+ 2y

∂

∂x

)n

= et(x+2y ∂
∂x )(1).

By noting that the commutator of the two operators of the r.h.s. is

[
tx, t2y

∂

∂x

]
= −2t2y

we obtain

(1.15)
+∞∑
n=0

tn

n!

(
x+ 2y

∂

∂x

)n

= ext+yt2e2ty
∂
∂x (1).
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After expanding and manipulating the r.h.s. of the previous relation and by equating
the like t powers we find immediately the (28). �

By using the Proposition 7 and the definition of polynomials Hn(x, y), we can derive
a generalization of the Burchnall-type identity

(1.16) e
y ∂2

∂x2 xn =

(
x+ 2y

∂

∂x

)n

and the related inverse

(1.17) Hn

(
x− 2y

∂

∂x
, y

)
=

n∑
s=0

(−2y)s
(
n

s

)
xn−s ∂

s

∂xs
.

We can also generalize the multiplication rules obtained for the Hermite polynomials
Hn(x), stated in Proposition 5.

1.9. Proposition. Given the Kampé de Fériet Hermite polynomials Hn(x, y), we have

(1.18) Hn+m(x, y) = m!n!

min(n,m)∑
s=0

(2y)s
Hn−s(x, y)Hm−s(x, y)

(n− s)!(m− s)!s! .

Proof. By using the relations stated in the (28) and (32), we can write

Hn+m(x, y) =

(
x+ 2y

∂

∂x

)n

Hm(x, y)

and then

(1.19) Hn+m(x, y) =

n∑
s=0

(2y)s
(
n

s

)
Hn(x, y)

∂s

∂xs
Hm(x, y).

By noting that

∂s

∂xs
xm =

m!

(m− 2s)!
xm−2s

we obtain

∂s

∂xs
Hm(x, y) =

m!

(m− s)!Hm−s(x, y).

After substituting the above relation in the (36) and rearranging the terms we imme-
diately obtain the thesis. �

From the previous results, it also immediately follows:

(1.20) Hn(x, y)Hm(x, y) = n!m!

min(n,m)∑
s=0

(−2y)s Hn+m−2s(x, y)

(n− s)!(m− s)!s! .

The previous identity and the equation (34) can be easily used to derive the particular
case for n = m. We have in fact
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(1.21) H2n(x, y) = 2n(n!)2
n∑

s=0

[Hs(x, y)]
2

(s)!2(n− s)!2s

(1.22) [Hn(x, y)]
2 = (−2y)n(n!)2

n∑
s=0

(−1)sH2s(x, y)

(n− s)!(s!)22s .

Before concluding this section we want prove two other important relations satisfied
by the Hermite polynomials Hn(x, y).

1.10. Proposition. The Hermite polynomials Hn(x, y) solve the following differential
equation:

(1.23) 2y
∂2

∂x2
Hn(x, y) + x

∂

∂x
Hn(x, y) = nHn(x, y)

Proof. By using the results derived from the Proposition 7, we can easily write that:

(
x+ 2y

∂

∂x

)
Hn(x, y) = Hn+1(x, y)

and from the previous recurrence relations:

∂

∂x
Hn(x, y) = nHn−1(x, y)

we have

(
x+ 2y

∂

∂x

)(
∂

∂x

)
Hn(x, y) = nHn(x, y)

which is the thesis.
�

From this statement can be also derived an important recurrence relation. In fact, by
noting that:

(1.24) Hn+1(x, y) = xHn(x, y) + 2y
∂

∂x
Hn(x, y)

and then we can conclude with:

(1.25) Hn+1(x, y) = xHn(x, y) + 2nyHn−1(x, y).

2. Integral representations of Chebyshev polynomials
In this section we will introduce new representations of Chebyshev polynomials [7, 8,

9, 10, 11], by using the Hermite polynomials and the method of the generating function.
Since the second kind Chebyshev polynomials Un(x) reads

(2.1) Un(x) =
sin [(n+ 1) arccos(x)]√

1− x2
,

by exploiting the right hand side of the above relation, we can immediately get the
following explicit form
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(2.2) Un(x) =

[n2 ]∑
k=0

(−1)k(n− k)!(2x)n−2k

k!(n− 2k)!
.

2.1. Proposition. The second kind Chebyshev polynomials satisfy the following integral
representation [9]:

(2.3) Un(x) =
1

n!

∫ +∞

0

e−ttnHn

(
2x,−1

t

)
dt.

Proof. By noting that

n! =

∫ +∞

0

e−ttndt

we can write

(2.4) (n− k)! =
∫ +∞

0

e−ttn−kdt.

From the explicit form of the Chebyshev polynomials Un(x), given in the (49), and
by recalling the standard form of the two-variable Hermite polynomials:

Hn(x, y) = n!

[n2 ]∑
k=0

ykxn−2k

k!(n− 2k)!

we can immediately write:

Un(x) =

∫ +∞

0

e−ttn
[n2 ]∑
k=0

(−1)kt−k(2x)n−2k

k!(n− 2k)!
dt

and then the thesis. �

By following the same procedure, we can also obtain an analogous integral representa-
tion for the Chebyshev polynomials of first kind Tn(x). Since their explicit form is given
by:

(2.5) Tn(x) =
n

2

[n2 ]∑
k=0

(−1)k(n− k − 1)!(2x)n−2k

k!(n− 2k)!
,

by using the same relations written in the previous proposition, we easily obtain:

(2.6) Tn(x) =
1

2(n− 1)!

∫ +∞

0

e−ttn−1Hn

(
2x,−1

t

)
dt.

These results can be useful in several physics and engineering problems, for instance
in electromagnetic field problems and particle accelerators analysis [12, 13, 14] In the pre-
vious Section we have stated some useful operational results regarding the two-variable
Hermite polynomials; in particular we have derived their fundamental recurrence rela-
tions. These relations can be used to state important results linking the Chebyshev
polynomials of the first and second kind [7, 9].
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2.2. Theorem. The Chebyshev polynomials Tn(x) and Un(x) satisfy the following re-
currence relations:

d

dx
Un(x) = nWn−1(x)(2.7)

Un+1(x) = xWn(x)−
n

n+ 1
Wn−1(x)

and

(2.8) Tn+1(x) = xUn(x)− Un−1(x)

where

Wn(x) =
2

(n+ 1)!

∫ +∞

0

e−ttn+1Hn

(
2x,−1

t

)
dt.

Proof. The recurrence relations for the standard Hermite polynomials Hn(x, y) stated in
the first Section, can be costumed in the form[

(2x) +

(
−1

t

)
∂

∂x

]
Hn

(
2x,−1

t

)
= Hn+1

(
2x,−1

t

)
(2.9)

1

2

∂

∂x
Hn

(
2x,−1

t

)
= nHn−1

(
2x,−1

t

)
.

From the integral representations stated in the relations (50) and (53), relevant to
the Chebyshev polynomials of the first and second kind, and by using the second of the
identities written above, we obtain

(2.10)
d

dx
Un(x) =

2n

n!

∫ +∞

0

e−ttnHn−1

(
2x,−1

t

)
dt

and

(2.11)
d

dx
Tn(x) =

n

(n− 1)!

∫ +∞

0

e−ttn−1Hn−1

(
2x,−1

t

)
dt.

It is easy to note that the above relation gives a link between the polynomials Tn(x)
and Un(x); in fact, since:

Un−1(x) =
1

(n− 1)!

∫ +∞

0

e−ttn−1Hn−1

(
2x,−1

t

)
dt

we immediately get:

(2.12)
d

dx
Tn(x) = nUn−1(x).

By applying the multiplication operator to the second kind Chebyshev polynomials,
stated in the first of the identities (56), we can write

Un+1(x) =
1

(n+ 1)!

∫ +∞

0

e−ttn+1

[
(2x) +

(
−1

t

)
∂

∂x

]
Hn

(
2x,−1

t

)
dt

that is

(2.13) Un+1(x) =
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= x
2

(n+ 1)!

∫ +∞

0

e−ttn+1Hn

(
2x,−1

t

)
dt− n

n+ 1

2

n!

∫ +∞

0

e−ttnHn−1

(
2x,−1

t

)
dt.

The second member of the r.h.s. of the above relation suggests us to introduce the
following polynomials:

(2.14) Wn(x) =
2

(n+ 1)!

∫ +∞

0

e−ttn+1Hn

(
2x,−1

t

)
dt

recognized as belonging to the families of the Chebyshev polynomials. Thus, from the
relation (57), we have:

(2.15)
d

dx
Un(x) = nWn−1(x)

and, from the identity (60), we get

(2.16) Un+1(x) = xWn(x)−
n

n+ 1
Wn−1(x).

Finally, by using the multiplication operator for the first kind Chebyshev polynomials,
we can write

(2.17) Tn+1(x) =
1

2n!

∫ +∞

0

e−ttn
[
(2x) +

(
−1

t

)
∂

∂x

]
Hn

(
2x,−1

t

)
dt

and then, after exploiting the r.h.s. of the above relation, we can find

(2.18) Tn+1(x) = xUn(x)− Un−1(x)

which completely prove the theorem.
�

3. Generating functions
By using the integral representations and the related recurrence relations, stated in

the previous Section, for the Chebyshev polynomials of the first and second kind, it is pos-
sible to derive a slight different relations linking these polynomials and their generating
functions [1, 2, 3, 4, 5, 7, 8, 9, 15].

We note indeed, for the Chebyshev polynomials Un(x), that by multiplying both sides
of equation (50) by ξn, |ξ| < 1 and by summing up over n, it follows that

(3.1)
+∞∑
n=0

ξnUn(x) =

∫ +∞

0

e−t
+∞∑
n=0

(tξ)n

n!
Hn

(
2x,−1

t

)
dt.

By recalling the generating function of the polynomials Hn(x, y) stated in the relation
(12) and by integrating over t, we end up with

(3.2)
+∞∑
n=0

ξnUn(x) =
1

1− 2ξx+ ξ2
.

We can now state the related generating function for the first kind Chebyshev polyno-
mials Tn(x) and for the polynomials Wn(x), by using the results proved in the previous
theorem.
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3.1. Corollary. Let x, ξ ∈ R, such that |x| < 1, |ξ| < 1; the generating functions of the
polynomials Tn(x) and Wn(x) read

(3.3)
+∞∑
n=0

ξnTn+1(x) =
x− ξ

1− 2ξx+ ξ2

and

(3.4)
+∞∑
n=0

(n+ 1)(n+ 2ξnWn+1(x) =
8(x− ξ)

(1− 2ξx+ ξ2)3
.

Proof. By multiplying both sides of the relation (2.8) by ξn and by summing up over n,
we obtain

+∞∑
n=0

ξnTn+1(x) = x

+∞∑
n=0

ξnUn(x)−
+∞∑
n=0

ξnUn−1(x)

that is
+∞∑
n=0

ξnTn+1(x) =
x

1− 2ξx+ ξ2
− ξ

1− 2ξx+ ξ2

which gives the (68).
In the same way, by multiplying both sides of the second relation stated in the (54)

by ξn and by summing up over n, we get
+∞∑
n=0

ξnUn+1(x) = x

+∞∑
n=0

ξnWn(x)−
+∞∑
n=0

n

n+ 1
ξnWn−1(x)

and then the thesis.
These results allows us to note that the use of integral representations relating Cheby-

shev and Hermite polynomials are a fairly important tool of analysis allowing the deriva-
tion of a wealth of relations between first and second kind Chebyshev polynomials and
the Chebyshev-like polynomials Wn(x). In a forthcoming paper, we will deeper inves-
tigate other generalizations for these families of polynomials, recognized as Chebyshev
polynomials, by using the instruments of integral representations.

�
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non-self mappings in cone metric spaces
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Abstract
Some common fixed point theorems for two pairs of non-self mappings
defined on a closed subset of a metrically convex cone metric space (over
the cone which is not necessarily normal) are obtained which generalize
earlier results due to Imdad et al. and Jankovic et al.
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1. Introduction and preliminaries
Recently, Huang and Zhang ([14]) generalized the concept of a metric space, replacing

the set of real numbers by ordered Banach space and obtained some fixed point theorems
for mappings satisfying different contractive conditions. Subsequently, the study of fixed
point theorems in such spaces is followed by some other mathematicians, see [1]-[5], [7]-
[12], [15]-[18], [20]-[23]. The aim of this paper is to prove some common fixed point
theorems for two pairs of non-self mappings on cone metric spaces in which the cone
need not be normal. This result generalizes the result of Jankovic et al.([18]).

Consistent with Huang and Zhang ([14]), the following definitions and results will be
needed in the sequel.

Let E be a real Banach space. A subset P of E is called a cone if and only if:
(a) P is closed, nonempty and P 6= {θ};
(b) a, b ∈ R, a, b ≥ 0, x, y ∈ P implies ax+ by ∈ P ;
(c) P ∩ (−P ) = {θ}.

∗Department of Mathematics, Nanchang University, Nanchang, 330031, Jiangxi, P.R.China,
Email: xjhuangxwen@163.com
†Corresponding Author.
‡Department of Mathematics, Nanchang University, Nanchang, 330031, Jiangxi, P.R.China,

Email: chuanxizhu@126.com
§Department of Computer Sciences, Nanchang University, Nanchang, 330031, Jiangxi,

P.R.China, Email: ncuxwen@163.com

Received 14/05/2009 : Accepted 28/02/2012 Doi : 10.15672/HJMS.2015449104



548

Given a cone P ⊂ E, we define a partial ordering ≤ with respect to P by x ≤ y if and
only if y− x ∈ P . A cone P is called normal if there is a number K > 0 such that for all
x, y ∈ E,

θ ≤ x ≤ y implies ‖ x ‖≤ K ‖ y ‖.
The least positive number K satisfying the above inequality is called the normal constant
of P , while x� y stands for y − x ∈ intP (interior of P ).

1.1. Definition ([14]). LetX be a nonempty set. Suppose that the mapping d : X×X →
E satisfies:

(d1) θ ≤ d(x, y) for all x, y ∈ X and d(x, y) = θ if and only if x = y;
(d2) d(x, y) = d(y, x) for all x, y ∈ X;
(d3) d(x, y) ≤ d(x, z) + d(z, y) for all x, y, z ∈ X.
Then d is called a cone metric on X and (X, d) is called a cone metric space.

The concept of a cone metric space is more general than that of a metric space.

1.2. Definition ([14]). Let (X, d) be a cone metric space. We say that {xn} is:
(e) a Cauchy sequence if for every c ∈ E with θ � c, there is an N such that for all

n,m > N, d(xn, xm)� c;
(f) a convergent sequence if for every c ∈ E with θ � c, there is an N such that for

all n > N, d(xn, x)� c for some fixed x ∈ X.

A cone metric space X is said to be complete if for every Cauchy sequence in X is
convergent in X. It is known that if P is normal, then {xn} converges to x ∈ X if and
only if d(xn, x) → θ as n → ∞. It is a Cauchy sequence if and only if d(xn, xm) →
θ(n,m→∞).

1.3. Remark ([24]). Let E be an ordered Banach (normed) space. Then c is an interior
point of P , if and only if [−c, c] is a neighborhood of θ.

1.4. Corollary ([19]). (1) If a ≤ b and b� c, then a� c.
Indeed, c− a = (c− b) + (b− a) ≥ c− b implies [−(c− a), c− a] ⊇ [−(c− b), c− b].
(2) If a� b and b� c, then a� c.
Indeed, c− a = (c− b) + (b− a) ≥ c− b implies [−(c− a), c− a] ⊇ [−(c− b), c− b].
(3) If θ ≤ u� c for each c ∈ intP then u = θ.

1.5. Remark ([18]). If c ∈ intP, θ ≤ an and an → θ, then there exists an n0 such that
for all n > n0 we have an � c.

1.6. Remark ([18]). If E is a real Banach space with cone P and if a ≤ ka where a ∈ P
and 0 < k < 1, then a = θ.

We find it convenient to introduce the following definition.

1.7. Definition ([18]). Let (X, d) be a complete cone metric space and C be a nonempty
closed subset of X, and f, g : C → X. Denote, forx, y ∈ C,

(1.1) Mf,g
1 = {d(gx, gy), d(fx, gx), d(fy, gy), d(fx, gy) + d(fy, gx)

2
}.

Then f is called a generalized gM1−contractive mapping of C into X if for some λ ∈
(0,
√
2− 1) there exists u(x, y) ∈Mf,g

1 such that for all x, y ∈ C
(1.2) d(fx, fy) ≤ λu(x, y).
1.8. Definition ([2]). Let f and g be self maps of a set X (i.e., f, g : X → X). If
w = fx = gx for some x in X, then x is called a coincidence point of f and g, and w
is called a point of coincidence of f and g. Self maps f and g are said to be weakly
compatible if they commute at their coincidence point; i.e., if fx = gx for some x ∈ X,
then fgx = gfx.
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2. Main results
Recently, Jankovic et al.([18]) proved some fixed point theorems for a pair of non-self

mappings defined on a nonempty closed subset of complete metrically convex cone metric
spaces with new contractive conditions.

2.1. Theorem ([18]). Let (X, d) be a complete cone metric space, C a nonempty closed
subset of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C (the boundary
of C) such that

d(x, z) + d(z, y) = d(x, y).

Suppose that f, g : C → X are such that f is a generalized gM1−contractive mapping of
C into X, and

(i) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(ii) gx ∈ ∂C implies that fx ∈ C,
(iii) gC is closed in X.
Then the pair (f, g) has a coincidence point. Moreover, if pair (f, g) is weakly com-

patible, then f and g have a unique common fixed point.

The purpose of this paper is to extend above theorem for two pairs of non-self mappings
in cone metric spaces. We begin with the following definition.

2.2. Definition. Let (X, d) be a complete cone metric space and C be a nonempty
closed subset of X, and F,G, S, T : C → X. Denote, for x, y ∈ C,

(2.1) MF,G,S,T
1 = {d(Tx, Sy), d(Tx, Fx), d(Sy,Gy), d(Tx,Gy) + d(Fx, Sy)

2
}.

Then (F,G) is called a generalized (T, S)M1−contractive mappings pair of C into X if
for some λ ∈ (0, 1) there exists u(x, y) ∈MF,G,S,T

1 such that for all x, y ∈ C

(2.2) d(Fx,Gy) ≤ λu(x, y).

Notice that by setting G = F = f and T = S = g in (2.1), one deduces a slightly
generalized form of (1.1).

We state and prove our main result as follows.

2.3. Theorem. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that F,G, S, T : C → X are such that (F,G) is a generalized (T, S)M1− contrac-
tive mappings pair of C into X, and

(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(I) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.

Proof. Firstly, we proceed to construct two sequences {xn} and {yn} in the following
way.

Let x ∈ ∂C be arbitrary. Then (due to ∂C ⊆ TC) there exists a point x0 ∈ C such
that x = Tx0. Since Tx ∈ ∂C ⇒ Fx ∈ C, one concludes that Fx0 ∈ FC ∩ C ⊆ SC.
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Thus, there exist x1 ∈ C such that y1 = Sx1 = Fx0 ∈ C. Since y1 = Fx0 there exists a
point y2 = Gx1 such that

d(y1, y2) = d(Fx0, Gx1).

Suppose y2 ∈ C. Then y2 ∈ GC ∩ C ⊆ TC which implies that there exists a point
x2 ∈ C such that y2 = Tx2. otherwise, if y2 6∈ C, then there exists a point p ∈ ∂C such
that

d(Sx1, p) + d(p, y2) = d(Sx1, y2).

Since p ∈ ∂C ⊆ TC there exists a point x2 ∈ C with p = Tx2 so that

d(Sx1, Tx2) + d(Tx2, y2) = d(Sx1, y2).

Let y3 = Fx2 be such that d(y2, y3) = d(Gx1, Fx2). Thus, repeating the foregoing
arguments, one obtains two sequences {xn} and {yn} such that

(a) y2n = Gx2n−1, y2n+1 = Fx2n,
(b) y2n ∈ C ⇒ y2n = Tx2n or y2n 6∈ C ⇒ Tx2n ∈ ∂C and

d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n).

(c) y2n+1 ∈ C ⇒ y2n+1 = Sx2n+1 or y2n+1 6∈ C ⇒ Sx2n+1 ∈ ∂C and

d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1).

We denote
P0 = {Tx2i ∈ {Tx2n} : Tx2i = y2i},
P1 = {Tx2i ∈ {Tx2n} : Tx2i 6= y2i},
Q0 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 = y2i+1},
Q1 = {Sx2i+1 ∈ {Sx2n+1} : Sx2i+1 6= y2i+1}.

Note that (Tx2n, Sx2n+1) 6∈ P1×Q1, as if Tx2n ∈ P1, then y2n 6= Tx2n and one infers
that Tx2n ∈ ∂C which implies that y2n+1 = Fx2n ∈ C. Hence y2n+1 = Sx2n+1 ∈ Q0.
Similarly, one can argue that (Sx2n−1, Tx2n) 6∈ Q1 × P1.

Now, we distinguish the following three cases.
Case 1. If (Tx2n, Sx2n+1) ∈ P0 ×Q0, then from (2.2)

d(Tx2n, Sx2n+1) = d(Fx2n, Gx2n−1) ≤ λu2n−1,

where

u2n−1 ∈ {d(Sx2n−1, Tx2n), d(Sx2n−1, Gx2n−1), d(Tx2n, Fx2n),

d(Tx2n, Gx2n−1) + d(Sx2n−1, Fx2n)

2
}

= {d(y2n−1, y2n), d(y2n, y2n+1),
d(y2n−1, y2n+1)

2
}.

Clearly, there are infinitely many n such that at least one of the following three cases
holds:

(1) d(Tx2n, Sx2n+1) ≤ λd(y2n−1, y2n) = λd(Sx2n−1, Tx2n);
(2) d(Tx2n, Sx2n+1) ≤ λd(y2n, y2n+1)⇒ d(Tx2n, Sx2n+1) = θ ≤ λd(Sx2n−1, Tx2n);
(3) d(Tx2n, Sx2n+1) ≤ λ d(y2n−1,y2n+1)

2
≤ λ

2
d(y2n−1, y2n)+

1
2
d(y2n, y2n+1)⇒ d(Tx2n, Sx2n+1) ≤

λd(Sx2n−1, Tx2n).
From (1), (2), (3) it follows that

(2.3) d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n).

Similarly, if (Sx2n+1, Tx2n+2) ∈ Q0 × P0, we have

(2.4) d(Sx2n+1, Tx2n+2) = d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1).
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If (Sx2n−1, Tx2n) ∈ Q0 × P0, we have

(2.5) d(Sx2n−1, Tx2n) = d(Fx2n−2, Gx2n−1) ≤ λd(Tx2n−2, Sx2n−1).

Case 2. If (Tx2n, Sx2n+1) ∈ P0 ×Q1, then Sx2n+1 ∈ Q1 and

(2.6) d(Tx2n, Sx2n+1) + d(Sx2n+1, y2n+1) = d(Tx2n, y2n+1)

which in turn yields

(2.7) d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n+1) = d(y2n, y2n+1)

and hence

(2.8) d(Tx2n, Sx2n+1) ≤ d(y2n, y2n+1) = d(Fx2n, Gx2n−1).

Now, proceeding as in Case 1, we have that (2.3) holds.
If (Sx2n+1, Tx2n+2) ∈ Q1 × P0, then Tx2n ∈ P0. We show that

(2.9) d(Sx2n+1, Tx2n+2) ≤ λd(Tx2n, Sx2n−1).

Using (2.6), we get

(2.10) d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+1) + d(y2n+1, Tx2n+2)

= d(Tx2n, y2n+1)−d(Tx2n, Sx2n+1)+d(y2n+1, Tx2n+2).

By noting that Tx2n+2, Tx2n ∈ P0, one can conclude that

(2.11) d(y2n+1, Tx2n+2) = d(y2n+1, y2n+2) = d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1),

and

(2.12) d(Tx2n, y2n+1) = d(y2n, y2n+1) = d(Fx2n, Gx2n−1) ≤ λd(Sx2n−1, Tx2n),

in view of Case 1.
Thus,

d(Sx2n+1, Tx2n+2) ≤ λd(Sx2n−1, Tx2n)− (1− λ)d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n),

and we proved (2.9).
Case 3. If (Tx2n, Sx2n+1) ∈ P1 ×Q0, then Sx2n−1 ∈ Q0. We show that

(2.13) d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2).

Since Tx2n ∈ P1, then

(2.14) d(Sx2n−1, Tx2n) + d(Tx2n, y2n) = d(Sx2n−1, y2n).

From this, we get

(2.15) d(Tx2n, Sx2n+1) ≤ d(Tx2n, y2n) + d(y2n, Sx2n+1)

= d(Sx2n−1, y2n)− d(Sx2n−1, Tx2n) + d(y2n, Sx2n+1).

By noting that Sx2n+1, Sx2n−1 ∈ Q0, one can conclude that

(2.16) d(y2n, Sx2n+1) = d(y2n, y2n+1) = d(Fx2n, Gx2n−1) ≤ λd(Sx2n−1, Tx2n),

and

(2.17) d(Sx2n−1, y2n) = d(y2n−1, y2n) = d(Fx2n−2, Gx2n−1) ≤ λd(Sx2n−1, Tx2n−2),

in view of Case 1.
Thus,

d(Tx2n, Sx2n+1) ≤ λd(Sx2n−1, Tx2n−2)−(1−λ)d(Sx2n−1, Tx2n) ≤ λd(Sx2n−1, Tx2n−2),

and we proved (2.13).
Similarly, If (Sx2n+1, Tx2n+2) ∈ Q0 × P1, then Tx2n+2 ∈ P1, and

d(Sx2n+1, Tx2n+2) + d(Tx2n+2, y2n+2) = d(Sx2n+1, y2n+2).
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From this, we have

d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2)+d(y2n+2, Tx2n+2)

≤ d(Sx2n+1, y2n+2) + d(Sx2n+1, y2n+2)− d(Sx2n+1, Tx2n+2)

= 2d(Sx2n+1, y2n+2)− d(Sx2n+1, Tx2n+2)

⇒ d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2).

By noting that Sx2n+1 ∈ Q0, one can conclude that

(2.18) d(Sx2n+1, Tx2n+2) ≤ d(Sx2n+1, y2n+2) = d(Fx2n, Gx2n+1) ≤ λd(Tx2n, Sx2n+1),

in view of Case 1.
Thus, in all the cases 1-3, there exists w2n ∈ {d(Sx2n−1, Tx2n), d(Tx2n−2, Sx2n−1)}

such that
d(Tx2n, Sx2n+1) ≤ λw2n

and exists w2n+1 ∈ {d(Sx2n−1, Tx2n), d(Tx2n, Sx2n+1)} such that

d(Sx2n+1, Tx2n+2) ≤ λw2n+1.

Following the procedure of Assad and Kirk ([6]), it can easily be shown by induction
that, for n ≥ 1, there exists w2 ∈ {d(Tx0, Sx1), d(Sx1, Tx2)} such that

(2.19) d(Tx2n, Sx2n+1) ≤ λn−
1
2w2 and d(Sx2n+1, Tx2n+2) ≤ λnw2.

From (2.19) and by the triangle inequality, for n > m we have

d(Tx2n, Sx2m+1) ≤ d(Tx2n, Sx2n−1) + d(Sx2n−1, Tx2n−2) + · · ·+ d(Tx2m+2, Sx2m+1)

≤ (λm + λm+ 1
2 + · · ·+ λn−1)w2 ≤

λm

1−
√
λ
w2 → θ, as m→∞.

From Remark 1.3 and Corollary 1.4 (1) d(Tx2n, Sx2m+1)� c.
Thus, the sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · } is a Cauchy

sequence. Then, as noted in [13], there exists at least one subsequence {Tx2nk} or
{Sx2nk+1} which is contained in P0 or Q0 respectively and finds its limit z ∈ C. Fur-
thermore, subsequences {Tx2nk} and {Sx2nk+1} both converge to z ∈ C as C is a closed
subset of complete cone metric space (X, d). We assume that there exists a subsequence
{Tx2nk} ⊆ P0 for each k ∈ N , then Tx2nk = y2nk = Gx2nk−1 ∈ C ∩GC ⊆ TC Since TC
as well as SC are closed in X and {Tx2nk} is Cauchy sequence in TC, it converges to a
point z ∈ TC. Let w ∈ T−1z, then Tw = z. Similarly, {Sx2nk+1} being a subsequence
of Cauchy sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · } also converges
to z as SC is closed. Using (2.2), one can write

d(Fw, z) ≤ d(Fw,Gx2nk−1) + d(Gx2nk−1, z) ≤ λu2nk−1 + d(Gx2nk−1, z),

where

u2nk−1 ∈ {d(Tw, Sx2nk−1), d(Tw, Fw), d(Sx2nk−1, Gx2nk−1),

d(Tw,Gx2nk−1) + d(Fw, Sx2nk−1)

2
}

= {d(z, Sx2nk−1), d(z, Fw), d(Sx2nk−1, Gx2nk−1),

d(z,Gx2nk−1) + d(Fw, Sx2nk−1)

2
}.

Let θ � c. Clearly at least one of the following four cases holds for infinitely many n.
(1) d(Fw, z) ≤ λd(z, Sx2nk−1) + d(Gx2nk−1, z)� λ c

2λ
+ c

2
= c;

(2) d(Fw, z) ≤ λd(z, Fw)+d(Gx2nk−1, z)⇒ d(Fw, z) ≤ 1
1−λd(Gx2nk−1, z)� 1

1−λ (1−
λ)c = c;
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(3) d(Fw, z) ≤ λd(Sx2nk−1, Gx2nk−1)+d(Gx2nk−1, z) ≤ λ(d(Sx2nk−1, z)+d(z,Gx2nk−1))+
d(Gx2nk−1, z)
≤ (λ+ 1)d(Gx2nk−1, z) + λd(Sx2nk−1, z)� (λ+ 1) c

2(λ+1)
+ λ c

2λ
= c;

(4) d(Fw, z) ≤ λ d(z,Gx2nk−1)+d(Fw,Sx2nk−1)

2
+ d(Gx2nk−1, z)

≤ λ d(z,Gx2nk−1)+d(z,Sx2nk−1)

2
+ 1

2
d(Fw, z) + d(Gx2nk−1, z)

⇒ d(Fw, z) ≤ (2 + λ)d(Gx2nk−1, z) + λd(z, Sx2nk−1)� (2 + λ) c
2(2+λ)

+ λ c
2λ

= c

In all the cases we obtain d(Fw, z) � c for each c ∈ intP , using Corollary 1.4 (3) it
follows that d(Fw, z) = θ or Fw = z. Thus, Fw = z = Tw, that is z is a coincidence
point of F, T .

Further, since Cauchy sequence {Tx0, Sx1, Tx2, Sx3, · · · , Sx2n−1, Tx2n, Sx2n−1, · · · }
converges to z ∈ C and z = Fw, z ∈ FC ∩C ⊆ SC, there exists v ∈ C such that Sv = z.
Again using (2.2), we get

d(Sv,Gv) = d(z,Gv) = d(Fw,Gv) ≤ λu,
where

u ∈ {d(Tw, Sv), d(Tw, Fw), d(Sv,Gv), d(Tw,Gv) + d(Fw, Sv)

2
}

= {θ, θ, d(Sv,Gv), d(z,Gv) + θ

2
} = {θ, d(Sv,Gv), d(Sv,Gv)

2
}.

Hence, we get the following cases:

d(Sv,Gv) ≤ λθ = θ, d(Sv,Gv) ≤ λd(Sv,Gv)
and

d(Sv,Gv) ≤ λ

2
d(Sv,Gv) ≤ λd(Sv,Gv).

Using Remark 1.3 and Corollary 1.4 (3), it follows that Sv = Gv, therefore, Sv = z =
Gv, that is z is a coincidence point of (G,S).

In case FC and GC are closed in X, then z ∈ FC∩C ⊆ SC or z ∈ GC∩C ⊆ TC. The
analogous arguments establish (IV) and (V). If we assume that there exists a subsequence
{Sx2nk+1} ⊆ Q0 with TC as well SC are closed in X, then noting that {Sx2nk+1} is a
Cauchy sequence in SC, foregoing arguments establish (IV) and (V).

Suppose now that (F, T ) and (G,S) are weakly compatible pairs, then

z = Fw = Tw ⇒ Fz = FTw = TFw = Tz

and
z = Gv = Sv ⇒ Gz = GSv = SGv = Sz.

Then, from (2.2),
d(Fz, z) = d(Fz,Gv) ≤ λu,

where
u ∈ {d(Sv, Tz), d(Tz, Fz), d(Sv,Gv), d(Tz,Gv) + d(Sv, Fz)

2
}

= {d(z, Fz), d(z, z), d(Fz, z) + d(z, Fz)

2
}

= {d(z, Fz), θ}.
Hence, we get the following cases:

d(Fz, z) ≤ λd(z, Fz)⇒ d(Fz, z) = 0,

d(Fz, z) ≤ λθ = θ ⇒ d(Fz, z) = 0.

Using Remark 1.3 and Corollary 1.1 (3), it follows that Fz = z. Thus, Fz = z = Tz
Similarly, we can prove Gz = z = Sz. Therefore z = Fz = Gz = Sz = Tz, that is, z

is a common fixed point of F,G, S and T .
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Uniqueness of the common fixed point follows easily from (2.2). �

2.4. Remark. 1. Theorem 2.2 in [18] is a special case of Theorem 2.3 with G = F =

f, T = S = g and λ ∈ (0,
√
2− 1).

2. Setting G = F = f and T = S = IX (the identity mapping on X) in Theorem 2.3,
we obtain the following result:

2.5. Corollary. Let (X, d) be a complete cone metric space, and C a nonempty closed
subset of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that f : C → X satisfying the condition

d(fx, fy) ≤ λu(x, y),

where

u(x, y) ∈ {d(x, y), d(x, fx), d(y, fy), d(x, fy) + d(y, fx)

2
}

for all x, y ∈ C, 0 < λ < 1 and f has the additional property that for each x ∈ ∂C, fx ∈
C. Then f has a unique fixed point.

2.6. Remark. The following definition is a special case of Definition 2.2 when (X, d) is a
metric space. But when (X, d) is a cone metric space, which is not a metric space, this is
not true. Indeed, there may exist x, y ∈ X such that the vectors d(Tx, Fx), d(Sy,Gy) and
d(Tx,Fx)+d(Sy,Gy)

2
are incomparable. For the same reason Theorems 2.3 and 2.8 (given

below) are incomparable.

2.7. Definition. Let (X, d) be a complete cone metric space and C be a nonempty
closed subset of X, and F,G, S, T : C → X. Denote, forx, y ∈ C,

(2.20) MF,G,S,T
2 = {d(Tx, Sy), d(Tx, Fx) + d(Sy,Gy)

2
,
d(Tx,Gy) + d(Fx, Sy)

2
}.

Then (F,G) is called a generalized (T, S)M2−contractive mapping of C into X if for some
λ ∈ (0, 1) there exists u(x, y) ∈MF,G,S,T

2 such that for all x, y ∈ C

(2.21) d(Fx,Gy) ≤ λu(x, y).

Our next result is the following.

2.8. Theorem. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Suppose that F,G, S, T : C → X are such that (F,G) is a generalized (T, S)M2−contractive
mappings pair of C into X, and

(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.

The proof of this theorem is very similar to the proof of Theorem 2.3 and it is omitted.
We now list some corollaries of Theorems 2.3 and 2.8.
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2.9. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let F,G, S, T : C → X be such that

(2.22) d(Fx,Gy) ≤ λd(Tx, Sy),

for some λ ∈ (0, 1) and for all x, y ∈ C.
Suppose, further, that F,G, S, T and C satisfy the following conditions:
(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.

2.10. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let F,G, S, T : C → X be such that

(2.23) d(Fx,Gy) ≤ λ(d(Tx, Fx) + d(Sy,Gy)),

for some λ ∈ (0, 1/2) and for all x, y ∈ C.
Suppose, further, that F,G, S, T and C satisfy the following conditions:
(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.

2.11. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let F,G, S, T : C → X be such that

(2.24) d(Fx,Gy) ≤ λ(d(Tx,Gy) + d(Fx, Sy)),

for some λ ∈ (0, 1/2) and for all x, y ∈ C.
Suppose, further, that F,G, S, T and C satisfy the following conditions:
(I) ∂C ⊆ SC ∩ TC, FC ∩ C ⊆ SC,GC ∩ C ⊆ TC,
(II) Tx ∈ ∂C implies that Fx ∈ C, Sx ∈ ∂C implies that Gx ∈ C,
(III) SC and TC (or FC and GC) are closed in X.
Then
(IV) (F, T ) has a point of coincidence,
(V) (G,S) has a point of coincidence.
Moreover, if (F, T ) and (G,S) are weakly compatible pairs, then F,G, S and T have a

unique common fixed point.
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2.12. Remark. Setting G = F = f and T = S = g (the identity mapping on X) in
Corollary 2.9-2.11, we obtain the following result:

2.13. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that

(2.25) d(fx, fy) ≤ λd(gx, gy),
for some λ ∈ (0, 1) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the
following conditions:

(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(II) gx ∈ ∂C implies that fx ∈ C,
(III) gC is closed in X.
Then there exists a coincidence point z of f, g in C. Moreover, if (f, g) are weakly

compatible, then z is the unique common fixed point of f and g.

2.14. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that

(2.26) d(fx, fy) ≤ λ(d(fx, gx) + d(fy, gy)),

for some λ ∈ (0, 1/2) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the
following conditions:

(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(II) gx ∈ ∂C implies that fx ∈ C,
(III) gC is closed in X.
Then there exists a coincidence point z of f, g in C. Moreover, if (f, g) are weakly

compatible, then z is the unique common fixed point of f and g.

2.15. Corollary. Let (X, d) be a complete cone metric space, C a nonempty closed subset
of X such that for each x ∈ C and y 6∈ C there exists a point z ∈ ∂C such that

d(x, z) + d(z, y) = d(x, y).

Let f, g : C → X be such that

(2.27) d(fx, fy) ≤ λ(d(fx, gy) + d(fy, gx)),

for some λ ∈ (0, 1/2) and for all x, y ∈ C. Suppose, further, that f, g and C satisfy the
following conditions:

(I) ∂C ⊆ gC, fC ∩ C ⊆ gC,
(II) gx ∈ ∂C implies that fx ∈ C,
(III) gC is closed in X.
Then there exists a coincidence point z of f, g in C. Moreover, if (f, g) are weakly

compatible, then z is the unique common fixed point of f and g.

2.16. Remark. Corollaries 2.13-2.15 are the corresponding theorems of Abbas and
Jungck from [2] in the case that f, g are non-self mappings.
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Soft separation axioms in soft topological spaces
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Abstract
Shabir et. al [27] and D. N. Georgiou et. al [7], defined and studied some
soft separation axioms, soft θ-continuity and soft connectedness in soft
spaces using (ordinary) points of a topological space X. In this paper,
we redefine and explore several properties of soft Ti, i = 0, 1, 2, soft
regular, soft T3, soft normal and soft T4 axioms using soft points defined
by I. Zorlutuna [30]. We also discuss some soft invariance properties
namely soft topological property and soft hereditary property. We hope
that these results will be useful for the future study on soft topology
to carry out general framework for the practical applications and to
solve the complicated problems containing uncertainties in economics,
engineering, medical, environment and in general man-machine systems
of various types.

Keywords: Soft topology, Soft open(closed) sets, Soft interior(closure), Soft Ti;
(i = 0, 1, 2, 3, 4) spaces, Soft regular spaces, Soft normal spaces and Invariance
properties.

1. Introduction
In 1999, Molodtsov [22] initiated the theory of soft sets as a new mathematical tool

to deal with uncertainties while modelling the problems with incomplete information in
engineering, physics, computer science, economics, social sciences and medical sciences.
Soft set theory does not require the specification of parameters. Instead, it accommo-
dates approximate description of an object as its starting point which makes it a natural
mathematical formalism for approximate reasoning. So the application of soft set the-
ory in other disciplines and real life problems are now catching momentum. In [23],
Molodtsov applied soft sets successfully in directions such as smoothness of functions,
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game theory, operations research, Riemann-integration, Perron integration, probability
and theory of measurement. Maji et. al [20] applied soft sets in a multicriteria decision
making problems. It is based on the notion of knowledge reduction of rough sets. They
applied the technique of knowledge reduction to the information table induced by the
soft set. In [21], they defined and studied several basic notions of soft set theory. In
2005, Pei and Miao [25] and Chen [6] improved the work of Maji et.al [20-21]. A. Kharal
and B. Ahmad [19] defined and discussed the several properties of soft images and soft
inverse images of soft sets. They also applied these notions to the problem of medical
diagnosis in medical systems. Many researchers have contributed towards the algebraic
structure of soft set theory [1-2],[5], [7], [9-19], [24], [27-28].
In 2011, Shabir and Naz [27] initiated the study of soft topological spaces. Also in 2011,
S. Hussain and B. Ahmad [9] continued investigating the properties of soft open(closed),
soft neighbourhood and soft closure. They also defined and discussed the properties of
soft interior, soft exterior and soft boundary.
Shabir et. al [27] and D. N. Georgiou et. al [7], defined and studied some soft separation
axioms, soft θ-continuity and soft connectedness in soft spaces using (ordinary) points
of a topological space X. In this paper, we redefine and explore several properties of
soft Ti, i = 0, 1, 2, soft regular, soft T3, soft normal and soft T4 axioms using soft points
defined by I. Zorlutuna [30]. We also discuss some soft invariance properties namely
soft topological property and soft hereditary property. We hope that these results will
be useful for the future study on soft topology to carry out general framework for the
practical applications and to solve the complicated problems containing uncertainties in
economics, engineering, medical, environment and in general man-machine systems of
various types.

2. Preliminaries
For the definitions and results on soft set theory, we refer to [1-2],[5], [7], [9-19], [24],

[27-28]. However, we recall some definitions and results on soft set theory and soft topol-
ogy.

Definition 1 [22]. Let X be an initial universe and E a set of parameters. Let
P (X) denote the power set of X and A a non-empty subset of E. A pair (F,A) is called
a soft set over X, where F is a mapping given by F : A→ P (X). In other words, a soft
set over X is a parameterized family of subsets of the universe X. For e ∈ A, F (e) may
be considered as the set of e-approximate elements of the soft set (F,A). Clearly, a soft
set is not a set.
Definition 2 [22]. The complement of a soft set (F,A) is denoted by (F,A)c and is
defined by (F,A)c = (F c, A) where, F c : A → P (U) is a mapping given by F c(α) =
U − F (α), for all α ∈ A.
Let us call F c to be the soft complement function of F . Clearly (F c)c is the same as F
and ((F,A)c)c = (F,A).
Definition 3 [30]. A soft set (F,A) over X is said to be a null soft set, denoted by ΦA
, if for all e ∈ A, F (e) = φ. Clearly, (ΦcA)c = ΦA.
Definition 4 [30]. A soft set (F,A) over X is said to be an absolute soft set, denoted
by XA, if for all e ∈ A, F (e) = X. Clearly, Xc

A = ΦA.
Definition 5 [27]. Let τ be the collection of soft sets over X with the fixed set of
parameters A. Then τ is said to be a soft topology on X, if
(1) ΦA, XA belong to τ ,
(2) the union of any number of soft sets in τ belongs to τ ,
(3) the intersection of any two soft sets in τ belongs to τ .
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The triplet (X, τ,A) is called a soft topological space over X. The members of τ are
called soft open sets. The soft complement of a soft open set A is called the soft closed
set in (X, τ,A). If (F,A) belongs to τ , we write (F,A)∈̃τ .
Proposition 1 [27]. Let (X, τ,A) be a soft topological space over X. Then the collec-
tion τα = {F (e) : (F,A)∈̃τ}, for each e ∈ A defines a topology on X.
Remark 1. It is known that the intersection of two soft topologies over the same universe
X is a soft topology, whereas the union may or may not be a soft topology as given in [27].

Hereafter, SS(X)A denotes the family of soft sets over X with the set of parameters
A.
Definition 6 [30]. The soft set (F,A)∈̃SS(X)A is called a soft point in XA, denoted
by eF , if for the element e ∈ A, F (e) 6= φ and F (e

′
) = φ, for all e

′
∈ A− {e}.

Definition 7 [30]. The soft point eF is said to be in the soft set (G,A), denoted by
eF ∈̃(G,A), if for the element e ∈ A, F (e) ⊆ G(e).
Proposition 2 [30]. Let eF ∈̃XA and (G,A)∈̃SS(X)A. If eF ∈̃(G,A), then eF /̃∈(G,A)c.
Definition 8 [30]. Let (X, τ,A) be a soft topological space over X and (F,A) a soft
set in SS(X)A. The soft point eF ∈̃XA is called a soft interior point of a soft set (F,A),
if there exists a soft open set (H,A) such that eF ∈̃(H,A)⊆̃(F,A). The soft interior of
a soft set (F,A) is denoted by (F,A)◦ and is defined as the union of all soft open sets
contained in (F,A). Clearly (F,A)◦ is the largest soft open set contained in (F,A).
Definition 9 [30]. Let (X, τ,A) be a soft topological space. Then a soft set (G,A)
in SS(X)A is called a soft neighborhood (briefly: soft nbd) of the soft point eF ∈̃XA, if
there exists a soft open set (H,A) such that eF ∈̃(H,A)⊆̃(G,A).
The soft neighborhood system of a soft point eF , denoted by Nτ (eF ), is the family of all
its soft neighborhoods.
Definition 10 [27]. Let (X, τ,A) be a soft topological space over X. Then a soft set
(G,A) in SS(X)A is called a soft neighborhood (briefly: soft nbd) of the soft set (F,A),
if there exists a soft open set (H,A) such that (F,A)⊆̃(H,A)⊆̃
(G,A).
Definition 11 [27]. Let (X, τ,A) be a soft topological space over X and (F,A) a soft
set over X. Then the soft closure of (F,A), denoted by (F,A), is the intersection of all
soft closed supersets of (F,A). Clearly (F,A) is the smallest soft closed set in (X, τ,A)
which contains (F,A).
Definition 12 [27]. Let (X, τ,A) be a soft topological space over X and Y ⊆ X. Then
τY = {(FY , A) = YA∩̃(F,A)|(F,A)∈̃τ} is said to be the soft relative topology on Y ,
where FY (e) = Y ∩ F (e), for all e ∈ A. (Y, τY , A) is called a soft subspace of (X, τ,A).
We can easily verify that τY is, in fact, a soft topology on Y .
Proposition 3 [27]. Let (X, τ,A) be a soft topological space over X and Y ⊆ X. Then
(Y, τeY ) is a subspace of (X, τe), for each e ∈ A.
Proposition 4 [27]. Let (Y, τY , A) be a soft subspace of a soft topological space (X, τ,A)
and (F,A) a soft open set in (Y, τY , A). If YA∈̃τ , then (F,A)∈̃τ .
Theorem 1 [27]. Let (Y, τY , A) be a soft subspace of a soft topological space (X, τ,A)
and (F,A) a soft set over X. Then
(1) (F,A) is soft open in (Y, τY , A) if and only if (F,A) = YA∩̃(G,A), for some soft open
set (G,A) in (X, τ,A).
(2) (F,A) is soft closed in (Y, τY , A) if and only if (F,A) = YA∩̃(G,A), for some soft
closed set (G,A) in (X, τ,A).
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3. Soft Ti; (i = 0, 1, 2) Spaces
In this section, we redefine soft separation axioms namely soft Ti axioms, for

(i = 0, 1, 2) using soft points and discuss several properties and their relationship with
the help of examples. Note that some authors ([7],[27]) defined soft separation axioms
using ordinary points of a topological space.
Now we define:
Definition 13. Two soft sets (G,A), (H,A) in SS(X)A are said to be soft disjoint,
written (G,A)∩̃(H,A) = ΦA, if G(e) ∩H(e) = φ, for all e ∈ A.

Definition 14. Two soft points eG, eH in XA are distinct, written eG 6= eH , if there
corresponding soft sets (G,A) and (H,A) are disjoint.

Definition 15. Let (X, τ,A) be a soft topological space overX and eG, eH ∈̃XA such that
eG 6= eH . If there exist at least one soft open set (F1, A) or (F2, A) such that eG∈̃(F1, A),
eH /̃∈(F1, A) or eH ∈̃(F2, A), eG /̃∈(F2, A), then (X, τ,A) is called a soft T0-space.

Definition 16. Let (X, τ,A) be a soft topological space over X and eG, eH ∈̃XA such
that eG 6= eH . If there exist soft open sets (F1, A) and (F2, A) such that eG∈̃(F1, A),
eH /̃∈(F1, A) and eH ∈̃(F2, A), eG /̃∈(F2, A), then (X, τ,A) is called a soft T1-space.

Definition 17. Let (X, τ,A) be a soft topological space over X and eG, eH ∈̃XA such
that eG 6= eH . If there exist soft open sets (F1, A) and (F2, A) such that eG∈̃(F1, A),
eH ∈̃(F2, A) and (F1, A)∩̃(F2, A) = ΦA, then (X, τ,A) is called a soft T2-space.

Proposition 5. (1) Every soft T1-space is a soft T0-space.
(2) Every soft T2-space is a soft T1-space.
Proof. (1) Obvious.
(2) If (X, τ,A) is a soft T2-space, then by definition of soft T2-space, for eG, eH ∈̃XA,
eG 6= eH , there exist soft open sets (F1, A) and (F2, A) such that eG∈̃(F1, A), eH ∈̃(F2, A)

and (F1, A)∩̃(F2, A) = ΦA. Since (F1, A)∩̃(F2, A) = ΦA, eG /̃∈(F2, A) and eH /̃∈(F1, A).
Thus it follows that (X, τ,A) is a soft T1-space. �

Note that every soft T1-space is a soft T0-space. Every soft T2-space is a soft T1-space.
The converses do not hold in general.
Example 1. Let X = {x1, x2}, A = {e1, e2} and τ = {ΦA, XA, (F,A)}, where (F,A) =
{(e1, {x1}), (e2, {x2})}. Then (X, τ,A) is a soft topological space over X. There are
two pairs of soft points namely e1(G1) = (e1, {x2}), e1(H1) = (e1, {x1}) and e2(G2) =
(e2, {x1}), e2(H2) = (e2, {x2}). Since e1(G1) 6= e1(H1), then there is soft open set (F,A)

such that e1(G1) /̃∈(F,A), e1(H1)∈̃(F,A). Similarly for the pair e2(G2) 6= e2(H2), there is
soft open set (F,A) such that e2(H2)∈̃(F,A), e2(G2) /̃∈(F,A). This shows that (X, τ,A) is
a soft T0-space. Clearly (X, τ,A) is not a soft T1-space.

Example 2. Let X = {x1, x2}, A = {e1, e2} and τ = {ΦA, XA, (F1, A), (F2, A),
(F3, A), (F4, A)}, where (F1, A) = {(e1, {x2}), (e2, {x1})}, (F2, A) = {(e1, {x1}),
(e2, {x2})}, (F3, A) = {(e1, {x1})}, (F4, A) = {(e1, X), (e2, {x1})} Then (X, τ,A) is a soft
topological space overX. Note that τe1 = {φ,X, {x1}, {x2}} and τe2 = {φ,X, {x1}, {x2}}
are topologies on X. Clearly (X, τe1) and (X, τe2) are Ti-spaces ( for i = 0, 1). There
are two pairs of distinct soft points namely, e1(G1) = (e1, {x2}), e1(H1) = (e1, {x1}) and
e2(G2) = (e2, {x1}), e2(H2) = (e2, {x2}). Then for the soft pair e1(G1) 6= e1(H1) of points,
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there are soft open sets (F1, A) and (F2, A) such that e1(G1)∈̃(F1, A), e1(H1) /̃∈(F1, A) and
e1(H1)∈̃(F2, A), e1(G1) /̃∈(F2, A). Similarly for the pair e2(G2) 6= e2(H2), there are soft open
sets (F2, A) and (F1, A) such that e2(G2) /̃∈(F2, A), e2(H2)∈̃(F2, A) and e2(H2) /̃∈(F1, A),
e2(G2)∈̃(F1, A). This shows that (X, τ,A) is a soft T1-space and hence a soft T0-space.
Note that (X, τ,A) is a soft T2-space.

Example 3. Let X = {x1, x2}, A = {e1, e2} and τ = {ΦA, XA, (F1, A),
(F2, A), (F3, A)}, where (F1, A) = {(e1, {x1})}, (F2, A) = {(e2, {x2})}, (F3, A) = {(e1, {x1}), (e2, {x2})}.
Then (X, τ,A) is a soft topological space over X. There are two pairs of distinct
soft points namely, e1(G1) = (e1, {x2}), e1(H1) = (e1, {x1}) and e2(G2) = (e2, {x1}),
e2(H2) = (e2, {x2}). Then for the soft pair e1(G1) 6= e1(H1) of points, there does not exist
soft disjoint soft open sets (F,A) and (G,A) such that e1(G1)∈̃(F,A), e1(H1) /̃∈(F,A) and
e1(H1)∈̃(G,A), e1(G1) /̃∈(G,A). Thus (X, τ,A) is not a soft T2-space. Clearly (X, τ,A) is
a soft T1-space and hence a soft T0-space.

Theorem 2. Let (X, τ,A) be a soft topological space over X. Then each soft point is
soft closed if and only if (X, τ,A) is a soft T1-space.
Proof. Suppose soft points eF = (F,A), eG = (G,A) are soft closed and eF 6= eG. Then
(F,A)c and (G,A)c are soft open in (X, τ,A). Then by definition (F,A)c = (F c, A), where
F c(e) = X−F (e) and (G,A)c = (Gc, A), where Gc(e) = X−G(e). Since F (e)∩G(e) = Φ.
This implies F (e) ⊆ X−G(e) = Gc(e), for all e. This implies eF = (F,A)∈̃(G,A)c. Sim-
ilarly eG = (G,A)∈̃(F,A)c. Thus we have eF ∈̃(G,A)c, eG /̃∈(G,A)c and eF /̃∈(F,A)c,
eG∈̃(F,A)c. This proves that (X, τ,A) is soft T1-space.
Conversely, let (X, τ,A) is soft T1-space. To prove that eF = (F,A) ∈ X̃A is soft closed,
we show that (F,A)c is soft open in (X, τ,A). Let eG = (G,A)∈̃(F,A)c. Then eF /∈ eG.
Since (X, τ,A) is soft T1-space, there exists a soft open set (H,A) such that eG∈̃(H,A)

and eF /̃∈(H,A). Thus eG∈̃(H,A)⊆̃(F,A)c and hence
⋃̃
eG
{(H,A), eG∈̃(F,A)c} = (F,A)c

. This proves that (F,A)c is soft open in (X, τ,A), that is eF = (F,A) is soft closed in
(X, τ,A). �

Remark 2. In general, if (X, τ,A) is a soft T1-space, then (X, τe) is not necessar-
ily a T1-space for e ∈ A. The following propositions give conditions for (X, τe) to be a
T1 space. We use Proposition 3 to prove this.

Proposition 6. Let (X, τ,A) be a soft topological space over X and eG, eH ∈̃XA such
that eG 6= eH . If there exist soft open sets (F1, A) and (F2, A) such that eG∈̃(F1, A) and
eH ∈̃(F1, A)c or eH ∈̃(F2, A) and eG∈̃(F2, A)c, then (X, τ,A) is a soft T0-space and (X, τe)
is a T0-space, for each e ∈ A.
Proof. Clearly eH ∈̃(F1, A)c = (F c1 , A) implies eH /̃∈(F1, A). Similarly eG∈̃(F2, A)c =

(F c2 , A) implies eG /̃∈(F2, A). Thus we have eG∈̃(F1, A), eH /̃∈(F1, A) or eH ∈̃(F2, A), eG /̃∈(F2, A).
This proves (X, τ,A) is a soft T0-space. Now for any e ∈ A, (X, τe) is a topological space
and eG∈̃(F1, A) and eH ∈̃(F1, A)c or eH ∈̃(F2, A) and eG /̃∈(F2, A)c. So that G(e)∈̃F1(e),
H(e) /̃∈F1(e) or H(e)∈̃F2(e), G(e) /̃∈F2(e). Thus (X, τe) is a T0-space. �

Proposition 7. Let (X, τ,A) be a soft topological space over X and eG, eH
∈̃XA such that eG 6= eH . If there exist soft open sets (F1, A) and (F2, A) such that
eG∈̃(F1, A), eH ∈̃(F1, A)c and eH ∈̃(F2, A), eG∈̃(F2, A)c then (X, τ,A) is a soft T1-space
and (X, τe) is a T1-space, for each e ∈ A.
Proof. The proof is similar to the proof of Proposition 6. �
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The following propositions 8, 9 and 11 show that the each soft Ti, (i = 0, 1) prop-
erty is a soft hereditary property.
Proposition 8. Let (X, τ,A) be a soft topological space over X and Y ⊆ X. If (X, τ,A)
is a soft T0-space, then (Y, τY , A) is a soft T0-space.
Proof. Let eG, eH ∈̃YA be such that eG 6= eH . Then eG, eH ∈̃XA. Since (X, τ,A) is
a soft T0 space, therefore there exist soft open sets (F,A) and (G,A) in (X, τ,A) such
that eG∈̃(F,A) and eH /̃∈(F,A) or eH ∈̃(G,A) and eG /̃∈(G,A). Therefore eG∈̃YA∩̃(F,A) =

(FY , A). Similarly it can be proved that if eH ∈̃(G,A) and eG /̃∈(G,A), then eH ∈̃(GY , A)

and eG /̃∈(GY , A). Thus (Y, τY , A) is a soft T0-space. �

Proposition 9. Let (X, τ,A) be a soft topological space over X and Y be a non-
empty subset of X. If (X, τ,A) is a soft T1-space, then (Y, τY , A) is a soft T1-space.
Proof. The proof is similar to the proof of Proposition 8. �

Proposition 10. Let (X, τ,A) be a soft topological space over X. If (X, τ,A) is a
soft T2-space over X, then (X, τe) is a T2-space, for each e ∈ A.
Proof. Let (X, τ,A) be a soft topological space over X. For any e ∈ A,
τe = {F (e) : (F,A)∈̃τ} is a topology on X. Let x, y ∈ X such that x 6= y. Since (X, τ,A)
is a soft-T2 space, therefore soft points eG, eH ∈̃XA such that eG 6= eH and x ∈ G(e),
y ∈ H(e), there exist soft open sets (F1, A) and (F2, A) such that eG∈̃(F1, A), eH ∈̃(F2, A)
and (F1, A)∩̃(F2, A) = ΦA. This imply that x ∈ G(e) ⊆ F1(e), y ∈ H(e) ⊆ F2(e) and
F1(e) ∩ F2(e) = φ. This proves that (X, τe) is a T2-space. �

Proposition 11. Let (X, τ,A) be a soft topological space over X and Y ⊆ X. If
(X, τ,A) is a soft T2-space, then (Y, τY , A) is a soft T2-space and (X, τe) is a T2-space,
for each e ∈ A.
Proof. Let eG, eH ∈̃YA such that eG 6= eH . Then eG, eH ∈̃XA. Since (X, τ,A) is a soft-
T2-space, therefore there exist soft open sets (F1, A) and (F2, A) such that eG∈̃(F1, A),
eH ∈̃(F2, A) and (F1, A)∩̃(F2, A) = ΦA. Thus eG∈̃YA∩̃(F1, A) = (F1Y , A), eH ∈̃YA∩̃(F2, A) =
(F2Y , A) and (F1Y , A)∩̃(F2Y , A) = ΦA. This proves that (Y, τY , A) is a soft T2-space. �

Theorem 3. Let (X, τ,A) be a soft topological space over X. If (X, τ,A) is a soft
T2-space and for any eG, eH ∈̃XA such that eG 6= eH , then there exist soft closed sets
(F1, A) and (F2, A) such that eG∈̃(F1, A), eH /̃∈(F1, A) and eG /̃∈(F2, A), eH ∈̃(F2, A), and
(F1, A)∪̃(F2, A) = XA.
Proof. Since (X, τ,A) is a soft T2-space and eG, eH ∈̃XA such that eG 6= eH , there
exist soft open sets (G1, A) and (G2, A) such that eG∈̃(G1, A) and eH ∈̃(G2, A) and
(G1, A)∩̃(G2, A) = ΦA. Clearly (G1, A)⊆̃(G2, A)c and (G2, A)⊆̃
(G1, A)c. Hence eG∈̃(G2, A)c. Put (G2, A)c = (F1, A). This gives eG∈̃(F1, A) and
eH /̃∈(F1, A). Also eH ∈̃(G1, A)c. Put (G1, A)c = (F2, A). Therefore eG∈̃(F1, A) and
eH ∈̃(F2, A). Moreover
(F1, A)∪̃(F2, A) = (G2, A)c∪̃(G1, A)c = XA. �

4. Soft Regular, Soft Normal and Soft Ti; (i = 4, 3) Spaces
In this section, we redefine soft regular and soft T3 spaces using soft points and char-

acterize soft regular and soft normal spaces. Moreover, we prove that soft regular and
soft T3 properties are soft hereditary, whereas soft normal and soft T4 are soft closed
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hereditary properties.
Now we define soft regular space as:
Definition 18. Let (X, τ,A) be a soft topological space over X, (G,A) a soft closed set
in (X, τ,A) and eF ∈̃XA such that eF /̃∈(G,A). If there exist soft open sets (F1, A) and
(F2, A) such that eF ∈̃(F1, A), (G,A)⊆̃(F2, A) and (F1, A)∩̃(F2, A) = ΦA, then (X, τ,A)
is called a soft regular space. �

In the following theorem, we give the characterizations of soft regular spaces.
Theorem 4. Let (X, τ,A) be a soft topological space over X. Then the following state-
ments are equivalent:
(1) (X, τ,A) is soft regular.
(2) For any soft open set (F,A) in (X, τ,A) and eG∈̃(F,A), there is a soft open set (G,A)

containing eG such that eG∈̃(G,A)⊆̃(F,A).
(3) Each soft point in (X, τ,A) has a soft nbd base consisting of soft closed sets.
Proof. (1) ⇒ (2) Let (F,A) be a soft open set in (X, τ,A) and eG∈̃(F,A). Then
(F,A)c is a soft closed set such that eG /̃∈(F,A)c. By the soft regularity of (X, τ,A),
there are soft open sets (F1, A), (F2, A) such that eG∈̃(F1, A), (F,A)c⊆̃(F2, A) and
(F1, A)∩̃(F2, A) = ΦA. Clearly (F2, A)c is a soft closed set contained in (F,A). Thus
(F1, A)⊆̃(F2, A)c⊆̃(F,A). This gives (F1, A)⊆̃(F2, A)c

⊆̃(F,A). Put (F1, A) = (G,A). Consequently, eG∈̃(G,A) and (G,A)⊆̃(F,A). This
proves (2).
(2) ⇒ (3) Let eG∈̃XA. For soft open set (F,A) in (X, τ,A), there is a soft open set
(G,A) containing eG such that eG∈̃(G,A), (G,A)⊆̃(F,A). Thus for each eG∈̃XA, the
sets (G,A) form a soft nbd base consisting of soft closed sets of (X, τ,A). This proves
(3).
(3) ⇒ (1). Let (F,A) be a soft closed set such that eG /̃∈(F,A). Then (F,A)c is a soft
open nbd of eG. By (3), there is a soft closed set (F1, A) which contains eG and is a
soft nbd of eG with (F1, A)⊆̃(F,A)c. Then eG /̃∈(F1, A)c, (F,A)⊆̃(F1, A)c = (F2, A) and
(F1, A)∩̃(F2, A) = ΦA. Therefore (X, τ,A) is soft regular. �.

The following theorem shows that soft regularity is a soft hereditary property:
Theorem 5. Let (X, τ,A) be a soft regular space over X. Then every soft subspace of
(X, τ,A) is soft regular.
Proof . Let (Y, τY , A) be a soft subspace of a soft regular space (X, τ,A). Suppose
(H,A) is a soft closed set in (Y, τY , A) and eF ∈̃YA such that eF /̃∈(H,A). Then (H,A) =

(G,A)∩̃YA, where (G,A) is soft closed in (X, τ,A). Then eF /̃∈(G,A). Since (X, τ,A) is
soft regular, there exist soft disjoint soft open sets (F1, A), (F2, A) in (X, τ,A) such that
eF ∈̃(F1, A), (G,A)⊆̃(F2, A). Clearly eF ∈̃(F1, A)∩̃YA = (F1Y , A) and (H,A)⊆̃(F2, A)∩̃YA =
(F2Y , A) such that (F1Y , A)∩̃(F2Y , A) = ΦA. This proves that (Y, τY , A) is a soft regular
subspace of (X, τ,A). �

Next we give another characterization of soft regular spaces.:
Theorem 6. Let (X, τ,A) be a soft topological space over X. A space (X, τ,A) is soft
regular if and only if for each eH ∈̃XA and a soft closed set (F,A) in (X, τ,A) such that
eH /̃∈(F,A), there exist soft open sets (F1, A), (F2, A) in (X, τ,A) such that eH ∈̃(F1, A)

and (F,A)⊆̃(F2, A) and (F1, A)∩̃(F2, A) = ΦA.
Proof. For each eH ∈̃XA and a soft closed set (F,A) such that eH /̃∈(F,A), by Theorem
4(2), there is a soft open set (G,A) such that eH ∈̃(G,A), (G,A)⊆̃(F,A)c. Again by The-
orem 4(2), there is a soft open set (F1, A) containing eH such that (F1, A)⊆̃(G,A). Let
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(F2, A) = ((G,A))c. Then (F1, A)⊆̃(G,A)⊆̃(G,A)⊆̃(F,A)c implies (F,A)⊆̃((G,A))c =

(F2, A) or (F,A)⊆̃(F2, A). Also (F1, A)∩̃(F2, A) = (F1, A)∩̃((G,A))c⊆̃(G,A)∩̃((G,A))c⊆̃(G,A)∩̃((G,A))c =

ΦA = ΦA.
Thus (F1, A), (F2, A) are the required soft open sets in (X, τ,A). This proves the neces-
sity. The sufficiency is immediate. �

Definition 19. Let (X, τ,A) be a soft topological space over X. Then (X, τ,A) is
said to be a soft T3-space, if it is a soft regular and a soft T1-space.

Remark 3. (1) A soft T3-space may not be a soft T2-space.
(2) If (X, τ,A) is a soft T3-space, then (X, τe) may not be a T3-space for each parameter
e ∈ A.

The following proposition follows form Proposition 9 and Theorem 5.
Proposition 12. Let (X, τ,A) be a soft topological space over X and Y ⊆ X. If
(X, τ,A) is a soft T3-space then (Y, τY , A) is a soft T3-space.

The notions of soft normal and soft T4 spaces have been introduced in [25]as:
Definition 20[25]. Let (X, τ,A) be a soft topological space over X, (F,A) and (G,A)
soft closed sets over X such that (F,A)∩̃(G,A) = ΦA. If there exist soft open sets (F1, A)

and (F2, A) such that (F,A)⊆̃(F1, A), (G,A)⊆̃(F2, A) and (F1, A)∩̃(F2, A) = ΦA, then
(X, τ,A) is called a soft normal space.

Definition 21[25]. Let (X, τ,A) be a soft topological space over X. Then (X, τ,A)
is said to be a soft T4-space, if it is soft normal and soft T1-space.

Now we prove the following theorem which characterizes soft normal spaces.:
Theorem 7. A soft topological space (X, τ,A) is soft normal if and only if for any soft
closed set (F,A) and soft open set (G,A) such that (F,A)⊂̃(G,A), there exists at least
one soft open set (H,A)containing (F,A) such that

(F,A)⊆̃(H,A)⊆̃(H,A)⊆̃(G,A).

Proof. Suppose that (X, τ,A) is a soft normal space and (F,A) is any soft closed subset
of (X, τ,A) and (G,A) a soft open set such that (F,A)⊆̃(G,A). Then (G,A)c is soft
closed and (F,A)∩̃(G,A)c = ΦA. So by supposition, there are soft open sets (H,A) and
(K,A) such that (F,A)⊆̃(H,A), (G,A)c⊆̃(K,A) and (H,A)∩̃(K,A)

= ΦA. Since (H,A)∩̃(K,A) = ΦA, (H,A)⊆̃(K,A)c. But (K,A)c is soft closed, so that
(F,A)⊆̃(H,A)⊆̃(H,A)⊆̃(K,A)c⊆̃(G,A). Hence (F,A)⊆̃(H,A)⊆̃(H,A)

⊆̃(G,A).
Conversely, suppose that for every soft closed set (F,A) and a soft open set (G,A) such
that (F,A)⊆̃(G,A), there is a soft open set (H,A) such that (F,A)⊆̃(H,A)⊆̃(H,A)⊆̃(G,A).
Let (F1, A), (F2, A) be any two soft disjoint soft closed sets. Then (F1, A)⊆̃(F2, A)c,
where (F2, A)c is soft open. Hence there is a soft open set (H,A) such that (F1, A)⊆̃(H,A)⊆̃(H,A)⊆̃(F2, A)c.
But then (F2, A)⊆̃((H,A))c and (H,A)∩̃((H,A))c 6= Φ. Hence (F1, A)⊆̃(H,A), (F2, A)⊆̃((H,A))c

with (H,A)∩̃((H,A))c = ΦA. Hence (X, τ,A) is soft normal. This completes the proof.

The following proposition is easy to proof.
Proposition 13. Let (Y, τY , A) be a soft subspace of a soft topological space (X, τ,A)
and (F,A) be a soft open (closed) in (Y, τY , A). If YA is soft open(closed) in (X, τ,A),
then (F,A) is soft open(closed) in (X, τ,A).
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Soft normality is a soft closed hereditary property as is proved in the following:
Theorem 8. A soft closed subspace of a soft normal space is soft normal.
Proof. Let (Y, τY , A) be soft subspace of soft normal space (X, τ,A) such that YA ∈ τ c.
Let (F1, A), (F2, A) be two disjoint soft closed subsets of (Y, τY , A). Then there ex-
ists soft closed sets (F,A), (G,A) in (X, τ,A) such that (F1, A) = YA∩̃(F,A) and
(F2, A) = YA∩̃(G,A). Since YA is soft closed in (X, τ,A), therefore (F1, A), (F2, A) are
soft disjoint soft closed in (X, τ,A). Then (X, τ,A) is soft normal implies that there exist
soft open sets (F3, A), (F4, A) in (X, τ,A) such that (F1, A)⊆̃(F3, A) , (F2, A)⊆̃(F4, A)

and (F3, A)∩̃(F4, A) = ΦA. But then (F1, A)⊆̃YA∩̃(F3, A), (F2, A)⊆̃YA∩̃(F4, A), where
YA∩̃(F3, A), YA∩̃(F4, A) are soft disjoint soft open subsets of (Y, τY , A). This proves that
(Y, τY , A) is soft normal. Hence the proof.

The following corollary directly follows from proposition 9 and Theorem 8. Corollary
1. Every soft closed subspace of a soft T4-space is a soft T4-space.

Conclusion : The study of soft sets and soft topology is very important in the study
of possible applications in classical and non classical logic. We redefined and explored
soft separation axioms, namely soft Ti, i = 0, 1, 2, soft regular, soft T3, soft normal and
soft soft T4 axioms using soft point defined by I. Zorlutuna [30]. We also discussed some
soft invariance properties namely soft topological property and soft hereditary property
. These soft separation axioms would be useful for the development of the theory of
soft topology to solve the complicated problems containing uncertainties in economics,
engineering, medical, environment and in general man-machine systems of various types.
These findings are the addition for strengthening the toolbox of soft topology.
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In this paper, we have discussed fuzzy left (right, two-sided) ideals,
fuzzy (generalized) bi-ideals, fuzzy interior ideals, fuzzy (1, 2)-ideals
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1. Introduction
A fuzzy subset (fuzzy set) of a non-empty set S is an arbitrary mapping f : S→ [0, 1],

where [0, 1] is the unit segment of the real line. A fuzzy subset is a class of objects with a
grades of membership. This important concept of fuzzy sets was first proposed by Zadeh
[13] in 1965. Since then, many papers on fuzzy sets appeared which shows its importance
and applications to set theory, group theory, groupoids, real analysis, measure theory
and topology etc. In one of the recent paper, Zadeh introduced a new idea to explore
the relationship between probabilities and fuzzy sets [14].

Rosenfeld [12] was the first who consider the case when S is a groupoid. He gave
the definition of fuzzy subgroupoid and the fuzzy left (right, two-sided) ideal of S and
justified these definitions by showing that a subset A of a groupoid S is a subgroupoid
or a left (right, two-sided) ideal of S if the characteristic function of A, that is

CA(x) =

{
1, if x ∈ A

0, if x /∈ A
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is a fuzzy subgroupoid or a fuzzy left (right, two-sided) ideal of S.
Kuroki and Mordeson have widely explored fuzzy semigroups in [5] and [6].
Fuzzy algebra is going popular day by day due to wide applications of fuzzification in

almost every field. Our aim in this paper is to develop some characterizations for a new
non-associative algebraic structure known as a left almost semigroup (LA-semigroup in
short) which is the generalization of a commutative semigroup (see [2]). An LA-semigroup
is an algebraic structure mid way between a groupoid and a commutative semigroup. An
LA-semigroup has wide range of applications in theory of flocks (see [9]).

The concept of a left almost semigroup [2] was first introduced by M. A. Kazim and M.
Naseeruddin in 1972. A groupoid S is called an LA-semigroup if it satisfy the following
left invertive law

(1) (ab)c = (cb)a, for all a, b, c ∈ S.

An LA-semigroup is also known as an Abel-Grassmann’s groupoid (AG-groupoid) [10].
P. Holgate called it left invertive groupoid [1].

In an LA-semigroup S, the medial law [2] holds

(2) (ab)(cd) = (ac)(bd), for all a, b, c, d ∈ S.

The left identity in an LA-semigroup if exists is unique [7]. Every LA-semigroup with
left identity satisfy the following laws

(3) (ab)(cd) = (dc)(ba), for all a, b, c, d ∈ S.

(4) a(bc) = b(ac), for all a, b, c ∈ S.

If an LA-semigroup S contains left identity e then S = eS ⊆ S2. Therefore S = S2.
An LA-semigroup is closely related with a commutative semigroup, because if it con-

tains a right identity, then it becomes a commutative semigroup [7].
Define the binary operation "•" on a commutative inverse semigroup S as

a • b = ba−1, for all a, b ∈ S,
then (S, •) becomes an LA-semigroup [8].

An LA-semigroup (S, ·) becomes a semigroup S under new binary operation "◦" de-
fined in [11] as

x ◦ y = (xa)y, for all x, y ∈ S.
It is easy to show that "◦" is associative

(x ◦ y) ◦ z = (((xa)y)a)z = (za)((xa)y) = (xa)((za)y)

= (xa)((ya)z) = x ◦ (y ◦ z).
Connections discussed above make this non-associative structure interesting and use-

ful.
Here we have given some examples of LA-semigroups in terms of abelian groups.

1.1. Example. Let us consider the abelian group (R,+) of all real numbers under the
binary operation of addition. If we define

a ∗ b = b− a− r, where a, b, r ∈ R,
then (R, ∗) becomes an LA-semigroup. Indeed

(a ∗ b) ∗ c = c− (a ∗ b)− r = c− (b− a− r)− r = c− b+ a+ r − r = c− b+ a,

and

(c ∗ b) ∗ a = a− (c ∗ b)− r = a− (b− c− r)− r = a− b+ c+ r − r = a− b+ c.

Since (R,+) is commutative, so (a ∗ b) ∗ c = (c ∗ b) ∗ a and therefore (R, ∗) satisfies a left
invertive law. It is easy to observe that (R, ∗) is non-commutative and non-associative.
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The same is hold for set of integers and rationals. Thus (R, ∗) is an LA-semigroup which
is the generalization of an LA-semigroup given in [8].

1.2. Example. Consider the abelian group (R\{0}, .) of all real numbers except zero
under the binary operation of multiplication. If we define

a ∗ b = ba−1r−1, where a, b, r ∈ R,
then (R\{0}, ∗) becomes an LA-semigroup. Indeed

(a ∗ b) ∗ c = ba−1r−1 ∗ c = c(ba−1r−1)−1r−1 = crab−1r−1 = cab−1,

and

(c ∗ b) ∗ a = bc−1r−1 ∗ a = a(bc−1r−1)−1r−1 = arcb−1r−1 = acb−1.

As (R\{0}, .) is commutative, therefore (a ∗ b) ∗ c = (c ∗ b) ∗ a and thus (R, ∗) satisfies
a left invertive law. Clearly (R, ∗) is non-commutative and non-associative. The same is
hold for set of integers and rationals. This LA-semigroup is also the generalization of an
LA-semigroup given in [8].

2. Preliminaries
Let S be an LA-semigroup, by an LA-subsemigroup of S, we means a non-empty subset

A of S such that A2 ⊆ A.
A non-empty subset A of an LA-semigroup S is called a left (right) ideal of S if SA ⊆ A

(AS ⊆ A).
A non-empty subset A of an LA-semigroup S is called a two-sided ideal or simply an

ideal if it is both a left and a right ideal of S.
A non-empty subset A of an LA-semigroup S is called a generalized bi-ideal of S if

(AS)A ⊆ A.
An LA-subsemigroup A of S is called a bi-ideal of S if (AS)A ⊆ A.
A non-empty subset A of an LA-semigroup S is called an interior ideal of S if (SA)S ⊆

A.
A non-empty subset A of an LA-semigroup S is called a quasi ideal of S if SA∩AS ⊆ A.
An LA-subsemigroup A of an LA-semigroup S is called a (1, 2)-ideal of S if (AS)A2 ⊆

A.
The following definitions are available in [6].
A fuzzy subset f of an LA-semigroup S is called a fuzzy LA-subsemigroup of S if

f(xy) ≥ f(x) ∧ f(y) for all x, y ∈ S.
A fuzzy subset f of an LA-semigroup S is called a fuzzy left (right) ideal of S if

f(xy) ≥ f(y) (f(xy) ≥ f(x)) for all x, y ∈ S.
A fuzzy subset f of an LA-semigroup S is called a fuzzy two-sided ideal of S if it is

both a fuzzy left and a fuzzy right ideal of S.
A fuzzy subset f of an LA-semigroup S is called a fuzzy generalized bi-ideal of S if

f((xa)y) ≥ f(x) ∧ f(y), for all x, a and y ∈ S.
A fuzzy LA-subsemigroup f of an LA-semigroup S is called a fuzzy bi-ideal of S if

f((xa)y) ≥ f(x) ∧ f(y), for all x, a and y ∈ S.
A fuzzy subset f of an LA-semigroup S is called a fuzzy interior ideal of S if f((xa)y) ≥

f(a), for all x, a and y ∈ S.
Characteristic function of an LA-semigroup S is denoted by CS(x) and defined as

CS(x) = 1 for all x in S.
Note that for any two fuzzy subsets f and S of S, f ⊆ S means that f(x) ≤ CS(x) for

all x in S.
A fuzzy subset f of an LA-semigroup S is called a fuzzy quasi-ideal of S if (f ◦ CS(x))∩

(CS(x) ◦ f) ⊆ f .



572

A fuzzy LA-subsemigroup f of an LA-semigroup S is called a fuzzy (1, 2)-ideal of S if
f((xa)(yz)) ≥ f(x) ∧ f(y) ∧ f(z) for all x, a, y and z ∈ S.

Let f and g be any two fuzzy subsets of an LA-semigroup S, then the product f ◦ g
is defined by,

(f ◦ g) (a) =

{ ∨
a=bc

{f(b) ∧ g(c)} , if there exist b, c ∈ S, such that a = bc.

0, otherwise.

The symbols f ∩ g and f ∪ g will means the following fuzzy subsets of S

(f ∩ g)(x) = min{f(x), g(x)} = f(x) ∧ g(x), for all x in S

and

(f ∪ g)(x) = max{f(x), g(x)} = f(x) ∨ g(x), for all x in S.

For a fuzzy subset f of an LA-semigroup S and α ∈ (0, 1], the set
fα = {x ∈ S : f(x) ≥ α} is called a level cut of f.
A fuzzyleft ideal f is called idempotent if f ◦ f = f.

2.1. Example. Let S = {a, b, c, d, e} be an LA-semigroup with left identity d with the
following multiplication table.

. a b c d e

a a a a a a
b a b b b b
c a b d e c
d a b c d e
e a b e c d

Note that S is non-commutative as ed 6= de and also S is non-associative because
(cc)d 6= c(cd).

Define a fuzzy subset f of S as follows: f(a) = 1 and f(b) = f(c) = f(d) = f(e) = 0,
then clearly f is a fuzzy two-sided ideal of S.

It is easy to see that every fuzzy left (right, two-sided) ideal of an LA-semigroup S is
a fuzzy LA-subsemigroup of S but the converse is not true in general. Let us define a
fuzzy subset f of S as follows: f(a) = 1, f(b) = 0 and f(c) = f(d) = f(e) = 0.5, then by
routine calculation one can easily check that f is a fuzzy LA-subsemigroup of S but it is
not a fuzzy left (right, two-sided) ideal of S because f(bd) � f(d) or f(db) � f(d).

2.2. Theorem. For an LA-semigroup S, the following statements are true.

(i) fα is a right (left, two-sided) ideal of S if f is a fuzzy right (left) ideal of S.
(ii) fα is a bi-(generalized bi-) ideal of S if f is a fuzzy bi-(generalized bi-) ideal of S.

Proof. (i): Let S be an LA-semigroup and let f be a fuzzy right ideal of S. If x, y ∈ S such
that x ∈ fα, then f(x) ≥ α and therefore f(xy) ≥ f(x) ≥ α implies that xy ∈ fα. This
shows that fα is a right ideal of S. If f is a fuzzy left ideal of S, then f(yx) ≥ f(x) ≥ α
implies that yx ∈ fα. This shows that fα is a left ideal of S.

(ii): Let S be an LA-semigroup and let f be a fuzzy bi-(generalized bi-) ideal of S. If
x, y and z ∈ S such that x and z ∈ fα, then f(x) ≥ α and f(z) ≥ α, therefore f((xy)z) ≥
f(x)∧ f(z) ≥ α implies that (xy)z ∈ fα. Which shows that fα is a generalized bi ideal of
S. Now let x, y ∈ fα, then f(x) ≥ α and f(y) ≥ α and therefore f(xy) ≥ f(x)∧ f(y) ≥ α
implies that xy ∈ fα. Thus fα is a bi ideal of S.

Note that the converses of (i) and (ii) are not true in general. Define a fuzzy subset
f of an LA-semigroup S in Example 2.1 as follows: f(a) = 0.2, f(b) = 0.9, f(c) = f(d) =
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f(e) = 0. Let α = 0.2, then it is easy to see that fα = {a, b} and one can easily verify from
Example 2.1 that {a, b} is a right (left, generalized bi-, bi-) ideal of S but f(ba) � f(b)
(f(ab) � f(b), f((ba)b) � f(b)) implies that f is not a fuzzy right (left, generalized bi-,
bi) ideal of S.

2.3. Lemma. [3] Every fuzzy right ideal of an LA-semigroup S with left identity becomes
a fuzzy left ideal of S.

Note that the converse of the above is not true in general. If we define a fuzzy
subset f of an LA-semigroup S in Example 3.1 as follows: f(a) = 0.8, f(b) = 0.5,
f(c) = 0.4, f(d) = 0.3 and f(e) = 0.6, then it is easy to observe that f is a fuzzy left
ideal of S but it is not a fuzzy right ideal of S, because f(bd) � f(b).

Assume that S is an LA-semigroup and let F (S) denote the set of all fuzzy subsets of
S, then (F (S), ◦) is an LA-semigroup and satisfies all the basic laws of an LA-semigroup
[3].

2.4. Lemma. [3] For a fuzzy subset f of an LA-semigroup S, the following conditions
are true.

(i) f is a fuzzy left (right) ideal of S if and only if CS(x) ◦ f ⊆ f (f ◦ CS(x) ⊆ f).
(ii) f is a fuzzy LA-subsemigroup of S if and only if f ◦ f ⊆ f.

2.5. Lemma. [3] For any non-empty subsets A and B of an LA-semigroup S, the fol-
lowing conditions are true.

(i) CA ◦ CB = CAB

(ii) CA ∩ CB = CA∩B

2.6. Lemma. [3] Let A be a non-empty subset of an LA-semigroup S. Then the following
properties holds.

(i) A is an LA-subsemigroup of S if and only if CA is a fuzzy LA-subsemigroup of S.
(ii) A is a left (right, two-sided) ideal of S if and only if CA is a fuzzy left (right,

two-sided) ideal of S.

3. Fuzzy ideals in Right Regular LA-semigroups
An element a of an LA-semigroup S is called a right regular if there exists x ∈ S such

that a = a2x and S is called right regular if every element of S is right regular.
An LA-semigroup considered in Example 2.1 is right regular because, a = a2d, b = b2c,

c = c2c, d = d2d, e = e2e.
Note that in an LA-semigroup S with left identity, S = S2.

3.1. Example. Let us consider an LA-semigroup S = {a, b, c, d, e} with left identity d
in the following Cayley’s table.

. a b c d e

a a a a a a
b a e e c e
c a e e b e
d a b c d e
e a e e e e

Note that S is not right regular because for c ∈ S, there does not exists x ∈ S such
that c = c2x.

Note that if f is any fuzzy subset of an LA-semigroup S with left identity then S is
right regular if f(x) = f(x2) holds for all x in S. But the converse is not true in general.
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3.2. Example. Let S = {a, b, c, d, e} be a right regular LA-semigroup with left identity
d in the following multiplication table.

. a b c d e

a b a a a a
b a b b b b
c a b c d e
d a b e c d
e a b d e c

Let us consider a right regular LA-semigroup S in Example 3.2. Define a fuzzy subset
f of S as follows: f(a) = 0.6, f(b) = 0.2 and f(c) = f(d) = f(e) = 0.9, then it is easy to
see that f(a) 6= f(a2) for a ∈ S.

3.3. Lemma. If f is a fuzzy interior ideal of a right regular LA-semigroup S with left
identity, then f(ab) = f(ba) holds for all a, b in S.

Proof. Assume that f is a fuzzy interior ideal of a right regular LA-semigroup S with left
identity and let a ∈ S, then a = a2x for some x in S. Now by using (1), (4) and (3), we
have

f(a) = f((aa)x) = f((xa)a) = f((xa)((aa)x)) = f((aa)((xa)x))

= f((ea2)((xa)x)) ≥ f(a2) = f(aa) = f(a((aa)x))

= f((aa)(ax)) = f((xa)(aa)) = f((xa)a2) ≥ f(a).

Which implies that f(a) = f(a2) for all a in S.
Now by using (3), (4) and (2), we have

f(ab) = f((ab)2) = f((ab)(ab)) = f((ba)(ba))

= f((e(ba))(ba)) ≥ f(ba) = f(b((aa)x))

= f((aa)(bx)) = f((ab)(ax))

= f((e(ab))(ax)) ≥ f(ab).

The converse is not true in general. For this, let us define a fuzzy subset f of a
right regular LA-semigroup S in Example 2.1 as follows: f(a) = 0.1, f(b) = 0.2, f(c) =
0.6, f(d) = 0.4 and f(e) = 0.6, then it is easy to see that f(ab) = f(ba) holds for all a
and b in S but f is not a fuzzy interior ideal of S because f((ab)c) � f(b).

3.4. Lemma. For any fuzzy subset f of a right regular LA-semigroup S, CS(x) ◦ f = f.

Proof. Since S is right regular, therefore for each a in S there exists x such that a = a2x,
now using left invertive law, we get a = (xa)a. Then

CS(x) ◦ f(a) =
∨

a=(xa)a

{CS(x)(xa) ∧ f(a)} =
∨

a=(xa)a

{1 ∧ f(a) = f(a).

Hence CS(x) ◦ f = f .

3.5. Lemma. In a right regular LA-semigroup S, f ◦CS(x) = f and CS(x) ◦ f = f holds
for every fuzzy two-sided ideal f of S.
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Proof. Let S be a right regular LA-semigroup. Now for every a ∈ S there exists x ∈ S

such that a = a2x. Then by using (1), we have a = (aa)x = (xa)a, therefore

(f ◦ CS(x))(a) =
∨

a=(xa)a

{f(xa) ∧ CS(x)(a)} ≥ f(xa) ∧ CS(x)(a)

≥ f(a) ∧ 1 = f(a).

It is easy to observe from Lemma 3.4 that CS(x) ◦ f = f holds for every fuzzy
two-sided ideal f of S.

3.6. Corollary. In a right regular LA-semigroup S, CS(x) ◦ CS(x) = CS(x).

Proof. It is simple.

3.7. Lemma. A fuzzy subset f of a right regular LA-semigroup S is a fuzzy left ideal of
S if and only if it is a fuzzy right ideal of S.

Proof. Assume that f is a fuzzy left ideal of a right regular LA-semigroup S with left
identity and let a, b ∈ S, then a = a2x for some x in S. Now by using (1), we have

f(ab) = f((a2x)b) = f((bx)a2) ≥ f(a2) = f(aa) ≥ f(a).
This shows thatf is a fuzzy right ideal of S.
Similarly we can show that every fuzzy right ideal of S is a fuzzy left ideal of S.

3.8. Theorem. In a right regular LA-semigroup S with left identity, the following state-
ments are equivalent.

(i) f is a fuzzy (1, 2)-ideal of S.
(ii) f is a fuzzy two-sided ideal of S.

Proof. (i) =⇒ (ii) : Assume that f is a fuzzy (1, 2)-ideal of a right regular LA-semigroup
S with left identity and let a ∈ S, then there exists y ∈ S such that a = a2y. Now by
using (4), (1) and (3), we have

f(xa) = f(x((aa)y)) = f((aa)(xy)) = f((((aa)y)a)(xy))

= f(((ay)(aa))(xy)) = f(((aa)(ya))(xy))

= f(((xy)(ya))(aa)) = f(((ay)(yx))a2)

= f(((((aa)y)y)(yx))a2) = f((((yy)(aa))(yx))a2)

= f((((aa)y2)(yx))a2) = f((((yx)y2)(aa))a2)

= f((a(((yx)y2)a))(aa)) ≥ f(a) ∧ f(a) ∧ f(a) = f(a).

This shows that f is a fuzzy left ideal of S and by using Lemma 3.7, f is a fuzzy
two-sided ideal of S.

(ii) =⇒ (i) is obvious.

3.9. Theorem. In a right regular LA-semigroup S with left identity, the following state-
ments are equivalent.

(i) f is a fuzzy (1, 2)-ideal of S.
(ii) f is a fuzzy quasi ideal of S.

Proof. (i) =⇒ (ii) is an easy consequence of Theorem 3.8 and Lemma 3.5.
(ii) =⇒ (i) : Assume that f is a fuzzy quasi ideal of a right regular LA-semigroup S

with left identity and let a ∈ S, then there exists x ∈ S such that a = a2x. Now by using
(1), (3) and (4), we have

a = (aa)x = (xa)a = (xa)(ea) = (ae)(ax) = a((ae)x),
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therefore

(f ◦ CS(x))(a) =
∨

a=a((ae)x)

{f(a) ∧ CS(x)((ae)x)} ≥ f(a) ∧ 1 = f(a) .

Now by using Lemmas 3.4, 3.6 and (2), we have
f ◦ CS(x) = (CS(x) ◦ f) ◦ (CS(x) ◦ CS(x)) = (CS(x) ◦ CS(x)) ◦ (f ◦ CS(x))

= CS(x) ◦ (f ◦ CS(x)) ⊇ CS(x) ◦ f .
Which shows that CS(x) ◦ f ⊆ (f ◦CS(x))∩ (CS(x) ◦ f). As f is a fuzzy quasi ideal of

S, thus we get CS(x) ◦ f ⊆ f . Now by using Lemmas 2.4 and 3.7, f is a fuzzy two-sided
ideal of S. Thus by Theorem 3.8, f is a fuzzy (1, 2)-ideal of S.

3.10. Theorem. In a right regular LA-semigroup S with left identity, the following
statements are equivalent.

(i) f is a fuzzy bi-ideal of S.
(ii) f is a fuzzy (1, 2)-ideal of S.

Proof. (i) =⇒ (ii) : Assume that S is a right regular LA-semigroup with left identity and
let x, a, y, z ∈ S, then there exists x

′
∈ S such that x = x2x

′
. Let f be a fuzzy bi-ideal of

S, then by using (3), (1) and (4), we have

f((xa)(yz)) = f((zy)(ax)) = f(((ax)y)z)

≥ f((ax)y) ∧ f(z) ≥ f(ax) ∧ f(y) ∧ f(z)

= f(a((xx)x
′
)) ∧ f(y) ∧ f(z)

= f((xx)(ax
′
)) ∧ f(y) ∧ f(z)

= f(((ax
′
)x)x) ∧ f(y) ∧ f(z)

= f(((ax
′
)((xx)x

′
))x) ∧ f(y) ∧ f(z)

= f(((ax
′
)((xx)(ex

′
)))x) ∧ f(y) ∧ f(z)

= f(((ax
′
)((x

′
e)(xx)))x) ∧ f(y) ∧ f(z)

= f(((ax
′
)(x((x

′
e)x)))x) ∧ f(y) ∧ f(z)

= f(x((ax
′
)((x

′
e)x))x) ∧ f(y) ∧ f(z)

≥ f(x) ∧ f(x) ∧ f(y) ∧ f(z)
= f(x) ∧ f(y) ∧ f(z).

Which shows that f is a fuzzy (1, 2)-ideal of S.
(ii) =⇒ (i) : Again let S be a right regular LA-semigroup with left identity, then for

any a, b, x and y ∈ S there exist a
′
, b
′
, x
′
and y

′
∈ S such that a = a2a

′
, b = b2b

′
,

x = x2x
′
and y = y2y

′
. Let f be a fuzzy (1, 2)-ideal of S, then by using (4) and (1), we

have

f((xa)y) = f(xa)((yy)y
′
) = (yy)((xa)y

′
) = (y

′
(xa))(yy)

= (x(y
′
a))(yy) ≥ f(x) ∧ f(y) ∧ f(y) ≥ f(x) ∧ f(y).

Which shows that f is a fuzzy bi-ideal of S.

3.11. Theorem. In a right regular LA-semigroup S with left identity, the following
statements are equivalent.

(i) f is a fuzzy (1, 2)-ideal of S.
(ii) f is a fuzzy interior ideal of S.
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Proof. (i) =⇒ (ii) : Let S be a right regular LA-semigroup with left identity and let
x, a, y ∈ S. Then for a there exists u ∈ S such that a = a2u. Let f be a fuzzy (1, 2)-ideal
of S. Then by using (4), (1), (2) and (3), we have

(xa)y = (x(a2u))y = (a2(xu))y = (y(xu)(aa) = (y(xu)((a2u)(a2u))

= (y(xu)((a2a2)(uu)) = (y(xu)((uu)(a2a2)) = (y(xu)(a2(u2a2))

= a2((y(xu)(u2a2)) = ((u2a2)(y(xu))a2 = ((a2u2)(y(xu))a2

= (((y(xu)u2)a2)a2 = (((y(xu)u2)(aa))(aa) = ((a((y(xu)u2)a))(aa)

= (av)(aa), where v = (y(xu)u2)a.

Therefore f((xa)y) = f((av)(aa)) ≥ f(a)∧f(a)∧f(a). Which shows that f is a fuzzy
interior ideal of S.

(ii) =⇒ (i) : Again let S be a right regular LA-semigroup with left identity and let
x, a, y, z ∈ S, then there exist x

′
and z

′
∈ S such that x = x2x

′
and z = z2z

′
. Now by

using (3), we have

f((xa)(yz)) = f((zy)(ax)) ≥ f(y).

Now by using (1) and (3), we have

f((xa)(yz)) = f((((xx)x
′
)a)(yz)) = f(((ax

′
)(xx))(yz))

= f(((xx)(x
′
a))(yz)) = f((((x

′
a)x)x)(yz)) ≥ f(x).

Now by using (4), we have

f((xa)(yz)) = f((xa)(y(((zz)z
′
)))) = f((xa)((zz)(yz

′
)))

= f((zz)((xa)(yz
′
))) ≥ f(z).

Thus we get that f((xa)(yz)) ≥ f(x) ∧ f(y) ∧ f(z).
Let a,b ∈ S then there exist a

′
,b
′
∈ S such that a = a2a

′
and b = b2b

′
. Now by using

(1), (3) and (4), we have

f(ab) = f(((aa)a
′
)b) = f((ba

′
)(aa)) = f((aa)(a

′
b)) ≥ f(a)

and

f(ab) = f(a((bb)b
′
)) = f((bb)(ab

′
)) ≥ f(b).

Thus f is a fuzzy (1, 2)-ideal of S.

3.12. Corollary. Fuzzy two-sided ideals, fuzzy bi-ideals, fuzzy generalized bi-ideals, fuzzy
(1, 2)-ideals, fuzzy interior ideals and fuzzy quasi-ideals coincide in a right regular LA-
semigroup with left identity.

3.13. Lemma. In a right regular LA-semigroup S with left identity, the following state-
ments are equivalent.

(i) f is a fuzzy quasi ideal of S.
(ii) (f ◦ CS(x)) ∩ (CS(x) ◦ f) = f.

Proof. (i) =⇒ (ii) is followed by Lemma 3.5 and Theorem 3.9.
(ii) =⇒ (i) is obvious.

3.14. Theorem. In a right regular LA-semigroup S with left identity, the following
statements are equivalent.

(i) f is a fuzzy bi-(generalized bi-) ideal of S.
(ii) (f ◦ CS(x)) ◦ f = f and f ◦ f = f.
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Proof. (i) =⇒ (ii) : Assume that f is a fuzzy bi-ideal of a right regular LA-semigroup S

with left identity and let a ∈ S, then there exists x ∈ S such that a = a2x. Now by using
(1), (4) and (3), we have

a = (aa)x = (xa)a = (x((aa)x))a = ((aa)(xx))a

= ((xx)(aa))a = (((aa)x)x)a = (((xa)a)x)a

= (((x((aa)x))a)x)a = ((((aa)(xx))a)x)a

= ((((xx)(aa))a)x)a = (((a(x2a))a)x)a.

Therefore

((f ◦ CS(x)) ◦ f)(a) =
∨

a=(((a(x2a))a)x)a

{(f ◦ CS(x))(((a(x
2a))a)x) ∧ f(a)}

≥
∨

((a(x2a))a)x=((a(x2a))a)x

{f((a(x2a))a) ∧ CS(x)(x)} ∧ f(a)

≥ f((a(x2a))a) ∧ 1 ∧ f(a)
≥ f(a) ∧ f(a) ∧ f(a) = f(a).

Now by using (1), (4) and (3), we have

a = (aa)x = (xa)a = (x((aa)x))a = ((aa)(xx))a

= ((xx)(aa))a = (a(x2a))a.

Therefore

((f ◦ CS(x)) ◦ f)(a) =
∨

a=(a(x2a))a

{(f ◦ CS(x))((a(x
2a))) ∧ f(a)}

=
∨

a=(a(x2a))a

 ∨
a(x2a)=a(x2a)

{
f(a) ∧ CS(x)(x

2a)
} ∧ f(a)

=
∨

a=(a(x2a))a

 ∨
a(x2a)=a(x2a)

{f(a) ∧ 1}

 ∧ f(a)
=

∨
a=(a(x2a))a

 ∨
a(x2a)=a(x2a)

f(a)

 ∧ f(a)
=

∨
a=(a(x2a))a

{f(a) ∧ f(a)} = f(a).

Thus (f ◦ CS(x)) ◦ f = f.
Again by using (1), (4) and (3), we have

a = (aa)x = (xa)a = (x((aa)x))a = ((aa)(xx))a

= (((xx)a)a)a = (((xx)((aa)x))a)a

= (((xx)((xa)a))a)a = (((xx)((ae)(ax)))a)a

= (((xx)(a((ae)x)))a)a = ((a((xx)((ae)x)))a)a

Therefore

(f ◦ f)(a) =
∨

a=((a((xx)((ae)x)))a)a

{f((a((xx)((ae)x)))a) ∧ f(a)}

≥ f((a((xx)((ae)x)))a) ∧ f(a)
≥ f(a) ∧ f(a) ∧ f(a) = f(a),
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therefore by using Lemma 2.4, f ◦ f = f.
(ii) =⇒ (i) : Let f be a fuzzy subset of a right regular LA-semigroup S, then

f((xy)z) = ((f ◦ CS(x)) ◦ f)((xy)z)

=
∨

(xy)z=(xy)z

{(f ◦ CS(x))(xy) ∧ f(z)}

≥
∨

xy=xy

{f(x) ∧ CS(x)(y)} ∧ f(z)

≥ f(x) ∧ 1 ∧ f(z) = f(x) ∧ f(z).

Since f ◦ f = f, therefore by Lemma 2.4, f is a fuzzy LA-subsemigroup of S. This
shows that f is a fuzzy bi ideal of S.

3.15. Theorem. In a right regular LA-semigroup S with left identity, the following
statements are equivalent.

(i) f is a fuzzy interior ideal of S.
(ii) (CS(x) ◦ f) ◦ CS(x) = f.

Proof. It is simple.

3.16. Theorem. In a right regular LA-semigroup S with left identity, the following
statements are equivalent.

(i) f is a fuzzy (1, 2)-ideal of S.
(ii) (f ◦ CS(x)) ◦ (f ◦ f) = f and f ◦ f = f.

Proof. (i) =⇒ (ii) : Let f be a fuzzy (1, 2)-ideal of a right regular LA-semigroup S with
left identity and let a ∈ S, then there exists x ∈ S such that a = a2x. Now by using (1)
and (4), we have

a = (aa)x = (xa)a = (xa)((aa)x) = (aa)((xa)x)

= (a((aa)x))((xa)x) = ((aa)(ax))((xa)x)

= (((xa)x)(ax))(aa) = (a(((xa)x)x))(aa).

Therefore

((f◦CS(x))◦(f◦f))(a) =
∨

a=(a(((xa)x)x))(aa)

{(f◦CS(x))(a(((xa)x)x))∧(f◦f)(aa)}.

Now

(f ◦ CS(x))(a(((xa)x)x)) =
∨

a(((xa)x)x)=a(((xa)x)x)

{f(a) ∧ CS(x)(((xa)x)x)}

≥ f(a) ∧ CS(x)(((xa)x)x) = f(a)

and

(f ◦ f)(aa) =
∨

aa=aa

{f(a) ∧ f(a)} ≥ f(a).

Thus we get

((f ◦ CS(x)) ◦ (f ◦ f))(a) ≥ f(a).
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Now by using (4), (1) and (3), we have

a = (aa)x = (((aa)x)((aa)x))x = ((aa)(((aa)x)x))x

= ((aa)((xx)(aa)))x = ((aa)(x2(aa)))x

= (x(x2(aa)))(aa) = (x(a(x2a)))(aa)

= (a(x(x2a)))(aa) = (a(x(x2((aa)x))))(aa)

= (a(x((aa)x3)))(aa).

Therefore

((f◦CS(x))◦(f◦f))(a) =
∨

a=(a(x((aa)x3)))(aa)

{(f◦CS(x))(a(x((aa)x
3)))∧(f◦f)(aa)}.

Now

(f ◦ CS(x))(a(x((aa)x
3))) =

∨
a(x((aa)x3))=a(x((aa)x3))

{
f(a) ∧ CS(x)(x((aa)x

3))
}

=
∨

a(x((aa)x3))=a(x((aa)x3))

f(a)

and

(f ◦ f)(aa) =
∨

aa=aa

{f(a) ∧ f(a)} =
∨

aa=aa

f(a).

Therefore

(f ◦ CS(x))(a(x((aa)x
3))) ∧ (f ◦ f)(aa) =

∨
a(x((aa)x3))=a(x((aa)x3))

f(a) ∧
∨

aa=aa

f(a)

=
∨

a(x((aa)x3))=a(x((aa)x3))

{f(a) ∧ f(a)} .

Thus from above, we get

((f ◦ CS(x)) ◦ (f ◦ f))(a) =
∨

a=(a(x((aa)x3)))(aa)

 ∨
a(x((aa)x3))=a(x((aa)x3))

{f(a) ∧ f(a)}


=

∨
a=(a(x((aa)x3)))(aa)

{f(a) ∧ f(a) ∧ f(a)}

≤
∨

a=(a(x((aa)x3)))(aa)

f((a(x((aa)x3)))(aa)) = f(a).

Therefore (f ◦ CS(x)) ◦ (f ◦ f) = f.
Now by using (1) and (4), we have

a = (aa)x = (xa)a = (x((aa)x))a = ((aa)(xx))a = ((a((aa)x))x2)a

= (((aa)(ax))x2)a = ((x2(ax))(aa))a = ((ax3)(aa))a.

Thus

(f ◦ f)(a) =
∨

a=((ax3)(aa))a

{
f(((ax3)(aa))) ∧ f(a)

}
≥ f(a) ∧ f(a) ∧ f(a) = f(a).

Now by using Lemma 2.4, f ◦ f = f.
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(ii) =⇒ (i) : Let f be a fuzzy subset of a right regular LA-semigroup S. Now since
f ◦ f = f, therefore by Lemma 2.4, f is a fuzzy LA-subsemigroup of S

f((xa)(yz)) = ((f ◦ CS(x)) ◦ (f ◦ f))((xa)(yz))
= ((f ◦ CS(x)) ◦ f)((xa)(yz))

=
∨

(xa)(yz)=(xa)(yz)

{(f ◦ CS(x))(xa) ∧ f(yz)} .

≥ (f ◦ CS(x))(xa) ∧ f(yz)

=
∨

(xa)=(xa)

{f(x) ∧ CS(x)(a)} ∧ f(yz)

≥ f(x) ∧ 1 ∧ f(y) ∧ f(z)
= f(x) ∧ f(y) ∧ f(z).

This shows that f((xa)(yz)) ≥ f(x)∧ f(y)∧ f(z), therefore f is a fuzzy (1, 2)-ideal of
S.

3.17. Theorem. Let S be an LA-semigroup with left identity, then the following condi-
tions are equivalent.

(i) S is right regular.
(ii) Every fuzzy left ideal of S is idempotent.

Proof. (i) =⇒ (ii) : Let S be an LA-semigroup with left identity. Let a ∈ S, then since S

is right regular so by using (1),

a = (aa)x = (xa)a.

Let f be a fuzzy left ideal of S, then clearly f ◦ f ⊆ f and therefore

(f ◦ f)(a) =
∨

a=(xa)a

{f((xa)a) ∧ f(a)} ≥ f(a) ∧ f(a) = f(a).

Thus f is idempotent.
(ii) =⇒ (i) : Assume that every fuzzy left ideal of an LA-semigroup S with left identity

is idempotent. Since Sa is a left ideal of S, therefore by Lemma 2.6, its characteristic
function CSa is a fuzzy left ideal of S. Since a ∈ Sa, therefore CSa(a) = 1. Now by using
the given assumption and Lemma 2.5, we have

CSa ◦ CSa = CSa and CSa ◦ CSa = C(Sa)2 .

Thus we have (C(Sa)2)(a) = (CSa)(a) = 1, which implies that a ∈ (Sa)2. Now by using
(3) and (2), we have

a ∈ (Sa)2 = (Sa)(Sa) = (aS)(aS) = a2S.

This shows that S is right regular.

Note that if an LA-semigroup has a left identity then CS(x) ◦ CS(x) = CS(x).

3.18. Theorem. For an LA-semigroup S with left identity, the following conditions are
equivalent.

(i) S is right regular.
(ii) f = (CS(x) ◦ f)2, where f is any fuzzy left ideal of S.

Proof. (i) =⇒ (ii) : Assume that S is a right regular LA-semigroup and let f be any fuzzy
left ideal of S, then clearly CS(x) ◦ f is a fuzzy left ideal of S. Now by using Theorem
3.17, CS(x) ◦ f is idempotent and, therefore, we have

(CS(x) ◦ f)2 = CS(x) ◦ f ⊆ f.
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Now let a ∈ S, since S is right regular, therefore there exists x ∈ S such that a = a2x
and by using (1), we have

a = (aa)x = (xa)a = (xa)((aa)x) = (xa)((xa)a)

Therefore

(CS(x) ◦ f)2(a) =
∨

a=(xa)((xa)a)

{(CS(x) ◦ f)(xa) ∧ (CS(x) ◦ f)((xa)a)}

≥ (CS(x) ◦ f)(xa) ∧ (CS(x) ◦ f)((xa)a)

=
∨

xa=xa

{CS(x)(x) ∧ f(a)} ∧
∨

(xa)a=(xa)a

{CS(x)(xa) ∧ f(a)}

≥ CS(x)(x) ∧ f(a) ∧ CS(x)(xa) ∧ f(a) = f(a).

Thus we obtain f = (CS(x) ◦ f)2.
(ii) =⇒ (i) : Let f = (CS(x) ◦ f)2 holds for any fuzzy left ideal f of S, then by given

assumption, we have

f = (CS(x) ◦ f)2 ⊆ f2 = f ◦ f ⊆ CS(x) ◦ f ⊆ f.

Thus by using Theorem 3.17, S is right regular.

An LA-semigroup S is called a left (right) duo if every left (right) ideal of S is a
two-sided ideal of S and is called a duo if it is both a left and a right duo.

Consider an LA-semigroup S in Example 3.1, the right ideals of S are {a, b, c, e} and
{a, e} which are also two-sided ideals of S. Thus S is a right duo. On the other hand, the
left ideals of S are {a, b, e}, {a, c, e}, {a, b, c, e} and {a, e}. Note that S is not a left duo
because {a, b, e} and {a, c, e} are not the right ideals of S.

An LA-semigroups considered in Examples 2.1 and 3.2 are duo because in both ex-
amples, the only right (left, two-sided) ideals of S are {a, b}.

An LA-semigroup S is called a fuzzy left (right) duo if every fuzzy left (right) ideal of
S is a fuzzy two-sided ideal of S and is called a fuzzy duo if it is both a fuzzy left and a
fuzzy right duo.

By Lemma 3.7, every right regular LA-semigroup S with left identity is a fuzzy left
(right) duo.

3.19. Theorem. A right regular LA-semigroup S with left identity is a left (right) duo
if and only if it is a fuzzy left (right) duo.

Proof. Let a right regular LA-semigroup S be a left duo and assume that f is any fuzzy
left ideal of S. Let a, b ∈ S, then a ∈ (aa)S. Now Sa is a left ideal of S, therefore by
hypothesis, Sa is a two sided ideal of S. Therefore by using (1), we have

ab ∈ ((aa)S)b = ((Sa)a)b ⊆ ((Sa)S)S ⊆ (Sa).

Thus ab = ca for some c ∈ S. Now f(ab) = f(ca) ≥ f(a), implies that f is a fuzzy
right ideal of S and therefore S is a fuzzy left duo.

Conversely, assume that S is a fuzzy left duo and let L be any left ideal of S. Now
by Lemma 2.6, the characteristic function CL of L is a fuzzy left ideal of S. Thus by
hypothesis CL is a fuzzy two-sided ideal of S and by using Lemma 2.6, L is a two sided
ideal of S. Thus S is a left duo.

Now again let S be a right regular LA-semigroup such that S is a right duo and assume
that f is any fuzzy right ideal of S. Let a, b ∈ S, then there exists x ∈ S such that b = b2x.
Now clearly b2 ∈ b2S and since b2S is a right ideal of S, therefore

b = b2x ∈ (b2S)S ⊆ b2S.
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As b2S is a right ideal of S, therefore by hypothesis b2S is a two sided ideal of S. Now by
using (1), we have

ab ∈ a(b2S) ⊆ S(b2S) ⊆ b2S.

Thus ab = (bb)c for some c ∈ S. Now f(ab) = f((bb)c) ≥ f(b), implies that f is a fuzzy
left ideal of S and therefore S is a fuzzy right duo.

The Converse is simple.

3.20. Theorem. Let S be a right regular LA-semigroup with left identity, then the fol-
lowing statements are equivalent.

(i) f is a fuzzy left ideal of S.
(ii) f is a fuzzy right ideal of S.
(iii) f is a fuzzy two-sided ideal of S.
(iv) f is a fuzzy bi-ideal of S.
(v) f is a fuzzy generalized bi-ideal of S.
(vi) f is a fuzzy (1, 2)-ideal of S.
(vii) f is a fuzzy interior ideal of S.
(viii) f is a fuzzy quasi ideal of S.
(ix) f ◦ CS(x) = f and CS(x) ◦ f = f.

Proof. (i) =⇒ (ix) : Let f be a fuzzy left ideal of a right regular LA-semigroup S. Let
a ∈ S, then there exists a

′
∈ S such that a = a2a

′
. Now by using (1) and (3), we have

a = (aa)a
′
= (a

′
a)a and a = (aa)a

′
= (aa)(ea

′
) = (a

′
e)(aa).

Therefore

(f ◦ CS(x))(a) =
∨

a=(a
′
a)a

{
f(a

′
a) ∧ CS(x)(a)

}
≥ f(a

′
a) ∧ 1 ≥ f(a)

and

(CS(x) ◦ f)(a) =
∨

a=(a
′
e)(aa)

{
CS(x)(a

′
e) ∧ f(aa)

}
≥ 1 ∧ f(aa) ≥ f(a).

Now by using Lemmas 3.7 and 2.4, we get that f ◦ CS(x) = f and CS(x) ◦ f = f.
(ix) =⇒ (viii) is obvious.
(viii) =⇒ (vii) : Let f be a fuzzy quasi ideal of a right regular LA-semigroup S. Now

for a ∈ S there exists a
′
∈ S such that a = a2a

′
and therefore by using (3) and (4), we

have

(xa)y = (xa)(ey) = (ye)(ax) = a((ye)x)

also

(xa)y = (x((aa)a
′
))y = ((aa)(xa

′
))y = ((a

′
x)(aa))y

= (a((a
′
x)a))y = (y((a

′
x)a))a.

Since f is a fuzzy quasi ideal of S, therefore by Lemma 3.13, we have

f((xa)y) = ((f ◦ CS(x))∩(CS(x) ◦ f))((xa)y) = (f ◦ CS(x)) ((xa)y)∧(CS(x) ◦ f) ((xa)y).

Now

(f ◦ CS(x)) ((xa)y) =
∨

(xa)y=a((ye)x)

{f(a) ∧ CS(x)((ye)x)} ≥ f(a)
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and

(CS(x) ◦ f) ((xa)y) =
∨

(xa)y=(y((a
′
x)a))a

{
CS(x)(y((a

′
x)a)) ∧ f(a)

}
≥ f(a).

Which implies that f((xa)y) ≥ f(a). Thus f is a fuzzy interior ideal of S.
(vii) =⇒ (vi) is followed by Theorem 3.11.
(vi) =⇒ (v) is followed by Theorem 3.10.
(v) =⇒ (iv) : It is simple.
(iv) =⇒ (iii) is followed by Theorems 3.10 and 3.8.
(iii) =⇒ (ii) and (ii) =⇒ (i) are easy consequences of Lemma 3.7.

3.21. Theorem. For an LA-semigroup S with left identity, the following conditions are
equivalent.

(i) S is right regular.
(ii) f ∩ g ⊆ f ◦ g, for every fuzzy right ideal f and g of S, where f and g are fuzzy

semiprime.
(iii) f ∩ g ⊆ f ◦ g, for every fuzzy left ideal f and g of S, where f and g are fuzzy

semiprime.

Proof. (i)⇒ (iii) : Assume that f and g are fuzzy left ideals of S with left identity. Let
a be any element in S, since S is right regular, so exists x in S, such that a = a2x. Now
by using (1), (4), (3) and (2), we have

a = (aa)x = (xa)a = (xa)(a2x) = a2((xa)x)

= (aa)((xa)x) = (x(xa))(aa) = (xa)((xa)a).

Therefore

(f ◦ g)(a) =
∨

a=(xa)((xa)a)

{f(xa) ∧ g((xa)a)} ≥ f(xa) ∧ g((xa)a)

≥ f(a) ∧ g(a) = (f ∩ g)(a).

(iii)⇒ (ii) can be followed from Lemma 2.3.
(ii) ⇒ (i) : Assume that f and g are any fuzzy left ideals of S with left identity and

let R and R
′
be any right ideals of S, then by Lemma 2.6, CR and CR′ are fuzzy right

ideals of S. Let a ∈ R ∩R
′
,therefore by Lemma 2.5 and given assumption, we have

1 = CR∩R′ (a) = (CR ∩ CR′ )(a) ⊆ (CR ◦ CR′ )(a) = (CRR′ )(a),

which implies that R ∩ R
′
⊆ RR

′
. Since f and g are fuzzy semiprime, so R and R

′

are fuzzy semiprime. As a2S is a right ideal of S and clearly a2 ∈ a2S, therefore a ∈ a2S.
Now by using (4), we have

a ∈ a2S ∩ a2S ⊆ (a2S)(a2S) = a2((a2S)S) ⊆ a2S.

This shows that S is right regular.

A subset A of an LA-semigroup S is called semiprime if a2 ∈ A implies a ∈ A.
The subset {a, b} of an LA-semigroup S in Example 2.1 is semiprime.
A fuzzy subset f of an LA-semigroup S is called a fuzzy semiprime if f(a) ≥ f(a2) for

all a in S.
Let us define a fuzzy subset f of an LA-semigroup S in Example 3.1 as follows:

f(a) = 0.2, f(b) = 0.5, f(c) = 0.6, f(d) = 0.1 and f(e) = 0.4, then f is a fuzzy semiprime.

3.22. Lemma. For a right regular LA-semigroup S, the following holds.
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(i) Every fuzzy right ideal of S is a fuzzy semiprime.
(ii) Every fuzzy left ideal of S is a fuzzy semiprime if S has a left identity.

Proof. (i) : It is simple.
(ii) : Let f be a fuzzy left ideal of a right regular LA-semigroup S and let a ∈ S, then

there exists x ∈ S such that a = a2x. Now by using (3), we have

f(a) = f((aa)(ex)) = f((xe)a2) ≥ f(a2).
This shows that f is a fuzzy semiprime.

Right, left and two-sided ideals of an LA-semigroup S are semiprime if and only if
their characteristic functions are fuzzy semiprime.

3.23. Lemma. Let S be an LA-semigroup with left identity, then the following statements
are equivalent.

(i) S is right regular.
(ii) Every fuzzy right (left, two-sided) ideal of S is fuzzy semiprime.

Proof. (i) =⇒ (ii) : It follows from Lemma 3.22.
(ii) =⇒ (i) : Assume that S is an LA-semigroup with left identity and let every fuzzy

right (left, two-sided) ideal of S be fuzzy semiprime. Since a2S is a right and also a left
ideal of S, therefore, a2S is semiprime. Now clearly a2 ∈ a2S, therefore a ∈ a2S, which
shows that S is right regular.

3.24. Theorem. The following statements are equivalent for an LA-semigroup S with
left identity.

(i) S is right regular.
(ii) Every fuzzy right ideal of S is fuzzy semiprime.
(iii) Every fuzzy left ideal of S is fuzzy semiprime.

Proof. (i) =⇒ (iii) and (ii) =⇒ (i) are followed by Lemma 3.23.
(iii) =⇒ (ii) : Assume that S is an LA-semigroup and let f be a fuzzy right ideal of S,

then by using Lemma 2.3, f is a fuzzy left ideal of S and therefore by given assumption
f is a fuzzy semiprime.

3.25. Theorem. For an LA-semigroup S with left identity, the following conditions are
equivalent.

(i) S is right regular.
(ii) Every fuzzy two-sided ideal of S is fuzzy semiprime.
(iii) Every fuzzy bi-ideal of S is fuzzy semiprime.
(iv) f(a) = f(a2), for all fuzzy two sided ideal f of S, for all a ∈ S.
(v) f(a) = f(a2), for all fuzzy bi-ideal f of S, for all a ∈ S.

Proof. (i) ⇒ (v) : Assume that f is any fuzzy bi-ideal of S. Let a be any element of S.
Since S is right regular, so there exists x in S, such that a = a2x. Now by using (1), (4)
and (3), we have

f(a) = f((aa)x) = f((xa)a) = f((x(a2x)a) = f((a2x2)a)

= f((ax2)a2) = f(((a2x)x2)a2) = f(((x2x)a2)a2)

= f(((x2x)(aa))a2) = f(((aa)(x2x))a2)

= f((a2x3)a2) ≥ f(a2) ∧ f(a2) = f(aa)

= f((a2x)a) = f(((aa)(ex))a) = f(((xe)(aa))a)

= f((a((xe)a))a) ≥ f(a) ∧ f(a) = f(a).
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This shows that f(a) = f(a2) for all a in S. Clearly (v)⇒ (iv).
(iv)⇒ (i) : Since a2S is a two sided ideal of S with left identity, therefore it is clear to

see that a2 ∈ a2S. Now by Lemma 2.6, Ca2S is a fuzzy two sided ideal of S and by given
assumption , we have Ca2S (a) = Ca2S

(
a2
)
= 1. Therefore a ∈ a2S, which shows that S

is a right regular.
It is easy to observe that (ii) ⇐⇒ (iv) and (iii) ⇐⇒ (v).

3.26. Theorem. For an LA-semigroup S with left identity, the following conditions are
equivalent.

(i) S is right regular.
(ii) Every right ideal of S is semiprime.
(iii) Every fuzzy right ideal of S is fuzzy semiprime.
(iv) f(a) = f(a2), for every fuzzy right ideal f of S and for all a in S.
(v) f(a) = f(a2), for every fuzzy left ideal f of S and for all a in S.

Proof. (i) ⇒ (v) : Assume that f is a fuzzy left ideal of S. Let a be any element in S,
since S is right regular, so exists x in S, such that a = a2x. Now by using (3), we have

f(a2x) = f((aa)(ex)) = f((xe)(aa)) ≥ f(aa) ≥ f(a),
therefore f(a) = f(a2) for all a in S.
From Lemma 2.3, it is clear that (v)⇒ (iv) and (iv)⇒ (iii) are obvious.
Now (iii)⇒ (ii) and (ii)⇒ (i) are easy.
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Abstract

Let R be a commutative ring with identity andM a unitary R-module,
and n > 1 an integer number. As a generalization of the concept of
prime submodules, a proper submodule N ofM will be called n-almost
prime, if for r ∈ R and x ∈ M with rx ∈ N \ (N : M)n−1N, either
x ∈ N or r ∈ (N : M). We study n-almost prime submodules, in this
paper.
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1. Introduction
Throughout this paper all rings are commutative with identity and all modules are

unitary. Also we consider R to be a commutative ring with identity, M an R-module,
n > 1 a positive integer and N the set of positive integers.

Let N be a submodule of an R−module M. The set {r ∈ R|rM ⊆ N} is denoted by
(N : M) and particularly we denote {r ∈ R|rN = 0} by ann(N).

Let N a proper submodule of M. It is said that N is a prime submodule of M, if for
r ∈ R and x ∈ M with rx ∈ N, either x ∈ N or rM ⊆ N. In this case, if P = (N : M),
then P is a prime ideal. The concept of prime submodules has been studied in many
papers in recent years (see, for example, [3, 8]).
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2. n-Almost Prime Submodules
According to [1] an ideal I of R is called an n-almost prime ideal if for a, b ∈ R with

ab ∈ I \ In, either a ∈ I or b ∈ I. The case n = 2 is called an almost prime ideal and it
is due to [5]. We will generalize this definition to modules as follows:

Definition. Let n > 1 be an integer number. A proper submodule N ofM will be called
n-almost prime, if for r ∈ R and x ∈ M with rx ∈ N \ (N : M)n−1N, either x ∈ N or
r ∈ (N : M). A 2-almost prime submodule will be called an almost prime submodule.

Evidently every prime submodule is an n-almost prime submodule, for any integer
n > 1.

The following remark is an evident consequence of the definition of being almost prime
submodules.

Remark.
(i) The zero submodule is an almost prime submodule.
(ii) Let N be a proper submodule of M such that (N : M)n−1N = N . Then N is

n-almost prime.
(iii) Let N be a proper submodule of a torsion-free divisible module M. Then N is

prime if and only if N is n-almost prime.
(iv) Every n-almost prime submodule of an R-module M is m−almost prime, where

3 ≤ n and 1 < m ≤ n.

2.1. Lemma. Let M be an R-module, and I an ideal of R.
(i) If n ∈ N, then (IM : M)nM = InM.
(ii) If K is a submodule of M such that (K : M) is a maximal ideal, then K is a

prime submodule.
(iii) If 1 < n ∈ N such that M 6= IM = InM, then IM is an n-almost prime

submodule.
(iv) Let F be a free R-module. Then I is an n-almost prime ideal of R if and only

if IF is an n-almost prime submodule of F.
(v) Consider the R-module F = ⊕i∈NR and let N = I ⊕ (⊕1<i∈NR). Then the

following are equivalent:
(a) N is a prime submodule of F ;
(b) N is an n-almost prime submodule of F ;
(c) I is a prime ideal of R.

Proof. The proofs of (i),(ii) and (iii) are clear.
(iv) Consider F = ⊕i∈αR. It is easy to see that (IF : F ) = I, for any ideal I of

R. Then I is a proper ideal of R if and only if IF is a proper submodule of F. Also
(IF : F )n−1IF = InF.

Suppose I is a proper ideal of R, which is not n-almost prime. Then there exist
a, b ∈ R \ I such that ab ∈ I \ In. So a(b, 0, 0, 0, · · · ) ∈ IF \ InF, but a 6∈ I = (IF : F ),
also (b, 0, 0, 0, · · · ) 6∈ IF, that is IF is not an n-almost prime submodule.

For the converse, suppose I is an n-almost prime ideal of R.We consider the following
two cases:

Case 1. F = R⊕R, that is rank F = 2.
Let r(a, b) ∈ IF \ InF, where r ∈ R \ (IF : F ) = I and a, b ∈ R. Then ra, rb ∈ I, and

ra or rb is not in In.Without loss of generality, we may assume ra 6∈ In. Then ra ∈ I \In
and as r 6∈ I, a ∈ I. Similarly if rb 6∈ In, then b ∈ I and so (a, b) ∈ IF.

Now let rb ∈ In. Then r(a+ b) ∈ I, and ra 6∈ In, and so r(a+ b) ∈ I \ In, and r 6∈ I,
hence a+ b ∈ I. Also a ∈ I, therefore b ∈ I, that is (a, b) ∈ IF.

Case 2. F is a free module of arbitrary rank.
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If a ∈ F, then a ∈ ⊕ni=1Rai, where a1, a2, · · · , an ∈ F for some integer n. Now by
using case 1, we get the results.

(v) The proofs of (a) =⇒ (b) and (c) =⇒ (a) are straightforward.
(b) =⇒ (c) It is easy to see that I is an n-almost prime ideal of R. Now if I is not a

prime ideal, then there exists a, b ∈ R \ I such that ab ∈ I. Since I is an n-almost prime
ideal, ab ∈ In. Therefore a(b, 1, 1, 1, · · · ) ∈ N \ (N : M)n−1N, however a /∈ I = (N : M)
and (b, 1, 1, 1, · · · ) /∈ N, which is a contradiction.

Examples.
(1) If I is an ideal of R generated by idempotents, then by Lemma 2.1(iii), IM is an

almost prime submodule, or IM = M, for any R-module M. For a specific example, let
R′ be an arbitrary ring, and consider R =

∏∞
n=1 R

′ and I = ⊕∞n=1R
′, particularly I is an

almost prime ideal.
(2) Let R = K[[X3, X4, X5]], where K is a field, and I = 〈X3, X4〉. By [1, Example

11], I is an almost prime ideal, which is not a 3-almost prime ideal.
Let F be a free R-module. By Lemma 2.1(iv), the submodule IF is an almost prime

submodule, which is not a 3-almost prime submodule.
(3) Let R be an Artinian ring. Then for any ideal I of R, there exists an n ∈ N such

that In = In+1. So the ideal J = In is an almost prime ideal, and by Lemma 2.1(iv), for
any free R-module F, the submodule JF is an almost prime submodule.

Let M, M ′ be two R-modules. For a projective resolution
· · · f3−→P2

f2−→P1
f1−→P0

ε−→M −→ 0, of M, consider the complexes
· · · f3−→P2

f2−→P1
f1−→P0

f0=0−→0, and · · · f3⊗1−→P2 ⊗M ′
f2⊗1−→P1 ⊗M ′

f1⊗1−→P0 ⊗M ′
f0⊗1−→0.

Now recall that Torn(M,M ′) is defined to be Torn(M,M ′) = Ker(fn⊗1)
Im(fn+1⊗1)

.

2.2. Proposition. Let M be an R-module, and suppose that I is an ideal of R with
IM 6= M. If Tor1(R

I
, M
IM

) = 0, then IM is an n-almost prime submodule for each
1 < n ∈ N.

Proof. Put K = IM. By the short exact sequence 0 → K → M → M
K
→ 0, and

according to [7, Theorem 6.26], there is an exact sequence

0 = Tor1(
R

I
,
M

K
)
f−→R

I
⊗R K

g−→R

I
⊗RM.

The natural homomorphism h : K −→ M
IM

induces a homomorphism
h̄ : K

IK
−→ M

IM
. Also note that there is an isomorphism θL : R

I
⊗R L −→ L

IL
, for each

R-module L.
In the following diagram the rows are exact and it is easy to see that the rectangle is

commutative:

0 = Tor1(R
I
, M
K

)
f−→ R

I
⊗R K

g−→ R
I
⊗RM

↓ θK ↓ θM
0 −→ Kerh̄ −→ K

IK

h̄−→ M
IM

It follows that Kerh̄ ∼= Kerg = Imf = 0. On the other hand, Kerh̄ = IM
IK
, hence

K = IM = IK. Therefore by Lemma 2.1, (K : M)K = (IM : M)IM = I(IM : M)M =
I(IM) = IK = K, and evidently (K : M)K = K implies that K is an n-almost prime
submodule for each 1 < n ∈ N.

2.3. Corollary. Let M be an R-module and I an ideal of R with IM 6= M. Then IM
is an n-almost prime submodule of M, for each 1 < n ∈ N, if one of the following holds:

(i) M
IM

is a flat R
Ann M

-module.
(ii) R

I
is a flat R-module.
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Proof. Put K = IM. Note that (K:RM)
Ann M

= (K : R
Ann M

M), thus K is an n-almost
prime R-submodule of M, if and only if it is an n-almost prime R

Ann M
-submodule of M.

Therefore we can replace R
Ann M

with R for simplification.
We know that if R

I
or M

K
is a flat R-module, then Tor1(R

I
, M
K

) = 0 (see for example
[7, Theorem 7.2]). Now the proof follows from Proposition 2.2.

The following example shows that the converse of Corollary 2.3 is not necessarily true.

Example. Let M = R = Z, and I = 2Z. Then evidently 2Z is a prime ideal [resp.
submodule] of R [resp. the R-module M ], with Ann M = 0. However R

I
is not a flat

R-module, since it is not torsion-free.

Recall that a ring R is called a Von Neumann regular ring, if for any a ∈ R, Ra = Ra2.
By [7, Corollary 4.10], every semi-simple ring is a Von Neumann regular ring.

2.4. Corollary. Let M be an R-module, where R is a Von Neumann regular ring and
suppose I is an ideal of R. If IM 6= M, then IM is an n-almost prime submodule for
each 1 < n ∈ N.

Proof. According to [7, Theorem 4.9], every module over a Von Neumann regular ring
is flat. So the proof is given by Corollary 2.3.

2.5. Lemma. Let N be an n-almost prime submodule of M.

(i) If there exist x ∈ M \ N and r ∈ R \ (N : M) with rx ∈ N , then rN ∪ (N :
M)x ⊆ (N : M)n−1N.

(ii) If 0 6= x+N ∈ M
N
, where x ∈M, then (ann(x+N))N ⊆ (N : M)N.

(iii) (N : M)N = (
⋃
x∈M\N ann(x+N))N.

Proof. (i) As N is n-almost prime, rx ∈ (N : M)n−1N. Let y be an arbitrary element
of N. Then y + x /∈ N and r(y + x) = ry + rx ∈ N and since N is n-almost prime,
r(y + x) ∈ (N : M)n−1N. Therefore ry ∈ (N : M)n−1N, and so rN ⊆ (N : M)n−1N.

Now let s be an arbitrary element of (N : M). Clearly r+s /∈ (N : M) and (r+s)x ∈ N
and as N is n-almost prime, (r + s)x ∈ (N : M)n−1N. Then since rx ∈ (N : M)n−1N,
sx ∈ (N : M)n−1N. Hence (N : M)x ⊆ (N : M)n−1N.

(ii) Let r ∈ ann(x+N). Then rx ∈ N. If r ∈ (N : M), then clearly rN ⊆ (N : M)N .
If r /∈ (N : M), then in this case by part (i), rN ⊆ (N : M)n−1N ⊆ (N : M)N.

(iii) Evidently (N : M) ⊆
⋃
x∈M\N ann(x+N). Then by part (ii) we have,

(N : M)N ⊆ (
⋃
x∈M\N ann(x+N))N ⊆

⋃
x∈M\N ( ann(x+N)N) ⊆ (N : M)N.

2.6. Proposition. Let I be an ideal of a ring R and N a submodule of an R-module
M.

(i) If IM 6= IN, IN 6= N, then K = IN is n-almost prime if and only if K = (K :
M)n−1K.

(ii) If for some positive integer k > 1, Ik−1M 6= IkM = K, then K is n-almost prime
if and only if K = (K : M)n−1K. Consequently in this case K is almost prime
if and only if K is n-almost prime, for any (or some) positive integer n ≥ 3.

(iii) Let R be an integral domain and M a Noetherian module with ann(N) = 0.
Then for every proper ideal I of R with IM 6= IN, IN is not n-almost prime.

Proof. (i) If K = (K : M)n−1K, then clearly K is n-almost prime. Now assume K is
n-almost prime. Evidently K is almost prime. If K 6= (K : M)K, then consider a ∈ I
and x ∈ N, where ax 6∈ (K : M)K. Then since ax ∈ IN = K \ (K : M)K, either
a ∈ (K : M) or x ∈ K. Let a ∈ (K : M). As K = IN ⊂ IM, I 6⊆ (K : M) and so we
can choose an element r ∈ I \ (K : M). As rx ∈ IN = K, Lemma 2.5(i) implies that
(K : M)x ⊆ (K : M)K, and so ax ∈ (K : M)K.
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Now suppose that x ∈ K. By our assumption N 6⊆ K, hence there exists z ∈ N \K.
Note that az ∈ IN = K. Again by Lemma 2.5(i), aK ⊆ (K : M)K. Then in this case
ax ∈ (K : M)K.

Therefore K = (K : M)K, and consequently K = (K : M)n−1K.
(ii) We have IM 6= K, otherwise Ik−1M ⊆ IM = K = IkM ⊆ Ik−1M, which is

impossible. Now apply part (i) for N = Ik−1M.
(iii) Clearly N 6= IN, otherwise by Nakayama’s lemma, there exists s ∈ I such that

(s+ 1)N = 0 and since ann(N) = 0, 1 = −s ∈ I, which is a contradiction with the fact
that I 6= R.

Note that (IN : M)N ⊆ IN. If IN is n-almost prime, then IN is almost prime and so
by part (i), IN = (IN : M)IN = I(IN : M)N ⊆ I2N ⊆ IN, that is IN = I2N. Again
by Nakayama’s lemma, for some t ∈ I, (t+ 1)IN = 0. As ann(N) = 0, (t+ 1)I = 0. So
1 = −t ∈ I or I = 0, which is a contradiction with the fact that I 6= R and IM 6= IN.
Consequently IN is not n-almost prime.

Recall that a ring R is said to be ZPI-ring, if every non-zero proper ideal of R can be
written as a product of prime ideals of R (see [6, Chapters VI and IX]). According to
[6, Theorem 9.10], every ZPI-ring is a Noetherian ring.

2.7. Theorem. Let M be an R-module and I an ideal of R with IM 6= M.

(i) If R is a ZPI-ring and IM is an n-almost prime submodule, then IM = InM,
or IM = PM, where P is a prime ideal of R.

(ii) If R is a Dedekind domain, then IM is an n-almost prime submodule if and only
if IM = InM or IM is a prime submodule of M.

(iii) If (R,m) is a local ZPI-ring and IM is finitely generated, then IM is n-almost
prime if and only if IM = 0 or IM = mM.

Proof. (i) Let I = P k11 ...P kmm , where P ′i s are distinct prime ideals of R and k′is are
positive integers.

Assume that IM 6= PM for each prime ideal P of R. Then IM = P k11 ...P kmm M and
without loss of generality we may suppose that IM 6= P k1−1

1 P k22 ...P kmm M and (k1− 1) +
k2 + k3 + · · ·+ km > 0.

Put N = P k1−1
1 P k22 ...P kmm M and K = IM. Then K = P1N and P1M 6= K and K 6=

N, then by Proposition 2.6(i), K = (K : M)n−1K, that is IM = (IM : M)n−1(IM),
and by Lemma 2.1(i), (IM : M)n−1(IM) = I(IM : M)n−1M = InM. Thus IM = InM.

(ii) Let R be a Dedekind domain and suppose IM is an n-almost prime submodule.
By part (i), IM = InM, or IM = PM, where P is a prime ideal of R.

If IM = PM, where P is a prime ideal of R, then P = 0 or P is a maximal ideal of
R. Evidently P = 0 implies that InM = 0 = IM. Now suppose P is a maximal ideal
of R. As P ⊆ (PM : M), we have P = (PM : M) or PM = M. By our hypothesis
PM = IM 6= M, then (IM : M) = (PM : M) = P and so IM is a prime submodule of
M, by Lemma 2.1(ii).

Now for the converse, suppose that IM = InM. Then by Lemma 2.1(iii), IM is
n-almost prime.

(iii) If IM = mM, then by Lemma 2.1(ii), mM is a prime submodule. Also clearly 0
is an n-almost prime submodule.

Now assume that IM is an n-almost prime submodule of M. By [6, Theorem 9.10], R
is a Noetherian ring. If m = m2, by Nakayama’s lemma, m = 0, then R is a field and so
IM = 0.

Now let m2 6= m. Choose x ∈ m \m2. Then m2 ⊂ m2 + Rx ⊆ m. By [6, Theorem
9.10], there are no ideals of R strictly between m2 and m. So m2 + Rx = m and by
Nakayama’s lemma, m = Rx.
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Now let P be a non-zero prime ideal of R, and 0 6= y ∈ P. By the Krull Intersection
Theorem, we have ∩+∞

n=1m
n = 0. Thus there is a positive integer k such that y ∈ mk and

y 6∈ mk+1. Since y ∈ mk = Rxk, there exists an element u ∈ R such that y = uxk, and
since y 6∈ mk+1, u 6∈ m. Then u is a unit element of R. Hence xk = u−1y ∈ P. We know
that P is a prime ideal of R, so x ∈ P, that is m = P. Whence m is the only nonzero
prime ideal of R. Now by part (i), IM = InM or IM = mM

If IM = mM, then Lemma 2.1(ii) implies that IM is a prime submodule.
In case IM = InM, Nakayama’s lemma implies that IM = 0.

The following result is an obvious consequence of the above theorem.

2.8. Corollary. Let R be a ZPI-ring and I a proper ideal of R.

(i) I is an n-almost prime ideal if and only if I = In or I is a prime ideal.
(ii) If (R,m) is a local ring, then I is an n-almost prime ideal if and only if I =

0 or I = m.

2.9. Proposition. Let M be an R-module, and I an ideal which is a product of a finite
number of maximal ideals of R. Then IM is an n-almost prime submodule if and only if
IM is a prime submodule of M, or IM = InM.

Proof. For each maximal ideal P of R, we have P ⊆ (PM : M), then by Lemma 2.1(ii),
PM is a prime submodule or PM = M. Thus if IM is an n-almost prime submod-
ule, which is not a prime submodule, then there exist maximal ideals Pi, 1 ≤ i ≤ m
and positive numbers ki, 1 ≤ i ≤ m such that IM = P k11 P k22 · · ·P kmm M and IM 6=
P k1−1

1 P k22 · · ·P kmm M. Therefore if we put N = P k1−1
1 P k22 · · ·P kmm M and K = P1N, since

K is not prime, we get K 6= P1M, also K = P1N 6= N, hence by Proposition 2.6(i),
K = (K : M)n−1K.

Consequently by Lemma 2.1(i), K = IM = (IM : M)n−1(IM) = I(IM : M)n−1M =
InM.

For the converse suppose IM = InM. Then according to Lemma 2.1(iii), IM is n-
almost prime.

Recall that a multiplicatively closed subset of a ring R is a subset S such that 0 6∈ S
and 1 ∈ S and xy ∈ S for each x, y ∈ S.

The following result studies when the localization of an n-almost prime submodule is
n-almost prime.

2.10. Proposition. Let N be an n-almost prime submodule of an R-module M, and S
a multiplicatively closed subset of R.

(i) If S ∩ (N : M) = ∅ and for some x ∈ M \N, S ∩ ((N : M)n−1N : x) = ∅, then
S−1N 6= S−1M.

(ii) If S−1N 6= S−1M, then S−1N is an n-almost prime submodule of S−1M .

Proof. (i) Let x ∈ M \N. If S−1N = S−1M, then there exists an element s ∈ S such
that sx ∈ N . Since S ∩ ((N : M)n−1N : x) = ∅, sx /∈ (N : M)n−1N. As N is an
n-almost prime submodule and x /∈ N, s ∈ (N : M)∩ S, which is a contradiction. Hence
S−1N 6= S−1M.

(ii) Let for r
s
∈ S−1R, y

t
∈ S−1M, r

s
y
t
∈ S−1N \ (S−1N : S−1M)n−1S−1N. Then

there exists an element u ∈ S such that ury ∈ N. If ury ∈ (N : M)n−1N, then ry
st

=
ury
ust
∈ S−1((N : M)n−1N) ⊆ (S−1N : S−1M)n−1S−1N, a contraction. Hence ury ∈

N \ (N : M)n−1N . As N is almost prime, either ur ∈ (N : M) or y ∈ N, so either
r
s

= ur
us
∈ S−1(N : M) ⊆ (S−1N : S−1M) or y

t
∈ S−1N.
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3. Essential multiplicatively closed subsets
Recall that an ideal I of a ring R is said to be essential if I ∩ J 6= 0, for each non-

zero ideal J of R (that is J 6⊆ 0). In this section we introduce a similar notion for
multiplicatively closed subsets of R, and we find some connections between this notion
and n-almost primes.

Definition. Let S be a multiplicatively closed subset of R and P a prime ideal of R
with S ∩ P = ∅. Then S will be called P -essential, if S ∩ J 6= ∅, for each ideal J with
J 6⊆ P.

Evidently R \P is a P -essential multiplicatively closed subset, for each prime ideal P
of R.

Recall that a multiplicatively closed subset S of R is said to be saturated if

xy ∈ S ⇐⇒ x, y ∈ S.

The following lemma is a well known result (see [2, p. 44, Exercise 7 (ii)]).

3.1. Lemma. Let S be a multiplicatively closed subset of R. Then

S̄ = R \ ∪{P |P is a prime ideal with P ∩ S = ∅}

is a saturated multiplicatively closed subset of R containing S and there is no saturated
multiplicatively closed subset of R strictly between S and S̄.

It is obvious that for each prime ideal P of R, the ring RP is a local ring and the ideal
PP is a maximal ideal of RP . The following result shows that S−1R being a local ring is
indeed related to P -essentiality of S.

Let S be a multiplicatively closed subset of R. For any ideal J of S−1R, we consider
Jc = {r ∈ R | r/1 ∈ J}.

3.2. Proposition. Let S be a multiplicatively closed subset of R and P a prime ideal
of R with S ∩ P = ∅. Then the following are equivalent:

(i) S is P -essential;
(ii) S−1R = RP ;
(iii) S̄ = R \ P ;
(iv) S−1P is the only maximal ideal of S−1R.

Proof. (i) ⇒ (ii) Clearly S−1R ⊆ RP , since S ⊆ R \ P. Now suppose that y
t
∈ RP .

Hence as t ∈ R \ P, for some r ∈ R, we have rt ∈ S ⊆ R \ P, and so r ∈ R \ P. Then
y
t

= ry
rt
∈ S−1R and hence S−1R = RP .

(ii) ⇒ (iii) Since P ∩ S = ∅, by Lemma 3.1, S̄ ⊆ R \ P. Now let r ∈ R \ P. We have
1/r ∈ RP = S−1R, then there exists s ∈ S, x ∈ R with 1/r = x/s. Thus for some s′ ∈ S
we have s′rx = ss′ ∈ S ⊆ S̄, and so r ∈ S̄, because S̄ is saturated.

(iii) ⇒ (iv) Let m be a maximal ideal of S−1R. Then mc is a prime ideal of R with
mc∩S = ∅. Note that R \ (P ∪mc) is a saturated multiplicatively closed subset of R and
since S ⊆ R\(P ∪mc) ⊆ (R\P ) = S̄, Lemma 3.1 implies that R\(P ∪mc) = (R\P ) = S̄.
Hence mc ⊆ (P ∪mc) = P, and thus m = S−1(mc) ⊆ S−1P, and so m = S−1P, because
of maximality of m.

(iv) ⇒ (i) Let J be an ideal of R such that J 6⊆ P. If J ∩ S = ∅, since S−1P is the
only maximal ideal of S−1R, we have S−1J ⊆ S−1P. So J ⊆ P, which is impossible.
Consequently S is P -essential.

3.3. Theorem. Let N be an n-almost prime submodule of an R-module M with I =
(N : M). Then S = [(R \ I) ∪ (In−1N : M)] \ P is P -essential, for each prime ideal P of
R.



594

Proof. First to prove that S is multiplicatively closed, let r, s ∈ S. If rs /∈ S, then
rs ∈ I. Also rs 6∈ P, because if rs ∈ P, then r ∈ P or s ∈ P, although S ∩ P = ∅. Thus
rs ∈ I \ P.

If r ∈ (In−1N : M) or s ∈ (In−1N : M), then rs ∈ (In−1N : M) \ P, and so rs ∈ S.
Now on the contrary suppose r, s, rs /∈ (In−1N : M). Hence there exists m ∈M such

that rsm /∈ In−1N, and we know that rs ∈ I = (N : M), therefore rsm ∈ N \ In−1N.
As r, s ∈ S ⊆ [(R \ I) ∪ (In−1N : M)] and r, s /∈ (In−1N : M), we have r, s /∈ I =

(N : M). Note that rsm ∈ N \ In−1N and r, s /∈ (N : M) and N is n-almost prime, thus
m ∈ N.

Now consider m′ ∈M \N. If rsm′ /∈ In−1N, the above argument shows that m′ ∈ N,
which is impossible.

Then we may assume rsm′ ∈ In−1N. Thus for x = m+m′, we have rsx ∈ N \In−1N.
Now since m ∈ N and m′ /∈ N, we have x /∈ N, consequently r ∈ (N : M) = I or
s ∈ (N : M) = I, which is a contradiction.

Next we will prove that S is P -essential. Let J be an ideal of R such that J 6⊆ P. If
I ⊆ P, then S = R \ P, and obviously S is P -essential. So suppose that I 6⊆ P.

If J ∩ S = ∅, it is easy to see J ∩ [(R \ I) ∪ (In−1N : M)] ⊆ P and so J ⊆ I ∪ P.
Therefore J ⊆ I

Note that I = (N : M), so InM = In−1(N : M)M ⊆ In−1N, that is In ⊆ (In−1N :
M). Hence Jn ⊆ J ∩ In ⊆ J ∩ (In−1N : M) ⊆ P, which is impossible. Consequently
J ∩ S 6= ∅ and so S is P -essential.

3.4. Corollary. Let I be an ideal of R such that N(R) ⊆ In and consider SP =
[(R \ I) ∪ In] \ P. Then the following are equivalent:

(i) I is n-almost prime;
(ii) SP is multiplicatively closed for any prime ideal P ;
(iii) SP is multiplicatively closed for any minimal prime ideal P.

Proof. (i)⇒ (ii) The proof is given by Theorem 3.3.
(ii)⇒ (iii) The proof is evident.
(iii)⇒ (i) Let ab ∈ I \ In. So ab /∈ N(R) and there exists a minimal prime ideal P of

R such that ab /∈ P. Then ab /∈ SP . Hence a /∈ SP or b /∈ SP . Therefore a ∈ I or b ∈ I.

3.5. Corollary. Let R be an integral domain and M an R-module.
(i) If N is an n-almost prime submodule of M with (N : M) = I, then S =

[(R \ I)∪ (IN : M)] \ {0} is a multiplicatively closed subset of R and S−1R is a
field.

(ii) An ideal I of R is n-almost prime if and only if S = [(R \ I) ∪ In] \ {0} is a
multiplicatively closed subset of R. When this is the case, S−1R is a field.

Proof. (i) The proof is given by Theorem 3.3 and Proposition 3.2.
(ii) The proof of the first part is given by Corollary 3.4. By part (i), S−1R is a field,

if I is n-almost prime.
The following remark studies the converse of the above corollary.

Remark. Let S be a saturated multiplicatively closed subset of R such that S−1R is a
field. Then there exist prime ideals I and P of R such that S = [(R \ P ) ∪ I2] \ P.

Proof. Since S is a multiplicatively closed subset of R, there exists a prime ideal P of
R with P ∩S = ∅. Then S−1P is a proper ideal of S−1R and S−1R is a field, so S−1P is
the only maximal ideal of S−1R. Hence by Proposition 3.2, S̄ = R \ P. Note that S is a
saturated multiplicatively closed subset of R, then by Lemma 3.1, S = S̄ = R \ P. Thus
it is enough to consider I = P.



595

Acknowledgment. The authors would like to thank the referee for his comments on
this paper.

References
[1] Anderson, D.D. and Batainen, Malik Generalizations of primes ideals, Comm. Algebra, 36,

86–696, 2008.
[2] Atiah, M. F. and Mcdonald, I. G. Introduction to commutative algebra (Addison-Wesley,

1969).
[3] Azizi, A. Prime submodules and flat modules, Acta Math. Sinica, English Series, 23 (1),

147–152, 2007.
[4] Azizi, A. Strongly irreducible ideals, J. Aust. Math. Soc., 84, 145–154, 2008.
[5] Bhatwadekar, S. M. and Sharma, P. K. Uniqe factorization and birth of almost prime,

Comm. Algebra, 33, 43–49, 2005.
[6] Larsen, M. D. and McCarthy, P. J. Multiplicative theory of ideals (Academic press, Inc.,

1971).
[7] Rotman, J. J. An introduction to homological algebra, second edition (Springer, 2009).
[8] Tiras, Y. and Harmanci, A. and Smith, P. F. A characterization of prime submodules, J.

Algebra, 212 (2), 743–752, 1999.





Hacettepe Journal of Mathematics and Statistics
Volume 44 (3) (2015), 597 – 606

Common fixed point theorems in cone Banach type
spaces

Fridoun Moradlou ∗ and Peyman Salimi †

Abstract

In this paper, we give some generalized theorems on points of coinci-
dence and common fixed points for two weakly compatible mappings
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1. Introduction
In 1980, Rzepecki [15] provide a generalization of metric spaces. He defined a metric

dE on a set X by dE : X ×X → S, where E is a Banach space and S is a normal cone
in E with partial order �, and he generalized the fixed point theorems of Maia type. In
1987, Lin [9] introduced the notion of K-metric spaces and considered some results of
Khan and Imdad [7] in K-metric spaces. In 2007, Huang and Zhang [8] introduced cone
metric spaces and defined some properties of convergence of sequences and completeness
in cone metric spaces, also they proved a fixed point theorem of cone metric spaces.
Beginning around the year 2007, the fixed point theorems in cone metric spaces have
been extensively proved by a number of authors and there are many interesting results
concerning these theorems (see [1]–[3], [5], [11]–[14]).

In this paper, we propose the notion of cone Banach type spaces and prove the gener-
alization of some known results on points of coincidence and the generalization of some
common fixed point theorems for two weakly compatible mappings in cone Banach type
spaces.
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2. preliminaries
2.1. Definition. [11] Let E be a real Banach space with norm ‖.‖ and P be a subset of
E. P is called a cone if and only if the following conditions are satisfied:

(P1) P is closed, nonempty and P 6= {0};
(P1) a, b ≥ 0 and x, y ∈ P⇒ ax+ by ∈ P ;
(P3) x ∈ P and −x ∈ P⇒ x = 0.

Let P ⊂ E be a cone, we define a partial ordering � on E with respect to P by x � y
if and only if y − x ∈ P . we write x ≺ y whenever x � y and x 6= y, while x � y will
stand for y − x ∈ intP (interior of P). The cone P ⊂ E is called normal if there is a
positive real number k such that for all x, y ∈ E,

0 � x � y ⇒ ‖x‖ ≤ k‖y‖.

The least positive number satisfying the above inequality is called the normal constant
of P. It is clear that k ≥ 1. Rezapour and Hamlbarani [14] proved that existence of an
ordered Banach space E with cone P which is not normal but with intP 6= ∅.

Throughout this paper, we assume that E is a real Banach space and P is
a cone suth that intP 6= ∅.

2.2. Definition. [11]. Let X be a nonempty set. A function d : X ×X → E is said to
be a cone b-metric function on X with the constant K ≥ 1 if the following conditions
are satisfied:

(1) 0 � d(x, y), for all x, y ∈ X and d(x, y) = 0 if and only if x = y;
(2) d(x, y) = d(y, x) for all x, y ∈ X;
(3) d(x, z) � K

(
d(x, y) + d(y, z)

)
for all x, y, z ∈ X;

then the pair (X, d) is called the cone b-metric space (or cone metric type space (in brief
CMTS)).

2.3. Definition. [5] LetX be a vector space over R. Suppose the mapping ‖.‖P : X → E
satisfies:

(i) ‖x‖P � 0 for all x ∈ X;
(ii) ‖x‖P = 0 if and only if x = 0;
(iii) ‖x+ y‖P � ‖x‖P + ‖y‖P for all x, y ∈ X;
(iv) ‖kx‖P = |k|‖x‖P for all x ∈ X and all k ∈ R;

then ‖.‖P is called cone norm on X and the pair (X, ‖.‖P ) is called a cone normed space
(in brief CNS). Note that each CNS is cone metric space (in brief CMS). Indeed,
d(x, y) = ‖x− y‖P .

Similar to the definition of CMTS, we give the following definition:

2.4. Definition. Let X be a vector space over R. Suppose the mapping ‖.‖P : X → E
satisfies:

(i) ‖x‖P � 0 for all x ∈ X;
(ii) ‖x‖P = 0 if and only if x = 0;
(iii) ‖x+ y‖P � K

(
‖x‖P + ‖y‖P

)
for all x, y ∈ X and for constant K ≥ 1 (triangle

- type inequality);
(iv) ‖rx‖P = |r|‖x‖P for all x ∈ X and all r ∈ R;

then the pair (X, ‖.‖P ) is called a cone normed type space (in brief CNTS).

Note that each CNTS is CMTS. Indeed, d(x, y) = ‖x− y‖P .
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2.5. Example. Let Cb(X) = {f : X → C : supx∈X |f(x)| < ∞}. Define ‖.‖P :
Cb(X)→ R by

‖f‖P = 3

√
sup
x∈X
|f(x)|3.

Then ‖.‖P satisfies the following properties:
(i) ‖f‖P > 0 for all f ∈ Cb(X);
(ii) ‖f‖P = 0 if and only if f = 0;
(iii) ‖f + g‖P ≤ 3

√
4
(
‖f‖P + ‖g‖P

)
for all f, g ∈ Cb(X);

(iv) ‖rf‖P = |r|‖f‖P for all f ∈ Cb(X) and all r ∈ R.

2.6. Definition. Let (X, ||.||P ,K) be a CNTS, let {xn} be a sequence in X and x ∈ X.
Then

(i) {xn} converges to x whenever for every c ∈ E with 0 � c there is a natural
number N , such that ‖xn−x‖P � c for all n > N . It is denoted by limn→∞ xn =
x or xn → x as n→∞;

(ii) {xn} is a Cauchy sequence whenever for every c ∈ E with 0 � c there is a
natural number N , such that ‖xn − xm‖P � c for all n,m > N ;

(iii) (X, ‖.‖P ,K) is a complete cone normed type space if every Cauchy sequence is
convergent. Complete cone normed type spaces will be called cone Banach type
spaces.

2.7. Lemma. Let (X, ‖.‖P ,K) be a CNTS, P be a normal cone with normal constant
M , and {xn} be a sequence in X. Then,

(i) the sequence {xn} converges to x if and only if ‖xn − x‖P → 0, as n→∞;
(ii) the sequence {xn} is Cauchy if and only if ‖xn − xm‖P → 0 as n,m→∞;
(iii) if the sequence {xn} converges to x and the sequence {yn} converges to y, then

‖xn − yn‖P → ‖x− y‖P .

Proof. The proof is similar to proof of Lemmas 1-5 of [8], by taking d(x, y) = ‖x−y‖P . �

From now on, we assume that P is a normal cone with intP 6= ∅.

2.8. Lemma. Let {yn} be a sequence in a cone Banach type space (X, ‖.‖P ,K) such
that

d(yn, yn+1) ≤ λd(yn−1, yn),

for some 0 < λ < 1/K and all n ∈ N, where d(x, y) = ‖x− y‖P . Then {yn} is a Cauchy
sequence in (X, ‖.‖P ,K).

2.9. Definition. Let S and T be two self-mappings on a cone metric type space (X, d).
A point z ∈ X is called a coincidence point of S and T if Sz = Tz, and it is called a
common fixed point of S and T if Sz = z = Tz. Moreover, a pair of self-mappings (S, T )
is called weakly compatible on X if they commute at their coincidence points, i.e.,

z ∈ X, Sz = Tz ⇒ STz = TSz.

2.10. Theorem. Let C be a subset of a cone Banach type space (X, ‖.‖P ,K) and d :
X × X → E be such that d(x, y) = ‖x − y‖P . Suppose that F, T : C −→ C are two
mappings such that TC ⊂ FC and FC is closed and convex. If there exists some constant
1− 1

K
< r

2
< 1 such that

(2.1) d(Fy, Ty) + rd(Fx, Fy) � d(Fx, Tx),
for all x, y ∈ C, then F and T have at least one point of coincidence. Moreover, if F and
T are weakly compatible, then F and T have a unique common fixed point.
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Proof. Let x0 ∈ C be arbitrary. we define a sequence {Fxn} in the following relation:

(2.2) Fxn+1 :=
Fxn + Txn

2
, n = 0, 1, 2, · · · .

We see that

(2.3) Fxn − Txn = 2

(
Fxn −

(Fxn + Txn
2

))
= 2(Fxn − Fxn+1),

which implies

(2.4) d(Fxn, Txn) = ||Fxn − Txn||P = 2||Fxn − Fxn+1||P = 2d(Fxn, Fxn+1),

for n = 0, 1, 2, · · · . Now, letting x = xn−1 and y = xn in (2.1), using (2.4), we can
conclude that

(2.5) 2d(Fxn, Fxn+1) + rd(Fxn−1, Fxn) � 2d(Fxn−1, Fxn).

So

(2.6) d(Fxn, Fxn+1) � (1− r

2
)d(Fxn−1, Fxn),

where 1− r
2
< 1

K
. Hence by Lemma 2.8, {Fxn} is a Cauchy sequence in FC. Then there

exists z ∈ C such that Fxn → Fz. Also by (2.2) we can obtain Txn → Fz. So by (2.1)
we have

(2.7) d(Fz, Tz) � d(Fz, Tz) + rd(Fxn, F z) � d(Fxn, Txn).
Therefore by taking the limit as n → ∞ in (2.7), we obtain d(Fz, Tz) = 0, that is, z
is a point of coincidence of F and T . Therefore F and T have at least one point of
coincidence.

Put w = Fz = Tz. If F and T are weakly compatible mappings, then FTz = TFz,
so Fw = Tw.

Now, we show that w is a fixed point of F . Putting x = w and y = z in (2.1), we get

(2.8) d(Fz, Tz) + rd(Fw,Fz) � d(Fw, Tw).
Hence d(Fw,Fz) = 0. That is, Fw = w. Therefore Fw = Tw = w. So we conclude that
w = Fw = Tw is a common fixed point of F and T .
To prove the uniqueness of w, suppose that w1 is another common fixed point F and T .
Replacing x and y by w and w1 in (2.1), respectively, we get

(2.9) d(Fw1, Tw1) + rd(Fw,Fw1) � d(Fw, Tw).
Thus,

d(w1, w) � 0.

So w = w1. Then w is the unique common fixed point of F and T . �

2.11. Corollary. Let C be a closed and convex subset of a cone Banach type space
(X, ‖.‖P ,K) and d : X×X → E be such that d(x, y) = ‖x−y‖P . Suppose that T : C → C
is a mapping for which there exists some constant 1− 1

K
< r

2
< 1 such that

d(y, Ty) + rd(x, y) � d(x, Tx),
for all x, y ∈ C. Then T has a unique fixed point.

2.12. Theorem. Let C be a subset of a cone Banach type space (X, ‖.‖P ,K) such that
1 < K ≤ 2. Let d : X × X → E be such that d(x, y) = ‖x − y‖P . Suppose that
F, T : C −→ C are two mappings such that TC ⊂ FC and FC is closed and convex. If
there exists some constant 1− 1

K
< r

2
< 1 such that

(2.10) d(Tx, Ty) + (1− 1

K
)d(Fy, Ty) + rd(Fx, Fy) � 1

2
d(Fx, Tx),
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for all x, y ∈ C, then F and T have at least one point of coincidence. Moreover, if F and
T are weakly compatible, then F and T have a unique common fixed point.

Proof. Similar to proof of Theorem 2.10, we construct the sequence {Fxn}, therefore

Fxn − Txn−1 =
Fxn−1 + Txn−1

2
− Txn−1 =

Fxn−1 − Txn−1

2
,

which implies that

(2.11) d(Fxn, Txn−1) =
1

2
d(Fxn−1, Txn−1).

Using the triangle-type inequality, we get

(2.12) d(Fxn, Txn)−Kd(Fxn, Txn−1) � Kd(Txn−1, Txn)

It follows from (2.3) and (2.11) that

(2.13)
2

K
d(Fxn, Fxn+1)− d(Fxn, Fxn−1) � d(Txn−1, Txn).

Replacing x and y by xn−1 and xn in (2.10) and using (2.3) and (2.13), we can obtain
2

K
d(Fxn, Fxn+1)− d(Fxn−1, Fxn) + 2(1− 1

K
)d(Fxn, Fxn+1)

+ rd(Fxn−1, Fxn) � d(Fxn−1, Fxn).

Thus,

d(Fxn, Fxn+1) � (1− r

2
)d(Fxn−1, Fxn),

where 1− r
2
< 1

K
. Hence by Lemma 2.8, {Fxn} is a Cauchy sequence in FC. Then there

exists z ∈ C such that Fxn −→ Fz. Substituting x = xn and y = z in (2.10), we get

(2.14)
(1− 1

K
)d(Fz, Tz) �d(Txn, T z) + (1− 1

K
)d(Fz, Tz) + rd(Fxn, F z)

�1

2
d(Fxn, Txn).

Therefore by taking the limit as n → ∞ in (2.14), we obtain d(Fz, Tz) = 0. Then we
conclude that z is a point of coincidence of F and T .

Let w = Fz = Tz. If F and T are weakly compatible mappings, then FTz = TFz,
so Fw = Tw.

Now, we show that w is a fixed point of F . Putting x = w and y = z in (2.10), we
have

d(Tw, Tz) + (1− 1

K
)d(Fz, Tz) + rd(Fw,Fz) � 1

2
d(Fw, Tw).

Then

(r + 1)d(Fw,w) � 0.

Therefore Fw = Tw = w. So we conclude that w = Fw = Tw is a common fixed point
of F and T .
To prove the uniqueness of w, suppose that w1 is another common fixed point of F and
T . Replacing x and y by w and w1 in (2.10), respectively, we get

(2.15) d(Tw, Tw1) + (1− 1

K
)d(Fw1, Tw1) + rd(Fw,Fw1) �

1

2
d(Fw, Tw).

Thus,

(1 + r)d(w1, w) � 0.

So w = w1. Then w is the unique common fixed point of F and T . �
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2.13. Corollary. Let C be a closed and convex subset of a cone Banach type space
(X, ||.||P ,K) such that 1 < K ≤ 2 and d : X ×X → E be such that d(x, y) = ||x− y||P .
Suppose that T : C −→ C is a mapping which satisfies the condition

d(Tx, Ty) + (1− 1

K
)d(y, Ty) + rd(x, y) � 1

2
d(x, Tx),

for all x, y ∈ C, where 1− 1
K
< r

2
< 1, then T has a unique fixed point.

2.14. Theorem. Let C be a subset of a cone Banach type space (X, ‖.‖P ,K) and
d : X × X → E be such that d(x, y) = ‖x − y‖P . Suppose that F, T : C → C are
two mappings such that TC ⊂ FC and FC is closed and convex. If there exist a, b, s
satisfying

(2.16) 0 < s+ |a|K
1
2
− 1

2
sgn(a) − 2b < 2(aK−sgn(a) + b),

and

(2.17) ad(Tx, Ty) + b
(
d(Fx, Tx) + d(Fy, Ty)

)
� sd(Fx, Fy),

for all x, y ∈ C, then F and T have at least one point of coincidence. Moreover if a > s
and F and T are weakly compatible, then F and T have a unique common fixed point.

Proof. Similar to proof of Theorem 2.10, we construct the sequence {Fxn}. We claim
that the inequality (2.17) for x = xn−1 and y = xn implies that

(2.18)
2aK−sgn(a)d(Fxn,Fxn+1)− |a|K

1
2
− 1

2
sgn(a)d(Fxn−1, Fxn)

+ 2b
(
d(Fxn−1, Fxn) + d(Fxn, Fxn+1)

)
� sd(Fxn−1, Fxn),

for all a, b, s that satisfy (2.16). To see this, replacing x and y by xn−1 and xn in (2.17),
respectively, we obtain

(2.19) ad(Txn−1, Txn) + b
(
d(Fxn−1, Txn−1) + d(Fxn, Txn)

)
� sd(Fxn−1, Fxn).

Let a ≥ 0, using (2.3), (2.13) and (2.19), we have
2a

K
d(Fxn, Fxn+1)− ad(Fxn, Fxn−1)

+ 2b
(
d(Fxn−1, Fxn) + d(Fxn, Fxn+1)

)
� sd(Fxn−1, Fxn),

which is equivalent to (2.18), since sgn(a) = 0 or 1.
Now suppose that a < 0, consider the inequality

d(Txn−1, Txn) � K
(
d(Txn−1, Fxn) + d(Fxn, Txn)

)
,

which is equivalent to

(2.20) ad(Txn−1, Txn) � Ka
(
d(Txn−1, Fxn) + d(Fxn, Txn)

)
.

It follows from (2.19) and (2.20) that

(2.21)
aK(d(Txn−1, Fxn) + d(Fxn, Txn))

+ b
(
d(Fxn−1, Txn−1) + d(Fxn, Txn)

)
� sd(Fxn−1, Fxn).

Using (2.4), (2.11) and (2.21), we get

aKd(Fxn−1, Fxn) + 2aKd(Fxn, Fxn+1)

+ 2b
(
d(Fxn−1, Fxn) + d(Fxn, Fxn+1)

)
� sd(Fxn−1, Fxn)

which is equivalent to (2.18), since sgn(a) = −1. Hence, we established our claim.
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It follows from (2.18) that

d(Fxn, Fxn+1) �
s+ |a|K

1
2
− 1

2
sgn(a) − 2b

2(aK−sgn(a) + b)
d(Fxn−1, Fxn),

where
s+ |a|K

1
2
− 1

2
sgn(a) − 2b

2(aK−sgn(a) + b)
< 1. Hence by Lemma 2.8, {Fxn} is a Cauchy sequence

in FC. Then there exists z ∈ C such that Fxn → Fz, so Txn → Fz . Now, using (2.17),
we have

(2.22) ad(Txn, T z) + b
(
d(Fxn, Txn) + d(Fz, Tz)

)
� sd(Fxn, F z).

Thus by taking the limit as n→∞ in (2.22), we obtain

(a+ b)d(Fz, Tz) � 0.

Since aK−sgn(a) ≤ a, we get a + b > 0. Hence, d(Fz, Tz) = 0. So z is a point of
coincidence of F and T .

If F and T are weakly compatible, then FTz = TFz. Therefore Fw = Tw, where
w = Fz = Tz.

Now, we show that w is a unique common fixed point of T and F . Substituting x = w
and y = z in (2.17), we obtain

ad(Tw, Tz) + b
(
d(Fw, Tw) + d(Fz, Tz)

)
� sd(Fw,Fz),

which yields that

(a− s)d(Tw,w) � 0.

Since a > s, we have Tw = w. Therefore Fw = Tw = w. This means w is a common
fixed point of F and T .

To prove the uniqueness of w, suppose that w1 is another common fixed point of F
and T . Replacing x and y by w1 and w in (2.17), we get

ad(Tw1, Tw) + b
(
d(Fw1, Tw1) + d(Fw, Tw)

)
� sd(Fw1, Fw).

Thus,

(a− s)d(w1, w) � 0.

So w = w1. Therefore w is the unique common fixed point of F and T . �

2.15. Corollary. Let C be a closed and convex subset of a cone Banach type space
(X, ‖.‖P ,K) and d : X×X → E be such that d(x, y) = ‖x−y‖P . Suppose that T : C → C
is a mapping for which there exist a, b, s such that

0 < s+ |a|K
1
2
− 1

2
sgn(a) − 2b < 2(aK−sgn(a) + b),

and

ad(Tx, Ty) + b
(
d(x, Tx) + d(y, Ty)

)
� sd(x, y),

for all x, y ∈ C, then T has at least one fixed point. Moreover, if a > s, then T has a
unique fixed point.

2.16. Theorem. Let C be a subset of a cone Banach type space (X, ‖.‖P ,K) and
d : X × X → E be such that d(x, y) = ‖x − y‖P . Suppose that F, T : C → C are
two mappings such that TC ⊂ FC and FC is closed and convex. If there exist a, b
satisfying

(2.23) 1 < b < 1 +
(2a− 1)K − 1

2K2
& a >

K + 1

2K
,
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and

(2.24) ad(Fy, Ty) + d(Fy, Tx) � bd(Fx, Tx) + 1

K
d(Fx, Fy),

for all x, y ∈ C, then F and T have at least one point of coincidence. Moreover, if K > 1
and F and T are weakly compatible, then F and T have a unique common fixed point.

Proof. Let x0 ∈ C be arbitrary, we define a sequence {Fxn} in the following relation:

(2.25) Fxn+1 :=
(2K − 1)Fxn + Txn

2K
, n = 0, 1, 2, · · · ,

we see that

(2.26) Fxn − Txn = 2K

(
Fxn −

( (2K − 1)Fxn + Txn
2K

))
= 2K(Fxn − Fxn+1),

which implies

(2.27) d(Fxn, Txn) = 2Kd(Fxn, Fxn+1).

Similarly

Fxn−Txn−1 =
(2K − 1)Fxn−1 + Txn−1

2K
−Txn−1 = (

2K − 1

2K
)(Fxn−1−Txn−1),

then

(2.28) d(Fxn, Txn−1) = (
2K − 1

2K
)d(Fxn−1, Txn−1).

Replacing x and y by xn−1 and xn in (2.24), respectively, we get

(2.29) ad(Fxn, Txn) + d(Fxn, Txn−1) � bd(Fxn−1, Txn−1) +
1

K
d(Fxn−1, Fxn).

It follows from (2.27), (2.28) and (2.29) that

2aKd(Fxn, Fxn+1)+(2K−1)d(Fxn, Fxn−1) � 2bKd(Fxn−1, Fxn)+
1

K
d(Fxn−1, Fxn).

Therefore

d(Fxn, Fxn+1) �
(2bK + 1

K
− 2K + 1)

2aK
d(Fxn−1, Fxn),

where
(2bK + 1

K
− 2K + 1)

2aK
<

1

K
. Hence by Lemma 2.8, {Fxn} is a Cauchy sequence

in FC. Then there exists z ∈ C such that Fxn → Fz, so Txn → Fz. Replacing x and y
by xn and z in (2.24), respectively, we get

(2.30) ad(Fz, Tz) + d(Fz, Txn) � bd(Fxn, Txn) +
1

K
d(Fxn, F z).

Then by taking the limit as n→∞ in (2.30), we obtain d(Fz, Tz) = 0. So we conclude
that z is a point of coincidence of F and T .

If F and T are weakly compatible, then FTz = TFz. Therefore Fw = Tw, where
w = Fz = Tz.

Now, we show that w is a unique common fixed point of F and T . Substituting x = w
and y = z in (2.24), we obtain

ad(Fz, Tz) + d(Fz, Tw) � bd(Fw, Tw) + 1

K
d(Fw,Fz),

which implies that

(1− 1

K
)d(w, Tw) � 0.

Hence w = Tw, therefore w is a common fixed point of F and T .
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To prove the uniqueness of w, suppose that w1 is another common fixed point of F
and T . Replacing x and y by w and w1 in (2.24), respectively, we have

ad(Fw1, Tw1) + d(Fw1, Tw) � bd(Fw, Tw) +
1

K
d(Fw,Fw1).

Thus,

(1− 1

K
)d(w,w1) � 0.

So w = w1. Therefore w is the unique common fixed point of F and T . �

2.17. Corollary. Let C be a closed and convex subset of a cone Banach type space
(X, ‖.‖P ,K) and d : X×X → E be such that d(x, y) = ‖x−y‖P . Suppose that T : C → C
is a mapping for which there exist a, b satisfying

1 < b < 1 +
(2a− 1)K − 1

2K2
& a >

K + 1

2K
,

and

ad(y, Ty) + d(y, Tx) � bd(x, Tx) + 1

K
d(x, y),

for all x, y ∈ C, then T has a fixed point. Moreover, if K > 1, then T has a unique fixed
point.
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Non-selfadjoint matrix Sturm-Liouville operators
with eigenvalue-dependent boundary conditions
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Abstract
In this paper we investigate discrete spectrum of the non-selfadjoint
matrix Sturm-Liouville operator L generated in L2 (R+, S) by the dif-
ferential expression

` (y) = −y′′ +Q (x) y , x ∈ R+ : [0,∞) ,

and the boundary condition y′ (0)−
(
β0 + β1λ+ β2λ

2
)
y (0) = 0 where

Q is a non-selfadjoint matrix valued function. Also using the uniqueness
theorem of analytic functions we prove that L has a finite number of
eigenvalues and spectral singularities with finite multiplicities.
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1. Introduction
The study of the spectral analysis of non self-adjoint Sturm-Liouville operators was

begun by Naimark [23] in 1954. He studied the spectral analysis of non-selfadjoint dif-
ferential operators with continuous and discrete spectrum. Also he investigated the
existence of spectral singularities in the continuous spectrum of the non-selfadjoint dif-
ferential operator. Spectral singularities are poles of the resolvent’s kernel which are in
the continuous spectrum and are not eigen-values [26]. General notion of the sets of
spectral singularities for closed linear operators on a Banach space was given by Nagy in
[22]. Let L0 denote the operator generated in L2 (R+) by the differential expression

(1.1) `0 (y) = −y′′ + v (x) y , x ∈ R+

and the boundary condition

y′ (0)− hy (0) = 0

where v is a complex valued function and h ∈ C.
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In [23] it is shown that if
∞∫
0

exp (εx) |v (x)| dx <∞,

for some ε > 0, then L0 has a finite number of eigenvalues and spectral singularities
with a finite multiplicities. Pavlov [25] established the dependence of the structure of
the spectral singularities of L0 on the behavior of the potential function at infinity. The
spectral analysis of the non-selfadjoint operator, generated in L2 (R+) by (1.1) and the
integral boundary condition

∞∫
0

B (x) y (x) dx+ αy′ (0)− βy (0) = 0

where B ∈ L2 (R+) is a complex-valued function, and α, β ∈ C, was investigated in detail
by Krall [15],[16].

Some problems of spectral theory of differential and some other types of operators with
spectral singularities were also studied in [1],[3]-[7],[17],[18]. The spectral analysis of the
non self-adjoint operator, generated in L2 (R+) by (1.1) and the boundary condition

y′ (0)

y (0)
= α0 + α1λ+ α2λ

2

where αi ∈ C, i = 0, 1, 2 with α2 6= 0 was investigated by Bairamov et al. [8].
The all above mentioned papers related with differential and difference operators are of

scalar coefficients.Spectral analysis of the selfadjoint differential and difference operators
with matrix coefficients are studied in [2],[9]-[11],[14].

Let S be a n-dimensional (n <∞) Euclidian space. We denote by L2 (R+, S) the
Hilbert space of vector-valued functions with values in S and the norm

‖f‖2
L2(R+,S) =

∞∫
0

‖f (x)‖2S dx.

Let L denote the operator generated in L2 (R+, S) by the matrix differential expression

` (y) = −y′′ +Q (x) y, x ∈ R+

and the boundary condition y (0) = 0, where Q is a non-selfadjoint matrix-valued func-
tion (i.e. Q 6= Q∗). In [24], [12] discrete spectrum of the non-selfadjoint matrix Sturm-
Liouville operator was investigated. Let us consider the BVP in L2(R+, S)

(1.2) −y′′ +Q(x)y = λ2y, xεR+,

(1.3) y′ (0)−
(
β0 + β1λ+ β2λ

2) y (0) = 0

where Q is a non self-adjoint matrix-valued function and β0, β1, β2 are non self-adjoint
matrices with detβ2 6= 0.

In this paper using the uniqueness theorem of analytic functions we investigate the
eigenvalues and the spectral singularities of L. In particular we prove that L has a finite
number of eigenvalues and spectral singularities with finite multiplicities, if the condition

lim
x→∞

Q(x) = 0 ,

∞∫
0

eεx
∥∥Q′(x)

∥∥ dx <∞, ε > 0,
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holds, where ‖.‖ denote norm in S. We also show that the analogue of the Pavlov
condition for L is the form

lim
x→∞

Q(x) = 0 ,

∞∫
0

eε
√
x
∥∥Q′(x)

∥∥ dx <∞, ε > 0.

2. Jost Solution
Let us consider the matrix Sturm-Liouville equation

(2.1) −y′′ +Q (x) y = λ2y, x ∈ R+

where Q is a non-selfadjoint matrix-valued function and

(2.2)
∞∫
0

x ‖Q (x)‖ dx <∞

holds. The bounded matrix solution of (2.1) satisfying the condition

lim
x→∞

y (x, λ) e−iλx = I, λ ∈ C+ := {λ : λ ∈ C, Imλ ≥ 0}

will be denoted by F (x, λ). The solution F (x, λ) is called Jost solution of (2.1). It has
been shown that, under the condition (2.2), the Jost solution has the representation

(2.3) F (x, λ) = eiλxI +

∞∫
x

K (x, t) eiλtdt

where I denotes the identity matrix in S and the matrix function K (x, t) satisfies

(2.4)

K(x, t) =
1

2

∞∫
x+t
2

Q(s)ds+
1

2

x+t
2∫
x

t+s−x∫
t+x−s

Q(s)K(s, v)dvds +
1

2

∞∫
x+t
2

t+s−x∫
s

Q(s)K(s, v)dvds.

K (x, t) is continuously differentiable with respect to their arguments and

‖K (x, t)‖ ≤ cα

(
x+ t

2

)
(2.5)

‖Kx (x, t)‖ ≤ 1

4

∥∥∥∥Q(x+ t

2

)∥∥∥∥+ cα

(
x+ t

2

)
(2.6)

‖Kt (x, t)‖ ≤ 1

4

∥∥∥∥Q(x+ t

2

)∥∥∥∥+ cα

(
x+ t

2

)
(2.7)

where α (x) =
∞∫
x

‖Q (s)‖ ds and c > 0 is a constant. Therefore, F (x, λ) is analytic with re-

spect to λ in C+ := {λ : λ ∈ C+, Imλ > 0} and continuous on the real axis ([2] , [17] , [19]) .
We will denote the matrix solution of (2.1) satisfying the initial conditions

G (0, λ) = I , G′ (0, λ) = β0 + β1λ+ β2λ
2

by G (x, λ). Let us define the following functions:

(2.8) A±(λ) = Fx (0,±λ)− (β0 + β1λ+ β2λ
2)F (0,±λ) λεC̄±,
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where C̄± = {λ : λ ∈ C, ± Imλ ≥ 0} . It is obvious that the functions A+(λ) and A−(λ)
are analytic in C+ and C−, respectively and continuous on the real axis.It is clear that
the resolvent of L defined by the following

(2.9) Rλ (L)ϕ =

∞∫
0

R (x, ξ;λ)ϕ (ξ) dξ, ϕ ∈ L2 (R+, S)

where

R (x, ξ;λ) =


R+ (x, ξ;λ) , λ ∈ C+

R− (x, ξ;λ) , λ ∈ C−

(2.10) R± (x, ξ;λ) =

{
−F (x,±λ)A−1

± (λ)Gt (ξ, λ) , 0 ≤ ξ ≤ x
−G (x, λ)

[
At± (λ)

]−1
F (ξ,±λ) , x ≤ ξ <∞,

and Gt (ξ, λ) and At± (λ) denotes the transpose of the matrix function G (ξ, λ) and A± (λ)
respectively.

In the following we will denote the class of non self-adjoint matrix-valued valued
absolutely continuous functions in R+ by AC(R+).

2.1. Lemma. If

(2.11) QεAC(R+) , lim
x→∞

Q(x) = 0 ,
∞∫
0

x3
∥∥Q′(x)

∥∥ <∞
then Ktt(x, t) exist and

Ktt(x, t) = −1

8
Q′(

t

2
) +

1

2

∞∫
0

Q(s)Kt(s, t+ s)ds

− 1

4
Q(

t

2
)K(

t

2
,
t

2
)(2.12)

− 1

2

t
2∫

0

Q(s) [Kt(s, t− s) +Kt (t− x+ s)] ds.

Proof. The proof of lemma direct consequently of (2.4) .

From (2.5)-(2.7) and (2.12) we obtain that

(2.13) ‖Ktt(0, t)‖ ≤ c
{∥∥∥∥Q′( t2)

∥∥∥∥+ t

∥∥∥∥Q(
t

2
)

∥∥∥∥+ tα(
t

2
) + α1(

t

2
)

}
holds, where α1(t) =

∞∫
t

α (s) ds and c > 0 is a constant.

2.2. Lemma. Under the condition (2.11), A+ and A− have the representations

(2.14) A+(λ) = −β2λ2 +Aλ+B +

∞∫
0

F+(t)eiλtdt, λ ∈ C̄+,

(2.15) A−(λ) = −β2λ2 + Cλ+D +

∞∫
0

F−(t)e−iλtdt, λ ∈ C̄−,

where A, B, C, D are non self-adjoint matrices in S, and F± ∈ L1(R+).
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Proof. Using (2.3) , (2.4) and (2.8) we get (2.14) , where

A = i− β1 − iβ2K(0, 0),

B = −K(0, 0)− β0 − iβ1K(0, 0) + β2Kt(0, 0),(2.16)

F+(t) = Kx(0, t)− β0K(0, t)− iβ1Kt(0, t) + β2Ktt(0, 0).

From (2.5) − (2.7) and (2.13) , F+ ∈ L1(R+). By similar way we obtain (2.15) and
F− ∈ L1(R+).

2.3. Theorem. A+(λ) and A−(λ) have the asymptotic behavior:

(2.17) A±(λ) = −β2λ2 +Aλ+B + o(1) λ ∈ C̄±, |λ| → ∞.

Proof. The proof is obvious from (2.5)− (2.7) and (2.13)).

We will denote the continuous spectrum of L by σc. From Theorem 2 ([22], page 303)
we get that

(2.18) σc = R.

3. Eigenvalues and Spectral Singularities of L

Let us suppose that

(3.1) f± (λ) := detA±(λ).

We denote the set of eigenvalues and spectral singularities of L by σd (L) and σss (L),
respectively. By the definition of eigenvalues and spectral singularities of differential
operators we can write

(3.2) σd (L) = {λ:λ ∈ C+, f+ (λ) = 0} ∪ {λ:λ ∈ C, f− (λ) = 0}

(3.3) σss (L) = {λ : λ ∈ R\ {0} , f+ (λ) = 0} ∪ {λ : λ ∈ R\ {0} , f− (λ) = 0}
[22], [23], [26]. It is clear that σss (L) ⊂ R.

3.1. Definition. The multiplicity of a zero of f+ in C+ (or f− in C−) is defined as the
multiplicity of the corresponding eigenvalue and spectral singularity of L.

In order to investigate the quantitative properties of the eigenvalues and the spectral
singularities of L, we need to discuss the quantitative properties of the zeros of f+ and
f− in C̄+ and C̄−, respectively. Assume that

M±1 = {λ : λ ∈ C±, f± (λ) = 0}

and

M±2 = {λ : λ ∈ R, f± (λ) = 0} .

From (3.3) and (3.4), we get

(3.4) σd (L) = M+
1 ∪M

−
1 ,

and

(3.5) σss (L) = M+
2 ∪M

−
2 − {0} .

3.2. Theorem. Under the condition (2.11)

i) The set σd (L) is bounded and has at most countable number of elements and its
limit points can lie only in a bounded subinterval of the real axis.
ii) The set σss (L) is bounded and µ (σss (L)) = 0, where µ (σss (L)) denotes the linear
Lebesque measure of σss (L).
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Proof. Using (2.5) and (3.1) we get that the function f± is analytic in C+ continuous on
the real axis and

(3.6) f± (λ) = −λ2 detβ2 +O (λ) , λ ∈ C±, |λ| → ∞,
Equation (3.6) shows the boundedness of the sets σd (L) and σss (L). From the analyticity
of the function f± in C± we obtain that σd (L) has at most countable number of elements
and its limit points can lie only in a bounded subinterval of the real axis . By the boundary
value uniqueness theorem of analytic functions, we find that µ (σss (L)) = 0, [13].

We will denote the sets of limit points of M+
1 and M+

2 by M+
3 and M+

4 respectively
and the set of all zeros of A+ with infinite multiplicity in C̄+ by M+

5 . Analogously define
the sets M−3 , M

−
4 and M−5 .

It is explicit from the boundary uniqueness theorem of analytic functions that [13]

M±1 ∩M
±
5 = ∅, M±3 ⊂M

±
2 , M±4 ⊂M

±
2 ,(3.7)

M±5 ⊂M
±
2 , M±3 ⊂M

±
5 , M±4 ⊂M

±
5

and µ(M±3 ) = µ(M±4 ) = µ(M±5 ) = 0.

3.3. Theorem. If

(3.8) QεAC(R+) , lim
x→∞

Q(x) = 0 ,
∞∫
0

eεx
∥∥Q′(x)

∥∥ dx <∞, ε > 0

the operator L has a finite number of eigenvalues and spectral singularities and each of
them is of finite multiplicity.

Proof. By (2.5) , (2.13) , (2.14) and (3.8) we observe that, the functionA+ has an analytic
continuation to the half plane Imλ > − ε

4
. So, the limit points of zeros of A+ in C+ can

not lie in R. From analyticity of A+ for Imλ > − ε
4
, we obtain that all zeros of A+

in C+ have a finite multiplicity. We obtain similar results for A−. Consequently by
(3.4) and (3.5) the sets σd (L) and σss (L) have a finite number of elements with a finite
multiplicity.

Now let us suppose that hold, the conditions which is weaker than (3.8).

3.4. Theorem. If

(3.9) QεAC(R+) , lim
x→∞

Q(x) = 0 , sup
x∈R+

[
exp

(
ε
√
x
) ∥∥Q′ (x)

∥∥] <∞, ε > 0

holds , then M+
5 = M−5 = φ.

Proof. From (3.1) and (3.9) we have f+ is analytic in C+ and all of its derivatives are
continuous on the C+.For sufficiently large P > 0 we have

(3.10)
∣∣∣∣ dmdλm f+(λ)

∣∣∣∣ ≤ Tm, m = 0, 1, 2, ..., λ ∈ C̄+, |λ| < P

where

(3.11) Tm := 2mc

∞∫
0

tme−(ε/2)
√
tdt, m = 0, 1, 2, ...,

where c > 0 is a constant. Since the function f+ is not equal to zero identically, using
Pavlov’s Theorem [25] we get that M+

5 satisfies

(3.12)
a∫
0

lnG (s) dµ
(
M+

5 , s
)
> −∞
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where G (s) = inf
m

Tms
m

m!
, µ
(
M+

5 , s
)
is the linear Lebesque measure of s-neighborhood of

M+
5 and a > 0 is a constant .
We obtain the following estimates for Tm

(3.13) Tm ≤ Bbmm!mm

where B and b are constants depending on c and ε. Substituting (3.13) in the definition
of G (s) , we arrive at

G (s) = inf
m

Tms
m

m!
≤ B exp

(
−e−1b−1s−1) .

Now by (3.12), we get

(3.14)
a∫
0

s−1dµ
(
M+

5 , s
)
<∞.

Consequently (3.14) holds for an arbitrary s if and only if µ
(
M+

5 , s
)

= 0 or M+
5 = φ. In

a similar way we can show M−5 = φ

3.5. Theorem. Under the condition (3.9) the operator L has a finite number of eigen-
values and spectral singularities and each of them is of a finite multiplicity.

Proof. We have to show that the functions f+ and f− have a finite number of zeros with
a finite multiplicities in C+ and C−, respectively. We prove only for f+.

It follows from (3.7) and Theorem 3.4 that M+
3 = M+

4 = φ. So the bounded set M+
1

and M+
1 have no limit points, i.e. the function f+ has only finite number of zeros in C+.

Since M+
5 = φ, these zeros are of finite multiplicity.
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Abstract
In this paper, we study the quenching behavior of solution of a nonlin-
ear parabolic equation with a singular boundary condition. We prove
finite-time quenching for the solution. Further, we show that quench-
ing occurs on the boundary under certain conditions. Furthermore, we
show that the time derivative blows up at quenching point. Also, we
get a lower solution and an upper bound for quenching time. Finally,
we get a quenching rate and lower bounds for quenching time.
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1. Introduction
In this paper, we study the quenching behavior of solutions of the following nonlinear

parabolic equation with a singular boundary condition:

(1.1)

 ut = uxx + (1− u)−p , 0 < x < 1, 0 < t < T,
ux (0, t) = 0, ux (1, t) = (1− u(1, t))−q, 0 < t < T,
u (x, 0) = u0 (x) , 0 ≤ x ≤ 1,

where p, q are positive constants and T ≤ ∞. The initial function u0 : [0, 1]→ (0, 1) satisfies
the compatibility conditions

u′0 (0) = 0, u′0 (1) = (1− u0(1))−q.

Throughout this paper, we also assume that the initial function u0 satisfies the inequal-
ities

∗Department of Mathematics, Ankara University, Besevler, 06100, Turkey
Email: nozalp@science.ankara.edu.tr
†Department of Computer Engineering, Karabuk University, Balıklarkayası Mevkii, 78050,

Turkey
Email:bselcuk@karabuk.edu.tr



616

(1.2) uxx(x, 0) + (1− u(x, 0))−p ≥ 0,

(1.3) ux(x, 0) ≥ 0

Our main purpose is to examine the quenching behavior of the solutions of problem (1.1)
having two singular heat sources. A solution u(x, t) of the problem (1.1) is said to quench
if there exists a finite time T such that

lim
t→T−

max{u(x, t) : 0 ≤ x ≤ 1} → 1.

From now on, we denote the quenching time of the problem (1) with T .

The concept of quenching was first introduced by Kawarada. In [12], Kawarada has
considered an initial-boundary value problem for the parabolic equation ut = uxx+1/(1−
u). Then, the quenching problems have been studied extensively by several researchers
(cf. the surveys by Chan [1, 2] and Kirk and.Roberts [14] and [3], [4], [6], [8], [9],[10], [13], [15], [16], [17], [19]).
In the literature, the quenching problems have been less studied with two nonlinear heat
sources. We give as examples two of these papers. Chan and Yuen [5] considered the
problem

ut = uxx, in Ω,
ux (0, t) = (1− u(0, t))−p, ux (a, t) = (1− u(a, t))−q, 0 < t < T,

u (x, 0) = u0 (x) , 0 ≤ u0 (x) < 1, in
_
D,

where a, p, q > 0, T ≤ ∞, D = (0, a),Ω = D × (0, T ). They showed that x = a is
the unique quenching point in finite time if u0 is a lower solution, and ut blows up at
quenching. Further, they obtained criteria for nonquenching and quenching by using the
positive steady states. Zhi and Mu [20] considered the problem

ut = uxx + (1− u)−p, 0 < x < 1, 0 < t < T
ux (0, t) = u−q(0, t), ux (1, t) = 0, 0 < t < T,
u (x, 0) = u0 (x) , 0 < u0 (x) < 1, 0 ≤ x ≤ 1,

where p, q > 0 and T ≤ ∞. They showed that x = 0 is the unique quenching point
in finite time if u0 satisfies u′′0 (x) + (1 − u0(x))−p ≤ 0 and u′0(x) ≥ 0 . Further, they
obtained the quenching rate estimates which is (T − t)1/2(q+1) if T denotes the quenching
time. Further, the quenching problems have been less studied with combined power-
type nonlinearities ([7], [18]) in the literature. In [18], Xu et.al. the studied the following
quenching behavior for the solutions of parabolic equation with combined power-type
nonlinearities:

ut −∆u =
q∑
k=2

(b− u(x, t))−k, in Ω× (0, T ),

u (x, t) = 0, on ∂Ω× (0, T ),
u (x, 0) = u0 (x) , in Ω,

where Ω is a bounded domain in RN with smooth boundary ∂Ω, q > 2, b = const > 0. The
initial data u0 (x) ∈ C1(Ω) is nonnegative in Ω and supx∈Ωu0(x) < b. They showed that
the solution of the above problem quenches in a finite time, and estimated its quenching
time. Finally, they given numerical examples.

Here, we would like to study how the reaction term (1 − u)−p and the boundary
absorption term (1− u)−q affect the quenching behaviour of the solution of the problem
(1.1). In Section 2, we first show that quenching occurs in finite time under the condition
(1.2). Then, we show that the only quenching point is x = 1 under the condition (1.2)
and (1.3). Further we show that ut blows up at quenching time. In Section 3, we get a
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lower solution and an upper bound for quenching time. In Section 4, we get a quenching
rate and lower bounds for quenching time.

2. Quenching on the boundary and blow-up of ut

2.1. Remark. We assume that the condition (1.2) and (1.3) is proper. Namely, we can
easily construct such a initial function satisfying (1.2),(1.3) and compatibility conditions.
Let 0 < A < 1, α = 1

A(1−A)
and u(x, 0) = Axα. For example, for q = 1 and A = 0.5,

u(x, 0) = 1
2
x4 satisfies compatibility conditions, (1.2) and (1.3).

2.2. Remark. If u0 satisfies (1.3), then we get ux > 0 in (0, 1]×(0, T ) by the maximum
principle. Thus we get u(1, t) = max

0≤x≤1
u(x, t).

2.3. Lemma. If u0 satisfies (1.2), then ut(x, t) ≥ 0 in [0, 1]× [0, T ).
Proof. Let us prove it by utilizing Lemma 3.1 of [11]. Let v = ut(x, t). Then, v(x, t)
satisfies

vt = vxx + p (1− u)−p−1 v, 0 < x < 1, 0 < t < T,

vx (0, t) = 0, vx (1, t) = q (1− u(1, t))−q−1 v(1, t), 0 < t < T,

v (x, 0) = uxx (x, 0) + (1− u (x, 0))−p ≥ 0, 0 ≤ x ≤ 1.

For any fixed τ ∈ (0, T ), let

L = max
0≤x≤1, 0≤t≤τ

(
1

2
q (1− u(x, t))−q−1

)
,

M = 2L+ 4L2 + max
0≤x≤1, 0≤t≤τ

(
p (1− u(x, t))−p−1) .

Set w(x, t) = e−Mt−Lx2v(x, t). Then w satisfies

wt = wxx + 4Lxwx + cw, 0 < x < 1, 0 < t ≤ τ,
wx(0, t) = 0, wx(1, t) = d(t)w(1, t), 0 < t ≤ τ,
w(x, 0) ≥ 0, 0 ≤ x ≤ 1,

where

c = c(x, t) = 4L2(x2−1)+p (1− u(x, t))−p−1− max
0≤x≤1, 0≤t≤τ

(
p (1− u(x, t))−p−1) ≤ 0

and

d(t) = − max
0≤x≤1, 0≤t≤τ

(
q (1− u(x, t))−q−1)+ q (1− u(1, t))−q−1 ≤ 0.

By the maximum principle and Hopf lemma, we obtain that w ≥ 0 in [0, 1]× [0, τ ]. Thus,
ut(x, t) ≥ 0 in [0, 1]× [0, T ). �

2.4. Theorem. If u0 satisfies (1.2), then there exist a finite time T , such that the
solution u of the problem (1.1) quenches at time T .
Proof. Assume that u0 satisfies (1.2). Then there exist

w = (1− u (1, 0))−q +

∫ 1

0

(1− u (x, 0))−p dx > 0.

Introduce a mass function; m (t) =
∫ 1

0
(1− u (x, t)) dx, 0 < t < T . Then

m′ (t) = − (1− u (1, t))−q −
∫ 1

0

(1− u (x, t))−p dx ≤ −w,

by Lemma 2.3. Thus, m (t) ≤ m(0) − wt; which means that m (T0) = 0 for some
T0, (0 < T ≤ T0). Then u quenches in finite time. �
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2.5. Theorem. If u0 satisfies (1.2) and (1.3), then x = 1 is the only quenching point.
Proof. Define

J(x, t) = ux − ε (x− (1− η)) in [1− η, 1]× [τ, T ),

where η ∈ (0, 1), τ ∈ (0, T ) and ε is a positive constant to be specified later. Then, J(x, t)
satisfies

Jt − Jxx = p(1− u)−p−1ux > 0 in (1− η, 1)× (τ, T ),

since ux(x, t) > 0 in (0, 1] × (0, T ). Thus, J(x, t) cannot attain a negative interior
minimum by the maximum principle. Further, if ε is small enough, J(x, τ) > 0 since
ux(x, t) > 0 in (0, 1]× (0, T ). Furthermore, if ε is small enough,

J(1− η, t) = ux(1− η, t) > 0,

J(1, t) = (1− u(1, t))−q − εη > 1− εη > 0

for t ∈ (τ, T ). By the maximum principle, we obtain that J(x, t) > 0, i.e. ux >
ε (x− (1− η)) for (x, t) ∈ [1 − η, 1] × [τ, T ). Integrating this with respect to x from
(1− η) to 1, we have

u(1− η, t) < u(1, t)− εη2

2
< 1− εη2

2
.

So u does not quench in [0, 1). The theorem is proved. �

2.6. Theorem. ut blows up at the quenching point x = 1.
Proof. We will prove that ut blows up at quenching, as in [5]. Suppose that ut is bounded
on [0, 1] × [0, T ). Then, there exists a positive constant M such that ut < M . We have
uxx + (1− u)−p < M ⇒ uxx < M . Integrating this twice with respect to x from x to 1,
and then from 0 to 1, we have

1

(1− u(1, t))q
<
M

2
+ u(1, t)− u(0, t).

As t → T−, the left-hand side tends to infinity, while the right-hand side is finite. This
contradiction shows that ut blows up somewhere. �

3. A lower solution and an upper bound for the quenching time
3.1. Definition. µ is called a lower solution of problem (1.1) if µ satisfies the following
conditions:

µt − µxx ≤ (1− µ)−p , 0 < x < 1, 0 < t < T,

µx (0, t) = 0, µx (1, t) ≤ (1− µ(1, t))−q , 0 < t < T,
µ (x, 0) ≤ u0 (x) , 0 ≤ x ≤ 1.

It is an upper solution when the inequalities are reversed.

3.2. Lemma. Let u be a solution and µ be a lower solution of problem (1.1) in
[0, 1]× [0, T ). Then u ≥ µ in [0, 1]× [0, T ).
Proof. Let v(x, t) = u(x, t)− µ(x, t). Then v(x, t) satisfies

vt ≥ vxx + p (1− η)−p−1 v, 0 < x < 1, 0 < t < T,

vx (0, t) = 0, vx (1, t) ≥ q (1− ξ(1, t))−q−1 v(1, t), 0 < t < T,
v (x, 0) ≥ 0, 0 ≤ x ≤ 1,

where η(x, t) lies between u(x, t) and µ(x, t) and ξ(1, t) lies between u(1, t) and µ(1, t).
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For any fixed τ ∈ (0, T ), let

L = max
0≤x≤1, 0≤t≤τ

(
1

2
q (1− ξ(x, t))−q−1

)
,

M = 2L+ 4L2 + max
0≤x≤1, 0≤t≤τ

(
p (1− η(x, t))−p−1) .

Set w(x, t) = e−Mt−Lx2v(x, t). Then w satisfies

wt ≥ wxx + 4Lxwx + cw, 0 < x < 1, 0 < t ≤ τ,
wx(0, t) = 0, wx(1, t) ≥ d(t)w(1, t), 0 < t ≤ τ,
w(x, 0) ≥ 0, 0 ≤ x ≤ 1,

where c = c(x, t) ≤ 0 and d = d(t) ≤ 0. By the maximum principle, we obtain that
w ≥ 0 in [0, 1]× [0, τ ]. Thus, u ≥ µ in [0, 1]× [0, T ). �

3.3. Theorem. x = 1 is a quenching point.
Proof. Let min x∈[0,1]u0(x) = c ≥ 0. Define

µ(x, t) = 1−

(
(q + 1)

(
1− x2 + τ − t

)
2

)1/(q+1)

in [0, 1]× [0, τ ],

where τ = 2(1− c)q+1/(q + 1). We have

µt − µxx =
−1

2

(
(q + 1)

(
1− x2 + τ − t

)
2

)−q/(q+1)

−x2q

(
(q + 1)

(
1− x2 + τ − t

)
2

)(−2q−1)/(q+1)

≤ 0

for x ∈ (0, 1), t ∈ (0, τ ]. Further,

µx(0, t) = 0,

µx(1, t) = (1− µ(1, t))−q

for t ∈ (0, τ ]. Furthermore,

µ(x, 0) = 1−

(
(q + 1)

(
1− x2 + τ

)
2

)1/(q+1)

≤ 1−
(

(q + 1) τ

2

)1/(q+1)

= c,

for x ∈ [0, 1]. Thus, µ(x, t) is a lower solution of the problem (1.1). In addition, at
t = τ and x = 1, we get

µ(1, τ) = 1.

Hence, we have

u(1, τ) ≥ µ(1, τ) = 1

by Lemma 3.2. Thus, x = 1 is a quenching point. �

3.4. Remark. We can calculate an upper bound for the quenching time. From Theorem
3.3, maximum upper bound is T = 2/(q + 1) (for c = 0). Also, as in Remark 2.1,
u0(x) = 1

2
x4 (for q = 1), then we have T = 1.
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4. A quenching rate and lower bounds for the quenching time
In this section, we get a quenching rate and lower bounds for quenching time. Throughout
this section, we assume that

(4.1) ux(x, 0) ≥ x(1− u(x, 0))−q, 0 < x < 1,

(4.2) ut(1, t) = uxx(1, t) + (1− u(1, t))−p, 0 < t < T.

4.1. Theorem. If u0 satisfies (1.2), (1.3), (4.1) and (4.2), then there exists positive
constants C1 and C2 such that

if p > 2q + 1, then u(1, t) ≥ 1− C1(T − t)1/(p+1),

if q ≤ p ≤ 2q + 1, then u(1, t) ≥ 1− C2(T − t)1/(2q+2),

for t sufficiently close to T .
Proof. Define

J(x, t) = ux − x(1− u)−q in [0, 1]× [0, T ).

Then, J(x, t) satisfies

Jt − Jxx − p(1− u)−p−1J = 2q(1− u)−q−1ux + (p− q)x(1− u)−p−q−1

+xq(q + 1)(1− u)−q−2u2
x,

since ux > 0 and p ≥ q, J(x, t) cannot attain a negative interior minimum. On the other
hand, J(x, 0) ≥ 0 by (4.1) and

J(0, t) = 0, J(1, t) = 0,

for t ∈ (0, T ). By the maximum principle, we obtain that J(x, t) ≥ 0 for (x, t) ∈
[0, 1]× [0, T ). Therefore

Jx(1, t) = lim
h→0+

J(1, t)− J(1− h, t)
h

= lim
h→0+

−J(1− h, t)
h

≤ 0.

From (4.2), we get

Jx(1, t) = uxx(1, t)− (1− u(1, t))−q − q(1− u(1, t))−2q−1

= ut(1, t)− (1− u(1, t))−p − (1− u(1, t))−q − q(1− u(1, t))−2q−1 ≤ 0

and

if p > 2q + 1, then ut(1, t) ≤ (q + 2)(1− u(1, t))−p,

if q ≤ p ≤ 2q + 1, then ut(1, t) ≤ (q + 2)(1− u(1, t))−2q−1.

Integrating for t from t to T we get

if p > 2q + 1, then u(1, t) ≥ 1− C1(T − t)1/(p+1),

if q ≤ p ≤ 2q + 1, then u(1, t) ≥ 1− C2(T − t)1/(2q+2),

where C1 = [(q + 2)(p+ 1)]1/(p+1) and C2 = [(q + 2)(2q + 2)]1/(2q+2). �

4.2. Remark. We can calculate a lower bound for the quenching time. From Theorem
4.1, lower bounds are

if p > 2q + 1, then T = (1− u0(1))p+1/(q + 2)(p+ 1),

if q ≤ p ≤ 2q + 1, then T = (1− u0(1))2q+2/(q + 2)(2q + 2),

for quenching time T . If we choose, as Remark 1, u0(x) = 1
2
x4 (for q = 1), then we have

T ≈ 0.0021 for p = 4, q = 1,

T ≈ 0.0052 for 1 ≤ p < 3, q = 1.
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In this paper the method of Loewner chains is used to derive a fairly
general and flexible univalence criterion for an integral operator. Two
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1. Introduction
Let Ur = {z ∈ C : |z| < r, 0 < r ≤ 1} be the open disk of radius r centered at the

origin and let U = U1 be the open unit disk.
Denote by A the class of analytic functions in U which satisfy the usual normalization

f(0) = f ′(0)− 1 = 0.
Let S be the subclass of A consisting of univalent functions.
There are known numerous criteria which ensure that a function f ∈ A is in the class

S. In Theorem 1.1 some of these criteria are listed.

1.1. Theorem. Let f ∈ A. Then, each of the following three conditions implies that
f ∈ S:

(1.1) (1− |z|2)

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, z ∈ U;

(1.2)
∣∣∣∣c|z|2 + (1− |z|2)

zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, z ∈ U

for some c ∈ C, |c| ≤ 1, c 6= −1;

(1.3)

∣∣∣∣∣|z|2
[

(c+ 1)f ′(z)e
−
z∫
0
a(τ)dτ

− 1

]
+ z(1− |z|2)a(z)

∣∣∣∣∣ ≤ 1, z ∈ U

∗Faculty of Mathematics and Computer Science, Transilvania University of Braşov, 50091,
Iuliu Maniu 50, Braşov, Romania
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for some c ∈ C, |c| ≤ 1, c 6= −1 and for a(z) analytic function in U.

The univalence criterion given in (1.2) (see [1]) is an extension of Becker’s univalence
criterion (see [3], [4]) given in (1.1). The univalence criterion (1.3) was obtained by D.
Tan (see [19]).

An extension of Becker’s criterion, due to N. N. Pascu ensures the univalence of an
integral operator.

1.2. Theorem. ([12]) Let f ∈ A and let α ∈ C with <α > 0. If

(1.4)
1− |z|2<α

<α

∣∣∣∣zf ′′(z)f ′(z)

∣∣∣∣ ≤ 1, z ∈ U

then, the integral operator

(1.5) Fα(z) =

α z∫
0

τα−1f ′(τ)dτ

1/α

is analytic and univalent in U.

During the time many authors (see [5], [6], [7], [8], [9], [11], [18], etc.) have obtained
numerous and various conditions which guarantee the univalence of a function in the
class A or the univalence of an integral operator.

In this paper we are mainly interested on the integral operator

(1.6) Fα,β(z) =

α z∫
0

τα−1(f ′(τ))βdτ

1/α

where the function f belongs to the class A and the parameters α and β are complex
numbers such that the integral exists. Here and in the sequel every many-valued function
is taken with the principal branch.

For the integral operator Fα,β(z) we establish a fairly general and flexible univalence
criterion which contains a number of known or new results.

2. Univalence criterion
Before proving our main result we need a brief summary of the theory of Loewner

chains.
A function L(z, t) : U × [0,∞) → C is said to be a Loewner chain or a subordination

chain if:
(i) L(z, t) is analytic and univalent in U for all t ≥ 0.
(ii) L(z, t) ≺ L(z, s) for all 0 ≤ t ≤ s < ∞, where the symbol ” ≺ ” stands for

subordination.
The following result due to Pommerenke is often used to obtain univalence criteria.

2.1. Theorem. ([15], [16]) Let L(z, t) = a1(t)z + . . . be an analytic function in Ur
(0 < r ≤ 1) for all t ≥ 0. Suppose that:

(i) L(z, t) is a locally absolutely continuous function of t ∈ [0,∞), locally uniform
with respect to z ∈ Ur.

(ii) a1(t) is a complex valued continuous function on [0,∞) such that a1(t) 6= 0,
lim
t→∞

|a1(t)| =∞ and {
L(z, t)

a1(t)

}
t≥0

is a normal family of functions in Ur.
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(iii) There exists an analytic function p : U× [0,∞) → C satisfying <p(z, t) > 0 for
all (z, t) ∈ U× [0,∞) and

(2.1) z
∂L(z, t)

∂z
= p(z, t)

∂L(z, t)

∂t
, z ∈ Ur , a.e t ≥ 0.

Then, for each t ≥ 0, the function L(z, t) has an analytic and univalent extension to the
whole disk U, i.e L(z, t) is a Loewner chain.

Our main result contains sufficient conditions for the univalence of the integral oper-
ator Fα,β(z) defined by (1.6).

2.2. Theorem. Let a(z) be an analytic function in U and let f ∈ A. Consider three
complex numbers α, β and c such that <α > 0, β 6= 0 and |c| ≤ 1, c 6= −1. Suppose that:

(2.2)

∣∣∣∣∣(c+ 1)(f ′(z))βe
−
z∫
0
a(τ)dτ

− 1

∣∣∣∣∣ ≤ 1, z ∈ U

and

(2.3)

∣∣∣∣∣|z|2α
[

(c+ 1)(f ′(z))βe
−
z∫
0
a(τ)dτ

− 1

]
+ z

1− |z|2α

α
a(z)

∣∣∣∣∣ ≤ 1, z ∈ U \ {0} .

Then, the integral operator

Fα,β(z) =

α z∫
0

τα−1(f ′(τ))βdτ

1/α

is univalent in U, i.e. is in the class S.

Proof. Define the function

f1(z, t) = α

e−tz∫
0

τα−1(f ′(τ))βdτ z ∈ U, t ≥ 0.

Since f ∈ A, e−tz ∈ U for all t ≥ 0 and z ∈ U, it follows that

f1(z, t) =
(
e−tz

)α
+

∞∑
n=2

bn
(
e−tz

)n+α−1

where bn ∈ C, n ≥ 2. Consider the function f2(z, t) such that

f1(z, t) = zαf2(z, t) z ∈ U, t ≥ 0.

It is easy to check that f2(z, t) is analytic in U for all t ≥ 0 and

f2(z, t) = e−αt +

∞∑
n=2

bne
−t(n+α−1)zn−1.

Since the function a(z) is analytic in U it follows that the function f3(z, t) defined by

f3(z, t) =
(
eαt − e−αt

)
e

e−tz∫
0

a(τ)dτ

is analytic in U for all t ≥ 0.
Then, the function f4(z, t) given by

f4(z, t) = f2(z, t) +
1

c+ 1
f3(z, t) z ∈ U, t ≥ 0

is also analytic in U.
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We have

f4(0, t) = f2(0, t) +
1

c+ 1
f3(0, t) =

eαt

c+ 1
(1 + ce−2αt).

The conditions <α > 0 and |c| ≤ 1, c 6= −1 yield f4(0, t) 6= 0 for all t ≥ 0. Thus, there
exists an open disk Ur1 (0 < r1 ≤ 1) in which f4(z, t) 6= 0 for all t ≥ 0. Therefore, we
can choose an analytic branch of [f4(z, t)]1/α, which will be denoted by f5(z, t).

Making use of the previous results, we obtain that the function

L(z, t) = zf5(z, t)

or

L(z, t) =

α e−tz∫
0

τα−1(f ′(τ))βdτ +
1

c+ 1

(
eαt − e−αt

)
zαe

e−tz∫
0

a(τ)dτ


1/α

is analytic in Ur1 for all t ≥ 0.
We have L(z, t) = a1(t)z + . . . for z ∈ Ur1 and t ≥ 0, where

a1(t) = et
(

1 + ce−2αt

c+ 1

)1/α

, t ≥ 0.

From <α > 0 and |c| ≤ 1, c 6= −1 we obtain a1(t) 6= 0 and lim
t→∞

|a1(t)| =∞.

Let r2 ∈ (0, r1] and let K = {z ∈ C : |z| ≤ r2}. Since the function L(z, t) is analytic
in Ur1 , there existsM > 0 such that |L(z, t)| ≤Met for z ∈ K and t ≥ 0. Also, for t ≥ 0,
it is easy to see that there exists N > 0 such that |a1(t)| > Net. It follows that∣∣∣∣L(z, t)

a1(t)

∣∣∣∣ ≤ M

N
, for z ∈ K and t ≥ 0.

Thus, {L(z, t)/a1(t)}t≥0 is a normal family of functions in Ur1 .

Elementary calculations show that
∂L

∂z
(z, t) is analytic in Ur1 . It follows that

∣∣∣∣∂L∂z (z, t)

∣∣∣∣
is bounded on [0, T ] for any fixed T > 0 and z ∈ Ur3 (0 < r3 ≤ r1). Therefore, the func-
tion L(z, t) is locally absolutely continuous on [0,∞) locally uniform with respect to
z ∈ Ur1 .

Consider the function p(z, t) defined by

p(z, t) = z
∂L

∂z
(z, t)/

∂L

∂t
(z, t).

In order to prove that the function p(z, t) has an analytic extension in U and <p(z, t) >
0 for all t ≥ 0, we will show that the function w(z, t) given by

w(z, t) =
p(z, t)− 1

p(z, t) + 1
z ∈ Ur1 , t ≥ 0

has an analytic extension in U and |w(z, t)| < 1, for all z ∈ U and t ≥ 0.
Lengthy but elementary calculations give

w(z, t) = e−2tα

(c+ 1)(f ′(e−tz))βe
−
e−tz∫
0

a(τ)dτ

− 1

+
1

α
(1− e−2tα)e−tza(e−tz).

It is easy to check that w(z, t) is an analytic function in U. We have w(0, t) = ce−2tα

and thus

(2.4) |w(0, t)| = |c|e−2t<α < 1, for all t > 0.
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For t = 0 we obtain

w(z, 0) = (c+ 1)(f ′(z))βe
−
z∫
0
a(τ)dτ

− 1, z ∈ U.

Inequality (2.2) from the hyphothesis, yields

(2.5) |w(z, 0)| < 1 z ∈ U.

Let t > 0 and let z 6= 0. Since |e−tz| ≤ e−t < 1 for all z ∈ Ū = {z ∈ C : |z| ≤ 1}, it
follows that w(z, t) is analytic in Ū. Making use of the maximum modulus principle we
obtain that, for each fixed t > 0, there exists θ ∈ R such that :

|w(z, t)| < max
|z|=1

|w(z, t)| = |w(eiθ, t)|.

Denote u = e−teiθ. Then, |u| = e−t and thus

|w(eiθ, t)| =

∣∣∣∣∣|u|2α
[

(c+ 1)(f ′(u))βe
−
u∫
0
a(τ)dτ

− 1

]
+

1− |u|2α

α
ua(u)

∣∣∣∣∣ .
Inequality (2.3), from the hyphothesis, shows that

(2.6) |w(eiθ, t)| ≤ 1.

Combining (2.4), (2.5) and (2.6) we immediately get |w(z, t)| < 1 for all z ∈ U and
t ≥ 0. Therefore, the function p(z, t) has an analytic extension in U and <p(z, t) > 0 for
(z, t) ∈ U× [0,∞).

Since all the conditions of Theorem 2.1 are satisfied we can conclude that the function
L(z, t) has an analytic and univalent extension in U for all t ≥ 0. For t = 0, we have
L(z, 0) = Fα,β(z) and thus, the function Fα,β(z) given by (1.6) is analytic and univalent
in U. With this the proof is complete. �

Remark. The univalence condition (1.3) can be derived from Theorem 2.2 for α =
β = 1.

3. Specific univalence criteria
Many new or known univalence criteria can be generated with Theorem 2.2 and specific

choiches of the functions a(z) and f(z). In this section some of these univalence criteria
are listed.

1. Consider first

a(z) = β
f ′′(z)

f ′(z)
, z ∈ U, f ∈ A.

Then, making use of Theorem 2.2 we immediately obtain the following result.

3.1. Theorem. Let f ∈ A and let α, β, c be complex numbers such that <α > 0, β 6= 0
and |c| ≤ 1, c 6= −1. If

(3.1)
∣∣∣∣c|z|2α +

β

α
(1− |z|2α)

zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, z ∈ U

then the integral operator Fα,β(z) defined by (1.6) is in the class S.

Remark.
(i) For β = 1, Theorem 3.1 reduces to a result obtained by V. Pescar [13].
(ii) Setting α = β = 1 in Theorem 3.1, we obtain the univalence criterion given in

(1.2).
(iii) With c = 0 and β = 1, inequality (3.1) specializes to
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(3.2)
∣∣∣∣1− |z|2αα

zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1, z ∈ U.

Using the next inequality

(3.3)
∣∣∣∣1− |z|2αα

∣∣∣∣ ≤ 1− |z|2<α

<α
in (3.2) we get the univalence condition (1.4) which guarantees the univalence of the
integral operator Fα(z) given by (1.5).

Let gν : U→ C be the normalized Bessel function of the first kind (see [2]) with Taylor
expansion

gν(z) = z +

∞∑
n=1

(−1)nzn+1

4nn!(ν + 1) . . . (ν + n)
.

For ν =
1

2
we have g 1

2
(z) =

√
z sin

√
z.

The next result follows from Theorem 3.1 with f(z) = gν(z).

3.2. Corollary. Let ν > 0 and let α, β, c be complex numbers such that 0 < |β| ≤
2(4ν2 + 9ν + 3)

4ν + 9
<α and |c| ≤ 1, c 6= −1. Then the function

(3.4) Fα,β,ν(z) =

α z∫
0

τα−1(g′ν(τ))βdτ

1/α

, z ∈ U

is in the class S. In particular, if 0 < |β| ≤ 17

11
<α and |c| ≤ 1, c 6= −1, then the function

Fα,β, 1
2
(z) =

α z∫
0

τα−1

(
sin
√
τ +
√
τ cos

√
τ

2
√
τ

)β
dτ

1/α

is in S.

Proof. Replace f(z) = gν(z) in left-hand side of (3.1). Making use of the triangle in-
equality and (3.3) we have ∣∣∣∣c|z|2α +

β

α
(1− |z|2α)

zf ′′(z)

f ′(z)

∣∣∣∣
=

∣∣∣∣c|z|2α +
β

α
(1− |z|2α)

zg′′ν (z)

g′ν(z)

∣∣∣∣
≤ |c||z|2<α +

|β|
<α (1− |z|2<α)

∣∣∣∣zg′′ν (z)

g′ν(z)

∣∣∣∣ .
Since 0 < |β| ≤ 2(4ν2 + 9ν + 3)

4ν + 9
<α, |c| ≤ 1, c 6= −1 and making use of∣∣∣∣zg′′ν (z)

g′ν(z)

∣∣∣∣ ≤ 4ν + 9

2(4ν2 + 9ν + 3)
, z ∈ U, ν > 0

(see [6]), we obtain that

|c||z|2<α +
|β|
<α (1− |z|2<α)

∣∣∣∣zg′′ν (z)

g′ν(z)

∣∣∣∣
≤ |z|2<α +

|β|
<α (1− |z|2<α)

4ν + 9

2(4ν2 + 9ν + 3)
≤ |z|2<α + 1− |z|2<α = 1.
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It follows that inequality (3.1) holds true and therefore, the function Fα,β,ν(z) defined

by (3.4) is in S. The particular case follows from the first part by setting ν =
1

2
. �

2. Let g ∈ A. Choosing

f(z) =

z∫
0

g(τ)

τ
dτ, z ∈ U

in Theorem 2.2 we obtain easily a univalence criterion for another well known integral
operator.

3.3. Theorem. Let g ∈ A and let α, β, c be complex numbers such that <α > 0, β 6= 0
and |c| ≤ 1, c 6= −1. Suppose that∣∣∣∣∣(c+ 1)

(
g(z)

z

)β
e
−
z∫
0
a(τ)dτ

− 1

∣∣∣∣∣ ≤ 1, z ∈ U

and ∣∣∣∣∣|z|2α
[

(c+ 1)

(
g(z)

z

)β
e
−
z∫
0
a(τ)dτ

− 1

]
+

1− |z|2α

α
za(z)

∣∣∣∣∣ ≤ 1, z ∈ U \ {0} .

Then the integral operator

(3.5) Gα,β(z) =

α z∫
0

τα−1

(
g(τ)

τ

)β
dτ

1/α

, z ∈ U

is in the class S.

3. Consider a(z) defined by

a(z) = β

(
g′(z)

g(z)
− 1

z

)
, z ∈ U, g ∈ A.

Then, making use of Theorem 3.2 we get the following result.

3.4. Corollary. Let g ∈ A and let α, β, c ∈ C with <α > 0, β 6= 0 and |c| ≤ 1, c 6= −1. If

(3.6)
∣∣∣∣c|z|2α +

β

α
(1− |z|2α)

(
zg′(z)

g(z)
− 1

)∣∣∣∣ ≤ 1, z ∈ U

then the function Gα,β(z) defined by (3.5) is in the class S.

Suppose that the function g in Corollary 3.2 is in S. Then we have the following result
which shows that the integral operator Gα,β(z) preserves univalency.

3.5. Corollary. Let g ∈ S and let α, β, c ∈ C with c 6= −1, 0 < |β| ≤ min
{<α

2
, 1
4

}
and

<α > 0. If

(3.7) |c| ≤

 1− 2|β|
<α , <α ∈ (0,

1

2
)

1− 4|β|, <α ∈ [
1

2
,∞)

then the function Gα,β(z) is in S.

Proof. Making use of the triangle inequality in left-hand side of (3.6) we obtain∣∣∣∣c|z|2α +
β

α
(1− |z|2α)

(
zg′(z)

g(z)
− 1

)∣∣∣∣
≤ |c||z|2<α +

|β|
<α (1− |z|2<α)

[∣∣∣∣zg′(z)g(z)

∣∣∣∣+ 1

]
.
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Let g ∈ S. Then ∣∣∣∣zg′(z)g(z)

∣∣∣∣ ≤ 1 + |z|
1− |z| , z ∈ U.

It follows that

(3.8)
∣∣∣∣c|z|2α +

β

α
(1− |z|2α)

(
zg′(z)

g(z)
− 1

)∣∣∣∣ ≤ |c|+ 2|β|
<α

1− |z|2<α

1− |z| .

Denote x = |z| and a = <α. Consider the function φ : [0, 1)→ R defined by

φ(x) =
1− x2a

1− x .

It is easy to check that

(3.9) φ(x) ≤

 1, a ∈ (0,
1

2
)

2a, a ∈ [
1

2
,∞).

Combining (3.8) and (3.9) we have

∣∣∣∣c|z|2α +
β

α
(1− |z|2α)

(
zg′(z)

g(z)
− 1

)∣∣∣∣ ≤
 |c|+

2|β|
<α , <α ∈ (0,

1

2
)

|c|+ 4|β|, <α ∈ [
1

2
,∞)

Inequality (3.7) from hypothesis shows that the condition (3.6) is satisfied and thus,
making use of Corollary 3.2 we obtain that the function Gα,β(z) is in S. With this the
proof is complete. �

3.6. Corollary. Let α, β, c ∈ C with c 6= −1, 0 < |β| ≤ min
{<α

2
, 1
4

}
,<α > 0. If

inequality (3.7) holds true, then the function Kα,β(z) = z [2F1(α, 2β; 1 + α; z)]1/α is in
the class S. The symbol 2F1(a, b; c; z) denotes the well known hypergeometric function.

Proof. The Koebe function k(z) =
z

(1− z)2 is in S. Applying Corollary 3.3 we obtain

that the function

Kα,β(z) :=

α z∫
0

τα−1

(
k(τ)

τ

)β
dτ

1/α

=

α z∫
0

τα−1 (1− τ)−2β dτ

1/α

is also in S. With the substitution τ = uz the function Kα,β(z) becomes

Kα,β(z) = z

α 1∫
0

uα−1(1− uz)−2βdu

1/α

= z [2F1(α, 2β; 1 + α; z)]1/α .

Thus, the proof is completed. �

Remark. Similar results with the one given in Corollary 3.3 can be found in [9], [14].

4. Let g1, . . . , gm ∈ A and δ1, . . . , δm ∈ C \ {0}. Setting

f(z) =

z∫
0

m∏
k=1

(
gk(τ)

τ

) δk
β

dτ
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in Theorem 2.2 or Theorem 3.1 we can easily obtain various univalence criteria for the
integral operator

Gδ1,...,δm(z) =

α z∫
0

τα−1
m∏
k=1

(
gk(τ)

τ

)δk
dτ

1/α

which has been studied by many authors (see [2], [5], [6], [8], [18], etc.)
From the previous examples, it is clear that one can generate many univalence criteria

with Theorem 2.2 and suitable choices of the functions a(z) and f(z).
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GCED and reciprocal GCED matrices
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Abstract
We have given structure theorems for a GCED (greatest common exponential divi-
sor) and Reciprocal GCED matrix. We have also calculated the value of the determi-
nant of these matrices. The formulae for the inverse and determinant of GCED and
Reciprocal GCED matrices defined on an exponential divisor closed set have been
determined.
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1. Introduction
Let S = {x1, x2, . . . , xn} be a finite ordered set of distinct positive integers. The matrix (S) where

sij = (xi, xj) =greatest common divisor of xi and xj , is called the greatest common divisor(GCD) matrix
on the set S. A set S = {x1, x2, . . . , xn} is said to be factor closed if for every xi ∈ S, and d | xi then
d ∈ S.

In 1876, H.J. Smith [7] proved that the determinant of a GCD matrix on S = {1, 2, . . . , n} is equal
to ϕ(1)ϕ(2) · · ·ϕ(n) where ϕ is Euler’s totient function. The result holds if S is a factor closed set.
The structure theorems for Reciprocal GCD matrices and LCM (least common multiple) matrices were
determined by S.J. Beslin [2]. The structures of Power GCD matrix, Power LCM matrix, Reciprocal LCM
matrix, GCD Reciprocal LCM matrix, GCUD (greatest common unitary divisor) Reciprocal LCUM (least
common unitary multiple) matrices have been determined [1, 3, 5, 9]. Research has also been extended to
divisibility properties of such matrices and their applications [4, 6]. It is worth to note that the structures
of most of the above mentioned matrices have been determined on factor closed sets, gcd closed sets, lcm
closed sets or unitary divisor closed sets or on sets contained in factor closed sets. This has motivated the
authors to follow the same direction.
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We recall that an integer d =
t∏
i=1

pi
ai is said to be an exponential divisor of m =

t∏
i=1

pi
bi , if ai|bi for

every 1 ≤ i ≤ t and is denoted by d|em. This notion was introduced by M. V. Subrarao [8]. Note that
unlike divisor and unitary divisor, 1 is not an exponential divisor for every m > 1. By convention 1|e1.

The smallest exponential divisor of m > 1 is its square free kernel κ(m) =
r∏
i=1

pi [10].

Two integers n and m have common exponential divisor if and only if they have the same prime factors.

Two integers m =
r∏
i=1

pi
bi and n =

r∏
i=1

pi
ci are exponentially co-prime if (bi, ci) = 1 for every 1 ≤ i ≤ r.

We denote the GCED (greatest common exponential divisor) of two integers m and n by (m,n)e. By
convention (1, 1)(e) = 1 and (1,m)(e) does not exist for every m > 1.

A set S = {x1, x2, x3, . . . , xn} is said to be an exponential divisor closed set if the exponential divisor
of every element of S belongs to S. For example the set {12, 18, 36} is not an exponential divisor closed
set. But, {6, 12, 18, 36} is an exponential divisor closed set.

Similarly, a set S = {x1, x2, x3, . . . , xn} is said to be GCED closed if (xi, xj)(e) ∈ S for every xi, xj ∈ S.
Note that {6, 12, 18, 36} is also a GCED closed set.
The exponential convolution of two arithmetic functions f and g is given as

(f � g)(n) =
∑

k1l1=m1

· · ·
∑

krlr=mr

f(p1
k1p2

k2 . . . pr
kr )g(p1

l1p2
l2 . . . pr

lr ),

where n = p1
m1p2

m2 . . . pr
mr .

The inverse with respect to � of the constant function 1 is called the exponential analogue of Möbius
function and is denoted by µ(e). It should be noted that the sets considered in section 2 are such that the
GCED of every two elements exists.

2. Structure of GCED matrix
Let T = {x1, x2, x3, . . . , xn} be an ordered set of distinct positive integers greater than 1. The n × n

matrix T(e) = (tij)(e) having tij = (xi, xj)(e) as its ijth entry is referred as the GCED (greatest common
exponential divisor) matrix on the set T , where (xi, xj)(e) is the greatest common exponential divisor of
xi and xj . Let R = {y1, y2, y3, . . . , ym} which is ordered by y1 < y2 < y3 < . . . < ym be a minimal
exponential divisor-closed set containing T . We refer R the exponential closure of the set T . It is easy to
see that GCED matrices are symmetric. We always assume that x1 < x2 < x3 < · · · < xn in T .

We define arithmetic function g(n) as follows:

(2.1) g(n) =
∑

a1b1=c1

∑
a2b2=c2

. . .
∑

arbr=cr

p1
a1p2

a2 · · · prarµ(e)(p1
b1p2

b2 · · · prbr ),

where n = p1
c1p2

c2 · · · prcr .

2.1. Theorem. Let R = {y1, y2, . . . , ym} be the exponential closure of the set T = {x1, x2, . . . , xn}, where
y1 < y2 < y3 < · · · < ym and x1 < x2 < x3 < · · · < xn.

Define the n×m matrix C = (cij) by

cij =

{
1, yj |exi
0, otherwise

and the m×m diagonal matrix by

Ψ = diag(g(y1), g(y2), . . . , g(ym)).

Then,
T(e) = CΨCt.

Proof. The ijth entry of CΨCt is equal to

(CΨCt)ij =

n∑
k=1

cikg(yk)cjk =
∑

yk|exi,yk|exj

g(yk) =
∑

yk|e(xi,xj)(e)

g(yk),
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where the function g is defined in Equation 2.1.
By Möbius Inversion Exponential formula, we have,∑

d|en

g(d) = n.

Finally, we get,
(CΨCt)ij = (xi, xj)(e).

2.2. Theorem. Let R = {y1, y2, . . . , ym} be the exponential closure of the set T = {x1, x2, . . . , xn} where
y1 < y2 < y3 < · · · < ym and x1 < x2 < x3 < · · · < xn. Then

detT(e) =
∑

1≤k1<k2<...<kn≤m

(detC(k1,k2,...,kn))
2g(yk1)g(yk2) . . . g(ykn),

where C(k1,k2,...,kn) is the sub matrix of C consisting of the k1th, k2th, . . . , knth columns of C.

Proof. By Theorem 2.1, we have, T(e) = (CΨ
1
2 )(CΨ

1
2 )t. Thus we can write E = CΨ

1
2 which leads to

T(e) = EEt. By applying Cauchy-Binet formula, we get

det(T )(e) =
∑

1≤k1<k2<...<kn≤m

detE(k1,k2,...,kn) detEt(k1,k2,...,kn)

=
∑

1≤k1<k2<...<kn≤m

(detE(k1,k2,...,kn))
2,

where E(k1,k2,...,kn) is the sub matrix of E consisting of the k1th, k2th, . . . , knth columns of E.

detE(k1,k2,...,kn) =
√
g(yk1)g(yk2) . . . g(ykn) detC(k1,k2,...,kn).

Hence,

detT(e) =
∑

1≤k1<k2<...<kn≤m

(detC(k1,k2,...,kn))
2g(yk1)g(yk2) . . . g(ykn).

2.3. Corollary. Let T = {x1, x2, . . . , xn} be a finite ordered set of distinct positive integers. If T = R,
then the determinant of GCED matrix T(e) defined on T is given as:

detT(e) =

n∏
k=1

g(xk).

Proof. Note that C is a lower triangular matrix with diagonal (1, 1, . . . , 1)n. This implies that detC = 1.
Since the determinant of a diagonal matrix is equal to the product of its diagonal entries, hence the desired
outcome achieved.

2.4. Corollary. If T(e) is an n × n GCED matrix on a finite ordered set of distinct integers denoted by
T = {x1, x2, . . . , xn}, then the trace is given as:

trT(e) =

n∑
k=1

xi.

2.5. Lemma. Let T(e) = (tij)(e) is an n×n GCED matrix defined on an exponential divisor closed set T .
Consider n×n matrix C = (cij) as defined in Theorem 2.1. Then, the n×n matrix W = (wij) defined by

wij =

{
µ(e)( xi

xj
), xj |exi

0, otherwise

is the inverse of C.
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Proof. The ijth entry of CW is given by

(CW )ij =

n∑
k=1

cikwkj =
∑

xk|exi,xj |exk

µ(e)(
xk
xj

) =
∑

xd|e
xi
xj

µ(e)(xd) =

{
1, if xi = xj
0, otherwise

If xi
xj

is not an integer then no xd divides xi
xj
. If xi = xj then, 1|e1 and µ(e)(1) = 1.

2.6. Theorem. Let T(e) be an n×n GCED matrix on an exponential divisor closed set. Then, its inverse
matrix (A)(e) = (aij)(e) is given as

(aij)(e) =
∑

xi|(e)xk,xj |(e)xk

µ(e) xd
xi
µ(e) xd

xj

g(xd)
.

Proof. Since T(e) = (CΨCt) and Lemma 2.5 suggests that, C−1 = W , therefore

(T )−1
(e) = (CΨCt)−1 = W tΨ−1W,

where ijth entry of (T )−1
(e) is given as

(aij)(e) =
∑

xi|(e)xd,xj |(e)xd

µ(e) xd
xi
µ(e) xd

xj

g(xd)
.

Hence, the required result.

3. Structure of Reciprocal GCED matrix
Let T = {x1, x2, x3, . . . , xn} be an ordered set of positive integers greater than 1. The n × n matrix

T (e) = (tij)(e) having tij = 1
(xi,xj)(e)

as its ijth entry on T is called a Reciprocal GCED matrix. It is easy
to note that Reciprocal GCED matrices are symmetric. We always assume that x1 < x2 < x3 < · · · < xn.

We define arithmetic function f(n) as follows:

(3.1) f(n) =
∑

a1b1=c1

∑
a2b2=c2

. . .
∑

arbr=cr

1

p1a1p2a2 · · · prar
µ(e)(p1

b1p2
b2 · · · prbr ),

where n = p1
c1p2

c2 · · · prcr .

3.1. Theorem. Let R = {y1, y2, . . . , ym} be an exponential closure of the set T = {x1, x2, . . . , xn}, where
y1 < y2 < y3 < · · · < ym and x1 < x2 < x3 < · · · < xn. Define the n×m matrix C = (cij) by

cij =

{
1, yj |exi
0, otherwise

and the m×m diagonal matrix by

Ξ = diag(f(y1), f(y2), . . . , f(ym)).

Then,
T (e) = CΞCt.

Proof. The ijth entry of CΞCt is equal to

(CΞCt)ij =

n∑
k=1

cikf(yk)cjk =
∑

yk|exi,yk|exj

f(yk) =
∑

yk|e(xi,xj)(e)

f(yk),

where f is defined in Equation 3.1. By Möbius Inversion Exponential formula,∑
d|en

g(d) =
1

n
.
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Finally we get,

(CΞCt)ij =
1

(xi, xj)(e)
.

3.2. Theorem. Let R = {y1, y2, . . . , ym} be an exponential closure of the set T = {x1, x2, . . . , xn}, where
y1 < y2 < y3 < · · · < ym and x1 < x2 < x3 < · · · < xn. Then

detT (e) =
∑

1≤k1<k2<···<kn≤m

(detC(k1,k2,...,kn))
2f(yk1)f(yk2) . . . f(ykn),

where C(k1,k2,...,kn) is the sub matrix of C consisting of the k1th, k2th, . . . , knth columns of C.

Proof. The proof can be done on similar lines as Theorem 2.2.

3.3. Corollary. Let T = {x1, x2, . . . , xn} be a finite ordered set of distinct positive integers. If T = R,
then the determinant of Reciprocal GCED matrix T (e) defined on T is given as:

detT (e) =
n∏
k=1

f(xk).

Proof. Note that C is a lower triangular matrix with diagonal (1, 1, . . . , 1)n. This implies that detC = 1.
The result is further proved by using the fact that the determinant of a diagonal matrix is equal to the
product of its diagonal entries.

3.4. Corollary. If T (e) is an n×n Reciprocal GCED matrix on a set T = {x1, x2, . . . , xn}, then the trace
is given as:

trT (e) =

n∑
k=1

1

xi
.

3.5. Theorem. Let T (e) be an n × n Reciprocal GCED matrix on an exponential divisor closed set T .
Then, its inverse matrix A(e) = (aij)(e) is given as:

(aij)(e) =
∑

xi|(e)xk,xj |(e)xk

µ(e) xd
xi
µ(e) xd

xj

f(xd)
.

Proof. Since T (e) = (CΞCt) and by Lemma 2.5, C−1 = W , therefore

(T )−1
(e) = (CΞCt)−1 = W tΞ−1W,

where ijth entry of (T )−1
(e) is given as

(aij)(e) =
∑

xi|(e)xk,xj |(e)xk

µ(e) xd
xi
µ(e) xd

xj

f(xd)
.

Hence, the required result.

4. Examples
4.1. Example. Let T = {12, 18, 36}. The GCED matrix T(e) on T is given as:

T(e) =

12 6 12
6 18 18
12 18 36

 .
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Note that T = {12, 18, 36} is not an exponential divisor closed set. Its exponential closure is R =
{6, 12, 18, 36}. The 3× 4 matrix (C)(e) is

C =

1 1 0 0
1 0 1 0
1 1 1 1

 .
By Theorem 2.2, we know that,

detT(e) =
∑

1≤k1<k2<...<kn≤m

(detCk1,k2,...,kn)2g(yk1)g(yk2) . . . g(ykn).

So,

detT(e) =

∣∣∣∣∣∣
1 1 0
1 0 1
1 1 1

∣∣∣∣∣∣
2

g(6)g(12)g(18) +

∣∣∣∣∣∣
1 1 0
1 0 0
1 1 1

∣∣∣∣∣∣
2

g(6)g(12)g(36)+

∣∣∣∣∣∣
1 0 0
1 1 0
1 1 1

∣∣∣∣∣∣
2

g(6)g(18)g(36) +

∣∣∣∣∣∣
1 0 0
0 1 0
1 1 1

∣∣∣∣∣∣
2

g(12)g(18)g(36)

where, g(6) = 6, g(12) = 6, g(18) = 12 and g(36) = 12.
Hence, the determinant is given as:

detT(e) = (6)(6)(12) + (6)(6)(12) + (6)(12)(12) + (6)(12)(12) = 2592.

The Reciprocal GCED matrix T (e) on T is given as:

T (e) =


1
12

1
6

1
12

1
6

1
18

1
18

1
12

1
18

1
36

 .
By Theorem 3.2,

detT (e) =
∑

1≤k1<k2<...<kn≤m

(detCk1,k2,...,kn)2f(yk1)f(yk2) . . . f(ykn).

So,

detT (e) =

∣∣∣∣∣∣
1 1 0
1 0 1
1 1 1

∣∣∣∣∣∣
2

f(6)f(12)f(18) +

∣∣∣∣∣∣
1 1 0
1 0 0
1 1 1

∣∣∣∣∣∣
2

f(6)f(12)f(36)+

∣∣∣∣∣∣
1 0 0
1 1 0
1 1 1

∣∣∣∣∣∣
2

f(6)f(18)f(36) +

∣∣∣∣∣∣
1 0 0
0 1 0
1 1 1

∣∣∣∣∣∣
2

f(12)f(18)f(36),

where,
f(6) = 1

6
µ(e)((2)(3)) = 1

6
, f(12) = 1

(2)(3)
µ(e)((22)(3)) + 1

(22)(3)
µ(e)((2)(3)) = −1

12

f(18) = 1
(2)(3)

µ(e)((32)(2)) + 1
(2)(32)

µ(e)((2)(3)) = −1
9

and
f(36) = 1

(2)(3)
µ(e)((22)(32)) + 1

(22)(3)
µ(e)((32)(2)) + 1

(2)(32)
µ(e)((22)(3)) +

1
(22)(32)

µ(e)((2)(3)) = 1
18
. Hence,

detT (e) =
1

3888
.
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4.2. Example. Let T = {2, 4, 16}. This set is an exponential divisor closed, so we apply the Corollary to
Theorem 2.2 directly to calculate the determinant. The GCED matrix defined on T is

T(e) =

2 2 2
2 4 4
2 4 16

 ,
where, g(2) = 2µ(e)(2) = 2, g(4) = 2µ(e)(22) + 22µ(e)(2) = 2, and g(16) = 2µ(e)(24) + 22µ(e)(22) +

24µ(e)(2) = 2(0) + 4(−1) + 16 = 12. Thus,

detT(e) =

3∏
k=1

g(xk) = g(2)g(4)g(16) = (2)(12)(12) = 48.

The Reciprocal GCED matrix T (e) on T is given as

T (e) =


1
2

1
2

1
2

1
2

1
4

1
4

1
2

1
4

1
16

 ,
where, f(2) = 1

2
, f(4) = −1

4
and f(16) = −3

16
. Thus,

detT (e) =

3∏
k=1

f(xk) = (
1

2
)(
−1

4
)(
−3

16
) =

3

128
.

4.3. Example. Let T = {2, 4, 16}. The 3× 3 GCED matrix T(e) defined on T is

T(e) =

2 2 2
2 4 4
2 4 16

 .
By Theorem 2.6, we know that (T )−1

(e) = (aij) where,

a11 =
∑

2|exk
µ(e)(

xk
2

)µ(e)(
xk
2

)

g(xk)
= µ(e)(22)µ(e)(22)

g(2)
+ µ(e)(22)µ(e)(22)

g(4)
+ µ(e)(24)µ(e)(24)

g(16)
= 1,

a12 = µ(e)(22)µ(e)(2)
g(4)

+ µ(e)(24)µ(e)(22)
g(16)

= −1
2
, and a13 = µ(e)(24)µ(e)(2)

g(16)
= 0.

Similarly, one can calculate and verify the following values
a22 = 7

12
, a23 = −1

12
and a33 = 1

12
. So, the inverse of the GCED matrix T(e) is

(T )−1
(e) =


1 −1

2
0

−1
2

7
12

−1
12

0 −1
12

1
12

 .
The 3× 3 Reciprocal GCED matrix on T is given as

T (e) =


1
12

1
6

1
12

1
6

1
18

1
18

1
12

1
18

1
36

 .
The inverse of the Reciprocal GCED matrix T (e) is calculated to be

(T )−1
(e) =


−2 4 0
4 −28

3
16
3

0 16
3

−16
3

 .
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In this paper, we define modular spaces, and introduce some properties
of them. Moreover, we present a fixed point method to prove super-
stability of generalized left derivations from an algebra into a modular
space.
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1. Introduction

Let A be an algebra over the real or complex field F and let X be an A-module. An
additive mapping d : A → X is said to be a left derivation if the functional equation
d(xy) = xd(y) + yd(x) holds for all x, y ∈ A. Moreover, if d(αx) = αd(x) is valid for all
x ∈ A and for all α ∈ F, then d is called a linear left derivation. An additive mapping
D : A → X is said to be a generalized left derivation if there exists a left derivation
d : A → X such that D(xy) = xD(y) + yd(x) holds for all x, y ∈ A. Furthermore,
if D(αx) = αD(x) is valid for all x ∈ A and for all α ∈ F, then D is called a linear
generalized left derivation.

In 1940, Ulam [21] posed the first stability problem of functional equations, concerning
the stability of group homomorphisms, was solved in the case of the additive mapping
by Hyers [4] in the next year. Subsequently, Aoki [1] extended Hyers’ theorem for ap-
proximately additive mappings and for approximately linear mappings was presented by
Rassias [18]. The stability result concerning derivations between operator algebras was
first obtained by Semrl [20]. Also Badora [2] present the Hyers-Ulam stability and the
superstability of derivations. The equation is called superstable if each its approximate
solution is an exact solution. Various stability and superstability results for derivations

∗Department of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar,
P.O. Box 397, IRAN
Email: t.shateri@gmail.com, t.shateri@hsu.ac.ir
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have been investigated by a number of mathematicians [3, 5, 11, 12, 16, 17, 19]. In this
paper, we define modular spaces, and introduce some properties of them. Moreover, we
prove the superstability of generalized left derivations from an algebra with unit into
a modular space by using a fixed point method. The theory of modular spaces were
founded by Nakano [14] and were intensively developed by Luxemburg [9], Koshi and
Shimogaki [7] and Yamamuro [22] and their collaborators. In the present time the theory
of modulars and modular spaces is extensively applied, in particular, in the study of
various Orlicz spaces [15] and interpolation theory [8, 10], which in their turn have broad
applications [13].

1.1. Definition. Let X be an arbitrary vector space.
(a) A functional ρ : X→ [0,∞] is called a modular if for arbitrary x, y ∈ X,
(i) ρ(x) = 0 if and only if x = 0,
(ii) ρ(αx) = ρ(x) for every scaler α with |α| = 1,
(iii) ρ(αx+ βy) ≤ ρ(x) + ρ(y) if and only if α+ β = 1 and α, β ≥ 0,
(b) if (iii) is replaced by
(iii)

′
ρ(αx+ βy) ≤ αρ(x) + βρ(y) if and only if α+ β = 1 and α, β ≥ 0,

then we say that ρ is a convex modular.

If ρ is a modular, the corresponding modular space is the vector space Xρ given by

Xρ = {x ∈ X : ρ(λx)→ 0 as λ→ 0} .

Let ρ be a convex modular, the modular space Xρ can be equipped with a norm called
the Luxemburg norm, defined by

‖x‖ρ = inf
{
λ > 0 : ρ

(x
λ

)
≤ 1
}
.

A function modular is said to be satisfy the ∆2–condition if there exists κ > 0 such
that ρ(2x) ≤ κρ(x) for all x ∈ Xρ.

1.2. Definition. Let {xn} and x be in Xρ. Then
(i) the sequence {xn}, with xn ∈ Xρ, is ρ–convergent to x and we write xn

ρ−→ x if
ρ(xn − x)→ 0 as n→∞.
(ii) The sequence {xn}, with xn ∈ Xρ, is called ρ–Cauchy if ρ(xn−xm)→ 0 as n,m→∞.
(iii) A subset S of Xρ is called ρ–complete if and only if any ρ–Cauchy sequence is ρ–
convergent to an element of S.

We call the modular ρ has the Fatou property if ρ(x) ≤ lim infn→∞ ρ(xn) whenever
the sequence {xn} is ρ–convergent to x.

1.3. Remark. Note that ρ(.x) is an increasing function for each x ∈ X. Suppose
0 < a < b, and put y = 0 in property (iii) of Definition 1.1, then ρ(ax) = ρ

(
a
b
bx
)
≤ ρ(bx)

for all x ∈ X. Moreover, if ρ is a convex modular on X and |α| ≤ 1, then ρ(αx) ≤ αρ(x)
and also ρ(x) ≤ 1

2
ρ(2x) for all x ∈ X.

1.4. Example. An example of a modular space with ∆2–condition is the Orlicz space.
Let τ be a function defined on the interval [0,∞) such that τ(0) = 0, τ(α) > 0 for α > 0
and τ(α)→∞ as α→∞. Also assume that τ is convex, nondecreasing and continuous.
The function τ is called an Orlicz function. The Orlicz function τ satisfies the ∆2–
condition if there exists κ > 0 such that τ(2α) ≤ κτ(α) for all α > 0. Let (Ω,M, µ) be a
measure space. Let L0(µ) be the space of all measurable real–valued (or complex–valued)
functions on Ω. For every f ∈ L0(µ), we define the Orlicz modular ρτ (f) as

ρτ (f) =

∫
Ω

τ(|f |)dµ.



643

The associated modular function space with respect to this modular is called an Orlicz
space, and will be denoted by Lτ (Ω, µ) or briefly Lτ . In other words,

Lτ = {f ∈ L0(µ)| ρτ (λf)→ 0 as λ→ 0}

or equivalently as

Lτ = {f ∈ L0(µ)| ρτ (λf) <∞ for some λ > 0}.

It is known that the Orlicz space Lτ is ρτ–complete. Moreover, (Lτ , ‖.‖ρτ ) is a Banach
space, where the Luxemburg norm ‖.‖ρτ is defined as follows

‖f‖ρτ = inf

{
λ > 0 :

∫
Ω

τ

(
|f |
λ

)
dµ ≤ 1

}
.

2. Main results
Throughout this paper, A and X denote a Banach algebra with unit and a unital

A-module respectively. Also Xρ denotes a ρ–complete modular space where ρ is a con-
vex modular on X with the Fatou property such that satisfies the ∆2–condition with
0 < κ ≤ 2. In this section, we present the superstability of generalized left derivations
from a Banach algebra into a complete modular space.

2.1. Theorem. Let d : A→ Xρ be a mapping with d(0) = 0 such that

(2.1) ρ (d(x+ y)− d(x)− d(y)) ≤ ϕ(x, y)

for all x, y ∈ A, where ϕ : A×A→ [0,∞) is a given mapping that

ϕ(2x, 2x) ≤ 2Lϕ(x, x)

and

(2.2) lim
n→∞

ϕ(2nx, 2ny)

2n
= 0

for all x, y ∈ A and a constant 0 < L < 1. Then there exist a unique additive mapping
D : A→ Xρ and a convex modular function ρ̃ such that

(2.3) ρ̃(D − d) ≤ 1

2(1− L)
.

Proof. Consider the set
B = {δ : A→ Xρ, δ(0) = 0}

we define the function ρ̃ on B as follows,

(2.4) ρ̃(δ) = inf{c > 0 : ρ(δ(x)) ≤ cϕ(x, x)}.

Then ρ̃ is convex modular. It is enough to show that ρ̃ satisfies the following condition

ρ̃(αδ + βγ) ≤ αρ̃(δ) + βρ̃(γ) (α, β ≥ 0, α+ β = 1).

Given ε > 0, then there exist c1 > 0 and c2 > 0 such that

c1 ≤ ρ̃(δ) + ε, ρ(δ(x)) ≤ c1ϕ(x, x)

and
c2 ≤ ρ̃(γ) + ε, ρ(γ(x)) ≤ c2ϕ(x, x).

For α, β ≥ 0 such that α+ β = 1, we get

ρ(αδ(x) + βγ(x)) ≤ αρ(δ(x)) + βρ(γ(x)) ≤ (αc1 + βc2)ϕ(x, x),

hence

ρ̃(αδ + βγ) ≤ αρ̃(δ) + βρ̃(γ) + (α+ β)ε.
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Consequently ρ̃(αδ + βγ) ≤ αρ̃(δ) + βρ̃(γ). Moreover, ρ̃ satisfies the ∆2–condition with
0 < κ < 2. For this, let {δn} be a ρ̃–Cauchy sequence in Eρ̃ and given ε > 0. There exists
a positive integer n0 ∈ N such that ρ̃(δn − δm) ≤ ε for all n,m ≥ n0. Then by definition
of the modular ρ̃, we have

(2.5) ρ (δn(x)− δm(x)) ≤ εϕ(x, x)

for all x ∈ A and n,m ≥ n0. Let x be a point of A, (2.5) implies that {δn(x)} is a
ρ–Cauchy sequence in Xρ. Since Xρ is ρ–complete, so {δn(x)} is ρ–convergent in Xρ, for
each x ∈ A. Therefore we can define a function δ : A→ Xρ by

δ(x) = lim
n→∞

δn(x)

for any x ∈ A. Letting m→∞, then (2.5) implies that

ρ̃(δn − δ) ≤ ε

for all n ≥ n0. Since ρ has the Fatou property, thus {δn} is ρ̃–convergent sequence in
Bρ̃. Therefore Eρ̃ is ρ̃–complete.

Now, we define the function T : Eρ̃ → Bρ̃ as follows

Tδ(x) :=
1

2
δ(2x)

for all δ ∈ Bρ̃. Let δ, γ ∈ Bρ̃ and let c ∈ [0,∞] be an arbitrary constant with ρ̃(δ−γ) ≤ c.
We have

ρ(δ(x)− γ(x)) ≤ cϕ(x, x)

for all x ∈ A. The last inequality implies that

ρ

(
δ(2x)

2
− γ(2x)

2

)
≤ 1

2
ρ(δ(2x)− γ(2x)) ≤ 1

2
cϕ(2x, 2x) ≤ Lcϕ(x, x)

for all x ∈ A. Hence, ρ̃(Tδ − Tγ) ≤ Lρ̃(δ − γ), for all δ, γ ∈ Bρ̃. Therefore T is a ρ̃–strict
contraction. We show that the ρ̃–strict mapping T satisfies the conditions of Theorem
3.4 of [6]. Letting x = y in (2.12), we get

(2.6) ρ(d(2x)− 2d(x)) ≤ ϕ(x, x)

for all x ∈ A. Replacing x by 2x in (2.6) we get

ρ(d(4x)− 2d(2x)) ≤ ϕ(2x, 2x)

for all x ∈ A. Since ρ is convex modular and satisfies the ∆2–condition, for all x ∈ A we
have

ρ

(
d(4x)

2
− 2d(x)

)
≤ 1

2
ρ(d(4x)− 2d(2x)) +

1

2
ρ(2d(2x)− 4d(x))

≤ 1

2
ϕ(2x, 2x) +

κ

2
ϕ(x, x).

Moreover,

ρ

(
d(22x)

22
− d(x)

)
≤ 1

2
ρ

(
2
d(4x)

22
− 2d(x)

)
≤ 1

22
ϕ(2x, 2x) +

κ

22
ϕ(x, x).

for all x ∈ A. By induction we obtain

(2.7) ρ

(
d(2nx)

2n
− d(x)

)
≤ 1

2n

n∑
i=1

κn−iϕ(2i−1x, 2i−1x) ≤ 1

2(1− L)
ϕ(x, x)
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for all x ∈ A. Now we claim that δρ̃(d) = sup {ρ̃ (Tn(d)− Tm(d)) ;n,m ∈ N)} < ∞. It
follows from (2.7) that

ρ

(
d(2nx)

2n
− d(2mx)

2m

)
≤ 1

2
ρ

(
2
d(2nx)

2n
− 2d(x)

)
+

1

2
ρ

(
2
d(2mx)

2m
− 2d(x)

)
≤ κ

2
ρ

(
d(2nx)

2n
− d(x)

)
+
κ

2
ρ

(
d(2mx)

2m
− d(x)

)
≤ 1

1− Lϕ(x, x),

for every x ∈ A and n,m ∈ N, which implies that

ρ̃ (Tn(d)− T
m(d)) ≤ 1

1− L,

for all n,m ∈ N. Therefore δρ̃(d) < ∞. [6, Lemma 3.3] shows that {Tn(d)} is ρ̃–
convergent to D ∈ Bρ̃. Since ρ has the Fatou property, (2.7) gives ρ̃(TD − d) <∞.

If we replace x by 2nx in (2.6), then

ρ̃
(
d(2n+1x)− 2d(2nx)

)
≤ ϕ(2nx, 2nx),

for all x ∈ A. Hence

ρ

(
d(2n+1x)

2n+1
− d(2nx)

2n

)
≤ 1

2n+1
ρ
(
d(2n+1x)− 2d(2nx)

)
≤ 1

2n+1
ϕ(2n, 2nx)

≤ 1

2n+1
2nLnϕ(x, x) ≤ Ln

2
ϕ(x, x) ≤ ϕ(x, x)

for all x ∈ A, therefore ρ̃(T(D)−D) <∞. It follows from [6, Theorem 3.4] that ρ̃–limit
D of {Tn(d)} is fixed point of map T. If we replace x by 2nx and y by 2ny in (2.12), then
we obtain

ρ (d(2n(x+ y))− d(2nx)− d(2ny)) ≤ ϕ(2nx, 2ny)

for all x, y ∈ A. Hence,

ρ

(
d(2n(x+ y))

2n
− d(2nx)

2n
− d(2ny)

2n

)
≤ 1

2n
ρ (d(2n(x+ y))− d(2nx)− d(2ny))

≤ ϕ(2nx, 2ny)

2n

for all x, y ∈ A. Taking the limit, we deduce that D(x+y) = D(x)+D(y) for all x, y ∈ A,
that is, D is additive. Now, let D∗ be another fixed point of T, then

ρ̃(D −D∗) ≤ 1

2
ρ̃(2T(D)− 2d) +

1

2
ρ̃(2T(D∗)− 2d)

≤ κ

2
ρ̃(T(D)− d) +

κ

2
ρ̃(T(D∗)− d) ≤ κ

2(1− L)
<∞.

Since T is ρ̃–strict contraction, we get

ρ̃(D −D∗) = ρ̃(T(D)− T(D∗)) ≤ Lρ̃(D −D∗),

which implies that ρ̃(D −D∗) = 0 or D = D∗, since ρ̃(D −D∗) < ∞. This proves the
uniqueness of D. Also it follows from inequality (2.7) that

ρ̃(D − d) ≤ 1

2(1− L)
.

This completes the proof. �

We now investigate the superstability of a generalized left derivation from a unital
algebra into a modular space.
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2.2. Theorem. Let d : A → Xρ be a mapping with d(0) = 0. If there exists a mapping
g : A→ Xρ such that

(2.8) ρ (d(x+ y + zw)− d(x)− d(y)− zd(w)− wg(z)) ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A, where ϕ : A×A×A×A→ [0,∞) is a given mapping such that

ϕ(2x, 2x, 0, 0) ≤ 2Lϕ(x, x, 0, 0)

and

(2.9) lim
n→∞

ϕ(2nx, 2ny, 0, 0)

2n
= lim
n→∞

ϕ(0, 0, 2nz, w)

2n
= lim
n→∞

ϕ(0, 0, z, 2nw)

2n
= 0

for all x, y ∈ A and a constant 0 < L < 1, then d is a generalized left derivation and g is
a left derivation.

Proof. Letting z = w = 0 in (2.8), then d satisfies (2.12) and so the Theorem 2.1 shows
that there exists a unique additive mapping D : A→ Xρ for which satisfies

ρ̃(D − d) ≤ 1

2(1− L)
,

where ρ̃ is the convex modular defined in (2.4). Now, we prove that d is a generalized
left derivation and g is a left derivation. Substituting x = y = 0 in (2.8), we get

(2.10) ρ (d(zw)− zd(w)− wg(z)) ≤ ϕ(0, 0, z, w),

for all z, w ∈ A. Moreover, if we replace z and w with 2nz and 2nw in (2.10), respectively,
and then divide both sides by 22n, we deduced that

ρ

(
d(22nzw)

22n
− z d(2nw)

2n
− wg(2nz)

2n

)
≤ ϕ(0, 0, 2nz, 2nw)

22n
,

for all z, w ∈ A. Letting n→∞, we obtain

D(zw)− zD(w) = lim
n→∞

w
g(2nz)

2n
,

for all z, w ∈ A. Suppose that w = e, hence it follows

lim
n→∞

g(2nz)

2n
= D(z)− zD(e),

for all z ∈ A. If γ(z) = D(z)− zD(e), then by the additivity of D, we get

γ(z+w) = D(z+w)−(z+w)D(e) = (D(z)−zD(e))+(D(w)−wD(e)) = γ(z)+γ(w),

for all z, w ∈ A. Therefore γ is additive.
Suppose ∆(z, w) = d(zw) − zd(w) − wg(z), for all z, w ∈ A. The inequality given in

(2.10) implies that

lim
n→∞

∆(2nz, w)

2n
= 0,

for all z, w ∈ A. Thus we get

D(zw) = ρ̃ lim
n→∞

d(22nzw)

2n
= lim
n→∞

2nzd(w) + wg(2nz) + ∆(2nz, w)

2n

= zd(w) + lim
n→∞

wg(2nz)

2n
= zd(w) + wγ(z),

for all z, w ∈ A. Since γ is additive, we have

2nzd(w) + 2nwγ(z) = D(2nz.w) = D(z.2nw) = zd(2nw) + 2nwγ(z),
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for all z, w ∈ A. Therefore zd(w) = z 1
2n
d(2nw), for all z, w ∈ A. By letting n→∞, we

obtain zd(w) = zD(w). If z = e, we have d = D. Consequently we get

(2.11) d(zw) = zd(w) + wγ(z),

for all z, w ∈ A. Now, we verify that γ is a left derivation. Using the fact that d satisfies
(2.11), we have

γ(xy) = d(xy)− xyd(e) = xd(y) + yγ(x)− xyd(e)

= x(d(y)− yd(e)) + yγ(x) = xγ(y) + yγ(x),

for all x, y ∈ A, which means that γ is a derivation and hence d is a generalized left
derivation.

Finally, we show that g is a left derivation. If we replace w by 2nw in (2.10) and then
divide both sides by 22n, we obtain

ρ

(
d(2nzw)

2n
− z d(2nw)

2n
− 2nw

g(z)

2n

)
≤ ϕ(0, 0, 2nz, w)

2n
,

for all z, w ∈ A. Passing the limit as n→∞, we get

d(zw)− zd(w)− wg(z) = 0,

for all z, w ∈ A. Therefore d(zw) = zd(w) + wg(z), for all z, w ∈ A, and hence if w = e,
then g(z) = d(z) − zd(e) = γ(z), for all z ∈ A. Since γ is a left derivation, hence g is a
left derivation and this completes the proof. �

The similar way as in the proof of Theorem 2.2, we get the following result for a
generalized derivation.

2.3. Theorem. Let d : A → Xρ be a mapping with d(0) = 0. If there exists a mapping
g : A→ Xρ such that

(2.12) ρ (d(x+ y + zw)− d(x)− d(y)− zd(w)− g(z)w) ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A, where ϕ : A×A×A×A→ [0,∞) is a given mapping such that

ϕ(2x, 2x, 0, 0) ≤ 2Lϕ(x, x, 0, 0)

and

(2.13) lim
n→∞

ϕ(2nx, 2ny, 0, 0)

2n
= lim
n→∞

ϕ(0, 0, 2nz, w)

2n
= lim
n→∞

ϕ(0, 0, z, 2nw)

2n
= 0

for all x, y ∈ A and a constant 0 < L < 1, then d is a generalized derivation and g is a
derivation.

With the help of Theorem 2.1, the following result can be derived for a linear gener-
alized left derivation.

2.4. Theorem. Let A be a unital algebra and let X be a unital A-module and Xρ a
ρ–complete modular space. Suppose d : A → Xρ satisfies the condition d(0) = 0 and an
inequality of the form

(2.14) ρ (d(αx+ βy + zw)− αd(x)− βd(y)− zd(w)− wg(z)) ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A and all α, β ∈ U = {z ∈ C : |z| = 1}, where ϕ : A×A×A×A→ [0,∞)
is a given mapping such that

ϕ(2x, 2x, 0, 0) ≤ 2Lϕ(x, x, 0, 0)

and

(2.15) lim
n→∞

ϕ(2nx, 2ny, 0, 0)

2n
= lim
n→∞

ϕ(0, 0, 2nz, w)

2n
= lim
n→∞

ϕ(0, 0, z, 2nw)

2n
= 0
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for all x, y ∈ A and a constant 0 < L < 1. Then d is a linear generalized left derivation
and g is a linear left derivation.

Proof. We consider α = β = 1 ∈ U in (2.14) and then d satisfies the inequality (2.8). It
follows from Theorem 2.3 that d is a generalized left derivation and g is a left derivation.
It is enough to prove that d and g are linear. By the proof of Theorem 2.2 we know that

(2.16) d(x) = ρ̃− lim
n→∞

T
n(d)(x) = ρ̃− lim

n→∞

1

2n
d(2nx).

Letting w = 0 in (2.14), we have

(2.17) ρ (d(αx+ βy)− αd(x)− βd(y)) ≤ ϕ(x, y, 0, 0),

for all x, y ∈ A and all α, β ∈ U. If we replace x and y with 2nx and 2ny in (2.16),
respectively, and then divide both sides by 2n, we see that

(2.18) ρ

(
1

2n
d(α2nx+ β2ny)− 1

2n
αd(2nx)− 1

2n
βd(2ny)

)
≤ 1

2n
ϕ(2nx, 2ny, 0, 0)→ 0,

for all x, y ∈ A and all α, β ∈ U, as n→∞. Hence, we get

(2.19) d(αx+ βy) = αd(x) + βd(y),

for all x, y ∈ A and all α, β ∈ U. Now the proof of [5, Theorem 2.3] implies that

(2.20) d(αx+ βy) = αd(x) + βd(y),

for all x, y ∈ A and all α, β ∈ C. �

Employing the similar way as in the proof of Theorem 2.3 and Theorem 2.4, we get
the next corollary for a linear generalized derivation.

2.5. Corollary. Let A be a unital algebra and let X be a unital A-module and Xρ a
ρ–complete modular space. Suppose d : A → Xρ satisfies the condition d(0) = 0 and an
inequality of the form

(2.21) ρ (d(αx+ βy + zw)− αd(x)− βd(y)− zd(w)− g(z)w) ≤ ϕ(x, y, z, w)

for all x, y, z, w ∈ A and all α, β ∈ U = {z ∈ C : |z| = 1}, where ϕ : A×A×A×A→ [0,∞)
is a given mapping such that

ϕ(2x, 2x, 0, 0) ≤ 2Lϕ(x, x, 0, 0)

and

(2.22) lim
n→∞

ϕ(2nx, 2ny, 0, 0)

2n
= lim
n→∞

ϕ(0, 0, 2nz, w)

2n
= lim
n→∞

ϕ(0, 0, z, 2nw)

2n
= 0

for all x, y ∈ A and a constant 0 < L < 1. Then d is a linear generalized derivation and
g is a linear derivation.

2.6. Remark. Let A be a normed algebra and let B be a Banach algebra. It is known
that every normed space is modular space with the modular ρ(x) = ‖x‖ and κ = 2. A
typical example of ϕ in the above results is ϕ(x, y) = ε+ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p),
such that ε, θ ≥ 0 and p ∈ [0, 1).
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Is homotopy perturbation method the traditional
Taylor series expansion
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Abstract
The present paper deals with the homotopy perturbation method. The
question of whether the homotopy perturbation method is simply the
conventional Taylor series expansion is examined. It is proven that
under particular choices of the auxiliary parameters the homotopy per-
turbation method is indeed the Taylor series expansion of the sought
solution of nonlinear equations.
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1. Introduction
Most of the real-life phenomena is governed by nonlinear equations whose solutions

are difficult to find. Therefore, friendly tools have been the focus of past two decade’s
research.

Recently, investigators have proposed plenty of techniques to find approximate solu-
tions. One of the most recent popular technique is the homotopy perturbation method
based on the concept of topology. This method is quite distinct from the classical per-
turbation technique and does not require a small parameter or a linear term in a dif-
ferential equation. Essentially, a homotopy with an embedding parameter p ∈ [0, 1] is
constructed. The basic details of homotopy perturbation method for solving nonlinear
differential equations were outlined in [1], see also [2, 3, 4]. A numerous nonlinear prob-
lems were recently treated by the method, see for instance [5]. The recent works highlight
clearly the fact that there is a close relationship between the Adomian decomposition and
Taylor series methods as well as the homotopy and Taylor series methods [6, 7].

The investigation of current paper focuses on the homotopy perturbation technique.
The prime motivation is to examine the method mathematically and to prove that under
certain constraints, by particular choice of auxiliary linear operator and initial approx-
imation, the homotopy perturbation method simply collapses onto the classical Taylor
series expansion.

∗Mathematics Department, University of Hacettepe, 06532-Beytepe, Ankara, Turkey
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2. The Homotopy Perturbation Method
The essential idea of this method is to introduce a homotopy parameter, say p, which

varies from 0 to 1. Consider the nonlinear initial value problem

N(u) = 0, B(u,
du

dn
) = 0,(2.1)

where u is the function to be solved under the boundary constraints in B. He’s homotopy
perturbation technique [1, 10] defines a homotopy u(r, p) : R× [0, 1]→ R so that

H(u, p) = (1− p)[L(u)− L(u0)] + pN(u),(2.2)

where L is a suitable auxiliary linear operator, u0 is an initial approximation of equation
(2.1) satisfying exactly the boundary conditions, see also [2] for the rest. It is obvious
from equation (2.2) that

H(u, 0) = L(u)− L(u0), H(u, 1) = N(u).(2.3)

As p moves from 0 to 1, u(t, p) moves from u0(t) to u(t). Our basic assumption is that
the solution of equation (2.2) when equated to zero can be expressed as a power series
in p

u(t, p) = u0(t) + pu1(t) + p2u2(t) + · · · =
∞∑
k=0

uk(t)p
k.(2.4)

The approximate solution of equation (2.1), therefore, can be readily obtained as

u(t) = lim
p→1

u(t, p) =

∞∑
k=0

uk(t).(2.5)

3. Homotopy perturbation and Taylor expansion
To answer the question raised in the title of the paper, let’s take into account the

first-order initial value problem version of (2.1)

u′(t) = F (u), u(0) = α,(3.1)

where α is a constant. A straightforward Taylor series representation for the solution
u(t) at point t = 0 can be given in the form

u(t) = u(0) + u′(0)t+
u′′(0)

2!
t2 + · · · =

∞∑
k=0

akt
k,(3.2)

where an = u(n)(0)
n!

can be immediately found from differentiating (3.1) successively and
substituting t = 0. A few of the coefficients follow

a1 = u′(0) = F (α),(3.3)

a2 =
u′′(0)

2!
=

1

2!
Fu(α)a1,

a3 =
u′′′(0)

3!
=

1

3!
[Fuu(α)a

2
1 + 2Fu(α)a2],

a4 =
u(4)(0)

4!
=

1

4!
[Fuuu(α)a

3
1 + 6Fuu(α)a1a2 + 6Fu(α)a3],

...
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Theorem. If the auxiliary linear operator L and the initial approximation u0(t) to
the solution u(t) of equation (3.1) is taken in the homotopy procedure (2.2) as

L =
∂

∂t
, u0(t) = α,(3.4)

then the homotopy series solution (2.4) converges to the Taylor series expansion (3.2)
whose coefficients are evaluated in the order given by (3.3).

Proof. Expanding the homotopy solution u(t, p) from (2.2) into Taylor series accord-
ing to the parameter p at p = 0, it reads

u(t, p) =

∞∑
k=0

uk(t)p
k.(3.5)

When (3.5) is substituted into the homotopy equations (2.2) or equivalently differentiat-
ing (2.2) successively with respect to p and replacing p = 0 at the end yields a system of
linear ordinary differential equations for the coefficients uk(t) of (3.5)

L(uk − χkuk−1) = −u′k−1 +
1

(k − 1)!
[
∂k−1F

∂pk−1
]|p=0,(3.6)

uk(0, p) = α,

where χk = 0 for k = 1 and χk = 1 for k > 1. Having solved the equations (3.6)
iteratively, the followings result for uk(t)

u1(t) = F (α)t = a1t,(3.7)

u2(t) =
1

2!
Fu(α)a1t

2 = a2t
2,

u3(t) =
1

3!
[Fuu(α)a

2
1 + 2Fu(α)a2]t

3 = a3t
3,

u4(t) =
1

4!
[Fuuu(α)a

3
1 + 6Fuu(α)a1a2 + 6Fu(α)a3]t

4 = a4t
4,

...

which generates the homotopy series

u(t, p) =

∞∑
k=0

uk(t)p
k =

∞∑
k=0

akt
kpk.(3.8)

The convergence assumption of (3.8) at p = 1 yields the homotopy series solution (2.5)
which turns out to be the Taylor series expansion (3.2-3.3) to the solution.

Remark 1. Since the homotopy series (3.8) at p = 1 is the traditional Taylor series,
then the convergence issue of the homotopy series (3.5) is guaranteed for those values t,
|t| < R such that R = limn→∞ | anan+1

|.

Remark 2. If u = u(t, r) with r denoting space variables and the initial-value problem
consists of a partial differential equation of the form

ut = F (u, ur),(3.9)
u(t = 0, r) = f(r),

then by a similar argument to Theorem 1, the homotopy solution to (3.9) will be again the
traditional Taylor series expansion at t = 0, provided that the auxiliary linear operator
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L and the initial approximation u0(t, r) are selected as

L =
∂

∂t
, u0(t, r) = f(r).

Remark 3. If higher-order ordinary or partial differential initial-value problems (or
systems) are considered, by a particular choice of linear differential operator and initial
guess, it can be shown that the homotopy perturbation series solution and the Taylor
series solution are the same.

4. Illustrative Examples
To justify the presented analysis, the following examples are given, as also stated in

reference [2].

Example 1. The steady free convection flow over a vertical semi-infinite flat plate,
see [12] and [13] is given by

y′ + y2 = 1, y(0) = 0,(4.1)

To comply with the Theorem, u0(t) = 0 and L = d
dt

are chosen so that the homotopy
(2.2) becomes

∂u(t, p)

∂t
+ p u(x, p)2 − p = 0, u(0, p) = 0.(4.2)

A few approximate homotopy solutions via the homotopy perturbation (4.2) can be
calculated as

u1(t) = t, u2(t) = 0, u3(t) = −
t3

3
, u4(t) = 0, u5(t) =

2

15
t5,

which are the same as those generated from the classical Taylor series expansion of (4.1)
at t = 0, the validity region is determined to be −π

2
< t < π

2
.

Example 2. The steady mixed convection flow [14] is given by

2y′′ + y − y2 = 0, y(0) = 0, y′(0) = α = 1/
√
6.(4.3)

The Taylor series expansion of (4.3) at point t = 0 yields

y(t) = tα− t3α

12
+
t4α2

24
+
t5α

480
− t6α2

288
+
t7α

(
−1 + 40α2

)
40320

+
t8α2

7680
+ · · · .(4.4)

which totally corresponds to the homotopy perturbation series solution provided that we
choose the auxiliary parameters as u0(t) = αt and L = 2 ∂

2

∂t2
, see [2].

Example 3. The approximate theory of the flow through a shock wave traveling in
a viscous fluid [15] is given by

ut + uux = uxx, u(x, 0) = 2x, (x, t) ∈ R× [0, 1/2),(4.5)

which receives an exact solution given by (see [2])

u(x, t) =
2x

1 + 2t
.(4.6)

Exact solution (4.6) is approximated by the auxiliary parameters u0(x, t) = 2x and
L = ∂

∂t
. Then, the homotopy (2.2) turns out to be

ut(x, t, p) + p(u(x, t, p)ux(x, p, t)− uxx(x, t, p) = 0, u(x, 0, p) = 2x.(4.7)
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Equation (4.7) produces the below homotopy series for the solution of (4.5)

u(x, t) = 2x− 4xt+ 8xt2 − 16xt3 + 32xt4 + ...+ (−1)n2n+1xtn + · · · ,(4.8)

which is the same as the classical Taylor series expansion of (4.6) around t = 0. The
interval of convergence is easy to identify as 0 ≤ t < 1/2.

Example 4. Consider now the well-known KdV-Burger’s equation involving both
dispersion and dissipation terms

ut + 2(u3)x − uxxx + uxx = 0, u(x, 0) =
1

6

(
1 + tanh

[x
6

])
,(4.9)

whose exact travelling-wave solution is given by

u(x, t) =
1

6

(
1 + tanh

[
1

6

(
x− 2

9
t

)])
.(4.10)

To approximate the exact solution (4.10), if we choose the auxiliary parameters u0(x, t) =
1
6

(
1 + tanh

[
x
6

])
and L = ∂

∂t
, the homotopy (2.2) turns out to be

ut(x, t, p) + p(2(u(x, t, p)3)x − uxxx(x, p, t) + uxx(x, t, p) = 0,(4.11)

u(x, 0, p) =
1

6

(
1 + tanh

[x
6

])
.

It is no hard to deduce that the Taylor series and homotopy perturbation series completely
coincide again for this specific problem.

Example 5. The transverse vibrations of a uniform flexible beam [16] is given by

utt + (
y + z

2 cosx
− 1)uxxxx + (

z + x

2 cos y
− 1)uyyyy + (

x+ y

2 cos z
− 1)uzzzz = 0,(4.12)

u(x, y, z, 0) = −ut(x, y, z, 0) = x+ y + z − (cosx+ cos y + cos z),

admitting an exact solution

u(x, t) = (x+ y + z − cosx− cos y − cos z)e−t, see[2].(4.13)

This exact solution (4.13) is approximated by selecting the auxiliary parameters respec-
tively, u0(x, t) = (x + y + z − cosx − cos y − cos z)(1 − t) and L = ∂2

∂t2
. As a result, we

obtain the homotopy series

u(x, t) = (x+ y + z − cosx− cos y − cos z)(1− t+ t2

2!
− t3

3!
+
t4

4!
+ · · · )(4.14)

which matches exactly onto the Taylor series expansion of (4.13) around t = 0

u(x, t) =

∞∑
n=0

(x+ y + z − cosx− cos y − cos z)
tn

n!
,(4.15)

that is obviously convergent for all t.

Example 6. As a final example, we consider the linear partial differential equation

ut + ux − 2uxxt = 0, u(x, 0) = e−x,(4.16)

having the exact solution

u(x, t) = e−x−t, see[2].(4.17)

Choosing the auxiliary parameters u0(x, t) = e−x and L = ∂
∂t
, then the homotopy (2.2)

becomes

ut(x, t, p) + p(ux(x, p, t)− uxxt(x, t, p) = 0, u(x, 0, p) = e−x.(4.18)
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The homotopy series solution of (4.13) from (2.1) can be found as

u(x, t) =
e−x

720
(720 + 45360t+ 46440t2 + 13320t3 + 1470t4 + 66t5 + · · · ),(4.19)

whose radius of convergence is zero, so that the homotopy series (4.19) is convergent only
at the point t = 0. On the other hand, the classical Taylor series expansion applied to
(4.16) predicts the exact result (4.17). It should be remarked that this example does not
contradict at all with the Theorem, since (4.16) involves mixed partial derivatives. The
weakness of the homotopy perturbation method on this example may be overcame by a
better choice of auxiliary parameters.

It can be concluded as an answer to the title of the paper that for specific choices of
auxiliary homotopy parameters, the homotopy perturbation technique produces exactly
the same series as the traditional Taylor series. If this is the case, then there seems no a
scientific merit to publish papers regarding the homotopy perturbation technique.

5. Concluding remarks
The homotopy perturbation method is mathematically analyzed in the present work.

The theorem presented here proves that under certain special conditions the traditional
homotopy perturbation method becomes the well-known Taylor series expansion. An
example has also been given to demonstrate the advantage of the Taylor series expan-
sion over the homotopy perturbation method. It can be concluded that a great deal of
the papers published under the topic of homotopy perturbation technique is simply the
traditional Taylor series expansion, whose contributions to science are questionable.
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boundary value problems of a fractional
differential equation with a parameter
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Abstract

In this paper, we are concerned with the existence and uniqueness
of positive solutions for the following nonlinear fractional two-point
boundary value problem{

Dα
0+u(t) + λf(t, u(t), u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative, and

λ is a positive parameter. Our analysis relies on a fixed point theorem
and some properties of eigenvalue problems for a class of general mixed
monotone operators. Our results can not only guarantee the existence
of a unique positive solution, but also be applied to construct an itera-
tive scheme for approximating it. An example is given to illustrate the
main results.
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1. Introduction
Fractional differential equations arise in many fields, such as physics, mechanics,

chemistry, economics, engineering and biological sciences,etc;see[1-15] for example. In
recent years, the study of positive solutions for fractional differential equation boundary
value problems has attracted considerable attention, and fruits from research into it
emerge continuously. For a small sample of such work, we refer the reader to [16-28] and
the references therein. In these papers, many authors have investigated the existence of
positive solutions for nonlinear fractional differential equation boundary value problems.
Their results are based on Schauder fixed point theorem, Leggett-Williams theorem,
fixed point index theorems in cones, Krasnosel’skii fixed point theorem, the method of
upper-lower solutions, fixed point theorems in cones and so on. On the other hand, the
uniqueness of positive solutions for nonlinear fractional differential equation boundary
value problems has been studied by some authors, see [20-22,24,27] for example. The
methods used in these papers are fixed point theorems for mixed monotone operators,
u0-concave operators and monotone operators in partially ordered sets.

In [26], by means of Krasnosel’skii fixed point theorem, El-Shahed considered the
existence and nonexistence of positive solutions for the nonlinear fractional boundary
value problem {

Dα
0+u(t) + λa(t)f(u(t)) = 0, 0 < t < 1, 2 < α < 3,

u(0) = u′(0) = u′(1) = 0,

where Dα
0+ is the standard Riemann-Liouville fractional derivative, a : (0, 1) → [0,+∞)

is continuous with
∫ 1

0
a(t)dt > 0, f ∈ C([0,+∞), [0,+∞)) and λ is a positive parameter.

In [28], by using the properties of the Green function, the method of upper-lower
solutions and fixed point theorem, Zhao et al. studied the existence of multiple positive
solutions for the nonlinear fractional differential equation boundary value problem{

Dα
0+u(t) + f(t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0.

The purpose of this paper is to establish the existence and uniqueness of positive solutions
for the following nonlinear fractional two-point boundary value problem{

Dα
0+u(t) + λf(t, u(t), u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = u′(0) = u′(1) = 0,
(1.1)

where Dα
0+ is the standard Riemann-Liouville fractional derivative, λ is a positive pa-

rameter and f : [0, 1]× [0,+∞)× [0,+∞)→ [0,+∞) is continuous.
Different from the above works mentioned, we will use a fixed point theorem and some

properties of eigenvalue problems for a class of general mixed monotone operators to show
the existence and uniqueness of positive solutions for the problem (1.1). Moreover, we
can construct two sequences for approximating the unique solution and we show that the
positive solution with respect to λ has some pleasant properties.

2. Preliminaries and previous results
For the convenience of the reader, we present here some definitions, lemmas and

basic results that will be used in the proof of our theorem.

Definition 2.1([4, Definition 2.1]). The integral

Iα0+f(x) =
1

Γ(α)

∫ x

0

f(t)

(x− t)1−α dt, x > 0
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is called the Riemann-Liouville fractional integral of order α, where α > 0 and Γ(α)
denotes the gamma function.

Definition 2.2([4, page 36-37]). For a function f(x) given in the interval [0,∞), the
expression

Dα
0+f(x) =

1

Γ(n− α)

(
d

dx

)n ∫ x

0

f(t)

(x− t)α−n+1
dt

where n = [α] + 1, [α] denotes the integer part of number α, is called the Riemann-
Liouville fractional derivative of order α.

Lemma 2.3.([26]). Given y ∈ C[0, 1] and 2 < α ≤ 3, the following boundary value
problem {

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,
(2.1)

has a unique solution

u(t) =

∫ 1

0

G(t, s)y(s)ds, t ∈ [0, 1],

where

G(t, s) =
1

Γ(α)

{
(1− s)α−2tα−1, 0 ≤ t ≤ s ≤ 1,
(1− s)α−2tα−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1.

Here G(t, s) is called the Green function of boundary value problem (2.1). Evidently,
G(t, s) ≥ 0 for t, s ∈ [0, 1].
The following property of the Green function plays important roles in this paper.

Lemma 2.4. Let 2 < α ≤ 3. Then the Green function G(t, s) in Lemma 2.3 has the
following property:

1

Γ(α)
s(1− s)α−2tα−1 ≤ G(t, s) ≤ 1

Γ(α)
(1− s)α−2tα−1 for t, s ∈ [0, 1].

Proof. Evidently, the right inequality holds. So we only need to prove the left inequality.
If 0 ≤ s ≤ t ≤ 1, then we have 0 ≤ t− s ≤ t− ts = (1− s)t, and thus

(t− s)α−1 ≤ (1− s)α−1tα−1.

Hence,

G(t, s) =
1

Γ(α)
[(1− s)α−2tα−1 − (t− s)α−1]

≥ 1

Γ(α)
[(1− s)α−2tα−1 − (1− s)α−1tα−1]

=
1

Γ(α)
s(1− s)α−2tα−1.

If 0 ≤ t ≤ s ≤ 1, then we have

G(t, s) =
1

Γ(α)
(1− s)α−2tα−1 ≥ 1

Γ(α)
s(1− s)α−2tα−1.

So the left inequality also holds.2

In the sequel, we present some basic concepts in ordered Banach spaces for complete-
ness and fixed point theorems which we will be used later. For convenience of readers,
we suggest that one refer to [29,30] for details.
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Suppose that (E, ‖ · ‖) is a real Banach space which is partially ordered by a cone
P ⊂ E, i.e., x ≤ y if and only if y − x ∈ P. If x ≤ y and x 6= y, then we denote x < y or
y > x. By θ we denote the zero element of E. Recall that a non-empty closed convex set
P ⊂ E is a cone if it satisfies (i) x ∈ P, λ ≥ 0⇒ λx ∈ P ; (ii) x ∈ P,−x ∈ P ⇒ x = θ.
P is called normal if there exists a constant M > 0 such that, for all x, y ∈ E, θ ≤

x ≤ y implies ‖x‖ ≤ M‖y‖; in this case M is called the normality constant of P . If
x1, x2 ∈ E, the set [x1, x2] = {x ∈ E|x1 ≤ x ≤ x2} is called the order interval between
x1 and x2.

For all x, y ∈ E, the notation x ∼ y means that there exist λ > 0 and µ > 0 such that
λx ≤ y ≤ µx. Clearly, ∼ is an equivalence relation. Given h > θ(i.e., h ≥ θ and h 6= θ),
we denote by Ph the set Ph = {x ∈ E| x ∼ h}. It is easy to see that Ph ⊂ P is convex
and λPh = Ph for all λ > 0.

Definition 2.5(see [29,30]). A : P × P → P is said to be a mixed monotone operator if
A(x, y) is increasing in x and decreasing in y, i.e., ui, vi(i = 1, 2) ∈ P, u1 ≤ u2, v1 ≥ v2
implies A(u1, v1) ≤ A(u2, v2). Element x ∈ P is called a fixed point of A if A(x, x) = x.

In a recent paper [30], Zhai and Zhang considered the following operator equations

A(x, x) = x and A(x, x) = λx,

where A : P×P → P is a mixed monotone operator which satisfy the following conditions:

(A1) there exists h ∈ P with h 6= θ such that A(h, h) ∈ Ph.
(A2) for any u, v ∈ P and t ∈ (0, 1), there exists ϕ(t) ∈ (t, 1) such that A(tu, t−1v) ≥
ϕ(t)A(u, v).
They established the existence and uniqueness of positive solutions for the above equa-
tions and they present the following interesting results.

Theorem 2.6. Suppose that P is a normal cone of E, and (A1), (A2) hold. Then
operator A has a unique fixed point x∗ in Ph. Moreover, for any initial x0, y0 ∈ Ph,
constructing successively the sequences

xn = A(xn−1, yn−1), yn = A(yn−1, xn−1), n = 1, 2, . . . ,

we have ‖xn − x∗‖ → 0 and ‖yn − x∗‖ → 0 as n→∞.

Theorem 2.7. Suppose that P is a normal cone of E, and (A1), (A2) hold. Let xλ(λ > 0)
denote the unique solution of nonlinear eigenvalue equation A(x, x) = λx in Ph. Then we
have the following conclusions:

(R1) If ϕ(t) > t
1
2 for t ∈ (0, 1), then xλ is strictly decreasing in λ, that is, 0 < λ1 < λ2

implies xλ1 > xλ2 ;
(R2) If there exists β ∈ (0, 1) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then xλ is continuous in
λ, that is, λ→ λ0(λ0 > 0) implies ‖xλ − xλ0‖ → 0;
(R3) If there exists β ∈ (0, 1

2
) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then lim

λ→∞
‖xλ‖ =

0, lim
λ→0+

‖xλ‖ =∞.
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3. Existence and uniqueness of positive solutions for the problem
(1.1)
In this section, we apply Theorem 2.6 and Theorem 2.7 to study the problem (1.1),

and we obtain a new result on the existence and uniqueness of positive solutions. More-
over, we show that the positive solution with respect to λ has some pleasant properties.
The method used here is new to the literature and so is the existence and uniqueness
result to the fractional differential equations.

In our considerations we will work in the Banach space C[0, 1] = {x : [0, 1] →
R is continuous} with the standard norm ‖x‖ = sup{|x(t)| : t ∈ [0, 1]}. Notice that
this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

Set P = {x ∈ C[0, 1]|x(t) ≥ 0, t ∈ [0, 1]}, the standard cone. It is clear that P is a
normal cone in C[0, 1] and the normality constant is 1. Our main result is summarized
in the following theorem.

Theorem 3.1. Assume that

(H1) f(t, x, y) is nondecreasing in x for each t ∈ [0, 1] and y ∈ [0,+∞), nonincreas-
ing in y for each t ∈ [0, 1] and x ∈ [0,+∞) with f(t, 0, 1) 6≡ 0;
(H2) for any γ ∈ (0, 1), there exist constants ϕ1(γ), ϕ2(γ) ∈ (0, 1) with ϕ1(γ)ϕ2(γ) > γ
such that

f(t, γx, y) ≥ ϕ1(γ)f(t, x, y), f(t, x, γy) ≤ 1

ϕ2(γ)
f(t, x, y) for any x, y ∈ [0,+∞).

Then: (1) the problem (1.1) has a unique positive solution u∗λ in Ph, where h(t) =
tα−1, t ∈ [0, 1]. Moreover, for any initial values u0, v0 ∈ Ph, constructing successively the
sequences

un+1(t) = λ

∫ 1

0

G(t, s)f(s, un(s), vn(s))ds, vn+1(t) = λ

∫ 1

0

G(t, s)f(s, vn(s), un(s))ds, n = 0, 1, 2, . . . ,

we have un(t)→ u∗λ(t), vn(t)→ u∗λ(t) as n→∞, where G(t, s) is given as in Lemma 2.3;
(2) if ϕ1(t)ϕ2(t) > t

1
2 for t ∈ (0, 1), then u∗λ is strictly increasing in λ, that is, 0 < λ1 < λ2

implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

. If there exists β ∈ (0, 1) such that ϕ1(t)ϕ2(t) ≥ tβ for
t ∈ (0, 1), then u∗λ is continuous in λ, that is, λ → λ0(λ0 > 0) implies ‖u∗λ − u∗λ0

‖ → 0.

If there exists β ∈ (0, 1
2
) such that ϕ1(t)ϕ2(t) ≥ tβ for t ∈ (0, 1), then lim

λ→0+
‖u∗λ‖ =

0, lim
λ→∞

‖u∗λ‖ =∞.

Proof. To begin with, from [26] the problem (1.1) has an integral formulation given
by

u(t) = λ

∫ 1

0

G(t, s)f(s, u(s), u(s))ds,

where G(t, s) is given as in Lemma 2.3. For any u, v ∈ P, we define

A(u, v)(t) =

∫ 1

0

G(t, s)f(s, u(s), v(s))ds.

Noting that f(t, x, y) ≥ 0 and G(t, s) ≥ 0, it is easy to check that A : P × P → P. In the
sequel we check that A satisfies all assumptions of Theorem 2.6.

Firstly, we prove that A is a mixed monotone operator. In fact, for ui, vi ∈ P, i = 1, 2
with u1 ≥ u2, v1 ≤ v2, we know that u1(t) ≥ u2(t), v1(t) ≤ v2(t), t ∈ [0, 1] and by (H1)
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and Lemma 2.3,

A(u1, v1)(t) =

∫ 1

0

G(t, s)f(s, u1(s), v1(s))ds ≥
∫ 1

0

G(t, s)f(s, u2(s), v2(s))ds = A(u2, v2)(t).

That is, A(u1, v1) ≥ A(u2, v2).
Next we show that A satisfies the condition (A2). From (H2), for γ ∈ (0, 1) we can

get f(t, x, γ−1y) ≥ ϕ2(γ)f(t, x, y) for any x, y ∈ [0,+∞). Then for any γ ∈ (0, 1) and
u, v ∈ P, we obtain

A(γu, γ−1v)(t) =

∫ 1

0

G(t, s)f(s, γu(s), γ−1v(s))ds

≥
∫ 1

0

G(t, s)ϕ1(γ)f(s, u(s), γ−1v(s))ds

≥
∫ 1

0

G(t, s)ϕ1(γ)ϕ2(γ)f(s, u(s), v(s))ds

= ϕ1(γ)ϕ2(γ)A(u, v)(t), t ∈ [0, 1].

Let ϕ(t) = ϕ1(t)ϕ2(t), t ∈ (0, 1). Then ϕ(t) ∈ (t, 1) for t ∈ (0, 1). Hence, A(γu, γ−1v) ≥
ϕ(γ)A(u, v), ∀ u, v ∈ P, γ ∈ (0, 1). So the condition (A2) in Theorem 2.6 is satisfied.
Now we show that A(h, h) ∈ Ph. On one hand, it follows from (H1), (H2) and Lemma
2.4 that

A(h, h)(t) =

∫ 1

0

G(t, s)f(s, h(s), h(s))ds

=

∫ 1

0

G(t, s)f(s, sα−1, sα−1)ds

≥
∫ 1

0

1

Γ(α)
s(1− s)α−2tα−1f(s, 0, 1)ds

=
1

Γ(α)
h(t)

∫ 1

0

s(1− s)α−2f(s, 0, 1)ds, t ∈ [0, 1].

On the other hand, also from (H1), (H2) and Lemma 2.4, we obtain

A(h, h)(t) =

∫ 1

0

G(t, s)f(s, sα−1, sα−1)ds

≤
∫ 1

0

1

Γ(α)
(1− s)α−2tα−1f(s, 1, 0)ds

=
1

Γ(α)
h(t)

∫ 1

0

f(s, 1, 0)ds, t ∈ [0, 1].

Let

r1 =

∫ 1

0

s(1− s)α−2f(s, 0, 1)ds, r2 =

∫ 1

0

f(s, 1, 0)ds.

Since f is continuous and f(t, 0, 1) 6≡ 0, we can get

0 < r1 =

∫ 1

0

s(1− s)α−2f(s, 0, 1)ds ≤
∫ 1

0

f(s, 1, 0)ds = r2.

Consequently,

A(h, h)(t) ≥ r1
Γ(α)

· h(t), A(h, h)(t) ≤ r2
Γ(α)

· h(t), t ∈ [0, 1].

So we have
r1

Γ(α)
· h ≤ A(h, h) ≤ r2

Γ(α)
· h.
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Hence A(h, h) ∈ Ph, the condition (A1) in Theorem 2.6 is satisfied. Therefore, by
Theorem 2.7, there exists a unique u∗λ ∈ Ph such that A(u∗λ, u

∗
λ) = 1

λ
u∗λ. That is,

u∗λ = λA(u∗λ, u
∗
λ). It is easy to check that u∗λ is a unique positive solution of the problem

(1.1) for given λ > 0. Further, if ϕ(t) > t
1
2 for t ∈ (0, 1), then Theorem 2.7 (R1) means

that u∗λ is strictly increasing in λ, that is, 0 < λ1 < λ2 implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

.

If there exists β ∈ (0, 1) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then Theorem 2.7 (R2)
means that u∗λ is continuous in λ, that is, λ → λ0(λ0 > 0) implies ‖u∗λ − u∗λ0

‖ → 0. If
there exists β ∈ (0, 1

2
) such that ϕ(t) ≥ tβ for t ∈ (0, 1), then Theorem 2.7 (R3) means

lim
λ→0+

‖u∗λ‖ = 0, lim
λ→∞

‖u∗λ‖ =∞.
Let Aλ = λA, then Aλ also satisfies all the conditions of Theorem 2.6. By Theorem

2.6, for any initial values u0, v0 ∈ Ph, constructing successively the sequences un+1 =
Aλ(un, vn), vn+1 = Aλ(vn, un), n = 0, 1, 2, . . . , we have un → u∗λ, vn → u∗λ as n → ∞.
That is,

un+1(t) = λ

∫ 1

0

G(t, s)f(s, un(s), vn(s))ds→ u∗λ(t),

vn+1(t) = λ

∫ 1

0

G(t, s)f(s, vn(s), un(s))ds, → u∗λ(t)

as n→∞. 2

Remark 3.1. Let f(t, x, y) ≡ C > 0. Then the conditions (H1), (H2) are satisfied
and the problem (1.1) has a unique solution uλ(t) = λC

∫ 1

0
G(t, s)ds, t ∈ [0, 1]. From

Lemma 2.4, the unique solution uλ is a positive solution and satisfies uλ ∈ Ph = Ptα−1 .

Example 3.1. Consider the following problem:{
D

5
2
0+u(t) + λa(t)[u

1
5 (t) + (u(t) + 3)−

1
4 ] = 0, 0 < t < 1,

u(0) = u′(0) = u′(1) = 0,
(3.1)

where a : [0, 1]→ [0,+∞) is continuous with a 6≡ 0.
In this example, we have α = 5

2
. Let f(t, x, y) = a(t)[x

1
5 + (y + 3)−

1
4 ]. Evidently,

f(t, x, y) is increasing in x for t ∈ [0, 1], y ≥ 0, decreasing in y for t ∈ [0, 1], x ≥ 0.

Moreover, f(t, 0, 1) = a(t)4−
1
4 6≡ 0. Set ϕ1(γ) = γ

1
5 , ϕ2(γ) = γ

1
4 , γ ∈ (0, 1). Then

ϕ1(γ)ϕ2(γ) = γ
9
20 > γ and

f(t, γx, y) = a(t)[γ
1
5 x

1
5 +(y+3)−

1
4 ] ≥ ϕ1(γ)f(t, x, y), f(t, x, γy) = a(t)[x

1
5 +

1

γ
1
4

(y+3)−
1
4 ] ≤ 1

ϕ2(γ)
f(t, x, y),

for t ∈ [0, 1], x, y ≥ 0. Hence, all the conditions of Theorem 3.1 are satisfied. An appli-
cation of Theorem 3.1 implies that the problem (3.1) has a unique positive solution u∗λ
in Ph = Ptα−1 , and for any initial values u0, v0 ∈ Ptα−1 , constructing successively the
sequences

un+1(t) = λ

∫ 1

0

G(t, s)a(s)[un
1
5 (s)+(vn(s)+3)−

1
4 ]ds, vn+1(t) = λ

∫ 1

0

G(t, s)a(s)[vn
1
5 (s)+(un(s)+3)−

1
4 ]ds,

n = 0, 1, 2, . . . , we have un(t) → u∗λ(t), vn(t) → u∗λ(t) as n → ∞, where G(t, s) is given
as in Lemma 2.3. Moreover, note that ϕ1(t)ϕ2(t) > t

1
2 for t ∈ (0, 1), then from Theorem

3.1, u∗λ is strictly increasing in λ, that is, 0 < λ1 < λ2 implies u∗λ1
≤ u∗λ2

, u∗λ1
6= u∗λ2

.

Take β ∈ [ 9
20
, 1
2
) and applying Theorem 3.1, we know that u∗λ is continuous in λ and

lim
λ→0+

‖u∗λ‖ = 0, lim
λ→∞

‖u∗λ‖ =∞.
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The purpose of this paper is to introduce and study the concepts of generalized closed
sets in weak structures and we give some characterizations and properties of these con-
cepts. The concept of gw-closed sets (in the sense of Al Omari and Noiri [1]) is a special
case of gw-closed sets in a weak structure. Finally, the concepts of T 1

2
-, T1-, normal,

almost normal and weakly normal spaces are investigated by using the concepts of gw-
closed, sgw-closed and mgw-closed sets in weak structures. It is shown that many results
in previous papers [1, 6, 7] can be considered as special cases of our results.

1.1. Theorem. [3] Let w be a WS on X and A, B ⊆ X. Then the following statements
are true:

(1) A ⊆ cw(A),
(2) If A ⊆ B, then cw(A) ⊂ cw(B),
(3) If A is w-closed, then A = cw(A),
(4) cw(cw(A)) = cw(A),
(5) A ⊇ iw(A),
(6) If A ⊂ B, then iw(A) ⊂ iw(B),
(7) iw(iw(A)) = iw(A),
(8) If A is w-open, then A = iw(A),
(9) cw(X −A) = X − iw(A),
(10) iw(X −A) = X − cw(A),
(11) iw(cw(iw(cw(A)))) = iw(cw(A)),
(12) cw(iw(cw(iw(A)))) = cw(iw(A)),
(13) x ∈ iw(A) if only if there is a w-open set U such that x ∈ U ⊂ A,
(14) x ∈ cw(A) if and only if U ∩A 6= φ for each w-open set U containing x.

1.2. Definition. [4] Let w be a WS on X and A ⊆ X. Then:
(1) A ∈ r(w) (i.e., A is w-regular open subset) if A = iw(cw(A)),
(2) A ∈ rc(w) (i.e., A is w-regular closed subset) if A = cw(iw((A)).

1.3. Definition. Let w be a WS on X and A ⊂ X. A point x ∈ X is said to be
w-boundary point of a subset A if and only if x ∈ cw(A)

⋂
cw(X − A). By Bdw(A) we

denote the set of all w-boundary points of A.

1.4. Theorem. Let w be a WS on X and A ⊆ X. Then:
(1) Bdw(A) = Bdw(X −A),
(2) Bdw(A) = cw(A)− iw(A),
(3) If A is w-open, then A ∩Bdw(A) = φ,
(4) If A is w-closed, then Bdw(A) ⊂ A.

Proof. It follows from Definition 1.3 and Theorem 1.1. �

1.5. Remark. One may notice that the converses of (3) and (4) in Theorem 1.4 are not
true as shown by the following example.

1.6. Example. Let X = {a, b, c} and w = {φ, {a}, {b}, {c}}. One may notice that:
(1) The subset A = {a, c} satisfy A ∩Bdw(A) = φ, but A is not w-open,
(2) The subset A = {c} satisfy Bdw(A) ⊂ A, but A is not w-closed.

2. Generalized w-Closed and Generalized w-Open Sets
2.1. Definition. Let w be a WS on X. We define the concepts of generalized closed
and generalized open sets in weak structure as follows:

(1) A subset A is said to be generalized w-closed (gw-closed, for short) if cw(A) ⊂ U ,
whenever A ⊂ U and U is w-open.
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(2) The complement of a generalized w-closed set is said to be generalized w-open
(gw-open, for short).

The family of all gw-closed (resp. gw-open) sets in a weak structure X will be denoted
by gwC(X) (resp. gwO(X))

2.2. Theorem. Let w be a WS on X. A subset A is gw-open if and only if iw(A) ⊇ F ,
whenever A ⊇ F and F is w-closed.

Proof. It follows from Theorem 1.1 and the fact the complement of w-open set is w-
closed. �

2.3. Remark. By the following two examples, we show that union and intersection of
two gw-closed sets is not gw-closed.

2.4. Example. Let X = {a, b, c} and w = {∅, {a}}. If A = {a, b} and B = {a, c}, then
A and B are gw-closed sets but A ∩B = {a} is not gw-closed set.

2.5. Example. LetX = {a, b, c, d} and w = {∅, {a, b, c}, {a, b, d}, {a, c, d}, {b, c, d}, {a, b}}.
Then A = {a} and B = {c, d} are gw-closed sets in X, but their union A ∪B = {a, c, d}
is not gw-closed.

2.6. Theorem. Let w be a WS on X. If {Ai : i ∈ I} is a family of subsets of X, then
cw(

⋃
Ai) ⊇

⋃
cw(Ai).

Proof. It is clear. �

2.7. Definition. Let w be a WS on X. A family {Ai : i ∈ I} is said to be w-locally
finite if cw(

⋃
Ai) =

⋃
cw(Ai).

2.8. Theorem. Let w be a WS on X. The arbitrary union of gw-closed sets Ai, i ∈ I
in X is a gw-closed set if the family {Ai : i ∈ I} is w-locally finite.

Proof. Let w be a WS on X, let {Ai : i ∈ I} be a family of gw-closed sets in X and U
be a w-open set such that

⋃
Ai ⊂ U . Then Ai ⊂ U for each i ∈ I and hence cw(Ai) ⊂ U

which implies
⋃
cw(Ai) ⊆ U . Since the family {Ai : i ∈ I} is w-locally finite, then

cw(
⋃
Ai) =

⋃
cw(Ai) ⊆ U . Therefore

⋃
Ai is gw-closed. �

2.9. Theorem. Let w be a WS on X. The arbitrary intersection of gw-open sets
Ai, i ∈ I in X is a gw-open set if the family {Ai : i ∈ I} is w-locally finite.

Proof. It follows from Theorem 1.1 and Theorem 2.27 and the fact the complement of a
gw-open set is a gw-closed. �

2.10. Theorem. Let w be a WS on X. If A is a w-closed set, then A is gw-closed.

Proof. Let A be a w-closed set and U be a w-open set in X such that A ⊂ U . Then
cw(A) = A ⊂ U and hence A is gw-closed. �

2.11. Corollary. Let w be a WS on X. If A is a w-open set, then A is gw-open.

2.12. Remark. By the following example, we show that the converse of Theorem 2.10
need not be true in general.

2.13. Example. In Example 2.5, if A = {d}, then A is gw-closed and not w-closed.

2.14. Theorem. Let w be a WS on X. If A is a gw-closed set in X, then cw(A) − A
contains no non empty w-closed.
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Proof. Suppose that F is a non empty w-closed subset of cw(A)−A. Now F ⊂ cw(A)−A.
Then F ⊂ cw(A)

⋂
X − A and hence F ⊂ cw(A) and F ⊂ X − A. Since X − F is w-

open and A is gw-closed, then cw(A) ⊂ X − F and hence F ⊂ X − cw(A). Thus
F ⊂ cw(A) ∩X − cw(A) = φ and hence F = φ. Therefore cw(A) − A does not contain
non empty w-closed. �

2.15. Remark. In general topology, Levine [6] proved that the above theorem is true
for “if and only if”. But in the weak structures the converse of the above theorem need
not be true in general as shown by the following example.

2.16. Example. Let X = {a, b, c} and w = {φ, {b}, {c}}. One may notice that if
A = {b}, then cw(A) − A = {a, b} − {b} = {a} does not contain any non empty w-
closed, but A is not a gw-closed set in X, since A is an w-open set contains itself and
cw(A) = {a, b} 6⊆ A.

2.17. Corollary. Let w be a WS on X and A ⊆ X is a gw-closed set. If cw(A)−A is
w-closed, then cw(A) = A.

Proof. Let cw(A)−A be w-closed and A be a gw-closed set in X. Then by Theorem 2.14,
cw(A)−A contains no non empty w-closed set. Since cw(A)−A is a w-closed subset of
itself, cw(A)−A = φ and hence cw(A) = A. �

2.18. Remark. If A is a gw-closed set in a WS on X and cw(A) = A, then cw(A)−A
is need not be w-closed as shown by the following example.

2.19. Example. Let X = {a, b, c}, w = {φ, {a}, {c}, {a, b}} and A = {b}. One may
notice that cw(A) = A and hence cw(A)−A = φ, which is not w-closed.

2.20. Theorem. Let w be a WS on X. Then A ⊆ X is a gw-closed if cw({x})
⋂
A 6= φ

for each x ∈ cw(A).

Proof. Let cw({x})
⋂
A 6= φ for each x ∈ cw(A) and U be any w-open set with A ⊆ U .

Let x ∈ cw(A). Then cw({x})
⋂
A 6= φ and hence there exists y ∈ cw({x})

⋂
A, so

y ∈ A ⊆ U . Thus {x}
⋂
U 6= φ and hence x ∈ U . Therefore cw(A) ⊆ U , which implies A

is gw-closed. �

2.21. Remark. Al Omari and Noiri [1, Theorem 2.9] proved that the converse of the
above theorem is true. The following example shows that the converse needn’t be true
generally.

2.22. Example. Let X = {a, b, c}, w = {φ, {a}, {b}}. one may notice that A = {a, b} is
gw-closed and cw({c}) = {c}. So A

⋂
cw({c}) = φ.

2.23. Theorem. Let w be a WS on X. If A is a gw-closed set in X, then cw(A) − A
is gw-open.

Proof. Let A is a gw-closed set in X and F be a w-closed subset such that F ⊂ cw(A)−A.
Then by Theorem 2.14 we have F = φ and hence F ⊂ iw(cw(A) − A)). So by Theorem
2.2, we have cw(A)−A is gw-open. �

2.24. Remark. In topological space, Levine [6] proved that the above theorem is true
for “if and only if”. But in the weak structures the converse of the above theorem need
not be true in general as shown by the following example.

2.25. Example. Let X = {a, b, c}, w = {φ, {a}, {c}, {a, b}} and A = {a}. One may
notice that cw(A)− A = {a, b} − {a} = {b} which is gw-open, but A is not a gw-closed
set, since A is a generalized w-open set contain itself, but cw(A) = {a, b} 6⊂ A
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2.26. Theorem. Let w be a WS on X and A be a gw-closed set with A ⊂ B ⊂ cw(A),
then B is gw-closed.

Proof. Let H be a w-open set in X such that B ⊂ H, then A ⊂ H. Since A is gw-closed,
then cw(A) ⊂ H and hence cw(B) ⊂ cw(A) ⊂ H. Thus B is gw-closed. �

2.27. Theorem. Let w be a WS on X and A be a gw-closed set with A ⊂ B ⊂ cw(A),
then cw(B)−B contains no non empty w-closed.

Proof. It follows from Theorems 2.14 and 2.26. �

2.28. Remark. Let w be a WS on X and A be a gw-open set with iw(A) ⊂ B ⊂ A,
then B is gw-open.

2.29. Remark. Let w be a WS on X. Then each subset of X is gw-closed if each
w-open set is w-closed.

2.30. Remark. In topological space, Levine [6] proved that the above theorem is true
for "if and only if". But in the weak structures the converse of the above theorem need
not be true in general as shown by the following example.

2.31. Example. Let X = {a, b, c}, w = {φ, {a}, {b}, {c}, {a, c}, {b, c}, X}. One may
notice that every subset of X is gw-closed, but A = {c} is w-open set in X and it is not
w-closed.

2.32. Remark. Let w be a WS on X. Then each subset of X is gw-closed if and only
if cw(A) ⊆ A for each w-open set A in X.

2.33. Theorem. Let w be a WS on X. If A is a gw-open set in X, then U = X
whenever U is w-open and iw(A) ∪ (X −A) ⊂ U .

Proof. Let U be a w-open set in X and iw(A) ∪ (X − A) ⊂ U for any gw-open set A.
Then X−U ⊂ [X− iw(A)]∩A and hence X−U ⊂ (cw(X−A))− (X−A). Since X−A
is a gw-closed, then by Theorem 2.14, we have X − U = φ and hence U = X. �

3. Separation Axioms on Weak Structures
3.1. Definition. Let w be a WS on X. We define the concepts of strongly generalized
closed and strongly generalized open sets in weak structure as follows:

(1) A subset A is said to be strongly generalized w-closed (sgw-closed, for short) if
cw(A) ⊆ U , whenever A ⊆ U and U is gw-open.

(2) A subset A is said to be mildly w-closed (mgw-closed, for short) if cw(iw((A)) ⊆
U , whenever A ⊆ U and U is gw-open.

(3) The complement of a sgw-closed (resp. mgw-closed) set is said to be sgw-open
(resp. mgw-open).

3.2. Definition. A weak structure w on X is said to be w− T 1
2
if each gw-closed set A

of X, cw(A) = A.

3.3. Remark. (1) In a topological space X, X is T 1
2
[6] if and only if each singleton

is either closed or open. By the following examples we show that "if X is a weak
structure and each singleton is w-open or cw(A) = A, then X need not be
w − T 1

2
".

(2) We think that in a weak structure X, if X is w−T 1
2
, then there exists a singleton

x ∈ X such x is neither w-closed nor {x} 6= iw{x}.
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3.4. Example. Let X = {a, b, c}, w = {φ, {b}, {c}, {b, c}}. One may notice that each
singleton is w-open or w-closed. But there exists A = {a, b} which is gw-closed and
cw(A) = X 6= A. So X is not w − T 1

2
.

3.5. Theorem. Let w be a WS on X. If iw{x} is an w-open set and each singleton is
either w-closed or {x} = iw{x}, then X is w − T 1

2
.

Proof. Let A be a gw-closed subset of X and x ∈ cw(A).
Case 1. If {x} is w-closed and x /∈ A, then x ∈ (cw(A) − A) and hence {x} ⊆ X − A,
which implies A ⊆ X−{x}. Since A is a gw-closed set and X−{x} is an w-open set, then
cw(A) ⊆ X−{x} and hence {x} ⊆ X− cw(A). Therefore {x} ⊆ cw(A)

⋂
X− cw(A) = φ,

which is a contradiction. Thus x ∈ A and hence cw(A) = A.

Case 2. If {x} = iw{x} and x ∈ cw(A), then for each w-open set V with x ∈ V , we have
V
⋂
A 6= φ. Since iw{x} is an w-open set and {x} = iw{x}, then {x}

⋂
A 6= φ and hence

x ∈ A.Thus cw(A) = A. Therefore in the two cases we have cw(A) = A and hence X is
w − T 1

2
. �

3.6. Definition. A weak structure w on X is said to be w−T1 if for any points x, y ∈ X
with x 6= y, there exist two w-open sets U and V such that x ∈ U , y /∈ U , x /∈ V and
y ∈ V .

3.7. Theorem. A weak structure w on X is w− T1 if every singleton in X is w-closed.

Proof. It is clear. �

3.8. Remark. In a topological space one may notice that:
(1) The above theorem is true for if and only if,
(2) If X is T1, then each g-closed set in X is closed.

By the following example we show that the converse of the above theorem (the second
part of item 1 above) need not be true and the item 2 above need not be true too in an
WS on X in general.

3.9. Example. Let X = {a, b, c}, w = {φ, {a}, {b}, {c}}. One may notice that:
(1) w is w − T1, but the singleton {b} is not w-closed.
(2) w is w − T1 and the singleton {b} is gw-closed, but is not w-closed.

3.10. Definition. A weak structure w on X is said to be:
(1) w-normal if for each two w-closed sets F and H with F

⋂
H = φ, there exist

two w-open sets U and V such that F ⊆ U , H ⊆ V and U
⋂
V = φ.

(2) Almost w-normal if for each w-closed set F and H ∈ rc(w) with F
⋂
H = φ,

there exist two w-open sets U and V such that F ⊆ U , H ⊆ V and U
⋂
V = φ.

(3) Weakly w-normal if for each F,H ∈ rc(w) with F
⋂
H = φ, there exist two

w-open sets U and V such that F ⊆ U , H ⊆ V and U
⋂
V = φ.

3.11. Theorem. Let w be a WS on X. Consider the following statements:
(1) X is w-normal;
(2) For each w-closed set F and w-open U with F ⊆ U , there exist w-open sets V

such that F ⊆ V ⊆ cw(V ) ⊆ U ;
(3) For each w-closed set F and each gw-closed set H with F

⋂
H = φ, there exist

two w-open sets U and V such that F ⊆ U,H ⊆ V and U
⋂
V = φ;

(4) For each w-closed set F and gw-open U with F ⊆ U , there exist w-open sets V
such that F ⊆ V ⊆ cw(V ) ⊆ U .

Then the implications (1)⇒ (2) and (3)⇒ (4)⇒ (2) are hold.
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Proof. It is clear. �

3.12. Theorem. Let w be a WS on X. If cw(A) is w-closed for each w-open or gw-
closed, then the statements in Theorem 3.11 are equivalent.

Proof. From Theorem 3.11 we need to prove (2)⇒ (1) and (1)⇒ (3) only.

(2)⇒ (1): Let A and B be two disjoint w-closed subsets of X. Then X−B is an w-open
set containing A. Thus by (2) there exists an w-open set U such that A ⊆ U ⊆ cw(U) ⊆
X −B and hence A ⊆ U and B ⊆ X − cw(U). Since cw(U) is w-closed for each w-open
set U , then X − cw(U) = V is w-open and U

⋂
V = φ. Hence X is w-normal.

(1)⇒ (3). Let F be an w-closed set and H be a gw-closed set with F
⋂
H = φ. Then

H ⊆ X−F which is w-open. Since H is gw-closed and H ⊆ X−F , then cw(H) ⊆ X−F .
Since H is gw-closed, then cw(H) is w-closed. By (1) there exist two w-open sets U and V
such that cw(H) ⊆ U , F ⊆ V and U

⋂
V = φ. Hence H ⊆ U , F ⊆ V and U

⋂
V = φ. �

3.13. Theorem. Let w be a WS on X. Consider the following statements:
(1) X is almost w-normal;
(2) For each w-closed set F and U ∈ r(w) with F ⊆ U , there exist w-open sets V

such that F ⊆ V ⊆ cw(V ) ⊆ iw(cw(U));
(3) For each w-closed set F and mgw-open U with F ⊆ U , there exist w-open sets

V such that F ⊆ V ⊆ cw(V ) ⊆ iw(cw(U));
(4) For each w-closed set F and sgw-open U with F ⊆ U , there exist w-open sets V

such that F ⊆ V ⊆ cw(V ) ⊆ iw(cw(U));
(5) For each w-closed set F and w-open U with F ⊆ U , there exist w-open sets V

such that F ⊆ V ⊆ cw(V ) ⊆ iw(cw(U)).
Then the implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) are hold.

Proof. (1)⇒ (2): Obvious.

(2) ⇒ (3): Let F be an w-closed set and U be a mgw-open with F ⊆ U . Then F ⊆
iw(Cw(U)) ∈ r(w). By (2) there exist w-open sets V such that F ⊆ V ⊆ cw(V ) ⊆
iw(cw(iw(cw(U)))) = iw(cw(U)).

(3)⇒ (4)⇒ (5): Obvious. �

3.14. Theorem. Let w be a WS on X. If cw(A) is w-closed for each w-open A, then
the statements in Theorem 3.13 are equivalent.

Proof. From Theorem 3.13 we need to prove that (5)⇒ (1) only.

(5) ⇒ (1): Let F be an w-closed set and H ∈ rc(w) with F
⋂
H = φ. Then F ⊆

X −H = iw(cw(X −H)). By (5) there exist w-open sets V such that F ⊆ V ⊆ cw(V ) ⊆
iw(cw(iw(cw(X−H)))) = iw(cw(X−H)) and hence F ⊆ V,H = cw(iw(H)) ⊆ X−cw(V ).
Since V is an w-open, then cw(V ) is w-closed and hence X−cw(V ) =W which is w-open
contains H. Thus V

⋂
W = φ. Therefore X is almost w-normal. �

3.15. Theorem. Let w be a WS on X. Consider the following statements:
(1) X is almost w-normal;
(2) For each w-open set U and F ∈ rc(w) with F ⊆ U , there exist w-open sets V

such that F ⊆ V ⊆ cw(V ) ⊆ U ;
(3) For each mgw-closed set F and w-open U with F ⊆ U , there exist w-open sets

V such that cw(iw(F )) ⊆ V ⊆ cw(V ) ⊆ U ;
(4) For each gw-closed set F and w-open U with F ⊆ U , there exist w-open sets V

such that cw(iw(F )) ⊆ V ⊆ cw(V ) ⊆ U .
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Then the implications (1)⇒ (2)⇒ (3) and (2)⇒ (4) are hold.

Proof. (1)⇒ (2): Obvious.

(2) ⇒ (3): Let F be a mgw-closed set and U be a w-open with F ⊆ U . Then
cw(iw(F )) ⊆ U . Since cw(iw(F )) ∈ rc(w), then by (2) there exists an w-open set V
such that cw(iw(F )) ⊆ V ⊆ cw(V ) ⊆ U .
(2) ⇒ (4): Let F be a gw-closed set and U be a w-open with F ⊆ U . Then cw(F ) ⊆ U
and hence cw(iw(F )) ⊆ U . Since cw(iw(F )) ∈ rc(w), then by (2) there exists an w-open
set V such that cw(iw(F )) ⊆ V ⊆ cw(V ) ⊆ U . �

3.16. Theorem. Let w be a WS on X. If cw(A) is w-closed for each w-open set A or
A ∈ r(w), then the statements in Theorem 3.15 are equivalent.

Proof. From Theorem 3.15 we need to prove that (3)⇒ (1) and (4)⇒ (1) only.

(3)⇒ (1): Let F be an w-closed set and H ∈ rc(w) with F
⋂
H = φ. Then H ⊆ X −F .

Since H ∈ rc(w), then H is mgw-closed. By (3) there exist w-open sets V such that
H = cw(iw(H)) ⊆ V ⊆ cw(V ) ⊆ X − F and hence H ⊆ V and F ⊆ X − cw(V ) = W
which is w-open. Thus there exist two w-open sets V and W such that H ⊆ V, F ⊆ W
and V

⋂
W = φ. Therefore X is almost w-normal.

(4)⇒ (1): Let F be an w-closed set and H ∈ rc(w) with F
⋂
H = φ. Then H ⊆ X −F .

Since H ∈ rc(w), then cw(iw(H)) ⊆ X − F . Since H ∈ rc(w), then iw(H) is an w-
open and hence cw(iw(H)) is w-closed which is gw-closed. By (4) there exist w-open
sets V such that cw(iw(cw(iw(H))) ⊆ V ⊆ cw(V ) ⊆ X − F and hence H ⊆ V and
F ⊆ X − cw(V ) =W which is w-open. Thus there exist two w-open sets V and W such
that H ⊆ V, F ⊆W and V

⋂
W = φ. Therefore X is almost w-normal. �

3.17. Theorem. Let w be a WS on X. Consider the following statements:
(1) X is weakly w-normal,
(2) For each F ∈ rc(w) and U ∈ r(w) with F ⊆ U , there exist w-open sets V such

that F ⊆ V ⊆ cw(V ) ⊆ iw(cw(U)),
(3) For each F ∈ rc(w) and mgw-open U with F ⊆ U , there exist w-open sets V

such that F ⊆ V ⊆ cw(V ) ⊆ iw(cw(U)),
(4) For each F ∈ rc(w) and sgw-open U with F ⊆ U , there exist w-open sets V

such that F ⊆ V ⊆ cw(V ) ⊆ iw(cw(U)),
(5) For each F ∈ rc(w) and w-open U with F ⊆ U , there exist w-open sets V such

that F ⊆ V ⊆ cw(V ) ⊆ iw(cw(U)).
Then the implications (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5) are hold.

Proof. It is similar to that of Theorem 3.13. �

3.18. Theorem. Let w be a WS on X. If cw(A) is w-closed for each w-open A, then
the statements in Theorem 3.17 are equivalent.

Proof. It is similar to that of Theorem 3.14. �

References
[1] A. Al-Omari and T. Noiri, A unified theory of generalized closed sets in weak structure, Acta

Math. Hungar. 135 (2012), no. 1-2, 174–183.
[2] A. Császár, Generalized topology, generalized continuity, Acta Math. Hungar. 96 (2002),

351–357.
[3] , Weak structure, Acta Math. Hungar. 131 (2011), no. 1-2, 193–195.
[4] E. Ekici, On weak struture due to Császár, Acta Math. Hungar. 134 (2012), no. 4, 565–570.



677

[5] H. Maki J. Umehara and T. Noiri, Every topological space is pre T 1
2
, Mem. Fac. Sci. Kochi.

Univ. Ser. A Math. 17 (1996), 53–66.
[6] N. Levine, Generalized closed sets in topology, Rend. Circ. Mat. Palermo 2 (1970), 89–96.
[7] J. K. Park and J. H. Park, Mildly generalized closed sets, almost normal and mildly normal

space, Chaos, Solitoen and Fractals 20 (2004), 1103–1111.





STATISTICS





Hacettepe Journal of Mathematics and Statistics
Volume 44 (3) (2015), 679 – 687

Using of fractional factorial design (rk−p) in data
envelopment analysis to selection of outputs and

inputs

Hulya Bayrak∗, Oday Jarjies† and Kubra Durukan‡§

Abstract

Data envelopment analysis (DEA) is a linear programming based tech-
nique for measuring the relative performance of organisational units
where the presence of multiple inputs and outputs makes comparisons
difficult. We used, Morita and Avkiran propose after it has been de-
veloped an input-output selection method that uses fractional factorial
design, which is a statistical approach to find an optimal combination.
Energy efficiency and greenhouse gas emissions are closely linked in the
last two decades. We demonstrate the proposed method using data that
increase energy efficiency and heating gas emissions in the European
Union (EU) countries.

2000 AMS Classification: 47N30, 62H30

Keywords: Data Envelopment Analysis (DEA), Decision-Making Unit (DMU),
Fractional Factorial Design, Mahalanobis Fistance (MD).

Received 06/08/2013 : Accepted 30/07/2014 Doi : 10.15672/HJMS.2014247475

∗Gazi University, Science Faculty, Statistics Department, Ankara, TURKEY,
Email: hbayrak@gazi.edu.tr

†Department Operations Research and Technology Intelligence Mosul University, IRAQ
Email: oday_alubade@yahoo.com

‡Kirikkale University, Faculty of Arts and Sciences, Department of Statistics, 71100, Kampus,
Yahsihan, Kirikkale - TURKEY,
Email: kubraba@yahoo.com

§Corresponding Author.



680

1. Introduction
Data envelopment analysis (DEA), introduced by Charnes, Cooper and Rhodes (CCR)

[1], is a mathematical programming method for measuring the relative efficiency of
decision-making units (DMUs) with multiple inputs and outputs. Most models DEA has
the best performance and efficiency to determine the degree of expertise and decision-
making units (DMUs). Differentiating efficient DMUs is an interesting research area.
The original DEA method evaluates each DMU against a set of efficient DMUs and can-
not identify which efficient DMU is a better option with respect to the inefficient DMU.
This is because all efficient DMUs have an efficiency score of one. Authors have proposed
methods for ranking the best performers, for instance using super-efficiency DEA model.

In this paper, in order to rank DMUs, we use the evaluation contexts that are obtained
by partitioning the set of DMUs into several levels of efficiency, and rank all DMUs with
two criteria: the high and low performers. The influence of all DMUs, both efficient and
inefficient, in ranking is this method’s preference.

1.1. Data Envelopment Analysis. Consider n decision making units (DMUj, j =
1, . . . , n) in which each DMU consumes input levels xij(i = 1, ...,m) to produce output
levels yrj(j = 1, ..., s). Suppose that xj = (x1j , ..., xmj)

T and yj = (y1j , ..., ysj)
T are

the vectors of inputs and outputs values respectively, the relative efficiency score of the
DMUO, O ∈ {1, ..., n} is obtained from the following model which is called input-oriented
CCR envelopment model [7, 8, 9]

θ∗O = min θ(1.1)

s.t.
∑
j

λjxij ≤ θxio, i = 1, ...,m

∑
j

λjyijxij ≥ yro, r = 1, ..., s

λj ≥ 0, j = 1, ..., n

This model is an input oriented constant returns to scale (CRS) model. The efficiency
of DMUo is determined from efficiency score θ∗O and its slack values. If and only if θ∗O = 1
there is no slack, DMUo is said to be efficient. If and only if θ∗O = 1 there are non-zero
slacks, DMUo is inefficient and we can called it a weak-efficient. The weak-efficient DMUs
and efficient DMUs comprise the efficient frontier [6].

Morita and Haba in a previous study, select the output of the of preference between
the two groups based on public information and previous experience has nothing to do
with data where they are exploiting the experience of planning two-level orthogonal and
optimal variables can be found statistically. On the other hand, Ediridsinghe and Zhang
proposed DEA generalized approach to determine the input and output by maximizing
the correlation coefficient between the DEA and the result of external performance indi-
cator. Morita and Avkiran propose an input output selection method that uses diagonal
layout experiments and demonstrate the proposed method using financial statement data
from NIKKEI 500 index. They utilize a two-step heuristic algorithm that combines ran-
dom sampling and local search to find an optimal combination of inputs and outputs [5,
4].

In this paper, we show the method of selection of inputs and outputs based on an
analysis using the Mahalanobis distance of difference between the two group of data. We
use 3-level orthogonal layout experiment to find a suitable combination of inputs and
outputs, where trials are independent of each other.
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2. 3k−p Fractional Factorial Designs and Selecting Input and Out-
put Variables:
The whole point of looking at this structure is because sometimes we want to only

conduct a fractional factorial. We sometimes can’t afford 27 runs. Often we can only
afford a fraction of the design. So, let’s construct a 33−1 design which is a 1/3 fraction of
a 33 design. In this case, N = 33−1 = 32 = 9, the total number of runs. This is a small,
compact design [2].

We again start out with a 33 design which has 27 treatment combinations and assign
them to 3 blocks. What we want to do in this part, going beyond the 32 design, is to
describe the ANOVA for this 33 design. Then we also want to look at the connection
between confounding in blocks and 3k−p fractional factorials, See Appendix 1.

2.1. 3-level Full Factorial Designs and Other Factorials. The 3-level design is
written as a 3k factorial design. It means that k factors are considered, each at 3-levels.
These are (usually) referred to as low, intermediate and high levels. These levels are
numerically expressed as 0, 1 and 2. One could have considered the digits −1, 0 and +1,
but this may be confusing with respect to the 2-level designs since 0 is reserved for center
points. Therefore, we will use the 0, 1, 2 scheme. The reason that the 3-level designs were
proposed is to model possible curvature in the response function and to handle the case of
nominal factors at 3-levels. A third level for a continuous factor facilitates investigation
of a quadratic relationship between the response and each of the factors [2].

Unfortunately, the 3-level design is prohibitive in terms of the number of runs, and
thus in terms of cost and effort. For example a 2-level design with center points is much
less expensive while it still is a very good (and simple) way to establish the presence or
absence of curvature. Table 1 shows us the difference between full factorial designs and
other factorials.

Table 1. 3-level designs

Factors 3 4 5 6 7
Full 27 81 243 729 2187
1/3 9 27 81 243 729
1/9 3 9 27 81 243
1/27 NA NA 9 27 81

3. Mahalanobis Distance
In statistics, Mahalanobis distance (MD) is a distance measure introduced by P.C.

Mahalanobis in 1936. It is based on correlations between variables by which different
patterns can be identified and analyzed. It gauges similarity of an unknown sample set
to a known one. It differs from Euclidean distance in that it takes into account the
correlations of the data set and is scale-invariant. In other words, it is a multivariate
effect size [3].

Formally, the MD of a multivariate vector x = (x1, x2, ..., xN )T from a group of values
with mean vector µ = (µ1, µ2, ..., µN )T and covariance matrix Σ is defined as [4, 12]:

(3.1) DM (x) =

√
(x− µ)T Σ−1 (x− µ)

Equation (3.1) is rewritten for the sample following as
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∧
DM (x) =

√(
x−

_
x
)T
S−1

(
x−

_
x
)

where the mean vector and covariance matrix of the sample are given as
_
x and S respec-

tively.
MD is widely used in cluster analysis and classification techniques. It is closely related

to Hotelling’s T-square distribution used for multivariate statistical testing and Fisher’s
Linear Discriminant Analysis that is used for supervised classification [12].

In order to use the MD to classify a test point as belonging to one of N classes, one
first estimates the covariance matrix of each class, usually based on samples known to
belong to each class. Then, given a test sample, one computes the MD to each class, and
classifies the test point as belonging to that class for which the MD is minimal [3].

MD and leverage are often used to detect outliers, especially in the development of
linear regression models. A point that has a greater the MD from the rest of the sample
population of points is said to have higher leverage since it has a greater influence on the
slope or coefficients of the regression equation. MD is also used to determine multivariate
outliers. Regression techniques can be used to determine if a specific case within a sample
population is an outlier via the combination of two or more variable scores. A point can
be a multivariate outlier even if it is not a univariate outlier on any variable [7, 8].

3.1. MD Threshold Selection. The MD threshold is another important element of
prognostics analysis. An MD threshold value which is either too large or too small leads
to false negatives or false positives, respectively. In this study, we consider the distance of
one-dimensional variables, where MD coincides with the Welch statistics [5]. The Welch
statistics is given as

(3.2)
∧
d =

_
xh −

_
xl√

S2
h

nh
+

S2
l

nl

where
_
xh, S

2
h and nh are the sample mean, sample variance and sample size of high group,

respectively. Also
_
xl, S2

l and nl are the sample mean, sample variance and sample size
of low group, respectively.

For example, in run No. 5, x1, x11, x12 variables are selected as an input, variables
x2, x3, x4, x5, x6, x7 are selected as an output; and variables x8, x9, x10 are not selected
as an input or an output. Based on the fractional factorial design in Appendix 1, we
calculate the efficiency scores and MD between the two groups using selected inputs and
outputs. Where ”1” means that the variable is selected as an input, “2” means that the
variable is selected as an output, and “3” means that the variable is not selected.

The ANOVA table for the fractional factorial design appears in Table 2. The sum of
squares and the degrees of freedom are given as

(3.3) ST =

27∑
i=1

(
∧
di −

Z
d

)2

, dfT = 26

(3.4) Si = 3

[
Z
d
2

(xi = 1) +
Z
d
2

(xi = 2) +
Z
d
2

(xi = 3)

]
− 27

Z
d
2

, dfi = 2, i = 1, ..., 12

(3.5) SE = ST − (S1 + S2 + ...+ S12)
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Table 2. ANOVA table for fractional factorial design of 312−9

Variables SS Df MS F Statistics
X1 S1 2 V1 = S1/2 V1/VE

X2 S2 2 V2 = S2/2 V2/VE

X3 S3 2 V3 = S3/2 V3/VE

X4 S4 2 V4 = S4/2 V4/VE

X5 S5 2 V5 = S5/2 V5/VE

...
...

...
...

X12 S12 2 V12 = S12/2 V12/VE

Error SE 2 VE = SE/2

Total ST 26

where
Z
d (xi = 1) is the mean of the Mahalanobis distances observed when (xi = 1). The

null hypothesis that the candidate has no effect as an input or output is tested by using
the F statistics

(3.6) F =
Si/dfi
SE/dfE

and hypotesis tests is as following:
H0: The variable candidate has no effect on output and input.
H1: The variable candidate has effect on output and input.

This results in the optimal combination of input and output variables. The following
is a summary procedure for the selection of variables.
Step 1. Choose a list of data envelope (DEA), which contains the input and output

variables are possible.
Step 2. The use of external standards to distinguish between the performance of the two

groups. For example, the high and low performance.
Step 3. To create a table perpendicular to try to set the input and output variables that

are not determined.
Step 4. Calculate MD between the two groups using Welch statistics.
Step 5. Determine the optimal mix of input and output variables based on the results

Analysis of variance.
Step 6. Determine the optimal variables are statistically significant either input or out-

put using sum of MD.
Step 7. We use DEA model (1) with the data that have been selected from the output

and input.

4. A Case Study Using Greenhouse Gas Emissions Intensity of
Energy Consumption Data
We used the greenhouse gas intensity of energy consumption that is the ratio between

energy-related greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) and
gross inland energy consumption for EU countries.

There are key factors leading to greenhouse emissions: Electricity production, Trans-
portation, Industry, Commercial and Residential, Agriculture and Land Use and Forestry
[10, 11].

The table in the Appendix 2 shows a part of the data set all variables have large
rangs. In Step 1 the following twelve variables are collected to evaluate the managerial
performance, that is, the standard deviation is greater than the mean.
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A. Total emissions.
B. Total net emissions.
C. Energy.
D. Energy industries.
E. Manufacturing industries and construction.
F. Transport.
G. Road transportation.
H. Other sectors.
I. Industrial processes.
J. Solvent and other product use.
K. Agriculture.
L. Waste.

In Step 2, we construct two groups, high-performers and low-performers, the table in the
Appendix 3 shows the mean and standard deviation for each variable. When we select
the variables to capture the difference between high-performers and low-performers, we
choose a variable with a large difference between these two groups. MD between the 15
high cuntery and 15 low cuntery for each variable is also shown in the Appendix 3, where
we find that (A),(B),(C),(E), (I) and (L) have a large d and may be intuitively selected
as inputs or outputs.

In Step 3, we assign 12 factors into a 3-level orthogonal layout, where at least 27 runs
are required. That is, we utilize the fractional factorial design 312−9. Table 3 shows
the selected variable combinations for efficiency score calculation. The MD for each
experiment is calculated in Step 4, which is also shown in the last column of Table 3.

Table 3. Selected inputs and outputs and MD

Runs A B C D E F G H I J K L Selected Input Selected Output Not Selected
∧
d

1 1 1 1 1 1 1 1 1 1 1 1 1 A,B,C,D,E,F,G,H,I,J,K,L None None 2.44
2 1 1 1 1 2 2 2 2 2 2 2 2 A,B,C,D E,F,G,H,I,J,K,L None 1.19
3 1 1 1 1 3 3 3 3 3 3 3 3 A,B,C,D None E,F,G,H,I,J,K,L 1.4
4 1 2 2 2 1 1 1 2 2 2 3 3 A,E,F,G B,C,D,H,I,J K,L 0
5 1 2 2 2 2 2 2 3 3 3 1 1 A,K,L B,C,D,E,F,G H,I,J -0.13
6 1 2 2 2 3 3 3 1 1 1 2 2 A,H,I,J B,C,D,K,L E,F,G -0.35
7 1 3 3 3 1 1 1 3 3 3 2 2 A,E,F,G K,L B,C,D,H,I,J 1.18
8 1 3 3 3 2 2 2 1 1 1 3 3 A,H,I,J E,F,G B,C,D,K,L 0.55
9 1 3 3 3 3 3 3 2 2 2 1 1 A,K,L H,I,J B,C,D,E,F,G 0.98
10 2 1 2 3 1 2 3 1 2 3 1 2 B,E,H,K A,C,F,I,L D,G,J -0.26
11 2 1 2 3 2 3 1 2 3 1 2 3 B,G,J A,C,E,H,K D,F,I,L -0.15
12 2 1 2 3 3 1 2 3 1 2 3 1 B,F,I,L A,C,G,J D,E,H,K -0.46
13 2 2 3 1 1 2 3 2 3 1 3 1 D,E,J,L A,B,F,H C,G,I,K -1.11
14 2 2 3 1 2 3 1 3 1 2 1 2 D,G,I,K A,B,E,J,L C,F,H -0.87
15 2 2 3 1 3 1 2 1 2 3 2 3 D,F,H A,B,G,I,K C,E,J,L -0.7
16 2 3 1 2 1 2 3 3 1 2 2 3 C,E,I A,D,F,J,K B,G,H,L 0.03
17 2 3 1 2 2 3 1 1 2 3 3 1 C,G,H,L A,D,E,I B,F,J,K -0.24
18 2 3 1 2 3 1 2 2 3 1 1 2 C,F,J,K A,D,G,H,L B,E,I -0.21
19 3 1 3 2 1 3 2 1 3 2 1 3 B,E,H,K D,G,J A,C,F,I,L 0.59
20 3 1 3 2 2 1 3 2 1 3 2 1 B,F,I,L D,E,H,K A,C,G,J 0.55
21 3 1 3 2 3 2 1 3 2 1 3 2 B,G,J D,F,I,L A,C,E,H,K 0.67
22 3 2 1 3 1 3 2 2 1 3 3 2 C,E,I B,G,H,L A,D,F,J,K 0.02
23 3 2 1 3 2 1 3 3 2 1 1 3 C,F,J,K B,E,I A,D,G,H,L -0.28
24 3 2 1 3 3 2 1 1 3 2 2 1 C,G,H,L B,F,J,K A,D,E,I -0.05
25 3 3 2 1 1 3 2 3 2 1 2 1 D,E,J,L C,G,I,K A,B,F,H -0.8
26 3 3 2 1 2 1 3 1 3 2 3 2 D,F,H C,E,J,L A,B,G,I,K -0.08
27 3 3 2 1 3 2 1 2 1 3 1 3 D,G,I,K C,F,H A,B,E,J,L -0.65

Table 4 shows the analysis of variance for the data in Table 3, where we have pooled
the negligible variables into the residual (Step 5). The level of significance is shown as
the p value, where we find four variables (A,B,C, F, H and K) significant at the 5% level
and their p values are very low, we leave them in the analysis for illustrative purposes.
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Table 4. Table of ANOVA

Variables Sum of Squares Degrees of Freedom Mean Squares F Statistics p value
A 4.32 2 2.16 11.37** 0.0837
B 3.78 2 1.39 7.32** 0.1265
C 1.58 2 0.79 4.16** 0.2109
F 1.90 2 0.95 5.00** 0.1790
H 1.20 2 0.60 3.16** 0.2662
K 1.40 2 0.70 3.68** 0.2340

Error 2.68 14 0.19
Total 16.86 26

Step 6, the final step in our procedure, generates Table 5 which shows the sum of MD
for each variable at each level in Table 3. For example, when variable A is selected as an

input, the sum of MD is 7.26, and when variable A is selected as an output,
∧
d is −3.97,

it should be selected as an input. Maxima are indicated in bold font in Table 5. Thus
we select four input (A) Total emissions, (B) Total net emissions, (C) Energy and (F)
Transport and two outputs, namely, (H) Other sectors and (K) Agriculture.

Step 7, we run the DEA model (1) using this inputs and outputs combination.

Table 5. The sum of MD

Variables Selected as Input Selected as Output
A 7.26 -3.97
B 5.97 -3.47
C 4.30 -2.88
F 2.44 0.24
H 1.90 2.62
K 1.61 1.90

Note, we got 80% of the major factors leading to emissions of greenhouse gases That
was previously displayed.

5. Conclusion
It is possible to attempt more than fractional factorial design at level 3 for example

Latin square design or partial design. The MD and ANOVA was used to distinguish
between the two groups after selecting the input and output from ANOVA results note it
was investigating maximum MD between the two groups we demonstrate the effectiveness
of this new approach using a case study with any DEA can set inputs and outputs and
measuring the efficiency of performance that can effectively distinguish between groups
of high and low performance.

Situation as you know it can not always be perfect, but is close to ideal combination
that have been obtained are a limited number of 27 trials experience It can experimen-
tation on a larger number of factors and a larger number of experiments.
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Appendix 1. Fractional factorial design for 312−9 twelve factors at
three levels (27 Runs)

Run x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 Selected Input Selected Output Not selected D

1 1 1 1 1 1 1 1 1 1 1 1 1 x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12 None None D1

2 1 1 1 1 2 2 2 2 2 2 2 2 x1, x2, x3, x4 x5, x6, x7, x8, x9, x10, x11, x12 None D2

3 1 1 1 1 3 3 3 3 3 3 3 3 x1, x2, x3, x4 None x5, x6, x7, x8, x9, x10, x11, x12 D3

4 1 2 2 2 1 1 1 2 2 2 3 3 x1, x5, x6, x7 x2, x3, x4, x8, x9, x10 x11, x12 D4

5 1 2 2 2 2 2 2 3 3 3 1 1 x1, x11, x12 x2, x3, x4, x5, x6, x7 x8, x9, x10 D5

6 1 2 2 2 3 3 3 1 1 1 2 2 x1, x8, x9, x10 x2, x3, x4, x11, x12 x5, x6, x7 D6

7 1 3 3 3 1 1 1 3 3 3 2 2 x1, x5, x6, x7 x11, x12 x2, x3, x4, x8, x9, x10 D7

8 1 3 3 3 2 2 2 1 1 1 3 3 x1, x8, x9, x10 x5, x6, x7 x2, x3, x4, x11, x12 D8

9 1 3 3 3 3 3 3 2 2 2 1 1 x1, x11, x12 x8, x9, x10 x2, x3, x4, x5, x6, x7 D9

10 2 1 2 3 1 2 3 1 2 3 1 2 x2, x5, x8, x11 x1, x3, x6, x9, x12 x4, x7, x10 D10

11 2 1 2 3 2 3 1 2 3 1 2 3 x2, x7, x10 x1, x3, x5, x8, x11 x4, x6, x9, x12 D11

12 2 1 2 3 3 1 2 3 1 2 3 1 x2, x6, x9, x12 x1, x3, x7, x10 x4, x5, x8, x11 D12

13 2 2 3 1 1 2 3 2 3 1 3 1 x4, x5, x10, x12 x1, x2, x6, x8 x3, x7, x8, x11 D13

14 2 2 3 1 2 3 1 3 1 2 1 2 x4, x7, x9, x11 x1, x2, x5, x10, x12 x3, x6, x8 D14

15 2 2 3 1 3 1 2 1 2 3 2 3 x4, x6, x8 x1, x2, x7, x9, x11 x3, x5, x10, x12 D15

16 2 3 1 2 1 2 3 3 1 2 2 3 x3, x5, x9 x1, x4, x6, x10, x11 x2, x7, x8, x12 D16

17 2 3 1 2 2 3 1 1 2 3 3 1 x3, x7, x8, x12 x1, x4, x5, x9 x2, x6, x10, x11 D17

18 2 3 1 2 3 1 2 2 3 1 1 2 x3, x6, x10, x11 x1, x4, x7, x8, x12 x2, x5, x9 D18

19 3 1 3 2 1 3 2 1 3 2 1 3 x2, x5, x8, x11 x4, x7, x10 x1, x3, x6, x9, x12 D19

20 3 1 3 2 2 1 3 2 1 3 2 1 x2, x6, x9, x12 x4, x5, x8, x11 x1, x3, x7, x10 D20

21 3 1 3 2 3 2 1 3 2 1 3 2 x2, x7, x10 x4, x6, x9, x12 x1, x3, x5, x8, x11 D21

22 3 2 1 3 1 3 2 2 1 3 3 2 x3, x5, x9 x2, x7, x8, x12 x1, x4, x6, x10, x11 D22

23 3 2 1 3 2 1 3 3 2 1 1 3 x3, x6, x10, x11 x2, x5, x9 x1, x4, x7, x8, x12 D23

24 3 2 1 3 3 2 1 1 3 2 2 1 x3, x7, x8, x12 x2, x6, x10, x11 x1, x4, x5, x9 D24

25 3 3 2 1 1 3 2 3 2 1 2 1 x4, x5, x10, x12 x3, x7, x9, x11 x1, x2, x6, x8 D25

26 3 3 2 1 2 1 3 1 3 2 3 2 x4, x6, x8 x3, x5, x10, x12 x1, x2, x7, x9, x11 D26

27 3 3 2 1 3 2 1 2 1 3 1 3 x4, x7, x9, x11 x3, x6, x8 x1, x2, x5, x10, x12 D27
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Appendix 2. 30 Curenty Data Extract
Country A B C D E F G H I J K L

1 Belgium 132459 131417 707608 26434 23708 24257 23459 32606 13460 214 10042 1135
2 Bulgaria 61427 52796 46438 31464 3798 7949 7508 2013 3852 46 6406 4686
3 Czech Republic 139158 133639 115205 56251 23807 17448 16979 12340 12061 503 7777 3612
4 Denmark 61065 58895 48789 23915 4453 13248 12241 6600 1685 76 9520 995
5 Germany 936544 953827 782313 354506 115007 154730 146844 145928 72569 1944 67479 12239
6 Estonia 20517 16759 18185 14644 510 2260 2078 646 498 18 1344 478
7 Ireland 61314 60284 40510 13328 4549 11606 11061 10996 1934 72 17910 889
8 Greece 118287 115645 93213 52522 6764 22996 19184 9839 10542 316 9282 4934
9 Spain 355898 326944 269835 72418 63434 91423 83872 39252 2817 2938 40014 15094
10 France 522373 490148 370022 61564 68440 132154 125273 103199 37509 1224 93876 19741
11 Italy 501318 444787 415727 133255 61375 118849 110018 90453 31963 1658 33741 18229
12 Cyprus 10838 10673 7505 3880 716 2313 2313 580 807 1 670 1857
13 Latvia 12077 −5070 8401 2261 1087 3222 2963 1729 639 42 2330 666
14 Lithuania 20810 9095 12848 5446 1120 4565 4125 1431 2249 93 4458 1161
15 Luxembourg 12075 11780 10647 1271 1401 6288 6273 1643 660 14 690 64
16 Hungary 67679 64307 49070 16668 3903 11870 11598 14270 6386 269 8267 3687
17 Malta 3035 2973 2657 1893 46 577 529 140 100 1 78 199
18 Netherlands 210053 213054 177819 66613 27326 34988 34242 45820 10432 170 16624 5008
19 Austria 84594 80983 64328 14293 15618 22452 21890 11401 10680 327 7453 1806
20 Poland 400865 357985 327117 173536 30969 48766 47151 61954 29769 779 34624 8576
21 Portugal 70599 60719 49654 14586 9487 18936 18255 5242 5756 228 7515 7446
22 Romania 121355 95545 86038 33353 18577 15133 14129 10192 12732 125 16777 5683
23 Slovenia 19522 11031 15980 6219 1900 5272 5228 2228 971 30 1963 577
24 Slovakia 45982 39893 32008 9507 9316 6654 6547 4545 8522 164 3065 2222
25 Finland 74553 52474 60649 30547 9905 13570 12001 5083 5766 73 5882 2186
26 Sweden 66232 32177 49359 13091 10122 20744 19122 4239 6841 311 7873 1848
27 United Kingdom 590247 586493 501113 192184 67546 118455 111735 108315 26731 1 45908 16495
28 Iceland 4542 5276 1866 5 213 900 844 556 1810 6 646 214
29 Norway 53896 20951 40726 14899 3612 15142 10097 3592 7479 170 4273 1248
30 Switzerland 54247 53367 44017 4190 5985 16422 16092 17050 3689 215 5688 612

Range 933509 958897 780447 354501 114961 154153 146315 145788 72469 2937 93798 19677
Mean 161119 149628.2 128321.6 48148.1 19823.13 32106.3 30121.7 25252.6 11870.3 400.93 15739.17 4786.03
Standard Deviation 220938 219088.3 181771.5 75728.93 27823.22 43507.51 41002.2 23603.62 15541.64 678.39 21641.52 5786.77

Appendix 3. High and Low Curenty Data Extract
Country A B C D E F G H I J K L

1 Belgium 132459 131417 107608 26434 23708 24257 23459 32602 13460 214 10042 1135
2 Czech Republic 139158 133639 115205 56251 23807 17448 16979 12340 12061 503 7777 3612
3 Germany 936544 953827 782313 354506 115007 154730 146844 145928 72569 1944 67479 12239
4 Greece 118287 115645 93213 52222 6764 22996 19184 9839 10542 316 9282 4934
5 Spain 355898 326944 269835 72418 63434 91423 83872 39252 28017 2938 40014 15094
6 France 522373 490148 370022 61564 68440 132154 125273 103199 37509 1224 93876 19741
7 Italy 501318 444787 415727 133255 61375 118849 110018 94153 31963 1658 33741 18229
8 Hungary 67679 64307 49070 16668 3903 11870 11598 14270 6386 269 8267 3687
9 Netherlands 210053 213054 177819 66613 27326 34988 34242 45820 10432 170 16624 5008
10 Austria 84594 80983 64328 14293 15618 22452 21890 11401 10680 327 7453 1806
11 Poland 400865 357985 327117 173536 30969 48766 47151 61954 29769 779 34624 8576
12 Portugal 70599 60719 49654 14586 9487 18936 18255 5242 5756 228 7515 7446
13 Romania 121355 95545 86038 33353 18577 15133 14129 10192 12732 125 16777 5683
14 Finland 74556 52474 60649 30547 9905 13570 12001 5083 5766 73 5882 2186
15 United Kingdom 590247 586493 501113 192184 67546 118455 111735 108315 26731 0 45908 16495

High 15 Range 868865 901353 733243 340213 111104 142860 135246 140845 66813 2938 87994 18606
Mean 288399 273864.5 231314.1 86562 36391.07 56401.8 53108.67 46639.33 20958.2 717.87 27017.4 8391.4
Standard Deviation 256553.6 256629 213030.7 92924.08 31703.96 51160.87 48155 45665.55 17771.85 854.18 26026.4 6336.72

1 Bulgaria 61427 52796 46438 31464 3798 7949 7508 2013 3852 46 6406 4686
2 Denmark 61065 58895 48789 23915 4453 13248 12241 6600 1685 76 9520 995
3 Estonia 20517 16759 18185 14644 510 2260 2078 646 498 18 1344 472
4 Ireland 61314 60284 40510 13328 4549 11606 11061 10996 1934 72 17910 889
5 Cyprus 10838 10673 7505 3880 716 2313 2313 580 807 0 670 1857
6 Latvia 12077 −5070 8401 2261 1087 3222 2963 1729 639 42 2330 666
7 Lithuania 20810 9095 12848 5446 1120 4565 4125 1431 2249 93 4458 1161
8 Luxembourg 12075 11780 10647 1271 1401 6288 6273 1643 660 14 690 64
9 Malta 3035 2973 2657 1893 46 577 529 140 100 1 78 199
10 Slovenia 19522 11031 15980 6219 1900 5272 5228 2228 971 30 1963 577
11 Slovakia 45982 39893 32008 9507 9316 6654 6547 4545 8522 164 3065 2222
12 Swedeen 66232 32177 49359 13091 10122 20744 19122 4239 6841 311 7873 1848
13 Iceland 4542 5276 1866 5 213 900 844 556 1810 6 646 214
14 Norway 53896 20951 40726 14899 3612 15142 10097 3592 7479 170 4273 1248
15 Switzerland 54247 53367 44017 4190 5985 16422 16092 17050 3689 215 5688 612

Low 15 Range 63197 65354 47493 31459 10076 20167 18593 16910 8422 311 17832 4622
Mean 33838.6 25392 25329.07 9734.2 3255.2 7810.8 7134.73 3865.87 2782.4 83.87 4460.93 1180.67
Standard Deviation 24066.08 22253.43 18152, 81 8974.83 3195.32 6221.92 5590.46 4631.91 2742.38 91.88 4692.22 1164.93
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Abstract
This paper proposes, with justification, two exponential ratio estima-
tors of population mean in simple random sampling without replace-
ment. Their biases and mean squared error are derived and compared
with existing related ratio estimators. Analytical and numerical results
show that at optimal conditions, the proposed ratio estimators are al-
ways more efficient than the regression estimator and some existing
estimators under review.
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1. Introduction
In Sample Surveys, auxiliary information are always used to improve the precision

of estimates of population parameters. This can be done at either estimation or selec-
tion stage or both stages. The commonly used estimators, which make use of auxiliary
variables, include ratio estimator, regression estimator, product estimator and difference
estimator. The classical ratio estimator is preferred when there is a high positive correla-
tion between the variable of interest, Y and the auxiliary variable, X with the regression
line passing through the origin. The classical product estimator, on the other hand is
mostly preferred when there is a high negative correlation between Y and X while the
linear regression estimator is most preferred when there is a high positive correlation
between the two variables and the regression line of the study variable on the auxiliary
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variable has intercept on Y axis. Ratio estimation has gained relevance in Estimation
theory because of its improved precision in estimating the population parameters. It has
been widely applied in Agriculture to estimate the mean yield of crops in a certain area
and in Forestry, to estimate with high precision, the mean number of trees or crops in a
forest or plantation. Other areas of relevance include Economics and Population studies
to estimate the ratio of income to family size.

According to [13], regression estimator, in spite of its lesser practicability, seems to
be holding a unique position due to its sound theoretical basis. The classical ratio and
product estimators even though considered to be more useful in many practical situation
have efficiencies which does not exceed that of the linear regression. As a result of this
limitation, most authors have carried out several researches towards the modification of
the existing ratio, product or classes of ratio and product estimators of the population
mean in simple random sampling without replacement to improve efficiency. Among
authors, who have carried out researches in this direction are [9], [10], [11], [25], [14], [15]
, [5], [2], [3], [1], [20], [21], [22], [23], [15], [16], [4], [19] and [28].

So far, only the estimators proposed by [17], which is a modification of those of [9] and
[10] is more efficient than the linear regression estimator.. This paper therefore proposes
ratio estimators using an exponential ratio estimator, whose efficiencies would be better
than regression estimator, [5] and compared with other ratio estimators including [17].
Authors like [6], [7],[13] and [18] extended related works of ratio estimators to stratified
sampling.

This work reviews some related existing estimators, proposes new improved estimators
and derive their properties. Their efficiencies are used to compare with other existing
estimators and empirical results used to validate every theoretical claim.

2. Review of some related existing Estimators
Consider a finite population Π = {π1, π2, . . . , πN} of size N. Let Y and X be the study

and auxiliary variables with population means Ȳ and X̄ respectively. It is assumed that
information on the population mean X̄ of the auxiliary variable is known and Yi, Xi ≥ 0
(since the survey variables are generally non-negative). Let a sample of size n be drawn
by simple random sampling without replacement (SRSWOR) from the population Π and
the sample means ȳ and x̄ of the study and auxiliary variables obtained respectively.
Given the above population, a summary of some related existing estimators with their
Mean Squared Errors (MSE’s) are given below:

Table 1: Existing related estimators with their MSEs
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S/N Estimators MSE

1 ȳ ,
unbiased sample mean Ȳ 2λC2

y

2 ȳR = ȳ
x̄
X̄,

Classical Ratio Ȳ 2λ[C2
y − 2ρCyCx + C2

x]

3 ȳ< = ȳ exp

[
(X̄−x̄)
(X̄+x̄)

]
Bahl and Tuteja [1]

Ȳ 2λ[C2
y +

C2
x

4
(1− 4k)]

4 ȳGS =
[
ω∗1 ȳ + ω∗2

(
X̄ − x̄

)] (
ηX̄+δ
ηx̄+δ

)
Gupta and Shabbir [5]

Ȳ 2[1− ν1]

5 ȳGS = ψ∗1 ȳ
(
ηX̄+δ
ηx̄+δ

)
+ ψ∗2

(
X̄ − x̄

) (
ηX̄+δ
ηx̄+δ

)2

Singh and Solanki [17]
Ȳ 2[1− ν2]

6 ȳreg = ȳ + b
(
X̄ − x̄

)
,

Regression Estimator Ȳ 2λC2
y(1− ρ2)

7 t(α,ζ) = ȳ{2−
(
x̄
X̄

)α
exp

[
ζ(x̄−X̄)
(X̄+x̄)

]
}

Solanki et al [25]
Ȳ 2λ{C2

y + (2α+ζ)
4

C2
x[(2α+ ζ) + 4k]}

where
Cx = Sx

X̄
be the coefficient of variation of the auxiliary variable,

Cy =
Sy

Ȳ
be the coefficient of variation of the study variable,

ρ= Sxy

SxSy
be the correlation coefficient between the auxiliary and study variables

k =
ρCy

Cx
and f = n

N
, the sampling fraction; where

Sx
2 = (N − 1)−1

N∑
i=1

(
xi − X̄

)2
,

population variance of the auxiliary variable;

Sy
2 = (N − 1)−1

N∑
i=1

(
yi − Ȳ

)2
,

population variance of the study variable;

Sxy = (N − 1)−1
N∑
i=1

(
xi − X̄

) (
yi − Ȳ

)
,

population covariance between the auxiliary and study variables;

X̄ = N−1
N∑
i=1

xi, population mean of the auxiliary variable

Ȳ = N−1
N∑
i=1

yi, population mean of the study variable

x̄ = n−1
n∑
i=1

xi, sample mean of the auxiliary variable,

ȳ = n−1
n∑
i=1

yi, sample mean of the study variable,
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α1 =
{

1 + λ
[
C2
y + τC2

x (3τ − 4k)
]}
, α2 = λC2

x, α3 = λC2
x (k − 2τ) ,

α4 =
[
1− λτC2

x (k − τ)
]
, α5 = λτC2

x

τ =
ηX̄(

ηX̄ + δ
) .

A =
{

1 + λ
[
C2
x + τC2

x (3τ − 4k)
]}
, B = λC2

x, C = λC2
x (3τ − k) ,

D =
[
1 + λτC2

x (τ − k)
]
, E = 2λτC2

x

ω∗ =
(α2α4 + α3α5)

(α1α2 − α2
3)

, ω∗ =
R (α1α5 + α3α4)

(α1α2 − α2
3)

,

R =
Ȳ

X̄
, ν1 =

(
α2α

2
4 + 2α3α4α5 + α1α

2
5

)
(α1α2 − α2

3)

ψ∗1 =
(BD− CE)

(AB− C2)
, ψ2 =

(AE− CD)

(AB− C2)
, ν2 =

(
BD2 − 2CDE +AE2

)
(AB− C2)

ω∗1 , ω
∗
2 , ψ∗1 and ψ∗2 are optimum values of ω1, ω2, ψ1 and ψ2 respectively, η (η 6= 0),

α, δ and ζ are suitably chosen constants or functions of the known parameters such as
standard deviation Sx, moment ratios β1(x), β2(x), Coefficient of Variation, Cx, and
Correlation Coefficient ρY,X between the variables Y and X, and so on.

[17] made corrections on the Mean Squared Error(MSE) of the class of estimators
proposed by [5] to obtain the correct expression of the MSE. The corrected version would
be used in this study. They went further to compare the efficiency of the estimators of
[5] with those proposed by [9], [10], [11] and found that a class of estimators proposed by
[5] was more efficient than those of [9], [10], [11]. [17] proceeded to propose a new class
of modified estimators from that of [5]. These estimators were more efficient than those
of [5], [9], [10], [15] and the regression estimator. In this paper, two alternative ratio
estimators which are more efficient than the linear regression estimators are proposed
with justification.

3. Proposed Estimator I
The first ratio estimator is proposed as

(3.1) ȳpr1 = θ1ȳ + θ2

(
X̄ − x̄

)
exp

[(
X̄ − x̄

)
/
(
X̄ + x̄

)]
θ1 and θ2 are suitably chosen scalars, such that θ1 > 0 and −∞ < θ2 <∞.

3.1. The bias and Mean Squared Error of the proposed estimator. The pro-
posed estimator in terms of e’s, is expressed as

(3.2) x̄ = X̄ (1 + ex) ȳ = Ȳ (1 + ey)

where ex = x̄− X̄/X̄ ey = ȳ − Ȳ )/Ȳ .

(3.3)
E[ex] = E[ey] = 0, E[ex]2 =

1− f
n

Cx
2;E[ey]2 =

(1− f
n

Cy
2;

E[exey] =
(1− f)

n
ρ CxCy =

(1− f)

n
kCx

2.

(3.4) ȳpr1 = Ȳ

[
θ1 + θ1ey − θ2

X̄

Ȳ

[
1− ex

2

(
1 +

ex
2

)−1

+
e2
x

2

(
1 +

ex
2

)−2

+ . . .

]]
.

It is assumed that |ex| < 1; |ey| < 1 so that
(
1 + ex

2

)−1 and
(
1 + ex

2

)−2 can be
expanded.
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Expanding equation (3.4) by Taylor series approximation and neglecting terms of e’s
having powers greater than two, we have:
ȳpr1 = Ȳ

[
θ1 + θ1ey − θ2mex[1− (ex/2)

(
1− ex/2 + e2

x/4
)

+ e2
x/8]

]
where m = X̄/Ȳ , leading to

(3.5) ȳpr1 − Ȳ = Ȳ

{
(θ1 − 1) + θ1ey − θ2mex + θ2m

e2
x

2

}
.

Therefore, the Bias of the estimator is given as

(3.6) B(ȳ)pr1 = E[ȳpr1 − Ȳ ] = Ȳ [(θ1 − 1) + θ2mλ
Cx

2

2
]

The MSE of ȳpr1 to first degree approximation is obtained by squaring equation (3.5)
and ignoring powers of ‘e’ greater than two and taking the expectation of the square as
follows:(
ȳpr1 − Ȳ

)2
= Ȳ 2

[
(θ1 − 1)2 + θ2 (θ2 − 1)me2

x + θ2
1e

2
y − 2θ1θ2meyex + θ2

2m
2e2
x

]
= Ȳ 2

[
θ2

1 − 2θ1 + 1 + θ1θ2me
2
x − θ2me

2
x + θ2

1e
2
y − 2θ1θ2meyex + θ2

2m
2e2
x

]
= Ȳ 2

[
1 + θ2

1

(
1 + e2

y

)
− 2θ1 − 2θ1θ2m

(
eyex − e2x

2

)
− 2θ2m

e2x
2

+ θ2
2m

2e2
x

]
.

(3.7)

MSE (ȳpr1) = E
(
ȳpr1 − Ȳ

)2
= Ȳ 2[1 + θ2

1

(
1 + λC2

y

)
− 2θ1−

− 2θ1θ2mλC2
x

(
k − 1

2

)
− 2θ2mλ

C2
x

2
+ θ2

2m
2λC2

x]

= Ȳ 2[1 + θ2
1γ1 − 2θ1 − 2θ1θ2mγ2 − 2θ2mγ3 + θ2

2m
2γ4]

where γ1 = 1 + λC2
y , γ2 = C2

xλ
(
k − 1

2

)
, γ3 =

λC2
x

2
, γ4 = λC2

x

3.2. Optimal conditions for MSE of proposed estimator I. To obtain the op-
timum values of θ1 and θ2 that would minimize the MSE of the estimator, the partial
derivative of (3.7) is taken with respect to θ1 and θ2 respectively and equated to zero as
shown below:

(3.8)
∂MSE (ȳpr1)

∂θ1
= 2θ1γ1 − 2θ2mγ2 − 2 = 0⇒ θ1γ1 − θ2mγ2 = 1

(3.9)
∂MSE (ȳpr1)

∂θ2
= −2θ1mγ2 − 2mγ3 + 2θ2m

2γ4 = 0⇒ −θ1mγ2 + θ2m
2γ4 = mγ3

Solving equations (3.8) and (3.9) simultaneously gives the optimal values of θ1 and θ2 as

(3.10) θ∗1 = (γ4 + γ2γ3)/(γ1γ4 − γ2
2)

(3.11) θ∗2 = R(γ2 + γ1γ3)/(γ1γ4 − γ2
2)

where R = Ȳ /X̄
Substituting equations (3.10) and (3.11) in (3.7) gives the minimum MSE as:

(3.12) MSEmin (ȳpr1) = Ȳ 2 {1− [(γ4 + 2γ2γ3 + γ1γ
2
3)/(γ1γ4 − γ2

2)]
}

which leads to

(3.13) MSEmin (ȳpr1) = Ȳ 2[1− q1]

where q1 = (γ4 +2γ2γ3 +γ1γ
2
3)/(γ1γ4 − γ2

2). These results can be summarized in theorem
I below:
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3.1. Theorem. If θ1 → θ∗1 and θ2 → θ∗2 such that θ∗1 > 0 and − ∞ < θ∗2 < ∞ the
proposed estimator will have a Mean Squared Error,
MSE (ȳpr1)≥Ȳ 2

{
1− [(γ4 + 2γ2γ3 + γ1γ

2
3)/(γ1γ4 − γ2

2)]
}
,

with strict equality holding if θ1 = θ∗1 andθ2 = θ∗2 .

3.3. Some special cases of proposed estimator I.

Case I: When θ1 = 1. The proposed estimator becomes

(3.14) ȳpr11 = ȳ + θ2

(
X̄ − x̄

)
exp

[
(X̄ − x̄)/

(
X̄ + x̄

)]
,

which is obtained by setting θ1 = 1 in (3.7). The optimum value of θ2 that
would make the MSE a minimum is:

(3.15) θ
′
2 =

γ2 + γ3

mγ4
= B

where B is the regression coefficient. Substitution of equation (3.15) into (3.7)
with θ1 = 1, gives the minimum MSE as

(3.16) MSEmin (ȳpr11) = λȲ 2C2
y(1− ρ2)

Remark I: It should be noted here that equation (3.16) gives the same expres-
sion as the Variance of the linear regression estimator

(3.17) ȳreg = ȳ + b(X̄ − x̄)

where b is the sample regression coefficient. Therefore, when θ1 = 1 and θ2 is
optimal, the proposed estimator I has the same efficiency as the simple linear
regression estimator.

Case II: When θ1 = 1 and θ2 = 1. The proposed estimator reduces to

(3.18) ȳpr12 = ȳ +
(
X̄ − x̄

)
exp[(X̄ − x̄)/(X̄ + x̄)

with MSE given as

(3.19) MSE (ȳpr12) = λȲ 2[C2
y −mC2

x (2k −m)]

Case III: When θ1 = 1, θ2 = 0 The proposed estimator reduces to unbiased sam-
ple mean estimator ȳ, with Variance given as:

(3.20) V (ȳpr13) = λȲ 2C2
y

These cases are specific members of the family of the proposed estimator I obtained by
varying the values of θ1 and θ2. Table 2 gives a summary of some members of this
proposed family of estimators.
Table 2: Some members of the family of proposed estimator I and their MSE’s.

S/N Estimator θ1 θ2 MSE

1 ȳ + θ2(X̄ − x̄) exp

[
(X̄−x̄)
(X̄+x̄)

]
1 γ2+γ3

mγ4
= b λȲ 2C2

y(1− ρ2)

2 ȳ +
(
X̄ − x̄

)
exp[

(X̄−x̄)
(X̄+x̄)

] 1 1 Ȳ 2[C2
y −mC2

x (2k −m)]

3 ȳ 1 0 λȲ 2C2
y

4 θ∗1 ȳ + θ∗2(X̄ − x̄) exp

[
(X̄−x̄)
(X̄+x̄)

]
θ∗1 θ∗2 Ȳ 2

{
1− [

γ4+γ1γ
2
3+2γ2γ3

γ1γ4−γ22
]
}
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4. Proposed estimator II
The second proposed estimator takes the form

(4.1) ȳpr2 = ϕ1ȳ + ϕ2

(
X̄ − x̄

)
exp[2(X̄ − x̄)/(X̄ + x̄)]

Where ϕ1 and ϕ2 are suitable scalars and ϕ1 > 0,−∞ < ϕ2 < ∞. Expressing (4.1) in
terms of e’s gives

(4.2) ȳpr2 = Ȳ

{
ϕ1 + ϕ1ey − ϕ2m[1− e1

(
1 +

ex
2

)−1

+
e2
x

2

(
1 +

ex
2

)−2

+ . . .]

}
.

The first degree approximation of equation (4.2) is obtained as: ȳpr2 = Ȳ [ϕ1 + ϕ1ey −
ϕ2mex

(
1− ex + e2

x

)
]

= Ȳ [ϕ1 + ϕ1ey − ϕ2mex + ϕ2me
2
x]

(4.3) ȳpr2 − Ȳ = Ȳ [(ϕ1 − 1) + ϕ1ey − ϕ2mex + ϕ2me
2
x]

The Bias of ȳpr2 is obtained from equation (4.3) as:

(4.4) B (ȳpr2) = E
(
ȳpr2 − Ȳ

)
= Ȳ

[
(ϕ1 − 1) + ϕ2mλC2

x

]
.

Squaring equation (4.3) and ignoring powers of ‘e’ greater than two, we have:

(4.5)

(ȳpr2 − Ȳ )
2

= Ȳ 2[(ϕ1 − 1)2 + 2ϕ2 (ϕ1 − 1)me2
x

+ ϕ2e
2
y − 2ϕ1ϕ2meyex + ϕ2

2m
2e2
x]

= Ȳ 2[1 + ϕ2
1

(
1 + e2

y

)
− 2ϕ1 − 2ϕ1ϕ2m

(
eyex − e2

x

)
− 2ϕ2me

2
x + ϕ2

2m
2e2
x]

Its MSE is obtained by taking the expectation of equation (4.5) as shown below:

(4.6)

MSE (ȳpr2) = E(ȳpr2 − Ȳ )
2

= Ȳ 2 [1 + ϕ2
1

(
1 + λC2

y

)
−2ϕ1 − 2ϕ1ϕ2mλC2

x (k − 1)− ϕ2mλC2
x + ϕ2

2m
2λC2

x

]
= Ȳ 2[ϕ2

1γ1 − 2ϕ1 − 2ϕ1ϕ2mγ5 − 2ϕ2mγ4 + ϕ2
2m

2γ4]

where γ5 = λC2
x(k − 1)

4.1. Optimality conditions for estimator II. To investigate the optimal conditions
for estimator II, let

∂MSE(ȳpr2)

∂ϕ1
=
∂MSE(ȳpr2)

∂ϕ2
= 0

so that,

(4.7) ϕ1γ1 − ϕ2mγ5 = 1

(4.8) −ϕ1mγ5 + ϕ2m
2γ4 = mγ4.

Solving equations (4.7) and (4.8) simultaneously give the optimal values of ϕ1 and ϕ2 as:

(4.9) ϕ?1 = (γ4 + γ4γ5)/(γ1γ4 − γ2
5)

(4.10) ϕ?2 = R(γ5 + γ1γ4)/
(
γ1γ4 − γ2

5

)
.

Substituting equations (4.9) and (4.10) in (4.6) yields the minimum MSE of the estimator
as:

(4.11) MSE (ȳpr2) = Ȳ 2{1−
[
(γ4 + 2γ4γ5 + γ1γ

2
4)/(γ1γ4 − γ2

5)
]
} = Ȳ 2[1− q2]

where,

q2 = (γ4 + 2γ4γ5 + γ1γ
2
4)/(γ1γ4 − γ2

5)

These results are summarized in the following theorem.
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4.1. Theorem. If ϕ1 → ϕ?1 and ϕ2 → ϕ?2 such that ϕ?1 > 0 and −∞ < ϕ?2 < ∞, the
proposed estimator will have a Mean Squared Error of
MSE (ȳpr2)≥Ȳ 2

{
1− [(γ4 + 2γ4γ5 + γ1γ

2
4)/(γ1γ4 − γ2

5)]
}
,

with strict equality holding if ϕ1 = ϕ?1 and ϕ2 = ϕ?2.

4.2. Some special cases of proposed estimator II. Some special cases of ȳpr2 with
varying values of ϕ1 and ϕ2 and MSEs are given in Table 3.



697

Table 3: Some types of estimator II and their MSEs
S/N Estimator ϕ1 ϕ2 MSE

1 ȳ + ϕ2(X̄ − x̄) exp

[
2(X̄−x̄)
(X̄+x̄)

]
1 γ4+γ5

mγ4
= b λȲ 2C2

y(1− ρ2)

2 ȳ +
(
X̄ − x̄

)
exp[

2(X̄−x̄)
(X̄+x̄)

] 1 1 Ȳ 2[C2
y −mC2

x (2k −m)]

3 ȳ 1 0 λȲ 2C2
y

4 ϕ?1ȳ + ϕ?2(X̄ − x̄) exp

[
2(X̄−x̄)
(X̄+x̄)

]
ϕ?1 ϕ?2 Ȳ 2

{
1− [

γ4+γ1γ
2
4+2γ4γ5

γ1γ4−γ25
]
}

5. Efficiency Comparison
In this section, the MSE of some existing ratio estimators are compared with the

optimal MSE of the proposed estimators.

5.1. Unbiased simple random sample mean, ȳ. The Variance of the simple random
mean expressed in terms of γ′s is:

(5.1) V (ȳ) = Ȳ 2(γ1 − 1)

Therefore, for the proposed estimator I to be more efficient than the simple sample
random mean, ȳ, V (ȳ)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [γ1 + q1 − 2] > 0

(5.2) ⇒ [γ1 + q1 − 2] > 0.

Also for ȳpr1 to be more efficient than ȳ

V (ȳ)−MSE (ȳpr2) > 0

⇒ Ȳ 2 [γ1 + q2 − 2] > 0

(5.3) ⇒ [γ1 + q2 − 2] > 0.

If equations (5.2) and (5.3) hold, then the proposed estimators would be more efficient
than the simple random sample mean.

5.2. Classical ratio estimator, ȳR. The MSE of ȳR expressed in terms of γ′s is given
by: For estimator I,

(5.4) MSE (ȳR) = Ȳ 2[γ1 − 2γ2 − 1]

And for estimator II

(5.5) MSE (ȳR) = Ȳ 2[γ1 − 2γ4 − γ5 − 1]

Therefore, for the proposed estimator ȳpr1 to be more efficient than the classical ratio
estimator,

MSE (ȳR)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [γ1 − 2γ2 − 2 + q1] > 0

(5.6) ⇒ [(γ1 + q1)− 2 (γ2 + 1)] > 0

Similarly, for ȳpr2 to be more efficient than ȳR

MSE (ȳR)−MSE (ȳpr2) > 0

⇒ [γ1 − 2γ4 − γ5 − 2 + q2] > 0

(5.7) ⇒ [(γ1 + q2)− 2 (γ4 + 1)− γ5] > 0

Therefore, for the proposed estimators to be more efficient than the classical ratio esti-
mator, equations (5.6) and (5.7) must hold.
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5.3. Regression Estimator, ȳreg. The Variance of the regression estimator expressed
in terms of γ′s is given as: For estimator I

(5.8) V (ȳreg) = Ȳ 2{γ1 − [(γ2 + γ3)2/γ4]− 1}
and for estimator II

(5.9) V (ȳreg) = Ȳ 2[γ1 − [(γ4 + γ5)2/γ4]− 1]

Therefore, for the proposed estimators to be more efficient than the regression estimator,

V (ȳreg)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [γ1 − [(γ2 + γ3)2/γ4]− 1− (1− q1)
]
> 0

⇒ Ȳ 2 [γ1 − [(γ2 + γ3)2/γ4]− 2 + q1
]
> 0

(5.10) ⇒ [γ4 (γ1 − 1)− γ2(γ2 + γ3)]2/γ4

(
γ1γ4 − γ2

2

)
> 0

(5.10) holds if [ γ4

(
γ1γ4 − γ2

2

)
> 0]. Therefore,

γ4

(
γ1γ4 − γ2

2

)
> 0

⇒ γ1γ
2
4 − γ2

2γ4 > 0

⇒ λ2C4
x

(
1 + λC2

y

)
− λ2C4

x

(
k − 1

2

)2
> 0

⇒ 1 + λC2
y >

(
k − 1

2

)2

⇒ Var (ȳ) + Ȳ 2 >
1

C2
x

[MSE (ȳ<) + Ȳ 2λC2
y(ρ2 − 1)]

(5.11) ⇒ Var (ȳ) + Ȳ 2 >
1

C2
x

[MSE (ȳ<)− Ȳ 2λC2
y(1− ρ2)]

Clearly, from equation (5.11), MSE (ȳ<), the Mean Square Error of [1] is smaller than
Var (ȳ) , the Variance of the simple random sample mean. Also, the second term in the
bracket on the right hand side of equation (5.11) is the Variance of regression estimator,
which is smaller than V (ȳ). Therefore, the expression on the left hand side of equation
(5.11) is always greater than that of the right hand side. Hence, equation (5.11) holds.
It follows therefore that [γ4

(
γ1γ4 − γ2

2

)
> 0 ] and the numerator of (5.10) is a square,

which implies that (5.10) holds. Hence, the proposed estimator I is always more efficient
than classical regression estimator.
Also,

V (ȳreg)−MSE (ȳpr2) > 0

⇒ Ȳ 2 [γ1 − [(γ4 + γ5)2/γ4]− 1− (1− q2)
]
> 0

⇒ Ȳ 2 [γ1 − [(γ4 + γ5)2/γ4]− 2 + q2
]
> 0

(5.12) ⇒ [γ4 (γ1 − 1)− γ5(γ5 + γ4)]2/γ4

(
γ1γ4 − γ2

5

)
> 0

Similarly, for (5.12) to be satisfied,

γ4

(
γ1γ4 − γ2

5

)
> 0

⇒ γ1γ
2
4 − γ2

5 > 0

⇒ 1 + λC2
y > (k − 1)2

⇒ Ȳ 2 + Var (ȳ) >
1

C2
x

[MSE (ȳR) + Ȳ 2λC2
y(ρ2 − 1)]

(5.13) ⇒ Ȳ 2 + Var (ȳ) >
1

C2
x

[MSE (ȳR)− Ȳ 2λC2
y(1− ρ2)]

From (5.13), we observe that MSE (ȳR) , the Mean Square Error of the classical ratio
estimator is always smaller than Var (ȳ) , the variance of simple random sample mean.
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In addition, the second term in the bracket of the right hand side of (5.13) is the Variance
of the classical regression estimator. Therefore the expression on the left hand side of
equation (44) is greater than that of the right hand side. Hence, equation (44) holds and
the numerator of (5.12) is positive, which implies that (43) always holds.
Remark II Since equations (5.10) and (5.12) are all greater than zero, then the proposed
estimators are always more efficient than the regression estimator. Moreover, since the
regression estimator is more efficient than the simple random sample mean, classical ratio
estimator, estimators of [14], [9] and [10], and any other ratio estimators, it follows that
the proposed estimators are more efficient than these estimators. The above remark is
summarized in the following theorem.

5.1. Theorem. If θ1, θ2, ϕ1 ϕ2 attain or almost attain their optimal values in the pro-
posed estimators, then the proposed estimators are always more efficient than the regres-
sion estimator.

5.4. Gupta and Shabbir [5] estimator, ȳGS. The proposed estimators would be
better than the Gupta and Shabbir’s class of estimators if:

MSE (ȳGS)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [(1− ν1)− (1− q1)] > 0

(5.14) ⇒ [q1 − ν1] > 0

MSE (ȳGS)−MSE (ȳpr2) > 0

(5.15) ⇒ [q2 − ν1] > 0

5.5. Singh and Solanki [17] estimator, ȳSS. The proposed estimators would be
more efficient than Singh and Solanki’s class of estimators if:

MSE (ȳSS)−MSE (ȳpr1) > 0

⇒ Ȳ 2 [(1− ν2)− (1− q1)] > 0

(5.16) ⇒ [q1 − ν2] > 0

and

MSE (ȳSS)−MSE (ȳpr2) > 0

⇒ Ȳ 2 [(1− ν2)− (1− q2)] > 0

(5.17) ⇒ [q2 − ν2] > 0
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6. Empirical Study
To investigate our theoretical results, as well as, test the optimality and efficiency

performances of our proposed estimators over other existing ones considered in this study,
we make use of data of the following populations.

Population I:

N = 200, n = 50, Ȳ = 500, X̄ = 25, Cy = 15, Cx = 2, ρ = 0.90, β2 (x) = 50

[ Kadilar and Cingi [11] ]
Population II:

N = 106, n = 20, Ȳ = 2212.59, X̄ = 27421.70, Cy = 5.22, Cx = 2.10,

ρ = 0.86, β2 (x) = 34.57

[ Kadilar and Cingi,[9, 10] ]
Population III:

N = 104, n = 20, Ȳ = 625.37, X̄ = 13.93, Cy = 1.866, Cx = 1.653,

ρ = 0.865, β2 (x) = 17.516

[ Kadilar and Cingi [11] ]
Population IV:

N = 923, n = 180, Ȳ = 436.4345, X̄ = 11440.5, Cy = 1.7183, Cx = 1.8645,

ρ = 0.9543, β2 (x) = 18.7208

[ Koyuncu and Kadilar, [12] ]



701

Table 4: Optimum values ( θ∗1 , θ∗2 , MSEs and PREs of some Gupta and Shabbir[5] estimators and the proposed estimators.

Estimators Population I Population II Population III Population IV
θ∗1 θ∗2 MSE PRE θ∗1 θ∗2 MSE PRE θ∗1 θ∗2 MSE PRE θ∗1 θ∗2 MSE PRE

ȳGS1 0.60 76.61 95396.05 884.471 0.74 0.09 1043368.08 518.642 0.96 2.41 13321.23 412.828 0.999 -0.005 224.356 1121.019
ȳGS2 0.59 76.48 95304.34 885.322 0.74 0.09 1043366.16 518.643 0.96 0.87 13316.65 412.970 0.999 -0.005 224.356 1121.019
ȳGS3 059 76.49 95308.27 885.285 0.74 0.09 1043366.29 518.643 0.96 0.98 13316.98 412.960 0.999 -0.005 224.356 1121.019
ȳGS4 0.60 76.71 95468.42 883.800 0.74 0.09 1043369.73 518.641 0.96 3.10 13323.21 412.766 0.999 -0.005 224.356 1121.019
ȳGS5 0.60 76.59 95386.75 884.557 0.74 0.09 1043367.79 518.642 0.96 2.19 13320.59 412.848 0.999 -0.005 224.356 1121.019
ȳGS6 0.59 76.48 95303.94 885.325 0.74 0.09 1043366.14 518.643 0.96 0.85 13316.58 412.972 0.999 -0.005 224.356 1121.019
ȳGS7 0.59 76.48 95304.34 885.322 0.74 0.09 1043366.03 518.643 0.96 0.83 13316.52 412.974 0.999 -0.005 224.356 1121.019
ȳGS8 0.60 76.73 95485.97 883.638 0.75 0.09 1049814.73 515.457 0.96 4.25 13326.36 412.669 0.999 -0.001 224.357 1121.014
ȳGS9 0.59 76.48 95303.94 885.325 0.74 0.09 1043366.03 518.643 0.96 0.81 13316.47 412.975 0.999 -0.005 224.356 1121.019
ȳGS10 0.59 76.47 95300.40 885.358 0.74 0.09 1043366.03 518.643 0.96 0.70 13316.13 412.986 0.999 -0.005 224.356 1121.019
ȳreg - - 160312.5 526.316 - - 1409113.09 384.025 - - 13846.05 397.180 - - 224.625 1119.677
ȳpr1 0.58 83.08 72692.31 1160.7 0.71 0.13 713838.3 758.06 0.92 42.13 11051.73 497.60 0.99 6.23 212.519 1183.458
ȳpr2 0.56 4.23 45870.36 1839.4* 0.65 1.73 240765.7 2247.6* 0.87 0.98 6819.164 806.5* 0.99 0.35 183.147 1373.254*
ȳ - - 843750 100.000 - - 5411348.28 100.000 - - 54993.75 100.000 - - 2515.074 100.000



702Table 5: Optimum values ( ϕ∗1, ϕ∗2, MSEs and PREs of some Singh and Solanki [17] estimators and the proposed estimators

Estimator Population I Population II Population III Population IV
ϕ∗1 ϕ∗2 MSE PRE ϕ∗1 ϕ∗2 MSE PRE ϕ∗1 ϕ∗2 MSE PRE ϕ∗1 ϕ∗2 MSE PRE

ȳSS1 0.53 3.98 45246.7 1864.791 0.50 1.57 202185.29 2676.43 0.94 0.13 12986.83 423.458 1.00 -0.12 224.527 1120.166
ȳSS2 0.53 3.98 44081.39 1914.073 0.50 1.57 202185.29 2676.82 0.94 0.09 13116.65 419.267 1.00 -0.12 224.527 1120.166
ȳSS3 0.53 3.98 44131.01 1911.921 0.50 1.57 202155.53 2676.80 0.94 0.10 13107.25 419.567 1.00 -0.12 224.527 1120.166
ȳSS4 0.53 3.98 46177.73 1827.179 0.50 1.57 202157.65 2676.09 0.94 0.15 12931.31 412.766 1.00 -0.12 224.527 1120.166
ȳSS5 0.53 3.98 45127.48 1869.703 0.50 1.57 202210.82 2676.49 0.94 0.12 13005.06 425.276 1.00 -0.12 224.527 1120.166
ȳSS6 0.53 3.98 44076.42 1914.289 0.50 1.57 202180.85 2676.83 0.94 0.09 13118.60 422.864 1.00 -0.12 224.527 1120.166
ȳSS7 0.53 3.98 44081.39 1914.073 0.50 1.57 202155.27 2676.82 0.94 0.09 13116.65 419.204 1.00 -0.12 224.527 1120.166
ȳSS8 0.53 3.98 46405.23 1818.222 0.54 1.52 202155.53 1817.35 0.94 0.17 12844.01 419.267 0.99 -0.03 224.510 1120.250
ȳSS9 0.53 3.98 44076.42 1914.289 0.50 1.57 297759.98 2676.85* 0.94 0.09 13121.61 428.167 1.00 -0.12 224.527 1120.166
ȳSS10 0.53 3.98 44031.68 1916.234* 0.50 1.57 202153.61 2676.85* 0.94 0.09 13131.21 419.108 1.00 -0.12 224.527 1120.166
ȳreg - - 160312.5 526.316 - - 1409113.542 384.025 - - 13846.05 397.180 - - 224.625 1119.677
ȳpr1 0.58 83.08 72692.31 1160.7 0.71 0.13 713838.3 758.06 0.92 42.13 11051.73 497.60 0.99 6.23 212.519 1183.458
ȳpr2 0.56 4.23 45870.36 1839.4 0.65 1.73 240765.7 2247.6 0.87 0.98 6819.164 806.5* 0.99 0.35 183.147 1373.254*
ȳ - - 843750 100.000 - - 5411348.28 100.000 - - 54993.75 100.000 - - 2515.074 100.000

*indicates the largest PRE
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7. Discussion

The ratio-type class of estimators considered in Tables (IV) and (V) was adapted
from the work of [17], where he made corrections on the MSE of the general class of
[5] estimators. It is observed from Table (IV) that the proposed estimator (I) fares
better at optimum condition than the unbiased sample mean, regression estimator
and [5] class of estimators in all the four populations. This is evident on the larger
Percent Relative Efficiencies (PREs) and the smaller Mean Squared Errors of the
proposed estimator (I) than those of sample mean, regression and estimators of
[5]. On the other hand, the proposed estimator (II) becomes more efficient than
the simple random sample mean, regression estimator, the class of estimators of
[5] and proposed estimator (I) in the four populations. This is evident on the
fact that the proposed estimator (II) has the largest PRE in the four populations
considered in this study. This therefore, shows that the proposed estimators are
more efficient than any other proposed estimators that have less efficiency than the
regression estimator and estimators of [5]. Table (V) clearly shows that [17] and
our proposed estimators fare better than the class of estimators of [5], regression
estimator and simple random sample mean in all the populations considered in this
study. A clear difference is also observed between the class of estimators of [17]
and the proposed estimators. In populations (I) and (II), estimator of [17], (ȳSS10)
fares better than the proposed estimators. Also, [17] estimator (ȳSS9) is equally
efficient with (ȳSS10) and more efficient than the proposed estimators. On the
other hand, the proposed estimators (I) and (II) fares better than [17] estimators
in populations (III) and (IV), but the proposed estimator (II) is most efficient
in the populations (III) and (IV). This indicates that the proposed estimators
using exponential estimator may fare in some populations better than [17] class of
estimators, while [17] may be more efficient than the proposed estimators in some
other populations. On the whole, the proposed estimators have shown significant
efficiencies in the four populations considered in this study. It can also be deduced
that the proposed estimators always fare better than the usual regression estimator
and [5].

8. Conclusion

From the above result and discussion, It can be concluded that the two proposed
estimators at optimal condition are each more efficient that the general regression
estimator which have always been preferred because of its minimum MSE. The
two proposed estimators are also more efficient than most of the exiting ratio
estimators, thus providing better alternative estimators in practical situations.
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Composite quantile regression for linear
errors-in-variables models
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Abstract
Composite quantile regression can be more efficient and sometimes arbi-
trarily more efficient than least squares for non-normal random errors,
and almost as efficient for normal random errors. Therefore, we ex-
tend composite quantile regression method to linear errors-in-variables
models, and prove the asymptotic normality of the proposed estima-
tors. Simulation results and a real dataset are also given to illustrate
our the proposed methods.
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1. Introduction
Consider a linear errors-in-variables model as follows:{

Y = xTβ0 + ε,
X = x+ u,

(1.1)

where x is a p-dimensional vector of unobserved latent covariates which is measured in
an error-prone way, X is the observed surrogate of x, β0 is a p-dimensional unknown
parameter vector, Y are responses vector, (ε, uT )T is a p+1-dimensional spherical error
vector, and they are independent with a common error distribution that is spherically
symmetric. Spherically symmetric implies that ε and each component u have the same
distribution, which ensures model identifiability. We restrict ourselves to structural mod-
els where x are independently and identically distributed random variables. If x stem
from non-stochastic designs, the model is said to have a functional relationship, see Fuller
(1987) for details. Model (1.1) belongs to a kind of model called the errors-in-variables
model or measurement error model which was proposed by Deaton (1985) to correct for
the effects of sampling error and is somewhat more practical than the ordinary regression
model. Fuller (1987) gave a systematic survey on this research topic and present many
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applications of measurement error data. Other references can see Cui (1997a), He and
Liang (2000), Huang and Wang (2001), Ma and Tsiatis (2006), Schennach (2007), Liang
and Li (2009), Wei and Carroll (2009), Hu and Cui (2009), Jiang et al. (2012a) and so
on.

The composite quantile regression (CQR) was first proposed by Zou and Yuan (2008)
for estimating the regression coefficients in the classical linear regression model. Zou
and Yuan (2008) showed that the relative efficiency of the CQR estimator compared
with the least squares estimator is greater than 70% regardless of the error distribution.
Furthermore, the CQR estimator could be more efficient and sometimes arbitrarily more
efficient than the least squares estimator. Other references about CQR method can
see Kai, Li and Zou (2010), Kai, Li and Zou (2011), Tang et al. (2012a), Tang et al.
(2012b), Guo et al. (2012) and Jiang et al. (2012b, 2012c, 2013, 2014a, 2014b). These
nice theoretical properties of CQR in linear regression motivate us to consider linear
errors-in-variables models based on CQR method so as to make the method of CQR
more effective and convenient.

This paper is organized as follows. The main results are given in Section 2. Some sim-
ulations and a real data application are conducted in Section 3 to illustrate our method-
ology. Final remarks are given in Section 4. All the conditions and technical proofs are
collected in the Appendix.

2. Methodology and main results
If the true covariates x are observed, the parameters β in model (1.1) can be estimated

through (Zou and Yuan, 2008)

(b̃1, ..., b̃K , β̃) = argminb1,...,bK ,β

K∑
k=1

n∑
i=1

ρτk

(
Yi − bk − xTi β

)
,

where ρτk (r) = τkr − rI(r < 0), k = 1, 2, . . . ,K, be K check loss functions with 0 <

τ1 < τ2 < · · · τK < 1. Typically, we use the equally spaced quantiles: τk = k
K+1

for
k = 1, 2, . . . ,K. b̃k is estimator of bτk , where P (ε ≤ bτk |xi) = τk, bτk is the τk quantile
of ε.

Taking into account the measurement error in X, we consider estimating β as follows

(â1, ..., âK , β̂) = argmina1,...,aK ,β

K∑
k=1

n∑
i=1

ρτk

(
Yi − ak −XT

i β√
1 + ‖β‖2

)
, (2.1)

where âk is the estimator of bτk
√

1 + ‖β0‖2, k = 1, . . . ,K. The measurement error
correction factor 1√

1+‖β‖2
is widely used in linear models with additive errors (see Ma

and Yin, 2011) . The main intuition is the following. In the usual regression, one
minimizes the vertical standardized distance d{(Y − ak − XTβ)/s.d.(Y − ak − XTβ)}
where d stands for a suitable distance measure and s.d. is the standard deviation, because
only the vertical Y direction has errors. However, in the measurement error situation,
errors also occur along the horizontal X direction, hence a distance containing both
vertical and horizontal components should be favored. In fact, the minimization of the
same standardized distance with X replaced by x automatically corrects for this. If we
denote the variance of ε as Σε and the variance-covariance matrix of u as Σu, we have

(Y − ak −XTβ)

s.d.(Y − ak −XTβ)
=

(Y − ak −XTβ)√
Σε + βTΣuβ
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which is proportional to (Y − ak − XTβ)/
√

1 + ‖β‖2 under the spherical symmetry
assumption. The following theorem gives the the asymptotic normality for the composite
quantile regression estimator β̂.
Theorem 1 Assuming Conditions A1-A2 in the Appendix are satisfied, then

√
n(β̂ − β0)

L−→ N

0,

(
K∑
k=1

f(bτk )

)−2

(1 + ‖β0‖2)Σ−1
x SΣ−1

x

 ,

where L−→ stands for convergence in distribution, Σx = E(xxT ) and S =
∑K
k,k′=1 min(τk, τk′)(1−max(τk, τk′))Σx+

Cov

[∑K
k=1 ψτk

(
ε−uT β0√
1+‖β0‖2

− bτk
)(

u+ (ε−uT β0)β0
1+‖β0‖2

)]
.

Remark 1: In practice, there is constant term in model (1.1), then model (1.1) can be
write as {

Y = α0 + xTβ0 + ε,
X = x+ u.

The parameter α0 and β0 can be estimated as follows (Cui, 1997b)

(â∗1, ..., â
∗
K , β̂

∗) = argmina1,...,aK ,β

K∑
k=1

n∑
i=1

ρτk

(
Yi − Ȳ − ak − (Xi − X̄)Tβ√

1 + ‖β‖2

)
,

α̂ = Ȳ − X̄T β̂∗,

where Ȳ = 1
n

∑n
i=1 Yi and X̄ = 1

n

∑n
i=1 Xi.

3. Numerical studies
In this section, we conduct simulation studies to assess the finite sample performance

of the proposed procedures and illustrate the proposed methodology on AIDS clinical
trials. Furthermore, we compare CQR method with least square (LS) method proposed
by Fuller (1987), t-type (TT) method proposed by Hu and Cui (2009) and quantile
regression method with τ = 0.5 (QR0.5) proposed by He and Liang (2000).

3.1. Simulation example. We conduct a small simulation study with n = 100 and
the data are generated from model (1.1), where the random error variables are taken
to be 0.5*N(0,1), 0.2*t(3) and 0.05*C(0,1) distribution. The covariate vector x =
(x1, x2, . . . , xp) are generated from standard normal distribution N(0,1) and p=1,2,5 are
considered. We focus on K = 5, K = 9 and K = 19 for composite quantile regression,
respectively. The mean squared errors (MSE) and their standard deviations (STD) over
1000 simulations are summarized in Table 1, where MSE=‖β̂−β0‖2. It can be seen from
Table 1 that the CQR estimators have better performance than LS for heavy-tailed error
distributions ( t(3) and C(0,1)), but is less efficient when the error is normal distribution
N(0,1). Moreover, the results show that our method is more efficient than TT and QR0.5

in most cases. The three CQR estimators perform very similarly. Further, one can see
that the three CQR estimators are close to the true value.

3.2. Real data example. In this section, we present an analysis of an AIDS clinical
trial group (ACTG 315) study. One of the purposes of this study is to investigate the
relationship between virologic and immunologic responses in AIDS clinical trials. In
general, it is believed that the virologic response RNA (measured by viral load) and
immunologic response (measured by CD4+ cell counts) are negatively correlated during
treatment. Our preliminary investigations suggested that viral load depends linearly on
CD4+ cell count. We therefore model the relationship between viral load and CD4+
cell counts by model (1.1). Let Yi be the viral load and let xi be the CD4+ cell count
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Table 1 Simulation results for simulation example.
N(0,1) t(3) C(0,1)

p Method MSE STD MSE STD MSE STD
p=1 LS 0.0056 0.0077 0.0037 0.0063 1.8657 8.2551

TT 0.0072 0.0082 0.0025 0.0035 0.0214 0.1407
QR0.5 0.0086 0.0095 0.0030 0.0039 0.0209 0.1422
CQR5 0.0064 0.0081 0.0022 0.0033 0.0219 0.1399
CQR9 0.0064 0.0084 0.0023 0.0034 0.0217 0.1407
CQR19 0.0063 0.0083 0.0022 0.0033 0.0315 0.1686

p=2 LS 0.0192 0.0204 0.0198 0.1749 3.2342 10.1476
TT 0.0257 0.0284 0.0065 0.0074 0.6477 5.7348
QR0.5 0.0295 0.0330 0.0072 0.0083 0.6295 5.6614
CQR5 0.0216 0.0225 0.0061 0.0064 0.1525 0.5327
CQR9 0.0209 0.0216 0.0062 0.0066 0.1512 0.5065
CQR19 0.0206 0.0216 0.0061 0.0066 0.1586 0.5313

p=5 LS 0.1081 0.0724 0.0796 0.1203 4.7832 8.6034
TT 0.1498 0.1010 0.0426 0.0309 0.8189 1.9204
QR0.5 0.1613 0.1100 0.0446 0.0326 0.7865 1.9108
CQR5 0.1203 0.0775 0.0397 0.0286 0.6306 0.9306
CQR9 0.1170 0.0765 0.0390 0.0283 0.6560 0.9254
CQR19 0.1156 0.0772 0.0396 0.0286 0.7147 0.9592

for subject i. To reduce the marked skewness of CD4+ cell counts, and make treatment
times equal space, we take log-transformations of both variables. The xi are measured
with error (Liang et al., 2003). The model we used is

Y = xTβ0 + ε, X = x+ u,

where X is the observed CD4+ cell counts. The performances of CQR method with
different K are very similar (see Table 1), and considering computing time, K=5 is a good
choice in practice. Therefore, K=5 for CQR method is considered in this example. The
parameter estimator by using our proposed method is -0.0717. Moreover, the standard
deviation of the parameter is 0.0078 and the 90% confidence interval is [-0.0824,-0.0576]
by using the random weighting method (see Jiang et al., 2012a).

4. Conclusion
In this work, we have focused on the CQR method for linear errors-in-variables mod-

els and proven its nice theoretical properties. Moreover, the proposed approaches are
demonstrated by simulation examples and a real data application.

Appendix
To prove main results in this paper, the following technical conditions are imposed.

A1. Assume (ε, uT ) is spherically symmetric with finite first moment, and the distribu-
tion functions F of ε are absolutely continuous, with continuous densities f uniformly
bounded away from 0 and ∞ at the points bτk , k = 1, . . . ,K and Eε2 <∞.
A2. E(x) = 0 and Σx = E(xxT ) is positive definite.
Remark 2: Conditions A1-A2 are standard conditions, see He and Liang (2000).
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Now we proceed to prove the theorems.
Proof of Theorem 1. Denote

f1ik(bk, β) =ρτk

(
εi − uTi β√
1 + ‖β‖2

− bτk −
xTi (β − β0)√

1 + ‖β‖2
− (bk − bτk )

)
− ρτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)

− ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)(
εi − uTi β√
1 + ‖β‖2

− εi − uTi β0√
1 + ‖β0‖2

− xTi (β − β0)√
1 + ‖β‖2

− (bk − bτk )

)
,

f2ik(bk, β) =ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)(
εi − uTi β√
1 + ‖β‖2

− εi − uTi β0√
1 + ‖β0‖2

− xTi (β − β0)√
1 + ‖β‖2

− (bk − bτk )

)
.

(â1, ..., âK , β̂) is the minimizer of the following criterion:

K∑
k=1

n∑
i=1

[
ρτk

(
Yi − ak −XT

i β√
1 + ‖β‖2

)
− ρτk

(
Yi − aτk −X

T
i β0√

1 + ‖β0‖2

)]

=

K∑
k=1

n∑
i=1

f1ik(bk, β) +

K∑
k=1

n∑
i=1

f2ik(bk, β)

≡Qn(b1, ..., bK , β)

Therefore, by applying the identity in Knight (1998)

ρτ (x− y)− ρτ (x) = −yψτ (x) +

∫ y

0

{I(x ≤ z)− I(x ≤ 0)}dz.

We have

EQn(b1, ..., bK , β) =

K∑
k=1

n∑
i=1

E

[
ρτk

(
Yi − ak −XT

i β√
1 + ‖β‖2

)
− ρτk

(
Yi − aτk −X

T
i β0√

1 + ‖β0‖2

)]

=

K∑
k=1

n∑
i=1

E

[
ρτk

(
εi − bτk −

xTi (β − β0)√
1 + ‖β‖2

− (bk − bτk )

)
− ρτk (εi − bτk )

]

=

K∑
k=1

n∑
i=1

E

∫ xTi (β−β0)√
1+‖β‖2

+(bk−bτk )

0

{F (εi ≤ bτk + z|xi)− F (εi ≤ z|xi)}

 dz
→1

2

K∑
k=1

f(bτk )(
√
n(bk − bτk ),

√
n(β − β0))

[
1 0
0 Σx

1+‖β0‖2

]
(
√
n(bk − bτk ),

√
n(β − β0)T )T .

Next, we study f2ik(bk, β),

f2ik(bk, β) =− ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)
1√

1 + ‖β0‖2

(
xi + ui +

(εi − uTi β0)β0

1 + ‖β0‖2

)T
(β − β0)

− ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)
(bk − bτk ) +R.

Similar to the proof of Theorem 3 in Cui (1997a), we can obtain
n∑
i=1

[f1ik(bk, β)− Ef1ik(bk, β)] = op
(∥∥(√n(bk − bτk ),

√
n(β − β0)

)∥∥)
n∑
i=1

[R− ER] = op
(∥∥(√n(bk − bτk ),

√
n(β − β0)

)∥∥) .
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Thus it follows that
Qn(b1, ..., bK , β)→ Q0(b1, ..., bK , β)

=− 1√
n

K∑
k=1

n∑
i=1

ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)
1√

1 + ‖β0‖2

(
xi + ui +

(εi − uTi β0)β0

1 + ‖β0‖2

)T √
n(β − β0)

− 1√
n

K∑
k=1

n∑
i=1

ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)
√
n(bk − bτk )

+
1

2

K∑
k=1

f(bτk )(
√
n(bk − bτk ),

√
n(β − β0))

[
1 0
0 Σx

1+‖β0‖2

]
(
√
n(bk − bτk ),

√
n(β − β0)T )T .

The convexity of the limiting objective function, Q0(b1, ..., bK , β), assures the uniqueness
of the minimizer and, consequently, that

√
n(β̂−β0) =

Σ−1
x

√
1 + ‖β0‖2

√
n
∑K
k=1 f(bτk )

K∑
k=1

n∑
i=1

ψτk

(
εi − uTi β0√
1 + ‖β0‖2

− bτk

)(
xi + ui +

(εi − uTi β0)β0

1 + ‖β0‖2

)
+op(1).

The proof is completed.
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Abstract
In this paper some new simple expressions for single and product mo-
ments of generalized order statistics from type II exponentiated log-
logistic distribution have been obtained. The results for order statistics
and record values are deduced from the relations derived and some ra-
tio and inverse moments of generalized order statistics are also carried
out. Further, a characterization result of this distribution by using the
conditional expectation of generalized order statistics is discussed.
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1. Introduction
A random variable X is said to have type II exponentiated log-logistic distribution if

its probability density function (pdf) is given by

f(x) =
αβ(x/σ)β−1

σ[1 + (x/σ)β ]α+1
, x ≥ 0, α, σ > 0, β > 1 (1.1)

and the corresponding survival function is

F̄ (x) =
(

1 +
{x
σ

}β)−α
, x ≥ 0, α, σ > 0, β > 1. (1.2)

It is easy to see that
αβF̄ (x) = σ[1 + (x/σ)β ]xf(x). (1.3)

Log-logistic distribution is considered as a special case of type II exponentiated log-
logistic distribution when α = 1. It is used in survival analysis as a parametric model
where in the mortality rate first increases then decreases, for example in cancer diagnosis

∗Department of Statistics, Amity Institute of Applied Sciences Amity University, Noida-201
303, India
Email: devendrastats@gmail.com
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or any other type of treatment. It has also been used in hydrology to model stream flow
and precipitation, and in economics to model the distribution of wealth or income.

Kamps [24] introduced the concept of generalized order statistics (gos) as follows: Let
X1, X2 . . . be a sequence of independent and identically distributed (iid) random vari-
ables (rv) with absolutely continuous cumulative distribution function (cdf) F (x) and
pdf , f(x), x ∈ (α, β). Let n ∈ N , n ≥ 2, k > 0, m ∈ <, be the parameters such that

γr = k + (n− r)(m+ 1)> 0, for all r ∈ {1, 2, . . . , n− 1},
whereMr =

∑n−1
j=r mj. Then X(1, n,m, k),. . . ,X(n, n,m, k), r = 1, 2, . . . n are called gos

if their joint pdf is given by

k

(
n−1∏
j=1

γj

)(
n−1∏
i=1

[1− F (xi)]
mf(xi)

)
[1− F (xn)]k−1f(xn) (1.4)

on the cone F−1(0) ≤ x1 ≤ x2 ≤ . . . ≤ xn ≤ F−1(1).
The model of gos contains as special cases, order statistics, record values, sequential
order statistics.
Choosing the parameters appropriately (Cramer, [18]), we get the variant of the gos given
in Table 1.

Table 1: Variants of the generalized order statistics

γn = k γr mr

i) Sequential order statistics αn (n− r + 1)αr γr − γr+1 − 1

ii) Ordinary order statistics 1 n− r + 1 0

ii) Record values 1 1 −1

iv) Progressively type II
censored order statistics Rn + 1 n− r + 1 +

∑n
j=r Rj Rr

v) Pfeifer’s record values βn βr βr − βr+1 − 1

For simplicity we shall assume m1 = m2 = . . . = mn−1 = m.
The pdf of the r−th gos, X(r, n,m, k), 1 ≤ r ≤ n, is

fX(r,n,m,k)(x) =
Cr−1

(r − 1)!
[F̄ (x)]γr−1f(x)gr−1

m (F (x)) (1.5)

and the joint pdf of X(r, n,m, k) and X(s, n,m, k), 1 ≤ r < s ≤ n, is

fX(r,n,m,k),X(s,n,m,k)(x, y) =
Cs−1

(r − 1)!(s− r − 1)!
[F̄ (x)]mf(x)gr−1

m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y), x < y, (1.6)

where

F̄ (x) = 1−F (x), Cr−1 =
r∏
i=1

γi , γi = k+(n−i)(m+1),

hm(x) =

{
− 1
m+1

(1−x)m+1, m 6=−1

−ln(1−x), m=−1
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and

gm(x) = hm(x)−hm(1), x ∈ [0, 1).

Theory of record values and its distributional properties have been extensively studied
in the literature, Ahsanullah [4], Balakrishnan et al. [12], Nevzorov [33], Glick [21] and
Arnold et al. [8, 9]. Resnick [35] discussed the asymptotic theory of records. Sequential
order statistics have been studies by Arnold and Balakrishnan [7], Kamps [24], Cramer
and Kamps [19] and Schenk [37], among others.
Aggarawala and Balakrishnan [1] established recurrence relations for single and prod-
uct moments of progressive type II right censored order statistics from exponential and
truncated exponential distributions. Balasooriya and saw [14] develop reliability sam-
pling plans for the two parameter exponential distribution under progressive censoring.
Balakrishnan et al. [13] obtained bounds for the mean and variance of progressive type
II censored order statistics. Ordinary via truncated distributions and censoring schemes
and particularly progressive type II censored order statistics have been discuss by Kamps
[24] and Balakrishnan and Aggarwala [10], among others.
Kamps [24] investigated recurrence relations for moments of gos based on non-identically
distributed random variables, which contains order statistics and record values as spe-
cial cases. Cramer and Kamps [20] derived relations for expectations of functions of
gos within a class of distributions including a variety of identities for single and prod-
uct moments of ordinary order statistics and record values as particular cases. Various
developments on gos and related topics have been studied by Kamps and Gather [23],
Ahsanullah [5], Pawlas and Szynal [34], Kamps and Cramer [22], Ahmad and Fawzy [2],
Ahmad [3], Kumar [27, 28, 29] among others. Characterizations based on gos have been
studied by some authors, Keseling [25] characterized some continuous distributions based
on conditional distributions of gos . Bieniek and Szynal [15] characterized some distri-
butions via linearity of regression of gos. Cramer et al. [17] gave a unifying approach
on characterization via linear regression of ordered random variables. Khan et al. [26]
characterized some continuous distributions through conditional expectation of functions
of gos.

The aim of the present study is to give some explicit expressions and recurrence re-
lations for single and product moments of gos from type II exponentiated log-logistic
distribution. In Section 2, we give the explicit expressions and recurrence relations for
single moments of type II exponentiated log-logistic distribution and some inverse mo-
ments of gos are also worked out. Then we show that results for order statistics and
record values are deduced as special cases. In Section 3, we present the explicit expres-
sions and recurrence relations for product moments of type II exponentiated log-logistic
distribution and we show that results for order statistics and record values are deduced
as special cases and ratio moments of gos are also established. Section 4, provides a char-
acterization result on type II exponentiated log-logistic distribution based on conditional
moment of gos. Two applications are performed in Section 5. Some concluding remarks
are given in Section 6.

2. Relations for single Moments
In this Section, the explicit expressions, recurrence relations for single moments of gos

and inverse moments of gos are considered. First we need the basic result to prove the
main Theorem.

2.1. Lemma. For type II exponentiated log-logistic distribution as given in (1.2) and
any non-negative and finite integers a and b with m 6= −1
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Jj(a, 0) = ασj
∞∑
p=0

(−1)p(j/β)(p)

[α(a+ 1) + p− (j/β)]
, β > j and j = 0, 1, 2, . . . , (2.1)

where
(α)(i) =

{
α(α+1)...(α+i−1), i>0
1, i=0 .

and

Jj(a, b) =

∫ ∞
0

xj [F̄ (x)]af(x)gbm(F (x))dx. (2.2)

Proof From (2.2), we have

Jj(a, 0) =

∫ ∞
0

xj [F̄ (x)]af(x)dx. (2.3)

By making the substitution z = [F̄ (x)]1/α in (2.3), we get

Jj(a, 0) = ασj
∫ ∞

0

(1− z)j/βzα(a+1)−(j/β)−1dz.

= ασj
∞∑
p=0

(−1)p(j/β)(p)

∫ 1

0

zα(a+1)−(j/β)+p−1dz

and hence the result given in (2.1).

2.2. Lemma. For type II exponentiated log-logistic distribution as given in (1.2) and
any non-negative and finite integers a and b

Jj(a, b) =
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)
Jj(a+ u(m+ 1), 0) (2.4)

=
ασj

(m+ 1)b

∞∑
p=0

b∑
u=0

(−1)p+u
(

b
u

)
(j/β)(p)

[α{a+ (m+ 1)u+ 1}+ p− (j/β)]
,

m 6= −1 (2.5)

= αb+1σjb!

∞∑
p=0

(j/β)(p)

[α(a+ 1) + p− (j/β)]b+1
, m = −1, (2.6)

where Jj(a, b) is as given in (2.2).
Proof: On expanding gbm(F (x)) =

[
1

m+1
(1 − (F (x))m+1)

]b binomially in (2.2), we get
when m 6= −1

Jj(a, b) =
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)∫ ∞
0

xj [F (x)]a+u(m+1)f(x)dx

=
1

(m+ 1)b

b∑
u=0

(−1)u
(

b
u

)
Jj(a+ u(m+ 1), 0).

Making use of Lemma 2.1, we establish the result given in (2.5)
and when m = −1 that

Jj(a, b) = 0
0
as
∑b
u=0(−1)u

(
b
u

)
= 0.

Since (2.5) is of the form 0
0
at m = −1, therefore, we have
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Jj(a, b) = A

b∑
u=0

(−1)u
(

b
u

)
[α{a+ u(m+ 1) + 1}+ p− (j/β)]−1

(m+ 1)b
, (2.7)

where

A = ασj
∞∑
p=0

(−1)p(j/β)(p).

Differentiating numerator and denominator of (2.7) b times with respect to m, we get

Jj(a, b) = Aαb
b∑

u=0

(−1)u+b

(
b
u

)
ub

[α{a+ u(m+ 1) + 1}+ p− (j/β)]b+1
.

On applying the L’ Hospital rule, we have

limm→−1Jj(a, b) = Aαb
b∑

u=0

(−1)u+b

(
b
u

)
ub

[α(a+ 1) + p− (j/β)]b+1
. (2.8)

But for all integers n ≥ 0 and for all real numbers x, we have Ruiz [36]
n∑
i=0

(−1)i
(
n
i

)
(x− i)n = n!. (2.9)

Therefore,
b∑

u=0

(−1)u+b

(
b
u

)
ub = b!. (2.10)

Now on substituting (2.10) in (2.8), we have the result given in (2.6).

2.3. Theorem. For type II exponentiated log-logistic distribution as given in (1.2) and
1 ≤ r ≤ n, k = 1, 2, . . . and m 6= −1

E[Xj(r, n,m, k)] =
Cr−1

(r − 1)!
Jj(γr − 1, r − 1) (2.11)

=
ασjCr−1

(r − 1)!(m+ 1)r−1

∞∑
p=0

r−1∑
u=0

(−1)p+u
(
r − 1
u

)

×
(j/β)(p)

[αγr−u + p− (j/β)]
, β > j and j = 0, 1, 2, . . . (2.12)

where Jj(γr − 1, r − 1) is as defined in (2.2).
Proof. From (1.5) and (2.2), we have

E[Xj(r, n,m, k)] =
Cr−1

(r − 1)!
Jj(γr − 1, r − 1)

Making use of Lemma 2.2, we establish the result given in (2.12).
Identity 2.1. For γr ≥ 1, k ≥ 1, 1 ≤ r ≤ n and m 6= −1

r−1∑
u=0

(−1)u
(
r − 1
u

)
1

γr−u
=

(r − 1)!(m+ 1)r−1∏r
t=1 γt

. (2.13)

Proof. (2.13) can be proved by setting j = 0 in (2.12).
Special Cases
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i) Putting m = 0, k = 1 in (2.12), the explicit formula for the single moments of order
statistics of the type II exponentiated log-logistic distribution can be obtained as

E[Xj
r:n] = Cr:n

∞∑
p=0

r−1∑
u=0

(−1)u+p

(
r − 1
u

)
ασj(j/β)(p)

[α(n− r + u+ 1) + p− (j/β)]
,

where
Cr:n =

n!

(r − 1)!(n− r)! ,

ii) Setting m = −1 in (2.12), we deduce the explicit expression for the single moments of
upper k record values for type II exponentiated log-logistic distribution in view of (2.11)
and (2.6) in the form

E[Xj(r, n,−1, k)] = E[(Z(k)
r )j ] = (αk)rσj

∞∑
p=0

(−1)p(j/β)(p)

[αk + p− (j/β)]r

and hence for upper records

E[(Z(1)
r )j ] = E[Xj

U(r)] = αrσj
∞∑
p=0

(−1)p(j/β)(p)

[α+ p− (j/β)]r
.

Recurrence relations for single moments of gos from (1.5) can be obtained in the following
theorem.

2.4. Theorem. For the distribution given in (1.2) and 2 ≤ r ≤ n, n ≥ 2 and k =
1, 2, . . . ,

(
1− σj

αβγr

)
E[Xj(r, n,m, k)] = E[Xj(r − 1, n,m, k)]

+
jσβ+1

αβγr
E[Xj−β(r, n,m, k)]. (2.14)

Proof. From (1.5), we have

E[Xj(r, n,m, k)] =
Cr−1

(r − 1)!

∫ ∞
0

xj [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx. (2.15)

Integrating by parts treating [F̄ (x)]γr−1f(x) for integration and rest of the integrand for
differentiation, we get

E[Xj(r, n,m, k)] = E[Xj(r − 1, n,m, k)] +
jCr−1

γr(r − 1)!

∫ ∞
0

xj−1[F̄ (x)]γrgr−1
m (F (x))dx

the constant of integration vanishes since the integral considered in (2.15) is a definite
integral. On using (1.3), we obtain

E[Xj(r, n,m, k)]− E[Xj(r − 1, n,m, k)]

=
σjCr−1

αβγr(r − 1)!

∫ ∞
0

xj [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx

+
σβ+1jCr−1

αβγr(r − 1)!

∫ ∞
0

xj−β [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx

and hence the result given in (2.14).
Remark 2.1: Setting m = 0, k = 1, in (2.14), we obtain a recurrence relation for single
moments of order statistics for type II exponentiated log-logistic distribution in the form(

1− σj

αβ(n− r + 1)

)
E[Xj

r:n] = E[Xj
r−1:n] +

jσβ+1

αβ(n− r + 1)
E[Xj−β

r−1:n].
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Remark 2.2: Putting m = −1 , in Theorem 2.4, we get a recurrence relation for single
moments of upper k record values from type II exponentiated log-logistic distribution in
the form (

1− σj

αβk

)
E[(X

(k)

U(r))
j ] = E[(X

(k)

U(r−1))
j ] +

jσβ+1

αβk
E[(X

(k)

U(r))
j−β ].

Inverse moments of gos from type II exponentiated log-logistic distribution can be obtain
by the following Theorem.

2.5. Theorem. For type II exponentiated log-logistic distribution as given in (1.2) and
1 ≤ r ≤ n, k = 1, 2, . . . ,

E[Xj−β(r, n,m, k)] =

∞∑
p=0

σj−β(−1)pΓ
(
j
β

)
p!Γ
(
j
β
− p
)∏r

i=1

(
1 + p+1−(j/β)

αγi

) , β > j. (2.16)

Proof. From (1.5), we have

E[Xj−β(r, n,m, k)] =
Cr−1

(r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u
(
r − 1
u

)

×
∫ ∞

0

xj−β [F̄ (x)]γr−u−1f(x)dx. (2.17)

Now letting t = [F̄ (x)]1/α in (2.17), we get

E[Xj−β(r, n,m, k)] =
σj−βCr−1

(r − 1)!(m+ 1)r

r−1∑
u=0

∞∑
p=0

(−1)u+p

(
r − 1
u

) Γ
(
j
β

)
p!Γ
(
j
β
− p
)

×B
( k

m+ 1
+ n− r + u+

p+ 1− (j/β)

α(m+ 1)
, 1
)
.

Since
b∑

a=0

(−1)a
(

b
a

)
B(a+ k, c) = B(k, c+ b) (2.18)

where B(a, b) is the complete beta function.
Therefore,

E[Xj−β(r, n,m, k)] =
σj−βCr−1

(m+ 1)r

∞∑
p=0

(−1)p
Γ
(
j
β

)
p!Γ
(
j
β
− p
)

×
Γ
(
α{k+(n−r)(m+1)}+p+1−(j/β)

α(m+1)

)
Γ
(
α{k+n(m+1)}+p+1−(j/β)

α(m+1)

) (2.19)

and hence the result given in (2.16).
Special Cases
iii) Putting m = 0, k = 1 in (2.19), we get inverse moments of order statistics from type
II exponentiated log-logistic distribution as;

E[Xj−β
r:n ] =

σj−βn!

(n− r)!

∞∑
p=0

(−1)pΓ
(
j
β

)
Γ[α(n− r + 1) + p+ 1− (j/β)]

p!Γ
(
j
β
− p
)

Γ[α(n+ 1) + p+ 1− (j/β)]
.
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iv) Putting m = −1 in (2.16), to get inverse moments of k record values from type II
exponentiated log-logistic distribution as;

E[Xj−β
U(r)] = σj−β

∞∑
p=0

(−1)pΓ
(
j
β

)
p!Γ
(
j
β
− p
)(

1 + p+1−(j/β)
αk

)r .
Recurrence relations for inverse moments of gos from (1.2) can be obtained in the fol-
lowing theorem.

2.6. Theorem. For type II exponentiated log-logistic distribution and for 2 ≤ r ≤ n,
n ≥ 2 k = 1, 2, . . . ,

(
1− σ(j − β)

αβγr

)
E[Xj−β(r, n,m, k)] = E[Xj−β(r − 1, n,m, k)]

+
(j − β)σβ+1

αβγr
E[Xj−2β(r, n,m, k)], β > j. (2.20)

Proof. The proof is easy.
Remark 2.3: Setting m = 0, k = 1 in (2.20), we obtain a recurrence relation for inverse
moments of order statistics for type II exponentiated log-logistic distribution in the form(

1− σ(j − β)

αβ(n− r + 1)

)
E[Xj−β

r:n ] = E[Xj−β
r−1:n] +

(j − β)σβ+1

αβ(n− r + 1)
E[Xj−2β

r:n ].

Remark 2.4: Putting m = −1, in Theorem 2.6, we get a recurrence relation for inverse
moments of upper k record values from type II exponentiated log-logistic distribution in
the form

(
1− σ(j − β)

αβk

)
E[(X

(k)

U(r))
j−β ] = E[(X

(k)

U(r−1))
j−β ] +

(j − β)σβ+1

αβk
E[(X

(k)

U(r))
j−2β ].

3. Relations for product moments
In this Section, the explicit expressions and recurrence relations for single moments

of gos and ratio moments of gos are considered. First we need the following Lemmas to
prove the main result.

3.1. Lemma. For type II exponentiated log-logistic distribution as given in (1.2) and
any non-negative integers a, b, c with m 6= −1

Ji,j(a, 0, c) = α2σi+j
∞∑
p=0

∞∑
q=0

(−1)p+q(j/β)(p)(j/β)(q)

[α(c+ 1) + p− (j/β)]

× 1

[α(a+ c+ 2) + p+ q − {(i+ j)/β}] , (3.1)

where

Ji,j(a, b, c) =

∫ ∞
0

∫ ∞
x

xiyj [F̄ (x)]af(x)[hm(F (y))− hm(F (x))]b[F̄ (y)]cf(y)dydx. (3.2)

Proof: From (3.2), we have

Ji,j(a, 0, c) =

∫ ∞
0

xi[F̄ (x)]af(x)G(x)dx, (3.3)

where
G(x) =

∫ ∞
x

yj [F̄ (y)]cf(y)dy. (3.4)
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By setting z = [F̄ (y)]1/α in (3.4), we find that

G(x) = ασj
∞∑
p=0

(−1)p
(j/β)p[F̄ (x)]c+1+{p−(j/β)}/α

[α(c+ 1) + p− (j/β)]
.

On substituting the above expression of G(x) in (3.3), we get

Ji,j(a, 0, c) = ασj
∞∑
p=0

(−1)p(j/β)p
[α(c+ 1) + p− (j/β)]

×
∫ ∞

0

xi[F̄ (x)]a+c+1+{p−(j/β)}/αf(x)dx. (3.5)

Again by setting t = [F̄ (x)]1/α in (3.5) and simplifying the resulting expression, we derive
the relation given in (3.1).

3.2. Lemma. For the distribution as given in (1.2) and any non-negative integers a, b,
c

Ji,j(a, b, c) =
1

(m+ 1)b

b∑
v=0

(−1)v
(

b
v

)
Ji,j(a+ (b− v)(m+ 1), 0, c+ v(m+ 1)) (3.6)

=
α2σi+j

(m+ 1)b

∞∑
p=0

∞∑
q=0

b∑
v=0

(−1)p+q+v
(

b
v

)
(j/β)p

[α{c+ (m+ 1)v + 1}+ p− (j/β)]

× (i/β)q
[α{a+ c+ (m+ 1)b+ 2}+ p+ q − {(i+ j)/β}] , m 6= −1 (3.7)

=

∞∑
p=0

∞∑
q=0

(−1)p+qαb+2σi+jb! (j/β)(p)(i/β)(q)

[α(c+ 1) + p− (j/β)]b+1[α(a+ c+ 2) + p+ q − {(i+ j)/β}] , m = −1

(3.8)
where Ji,j(a, b, c) is as given in (3.2).
Proof: When m 6= −1, we have

[hm(F (y))− hm(F (x))]b =
1

(m+ 1)b
[(F̄ (x))m+1 − (F̄ (y))m+1]b

=
1

(m+ 1)b

b∑
v=0

(−1)v
(

b
v

)
[F̄ (y)]v(m+1)[F̄ (x)](b−v)(m+1).

Now substituting for [hm(F (y))− hm(F (x))]b in equation (3.2), we get

Ji,j(a, b, c) =
1

(m+ 1)b

b∑
v=0

(−1)v
(

b
v

)
Ji,j(a+ (b− v)(m+ 1), 0, c+ v(m+ 1)).

Making use of the Lemma 3.1, we derive the relation given in (3.7).
When m = −1, we have

Ji,j(a, b, c) = 0
0

as
∑b
v=0(−1)v

(
b
v

)
= 0.

On applying L’ Hospital rule, (3.8) can be proved on the lines of (2.6).

3.3. Theorem. For type II exponentiated log-logistic distribution as given in (1.2) and
1 ≤ r < s ≤ n, k = 1, 2, . . . and m 6= −1
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E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)r−1

r−1∑
u=0

(−1)u

×
(
r − 1
u

)
Ji,j(m+ u(m+ 1), s− r − 1, γs − 1) (3.9)

=
α2σi+jCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
p=0

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)p+q+u+v

(
r − 1
u

)

×
(
s− r − 1

v

)
(j/β)(p) (i/β)(q)

[αγs−v + p− (j/β)][αγr−u + p+ q − {(i+ j)/β}] ,

β > max(i, j) and i, j = 0, 1, 2, . . . . (3.10)

Proof: From (1.6), we have

E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj [F̄ (x)]mf(x)

×gr−1
m (F (x))[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)dydx. (3.11)

On expanding gr−1
m (F (x)) binomially in (3.11), we get

E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)r−1

×
r−1∑
u=0

(−1)u
(
r − 1
u

)
Ji,j(m+ u(m+ 1), s− r − 1, γs − 1).

Making use of the Lemma 3.2, we derive the relation in (3.10).
Identity 3.1: For γr, γs ≥ 1, k ≥ 1, 1 ≤ r < s ≤ n and m 6= −1

s−r−1∑
v=0

(−1)v
(
s− r − 1

v

)
1

γs−v
=

(s− r − 1)!(m+ 1)s−r−1∏s
t=r+1 γt

. (3.12)

Proof. At i = j = 0 in (3.10), we have

1 =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

r−1∑
u=0

s−r−1∑
v=0

(−1)u+v

×
(
r − 1
u

)(
s− r − 1

v

)
1

γs−vγr−u
.

Now on using (2.13), we get the result given in (3.12).
At r = 0, (3.12) reduces to (2.13).

Special cases:
i) Putting m = 0, k = 1 in (3.10), the explicit formula for the product moments of order
statistics of the type II exponentiated log-logistic distribution can be obtained as

E(Xi
r:nX

j
s:n) = α2σi+jCr,s:n

∞∑
p=0

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)p+q+u+v

(
n− s
u

)

×
(
s− r − 1

v

)
(j/β)(p)

[α(n− s+ 1 + v) + p− (j/β)]

×
(i/β)(q)

[α(n− r + 1 + u) + p+ q − {(i+ j)/β}] .
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where,

Cr,s:n =
n!

(r − 1)!(s− r − 1)!(n− s)! .

ii)Putting m = −1 in (3.10), we deduce the explicit expression for the product moments
of upper k record values for the type II exponentiated log-logistic distribution in view of
(3.9) and (3.8) in the form

E[(X
(k)

U(r))
i(X

(k)

U(s))
j)] = (αk)sσi+j

∞∑
p=0

∞∑
q=0

(−1)p+q(j/β)(p)

[αk + p− (j/β)]s−r

×
(i/β)(q)

[αk + p+ q − {(i+ j)/β}]r
and hence for upper records

E(Xi
U(r)X

j
U(s)) = αsσi+j

∞∑
p=0

∞∑
q=0

(−1)p+q(j/β)(p)(i/β)(q)

[α+ p− (j/β)]s−r[α+ p+ q − {(i+ j)/β}]r .

Remark 3.1 At j = 0 in (3.10), we have

E[Xi(r, n,m, k) =
ασiCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
q=0

r−1∑
u=0

s−r−1∑
v=0

(−1)q+u+v

×
(
r − 1
u

)(
s− r − 1

v

)
(i/β)q

γs−v[αγr−u + q − (i/β)]
. (3.12)

Making use of (3.12) in (3.13) and simplifying the resulting expression, we get

E[Xi(r, n,m, k) =
ασiCr−1

(r − 1)!(m+ 1)s−1

∞∑
q=0

r−1∑
u=0

(−1)q+u

×
(
r − 1
u

)
(i/β)q

[αγr−u + q − (i/β)]
,

as obtained in (2.12).
Making use of (1.6), we can derive recurrence relations for product moments of gos from
(1.2).

3.4. Theorem. For the given type II exponentiated log-logistic distribution and n ∈ N ,
m ∈ <, 1 ≤ r < s ≤ n− 1

(
1− σj

αβγs

)
E[Xi(r, n,m, k)Xj(s, n,m, k)] = E[Xi(r, n,m, k)Xj(s− 1, n,m, k)]

+
jσβ+1

αβγs
E[Xi(r, n,m, k)Xj−β(s, n,m, k)]. (3.14)

Proof: From (1.6), we have

E[Xi(r, n,m, k)Xj(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!

×
∫ ∞

0

xi[F̄ (x)]mf(x)gr−1
m (F (x))I(x)dx, (3.15)

where
I(x) =

∫ ∞
x

yj [F̄ (y)]γs−1[hm(F (y))− hm(F (x))]s−r−1f(y)dy.
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Solving the integral in I(x) by parts and substituting the resulting expression in (3.15),
we get

E[Xi(r, n,m, k)Xj(s, n,m, k)]− E[Xi(r, n,m, k)Xj(s− 1, n,m, k)]

=
jCs−1

γs(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj [F̄ (x)]mf(x)gr−1
m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γsdydx

the constant of integration vanishes since the integral in I(x) is a definite integral. On
using the relation (1.3), we obtain

E[Xi(r, n,m, k)Xj(s, n,m, k)]− E[Xi(r, n,m, k)Xj(s− 1, n,m, k)]

=
jσCs−1

αβγs(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj [F̄ (x)]mf(x)gr−1
m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)dydx

+
jσβ+1Cs−1

αβγs(r − 1)!(s− r − 1)!

∫ ∞
0

∫ ∞
x

xiyj−β [F̄ (x)]mf(x)gr−1
m (F (x))

×[hm(F (y))− hm(F (x))]s−r−1[F̄ (y)]γs−1f(y)dydx

and hence the result given in (3.14).
Remark 3.2 Setting m = 0, k = 1 in (3.14), we obtain recurrence relations for product
moments of order statistics of the type II exponentiated log-logistic distribution in the
form (

1− σj

αβ(n− s+ 1)

)
E[Xi,j

r,s:n] = E[Xi,j
r,s−1:n] +

jσβ+1

αβ(n− s+ 1)
E[Xi,j−β

r,s:n ].

Remark 3.3 Puttingm = −1, k ≥ 1 in (3.5), we get the recurrence relations for product
moments of upper k records of the type II exponentiated log-logistic distribution in the
form (

1− σj

αβk

)
E[(X

(k)

U(r))
i(X

(k)

U(s))
j ] = E[(X

(k)

U(r))
i(X

(k)

U(s−1))
j ]

+
jσβ+1

αβk
E[(X

(k)

U(r))
i(X

(k)

U(s−1))
j−β ].

Ratio moments of gos from type II exponentiated log-logistic distribution can be obtain
by the following Theorem.

3.5. Theorem. For type II exponentiated log-logistic distribution as given in (1.2)

E[Xi(r, n,m, k)Xj−β(s, n,m, k)] =

∞∑
p=0

∞∑
q=0

(−1)p+qσi+j−βΓ
(
j
β

)
Γ
(
i
β

+ 1
)

p!q!Γ
(
j
β
− p
)

Γ
(
i
β

+ 1− p
)

× 1∏r
a=1

(
1 + p+q−((i+j)/β)

αγa

)∏s
b=r+1

(
1 + p+1−(j/β)

αγb

) , β > j. (3.16)

Proof From (1.6), we have

E[Xi(r, n,m, k)Xj−β(s, n,m, k)] =
Cs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

×
r−1∑
u=0

s−r−1∑
v=0

(−1)u+v

(
r − 1
u

)(
s− r − 1

v

)
×
∫ ∞

0

xi[F̄ (x)](s−r+u−v)(m+1)−1f(x)J(x)dx, (3.17)
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where
J(x) =

∫ ∞
x

yj−β [F̄ (y)]γs−v−1f(y)dy. (3.18)

By setting z = [F̄ (y)]1/α in (3.18), we find that

J(x) = σj−β
∞∑
p=0

(−1)pΓ
(
j
β

)
[ ¯F (x)]γs−v+

p+1−(j/β)
α

p!Γ
(
j
β
− p
)[
γs−v + p+1−(j/β)

α

] .
On substituting the above expression of J(x) in (3.17), we get

E[Xi(r, n,m, k)Xj−β(s, n,m, k)] =
σj−βCs−1

(r − 1)!(s− r − 1)!(m+ 1)s−2

∞∑
p=0

r−1∑
u=0

×
s−r−1∑
v=0

(−1)u+v+p

(
r − 1
u

)(
s− r − 1

v

) Γ
(
j
β

)
p!Γ
(
j
β
− p
)

× 1[
γs−v + p+1−(j/β)

α

] ∫ ∞
0

xi[F̄ (x)]γr−u+
p+1−(j/β)−1

α
−1dx. (3.19)

Again by setting t = [F̄ (x)]1/α in (3.19), we get

E[Xi(r, n,m, k)Xj−β(s, n,m, k)] =
σi+j−βCs−1

(m+ 1)s

∞∑
p=0

∞∑
q=0

(−1)p+q

×
Γ
(
j
β

)
Γ
(
i
β

+ 1
)

Γ
[
α{k+(n−r)(m+1)}+p+q−{(i+j)/β}

α(m+1)

]
p!q! Γ

(
j
β
− p
)

Γ
(
i
β

+ 1− q
)

Γ
[
α{k+n(m+1)}+p+q−{(i+j)/β}

α(m+1)

]
×

Γ
[
α{k+(n−s)(m+1)}+p+1−(j/β)

α(m+1)

]
Γ
[
α{k+(n−r)(m+1)}+p+1−(j/β)

α(m+1)

] (3.20)

and hence the result given in (3.16).
Special cases
iii) Putting m = 0, k = 1 in (3.20), the explicit formula for the ratio moments of order
statistics of the type II exponentiated log-logistic distribution can be obtained as

E[Xi
r:nX

j−β
s:n ] =

n!σi+j−β

(n− s)!

∞∑
p=0

∞∑
q=0

(−1)p+q
Γ
(
j
β

)
Γ
(
i
β

+ 1
)

p!q! Γ
(
j
β
− p
)

Γ
(
i
β

+ 1− q
)

×Γ[α(n− r + 1) + p+ q − {(i+ j)/β}]Γ[α(n− s+ 1) + p+ 1− (j/β)]

Γ[α(n+ 1) + p+ q − {(i+ j)/β}]Γ[α(n− r + 1) + p+ 1− (j/β)]
.

iv) Putting m = −1 in (3.16), the explicit expression for the ratio moments of upper k
record values for the type II exponentiated log-logistic distribution can be obtained as

E[(X
(k)

U(r))
i(X

(k)

U(s))
j−β ] = σi+j−β

∞∑
p=0

∞∑
q=0

(−1)p+q

p!q!

Γ
(
j
β

)
Γ
(
i
β

+ 1
)

Γ
(
j
β
− p
)

Γ
(
i
β

+ 1− q
)

× 1(
1 + p+q−{(i+j)/β}

αk

)r(
1 + p+1−(j/β)

αk

)s−r .
Making use of (1.6), we can derive recurrence relations for ratio moments of gos from
(1.2).
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3.6. Theorem. For type II exponentiated log-logistic distribution

(
1− σ(j − β)

αβγs

)
E[Xi(r, n,m, k)Xj−β(s, n,m, k)]

= E[Xi(r, n,m, k)Xj−β(s− 1, n,m, k)]

+
(j − β)σβ+1

αβγs
E[Xi(r, n,m, k)Xj−2β(s, n,m, k)], β > j. (3.21)

Proof The proof is easy.

Remark 3.4 Setting m = 0, k = 1 in (3.21), we obtain a recurrence relation for
Ratio moments of order statistics for type II exponentiated log-logistic distribution in
the form(

1− σ(j − β)

αβ(n− s+ 1)

)
E[Xi

r:nX
j−β
s:n ] = E[Xi

r:nX
j−β
s−1:n] +

(j − β)σβ+1

αβ(n− s+ 1)
E[Xi

r:nX
j−2β
s:n ].

Remark 3.5 Putting m = −1, in Theorem 3.6, we get a recurrence relation for ratio
moments of upper k record values from type II exponentiated log-logistic distribution in
the form (

1− σ(j − β)

αβk

)
E[(X

(k)

U(r))
i(X

(k)

U(s))
j−β ] = E[(X

(k)

U(r))
i(X

(k)

U(s−1))
j−β ]

+
(j − β)σβ+1

αβk
E[(X

(k)

U(r))
i(X

(k)

U(s))
j−2β ].

Remark 3.6 At γr = n − r + 1 +
∑j
i=rmi, 1 ≤ r ≤ j ≤ n, mi ∈ N , k = mn + 1

in (3.16) the product moment of progressive type II censored order statistics of type II
exponentiated log-logistic distribution can be obtained.

Remark 3.7 The result is more general in the sense that by simply adjusting j − β
in (3.16), we can get interesting results. For example if j − β = −1 then E

[
X(r,n,m,k)
X(s,n,m,k)

]i
gives the moments of quotient. For j−β > 0, E[Xi(r, n,m, k) Xj−β(s, n,m, k)] represent
product moments, whereas for j < β , it is moment of the ratio of two generalized order
statistics of different powers.

4. Characterization
This Section contains characterization of type II exponentiated log-logistic distribution

by using the conditional expectation of gos .
Let X(r, n,m, k), r = 1, 2, . . . , n be gos, then from a continuous population with cdf
F (x) and pdf f(x), then the conditional pdf of X(s, n,m, k) given X(r, n,m, k) = x,
1 ≤ r < s ≤ n, in view of (1.5) and (1.6), is

fX(s,n,m,k)|X(r,n,m,k)(y|x) =
Cs−1

(s− r − 1)!Cr−1

× [hm(F (y))− hm(F (x))]s−r−1[F (y)]γs−1

[F̄ (x)]γr+1
f(y). x < y (4.1)

4.1. Theorem. Let X be a non-negative random variable having an absolutely continuous
distribution function F (x) with F (0) = 0 and 0 < F (x) < 1 for all x > 0, then
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E[X(s, n,m, k)|X(r, n,m, k) = x] = σ

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

×
s−r∏
j=1

( γr+j
γr+j − p/α

)
(4.2)

if and only if

F̄ (x) =
(

1 +
{x
σ

}β)−α
, x ≥ 0, α, σ > 0, β > 1.

Proof From (4.1), we have

E[X(s, n,m, k)|X(r, n,m, k) = x] =
Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

×
∫ ∞
x

y
[
1−

( F̄ (y)

F̄ (x)

)m+1]s−r−1( F̄ (y)

F̄ (x)

)γs−1 f(y)

F̄ (x)
dy. (4.3)

By setting u = F̄ (y)

F̄ (x)
=
(

1+(x/σ)β

1+(y/σ)β

)α
from (1.2) in (4.3), we obtain

E[X(s, n,m, k)|X(r, n,m, k) = x] =
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

×
∫ 1

0

[{1 + (x/σ)β}u−1/α − 1]1/βuγs−1(1− um+1)s−r−1du

=
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

×
∫ 1

0

uγs−(p/α)−1(1− um+1)s−r−1du (4.4)

Again by setting t = um+1 in (4.4), we get

E[X(s, n,m, k)|X(r, n,m, k) = x]

=
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

×
∫ 1

0

t
k−(p/α)
m+1

+n−s−1(1− t)s−r−1dt

=
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

×
Γ
(
k−(p/α)
m+1

+ n− s
)

Γ(s− r)

Γ
(
k−(p/α)
m+1

+ n− r
)

=
σCs−1

(s− r − 1)!Cr−1(m+ 1)s−r

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p

× (m+ 1)s−rΓ(s− r)∏s−r
j=1(γr+j − (p/α))

and hence the relation in (4.2).
To prove sufficient part, we have from (4.1) and (4.2)

Cs−1

(s− r − 1)!Cr−1(m+ 1)s−r−1

∫ ∞
x

y[(F̄ (x))m+1 − (F̄ (y))m+1]s−r−1
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×[F̄ (y)]γs−1f(y)dy = [F̄ (x)]γr+1Hr(x), (4.8)

where

Hr(x) = σ

∞∑
p=0

(1/β)(p)[1 + (x/σ)β ]p
s−r∏
j=1

( γr+j
γr+j − p/α

)
.

Differentiating (4.5) both sides with respect to x and rearranging the terms, we get

− Cs−1[F̄ (x)]mf(x)

(s− r − 2)!Cr−1(m+ 1)s−r−2

∫ ∞
x

y[(F̄ (x))m+1 − (F̄ (y))m+1]s−r−2

×[F̄ (y)]γs−1f(y)dy = H ′r(x)[F̄ (x)]γr+1 − γr+1Hr(x)[F̄ (x)]γr+1−1f(x)

or

−γr+1Hr+1(x)[F̄ (x)]γr+2+mf(x)

= H ′r(x)[F̄ (x)]γr+1 + γr+1Hr(x)[F̄ (x)]γr+1−1f(x).

Therefore,
f(x)

F̄ (x)
= − H ′r(x)

γr+1[Hr+1(x)−Hr(x)]
=

αβ(x/σ)β−1

σ[1 + (x/σ)β ]

which proves that

F̄ (x) =
(

1 +
{x
σ

}β)−α
, x ≥ 0, α, σ > 0, β > 1.

Remark For m = 0, k = 1 and m = −1, k = 1, we obtain the characterization results
of the type II exponentiated log-logistic distribution based on order statistics and record
values respectively.

5. Applications
In this Section, we suggest some applications based on moments discussed in Section 2.

Order statistics, record values and their moments are widely used in statistical inference
[see for example Balakrishnan and Sandhu [11], Sultan and Moshref [38] and Mahmoud
et al. [31], among several others].
i) Estimation: The moments of order statistics and record values given in Section 2
can be used to obtain the best linear unbiased estimate of the parameters of the type
II exponentiated log-logistic distribution. Some works of this nature based on gos have
been done by Ahsanullah and habibullah [6], Malinowska et al. [32] and Burkchat et al.
[16].
ii) Characterization: The type II exponentiated log-logistic distribution given in (1.2)
can be characterized by using recurrence of single moment of gos as follows:

Let L(a, b) stand for the space of all integrable functions on (a, b) . A sequence
(fn) ⊂ L(a, b) is called complete on L(a, b) if for all functions g ∈ L(a, b) the condition∫ b

a

g(x)fn(x)dx = 0, n ∈ N,

implies g(x) = 0 a.e. on (a, b). We start with the following result of Lin [30].

Proposition 5.1 Let n0 be any fixed non-negative integer, −∞ ≤ a < b ≤ ∞ and
g(x) ≥ 0 an absolutely continuous function with g′(x) 6= 0 a.e. on (a, b) . Then the
sequence of functions {(g(x))ne−g(x), n ≥ n0} is complete in L(a, b) iff g(x) is strictly
monotone on (a, b).
Using the above Proposition we get a stronger version of Theorem 2.4.
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5.1. Theorem. A necessary and sufficient conditions for a random variable X to be
distributed with pdf given by (1.1) is that

(
1− σj

αβγr

)
E[Xj(r, n,m, k)] = E[Xj(r − 1, n,m, k)]

+
jσβ+1

αβγr
E[Xj−β(r, n,m, k)]. (5.1)

Proof The necessary part follows immediately from (2.14) on the other hand if the
recurrence relation (5.1) is satisfied then on using (1.5), we have

Cr−1

(r − 1)!

∫ ∞
0

xj [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx

=
Cr−1

γr(r − 2)!

∫ ∞
0

xj [F̄ (x)]γr+mf(x)gr−2
m (F (x))dx

+
σjCr−1

αβγr(r − 1)!

∫ ∞
0

xj [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx

+
jσβ+1Cr−1

αβγr(r − 1)!

∫ ∞
0

xj−β [F̄ (x)]γr−1f(x)gr−1
m (F (x))dx. (5.2)

Integrating the first integral on the right-hand side of the above equation by parts and
simplifying the resulting expression, we get

jCr−1

γr(r − 1)!

∫ ∞
0

xj−1[F̄ (x)]γr−1gr−1
m (F (x))

×
{
F̄ (x)− σx

αβ
f(x)− σβ+1

αβxβ−1
f(x)

}
dx = 0.

It now follows from Proposition 5.1, we get

αβF̄ (x) = σ[1 + (x/σ)β ]xf(x),

which proves that f(x) has the form (1.1).

6. Concluding Remarks
In the study presented above, we established some new explicit expressions and re-

currence relations between the single and product moments of gos from the type II
exponentiated log-logistic distribution. In addition ratio and inverse moments of type
II exponentiated log-logistic distribution are also established. Further, the conditional
expectation of gos is used to characterize the distribution.
Acknowledgements
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Abstract
The main aim of this paper is to propose an alternative estimate of
the distortion risk measure for heavy-tailed claims. Our approach is
based on the result of Balkema and de Haan (1974) [3], and Pickands
(1975) [22] for approximating the tail of the distribution by a gener-
alized Pareto distribution. The asymptotic normality of the new esti-
mator is established, and its performance illustrated by some results
of simulation who shows the advantages of the new estimator over the
estimator based on the classical extreme-value theory.
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1. Introduction
A number of risks measures found in finance and insurance literature are special cases

of the distortion risk measure, defined by

(1.1) H [F, g] =

∫ +∞

0

g
(
F (x)

)
dx.

where X ≥ 0 is a loss random variable with cumulative distribution function (cdf) F
and the de-cumulative distribution function (ddf) F = 1 − F , which is also known as
survival function. The distortion function g : [0, 1]→ [0, 1] is assumed to be an increasing
function such that g(0) = 0 and g(1) = 1.
Dhaene et al. (2012) [9] show that, when the distortion function g is right continuous on
[0, 1), the formula (1.1) may be rewritten as follows

(1.2) H [F, g] =

∫ 1

0

Q(1− s)dg (s) ,
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where Q is the quantile function corresponding the cdf F , that is

Q(t) = inf {x : F (x) ≥ t} = F−1(t), for t ∈ ]0, 1[ .

The risk measureH [F, g], which can also be viewed as a premium calculation principle,
has manifested in the econometric literature, particularly in Yaari’s (1987) [31] dual
theory of choice under risk, and has been introduced into actuarial literature by Wang
(1996) [28]. A number of risk measures of this form have been discussed by Wirch and
Hardy (1999) [30].
In Artzner (1999) [1] and Artzner et al. (1999) [2] a risk measure satisfying the four
axioms of subadditivity, monotonicity, positive homogeneity and translation invariance
is called Coherent, and also demonstrated that the risk measure H [F, g] is coherent when
g is concave. Note that the class of concave distortion risk measures is only a subset of
the class of coherent risk measures.
Many special cases that have arisen in the finance and insurance literature are such:

• VaR: g(x) = 1[1−q,1] for some q ∈ ]0, 1[
• Tail-VaR: g(x) = min{ x

1−q , 1} for some q ∈ (0, 1)

• Proportional Hazard Transform: g(x) = x1/ρ for some ρ > 1
• Dual-Power Transform: g(x) = 1− (1− x)ρ for some ρ > 1
• Gini principle: g(x) = (1 + ρ)x− ρx2, with 0 < ρ ≤ 1.
• Lookback distortion: g(x) = xρ(1− ρ ln(x)), with 0 < ρ ≤ 1.

Detailed studies of distortion risk measures, also known as Wang’s risk measures, can
be found in, for example, Wang (1996) [28], Wang and Young (1998) [29], Hürlimann
(1998) [12], and Hua and Joe, (2012) [13].

A number of authors have tackled the distortion risk measure from the statistical
inferential point of view. A short survey and classification of papers in the area follows:

• Light-tailed distributions
– Classical-type asymptotic results
– Asymptotic results aimed at variance reduction

• Heavy-tailed distributions
– Fisher-Tippett-Gnedenko type extreme-value methods
– Pickands-Balkema-de Haan type Peack Over Threshold methods

Jones and Zitikis (2003) [16] noticed that the empirical counterpart of H [F, g] is a
linear combination of order statistics, commonly known as L-statistic. This opens up
a fruitful venue for developing statistical inferential results, which have been actively
investigated by a number of researchers. Speciffically, let X1, ..., Xn be independent
copies of X; and let X1,n, ..., Xn,n be the corresponding ascending order statistics. The
empirical estimator of the risk premium H [F, g] is obtained by substituting the quantile
Q on the right-hand side of equation (1.2) by its empirical counterpart

Qn(s) := inf {x : Fn (x) ≥ s} := F−1
n (s) ,

on the real line, defined by

Fn (x) =
1

n

n∑
i=1

1{Xi≤x},

with 1{.} being the indicator function. After straightforward computation, we obtain the
formula

Ĥn [Fn, g] =

∫ 1

0

Q̂n(1− s)dg (s) ,
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where Q̂n(1− s) is an empirical estimator of the quantile function, given by the formula

Q̂n(1− s) := Xn−k+1,n, where
k − 1

n
< s ≤ k

n
,

Then, the empirical estimator of H [F, g] is given by the formula

Ĥn [F, g] =

n∑
i=1

(
g

(
i

n

)
− g

(
i− 1

n

))
Xn−i+1,n.

For recent literature on statistical inference for distortion premiums, we refer to Jones
and Zitikis (2003) [16], Jones and Zitikis (2007) [17], Centeno and Andrade (2005) [8],
Furman and Zitikis (2008) [10], Brazauskas et al. (2008) [6], Greselin et al. (2009) [11],
Necir et al. (2010) [20], Joseph H. T. Kim. (2010) [18], Peng et al. (2012) [21] and the
references therein.
The asymptotic normality of the estimator Ĥn [F, g] is established by Jones and Zitikis
(2003) [16] as follows

√
n
(
Ĥn [Fn, g]−H [F, g]

)
D−→ N

(
0, σ2) ,

in particular, if g is differentiable, we have

σ2 :=

∫ 1

0

∫ 1

0

(min {F (t), F (s)} − F (t)F (s)) g (1− F (t)) g (1− F (s)) dtds,

by provided that the second moment are finite, that is E(X2) < ∞. This is a very
restrictive condition in the context of heavy-tailed distributions as the following consid-
erations show. Assume that the rv X1 follows the Fréchet law with index γ > 0, that
is, 1 − F (x) = exp

{
−x−1/γ

}
for x > 1. When γ ∈ (0.5, 1], the mean exist, but the

second moment E
(
X2 ) is infinite. Hence, the range is not covered by the CLT and

thus, another approach to handle this situation is needed. Making use of the results of
Balkema and de Haan (1974) [3], and Pickands (1975) [22] to approximate the tail of the
distribution by the Generalized Pareto Distribution (GPD), this result is know by the
Peack Over Threshold method (POT) to propose a alternative estimator for the distor-
tion risk premiums. Moreover, under suitable assumptions we established its asymptotic
normality, and we presente some results of simulation to illustrate the performance of
our estimator applying to the proportional hazard premium PHP. Empirical studies have
shown that Financial and actuarial data exhibit heavy tails or Pareto like distributions.
The class of regularly varying cdf’s is a major subclass of heavy-tailed distributions, it
includes distributions such as Pareto, Burr, Student, Lévy-stable, and loggamma, which
are known to be appropriate models for fitting large insurance claims, large fluctuations
of prices, log-returns, etc. (see, e.g., Beirlant et al., 2001 [4]; Reiss and Thomas, 2007
[23] and Rolski et al., 1999 [25]).

Note that throughout this paper, the standard notations P→, D−→ and d
= respectively

stand for convergence in probability, convergence in distribution and equality in dis-
tribution, N(a, b2) denotes the normal distribution with mean a and variance b2, and
N2 (µ,Σ) denote the bivariate normal distribution with mean vector µ and matrix of
variance-covariance Σ.

The paper is organized as follows. In section 2, we introduice the differents notions
and definitions of the used tools and the mains assumptions. In sections 3 we introduice
the new estimator of Hg,n, and presente the main result about the limiting behavior of
the proposed estimator. Some results of simulation and illustration are given in section
4. The Proofs of the mains results are postponed until section 5.
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2. Main assumptions, notations, and the POT method
Distortion functions. We assume that the distortion function g is regularly varying at
infinity, with index of regular variation r ∈ [0, 1], that is,

(2.1) g(x) = xr`(x),

where ` is a slowly varying function, that is, `(tx)/`(x)→ 1 when x→∞ for any t > 0.
For further properties of these functions, we refer to, for example, Resnick (1987) [24],
Seneta (1976) [26]. Examples of such distortion functions are:

• VaR: r = 0 and `(x) = 1[1−q,1](x)
• Tail-VaR: r = 1 and `(x) = 1/(1− q)
• Proportional Hazard Transform: r = 1/ρ and `(x) = 1

• Dual-Power Transform: r = 1 and `(x) = ρ− ρ(ρ−1)
2

x+ o (x)
• Gini Principle: r = 1 and `(x) = 1 + ρ− ρx.
• Lookback distortion: r = ρ and `(x) = (1− ρ ln(x)).

Distribution functions. We deal only with losses X that are heavy tailed. More
specifically, we work within the class of of regularly varying cdf’s. Namely, the survival
function or the tail of cdf F is said to be with regulary varying at infinity, that is

(2.2) F (x) = cx−1/ξ
(

1 + x−δL(x)
)

when x→∞,

for ξ ∈ (0, 1), δ > 0 and some real constant c, where L a slowly varying function.

The POT method. Let X1, ..., Xn be independent and identically distributed random
variables, each with the same cdf F , and let un be some a large number, ‘high level,’
which we later let tend to infinity when n→∞. With the notation

Fun(y) = P[X1 − un > y | X1 > un],

we have that

Fun(y) =
F (un + y)

F (un)
,

and thus

(2.3) Fun(y) =

(
1 +

y

un

)−1/ξ [
1 + (un + y)−δL (un + y)

1 + u−δn L (un)

]
.

Upon recalling the definition of the generalised Pareto distribution, we have that, for all
parameter values β > 0 and ξ > 0,

(2.4) Gξ,β(y) = 1−
(

1 + ξ
y

β

)−1/ξ

, 0 ≤ y <∞.

We see that, the right-hand side of equation (2.3) is a perturbed version of Gξ,βn(y),
with the notation βn = unξ. Balkema and de Haan (1974) [3], and Pickands (1975) [22]
have shown that Fun is approximated by a generalized Pareto distribution GPD function
Gξ,βn with shape parameter ξ ∈ R and scale parameter β = β (un), in the following
sense:

(2.5) sup
y>0
|Fun(y)−Gξ,β(y)| = O(u−δn L(un)),

where, for any δ > 0, we have u−δn L(un)→ 0 when un →∞.
Approximation (2.5) suggests to define an estimator of Fun(y) as follows:

(2.6) F̂un(y) = Gξ̂n,β̂n(y),
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for appropriate estimates ξ̂n and β̂n of ξ and β, respectively. Note that β will be estimated
separately, i.e. β = ξun will not be used. The reason for this is to achieve greater
flexibility in the parameter fitting, compensating for the underlying distribution not being
an exact GPD. Theorem 3.2 in Smith (1987) [27] gives us the asymptotic distribution of
the tail parameters

(
ξ̂n, β̂n

)
as follows

(2.7)
√
npn

(
β̂n/β − 1

ξ̂n − ξ

)
D−→ N2

(
0,Σ−1) when n→∞,

provided that √npnu−δn L(un) → 0 when n → ∞ and the function x 7→ x−δL(x) is
non-increasing for all sufficiently large x, where

(2.8) Σ−1 = (1 + ξ)

(
2 −1
−1 1 + ξ

)
.

We note that when √npnu−δn L(un) 9 0, then the limiting distribution in (2.7) is biased.
Next we define an estimator of F (un). For this, let N ≡ Nn(un) be defined by

N = # {Xi : Xi > un : 1 ≤ i ≤ n } ,
which is the number of those Xi’s that exceed un. Since N follows the binomial distri-
bution B(pn, n) with the parameter pn = P[X1 > un], which is equal to F (un), we have
a natural estimator of F (un) defined by

p̂n =
N

n
.

From the definition of Fun(y) we have F (un+y) = F (un)Fun(y). Hence, with the above
defined estimators for Fun(y) and F (un), we have the following estimator of F (un + y):

F̂ (un + y) = F̂ (un)F̂un(y)

= p̂nGξ̂n,β̂n(y).(2.9)

We shall use F̂ (un + y) to construct an estimator for the distortion risk measure H [F, g]
and then show in a simulation study that in this way constructed empirical distortion risk
measure outperforms the one constructed using Fisher-Tippett-Gnedenko type extreme-
value methods.

3. The new estimator and the main result
We start constructing a POT-based estimator of H [F, g] using the following lemma.

3.1. Lemma. Assume that F and g satisfying (2.2) and (2.1) respectively, and un be
some large level. Then, when n→∞, we have that

(3.1) Hn[F, g] =

∫ un

0

g
(
F (x)

)
dx+ (pn)r

β

r − ξ + rn

with the remainder term

rn = O
(
u1−r/ξ−δ
n

)
,

which converges to 0 when n→∞ because 1− r/ξ − δ < 0.

The proof of the lemma 3.1 is relegated to Section 5. With pn, β and ξ on the
right-hand side of equation (3.1) replaced by their estimators, we obtain an estimator of
H [F, g] , defined as follows:

(3.2) Ĥn [F, g] =

∫ un

0

g
(
Fn(x)

)
dx+ (p̂n)r

β̂n

r − ξ̂n
.
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The asymptotic normality of Ĥn [F, g] is established in the following theorem.

3.2. Theorem. Let F be a distribution function fulfilling (2.2) with ξ ∈ (0.5, 1) and
the distortion function g is differentiable and regularly varying at infinity with index
0 ≤ r ≤ 1. Suppose that L is locally bounded in [x0,+∞) for x0 ≥ 0 and x → x−δL (x)
is non-increasing near infinity, for some δ > 0. For any un = O(nαξ) with α ∈ (0, 1), we
have √

n

γnσn

(
Ĥn [F, g]−H [F, g]

)
D−→ N (0, 1) , as n→∞,

where

σ2
n := 1 +

θ21
γ2
n

pn (1− pn) +
2 (1 + ξ) θ22

pnγ2
n

+
(1 + ξ)2 θ23
pnγ2

n

− (1 + ξ) θ2θ3
pnγ2

n

.

and

γ2
n = Var

[ ∫ un

0

g′
(
F (x)

)
1 (X ≤ x) dx

]
,

with

θ1 =
βg′ (pn)

r − ξ , θ2 =
βg (pn)

r − ξ , θ3 =
βg (pn)

(r − ξ)2
,

and β = unξ.

4. Simulation Study
To illustrate the result of the Theorem 3.2 , we carry out a simulation study (by

means of the statistical software R, see Ihaka and Gentleman, 1996) [14], in this study
we are interesting by a popular risks measure named Proportional Hazard Premium
(PHP) where the distortion function is given by g(x) = x1/ρ with ρ > 1, to illustrate
the performance of our estimation and its comparison with the parametric estimator,
through its application to sets of samples taken from two distinct Pareto distributions
F (x) = x−1/ξ, x ≥ 1 (with tail index ξ = 2/3 and ξ = 3/4), we are interesting by the PHP
risk measure, that is, the distortion function is given by g (x) = x1/ρ with the distortion
paramater ρ > 1, in this case the esimator of the PHP is given by

Ĥρ,n =

∫ un

0

(
1

n

n∑
j=1

1(Xj≥x)

)1/ρ

dx+ (p̂n)1/ρ
ρβ̂n

1− ρξ̂n
.

In the first part, we evaluate the root mean squared error (rmse), the accuracy of the
confidence intervals via and their lengths (length) and the coverage probabilities (cprob),
the confidence level 1 − ζ is fixed at 0.95, we generate 200 independent replicates of
sizes 500, 1000 and 2000 from the selected parent distribution for ξ = 2/3. For each
simulated sample, we obtain an estimate of the estimators premium Hρ for two distinct
aversion index values ρ = 1.1 and ρ = 1.2. In each case we compute, by averaging
over all samples, the confidence bounds and the coverage probability and length of the
corresponding confidence interval. Note that lcb and ucb stand respectively for lower
confidence bound and upper confidence bound.
To this end. We summarize the results in Table 1 for ξ = 2/3, ρ = 1.1, and Table 2 for
ξ = 2/3,ρ = 1.2.

In this second part, we generate 200 independent replicate of size 1000 from the
selected parent distribution F (x) = x−1/ξ, x ≥ 1 (with tail index ξ = 2/3 and ξ = 3/4)
and estimate the PHP for two distinct aversion index values ρ = 1.1 and ρ = 1.2. We
interesting by the comparison of our estimator Ĥρ,n with the old estimator constructed
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Table 1. Point estimates and 95%-confidence intervals for H,based
on200 samples of Pareto-distributed rv’s with tail index ξ = 2/3 and
ρ = 1.1.

ρ = 1.1 H = 3.75

n Ĥρ,n rmse lcb ucb cprob length
500 3.312 0.561 2.23 4.39 0.54 2.168
1000 4.037 0.286 3.139 4.934 0.71 1.793
2000 3.765 0.050 3.189 4.342 0.82 1.153

Table 2. Point estimates and 95%-confidence intervals for H,based
on 200 samples of Pareto-distributed rv’s with tail index ξ = 2/3 and
ρ = 1.2.

ρ = 1.2 H = 5

n Ĥρ,n rmse lcb ucb cprob length
500 5.194 0.835 2.852 7.537 0.640 4.683
1000 5.069 0.355 3.444 6.696 0.815 3.252
2000 5.028 0.311 3.617 6.439 0.890 2.822

by the extreme values methods by (Necir and Meraghni 2009 [19]) and noted H̃ρ,n, this
comparaison is in terms the bias and the mean squared error (MSE). We summarize
the results in Table (3)

Table 3. Analog between the new estimator and the old estimator
of the premium hazard proportional for two tail index and two risk
aversions index

ξ 2/3 3/4
ρ 1.1 1.2 1.1 1.2
Hρ 3.75 5 5.714 10

Ĥρ,n
bias
MSE

3.752
0.002
0.0998

5.071
0.071
0.256

5.815
0.101
0.340

10.036
0.037
1.796

H̃ρ,n
bias
MSE

4.042
0.292
0.116

5.280
0.280
0.299

6.050
0.336
0.457

8.718
-1.283
2.048

From these results, we observe that the new estimator has smaller bias and mean
squared error than the old estimator in most cases, the new estimator performs worse,
which may be explained by the Theorem 3.2.

5. Proofs
The following propositions are instrumental for the proof of Theorem 3.2.

5.1. Proposition. Let F be a distribution function fulfilling (2.2) with ξ ∈ (0, 1), δ >
0, r ∈ [0, 1] and some real c. Suppose that L is locally bounded in [x0,+∞) for x0 ≥ 0.
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Then for n large enough, for any un = O
(
nαξ
)
, α ∈ (0, 1), we have that

pn = cn−α(1 + o(1)),(5.1)

γ2
n = O

(
n2α(ξ−r+1)

)
,(5.2)

and

(5.3)
√
npnu

−δ
n L (un) = O

(
n−α/2−αξδ+1/2

)
.

Proof of the proposition 5.1. We will now prove the result (5.1), let F (x) = cx−1/ξ
(
1 + x−δL (x)

)
.

Then for n large enough, we have

pn = P (X > un) = F (un)

= cu−1/ξ
n

(
1 + u−δn L (un)

)
,

with un = O
(
nαξ
)
, then we obtain the statement (5.1). The result (5.3) are straightfor-

ward from the result (5.1). We shall next prove statement (5.2). Note that the quantity
γ2
n defined the formulation of the theorem is equal to Var[Z], where

Z =

∫ un

0

g′
(
F (x)

)
1 (X ≤ x) dx.

Since F (x) = x−1/ξO(1), g(x) = xrO(1) and un = nαξO(1), we have that

E [Z] =

∫ un

0

g′
(
F (x)

)
F (x)dx

=

∫ un

0

g′
(
F (x)

)
dx−

∫ un

0

g′
(
F (x)

)
F (x)dx

= nα(1+ξ−r)O(1).

Furthermore,

E
[
Z2] =

∫ un

0

∫ un

0

g′
(
F (x)

)
g′
(
F (y)

)
min (F (x), F (y)) dxdy

=

∫ un

0

g′
(
F (x)

)(∫ x

0

g′
(
F (y)

)
F (y) dy

)
dx

+

∫ un

0

g′
(
F (x)

)(∫ un

x

g′
(
F (y)

)
F (y) dy

)
dx

= 2n2α(ξ−r+1)O(1).

Consequently, statement (5.2) holds. �

Proof of Lemma 3.1. We start with the elementary equation

Hg,n =

∫ un

0

g
(
F (x)

)
dx+

∫ ∞
un

g
(
F (x)

)
dx.

Hence, the remainder term rn noted in the formulation of the Lemma 3.1 is

rn =

∫ ∞
un

g
(
F (x)

)
dx− (pn)r

β

r − ξ .

Next we express the integral in the definition of rn as follows:∫ ∞
un

g
(
F (x)

)
dx =

∫ ∞
0

g
(
F (s+ un)

)
ds

=

∫ ∞
0

g
(
pnFun(s)

)
ds.
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Since Fun(s) = F (un + s) /F (un), we have that

Fun(s) =

(
1 +

ξ

β
s

)−1/ξ
1 + (un + s)−δL (un + s)

1 + u−δn L (un)
.

Consequently,∫ ∞
un

g
(
F (x)

)
dx = (pn)r

β

r − ξ

(
1 + (un + s)−δL (un + s)

1 + u−δn L (un)

)r
.

Since function L is locally bounded in [x0,∞) for x0 ≥ 0 and x−δL(x) is non-increasing
near infinity, then for all large n, we have that

ur/ξn

∫ ∞
un

x−r/ξ−δL(x)dx = O(u−δn ).

Consequently, for all large n,∫ ∞
un

g
(
F (x)

)
dx =

β

ξ

∫ ∞
1

g
(
pn (z)−1/ξ

)
dz
(

1− u−δn L (un) +O(u−δn L (un)
)
.

This implies that rn = O(u
1−r/ξ−δ
n ) and concludes the proof of Lemma 3.1. �

Proof of Theorem 3.2. We write
√
n
(
Ĥg,n −Hg

)
= An +Bn,

where

An =
√
n

∫ un

0

(
g
(
Fn (x)

)
− g

(
F (x)

) )
dx

and

Bn =
√
n

(
(p̂n)r

β̂n

r − ξ̂n
−
∫ ∞
un

g
(
F (x)

)
dx

)
.

Using Lemma 3.1 and the fact that
√
n u

1−r/ξ−δ
n → 0, as n→∞, we have that

Bn =
√
n

(
(p̂n)r

β̂n

r − ξ̂n
−
∫ ∞
un

g
(
F (x)

)
dx

)
=
√
n
(
Bn,1 +O

(
u1−r/ξ−δ
n

))
=
√
nBn,1 + o(1),

where

Bn,1 = (p̂n)r
β̂n

r − ξ̂n
− (pn)r

β

r − ξ

=
β̂n

r − ξ̂n
(p̂rn − prn) +

(pn)r β

(r − ξ̂n)
(β̂n/β − 1) +

(pn)r

(r − ξ̂n)(r − ξ)
(ξ̂n − ξ).

By Smith (1987) [27], we have that

(5.4) β̂n/β − 1 = OP

(
u−δn L (un)

)
and

(5.5) ξ̂n − ξ = OP

(
u−δn L (un)

)
.

Furthermore, by the CLT, we have that

(5.6) p̂n − pn = OP(
√
pn/n).
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Consequently, we have that

Bn,1 = θ1 (1 + oP(1))
√
n(p̂n − pn) + θ2 (1 + oP(1))

√
n(β̂n/β − 1)

+ θ3 (1 + oP(1))
√
n(ξ̂n − ξ),

where

θ1 =
β̂n

r − ξ̂n
, θ2 =

(pn)r β

(r − ξ̂n)
, θ3 =

(pn)r

(r − ξ)2
.

We now examine An, and start with the equations

An =

√
n

γn

∫ un

0

(
g
(
Fn(x)

)
− g

(
F (x)

))
dx

=

√
n

γn

∫ un

0

(
Fn(x)− F (x)

)
g′
(
F (x)

)
dx+ oP(1).(5.7)

Continuing with (5.7), we have that

An = −
√
n

γn

∫ un

0

(Fn(x)− F (x)) g′
(
F (x)

)
dx+ oP(1)

= −
√
n

γn

∫ un

0

(
1

n

∑
1 (Xi ≤ x)− F (x)

)
g′
(
F (x)

)
dx+ oP(1)

= −
√
n

γn

(
1

n

∑∫ un

0

1 (Xi ≤ x) g′
(
F (x)

)
dx−

∫ un

0

F (x)g′
(
F (x)

)
dx

)
+ oP(1)

= −
√
n

γn

(
Z −E [Z1]

)
+ oP(1),

where Z is the arithmetic average of the n random variables

Zi :=

∫ un

0

g′
(
F (x)

)
1 (Xi ≤ x) dx.

Note that the quantity γ2
n defined in the formulation of the Theorem 3.2 is equal to

Var[Z1].
Next, we shall show that

√
n

γn

(
Z −E [Z1]

) D−→ N(0, 1)

when n→∞. We shall next employ the Lindeberg-Feller Theorem. For this, we write:
√
n

γn

(
Z −E [Z1]

)
=

n∑
k=1

∫ un

0
g′
(
F (x)

)
1 (Xk ≤ x) dx−E [Z1]

γn
√
n

≡
n∑
k=1

ξk,n,

where E (ξk,n) = 0, E
(
ξ2k,n

)
= 1/n, and

∑n
k=1 E

(
ξ2k,n

)
= 1 for all n ≥ 1. Furthermore,

for all α ∈ (0, 1) , ξ ∈ (0, 1) and ε > 0, where un = O
(
nαξ
)
was used. This means that

n∑
k=1

E
[
|ξk,n|2 1 |ξk,n| > ε

]
=

1

γ2
n

E
[
[Zk −E [Z1]]2 1 |Zk −E [Z1]| > εγn

√
n
]

≤ u2
n

γ2
n

P
[
|Zk −E [Z1]| > εγn

√
n
]

≤ u2
n

γ4
nε2n

.
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We have, from (5.2) with un = nαξ, that

u2
n

γ4
nn

= nα(4(r−1)−2ξ)−1O(1)

As α (4 (r − 1)− 2ξ)− 1 < 0, we conclut that
n∑
k=1

E
[
|ξk,n|2 ; |ξk,n| > ε

]
→ 0 as n→∞.

Finally, we obtain that
√
n

γn

(
Ĥρ,n −Hρ

)
→ −

√
n

γn

(
Z −E [Z1]

)
+ θ1

√
pn (1− pn)

γn

√
n√

pn (1− pn)
(p̂n − pn)

+
θ2√
pnγn

√
npn

(
β̂n/β − 1

)
+

θ3√
pnγn

√
npn

(
ξ̂n − ξ

)
+ oP(1),

From Lemma A-2 of Johansson 2003 [15], under the assumptions of Theorem 3.2, for
any real numbers, t1, t2, t3 and t4, we have

E

[
exp

{
it1

√
n

γn

(
Z −E [Z1]

)
+ i
√
npn (t2, t3)

(
β̂n/β − 1

ξ̂n − ξ

)
+ it4

√
n (p̂n − pn)√
pn (1− pn)

}]

→ exp

{
− t

2
1

2
− 1

2
(t2, t3) Σ−1

(
t2
t3

)
− t24

2

}
(1 + oP (1)) .

as n→∞, where Σ−1 is that in (2.8), γ2
n = V ar(Z1) and i2 = −1. It follows that, with

this result that√
n

γnσn

(
Ĥρ,n −Hρ

)
D−→ N (0, 1) , as n→∞,

where

σ2
n = 1 +

θ21
γ2
n

pn (1− pn) +
2 (1 + ξ) θ22

pnγ2
n

+
(1 + ξ)2 θ23
pnγ2

n

− (1 + ξ) θ2θ3
pnγ2

n

.

This complet the proof of Theorem 3.2. �
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Improved ratio-type estimators of finite population
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Abstract
In this paper we have proposed some ratio-type estimators of finite
population variance using known values of parameters related to an
auxiliary variable such as quartiles with their properties in simple ran-
dom sampling. The suggested estimators have been compared with
the usual unbiased and ratio estimators and the estimators due to [2],
[12, 13, 14] and [3]. An empirical study is also carried out to judge
the merits of the proposed estimator over other existing estimators of
population variance using natural data set.
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1. Introduction
Estimating the finite population variance has great significance in various fields such

as industry, agriculture, medical and biological sciences where we come across the popu-
lations which are likely to be skewed. Variation is present everywhere in our day to day
life. It is law of nature that no two things or individuals are exactly alike. For instance,
a physician needs a full understanding of variation in the degree of human blood pres-
sure, body temperature and pulse rate for adequate prescription. A manufacture needs
constant knowledge of the level of variation in people’s reaction to his product to be able
to known whether to reduce or increase his price, or improve the quality of his product.
An agriculturist needs an adequate understanding of variations in climate factors espe-
cially from place to place (or time to time) to be able to plan on when, how and where
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to plant his crop. In manufacturing industries and pharmaceutical laboratories some
of times researchers are more interested about the variation of their products or yields.
Many more situations can be encountered in practice where the estimation of population
variance of the study variable assumes importance. For these reasons various authors
have paid their attention towards the estimation of population variance. In sample sur-
veys, auxiliary information on the finite population under study is quite often available
from previous experience, census or administrative databases. The sampling literature
describes a wide variety of techniques for using auxiliary information to improve the
sampling design and/or obtain more efficient estimators of finite population variance. It
is well known that when the auxiliary information is to be used at the estimation stage,
the ratio method of estimation is extensively employed. The ratio estimation method
has been extensively used because of its intuitive appeal, computational simplicity and
applicability to a general design. Perhaps, this is why many researchers have directed
their efforts toward to get more efficient ratio-type estimators of the population variance
by modifying the structure of existing estimators. Such as, [2], [5], [6, 7], [8] and [11]
have suggested some modified estimators of population variance using known values of
coefficient of variation, coefficient of kurtosis, coefficient of skewness of an auxiliary vari-
able together with their biases and mean squared errors. We have known that the value
of quartiles and their functions are unaffected by the extreme values or the presence of
outliers in the population values. For this reason, [3] and [12, 13, 14] have considered the
problem of estimating the population variance of the study variable using information
on variance, quartiles, inter-quartile range, semi-quartile range and semi-quartile average
of an auxiliary variable. In this paper our main goal is to estimate the unknown popu-
lation variance of the study variable by improving the estimators suggested previously
using same information on an auxiliary variable such as quartiles, inter-quartile range,
semi-quartile range, semi-quartile average etc. The remaining part of the paper is orga-
nized as follows: The Section 2 introduced the notations and some existing estimators of
population variance in brief. In Section 3, the ratio-type estimator of population vari-
ance is suggested and the expressions of their asymptotic biases and the mean squared
errors are obtained. In addition, some members of suggested ratio-type estimators are
also generated with their properties. The Section 4 is addressed the problem of efficiency
comparisons of proposed ratio-type estimators with the usual unbiased estimator and the
estimator due to [1], while Section 5 is focused on empirical study of proposed ratio-type
estimators for the real data set. We conclude with a brief discussion in Section 6.

2. Notations and literature review
Much literature has been produced on sampling from finite populations to address

the issue of the efficient estimation of the variance of a survey variable when auxil-
iary variables are available. Our analysis refers to simple random sampling without
replacement (SRSWOR) and considers, for brevity, the case when only a single auxil-
iary variable is used. Let U = (U1, U2, ..., UN ) be finite population of size N and (y, x)
are (study, auxiliary) variables taking values (yi, xi) respectively for the ith unit Ui of
the finite population U . Our quest is to estimate the unknown population variance
S2
y = (N − 1)−1∑N

i=1

(
yi − Ȳ

)2 of study variable y, where Ȳ = N−1∑N
i=1 yi is the

population mean of y. Let a simple random sample (SRS) of size n be drawn without
replacement (WOR) from the finite population U . The usual unbiased estimator of finite
population variance S2

y is defined as

(2.1) s2y = t0 = (n− 1)−1
n∑
i=1

(yi − ȳ)2
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where ȳ = n−1∑n
i=1 yi. [1] has suggested the usual ratio estimator of S2

y as

(2.2) tR = t1 = s2y

(
S2
x

s2x

)
where S2

x = (N − 1)−1∑N
i=1

(
xi − X̄

)2, X̄ = N−1∑N
i=1 xi, s

2
x = (n− 1)−1∑n

i=1 (xi − x̄)2

and x̄ = n−1∑n
i=1 xi. Motivated by [10], [15] and [9], [2] have proposed following ratio-

type estimators of the population variance as

(2.3) t2 = s2y

(
S2
x − Cx
s2x − Cx

)
(2.4) t3 = s2y

(
S2
x − β2 (x)

s2x − β2 (x)

)
(2.5) t4 = s2y

(
β2 (x)S2

x − Cx
β2 (x) s2x − Cx

)
(2.6) t5 = s2y

(
CxS

2
x − β2 (x)

Cxs2x − β2 (x)

)
where Cx =

(
Sx/X̄

)
and β2 (x) are the known coefficients of variation and kurtosis of the

auxiliary variable x respectively. Using the known value of population median Q2 of the
auxiliary variable x [12]have suggested the ratio-type estimator of population variance
S2
y as

(2.7) t6 = s2y

(
S2
x +Q2

s2x +Q2

)
[13] have proposed the modified ratio-type estimators of population variance S2

y of the
study variable y using the known quartiles and their functions of the auxiliary variable
x as

(2.8) t7 = s2y

(
S2
x +Q1

s2x +Q1

)
(2.9) t8 = s2y

(
S2
x +Q3

s2x +Q3

)
(2.10) t9 = s2y

(
S2
x +Qr
s2x +Qr

)
(2.11) t10 = s2y

(
S2
x +Qd
s2x +Qd

)
(2.12) t11 = s2y

(
S2
x +Qa
s2x +Qa

)
where Qi is the ith quartile (i = 1, 3), Qr = (Q3 −Q1) (inter-quartile range) Qd =(
Q3−Q1

2

)
(semi-quartile range) and Qa =

(
Q3+Q1

2

)
(semi-quartile average). Taking mo-

tivation form [2] and [12]; [14] have suggested the ratio-type estimators of population
variance S2

y using known values of coefficient of variation Cx and population median Q2

of an auxiliary variable x as

(2.13) t12 = s2y

(
CxS

2
x +Q2

Cxs2x +Q2

)
Recently [3] have proposed another ratio-type estimator of population variance S2

y using
known values of coefficient of correlation ρ between the variables (y, x) and population
quartile Q3 of an auxiliary variable x as

(2.14) t13 = s2y

(
ρS2

x +Q3

ρs2x +Q3

)



750

To the first degree of approximation the biases and mean squared errors (MSEs) of the
estimators tj , (j = 0, 1, 2, ..., 13) are respectively given as

(2.15) Bias (tj) = Φτj (τj − c)

(2.16) MSE (tj) = γ [λ∗
40 + τjλ

∗
04 (τj − 2c)]

where Φ = γλ∗
04, γ = n−1S4

y , c =
(
λ∗
22λ

∗−1
04

)
, τ0 = 0, τ1 = 1, τ2 = S2

x

(
S2
x − Cx

)−1, τ3 =

S2
x

(
S2
x − β2 (x)

)−1, τ4 = β2 (x)S2
x

(
β2 (x)S2

x − Cx
)−1, τ5 = CxS

2
x

(
CxS

2
x − β2 (x)

)−1,
τ6 = S2

x

(
S2
x +Q2

)−1, τ7 = S2
x

(
S2
x +Q1

)−1, τ8 = S2
x

(
S2
x +Q3

)−1, τ9 = S2
x

(
S2
x +Qr

)−1,
τ10 = S2

x

(
S2
x +Qd

)−1, τ11 = S2
x

(
S2
x +Qa

)−1, τ12 = CxS
2
x

(
CxS

2
x +Q2

)−1, τ13 = ρS2
x

(
ρS2

x +Q3

)−1,

λ∗
rs = (λrs − 1), λrs = µrs

(
µ
s/2
02 µ

r/2
20

)−1

, µrs = N−1∑N
i=1

(
yi − Ȳ

)r (
xi − X̄

)s (r, s
being non negative integers). It is observed that the estimators (t6, t7, ..., t13) due to
[12, 13, 14] and [3] have used the quartiles and their functions such as inter-quartile
range Qr , semi-quartile range Qd and semi-quartile average Qa and in additive form
to sample and population variances s2x and S2

x respectively of the auxiliary variable x.
It is to be noted that the unit of the quartiles and their function as given above is of
original variable x, while the unit of S2

x and s2x are in the square of the unit of the original
variable x. These lead authors to develop a more justified ratio-type estimators of the
population variance S2

y of the study variable y using known values of parameters related
to the auxiliary variable x and study their properties in simple random sampling.

3. The proposed ratio-type estimator
We propose following ratio-type estimators of population variance S2

y in simple random
sampling as

(3.1) T = s2y

(
δS2

x + αL2

δs2x + αL2

)
where

(
δS2

x + αL2
)
> 0,

(
δs2x + αL2

)
> 0 and (δ, L) are either real constants or function

of known parameters of an auxiliary variable x with 0 ≤ α ≤ 1. To obtain the bias
and MSE of the proposed ratio-type estimator T , we write s2y = S2

y (1 + e0) and s2x =

S2
x (1 + e1) such that E (e0) = E (e1) = 0 and to the first degree of approximation

(ignoring finite population correction (f.p.c.) term), we have E
(
e20
)

= n−1λ∗
40, E

(
e21
)

=

n−1λ∗
04, E (e0e1) = n−1λ∗

22. Now expressing (3.1) in terms of e’s, we have

(3.2) T = S2
y (1 + e0)

[
δS2

x + αL2

δS2
x (1 + e1) + αL2

]
= S2

y (1 + e0) (1 + τ∗e1)
−1

where τ∗ = δS2
x

(
δS2

x + αL2
)−1. We assume that |τ∗e1| < 1 so that (1 + τ∗e1)−1 is

expendable. Expanding the right hand side of (3.2) and multiplying out, we have
T = S2

y (1 + e0)
(
1− τ∗e1 + τ∗2e21 − ...

)
= S2

y

(
1 + e0 − τ∗e1 − τ∗e0e1 + τ∗2e21 + τ∗2e0e

2
1 − ...

)
Neglecting terms of e’s having power greater than the two, we have
T ∼= S2

y

(
1 + e0 − τ∗e1 − τ∗e0e1 + τ∗2e21

)
or

(3.3)
(
T − S2

y

) ∼= S2
y

(
e0 − τ∗e1 − τ∗e0e1 + τ∗2e21

)
Taking expectation of both sides of (3.3),we get the bias of the estimator T to the first
degree of approximation as

(3.4) Bias (T ) = Φτ∗ (τ∗ − c)
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Squaring both sides of (3.3) and neglecting terms of e’s having power greater than two,
we have

(3.5)
(
T − S2

y

)2 ∼= S4
y

(
e20 + τ∗2e21 − 2τ∗e0e1

)
Taking expectation of both sides of (3.5), we get the MSE of the estimator T to the first
degree of approximation as

(3.6) MSE (T ) = γ [λ∗
40 + τ∗λ∗

04 (τ∗ − 2c)]

Below we have identified some members of proposed ratio type estimator T for different
choices of (δ, L).
(i) The estimator based on coefficient of variation Cx and quartile Q1:
If we set (δ, L) = (Cx, Q1) in (3.1), we get the estimator of S2

y as,

(3.7) T1 = s2y

(
CxS

2
x + αQ2

1

Cxs2x + αQ2
1

)
(ii) The estimator based on coefficient of kurtosis β2(x) and median Q2:
If we set (δ, L) = (β2(x), Q2) in (3.1), we get the estimator of S2

y as,

(3.8) T2 = s2y

(
β2(x)S2

x + αQ2
2

β2(x)s2x + αQ2
2

)
(iii) The estimator based on population mean X̄ and quartile Q3:
If we set (δ, L) =

(
X̄,Q3

)
in (3.1), we get the estimator of S2

y as,

(3.9) T3 = s2y

(
X̄S2

x + αQ2
3

X̄s2x + αQ2
3

)
(iv) The estimator based on coefficient of kurtosis β2(x) and inter-quartile
range Qr:
If we set (δ, L) = (β2(x), Qr) in (3.1), we get the estimator of S2

y as,

(3.10) T4 = s2y

(
β2(x)S2

x + αQ2
r

β2(x)s2x + αQ2
r

)
(v) The estimator based on correlation coefficient ρ and semi-quartile range
Qd:
If we set (δ, L) = (ρ,Qd) in (3.1), we get the estimator of S2

y as,

(3.11) T5 = s2y

(
ρS2

x + αQ2
d

ρs2x + αQ2
d

)
(vi) The estimator based on correlation coefficient ρ and semi-quartile average
Qa:
If we set (δ, L) = (ρ,Qa) in (3.1), we get the estimator of S2

y as,

(3.12) T6 = s2y

(
ρS2

x + αQ2
a

ρs2x + αQ2
a

)
Similarly one can identify many other estimators from the proposed ratio-type estimator
T for different combinations of (δ, L). To the first degree of approximation the biases
and mean squared errors (MSEs) of the estimators Tk, (k = 1, 2, ..., 6) are respectively
given by

(3.13) Bias (Tk) = Φτ∗k (τ∗k − c)

(3.14) MSE (Tk) = γ [λ∗
40 + τ∗kλ

∗
04 (τ∗k − 2c)]

where τ∗1 = CxS
2
x

(
CxS

2
x + αQ2

1

)−1, τ∗2 = β2(x)S2
x

(
β2(x)S2

x + αQ2
2

)−1, τ∗3 = X̄S2
x

(
X̄S2

x + αQ2
3

)−1,
τ∗4 = β2(x)S2

x

(
β2(x)S2

x + αQ2
r

)−1, τ∗5 = ρS2
x

(
ρS2

x + αQ2
d

)−1, τ∗6 = ρS2
x

(
ρS2

x + αQ2
a

)−1.
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Table 1. The parameters of population data set

N 80 Cy 0.3542 Q1 5.1500
n 20 Sx 8.4563 Q2 10.300
Ȳ 51.8264 Cx 0.7507 Q3 16.975
X̄ 11.2646 λ04 2.8664 Qr 11.825
ρ 0.9413 λ40 2.2667 Qd 5.9125
Sy 18.3569 λ22 2.2209 Qa 11.0625

Table 2. PREs of estimators tj , (j = 0, 1, ..., 13) with respect to s2y

Percent relative efficiency (PRE)
(t0, s

2
y) (t1, s

2
y) (t2, s

2
y) (t3, s

2
y) (t4, s

2
y) (t5, s

2
y) (t6, s

2
y)

100.00 183.23 179.62 169.24 181.98 164.49 226.87
Percent relative efficiency (PRE)

(t7, s
2
y) (t8, s

2
y) (t9, s

2
y) (t10, s

2
y) (t11, s

2
y) (t12, s

2
y) (t13, s

2
y)

206.64 247.25 232.13 209.86 229.54 238.17 249.84

4. The theoretical evaluation
We have made some theoretical conditions under which the ratio-type estimators

Tk, (k = 1, 2, ..., 6) which are members of proposed ratio-type estimator T are more
efficient than the other existing estimators tj , (j = 0, 1, ..., 13) which are due to [1], [2],
[12, 13, 14] and [3] respectively. From (2.16) and (3.14), we have
MSE (Tk) < MSE (Tj) if τ∗k (τ∗k − 2c) < τj(τj − 2c)
i.e. if either,
τ∗k < τj and c <

(
τ∗k+τj

2

)
or,
τ∗k > τj and c >

(
τ∗k+τj

2

)
or equivalently ,
min.[τj , (2c− τj)] ≤ τ∗k ≤ max.[τj , (2c− τj)] , (j = 0, 1, ..., 13; k = 1, 2, ..., 6).

5. Emprical study
The performance of the ratio-type estimators Tk, (k = 1, 2, ..., 6) which are members of

the suggested ratio-type estimator T are evaluated against the usual unbiased estimator
s2y and the estimators tj , (j = 1, 2, ..., 13) which are due to [1], [2], [12, 13, 14] and [3]
respectively. for the population data set [Source: [4]] summarized in Table 1. We have
computed the percent relative efficiencies (PREs) of the estimators tj , (j = 1, 2, ..., 13)
and the suggested ratio-type estimators Tk, (k = 1, 2, ..., 6) with respect to the usual
unbiased estimator t0 = s2y in certain range of α ∈ (0.0, 1.0) by using following formulae
respectively as

(5.1) PRE
(
tj , s

2
y

)
=
MSE

(
s2y
)

MSE (tj)
× 100 =

λ∗
40

[λ∗
40 + τjλ∗

04(τj − 2c)]
× 100

(5.2) PRE
(
Tk, s

2
y

)
=
MSE

(
s2y
)

MSE (Tk)
× 100 =

λ∗
40

[λ∗
40 + τ∗kλ

∗
04(τ∗k − 2c)]

× 100

and finding are summarized in Tables 2 and 3. It is observed from Tables 2 and 3 that all
the ratio-type estimators Tk, (k = 1, 2, ..., 6) which are members of proposed ratio-type
estimator T performed better than the usual unbiased estimator s2y, usual ratio estimator
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Table 3. PREs of estimators Tk, (k = 1, 2, ..., 6) with respect to s2y

Percent relative efficiency (PRE)
α (T1, s

2
y) (T2, s

2
y) (T3, s

2
y) (T4, s

2
y) (T5, s

2
y) (T6, s

2
y)

0.0 183.23 183.23 183.23 183.23 183.23 183.23
0.1 199.59 200.34 195.20 205.48 200.39 235.94
0.2 214.59 215.93 206.50 224.91 216.03 264.03
0.3 227.93 229.68 217.01 240.89 229.81 270.58
0.4 239.41 241.38 226.62 253.18 241.52 264.67
0.5 248.96 250.94 235.28 261.89 251.09 253.47
0.6 256.58 258.41 242.92 267.36 258.55 240.92
0.7 262.37 263.91 249.54 270.08 264.02 228.80
0.8 266.47 267.63 255.15 270.58 267.71 217.77
0.9 269.08 269.79 259.79 269.35 269.83 207.99
1.0 270.38 270.61 263.50 266.84 270.61 199.40

t1 due to [1] and the estimators tj , (j = 2, 3, 4, 5) due to [2] for all α ∈ (0.0, 1.0). However
all the ratio-type estimators Tk, (k = 1, 2, ..., 6) are more efficient than the estimators
tj , (j = 6, 7, ..., 12) due to [12, 13, 14] and [3] for a specific value of α. The estimators
T2 and T5 which utilize the information on (β2(x), Q2) and (ρ,Qd) respectively are the
best in the sense of having largest percent relative efficiency among all the estimators
discussed here for α = 1.

6. Conclusion
In this paper we have suggested some ratio-type estimators of population variance S2

y

of the study variable y using known parameters of an auxiliary variable such as coefficient
of variation, coefficient of kurtosis, correlation coefficient and quartiles etc. The bias and
mean squared error formulae of the proposed ratio-type estimators are obtained and
compared with that of the usual unbiased estimator, traditional ratio estimator and
the estimators due to [2], [12, 13, 14] and [3]. We have also assessed the performance
of the proposed estimators for known natural population data set and found that the
performances of the proposed estimators are better than the other existing estimator for
certain cases.
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1. Introduction
Binary panel data models remain of major interest in microeconometrics. This paper

examines the specification test for fixed effects in binary panel data model. The binary
panel data model is in the following form:

yit = 1(x′itβ + ηi + vit ≥ 0), i = 1, · · · , N ; t = 1, · · · , T, (1)

where 1(·) denotes the indicator function that equals one if · is true and zero otherwise, yit
is an observed dependent variable, xit is a k×1 vector of exogenous regressors, ηi denotes
the individual’s fixed effects and vit is unobservable error term which is independently
identical distributed with cdf F (x) across units and time periods, where F (x) is known
and symmetric around 0.

In the binary panel data model (1), fixed effects estimation suffers from inconsistency
under the incidental parameters problem, first considered by Neyman and Scott [9].
The incidental parameters problem persists in the binary panel data case because the
nuisance parameters ηi can not be separated from estimators of coefficients of interest.
As both N and T increase, the increasing number of parameters to estimate means that
the coefficients will have an asymptotic bias.

Baltagi [1] proposes an open problem in Econometric Theory, i.e. the following test
for fixed effects in binary panel data model (1):

H0 : ηi = 0 for i = 1, · · · , N. (2)

If H0 is not reject, the estimation procedure is simple and utilizes the usual logit and
probit procedures. However, if H0 is rejected, the maximum likelihood procedure is
complicated by the presence of the incidental parameters problem. Furthermore, Gurmu
[5] solves the open problem and proposes the lagrange multiplier (LM) test for the test
problem H0 by artificial regression, which is analogous to those used for tests in binary
response model regression(BRMR) proposed by Davidson and MacKinnon [4], and shows
LM ∼ χ2(N) under the null hypothesis. Some discussions about test for fixed effects in
binary panel data also can be found in Baltagi [2]. Both Gurmu [5] and Baltagi [2] do
not present the Monte Carlo simulations studies, LM test’s small sample performance is
unknown and will be tested in this paper through the use of Monte Carlo simulations.

For test problem (2) in binary panel data proposed by Baltagi [1], this paper also
derives a test based on moment conditions, which asymptotic null distribution is the
χ2(1) distribution. The test is applied to Monte Carlo simulations and its power is
compared with LM test proposed by Gurmu [5].

The structure of the paper is organized as follows. Section 2 introduces the test
statistic based on moment conditions and its large sample properties. In section 3, we
report some Monte Carlo simulation results. Section 4 concludes the paper.

2. Specification test based on moment conditions
The framework of deriving the test statistic is similar to Mora and Moro-Egido [8].

We assume that independent and identically distributed (i.i.d) observations (yit, x
′
it)
′

are available, where i = 1, · · · , N ; t = 1, · · · , T. The following notation will be used:
p1,it(θ) ≡ Pr(yit = 1|x′it) = F (x′itβ + ηi), p0,it(θ) ≡ Pr(yit = 0|x′it) = 1 − p1,it(θ), pit ≡
[p1,it(θ)]

yit×[p0,it(θ)]1−yit , where θ = (β′, η′)′ and η = (η1, · · · , ηN )′. Conditioning on the
observations, the MLE of θ, θ̂ = (β̂′, η̂′)′ maximizes the following log-likelihood function

l(θ) =
N∑
i=1

T∑
t=1

ln pit.
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Define mit(θ) ≡ yit − F (x′itβ + ηi). From binary panel data model (1), we have

Emit(θ) = 0. To derive the test statistic, we consider the random variable
N∑
i=1

T∑
t=1

mit(θ̂),

where θ̂ = (β̂′, 0′)′ is a well-behaved maximum likelihood estimator of θ0 = (β′, 0′)′ and
β̂ is the vector of ML estimate subject to the restriction H0 : ηi = 0 for i = 1, · · · , N.

2.1. Theorem. Consider model (1), assuming the following regularity conditions hold,
(i) In the neighborhood of true value θ0, ∂ ln pit/∂θ, ∂2 ln pit/∂θ

2, ∂3 ln pit/∂θ
3 exist;

(ii) In the neighborhood of true value θ0, |∂3 ln pit/∂θ
3| ≤ H(x), and EH(x) <∞;

(iii) At the true value θ0, Eθ0 [∂ ln pit/∂θ] = 0,Eθ0 [p
′′
it/pit] = 0,

I(θ0) = Varθ0 [∂ ln pit/∂θ] > 0.
Under the null hypothesis given in equation (2), when N,T −→∞, the CMNT statistics

CMNT = (NT )−1[

N∑
i=1

T∑
t=1

mit(θ̂)]
2/V̂ (3)

converges to a chi squared distribution with one degree, where

V̂ = (NT )−1{
N∑
i=1

T∑
t=1

m2
it(θ̂)− [

N∑
i=1

T∑
t=1

mit(θ̂)git(θ̂)]
2/

N∑
i=1

T∑
t=1

g2it(θ̂)}. (4)

3. Monte Carlo simulation study
In this section, we present a small Monte Carlo study to illustrate the performance

of the above test statistic (3) proposed in Section 2. For comparison, we also report the
finite sample sizes and powers of LM test proposed by Gurmu [5].

The simulation is based on the logit model

yit = 1(xitβ + ηi + vit ≥ 0), i = 1, · · · , N ; t = 1, · · · , T, (5)

where the true parameter value is β = 1, xit is an exogenous variable and independently
identical distributed with distribution N(0, 1), vit is independently identical distributed

with logistic distribution P{vit < x} = F (x) = ex/(1+ex), and ηi = (
T∑
t=1

zit)/T, zit is an

exogenous variable and independently identical distributed with distribution N(µ, σ2),
so that the fixed effects ηi are generated from normal distribution. In model (5), we use
statistics (3) to test H0 : ηi = 0 for i = 1, · · · , N. Parameter β is estimated by ML
estimate assuming that H0 holds. Values of both µ and σ2 different from 0 allow us to
examine the ability of the test statistic to detect misspecification in binary panel data
model.

Table 1a Empirical sizes for logit design with different N and T.

N Test T=5 T=10 T=15

1%test 5%test 10%test 1%test 5%test 10%test 1%test 5%test 10%test

50 LM 0.013 0.052 0.103 0.008 0.044 0.114 0.002 0.051 0.093
CM

NT 0.004 0.060 0.117 0.021 0.062 0.118 0.016 0.057 0.113
100 LM 0.008 0.031 0.090 0.001 0.049 0.102 0.011 0.052 0.103

CM
NT 0.020 0.050 0.108 0.015 0.061 0.103 0.017 0.063 0.124

200 LM 0.003 0.034 0.078 0.006 0.040 0.112 0.010 0.052 0.083
CM

NT 0.012 0.062 0.108 0.015 0.066 0.091 0.019 0.062 0.119
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Table 1b Empirical powers for logit design with different T when N=50.

µ σ Test T=5 T=10 T=15

1%test 5%test 10%test 1%test 5%test 10%test 1%test 5%test 10%test

0.2 0.2 LM 0.010 0.061 0.169 0.030 0.139 0.201 0.045 0.164 0.275
CM

NT 0.148 0.334 0.450 0.335 0.602 0.709 0.527 0.753 0.837
0.4 LM 0.011 0.093 0.163 0.035 0.145 0.242 0.056 0.180 0.298

CM
NT 0.177 0.346 0.460 0.365 0.587 0.682 0.518 0.715 0.826

0.6 LM 0.016 0.101 0.210 0.032 0.176 0.289 0.072 0.249 0.335
CM

NT 0.171 0.360 0.449 0.340 0.582 0.668 0.531 0.738 0.824
0.8 LM 0.023 0.130 0.230 0.061 0.207 0.354 0.101 0.289 0.399

CM
NT 0.155 0.322 0.437 0.340 0.540 0.675 0.527 0.722 0.819

0.4 0.2 LM 0.031 0.202 0.320 0.202 0.432 0.610 0.387 0.642 0.760
CM

NT 0.677 0.839 0.893 0.965 0.989 0.997 0.995 0.999 0.999
0.4 LM 0.045 0.213 0.350 0.221 0.471 0.609 0.365 0.609 0.777

CM
NT 0.677 0.834 0.896 0.948 0.987 0.994 0.993 0.994 1.000

0.6 LM 0.068 0.222 0.356 0.224 0.506 0.626 0.495 0.692 0.820
CM

NT 0.689 0.826 0.892 0.955 0.984 0.992 0.988 0.996 1.000
0.8 LM 0.081 0.275 0.437 0.287 0.555 0.712 0.509 0.746 0.838

CM
NT 0.646 0.827 0.874 0.935 0.980 0.989 0.992 1.000 0.997

Table 2a Empirical sizes for probit design with different N and T.

N Test T=5 T=10 T=15

1%test 5%test 10%test 1%test 5%test 10%test 1%test 5%test 10%test

50 LM 0.002 0.025 0.067 0.008 0.052 0.086 0.009 0.038 0.086
CM

NT 0.012 0.064 0.106 0.007 0.052 0.095 0.011 0.056 0.111
100 LM 0.002 0.045 0.068 0.006 0.037 0.087 0.014 0.053 0.091

CM
NT 0.012 0.065 0.107 0.014 0.053 0.097 0.011 0.063 0.116

200 LM 0.001 0.034 0.069 0.003 0.036 0.092 0.006 0.050 0.074
CM

NT 0.007 0.053 0.107 0.011 0.042 0.101 0.006 0.050 0.104

Table 2b Empirical powers for probit design with different T when N=50

µ σ Test T=5 T=10 T=15

1%test 5%test 10%test 1%test 5%test 10%test 1%test 5%test 10%test

0.2 0.2 LM 0.011 0.072 0.139 0.053 0.210 0.298 0.132 0.320 0.487
CM

NT 0.333 0.586 0.676 0.710 0.876 0.930 0.899 0.963 0.981
0.4 LM 0.022 0.116 0.234 0.086 0.248 0.393 0.179 0.431 0.525

CM
NT 0.359 0.578 0.695 0.677 0.876 0.921 0.883 0.965 0.976

0.6 LM 0.035 0.190 0.333 0.170 0.342 0.516 0.270 0.509 0.646
CM

NT 0.347 0.545 0.622 0.670 0.878 0.908 0.871 0.955 0.982
0.8 LM 0.092 0.291 0.481 0.274 0.512 0.685 0.396 0.661 0.770

CM
NT 0.358 0.554 0.690 0.635 0.819 0.886 0.829 0.938 0.963

0.4 0.2 LM 0.108 0.328 0.501 0.606 0.815 0.898 0.916 0.980 0.993
CM

NT 0.957 0.995 0.995 1.000 1.000 1.000 1.000 1.000 1.000
0.4 LM 0.146 0.396 0.575 0.651 0.861 0.918 0.940 0.983 0.993

CM
NT 0.945 0.989 0.995 1.000 1.000 1.000 1.000 1.000 1.000

0.6 LM 0.215 0.480 0.657 0.720 0.884 0.954 0.940 0.989 0.996
CM

NT 0.958 0.984 0.995 1.000 1.000 1.000 1.000 1.000 1.000
0.8 LM 0.285 0.594 0.736 0.816 0.938 0.967 0.973 0.995 0.997

CM
NT 0.919 0.970 0.988 0.999 1.000 1.000 1.000 1.000 1.000

The simulation results of our test based on moment(CMNT ), and Gurmu’s test (LM)
are reported in Table 1a and Table 1b based on 1000 simulations, where the nominal
sizes are set to be 0.01, 0.05 and 0.10. From Table 1a, the empirical sizes for both tests
are very close to the nominal sizes, with the LM test having less size distortion in most
cases. From Table 1b, the proposed test CMNT is more powerful than Gurmu’s LM test in
all designs, and the powers significantly increase demonstrated by increasing the panel
length T.

On the above data generating process (DGP), if assuming F (x) is the Normal cdf,
we also report the simulation results for a probit model in Table 2a and Table 2b. The
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results are qualitatively similar to those for the logit model in the previous Table 1a and
Table 1b.

4. Conclusion
Specification test is an important part of panel data econometrics. This paper focuses

on examining the specification test for fixed effects in binary panel data model by Monte
Carlo simulations. The simulation results of this paper, along with the earlier work, show
that the proposed test CMNT is more powerful than Gurmu’s LM test.

In economics, it is more realistic to consider dynamic binary panel data model with
fixed effects, for example, Hsiao [6], Bartolucci and Nigro [3], Yu, Gao and Shi [11] . As
a possible area of further research it would be interesting to investigate the specification
test for fixed effects in dynamic binary panel data model by using the proposed test CMNT .

5. Appendix A: Proof of results

Proof of Theorem 2.1: Using a first-order Taylor expansion for
N∑
i=1

T∑
t=1

mit(θ̂), where

θ̂ is the maximum likelihood estimator under H0, we have

(NT )−1/2
N∑
i=1

T∑
t=1

mit(θ̂) = (NT )−1/2
N∑
i=1

T∑
t=1

mit(θ0) +B0 × (NT )1/2(θ̂ − θ0) + op(1),

(A.1)
where B0 = E{∂mit(θ0)/∂θ

′}.
Under the conditions (i)-(iii) of Theorem 2.1, see the detailed proof of Theorem 2.3 in

page 415, Lehmann [7], the ML estimator θ̂ satisfies that

(NT )1/2(θ̂ − θ0) = A−1
0 × (NT )−1/2

N∑
i=1

T∑
t=1

git(θ0) + op(1), (A.2)

where git(θ0) = ∂ ln pit/∂θ = 1(yit = 0) × −f(x
′
itβ)xit

1− F (x′itβ)
+ 1(yit = 1) × f(x′itβ)xit

F (x′itβ)
, f(x)

denotes the first derivative of F (x), and A0 = E{−∂git(θ0)/∂θ′} = I(θ0).

Inserting the asymptotic expansion of (NT )1/2(θ̂ − θ0) into the Taylor expansion of

(NT )−1/2
N∑
i=1

T∑
t=1

mit(θ̂), we have

(NT )−1/2
N∑
i=1

T∑
t=1

mit(θ̂) = (NT )−1/2
N∑
i=1

T∑
t=1

[mit(θ0) +B0A
−1
0 git(θ0)] + op(1),

and we know that random variablesmit(θ0)+B0A
−1
0 git(θ0) is independent and identically

distributed, E(mit(θ0) +B0A
−1
0 git(θ0)) = 0, by central limit theorem (CLT),

(NT )−1/2
N∑
i=1

T∑
t=1

mit(θ̂)
d−→ N(0, V ), (A.3)

where V = Var(mit(θ0) +B0A
−1
0 git(θ0).

We can find that mit(θ0) +B0A
−1
0 git(θ0) = (1 : B0A

−1
0 )(mit(θ0), git(θ0))

′,
so

V = (1 : B0A
−1
0 )

(
Em2

it(θ0) E[mit(θ0)git(θ0)]
E[mit(θ0)git(θ0)] Eg2it(θ0)

)
(1 : B0A

−1
0 )′

= E{m2
it(θ0)} − E2{mit(θ0)git(θ0)}/E{g2it(θ0)},

where E[g2it(θ0)] = A0,E[mit(θ0)git(θ0)] = −B0.
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To obtain the a test statistic,a consistent estimator V must be proposed. The natural
candidate for estimating V is

V̂ = (NT )−1{
N∑
i=1

T∑
t=1

m2
it(θ̂)− [

N∑
i=1

T∑
t=1

mit(θ̂)git(θ̂)]
2/

N∑
i=1

T∑
t=1

g2it(θ̂)}, (A.4)

we replace population moments by sample moments, it is a standard estimate of V
following Newey-Tauchen methodology, detailed discussion can be found in Orme [10].

Based on (A.3), (A.4) and Slutsky’ Theorm, the test statistic proposed

CMNT = (NT )−1[

N∑
i=1

T∑
t=1

mit(θ̂)]
2/V̂

d−→ χ2(1), (A.5)

what justifies the use of CMNT as an asymptotically valid test statistics. This completes
the proof.
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