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Chaos Theory and Applications: The Physical
Evidence, Mechanism are Important in Chaotic Systems
Jun Ma ID ∗,1

∗Department of Physics, Lanzhou University of Technology, Lanzhou 730050, China.

ABSTRACT This editorial is presented for readers and researchers in the field of nonlinear dynamics,
including dynamical control, synchronization stability and control, fractional order approach, boundary condition,
memristive system, functional neural circuit, Hamilton energy and Lyapunov function. These short comments
and clarifications are helpful to explain the motive of scientific research, physical principle and potential
application of nonlinear circuits, statistical analysis and schemes, and thus the report and papers may become
readable and instructive.

KEYWORDS

Time delay
Memristors
Hamilton energy
Fractional order

Most of the deterministic dynamical systems with
nonlinear terms can be tamed in the intrinsic parame-
ters or excited by using external stimulus for inducing
chaotic states, and numerical solutions can be detected
under reliable algorithm, as a result, Poincare section
and Lyapunov exponent spectrum are calculated to
predict the parameter regions for generating chaos.
For experimental series of some variables, power spec-
trum analysis becomes available and dense orbits are
confirmed in the phase space when chaos keeps sur-
vival. In experimental way, many nonlinear circuits
are useful to reproduce the dynamical properties of
the chaotic systems, some of the intrinsic parameters
of electric components can be adjusted to change the
energy exchange, output voltage from capacitor and
channel current across each branch circuit. For most
of the isolated nonlinear circuits, the standard electric
components are ideal and linear relation for the input
and output variables, while nonlinear components can
be rebuilt by using equivalent branch circuits.

It is claimed that many chaotic and hyperchaotic sys-

Manuscript received: 22 June 2021,
Accepted: 23 June 2021.

1 hyperchaos@lut.edu.cn (Corresponding author)

tems can be used for secure communication and image
encryption. On the other hand, some nonlinear cir-
cuits can be modified and improved as neural circuits,
which similar firing patterns such as quiescent, spiking,
bursting and chaotic modes can be reproduced as those
series from biological neurons. An isolated nonlinear
circuit has finite power release and it just describes
the local kinetics of multi-agent and networks, there-
fore, the energy pumping along the coupling channel
becomes a challenge by regulating the physical proper-
ties via external physical field. That is, it is important
to clarify some of the physical principles and mecha-
nism (Ma et al. 2019) before imposing any theoretical
schemes for synchronization and control of chaos.

Existence of Solutions means controllability in the
dynamical systems. In fact, before starting any control
scheme, it is critical to confirm that reliable solutions
can be obtained in theoretical or numerical way. For
example, the numerical solution becomes divergent
and overflow when the code for the dynamical system
is run. For most of the chaotic system, infinite periodic
orbits are combined and connected in enough transient
period no matter whether equilibrium points exist or
not.

CHAOS Theory and Applications 1

CHAOS
Theory and Applications

in Applied Sciences and Engineering

e-ISSN: 2687-4539
EDITORIAL

Vol.4 / No.1 / 2022 / pp.1-3

https://orcid.org/0000-0002-6127-000X


Intermittent and discontinuous control benefit
from intrinsic self-adaption of the chaotic systems.
For synchronization control of chaotic systems, the
orbits become self-leading to reach the target orbits
within certain transient period and thus external con-
trol and energy consumption become non-necessary.
For chaotic systems, any external control from addi-
tive branch circuit will cost certain energy when the
controller is activated. For synchronization stabiliza-
tion, continuous coupling will consume energy in the
coupling channel when resistor is used to connect the
chaotic circuits because of cost in Joule heat in the cou-
pling resistor. Therefore, discontinuous or intermittent
coupling decreases certain energy costs in the coupling
channels and controllers, and period for switch on-off
for the controllers becomes worthy of investigation.

Intrinsic response time delay and propagation time
delay depend on the local property and coupling
channels. Some electric components can be activated
only when the driving voltage or channel current are
beyond the threshold, for example photocurrent can
be generate in the phototube only when the frequency
in the illumination is beyond the threshold even the
illumination intensity is much large for the phototube.
For an engine or motor, it needs certain transient pe-
riod to reach a high speed and rotation rate. For some
interneurons, autapse develops a close loop to con-
nect the synapse and the body or muscle, and intrinsic
time delay is considered and estimated by using the
autaptic current.

Figure 1 Schematic diagram for autapse to neuron

In generic way, time delay τ and feedback gain k
are involved in the oscillator model to describe the
response time delay as follows,

dx
dt = f (x, µ)± kx (t − τ) (1)

The autaptic current or driving can be inhibitory
or excitatory, and the firing modes of the nonlinear
oscillator can be controlled effectively. For collective
behaviors in spatiotemporal systems, distributed time
delay can be introduced to estimate the effect of differ-
ent links and coupling channels, it is obtained by,

dxi
dt = f (x, µ) + D ∑N

j=1,i ̸=j ε ijx
(
t − τj

) (2)

Where the connection matrix ε ij = 1 indicates com-
plete connection between the node i and node j, other-
wise, it is set as 0, the gain D measure the connection
intensity between two nodes, the time delay τj esti-
mates the propagation period along the connection
channel or link.

Except the electromagnetic field, signal propaga-
tion along the coupling channels and links in the net-
work often require finite period, and thus time delay
becomes important. In a non-uniform network, dis-
tributed time delay should be applied for different
links and coupling channels (Wang and Ma 2018).

Controllability and standard criterion for con-
trollers are useful in practice. From mathematical
viewpoint, a variety of controllers and control schemes
can be applied for all the dynamical systems and net-
works. In fact, the controller can be in simple form,
lower energy consumption, finite and shorter tran-
sient period before reaching target orbits. In particular,
fewer controllers are appreciated, for example, local
pinning control is more effective than global control
because control all the nodes becomes much difficult.

Dimensional homogeneity and scale transforma-
tion are critical for dynamical analysis and control.
For some realistic systems, dynamical equations can be
obtained to estimate the correlation between different
physical variables. For nonlinear circuit, Kirchhoff’s
law is often used to obtain the circuit equations com-
posed of physical variables (voltage, current, magnetic
flux, charges) with different physical units. Therefore,
standard scale transformation (Wang et al. 2019) should
be applied for the physical parameters, variables, field
energy, and thus dimensionless dynamical system and
Hamilton energy can be obtained for finding numeri-
cal solutions via reliable algorithm. For example, the
sampled time units from nonlinear oscillator or dimen-
sionless dynamical systems should be discerned by
using time units than seconds or milliseconds. For ex-
ample, the common known physical variables (voltage
V, current i, magnetic flux φ, charge q, time t) can be
mapped into dimensionless variables (Wang et al. 2019)
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as follows,

x = V
V0

; y = iR
V0
[or, y = i

I0
];

w = φ
LI0

= φR
LV0

, z = q
CV0

; τ = t√
LC

= t
RC

(3)

Where L, C, R represents the inductance, capaci-
tance, resistance of electric components of the nonlin-
ear circuit, and V0, I0 denote the scale value, for exam-
ple, V0, I0 can be selected from the amplitudes from
external realistic signal or intrinsic value of nonlinear
electric components.

Hamilton energy function meets the most suitable
Lyapunov function. For any dynamical systems, con-
tinuous energy pumping and exchange are critical to
keep and change the dynamics and firing modes. The
Helmholtz theorem provides helpful guidance to es-
timate the sole Hamilton energy function and then
guides how the dynamical system can be controlled
in reliable scheme. Lyapunon function scheme seems
to confirm the controllability of any chaotic systems
and networks, however, the most suitable Lyapunov
function (Zhou et al. 2021) must be the Hamilton en-
ergy function and any arbitrary setting for gains in
the Lyapunov function and the controllers just regu-
late a damaged system than the original dynamical
system. For generic dynamical system, the Hamilton
energy function H can be obtained from the following
criterion,

dX
dt = Fc(X) + Fd(X); ∇HT Fc(X) = 0;

dH
dt = ∇HT Fd(X)

(4)

Where the vector X describes the variable of the sys-
tem, Fc(X) represents the conservative field containing
the full rotation and Fd(X) is the dissipative field con-
taining the divergence. Indeed, the Hamilton energy
function is composed of all system variables and some
intrinsic parameters, and effective control of the en-
ergy flow will control the stability and firing modes
completely (Ma et al. 2017).

Memristive and boundary effect, fractional order
calculation are relative to the intrinsic property of the
dynamical systems. The nonlinear circuits involved
with any memristor can be mapped into memristive
system and becomes dependent on the initial value for
memristive variable such as magnetic flux, and thus
the dynamics is switched between different modes
when any slight changes occur for initial values. For

spatiotemporal systems with finite size, no-flux bound-
ary condition is applied while periodic boundary con-
dition is more suitable for networks with infinite size
or system with globular, ring types. Local memory,
boundary value and non-uniform diffusive effect re-
quire fractional calculation and approach (Zhou et al.
2020). Indeed, more electric components such as photo-
tube, Josephson junction, piezoelectric ceramic can be
incorporated into the nonlinear circuits for enhancing
more specific biophysical functions in neural circuits.
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Circuit Implementation and PRNG Applications
of Time Delayed Lorenz System
Burak Arıcıoğlu ID ∗,1 and Sezgin Kaçar ID ∗
∗Sakarya University of Applied Sciences, Department of Electrical and Electronics Engineering, 54050, Sakarya, Turkey.

ABSTRACT In this study, time delayed form of Lorenz system is introduced, and exemplary applications of the
time delayed Lorenz system are performed. Firstly, the time delayed Lorenz system is numerically solved by
considering the Lorenz system as a system of time delayed differential equations. Then, time series and phase
portraits of the state variables of the time delayed system are obtained. After then, circuit implementation of
the time delayed system is carried out with discrete analog components. Finally, a random number generator
application is carried out by selecting different number of bits obtained from the state variables of the time
delayed system. The results of all the applications are sufficiently good that the time delayed system can be
used in engineering applications.

KEYWORDS

Time delayed
chaotic systems
Lorenz System
Time delayed
differential equa-
tions
Circuit implemen-
tation
Random number
generator

INTRODUCTION

There are many new chaotic systems proposed in the literature
after chaos phenomenon and chaotic systems are emerged as a field
of study. However, the Lorenz system, one of the most popular
chaotic system, has been still studied (Lorenz 1963). Although the
Lorenz system retains its popularity, the use of the Lorenz chaotic
system in engineering applications like circuit implementation
is not very easy. Moreover, the introduction of different time
delay for each state variable will make harder to solve the system
numerically and to implement as a circuit. In this study, different
amount of time delays for each state variable is considered.

Time delayed differential equations are very important for
chaotic systems and their engineering applications (Hale and Lunel
2013). Hence, there are many different studies of time delayed
chaotic systems in the literature. For example, stability analyses
of time delayed differential equations were discussed (Deng et al.
2006). There are also studies of synchronization of such time de-
layed systems (Cheng et al. 2008). In another study, a time delayed
chaotic system was obtained from Logistic-map system (Acho
2017). In (Qin-Qin 2015), a parameter defining problem was con-
sidered for a general time delayed chaotic system and its analyses
were performed. In (Pham et al. 2016), a novel time delayed chaotic

Manuscript received: 30 July 2021,
Revised: 20 September 2021,
Accepted: 29 September 2021.

1baricioglu@subu.edu.tr (Corresponding Author)

system with hidden attractors was proposed. A parameter defin-
ing problem was investigated in (Tang et al. 2009) to determine
unknown parameters of a time delayed chaotic system. There are
also studies in which applications of time delayed systems were
realized for sliding-mod (Liu and Yang 2015) and active control
(Tang 2014).

If the realized engineering applications of the chaotic systems
are investigated, the most of these applications are focused on
circuit implementation (Pehlivan et al. 2019; Adiyaman et al. 2020;
Kacar et al. 2018; Jahanshahi et al. 2018; Liu et al. 2020) and random
number generator (RNG) (Akgul et al. 2019; Moysis et al. 2020;
Alcin et al. 2021; Agarwal 2021; Kaçar 2016; Vaidyanathan et al.
2018). Accordingly, it will be sufficient to realize these two appli-
cations of a proposed chaotic system to show the usability of the
chaotic system in engineering applications. Hence, a circuit imple-
mentation and RNG applications of the proposed Time Delayed
Lorenz System (TDLS) are realized in this study. The contribution
of this study to the literature can be explained as follows. In this
study, the different time delays are used for each state variable
simultaneously and chaotic behaviour is observed after solving
the time delayed differential equations numerically. Then, to the
best of the authors’ knowledge, a time delayed chaotic system is
modelled using discrete circuit components for the first time in the
literature. Finally, four different pseudo random number generator
(PRNG) applications are realized by selecting different bits of the
state variables.
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The organization of the article is as follows. In the second sec-
tion, the proposed TDLS is introduced. In the third section, circuit
implementation of the TDLS is given. In the fourth section, the
PRNG applications of the TDLS are presented. Finally, conclusion
is given in the fifth section.

TIME DELAYED LORENZ SYSTEM

In this section, the time delayed form of Lorenz chaotic system
is presented. The time delayed Lorenz system (TDLS) is given in
Equation 1. The most important aspect of the proposed system is
that each state variable has a different amount of time delay.

ẋ = a(y(t − τy)− x(t − τx))

ẏ = x(t − τx)(b − z(t − τz))− y(t − τy)

ż = x(t − τx)y(t − τy)− cz(t − τz)

(1)

Equation 1, the system parameters are a = 10, b = 28, and
c = 8/3, the initial conditions are x(0) = 10, y(0) = −10, and
y(0) = 15, the time delays are τx = 0.0014, τy = 0.01, and τz = 0.05.
The obtained time series and phase of the TDLS when numerically
solved for these given values are given in Figure 1 and 2, respec-
tively. The used algorithm for numerical solution of Equation
1 tracks discontinuities and integrates with the explicit Runge-
Kutta (2,3) pair and interpolant (Shampine and Thompson 2001;
Jacek Kierzenka and Thompson 2021). Also, in the used numerical
solution, the step intervals are selected longer than the (Shampine
and Thompson 2001; Jacek Kierzenka and Thompson 2021).

When Figure 1 is examined, it can be said that the obtained
time series of the TDLS are varied randomly and nonperiodically.
When Figure 2 is examined, it can be said that the orbits of the
phase portraits in accordance with chaotic behaviour and the phase
portraits of TDLS are very different from the original Lorenz sys-
tem. Accordingly, the system exhibits chaotic behaviour for the
given parameters, initial conditions, and time delay values and
it is understood that the time delays introduce differences in the
dynamical behaviour of the system.

Figure 1 Time series of the state variables

Figure 2 Phase portraits of the state variables

CIRCUIT IMPLEMENTATION

In this section, circuit implementation of the TDLS is given. In the
literature, there are many studies in which the chaotic systems were
realized with electronic circuits (Pehlivan et al. 2019; Adiyaman
et al. 2020; Kacar et al. 2018; Jahanshahi et al. 2018; Liu et al. 2020).
However, to the best of the authors’ knowledge, there are no circuit
implementation of time delayed chaotic systems in the literature.
In this paper, electronic circuit implementation of the time delayed
circuit is achieved.

The circuit for the time delay is given in Figure 3. Time delay
is realized with a source follower and an LC circuit as shown in
Figure 3. In the figure x(t) is the state variable and x(t − d) is the
time delayed form of x(t) by d seconds.

Figure 3 Time delay circuit

In the circuit, the time delay in seconds is

d =
√

L1C1 (2)

and the time delay must be lesser than or equal to one over
the bandwidth of the signal x(t) since the LC circuit will suppress

higher frequency terms greater than
1√

L1C1
.

d ≤ 1/Bx(t) (3)

Here Bx(t) is bandwidth of the signal in rad/s.

CHAOS Theory and Applications 5



Before the circuit implementation of the TDLS, the state
variables of the TDLS must be scaled as it is seen in Figure 1
that the amplitude of the state variables are quite high. The state
variable x,y, and z are scaled down by the factor of 5,10, and 20,
respectively. Since the state variables are scaled down, the initial
values are also scaled down by the same factors. Hence, the initial
conditions are x(0) = 2, y(0) = −1, and y(0) = 0.75 for the circuit
implementation.

For the scaling process of the state variables, let X = x/5,
Y = y/10, and Z = z/20. Then, the time derivatives are Ẋ = ẋ/5,
Ẏ = ẏ/10, and Ż = ż/20. By inserting these new state variables
into Equation 1, the system becomes

5Ẋ = a(10Y(t − τy)− 5X(t − τx))

10Ẏ = 5X(t − τx)(b − 20Z(t − τz))− 10Y(t − τy)

20Ż = 5X(t − τx)10Y(t − τy)− c20Z(t − τz)

(4)

By rearranging Equation 4, the scaled TDLS becomes

Ẋ = a(2Y(t − τy)− X(t − τx))

Ẏ = 0.5X(t − τx)(b − 2Z(t − τz))− Y(t − τy)

Ż = 0.125X(t − τx)Y(t − τy)− cZ(t − τz)

(5)

After scaling process of the state variables, the system is
scaled up in the frequency domain by the factor of 2500 to increase
bandwidth of the state variables and to decrease the run time of
the circuit. Since the frequency spectrum of the state variables
are scaled up by the factor of 2500, the time delays are scaled
down by the same factor. The circuit realization of system in
Equation 5 is realized for the system parameters values a = 10,
b = 28, and c = 8/3, the initial conditions are x(0) = 2, y(0) = −1,
and y(0) = 0.75, the time delays are τx = 0.4µs, τy = 4µs, and
τz = 20µs. The complete circuit realization of the system is given
in Figure 4.

Figure 4 Circuit implementation of the time delayed Lorenz system
for the system parameters values a = 10, b = 28, and c = 8/3, the
initial conditions are x(0) = 2, y(0) = −1, and y(0) = 0.75, the
time delays are τx = 0.4µs, τy = 4µs, and τz = 20µss

In the circuit, R1 = 20kΩ, R2 = 40kΩ, R3 = 29kΩ, R4 =
400kΩ, R5 = 4kΩ, R6 = 150kΩ, R7 = 16kΩ, R8 = R9 = R10 =
R11 = 100kΩ, L1 = 20µH, L2 = 200µH, L3 = 1000µH, C1 = C2 =
C3 = 1nF, C4 = 8nF, C5 = 80nF, C6 = 400nF.

The time series and phase portraits obtained from the simula-
tion of the circuit in Figure 4 are given in Figure 5 and 6, respec-
tively. The simulation is performed on ORCAD-PSpice platform.

Figure 5 The time series of the delayed Lorenz system for the sys-
tem parameters values a = 10, b = 28, and c = 8/3, the initial
conditions are x(0) = 2, y(0) = −1, and y(0) = 0.75, the time
delays are τx = 0.4µs, τy = 4µs, and τz = 20µss

Figure 6 The phase portraits of the delayed Lorenz system for the
system parameters values a = 10, b = 28, and c = 8/3, the initial
conditions are x(0) = 2, y(0) = −1, and y(0) = 0.75, the time
delays are τx = 0.4µs, τy = 4µs, and τz = 20µss

If the time series and phase portraits obtained from the spice
simulation are compared with the time series and the phase por-
traits obtained from solving the TDLS numerically, it can be said
that the circuit implementation of the TDLS is realized accurately.
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PRNG APPLICATIONS

In this section, the realization of four different PRNG designs are
given. The PRNGs are obtained by solving the TDLS given in
Equation 1 numerically. In each designed PRNG, different bit
series obtained from the state variables of the TDLS are used.
The flowchart of the PRNG designs is given in Figure 7. As it is
seen in Figure 7, the state variables are obtained by solving the
system numerically, after setting the system parameters, initial
conditions, and time delays values. The state variables obtained by
numerical calculations are in floating point format are converted
into 32 bits binary format. Then, the random number bit series
are obtained by selecting certain appropriate number of least
significant bits (LSBs). Here, each PRNG is designed from different
state variables and with selecting different number of LSBs. In
this study, four different PRNGs are designed with this approach.
For the design of PRNG-1, a random bit series is generated by
selecting the first LSB from each state variable (x,y,z). For the
design of PRNG-2, PRNG-3, and PRNG-4, a random bit series is
generated by selecting the first four LSBs from each state variables
x,y, and z, respectively. For every PRNG, NIST-800-22 statistical
tests (Bassham et al. 2010) are performed when the size of the
generated bit series are reached 1000000 bits which is required by
the NIST tests.

The NIST test results for all the generated PRNGs are given in
Table 1. For a bit series to pass successfully from each NIST test,
the P-value obtained in each test must be between 0.001 and
1 (1 > P-value> 0.001). Here P-value is the probability that a
perfect RNG would have generated a sequence less random than
the sequence that was tested. The P-value equals to 1 indicates
that the sequence has perfect randomness, whereas P-value equals
to 0 indicates that the sequence is completely non-random. Fur-
thermore, when the P-value ≥ 0.001, the sequence is considered
as random with a confidence of 99.9%(Bassham et al. 2010). All the
NIST tests are performed on MATLAB environment.

If the results given in Table 1. are examined, it can be said
that all the designed PRNGs pass all the NIST tests successfully.
Accordingly, the proposed TDLS in Equation 1. has sufficient
randomness that it can be used in data security applications.

Figure 7 Flow diagram of the designed PRNGs

CHAOS Theory and Applications 7



■ Table 1 NIST-800-22 test results of TDLS based PRNGs

Statistical Tests PRNG -1 PRNG -2 PRNG -3 PRNG -4 Results

Frequency (Monobit)
Test

0.227047262346928 0.939419098199487 0.452051058788007 0.74896833055336 Successful

Block-Frequency
Test

0.420199408706029 0.12683780891 0.25828539912 0.18496247976 Successful

Cumulative-Sums
Test

0.40154501916006 0.954262689644538 0.657794646611129 0.580632315828042 Successful

Runs Test 0.809910815227043 0.78561757692 0.45239095310 0.20333669229 Successful

Longest-Run Test 0.699072314072508 0.0593326790453765 0.071698278949431 0.581605726274521 Successful

Binary Matrix Rank
Test

0.567418552088598 0.29417664507 0.36806531540 0.49848122628 Successful

Discrete Fourier
Transform Test

0.0183542134338342 0.186356486587195 0.0310440276996156 0.659590791427404 Successful

Non-Overlapping
Templates Test

0.0910820098687739 0.04581818944 0.00265744608 0.03188609869 Successful

Overlapping Tem-
plates Test

0.554865280067303 0.669055771344141 0.532900762615005 0.247345441097719 Successful

Maurer’s Universal
Statistical Test

0.679570957855461 0.80734843081 0.08350574528 0.92319905938 Successful

Approximate Entropy
Test

0.639684970544748 0.106378560917655 0.650943909676795 0.117260917143001 Successful

Random-Excursions
Test (x = -4)

0.703450581514076 0.37281099664 0.16507680806 0.28180552081 Successful

Random-Excursions
Variant Test (x = -9)

0.900334238396749 0.301103909474349 0.274949621155743 0.26897769139 Successful

Serial Test-1 0.498246191923405 0.13739086594 0.24094191226 0.51233919246 Successful

Serial Test-2 0.703867335568016 0.172244663440799 0.324188206506017 0.539500232899045 Successful

Linear-Complexity
Test

0.1748830988160720 0.98952603429 0.91278048851 0.46910323363 Successful
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CONCLUSIONS

In this study, the time delay form of Lorenz system which is one
of the most known and popular chaotic system is presented. The
most important aspect of the proposed time delayed system in here
is that the system still exhibits chaotic behaviour with different
dynamical properties after introducing different time delay to
each state variable. The first important result of this study is that
observing chaotic behaviour of the time delayed system by solving
numerically.

The most important contribution of this study to the literature
is successful analog circuit realization of time delayed system with
three different time delays. As it can be seen from the obtained
time series and phase portraits in MATLAB and PSpice environ-
ments, the circuit realization of the time delayed chaotic system is
successful. Another important application realized in this study is
designing four different PRNGs by selecting different number of
LSBs of the state variables. Moreover, all the designed PRNGs pass
the NIST tests successfully. According to the NIST tests results all
the generated bit series have considered to be random with a con-
fidence of 99.9%. This shows that, the designed RNGs are suitable
for multimedia security applications. As a result, the exhibition
of the chaotic behaviour of the proposed system is proved with
all the successfully realized applications and this shows that the
proposed system can be used in engineering applications.
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ABSTRACT In the human glucose-insulin regulatory system, diverse metabolic issues can arise, including
diabetes type I and type II, hyperinsulinemia, hypoglycemia, etc. Therefore, the analysis and characterization
of such a biological system is a must. It is well known that mathematical models are an excellent option to study
and predict natural phenomena to some extent. In this way, fractional-order theory provides generalizations
for derivatives and integrals to arbitrary orders giving us a framework to add memory properties and an
additional dimension to the mathematical models to approximate real-world phenomena with higher accuracy.
In this work, we study the glucose and insulin governing mechanisms using a fractional-order version of a
mathematical model. Applying the fractional-order Caputo derivative, we can investigate different concentration
rates among insulin, glucose, and healthy beta cells. Additionally, the model incorporates two time-lags to
represent the elapsed time of two processes, i.e., the delay in secrete insulin for a blood glucose increment and
the lag to get a glucose reduction caused by raised insulin level. Analytical results of the equilibrium points and
their corresponding stability are given. Numerical results, including phase portraits and bifurcation diagrams,
reveal that the fractional-order increases the chaotic regions, leading to potential metabolic problems. Vice
versa, the system seems to work correctly when the behavior evolves to periodic windows.

KEYWORDS

Chaos
Chaotic systems
Fractional-orders
Glucose-insulin
Time-delay

INTRODUCTION

One of the most known metabolic issues is called diabetes mellitus,
in which the blood sugar control mechanism is disrupted. As a
result, insulin, the main control factor is not released at proper
times, or the body cells are unaware of its presence (ADA 2020;
Shabestari et al. 2018; Lozano 2006; Emerging Risk Factors Collabo-
ration et al. 2010). Various pathological processes are involved in
the development of diabetes mellitus, although the vast majority
of cases can be included in two categories. In the first one, type
1 diabetes mellitus, where the cause is an absolute deficiency in
insulin secretion, often with evidence of autoimmune destruction
of pancreatic cells. The second and most typical case is type 2
diabetes mellitus, which is provoked by two factors: insulin re-
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sistance (generally associated with obesity), and an inadequate
compensatory secretory response (Lozano 2006; R.Rosalba et al.
2018; Shabestari et al. 2018; ADA 2020; Bertram and Pernarowski
1998). Other disorders include hyperglycemia which is character-
ized by high blood sugar levels. In contrast, hypoglycemia, also
known as low blood glucose or sugar, occurs when the level of
glucose in the blood falls below normal. Hypoglycemia can be a
side effect of insulin and other types of diabetes medicines that
help the body produce more insulin.

Those metabolic disorders are a world problem according to
World Health Organization (WHO). For instance, Mexico is the
sixth country with diabetic patients and the seventh in obesity
(Statista 2019) in the world, therefore, the prevalence of diabetes
due to a previous diagnosis has increased with a positive annual
trend of 2.7%. In 2016, the prevalence of diabetes was 9.4% higher
than in 2012 and at least in Mexico until 2016 there were just
over 6.4 million people diagnosed with diabetes, about 60,000
more than in 2012. 48.1% of people with diabetes also have a
previous diagnosis of hypertension. This prevalence increases to
50.4%, if they live in urban areas, and to 60%, if they are 60 years
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old or older. 50.4% of people with diabetes also have a previous
medical diagnosis of high cholesterol, which increases to 52.6% if
they live in rural areas, and 55.5% if they are between 40 and 59
years old. 40.4% of people with diabetes also have obesity; this
prevalence increases by 49.7% if they are between 40 and 59 years
old (R.Rosalba et al. 2018; Statista 2019).

As can be noted, people with obesity and hypertension, who are
prone to suffer metabolic disorders related to the proper regulation
of insulin and glucose, are rapidly increasing each year (Shabestari
et al. 2018; ADA 2020). Thus, many scientific areas are facing this
problem from diverse points of view. It is well known that mathe-
matical models are a proved option to understand the nonlinear
dynamics of biological systems to some extent. The goal is to get a
more realistic model that covers all potential scenarios of the metabolic
disorders in the glucose-insulin system. In this manner, we may pre-
dict with a better approximation the health issues associated with
insulin levels and how it affects glucose metabolism. Additionally,
novel medical treatments could be carried on for better control of
diabetes mellitus. Some pioneering works on this subject are those
described by (Bajaj et al. 1987; Sarika et al. 2008; Lenbury et al. 2001;
Chuedoung et al. 2009).

As first attempt to improve the precision of the models, many
published works have included time-delays (Al-Hussein et al. 2020;
Shabestari et al. 2018; Sarika et al. 2008; Palumbo et al. 2007; Chue-
doung et al. 2009; Rajagopal et al. 2018). For instance, (Shabestari
et al. 2018) analyzed the impact of different time lags in the behavior
of insulin level that needs some time instants for having presence
in plasma; and the lapsed time for an adequate glucose stimula-
tion. In Ref. (Al-Hussein et al. 2020), they added an extra term
to represent the insulin decline due to glucose interchange. The
impact of the partial time lags in an electrically coupled Izhikevich
neuron model was examined by (Shafiei et al. (2019)). There, it was
shown that if the probability of partial time delays increases may
imply the emergence of complex dynamical behaviors. A graphi-
cal representation of the time-delay effect for equations given by
Ẋ = F(t, X(t), X(t − τ)) is shown in Fig. 1.

Figure 1 Implication of time-dependent delay in the solution
of Delay Differential Equations (DDEs) (Lakshmanan and
Senthilkumar 2010).

We observe that the solution is approximated mapping a initial
function onto other subsequent functions in time intervals τ.

Moreover, the fractional calculus is recognized as one suitable
option to increase the accuracy of the biological mathematical
models because it permits the inclusion of arbitrary orders for the
derivative operators in the differential equations of the underlying
system (Ionescu et al. 2017; Rihan 2013; Teka et al. 2018; Assadi
et al. 2017). Therefore, the biological system can have an extra
degree of freedom, i.e., a real parameter given by the fractional
order, to represent distinct behaviors. Additionally, the fractional-
order provides a memory effect into the time evolution of the
system, since its future solutions will depend on all past times
and not only from recent events. A graphical representation of the
memory could be given in a numerical fashion. Fig. 2 presents
the fading memory in fractional-order systems as a function of

binomial coefficients c(q)j . To compute the solution wk, is necessary
the whole vector of previous solutions, i.e., wk−1, wk−2 , . . . , w0.
However, those previous solutions are weighted by the binomial
coefficients. It means that the initial condition is always affected
by a lower value than the former solutions. Because of that, we
mention that past events contribute lesser than recent events to the
current state.

Figure 2 Numerical point of view of the fading memory of

fractional-order systems according binomial coefficients c(q)0 = 1,

and c(q)j =
(

1 − 1+q
j

)
c(q)j−1 with q = 0.5.

As a result, various works focusing on examining time lags
for describing biological systems defined by fractional derivatives
have been lately published. (Chinnathambi et al. 2021; Rihan et al.
2021; Singh and Pandey 2021; Yao and Tang 2021). Regarding
fractional-order glucose-insulin models, (Zambrano-Serrano et al.
2018) analyzed the synchronized behavior between two β-cells-
based fractional-order models under various cases of bursting
signals. (Munoz-Pacheco et al. 2020) studied the estimation of
metabolic disorders such as diabetes mellitus, hypoglycemia, and
hyperinsulinemia using arbitrary order derivatives represented by
a singular kernel.
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In this framework, the fractional calculus-based models are
essential to accurately capture the biological behaviors, includ-
ing diabetes’s related problems, and necessary to understanding
this open topic. This work reports a time-delay chaotic glucose-
insulin system with fractional differential equations. Our model
incorporates Caputo derivatives to investigate the implications of
the power-law memory kernel with the glucose-insulin interplay.
Additionally, a pair of time delays define the lag between glu-
cose detection and insulin secretion. Using the fractional calculus
theory, we demonstrate the equilibrium points’ stability and de-
termine the fractional-order value where the system may present
chaotic oscillations. We also derive numerical observations such as
phase portraits and bifurcation diagrams to compare the integer
and fractional-order models. The obtained results are consistent
with the theoretical deductions and agree with previous findings
in the area.

The paper outline is as follows. Section II introduces the pro-
posed biological model along with its system parameters. Section
III demonstrates the stability of the model for both equilibrium
points and fractional-order. Section IV gives the results of the nu-
merical simulations, and finally, Section V presents the conclusion.

FRACTIONAL-ORDER GLUCOSE-INSULIN METABOLIC
SYSTEM WITH TIME LAGS

This section presents the proposed fractional-order glucose-insulin
metabolic regulatory system with time delay inspired by the work
reported in (Shabestari et al. 2018). They introduced an integer-
order model with time lags to describe the primary control of
insulin secretion, and glucose metabolism by the pancreatic beta
cells in a feedback operation.

The model can represent the following phases. Typically, dur-
ing meal consumption, the level of glucose increases considerably.
Then, those levels are detected by the regulatory system, which pro-
motes the generation and liberation of insulin by beta-cells. Next,
the glucose concentration minimizes by the action of high levels
of insulin, provoking that the human body burns and preserves
nutrients. The second phase explains how insulin production re-
duces as a function of the average glucose level, for instance, when
the organism does not receive any meal for a long time interval.
As a result, the regulatory system changes from absorption to the
post-absorption stage. One can see that this simple oscillatory
process with negative feedback sustains a proper glucose level
for the whole body, including organs and tissues. The reported
integer-order model by (Shabestari et al. 2018) is:

dx
dt

= r1y(t − τg)z(t − τg)− r2x + c1z(t − τg),

dy
dt

=
R3N

z
− R4x(t − τi) + C2,

dz
dt

= R5(y − ŷ)(T − z) + R6z(T − z)− R7z,

(1)

where x(t), y(t), z(t), and ŷ represent the insulin level, glucose
level, beta-cells number and the glucose metabolism considering
its basal state, respectively. According to clinical experiments by
(Palumbo et al. 2007), the delay for the insulin production, as a
result of blood glucose level rising, could be set τg = 0.56. The
delay between augmented insulin level and glucose reduction is
τi = 0.05 as suggested (Prager et al. 1986).

■ Table 1 System parameters for fractional-order glucose-
insulin metabolic regulatory system.

Parameter Value Parameter Value Parameter Value

r1 0.472 r2 0.25 R3 0.82

R4 0.6 R5 0.3 R6 0.3

R7 0.2 ŷ 1.42 N 1.27

T 1.5 c1 0.1 C2 0.8

Indeed, certain metabolic disorders, such as hyperglycemia
(extremely high glucose) and hypoglycemia (low glucose), are
associated with inaccurate time delay values. r1y(t − τg)z(t − τg)
explains the increments both insulin and glucose as a function
of the time delay τg; r2x means the speed of insulin reduction
unassociated with glucose; c1z(t − τg) s the insulin raising rate
as a function of the beta-cells, which does not depend on any
other element. Additionally, the average number of beta-cells is
represented as N; while the glucose decreasing cadence when the
insulin is secreted with τi is given by R4x(t − τi). T is the entire
population of beta-cells; R5(y− ŷ)(T − z) denotes the increment of
dividing beta-cells against the non-dividing ones that are induced
by the interaction between glucose and the starving stage. R6z(T −
z) means raise of z because of synergy relating to dividing and
nondividing beta-cells, whereas R7z is its diminution. (Prager et al.
1986; Chuedoung et al. 2009; Shabestari et al. 2018).

The behavior of the integer-order glucose-insulin system (1),
with delays τg = 0.56 τi = 0.05, initial conditions [x(0), y(0), z(0)]
= [6.03, 1.79, 0.82], and parameters in Table 1 is shown in Fig. 3. We
observe that the system behaves periodically, presumably having a
healthy behavior, i.e., the interaction between glucose and insulin
is correct.

Fractional-order model derivation
Motivated by the memory characteristics of the arbitrary-order
derivatives, we derive herein a fractional-order version of the
glucose-insulin system (1). By using the Caputo derivative, we
obtain

C
t0

Dq
t x(t) = r1y(t − τg)z(t − τg)− r2x + c1z(t − τg),

C
t0

Dq
t y(t) =

R3N
z

− R4x(t − τi) + C2,

C
t0

Dq
t z(t) = R5(y − ŷ)(T − z) + R6z(T − z)− R7z.

(2)

where q represents the fractional-order and C
t0

Dq
t (·) is defined

by

Definition 1 Consider f : [0,+∞] → R as a function with order
n − 1 ≤ q < n, thus, it can be denoted by the fractional-order derivative
in the Caputo sense as

C
t0

Dq
t g(t) = ∆

∫ t

t0

g(n)(τ)
(t − τ)q+1−n dτ, t > 0, (3)

where ∆ is the Gamma function of 1
Γ(n−q) and n − 1 ≤ q < n.
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(a)

(b)

Figure 3 (a) Time evolution and (b) phase portrait of the integer-
order glucose-insulin system (1) under τi = 0.05 and τg = 0.56.
[x, y, z] represent the glucose, insulin, and beta-cells, respectively.

According to (Diethelm 2010), the Caputo and Riemann-
Liouville (RL) derivatives are equivalent for initial value prob-
lems (IVP) with similar initial conditions. Moreover, the Caputo
derivative interpretation (3) generalizes formally the integer-order
derivative using Laplace transformation. Finally, it is well known
that Caputo derivative can be the left inverse of the fractional
integral given by RL.

Theorem 1 Diethelm (2010) For n ≥ 0 and g being a continuous
function, then

C
t0

DqRL
t Jqg(x) = g(x), (4)

but not its right inverse:

Theorem 2 Diethelm (2010) Being n ≥ 0, m = ⌈n⌉ with g ∈
Θm[a1, a2]. Thus

RL JqC
t0

Dq
t g(x) = g(x)−

m−1

∑
k=0

Dkg(a1)

k!
(x − a1)

k, (5)

where RL Jq means the RL integral. We choose the Caputo
derivative because the IVP in the fractional-order domain can
be stated analogously to the integer-order case, which gives us a

physical interpretation of the fractional derivative (Petráŝ 2011).
Additionally, we can represent the memory characteristics of the
power-law kernel in the dynamical evolution of biological systems
(Munoz-Pacheco et al. 2020).

STABILITY ANALYSIS

Equilibrium points
As the first step, we should analyze the stability of the equilib-
rium points under the related theory of delay-time systems (Lak-
shmanan and Senthilkumar 2010; Lazarević 2011; Naifar et al.
2019). By selecting f (x, y, z) = 0 and system parameters of Ta-
ble 1 for the fractional-order glucose-insulin system (2), we obtain
the following equilibrium points, E1 = (−1.97, 1.77,−0.53) and
E2 = (3.19, 1.59, 0.94). By computing the Jacobian matrix, we can
study the local asymptotic stability at each one of the equilibrium
points. Thus, we have

JE =


J11 J12 J13

J21 0 J23

0 J32 J33

 . (6)

|JE − λI| = 0, (7)

where JE = J0 + e−λτ Jτg ,τi . J0 is the Jacobian matrix of system
(2) without delay (τ = 0), whereas Jτg ,τi is the Jacobian matrix
under the delays τg and τi, respectively. I indicates an identity
matrix whereas λ the corresponding eigenvalues.

Using the parameters in Table 1, we obtain

J11 = − 1
4 , J12 = 59z∗e−λτg

125 , J13 = e−λτg
(

59y∗
125 + 1

10

)
,

J21 = − 3e−λτi
5 , J23 = − 5207

5000z∗2 ,

J32 = 9
20 − 3z∗

10 , J33 = 169
250 − 3z∗

5 − 3y∗
10 .

Evaluating E∗ = (x∗, y∗, z∗) in Jacobian matrix (6), the pseudo-
characteristic equations for E1 and E2 are, respectively.

λ3 − 0.2096λ2 − 0.4099e−λτ + 2.176λ

+0.1488λe−λτ + 0.5728 = 0.
(8)

λ3 + 0.6131λ2 − 0.1826e−λτ + 0.2917λ

−0.2652λe−λτ + 0.05022 = 0.
(9)

with τ = τg + τi. We observe that both equilibrium points are
saddle points as shown in Table 2. E1 is index-2 since has one real
negative eigenvalue and a complex conjugate pair with a positive
real part. On the other hand, E2 is index-1 because has three real
eigenvalues with two negative and one positive (Sprott 2015). It is
worthy to note that the stability of equilibrium points depends on
the time lags.
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■ Table 2 Stability type of the equilibrium points for the pro-
posed fractional-order time-delay glucose-insulin system with
τg = 0.56 and τi = 2.55.

Equilibrium points Eigenvalues Stability

E1 = (−1.97, 1.77,−0.53)
λ1 = −0.044,

λ2,3 = 0.230 ± 1.449i,
index-2 saddle point

E2 = (3.19, 1.59, 0.94)

λ1 = 1.697,

λ2 = −0.782

λ3 = −1.528

index-1 saddle point

Now, the next step is focusing on the positive equilibrium point
E2 to examine its repercussions in the system dynamics since it is
associated profoundly with the discrete-time lags. For time delay
τ, we may denote the characteristic equation as

η1(λ) + η2(λ)e−λτ = 0, (10)

that is the linearized case, i.e. evaluated at E∗ = (x∗, y∗, z∗),
with

η1(λ) = λ3 + η1,1λ2 + η1,2λ + η1,3,

η2(λ) = η2,1λ2 + η2,2λ + η2,3,
(11)

Without any loss of generality, the characteristic eq. (10) when
the positive equilibrium point E2 is not affected by the time delays
(τg = 0 and τi = 0), becomes

λ3 + (η1,1 + η2,1)λ
2 + (η1,2 + η2,2)λ + (η1,3 + η2,3) = 0, (12)

Using Routh-Hurwitz criterion, the roots of (6) have non-
positive real parts, that is, E∗ is asymptotically stable for P1 =
η1,1 + η2,1 > 0, P2 = η1,3 + η2,3 > 0, and P3 = (η1,1 + η2,1)(η1,2 +
η2,2)− (η1,3 + η2,3) > 0. Due to P1 = 0.6131, P2 = −0.132, and
P3 = 0.148, E2 is unstable when τ = 0.

Minimum fractional-order
As well known, the stability region for fractional-order systems
extends beyond the left-half plane in the complex plane to the
positive one also (Petráŝ 2011), as shown in Fig. 4.

Let us consider the standard form of a nonlinear dynamical
system in the fractional-order domain as

C
t0

Dq
t x = Ax + Bu, (13)

where x ∈ Rn, u ∈ Rm,, A ∈ Rn×n, and B ∈ Rn×m; and
C
t0

Dq
t x = [Ct0

Dq
t x1, . . . ,Ct0

Dq
t xn]T denotes Caputo derivative while

q is the fractional-order. For the autonomous scenario, system (13)
can be expressed by C

t0
Dq

t x = Ax, being x(0) = x0and 0 < q < 1.
In this manner, its stability conditions are analyzed by the next
postulates (Petráŝ 2011; Munoz-Pacheco et al. 2020):

Figure 4 Stability region of fractional order linear time invariant
systems with order 0 < q < 1.

• A system in the form of C
t0

Dq
t x = Ax is considered asymptoti-

cally stable as long as the whole set of eigenvalues, λ, satisfies
| arg(λ)| > qπ

2 , which indicates the evolution x(t) converges
to 0 as t−q.

• A system in the form of C
t0

Dq
t x = Ax is considered stable as

long as the whole set of eigenvalues, λ, satisfies | arg(λ)| > qπ
2

whereas the critical eigenvalues fulfills with | arg(λ)| = qπ
2

having a geometric multiplicity of one.

Therefore, for a certain fractional-order q, system C
t0

Dq
t x = Ax +

Bu, is unstable when at least one of their eigenvalues at equilibrium
point E∗, yields (Petráŝ 2011)

q >
2
π

arctan
|Im(λ)|
|Re(λ)| . (14)

For the fractional-order delay-time glucose-insulin system (2),
the small value of the fractional-order where the system becomes
unstable is q ≥ 0.9 under the eigenvalues from equilibrium point
E2. This result suggest that chaos behavior, which may be related
to an metabolic disorder of the glucose-insulin biological system,
can be observed at interval 0.9 ≤ q ≤ 1.

Lemma 1 An index-2 saddle point is an equilibrium point that pre-
serves the next conditions for their eigenvalues. It must have a negative
real eigenvalue λ1 < 0, and a pair of complex eigenvalues that satis-
fies |arg(λ2)| = |arg(λ3)| < qπ/2. Viceversa, when λ1 > 0 and
|arg(λ2)| = |arg(λ3)| > qπ/2, we have an index-1 saddle point.

From Lemma 1, we confirm that equilibrium points E1 and E2
are index-2 and index-1 saddle points respectively. In next sec-
tion, we explore the effect of the fractional-order in the dynamical
behavior of time-delay glucose-insulin system (2).
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(a)

(b)

Figure 5 (a) Time evolution and (b) phase portrait of the frac-
tional order time-delay glucose-insulin system (2) with q = 0.95,
τi = 2.55, and τg = 0.56. [x, y, z] represent the glucose, insulin,
and beta-cells, respectively. 50% of iterations were discard to
avoid transient effects.

NUMERICAL RESULTS AND DISCUSSION

To compute the solutions of system (2), we apply the numerical
algorithm proposed by (Petráŝ 2011) which claims that the general
numerical solution of the fractional differential equation

aDq
t w(t) = f (w(t), t),

can be expressed as

w(tk) = f (w(tk−1), tk−1)) hq −
k

∑
j=1

c(q)j w(tk−j), (15)

with k = 1, 2, . . . , n, n =
Tf
h , h the time step, and c(q)j are bino-

mial coefficients given by c(q)0 = 1, and c(q)j =
(

1 − 1+q
j

)
c(q)j−1.

This approach is based on the fact that for a wide class of
functions, the three definitions, Caputo, Riemann-Liouville and
Grünwald-Letnikov, are equivalent. In this manner, the numerical
solution of fraction-order time-delay glucose-insulin system (2)
applying algorithm (15) can be obtained with

xk =
(
r1yk−1−m1 zk−1−m1 − r2xk−1 + c1zk−1−m1

)
hq −

k

∑
j=1

c(q)j xk−j,

yk =

(
R3 N
zk−1

− R4xk−1−m2 + C2

)
hq −

k

∑
j=1

c(q)j yk−j,

zk = (R5(yk−1 − ŷ)(T − zk−1) + R6zk−1(T − zk−1)− R7zk−1) hq

−
k

∑
j=1

c(q)j zk−j,

(16)
where m1 =

τg
h and m2 = τi

h ∈ Z+. With h = 0.01, q = 0.95,
initial conditions [x(t), y(t), z(t)] = [6.03, 1.79, 0.82] for −τg ≤
t ≤ 0, and parameters in Table 1, the fractional-order time-delay
glucose-insulin system (2) leads to a chaos behavior as given in Fig.
5. The revealed results agree well with the literature in the area
(Baghdadi et al. 2015; Al-Hussein et al. 2020; Kroll 1999; Aram et al.
2017), where a chaotic behavior in the biological system is stated
as indication of a probable health issue (metabolic dysfunction).

Due to the importance of analyzing the glucose-insulin system
under several conditions (Chuedoung et al. 2009), we compute
the bifurcation diagrams for two cases. First, we discover the
relation between the fractional-order and dynamical behaviors of
the glucose-insulin regulatory system.

To do that, we have chosen τg = 0.56, and τi = 2.55 because
they coincide with those lags seen in tests carried out on healthy
human beings, where there is usually 1 or 2 minutes delay for
insulin to be secreted. Additionally, the delay increases up to 10
minutes in children with malnutrition (Bertram and Pernarowski
1998; Forrest and Payne Robinson 1925).

Figure 6 Bifurcation diagram for q with τg = 0.56 y τi = 2.55.

The bifurcation diagram for the fractional-order q = 0.95 is
illustrated in Fig. 6. Herein, r defines glucose-insulin behavior as
r =

√
x(tk)2 + y(tk)2 (Muñoz-Pacheco 2019; Munoz-Pacheco et al.

2020). We also follow the suggestions given in (Jafari et al. 2021)
for getting a correct bifurcation diagram.

The extra parameter q permits us to gain insights into the
glucose-insulin regulatory system because the memory effects can
be taken into account in the process of secreted insulin in response
to glucose concentrations. Figure 6 shows the bifurcation diagram
for the case 0.93 ≤ q ≤ 1. One can observe a chaotic behavior as
was predicted by Eq. 14 and Lemma 1. It is worthy to note that not
only the chaotic behavior is observed for integer-order q = 1 but
also for fractional-orders. This result suggest that the regulation of
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the glucose trough insulin is highly complex when a power-law
kernel is considered to describe the long memory effects. For a
fractional-order q < 0.93, the glucose-insulin system evolves to
regular oscillations, which could be associated to a healthy state.
A similar periodic behavior has been observed for typical results
in the human metabolic system (Tasaka et al. 1994; Li et al. 2006).

As second scenario, we study the implications of the time-delay
on the fractional-order system (2). As first step, we compute the
bifurcation diagram of the lags related to insulin (τi) and glucose
(τg) but using an integer-order, i.e. no memory. The chaotic regions
are confined to an small sections about τi = 2.5, and τg = 0.5 and
τg = 2.5 as given in Fig. (7). When memory is not considered, the
influence of delays may not be so decisive for the proper operation
of the glucose-insulin feedback mechanism.

(a)

(b)

Figure 7 Bifurcation diagram for the integer-order time-delay
glucose-insulin system (2). (a) τi with τg = 0.56 y q = 1; and (b)
τg with τi = 2.55 y q = 1.

In our last case, we now compute the bifurcation diagram of
the glucose-insulin regulatory system (2) with a fractional-order
q = 0.95, i.e., with a power-law-type memory, as displayed in Fig.
8. We found that the chaotic regions are broader than the integer-
order case.

For both delays a period-doubling cascade leads to chaotic
states about τi ≈ 2.1 and τg ≈ 0.2. Next, the chaotic behavior
is disrupted by a crisis scenario (τi ≈ 3.5 and τg ≈ 1.5), and
the system shifts to one- or two-period oscillations but only to
converge to chaos again under the same mechanism at τi ≈ 3.9
and τg ≈ 1.8.

For both delays a period-doubling cascade leads to chaotic
states about τi ≈ 2.1 and τg ≈ 0.2. Next, the chaotic behavior
is disrupted by a crisis scenario (τi ≈ 3.5 and τg ≈ 1.5), and

the system shifts to one- or two-period oscillations but only to
converge to chaos again under the same mechanism at τi ≈ 3.9
and τg ≈ 1.8. Besides, the spectrum of Lyapunov exponents for
two different values of q are computed and showed in Table 3. They
were calculated employing the approach proposed in (Sano and
Sawada 1985). These results display a positive Lyapunov exponent
implying that chaotic behavior is observed due to sensitivity to
initial conditions.

■ Table 3 Lyapunov exponents for different values of q.

Fractional-order Spectrum of Lyapunov exponents

q = 0.97 LE1 = 0.434 LE2 = 0 LE3 = −3.25

q = 0.95 LE1 = 0.368 LE2 = 0 LE3 = −2.758

From these observations, the memory of fractional-order deriva-
tives described by Caputo in eq. (2) elucidates new insights about
the glucose-insulin regulatory system since the memory and time-
delay are vital for the onset of chaos where the pancreas might not
supply an adequate quantity of insulin to regulate the glucose level.
Finally, the system exhibits a stable periodic state (i.e., without any
reasonable condition of metabolic disruptions) when the insulin
lag is lower than two minutes and fractional-order q < 0.9.

(a)

(b)

Figure 8 Bifurcation diagram for the fractional-order time-delay
glucose-insulin system (2). (a) τi with τg = 0.56 y q = 0.95; and
(b) τg with τi = 2.55 y q = 0.95.
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CONCLUSION

The dynamical analysis of a fractional-order time-delay glucose-
insulin system was performed applying the Caputo derivative.
In particular, we studied the implications between the common
disorders represented as chaotic states and a power-law memory
kernel. It was observed that the fractional-order biological system
alternates between a chaotic behavior (a health disorder) and a
disorder-free state, as a function of not only time-delay but also
fractional-order. We computed phase portraits and bifurcations
diagrams to understand that regulatory mechanism, which con-
firmed that the fractional-order operator, i.e., a memory profile,
provides improved accuracy of the underlying glucose-insulin dis-
orders. Numerical simulations were in good agreement with the
theoretical findings. Researchers from many scientific areas can
also extend this work to other biological systems, which require
considering the memory of past events in a non-Markovian ap-
proach. In future work, we will investigate a control scheme to
drive the glucose-insulin system to stable behavior.
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Petráŝ, I., 2011 Fractional-Order Nonlinear Systems. Springer.
Prager, R., P. Wallace, and J. M. Olefsky, 1986 In vivo kinetics

of insulin action on peripheral glucose disposal and hepatic
glucose output in normal and obese subjects. The Journal of
Clinical Investigation 78: 472–481.

Rajagopal, K., V.-T. Pham, F. R. Tahir, A. Akgul, H. R. Abdolmo-
hammadi, et al., 2018 A chaotic jerk system with non-hyperbolic
equilibrium: Dynamics, effect of time delay and circuit realisa-
tion. Pramana 90: 1–8.

Rihan, F., A. Arafa, R. Rakkiyappan, C. Rajivganthi, and Y. Xu, 2021
Fractional-order delay differential equations for the dynamics
of hepatitis c virus infection with ifn-α treatment. Alexandria
Engineering Journal 60: 4761–4774.

CHAOS Theory and Applications 17



Rihan, F. A., 2013 Numerical modeling of fractional-order biologi-
cal systems. Abstract and Applied Analysis 2013: 11.

R.Rosalba, B.Ana, A.Carlos, Z.Emiliano, V.Salvador, et al., 2018
Prevalencia de diabetes por diagnóstico médico previo en méx-
ico. Salud Pública de México 60: 1–9.

Sano, M. and Y. Sawada, 1985 Measurement of the lyapunov spec-
trum from a chaotic time series. Physical review letters 55: 1082.

Sarika, W., Y. Lenburya, K. Kumnungkit, and W. Kunphasuruang,
2008 Modelling glucose-insulin feedback signal interchanges
involving β-cells with delays. ScienceAsia 34: 77–86.

Shabestari, P. S., K. Rajagopal, B. Safarbali, S. Jafari, and P. Du-
raisamy, 2018 A novel approach to numerical modeling of
metabolic system: Investigation of chaotic behavior in diabetes
mellitus. Complexity 2018.

Shafiei, M., F. Parastesh, M. Jalili, S. Jafari, M. Perc, et al., 2019
Effects of partial time delays on synchronization patterns in
izhikevich neuronal networks. The European Physical Journal B
92: 1–7.

Singh, H. K. and D. N. Pandey, 2021 Stability analysis of a
fractional-order delay dynamical model on oncolytic virotherapy.
Mathematical Methods in the Applied Sciences 44: 1377–1393.

Sprott, J. C., 2015 Strange attractors with various equilibrium types.
The European Physical Journal Special Topics 224: 1409–1419.

Statista, 2019 Countries with the highest number of diabetics
worldwide in 2019. https://www.statista.com/statistics/281082/
countries-with-highest-number-of-diabetics/, Accessed: 2021-07-
30.

Tasaka, Y., F. Nakaya, H. Matsumoto, and Y. Omori, 1994 Effects
of aminoguanidine on insulin release from pancreatic islets. En-
docrine journal 41: 309–313.

Teka, W. W., R. K. Upadhyay, and A. Mondal, 2018 Spiking and
bursting patterns of fractional-order izhikevich model", journal =
"communications in nonlinear science and numerical simulation
56: 161 – 176.

Yao, Z. and B. Tang, 2021 Further results on bifurcation for a
fractional-order predator-prey system concerning mixed time
delays. Discrete Dynamics in Nature and Society 2021.

Zambrano-Serrano, E., J. M. Munoz-Pacheco, L. C. Gómez-
Pavón, A. Luis-Ramos, and G. Chen, 2018 Synchronization in
a fractional-order model of pancreatic β -cells. The European
Physical Journal Special Topics 227: 907–919.

How to cite this article: Fernández-Carreón, B., Munoz-Pacheco,
J.M., Zambrano-Serrano, E., Felix-Beltrán, O.G. Analysis of a
Fractional-Order Glucose-Insulin Biological System with Time De-
lay. Chaos Theory and Applications, 4(1), 10-18, 2022.

18 | Munoz-Pacheco et al. CHAOS Theory and Applications

https://www.statista.com/statistics/281082/countries-with-highest-number-of-diabetics/
https://www.statista.com/statistics/281082/countries-with-highest-number-of-diabetics/


A Comparative Proposal on Learning the Chaos to
Understand the Environment
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ABSTRACT Towards the end of the twentieth century, radical changes have taken place within the framework
of strategic management and organization-environment relationship. Technology, speed, competition and
globalization factors have rapidly modified the environmental dynamics in the organization-environment
relationship. In today’s chaotic world, the effects of the crisis and environmental uncertainties have spread
rapidly and widely not only in narrow area but all over the world. This situation makes it difficult for organizations
aiming to live an eternal life to continue their lives and accelerates the occurrence of organizational death.
In this context, Organizational Ecology and Chaos Theories have been emerging as guides in ensuring the
sustainability of organizations. This study, it is aimed to draw a road map for organizations by making a
comparison based on the suggestions and arguments of Organizational Ecology and Chaos Theories in
order for organizations to have a more sustainable life. As a result of the evaluation, recommendations were
made for learning to live with uncertainties and a correct action plan by developing sensors on the way to
becoming a sustainable organization, based on the dynamics of the future. At this point, organizations need
to have a flexible and agile structure and develop early warning systems so that they can leave the foggy
and unpredictable environment created by the chaotic atmosphere with minimum damage and seize the new
opportunities that arise. In addition, they should determine strategies by developing various scenarios against
unforeseen threats, and they should consider environmental factors while doing these.

KEYWORDS

Chaos
Organizational
ecology
Environment
Sustainability

INTRODUCTION

Discussions on the existence and sustainability of organizations
have been one of the most significant areas for organizational the-
ories. Identifying the organization by themselves or describing
the notions of competition, environment, employees and processes
by the administrators on the basis of the organization have been
reviewed in the context of the environment in post-modernist
approaches in addition to the modern organizational theory ap-
proaches. This ancient relationship between the organization and
the environment has become even more striking since the end of
the 1980s.

As a matter of fact, the shaping of the new world by global-
ization indicates the existence of a process that needs to be fol-
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lowed more carefully for organizations. Economic, political and
legal changes deal with new actors, new dynamism and new/re-
emerging concepts within this process.

In other words, it will be possible for organizations to under-
stand the environment by learning these changes. The vision of the
manager and the internal dynamics of the organizations become
more important in this effort to make sense. Because the world
has become more interconnected and dependent than ever before
by adapting to technology with its contents. The reason for the
mutual fragilities in the international arena to gain a new dimen-
sion is based on global and technological developments (Kotler
and Caslione 2009). However, the developments experienced have
led to some negative changes in people’s lives as well as positive
developments. Increasing interaction between countries and peo-
ple, the changing permeability between societies, the increasing
importance of companies in world management, companies’ com-
petitive tools becoming insufficient for consumers/customers, the
continuation of discussions about what the existence of humans is
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or how affect the environment makes it difficult for organizations
to understand the environment and even more their impacts on
the environment.

These waves of change and transformation affect organizations
significantly and lead to unexpected results. In today’s world,
sudden and rapid changes can occur in a short time that can lead
to unexpected results. This situation can unexpectedly change
the value phenomenon of organizations that are in constant inter-
action with their environment, and can overturn the advantages
of the market. All these developments have revealed the neces-
sity for organizations to adapt to a complex, chaotic and dynamic
environment in order to maintain their sustainability and gain a
competitive advantage in today’s world (Stacey et al. 2000). This
situation includes the emphasis on the period that Van-Eijnatten
wrote alone in 2004 (van Eijnatten 2004), with other colleagues in
2002 and 2004 (Fitzgerald and van Eijnatten 2002; van Eijnatten
and Putnik 2004). The authors mark a new century that begins
with uncertainty, high mobility, speed, turbulence and vulnerabili-
ties. Chaos will speak of itself as a new context for understanding
this century. In other words, chaos will be the new guide and
instructor of organizations in understanding the environment and
organizational learning. However, for this reason, the meaning
that the environment and the organization will attribute to chaos
in order to learn itself appears as another important context.

LITERATURE VIEW

Contemporary management theories take into account the rapid
changes in today’s organizational environment and help to under-
stand, interpret and explain the impact of changes on organizations
(Porth and McCall 2001). In the literature, while many contempo-
rary management theories such as resource-based theory, agency
theory, institutional theory, contingency theory and systems theory
are discussed in depth within the framework of the organization,
it is seen that organizational ecology, chaos and theory are not
examined in an integrated way. Organizational ecology and chaos
theories are still difficult to understand and apply in contempo-
rary organizations. In this study, it is aimed to make it easier to
understand and apply these two theories in an integrated way by
discussing them in depth and comparatively. When the studies
conducted in recent years are examined, it is observed that there
is an increase in research on chaos and organizational ecology
theories in different application areas and different organizational
forms. The studies conducted are listed below in chronological
order.

Thietart and Forgues (1995) that deals with the theories of chaos
and organization together, it is stated that the processes related
to the management of organizations are actually included in the
preferences and are embedded in the processes. The researchers,
who went through 6 principles in the studies on the chaotic field,
concluded that "similar actions should never lead to the same
result during a single institutional lifetime or between two differ-
ent organizations". Bayramoğlu (2016) emphasizes what needs to
be done in order to gain a perspective and approach, based on
the assumption that, despite the increasing number of studies on
chaos, it is complex and does not have the desired competence in
examining the relationship between chaos and organization theo-
ries. It is argued that this acquisition gains importance in ensuring
success and that the chaos and complexity paradigm should be
considered in this context. In another study dealing with chaos
and organization theories, the topics of governance in projects, or-
ganizational design and governmentality were examined (Simard
et al. 2018). In this research, a conceptual framework has been

developed showing that governance, organizational design and
managerialism are necessary for understanding projects. The pa-
per offers a theoretical contribution to project studies by creating a
bridge between process theory, the sensemaking perspective and
the study of organizational project management.

Researchers have comparatively examined the theories of chaos,
complexity and contingency in order for organizations to cope with
the difficulties with the changes that have emerged with global-
ization and technological developments in the 21st century, the
change in the nature of competition and the increase in unpre-
dictable events. Looking at the concepts used for chaos; nonlinear-
ity, feedback, bifurcation, odd attractors, fractals, self-organization
for complexity theory; for the theory of non-linearity, dynamism,
feedback, self-organization, emergence, and contingency; coher-
ence, equifinality, effectiveness, and relevance were used. After all;
inferences were put forward by comparing the working examples
of the examined theories with their organizational applications
(Lartey et al. 2020). Eight organizational theories related to supply
chain management and their possible future research questions are
identified and explained in the research (Prakash et al. 2020), which
examines how humanitarian organizations should follow a path
for their supply chain. Of these, the first four theories (i.e. resource-
based theory, resource dependency theory, social exchange theory,
and contingency theory) were initially applied in the humanitarian
field, while the remaining theories (i.e., institutional theory, stake-
holder theory, transactional cost theory, and information theory)
have the potential to be applied in the future. In the context of
creating and managing strategies for businesses, Arıcıoğlu et al.
(2021) scanned the studies on chaos and selected the ones which
are suitable for the purpose. They presented a short proposal title
stating the importance of chaos for strategic management and how
it guides managers. Using the propositions of chaos theory as an in-
clusive approach, Altinay and Arici (2021) evaluated the changing
marketing channels in organizations providing accommodation
service after the COVID-19 outbreak.

ORGANIZATIONAL ECOLOGY AND CHAOS ON LEARNING
THE ENVIRONMENT DURING THE LIFE OF THE ORGANI-
ZATION

Mankind acquired many things from nature in his relationship
with the environment, but he uses it against nature. This exploita-
tion isn’t a new phenomenon (Adorno and Horkheimer 2010). On
the other hand, learning to live with it by understanding the en-
vironment also has the same history as an awareness (Habermas
and Kanat 1997).

Handling this relationship within the context of the organiza-
tion does not depend on a very different perception and context.
When associating Taylor’s organization with the environment or
explaining the existence of open system theory through the en-
vironment, the context in question is on this distinction: living
together or using nature. However, the priority in both situations
is learning the environment. For this reason, the definition and
understanding of the environment are decisive. This is the subject
that organizational theories also insist on.

One of the most interesting approaches on this subject stands
out as Organizational Ecology and the other as Chaos Theory. The
efforts for both of them to understand and define the environ-
ment actually bring with it the effort to define and understand the
organization as well.
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If the Organizational Ecology Theory is dealt with first, the two
main issues that the theory seeks to answer are; the reasons for the
existence of organizations and the different characteristics of orga-
nizations (Leblebici 2004). In ontological justification within these
two issues; the understanding of order and universe explained
with Newton’s determinism leaves its place to regular chaos and
differences are explained with fractal geometry (Poincaré and Mait-
land 2003; Chamberlain 1995; Moran 2018).

On the other hand, Organizational Ecology theory explains
itself through three propositions by considering the relations be-
tween organization and environment (Baum 1999):

• Organizations are dynamic and new forms of organization
emerge. However, these organizations live as much as the
environment allows.

• Difficulties arise for organizations to respond to an uncertain
and changing environment.

• There are differences and diversity in organizations in terms
of their internal structures. On the other hand, it exists on
three basic principles proposed for Chaos Theory.

• The reason for organizational mobility is complex movements
related to human activities and human mobility in the envi-
ronment.

• Organizations, as an open system, are naturally exposed to
the effect of the environment and affected by these.

• The reactions of organizations affect their internal structures
as much as they affect the environment.

Both theories advocate the importance of the environment and
there is no one-way result in the interaction of the organization
and environment.

On the other hand, Ecology Theory associates the survival of
such species with evolution and states that diversification and re-
production occur during the evolutionary process (Leblebici 2004).
Various opinions and thoughts have been put forward on the envi-
ronment and environmental formation from past to present. The
theories of Lamarck (1744-1829) and Darwin (1809-1882), which
have an evolutionary perspective, form the basis of these. Accord-
ing to Lamarck, every being is formed according to the physical
conditions in which it exists and it has to adapt to these physical
conditions. Lamarck claims that living things create organs accord-
ing to their needs, and that if they are not needed, these organs
disappear by blunting over time. The transmission of these traits
genetically to future individuals inherited has raised a number
of unanswerable questions, and at this point, Darwin supported
Lamarck’s assumptions of genetical gravity and adaptation to the
environment with a more scientific approach, with the findings of
natural selection and survival. Darwin argues that living things
can remain strong throughout their lives only by natural selection
(Grandinetti 2018). He also argued that in order for living species
to have a sustainable life, they must first show diversity and then
adapt to the environment. The change that Darwin has mentioned
at this point may be necessary according to the changing environ-
mental conditions (Mayr 1972; Hancerlioglu 1995). As a matter
of fact, ecology in a general expression states that organizations
change in order to adapt to the changes in the environment and
as a result of this change, there is a diversification in the organi-
zations, as a result of this diversification, some organizations are
chosen by the environment and are kept alive. It can be said that
this point of view is the result of handling the life processes of
organizations in a similar way to living things. Within this context,
the theory focuses on the selection, survival, legitimacy and death
of organizations. The theory focuses on organizational popula-

tions and communities rather than on an organization by making
macro-scale explanations (?).

An important issue in theory is the process of change that causes
diversification. Researchers have different views on the causes of
change. In general terms, these are discussed under two headings
as internal and external causes (Baum 1999). Political, legal, techni-
cal and institutional environment refers to external causes, while
the interests of the organization, value judgments and degrees of
dependency express internal causes. Another concept that draws
attention to change is structural inertia, which refers to the un-
willing stance and cumbersome structure of organizations against
change. It is used to emphasize that organizations generally have
a lower rate of change than the rate of change of the environment
(Hannan and Freeman 1977). Hannan and Freeman advocate that
the organization-environment relationship should be viewed from
the perspective of environmental selection. Organizational ecology
also pays attention to organizational features, but emphasizes the
inherent organizational features that shape institutional environ-
ments and determine how specific organizations will respond to
them. These include the cost of organizing, flexibility and stability
or fragility (Abbott et al. 2016).

Another issue that has an important place in theory is orga-
nizational death and birth. Although there is no consensus on
this issue, the entry of an organization into a new population is
expressed as birth and exit from the population as death. Organi-
zational deaths and births are important indicators in determining
the characteristics (dynamics) of a population, that is, the organi-
zational community formed by interacting organizations. Issues
such as the total number of organizations in the population and the
carrying capacity of the population, together with the death and
birth rates, allow the determination of population dynamics (Baum
and Oliver 1991). The basic view of Organizational Ecology theory
is to understand the forces that shape organizational structures
over the time span (Hannan and Freeman 1989).

Nevertheless, organizations, which are open systems, need to
be able to respond quickly and rationally in this chaotic environ-
ment in order to survive the reactions from their environment.
Otherwise, they will not be able to adapt to the changing condi-
tions of the environment and will end their existence. Within this
context, the environment that organizations are in is of great impor-
tance for organizations to survive this wind of change and ensure
their sustainability. It is inevitable for organizations in terms of
their sustainability to understand and correctly interpret ecology,
which affects their activities and has an important effect on deter-
mining their lifespan. The key to survival for organizations, as in
natural systems, is to develop rules that can keep an organization
operating "on the brink of chaos" (Stacey et al. 2000).

The origin of modern chaos theory can be traced back to Hegel,
Marx, and Engels, whose work focuses on historical evolution
through dialectical processes between the opposing forces of sta-
sis and change (Loye and Eisler 1987; Farazmand 2003). Henri
Poincaré, who later noticed and became famous in the world,
solved the problem of “three bodies”, which was put forward on
the stability of the solar system in 1889, causing the term “chaos”
to be used for the first time in a technical sense. Poincaré laid the
foundations of the chaos theory in New Science by proving that
the solution of the solar system is sensitive to initial conditions and
that the solar system can never be predicted whether it is stable
or not because it is impossible to know the initial conditions of
the universe (Gleick 1997). It was Lorenz who made Poincaré fa-
mous again. While forecasting the weather, as a result of his entry
into the system by simplifying a number of sequences obtained
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from previous research results, Lorenz realized that the results that
appeared in the chart created a different table than the previous
ones, while waiting to receive the same results. Lorenz’s expecta-
tion is the way that a difference of one thousand unity (1/1000)
created when entering sequences into the system will not affect
the result. But this small change at the beginning affected the
forecasts, and unlike the previous results, a bumpy, butterfly-like
graph emerged (Gleick 2005). This revealed the "butterfly effect",
which shows sensitivity to the initial state and forms the basis of
Chaos Theory. Lorenz’s results, by defining chaos as "a system
with a uniform geometric structure that behaves randomly", em-
phasized that there is a "orderly disorder" in the system (Lorenz
1963). It is observed that small differences in variables can produce
surprising results that cannot be predicted at the starting point.
At this point Lorenz introduced two main features of the chaos
theory. These; the principles of "Sensitive Dependence on Initial
Conditions " and "Randomness" (Gleick 2005).

The general characteristic of chaos theory is that it is the "edge
of chaos", which is defined as "the space in which the complex
system spontaneously forms, adapts, and is alive", resulting from
the fact that life stands between order and disorder (Heylighen
1999; Mitchell 1999).

Understanding and predicting practice and finding the exact
practical equivalent of theories are some of the main goals of the
theory. For this purpose, chaos theory has made an ontological dif-
ferentiation in order to eliminate the deficiency in existing theories
and evaluated the "disorder" situation from a different perspective
(Aricioglu and Karabiyik 2019).

In this context, the following propositions summarize the chaos
theory (Rockier 1991):

• Chaos theory helps to explain the nonlinear aspects of the
universe.

• Combines the determinism of the Newtonian model with
the randomness of quantum physics. It explains this partly
through the concept of "strange attractors".

• Chaos theory shows that small changes in the beginning of a
system can eventually lead to large differences.

• Understanding chaos leads us a perspective in which the
universe is an open system.

• Human systems can be best explained by chaos theory. The
nature of the human body and weather forecast are examples
of this.

• It has a geometrically fractal structure (Fern).
• It has an original structure. No event repeats the same way

(Snowflake).
• It can be stable (regular, cosmotic) within its own chaotic

limits.
• It is not possible to be foreseen. Although it has a unique

order, it also has an ambiguous side.

Chaos is not disorder; it represents the unpredictability of an
evolutionary order system. Chaos Theory examines dynamical
systems characterized by nonlinear, complex interactions and dy-
namic evolution over time (Levy 1994). It suggests that a small
change in the initial condition of a nonlinear dynamic system can
lead to unexpected results and makes it difficult to predict dynam-
ical systems (Holmes 1995).

When the propositions of chaos are interpreted in the context
of the organization-environment relationship; Small variables oc-
curring in the system can bring unforeseen threats from the envi-
ronment, which is an open system, and this can lead us to unex-
pected and effective results. This disorder has a unique and fragile

structure and is not expected to be repeated. This whole range
of uncertainty has an order in itself. In this context, being able to
understand and respond to the organizational environment domi-
nated by a regular disorder, to respond towards this and to develop
sensors and to have a flexible structure are key to sustainability.

A PROPOSITION ABOUT THE FUTURE OF THE ENVIRON-
MENT

The report “Global Trends 2025”, published by the US National
Intelligence Council in 2008, predicts that in the future, chaos, vio-
lence and upheaval will dominate the world (Global Trends 2025:
A Transformed World 2008). In today’s world, where everything
is so dependent and fragile, predictions have been realized, and
the situation of uncertainty affects all stakeholders living on earth.
There are a number of factors that trigger and accelerate disorder,
uncertainty, chaos, and change. These factors are briefly described
below.

Globalization: One of the most important phenomena of change
is globalization, accompanied by regionalization (the European,
American and Asian blocks) and fragmentation (the Soviet Union
and Yugoslavia). What is meant by globalization is that most
states in the world belong to a system with global interaction
(Mannermaa 2009). Globalization is actually the result of a logi-
cal process. Human history shows that human systems tend to
create new, technological, economic and socio-political levels of
systems throughout the development process. Development from
self-contained village communities to city-states, nation-states, re-
gional systems is a natural process of systematic development. The
characteristic of this development is that the birth of a new level of
system means an increase in the complexity of the entire system.
The removal of borders, the increase of mobility and the level of
interaction have changed the existing world order and led to the
birth of a chaotic environment. One of the most important features
of the international system since the Cold War, globalization is
not a process of chaotic ending that brought only chaos occurring
around in the states, but completely covering and affecting the
global environment have been turned into an event that is. There
is a great similarity between the properties of the chaotic structure
described in chaos theory and the properties of the concept of
globalization.

Technological Developments and The Information Revolution:
Information Technologies, one of the main elements of the global-
ization revolution, are the biggest element shaping the new global
economy. The emergence of a single platform that brings together,
connects individuals, organizations and objects, it has led to the
change of many phenomena from the way individuals and organi-
zations work to the way they work, logistics, production, commu-
nication, consumption, etc. In addition to the positive effects of this
change, there are a number of negative effects. Removing borders,
making access to information so easy, and thus the emergence of
big data, in other words, overloading information, and therefore
causing more confusion and chaos (Kotler and Caslione 2009).

Extreme Competition: The constant development and change of
technological developments have made it difficult for organiza-
tions to have a sustainable competitive advantage and has led to
the formation of a difficult competitive environment. In order to
survive in markets where intense and fast competitive moves are
made, current developments and competitors must be carefully
followed and the counter move must be made in a timely and accu-
rate manner. Globalization, attractive substitute goods, changing
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consumer preferences and the emergence of new business models
determine the pace of market disruptions in an intensely com-
petitive environment. In order to resist competition in a chaotic
environment, strategic foresight should be developed by orga-
nizational managers, importance should be given to the speed
factor, and outsourcing and similar cooperation models should be
implemented (Doherty and Delener 2001; D’aveni 2010).

Changing Balances in the World (The Rise of the Rest of the
World): The phenomenon of power from an economic and political
point of view is constantly changing from the past to the present.
The role of countries in the global market may vary depending on
this situation. A process is underway in which the United States
and the European Union are increasingly losing their sovereign
roles, money and power are transferred to nations rich in natural
resources, to developing countries. The 2008 financial crisis, Brexit,
the Covid-19 pandemic, etc. events reveal and accelerate the course
of change.

Power is shifting for the third time in the history of the Modern
world (Zakaria 2013). The agricultural and industrial revolution in
the 15th century, the rise of the USA in the 19th century, and thirdly,
the change and development of China and Asian countries today
can be explained in this way. BRICS countries, the RCEP agreement
(Regional Comprehensive Economic Partnership) and wealthy
Middle Eastern countries show us the “rise of the rest of the world”
as new rising powers in the perspective of chaos and turmoil (Time,
2020). In this context, today, when fragility and uncertainty are at
the line stage, as a result of the power changes occurring between
countries, an environment of chaos occurs throughout the global
world. Organizations as well as countries should strategically
evaluate the opportunities and threats that may arise.

CONCLUSION

“Turbulence” occurs anywhere or at any time when the number
of triggers increases and reaches high levels, as can be seen in the
process that started before the 2008 crisis and is still ongoing. Or-
ganizations that have an agile and flexible organizational structure,
early warning systems and can remain vigilant will be able to no-
tice the turmoil. Some turbulence can only be noticed when chaos
manifests itself. When chaos is underestimated, it can be difficult
to exploit strategies that will protect the organization from the
weaknesses caused by chaos or allow it to seize the opportunities it
creates (Kotler and Caslione 2009). For this reason, it is important
that organizations are always on guard against a possible state of
chaos that may occur at any time in terms of sustainability of the
organization and minimizing the damage that may occur. The orga-
nizational environment should be well analyzed, the phenomenon
of change and development should be understood by the entire
organization and become part of the organizational culture.

Understanding the environment in this context, despite their
different philosophical backgrounds, two similar theories, with
their insistence on learning, their belief in sustainability and their
increasing consistency, contribute to understanding the environ-
ment around the following differences:

In order for organizations to understand the environment, they
need to understand chaos by prioritizing it, applying propositions
carefully in context, and developing a number of strategies. Within
the framework of the propositions of the theories, a number of
strategies for organization sustainability are presented below, es-
pecially to learn to live in chaos:

Flexibility and agility: Physically, structures should be able to
stretch when the ground swings. A similar situation applies to

organizations competing in today’s turbulent environment. Or-
ganizations that can predict market movements best, re-emerge
from the worst system shocks and take advantage of the gaps left
by those who cannot withstand the impact will win (Economist
2009). For most organizations, the path to organizational agility is
through transformation, reducing inefficiency, and the ability to re-
organize around core values. Basic processes need to be optimized.
It is important for the organization to act in a flexible structure
so that information system closed to outside/communication are
maximized, the alignment of basic information sharing processes
and become standardized. At this point, care should be taken not
to disrupt communication and teamwork.

Development of an early warning system: It is known that the
turbulence can come at any time, from anywhere, some can be
detected in advance, and some cannot. The detected turbulence
should be analysed by the organization, and then the opportunities
and weaknesses that may arise should be identified. In this way,
these deficiencies can be minimized or eliminated completely. If
we liken the organization to a passenger plane preparing for flight,
it can be used to direct pre-flight air traffic, weather, traffic, etc.
we can say that the “tower” is the organization’s early warning
system, which allows the Prevention of disruptions caused by
environmental factors. They can prevent disasters that may occur
by developing an early warning system that acts as a tower in
airports while performing their activities in organizations.

Another factor to consider in the early warning system is the
external environment in which the organization operates. In some
cases, organizations can ignore the external environment by focus-
ing on internal factors. According to Gilad, this situation is called
“mismatch in the sector” and occurs during periods when market
realities exceed the strategy of the organization. In order to cope
with this situation, organizations must identify, monitor risks and
take the necessary measures by management (Gilad 2003).

Developing scenarios: The main element of a strategy in chaos
management is the development of scenarios that the organization
will likely encounter by bringing together the ideas of managers,
experts and stakeholders at the head of all units of the organi-
zation’s managers. Preparing different scenarios, including the
worst, expected and best, is important in terms of first response
to a possible threat from the environment and reducing damage.
Developing scenarios can simultaneously benefit the organization.
It allows you to manage, measure and classify uncertainty. It al-
lows to reduce confusion and separate what is really unknown and
really important. It creates a clear structure that will be used when
working on options to overcome a number of possible outcomes,
and avoids regrets (Hirt et al. 2020).

Chaos theory sets out various scenarios for understanding and
predicting organizational behaviour and system evolution. Both
computer simulations and experimental studies are needed to
determine characteristics and strategic inferences in the organi-
zational environment. Due to the sensitivity property of chaos
systems, the selected variable must be measured precisely (Do-
herty and Delener 2001). In the research conducted, four different
levels of uncertainty states are separated from each other. Level
one has a foreseeable future and develops a single scenario. The
second level develops a small number of scenarios and predicts
the probability that each scenario will be implemented. The third
level develops a number of scenarios due to the complexity of the
underlying factors. It is impossible to make a prediction with cer-
tainty when there will be real ambiguity, and decisions are made
at that moment by intuition. This can be considered Level Four. It
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■ Table 1 Comparison of Organizational Ecology and Chaos Theories.

Elements Organizational Ecology Chaos

Background Mutation that allowed Darwin and Lamarck to cling Anarchism or balance in disorder

to the environment through

Time/Period Creating organizational characteristics of short-term An uncertain broad time or

processes over a wide period of time in the evolutionary process beyond future time

Motion/ Kinesis Physical Metaphysical

Making sense of Competitive understanding Existence of requirement for entity

the environment

Universality of Similarity or difference instead of universality Fractal

organization forms

Competitions High competition Balancing

Actors Company / actor oriented Governance approach

Sustainability Competitive and adaptable When life is learned with

the environment

is impossible to establish a relationship because it constantly shifts
the relationship between cause and effect. Atmosphere of chaos
caused by the Covid-19 pandemic in global markets can qualify as
a level 4.

Choice of scenario and strategy: In a world of extreme uncertainty,
it will not be right in the long run to devise a strict, decisive plan.
But making everything flexible in its entirety is also an expensive
way, and may not achieve any of the organization’s goals. Instead,
a portfolio of strategic moves (scenarios) should be created that
will collectively perform well in all possible scenarios, even if each
scenario does not have a way out on its own.

After developing the most important scenarios, organization
managers need to choose the most likely one from them. For each
scenario, the optimal strategy must be found. Managers want to
accept a strategy that coincides with a risk they are willing to take
and as many opportunities as they want to evaluate. It is necessary
to take into account the worst-case scenario and implement the
strategy that will benefit the organization when the worst case
occurs. This means minimizing maximum risk and is referred to
in the literature as a mini-max strategy (Kotler and Caslione 2009).
It is not possible to create a clear guide for scenario and strategy
selection. Managers may want to take advantage of past experi-
ence, be timid/bold about taking risks, or argue that a scenario
that mentions the existence of many opportunities may be the right
choice. It is important to know that there are many unknowns,
which scenario choice will be the right decision, as well as to be
prepared for any turbulence and uncertainty that may occur.

Organizations should develop the capabilities, systems and pro-
cesses to quickly identify and predict the upheavals that may arise
in the environment in which they operate, identify their weak-
nesses, know and focus on their own values. It should be able to

separate from the foggy and unpredictable environment created by
the chaotic atmosphere with minimal damage and evaluate new
opportunities that arise. In order to do this, they must constantly
consider the environmental factor and take care of his relations
with the environment. Considering that all uncertainties can come
from the environment, the key to countering competition, reduc-
ing risk factors, following new developments in the market and
ensuring the sustainability of the organization is to understand
and analyze the environment in a good way. In order to predict
any threat that may come from the environment, it is necessary to
develop strategies and scenarios, evaluate opportunities, and teach
managers and the organization to live with chaos as it does today.
When these scenarios and strategies are understood by the entire
organization, become part of everyday decision-making processes
and are adopted in the organization as a culture, an organizational
structure that chaos cannot shake arises. Organizations that have
such an organizational structure will be able to live a sustainable
life despite all the turmoil in today’s world of chaos, where uncer-
tainty increases every day and it becomes difficult to predict the
future at any moment.
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sitesi İktisadi ve İdari Bilimler Fakültesi Dergisi 22: 285–307.

Levy, D., 1994 Chaos theory and strategy: Theory, application,
and managerial implications. Strategic management journal 15:
167–178.

Lorenz, E. N., 1963 Deterministic nonperiodic flow. Journal of
atmospheric sciences 20: 130–141.

Loye, D. and R. Eisler, 1987 Chaos and transformation: Implica-
tions of nonequilibrium theory for social science and society.
Behavioral science 32: 53–65.

Mannermaa, M., 2009 Globalization and information soci-
ety—increasing complexity and potential chaos. Global Trans-
formations and World Futures-II p. 88.

Mayr, E., 1972 Lamarck revisited. Journal of the History of Biology
pp. 55–94.

Mitchell, W. M., 1999 Complexity. the emerging science at the edge
of order and chaos, 1992.

Moran, G., 2018 Chaos theory and psychoanalysis: The fluidic nature of
the mind. Routledge.

Poincaré, H. and F. Maitland, 2003 Science and method. Courier
Corporation.

Porth, S. J. and J. McCall, 2001 Contemporary management theories
and catholic social teaching. Review of Business 22: 8–15.

Prakash, C., M. Besiou, P. Charan, and S. Gupta, 2020 Organization
theory in humanitarian operations: a review and suggested
research agenda. Journal of Humanitarian Logistics and Supply
Chain Management .

Rockier, M. J., 1991 Thinking about chaos: Non-quantitative ap-
proaches to teacher education. Action in Teacher Education 12:
56–62.

Simard, M., M. Aubry, and D. Laberge, 2018 The utopia of order
versus chaos: A conceptual framework for governance, organi-
zational design and governmentality in projects. International
journal of project management 36: 460–473.

Stacey, R. D., D. Griffin, and P. Shaw, 2000 Complexity and man-
agement: Fad or radical challenge to systems thinking?. Psychology
Press.

Thietart, R.-A. and B. Forgues, 1995 Chaos theory and organization.
Organization science 6: 19–31.

van Eijnatten, F. M., 2004 Chaordic systems thinking: Some sug-
gestions for a complexity framework to inform a learning orga-
nization. The Learning Organization .

van Eijnatten, F. M. and G. D. Putnik, 2004 Chaos, complexity,
learning, and the learning organization: Towards a chaordic
enterprise. The Learning Organization .

Zakaria, F., 2013 The rise of the rest. In Debating a Post-American
World, pp. 42–51, Routledge.

How to cite this article: Arıcıoğlu, M. A. and Berk, O. N. A Com-
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ABSTRACT The famous and well-studied Lorenz system is considered a paradigm for chaotic behavior in
three-dimensional continuous differential systems. After the appearance of such a system in 1963, several
Lorenz-like chaotic systems have been proposed and studied in the related literature, as Rössler system, Chen-
Ueta system, Rabinovich system, Rikitake system, among others. However, these systems are parameter
dependent and are chaotic only for suitable combinations of parameter values. This raises the question of
when such systems are not chaotic, which can be seen as a dual problem regarding chaotic systems. In this
paper, we give sufficient algebraic conditions for a generalized class of Lorenz-like systems to be nonchaotic.
Using the general results obtained, we give some examples of nonchaotic behavior of some classical “chaotic”
Lorenz-like systems, including the Lorenz system itself. The nonchaotic differential systems presented here
have invariant algebraic surfaces, which contain the stable (or unstable) invariant manifolds of their equilibrium
points. We show that, in some cases, the deformation of these invariant manifolds through the destruction of
the invariant algebraic surfaces, by perturbing the parameter values, can reorganize the global structure of the
phase space, leading to a transition from nonchaotic to chaotic behavior of such differential systems.

KEYWORDS

Chaotic and non-
chaotic dynamics
Lorenz-like sys-
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Darboux theory
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Invariant alge-
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INTRODUCTION

Let R[x, y, z] be the ring of polynomial functions in the variables
x, y, z, with coefficients in R. Consider the system of first order
ordinary differential equations (or differential system for short)
defined in R3 given by

ẋ = P (x, y, z) , ẏ = Q (x, y, z) , ż = R (x, y, z) , (1)

where P, Q, R ∈ R [x, y, z] and the dot denotes derivative with re-
spect to the independent variable t, usually called the time, mainly
in physical systems. The degree of system (1) is defined as the
maximum of the degrees of polynomials P, Q and R. When the
maximum degree is two, system (1) is called quadratic.
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Beyond its theoretical importance, system (1) appears fre-
quently in mathematical modeling of several dynamical phenom-
ena arising in different areas, like Physics, Engineering, Biology
and Chemistry, among others, as shown in the references (Alligood
et al. 1996; Argyris et al. 2015; Cencini et al. 2010; Guckenheimer and
Holmes 2002; Ott 2002; Strogatz 2001; Wiggins 2003). In this way,
the study of the behavior of solutions of system (1) in its phase
space is important to understand the phenomena modeled by it.
The possible behaviors include stable and unstable equilibrium
points and periodic orbits, quasi-periodic orbits, and chaotic dy-
namics. In particular, the interest in studying systems like (1) with
chaotic behavior increased a lot in the last decades, due to their
appearance in the study of several phenomena. One of the first
chaotic systems studied was the famous and well-known Lorenz
system (Lorenz 1963), which was the precursor of several other
differential systems presenting such a behavior, like Rössler system
(Rössler 1976), Rabinovich system (Llibre et al. 2008), Chen-Ueta
system (Chen and Ueta 1999), Rikitake system (Llibre and Messias
2009), among others. The chaotic dynamics of these polynomial
differential systems is directly related to the degree and values
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of coefficients (also called parameters) of the polynomials which
determine them. In fact, although often called “chaotic systems”
in the literature, the solutions of most of them present chaotic be-
havior only for certain combinations of their parameter values. For
instance, it was shown by Edward Lorenz in 1963 that the solutions
of system

ẋ = s (y − x) ,

ẏ = rx − y − xz,

ż = −bz + xy,

(2)

which has degree two (so it is quadratic), presents chaotic behavior
if s = 10, b = 8

3 and r = 28 (Lorenz 1963). Later on, it was shown
by several authors that Lorenz system (2) has chaotic behavior for
many other combinations of parameter values (see for instance the
nice book (Sparrow 1982) or the more recent review (Algaba et al.
2018) and references cited in them).

The Lorenz system (2) is a polynomial differential system with
peculiar quadratic nonlinearities, which appear in the second and
third equations and are given by the crossed product of variables
(i.e. xz and xy). This motivated the definition of a more general
class of quadratic differential systems called Lorenz-like systems,
given by

ẋ = a1x + b1y + c1z + d1yz,

ẏ = a2x + b2y + c2z + d2xz,

ż = a3x + b3y + c3z + d3xy,

(3)

where ai, bi, ci, di ∈ R, i = 1, 2, 3. This kind of system is often
cited in the literature concerning chaotic systems, because several
classical quadratic polynomial differential systems like Rössler,
Rabinovich, Chen-Ueta, Rikitake, beyond the Lorenz system it-
self, can be obtained from system (3) by appropriate choice of the
parameters ai, bi, ci, di.

As the chaotic dynamics of several subclasses of system (3) were
obtained in literature, a quite natural question arises in this context:
can we determine conditions on the parameters of system (3) which
can guarantee that it is nonchaotic? This is an important issue that
can be seen as the dual problem of knowing when system (3) is
chaotic. There are several papers dedicated to study the nonchaotic
behavior of polynomial systems, especially the quadratic ones, see
for instance the series of papers by Heidel and Zhang (Heidel
and Zhang 1999, 2007; Zhang and Heidel 1997, 2012; Zhang et al.
2008), by Malasoma (Malasoma 2009, 2002) and Yang (Yang 2000,
2002; Yang and Chen 2002). The question about the nonchaotic
behavior of differential systems is also related to the integrability
theory (Dumortier et al. 2006; Llibre 2004; Llibre and Zhang 2012),
because the phase space of integrable differential systems can be
completely determined by their first integrals, hence they are not
chaotic. Despite the existence of such studies, a general criterion
for determining the nonchaotic behavior of polynomial differential
systems defined in R3, or a general characterization of the ω-limit
sets of their solutions, like the Poincaré-Bendixson theorem for
planar differential systems (Dumortier et al. 2006), is far from being
obtained, even in the quadratic case.

In (Messias and Silva 2018), by using some elements of Darboux
Theory of Integrability, namely invariant algebraic surfaces and
Darboux invariants, we stated and proved a sufficient algebraic
criterion which guarantees the nonchaotic behavior of differential
system (1), for P, Q, R polynomials of any degree. Using this cri-
terion, we proved also in (Messias and Silva 2018) the nonchaotic

behavior for a huge class of quadratic polynomial differential sys-
tems which have a symmetric Jacobian matrix, giving a partial
answer for a conjecture proposed by Zeraoulia and Sprott, which
states that “Three-dimensional quadratic continuous-time differen-
tial systems with a symmetric Jacobian matrix cannot be chaotic”.

Later on, in (Messias and Silva 2020) we studied third order
ordinary differential equations of the form

...
x = j (x, ẋ, ẍ) , (4)

called jerk equations. When j is a polynomial, it can be called a poly-
nomial jerk equation. From the physical point of view, the third
derivative can be seen as the derivative of the acceleration of a par-
ticle with position x, velocity ẋ and acceleration ẍ, so this type of
equations has great interest in applications. Using the algebraic cri-
terion stated in (Messias and Silva 2018), we obtained general con-
ditions on the polynomial j that guarantee the nonchaotic behavior
of equation (4), which is equivalent to a subclass of system (1) by
the natural change of coordinates ẋ = y, ẏ = z, ż = j(x, y, z).

In the context above, in this paper our main goal is to deter-
mine sufficient conditions on the parameters which can guarantee
the nonchaotic behavior of Lorenz-like system (3). The paper is
organized as follows. In Section 2 we present some preliminary
results from Darboux theory of integrability and use them to state a
sufficient (but not necessary) algebraic criterion for the noncahotic
behavior of system (1). Using this criterion, in Section 3 we state
sufficient algebraic conditions for system (3) to be nonchaotic. In
Section 4, we give some examples of classical systems derived from
system (3) which we can guarantee that, for some combinations
of parameter values, do not present chaotic behavior, as Lorenz
system, Rabinovich system, Chen-Ueta system, and certain Lorenz-
like systems with D2 symmetry (Anastassiou et al. 2002; Zhu C.,
Liu Y. and Guo Y. 2010). The nonchaotic differential systems pre-
sented here have invariant algebraic surfaces, which contain the
stable or unstable invariant manifolds of their equilibrium points.
In Section 5, we show that, in some cases, the deformation of these
invariant manifolds through the destruction of the invariant alge-
braic surfaces, by perturbing the parameter values in system (3),
can reorganize the global structure of the phase space, leading to a
transition from nonchaotic to chaotic behavior of such differential
systems. Finally, in Section 6 we present some concluding remarks
and comments.

SOME PRELIMINARIES FROM DARBOUX THEORY OF IN-
TEGRABILITY

Here, as in (Messias and Silva 2018), the existence of invariant alge-
braic surfaces and Darboux invariants are used to give a sufficient
algebraic criterion which guarantees the nonchaotic behavior of
three-dimensional polynomial differential systems (see Theorem 1
ahead). The definitions and results presented in this section also
appear in (Messias and Silva 2018; Messias and Silva 2020) and
in other classical texts about integrability theory (Dumortier et al.
2006; Llibre 2004; Llibre and Zhang 2012), but they are included
here for the sake of completeness and to make the text easier to
read.

The Darboux theory of integrability provides a link between
the integrability of polynomial differential systems (or polynomial
vector fields) and their invariant algebraic surfaces. A nice pre-
sentation of this theory for planar polynomial differential systems
can be found in (Llibre 2004) and in Chapter 8 of (Dumortier et al.
2006). Here we are interested in quadratic polynomial differential
systems defined in R3, hence we will present the results for system
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(1) with degree two, which is naturally associated to the vector
field

X (x, y, z) = P (x, y, z)
∂

∂x
+ Q (x, y, z)

∂

∂y
+ R (x, y, z)

∂

∂z
, (5)

where P, Q and R are the polynomials in the right-hand side of
system (1). In the next section we will apply the results in the study
of the Lorenz-like system (3).

Definition 1 Let U be an open subset of R3. If there exists a nonlocally
constant differentiable function H : U → R, which is constant on all
solution curves (x(t), y(t), z(t)) of system (1) (or of the vector field (5))
contained in U, then H is called a first integral of X in U. Clearly H is a
first integral of system (1) if and only if X(H) ≡ 0 on U, i.e.

X(H) =
dH
dt

=
∂H
∂x

P +
∂H
∂y

Q +
∂H
∂z

R = 0

on the orbits of X contained in U, where H = H(x(t), y(t), z(t)).

Definition 2 An invariant of system (1) on an open subset U ⊂ R3

is a nonlocally constant differentiable function I in the variables x, y, z
and t such that I is constant on all solution curves (x(t), y(t), z(t)) of
system (1) contained in U, i.e.

dI
dt

=
∂I
∂x

P +
∂I
∂y

Q +
∂I
∂z

R +
∂I
∂t

= 0

on the orbits of X contained in U.

An invariant I can be seen as a first integral of system (1) which
depends on the time t.

Definition 3 Let f ∈ K[x, y, z] be a non-locally constant polynomial,
where K is either R or C. The surface f (x, y, z) = 0 is an invariant
algebraic surface of system (1) if there exists a polynomial K ∈ K[x, y, z]
such that

X( f ) =
∂ f
∂x

P +
∂ f
∂y

Q +
∂ f
∂z

R = K f .

The polynomial K is called the cofactor of the invariant algebraic surface
f = 0.

Note that, as system (1) has degree 2, then the degree of the co-
factor K is at most 1. Moreover, when K = 0, then f is a polynomial
first integral of system (1).

Definition 4 Let g, h ∈ K[x, y, z] \ {0} and assume that g and h are
relatively prime polynomials in the ring K[x, y, z], or that h = 1, where
K is either R or C. Then the function F = exp(g/h) is called an
exponential factor of system (1) if for some polynomial L ∈ K[x, y, z] of
degree at most m − 1 we have that

X(F) =
∂F
∂x

P +
∂F
∂y

Q +
∂F
∂z

R = LF.

We say that an invariant I of X is of Darboux type or a Darboux
invariant if it can be written as

I(x, y, z, t) = f1
λ1 . . . fp

λp F1
µ1 . . . Fq

µq est, (6)

where fi = 0 are invariant algebraic surfaces of X for i = 1, . . . , p;
Fj are exponential factors of X for j = 1, . . . , q; λi, µj ∈ C and
s ∈ R \ {0}.

The following result holds.

Proposition 1 If f (x, y, z) = 0 is an invariant algebraic surface of
system (1) with a constant cofactor K = k ∈ R \ {0}, then I =
f (x, y, z) e−kt is a Darboux invariant of this system.

Proof. Let ϕ(t) = (x(t), y(t), z(t)) be a solution and f = 0 be an
invariant algebraic surface of system (1) (or of the vector field (5)). Then
we have

d
dt

I(ϕ(t)) =
d
dt

[
f (ϕ(t)) e−kt

]
=

=
[

∂ f
∂x P +

∂ f
∂y Q +

∂ f
∂z R

]
e−kt − k f (ϕ(t))e−kt =

= k f (ϕ(t))e−kt − k f (ϕ(t))e−kt = 0

While the knowledge of a first integral of system (1) in R3 al-
lows to reduce its study in one dimension, the knowledge of a
Darboux invariant provides information about the α and ω-limit
sets of all orbits of system (1). Indeed, the following result, proved
in (Llibre and Oliveira 2015) for planar polynomial differential
systems, can be easily extended to polynomial differential systems
defined in R3 and gives a relation between the existence of Dar-
boux invariants and the α and ω–limit sets of the solutions of such
systems.

Proposition 2 Let I(x, y, z, t) = f (x, y, z)est be a Darboux invariant
of system (1). Let p ∈ R3 and φp(t) be the solution of system (1)
with maximal interval (αp, ωp) such that φp(0) = p. The following
statements hold.

(a) If ωp = ∞ then ω(p) ⊂ { f (x, y, z) = 0} ∪ S2, where S2 is the
boundary of the Poincaré ball (at infinity).

(b) If αp = −∞ then α(p) ⊂ { f (x, y, z) = 0} ∪ S2, where S2 is the
boundary of the Poincaré ball (at infinity).

The definition of Poincaré ball is given, for instance, in (Llibre
et al. 2008). Note that in Proposition 2 the function f is of the form

f = f λ1
1 ... f λp

p Fµ1
1 ...Fµq

q , as in (6).

In (Messias and Silva 2018) we proved the following result.

Theorem 1 [Algebraic criterion for nonchaoticity] Let X be the
vector field (5), associated to differential system (1). If X has an invariant
algebraic surface f = 0 with a constant cofactor K = k ∈ R \ {0},
then the α and ω-limit sets of each orbit ϕp (t) = (x (t) , y (t) , z (t))
with ϕp(0) = p ∈ R3, are both contained in { f = 0} ∪ S2, where S2

represents the points at infinity of R3. In particular, X does not present
chaotic behavior.

The algebraic criterion stated in Theorem 1 gives a sufficient but
not necessary condition for the nonchaotic behavior of the vector
field (5). Indeed, there are several differential systems proved
to be nonchaotic in the literature (Zhang and Heidel 1997, 2012;
Zhang et al. 2008; Yang 2000, 2002; Yang and Chen 2002), which
have no invariant algebraic surfaces. Furthermore, we observe
that the hypothesis of a constant cofactor is essential in Theorem
1. Indeed, in (Jafari et al. 2016; Li et al. 2021) the authors gave
examples of chaotic systems which have algebraic surfaces formed
by equilibrium points (which are obviously invariant algebraic
surfaces). However, we checked these cases and in all of them the
cofactors of the invariant algebraic surfaces are not constant.

In the next section we will use Theorem 1 to obtain sufficient
conditions for the nonchaotic behavior of Lorenz-like systems (3).
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STATEMENT AND PROOF OF THE MAIN RESULTS: NON-
CHAOTIC LORENZ-LIKE SYSTEMS

In the following result we give a huge class of Lorenz-like systems
which do not present chaotic behavior.

Theorem 2 Let X = X(x, y, z) be the vector field associated to system

(3). For the parameter values a1 = b2 =
1
2

k, c3 = k, d3 ̸= 0 and the
other parameters satisfying the system(2a2c1 + kc2) d3 − 2a3 (a2d1 − b1d2) = 0,

(2b1c2 + kc1) + 2b3 (a2d1 − b1d2) = 0,
(7)

the vector field X = X(x, y, z) has the invariant algebraic surface

f (x, y, z) = −d2x2 − 2c2x + d1y2 + 2c1y − 2
a2d1 − b1d2

d3
z (8)

with cofactor k ∈ R. Consequently, for these choice of parameters, system
(3) does not present chaotic behavior.

Proof. Consider the vector field X = (P, Q, R) associated to system
(3) with the choice of parameters given in Theorem 2. Then, the system
reduces to

ẋ = P(x, y, z) =
k
2

x + b1y + c1z + d1yz,

ẏ = Q(x, y, z) = a2x +
k
2

y + c2z + d2xz,

ż = R(x, y, z) = a3x + b3y + kz + d3xy,

(9)

where the parameters a2, a3, b1, b3, c1, c2, d1, d2 satisfy system (7). In
this way, the function (8) is a Darboux polynomial of system (9), with
cofactor k ∈ R. In fact, we have

⟨∇ f , X⟩ =

∂ f
∂x (x, y, z)P (x, y, z) + ∂ f

∂y (x, y, z)Q (x, y, z) + ∂ f
∂z (x, y, z)R (x, y, z)

= −kd2x2 − kc2x + 2c1a2x + kd1y2 + kc1y − 2c2b1y−

−2k
(a2d1 − b1d2)

d3
z − 2a3

(a2d1 − b1d2)

d3
x − 2b3

(a2d1 − b1d2)

d3
y

= k
(
−d2x2 − 2c2x + d1y2 + 2c1y − 2k

(a2d1 − b1d2)

d3
z
)

+
(2a2c1 + kc2) d3 − 2a3 (a2d1 − b1d2)

d3
x−

− (2b1c2 + kc1) + 2b3 (a2d1 − b1d2)

d3
y

= k f (x, y, z) .

Hence, f (x, y, z) = 0 is an invariant algebraic surface of system (3),
with cofactor k ∈ R. Therefore, by Theorem 1 this system does not present
chaotic behavior.

Remark Let X = X(x, y, z) be the vector field associated to sys-
tem (9) and f (x, y, z) = 0 the invariant algebraic surface given in
Theorem 2. Then, we have that
a) f (x, y, z) is a first integral of system (9) if, and only if, k = 0.
In this case, the phase space is foliated by the invariant algebraic
surfaces f (x, y, z) = c, c ∈ R;
b) The vector field X is dissipative if, and only if, k < 0. If k = 0,
then X is conservative.

Theorem 3 Let X = X(x, y, z) be the vector field associated to system

(3) with the choice of parameters a1 = b2 = c3 =
1
2

k, b1 = a2α, and c1d3 + a3 (d2α − d1) = 0,

αc2d3 − b3 (d2α − d1) = 0,
(10)

where α, k ∈ R and αd3 ̸= 0. Then, system (3) presents the invariant
algebraic surface

f (x, y, z) = −x2 + αy2 − (d2α − d1)

d3
z2, (11)

with cofactor k ∈ R. Consequently, the system does not present chaotic
behavior.

Proof. Consider the vector field X = (P, Q, R) associated to system (3)
with the choice of parameters given in Theorem 3. Then, we have

ẋ = P(x, y, z) =
k
2

x + a2αy + c1z + d1yz,

ẏ = Q(x, y, z) = a2x +
k
2

y + c2z + d2xz,

ż = R(x, y, z) = a3x + b3y +
k
2

z + d3xy.

(12)

In this way, the function (11) is a Darboux polynomial of system (12)
with cofactor k ∈ R. In fact, we have

⟨∇ f , X⟩ =

=
∂ f
∂x (x, y, z)P (x, y, z) + ∂ f

∂y (x, y, z)Q (x, y, z) + ∂ f
∂z (x, y, z)R (x, y, z) =

= −kx2 + kαy2 − k
(d2α − d1)

d3
z2 − 2c1xz + 2αc2yz

−2a3
(d2α − d1)

d3
xz − 2b3

(d2α − d1)

d3
yz

= k
(
−x2 + αy2 − (d2α − d1)

d3
z2
)

−2
(c1d3 + a3 (d2α − d1))

d3
xz + 2

(αc2d3 − b3 (d2α − d1))

d3
yz

= k f (x, y, z) .

Hence, f (x, y, z) = 0 is an invariant algebraic surface of system (3),
with cofactor k ∈ R. Therefore, by Theorem 1 this system does not present
chaotic behavior.

It follows from the results above that system (3) has a plane
as an invariant algebraic surface if and only if d1 = d2 = d3 = 0,
that is, only when it is linear. On the other hand, such system may
have invariant algebraic surfaces with degrees n ≥ 3, however
we did not study these cases in this note, since the conditions on
the coefficients are very huge and complicated, due to the great
number of parameters.

EXAMPLES AND APPLICATIONS

We can relate the classes of nonchaotic systems obtained in The-
orems 2 and 3 with some classical Lorenz-like systems which ap-
pear in the literature. Since some “chaotic” Lorenz-like systems
are actually chaotic only for some parameter values, they can be
nonchaotic for other choices of parameters. Some examples are
presented below.
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Lorenz system

The Lorenz systems (2) is maybe the most famous system which
is known to be chaotic for certain parameter values (Algaba et
al. 2018; Lorenz 1963; Sparrow 1982). Using Theorem 2 we can
obtain some subclasses of Lorenz system which are not chaotic. We
observe that a more general and detailed study of Lorenz system
having invariant algebraic surfaces, including the dynamics at
infinity via the Poincaré compactification, was made in (Llibre et
al. 2010).
a) Consider in Theorem 2, the parameter values a3 = b3 = c1 =
c2 = d1 = 0, b1 = d3 = 1, d2 = −1, k = −2 and a2 ∈ R, which
corresponds to the Lorenz system (2) with parameters s = 1, r = a2
and b = 2, that is

ẋ = y − x,

ẏ = a2x − y − xz,

ż = −2z + xy,

(13)

which has the parabolic cylinder x2 − 2z = 0 as an invariant alge-
braic surface with cofactor k = −2, hence from Theorem 2, it is not
chaotic.

b) Consider the choice of parameters in Theorem 3 as a3 = b3 =

c1 = c2 = d1 = 0, d2 = −1, d3 = 1, α = 1
a2

, k = −2, and a2 ̸= 0,
which corresponds to the Lorenz system (2) with parameters s =
1, r = a2 and b = 1. Then, we get the nonchaotic system

ẋ = y − x,

ẏ = a2x − y − xz,

ż = −z + xy,

(14)

which has the cone −x2 + 1
a2

(
y2 + z2) = 0 as an invariant alge-

braic surface with cofactor k = −2.

The phase portraits of systems (13) and (14) on the respective
invariant algebraic surfaces are shown in Figures 1 and 2.

Figure 1 Phase portrait of system (13) with a2 = 3.

Figure 2 Phase portrait of system (14) with a2 = 1.

Rabinovich system
The Rabinovich system (Llibre et al. 2008) is an example of Lorenz-
like system. It is given by

ẋ = hy − v1x + yz,

ẏ = hx − v2y − xz,

ż = −v3z + xy,

(15)

with h, v1, v2, v3 ∈ R. It is known that system (15) presents chaotic
behavior for the parameter values v1 = 4, v2 = v3 = 1 and
h = 6, 75 (Llibre et al. 2008). Using Theorem 2, we can obtain
the following cases in which the Rabinovich system has an invari-
ant algebraic surface with constant cofactor, thus the system does
not present chaotic behavior in theses cases.

a) Following Theorem 3 and considering the parameters a3 = b3 =
c1 = c2 = 0, d1 = d3 = 1, d2 = −1, b1 = a2, and k = −2v in system
(15), we obtain v1 = v2 = v, v3 = 2v with v ∈ R and h = a2, which
lead to the following system

ẋ = hy − vx + yz,

ẏ = hx − vy − xz,

ż = −2vz + xy,

(16)

which has the invariant algebraic surface x2 + y2 − 4hz = 0 with
constant cofactor −2v ∈ R. From Theorem 3 follows that system
(16) is not chaotic.

b) Following Theorem 3 and considering the parameters a3 = b3 =
c1 = c2 = 0, d1 = d3 = 1, d2 = −1, α = 1 and k = −2v with v ∈ R

in system (15), we obtain v1 = v2 = v3 = v, h = a2 and the system

ẋ = hy − vx + yz,

ẏ = hx − vy − xz,

ż = −vz + xy,

(17)

which has the invariant algebraic surface −x2 + y2 + 2z2 = 0, with
constant cofactor −2v ∈ R, therefore it is not chaotic.

The phase portraits of systems (16) and (17) on the invariant
algebraic surfaces described above are shown in Figures 3 (a) and
(b), respectively.
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(a) h = v = 1 (b) h = v = 1

Figure 3 (a) Phase portrait of system (16); (b) Phase portrait of
system (17). In both cases, v = h = 1.

Chen-Ueta system
As a subclass of the Lorenz-like system (3) there is the known
Chen-Ueta system, given by (Chen and Ueta 1999)

ẋ = a (y − x) ,

ẏ = (c − a) x + cy − xz,

ż = −bz + xy,

(18)

where a, b, c ∈ R. System (18) has chaotic behavior for the parame-
ter values a = 35, b = 3 and c = 28, as shown in (Chen and Ueta
1999). The global dynamical behavior of system (18) having in-
variant algebraic surfaces, including the behavior at infinity using
Poincaré compactification, was done in (Llibre et al. 2012). Us-
ing Theorem 2, we can give some examples of Chen-Ueta system
without chaotic behavior.

Considering Theorem 2 and taking the parameters a3 = b3 =

c1 = c2 = d1 = 0, a2 = k, b1 = − 1
2 k, d2 = −1, d3 = 1, c2 = 0, k =

2r with r ∈ R in system (18) we obtain a = −r, c = r, b = −2r and
the nonchaotic system

ẋ = −r (y − x) ,

ẏ = 2rx + ry + xz,

ż = 2rz − xy,

(19)

which has x2 − 2rz = 0 as invariant algebraic surface, with con-
stant cofactor k = 2r. The phase portrait of system (19) on this
surface is given in Figure 4.

Lorenz-like system with D2 Symmetry
In (Anastassiou et al. 2002), the authors studied the following
differential system, derived from Lorenz-like system (3):

ẋ = a1x + d1yz,

ẏ = b2y + d2xz,

ż = c3z + d3xy,

(20)

where a1, b2, c3, d1, d2, d3 ∈ R. System (20) has several types of
symmetry, as pointed out in (Anastassiou et al. 2002), and has

Figure 4 Phase portrait of Chen system (19) with r = 1.

chaotic behavior for some choices of parameter values a1 and b2.
They also showed that the function V (x, y, z) = x2 + y2 + 2z2 is
a Lyapunov function for system (20) if a1, b2 > 0 and c3 = d1 =
d2 = 1, d3 = ±1.

Considering in Theorem 3 the parameter values a2 = a3 =
b3 = c1 = c2 = 0 and taking a1 = b2 = c3 = k/2 we obtain the
following subclass of system (20)

ẋ =
k
2

x + d1yz,

ẏ =
k
2

y + d2xz,

ż =
k
2

z + d3xy.

(21)

From Theorem 3, it follows that system (20) has no chaotic dynam-
ics in this case, for any parameters d1, d2, d3 ∈ R, with d3 ̸= 0,
since it has the invariant algebraic surface

f (x, y, z) = −x2 + αy2 − (d2α − d1)

d3
z2 = 0, (22)

with constant cofactor k ∈ R, for any α ∈ R.

(a) α = 2 (b) α = 1

Figure 5 Phase portrait of D2 system in the case of system (21)
for the parameters k = 2, d1 = d2 = 1, d3 = −1, and: (a) α = 2; (b)
α = 1.

From these calculations, we can see that for the choice of param-
eters c1 = d1 = d2 = 1, d3 = −1, system (20) has a cone and two
planes intersecting at the z-axis as invariant algebraic surfaces. In
fact, taking α = 1, we obtain from equation (22) that −x2 + y2 = 0
is an invariant algebraic surface with cofactor k. Furthermore, for
α = 2 we obtain −x2 + 2y2 + z2 = 0, which implies that system
(20) has an invariant cone (see Figure 5 (a)), and for α = 1 this
system has two invariant planes, see Figure 5 (b) ). These results
complement the ones obtained in (Anastassiou et al. 2002).

CHAOS Theory and Applications 31



Zhu-Liu-Guo symmetric Lorenz-like system
In (Zhu C., Liu Y. and Guo Y. 2010), the authors studied the Lorenz-
like system given by

ẋ = −x − β1y + yz,

ẏ = β2y − xz,

ż = −β3z + xy,

(23)

where β1, β2, β3 ∈ R. This system has the symmetry (x, y, z) 7→
(−x,−y, z) and present chaotic behavior for certain parameter
values, as shown in (Zhu C., Liu Y. and Guo Y. 2010). Considering
Theorem 2, and choosing a2 = a3 = b3 = c1 = c2 = 0, d1 = d3 =
1, d2 = −1, with b1 ̸= 0 and k = −2, we obtain β1 = −b1, β2 =
−1, β3 = 2 and the subclass of system (23) given by

ẋ = −x − b1y + yz,

ẏ = −y − xz,

ż = −2z + xy,

(24)

which has the invariant algebraic surface x2 + y2 + 2b1z = 0, with
cofactor k = −2. It follows from Theorem 1 that system (24) do not
present chaotic behavior, see their phase portrait on the respective
invariant algebraic surface in Figure 6.

Figure 6 Phase portrait of Zhu system (24), with b1 = −1.

TRANSITION FROM NONCHAOTIC TO CHAOTIC
BEHAVIOR IN LORENZ-LIKE SYSTEMS

In this section we will study the transition from nonchaotic to
chaotic behavior in some Lorenz-like systems. The nonchaotic dif-
ferential systems presented in the previous sections have invariant
algebraic surfaces with constant cofactor, hence their equilibrium
points are contained in the invariant algebraic surfaces, which
therefore contain the stable (or unstable) manifolds of these equi-
libria. We will see that a small perturbation in the parameters of
a nonchaotic system can destroy the invariant algebraic surface
and, consequently, deform the invariant manifolds and reorganize
the global structure of the phase space, leading to the creation
of chaotic behavior in these systems. In order to show this tran-
sition from nonchaotic to chaotic behavior, via perturbation, we
will analyze the Rabinovich system (15). As already mentioned,
this system presents chaotic behavior for the parameter values
v1 = 4, v2 = v3 = 1 and h = 6.75, having in this case the chaotic
attractor shown in Figure 7.

Figure 7 Chaotic attractor of Rabinovich system (15) with param-
eter values h = 6.75, v1 = 4, v2 = v3 = 1.

Considering now system (15) in the conditions of Theorem 3,
taking the parameter values h = a2, v1 = v2 = v3 = v, we obtain
system (17), which presents the cone −x2 + y2 + 2z2 = 0 as an
invariant algebraic surface with cofactor k = −2v ∈ R, hence
it has no chaotic behavior (see Figure 3 (b)). In order to destroy
the invariant algebraic surface in such a way that system (17) can
generate chaotic behavior, we will use the following variation of
this system

ẋ = hy − v1x + yz,

ẏ = hx − vy − xz,

ż = −vz + xy,

(25)

where v2 = v3 = v are fixed and equal to 1 and h = 6.75. Then,
we will vary v1 in order to deform the invariant cone and produce
chaotic behavior. Varying v1 in the interval [1, 3.8] , we obtained
the solutions of system (25) with initial conditions (±0.6,±0.6, 0) ,
shown in Figures 8 to 12. In these figures, we can see the deforma-
tion of the invariant cone and the transition of solutions ranging
from nonchaotic to chaotic behavior.

We observe that, when the parameter v1 = 1, system (25)
presents a cone as an invariant algebraic surface and three sin-
gular points belonging to the invariant cone: a saddle at the origin
and two stable foci. Hence, the stable manifolds of the foci are
contained in the invariant cone. When v1 is different from 1, the
structure given by the invariant cone and the singular points is
deformed and the system has no longer invariant algebraic sur-
faces, so the invariant manifolds are deformed. As v1 moves away
from v1 = 1, the behavior of solutions become more and more
complex and, for v1 = 3.8 the chaotic attractor is created, as shown
in Figure 12.

We can conclude that the formation of chaotic dynamics was
due to the deformation of the invariant manifolds of the equilib-
rium points, which were initially (for v1 = 1) contained on the
invariant cone, with the destruction of this cone (for v1 ̸= 1).

The same type of analysis can be done for the Rabinovich
chaotic system presented in (Llibre et al. 2008). In such work,
the authors have shown that system (15) presents a four-wings
chaotic attractor for the parameter values given by h = 0.04, v1 =
−1.5, v2 = −0.3 and v3 = −1.67, as shown in see Figure 13. Let
us see that this chaotic attractor can be obtained by the deforma-
tion of an invariant algebraic surface through the variation of the
parameter values.
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Figure 8 Two solutions of Rabinovich system (25) with param-
eter values h = 6.75, v = v1 = 1 and initial conditions
(±0.6,±0.6, 0) .

Figure 9 Two solutions of Rabinovich system (25) with param-
eter values h = 6.75, v = 1, v1 = 1.5 and initial conditions
(±0.6,±0.6, 0) .

Figure 10 Two solutions of Rabinovich system (25) with pa-
rameter values h = 6.75, v = 1, v1 = 2 and initial conditions
(±0.6,±0.6, 0) .

Consider the Rabinovich system (15) with h = 0.0, v1 = v3 and
v2 ∈ R. In this case, system (15) is in the hypothesis of Theorem
3, having the invariant algebraic surface −x2 + z2 = 0, given by
two intersecting invariant planes, with constant cofactor −2v1,
hence it does not present chaotic behavior. In order to study the
deformation of the invariant planes of system (15), we will vary
the parameter h in the interval [0, 0.0201] and consider also v1 ̸= v3.

Figure 11 Two solutions of Rabinovich system (25) with pa-
rameter values h = 6.75, v = 1, v1 = 3 and initial conditions
(±0.6,±0.6, 0) .

Figure 12 Two solutions of Rabinovich system (25) with param-
eter values h = 6.75, v = 1, v1 = 3.8 and initial conditions
(±0.6,±0.6, 0) .

As the invariant algebraic planes −x2 + z2 = 0 does not depend
on the variable y, we can modify the second equation of the system
without changing the invariant algebraic surface, hence based on
our knowledge on the existence of the four-wings attractor shown
in Figure 13, we will take the parameter values v1 = v3 = −1.5
and v2 = 0.3. In this case, system (15) has five singular points
belonging to the invariant algebraic surface −x2 + z2 = 0: four
unstable foci and one saddle at the origin (see Figure 14). Hence,
the global two-dimensional unstable manifolds of the unstable foci
are contained in the invariant planes −x2 + z2 = 0 and the global
one-dimensional unstable manifold of the saddle at the origin is
given exactly by the intersection of these planes.

Keeping h = 0.0, taking the parameter v1 = −1.5 and chang-
ing slightly the parameter v3 to v3 = −1.6, we can see that sys-
tem (15) has no longer the two invariant planes, but it is not
yet chaotic, see Figure 15. The same occurs for v3 = −1.67, as
shown in Figure 16. In Figures 15 and 16, we have taken the
initial conditions (0.6, 1.5, 0.6) , (−0.6, 1.5,−0.6) , (−0.6,−1.5, 0.6)
and (0.6,−1.5,−0.6) .

In order to deform the two invariant planes with the struc-
ture contained on them (five singular points), to generate the
chaotic behavior, we will now vary the parameter h. Taking
h ∈ [0, 0.01] we obtain solutions topologically equivalent to
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Figure 13 Four-wings chaotic attractor of Rabinovich system
with parameters h = 0.04, v1 = −1.5, v2 = 0.3, v3 =
−1.67, and its projection on the yz-plane. Initial conditions:
(±0.6,±1.5,±0.6). Time integration: t ∈ [800, 1100].

Figure 14 Phase portrait of the system (15) with parameters
h = 0.0, v1 = v3 = −1.5, and v2 = 0.3. The sys-
tem has two invariant planes and five equilibrium points:
a saddle at the origin and four unstable foci. Initial condi-
tions (0.6, 1.5, 0.6) , (−0.6, 1.5,−0.6) , (−0.6,−1.5, 0.6) and
(0.6,−1.5,−0.6) .

the ones shown in Figure 17, where we have taken the same
initial conditions (0.6, 1.5, 0.6) , (−0.6, 1.5,−0.6) , (−0.6,−1.5, 0.6)
and (0.6,−1.5,−0.6) and the time of integration t ∈ [300, 350] in
order to exclude the transient part of the solutions and to obtain
only the representation of the ω−limit set.

Figure 15 Phase portrait of system (15) with parameters h =
0.0, v1 = −1.5, v3 = −1.6, v2 = 0.3 The system has no longer
the invariant planes, but there is no chaotic behavior yet. Time
integration: t ∈ [120, 150].

Figure 16 Phase portrait of system (15) with parameters h =
0.0, v1 = −1.5, v3 = −1.67, v2 = 0.3 Time integration: t ∈
[120, 150].

Figure 17 Phase portrait of system (15) with parameters h =
0.01, v1 = −1.5, v3 = −1.67, v2 = 0.3 Time integration:
t ∈ [300, 350].

Taking h = 0.015 and the same initial conditions, we observe
that the solutions become more complex, as shown in Figure 18.

Now taking h ∈ [0, 0.02] and the same initial conditions, we
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Figure 18 Phase portrait of system (15) with parameters h =
0.015, v1 = −1.5, v3 = −1.67, v2 = 0.3 Time integration:
t ∈ [600, 800].

finally obtain a four-wings chaotic attractor, shown in Figure 19,
which is similar to the attractor of Figure 13.

Figure 19 Phase portrait of system (15) with h = 0.02, v1 =
−1.5, v3 = −1.67, v2 = 0.3 Observe the existence of a four-wings
chaotic attractor. Time integration: t ∈ [800, 1000].

We can see from Figures 14 to 19 that the deformation of the
invariant manifolds of the equilibrium points of system (15), which
are contained on the invariant planes for h = 0.0 and v1 = v3,
through the variation of the parameter values, lead to the transition
from nonchaotic to chaotic behavior of this system.

CONCLUSIONS

In this paper we gave sufficient algebraic conditions for some
classes of the generalized Lorenz-like system (3) to be nonchaotic.
More precisely, these systems have no chaotic behavior when they
have an invariant algebraic surface with constant cofactor, as stated
in Theorem 1. We also have shown that, in some cases, the defor-
mation of the invariant manifolds of equilibrium points, contained
on the invariant surfaces of nonchaotic Lorenz-like systems, by
perturbing their parameter values, can deform and reorganize the
global phase space structure, leading to the chaotic behavior of
these systems. The results presented here are quite general and
can be used to study other Lorenz-like systems than the examples
presented here.

We believe that the results presented here are somehow related

to the works (Osinga and Krauskopf 2002, 2004) on the deter-
mination of global one or two-dimensional stable and unstable
manifolds of critical elements (mainly singular points and periodic
orbits) of chaotic differential systems (as the Lorenz system), in
order to describe how these manifolds organize the global phase
space of such systems. In these studies, a better understanding
of the global behavior of chaotic dynamics were obtained. Anal-
ogously, in this paper we could see that the invariant algebraic
surfaces of nonchaotic Lorenz-like systems contain the stable (or
unstable) manifolds of critical elements because, as the cofactor
of these surfaces are constant, all the equilibrium points of the
nonchaotic systems are contained on them. Also, the deformation
of these invariant algebraic surfaces may lead do the creation of
chaotic dynamics, as shown for instance in the Rabinovich sys-
tem. We think that this ideas may be further developed, aiming to
obtain a better understanding of the organization of phase space
for nonchaotic and chaotic differential systems by the stable and
unstable manifolds of their equilibrium points.

We can conclude saying that, in order to have a better under-
standing of the complex dynamical behavior of continuous three-
dimensional differential systems, it is important to study also the
nonchaotic differential systems, beyond the chaotic ones.
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ABSTRACT In studies on dynamical modeling of romantic relationships, it is seen that individuals are divided
into four different romantic styles. Most of these studies focused on the mathematical analysis of the dynamic
expression of individuals’ attitudes or tried to determine what kind of relationship evolution randomly assigned
romantic style parameters will create. The categorization of relationship types and finding the general
characteristics of the relationships in each category by identifying all combinations of four different romantic
styles, to our knowledge, have not been attempted before. To fill this gap in the literature, this study divided
individuals into four different romantic styles and identified ten different types of relationships formed by
the combination of these four styles. The evolution of the love/hate situation of individuals in each type of
relationship was modeled with a linear differential equation system and the short-term development of the
relationship to evolve from an initial state was determined. According to the results, it was observed that in
some types of relationships, couples achieved harmony in the love/hate mood over time, while in some types
of relationships, a couple was reluctant. It has even been determined that the willingness in the relationship
enters a periodic cycle. With the findings obtained, it can be determined what kind of relationship the couples
are in, guidance can be provided and feedback correction can be provided to their attitudes in the relationship.
Overall, this study aimed to be a starting point for the applicability of dynamic modeling with psychometric
research.
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INTRODUCTION

The expression of romantic relationships using a time-dependent
system of differential equations has been studied by different re-
searchers since Rapoport (Rapoport and Anatol 1960). Differential
modeling studies on love dynamics have increased, especially af-
ter Strogatz’s short paper, which made the topic popular in the
literature. The most general form of the method discussed in the
literature may be expressed as

dx
dt

= f (x, y, t) ,
dy
dt

= g (x, y, t) (1)

Here x is the love/hate of individual 1 against individual 2 and y
is the love/hate of individual 2 against individual 1 as functions of
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time. Functions f and g give an expression for the time derivatives
(speeds of the feelings) in terms of instantaneous love quantities
(x and y) and time (t) explicitly. Different researchers have used
different forms of functions f and g including linear, nonlinear,
homogeneous, and non-homogeneous.

In 1988, Strogatz published a one-page paper that describes the
evolution of the romantic relationship between Romeo and Juliet
by systems of coupled ordinary differential equations (Strogatz
1988). His study is based on a simple linear model and it may be
the simplest attempt to model love affairs. It is mathematically
stated as

dR
dt

= −aJ ,
dJ
dt

= bR (2)

R and J represent the feelings of Romeo and Juliet, respectively.
The coefficient ’a’ describes the extent to which Romeo is encour-
aged by Juliet’s feelings, while ’b’ is the extent to which Juliet is
encouraged by Romeo’s feelings (Wauer et al. 2007).
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After Strogatz, many papers have been published to describe
romantic relations in terms of systems of differential equations in-
cluding linear, nonlinear, and non-homogeneous models. Among
the linear studies, Rinaldi expressed the evolution of love with lin-
ear minimal models. Rinaldi proposed an improved linear model
that is more realistic than that described by Strogatz although it
is still a minimal model. The aspects of love dynamics, namely
forgetting process (oblivion), the pleasure of being loved (return),
and reaction to the partner appeal (instinct), are expressed by Eqs.3,
4 (Rinaldi 1998). He proposed the equation system below:

ẋ1 = −α1x1 + β1x2 + γ1 A2 (3)

ẋ2 = −α2x2 + β2x1 + γ2 A1 (4)

Variables x1 and x2 are measures of the love of individuals for their
respective partners. Positive values of x represent positive feelings,
ranging from friendship to passion, while negative values are
associated with antagonism and disdain. Complete indifference is
identified by x = 0. Another linear study was conducted by Patro
with determined and dependent indeterminacy models. Patro
modeled romantic relationships by applying neutrosophic logic to
the dynamics of love. He used a linear model and stated that an
indeterminacy must be calculated in love dynamics (Patro 2016).

Bae modeled other factors such as the opinions of friends, par-
ents, or other family members by adding a time-dependent ex-
ternal force term to the equation (Bae 2015). Chaotic phenomena
appeared in the study with some choice of external forces. Barley
and Cherif studied stochastic and deterministic models with non-
linear return functions. Their results showed that deterministic
models tend to approach locally stable emotional behavior, but
these complex and exotic patterns of emotional behaviors were
observed in the presence of stochasticity in the models (Barley and
Cherif 2011).

Satsangi and Sinha suggested that the effect of learning and
adaptation and synergism after living together should be consid-
ered. This suggests that the emotional interaction of two individu-
als must be considered in the modeling process. By considering
that the emotion of an individual with respect to another cannot
increase infinitely, they assumed that it is proportional to x1.x2.
Therefore, the term x1.x2 was added to the linear differential sys-
tem of equations (Satsangi and Sinha 2012).

In studies of some researchers, hopf bifurcations were detected
by nonlinear models with time delays (Deng et al. 2017; Liao and
Ran 2007; Gragnani et al. 1996). Deng et al. have reported that
Hopf bifurcation occurs when time delay passes through the criti-
cal value among three individuals, which is called a love triangle
model (Deng et al. 2017). Liao and Ran investigated a love dynami-
cal model with nonlinear couples and two delays and found that
Hopf bifurcation occurs when the sum of the two delays varies
and passes a sequence of critical values (Liao and Ran 2007). Ri-
naldi has detected three types of bifurcation curves, namely, super-
critical Hopf, fold, and homoclinic, around a Bogdanov–Takens
codimension-2 bifurcation point (Gragnani et al. 1996).

Other studies on the effects of time delays were conducted by
different researchers. Bielczyk et al. showed that an unstable sys-
tem without time delay can become stable when a certain range
of time delay is included in a linear or nonlinear system (Bielczyk
et al. 2013). It is possible for linear systems with only delays for
different choices of the terms. In a different study, it was proved
that changes in the stability of the stationary points occur for var-
ious intervals of the parameters that determine the intensity of
interactions (Bielczyk et al. 2013). Son and Park investigated the
effect of time delay on a dynamic model of love and found that

time delay on the return function can cause a Hopf bifurcation and
cyclic love dynamics (Son and Park 2011).

Ozalp and Koca have described and analyzed a fractional or-
der nonlinear dynamic model of interpersonal relationships and
obtained a stability condition for equilibrium points with a nu-
merical example (Ozalp and Koca 2012). Owolabi has developed
the Adams–Bashforth method to approximate the Caputo, Ca-
puto–Fabrizio, and Atangana–Baleanu fractional derivatives. In
his work, simulations of fractional-order have shown that interper-
sonal and romantic love affairs between two individuals can ex-
hibit some chaotic scenarios (Owolabi 2019). Ahmad and Khazali
proposed a fractional-order model of love to describe the dynamics
of a love triangle under different structures and demonstrated that
such a system can produce chaos in the presence of nonlinearity
(Ahmad and El-Khazali 2007). Goyal et al. have tried different
fraction values to compare the results of a fractional variational
iteration method (FVIM) and fractional homotopy perturbation
transform method (FHPTM). They have shown that the FVIM is
successfully applied to obtain a rapidly convergent approximate
numerical solution of a coupled nonlinear dynamical fractional
model of romantic and interpersonal relationships for marriages
(Goyal et al. 2019).

There are several attempts to use interesting approaches to a
love model. Jafari et al. used complex numbers to represent the
feelings of partners. They assumed that the feelings could be a
combination of love and hate, so could be modeled by a complex
variable that has a magnitude and a phase between 0° and 180°
(Jafari et al. 2016). Bagarello et al. studied love dynamics from
quantum mechanical and operator points of view (Bagarello and
Oliveri 2010; Bagarello 2011).

It is seen that the studies in the literature summarized above try
to determine the differential equation of relationships (Eq.1) and
examine the related equation from the perspective of bifurcation,
chaos and stability. Therefore, the subjects such as the equations
that can be used in modeling romantic relationships, the situa-
tions in which these equations will create chaos, their stability will
change, or bifurcation diagrams have been studied extensively.
However, no research has categorized romantic relationships, how
many types of relationships can be between individuals and to
determine the general characteristics of these relationship types.
Such a classification study is necessary to make dynamic model-
ing more applicable in relationships and to predict the course of
romantic relationships between two individuals. In this way, indi-
viduals’ romantic styles can be determined by questionnaires or
observations, and feedback can be provided on how the romantic
futures of various styles will work.

MATERIALS AND METHODS

Construction of the Mathematical Model
As Rinaldi highlights, measuring the parameters that explain ro-
mantic styles in a typical differential equation is hard (Rinaldi et al.
2015). Especially in nonlinear models, it is difficult to propose an
equation and to predict the parameters from the characteristics of
the individual. For this reason, it is a major problem that theoreti-
cal studies do not have an area of use and cannot be presented for
the benefit of humanity.

The primary aim of this study was to make dynamic modeling
of romantic relationships applicable and measurable. Therefore, it
was made the analysis as qualitative as possible and the following
assumptions were made.

• As a function of time, instead of the love/hate state of the
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individual, the affection/indifference in a relationship that
has begun or rapprochement/distancing has been chosen.

• In all relationships, it has been accepted that the interest of
individuals toward each other can be linearized around the
equilibrium point in a narrow time interval. Thus, homoge-
neous models linearized around the equilibrium point are
adopted and the results are generalized to predict the relation-
ship evolution in the short term.

• Determining the romantic style for each individual is reduced
to determining the two parameters (ai and bi) in the linear
model. According to the signs of these parameters, roman-
tic styles were considered in four categories (eager beaver,
cautious lover, narcissistic nerd, and hermit).

In summary, each individual was reduced to one of four speci-
fied romantic styles, and ten types of relationship formed by the
combination of all different styles were named. It was assumed
that all couples will fit into one of the ten types of relationship
identified here. In this way,

• Counseling can be offered to couples.
• Algorithms can be developed to find the ideal match.
• Couples can be guided in their relationships.
• Couples and individuals can self-criticize and correct their

romantic styles.

Our model is based on a system of linear differential equations
describing the evolution of love into a romantic relationship be-
tween couples. There are two individuals whose emotions are
represented by the functions x1(t) and x2(t) depending on time.
The time derivatives x1 and x2, denoted by ẋ1 and ẋ2, represent the
rate at which emotions change over time. If the derivative is posi-
tive, the interest/love will tend to increase; if it is negative, it will
tend to decrease. Therefore, the rate of change in emotions may
depend on both functions of emotions of the individuals. Mathe-
matically, a linear relationship can be suggested with Eqs.5-8.

ẋ1 (t) = a1x1 (t) + b1x2 (t) (5)

ẋ2 (t) = b2x1 (t) + a2x2 (t) (6)

d
dt

x

y

 =

a1 b1

b2 a2


x

y

 (7)

˙⃗x = R̂x⃗ (8)

The coefficients a1, b1, a2 and b2 are related to the romantic
styles of individuals. The main point is the determination of the
parameters. It is difficult to measure them accurately but one can
categorize individuals with respect to the value of the romantic
style parameters. For a partner, the parameters ’a’ and ’b’ can
be both positive and negative, so the combinations of signs can
determine the style of the individual (Barley and Cherif 2011).

Different researchers used these parameters with different
names. Gottman et al. (2002) use the term ’behavioral inertia’ for the
parameter ’a’ and ’influence function’ for ’b’ (Gottman et al. 2002).
Rinaldi named ’a’ and ’b’ forgetting coefficient and reactiveness, re-
spectively (Rinaldi 1998). Wauer states that coefficient ’a’ describe
the extent to which person 1 is encouraged by his/her own feelings
and ’b’ are the extent to which he/she is encouraged by the feelings
of person 2 (Wauer et al. 2007). How to measure these parame-
ters and the questionnaires to be prepared for this purpose are so
complicated that they are a separate study, so the measurement of

the parameters is not mentioned here (Bagarello and Oliveri 2010;
Bagarello 2011).

Two parameters define an individual’s romantic styles: behav-
ioral inertia ’a’ and reactivity ’b’. According to the signs of the
parameters, four different styles can be defined (Table 1). There is
no need to consider that the parameters are zero, as a zero value in
styles can be treated as a sub-case.

Ten combinations are obtained by coupling different romantic
styles (Table 2). In Table 2, different relationships are named Rij,
which means that the relationship is between style i and j in Table
1. The relation matrices in Eq.7 are also given in Table 1. Analyzing
the matrices according to Eq.8 will give the possible results of the
processes improving in the relation.

Analysis of the Relationships
Generally, a relation matrix has the form

R =

a1 b1

b2 a2

 (9)

For a 2×2 matrix, the types of phase portraits with respect to the
parameters of the matrix are shown in Fig.1. The relation matrix
has four real numbers. The determinant of R is ∆ = a1a2 − b1b2
and its sign indicates whether the fixed point is a saddle or not.
If ∆<0, the origin is a saddle node. If ∆>0, the origin is a node
or spiral. If the trace of the matrix τ = a1 + a2 is positive, nodes,
lines, or spirals are always unstable. The sign of the discriminant
D = τ2 − 4∆ = (a1 − a2)

2 + 4b1b2 determines whether the fixed
point is a focus or node (see Fig.1). Five types of fixed point can be
assigned to analyze the relation matrix: saddle point, stable node,
unstable node, stable spiral, and unstable spiral.

Figure 1 Phase portraits for a system of linear first-order differential
equations.

On a phase portrait showing the relationship process (e.g.,
Fig.2), the first quadrant means that both individuals agree with
the relationship or love. Similarly, the third quadrant means that
the pairs agree with separation or apathy. However, the second
and fourth quadrants point to a disagreement or inconsistency
between the pairs. One individual is unwilling while the other
desires him/her. According to Fig.1 and the explanation in Table 2,
types of possible phase portraits are examined in Table 3.
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■ Table 1 Romantic styles with their parameters

Style a b Name Description of a Description of b

S1 (+) (+) Eager beaver Unstable in his own
feeling

Positive reaction to
the interest

S2 (+) (-) Narcissistic nerd Unstable in his own
feeling

Negative reaction to
the interest

S3 (-) (+) Secure or cautious
lover

Stable in his own feel-
ing

Positive reaction to
the interest

S4 (-) (-) Hermit Stable in his own feel-
ing

Negative reaction to
the interest

■ Table 2 Matrices of the types of relationship

. S1 = [+ +] S2 = [+ -] S3 = [- +] S4 = [- -]

S1 = [+ +] R11 =

+ +

+ +

 R12 =

+ +

− +

 R13 =

+ +

+ −

 R14 =

+ +

− −


S2 = [+ -] R22 =

+ −

− +

 R23 =

+ −

+ −

 R24 =

+ −

− −


S3 = [- +] R33 =

− +

+ −

 R34 =

− +

− −


S4 = [- -] R14 =

− −

− −
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■ Table 3 Examination of matrices according to their traces (τ), determinants (∆), and discriminant (D) via Fig.1 and Fig.2.

τ ∆ D Fixed points (0,0) Fig.2

R11 + ± + Saddle I or unstable
node

a, e

R12 + + ± Unstable node or spi-
ral

e, h

R13 ± - + Saddle I a

R14 ± ± ± All possibilities (sad-
dle IV)

a, e-i

R22 + ± + Saddle II or unstable
node

b, e

R23 ± ± ± All possibilities (sad-
dle III)

c, e-i

R24 ± - + Saddle II b

R33 - ± + Saddle I or unstable
node

a, f

R34 - + ± Stable node or spiral f, g

R44 - ± + Stable node or sad-
dle II

b, f

RESULTS AND DISCUSSION

The following criteria should be considered when interpreting the
results.

• Because the model is linear, it should be viewed as a first-order
approximation of a much more complex equation. The time
interval should be kept short for the linearization to converge
realistically. Therefore, predicting short-term movements after
a certain traumatic onset give more realistic results.

• The x and y parameters in the equations were taken as
care/indifference instead of the love/hate determined by
Strogatz. Unlike other studies, it refers to the state of in-
terest/indifference of individuals who are in a relationship
with each other, rather than the process of initiating a rela-
tionship. These parameters (x and y) have an interval scale.
Therefore, a value of zero is a shift toward homogenizing the
system of equations rather than expressing a lack of emotion.
For example, if x = 2 units and y = −1 unit of interest are
the equilibrium point for the relationship, the (x, y) = (2,−1)
point is taken as the origin.

• Any extraordinary event during the relationship creates a new
starting point. For example, in a fight that may arise from
a jealousy crisis, the woman may fall into a situation where
her interest has decreased (cooled down) and the man has
increased it (trying to forgive). That is, they may have started
the routine of daily life when their emotional state was at
the point (female, male) = (x, y) = (−1.5, 2.3). After this point,
how the relationship will evolve can be predicted by following
the arrows in the phase diagram. After such a starting point,
as the R11 relationship moves toward reconciliation with time,

R12 can also enter a periodic cycle. In fact, the woman may get
much colder in R14, or both individuals may become colder
toward each other over time in R23.

• Quadrant 1 in the phase portrait is an ideal region where cou-
ples reciprocate their interests together. The third quadrant is
the region where both partners cool off toward each other. The
second and fourth quadrants can be interpreted as the region
where one person in the couple escapes and the other chases
after them. In short, quadrants 1 and 3 represent parallel and
2 and 4 represent opposite emotions. While interpreting the
phase portrait, it is more appropriate to understand the rela-
tionship by determining in which regions to spend more time
or target.

The analysis of relationships according to the above criteria
is given in Fig.2 which is prepared by (Hollis 2010) and Table 4.
For detailed analysis, the phase portraits in Fig.2 can be exam-
ined. The general characteristics of romantic relationship types are
summarized in Table 4.
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Figure 2 a) Saddle I: R=[1 2 ; 2 1]. Unstable in incompatible regions (2nd and 4th quadrants). According to the quantity of parameters and emo-
tions, it evolves into the positive or negative compatible regions (1st and 3rd quadrants). b) Saddle II: R=[-1 -2 ; -2 -1]. Unstable in compatible
regions (1st and 3rd quadrants). According to the quantity of parameters and emotions, it evolves into the positive or negative incompatible
regions (2nd and 4th quadrants). c) Saddle III: R=[1 -2 ; 1 -3]. In this type of situation, x is luckier than y because when x has positive emotions,
both partners go into positive compatible territory. The same is true when x is negative. But still compatible regions are targeted. d) Saddle IV:
R=[1 2; -1 -3]. In this type of situation, incompatible regions are targeted. In the positive compatible region, y moves away from his/her partner
over time, while in the negative fit region he/she gets closer. e) Unstable node: R=[2 1; 1 2]. Whatever the initial condition, the type of emo-
tion grows over time without much change. f) Stable Node: R=[-2 -1; -1 -2]. Whatever the initial condition, the type of emotion decay over time
without much change. g) Stable spiral: R=[-0.5 2; -2 -0.5]. As they make periodic transitions to different emotional states, their emotions decay
over time with each periodic repetition. h) Unstable spiral: R=[0.5 -2; 2 0.5]. As they make periodic transitions to different emotional states, their
emotions growth over time with each periodic repetition. i) Center: R=[0.5 -2; 2 -0.5]. As they make periodic transitions to different emotional
states, their emotions remain the same with each periodic repetition.
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■ Table 4 Summary of the properties of relationships

Type Explanation

R11 It is a compatible type of relationship. The attitudes of individuals
toward each other turn into mutual love or mutual indifference.

R12 It cannot be said that there is a stable relationship. Sometimes periodi-
cally, sometimes regularly, they move away from their initial equilibrium
point. They cannot aim for a stable level of love.

R13 It is rare for one to chase after the other. They quickly move into a
state of harmonious interest.

R14 It is rare for them to have harmonious feelings and they cannot stay in
this state for long. They quickly move toward an opposite emotional
state.

R22 It is a negative type of relationship. They easily go into an opposite
mood.

R23 They usually target the positive territory, even if they are likely to go
through a cyclical process.

R24 It is perhaps the most negative type of relationship. They tend to
gravitate toward an area where one is interested and the other less.

R33 It is generally a balanced relationship. It does not take long for individ-
uals to tend to oppose each other.

R34 It is generally a balanced relationship. Sometimes they come to
equilibrium by making loops.

R44 They cannot stay in the compatible area for long. They either go into
balance or into negative territory.
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CONCLUSION

In this study, possible phase portraits obtained by coupling indi-
viduals with different romantic styles were examined and it was
deduced how the relationship would evolve. When these por-
traits were examined, the state of emotions was observed in the
regions where the love/interest status of individuals was similar
(1st and 3rd quadrants) and in the regions where they were oppo-
site (2nd and 4th quadrants), and accordingly the compatibility or
incompatibility of the relationship was determined.

It can be seen from the analysis that R13 and R33 are the most
compatible and R22 and R24 are the most incompatible among the
types of relationship. The most ambiguous and most sensitive
to romantic parameters were determined as R14 and R23. If the
above results are analyzed, it is seen that the most fortunate or
successful romantic styles in relationships are S1 (eager beaver)
and S3 (cautious lover), while the most unlucky or unsuccessful
ones are S2 (narcissistic nerd) and S4 (hermit). From the common
features of these styles, it is seen that the most important romantic
feature is to show a positive attitude toward attention/love. It
can be concluded that the types who run away when they see
interest/love or chase when they do not see it create a problem-
atic relationship in every relationship combination. The second
important romantic style characteristic is attachment to one’s own
feelings. It can be surmised that those who are stable (a<0) are
slightly more fortunate than those who are not (a>0).
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ABSTRACT Most of the chaotic maps are not suitable for chaos-based cryptosystems due to their narrow
chaotic parameter range and lacking of strong unpredictability. This work presents a nonlinear transformation
approach for Lyapunov exponent enhancement and robust chaotification in discrete-time chaotic systems for
generating highly independent and uniformly distributed random chaotic sequences. The outcome of the new
chaotic systems can directly be used in random number and random bit generators without any post-processing
algorithms for various information technology applications. The proposed Lyapunov exponent enhancement
based chaotic maps are analyzed with Lyapunov exponents, bifurcation diagrams, entropy, correlation and
some other statistical tests. The results show that excellent random features can be accomplished even with
one-dimensional chaotic maps with the proposed approach.
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INTRODUCTION

Chaotic maps have a wide-range application areas in many dis-
ciplines including engineering, cryptography, statistics, physics,
biology, art and philosophy (El-Hameed et al. (2021); Benamara et al.
(2016); Strogatz (2015); Ruelle (1997); Banerjee et al. (2012)). Specifi-
cally, the need for highly secure cryptosystems is always increasing
because the information technologies are continuously developing
and reaching more and more people everyday in various platforms
(e.g., e-banking, IoT, e-purchasing, etc.). The chaos-based cryptog-
raphy is a great tool to produce secure and independent random
number sequences for information security. On the other hand,
only few number of chaotic maps are inherently suited for data
encryption since the majority of chaotic systems are not satisfying
the statistically independependent and unbiased uniform distri-
bution which are the main properties of random key generators.
Many chaotic maps have a limited key space due to their narrow
chaotic ranges, which causes security issues against intruders (Luo
et al. (2020)). In addition, the chaotic random number generators
must be sufficiently fast, and there should not be any collapsing
effect in long turn run.

To deal with the aforementioned issues, there is a great inter-
est in developing novel chaotic maps with highly mixing feature
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by making various modifications on the available chaotic maps.
The researchers have constructed some general frameworks to get
new chaotic maps with increased complexity and improved per-
formances in some applications, including mixing two 1D maps
(Garasym et al. (2016)), weakly or cross-coupling of 1D chaotic
maps (Ablay (2016)), parameter switching based combination
of multiple chaotic maps (Wang and Liu (2021)), mixing linear-
nonlinear coupled map lattices (Zhou et al. (2014)), sine transform
of chaotic maps (Hua et al. (2019a)), polynomial combination of
chaotic maps (Asgari-Chenaghlu et al. (2019)), beta-function-based
chaotification (Zahmoul et al. (2017)), modulo transform based
chaotification (Hu and Li (2021); Hua et al. (2020); Murillo-Escobar
et al. (2017); Zhou et al. (2014)), modulo operator based generalized
Newton complex map (Jafari Barani et al. (2020)), cosine transform
based chaotic maps (Hua et al. (2019b); Liu et al. (2016); Talhaoui
et al. (2021)), composition of chaotic maps with many parame-
ters (Parvaz and Zarebnia (2018)), multi-delayed Chebyshev map
(Liu et al. (2016)), improvement in chaotic maps with a perturbed
parameter (Xiang and Liu (2020)), combination of chaotic maps
with floor operator (Pak and Huang (2017)), and mixing three
maps with composition, addition and modulo operators (Lan et al.
(2018)). Most of these approaches cannot fit the uniform distribu-
tion which is the central feature of the random numbers. However,
the modulo operator based approaches are capable of producing
outputs in the uniform distribution range. In (Zhou et al. (2014)), a
1D chaotic system is proposed by summing two 1D chaotic maps
followed by a modulo operator. In (Murillo-Escobar et al. (2017)),
the modulo operator is applied to logistic map and an enhanced
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pseudo-random number generator algorithm is obtained. In (Hua
et al. (2020)), the modulo N operator is applied to the 2D chaotic
maps for getting a bounded transformation and improvement in
chaos complexity. In (Jafari Barani et al. (2020)), the modulo opera-
tor and complex folding functions are utilized to get a generalized
Newton complex map. In (Hu and Li (2021)), two 1D chaotic maps
are coupled by their control parameters for mixing the chaotic be-
haviors of the seed maps, and then the modulo operator is applied
to get an outcome in the range of standard uniform distribution. In
general, these chaotic frameworks as random number sources have
varying features affecting the throughput efficiency and complex-
ity of the post-processing steps. Most of these chaotic frameworks
use several parameters or functions that are not easy to adjust.
Some of these chaotic frameworks are completely dependent on
the seed chaotic map, and may not produce high quality outputs
for other maps.

In this work, a chaotic framework based on a nonlinear trans-
formation via a gain plus modulo-1 operator is proposed to ob-
tain highly complex chaotic behaviors with Lyapunov exponent
enhancements and to satisfy the standard uniform distribution
U(0, 1). The Lyapunov exponent of the chaotic maps and complex-
ity of modulo operator based methods are significantly improved
with a gain parameter in this work. The proposed method uses one-
or higher-dimensional chaotic maps as seeds and produces com-
pletely new chaotic sequences. The method eliminates the time-
consuming post-processing steps in chaos-based random num-
ber generators. The produced novel chaotic systems significantly
broaden the chaotic range of the seed discrete chaotic systems. In
addition, the approach removes the periodic windows of existing
chaotic systems, and produces robust chaos for practical applica-
tions. The uniformity and independence of the chaotic sequences
are assured with statistical analyses. The efficiency and feasibil-
ity of the proposed approach are illustrated with the random bit
generations and image encryption applications.

A GAIN PLUS UNIFORM DISTRIBUTION MODULO ONE
TRANSFORMATION IN CHAOTIC MAPS

There is a sea of chaotic maps available for statistical studies, mod-
eling, simulations, cryptography and some other technological ap-
plications. These chaotic maps or in general discrete-time chaotic
systems can be utilized to generate shaped chaotic algorithms
with nonlinear transformations for direct usage in applications
including information technologies. Therefore, two main goals
of this work are Lyapunov exponent enhancement and achieve-
ment of standard uniform distribution in chaotic maps. Consider
a discrete-time chaotic map described by

xk+1 = f (σ, xk) (1)

where f (·) represents a real function, f : R → R, and σ is a real-
valued parameter. The existence of chaos in any system is usually
shown with positive Lyapunov exponent (LE) calculations (Vallejo
and Sanjuán (2019)). LEs are computed to characterize the rate of
separation of infinitesimally close trajectories, and a positive LE is
a requirement for existence of chaos. The positive LE calculation
methods start with exponential divergence of nearby trajectories
when the trajectory is on the attractor (Awrejcewicz et al. (2018)).
An exponential separation of nearby phase-space trajectories is
given by

dk ≈ d0eλsk (2)

where λs is the LE, dk is the trajectory separation after k iterates,
and d0 is the initial trajectory separation. By taking the logarithm

of both sides and using the property dk = f k(x0 + d0)− f k(x0) for
an initial condition x0, the LE for chaotic map (1) can be given by

λs = lim
N→∞

1
N

N−1

∑
k=0

log | f ′(xk)| (3)

where f ′ = d f /dx and it defines the variational (linearized) map
as

uk+1 = f ′(xk)uk (4)

where u0 ̸= 0. A positive λs indicates the presence of chaos in
general. The positive LE is also used to measure unpredictabil-
ity of the chaotic dynamics in Kolmogorov-Sinai entropy (KSE)
calculations.

Definition 1 (Pesin’s theorem) (Dorfman (1999)): For an ergodic
map, the KSE is equal to the sum of the positive LEs and given by

hKSE = ∑n λ+
s (5)

Similarly, the Ruelle’s inequality (Ruelle (1997)) states that the KSE
is always less than or equal to the sum of the positive LEs, that is
hKSE ≤ ∑n λ+

s . This definition indicates that for chaotic maps, the
greater LE means the greater KSE and the higher randomness. This
gives an idea that if we can increase the values of positive LEs, then
more complex chaotic information can be obtained. It is possible
to enhance the value of positive LE by nonlinear transformation of
the chaotic map (1).

An LE-enhanced uniform distribution modulo one transforma-
tion of (1) with a gain α and mod 1 operator is proposed as

xk+1 = α f (σ, xk) mod 1 (6)

where α is a real-valued gain defined as α > 1, mod 1 denotes
keeping of the fractional part, f (·) represents the seed chaotic map
(1), and the new LE-enhanced chaotic map holds [0, 1] → [0, 1].
The first goal is the LE enhancement, which can be shown with LE
calculations.

Theorem 1: Let the LEs of seed map (1) and transformed map
(6) be λs and λ, respectively. Then, these LEs are related with
λ > λs for α > 1.

Proof: For the proposed chaotic map (6), since the linearization
slope is α f ′(xk), the LE is given by

λ = lim
N→∞

1
N

N−1

∑
k=0

log |α f ′(xk)| (7)

The equation (7) can be expanded as

λ = lim
N→∞

1
N

N−1

∑
k=0

log | f ′(xk)|+
1
N

N−1

∑
k=0

log α

= lim
N→∞

1
N

log |uN |+ 1
N

log αN

= λs + log α

(8)

where uN is computed from the variational map (4) and we have
λ > λs since α > 1.

This means that the Lyapunov exponent of (6) takes higher
values than the seed chaotic map (1) so that a more complex chaotic
behavior can be obtained. High-dimensional maps can be obtained
by weakly-coupling or cross-coupling of the one-dimensional (1D)
chaotic maps (Ablay (2016)). For example, the same or different
1D chaotic maps can be used to create the weakly-coupled (WC)
maps as given below

xk+1 = f1(σ, xk) + pyk

yk+1 = f2(σ, yk)− pxk
(9)

46 | Ablay G. CHAOS Theory and Applications



where f1(·) and f2(·) represent 1D chaotic maps, and p is a small
coupling coefficient. The maximal one-dimensional LE of this map
is given by (Pikovsky and Politi (2016))

λc = lim
N→∞

1
N

N−1

∑
k=0

log ∥F′(xk, yk)∥ (10)

and F′ denotes the Jacobian matrix and it defines the variational
(linearized) map as

uk+1

vk+1

 = F′(xk, yk)

uk

vk

 (11)

where u0, v0 ̸= 0. An LE-enhanced uniform distribution modulo
one transformation of coupled-chaotic map (9) is proposed as

xk+1 = α( f1(σ, xk) + pyk) mod 1

yk+1 = α( f2(σ, yk)− pxk) mod 1
(12)

where α > 1 is a real-valued gain, mod1 denotes keeping of the
fractional part, and the new chaotic map holds [0, 1] → [0, 1]. It
can be shown with LE calculations that the maximum LE of (12) is
larger than the seed map (9).

Theorem 2: Let the maximum LEs of seed map (9) and trans-
formed map (12) be λc and λ, respectively. Then, these maximum
LEs are related with λ > λc for α > 1.

Proof: For the proposed chaotic map (12), since the Jacobian
matrix of the map is αF′(xk, yk), the maximum LE is given by

λ = lim
N→∞

1
N

N−1

∑
k=0

log ∥αF′(xk, yk)∥ (13)

By using the entry-wise matrix norm, the maximal one-
dimensional LE can be written as

λ = lim
N→∞

1
N

N−1

∑
k=0

log ∥F′(xk, yk)∥+
1
N

N−1

∑
k=0

log α

= lim
N→∞

1
N

log (|uN |+ |vN |) + 1
N

log αN

= λc + log α

(14)

where uN and vN are computed from the variational map (11) and
it is obvious that λ > λc since α > 1.

Theorem 2 can be applied to any high-dimensional chaotic
maps in order to increase the complexity of chaotic systems.

The second main goal is to ensure that the probability density
function of the generated random numbers fits the standard uni-
form distribution U(0, 1), because the U(0, 1) is at the center of
random variable generation. The applications of this distribution
include hypothesis testing, random sampling, finance, etc. How-
ever, it is important to note that in any application, there is the
unchanging assumption that the probability of falling in an inter-
val of fixed length is constant (Dekking et al. (2005)). The proposed
LE-enhanced chaotic maps have the features of standard uniform
distribution, and this will be demonstrated with histograms, statis-
tical property calculations, entropy and correlation evaluations.

Seed chaotic map examples
Practically all chaotic maps can be considered as a seed map.
Three different chaotic maps, cubic, signum and sinh maps (Ablay
(2016)), are considered in this work. The cubic map is given by

xk+1 = σxk − x3
k (15)

There are three fixed points, xe = (0,±
√

σ − 1) for σ > 1, and the
origin is unstable. A chaotic behavior exists for 2.25 < σ < 3 as
seen in Fig. 1a. The signum map is defined by

xk+1 = −σxk + sign(xk) (16)

where the sign(·) is defined as sign(x) = x/|x| if x ̸= 0 and
sign(x) = 0 if x = 0. There are three fixed points with unstable
origin, xe = (0,±1/(σ + 1)) for σ > 0. The map is chaotic for
1 < σ < 2 as seen in Fig. 2a. The hyperbolic-sine (sinh) map is
defined by

xk+1 = σxk − sinh(xk) (17)

The map has three fixed points at xe = (0,±γ) for σ > 1, where
(σ − 1)γ − sinh γ = 0. Again the origin is unstable and a symmet-
ric chaotic behavior is available for 3.1 < σ < 3.5 as illustrated in
Fig. 4a. In the following sections, the given 1D chaotic maps (15),
(16) and (17) will serve as seed maps for developing LE-enhanced
chaotic maps.

Performance analysis of LE-enhanced chaotic maps
Many 1D and coupled chaotic maps are able to produce complex
chaotic outputs, but not able to generate uniformly distributed
random numbers. The LE-enhanced chaotic maps (6) can solve
this problem by increasing the complexity and by producing uni-
formly distributed numbers. In this section, the performances of
the LE-enhanced chaotic maps will be analyzed in terms of the
Lyapunov exponents, bifurcation diagrams, histograms, entropies
and correlation coefficients.

Lyapunov exponents: LEs of the seed and LE-enhanced chaotic
maps are shown in Fig. 1. The seed chaotic maps consist of 1D
seed maps (1), i.e., cubic map (15), signum map (16), sinh map (17),
and weakly coupled (WC) maps (9). LE-cubic, LE-signum and
LE-sinh denote the LE-enhanced maps (6); LEWC-cubic, LEWC-
signum and LEWC-sinh maps denote LE-enhanced weakly cou-
pled (LEWC) maps (12). The numerical results are obtained for
initial values x0 = 0.1234, y0 = 0.1234 and p = 0.01 for the 1D and
WC chaotic maps. The gain parameter is taken as α = 1 × 105 for
LE-cubic and LEWC-cubic maps and α = 1 × 102 for LE-signum,
LE-sinh, LEWC-signum and LEWC-sinh maps. The LEs of en-
hanced chaotic maps (blue), compared with the LEs of seed chaotic
maps (red), have a broad range of positive LE values. As explained
and proved above, the LE enhanced chaotic maps have larger posi-
tive LE values than the seed maps, and thus they can exhibit much
more complex chaotic behavior. The LE spectrum results given in
Fig. 1 are compatible with the bifurcation diagrams (see Fig. 4).

For comparison purposes, the LEs of various models are pro-
vided in Fig. 2. The proposed LE-enhanced approach is com-
pared with the unit transform based models given in Refs. (Hu
and Li (2021); Zhou et al. (2014)), the sine transform based model
given in Ref. (Hua et al. (2019a)) and the cosine transform based
model given in Ref. (Hua et al. (2019b)). In the LE computa-
tions, summation of two different seed chaotic map functions,
f1(σ1, xk) + f2(σ2, xk) (i.e., cubic + signum, cubic + sinh, and
signum + sinh map functions), are utilized to obtain seed chaotic
maps, because the given reference studies use this form. Namely,
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Figure 1 Lyapunov exponents (λ vs σ); (a) cubic maps, (b) weakly-coupled cubic maps; (c) signum maps, (d) weakly-coupled signum maps; (e)
sinh maps, (f) weakly-coupled sinh maps.

by considering the LE-enhanced map (6) two different map func-
tions are integrated with the addition operator as

xk+1 = α( f1(σ1, xk) + f2(σ2, xk)) mod 1 (18)

where the functions f1 and f2 represent different seed chaotic map
functions defined in right hand-sides of (15), (16) and (17). It is seen
from Fig. 2 that the proposed LE-enhanced chaotification approach
provides positive LE values in all parameter ranges of the seed
maps. On the other hand, the models provided in Refs. (Hu and
Li (2021); Hua et al. (2019b,a); Zhou et al. (2014)) have seed map
dependent efficiency such that Fig. 2c shows that these methods
are not valid when the signum + sinh map is the seed map. The
efficiency of unit transform (modulo operator) based method is
significantly improved with a gain operator in this work, and it
is obvious that the proposed method has the best performance
among the given methods.

The effect of gain operator α can be illustrated on the cubic
map. Figure 3 shows the LEs and bifurcation diagrams of the cubic
map (15), LE-enhanced cubic map (6) for α = 1 and LE-enhanced
cubic map (6) for α = 1 × 105. When the gain is α = 1, then only
mod 1 operator is implemented, and compared with Fig. 3a, it is
clear from Fig. 3b that the modulo operator transforms the data to
x ∈ [0, 1], but slightly improves the chaotic features or randomness
of data. On the other hand, when the gain is α = 1 × 105, then
the gain plus mod 1 operator is implemented, and the chaotic
and randomness features of the map are significantly improved
because LE is always positive and there are no periodic windows
in the bifurcation diagram as seen in Fig. 3c.

Bifurcation diagrams: Bifurcation diagrams of the seed maps (1)
and (9) and LE-enhanced chaotic maps (6) and (12) are illustrated
in Fig. 4. For σ ∈ [1.5, 3], the cubic (15) and WC-cubic (12) maps
exhibit a period-doubling route to chaos (Figs. 4a and 4c), but the
LE-cubic (6) and LEWC-cubic (12) maps exhibit chaotic behavior
within the whole parameter ranges (Figs. 4b and 4d). Besides, the

outputs of LE-enhanced chaotic maps fit the range of standard uni-
form distribution (i.e., xk ∈ [0, 1]). The signum map for σ ∈ [0.5, 2]
and hyperbolic-sine map for σ ∈ [2.5, 3.5] also exhibit similar
behaviors as seen in Figs. 4e-4l. It is seen that the WC-chaotic
maps increase complexity of the maps, but still we can observe
non-uniform distributions and periodic windows. However, the
LE-enhanced chaotic maps (6) and (12) provide excellent chaotic
features compared with the seed chaotic maps (1) and (9). Note
that, the LEWC-chaotic maps (12) provide more complex chaos
compared with the 1D LE-chaotic maps (6). For example, the LE-
signum map (Fig. 4f) encounters collapse (trajectory approaches
to fixed point in long-term run) at σ = 1, but the LEWC-signum
map (Fig. 4h) has no collapse.

Phase diagrams: Phase diagrams of the seed and LE enhanced
chaotic maps are illustrated in Fig. 5. The 1D chaotic maps have the
data points that are spread evenly across the symmetric lines. The
weakly-coupled (WC) chaotic maps increase complexity (random-
ness) of the chaotic data, but have non-uniform distributions (Figs.
5b,f,j). On the other hand, the phase diagrams of LE-enhanced
chaotic maps have completely random data distribution and have
quite complex and uniformly distributed chaotic properties.

Entropy and correlation coefficients: The splitting of the outcome
space converts the chaotic map into an ergodic information source.
Therefore, it is quite convenient to utilize the information theory
for analyzing this source. The average level of randomness in the
outcome of a variable is determined by the entropy in information
theory.

Definition 2 (Shannon entropy) (Karmeshu and Pal (2003)):
Entropy Hm of the ensemble (X1, p1), . . . , (Xm, pm) is given by the
expression

Hm(p) = −
m

∑
i=1

pi log(pi) (19)

where pi denotes the probability mass associated with the variable
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Figure 2 Comparison of Lyapunov exponents (λ vs σ) of different models; (a) cubic+signum, (b) cubic+sinh, and (c) signum+sinh map func-
tions. (Ref.A: Hua et al. (2019b), Ref.B: Hu and Li (2021), Ref.C: Zhou et al. (2014), Ref.D: Hua et al. (2019a))
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Figure 3 Lyapunov exponents (red) and bifurcation diagrams (blue); (a) cubic seed map, (b) LE-enhanced cubic map with α = 1 and (c) LE-
enhanced cubic map with α = 1 × 105.

CHAOS Theory and Applications 49



(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)𝜎 𝜎 𝜎

x

𝜎

𝜎 𝜎 𝜎𝜎

𝜎 𝜎 𝜎𝜎

x

x

x

x

x

x

x

x x x x

Figure 4 Bifurcation diagrams (xk vs σ); (a) cubic seed map, (b) LE enhanced cubic map, (c) weakly-coupled cubic map, (d) LE enhanced
weakly-coupled cubic map; (e) signum seed map, (f) LE enhanced signum map, (g) weakly-coupled signum map, (h) LE enhanced weakly-
coupled signum map; (i) sinh seed map, (j) LE enhanced sinh map, (k) weakly-coupled sinh map, and (l) LE enhanced weakly-coupled sinh
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Figure 5 Phase diagrams; (a) cubic map, (b) weakly-coupled cubic map; (c) LE enhanced cubic map, (d) LE enhanced weakly-coupled cubic
map, (e) signum map, (f) weakly-coupled sign map; (g) LE enhanced signum map, (h) LE enhanced weakly-coupled signum map, (i) sinh map,
(j) weakly-coupled sinh map; (k) LE enhanced sinh map, (l) LE enhanced weakly-coupled sinh map.
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Xi such that ∑ pi = 1, and the maximum entropy value is given
by Hmax = log2 m. This definition of the Shannon entropy has a
relation with KSE in terms of its supremum as (Falniowski (2014))

hKSE = sup
X

lim
m→∞

1
m

Hm(p) (20)

The KSE can be interpreted as a generalization of Shannon entropy.
Both entropies measure the unpredictability of a deterministic
system, and the higher the entropy means the higher the unpre-
dictability. Deciding if generated chaotic sequences are statistically
independent can be tested with many statistical test methods. The
correlation coefficient is one of these methods that must be satisfied
by the chaotic random number generators.

Definition 3 (Correlation coefficient) (James (2006)): For two
random variables (x, y) with n observations, the correlation coeffi-
cient is defined as

R(x, y) =
1

n − 1

n

∑
i=1

(
xi − µx

σx
)(

yi − µy

σy
) (21)

where µx and µy are the means, and σx and σy are the standard
deviations of x and y. The correlation coefficient of two random
variables is a measure of their linear independence, and it can
be positive, negative or zero. The maximum value of correlation
coefficient is |R| = 1. Hence, the absolute value of correlation
coefficient should be around zero for high random outcomes.

Table 1 shows the calculated entropy and correlation coefficient
values. In the probability mass calculations, 1000 subintervals
are taken into account, and thus the maximum entropy value is
Hmax = 9.9658. As seen in Table 1, the entropies of all chaotic
maps are very high, but the LE-enhanced chaotic maps provide
almost the maximimum entropy value. The correlation coefficient
is calculated for very small initial value differences. The initial
conditions are taken as x0 = 0.123400 and y0 = 0.123401 for all
chaotic maps. It is seen from Table 1 that all the chaotic maps have
almost no correlation since the correlation coefficient is |R| ≈ 0 for
the selected parameter values.

Histograms: The histogram allows measuring the initial condition
insensitivity which is related to the splitting of the output space
into a number of subintervals, and analyzing the evolution in these
regions. Consider a set of equally distributed m subintervals such
that

X = X1, . . . , Xm, Xi ∩ Xj = ∅, for i ̸= j (22)

Then the randomness in deterministic chaos can be specified
through the probabilities. Histogram describes the distribution
of the numerical data in each subinterval. The height of each
histogram subinterval (or bin) represents the average frequency
density for the interval. If the total number of observations are n,
the number of subintervals can be calculated from the square-root
choice as m =

√
n. The histograms of the chaotic maps are shown

in Fig. 6. The total number of observations for each chaotic map
are taken as n = 1 × 106, so the number of bins can be calculated
from the square-root choice as m = 1000. Figure 6 displays the
histograms of seed cubic, WC cubic, LE-enhanced cubic and LE-
enhanced WC cubic maps. The cubic and WC cubic maps have
completely non-uniform distributions (Figs. 6a and 6c), while the
WC cubic map has a better distribution than the 1D cubic map. On
the other hand, the histograms of LE enhanced 1D and WC cubic
maps (Figs. 6b and 6d) have a random pattern without any peri-
odic, upward or downward trends. Existence of some significant
outliers is an indication of problems in the random number gener-
ators. It is clear that there are no obvious outliers in the histograms

of LE-enhanced chaotic maps, i.e., data points are spreaded evenly
which is a good indication of uniformity. The histograms verify
that the data follows the features of standard uniform distribution
such that there is almost the same number of observations in each
subinterval. Similarly, the histograms of signum, WC signum, sinh
and WC sinh maps have non-uniform distributions (Figs. 6e,g,i,k),
but their LE-enhanced counterparts have uniformly distributed
histograms (Figs. 6f,h,j,l).

Throughout this paper, the system parameters are chosen as
follows: x0 = 0.1234 and y0 = 0.1234 for all maps, σ = 2.82 for
cubic maps, σ = 1.8 for signum maps, σ = 3.4 for sinh maps,
α = 1 × 105 for LE-enhanced cubic maps, α = 1 × 102 for LE-
enhanced signum and sinh maps, p = 0.01 for all weakly-coupled
(WC) maps.

In practice, the probability density function (pdf) estimations
and histograms are closely related. The distribution of the nu-
merical data in each subinterval of the histogram can directly be
used to obtain pdf with normalization. Hence, the histograms
provide a visual assessment on the pdf estimations. Besides, the
statistical properties of the chaotic maps must match the proper-
ties of the related distributions. Since the physical origin based
random numbers (e.g., radioactive particle emissions) follow the
uniform distribution, the LE-enhanced chaotic map should also fol-
low this distribution. The statistical properties of the standard uni-
form distribution U(0, 1) are given by mean = 0.5, median = 0.5,
variance = 0.0833, skewness = 0, kurtosis = 1.8, pd f = 1 and
cd f = x for x ∈ [0, 1]. The probability of falling in the interval of
fixed length [0, 1] is constant in the uniform distribution. Table 1
shows the statistical properties of chaotic maps for total number of
observations n = 1 × 106. It is seen that the LE-enhanced chaotic
maps successfully follow the statistical properties of standard uni-
form distribution U(0, 1). Note that the parameters α and σ of
LE-enhanced chaotic maps ((6) and (12)) have significant effects
on the randomness features of chaotic sequences, so they should
be selected suitably in practical applications.

APPLICATIONS

LE-enhanced chaotic maps as random bit generators
Random bit generators are significant for many applications in
statistical physics, stochastic modeling, numerical simulations,
and cryptography. A random bit generator must provide sta-
tistically independent and unbiased bits (namely, fully unpre-
dictable bits). The ranges of sequences produced from most of
the chaotic systems do not match the random bit generator re-
quirements, so many authors have proposed chaotic map specific
post-processing algorithms (Pulido-Luna et al. (2021); Jafari Barani
et al. (2020); Hamza (2017)). On the other hand, since the proposed
LE-enhanced chaotic maps produce uniformly distributed random
numbers, a binary converter algorithm can directly be used to
generate random bits, such as a comparator is defined by

bk =

1 if xk ≥ 0.5

0 otherwise
(23)

where bk represents random bits, bk ∈ {0, 1}, and the threshold is
selected as the mean value of the LE-enhanced chaotic maps (6). If
a chaotic system is not providing uncorrelated and unbiased bits,
the de-skewing techniques (Stallings (2006)) (e.g., Von Neumann
technique) can be used to remove possible correlations and biases
in the binary sequences. However, the proposed LE-enhanced
chaotic maps (6) are able to produce high quality random numbers
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Figure 6 Histograms (counts vs xk): (a) cubic seed map, (b) LE-enhanced cubic map, (c) weakly-coupled cubic map, (d) LE-enhanced weakly-
coupled cubic map; (e) signum seed map, (f) LE-enhanced signum map, (g) weakly-coupled signum map, (h) LE-enhanced weakly-coupled
signum map; (i) sinh seed map, (j) LE-enhanced sinh map, (k) weakly-coupled sinh map, and (l) LE-enhanced weakly-coupled sinh map.

■ Table 1 Randomness test results for the LE-enhanced chaotic maps.

Property Cubic
Map

Sign
Map

Sinh
Map

WC
Cubic
Map

WC
Sign
Map

WC
Sinh
Map

LE
Cubic
Map

LE Sign
Map

LE Sinh
Map

LEWC
Cubic
Map

LEWC
Sign
Map

LEWC
Sinh
Map

Mean 0 0 0.002 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5

Median 0 0 0.005 0 0 0 0.5 0.5 0.5 0.5 0.5 0.5

Variance 0.4784 0.278 4.500 0.4844 0.2771 4.345 0.0837 0.0834 0.0834 0.0834 0.0833 0.0833

Skewness 0.001 0.001 0.002 0.001 0.002 0.001 0.003 0.001 0.003 0.000 0.000 0.001

Kurtosis 1.751 1.947 1.609 1.718 1.948 1.664 1.796 1.799 1.798 1.799 1.799 1.799

Range (-2,2) [-1,1] (-4,3) (-2,2) [-1,1] (-4,4) [0,1] [0,1] [0,1] [0,1] [0,1] [0,1]

Correlation0.0018 0.0009 0.0013 0.0013 0.0012 0.0003 0.0008 0.0011 0.0008 0.0015 0.0011 0.0005

Entropy 9.7400 9.9334 9.7000 9.8540 9.9363 9.8645 9.9604 9.9650 9.9651 9.9651 9.9651 9.9650
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as proved in the previous section, which can eliminate the use of
a de-skewing algorithm. This is an important advantage because
the post-processing steps are eliminated. This is an advantage in
terms of less time consuming and short algorithm developments,
for instance, the random bit generation can easily be implemented
with in-line codes rather than function calls. More importantly, the
usage of a de-skewing technique provides less than 25% efficiency
with respect to the random bit throughput, but the proposed LE-
enhanced approach has 100% efficiency.

The commonly used statistical testing methods for random-
ness analysis of binary values are provided in NIST SP 800-22 test
suite (Bassham et al. (2010)). The output file containing 5120000
random bits are generated to be tested with the NIST statistical
test suite. The test results are given in Table 2. The LE-enhanced
chaotic maps successfully pass the statistical tests, implying that
these maps can be used in cryptosystems. Clearly, the statistical
tests may not determine the quality of the produced random bits
alone, but some conclusions can be drawn about it. In practice, the
quality of applications must be checked with application specific
randomness analysis tests. In addition, since chaotic systems have
high sensitivity to initial conditions, for the unpredictability of
chaotic random bit generators an efficient approach can be con-
necting the initial condition of chaotic maps with an input device
of the application environment, e.g., thermal noise, port value and
mouse movement.

LE-enhanced chaotic maps based Image encryption
The proposed chaotic random bit generators are applied to an
image encryption scheme in this section. Today, almost all im-
age encryption schemes use different chaotic systems with many
different sophisticated encryption algorithms (Khan and Kayhan
(2021); Wang and Liu (2021); Talhaoui et al. (2021)). Here, for image
encryption and decryption, the key bits are generated from the
LE-enhanced sinh map, and the symmetric-key encryption method
is implemented. The grayscale image of size KL pixels is converted
into one-dimensional array of pixels Mi, i = 1, 2, .., KL, and then
each Mi pixel is represented with 8-bit blocks (i.e., 256 shades per
pixel). Hence, the bit length of binary sequence for the given figure
is equal to K × L × 8 bits. The same number of random bits are
generated from the LE-enhanced sinh map and represented with
8-bit blocks for using in the pixel-by-pixel encryption scheme. The
XORing operator is implemented between the key and image bit
sequences for encryption. For decryption of the image, the XORing
operator is implemented between the key and decrypted image bit
sequences.

Histogram analysis: Histogram of a digital image displays the dis-
tribution of grayscale values of all the pixels. For an 8-bit grayscale
image there are 28 = 256 different possible intensities, which are vi-
sualized by the histograms. Four grayscale images, their encrypted
images and corresponding histograms are illustrated in Fig. 7. The
histograms of plain-text images are one of the most common cryp-
tosystem attacks (Farajallah et al. (2016)), because they exhibit the
characteristic properties of the images as seen in Figs. 7b,f,j,n. On
the other hand, all the plain-text images become indistinguishable
noise-like ciphers after encryption as seen in Figs. 7c,g,k,o. The
histograms of four cipher-text images just show indistinguishable
and identical properties (see Figs. 7d,h,l,p). All 256 gray levels
appear with almost the same probability in encrypted images, and
the histograms are not leaking any significant information to the
statistical attacks.

The chi-square goodness-of-fit test can be used to determine
whether the histogram data sample fits the uniform probability

distribution (James (2006)). By taking into account the histogram
data, the chi-square test statistic can be calculated as

χ2 =
256

∑
i=1

(Oi − Ee)
2/Ee (24)

where Oi is the observed counts of gray level i in an image, and
Ee = KL/256 represents the expected counts for grayscale image
of size KL pixels. The test statistic has an approximate chi-square
distribution of 256 degrees of freedom, and the hypothesis at the
5% significance level can be accepted if χ2 < χ2

0.05(256) = 320,
otherwise it can be rejected. The χ2-test statistics of images shown
in Fig. 7 (both plain-text and cipher-text images) are listed in Table
3. It is seen from Table 3 that the statistics of the cipher-text images
are small and satisfy the hypothesis, while the plaintext images
have much larger values and are not satisfying the hypothesis. This
means that the histograms of cipher-text images are approximately
uniformly distributed.

Correlation analysis: The correlation between adjacent pixels of
an image data is high due to natural image properties. Hence, an
image encryption algorithm must eliminate this high correlation
and provide an adequate resistance against statistical attacks. To
test correlation dimensions of images, 30000 pairs of adjacent pix-
els from vertical and horizontal directions in plain-text images and
cipher-text images are randomly selected, and the corresponding
correlation coefficients are calculated using (21) and listed in Table
3. It is seen that the plain-text images have high correlation (around
1) in vertical and horizontal directions. On the other hand, the cor-
relation coefficients of the cipher-text images are approximately
zero, indicating that there are almost no correlations between ad-
jacent pixels. That is, the proposed LE-enhanced chaotic maps
produce highly random bits.

Mean square error analysis: The difference between original and
encrypted image pixels (each pixel has 256 shades of gray) is mea-
sured with the mean square error (MSE). The MSE can be defined
as

MSE =
1

KL

K

∑
i=1

L

∑
j=1

(Oij − Eij)
2 (25)

where Oij is the original image pixel, Eij is the encrypted image
pixel, and K and L represent the pixel size of the original or en-
crypted image. The MSE result is equal to zero if the images are the
same, but it should be as high as possible if the compared images
are different. A higher MSE value means the cipher-text image is
more immune to attacks. The calculated MSE values for different
cipher-text images are tabulated in Table 3. The MSE values are
much higher than zero (MSE ≫ 0), and thus the LE-enhanced
chaotic map based encryption provides highly satisfactory results.

Entropy analysis: In the probability mass calculations, 256 subin-
tervals are taken into account, and thus the maximum entropy
value is Hmax = log2 256 = 8. The formula (19) is used to calculate
entropy of cipher-text images. Table 3 shows that the entropy val-
ues of the cipher-text images are practically equal to the maximum
entropy value (around 8), indicating that the unpredictability level
of the cipher-text images is maximum.
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■ Table 2 Randomness (NIST) test results for the LE-enhanced chaotic maps.

Test Name LE
Cubic Map

LE
Sign Map

LE
Sinh Map

LEWC
Cubic Map

LEWC
Sign Map

LEWC
Sinh Map

Frequency 10/10 10/10 10/10 10/10 10/10 10/10

Block frequency 10/10 10/10 10/10 9/10 10/10 10/10

Cumulative sums
Forward

10/10 10/10 8/10 10/10 10/10 9/10

Cumulative sums
Reverse

10/10 10/10 9/10 10/10 10/10 10/10

Runs 10/10 9/10 10/10 10/10 10/10 10/10

Longest run 10/10 9/10 10/10 10/10 10/10 10/10

Rank 10/10 10/10 10/10 10/10 9/10 10/10

FFT 10/10 10/10 10/10 10/10 10/10 10/10

Non-overlapping
template

10/10 10/10 10/10 10/10 10/10 10/10

Overlapping tem-
plate

10/10 10/10 10/10 10/10 10/10 10/10

Universal 9/10 9/10 10/10 9/10 10/10 10/10

Approximate en-
tropy

10/10 10/10 9/10 10/10 9/10 10/10

Random excur-
sions

4/4 4/4 2/2 4/4 3/3 5/5

Random excur-
sions variant

4/4 4/4 2/2 4/4 3/3 5/5

Serial 9/10 10/10 10/10 10/10 10/10 10/10

Linear complexity 10/10 10/10 10/10 10/10 10/10 10/10

■ Table 3 Statistical analysis results of the encrypted images.

Images Correlation
plain-image
(vertical)

Correlation
cipher-
image
(vertical)

Correlation
plain-image
(horizontal)

Correlation
cipher-
image
(horizontal)

χ2

plain-image
χ2

cipher-
image

MSE Entropy

coins.png 0.9726 0.0047 0.9676 0.0066 3 × 105 306 21519 7.9969

peppers.png 0.9917 0.0051 0.9860 0.0021 4 × 105 267 21674 7.9990

corn.tif 0.9662 0.0071 0.0514 0.0067 4 × 104 251 21627 7.9986

moon.tif 0.9949 0.0011 0.0282 0.0005 3 × 106 312 21577 7.9988

football.jpg 0.9437 0.0018 0.9347 0.0022 2 × 105 237 21474 7.9979
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 7 Histogram analysis: (a) peppers; (b) histogram of (a); (c) encrypted peppers; (d) histogram of (c); (e) corn; (f) histogram of (e); (g)
encrypted corn (c); (h) histogram of (g); (i) football; (j) histogram of (i); (k) encrypted football; (l) Histogram of (k); (m) moon; (n) histogram of
(m); (o) encrypted moon; (p) histogram of (o).
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CONCLUSION

The uniformity and statistically independence are two key features
that a chaotic random number generator must satisfy for crypto-
graphic and scientific applications. A gain plus modulo-1 operator
based chaotic framework is proposed in this work to enhance the
Lyapunov exponent of the seed chaotic maps and to assure that
the chaotic outcomes follow the standard uniform distribution
U(0, 1) with highly random chaotic sequences. It is shown that
the gain plus modulo-1 operator based approach greatly broadens
the chaotic range of seed chaotic maps and generates robust chaos.
The proposed approach produces chaotic sequences that are repli-
cable, fast, portable and closely approximate the ideal statistical
properties of uniformity and independence. The proposed chaotic
framework successfully passes the fundamental statistical and vi-
sual tests. The approach can eliminate the use of post-processing
approaches (e.g., de-skewing) and provide 100% efficiency with
respect to the random bit throughput. The efficiency and feasibility
of the approach are verified with an image encryption application.
The proposed method has a high potential in science, technology
and cryptography applications.
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