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Analysis of Inverse Euler-Bernoulli Equation with periodic boundary
conditions

Irem Baglana, Timur Canelb

aDepartment of Mathematics, Kocaeli University, 41380, Kocaeli, Turkey
bDepartment of Physics, Kocaeli University, 41380, Kocaeli, Turkey

Abstract. In this study, which aims to solve the inverse problem of a linear Euler-Bernoulli equation,
the boundary condition has been periodically defined and integral overdetermination conditions. The
conditions of the data used in the generalized Fourier method used to solve the problem have regularity
and consistency.

1. Introduction

T(t, x) is the displacement at time t and at position x , o(x) is the bending stiffness, and k(x) > 0 is the
linear mass on the Euler-Bernoulli problem . The behavior of an unloaded thin beam moving transversely
can be described using the fourth-order partial differential equation:

k(x)(∂2T)/(∂t2) + o(x)(∂2T)/(∂x4) = 0, t > 0, 0 < x < L. (1)

[1] studied isospectral properties and inhomogeneous variants of this equation. [2] used the Lie sym-
metry approach. [3] tried to solve it with Cartan’s equivalence method. [4] obtained exact equivalence
transformations by dealing with this problem initially [3] with some ambiguous functions. [5] investi-
gated the transverse vibrations of a beam moving with time using the symmetry method and obtained
approximate solutions for the problem.

If elastic modulus, area of inertia, mass per unit length, transverse displacement position x at time t and
applied load are described as E, l, α,T(x, t) and f respectively, the PDE which is fourth-order can be given
as below [6];

(EITxx)xx + αTtt = f (x, t), t > 0, 0 < x < L. (2)

Txxxx + Ttt = f (x, t), t > 0, 0 < x < L. (3)

where E, I, α as constants [7].
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Vibration, buckling and dynamic behavior, which are frequently encountered in many fields from
engineering to medicine, can be defined in a much broader way with the Euler-Bernoulli equations [8–16].
Many studies have been conducted on linear and quasi-linear equations and their applications in different
fields [8–13].

Since periodic boundary conditions are encountered in many events, especially heat transfer, it has
many application areas [14–16]. The existence and uniqueness of the solution of the problem are proved in
section 2 using the Fourier and iteration methods. The stability of the method used to solve the problem is
shown in section 3. Finally, a numerical procedure for solving the problem is presented in section 4.

Let T > 0 be fixed number and denote by Ω := {0 < x < π, 0 < t < T} .

In case it is desired to obtain the function pairs
{
q(t),T(x, t)

}
that will provide the equation given by

Equation 4:

∂2T
∂t2 +

∂4T
∂x4 = q(t) f (x, t), (x, t) ∈ Ω (4)

T(0, t) = T(π, t)
Tx(0, t) = Tx(π, t)

Txx(0, t) = Txx(π, t) (5)
Txxx(0, t) = Txxx(π, t), t ∈ [0,T]

T(x, 0) = φ(x),Tt(x, 0) = ψ(x), x ∈ [0, π] (6)

H(t) =

π∫
0

xT(x, t)dx, t ∈ [0,T] (7)

The known functions f (x, t),φ(x), ψ(x) and H(t) expressed in equations (4)-/7) are known functions and
are always continuous and have positive values. gets. The functions u(x, t) and r(t) are unknown. In the
heat dissipation in a thin rod, studies have been made to obtain the total amount of heat dissipated [? ].

Definition 1.1.
{
q(t),T(x, t)

}
is called the inverse problem .

Definition 1.2. v(x, t) ∈ C(Ω) is a test function and satisfies these conditions;

v(x,T) = vt(x,T) = 0, v(0, t) = v(π, t), vx(0, t) = vx(π, t), vxx(0, t) = vxx(π, t), vxxx(0, t, ) = vxxx(π, t), tϵ [0,T] .

Definition 1.3. u(x, t) ∈ C(Ω) can be called as generalized equation. Following equation can be obtained with the
generalized equation.:

T∫
0

π∫
0

({
∂2v
∂t2 +

∂4v
∂x4

}
u − r(t) f v

)
dxdt −

π∫
0

v(x, 0)ψ(x)dx +

π∫
0

vt(x, 0)φ(x)dx = 0.
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Nomenclature
φ(x), ψ(x) Initial condition
q(t) Unknown coefficient
H(t) Energy
T(x, t) Temperature distribution
f (x, t) Source function
T0(t),Tck(t),Tsk(t) Fourier coefficients
M1,M2,M3 constants
F(t) Continous function
K(t, τ) Kernel function
Ω := {0 < x < π, 0 < t < T} Domain of x, t

2. Solution of this problem

Let us look for solution of (1)-(4) in the form:

T(x, t) =
u0(t)

2
+

∞∑
k=1

(Tck(t) cos 2kx + Tsk(t) sin 2kx)

The Fourier coefficients in Equation 8 can be obtained by applying the standard procedure of the Fourier
method:

T(x, t) =
1
2

φ0 + ψ0t +
2
π

t∫
0

π∫
0

(t − τ)q(τ) f (ξ, τ)dξdτ


+

∞∑
k=1

[
φck cos(2k)2t +

ψck

π(2k)2 sin(2k)2t
]

cos 2kx

+

∞∑
k=1

 2
π(2k)2

t∫
0

π∫
0

f (ξ, τ,T)q(τ) sin(2k)2(t − τ) cos 2kξdξdτ

 cos 2kx (8)

+

∞∑
k=1

[
φsk cos(2k)2t +

ψsk

π(2k)2 sin(2k)2t
]

sin 2kx

+

∞∑
k=1

 2
π(2k)2

t∫
0

π∫
0

f (ξ, τ,T)q(τ) sin(2k)2(t − τ) sin 2kξdξdτ

 sin 2kx

Definition 2.1. The pair {q(t),T(x, t)} ∈ C
(
Ω

)
is called the classical solution of the problems (1)-(4) .

Theorem 2.2. Suppose that the following conditions hold:

(A1) H(t) ∈ C2 [0,T] ,
(A2) φ(x)ϵC3 [0, π] , ψ(x)ϵC1 [0, π] ,
φ(0) = φ(π), φ

′

(0) = φ
′

(π), φ
′′

(0) = φ
′′

(π), ψ(0) = ψ(π), ψ
′

(0) = ψ
′

(π),
(A3) f (x, t) ϵC

(
Ω

)
, f (0, t) = f (π, t), fx(0, t) = fx(π, t),

(A4)
π∫

0
x f (x, t)dx , 0, ∀xϵ [0, π]

then the solution of system (1)-(4) has unique solutions.
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Proof. The assumptions φ(0) = φ(π), φ
′

(0) = φ
′

(π), ψ(0) = ψ(π), f (0, t) = f (π, t), are verify for the repre-
sentation (7) of the solution T(x, t). Further, under φ(x)ϵC3 [0, π] , ψ(x)ϵC [0, π] , f (x, t) ϵC

(
Ω

)
, the series (7)

converge uniformly in Ω since their majorizing sums are absolutely convergent. Under the conditions,
since the majorizing sum of the t-partial derivative series are convergent, Tt(x, t),Ttt(x, t) i is continuous
in Ω. because the majorizing sum of t-partial derivative series is absolutely convergent under the conditions
φ(0) = φ(π), φ

′

(0) = φ
′

(π), φ
′′

(0) = φ
′′

(π), ψ(0) = ψ(π), ψ
′

(0) = ψ
′

(π), f (0, t) = f (π, t), fx(0, t) = fx(π, t) in Ω.
From the (5) and under the condition (A1) to obtain:

H
′′

(t) =

π∫
0

xTtt(x, t)dx (9)

The formulas (5)-(6) yield the following equation:

q(t) =

H
′′

(t) − π
∞∑

k=1
(2k)3

φsk cos(2k)2t + ψsk

(2k)2 sin(2k)2t + 1
(2k)2

t∫
0

fsk(τ)q(τ) sin(2k)2(t − τ)dτ


π∫
0

x f (x, t)dx

From The second kind Volterra integral equation:

q(t) = F(t) +

t∫
0

K(t, τ)q(τ)dτ, tϵ [0,T] (10)

F(t) =
H
′′

(t) − π
∞∑

k=1
(2k)3 φsk cos(2k)2t − π

∞∑
k=1

(2k)ψsk sin(2k)2t

π∫
0

x f (x, t)dx
, (11)

K(t, τ) =

−π
∞∑

k=1
(2k)

t∫
0

fsk(τ)q(τ) sin(2k)2(t − τ)dτ

π∫
0

x f (x, t)dx
. (12)

Let F(t) and the kernel K(t, τ) are continuous functions:

F(t) =

H
′′

(t) − π
∞∑

k=1
(2k)3

 π∫
0
φ(ξ) sin 2kξdξ

 cos(2k)2t − π
∞∑

k=1
(2k)

 π∫
0
ψ(ξ) sin 2kξdξ

 sin(2k)2t

π∫
0

x f (x, t)dx
,

we applying partial integration method for convergence ,

φsk =
2
π

π∫
0
φ(ξ) sin 2kξdξ = − 1

2kφ
′

ck =
1

(2k)2φ
′′

sk =
−1

(2k)3φ
′′′

ck

ψsk =
2
π

π∫
0
ψ(ξ) sin 2kξdξ = − 1

2kψ
′

ck

F(t) =
H
′′

(t) + π
∞∑

k=1
(2k)3 1

(2k)3φ
′′′

ck cos(2k)2t + π
∞∑

k=1
(2k) 1

2kψ
′

ck sin(2k)2t

π∫
0

x f (x, t)dx
,
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F(t) =
H
′′

(t) + π
∞∑

k=1
φ
′′′

ck cos(2k)2t + π
∞∑

k=1
ψ
′

ck sin(2k)2t

π∫
0

x f (x, t)dx
,

|F(t)| ≤

∣∣∣∣H′′

(t)
∣∣∣∣ + π ∞∑

k=1

∣∣∣∣φ′′′ck

∣∣∣∣ + π ∞∑
k=1

∣∣∣ψ′ck

∣∣∣∣∣∣∣∣∣ π∫
0

x f (x, t)dx

∣∣∣∣∣∣
|F(t)| ≤

2
(∣∣∣∣H′′

(t)
∣∣∣∣ + π ∞∑

k=1

∣∣∣∣φ′′′ck

∣∣∣∣ + π ∞∑
k=1

∣∣∣ψ′ck

∣∣∣)
Mπ2

Taking maximum both of sides

∥F(t)∥ ≤
2
(∥∥∥∥H

′′

(t)
∥∥∥∥ + π ∞∑

k=1

∥∥∥∥φ′′′ck

∥∥∥∥ + π ∞∑
k=1

∥∥∥ψ′ck

∥∥∥)
Mπ2 .

K(t, τ) =

−π
∞∑

k=1
(2k)

t∫
0

fsk(τ)q(τ) sin(2k)2(t − τ)dτ

π∫
0

x f (x, t)dx

fsk =
2
π

π∫
0

f (ξ, τ) sin 2kξdξ = − 1
2k

(
fck

)
x

K(t, τ) =

−π
∞∑

k=1
(2k)

t∫
0

2
π

π∫
0

f (ξ, τ)q(τ) sin(2k)2(t − τ) sin 2kξ dξdτ

π∫
0

x f (x, t)dx

K(t, τ) =

π
∞∑

k=1

t∫
0

(2k)
(2k)

(
fck

)
x sin(2k)2(t − τ)dτ

π∫
0

x f (x, t)dx

|K(t, τ)| ≤

π
∞∑

k=1

∣∣∣( fck
)

x

∣∣∣ ∣∣∣∣∣∣ t∫
0

sin(2k)2(t − τ)dτ

∣∣∣∣∣∣∣∣∣∣∣∣ π∫
0

x f (x, t)dx

∣∣∣∣∣∣
Taking maximum both of sides

∥K(t, τ)∥ ≤
2
∞∑

k=1

∥∥∥( fck
)

x

∥∥∥ ∥T∥
Mπ

Under the assumption (A1)-(A2) and according to Weierstrass M test the function F(t) and the kernel
K(t, τ) are continuous functions The unique solution of the inverse problem (1)-(4) according to Volterra
Theorem.
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3. Stability of Problem

The result in the theorem given below is valid for solving problems from equality (1) to (4).

Theorem 3.1. Φ =
{
φ,ψ, H, f

}
satisfy the assumptions (A1)-(A4) of theorem 1 then the solution (u, r) of the problem

(1)-(4) depends continuously upon the data f , φ, ψ,H.

Proof. Suppose that there exist positive constants Mi, i = 1, 2, 3 .

Let us denote ∥Φ∥ = (∥H∥C1[0,T] +
∥∥∥φ∥∥∥

C1[0,π]
+

∥∥∥ψ∥∥∥
C[0,π]

+
∥∥∥ f

∥∥∥
C(Ω)

). Let (u, r) and (u, r) be solutions of inverse

problems (1)-(4) corresponding to the data Φ =
{
φ,ψ, H, f

}
and Φ =

{
φ,ψ,H,E, f

}
respectively.

F(t) − F(t) =
H
′′

(t) −H
′′

(t) + π
∞∑

k=1

(
φ
′′′

ck − φ
′′′

ck

)
cos(2k)2t + π

∞∑
k=1

(
ψ
′

ck − ψ
′

ck

)
sin(2k)2t

π∫
0

x f (x, t)dx

Equation (13) can be obtained with the maximum of both sides of this equation:

∥∥∥F − F
∥∥∥ ≤ 2

π2M

∥∥∥∥H
′

(t) −H′ (t)
∥∥∥∥ + π ∞∑

k=1

∥∥∥∥∥φ′′′ck − φ
′′′

ck

∥∥∥∥∥ + ∥∥∥∥ψ′ck − ψ
′

ck

∥∥∥∥ . (13)

K(t, τ) =

π
∞∑

k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

π∫
0

x f (x, t)dx

K − K =

π
∞∑

k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

π∫
0

x f (x, t)dx
−

π
∞∑

k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

π∫
0

x f (x, t)dx

K − K =

π ∞∑
k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

  π∫
0

x f (x, t)dx

 − π ∞∑
k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

  π∫
0

x f (x, t)dx

 π∫
0

x f (x, t)dx

  π∫
0

x f (x, t)dx


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K − K =

π ∞∑
k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

  π∫
0

x f (x, t)dx

 π∫
0

x f (x, t)dx

  π∫
0

x f (x, t)dx


−

π ∞∑
k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

  π∫
0

x f (x, t)dx

 π∫
0

x f (x, t)dx

  π∫
0

x f (x, t)dx


+

π ∞∑
k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

  π∫
0

x f (x, t)dx

 π∫
0

x f (x, t)dx

  π∫
0

x f (x, t)dx


−

π ∞∑
k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

  π∫
0

x f (x, t)dx

 π∫
0

x f (x, t)dx

  π∫
0

x f (x, t)dx



K − K =

π ∞∑
k=1

t∫
0

((
fck

)
x −

(
fck

)
x

)
sin(2k)2(t − τ)dτ

  π∫
0

x f (x, t)dx

 π∫
0

x f (x, t)dx

  π∫
0

x f (x, t)dx

 π∫
0

x
(

f (x, t) − f (x, t)
)

dx

 π ∞∑
k=1

t∫
0

(
fck

)
x sin(2k)2(t − τ)dτ

 π∫
0

x f (x, t)dx

  π∫
0

x f (x, t)dx


∣∣∣K − K

∣∣∣ ≤ π3

2 M
∞∑

k=1

∣∣∣∣( fck
)

x −
(

fck
)

x

∣∣∣∣
π4

2 M2
+

π3

2 M
∣∣∣∣ f − f

∣∣∣∣
π4

2 M2

Equation (14) can be obtained with the maximum of both sides of this equation:

∥∥∥K − K
∥∥∥ ≤ 2

πM
∥T∥

∥∥∥∥ f − f
∥∥∥∥ + 2

πM
∥T∥

∞∑
k=1

∥∥∥∥( fck
)

x −
(

fck
)

x

∥∥∥∥ (14)

Using same estimations, we obtain∥∥∥q − q
∥∥∥ ≤ ∥∥∥F − F

∥∥∥ + |T| ∥K∥ ∥∥∥r − r
∥∥∥ + ∥∥∥r

∥∥∥ ∥∥∥K − K
∥∥∥ ,

From (10)-(11) we also obtain that
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∥∥∥q − q
∥∥∥ ≤

2
π2M(1 − |T| |K|)

∥∥∥∥H
′

(t) −H′ (t)
∥∥∥∥ + π ∞∑

k=1

∥∥∥∥∥φ′′′ck − φ
′′′

ck

∥∥∥∥∥ + ∥∥∥∥ψ′ck − ψ
′

ck

∥∥∥∥
2
∥∥∥r

∥∥∥ ∥T∥
πM(1 − |T| |K|)

∥∥∥∥ f − f
∥∥∥∥ + 2

∥∥∥r
∥∥∥ ∥T∥2

πM(1 − |T| |K|)

∞∑
k=1

∥∥∥∥( fck
)

x −
(

fck
)

x

∥∥∥∥
We obtain the difference u and u from (5):

T − T =
1
2

(φ0 − φ0
)
+

(
ψ0 − ψ0

)
t +

t∫
0

(t − τ)q(τ)
(

f0 − f0
)

dτ


+

∞∑
k=1

(φck − φck
)

cos(2k)2t +

(
ψck − ψck

)
(2k)2 sin(2k)2t

 cos 2kx

+

∞∑
k=1

 1
(2k)2

t∫
0

(
fck − fck

)
q(τ) sin(2k)2(t − τ)dτ

 cos 2kx (15)

+

∞∑
k=1

(φsk − φsk
)

cos(2k)2t +

(
ψsk − ψsk

)
(2k)2 sin(2k)2t

 sin 2kx

+

∞∑
k=1

 1
(2k)2

t∫
0

(
fsk − fsk

)
q(τ) sin(2k)2(t − τ)dτ

 sin 2kx

Taking maximum both of sides

∥∥∥T − T
∥∥∥ ≤

1
2

∥∥∥φ0 − φ0

∥∥∥ + 1
2
|T|

∥∥∥ψ0 − ψ0

∥∥∥ + 1
2
|T|

∥∥∥∥ f0 − f0
∥∥∥∥

+

∞∑
k=1

(∥∥∥φck − φck

∥∥∥ + ∥∥∥φsk − φsk

∥∥∥)
+

∞∑
k=1

1

(2k)2

(∥∥∥ψck − ψck

∥∥∥ + ∥∥∥ψsk − ψsk

∥∥∥)
+

∞∑
k=1

|T|
∥∥∥∥ fck − fck

∥∥∥∥ ∥∥∥q
∥∥∥ + ∞∑

k=1

|T|
∥∥∥∥ fsk − fsk

∥∥∥∥ ∥r∥
+

∞∑
k=1

|T|
∥∥∥∥ fck

∥∥∥∥ ∥∥∥q − q
∥∥∥ + ∞∑

k=1

|T|
∥∥∥∥ fsk

∥∥∥∥ ∥∥∥q − q
∥∥∥

Applying Hölder inequality,
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∥∥∥u − u
∥∥∥ ≤

1
2

∥∥∥φ0 − φ0

∥∥∥ + 1
2
|T|

∥∥∥ψ0 − ψ0

∥∥∥ + 1
2
|T|

∥∥∥∥ f0 − f0
∥∥∥∥

+

∞∑
k=1

(∥∥∥φck − φck

∥∥∥ + ∥∥∥φsk − φsk

∥∥∥)

+
1
4


 ∞∑

k=1

1
k2


2

1
2  ∞∑

k=1

[∥∥∥ψck − ψck

∥∥∥ + ∥∥∥ψsk − ψsk

∥∥∥]2


1
2

+
1
4


 ∞∑

k=1

1
k2


2

1
2 ∞∑

k=1

(
|T|

∥∥∥∥ fck − fck

∥∥∥∥ ∥∥∥q
∥∥∥) 1

2

+
1
4


 ∞∑

k=1

1
k2


2

1
2 ∞∑

k=1

(
|T|

∥∥∥∥ fsk − fsk

∥∥∥∥ ∥∥∥q
∥∥∥) 1

2

+
1
4


 ∞∑

k=1

1
k2


2

1
2 ∞∑

k=1

(
|T|

∥∥∥∥ fck

∥∥∥∥ ∥∥∥q − q
∥∥∥) 1

2

+
1
4


 ∞∑

k=1

1
k2


2

1
2 ∞∑

k=1

(
|T|

∥∥∥∥ fsk

∥∥∥∥ ∥∥∥q − q
∥∥∥) 1

2

∥∥∥T − T
∥∥∥ ≤

1
2

∥∥∥φ0 − φ0

∥∥∥ + 1
2
|T|

∥∥∥ψ0 − ψ0

∥∥∥ + 1
2
|T|

∥∥∥∥ f0 − f0
∥∥∥∥

+

∞∑
k=1

(∥∥∥φck − φck

∥∥∥ + ∥∥∥φsk − φsk

∥∥∥)
+
π2

24

∞∑
k=1

∥∥∥ψck − ψck

∥∥∥ + ∥∥∥ψsk − ψsk

∥∥∥
+
π2

24

∞∑
k=1

|T|
∥∥∥∥ fck − fck

∥∥∥∥ ∥∥∥q
∥∥∥

+
π2

24

∞∑
k=1

|T|
∥∥∥∥ fsk − fsk

∥∥∥∥ ∥∥∥q
∥∥∥

+
π2

24

∞∑
k=1

|T|
∥∥∥∥ fck

∥∥∥∥ ∥∥∥q − q
∥∥∥

+
π2

24

∞∑
k=1

|T|
∥∥∥∥ fsk

∥∥∥∥ ∥∥∥q − q
∥∥∥

∥∥∥T − T
∥∥∥ ≤M1

∥∥∥φ − φ∥∥∥ +M2

∥∥∥ψ − ψ∥∥∥ +M3

∥∥∥∥ f − f
∥∥∥∥ +M4

∥∥∥∥H
′′

−H′′

∥∥∥∥
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where

M1 = max
{

1
2
, 1,

|T|π
6(1 − |T| |K|)

}
,

M2 = max
{
π2

24
,

|T|π
6(1 − |T| |K|)

}
,

M3 = max

 |T|2
, |T|

∥∥∥q
∥∥∥ , |T|π ∥∥∥q

∥∥∥
6(1 − |T| |K|)

,
|T|3 π

∥∥∥q
∥∥∥

6(1 − |T| |K|)

 ,
M4 = max

{
|T|

6(1 − |T| |K|)

}
we also obtain that ∥∥∥T − T

∥∥∥ ≤M5

∥∥∥Φ −Φ∥∥∥ ,
where

M5 = max {M1,M2,M3,M4} .

For Φ→ Φ then u→ u.

4. Numerical Method

We use finite-difference approximation for discretizing problem (1)-(3):

1
τ2

(
T j+1

i − 2T j
i + T j−1

i

)
+

1
h4

(
T j

i+2 − 4T j
i+1 + 6T j

i − 4T j
i−1 + T j

i−2

)
= q j f̃ j

i

T0
i = ϕi,

1
τ

(
T1

i − T0
i

)
= ψi (16)

T j
0 = T j

Nx+1, (17)

T j
1 = T j

Nx+2, (18)

T j
−1 = T j

Nx
, (19)

T j
2 − T j

−2 = T j
Nx+3 − T j

Nx−1, (20)

The domain [0, π] × [0,T] is divided into an Nx ×Nt mesh with the spatial step size h = π/Nx in x direction
and the time step size τ = T/Nt, respectively.

xi, t j are defined by
xi = ih; i = 0; 1; 2; ...; Nx;
t j = jτ; j = 0; 1; 2; ...; Nt;
T j

i = T(xi, t j), f̃ j
i = f̃ (xi, t j), q j = q(t j).

Let us integrate the equation (1) respect to x from 0 to π , we obtain

q(t) =
H′′(t)∫ π

0 f̃ (x, t)dx
. (21)

The finite difference approximation of (18) is
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q j =

((
H j+1

− 2H j +H j−1
)
/τ2

)
(∫ π

0 f̃ j
i dx

) .

where H j = H(t j), q j = q(t j), j = 0, 1, ...,Nt. We mention that the integral is numerically calculated using
Simpson’s rule of integration.The system of equations (13)-(17) is solved and u j

i , q
j

is determined.The condition for stopping the iteration depends on the value difference between the two
iterations. Iteration should be stopped when this difference is equal to the tolerance predicted previously.
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Abstract. In this paper, we define bi-periodic generalized Fibonacci polynomials, which generalize Fi-
bonacci, Pell, Jacobsthal, Fermat, Chebyshev polynomials and the other well-known polynomials. We
obtain generating functions, Binet formulas and some properties of these polynomials. Also, we prove
some fundamental identities conform to the known results of Fibonacci polynomials.

1. Introduction

Polynomials in many fields of mathematics and science are emerged as the generalizations of numbers.
Fibonacci polynomials, one of the special polynomials in the literature, are a generalization of well-known
Fibonacci numbers defined by the recurrence relation fn = fn−1 + fn−2 for n ≥ 2 with initial terms f0 = 0,
f1 = 1 [1]. The nth Fibonacci polynomial fn(x), is defined by the recurrence relation

fn(x) = x fn−1(x) + fn−2(x), n ≥ 2

with initial terms f0(x) = 0, f1(x) = 1, and terms of the sequence
{
0, 1, x, x2 + 1, x3 + 2x, x4 + 3x2 + 1, ...

}
are Fibonacci polynomials. Many polynomials related to numbers defined by the recurrence relations
have been presented in different ways as generalizations of the Fibonacci polynomials called generalized
Fibonacci and generalized Fibonaci type polynomials. One of the ways of generalization is to add integers
or variables to the recurrence relation of the Fibonacci polynomials. For instance, Pell polynomials are
defined by the recurrence relation pn(x) = 2xpn−1(x) + pn−2(x) with initial terms p0(x) = 0, p1(x) = 1 for n ≥ 2.
Then Jacobsthal polynomials are defined by the recurrence relation jn(x) = jn−1(x) + 2xjn−2(x) with initial
terms J0(x) = 0, J1(x) = 1 for n ≥ 2 [2, 3]. For the parameter variables x and y in the recurrence relation,
bivariate Fibonacci polynomials are introduced by the recurrence relation

fn
(
x, y

)
= x fn−1

(
x, y

)
+ y fn−2

(
x, y

)
, fn

(
x, y

)
= 0, f1

(
x, y

)
= 1, n ≥ 2

where x, y , 0, x2+4y , 0 and generalized identities of these polynomials are obtained [4, 5]. Then, h(x)-
Fibonacci polynomials as another generalization of Fibonacci polynomials are defined by the recurrence
relation

fh,n (x) = h (x) fh,n−1 (x) + fh,n−2 (x) , fh,n (x) = 0, fh,1 (x) = 1, n ≥ 2
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where h(x) be a polynomial with real coefficients [6]. Further generalizations of Fibonacci polynomials
have been presented by many authors as Fermat, Chebyshev, Morgan-Voyce, Vieta polynomials. The
generating functions, exponential generating functions, the Binet-like formulas, sums formulas, matrix
representations and periods according to the m modulo of Fibonacci polynomial sequences are presented
[7–10].

Motivated by of the above-cited studies, it is introduced a new generalization of the Fibonacci numbers
and polynomials called generalized Fibonacci polynomials. For n ≥ 2, the generalized Fibonacci polynomial
sequences, {Fn (x)}n≥0 are defined by the recurrence relation

Fn (x) = d (x)Fn−1 (x) + 1 (x)Fn−2 (x) (1)

with initial terms F0 (x) = 0 and F1 (x) = 1 where d (x) and 1 (x) are fixed nonzero polynomials in Q [x]
[11]. Obviously, for d (x) = x and 1(x) = 1 we obtain classical Fibonacci polynomial and Fn (1) = fn where fn
is the nth classical Fibonacci number. Binet formulas for the generalized Fibonacci polynomial sequences
are given by

Fn (x) =
σn (x) − ρn (x)
σ(x) − ρ (x)

where σ(x) and ρ(x) are the roots of the quadratic equation t2
− d (x) t − 1 (x) = 0 of equation (1). The

readers can find more detailed information about the generalized Fibonacci polynomial in [12, 13].
In other generalizations of Fibonacci numbers and polynomials, nonzero real numbers are taken into

account, bi-periodic Fibonacci number sequences,
{
qn

}
are defined by

qn =

{
aqn−1 + qn−2, if n is even
bqn−1 + qn−2, if n is odd n ≥ 2

with initial terms q0 = 0, q1 = 1 [14] and bi-periodic Fibonacci polynomial sequences,
{
qn (x)

}
are defined

by

qn (x) =
{

aqn−1 (x) + qn−2 (x) , if n is even
bqn−1 (x) + qn−2 (x) , if n is odd n ≥ 2

with initial terms q0 (x) = 0, q1 (x) = 1 where a and b are any two nonzero real numbers. Also, some
identities related to these bi-periodic sequences are given, respectively [15].

The aim of this study is to define new generalizations of the Fibonaci and the Fibonacci type polynomials,
the bi-periodic Fibonacci and the bi-periodic Fibonacci type polynomials, which we shall call bi-periodic
generalized Fibonacci polynomials. It is to present generating functions, general formulas and well-known
identities for these polynomials. It is also to give special cases of the bi-periodic generalized Fibonacci
polynomials and generalize all the results.

2. Bi-Periodic Generalized Fibonacci Polynomials

In this section we define a new kind of generalized Fibonacci polynomials, called bi-periodic generalized
Fibonacci polynomials, which are Fibonacci polynomials, h(x)-Fibonacci polynomials, Fibonacci polynomi-
als with two variables, Pell polynomials, Jacobsthal polynomials, Fermat polynomials, Chebyshev second
kind polynomials, Morgan-Voyce first kind polynomials and Vieta polynomials. Generating functions, Bi-
net formulas, some basic properties as well as the Catalan’s identity, Cassini’s identity, d’Ocagne’s identity
for these polynomials are obtained.
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Definition 2.1. For any two nonzero real numbers a and b, the nth bi-periodic generalized Fibonacci polynomial is
defined by the recurrence relation

Fn (x) =
{

ad (x)Fn−1 (x) + 1 (x)Fn−2 (x) , if n is even
bd (x)Fn−1 (x) + 1 (x)Fn−2 (x) , if n is odd n ≥ 2 (2)

with initial terms F0(x) = 0, F1(x) = 1 for n ≥ 2, where d (x) and 1 (x) are fixed nonzero polynomials in Q [x].
The bi-periodic generalized Fibonacci polynomial sequences are denoted by {Fn (x)}nϵN.

The bi-periodic generalized Fibonacci polynomial sequences are as follows

{Fn (x)}nϵN =
{
0, 1, ad (x) , abd2 (x) + 1 (x) , a2bd3 (x) + 2ad (x) 1 (x) , a2b2d4 (x) + 3abd2 (x) 1 (x) + 12 (x) ,

a3b2d5 (x) + 4a2bd3 (x) 1 (x) + 3ad (x) 12 (x) , a3b3d6 (x) + 5a2b2d4 (x) 1 (x) + 6abd2 (x) 12 (x) + 13 (x) , ... }

Note that d (x) = x and 1 (x) = 1, we get the bi-periodic Fibonacci polynomial Fn (x) = Fn (x). Similar
special cases of the bi-periodic generalized Fibonacci polynomials are given in the Table 1

Table 1: Special cases of the polynomials Fn (x)
Bi-Periodic Generalized Fibonacci Polynomials Fn d (x) 1 (x)

Bi-periodic Fibonacci polynomials Fn(x) x 1
Bi-periodic h(x)-Fibonacci polynomials Fh,n(x) h(x) 1

Bi-periodic Fibonacci polynomials with two variables Fn
(
x, y

)
x y

Bi-periodic Pell polynomials Pn(x) 2x 1
Bi-periodic Jacobsthal polynomials Jn(x) 1 2x

Bi-periodic Fermat polynomials Φn(x) 3x −2
Bi-periodic Chebyshev second kind polynomials Un(x) 2x −1
Bi-periodic Morgan-Voyce first kind polynomials Bn(x) x + 2 −1

Bi-periodic Vieta polynomials Vn(x) x −1

Since the all results given throughout the study are provided for all the bi-periodic generalized Fibonacci
polynomials, the values given in Table 1 can be used in the relevant theorem or corollary for any bi-periodic
polynomials.

From Definition 2.1, alternative recurrence relations can be given for the bi-periodic generalized Fi-
bonacci polynomials where ξ (n) = n − 2

⌊
n
2

⌋
is the parity function, i.e.,

ξ (n) =
{

0, if n is even
1, if n is odd .

Let a and b be any two nonzero real numbers, nth bi-periodic generalized Fibonacci polynomial is given
by

Fn (x) = a1−ξ(n)bξ(n)d (x)Fn−1 (x) + 1 (x)Fn−2 (x) , n ≥ 2 (3)

with initial terms F0(x) = 0, F1(x) = 1 where d (x) and 1 (x) are fixed nonzero polynomials in Q [x].
The quadratic equation of the bi-periodic generalized Fibonacci polynomials is

t2
− d (x) abt − 1 (x) ab = 0

and their roots are γ (x) =
d(x)ab+

√
d2(x)a2b2+41(x)ab

2 and δ (x) =
d(x)ab−

√
d2(x)a2b2+41(x)ab

2 . In this case, the following
relations are obtained between the roots γ (x) and δ (x)
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γ (x) + δ (x) = d (x) ab

γ (x) − δ (x) =
√

d2 (x) a2b2 + 41 (x) ab

γ (x) δ (x) = −1 (x) ab

d (x)γ (x) + 1 (x) =
γ2 (x)

ab

d (x) δ (x) + 1 (x) =
δ2 (x)

ab
.

2.1. Generating Functions and Binet Formulas of Polynomials Fn(x)
In this section, we construct the generating functions of the bi-periodic generalized Fibonacci polynomial

the sequences, {Fn (x)}nϵN. Let the generating functions of these sequences be Gn (x, t) such that

Gn (x, t) =
∞∑

n=0

Fn (x) tn (4)

where Fn (x) is the nth bi-periodic generalized Fibonacci polynomial and d (x), 1 (x) are fixed nonzero
polynomials inQ [x]. First, the identities for the odd and even subscript terms of the bi-periodic generalized
Fibonacci polynomials are given in the following lemma used to derive these functions.

Lemma 2.2. The bi-periodic generalized Fibonacci polynomial sequences, {Fn (x)}nϵN satisfy the following identities

i. F2n (x) =
(
abd2 (x) + 21 (x)

)
F2n−2 (x) − 12 (x)F2n−4 (x)

ii. F2n+1 (x) =
(
abd2 (x) + 21 (x)

)
F2n−1 (x) − 12 (x)F2n−3 (x)

Proof. Using the equation (2)
i.

F2n (x) = ad (x)F2n−1 (x) + 1 (x)F2n−2 (x)
= ad (x)

(
bd (x)F2n−2 (x) + 1 (x)F2n−3 (x)

)
+ 1 (x)F2n−2 (x)

=
(
abd2 (x) + 1 (x)

)
F2n−2 (x) + ad (x) 1 (x)F2n−3 (x)

=
(
abd2 (x) + 1 (x)

)
F2n−2 (x) + 1 (x)F2n−2 (x) − 12 (x)F2n−4 (x)

=
(
abd2 (x) + 21 (x)

)
F2n−2 (x) − 12 (x)F2n−4 (x)

ii.

F2n+1 (x) = bd (x)F2n (x) + 1 (x)F2n−1 (x)
= bd (x)

(
ad (x)F2n−1 (x) + 1 (x)F2n−2 (x)

)
+ 1 (x)F2n−1 (x)

=
(
abd2 (x) + 1 (x)

)
F2n−1 (x) + bd (x) 1 (x)F2n−2 (x)

=
(
abd2 (x) + 1 (x)

)
F2n−1 (x) + 1 (x)F2n−1 (x) − 12 (x)F2n−3 (x)

=
(
abd2 (x) + 21 (x)

)
F2n−1 (x) − 12 (x)F2n−3 (x)

Thus, the proof is completed.
Using the Lemma 2.2, the generating functions of the sequences {Fn (x)}nϵN are given in the following

Theorem.
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Theorem 2.3. The generating functions for the bi-periodic generalized Fibonacci polynomial sequences are

Gn (x, t) =
t + ad (x) t2

− 1 (x) t3

1 −
(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4 .

Proof. Using equation 4, we get

Gn (x, t) =
∞∑

n=0

Fn (x) tn = F0 (x) + F1 (x) t + F2 (x) t2 + . . . + Fn (x) tn + . . .

Let generating functions Gn (x, t) be the sum of the odd subscript and even subscript terms separately.
Then

Gn (x, t) = Gç
n (x, t) + GT

n (x, t) (5)

where Gç
n (x, t) is the sum of the even subscript terms and GT

n (x, t) is the sum of the odd subscript terms.
Therefore,

Gç
n (x, t) =

∞∑
i=0

F2i (x) t2i = F0 (x) + F2 (x) t2 + F4 (x) t4 + . . . (6)

If both sides of equation (6) are multiplied by −
(
abd2 (x) + 21 (x)

)
t2 and 12 (x) t4, then we get

−

(
abd2 (x) + 21 (x)

)
t2Gç

n (x, t) = −abd2 (x) + 21 (x)
∞∑

i=0

F2i (x) t2i+2 (7)

and

12 (x) t4Gç
n (x, t) = 12 (x)

∞∑
i=0

F2i (x) t2i+4 (8)

If we add the equations (6), (7) and (8) side by side, we obtain

(
1 −

(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4

)
Gç

n (x, t) = F0 (x) + F2 (x) t2 +

∞∑
i=2

F2i (x) t2i

−

(
abd2 (x) + 21 (x)

) ∞∑
i=0

F2i (x) t2i+2 + 12 (x)
∞∑

i=0

F2i (x) t2i+4

= ad (x) t2 +

∞∑
i=2

F2i (x) t2i
−

(
abd2 (x) + 21 (x)

) ∞∑
i=2

F2i−2 (x) t2i

+ 12 (x)
∞∑

i=2

F2i−4 (x) t2i

= ad (x) t2 +

∞∑
i=2

(F2i (x) −
(
abd2 (x) + 21 (x)

)
F2i−2 (x) +12 (x)F2i−4 (x)

)
t2i.

Using Lemma 2.2, i., generating functions for even subscript terms in the bi-periodic generalized
Fibonacci polynomial sequences are obtained as

Gç
n (x, t) =

ad (x) t2

1 −
(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4 .
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Now let consider the sum of the odd subscript terms in the generating function. Therefore,

GT
n (x, t) =

∞∑
i=0

F2i+1 (x) t2i+1 = F1 (x) t + F3 (x) t3 + F5 (x) t5 + ... (9)

If both sides of equation (9) are multiplied by −
(
abd2 (x) + 21 (x)

)
t2 and 12 (x) t4, , then we get

−

(
abd2 (x) + 21 (x)

)
t2GT

n (x, t) = −
(
abd2 (x) + 21 (x)

) ∞∑
i=0

F2i+1 (x) t2i+3 (10)

and

12 (x) t4GT
n (x, t) = 12 (x)

∞∑
i=0

F2i+1 (x) t2i+5 (11)

If we add the equations (9), (10) and (11) side by side, we obtain

(
1 −

(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4

)
GT

n (x, t) = F1 (x) t + F3 (x) t3 +

∞∑
i=2

F2i+1 (x) t2i+1

−

(
abd2 (x) + 21 (x)

)
F1 (x) t3

−

(
abd2 (x) + 21 (x)

) ∞∑
i=1

F2i+1 (x) t2i+3

+ 12 (x)
∞∑

i=0

F2i+1 (x) t2i+5

= t +
(
abd2 (x) + 1 (x)

)
t3 +

∞∑
i=2

F2i+1 (x) t2i+1
−

(
abd2 (x) + 21 (x)

)
t3

−

(
abd2 (x) + 21 (x)

) ∞∑
i=2

F2i−1 (x) t2i+1 + 12 (x)
∞∑

i=2

F2i−3 (x) t2i+1

= t +
(
abd2 (x) + 1 (x)

)
t3
−

(
abd2 (x) + 21 (x)

)
t3

+

∞∑
i=2

(F2i+1 (x) −
(
abd2 (x) + 21 (x)

)
F2i−1 (x) +12 (x)F2i−3 (x)

)
t2i+1.

Using Lemma 2.2, ii., generating functions for even subscript terms in the bi-periodic generalized
Fibonacci polynomial sequences are obtained as

GT
n (x, t) =

t − 1 (x) t3

1 −
(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4

From equation (5), generating functions for the bi-periodic generalized Fibonacci polynomial sequences
are

Gn (x, t) =
t + ad (x) t2

− 1 (x) t3

1 −
(
abd2 (x) + 21 (x)

)
t2 + 12 (x) t4 .

Thus, the proof is completed.
Now we give Binet formulas that allow us to calculate the nth terms of sequences {Fn (x)}nϵN in the

following theorem.
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Theorem 2.4. The Binet formulas for the bi-periodic generalized Fibonacci polynomial sequences are given by

Fn (x) =

 a1−ξ(n)

(ab)⌊
n
2 ⌋

 γn (x) − δn (x)
γ (x) − δ (x)

where γ (x) =
d(x)ab+

√
d2(x)a2b2+41(x)ab

2 , δ (x) =
d(x)ab−

√
d2(x)a2b2+41(x)ab

2 and ξ (n) = n − 2
[

n
2

]
.

Proof. By induction method on n. The result is obviously valid for n = 0, 1. Suppose that result is true
for n ∈ N, we shall show that it is true for n + 1. Using equation (3) and the hypothesis of induction, we
have

Fn+1 (x) = a1−ξ(n+1)bξ(n+1)d (x)Fn (x) + 1 (x)Fn−1 (x)

= a1−ξ(n+1)bξ(n+1)d (x)

 a1−ξ(n)

(ab)⌊
n
2 ⌋

 γn (x) − δn (x)
γ (x) − δ (x)

 + 1 (x)

 a1−ξ(n−1)

(ab)⌊
n−1

2 ⌋

 γn−1 (x) − δn−1 (x)
γ (x) − δ (x)


=

a1−ξ(n+1)γn−1 (x)
γ (x) − δ (x)

a1−ξ(n)bξ(n+1)d (x)γ (x)

(ab)⌊
n
2 ⌋

+
a1−ξ(n−1)1 (x)

a1−ξ(n+1) (ab)⌊
n−1

2 ⌋


−

a1−ξ(n+1)δn−1 (x)
γ (x) − δ (x)

a1−ξ(n)bξ(n+1)d (x) δ (x)

(ab)⌊
n
2 ⌋

+
a1−ξ(n−1)1 (x)

a1−ξ(n+1) (ab)⌊
n−1

2 ⌋


=

a1−ξ(n+1)γn−1 (x)
γ (x) − δ (x)

 abd (x)γ (x)

aξ(n)b1−ξ(n+1) (ab)⌊
n
2 ⌋
+

ab1 (x)

(ab)⌊
n−1

2 ⌋+1


−

a1−ξ(n+1)δn−1 (x)
γ (x) − δ (x)

 abd (x) δ (x)

aξ(n)b1−ξ(n+1) (ab)⌊
n
2 ⌋
+

ab1 (x)

(ab)⌊
n−1

2 ⌋+1


=

a1−ξ(n+1)γn−1 (x)
γ (x) − δ (x)

ab(d (x)γ (x) + 1 (x))

(ab)⌊
n+1

2 ⌋

 − a1−ξ(n+1)δn−1 (x)
γ (x) − δ (x)

ab(d (x) δ (x) + 1 (x))

(ab)⌊
n+1

2 ⌋


=

a1−ξ(n+1)γn−1 (x)
γ (x) − δ (x)

 γ2 (x)

(ab)⌊
n+1

2 ⌋

 − a1−ξ(n+1)δn−1 (x)
γ (x) − δ (x)

 δ2 (x)

(ab)⌊
n+1

2 ⌋


=

 a1−ξ(n+1)

(ab)⌊
n+1

2 ⌋

 γn+1 (x) − δn+1 (x)
γ (x) − δ (x)

where d (x)γ (x) + 1 (x) = γ
2(x)
ab , d (x) δ (x) + 1 (x) = δ

2(x)
ab and ξ (n) +

⌊
n
2

⌋
=

⌊
n+1

2

⌋
, 1 − ξ (n + 1) +

⌊
n
2

⌋
=

⌊
n+1

2

⌋
.

This completes the proof.

2.2. Identities for Polynomials Fn (x)
In this section, we give various identities for consecutive terms and negative subscript terms of the bi-

periodic generalized Fibonacci polynomial sequences and present the Catalan’s identity, Cassini’s identity,
d’Ocagne’s identity for these polynomials.

Theorem 2.5. The limit of the ratio of consecutive terms of the bi-periodic generalized Fibonacci polynomial sequences
is

i. limn→∞
F2n+1 (x)
F2n (x)

=
γ (x)

a

ii. limn→∞
F2n(x)
F2n−1(x)

=
γ (x)

b
where Fn (x) is the nth bi-periodic generalized Fibonacci polynomial.



Y. Taşyurdu / TJOS 7 (3), 157–167 164

Proof. Using Binet formula for nth bi-periodic generalized Fibonacci polynomial given in Theorem 2.4,
we have

i.

limn→∞
F2n+1 (x)
F2n (x)

= limn→∞

(
a1−ξ(2n+1)

(ab)⌊
2n+1

2 ⌋

) (
γ2n+1(x)−δ2n+1(x)
γ(x)−δ(x)

)
(

a1−ξ(2n)

(ab)⌊
2n
2 ⌋

) (
γ2n(x)−δ2n(x)
γ(x)−δ(x)

)

= limn→∞

1
(ab)n

(
γ2n+1(x)−δ2n+1(x)
γ(x)−δ(x)

)
a

(ab)n

(
γ2n(x)−δ2n(x)
γ(x)−δ(x)

)
= limn→∞

1
a

γ2n+1 (x)
(
1 −

(
δ(x)
γ(x)

)2n+1
)

γ2n (x)
(
1 −

(
δ(x)
γ(x)

)2n
)

=
γ (x)

a
ii.

limn→∞
F2n(x)
F2n−1(x)

= limn→∞

(
a1−ξ(2n)

(ab)⌊
2n
2 ⌋

) (
γ2n(x)−δ2n(x)
γ(x)−δ(x)

)
(

a1−ξ(2n−1)

(ab)⌊
2n−1

2 ⌋

) (
γ2n−1(x)−δ2n−1(x)
γ(x)−δ(x)

)

= limn→∞

a
(ab)n

(
γ2n(x)−δ2n(x)
γ(x)−δ(x)

)
1

(ab)n−1

(
γ2n−1(x)−δ2n−1(x)
γ(x)−δ(x)

)
= limn→∞

a
ab

γ2n (x)
(
1 −

(
δ(x)
γ(x)

)2n
)

γ2n−1 (x)
(
1 −

(
δ(x)
γ(x)

)2n−1
)

=
γ (x)

b

where |δ (x)| < γ (x) and limn→∞

(
δ(x)
γ(x)

)n
= 0. This completes the proof.

Theorem 2.6. Negative subscript terms of the bi-periodic generalized Fibonacci polynomial sequences are obtained
as

F−n (x) = (−1)n+1 (
1 (x)

)−n Fn (x) .

Proof. Using Binet formula for nth bi-periodic generalized Fibonacci polynomial given in Theorem 2.4,
we have

F−n (x) =

 a1−ξ(−n)

(ab)⌊
−n
2 ⌋

 γ−n (x) − δ−n (x)
γ (x) − δ (x)

= (−1)

 a1−ξ(−n)

(ab)⌊
−n
2 ⌋

 γn (x) − δn (x)(
−1 (x) ab

)n (
γ (x) − δ (x)

)
= (−1)

(
−1 (x)

)−n

 a1−ξ(n)

(ab)⌊
n
2 ⌋

 γn (x) − δn (x)
γ (x) − δ (x)

= (−1)n+1 (
1 (x)

)−n Fn (x)
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where γ (x) δ (x) = −1 (x) ab. Thus, the proof is completed.
Now we present some basic identities for the bi-periodic generalized Fibonacci polynomials, such as

Catalan’s identity, Cassini’s identity and d’Ocagne’s identity.

Theorem 2.7. (Catalan’s Identity) Let n and r be nonnegative integers. For n ≥ r, we have

aξ(n−r)b1−ξ(n−r)Fn−r (x)Fn+r (x) − aξ(n)b1−ξ(n)Fn
2 (x) = −

(
−1 (x)

)n−r aξ(r)b1−ξ(r)Fr
2 (x)

where Fn (x) is the nth bi-periodic generalized Fibonacci polynomial.

Proof. Using Binet formula for nth bi-periodic generalized Fibonacci polynomial given in Theorem 2.4,
we have

aξ(n−r)b1−ξ(n−r)Fn−r (x)Fn+r (x) − aξ(n)b1−ξ(n)Fn
2 (x)

= aξ(n−r)b1−ξ(n−r)

 a1−ξ(n−r)

(ab)⌊
n−r

2 ⌋

  a1−ξ(n+r)

(ab)⌊
n+r

2 ⌋

 (γn−r (x) − δn−r (x)
γ (x) − δ (x)

) (
γn+r (x) − δn+r (x)
γ (x) − δ (x)

)
− aξ(n)b1−ξ(n)

 a1−ξ(n)

(ab)⌊
n
2 ⌋

  a1−ξ(n)

(ab)⌊
n
2 ⌋

 (γn (x) − δn (x)
γ (x) − δ (x)

) (
γn (x) − δn (x)
γ (x) − δ (x)

)
=

a2−ξ(n−r)b1−ξ(n−r)

(ab)⌊
n−r

2 ⌋+⌊
n+r

2 ⌋

γ2n (x) − γn−r (x) δn+r (x) − δn−r (x)γn+r (x) + δ2n (x)(
γ (x) − δ (x)

)2


−

a2−ξ(n)b1−ξ(n)

(ab)2⌊ n
2 ⌋

γ2n (x) − 2γn (x) δn (x) + δ2n (x)(
γ (x) − δ (x)

)2


=

a2−ξ(n−r)b1−ξ(n−r)

(ab)n−ξ(n−r)

γ2n (x) −
(
γ (x) δ (x)

)n−r
(
γ2r (x) + δ2r (x)

)
+ δ2n (x)(

γ (x) − δ (x)
)2


−

a2−ξ(n)b1−ξ(n)

(ab)n−ξ(n)

γ2n (x) − 2
(
γ (x) δ (x)

)n + δ2n (x)(
γ (x) − δ (x)

)2


=

a
(ab)n−1

−
(
γ (x) δ (x)

)n−r
(
γ2r (x) + δ2r (x)

)
+ 2

(
γ (x) δ (x)

)n(
γ (x) − δ (x)

)2


=
−a

(
γ (x) δ (x)

)n−r

(ab)n−1

(
γr (x) − δr (x)
γ (x) − δ (x)

)2

=
−a

(
−1 (x) ab

)n−r

(ab)n−1

(ab)2⌊ r
2 ⌋

a2−2ξ(r)
Fr

2 (x)

= −
(
−1 (x)

)n−r a (ab)2⌊ r
2 ⌋

(ab)ξ(r)+2⌊ r
2 ⌋−1 a2−2ξ(r)

Fr
2 (x)

= −
(
−1 (x)

)n−r aξ(r)b1−ξ(r)Fr
2 (x)

where ξ (n) = n − 2
⌊

n
2

⌋
and

⌊
n−r

2

⌋
+

⌊
n+r

2

⌋
= n − ξ (n − r). This completes the proof.

Theorem 2.8. (Cassini’s Identity) Let n be nonnegative integer. Then, we have(a
b

)ξ(n−1)
Fn−1 (x)Fn+1 (x) −

(a
b

)ξ(n)
Fn

2 (x) = −
(
−1 (x)

)n−1 a
b

Proof. The proof can be seen in an obvious way by taking r = 1 in the Catalan’s identity.
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Theorem 2.9. (d’Ocagne’s Identity) Let n and r be nonnegative integers. For n ≥ r, we have

aξ(nr+n)bξ(nr+r)Fn (x)Fr+1 (x) − aξ(nr+r)bξ(nr+n)Fn+1 (x)Fr (x) =
(
−1 (x)

)r aξ(n−r)Fn−r (x)

where Fn (x) is the nth bi-periodic generalized Fibonacci polynomial.

Proof. Using Binet formula for nth bi-periodic generalized Fibonacci polynomial given in Theorem 2.4,
we have

aξ(nr+n)bξ(nr+r)Fn (x)Fr+1 (x) − aξ(nr+r)bξ(nr+n)Fn+1 (x)Fr (x)

= aξ(nr+n)bξ(nr+r)

 a1−ξ(n)

(ab)⌊
n
2 ⌋

  a1−ξ(r+1)

(ab)⌊
r+1

2 ⌋

 (γn (x) − δn (x)
γ (x) − δ (x)

) (
γr+1 (x) − δr+1 (x)
γ (x) − δ (x)

)
− aξ(nr+r)bξ(nr+n)

 a1−ξ(n+1)

(ab)⌊
n+1

2 ⌋

  a1−ξ(r)

(ab)⌊
r
2 ⌋

 (γn+1 (x) − δn+1 (x)
γ (x) − δ (x)

) (
γr (x) − δr (x)
γ (x) − δ (x)

)
=

abξ(nr+r)a1−ξ(n)−ξ(r+1)+ξ(nr+n)

(ab)⌊
n
2 ⌋+⌊

r+1
2 ⌋

 γn+r+1 (x) − γn (x) δr+1 (x) − δn (x)γr+1 (x) + δn+r+1 (x)(
γ (x) − δ (x)

)2


−

abξ(nr+n)a1−ξ(n+1)−ξ(r)+ξ(nr+r)

(ab)⌊
n+1

2 ⌋+⌊
r
2 ⌋

γn+r+1 (x) − γn+1 (x) δr (x) − δn+1 (x)γr (x) + δn+r+1 (x)(
γ (x) − δ (x)

)2


=

abξ(nr+r)aξ(n−r)−ξ(nr+n)

(ab)
n−r−ξ(n−r)

2 +ξ(nr+r)+r

γn+r+1 (x) + δn+r+1 (x) −
(
γ (x) δ (x)

)r
(
γ (x) δn−r (x) + δ (x)γn−r (x)

)
(
γ (x) − δ (x)

)2


−

abξ(nr+n)aξ(n−r)−ξ(nr+r)

(ab)
n−r−ξ(n−r)

2 +ξ(nr+n)+r

γn+r+1 (x) + δn+r+1 (x) −
(
γ (x) δ (x)

)r
(
γn−r+1 (x) + δn−r+1 (x)

)
(
γ (x) − δ (x)

)2


=

abξ(nr+r)aξ(nr+r)

(ab)
n−r−ξ(n−r)

2 +ξ(nr+r)+r

γn+r+1 (x) + δn+r+1 (x) −
(
γ (x) δ (x)

)r
(
γ (x) δn−r (x) + δ (x)γn−r (x)

)
(
γ (x) − δ (x)

)2


−

abξ(nr+n)aξ(nr+n)

(ab)
n−r−ξ(n−r)

2 +ξ(nr+n)+r

γn+r+1 (x) + δn+r+1 (x) −
(
γ (x) δ (x)

)r
(
γn−r+1 (x) + δn−r+1 (x)

)
(
γ (x) − δ (x)

)2


=

a (ab)−r

(ab)
n−r−ξ(n−r)

2


(
γ (x) δ (x)

)r
(
−γ (x) δn−r (x) − δ (x)γn−r (x) + γn−r+1 (x) + δn−r+1 (x)

)
(
γ (x) − δ (x)

)2


=

a (ab)−r

(ab)⌊
n−r

2 ⌋

 (−1 (x) ab
)r (γ (x) − δ (x)

) (
γn−r (x) − δn−r (x)

)(
γ (x) − δ (x)

)2


=

a
(
−1 (x)

)r

(ab)⌊
n−r

2 ⌋

(
γn−r (x) − δn−r (x)
γ (x) − δ (x)

)
=

(
−1 (x)

)r aξ(n−r)Fn−r (x)

where

ξ (n) + ξ (r + 1) − 2ξ (nr + n) = ξ (n + 1) + ξ (r) − 2ξ (nr + r) = 1 − ξ (n − r)

ξ (n − r) = ξ (nr + n) + ξ (nr + r)
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n − r − ξ (n − r)
2

+ ξ (nr + r) + r =
⌊n

2

⌋
+

⌊ r + 1
2

⌋
n − r − ξ (n − r)

2
+ ξ (nr + n) + r =

⌊n + 1
2

⌋
+

⌊ r
2

⌋
n − r − ξ (n − r)

2
=

⌊n − r
2

⌋
.

This completes the proof.

3. Conclusion and Suggestion

The most interesting applications of the Fibonacci numbers have been on its generalizations, also called
families of Fibonacci numbers. Large classes of polynomials are emerged as the well-known generalization
of Fibonacci numbers. In this paper, the bi-periodic generalized Fibonacci polynomials, which generalize
well-known Fibonacci polynomials, the h(x)-Fibonacci polynomials, the Fibonacci polynomials with two
variable, the Pell polynomials, the Jacobsthal polynomials, the Fermat polynomials, the Chebyshev second
kind polynomials, the Morgan-Voyce first kind polynomials, the Vieta polynomials, are defined. Also the
bi-periodic Fibonacci polynomials, the bi-periodic h(x)-Fibonacci polynomials, the bi-periodic Fibonacci
polynomials with two variable, the bi-periodic Pell polynomials, the bi-periodic Jacobsthal polynomials,
the bi-periodic Fermat polynomials, the bi-periodic Chebyshev second kind polynomials, the bi-periodic
Morgan-Voyce first kind polynomials, the bi-periodic Vieta polynomials are presented. Binet formulas that
allow us to calculate the nth term of these polynomial sequences and some properties of their consecutive
terms are given. Also generating functions, Catalan’s identity, Cassini’s identity, and d’Ocagne’s identity
are obtained.

It would be interesting to study these polynomials in matrix theory. More general formulas that allow
us to calculate the nth terms of these polynomial sequences and sums formulas can be explored.
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Abstract. In this study, we characterize Frenet curves in 3-dimensional normal almost contact pseudo-
metric manifolds. We give Frenet equations and the Frenet elements of such curves. Also, we obtain
the curvatures of non-geodesic Frenet curves on 3-dimensional almost contact pseudo-metric manifolds.
Finally we present some corollaries about these curves.

1. Introduction

The differential geometry of curves on manifolds is an attractive topic in differential geometry. Especially
the curves in contact and para-contact manifolds drew attention and studied by many authors. Olszak [10],
gave the conditions for an a.c.m structure on a manifold to be normal and gave examples for this structure.

Welyczko [14], gave some of the results for Legendre curves to the case of 3-dimensional normal a.c.m.
manifolds, especially, quasi-Sasakian manifolds. Acet and Perktaş [1] obtained curvature and torsion of
Legendre curves in 3-dimensional (ε, δ) trans-Sasakian manifolds.

Yıldırım [15] obtained the curvatures of non-geodesic Frenet curves on three dimensional normal al-
most contact manifolds and gave some results for these characterizations. De and Mondal [6] studied
ξ-projectively flat and φ-projectively flat 3-dimensional normal almost contact metric manifolds and gave
an illustrative example.

Calvaruso and Perrone [3] introduced a systematic study of contact structures with pseudo-Riemannian
associated metrics, emphasizing analogies and differences with respect to the Riemannian case. In partic-
ular, they classified contact pseudo-metric manifolds of constant sectional curvature, three dimensional lo-
cally symmetric contact pseudo-metric manifolds and three-dimensional homogeneous contact Lorentzian
manifolds.

Takahashi [11] defined Sasakian manifold with pseudo-Riemannian metric and discussed the classifi-
cation of Sasakian manifolds. Venkatesha V. [13] examined 3-dimensional normal almost contact pseudo-
metric manifold and gave the conditions for these manifolds to be normal. studied the almost contact
pseudo-metric manifolds of dimension three which are normal and derived certain necessary and sufficient
conditions for an almost contact pseudo-metric manifold to be normal.

This paper is organized as: Section 2 with three subsections, we give basic definitions and propositions of
an almost contact pseudo-metric manifold. In the second subsection we give the properties of 3-dimensional
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almost contact pseudo-metric manifolds. We give Frenet equations of a curve in 3-dimensional almost
contact pseudo-metric manifolds in the last subsection of this section.

We finally give the Frenet elements of a Frenet curve in such manifolds and give corollaries for the
Frenet curves in the third section.

2. Preliminaries

2.1. Normal Almost Contact Pseudo-metric Manifolds

A (2n + 1)-dimensional smooth connected manifold M is said to be an almost contact manifold if there
exists on M a (1,1) tensor field φ, a vector field ξ and a 1-form η such that [2]

φ2 = −I + η ⊗ ξ, η(ξ) = 1, (1)
φ(ξ) = 0, η ◦ φ = 0.

If an almost contact manifold is endowed with a pseudo-Riemannian metric g such that

1̄(φX, φY) = 1̄(X,Y) − εη(X)η(Y), (2)

where ε = ∓1, for all X,Y ∈ TM, then (N̄, φ, ξ, η, 1̄) is called an almost contact pseudo-metric manifold[13].
From (2) we have

η(X) = ε1̄(X, ξ) and 1̄(φX,Y) = −1̄(X, φY). (3)

In particular, for an almost contact pseudo-metric manifold 1̄(ξ, ξ) = ε. Thus, the characteristic vector field
ξ is a unit vector field, which is either spacelike or timelike, but cannot be ligtlike. The fundamental 2-form
of an almost contact pseudo-metric manifold (N̄, φ, ξ, η, 1̄) is defined by

Φ(X,Y) = 1̄(X, φ(Y)), (4)

where η ∧ Φn , 0[13]. An almost contact pseudo-metric manifold is said to be contact pseudo-metric
manifold if dη = Φ, where

dη(X,Y) =
1
2
(
Xη(Y) − Yη(X) − η([X,Y])

)
. (5)

[3]In an almost contact pseudo-metric manifold (N̄, φ, ξ, η, 1̄) there always exists a special kind of local
pseudo-orthonormal basis

{
ei, φei, ξ

}n
i=1, called a local φ-basis.

Let N̄ be a (2n+1)-dimensional almost contact pseudo-metric manifold with structure (φ, ξ, η) and
consider the manifold N̄ ×R. We denote a vector field on N̄ ×R by X, f d

dt , where X ∈ TN̄, t is the coordinate
onℜ and f is a C∞ function on N̄ × R. Then the structure J on N̄ × R defined by

J(X, f
d
dt

) = (φX − fξ, η(X)
d
dt
, (6)

is an almost complex structure. If the almost complex structure J is integrable, then we say that the almost
contact pseudo-metric structure (φ, ξ, η) is normal. Necessary and sufficient condition for integrability of J
is

[φ,φ] + 2dη ⊗ ξ = 0, (7)

where [φ,φ] is the Nijenhius torsion of φ.[3]

Proposition 2.1. [12] An almost contact pseudo-metric manifold is normal if and only if

(∇φXφ)Y − φ(∇Xφ)Y + (∇Xη)(Y)ξ = 0, (8)

where ∇ is the Levi-Civita connection.
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2.2. Three dimensional normal almost contact pseudo-metric(n.a.c.p-m) manifold
Lemma 2.2. [13] A three dimensional n.a.c.p-m manifold N̄ is normal if and only if

∇φXξ = φ∇Xξ. (9)

Theorem 2.3. [13] For a three dimensional n.a.c.p-m manifold N̄, the following three conditions are mutually
equivalent:
(1) N̄ is normal
(2) there exist smooth functions α, β on N̄ such that

∇Xξ = α
{
X − η(X)ξ

}
− βφX, (10)

(3) there exist smooth functions α, β on N̄ such that

(∇Xφ)Y = α
{
ε1̄(φX,Y)ξ − η(Y)φX

}
+ β

{
ε1̄(X,Y)ξ − η(Y)X

}
. (11)

In particular, the functions appearing above are given by

2α = div(ξ), 2β = tr(φ∇X). (12)

Corollary 2.4. [13] For a three dimensional n.a.c.p-m manifold, the vector field ξ is geodesic, i.e., ∇ξξ = 0 and
dη = εβΦ.

From (11) we can give the following definition.

Definition 2.5. [13] A three dimensional n.a.c.p-m manifold is called
(i) cosymplectic if α = β = 0,
(ii) quasi-Sasakian if α = 0 and β , 0, and β-Sasakian pseudo-metric manifold if α = 0 and β is non-zero constant.
If β = ε it is the Sasakian pseudo-metric manifold,
(iii) an almost α-Kenmotsu pseudo-metric manifold if β = 0 and α , 0, and α-Kenmotsu pseudo-metric manifold if
β = 0 and α is a non-zero constant. If α = 1 it is the Kenmotsu pseudo-metric manifold.

Lemma 2.6. [13] For a three dimensional n.a.c.p-m manifold ξ(β) + 2αβ = 0 holds.

2.3. Frenet Curves
Let N̄ be a three dimensional n.a.c.p-m manifold with Levi-Civita connection ∇ and ϑ : I → N̄ be a

unit speed curve parametrized by arc length s in N̄ where I is an open interval. A unit speed curve ϑ is
called timelike or spacelike if its casual character is -1 or 1, respectively. Also, ϑ is called a Frenet curve if
1̄(ϑ

′

, ϑ
′

) , 0. A Frenet curve ϑ admits an orthonormal frame field {t = ϑ′ ,n, b} along ϑ. Then the following
Frenet equations holds:

∇ϑ′ t =κn,
∇ϑ′n = − κt + ετb,
∇ϑ′ b = − ετn,

where κ = |∇ϑ′ϑ
′

| is the geodesic curvature of ϑ and τ is geodesic torsion. The vector fields t, n and b
are called the tangent vector field, the principal normal vector field and the binormal vector field of ϑ,
respectively.
A Frenet curve ϑ is a geodesic if and only if κ = 0. A Frenet curve ϑ with constant geodesic curvature and
zero geodesic torsion is called a pseudo-circle. A pseudo-helix is a Frenet curve ϑwhose geodesic curvature
and torsion are constant.

A curve in a 3-dimensional n.a.c.p-m manifold is said to be slant if its tangent vector field has constant
angle with the Reeb vector field,i.e.η(ϑ′) = ε1̄(ϑ′, ξ) = cosθ = constant. If the condition η(ϑ′) = ε1̄(ϑ′, ξ) = 0
holds then ϑ is a Legendre curve[14].
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3. Main Results

Let us consider a 3-dimensional normal almost contact pseudo-metric manifold N̄. Let ϑ : I → N̄ be a
non-geodesic (κ , 0) Frenet curve given with the arc-parameter s and ∇̄ be the Levi-Civita connection on
N̄. From the basis (ϑ

′

, φϑ
′

, ξ) we obtain an orthonormal basis {z1, z2, z3} defined by

z1 =ϑ
′

,

z2 =
φϑ

′√
1 − εϱ2

,

z3 =
ξ − εϱϑ

′√
1 − εϱ2

,

(13)

where
η(ϑ

′

) = ε1̄(ϑ
′

, ξ) = εϱ. (14)

Moreover we have
∇̄ϑ′ z1 = νz2 + µz3 (15)

such that
ν = 1̄(∇̄ϑ′ z1, z2) (16)

is a function. Then we obtain µ by

µ = 1̄(∇̄ϑ′ z1, z3) =
εϱ′√

1 − εϱ2
− α

√
1 − εϱ2. (17)

So, we have

∇̄ϑ′z2 = −νz1 +

β − ε ϱν√
1 − εϱ2

 z3 (18)

and

∇̄ϑ′z3 = −µz1 −

β − ε ϱν√
1 − εϱ2

 z2. (19)

The fundamental forms of the tangent vector ϑ′ on the basis of the equation (13) is

[ωi j(ϑ′)] =


0 ν µ
−ν 0 −β + ε ϱν

√
1−εϱ2

−µ β − ε ϱν
√

1−εϱ2
0

 (20)

and the Darboux vector connected to the vector ϑ′ is

ω(ϑ′) =

−β + ε ϱν√
1 − εϱ2

 z1 − µz2 + νz3. (21)

Then, we have
∇̄ϑ′zi = ω(ϑ′) ∧ εzi (1 ≤ i ≤ 3). (22)

Furthermore, for any vector field Z =
∑3

i=1 θ
izi ∈ χ(N̄) is strictly dependent on the curve ϑ on N̄, there exists

the following equation

∇̄ϑ′Z = ω(ϑ′) ∧ Z + ε
3∑

i=1

zi[θi]zi. (23)
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3.1. Frenet Elements of the curve ϑ
Let ϑ : I → N̄ be a non-geodesic (κ , 0) Frenet curve given with the arc parameter s and the elements

{t,n, b, κ, τ}.
From (15) we have

κn = ∇̄ϑ′z1 = νz2 + µz3. (24)

From the equations (17) and (23) we find

κ =

√√
ν2 +

 εϱ′√
1 − εϱ2

− α
√

1 − εϱ2

2

. (25)

On the other hand

∇̄ϑ′n =
(
ν
εκ

)′
z2 +

ν
εκ
∇ϑ′z2 +

( µ
εκ

)′
z3 +

µ

εκ
∇ϑ′z3

= − κt + ετB.
(26)

By using the equations (18) and (19) we find

τb =

( νεκ )′ + µεκ
β − ε ϱν√

1 − εϱ2

 z2

+

( µεκ )′ + νεκ
β − ε ϱν√

1 − εϱ2

 z3.

(27)

By a direct computation we find following equation[(
ν
εκ

)′]2

+
[( µ
εκ

)′]2

=
[
−

(
ν
εκ

)′ µ
εκ
+
ν
εκ

( µ
εκ

)′]2

. (28)

If we take the norm of the this equation and use the equations (17) and (28) in (27) we get

τ =

∣∣∣∣∣∣∣∣∣∣∣∣
β − ε ϱν√

1 − εϱ2

 −
√√√√√√√√√[(

ν
εκ

)′]2

+




εϱ′
√

1−εϱ2
− α

√
1 − εϱ2

εκ


′

2
∣∣∣∣∣∣∣∣∣∣∣∣ . (29)

Theorem 3.1. Let N̄ be a three dimensional n.a.c.p-m manifold and ϑ be a Frenet curve on N̄. Then t, n and b can
be given as

t =ϑ′ = z1,

n =
ν
εκ

z2 +
µ

εκ
z3,

b =
1
ετ

( νκ )′ − µκ
β − ε ϱν√

1 − εϱ2

 z2

+
1
ετ

(µκ )′ + νκ
β − ε ϱν√

1 − εϱ2

 z3.

(30)

Moreover we can write

ξ = εϱt +
µ
√

1 − εϱ2

κ
n − ε

√
1 − εϱ2

τ

(µκ )′ + νκ
β − ε ϱν√

1 − εϱ2

 b. (31)
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Theorem 3.2. Let N̄ be a three dimensional n.a.c.p-m manifold and ϑ be a Frenet curve on N̄. ϑ is a slant curve on
N̄ if and only if the Frenet elements {t,n, b, κ, τ} of this curve ϑ are as follows

t =z1 = ϑ
′,

n =z2 =
φϑ′

√

1 − εcos2θ
,

b =z3 =
ξ − εcosθϑ′
√

1 − εcos2θ
,

κ =
√
α2(1 − εcos2θ) + ν2,

τ =

∣∣∣∣∣∣∣∣∣
(
β − ε

cosθν
√

1 − ε cos2 θ

)
−

√√[(
ν
εκ

)′]2

+

α√1 − ε cos2 θ
εκ

′2
∣∣∣∣∣∣∣∣∣ .

(32)

Proof. Let the curve ϑ be a slant curve on N̄. By considering the condition ϱ = η(ϑ′) = cosθ = constant in the
equations (13), (25) and (29) we arrive at (32). If (32) holds, it is obvious from the definition of slant curves,
ϑ is slant.

From Theorem 3.2, we easily give the above corollaries.

Corollary 3.3. Let N̄ be a three dimensional n.a.c.p-m manifold and ϑ be a slant curve on N̄. If κ is a non-zero

constant, then τ =
∣∣∣∣∣(β − ε cosθν

√

1−ε cos2 θ

)∣∣∣∣∣ and ϑ is a pseudo-helix on N̄.

Corollary 3.4. Let N̄ be a three dimensional n.a.c.p-m and ϑ be a slant curve on this manifold N̄. If κ is not constant
and τ = 0 then ϑ is a plane curve on N̄ and the following equation satisfies

1̄(∇ϑ′z2, z3) =
ν2(αν )′

√

1 − ε cos2 θ

ν2 + α2(1 − ε cos2 θ)
. (33)

Theorem 3.5. Let N̄ be a three dimensional n.a.c.p-m manifold and ϑ be a Frenet curve on N̄. ϑ is a Legendre
curve(ϱ = η(ϑ′) = 0) on this manifold if and only if the Frenet elements {t,n, b, κ, τ} of this curve ϑ are as follows

t =z1 = ϑ
′,

n =z2 = φϑ
′,

b =z3 = ξ,

κ =
√

ν2 + α2,

τ =

∣∣∣∣∣∣∣∣β −
√[(

ν
εκ

)′]2

+
[(
α
εκ

)′]2
∣∣∣∣∣∣∣∣ .

(34)

Proof. Let the curve ϑ be a Legendre curve on N̄. By considering ϱ = η(ϑ′) = 0 in the equations (13), (25)
and (29) we arrive at(34). If the equations in (34) hold, from the definition of Legendre curves it is obvious
that the curve ϑ is a Legendre curve on N̄.

Corollary 3.6. Let the curve ϑ is a Legendre curve in three dimensional n.a.c.p-m manifold N̄. If κ is non-zero
constant and τ = 0 then ϑ is a plane curve on N̄ and β = 0.

Moreover we can give the following corollaries.
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Corollary 3.7. Let N̄ be a three dimensional n.a.c.p-m manifold and ϑ be a Frenet curve on this manifold. If N̄ is
cosymplectic, then from the equations (25) and (29) the curvatures of ϑ are

κ =

√√
ν2 +

 εϱ′√
1 − εϱ2

2

(35)

and

τ =

∣∣∣∣∣∣∣∣∣ε
ϱν√

1 − εϱ2
+

√√√[(
ν
κ

)′]2

+

 ϱ′

κ
√

1 − εϱ2

′2
∣∣∣∣∣∣∣∣∣ . (36)

i) If ϑ is a slant, then we get

κ = ν and τ =

∣∣∣∣∣∣ε cosθ
√

1 − ε cos2 θ

∣∣∣∣∣∣κ. (37)

ii) If ϑ is a Legendere curve, then we get
κ = ν and τ = 0. (38)

Corollary 3.8. Let ϑ be a curve on three dimensional quasi Sasakian pseudo-metric manifold N̄. Then, the curvatures
of ϑ are

κ =

√√
ν2 +

 εϱ′√
1 − εϱ2

2

(39)

and

τ =

∣∣∣∣∣∣∣∣∣β − ε
ϱν√

1 − εϱ2
+

√√√[(
ν
κ

)′]2

+

 ϱ′

κ
√

1 − εϱ2

′2
∣∣∣∣∣∣∣∣∣ . (40)

If the curve ϑ is a slant curve on N̄, then we get

κ = ν and τ =

∣∣∣∣∣∣β − ε cosθ
√

1 − ε cos2 θ

∣∣∣∣∣∣κ. (41)

If the curve ϑ is a Legendre curve on N̄, then we obtain

κ = ν and τ =
∣∣∣β∣∣∣ . (42)

Corollary 3.9. Let ϑ be a curve on three dimensional β-Sasakian pseudo-metric manifold N̄. Then, the curvatures of
ϑ are

κ =

√√
ν2 +

 εϱ′√
1 − εϱ2

2

(43)

and

τ =

∣∣∣∣∣∣∣∣∣β − ε
ϱν√

1 − εϱ2
+

√√√[(
ν
κ

)′]2

+

 ϱ′

κ
√

1 − εϱ2

′2
∣∣∣∣∣∣∣∣∣ . (44)

The curvatures of ϑ are

κ = ν and τ =

∣∣∣∣∣∣β − ε cosθ
√

1 − ε cos2 θ

∣∣∣∣∣∣κ (45)

where ϑ is a slant curve in three dimensional β-Sasakian pseudo-metric manifold N̄ and

κ = ν and τ =
∣∣∣β∣∣∣ (46)

where ϑ is a Legendre curve in three dimensional β-Sasakian pseudo-metric manifold N̄.
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Corollary 3.10. From (25) and (29) the curvatures of ϑ on tree dimensional Sasakian pseudo-metric manifold N̄ are

κ =

√√
ν2 +

 εϱ′√
1 − εϱ2

2

(47)

and

τ =

∣∣∣∣∣∣∣∣∣ε
1 − ε

ϱν√
1 − εϱ2

 −
√√√[(
ν
κ

)′]2

+

 ϱ′

κ
√

1 − εϱ2

′2
∣∣∣∣∣∣∣∣∣ . (48)

i) If ϑ is a slant curve, then we have

κ = ν and τ =

∣∣∣∣∣∣ε
(
1 − ε

cosθ
√

1 − ε cos2 θ

)∣∣∣∣∣∣κ. (49)

ii) If ϑ is a Legendere curve, then we get
κ = ν and τ = 1. (50)

Corollary 3.11. Let ϑ be a curve on three dimensional α-Kenmotsu pseudo-metric manifold N̄. Then the curvatures
of ϑ are

κ =

√√
ν2 +

 εϱ′√
1 − εϱ2

− α
√

1 − εϱ2

2

(51)

and

τ =

∣∣∣∣∣∣∣∣∣∣∣∣ε
ϱν√

1 − εϱ2
+

√√√√√√√√√[(
ν
κ

)′]2

+




εϱ′
√

1−εϱ2
− α

√
1 − εϱ2

ε2κ


′

2
∣∣∣∣∣∣∣∣∣∣∣∣ . (52)

If ϑ is a slant curve on N̄, then we obtain

κ =
√
ν2 + α2(1 − ε cos2 θ), (53)

τ =

∣∣∣∣∣∣∣∣∣ε
νcosθ

√

1 − ε cos2 θ
+

√√[(
ν
κ

)′]2

+

α√1 − ε cos2 θ
κ

′2
∣∣∣∣∣∣∣∣∣ . (54)

If ϑ is a Legendre curve on N̄, then we get

κ =
√

ν2 + α2 and τ =

√[(
ν
κ

)′]2

+
[(
α
κ

)′]2

. (55)

Corollary 3.12. Let ϑ be a curve on three dimensional Kenmotsu pseudo-metric manifold N̄. Then, the curvatures
of ϑ are

κ =

√√
ν2 +

 εϱ′√
1 − εϱ2

−

√
1 − εϱ2

2

(56)

and

τ =

∣∣∣∣∣∣∣∣∣∣∣∣ε
ϱν√

1 − εϱ2
+

√√√√√√√√√[(
ν
κ

)′]2

+




εϱ′
√

1−εϱ2
−

√
1 − εϱ2

ε2κ


′

2
∣∣∣∣∣∣∣∣∣∣∣∣ . (57)
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The curvatures of ϑ are

κ =
√
ν2 + (1 − ε cos2 θ), (58)

τ =

∣∣∣∣∣∣∣∣∣ε
νcosθ

√

1 − ε cos2 θ
+

√√[(
ν
κ

)′]2

+

 √1 − ε cos2 θ
κ

′2
∣∣∣∣∣∣∣∣∣ . (59)

where ϑ is a slant curve in three dimensional Kenmotsu pseudo-metric manifold N̄ and

κ =
√

ν2 + 1 and τ =

√[(
ν
κ

)′]2

+

[( 1
κ

)′]2

(60)

where ϑ is a Legendre curve in three dimensional Kenmotsu pseudo-metric manifold N̄.

4. Conclusion

In this paper we constructed the Frenet apparatus of a non-geodesic Frenet curve on three dimensional
normal almost contact pseudo-metric manifold. We gave some theorems about these curves and find their
Frenet elements {t,n, b, κ, τ}. Moreover we gave corollaries for these curves to be slant curve and Legendre
curve. So, we characterized some curves on three dimensional normal almost contact pseudo-metric
manifolds by using their Frenet elements.
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cYalova University, Çınarcık Vocational High School Yalova-TURKEY

Abstract. In this paper, we studied the spherical curves according to modified orthogonal frame with
torsion in 3 dimensional Euclidean space. We obtained the center, the radius and spherical condition of
spherical curves according to the 3 dimensional Euclidean space.

1. Introduction

The theory of curves is one of the most important areas of study in differential geometry.The concept of the
curve that Euler defined in plane moved to three-dimensional Euclidean space by Fujiwara (1914)[3]. It is
well known from the literature that; in order to examine the geometry of a given curve, Frenet equations
belonging to this curve must be known. These equations are also known as the Serret-Frenet equations,
and it can be understood whether a curve is planar or a line. Studies on this subject were first made for
space curves [1, 2]. Considering that the given curve can also be found on a surface, the geometry of these
types of curves has been investigated by many mathematicians on the subject [7, 8]. These investigations
have been made especially for curves on a sphere, which are called spherical curves [4, 9, 10]. Wong (1963)
stated that a global formulation of the condition for a curve to lie in a sphere [4]. This formülation has
taken its place as a necessary and sufficient condition for a curve to lie in a sphere in books written on
differential geometry. Wong (1972) reached an explicit characterization of spherical curves [5].Considering
the definition of the sphere, it is clear that the sphere is actually related to the given dot product. When the
subject is considered from this point of view, it can be thought that spherical curves can have very different
characterizations in Euclidean and semi-Euclidean spaces. In this study, the spherical curve studies, which
were done according to the Serret-Frenet frame previously defined in Euclidean space, which were done
according to modified orthogonal frame previously defined in Euclidean space, were made according to
the orthogonal frame modified with torsion, also defined in the Euclidean space [6].
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2. Preliminaries

We initially give the classical basic theorem of space curves in 3 dimensional Euclidean space. We assume
that the curve β(u) in C3 is parametrized by arc-length. In addition we suppose that its curvature κ(s) never
vanish. Then orthonormal frame {t,n, b}which satisfies the Frenet-Serret equation is as follows: t′ (s)

n′ (s)
b′ (s)

 =
 0 κ(s) 0
−κ(s) 0 τ(s)

0 −τ(s) 0


 t(s)

n(s)
b(s)

 (1)

in which t,n, b are the unit tangent, principal normal and binormal vectors, respectively, and τ(s) is the
torsion. Then an orthonormal frame {t,n, b} exists satisfying the equation (2.1). Now we assume that the
curvature κ(s) of β is not identically zero. We define an orthogonal frame {T,N,B} by

T =
dβ
ds
,N =

dT
ds
,B = T ∧N

in which ∧ denotes the vector product. Then we can give the relation between {T,N,B} and {t,n, b} as
follows:

T = t
N = τn (2)
B = τb

From the definition of {T,N,B} or equation (2.2), we can write matrix form as:

 T′ (s)
N′

(s)
B′ (s)

 =


0 κ(s)
τ(s) 0

−κ(s)τ(s) τ
′
(s)
τ(s) τ(s)

0 −τ(s) τ
′
(s)
τ(s)


 T

N
B

 (3)

In addition to, {T,N,B} satisfies:

⟨T,T⟩ = 1, ⟨N,N⟩ = ⟨B,B⟩ = τ2

⟨T,N⟩ = ⟨T,B⟩ = ⟨N,B⟩ = 0

in which ⟨, ⟩ represents the Euclidean inner product [6].

3. Spherical Curves With Modified Orthogonal Frame With Torsion

Definition 3.1. Let β be in E3 given by coordinate neighborhood (I, β). If β ⊂E3 then β is defined by a spherical
curve of E3 [6].

Definition 3.2. The sphere having sufficiently close common four points at m ∈ β the curve β ⊂E3 is called the
osculating sphere or curvature sphere of the curve β at the point m ∈ β [6].

Theorem 3.3. Assume that β is in E3 given with coordinate neighborhood (I, β). The geometric locus of the centers
of the spherical curves with 3-contact points with the curve β providing the modified orthogonal frame with torsion
vectors {T,N,B} at the point β(s), s ∈ I is

a(s) = β(s) +m2(s)N(s) +m3(s)B(s)

in which
m2 : I→ R,m2(s) =

1
κτ
, and m3(s) =

±1
κτ

√

r2k2 − 1.
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Proof. Let (I, β) be a coordinate neighborhood, s is arc length parameter. Let also a be the center and, r be
the radius of the sphere with 3-contact points with β. From this, let us consider

f : I→ R

s→ f (s) =
〈
a − β(s), a − β(s)

〉
− r2 (4)

Since
f (s) = f

′

(s) = f
′′

(s) = 0 (5)

at the point β(s), then the sphere

S2 =
{
x ∈ E3 : ⟨x − a, x − a⟩ = r2

}
, (x generic point of the sphere),

with the curve β at this point passes sufficiently close three points. Therefore, considering equations (3.1)
and (3.2)

f (s) =
〈
a − β(s), a − β(s)

〉
− r2 = 0

f
′

(s) = 0 =⇒
〈
T, a − β(s)

〉
= 0

is obtained. From this, since f ′′ (s) = 0, we get〈
T
′

, a − β(s)
〉
+

〈
T,−β′(s)

〉
= 0

is obtained. Considering equation (2.3) with this, we have〈
N, a − β(s)

〉
=
τ
κ

On the other words, for the base {T,N,B},

a − β(s) = m1(s)T(s) +m2(s)N(s) +m3(s)B(s) (6)

is obtained. But, from using using equation (3.2), we have

m1(s) =
〈
a − β(s),T(s)

〉
= 0 (7)

and
m2(s)τ2 =

〈
a − β(s),N(s)

〉
=⇒ m2 =

1
κτ

(8)

With the assistance of f (s) = 0, we have〈
a − β(s), a − β(s)

〉
= r2

→ m2
1(s) +m2

2(s)τ2 +m2
3(s)τ2 = r2 (9)

Considering equation (3.4) and equation (3.5),we have

m3(s) =
±1
κτ

√

r2k2 − 1 = λ ∈ R (10)

Therefore, subtituting equations (3.4), (3.5) and (3.7) into equation (3.3)

a(s) = β(s) +
1
κτ

N(s) ±
1
κτ

√

r2k2 − 1B(s)

Thus, the proof of the theorem is completed.

Corollary 3.4. Assume that β is in E3 given by coordinate neighborhood (I, β). Then the centers of the spheres with
3-contact points with the β at the points β(s) ∈ β lie on a straight line.



N. Yuksel, M. K. Karacan, T. Demirkıran / TJOS 7 (3), 177–184 180

Proof. From Theorem 1, we have

a(s) = β(s) +
1
κτ

N(s) + λB(s)

The equation with λ parameter denotes a line which pass through the point
C(s) = β(s) + 1

κτN(s) and is parallel to the B.

Definition 3.5. The line a(s) = β(s)+ 1
κτN(s)+λB(s) is the geometric locus of the centers of the spheres with 3-contact

points with the curve at β ⊂E3 at the point m ∈ β is called curvature the axis at the point m ∈ β of curve β⊂E3. The
point

C(s0) = β(s0) +
1
κτ

N(s0)

on curvature the axis is called curvature the center at the point m = β(s0) of curve β ⊂E3.

Theorem 3.6. Assume that β is in E3 given with coordinate neighborhood (I, β). If

a(s) = β(s) +m2(s)N(s) +m3(s)B(s)

is the center of the osculating sphere at the point β(s) ∈ β then

m2(s) =
1
κτ

and m3(s) =
−κ

′

κ2τ2

Proof. The proof of the theorem is similar to the proof of Theorem 1. The osculating sphere with the curve
β have sufficiently close common four points. So, from f ′′ (s) = 0 in equation (3.2) thus f ′′′ (s) = 0. Then we
get

κ
′

κ
−
τ
′

τ
+
κ
τ

(−κτ
〈
T, a − β(s)

〉
+
τ
′

τ

〈
N, a − β(s)

〉
+ τ

〈
B, a − β(s)

〉
) = 0

Considering equations (3.4) and (3.5) in the last equality, we get

〈
B, a − β(s)

〉
=
−κ

′

κ2

or

m3(s) =
−κ

′

κ2τ2

Corollary 3.7. Suppose that β is inE3 given with coordinate neighborhood (I, β). The radius of the osculating sphere
is:

r =
√

(m2
2(s) +m2

3(s))τ2 =

√
1
κ2 +

(
κ′

τκ2

)2

Proof. From Theorem 1,
a(s) = β(s) +m2(s)N(s) +m3(s)B(s)

Therefore, we have

r =
∥∥∥a − β(s)

∥∥∥ = √
(m2

2 ⟨N,N⟩ +m2
3 ⟨B,B⟩ =

√
(m2

2(s) +m2
3(s))τ2 =

√
1
κ2 +

(
κ′

τκ2

)2
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Theorem 3.8. Let S2
0 be a sphere centered at zero and also β ⊂S2

0 be a spherical curve. In this case,

−m1(s) =
〈
β(s),T

〉
, −m2(s) =

〈
β(s),N

〉
τ2 and −m3(s) =

〈
β(s),B

〉
τ2

Proof. Since β ⊂S2
0 for all s ∈ I, and r is radius, then we have

−→
0 = β(s) +m1T +m2N +m3B

and 〈
β(s), β(s)

〉
= r2

Thus, by differentiation of the above equations with respect to s we have

−m1 =
〈
β(s),T

〉
= 0

by differentiation of the above equations with respect to s we have〈
β(s),N

〉
=
−τ
κ

and

−m2(s) =
〈
β(s),N

〉
τ2

and 〈
β(s),B

〉
=
κ
′

κ2

Thus, since −m3(s) = κ
′

κ2τ2 , we can write the last equality as

−m3(s) =
〈
β(s),B

〉
τ2

Theorem 3.9. S2
0 ⊂ E

3 be a sphere whose center is at the origin. If β is a curve on S2
0, then the osculating sphere of

the curve β at every point is S2
0.

Proof. suppose thet the curve β with (I, β) neighbouring coordinate such that s ∈ I is arclength parameter.
By Theorem 2

a(s) = β(s) +m2(s)N(s) +m3(s)B(s)

By Theorem 3, this expression can be written as

a(s) = β(s) −
〈
β(s),N

〉
τ2 N(s) −

〈
β(s),B

〉
τ2 B(s)

Since
〈
β(s),T

〉
= 0, we get

a(s) = β(s) −
〈
β(s),N

〉
τ2 N(s) −

〈
β(s),B

〉
τ2 B(s)

Thus we get
a = β(s) − β(s) = 0

This completes the proof of the theorem.

Theorem 3.10. Let β : I → E3 be a given curve whose τ , 0 for all s ∈ I and let m3(s) , 0. The radius of the
osculating sphere at the point β(s) is constant for all s ∈ I if and only if the centers of the osculating sphere are the
same point.
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Proof. =⇒ : By Corollary 2, we can write as follows

r2 = (m2
2(s) +m2

3(s))τ2

Since r=constant, by differentiation of with this equation respect to s, we have

(2m2m
′

2 + 2m3m
′

3)τ2 + 2ττ
′

(m2
2 +m2

3) = 0

or

m
′

3 +
τ
′

τ
m3 =

−τ
′

τ
m2

m3
m2 −

m2

m3
m
′

2

Inverting values m2 =
1
κτ ,m3 =

−κ
′

κ2τ2 and m′

2 =
−κ
′
τ+τ

′
κ

κ2τ2 in right side of the last equality, we obtain

m
′

3 +
τ
′

τ
m3 =

−1
κ
= −τm2

Finally, since m2 =
1
κτ , we get

m
′

3 +
τ
′

τ
m3 + τm2 = 0 (11)

Otherwise for base {T,N,B}we get

a(s) = β(s) +m1(s)T(s) +m2(s)N(s) +m3(s)B(s)

From derivative with respect to s of the last equality, we get

a
′

(s) = (1 − κτm2)T + (m
′

2 +m2
τ
′

τ
− τm3)N + (τm2 +m

′

3 +
τ
′

τ
m3)B (12)

Inverting values m2 =
1
κτ ,m3 =

−κ
′

κ2τ2 and m′

2 =
−κ
′
τ+τ

′
κ

κ2τ2 in right side of the last equality, we obtain

a
′

(s) = (τm2 +m
′

3 +
τ
′

τ
m3)B

So by Equation (3.8) m′

3 +
τ
′

τ m3 + τm2 = 0 we find a′ (s) = 0 and so a = constant for all s ∈ I.
Conversely, suppose that a(s) = constant for all s ∈ I. According to the equation〈

a(s) − β(s), a(s) − β(s)
〉
= r2,

taking differentiation of this equation with respect to s,we made

r(s)r
′

(s) = 0

Here, either r(s) = 0 or r′ (s) = 0. If r(s) = 0, then by Corollary 2, we have

(m2
2(s) +m2

3(s))τ2 = 0, τ , 0

or
m2

2(s) = −m2
3(s) = 0

But this contradicts the theorem. So r′ (s) = 0. Thus, r(s) is constant for all s ∈ I.

Theorem 3.11. Let β : I → E3 be a curve such that m3(s) , 0, for all s ∈ I and τ , 0. Then, the curve β lies on a
sphere if and only if the centers of the osculating spheres of the curve β are all the same point.
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Proof. Let β be a curve on S2
b which have the radius r and centered at any point b. By Theorem 4, the proof is

clear. Conversely, let the centers of the osculating curve be the point b in β(s) ∈ β all s ∈ I. Then by Theorem
5 all osculating spheres have the same radius r. Therefore

d(β(s), b) = r

for all s ∈ I. This completes the proof of the theorem.

Theorem 3.12. Let the curve β in E3 be given with coordinate neighborhood (I, β) and m3(s) , 0 , τ , 0 such that s
is a arclength parameter, then, β is a spherical curve if and only if

(
−κ

′

κ2τ2 )
′

−
τ
′

κ
′

κ2τ3 +
1
κ
= 0

Proof. Let β be a spherical curve. By Theorem 6 , for all s ∈ I, the center a(s) of the osculating spheres are
constant. Moreover, the equation (3.8) yields

m
′

3 +
τ
′

τ
m3 + τm2 = 0

or

(
−κ

′

κ2τ2 )
′

−
τ
′

κ
′

κ2τ3 +
1
κ
= 0

Conversely, let m′

3 +
τ
′

τ m3 + τm2 = 0 By Theorem 5 and a′ (s) = 0. Therefore a(s) = constant. So by Theorem
6, β is a spherical curve.

Example 3.13. Let the curve β such that c = 2
√

ab and r = a + b.

β(t) = (acost + bcos3t, asint − bsin3t, csin2t)

We find radius and center of the osculating sphere at the point t = 0. Since

β′(t) = (−asint − 3bsin3t, acost − 3bcos3t, 2ccos2t)∥∥∥β′(t)∥∥∥ = √
(a + 3b)2 + (ccos2t)2.

For t = 0, a = 1, b = 1, c = 2, r = 2, Since
∥∥∥β′(0)

∥∥∥ = 2
√

5 t is a arbitrary parameter. From this, we can find {t,n, b}
Frenet vectors.

t =
β
′∥∥∥β′∥∥∥ = (0,

−1
√

5
,

2
√

5
)

b =
β
′

(0) ∧ β
′′

(0)∥∥∥β′ (0) ∧ β′′ (0)
∥∥∥ = (0,

−2
√

5
,
−1
√

5
)

n = b ∧ t = (−1, 0, 0)

The curvature and torsion of the curve β are as follows:

κ =

∥∥∥β′ (0) ∧ β
′′

(0)
∥∥∥∥∥∥β′(0)

∥∥∥3 =
1
2

τ =
det(β′, β′′, β′′′)∥∥∥β′ (0) ∧ β′′ (0)

∥∥∥2 =
−9
25
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From this, we can find {T,N,B} Frenet vectors of the modified orthogonal frame with torsion.

T = t = (0,
−1
√

5
,

2
√

5
)

N = τn = (
9

25
, 0, 0)

B = τb = (0,
18

25
√

5
,

9

25
√

5
)

We can find coordinates of the center of the osculating sphere at the point β(0). From a(t) = β(t) + m2(t)N(t),
a(0) = (4, 0, 0).We can find the radius of the osculating sphere at the point β(0) as seen in Figure 1 .

r =
√

(m2
2(t) +m2

3(t))τ2 = 2

Figure.1. β spherical curve .

4. Conclusion

In this study , we obtained the center, the radius and spherical condition of spherical curves according to
modified orthogonal frame with torsion. An example of a spherical curve is given according to this frame.
The results obtained can also be found according to other frame, for future works.

References

[1] Carmo, M.D. Differential Geometry of Curves and Surfaces, Prentice-Hall, New Jersey, (1976).
[2] Milman, R.S., Parker, G.D. Elements of Differential Geometry, Prentice-Hall Inc., Englewood Clifs, New Jersey, (1977).
[3] Fujivara, M. On Space Curves Of Constant Breadth, Thoku Math. J., 5, 179-184, (1914).
[4] Wong, Y.C. A Global Formulation of the Condition for a curve to lie in a sphere, Monatsh.Math., 67, 363-365, (1963).
[5] Wong, Y.C. On an Explicit Characterization of Spherical Curves, Proc. Amer. Math. Soc., 34, 239-242, (1972).
[6] Bukcu, B., Karacan, M.K. Spherical Curves with Modified Orthogonal Frame, Journal of New Results in Science, (2016).
[7] Cakmak, A., Sahin, V. Characterizations of adjoint curves according to alternative moving frame, Fundamental Journal of

Mathematics and Applications, 5 (1) (2022) 42-50.
[8] Yuksel, N.,Vanlı, A., Damar, E. A New Approach For Geometric Properties of DNA Structure in E3, Life Science Journal,(2015)

12-2.
[9] Yuksel, N., Saltık, B., Damar, E. Spherical Images of Salkowski Curve in 3- Dimensional Minkowski Space, International Marmara

Scientific Research and Innovation Congress,(2022).
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Abstract. The main motivation of this study is to present new Hermite-Hadamard (HH) type inequalities
via a certain fractional operators. We establish two new identities and give new estimations of HH- type
inequalities for differentiable and convex mapping via Katugampola-fractional operators. Here, we gave
new Lemmas having identities for differentiable functions and construct related inequalities. Main findings
of this study would provide elegant connections and general variants of well known results established
recently. These results can be extended to different kinds of convex functions as well as pre-invex functions.

1. Introduction

Convexity is a very functional concept in programming, statistics and numerical analysis as in many
different branches of mathematics. In theory of inequality, the concept of convexity exists in the proof of
many classical inequalities, but has been a source of inspiration for many new and useful inequalities.

Definition 1.1. [22]. The function f : [c1, c2]→ℜ, is said to be convex, if we have

f (tκ + (1 − t)τ) ≤ t f (κ) + (1 − t) f (τ)

for all κ, τ ∈ [c1, c2] and t ∈ [0, 1].

In addition to the use of convex functions in many fields, inequality has increased its reputation in
theory with the Hermite-Hadamard inequality (See [22]). This celebrated inequality can be stated as: If a
mapping Υ : J ⊆ ℜ →ℜ is a convex function on J and r, s ∈ J, r < s, then

Υ
( r + s

2

)
≤

1
s − r

∫ s

r
Υ(λ)dλ ≤

Υ(r) + Υ(s)
2

.

Fractional calculus is a good expansion of the concept of derivative operator from integer order n to arbi-
trary order a. Fractional derivative operators are accepted as the inverse of fractional integral operators.
Recently, the multiplicity of applications in many fields of engineering, physics, statistics and mathematics
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has led to the study of fractional integrals by many researchers. The fact that they are a more effective tool
than the results in classical analysis has resulted in more use of these operators on real world problems.
Since the definition of the convex functions has been given as an inequality, this concept has established
a powerful link between convexity and inequalities. It is now become a trending aspect of mathematical
research to generalize classical known results via fractional integral operator. Although fractional analysis
is basically a generalization of classical analysis, it has developed rapidly with the concepts of fractional
order operators. Fractional analysis has recently become a popular topic with its applications in many fields
such as modeling, physics, approximation theory, engineering, control theory and mathematical biology,
based on applied mathematics problems (see [1], [3], [8], [9]-[11], [17], [18]-[21] and [23]-[26]).

Recently in [14], the author introduced a new concept to unify Riemann-Liouville and Hadamard frac-
tional integral operators which a certain general form for fractional integral operators. Also the conditions
are given so that the operator is bounded in an extended Lebesgue measurable space. The corresponding
fractional derivative approach to this new generalized operator can be seen in [15]. Moreover, Katugampola
worked for the Mellin transforms of the fractional integrals and derivatives (see [16]).

Definition 1.2. ([14]) Let [κ, τ] ⊂ ℜ be a finite interval. Then the left-sided and right-sided Katugampola fractional
integrals of order ξ > 0 of Υ ∈ Xνc (κν, τν) are defined as follows:

(νIξκ+Υ)(x) =
ν1−ξ

Γ(ξ)

∫ x

κ

Υ(λ)
(x − λ)1−ξ

λν−1dλ, x > κ

and

(νIξτ−Υ)(x) =
ν1−ξ

Γ(ξ)

∫ τ

x

Υ(λ)
(λ − x)1−ξ

λν−1dλ, x < τ,

with κ < x < τ and ν > 0, if the integrals exist.

Theorem 1.3. ([14]) If ξ > 0 and ν > 0, then for x > κ

1) lim ν→ 1(νIξκ+Υ)(x) = (Jξκ+Υ)(x)

2) lim ν→ (0+)(νIξκ+Υ)(x) = (Hξκ+Υ)(x).

The main motivation point of the study is to prove the HH type inequalities with specific and general
forms for the functions whose absolute values of derivatives are convex and concave functions with the
help of the fractional integral operator, which has a general kernel structure. The main results are reduced
to the results available in the literature in some special cases, as well as giving new approximations and
estimates for differentiable and convex functions. To obtain our results, we used some known proof methods
alongside classical inequalities such as the Hölder inequality, Power mean inequality, and Weighted Hölder
inequality.

2. Hermite-Hadamard Type inequalities for Katugampola-Fractional Integrals

We will start with the following identities that will be useful to prove our main findings via Katugampola
fractional integrals:
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Lemma 2.1. Let ξ ∈ (0, 1) and ν > 0 and f : [κν, τν] → ℜ be a twice differentiable mapping on (κν, τν) with
0 < κν < τν. Then the following equality holds for Katugampola fractional integral operators:

|A| =
2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)

=
(τν − κν)

4

[ ∫ 1

0
tνξtν−1 f

′
( tν

2
κν +

2 − tν

2
τν

)
dt +

∫ 1

0
tνξtν−1 f

′
( tν

2
τν +

2 − tν

2
κν

)
dt

]
=

(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
tν(ξ+1)tν−1 f

′′
( tν

2
κν +

2 − tν

2
τν

)
dt

+

∫ 1

0
tν(ξ+1)tν−1 f

′′
( tν

2
τν +

2 − tν

2
κν

)
dt

]
.

Proof. By applying integration by parts to the right hand side of the equality, we have

k1

=

∫ 1

0
tνξtν−1 f ′

( tν

2
κν +

2 − tν

2
τν

)
dt

= f ′
( tν

2
κν +

2 − tν

2
τν

) tν(ξ+1)

ν(ξ + 1)
|
1
0

−

∫ 1

0

tν(ξ+1)

ν(ξ + 1)
f ′′

( tν

2
κν +

2 − tν

2
τν

)
νtν−1

(κν − τν
2

)
dt

=
1

ν(ξ + 1)
f ′
(κν + τν

2

)
−

(
κν−τν

2

)
(ξ + 1)

∫ 1

0
tν(ξ+1)tν−1 f ′′

( tν

2
κν +

2 − tν

2
τν

)
dt.

Similarly, we can write

k2 =

∫ 1

0
tνξtν−1 f ′

( tν

2
τν +

2 − tν

2
κν

)
dt

=
1

ν(ξ + 1)
f ′
(κν + τν

2

)
−

(
τν−κν

2

)
(ξ + 1)

∫ 1

0
tν(ξ+1)tν−1 f ′′

( tν

2
τν +

2 − tν

2
κν

)
dt.

Now, by taking into account (k1 − k2),we obtain

(k1 − k2) (1)

=
(τν − κν)
2(ξ + 1)

[ ∫ 1

0
tν(ξ+1)tν−1 f ′′

( tν

2
κν +

2 − tν

2
τν

)
dt

+

∫ 1

0
tν(ξ+1)tν−1 f ′′

( tν

2
τν +

2 − tν

2
κν

)
dt

]
.

On the other hand, we have

I1 =

∫ 1

0
(tν)ξtν−1 f ′

( tν

2
κν +

2 − tν

2
τν

)
dt
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= (tν)ξtν−1
f
(

tν
2 κ
ν + 2−tν

2 τ
ν
)

νtν−1
(
κν−τν

2

) |
1
0 −

∫ 1

0
ξ(tν)ξ−1νtν−1

tν−1 f
(

tν
2 κ
ν + 2−tν

2 τ
ν
)

νtν−1
(
κν−τν

2

) dt

=
−2 f

(
κν+τν

2

)
ν(κν − τν)

+
2ξ+1ξΓ(ξ)

(τν − κν)ξ+1ν1−ξ

((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

))
.

By a similar way, it is easy to see that

I2 =

∫ 1

0
(tν)ξtν−1 f ′

( tν

2
τν +

2 − tν

2
κν

)
dt

=
2 f

(
κν+τν

2

)
ν(τν − κν)

−
2ξ+1ξΓ(ξ)

(τν − κν)ξ+1ν1−ξ

((ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
.

Thus,

(I1 − I2) (2)

=
−4 f

(
κν+τν

2

)
ν(τν − κν)

+
2ξ+1Γ(ξ + 1)
ν1−ξ(τν − κν)ξ+1

×

[((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τ
))
+ν Iξ(

κν+τν
2

)− f (κν)
]
.

Multiplying (1) and (2) by ν(τ
ν
−κν)
4 , we get the desired result.

Lemma 2.2. Let ξ ∈ (0, 1) and ν > 0 and f : [κν, τν] → ℜ be a twice differentiable mapping on (κν, τν) with
0 < κ < τ. Then, the following equality holds for Katugampola fractional integral operators:

|B| =
ν(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
(1 − tν)ξ+1tν−1 f ′′

(1 − tν

2
κν +

1 + tν

2
τν

)
dt

+

∫ 1

0
(1 − tν)ξ+1tν−1 f ′′

(1 − tν

2
τν +

1 + tν

2
κν

)
dt

]

=
2ξ−1Γ(ξ + 1)νξ

(τν − κν)ξ

[(ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

)
− f

(κν + τν
2

)]
.

Proof. By integration by parts for the right hand side of the equality, we have

I1 =

∫ 1

0
(1 − tν)ξ+1tν−1 f ′′

(1 − tν

2
κν +

1 + tν

2
τν

)
dt

=
−2 f ′(κ

ν+τν

2 )
ν(τν − κν)

+
2(ξ + 1)
τν − κν

−

[
2 f (κ

ν+τν

2 )
τν − κν

+
2ξ
τν − κν

∫ 1

0
(1 − tν)ξ−1tν−1 f (

1 − tν

2
κν +

1 + tν

2
τν)

]
.
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By changing of the variables, we get

I1 =

∫ 1

0
(1 − tν)ξ+1tν−1 f ′′

(1 − tν

2
κν +

1 + tν

2
τν

)
dt

=
−2 f ′(κ

ν+τν

2 )
ν(τν − κν)

+
2(ξ + 1)
τν − κν

×

[
−2 f (κ

ν+τν

2 )
τν − κν

+
2ξ+1ξ

(τν − κν)ξ+1

∫ τ

( κν+τν2 )
1
ν

(τν − uν)ξ−1uν−1 f (uν)du
]

Multiplying the resulting equality by Γ(ξ)ν
1−ξ

Γ(ξ)ν1−ξ ,we obtain

I1 =

∫ 1

0
(1 − tν)ξ+1tν−1 f ′′

(1 − tν

2
κν +

1 + tν

2
τν

)
dt

=
−2 f ′(κ

ν+τν

2 )
ν(τν − κν)

+
2(ξ + 1)
τν − κν

−

[
2 f (κ

ν+τν

2 )
τν − κν

+
2ξ+1ξΓ(ξ)

(τν − κν)ξ+1ν1−ξ

(ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)]
.

Similarly,

I2 =

∫ 1

0
(1 − tν)ξ+1tν−1 f ′′

(1 − tν

2
τν +

1 + tν

2
κν

)
dt

=
2 f ′(κ

ν+τν

2 )
ν(τν − κν)

+
2(ξ + 1)
τν − κν

−

[
2 f (κ

ν+τν

2 )
τν − κν

+
2ξ+1ξΓ(ξ)

(τν − κν)ξ+1ν1−ξ

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

)]
.

Namely,

I1 + I2

= −
8(ξ + 1) f (κ

ν+τν

2 )
ν(τν − κν)2 +

2ξ+2Γ(ξ + 2)
(vν − κν)ξ+2ν1−ξ

×

[(ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

)]

Now, multiplying both sides by ν(τ
ν
−κν)2

8(ξ+1) , we provide

ν(τν − κν)2

8(ξ + 1)

(
I1 + I2

)
= − f

(κν + τν
2

)
+

2ξ−1Γ(ξ + 1)νξ

(τν − κν)ξ
[(ν

Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

)]
.

Which completes the proof.
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Theorem 2.3. Suppose that f : [κν, τν]→ℜ be a twice differentiable function on (κν, τν) with 0 ≤ κ < τ. If | f ′′| is
convex function, then we have the following inequality for Katugampola fractional integral operators:

2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)

≤
(τν − κν)2

8(ξ + 1)

(
1

ν(ξ + 2)

)[
| f ′′(κν)| + | f ′′(τν)|

]
.

Proof. By using right hand side of the Lemma (2.1), we can write

|A| ≤
(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
tξν+νtν−1

[
tν

2

∣∣∣∣ f ′′(κν)∣∣∣∣ + 2 − tν

2

∣∣∣∣ f ′′(τν)∣∣∣∣]dt

+

∫ 1

0
tξν+ν

[
tν

2

∣∣∣∣ f ′′(τν)∣∣∣∣ + 2 − tν

2

∣∣∣∣ f ′′(κν)∣∣∣∣]dt
]
.

By making use of the necessary calculations, we get

|A| ≤
(τν − κν)2

8(ξ + 1)

(
1

ν(ξ + 2)

)[
| f ′′(κν)| + | f ′′(τν)|

]
.

Which completes the proof.

Theorem 2.4. Suppose that f : [κν, τν]→ℜ be a twice differentiable function on (κν, τν) with 0 ≤ κ < τ. If | f ′′| is
convex function, then we have the following inequality for Katugampola fractional integral operators:

2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)

≤
(τν − κν)2

8(ξ + 1)

(
1

νs(ξ + 2) − s + 1

) 1
q

[(
1

2(ν + 1)
| f ′′(κν)|r +

2ν + 1
2(ν + 1)

| f ′′(τν)|r
) 1

p

+

(
1

2(ν + 1)
| f ′′(τν)|r +

2ν + 1
2(ν + 1)

| f ′′(κν)|r
) 1

p
]
.

for p > 1 and q > 1.

Proof. From the right hand side of Lemma (2.1), we have

|A|

≤
(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
tνξ+νtν−1

∣∣∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν

)
+ f ′′

( tν

2
τν +

2 − tν

2
κν

)∣∣∣∣∣∣dt
]

By using the Hölder inequality, we get

|A| ≤
(τν − κν)2

8(ξ + 1)

[( ∫ 1

0
(tν(ξ+2)−1)qdt

) 1
q
( ∫ 1

0

∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν

)∣∣∣∣pdt
) 1

p

+
( ∫ 1

0
(tν(ξ+2)−1

)q
dt)

1
q
( ∫ 1

0

∣∣∣∣ f ′′( tν

2
τν +

2 − tν

2
κν

)∣∣∣∣pdt
) 1

p

]
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≤
(τν − κν)2

8(ξ + 1)

( ∫ 1

0
(tν(ξ+2)−1)qdt

) 1
q

[ ∫ 1

0

( tν

2
| f ′′(κν)|p +

2 − tν

2
| f ′′(τν)|p

)
dt +

∫ 1

0

( tν

2
| f ′′(τν)|p +

2 − tν

2
| f ′′(κν)|p

)
dt

] 1
p

Thus, we provide

|A| ≤
(τν − κν)2

8(ξ + 1)

(
1

νq(ξ + 2) − q + 1

) 1
q

[(
1

2(ν + 1)
| f ′′(κν)|r +

2ν + 1
2(ν + 1)

| f ′′(τν)|r
) 1

r

+

(
1

2(ν + 1)
| f ′′(τν)|r +

2ν + 1
2(ν + 1)

| f ′′(κν)|r
) 1

r
]
.

This completes the proof.

Theorem 2.5. If f : [κν, τν]→ℜ be differentiable function on (κν, τν) with κν < τν and f ′′ ∈ L1[κν, τν]. If | f ′′| is a
concave function, then we have the following inequality for Katugampola fractional integral operators:

2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)

≤
(τν − κν)2

8(ξ + 1)

[( 1
ν(ξ + 2)

)[∣∣∣∣∣∣ f ′′
(
κν

2ν(ξ + 3)
+

(
2

ν(ξ + 2)
−

1
ν(ξ + 3)

)
τν

2

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ f ′′
(
τν

2ν(ξ + 3)
+

(
2

ν(ξ + 2)
−

1
ν(ξ + 3)

)
κν

2

)∣∣∣∣∣∣
]]
.

Proof. From Lemma 2.1, we have∣∣∣∣∣∣2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
bν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)∣∣∣∣∣∣
≤

(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
tν(ξ+1)tν−1

∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν

)∣∣∣∣dt

+

∫ 1

0
tν(ξ+1)tν−1

∣∣∣∣ f ′′( tν

2
τν +

2 − tν

2
κν

)∣∣∣∣dt
]

By applying Jensen Integral inequality, we get

|A| ≤
(τν − κν)2

8(ξ + 1)

[( ∫ 1

0
tν(ξ+2)−1dt

)∣∣∣∣∣∣ f ′′
(∫ 1

0 tν(ξ+2)−1
(

tν
2 κ
ν + 2−tν

2 τ
ν
)
dt∫ 1

0 tν(ξ+2)−1dt

)∣∣∣∣∣∣
+
( ∫ 1

0
tν(ξ+2)−1dt

)∣∣∣∣∣∣ f ′′
(∫ 1

0 tν(ξ+2)−1
(

tν
2 τ
ν + 2−tν

2 κ
ν
)
dt∫ 1

0 tν(ξ+2)−1dt

)∣∣∣∣∣∣
]

=
(τν − κν)2

8(ξ + 1)

[( 1
ν(ξ + 2)

)[∣∣∣∣∣∣ f ′′
(
κν

2ν(ξ + 3)
+

(
2

ν(ξ + 2)
−

1
ν(ξ + 3)

)
τν

2

)∣∣∣∣∣∣
+

∣∣∣∣∣∣ f ′′
(
τν

2ν(ξ + 3)
+

(
2

ν(ξ + 2)
−

1
ν(ξ + 3)

)
κν

2

)∣∣∣∣∣∣
]]
.

Which completes the proof.
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Theorem 2.6. If f : [κν, τν]→ℜ be differentiable function on (κν, τν) with κν < τν and f ′′ ∈ L1[κν, τν]. If | f ′′|q is
a convex function, then we have the following inequality for Katugampola fractional integral operators:

2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)

≤
(τν − κν)2

8(ξ + 1)

[( 1
ν(ξ + 2)

)1− 1
q

[
| f ′′(κν)|q + | f ′′(τν)|q

ν(ξ + 2)

] 1
q
]
.

Proof. From Lemma 2.1, we have∣∣∣∣∣∣2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)∣∣∣∣∣∣
≤

(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
tν(ξ+1)tν−1

∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν

)∣∣∣∣dt

+

∫ 1

0
tν(ξ+1)tν−1

∣∣∣∣ f ′′( tν

2
τν +

2 − tν

2
κν

)∣∣∣∣dt
]

By applying Power-mean inequality, we get

|A| ≤
(τν − κν)2

8(ξ + 1)

[( ∫ 1

0
tν(ξ+2)−1

)1− 1
q

( ∫ 1

0
tν(ξ+2)−1

∣∣∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν

)∣∣∣∣∣∣
q

dt
) 1

q

+
( ∫ 1

0
tν(ξ+2)−1

)1− 1
q

( ∫ 1

0
tν(ξ+2)−1

∣∣∣∣∣∣ f ′′( tν

2
τν +

2 − tν

2
κν

)∣∣∣∣∣∣
q

dt
) 1

q
]

By using convexity of | f ′′|q, we get

|A| ≤
(τν − κν)2

8(ξ + 1)[( ∫ 1

0
tν(ξ+2)−1

)1− 1
q

( ∫ 1

0
tν(ξ+2)−1 tν

2
| f ′′(κν)|qdt +

∫ 1

0

2 − tν

2
| f ′′(τν)|qdt

) 1
q

+
( ∫ 1

0
tν(ξ+2)−1

)1− 1
q

( ∫ 1

0
tν(ξ+2)−1 tν

2
| f ′′(τν)|qdt +

∫ 1

0

2 − tν

2
| f ′′(κν)|qdt

) 1
q
]

=
(τν − κν)2

8(ξ + 1)

[( 1
ν(ξ + 2)

)1− 1
q

[
| f ′′(κν)|q

2

( 2
νξ + 2ν

)
+
| f ′′(τν)|q

2

( 2
νξ + 2ν

)] 1
q
]
.

By simplfying the above inequality, we obtain

|A ≤
(τν − κν)2

8(ξ + 1)

[( 1
ν(ξ + 2)

)1− 1
q

[
| f ′′(κν)|q + | f ′′(τν)|q

ν(ξ + 2)

] 1
q
]
.

Which completes the proof.
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Theorem 2.7. Let f : I◦ ⊂ ℜ → ℜ be a differentiable mapping on I◦ and κν, τν ∈ I◦ with κν < τν and q ≥ 1. If
the mapping | f ′′|q is convex on the interval (κν, τν), then the following inequality holds for Katugampola fractional
integral operators:

2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)

≤
(τν − κν)2

8(ξ + 1)

[(
1

(−p + 2pν + pξν + 1)(2pν + pξν − p + 2)

) 1
p

[(
| f ′′(κν)|q

2(ν + 1)(ν + 2)
+
ν2 + 3ν + 1

2(ν + 1)(ν + 2)
| f ′′(τν)|q

) 1
q

+

(
| f ′′(τν)|q

2(ν + 1)(ν + 2)
+
ν2 + 3ν + 1

2(ν + 1)(ν + 2)
| f ′′(κν)|q

) 1
q
]
+

( 1
2pν + pνξ − p + 2

) 1
p

[( | f ′′(κν)|q
2(ν + 2)

+
(ν + 1)| f ′′(τν)|q

2(ν + 2)

) 1
q
+

( | f ′′(τν)|q
2(ν + 2)

+
(ν + 1)| f ′′(κν)|q

2(ν + 2)

) 1
q

]]
.

Proof. From Lemma 2.1, we can write

|A| ≤
(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
tνξ+νtν−1 f ′′

( tν

2
κν +

2 − tν

2
τν

)
dt

+

∫ 1

0
tνξ+νtν−1 f ′′

( tν

2
τν +

2 − tν

2
κν

)
dt

]
.

Let us denote

k1 =

∫ 1

0
tνξ+νtν−1 f ′′

( tν

2
κν +

2 − tν

2
τν

)
dt.

By using Hölder-Işcan inequality, we have

|A| ≤
( ∫ 1

0
(1 − t)|tν(ξ+2)−1

|
pdt

) 1
p
( ∫ 1

0
(1 − t)

∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν)

∣∣∣∣qdt
) 1

q

+
( ∫ 1

0
t|tν(ξ+2)−1

|
pdt

) 1
p
( ∫ 1

0
t
∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν)

∣∣∣∣qdt
) 1

q

≤

( ∫ 1

0
(1 − t)(tpν(ξ+2)−p)dt

) 1
p
( ∫ 1

0
(1 − t)

tν

2

∣∣∣∣ f ′′(κν)∣∣∣∣qdt +
∫ 1

0
(1 − t)

2 − tν

2

∣∣∣∣ f ′′(τν)∣∣∣∣qdt
) 1

q

+
( ∫ 1

0
t(tpν(ξ+2)−p)dt

) 1
p
( ∫ 1

0
t
tν

2

∣∣∣∣ f ′′(κν)∣∣∣∣qdt +
∫ 1

0
t
2 − tν

2

∣∣∣∣ f ′′(τν)∣∣∣∣qdt
) 1

q

≤

(
1

(−p + 2pν + pξν + 1)(−p + 2pν + pξν + 2)

) 1
p

(
1

2(ν + 1)(ν + 2)
| f ′′(κν)|q +

ν2 + 3ν + 1
2(ν + 1)(ν + 2)

| f ′′(τν)|q
) 1

q
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+

(
1

2pν + pξν + 2

) 1
p
(

1
2(ν + 2)

| f ′′(κν)|q +
ν + 1

2(ν + 2)
| f ′′(τν)|q

) 1
q

.

Similarly,

k2 =

∫ 1

0
tνξ+νtν−1 f ′′

( tν

2
τν +

2 − tν

2
κν

)
dt.

By using Hölder-Işcan inequality, we have

|A| ≤
( ∫ 1

0
(1 − t)|tν(ξ+2)−1

|
pdt

) 1
p
( ∫ 1

0
(1 − t)

∣∣∣∣ f ′′( tν

2
τν +

2 − tν

2
κν)

∣∣∣∣qdt
) 1

q

+
( ∫ 1

0
t|tν(ξ+2)−1

|
pdt

) 1
p
( ∫ 1

0
t
∣∣∣∣ f ′′( tν

2
τν +

2 − tν

2
κν)

∣∣∣∣qdt
) 1

q

≤

( ∫ 1

0
(1 − t)(tpν(ξ+2)−p)dt

) 1
p
( ∫ 1

0
(1 − t)

tν

2

∣∣∣∣ f ′′(τν)∣∣∣∣qdt +
∫ 1

0
(1 − t)

2 − tν

2

∣∣∣∣ f ′′(κν)∣∣∣∣qdt
) 1

q

+
( ∫ 1

0
t(tpν(ξ+2)−p)dt

) 1
p
( ∫ 1

0
t
tν

2

∣∣∣∣ f ′′(τν)∣∣∣∣qdt +
∫ 1

0
t
2 − tν

2

∣∣∣∣ f ′′(κν)∣∣∣∣qdt
) 1

q

≤

(
1

(−p + 2pν + pξν + 1)(−p + 2pν + pξν + 2)

) 1
p

(
1

2(ν + 1)(ν + 2)
| f ′′(τν)|q +

ν2 + 3ν + 1
2(ν + 1)(ν + 2)

| f ′′(κν)|q
) 1

q

+

(
1

2pν + pξν + 2

) 1
p
(

1
2(ν + 2)

| f ′′(τν)|q +
ν + 1

2(ν + 2)
| f ′′(κν)|q

) 1
q

.

Now, k1 + k2

|A| ≤
(τν − κν)2

8(ξ + 1)

[(
1

(−p + 2pν + pξν + 1)(2pν + pξν − p + 2)

) 1
p

[(
| f ′′(κν)|q

2(ν + 1)(ν + 2)
+
ν2 + 3ν + 1

2(ν + 1)(ν + 2)
| f ′′(τν)|q

) 1
q

+

(
| f ′′(τν)|q

2(ν + 1)(ν + 2)
+
ν2 + 3ν + 1

2(ν + 1)(ν + 2)
| f ′′(κν)|q

) 1
q
]

+
( 1
2pν + pνξ − p + 2

) 1
p

[( | f ′′(κν)|q
2(ν + 2)

+
(ν + 1)| f ′′(τν)|q

2(ν + 2)

) 1
q
+

( | f ′′(τν)|q
2(ν + 2)

+
(ν + 1)| f ′′(κν)|q

2(ν + 2)

) 1
q

]]
.

Which is the desired result.

Theorem 2.8. Let f : I◦ ⊂ ℜ → ℜ be a differentiable mapping on I◦ and κν, τν ∈ I◦ with τν < κν and q ≥ 1. If
the mapping | f ′′|q is convex on the interval (κν, τν), then the following inequality holds for Katugampola fractional
integral operators:

2ξ−1Γ(ξ + 1)νξ−1(
τν − κν

)ξ ((ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
bν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

))
− f

(
κν + τν

2

)
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≤
(τν − κν)2

8(ξ + 1)

[( 1
(2ν + ξν)(2ν + ξν + 1)

)1− 1
q

[(
| f ′′(κν)|q

2ν(ξ + 3)(ξν + 3ν + 1)

+
( 1
(2ν + ξν)(2ν + ξν + 1)

−
1

2ν(ξ + 3)(ξν + 3ν + 1)

)
| f ′′(τν)|q

) 1
q

+
( | f ′′(τν)|q

2ν(ξ + 3)(ξν + 3ν + 1)

+
( 1
(2ν + ξν)(2ν + ξν + 1)

−
1

2ν(ξ + 3)(ξν + 3ν + 1)

)
| f ′′(κν)|q

) 1
q

]

+
( 1
ν(ξ + 2) + 1

)1− 1
q

[(
| f ′′(κν)|q

2(3ν + ξν + 1)
+

ξν + 4ν + 1
2(2ν + ξν + 1)(3ν + ξν + 1)

| f ′′(τν)|q
) 1

q

+

(
| f ′′(τν)|q

2(3ν + ξν + 1)
+

ξν + 4ν + 1
2(2ν + ξν + 1)(3ν + ξν + 1)

| f ′′(κν)|q
) 1

q
]]
.

Proof. Let us denote

k1 =

∫ 1

0
tνξ+νtν−1 f ′′

( tν

2
κν +

2 − tν

2
τν

)
dt

By using Improved Power mean inequality, we get

|A| ≤
( ∫ 1

0
(1 − t)tν(ξ+2)−1dt

)1− 1
q
( ∫ 1

0
(1 − t)tν(ξ+2)−1

∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν

)∣∣∣∣qdt
) 1

q

+
( ∫ 1

0
ttν(ξ+2)−1dt

)1− 1
q
( ∫ 1

0
ttν(ξ+2)−1

∣∣∣∣ f ′′( tν

2
κν +

2 − tν

2
τν

)∣∣∣∣qdt
) 1

q

≤

( 1
2ν + ξν

−
1

2ν + ξν + 1

)1− 1
q

( ∫ 1

0
(1 − t)tν(ξ+2)−1 tν

2
| f ′′(κν)|qdt

+

∫ 1

0
(1 − t)tν(ξ+2)−1 2 − tν

2
| f ′′(bν)|qdt

) 1
q

+
( 1
ν(ξ + 2) + 1

)1− 1
q

( ∫ 1

0
tν(ξ+2) tν

2
| f ′′(κν)|qdt +

∫ 1

0
tν(ξ+2) 2 − tν

2
| f ′′(τν)|qdt

) 1
q

.

By taking into account the facts that∫ 1

0
(1 − t)tν(ξ+2)−1(1 −

tν

2
)dt =

∫ 1

0
(1 − t)tν(ξ+2)−1dt −

∫ 1

0
(1 − t)tν(ξ+2)−1 tν

2
dt

=
1

(2ν + ξν)(2ν + ξν + 1)
−

1
2ν(ξ + 3)(ξν + 3ν + 1)

.

It is clear to see that

|A| ≤
( 1
(2ν + ξν)(2ν + ξν + 1)

)1− 1
q

(
| f ′′(κν)|q

2ν(ξ + 3)(ξν + 3ν + 1)
+

( 1
(2ν + ξν)(2ν + ξν + 1)

−
1

2ν(ξ + 3)(ξν + 3ν) + 1

)
| f ′′(τν)|q

) 1
q
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+
( 1
ν(ξ + 2) + 1

)1− 1
q
( | f ′′(κν)|q

2(3ν + ξν + 1)
+

ξν + 4ν + 1
2(2ν + ξν + 1)(3ν + ξν + 1)

| f ′′(τν)|q
) 1

q
.

Let

k2 =

∫ 1

0
tνξ+νtν−1 f ′′

( tν

2
τν +

2 − tν

2
κν

)
dt

By using Improved Power mean inequality

|A| ≤
( ∫ 1

0
(1 − t)tν(ξ+2)−1dt

)1− 1
q
( ∫ 1

0
(1 − t)tν(ξ+2)−1

∣∣∣∣ f ′′( tν

2
τν +

2 − tν

2
κν

)∣∣∣∣qdt
) 1

q

+
( ∫ 1

0
ttν(ξ+2)−1dt

)1− 1
q
( ∫ 1

0
ttν(ξ+2)−1

∣∣∣∣ f ′′( tν

2
τν +

2 − tν

2
κν

)∣∣∣∣qdt
) 1

q

≤

( 1
2ν + ξν

−
1

2ν + ξν + 1

)1− 1
q

( ∫ 1

0
(1 − t)tν(ξ+2)−1 tν

2
| f ′′(τν)|qdt

+

∫ 1

0
(1 − t)tν(ξ+2)−1 2 − tν

2
| f ′′(κν)|qdt

) 1
q

+
( 1
ν(ξ + 2) + 1

)1− 1
q

( ∫ 1

0
tν(ξ+2) tν

2
| f ′′(τν)|qdt +

∫ 1

0
tν(ξ+2) 2 − tν

2
| f ′′(κν)|qdt

) 1
q

.

By computing the above integrals, we have

|A| ≤
( 1
(2ν + ξν)(2ν + ξν + 1)

)1− 1
q

(
| f ′′(τν)|q

2ν(ξ + 3)(ξν + 3ν + 1)
+

( 1
(2ν + ξν)(2ν + ξν + 1)

−
1

2ν(ξ + 3)(ξν + 3ν) + 1

)
| f ′′(κν)|q

) 1
q

+
( 1
ν(ξ + 2) + 1

)1− 1
q
( | f ′′(τν)|q

2(3ν + ξν + 1)
+

ξν + 4ν + 1
2(2ν + ξν + 1)(3ν + ξν + 1)

| f ′′(κν)|q
) 1

q
.

Now, k1 + k2

|A| ≤
(τν − κν)2

8(ξ + 1)

[( 1
(2ν + ξν)(2ν + ξν + 1)

)1− 1
q

[(
| f ′′(κν)|q

2ν(ξ + 3)(ξν + 3ν + 1)

+
( 1
(2ν + ξν)(2ν + ξν + 1)

−
1

2ν(ξ + 3)(ξν + 3ν + 1)

)
| f ′′(τν)|q

) 1
q

+
( | f ′′(τν)|q

2ν(ξ + 3)(ξν + 3ν + 1)

+
( 1
(2ν + ξν)(2ν + ξν + 1)

−
1

2ν(ξ + 3)(ξν + 3ν + 1)

)
| f ′′(κν)|q

) 1
q

]

+
( 1
ν(ξ + 2) + 1

)1− 1
q

[(
| f ′′(κν)|q

2(3ν + ξν + 1)
+

ξν + 4ν + 1
2(2ν + ξν + 1)(3ν + ξν + 1)

| f ′′(τν)|q
) 1

q

+

(
| f ′′(τν)|q

2(3ν + ξν + 1)
+

ξν + 4ν + 1
2(2ν + ξν + 1)(3ν + ξν + 1)

| f ′′(κν)|q
) 1

q
]]
.

Which is the desired result.
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Theorem 2.9. Suppose that f : [κν, τν]→ℜ be a twice differentiable function on (κν, τν) with 0 ≤ κ < τ. If | f ′′| is
convex function, then we have the following inequality for Katugampola fractional integral operators:

2ξ−1Γ(ξ + 1)νξ

(τν − κν)ξ

[(ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

)]
− f

(κν + τν
2

)

≤
ν(τν − κν)2

8(ξ + 1)

[
1

ν(ξ + 2)

][
| f ′′(κν)| + | f ′′(τν)|

]
.

Proof. By using the property of modulus on R.H.S of lemma (2.2), we can write

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
(1 − tν)ξ+1tν−1

∣∣∣∣∣∣ f ′′(1 − tν

2
κν

+
1 + tν

2
τν

)∣∣∣∣∣∣dt +
∫ 1

0
(1 − tν)ξ+1tν−1

∣∣∣∣∣∣ f ′′(1 − tν

2
τν +

1 + tν

2
κν

)∣∣∣∣∣∣dt
]

≤
ν(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
(1 − tν)ξ+1tν−1

[1 − tν

2
| f ′′(κν)| +

1 + tν

2
| f ′′(τν)|

]
dt

+

∫ 1

0
(1 − tν)ξ+1tν−1

[1 − tν

2
| f ′′(τν)| +

1 + tν

2
| f ′′(κν)|

]
dt

]

=
ν(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
(1 − tν)ξ+1tν−1

[
| f ′′(κν)| + | f ′′(τν)|

]
dt

]

=
ν(τν − κν)2

8(ξ + 1)

[
1

ν(ξ + 2)

][
| f ′′(κν)| + | f ′′(τν)|

]
|B| ≤

ν(τν − κν)2

8(ξ + 1)

[
1

ν(ξ + 2)

][
| f ′′(κν)| + | f ′′(τν)|

]
.

This completes the proof.

Theorem 2.10. Suppose that f : [κν, τν] → ℜ be a twice differentiable function on (κν, τν) with 0 ≤ κ < τ. If | f ′′|
is convex function, then we have the following inequality for Katugampola fractional integral operators:

2ξ−1Γ(ξ + 1)νξ

(τν − κν)ξ

[(ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

)]
− f

(κν + τν
2

)

≤
ν(τν − κν)2

8(ξ + 1)

[( 1
s(ξ + 1) + 1

) 1
s

[( | f ′′(κν)|q + 3| f ′′(τν)|q

4ν

) 1
q
+

(3| f ′′(κν)|q + | f ′′(τν)|q

4ν

) 1
q

]]
for r > 1 and s > 1.

Proof. Using Hölder Inequality in lemma (2.2), we get

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[( ∫ 1

0
|(1 − tν)ξ+1

|
ptν−1dt

) 1
p
( ∫ 1

0
tν−1

∣∣∣∣ f ′′(1 − tν

2
aν +

1 + tν

2
τν

)∣∣∣∣qdt
) 1

q
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+
( ∫ 1

0
|(1 − tν)ξ+1

|
ptν−1dt

) 1
p
( ∫ 1

0
tν−1

∣∣∣∣ f ′′(1 − tν

2
τν +

1 + tν

2
κν

)∣∣∣∣qdt
) 1

q

]
.

By using the convexity of | f ′′|,we have

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[( ∫ 1

0
(1 − tν)p(ξ+1)tν−1dt

) 1
p
( ∫ 1

0
tν−1(

1 − tν

2
)| f ′′(aν)|qdt

+

∫ 1

0
tν−1(

1 + tν

2
)| f ′′(τν)|qdt

) 1
q
+

( ∫ 1

0
(1 − tν)p(ξ+1)tν−1dt

) 1
p

( ∫ 1

0
tν−1(

1 − tν

2
)| f ′′(τν)|qdt +

∫ 1

0
tν−1(

1 + tν

2
)| f ′′(κν)|qdt

) 1
q

]
.

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[( 1
p(ξ + 1) + 1

) 1
p
(1
2

[
(

1
2ν

)| f ′′(κν)|q + (
3
2ν

)| f ′′(τν)|q
]) 1

q

( 1
p(ξ + 1) + 1

) 1
p
(1
2

[
(

1
2ν

)| f ′′(τν)|q + (
3
2ν

)| f ′′(κν)|q
]) 1

q

]
.

Namely,

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[( 1
p(ξ + 1) + 1

) 1
p

[( | f ′′(κν)|q + 3| f ′′(τν)|q

4ν

) 1
q
+

(3| f ′′(κν)|q + | f ′′(τν)|q

4ν

) 1
q

]]
.

This completes the proof.

Theorem 2.11. If f : [κν, τν]→ℜ be differentiable function on (κν, τν) with κν < τν and f ′′ ∈ L1[κν, τν]. If | f ′′| is
a concave function, then we have the following inequality for Katugampola fractional integral operators:

2ξ−1Γ(ξ + 1)νξ

(τν − κν)ξ

[(ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

)]
− f

(κν + τν
2

)

≤
ν(τν − κν)2

8(ξ + 1)

[
1

ν(ξ + 2)

[
f ′′

( ( 1
ν(ξ+3)

)
κν

2 +
(

ξ+4
ν(ξ+2)(ξ+3)

)
τν

2

1
ν(ξ+2)

)

+ f ′′
( ( ξ+4
ν(ξ+2)(ξ+3)

)
κν

2 +
(

1
ν(ξ+3)

)
τν

2

1
ν(ξ+2)

)]]
.

Proof. By applying Jensen inequality on R.H.S of lemma (2.2), we can write

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
(1 − tν)ξ+1tν−1

∣∣∣∣∣∣ f ′′(1 − tν

2
κν +

1 + tν

2
τν

)∣∣∣∣∣∣dt

+

∫ 1

0
(1 − tν)ξ+1tν−1

∣∣∣∣∣∣ f ′′(1 + tν

2
κν +

1 − tν

2
τν

)∣∣∣∣∣∣dt
]

≤
ν(τν − κν)2

8(ξ + 1)

[( ∫ 1

0
(1 − tν)ξ+1tν−1dt

)∣∣∣∣∣∣ f ′′
(∫ 1

0 (1 − tν)ξ+1tν−1
(

1−tν
2 κ

ν + 1+tν
2 τ

ν
)
dt∫ 1

0 (1 − tν)ξ+1tν−1dt

)∣∣∣∣∣∣
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+
( ∫ 1

0
(1 − tν)ξ+1tν−1dt

)∣∣∣∣∣∣ f ′′
(∫ 1

0 (1 − tν)ξ+1tν−1
(

1+tν
2 κ

ν + 1−tν
2 τ

ν
)
dt∫ 1

0 (1 − tν)ξ+1tν−1dt

)∣∣∣∣∣∣.
By a simple computation, one has

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[
1

ν(ξ + 2)

[
f ′′

( ( 1
ν(ξ+3)

)
κν

2 +
(

ξ+4
ν(ξ+2)(ξ+3)

)
τν

2

1
ν(ξ+2)

)

+ f ′′
( ( ξ+4
ν(ξ+2)(ξ+3)

)
κν

2 +
(

1
ν(ξ+3)

)
τν

2

1
ν(ξ+2)

)]]
.

This is the desired result.

Theorem 2.12. If f : [κν, τν] → ℜ be differentiable function on (κν, τν) with κν < τν and f ′′ ∈ L1[κν, τν]. If | f ′′|q

is a convex function, then we have the following inequality for Katugampola fractional integral operators:

2ξ−1Γ(ξ + 1)νξ

(τν − κν)ξ

[(ν
Iξ(
κν+τν

2

) 1
ν

+

)
f
(
τν

)
+

(ν
Iξ(
κν+τν

2

) 1
ν

−

)
f
(
κν

)]
− f

(κν + τν
2

)

≤
ν(τν − κν)2

8(ξ + 1)

[( 1
ν(ξ + 2)

)1− 1
q

[
| f ′′(aν)|q

2

( 2
ν(ξ + 2)

)
+
| f ′′(τν)|q

2

( 2
ν(ξ + 2)

)] 1
q
]
.

Proof. By applying Power mean inequality on R.H.S of lemma (2.2), we have

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[ ∫ 1

0
(1 − tν)ξ+1tν−1

∣∣∣∣∣∣ f ′′(1 − tν

2
κν +

1 + tν

2
τν

)∣∣∣∣∣∣dt

+

∫ 1

0

(
(1 − tν)ξ+1tν−1

)∣∣∣∣∣∣ f ′′(1 + tν

2
κν +

1 − tν

2
τν

)∣∣∣∣∣∣dt
]

≤
ν(τν − κν)2

8(ξ + 1)

[( ∫ 1

0
(1 − tν)ξ+1tν−1dt

)1− 1
q

( ∫ 1

0
(1 − tν)ξ+1tν−1

∣∣∣∣ f ′′(1 − tν

2
κν +

1 + tν

2
τν

)∣∣∣∣qdt
) 1

q

+
( ∫ 1

0
(1 − tν)ξ+1tν−1dt

)1− 1
q

( ∫ 1

0
(1 − tν)ξ+1tν−1

∣∣∣∣ f ′′(1 + tν

2
κν +

1 − tν

2
τν

)∣∣∣∣qdt
) 1

q
]

By using convexity of | f ′′|q, we get

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[( ∫ 1

0
(1 − tν)ξ+1tν−1dt

)1− 1
q

( ∫ 1

0
(1 − tν)ξ+1tν−1(

1 − tν

2
)| f ′′(κν)|qdt

+

∫ 1

0
(1 − tν)ξ+1tν−1(

1 + tν

2
)| f ′′(τν)|qdt

) 1
q

+
( ∫ 1

0
(1 − tν)ξ+1tν−1dt

)1− 1
q

( ∫ 1

0
(1 − tν)ξ+1tν−1(

1 + tν

2
)| f ′′(κν)|qdt
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+

∫ 1

0
(1 − tν)ξ+1tν−1(

1 − tν

2
)| f ′′(τν)|qdt

) 1
q
]
.

By computing the above integrals, we obtain

|B| ≤
ν(τν − κν)2

8(ξ + 1)

[( 1
ν(ξ + 2)

)1− 1
q

[
| f ′′(κν)|q

2

( 1
ν(ξ + 3)

)
+
| f ′′(τν)|q

2

( ξ + 4
ν(ξ + 2)(ξ + 3)

)

+
| f ′′(τν)|q

2

( 1
ν(ξ + 3)

)
+
| f ′′(κν)|q

2

( ξ + 4
ν(ξ + 2)(ξ + 3)

)] 1
q
]
.

This is the desired result.

3. Conclusion

In the literature, there are many studies of different researchers that include Katugampola integral oper-
ators for functions whose absolute values of first derivatives are convex. The main motivation point of the
study is to obtain the inequalities with the help of Katugampola integral operators for the functions whose
absolute value of the second derivatives are convex and concave functions. In this sense, the findings
contribute to the improvement in convex analysis and take the discussion one step further. In addition,
Hölder’s inequality is used to prove the main results and new approaches are obtained.
Recently, researchers working in the field of inequalities frequently use fractional integral operators and
thus obtain new generalizations associated with the certain types of inequalities. Katugampola integral
operators structurally combine Riemann-Liouville and Hadamard fractional integral operators and con-
tribute to the effectiveness of the results with its generalized kernel structure.
The results can be performed for different kinds of convexity and operators.These results can be applied
in convex analysis, optimization and different areas of pure and applied sciences. The authors hope that
these results will serve as a motivation for future work in this fascinating area.
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Abstract. In this paper, we define the complex-type cyclic-Pell sequence and then, we give miscellaneous
properties of this sequence by using matrix method. Also, we study the complex-type cyclic-Pell sequence
modulo m. In addition, we describe the complex-type cyclic-Pell sequence in a 2-generator group and we
investigate that in finite groups in detail. Finally, we obtain the lengths of the periods of the complex-type
cyclic-Pell sequences in dihedral groups D2, D3, D4, D6, D8, D16 and D32 with respect to the generating pair(
x, y

)
.

1. Introduction

The well-known the Pell sequence {Pn} is defined by the following recurrence relation:

Pn = 2Pn−1 + Pn−2

for n ≥ 2 and with initial conditions P0 = 0 and P1 = 1.
The complex Fibonacci sequence

{
F∗n

}
is defined [21] by the following equation: for n ≥ 0

F∗n = Fn + iFn+1

where i =
√
−1 is the imaginary unit and Fn is the nth Fibonacci number (cf. [5, 22]).

Suppose that
{
c j

}k−1

j=0
, (k ≥ 2) is a sequence of real numbers such that ck−1 , 0. The k-generalized Fibonacci

sequence {an}
+∞
n=0 is defined as

an+k = ck−1an+k−1 + ck−2an+k−2 + · · · + c0an

for n ≥ 0 and where a0, a1, . . . , ak−1 are specified by the initial conditions.
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In [23], Kalman gave a number of closed-form formulas for the generalized sequence using the com-
panion matrix as follows:

Ak =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 0 1
c0 c1 c2 · · · ck−2 ck−1


.

Also, he proved that

(Ak)n


a0
a1
...

ak−1

 =


an
an+1
...

an+k−1


.

In the literature, many interesting properties and applications of the recurrence sequences relevant to
this paper have been studied by many authors; see for example, [3, 7–9, 14, 15, 28, 29]. Especially, in [18]
and [17], the authors defined the new sequences using the quaternions and complex numbers and then
they gave miscellaneous properties and many applications of the sequences defined. In the first part of this
paper, we define the complex-type cyclic-Pell sequence and then, we give miscellaneous properties of this
sequence by the aid of the matrix method.

We recall that when a sequence is composed only of repetitions of a fixed subsequence A sequence
is periodic if after a certain points it consists only of repetitions of a fixed subsequence. We refer to the
number of members in the shortest repeating subsequence as the period of the sequence. For instance, when
a sequence with the terms x, y, z, t, y, z, t, y, z, t, . . . is considered, one would say it is periodic after the initial
term k and it has period 3. Also, the first r terms in a sequence form a repeating subsequence, then it is said to
be simply periodic with period r. For instance, when a sequence with the terms x, y, z, t, x, y, z, t, x, y, z, t, . . .
is considered, one would say it is simply periodic with period 4.

The study of the linear recurrence sequences modulo m began with the earlier work of Wall [30] where
the periods of the ordinary Fibonacci sequences modulo m were investigated. Recently, the theory extended
to some special linear recurrence sequences by several authors; see for example, [20, 26].

For a finitely generated group G = ⟨A⟩, where A = {a1, a2, . . . , an }, the sequence xu = au+1, 0 ≤ u ≤ n − 1,

xn+u =
n∏

v=1
xu+v−1, u ≥ 0 is called the Fibonacci orbit of G with respect to the generating set A, denoted as

FA (G) in [11].
A k-nacci (k-step Fibonacci) sequence in a finite group is a sequence of group elements x0, x1, x2, . . ., xn,

. . . for which, given an initial (seed) set x0, x1, x2, . . ., x j−1, each element is defined by

xn =

{
x0x1 · · · xn−1 for j ≤ n < k,

xn−kxn−k+1 · · · xn−1 for n ≥ k.

We also require that the initial elements of the sequence x0, x1, x2, . . ., x j−1 generate the group, thus forcing
the k-nacci sequence to reflect the structure of the group. The k-nacci sequence of a group G generated by
x0, x1, x2, . . ., x j−1 is denoted by Fk

(
G; x0, x1, x2, . . . , x j−1

)
in [25].

Note also that the orbit of a k-generated group is a k-nacci sequence.
From [17], we use the following definition as our preliminary information.

Definition 1.1. Let G be a k-generated group. For a generating k-tuple (x1, x2, . . . , xk) , the complex-type k-Finonacci
orbit is defined by ai = xi+1, (0 ≤ i ≤ k − 1),

an+k = (an)ik (an+1)ik−1
. . . (an+k−1)i , n ≥ 0
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where the following conditions are achieved for any x, y ∈ G and any integer u:
(i). Let e be the identity of G and consider z = a + ib, where a, b are integers, then
∗ xz
≡ xa(mod |x|)+ib(mod |x|) = xa(mod |x|)xib(mod |x|) = xib(mod |x|)xa(mod |x|) = xib(mod |x|)+a(mod |x|),

∗ xia =
(
xi
)a
= (xa)i,

∗ eu = e,
∗ x0+i0 = e.
(ii). Given z1 = a1 + ib1 and z2 = a2 + ib2, where a1, b1, a2 and b2 are integers, y−z2 x−z1 =

(
xz1 yz2

)−1.
(iii). If yx , xy, then yixi , xiyi.

(iv). yixi =
(
xy

)i and x−1y−1 =
(
xiyi

)i
,

(v). yix = xyi and so xiy−1 =
(
xyi

)i
and x−1yi =

(
xiy

)i
.

The study of the recurrence sequences in groups began with the earlier work of Wall [30]. In the
mid-eighties, Wilcox studied the Fibonacci sequences in abelian groups in [31]. In [12], the theory was
expanded to some finite simple groups by Campbell et al.. There, they defined the Fibonacci length of
the Fibonacci orbit and the basic Fibonacci length of the basic Fibonacci orbit in a 2-generator group. The
concept of Fibonacci length for more than two generators has also been considered; see, for example,
[10, 11]. In [25], Knox signified that a k-nacci (k-step Fibonacci) sequence in a finite group is periodic.
Recently, the theory has been extended to some special linear recurrence sequences by several authors; see
for example, [1, 2, 4, 13, 16, 19, 24, 27]. Deveci and Shannon [17] defined the complex-type k-Fibonacci
orbit of a k-generator group. They proved that the complex-type k-Fibonacci orbit of a k-generator group
is periodic if the group is finite. In the second part of this paper, we redefine the complex-type cyclic-Pell
sequence by means of the elements of 2-generator groups which is called the complex-type cyclic-Pell orbit.
Then we examine the sequence in finite groups in detail. Finally, we obtain the lengths of the periods of
the complex-type cyclic-Pell orbits of the dihedral group Dn for some n ≥ 2 as applications of the results
obtained.

2. The Complex-type Cyclic-Pell Sequence

Now we define the complex-type cyclic-Pell sequence by the following homogeneous linear recurrence
relation for n ≥ 1

p(c,i)
n+2 =


2p(c,i)

n+1 + p(c,i)
n n ≡ 0 (mod 4)

i
(
2p(c,i)

n+1 + p(c,i)
n

)
n ≡ 1 (mod 4)

−2p(c,i)
n+1 − p(c,i)

n n ≡ 2 (mod 4)
−i

(
2p(c,i)

n+1 + p(c,i)
n

)
n ≡ 3 (mod 4)

where p(c,i)
1 = 0, p(c,i)

2 = 1 and i =
√
−1.

Letting

M =
[
−13 −6 − 2i
−6 + 2i −3

]
.

(1)

and by using an induction method on n, we find the relationship between the elements of the sequence{
p(c,i)

n

}
and the matrix M as follows:

(M)n =

 p(c,i)
4n+2 p(c,i)

4n+1
p(c,i)

4n+1 Re
(
p(c,i)

4n

)
− Im

(
p(c,i)

4n+1

) 
.

In [6], Bicknell defined the generating matrix of the Pell numbers, P-matrix as follows:

N =
[

2 1
1 0

]
.

Using the matrices M and N, we have the following useful result.



Ö. Erdağ, Ö. Deveci, E. Karaduman / TJOS 7 (3), 202–210 205

Proposition 2.1. For n ≥ 0
det (M)n = (−1)n

· det (N)4n .

Proof. It is well-known that the nth powers of the matrix N is as follows:

(N)n =

[
Pn+1 Pn
Pn Pn−1

]
(2)

for n ≥ 0. Since det M = det (N)4 and from the (1) and (2), we have conclusion.

We use the above definitions and define the matrices:

B1 =

[
2i i
1 0

]
,

B2 =

[
−2 −1
1 0

]
,

B3 =

[
−2i −i
1 0

]
and

B4 =

[
2 1
1 0

]
.

Let M = B4B3B2B1. Using the above identities, we define the folloving matrix:

En = BuBu−1 . . .B1Mk

where n = 4k + u such that u, k ∈N. So we get

En
[

1
0

]
=

[
p(c,i)

n+1
p(c,i)

n

]
(3)

for n = 4k + u such that u, k ∈N.
Now we investigate the Simpson formulas of the complex-type cyclic-Pell sequence.
If n = 4k + 1 (k ∈N), then

En = B1Mk =

 p(c,i)
n+2 −2Re

(
p(c,i)

n+2

)
+ i ·

[
Re

(
p(c,i)

n+3

)
+ Imp(c,i)

n+2

]
p(c,i)

n+1 p(c,i)
n


.

So we get (
p(c,i)

n+2

) (
p(c,i)

n

)
−

(
p(c,i)

n+1

) (
−2Re

(
p(c,i)

n+2

)
+ i ·

[
Re

(
p(c,i)

n+3

)
+ Imp(c,i)

n+2

])
= (−1)k+1

· i.

If n = 4k + 2 (k ∈N), then

En = B2B1Mk =

 p(c,i)
n+2 p(c,i)

n+1
p(c,i)

n+1 −2Re
(
p(c,i)

n+1

)
+ i ·

[
Re

(
p(c,i)

n+2

)
+ Im

(
p(c,i)

n+1

)] 
.

So we get (
p(c,i)

n+2

) (
−2Re

(
p(c,i)

n+1

)
+ i ·

[
Re

(
p(c,i)

n+2

)
+ Im

(
p(c,i)

n+1

)])
−

(
p(c,i)

n+1

) (
p(c,i)

n+1

)
= (−1)k+1

· i.
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If n = 4k + 3 (k ∈N), then

En = B3B2B1Mk =

 p(c,i)
n+2 Re

(
p(c,i)

n+1

)
− Im

(
p(c,i)

n

)
p(c,i)

n+1 p(c,i)
n


.

So we get (
p(c,i)

n+2

) (
p(c,i)

n

)
−

(
p(c,i)

n+1

) [
Re

(
p(c,i)

n+1

)
− Im

(
p(c,i)

n

)]
= (−1)k .

If n = 4k + 4 (k ∈N), then

En =Mk+1 =

 p(c,i)
n+2 p(c,i)

n+1
p(c,i)

n+1 Re
(
p(c,i)

n

)
− Im

(
p(c,i)

n−1

) 
.

So we get (
p(c,i)

n+2

) [
Re

(
p(c,i)

n

)
− Im

(
p(c,i)

n−1

)]
−

(
p(c,i)

n+1

) (
p(c,i)

n+1

)
= (−1)k+1 .

3. The Complex-type Cyclic-Pell Sequence in Groups

If we reduce the sequence
{
p(c,i)

n

}
modulo m, taking least nonnegative residues, then we get the following

recurrence sequence: {
p(c,i)

n (m)
}
=

{
p(c,i)

1 (m) , p(c,i)
2 (m) , . . . , p(c,i)

j (m) , . . .
}

where p(c,i)
j (m) is used to mean the nth element of the complex-type cyclic-Pell sequence when read modulo

m. We note here that the recurrence relations in the sequences
{
p(c,i)

n (m)
}

and
{
p(c,i)

n

}
are the same.

Theorem 3.1. The sequence
{
p(c,i)

n (m)
}

is periodic and the length of its period is divisible by 4.

Proof. Consider the set

R =
{
(z1, z2) | zk’s are complex numbers ak + ibk where
ak and bk are integers such that 0 ≤ ak, bk ≤ m − 1 and k ∈ {1, 2}

}
.

Let |R| be the cardinality of the set R. Since the set R is finite, there are |R| distinct 2-tuples of the complex-
type cyclic-Pell sequence modulo m. Thus, it is clear that at least one of these 2-tuples appears twice in
the sequence

{
p(c,i)

n (m)
}
. Let p(c,i)

u (m) ≡ p(c,i)
v (m) and p(c,i)

u+1 (m) ≡ p(c,i)
v+1 (m). If v − u ≡ 0 (mod 4), then we get

p(c,i)
u+2 (m) ≡ p(c,i)

v+2 (m), p(c,i)
u+3 (m) ≡ p(c,i)

v+3 (m), . . .. So, it is easy to see that the subsequence following this 2-tuple
repeats; that is,

{
p(c,i)

n (m)
}

is a periodic sequence and the length of its period must be divided by 4.

We denote the lengths of periods of the sequence
{
p(c,i)

n (m)
}

by hp(c,i)
n

(m). It is easy to see from the equation
(3), hp(c,i)

n
(m) is the smallest positive integer α such that Eα ≡ I (mod m).

Given an integer matrix A =
[
ai j

]
, A (mod m) means that all entries of A are modulo m, that is,

A (mod m) =
(
ai j (mod m)

)
. Let us consider the set ⟨A⟩m =

{
(A)n (mod m) | n ≥ 0

}
. If (det A,m) = 1, then the

set ⟨A⟩m is a cyclic group; if (det A,m) , 1, then the set ⟨A⟩m is a semigroup. Since det M = −1, the set ⟨M⟩m
is a cyclic group for every positive integer m ≥ 2. From (3), it is easy to see that hp(c,i)

n
(m) = 2 |⟨M⟩m|.

Theorem 3.2. Let ε be a prime. If s is the smallest positive integer such that |⟨M⟩εs+1 | , |⟨M⟩εs |, then |⟨M⟩εs+1 | =
ε |⟨M⟩εs |.
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Proof. Suppose that α is a positive integer and |⟨M⟩m| is denoted by lp(c,i)
n

(m). Let I be 2×2 identity matrix and

(M)
l
p(c,i)
n

(εα+1)
≡ I

(
modεα+1

)
. Then we can derive (M)

l
p(c,i)
n

(εα+1)
≡ I (modεα), which means that lp(c,i)

n
(εα) divides

lp(c,i)
n

(
εα+1

)
. Moreover, we may write (M)

l
p(c,i)
n

(εs)
= I +

(
m(α)

i, j · ε
s
)
, by the binomial theorem. Hence, we obtain:

(M)
l

f (c,i)
n

(εα)·ε
=

(
I +

(
m(α)

i, j · ε
α
))ε
=

ε∑
n=0

(
ε
i

) (
m(α)

i, j · ε
α
)n
≡ I

(
modεα+1

)
.

Then we have (M)
l
p(c,i)
n

(εα)·ε
≡ I

(
modεα+1

)
, which implies that lp(c,i)

n

(
εα+1

)
divides lp(c,i)

n
(εs) · ε. According to

these results, it is seen that lp(c,i)
n

(
εα+1

)
= lp(c,i)

n
(εα) or lp(c,i)

n

(
εα+1

)
= lp(c,i)

n
(εα) · ε, and the latter holds if and only if

there is a m(α)
i, j which is not divisible by ε. Due to fact that we assume s is the smallest positive integer such

that lp(c,i)
n

(
εs+1

)
, lp(c,i)

n
(εs), there is an m(t)

i, j which is not divisible by ε. This shows that lp(c,i)
n

(
εs+1

)
= lp(c,i)

n
(εs) · ε.

So we have the conclusion.

Theorem 3.3. Let m1 and m2 be positive integers with m1,m2 ≥ 2, then
∣∣∣⟨M⟩lcm[m1,m2]

∣∣∣ = lcm
[∣∣∣⟨M⟩m1

∣∣∣ , ∣∣∣⟨M⟩m2

∣∣∣].
Proof. Let |⟨M⟩m| is denoted by lp(c,i)

n
(m) and let lcm [m1,m2] = m. Clearly, (M)

l
p(c,i)
n

(m1)
≡ I (modm1) and

(M)
l
p(c,i)
n

(m2)
≡ I (modm2). Using the least common multiple operation this implies that(M)

l
p(c,i)
n

(m)
≡ I (modm1)

and (M)
l
p(c,i)
n

(m)
≡ I (modm2). So we get

∣∣∣⟨M⟩m1

∣∣∣ | |⟨M⟩m| and
∣∣∣⟨M⟩m2

∣∣∣ | |⟨M⟩m|, which means that lcm
[∣∣∣⟨M⟩m1

∣∣∣ , ∣∣∣⟨M⟩m2

∣∣∣]
divides

∣∣∣⟨M⟩lcm[m1,m2]

∣∣∣. Now we consider as lcm
[∣∣∣⟨M⟩m1

∣∣∣ , ∣∣∣⟨M⟩m2

∣∣∣] = ρ. Then we can write Mρ
≡ I (modm1)

and Mρ
≡ I (modm2), which yields that Mρ

≡ I (modm). Thus, it is seen that lcm
[∣∣∣⟨M⟩m1

∣∣∣ , ∣∣∣⟨M⟩m2

∣∣∣] is divisible

by
∣∣∣⟨M⟩lcm[m1,m2]

∣∣∣. So we have the conclusion.

Let G be a finite j-generator group and let X be the subset of G × G × · · · × G︸             ︷︷             ︸
j times

such that
(
x1, x2, . . . , x j

)
∈ X

if and only if G is generated by x1, x2, . . . , x j.
(
x1, x2, . . . , x j

)
is said to be a generating j-tuple for G.

Definition 3.4. Let G be a 2-generator group and let (x1, x2) be a generating 2-tuple of G. Then, we define the
complex-type cyclic-Pell orbit by

c1 = x1, c2 = x2, cn =


(cn−2) (cn−1)2 for n ≡ 0 (mod4)
(cn−2)i (cn−1)2i for n ≡ 1 (mod4)

(cn−2)−1 (cn−1)−2 for n ≡ 2 (mod4)
(cn−2)−i (cn−1)−2i for n ≡ 3 (mod4)

, (n > 2) .

Let the notation P(i,c)
(x1,x2) (G) denote the complex-type cyclic-Pell orbit of G for generating 2-tuple (x1, x2).

Theorem 3.5. If G is finite, then the complex-type cyclic-Pell orbit of G is a periodic sequence and the length of its
period is divisible by 4.

Proof. Consider the set

W =
{(

(w1)a1(mod|w1 |)+ib1(mod|w1 |) , (w2)a2(mod|w2 |)+ib2(mod|w2 |) :

i =
√

−1, w1,w2 ∈ G and a1, a2, b1, b2 ∈ Z
}

.

Since the group G is finite, W is a finite set. Then for any u ≥ 0, there exists v > u such that cu = cv and
cu+1 = cv+1. If v − u ≡ 0 (mod4), then we get cu+2 = cv+2, cu+3 = cv+3, . . .. Because of the repeating, for all
generating pairs, the sequence P(i,c)

(x1,x2) (G) is periodic and the length of its period must be divided by 4.
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We denote the length of the period of the orbit P(i,c)
(x1,x2) (G) by LP(i,c)

(x1,x2) (G). From the definition of the

orbit P(i,c)
(x1,x2) it is clear that the length of the period of this sequence in a finite group depends on the chosen

generating set and the order in which the assignments of x1, x2 are made.
We will now address the lengths of the periods of the orbits P(i,c)

(x,y)
(D2), P(i,c)

(x,y)
(D3), P(i,c)

(x,y)
(D4), P(i,c)

(x,y)
(D6),

P(i,c)

(x,y)
(D8), P(i,c)

(x,y)
(D16) and P(i,c)

(x,y)
(D32). The dihedral group Dn of order 2n is defined as follows:

Dn = ⟨x, y | xn = y2 =
(
xy

)2 = e⟩

for every n ≥ 2. Note that |x| = n,
∣∣∣y∣∣∣ = 2, xy = yx−1 and yx = x−1y. By direct calculation, we obtain the orbit

P(i,c)

(x,y)
(Dn) as follows:

c1 = x, c2 = y, c3 = xi,
c4 = x−2iy, c5 = x−3, c6 = x6−2iy,
c7 = x4−3i, c8 = x14+8iy, c9 = x13−4i,

c10 = x−12y, c11 = x4+13i, c12 = x−4−26iy,
c13 = x−39−4i, c14 = x74−34iy, c15 = x72−39i,
c16 = x218+112iy, c17 = x185−72i, c18 = x−152−32iy,
c19 = x136+185i, c20 = x120−338iy, c21 = x−491−136i,
c22 = x1102−610iy, c23 = x1356−491i, c24 = x3814+1592iy,
c25 = x2693−1356i, c26 = x−1572−1120iy, c27 = x3596+2693i,
c28 = x5620−4266iy, c29 = x−5839−3596i, c30 = x17298−11458iy,
c31 = x26512−5839i, c32 = x70322+23136iy, c33 = x40433−26512i,
c34 = x−10544−29888iy, c35 = x86288+40433i, c36 = x162032−50978iy,
c37 = x−61523−86288i, c38 = x285078−223554iy, c39 = x533396−61523i,
c40 = x1351870+346600iy, c41 = x631677−533396i, c42 = x88516−720192iy,
c43 = x1973780+631677i, c44 = x4036076−543162iy, c45 = x−454647−1973780i,
c46 = x4945370−4490722iy, c47 = x10955224−454647i, c48 = x26855818+5400016iy,
c49 = x10345385−10955224i, c50 = x6165048−16510432iy, c51 = x43976088+10345385i,
c52 = x94117224−4180338iy, c53 = x1984709−43976088i, c54 = x90147806−92132514iy,
c55 = x228241116+1984709i, c56 = x546630038+88163096iy, c57 = x178310901−228241116i,
c58 = x190008236−368319136iy, c59 = x964879388+178310901i, c60 = x2119767012+11697334iy,
c61 = x201705569−964879388i, c62 = x1716355874−1918061442iy, c63 = x4801002272+201705569i,
c64 = x11318360418+1514650304iy, c65 = x3231006177−4801002272i, c66 = x4856348064−8087354240iy,
c67 = x20975710752+3231006177i, c68 = x46807769568+1625341886iy, c69 = x6481689949−20975710752i,
c70 = x33844389670−40326079618iy, c71 = x101627869988+6481689949i, c72 = x237100129646+27362699720iy,
c73 = x61207089389−101627869988i, c74 = x114685950868−175893040256iy, c75 = x453413950500+61207089389i,
c76 = x1021513851868+53478861478iy, c77 = x168164812345−453413950500i, c78 = x685184227178−853349039522iy,
c79 = x2160112029544+168164812345i, c80 = x5005408286266+517019414832iy, c81 = x1202203642009−2160112029544i,
c82 = x2601001002248−3803204644256iy, c83 = x9766521318056+1202203642009i, c84 = x22134043638360+1398797360238iy,
c85 = x3999798362485−9766521318056i, c86 = x14134446913390−18134245275874iy, c87 = x46035011869804+3999798362485,
c88 = x106204470652998+10134648550904iy, c89 = x24269095464293−46035011869804i, c90 = x57666279724412−81935375188704iy,
c91 = x209905762247212+24269095464293i, c92 = x477477804218836+33397184260118iy, c93 = x91063463984529−209905762247212i,
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c94 = x295350876249778−386414340234306i y, c95 = x982734442715824+91063463984529i, c96 = x2260819761681426+204287412265248i y,

c97 = x499638288515025−982734442715824i, c98 = x1261543184651376−1761181473166400i y, c99 = x4505097389048624+499638288515025i,

c100 = x10271737962748624+761904896136350i y, c101 = x2023448080787725−4505097389048624i, c102 = x6224841801173174−8248289881960898i y,

c103 = x21001677152970420+2023448080787725i, c104 = x48228196107114014+4201393720385448i y, c105 = x10426235521558621−21001677152970420i,

c106 = x27375725063996772−37801960585555392i y, c107 = x96605598324081204+10426235521558621i, c108 = x220 586 921 712 159 180+16 949 489 542 438 150i y.

Using the above information, the orbits P(i,c)

(x,y)
(D2), P(i,c)

(x,y)
(D3), P(i,c)

(x,y)
(D4), P(i,c)

(x,y)
(D6), P(i,c)

(x,y)
(D8), P(i,c)

(x,y)
(D16)

and P(i,c)

(x,y)
(D32) become, respectively:

c5 = x−3 = x = c1, c6 = x6−2iy = y = c2,
c7 = x4−3i = xi = c3, c8 = x14+8iy = y = c4, . . . ,

c105 = x10426235521558621−21001677152970420i = x = c1, c106 = x27375725063996772−37801960585555392iy = y = c2,
c107 = x96605598324081204+10426235521558621i = xi = c3, c108 = x220 586 921 712 159 180+16 949 489 542 438 150iy = y = c4, . . . ,

c9 = x13−4i = x = c1, c10 = x−12y = y = c2,
c11 = x4+13i = xi = c3, c12 = x−4−26iy = y = c4, . . . ,

c105 = x10426235521558621−21001677152970420i = x = c1, c106 = x27375725063996772−37801960585555392iy = y = c2,
c107 = x96605598324081204+10426235521558621i = xi = c3, c108 = x220 586 921 712 159 180+16 949 489 542 438 150iy = y = c4, . . . ,

c17 = x185−72i = x = c1, c18 = x−152−32iy = y = c2,
c19 = x136+185i = xi = c3, c20 = x120−338iy = y = c4, . . . ,

c33 = x40433−26512i = x = c1, c34 = x−10544−29888iy = y = c2,
c35 = x86288+40433i = xi = c3, c36 = x162032−50978iy = y = c4, . . . ,

and

c65 = x3231006177−4801002272i = x = c1, c66 = x4856348064−8087354240iy = y = c2,
c67 = x20975710752+3231006177i = xi = c3, c68 = x46807769568+1625341886iy = y = c4, . . . .

So we get LP(i,c)

(x,y)
(D2) = 4, LP(i,c)

(x,y)
(D3) = 104, LP(i,c)

(x,y)
(D4) = 8, LP(i,c)

(x,y)
(D6) = 104, LP(i,c)

(x,y)
(D8) = 16,

LP(i,c)

(x,y)
(D16) = 32 and LP(i,c)

(x,y)
(D32) = 64.

Corollary 3.6. For n = 2k such that k ≥ 2, the length of the period of the complex-type cyclic-Pell orbit LP(i,c)

(x,y)
(Dn)

is 2n.

Proof. From the orbit P(i,c)

(x,y)
(Dn), we can deduce the following:

c1 = x, c2 = y,. . . ,
c9 = x13−4i, c10 = x−12y,. . . ,

c17 = x185−72i, c18 = x−152−32iy,. . . ,
c8u+1 = x4uλ1+1−4uλ2i, c8u+2 = x−4uλ3−4uλ4iy,. . . ,

where gcd
(
β1, β2

)
= 1. So we need an u ∈ N such that 4u = τn for τ ∈ N. If n = 2k such that k ≥ 2, then

u = n
4 , and we obtain LP(i,c)

(x,y)
(Dn) = 8 n

4 = 2n.
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4. Conclusion

In Section 2, we defined the complex-type cyclic-Pell sequence and then, we obtained the relationships among the
elements of the sequence and the generating matrix of the sequence. Also, we gave the Simpson formula of the complex-
type cyclic-Pell sequence. In Section 3, we studied the complex-type cyclic-Pell sequence modulo m. Furthermore,
we got the cyclic groups generated by reducing the multiplicative orders of the generating matrices and the auxiliary
equations of these sequences modulo m and then, we investigated the orders of these cyclic groups. Moreover, using
the terms of 2-generator groups which is called the complex-type cyclic-Pell orbit, we redefined the complex-type
cyclic-Pell sequence. Also, the sequence in finite groups was examined in detail. Finally, for some n ≥ 2 as applications
of the results obtained, we got the lengths of the periods of the complex-type cyclic-Pell orbits of the dihedral group
Dn and we reached the length of the period of the complex-type cyclic-Pell orbit LP(i,c)

(x,y)
(Dn) for n = 2k when k ≥ 2.
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Abstract. In this study, we introduce and examine a certain subclass of analytic and bi-univalent functions
in the open unit disk in the complex plane. Here, we give coefficient bound estimates and examine the
Fekete-Szegö problem for this class. Some interesting special cases of the results obtained here are also
discussed.

1. Introduction and preliminaries

Let A denote the class of all complex valued functions f : C→ C given by

f (z) = z + a2z2 + a3z3 + ... + anzn + ... = z +
∞∑

n=2

anzn, z ∈ C, (1)

which are analytic in the open unit diskU = {z ∈ C : |z| < 1} in the complex planeC. By S, we will denote
the class of all univalent functions in the set A. For α ∈ [0, 1), some of the important and well-investigated
subclasses of S include the classes S∗ (α) and C (α), respectively, starlike and convex function classes of order
α in U.

It is well-known that (see [3]) every function f ∈ S has an inverse f−1 defined by

f−1 (
f (z)

)
= z, z ∈ U, f−1 (

f (w)
)
= w,w ∈ U0 =

{
w ∈ C : |w| < r0

(
f
)}
, r0

(
f
)
≥

1
4

and

f−1(w) = w + b2w2 + b3w3 + ... + bnwn + ... = w +
∞∑

n=2

bnwn, w ∈ U0,

where
b2 = −a2, b3 = 2a2

2 − a3, b4 = −5a3
2 + 5a2a3 − a4.

.
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A function f ∈ A is called bi-univalent in U if both f and f−1 are univalent in U and f (U) respectively.
Let Σ denote the class of bi-univalent functions in the set S.

For the functions f and 1 which are analytic in U, f is said to be subordinate to 1 and denoted as
f (z) ≺ 1 (z) if there exists an analytic function ω such that

ω (0) = 0, |ω (z)| < 1 and f (z) = 1 (w (z)) .

As is known that the coefficient problem is one of the important subjects of the theory of geometric
functions. Firstly, by Lewin was introduced [7] a subclass of bi-univalent functions and obtained the
estimate |a2| ≤ 1.51 for the function belonging to this class. Subsequently, Brannan and Clunie [1] developed
the result of Lewin to |a2| ≤

√
2 for f ∈ Σ. Later, Netanyahu [11] showed that |a2| ≤

4
3 for this class functions.

By Brannan and Taha [2] were introduced certain subclasses of bi-univalent function class Σ, namely bi-
starlike function of order α denoted S∗Σ (α) and bi-convex function of order α denoted CΣ (α), respectively.
For each of the function classes S∗Σ (α) and CΣ (α), non-sharp estimates on the first two coefficients for the
functions belonging to these classes were found by Brannan and Taha (see [2]). Many researchers have
introduced and investigated several interesting subclasses of bi-univalent function class Σ and they have
found non-sharp estimates on the first two coefficients for the functions belonging to these classes (see
[13, 15]).

It is also well known that the important tools in the theory of analytic functions is the functional
H2 (1) = a3 − a2

2, which is known as the Fekete-Szegö functional and one usually considers the further
generalized functional H2 (1) = a3 − µa2

2, where µ is a complex or real number (see [5]). Estimating the
upper bound of

∣∣∣a3 − µa2
2

∣∣∣ is known as the Fekete-Szegö problem in the theory of analytic functions. The
Fekete-Szegö problem has been investigated by many mathematicians for several subclasses of analytic
functions (see [8, 9, 14]). Very soon, Mustafa and Mrugusundaramoorthy [10] examine the Fekete-Szegö
problem for the subclass of bi-univalent functions related to shell shaped region.

Now, let’s give some concepts that we will use throughout our study.
For q ∈ (0, 1), in his fundamental paper by Jackson [6] introduced q−derivative operator Dq of an analytic

function f as follows:

Dq f (z) =

 f (z)− f(qz)
(1−q)z

i f z , 0,

f ′ i f z = 0.
(2)

It follows from that Dqzn = [n]q zn−1,n ∈N,where [n]q = 1 + q + q2 + ... + qn−1 =
n∑

k=1
qk−1 is q−analogue of

the natural numbers n. Also, it can be easily shown that lim
q→1−1

[n]q = n, [n]q
1−qn

1−q , [0]q = 0, [1]q = 1.

Using definition (2) for the first and second q− derivative of the function f ∈ A, we write

Dq f (z) = 1 +
∞∑

n=2

[n]q zn−1 and D2
q f (z) = Dq

(
Dq f (z)

)
=

∞∑
n=2

[n]q [n − 1]q zn−2.

Also, it is clear that lim
q→1−

Dq f (z) = f ′ (z) for an analytic function f .

For the function f ∈ A, Salagean (see [12]) introduced the following differential operator, which is called
the Salagean operator

S0 f (z) = f (z) ,S1 f (z) = zS f (z) = z f ′ (z) ,

S2 f (z) = zS
(
S f (z)

)
= z f ′′ (z) , ...,Sn f (z) = zS

(
Sn−1 f (z)

)
,n = 1, 2, ... .

It follows from that

Sn f (z) = z +
∞∑

k=2

knakzk, z ∈ U,n ∈N0 =N ∪ {0} .

Now, let we define the following subclass of analytic and bi-univalent functions.
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Definition 1.1. For q ∈ (0, 1), a function f ∈ Σ is said to be in the class Cq,Σ
(
n, φ

)
if the following conditions are

satisfied

1 +
zD2

q
(
Sn f (z)

)
Dq

(
Sn f (z)

) ≺ φ (z) , z ∈ U and 1 +
zD2

q

(
Sn f−1 (w)

)
Dq

(
Sn f−1 (w)

) ≺ φ (w) ,w ∈ U0.

In this definition φ (z) = z+
√

1 + z2 and the branch of the square root is chosen to be principal one, that
φ (0) = 1. It can be easily seen that the function φ (z) = z+

√

1 + z2 maps the unit disc U onto a shell shaped
region on the right half plane and it is analytic and univalent in U. The range φ (U) is symmetric respect
to real axis and φ is a function with positive real part in U, with φ (0) = φ′ (0) = 1 Moreover, it is a starlike
domain with respect to point φ (0) = 1.

In the case n = 0, from the Definition 1.1 we have the subclass Cq,Σ
(
φ
)
= Cq,Σ

(
0, φ

)
. Also, we have the

subclass CΣ
(
n, φ

)
, when q→ 1−.

Let, P be the set of the functions p (z) analytic in U and satisfyingℜ
(
p (z)

)
> 0, z ∈ U and p (0) = 1 with

power series

p(z) = 1 + p1z + p2z2 + p3z3 + ... + pnzn + ... = 1 +
∞∑

n=1

pnzn, z ∈ U,

In order to prove our main results in this paper, we shall need the following lemmas (see [3, 4]).

Lemma 1.2. Let p ∈ P, then
∣∣∣pn

∣∣∣ ≤ 2, n = 1, 2, 3, .... These inequalities are sharp. In particular, equality holds for
the function p (z) = (1 + z) / (1 − z) for all n = 1, 2, 3, ....

Lemma 1.3. Let p ∈ P, then
∣∣∣pn

∣∣∣ ≤ 2, n = 1, 2, 3, ... and

2p2 = p2
1 +

(
4 − p2

1

)
x,

4p3 = p3
1 + 2

(
4 − p2

1

)
p1x − 2

(
4 − p2

1

)
p1x2 + 2

(
4 − p2

1

) (
1 − |x|2

)
z

for some x and z with |x| < 1 and |z| < 1.

Remark 1.4. As can be seen from the serial expansion of the function φ given in Definition 1.1, this function belong
to the class P.

In this paper, we give coefficient bound estimates and examine the Fekete-Szegö problem for the class
Cq,Σ

(
n, φ

)
.

2. Main Results

In this section, firstly we give the following theorem on the coefficient bound estimates for the class
Cq,Σ

(
n, φ

)
.

Theorem 2.1. Let the function f given by (1) be in the class Cq,Σ
(
n, φ

)
. Then

|a2| ≤
1

[2]q 2n , |a3| ≤


1

[2]q[3]q3n ,
[3]q

[2]q
≤

(
4
3

)n
,

1
[2]2

q4n

[3]q

[2]q
>

(
4
3

)n
.
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Moreover,

|a4| ≤


max

{
λ
(
q,n

)
, ν

(
q,n

)}
, θ1

(
q,n

)
≥ 0,

max
{
λ
(
q,n

)
, ν

(
q,n

)
,

√
−4θ3

2(q,n)
27θ1(q,n)

}
, θ1

(
q,n

)
< 0,

where

λ
(
q,n

)
=

(
[2]q + 1

)
[3]q 3n

− [2]2
q 4n

[2]2
q [3]q [4]q 16n

, ν
(
q,n

)
=

1
[3]q [4]q 4n ,

θ1
(
q,n

)
=

(
[2]q + 1

)
[3]q 3n

− [2]2
q 4n

8 [2]2
q [3]q [4]q 16n

−
5

16 [2]2
q [3]q 6n

−
1

[3]q [4]q 4n ,

θ2
(
q,n

)
=

5

4 [2]2
q [3]q 6n

+
1

[3]q [4]q 4n−1 .

Proof. Let f ∈ Cq,Σ
(
n, φ

)
. Then, according to Definition 1.1 there are analytic functions ω : U → U and

ϖ : U0 → U0 with ω (0) = 0 = ϖ (0) , |ω (z)| < 1 and |ϖ (z)| < 1 satisfying the following conditions

1 +
zD2

q
(
Sn f (z)

)
Dq

(
Sn f (z)

) = φ (ω (z)) = ω (z) +
√

1 + ω2 (z), z ∈ U, (3)

1 +
zD2

q

(
Sn f−1 (w)

)
Dq

(
Sn f−1 (w)

) = φ (ϖ (w)) = ϖ (w) +
√

1 + ϖ2 (w), w ∈ U0.

Now, we define the functions p, ϕ ∈ P as follows:

p (z) =
1 + ω (z)
1 − ω (z)

= 1 + p1z + p2z2 + p3z3 + ... + pnzn + ... = 1 +
∞∑

n=1

pnzn, z ∈ U

ϕ (w) =
1 + ϖ (z)
1 − ϖ (z)

= 1 + ϕ1w + ϕ2w2 + ϕ3w3 + ... + ϕnwn + ... = 1 +
∞∑

n=1

ϕnwn, w ∈ U0.

From here, we find the following equalities for the functions ω and ϖ

ω (z) =
p (z) − 1
p (z) + 1

=
1
2

p1z +

p2 −
p2

1

2

 z2 +

p3 − p1p2 +
p2

1

4

 z3 + ...

 , z ∈ U, (4)

ϖ (w) =
ϕ (w) − 1
ϕ (w) + 1

=
1
2

ϕ1w +

ϕ2 −
ϕ2

1

2

 w2 +

ϕ3 − ϕ1ϕ2 +
ϕ2

1

4

 w3 + ...

 , w ∈ U0,

Changing the expression of the functions ω (z) and ϖ (z) in (3) with expressions in (4), we can write the
following equalities

1 +
zD2

q
(
Sn f (z)

)
Dq

(
Sn f (z)

) (5)

= 1 +
p1

2
z +

p2

2
−

p2
1

8

 z2 +
(p3

2
−

p1p2

4

)
z3 + ..., z ∈ U,

1 +
zD2

q

(
Sn f−1 (w)

)
Dq

(
Sn f−1 (w)

)
= 1 +

ϕ1

2
w +

ϕ2

2
−
ϕ2

1

8

 w2 +

(
ϕ3

2
−
ϕ1ϕ2

4

)
w3 + ...,w ∈ U0.
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If the operations and simplifications on the left side of (5) are made and then the coefficients of the terms
of the same degree are equalized, are obtained the following equalities for the coefficients a2, a3 and a4

[2]q 2na2 =
p1

2
, [2]q [3]q 3na3 − [2]2

q 4na2
2 =

p2

2
−

p2
1

8

[3]q [4]q 4na4 − [2]q [3]q

(
[2]q + 1

)
6na2a3 + [2]2

q 8na3
2 =

p3

2
−

p1p2

4

and

− [2]q 2na2 =
ϕ1

2
,− [2]q [3]q 3na3 +

{
2 [2]q [3]q 3n

− [2]2
q 4n

}
a2

2 =
ϕ2

2
−
ϕ2

1

8

− [3]q [4]q 4na4 +
[
5 [3]q [4]q 4n

− [2]q [3]q

(
[2]q + 1

)
6n

]
a2a3

−

[
5 [3]q [4]q 4n

− 2 [2]q [3]q

(
[2]q + 1

)
6n + [2]2

q 8n
]

a3
2

=
ϕ3

2
−
ϕ1ϕ2

4
.

From these equalities, we write

p1

[2]q 2n+1 = a2 = −
ϕ1

[2]q 2n+1 , p1 = −ϕ1, (6)

a3 = a2
2 +

p2 − ϕ2

4 [2]q [3]q 3n , (7)

a4 =
5
(
p2 − ϕ2

)
16 [2]2

q [3]q 6n
+

[3]q

(
[2]q + 1

)
3n
− [2]2

q 4n

[2]2
q [3]q [4]q 24n+3

p3
1 +

p3 − ϕ3

[3]q [4]q 4n+1 −

(
p2 + ϕ2

)
p3

2 [3]q [4]q 4n+1 . (8)

By applying the Lemma 1.2 to equality (6), obtained immediately first result of theorem.
Now, firstly using the Lemma 1.3 and then applying triangle inequality and Lemma 1.2 to the equality

(7), we get

|a3| =
t2

[2]q 4n+1 +
4 − t2

8 [2]q [3]q 3n

(
ξ + η

)
.

with
∣∣∣p1

∣∣∣ = t, |x| = ξ and
∣∣∣y∣∣∣ = η for some x and y with |x| < 1 and

∣∣∣y∣∣∣ < 1. Then, maximizing the
right-hand side of the last inequality according to the parameters ξ ∈ (0, 1) and η ∈ (0, 1), we obtain the
following inequality

|a3| ≤ c
(
q,n

)
t2 +

1
[2]q [3]q 3n , t ∈ [0, 2] , c

(
q,n

)
=

[3]q 3n
− [2]q 4n

4 [2]2
q [3]q 12n

.

From the last inequality obtained the second result of theorem.
Finally, let’s find an upper bound estimate for |a4|. By applying Lemma 1.3 and then triangle inequality

and Lemma 1.2 to expression of a4 in the equality (8), we obtain

8 |a4| ≤ c1 (t) + c2 (t)
(
ξ + η

)
+ c3 (t)

(
ξ2 + η2

)
, (9)

with |x| = ξ ∈ (0, 1) and
∣∣∣y∣∣∣ = η ∈ (0, 1), where
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c1 (t) =
[3]q

(
[2]q + 1

)
3n
− [2]2

q 4n

[2]2
q [3]q [4]q 24n+3

t3 +
1

[3]q [4]q 4n+1

(
4 − t2

)
,

c2 (t) =

 5

32 [2]2
q [3]q 6n

+
1

[3]q [4]q 4n+1

 (4 − t2
)

t, c3 (t) =

(
4 − t2

)
(t − 2)

[3]q [4]q 4n+2

If we maximize the right-hand side of the inequality (9) firstly according to the parametres ξ and η and
then to the parameter, we get the desired estmate for |a4|.

Thus, the proof of Theorem 2.1 is completed.

From the Teorem 2.1, we obtain the following results.

Corollary 2.2. Let f ∈ CΣ
(
n, φ

)
. Then,

|a2| ≤
1

2n+1 ,n = 0, 1, 2, ..., |a3| ≤

{
1

4n+1 , i f n = 0, 1,
1

2.3n+1 otherwise

and

|a4| ≤ max


( 3

16

)n+1

−
1

3.4n+1 ,
1

3.4n+1 ,

√
−4θ3

2 (n)

27θ1 (n)


where

θ1
(
q,n

)
=

3n+1

8.16n+1 −
5

32.6n −
3

8.4n+1 ,

θ2
(
q,n

)
=

5
8.6n+1 +

1
3.4n .

Corollary 2.3. Let Cq,Σ
(
φ
)
. Then

|a2| ≤
1

q + 1
, |a3| ≤

1(
q + 1

)2

Moreover,

|a4| ≤ max

λ (
q
)
, ν

(
q
)
,

√
−4θ3

2

(
q
)

27θ1
(
q
)
 ,

where

λ
(
q
)
=

q3 + 2q2 + q + 1(
q + 1

)2 (
q2 + q + 1

) (
q3 + q2 + q + 1

) , ν (q) = 1(
q2 + q + 1

) (
q3 + q2 + q + 1

) ,
θ1

(
q
)
=

−3q3
− 17q2

− 35q − 19

16
(
q + 1

)2 (
q2 + q + 1

) (
q3 + q2 + q + 1

) ,
θ2

(
q,n

)
=

5q3 + 21q2 + 37q + 16

4
(
q + 1

)2 (
q2 + q + 1

) (
q3 + q2 + q + 1

) .
Now, we give the following theorem on the Fekete-Szegö problem for the class Cq,Σ

(
n, φ

)
.
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Theorem 2.4. Let the function f given by (1) be in the class Cq,Σ
(
n, φ

)
. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


1
[2]q[3]q3n i f

∣∣∣1 − µ∣∣∣ ≤ [2]q

[3]q

(
4
3

)n
,

|1−µ|
[2]2

q4n i f
∣∣∣1 − µ∣∣∣ > [2]q

[3]q

(
4
3

)n
.

Proof. Let f ∈ Cq,Σ
(
n, φ

)
and µ ∈ C. Then, from the expressions for a2 and a3 in the equalities (6) and (7), we

can write the following equality for a3 − µa2
2

a3 − µa2
2 =

(
1 − µ

)
a2

2 +
p2 − ϕ2

4 [2]q [3]q 3n .

According to Lemma 1.3, from the last equality we can write

a3 − µa2
2 =

(
1 − µ

)
a2

2 +
4 − p2

1

8 [2]q [3]q 3n

(
x − y

)
for some x and y with |x| < 1 and

∣∣∣y∣∣∣ < 1.
Then, using triangle inequality and considering that

∣∣∣p1

∣∣∣ = t ≤ 2 from the last equality, we get∣∣∣a3 − µa2
2

∣∣∣ ≤ (
1 − µ

)
[2]2

q 4n+1
t2 +

4 − t2

8 [2]q [3]q 3n

(
ξ + η

)
, (10)

with |x| = ξ ∈ (0, 1) and
∣∣∣y∣∣∣ = η ∈ (0, 1). If we maximize the right-hand side of the inequality (10)

according to the parametres ξ and ηwe get the following inequality∣∣∣a3 − µa2
2

∣∣∣ ≤ 1

[2]2
q 4n+1

{∣∣∣1 − µ∣∣∣ − [2]q

[3]q

(4
3

)n}
t2 +

1
[2]q [3]q 3n , t ∈ [0, 2] .

From here, by maximizing the right hand side of the last inequality according to the parameter t,
obtained the result of theorem. Thus, the proof of Theorem 2.4 is completed.

From the Theorem 2.4 obtained the following results.

Corollary 2.5. Let f ∈ CΣ
(
n, φ

)
. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


1
2.3n+1 i f

∣∣∣1 − µ∣∣∣ ≤ 1
2

(
4
3

)n+1
,

|1−µ|
4n+1 i f

∣∣∣1 − µ∣∣∣ > 1
2

(
4
3

)n+1
.

Corollary 2.6. Let f ∈ Cq,Σ
(
φ
)
. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


1
[2]q[3]q

i f
∣∣∣1 − µ∣∣∣ ≤ [2]q

[3]q
,

|1−µ|
[2]2

q
i f

∣∣∣1 − µ∣∣∣ > [2]q

[3]q
.

Corollary 2.7. Let f ∈ Cq,Σ
(
n, φ

)
. Then

∣∣∣a3 − µa2
2

∣∣∣ ≤


1
[2]q[3]q3n i f

[3]q

[2]q
≤

(
4
3

)n
,

|1−µ|
[2]2

q4n i f
[3]q

[2]q
>

(
4
3

)n
.

Corollary 2.8. Let f ∈ CΣ
(
n, φ

)
. Then∣∣∣a3 − µa2

2

∣∣∣ ≤ {
1

4n+1 i f n = 0, 1,
1

2.3n+1 otherwise.
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Corollary 2.9. Let f ∈ Cq,Σ
(
φ
)
. Then

|a3| ≤
1

[2]2
q

.

Remark 2.10. The Corollary 2.7 confirm the second result obtained in the Theorem 2.1.
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[4] Grenander U, Szegö G. Toeplitz form and their applications. California Monographs in Mathematical Sciences, University Cali-

fornia Press, Berkeley. 1958.
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bDepartment of Mathematics Education, Faculty of Education, Van Yüzüncü Yıl University, Van-TURKEY

Abstract. We establish some new Generalized Hermite-Hadamard-type inequalities involving generalized
fractional integrals for quasi-convex functions. Our results are consistent with previous findings in the
literature. The analysis used in the proofs is fairly elementary and based on the use of Hölder inequality
and the power inequality.

1. Introduction

The H-H inequality shows that the mean value of a continuous convex function is greater than the value
of the function at the midpoint of this range and less than the arithmetic mean of its endpoints and it has
many applications for real analysis. So, it has been studied by many researchers.

Let us give this unique inequality which is named as H-H inequality in the literature: Let 1 : I −→ R be
a convex mapping defined on the interval I ⊆ R and ε, δ ∈ I with ε < δ,then

1

(
ε + δ

2

)
≤

1
δ − ε

∫ δ

ε
1 (x) dx ≤

1 (ε) + 1 (δ)
2

. (1)

In the case where 1 is concave, the above inequality is reversed.
Later, many researchers used different classes of convex functions to generalize, improve, and extend

this inequality. (See [3], [7], [8]-[11], [14]-[19], [21], [23]-[44]).
Some researchers have been proven that studies for the inequality of H-H can be generalized with the

help of fractional integrals. So new studies have been carried out in the field of convex functions and
inequalities using the concepts of fractional derivatives and fractional integrals. (For interested researchers
[1], [3]-[6], [11]-[22], [26], [28] and [32]-[44]).

Let’s remind some definitions and inequalities as following:
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ϑ : [0,∞)→ [0,∞) satisfying the following conditions:∫ 1

0
ϑ(l)

l dl < ∞,

1
A1
≤
ϑ(u)
ϑ(t) ≤ A1 for 1

2 ≤
u
t ≤ 2

ϑ(t)
t2 ≤ A2

ϑ(u)
u2 for u ≤ t∣∣∣ϑ(u)

u2 −
ϑ(t)
t2

∣∣∣ ≤ A3 |t − u| ϑ(t)
t2 for 1

2 ≤
u
t ≤ 2

(2)

where A1,A2,A3 > 0 are independent of t,u > 0. If ϑ (t) tα is increasing for some α ≥ 0 and ϑ(t)
tβ is decreasing

for some β ≥ 0, then ϑ satisfies (2).
In [32], Sarıkaya and Ertuğral defined new left-sided and right-sided generalized fractional integral

operators which are useful in the proofs of our main results, respectively, as following:

Definition 1.1. Let 1 ∈ L [ε, δ] . The generalized fractional integrals ε+ Iϑ1 and δ− Iϑ1 with ε ≥ 0 are defined by

ε+ Iϑ1 (x) =

∫ x

ε

ϑ (x − l)
x − l

1 (l) dl, x > ε (3)

δ− Iϑ1 (x) =

∫ δ

x

ϑ (x − l)
x − l

1 (l) dl, x < δ (4)

where ϑ : [0,∞) −→ [0,∞) a function which satisfies
∫ 1

0
ϑ(l)

l dl < ∞.

The above generalized fractional integrals produce different kinds of fractional integrals as R-L, k−R-L,
Katugampola, conformable, Hadamard, etc... You can find the different cases of the above integral opera-
tors (3) and (4) in the study [32]. (For interested researchers [5], [11], [18]-[21], [26], [34]-[40].)

In [32], Ertuğral and Sarıkaya achieved the basic H-H inequality with the help of generalized fractional
integrals in (3) and (4) as follows:

Theorem 1.2. Let 1 : [ε, δ] −→ R be a convex function on (ε, δ) with ε < δ,then the following inequalities for
generalized fractional integral hold:

1

(
ε + δ

2

)
≤

1
2Λ (1)

[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]
≤
1 (ε) + 1 (δ)

2
, (5)

where Λ (1) =
∫ 1

0
ϑ((δ−ε)l)

l dl and Λ (1) , 0.

The following lemma is used to obtain some inequalities that is trapezoid inequalities for generalized
fractional integrals as in [32]:

Lemma 1.3. Let 1 : [ε, δ] → R be a differentiable mapping on (ε, δ) with ε < δ. If 1′ ∈ L [ε, δ], then the following
equality for generalized fractional integrals holds:

1 (ε) + 1 (δ)
2

−
1

2Λ (1)
[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]
(6)

=
δ − ε
2Λ (1)

∫ 1

0
[Λ (1 − l) −Λ (l)] 1′ (lε + (1 − l) δ) dl,

where Λ (1) =
∫ 1

0
ϑ((δ−ε)l)

l dl and Λ (1) , 0.
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The following theorem is an inequality for generalized fractional integrals via the right side of the H-H
inequality obtained by using Lemma 1.3:

Theorem 1.4. Let 1 : [ε, δ]→ R be a differentiable mapping on (ε, δ) with ε < δ. If
∣∣∣1′∣∣∣ is convex on [ε, δ], then the

following inequality for generalized fractional integrals hold:∣∣∣∣∣1 (ε) + 1 (δ)
2

−
1

2Λ (1)
[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]∣∣∣∣∣ (7)

≤
(δ − ε)
Λ (1)

∫ 1

0
l |[Λ (1 − l) −Λ (l)]| dl

[
1 (ε) + 1 (δ)

]
2

.

You can find some results for this and other generalized fractional integrals in [3], [12] and [42]-[44].
Now, let’s remind some inequalities that we encountered in the results obtained in our study. Firstly,

we give the basic H-H inequality via fractional integrals which is proved by Sarıkaya et al. in [34]:

Theorem 1.5. Let 1 : [ε, δ] −→ R be a positive function with 0 ≤ ε < δ and 1 ∈ L1 [ε, δ] . If 1 is a convex function
on [ε, δ] , then the following inequalities fractional integrals hold:

1

(
ε + δ

2

)
≤
Γ (α + 1)
2 (δ − ε)α

[
Jαε+1 (δ) + Jαδ−1 (ε)

]
≤
1 (ε) + 1 (δ)

2
(8)

with α > 0.

Since the results which are obtained in this study by using quasi-convex functions, let us remind the
definition of quasi-convex functions [30]:

Definition 1.6. The function 1 : I ⊂ R −→ R is said to be quasi-convex if for every x, y ∈ I and ω ∈ [0, 1] we have

1
(
ωx + (1 − ω) y

)
≤ max

{
1 (x) , 1

(
y
)}
. (9)

Quasi-convexity is a weaker condition than classical convexity. Cause of this situation, you can say
every convex function is quasi-convex but there are quasi-convex functions that are not convex (See [16]).

The classical H-H inequality for quasi-convex functions was obtained by Dragomir and Pearce in [8] as
follows:

Theorem 1.7. Let 1 : I→ R be a quasi-convex map on I and nonnegative, and suppose ε, δ ∈ I ⊆ R with ε < δ and
1 ∈ L1 [ε, δ] . Then we have the inequality

1
δ − ε

∫ δ

ε
1 (x) dx ≤ max

{
1 (ε) , 1 (δ)

}
. (10)

The following theorems which are H-H type inequalities for via quasi-convex function was obatained
by Ion in [16] as follows:

Theorem 1.8. Assume ε, δ ∈ R with ε < δ and 1 : [ε, δ] → R is a differentiable function on (ε, δ) . If
∣∣∣1′∣∣∣ is

quasi-convex on [ε, δ] , then the following inequality holds true∣∣∣∣∣∣1 (ε) + 1 (δ)
2

−
1
δ − ε

∫ δ

ε
1 (x) dx

∣∣∣∣∣∣ ≤ (δ − ε) sup
{∣∣∣1′ (ε)

∣∣∣ , ∣∣∣1′ (δ)
∣∣∣}

4
. (11)

Theorem 1.9. Assume ε, δ ∈ R with ε < δ and 1 : [ε, δ] → R is a differentiable function on (ε, δ) . Assume p ∈ R

with p > 1. If
∣∣∣1′∣∣∣p\(p−1) is quasi-convex on [ε, δ] then the following inequality holds true∣∣∣∣∣∣1 (ε) + 1 (δ)

2
−

1
δ − ε

∫ δ

ε
1 (x) dx

∣∣∣∣∣∣ (12)

≤
(δ − ε)

2
(
p + 1

)1\p

[
sup

{∣∣∣1′ (ε)
∣∣∣p\(p−1)

,
∣∣∣1′ (δ)

∣∣∣p\(p−1)
}](p−1)\p

.
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The following theorems that are H-H type inequalities for via quasi-convex function was obatained
Alomari et al. in [2] as follows:

Theorem 1.10. Let 1 : I◦ ⊂ R → R be a differentiable mapping on I◦, ε, δ ∈ I◦ with ε < δ. If
∣∣∣1′∣∣∣q is quasi-convex

on [ε, δ] , q ≥ 1, then the following inequality holds:∣∣∣∣∣∣ f (ε) + f (δ)
2

−
1
δ − ε

∫ δ

ε
1 (x) dx

∣∣∣∣∣∣ ≤ (δ − ε)
4

(
sup

{∣∣∣1′ (ε)
∣∣∣q , ∣∣∣1′ (δ)

∣∣∣q}) 1
q . (13)

Theorem 1.11. Let 1 : I◦ ⊂ R→ R be a differentiable mapping on I◦, ε, δ ∈ I◦ with ε < δ. If
∣∣∣1′∣∣∣ is quasi-convex on

[ε, δ] , then the following inequality holds:∣∣∣∣∣∣ 1
δ − ε

∫ δ

ε
1 (x) dx − 1

(
ε + δ

2

)∣∣∣∣∣∣ (14)

≤
δ − ε

8

[
max

{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣ , ∣∣∣1′ (δ)∣∣∣} +max
{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣ , ∣∣∣1′ (ε)∣∣∣}] .
Theorem 1.12. Let 1 : I◦ ⊂ R→ R be a differentiable function on I◦, ε < δ, . If

∣∣∣1′∣∣∣p\(p−1) is quasi-convex on [ε, δ] ,
p > 1, then the following inequality holds:∣∣∣∣∣∣ 1

δ − ε

∫ δ

ε
1 (x) dx − 1

(
ε + δ

2

)∣∣∣∣∣∣ (15)

≤
(δ − ε)

4
(
p + 1

)1\p


max


∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣p\(p−1)
,
∣∣∣1′ (δ)∣∣∣p\(p−1)


(p−1)\p

+

max


∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣p\(p−1)
,
∣∣∣1′ (ε)∣∣∣p\(p−1)


(p−1)\p .

Theorem 1.13. Let 1 : I◦ ⊂ R→ R be a differentiable function on I◦, ε, δ ∈ I◦ with ε < δ. If
∣∣∣1′∣∣∣q is quasi-convex on

[ε, δ] , q ≥ 1, then the following inequality holds:∣∣∣∣∣∣ 1
δ − ε

∫ δ

ε
1 (x) dx − 1

(
ε + δ

2

)∣∣∣∣∣∣ (16)

≤
δ − ε

8

(max
{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣q , ∣∣∣1′ (δ)∣∣∣q}) 1
q

+

(
max

{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣q , ∣∣∣1′ (ε)∣∣∣q}) 1
q
 .

In [26], Özdemir and Çetin established some fractional inequalities for differentiable quasi-convex
mappings which are connected with H-H inequality as following:

Theorem 1.14. Let 1 : [ε, δ] → R, be a positive function with 0 ≤ ε < δ and 1 ∈ L1 [ε, δ]. If 1 is a quasi-convex
function on [ε, δ], then the following inequality for fractional integrals holds:

Γ (α + 1)
2 (δ − ε)α

[
Jαε+1 (δ) + Jαδ−1 (ε)

]
≤ max

{
1 (ε) , 1 (δ)

}
(17)

with α > 0.
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Theorem 1.15. Let 1 : [ε, δ] → R, be a differentiable mapping on (ε, δ) with ε < δ. If
∣∣∣1′∣∣∣ is quasi-convex on [ε, δ]

and α > 0, then the following inequality for fractional integrals holds:∣∣∣∣∣1 (ε) + 1 (δ)
2

−
Γ (α + 1)
2 (δ − ε)α

[
Jαε+1 (δ) + Jαδ−1 (ε)

]∣∣∣∣∣ (18)

≤
δ − ε
α + 1

(
1 −

1
2α

)
max

{∣∣∣1′ (ε)∣∣∣ , ∣∣∣1′ (δ)∣∣∣} .
Theorem 1.16. Let 1 : [ε, δ]→ R, be a differentiable mapping on (ε, δ) with ε < δsuch that 1′ ∈ L1 [ε, δ] . If

∣∣∣1′∣∣∣q is
quasi-convex on [ε, δ] , and p > 1, then the following inequality for fractional integrals holds:∣∣∣∣∣1 (ε) + 1 (δ)

2
−
Γ (α + 1)
2 (δ − ε)α

[
Jαε+1 (δ) + Jαδ−1 (ε)

]∣∣∣∣∣ (19)

≤
δ − ε

2
(
αp + 1

) 1
p

(
max

{∣∣∣1′ (ε)∣∣∣q , ∣∣∣1′ (δ)∣∣∣q}) 1
q

where 1
p +

1
q = 1 and α ∈ [0, 1] .

Here we remind a previous basic inequality for generalized fractional integral inequality and a lemma
that produces left sided H-H type inequalities related this basic inequality [3].

Theorem 1.17. Let 1 : [ε, δ] → R be a function with ε < δ and 1 ∈ L1 [ε, δ] . If 1 is a convex function on [ε, δ] ,
then we have the following inequalities for generalized fractional integral operators:

1

(
ε + δ

2

)
≤

1
2Ψ (1)

[
( ε+δ2 )+ Iϑ1 (δ) +( ε+δ2 )− Iϑ1 (ε)

]
≤
1 (ε) + 1 (δ)

2
(20)

where the mappingΨ : [0, 1]→ R is defined by

Ψ (x) =
∫ x

0

ϑ
((
δ−ε

2

)
l
)

l
dl. (21)

Lemma 1.18. Let 1 : [ε, δ] → R be differentiable function on (ε, δ) with ε < δ. If 1′ ∈ L [ε, δ] , then we have the
following identity for generalized fractional integral operators:

1
2Ψ (1)

[
( ε+δ2 )+ Iϑ1 (δ) +( ε+δ2 )− Iϑ1 (ε)

]
− 1

(
ε + δ

2

)
(22)

=
δ − ε

4Ψ (1)

[∫ 1

0
Ψ (l) 1′

(
lε
2
+

(2 − l) δ
2

)
dl −

∫ 1

0
Ψ (l) 1′

(
(2 − l) ε

2
+

lδ
2

)
dl
]

where the mappingΨ (l) is defined as in Theorem 1.16.

The following results for quasi-convex functions with the help of k−Riemann-Liouville fractioal integral
operators obtained by Hussain et al. in [15].

Theorem 1.19. Let 1 : [ε, δ]→ R be positive function and 1 ∈ L1 [ε, δ] . If 1 is quasi-convex on [ε, δ] , the subsequent
inequality for k−fractional integrals is valid:

Γk (α + k)

2 (δ − ε)
α
k

[
k Jαε+1 (δ) +k Jαδ−1 (ε)

]
≤ max

{
1 (ε) , 1 (δ)

}
(23)

with αk > 0.
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Theorem 1.20. Let 1 : [ε, δ]→ R be a differentiable function on (ε, δ) such that 1′ ∈ L1 [ε, δ] . If
∣∣∣1′∣∣∣q is quasi-convex

on [ε, δ] and q > 1, the subsequent inequality for k−fractional integrals is valid:∣∣∣∣∣∣1 (ε) + 1 (δ)
2

−
Γk (α + k)

2 (δ − ε)
α
k

[
k Jαε+1 (δ) +k Jαδ−1 (ε)

]∣∣∣∣∣∣ (24)

≤
δ − ε

2
(
α
k p + 1

) 1
p

(
max

{∣∣∣1′ (ε)∣∣∣q , ∣∣∣1′ (δ)∣∣∣q}) 1
q

where 1
p +

1
q = 1 and αk ∈ [0, 1] .

Theorem 1.21. Let 1 : [ε, δ]→ R be a differentiable function on (ε, δ) such that 1′ ∈ L1 [ε, δ] . If
∣∣∣1′∣∣∣q is quasi-convex

on [ε, δ] and q ≥ 1, the subsequent inequality for k−fractional integrals is valid:∣∣∣∣∣∣1 (ε) + 1 (δ)
2

−
Γk (α + k)

2 (δ − ε)
α
k

[
k Jαε+1 (δ) +k Jαδ−1 (ε)

]∣∣∣∣∣∣ (25)

≤
δ − ε(
α
k + 1

) (
1 −

1
2
α
k

) (
max

{∣∣∣1′ (ε)∣∣∣q , ∣∣∣1′ (δ)∣∣∣q}) 1
q

with αk ∈ [0, 1] .

Corollary 1.22. In Theorem 1.5 of [1], if we take 1 (x) = 1, we get the inequality:∣∣∣∣∣∣1 (ε) + 1 (δ)
2

−
Γk (α + k)

2 (δ − ε)
α
k

[
k Jαε+1 (δ) +k Jαδ−1 (ε)

]∣∣∣∣∣∣ (26)

≤
δ − ε(
α
k + 1

) (
1 −

1
2
α
k

) (
max

{∣∣∣1′ (ε)∣∣∣ , ∣∣∣1′ (δ)∣∣∣}) .
with αk ∈ [0, 1] .

By using the above results we build new inequalities related to left-sided and right-sided H-H-type
generalized fractional integral inequalities via quasi-convex functions by using elementary analysis such
as Hölder inequality, properties of modulus, power mean inequality.

2. Main Results

The point of this study is to generalize the inequalities for quasi-convex functions found in the literature
with the help of a new fractional integral operator. Throughout this study, for brevity, we use

Λ
(
µ
)
=

∫ µ

0

ϑ ((δ − ε) l)
l

dl and Λ (1) , 0. (27)

Firstly, let us obtain H-H inequality for the quasi-convex functions by using this new fractional integral
operator given in (3) and (4).

Theorem 2.1. Let 1 : [ε, δ] → R be a positive function with 0 ≤ ε < δ and 1 ∈ L1 [ε, δ] . If 1 is a quasi-convex
function on [ε, δ] , then we have the following inequality for generalized fractional integral operators:

1
2Λ (1)

[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]
≤ max

{
1 (ε) , 1 (δ)

}
. (28)
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Proof. Since 1 is quasi-convex on [ε, δ] ,we have

1 (εl + (1 − l) δ) ≤ max
{
1 (ε) , 1 (δ)

}
(29)

and
1 ((1 − l) ε + lδ) ≤ max

{
1 (ε) , 1 (δ)

}
. (30)

By adding the inequalities (29) and (30), we obtain

1
2
[
1 (lε + (1 − l) δ) + 1 ((1 − l) ε + lδ)

]
≤ max

{
1 (ε) , 1 (δ)

}
. (31)

Multiplying both sides of (31) by ϑ((δ−ε)l)
l , then integrating the resulting inequality with respect to l over

(0, 1] ,we get

1
2

[∫ 1

0

ϑ ((δ − ε) l)
l

1 (lε + (1 − l) δ) dl +
∫ 1

0

ϑ ((δ − ε) l)
l

1 ((1 − l) ε + lδ) dl
]

≤ max
{
1 (ε) , 1 (δ)

} ∫ 1

0

ϑ ((δ − ε) l)
l

dl.

Then by using the definition of generalized fractional integral operators, we get the inequality in (28). So
the proof is completed.

Corollary 2.2. If we choose ϑ (l) = l in Theorem 2.1, the inequality (28) reduces to the inequality (10).

Corollary 2.3. If we choose ϑ (l) = lα
Γ(α) in Theorem 2.1, the inequality (28) reduces to the inequality (17).

Corollary 2.4. If we choose ϑ (l) = l
α
k

kΓk(α) in Theorem 2.1, the inequality (28) reduces to the inequality (23).

Remark 2.5. Other results for different fractional integral operators as Katugampola, conformable, Hadamard, etc...
can also be found by changing the operator ϑ (l) in Theorem 2.1.

Now, by using a lemma in the literature we present new generalized inequalities for quasi-convex
functions via generalized fractional integral operators.

Theorem 2.6. Let 1 : [ε, δ] → R, be a differentiable mapping on (ε, δ) with ε < δ. If
∣∣∣1′∣∣∣ is quasi-convex on [ε, δ]

and 1 ∈ L1 [ε, δ] , α > 0, then the following inequality for generalized fractional integral operators holds:∣∣∣∣∣1 (ε) + 1 (δ)
2

−
1

2Λ (1)
[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]∣∣∣∣∣ (32)

≤
δ − ε
2Λ (1)

max
{∣∣∣1′ (ε)∣∣∣ , ∣∣∣1′ (δ)∣∣∣} ∫ 1

0
|Λ (1 − l) −Λ (l)| dl

Λ
(
µ
)

is as in (27).

Proof. Using Lemma 1.3, the properties of modulus and the quasi-convexity of
∣∣∣1′∣∣∣ ,we get∣∣∣∣∣1 (ε) + 1 (δ)

2
−

1
2Λ (1)

[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]∣∣∣∣∣
≤

δ − ε
2Λ (1)

∫ 1

0
|Λ (1 − l) −Λ (l)|

∣∣∣1′ (lε + (1 − l) δ)
∣∣∣ dl

≤
δ − ε
2Λ (1)

∫ 1

0
|Λ (1 − l) −Λ (l)|max

{∣∣∣1′ (ε)∣∣∣ , ∣∣∣1′ (δ)∣∣∣} dl

The proof of inequality (32) is completed.
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Corollary 2.7. If we choose ϑ (l) = l in Theorem 2.6, the inequality (32) reduces to the inequality (11).

Corollary 2.8. If we choose ϑ (l) = lα
Γ(α) in Theorem 2.6, the inequality (32) reduces to the inequality (18).

Corollary 2.9. If we choose ϑ (l) = l
α
k

kΓk(α) in Theorem 2.6, the inequality (32) reduces to the inequality (26).

Corollary 2.10. Other results for different fractional integral operators as Katugampola, conformable, Hadamard,
etc... can also be found by changing the operator ϑ (l) in Theorem 2.6.

Theorem 2.11. Let 1 : [ε, δ]→ R, be a differentiable mapping on (ε, δ) with ε < δ. If
∣∣∣1′∣∣∣q is quasi-convex on [ε, δ]

and 1′ ∈ L [ε, δ] , p > 1, then the following inequality for generalized fractional integral operators holds:∣∣∣∣∣1 (ε) + 1 (δ)
2

−
1

2Λ (1)
[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]∣∣∣∣∣ (33)

≤
δ − ε
2Λ (1)

[
max

{∣∣∣1′ (ε)∣∣∣q , ∣∣∣1′ (δ)∣∣∣q}] 1
q

(∫ 1

0
|Λ (1 − l) −Λ (l)|p dl

) 1
p

Λ
(
µ
)

is as in (27).

Proof. Using Lemma 1.3, properties of modulus and Hölder inequality, we have∣∣∣∣∣1 (ε) + 1 (δ)
2

−
1

2Λ (1)
[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]∣∣∣∣∣
≤

δ − ε
2Λ (1)

∫ 1

0
|Λ (1 − l) −Λ (l)|

∣∣∣1′ (lε + (1 − l) δ)
∣∣∣ dl

≤
δ − ε
2Λ (1)

(∫ 1

0
|Λ (1 − l) −Λ (l)|p dl

) 1
p
(∫ 1

0

∣∣∣1′ (lε + (1 − l) δ)
∣∣∣q dl

) 1
q

.

Since the quasi-convexity of
∣∣∣1′∣∣∣q on [ε, δ] ,we get∣∣∣∣∣1 (ε) + 1 (δ)

2
−

1
2Λ (1)

[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]∣∣∣∣∣
≤

δ − ε
2Λ (1)

(∫ 1

0
|Λ (1 − l) −Λ (l)|p dl

) 1
p [

max
{∣∣∣1′ (ε)∣∣∣q , ∣∣∣1′ (δ)∣∣∣q}] 1

q .

So the proof is completed.

Corollary 2.12. If we choose ϑ (l) = l in Theorem 2.11, the inequality (32) reduces to the inequality (12).

Corollary 2.13. If we choose ϑ (l) = lα
Γ(α) in Theorem 2.11, the inequality (32) reduces to the inequality (19).

Corollary 2.14. If we choose ϑ (l) = l
α
k

kΓk(α) in Theorem 2.11, the inequality (32) reduces to the inequality (24).

Corollary 2.15. Other results for different fractional integral operators as Katugampola, conformable, Hadamard,
etc... can also be found by changing the operator ϑ (l) in Theorem 2.11.

Theorem 2.16. Let 1 : [ε, δ]→ R, be a differentiable mapping on (ε, δ) with ε < δ. If
∣∣∣1′∣∣∣q is quasi-convex on [ε, δ]

and 1′ ∈ L [ε, δ] , q ≥ 1, then the following inequality for generalized fractional integral operators holds:∣∣∣∣∣1 (ε) + 1 (δ)
2

−
1

2Λ (1)
[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]∣∣∣∣∣ (34)

≤
δ − ε
2Λ (1)

(∫ 1

0
|Λ (1 − l) −Λ (l)| dl

) [
max

{∣∣∣1′ (ε)∣∣∣q , ∣∣∣1′ (δ)∣∣∣q}] 1
q

Λ
(
µ
)

is as in (27).
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Proof. Using Lemma 1.3 and power-mean integral inequality, we have∣∣∣∣∣1 (ε) + 1 (δ)
2

−
1

2Λ (1)
[
ε+ Iϑ1 (δ) +δ− Iϑ1 (ε)

]∣∣∣∣∣
≤

δ − ε
2Λ (1)

∫ 1

0
|Λ (1 − l) −Λ (l)|

∣∣∣1′ (lε + (1 − l) δ)
∣∣∣ dl

≤
δ − ε
2Λ (1)

(∫ 1

0
|Λ (1 − l) −Λ (l)| dl

)1− 1
q
(∫ 1

0
|Λ (1 − l) −Λ (l)|

∣∣∣1′ (lε + (1 − l) δ)
∣∣∣q dl

) 1
q

.

Since
∣∣∣1′∣∣∣q is quasi-convex on [ε, δ] ,we have desired result. So, the proof is completed.

Corollary 2.17. If we choose ϑ (l) = l in Theorem 2.16, the inequality (34) reduces to the inequality 13.

Corollary 2.18. If we choose ϑ (l) = lα
Γ(α) in Theorem 2.16, the inequality (34) reduces to the inequality (18).

Corollary 2.19. If we choose ϑ (l) = l
α
k

kΓk(α) in Theorem 2.16, the inequality (34) reduces to the inequality (25).

Corollary 2.20. Other results for different fractional integral operators as Katugampola, conformable, Hadamard,
etc... can also be found by changing the operator ϑ (l) in Theorem 2.16.

Now we give some new inequalities for generalized fractional integral operators with Lemma 1.18
obtained by Budak et al. in [3].

Theorem 2.21. Let 1 : [ε, δ]→ R be differentiable function on (ε, δ) with ε < δ. If
∣∣∣1′∣∣∣ is quasi-convex on [ε, δ] and

1′ ∈ L [ε, δ], then the following inequality for generalized fractional integral operators holds:∣∣∣∣∣ 1
2Ψ (1)

[
( ε+δ2 )+ Iϑ1 (δ) +( ε+δ2 )− Iϑ1 (ε)

]
− 1

(
ε + δ

2

)∣∣∣∣∣ (35)

≤
δ − ε

4Ψ (1)

(∫ 1

0
|Ψ (l)| dl

) [
max

{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣ , ∣∣∣1′ (δ)∣∣∣}
+ max

{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣ , ∣∣∣1′ (ε)∣∣∣}]
whereΨ (1)is as in (21).

Proof. Using Lemma 1.18 and the quasi-convexity of
∣∣∣1′∣∣∣ on [ε, δ],we get∣∣∣∣∣ 1

2Ψ (1)

[
( ε+δ2 )+ Iϑ1 (δ) +( ε+δ2 )− Iϑ1 (ε)

]
− 1

(
ε + δ

2

)∣∣∣∣∣
≤

δ − ε
4Ψ (1)

[∫ 1

0
|Ψ (l)|

∣∣∣∣∣∣1′
(

l
2
ε +

2 − l
2
δ

)∣∣∣∣∣∣ dl +
∫ 1

0
|Ψ (l)|

∣∣∣∣∣∣1′
(

2 − l
2
ε +

l
2
δ

)∣∣∣∣∣∣ dl
]

≤
δ − ε

4Ψ (1)

∫ 1

0
|Ψ (l)|max

{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣ , ∣∣∣1′ (δ)∣∣∣} dl

+

∫ 1

0
|Ψ (l)|max

{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣ , ∣∣∣1′ (ε)∣∣∣} dl

By making the necessary arrangements the desired result is achieved.

Corollary 2.22. If we choose ϑ (l) = l in Theorem 2.16, we get the inequality (14).
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Theorem 2.23. Let 1 : [ε, δ]→ R be differentiable function on (ε, δ) with ε < δ. If
∣∣∣1′∣∣∣q is quasi-convex on [ε, δ] and

1′ ∈ L [ε, δ], p > 1, then the following inequality for generalized fractional integral operators holds:∣∣∣∣∣ 1
2Ψ (1)

[
( ε+δ2 )+ Iϑ1 (δ) +( ε+δ2 )− Iϑ1 (ε)

]
− 1

(
ε + δ

2

)∣∣∣∣∣
≤

δ − ε
4Ψ (1)

(∫ 1

0
|Ψ (l)|p dl

) 1
p


max


∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣ p
p−1

,
∣∣∣1′ (δ)∣∣∣ p

p−1




p−1
p

+

max


∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣ p
p−1

,
∣∣∣1′ (ε)∣∣∣ p

p−1




p−1
p


whereΨ (1)is as in (21).

Proof. Using Lemma 1.18 and Hölder inequality, we get∣∣∣∣∣ 1
2Ψ (1)

[
( ε+δ2 )+ Iϑ1 (δ) +( ε+δ2 )− Iϑ1 (ε)

]
− 1

(
ε + δ

2

)∣∣∣∣∣
≤

δ − ε
4Ψ (1)

(∫ 1

0
|Ψ (l)|p dl

) 1
p


∫ 1

0

∣∣∣∣∣∣1′
(

l
2
ε +

2 − l
2
δ

)∣∣∣∣∣∣
p

p−1

dl


p−1

p

.

If we use the quasi-convexity of
∣∣∣1′∣∣∣ on [ε, δ] last inequality, the desired result is achieved.

Corollary 2.24. If we choose ϑ (l) = l in Theorem 2.23, we get the inequality in (15).

Theorem 2.25. Let 1 : [ε, δ]→ R be differentiable function on (ε, δ) with ε < δ. If
∣∣∣1′∣∣∣q is quasi-convex on [ε, δ] and

1′ ∈ L [ε, δ], q ≥ 1, then the following inequality for generalized fractional integral operators holds:∣∣∣∣∣ 1
2Ψ (1)

[
( ε+δ2 )+ Iϑ1 (δ) +( ε+δ2 )− Iϑ1 (ε)

]
− 1

(
ε + δ

2

)∣∣∣∣∣
≤

δ − ε
4Ψ (1)

(∫ 1

0
|Ψ (l)| dl

) (max
{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣q , ∣∣∣1′ (δ)∣∣∣q}) 1
q

+

(
max

{∣∣∣∣∣1′ (ε + δ2

)∣∣∣∣∣q , ∣∣∣1′ (ε)∣∣∣q}) 1
q


whereΨ (1)is as in (21).

Proof. Using Lemma 1.18 and power-mean inequality, we get∣∣∣∣∣ 1
2Ψ (1)

[
( ε+δ2 )+ Iϑ1 (δ) +( ε+δ2 )− Iϑ1 (ε)

]
− 1

(
ε + δ

2

)∣∣∣∣∣ (36)

≤
δ − ε

4Ψ (1)

[∫ 1

0
|Ψ (l)|

∣∣∣∣∣∣1′
(

l
2
ε +

2 − l
2
δ

)∣∣∣∣∣∣ dl

+

∫ 1

0
|Ψ (l)|

∣∣∣∣∣∣1′
(

2 − l
2
ε +

l
2
δ

)∣∣∣∣∣∣ dl
]

≤
δ − ε

4Ψ (1)

(∫ 1

0
|Ψ (l)| dl

)1− 1
q

(∫ 1

0
|Ψ (l)|

∣∣∣∣∣∣1′
(

l
2
ε +

2 − l
2
δ

)∣∣∣∣∣∣q dl
) 1

q

+

(∫ 1

0
|Ψ (l)|

∣∣∣∣∣∣1′
(

2 − l
2
ε +

l
2
δ

)∣∣∣∣∣∣q dl
) 1

q
 .
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If we use the quasi-convexity of
∣∣∣1′∣∣∣ in (36), the desired result is achieved.

Corollary 2.26. If we choose ϑ (l) = l in Theorem 2.25, we get the inequality in (16).
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Abstract. In the present paper, new classes of convexity, namely, exponentially m− and(α,m)−convex
functions on the co-ordinates are defined. Then, some new integral inequalities are proved by using some
classical inequalities and properties of exponentially m− ad (α,m)−convex functions on the co-ordinates.

1. Introduction

In [8], Toader defined m−convex functions as following:

Definition 1.1. The function f : [0, b]→ R, b > 0 is said to be m−convex, where m ∈ [0, 1], if we have

f (tx +m(1 − t)y) ≤ t f (x) +m(1 − t) f (y)

for all x, y ∈ [0, b] and t ∈ [0, 1].

Denote by Km(b) the class of all m−convex functions on [0, b] for which f (0) ≤ 0.Obviously, if we choose
m = 1, we have ordinary convex functions on [0, b].

In [7], Miheşan introduced (α,m)−convexity as following:

Definition 1.2. The function f : [0, b]→ R, b > 0 is said to be (α,m)−convex, where (α,m) ∈ [0, 1]2, if we have

f (tx +m(1 − t)y) ≤ tα f (x) +m(1 − tα) f (y)

for all x, y ∈ [0, b] and t ∈ [0, 1].

Denote by Kαm(b) the class of all (α,m)−convex functions on [0, b] for which f (0) ≤ 0. If we choose
(α,m) = (1,m), it can be easily seen that (α,m)−convexity reduces to m−convexity and for (α,m) = (1, 1),we
have ordinary convex functions on [0, b].

For several results related to above definitions we refer interest of readers to [4], [5], [6], [7], [8], [9] and
[11].
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We will start by expressing an important inequality proved for convex functions. This inequality is presented
on the basis of averages and give bounds for the mean value of a convex function.
Assume that f : I ⊆ R→ R is a convex mapping defined on the interval I of R where a < b. The following
statement;

f
(

a + b
2

)
≤

1
b − a

b∫
a

f (x)dx ≤
f (a) + f (b)

2

holds and known as Hermite-Hadamard inequality. Both inequalities hold in the reversed direction if f is
concave.
In [1], Dragomir mentions an expansion of the concept of convex function, which is used in many inequalities
in the field of inequality theory and has applications in different fields of mathematics, especially convex
programming.

Definition 1.3. Let us consider the bidimensional interval ∆ = [a, b] × [c, d] in R2 with a < b, c < d. A function
f : ∆ → R will be called convex on the co-ordinates if the partial mappings fy : [a, b] → R, fy(u) = f (u, y) and
fx : [c, d] → R, fx(v) = f (x, v) are convex where defined for all y ∈ [c, d] and x ∈ [a, b]. Recall that the mapping
f : ∆→ R is convex on ∆ if the following inequality holds,

f (λx + (1 − λ)z, λy + (1 − λ)w) ≤ λ f (x, y) + (1 − λ) f (z,w)

for all (x, y), (z,w) ∈ ∆ and λ ∈ [0, 1].

Expressing convex functions in coordinates brought up the question that it is possible for Hermite-
Hadamard inequality to expand into coordinates. The answer to this motivating question has been found
in Dragomir’s paper (see [1]) and has taken its place in the literature as the expansion of Hermite-Hadamard
inequality to a rectangle from the plane R2 stated below.

Theorem 1.4. Suppose that f : ∆ = [a, b] × [c, d] → R is convex on the co-ordinates on ∆. Then one has the
inequalities;

f
(

a + b
2
,

c + d
2

)
(1)

≤
1
2

[
1

b − a

∫ b

a
f
(
x,

c + d
2

)
dx +

1
d − c

∫ d

c
f
(

a + b
2
, y

)
dy

]
≤

1
(b − a)(d − c)

∫ b

a

∫ d

c
f (x, y)dxdy

≤
1
4

[
1

(b − a)

∫ b

a
f (x, c)dx +

1
(b − a)

∫ b

a
f (x, d)dx

+
1

(d − c)

∫ d

c
f (a, y)dy +

1
(d − c)

∫ d

c
f (b, y)dy

]
≤

f (a, c) + f (a, d) + f (b, c) + f (b, d)
4

.

The above inequalities are sharp.

The concept of exponentially convex function on the coordinates and the associated results are presented
as the followings:

Definition 1.5. (See [12]) Let us consider the interval such as ∆ = [ϵ1, ϵ2] × [ϵ3, ϵ4] in R2 with ϵ1 < ϵ2, ϵ3 < ϵ4.
The functionΨ : ∆→ R is exponentially convex on ∆ if

Ψ((1 − ζ) u1 + ζu3, (1 − ζ) u2 + ζu4) ≤ (1 − ζ)
Ψ(u1,u2)
eα(u1+u2)

+ ζ
Ψ(u3,u4)
eα(u3+u4)

for all (u1,u2), (u3,u4) ∈ ∆, α ∈ R and ζ ∈ [0, 1].
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An equivalent definition of the exponentially convex function definition in coordinates can be done as
follows:

Definition 1.6. (See [12]) The mappingΨ : ∆ −→ R is exponentially convex function on the co-ordinates on ∆, if

Ψ (ζϵ1 + (1 − ζ) ϵ2, ξϵ3 + (1 − ξ) ϵ4)

≤ ζξ
Ψ(ϵ1, ϵ3)
eα(ϵ1+ϵ3)

+ ζ(1 − ξ)
Ψ(ϵ1, ϵ4)
eα(ϵ1+ϵ4)

+ (1 − ζ)ξ
Ψ(ϵ2, ϵ3)
eα(ϵ2+ϵ3)

+ (1 − ζ)(1 − ξ)
Ψ(ϵ2, ϵ4)
eα(ϵ2+ϵ4)

for all (ϵ1, ϵ3) , (ϵ1, ϵ4) , (ϵ2, ϵ3) , (ϵ2, ϵ4) ∈ ∆, α ∈ R and ζ, ξ ∈ [0, 1] .

The main motivation of this paper is to define exponentially m− and (α,m)−convex functions on the co-
ordinates. We have proved several integral inequalities for these classes of functions.

2. Exponentially m−convex functions on the co-ordinates

Definition 2.1. Let us consider the bidimensional interval ∆ = [0, b] × [0, d] in R2 with 0 < a < b < ∞ and c < d.
The mapping f : ∆ −→ R is exponentially m−convex function on the co-ordinates on ∆, if the following inequality
holds,

f
(
tx + (1 − t) z, ty +m (1 − t) w

)
≤ t

f (x, y)
eα(x+y)

+m(1 − t)
f (z,w)
eα(z+w)

.

for all (x, y), (z,w) ∈ ∆,α ∈ R,m ∈ (0, 1] and t ∈ [0, 1].

An equivalent definition of the exponentially m−convex function definition in coordinates can be done
as follows:

Definition 2.2. The mapping f : ∆ −→ R is exponential convex on the co-ordinates on ∆, if the following inequality
holds,

f (ta + (1 − t) b, sc +m (1 − s) d)

≤ ts
f (a, c)
eα(a+c)

+ t(1 − s)m
f (a, d)
eα(a+d)

+ (1 − t)s
f (b, c)
eα(b+c)

+ (1 − t)(1 − s)m
f (b, d)
eα(b+d)

for all (a, c) , (a, d) , (b, c) , (b, d) ∈ ∆, α ∈ R and m, t, s ∈ [0, 1]

Lemma 2.3. A function f : ∆ −→ R will be called exponential m−convex function on the co-ordinates on ∆, if the
partial mappings fy : [a, b] −→ R , fy(u) = eαy f (u, y) and fx : [c, d] −→ R , fx(v) = eαx f (x, v) are exponentially
m−convex function on the co-ordinates on ∆, where defined for all y ∈ [c, d] and x ∈ [a, b].

Proof. From the definition of partial mapping fx,we can write

fx(tv1 +m (1 − t) v2) = eαx f (x, tv1 +m (1 − t) v2)
= eαx f (tx + (1 − t)x, tv1 +m (1 − t) v2)

≤ eαx
[
t

f (x, v1)
eα(x+v1)

+m(1 − t)
f (x, v2)
eα(x+v2)

]
= t

f (x, v1)
eαv1

+m(1 − t)
f (x, v2)

eαv2

= t
fx(v1)
eαv1

+m(1 − t)
fx(v2)
eαv2
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Similarly,

fy(tu1 +m (1 − t) u2) = eαy f (tu1 +m (1 − t) u2, y)
= eαy f (tu1 +m (1 − t) u2, ty + (1 − t)y)

≤ eαy
[
t

f (u1, y)
eα(u1+y)

+m(1 − t)
f (u2, y)
eα(u2+y)

]
= t

f (u1, y)
eαu1

+m(1 − t)
f (u2, y)

eαu2

= t
fy(u1)
eαu1

+m(1 − t)
fy(u2)
eαu2

.

The proof is completed.

Theorem 2.4. Let f : ∆ = [0, b] × [0, d] → R be partial differentiable mapping on ∆ = [0, b] × [0, d] in R2 with
0 < a < b < ∞ and 0 < c < md < ∞, f ∈ L(∆), α ∈ R. If f is exponentially m−convex function on the co-ordinates
on ∆, then the following inequality holds;

1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

≤
1
4

[
f (a, c)
eα(a+c)

+
f (b, c)
eα(b+c)

+m
(

f (b, d)
eα(b+d)

+
f (a, d)
eα(a+d)

)]
.

Proof. By the definition of the exponentially m−convex functions on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)

≤ ts
f (a, c)
eα(a+c)

+mt(1 − s)
f (a, d)
eα(a+d)

+ (1 − t)s
f (b, c)
eα(b+c)

+m(1 − t)(1 − s)
f (b, d)
eα(b+d)

.

By integrating both sides of the above inequality with respect to t, s on [0, 1]2,we have∫ 1

0

∫ 1

0
f (ta + (1 − t)b, sc +m(1 − s)d) dtds

≤

∫ 1

0

∫ 1

0
ts

f (a, c)
eα(a+c)

dtds +
∫ 1

0

∫ 1

0
t(1 − s)m

f (a, d)
eα(a+d)

dtds

+

∫ 1

0

∫ 1

0
(1 − t)s

f (b, c)
eα(b+c)

dtds +
∫ 1

0

∫ 1

0
(1 − t)(1 − s)m

f (b, d)
eα(b+d)

dtds.

By computing the above integrals, we obtain the desired result.

Theorem 2.5. Let f : ∆ = [0, b] × [0, d] → R be partial differentiable mapping on ∆ = [0, b] × [0, d] in R2 with
0 < a < b < ∞ and 0 < c < md < ∞, f ∈ L(∆), α ∈ R. If

∣∣∣ f ∣∣∣ is exponentially m−convex function on the co-ordinates
on ∆, p > 1 and m ∈ (0, 1], then the following inequality holds;∣∣∣∣∣∣ 1

(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

 1(
p + 1

)2


1
p

∣∣∣ f (a, c)

∣∣∣
eα(a+c)

+

∣∣∣m f (a, d)
∣∣∣

eα(a+d)
+

∣∣∣ f (b, c)
∣∣∣

eα(b+c)
+

∣∣∣m f (b, d)
∣∣∣

eα(b+d)

 .
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Proof. By the definition of the exponentially m−convex functions on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)

≤ ts
f (a, c)
eα(a+c)

+ t(1 − s)m
f (a, d)
eα(a+d)

+

(1 − t)s
f (b, c)
eα(b+c)

+ (1 − t)(1 − s)m
f (b, d)
eα(b+d)

The absolute value property is used in integral and by integrating both sides of the above inequality with
respect to t, s on [0, 1]2 , we can write∣∣∣∣∣∣

∫ 1

0

∫ 1

0
f (ta + (1 − t)b, sc +m(1 − s)d) dtds

∣∣∣∣∣∣
≤

∫ 1

0

∫ 1

0

∣∣∣∣∣ts f (a, c)
eα(a+c)

∣∣∣∣∣ dtds +
∫ 1

0

∫ 1

0

∣∣∣∣∣t(1 − s)m
f (a, d)
eα(a+d)

∣∣∣∣∣ dtds

+

∫ 1

0

∫ 1

0

∣∣∣∣∣(1 − t)s
f (b, c)
eα(b+c)

∣∣∣∣∣ dtds +
∫ 1

0

∫ 1

0

∣∣∣∣∣(1 − t)(1 − s)m
f (b, d)
eα(b+d)

∣∣∣∣∣ dtds

If we apply the Hölder’s inequality to the right-hand side of the inequality, we get∣∣∣∣∣∣ 1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

(∫ 1

0

∫ 1

0
tpspdtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (a, c)
eα(a+c)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
tp(1 − s)pdtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (a, d)
eα(a+d)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
(1 − t)pspdtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (b, c)
eα(b+c)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
(1 − t)p(1 − s)pdtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (b, d)
eα(b+d)

∣∣∣∣∣q dtds
) 1

q

By computing the above integrals, we obtain the desired result.

Theorem 2.6. Let f : ∆ = [0, b] × [0, d] → R be partial differentiable mapping on ∆ = [0, b] × [0, d] in R2 with
0 < a < b < ∞ and 0 < c < md < ∞, f ∈ L(∆), α ∈ R. If

∣∣∣ f ∣∣∣ is exponentially m−convex function on the co-ordinates
on ∆, p, q > 1, 1

p +
1
q = 1, then the following inequality holds;

∣∣∣∣∣∣ 1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

 4

p
(
p + 1

)2


+

1
q


∣∣∣ f (a, c)

∣∣∣q
eαq(a+c)

+

∣∣∣m f (a, d)
∣∣∣q

eαq(a+d)
+

∣∣∣ f (b, c)
∣∣∣q

eαq(b+c)
+

∣∣∣m f (b, d)
∣∣∣q

eαq(b+d)

 .
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Proof. By the definition of the exponentially m−convex functions on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)

≤ ts
f (a, c)
eα(a+c)

+ t(1 − s)m
f (a, d)
eα(a+d)

+(1 − t)s
f (b, c)
eα(b+c)

+ (1 − t)(1 − s)m
f (b, d)
eα(b+d)

By the absolute value property and by integrating both sides of the above inequality with respect to t, s on
[0, 1]2, we can write ∣∣∣∣∣∣

∫ 1

0

∫ 1

0
f (ta + (1 − t)b, sc +m(1 − s)d) dtds

∣∣∣∣∣∣
≤

∫ 1

0

∫ 1

0

∣∣∣∣∣ts f (a, c)
eα(a+c)

∣∣∣∣∣ dtds +
∫ 1

0

∫ 1

0

∣∣∣∣∣t(1 − s)m
f (a, d)
eα(a+d)

∣∣∣∣∣ dtds

+

∫ 1

0

∫ 1

0

∣∣∣∣∣(1 − t)s
f (b, c)
eα(b+c)

∣∣∣∣∣ dtds +
∫ 1

0

∫ 1

0

∣∣∣∣∣(1 − t)(1 − s)m
f (b, d)
eα(b+d)

∣∣∣∣∣ dtds

If we apply the Young’s inequality to the right-hand side of the inequality, we get∣∣∣∣∣∣ 1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

1
p

(∫ 1

0

∫ 1

0
tpspdtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (a, c)
eα(a+c)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
tp(1 − s)pdtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (a, d)
eα(a+d)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
(1 − t)pspdtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (b, c)
eα(b+c)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
(1 − t)p(1 − s)pdtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (b, d)
eα(b+d)

∣∣∣∣∣q dtds
)
.

By computing the above integrals, we obtain the desired result.

Proposition 2.7. If f , 1 : ∆→ R are two exponentially m−convex functions on the co-ordinates on ∆, then f + 1 is
exponentially m−convex function on the co-ordinates on ∆.

Proof. By the definition of the exponentially m−convex functions on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d) + 1 (ta + (1 − t)b, sc +m(1 − s)d)

≤ ts
(

f (a, c)
eα(a+c)

+
1(a, c)
eα(a+c)

)
+ t(1 − s)m

(
f (a, d)
eα(a+d)

+
1(a, d)
eα(a+d)

)
+(1 − t)s

(
f (b, c)
eα(b+c)

+
1(b, c)
eα(b+c)

)
+ (1 − t)(1 − s)m

(
f (b, d)
eα(b+d)

+
1(b, d)
eα(b+d)

)
.

Namely, (
f + 1

)
(ta + (1 − t)b, sc +m(1 − s)d)

≤ ts
(

f + 1
)

(a, c)
eα(a+c)

+ t(1 − s)m
(

f + 1
)

(a, d)
eα(a+d)

+(1 − t)s
(

f + 1
)

(b, c)
eα(b+c)

+ (1 − t)(1 − s)m
(

f + 1
)

(b, d)
eα(b+d)

.

Therefore, ( f + 1) is exponentially m−convex functions on the co-ordinates on ∆.
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Proposition 2.8. If f : ∆ → R is exponential m−convex functions on the co-ordinates on ∆ and k ≥ 0 then k f is
exponential m−convex functions on the co-ordinates on ∆.

Proof. By the definition of the exponentially m−convex functions on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)

≤ ts
f (a, c)
eα(a+c)

+ t(1 − s)m
f (a, d)
eα(a+d)

+(1 − t)s
f (b, c)
eα(b+c)

+ (1 − t)(1 − s)m
f (b, d)
eα(b+d)

.

If both sides are multiplied by k, we have(
k f

)
(ta + (1 − t)b, sc +m(1 − s)d)

≤ ts
(
k f

)
(a, c)

eα(a+c)
+ t(1 − s)m

(
k f

)
(a, d)

eα(a+d)

+(1 − t)s
(
k f

)
(b, c)

eα(b+c)
+ (1 − t)(1 − s)m

(
k f

)
(b, d)

eα(b+d)
.

Therefore (k f ) is exponentially m−convex functions on the co-ordinates on ∆.

3. Exponentially (α,m)−convex functions on the co-ordinates

Definition 3.1. Let us consider the bidimensional interval ∆ = [0, b] × [0, d] in R2 with 0 < a < b < ∞ and c < d.
The mapping f : ∆ −→ R is exponentially (α1,m)-convex on the co-ordinates on ∆, if the following inequality holds,

f
(
tx + (1 − t) z, ty +m (1 − t) w

)
≤ tα1

f (x, y)
eα(x+y)

+m(1 − tα1 )
f (z,w)
eα(z+w)

for all (x, y), (z,w) ∈ ∆, α ∈ R, (α1,m) ∈ [0, 1]2 and t ∈ [0, 1] .

An equivalent definition of the exponentially (α1,m)-convex function definition in coordinates can be
done as follows:

Definition 3.2. The mapping f : ∆ −→ R is exponentially (α1,m)-convex on the co-ordinates on ∆, if the following
inequality holds,

f (ta + (1 − t) b, sc +m (1 − s) d)

≤ tα1 sα1
f (a, c)
eα(a+c)

+ tα1 (1 − sα1 )m
f (a, d)
eα(a+d)

+(1 − tα1 )sα1
f (b, c)
eα(b+c)

+ (1 − tα1 )(1 − sα1 )m
f (b, d)
eα(b+d)

for all (a, c) , (a, d) , (b, c) , (b, d) ∈ ∆, α ∈ R, (α1,m) ∈ [0, 1]2 and t, s ∈ [0, 1]

Lemma 3.3. A function f : ∆ −→ R will be called exponentially (α1,m)-convex on the co-ordinates on ∆, if the
partial mappings fy : [a, b] −→ R , fy(u) = eαy f (u, y) and fx : [c, d] −→ R , fx(v) = eαx f (x, v) are exponentially
(α1,m)-convex on the co-ordinates on ∆, where defined for all y ∈ [c, d] and x ∈ [a, b].
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Proof. From the definition of partial mapping fx,we can write

fx(tv1 +m (1 − t) v2) = eαx f (x, tv1 +m (1 − t) v2)
= eαx f (tx + (1 − t)x, tv1 +m (1 − t) v2)

≤ eαx
[
tα1

f (x, v1)
eα(x+v1)

+m(1 − tα1 )
f (x, v2)
eα(x+v2)

]
= tα1

f (x, v1)
eαv1

+m(1 − tα1 )
f (x, v2)

eαv2

= tα1
fx(v1)
eαv1

+m(1 − tα1 )
fx(v2)
eαv2

.

Similarly,

fy(tu1 +m (1 − t) u2) = eαy f (tu1 +m (1 − t) u2, y)
= eαy f (tu1 +m (1 − t) u2, ty + (1 − t)y)

≤ eαy
[
tα1

f (u1, y)
eα(u1+y)

+m(1 − tα1 )
f (u2, y)
eα(u2+y)

]
= tα1

f (u1, y)
eαu1

+m(1 − tα1 )
f (u2, y)

eαu2

= tα1
fy(u1)
eαu1

+m(1 − tα1 )
fy(u2)
eαu2

.

The proof is completed.

Theorem 3.4. Let f : ∆ = [0, b] × [0, d] → R be partial differentiable mapping on ∆ = [0, b] × [0, d] in R2 with
0 < a < b < ∞, 0 < c < md < ∞, f ∈ L(∆), (α1,m) ∈ [0, 1]2 and α ∈ R. If f is exponentially (α1,m)−convex
function on the co-ordinates on ∆, then the following inequality holds;

1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

≤
1

(α1 + 1)2

f (a, c)
eα(a+c)

+
α1

(α1 + 1)2

(
m f (a, d)
eα(a+d)

+
f (b, c)
eα(b+c)

)
+

α2
1

(α1 + 1)2

m f (b, d)
eα(b+d)

.

Proof. By the definition of the exponentially (α1,m)-convex on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)

≤ tα1 sα1
f (a, c)
eα(a+c)

+ tα1 (1 − sα1 )m
f (a, d)
eα(a+d)

+(1 − tα1 )sα1
f (b, c)
eα(b+c)

+ (1 − tα1 )(1 − sα1 )m
f (b, d)
eα(b+d)

.

By integrating both sides of the above inequality with respect to t, s on [0, 1]2,we have∫ 1

0

∫ 1

0
f (ta + (1 − t)b, sc +m(1 − s)d) dtds

≤

∫ 1

0

∫ 1

0
tα1 sα1

f (a, c)
eα(a+c)

dtds +
∫ 1

0

∫ 1

0
tα1 (1 − sα1 )m

f (a, d)
eα(a+d)

dtds

+

∫ 1

0

∫ 1

0
(1 − tα1 )sα1

f (b, c)
eα(b+c)

dtds +
∫ 1

0

∫ 1

0
(1 − tα1 )(1 − sα1 )m

f (b, d)
eα(b+d)

dtds.
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By computing the above integrals, we obtain the desired result.

Theorem 3.5. Let f : ∆ = [0, b] × [0, d] → R be partial differentiable mapping on ∆ = [0, b] × [0, d] in R2 with
0 < a < b < ∞, 0 < c < md < ∞, f ∈ L(∆), (α1,m) ∈ [0, 1]2 and α ∈ R. If

∣∣∣ f ∣∣∣ is exponentially (α1,m)-convex on the
co-ordinates on ∆, p > 1, then the following inequality holds;∣∣∣∣∣∣ 1

(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

 1(
pα1 + 1

)2


1
p
∣∣∣ f (a, c)

∣∣∣
eα(a+c)

+

 pα1(
pα1 + 1

)2


1
p
m

∣∣∣ f (a, d)
∣∣∣

eα(a+d)
+

∣∣∣ f (b, c)
∣∣∣

eα(b+c)


+

 p2α2
1(

pα1 + 1
)2


1
p m

∣∣∣ f (b, d)
∣∣∣

eα(b+d)
.

Proof. By the definition of the exponentially (α1,m)-convex on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)

≤ tα1 sα1
f (a, c)
eα(a+c)

+ tα1 (1 − sα1 )m
f (a, d)
eα(a+d)

+(1 − tα1 )sα1
f (b, c)
eα(b+c)

+ (1 − tα1 )(1 − sα1 )m
f (b, d)
eα(b+d)

.

The absolute value property is used in integral and by integrating both sides of the above inequality with
respect to t, s on [0, 1]2 , we can write∣∣∣∣∣∣

∫ 1

0

∫ 1

0
f (ta + (1 − t)b, sc +m(1 − s)d) dtds

∣∣∣∣∣∣
≤

∫ 1

0

∫ 1

0

∣∣∣∣∣tα1 sα1
f (a, c)
eα(a+c)

∣∣∣∣∣ dtds +
∫ 1

0

∫ 1

0

∣∣∣∣∣tα1 (1 − sα1 )m
f (a, d)
eα(a+d)

∣∣∣∣∣ dtds

+

∫ 1

0

∫ 1

0

∣∣∣∣∣(1 − tα1 )sα1
f (b, c)
eα(b+c)

∣∣∣∣∣ dtds +
∫ 1

0

∫ 1

0

∣∣∣∣∣(1 − tα1 )(1 − sα1 )m
f (b, d)
eα(b+d)

∣∣∣∣∣ dtds

If we apply the Hölder’s inequality to the right-hand side of the inequality, we get∣∣∣∣∣∣ 1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

(∫ 1

0

∫ 1

0
tpα1 spα1 dtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (a, c)
eα(a+c)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
tpα1 (1 − sα1 )pdtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (a, d)
eα(a+d)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
(1 − tα1 )pspα1 dtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (b, c)
eα(b+c)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
(1 − tα1 )p(1 − sα1 )pdtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (b, d)
eα(b+d)

∣∣∣∣∣q dtds
) 1

q
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By using the fact that
∣∣∣1 − (1 − t)θ

∣∣∣β ≤ 1 − (1 − t)θβ for θ > 0, β > 0, we can write∣∣∣∣∣∣ 1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

(∫ 1

0

∫ 1

0
tpα1 spα1 dtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (a, c)
eα(a+c)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
tpα1 (1 − spα1 )dtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (a, d)
eα(a+d)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
(1 − tpα1 )spα1 dtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (b, c)
eα(b+c)

∣∣∣∣∣q dtds
) 1

q

+

(∫ 1

0

∫ 1

0
(1 − tpα1 )(1 − spα1 )dtds

) 1
p
(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (b, d)
eα(b+d)

∣∣∣∣∣q dtds
) 1

q

.

By computing the above integrals, we obtain the desired result.

Theorem 3.6. Let f : ∆ = [0, b] × [0, d] → R be partial differentiable mapping on ∆ = [0, b] × [0, d] in R2 with
0 < a < b < ∞, 0 < c < md < ∞, f ∈ L(∆), (α1,m) ∈ [0, 1]2 and α ∈ R. If

∣∣∣ f ∣∣∣ is exponentially (α1,m)-convex on the
co-ordinates on ∆, p, q > 1, 1

p +
1
q = 1, then the following inequality holds;∣∣∣∣∣∣ 1

(b − a) (d − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

 1

p
(
pα1 + 1

)2

 +
∣∣∣ f (a, c)

∣∣∣q
qeαq(a+c)

+

 α1(
pα1 + 1

)2

 +

∣∣∣m f (a, d)

∣∣∣q
qeαq(a+d)

+

∣∣∣ f (b, c)
∣∣∣q

qeαq(b+c)


+

 pα2
1(

pα1 + 1
)2

 +
∣∣∣m f (b, d)

∣∣∣q
qeαq(b+d)

.

Proof. By the definition of the exponentially (α1,m)-convex on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)

≤ tα1 sα1
f (a, c)
eα(a+c)

+ tα1 (1 − sα1 )m
f (a, d)
eα(a+d)

+(1 − tα1 )sα1
f (b, c)
eα(b+c)

+ (1 − tα1 )(1 − sα1 )m
f (b, d)
eα(b+d)

.

The absolute value property is used in integral and by integrating both sides of the above inequality with
respect to t, s on [0, 1]2, we can write∣∣∣∣∣∣

∫ 1

0

∫ 1

0
f (ta + (1 − t)b, sc +m(1 − s)d) dtds

∣∣∣∣∣∣
≤

∫ 1

0

∫ 1

0

∣∣∣∣∣tα1 sα1
f (a, c)
eα(a+c)

∣∣∣∣∣ dtds +
∫ 1

0

∫ 1

0

∣∣∣∣∣tα1 (1 − sα1 )m
f (a, d)
eα(a+d)

∣∣∣∣∣ dtds

+

∫ 1

0

∫ 1

0

∣∣∣∣∣(1 − tα1 )sα1
f (b, c)
eα(b+c)

∣∣∣∣∣ dtds +
∫ 1

0

∫ 1

0

∣∣∣∣∣(1 − tα1 )(1 − sα1 )m
f (b, d)
eα(b+d)

∣∣∣∣∣ dtds
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If we apply the Young’s inequality to the right-hand side of the inequality, we get∣∣∣∣∣∣ 1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

1
p

(∫ 1

0

∫ 1

0
tpα1 spα1 dtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (a, c)
eα(a+c)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
tpα1 (1 − sα1 )pdtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (a, d)
eα(a+d)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
(1 − tα1 )pspα1 dtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (b, c)
eα(b+c)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
(1 − tα1 )p(1 − sα1 )pdtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (b, d)
eα(b+d)

∣∣∣∣∣q dtds
)

By using the fact that
∣∣∣1 − (1 − t)θ

∣∣∣β ≤ 1 − (1 − t)θβ for θ > 0, β > 0, we can write∣∣∣∣∣∣ 1
(b − a) (md − c)

∫ b

a

∫ md

c
f (x, y)dxdy

∣∣∣∣∣∣
≤

1
p

(∫ 1

0

∫ 1

0
tpα1 spα1 dtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (a, c)
eα(a+c)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
tpα1 (1 − spα1 )dtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (a, d)
eα(a+d)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
(1 − tpα1 )spα1 dtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣ f (b, c)
eα(b+c)

∣∣∣∣∣q dtds
)

+
1
p

(∫ 1

0

∫ 1

0
(1 − tpα1 )(1 − spα1 )dtds

)
+

1
q

(∫ 1

0

∫ 1

0

∣∣∣∣∣m f (b, d)
eα(b+d)

∣∣∣∣∣q dtds
)
.

By computing the above integrals, we obtain the desired result.

Proposition 3.7. If f , 1 : ∆ → R are two exponentially (α1,m)-convex on the co-ordinates on ∆, then f + 1 is
exponentially convex functions on the co-ordinates on ∆.

Proof. By the definition of the exponentially (α1,m)-convex on the co-ordinates on ∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)
+1 (ta + (1 − t)b, sc +m(1 − s)d)

≤ tα1 sα1

(
f (a, c)
eα(a+c)

+
1(a, c)
eα(a+c)

)
+tα1 (1 − sα1 )m

(
f (a, d)
eα(a+d)

+
1(a, d)
eα(a+d)

)
+(1 − tα1 )sα1

(
f (b, c)
eα(b+c)

+
1(b, c)
eα(b+c)

)
+(1 − tα1 )(1 − sα1 )m

(
f (b, d)
eα(b+d)

+
1(b, d)
eα(b+d)

)
.
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Namely, (
f + 1

)
(ta + (1 − t)b, sc +m(1 − s)d)

≤ tα1 sα1

(
f + 1

)
(a, c)

eα(a+c)
+ tα1 (1 − sα1 )m

(
f + 1

)
(a, d)

eα(a+d)

+(1 − tα1 )sα1

(
f + 1

)
(b, c)

eα(b+c)

+(1 − tα1 )(1 − sα1 )m
(

f + 1
)

(b, d)
eα(b+d)

.

Therefore ( f + 1) is exponentially (α1,m)-convex on the co-ordinates on ∆.

Proposition 3.8. If f : ∆ → R is exponentially (α1,m)-convex on the co-ordinates on ∆ and k ≥ 0 then k f is
exponentially (α1,m)-convex on the co-ordinates on ∆.

Proof. By the definition of the exponentially (α1,m)-convex functions on the co-ordinates on∆, we can write

f (ta + (1 − t)b, sc +m(1 − s)d)

≤ tα1 sα1
f (a, c)
eα(a+c)

+ tα1 (1 − sα1 )m
f (a, d)
eα(a+d)

+(1 − tα1 )sα1
f (b, c)
eα(b+c)

+ (1 − tα1 )(1 − sα1 )m)
f (b, d)
eα(b+d)

.

If both sides are multiplied by k, we have,(
k f

)
(ta + (1 − t)b, sc +m(1 − s)d)

≤ tα1 sα1

(
k f

)
(a, c)

eα(a+c)
+ tα1 (1 − sα1 )m

(
k f

)
(a, d)

eα(a+d)
+

(1 − tα1 )sα1

(
k f

)
(b, c)

eα(b+c)
+ (1 − tα1 )(1 − sα1 )m

(
k f

)
(b, d)

eα(b+d)
.

Therefore (k f ) is exponentially (α1,m)-convex functions on the co-ordinates on ∆.
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[3] Özdemir, M.E. Set, E., Sarıkaya, M.Z. (2011). Some new Hadamard’s type inequalities for co-ordinated m−convex and
(α,m)−convex functions, Hacettepe Journal of Mathematics and Statistics , 40(2), 219-229.
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