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Abstract. In this research paper, we develop the generalized fractional k-integral operators (gFkIO) involv-
ing Appell k-function as its kernel, and investigate (gFkIO) with the composition of Bessel k-function of first
kind (BkF-I). We shall obtain results by applying Sagio fractional integral k-operators (SFIkO) and Riemann
Liouville fractional integral k-operators (RLFIkO) in which Gauss Hypergeometric k-function (GHkF) acting
as a kernel in the left and right sense with product of power k-function and Bessel k-function of first kind
(BkF-I) and results will be establish in the terms of generalized Wright Hypergeometric k-function (gWHkF).

1. Introduction

Fractional calculus is the field of mathematical analysis, which deals with the investigation and applica-
tions of integrals and derivatives of any arbitrary real or complex order, which unify and extend the notions
of integrals and derivatives. It has gained significance and recognition over the last four decades, spe-
cially because of its enormous capacity of tested programs in diverse seemingly expanded fields of science,
applied mathematics and engineering [1–3]. We proposed a unified approach to the special functions of
fractional calculus and our approach is based on the usage of generalized fractional calculus operators. Diaz
and Pariguan [4, 5] paved the way for extensions of fractional calculus when they introduced the gamma
k-function, beta k-function and hypergeometric k-functions based on Pochhammer’s k-symbols [6, 7] and
proved a number of their properties.

Different additions of numerous fractional integral operators and their properties have been investigated
by many authors [8–10]. Many applications and special cases of generalized fractional integral operators
are the recurring appearance of compositions of classical Riemann Liouville and Erdelyi Kober fractional
operators in various problems of applied analysis and several properties of this operator can be located in
[11, 12]. Many authors added a family of fractional integral operators with the Appell function F3 in their
kernel and extension of many acknowledged formulas given [13–15]. A distinct account of such operators
along with their properties and applications had been considered [16–21].
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Definition 1.1. The generalized fractional integral k-operator defined for α, α′, β, β′,γ ∈ C and y > 0, <(γ) > 0
and k is any real number respectively

(Iα,α
′,β,β′,γ

k,0+ f )(y) =
y
−α
k

kΓk(γ)

∫ y

0
(y − t)

γ
k −1t−

α′

k F3,k(α, α′, β, β′;γ; 1 −
t
y

; 1 −
y
t

) f (t)dt (1)

and

(Iα,α
′,β,β′,γ

k,y− f )(y) =
y
−α′

k

kΓk(γ)

∫
∞

y
(t − y)

γ
k −1t−

α
k F3,k(α, α′, β, β′;γ; 1 −

y
t

; 1 −
t
y

) f (t)dt. (2)

Definition 1.2. [22] The left and right sided Sagio fractional integral k-operator defined for α, β, γ ∈ C,<(α) > 0,
y > 0 and k is any real number respectively as

(Iα,β,γk,0+ f )(y) =
y
−α−β

k

kΓk(α)

∫ y

0
(y − t)

α
k −1

2F1,k(α + β,−γ;α; 1 −
t
y

) f (t)dt (3)

and

(Iα,β,γk,y− f )(y) =
1

kΓk(α)

∫
∞

y
(t − y)

α
k −1t

−α−β
k 2F1,k(α + β,−γ;α; 1 −

y
t

) f (t)dt. (4)

Definition 1.3. [22] The left and right sided Riemann Liouville fractional integral k-operator defined for α ∈ C,
<(α) > 0, y > 0 and k is any positive real number respectively

(Iαk,0+ f )(y) =
1

kΓk(α)

∫ y

0
(y − t)

α
k −1 f (t)dt (5)

and

(Iαk,0− f )(y) =
1

kΓk(α)

∫
∞

y
(t − y)

α
k −1 f (t)dt. (6)

Definition 1.4. The k-beta function [24], defined for<(l) > 0,<(h) > 0, as

βk(l, h) =
1
k

∫ 1

0
s

l
k−1(1 − s)

h
k−1ds, (7)

so that βk(l, h) =
1
k
β
( l

k
,

h
k

)
and βk(l, h) =

Γk(l)Γk(h)
Γk(l + h)

, (8)

where Γk(l), Γk(h) and Γk(l + h) are gamma k-functions.

Definition 1.5. The gamma k-function [24], defined for<(t) > 0, k > 0, t ∈ C as

Γk(t) =

∫
∞

0
st−1e

−sk
k ds, (9)

so that Γk(z + k) = zΓk(z) and Γk(γ) = (k)
γ
k −1Γ(

γ

k
). (10)

Definition 1.6. The Pochhammer’s k-symbol for k > 0 [5], defined as

(α)n,k =

{
α(α + k)(α + 2k) · · · (α + (n − 1)k) for n ≥ 1
1 for n = 0, α , 0, (11)

So that (α)n,k =
Γk(α + nk)

Γk(α)
and

Γk(α)
Γk(α − n)

= (−1)n(k − α)n,k (12)

where α ∈ C and n ∈N.
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Definition 1.7. The Hypergeometric k-function defined for ∀ α′, β′, η′ ∈ C, η′ , 0,−1,−2,−3, · · · , |t| < 1, as

2F1,k((α′, k), (β′, k); (η′, k); t) =

∞∑
m=0

(α′)m,k(β′)m,k

(η′)m,k

tm

m!
, k > 0, (13)

2F1,k((a, k), (b, k); (c, k); 1) =
Γk(c)Γk(c − a − b)
Γk(c − a)Γk(c − b)

, (14)

where Γk(c), Γk(c − a − b), Γk(c − a) and Γk(c − b) are gamma k-functions.

Definition 1.8. The generalized Wright Hypergeometric k-function [25], defined by the series as

lψ
k
h(t) = lΨ

k
h

[
(ci, α′i )1,l
(d j, β′j)1,h

∣∣∣∣∣∣t
]
≡

∞∑
m=0

∏l
i=1 Γk(ci + α′i m)tm∏h
j=1 Γk(d j + β′jm)m!

, (15)

where k ∈ <+, t ∈ C, ci, d j ∈ C, and α′i , β
′

j ∈ < (i = 1, 2, · · · , l; j = 1, 2, · · · , h).

Definition 1.9. The Bessel k-function of first kind Wk
υ,c(t) [12], defined for t ∈ C and υ ∈ C by

Wk
υ,c(t) =

∞∑
p=0

(−c)p( t
2 )

υ
k +2p

Γk(υ + pk + k)p!
, k > 0, c ∈ <. (16)

We use the following notation in our results

&p,k =

∞∑
p=0

(−c)p( 1
2 )

υ
k +2p

Γk(υ + pk + k)p!
, as Wk

υ,c(t) = &p,k(t)
υ
k +2p. (17)

2. Left sided integral k-operators with Bessel k-function

In this section, we derive the fundamental results for left sided Sagio fractional integral k-operator in
which Gauss hypergeometric k-function using as a kernel with the composition of power function and
Bessel k-function, and also discuss the left sided Riemann Liouville fractional integral k-operator. The
following theorems are needed to prove our main results.

Theorem 2.1. Let α, α′, β, β′, γ, υ, σ ∈ C, k > 0, c ∈ < and x > 0 be such that <(υ) > −1,<(γ) > 0 and
<( σ+υ

k ) > max[0,<(α + α′ + β − γ),<(α′ − β′)], then there holds the following relation:

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x) = x
1
k (σ+υ+γ−α−α′)−1(2k)

−υ
k

3ψ
k
4

[
(σ + υ, 2)(σ + υ + γ − α − α′ − β, 2)(σ + υ + β′k − α′, 2)

(υ + 1, 1)(σ + υ + γ − α − α′, 2)(σ + υ + γ − α′ − β, 2)(σ + υ + β′k, 2)

∣∣∣∣∣ − cx2

4k

]
.

Proof. Consider the generalized k-fractional integral (1) with the product of power function and Bessel
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k-function of first kind (16), we have

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x)

=

∞∑
p=0

(−c)p( 1
2 )2p+ υ

k

Γk(pk + υ + k)p!

[ x−
α
k

kΓk(γ)

∫ x

0
(x − t)

γ
k −1t−

α′

k F3,k(α, α′, β, β′, γ; 1 −
t
x

; 1 −
x
t

)t
σ+υ

k +2p−1
]
dt

= &p,k
[ x−

α
k

Γk(γ)
1
k

∫ x

0
(x − t)

γ
k −1t−

α′

k

∞∑
m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!
(1 −

t
x

)m(1 −
x
t

)nt
σ+υ

k +2p−1
]
dt

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!

[ x
γ−α

k −1

kΓk(γ)

∫ x

0
(1 −

t
x

)
γ
k +m−1(1 −

x
t

)nt
σ+υ−α′

k +2p−1
]
dt. (18)

By putting u = t
x ⇒ xdu = dt, if t = 0⇒ u = 0, if t = x⇒ u = 1 in equation (18), we get

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x)

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!

[x
γ−α

k −1

Γk(γ)
1
k

∫ 1

0
(1 − u)

γ
k +m−1(1 −

1
u

)n(xu)
σ+υ−α′

k +2p−1
]
xdu

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!
x
σ+υ+γ−α−α′

k +2p−1

Γk(γ)

[1
k

∫ 1

0
u
σ+υ−α′

k +2p−n−1(1 − u)
γ
k +m+n−1

]
du.

Using equations (7) and equation (13) in equation (19), we have

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x)

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

Γk(γ)(γ)m+n,k m!n!

[
x
σ+υ+γ−α−α′

k +2p−1βk(σ + υ − α′ + 2pk − nk, γ + mk + nk)
]
.

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!
x
σ+υ+γ−α−α′

k +2p−1

Γk(γ)

[Γk(σ + υ − α′ + 2pk − nk)Γk(γ + mk + nk)
Γk(σ + υ − α′ + 2pk − nk + γ + mk + nk)

]
. (19)

By using equation (12) in equation (19), we obtain

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x)

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!
x
σ+υ+γ−α−α′

k +2p−1

Γk(γ)

[ Γk(σ + υ − α′ + 2pk − nk)Γk(γ)(γ)m+n,k

Γk(σ + υ − α′ + 2pk + γ)(σ + υ − α′ + 2pk + γ)m,k

]

= x
σ+υ+γ−α−α′

k +2p−1&p,k
∞∑

m=0

(α)m,k(β)m,k(1)m

(σ + υ − α′ + 2pk + γ)m,km!

∞∑
n=0

(α′)n,k(β′)n,k

n!
Γk(σ + υ − α′ + 2pk − nk)
Γk(σ + υ − α′ + 2pk + γ)

. (20)
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By using equation (14) in equation (20), we get

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x)

= x
σ+υ+γ−α−α′

k +2p−1&p,k
∞∑

n=0

(α′)n,k(β′)n,k

n!
Γk(σ + υ − α′ + γ + 2pk − α − β)Γk(σ + υ − α′ + 2pk − nk)
Γk(σ + υ − α′ + γ + 2pk − α)Γk(σ + υ − α′ + γ + 2pk − β)

. (21)

Now we use equation (12) in equation (21), we have

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x)

=

∞∑
n=0

x
σ+υ+γ−α−α′

k +2p−1&p,k(α′)n,k(β′)n,k(−1)n

(k − (σ + υ − α′ + 2pk))n,kn!
Γk(σ + υ − α′ + 2pk)Γk(σ + υ − α′ + γ + 2pk − α − β)

Γk(σ + υ − α′ + γ + 2pk − α)Γk(σ + υ − α′ + γ + 2pk − β)

=
x
σ+υ+γ

k −1&p,kΓk(k − σ − υ + α′ − 2pk)Γk(k − σ − υ − 2pk − β′)Γk(σ + υ − α′ + 2pk)Γk(σ + υ − α′ + γ + 2pk − α − β)

x
α+α′

k −2pΓk(k − σ − υ + α′ − 2pk − β′)Γk(k − σ − υ − 2pk)Γk(σ + υ − α′ + γ + 2pk − α)Γk(σ + υ − α′ + γ + 2pk − β)

=
x
σ+υ+γ

k &p,k(σ + υ − α′ + 2pk)β′,k

x
α+α′

k +1−2p(σ + υ + 2pk)β′,k

Γk(σ + υ − α′ + 2pk)Γk(σ + υ − α′ + γ + 2pk − α − β)
Γk(σ + υ − α′ + γ + 2pk − α)Γk(σ + υ − α′ + γ + 2pk − β)

. (22)

Using the equation (12) in equation (22), we obtain

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x)

= x
σ+υ+γ−α−α′

k +2p−1&p,k Γk(σ + υ − α′ + 2pk + β′k)Γk(σ + υ + 2pk)Γk(σ + υ − α′ + γ + 2pk − α − β)
Γk(σ + υ + 2pk + β′k)Γk(σ + υ − α′ + γ + 2pk − α)Γk(σ + υ − α′ + γ + 2pk − β)

=
x
σ+υ+γ−α−α′

k +2p−1&p,kΓk(σ + υ + 2pk)
Γk(σ + υ − α′ + γ + 2pk − α)

Γk(σ + υ − α′ + γ + 2pk − α − β)Γk(σ + υ − α′ + 2pk + β′k)
Γk(σ + υ − α′ + γ + 2pk − β)Γk(σ + υ + 2pk + β′k)

. (23)

By using equations (17) and equation (10) in equation (23), we get

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x) =
x
σ+υ−α−α′+γ

k −1

(2k)
υ
k

∞∑
p=0

[ Γk(σ + υ + 2pk)
Γk(υ + p + 1)Γk(σ + υ + β′k + 2pk)

×
Γk(σ + υ + γ − α − α′ − β + 2pk)Γk(σ + υ + β′k − α′ + 2pk)
Γk(σ + υ + γ − α − α′ + 2pk)Γk(σ + υ + γ − α′ − β + 2pk)

] (−cx2

4k )p

p!
. (24)

By using equation (15) in equation (24), and get the final result

(Iα,α
′,β,β′,γ

k,0+ [t
σ
k −1Wk

υ,c(t)])(x) = x
1
k (σ+υ+γ−α−α′)−1(2k)

−υ
k

3ψ
k
4

[
(σ + υ, 2)(σ + υ + γ − α − α′ − β, 2)(σ + υ + β′k − α′, 2)

(υ + 1, 1)(σ + υ + γ − α − α′, 2)(σ + υ + γ − α′ − β, 2)(σ + υ + β′k, 2)

∣∣∣∣∣ − cx2

4k

]
.
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Corollary 2.2. Taking k = 1, c = 1 in Theorem (2.1), we get

(Iα,α
′,β,β′,γ

0+ [tσ−1 Jυ(t)])(x) = xσ+υ+γ−α−α′−1(2)−υ

3ψ4

[
(σ + υ, 2)(σ + υ + γ − α − α′ − β, 2)(σ + υ + β′ − α′, 2)

(υ + 1, 1)(σ + υ + γ − α − α′, 2)(σ + υ + γ − α′ − β, 2)(σ + υ + β′, 2)

∣∣∣∣∣ − x2

4

]
.

Theorem 2.3. Let α,β,γ,υ,σ ∈ C, k > 0, c ∈ < and x > 0 be such that <(υ) > −1,<(α) > 0 and <( σ+υ
k ) >

max[0,<(β − γ)], then the following results holds true:

(Iα,β,γk,0+ [t
σ
k −1Wk

υ,c(t)])(x) =
x
σ+υ−β

k −1

(2k)
υ
k

2ψ
k
3

[
(σ + υ, 2), (σ + υ − β + γ, 2)

(υ + 1, 1), (σ + υ − β, 2), (σ + υ + α + γ, 2)

∣∣∣∣∣ − cx2

4k

]
.

Proof. Consider the left sided Saigo fractional k-integral operator (3) with the product of power function
and Bessel k-function of first kind (16), we have

(Iα,β,γk,0+ [t
σ
k −1Wk

υ,c(t)])(x)

=

∞∑
n=0

(−c)n( 1
2 )2n+ υ

k

Γk(nk + υ + k)n!

[ x
−α−β

k

Γk(α)
1
k

∫ x

0
(x − t)

α
k −1

2F1,k(α + β,−γ;α; 1 −
t
x

)t
σ+υ

k +2n−1
]
dt

= &n,k
[ x

−α−β
k

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!
1
k

∫ x

0
(x − t)

α
k −1(1 −

t
x

)m t
σ+υ

k +2n−1
]
dt

= &n,k x
−α−β+α

k −1

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!

[1
k

∫ x

0
(1 −

t
x

)
α
k +m−1t

σ+υ
k +2n−1

]
dt. (25)

By putting u = t
x ⇒ xdu = dt if t = 0⇒ u = 0 if t = x⇒ u = 1 in (25), we have

(Iα,β,γk,0+ [t
σ
k −1Wk

υ,c(t)])(x) = &n,k x
σ+υ−β

k +2n−1

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!

[1
k

∫ 1

0
u
σ+υ

k +2n−1(1 − u)
α
k +m−1

]
du. (26)

Using equation (7) in equation (26), we obtain

(Iα,β,γk,0+ [t
σ
k −1Wk

υ,c(t)])(x) = &n,k x
σ+υ−β

k +2n−1

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!

[
βk(σ + υ + 2nk, α + mk)

]

= &n,k x
σ+υ−β

k +2n−1

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!

[
Γk(σ + υ + 2nk)Γk(α + mk)
Γk(σ + υ + 2nk + α + mk)

]
. (27)

Using equation (12) in equation (27), we have

(Iα,β,γk,0+ [t
σ
k −1Wk

υ,c(t)])(x) = &n,k x
σ+υ−β

k +2n−1

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!

[ Γk(σ + υ + 2nk)Γk(α)(α)m,k

Γk(σ + υ + α + 2nk)(σ + υ + α + 2nk)m,k

]

= &n,kx
σ+υ−β

k +2n−1
∞∑

m=0

(α + β)m,k(−γ)m,k(1)m

(σ + υ + α + 2nk)m,km!

[
Γk(σ + υ + 2nk)

Γk(σ + υ + α + 2nk)

]
. (28)
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By using equation (13) in equation (28), we have

(Iα,β,γk,0+ [t
σ
k −1Wk

υ,c(t)])(x) = &n,kx
σ+υ−β

k +2n−1 Γk(σ + υ + 2nk)Γk(σ + υ + 2nk − β + γ)
Γk(σ + υ + 2nk − β)Γk(σ + υ + α + 2nk + γ)

. (29)

By using equations (17) and equation (10) in equation (29), we attain

(Iα,β,γk,0+ [t
σ
k −1Wk

υ,c(t)])(x) =
x
σ+υ−β

k −1

(2k)
υ
k

∞∑
n=0

[
Γk(σ + υ + 2nk)

Γ( υk + 1 + n)
Γk(σ + υ − β + γ + 2nk)

Γ(σ + υ − β + 2nk)Γ(σ + υ + α + γ + 2nk)

] (−cx2

4k )n

n!
. (30)

By using equation (15) in equation (30), we get the final result

(Iα,β,γk,0+ [t
σ
k −1Wk

υ,c(t)])(x) =
x
σ+υ−β

k −1

(2k)
υ
k

2ψ
k
3

[
(σ + υ, 2), (σ + υ − β + γ, 2)

( υk + 1, 1), (σ + υ − β, 2), (σ + υ + α + γ, 2)

∣∣∣∣∣ − cx2

4k

]
.

Theorem 2.4. Let α,υ,σ ∈ C, k > 0, c ∈ < and x > 0 be such that <(υ) > −1and<(α) > 0, then there holds
following formula:

(Iαk,0+ [t
σ
k −1Wk

υ,c(t)])(x) =
x
σ+υ+α

k −1

(2k)
υ
k

1ψ
k
2

[
(σ + υ, 2)

( υk + 1, 1), (σ + υ + α, 2)

∣∣∣∣∣ − cx2

4k

]
.

Proof. Consider the left sided Riemann Liouville k-fractional integral operator (5) with the product of power
function and Bessel k-function of first kind (16), we have

(Iαk,0+ [t
σ
k −1Wk

υ,c(t)])(x) =

∞∑
n=0

(−c)n( 1
2 )2n+ υ

k

Γk(nk + υ + k)n!

[ 1
kΓk(α)

∫ x

0
(x − t)

α
k −1t

σ+υ
k +2n−1

]
dt

= &n,k
[ x

α
k −1

Γk(α)
1
k

∫ x

0
(1 −

t
x

)
α
k −1t

σ+υ
k +2n−1

]
dt. (31)

By putting u = t
x ⇒ xdu = dt, if t = 0⇒ u = 0, if t = x⇒ u = 1 in equation (31), we get

(Iαk,0+ [t
σ
k −1Wk

υ,c(t)])(x) = &n,k x
σ+υ+α

k +2n−1

Γk(α)

[1
k

∫ 1

0
u
σ+υ+2nk

k −1(1 − u)
α
k −1

]
du. (32)

By using equation (7) in equation (32), we attain

(Iαk,0+ [t
σ
k −1Wk

υ,c(t)])(x) = &n,k x
σ+υ+α

k +2n−1

Γk(α)
βk(σ + υ + 2nk, α)

= x
σ+υ+α

k +2n−1&n,k Γk(σ + υ + 2nk)
Γk(σ + υ + α + 2nk)

. (33)

By using the equations (10) and equation (17) in equation (33), we have

(Iαk,0+ [t
σ
k −1Wk

υ,c(t)])(x) = x
σ+υ+α

k +2n−1
∞∑

n=0

(−c)n( 1
2 )2n( 1

2 )
υ
k

k
υ
k +n+1−1Γ( υk + n + 1)

Γk(σ + υ + 2nk)
Γk(σ + υ + α + 2nk)

=
x
σ+υ

k +α−1

(2k)
υ
k

∞∑
n=0

Γ(σ + υ + 2nk)
Γ( υk + 1, 1)Γ(σ + υ + α + 2nk)

(−cx2

4k )n

n!
. (34)
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By using equation (15) in equation (34), we get the final result

(Iαk,0+ [t
σ
k −1Wk

υ,c(t)])(x) =
x
σ+υ+α

k −1

(2k)
υ
k

1ψ
k
2

[
(σ + υ, 2)

( υk + 1, 1), (σ + υ + α, 2)

∣∣∣∣∣ − cx2

4k

]
.

3. Right sided fractional k-operators with Bessel k-function

In this section, we elaborate the right sided Sagio fractional integral k-operator in which hypergeometric
k-function using as a kernel with Bessel k-function, and also derived Riemann Liouville fractional k-operator
in the form of theorems.

Theorem 3.1. Let α, α′, β, β′, γ, υ, σ ∈ C, k > 0, c ∈ < and x > 0 be such that <(υ) > −1,<(γ) > 0 and
<( σ+υ

k ) > max[0,<(α + α′ + β − γ),<(α′ − β′)]. then there holds the following relation:

(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = x
1
k (σ+υ+γ−α−α′)−1(2k)

−υ
k

3ψ
k
4

[
(k − σ + υ − β, 2), (k − σ + υ − γ + α + α′k, 2), (k − σ + υ + α + β′ − γ, 2)

( υk + 1, 1), (k − σ + υ − γ + α + α′k + β′, 2), (k − σ + υ − γ + α − β, 2), (k − σ + υ, 2)

∣∣∣∣∣ − cx2

4k

]
.

Proof. Consider the right sided generalized fractional k-operator (2) with the composition of power function
and Bessel k-function of first kind (16), we have

(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x)

=

∞∑
p=0

(−c)p( 1
2 )2p+ υ

k

Γk(pk + υ + k)p!

[ x−
α′

k

Γk(γ)
×

1
k

∫
∞

x
(t − x)

γ
k −1t−

α
k F3,k(α, α′, β, β′, γ; 1 −

x
t

; 1 −
t
x

)t
σ−υ

k −2p−1
]
dt

= &p,k
[ x−

α′

k

kΓk(γ)

∫
∞

x
(t − x)

γ
k −1t−

α
k

∞∑
m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!
(1 −

x
t

)m(1 −
t
x

)nt
σ−υ

k −2p−1
]
dt

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!

[ x−
α′

k

Γk(γ)
1
k

∫
∞

x
(1 −

x
t

)
γ
k +m−1(1 −

t
x

)nt
σ−υ−α+γ

k −2p−2
]
dt. (35)

By putting u = x
t ⇒ −xu2du = dt, if t = ∞⇒ u = 0, if t = x⇒ u = 1 in equation (35), we have

(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) (36)

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!

[x
−α′

k −1

Γk(γ)
1
k

∫ 0

1
(1 − u)

γ
k +m−1(1 −

1
u

)n(xu−1)
σ−υ−α+γ

k −2p−2
]
(−xu−2)du

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!

[x
σ−υ−α+γ−α′

k −2p−1

Γk(γ)
1
k

∫ 1

0
u

k−σ+υ+α−γ+2pk−nk
k −1(1 − u)

γ+mk+nk
k −1

]
du. (37)



M. K. Sajid, R. S. Ali, I. Nayab / TJOS 5 (3), 157–169 165

By using equation (7) and equation (8) in equation (37), we obtain

(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x)

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!

[x
σ−υ−α+γ−α′

k −2p−1

Γk(γ)
βk(k − σ + υ + α − γ + 2pk − nk, γ + mk + nk)

]

= &p,k
∞∑

m,n=0

(α)m,k(α′)n,k(β)m,k(β′)n,k

(γ)m+n,k m!n!
x
σ−υ−α+γ−α′

k −2p−1

Γk(γ)

[Γk(k − σ + υ + α − γ + 2pk − nk)Γk(γ + mk + nk)
Γk(k − σ + υ + α − γ + 2pk − nk + γ + mk + nk)

]
. (38)

By using the equation (12) in equation (38), we have

(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x)

= &p,kx
σ−υ−α+γ−α′

k −2p−1
∞∑

m,n=0

(α)m,k(α′)n,k(β′)m,k(β)n,k

Γk(γ)(γ)m+n,k m!n!

[ Γk(k − σ + υ + α − γ + 2pk − nk)Γk(γ)(γ)m+n,k

Γk(k − σ + υ + α + 2pk)(k − σ + υ + α + 2pk)m,k

]
.

= &p,kx
σ−υ−α+γ−α′

k −2p−1
∞∑

m=0

(α)m,k(β)m,k(1)m

(k − σ + υ + α + 2pk)m,k m!

∞∑
n=0

(α′)n,k(β′)n,k

n!

[Γk(k − σ + υ + α − γ + 2pk − nk)
Γk(k − σ + υ + α + 2pk)

]
.

(39)

By using the equation (14) in equation (39), we get

(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x)

= &p,kx
σ−υ−α+γ−α′

k −2p−1
∞∑

n=0

(α′)n,k(β′)n,k

n!
Γk(k − σ + υ + 2pk − β)Γk(k − σ + υ + α − γ + 2pk − nk)

Γk(k − σ + υ + α + 2pk − β)Γk(k − σ + υ + 2pk)
. (40)

Now, we use the equation (12) in equation (40), we have

(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x)

= &p,kx
σ−υ−α+γ−α′

k −2p−1
∞∑

n=0

(α′)n,k(β′)n,k(−1)n

(σ − υ − α + γ − 2pk)n,kn!
Γk(k − σ + υ + α − γ + 2pk)Γk(k − σ + υ + 2pk − β)

Γk(k − σ + υ + α + 2pk − β)Γk(k − σ + υ + 2pk)

= &p,kx
σ−υ−α+γ−α′

k −2p−1 Γk(σ − υ + γ − α − 2pk)Γk(σ − υ + γ − α − α′ − β′ − 2pk)
Γk(σ − υ + γ − α − α′ − 2pk)Γk(σ − υ + γ − α − β′ − 2pk)

Γk(k − σ + υ + α − γ + 2pk)Γk(k − σ + υ − β + 2pk)
Γk(k − σ + υ + α − β + 2pk)Γk(k − σ + υ + 2pk)

= &p,kx
σ+υ+γ−α−α′

k −2p−1 (k − σ + υ − γ + α + 2pk)α′,k
(k − σ + υ − γ + α + β′ + 2pk)α′,k

Γk(k − σ + υ + α − γ + 2pk)Γk(k − σ + υ − β + 2pk)
Γk(k − σ + υ + α − β + 2pk)Γk(k − σ + υ + 2pk)

= &p,kx
σ+υ+γ−α−α′

k −2p−1 Γk(k − σ + υ − γ + α + 2pk + α′k)Γk(k − σ + υ − γ + α + β′ + 2pk)Γk(k − σ + υ − β + 2pk)
Γk(k − σ + υ − γ + α + β′ + 2pk + α′k)Γk(k − σ + υ + α − β + 2pk)Γk(k − σ + υ + 2pk)

.(41)

By using equations (17) and equation (10) in (41), we get
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(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x)

=

∞∑
p=0

x
σ+γ−α−α′

k −1(−c)p( x
2 )

υ
k −2pΓk(k − σ + υ − γ + α + 2pk + α′k)Γk(k − σ + υ − γ + α + β′ + 2pk)Γk(k − σ + υ − β + 2pk)

Γk(pk + υ + k)Γk(k − σ + υ + α − β + 2pk)Γk(k − σ + υ − γ + α + β′ + 2pk + α′k)Γk(k − σ + υ + 2pk)
.

(42)

By using equation (17) in equation (42), we get the final result

(Iα,α
′,β,β′,γ

k,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = x
1
k (σ+υ+γ−α−α′)−1(2k)

−υ
k

3ψ
k
4

[
(k − σ + υ − β, 2), (k − σ + υ − γ + α + α′k, 2), (k − σ + υ + α + β′ − γ, 2)

( υk + 1, 1), (k − σ + υ − γ + α + α′k + β′, 2), (k − σ + υ − γ + α − β, 2), (k − σ + υ, 2)

∣∣∣∣∣ − c
4kx2

]
.

Corollary 3.2. Taking k = 1, c = 1 in Theorem (3.1), we get

(Iα,α
′,β,β′,γ

− [tσ−1 Jυ(
1
t

)])(x)) = xσ+υ+γ−α−α′−12−υ

× 3ψ4

[
(1 − σ + υ − β, 2), (1 − σ + υ − γ + α + α′, 2), (1 − σ + υ + α + β′ − γ, 2)

(υ + 1, 1), (1 − σ + υ − γ + α + α′ + β′, 2), (1 − σ + υ − γ + α − β, 2), (1 − σ + υ, 2)

∣∣∣∣∣ −1
4x2

]
.

Theorem 3.3. Let α, β, γ, υ, σ ∈ C, k > 0, c ∈ < and x > 0 be such that <(υ) > −1,<(α) > 0 and
<( σ−υk ) < 1 + min[<(β),<(γ)]. Then there holds the following relation:

(Iα,β,γk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = x
1
k (σ−υ−β)−1(2k)

−υ
k 2ψ

k
3

[
(k − σ + υ + β, 2), (k − σ + υ + γ, 2)

( υk + 1, 1), (k − σ + υ, 2), (1 − σ + υ + α + β + γ, 2)

∣∣∣∣∣ − c
4kx2

]
.

Proof. Consider the right sided Saigo fraction k-integral operator (4) with the product of power function
with Bessel k-function (16), we have

(Iα,β,γk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) =

∞∑
n=0

(−c)n( 1
2 )2n+ υ

k

Γk(nk + υ + k)n!

[ 1
Γk(α)

1
k

∫
∞

x
(t − x)

α
k −1t

−α−β
k 2F1,k(α + β,−γ;α; 1 −

x
t

)t
σ−υ

k −2n−1
]
dt

= &n,k
[ 1
kΓk(α)

∫
∞

x
t
α
k −1(1 −

x
t

)
α
k −1t

−α−β
k

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!
(1 −

x
t

)mt
σ−υ

k −2n−1
]
dt

= &n,k
[ 1
Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!
1
k

∫
∞

x
(1 −

x
t

)
α
k +m−1t

σ−υ+α−α−β
k −2n−2

]
dt. (43)

By putting u = x
t ⇒ dt = −xu−2du if t = x⇒ u = 1 if t = ∞⇒ u = 0 in (43), we obtain
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(Iα,β,γk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = &n,k
[ 1
Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!
1
k

∫ 0

1
(1 − u)

α
k +m−1(xu−1)

σ−υ−β
k −2n−2

]
(−xu−2)du

= &n,k
[x

σ−υ−β
k −2n−1

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!
1
k

∫ 1

0
u

k−σ+υ+β+2nk
k −1(1 − u)

α+mk
k −1

]
du. (44)

By using equation (7) in equation (44), we obtain

(Iα,β,γk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = &n,k
[x

σ−υ−β
k −2n−1

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!
βk(k − σ + υ + β + 2nk, α + mk)]

= &n,k
[x

σ−υ−β
k −2n−1

Γk(α)

∞∑
m=0

(α + β)m,k(−γ)m,k

(α)m,km!
Γk(k − σ + υ + β + 2nk)Γk(α + mk)
Γk(k − σ + υ + β + 2nk + α + mk)

]
. (45)

By using equations (12) and equation (14) in equation (45), we have

(Iα,β,γk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = &n,kx
σ−υ−β

k −2n−1
∞∑

m=0

(α + β)m,k(−γ)m,k(1)m

(k − σ + υ + β + 2nk + α)m,km!
Γk(k − σ + υ + β + 2nk)

Γk(k − σ + υ + β + 2nk + α)

=
Γk(k − σ + υ + γ + 2nk)Γk(k − σ + υ + β + 2nk)

Γk(k − σ + υ + 2nk)Γk(k − σ + υ + α + β + 2nk + γ)
. (46)

By using equations (10) and equation (17) in (46), we get

(Iα,β,γk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x)

= x
σ−υ−β

k −2n−1
∞∑

n=0

(−c)n( 1
2 )2n( 1

2 )
υ
k

k
υ
k +1+2n−1Γ( υk + 1 + n)n!

Γk(k − σ + υ + γ + 2nk)Γk(k − σ + υ + β + 2nk)
Γk(k − σ + υ + 2nk)Γk(k − σ + υ + α + β + γ + 2nk)

=
x
σ−υ−β

k −1

(2k)
υ
k

∞∑
n=0

[ Γk(k − σ + υ + γ + 2nk)
Γk( υk + 1 + n)Γk(k − σ

+υ + 2nk)
Γk(k − σ + υ + β + 2nk)

Γk(k − σ + υ + α + β + γ + 2nk)

] ( −c
4kx2 )n

n!
. (47)

By using equation (15) in equation (47), we get the final result

(Iα,β,γk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = x
1
k (σ−υ−β)−1(2k)

−υ
k 2ψ

k
3

[
(k − σ + υ + β, 2), (k − σ + υ + γ, 2)

( υk + 1, 1), (k − σ + υ, 2), (1 − σ + υ + α + β + γ, 2)

∣∣∣∣∣ − c
4kx2

]
.

Theorem 3.4. Let α, υ, σ ∈ C, k > 0, c ∈ < and x > 0 be such that <(υ) > −1,<(α) > 0, then there holds the
following relation:

(Iαk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = x
1
k (σ−υ+α)−1(2k)

−υ
k 1ψ

k
2

[
(k − σ + υ − α, 2)

( υk + 1, 1), (k − σ − υ, 2)

∣∣∣∣∣ − c
4kx2

]
.
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Proof. Consider the right sided Rieman Liuville fractional k-integral operator (6) with the product of power
function and Bessel k-function (16), we have

(Iαk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) =

∞∑
n=0

(−c)n( 1
2 )2n+ υ

k

Γk(nk + υ + k)n!

[ 1
kΓk(α)

∫
∞

x
(t − x)

α
k −1t

σ−υ
k −2n−1

]
dt

= &n,k
[ 1
Γk(α)

1
k

∫
∞

x
(1 −

x
t

)
α
k −1t

σ−υ+α
k −2n−2

]
dt. (48)

By putting u = x
t ⇒ dt = −xu−2du if t = x⇒ u = 1 and t = ∞⇒ u = 0 in (48), we have

(Iαk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = &n,k
[ 1
kΓk(α)

∫ 0

1
(1 − u)

α
k −1(xu−1)

σ−υ+α
k −2n−2(−xu)−2

]
du

= &n,k
[x

σ−υ+α
k −2n−1

Γk(α)
1
k

∫ 1

0
u

k−σ+υ−α+2nk
k −1(1 − u)

α
k −1

]
du. (49)

By using equation (7) in equation (49), we get

(Iαk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = &n,k
[x

σ−υ+α
k −2n−1

Γk(α)
βk(k − σ + υ − α + 2nk, α)

]
.

= &n,k
[x

σ−υ+α
k −2n−1

Γk(α)
Γk(k − σ + υ − α + 2nk)Γk(α)
Γk(k − σ + υ − α + 2nk + α)

]
. (50)

By using equations (10) and equation (17) in (50), we obtain

(Iαk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) =
x
σ−υ+α

k −2n−1

Γk(α)

∞∑
n=0

(−c)n( 1
2 )2n( 1

2 )
υ
k

k2n+ υ
k Γ(n+ υ

k +1)n!

Γk(k − σ + υ − α + 2nk)Γk(α)
Γk(k − σ + υ + 2nk)

= x
σ−υ+α

k −2n−1
∞∑

n=0

(−c)n( 1
2 )2n( 1

2 )
υ
k

k2n+ υ
k n!

Γk(k − σ + υ − α + 2nk)
Γ(n + υ

k + 1)Γk(k − σ + υ + 2nk)

=
x
σ−υ+α

k −2n−1

(2k)
υ
k

∞∑
n=0

[
Γk(k − σ + υ − α + 2nk)

Γ(n + υ
k + 1)Γk(k − σ + υ + 2nk)

] ( −c
4kx2 )n

n!
. (51)

By using equation (15) in equation (51), we get the final result

(Iαk,0− [t
σ
k −1Wk

υ,c(
1
t

)])(x) = x
1
k (σ−υ+α)−1(2k)

−υ
k 1ψ

k
2

[
(k − σ + υ − α, 2)

( υk + 1, 1), (k − σ − υ, 2)

∣∣∣∣∣ − c
4kx2

]
.

Conclusion

In this paper, we have derived generalized k-fractional integral operators involving Appell k-function
as its kernels with Bessel k-function. We have proved some composition formulae for Saigo, Riemann-
Liouville k-fractional integral operators. The results have been established in terms of generalized k-Wright
hypergeometric function. Furthermore if we take k = 1, then we find out the results which are discussed in
the form of corollaries (2.2) and (3.2).
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Abstract. Modeling everyday life processes play a great role in human existence. Thus, distribution theory
has helped to understand how our everyday life processes are distributed. However, this depends on how
researchers in distribution theory compound several distributions to derive a more flexible distribution.
This study proposes the alpha power Weibull Frechet distribution for real-life datasets. However, some
statistical structural properties of the model such as kurtosis, hazard rate and odd functions, cumulative,
quantiles, reversed hazard, skewness, order statistics and survival function were derived. The parameters
of the proposed model were obtained using the maximum likelihood method. The behavioural nature
of the model was studied through simulation. Finally, a two real life data was used to investigate the
performance of the proposed model. The results show that the new model performs better than some
existing continuous models in statistical literature.

1. Introduction

Integral representations of solutions for differential equations and operators are used in many scientific
fields [1, 2]. Several methods for generating family of univariate distributions were based on differential
equation (Pearson 1895). Of most important, is the translation method proposed in [3] . This method is
based on quantile function that was developed in [4]. Lifetime processes have received several attentions
through modeling the way and manner in which they are distributed, thus developing a flexible distribution
depending on how the researcher compounds one or more distribution(s) to form a better or a comparable
distribution [5]. The Weibull distribution plays a very important role in modeling lifetime processes. The
Weibull distribution was proposed by a famous statistician called Weibull [6]. This Weibull

distribution has a wide range of applications in modelling lifetime processes, failure time processes,
survival time, mechanical and electrical systems and machine learning. More so, the Frechet distribution is
used in modeling extreme value theory. Its applications ranging from horse racing accelerated life testing in
earthquakes, floods, rainfall, queues in supermarkets, wind speed and sea waves. The Frechet distribution
can also be used in modelling material properties in engineering materials.
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Let S be a random variable, say s > 0. Then, the Frechet distribution is defined as

1(s, α, β) = βαβs−beta−1exp
[
−(
α
s

)β
]
α, β > 0. (1)

The corresponding cdf is expressed as

G(s, α, β) = exp
[
−(
α
s

)β
]
α, β > 0, (2)

where α and β are the scale and shape parameters respectively.
More so, the Weibull pdf with the parameters α > 0 and β > 0 is defined as

f (s, λ, β) = λγsγ−1exp(−γsγ−1); λ γ > 0. (3)

The cdf that corresponds to the Weibull pdf is given as

F(s, λ, β) = 1 − exp(−γsγ); λ γ > 0 (4)

where λ and γ are the shaped and scale parameters respectively.
[7] Proposed the Weibull Frechet (WFr) distribution and obtained the its pdf as

f (s) = ψbβτβs−β−1exp
[
−b(

τ
s

)β
]{

1 − exp
[
−(
τ
s

)β
]}−b−1

exp
[
−ψ

[
exp

[
(
τ
s

)β
]
− 1

]−b]
(5)

The corresponds cdf is expressed as

F(s) = 1 − exp
[
−ψ

[
exp

[
(
τ
s

)β
]
− 1

]−b]
, (6)

whereτ is the scale parameter,β, ψ and b are the shape parameters.
The alpha power transformation (AP) was proposed in [8]. The pdf of the alpha power transformed

family of distribution is given as

fAP(s) =


1(s) logα

(α−1)α
G(s), if α ∈ (<+

− (1))

1(s), otherwiseα = 1.

(7)

The corresponding cdf is defined as

FAP(s) =
αG(s)

− 1
α − 1

α ∈ (<+
− (1)) . (8)

Otherwise, F(s), for α = 1 where 1(s) is the baseline pdf and G(s) is the baseline cdf.
Several research works have been done in literature researched. [9] Proposed the Weibull-G family

of distribution. The alpha power inverted exponential distribution was proposed in [10]. Gompertz-G
distribution was proposed in [11]. Gompertz alpha power inverted exponential distribution was proposed
in [12]. The extended new generalized exponential distribution was proposed in [13]. The Weibull alpha
power inverted exponential distribution was proposed in [14]. Alpha power Weibull distribution was
proposed in [15].

However, many distributions have been proposed in literature to extend distributions that are significant
to the progress of distribution frontiers and to make life more meaningful. Thus, this study set up a model
called alpha power Weibull Frechet (APWF) distribution to push back the frontiers of knowledge in data
science, data analysis and distribution theory.
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Figure 1: The APWF density for different parameter values cases

This study was motivated by studies and events obtained from some literature research in probability
and distribution theories. However, the APWF model was proposed to push back the frontiers of knowledge
in data science, data analysis and distribution theory by addition of a parameter to improve the existing
models using the AP characterization.

The aim of this study was to introduce a class of Frechet distribution in distribution theory together
with its mathematical properties. It worthy to note that this study was proposed to address APWF model,
since, say , we obtained the usual WFr model.

2. The APWF Distribution

This section proposed a class of the Frechet family of distribution called APWF model. Let s1, s2, s3, · · · sn
be a random sample of the APWF distribution. Then, the pdf of the APWF is given as

fAPWF(s) =ψbβτβs−β−1exp
[
−b(

τ
s

)β
]{

1 − exp
[
−(
τ
s

)β
]}−b−1

exp
[
−ψ

[
exp

[
(
τ
s

)β
]
− 1

]−b]

×
logα

(α − 1)
α

[
1−exp

[
−ψ

[
exp

[
( τs )β

]
−1

]−b]]
, α ∈ (<+

− (1)).

(9)

Figure 1 shows the plot of the pdf for different parameter values cases. In Figure 1, the shape of the pdf
could be increasing, decreasing, unimodal and symmetrical depending on the parameter values.

The cdf that corresponds to Equation (9) is given as

FAPWF(s) =
{
α

[
1−exp

[
−ψ

[
exp

[
( τs )β

]
−1

]−b]]
− 1

}
(α − 1)−1, α ∈ (<+

− (1)). (10)
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3. Mathematical Mixture Representation

In this section, we expressed the APWF distribution in power series. First and foremost, we expressed
the Weibull Frechet distribution before the proposed distribution is addressed. Thus, the Equation (5) can
be defined as

f (s) = ψbβτβs−(β+1)exp
[
−b(

τ
s

)β
]
exp

[
−ψ

[ exp
[
−( τs )β

]
1 − exp

[
−( τs )β

] ]b]{
1 − exp

[
−(
τ
s

)β
]}−(b+1)

(11)

Let the middle quantity in Equation (11) be A. Then, expanding the exponential function in A, we
expressed

A =

∞∑
k=0

(−1)kαk

k!

exp
[
−bk( τs )β

]
[
1 − exp

[
−b( τs )β

]]kb
. (12)

Inserting the Equation (12) into Equation (11), we have

f (s) = bβτβs−(β+1)
∞∑
ξ=0

(−1)ξαξ+1

ξ!
exp

[
−(ξ + 1)b(

τ
s

)β
][

1 − exp
[
−(
τ
s

)β
]]−(ξb+b+1)

(13)

Further expansion of the last quantity in power series gives

f (s) = bβτβs−(β+1)
∞∑
j=0

∞∑
ξ=0

(−1)ξΨξ+1
[
(ξ + 1)b + 1

] j

j!ξ!
exp

[
−[(ξ + 1)b + j](

τ
s

)β
]
, (14)

where Ψ j =
Γ(Ψ+ j)
Γ(Ψ) is the rising factional for any real Ψ.

However, the Equation (14) can be expressed as

f (s) = β[(ξ + 1)b + j]τβ
∞∑
j=0

∞∑
ξ=0

υ j,ξs−(β+1)exp
[
−[(ξ + 1)b + j](

τ
s

)β
]
, (15)

where

υ j,ξ =

(−1)ξΨξ+1
[
(ξ + 1)b + 1

] j

j!ξ![(ξ + 1)b + j]
. (16)

Thus the Equation (11) reduces to

f (s) =

∞∑
j=0

∞∑
ξ=0

υ j,ξh(ξ+1)b+ j(s), (17)

where is the scale parameter α[(ξ + 1)b + j]
1
β of the Frechet distribution h(ξ+1)b+ j(s) and shape parameter β .

Integrating Equation (17), the cdf of can be expressed as

F(s) =

∞∑
j=0

∞∑
ξ=0

υ j,ξH(ξ+1)b+ j(s), (18)
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where

h(s) = ψbβτβs−(β+1)exp
[
−b(

τ
s

)β
]{

1 − exp
[
−(
τ
s

)β
]}−(b+1)

(19)

and

H(s) = Ψ
{
exp

[
(
τ
s

)β
]
− 1

}−b

. (20)

Also, αG(s) can be written as

αG(s) =

∞∑
i=0

(logα)iG(s)i

i
, (21)

where G(s) is the baseline pdf. Hence, F(s)i in Equation (18) can be expressed as

F(s)i =

∞∑
j=0

∞∑
ξ=0

υi
j,ξH

i
(ξ+1)b+ j(s). (22)

Hence, Equation (21) becomes

αG(s) =

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

(logα)i

i
υi

j,ξH
i
(ξ+1)b+ j(s). (23)

However, the pdf of the APWF distribution is given in mixture representation as

fAPWF(s) =
logα

(α − 1)
1(s)αG(s) =

1
α − 1

∞∑
i=0

∞∑
j=0

∞∑
ξ=0

(logα)i+1

i
υi+1

j,ξ h(ξ+1)b+ jHi
(ξ+1)b+ j(s) (24)

The corresponding cdf is defined as

FAPWF(s) =
1

α − 1

( ∞∑
i=0

∞∑
j=0

∞∑
ξ=0

(logα)i+1

i
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

)
(25)

where H(ξ+1)b+ j(s) is the Frechet cdf with scale parameter α[(ξ + 1)b + j]
1
β and shape parameter β .

4. Mathematical Properties

This section investigates the properties of the APWF density. The structural properties of the APWF
density was computed efficiently by using programming software like R, Maple, Matlab and Mathematical.

4.1. The Quantile and Random Number Generation of the APWF Distribution

Let S be a random variable such that S ∼ APWF(ψ, b, β, τ, α). Then, the quantile function of the variable
S for µ ∈ (0.1) is given as

sµ = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
µ
(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]
. (26)

By setting µ = 0.5 in Equation (26), we obtain the median of the random variable S is obtained as

s0.5 = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
0.5

(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]
. (27)
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However, the 25th and 75th percentile for the random variable of the APWF distribution are obtained
as

s0.25 = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
0.25

(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]
, (28)

s0.75 = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
0.75

(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]
. (29)

Simulating the APWF random variable deviate from a uniform variates on the interval (0, 1). The Bowley’s
formula for finding the coefficient of skewness is given as

Sk(s) =
x0.75 + x0.25 − 2x0.5

x0.75 − x0.25
. (30)

The corresponding Moor’s formula for coefficient of Kurtosis is given as

Kk(s) =
x0.875 − x0.625 + x0.125 − x0.375

x0.75 − x0.25
. (31)

4.2. Survival and Reliability Function
The reliability function of the APWF random variable X is given as

RAPWF(s) =
1

(α − 1)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logα
i!

υ j,ξH(ξ+1)b+ j(s)
)i)
. (32)

4.3. Hazard Rate Function of the APWF Distribution
The failure rate function of the APWF random variable is given as

hAPWF(s) =

∞∑
i=0

∞∑
j=0

∞∑
ξ=0

( (logα)i+1υi+1
j,ξ h(ξ+1)b+ j(s)Hi

(ξ+1)b+ j(s)
)

i!
(
α −

(
logα

i! υ j,ξH(ξ+1)b+ j(s)
)i) )

(33)

Figure 2 shows the plot for the hazard rate function of the APWF distribution.

4.4. APWF Cumulative Hazard Function
The Cumulative hazard function of the APWF distribution is given as

HAPWF(s) = log(α − 1) − log
[
α −

∞∑
i, j,ξ=0

(
logαυ j,ξ + H(ξ+1)b+ j(s)

)i]
(34)

4.5. APWF Reversed Hazard Function
The Reversed Hazard Function of the APWF distribution is the ratio of the pdf of the APWF distribution

to the cdf of the APWF distribution. Thus,

rAPWF(s) =

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[ [log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+1(s)Hi
(ξ+1)b+ j(s)

][ [log(α]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]−1

. (35)

4.6. APWF Odds Function
The Odds function of the APWF distribution is given as

OAPWF(s) = FAPWF(s)RAPWF(s)−1, (36)

where RAPWF(s) is the APWF reliability function.
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Figure 2: The hazard rate function of the APWF distribution for different parameter values

4.7. The APWF Order Statistics

Let s1, s2, s3, · · · , sn be a APWF random variable from a finite population which has the value f (s) at s,
then the pdf of the pth order statistics is given as

1p(s) =
n!

(p − 1)!(n − p)!

[ 1
(α − 1)

]n[ ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]p−1

×

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logαυ j,ξH(ξ+1)b+ j(s)
i!

)i)n−p

.

(37)

The following is observed for p = 1, we obtained the minimum order statistics distribution as

11(s) =
n!

(n − p)!

[ 1
(α − 1)

]n ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logαυ j,ξH(ξ+1)b+ j(s)
i!

)i)n−1

.

(38)
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p = n we obtained the maximum order statistics distribution as

1n(s) =
n!

(n − 1)!

[ 1
(α − 1)

]n[ ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]n−1

×

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s).

(39)

When n is odd. n = 2m + 1 ,and setting p = m + 1 , then the distribution of median is given as

1p(s) =
(2m+)!
m!m!

1
(α − 1)2m+1

[ ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]m

×

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logαυ j,ξH(ξ+1)b+ j(s)
i!

)i)m

.

(40)

when n is even, n = m2m and p = m + 1

1m+1(s) =
2m!

m!m!

[ 1
(α − 1)

]2m[ ∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i

i!
υi

j,ξH
i
(ξ+1)b+ j(s) − 1

]m

×

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

[log(α)]i+1

i!
υi+1

j,ξ h(ξ+1)b+ j(s)Hi
(ξ+1)b+ j(s)

(
α −

∞∑
j=0

∞∑
i=0

∞∑
ξ=0

( logαυ j,ξH(ξ+1)b+ j(s)
i!

)i)m−1

.

(41)

4.8. Probability Weighted Moments (PWM)

The PWM is a function can be used to obtain the parameter and quantiles function of a particular
distribution that may not be obtained in a closed form. The (µ, υ)th of PWM of random variable S is defined
as

ρ(µ, υ) =

∫
∞

0
sµ f (s)Fυ(s)ds =

∞∑
i,m=0

∞∑
j,ξ=0

Γ
(
1 −

µ

β

)
ti, j,ξ,mτ

µ
[
(ξ + 1)b + j

] µ
β (logα)i+1

(α − 1)i!
,

where

ti, j,ξ,m =
[
(ξ + 1)b + j + 1

] j (−1)ξ+m+1bψξ+1( j + 1)ξ

j!ξ!((ξ + 1)b + j)

[
(ξ + 1)b + 1

] µ
β−1

(
υ
i

)(
i

m

)
.

4.9. Parameter Estimation of the APWF Distribution

The parameter of the APWF distribution are obtained by maximum likelihood (MLE) method as follows:
Let s1, s2, s3, · · · , sn be a APWF random sample from an infinite population with a pdf f (s) at the point s with
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distribution of the vector APWF of parameter θ(ψ, b, β, τ, α)T , then the likelihood function is given as

n∏
i=1

f (s, ψ, b, β, τ, α) =ψnbnβnτnβ(logα)n 1
(α − 1)n

×

n∏
i=1

s−(β+1)
i exp

[ n∑
i=1

[
−b(

τ
si

)β
]] n∏

i=1

{
1 − exp

[
−(
τ
si

)β
]}−b−1

×exp
[ n∑

i=1

−ψ
{
exp

[(
τ
si

)β]
− 1

}−b]
α

∑n
i=1

[
1−exp

[
−ψ

{
exp

[
( τsi

)β
]
−1

}b]] (42)

Let ` denotes the log-likelihood function, then

` =n logψ + n log b + n log β + nβ log τ − n log(α − 1) + n log(logα) − (β + 1)
n∑

i=1

log si

n∑
i=1

[
−b

(
τ
si

)β]
+ (1 − b)

n∑
i=1

log
[
1 − exp

[
−

(
τ
si

)b]]
−

n∑
i=1

ψ
[
exp

[(
τ
si

)β]
− 1

]−b

+

n∑
i=1

[
1 − exp

[
−ψ

{
exp

[
(
τ
si

)β
]
− 1

}b]]
logα

(43)

However, taking the partial derivation of the Equation (43) with respect to the parameter ψ, b, β, τ and
α and equation to zero, we have

∂`
∂ψ

=
n
ψ
−

n∑
i=1

[
exp

[(
τ
si

)β]
− 1

]−b

= 0, (44)

∂`
∂b

=
n
b
−

n∑
i=0

(
τ
si

)β
−

n∑
i=0

log
[
1 − exp

[
−

(
τ
si

)β]]
+

n∑
i=1

ψ
[
exp

[(
τ
si

)β]
− 1

]−b

log
[ n∑

i=1

ψ
[
exp

[(
τ
si

)β]
− 1

]]
, (45)

∂`
∂β

=
n
β

+ n log τ −
n∑

i=1

log si +

n∑
i=1

[
−b

(
τ
si

)β]
log

[
−b

(
τ
si

)β]
+ (1 − b)

n∑
i=1

S′iβ
Si
−

n∑
i=0

p′iβ +

n∑
i=1

z′iβ, (46)

∂`
∂τ

=
nβ
τ
−

n∑
i=1

( b
si

)β
τβ−1 + (1 − b)

n∑
i=1

S′iτ
Si
−

n∑
i=0

p′iτ +

n∑
i=1

z′iτ, (47)

∂`
∂α

= −
n

α − 1
+ ψ′α + α−1

n∑
i=1

zi

lo1α
= 0, (48)

where
ψ = n log(logα),

Si = 1 − exp
[
−

(
τ
si

)β]
,

pi = ψ
[
exp

[(
τ
si

)β]
− 1

]β
,

zi =
[
1 − exp

[
−ψ

{
exp

[
(
τ
si

)β
]
− 1

}b]]
logα.
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5. Simulation Study and Real Life Applications

A simulation was carried out to test the flexibility and efficiency of the APWF distribution. Table 1 shows
the simulation for different values of parameters for the APWF distribution. The simulation is performed
as follows:

• Data are generated using

• xµ = τ
[
log

[[
−ψ−1 log

[
1 −

(
logα

)−1

log
[
µ
(
α − 1

)
+ 1

]]] 1
b

+ 1
] 1
β
]

0 < u < 1

• The values of the parameters are set as α = 0.5, τ = 2.0, ψ = 1.5, b = 0.5, and β = 3.0.

• The APWF random sample sizes were taken as n = 50, 100, 150, and 350.

• Each APWF random sample is replicated 5000 times.

In this simulation study, we investigated the mean estimates (MEs), variance, biases and means squared
errors (RMSEs) of the maximum likelihood estimate (MLEs).

The bias is calculated by for (S = α, τ, ψ, b, β)

B̂ias =
1

5000

5000∑
i=1

(
Ŝi − S

)
.

Also, the MSE is obtained as

M̂SE =
1

5000

5000∑
i=1

(
Ŝi − S

)2

.

Table 1 shows the simulation results for the Mean, Biases, Variances and MSE of the MLEs of APWF
model for some fixed parameter values. The results of the APWF Monte Carlo study in Table 1 shows
the MSEs and the biases decrease as the sample size increases and approach zero that corresponds to the
first-order asymptotic theory. The mean estimates of the parameters approach the true parameter values as
the sample size increases. The variance decreases in all the cases as the sample size increases.

5.1. Real life applications
The performance of the APWF model was examined with other competing distributions using the gas

fiber and carbon data real-life datasets. We considered the Akaike Information Criteria (AIC), Consistent
Akaike Information Criteria (CAIC), Bayesian Information Criteria (BIC), Hannan-Quinn Information Cri-
teria (HQIC), The Anderson Darling (A) statistic, Cramer-von Mises statistic (W), Kolmogorov Smirnov (KS)
statistic, Log-likelihood and the P value to compare the fits of the APWF model to other competing models
such as the Gompertz Weibull (GOW), Weibull Frechet (WFr), Kumaraswamy Lomax (KL), Gompertz (GL),
Beta Lomax (BL), and the Alpha Power Inverted Exponential (APIE) distributions.

5.1.1. First set of data is glass fiber data
Datasets were collected for 1.5 cm strengths of glass fibres data at the UK National Physical Laboratory

and was used to test the performance of the APWF distribution as used in [16- 20] .
Table 2 is the measure of comparison for the various distributions under consideration with APIE as

alpha power inverted exponential.
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Table 1: Simulation results: mean estimates (AE), biases, Variance and mean squared errors (MSE) of α̂, ψ̂, b̂, τ̂ and β̂

Sample size Parameter AE Bias Variance MSE
α = 0.5 0.3788 -0.1212 0.0484 0.0631
τ = 2.0 1.8534 -0.1466 0.3809 0.4024

50 b= 0.5 0.5646 -2.4354 0.2211 6.1521
ψ = 1.5 1.2534 -0.2466 0.2564 0.3172
β = 3.0 1.6367 1.1367 0.3772 1.6692
α = 0.5 0.3866 -0.1134 0.0408 0.0537
τ = 2.0 1.9041 -0.0959 0.2558 0.2650

100 b= 0.5 0.4993 -2.5007 0.1585 6.4120
ψ = 1.5 1.2571 -0.2429 0.1206 0.1795
β = 3.0 1.5858 1.0858 0.1951 1.3741
α = 0.5 0.4062 -0.0938 0.0433 0.0521
τ = 2.0 1.9177 -0.0823 0.1878 0.1945

150 b= 0.5 0.5215 -2.4785 0.1457 6.2888
ψ = 1.5 1.2847 -0.2153 0.0692 0.1155
β = 3.0 1.5570 1.0570 0.1239 1.2412
α = 0.5 0.4575 -0.0425 0.0439 0.0457
τ = 2.0 1.9665 -0.0335 0.0858 0.0869

350 b= 0.5 0.5285 -2.4715 0.0992 6.2074
ψ = 1.5 1.3219 -0.1781 0.0255 0.0572
β = 3.0 1.4698 0.9698 0.0325 0.9731
α = 0.5 0.4841 -0.0159 0.0393 0.0396
τ = 2.0 1.9681 -0.0319 0.0671 0.0681

500 b= 0.5 0.5089 -2.4911 0.0993 6.3051
ψ = 1.5 1.3464 -0.1536 0.0149 0.0385
β = 3.0 1.4609 0.9609 0.0238 0.9472

Table 2: The performace rating of the APWF distribution with
glass fibres dataset

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

APWF ψ̂ = 11.049
b̂ = 0.1156
β̂ = 0.3353 37.3734 38.4260 48.0891 41.5880 0.1808 0.9911
τ̂ = 10.098
α̂ = 0.3012

Gompertz Weibull α̂ = 0.2245
β̂ = 0.0092

38.3769 39.0666 46.9495 41.7486 0.2330 1.2832
ψ̂ = 0.7973
b̂ = 5.6176

Gompertz Lomax α̂ = 0.0046
β̂ = 8.1791

39.0055 37.6951 45.5780 40.3771 0.1685 0.9462
â = 0.5070
b̂ = 1.5158

Weibull Frechet α̂ = 3.61218
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Table 2 – Continued from previous page
Distribution Parameter MLEs AIC CAIC BIC HQIC W A

m̂ = 25.1859
39.0276 39.7812 47.3686 42.1676 0.2472 1.3566

β̂ = 0.1623
â = 0.2131

Kumaraswamy Lomax α̂ = 9.8352
β̂ = 45.3107

44.2055 44.8951 52.7779 47.5771 1.6446 1.9915
â = 15.1182
b̂ = 0.0483

Beta Lomax α̂ = 18.1737
β̂ = 26.7645

56.8068 57.4964 65.3793 60.1784 2.5426 3.1986
â = 10.8769
b̂ = 0.0329

APIE α̂ = 53.5634
λ̂ = 0.3509 196.3253 196.5253 200.611 198.0111 0.7775 4.2384

Table 3: Test statistic for the APWF distribution with glass fibres dataset

Distribution KS p-Value Log-likelihood
APWF 0.1236 0.2910 13.6867

Gompertz Weibull 0.1521 0.1087 15.1887
Gompertz Lomax 0.1542 0.0998 14.5027
Weibull Frechet 0.1552 0.0960 14.8177

Kumaraswamy Lomax 0.1854 0.0263 18.1027
Beta Lomax 0.2182 0.0049 24.4034

Alpha power inverted exponential 0.4646 3.0e-12 96.1627
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Figure 3: A plot of APWF distributions with the empirical histogram of the glass fibres data
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Figure 4: The fitted cdf of the APWF model for the glass data set

5.1.2. Second set of data carbon data
Our second set of data is from [21]. It consists of 100 observations taken on breaking stress of carbon

fibers (in Gba). Table 4 and Table 5 are the goodness-of-fit and the performance rating of the APWF
distribution using several test statistics for the carbon fibers dataset.

Table 4: Test statistic for the APWF distribution with glass fibres dataset

Distribution KS p-Value Log-likelihood
APWF 0.06082131 0.8687617 141.3111

Gompertz Weibull 0.0632502 0.8185524 141.2822
Gompertz Lomax 0.06365319 0.8125448 142.4323
Weibull Frechet 0.06251348 0.8293575 141.3857

Kumaraswamy Lomax 0.07543761 0.6198049 141.484
Beta Lomax 0.17654926 0.00459718 156.7625

Alpha power inverted exponential 0.3503104 4.384659e-11 209.1656



J. T. Eghwerido, O. T. Utoyo-Amrevugherea, E. Efe-Eyefia / TJOS 5 (3), 170–185 183

Table 5: The performace rating of the APWF distribution with
glass fibres dataset

Distribution Parameter MLEs AIC CAIC BIC HQIC W A

APWF ψ̂ = 0.4603
b̂ = 2.7010
β̂ = 0.6398 282.3754 283.0137 295.4013 287.6472 0.0609 0.3719
τ̂ = 0.9554
α̂ = 6.1598

Gompertz Weibull α̂ = 2.2594
β̂ = −0.2017

290.6544 290.9854 300.985 294.7818 0.0648 0.3834
ψ̂ = 0.2650
b̂ = 2.9808

Gompertz Lomax α̂ = 0.0091
β̂ = 5.0656

292.8646 293.2857 303.2853 297.0821 0.0611 0.4763
â = 1.9848
b̂ = 0.6471

Weibull Frechet α̂ = 0.6942
m̂ = 3.5178

294.6000 295.0000 305.0000 298.8000 0.06892 0.4169
β̂ = 0.6178
â = 0.0947

Kumaraswamy Lomax α̂ = 3.7970
β̂ = 24.367

295.9681 291.3891 301.3888 295.1855 0.0842 0.4532
â = 0.0334
b̂ = 6.0885

Beta Lomax α̂ = 18.1737
β̂ = 26.7645

315.0974 317.4653 320.1753 317.4653 1.0896 2.0088
â = 10.8769
b̂ = 0.0329

APIE α̂ = 11.0025
λ̂ = 0.8694 422.3312 422.455 427.5416 424.44 0.3726 2.0427

6. Discussion

The performance of a model is determined by the value that corresponds to the highest Log-likelihood
or the lowest Akaike Information Criteria (AIC) value is considered as the best model. In the two real
life cases considered, the APWF distribution has the lowest AIC value with 37.37339 in glass fibres data
and 282.3754 in carbon data respectively. Also, the APWF has the value of log-likelihood as 13.68669 and
136.1877 for glass fibres and carbon data respectively. Hence, it competes favourably with other existing
model for the data used.

7. Conclusion

The concept of the APWF distribution has been defined, introduced and studied. The mathematical
expression for the pdf and cdf were examined. The statistical properties which include the order statistics



J. T. Eghwerido, O. T. Utoyo-Amrevugherea, E. Efe-Eyefia / TJOS 5 (3), 170–185 184

 

x

 f
(x

)

0 1 2 3 4 5 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5 APWF

WFr

GOW

GL

KL

BL

APIE

Figure 5: A plot of APWF distributions with the empirical histogram for the carbon data
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Figure 6: The fitted cdf of the APWF model for the carbon data set

distribution, cumulative hazard function, quantile, reversed hazard function, median, hazard rate func-
tion and odds function have been derived. The shape of the distribution could be inverted bathtub or
decreasing. An application of the APWF model on a two real life data shows that the APWF distribution
competes favourably with the Gompertz Weibull and Exponential, and better than the Kumaraswamy
Lomax distribution, Beta Lomax distribution and some other families of distributions.
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Abstract. In this paper, we consider the inverse spectral problem for the impulsive Sturm-Liouville

differential pencils on [0, π] with the Robin boundary conditions and the jump conditions at the point
π
2

.
We prove that two potentials functious on the whole interval and the parameters in the boundary and
jump conditions can be determined from a set of eigenvalues for two cases: (i) The potentials is given on(
0,
π
4

(
α + β

))
. (ii) The potentials is given on

(
α + β,

α + β

2

)
, where 0 < α + β < 1, α + β > 1 respectively.

Finally, was given interior inverse problem for same boundary problem.

1. Introduction

We consider the impulsive quadratic pencils of Sturm-Liouville operator of the form

ly := −y′′ +
[
q (x) + 2λp (x)

]
y = λ2ρ (x) y , x ∈

[
0,
π
2

)
∪

(
π
2
, π

]
(1)

with the boundary conditions

U
(
y
)

:= y
′

(0) − hy(0) = 0 (2)

V
(
y
)

:= y
′

(π) + Hy(π) = 0 (3)

and the jump conditions

y
(
π
2

+ 0
)

= ay
(
π
2
− 0

)
(4)

y
′

(
π
2

+ 0
)

= a−1y
′

(
π
2
− 0

)
+ γy

(
π
2

)
Where λ is the spectral parameter, p (x) ∈ W1

2 [0, π] , q (x) ∈ L2 [0, π] are real valued functions, h,H ∈
R, a, γ, α, β are real numbers, 0 < α < β < 1, α + β > 1, a > 0, |a − 1|2 + γ2 , 0 and
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ρ(x) =

 α2, 0 < x <
π
2

β2,
π
2
< x < π,

Here we denote by Wm
2 [0, π] the space of functions f (x) , x ∈ [0, π] such that the derivatives f (m) (x)

(
m = 0,n − 1

)
are absolute continuous and f (n) (x) ∈ L2 [0, π] .
We can get p (0) = 0without general exposure, otherwise, if c0 = p (0) , 0by direct calculation we note that
equations (1) is equivalent to

ly := −y′′ +
[
q (x) + 2p (x) c0 − c2

0 + 2 (λ − c0)
(
p (x) − c0

)]
y = (λ − c0)2 ρ (x) y (5)

Let

q̂ (x) = q (x) + 2p (x) c0 − c2
0, p̂ (x) = p (x) − c0, λ̂ = λ − c0

then for the problem with the form (5) we have p̂ (0) = 0.
Inverse spectral problems consist in recovering the coefficients of an operator from their spectral char-

acteristics. The first results on inverse problems theory of classical Sturm-Liouville operator where given
by Ambarzumyan and Borg (see[13, 24]) . Inverse Sturm-Liouville problems which appear in mathematical
physics, mechanics, electronics, geophysics an other branches of natural sciences have been studied for
about ninety years (see[8, 9, 12]) .

The half inverse Sturm-Liouville problem which is one of the important subjects of the inverse spectral
theory has been studied firstly by Hochstadt and Lieberman in 1978 [see[20]] . They proved that spectrum
of the problem

−y
′′

+ q(x)y = λy, x ∈ (0, 1)

y
′

(0) − hy(0) = 0 = y
′

(1) + Hy(1)

and potential q (x) on the
(1

2
, 1

)
uniquely determine the potential q (x) on the whole interval [0, 1] almost

everywhere. Since then, this result has been generalized to various versions. In 1984, Hald [15] proved
similar results in the case when there exist a impulse conditions inside the interval. He also gave some
applications of this kinds of problem to geophysics. Recently, some new uniqueness results in inverse
spectral analysis with partial information on the potential for some classes of differential equations have
been given

(
see for example [18, 25, 32]

)
. These kinds of results are known as Hochstadt and Lieberman

type theorems. In particulary, in the work [6] studied the inverse spectral problem for the impulsive Sturm-
Liouville problem on (0, π) with the Robin boundary conditions and the jump conditions at the point

π
2

.
They proved that the potential q (x) on the whole interval and the paremeters in the boundary conditions
and jump conditions can be determined from a set of eigenvalues for two cases:

i) The potential q (x) is given on
(
0,

1 + α
4

π
)
,

ii) The potential q (x) is given on
(1 + α

4
π, π

)
, where 0 < α < 1,

and also shown that the potential and all the parameters can be uniquely recovered by one spectrum
and some information on the eigenfunctions at some interior point. Similary problem studied in [25]. In
particulary, they discuss Gesztesy-Simon theorem and show that if the potential function q(x) is preseribed

on the interval
[

π
2 (1 − α)

, π

]
for some α ∈ (0, 1) , then parts of a finite number of spectra suffice to determine

q(x) on [0, π] .
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2. Preliminaries

Let ϕ(x, λ) and ψ (x, λ) be the solutions of the equation (1), satisfying the initial conditions
ϕ(0, λ) = 1, ϕ′(0, λ) = h, ψ (π, λ) = 1, ψ′(π, λ) = −H and the jump condition (4). Denote

σ (x) =
∫ x

0

√
ρ (t)dt,τ = Imλ, for every λ ∈ C

It is shown in [2] if q (x) ∈ L2 [0, π] and p (x) ∈ W1
2 [0, 1] for every λ ∈ C,that there exist funvtions

A (x, t)and B (x, t) whose first order partial derivatives are summable on [0, π] for each x ∈ [0, π] such that

ϕ (x, λ) = ϕ0 (x, λ) +

∫ σ(x)

0
A (x, t) cosλtdt +

∫ σ(x)

0
B (x, t) sinλtdt (6)

Where

ϕ0 (x, λ) =



cos
[
λσ (x) − w+(x)

√
ρ(x)

]
+ h

λα sin
[
λσ (x) − w+(x)

√
ρ(x)

]
, 0 ≤ x < π

2

a+ cos
[
λσ (x) − w+(x)

√
ρ(x)

]
+ a− cos

[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]
+ h
λα

{
a+ sin

[
λσ (x) − w+(x)

√
ρ(x)

]
+ a− sin

[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]}
, π2 < x ≤ π

(7)

and a± = 1
2

(
a ± α

aβ

)
, w+ (x) =

∫ x

0 p (t) dt, w− (x) =
∫ x
π
2

p (t) dt
It easy to verify from the integral representation (6) above that the solution ϕ (x, λ) following asimptotic
relation is valid as |λ| → ∞. For π

2 < x ≤ π

ϕ (x, λ) = a+ cos
[
λσ (x) − w+(x)

√
ρ(x)

]
+ a− cos

[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]
+ h
λα

{
a+ sin

[
λσ (x) − w+(x)

√
ρ(x)

]
+ a− sin

[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]}
+O

(
λ−2 exp (|τ| σ (x))

) (8)

ϕ′ (x, λ) = −a+
(
λβ − 1

βp (x)
)

sin
[
λσ (x) − w+(x)

√
ρ(x)

]
+a−

(
λβ − 1

βp (x)
)

sin
[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]
+ h
λαa+

(
λβ − 1

βp (x)
)

cos
[
λσ (x) − w+(x)

√
ρ(x)

]
−

h
λαa−

(
λβ − 1

βp (x)
)

cos
[
λ (απ − σ (x)) + w−(x)

√
ρ(x)

]
+ O

(
λ−1 exp (|τ| σ (x))

)
(9)

Similarly, for the solution ψ (x, λ) following asiymptotic relation hold as |λ| → ∞. For 0 ≤ x < π
2 ,

ψ (x, λ) = R+ cos
[
λ (σ (π) − σ (x)) − w+(x)

√
ρ(x)

]
+R− cos

[
λ
(
βπ − (σ (π) − σ (x))

)
+ w−(x)
√
ρ(x)

]
+ 1
λ

(
H
β R+ +

γ
α

)
sin

[
λ (σ (π) − σ (x)) − w+(x)

√
ρ(x)

]
+ 1
λ

(
H
β R− +

γ
α

)
sin

[
λ
(
βπ − (σ (π) − σ (x))

)
+ w−(x)
√
ρ(x)

]
+ O

(
λ−2 exp (|τ| (σ (π) − σ (x)))

)
(10)
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ψ′ (x, λ) = R+
(
λα − 1

αp (x)
)

sin
[
λ (σ (π) − σ (x)) − w+(x)

√
ρ(x)

]
−R−

(
λα − 1

αp (x)
)

sin
[
λ
(
βπ − (σ (π) − σ (x))

)
+ w−(x)
√
ρ(x)

]
+ 1
λ

(
H
β R+ +

γ
α

) (
λα − 1

αp (x)
)

cos
[
λ (σ (π) − σ (x)) − w+(x)

√
ρ(x)

]
+ 1
λ

(
H
β R− +

γ
α

) (
λα − 1

αp (x)
)

cos
[
λ
(
βπ − (σ (π) − σ (x))

)
+ w−(x)
√
ρ(x)

]
+O

(
λ−1 exp (|τ| (σ (π) − σ (x)))

)
(11)

where R± =
1
2

(
1
a
±
βa
α

)
.

Define 〈
ϕ (x, λ) , ψ (x, λ)

〉
:= ϕ (x, λ)ψ′ (x, λ) − ϕ′ (x, λ)ψ (x, λ)

It is easy to verify that if y (x) and z (x) satisfy equations (1) and jump conditions (4), then
〈
y, z

〉
is independent

of x, and 〈
y, z

〉∣∣∣
x= π

2 −0
=

〈
y, z

〉∣∣∣
x= π

2 +0

Denote
∆ (λ) =

〈
ϕ,ψ

〉
= V

(
ϕ
)

= −U
(
ψ
)

(12)

The function ∆ (λ) is called the characteristic function of L,which is entire inλ and it has an at most countable
set of zeros {λn},n ∈ Z. It follows from (3) and (4) that the characteristic function of the pencil L can be
reduced

∆ (λ) = ϕ′ (π, λ) + Hϕ (π, λ) (13)

or

∆ (λ) = ∆0 (λ) +

∫ σ(π)

0
A (π, t) cosλtdt +

∫ σ(π)

0
B (π, t) sinλtdt (14)

Where ∆0 (λ) = ϕ
′

0 (π, λ) + Hϕ′0 (π, λ). Denote by Gδ = {λ : |λ − λn| ≥ δ,n ∈ Z} with fixed δ > 0. Then exist a
constant Cδ > 0 such that

|∆ (λ)| ≥ Cδ
(
C + β (λ)

)
exp (|τ| σ (π)) f orλ ∈ Gδ (15)

On here supposes that the function q (x)satisfies the additional condition∫ π

0

{∣∣∣y′ (x)
∣∣∣2 + q (x)

∣∣∣y (x)
∣∣∣2} dx > 0 (16)

For all y (x) ∈W2
2

([
0, π2

)
∪

(
π
2 , π

])
such that y (x) , 0and

y′ (0) y (0)−y′ (π) y (π) = 0. (17)

Lemma 2.1. The following statements hold:
i) The zeros {λn}n≥0 of the characteristic function ∆ (λ) coincide with the eigenvalues of the boundary value problem

L.
ii) The functions ϕ (x, λn) and ψ (x, λn) are corresponding eigenfunctions and exists a sequence

{
βn

}
, βn , 0,

n = 0, 1, 2, ..., such that

ψ(x, λn) = βnϕ (x, λn) . (18)

Next, we denote by L2
(
(0, π) ;ρ (x)

)
a space which has the inner product

(
ϕ,ψ

)
=

π∫
0

ρ (x)ϕ(x, λ)ψ(x, λ)dx
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Then it is shown in [2] that the eigenvalues of the boundary values problem L are real, nonzero, simple and
does not have associated functions. Additionaly, eigenfunctions correspondings to different eigenvalues of
the problem L are orthogonal in the sense of the equality

(λ1 + λ2)
(
ρ (x) y1, y2

)
− 2

(
ρ (x) y1, y2

)
= 0

Lemma 2.2. The eigenvalues {kn}n≥0 of the problem L are real and simple. The eigenfunctions corresponding to the
different eigenvalues are orthogonal in the weighted space L2

(
(0, π) ;ρ (x)

)
and for sufficiently large values of n, the

eigenvalue kn has the following behavior

kn = k0
n +

dn

k0
n

+
kn

k0
n

(19)

where, λ0
n are zeros of ∆0 (λ) = ϕ′0(π, λ) + Hϕ0 (π, λ) , dn is bounded and kn ∈ `2,

k0
n =

nπ
σ (π)

+ θn, sup
n
|θn| < +∞

Proof of lemmas similarly to the proof of [7], so we omit the proof. Let αn (n ≥ 0) be the normalized

constants, which are defined as αn :=

π∫
0

ρ (x)ϕ2 (x, λn) dx for all n ≥ 0.

Lemma 2.3. The following relation holds:

•

∆(kn) = −2αnβnkn (20)

where
•

∆(kn) =

(
d

dλ
∆ (λ)

)
k=kn

, βn = −
[
ϕ (π, kn)

]−1 .

In particular, it follows from (19) that all eigenvalues kn are simple.
Let be δ > 0 and fixed. Define Gδ :=

{
k ∈ C :

∣∣∣k − k0
n

∣∣∣ ≥ δ,n = 1, 2, ...
}
. The following inequality can be deduced

using the asymptotic formula for ∆ (λ) ,

∆0 (k) ≥ c |k| exp(|τ| σ (π)), k ∈ Gδ (21)

for some pozitive constant c.

3. Main Results

Now we state the main result of this work. It is assumed in what follows that if a certain symbol s
denotes an object related to L, then the corresponding symbol s̃ with tilde denote the analogous object
related to L̃.

Lemma 3.1. If λn = λ̃n, n = 0, 1, 2, ... then σ (π) = σ̃ (π).

Proof of Lemma is easily obtained from the asymptotic expression of λn.

Lemma 3.2. If kn = k̃n, n = 0, 1, 2, ... then a = ã , α = α̃, β = β̃, ρ (x) = ρ̃ (x) , h = h̃ and H = H̃.

Proof. Since, kn = k̃n, n = 0, 1, 2, ..., Lemma 2.2 requires σ (π) = σ̃ (π) or α + β = α̃ + β̃. ∆ (k) , ∆̃ (k) are entire
functions of order one by Hadamard factorization theorem, for λ ∈ C

∆ (k) ≡ C∆̃ (k) . (22)

Then from Lemma 2.3 and σ (π) = σ̃ (π) we obtain C = 1.
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On the other hand, (22) can be written as

∆0 (k) − C∆̃0 (k) =
[
∆̃ (k) − ∆̃0 (k)

]
− [∆ (k) − ∆0 (k)] (23)

Hence [
∆̃ (k) − ∆̃0 (k)

]
− [∆ (k) − ∆0 (k)] =

= −r+kβ sin kσ (π) + r−kβ sin k(απ − σ (π))

+ h
β

α

[
r+ cos kσ (π) − r− cos k(απ − σ (π))

]
+ H

{
r+ cos kσ (π) + r− cos k(απ − σ (π))

+
h

kα
[
r+ sin kσ (π) + r− sin k(απ − σ (π))

]}
−

{̃
r+kβ sin kσ (π) + r̃−kβ sin k(απ − σ (π))

+ h̃
β

α

[̃
r+ cos kσ (π) − r̃− cos k(απ − σ (π))

]}
− H̃

{̃
r+ cos kσ (π) + r̃− cos k(απ − σ (π))

+
h̃

kα
[̃
r+ sin kσ (π) + r̃− sin k(απ − σ (π))

]}
(24)

if we multiply both sides of (24) with sin kσ (π) and integrate with respect to k in (ε,T) (ε is sufficiently small
pozitive number) for any pozitive real number T, then we get

T∫
ε

([
∆̃ (k) − ∆̃0 (k)

]
− [∆ (k) − ∆0 (k)]

)
sin kσdk =

T∫
ε

{
−r+kβ sin kσ (π) + r−kβ sin k (απ − σ (π)) + h

β

α
[r+ cos kσ (π) − r− cos k (απ − σ (π))]

+H [r+ cos kσ (π) − r− cos k (απ − σ (π)) +
h

kα
(r+ sin kσ (π) + r− sin k (απ − σ (π)))]

−
[̃
r+kβ sin kσ (π) + r̃−kβ sin k (απ − σ (π)) + h̃

β

α

(̃
r+ cos kσ (π) − r̃− cos k (απ − σ (π))

)]
−H̃

̃r+ cos kσ (π) + r̃− cos k (απ − σ (π)) +
h̃

kα
(̃
r+ sin kσ (π) + r̃− sin k (απ − σ (π))

)
 sin kσdk

Since
∆ (k) − ∆0 (k) = O

(
k−2 exp (|τ| σ (π))

)
, ∆̃ (k) − ∆̃0 (k) = O

(
k−2 exp (|τ| σ (π))

)
for all k in (ε,T)

β

4
r̃+
−
β

4
r+ = O(

1
T2 )

By letting T tend to infinity we see that
r+ = r̃+ (25)

Similarly, if we multiply both sides of (24) with sin k (απ − σ(π)) and integrate again with respect to k in
(ε,T), and by letting T tend to infinity, then we get

r− = r̃− (26)

Taking a > 0 into account, (25) and (26) implies that a = ã, α = α̃,β = β̃.
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Considering that Lemma 3.2, and a = ã, if both sides of the last expression are multiplied by the cos kσ (π)
and integrate with respect to k in (ε,T) , then we get

h
β

α
r+ + Hr+ = h̃

β

α
r+ + H̃r+ (27)

Similary, if we multiply both sides of the last expression are with cos k (απ − σ(π)) and integrate again
with respect to k in (ε,T) , and by letting T tend to infinity, then we get

h
β

α
r− −Hr− = h̃

β

α
r− − H̃r− (28)

Finaly, from (27) and (28) implies that h = h̃ and H = H̃.

Theorem 3.3. If for any n ∈ Z, λn = λ̃n ,

y′ (c1, λn)
y (c2, λn)

=
ỹ′ (c1, λn)
ỹ (c2, λn)

(29)

Then p (x) = p̃ (x) on [0, π], q (x) = q̃ (x) a. e. on [0, π], and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Proof. Letϕ (x, λ) be the solution of the equations (1) satisfying the initial conditionsϕ (0, λ) = 1,ϕ′ (0, λ) = h
and the jump conditions (4). Let ϕ̃ (x, λ)be the solution of the equations

−ϕ̃′′ (x, λ) +
[
q̃ (x) + 2λp̃ (x)

]
ϕ̃ (x, λ) = λ2ρ̃ (x) ϕ̃ (x, λ) (30)

With the initial conditions
ϕ̃ (0, λ) = 1, ϕ̃′ (0, λ) = h̃ (31)

and the jump conditions (4). Multiplying (1) by ϕ̃ (x, λ) and (30) by ϕ (x, λ), respectively, and subtracting,
we get

d
dx

[
ϕ̃ (x, λ)ϕ′ (x, λ) − ϕ̃′ (x, λ)ϕ (x, λ)

]
=

[(
q (x) − q̃ (x)

)
+ 2λ

(
p (x) − p̃ (x)

)]
ϕ (x, λ) ϕ̃ (x, λ) (32)

Integrating the above equality from 0 to c1 with respect to x, using the initial conditions at x = 0 and
Lemma 3.1, we have

H (λ) =
∫ c1

0

[(
q (x) − q̃ (x)

)
+ 2λ

(
p (x) − p̃ (x)

)]
ϕ (x, λ) ϕ̃ (x, λ) dx

= ϕ̃ (c1, λ)ϕ′ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ)
(33)

It follows from (6)-(7) that H (λ) is an entire function of exponential type and there are some pozitive
constant A and B such that

|H (λ)| ≤ (A + B |λ|) exp (|τ| σ (π)) f or allλ ∈ C (34)

From the assumption (29) we have
H (λn) = 0 , n ∈ Z (35)

Define

F (λ) =
H (λ)
∆ (λ)

(36)

Which is entire function from the above arguments and it follows from (14) and (35) that

F (λ) = O (1)

For sufficiently large |λ|,λ ∈ Gδ, thus, by liouville’s theorem [4], we obtain for all λ that F (λ) = C.
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Where c is a constant. Let us show that the constant C = 0. Based on (24) and (14), we can rewrite the
equations H (λ) = C∆ (λ) in the form

2λ
∫ c1

0

(
p (x) − p̃ (x)

)
ϕ (x, λ) ϕ̃ (x, λ) dx +

∫ c1

0

(
q (x) − q̃ (x)

)
ϕ (x, λ) ϕ̃ (x, λ) dx

= C
{
∆0 (λ) +

∫ σ(π)

0 A (π, t) cosλtdt +
∫ σ(π)

0 B (π, t) sinλtdt
}

By use of Riemann-Lebesgue lemma [4], we see that the limit of the left-hand side of the above equality
exists as λ→∞ , λ ∈ R thus we obtain that C = 0. So we have H (λ) = 0 for all λ ∈ C.
As already mentioned, if H (λ) = 0 for all λ ∈ C, then from (33) we have
ϕ̃ (c1, λ)ϕ′ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ) = 0 for all λ ∈ C
so
ϕ(c1,λ)
ϕ′(c1,λ) =

ϕ̃(c1,λ)
ϕ̃′(c1,λ) for all λ ∈ C.

The function M (λ) := ϕ(c1,λ)
ϕ′(c1,λ) is the Weyl function of the boundary value problem for equation (1) on

(0, c1)with boundary conditoons V
(
y
)

= 0, y′ (c1) = 0 and without jump conditions.
By [2], the Weyl function uniquely species p (x) and q (x)a.e. on (0, c1)and the coefficients in boundary and
jump conditions and ρ (x).

Theorem 3.4. If for any n ∈ Z, λn = λ̃n , αβ = α̃
β̃

, p (x) = p̃ (x) and q (x) = q̃ (x) on
(
0, α+β

4 π
)
, then p (x) = p̃ (x) and

q (x) = q̃ (x) a.e. on
(
α+β

4 π,
α+β

2 π
)

and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃

.

Proof. Let the boundary value problems Land L̃ satisfy the conditions of Teorem 3.4, then by virtue of
Lemma 2.4 and Lemma 3.2 a = ã, h = h̃, H = H̃ and ρ (x) = ρ̃ (x). For brevity, denote c1 =

α+β
4 π, c2 =

α+β
2 π.

Let ψ (x, λ), ψ̃ (x, λ) be the solutions of the equations

−ψ′′ (x, λ) +
[
q (x) + 2λp (x)

]
ψ (x, λ) = λ2ρ (x)ψ (x, λ) (37)

−ψ̃′′ (x, λ) +
[
q̃ (x) + 2λp̃ (x)

]
ψ̃ (x, λ) = λ2ρ̃ (x) ψ̃ (x, λ) (38)

With the initial conditions, respectively

ψ (π, λ) = 1 , ψ′ (π, λ) = −H (39)

ψ̃ (π, λ) = 1 , ψ̃′ (π, λ) = −H̃ (40)

and the jump conditions (4). After multipliying (37) by ψ̃ (x, λ) and (38) by ψ (x, λ) , we subtract these
equations from each other. Then by integrating on[c1, π] with respect to x, using the initial conditions (39)
and (40)and jump conditions (4), we have∫ π

c1

[(
q (x) − q̃ (x)

)
+ 2λ

(
p (x) − p̃ (x)

)]
ψ (x, λ) ψ̃ (x, λ) dx = ψ̃ (c1, λ)ψ′ (c1, λ) − ψ̃′ (c1, λ)ψ (c1, λ) (41)

From the hypothesis p (x) = p̃ (x) and q (x) = q̃ (x) on (0, c1).
Denote Q (x) = q (x) − q̃ (x), P (x) = p (x) − p̃ (x) and

F0 (λ) = 2λ
∫ π

c1

P (x)ψ (x, λ) ψ̃ (x, λ) dx +

∫ π

c1

Q (x)ψ (x, λ) ψ̃ (x, λ) dx (42)

It follows from (10) and (41) that F0 (λ) is an entire function of exponential type and there are some pozitive
constants A1 and B1 such that

|F0 (λ)| ≤ (A1 + B1 |λ|) exp (|τ| σ (π)) f or allλ ∈ C (43)
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It is clear from the properties ψ (x, λ), ψ̃ (x, λ) and the boundary conditions (2)

F0 (λn) = 0 , n ∈ Z (44)

Define

F (λ) :=
F0 (λ)
∆ (λ)

Which is an entire function from the above arguments and it follows from (15) and (43) that

F (λ) = O (1)

For sufficiently large |λ|,λ ∈ Gδ. Using Liouville’s theorem [4], we obtain for all λ that F (λ) = C.
Where C is a constant. Let us Show that the constant C = 0. We can rewrite the equations F0 (λ) = C∆ (λ) as

2λ
∫ π

c1
P (x)ψ (x, λ) ψ̃ (x, λ) dx +

∫ π
c1

Q (x)ψ (x, λ) ψ̃ (x, λ) dx

= −a+C
(
λβ − 1

βp (π)
)

sin
[
λσ (π) − w+(π)

β

]
+a−C

(
λβ − 1

βp (π)
)

sin
[
λ (απ − σ (π)) + w−(π)

β

]
+Ha+C cos

[
λσ (π) − w+(π)

β

]
+ Ha−C cos

[
λ (απ − σ (π)) + w−(π)

β

]
+O

(
exp (|τ| σ (π))

)
By use of Riemann-Lebesgue lemma [4], we see that the limit of the left-hand side of the above equality
exists as λ→∞ , λ ∈ R. Therefore, we get that C = 0. So, we have F0 (λ) = 0 for all λ ∈ C.
Then, from teh equality (41) we obtain
ψ̃ (c1, λ)ψ′ (c1, λ) − ψ̃′ (c1, λ)ψ (c1, λ) = 0 for all λ ∈ C. Hence,

ψ (c1, λ)
ψ′ (c1, λ)

=
ψ̃ (c1, λ)

ψ̃′ (c1, λ)
. (45)

Note that M (λ) := − ψ(c1,λ)
ψ′(c1,λ) is the Weyl function, defined [2], of the boundary value problem for equation (1)

on the interval (c1, π)with the boundary conditoons V
(
y
)

= 0, y′ (c1) = 0 and jump conditions (4). It has
been show in [2] that the Weyl function species the function p (x) and q (x)on (c1, π), consequently on (c1, c2).
Theorem is proved.

Corollary.
If for any n ∈ Z, λn = λ̃n , α

β = α̃
β̃

, p (x) = p̃ (x) and q (x) = q̃ (x) on (0, c1), then p (x) = p̃ (x) on (0, π) and

q (x) = q̃ (x) a.e. on (0, π) and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Theorem 3.5. If λn = λ̃n for all n ∈ Z,, αβ = α̃
β̃

, p (x) = p̃ (x) and q (x) = q̃ (x) on
(
α+β

4 π,
α+β

2 π
)
, then p (x) = p̃ (x)

and q (x) = q̃ (x) a.e. on
(
0, α+β

4 π
)

and
(
α+β

2 π, π
)

andρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Proof. By the Lemma 3.1 and the condition of Teorem 3.5, we have h = h̃, H = H̃, a = ã, ρ (x) = ρ̃ (x) and
p (x) = p̃ (x) and q (x) = q̃ (x) on (c1, c2).
Let

−ϕ′′ (x, λ) +
[
q (x) + 2λp (x)

]
ϕ (x, λ) = λ2ρ (x)ϕ (x, λ) (46)

−ϕ̃′′ (x, λ) +
[
q̃ (x) + 2λp̃ (x)

]
ϕ̃ (x, λ) = λ2ρ̃ (x) ϕ̃ (x, λ) (47)

With the initial conditions, respectively

ϕ (0, λ) = 1 , ϕ′ (0, λ) = h (48)

ϕ̃ (0, λ) = 1 , ϕ̃′ (0, λ) = h̃ (49)
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and the jump conditions (4). Multipliying (46) by ϕ̃ (x, λ) and (47) by ϕ (x, λ) , we subtract these equations
from each other. Then by integrating on[0, c2] with respect to x, using the initial conditions (48) and (49)
and jump conditions (4), we have

H (λ) = 2λ
∫ c1

0 P (x)ϕ (x, λ) ϕ̃ (x, λ) dx +
∫ c1

0 Q (x)ϕ (x, λ) ϕ̃ (x, λ) dx
= ϕ′ (c1, λ) ϕ̃ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ)

(50)

From the hypothesis p (x) = p̃ (x) and q (x) = q̃ (x) on (c1, c2). Similarly to proof of Theorem 3.5, we have that
H (λ) = 0 for all λ ∈ C. Then, from equality
ϕ′ (c1, λ) ϕ̃ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ) = 0 for all λ ∈ C.
so

ϕ (c1, λ)
ϕ′ (c1, λ)

=
ϕ̃ (c1, λ)
ϕ̃′ (c1, λ)

.

The function M (λ) := − ϕ(c1,λ)
ϕ′(c1,λ) is the Weyl function of the boundary value problem for the equation (1) on

(0, c1)with boundary conditoons V
(
y
)

= 0, y′ (c1) = 0 and without jump conditions (4) (see[2]). By [2],
the Weyl function uniquely species p (x) and q (x)a.e. on (0, c1). Next, now using Theorem 3.6 we obtain
p (x) = p̃ (x)and q (x) = q̃ (x) a.e. on (c2, π). Theorem is proved.

4. An interior inverse problems.

We cconsider the interior inverse problem for the same boundary problem L and obtain the corresponding
result.

Theorem 4.1. If λn = λ̃n for all n ∈ Z, αβ = α̃
β̃

, and

y (c1, λn)
y′ (c1, λn)

=
ỹ (c1, λn)
ỹ′ (c1, λn)

(51)

, then p (x) = p̃ (x) on [0, π], q (x) = q̃ (x) a.e. on [0, π]and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Proof. Let ϕ (x, λ) be the solution of the equations (1) satisfying the initial conditions ϕ (0, λ) = 1 , ϕ′ (0, λ) =
h and jump conditions (4). Firstly, the assumption that λn = λ̃n and α

β = α̃
β̃

can determine ρ (x) = ρ̃ (x), a = ã,

h = h̃, H = H̃ by Lemma 3.1 the other hand from (50), we see that

ϕ (c1, λ)
ϕ′ (c1, λ)

=
ϕ̃ (c1, λ)
ϕ̃′ (c1, λ)

,

Then from (50), the entire function H (λ) has zeros {λn} , n ∈ Z, i.e. H (λn) = 0. Similarly to the proof of
Theorem4, we have that p (x) = p̃ (x) and q (x) = q̃ (x) on (0, c1). Once we get that p (x) = p̃ (x) and q (x) = q̃ (x),
by Corollary of Theorem 3.4 we have that p (x) = p̃ (x) on [0, π], q (x) = q̃ (x) a.e. on [0, π]. Theorem is
proved.

Theorem 4.2. Let m (n)be a sequence of integers such that inf
n∈Z

m(n)
λn
≤ 1

(i) If for any n ∈ Z,

λm(n) = λ̃m(n),
y
(
c1, λm(n)

)
y′

(
c1, λm(n)

) =
ỹ
(
c1, λm(n)

)
ỹ′

(
c1, λm(n)

) and
α
β

=
α̃

β̃
(52)

Then p (x) = p̃ (x) on (0, c1) and q (x) = q̃ (x) a.e. on (0, c1) and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.
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(ii) If for any n ∈ Z,

λm(n) = λ̃m(n),
y
(
c2, λm(n)

)
y′

(
c2, λm(n)

) =
ỹ
(
c2, λm(n)

)
ỹ′

(
c2, λm(n)

) and
α
β

=
α̃

β̃
(53)

Then p (x) = p̃ (x) on (c2, π)and q (x) = q̃ (x) a.e. on (c2, π) and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.

Proof. (i) from the assumption (52) and (50) we have

ϕ′
(
c1, λm(n)

)
ϕ̃

(
c1, λm(n)

)
− ϕ̃′

(
c1, λm(n)

)
ϕ

(
c1, λm(n)

)
= 0

Which means
H

(
λm(n)

)
= 0 , n ∈ Z (54)

Next, we shall show that H (λ) = 0 on the whole λ-plane. From (50) and (6) on has

|H (λ)| ≤ (A + Br) e2c1r|sinθ| (55)

For some pozitive costants A and B, where λ = reiθ. Moreover, we see that the entire function H1 (λ) is a
function of exponential type less than 2c1.
Define the indicator of function H1 (λ) by

h (θ) = lim
r→∞

sup
ln

∣∣∣∣H1

(
reiθ

)∣∣∣∣
r

(56)

One obtain the following estimate from (55)and (56) that h (θ) ≤ 2c1 |sinθ|.
Let us denote by n (r)the number of zeros of H1 (λ) in the disk |λ| ≤ r. From the equations (4.4), the
assimption of (52) and known asymtotic expreession of the eigenvalues λn, we have the following estimate
for the number of zeros of H1 (λ) in the disk |λ| ≤ r.

n (r) = 1 + 2 [σr (1 + ε (r))] = 2σr (1 + ε (r)) .

Here ε (r) → 0 f or r → ∞, σis number such that σ > α+β
2 = 2c1

π and [x]is the integer part of x. It follows that
in the case under consideration

lim
r→∞

n (r)
r

= 2σ >
4c1

π
=

c1

π

∫ 2π

0
|sinθ| dθ ≥

1
2π

∫ 2π

0
h (θ) dθ (57)

To complate the proof we have to recall the following theorem [4]: the set of zeros of every entire function
of the exponential type, not identically zero, satisfy the inequality

lim
r→∞

inf
n (r)

r
≤

1
2π

∫ 2π

0
h (θ) dθ (58)

Inequalities (57) and (58) implay that H1 (λ) ≡ 0 on the whole λ-plane. As already mentioned, if H1 (λ) ≡ 0,
then from (52) we have

ϕ̃ (c1, λ)ϕ′ (c1, λ) − ϕ̃′ (c1, λ)ϕ (c1, λ) = 0

so
ϕ(c1,λ)
ϕ′(c1,λ) =

ϕ̃(c1,λ)
ϕ̃′(c1,λ) on the whole λ-plane.

The function M (λ) := ϕ(c1,λ)
ϕ′(c1,λ) is the Weyl function of the boundary value problem for the equation (1) on

(0, c1)with boundary conditoons U
(
y
)

= 0, y′ (c1) = 0 and without jump conditions (4) (see[2]). By [2], the
Weyl function uniquely species p (x) and q (x)a.e. on (0, c1) and coefficient h.
(ii)
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To prove that p (x) = p̃ (x) on (c2, π)and q (x) = q̃ (x) a.e. on (c2, π) and ρ (x) = ρ̃ (x), a = ã, h = h̃, H = H̃.
We will consider the supplementary problem L

−y′′ +
[
q1 (x) + 2λp1 (x)

]
y = λ2ρ (x) y , x ∈

[
0, π2

)
∪

(
π
2 , π

]
y (0) −Hy (0) = 0
y (π) − hy (π) = 0
y
(
π
2 + 0

)
= a−1y

(
π
2 − 0

)
y′

(
π
2 + 0

)
= ay′

(
π
2 − 0

)
+ γ

(
π
2 − 0

)
Where q1 (x) = q (π − x) and p1 (x) = p (π − x). A direct calculation implies that ŷn := yn (π − x) is the solution
to the supplementary problem L̂ and ŷn (π − x) = yn (c2). Note that π − c2 ∈

(
0, π2

)
. Thus the assmption

conditions for L̂ in the case (i) are still satisfied. Repeting the above arguments we can obtain the proof of
this Theorem 4.2.
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Abstract. In this research, we consider a coefficient problem of an inverse problem of a quasilinear pseudo-parabolic
equation with periodic boundary condition. It proved the existence, uniqueness and continuously dependence upon
the data of the solution by iteration method.

1. Introduction

Consider the equation

ut −uxx− εuxxt −a(t)u = f (x, t,u), (x, t) ∈ Γ, (1)

with the initial condition

u(x,0) = ϕ(x), x ∈ [0,π] , (2)

the periodic boundary condition

u(0, t) = u(π, t), ux(0, t) = ux(π, t), 0≤ t ≤ T, (3)

and the overdetermination data

E(t) =
π∫

0

xu(x, t)dx,0≤ t ≤ T, (4)

for a quasilinear parabolic equation with the nonlinear source term f = f (x, t,u).
Here Γ := {0 < x < π, 0 < t < T} . The functions ϕ(x) and f (x, t,u) are given functions on [0,π] and Γ×

(−∞,∞), respectively.
The inverse problem of determining unknown coefficient in a quasi-linear parabolic equation has generated an

increasing amount of interest from engineers and scientist [1–11].

Definition 1.1. The pair {a(t),u(x, t)} from the class C[0,T ]× (C2,1 (Γ)∩C1,0
(
Γ
)
) for which conditions (1)-(4) are

satisfied is called the classical solution of the inverse problem (1)-(4).
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Corresponding author: İB mail address: isakinc@kocaeli.edu.tr ORCID:https://orcid.org/0000-0002-2877-9791, TC ORCID:
https://orcid.org/0000-0002-4282-1806

Received: 28 November 2020; Accepted: 16 December 2020; Published: 30 December 2020
Keywords. ((Quasilinear Pseudo-Parabolic Equation, Inverse Problem, Periodic Boundary Condition, Finite Difference Method.)
2010 Mathematics Subject Classification. 35K05, 35K29, 65M06, 65M1
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2. Existence and Uniqueness of the Solution of the Inverse Problem

The main result on the existence and the uniqueness of the solution of the inverse problem (1)-(4) is presented as
follows:

We have the following assumptions on the data of the problem (1)-(4).
(A1) E(t) ∈C1[0,T ].
(A2) ϕ(x) ∈C2[0,π], ϕ(0) = ϕ(π), ϕ

′
(0) = ϕ

′
(π),

(A3) Let the function f (x, t,u) is continuous with respect to all arguments in Γ× (−∞,∞) and satisfies the follow-
ing condition

(1) ∣∣∣∣∣∂ (n) f (x, t,u)
∂xn − ∂ (n) f (x, t, ũ)

∂xn

∣∣∣∣∣≤ b(t,x) |u− ũ| ,n = 0,1,2

where b(x, t) ∈ L2(Γ), b(x, t)≥ 0,
(2) f (x, t,u) ∈C2[0,π], t ∈ [0,T ],
(3) f (x, t,u)|x=0 = f (x, t,u)|x=π

, fx (0, t,u)|x=0 = fx(π, t,u)|x=π
,

By applying the standard procedure of the Fourier method, we obtain the following representation for the solution
of (1)-(3) for arbitrary a(t) ∈C[0,T ] :

u(x, t) =
u0(t)

2
+

∞

∑
k=1

[uck(t)cos2kx+usk(t)sin2kx] ,

u0(t) = ϕ0e
−

t∫
0

a(τ)dτ

+
2
π

t∫
0

π∫
0

f

(
ξ ,τ,

u0(τ)

2
+

∞

∑
k=1

[uck(τ)cos2kξ +usk(τ)sin2kξ ]

)− t∫
0

a(τ)dτ

dξ dτ,

uck(t) = ϕck e
−(2k)2t

1+ε(2k)2
−−

t∫
0

a(τ)dτ

+
2

π(1+ ε(2k)2

t∫
0

π∫
0

f

(
ξ ,τ,

u0(τ)

2
+

∞

∑
k=1

[uck(τ)cos2kξ +usk(τ)sin2kξ ]

)
cos2kξ e

−(2k)2(t−τ)

1+ε(2k)2
−−

t∫
τ

a(τ)dτ

dξ dτ,

usk(t) = ϕsk e
−(2k)2t

1+ε(2k)2
−−

t∫
0

a(τ)dτ

+
2

π(1+ ε(2k)2

t∫
0

π∫
0

f

(
ξ ,τ,

u0(τ)

2
+

∞

∑
k=1

[uck(τ)cos2kξ +usk(τ)sin2kξ ]

)
sin2kξ e

−(2k)2(t−τ)

1+ε(2k)2
−−

t∫
τ

a(τ)dτ

dξ dτ.

u(x, t) = ϕ0e
−−

t∫
0

a(τ)dτ

+

t∫
0

f0(τ,u) dτ

+
∞

∑
k=1

cos2kx

ϕcke
−(2k)2t

1+ε(2k)2
−−

t∫
0

a(τ)dτ

+
1

1+ ε(2k)2

t∫
0

fck(τ,u)e
−(2k)2(t−τ)

1+ε(2k)2
−−

t∫
τ

a(τ)dτ

dτ

 (5)

+
∞

∑
k=1

sin2kx

ϕske
−(2k)2t

1+ε(2k)2
−−

t∫
0

a(τ)dτ

+
1

1+ ε(2k)2

t∫
0

fsk(τ,u) e
−(2k)2(t−τ)

1+ε(2k)2
−−

t∫
τ

a(τ)dτ

dτ

 ,
where ϕ0 =

2
π

π∫
0

ϕ(x)dx,ϕck =
2
π

π∫
0

ϕ(x)cos2kxdx,ϕsk =
2
π

π∫
0

ϕ(x)sin2kxdx,



İ. Bağlan, T. Canel / TJOS 5 (3), 199–207 201

f0(t,u) = 2
π

π∫
0

f (x, t,u)dx, fck(t,u) = 2
π

π∫
0

f (x, t,u)cos2kxdx, fsk(t,u) = 2
π

π∫
0

f (x, t,u)sin2kxdx( k = 1,2,3, ... .)

Under the condition (A1)-(A3), differentiating (4), we obtain

E
′
(t) =

π∫
0

xut(x, t)dx,0≤ t ≤ T. (6)

(5) and (6) yield

a(t) =
1

E(t)

[
−E

′
(t)+

π2

2
f0(t,u)

]
1

E(t)
π

2

∞

∑
k=1

−(2k)2t
1+ ε(2k)2

ϕsk e
−(2k)2t

1+ε(2k)2
−−

t∫
0

a(τ)dτ

+
1

1+ ε(2k)2

t∫
0

fck(τ,u) e
−(2k)2t

1+ε(2k)2
−−

t∫
τ

a(τ)dτ

dτ

 (7)

− 1
E(t)

∞

∑
k=1

fsk(t,u)

Definition 2.1. Denote the set
{u(t)}= {u0(t),uck(t),usk(t),k = 1, ...,n} , of continuous on [0,T ] functions satisfying the condition

max
0≤t≤T

|u0(t)|
2 +

∞

∑
k=1

(
max

0≤t≤T
|uck(t)|+ max

0≤t≤T
|usk(t)|

)
< ∞, by B. Let

‖u(t)‖B = max
0≤t≤T

|u0(t)|
2 +

∞

∑
k=1

(
max

0≤t≤T
|uck(t)|+ max

0≤t≤T
|usk(t)|

)
, be the norm in B.

It can be shown that B is Banach space.

Theorem 2.2. Let the assumptions (A1)-(A3) be satisfied. Then the inverse problem (1)-(4) has a unique solution.

Proof. Iterations for the Fourier coefficients of (5) are defined as follows:

u(N+1)
0 (t) = u(0)0 (t)+

2
π

t∫
0

π∫
0

f
(

ξ ,τ,u(N)(ξ ,τ)
)

e
−−

t∫
τ

a(N)(τ)dτ

dξ dτ,

u(N+1)
ck (t) = u(0)ck (t)+

2
π(1+ ε(2k)2)

t∫
0

π∫
0

f (ξ ,τ,u(N)(ξ ,τ))cos2kξ e
−(2k)2t

1+ε(2k)2
−−

t∫
τ

a(N)(τ)dτ

dξ dτ, (8)

u(N+1)
sk (t) = u(0)sk (t)+

2
π(1+ ε(2k)2)

t∫
0

π∫
0

f (ξ ,τ,u(N)(ξ ,τ))sin2kξ e
−(2k)2t

1+ε(2k)2
−−

t∫
τ

a(N)(τ)dτ

dξ dτ,

u(0)0 (t) = ϕ0e
−−

t∫
τ

a(0)(τ)dτ

,u(0)ck (t) = ϕcke
−(2k)2t

1+ε(2k)2
−−

t∫
0

a(0)(τ)dτ

,u(0)sk (t) = ϕske
−(2k)2t

1+ε(2k)2
−−

t∫
0

a(0)(τ)dτ

.

Applying Cauchy inequality, Hölder inequality, Bessel inequality and using Lipschitzs condition and taking the
maximum of both side, we have:
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∥∥∥u(1)(t)
∥∥∥

B
= max

0≤t≤T

∥∥∥u(1)0 (t)
∥∥∥

B
+

∞

∑
k=1

(
max

0≤t≤T

∥∥∥u(1)ck (t)
∥∥∥

B
+ max

0≤t≤T

∥∥∥u(1)sk (t)
∥∥∥

B

)
≤ ‖ϕ0‖

2
+

∞

∑
k=1

(‖ϕck‖+‖ϕsk‖)

+(

√
T
π
+

√
π

2
√

3
)‖b(x, t)‖L2(Γ)

∥∥∥u(0)(t)
∥∥∥

B

+(

√
T
π
+

√
π

2
√

3
)‖ f (x, t,0)‖L2(Γ)

.

From the conditions of the theorem u(1)(t) ∈ B.
Same estimations for the step N,∥∥∥u(N+1)(t)

∥∥∥
B

= max
0≤t≤T

∥∥∥u(N)
0 (t)

∥∥∥
B
+

∞

∑
k=1

(
max

0≤t≤T

∥∥∥u(N)
ck (t)

∥∥∥
B
+ max

0≤t≤T

∥∥∥u(N)
sk (t)

∥∥∥
B

)
≤ ‖ϕ0‖

2
+

∞

∑
k=1

(‖ϕck‖+‖ϕsk‖)

+(

√
T
π
+

√
π

2
√

3
)‖b(x, t)‖L2(Γ)

∥∥∥u(N)(t)
∥∥∥

B

+(

√
T
π
+

√
π

2
√

3
)‖ f (x, t,0)‖L2(Γ)

.

Since u(N)(t) ∈ B and from the conditions of the theorem, we have u(N+1)(t) ∈ B,

{u(t)}= {u0(t),uck(t),usk(t), k = 1,2, ...} ∈ B.

By same estimations,

∥∥∥a(1)(t)
∥∥∥

C[0,T ]
≤

∥∥∥∥∥E
′
(t)

E(t)

∥∥∥∥∥+ π2

4
√

6E(t)

∞

∑
k=1

∥∥∥ϕ
′′′
ck

∥∥∥
+

π

‖E(t)‖

(
4
√

6+2+
√

2
4
√

6

)
‖b(x, t)‖L2(Γ)

∥∥∥u(0)(t)
∥∥∥

B

+
π

‖E(t)‖

(
4
√

6+2+
√

2
4
√

6

)
M

Same estimations for the step N,

∥∥∥a(N+1)(t)
∥∥∥

C[0,T ]
≤

∥∥∥∥∥E
′
(t)

E(t)

∥∥∥∥∥+ π2

4
√

6E(t)

∞

∑
k=1

∥∥∥ϕ
′′′
ck

∥∥∥
+

π

‖E(t)‖

(
4
√

6+2+
√

2
4
√

6

)
‖b(x, t)‖L2(Γ)

∥∥∥u(N)(t)
∥∥∥

B

+
π

‖E(t)‖

(
4
√

6+2+
√

2
4
√

6

)
M
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Now we prove that the iterations u(N+1)(t),a(N+1) converge B and C[0,T ], respectively.(as N→ ∞)

u(1)(t)−u(0)(t) =
(u(1)0 (t)−u(0)0 (t))

2
+

∞

∑
k=1

[(u(1)ck (t)−u(0)ck (t))+(u(1)sk (t)−u(0)sk (t))]

Applying Cauchy inequality, Bessel inequality, Hölder inequality, Lipschitzs condition in the last equation, taking
maximum of both side of the last inequality :

∥∥∥u(1)(t)−u(0)(t)
∥∥∥

B
≤ (

√
T
π
+

√
π

2
√

3
)‖b(x, t)‖L2(Γ)

∥∥∥u(0)(t)
∥∥∥

B

+(

√
T
π
+

√
π

2
√

3
)‖ f (x, t,0)‖L2(Γ)

.

A = (

√
T
π
+

√
π

2
√

3
)(‖b(x, t)‖L2(Γ)

∥∥∥u(0)(t)
∥∥∥

B
+‖ f (x, t,0)‖L2(Γ)

).

Applying Cauchy inequality, Hölder Inequality, Lipschitzs condition and Bessel inequality to the last equation and
taking maximum of both side of the last inequality, we obtain

∥∥∥a(1)(t)−a(0)(t)
∥∥∥

C[0,T ]
≤ π

‖E(t)‖

(
4
√

6+2+
√

2
4
√

6

)
‖b(x, t)‖L2(Γ)

∥∥∥u(1)(t)−u(0)(t)
∥∥∥

B

+

 πT M∥∥E(t)4
√

3
∥∥ + π2T∥∥∥E(t)4

√
6
∥∥∥

∞

∑
k=1

∣∣∣ϕ ′′′ck

∣∣∣
∥∥∥a(1)(t)−a(0)(t)

∥∥∥
C[0,T ]

where

B =
π

‖E(t)‖

(
4
√

6+2+
√

2
4
√

6

)

C =

 πT M∥∥E(t)4
√

3
∥∥ + π2T∥∥∥E(t)4

√
6
∥∥∥

∞

∑
k=1

∣∣∣ϕ ′′′ck

∣∣∣


∥∥∥a(1)(t)−a(0)(t)
∥∥∥

C[0,T ]
≤ B

1−C
‖b(x, t)‖L2(Γ)

∥∥∥u(1)(t)−u(0)(t)
∥∥∥

B

∥∥∥u(2)(t)−u(1)(t)
∥∥∥

B
≤ (

√
T
π
+

√
π

2
√

3
)‖b(x, t)‖L2(Γ)

∥∥∥u(1)−u(0)
∥∥∥

B

+(

√
T
π
+

√
π

2
√

3
)

BT
1−C

M ‖b(x, t)‖L2(Γ)

∥∥∥u(1)(t)−u(0)(t)
∥∥∥

B

∥∥∥u(2)(t)−u(1)(t)
∥∥∥

B
≤

{
(

√
T
π
+

√
π

2
√

3
)

(
1+

BT
1−C

)}
A‖b(x, t)‖L2(Γ)

,

For the step N : ∥∥∥a(N+1)(t)−a(N)(t)
∥∥∥

C[0,T ]
≤ B

1−C
‖b(x, t)‖L2(Γ)

∥∥∥u(N+1)(t)−u(N)(t)
∥∥∥

B
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∥∥∥u(N+1)(t)−u(N)(t)
∥∥∥

B
≤

{
(

√
T
π
+

√
π

2
√

3
)

(
1+

BT
1−C

)}N
A√
N!
‖b(x, t)‖N

L2(Γ)
.

By the Weierstrass M test we deduce from (9) that the series
∞

∑
N=0

∣∣∣u(N+1)(t)−u(N)(t)
∣∣∣ is uniformly convergent to

an element of B. However,the general term of the sequence
{

u(N+1)(t)
}

may be written as

u(N+1)(t) = u(0)(t)+
N

∑
n=0

∣∣∣u(n+1)(t)−u(n)(t)
∣∣∣ ,

so the sequence
{

u(N+1)(t)
}

is uniformly convergent to an element of B because the sum on the right is the N

th partial sum of the aforementioned uniformly convergent series. So u(N+1) → u(N) , N → ∞, then a(N+1) → a(N),
N→ ∞.

Therefore u(N+1)(t) and a(N+1)(t) converge in B and C[0,T ], respectively.
Now let us show that there exists u and a such that

lim
N→∞

u(N+1)(t) = u(t), lim
N→∞

a(N+1)(t) = a(t).

∥∥∥u−u(N+1)
∥∥∥

B
≤ (

√
T
π
+

√
π

2
√

3
)‖b(x, t)‖L2(Γ)

∥∥∥u(t)−u(N+1)(t)
∥∥∥

B
(9)

+

{
(

√
T
π
+

√
π

2
√

3
)

(
1+

BT
1−C

)}N
A√
N!
‖b(x, t)‖L2(Γ)

+(

√
T
π
+

√
π

2
√

3
)M
∥∥∥a(τ)−a(N)(τ)

∥∥∥
C[0,T ]

,

∥∥∥a(τ)−a(N+1)(τ)
∥∥∥

C[0,T ]
≤ B

1−C
‖b(x, t)‖L2(Γ)

∥∥∥u(t)−u(N+1)(t)
∥∥∥

B
. (10)

Let us consider (10) in (9) and apply Gronwall’s inequality to (9) and taking maximum of both side of the last
inequality, we have

∥∥∥u(t)−u(N+1)(t)
∥∥∥2

B
≤

2

 A√
N!

(
(

√
T
π
+

√
π

2
√

3
)

(
1+

BT
1−C

))N+1

‖b(x, t)‖L2(Γ)

2

×exp2

(
1+(

√
T
π
+

√
π

2
√

3
)

(
1+

BT
1−C

))2

‖b(x, t))‖2
L2(Γ)

.

We obtain u(N+1)→ u, a(N+1)→ a, N→ ∞.
For the uniqueness, we assume that the problem (1)-(4) has two solution pair (a,u) , (b,v) . Applying Cauchy

inequality, Hölder Inequality, Lipschitzs condition and Bessel inequality to |u(t)− v(t)| and |a(t)−b(t)|, we obtain

‖u(t)− v(t)‖B ≤ (

√
T
π
+

√
π

2
√

3
)M ‖a(t)−b(t)‖C[0,T ]

+(

√
T
π
+

√
π

2
√

3
)

 t∫
0

π∫
0

b2(ξ ,τ) |u(τ)− v(τ)|2 dξ dτ

 1
2

,
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‖a(t)−b(t)‖C[0,T ] ≤
B

1−C

 t∫
0

π∫
0

b2(ξ ,τ) |u(τ)− v(τ)|2 dξ dτ

 1
2

,

‖u(t)− v(t)‖B ≤

[
(

√
T
π
+

√
π

2
√

3
)

(
1+

B
1−C

)] t∫
0

π∫
0

b2(ξ ,τ) |u(τ)− v(τ)|2 dξ dτ

 1
2

, (11)

applying Gronwall’s inequality to (11) we have
u(t) = v(t). Hence a(t) = b(t).

This completes the proof of Theorem 2.2.

3. Continuous Dependence of (a,u) upon the data

Theorem 3.1. Under assumption (A1)-(A3) the solution (r,u) of the problem (1)-(4) depends continuously upon the
data ϕ,E.

Proof. Let Φ = {ϕ, a, f} and Φ = {ϕ, a, f} be two sets of the data, which satisfy the assumptions (A1)− (A3) .
Suppose that there exist positive constants Mi, i = 1,2 such that

‖a‖C1[0,T ] ≤M1,‖a‖C1[0,T ] ≤M1, ‖ϕ‖C3[0,π] ≤M2,‖ϕ‖C3[0,π] ≤M2.

Let us denote ‖Φ‖= (‖a‖C1[0,T ]+‖ϕ‖C3[0,π]+‖ f‖C3,0(D)).
By using same estimations to u−u, we obtain

‖u−u‖ ≤ M3
∥∥Φ−Φ

∥∥ (12)

+M4

 t∫
0

π∫
0

r2(τ)b2(ξ ,τ)‖u(τ)−u(τ)‖2 dξ dτ

 1
2

applying Gronwall’s inequality to the last equation, we obtain

‖u−u‖2 ≤ 2M2
3
∥∥Φ−Φ

∥∥2

×exp

2M2
4

t∫
0

π∫
0

r2(τ)b2(ξ ,τ)dξ dτ

 .

For Φ→Φ then u→ u. Hence a→ a.

4. Numerical Procedure for the nonlinear problem (1)-(4)

We construct an iteration algorithm for the linearization of the problem (1)-(4):

∂u(n)

∂ t
− ∂ 2u(n)

∂x2 − ε
∂ 3u(n)

∂x2∂ t
−a(t)u = f (x, t,u(n−1)), (x, t) ∈ D (13)

u(n)(0, t) = u(n)(π, t), t ∈ [0,T ] (14)

u(n)x (0, t) = u(n)x (π, t) = 0, t ∈ [0,T ] (15)

u(n)(x,0) = ϕ(x) , x ∈ [0,π] . (16)
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Let u(n)(x, t) = v(x, t) and f (x, t,u(n−1)) = f̃ (x, t). Then the problem (13)-(16) can be written as a linear problem:

∂v
∂ t

=
∂ 2v
∂x2 + ε

∂ 3v
∂x2∂ t

+ r(t) f̃ (x, t) (x, t) ∈ D (17)

v(0, t) = v(π, t), t ∈ [0,T ] (18)
vx(0, t) = vx(π, t), t ∈ [0,T ] (19)
v(x,0) = ϕ(x), x ∈ [0,π] . (20)

After linearization, we use the finite difference method to solve (17)-(20).
We subdivide the intervals [0,π] and [0,T ] into subintervals Nx and Nt of equal lengths h = π

Nx
and τ = T

Nt
,

respectively. We choose the implicit scheme which is absolutely stable and has a second-order accuracy in h and a
first-order accuracy in τ. The implicit scheme for (17)-(20) is as follows:

1
τ

(
v j+1

i − v j
i

)
=

1
2h2

(
v j

i−1−2v j
i + v j

i+1

)
+ ε

1
2h2τ

[
(v j+1

i−1 −2v j+1
i + v j+1

i+1 )− (v j
i−1−2v j

i + v j
i+1)

]
−a jv j+1

i = f̃ j
i ,

(21)

v0
i = φi, (22)

v j
0 = v j

Nx+1, (23)

v j
1 + v j

Nx

2
= v j

Nx+1, (24)

where 1≤ i≤ Nx and 0≤ j ≤ Nt are the indices for the spatial and time steps respectively, v j
i = v(xi, t j), φi = ϕ(xi),

f̃ j
i = f̃ (xi, t j), xi = ih, t j = jτ. At the level t = 0, adjustment should be made according to the initial condition and the

compatibility requirements.

Now, let us construct the predicting-correcting mechanism. First, integrating the equation (1) with respect to x
from 0 to π and using (3) and (4), we obtain

a(t) =
−E ′(t)+

π∫
0

x f̃ (x, t)dx+ vt(π, t)

E(t)
. (25)

The finite difference approximation of (25) is

a j =
−
(
E j+1−E j

)
/τ +( fin)

j +
(

v j+1
Nx
− v j

Nx

)
/τ

E j ,

where E j = E(t j), j = 0,1, ...,Nt .
For j = 0,
We denote the values of a j, v j

i at the s-th iteration step .and the values of φi provide us to start our computation.
We denote the values of p j, v j

i at the s-th iteration step ar j(s), v j(s)
i , respectively. In numerical computation, since the

time step is very small, we can take a j+1(0) = a j, v j+1(0)
i = v j

i , j = 0,1,2, ....Nt , i = 1,2, ...,Nx. At each (s+ 1)-th
iteration step we first determine a j+1(s+1) from the formula

a j+1(s+1) =
−
(

E j+1(s+1)−E j(s+1)
)
/τ +( fin)

j(s+1)+
(

v j+1(s+1)
Nx

− v j(s+1)
Nx

)
/τ

E j(s+1) .

Then from (21)-(24) we obtain



İ. Bağlan, T. Canel / TJOS 5 (3), 199–207 207

1
τ

(
v j+1(s+1)

i − v j+1(s)
i

)
=

1
h2

(
v j+1(s+1)

i−1 −2v j+1(s+1)
i + v j+1(s+1)

i+1

)
(26)

+ε
1

2h2τ

[
(v j+1(s+1)

i−1 −2v j+1(s+1)
i + v j+1(s+1)

i+1 )− (v j+1(s)
i−1 −2v j+1(s)

i + v j+1(s)
i+1 )

]
+a jv j+1(s+1)

i = f̃ j+1
i , (27)

v j(s)
0 = v j(s)

Nx+1, (28)

v j(s)
1 + v j(s)

Nx

2
= v j(s)

Nx+1, (29)

The system of equations (26)-(29) can be solved by the Gauss elimination method and v j+1(s+1)
i is determined. If the

difference of values between two iterations reaches the prescribed tolerance, the iteration is stopped and we accept
the corresponding values a j+1(s+1), v j+1(s+1)

i (i = 1,2, ...,Nx) as a j+1, v j+1
i (i = 1,2, ...,Nx), on the ( j+1)-th time step,

respectively. In virtue of this iteration, we can move from level j to level j+1.

5. Conclusions

The inverse problem regarding the simultaneously identification of the time-dependent source and the temperature
distribution in one-dimensional quasilinear pseudo parabolic equation with periodic boundary and integral overde-
termination conditions has been considered. This inverse problem has been investigated from both theoretical and
numerical points of view. In the theoretical part of the article, the conditions for the existence, uniqueness and con-
tinuous dependence upon the data of the problem have been established. The problem is solved implicit difference
scheme and an example is given.
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Abstract. Focal surfaces are special cases of line congruences. With the aid of the definiton of a focal
surface of a given surface M, we obtain a new type of focal surface in Galilean 3-spaceG3. We show that the
focal surface we found is not the same type of surface as the given surface. We present the visualizations of
the focal surface and the given surface with an example. Lastly, by searching the curvature functions, we
give the minimality conditions of the focal surface.

1. Introduction

The concept of line congruences is first defined in the area of visualization by Hagen et al in 1991 [8].
Actually, line congruences are surfaces which are obtained from by transforming one surface to another by
lines. Focal surface is one of these congruences. For a given surface M with the parametrization X(u, v), the
line congruence is defined as

C(u, v, z) = X(u, v) + zE(u, v). (1)
Here E(u, v) is the set of unit vectors and z is a distance. For each pair (u, v), the equation (1), expresses a
line of the congruence and called as generatrix. On every generatrix of C, there are two points called as
focal points and the focal surface is the locus of the focal points. If E(u, v) = N(u, v), the unit normal vector
field of the surface, then C is a normal congruence. In this case, the parametric equation of the focal surface
C = X∗(u, v) of X(u, v) is given as

X∗(u, v) = C(u, v, z) = X(u, v) + κi
−1N(u, v); i = 1, 2 (2)

where κis; (i = 1, 2) are the principal curvature functions of X(u, v) [7]. Focal surfaces are the subject of
many studies such as [7, 15–17, 23].

Galilean geometry is a non-Euclidean geometry and associated with Galilei principle of relativity. This
principle can be explained briefly as ”in all inertial frames, all law of physics are the same.” (Except for
the Euclidean geometry in some cases), Galilean geometry is the easiest of all Klein geometries, and it is
revelant to the theory of relativity of Galileo and Einstein. One can have a look at the studies [20, 24] for
Galilean geometry. Recently, many works related to Galilean geometry have been done by several authors
in [2, 6, 21].

Tubular surfaces are special cases of canal surfaces which are the envelopes of a family of spheres. In
canal surfaces, center of the spheres are on a given space curve (spine curve), and the radius of the spheres
are different. As to tubular surfaces, the radius functions are constant. These surfaces have been widely
studied in recent times [4, 10, 11, 13, 14, 18]. In Galilean 3-space, tubular surfaces are studied in [5].
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2. Preliminaries

In Galilean 3-space G3, we can give the following basic concepts.
The vector a = (a1, a2, a3) is isotropic if a1 = 0 and non-isotropic otherwise. Thus, for the standard

coordinates (x, y, z), the x-axis is non-isotropic while the others are isotropic. The yz-plane, i.e. x = 0, is
Euclidean and the xy-plane and xz-plane are isotropic. The scalar product of the vectors a = (a1, a2, a3) and
b = (b1, b2, b3) and the length of the vector a = (a1, a2, a3) in G3 are respectively defined as

〈a, b〉 =

{
a1b1, if a1 , 0 ∨ b1 , 0

a2b2 + a3b3, if a1 = 0 ∧ b1 = 0, (3)

‖a‖ =

{
|a1| , if a1 , 0

a2
2 + a2

3, if a1 = 0. (4)

The cross product of the vectors a = (a1, a2, a3) and b = (b1, b2, b3) in G3 is also defined as

a ∧ b =

∣∣∣∣∣∣∣∣
0 e2 e3
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣∣∣ (5)

[19]. An admissible unit speed curve α : I ⊂ R→ G3 is given with the parametrization

α(u) = (u, y(u), z(u)). (6)

The associated Frenet frame vectors t,n,b on the curve is given as

t(u) = (1, y′(u), z′(u)),

n(u) =
1
κ(u)

(0, y′′(u), z′′(u)), (7)

b(u) =
1
κ(u)

(0,−z′′(u), y′′(u)),

where κ(u) =

√(
y′′(u)

)2 + (z′′(u))2 and τ(u) =
det(α′(u),α′′(u),α′′′(u))

κ2(u) are the curvature and the torsion of the
curve, respectively. Thus, the famous Frenet formulas can be written as

t′ = κn,
n′ = τb, (8)
b′ = −τn.

Let M be a surface parametrized with

X(u1,u2) = (x(u1,u2), y(u1,u2), z(u1,u2)) (9)

in G3. To represent the partial derivatives, we use

x,i =
∂x
∂ui

, x,i j =
∂2x
∂ui∂u j

, 1 ≤ i, j ≤ 2. (10)

If x,i , 0 for some i = 1, 2, then the surface is admissible (i.e. having not any Euclidean tangent planes). The
first fundamental form I of the surface M is defined as

I = (11du1 + 12du2 )2 + ε(h11d2
u1

+ 2h12du1 du2 + h22d2
u2

), (11)
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where 1i = x,i, hi j = y,i y, j +z,i z, j; i, j = 1, 2 and

ε =

{
0, if du1 : du2 is non-isotropic,
1, if du1 : du2 is isotropic. (12)

Let a function W is given by

W =

√
(x,1 z,2 −x,2 z,1 )2 +

(
x,2 y,1 −x,1 y,2

)2. (13)

Then, the unit normal vector field is given as

N =
1
W

(0,−x,1 z,2 +x,2 z,1 , x,1 y,2 −x,2 y,1 ). (14)

Similarly, the second fundamental form II of the surface M is defined as

II = L11d2
u1

+ 2L12du1 du2 + L22d2
u2
, (15)

where
Li j =

1
11

〈
11(0, y,i j , z,i j ) − 1i, j(0, y,1 , z,1 ),N

〉
, 11 , 0 (16)

or
Li j =

1
12

〈
12(0, y,i j , z,i j ) − 1i, j(0, y,2 , z,2 ),N

〉
, 12 , 0.

The Gaussian and the mean curvatures of M are defined as

K =
L11L22 − L2

12

W2 , H =
12

2L11 − 21112L12 + 12
1L22

2W2 . (17)

A surface is called as flat (resp. minimal) if its Gaussian (resp. mean) curvatures vanish [2, 20]. The
principal curvatures κ1 and κ2 of the surface M are given as

κ1 =
12

2L11 − 21112L12 + 12
1L22

W2 , κ2 =
L11L22 − L2

12

12
2L11 − 21112L12 + 12

1L22
, (18)

respectively [22].

3. Focal Surface of Tubular Surface in G3

A tubular surface M in G3 at a distance r from the points of spine curve α(u) = (u, y(u), z(u)) is given
with

M : X(u, v) = α(u) + r(cos vn + sin vb). (19)

Writing the Frenet vectors of α(u) in (19), the parametrization can be given as

M : X(u, v) = (u, y(u), z(u)) +
r
κ

[
cos v(0, y′′(u), z′′(u)) + sin v(0,−z′′(u), y′′(u))

]
. (20)

From (20),
11 = u,1 = 1, 12 = u,2 = 0. (21)

The tangent vectors Xu, Xv and the normal vector N of M are given by

Xu = t − rτ sin vn + rτ cos vb, (22)
Xv = −r sin vn + r cos vb,
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and
N = − cos vn − sin vb. (23)

Here W = r. The coefficients of the second fundamental form are obtained as

L11 = −κ cos v + rτ2, L12 = rτ, L22 = r. (24)

From, (21) and (24), the curvature functions of M are obtained as

K =
−κ cos v

r
, H =

1
2r

(25)

[5].

Corollary 3.1. [5] Tubular surfaces are constant mean curvature surfaces in Galilean space.

By the equation (18), we obtain the principal curvatures κ1, κ2 of M as

κ1 = −κ cos v and κ2 =
1
r
. (26)

For the function κ2 = 1
r , the focal surface degenerates to a curve. Thus, we obtain the focal surface M∗ of M

for the function κ1 = −κ cos v as

M∗ : X∗(u, v) = α(u) +

(
r +

1
κ(u) cos v

)
(cos vn + sin vb), (27)

where κ , 0.

Corollary 3.2. The focal surface M∗ of M is not a canal surface.

Proposition 3.3. If the spine curve α(u) is a straight line or equivalently M is flat, we cannot construct the focal
surface of M.

Example 3.4. Let us consider the cylindrical helix α(u) = (u, cos u, sin u) in G3. The Frenet frame vectors of the
spine curve α(u) is given by

t(u) = (1,− sin u, cos u),
n(u) = (0,− cos u,− sin u),
b(u) = (0, sin u,− cos u).

The tubular surface M has the following parametrization

X(u, v) = (u, cos u − r cos(u + v), sin u − r sin(u + v)) .

[5]. Then from the equation (27), we write the parametrization of the focal surface M∗ of M as in the following:

X∗(u, v) = (u,−r cos(u + v) + tan v sin u,−r sin(u + v) − tan v cos u) .

By using the maple programme, we plot the graph of the tubular surface and its focal surface for the value r = 2 inG3.

For the focal surface M∗, the tangent space is spanned by the vectors

(X∗)u = t(u) + λ1(u, v)n(u) + λ2(u, v)b(u), (28)
(X∗)v = −r sin vn(u) + λ3(u, v)b(u),
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Figure 1: Tubular surface M and the focal surface M∗

where

λ1(u, v) =
−κ′(u)

(κ(u))2 − rτ(u) sin v −
τ(u)
κ(u)

tan v,

λ2(u, v) =
−κ′(u)

(κ(u))2 tan v + rτ(u) cos v +
τ(u)
κ(u)

, (29)

λ3(u, v) =
1

κ(u) cos2 v
+ r cos v.

Thus, from (28), W∗ = ((λ3(u, v))2 + (r sin v)2)
1
2 and the unit normal vector field N∗ of M∗ is

N∗ =
−λ3(u, v)n(u) − r sin vb(u)

W∗
. (30)

Further, we get
1∗1 = u,1 = 1, 1∗2 = u,2 = 0. (31)

The second partial derivatives of X∗ are

(X∗)uu = λ4(u, v)n(u) + λ5(u, v)b(u), (32)
(X∗)uv = λ6(u, v)n(u) + λ7(u, v)b(u),
(X∗)vv = −r cos vn(u) + λ8(u, v)b(u),

where

λ4(u, v) = κ(u) + (λ1(u, v))u − τ(u)λ2(u, v), (33)
λ5(u, v) = (λ2(u, v))u + τ(u)λ1(u, v),
λ6(u, v) = (λ1(u, v))v ,

λ7(u, v) = (λ2(u, v))v

λ8(u, v) = (λ3(u, v))v .

Thus from the equations (30)-(33), the coefficients of the second fundamental form become

L∗11 =
−λ3(u, v)λ4(u, v) − λ5(u, v)r sin v

W∗
, (34)

L∗12 =
−λ3(u, v)λ6(u, v) − λ7(u, v)r sin v

W∗
,

L∗22 =
λ3(u, v)r cos v − λ8(u, v)r sin v

W∗
.

By using the equations (31) and (34), we give the following theorems:
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Theorem 3.5. Let M be a tubular surface given with the parametrization (19) and M∗ be the focal surface of M with
the parametrization (27) in G3. Then, the Gaussian and the mean curvatures of M∗ are

K∗ =
1

(W∗)4

{
−λ2

3λ4r cos v + λ3λ4λ8r sin v − λ3λ5r2 sin v cos v
+λ5λ8r2 sin2 v − λ2

3λ
2
6 − λ

2
7r2 sin2 v − 2λ3λ6λ7r sin v

H∗ =
λ3r cos v − λ8r sin v

2(W∗)3 . (35)

Corollary 3.6. If the focal surface M∗ is minimal, then

r = −
1

κ(u) cos3 v
.

Proof. Let M∗ be the focal surface of M with the parametrization (27) in G3. If M∗ is minimal, then
λ3r cos v − λ8r sin v = 0. Since the functions cos v and sin v are linearly independent, λ3 = λ8 = 0 i.e.
λ3 = (λ3)v = 0 which corresponds to the last equation.
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[3] Aydın ME, Öğrenmiş AO. Spherical product surface in the Galilean space. Konuralp Journal of Mathematics. 4(2), 2019, 290-298.
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[11] Kişi İ, Öztürk G. A new type of tubular surface having pointwise 1-type Gauss map in Euclidean 4-space E4. J. Korean Math.

Soc. 55, 2018, 923–938.
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İrem Bağlana, Timur Canelb

aDepartment of Mathematics, Kocaeli University, Kocaeli-Turkey
bDepartment of Physics, Kocaeli University, Kocaeli-TURKEY

Abstract. In this paper,we consider a coefficient problem of an inverse problem of a quasilinear parabolic equation
with periodic boundary and integral over determination conditions. It showed the stability of the solution by iteration
method and examined numerical solution.

1. Introduction

The inverse problem of determining unknown coefficient in a quasi-linear parabolic equation has generated an
increasing amount of interest from engineers and scientist during the last few decades.Inverse Problem is a research
area dealing with inversion of models or data. An inverse problem is a mathematical framework that is used to obtain
information about a physical object or system from observed measurements. It is called an inverse problem because
it starts with the results and then calculates the causes. This is the inverse of a direct problem, which starts with
the causes and then calculates the results. Thus, inverse problems are some of the most important and well-studied
mathematical problems in science and mathematics because they provide us about parameters that we cannot directly
observe[1–3]. There are many different applications including medical imaging, geophysics, computer vision, astron-
omy, nondestructive testing, and many others. Nevertheless the inverse coefficient problems with periodic boundary
and integral over determination conditions are not investigated by many researchers because of the difficulties of these
conditions [1–3, 5–8]. This kind of conditions arise from many important applications in heat transfer, life sciences,
etc. The inverse problem of unknown coefficients in a quasi-linear parabolic equations with periodic boundary con-
ditions was studied by Kanca and Baglan [9, 10]. Over the last years, considerable efforts have been put into develop
either approximate analytical solution and numerical solution to non-local boundary value problems [3]. Cannon
implemented implicit finite difference scheme to obtain numerical solution of the one dimensional non-local bound-
ary value problems [1]. Liu studied non-local boundary value problems and concluded that the presence of integral
terms in boundary conditions can greatly complicate the application of standard numerical techniques such as finite
difference schemes and finite element techniques [4]. Several researchers have discussed numerical solutions for
non-local boundary value problems in one dimension.The one-dimensional case of this problem has been the guiding
force behind considerable research in numerical methods such as finite difference method and finite element method.
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Explicit and implicit finite difference schemes were used by many researchers to obtain numerical solutions of one-
dimensional non-local boundary value problem. Finite difference method to a class of parabolic inverse problems is
investigated. This method is very effective for solving various kinds of partial differential equations.

Consider the equation

ut = uxx + l(t) f (x, t,u), (x, t) ∈ D, (1)

with the initial condition

u(x,0) = ϕ(x), x ∈ [0,π] , (2)

the periodic boundary condition

u(0, t) = u(π, t), ux(0, t) = ux(π, t), 0≤ t ≤ T, (3)

and the over determination data
g(t) = u(π, t),0≤ t ≤ T, (4)

for a quasilinear parabolic equation with the nonlinear source term f = f (x, t,u).
Here D := {0 < x < π, 0 < t < T} .The functions ϕ(x) and f (x, t,u) are given functions on [0,π] and D̄×

(−∞,∞), respectively.
The problem of finding the pair {l(t),u(x, t)} in (1)-(4) will be called an inverse problem.

Definition 1.1. The pair {l(t),u(x, t)} from the class C[0,T ]× (C2,1 (D)∩C1,0
(
D
)
) for which conditions (1)-(4) are

satisfied is called the classical solution of the inverse problem (1)-(4).

The paper organized as follows:
In Section 2, the existence and uniqueness of the solution of the inverse problem (1)-(4) is proved by using the

Fourier method and iteration method. In Section 3, the continuous dependence upon the data of the inverse problem
is shown. In Section 4, the numerical procedure for the solution of the inverse problem is given.

2. Existence and Uniqueness of the Solution of the Inverse Problem

The main result on the existence and the uniqueness of the solution of the inverse problem (1)-(4) is presented as
follows:

We have the following assumptions on the data of the problem (1)-(4).
(A1) g(t) ∈C1[0,T ], l(t) ∈C[0,T ].
(A2) ϕ(x) ∈C3[0,π], ϕ(0) = ϕ(π), ϕ

′
(0) = ϕ

′
(π), ϕ

′′
(0) = ϕ

′′
(π),

(A3) Let the function f (x, t,u) is continuous with respect to all arguments in D̄× (−∞,∞) and satisfies the follow-
ing condition

(1) ∣∣∣∣∣∂ (n) f (x, t,u)
∂xn − ∂ (n) f (x, t, ũ)

∂xn

∣∣∣∣∣≤ b(t,x) |u− ũ| ,n = 0,1,2,

where b(x, t) ∈ L2(D), b(x, t)≥ 0,
(2) f (x, t,u) ∈C3[0,π], t ∈ [0,T ],
(3) f (x, t,u)|x=0 = f (x, t,u)|x=π

, fx (0, t,u)|x=0 = fx(π, t,u)|x=π
, fxx(0, t,u)|x=0 = fxx(π, t,u)|x=π

,

(4)
π∫
0

f (x, t,u)dx , 0, ∀t ∈ [0,T ].

By applying the standard procedure of the Fourier method, we obtain the following representation for the solution
of (1)-(3) for arbitrary l(t) ∈C[0,T ] :
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u(x, t) =
u0(t)

2
+

∞

∑
k=1

[uck(t)cos2kx+usk(t)sin2kx] ,

u0(t) = ϕ0 +
2
π

t∫
0

π∫
0

l(τ) f

(
ξ ,τ,

u0(τ)

2
+

∞

∑
k=1

[uck(τ)cos2kξ +usk(τ)sin2kξ ]

)
dξ dτ,

uck(t) = ϕck e−(2k)2t +
2
π

t∫
0

π∫
0

l(τ) f

(
ξ ,τ,

u0(τ)

2
+

∞

∑
k=1

[uck(τ)cos2kξ +usk(τ)sin2kξ ]

)
cos2kξ e−(2k)2(t−τ)dξ dτ,

usk(t) = ϕsk e−(2k)2t +
2
π

t∫
0

π∫
0

l(τ) f

(
ξ ,τ,

u0(τ)

2
+

∞

∑
k=1

[uck(τ)cos2kξ +usk(τ)sin2kξ ]

)
sin2kξ e−(2k)2(t−τ)dξ dτ.

u(x, t) = ϕ0 +

t∫
0

l(τ) f0(τ,u) dτ (5)

+
∞

∑
k=1

cos2kx

ϕck e−(2k)2t +

t∫
0

l(τ) fck(τ,u) e−(2k)2(t−τ)dτ


+

∞

∑
k=1

sin2kx

ϕsk e−(2k)2t +

t∫
0

l(τ) fsk(τ,u) e−(2k)2(t−τ)dτ

 ,
where ϕ0 =

2
π

π∫
0

ϕ(x)dx,ϕck =
2
π

π∫
0

ϕ(x)cos2kxdx,ϕsk =
2
π

π∫
0

ϕ(x)sin2kxdx.

Under the condition (A1)-(A3), differentiating (4), we obtain

ut(π, t) = g
′
(t),0≤ t ≤ T. (6)

(5) and (6) yield

l(t) =
g
′
(t)+

∞

∑
k=1

(4k2)

(
ϕcke−(2k)2t +

t∫
0

l(τ) fck(τ,u) e−(2k)2(t−τ)dτ

)
f0(t)+

∞

∑
k=1

fck(t)
. (7)

Definition 2.1. Denote the set
{u(t)}= {u0(t),uck(t),usk(t),k = 1, ...,n} , of continuous on [0,T ] functions satisfying the condition

max
0≤t≤T

|u0(t)|
2 +

∞

∑
k=1

(
max

0≤t≤T
|uck(t)|+ max

0≤t≤T
|usk(t)|

)
< ∞, by B1. Let

‖u(t)‖= max
0≤t≤T

|u0(t)|
2 +

∞

∑
k=1

(
max

0≤t≤T
|uck(t)|+ max

0≤t≤T
|usk(t)|

)
, be the norm in B1.

It can be shown that B1 are the Banach spaces.

3. Continuous Dependence of (l,u) upon the data

Theorem 3.1. Under assumption (A1)-(A3) the solution (l,u) of the problem (1)-(4) depends continuously upon the
data ϕ,g.
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Proof. Let Φ = {ϕ, g, f} and Φ = {ϕ, g, f} be two sets of the data, which satisfy the assumptions (A1)− (A3) .
Suppose that there exist positive constants Mi, i = 1,2 such that

‖g‖C1[0,T ] ≤M1,‖g‖C1[0,T ] ≤M1, ‖ϕ‖C3[0,π] ≤M2,‖ϕ‖C3[0,π] ≤M2.

Let us denote ‖Φ‖ = (‖g‖C1[0,T ]+ ‖ϕ‖C3[0,π]+ ‖ f‖C3,0(D)). Let (l,u) and
(
l,u
)

be solutions of inverse problems
(1)-(4) corresponding to the data Φ = {ϕ, g, f} and Φ = {ϕ, g, f} respectively. According to (5)

u−u =
(ϕ0−ϕ0)

2
+

∞

∑
k=1

cos2kξ (ϕck−ϕck)e−(2k)2t +
∞

∑
k=1

sin2kξ (ϕsk−ϕsk)e−(2k)2t

+
1
2

 2
π

t∫
0

π∫
0

l(τ) [ f (ξ ,τ,u(ξ ,τ))− f (ξ ,τ,u(ξ ,τ))]dξ dτ


+

1
2

 2
π

t∫
0

π∫
0

(
l(τ)− l(τ)

)
f (ξ ,τ,u(ξ ,τ))dξ dτ


+

∞

∑
k=1

2
π

t∫
0

π∫
0

l(τ) [ f (ξ ,τ,u(ξ ,τ))− f (ξ ,τ,u(ξ ,τ))]cos2kξ e−(2k)2(t−τ)dξ dτ

+
∞

∑
k=1

2
π

t∫
0

π∫
0

(
l(τ)− l(τ)

)
[ f (ξ ,τ,u(ξ ,τ))− f (ξ ,τ,u(ξ ,τ))]cos2kξ e−(2k)2(t−τ)dξ dτ

+
∞

∑
k=1

2
π

t∫
0

π∫
0

l(τ) [ f (ξ ,τ,u(ξ ,τ))− f (ξ ,τ,u(ξ ,τ))]cos2kξ e−(2k)2(t−τ)dξ dτ

+
∞

∑
k=1

2
π

t∫
0

π∫
0

(
l(τ)− l(τ)

)
[ f (ξ ,τ,u(ξ ,τ))− f (ξ ,τ,u(ξ ,τ))]cos2kξ e−(2k)2(t−τ)dξ dτ.

By using same estimations, we obtain:

|u−u| ≤ M3
∥∥Φ−Φ

∥∥ (8)

+M4

 t∫
0

π∫
0

l2(τ)b2(ξ ,τ) |u(τ)−u(τ)|2 dξ dτ

 1
2

|a−a| ≤ M5
∥∥Φ−Φ

∥∥
+M6 |r(t)|

∣∣∣u(t)−u(t)
∣∣∣ ,

applying Gronwall’s inequality to (8), we obtain:

|u−u|2 ≤ 2M2
3
∥∥Φ−Φ

∥∥2

×exp2M2
4

 t∫
0

π∫
0

l2(τ)b2(ξ ,τ)dξ dτ

 .

For Φ→Φ then u→ u. Hence l→ l.
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4. Numerical Procedure for the nonlinear problem (1)-(4)

We construct an iteration algorithm for the linearization of the problem (1)-(4):

∂u(n)

∂ t
=

∂ 2u(n)

∂x2 + l(t) f (x, t,u(n−1)), (x, t) ∈ D (9)

u(n)(0, t) = u(n)(π, t), t ∈ [0,T ] (10)

u(n)x (0, t) = u(n)x (π, t) = 0, t ∈ [0,T ] (11)

u(n)(x,0) = ϕ(x) , x ∈ [0,π] . (12)

Let u(n)(x, t) = v(x, t) and f (x, t,u(n−1)) = f̃ (x, t). Then the problem (9)-(12) can be written as a linear problem:

∂v
∂ t

=
∂ 2v
∂x2 + l(t) f̃ (x, t) (x, t) ∈ D (13)

v(0, t) = v(π, t), t ∈ [0,T ] (14)
vx(0, t) = vx(π, t), t ∈ [0,T ] (15)
v(x,0) = ϕ(x), x ∈ [0,π] . (16)

We use the method of the linearization then we use the finite difference method to solve (13)-(16).
We subdivide the intervals [0,π] and [0,T ] into subintervals Nx and Nt of equal lengths h = π

Nx
and τ = T

Nt
,

respectively. We choose the implicit scheme which is absolutely stable and has a second-order accuracy in h and a
first-order accuracy in τ. The implicit scheme for (13)-(16) is as follows:

1
τ

(
v j+1

i − v j
i

)
=

1
2h2

(
v j+1

i−1 −2v j+1
i + v j+1

i+1

)
+

1
2h2

(
v j

i−1−2v j
i + v j

i+1

)
+ l j f̃ j

i , (17)

v0
i = φi, (18)

v j
0 = v j

Nx+1, (19)

v j
1 + v j

Nx

2
= v j

Nx+1, (20)

where 1≤ i≤ Nx and 0≤ j ≤ Nt are the indices for the spatial and time steps respectively, v j
i = v(xi, t j), φi = ϕ(xi),

f̃ j
i = f̃ (xi, t j), xi = ih, t j = jτ. At the level t = 0, adjustment should be made according to the initial condition and the

compatibility requirements.
Now, let us construct the predicting-correcting mechanism. First, integrating the equation (1) with respect to x

from 0 to 1 and using (3) and (4), we obtain

l(t) =
g′(t)− vxx(π, t)

f̃ (x, t)
. (21)

The finite difference approximation of (21) is

l j =
−
((

g j+1−g j
)
/τ
)
+ 1

2h2

(
v j+1

Nx−1−2v j+1
Nx

+ v j+1
Nx+1

)
+ 1

2h2

(
v j

Nx−1−2v j
Nx
+ v j

Nx+1

)
( f̃ i) j

.

and the values of φi provide us to start our computation. We denote the values of l j, v j
i at the s-th iteration step

.and the values of φi provide us to start our computation. We denote the values of l j, v j
i at the s-th iteration step l j(s),
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v j(s)
i , respectively. In numerical computation, since the time step is very small, we can take l j+1(0) = l j, v j+1(0)

i = v j
i ,

j = 0,1,2, ....Nt , i = 1,2, ...,Nx. At each (s+1)-th iteration step we first determine l j+1(s+1) from the formula

l j+1(s+1) =
−
((

g j+2−g j+1
)
/τ
)
+ 1

2h2

(
v j+1(s)

Nx−1 −2v j+1(s)
Nx

+ v j+1(s)
Nx+1

)
+ 1

2h2

(
v j(s)

Nx−1−2v j(s)
Nx

+ v j(s)
Nx+1

)
( f̃i) j+1

.

Then from (17)-(20) we obtain

1
τ

(
v j+1(s+1)

i − v j+1(s)
i

)
=

1
h2

(
v j+1(s+1)

i−1 −2v j+1(s+1)
i + v j+1(s+1)

i+1

)
+l j+1(s+1) f̃ j+1

i , (22)

v j(s)
0 = v j(s)

Nx+1, (23)

v j(s)
1 + v j(s)

Nx

2
= v j(s)

Nx+1. (24)

The system of equations (22)-(24) can be solved by the Gauss elimination method and v j+1(s+1)
i is determined. If the

difference of values between two iterations reaches the prescribed tolerance, the iteration is stopped and we accept
the corresponding values l j+1(s+1), v j+1(s+1)

i (i = 1,2, ...,Nx) as l j+1, v j+1
i (i = 1,2, ...,Nx), on the ( j+1)-th time step,

respectively. In virtue of this iteration, we can move from level j to level j+1.
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Abstract. This paper is concerned with the Hopf bifurcation and steady state analysis of a predator-prey
model. Firstly, by analyzing the characteristic equation, the local stability of the nonnegative equilibriums
is discussed. Then the Hopf bifurcation around the positive equilibrium is obtained, and the direction
and the stability of the Hopf bifurcation are investigated. Finally, some numerical simulations are given to
support the theoretical results.

1. Introduction

Mathematical ecology is a subject field in which dynamic systems are involved in species, populations,
and how these groups interact with the environment. This subject field primarily studies how species
population size changes over time and space. Since Lotka–Volterra’s groundbreaking work in the 1920s,
the predator-prey model has become one of the most important research topics in mathematical ecol-
ogy for nearly a century. Species compete, evolve and disperse for the purpose of finding resources to
sustain their struggle for their existence. Depending on their specific settings of applications, they can
take the forms of resource-consumer, plant-herbivore, parasite-host, tumor cells (virus)-immune system,
susceptible-infectious interactions, etc. Mathematicians used the theory of dynamics to analyze the differ-
ential equations based on a predator-prey model. There are some scholars who applied bifurcation theory
in dynamics based on models and we can find them in [2]-[11] etc.

In this paper, we consider a predator-prey model satisfies the following differential equations in [1]

dH
dτ

= rH
(
1 −

H
K

)
− α

PH
H + β

, (1)

dP
dτ

= γP
(
−1 + δ

H
H + β

)
, (2)

where H is the prey density and P is the predator density. The parameters are r, K, α, β, γ, δ > 0,
H(0) > 0 and P(0) > 0.

The rest of the paper is organized as follows. Basic properties of the model are given in Section 2.
Sufficient conditions for the existence of the Hopf bifurcation are obtained in Section 3. In Section 4, the
numerical examples are given to illustrate the validity of our results.
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2. Preliminary

In this section, firstly, we make the following change of variables to put the model in dimensionless
form:

x =
H
K
, y =

α
rK

P, t = rτ.

Thus (1)-(2) can be written as

dx
dt

= x
(
1 − x −

y
x + b

)
, (3)

dy
dt

= cy
(
−1 + a

x
x + b

)
. (4)

We introduce the basic properties of the nonnegative constant solutions for the system (3)-(4). It is
obvious that ~u1 = (x1, y1) = (0, 0) and ~u2 = (x2, y2) = (1, 0) are constant steady states of (3)-(4). Furthermore,
~u3 = (x3, y3) =

(
b

a−1 ,
ab(a−b−1)

(a−1)2

)
is a constant steady state of (3)-(4).

It is clear that when a < b + 1, (3)-(4) has no positive equilibrium.
In the following, we discuss the local stability of equilibrium ~ui = (xi, yi) (i = 1, 2, 3). By directly

calculating, the Jacobian matrix at ~ui is

Ji , J(~ui) =

 1 − 2xi −
byi

(xi+b)2 −
xi

xi+b

abc yi

(xi+b)2 c
(

axi
xi+b − 1

)  .
Theorem 2.1. For system (3)-(4), the following statements are hold.

(i) For all a, b, c > 0, the constant equilibrium solution ~u1 is a saddle point which is unstable.
(ii) The constant equilibrium solution ~u2 is stable when a < b + 1 and it is unstable for a > b + 1.
(iii) In the case a < b + 1, there is no limit cycle since there is no positive equilibrium.

3. Existence of Hopf Bifurcation

In this section, we restrict a > b + 1 and only study the Hopf bifurcation around ~u3. Taking a as the
bifurcation parameter, we study the existence of Hopf bifurcation for (3)-(4) and so the direction and the
stability of Hopf bifurcation are investigated.

Now, we investigate the results of Hopf bifurcation for (3)-(4). We primarily get the Jacobian matrix of
(3)-(4) at ~u3

J3 =

(
−

2b
a−1 + b+1

a −
1
a

c(a − b − 1) 0

)
.

The characteristic equation of J3 is

λ2
− traceJ3λ + detJ3 = 0, (5)

where
traceJ3 = −

2b
a − 1

+
b + 1

a
, detJ3 =

c
a

(a − b + 1) > 0.

Let (x̃, ỹ) = (x, y)− (x3, y3). For convenience, we denote (x̃, ỹ) as (x, y). Then the model (3)-(4) is changed
to

dx
dt

= (x + x3)
(
1 − (x + x3) −

y + y3

x + x3 + b

)
, (6)

dy
dt

= c(y + y3)
(
−1 + a

x + x3

x + x3 + b

)
. (7)
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Theorem 3.1. The model (3)-(4) undergoes a Hopf bifurcation at (x3, y3) for a = aH = b+1
1−b .

Proof. Since we assume that a > b + 1, it should be 0 < b < 1. Clearly, if a = aH = b+1
1−b holds, then ±i

√
bc

is a pair of imaginary eigenvalues of J3. Let α(a)± iw(a) be the roots of (5) in the neighborhood of aH. So we
obtain

α(a) =
traceJ3

2
=

b + 1
2a
−

b
a − 1

, w(a) =

√
4

c
a

(a − b − 1) −
(

b + 1
a
−

2b
a − 1

)2

and

α′(a) = −
b + 1
4a2 +

b
(a − 1)2 .

It is clear that traceJ3(aH) = 0, detJ3(aH) > 0 and α′(aH) , 0. It follows from the Hopf bifurcation theorem [1]
that the model (3)-(4) undergoes a Hopf bifurcation at (x3, y3, aH).

Now, we use a computational method to test whether the Hopf bifurcation is supercritical or subcritical.
To study the system around the point a = aH we expand the right hand side of the system (6)-(7) using the
Maclaurin series and we rewrite the system (6)-(7) as( dx

dt
dy
dt

)
= J3

(
x
y

)
+

(
F(x, y, a)
G(x, y, a)

)
, (8)

where

F =

(
by3

(x3 + b)3 − 1
)

x2
−

b
(x3 + b)2 xy +

b
(x3 + b)3 x2y −

by3

(x3 + b)5 x3

and

G = −
abcy3

(x3 + b)3 x2 +
abc

(x3 + b)2 xy −
abc

(x3 + b)3 x2y +
abcy3

(x3 + b)5 x3.

Next, we make the transformation (
x
y

)
= P

(
x̃
ỹ

)
, (9)

where

P =

( 1−b
bc(b+1) w(a) 0

0 b+1
1−b) w(a)

)
,

and substitute it into (8). To avoid the abuse of mathematical notation, we still denote (x̃, ỹ) by (x, y). Then
we obtain the normal form of (8) as follows( dx

dt
dy
dt

)
=

(
0 −w(a)

w(a) 0

) (
x
y

)
+

(
f (x, y, a)
1(x, y, a)

)
, (10)

where

f (x, y, a) =
bc(b + 1)

(1 − b)w(a)
F
(

1 − b
bc(b + 1)

w(a)x,
b + 1
1 − b

w(a)y
)
,

1(x, y, a) =
1 − b

(b + 1)w(a)
G

(
1 − b

bc(b + 1)
w(a)x,

b + 1
1 − b

w(a)y
)
.

To determine the stability of periodic solutions, we need to calculate the sign of the following coefficient

γ =
1
16

(
fxxx + fxyy + 1xxy + 1yyy

)
+

1
16w(aH)

[
fxy

(
fxx + fyy

)
− 1xy

(
1xx + 1yy

)
− fxx1xx + fyy1yy

]
, (11)
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Figure 1: When a < b + 1, there is no positive equilibrium. The constant equilibrium ~u2 = (1, 0) is locally stable.

where all the partial derivatives are evaluated at the bifurcation point (0, 0, aH). Then, by computing we
obtain

γ = −12
b2

c1/2(b + 1)5
−

1 − b
(b + 1)4 −

b3/2c1/2

(1 − b)2

(
2b3(b + 1)
(1 − b)2 − 1

)
+

(1 − b)2

b1/2c1/2(b + 1)3
+

1 − b
4b1/2c1/2(b + 1)

(
2b3(b + 1)
(1 − b)2 − 1

)
. (12)

Therefore, we have the following result.
Theorem 3.2. If γ < 0, the direction of Hopf bifurcation is supercritical. This means that for a < aH

the positive equilibrium (x3, y3) is a stable spiral but for a > aH there exists a stable periodic solution and
(x3, y3) is unstable. If γ > 0, the direction of Hopf bifurcation is subcritical. In this situation, when a < aH

the positive equilibrium (x3, y3) is stable and there exists an unstable periodic solution but when a > aH,
(x3, y3) is unstable.

4. Numerical Simulations

In this section, some numerical simulations are presented, which support and complement the results
given in the previous section. There are three parameters a, b, c in our model (3)-(4). We fix b = 0.5, c = 1
and obtain the following numerical simulations which illustrate the main theoretical results.

Example 4.1. We take a = 1, b = 0.5, c = 1 . Then a < b+1 and model (3)-(4) has no positive equilibrium.
From Fig. 1, we see that ~u2 = (1, 0) is locally stable.

Example 4.2. We take a = 2.5, b = 0.5, c = 1. Then a > b + 1 and there exists unique positive equilibrium
~u3 = (x3, y3). When a = 2.5, b = 0.5, a < aH. From Fig. 2, we see that (x3, y3) is a stable spiral.

Example 4.3. We take a = 3.5, b = 0.5, c = 1, then a > aH. We observe that there exists a stable periodic
solution and the positive equilibrium (x3, y3) is unstable. This is seem from Fig 3.

In Example 4.2 and Example 4.3, we fix b = 0.5, c = 1, then we derive γ < 0. From the numerical
simulations (see Fig. 2 and Fig. 3), we can say that there exists a supercritical Hopf bifurcation and this
supports our theorical results.
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Figure 2: When a > b + 1 and 0 < b < 1, we have a bifurcation parameter and a bifurcation value a and aH , respectively. If a < aH ,
(x3, y3) is a stable spiral.

Figure 3: If a > aH , there exist stable periodic orbits and (x3, y3) is unstable.
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Murat Çağlara, Erhan Denizb, Sercan Kazımoğluc
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Abstract. In this paper, we introduce a new subclass of analytic functions in the open unit disk U with
negative coefficients defined by normalized of the az2 J′′ϑ (z) + bzJ′ϑ (z) + cJϑ (z) function, where Jϑ (z) is called
the Bessel function of the first kind of order ϑ. The object of the present paper is to determine coefficient
inequalities, inclusion relations and neighborhoods properties for functions f (z) belonging to this subclass.

1. Introduction

LetA be a class of functions f of the form

f (z) = z +

∞∑
n=2

anzn (1)

that are analytic in the open unit diskU = {z : |z| < 1}. Denote byA(n) the class of functions consisting of
functions f of the form

f (z) = z −
∞∑

n=2

anzn (2)

which are analytic inU.
We recall that the convolution (or Hadamard product) of two functions

f (z) = z +

∞∑
n=2

anzn and 1(z) = z +

∞∑
n=2

bnzn

is given by

( f ∗ 1)(z) := z +

∞∑
n=2

anbnzn =: (1 ∗ f )(z) (z ∈ U) .
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Note that f ∗ 1 ∈ A.
Next, following the earlier investigations by Goodman [8], Ruscheweyh [16], Silverman [18] and Altıntaş
et al. [1, 2] (see also [4]-[7], [10], [12], [14]-[16]), we define the (n, δ)−neighborhood of a function f ∈ A(n) by

Nn,δ
(

f
)

=

1 ∈ A (n) : 1 (z) = z −
∞∑

n=2

bnzn and
∞∑

n=2

n |an − bn| ≤ δ

 . (3)

For e(z) = z, we have

Nn,δ (e) =

1 ∈ A (n) : 1 (z) = z −
∞∑

n=2

bnzn and
∞∑

n=2

n |bn| ≤ δ

 . (4)

A function f ∈ A(n) is α−starlike of complex order γ, denoted by f ∈ S∗n(β, γ) if it satisfies the following
condition

<

{
1 +

1
γ

(
z f ′(z)

f (z)
− 1

)}
> β

(
γ ∈ C\ {0} , 0 ≤ β < 1, z ∈ U

)
,

and a function f ∈ A(n) is β−convex of complex order γ, denoted by f ∈ Cn(β, γ) if it satisfies the following
condition

<

{
1 +

1
γ

z f ′′ (z)
f ′(z)

}
> β

(
γ ∈ C\ {0} , 0 ≤ β < 1, z ∈ U

)
.

The Bessel function of the first kind of order ϑ is defined by [13, p.217]

Jϑ (z) =

∞∑
n=0

(−1)n

n!Γ (n + ϑ + 1)

( z
2

)2n+ϑ

(z ∈ C) . (5)

We know that it has all its zeros real for ϑ > −1. Here now we consider mainly the general function

Nϑ (z) = az2 J
′′

ϑ (z) + bzJ′ϑ (z) + cJϑ (z)

studied by Mercer [11]. Here, as in [11], q = b − a and(
c = 0 and q , 0

)
or

(
c > 0 and q > 0

)
.

From (5), we have the power series representation

Nϑ (z) =

∞∑
n=0

Q(2n + ϑ)(−1)n

n!Γ (n + ϑ + 1)

( z
2

)2n+ϑ

(z ∈ C) (6)

where Q (ϑ) = aϑ (v − 1) + bϑ + c (a, b, c ∈ R) . Lastly, Baricz, Çağlar and Deniz [3] obtained sufficient and
necessary conditions for the starlikeness of a normalized form of Nϑ by using results of Mercer [11], Ismail
and Muldoon [9] and Shah and Trimble [17].
Note that Nϑ is not belong to the class A. Therefore, we consider the following normalization for the
function Nϑ(z) :

Ñϑ (z) =
2ϑΓ (ϑ + 1) z1− ϑ2

Q(ϑ)
Nϑ

(√
z
)
. (7)

In the rest of this paper, the quadratic Q (ϑ) = aϑ (ϑ − 1) + bϑ + c will always provide on (a, b, c ∈ R)(
c = 0 and q , 0

)
or

(
c > 0 and q > 0

)
. Moreover, ϑ0 is the largest real root of the quadratic Q (ϑ) defined

according to the above conditions.
Easily, we can write

Ñϑ (z) = z +

∞∑
n=2

(−1)n+1Γ (ϑ + 1) Q(ϑ + 2(n − 1))
4n−1(n − 1)!Γ (ϑ + n) Q(ϑ)

zn (z ∈ U). (8)
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In terms of Hadamard product and Ñϑ (z) given by (8), a new operator Ñϑ : A → A can be defined as
follows:

Ñϑ f (z) =
(
Ñϑ ∗ f

)
(z) = z +

∞∑
n=2

(−1)n+1Γ (ϑ + 1) Q(ϑ + 2(n − 1))
4n−1(n − 1)!Γ (ϑ + n) Q(ϑ)

anzn (z ∈ U). (9)

If f ∈ A(n) is given by (2) then we have

Ñϑ f (z) = z −
∞∑

n=2

(−1)n+1Γ (ϑ + 1) Q(ϑ + 2(n − 1))
4n−1(n − 1)!Γ (ϑ + n) Q(ϑ)

anzn (z ∈ U) . (10)

Finally, by using the differential operator defined by (10), we investigate the subclasses Mn
ϑ(β, γ) and

R
n
ϑ(β, γ, µ) ofA(n) consisting of functions f as following:

Definition 1.1. The subclassMn
ϑ(β, γ) ofA(n) is defined as the class of functions f such that∣∣∣∣∣∣∣∣ 1γ

z
[
Ñϑ f (z)

]′
Ñϑ f (z)

− 1


∣∣∣∣∣∣∣∣ < β (z ∈ U) (11)

where γ ∈ C\ {0} and 0 ≤ β < 1.

Definition 1.2. Let Rn
ϑ(β, γ, µ) denote the subclass ofA(n) consisting of f which satisfy the inequality∣∣∣∣∣∣ 1γ

[(
1 − µ

) Ñϑ f (z)
z

+ µ
(
Ñϑ f (z)

)′
− 1

]∣∣∣∣∣∣ < β (z ∈ U) (12)

where γ ∈ C\ {0} and 0 ≤ β < 1, 0 ≤ µ ≤ 1.

In this paper, we obtain the coefficient inequalities, inclusion relations and neighborhood properties of the
subclassesMn

ϑ(β, γ) and Rn
ϑ(β, γ, µ).

2. Coefficient inequalities for the classesMn
ϑ
(β, γ) and Rn

ϑ
(β, γ, µ)

Theorem 2.1. Let f ∈ A(n). Then f ∈ Mn
ϑ(β, γ) if and only if

∞∑
n=2

(−1)n+1Γ(ϑ + 1)Q(ϑ + 2 (n − 1))
4n−1(n − 1)!Γ (ϑ + n) Q(ϑ)

[
n − 1 + β

∣∣∣γ∣∣∣] an ≤ β
∣∣∣γ∣∣∣ (13)

where γ ∈ C\ {0} and 0 ≤ β < 1.

Proof. Let f ∈ A(n). Then, by (11) we can write

<

z
[
Ñϑ f (z)

]′
Ñϑ f (z)

− 1

 > −β ∣∣∣γ∣∣∣ (z ∈ U) . (14)

Using (2) and (10), we have,

<


−

∞∑
n=2

(−1)n+1Γ(ϑ+1)Q(ϑ+2(n−1))
4n−1(n−1)!Γ(ϑ+n)Q(ϑ) [n − 1] anzn

z −
∞∑

n=2

(−1)n+1Γ(ϑ+1)Q(ϑ+2(n−1))
4n−1(n−1)!Γ(ϑ+n)Q(ϑ) anzn

 > −β
∣∣∣γ∣∣∣ (z ∈ U) . (15)
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Since (15) is true for all z ∈ U, choose values of z on the real axis. Letting z → 1, through the real values,
the inequality (15) yields the desired inequality

∞∑
n=2

(−1)n+1Γ(ϑ + 1)Q(ϑ + 2 (n − 1))
4n−1(n − 1)!Γ (ϑ + n) Q(ϑ)

[
n − 1 + β

∣∣∣γ∣∣∣] an ≤ β
∣∣∣γ∣∣∣ .

Conversely, supposed that inequality (13) holds true and |z| = 1, we obtain∣∣∣∣∣∣∣∣
z
[
Ψλ,µ f (z)

]′
Ψλ,µ f (z)

− 1

∣∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣∣∣∣∣
∞∑

n=2

(−1)n+1Γ(ϑ+1)Q(ϑ+2(n−1))
4n−1(n−1)!Γ(ϑ+n)Q(ϑ) [n − 1] anzn

z −
∞∑

n=2

(−1)n+1Γ(ϑ+1)Q(ϑ+2(n−1))
4n−1(n−1)!Γ(ϑ+n)Q(ϑ) anzn

∣∣∣∣∣∣∣∣∣∣∣
≤

∞∑
n=2

(−1)n+1Γ(ϑ+1)Q(ϑ+2(n−1))
4n−1(n−1)!Γ(ϑ+n)Q(ϑ) [n − 1] an

1 −
∞∑

n=2

(−1)n+1Γ(ϑ+1)Q(ϑ+2(n−1))
4n−1(n−1)!Γ(ϑ+n)Q(ϑ) an

≤ β
∣∣∣γ∣∣∣ .

Hence, by the maximum modulus theorem, we have f (z) ∈ Mn
ϑ(β, γ), which establishes the required

result.

Theorem 2.2. Let f ∈ A(n). Then f ∈ Rn
ϑ(β, γ, µ) if and only if

∞∑
n=2

(−1)n+1Γ(ϑ + 1)Q(ϑ + 2 (n − 1))
4n−1(n − 1)!Γ (ϑ + n) Q(ϑ)

[
1 + µ (n − 1)

]
an ≤ β

∣∣∣γ∣∣∣ (16)

for γ ∈ C\ {0} , 0 ≤ β < 1 and 0 ≤ µ ≤ 1.

Proof. We omit the proofs since it is similar to Theorem 2.1.

3. Inclusion relations involvingNn,δ(e) of the classesMn
ϑ
(β, γ) and Rn

ϑ
(β, γ, µ)

Theorem 3.1. If

δ =
−8β

∣∣∣γ∣∣∣Γ (ϑ + 2) Q(ϑ)(
1 + β

∣∣∣γ∣∣∣)Γ(ϑ + 1)Q(ϑ + 2)

(∣∣∣γ∣∣∣ < 1
)

(17)

thenMn
ϑ(β, γ) ⊂ Nn,δ (e) .

Proof. Let f (z) ∈ Mn
ϑ(β, γ). By Theorem 2.1, we have

−Γ (ϑ + 1) Q (ϑ + 2)
4Γ (ϑ + 2) Q (ϑ)

(1 + β
∣∣∣γ∣∣∣) ∞∑

n=2

an ≤ β
∣∣∣γ∣∣∣ ,

which implies
∞∑

n=2

an ≤
β
∣∣∣γ∣∣∣

−Γ(ϑ+1)Q(ϑ+2)
4Γ(ϑ+2)Q(ϑ) (1 + β

∣∣∣γ∣∣∣) . (18)

Using (13) and (18), we get

−Γ(ϑ + 1)Q(ϑ + 2)
4Γ (ϑ + 2) Q(ϑ)

∞∑
n=2

nan ≤ β
∣∣∣γ∣∣∣ +

−Γ (ϑ + 1) Q (ϑ + 2)
4Γ (ϑ + 2) Q (ϑ)

(1 − β
∣∣∣γ∣∣∣) ∞∑

n=2

an

≤
2β

∣∣∣γ∣∣∣
1 + β

∣∣∣γ∣∣∣ = δ.



M. Çağlar, E. Deniz, S. Kazımoğlu / TJOS 5 (3), 226–232 230

That is,
∞∑

n=2

nan ≤
−8β

∣∣∣γ∣∣∣Γ (ϑ + 2) Q(ϑ)(
1 + β

∣∣∣γ∣∣∣)Γ(ϑ + 1)Q(ϑ + 2)
= δ.

Thus, by the definition given by (4), f (z) ∈ Nn,δ(e), which completes the proof.

Theorem 3.2. If

δ =
−8β

∣∣∣γ∣∣∣Γ (ϑ + 2) Q(ϑ)(
1 + µ

)
Γ(ϑ + 1)Q(ϑ + 2)

(∣∣∣γ∣∣∣ < 1
)

(19)

then Rn
ϑ(β, γ, µ) ⊂ Nn,δ (e) .

Proof. For f (z) ∈ Rn
ϑ(β, γ, µ) and making use of the condition (16), we obtain

−Γ(ϑ + 1)Q(ϑ + 2)
4Γ (ϑ + 2) Q(ϑ)

(1 + µ)
∞∑

n=2

an ≤ β
∣∣∣γ∣∣∣

so that
∞∑

n=2

an ≤
−4β

∣∣∣γ∣∣∣Γ (ϑ + 2) Q(ϑ)

(1 + µ)Γ(ϑ + 1)Q(ϑ + 2)
. (20)

Thus, using (16) along with (20), we also get

−µ
Γ(ϑ + 1)Q(ϑ + 2)
4Γ (ϑ + 2) Q(ϑ)

∞∑
n=2

nan ≤ β
∣∣∣γ∣∣∣ +

(
1 − µ

) Γ(ϑ + 1)Q(ϑ + 2)
4Γ (ϑ + 2) Q(ϑ)

∞∑
n=2

an

≤ β
∣∣∣γ∣∣∣ +

(
µ − 1

) β ∣∣∣γ∣∣∣
1 + µ

.

Hence,
∞∑

n=2

nan ≤
−8β

∣∣∣γ∣∣∣Γ (ϑ + 2) Q(ϑ)(
1 + µ

)
Γ(ϑ + 1)Q(ϑ + 2)

= δ

which in view of (4), completes the proof of theorem.

4. Neighborhood properties for the classesMn
ϑ
(β, γ) and Rn

ϑ
(β, γ, µ)

Definition 4.1. For 0 ≤ η < 1 and z ∈ U, a function f (z) ∈ Mn
λ,µ(α, γ) if there exists a function 1(z) ∈ Mn

ϑ(β, γ)
such that ∣∣∣∣∣ f (z)

1(z)
− 1

∣∣∣∣∣ < 1 − η. (21)

For 0 ≤ η < 1 and z ∈ U, a function f (z) ∈ Rn
ϑ(β, γ, µ) if there exists a function 1 (z) ∈ Rn

ϑ

(
β, γ, µ

)
such

that the inequality (21) holds true.

Theorem 4.2. If 1(z) ∈ Mn
ϑ(β, γ) and

η = 1 −
δ
(
1 + β

∣∣∣γ∣∣∣)Γ(ϑ + 1)Q(ϑ + 2)

2
[(

1 + β
∣∣∣γ∣∣∣)Γ (ϑ + 1) Q (ϑ + 2) + 4β

∣∣∣γ∣∣∣Γ (ϑ + 2) Q(ϑ)
] (22)

thenNn,δ
(
1
)
⊂ M

n
ϑ(β, γ).
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Proof. Let f (z) ∈ Nn,δ
(
1
)
. Then,

∞∑
n=2

n |an − bn| ≤ δ, (23)

which yields the coefficient inequality,

∞∑
n=2

|an − bn| ≤
δ
2

(n ∈N).

Since 1(z) ∈ Mn
ϑ(β, γ) by (18), we have

∞∑
n=2

bn ≤
−4β

∣∣∣γ∣∣∣Γ (ϑ + 2) Q(ϑ)

(1 + β
∣∣∣γ∣∣∣)Γ(ϑ + 1)Q(ϑ + 2)

, (24)

and so

∣∣∣∣∣ f (z)
1(z)
− 1

∣∣∣∣∣ <

∞∑
n=2
|an − bn|

1 −
∞∑

n=2
bn

≤
δ
2

Γ(ϑ+1)Q(ϑ+2)
4Γ(ϑ+2)Q(ϑ) (1 + β

∣∣∣γ∣∣∣)
Γ(ϑ+1)Q(ϑ+2)
4Γ(ϑ+2)Q(ϑ) (1 + β

∣∣∣γ∣∣∣) + β
∣∣∣γ∣∣∣

= 1 − η.

Thus, by definition, f (z) ∈ Mn
ϑ(β, γ) for η given by (22), which establishes the desired result.

Theorem 4.3. If 1(z) ∈ Rn
ϑ(β, γ, µ) and

η = 1 −
δ
(
1 + µ

)
Γ(ϑ + 1)Q(ϑ + 2)

2
[(

1 + µ
)
Γ (ϑ + 1) Q (ϑ + 2) + 4β

∣∣∣γ∣∣∣Γ (ϑ + 2) Q(ϑ)
] (25)

thenNn,δ
(
1
)
⊂ R

n
ϑ(β, γ, µ).

Proof. We omit the proofs since it is similar to Theorem 4.2.
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Weak Structures on Pythagorean Fuzzy Soft Topological Spaces
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aDepartment of Mathematic, Kafkas University, 36100, Kars, Turkey

Abstract. In this paper, we initiate the topological structures of pythagorean fuzzy soft semi-open sets and
pythagorean fuzzy soft semi-closed sets. Furthermore, the concept of pythagorean fuzzy soft semi-interior,
pythagorean fuzzy soft semi-closure are presented. Also some related properties are investigated.

1. Introduction

Molodtsov [20] has presented soft-set theory as a new mathematical method for working with com-
plexity, imprecise and uncertainly defined objects, and overcoming incompatibility with parameterization
methods, where theories such as fuzzy sets, intuitionistic fuzzy sets theory, rough set theory fall short. The
soft set theory proved useful in a number of areas, not restricted to decision-making [8, 26], data analysis
[6, 34], forecasting [29] and so on. Topological structures for soft sets are studied and explored in [1, 2, 10, 11].
In [21] Molodtsov et al. listed a variety of directions for the implementation of soft sets, such as smoothness
of functions, game theory, operational analysis, Riemann integration, Perron integration, probability and
calculation theory for modeling problems in architecture, computer science, economics, social sciences.

The concept of fuzzy sets was initiated by Zadeh [33]. Intuitionistic fuzzy set (IFS) and intuitionistic
L-fuzzy sets (ILFS) were initiated and discussed by Atanassov [3] to generalize the idea of fuzzy set. Maji
et al. developed the idea of intuitionistic fuzzy soft sets [18], a generalization of fuzzy soft sets [17] and
standard soft sets[19]. Coker [7] has presented and researched the concept of intuitionistic fuzzy topological
spaces. Li et al. [16] initiated intuitionistic fuzzy topological constructs of intuitionistic fuzzy soft sets.
They discussed the notions of intuitionistic fuzzy soft open (closed) sets, intuitionistic fuzzy soft interior
(closure) and intuitionistic fuzzy soft base in intuitionistic fuzzy soft topological spaces. Recently, Hussain
[12] initiated the idea of an intuitionistic fuzzy soft boundary and discussed the features and properties of the
intuitionistic fuzzy soft boundary in general as well as the intuitionistic fuzzy soft interior and intuitionistic
fuzzy soft closure. He also studied some weak structures on intuitionistic fuzzy soft topological spaces [13].

Yager [30, 31] introduced Pythagorean fuzzy set(PFS) as an expansion of Atanassov’s intuitionistic fuzzy
set and provided Pythagorean membership ratings for multi-criteria decision-making (MCDM) implemen-
tations. The main features of the PFS are that the sum of the membership degree and non-membership
squares for each alternative is less than or equal to 1. Obviously, PFSs have more power than IFSs to model
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the vagueness of realistic MCDM issues. The Pythagorean fuzzy soft set theory was defined by Peng et
al.[24], and its significant properties were studied. Pythagorean fuzzy topology introduced by Olgun et al
[22]. Also Riaz et al. [27] and Yolcu and Ozturk [32] studied on Pythagorean fuzzy soft topological spaces.
Pythagorean fuzzy set theory is one of the most studied topics of recent times [4, 5, 9, 14, 23, 25, 28].

In this paper, we initiate and define the topological structures of pythagorean fuzzy soft semi-open sets
and pythagorean fuzzy, soft semi-closed sets. We also investigate the properties of pythagorean fuzzy soft
semi-interior, pythagorean fuzzy soft semi-closure, and discuss the relationship between them.

2. Preliminaries

Definition 2.1. [33] Let X be an universe. A fuzzy set F in X, F = {(x, µF(x)) : x ∈ X}, where µF : X→ [0, 1] is the
membership function of the fuzzy set F; µF(x) ∈ [0, 1] is the membership of x ∈ X in f . The set of all fuzzy sets over
X will be denoted by FS(X).

Definition 2.2. [3] An intuitionistic fuzzy set F in X is F = {(x, µF(x), vF(x)) : x ∈ X}, where µF : X → [0, 1],
vF : X → [0, 1] with the condition 0 ≤ µF(x) + vF(x) ≤ 1, ∀x ∈ X. The numbers µF, vF ∈ [0, 1] denote the degree of
membership and non-membership of x to F, respectively. The set of all intuitionistic fuzzy sets over X will be denoted
by IFS(X).

Definition 2.3. [20] Let E be a set of parameters and X be the universal set. A pair (F,E) is called a soft set over X,
where F is a mapping F : E→ P(X). In other words, the soft set is a parameterized family of subsets of the set X.

Definition 2.4. [17] Let E be a set of parameters and X be the universal set. A pair (F,E) is called a fuzzy soft set
over X, If F : E→ FS(X) is a mapping from E into set of all fuzzy sets in X,where FS(X) is set of all fuzzy subset of X.

Definition 2.5. [18] Let X be an initial universe E be a set of parameters. A pair (F,E) is called an intuitionistic
fuzzy soft set over X, where F is a mapping given by, F : E→ IFS(X).

In general, for every e ∈ E, F(e) is an intuitionistic fuzzy set of X and it is called intuitionistic fuzzy value set of
parameter e. Clearly, F(e) can be written as a intuitionistic fuzzy set such that F(e) = {(x, µF(x), vF(x)) : x ∈ X}

Definition 2.6. [30] Let X be a universe of discourse. A pythagorean fuzzy set (PFS) in X is given by, P =
{(x, µP(x), vP(x)) : x ∈ X} where, µP : X → [0, 1] denotes the degree of membership and vp : X → [0, 1] denotes the
degree of nonmembership of the element x ∈ X to the set P with the condition that 0 ≤ (µP(x))2 + (vP(x))2

≤ 1.

Definition 2.7. [24] Let X be the universal set and E be a set of parameters. The pythagorean fuzzy soft set is
defined as the pair (F,E) where, F : E → PFS(X) and PFS(X) is the set of all Pythagorean fuzzy subsets of X. If
µ2

F(x) + v2
F(x) ≤ 1 and µF(x) + vF(x) ≤ 1, then pythagorean fuzzy soft sets degenerate into intuitionistic fuzzy soft

sets.

Definition 2.8. [24] Let A,B ⊆ E and (F,A), (G,B) be two pythagorean fuzzy soft sets over X. (F,A) is said to be
pythagorean fuzzy soft subset of (G,B) denoted by (F,A)⊆̃(G,B) if,

1. A ⊆ B
2. ∀e ∈ A, F(e) is a pythagorean fuzzy subset of G(e) that is, ∀x ∈ U and ∀e ∈ A, µF(e)(x) ≤ µG(e)(x) and

vF(e)(x) ≥ vG(e)(x). If (F,A)⊆̃(G,B) and (G,B)⊆̃(F,A) then (F,A), (G,B) are said to be equal.

Definition 2.9. [24] Let (F,E) two pythagorean fuzzy soft sets over X. The complement of (F,E) is denoted by (F,E)c

and is defined by
(F,E)c = {(e, (x, vF(e)(x), µF(e)(x)) : x ∈ X) : e ∈ E}
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Definition 2.10. [15] a) A pythagorean fuzzy soft set (F,E) over the universe X is said to be null pythagorean fuzzy
soft set if µF(e)(x) = 0 and vF(e)(x) = 1; ∀e ∈ E, ∀x ∈ X. It is denoted by 0̃(X,E).

b) A pythagorean fuzzy soft set (F,E) over the universe X is said to be absolute pythagorean fuzzy soft set if
µF(e)(x) = 1 and vF(e)(x) = 0; ∀e ∈ E, ∀x ∈ X. It is denoted by 1̃(X,E).

Definition 2.11. [15] Let (F,A) and (G,B) be two pythagorean fuzzy soft sets over the universe set X, E be a
parameter set and A,B ⊆ E.Then,

a) Extended union of (F,A) and (G,B) is denoted by (F,E)∪̃E(G,B) = (H,C) where C = A ∪ B and (H,C) defined
by;

(H,C) = {(e, (x, µH(e)(x), vH(e)(x)) : x ∈ X) : e ∈ E}

where

µH(e)(x) =


µF(e)(x), if e ∈ A − B
µG(e)(x), if e ∈ B − A

max{µF(e)(x), µG(e)(x)}, if e ∈ A ∩ B

vH(e)(x) =


vF(e)(x), if e ∈ A − B
vG(e)(x), if e ∈ B − A

min{µF(e)(x), µG(e)(x)}, if e ∈ A ∩ B

b) Extended intersection of (F,A) and (G,B) is denoted by (F,E)∩̃E(G,B) = (H,C) where C = A ∪ B and (H,C)
defined by;

(H,C) = {(e, (x, µH(e)(x), vH(e)(x)) : x ∈ X) : e ∈ E}

where

µH(e)(x) =


µF(e)(x), if e ∈ A − B
µG(e)(x), if e ∈ B − A

min{µF(e)(x), µG(e)(x)}, if e ∈ A ∩ B

vH(e)(x) =


vF(e)(x), if e ∈ A − B
vG(e)(x), if e ∈ B − A

max{µF(e)(x), µG(e)(x)}, if e ∈ A ∩ B

Let X be an initial universe and PFS(X) denote the family of pythagorean fuzzy sets over X and PFSS(X,E)
be the family of all pythagorean fuzzy soft sets over X with parameters in E.

Definition 2.12. [32]Let X , ∅ be a universe set and τ̃ ⊂ PFSS(X,E) be a collection of pythagorean fuzzy soft sets
over X, then τ is said to be on pythagorean fuzzy soft topology on X if

(i) 0̃(X,E), 1̃(X,E) belong to τ̃,
(ii) The union of any number of pythagorean fuzzy soft sets in τ̃ belongs to τ̃,
(iii) The intersection of any two pythagorean fuzzy soft sets in τ̃ belongs to τ̃.
The triple

(
X, τ̃,E

)
p is called an pythagorean fuzzy soft tpological space over X. Every member of τ is

called a pythagorean fuzzy soft open set in X.

Definition 2.13. [32] a) Let X be an initial universe set, E be the set of parameters and τ̃ =
{̃
0(X,E), 1̃(X,E)

}
. Then τ̃ is

called a pythagorean fuzzy soft indiscrete topology on X and
(
X, τ̃,E

)
p is said to be a pythagorean fuzzy soft indiscrete

space over X.
b) Let X be an initial universe set, E be the set of parameters and τ̃ be the collection of all pythagorean fuzzy soft

sets which can be defined over X. Then τ̃ is called a pythagorean fuzzy soft discrete topology on X and
(
X, τ̃,E

)
p is

said to be a pythagorean fuzzy soft discrete space over X.

Definition 2.14. [32] Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X. A pythagorean fuzzy soft

set (F,E) over X is said to be a pythagorean fuzzy soft closed set in X, if its complement (F,E)c belongs to τ̃.
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Proposition 2.15. [32]Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X. Then, the following

properties hold.

(i) 0̃(X,E), 1̃(X,E) are pythagorean fuzzy soft closed set over X.
(ii) The intersection of any number of pythagorean fuzzy soft closed set is a pythagorean fuzzy soft

closed set over X.
(iii) The union of any two pythagorean fuzzy soft closed set is a pythagorean fuzzy soft closed set over

X.

Definition 2.16. [32]Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E) be a pythagorean

fuzzy soft sets over X. The pythagorean fuzzy soft closure of (F,E) denoted by pcl(F,E) is the intersection of all
pythagorean fuzzy soft closed super sets of (F,E).

Clearly pcl(F,E) is the smallest pythagorean fuzzy soft closed set over X which contain (F,E).

Definition 2.17. [32]Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (H,E) ∈ PFSS(X,E).

The pythagorean fuzzy soft interior of (H,E), denoted by pint(H,E), is the union of all the pythagorean fuzzy soft
open sets contained in (H,E).

3. Main Results

Definition 3.1. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). If there

exists a pythagorean fuzzy soft open set (G,E) such that (G,E)⊂̃(F,E)⊂̃pcl(G,E), then (F,E) is called pythagorean
fuzzy soft semi-open set over X.

Definition 3.2. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). (F,E) is

pythagorean fuzzy soft semi-closed set if and only if its complement (F,E)c is pythagorean fuzzy soft semi-open set.

Remark 3.3. It is obvious that a pythagorean fuzzy soft open set is pythagorean fuzzy soft semi-open set. But the
converse is not true in general. This is shown in following example.

Example 3.4. Let X = {x1, x2} , E = {e1, e2} and

τ̃ =
{̃
0(X,E), 1̃(X,E), (F1,E) , (F2,E) , (F3,E)

}
where (F1,E) , (F2,E) , (F3,E) pythagorean fuzzy soft sets over X, defined as;

(F1,E) =

{
(e1, {(x1, 0.4, 0.6) , (x2, 0.3, 0.7)})
(e2, {(x1, 0.5, 0.4) , (x2, 0.7, 0.6)})

}
(F2,E) =

{
(e1, {(x1, 0.5, 0.5) , (x2, 0.4, 0.5)})
(e2, {(x1, 0.6, 0.4) , (x2, 0.8, 0.3)})

}
(F3,E) =

{
(e1, {(x1, 0.7, 0.3) , (x2, 0.7, 0.2)})
(e2, {(x1, 0.8, 0.2) , (x2, 0.9, 0.2)})

}
It is clear that τ̃ is a pythagorean fuzzy soft topological spaces and

(
X, τ̃,E

)
p is pythagorean fuzzy soft topological

spaces. The pythagorean fuzzy soft closed sets as follow;



T.Y. Öztürk / TJOS 5 (3), 233–241 237

(̃
0(X,E)

)c
= 1̃(X,E)(̃

1(X,E)

)c
= 0̃(X,E)

(F1,E)c =

{
(e1, {(x1, 0.6, 0.4) , (x2, 0.7, 0.3)})
(e2, {(x1, 0.4, 0.5) , (x2, 0.6, 0.7)})

}
(F2,E)c =

{
(e1, {(x1, 0.5, 0.5) , (x2, 0.5, 0.4)})
(e2, {(x1, 0.4, 0.6) , (x2, 0.3, 0.8)})

}
(F3,E)c =

{
(e1, {(x1, 0.3, 0.7) , (x2, 0.3, 0.7)})
(e2, {(x1, 0.3, 0.8) , (x2, 0.2, 0.9)})

}
Now we consider a pythagorean fuzzy soft set (G,E) over X defined by,

(G,E) =
{

(e1, {(x1, 0.6, 0.4) , (x2, 0.7, 0.3)})
(e2, {(x1, 0.7, 0.3) , (x2, 0.8, 0.2)})

}
Then there exist a pythagorean fuzzy open set (F2,E) such that (F2,E)⊂̃(G,E)⊂̃pcl(F2,E) = 1̃(X,E).

Hence (G,E) is a pythagorean fuzzy soft semi-open set, but (G,E) is not pythagorean fuzzy soft open set.

Proposition 3.5. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). Then

(F,E) is pythagorean fuzzy soft semi-open set if and only if (F,E)⊂̃pcl
(
pint(F,E)

)
.

Proof. (⇒)Suppose that (F,E) is pythagorean fuzzy soft semi-open set, then there exists a pythagorean fuzzy
soft open set (G,E) such that (G,E)⊂̃(F,E)⊂̃pcl(G,E).Now (G,E)⊂̃pint(F,E) implies that pcl(G,E)⊂̃pcl

(
pint(F,E)

)
.

Therefore (
F,E)⊂̃pcl(G,E)⊂̃pcl

(
pint(F,E)

)
.

(⇐) Suppose that (F,E)⊂̃pcl
(
pint(F,E)

)
. Take (G,E) = pint(F,E), we have

(G,E)⊂̃(F,E)⊂̃pcl(G,E)

This complete this proof.

Theorem 3.6. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X . Then an arbitrary union of

pythagorean fuzzy soft semi-open sets is pythagorean fuzzy soft semi-open set.

Proof. Let {(Fi,E) : i ∈ I} be a collection of pythagorean fuzzy soft semi-open sets and (G,E) = ∪
i∈I

(Fi,E). Since each

(Fi,E) is PFS semi-open, then there exist a pythagorean fuzzy soft open set (Hi,E) such that (Hi,E)⊂̃(Fi,E)⊂̃pcl(Hi,E)

and so ∪
i∈I

(Hi,E)⊂̃ ∪
i∈I

(Fi,E)⊂̃ ∪
i∈I

pcl(Hi,E)⊂̃pcl
(
∪
i∈I

(Hi,E)
)
. Let (H,E) = ∪

i∈I
(Hi,E). Then (H,E) is pythagorean fuzzy

soft open and (H,E)⊂̃ ∪
i∈I

(Fi,E)⊂̃pcl(H,E). Therefore, ∪
i∈I

(Fi,E) is a pythagorean fuzzy soft semi-open set.

Corollary 3.7. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X . Then the family of all pythagorean

fuzzy soft semi-open sets are a pythagorean fuzzy soft supra topology on X.

Proposition 3.8. Let (F,E) be a pythagorean fuzzy soft semi-open set and (G,E) be a pythagorean fuzzy soft set in(
X, τ̃,E

)
p . Suppose (F,E)⊂̃(G,E)⊂̃pcl(F,E). Then (G,E) is a pythagorean fuzzy soft semi-open set over X.

Proof. (F,E) be a pythagorean fuzzy soft semi-open set implies that there exist a pythagorean fuzzy soft open set
(H,E) such that (H,E)⊂̃(F,E)⊂̃pcl(H,E). Now (H,E)⊂̃(G,E) and pcl(F,E)⊂̃pcl(H,E) implies that (G,E)⊂̃pcl(H,E).
Therefore (H,E)⊂̃(G,E)⊂̃pcl(H,E). Hence (G,E) is a pythagorean fuzzy soft semi-open set in X.
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Proposition 3.9. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). Then

(F,E) is pythagorean fuzzy soft semi-closed if and only if there exist a pythagorean fuzzy soft closed set (G,E) such
that pint(G,E)⊂̃(F,E)⊂̃(G,E).

Proof. This proof is clear that from the definition of pythagorean fuzzy soft semi-closed set.

Proposition 3.10. Every pythagorean fuzzy soft closed set is pythagorean fuzzy soft semi-closed set in a pythagorean
fuzzy soft topological spaces

(
X, τ̃,E

)
p .

Proof. Straightforward.

Remark 3.11. The converse of Proposition 3.10 may not be provide in general. It is shown in following example.

Example 3.12. Consider the Example 3.4.

(G,E)c =

{
(e1, {(x1, 0.4, 0.6) , (x2, 0.3, 0.7)})
(e2, {(x1, 0.3, 0.7) , (x2, 0.2, 0.8)})

}
is pythagorean fuzzy soft semi-closed set. But (G,E)c is not pythagorean fuzzy soft closed set.

Theorem 3.13. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E) ∈ PFSS(X,E). Then

(F,E) is pythagorean fuzzy soft semi-closed set if and only if pint
(
pcl(F,E)

)
⊂̃(F,E).

Proof. (⇒) Suppose that (F,E) is a pythagorean fuzzy soft closed set, then by Proposition 3.9, there exists a pythagorean
fuzzy soft closed set (G,E) such that pint(G,E)⊂̃(F,E)⊂̃(G,E). This follows that pcl(F,E)⊂̃pcl(G,E) = (G,E). Thus
pint

(
pcl(F,E)

)
⊂̃pint(G,E). Therefore, pint

(
pcl(F,E)

)
⊂̃pint(G,E)⊂̃(F,E).

(⇐) Suppose that (F,E) be a pythagorean fuzzy soft set in
(
X, τ̃,E

)
p such that pint

(
pcl(F,E)

)
⊂̃(F,E). We take

pcl(F,E) = (G,E). Then pint(G,E)⊂̃(F,E)⊂̃(G,E). This implies that (F,E) is a pythagorean fuzzy soft semi-closed
set.

Theorem 3.14. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X . Then an arbitrary intersection of

pythagorean fuzzy soft semi-closed sets is pythagorean fuzzy soft semi-closed set.

Proof. Suppose that {(Fi,E) : i ∈ I} be a collection of pythagorean fuzzy soft semi-closed sets. Since each i ∈ I,
(Fi,E) is a pythagorean fuzzy soft semi-closed set, then by Proposition 3.9, there exist a pythagorean fuzzy soft
closed set (Gi,E) such that pint(Gi,E)⊂̃(Fi,E)⊂̃(Gi,E). This follows that ∩

i∈I

(
pint(Gi,E)

)
⊂̃ ∩

i∈I
(Fi,E)⊂̃ ∩

i∈I
(Gi,E). We

take ∩
i∈I

(Gi,E) = (G,E). Then by Theorem 2.15, (G,E) is a pythagorean fuzzy soft closed set and hence ∩
i∈I

(Fi,E) is a

pytahgorean fuzzy soft semi-closed set.

Theorem 3.15. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X, (F,E) be a pythagoren fuzzy

soft semi-closed set and (G,E) be a pythagorean fuzzy soft set over X. If pint(F,E)⊂̃(G,E)⊂̃(F,E), then (G,E) is a
pythagorean fuzzy soft semi-closed set.

Proof. Since (F,E) is a pythagorean fuzzy soft semi-closed set, then by Prosoposition 3.9, tehere exists an pythagorean
fuzzy soft closed set (H,E) such that pint(H,E)⊂̃(F,E)⊂̃(H,E). Then (G,E)⊂̃(H,E). Also pint

(
pint(H,E)

)
=

pint(H,E)⊂̃pint(F,E). This implies that pint(H,E)⊂̃(G,E).
Therefore, pint(H,E)⊂̃(G,E)⊂̃(H,E). Hence (G,E) is a pythagorean fuzzy soft semi-closed set.

Definition 3.16. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E) ∈ PFSS(X,E).

1. The pythagorean fuzzy soft semi-interior of (F,E), denoted by spint(F,E), is the union of all the pythagorean
fuzzy soft semi-open sets contained in (F,E).
Clearly, spint(F,E) is the largest pythagorean fuzzy soft semi-open set over X contained in (F,E).
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2. The pythagorean fuzzy soft semi-closure of (F,E), denoted by spcl(F,E), is the intersection of all the pythagorean
fuzzy soft semi-closed sets contains (F,E).
Clearly, spcl(F,E) is the smallest pythagorean fuzzy soft semi-closed set over X which contains (F,E).

Remark 3.17. It is clear that, If (F,E) be a pythagorean fuzzy soft set, then

pint(F,E)⊂̃spint(F,E)⊂̃(F,E)⊂̃spcl(F,E)⊂̃pcl(F,E)

.

Theorem 3.18. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E) , (G,E) ∈ PFSS(X,E).Then,

1. spint(̃0(X,E)) = spcl(̃0(X,E)) = 0̃(X,E) and spint(̃1(X,E)) = spcl(̃1(X,E)) = 1̃(X,E),
2. (F,E) is a pythagorean fuzzy soft semi-open(semi-closed) set if and only if spint(F,E) = (F,E) (spcl(F,E) = (F,E)).
3. spint

(
spint(F,E)

)
= (F,E).

4. (F,E)⊂̃(G,E) implies spint(F,E)⊂̃spint(G,E) and spcl(F,E)⊂̃spcl(G,E),

5. (i) spint(F,E)∩̃Espint(G,E) = spint
(
(F,E)∩̃E(G,E)

)
(ii) spcl(F,E)∩̃Espcl(G,E)⊇̃spcl

(
(F,E)∩̃E(G,E)

)
6. spint(F,E)∪̃Espint(G,E)⊆̃spint

(
(F,E)∪̃E(G,E)

)
spcl(F,E)∪̃Espcl(G,E) = spcl

(
(F,E)∪̃E(G,E)

)
Proof. (1)-(4) follow directly from the definition of pythagorean fuzzy soft semi-interior and pythagorean fuzzy soft
semi-closure .

(5) (i) By (4), we have
(
(F,E)∩̃E(G,E)

)
⊆̃(F,E),

(
(F,E)∩̃E(G,E)

)
⊆̃(G,E) implies

spint
(
(F,E)∩̃E(G,E)

)
⊆̃spint(F,E), spint

(
(F,E)∩̃E(G,E)

)
⊆̃spint(G,E),

so that spint
(
(F,E)∩̃E(G,E)

)
⊆̃spint(F,E)∩̃Espint(G,E).Also, since spint(F,E)⊆̃(F,E) and spint(G,E)⊆̃(G,E) implies

spint(F,E)∩̃Espint(G,E)⊆̃
(
(F,E)∩̃E(G,E)

)
.

Thus spint(F,E)∩̃Espint(G,E) is a pythagorean fuzzy soft semi-open subsets of
(
(F,E)∩̃E(G,E)

)
.

Hence spint(F,E)∩̃Espint(G,E)⊆̃spint
(
(F,E)∩̃E(G,E)

)
. Thus spint(F,E)∩̃Espint(G,E) =

(
(F,E)∩̃E(G,E)

)
.

(ii) By (4), we have
(
(F,E)∩̃E(G,E)

)
⊆̃(F,E),

(
(F,E)∩̃E(G,E)

)
⊆̃(G,E) implies

spcl
(
(F,E)∩̃E(G,E)

)
⊆̃spcl(F,E), spcl

(
(F,E)∩̃E(G,E)

)
⊆̃spcl(G,E),

so that spcl
(
(F,E)∩̃E(G,E)

)
⊆̃spcl(F,E)∩̃Espcl(G,E).

(6) The proof is similar to (5) by using property that (F,E)⊆̃
(
(F,E)∪̃E(G,E)

)
, (G,E)⊆̃

(
(F,E)∪̃E(G,E)

)
.

Theorem 3.19. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E) ∈ PFSS(X,E).Then,

1.
(
spint(F,E)

)c = spcl ((F,E)c) .
2.

(
pcl(F,E)

)c = spint ((F,E)c) .
3. spint

(
pint(F,E)

)
= pint

(
spint(F,E)

)
= pint(F,E).

4. spcl
(
pcl(F,E)

)
= pcl

(
spcl(F,E)

)
= pcl(F,E).

Proof. (1) spint(F,E)⊆̃(F,E) implies that (F,E)c
⊆̃

(
spint(F,E)

)c .Now by Theorem 3.18 (2), and since
(
spint(F,E)

)c

is a pythagorean fuzzy soft semi-closed set, we have spcl ((F,E)c) ⊆̃spcl
((

spint(F,E)
)c
)
=

(
spint(F,E)

)c . For
the reverse inclusion, (F,E)c

⊆̃spcl ((F,E)c) implies that
(
spcl ((F,E)c)

)c
⊆̃ ((F,E)c)c = (F,E). spcl ((F,E)c) being
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pythagorean fuzzy soft semi-closed implies that
(
spcl ((F,E)c)

)c is pythagorean fuzzy soft semi-open. Thus(
spcl ((F,E)c)

)c
⊆̃spint(F,E) and hence

(
spint(F,E)

)c
⊆̃

((
spcl ((F,E)c)

)c
)c
= spcl ((F,E)c) .

(2) It is similar to (1).
(3) By Remark 3.3, pint(F,E) is a pythagorean fuzzy soft open set implies that it is pythagorean fuzzy

soft semi-open set. Therefore, by Theorem 3.18(2), spint
(
pint(F,E)

)
= pint(F,E). pint(F,E)⊆̃spint(F,E) = (F,E).

This implies that spint(pint(F,E)) = pint(F,E).
(4) pcl(F,E) is pythagorean fuzzy soft closed set implies that it is pythagorean fuzzy soft semi-closed.

Therefore spcl
(
pcl(F,E)

)
= pcl(F,E). Then (F,E)⊆̃spcl(F,E)⊆̃pcl(F,E).Hence spcl(F,E)⊆̃pcl

(
spcl(F,E)

)
⊆̃spcl(F,E).

This implies that pcl
(
spcl(F,E)

)
= pcl(F,E).

4. Conclusion

In this study,we presented topological structures of pythagorean fuzzy soft semi-open and pythagorean
fuzzy soft semi-closed sets. We also investigated and explored some properties of pythagorean fuzzy soft
semi-interior and pythagorean fuzzy soft semi-closure and discussed relationship between them. We hope
that the findings in this paper will enhance and promote the further study in the pythagorean fuzzy soft
set theory.
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Abstract. The aim of this paper is to initiate the concept of pythagorean fuzzy soft (PFS) boundary. The
characterizations and properties of PFS boundary are discussed and investigated in general as well as in
terms of PFS interior and PFS closure.

1. Introduction

Many complicated ideas in the fields of economics, architecture, management , medical research, etc.
require unknown data. These problems, which we face in our day-to-day lives, can not be solved by classical
mathematical methods due to a large number of uncertainties. Decision-making is a vital activity for all
those professions where professionals apply their expertise of a particular field to take effective decisions.
However, owing to the various pressures of day-to-day life, decision-makers can not be able to offer their
decisions in precisely crisp shape. Thus, in order to deal with it, they tend to use the fuzzy set theory [26]
to offer their preferences under the ambiguous and imprecise existence. In this theory, the calculation of
each element is achieved with the aid of the degree of membership. However, with increasing uncertainty,
there is often a degree of hesitancy between the priorities of decision-making and thus the study performed
in those conditions is not optimal. To fix this, the essential extension of the fuzzy set theory named as
intuitionistic fuzzy set (IFS) proposed by Atanassov [1] inserted the degree of non-membership v in the
analysis along with the degree of membership µ in such a way that µ + v ≤ 1. D. Coker [5] has developed
and studied the concept of IF topological spaces and Hussain [8] studied intutionistic fuzzy soft boundary.

Intuitionistic fuzzy set theory is based on a limitation on decision-makers that they have assigned
their desires only to the setting where the µ + v ≤ 1 limit is reached. However, if an expert gives 0.8 as
membership and 0.3 as non-membership to an object, then it is obvious that 0.8 + 0.3 � 1 and therefore
the above intuitionistic fuzzy set theory can not solve these problems. To overcome these problems, Yager
[23, 24] introduced the concept of Pythagorean Fuzzy sets which is a generalization of intuitionistic fuzzy
sets, by relaxing the condition µ + v ≤ 1 to µ2 + v2

≤ 1. Thus, the pythagorean fuzzy sets treats far more
information than the intuitionistic fuzzy sets. After that, some different studies are investigated using
aggregation operators of pythagorean fuzzy sets.

In 1999, Molodtsov [13] introduced soft sets to address the lack of a parametrization tool when handling
vagueness. Soft set theory is one of the most popular theories of recent times. Therefore, many researchers
have made successful studies on soft set structure [16–19]. A soft set is a parameterized family of sets which
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has been extended into different hybrid structures such as fuzzy soft sets [11], intuitionistic fuzzy soft sets
[12] and Pythagorean fuzzy soft sets [20]. Since the Pythagorean fuzzy set is extremely capable of dealing
with vagueness or ambiguity, the parameterized Pythagorean fuzzy set family, which is Pythagorean fuzzy
soft set, can also perform well. Recently, many studies on pythagorean fuzzy theory and pythagorean
fuzzy soft theory have been conducted by researchers [2–4, 6, 7, 9, 14, 22]. Pythagorean fuzzy topological
structure introduced by Olgun et al [15]. Also, Riaz et al. [21], Yolcu and Ozturk [25] studied Pythagorean
fuzzy soft topological spaces.

In this paper, we initiate the concept of pythagorean fuzzy soft boundary. We discuss and explore
the characterizations and properties of pythagorean fuzzy soft boundary in general as well as in terms of
pythagorean fuzzy soft interior and pythagorean fuzzy soft closure. Examples and counterexamples are
also presented to validate the discussed results.

2. Preliminaries

Definition 2.1. [26] Let X be a universe. A fuzzy set F in X, F = {(x, µF(x)) : x ∈ X}, where µF : X → [0, 1] is the
membership function of the fuzzy set F; µF(x) ∈ [0, 1] is the membership of x ∈ X in f . The set of all fuzzy sets over
X will be denoted by FS(X).

Definition 2.2. [1] An intuitionistic fuzzy set F in X is F = {(x, µF(x), vF(x)) : x ∈ X}, where µF : X → [0, 1],
vF : X → [0, 1] with the condition 0 ≤ µF(x) + vF(x) ≤ 1, ∀x ∈ X. The numbers µF, vF ∈ [0, 1] denote the degree of
membership and non-membership of x to F, respectively. The set of all intuitionistic fuzzy sets over X will be denoted
by IFS(X).

Definition 2.3. [13] Let E be a set of parameters and X be the universal set. A pair (F,E) is called a soft set over X,
where F is a mapping F : E→ P(X). In other words, the soft set is a parameterized family of subsets of the set X.

Definition 2.4. [11] Let E be a set of parameters and X be the universal set. A pair (F,E) is called a fuzzy soft set
over X, If F : E → FS(X) is a mapping from E into the set of all fuzzy sets in X, where FS(X) is the set of all fuzzy
subset of X.

Definition 2.5. [12] Let X be an initial universe E be a set of parameters. A pair (F,E) is called an intuitionistic
fuzzy soft set over X, where F is a mapping given by, F : E→ IFS(X).

In general, for every e ∈ E, F(e) is an intuitionistic fuzzy set of X and it is called an intuitionistic fuzzy value set
of parameter e. Clearly, F(e) can be written as a intuitionistic fuzzy set such that F(e) = {(x, µF(x), vF(x)) : x ∈ X}

Definition 2.6. [23] Let X be a universe of discourse. A pythagorean fuzzy set (PFS) in X is given by, P =
{(x, µP(x), vP(x)) : x ∈ X} where, µP : X → [0, 1] denotes the degree of membership and vp : X → [0, 1] denotes the
degree of nonmembership of the element x ∈ X to the set P with the condition that 0 ≤ (µP(x))2 + (vP(x))2

≤ 1.

Definition 2.7. [20] Let X be the universal set and E be a set of parameters. The pythagorean fuzzy soft set is
defined as the pair (F,E) where, F : E → PFS(X) and PFS(X) is the set of all Pythagorean fuzzy subsets of X. If
µ2

F(x) + v2
F(x) ≤ 1 and µF(x) + vF(x) ≤ 1, then pythagorean fuzzy soft sets degenerate into intuitionistic fuzzy soft

sets.

Definition 2.8. [20] Let A,B ⊆ E and (F,A), (G,B) be two pythagorean fuzzy soft sets over X. (F,A) is said to be
pythagorean fuzzy soft subset of (G,B) denoted by (F,A)⊆̃(G,B) if,

1. A ⊆ B
2. ∀e ∈ A, F(e) is a pythagorean fuzzy subset of G(e) that is, ∀x ∈ U and ∀e ∈ A, µF(e)(x) ≤ µG(e)(x) and

vF(e)(x) ≥ vG(e)(x). If (F,A)⊆̃(G,B) and (G,B)⊆̃(F,A) then (F,A), (G,B) are said to be equal.
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Definition 2.9. [20] Let (F,E) two pythagorean fuzzy soft sets over X. The complement of (F,E) is denoted by (F,E)c

and is defined by
(F,E)c = {(e, (x, vF(e)(x), µF(e)(x)) : x ∈ X) : e ∈ E}

Definition 2.10. [10] a) A pythagorean fuzzy soft set (F,E) over the universe X is said to be a null pythagorean fuzzy
soft set if µF(e)(x) = 0 and vF(e)(x) = 1; ∀e ∈ E, ∀x ∈ X. It is denoted by 0̃(X,E).

b) A pythagorean fuzzy soft set (F,E) over the universe X is said to be an absolute pythagorean fuzzy soft set if
µF(e)(x) = 1 and vF(e)(x) = 0; ∀e ∈ E, ∀x ∈ X. It is denoted by 1̃(X,E).

Definition 2.11. [10] Let (F,A) and (G,B) be two pythagorean fuzzy soft sets over the universe set X, E be a
parameter set and A,B ⊆ E.Then,

a) Extended union of (F,A) and (G,B) is denoted by (F,E)∪̃E(G,B) = (H,C) where C = A ∪ B and (H,C) defined
by;

(H,C) = {(e, (x, µH(e)(x), vH(e)(x)) : x ∈ X) : e ∈ E}

where

µH(e)(x) =


µF(e)(x), if e ∈ A − B
µG(e)(x), if e ∈ B − A

max{µF(e)(x), µG(e)(x)}, if e ∈ A ∩ B

vH(e)(x) =


vF(e)(x), if e ∈ A − B
vG(e)(x), if e ∈ B − A

min{µF(e)(x), µG(e)(x)}, if e ∈ A ∩ B

b) Extended intersection of (F,A) and (G,B) is denoted by (F,E)∩̃E(G,B) = (H,C) where C = A ∪ B and (H,C)
defined by;

(H,C) = {(e, (x, µH(e)(x), vH(e)(x)) : x ∈ X) : e ∈ E}

where

µH(e)(x) =


µF(e)(x), if e ∈ A − B
µG(e)(x), if e ∈ B − A

min{µF(e)(x), µG(e)(x)}, if e ∈ A ∩ B

vH(e)(x) =


vF(e)(x), if e ∈ A − B
vG(e)(x), if e ∈ B − A

max{µF(e)(x), µG(e)(x)}, if e ∈ A ∩ B

Let X be an initial universe and PFS(X) denote the family of pythagorean fuzzy sets over X and PFSS(X,E)
the family of all pythagorean fuzzy soft sets over X with parameters in E.

Definition 2.12. [25]Let X , ∅ be a universe set and τ̃ ⊂ PFSS(X,E) be a collection of pythagorean fuzzy soft sets
over X, then τ is said to be on pythagorean fuzzy soft topology on X if

(i) 0̃(X,E), 1̃(X,E) belong to τ̃,
(ii) The union of any number of pythagorean fuzzy soft sets in τ̃ belongs to τ̃,
(iii) The intersection of any two pythagorean fuzzy soft sets in τ̃ belongs to τ̃.
The triple

(
X, τ̃,E

)
p is called an pythagorean fuzzy soft topological space over X. Every member of τ is

called a pythagorean fuzzy soft open set in X.

Definition 2.13. [25] Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X. A pythagorean fuzzy soft

set (F,E) over X is said to be a pythagorean fuzzy soft closed set in X, if its complement (F,E)c belongs to τ̃.
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Definition 2.14. [25]Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E) be a pythagorean

fuzzy soft sets over X. The pythagorean fuzzy soft closure of (F,E) denoted by pcl(F,E) is the intersection of all
pythagorean fuzzy soft closed super sets of (F,E).

Clearly pcl(F,E) is the smallest pythagorean fuzzy soft closed set over X which contain (F,E).

Theorem 2.15. [25]Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E) ∈ PFSS(X,E).

Then the following propeties hold.

(i) pcl(̃0(X,E)) = 0̃(X,E) and pcl(̃1(X,E)) = 1̃(X,E),

(ii) (F,E) ⊆̃ pcl (F,E) ,
(iii) (F,E) is a pythagorean fuzzy soft closed set⇔ pcl(F,E) = (F,E),
(iv) pcl

(
pcl (F,E)

)
= pcl(F,E),

(v) (F,E) ⊆̃ (G,E)⇒ pcl (F,E) ⊆̃ pcl (G,E) ,
(vi) pcl

(
(F,E) ∪̃E (G,E)

)
= pcl (F,E) ∪̃Epcl (G,E) .

Definition 2.16. [25]Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (H,E) ∈ PFSS(X,E).

The pythagorean fuzzy soft interior of (H,E), denoted by pint(H,E), is the union of all the pythagorean fuzzy soft
open sets contained in (H,E).

Theorem 2.17. [25]Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (H,E) ∈ PFSS(X,E).

Then the following properties hold.
(i) pint(̃0(X,E)) = 0̃(X,E) and pint(̃1(X,E)) = 1̃(X,E),

(ii) pint (H,E) ⊆̃ (H,E) ,
(iii) (H,E) is a pythagorean fuzzy soft open set⇔ pint(H,E) = (H,E),
(iv) pint

(
pint (H,E)

)
= pint(H,E),

(v) (H,E) ⊆̃ (G,E)⇒ pint (H,E) ⊆̃ pint (G,E) ,
(vi) pint

(
(H,E) ∩̃E (G,E)

)
= pint (H,E) ∩̃Epint (G,E) .

3. Pythagorean Fuzzy Soft Boundary

Definition 3.1. The difference of two pythagorean fuzzy soft sets (F,E) and (G,E) over X, denoted by (F,E)\̃(G,E)
and defined by (F,E)\̃(G,E) = (F,E)∩̃E(G,E)c

Example 3.2. Let (F,E) and (G,E) be two pythagorean fuzzy soft set defined as follows;

(F,E) =

{
(e1, {(x1, 0.3, 0.5) , (x2, 0.2, 0.6)})
(e2, {(x1, 0.4, 0.1) , (x2, 0.5, 0.6)})

}

(G,E) =

{
(e1, {(x1, 0.4, 0.8) , (x2, 0.9, 0.2)})
(e2, {(x1, 0.6, 0.3) , (x2, 0.7, 0.4)})

}
(G,E)c =

{
(e1, {(x1, 0.8, 0.4) , (x2, 0.2, 0.9)})
(e2, {(x1, 0.3, 0.6) , (x2, 0.4, 0.7)})

}
Then (F,E)\̃(G,E) = (F,E)∩̃E(G,E)c and we find

(F,E)∩̃E(G,E)c =

{
(e1, {(x1, 0.3, 0.5) , (x2, 0.2, 0.9)})
(e2, {(x1, 0.3, 0.6) , (x2, 0.4, 0.7)})

}
.
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Definition 3.3. [21] Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). Then

the pythagorean fuzzy soft boundary of (F,E), denoted by Fr(F,E) and defined as Fr(F,E) = pcl(F,E)∩̃Epcl ((F,E)c) .

Example 3.4. Let X = {x1, x2} , E = {e1, e2} and

τ̃ =
{̃
0(X,E), 1̃(X,E), (F1,E) , (F2,E)

}
where (F1,E) , (F2,E) are pythagorean fuzzy soft sets over X, defined as;

(F1,E) =

{
(e1, {(x1, 0.6, 0.2) , (x2, 0.8, 0.4)})
(e2, {(x1, 0.7, 0.3) , (x2, 0.5, 0.2)})

}
(F2,E) =

{
(e1, {(x1, 0.7, 0.2) , (x2, 0.9, 0.2)})
(e2, {(x1, 0.8, 0.2) , (x2, 0.7, 0.1)})

}
Then

(
X, τ̃,E

)
p is a pythagorean fuzzy soft topological spaces on X.The members of τ̃ obviously pythagorean fuzzy

open sets. Now, we find pythagorean fuzzy closed sets;

0̃c
(X,E) = 1̃(X,E)

1̃c
(X,E) = 0̃(X,E)

(F1,E)c =

{
(e1, {(x1, 0.2, 0.6) , (x2, 0.4, 0.8)})
(e2, {(x1, 0.3, 0.7) , (x2, 0.2, 0.5)})

}
(F2,E)c =

{
(e1, {(x1, 0.2, 0.7) , (x2, 0.2, 0.9)})
(e2, {(x1, 0.2, 0.8) , (x2, 0.1, 0.7)})

}
We consider the pythagorean fuzzy soft set (G,E)⊂̃PFSS(X,E).

(G,E) =

{
(e1, {(x1, 0.1, 0.8) , (x2, 0.2, 0.9)})
(e2, {(x1, 0.1, 0.9) , (x2, 0.1, 0.7)})

}
so that

(G,E)c =

{
(e1, {(x1, 0.8, 0.1) , (x2, 0.9, 0.2)})
(e2, {(x1, 0.9, 0.1) , (x2, 0.7, 0.1)})

}
Obviously, 0̃c

(X,E), 1̃c
(X,E), (F1,E)c, (F2,E)c are all pythagorean fuzzy soft closed sets over

(
X, τ̃,E

)
p. Then

1̃c
(X,E), (F1,E)c, (F2,E)c

⊃̃(G,E).

Therefore pcl(F,E) = 1̃c
(X,E)∩̃E(F1,E)c

∩̃E(F2,E)c = (F2,E)c. Also we find pcl ((F,E)c) = 1̃(X,E).

So, Fr(F,E) = pcl(F,E)∩̃Epcl ((F,E)c) = (F2,E)c
∩̃E1̃(X,E) = (F2,E)c, Hence

Fr(F,E) =

{
(e1, {(x1, 0.2, 0.7) , (x2, 0.2, 0.9)})
(e2, {(x1, 0.2, 0.8) , (x2, 0.1, 0.7)})

}
.

Theorem 3.5. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). Then the

following properties hold;

1. (Fr(F,E))c = pint(F,E)∪̃Epint ((F,E)c)
2. pcl(F,E) = pint(F,E)∪̃EFr(F,E)
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3. Fr(F,E) = pcl(F,E)\̃pint(F,E)
4. pint(F,E) = (F,E)\̃Fr(F,E)
5. Fr

(
pcl(F,E)

)
⊂̃Fr(F,E)

6. Fr(F,E)∩̃Epint(F,E) = 0̃(X,E).
7. pcl(pint(F,E)) = (F,E)\̃Fr(F,E)

Proof. (1)

pint(F,E)∪̃Epint ((F,E)c) =
((

pint(F,E)
)c
)c
∪̃E

((
pint ((F,E)c)

)c
)c

=
[(

pint(F,E)
)c
∩̃E

(
pint ((F,E)c)

)c
]c

=
[
pcl ((F,E)c) ∩̃Epcl(F,E)

]c

= (Fr(F,E))c .

(2)

pint(F,E)∪̃EFr(F,E) = pint(F,E)∪̃E

(
pcl(F,E)∩̃Epcl ((F,E)c)

)
=

[
pint(F,E)∪̃Epcl(F,E)

]
∩̃E

[
pint(F,E)∪̃Epcl ((F,E)c)

]
= pcl(F,E)∩̃E

[
pint(F,E)∪̃E

(
pint(F,E)

)c
]

= pcl(F,E)∩̃E

(
pint(F,E)∪̃E

(
pint(F,E)

)c
)

= pcl(F,E)∩̃E1̃(X,E)

= pcl(F,E).

(3)

Fr(F,E) = pcl(F,E)∩̃Epcl ((F,E)c)

= pcl(F,E)∩̃E
(
pint(F,E)

)c

= pcl(F,E)\̃pint(F,E).

(4)

(F,E)\̃Fr(F,E) = (F,E)∩̃EFr ((F,E)c)

= (F,E)∩̃E

(
pint(F,E)∪̃Epint ((F,E)c)

)
(by (1))

=
[
(F,E)∩̃Epint(F,E)

]
∪̃E

[
(F,E)∩̃Epint ((F,E)c)

]
= pint(F,E)∪̃E0̃(X,E).

= pint(F,E).

(5)

Fr
(
pcl(F,E)

)
= pcl

(
pcl(F,E)

)
\̃pint

(
pcl(F,E)

)
= pcl(F,E)\̃pint

(
pcl(F,E)

)
⊂̃ pcl(F,E)\̃pint(F,E)
= Fr(F,E).

(6) is similar to (3)
(7) can be easily obtained from the definition of a pythagorean fuzzy soft boundary.

Remark 3.6. By (3) of above Theorem 3.5, it is clear that Fr(F,E) = Fr ((F,E)c) .
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Theorem 3.7. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). Then;

1. (F,E) is a pythagorean fuzzy open set over X if and only if (F,E)∩̃EFr(F,E) = 0̃(X,E),
2. (F,E) is a pythagorean fuzzy closed set over X if and only if Fr(F,E)⊂̃(F,E),
3. If (G,E) be a pythagorean fuzzy closed (respt. open) set of an pythagorean fuzzy soft topological space with

(F,E)⊂̃(G,E), then Fr(F,E)⊂̃(G,E) (respt. Fr(F,E)⊂̃(G,E)c).

Proof. (1) Let (F,E) be an pythagorean fuzzy soft open set over X.Then pint(F,E) = (F,E) implies that (F,E)∩̃EFr(F,E) =

pint(F,E)∩̃EFr(F,E) = 0̃(X,E).

Conversely, let (F,E)∩̃EFr(F,E) = 0̃(X,E). Then (F,E)∩̃Epcl(F,E)∩̃Epcl ((F,E)c) = 0̃(X,E) or (F,E)∩̃Epcl ((F,E)c) =

0̃(X,E) or pcl ((F,E)c) ⊂̃(F,E)c, which implies (F,E)c is a pythagorean fuzzy closed and hence (F,E) is pythagorean fuzzy
open set.

(2) Let (F,E) be an pythagorean fuzzy soft closed set over X. Then pcl(F,E) = (F,E). Now
Fr(F,E) = pcl(F,E)∩̃Epcl ((F,E)c) ⊂̃pcl(F,E) = (F,E). That is, Fr(F,E)⊂̃(F,E).

Conversely, Fr(F,E)⊂̃(F,E). Then Fr(F,E)∩̃E(F,E)c = 0̃(X,E). Since Fr(F,E) = Fr ((F,E)c) = 0̃(X,E), we have
Fr((F,E)c)∩̃E(F,E)c = 0̃(X,E). By (1), (F,E)c is pythagorean fuzzy open set and hence (F,E) is pythagorean fuzzy closed
set.

(3) (F,E)⊂̃(G,E) follows that pcl(F,E)⊂̃pcl(G,E). Since (G,E) is pythagorean fuzzy soft closed, then we get
Fr(F,E) = pcl(F,E)∩̃Epcl ((F,E)c) ⊂̃pcl(G,E)∩̃E pcl ((F,E)c) ⊂̃pcl(G,E) = (G,E). Similarly for the other inclusion.

Theorem 3.8. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E), (G,E)⊂̃PFSS(X,E).

Then the following properties hold.

1. Fr
(
(F,E)∪̃E(G,E)

)
⊂̃Fr

(
(F,E)∩̃E((G,E)c)

)
∪̃E

[
Fr(G,E)∩̃Epcl((F,E)c)

]
,

2. Fr
(
(F,E)∩̃E(G,E)

)
⊂̃Fr

(
(F,E)∩̃Epcl(G,E)

)
∪̃E

[
Fr(G,E)∩̃Epcl(F,E)

]
.

Proof. (1)

Fr
(
(F,E)∪̃E(G,E)

)
= pcl

(
(F,E)∪̃E(G,E)

)
∩̃Epcl

((
(F,E)∪̃E(G,E)

)c)
=

(
pcl(F,E)∪̃Epcl(G,E)

)
∩̃Epcl

(
(F,E)c

∩̃E(G,E)c
)

⊂̃

(
pcl(F,E)∪̃Epcl(G,E)

)
∩̃E

[
pcl((F,E)c)∩̃Epcl((G,E)c)

]
=

(
pcl(F,E)∪̃Epcl(G,E)

)
∩̃Epcl((G,E)c)∪̃Epcl(G,E)

∩̃E

[
pcl((F,E)c)∩̃Epcl((G,E)c)

]
=

(
Fr(F,E)∩̃Epcl((G,E)c)

)
∪̃E

(
Fr(G,E)∩̃Epcl((F,E)c)

)
⊂̃ Fr(F,E)∪̃EFr(G,E).

(2)

Fr
(
(F,E)∩̃E(G,E)

)
= pcl

(
(F,E)∩̃E(G,E)

)
∩̃Epcl

((
(F,E)∩̃E(G,E)

)c)
⊂̃

(
pcl(F,E)∪̃Epcl(G,E)

)
∩̃Epcl

(
(F,E)c

∪̃E(G,E)c
)

=
(
pcl(F,E)∪̃Epcl(G,E)

)
∩̃E

[
pcl((F,E)c)∪̃Epcl((G,E)c)

]
=

[(
pcl(F,E)∩̃Epcl(G,E)

)
∩̃Epcl((G,E)c)

]
∪̃E[(pcl(F,E)

∩̃Epcl(G,E))∩̃Epcl((G,E)c)]

=
(
Fr(F,E)∩̃EFr(G,E)

)
∪̃E

(
pcl(F,E)∩̃EFr((G,E))

)
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Corollary 3.9. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E), (G,E)⊂̃PFSS(X,E).

Then Fr
(
(F,E)∩̃E(G,E)

)
⊂̃Fr(F,E)∩̃EFr(G,E).

Theorem 3.10. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). Then we

have Fr (Fr (Fr(F,E))) = Fr (Fr(F,E)) .

Proof.

Fr (Fr (Fr(F,E))) = pcl (Fr (Fr(F,E))) ∩̃Epcl
(
(Fr (Fr(F,E)))c)

= (Fr (Fr(F,E))) ∩̃Epcl
(
(Fr (Fr(F,E)))c)

Now consider

(
Fr ((Fr(F,E)))c) =

[
pcl (Fr(F,E)) ∩̃E (Fr(F,E))c

]c

=
[
Fr(F,E)∩̃Epcl

(
(Fr(F,E))c)]c

= (Fr(F,E))c
∪̃E

(
pcl

(
(Fr(F,E))c))c

Therefore

pcl
(
(Fr (Fr(F,E)))c) = pcl

([
pcl

(
(Fr(F,E))c)

∪̃E
(
pcl

(
(Fr(F,E))c))c

])
= pcl

(
pcl

(
(Fr(F,E))c))

∪̃Epcl
((

pcl
(
(Fr(F,E))c))c

)
= (G,E)∪̃E

((
pcl

(
(Fr(G,E))c))c

)
= 1̃(X,E)

where (G,E) = pcl
((

pcl
(
(Fr(F,E))c))) . From the above equations, we have

Fr (Fr (Fr(F,E))) = Fr (Fr(F,E)) ∩̃E1̃(X,E) = Fr (Fr(F,E))

Theorem 3.11. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E), (G,E)⊂̃PFSS(X,E).

Then the following properties hold.

1.
(
(F,E)\̃pint(G,E)

)
⊂̃pint(F,E)\̃pint(G,E)

2. Fr
(
pint(F,E)

)
⊂̃Fr(F,E).

Proof. (1) (
(F,E)\̃pint(G,E)

)
=

(
(F,E)∩̃Epint ((G,E)c)

)
= pint(F,E)∩̃Epint ((G,E)c)

= pint(F,E)∩̃E
(
pcl(G,E)

)c

= pint(F,E)\̃pcl(G,E)
⊂̃ pint(F,E)\̃pint(G,E).

(2)

Fr
(
pint(F,E)

)
= pcl

(
pint(F,E)

)
∩̃Epcl

((
pint(F,E)

)c
)

⊂̃ pcl
(
pint(F,E)

)
∩̃Epcl

(
pcl ((F,E)c)

)
⊂̃ pcl(F,E)∩̃Epcl ((F,E)c) = Fr(F,E).
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Theorem 3.12. Let
(
X, τ̃,E

)
p be a pythagorean fuzzy soft topological space over X and (F,E)⊂̃PFSS(X,E). Then

Fr(F,E) = 0̃(X,E) if and only if (F,E) is both a pythagorean fuzzy soft closed and pythagorean fuzzy soft open set.

Proof. Suppose that Fr(F,E) = 0̃(X,E). Firstly, we show that (F,E) is a pythagorean fuzzy soft closed set.

Fr(F,E) = 0̃(X,E) ⇒ pcl(F,E)∩̃Epcl ((F,E)c) = 0̃(X,E)

⇒ pcl(F,E)⊂̃
(
pcl ((F,E)c)

)c = pint(F,E)
⇒ pcl(F,E)⊂̃(F,E)⇒ pcl(F,E) = (F,E)

This implies that (F,E) is pythagorean fuzzy soft closed set.
Now, we prove that (F,E) is a pythagorean fuzzy soft open set.

Fr(F,E) = 0̃(X,E) ⇒ pcl(F,E)∩̃Epcl ((F,E)c)

or

(F,E)∩̃E
(
pint(F,E)

)c = 0̃(X,E) ⇒ (F,E)⊂̃pint(F,E)
⇒ pint(F,E) = (F,E)

This implies that (F,E) is pythagorean fuzzy soft open set.
Conversely, suppose that (F,E) is both pythagorean fuzzy soft open and pythagorean fuzzy soft closed set. Then

Fr(F,E) = pcl(F,E)∩̃Epcl ((F,E)c)

= pcl(F,E)∩̃E
(
pint(F,E)

)c

= (F,E)∩̃E(F,E)c = 0̃(X,E).

4. Conclusion

In this paper, we introduced the concept of the pythagorean fuzzy soft boundary. We discussed and
investigated the characteristics and properties of pythagorean fuzzy soft boundary in general as well as
pythagorean fuzzy soft interior and pythagorean fuzzy soft closure. Examples and counterexamples are
also given to verify the findings discussed. We will research more topological structures in pythagorean
fuzzy soft sets in future studies. We hope that this study will be useful for the paper to be done in the
theory of pythagorean fuzzy soft.
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Abstract. Variation of the groove size depending on the laser power has been modeled in this proposed
mathematical model. It is obtained by polymerization of Polyoxmethylene formaldehyde, a semi-crystalline
polymer, and is among the hardest and strongest thermoplastics. Polyoxmethylene can be used in slip-
friction pairs without lubrication. Polyoxmethylene materials are widely used for materials in tribological
applications. They also show good friction properties.

1. Introduction

The tribologic properties wettability, hydrophobization and adhesion properties surface can be im-
proved by surface texturing. The polymer surfaces have been modified with many commercial methods
[9]. Chemical and physical modification can be applied to the polymer surfaces. There are some disad-
vantages in the chemical processing of polymer materials. Since chemical processes are very difficult to
control in chemical surface treatment, the application areas of this method are also very limited. In addition,
the measures to be taken to prevent environmental pollution by chemical methods are costly and increase
the number of processes. One of the foremost disadvantages in the processing of polymer surfaces by
mechanical methods is the wear of the tools used during the process. In addition to increasing the cost of
wear, it also decreases the sensitivity of the process as the processing time increases.

Most of the materials can be easily processed with a laser. Many polymer materials can be processed
precisely with the appropriate laser selection. Material processing precision is continuous and does not
change over time. The selection of suitable parameters is very important in laser material processing. For
each material and the desired product, the effects of many parameters such as laser power, frequency, the
wavelength should be investigated and the most appropriate parameter selection should be made. The
material processing time is short since high energy can be transferred very precisely to a small area by laser
in a very short time.

In laser material processing, when the laser beam hits the surface, the material surface heats first. When
the laser application time increases, if the energy is high enough, melting, evaporation or burning occurs
respectively. The ablation mechanism in laser material processing has not been fully explained. In addition
to the process parameters of the laser used in material processing with laser, the thermophysical properties
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of the material such as specific heat, absorption coefficient and thermal conduction significantly affect the
quality of the processed material.

The effects of laser parameters on the surface texture have been investigated in many studies in order
to obtain surface textures such as grooves and small cavities in the desired shape and size [10, 11]. Many
studies have been carried out to obtain suitable laser and parameters for many different materials in order
to obtain the desired surface properties [8, 12]. In addition to optimization studies to determine the material
properties to be obtained by selecting the appropriate parameters, mathematical modeling studies are also
carried out for the product to be obtained The applicability of mathematical modeling in laser material
processing of polymer has also been proven by experimental results [12–15].

In this study, mathematical modeling of the width of micro-sized grooves created with laser on a
Polyoxmethylene (POM) sheet has been made. Fourier method was used in the mathematical modeling of
the heat distribution on the surface of the Polyoxymethylene. To obtain a mathematical model, the effects of
the laser power on the groove width of Polyoxymethylene sheet were investigated. A mathematical model
has been obtained by using the thermophysical properties of Polyoxymethylene and laser parameters.

The following problem of parabolic equations with various boundary conditions was studied [1–7].
The heat distribution equation on surface can be written as below;

∂T(x, t)
∂t

= α2 ∂
2T(x, t)
∂x2 (1)

where, T is the temperature as a function of time ”t” and distance ”x”, α is the thermal diffusivity of the
investigate material.

α2 =
λ
cρ
,

where λ denotes the thermal conductivity, c specific heat, ρ density.
Let tp > 0 be a fixed number and denote by D = {(x.t) : 0 < x < l, 0 < t < tp}, where tp is the pulse

duration.
The initial condition can be written as;

T(x, 0) = T0, 0 < x < l

where T0 is the initial temperature of the material. It was assumed that all the energy absorbed by the
surface was transmitted to the material. Thus, the boundary condition (x = 0) on the surface can be written
as follows:

∂T(0, t)
∂t

= 0,
∂T(l, t)
∂t

= 0.

This problem is called a parabolic problem. Classical solution of the problem (1)-(3) is T(x, t) ∈ C2,1(D) ∩
C1,0(D). The heat source problem has been investigated with parabolic equation in many studies. Then the
following solution is obtained using Fourier method.

T(x, t) =

∞∑
k=1

(Tck(t) cos
2παk

l
x + Tsk(t) sin

2παk
l

x)e−( 2παk
l )2t (2)

The laser intensity within the material can be found using the Beer-Lambert’s Law:
dI(x)

dx = −al
Where I(x) is the laser intensity as a function of distance from laser spot andα is the absorption coefficient

of the material respectively. Although absorption coefficient is changed within the material but it was taken
as constant in our study. Laser intensity as a function of distance within material can be written as;

I = I0e
−

z∫
b

adx

Actually most of the beam intensities have Gaussian distribution. We made one more assumption that
our laser beam is top-hat beam that means intensity is homogeneously distributed in spot area.
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The heat generation from the laser beam absorbed by the material is defined as,
S = −dI/dx
Using Leibniz rule yields, the heat source can be written as;

S = I0e
−

z∫
b

adx
.

The temperature distribution as a function was obtained as given below;

T(x, t) =

∞∑
k=1

ϕcke−( 2παk
l )2t +

t∫
0

π∫
0

S(x, t) cos
2παk

l
xe−( 2παk

l )2(t−τ)dxdτ

 cos
2παk

l
x (3)

+

∞∑
k=1

ϕske−( 2παk
l )2t +

t∫
0

π∫
0

S(x, t) sin
2παk

l
xe−( 2παk

l )2(t−τ)dxdτ

 sin
2παk

l
x

2. Material and Experimental Setup

The surfaces of 5 mm thick Polyoxymethylene sheets were used to ablation process. Some physical and
thermal properties of Polyoxymethylene which were used in mathematical modeling have been listed in
Table 1.

In the ablation process commercial 130 W CO2 laser was used with different power at constant scan
speed. Laser spot diameter is 160 µm.

Table 1 Some physical and thermal properties of Polyoxymethylene
Properties Value Unit
Density 1410 k1/m3

Thermal Capacity 1.5 kJ/k1.K
Melting point 165 ◦C
Heat Deflection Temperature 110 ◦C
Tensile module of elasticity 2800 MPa
Thermal Conductivity 0.31 W/mK

3. Results and Discussion

In this study, mathematical model has been proposed for the groove formation on Polyoxymethylene
sheet with various power and constant scan speed. Groove widths were measured from optical microscope
images of ablated surfaces of Polyoxymethylene sheets.

For 26 Watts of laser power, from the optical microscope images, the Heat Deflection Zone boundary
and molten zone boundary distances were measured as 1434 µm and 1252 µm respectively. Temperatures
at Heat Deflection boundary and molten zone boundary are 383 K and 438 K respectively. These values are
used in temperature distribution equation obtain the Fourier coefficients which are depends on the material
properties. The coefficients in the temperature distribution equation (2) were calculated as ϕck (=451,32)
and ϕsk (-205.15). These are the coefficients depend on the thermal properties of Polyoxymethylene. Then,
in order to verify the validity of mathematical model, new grooves were obtained using 39, 52, 65, 78, 91
and 104 Watts. These coefficients were used to calculate temperature distribution for the Polyoxymethylene
and variour laser beam powers.

Table 2 Laser Powers and groove widths measured from images.
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Lazer Powerwatt Molten Zone width (µm) Heat Deflection Zone width (µm)
26 1252 1434
39 1319 1513
52 1367 1568
65 1404 1611
78 1434 1646
91 1459 1676
104 1482 1702

Each laser powers and the coefficients obtained previously were used in the temperature distribution
equation to calculate the temperatures for each speed of laser beam. The calculated temperatures for
boundaries are given in Table 3.

Table 3 Melting and Heat Deflection Temperatures calculated with mathematical model, real values and
percent error between them.

Powerwatt T(x,t) (K) T(x,t) (K) (Calculated) error
39 Melting 438 441.316 0.76
39 Heat Deflection 383 385.021 0.53
52 Melting 438 442.256 0.97
52 Heat Deflection 383 385.895 0.76
65 Melting 438 443.462 1.25
65 Heat Deflection 383 387.021 1.05
78 Melting 438 444.891 1.57
78 Heat Deflection 383 388.105 1.33
91 Melting 438 446.114 1.85
91 Heat Deflection 383 389.206 1.62
104 Melting 438 447.365 2.14
104 Heat Deflection 383 390.170 1.86

4. Conclusion

By texturing the surfaces, the mechanical properties of my surfaces can be changed. The properties of
material surfaces can be improved by many methods such as mechanical and chemical methods. While
texturing surfaces with a laser have many advantages, it can require complex processes to be controlled.
Mathematical modeling of the heat distribution of the surface to be obtained with laser texture can be
known in advance the properties of the product to be obtained. This saves time and material.

Grooves were formed on the Polyoxymethylene material surface with seven different laser beam power.
Measurements were made from the images of the groove obtained by using a 26-watt laser beam. The
measurement results were applied to the proposed mathematical model and the ϕck and ϕsk coefficients in
the mathematical model were calculated. These coefficients are coefficients depending on the properties of
Polyoxymethylene. These coefficients were applied for grooves obtained using 39, 52, 65, 78, 91 and 104
W laser beams. Heat deflection and melting point values obtained in the mathematical model are quite
compatible with the actual values. As the laser power increased, the error rate increased acceptably.
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[14] T. Canel, İ. Bağlan, T. Sinmazcelik, Mathematical modelling of laser ablation of random oriented short glass fiber reinforced
Polyphenylene sulphide (PPS) polymer composite. Optics & Laser Technology, 2019, 115; 481-486.
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Abstract. In recent years, the use of polymer-based materials is in almost every aspect of daily life [1].
PMMA can be used in many areas from aircraft to the medical industry with their good chemical stability,
high strength, high corrosion and aging resistance, insulation performance, and smooth surface [2]. In this
study, grooves were formed on Polymethyl Methacrylate (PMMA) Plates with different scanning speeds
with CO2 laser. Since the scan speed of the laser is increased, the interaction time between the laser beam and
the material decreases then the amount of energy transferred to the material also decreases. Measurements
were made from high-resolution optical microscope images of the grooves created on PMMA. In this
study, the distribution of heat energy transferred to the material was modeled mathematically. The change
to groove size depending on the laser scan speed is modeled. To validate the mathematical model, the
surfaces of the PMMA plate were ablated with different scan speed at constant power. The CO2 laser that
has 10600 nm wavelengths and 130 Watts maximum power was used in the ablation.

1. Introduction

Polymeric materials can be divided into two groups; Thermoplastics and thermosets. The main differ-
ence between the two is their reaction to heating. Thermoplastics can be reheated, coated and cooled as
required. No chemical treatment is required during this process. Thermosets, on the other hand, cannot be
reshaped after being heated and shaped. It becomes very strong and durable in the first forming. PMMA
is classified as thermoplastic. PMMA has various performance benefits such as high strength, shrink-
resistance, and easy flexibility. Polymer materials are frequently preferred in the industry as they can be
processed easily. Although it can be processed by mechanical and chemical methods, laser processing of
polymer materials has superior properties compared to other methods. Due to the difficulty of control-
ling chemical reactions and their negative effects on the environment, the application area of the chemical
method is very limited. Although mechanical processing is one of the frequently used methods, it has
disadvantages such as abrasion of the abrasive elements used and the inability to obtain a product with the
same precision.

The tribology, wettability, adhesion and hydrophobization properties have been improving by surface
texturing. Many different methods have been developed for texturing the surfaces of polymers with
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different specialties [3]. Many laser parameters such as wavelength, frequency, power and spot size can be
selected in accordance with the material and the desired surface structure. In addition to these features,
lasers are preferred in many areas today because they are compact and do not require additional systems
other than ambient gas.

Although the ablation mechanism in laser material processing is strictly dependent on material prop-
erties and process parameters, it is very difficult to obtain a surface structure with the desired precision.
The effective thermophysical properties in the ablation mechanism are thermal conduction, absorption
coefficient and specific heat. Besides the laser properties such as the wavelength, frequency and power
of the laser used, process parameters such as scan speed, overlap rate, number of pulses and beam size
determine the ablation and therefore the quality of the processed material.

Regular textures such as micro-sized cavities and grooves created on the polymeric material surface
improve the friction and adhesion behavior of the materials. The geometries, density and orientation of the
microstructures created on the surface play an important role in increasing the surface performance. [4,5].
For these reasons, many optimization studies have been carried out in order to obtain the desired texture on
the surface of many kinds of materials. [6,7,8]. In addition to optimization studies, mathematical modeling
of the heat distribution in the material can be obtained from data about the geometry of the cavities to be
obtained by laser. [9,10,11]. In this study, the mathematical modeling of the heat distribution for the width
of the grooves created by laser on the PMMA plate was made. In the mathematical model, the Fourier
method with a homogenous approach was used. To obtain a numerical model, the effects of the laser scan
speed on the groove size of PMMA sheet were investigated and a simple mathematical model of the heat
distribution on surface is proposed.

The heat distribution equation on surface can be written as below;

∂T(x, t)
∂t

= α2 ∂
2T(x, t)
∂x2 , (1)

where T is the temperature as a function of time t and distance x, α is the thermal diffusivity of the investigate
material.

α2 =
λ
cρ

where, λ denotes the thermal conductivity, c specific heat ρ density.
Let tp > 0 be a fixed number and denote by D = {(x.t) : 0 < x < l, 0 < t < tp}, where tp is the pulse

duration.
The initial condition can be written as;

T(x, 0) = T0, 0 < x < l

where T0 is the initial temperature of the material. It was assumed that all the energy absorbed by the
surface was transmitted to the material. Thus, the boundary condition (x = 0) on the surface can be written
as follows:

∂T(0, t)
∂t

= 0,
∂T(l, t)
∂t

= 0

This problem is called a parabolic problem. Classical solution of the problem (1)-(3) is T(x, t) ∈ C2,1(D) ∩
C1,0(D). The heat source problem has been investigated with parabolic equation in many studies. Then the
following solution is obtained using Fourier method.

T(x, t) =

∞∑
k=1

(Tck(t) cos
2παk

l
x + Tsk(t) sin

2παk
l

x)e−( 2παk
l )2t (2)

The laser intensity within the material can be found using the Beer-Lambert’s Law:
dI(x)

dx = −al
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Where I(x) is the laser intensity as a function of distance from laser spot andα is the absorption coefficient
of the material respectively. Although absorption coefficient is changed within the material but it was taken
as constant in our study. Laser intensity as a function of distance within material can be written as;

I = I0e
−

z∫
b

adx

Actually most of the beam intensities have Gaussian distribution. We made one more assumption that
our laser beam is top-hat beam that means intensity is homogeneously distributed in spot area.

The heat generation from the laser beam absorbed by the material is defined as,
S = −dI/dx
Using Leibniz rule yields, the heat source can be written as;

S = I0e
−

z∫
b

adx
.

The temperature distribution as a function was obtained as given below;

T(x, t) =

∞∑
k=1

ϕcke−(
2παk

l )2
t +

t∫
0

l∫
0

S(x, t) cos
2πk

l
xe−(

2παk
l )2

(t−τ)dxdτ

 cos
2πk

l
x (3)

+

∞∑
k=1

ϕske−(
2παk

l )2
t +

t∫
0

l∫
0

S(x, t) sin
2πk

l
xe−(

2παk
l )2

(t−τ)dxdτ

 sin
2πk

l
x −

xH
lλ

2. Material and Experimental Setup

The surfaces of 10 mm thick PMMA sheets to be used were polished before ablation to cleaning and
increase the transparency of the surfaces. Some physical and thermal properties of PMMA sheet which
were used in ablation and mathematical modeling have been listed in Table 1. In the ablation process
commercial 130 W CO2 laser was used with different scan speeds at constant power. Laser spot diameter is
160 µm the laser beam intensity 6.5 × 109W/m2.

Table 1 Some physical and thermal properties of PMMA
Properties Value Unit
Density 1180 k1/m3

Coefficient of Thermal Expansion 75 (.10−6K−1)
Melting point 130 ◦C
Heat Deflection Temperature 95 ◦C
Specific heat 69 J.K−1k1−1

Thermal Conductivity 0.18 W.m−1.K−1

3. Results and Discussion

In this study, mathematical model has been proposed for the groove formation on PMMA sheet with
various scan speeds and constant power. Groove sizes were measured from optical microscope images of
ablated surfaces of PMMA sheets.

The Heat Deflection Zone boundary and molten zone boundary distances were calculated as 2059 µm
and 1733 µm respectively. Temperatures at Heat Deflection boundary and molten zone boundary are 368 K
and 403 K respectively. Fourier coefficients in the mathematical model were obtained using these boundary
temperatures.

The coefficients in the temperature distribution equationϕc andϕs were calculated as 321.45 and -201.15
respectively. These coefficients depend on the thermo physical properties of PMMA. Then, in order to verify
the validity of mathematical model, new grooves were obtained using 100, 150, 200, 250, 300, 350 mm/s
scan speeds. To verify the mathematical model, these coefficients were used to calculate the melting and



T. Canel, İ. Bağlan / TJOS 5 (3), 257–261 260

heat deflection temperatures for the same material and different scan speeds. The calculated temperatures
for boundaries (melting and heat deflection region) are given in Table 3.

Table 2 Laser scan speeds and groove widths measured from images.
Scan Speed mm/s Molten Zone width (µm) Heat Deflection Zone width (µm)

50 1733 2059
100 1707 2027
150 1677 1991
200 1642 1949
250 1677 1897
300 1707 1830
350 1733 1735

Table 3 The calculated melting and heat deflection temperatures temperatures for boundaries.
Scan Speed mm/s T(x,t) (K) T(x,t) (K) (Calculated) error

100 Melting 403 416.69 3.40
100 Heat Deflection 368 377.89 2.69
150 Melting 403 423.73 5.14
150 Heat Deflection 368 382.84 4.03
200 Melting 403 429.12 6.48
200 Heat Deflection 368 389.68 5.89
250 Melting 403 438.25 8.75
250 Heat Deflection 368 396.47 7.74
300 Melting 403 445.54 10.45
300 Heat Deflection 368 406.17 10.37
350 Melting 403 453.59 12.55
350 Heat Deflection 368 413.71 12.42

4. Conclusion

It can be used for different purposes such as improving the mechanical properties of the materials
by laser processing the surfaces of polymer materials, as well as using them in electronic devices. It is
very important for the quality of the product to control the dimensions of the geometries to be obtained
by laser on the material. By modeling the heat dissipation mechanism in material processing with laser,
the dimensions of the shape to be obtained on the material can be controlled. Applicable mathematical
modeling plays an important role in explaining this mechanism. In accordance with the purpose of the
study, applicable mathematical modeling has been created and the applicability of this model has been
proven.

In this study, grooves were formed on Polymethyl Methacrylate (PMMA) Plates with different scanning
speeds with CO2 laser. Since the scan speed of the laser is increased, the interaction time between the laser
beam and the material decreases then the amount of energy transferred to the material also decreases. Mea-
surements were made from high-resolution optical microscope images of the grooves created on PMMA.
In this study, the distribution of heat energy transferred to the material was modeled mathematically. The
change to groove size depending on the laser scan speed is modeled. The heat distribution that causes
the formation of grooves is modeled with the Fourier method. First, material-specific coefficients were
calculated with the proposed mathematical model. In order to prove the validity of these coefficients, 7
different grooves obtained with 7 different scanning speeds were examined. The results obtained show that
the proposed mathematical model is reliable.
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[10] T. Canel, I. BaÄŸlan, T. SÄ±nmazÃ§elik, Mathematical modeling of heat distribution on carbon fiber Poly(etherether-ketone)
(PEEK) composite during laser ablation, Optics Laser Technology, 2020, 127; 106190
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Bünyamin Şahina, Abdulgani Şahinb
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Abstract. The Grigorchuk group was first introduced by R. Grigorchuk in 1980. Also the Basilica group
was introduced in 2002 by R. Grigorchuk and A. Zuk. In the following years, it was shown that these groups
have deep connections with profinite group theory and complex dynamics. These groups have been proven
to provide the self-similarity property, reflecting the fractalness of some limit objects associated with them.
The Schreier graph codifies the intangible structure of a group. It establishes an equivalence relationship
created by cosets. The Schreier graphs of the Grigorchuk group and the Basilica group are a combination
of cycles arranged in a tree-like form due to the recursive expression of the generators of these groups. In
this work, we study the Hosoya polynomial of these graphs and try to characterize them.

1. Introduction

The Hosoya polynomial of a graph was presented in 1988 by H. Hosoya [8]. The concept distance is
one of the basic elements used in graph theory. This important concept has gained a wide place among
the applications of graph theory in other disciplines. Hosoya polynomial is also defined with the help
of this important concept. The main contribution of the Hosoya polynomial is that it provides important
information for graph invariants defined with the help of the concept of distance. The value at point 1 of
the first derivative of the Hosoya polynomial of a graph gives us the Wiener index, which is an important
topological index [5]. The Hosoya polynomial has gained an important place in chemical graph theory
studies [4].

In this work, we study the Hosoya polynomial of Schreier graphs associated with the motion of two
automorphism groups of a binary rooted tree. These are the Grigorchuk group and the Basilica group. The
Tutte polynomial of these graphs was calculated in 2010 [3]. The Grigorchuk group was first introduced by
R. Grigorchuk in 1980. It gives a fairly simple solution to the Burnside problem and the first example of a
finitely generated group of intermediate growth, see [7]. Also the Basilica group was introduced in 2002 by
R. Grigorchuk and A. Zuk [6]. To the work of V. Nekrashevych, it was seen that this group can be defined
as the iterated monodromy group of the complex polynomial z2

− 1 [9]. Thus, a compact limit space that
is homeomorphic to the Basilica fractal can be associated with it. It is also the first example of amenable
group that does not belong to subexponentially amenable groups [2]. It is proved that these groups are very
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closely related to complex dynamics and profinite group theory [1]. These groups provide a self-similarity
property that reflects the fractalness of some limit objects associated with them [9].

We are here doing some calculations over the Schreier graphs of the Grigorchuk group and the Basilica
group. Moreover, we reckon the Wiener index of some these graphs. We carry out these calculations
by deleting the loops in the graphs. The Schreier graph codifies the intangible structure of a group. It
establishes an equivalence relationship created by cosets. The Schreier graphs of the Grigorchuk group and
the Basilica group are a combination of cycles formed in a tree-like way. Because the recursive expressions
of the generators of these groups cause these graphs to have a cactus structure.

2. Preliminaries

Definition 2.1. ([5]) Let G = (V,E) be connected and distance-based graph. The distance d(u, v) between any two
vertices u and v is the minimum of the lenghts of paths between u and v. The topological diameter d(G) of a graph G
(i.e. the longest topological distance in G) is defined as

d(G) = max
u,v∈V(G)

{d(u, v)}.

Definition 2.2. ([10]) Let Dk = {(u, v)| u, v ∈ V(G) and d(u, v) = k} be a set and we denote the number of elements
of Dk by |Dk| i.e. d(G, k) = |Dk|, k ≥ 0.

Let d(G, k), k ≥ 0, be the number of vertex pairs at distance k. The Hosoya polynomial of G is defined as follows:

H(G, y) =

d(G)∑
k=0

d(G, k)yk

where d(G, 0) = n such that n is the number of vertices in G.

The Grigorchuk group and the Basilica group are a self-similar group of automorphisms of the rooted
binary tree generated by some elements which are the trivial and the non-trivial permutations in the
symmetric group on 2 elements Sym(2) [3]. The Schreier graphs of these groups are recursively constructed
within the framework of certain rules, see [3] for more detailed information. The symbol Γn indicates the
Schreier graphs of the Grigorchuk group, for n = 1, 2, 3, . . . , as seen in Figure 1 [3]. The symbol Bn indicates
the Schreier graphs of the Basilica group, for n = 1, 2, 3, . . . , as seen in Figures 2 and 4 [3].

Figure 1: Some the Schreier graphs of the Grigorchuk group

Figure 2: Some the Schreier graphs of the Basilica group
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Figure 3: Some the Schreier graphs of the Basilica group

Figure 4: Some the Schreier graphs without loops of the Grigorchuk group

Since many calculations are inconclusive for graphs containing loops, we will consider the graphs
obtained by deleting loops from these graphs, as seen in Figures 4 and 5.

The graphs Γ∗n and B∗n contain the values specified in the table below.

d(Γ∗1) = 1 d(Γ∗2) = 3 d(Γ∗3) = 7 d(Γ∗4) = 15 d(Γ∗5) = 31
d(B∗1) = 1 d(B∗2) = 3 d(B∗3) = 6 d(B∗4) = 10 d(B∗5) = 16
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Figure 5: Some the Schreier graphs without loops of the Basilica group

3. Main Results

In this section, we will compute the Hosoya polynomials of the graphs Γ∗n and B∗n, (n = 1, 2, 3, . . . ).

For Γ∗1:

D0 = {v1, v2} ⇒ |D0| = d(Γ∗1, 0) = 2,

D1 = {(v1, v2)} ⇒ |D1| = d(Γ∗1, 1) = 1,

⇒ H(Γ∗1, y) = 2y0 + 1y1

H(Γ∗1, y) = 2 + y (1)

For Γ∗2:

D0 = {v1, v2, v3, v4} ⇒ |D0| = d(Γ∗2, 0) = 4,

D1 = {(v1, v2), (v2, v3), (v3, v4)} ⇒ |D1| = d(Γ∗2, 1) = 3,

D2 = {(v1, v3), (v2, v4)} ⇒ |D2| = d(Γ∗2, 2) = 2,

D3 = {(v1, v4)} ⇒ |D3| = d(Γ∗2, 3) = 1,
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⇒ H(Γ∗2, y) = 4y0 + 3y1 + 2y2 + 1y3

H(Γ∗2, y) = 4 + 3y + 2y2 + y3

For Γ∗3:

D0 = {v1, v2, v3, v4, v5, v6, v7, v8} ⇒ |D0| = d(Γ∗3, 0) = 8,

D1 = {(v1, v2), (v2, v3), (v3, v4), (v4, v5), (v5, v6), (v6, v7), (v7, v8)} ⇒ |D1| = d(Γ∗3, 1) = 7,

D2 = {(v1, v3), (v2, v4), (v3, v5), (v4, v6), (v5, v7), (v6, v8)} ⇒ |D2| = d(Γ∗3, 2) = 6,

D3 = {(v1, v4), (v2, v5), (v3, v6), (v4, v7), (v5, v8)} ⇒ |D3| = d(Γ∗3, 3) = 5,

D4 = {(v1, v5), (v2, v6), (v3, v7), (v4, v8)} ⇒ |D4| = d(Γ∗3, 4) = 4,

D5 = {(v1, v6), (v2, v7), (v3, v8)} ⇒ |D5| = d(Γ∗3, 5) = 3,

D6 = {(v1, v7), (v2, v8)} ⇒ |D6| = d(Γ∗3, 6) = 2,

D7 = {(v1, v8)} ⇒ |D7| = d(Γ∗3, 7) = 1,

⇒ H(Γ∗3, y) = 8y0 + 7y1 + 6y2 + 5y3 + 4y4 + 3y5 + 2y6 + 1y7

H(Γ∗3, y) = 8 + 7y + 6y2 + 5y3 + 4y4 + 3y5 + 2y6 + y7

Theorem 3.1. The Hosoya polynomial of the Schreier graphs of the Grigorchuk group is defined as

H(Γ∗n, y) =

2n∑
i=1

iy2n
−i, (2)

where n = 1, 2, 3, . . . .

Proof. We will make the proof of the theorem by the induction method on n. Firstly, it is clear that the
expression is H(Γ∗1, y) = y + 2 for n = 1 and it is obvious. It follows from the equation (1). Then, for n = k,
let us assume that the expression, i.e. the equation

H(Γ∗k, y) = y2k
−1 + 2y2k

−2 + 3y2k
−3 + · · · + 2k−1y2k

−2k−1
+ 2ky2k

−2k

H(Γ∗k, y) = y2k
−1 + 2y2k

−2 + 3y2k
−3 + · · · + 2k−1y2k

−2k−1
+ 2k,

is true. The correctness of the expression will now be shown for n = k + 1. For n = 1, 2, 3, . . . Γ∗n has a linear
shape formed by alternating bridges and 2-cycles. Moreover, for n = 1, 2, 3, . . . there are 2n vertices and
3.2n−1

− 2 edges in Γ∗n and the diameter of Γ∗n is equal to 2n
− 1. It means that there are 2k+1

2 bridges among
the edges in Γ∗k+1 and the remaining (3.2n−1

− 2 − 2k+1

2 ) edges in Γ∗k+1 are two by two parallel. For n = k + 1,
there must be 2k+1 terms in the expansion of the expression. Therefore by the concept of distance in graphs
and the definition of the Hosoya polynomial, for n = k + 1 it is obtained that

H(Γ∗k+1, y) = y2k+1
−1 + 2y2k+1

−2 + 3y2k+1
−3 + · · · + 2ky2k+1

−2k
+ 2k+1.

Thus the proof is completed.

Proposition 3.2. The Wiener index of the Schreier graphs of the Grigorchuk group is defined as

W(Γ∗n) =

2n∑
i=1

i(2n
− i),

where n = 1, 2, 3, . . . .
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Proof. By applying the equation (2), The Wiener index of the Schreier graphs of the Grigorchuk group is
obtained. It is reckoned as the first derivative of the polynomial of H(Γ∗n, y) at y = 1, i.e.,(

H(Γ∗n, y)
)′

=
( 2n∑

i=1

iy2n
−i
)′

=

2n∑
i=1

i(2n
− i)y2n

−i−1,

(
H(Γ∗n, 1)

)′
=

2n∑
i=1

i(2n
− i) = W(Γ∗n).

So the proof is completed.

Now let us give a few examples of calculating the Hosoya polynomials of B∗n. According to the definition
of the Hosoya polynomial, the following results are obtained by applying the method applied in the above
calculations.

For n = 1,
H(B∗1, y) = 2 + y.

For n = 2,
H(B∗2, y) = 4 + 3y + 2y2 + y3.

For n = 3,
H(B∗3, y) = 8 + 8y + 8y2 + 6y3 + 3y4 + 2y5 + y6

For n = 4,

H(B∗4, y) = 16 + 18y + 24y2 + 24y3 + 17y4 + 14y5 + 11y6 + 6y7 + 3y8 + 2y9 + y10.

For n = 5,

H(B∗5, y) = 32+36y+49y2+62y3+62y4+64y5+55y6+42y7+36y8+30y9+18y10+14y11+11y12+6y13+3y14+2y15+y16.

Conclusion 3.3. In the calculations for the Hosoya polynomial of the Schreier graphs of the Basilica group, as can be
seen in the examples given above, the following can be stated: in the expansion of polynomials to be obtained for each
n, although some values such as the number of terms, the degree of the terms, some of its beginning and last terms are
known a general characterization of these polynomials is not possible in this way. Because there is no clarity for the
coefficients of the polynomials. However, it is predicted that this problem can be solved by conducting a study on the
array of the shape of the graph obtained for each n as different from the method followed here. This prediction stands
as an open problem.
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Abstract. In this paper, we established the group Γ̂0,n(N) by group Γ0,n(N) extending with reflection. Then,
we obtain boundary components in signature of the group and we get some calculation for link periods
2, 3,∞. And then, we constitute chain of reflections with fixed points via Extended Hoore-Uzzell Theorem
in the group. Finally, The number of boundary components in the signature of some groups Γ̂0,p(p) and
Γ̂0,p(p2), p is a prime number, and the number of link periods was found.

1. Introduction and Preliminaries

Modular group and its congruence subgroups have an important role on discrete group theory. Many
authors studied at this area such as Akbaş [1], Beşenk [3], Jones [6], Kader [7], Tekcan [10], etc.

Non-euclidean crystallographic groups (written NEC group) have an important role on discrete group
theory and firstly defined by Wilkie [11]. And then Bujalance [4], Jones [6], Macbeath [8], etc. studied. So in
this paper, we research signatures and boundary components of a special groups. And now we give some
basic definitions and theorems for understanding our paper.

Definition 1.1. [5] Let

T(z) =
az + b
cz + d

, a, b, c, d ∈ R, ∆ = ad − bc > 0; (1)

then dividing the numerator and denominator by
√

∆ we obtain

T(z) =

(
a/
√

∆
)
z +

(
b/
√

∆
)(

c/
√

∆
)
z +

(
d/
√

∆
)

and as
(
a/
√

∆
)(

d/
√

∆
)
−

(
b/
√

∆
)(

c/
√

∆
)

= 1, this shows that T ∈ PSL(2,R). We can show the elements of PSL(2,R)
as follows,

±

(
a b
c d

)
, a, b, c, d ∈ R and ad − bc = 1.
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Remark 1.2. This set is a group of all linear fractional transformations. It is the automorphism group of the upper
half plane H := {z ∈ C : Im(z) > 0}.

Definition 1.3. [5] The modular group Γ = PSL(2,Z) is the subgroup of PSL(2,R).

Definition 1.4. [11] The group G consist of all transformations of one or other of the two forms:

w =
az + b
cz + d

, ad − bc = 1 a, b, c, d ∈ R, (2)

w =
az + b
cz + d

, ad − bc = −1 a, b, c, d ∈ R. (3)

Those of the form (2) preserve orientation, and form a subgroup LF(2,R) of index2-the hyperbolic group; Those of the
form (3) do not preserve orientation. G maps H into itself. The topology on G comes from the numbers a, b, c, d ∈ R.

Definition 1.5. [11] Firstly, we assume that T ∈ PSL(2,R) \ I and T(z) = az+b
cz+d . Then

1. Hyperbolic if |a + d| > 2 with two fixed points on the real axis,
2. Elliptic if |a + d| < 2 with one fixed point in H,
3. Parabolic if |a + d| = 2 with one fixed point multiplicity two on the real axis.

Secondly, we assume that S ∈ PSL(2,Z) and S(z) = az+b
cz+d . Then

1. Glide reflection if a + d , with two fixed points on the real axis.
2. Reflection if a + d = 0 with hyperbolic line perpendicular to R.

Definition 1.6. [11] A non-Euclidean crystallographic (written N. E. C.) group is a discrete subgroup of G.

Theorem 1.7. [5] Finite-order elements different from the unit of G are either elliptic or reflection transformations.

Definition 1.8. [9] We suppose that Λ is a NEC group and x ∈ R ∪ {∞}. In this case, if there is a parabolic element
1 ∈ Λ such that 1(x) = x, then x is called ”cusp point (cusp representative)”. Hence, the expression of Λx which it is
orbit Λ of x is called cusp and denoted by [x]. Moreover, if there is a reflection S ∈ Λ such that S([x]) = [x], then [x]
is called ”real cusp”.

Remark 1.9. Throughout this article we will study at finite generated NEC group Λ provided that the orbital space
H∗/Λ is compact. Here, H∗ = H ∪ B, and B :=

{
[x] : x ∈ R∞

}
.

Remark 1.10. We can write the following table for generators and relations of NEC group Λ [8],[11]

Table 2.1 : Generators and relations of NEC group Λ

xi ; i = 1, . . . , r
ei ; i = 1, . . . , k

Generators ci j ; i = 1, . . . , k and j = 0, 1, . . . , si
ai, bi ; i = 1, . . . , 1 (I. kind)
di ; i = 1, . . . , 1 (II. kind)
xmi

i = 1 ; i = 1, . . . , r
cisi = e−1

i ci0ei ; i = 1, . . . , k
Relations c2

i, j−1 = c2
i j = (ci, j−1ci j)ni j = 1

x1 . . . xre1 . . . eka1b1a−1
1 b−1

1 . . . a1b1a−1
1 b−1
1 = 1 (I. kind)

x1 . . . xre1 . . . ekd2
1 . . . d

2
1 = 1 (II. kind)

Here, let N2 := {2, 3, . . .}. If mi ∈ N2, then xi is an elliptic element. If mi = ∞, then xi is a parabolic element. If
ni j ∈ N2, then the combination of the two reflections is an elliptical element. And if ni j = ∞, this combination is
either a parabolic element or a hyperbolic element. It is clear that the numbers mi,ni j ∈N2 ∪ {∞} are the order of the
direction-protecting elements of Λ.
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Definition 1.11. [4] The representation

σ(Λ) = (1;±; [m1, . . . ,mr]; {(n11, . . . ,n1s1 ), . . . , (nk1, . . . ,nksk )})

is called a NEC signature of Λ for NEC group Λ given at Table 2.1. We say shortly σ(Λ) or signature of Λ. Moreover,
it is called some notions at the signature σ(Λ) as follow:
(1.) Number 1 ∈N in the signature is called genus of orbit space’sH∗�Λ. And it is topologically invariant of surface.
(2.) If orbit space H∗�Λ can be directable, then s1nσ(Λ) = ” + ” or indirectable, then s1nσ(Λ) = ” − ”.
(3.) For i = 1, 2, · · · , r, the numbers mi ∈N2 is called natural period of Λ.
(4.) For i = 1, 2, · · · , r, the numbers mi ∈N2 ∪ {∞} is called special period of Λ.
(5.) The set C = {C1,C2, · · · ,Ck} is called boundary component of Λ.
(6.) For i = 1, 2, · · · , k, the notion Ci = (ni1 ,ni2 , . . . ,nisi ) are called i-th boundary component of signature or i-th
periodic-cycles.
(7.) For i = 1, 2, · · · , k, the numbers ni1 ,ni2 , · · · ,nisi ∈N2 ∪ {∞} are called period of i-th boundary component or link
period of Λ.

Theorem 1.12. [5] (Extended Hoare-Uzzell Theorem) Let G be a NEC group with signature

σ(G) =
(
1;∓; [m1, · · · ,mr]; {(n11, · · · ,n1s1 ), · · · , (nk1, · · · ,nksk )}

)
and H a subgroup of finite index. Each fixed point of a reflection ci of the permutation representation of G on the
H-cosets gives a reflection in H.

Let ci, ci+1 be two reflections, with cici+1 having order ni ≤ ∞. Let yi = cici+1 have an orbit (cycle) of length ri.
Then: either

a) this orbit contains no fixed points of ci or ci+1 in which case there exists another orbit of the same length, and
these two together induce an ordinary period ni/ri.

or

b) this orbit contains two fixed points of ci and ci+1 (one fixed by each if ri is odd, two by one and one by the other
if ri is even): and there is a relation between two induced reflections as, ci vni/ri ci+1. Combining these relations
makes up period cycles with link periods ni/ri.

Lemma 1.13. [6] Let T,K be ∈ Γ̂0(N)

T =

(
r −k
s −t

)
and K =

(
x −m
y −n

)
∈ Γ̂

then,
r
s
≈

x
y
⇐⇒ ry − sx ≡ 0 mod N (ry − sx = ∓N).

Here the relation ”≈” is on Q̂ that Γ̂0(N) is a reduced Γ̂ invariant equivalence relation,

Γ0(N) :=
{ (

a b
c d

)
∈ PSL(2,Z) : c ≡ 0 mod N

}
, Γ̂0(N) :=

〈
Γ0(N), z→ −z

〉
,

X0(N) = H∗/Γ0(N) and X̂0(N) = H∗/Γ̂0(N).

Theorem 1.14. [1] Let the numbers N ∈ Z+ and r are divisor number of N. We can write the followings for the
group Γ̂0(N):

I. case: If N is odd, then the number of boundary component of X0(N) is 2r−1 and there are 2 cusps in each
boundary component.

II. case: a) Let 2||N.
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i) If N = 2, then there is only one boundary component. And there are 2 cusps belonging to it.
ii) If N = 2m, m > 1, then there are 2r−2 boundary component. And there are 4 cusps belonging to each boundary

components.
b) Let 22

||N.
i) If N = 4, then there is only one boundary component. And there are 3 cusps belonging to it.
ii) If N > 4, then there are 2r−2 boundary component. And there are 6 cusps belonging to each boundary

components.
c) If 23

|N, then the number of boundary component are 2r−1. And there are 4 cusps in each boundary component.

2. Main Results

2.1. Signature of the Extended Congruence Subgroup

Let we consider the following extended congruence subgroup for N ∈ Z+

Γ̂0(N) =
〈
Γ0(N), z→ −z

〉
= Γ0(N) ∪

(
1 0
0 −1

)
Γ0(N).

Thus, Γ̂∞ < Γ̂0(N) < Γ̂. If we take u =
r
s
, v =

x
y
∈ Q̂, then there are T,K ∈ Γ̂ such that T(∞) = u and K(∞) = v

T =

(
r −k
s −t

)
and K =

(
x −m
y −n

)
.

Now we consider the special subgroup of Γ̂0(N) for N ∈ Z+, namely,

Γ̂0,n(N) =
〈
Γ0,n(N), z→ −z

〉
= Γ0,n(N) ∪

(
1 0
0 −1

)
Γ0,n(N).

Let we calculate in the signature of the group

Γ̂0,n(N) =
{ ( a b

cN d

)
∈ Γ̂0(N) : a ≡ ∓d mod n

}
.

And also let we determine the orbit space Y0(N) = H∗�Γ0,n(N) and Ŷ0(N) = H∗�Γ̂0,n(N) for Γ0,n(N) and
Γ̂0,n(N), respectively.

Theorem 2.1. Let Γ̂ be an extended modular group and(
a b
c d

)
∈ Γ̂, c1 =

(
1 0
0 −1

)
, c2 =

(
0 1
1 0

)
, c3 =

(
1 1
0 −1

)
.

Then,

a.) c1 leaves fixed to Γ̂0,n(N)
(

a b
c d

)
⇐⇒ N|2cd and (ad + bc)2

≡ 1 mod n,

b.) c2 leaves fixed to Γ̂0,n(N)
(

a b
c d

)
⇐⇒ N|d2

− c2 and (bd − ac)2
≡ 1 mod n,

c.) c3 leaves fixed to Γ̂0,n(N)
(

a b
c d

)
⇐⇒ N|2cd − c2 and (ad − ac + bc)2

≡ 1 mod n.

Proof. Let
(

a b
c d

)
∈ Γ̂ and Γ̂ = PSL(2,Z) ∪ PSL(2,Z).
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a)

Γ̂0,n(N)
(

a b
c d

)
c1 = Γ̂0,n(N)

(
a b
c d

)
⇐⇒

(
a b
c d

) (
1 0
0 −1

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
a −b
c −d

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
ad + bc −2ab

2cd −bc − ad

)
∈ Γ̂0,n(N)

⇐⇒ N|2cd and (ad + bc)2
≡ 1 mod n.

b)

Γ̂0,n(N)
(

a b
c d

)
c2 = Γ̂0,n(N)

(
a b
c d

)
⇐⇒

(
b a
d c

) (
0 1
1 0

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
a b
c d

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
bd − ac a2

− b2

d2
− c2 ac − bd

)
∈ Γ̂0,n(N)

⇐⇒ N|d2
− c2 and (bd − ac)2

≡ 1 mod n.

c)

Γ̂0,n(N)
(

a b
c d

)
c3 = Γ̂0,n(N)

(
a b
c d

)
⇐⇒

(
a b
c d

) (
1 1
0 −1

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
a a − b
c c − d

) (
d −b
−c a

)
∈ Γ̂0,n(N)

⇐⇒

(
ad − ac + bc a2

− 2ab
2cd − c2

−bc + ac − ad

)
∈ Γ̂0,n(N)

⇐⇒ N|2cd − c2 and (ad − ac + bc)2
≡ 1 mod n.

So, the proof is completed.

Lemma 2.2. Elliptic and parabolic elements generated with reflections of c1, c2, c3 in Γ̂ are determined as follows:

a.) T1 =

(
0 1
−1 0

)
,T2 =

(
0 −1
1 1

)
,T3 =

(
1 1
0 1

)
and T2

1 = T3
2 = T∞3 = I.

b.) T4 =

(
0 −1
1 0

)
,T5 =

(
1 1
−1 0

)
,T6 =

(
1 −1
0 1

)
and T2

4 = T3
5 = T∞6 = I.

Proof. We know

c1 =

(
1 0
0 −1

)
, c2 =

(
0 1
1 0

)
, c3 =

(
1 1
0 −1

)
, (c1c2)2 = (c2c3)3 = (c1c3)∞ = I.

Then,

a) T1 = c1c2 =

(
1 0
0 −1

) (
0 1
1 0

)
=

(
0 1
−1 0

)
T2 = c2c3 =

(
0 1
1 0

) (
1 1
0 −1

)
=

(
0 −1
1 1

)
T3 = c1c3 =

(
1 0
0 −1

) (
1 1
0 −1

)
=

(
1 1
0 1

)
.
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In this case, we obtain the relation T2
1 = T3

2 = T∞3 = I. Then,

b) T4 = c2c1 =

(
0 1
1 0

) (
1 0
0 −1

)
=

(
0 −1
1 0

)

T5 = c3c2 =

(
1 1
0 −1

) (
0 1
1 0

)
=

(
1 1
−1 0

)

T6 = c3c1 =

(
1 1
0 −1

) (
1 0
0 −1

)
=

(
1 −1
0 1

)
So, we have T2

4 = T3
5 = T∞6 = I.

Remark 2.3. The combinations of these transformations can also be used.

(c2c3)2 =

(
1 1
−1 0

)
and (c3c1)k =

(
1 −k
−1 1

)
Lemma 2.4. [1] ad ≡ 1 mod s provides a ≡ d mod s if and only if s is the integer divisor of 24.

Proof. ”=⇒”: Let ad ≡ 1 mod s provides the congruence a ≡ d mod s and Us := {a ∈ Zs | (a, s) = 1}. Here,
a2
≡ 1 mod s reduces to finding s for each a ∈ Us that satisfies the congruence. In this case, we assume that

s = 2α.3βqα1
1 . . . qαk

k , (qi ∈ P, qi , 2, qi , 3). So, we have Us � U2α × U3β × Uqα1
1
× . . . × Uq

αk
k

. If p is odd prime

number and n ≥ 1, then Upn is cyclic. The order of these groups are ϕ(3β), ϕ(qα1
1 ), . . . , ϕ(qαk

k ), respectively.
Here ϕ is an Euler function. Because each of these groups has two members with an order of 2. So β should
be 1, and qαi

i does not exist. Thus, it is determined as s = 2α3β, either β = 0 or β = 1. On the other hand,
if α ≥ 3, then U2α := {∓5t : 0 ≤ t ≤ 2α−2

}. Here, mth order of 5 is exactly 2α−2. If α > 3, then m will be at
least 4. But it is a contradiction because each elements of U2α have got 2nd order. So it should be α ≤ 3.
Consequently, we obtain s|24.

”⇐=”: Let ad ≡ 1 mod s and s|24. In this case, due to ϕ(24) = 8 we determine the integer a and d such
that a, d ∈ {1, 5, 7, 11, 13, 17, 19, 23}. That is, the counting number less than 24 and prime between 24 is 8,
and let’s make the selection according to the cluster above. In this case, we get a2

≡ d2
≡ 1 mod s. Thus, we

obtain a ≡ d mod s.

α = 1 =⇒ U21 := {a ∈ Z2 : (a, 2) = 1} = {1} and a2
≡ 1 mod 2,

α = 2 =⇒ U22 := {a ∈ Z4 : (a, 4) = 1} = {1, 3} and a2
≡ 1 mod 4,

α = 3 =⇒ U23 := {a ∈ Z8 : (a, 8) = 1} = {1, 3, 5, 7} and a2
≡ 1 mod 8,

α = 4 =⇒ U24 := {a ∈ Z16 : (a, 16) = 1} = {1, 3, 5, 7, 9, 11, 13, 15} and a2
≡ 1 mod 16.

Now, the order U16 is 4, but it does not. Namely, counting number α and β exist such that 0 ≤ β ≤ 1 for
s = 2α3β.

Theorem 2.5. Let n,N ∈ Z+ and n|N. Then,
a) n|24⇐⇒ Γ0,n(N) = Γ0(N),
b) n|24⇐⇒ Γ̂0,n(N) = Γ̂0(N).

Proof. a) ”=⇒ :” Let n|24. Thus, ∃k ∈ Z such that 24 = nk. It is clear that Γ0,n(N) ⊂ Γ0(N) from Γ0,n(N) ≤ Γ0(N).
Now let we show Γ0(N) ⊂ Γ0,n(N).

We take T =

(
a b
cN d

)
∈ Γ0(N). In this case, we have detT = ad − bcN = 1 and ad ≡ 1 mod n. We obtain

a ≡ d mod n from Lemma 2.4 for n|24 and ad ≡ 1 mod n. That is, a2
≡ 1 mod n and thus T ∈ Γ0,n(N).
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”⇐=” Let Γ0,n(N) = Γ0(N). We take
(

a b
cN d

)
∈ Γ0,n(N) = Γ0(N). From this ad − bcN = 1 and we obtain

ad ≡ 1 mod N. Thus, ad ≡ 1 mod n from n|N. Furthermore, it should be a ≡ d mod n from T ∈ Γ0,n(N) and
n|24 from Lemma 2.4.

b) The proof is clear according to case of a) from Γ̂0,n(N) = Γ0,n(N) ∪ RΓ0,n(N) and R(z) = −z̄ for Γ0,n(N).
Now we prove for RΓ0,n(N).

”=⇒” : Let n|24, and T =

(
1 0
0 −1

) (
a b

cN d

)
∈ RΓ0,n(N) . Thus,

(
a b
−cN −d

)
∈ RΓ0,n(N) and

−ad + bcN = −1. If we use −ad ≡ −1 mod n and n|24 with Lemma 2.4, then a ≡ d mod n.

”⇐=” Let Γ̂0,n(N) = Γ̂0(N) and
(

1 0
0 −1

) (
a b

cN d

)
∈ RΓ0,n(N). In this case, −ad + bcN = −1 and

a ≡ d mod n. So, we also obtain −ad ≡ −1 mod n and a ≡ d mod n. And we have the same result n|24 from
Lemma 2.4.

2.2. Boundary Components in the Signature

Theorem 2.6. Let p ∈ P. Then, it can be given for the boundary components in the signature of the group Γ̂0,p(p) as
follows:
a) If p = 2, then the group’s signature has one boundary component and there is one 2 valued link period and two
cusp in this component.
b) If p = 3, then the group’s signature has one boundary component and there is one 3 valued link period and two
cusp in this component.
c) If p = 5, then the group’s signature has one boundary component and there are two cusp in this component.

Proof. a) Let N = p = 2. Then from Theorem 2.5, we have Γ̂0,2(2) = Γ̂0(2), and instead of the second terms of
Theorem 2.1, only the first conditions can be examined.

c1 reflection leaves fixed to the elements
(
∗ ∗

0 1

)
,

(
∗ ∗

1 0

)
,

(
∗ ∗

1 1

)
,

c2 reflection leaves fixed to the elements
(
∗ ∗

1 1

)
,

c3 reflection leaves fixed to the elements
(
∗ ∗

0 1

)
.

The chain T1 is below from Theorem 1.14 and Lemma 2.2 for boundary components;

c1
(
∗ ∗

1 0

)
1
∼

c1
(
∗ ∗

0 1

)
∞

∼

c1
(
∗ ∗

1 1

)
2
∼

c2
(
∗ ∗

1 1

)
1
∼

c3
(
∗ ∗

0 1

)
∞

∼

c3
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
.

So, there is a boundary component in the group’s signature. There is a 2-valued link period in the signature.
And there are also two cusps in it.

b) Let N = p = 3. From Theorem 2.5 we have Γ̂0,3(3) = Γ̂0(3). And thus instead of the second terms of
Theorem 2.1, only the first conditions can be examined.

c1 reflection leaves fixed to the elements
(
∗ ∗

0 1

)
and

(
∗ ∗

1 0

)
,

c2 reflection leaves fixed to the elements
(
∗ ∗

1 1

)
and

(
∗ ∗

2 1

)
,
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c3 reflection leaves fixed to the elements
(
∗ ∗

0 1

)
and

(
∗ ∗

2 1

)
.

The chain T2 is below from Theorem 1.14 and Lemma 2.2 for boundary components;

c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c3
(
∗ ∗

2 1

)
3
∼

c2
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

1 1

)
1
∼

c3
(
∗ ∗

0 1

)
∞

∼

c1
(
∗ ∗

0 1

)
.

So, there is a boundary component in the group’s signature. There is a 3-valued link period in the boundary
component. And there are also two cusps in the boundary component.

c) Let we research the group Γ̂0,5(5) for N = p = 5.

i) The reflection c1 leaves fixed to Γ̂0,5(5)
(

a b
5c d

)
and Γ̂0,5(5)

(
a b
c 5d

)
. Here the condition of Theorem

2.1-a) satisfies. Indeed, we have N|5cd and (ad + 5bc)2
≡ 1 mod 5 due to ad − 5bc = ±1. And then we get

(5ad + bc)2
≡ 1 mod 5.

(ad)2
≡ 1 mod 5 =⇒ ad ≡ ±1 mod 5 =⇒


a = 1 and d = 1; 4
a = 2 and d = 2; 3
a = 3 and d = 2; 3
a = 4 and d = 1; 4

So, a ≡ −d mod 5. Similarly, the same situation occurs with (bc)2
≡ 1 mod 5. Thus, the reflection c1 leaves

fixed to Γ̂0,5(5)
(
±1 k

0 1

)
and Γ̂0,5(5)

(
k ±1
1 0

)
. So, we have

(
a b
5c d

) (
∓1 k

0 1

)−1

=

(
a b
5c d

) (
1 −k
0 ±1

)
=

(
a −ak ∓ b
5c −5kc ∓ d

)
∈ Γ̂0,5(5)

and (
a b
c 5d

) (
k ∓1
1 0

)−1

=

(
a b
c 5d

) (
0 ±1
−1 k

)
=

(
−b ∓a + bk
−5d ∓c + 5kd

)
∈ Γ̂0,5(5).

In this case, the reflection c1 leaves fixed to Γ̂0,5(5)
(

a b
5c d

)
and Γ̂0,5(5)

(
a b
c 5d

)
.Moreover, these elements

Γ̂0,5(5)
(
±1 k
0 1

)
and Γ̂0,5(5)

(
k ±1
1 0

)
are in the same coset class. Thus, the reflection c1 without breaking

generality leaves fixed to
(
∗ ∗

0 1

)
and

(
∗ ∗

1 0

)
.

ii) From Theorem 2.1, the reflection c2 leaves fixed to

Γ̂0,5(5)
(

a b
c d

)
⇐⇒

{
5| d2
− c2

(bc − ad)2
≡ 1 mod 5.

From this, we have 5|(d − c)(d + c). And 5|d − c or 5|d + c. Therefore d − c ≡ 0 mod 5 or d + c ≡ 0 mod 5.
According to this, we can take either c = d = 1 or c = −1, d = 1.

The reflection c2 leaves fixed to Γ̂0,5(5)
(

a b
1 1

)
and Γ̂0,5(5)

(
a b
−1 1

)
. So,

(
a b
1 1

) (
k t
1 1

)−1

=

(
a b
1 1

) (
1 −t
−1 k

)
=

(
a − b −at + bk
0 k − t

)
∈ Γ̂0,5(5)
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and (
a b
−1 1

) (
k t
−1 1

)−1

=

(
a b
−1 1

) (
1 −t
1 k

)
=

(
a + b −at + bk

0 t + k

)
∈ Γ̂0,5(5).

Hence the reflection c2 leaves fixed to
(
∗ ∗

1 1

)
and

(
∗ ∗

−1 1

)
.

iii) From Theorem 2.1, the reflection c3 leaves fixed to

Γ̂0,5(5)
(

a b
c d

)
⇐⇒

{
5|2cd − c2

(ad − ac + bc)2
≡ 1 mod 5.

Here, there are two important conditions. Hence, it can be taken either c = 0, d = 1 or c = 2, d = 1.

The reflection c3 leaves fixed to Γ̂0,5(5)
(

a b
0 1

)
and Γ̂0,5(5)

(
a b
2 1

)
. In this case, we have

(
a b
0 1

) (
k t
0 1

)−1

=

(
a b
0 1

) (
1 −t
0 k

)
=

(
a −at + bk
0 k

)
∈ Γ̂0,5(5)

and (
a b
2 1

) (
k t
2 1

)−1

=

(
a b
2 1

) (
1 −t
−2 k

)
=

(
a − 2b −at + bk

0 −2t + k

)
∈ Γ̂0,5(5).

So, the reflection c3 leaves fixed to
(
∗ ∗

0 1

)
and

(
∗ ∗

2 1

)
. The chainT3 is below from the conditions i), ii), iii)

with Theorem 1.14 and Lemma 2.2;
c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c3
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

−1 1

)
∞

∼

c3
(
∗ ∗

0 1

)
.

Hence, there is a boundary component in the signature. There are two∞-valued link period in the boundary
component.

Corollary 2.7. We obtain the following results:
a) For the signature of Γ̂0,1(1) = Γ̂0(1); C = {(2, 3,∞)},
b) For the signature of Γ̂0,2(2); C = {(∞, 2,∞)},
c) For the signature of Γ̂0,3(3); C = {(∞, 3,∞)},
d) For the signature of Γ̂0,5(5); C = {(∞,∞)}.

Theorem 2.8. Let p ∈ P. Then we can give the follows for the signature of the group Γ̂0,p(p2) in the boundary
component,

a) If p = 2, then there is a boundary component in the signature and there are 3 cusp in the boundary component.
b) If p = 3, then there is a boundary component in the signature and there are 2 cusp in the boundary component.
c) If p = 5, then there is a boundary component in the signature and there are 2 cusp in the boundary component.

Proof. a) Let n = p = 2 and N = 22. Then Γ̂0,2(4) = Γ̂0(4) from Theorem 2.5, and hence instead of the second
terms of Theorem 2.1, only the first conditions can be examined.

The reflection c1 leaves fixed to the elements
(
∗ ∗

0 1

)
,

(
∗ ∗

1 0

)
,

(
∗ ∗

2 1

)
,

(
∗ ∗

1 2

)
,

The reflection c2 leaves fixed to the elements
(
∗ ∗

−1 1

)
,

(
∗ ∗

1 1

)
,

The reflection c3 leaves fixed to the elements
(
∗ ∗

0 1

)
,

(
∗ ∗

2 1

)
.
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So, the chain T4 is below from Theorem 1.14 and Lemma 2.2

c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c1
(
∗ ∗

1 2

)
1
∼

c1
(
∗ ∗

2 1

)
∞

∼

c3
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

−1 1

)
1
∼

c2
(
∗ ∗

1 1

)
1
∼

c3
(
∗ ∗

0 1

)
∞

∼

c1
(
∗ ∗

0 1

)
.

Hence, there is a boundary component in the group’s signature, and there are 3 cusps in the boundary
component.

b) Let n = p = 3 and N = 32. we have Γ̂0,3(9) = Γ̂0(9) from Theorem 2.5, and instead of the second terms
of Theorem 2.1, only the first conditions can be examined.

The reflection c1 leaves fixed to the elements
(
∗ ∗

1 0

) (
∗ ∗

0 1

)
,

the reflection c2 leaves fixed to the elements
(
∗ ∗

1 1

)
,

(
∗ ∗

−1 1

)
,

the reflection c3 leaves fixed to the elements
(
∗ ∗

0 1

)
,

(
∗ ∗

2 1

)
.

The chain T5 is below from Theorem 1.14 and Lemma 2.2

c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c3
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

−1 1

)
∞

∼

c1
(
∗ ∗

0 1

)
.

Hence there is a boundary component, and there are 2 cusps in the boundary component.
c) Let n = p = 5 and N = 52. Now we research the group Γ̂0,5(25).
i) According to Theorem 2.1,

The reflection c1 leaves fixed to Γ̂0,5(52)
(

a b
c d

)
⇐⇒

{
25|2cd
(ad + bc)2

≡ 1 mod 5.

In this case, the reflection c1 leaves fixed to Γ̂0,5(25)
(

a b
25c d

)
and Γ̂0,5(25)

(
a b
c 25d

)
. Here, it satisfies

Theorem 2.1-a). Indeed, firstly we have N|25cd and (ad + 25bc)2
≡ 1 mod 5 from N = 25 and ad − 25bc = ±1.

Secondly, we have N|25cd and (25ad + bc)2
≡ 1 mod 5 from N = 25 and 25ad − bc = ±1. Hence the reflection

c1 leaves fixed to Γ̂0,5(25)
(
∓1 k
0 1

)
and Γ̂0,5(25)

(
k ∓1
1 0

)
. In this case, we obtain

(
a b

25c d

) (
∓1 k
0 1

)−1

=

(
a b

25c d

) (
1 −k
0 ∓1

)
=

(
a −ak ∓ b

25c −25kc ∓ d

)
∈ Γ̂0,5(25)

and (
a b
c 25d

) (
k ∓1
1 0

)−1

=

(
a b
c 25d

) (
0 ∓1
−1 k

)
=

(
−b ∓a + bk
−25d ∓c + 25kd

)
∈ Γ̂0,5(25).
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From this, the reflection c1 leaves fixed to Γ̂0,5(25)
(

a b
25c d

)
and Γ̂0,5(25)

(
a b

c 25d

)
. So, these elements

and Γ̂0,5(25)
(
∓1 k
0 1

)
and Γ̂0,5(25)

(
k ∓1
1 0

)
elements are in the same coset class. Therefore, the reflection

c1 leaves fixed to
(
∗ ∗

0 1

)
and

(
∗ ∗

1 0

)
.

ii) According to Theorem 2.1, the reflection c2 leaves fixed to Γ̂0,5(25)
(

a b
c d

)
⇐⇒

{
25|d2

− c2

(bd − ac)2
≡ 1 mod 5.

From this, 25|d2
− c2 =⇒ 5|(d− c)(d + c) =⇒ if and only if 5|d− c or only 5|d + c. So, we obtain d− c ≡ 0 mod 52

or d + c ≡ 0 mod 52. Hence we can take either c = d = 1 or c = −1, d = 1.

The reflection c2 leaves fixed to Γ̂0,5(25)
(

a b
1 1

)
. Because of 25|12

− 12 and (a1 − b1)2
≡ 1 mod 5, it satisfies

Theorem 2.1. Then, the reflection c2 leaves fixed to Γ̂0,5(25)
(

a b
−1 1

)
. In this case, we have

(
a b
1 1

) (
k t
1 1

)−1

=

(
a b
1 1

) (
1 −t
−1 k

)
=

(
a − b −at + bk

0 k − t

)
∈ Γ̂0,5(25)

and (
a b
−1 1

) (
k t
1 −1

)−1

=

(
a b
−1 1

) (
−1 −t
−1 k

)
=

(
−a − b −at + bk

0 k + t

)
∈ Γ̂0,5(25).

Hence, the reflection c2 leaves fixed to Γ̂0,5(25)
(

a b
1 1

)
and Γ̂0,5(25)

(
a b
−1 1

)
. These elements Γ̂0,5(25)

(
k t
1 1

)
and Γ̂0,5(25)

(
k t
−1 1

)
are in the same coset. Thus, the reflection c2 leaves fixed to

(
∗ ∗

1 1

)
and

(
∗ ∗

−1 1

)
.

iii) According to Theorem 2.1 the reflection c3 leaves fixed to

Γ̂0,5(25)
(

a b
c d

)
⇐⇒

{
25|2cd − c2

(ad − ac + bc)2
≡ 1 mod 5.

In this case, there are either c = 0, d = 1 or c = 2, d = 1.

The reflection c3 leaves fixed to Γ̂0,5(25)
(

a b
0 1

)
and Γ̂0,5(25)

(
a b
2 1

)
. These elements satisfy the

condition of Theorem 2.1-c). Thereby, we get(
a b
0 1

) (
k t
0 1

)−1

=

(
a b
0 1

) (
1 −t
0 k

)
=

(
a −at + bk
0 k

)
∈ Γ̂0,5(25)

and (
a b
2 1

) (
k t
2 1

)−1

=

(
a b
2 1

) (
1 −t
−2 k

)
=

(
a − 2b −at + bk

0 −2t + k

)
∈ Γ̂0,5(25).

And these elements are also in the same coset. From this the reflection c3 leaves fixed to
(
∗ ∗

0 1

)
and(

∗ ∗

2 1

)
. Hence, the chain T6 is below from Theorem 1.14 and Lemma 2.2

c1
(
∗ ∗

0 1

)
1
∼

c1
(
∗ ∗

1 0

)
∞

∼

c3
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

2 1

)
1
∼

c2
(
∗ ∗

−1 1

)
∞

∼

c1
(
∗ ∗

0 1

)
.

Consequently, there is a boundary component in the group’ s signature, and there are 2 cusps in the
boundary component.
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Corollary 2.9. We obtain the following results:
a) For the signature of Γ̂0,2(4); C = {(∞,∞,∞)},
b) For the signature of Γ̂0,3(9); C = {(∞,∞)},
c) For the signature of Γ̂0,5(25); C = {(∞,∞)}.

Corollary 2.10. There are not 2 and 3-valued link periods in the signature of the group Γ̂0,5(5α) for α ∈ Z and α ≥ 1.
Then there is only one boundary component and there are two cusps in the group’ s signature. Namely, the set of
boundary component is C = {(∞,∞)}.

3. Conclusions

Considering the investigations done so far, we can get more general results as in the Table 3.1 by using
Theorem 2.5 as we did before, based on Theorem 1.14

It should be noted that there are no 2 and 3-valued link periods except the groups Γ̂, Γ̂0,2(2), Γ̂0,3(3). In
all other cases there is a ∞-valued link period. These ∞-valued link periods appear to be associated with
parabolic transformations and even with fixed points they left constant.

Table 3.1 : Boundary components of the signatures of the some groups Γ̂0,n(N)

The Group Name The set of boundary component in the signature
Γ̂0,4(4) {(∞,∞,∞)}
Γ̂0,4(8) {(∞,∞,∞,∞)}
Γ̂0,4(16) {(∞,∞,∞,∞)}
Γ̂0,4(24) {(∞,∞,∞,∞), (∞,∞,∞,∞)}
Γ̂0,2(6) {(∞,∞,∞,∞)}
Γ̂0,6(6) {(∞,∞,∞,∞)}
Γ̂0,6(12) {(∞,∞,∞,∞,∞,∞)}
Γ̂0,6(18) {(∞,∞,∞,∞)}
Γ̂0,6(24) {(∞,∞,∞,∞), (∞,∞,∞,∞)}
Γ̂0,8(8) {(∞,∞,∞,∞)}
Γ̂0,8(16) {(∞,∞,∞,∞)}
Γ̂0,8(24) {(∞,∞,∞,∞)}
Γ̂0,12(12) {(∞,∞,∞,∞,∞,∞)}
Γ̂0,12(24) {(∞,∞,∞,∞), (∞,∞,∞,∞)}
Γ̂0,24(24) {(∞,∞,∞,∞), (∞,∞,∞,∞)}
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[2] Başkan T. Ayrık Gruplar H. Ü., Fen Fakültesi Basımevi, Ders Kitapları Dizisi: 11, Ankara 1980.
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Abstract. In [6], Deveci defined the Pell-Fibonacci sequence as follows:

P − F (n + 4) = 3P − F (n + 3) − 3P − F (n + 1) − P − F (n)

for n ≥ 0 with initial constants P − F (0) = P − F (1) = P − F (2) = 0,P − F (3) = 1. Also, he derived the
permanental and determinantal representations of the Pell-Fibonacci numbers and he obtained miscella-
neous properties of the Pell-Fibonacci numbers by the aid of the generating function and the generating
matrix of the Pell-Fibonacci sequence. The linear recurrence sequences appear in modern research in many
fields from mathematics, physics, computer, architecture to nature and art; see, for example, [2, 4, 13, 18].
In this paper, we obtain the cyclic groups which are produced by generating matrix of the Pell-Fibonacci
sequence when read modulo m. Furthermore, we research the Pell-Fibonacci sequence modulo m, and
then we derive the relationship between the order of the cyclic groups obtained and the periods of the
Pell-Fibonacci sequence modulo m.

1. Introduction

In [6], Deveci defined the Pell-Fibonacci sequence which is directly related to the Pell and Fibonacci
numbers as follows:

P − F (n + 4) = 3P − F (n + 3) − 3P − F (n + 1) − P − F (n) (1)

for n ≥ 0 with initial constants P − F (0) = P − F (1) = P − F (2) = 0,P − F (3) = 1.

Then by an inductive argument, he gave the generating matrix of Pell-Fibonacci sequence as follows:

M3 =


3 0 −3 −1
1 0 0 0
0 1 0 0
0 0 1 0


.

The matrix M3 is said to be Pell-Fibonacci matrix.Then, he obtained that
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(M3)n =


x3

n+4 Fn+2 + x3
n+3 − x3

n+4 Fn+3 + x3
n+4 − x3

n+5 −x3
n+3

x3
n+3 Fn+1 + x3

n+2 − x3
n+3 Fn+2 + x3

n+3 − x3
n+4 −x3

n+2
x3

n+2 Fn + x3
n+1 − x3

n+2 Fn+1 + x3
n+2 − x3

n+3 −x3
n+1

x3
n+1 Fn−1 + x3

n − x3
n+1 Fn + x3

n+1 − x3
n+2 −x3

n

 (2)

for n ≥ 1. It is important to note that det M3 = 1.

The linear recurrence sequences appear in modern research in many fields from mathematics, physics,
computer, architecture to nature and art; see, for example, [2, 4, 13, 18]. Many authors have studied some
special linear recurrence sequences in algebraic structures. Some of these proved that the lengths of the
periods of the recurring sequences obtained by the reducing sequences by a modulo m are equal to the
lengths of the ordinary recurrences in cyclic groups; see for example, [1, 3, 5, 7–15, 17, 20]. Wall [19] proved
that the lengths of the periods of the recurring sequences obtained by reducing Fibonacci sequences by a
modulo m are equal to the lengths of the ordinary 2-step Fibonacci recurrences in cyclic groups. Lü and
Wang [16] obtained the rules for the orders of the cyclic groups generated by reducing the k-generalized
Fibonacci matrix modulo m . Ozkan et al. [17] proved two original theorem concerning Wall number of the
3-step Fibonacci sequences and they gave conjectures concerning 3-step Fibonacci sequence.In this paper,
we obtain the cyclic groups which are produced by generating matrix of the Pell-Fibonacci sequence when
read modulo m. Also, we study the Pell-Fibonacci sequence modulo m. Finally, we derive the relationship
between the order of the cyclic groups obtained and the periods of the Pell-Fibonacci sequence modulo m.

2. The Pell-Fibonacci Sequence Modulo m

For given a matrix A =
[
ai j

]
of integers, A (mod m) means that the entries of A are reduced modulo m,

that is, A (mod m) =
(
ai j (mod m)

)
. Let us consider the set 〈A〉m =

{
Ai (modm)

∣∣∣ i ≥ 0
}
. If gcd (m,det A) = 1,

then the set 〈A〉m is a cyclic group. Let the notation |〈A〉m| denote the order of the set 〈B〉m.

Since det M3 = 1, it is clear that the set 〈M3〉m is a cyclic group for every positive integer m.

Theorem 2.1. (Wall [19]). The number k(s, pn) divides k(s, pn)pn−1, and the two quantities are equal provided
k(s, p) = k(s, p2)

Theorem 2.2. Let p be a prime and let 〈M3〉pm be a cyclic groups. If u is the largest positive integer such that∣∣∣〈M3〉p

∣∣∣ = ∣∣∣〈M3〉pu

∣∣∣, then
∣∣∣〈M3〉pv

∣∣∣ = pv−u.
∣∣∣〈M3〉p

∣∣∣ for every v ≥ u. In particular, if
∣∣∣〈M3〉p

∣∣∣ , ∣∣∣〈M3〉p2

∣∣∣ , then∣∣∣〈M3〉pv

∣∣∣ = pv−1.
∣∣∣〈M3〉p

∣∣∣ for every v ≥ 2.

Proof. Let us consider the cyclic group 〈M3〉pm . Suppose that s is a positive integer and
∣∣∣〈M3〉pm

∣∣∣ is denoted by

LP−F
(
pm)

. If (M3)LP−F(ps+1)
≡ I

(
modps+1

)
, then, we can write (M3)LP−F(ps+1)

≡ I
(
modps) where I is a 4× 4 identity

matrix. Thus we get that LP−F
(
ps) divides LP−F

(
ps+1

)
. Furthermore, if we denote (M3)LP−F(ps) = I +

(
m(s)

i j · p
s
)
,

then by the binomial expansion, we may write

(M3)LP−F(ps)·p =
(
I +

(
m(s)

i j · p
s
))p
=

p∑
i=0

(
p
i

) (
m(s)

i j · p
s
)i
≡ I

(
modps+1

)
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This yields that LP−F

(
ps+1

)
divides LP−F

(
ps)
· p. Thus, LP−F

(
ps+1

)
= LP−F

(
ps) or LP−F

(
ps+1

)
= LP−F

(
ps)
· p. It is

easy to see that the latter holds if and only if there is an m(s)
i j which is not divisible by p. Since u is the largest

positive integer such that LP−F
(
ps) = LP−F

(
pu), we have LP−F (u) , LP−F

(
pu+1

)
. Then there is an m(u+1)

i j which

is not divisible by p. Thus we get that LP−F

(
pu+1

)
, LP−F

(
pu+2

)
. The proof is finished by induction on u.

Reducing the Pell-Fibonacci sequence {P − F (n)}by a modulo m, we obtain the following repeating sequence:

{P − Fm (n)} = {P − Fm (0) ,P − Fm (1) , . . . ,P − Fm (i) , . . .}

where P − Fm (i) = P − F (i) (modm). It has the same recurrence relation as in (1).

A sequence is periodic if, after a certain point, it consists only of repetitions of a fixed subsequence. The
number of elements in the shortest repeating subsequence is called the period of the sequence. For example,
the sequence a, b, c, d, b, c, d, b, c, d, . . . is periodic after the initial element a and has period 3. A sequence is
simply periodic with period k if the first k elements in the sequence form a repeating subsequence. For
example, the sequence a, b, c, d, a, b, c, d, a, b, c, d, . . . is simply periodic with period 4.

Theorem 2.3. For every positive integer m, the Pell-Fibonacci sequence modulo m {P − Fm (n)} is simply periodic.

Proof. Let us consider set

X =
{
(x0, x1, x2, x3)

∣∣∣ xi
′s are integers such that 0 ≤ xi ≤ m − 1

}
.

Since |X| = m4, there are m4 distinct 4-tuples of elements of Zm. Then it is easy to see that at least one of
the 4-tuples appears twice in the sequence {P − Fm (n)}. Therefore, the subsequence following this 4-tuple
repeats; hence, the sequence is periodic. Let

P − Fm (i + 1) ≡ P − Fm (
j + 1

)
, . . . ,P − Fm (i + 3) ≡ P − Fm (

j + 3
)

such that i > j, then i ≡ j (mod4). From the definition of the Pell-Fibonacci sequence we can easily obtain

P − Fm (i) ≡ P − Fm (
j
)
,P − Fm (i − 1) ≡ P − Fm (

j − 1
)
, . . . ,P − Fm (

i − j
)
≡ P − Fm (0)

which implies that the {P − Fm (n)} is a simply periodic sequence.

The period of the sequence {P − Fm (n)} is denoted by hP−F (m).

Example 2.4. Some term of the Pell-Fibonacci sequence {P − F (n)} are as follows:

{0, 0, 0, 1, 3, 9, 24, 62, 156, 387, 951, 2323, 5652, 13716, 33228, . . .} .

Reducing he Pell-Fibonacci sequence {P − F (n)} by a modulo 2, the sequence becomes:

{0, 0, 0, 1, 1, 1, 0, 0, 0, 1, . . .} .
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So, we obtained that the period of the sequence
{
P − F2 (n)

}
is 6.

Similarly, Since the sequence becomes as shown:

{0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 1 . . .}

for m = 3, we have hP−F (3) = 8.

It is easily seen from equation (2) that hP−F (m) = |〈M3〉m| for every positive integer m.

Theorem 2.5. If m has the prime factorization m =
u∏

i=1

(
pi
)si , (u ≥ 1) where pi’s are distinct primes. Then

hP−F (m) = lcm
[
hP−F

((
p1

)s1
)
, hP−F

((
p2

)s2
)
, . . . , hP−F

((
pu

)su
)]
.

Proof. Since hP−F

((
pi
)si

)
is the length of the period of the sequence

{
P − F(pi)si

(n)
}
, the sequence repeats only

after blocks of length λ · hP−F

((
pi
)si

)
, (λ ∈N). Since hP−F (m), is period of the sequence {P − Fm (n)}, the

sequence
{
hP−F

((
pi
)si

)}
repeats after hP−F (m) terms for all values i. Thus hP−F (m) is the form λ · hP−F

((
pi
)si

)
for all values i, and since any such number gives a period of {P − Fm (n)}. So we get

hP−F (m) = lcm
[
hP−F

((
p1

)s1
)
, hP−F

((
p2

)s2
)
, . . . , hP−F

((
pu

)su
)]
.
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Abstract. Erdag and Deveci [13] defined the Padovan-Padovan p-sequence and they studied properties
of this sequence. Then, Akuzum and Deveci [1] studied the Padovan-Padovan p-sequence modulo m .
Also, they discussed the connections between the order the cyclic groups obtained and the periods of the
Padovan-Padovan p-sequence according to modulo m . In this paper, we redefine the Padovan-Padovan
p-sequence by means of the elements of the groups and then, we examine this sequence in the finite groups
in detail. Also, we obtain the lengths of the periods of the Padovan-Padovan 4-sequence in the semidihedral
group SD2m as applications of the results obtained.

1. Introduction

Erdag and Deveci [13] defined the Padovan-Padovan p-sequence as shown:

PaP,p
n+p+5 = 2PaP,p

n+p+3 + PaP,p
n+p+2 − PaP,p

n+p+1 − PaP,p
n+p + PaP,p

n+3 − PaP,p
n+1 − PaP,p

n

for p (4, 5, 6, . . .) and n ≥ 0 with initial constants PaP,p
0 = · · · = PaP,p

p+3 = 0, PaP,p
p+4 = 1.

Also, they gave the Padovan-Padovan p-matrix as shown:

Cp =



0 2 1 −1 −1 0 · · · 0 1 0 −1 −1
1 0 0 0 0 0 · · · 0 0 0 0 0
0 1 0 0 0 0 · · · 0 0 0 0 0
0 0 1 0 0 0 · · · 0 0 0 0 0
0 0 0 1 0 0 · · · 0 0 0 0 0
0 0 0 0 1 0 · · · 0 0 0 0 0
0 0 0 0 0 1 · · · 0 0 0 0 0
...
. . .

. . .
. . .

. . .
. . .

. . .
...
...
...

...
0 0 0 0 0 0 · · · 1 0 0 0 0
0 0 0 0 0 0 · · · 0 1 0 0 0
0 0 0 0 0 0 · · · 0 0 1 0 0
0 0 0 0 0 0 · · · 0 0 0 1 0


(p+5)×(p+5).
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Then by an inductive argument, they derived that

(
Cp

)n
=



PaP,p
n+p+4 PaP,p

n+p+5 −PaP,p
n+p+4 + PaP,p

n+p+3 + Pap
(
n + p + 1

)
+ Pap (n + 1)

PaP,p
n+p+3 PaP,p

n+p+4 −PaP,p
n+p+3 + PaP,p

n+p+2 + Pap
(
n + p

)
+ Pap (n)

PaP,p
n+p+2 PaP,p

n+p+3 −PaP,p
n+p+2 + PaP,p

n+p+1 + Pap
(
n + p − 1

)
+ Pap (n − 1)

...
...

...

PaP,p
n+1 PaP,p

n+2 −PaP,p
n+1 + PaP,p

n + Pap (n − 2) + Pap
(
n − p − 2

)
PaP,p

n PaP,p
n+1 −PaP,p

n + PaP,p
n−1 + Pap (n − 3) + Pap

(
n − p − 3

)
−PaP,p

n+p+5 + Pap
(
n + p + 4

)
−PaP,p

n+p+3 + Pap (n + 3) Pap (n + 4) · · ·

−PaP,p
n+p+4 + Pap

(
n + p + 3

)
−PaP,p

n+p+2 + Pap (n + 2) Pap (n + 3) · · ·

−PaP,p
n+p+3 + Pap

(
n + p + 2

)
−PaP,p

n+p+1 + Pap (n + 1) Pap (n + 2) · · · C∗p
...

...
...

−PaP,p
n+2 + Pap (n + 1) −PaP,p

n + Pap
(
n − p

)
Pap

(
n − p + 1

)
· · ·

−PaP,p
n+1 + Pap (n) −PaP,p

n−1 + Pap
(
n − p − 1

)
Pap

(
n − p

)
· · ·


,

where C∗p is a matrix as follows:

C∗p =



Pap
(
n + p

)
−PaP,p

n+p+4 + Pap
(
n + p + 1

)
−PaP,p

n+p+5 + Pap
(
n + p + 2

)
−PaP,p

n+p+3

Pap
(
n + p − 1

)
−PaP,p

n+p+3 + Pap
(
n + p

)
−PaP,p

n+p+4 + Pap
(
n + p + 1

)
−PaP,p

n+p+2

Pap
(
n + p − 2

)
−PaP,p

n+p+2 + Pap
(
n + p − 1

)
−PaP,p

n+p+3 + Pap
(
n + p

)
−PaP,p

n+p+1
...

...
...

...

Pap (n − 3) −PaP,p
n+1 + Pap (n − 2) −PaP,p

n+2 + Pap (n − 1) −PaP,p
n

Pap (n − 4) −PaP,p
n + Pap (n − 3) −PaP,p

n+1 + Pap (n − 2) −PaP,p
n−1


.

Akuzum and Deveci [1] obtained the following repeating sequence, reducing the Padovan-Padovan
p-sequences

{
PaP,p

n

}
by a modulus m:

{
PaP,p,m

n

}
=

{
PaP,p,m

o ,PaP,p,m
1 ,PaP,p,m

2 , . . . ,PaP,p,m
i , . . .

}
where PaP,p,m

i = PaP,p
i (modm).

It is well-known that a sequence is periodic if, after certain points, it consists only of repetitions of a
fixed subsequence. The number of elements in the repeating subsequence is the period of the sequence.
A sequence is simply periodic with period k if the first k elements in the sequence form a repeating
subsequence.

Theorem 1. (Akuzum and Deveci [1]). The sequence
{
PaP,p,m

n

}
is simply periodic for every positive integer

m.

The linear recurrence sequences in groups were firstly studied by Wall [15] who calculated the periods of
the Fibonacci sequences in cyclic groups. In the mid-eighties, Wilcox [16] extended the problem to abelian
groups and Campbell et al. [5] expanded the theory to some finite simple groups. Further, the concept
extended to some special linear recurrence sequences by several authors; see for example, [2–4, 6–14]. In
this paper, we redefine the Padovan-Padovan p-sequence by means of the elements of the groups and then,
we examine this sequence in the finite groups in detail. Also, we obtain the lengths of the periods of the
Padovan-Padovan 4-sequence in the semidihedral group SD2m as applications of the results obtained.
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2. The Padovan- Padovan p-Sequences in Groups

Let G be a finite j-generator group and let X be the subset of G × G × G · · · × G︸                ︷︷                ︸
j

such that
(
x0, x2, . . . , x j−1

)
∈

X if and only if G is generated by x0, x1, . . . , x j−1. We call
(
x0, x2, . . . , x j−1

)
a generating j-tuple for G.

Definition 2.1. For a j-tuple
(
x0, x1, . . . , x j−1

)
∈ X, we define the Padovan-Padovan p-orbit PAp

(
G : x0, x1, . . . , x j−1

)
={

ap (n)
}

as shown:

ap
(
n + p + 5

)
=

(
ap (n)

)−1 (
ap (n + 3)

) (
ap

(
n + p

))−1 (
ap

(
n + p + 1

))−1 (
ap

(
n + p + 2

)) (
ap

(
n + p + 3

))2

where n ≥ 0 and{
ap(0) = x0, ap(1) = x1, . . . , ap( j − 1) = x j, ap( j) = e, . . . , ap(p + 4) = e if j < p + 4,

ap(0) = x0, ap(1) = x1, ap(2) = x2, . . . , ap(p + 4) = xp+4 if j = p + 4.

Theorem 2.2. If G is a finite group, then a Padovan-Padovan p-orbit of the group G is simply periodic.

Proof. Suppose that t is the order of the group G. Since there are tp+5 distinct p + 5-tuples of elements of G,
at least one of the p + 5-tuples appears twice in a Padovan-Padovan p-orbit of the group G. Because of the
repeating, the Padovan-Padovan p-orbit of the group G is periodic. Since the orbit PAp

(
G : x0, x1, . . . , x j−1

)
is periodic, there exist natural numbers i and j, with i ≡ j

(
modp + 5

)
, such that

ap (i) = ap
(
j
)
, ap (i + 1) = ap

(
j + 1

)
, . . . , ap

(
i + p + 5

)
= ap

(
j + p + 5

)
.

By the definition of the Padovan-Padovan p-orbit, it is clear that

ap (n) =
(
ap (n + 3)

) (
ap

(
n + p

))−1 (
ap

(
n + p + 1

))−1 (
ap

(
n + p + 2

)) (
ap

(
n + p + 3

))2 (
ap

(
n + p + 5

))−1
.

Therefore, we obtain ap (i) = ap
(
j
)
, and hence

ap
(
i − j

)
= ap (0) , ap

(
i − j + 1

)
= ap (1) , . . . , ap

(
i − j + p + 5

)
= ap

(
p + 5

)
,

which implies that the Padovan-Padovan p-orbit is simply periodic.

We denote the length of the period of Padovan-Padovan p-orbit PAp
(
G : x0, x1, . . . , x j−1

)
by hPAp

(
G : x0, x1, . . . , x j−1

)
.

In [1], Akuzum and Deveci denoted the period of the sequence
{
PaP,p,m

n

}
by hp (m).

Now we give the lengths of the periods of the Padovan-Padovan 4-orbit of the semidihedral group SD2m as
applications of the results obtained.

The semidihedral group SD2m , (m ≥ 4) is defined by the presentation

SD2m =
〈
x, y : x2m−1

= y2 = e, yxy = x2m−2
−1

〉
.

Note that |SD2m | = 2m, |x| = 2m−1 and
∣∣∣y∣∣∣ = 2.
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Theorem 2.3. The length of the period of the Padovan-Padovan 4-orbit of the semidihedral group SD2m is 2m−2
·h4 (2).

Proof. We consider the length of the period of the the Padovan-Padovan 4-orbit in the semidihedral group
by the aid of the period h4 (2) = 14. The orbit PA4 (

SD2m : x, y
)

is

a4 (0) = x, a4 (1) = y, a4 (2) = e, . . . , a4 (8) = e.

Thus, we also have

a4 (28i) = x4ir1+1, a4 (28i + 1) = x8ir2 y, a4 (28i + 2) = e, a4 (28i + 3) = x8ir3 , a4 (28i + 4) = x8ir4 ,
a4 (28i + 5) = x−4ir5 , a4 (28i + 6) = x8ir6 , a4 (28i + 7) = x4ir7 , a4 (28i + 8) = x4ir8 ,

where r1, r2, r3, r4, r5, r6, r7, r8 are positive integers such that gcd (r1, r2, r3, r4, r5, r6, r7, r8) = 1 So we need the

smallest i ∈N such that 4i = 2m−1.k (k ∈N). If we choose i = 2m−3,we obtain

a4

(
2m−214

)
= x, a4

(
2m−214 + 1

)
= y, a4

(
2m−214 + 2

)
= e, a4

(
2m−214 + 3

)
= e, a4

(
2m−214 + 4

)
= e,

a4

(
2m−214 + 5

)
= e, a4

(
2m−214 + 6

)
= e, a4

(
2m−214 + 7

)
= e, a4

(
2m−24 + 8

)
= e.

Since the elements succeeding a4

(
2m−214

)
, a4

(
2m−214 + 1

)
,a4

(
2m−214 + 2

)
,. . .,a4

(
2m−214 + 8

)
depend on x, y, e

for their values and h4 (2) = 14, the cycle begins again with the 2m−2.h4 (2)nd element. Thus it is verifed that
the length of the period of the Padovan-Padovan 4-orbit of the semidihedral group SD2m is 2m−2

· h4 (2).

Example 2.4. For m = 4, we consider the length of the period of the Padovan-Padovan 4-orbit in the semidihedral
group SD24 . Since h4 (2) = 14, we have the sequence

a4 (0) = x, a4 (1) = y, a4 (2) = e, a4 (3) = e, a4 (4) = e, a4 (5) = e, a4 (6) = e, a4 (7) = e, a4 (8) = e, . . . ,
a4 (28) = x5, a4 (29) = y, a4 (30) = e, a4 (31) = e, a4 (32) = e, a4 (33) = x4, a4 (34) = e, a4 (35) = x4, a4 (36) = x4, . . . ,
a4 (56) = x5, a4 (57) = y, a4 (58) = e, a4 (59) = e, a4 (60) = e, a4 (61) = x, a4 (62) = e, a4 (63) = e, a4 (64) = e, . . . .

Since a4 (0) = a4 (56),a4 (1) = a4 (57),a4 (2) = a4 (58),a4 (3) = a4 (59),a4 (4) = a4 (60), a4 (5) = a4 (61),a4 (6) =
a4 (61), a4 (7) = a4 (62), a4 (8) = a4 (63) the length of the period of the the Padovan-Padovan 4-orbit
PA4 (

SD24 : x, y
)

is 56.
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Abstract. In this paper some new Ostrowski-type inequalities for functions whose derivatives in absolute
values are quasi-convex are established. Some applications to special means of real numbers and applica-
tions for P.D.F.’s are given. We also give some applications of our results to get new error bounds for the
sum of the midpoint formula.

1. Introduction

We recall that the notion of quasi-convex functions as following.

Definition 1.1. (See [7]) A function f : [a, b]→ R is said to be quasi-convex on [a, b] if

f (tx + (1 − t)y) ≤ max
{
f (x), f (y)

}
, for all x, y ∈ [a, b] .

It is to be noted that any convex function is a quasi-convex function. Furthermore, there exist quasi-
convex functions which are not convex (see e.g. [2]-[6]).

Let f : I ⊂ [0,∞]→ R be a differentiable mapping on I◦, the interior of the interval I, such that f ′ ∈ L [a, b]
where a, b ∈ I with a < b. If

∣∣∣ f ′ (x)
∣∣∣ ≤M, then the following inequality holds (see [8]).∣∣∣∣∣∣ f (x) −

1
b − a

∫ b

a
f (u)du

∣∣∣∣∣∣ ≤ M
b − a

[
(x − a)2 + (b − x)2

2

]
(1)

This inequality is well known in the literature as the Ostrowski inequality. For some results which
generalize, improve and extend the inequality (1), see [2] and the references therein.

In [4], Alomari and Darus proved several inequalities of Ostrowski type for quasi-convex functions, we
will mention some them as following.
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Theorem 1.2. Let f : I ⊆ [0,∞)→ R be a differentiable function on I◦ and f ′ ∈ L[a, b], where a, b ∈ I with a < b. If∣∣∣ f ′∣∣∣ is quasi-convex function on [a, b], then the following inequality holds:∣∣∣∣∣∣ f (x) −
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣
≤

(x − a)2

2 (b − a)
max

{∣∣∣ f ′ (x)
∣∣∣ , ∣∣∣ f ′ (a)

∣∣∣} +
(b − x)2

2 (b − a)
max

{∣∣∣ f ′ (x)
∣∣∣ , ∣∣∣ f ′ (b)

∣∣∣}
for each x ∈ [a, b] .

Theorem 1.3. Let f : I ⊆ [0,∞) → R be a differentiable function on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I with
a < b. If

∣∣∣ f ′∣∣∣q is quasi-convex on [a, b], then the following inequality holds:∣∣∣∣∣∣ f (x) −
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣
≤

(
(b − x)p+1

(b − a)
(
p + 1

) ) 1
p (

max
{∣∣∣ f ′ (b)

∣∣∣q , ∣∣∣ f ′ (x)
∣∣∣q}) 1

q

+

(
(x − a)p+1

(b − a)
(
p + 1

) ) 1
p (

max
{∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (x)
∣∣∣q}) 1

q

for each x ∈ [a, b], where 1
p + 1

q = 1.

The main aim of this paper is to establish some new inequalities of Ostrowski type for quasi-convex
functions and to give some deduced results to the celebrated Hadamard integral inequality. Based on these
results, we obtain several applications for special means of real numbers, numerical integration and P.D.F.

2. Main Results

To prove our results we need the following Lemma:

Lemma 2.1. (See [1]) Let f : I ⊆ R → R be a differentiable function on I◦ , a, b ∈ I◦ with a < b and f ′ ∈ L ([a, b]).
Then

f (x) −
1

b − a

∫ b

a
f (u) du

=
(x − a)2

4 (b − a)

(∫ 1

0
t f ′

(
t
a + x

2
+ (1 − t) a

)
dt

+

∫ 1

0
(1 + t) f ′

(
tx + (1 − t)

a + x
2

)
dt

)
−

(b − x)2

4 (b − a)

(∫ 1

0
(2 − t) f ′

(
t
b + x

2
+ (1 − t) x

)
dt

+

∫ 1

0
(1 − t) f ′

(
tb + (1 − t)

b + x
2

)
dt

)
.

By using the Lemma 2.1 the following results can be obtained:
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Theorem 2.2. Let f : I ⊆ R→ R be a differentiable function on I◦ and f ′ ∈ L[a, b], where a, b ∈ I with a < b. If
∣∣∣ f ′∣∣∣

is quasi-convex function on [a, b], then one has the following inequality:∣∣∣∣∣∣ f (x) −
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (2)

≤
(x − a)2

8 (b − a)
max

{∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣ , ∣∣∣ f ′ (a)
∣∣∣}

+
3 (x − a)2

8 (b − a)
max

{∣∣∣ f ′ (x)
∣∣∣ , ∣∣∣∣∣ f ′ (a + x

2

)∣∣∣∣∣}
+

3 (b − x)2

8 (b − a)
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣ , ∣∣∣ f ′ (x)
∣∣∣}

+
(b − x)2

8 (b − a)
max

{∣∣∣ f ′ (b)
∣∣∣ , ∣∣∣∣∣∣ f ′

(
b + x

2

)∣∣∣∣∣∣
}
,

for all x ∈ [a, b].

Proof. From the integral identity that is given in Lemma 2.1 and by using the properties of modulus, we
can write ∣∣∣∣∣∣ f (x) −

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (3)

≤
(x − a)2

4 (b − a)

(∫ 1

0
t
∣∣∣∣∣ f ′ (t a + x

2
+ (1 − t) a

)∣∣∣∣∣ dt

+

∫ 1

0
(1 + t)

∣∣∣∣∣ f ′ (tx + (1 − t)
a + x

2

)∣∣∣∣∣ dt
)

−
(b − x)2

4 (b − a)

(∫ 1

0
(2 − t)

∣∣∣∣∣∣ f ′
(
t
b + x

2
+ (1 − t) x

)∣∣∣∣∣∣ dt

+

∫ 1

0
(1 − t)

∣∣∣∣∣∣ f ′
(
tb + (1 − t)

b + x
2

)∣∣∣∣∣∣ dt
)
.

By using quasi-convexity of
∣∣∣ f ′∣∣∣, we have∣∣∣∣∣∣ f (x) −

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (4)

≤
(x − a)2

4 (b − a)
max

{∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣ , ∣∣∣ f ′ (a)
∣∣∣} ∫ 1

0
tdt

+
(x − a)2

4 (b − a)
max

{∣∣∣ f ′ (x)
∣∣∣ , ∣∣∣∣∣ f ′ (a + x

2

)∣∣∣∣∣} ∫ 1

0
(1 + t) dt

+
(b − x)2

4 (b − a)
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣ , ∣∣∣ f ′ (x)
∣∣∣} ∫ 1

0
(2 − t) dt

+
(b − x)2

4 (b − a)
max

{∣∣∣ f ′ (b)
∣∣∣ , ∣∣∣∣∣∣ f ′

(
b + x

2

)∣∣∣∣∣∣
} ∫ 1

0
(1 − t) dt,

for all x ∈ [a, b].
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By using the facts that ∫ 1

0
(1 + t) dt =

∫ 1

0
(2 − t) dt =

3
2∫ 1

0
tdt =

∫ 1

0
(1 − t) dt =

1
2

we get the inequality (2). This completes the proof of the theorem.

An immediate consequence of Theorem 2.2 is the following:

Corollary 2.3. If all the assumptions of Theorem 2.2 are satisfied and if we choose x = a+b
2 , we get the following

inequality: ∣∣∣∣∣∣ f
(

a + b
2

)
−

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (5)

≤
b − a

32

[
max

{∣∣∣∣∣∣ f ′
(

3a + b
4

)∣∣∣∣∣∣ , ∣∣∣ f ′ (a)
∣∣∣}

+3 max
{∣∣∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣∣∣ ,
∣∣∣∣∣∣ f ′

(
3a + b

4

)∣∣∣∣∣∣
}

+3 max
{∣∣∣∣∣∣ f ′

(
a + 3b

4

)∣∣∣∣∣∣ ,
∣∣∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣∣∣
}

+ max
{∣∣∣ f ′ (b)

∣∣∣ , ∣∣∣∣∣∣ f ′
(

a + 3b
4

)∣∣∣∣∣∣
}]

Additionally,

1. If
∣∣∣ f ′∣∣∣ is increasing, then∣∣∣∣∣∣ f

(
a + b

2

)
−

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (6)

≤
b − a

32

[∣∣∣∣∣∣ f ′
(

3a + b
4

)∣∣∣∣∣∣ + 3

∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣ + 3

∣∣∣∣∣∣ f ′
(

a + 3b
4

)∣∣∣∣∣∣ +
∣∣∣ f ′ (b)

∣∣∣] .
2. If

∣∣∣ f ′∣∣∣ is decreasing, then∣∣∣∣∣∣ f
(

a + b
2

)
−

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (7)

≤
b − a

32

[∣∣∣ f ′ (a)
∣∣∣ + 3

∣∣∣∣∣∣ f ′
(

3a + b
4

)∣∣∣∣∣∣ + 3

∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣ +

∣∣∣∣∣∣ f ′
(

a + 3b
4

)∣∣∣∣∣∣
]
.

Corollary 2.4. If all the assumptions of Theorem 2.2 are satisfied and if we choose x = a and x = b, respectively, we
get the following inequalities: ∣∣∣∣∣∣ f (a) −

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣
≤

3 (b − a)
8

max
{∣∣∣ f ′ (a)

∣∣∣ , ∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣
}

+
(b − a)

8
max

{∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣ , ∣∣∣ f ′ (b)
∣∣∣}
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and

∣∣∣∣∣∣ f (b) −
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣
≤

(b − a)
8

max
{∣∣∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣∣∣ , ∣∣∣ f ′ (a)
∣∣∣}

+
3 (b − a)

8
max

{∣∣∣ f ′ (b)
∣∣∣ , ∣∣∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣∣∣
}
.

Additionally, if we add these inequalities and by choosing
∣∣∣ f ′∣∣∣ is increasing and decreasing, respectively, then we

obtain: ∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ ≤ (b − a)
4

[∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣ +
∣∣∣ f ′ (b)

∣∣∣]

and ∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ ≤ (b − a)
4

[∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣ +
∣∣∣ f ′ (a)

∣∣∣] .

The corresponding version for powers of the absolute value of the first derivative is incorporated in the
following theorem.

Theorem 2.5. Let f : I ⊆ R→ R be a differentiable function on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I with a < b.
If

∣∣∣ f ′∣∣∣q is quasi-convex on [a, b] for some fixed q > 1, then the following inequality holds:

∣∣∣∣∣∣ f (x) −
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (8)

≤
1

4 (b − a)
(
p + 1

) 1
p

(x − a)2
(
max

{∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣q , ∣∣∣ f ′ (a)
∣∣∣q}) 1

q

+ (x − a)2
(
2p+1
− 1

) 1
p

(
max

{∣∣∣ f ′ (x)
∣∣∣q , ∣∣∣∣∣ f ′ (a + x

2

)∣∣∣∣∣q}) 1
q

+ (b − x)2
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣q , ∣∣∣ f ′ (x)
∣∣∣q}) 1

q

+ (b − x)2
(
max

{∣∣∣ f ′ (b)
∣∣∣q , ∣∣∣∣∣∣ f ′

(
b + x

2

)∣∣∣∣∣∣q
}) 1

q

 ,
for all x ∈ [a, b], where 1

p + 1
q = 1.
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Proof. From Lemma 2.1 and by using the Hölder integral inequality, we get∣∣∣∣∣∣ f (x) −
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (9)

≤
(x − a)2

4 (b − a)

(∫ 1

0
tpdt

) 1
p
(∫ 1

0

∣∣∣∣∣ f ′ (t a + x
2

+ (1 − t) a
)∣∣∣∣∣q dt

) 1
q

+
(x − a)2

4 (b − a)

(∫ 1

0
(1 + t)p dt

) 1
p
(∫ 1

0

∣∣∣∣∣ f ′ (tx + (1 − t)
a + x

2

)∣∣∣∣∣q dt
) 1

q

+
(b − x)2

4 (b − a)

(∫ 1

0
(2 − t)p dt

) 1
p
(∫ 1

0

∣∣∣∣∣∣ f ′
(
t
b + x

2
+ (1 − t) x

)∣∣∣∣∣∣q dt
) 1

q

+
(b − x)2

4 (b − a)

(∫ 1

0
(1 − t)p dt

) 1
p
(∫ 1

0

∣∣∣∣∣∣ f ′
(
tb + (1 − t)

b + x
2

)∣∣∣∣∣∣q dt
) 1

q

,

for all x ∈ [a, b].
Since

∣∣∣ f ′∣∣∣q is quasi-convex on [a, b], we know∫ 1

0

∣∣∣∣∣ f ′ (t a + x
2

+ (1 − t) a
)∣∣∣∣∣q dt ≤ max

{∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣q , ∣∣∣ f ′ (a)
∣∣∣q} . (10)

Similarly, ∫ 1

0

∣∣∣∣∣ f ′ (tx + (1 − t)
a + x

2

)∣∣∣∣∣q dt ≤ max
{∣∣∣ f ′ (x)

∣∣∣q , ∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣q} , (11)∫ 1

0

∣∣∣∣∣∣ f ′
(
t
b + x

2
+ (1 − t) x

)∣∣∣∣∣∣q dt ≤ max
{∣∣∣∣∣∣ f ′

(
b + x

2

)∣∣∣∣∣∣q , ∣∣∣ f ′ (x)
∣∣∣q} (12)

and ∫ 1

0

∣∣∣∣∣∣ f ′
(
tb + (1 − t)

b + x
2

)∣∣∣∣∣∣q dt ≤ max
{∣∣∣ f ′ (b)

∣∣∣q , ∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣q
}
. (13)

Using these inequalities in (9) and by making use of the necessary computations, the desired result is
obtained.

The following corollary is an immediate consequence of Theorem 2.5:

Corollary 2.6. Suppose all the assumptions of Theorem 2.5 are satisfied. If we choose x = a+b
2 , we get the following

inequality: ∣∣∣∣∣∣ f
(

a + b
2

)
−

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (14)

≤
b − a

16
(
p + 1

) 1
p


(
max

{∣∣∣∣∣∣ f ′
(

3a + b
4

)∣∣∣∣∣∣q , ∣∣∣ f ′ (a)
∣∣∣q}) 1

q

+
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣q ,
∣∣∣∣∣∣ f ′

(
3a + b

4

)∣∣∣∣∣∣q
}) 1

q

+
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣∣ f ′
(

a + 3b
4

)∣∣∣∣∣∣q ,
∣∣∣∣∣∣ f ′

(
a + b

2

)∣∣∣∣∣∣q
}) 1

q

+

(
max

{∣∣∣ f ′ (b)
∣∣∣q , ∣∣∣∣∣∣ f ′

(
a + 3b

4

)∣∣∣∣∣∣q
}) 1

q

 .
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Additionally,

1. If
∣∣∣ f ′∣∣∣q is increasing, then

∣∣∣∣∣∣ f
(

a + b
2

)
−

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (15)

≤
b − a

16
(
p + 1

) 1
p

{∣∣∣∣∣∣ f ′
(

3a + b
4

)∣∣∣∣∣∣q +
(
2p+1
− 1

) 1
p

∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣q
+

(
2p+1
− 1

) 1
p

∣∣∣∣∣∣ f ′
(

a + 3b
4

)∣∣∣∣∣∣q +
∣∣∣ f ′ (b)

∣∣∣q} .
2. If

∣∣∣ f ′∣∣∣q is decreasing, then

∣∣∣∣∣∣ f
(

a + b
2

)
−

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (16)

≤
b − a

16
(
p + 1

) 1
p

[∣∣∣ f ′ (a)
∣∣∣q +

(
2p+1
− 1

) 1
p

∣∣∣∣∣∣ f ′
(

3a + b
4

)∣∣∣∣∣∣q
+

(
2p+1
− 1

) 1
p

∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣q +

∣∣∣∣∣∣ f ′
(

a + 3b
4

)∣∣∣∣∣∣q
]
.

A more general inequality can be given as follows:

Theorem 2.7. Let f : I ⊆ R→ R be a differentiable function on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I with a < b.
If

∣∣∣ f ′∣∣∣q is quasi-convex on [a, b] for some fixed q ≥ 1, then the following inequality holds:

∣∣∣∣∣∣ f (x) −
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (17)

≤
(x − a)2

8 (b − a)

(
max

{∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣q , ∣∣∣ f ′ (a)
∣∣∣q}) 1

q

+
3 (x − a)2

8 (b − a)

(
max

{∣∣∣ f ′ (x)
∣∣∣q , ∣∣∣∣∣ f ′ (a + x

2

)∣∣∣∣∣q}) 1
q

+
3 (b − x)2

8 (b − a)

(
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣q , ∣∣∣ f ′ (x)
∣∣∣q}) 1

q

+
(b − x)2

8 (b − a)

(
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q}) 1

q

,

for all x ∈ [a, b].
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Proof. Suppose that q ≥ 1. From Lemma 2.1 and by using the well-known power-mean inequality, we have∣∣∣∣∣∣ f (x) −
1

b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (18)

≤
(x − a)2

4 (b − a)

(∫ 1

0
tdt

)1− 1
q
(∫ 1

0
t
∣∣∣∣∣ f ′ (t a + x

2
+ (1 − t) a

)∣∣∣∣∣q dt
) 1

q

+
(x − a)2

4 (b − a)

(∫ 1

0
(1 + t) dt

)1− 1
q
(∫ 1

0
(1 + t)

∣∣∣∣∣ f ′ (tx + (1 − t)
a + x

2

)∣∣∣∣∣q dt
) 1

q

+
(b − x)2

4 (b − a)

(∫ 1

0
(2 − t) dt

)1− 1
q
(∫ 1

0
(2 − t)

∣∣∣∣∣∣ f ′
(
t
b + x

2
+ (1 − t) x

)∣∣∣∣∣∣q dt
) 1

q

+
(b − x)2

4 (b − a)

(∫ 1

0
(1 − t) dt

)1− 1
q
(∫ 1

0
(1 − t)

∣∣∣∣∣∣ f ′
(
tb + (1 − t)

b + x
2

)∣∣∣∣∣∣q dt
) 1

q

,

for all x ∈ [a, b].
By making use of the similar computations the proof of the theorem is completed.

Corollary 2.8. If all the assumptions of Theorem 2.7 are satisfied and if we choose x = a+b
2 , we get the inequality:∣∣∣∣∣∣ f

(
a + b

2

)
−

1
b − a

∫ b

a
f (u) du

∣∣∣∣∣∣ (19)

≤
b − a

32


(
max

{∣∣∣ f ′ (a)
∣∣∣q , ∣∣∣∣∣∣ f ′

(
3a + b

4

)∣∣∣∣∣∣q
}) 1

q

+ 3
(
max

{∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣q ,
∣∣∣∣∣∣ f ′

(
3a + b

4

)∣∣∣∣∣∣q
}) 1

q

+ 3
(
max

{∣∣∣∣∣∣ f ′
(

a + b
2

)∣∣∣∣∣∣q ,
∣∣∣∣∣∣ f ′

(
a + 3b

4

)∣∣∣∣∣∣q
}) 1

q

+

(
max

{∣∣∣ f ′ (b)
∣∣∣q , ∣∣∣∣∣∣ f ′

(
a + 3b

4

)∣∣∣∣∣∣q
}) 1

q

 .
Additionally,

1. If
∣∣∣ f ′∣∣∣q is increasing, then (6) holds.

2. If
∣∣∣ f ′∣∣∣q is decreasing, then (7) holds.

3. Applications to Special Means

Let consider the means for arbitrary real numbers a, b ∈ R. We denote by

1. The arithmetic mean:
A (a, b) =

a + b
2

; a, b ∈ R.

2. The harmonic mean:
H(a, b) =

2
1
a + 1

b

; a, b ∈ R, a, b , 0.
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3. The logarithmic mean:

L (a, b) =
ln |b| − ln |a|

b − a
; a, b ∈ R, |a| , |b| , a, b , 0.

4. Generalized log-mean:

Ln (a, b) =

[
bn+1
− an+1

(n + 1) (b − a)

] 1
n

; a, b ∈ R, n ∈ Z\ {−1, 0} , a , b.

Now, it is time to give some applications to special means of real numbers by using the results of
Section 2.

Proposition 3.1. Let a, b ∈ R, a < b and n ∈N, n ≥ 2. Then∣∣∣An (a, b) − Ln
n (a, b)

∣∣∣ (20)

≤ n
(

b − a
32

) [
max

{∣∣∣∣∣3a + b
4

∣∣∣∣∣n−1

, |a|n−1
}

+ 3 max
{∣∣∣∣∣3a + b

4

∣∣∣∣∣n−1

,

∣∣∣∣∣a + b
2

∣∣∣∣∣n−1}
+ 3 max

{∣∣∣∣∣a + 3b
4

∣∣∣∣∣n−1

,

∣∣∣∣∣a + b
2

∣∣∣∣∣n−1}
+ max

{∣∣∣∣∣a + 3b
4

∣∣∣∣∣n−1

, |b|n−1
}]
.

Proof. The assertion follows from Corollary 2.3 when applied to the function f (x) = xn, x ∈ R, n ∈ N,
n ≥ 2.

Proposition 3.2. Let a, b ∈ R, a < b and n ∈N, n ≥ 2. Then for p, q > 1 with 1
p + 1

q = 1, we have∣∣∣An (a, b) − Ln
n (a, b)

∣∣∣ (21)

≤ n
b − a

16
(
p + 1

) 1
p


(
max

{∣∣∣∣∣3a + b
4

∣∣∣∣∣q(n−1)

, |a|q(n−1)
}) 1

q

+
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣3a + b
4

∣∣∣∣∣q(n−1)

,

∣∣∣∣∣a + b
2

∣∣∣∣∣q(n−1)}) 1
q

+
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣a + b
2

∣∣∣∣∣q(n−1)

,

∣∣∣∣∣a + 3b
4

∣∣∣∣∣q(n−1)}) 1
q

+

(
max

{
|b|q(n−1) ,

∣∣∣∣∣a + 3b
4

∣∣∣∣∣q(n−1)}) 1
q

 .
Proof. The assertion follows from Corollary 2.6 when applied to the function f (x) = xn, x ∈ R, n ∈ N,
n ≥ 2.
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Proposition 3.3. Let a, b ∈ R, a < b and n ∈N, n ≥ 2. Then q ≥ 1, we have∣∣∣An (a, b) − Ln
n (a, b)

∣∣∣ (22)

≤ n
(

b − a
32

) 
(
max

{
|a|q(n−1) ,

∣∣∣∣∣3a + b
4

∣∣∣∣∣q(n−1)}) 1
q

+3
(
max

{∣∣∣∣∣a + b
2

∣∣∣∣∣q(n−1)

,

∣∣∣∣∣3a + b
4

∣∣∣∣∣q(n−1)}) 1
q

+3
(
max

{∣∣∣∣∣a + b
2

∣∣∣∣∣q(n−1)

,

∣∣∣∣∣a + 3b
4

∣∣∣∣∣q(n−1)}) 1
q

+

(
max

{
|b|q(n−1) ,

∣∣∣∣∣a + 3b
4

∣∣∣∣∣q(n−1)}) 1
q

 .
Proof. The assertion follows from Corollary 2.8 when applied to the function f (x) = xn, x ∈ R, n ∈ N,
n ≥ 2.

Proposition 3.4. Let a, b ∈ R, a < b, 0 < [a, b]. Then∣∣∣A−1 (a, b) − L−1 (a, b)
∣∣∣ (23)

≤
b − a

32

[
max

{∣∣∣∣∣3a + b
4

∣∣∣∣∣−2

, |a|−2
}

+ 3 max
{∣∣∣∣∣3a + b

4

∣∣∣∣∣−2

,

∣∣∣∣∣a + b
2

∣∣∣∣∣−2}
+3 max

{∣∣∣∣∣a + 3b
4

∣∣∣∣∣−2

,

∣∣∣∣∣a + b
2

∣∣∣∣∣−2}
+ max

{∣∣∣∣∣a + 3b
4

∣∣∣∣∣−2

, |b|−2
}]
.

Proof. It is a direct consequence of Corollary 2.3 when applied to the function, f (x) = 1
x , x ∈ [a, b] \ {0}.

Proposition 3.5. Let a, b ∈ R, a < b, 0 < [a, b], then for all p > 1, we have∣∣∣A−1 (a, b) − L−1 (a, b)
∣∣∣ (24)

≤
b − a

16
(
p + 1

) 1
p


(
max

{∣∣∣∣∣3a + b
4

∣∣∣∣∣−2q

, |a|−2q
}) 1

q

+
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣3a + b
4

∣∣∣∣∣−2q

,

∣∣∣∣∣a + b
2

∣∣∣∣∣−2q(n−1)}) 1
q

+
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣a + b
2

∣∣∣∣∣−2q

,

∣∣∣∣∣a + 3b
4

∣∣∣∣∣−2q}) 1
q

+

(
max

{
|b|−2q ,

∣∣∣∣∣a + 3b
4

∣∣∣∣∣−2q}) 1
q
 .

Proof. It follows directly from Corollary 2.6 for the function, f (x) = 1
x , x ∈ [a, b] \ {0}.
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Proposition 3.6. Let a, b ∈ R, a < b, 0 < [a, b]. Then for all q ≥ 1, we have the inequality∣∣∣A−1 (a, b) − L−1 (a, b)
∣∣∣ (25)

≤
b − a

32


(
max

{∣∣∣∣∣3a + b
4

∣∣∣∣∣−2q

, |a|−2q
}) 1

q

+3
(
max

{∣∣∣∣∣3a + b
4

∣∣∣∣∣−2q

,

∣∣∣∣∣a + b
2

∣∣∣∣∣−2q}) 1
q

+3
(
max

{∣∣∣∣∣a + b
2

∣∣∣∣∣−2q

,

∣∣∣∣∣a + 3b
4

∣∣∣∣∣−2q}) 1
q

+

(
max

{
|b|−2q ,

∣∣∣∣∣a + 3b
4

∣∣∣∣∣−2q}) 1
q
 .

Proof. It follows directly from Corollary 2.8 for the function, f (x) = 1
x , x ∈ [a, b] \ {0}.

4. Application to the Midpoint Formula

Let d be a division of the interval [a, b], i.e. a = x0 < x1 < ... < xn−1 < xn = b. Let consider the quadrature
formulae ∫ b

a
f (x)dx = M( f , d) + E( f , d),

where

M( f , d) =

n−1∑
i=0

(xi+1 − xi) f
(xi + xi+1

2

)
is the midpoint version and the approximation error E( f , d) of the integral

∫ b

a f (x)dx. The midpoint formula
satisfy ∣∣∣E( f , d)

∣∣∣ ≤ K
24

n−1∑
i=0

(xi+1 − xi)
3 . (26)

If f is not twice differentiable (or the second derivative of f is not bounded on (a, b) then (26) cannot be
applied. Following results give some new estimates for the sum of remainders E( f , d)in terms of the first
derivative.

Proposition 4.1. Let f : I ⊆ R → R be a differentiable function on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I with
a < b. If

∣∣∣ f ′∣∣∣ is quasi-convex on [a, b], then for every division d of [a, b], we have:∣∣∣E( f , d)
∣∣∣ (27)

≤
1

32

n−1∑
i=0

(xi+1 − xi)
[
max

{∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣ , ∣∣∣ f ′ (xi)
∣∣∣}

+ 3 max
{∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣ , ∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣}
+ 3 max

{∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣ , ∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣}
+ max

{∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣ , ∣∣∣ f ′ (xi+1)
∣∣∣}] .
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Proof. By applying Corollary 2.3 on the subinterval [xi, xi+1] (i = 0, 1, . . . ,n − 1) of the division d, we have∣∣∣∣∣∣ f (xi + xi+1

2

)
−

1
xi+1 − xi

∫ xi+1

xi

f (x) dx

∣∣∣∣∣∣ (28)

≤
1

32

n−1∑
i=0

(xi+1 − xi)
[
max

{∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣ , ∣∣∣ f ′ (xi)
∣∣∣}

+ 3 max
{∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣ , ∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣}
+ 3 max

{∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣ , ∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣}
+ max

{∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣ , ∣∣∣ f ′ (xi+1)
∣∣∣}]

which completes the proof.

Corollary 4.2. Suppose all the assumptions of Proposition 4.1 are satisfied. Additionally,

1. If
∣∣∣ f ′∣∣∣ is increasing, then ∣∣∣E( f , d)

∣∣∣ (29)

≤
1

32

n−1∑
i=0

(xi+1 − xi)
[∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣
+3

∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣ + 3
∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣ +
∣∣∣ f ′ (xi+1)

∣∣∣] .
2. If

∣∣∣ f ′∣∣∣ is decreasing, then ∣∣∣E( f , d)
∣∣∣ (30)

≤
1

32

n−1∑
i=0

(xi+1 − xi)
[∣∣∣ f ′ (xi)

∣∣∣ + 3
∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣
+3

∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣ +

∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣] .
Proposition 4.3. Let f : I ⊆ R → R be a differentiable function on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I with
a < b. If

∣∣∣ f ′∣∣∣q is quasi-convex on [a, b] for some fixed q > 1, then for every division d of [a, b], we have∣∣∣E( f , d)
∣∣∣ (31)

≤
1

16
(
p + 1

) 1
p

n−1∑
i=0

(xi+1 − xi)


(
max

{∣∣∣ f ′ (xi)
∣∣∣q , ∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣q}) 1
q

+
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣q , ∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣q}) 1
q

+
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣q , ∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣q}) 1
q

+

(
max

{∣∣∣ f ′ (xi+1)
∣∣∣q , ∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣q}) 1
q
 ,

where 1
p + 1

q = 1.
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Proof. The proof is similar to the proof of Proposition 4.1, by applying similar argument to the Corollary
2.6.

Corollary 4.4. Suppose all the conditions of Proposition 4.3 are satisfied. Additionally,

1. If
∣∣∣ f ′∣∣∣q is increasing, then ∣∣∣E( f , d)

∣∣∣ (32)

≤
1

16
(
p + 1

) 1
p

n−1∑
i=0

(xi+1 − xi)

×

{∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣ +
(
2p+1
− 1

) 1
p

∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣
+

(
2p+1
− 1

) 1
p

∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣ +
∣∣∣ f ′ (xi+1)

∣∣∣} .
2. If

∣∣∣ f ′∣∣∣q is decreasing, then∣∣∣E( f , d)
∣∣∣ (33)

≤
1

16
(
p + 1

) 1
p

n−1∑
i=0

(xi+1 − xi)
{∣∣∣ f ′ (xi)

∣∣∣ +
(
2p+1
− 1

) 1
p

∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣
+

(
2p+1
− 1

) 1
p

∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣ +

∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣} .
Proposition 4.5. Let f : I ⊆ R → R be a differentiable function on I◦ such that f ′ ∈ L[a, b], where a, b ∈ I with
a < b. If

∣∣∣ f ′∣∣∣q is quasi-convex on [a, b] for some fixed q ≥ 1, then for every division d of [a, b], we have∣∣∣E( f , d)
∣∣∣ (34)

≤
1

32

n−1∑
i=0

(xi+1 − xi)


(
max

{∣∣∣ f ′ (xi)
∣∣∣q , ∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣q}) 1
q

+ 3
(
max

{∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣q , ∣∣∣∣∣ f ′ (3xi + xi+1

4

)∣∣∣∣∣q}) 1
q

+ 3
(
max

{∣∣∣∣∣ f ′ (xi + xi+1

2

)∣∣∣∣∣q , ∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣q}) 1
q

+

(
max

{∣∣∣ f ′ (xi+1)
∣∣∣q , ∣∣∣∣∣ f ′ (xi + 3xi+1

4

)∣∣∣∣∣q}) 1
q
 .

Proof. The proof is similar to the proof of Proposition 4.1, now by applying to Corollary 2.8.

Corollary 4.6. Under the assumptions of Proposition 4.5, if

1.
∣∣∣ f ′∣∣∣q is increasing, then (29) holds.

2.
∣∣∣ f ′∣∣∣q is decreasing, then (30) holds.
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5. APPLICATIONS FOR P.D.F’s

Let X be a random variable taking values in the finite interval [a, b],with the probability density function
f : [a, b]→ [0, 1] with the cumulative distribution function F(x) = Pr(X ≤ x) =

∫ x

a f (t)dt.

Theorem 5.1. Under the assumptions of Theorem 2.2, we have the inequality;∣∣∣∣∣Pr(X ≤ x) −
1

b − a
(b − E(x))

∣∣∣∣∣
≤

(x − a)2

8 (b − a)
max

{∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣ , ∣∣∣ f ′ (a)
∣∣∣}

+
3 (x − a)2

8 (b − a)
max

{∣∣∣ f ′ (x)
∣∣∣ , ∣∣∣∣∣ f ′ (a + x

2

)∣∣∣∣∣}
+

3 (b − x)2

8 (b − a)
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣ , ∣∣∣ f ′ (x)
∣∣∣}

+
(b − x)2

8 (b − a)
max

{∣∣∣ f ′ (b)
∣∣∣ , ∣∣∣∣∣∣ f ′

(
b + x

2

)∣∣∣∣∣∣
}
,

where E(x) is the expectation of X.

Proof. The proof is immediate follows from the fact that;

E(x) =

∫ b

a
tdF(t) = b −

∫ b

a
F (t) dt.

Theorem 5.2. Under the assumptions of Theorem 2.5, we have the inequality;∣∣∣∣∣Pr(X ≤ x) −
1

b − a
(b − E(x))

∣∣∣∣∣
≤

1

4 (b − a)
(
p + 1

) 1
p

(x − a)2
(
max

{∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣q , ∣∣∣ f ′ (a)
∣∣∣q}) 1

q

+ (x − a)2
(
2p+1
− 1

) 1
p

(
max

{∣∣∣ f ′ (x)
∣∣∣q , ∣∣∣∣∣ f ′ (a + x

2

)∣∣∣∣∣q}) 1
q

+ (b − x)2
(
2p+1
− 1

) 1
p

(
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣q , ∣∣∣ f ′ (x)
∣∣∣q}) 1

q

+ (b − x)2
(
max

{∣∣∣ f ′ (b)
∣∣∣q , ∣∣∣∣∣∣ f ′

(
b + x

2

)∣∣∣∣∣∣q
}) 1

q

 ,
where E(x) is the expectation of X.

Proof. Likewise the proof of the previous theorem, by using the fact that;

E(x) =

∫ b

a
tdF(t) = b −

∫ b

a
F (t) dt

the proof is completed.
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Theorem 5.3. Under the assumptions of Theorem 2.7, we have inequality;∣∣∣∣∣Pr(X ≤ x) −
1

b − a
(b − E(x))

∣∣∣∣∣
≤

(x − a)2

8 (b − a)

(
max

{∣∣∣∣∣ f ′ (a + x
2

)∣∣∣∣∣q , ∣∣∣ f ′ (a)
∣∣∣q}) 1

q

+
3 (x − a)2

8 (b − a)

(
max

{∣∣∣ f ′ (x)
∣∣∣q , ∣∣∣∣∣ f ′ (a + x

2

)∣∣∣∣∣q}) 1
q

+
3 (b − x)2

8 (b − a)

(
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣q , ∣∣∣ f ′ (x)
∣∣∣q}) 1

q

+
(b − x)2

8 (b − a)

(
max

{∣∣∣∣∣∣ f ′
(

b + x
2

)∣∣∣∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q}) 1

q

,

where E(x) is the expectation of X.

Proof. The proof is similar to the proof of the previous result.
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Abstract. The main purpose of this study is to prove new integral inequalities for product of different
classes of convex functions via some classical inequalities such as general Cauchy inequality and reverse
Minkowski inequality.

1. INTRODUCTION

The function f : [a, b]→ R, is said to be convex, if we have

f
(
tx + (1 − t) y

)
≤ t f (x) + (1 − t) f

(
y
)

for all x, y ∈ [a, b] and t ∈ [0, 1] . This definition is well-known in the literature and a huge amount of the
researchers interested in this definition. We can define starshaped functions on [0, b] which satisfy the
condition

f (tx) ≤ t f (x)

for t ∈ [0, 1] .
Because of the importance of convex functions in inequality theory, integral inequalities including

convex function classes have an important place in the literature of mathematical inequalities. Especially
in recent years, many researchers have done many studies in this field. Interested readers can find different
aspects of this subjects in references.

The concept of m−convexity has been introduced by Toader in [5], an intermediate between the ordinary
convexity and starshaped property, as following:

Definition 1.1. The function f : [0, b]→ R, b > 0, is said to be m−convex, where m ∈ [0, 1] , if we have

f
(
tx + m (1 − t) y

)
≤ t f (x) + m (1 − t) f

(
y
)

for all x, y ∈ [0, b] and t ∈ [0, 1] . We say that f is m−concave if − f is m−convex.
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Several papers have been written on m−convex functions and we refer the papers [1], [2], [3], [7], [8]
and [9].

In [4], Miheşan gave definition of (α,m)−convexity as following;

Definition 1.2. The function f : [0, b]→ R, b > 0 is said to be (α,m)−convex, where (α,m) ∈ [0, 1]2, if we have

f (tx + m(1 − t)y) ≤ tα f (x) + m(1 − tα) f (y)

for all x, y ∈ [0, b] and t ∈ [0, 1].

Denote by Kα
m(b) the class of all (α,m)−convex functions on [0, b] for which f (0) ≤ 0. If we choose

(α,m) = (1,m), it can be easily seen that (α,m)−convexity reduces to m−convexity and for (α,m) = (1, 1), we
have ordinary convex functions on [0, b]. In [6], Set et al. proved some inequalities related to (α,m)−convex
functions.

The following inequality which well known in the literature as Minkowski inequality is given as;

Let p ≥ 1, 0 <
b∫

a
f (x)pdx < ∞, and 0 <

b∫
a
1(x)pdx < ∞. Then


b∫

a

(
f (x) + 1(x)

)p dx


1
p

≤


b∫

a

f (x)pdx


1
p

+


b∫

a

1(x)pdx


1
p

. (1)

The reverse of this inequality was given by Bougoffa in [16], as the following;

Theorem 1.3. Let f and 1 be positive functions satisfying

0 < m ≤
f (x)
1(x)

≤M, ∀x [a, b] .

Then 
b∫

a

f (x)pdx


1
p

+


b∫

a

1(x)pdx


1
p

≤ c


b∫

a

(
f (x) + 1(x)

)p dx


1
p

. (2)

where c =
M(m+1)+(M+1)

(m+1)(M+1) .

Definition 1.4. [See [10]] Let s ∈ (0, 1] . A function f : [0,∞) → [0,∞) is said to be an s−convex function in the
second sense if

f
(
tx + (1 − t) y

)
≤ ts f (x) + (1 − t)s f

(
y
)

(3)

for all x, y ∈ R+ and t ∈ [0, 1] .

In [11], s−convexity introduced by Breckner as a generalization of convex functions. Also, Breckner
proved the fact that the set valued map is s−convex only if the associated support function is s−convex
function in [12]. Several properties of s−convexity in the first sense are discussed in the paper [10].
Obviously, s−convexity means just convexity when s = 1.

Theorem 1.5. [See [14]] Suppose that f : [0,∞) → [0,∞) is an s−convex function in the second sense, where
s ∈ (0, 1] and let a, b ∈ [0,∞) , a < b. If f ∈ L1 [0, 1] , then the following inequalities hold:

2s−1 f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x) dx ≤

f (a) + f (b)
s + 1

. (4)

The constant k = 1
s+1 is the best possible in the second inequality in (4). The above inequalities are sharp.
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Some new Hermite-Hadamard type inequalities based on concavity and s−convexity established by
Kırmacı et al. in [15]. For related results see the papers [13], [14] and [15].

This paper organized as follows.
In Section 2, we prove some inequalities for m−convex and s−convex functions and in Section 3, we

give some new inequalities for (α,m)−convex functions by using some classical inequalities and fairly
elementary analysis.

2. RESULTS FOR m−CONVEX AND s−CONVEX FUNCTIONS

We will start with the following Theorem which is involving m−convex functions.

Theorem 2.1. Suppose that f , 1 : [a, b] → [0,∞) , 0 ≤ a < b < ∞, are m1−convex and m2−convex functions,
respectively, where m1,m2 ∈ (0, 1] . If f , 1 ∈ L1 [a, b] , then the following inequality holds:

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx ≤

1
3

[
f (b) + m21

( a
m2

)]
+

1
6

[
1 (b) + m1 f

( a
m1

)]
. (5)

Proof. From m1−convexity and m2−convexity of f and 1, we can write

f t (tb + (1 − t) a) ≤
[
t f (b) + m1 (1 − t) f

( a
m1

)]t

and

1(1−t) (tb + (1 − t) a) ≤
[
t1 (b) + m2 (1 − t) 1

( a
m2

)](1−t)
.

Since f , 1 are non-negative, we have

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) (6)

≤

[
t f (b) + m1 (1 − t) f

( a
m1

)]t [
t1 (b) + m2 (1 − t) 1

( a
m2

)](1−t)
.

Recall the General Cauchy Inequality (see [17], Theorem 3.1), let α and β be positive real numbers satisfying
α + β = 1. Then for every positive real numbers x and y, we always have

αx + βy ≥ xαyβ.

By using the General Cauchy Inequality in (6), we get

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a)

≤ t
[
t f (b) + m1 (1 − t) f

( a
m1

)]
+ (1 − t)

[
t1 (b) + m2 (1 − t) 1

( a
m2

)]
.

By integrating with respect to t over [0, 1] , we have

1∫
0

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) dt

≤
1
3

[
f (b) + m21

( a
m2

)]
+

1
6

[
1 (b) + m1 f

( a
m1

)]
.

Hence, by taking into account the change of the variable tb + (1 − t) a = x, (b − a)dt = dx, we obtain the
required result.
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Corollary 2.2. If we choose m1 = m2 = 1 in Theorem 3, we have the inequality;

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx ≤

1
3
[

f (b) + 1 (a)
]
+

1
6
[
1 (b) + f (a)

]
.

Another result for m−convex functions is emboided in the following Theorem.

Theorem 2.3. Suppose that f , 1 : [0, b]→ R, b > 0, are m1−convex and m2−convex functions, respectively, where
m1,m2 ∈ (0, 1] . If f ∈ L1 [a, b] , then the following inequality holds:

1 (b)

(b − a)2

b∫
a

(x − a) f (x) dx + m2

1
(

a
m2

)
(b − a)2

b∫
a

(b − x) f (x) dx (7)

+
f (b)

(b − a)2

b∫
a

(x − a)1 (x) dx + m1

f
(

a
m1

)
(b − a)2

b∫
a

(b − x)1 (x) dx

≤
1

b − a

b∫
a

f (x) 1 (x) dx +
1
3

f (b) 1 (b) +
m1

6
f
( a

m1

)
1 (b)

+
m2

6
f (b) 1

( a
m2

)
+

m1m2

3
f
( a

m1

)
1

( a
m2

)
.

Proof. Since f and 1 are m1−convex and m2−convex functions, respectively, we can write

f (tb + (1 − t) a) ≤ t f (b) + m1 (1 − t) f
( a

m1

)
and

1 (tb + (1 − t) a) ≤ t1 (b) + m2 (1 − t) 1
( a

m2

)
.

By using the elementary inequality, e ≤ f and p ≤ r, then er + f p ≤ ep + f r for e, f , p, r ∈ R, then we get

f (tb + (1 − t) a)
[
t1 (b) + m2 (1 − t) 1

( a
m2

)]
+1 (tb + (1 − t) a)

[
t f (b) + m1 (1 − t) f

( a
m1

)]
≤ f (tb + (1 − t) a) 1 (tb + (1 − t) a)

+
[
t1 (b) + m2 (1 − t) 1

( a
m2

)] [
t f (b) + m1 (1 − t) f

( a
m1

)]
.

So, we obtain

t f (tb + (1 − t) a) 1 (b) + m2 (1 − t) f (tb + (1 − t) a) 1
( a

m2

)
+t f (b) 1 (tb + (1 − t) a) + m1 (1 − t) f

( a
m1

)
1 (tb + (1 − t) a)

≤ f (tb + (1 − t) a) 1 (tb + (1 − t) a) + t2 f (b) 1 (b) + m1t (1 − t) f
( a

m1

)
1 (b)

+m2t (1 − t) f (b) 1
( a

m2

)
+ m1m2 (1 − t)2 f

( a
m1

)
1

( a
m2

)
.

By integrating this inequality with respect to t over [0, 1] and by using the change of the variable tb+(1 − t) a =
x, (b − a)dt = dx, the proof is completed.
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Corollary 2.4. If we choose m1 = m2 = 1 in Theorem 4, we have the inequality;

1 (b)

(b − a)2

b∫
a

(x − a) f (x) dx +
1 (a)

(b − a)2

b∫
a

(b − x) f (x) dx

+
f (b)

(b − a)2

b∫
a

(x − a)1 (x) dx +
f (a)

(b − a)2

b∫
a

(b − x)1 (x) dx

≤
1

b − a

b∫
a

f (x) 1 (x) dx +
1
3

M(a, b) +
1
6

N(a, b).

Following inequality also holds for m−convex functions.

Theorem 2.5. Suppose that f , 1 : [a, b] → [0,∞) , 0 ≤ a < b < ∞, are m1−convex and m2−convex functions,
respectively, where m1,m2 ∈ (0, 1] . If f , 1 ∈ L1 [a, b] and f , 1 satisfy following condition

0 < m ≤
f (x)
1(x)

≤M, ∀x ∈ [a, b]

then the following inequality holds:

1
c




b∫
a

f (x)pdx


1
p

+


b∫

a

1(x)pdx


1
p


≤

(
2p−1 (b − a)

p + 1

) 1
p ([

f (b) + 1 (b)
]p
−

[
m1 f

( a
m1

)
+ m21

( a
m2

)]p) 1
p

where c =
M(m+1)+(M+1)

(m+1)(M+1) and p ≥ 1.

Proof. Since f and 1 are m1−convex and m2−convex functions, respectively, we can write

f (tb + (1 − t) a) ≤ t f (b) + m1 (1 − t) f
( a

m1

)
(8)

and
1 (tb + (1 − t) a) ≤ t1 (b) + m2 (1 − t) 1

( a
m2

)
. (9)

By adding (8) and (9), we get

f (tb + (1 − t) a) + 1 (tb + (1 − t) a) ≤ t f (b) + m1 (1 − t) f
( a

m1

)
+t1 (b) + m2 (1 − t) 1

( a
m2

)
. (10)

For p ≥ 1, taking p−th power of both sides of the inequality (10) and by using the elementary inequality,
(c + d)p

≤ 2p−1 (cp + dp) , then we get[
f (tb + (1 − t) a) + 1 (tb + (1 − t) a)

]p

≤ 2p−1
(
tp [

f (b) + 1 (b)
]p + (1 − t)p

[
m1 f

( a
m1

)
+ m21

( a
m2

)]p)
.
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Integrating with respect to t over [0, 1] and by using the change of the variable tb + (1 − t) a = x and
(b − a)dt = dx, we obtain

1
b − a

b∫
a

(
f (x) + 1(x)

)p dx ≤
2p−1

p + 1

([
f (b) + 1 (b)

]p
−

[
m1 f

( a
m1

)
+ m21

( a
m2

)]p)
. (11)

By taking 1
p−th power of both sides of the inequality (11) and by using the inequality (2), we get the desired

inequality. Which completes the proof.

We will give an inequality for s−convex functions in the following theorem. In the next theorem we will
also make use of the Beta function of Euler type, which is for x, y > 0 defined

as

β(x, y) =

1∫
0

tx−1(1 − t)y−1dt.

Theorem 2.6. Suppose that f , 1 : [0,∞) → [0,∞) are s1−convex and s2−convex functions, respectively, where
s1, s2 ∈ [0, 1] . Then the following inequality holds:

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx ≤

1
s1 + 2

f (b) + β (2, s1 + 1) f (a)

+
1

s2 + 2
1 (b) + β (2, s2 + 1) 1 (a) .

Proof. Since f and 1 are s1−convex and s2−convex functions, respectively, we can write

f t (tb + (1 − t) a) ≤
[
ts1 f (b) + (1 − t)s1 f (a)

]t

and
1(1−t) (tb + (1 − t) a) ≤

[
ts21 (b) + (1 − t)s2 1 (a)

](1−t) .

Since f , 1 are non-negative, we have

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) (12)

≤
[
ts1 f (b) + (1 − t)s1 f (a)

]t [ts21 (b) + (1 − t)s2 1 (a)
](1−t) .

By using the General Cauchy Inequality in (12), we get

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a)
≤ t

[
ts1 f (b) + (1 − t)s1 f (a)

]
+ (1 − t)

[
ts21 (b) + (1 − t)s2 1 (a)

]
.

By integrating with respect to t over [0, 1] , we have

1∫
0

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) dt

≤

1∫
0

[
ts1+1 f (b) + t (1 − t)s1 f (a) + ts2+11 (b) + t (1 − t)s2 1 (b)

]
dt.

Hence, by taking into account the change of the variable tb + (1 − t) a = x, (b − a)dt = dx, we obtain the
required result.
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Corollary 2.7. If we choose s1 = s2 = 1 in Theorem 6, we have the inequality;

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx ≤

1
3
[

f (b) + 1 (b)
]
+

1
6
[

f (a) + 1 (a)
]
.

3. RESULTS FOR (α,m)−CONVEX FUNCTIONS

Similar results to Section 2 are given in this section, but now for (α,m)−convex functions.

Theorem 3.1. Suppose that f , 1 : [a, b] → [0,∞) , 0 ≤ a < b < ∞, are (α1,m1)−convex and (α2,m2)−convex
functions, respectively, where α1,m1, α2,m2 ∈ (0, 1]. If f , 1 ∈ L1 [a, b] , then the following inequality holds:

1
b − a

b∫
a

f
x−a
b−a (x) 1

b−x
b−a (x) dx

≤
1

α1 + 2
f (b) +

m1

2 (α1 + 2)
f
( a

m1

)
+

1
(α2 + 1) (α2 + 2)

1 (b) +
m2

(
α2

2 + 3α
)

2 (α2 + 1) (α2 + 2)
1

( a
m2

)
.

Proof. Since f and 1 are (α1,m1)−convex and (α2,m2)−convex functions, respectively, we can write

f t (tb + (1 − t) a) ≤
[
tα1 f (b) + m1 (1 − tα1 ) f

( a
m1

)]t

and

1(1−t) (tb + (1 − t) a) ≤
[
tα21 (b) + m2 (1 − tα2 ) 1

( a
m2

)](1−t)
.

Since f , 1 are non-negative, we have

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) (13)

≤

[
tα1 f (b) + m1 (1 − tα1 ) f

( a
m1

)]t [
tα21 (b) + m2 (1 − tα2 ) 1

( a
m2

)](1−t)
.

By using the General Cauchy Inequality in (13), we get

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a)

≤ t
[
tα1 f (b) + m1 (1 − tα1 ) f

( a
m1

)]
+ (1 − t)

[
tα21 (b) + m2 (1 − tα2 ) 1

( a
m2

)]
.

By integrating with respect to t over [0, 1] , we have

1∫
0

f t (tb + (1 − t) a) 1(1−t) (tb + (1 − t) a) dt

≤
1

α1 + 2
f (b) +

m1

2 (α1 + 2)
f
( a

m1

)
+

1
(α2 + 1) (α2 + 2)

1 (b) +
m2

(
α2

2 + 3α
)

2 (α2 + 1) (α2 + 2)
1

( a
m2

)
.

Hence, by taking into account the change of the variable tb + (1 − t) a = x, (b − a)dt = dx, we obtain the
required result.
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Corollary 3.2. If we choose α1 = α2 = 1 in Theorem 7, we have the inequality (5).

Theorem 3.3. Suppose that f , 1 : [a, b] → [0,∞) , 0 ≤ a < b < ∞, are (α1,m1)−convex and (α2,m2)−convex
functions, respectively, where α1,m1, α2,m2 ∈ (0, 1]. If f , 1 ∈ L1 [a, b] , then the following inequality holds:

1 (b)

(b − a)α2+1

b∫
a

(x − a)α2 f (x) dx + m2

1
(

a
m2

)
(b − a)α2+1

b∫
a

[(b − a)α2 − (x − a)α2 ] f (x) dx

+
f (b)

(b − a)α1+1

b∫
a

(x − a)α11 (x) dx + m1

f
(

a
m1

)
(b − a)α1+1

b∫
a

[(b − a)α1 − (x − a)α1 ] 1 (x) dx

≤
1

b − a

b∫
a

f (x) 1 (x) dx +
1

α1 + α2 + 1
f (b) 1 (b) +

m2α2

(α1 + 1) (α1 + α2 + 1)
1

( a
m2

)
f (b)

+
m1α1

(α1 + 1) (α1 + α2 + 1)
f
( a

m1

)
1 (b) +

m1m2α1α2 (α1 + α2 + 2)
(α1 + 1) (α2 + 1) (α1 + α2 + 1)

f
( a

m1

)
1

( a
m2

)
.

Proof. Since f and 1 are (α1,m1)−convex and (α2,m2)−convex functions, respectively, we can write

f (tb + (1 − t) a) ≤ tα1 f (b) + m1 (1 − tα1 ) f
( a

m1

)
and

1 (tb + (1 − t) a) ≤ tα21 (b) + m2 (1 − tα2 ) 1
( a

m2

)
.

By using the elementary inequality, e ≤ f and p ≤ r, then er + f p ≤ ep + f r for e, f , p, r ∈ R and by a similar
argument to the proof of Theorem 4, we get the required result.

Corollary 3.4. If we choose α1 = α2 = 1 in Theorem 8, we have the inequality (7).
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