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Abstract

In this work the basic flow field is investigated for the compressible
boundary layer flow over a rotating disk. Making use of self-consistent
assumptions within boundary layer theory, the governing basic equa-
tions of motion are derived leading to a generalized steady compressible
Von Karman flow. A Runge-Kutta integration method accurate to the
fourth order is then employed for the solution of the resulting equations.
Finally the velocity and temperature distributions corresponding to the
various parameters are calculated numerically and presented.
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1. Introduction

The boundary layer flow due to a rotating disk has received substantial interest, in
particular during the last two decades, since it constitutes a prototype for the flow over
modern aircraft wings. Its significance lies in the fact that owing to the resemblance of
the mean velocity profiles in cross flow directions, most of the fluid dynamical properties
of the flow over a rotating disk and a swept-back wing almost coincide as far as the
nature of instabilities is concerned. To be more precise, both flows are subject to cross
flow vortices leading to convective or absolute instabilities.

A series of studies have been conducted to understand the reasons behind the instabil-
ity mechanisms in three-dimensional boundary layer flows. Among these, the theoretical
works of Gregory, Stuart and Walker [7], Malik [15], Malik, Wilkinson and Orszag [17],
Mack [14], Hall [8], Bassom and Gajjar [3], Balakumar and Malik [2], Lingwood [11]
and Turkyilmazoglu [21] have highlighted the inevitable instabilities caused by the sta-
tionary or, in some circumstances, travelling disturbances. In particular, the latest two
works have demonstrated that unlike the convective instability mechanism which arises
in most three-dimensional boundary layer flows, the rotating disk boundary layer flow is
subjected to absolute instability. Although the earlier experiments by Gregory, Stuart
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and Walker [7], Wilkinson and Malik [23], and Kohama [10] were only able to detect
convective type instability, the more recent experiment carried out by Lingwood [12] has
given an apparent support for the existence of absolute instability over a rotating disk.

The aforementioned stability studies require genuine basic velocity profiles, which, for
the incompressible flow case, is the well known Von Karman’s basic steady flow. On
the other hand, the compressible basic flow is much more complicated to evaluate. This
is because, as pointed out by Stewartson [20] and others, there are several parameters
involved in the compressible flow case, such as the Prandtl number and the second coef-
ficient of viscosity which are not even constants as they are in the incompressible case.
Our motivation here is, therefore, to devise an approach which will involve a series of
approximation to obtain the basic compressible equations for the three dimensional ro-
tating disk boundary layer flow that we will call the generalized Von Karman’s flow. The
ultimate goal of the research is to investigate the character of the instabilities existing in
this generalized Von Karman’s flow, which is currently under investigation and will be
reported elsewhere.

The present study is organized in the following manner. The governing equations of
motion and the derivation of the mean flow equations are presented in section 2. Next,
the numerical scheme and the results corresponding to several parameters are given in
section 3. Conclusions are finally drawn in section 4.

2. Derivation of the Mean Flow Equations

Here, we deal with the compressible three-dimensional boundary layer flow over a rigid
disk rotating about its axis with a constant angular velocity Ω in the cylindrical coordi-
nates (r, θ, z), having been made dimensionless with respect to a reference length scale l
which can be taken to be the local radius of the disk. Velocities are non-dimensionalized
by lΩ, while the pressure is by l2Ω2. Moreover, the density and the temperature of
the fluid are non-dimensionalized with respect to their free-stream values. As a conse-
quence, the corresponding unsteady Navier-Stokes equations governing the motion can
be expressed in the form

(2.1)
∂ρ

∂t
+∇ · (ρu) = 0,

(2.2) ρ
[∂u

∂t
+ (u · ∇)u + 2(k̂ × u)− rr̂

]

= −∇p+
1

Re

[

∇(λ∇ · u) +∇(µeij)
]

,

(2.3) γM2
∞p = ρT,

(2.4)
ρ
[

∂T
∂t

+(u · ∇)T
]

=M2
∞(γ − 1)

[

∂p
∂t

+ (u · ∇)p
]

+ 1
Re

[

∇ · (k∇T )

+ γ−1
Re

M2
∞

[

1
2
µ(e211 + e222 + e233 + 2e212 + 2e213 + 2e223) + λ(∇ · u)2

]

.

It should be remarked that the viscous, Coriolis and streamline curvature effects are all
included in equations (2.1-2.4). Equation (2.1) is the continuity equation, equation (2.2)
is the momentum equation in vector form, Equation (2.3) is the equation of state and
Equation (2.4) the energy equation, respectively. Together with these equations, the
appropriate boundary conditions are the usual no-slip condition on the wall except the
azimuthal velocity in the θ direction (though, the extra r term appearing in equation
(2.2) allows the azimuthal velocity to disappear on the wall as well), and the vanishing
quantities at the far-field apart from the uniform temperature. The several parameters
appearing in equations (2.1-2.4) are defined as follows; ρ the density, u the velocity
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vector, ∇ the usual gradient operator in cylindrical coordinates, p the pressure, T the
temperature. Moreover, the strain tensors are defined by

e11 = 2
∂u

∂r
, e12 = e21 = r

∂

∂r
(
v

r
) +

1

r

∂u

∂θ
, e13 = e31 =

∂u

∂z
+
∂w

∂r
,

e22 = 2(
1

r

∂v

∂θ
+
u

r
), e23 = e32 =

1

r

∂w

∂θ
+
∂v

∂z
, e33 = 2

∂w

∂z
.

Furthermore, µ is the dynamical viscosity, λ the second coefficient of viscosity related to
the bulk viscosity, γ the ratio of the specific heats, M∞ the free stream Mach number,

Re the Reynolds number characterizing the flow defined by Re = Ωl2

ν
, and finally k is

the parameter associated with the Prandtl number σ. The Reynolds number is taken to
be large in the following analysis.

The basic flow of the incompressible case, also called the Von Karman’s steady state
flow, is well known since the work of Kármán [9]. The steady compressible flow, hereafter
to be termed the generalized Von Karman’s flow, will be considered here using a series of
approximations in line with the boundary layer flow assumption. First of all, the basic
flow is assumed to evolve alongside the boundary layer coordinate ξ = Re1/2z, which is of
order unity. The flow being axisymmetric about the axis of rotation entails all derivatives
with respect to θ to vanish. Taking these into account, if we substitute the basic flow
velocities (uB , vB , Re

−1/2wB) and the other quantities into the governing equations (2.1-
2.4), and also neglect terms of O(Re−1), the mean flow quantities are determined from
the subsequent equations and boundary conditions:

(2.5) ρB(
∂uB
∂r

+
∂wB
∂ξ

) + uB
∂ρB
∂r

+ wB
∂ρB
∂ξ

+
ρBuB
r

= 0,

(2.6) ρB(uB
∂uB
∂r

+ wB
∂uB
∂ξ

−
v2B
r
− 2vB − r) = −

∂pB
∂r

+
∂

∂ξ
(µB

∂uB
∂ξ

),

(2.7) ρB(uB
∂vB
∂r

+ wB
∂vB
∂ξ

+
uBvB
r

+ 2uB) =
∂

∂ξ
(µB

∂vB
∂ξ

),

(2.8)
∂pB
∂ξ

= 0,

(2.9) γM2
∞pB = ρBTB ,

(2.10) ρB(uB
∂TB
∂r

+wB
∂TB
∂ξ

) =M2
∞(γ−1){uB

∂pB
∂r

+wB
∂pB
∂ξ

+µB [(
∂uB
∂ξ

)2+(
∂vB
∂ξ

)2]}

+
∂

∂ξ
(kB

∂TB
∂ξ

),

uB = vB = wB = 0 at ξ = 0,

(2.11) uB → 0, vB → −r as ξ →∞,

ρB , TB , µB → 1, pB →
1

γM2
∞

as ξ →∞.

In contrast to the case of incompressible flow, it should be noticed that since we
consider the fluid to be a perfect gas in the state equation (2.9), and further, since
the fluid is stationary everywhere outside the boundary layer, it is straightforward to
deduce from equations (2.8-2.9) and (2.11) that pB is constant and equal to (γM2

∞)−1.
Secondly, we will assume the Chapman’s viscosity law, that is, µ = CT for some constant
C. Such an approximation is particularly shown to be useful for low Mach numbers, see
for instance Stewartson [20] and Papageourgiou [18]. Furthermore, despite the fact that
the bulk viscosity does not enter into the following analysis, having been cancelled out by
the large Reynolds number limit, experimental researches prove that viscosity coefficients
can be taken as a function of temperature only, and for a monatomic gas λ = − 2

3
µ is
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generally a good choice, see for instance Rosenhead [19]. Thirdly, to remove the density
terms from the mean flow equations (2.5-2.11), we make use of the Dorotonitsyn-Howarth

transformation, that is, y = C−1/2
∫ ξ

0
ρBdξ as given in Stewartson [20]. In the light of the

previous assumptions and taking into consideration the strategies of the incompressible
Von Karman’s flow, the form of the generalized Von Karman’s flow may be written as

uB = (uB , vB , wB , pB) = (rū(y), rv̄(y), w̄(y),
1

γM2
∞

).

Eventually, making use of the stream function formulae automatically satisfying Equation
(2.5), that is,

ū =
dψ

dy
= ψ′(y), w̄ = −C1/2TB(2ψ + rψ′

∂y

∂r
),

will greatly simplify the form of Equations (2.5-2.11).

Keeping in mind all the above assumptions and doing the necessary substitutions into
equations (2.5-2.11), the subsequent equations and boundary conditions will result in
respectively

(2.12) ψ′′′ = ψ′2 − 2ψψ′′ − (v̄ + 1)2,

(2.13) v̄′′ = 2(v̄ + 1)ψ′ − 2ψv̄′,

(2.14)
∂2TB
∂y2

+ 2σψ
∂TB
∂y

− rσψ′
∂TB
∂r

+ (γ − 1)σr2M2
∞(ψ′′2 + v̄′2) = 0,

(2.15) ψ(0) = ψ′(0) = ψ(∞) = v̄(0) = v̄(∞) + 1 = TB(∞)− 1 = 0.

The system (2.12-2.15) is called the generalized Von Karman’s equations for the com-
pressible flow for short. Although the Karman equations (2.12-2.13) are well known
to exhibit infinite degrees of non-uniqueness, the solution that we have obtained in the
coming section under the constraints (2.15) are physically expected ones because they
absolutely match with the experimentally determined profiles, see for instance Lingwood
[13], which have been used for several instability investigations, amongst these being
Malik [15], Hall [8] and Balakumar and Malik [2]. In addition to this, it can be easily
seen that the influence of the compressibility comes into effect owing to the temperature
field given in (2.14), which significantly alters the flow field from the incompressible case.
Now supposing that the temperature field in (2.14) can be written in terms of a viscous
dissipation term f and a heat conducting term q, it is possible to express it in the form

(2.16) TB =
1

ρB
= 1−

γ − 1

2
M2
r f(y) + (Tw − 1)q(y),

which allows the splitting of the energy equation into two ordinary differential equations

(2.17)
f ′′ + 2σψf ′ − 2σψ′f = 2σ(ψ′′2 + v̄′2),

q′′ + 2σψq′ = 0.

The parameter Mr appearing in equation (2.16) is the local Mach number defined by
Mr = rM∞. Moreover, taking into account the far-field uniform temperature in (2.11),
f = q = 0 as y → ∞. However, for an insulated disk, ∂T

∂y
(0) = 0 requiring f ′(0) =

q′(0) = 0, leading to q ≡ 0. Taking into consideration the heat transfer on the wall, that
is T (0) = Tw, we have f(0) = q(0) − 1 = 0. Additionally, the heat conducting term q

in (2.17) can be solved analytically as q =
∫∞

y
e−2σ

∫ y
0
ψdydy/

∫∞

0
e−2σ

∫ y
0
ψdydy for any

prescribed σ, whereas the function f cannot be solved analytically from equation (2.17),
therefore, it needs to be treated numerically apart from the perfect fluid case σ = 1,
for which the insulated disk results in f = ψ′2 + v̄2 − 1 and heat transfer gives rise to
f = ψ′2 + v̄ + v̄2.
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A further thing worthy of mentioning is the boundary layer thickness. Having obtained
the temperature distributions from (2.16), the physically dimensionless quantity z can
be recovered as

(2.18) z = C1/2Re−1/2
∫ y

0

TBdy = C1/2Re−1/2{y−
γ − 1

2
M2
r

∫ y

0

fdy+(Tw−1)

∫ y

0

qdy}.

Equation (2.18) clearly indicates the stretching effect of the compressibility. It can also
be deduced from (2.18) that the distance from the disk surface at which the same value
of the azimuthal velocity is attained differ for compressible and incompressible fluids not
only by a term proportional to M2

r , which in turn depends on the radial distance, but
also by the wall temperature values.

3. Numerical Scheme, Results and Discussions

In this section, the numerical procedure used to solve equations (2.12-2.17) will be
briefly presented first, followed by the numerical results. A fourth-order accurate Runge-
Kutta scheme is employed in conjunction with a shooting technique to match the variables
at infinity. Such a technique has been successfully applied to many boundary layer flow
problems, for example see Cebeci [6] and Canuto, Hussaini, Quarteroni and Zang [5]; and
to hydrodynamic stability calculations, see for example Arnal [1] and Turkyilmazoglu,
Gajjar and Ruban [22]. The incompressible steady boundary layer flow over a rotating
disk was obtained in Lingwood [12, 13] by means of this method and in Turkyilmazoglu
[21] using a Spectral Chebyshev collocation scheme. Based on our experience, the Runge-
Kutta method is more straightforward to implement than other methods. To check out
the accuracy of the numerical scheme, as well as to validate the code, we first solved as a
test case the well known Blasius boundary layer flow over a flat plate, which is governed
by the differential equation

f ′′′ +
1

2
ff ′′ = 0, f(0) = f ′(0) = f ′(∞)− 1 = 0.

A comparison with the result of Brown [4] is demonstrated in figure 1, which is clear
evidence of the accuracy of the numerical method.

Next, with the algorithm at hand, several test cases are considered so that the unknown
initial conditions and the far field would not influence the outcomes within the accuracy
of the method and machine precision. To be more specific, the domain of integration was
fixed to 20 and divided into a 10000 uniform grid, and the integration was performed
to give the initial values of ψ′′(0) = 0.51023, v̄′(0) = −0.61592, which are in excellent
agreement with the values given in Malik [15].

Further properties of the basic velocity field can be captured from the graph shown
in Figure 2(a). These profiles are in fact the same profiles as the Von-Karman’s basic
incompressible flow over a rotating disk and have been verified to be true in several stud-
ies, such as Lingwood [12, 13] and Malik [15], amongst others (see Figure 1 of Lingwood
[11], Figure 4 of Lingwood [12] and Figure 2 of Balakumar and Malik [2]). In spite of
the fact that these profiles are not the exact compressible flow profiles since they were
obtained as a result of a series of self-consistent approximations, nevertheless we will use
then for stability investigations of the generalized compressible Von-Karman’s boundary
layer flow.
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Figure 1.

The Blasius profile U = f ′ is shown against the normal coordinate y. A
comparison of the solution obtained from the fourth order Runge-Kutta
scheme employed for the present research is displayed with the solution

of Brown [4] shown by the crosses.
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Equations (2.16–2.17) were then solved to compute the various temperature profiles
corresponding to the several Mach numbers, Prandtl numbers and the wall temperatures
as depicted in Figures (2–4). The insulated wall case is demonstrated first in Figures
2(b–d) for three different Prandtl numbers and with varying Mach numbers. The overall
shapes of the profiles are seen to be similar and the influence of the Prandtl number is
to change slightly the wall temperature.

The effect of the heat transfer and Prandtl number can be visualized next in Figures
(3–4). It can be inferred from these pictures that the wall heating/cooling has a big
impact on the formation of the temperature profiles. Although the far-field behavior of
the profiles may be pursued using asymptotic means, it has not been implemented here.
It is these graphs in Figures (2–3) that will determine the nature of the instabilities
existing in the compressible generalized Von-Karman’s flow. As mentioned above, this
issue is currently under investigation.

4. Conclusions

The basic velocity field governing the compressible boundary layer flow over a rotating
disk has been obtained using self-consistent assumptions. The resulting equations have
then been solved numerically by a Runge-Kutta integrator accurate to the fourth order,
and the behavior of the basic velocity and temperature field displayed graphically. The
profiles determined will ultimately serve to explore the character of the compressible flow
and this will constitute the basis of the oncoming research.
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Figure 2.

(a) Basic velocity profiles of the generalized Von Karman‘s
flow are shown for the boundary layer over the rotating disk.

Temperature profiles for an insulated disk are shown in
(b) for σ = 0.5, in (c) for σ = 1 and in (d) for σ = 1.5.
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Figure 3.

Temperature profiles corresponding to the heat transfer case are shown
at three different local Mach numbers, respectively in (a) for σ = 0.5,

Tw = 0.5, in (b) for σ = 0.5, Tw = 1.5, in (c) for σ = 1.0, Tw = 0.5 and in (d)
for σ = 1.0, Tw = 1.5. Dotted curves denote Mr = 0.0, straight curves Mr = 0.5

and broken curves Mr = 1.5.
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Figure 4

Temperature profiles corresponding to the heat transfer case are shown
at three different local Mach numbers respectively, in (a) for σ = 1.5,

Tw = 0.5 and in (b) for σ = 1.5, Tw = 1.5. Figures 3(c–d)) are redisplayed in
combined form in (c). The effect of wall cooling is demonstrated in (d) for

σ = 1.0, Mr = 1.0.
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Abstract

In this study, We define a generalized derivation and a Jordan general-
ized derivation on Γ-rings and show that a Jordan generalized derivation
on some Γ-rings is a generalized derivation.
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1. Introduction

The notion of generalized derivation was introduced by Hvala [2]. Let R be an asso-
ciative ring. An additive mapping f : R −→ R is called a generalized derivation if there
exists a derivation d : R −→ R such that f(xy) = f(x)y + xd(y) holds for all x, y ∈ R.

We call an additive mapping f : R −→ R a Jordan generalized derivation if there exists
a derivation d : R −→ R such that f(x2) = f(x)x+ xd(x) holds for all x ∈ R.

Let M and Γ be additive Abelian groups. Then M is called a Γ- ring if for any
x, y, z ∈ M and α, β ∈ Γ the following conditions are satisfied.

(1) xαy ∈ M ,
(2) (x+ y)αz = xαz + yαz, x(α+ β)z = xαz + xβz, xα(y + z) = xαy + xαz, and
(3) (xαy)βz = xα(yβz),

The notion of a Γ-ring was introduced by Nobusawa [5] and generalized by Barnes [1] as
defined above. Many properties of Γ-rings were obtained by Barnes [1], Kyuno [3], Luh
[4], Nobusawa [5] and others.

Let M be a Γ−ring and D : M −→ M an additive map. Then D is called a derivation
if

D(xαy) = D(x)αy + xαD(y), (x, y ∈ M,α ∈ Γ)

and D is called a Jordan derivation if

D(xαx) = D(x)αx+ xαD(x), (x ∈ M,α ∈ Γ).

∗Cumhuriyet University, Faculty of Arts and Science, Department of Mathematics, 58140-

Sivas, Turkey.
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Let M be a Γ-ring and F : M −→ M an additive map. Then F is called a generalized
derivation if there exists a derivation D : M −→ M such that

F (xαy) = F (x)αy + xαD(y)

for all x, y ∈ M and α ∈ Γ. Finally, F is called a Jordan generalized derivation if there
exists a derivation D : M −→ M such that

F (xαx) = F (x)αx+ xαD(x)

for all x ∈ M and α ∈ Γ.

The notions of derivation and Jordan derivation on a Γ-rings were defined by Sapanci
and Nakajima in [6], where they showed that a Jordan derivation on a certain type
of completely prime Γ-ring is a derivation. In this note we show that for our notions
of generalized derivation and Jordan generalized derivation on a Γ-ring given above, a
Jordan generalized derivation on certain Γ-rings is also a generalized derivation.

1.1. Example. Let f : R −→ R be a generalized derivation on a ring R. Then there
exists a derivation d : R −→ R such that f(xy) = f(x)y+xd(y) for all x, y ∈ R. We take

M = M1,2(R) and Γ =

{(

n · 1
0

)

: n is an integer

}

. Then M is a Γ-ring. If we define

the map D : M −→ M by D ( (x, y) ) = ( d(x), d(y) ) then D is a derivation on M . Let
F : M −→ M be the additive map defined by F ( (x, y) ) = ( f(x), f(y) ). Then F is a
generalized derivation on M . Let N be the subset {(x, x) : x ∈ R} of M . Then N is a
Γ-ring, and the map F : N −→ N defined in terms of the generalized Jordan derivation
f : R −→ R on R by F ( (x, x) ) = ( f(x), f(x) ) is a generalized Jordan derivation on N .

2. The Main Results

Throughout the following, we assume that M is an arbitrary Γ-ring and F a gener-
alized Jordan derivation on M . Clearly, every generalized derivation on M is a Jordan
generalized derivation. The converse in general is not true. In the present paper, it
is shown that every Jordan generalized derivation on certain Γ-rings is a generalized
derivation.

2.1. Lemma. Let a, b, c ∈ M and α, β ∈ Γ. Then

(i) F (aαb+ bαa) = F (a)αb+ F (b)αa+ aαD(b) + bαD(a).
(ii) F (aαbβa+aβbαa) = F (a)αbβa+F (a)βbαa+aβD(b)αa+aαD(b)βa+aαbβD(a)+

aβbαD(a).
(iii) In particular, if M is 2-torsion free then

F (aαbαa) = F (a)αbαa+ aαD(b)αa+ aαbαD(a).

(iv) F (aαbαc+cαbαa) = F (a)αbαc+F (c)αbαa+aαD(b)αc+cαD(b)αa+aαbαD(c)+
cαbαD(a).

Proof. (i) is obtained by computing F ( (a + b)α(a + b)) and (ii) is also obtained by
replacing b with aβb+ bβa in (i). Moreover, (iii) can be obtained by replacing β with α

in (ii). If we replace a with a+ c, we can get (iv). ¤

2.2. Lemma. Let δα(a, b) = F (aαb) − F (a)αb − aαD(b) for a, b ∈ M and α ∈ Γ. Then

(i) δα(a, b) + δα(b, a) = 0.
(ii) δα(a, b+ c) = δα(a, b) + δα(a, c)
(iii) δα(a+ b, c) = δα(a, c) + δα(b, c).
(iv) δα+β(a, b) = δα(a, b) + δβ(a, b) for all a, b, c ∈ M and α, β ∈ Γ.

Proof. These results follow easily by Lemma 1 (i) and the definition of δα(a, b). ¤
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Note that F is a generalized derivation iff δα(a, b) = 0 for all a, b ∈ M and α ∈ Γ.

2.3. Lemma. Let a, b, c ∈ M and α, β ∈ Γ. If M is 2-torsion free, then

(i) δα(a, b)α[a, b]α = 0.
(ii) δα(a, b)βxβ[a, b]α = 0 for any x ∈ M .

Proof. (i) Replacing c by aαb in Lemma 1(iv), we obtain the proof.

(ii) We set A = aαbβxβbαa + bαaβxβaαb. Then, since F (A) = F (aα(bβxβb)αa +
bα(aβxβa)αb) and F (A) = F ( (aαb)βxβ(bαa) + (bαa)βxβ(aαb) ), by Lemma 1(iii) and
Lemma 1(iv), we have the proof. ¤

2.4. Theorem. Let M be a 2-torsion free Γ-ring. If M has two elements a and b

so that for any α ∈ Γ we have cγxγ[a, b]α = 0 or [a, b]αγxγc = 0 implies c = 0 for all

x ∈ M, γ ∈ Γ, then every Jordan generalized derivation on M is a generalized derivation.

Proof. Let u, v be fixed elements of M such that cγxγ[u, v]α = 0 or [u, v]αγxγc = 0
implies c = 0. Then by Lemma 3(ii), we get

(2.1) δα(u, v) = 0

for all α ∈ Γ. Our aim is to prove that δα(a, b) = 0 for all a, b ∈ M and α ∈ Γ. In
Lemma 3(ii), replacing a by a+ u, we have δα(a+ u, b)βxβ((a+ u)αb − bα(a+ u)) = 0.
Using Lemma 2(iii), we get δα(a, b)βxβ[a, b]α + δα(a, b)βxβ[u, b]α + δα(u, b)βxβ[a, b]α +
δα(u, b)βxβ[u, b]α = 0.

From Lemma 3(ii), since δα(a, b)βxβ[a, b]α = 0 and δα(u, b)βxβ[u, b]α = 0 then we
have

(2.2) δα(a, b)βxβ[u, b]α + δα(u, b)βxβ[a, b]α = 0

for all x, a, b ∈ M and α, β ∈ Γ. Now replacing b by b+v in (2.2) and using Lemma 2(ii),
we get δα(a, b)βxβ[u, b]α + δα(a, b)βxβ[u, v]α + δα(a, v)βxβ[u, b]α + δα(a, v)βxβ[u, v]α +
δα(u, b)βxβ[a, b]α + δα(u, b)βxβ[a, v]α + δα(u, v)βxβ[a, b]α + δα(u, v)βxβ[a, v]α = 0 or
using equations (2.1) and 2.2 we have

(2.3) δα(a, b)βxβ[u, v]α+δα(a, v)βxβ[u, b]α+δα(a, v)βxβ[u, v]α+δα(u, b)βxβ[a, v]α = 0.

Replacing a by u in equation(2.3) and using equation (2.1) together with the fact that
M is 2-torsion free, we have

(2.4) δα(u, b)βxβ[u, v]α = 0

for all b, x ∈ M and α, β ∈ Γ. Hence by hypothesis, we get

(2.5) δα(u, b) = 0

for all b ∈ M, α ∈ Γ. Again replacing b by v in equation (2.2), using equation (2.1) and
the hypothesis, we obtain

(2.6) δα(a, v) = 0

for all a ∈ M, α ∈ Γ. Substituting equations (2.5) and (2.6) in equation (2.3) we have

δα(a, b)βxβ[u, v]α = 0,

and then from the hypothesis we obtain

δα(a, b) = 0

for all a, b ∈ M, α ∈ Γ, i.e. F is a generalized derivation on M . ¤
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Abstract

A Cartan space is a pair (M,K), whereM is a smooth manifold and K
an Hamiltonean on the slit cotangent bundle T ∗

0M := TM \{(x, 0), x ∈
M}, that is positively homogeneous of degree 1 in momenta. We show
thatK induces an almost 2–paracontact Riemannian structure on T ∗

0M

whose restriction to the figuratrix bundle K = {(x, p) | K(x, p) = 1}
is an almost paracontact structure. A condition for this almost para-
contact structure to be normal is found, and its geometrical meaning is
pointed out. Similar results for Finsler spaces can be found in [1] and
[3].
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1. Introduction

Let (N,h) be an m–dimensional Riemannian manifold. If on N there exists a tensor
field φ of type (1, 1), r vector fields ξ1, ξ2, . . . , ξr, (r < m), and r, 1–forms η1, η2, . . . , ηr

such that

(i) ηa(ξb) = δab , a, b ∈ (r) = {1, 2, . . . , r},
(ii) φ2 = I −

∑

a η
a ⊗ ξa,

(iii) ηa(X) = h(X, ξa), a ∈ (r),
(iv) h(φX, φY ) = h(X,Y )−

∑

a η
a(X)ηa(Y ),

where X, Y are vector fields and I is the identity tensor field on N , then

Σ = (φ, ξa, η
a)a∈(r)

is said to be an almost r–paracontact Riemannian structure on M , and the pair (M,Σ)
is called an almost r–paracontact Riemannian manifold.

∗Faculty of Sciences, University of Bacău, Bacău, Romania. E-mail : manuelag@ub.ro
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From (i) through (iv) it follows that (see [2]):

φ(ξa) = 0, η
a ◦ φ = 0, a ∈ (r)

φ(x, y) := h(φX, Y ) = h(X, φY ).

A Cartan space is a pair Kn = (M,K), where M is a smooth n−dimensional manifold
and K is a positive function on the cotangent bundle T ∗

0M := T ∗M \ {(x, 0) | x ∈ M}
such that the function K2 is a regular Hamiltonian which is homogeneous of degree 2 in
momenta.

It is well known that T ∗
0M is a Riemannian manifold with a Riemannian metric similar

to the Sasaki metric, completely determined by K.

We show in Section 2 that, moreover, T ∗
0M can be naturally endowed with an almost 2-

paracontact Riemannian structure. Section 1 is devoted to some preliminaries, especially
regarding the geometry of T ∗M . In Section 3 we consider the figuratrix bundle K =
{u ∈ T ∗M | K(u) = 1} as a submanifold of T ∗

0M of codimension one, and we show that
it carries an almost paracontact Riemanian structure induced by the above mentioned
almost 2-paracontact Riemannian structure on T ∗

0M . A condition for this paracontact
Riemannian structure to be normal is established and its geometric meaning is discussed.

2. Preliminaries

We recall from Chapter 6 of [4] some facts from the geometry of the cotangent bundle
T ∗M . We take (xi), i = 1, 2, . . . , n as local coordinates on M . The induced local
coordinates on T ∗M will be denoted by (xi, pi), where x

i is in fact xi ◦ τ∗, for τ∗ :
T ∗M → M the natural projection, and pi are the components of a covector from T ∗

xM ,
x(xi), in the cobasis (dxi)x. The coordinates pi will be called momenta.

The kernel of the differential Dτ∗ of τ∗ is a subbundle of TT ∗
0M , known as vertical

and denoted by V T ∗
0M . The vertical distribution V : u ∈ T ∗M → VuT

∗
0M = ker(Dτ∗)u

is locally spanned by
.

∂
i
:=

∂

∂pi
, hence it is integrable.

The vector field C∗ = pi
.

∂
i
on T ∗M is called the Liouville vector field.

Let Kn = (M,K) be a Cartan space. Then the function K : T ∗M → R has the
properties

(i) K is smooth on T ∗
0M and only continuous on the set {(x, 0) | x ∈M},

(ii) K > 0 on T ∗M ,
(iii) K(x, λp) = λK(x, p) for any λ > 0,

(iv) The matrix with entries gij(x, p) = 1
2

.

∂
i .

∂
j
K2 is positive definite.

If one sets pi = 1
2

.

∂
i
K2then gij =

.

∂
j
pi, and from the homogeneity condition (iii) there

results

(2.1)
p
i = g

ij
pj , K

2 = g
ij
pipj = pip

j
,

C
ijk
pk = 0, where C

ijk := 1
2

.

∂
i
gjk.

As det(gij) 6= 0, from the first equation in (1.1) it follows that pi = gijp
j , where (gij) is

the inverse of the matrix (gij).

In the following we restrict our considerations to the open submanifold T ∗
0M of T ∗M .

A nonlinear connection on T ∗
0M is a distribution u → HuT

∗
0M , called horizontal,

which is supplementary to the vertical distribution. This is usually given by a local basis

δi = ∂i +Nij(x, p)
.

∂
j
for some functions (Nij) having a special behavior, by a change of

coordinates on T ∗M . It was proved by R. Miron [4, Chapter 4] that any Cartan space
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has a canonical nonlinear connection, completely determined by K, whose coefficients
(Nij(x, p)) are positively homogeneous of degree 1 in momenta, and have the property
Nij = Nji.

Thus we have a decomposition

(2.2) TuT
∗
0M = VuT

∗
0M ⊕HuT

∗
0M,

and (δi,
.

∂
i
) is a basis adapted to it.

This suggests the following definition of an almost product structure Q on T ∗M .

(2.3) Q(δi) = gij
.

∂
j
, Q(

.

∂
i
) = g

ij
δj .

It is easy to check that Q2 = I.

Using the matrices (gij) and (g
ij) the following Riemannian metric on T ∗

0M is defined

(2.4) G = gijdx
i ⊗ dx

j + g
ij
δpi ⊗ δpj ,

where δpi = dpi −Nij(x, p)dx
j and (dxi, δpi) is the dual basis of (δi,

.

∂
i
).

The Riemannian metric G is similar to the Sasaki metric on the tangent bundle. An
easy calculation gives:

(2.5) G(QX,QY ) = G(X,Y ), X, Y ∈ X(T ∗
0M).

Here X(T ∗M) is the F(M)–module of vector fields on T ∗
0M .

3. An almost 2-paracontact Riemannian structure on T ∗

0 M when

(M, K) is a Cartan space

We already know that (T ∗
0M,G) is a Riemannian manifold. On T ∗

0M there exist two
globally defined vector fields:

ξ1 =
1

K
p
i
δi and ξ2 =

1

K
pi

.

∂
i
.

They are linearly independent. The second one is collinear with the Liouville vector field,
while the first one is nothing but the Hamiltonian vector field of the function K.

Indeed, the Hamiltonian vector field of K is

−→
K = (

.

∂
i
K)

∂

∂xi
− (∂iK)

∂

∂pi
= (

.

∂
i
K)δi − (δiK)

.

∂
i
= ξ1,

because for a Cartan space δiK = 0 and
.

∂
i
K =

pi

K
.

Now we consider the 2 1-forms

η
1 =

1

K
pidx

i and η2 =
1

K
p
i
δpi.

These are globally defined. It quickly follows that

(3.1) η
a(ξb) = δ

a
b , a, b ∈ {1, 2}.

One easily checks that

Q(ξ1) = ξ2, Q(ξ2) = ξ1,(3.2)

η
1 ◦Q = η

2
, η

2 ◦Q = η
1
.(3.3)

Using Q, ξa, η
a, a ∈ {1, 2}, we construct the tensor field

q = Q− η
2 ⊗ ξ1 − η

1 ⊗ ξ2.

Based on (3.1) - (3.3) it comes out that

(3.4) q
2(X) = X − η

1(X)ξ1 − η
2(X)ξ2.
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In the adapted frame (δi,
.

∂
i
) we have

G(δi, δj) = gij , G(δi,
.

∂
j
) = 0, G(

.

∂
i
,
.

∂
j
) = g

ij
.

These equations are used to verify that

(3.5) η
a(X) = G(X, ξa), a ∈ {1, 2},

holds for X = δi,
.

∂
i
.

A direct calculation using (2.5), (3.5), as well as G(ξa, ξb) = δab, gives

(3.6) G(qX, qY ) = G(X,Y )− η
1(X)η1(Y )− η

2(X)η2(Y ), X, Y ∈ X(T ∗
0M).

The equations (3.1), (3.4) - (3.6) show that the following theorem holds good.

3.1. Theorem. Let Kn = (M,K) be a Cartan space. Then T ∗
0M is an almost 2-

paracontact Riemannian manifold with the almost 2-paracontact Riemannian structure

(q, ξa, η
a, G), a ∈ {1, 2}.

The next equations follow easily from (3.1) and (3.2)

(3.7) q(ξa) = 0, η
a ◦ q = 0.

By (3.4) and (3.7) we have

(3.8) q
3 − q = 0.

Now we prove

3.2. Lemma. The rank of q is 2n− 2.

Proof. By the first equation (3.7), the subspace span {ξ1, ξ2} is contained in ker q. Let

now X ∈ ker q. If X = Xiδi + Yi
.

∂
i
, the condition q(X) = 0 gives X i =

Xjpj

K2
p
i,

Yi =
Yip

j

K2
pi, hence X ∈ span {ξ1, ξ2} ¤

Let h(X,Y ) = G(qX, Y ), X,Y ∈ X(T ∗
0M).

3.3. Theorem. The mapping h is bilinear and symmetric and its null space is ker q.

Proof. The bilinearity is obvious. The symmetry holds even in a more general setting cf.
Section 1. The null space of h is {X | h(X,Y ) = 0, ∀Y } = {X | G(qX, Y ) = 0, ∀Y } =
{X | qX = 0} = ker q. ¤

In the adapted basis (δi,
.

∂
i
) we have

(3.9)
q(δi) = Aij

.

∂
j
, q(

.

∂
i
) = B

ij
δj ,

Aij = gij −
1

K2
pipj , B

ij = g
ij −

1

K2
p
i
p
j
.

We notice that these matrices have rank n− 1 because of

(3.10) Aijp
j = 0, Bij

pj = 0.

The mapping h has the form

h = Aijdx
i ⊗ dx

j −B
ij
δpi ⊗ δpj .

Thus it is a singular pseudo-Riemannian metric on T ∗
0M .
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4. An almost paracontact structure on the figuratrix bundle of a

Cartan space Kn

The set K = {(x, p) ∈ T ∗
0M | K(x, p) = 1} will be called the figuratrix bundle of the

Cartan space Kn. It will be thought of as a hypersurface (submanifold of codimension
1) of T ∗

0M , endowed with the almost 2-paracontact Riemannian structure from Theorem
3.1.

Let

(4.1)

{

xi = xi(uα),

pi = pi(u
α), α = 1, 2, . . . , 2n− 1,

with rank

(

∂xi

∂uα
,
∂pi

∂uα

)

= 2n− 1, a parametrization of K.

We consider the local vector fields
∂

∂uα
=

∂xi

∂uα
∂i +

∂pi

∂uα

.

∂
i
, which provide a local

basis in the tangent bundle to K, and put them into the form

∂

∂uα
=

∂xi

∂uα
δi +

(

∂pj

∂uα
−Nij

∂xi

∂uα

)

.

∂
j
.

It follows that G

(

∂

∂uα
, ξ2

)

=
1

K
p
j

(

∂pj

∂uα
−Nij

∂xi

∂uα

)

. On the other hand, by deriving

the identity K2(xi(uα), pi(u
α)) = 1 with respect to uα we find

0 = (∂iK
2)
∂xi

∂uα
+ (

.

∂
i
K

2)
∂pi

∂uα

= (δiK
2)
∂xi

∂uα
+ (

.

∂
i
K

2)

(

∂pi

∂uα
−Nij

∂xj

∂uα

)

= 2pi
(

∂pi

∂uα
−Nij

∂xj

∂uα

)

because, for a Cartan space, δiK = 0. Thus on K we have G =
(

∂

∂uα
, ξ2

)

= 0 for every

α = 1, 2, . . . , 2n− 1. In other words, the vector field ξ2 restricted to K is normal to K.

Recall that ξ2 restricted to K is ξ2 = pi(u
α)

.

∂
i
.

4.1. Lemma. The hypersurface K is invariant with respect to q i.e. q(TuK) ⊂ TuK, ∀u ∈
K.

Proof. G

(

q

(

∂

∂uα

)

, ξ2

)

= (η2 ◦ q)

(

∂

∂uα

)

= 0 ∀α = 1, 2, . . . , 2n− 1. ¤

By item (i) in Theorem 3.1 from [2], and Lemma 4.1, there follows:

4.2. Theorem. The almost 2-paracontact Riemannian structure (q, ξa, ηa, G), a ∈
{1, 2}, on T ∗

0M induces by restriction an almost paracontact Riemannian structure on

the figuratrix bundle K.

If we use overlines to denote the restrictions we have

• ξ1 = piδi, is tangent to K
• η2 = 0 because of η

2(X) = G(X, ξ2) = 0 for every X tangent to K,
• G = G|K,

• q = Q− η1 ⊗ η2 is an automorphism of TuK, ∀u ∈ K.
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We put ξ = ξ1, η = η1, so the almost paracontact Riemannian structure given by

Theorem 4.2 is (q, ξ, η, G). We mention that

q
2 = I − η ⊗ ξ, η(X) = G(X, ξ),(4.2)

G(qX, qY ) = G(X,Y )− η(X)η(Y ), X, Y ∈ X(K).(4.3)

By Theorem 1.1 in [2], the almost paracontact Riemannian structure (q, ξ, η, G) is nor-

mal if and only if

(4.4) N(X,Y ) := Nq(X,Y )− 2dη(X,Y )ξ = 0,

where Nq is the Nijenhuis tensor field of q, i.e.

(4.5) Nq(X,Y ) = [qX, qY ] + q
2[X,Y ]− q[qX, Y ]− q[X, qY ], ∀X,Y ∈ X(K).

Now we look for conditions under which (q, ξ, η, G) is normal.

If we put δ̇j = q(δj) we get n local vector fields that are tangent to K, because K is
an invariant hypersurface. These, together with δi, i = 1, 2, . . . , n, are all tangent to K
and they are not linearly independent. But if we consider δi, i = 1, 2, . . . , n and δ̇j with

j = 1, 2, . . . , n− 1, we obtain a set (δi, δ̇j) of local vector fields that form a local basis in
the tangent bundle to K. We shall compute N from (4.4) in this basis.

First, we note that

δ̇j = q(δj) = ajk
.

∂
k
, ajk = gjk − pjpk

q(
.

∂
k
) = g

ki
δi.

(4.6)

q
2(δi) = b

k
i δk, b

k
i = δ

k
i − pip

k

q
2(
.

∂
k
) = b

k
i

.

∂
i
.

(4.7)

Secondly, we recall some formulae related to Kn from [4],

[δi, δj ] = Rkij
.

∂
k
, Rkij = δjNki − δiNkj ,

[

δi, ∂̇
j
]

= −(∂̇jNik)
.

∂
k
.

(4.8)

pk
.

∂
k
Nij = Nij (the homogeneity of Nij in momenta).(4.9)

Assume that Kn is endowed with the linear Cartan connection (H i
jk, C

jki = gisC
sjk).

Denote by |k and |
k the horizontal and vertical covariant derivatives, respectively. Then

we have

K
2
|j := δjK

2 = 0,K2|j = 2pj , pi|j = 0, pi|
j = δ

j
i

p
i
|j = 0, p

i|j = g
ij
.

(4.10)

Rkijp
k = 0, P ijkp

j = 0, P ijk := H
i
jk−

.

∂
i
Njk.(4.11)

δigjk = H
s
jigsk +H

s
kigjs.(4.12)

Now we compute:

2dη(δi, δj) = δipj − δjpi = 0 since by (3.9), δipj = H
s
ijps,

2dη(δi, δ̇j) = −δ̇jpi = −aij ,

2dη(
.

∂
i
,
.

∂
j
) = 0.
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And further,

(4.13)

N(δi, δj) = Ahijg
hk
δk + (Bkij −Rkij)

.

∂
j

N(δi, δ̇j) = (aih
.

∂
h
b
s
j − b

k
jRhikg

hs −Bhijg
hs −Bhijg

hs + aijp
s)δs−

−
[

Akij − pjp
r(δraik − aih

.

∂
h
Nrk) + akrδib

r
j

]

.

∂
k
,

N(δ̇i, δ̇j) = (D
s
ij −D

s
ji)δs + (b

k
i b
h
jRrkh −Brij + arkE

k
ij)

.

∂
r
,

where

(4.14)

Akij = δiajk − δjaik + aih
.

∂
h
Njk − ajh

.

∂
h
Nik,

Bkij = aih
.

∂
h
ajk − ajh

.

∂
h
aik,

D
s
ij = b

k
i δkb

s
j + (b

k
j δkaih + b

k
i ajh∂̇

h
Nkr)g

hs
,

E
k
ij = aih

.

∂
h
b
k
j − ajh

.

∂
h
b
k
i .

The expressions from (4.14) can be simplified as follows.

First, using (1.1) one easily obtains that Bkij = pigjk − pjgik.

From pkakr = 0 it follows that (δip
k)akr = −(δiakr)p

r, and pi|k = 0 is equivalent

to δipk = Nik. Based on these formulae we find that the vertical part of N(δi, δ̇j) is

−bkjArik
.

∂
r
and its horizontal part takes the form bkj (pigkh − pkgih −Rhik)g

hsδs.

A tedious computation gives

D
s
ij −D

s
ji = Ahijg

hs + p
k
P
r
kh(pigrj − pjgir) = Ahijg

hs

by (4.11).

We have Ekij = piδ
k
j − pjδ

k
i , and using this we get that the vertical part of N(δ̇i, δ̇j) is

(Rkij + piRkjo − pjRrio)∂
r, where Rkjo = Rkjsp

s.

The tensor field Akij takes the form Akij = δigjk − δjgik + gih
.

∂
h
Njk − gjh

.

∂
h
Nik

and by (iii) of Prop. 2.3 in Chapter 7 of [4], it vanishes for Cartan spaces.

Gathering together the above facts we obtain

4.3. Theorem. In the frame (δi, δ̇j), j = 1, 2, . . . , n−1, the tensor field N given by (4.4)
has the form

N(δi, δj) = (pigjk − pjgik −Rkij)
.

∂
j
,

N(δi, δ̇j) = −b
k
j (pigjk − pkgih −Rhik)g

hs
δs,

N(δ̇i, δ̇j) = (Rkij + piRkjo − pjRkio)
.

∂
k
.

4.4. Corollary. The almost paracontact Riemannian structure (q, ξ, η, G) is normal if
and only if

(4.15) Rkij = pigjk − pjgik.

Proof. One easily checks that if Rkij has the form given by (4.15), then Rkij + piRkjo −
pjRkio = 0. Then the conclusion is obvious. ¤

We give a geometrical meaning to (4.15), showing that it implies that the Cartan
space Kn is of constant scalar curvature −1.

A Cartan space Kn is of constant scalar curvature c if

(4.16) Hhijkp
i
p
j
X
h
X
k = c(ghjgik − ghkgij)p

i
p
j
X
h
X
k
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for every (x, p) ∈ T ∗
0M and X = (Xi) ∈ TxM . Here, Hhijk is the (hh)h–curvature of the

linear Cartan connection of Kn.

We replace Hhijk in (4.16) with gis H
s
hjk and so it reduces to

(4.16’) psH
s
hjkp

j
X
h
X
k = c(phpk − ghk)X

h
X
k
.

on K.
By Proposition 5.1 (ii) in Chapter 7 of [4], psH

s
hjk = −Rkhj , hence we getRkhoX

hXk =

c(ghk − phpk)X
hXk, or equivalently

(4.17) Rkho = c(ghk − phpk),

because (Xh), (Xk) are arbitrary vector fields on M .

Now it is easy to check that (4.17) follows from (4.15) when c = −1.

In general, (4.17) does not imply (4.15). But this happens when the (gij) do not
depend on p. Indeed, in this case Nij(x, p) = γkijpk, where (γ

k
ij) are the Christoffel

symbols constructed with gij(x), and then Rkij = Rhkijph, where R
h
kij is the curvature

tensor derived from gij(x).

The equation (4.17) now reads as follows:

(4.17’) R
s
khj(x)psp

j = c(gkh − pkph).

On the other hand we can write gkh− pkph = (δ
s
jgkh(x)− δ

s
hgkj(x))psp

j , and making use
of (4.17’) we get

(4.18) R
s
khj(x) = c(δsjgkh − δ

s
hgkj).

Equation (4.15) becomes Rhkij = ph(δ
h
i gjk − δhj gik), or equivalently

(4.19) R
h
kij = δ

h
i gjk − δ

h
j gik,

which is equivalent to (4.18) for c = −1.

Thus we have obtained:

4.5. Theorem. Let (M,K) be the Cartan space with K2 = gij(x)pipj . Then the almost

paracontact Riemannian structure (q, ξ, η, G) on the figuratrix bundle K is normal if and

only if the Riemannian manifold (M, gij(x)) is of constant curvature −1.
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Abstract

A wavelet-type transform generated with the aid of the Poisson Semi-
group and a signed Borel measure is introduced. An analogue of the
Calderón reproducing formula (in the framework of the L2 and Lp-
theory) is established.
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1. Introduction

The Calderón reproducing formula is widely used in the theory of continuous wavelet
transforms [3, 4], in fractional calculus and in integral geometry (see, e.g. [1, 2, 5, 6]
and references therein). A version of the Calderón formula asserts that under certain
conditions on u(x), (x ∈ Rn)

(1.1) lim
ε→0
ρ→∞

ρ
∫

ε

f ∗ ut
t

dt = cuf, f ∈ L2(Rn),

where ut(x) = t−nu(x/t), t > 0, “∗” is a convolution operator and the limit is taken
with respect to the L2-norm. The convolution (Wuf)(x, t) = (f ∗ ut)(x) is called the
continuous wavelet transform, generated by the “wavelet function” u.

A generalization of (1.1) has the form [6] :

(1.2)

∞
∫

0

f ∗ µt

t
dt

def
= lim

ε→0
ρ→∞

ρ
∫

ε

f ∗ µt

t
dt = cµf,

where µ is a suitable radial Borel measure, µt stands for the dilation of µ, and the limit
is interpreted in the Lp-norm and in the pointwise (a.e.) sense.
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In this paper we introduce a new wavelet-type transform by making use of the Poisson
kernel and finite Borel measure µ. The main purpose of the paper is to prove the relevant
Calderón-type reproducing formula. The L2 and Lp, (1 ≤ p ≤ ∞) cases are examined
separately. The pointwise (a.e.) convergence of the corresponding “truncated integrals”
ρ
∫

ε

(· · · ) is also studied.

2. Preliminiaries

Let

P (x, t) =
Γ((n+ 1)/2)

π(n+1)/2
.

t

(t2 + |x|2)(n+1)/2
, t > 0 , x ∈ Rn,

be the Poisson kernel which possess the following properties [7]:

(2.1)
[

P (., t)
]
∧

(ξ) ≡

∫

Rn

e−2πix.ξP (x, t) dx = e−πt|ξ| ,

with x.ξ = x1ξ1 + · · ·+ xnξn;

(2.2)

∫

Rn

P (x, t) dx = 1, ∀t > 0 ;

P (x, t) is homogeneous function of order (−n), i.e

(2.3) P (λx, λt) = λ−nP (x, t), ∀λ > 0 ;

(2.4)

∫

Rn

P (y, t)P (x− y, τ)dy = P (x, t+ τ).

Given a function f ∈ Lp(Rn) with the norm ‖f‖p = (
∫

Rn

|f(x)|pdx)1/p we denote by

Ptf(x), t > 0 the Poisson semigroup associated with f :

(2.5) Ptf(x) =

∫

Rn

f(x− z)P (z, t)dz, t > 0; P0f(x) = f(x).

It is well known that (see, e.g. [7, p. 8-16])

‖Ptf‖p ≤ ‖f‖p, (1 ≤ p ≤ ∞), ∀t ≥ 0 ;(2.6)

Pt(Pτf)(x) = Pt+τf(x), (t, τ ≥ 0) ;(2.7)

lim
t→0+

Ptf(x) = f(x) ,(2.8)

with the limit being understood in the Lp, (1 ≤ p < ∞)– norm or pointwise for almost
all x ∈ Rn. If f ∈ C0 (the space of continuous functions vanishing at infinity), then
convergence is uniform. Furthermore,

(2.9) sup
t>0

|Ptf(x)| ≤Mf (x),

with the well known Hardy–Littlewood maximal function

(2.10) Mf (x) = sup
r>0

1

|Br|

∫

Br

|f(x− z)|dz, Br = {x : |x| < r}.
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2.1. Definition. Let µ be a signed Borel measure on R1 such that

suppµ ⊂ [0,∞); |µ|(R1) <∞, µ({0}) = 0, and

µ(R1) ≡

∫

R1

dµ(t) = 0.
(2.11)

In addition let P (y, t) be the Poisson kernel extended to t ≤ 0 by zero. We define a
wavelet transform of f : Rn → C as

Wµf(x, η) =

∫

Rn+1

P (y, t)f(x− ηy)dy dµ(t)

(2.11)
=

∫

Rn×(0,∞)

P (y, t)f(x− ηy)dy dµ(t).(2.12)

By setting ty instead of y and using (2.3) we have

(2.13) Wµf(x, η) =

∫

Rn×(0,∞)

P (y, 1)f(x− ηty)dy dµ(t).

2.2. Remark. For any fixed η > 0 the operator Wµ is Lp → Lp bounded. Indeed, by
the Minkowski inequality,

‖Wµf( . , η)‖p ≤ ‖f‖p

∫

Rn×(0,∞)

P (y, t)dy d|µ|(t)
(2.2)
= ‖f‖p‖µ‖ <∞

where

‖µ‖ =

∫

(0,∞)

d|µ|(t) <∞.

2.3. Remark. For f ∈ Lp(Rn), due to the Fubini theorem, we get

Wµf(x, η) =

∫

Rn

f(x− ηy)
(

∫

(0,∞)

P (y, t)dµ(t)
)

dy.

Setting w(y) =
∫

(0,∞)

P (y, t)dµ(t), by the Fubini theorem we have

∫

Rn

w(y)dy
(2.2)
=

∫

(0,∞)

dµ(t)
(2.11)
= 0.

That is, the function w(y) is a usual wavelet function. Further,

Wµf(x, η) =

∫

Rn

f(x− ηy)w(y)dy =
1

ηn

∫

Rn

f(y)w(
x− y

η
)dy.

Therefore, Wµf(x, η) is a continuous wavelet transform generated by the wavelet function
w(y) =

∫

(0,∞)

P (y, t)dµ(t).

2.4. Remark. In the following we will use the convention
b
∫

a

ϕ(t)dµ(t) =
∫

[a,b)

ϕ(t)dµ(t).

In the case where lim
t→0+

ϕ(t) =∞ we assume that µ(0) = 0 and
b
∫

0

ϕ(t)dµ(t) =
∫

(0,b)

ϕ(t)dµ(t).
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We will need the following lemmas.

2.5. Lemma. [5, p.189] Let µ be a Borel measure satisfying the conditions (2.11) and
∞
∫

0

| log t| d|µ|(t) <∞. Set k(s) = 1
s

s
∫

0

dµ(t). Then

k(s) ∈ L1(0,∞) and

∞
∫

0

k(s)ds =

∞
∫

0

log
1

s
dµ(s)

.

2.6. Lemma. [7, p.60] Let Tε, ε > 0 be a family of linear operators, mapping Lp(Rn), 1 ≤
p ≤ ∞ into the space of measurable functions on R n. Define T ∗f by setting

(T ∗f)(x) = sup
ε>0

|(Tεf)(x)|, x ∈ Rn.

Suppose that there exists a constant c > 0 and a real number q ≥ 1 such that

meas{x : |(T ∗f)(x)| > t} ≤ (c‖f‖Lp t−1)q

for all t > 0 and f ∈ Lp(Rn). If there exists a dense subset D of Lp(Rn) such that
lim
ε→0

(Tεg)(x) exists and is finite almost everywhere (a.e.) whenever g ∈ D, then for each

f ∈ Lp(Rn), lim
ε→0

(Tεf)(x) exists and is finite a.e.

3. A Calderon-type reproducing formula associated with the

wavelet-type transform Wµf

We will examine the L2 and Lp, (1 ≤ p ≤ ∞) cases separately. In the L2-case the
conditions on µ are expressed in terms of the Laplace transform of µ, and in the general
case – in terms of µ itself.

3.1. Theorem. Let µ satisfy the conditions in (2.11). Suppose that µ̃(t) =
∞
∫

0

e−stdµ(s)

is the Laplace transform of µ and the integral c̃µ =
∞
∫

0

µ̃(t)dt/t is finite. Then,

∞
∫

0

Wµf(x, η)
dη

η
≡ lim

ε→0
ρ→∞

ρ
∫

ε

Wµf(x, η)
dη

η
= c̃µf(x), ∀f ∈ L2(Rn),

where the limit is interpreted in the L2-norm.

Proof. Let

fε,ρ(x) =

ρ
∫

ε

Wµf(x, η)
dη

η
, 0 < ε < ρ <∞; f ∈ L1 ∩ L2.

By employing the Fourier transform and the Fubini theorem, from (2.13) we have
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f
∧

ε,ρ(y) =

ρ
∫

ε

dη

η

∫

Rn×(0,∞)

P (z, 1)
(

∫

Rn

e−2πix.yf(x− ηtz)dx
)

dzdµ(t)

(we replace x with x+ ηtz)

= f
∧

(y)

ρ
∫

ε

dη

η

∫

Rn×(0,∞)

P (z, 1)e−2πi(z.y)ηtdzdµ(t)

(2.1)
= f

∧

(y)

ρ
∫

ε

dη

η

∞
∫

0

e−πηt|y|dµ(t) (put η = s/π|y|)

= f
∧

(y)

ρπ|y|
∫

επ|y|

ds

s

∞
∫

0

e−stdµ(t) = f
∧

(y)

ρπ|y|
∫

επ|y|

µ̃(s)
ds

s
.

Setting kε,ρ(y) =
ρπ|y|
∫

επ|y|

µ̃(s) ds
s
, we have

(3.1) f
∧

ε,ρ(y) = f
∧

(y)kε,ρ(y).

Since c̃µ =
∞
∫

0

µ̃(s) ds
s

is finite and the function
t
∫

0

µ̃(s) ds
s

continuous on [0,∞),

c
def
= sup

t>0

∣

∣

∣

t
∫

0

µ̃(s)
ds

s

∣

∣

∣

is finite. Hence

(3.2) |kε,ρ(y)| =
∣

∣

∣

ρπ|y|
∫

0

µ̃(s)
ds

s
−

επ|y|
∫

0

µ̃(s)
ds

s

∣

∣

∣
≤ 2c.

Now by the Plancherel and Lebesque Dominated Convergence theorems it follows that

‖fε,ρ − c̃µf‖
2
= ‖f

∧

ε,ρ − c̃µf
∧

‖
2

(3.1)
= ‖f

∧

(kε,ρ − c̃µ)‖
2
→ 0 as ε→ 0, ρ→∞.

Hence, for any f ∈ L1 ∩ L2,

lim
ε→0
ρ→∞

‖fε,ρ − c̃µf‖
2
= 0.

The statement for arbitrary f ∈ L2 follows in a standard way by using uniform L2 → L2

boundedness of the family of linear operators Aε,ρf ≡ fε,ρ:

‖Aε,ρf‖
2
= ‖fε,ρ‖

2
= ‖f

∧

ε,ρ‖2 = ‖f
∧

kε,ρ‖
2

(3.2)

≤ 2c‖f
∧

‖
2
= 2c‖f‖

2
,

that is ‖Aε,ρf‖
2
≤ 2c‖f‖

2
, ∀ f ∈ L1 ∩ L2.

The General case follows by density. ¤

The following result gives a Lp-version of the Calderón-type reproducing formula for
arbitrary p ≥ 1.
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3.2. Theorem. Let f ∈ Lp(Rn), 1 ≤ p ≤ ∞ (L∞ ≡ C0- the space of continuous
functions vanishing at infinity). Let µ be a finite (signed) Borel measure on R1 such that

µ(R1) = 0, µ({0}) = 0, suppµ ⊂ [0,∞) and

∞
∫

0

| log t|d|µ|(t) <∞,

then

(3.3)

∞
∫

0

Wµf(x, η)
dη

η
≡ lim

ε→0

∞
∫

ε

Wµf(x, η)
dη

η
= cµf(x) ,

where

cµ =

∞
∫

0

log
1

t
dµ(t),

the limit being with respect to the Lp-norm (1 ≤ p < ∞), or taken pointwise for almost
all x ∈ Rn. In the case p = ∞ it is assumed that L∞ = C0 and the limit is understood
in the sup-norm.

Proof. We need the following modification of the wavelet-type transform Wµf .

Wµf(x, η) =

∫

Rn×(0,∞)

P (y, t)f(x− ηy)dy dµ(t)

(we put y = (1/η)z, dy = (1/η)ndz and use (2.3))

=

∞
∫

0

(

∫

Rn

P (z, ηt)f(x− z)dz
)

dµ(t)
(2.5)
=

∞
∫

0

Ptηf(x) dµ(t).(3.4)

Let

(3.5) Vεf(x) =

∞
∫

ε

Wµf(x, η)
dη

η
, ε > 0.

Then, by using (3.4) and the Fubini theorem, we have

Vεf(x) =

∞
∫

ε

(

∞
∫

0

Ptηf(x) dµ(t)
)dη

η
=

∞
∫

0

(

∞
∫

ε

Ptηf(x)
dη

η

)

dµ(t)

=

∞
∫

0

(

∞
∫

εt

Psf(x)
ds

s

)

dµ(t) =

∞
∫

0

(1

s

s/ε
∫

0

dµ(t)
)

Psf(x) ds.(3.6)

Setting k(s) = 1
s

s
∫

0

dµ(t) and kτ (s) =
1
τ
k(s/τ), we have kτ (s) =

1
s

s/τ
∫

0

dµ(t) and therefore,

1
s

s/ε
∫

0

dµ(t) = kε(s). Making use of this in (3.6) we have

(3.7) Vεf(x) =

∞
∫

0

kε(s)Psf(x)ds.
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By setting c̃µ =
∞
∫

0

k(s) ds (which is finite and equal to cµ ≡
∞
∫

0

log 1
τ
dµ(τ) by Lemma 2.5),

and using Minkowski inequality we have

‖Vεf(x)− c̃µf(x)‖p =
∥

∥

∥

∞
∫

0

kε(s)Psf(x)ds−

∞
∫

0

k(s)f(x)ds
∥

∥

∥

p

=
∥

∥

∥

∞
∫

0

k(s)Psεf(x)ds−

∞
∫

0

k(s)f(x)ds
∥

∥

∥

p

≤

∞
∫

0

|k(s)|‖Psεf(x)− f(x)‖pds.

From (2.6), (2.8) and Lebesgue’s convergence theorem it follows that the last expression
tends to zero as ε→ 0. For similar reasons the convergence is uniform for f ∈ C0.

It remains to show the pointwise (a.e) convergence in (3.3). For f ∈ Lp, (1 ≤ p <∞),
we have

|Vεf(x)| ≤

∞
∫

0

|kε(s)||Psf(x)|ds

≤ sup
s>0

|Psf(x)|

∞
∫

0

|kε(s)|ds = c · sup
s>0

|Psf(x)|,(3.8)

where c =
∞
∫

0

|kε(s)|ds =
∞
∫

0

|k(s)|ds < ∞ by Lemma 2.5. From (3.8) and (2.9) it follows

that for any λ > 0

meas{x ∈ Rn : sup
ε>0

|Vεf(x)| > λ} ≤ c1.meas{x ∈ Rn : Mf (x)| > λ} ≤
(

c2
‖f‖p
λ

)p

.

Thus the maximal operator sup
ε>0

|Vεf(x)| is of weak (p, p)-type. Now by employing

Lemma 2.6 and keeping in mind that Vεf(x) → c̃µf(x) pointwise as ε → 0 for any
f ∈ C0 (this class of functions is dense in Lp, (1 ≤ p < ∞)), we obtain for any f ∈ Lp

that Vεf(x) → c̃µf(x) a.e. as ε → 0. To complete the proof of the theorem it remains
only to recall that

c̃µ = cµ ≡

∞
∫

0

log
1

s
dµ(s) (see Lemma 2.5).

¤
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30 M. Eryiğit, I. A. Aliev

[6] Rubin, B. The Calderón reproducing formula, windowed X–Ray transforms and Radon

transforms in Lp–spaces, The Journal of Fourier Anal. and Appl. 4 No 2, 175–197, 1998.

[7] Stein, E. M. and Weiss G. Introduction to Fourier analysis on Euclidean spaces, (Princeton

Univ. Press, Princeton N. J., 1971).



Hacettepe Journal of Mathematics and Statistics
Volume 33 (2004), 31 – 50

GRINDING FROM THE

MATHEMATICAL POINT OF VIEW

Georgi V. Smirnov∗

Received 02 : 07 : 2004 : Accepted 17 : 12 : 2004

Abstract

A rigorous mathematical description of grinding processes used in pow-
der technologies is developed. A grinding equation, an operator equa-
tion, connecting the final particle size distribution function to the par-
ticle size distribution function before the grinding process is studied.
The mathematical model introduced here can be used to predict the re-
sults of grinding, to construct grinding systems with desired properties,
and to improve the particle size measurement.

Keywords: Grinding equation, Operator equation, Particle size distribution function.
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1. Introduction

Powder technologies have many industrial applications in powder coating [5] and phar-
maceutics [6], for example. The powder production is based on the use of special grinding
systems [3]. The aim of this work is to develop a rigorous mathematical description of
grinding processes.

Any grinding system contains grinders and classifiers. The grinder is responsible for
the particle size reduction and the classifier separates small particles and takes them out
from the grinder. These two principal elements of grinding systems can be described in
terms of operators defined in spaces of particle size distribution functions. This allows
to derive a grinding equation, an operator equation, connecting the grinding system
’output’, the final particle size distribution, to the ‘input’, the particle size distribution
before the grinding process. This mathematical model can be used to predict the results
of grinding, to construct grinding systems with desired properties, and to improve the
particle size measurement.

The paper is organized as follows. In the second section an informal outline of the
approach is presented. The third section is devoted to geometric partition models and
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moment analysis. The partition operator and the classifier are studied in the fourth
section. The fifth section deals with the grinding equation. Finally, the last section
contains concluding remarks.

2. Informal Outline of the Approach

Consider a set of particles. Let ν(V )dV be the number of particles with the volumes
in the interval [V, V + dV ]. The density function f for the random value V (the particle
volume) is given by

(1) f(V ) =
ν(V )

∫∞

0
ν(V )dV

.

2.1. Partition operator. Suppose that a particle with the volume V is divided into n
parts with the volumes ξkV , k = 1, n, where

ξ̄ = (ξ1, . . . , ξn) ∈ Ξ = {(ξ1, . . . , ξn) | ξk ≥ 0, ξ1 + . . .+ ξn = 1}.

Let the probability of getting particles with the volumes belonging to the intervals
[ξkV, (ξk + dξk)V ] be φ(ξ̄)dξ̄, where φ : Ξ → R is a symmetric density function. De-
note by P(f) the density function for the particle volume after the partition. Obviously

(2) P(f)(V )dV =
P(ν)(V )dV

∫∞

0
P(ν)(V )dV

,

where P(ν)(V )dV stands for the number of particles with the volumes in the interval
[V, V + dV ] after the partition. Observe that the number P(ν)(V )dV can be written as
a superficial integral

P(ν)(V )dV =

∫

Ξ

n
∑

k=1

ν

(

V

ξk

)

d

(

V

ξk

)

φ(ξ̄)dSξ̄.

Dividing this equality by
∫ ∞

0

P(ν)(V )dV = n

∫ ∞

0

ν(V )dV

and invoking (1) and (2), we get

P(f)(V ) =
1

n

∫

Ξ

n
∑

k=1

f

(

V

ξk

)

d

(

V

ξk

)

φ(ξ̄)dSξ̄.

Since the function φ is symmetric, we obtain

(3) P(f)(V ) =

∫ 1

0

f

(

V

η

)

ψ(η) dη,

where

ψ(η) =
1

η

∫

Ξη

φ(η, ξ2, . . . , ξn)dSξ̃,

and

Ξη = {ξ̃ = (ξ2, . . . , ξn) | ξk ≥ 0, η + ξ2 + . . .+ ξn = 1}.

Obviously

(4)

∫ 1

0

ηψ(η) dη =

∫

Ξ

φ(ξ̄)dSξ̄ = 1.

Thus equation (3) gives a general form of the partition operator. The function ψ satisfying
(4) can be found experimentally or derived theoretically from partition models.
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2.2. Two types of grinding. Classifier. The grinding process can be modelled as a
successive application of the partition operator given by (3):

fout = P
N (fin),

where fout and fin stand for the the final particle size density function and the initial
particle size density function, respectively. During this process the particles do not leave
the grinder. If, for example, ψ(η) = 2δ(η − 1/2), then all particles are divided into two
equal parts independently on their shapes. Consider the input density function

fin(V ) =







(aV a−1/ba)e−(x/b)
a

, x ≥ 0,

0, x < 0,

known as the Rosin-Rammler density function [1]. Then we have

fout(V ) = 2Nfin
(

2NV
)

,

that is, the output is again a Rosin-Rammler density function with a new parameter b.
Obviously, this density function can be used to describe particle sizes only in this special
case ψ(η) = 2δ(η − 1/2).

Another type of grinding includes a separation process. A special device, known as
classifier, separates small particles and takes them out from the grinder. To model this
separation introduce a classifier operator Cα, α > 0, defined by

Cα(f)(V ) = cα(V )f(V ),

where

cα(V ) =







0, V < α,

1, V ≥ α.

The physical meaning of the parameter α is very simple. If V < α, then the particle
leaves the grinder. The grinding process with classification can be represented in the
following form

fout =
∞
∑

k=0

(I− Cα)(P ◦ Cα)
k(fin),

where I is the identity operator.

2.3. Grinding equation. Equivalently the output can be written as

(5) fout = (I− Cα)(g),

where

(6) g =
∞
∑

k=0

(P ◦ Cα)
k(fin).

Applying (formally) the operator (I− P ◦ Cα) to (6), we obtain the grinding equation

(7) g = P ◦ Cα(g) + fin.

Using (3) the grinding equation (7) can be written in the integral form

(8) g(V ) =

∫ 1

0

cα

(

V

η

)

g

(

V

η

)

ψ(η) dη + fin(V ) =

∫ V/α

0

g

(

V

η

)

ψ(η) dη + fin(V ).

From (5) we have

fout(V ) = g(V ), V < α.
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Therefore (8) implies

(9) fout(V ) =

∫ V/α

0

g

(

V

η

)

ψ(η) dη + fin(V ), V < α.

It is easy to see that the integral in (9) depends only on the values g(V ), with V ∈ [α,∞[.
Hence to find the output from (9) it suffices to solve integral equation (8) in the interval
[α,∞[, that is, to solve the equation

(10) g(V ) =

∫ 1

0

g

(

V

η

)

ψ(η) dη + fin(V ), V ≥ α.

2.4. Connection with the integro-differential batch grinding equation. It turns
out that the grinding equation can be easily obtained from existing comminution models.
The fundamental equation of fragmentation, known as the batch grinding equation, has
the form

(11)
∂f(V, t)

∂t
= −s(V )f(V, t) +

∫ ∞

V

b(V,W )s(W )f(W, t)dW,

where f(V, t) is the size density function at the moment t, b(V,W ) is the breakage func-
tion, giving the fraction of particles with volumes in the range [V, V + dV ] obtained by
breakage of a particle of volume W , and s(V ) is the breakage rate of particles of vol-
ume V (see [8], for example). This is a simple balance law similar to that of population
dynamics. Equation (11) is in a good agreement with the experimental data [7].

Integrating equation (11) and setting

g(V ) = s(V )

∫ ∞

0

f(V, t)dt,

we get

lim
t→∞

f(V, t) + g(V ) =

∫ ∞

V

b(V,W )g(W )dW + f(V, 0).

All known breakage functions have the form

b(V,W ) = ψ

(

V

W

)

V

W 2
.

(This structure of b was confirmed by numerous experiments [7].) After the change of
variables η = V/W in the integral we obtain

(12) lim
t→∞

f(V, t) + g(V ) =

∫ 1

0

g

(

V

η

)

ψ(η) dη + f(V, 0).

Assume that s(V ) = 0, whenever V < α. Then we have

(13) lim
t→∞

f(V, t) =

∫ V/α

0

g

(

V

η

)

ψ(η) dη + f(V, 0), V < α.

Since limt→∞ f(V, t) = 0 whenever V ≥ α, equation (12) implies

(14) g(V ) =

∫ 1

0

g

(

V

η

)

ψ(η) dη + f(V, 0), V ≥ α.

Equalities (13) and (14) coincide with (9) and (10), respectively. This is, probably,
the easiest way to derive the grinding equation, although the structure of the partition
operator must be postulated.

The batch grinding integro-differential equation describes distribution at any stage
of the grinding process and contains the breakage rate function s(V ). Theoretical or
experimental determination of this function causes serious difficulties. Equations (13)
and (14) do not contain s(V ) and are more suitable to predict the final distribution, for
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any given feed distribution. Since system (13) and (14) is a consequence of (11), it does
not contradict the experimental data.

2.5. Geometric partition models. The fragmentation of a particle in the grinder
obviously depends on the particle shape. For the sake of simplicity assume that there
exists only a finite numberM of shapes and any particle of the shapem = 1,M is divided
into at most two particles of shapes m′ = 1,M and m′′ = 1,M . Such a partition model
can be obtained using some approximation rules. For example, if we have only spherical
particles (M=1), then any particle is divided into two particles (obviously non-spherical)
with volumes V1 and V2. To form a one-shape partition model we have to approximate
the new particles by spheres with volumes V1 and V2. The partition model can be
completely artificial or based on a physical hypothesis. The shape set should be chosen
to be rather simple, a finite number of ellipsoids or polyhedrons, for example. Consider
one possible partition model. The dust is formed by ellipsoids of shapes m = 1,M .
If the particle is sufficiently small, the geometry of the grinder is not important. Any
fragmentation can be seen as a result of collision of a particle with an infinite rigid plane
Π0. An ellipsoid-shaped particle E is divided into two particles by a plane Π containing
the normal vector to the plane Π0 at the point of collision Π0 ∩ E, and such that the
area of the ellipse E ∩ Π is minimal. This hypothesis is quite natural: in this case the
energy needed to divide the particle is the minimal one. Each of the new particles is
approximated by ellipsoids E′ and E′′ of shapes m′ = 1,M and m′′ = 1,M , respectively.
If V is the volume of the ellipsoid E, then the ellipsoids E ′ and E′′ have volumes V ′ and
V ′′ satisfying V = V ′ + V ′′. To model the grinding process it suffices to consider only a
finite number of possible orientations l = 1, L, of the particles with respect to the plane
Π0. For example, the normal vector to the plane Π0 at the point of collision Π0 ∩ E is
parallel to one of the ellipsoid axes.

A geometric partition model can be described by a finite number of rules

R(m, l) = (m′(m, l),m′′(m, l), γ), m = 1,M, l = 1, L,

which establish a correspondence between a pair (m, l) (shape and orientation) and a
pair of new shapes m′ and m′′, and the ratio of the volumes γ = V ′/V ′′, 0 ≤ V ′ ≤ V ′′.
Obviously

(15) V ′ =
γ

1 + γ
V and V ′′ =

1

1 + γ
V.

If a particle of the shapem with the orientation l is not divided, we use the rule R(m, l) =
(0,m, 0). Three simple illustrative examples of geometric partition models are considered
in the next section. If the number of shapes M and of orientations L are big enough, one
can get a partition model close to reality.

Let νm(V )dV be the number of particles of the shape m with the volumes in the

interval [V, V + dV ]. Consider the functions fm, m = 1,M , given by

fm(V ) =
νm(V )

∑M
n=1

∫∞

0
νn(V )dV

.

Put

P(fm)(V ) =
P(νm)(V )

∑M
n=1

∫∞

0
P(νm)(V )dV

,

where P(νm)(V )dV stands for the number of particles with the shape m and the volumes
in the interval [V, V +dV ], after the partition. Assume that all orientations of the particles
with respect to the plane Π0 are equally likely. This is a natural assumption in the case
of non-isotropic materials. (If materials with a crystalline structure are considered, then
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it is necessary to introduce corresponding probabilities of the orientations.) Using (15)
we have

(16) P(νk)(V )dV =
1

L

L
∑

l=1

∑

(m,θ)∈N(k,l)

νm(θV )d(θV ),

where

N(k, l) = {(m, θ) | R(m, l) = (k, n, 1/(θ − 1)) or R(m, l) = (n, k, θ − 1)}.

Set

τ(m, l) =







1, m′(m, l) = 0,

2, m′(m, l) 6= 0.

Assume that their exists a number τ satisfying

(17) τ =
1

L

L
∑

l=1

τ(m, l), m = 1,M.

For example, if all particles are divided into two parts, then this condition is satisfied
and τ = 2. Since

M
∑

n=1

∫ ∞

0

P(νn)(V )dV = τ

M
∑

n=1

∫ ∞

0

νn(V )dV ,

dividing (16) by

M
∑

n=1

∫ ∞

0

P(νn)(W )dWdV,

we get

(18) P(fk)(V ) =
1

τL

L
∑

l=1

∑

(m,θ)∈N(k,l)

θfm(θV ).

The density function f can be represented in the form

f(V ) =

M
∑

m=1

fm(V ).

The partition operator now takes the form

(19) P(f) =
M
∑

m=1

P(fm),

where P(fm), m = 1,M , are given by (18).

2.6. Moments. The partition operator given by (19) cannot be reduced to form (3).
The study of moments helps to understand the relation between (19) and (3) and to
develop a rigorous mathematical theory of grinding. Set

µ(m)
s =

∫ ∞

0

V sfm(V )dV, and

P(µ(m)
s ) =

∫ ∞

0

V s
P(fm(V ))dV, m = 1,M, s = 0, 1, . . . .
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From (18) we have

(20) P(µ(k)s ) =
1

τL

L
∑

l=1

∑

(m,θ)∈N(k,l)

θ−sµ(m)
s , k = 1,M, s = 0, 1, . . . .

Introducing column-vectors µ̄s and P(µ̄s) with the components µ
(m)
s and P(µ

(m)
s ), m =

1,M , respectively, equalities (20) can be written as

(21) P(µ̄s) = Psµ̄s, s = 0, 1, . . . ,

where Ps is a M ×M matrix with the elements

(Ps)km =
1

τL

L
∑

l=1

∑

{θ|(m,θ)∈N(k,l)}

θ−s.

Note that (17) implies

M
∑

k=1

(P0)km =
1

τL

L
∑

l=1

τ(m, l) = 1, m = 1,M,

that is the matrix P0 is stochastic.

Consider the moments of the density functions f and P(f):

µs =

∫ ∞

0

V sf(V )dV =
M
∑

m=1

µ(m)
s , s = 0, 1, . . . ,

and

P(µs) =

∫ ∞

0

V s
P(f)(V )dV, s = 0, 1, . . . .

If P(f) is given by (3), then we have

(22) P(µs) = νs+1µs, s = 0, 1, . . . ,

where

νs =

∫ ∞

0

ηsψ(η) dη, s = 0, 1, . . . .

On the other hand, if P(f) is given by (19), then we obtain

(23) P(µs) =

M
∑

m=1

P(µ(m)
s ), s = 0, 1, . . . ,

where P(µ
(m)
s ), m = 1,M , are defined by (20) or, equivalently, by (21). Moment trans-

formation (22) is a special case of (23). Indeed, if Psµ̄s = νs+1µ̄s, s = 0, 1, . . ., then (22)
and (23) coincide.

2.7. Main objectives. The first issue we address in this paper is the construction of
geometric partition models and the study of the moment sequences generated by the
dominant eigenvalues λs of the corresponding matrices Ps, s = 0, 1, . . ..

We show that under some natural conditions the sequences λ−Ns PN
s µ̄s tend to eigen-

vectors ˆ̄µs of the matrices Ps as N goes to infinity. This implies that

M
∑

m=1

P
N (µ(m)

s ) ≈ λNs µs,

whenever N is big enough, that is, after many partitions the transformation of the mo-
ments is described (approximately) by (22) and νs+1 = λs. This observation allows us to
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obtain the partition operator representation (3) from geometrical partition models, but
formula (3) should be understood in some generalized sense.

A rigorous theory of the grinding equation is the second main objective of this work.
We show that the equation has a unique solution in an appropriate space.

3. Geometric Partition Models

We shall consider geometric partition models satisfying the following conditions:

(C1): The matrices Ps, s = 0, 1, . . ., have the form

Ps = pI + ηs(D + P̂s),

where p ∈ [0, 1[, η ∈]0, 1], I is the identity matrix, D is a diagonal matrix
with the elements dm ≥ 0 such that maxm=1,M dm = dm̂ > dm, m 6= m̂,

P̂s = P̂ (ηs1, . . . , η
s
K), ηk ∈]0, 1[, k = 1,K, and P̂ (z1, . . . , zK) is a matrix with the

elements

(P̂ )ij =
K
∑

k=1

aijkzk, aijk ≥ 0, i, j = 1,M, k = 1,K.

(C2): There exists n such that the matrices (D + P̂ (z1, . . . , zK))n are positive,

whenever zk > 0, k = 1,K.

3.1. Examples. Here we present three simple examples of geometric partition models.
All these models satisfy conditions (C1) and (C2).

Example 1 Consider a two-dimensional dust composed of ellipses

E =

{

(x, y) ∈ R2

∣

∣

∣

∣

x2

a2
+
b2

b2
≤ 1

}

of two types: a = b and a = 2b. Assume that there are three possible orientations of the
ellipses with respect to the plane (in this case the line) Π0: the normal vector to Π0 is
parallel to the axis 0x, to a line between the axes 0x and 0y, and to the axis 0y. The
corresponding geometric partition model is described by the following rules:

R(1, l) = (2, 2, 1), l = 1, 3,

R(2, l) =











(1, 1, 1), l = 1,

(2, 2, γ), l = 2,

(2, 2, 1), l = 3,

where γ ∈]0, 1[. Transformation (18) of the functions f1 and f2 is given by

P(f1)(V ) =
1

6
(4f2(2V )),

P(f2)(V ) =
1

6
(12f1(2V ) + 4f2(2V ) + (1 + 1/γ)f2((1 + 1/γ)V )+

+ (1 + γ)f2((1 + γ)V )).

Formula (21) takes the form

P

(

µ
(1)
s

µ
(2)
s

)

=
1

6

(

0 1/2s−1

3/2s−1 1/2s−1 + (γ/(1 + γ))s + 1/(1 + γ)s

)(

µ
(1)
s

µ
(2)
s

)
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Condition (C1) is satisfied with p = 0, η = 1/(1 + γ), and

D =

(

0 0

0 1/6

)

Obviously condition (C2) is satisfied with n = 2.

Example 2 Consider a three-dimensional dust composed of ellipsoids

E =

{

(x, y, z) ∈ R3

∣

∣

∣

∣

x2

a2
+
b2

b2
+
z2

c2
≤ 1

}

of three types: a = b = c, a = b = 2c, and a = 2b = 2c. Assume that there are seven
possible orientations of the ellipsoids with respect to the plane Π0: the normal vector
to the plane is parallel to the lines generated by the vectors (0, 0, 1), (0, 1, 0), (1, 0, 0),
(ξ, ζ, η), (−ξ, ζ, η), (ξ,−ζ, η), and (−ξ,−ζ, η). The corresponding geometric partition
model is described by the following rules:

R(1, l) = (2, 2, 1), l = 1, 7,

R(2, l) = (3, 3, 1), l = 1, 7,

R(3, l) =











(1, 1, 1), l = 1, 2

(3, 3, 1), l = 3,

(2, 3, γ), l = 4, 7,

where γ ∈]0, 1[. Transformation (18) of the functions f1, f2, and f3 is given by

P(f1)(V ) =
1

14
(8f3(2V )),

P(f2)(V ) =
1

14
(28f1(2V ) + 4(1 + 1/γ)f3((1 + 1/γ)V )),

P(f3)(V ) =
1

14
(28f2(2V ) + 4f3(2V ) + 4(1 + γ)f3((1 + γ)V )).

Formula (21) takes the form

P









µ
(1)
s

µ
(2)
s

µ
(3)
s









=
1

14









0 0 1/2s−2

7/2s−1 0 4 (γ/(1 + γ))s

0 7/2s−1 1/2s−1 + 4/(1 + γ)s

















µ
(1)
s

µ
(2)
s

µ
(3)
s









In this case condition (C1) is satisfied with p = 0, η = 1/(1 + γ), and

D =









0 0 0

0 0 0

0 0 2/7









It is easy to verify that condition (C2) is satisfied and n = 4.

Example 3 Consider a two-dimensional dust composed of triangles with the angles

(π/3, π/3, π/3), (π/2, π/3, π/6), and (π/6, π/6, 2π/3).

The first and the second vertices of the triangles belong to the axis 0x. The third vertex
is in the upper half-plane. Assume that there are twelve possible orientations of the
triangles with respect to the plane (line) Π0: the angle between the axes 0x and the
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normal vector to Π0 is equal to (l − 1)π/6, l = 1, 12. The corresponding geometric
partition model is described by the following rules:

R(1, l) =

{

(0, 1, 0), l 6= 4, 8, 12

(2, 2, 1), l = 4, 8, 12,

R(2, l) =



















(0, 2, 0), l 6= 8, 9, 12

(2, 2, 1/3), l = 8,

(1, 3, 1), l = 9,

(2, 3, 1/2), l = 12,

R(3, l) =











(0, 3, 0), l 6= 3, 4, 5

(3, 2, 1/2), l = 3, 5,

(2, 2, 1), l = 4.

The equality m′(m, l) = 0 in these rules implies that the particle with the shape m
and the orientation l is not divided. In this model the parameter τ is equal to 5/4.
Transformation (18) of the functions f1, f2, and f3 is given by

P(f1)(V ) =
1

15
(9f1(V ) + 2f2(2V )),

P(f2)(V ) =
1

15
(12f1(2V ) + 9f2(V ) + 4f2(4V ) + (4/3)f2((4/3)V ) + 3f2(3V )+

+ 4f3(2V ) + 3f3((3/2)V )),

P(f3)(V ) =
1

15
(2f2(2V ) + (3/2)f2((3/2)V ) + 9f3(V ) + 6f3(3V )).

Formula (21) takes the form

P









µ
(1)
s

µ
(2)
s

µ
(3)
s









=
1

15









9 1/2s 0

6/2s 9 + 1/4s + (3/4)s + 1/3s 2/2s + 2 (2/3)s

0 1/2s + (2/3)s 9 + 2/3s

















µ
(1)
s

µ
(2)
s

µ
(3)
s









Condition (C1) is satisfied with p = 3/5, η = 3/4, and

D =









0 0 0

0 1/15 0

0 0 0









Obviously condition (C2) is satisfied with n = 2.

3.2. Auxiliary results. Recall the following corollary of the Frobenius theorem [2].

3.1. Theorem. Let A be a non-negative M×M matrix. Assume that there exists n such
that the matrix An is positive. Then there exists a simple eigenvalue λ > 0 of A (called
the dominant eigenvalue of A) corresponding to an eigenvector with positive coordinates
and such that λ > |λ′| for any eigenvalue λ′ 6= λ of A.

Let µ̄ = (µ(1), . . . , µ(M)) ∈ CM and ν̄ = (ν(1), . . . , ν(M)) ∈ CM be complex vectors.

The inner product is denoted by 〈µ̄, ν̄〉. The norm is defined as |µ̄| =
∑M

m=1 |µ
(m)|. If A

is a matrix, then the transposed matrix is denoted by AT .

Set z̄ = (z1, . . . , zK) ∈ CK . From condition (C2) and Theorem 3.1 we see that

the matrices (D + P̂ (z̄)) and (D + P̂T (z̄)) have a dominant eigenvalue µ(z̄), whenever

zk > 0, k = 1,K. Denote by ˆ̄µ(z̄) and ˇ̄µ(z̄) the corresponding eigenvectors satisfying
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| ˆ̄µ(z̄)| = | ˇ̄µ(z̄)| = 1. If z̄ = 0, then we have ˆ̄µ(0) = ˇ̄µ(0) = ˘̄µ, where the vector ˘̄µ has the
components µ̆m = 0, m 6= m̂, and µ̆m̂ = 1 (see condition (C1)).

Suppose that zk > 0, k = 1,K. Then the subspace E(z̄) = {ē | 〈 ˇ̄µ(z̄), ē〉 = 0}

satisfies (D+ P̂ (z̄))E(z̄) ⊂ E(z̄), and its dimension is equal to M − 1. Consider a vector

v̄ = (v(1), . . . , v(M)) ∈ CM . Then the linear system

(24)







α ˆ̄µ(z̄) + ē = v̄,

〈 ˇ̄µ(z̄), ē〉 = 0

has a unique solution (α(z̄, v̄), ē(z̄, v̄)). The scalar α(z̄, v̄) can be written as

(25) α(z̄, v̄) =
M
∑

m=1

α(m)(z̄)v(m).

3.2. Proposition. The functions µ(z̄), ˆ̄µ(z̄), and α(m)(z̄), m = 1,M , are analytic in a
neighborhood of zero.

Proof. 1. Consider the characteristic equation

∆(µ, z̄) = det(D + P̂ (z̄)− µI) = 0.

Obviously

∂∆(µ, 0)

∂µ

∣

∣

∣

∣

µ=dm̂

= −
∏

m6=m̂

(dm − dm̂) 6= 0.

By the Implicit Function theorem [4] the function µ(z̄) is analytic in a neighborhood of
zero.

2. Denote by I∗, D∗, and P̂∗ the (M − 1)×M matrices obtained after the elimination

of the m̂-th row from the matrices I, D, and P̂ , respectively. Consider the equation

Φ(µ̄, z̄) =

(

(D∗ + P̂∗(z̄)− µ(z̄)I∗)µ̄
∑M

m=1 µ
(m) − 1

)

=

(

0

0

)

Since

det
∂Φ(µ̄, 0)

∂µ̄

∣

∣

∣

∣

µ̄=˘̄µ

= ±
∏

m6=m̂

(dm − dm̂) 6= 0,

by the Implicit Function theorem the function ˆ̄µ(z̄) is analytic in a neighborhood of zero.
Analogously one can prove that the function ˇ̄µ(z̄) is analytic in a neighborhood of zero.

3. Consider the equation

Φ(α, ē, z̄, v̄) =

(

α ˆ̄µ(z̄) + ē− v̄,

〈 ˇ̄µ(z̄), ē〉

)

=

(

0

0

)

.

Let (α0, ē0) be a solution to system (24) with z̄ = 0. Since

det
∂Φ(α, ē, z̄, v̄)

∂(α, ē)

∣

∣

∣

∣

(α,ē,z̄,v̄)=(α0,ē0,0,v̄)

= (−1)M+1 6= 0,

and the functions ˆ̄µ(z̄) and ˇ̄µ(z̄) are analytic in a neighborhood of zero, by the Implicit

Function theorem the functions α(m)(z̄) are analytic in a neighborhood of zero. ¤
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3.3. The Condition (S). In the sequel we shall consider numerical sequences {qs}s≥0
satisfying the following condition:

(S): There exist an integer ŝ ≥ 0 and numbers 1 > ξ1 > ξ2 > . . . > 0 such that

qs =
∑

j≥0

q(j)ξsj , s ≥ ŝ,

and the series converges absolutely.

Obviously the sum and the product of two sequences satisfying condition (S) satisfy
condition (S).

3.3. Proposition. Assume that conditions (C1) and (C2) are satisfied. Then sequences
of the dominant eigenvalues λs of the matrices Ps and of the components of the corre-
sponding eigenvectors ˆ̄µs, | ˆ̄µs| = 1, s = 0, 1, . . ., satisfy condition (S). Moreover, if the
components of vectors v̄s, s = 0, 1, . . ., form sequences satisfying condition (S), then the
sequence αs of solutions to systems (24) with v̄ = v̄s, s = 0, 1, . . ., satisfies condition (S).

Proof. Since by Proposition 3.2 the functions µ(z̄), µ̂(m)(z̄), and α(m)(z̄), m = 1,M , are
analytic in a neighborhood of zero and

λs = p+ ηsµ(ηs1, . . . , η
s
K), ˆ̄µs = ˆ̄µ(ηs1, . . . , η

s
K),

and

αs =

M
∑

m=1

α(m)(ηs1, . . . , η
s
K)v(m)

s

(see (25)), we obtain the result. ¤

Note that in the case of Examples 1-3, using the formulae for the roots of the cor-
responding characteristic polynomials of the matrices Ps, we can found explicitly the
representation

λs = p+ ηs
∑

m1,...,mK

am1,...,mK
(ηm1

1 . . . ηmK
K )s, s ≥ ŝ.

4. The Main Operators

In this section we give a correct definition of the partition operator and the classifier.
To this end we have to introduce appropriate spaces, which are a generalization of the
space of functions of bounded variation. Since the sizes of the particles forming a dust
are limited, it suffices to consider particles with the volumes V ∈ [0, 1].

4.1. The Spaces. The sequence {λs}
∞
s=0 of the dominant eigenvalues of the matrices

Ps may not be a moment sequence of a function of bounded variation. But it can be
associated with an element of a larger space, which we construct as a dual space to a
subspace of the space of continuous functions. Denote by C(0, 1) the space of continuous
functions on the interval [0, 1] and by BV (0, 1) the space of functions of bounded variation
on the interval [0, 1]. Consider the space

X(n) = {h(x) = a0 + a1x+ . . .+ an−1x
n−1 + xnh̃(x) | h̃ ∈ C(0, 1)}

with the norm

|h|n = |a0|+ . . .+ |an−1|+ |h̃|C(0,1).

It is easy to see that X(n) ∼= Rn × C(0, 1) is a Banach space. Its conjugate space is

X∗(n) ∼= Rn ×BV (0, 1) = {Ψ∗ = (µ0, . . . , µn−1, Ψ̃
∗) | µk ∈ R, Ψ̃∗ ∈ BV (0, 1)},
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and the elements Ψ∗ ∈ X∗(n) and h ∈ X(n) satisfy the identity

〈Ψ∗, h〉 = a0µ0 + . . .+ an−1µn−1 +

∫ 1

0

h̃(x)dΨ̃∗(x).

For example, we have

〈Ψ∗, xk〉 = µk, k = 0, n− 1, and 〈Ψ∗, xk〉 =

∫ 1

0

xk−n dΨ̃∗(x), k ≥ n.

The norm of a functional Ψ∗ ∈ X∗(n) is given by

|Ψ∗| = max

{

|µ0|, . . . , |µn−1|,
1
∨

0

(Ψ̃∗)

}

,

where
∨1

0(Ψ̃
∗) is the total variation of the function Ψ̃∗. Obviously X(n+1) ⊂ X(n) and

X∗(n+ 1) ⊃ X∗(n).

4.1. Proposition. Assume that the sequence {qs}s≥0 satisfies condition (S). Let k ≥ 0

be an integer. Then there exists Ψ∗ ∈ X∗(ŝ+ k) such that qs = 〈Ψ
∗, xs+k〉, s = 0, 1, . . ..

Proof. The function Ψ̃∗ given by

(26) Ψ̃∗(x) =







∑

{j≥1|ξj<x} q
(j)ξŝ+k

j , x ∈]0, 1[,
∑

j≥0 q
(j), x = 1,

belongs to the space BV (0, 1) (the series converges absolutely). Setting

Ψ∗ = (q−k, . . . , q−1, q0, . . . , qŝ−1, Ψ̃
∗),

where q−s, s = 1, k, are arbitrary numbers, we get the result. ¤

4.2. The Partition Operator. Suppose that functions Ψ∗, F ∗ ∈ BV (0, 1) are contin-
uously differentiable, (Ψ∗)′ = ψ∗ and (F ∗)′ = f∗. Then for any h ∈ C(0, 1) from (3) we
have

〈P(f∗), h〉 =

∫ 1

0

∫ 1

0

f∗
(

V

η

)

ψ∗(η) dηh(V ) dV.

Since suppf∗ ⊂ [0, 1], this can be rewritten as
∫ 1

0

∫ 1

V

f∗
(

V

η

)

ψ∗(η) dηh(V )dV =

∫ 1

0

∫ η

0

f∗
(

V

η

)

h(V )dV ψ∗(η) dη.

After the change of variables V = ηW we obtain

〈P(f∗), h〉 =

∫ 1

0

∫ 1

0

f∗(W )ηh(ηW )dWψ∗(η) dη = 〈Ψ∗, φF∗,h〉,

where φF∗,h(η) = η〈F ∗, hη〉 and hη(w) = h(ηW ). This observation allows to give a cor-
rect definition of the partition operator PΨ∗ : X∗(n)→ X∗(n), associated to a functional
Ψ∗ ∈ X∗(n+ 1).

4.2. Lemma. Consider F ∗ ∈ X∗(n) and h ∈ X(n). Then φF∗,h ∈ X(n+ 1).

Proof. Let F ∗ = (µ0, . . . , µn−1, F̃
∗) and h(x) = a0 + a1x + . . . + an−1x

n−1 + xnh̃(x).
Then we have

(27) φF∗,h(η) = η〈F ∗, hη〉 = ηa0µ0 + . . .+ ηnan−1µn−1 + ηn+1

∫ 1

0

h̃(ηx) dF̃ ∗(x).
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It suffice to prove that the function
∫ 1

0
h̃(ηx) dF̃ ∗(x) is continuous. Since the function

h̃ : [0, 1]→ R is continuous, for any ε > 0 there exists δ > 0 such that |h̃(x)− h̃(y)| < ε,
whenever |x− y| < δ. Hence if |η − ξ| < δ, we get

∣

∣

∣

∣

∫ 1

0

(h̃(ηx)− h̃(ξx)) dF̃ ∗(x)

∣

∣

∣

∣

≤ sup
x∈[0,1]

|h̃(ηx)− h̃(ξx)|
1
∨

0

(F̃ ∗) < ε
1
∨

0

(F̃ ∗).

¤

Let Ψ∗ ∈ X∗(n+ 1), F ∗ ∈ X∗(n), and h ∈ X(n). Set

〈PΨ∗(F ∗), h〉 = 〈Ψ∗, φF∗,h〉,

where φF∗,h(η) = η〈F ∗, hη〉 and hη(w) = h(ηW ). From Lemma 4.2 we see that this
equality defines a functional PΨ∗(F ∗) ∈ X∗(n).

4.3. Proposition. The operator PΨ∗ : X∗(n) → X∗(n) is linear and continuous. Its
norm does not exceed |Ψ∗|X∗(n+1).

Proof. The linearity of this operator is obvious. Let Ψ∗ = (λ, λ0, . . . , λn−1, Ψ̃
∗), F ∗ =

(µ0, . . . , µn−1, F̃
∗), and h(x) = a0 + a1x+ . . .+ an−1x

n−1 + xnh̃(x). Then using (27) we
have

|〈PΨ∗(F ∗), h〉| = |〈Ψ∗, φF∗,h〉|

=

∣

∣

∣

∣

a0λ0µ0 + . . .+ an−1λn−1µn−1 +

∫ 1

0

∫ 1

0

h̃(ηx) dF̃ ∗(x) dΨ̃∗(η)

∣

∣

∣

∣

≤ |Ψ∗|X∗(n+1)|F
∗|X∗(n)|h|X(n).

This implies |PΨ∗ | ≤ |Ψ∗|X∗(n+1). ¤

Let Ψ∗ = (λ, λ0, . . . , λn−1, Ψ̃
∗) and F ∗ = (µ0, . . . , µn−1, F̃

∗). Since

φF∗,xs(η) = η〈F ∗, (ηy)s〉 = ηs+1〈F ∗, ys〉 = ηs+1µs, s = 0, 1, . . . ,

we have

〈PΨ∗(F ∗), xs〉 = 〈Ψ∗, φF∗,xs〉 = 〈Ψ
∗, ηs+1〉µs = λsµs = νs+1µs, s = 0, 1, . . . ,

where µs = 〈F ∗, xs〉 and νs = 〈Ψ∗, xs〉, s = 0, 1, . . ., that is, the operator PΨ∗ satisfies
(22).

4.3. Asymptotic behavior of the grinding process. Consider functions fm : [0, 1]→

R, m = 1,M , describing the initial volume distributions of the particles with the shape
m (see Section 2). Set f̄(V ) = (f1(V ), . . . , fM (V )). Then we have f(V ) = |f̄(V )| and

µ̄s =

∫ 1

0

V sf̄(V )dV.

Obviously

(28) |µ̄s| =

∫ 1

0

V s|f̄(V )|dV ≤

∫ 1

0

f(V )dV = 1.

Below we obtain an asymptotic representation for the vectors PN
s µ̄s when N goes to

infinity. We obtain an especially interesting result if the components of the moment
vectors µ̄s, s = 0, 1, . . ., satisfy condition (S). This take place if, for example, initially
we have only particles of one shape, say shape 1, with the same volume V0. In this case
f̄(V ) = (δ(V − V0), 0, . . . , 0) and µ̄s = (V s

0 , 0, . . . , 0).
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4.4. Theorem. Assume that conditions (C1) and (C2) are satisfied. Let p in condition
(C1) be zero. Then there exists a bounded sequence αs ≥ 0 such that

(29) PN
s µ̄s = (µ̃sη

s)N (αs ˆ̄µs + r(N)
s ),

where |r
(N)
s | ≤ ce−τN , τ > 0, and µ̃s = µ(ηs1, . . . , η

s
K). Moreover, if the components

of the moment vectors µ̄s, s = 0, 1, . . ., satisfy condition (S), then there exist n ≥ 0,
F ∗ ∈ X∗(n), and Ψ∗ ∈ X∗(n+ 1) such that 〈F ∗, xs〉 = αs and 〈Ψ∗, xs+1〉 = µ̃sη

s = λs,
s = 0, 1, . . ..

Remark This theorem implies that P
N (f) ≈ P

N
Ψ∗(F ∗) when N is large enough. This

justifies formula (3) for the partition operator, but this formula should be understood
in the general form introduced above. A knowledge of the dominant eigenvalues of the
matrices Ps allows us to compute the functional Ψ∗, and therefore to find the partition
operator PΨ∗ .

Proof of Theorem 4.4. Setting v̄ = µ̄s in (24) we see that there exist αs and ēs such that

µ̄s = αs ˆ̄µs + ēs,(30)

〈 ˇ̄µs, ēs〉 = 0.(31)

To show that the sequence αs is bounded, suppose that there exists a subsequence si
such that limi→∞ αsi =∞. Then multiplying (30) by ˇ̄µs, dividing by αs, and using (31),
we obtain 〈µ̄s, ˇ̄µs〉/αs = 〈 ˆ̄µs, ˇ̄µs〉. Since lims→∞ ˆ̄µs = lims→∞ ˇ̄µs = ˘̄µ, using (28), setting
s = si, and passing to the limit as i goes to infinity, we get 0 = 〈 ˘̄µ, ˘̄µ〉, a contradiction.
Thus the sequence αs is bounded. Combining (28) and (30), we see that the sequence ēs
is also bounded.

Applying PN
s to (30), we obtain (29) with

r(N)
s = µ̃−Ns (D + P̂s)

N ēs.

Since the eigenvalue µ̃s is dominant, the modules of the eigenvalues of the linear operator

µ̃−1s (D + P̂s)
∣

∣

∣

Es
, where Es = E(ηs1, . . . , η

S
K), are less than 1. Hence there exist norms

‖ · ‖s in RM such that ‖r
(N)
s ‖s ≤ γNs ‖ē‖s, γs ∈ [0, 1[, s,N = 0, 1, . . .. Since there are

constants cs satisfying | · | ≤ cs‖ · ‖s, s = 0, 1, . . ., we see that |r
(N)
s |, s = 0, 1, . . ., tend to

zero as N goes to infinity. Dividing (29) by (µ̃sη
s)N and passing to the limit as N goes

to infinity, we obtain

lim
N→∞

µ̃−Ns (D + P̂s)µ̄s = αs ˆ̄µ.

Since the components of the vectors µ̄s are non-negative, this implies that all the numbers
αs, s = 0, 1, . . ., are non-negative.

Set E = {ē | 〈 ˘̄µ, ē〉 = 0}. Obviously if ē ∈ E, then we have

(32) |d−1m̂ Dē| ≤ γ|ē|,

where γ = maxm6=m̂ dm/dm̂ < 1.

We show that there exists s0 such that for all ē ∈ Es, s ≥ s0 the inequality

|µ̃−1s (D + P̂s)ē| ≤
1 + γ

2
|ē|

holds. Suppose that there exist a subsequence si, i = 1, 2, . . ., and a sequence ēsi ∈ Esi ,
|ēsi | = 1, such that

(33) |µ̃−1si (D + P̂si)ēsi | >
1 + γ

2
.
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Without loss of generality the sequence ēsi converges to a vector ē ∈ E, |ē| = 1. Passing
to the limit in (33) as i goes to infinity, we obtain

|d−1m̂ Dē| ≥
1 + γ

2
.

This contradicts (32). Thus we have |r
(N)
s | ≤ ce−τN , where

τ = lnmax

{

1 + γ

2
, γ0, . . . , γs0

}

and

c = max

{

sup
s>s0

|ēs|, c0‖ē0‖, . . . , cs0‖ēs0‖

}

.

Assume that the components of the moment vectors µ̄s, s = 0, 1, . . ., satisfy condition
(S). Then by Proposition 3.3 the sequences {αs}s≥0 and {λs}s≥0 satisfy condition S.
Hence Proposition 4.1 implies the existence of n ≥ 0, F ∗ ∈ X∗(n), and Ψ∗ ∈ X∗(n+ 1)
such that 〈F ∗, xs〉 = αs and 〈Ψ∗, xs+1〉 = µ̃sη

s = λs, s = 0, 1, . . .. ¤

4.4. The Classifier. Suppose that a function F ∗ ∈ BV (0, 1) is continuously differen-
tiable and (F ∗)′ = f∗. Let α ∈]0, 1[. Then for any h ∈ C(0, 1) we have

〈Cα(F
∗), h〉 =

∫ 1

α

f∗(V )h(V ) dV = 〈F ∗, hχ[α,1]〉,

where

χ[α,1](x) =







1, x ∈ [α, 1],

0, x 6∈ [α, 1].

We use this identity to introduce a definition of the classifier operator Cα : X∗(n) →
X∗(n).

Denote by B(0, 1) the space of bounded functions on the interval [0, 1] with the sup-
norm. Consider the space

Y (n) = {h(x) = a0 + a1x+ · · ·+ an−1x
n−1 + xnh̃(x) | h̃ ∈ B(0, 1)}

with the norm

|h|Y (n) = |a0|+ · · ·+ |an−1|+ |h̃|B(0,1).

Clearly X(n) ⊂ Y (n). For example Y (n) contains all functions of the form h(x)χ[α,1](x).
Let F ∗ ∈ X∗(n). By the Hahn-Banach theorem, F ∗ can be considered as an element of
the dual space Y ∗(n) and |F ∗|Y ∗(n) = |F

∗|X∗(n). Consider α ∈ ]0, 1[, F ∗ ∈ X∗(n), and
h ∈ X(n). Introduce a linear operator Hα : X(n)→ Y (n) defined by

Hα(h)(x) = xnh̃(x)χ[α,1](x).

Define the classifier by

〈Cα(F
∗), h〉 = 〈F ∗,Hα(h)〉.

Obviously we have

〈F ∗,Hα(h)〉 =

∫ 1

α

h̃(x)dF̃ ∗(x).

4.5. Proposition. The operator Cα : X∗(n) → X∗(n) is linear and continuous. Its
norm is less than or equal to one.
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Proof. The linearity of this operator is obvious. Let F ∗ = (µ0, . . . , µn−1, F̃
∗) and h(x) =

a0 + a1x+ . . .+ an−1x
n−1 + xnh̃(x). Then we have

∣

∣〈Cα(F∗), h〉
∣

∣ =

∣

∣

∣

∣

∫ 1

α

h̃(x) dF̃ ∗(x)

∣

∣

∣

∣

≤ sup
x∈[α,1]

|h̃(x)|

1
∨

α

(F̃ ∗)

≤ |h|X(n)|F
∗|X∗(n).

This implies |Cα| ≤ 1. ¤

5. The Grinding Equation

Let Ψ∗ ∈ X(n+ 1). We can write (5) and (7) as equalities in the space X∗(n):

F ∗out = (I− Cα)(G
∗)

and

(34) G∗ = PΨ∗ ◦ Cα(G
∗) + F ∗in.

Applying Cα to (34) and setting H∗ = Cα(G
∗), we obtain

(35) H∗ = Cα ◦ PΨ∗(H∗) + Cα(F
∗
in).

Applying I− Cα to (34) we have

F ∗out = PΨ∗(H∗)− Cα ◦ PΨ∗(H∗) + (I− Cα)(F
∗
in),

that is, to find the output F ∗out, it suffices to solve equation (35).

5.1. Theorem. Let Ψ∗ = (λ, λ0, . . . , λn−1, Ψ̃
∗) ∈ X∗(n+ 1). Assume that

(36) lim
σ↑1

∫ 1

σ

|dΨ̃∗| = 0.

Then there exists m ≥ 0 such that equation (35) has one and only one solution H∗ ∈
X∗(n+m).

Proof. We show that the norm of the operator Cα ◦ PΨ∗ : X∗(n +m) → X∗(n +m) is
less than one, whenever m is big enough. The functional Ψ∗ can be considered as an
element of the space X∗(n+m+ 1):

Ψ∗ =

(

λ, λ0, . . . , λn+m−1,

∫ x

0

ymdΨ̃∗(y)

)

,

where λs = 〈Ψ∗, xs+1〉, s = n, n+m− 1. Let F ∗ = (µ0, . . . , µn+m−1, F̃
∗) ∈ X∗(n +m)

and h(x) = a0+· · ·+an+m−1x
n+m−1+xn+mh̃(x) ∈ X(n+m). The functional PΨ∗(F ∗) ∈

X∗(n+m) is given by

PΨ∗(F ∗) = (λ0µ0, . . . , λn+m−1µn+m−1, Φ̃
∗).

Therefore we have

(37) 〈PΨ∗(F ∗), h〉 =

n+m−1
∑

j=0

λjµjaj +

∫ 1

0

h̃(y)dΦ̃∗(y).

The functional Cα ◦ PΨ∗(F ∗) ∈ X∗(n+m) has the form

Cα ◦ PΨ∗(F ∗) = (0, . . . , 0, Φ̃∗(x)χ[α,1](x)),
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and the equality

(38) 〈Cα ◦ PΨ∗(F ∗), h〉 =

∫ 1

α

xmh̃(x) dΦ̃∗(x)

holds. Since

〈PΨ∗(F ∗), h〉 =

n+m−1
∑

j=0

λjµjaj +

∫ 1

0

∫ 1

0

ηmh̃(ηx) dF̃ ∗(x)dΨ̃∗(η)

=

n+m−1
∑

j=0

λjµjaj +

∫ 1

0

ηm
∫ η

0

h̃(y) dF̃ ∗
(

y

η

)

dΨ̃∗(η),

from (37) and (38) we obtain
∫ 1

α

xmh̃(x) dΦ̃∗(x) =

∫ 1

α

ηm
∫ η

α

h̃(y) dF̃ ∗
(

y

η

)

dΨ̃∗(η)

=

∫ 1

α

ηm
∫ 1

α/η

h̃(ηx) dF̃ ∗(x) dΨ̃∗(η).

Thus we have

〈Cα ◦ PΨ∗(F ∗), h〉 =

∫ 1

α

ηm
∫ 1

α/η

h̃(ηx) dF̃ ∗(x) dΨ̃∗(η)

≤ |h̃|C(0,1)

1
∨

0

(F̃ ∗)

∫ 1

α

ηm| dΨ̃∗(η)|

≤ |h|X(n+m)|F
∗|X∗(n+m)

∫ 1

α

ηm| dΨ̃∗(η)|.(39)

We have that limm→∞

∫ 1

α
ηm| dΨ̃∗(η)| = 0. Indeed, if σ ∈]α, 1[, then we have

∫ 1

α

ηm| dΨ̃∗(η)| ≤ σm
∫ σ

α

| dΨ̃∗(η)|+

∫ 1

σ

|dΨ̃∗(η)|

≤ σm
1
∨

α

(Ψ̃∗) +

∫ 1

σ

|dΨ̃∗(η)|.(40)

Consider a number ε > 0. From (36) we see that there exists σ ∈]α, 1[ such that the second
integral in (40) is less than ε/2. Hence sum (40) is less than ε, whenever m is big enough.
From (39) we see that the norm of the operator Cα ◦ PΨ∗ : X∗(n+m)→ X∗(n+m) is
less than one, if m is big enough. Therefore there exists m ≥ 0 such that equation (35)
has one and only one solution H∗ ∈ X∗(n+m). ¤

Consider a geometric partition model satisfying conditions (C1) and (C2). Assume
that p in condition (C1) is equal to zero. Then from Proposition 4.1 we see that there
exist a functional Ψ∗ ∈ X∗(n+1) such that λs = 〈Ψ

∗, xs+1〉, where λs, s = 0, 1, . . ., is the
sequence of the dominant eigenvalues λs of the matrices Ps. The condition p = 0 implies
that q(0) = 0 in (26). Therefore condition (36) is satisfied, and we get the following
result.

5.2. Theorem. Assume that conditions (C1) and (C2) are satisfied. Let p in condition
(C1) be zero. Then there exist a functional Ψ∗ ∈ X∗(n + 1) such that λs = 〈Ψ∗, xs+1〉,
where λs, s = 0, 1, . . ., is the sequence of the dominant eigenvalues of the matrices Ps,
and a number m such that equation (35) has one and only one solution H∗ ∈ X∗(n+m).
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The condition p = 0 essential in Theorems 4.4 and 5.2 is not restrictive. Indeed,
if p > 0, then we have Ψ∗ = Ψ∗0 + pΨ∗1, where Ψ∗0 = (λ, λ0, . . . , λn−1, Ψ̃

∗
0) and Ψ∗1 =

(1, . . . , 1, Ψ̃∗1). The function Ψ̃∗0 satisfies condition (36) and

Ψ̃∗1 =

{

0, x ∈ [0, 1[,

1, x = 1.

Equation (35) takes the form

H∗ = Cα ◦ PΨ∗
0
(H∗) + pCα ◦ PΨ∗

1
(H∗) + Cα(F

∗
in).

From this, after simple calculations we have

(1− p)H∗ = Cα ◦ PΨ∗
0
(H∗) + Cα(F

∗
in).

Dividing by (1 − p), we obtain an equation with a partition operator satisfying the
conditions of Theorems 4.4 and 5.2:

H∗ = Cα ◦ P(1−p)−1Ψ∗
0
(H∗) + (1− p)−1Cα(F

∗
in).

6. Conclusion

We have shown that the grinding process can be described in term of partition op-
erators PΨ∗ and classifier operators Cα defined in the spaces X∗(n). The dynamics of
the grinding process is approximately described as P

N (f) ≈ P
N
Ψ∗(F ∗) whenever N is big

enough. Here F ∗ ∈ X∗(n) is a generalized distribution function. This implies that the
input and the output of a grinding system are related (approximately) by the grinding
equation. The equation has a unique solution in an appropriate space X∗(n). The study
of geometric partition models, especially the study of the dominant eigenvalues of the
matrices Ps, allows one to compute the functional Ψ∗, and therefore to determine the
partition operator PΨ∗ .

Let us mention possible applications of the theory developed above. A grinding system
can be composed of various grinders and classifiers. The grinding equation is an adequate
mathematical model, which allows us to predict the results of grinding and construct
grinding systems with desired properties.

An experimental verification of mathematical models describing grinding processes
is rather difficult because different instruments used in particle size measurement give
different results [1]. Usually sizers interpret all particles as spheres independently of the
particle shapes. For example, if a sizer uses laser light scattering, then the results of the
scattered radiation measurements are interpreted as the far-field diffraction pattern of
an assembly of spheres. The moment analysis can help to recover the ‘true’ particle size
distributions from the results of the measurements.

Consider a particle of volume V and the shape m having an orientation ω ∈ Ω, where
Ω is a set of possible orientations of particles in the sizer. Assume that the sizer interprets
the particle as a ball of volume T (m,ω)V . Then the density function measured by the
device is given by

fb(V ) =

M
∑

m=1

∫

Ω

fm

(

V

T (m,ω)

)

hm(ω) dω,
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where hm are the density functions of the random value ω, the orientation of a particle
of the shape m. It is easy to calculate

µbs =

∫ ∞

0

V sfb(V )dV

=
M
∑

m=1

∫

Ω

∫ ∞

0

V sfm

(

V

T (m,ω)

)

dV hm(ω) dω

=

M
∑

m=1

θ
(m)
s+1µ

(m)
s ,

where

θ(m)
s =

∫

Ω

T s(m,ω)hm(ω) dω.

As we know from Theorem 4.4, the vector µ̄s (see (21)) approximately has the form

µ̄s ≈ µs ˆ̄µs, where ˆ̄µs is an eigenvector of the matrix Ps with the coordinates µ̂
(m)
s ,

m = 1,M , satisfying
∑

m µ̂
(m)
s = 1. Therefore

µbs = µs

M
∑

m=1

θ
(m)
s+1µ̂

(m)
s .

From this we can find the moments µs and estimate the density function f .
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Abstract

Phase field equations are analyzed. It is shown that the solution of the
problem considered depends continuously on changes in the parameters.

Keywords: System of equations of phase field, A priori estimates, Nonlinear equations,
Continuous dependence.

2000 AMS Classification: 35K60, 35B 30, 35B 45

1. Introduction

We consider the problem

τφt − ξ
2∆φ+ f(x, φ) = 2u+ h1(x, t), (x, t) ∈ QT(1)

ut +
l

2
φt = K∆u+ h2(x, t), (x, t) ∈ QT(2)

φ |Γ = φ∂(x, t), u |Γ = u∂(x, t), (x, t) ∈ ∂Ω× (0, T ](3)

φ(x, 0) = φ0(x), u(x, 0) = u0(x), x ∈ Ω,(4)

where QT = Ω× (0, T ], T > 0, Ω ⊂ Rn, (n ≥ 1) is a bounded domain with a sufficiently
smooth boundary, ∂Ω; ξ, τ , l and K are positive constants characterizing the length
scale, the relaxation time, the latent heat and the thermal diffusivity, respectively. Also,
φ0(x), u0(x), φ∂(x, t), u∂(x, t), h1(x, t), h2(x, t) and f(x, s) are given functions.

In [1], G. Caginalp considered the following system of equations as a model describing
the phase transitions with a separation surface of finite thickness:

τφt = ξ
2∆φ+

1

2
(φ− φ

3) + 2u, x ∈ Ω, t ∈ R+(5)

ut +
l

2
φt = K∆u, x ∈ Ω, t ∈ R+.(6)

∗Sakarya University, Department of Mathematics, Sakarya, Turkey.
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Under the assumption ξ2

τ
< K, a global existence theorem was proved for the classical so-

lution of the initial boundary value problem for the system (5)-(6) with non-homogeneous
Dirichlet boundary conditions of the form

(7) φ (t, x) |∂Ω = φ∂(x), u (t, x) |∂Ω = u∂(x), t ∈ R+.

Several scientists have investigated problems based on Caginalp’s model, and made a
few modifications. In [2], Caginalp and Hastings investigated the existence of stationary
solutions of problem (5)-(7) in Ω ⊂ R1. In [3], C. M. Eliott and Song Mu Zheng proved
the global unique solvability of initial boundary value problems for the system (5)-(6) in

the class H2(Ω)×H2(Ω), Ω ⊂ Rn, n ≤ 3, without the assumption ξ2

τ
< K, for boundary

conditions of the form (7), as well as for conditions of the form

∂φ

∂n
|∂Ω = 0,

∂u

∂n
|∂Ω = 0, t ∈ R+,

φ |∂Ω = φ∂(x),
∂u

∂n
|∂Ω = 0, t ∈ R+.

They also studied the behaviour of the solutions of the system (5),(6) when t → ∞.
In [4], Kalantarov proved that the initial boundary value problem for system (5)-(6),
under homogeneous boundary conditions of the form (7), is globally uniquely solvable in

C(R+, X), X =
0

H1(Ω)×
0

H1(Ω), and established the existence of a global attractor. In
[5], Brochet, Hilhorst and Chen investigated problem (1)-(4), considering v = u + l

2
φ,

f(s) =
2p−1
∑

j=0

bjs
j , b2p−1 > 0, p ≥ 2, hi(x, t) = 0, (i = 1, 2) and homogeneous Neumann

boundary conditions, proving this problem to be well posed if (φ0, u0) ∈ (L2(Ω))
2.

2. Continuous Dependence of Solutions

We investigate the continuous dependence on the parameters ξ, τ, l andK of solutions
of problem (1)–(4) in the class V (QT )× V (QT ), where

(8) V (QT ) = W
1
2 (QT ) ∩ {υ(x, t) : ∆υ ∈ L2(QT )} .

The existence of a solution to this problem can be seen from the general results of [7] and
[8], but to the best of our knowledge an investigation of continuous dependence does not
occur in the literature. Investigations of this type are of interest in physical problems,
and can lead to useful applications.

We assume that f(x, φ) is the Caratheodory function which satisfies the local Lipschitz
condition:

(9) |f(x, s1)− f(x, s2)| ≤ c(1 + |s1|
p−1 + |s2|

p−1) |s1 − s2| , ∀ s1, s2 ∈ R1,

where p ∈ [1,∞) if n = 1, 2, and p ∈
[

1, n
n−2

]

if n ≥ 3. We have used standard tech-

niques for the calculations (cf. [6], which considers this type of question for a different
problem). Let {φ1, u1} and {φ2, u2} be the solutions from V (QT )×V (QT ) of the follow-
ing initial-boundary value problems for different coefficients ξ1,τ1, l1,K1 and ξ2,τ2, l2,K2



Continuous Dependence on the Parameters 53

respectively.

τ1(φ1)t − ξ
2
1∆φ1 + f(x, φ1) = 2u1 + h1(x, t), (x, t) ∈ QT

(u1)t +
l1

2
(φ1)t = K1∆u1 + h2(x, t), (x, t) ∈ QT

φ1 |Γ = φ∂(x, t), u1 |Γ = u∂(x, t), (x, t) ∈ ∂Ω× (0, T ]

φ1(x, 0) = φ0(x), u1(x, 0) = u0(x), x ∈ Ω

τ2(φ2)t − ξ
2
2∆φ2 + f(x, φ2) = 2u2 + h1(x, t), (x, t) ∈ QT

(u2)t +
l2

2
(φ2)t = K2∆u2 + h2(x, t), (x, t) ∈ QT

φ2 |Γ = φ∂(x, t), u2 |Γ = u∂(x, t), (x, t) ∈ ∂Ω× (0, T ]

φ2(x, 0) = φ0(x), u2(x, 0) = u0(x), x ∈ Ω.

We define the difference variables φ, u, ξ, τ, l and K by

φ = φ1 − φ2,

u = u1 − u2,

ξ
2 = ξ

2
1 − ξ

2
2 ,

τ = τ1 − τ2,

l = l1 − l2,

K = K1 −K2

Then {φ, u} satisfies the initial-boundary value problem:

τ1φt + τ(φ2)t − ξ
2
1∆φ− ξ

2∆φ2 + f(x, φ1)− f(x, φ2) = 2u,(10)

ut +
l1

2
φt +

l

2
(φ2)t = K1∆u+K∆u2(11)

φ |Γ = u |Γ = 0(12)

φ(x, 0) = u(x, 0) = 0(13)

If we take the inner product in L2(Ω) of (10) by φt + φ and of (11) by 2τ1
l21
ut +

4
l1
u and

then add the equations obtained, we obtain

(14)

τ1 ‖φt‖
2 + ξ

2
1 ‖∇φ‖

2 +
4K1
l1

‖∇u‖2 +
2τ1
l21
‖ut‖

2+

+
d

dt

[

ξ21
2
‖∇φ‖2 +

2

l1
‖u‖2 +

τ1

2
‖φ‖2 +

τ1K1

l21
‖∇u‖2

]

≤

≤

∣

∣

∣

∣

∣

∣

∫

Ω

(f(x, φ1)− f(x, φ2))φtdx

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∫

Ω

(f(x, φ1)− f(x, φ2))φdx

∣

∣

∣

∣

∣

∣

+

+ 2 |(u, φ)|+
4 |K|

l1
|(∆u2, u)|+

2τ1 |K|

l21
|(∆u2, ut)|+

τ1

l1
|(φt, ut)|+

+ |τ | |((φ2)t, φt)|+ |τ | |((φ2)t, φ)|+
∣

∣ξ
2
∣

∣ |(∆φ2, φt)|+
∣

∣ξ
2
∣

∣ |(∆φ2, φ)|+

2 |l|

l1
|((φ2)t, u)|+

τ1 |l|

l21
|((φ2)t, ut)| ,
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where ‖.‖ denotes the norm on L2(Ω). Using (9) and Hölder’s inequality, the first term
on the right hand side of (14) can be estimated in the following manner:

∣

∣

∣

∣

∣

∣

∫

Ω

(f(x, φ1)− f(x, φ2))φtdx

∣

∣

∣

∣

∣

∣

≤

∫

Ω

|(f(x, φ1)− f(x, φ2))| |φt| dx ≤

≤

∫

Ω

c(1 + |φ1|
p−1 + |φ2|

p−1) |φ| |φt| dx ≤

≤ c ‖φ‖ ‖φt‖+ c

∫

Ω

|φ1|
p−1 |φ| |φt| dx+ c

∫

Ω

|φ2|
p−1 |φ| |φt| dx ≤

≤ c ‖φ‖ ‖φt‖+ c ‖φ‖L 2n
n−2

‖φt‖
(

‖φ1‖
p−1
L(p−1)n

+ ‖φ2‖
p−1
L(p−1)n

)

.

By the Sobolev imbedding theorem the following inequality holds:

‖φ‖L 2n
n−2

(Ω) ≤ c2 ‖∇φ‖ .

Therefore,
∣

∣

∣

∣

∣

∣

∫

Ω

(f(x, φ1)− f(x, φ2))φtdx

∣

∣

∣

∣

∣

∣

≤ c ‖φ‖ ‖φt‖+

+ cc2 ‖φt‖ ‖∇φ‖
(

‖φ1‖
p−1
L(p−1)n

+ ‖φ2‖
p−1
L(p−1)n

)

.

Since {φi, ui} ∈ V (QT )× V (QT ) are fixed,

‖φ1‖
p−1
L(p−1)n

+ ‖φ2‖
p−1
L(p−1)n

≤ c1(t).

Hence

(15)

∣

∣

∣

∣

∣

∣

∫

Ω

(f(x, φ1)− f(x, φ2))φtdx

∣

∣

∣

∣

∣

∣

≤ c ‖φ‖ ‖φt‖+ cc1(t)c2 ‖φt‖ ‖∇φ‖ ,

and similarly,

(16)

∣

∣

∣

∣

∣

∣

∫

Ω

(f(x, φ1)− f(x, φ2))φdx

∣

∣

∣

∣

∣

∣

≤ c ‖φ‖2 + cc1(t)c2 ‖φ‖ ‖∇φ‖ .

Taking into account (15) and (16), we obtain from (14)

(17)

τ1 ‖φt‖
2 + ξ

2
1 ‖∇φ‖

2 +
4K1
l1

‖∇u‖2 +
2τ1
l21
‖ut‖

2+

+
d

dt

[

ξ21
2
‖∇φ‖2 +

2

l1
‖u‖2 +

τ1

2
‖φ‖2 +

τ1K1

l21
‖∇u‖2

]

≤

≤ 2 |(u, φ)|+
4 |K|

l1
|(∆u2, u)|+

2τ1 |K|

l21
|(∆u2, ut)|+

τ1

l1
|(φt, ut)|+

+ |τ | |((φ2)t, φt)|+ |τ | |((φ2)t, φ)|+
∣

∣ξ
2
∣

∣ |(∆φ2, φt)|+
∣

∣ξ
2
∣

∣ |(∆φ2, φ)|+

+
2 |l|

l1
|((φ2)t, u)|+

τ1 |l|

l21
|((φ2)t, ut)|+ c ‖φ‖ ‖φt‖+

+ cc1(t)c2 ‖φt‖ ‖∇φ‖+ c ‖φ‖2 + cc1(t)c2 ‖φ‖ ‖∇φ‖ .
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Making use of Cauchy’s inequality with ε, the right hand side of (17) can be estimated.
If we select the number ε > 0 sufficiently small then we obtain

(18)

τ1

4
‖φt‖

2 +
4K1
l1

‖∇u‖2 +
τ1

2l21
‖ut‖

2+

d

dt

[

ξ21
2
‖∇φ‖2 +

2

l1
‖u‖2 +

τ1

2
‖φ‖2 +

τ1K1

l21
‖∇u‖2

]

≤

≤ a1(t) ‖∇φ‖
2 + (

3 + l1

l1
) ‖u‖2 + a2(t) ‖φ‖

2+

+

[(

τ1 + 2l1
2l21

)

l
2 +

(

8 + τ1

2τ1

)

τ
2

]

‖(φ2)t‖
2+

+

(

2(τ1 + l1)

l21

)

K
2 ‖∆u2‖

2 +

(

8 + τ1

2τ1

)

ξ
4 ‖∆φ2‖

2
,

where,

a1(t) =
4c2c21(t)c

2
2

τ1
and a2(t) =

4c2

τ1
+
c2c21(t)c

2
2

4ξ21
+ c+ 2.

If we set

c2(t) = max

{

2a1(t)

ξ21
,
3 + l1

2
,
2a2(t)

τ1
, 1

}

,

and

Y (t) =
ξ21
2
‖∇φ‖2 +

2

l1
‖u‖2 +

τ1

2
‖φ‖2 +

τ1K1

l21
‖∇u‖2 ,

then from (18) we obtain










dY (t)

dt
≤ c2(t)Y (t) +

(

c3l
2 + c4τ

2) ‖(φ2)t‖
2 + c4ξ

4 ‖∆φ2‖
2 + c5K

2 ‖∆u2‖
2
,

Y (0) = 0,

where, c3 = τ1+2l1
2l21

, c4 = 8+τ1
2τ1

and c5 = 2(τ1+l1)

l21
. According to Gronwall’s lemma, we

have

(19)
Y (t) ≤ exp

{

T
∫

0

c2(s)ds

}

{

(c3l
2 + c4τ

2) ‖(φ2)t‖
2
L2(QT )

+

+c4ξ
4 ‖∆φ2‖

2
L2(QT )

+ c5K
2 ‖∆u2‖

2
L2(QT )

}

.

Since {φi, ui} ∈ V (QT )× V (QT ), we have

‖(φ2)t‖
2
L2(QT )

≤ C,

‖∆φ2‖
2
L2(QT )

≤ C, and

‖∆u2‖
2
L2(QT )

≤ C.

If we set

max {c3C, c4C, c4C, c5C} = C6

and

C6 exp







T
∫

0

c2(s)ds







= C7
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then from (19) we have

Y (t) ≤ C7
[

K
2 + ξ

4 + τ
2 + l

2]

Hence we have proved the following theorem.

2.1. Theorem. Assume that (9) is satisfied. Then the solution of problem (1)-(4) from
V (QT )× V (QT ) depends continuously on the parameters ξ, τ , l and K. Moreover,

‖φ1 − φ2‖
2

C(0,T ;W1
2 (Ω))

≤ C7
[

(K1 −K2)
2 + (ξ1 − ξ2)

4 + (τ1 − τ2)
2 + (l1 − l2)

2]
,

and

‖u1 − u2‖
2

C(0,T ;W1
2 (Ω))

≤ C7
[

(K1 −K2)
2 + (ξ1 − ξ2)

4 + (τ1 − τ2)
2 + (l1 − l2)

2]
.
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Abstract

This study concerns the use of r and Q control charts based on data
depth to control process involving multivariate quality measurements.
In this paper, firstly the concept of data depth is introduced in order
to construct quality control chart structures, the characteristics of data
depth are given and statistics based on this concept are obtained. Fol-
lowing this, the structures and interpretations of mainly nonparametric
r and Q control charts are explained for the Mahalanobis depth measure
used in statistical quality control by means of an example.

Keywords: Control Charts, r Chart, Q Chart, Multivariate statistical process control,
Depth function.

1. Introduction

In statistical process control, control charts are very important tools for monitoring
and/or controlling whether a manufacturing process is statistically in control or not.

Shewart’s (X,X) and CUSUM charts are widely used for this purpose. In addition
to their efficiency, these charts are preferred because they are simple to construct and
interpret. However, as these charts are based on an assumption of normality of the
quality variable and are used when there is only one quality variable, they are not always
appropriate. In many cases, two or more variables may need to be monitored, and
following these two (or more) quality variables separately may be misleading. The Type I
error α occurring when the variables are monitored separately differs from the Type I error
α occurring when the variables are monitored simultaneously. Therefore, multivariate
control charts are required when there is more than one quality variable. Monitoring the
process of related variables is usually called a multivariate quality control problem.

Studies of multivariate quality control were first carried out by Hotelling in 1947;
later, Hicks, Jackson, Crosier, Hawkins, Lowry, Montgomery, Pignatiello, Runger, Tracy,
Young, Mason, Wadsworth, Alt and others also carried out studies on this subject. The
work of these authors is given in [5], together with detailed references. The multivariate
control charts considered by these authors are also based on the normality assumption

∗Hacettepe University, Faculty of Science, Department of Statistics, Beytepe, Ankara, Turkey,
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for the quality variable. Widely used multivariate control charts are χ2 and Hotelling’s
T 2 charts.

Liu defined the new, mainly nonparametric, control charts (r, Q and S) by using a
depth data concept in order to monitor the process of multivariate quality measurements
[4]. These charts, like (X,X) and CUSUM charts, are important as they bring out the
shift in location and the increase in scale, in addition to having a two dimensional graphic
representation which makes them easy to interpret. Unlike χ2 and Hotelling’s T 2, the
normality assumption on the quality variable is not required, which is another advantage
of these charts. So, these charts serve as an important measure in quality assurance [5].

In this study, r and Q control charts based on the Mahalanobis depth for elliptical
distributions are given. Firstly, depth function, its properties and statistics obtained from
depth function to construct control charts based on Mahalanobis depth are explained.

2. Data Depth

Statistical depth functions are widely used in nonparametric derivations for multi-
variate data. A depth function suitable for a distribution F in Rp, denoted by D(F ;x),
brings out the non-central ranking of X in Rp with respect to F . A higher value of
D(F ;x) for X in Rp means that X based on the distribution F is deeper (more central),
and vice versa. That is, a smaller value of D(F ;x) for X in Rp shows that the sample
point is further away from the center with respect to F . Depth functions have some
important characteristics, which are given as follows:

Affine Invariance: Let z denote the family of distributions in Rp. If X is a random
vector having distribution function F in Rp, then D(FAx+b;Ax+ b) = D(F ;x).

Here, A is a non-singular p× p dimensional matrix and b is p-dimensional vector.

Maximality at the Center: When a F∈ z is symmetric around any point θ0 (that is, if
the distribution function of the random variable X is F , then (X−θ0) and (θ0−X) have
the same distribution), then

D(F ; θ0) = maxx∈Rp D(F ;x).

Monotonicity Relative to the Deepest Point: When F ∈ z is symmetric around a point
θ0, in other words θ0 is the deepest point of the distribution F , then D(F ;x) has the
monotonicity characteristic if D(F ;x) ≤ D(F ; θ0 + α(x− θ0)).

Here α ∈ [0, 1].

Vanishing at Infinity : For all F ∈ z, if ‖x‖ → ∞ then D(F ;x)→ 0 [6].

Many data depth concepts have been given having all of the above properties. Tukey’s
depth, Majority depth, Mahalanobis depth and simplicial depth are the most popular of
these.

In this study, as the control charts based on Mahalanobis depth are to be used, only
Mahalanobis depth is given in detail here.

Liu defined Mahalanobis depth as follows [4]:

Let X denote a random vector having distribution function F in Rp. Then the Maha-
lanobis measure of depth for any point x (a p× 1-dimensional vector) in Rp with respect
to the distribution F is defined as follows:

(1) MD(F ;x) =
1

[1 + (x− µF )́Σ−1(x− µF )]

In (1), µF and ΣF are the mean vector and covariance matrix of the distribution function
F , respectively. Hence, MD(F ;x) is a measure showing how ’deep’ or ’central’ x is with
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respect to the distribution F . When F is unknown and a sample taken from distribution
F is given, then the definition of Mahalanobis depth is:

(2) MD(Fm;x) =
1

[

1 + (x−X )́S−1(x−X)
]

In (2), X is a (p× 1) sample mean vector and S a (p× p) sample covariance matrix. The
depth function MD(F ; · ) is a depth function satisfying all of the above properties [3, 4].

3. Some Statistics Based on Data Depth used in Constructing

Control Charts

Let F and G be the distribution functions of two independent p-dimensional popula-
tions and X = {X1, . . . , Xm} be a sample taken from a population having distribution
F . In quality control, F can be thought of as a ’good population,’ in another words
considered as measurements of products produced by an in-control process.

Let Y = {Y1, . . . , Yn} be a random sample taken from a population having distribution
G (that is, new measurements taken from the process). In order to test whether the
process is in control, or if there is any deterioration in the quality of the product by using
the observations Yi’s, the distributions F and G need to be compared. If the Yi’s do not
approach to the distribution F , this means that the quality of product has deteriorated.
The hypotheses to test this can be given as follows:

Ho : F = G vs.

HA : There is a location shift and / or a scale increase from F to G(3)

To test this hypothesis, the statistic R(F ;Y ) which characterises the distance between
F and G with respect to data depth when X ∼ F and Y ∼ G for a Yi in R

p with respect
to the given data depth D( · ; · ) is defined as follows [2, 4]:

(4) R(F ;Yi) = PF {X : D(F ;X) ≤ D(F ;Yi)/X ∼ F}

When D(F ; · ) has affine- invariance, then R(F ;Y ) also has affine-invariance:

R(F ;Y ) = R(AY + b;FAY+b).

Under the hypothesis F = G, if the distribution of D(F ;Y ) is continuous, then the
distribution of R(F ;Y ) in (4) is uniformly distributed in [0, 1]:

(5) R(F ;Y ) ∼ U(0, 1).

The mean of the ratios R(F ;Y ) for all y generated from population G, denoted by
Q(F,G), is found as follows:

Q(F,G) = P {D(F ;X) ≤ D(F ;Y )/X ∼ F, Y ∼ G}(6)

( = EG[R(F ;Y )])

The parameter Q(F,G) given in (6) is called the ’quality index’ and takes values between
0 and 1 [2]. The quality index Q(F,G) shows whether or not there is a difference in
location and/or dispersion by comparing G and F .

When D(F ; · ) has affine-invariance, then Q(F,G) also has affine-invariance:

(7) Q(F,G) = Q(FAX+b;GAY+b).

In (7), A is a (p× p) non-singular matrix and b is a (p× 1) vector.

Let us denote by ell(h; θ,Σ) an elliptical distribution with parameters θ and Σ, where
h( . ) is a function from R to R and Σ is positive definite. When there is only a location
shift but no change in dispersion, the function Q(F ;G) decreases as θ1 moves away from
θ0 along any line when F ∼ ell(h; θ0,Σ0) and G ∼ ell(h; θ1,Σ0).
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When the locations are the same but there is a difference in dispersion, for F ∼

ell(h; θ0,Σ0)D(F ; · ) and G ∼ ell(h; θ0,Σ1), R(F ;Y )
ss

≤ R(F ;X) and Q(F ;G) ≤ 1
2
(here

“ss‘” denotes stochastically smaller). When there are both location shift and scale change,
then for F ∼ ell(h; θ0,Σ0) and G ∼ ell(h; θ1,Σ1), while the parameter θ1 moves away
from θ0 along any line, the function Q(F ;G) decreases uniformly [2].

The statistics obtained from (4) and (6) will be used while constructing the structure
of the control charts, and their limit distributions are given as follows:

a. Assuming the distribution F is known (meaning that F is either regarded as the
collection of one (or several) acceptable lot(s) or an elliptical distribution with µ and Σ
obtained from the measurements of a large acceptable batch).

When Y = {Y1, . . . , Yn} is a random sample taken from the distribution, Q(F ;G) is
the mean of the random variables R(F ;Y ):

(8) Q(F,Gn) =
1

n

n
∑

i=1

R(F ;Yi).

If D(F;X) has a continuous distribution, under hypothesis H0 the distribution of Q(F,Gn)

is the same as the distribution of
∑n

i=1
Ui

n
, when U1, U2, . . . , Un are independent and

uniformly distributed random variables in (0, 1).

As a result of the Central Limit Theorem,

(9) For n→∞ ,

[

Q(F,Gn)−
1

2

]

→k N(0,
1

12n
).

In (9), “k” means convergence in law.

b. If X = {X1, . . . , Xm} is a random sample taken from the unknown distribution
F and Y = {Y1, . . . , Yn} a random sample taken from the distribution G, then the
estimation of Q(F ;G) is:

(10) Q(Fm, Gn) =
1

n

n
∑

i=1

R(Fm;Yi).

In (10), R(Fm;Yi) is the ratio of the Xj ’s satisfying D(Fm;Xj) ≤ D(Fm;Yi) when the
distribution F is unknown:

(11) R(Fm;Yi) = # {D(Fm;Xj) ≤ D(Fm;Yi), j = 1, . . . ,m} /m.

Here the values of D(Fm; · ) are empirical depth values calculated with respect to Fm,
and if the distribution F is continuous, D(Fm; · ) converges to D(F ; · ) uniformly as
m→∞. Therefore:

(12) R(Fm;Yi)→
k U [0, 1] as m→∞, for all X.

The uniform convergence of D(Fm; · ) obtained by using Mahalanobis depth is valid when
F is an elliptical distribution and the second absolute moment of the distribution F exists
(

EF ‖X‖
2 <∞

)

.

As a result of this, when F is an elliptical distribution and
(

EF ‖X‖
2 <∞

)

, then
MD(Fm;x) converges to MD(F ;x) uniformly as m→∞ [2, 4].

In the same way, when D(F ;Y ) has continuous distribution, then it has also been
shown that Q(Fm, Gn) in (10) converges to Q(F ;G) as min(m,n)→∞.

Under the condition that (11) holds, the limit distribution of Q(Fm, Gn) is:

(13)

[

Q(Fm, Gn)−
1

2

]

→k N

(

0,

[

1

m
+
1

n

]/

12

)

, as min(m,n)→∞.
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In (13), if Q( . , . ) is used for the Mahalanobis depth then this equation is valid when F

is continuous and the forth absolute moment exists
(

EF ‖X‖
4 <∞

)

[2, 4].

4. r and Q Control Charts based on the Mahalanobis Depth

A r control chart is alike to a univariate X chart. An X control chart reveals whether
there is a deviation from a pre-determined process mean, or a trend or a non-random
pattern of an observation set. However, although this chart is very simple and efficient
when used to observe a univariate process, it cannot be easily generalized to a multivariate
process. In studies of the bivariate normal distribution, the control limits are given as
elliptical limits named as the control ellipse [1]. However, it cannot be said that they are
efficient for a multivariate data set as they require a normality assumption, Type I Error
α changes and the ranking of sample points with respect to time losses. An r control
chart with LCL = α corresponds to an α-level test of the following hypothesis:

H0 : F = G, vs.

HA : there is a location shift and/or a scale increase from F to G.

In order to construct a r control chart, the values of R(F ;Yi) are obtained using (4)
and (11) when the distribution F is known, or the values of R(Fm;Yi), i = 1, . . . , n
are calculated for X1, . . . , Xm only, when the distribution F is unknown. When the
distribution F is elliptical we denote by RMD(F, Yi) the value of R(F, Yi) obtained by
using the Mahalanobis depth given in (1) and (2). When the distribution F is known,
RMD(F, Yi) is given by:

(14) RMD(F ;Yi) = PF {X :MD(F ;X) ≤MD(F ;Y )/X ∼ F} ,

and when the distribution F is unknown, RMD(Fm;Yi) is given by:

(15) RMD(Fm;Yi) = # {MD(Fm;Xj) ≤MD(Fm;Yi), j = 1, . . . ,m} /m.

It is known from [4] that RMD(F ;Yi) has all the properties of R(F, Yi).

A r control chart is constructed by plotting the R(F, Yi)’s or the R(Fm, Yi)’s for sample
points i = 1, . . . , n.

The center line (CL) and the lower control limit (LCL) of the chart are:

CL = 0.5,

LCL = α.(16)

Equation (16) can be obtained from (4) and (12). As seen from these equations, the
expected values of R(F, Yi) and R(Fm, Yi) are 0.5. Therefore, in a r control chart it
is suitable to take CL as 0.5. Also, the values of the R(F, Yi) or the R(Fm, Yi) being
higher than 0.5 indicates a decrease in scale or an omittable shift in location. This is
thought of as a gain not a loss in the quality concept of statistical process control. The
process is not said to be out-of-control. Therefore, in a r control chart there exists only
a lower control limit LCL. However, although a UCL does not exist, CL plays the role
of a reference point enabling the observation of a possible trend or non-random pattern.
In a r control chart, when the values of R(F, Yi) or R(Fm, Yi) are in the region of α,
this means that process is statistically out-of-control. That is, there is signal of possible
quality deterioration or an out-of-control process. R(Fm, Yi) given in (11) shows how far
away from the center Y is with respect to the data set Xj . If the values of the R(Fm, Yi)
are small the ratio of the Xj ’s further from the center than Y is also small. So, Y is not
fitted centrally to a good data set. Therefore, under the assumption of Y ∼ G, a small
value of the values R(Fm, Yi) shows a possible deviation of G from F . As R(Fm, Yi) is
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defined with respect to data depth, a possible deviation means a shift in location and/or
an increase in scale [4].

The aim of a Q control chart is similar to that of a univariate X control chart. The
hypotheses for a Q control chart are:

H0 : F = G,Q(F,G) = 1
2

HA : Q(F,G) < 1
2

The acceptance of the hypothesis HA : Q(F,G) <
1
2
means that on average more

than 50% of the population F are deeper (more central) than any of the observations
Y generated from the distribution G. This shows a possible shift in location and/or an
increase in scale from F to G. If Q(F,G) > 1

2
, then G has a very small dispersion.

As a multivariate Q chart is similar to a univariate X control chart, in order to
construct Q control chart the mean of R(F, Yi) or of R(Fm,Yi) for k subgroups, each
of which have equal size, needs to be calculated. Assuming that the size of each subset
is t, the Q control chart for k × t = n, is constructed using (8) and (10) by plotting
{

Q(F,G1
t ), Q(F,G

2
t ), . . .

}

when F is known and
{

Q(Fm, G
1
t ), Q(Fm, G

2
t ) . . .

}

when F is

unknown. Here Gkt denotes the k
th (k = 1, 2, . . .) subgroup of the Yi’s with size t.

The values of the CL and the LCL of a Q chart depend on the choice of the size of the
subgroup. When t is large, the CL and LCL of the Q control chart for the

{

Q(F,Gkt )
}

’s
are obtained from (9):

(17) CL = 0.5 and LCL =

{

.5− zα

√

1

12t

}

,

and for the
{

Q(Fm, G
k
t )
}

’s they are obtained from (13):

(18) CL = 0.5 and LCL =

{

.5− zα

√

1

12t

[(

1

k
+
1

t

)]

}

.

This approach is valid until t=5. In applications, t can be taken as 3 or 4. In this case,
the parameters for the Q chart are given as follows [4]:

(19) CL = 0.5 and LCL =
(t!α)

1

t

t
.

The means of the ratios of Y ’s more out-of-centre thanX with respect to the Mahalanobis
depth given by (14) and (15) are respectively [4]:

(20) QMD(F,G
k
t ) =

1

t

t
∑

i=1

RMD(F ;Yi), k = 1, 2, . . .

and

(21) QMD(Fm, G
k
t ) =

1

t

t
∑

i=1

RMD(Fm;Yi), k = 1, 2, . . .

Hence, r control charts are constructed with respect to Mahalanobis depth by using
(14) and (15) and Q control chart by using (20) and (21). It is obvious that there is no
change in the central line and the control limits for these control charts obtained using
Mahalanobis depht.
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5. An Application

In this study, r and Q control charts based on Mahalanobis depth are obtained and
interpreted for a bivariate data set by taking into account the application in the study
of Liu [4]. Firstly, a random sample of size 540 is generated from the distribution F ∼
N [( 00 ) , (

1 0
0 1 )] using the MINITAB software. And then, a sample of size 40 is generated

from the distribution G ∼ N [( 22 ) , (
4 0
0 4 )]. Although the normality assumption is not

required for the construction of these charts, a normal distribution is chosen to make the
evaluation of the outcome easier.

The last 40 of the 540 sample points generated from distribution F are considered
as if they were generated from distribution G. So, in the charts constructed 40 sample
points generated from distribution F are expected to be in-control and 40 sample points
generated from distribution G are expected to reveal a shift in location and/or a change
in dispersion.

For every Xi, (i = 1, 2, . . . , 500) and Yi, (i = 1, 2, . . . , 80), the Mahalanobis measure
of depth is calculated using the EXCELL program. For Yi, (i = 1, 2, ..., 80), the values of
MD(Fm;Xi) and RMD(Fm;Xi) are given in Appendix 1. Using (16), a r control chart
is constructed using the 80 sample points, and are given in Figure 1. The value of LCL
is equal to 0.05. From Figure 1, it can be seen that the r control chart revails a shift in
the distribution mean and an increase in the scale as the last 40 sample points are out
of LCL.

A Q control chart is constructed for t = 4 and t = 10. The values of QMD(Fm, Gt)
obtained using (21) for t = 4 and for t = 10 are given in Appendix 2a and Appendix
2b, respectively. Figure 2 and Figure 3 show the Q control charts constructed for these
sample points. From Figure 2, it is seen that 10 of the last 40 sample points are beyond
the lower control limit for t = 4, and similarly it is seen that the last 4 sample points are
out-of-control for t = 10.

Figure 1. r control chart (n = 80)
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Figure 2. Q control chart (t = 4, k = 20)
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Figure 3. Q control chart (t = 10, k = 8)
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6. Concluding Remarks

r and Q control charts, mainly nonparametric, are constructed using the data depth
concept and are used for monitoring the process of multivariate quality measurements,
and can be interpreted just as easily as the well-known univariate X, X and CUSUM
charts. In addition they detect simultaneously the location shift and scale increase of the
process [4]. Unlike χ2 and Hotelling’s T 2 charts, one of the advantages of these charts is
that a normality assumption is not required.

It might be thought that r and Q control charts constructed using the Mahalanobis
depth are similar to a Hotelling T 2 chart, because both of them represent quadratic
distance of a point from its mean. However, while constructing r and Q control charts,
the Mahalanobis depth serves only as a tool to obtain the ranks of observations. The
charts are constructed with respect to the ranks of Mahalanobis depths, not with respect
to Mahalanobis depth itself. Also, to decide control limits in Hotelling’s T 2, the sample
distribution of Hotelling T 2 statistics is needed. For r and Q control charts based on
Mahalanobis depth, this is not required as the statistics are converted to ranks. There-
fore, the plotting of charts based on Mahalanobis depth is different from that based
on Hotelling’s T 2 and for an elliptical distributions r and Q control charts based on
Mahalanobis depth can be said to be more efficient
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7. Appendix 1

The values of MD(Fm;Yi) and RMD(Fm;Yi) for the last 40 sample points
generated from distribution F and for the 40 sample points generated

from distribution G

Yi MD(Fm;Yi) RMD(Fm;Yi) Yi MD(Fm;Yi) RMD(Fm;Yi)

1 0,6265 0,5080 41 0,0822 0,0000

2 0,6945 0,6140 42 0,1292 0,0020

3 0,5649 0,4220 43 0,1025 0,0000

4 0,1556 0,0020 44 0,0660 0,0000

5 0,5801 0,4360 45 0,2684 0,0620

6 0,4383 0,2740 46 0,2885 0,0840

7 0,8158 0,7660 47 0,1213 0,0020

8 0,7316 0,6500 48 0,0506 0,0000

9 0,6500 0,5460 49 0,0671 0,0000

10 0,2844 0,0840 50 0,0172 0,0000

11 0,3439 0,1440 51 0,0828 0,0000

12 0,2527 0,0480 52 0,2007 0,0160

13 0,9355 0,9220 53 0,1406 0,0020

14 0,4718 0,3200 54 0,0106 0,0000

15 0,2701 0,0620 55 0,0396 0,0000

16 0,5790 0,4360 56 0,1729 0,0040

17 0,9088 0,8860 57 0,0557 0,0000

18 0,9331 0,9180 58 0,0404 0,0000

19 0,4874 0,3360 59 0,2460 0,0400

20 0,5430 0,4020 60 0,0598 0,0000

21 0,5530 0,4080 61 0,0970 0,0000

22 0,6695 0,5840 62 0,1549 0,0020

23 0,2982 0,0860 63 0,2841 0,0840

24 0,6426 0,5320 64 0,7861 0,7120

25 0,2766 0,0760 65 0,0255 0,0000

26 0,6797 0,5920 66 0,2930 0,0840

27 0,8883 0,8620 67 0,0250 0,0000

28 0,6291 0,5120 68 0,1058 0,0020

29 0,8109 0,7600 69 0,0791 0,0000

30 0,8326 0,7920 70 0,0479 0,0000

31 0,3610 0,1720 71 0,0860 0,0000

32 0,3766 0,1880 72 0,0996 0,0000

33 0,4111 0,2400 73 0,0762 0,0000

34 0,7803 0,7080 74 0,0559 0,0000

35 0,8633 0,8360 75 0,0845 0,0000

36 0,7307 0,6440 76 0,1920 0,0120

37 0,8883 0,8620 77 0,0325 0,0000

38 0,2242 0,0300 78 0,0541 0,0000

39 0,6697 0,5840 79 0,0526 0,0000

40 0,4763 0,3280 80 0,0386 0,0000
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8. Appendix 2

a. The values of QMD(Fm, Gt) for t = 4

Subgroups QMD(Fm, Gt)

(k) for t = 4

1 0,3865

2 0,5315

3 0,2055

4 0,4350

5 0,6355

6 0,4025

7 0,5105

8 0,4780

9 0,6070

10 0,4510

11 0,0005

12 0,0370

13 0,0040

14 0,0015

15 0,0100

16 0,1995

17 0,0215

18 0,0000

19 0,0030

20 0,0000

b. The values of QMD(Fm, Gt) for t = 10

Subgroups QMD(Fm, Gt)

(k) for t = 10

1 0,4302

2 0,4474

3 0,5204

4 0,4592

5 0,0150

6 0,0062

7 0,0884

8 0,0012
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Abstract

Bayesian networks are used to illustrate how the probability of hav-
ing a disease can be updated given the results from clinical tests. The
problem of diagnosis, that is of determining whether a certain disease
is present, D, or absent, D′, based on the result of a medical test, is
discussed. Using statistical methods for medical diagnosis, informa-
tion about the disease and symptoms are collected and the databases
are used to diagnose new patients. How can we evaluate the diagnos-
tic probability represented by Pr(D \ evidence), where evidence is the
result of a clinical test or tests on a new patient? The object of this ar-
ticle is to answer this question. Using the HUGIN software, diagnostic
probabilities are analyzed using the Bayesian approach.

Keywords: Bayesian networks, Medical diagnosis, Conditional probability.

1. Introduction

Bayesian networks were introduced in the 1980’s as a formalism for representing and
reasoning with models of problems involving uncertainty, adopting probability theory as
a basic framework [12]. Over the last decade, the Bayesian network has become a popular
representation for encoding uncertain expert knowledge in expert systems [7]. The field
of Bayesian networks has grown enormously over the last few years, with theoretical and
computational developments in many areas. Bayesian networks are also known as belief
networks, causal probabilistic networks, causal nets, graphical probability networks, and
probabilistic influence diagrams.

Bayesian networks have proved useful in practical applications, such as medical diag-
nosis and diagnostic systems. The probability based expert systems for medical diagnosis
that emerged during the 60’s and 70’s could be characterized by the following points: The
sets of possible diseases a system could diagnose were mutually exclusive and collectively
exhaustive, the evidence was assumed conditionally independent given any hypothesis,

∗Gazi University, Department of Statistics, Teknikokullar, Beşevler, Ankara, Turkey.



70 H. Olmuş, S.O. Erbaş

and only one disease was assumed to exist in any patient. These assumptions were
made in order to keep to a manageable size the problem of acquiring and calculating
probabilities [10].

A Bayesian network is used to model a domain containing uncertainty in some man-
ner. It is a graphical model for probabilistic relationships among a set of variables and
is composed of directed acyclic graphs (DAGs) in which the nodes represent the ran-
dom variables of interest, and the links represent informational or causal dependencies
among the variables [16]. Here, each node contains the states of the random variable
and it represents a conditional probability table. The conditional probability table of a
node contains probabilities of the node being in a specific state given the states of its
parents [2, 5, 9, 11, 13, 15, 20, 21]. Furthermore, edges reflect cause-effect relations within
the domain. These effects are normally not completely deterministic (e.g. disease →
symptom). The strength of an effect is modelled as a probability.

Bayesian networks help us answer questions such as: What is the probability that a
random variable will be in a given state if we have observed the values of some other
random variables. They can also suggest what could be the best choice for acquiring new
evidence. Conditional probabilities are important for building Bayesian networks. But
Bayesian networks are also built to facilitate the calculation of conditional probabilities,
namely the conditional probabilities for variables of interest given the data (also called
evidence) at hand [5].

The quantities of interest in a medical diagnostic procedure are the probabilities of
having or not having a disease, i.e. the diagnostic probabilities [17, 18]. These quantities
may change their values according to the diagnostic value of the observed evidence.
Evidence is produced by responses (called indicants) to clinical questions (tests, signs
or symptoms). The data structure is complicated by a number of factors. Studies of
acquisition for this problem occur in the literature [6, 12].

The implementation of a Bayesian network is an excellent approach to creating a
medical diagnostic system that realistically models the multiple symptoms and indicators
(rather than just one particular test) that affect the conditional probability that a person
has a particular disease which may be causing the symptoms and positive test results.
Because each node in a Bayesian network can have multiple parent and child nodes,
and thus multiple ancestor and descendant nodes, evaluating Bayesian networks is more
complex than performing a single calculation with Bayes’ theorem.

Inference in a Bayesian network means computing the conditional probability for some
variables, given information (evidence) concerning other variables. This is easy when all
available evidence is for variables that are ancestors of the variable(s) of interest. But
when evidence is available on a descendant of the variable(s) of interest, we have to
perform inference against the direction of the edges. To this end, we employ Bayes’
Theorem:

Pr(A\B) =
Pr(B\A) Pr(A)

Pr(B)
.

2. The HUGIN System

During the early stages of the development of probabilistic expert system, several
obstacles were encountered due to difficulties in defining the joint probability distribution
of the variables. With the introduction of probabilistic network models, these obstacles
have largely been overcome, and probabilistic expert systems have made a spectacular
comeback during the last two decades or so. These network models, which include Markov
and Bayesian networks, are based on a graphical representation of the relationships among
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the variables. This representation leads to efficient propagation algorithms that are
used to draw conclusions. An Example of such an expert system shell is the HUGIN
expert system [4]. The HUGIN system is a tool enabling the construction of model-based
decision support systems in domains characterized by inherent uncertainty. The models
supported are DAGs and their extension, influence diagrams. The HUGIN system allows
us to define both discrete nodes and to some extent continuous nodes in our models [8].
The HUGIN system can be used to construct models as components in an application in
the area of decision support and expert systems. When we have constructed a network,
we can use it for entering evidence in some of the nodes where the state is known, and
then retrieve the new probabilities corresponding to this evidence calculated in other
nodes.

In recent years, diagnostic assistants have been built around Bayesian networks. These
networks are a form of graphical probabilistic model that explicates independencies be-
tween system components and diagnostic observations in a directed graph. The structure
of the graph allows the joint probability distribution over the system components and
diagnostic observations to be expressed in a compact form [19]. The use of such a model
along with graph-theoretic algorithms for probabilistic inference makes it possible to
compute the probability of a component defect given the outcomes of diagnostic observa-
tions. There are several commercial and research tools designed for BN model authoring
and testing. Among the most popular of these tools is the HUGIN package.

After constructing a Bayesian network that models, as in the example presented in
the figure, the states of affairs and their probabilistic causal relationships, one would
want to be able to determine, given observed values for any number of nodes in the
network, the conditional probabilities of the remaining, unknown nodes. The utility of
Bayesian networks lies in being able to make this calculation, which is called evaluating

or solving the network. An algorithm for evaluating Bayesian networks can determine
probabilities of causes given observed effects (e.g., the probability that a dam has failed
given the observation that there is flooding) or probabilities of effects given observed
causes (e.g., the probability that there is flooding given a low barometer reading). In order
to maximize efficiency and minimize execution time, algorithms that give exact solutions
of Bayesian networks must first simplify the network itself before proceeding with the
evaluation process. There is no one algorithm for obtaining exact solutions that is efficient
for all Bayesian networks; the choice of an exact algorithm depends on the topological
characteristics of the particular Bayesian network that is to be evaluated. There are,
however, several approximation schemes which yield reasonably accurate solutions and
require less execution time than the exact algorithms. HUGIN is a software package that
implements algorithms for evaluating Bayesian networks [3]. Algorithms that achieve
exact solutions are derived from Bayes’s theorem. Bayes’s theorem can be used to make
a simple calculation of the conditional probability of a hypothesis given its evidence.

3. A Menopause Example

In this example, the patients who applied to Gazi University Gynecology and Ob-
stetrics Menopause Clinic during the period August–October 1998 are studied [1]. A
patient consults with a specialist who is going to start a search to discover whether the
patient has the postmenopausal condition, D, or its absence, D′. The physician observes
an indicant (E+= normal bone density or E−= abnormal bone density), which is new
evidence associated with the patient. In a search for information about this new indicant
of the postmenopausal condition D, doctors in a certain clinic select 100 patients known
to be in postmenopause and another 100 patients known to be in premenopause. Here
D is the event that a patient has the postmenopausal condition, while D′ is the event
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that a patient has the premenopausal condition D′. To each patient they applied a bone
mineral densitometry (BMD) test, obtaining a response E+ for evidence of normal bone
density, or E− for evidence of abnormal bone density [14, 17, 18].

In constructing the graph for the Bayesian network, human experts mostly use “causal”
relationships between variables as a guideline. The situation can be modelled by the
Bayesian network in Figure 1. In Figure 1, we have the graphical representation of the
Bayesian network. However, this is only what we call the qualitative representation of the
Bayesian network. We need to specify the quantitative representation. The quantitative
representation of a Bayesian network is the set of conditional probability tables of the
nodes.

Figure 1. Bayesian network for the menopause example.

x y

t

δ

The Bayesian network consist of four nodes: x, y, t and δ which can all be in one of two
states. Node x can be is the state corresponding to “normal bone density” or “abnormal
bone density” as a result of a BMD test among all former patients with D and node y

can be in the state corresponding to “normal bone density” or “abnormal bone density”
as a result of a BMD test among all former patients with D′. The state of a new patient
is

δ =

{

1 if the patient has postmenopausal condition D

0 if the patient has the premenopausal condition D′.

The result of the test for a new patient is

t =

{

1 if the BMD test gives normal bone density, i.e. E+

0 if the BMD test gives abnormal bone density, i.e. E−.

Here, the conditional probabilities are Pr(x),Pr(y),Pr(t\x, y, δ) and Pr(δ \x, y). Note
that all four tables show the probability of a node being in a specific state depending on
the states of its parent nodes, but x and y do not have any parent nodes.

The Bayesian network diagram that permits us to evaluate the diagnostic probabilities
for all possible values of δ, x, y is presented in Figure 1.

The diagnostic probabilities, the object of the analysis, are Pr{δ = 1\t = 1} and
Pr{δ = 1\t = 2}. If a new woman patient’s BMD test response is known to be “normal
bone density” or “abnormal bone density”, what is the probability that this woman is in
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a postmenopausal or premenopausal condition? The answer to our problem is given by
the probability functions attached to node t.

In this example, the model is defined using binary variables. In the following fig-
ures, empty boxes show observable variables whereas the values shown by full boxes are
probability values. Also, the value “100” in the figures indicate that the selected level
of variable is known. In the figures “1” indicates “normal bone density”, whereas “2”
indicates “abnormal bone density”.

The menopause Bayesian network has been constructed using the HUGIN software.
Here the probability that δ = 1 is the prior probability. This prior probability was taken
as 0.15 using expert belief. In other words, Pr(δ = 1) = 0.15.

In Figure 2, the model is shown with initial probabilities. For example, the “nor-
mal bone density” and “abnormal bone density” response probabilities for 100 post-
menopausal women were 0.4750 and 0.5250, respectively. In other words, Pr(x = 1) =
0.4750 and Pr(x = 2) = 0.5250. On the other hand the “normal bone density” and
“abnormal bone density” response probabilities for 100 premenopausal women were 0.40
and 0.60 respectively. In other words, Pr(y = 1) = 0.40 and Pr(y = 2) = 0.60. However,
the probability of a new woman patient being postmenopausal is 0.3967, the probability
of a woman not being postmenopausal is 0.6033. In other words, Pr(δ = 1) = 0.3967 and
Pr(δ = 2) = 0.6033. The “normal bone density” and “abnormal bone density” response
probability to the BMD test for a new patient are 0.4238 and 0.5762 respectively. In
other words, Pr(t = 1) = 0.4238 and Pr(t = 2) = 0.5762.

Figure 2. Marginal Probabilities
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Now, one might want to know the probability of any other combination of states under the
assumption that the evidence entered holds. Here, we want to calculate the probability
of any other combination of states given the evidence provided by the result of the test
for the new patient.

If the result of the test for the new patient is “normal bone density”, then the evidence
is entered and a sum-propagation is performed. In other words, this gives probabilities
Pr(δ = “1” \ t = “1”), Pr(δ = “2” \ t = “1‘”). The result is shown in Figure 3. For
example, if the response to the BMD test for new for woman patient is “normal bone
density”, the ”normal bone density” and ”abnormal bone density” response probabilities
are 0.5743 and 0.4257 for the 100 postmenopausal women respectively. In other words,
Pr(x = “1” \ t = “1”) = 0.5743 and Pr(x = “2” \ t = “1”) = 0.4257. Similarly if the
new woman patient’s BMD test response is known as to be “normal bone density”, the
“normal bone density” and “abnormal bone density” response probabilities are 0.6534
and 0.3466 for the 100 premenopausal women respectively. In other words, Pr(y =
“1” \ t = “1”) = 0.6534 and Pr(x = “2” \ t = “1”) = 0.3466. Conversely if the new
woman patient’s BMD test result is known to be negative, the probability of being
postmenopausal or premenopausal for this patient are 0.7309 and 0.2691 respectively. In
other words, Pr(δ = “1” \ t = “1”) = 0.2691 and Pr(δ = “2” \ t = “1”) = 0.7309.

Figure 3. The conditional probabilities of other nodes if the new patient is

known to have “normal bone density” as a result of the BMD test.
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If the result of the test for the new patient is “abnormal bone density”, then the evidence
is entered and sum-propagation is performed. The result is shown in Figure 4. In other
words, this produces the probabilities Pr(δ = “1” \ t = “2”) and Pr(δ = “2” \ t = “2”).
The result is shown in Figure 4.



Conditional Probabilities in Bayesian Networks 75

Figure 4. The conditional probabilities of other nodes if the new patient is

known to have “abnormal bone density” as a result of the BMD test.
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For example, if a new woman patient’s BMD test response is known to be “abnormal bone
density”, the ”normal bone density” and “abnormal bone density” response probabilities
are 0.4097 and 0.5903 for the 100 postmenopausal women respectively. In other words,
Pr(x = “1” \ t = “2”) = 0.4097 and Pr(x = “2” \ t = “2”) = 0.5903. Conversely if a
new woman patient’s BMD test response is known to be “abnormal bone density”, the
probability of being postmenopausal or premenopausal for this patient are 0.4756 and
0.5254 respectively. In other words, Pr(δ = “1” \ t = “1”) = 0.6846 and Pr(δ = “2” \ t =
“1”) = 0.3154.

4. Conclusion

Bayesian networks are becoming an increasingly important area in applications to
medical diagnosis. Here, the cause-effect relation among variables is explained and thus
the relations between the variables are modelled.

The analysis of this medical problem has several important applications, including
updating the probabilities for data in expert systems. In this study, depending on the
results of a clinical test, the probability of a new woman patient being in menopause or
not is examined. Also, the conditional probabilities of other nodes are obtained if the
new patient is known to have “normal bone density” or “abnormal bone density” as a
result of a BMD test.

In this application, the marginal probability of a new patient, who comes to the clinic,
being in menopause is 0.3967. If she is known to have “normal bone density”, an increase
is not observed in the probability of this woman being in menopause. But if she is known
to have “abnormal bone density”, an increase is observed in the probability of this woman
being in menopause.
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Osteoporosis is one at the diseases causing bone resorption after the menopause. But
it can be seen at an earlier age in young persons infected by the bone disease, and other
metabolic disfunctions beside osteoporosis and the menopause. Osteoporosis may not be
seen in every women during the menopause. As a conclusion of this study, menopause
probability was seen to be higher than normal for those who were diagnosed as having
bone resorption by the BMD test. However, it is not possible to correlate bone resorption
with the menopause alone. Bone resorption can result from pregnancy, smoking, using
alcohol, malnutrition and some hormonal and genetic disturbances. In this study, by
using the HUGIN software, the correlation between the menopause and osteoporosis was
evaluated by neglecting all other parameters.
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[1] Ataoğlu, F. Menapoz dönemindeki kadınların hormon replasman tedavisine (HRT)
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Yayınlanmamış Yüksek Lisans Tezi, Ankara, 1999).

[2] Buntine, W. A guide to the literature on learning probabilistic networks from data, IEEE

Transactions on Knowledge and Data Engineering 8 (2), 195–210, 1996.
[3] Charniak, E. Bayesian networks without tears, AI Magazine 12 (4), 50–63, 1991.

[4] Castillo, E., Gutierrez J.M. and Hadi A. S. Expert systems and probabilistic network models,
(Springer-Verlag, New York, 1997).

[5] Cowell, R.G. Intrduction to inference in Bayesian networks, in Learning in Graphical Mod-
els, 9–26, 1999.

[6] Dawid, A. P. Properties of diagnostic data distributions, Biometrics 32, 647–658, 1976.

[7] Heckerman, D. A tutorial on learning with Bayesian networks, Technical Report MSR-TR-
95-06i, Microsoft RESEARCH, 301–354, 1995.

[8] HUGIN EXPERT A/S. Hugin Help Pages, URL: [http://www.hugin.dk] Date: 23.05.2000,

1998.
[9] Jensen, F.V. An introduction to Bayesian Networks, (UCL Press Ltd., London, 1996).

[10] Jensen, F.V., Olesen, K.G. and Andersen, S.K. An algebra of Bayesian belief universes for
knowledge-based systems, Networks 20, 637–659, 1990.

[11] Liarokapis, D. An introduction to belief networks, htttp://www.cs.umb.edu/ dimitris, 1999.

[12] Lucas, P. DAGs in Medicine: a Model-based Approach to Medical Decision Graphs, (De-
partment of Computing Science, University of Aberdeen, Scotland, UK, 1999).

[13] Niedermayer, D. An introduction to bayesian networks and their contemporary applications,

(http://www.gpfn.sk.ca/ daryle/papers/bayesian

networks/bayes html, 1998).
[14] Oliver, R.M. and Smith, J.Q. Influence Diagrams, Belief Nets and Decision Analysis, (John

Wiley & Sons, New York, 1990).
[15] Pearl, J. Causality: Models, Reasoning and Inference, (Cambridge University Press, Eng-

land, 2000).
[16] Pearl, J. Bayesian Networks, (UCLA Cognitive Systems Laboratory, Technical Report (R-

246), revision I, 1997).

[17] Pereira, C.A de B.Medical diagnosis using influence diagrams, Networks 20, 565–577, 1990.

[18] Pereira, C.A de B. and Pericchi L.R. Analysis of diagnosability, Applied Statistics 39, No
2, 189–204, 1990.

[19] Przytula, K.W., Dash, D. and Thompson, D. Evaluation of Bayesian Networks Used for
Diagnostics, (IEEE Aerospace Conference, Big Sky, Montana, 2003).

[20] Spiegelhalter, D. J. and Lauritzen, S. L. Sequetial updating of conditional probabilities on

directed graphical structures, Networks 20, 579–605, 1990.
[21] Stephenson, T.A. An introduction to Bayesian network theory and usage, (IDIAP Research

Report 00-03, 2000).



Hacettepe Journal of Mathematics and Statistics
Volume 33 (2004), 77 – 90

A STATISTICAL MODEL OF OCCUPATIONAL

MOBILITY - A SALARY BASED MEASURE

Asis Kumar Chattopadhyay∗ and Shahjahan Khan†

Received 22 : 08 : 2003 : Accepted 26 : 05 : 2004

Abstract

Mobility models are very useful in explaining the movements of people
over socio-economic and job categories. Occupational mobility deals
with the movements of individuals over job categories during their
employment periods. Since the time interval between successive job
changes is a random variable, different occupational mobility models
have been developed by scientists using modified Markov and semi-
Markov processes. This phenomenon can be modelled by considering
the underlying factors such as job satisfaction, salary, distance of the
work place, family requirements and others. Unlike most of the pre-
vious works in this area, the present study suggests a new measure
of occupational mobility based on the distribution of wages. Here a
general occupational mobility model has been developed to study the
pattern of mobility during the service life of employees. First the prob-
ability distribution of the number of job changes in the entire employ-
ment life of individuals has been obtained considering the inter-job
offer times (within an interval) and the associated wages as random
variables. Then a measure of occupational mobility based on this dis-
tribution has been developed. The results are obtained under both
frequentist and Bayesian frameworks. As an application of the pro-
posed model the results in this paper have been illustrated by using
data from a recent survey among the staff members of the University
of Southern Queensland, Australia.
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1. Introduction

In recent years there has been growing interest in the study of manpower planning.
Occupational mobility plays a central role in manpower planning. In broader terms, it
refers to the movement of employees between jobs. As a consequence of globalization
and the expansion of the job market in the non-traditional sectors, the phenomenon of
changing jobs has gained greater attention of the researchers and planners.

Unlike social mobility (cf. Prais, [18]), there is no fixed time interval between suc-
cessive moves in occupational mobility. Hodge [16] studied occupational mobility as a
probability process. Stewman [20] discussed occupational mobility using a Markov model.
A comprehensive summary of the theoretical developments and practical applications of
occupational mobility have been provided by Stewman [21]. Ginsberg [7–12] has made
several attempts to describe occupational mobility patterns in terms of semi-Markov
processes.

Bartholomew [2] suggested measures of occupational mobility based on the matrix
of transition probabilities and the stochastic process [m(t)], where m(t) is the random
number of time points at which individuals decide to change their existing employment
during the interval (0, t). Mukherjee and Chattopadhyay [16] developed a measure by
considering successive changes in occupation of an individual as constituting a renewal
process. Later, Mukherjee and Chattopadhyay [17] proposed a measure based on the
reward structure. Chattopadhyay and Baidya [3] considered salary based occupational
categories to study social mobility. Khan and Chattopadhyay [14] developed a predic-
tive measure of occupational mobility based on the number of job offers. None of the
measures available in the literature has taken into account the explicit role of the re-
ward (remuneration) associated with job offer that directly influences the pattern of job
changes.

In this study we propose a new measure of occupational mobility based on the num-
ber of job changes and the associated wages. The distribution of the total number of
job changes during an individual’s entire service life up to the point of study has been
derived by considering times between consecutive job offers (within an interval) and the
corresponding wages to be independent random variables. The proposed measure of oc-
cupational mobility based on the number of job offers and wage distribution has been
suggested primarily in the general setup and then it’s value has been derived for special
situations where some specific assumptions regarding the number of job offers and wage
distributions has been made, both under frequentist and Bayesian frameworks.

A survey has been conducted among the staff members of the University of Southern
Queensland, Australia to collect data on occupational mobility. The proposed model has
been fitted to the survey data to explain the occupational mobility pattern among the
employees of the University. For this particular application of the occupational mobility
model the number of job offers has been found to best fit the geometric distribution, and
the wages best fit a gamma distribution.

The occupational mobility model has been defined and discussed in section 2. The
distribution of the number of job changes is obtained in section 3. Section 4 derives a
measure of occupational mobility under the general distributional setup. Some special
cases for particular choices of number of job offers and wages distributions have been
discussed in sections 5 and 6, under frequentist and Bayesian frameworks, respectively.
Section 7 is devoted to the analysis of the survey data, and its fitting to the proposed
model and measure.
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2. The Model

Let the service life of an individual be comprised of k intervals of equal fixed width, t.
The individual gets at least one job offer within each such interval, the worth of an offer
being determined by the associated salary (reward). The individual (assumed to be in
service already) decides to leave the present job or not, at the end of each interval. One
moves to a new job for the first time at the end of an interval in which the maximum
of the remunerations associated with different job offers (within that interval) exceeds a
fixed amount. This is the minimum wage at which the individual is willing to enter the
job market for the first time.

Subsequently, one changes the current job at the end of a particular interval only when
the maximum of the wages associated with the offers received during that interval exceeds
the wage of the current job. A change of job in this paper means that an individual may
move from one occupation to another or within the same occupation.

Let the individual getNi new job offers in the ith interval, and letXij be the salary cor-
responding to the jth job offer in the ith interval, for j = 1, 2, . . . , ni, and i = 1, 2, . . . , k.
Note that to reflect the real life situation it is necessary to assume that ni is strictly
greater than zero since no one can enter into the job market without a job offer. Both
Xij and Ni are assumed to be independently and identically distributed with pdf g(x),
0 < x <∞, and pmf h(y), y = 1, 2, . . . ,∞ respectively. Define

(2.1) Zi = max(Xi1, Xi2, . . . , Xini).

Here Zi is the maximum wage of all job offers during the ith interval. Since Zi is the
largest order statistic, for a given ni, the pdf of the conditional distribution of Zi is

f(zi|ni) = ni[G(xij)]
ni−1g(zi),

where G(·) is the cdf of the distribution of Xij . The pdf of the joint distribution of Zi
and Ni becomes

f(zi, ni) = ni[G(xij ]
ni−1g(zi)h(ni).

Hence the marginal distribution of Zi is given by

(2.2) f(zi) =

∞
∑

ni=1

ni[G(zi)]
ni−1g(zi)h(ni),

where g(·) and h(·) have the same specifications as before.

Let FZi(z) denote the the corresponding cdf. Let z0 be the minimum wage for which

the individual accepts the first job offer at the iih interval. Then we can define

(2.3) FZi(z0) = P [Zi < z0]

and its complement

(2.4) FZi(z0) = 1− FZi(z0) = P [Zi > z0].

3. Distribution of the number of job changes

In this section we derive the distribution of the number of job changes during the
service life of an individual. Define N(k) = total number of job changes within the

service life of the individual and p
(k)
r = the probability of r job changes in the entire

service life of the individual. Then

(3.1) p(k)r = P [N(k) = r].
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3.1. Theorem. Under the above definition of FZi(z0) and p
(k)
r , we have

(3.2) p(k)r =

{

F k if r = 0,

F k−1F̄ [
∑k−r

m=0

(

r+m−1
m

)

(2F )−(r+m−1)] if 1 ≤ r ≤ k

where, for notational convenience, we write F = FZi(z0) and F̄ = 1− FZi(z0).

Proof. (Outline) Note that P [Zi > Zj ] = P [Zi < Zj ] = 0.5 for i, j = 1, 2, . . . , k,, i 6= j;
and

(3.3) P [Zi > max(Z1, Z2, . . . , Zi−1)] = P [Zi < max(Z1, Z2, . . . , Zi−1] = 0.5

Now define Si as the event that there is a job change in the ith time interval which depends
only on the maximum wages of the ith and (i − 1)th time intervals, for i = 1, 2, . . . , k
and Ti as the event that there is a job change in the ith interval which depends on the
maximum wages of all intervals up to the ith including z0, the initial minimum acceptable
wage, for i = 2, 3, . . . , k, that is

Si = [zi > zi−1], for i = 1, 2, . . . , k and

Ti = [zi > max(z0, z1, . . . , zi−1)], for i = 2, 3, . . . , k.

Then p
(k)
r can be obtained by adding together the probabilities of the (k − r + 1) events

E0, E1 . . . , Ek−r, where

E0 = there is no change in the first (k − r) intervals and r changes in the last r
intervals.

E1 = there is no change in the first (k − r − 1) intervals, one change at the (k − r)th

interval and (r − 1) changes among the last r intervals.

E2 = there is no change in the first (k−r−2) intervals, one change at the (k−r−1)th

interval and (r − 1) changes among the last (r + 1) intervals.

· · · · · · · · · · · ·

Ek−r = there is a change at the first interval and (r − 1) changes among the last
(k − 1) intervals.

Let Sc denote the complement of the event S. Then from the fundamental rule of
probability we have

P (E0) = P [Sc1S
c
2 · · ·S

c
k−rTk−r+1Sk−r+1 · · ·Sk]

= F k−rF̄ (0.5)r−1(3.4)

Similarly,

P (E1) = F k−r−1F̄

(

r

1

)

(0.5)r

P (E2) = F k−r−2F̄

(

r + 1

2

)

(0.5)r+1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

P (Ek−r) = F

(

r + (k − r − 1)

k − r

)

(0.5)r+(k−r−1)(3.5)

Hence the proof is completed by adding the above probabilities. ¤
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3.2. Illustration. Consider the situation when k = 3 and r = 2.

p
(3)
2 = P (S1S2S

c
3) + P (S1S

c
2T3) + P (Sc1T2S3)

= P (Z1 > z0)P (Z2 > Z1)P (Z3 < Z2)

+ P (Z1 > z0)P (Z2 < Z1)P (Z3 > Z1) + P (Z1 < z0)P (Z2 > z0)P (Z3 > Z2)

= F (0.5)(0.5) + F (0.5)(0.5) + FF (0.5)

= (0.5)F (1 + F )(3.6)

When r = 0,

p
(3)
0 = P (Sc1S

c
2S

c
3)

= P (Z1 < z0)P (Z2 < z0)P (Z3 < z0) = F 3(3.7)

3.3. Theorem. Under the above setup, p
(k)
r is a probability distribution, i.e.

(3.8)
k
∑

r=0

p(k)r = 1

Proof. Write s = r +m− 1. Then

k
∑

r=0

p(k)r = F k + F k−1F

[ k
∑

r=1

k−r
∑

m=0

(

r +m− 1

m

)

(0.5F )(r+m−1)

]

= F k + F k−1F

[ k−1
∑

s=0

(0.5F )s
s
∑

m=0

(

s

m

)

]

= F k + F k−1F

[ k−1
∑

s=0

(0.5F )s2s
]

= F k + F k−1F

[ k−1
∑

s=0

(1/F )s
]

= F k + 1− F k = 1.(3.9)

¤

4. A Measure of Occupational Mobility

In this section we obtain a measure of occupational mobility using p
(k)
r as defined in

section 3. From the previous specifications the moments of the number of job changes are
reasonable choices as measures of occupational mobility. For practical reasons, the first
raw moment has better intuitive appeal in interpreting the phenomenon of job changes
than any other moment. Therefore, we suggest, the expectation of the number of job
changes can be considered as a measure of occupational mobility. This should of course
be normalized with respect to k. Then we have

E[N(k)] =

k
∑

r=0

rp(k)r

= F k−1F
k
∑

r=1

k−r
∑

m=0

rC(r+m−1)
m (0.5F )r+m−1

= [(k + 1)F − FF k − F (1− F k)]/2F .(4.1)

In the computation of E[N(k)] various binomial and geometric series are involved. After
normalization with respect to k, the measure becomes E[N(k)/k].

In a similar way it can be shown that,

(4.2) E[{N(K)}2] = (0.25)F k−1F

k−1
∑

s=0

(1/F )s(s2 + 5s+ 4).
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Hence the variance of N(k), Var[N(k)], is readily available from (4.1) and (4.2). As a
measure of spread of the above measure of occupational mobility one uses the estimated
value of Var[N(k)]/k2. Computing procedures for E[N(k)], and Var[N(k)] are given in
section 7.

5. Some special cases

Case 1: To compute the measure of mobility, in this section, we consider specific dis-
tributions for the number of job offers and for the wages. Consider the situation where
the distribution of wages is exponential and the distribution of the number of job offers
is truncated Poisson with the following pdf and pmf respectively,

(5.1) g(x) = θe−θx, 0 < x <∞

and

(5.2) h(y) = [1/(1− e−λt)]e−λt(λt)y/y!, y = 1, 2, . . . ,∞.

Note that y = 0 is not a valid value of the number of job offers since by assumption the
study includes only those individuals who received at least one job offer. Then from (2.2)
the pdf of the distribution of Zi is

(5.3) f(zi) = [1/(1− e−λt)]λtθe−(θzi+λt)eλt(1− e−θzi), 0 < zi <∞,

and the corresponding cdf is

(5.4) FZi(z) = [1/(1− e−λt)](e−λte
−θz

− e−λt).

Hence from (3.2) and (3.3) we have

(5.5) p(k)r =







































((e−λte
−θz0

− e−λt)/(1− e−λt))k if r = 0,

[

(1−eλte
−θz0

)(e−λte
−θz0

−e−λt)k−1

(1−e−λt)k

]

×

[

∑k−r
m=0

(

r+m−1
m

)

(

(1−e−λt)

2(e−λte
−θz0−e−λt)

)r+m−1
]

if 1 ≤ r ≤ k.

Now, from (5.4), (4.1) becomes

(5.6) E[N(k)] =

[

(k + 1)− (k + 2)
e−λte

−θz0
− e−λt

(1− e−λt)
+

(e−λte
−θz0

− e−λt)

(1− e−λt)
× η1

]

× η2,

where

(5.7) η1 =
2(e−λte

−θz0
− e−λt)

(1− e−λt)
− 1, η2 =

1− e−λt

2(1− e−λte
−θz0 )

.

Given the values of the parameters λ and θ one can compute the value of the above mea-
sure of occupational mobility for different choices of t. The parameters can be estimated
from the sample data. For details refer to Cohen [4].

Case 2: Here we take the distribution of wages as exponential and the number of job
changes as truncated Binomial. For the above choices we have

(5.8) g(x) = θe−θx, 0 < x <∞,

and

(5.9) h(y) = (1/(1− qkt))

(

kt

y

)

pyqkt−y, y = 1, 2, . . . , kt,

where q = 1− p.
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Then from (2.2) the pdf of the distribution of Zi is given by

(5.10) f(zi) = [(θqkt−1)/(1− qkt)]e−θzikt(p/q)

kt−1
∑

n1i=0

(

kt− 1

n1i

)

[(p/q)(1− e−θzi)]n1i ,

where n1i = ni − 1 and the corresponding cdf is given by

(5.11) F (z) = [(θktqkt)/(1− qkt)]

kt−1
∑

n1i=0

(p/q)n1i+1

∫ z

0

e−θz(1− e−θz)n1idz.

Hence following the same procedure as in case 1, E[N(k)/k] can be computed for given
values of the parameters θ and p.

6. Special cases under the Bayesian framework

The occupational mobility measure for the above special cases of the distributions of
job offers and wages are obtained here under the Bayesian framework.

Case 1: Consider the special case 1 of section 5 with

(6.1) g(x) = θe−θx, 0 < x <∞, θ > 0.

Taking the conjugate prior associated with the Poisson distribution, λ has the following
pdf,

(6.2) p(λ) = (1/βαΓα)e−λ/βλα−1, α > 0, β > 0, 0 < λ <∞.

For a fixed value of λ, the joint pmf of the distribution of Ni on the basis of a sample of
size m is given by,

(6.3) h(y|λ) = [1/(1− e−λt)m]e−m(λt)(λt)
∑m
i=1 yi/Πm

i=1(yi!)

and hence the Bayes estimator of λ is obtained as,

λB =
1

t
×

∫

λh(y|λ)p(λ)dλ

(
∫

h(y|λ)p(λ)dλ)

=
1

t

[Γ(
∑

yi + α+ 1)/(m+ 1
β
)
∑

yi+α+1] + Ω1

[{Γ(
∑

yi + α)/(m+ 1
β
)
∑

yi+α}+Ω2]
,(6.4)

where

Ω1 =

∞
∑

j=1

[

(1/j!)m(m+ 1) . . . (m+ j − 1)

(

Γ(
∑

yi + α+ 1)

(m+ 1
β
+ j)

∑

yi+α+1

)]

,

Ω2 =
∞
∑

j=1

[

(1/j!)m(m+ 1) . . . (m+ j − 1)

(

Γ(
∑

yi + α)

(m+ 1
β
+ j)

∑

yi+α

)]

.

Note that λB can be estimated from the sample values of yi for some known values of
the prior parameters α and β.

Hence E[N(k)] in (5.6) can be estimated by replacing λ with λB . If needed, starting
with initial values of α and β (say α0 and β0) one can generate a sample from the gamma
distribution with parameters α0 and β0 and on the basis of the simulated sample α and
β can be estimated.

Case 2: Considering the special case 2 of section 5 we have

(6.5) g(x) = θe−θx, 0 < x <∞ θ > 0.
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Assuming that p is a random variable, using the conjugate prior associated with the
Binomial distribution, p has the following pdf

(6.6) p∗(p) = [1/B(a, b)]pa−1(1− p)b−1, 0 < p < 1, a > 0, b > 0.

Given p, the joint pmf of the distribution of Ni for a sample of size m is given by

(6.7) h(yi|p) = [1/(1− (1− p)kt)m]
m
∏

i=1

(

kt

yi

)

p
∑

yi(1− p)mkt−
∑

yi ,

where yi = 1, 2, . . . , kt. The Bayes estimator of p is found to be

(6.8) pB =
B(a+

∑

yi + 1, b+mkt−
∑

yi) + Ψ1

B(a+
∑

yi, b+mkt−
∑

yi) + Ψ2
,

where

Ψ1 =

∞
∑

j=1

m(m+ 1) . . . (m+ j − 1)B(a+
∑

yi + 1, b+ kt(m+ j)−
∑

yi)

j!

Ψ2 =

∞
∑

j=1

m(m+ 1) . . . (m+ j − 1)B(a+
∑

yi, b+ kt(m+ j)−
∑

yi)

j!
.

Note that pB can be estimated from the sample values of yi for some given values of
the prior parameters a and b. Hence E[N(k)] can be estimated by replacing p with pB

in (5.11). If needed, one can generate a sample from the Beta distribution with initial
values a0 and b0 as parameters and on the basis of that simulated sample a and b can be
estimated.

7. Modelling Survey Data

With a view to applying the proposed measure of occupational mobility, a survey
among the employees of the University of Southern Queensland (USQ), Australia was
conducted. The main objective of the survey was to gather data on the number of
job offers received by the individual employees during the entire employment period,
including the offer(s) of the current employer. In addition, wages associated with each of
the job offers for the employees were collected. The data on the number of job offers and
the associated wages have been classified according to the staff category, academic and
non-academic, as well as gender, male and female. Separate analysis of the data have
been provided based on the above four categories and the values of the proposed measure
of occupational mobility have been obtained for all those cases. An overall analysis of
the data from all the respondents across the categories has been also been provided.

The sample consisted of 221 employees of the USQ. This comprises of 83 academic and
138 non-academic staff. Among these respondents there were 93 males and 128 females.
In the survey we limited the maximum number of offers for any individual to 20 and
the range of wages has been equally divided into 6 intervals. In the computation of the
measure of occupational mobility and all associate functions as well as fitting of different
distributions we have used the MATLAB and SPSS packages. Some Pascal programming
has also been used for the fitting of the distribution.

7.1. The Survey. The general distribution of the survey data with respect to the num-
ber of job offers and associated wages is provided in this subsection. Table 1 below
represents the means and standard deviations of the number of job offers of the respon-
dents by various categories.
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Table 1. Summary Statistics of the Number of Job Offers by Gender and

Staff Category

Academic Non-Academic Total

Count Mean Std. Count Mean Std. Count Mean Std.

Male 58 5.40 4.26 35 6.20 4.31 93 5.70 4.27

Female 25 6.20 4.07 103 5.60 4.24 128 5.72 4.20

Total 83 5.64 4.20 138 5.75 4.25 221 5.71 4.22

The average number of job offers received by the employees in the sample is 5.71. The
corresponding figure for the academics is 5.64 and that of the non-academics is 5.75.
Thus the average number of job offers for non-academics is slightly higher than the
academics. The female respondents have a higher average number of job offers than their
male counterparts, although the difference is negligible. However, a clear dominance of
the females with respect to the average number of job offers over the males is observed
among the academics. The opposite picture is reflected in the case of non-academic
staff. The value of the measure of spread remains almost the same across the categories.
For the remaining parts of the paper the value of t and k are assumed to be 1 and 20
respectively for the computations.

Figure 1. Histogram of Distributions of Observed Job Offers and Wages for

all employees
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The distributions of the number of job offers and the wages are given in Figure 1. The
first graph in Figure 1 shows that the distribution of the number of job offers is highly
skewed to the right. From the shape of the distribution it appears that the geometric
distribution would be an appropriate model for the data.

The second graph gives the observed distribution of the wages of all employees.

7.2. Fitting of Distributions. First we have fitted the geometric distribution with
pmf

(7.1) h(y) = p(1− p)y−1, y = 1, 2, 3, . . . ,∞

to the number of job offers for all respondents as well as by all the categories. Here the
estimate of the parameter p is p̂ = 1

ȳ
where ȳ is the sample mean of the observed number

of job offers.
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From Table 2 it is evident that the data fit very well with the geometric distribution
for all respondents as well over all the categories.

Table 2. Table of Expected and Observed Frequency Distributions of Job

Offers by Gender and Staff Category

Academics Non-Acads. Male Female Total

Offers Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs.

1 15 12 25 24 16 15 22 21 36 39

2 12 9 20 12 13 8 18 13 21 32

3 10 11 17 16 11 14 15 13 27 26

4 8 6 14 12 9 7 13 11 18 22

5 7 11 11 12 8 9 10 14 23 18

6 6 5 9 12 6 8 9 9 17 15

7 5 7 8 9 5 6 7 10 16 12

8 4 6 6 9 4 6 6 9 15 10

9 3 3 5 9 3 5 5 7 12 8

10 3 4 4 6 3 3 4 7 10 7

11 2 2 3 1 2 1 3 2 3 6

12 2 1 3 4 2 3 3 2 5 5

13 1 0 2 4 2 2 2 2 4 4

14 1 2 2 3 1 2 2 3 5 3

15 1 0 2 1 1 0 2 1 1 3

16 1 2 1 0 1 2 1 0 2 2

17 1 0 1 1 1 0 1 1 1 2

18 1 1 1 1 1 1 1 1 2 1

19 0 0 1 1 1 0 1 1 1 1

20 0 1 1 1 0 1 1 1 2 1

Then we have fitted the gamma distribution with pdf

(7.2) g(x) =
1

βαΓ(α)
e
− x
β xα−1, 0 < x <∞, α > 0, β > 0

to the wages for all respondents as well as by all the categories. Salem and Mount [19], and
McDonald and Jensen [15] used gamma distribution to model the distribution of income.

The estimates of the parameters α and β are α̂ = [ x̄
sx
]2 and β̂ = [ sx

2

x̄
] respectively where x̄

is the sample mean of the observed wages and sx is the corresponding standard deviation.
For further details see Cohen and Whitten [5]. Angle [1] used the two parameter gamma
distribution to model the income distributions of blacks and the whites.

From Table 3 it is observed that the data fit more or less well with the gamma
distribution for all respondents as well as over all the categories.
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Table 3. Table of Expected and Observed Frequency Distributions of Wages

by Gender and Staff Category

Academics Non-Acads Male Female Total

Wages Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs. Exp. Obs.

0 0 0 0 0 0 0 0 0 0 0

1 2 27 11 48 1 25 10 50 10 77

2 38 41 123 127 21 25 114 146 130 173

3 89 67 198 223 85 94 180 193 262 290

4 94 62 139 89 119 88 124 63 244 151

5 64 80 63 52 95 98 55 34 153 134

6 34 70 22 25 53 79 19 17 75 98

Figure 2 displays the observed and fitted distributions of the number of job offers and
wages of all respondents.

Figure 2. Graphs of Observed and Fitted Distributions of Job Offers and

Wages for all employees
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Looking at the observed and the fitted distributions of the number of job offers in the
first graph it is evident that the geometric distribution fits the data very well. The same
feature of the distributions of job offers for different categories of respondents is observed
from Figure 3.

Figure 3. Graphs of Observed and Fitted Distributions of Job Offers by

Staff Category
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The graphs of the observed and fitted distributions of job offers by gender are given in
Figure 4.

Figure 4. Graphs of Observed and Fitted Distributions of Job Offers by

Gender
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In all the above mentioned graphs the geometric distribution provide a better fit than
any other distribution for the number of job offers. The distributions of the observed
and the expected values of the wages are given in Figure 5.

Figure 5. Graphs of Observed and Fitted Distributions of Wages
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It is observed that the gamma distribution fits very well to the observed data for the non-
academics and the female employees. Although for the other categories of respondents
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the fitting is not as good. Figure 1 displays that the observed data for the wages show
some irregular pattern at some points. Hence the fitting of the gamma distribution is
not so good for some parts in the right side of the distribution when all respondents are
considered. Nonetheless empirically the gamma distribution provides a better fit than
all other relevant distributions.

7.3. Computation of the Measure. Here we derive the expression for the measure of
the occupational mobility under the above specifications of distribution of the number of
job offers and wages. We also compute the values of the measure as well as the variance
of the number of job changes during the employment period for all respondents. The
same is also obtained for different categories of respondents to compare the mobility of
employees over categories.

From (2.2), assuming α to be an integer (cf. Evan et al. [6], for instance), the pdf of
the distribution of the maximum wage is

(7.1) f(zi) =
1

βαΓ(α)
pe

−
zi
β zα−1

i

[

(1− p)

(

1− e
−
zi
β

α−1
∑

r=0

1

r!

{

zi
β

}r
)]ni−1

and the corresponding cdf is given by

(7.2) F (z0) = p

∞
∑

k=1

k(1− p)k−1τk(α, β, z0),

where

(7.3) τk(α, β, z0) =

∫ z0

0

1

βαΓ(α)
e
−
zi
β zα−1

i

(

1− e
−
zi
β

α−1
∑

r=0

1

r!

{

zi
β

}r
)k−1

dzi.

Table 4. Table of the Empirical Distribution Function, the Expectation,

Variance of Job Changes and the Measure of Mobility by Different

Categories

Variable α̂ β̂ p̂ F (z0) E[N(k)] V ar[N(k)] E[N(k)
k

]

Academic 6.54 0.61 0.1773 0.00060 10.49969 4.73451 0.52498

Non-Acad. 6.38 0.48 0.1795 0.00200 10.49883 4.75000 0.52494

Male 8.23 0.50 0.1754 0.00020 10.49992 4.75000 0.52500

Female 6.00 0.48 0.1748 0.00400 10.49809 4.75000 0.52490

Overall 5.70 0.60 0.1751 0.00200 10.49896 4.75000 0.52495

Table 4 describes the expectation and variance of the number of job changes for all
respondents as well as for the different categories, and the values of the proposed measure.
From the expected values it appears that for any particular individual, on the average, the
number of job offers with wage associated with a new job offer exceeding the maximum
wage earned from a previous offer is a little over 10. The computed values of the measure
for the survey data enable us to infer that an employee is more mobile (than expected
in the job market) during his occupational life depending on whether the observed value
of the measure (computed on the basis of the employee’s job changes) exceeds the above
computed value of the measure. This is valid under the assumption that the job changes
occur only on the basis of wage consideration and for specific values of t and k. The
same conclusion can be extended over all the categories considered in the study. The
measure reveals the fact that the expected number of job changes is about the same for
all employees regardless of gender and staff category.
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Abstract

This article deals with the determination of compromise integer strata
sample sizes using goal programming in multivariate stratified sam-
pling. Firstly, the problem of determining optimum integer strata sam-
ple sizes is formulated for the univariate case, and then based on these
individual optimal solutions, individual goal variances are calculated. A
new compromise criteria is defined for the goal programming approach
based on predetermined or calculated goal variances. It is shown that
the proposed approach provides relatively more efficient and feasible
compromise integer strata sample sizes for multivariate surveys.

Keywords: Stratified sampling, Compromise allocation, Goal programming, Relative
efficiency.

1. Introduction

Several alternative compromise criteria and methods have been suggested in order to
determine strata sample sizes for multivariate surveys by authors such as Neyman [6],
Cochran [2], Chatterjee [1], Kokan and Khan [5], Sukhatme, Sukhatme, Sukhatme, and
Asok [8], Jahan, Khan, and Ahsan [3], Khan, Ahsan, and Jahan [4], etc. Determining
the compromise strata sample sizes in multivariate stratified sampling has been com-
monly called compromise allocation. If the total sample size is known and this sample
size is divided among stratum, it is called an allocation procedure. However, this study
is intended to determine strata sample sizes directly, and the proposed goal program-
ming approach does not involve any allocation techniques. The problem of determining
compromise strata sample sizes may be defined as a goal programming problem, since it
consists of multiple objectives. In this study, the compromise criteria is the sum of the
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proportional increase in variances resulting from absolute deviations from the individual
desired variances over all k characteristics. The criterion is formulated as

(1.1) minimize
k

∑

j=1

∣

∣Vcomp(ȳj)− Vd(ȳj)
∣

∣

Vd(ȳj)
,

where Vcomp(ȳj) is the variance of the sample mean of the jth characteristic under opti-
mum compromise integer strata sample sizes (n∗

h), and Vd(ȳj) is the desired variance of
the sample mean of the jth characteristic under optimum individual strata sample sizes
(njh) in the hth strata. The desired individual variance Vd(ȳj) can be either predeter-
mined or calculated. If one has no idea how to predetermine Vd(ȳj), the minimum value
of the individual variances Vmin(ȳj) can be used instead of the desired variance Vd(ȳj).
In the first step, the desired individual optimal variances should be predetermined or
calculated as Vmin(ȳj) for every characteristic.

2. The individual optimal integer strata sample sizes

The most popular way of calculating the individual optimal strata sample sizes for
the jth characteristic in the hth strata is to use the equation

(2.1) njh =
CWhSjh/

√
ch

∑L

h=1
WhSjh

√
ch

,

as indicated by Cochran [2], where ch is the cost of a sample taken from the hth strata,
Wh is the weight of the size of the hth strata, (Nh/

∑

h Nh) and Sjh is the standard
deviation of the hth strata for the jth characteristic. The solution of equation (2.1)

depends on the total sampling cost function f =
∑L

h=1
chnjh and a fixed budget C. It is

known that equation (2.1) provides non-integer solutions, and Khan, Ahsan, and Jahan
[4] showed that it sometimes provides unfeasible solutions, too. However, they used these
solutions as an initial point of their algorithms for determining the optimum compromise
integer strata sample sizes in multivariate surveys.

For the univariate case, the goal is to minimize the jth individual variance, V (ȳj),
subject to f ≤ C, njh ≤ Nh, where njh are integers (h = 1, 2, . . . , L). This problem
can also be presented as a non-linear integer programming (NIP) problem, as proposed
by Semiz and Esin [7]. This problem for every jth characteristic is formulated by the
following model:

minimizeVmin(ȳ) =
L

∑

h=1

W 2
hS2

jh

njh

(2.2)

subject to f ≤ C

0 ≤ njh ≤ Nh, h = 1, 2, . . . , L,

njh are integers, h = 1, 2, . . . , L.

Individual optimum integer values njh can be determined by solving the problem (2.2)
using the Lingo package program [9]. The NIP solution of the problem (2.2) has ad-
vantages over the solution of equation (2.1) since one can add different constraints to
problem (2.2), and obtain optimal integer results.

2.1. Example. The data, exhibited in Table 1, of the example reviewed by Khan, Ahsan,
and Jahan [4], is reconsidered here for the comparison of alternative methods.
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Table 1. Data for five strata and three characteristics.

ch Nh Wh S1h S2h S3h W 2
hS2

1h W 2
hS2

2h W 2
hS2

3h

1 3 39,552 0.197 4.6 11.7 332 0.82119844 5.31256401 4277.683216

2 4 38,347 0.191 3.4 9.8 357 0.42172036 3.50363524 4649.466969

3 5 43,969 0.219 3.3 7.0 246 0.52229529 2.35008900 2902.407876

4 6 36,942 0.184 2.8 6.5 173 0.26543104 1.43041600 1013.276224

5 7 41,760 0.208 3.7 9.8 279 0.59228416 4.15507456 3367.713024

The data includes three characteristics:

(i) The number of cows milked per day,
(ii) The number of gallons of milk yielded per day,
(iii) The total annual cash receipts from dairy products.

The fixed budget for this sampling design is C = 5, 000 $. The individual optimum
solutions of Cochran’s equation (2.1), and the NIP problem defined in (2.2), are illustrated
in Table 2.

Table 2. The individual optimal strata sample sizes, cost and variances
obtained from the solution of the Cochran (2.1) and NIP (2.2) methods.

Cochran (2.1) NIP (2.2)

h/j 1 2 3 1 2 3

1 336 341 314 335 340 314

2 209 240 283 210 239 284

3 208 176 200 207 175 200

4 135 125 108 135 126 108

5 187 198 182 187 199 182

Total cost ($) 5,003 4,999 4,996 4,999 5,000 5,000

Vmin(ȳj) 0.01210 0.07595 72.45055 0.01211 0.07594 72.39270

The NIP (2.2) solutions are feasible solutions which do not violate any constraints at
all. However, sometimes Cochran’s solutions may violate some of the constraints due
to rounding off. In this example, for the first characteristic the sampling cost is over
the fixed budget of 5,000 $. The individual variances are smaller with the NIP (2.2)
solutions. These optimum integer individual strata sample sizes determined by NIP can
be considered as a starting point for algorithms such as Dynamic programming used by
Khan, Ahsan, and Jahan [4], and the related individual minimum variances Vmin(ȳj) are
considered as the individual desired variances Vd(ȳj).

3. Compromise integer solution via goal programming

Goal programming aims to attain predetermined goals for multiple objectives. In
multivariate surveys, there are k predetermined goal variances Vd(ȳj). Therefore, there
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are k absolute deviations between the compromise variances Vcomp(ȳj) and the mini-
mum individual, or desired known variances Vd(ȳj). The absolute positive deviations are
formulated as

Vcomp(ȳj) = d−j − d+
j = Vd(ȳj), j = 1, 2, . . . , k,

where

Vcomp(ȳj) < Vd(ȳj) =⇒ d−j > 0, d+
j = 0,

Vcomp(ȳj) > Vd(ȳj) =⇒ d−j = 0, d+
j > 0,

Vcomp(ȳj) = Vd(ȳj) =⇒ d−j = 0, d+
j = 0.

For the jth characteristic, if the variances are not equal, one of these positive deviations
d+

j or d−j come into existence. Therefore, the decision criteria is to minimize the sum

of the deviations d+
j and d−j . However, the deviations of different characteristics may

have different units. For each characteristic, the deviation d+
j or d−j becomes unit free

by applying the transformation

(3.1)
d+

j

Vd(ȳj)
or

d−j
Vd(ȳj)

, j = 1, 2, . . . , k,

respectively. As seen in Equation (3.1), the jth unit free standardized deviation is equal
to the jth proportional increase in variance resulting from the absolute deviation between
Vcomp(ȳj) and Vd(ȳj) in (1.1). Consequently, by using goal programming, the compromise
integer strata sample sizes in the multivariate case may be presented as the following
nonlinear integer programming problem:

minimize

k
∑

j=1

wj

d+
j + d−j
Vd(ȳj)

≡ minimize

k
∑

j=1

wj
|Vcomp(ȳj)− Vd(ȳj)|

Vd(ȳj)
(3.2)

subject to Vcomp(ȳj) + d−j − d+
j = Vd(ȳ), j = 1, 2, . . . , k,

fc ≤ C,

1 ≤ n∗
h ≤ Nh, h = 1, 2, . . . , L,

n∗
h are integers, h = 1, 2, . . . , L,

where fc =
∑L

h=1 chn∗
h can be of any form. The problem (3.2) may accept many con-

straints, and wj can be added as the weight of the jth characteristic according to its
importance. Therefore, this approach is much more flexible than the other algorithms.
This problem can be solved by the Lingo package program [9].

Taking NIP (2.2) individual optimal solutions as the desired variances, and assuming
the importance of all characteristics to be equal (wj = 1, j = 1, 2, 3), the solution of the
compromise integer problem defined in (3.2) gives the compromise integer strata sample
sizes as

n∗
1 = 329, n∗

2 = 246, n∗
3 = 195, n∗

4 = 123, n∗
5 = 188,

and the compromise variances of characteristics as

Vcomp(ȳ1) = 0.012197215, Vcomp(ȳ2) = 0.076172628, Vcomp(ȳ3) = 72.93787706.

4. Comparisons and Conclusions

The mean sum of relative efficiencies of variances is used for the comparison of the pro-
posed goal programming approach (3.2) with other compromise methods. The compared
methods are:
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i) Minimizing the trace of the covariance matrix, as proposed by Sukhatme, Suk-
hatme, Sukhatme and Asok [8],

ii) Averaging the individual strata sample sizes over the characteristics calculated
using (2.1),

iii) Minimizing the total relative increase in the variances, as proposed by Chatterjee
[1],

iv) Minimizing the total relative increase in the variances with integer restrictions,
as proposed by Khan, Ahsan, and Jahan [4], and

v) Minimizing the total proportional increase in variances, as proposed by the au-
thor (3.2).

Since every characteristic can have different units, in (i), the appropriateness of the sum
of the variances should be reevaluated carefully. The compromise strata sample sizes are
presented in Table 3 for each method.

Table 3. Compromise Strata Sample Sizes for the Methods Compared.

Methods and compromise integer strata sample sizes n∗
1 n∗

2 n∗
3 n∗

4 n∗
5

(i) Minimizing the trace 314 283 200 108 182

(ii) Cochran’s Average 330 244 195 123 189

(iii) Chatterjee’s Method 330 245 195 123 189

(iv) Integer DP 331 246 195 123 187

(v) Proposed integer GP 329 246 195 123 188

The comparison is based on the mean sum of relative efficiencies (MSRE) of each method:

(4.1) MSRE =
1

k

k
∑

j=1

Vcomp(ȳj)

Vmin(ȳj)
=

1

k
SRE.

Table 4. Sum of relative efficiencies (SRE) and mean sum of relative
efficiencies (MSRE) as compared to the optimal individual variances

determined by NIP (2.2).

Methods and compromised variances V (ȳ1) V (ȳ2) V (ȳ3) SRE MSRE (4.1) Cost

Optimal Integer Individual (NIP) (2.2) 0.0121 0.0759 72.3927 3.0000 1.0000 ∗
(i) Minimizing the Trace 0.0124 0.0771 72.4506 3.0414 1.0138 4996

(ii) Cochran’s Average 0.0122 0.0761 72.9586 3.0187 1.0062 5002

(iii) Chatterjee’s Method 0.0122 0.0761 72.8808 3.0176 1.0059 5006

(iv) Integer DP 0.0122 0.0762 72.9551 3.0200 1.0067 4999

(v) Proposed integer GP (3.2) 0.0122 0.0762 72.9379 3.0197 1.0066 5000

Method (i) does not directly provide integer strata sample sizes. Solutions of (i) have
to be rounded. The mean sum of the relative efficiencies of (i) is greater than for the
proposed method (v). Also, the trace concept of the variance terms, which have different
units, is still in question.

Methods (ii) and (iii) have lower MSRE values than the proposed method (v). How-
ever, these strata sample size solutions require to be rounded off. As seen in Table 4, these
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solutions result in a cost over the budget and these methods may not provide feasible
solutions.

Method (iv), proposed by Khan, Ahsan, and Jahan [4], is as efficient as the proposed
method (v). However, the solutions of (iv) are determined by an algorithm for a fixed

problem subject to the fixed cost function (fc =
∑L

h=1 chn∗
h) and for a limited and

specified set of constraints. Therefore, method (iv) is not flexible for different multivariate
survey problems.

Method (v) is a mathematical programming model which optimizes the goal program-
ming model subject to the constraints, which are the cost function and the integer strata
sample sizes. Therefore, Method (v) always provides integer and feasible solutions for the
strata sample sizes for compromise situation in multivariate stratified sampling problems.
In addition this proposed goal programming method (v) has a flexible structure because
it can accept different kinds of restrictions appropriate to different problems. Depending
upon the problem structure, constraints may be deleted, added or changed in the new
method (3.2). In addition to these advantages, the proposed goal programming solution
method (v) has, for this specific example, the best MSRE value among the methods (i),
(iv) and (v) that provide feasible solutions. In conclusion, as seen in this example, this
goal programming method seems to provide a flexible approach as well as feasible and
efficient integer compromise strata sample sizes in multivariate stratified sampling.
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Abstract

Binary regression has many medical applications. In applying the tech-
nique, the tradition is to assume the risk factor X as a non-stochastic
variable. In most situations, however, X is stochastic. In this study,
we discuss the case when X is stochastic in nature, which is more re-
alistic from a practical point of view than X being non-stochastic. We
show that our solutions are much more precise than those obtained by
treating X as non-stochastic when, in fact, it is stochastic.

Keywords: Binary regression, Modified Maximum Likelihood Estimator, Robustness,
Skew family, Symmetric family.

1. Introduction

A binary regression model typically is

π (x) = E (Y | X = x) =

∫ z

−∞

f (x) dx

= F (z) ,(1.1)

where z = γ0 + γ1x (γ1 > 0), Y is a stochastic variable that assumes values 1 or 0 and
X is a risk factor which in the literature has been treated as non-stochastic. In most
situations, however, X is stochastic. Consider, for example, the following data:

(1) The 27 observations on (Y,X) given in Agresti [2, p. 88], where X measures
the proliferative activity of cells after a patient receives an injection of tritiated
thymidine and the response variable Y represents whether the patient achieves
remission or not.

(2) The following 10 observations on (Y,X) given in Hosmer and Lemeshow [5,
p.132]

Y : 0, 1, 0, 0, 0, 0, 0, 1, 0, 1

X : 0.225, 0.487,−1.080,−0.870,−0.580,−0.640, 1.614, 0.352,−1.025, 0.929;

∗Department of Statistics, Middle East Technical University, Ankara 06531, Turkey.
†Department of Statistics, Hacettepe University, Ankara 06532, Turkey.
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X is generated from normal N(0, 1). In the examples above, and many others (Aitkin
et al., [3]), X is clearly stochastic but has been treated as a non-stochastic variable.
The function f (x) has traditionally been taken to be logistic but Tiku and Vaughan
[18] have extended the methodology to non-logistic density functions treating X as non-
stochastic. The purpose here is to give solutions in the more realistic situations when X
is stochastic and f (x) is logistic or non-logistic. Since maximum likelihood methodology
is intractable, modified likelihood methodology is invoked. The latter is known to yield
MMLE (modified maximum likelihood estimators) as efficient as the MLE (maximum
likelihood estimators). Unlike the MLE, the MMLE are explicit functions of sample
observations and are easy to compute; see Vaughan [22] and Tiku and Vaughan [18]. In
fact, Vaughan [23, p.228] states five very desirable properties of the MMLE. Moreover,
as pointed out in Şenoğlu and Tiku [14, p.363], the MMLE are numerically the same
(almost) as the MLE in all situations where authentic iterative MLE are available. See
also Vaughan [23, p. 233]. The solutions we give are enormously more precise than those
obtained by treating X as a non-stochastic variable when, in fact, it is stochastic.

2. Maximum Likelihood

Let Y be a binary random variable which assumes values yi = 1 or 0 with probabilities
θ and 1− θ, respectively, and let the corresponding observations on the risk factor X be
denoted by xi (1 ≤ i ≤ n). The model is

(2.1) F (zi) = π (xi) = E (Y |X = xi) =

∫ zi

−∞

f (u) du,

where zi = γ0 + γ1xi and f (u) is a completely specified density function; Y is presumed
to increase with X so that γ1 is a priori positive. Let h (x) denote the probability density
function of the stochastic variable X. The methodology developed here is applicable
to any completely specified density f in (2.1) and any location-scale density h (x). We
consider, for illustration, two families of densities: (a) skew and (b) symmetric, which
are prevalent in practice (Rasch [11]; Spjotvoll and Aastveit [12]; Tiku et al. [19]).

Skew family : Consider the family of Generalized Logistic densities

(2.2) GL (b, γ1) : h (x) =
bγ1e

−(γ0+γ1x)

(1 + e−(γ0+γ1x))
b+1

, −∞ < x <∞.

Note that the probability density function of Z = (X − µ) /σ = γ0 + γ1X, (γ0 = −µ/σ,
γ1 = 1/σ), is

(2.3) h (z) =
be−z

(1 + e−z)b+1
, −∞ < z <∞.

The densities f (u) and h (z) are assumed to have the same functional forms although
our methodology easily extends to situations where f and h are different from each other.
The latter will perhaps be true if there are more than one risk factor and z = γ0+

∑

i γ1xi.

For b < 1, (2.3) represents negatively skewed density functions. For b > 1, it represents
positively skewed density functions. For b = 1, it is the well known logistic density. The
mean and variance of (2.3) are

(2.4) E (Z) = ψ (b)− (1) and V (Z) = ψ′ (b) + ψ′ (1)

respectively The values of the psi-function ψ (b) and its derivative ψ′ (b) are given in Tiku
et al. [20, p. 1356]. See Abramowitz and Stegun [1] for analytical and computational
aspects of psi-functions.
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The likelihood function of the random sample (yi, xi) , 1 ≤ i ≤ n, is

(2.5) L = LXLY |X ∝
n
∏

i=1

(γ1h (zi))
{

(F (zi))
yi (1− F (zi))

1−yi
}

.

This gives

(2.6) lnL ∝ n ln γ1 +

n
∑

i=1

{lnh (zi) + yi lnF (zi) + (1− yi) ln (1− F (zi))} ;

zi = γ0 + γ1xi and F (zi) =
(

1 + e−zi

)−b
.

The likelihood equations are expressions in terms of the intractable functions

(2.7) g (z) = e−z/
(

1 + e−z
)

, g1 (z) = f (z) /F (z) and g2 (z) = f (z) / {1− F (z)} .
They have no explicit solutions and are almost impossible to solve by iterative meth-
ods. The MLE are, therefore, elusive. See also Tiku and Vaughan [18] who work with
the conditional likelihood function LY |X as do other authors (Agresti [2]; Hosmer and
Lemeshow [5]; Kleinbaum [6]).

To obtain the MMLE, we first express the likelihood equations ∂ lnL/∂γ0 = 0 and
∂ lnL/∂γ1 = 0 in terms of the ordered variates z(i). Since γ1 is a priori positive,

(2.8) z(i) = γ0 + γ1x(i), 1 ≤ i ≤ n,

where x(i) are the order statistics of the random sample xi, (1 ≤ i ≤ n). Since complete
sums are invariant under ordering, e.g.

∑n
i=1 zi =

∑n
i=1 z(i), we have

(2.9)
∂ lnL

∂γ0
= −n+

n
∑

i=1

{

(b+ 1) g
(

z(i)
)

+ wig1
(

z(i)
)

− (1− wi) g2
(

z(i)
)}

= 0

and

∂ lnL

∂γ1
=

n

γ1
−

n
∑

i=1

x(i) +

n
∑

i=1

x(i)

{

(b+ 1) g
(

z(i)
)

+ wig1
(

z(i)
)

− (1− wi) g2
(

z(i)
)}

= 0,

(2.10)

where wi = y[i] is the concomitant of x(i), i.e., y[i] is that observation yi which is coupled
with x(i) when (yi, xi) are ordered with respect to xi, (1 ≤ i ≤ n). As mentioned earlier,
(2.8)-(2.9) are almost impossible to solve.

3. Modified Likelihood

To obtain the modified likelihood equations, we linearize the functions g (z), g1 (z)
and g2 (z) by using the first two terms of their Taylor series expansions as follows:

g
(

z(i)
) ∼= g

(

t∗(i)
)

+
(

z(i) − t∗(i)
)

{

d

dz
g (z)

}

z=t∗
(i)

= αi − βiz(i), 1 ≤ i ≤ n,(3.1)

where

(3.2) αi = (1 + eαi)−1 + βiai and βi = eai/ (1 + eai)2 , ai = t∗(i);

ai is determined by the equation

(3.3)

∫ ai

−∞

h (z) dz =
i

n+ 1
, 1 ≤ i ≤ n.

Similarly,

(3.4) g1
(

z(i)
) ∼= α1i − β1iz(i) and g2

(

z(i)
)

= α2i + β2iz(i), 1 ≤ i ≤ n,
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where

(3.5) β1i =
{

f2 (t(i)
)

− F
(

t(i)
)

f ′
(

t(i)
)}

/F 2 (t(i)
)

and α1i = g1
(

t(i)
)

+ β1it(i),

and

β2i =
{

f2 (t(i)
)

+
(

1− F
(

t(i)
))

f ′
(

t(i)
)}

/
(

1− F
(

t(i)
))2

,

α2i = g2
(

t(i)
)

− β2it(i).
(3.6)

Here, t(i) is determined by the equation

(3.7)

∫ t(i)

−∞

f (z) dz =
i

n+ 1
, 1 ≤ i ≤ n.

For the Generalized Logistic,

(3.8) t(i) = − ln

{

q
− 1

b

i − 1

}

, qi = i/ (n+ 1) .

Since f (u) and h (z) are assumed to have the same forms, a(i) = t(i) (1 ≤ i ≤ n).

Incorporating (3.1) and (3.4) in (2.9)-(2.10) gives the modified likelihood equations
which have the following beautiful expressions:

(3.9)
∂ lnL

∂γ0

∼= ∂lnL∗

∂γ0
= −n+

n
∑

i=1

{

δi −miz(i)
}

= 0

and

(3.10)
∂ lnL

∂γ1

∼= ∂lnL∗

∂γ1
=

n

γ1
−

n
∑

i=1

x(i) +
n
∑

i=1

x(i)

{

δi −miz(i)
}

= 0

where

(3.11) δi = wiα1i − (1− wi)α2i + (b+ 1)αi and mi = wiβ1i + (1− wi)β2i + (b+ 1)βi.

The solutions of (3.9)-(3.10) are the MMLE γ̂0 and γ̂1 of γ0 and γ1, respectively:

(3.12) γ̂0 = {(δ − n) /m} − γ̂1x(.) and γ̂1 =
{

B +
√

(B2 + 4nC)
}

/2C

where

δ =

n
∑

i=1

δi, m =

n
∑

i=1

mi, x(.) =
1

m

n
∑

i=1

mix(i),

B =

n
∑

i=1

(δi − 1)
(

x(i) − x(.)

)

, and

C =
n
∑

i=1

mi

(

x(i) − x(.)

)2
=

n
∑

i=1

mix
2
(i) −

1

m

(

n
∑

i=1

mix(i)

)2

.

(3.13)

Revised estimates: Following Lee et al. [7] and Tiku and Vaughan [18, p. 888], in
order to sharpen the MMLE, we calculate the coefficients (α1i, β1i) and (α2i, β2i) from
(3.5)-(3.6) by replacing t(i) by

(3.14) ti = γ̂0 + γ̂1x(i), 1 ≤ i ≤ n,

and calculate the revised estimates from (3.12)-(3.13). We may repeat this process a few
times until the estimates stabilize to, say, three decimal places. No revision is needed in
the coefficients (αi, βi) in (3.1); they are computed from (3.2) once and for all. See also
Tiku and Suresh [17] and Vaughan [22, 23].
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4. Asymptotic Variances and Covariances

It has been rigourously proved by Vaughan and Tiku [24] that the MMLE are asymp-
totically equivalent to the MLE. Bhattacharyya [4] establishes this result for censored
samples. Therefore, the MMLE γ̂0 and γ̂1 above are asymptotically unbiased and effi-
cient. Their asymptotic variance-covariance matrix V is given by I−1 (γ0, γ1), where I is
the Fisher information matrix consisting of the following elements:

I11 = −E
(

∂2 lnL

∂γ2
0

)

= Q+ P1,(4.1)

I12 = −E
(

∂2 lnL

∂γ0∂γ1

)

=
1

γ1
{− (Q+ P1) γ0 + [ψ (b)− ψ (1)]Q+ [ψ (b+ 1)− ψ (2)]P1}(4.2)

and

I22 = −E
(

∂2 lnL

∂γ2
1

)

=
1

γ2
1

((Q+ P1) γ
2
0 − 2γ0 ([ψ (b)− ψ (1)]Q+ [ψ (b+ 1)− ψ (2)]P1)+

+
(

[ψ (b)− ψ (1)]2 + ψ′ (b) + ψ′ (1)
)

Q+

+
(

[ψ (b+ 1)− ψ (2)]2 + ψ′ (b+ 1) + ψ′ (2)
)

P1 + n),(4.3)

where

(4.4) Qi =
f2 (zi)

F (zi) (1− F (zi))
, Q =

n
∑

i=1

Qi and P1 =
nb

b+ 2
.

The expressions (4.1)-(4.3) are obtained along the same lines as in Tiku and Vaughan
[18, Section 5] and realizing that for a bounded bivariate random function g (Z, Y ),

(4.5) E {g (Z, Y )} = EZ

{

EY/Zg (Z, Y )
}

.

Thus,

(4.6) V =

[

I11 I12
I12 I22

]−1

.

In particular, the asymptotic variance of γ̂1 is given by

(4.7) var (γ̂1/γ1) ∼= (Q+ P1) /∆,

where

∆ = (
[

ψ′ (b)− ψ′ (1)
]

Q (Q+ P1) +
[

ψ′ (b+ 1) + ψ′ (2)
]

P1 (Q+ P1)+

+ ([ψ (b)− ψ (1)]− [ψ (b+ 1)− ψ (2)])2QP1 + n (Q+ P1) ,

which is free of γ0.

An estimate of the variance of γ̂1 is obtained by replacing zi by ẑi = γ̂0+ γ̂1xi in (4.4).
The standard error of γ̂1 is the square root of this estimated variance and, similarly, for
γ̂0.

For b = 1 (logistic density), (4.7) simplifies and since ψ′ (1) = 1.6449 and

(4.8) ψ′ (2) = 1.6449, var (γ̂1/γ1) ∼= 1/ (3.2898Q+ 1.2898P1 + n) .

We now give a few examples to illustrate the enormous gain in efficiency of the estimators
when the complete likelihood function L is used as against using only the conditional
likelihood LY |X .
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4.1. Example. Consider the widely reported CHD (coronary heart disease) data on 100
randomly chosen patients (Hosmer and Lemeshow [5]). Here, X represents the age and Y
the presence or absence of CHD. The density f (u) in (2.1) has traditionally been taken
to be logistic. With logistic h (x), i.e. GL (1, γ1) in (2.2), we have the MMLE and their
standard errors reported in Table 1. Only two iterations were needed for the estimates
to stabilize to three decimal places. Also reported are the MLE and the MMLE (and
their standard errors) based only on the conditional likelihood LY |X , reproduced from
Tiku and Vaughan [18, p. 890]. It can be seen that the MMLE based on the complete
likelihood (2.5) are enormously more precise, that is, they have considerably smaller
standard errors than those based only on the conditional likelihood.

Table 1. Estimates and their Standard Errors for the CHD Data, n = 100.

Coefficient Estimate Standard Error

Conditional ML γ0 -5.310 1.134

Likelihood γ1 0.111 0.024

MML γ0 -5.309 1.134

γ1 0.111 0.024

Complete MML γ0 -6.181 0.463

Likelihood γ1 0.136 0.010

It may be noted that the MMLE based on the complete likelihood are not much different
numerically from those based only on the conditional likelihood.

4.2. Example. Consider the Agresti [2, p.88] data (27 observations) mentioned earlier.
The MLE and the MMLE and their standard errors are given in Table 2. Again, the
MMLE based on the complete likelihood function are not very different numerically from
those based on the conditional likelihood but are enormously more precise.

Table 2: Estimates and their Standard Errors for Agresti’s Data, n = 27.

Coefficient Estimate Standard Error

Conditional ML γ0 -3.777 ∗
Likelihood γ1 0.145 0.059

MML γ0 -3.777 1.379

γ1 0.145 0.059

Complete MML γ0 -3.688 0.576

Likelihood γ1 0.175 0.024

∗ : Not given in Agresti [2]

Simulation study: To illustrate further the gain in efficiency which the MMLE (3.12)
provide over those based only on the conditional likelihood (Tiku and Vaughan [18]), i.e.,

(4.9) γ̂1c =
n
∑

i=1

δi
(

x(i) − xa
)

/
n
∑

i=1

mi

(

x(i) − xa
)2

and γ̂0c = (δ/m)− γ̂1cxa,

δ =
∑

i

δi, m =
∑

i

mi, δi = α1iwi − α2i (1− wi) ,

mi = β1iwi + β2i (1− wi) and xa = (1/m)
∑

i

mix(i).

we did an extensive Monte Carlo study as follows:
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We generated a random sample x1, x2, . . . , xn of size n from (2.2) and calculated the
MMLE of γ0 and γ1 (Tiku and Suresh [17]; Vaughan [22]) from the order statistics

x(i) ≤ x(2) ≤ · · · ≤ x(n).

Denote them by γ̂00 and γ̂10. Specifically,

(4.10)

γ̂00 =
1

m

n
∑

i=1

(

αi −
1

b+ 1

)

− γ̂10x(..) and ,

γ̂10 =

{

−B0 +
√

B2
0 + 4nC0

}

/2C0,

where

(4.11)

m =
n
∑

i=1

βi, x(..) = (1/m)
n
∑

i=1

βix(i),

B0 = (b+ 1)

n
∑

i=1

(

αi −
1

b+ 1

)

(

x(i) − x(..)

)

and

C0 = (b+ 1)

n
∑

i=1

βi
(

x(i) − x(..)

)2
;

the values of αi and βi being obtained from (3.2).

We generated the concomitant binary observations wi = y[i], (1 ≤ i ≤ n), by calcu-
lating the probability

(4.12) P̂i =
(

1 + e−ẑ(i)

)−b

, ẑ(i) = γ̂00 + γ̂10x(i)

and defining

(4.13) wi =

{

1 if Ui ≤ P̂i,

0 otherwise,

where Ui, (1 ≤ i ≤ n), are independent uniform (0,1) variates.

The observations
(

wi, x(i)

)

, 1 ≤ i ≤ n, so generated were substituted in (3.12) and
the MMLE γ̂0 and γ̂1 obtained. The corresponding conditional likelihood MMLE were
obtained from the equations (4.9). Both sets of estimates were the result of three iter-
ations. The procedure was repeated N = [100000/n] (integer value) times. The means
and variances of the resulting estimates were calculated for b = 0.5, 1, 2 and 4. Both
were found to be (almost) unbiased. The MMLE γ̂0 and γ̂1, however, were found to be
enormously more efficient than the conditional MMLE for all values of b. For illustration,
we reproduce in Table 3 the means and variances of the estimators for b = 1. It can be
seen that the MMLE based on the complete likelihood are very much more efficient than
those based only on the conditional likelihood.

It is interesting to see that the mean and variance of γ̂1/γ1 are almost invariant to γ0

for all n, in agreement with the fact that γ̂1 is (almost) unbiased for γ1 and the equation
(4.7) is free of γ0. Incidentally, the simulated variance of γ̂1/γ1 is close to those obtained
from (4.7) for large n (> 100)
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Table 3. Simulated Means and Variances: (a) Mean and (b) Variance.

Complete Likelihood Conditional Likelihood

(a) (b) (a) (b)

γ0 γ1 n γ̂0 γ̂1/γ1 γ̂0 γ̂1/γ1 γ̂(0) γ̂(1)/γ1 γ̂(0) γ̂(1)/γ1

0 0.001 50 0.001 1.018 0.075 0.017 0.003 1.112 0.233 0.155

100 -0.005 1.007 0.035 0.008 -0.011 1.062 0.101 0.070

0.10 50 0.006 1.023 0.079 0.017 0.001 1.121 0.229 0.168

100 0.003 1.009 0.039 0.008 -0.000 1.048 0.108 0.061

1.00 50 -0.005 1.022 0.075 0.017 -0.010 1.132 0.223 0.165

100 -0.005 1.011 0.037 0.008 -0.011 1.066 0.103 0.069

2 0.001 50 2.029 1.017 0.142 0.017 2.245 1.127 0.892 0.161

100 2.025 1.011 0.073 0.008 2.124 1.056 0.350 0.063

0.10 50 2.035 1.016 0.139 0.016 2.239 1.119 0.866 0.159

100 2.018 1.005 0.070 0.008 2.111 1.048 0.375 0.067

1.00 50 2.048 1.024 0.136 0.015 2.278 1.139 0.891 0.170

100 2.021 1.008 0.070 0.008 2.114 1.055 0.352 0.059

4.3. Remark. The assumed values of γ0 and γ1 may as well be used in (4.12) to generate
wi from (4.13). That does not change the values in Table 3 in any substantial way.

5. Hypothesis Testing

Since X is a genuine risk factor, its effect on Y will logically be never zero. The real
issue, therefore, is whether it has some effect howsoever small. TestingH0 : γ1 = γ10 (> 0)
is, therefore, of major importance. To test H0, we propose the statistic

(5.1) W = γ̂1/γ10.

Large values of W lead to the rejection of H0 in favour of H1 : γ1 > γ10. Since γ̂1 is
asymptotically equivalent to the MLE, the asymptotic null distribution of W is normal
with mean 1 and variance given by the right hand side of (4.7). Simulations reveal,
however, that it takes a large sample size n (> 100) to attain near-normality of the null
distribution of W . To study the null distribution of W for small n, we simulated the
coefficients of skewness β∗1 = µ2

3/µ
3
2 and kurtosis β∗2 = µ4/µ

2
2 of W . Interestingly, µ3 > 0

and β∗1 and β∗2 are close to the Type III line in the Pearson plane (Pearson [9]; Tiku
[15,16]; Pearson and Tiku [10, Fig.1]), i.e.,

(5.2) |β∗2 − (3 + 1.5β∗1 )| ≤ 0.5.

For n = 20, γ0 = 2 and γ1 = 0.001, for example, β∗1 = 0.732 and β∗2 = 4.309 so that
(5.2) equals 0.211; for n = 100, β∗1 = 0.139 and β∗2 = 3.153, and (5.2) equals 0.056. The
Pearson-Tiku 3-moment chi-square approximation is applicable. This works as follows:

Let

(5.3) χ2 = (W + c) /d,

where χ2 is a chi-square variate with ν degrees of freedom. Determine ν, d and c such
that the first three moments on both sides agree. This gives

(5.4) ν = 8/β∗1 , d =
√

(µ2/2ν) and c = bν − µ′1.
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Here µ′1 and µ2 are the simulated mean and variance of W . Thus, the 100 (1− α)%
point of W is given by

(5.5) Wα = dχ2
α (ν)− c,

where χ2
α (ν) is the 100 (1− α)% point of a chi-square distribution with ν degrees of

freedom. The 3-moment chi-square approximation gives remarkably accurate values. For
example, we have the following simulated values of the probability P (W ≥Wα|H0) with
its value presumed to be 0.050:

Simulated Values of The Probability

n b = 0.5 1 2 4

20 0.049 0.044 0.046 0.048

50 0.051 0.050 0.049 0.047

100 0.049 0.045 0.051 0.051

5.1. Remark. Since γ̂1 is as efficient as the MLE, it will not be easy to improve over
the W test so far as its power is concerned.

Since X has been assumed to be non-stochastic, it is now possible to study the robustness
of the W test as follows.

Robustness: In practice, a value of the shape parameter b in (2.3) is located with the
help of Q−Q plots and/or formal goodness-of-fit tests; see specifically Tiku and Vaughan
[18, Appendix B]. In spite of ones best efforts, however, it might not be possible to locate
the exact value of b. Moreover, the data might contain outliers or be contaminated. That
brings the robustness issue in focus. Assume, for illustration, that the true value in (2.3)
is b = 1 (logistic distribution) which we will call the population model. As plausible
alternatives, we consider the following which we will call sample models; σ = 1/γ1.

Misspecified model:

Student’s t distribution with degrees of freedom

(1) υ = 9,
(2) υ = 19.

Outlier model:

(3) (n− r) observations come from GL (1, σ) and r (we do not know which) come
from GL (1, 4σ), r = [0.5 + 0.1n].

(4) (n− r) observations come from GL (0.5, σ) and r come from GL (0.5, 4σ).

Mixture model:

(5) 0.90GL (1, σ) + 0.10GL (1, 4σ),
(6) 0.90GL (0.5, σ) + 0.10GL (0.5, 4σ).

Contamination model:

(7) (n− r) observations come from GL (1, σ) and r from uniform U (0, 1).

Models (4) and (6) represent skew distributions. All other models represents symmetric
distributions.

To study the robustness of Type I error of the W test above, since the assumed
population model is the logistic GL (1, σ), we take b = 1 in all the equations above and use
the correspondingWα in (5.5) for all the alternative models (1)–(7). The simulated Type
I errors are given in Table 4. It can be seen that the W test is remarkably robust. This
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is typical of the hypothesis testing procedures based on the MMLE since the coefficients
βi have umbrella or half-umbrella ordering; see specifically Şenoğlu and Tiku [13,14].

Table 4. Simulated Values of The Type I Error; γ0 = 0, γ1 = 0.001.

Model n = 50 60 80 100 Model n = 50 60 80 100

Logistic 0.050 0.052 0.052 0.048 (1) 0.049 0.051 0.048 0.048

(2) 0.049 0.047 0.048 0.051 (3) 0.049 0.049 0.048 0.052

(4) 0.053 0.050 0.050 0.050 (5) 0.051 0.047 0.046 0.050

(6) 0.051 0.049 0.050 0.051 (7) 0.050 0.049 0.050 0.052

The random numbers generated from all the models in the table were standardized to
have variance 1. Although we have reported values only for γ0 = 0 and γ1 = 0.001, the
results are essentially the same for other values of γ0 and γ1. Similarly, the power of the
test is not diminished in any substantial way under plausible deviations from an assumed
model. We omit details for conciseness. Thus, the W test has both criterion robustness
as well as efficiency robustness.

6. Symmetric family

Consider the situation when X has density

(6.1) h (x) =
γ1√

kB
(

1
2
, p− 1

2

)

{

1 +
1

k
(γ0 + γ1x)

2

}−p

, −∞ < x <∞;

k = 2p− 3, p ≥ 2. The probability density function of Z = γ0 + γ1X is

(6.2) h (z) =
1√

kB
(

1
2
, p− 1

2

)

{

1 +
1

k
z2

}−p

, −∞ < z <∞.

Realize that t =
√

(ν/k)Z has the Student’s t distribution with ν = 2p − 1 degrees of
freedom.

Given an ordered sample
(

wi, x(i)

)

, 1 ≤ i ≤ n, the likelihood equations are (wi = y[i]),

(6.3)
∂lnL

∂γ0
=

n
∑

i=1

{

−2p

k
g
(

z(i)
)

+ wig1
(

z(i)
)

− (1− wi) g2
(

z(i)
)

}

= 0

and

(6.4)
∂lnL

∂γ1
=

n

γ1
+

n
∑

i=1

x(i)

{

−2p

k
g
(

z(i)
)

+ wig1
(

z(i)
)

− (1− wi) g2
(

z(i)
)

}

= 0

where

(6.5) g (z) = z/
{

1 + (1/k) z2} , g1 (z) = f (z) /F (z) and g2 (z) = f (z) / {1− F (z)} .

Here, f (u) and h (z) are assumed to be the same functions (6.2) and F (z) =
∫ z

−∞
f (u) du.

Again, it is almost impossible to solve the equations (6.3)–(6.4).

Proceeding exactly along the same lines as in Section 2, modified likelihood equations
are obtained. The solutions of these equations are the following MMLE:

(6.6) γ̂0 = (δ/m)− γ̂1x(.) and γ̂1 =
{

B +
√

B2 + 4nC
}

/2C,
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where

(6.7)

B =

n
∑

i=1

δi
(

x(i) − x(.)

)

and

C =

n
∑

i=1

mi

(

x(i) − x(.)

)2
=

n
∑

i=1

mix
2
(i) − (1/m)

(

n
∑

i=1

mix(i)

)2

;

δi = wiα1i − (1− wi)α2i − (2p/k)αi and mi = wiβ1i + (1− wi)β2i + (2p/k)βi.

The coefficients αi and βi are given by

(6.8) αi =
(2/k) a3

i

{1 + (1/k) a2
i }

2 and βi =
1− (1/k) a2

i

{1 + (1/k) a2
i }

2 ,

where ai is determined from the equation

(6.9) F (ai) =

∫ ai

−∞

h (z) dz =
i

n+ 1
, 1 ≤ i ≤ n.

An IMSL subroutine is available to evaluate (6.9) which is essentially the cumulative
density function of the Student’s t distribution.

The coefficients (α1i, β1i) and (α2i, β2i) are given in (3.5)–(3.6) with f (z) replaced by
the density on the right hand side of (6.2), and F (z) =

∫ z

−∞
f (u) du.

6.1. Remark. If β1 > 0, then all the coefficients βi are positive since they increase
until the middle value and then decrease in a symmetric fashion (umbrella ordering).
If, however, β1 assumes a negative value (which happens only if p is small and n is
large), σ̂ might cease to be real and positive. In such a situation, αi and βi in (6.7)
are replaced by α∗i = 0 and β∗i =

{

1 + (1/k) a2
i

}

respectively. This ensures that γ̂1 is
always real and positive. The asymptotic efficiency of γ̂0 and γ̂1 is not affected since
αi + βiz(i) ∼= α∗i + β∗i z(i) realizing that z(i) − t(i) ∼= 0 (asymptotically). See also Tiku et
al. [21].

Information matrix: Because of the symmetry of (6.1), the elements of the Fisher
information matrix are simpler than those in (4.1)–(4.3) and are given by

(6.10)
I11 = Q+ P, I12 = − (γ0/γ1) (Q+ P ) and

I22 =
(

1/γ2
1

) {

(Q+ P ) γ2
0 + (Q+R)

}

.

Here,

(6.11) P = np (p− 1/2) / (p+ 1) (p− 3/2) and R = 2n (p− 1/2) / (p+ 1) , (p ≥ 2) ,

and Qi, Q have exactly the same expressions as (4.4).

In particular, for the asymptotic variance

(6.12) var (γ̂1/γ1) ∼= 1/ (Q+R) ,

which is free of γ0.

Efficiency: We simulated the means and variances of the MMLE γ̂0 and γ̂1 and compared
them with the corresponding estimators (Tiku and Vaughan [18]) based only on the
conditional likelihood function LY |X . As for the GL (b, γ1) family (2.2), γ̂0 and γ̂1 were
found to be (almost) unbiased and enormously more efficient. The test of H0 : γ1 = γ10

based on the statistic W = γ̂1/γ10 was found to be remarkably robust to plausible
deviations from an assumed value of p in (6.1) and to data anomalies, e.g., outliers and
contaminated data. Details are given in Oral [8]. To save space we do not reproduce
them here.
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Generalization: The methodology above readily extends to the situation when

z = γ0 +
k
∑

i=1

γixi

and the risk factors Xi (1 ≤ i ≤ k) are independently distributed with densities hi (x).
The coefficients γi are a priori all positive. The MMLE based on the conditional likelihood

LY |X1,X2,...,Xk

is given in Tiku and Vaughan [18]. It will be of great interest to extend the methodology
to correlated risk factors. Extensions to censored (Type I and Type II) data are also of
enormous interest from a practical point of view. Another interesting extension is to the
situation when Y is multinomial and assumes more than two values.

In conclusion it must be said that it is advantageous to use the complete likelihood
function to obtain efficient and robust estimators. Conditional likelihood was perhaps
used to make estimation computationally feasible. Modified likelihood methodology
makes estimation easy both analytically and computationally. Its use with the com-
plete likelihood function gives estimators which are enormously more efficient than those
based only on the conditional likelihood function. Moreover, the method is applicable to
any location-scale distribution and no specialized computer software is needed to compute
the MMLE.

Acknowledgment. We would like to thank to Professor M. L. Tiku for supervising this
research.
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