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Non-null Translation-Homothetical surfaces in four-dimensional
Minkowski space

Sezgin Büyükkütüka, Günay Öztürkb

aKocaeli University, Gölcük Vocational School of Higher Education, Kocaeli, TURKEY
b İzmir Democrasy University, Art and Science Faculty, Department of Mathematics, İzmir, TURKEY

Abstract. In the present work, we deal with non-null translation-homothetical surfaces in Minkowski
4−space. Initially, we describe non-null TH−type surface (Translation-Homothetical surface). Then, we
yield the normal curvature, mean curvature vector and Gaussian curvature functions. Using these concepts,
we characterize the non-null semiumbilical, minimal and flat translation-homothetical surfaces in E4

1.

1. Introduction

In physics literature, special relativity is a scientific theory that explains the relationship between space
and time. According to the theory, all objects and physical phenomena are relative. Time, space and motion
are not independent of each other. Minkowski space-time is the geometry that mathematically describes the
four-dimensional structure of special relativity. Minkowski 4−space ( or Minkowski space-time) is defined
with the help of a Lorentzian metric as

1
(
x, y

)
= −x0y0 + x1y1 + x2y2 + x3y3. (1)

Any arbitrary vector is known as spacelike, lightlike or timelike, if the Lorentzian metric 1 (x, x) is
positive definite, zero or negative definite, respectively. In Minkowski space-time, all surfaces are also
divided into three categories in a similar way. Any surface in E4

1 is known as a spacelike surface ( or
timelike surface), given that its all tangent vectors are spacelike (timelike).

Let M : ψ = ψ(s, t) be a non-lightlike (spacelike or timelike) surface in E4
1. Four-dimensional Minkowski

space can be decomposed into tangent space and normal space of M, at each point p as:

E4
1 = T⊥p M ⊕ TpM. (2)

Levi-Civita connections are indicated by
∼

∇ and ∇ on E4
1 and M. Assume: X and Y are tangent vector

fields and N is a normal vector field of M. The vector fields
∼

∇XN and
∼

∇XY are decomposed into normal and
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tangent components by Weingarten and Gauss formulas:

∼

∇XN = −ANX +DXN,
∼

∇XY = ∇XY + h(X,Y), (3)

where D, h and AN are the normal connection, the second fundamental form and the shape operator,
respectively. [7, 12].

Letψ =ψ(s, t) be a parametrization for a non-null surface M inE4
1. Then, TpM = span

{
ψs, ψt

}
corresponds

to the tangent space at a point p of M. The standard indications E = 1
(
ψs, ψs

)
, F = 1

(
ψs, ψt

)
, G = 1

(
ψt, ψt

)
are known as first fundamental form coefficients

I = Eds2 + 2Fdsdt + Gdt2, (4)

We can choose the tangent vector fields, for the timelike surface, as 1
(
ψs, ψs

)
< 0, 1

(
ψt, ψt

)
> 0. In

addition, we settle a normal frame field {N1,N2} for the spacelike surface as 1 (N1,N1) = −1, 1 (N2,N2) = 1,
i.e.

{
ψs, ψt,N1,N2

}
is oriented positively in E4

1. For the later use, we set

ξ =

1, if M is spacelike
−1, if M is timelike

(5)

Thus, we present W =
√
ξ (EG − F2). It means; EG− F2 is positive or negative definite with respect to being

the surface spacelike or timelike.
H:the mean curvature vector field can be computed by H = 1

2 trh. In other words, using the tangent
bundle’s orthonormal frame {X,Y}, it can be written as H = 1

2 (ξh (X,X) + h (Y,Y)) . The second fundamental
form coefficients can be calculated as

c1
11 = 1

(
ψss,N1

)
, c1

12 = 1
(
ψst,N1

)
, c1

22 = 1
(
ψtt,N1

)
,

c2
11 = 1

(
ψss,N2

)
, c2

12 = 1
(
ψst,N2

)
, c1

22 = 1
(
ψtt,N2

)
. (6)

One can write the second fundamental tensor as

h(ψs, ψs) = −ξc1
11N1 + c2

11N2,

h(ψs, ψt) = −ξc1
12N1 + c2

12N2, (7)

h(ψt, ψt) = −ξc1
22N1 + c2

22N2.

Another way of representing it;

h(X,Y) = −ξ1
(
AN1 (X) ,Y

)
N1 + 1

(
AN2 (X) ,Y

)
N2. (8)

Hk is used for k−th mean curvature function and calculated by Hk = 1 (H,Nk) =
tr(ANk )

2 , hence we obtain

Hk =
ck

11G − 2ck
12F + ck

22E
2(EG − F2)

. (9)

According to the basis {N1,N2}, the mean curvature vector field H turns into

H = −ξH1N1 +H2N2, (10)

(see, [7, 12])

The mean curvature of M is congruent to the norm of the mean curvature vector (
∥∥∥∥∥→H∥∥∥∥∥). The surface is

called as minimal, if the mean curvature vector of it is identically zero [5].
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Gaussian curvature of M : ψ(s, t) can be stated by using the first and second fundamental forms’
coefficients:

K =
−ξdet(AN1 ) + det(AN2 )

W2 . (11)

In case of zero Gaussian curvature, M is called as a flat surface.
Furthermore, with the help of orthonormal tangent vectors

{
ψ1, ψ2

}
and unit normal vectors {N1,N2},

the normal curvature of a surface is

KN = 1
(
R⊥

(
ψ1, ψ2

)
N2, N1

)
. (12)

This relation can be given by the entries of shape operator matrices:

KN = h1
12

(
h2

22 − h2
11

)
+ h2

12

(
h1

11 − h1
22

)
.

Regarding the previous equation, a surface M is known as semiumbilical surface if the normal curvature
is zero, for all points on M [8].

In [1], Yu A. Aminov focused on the notion of Monge Patch in E4 with the representation

f = f (s, t) , 1 = 1 (s, t) . (13)

Also, in [3], the authors studied some surfaces given by the parametrization

ψ (s, t) =
(
s, t, f (s, t) , 1 (s, t)

)
. (14)

Two special surfaces, called translation surfaces and homothetical (factorable) surfaces are interesting
classes in differential geometry. These surfaces have been studied from many viewpoints, theoretically
[2, 4, 9, 10, 13].

A new surface named TH− type surface (or translation-homothetical surface) is first handled by Difi et.
al. in 3−dimensional Euclidean spaces [6]. The parameterization of this surface is given with the help of
the sum and multiplication of differentiable functions. Some studies on TH−type surfaces can be found
in [6, 11]. Recently, the authors have defined TF− type (TH− type) surface in 4−dimensional Euclidean
space[11]. They investigated the structure of this type of surface in E4.

In this study, we deal with the non-null translation-homothetical surfaces in 4-dimensional Minkowski
space. First, we describe the non-lightlike (non-null) Translation-Homothetical surface inE4

1.Then, we yield
the normal curvature, mean curvature vector and Gaussian curvature for spacelike and timelike surfaces.
Further, we characterize some non-null semiumbilical, minimal and flat TH−type surfaces in Minkowski
space-time.

2. Classification of Non-null Translation-Homothetical Surfaces in E4
1

Definition 2.1. [2] The surface which is defined by the sum of two curves α (s) = (s, 0, z1 (s) , z2 (s)) and β (t) =
(0, t,w1 (t) ,w2 (t)) is called as translation surface. Thus, the translation surface in 4−dimensional space has the
parametrization

ψ (s, t) = (s, t, z1(s) + w1(t), z2(s) + w2(t)) . (15)

Definition 2.2. [4] The surface which is given by an explicit form f (s, t) = z1 (s) w1 (t) , 1 (s, t) = z2 (s) w2 (t) is
called as homothetical (or factorable) surface where s, t, f, g are Cartesian coordinates. Thus, the homothetical surface
in 4−dimensional space has the parametrization

ψ (s, t) = (s, t, z1(s)w1(t), z2(s)w2(t)) . (16)

With respect to these definitions, the translation-homothetical surface is defined as the following:
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Definition 2.3. The surface is called TH−type surface (or translation-homothetical surface) if it is given by the
Monge patch

ψ (s, t) =
(
s, t, λ (z1(s)+w1(t))+µ (z1(s)w1(t)) , σ (z2(s)+w2(t)) + ρ (z2(s)w1(t))

)
(17)

where λ, µ, σ and ρ are non-zero real constants.

TH−type surface in Minkowski space-time can be considered by the representation

ψ (s, t) = (s, t, z1(s) + w1(t) + z1(s)w1(t), z2(s) + w2(t) + z2(s)w2(t)) . (18)

Thus, in this study, we investigate some properties of non-null (spacelike and timelike) TH−type surfaces
given by the parameterization (18). Let M be a non-null TH−type surface inE4

1, then we have the followings:
The following vector fields span the tangent space of M:

ψs =
(
1, 0, z′1(s) + z′1(s)w1(t), z′2(s) + z′2(s)w2(t)

)
,

ψt =
(
0, 1,w′1(t) + z1(s)w′1(t),w′2(t) + z2(s)w′2(t)

)
. (19)

Therefore, the first fundamental form coefficients can be yielded by the Lorentzian inner product

E = −1 +
(
z′1 + z′1w1

)2
+

(
z′2 + z′2w2

)2
,

F =
(
z′1 + z′1w1

) (
w′1 + z1w′1

)
+

(
z′2 + z′2w2

) (
w′2 + z2w′2

)
, (20)

G = 1 +
(
w′1 + z1w′1

)2
+

(
w′2 + z2w′2

)2
.

Choosing the surface as timelike or spacelike with respect to being E < 0 ( or E > 0), one can determine
W =

√
ξ (EG − F2).

Two times derivatives of ψ (s, t) are

ψss =
(
0, 0, z′′1 (s) + z′′1 (s)w1(t), z′′2 (s) + z′′2 (s)w2(t)

)
,

ψst =
(
0, 0, z′1 (s) w′1 (t) , z′2 (s) w′2 (t)

)
, (21)

ψtt =
(
0, 0,w′′1 (t) + z1(s)w′′1 (t),w′′2 (t) + z2(s)w′′2 (t)

)
.

The orthonormal vector fields {N1,N2} spans the normal space of non-null surface:

N1 =
1
√
|A1|

(
z′1 + z′1w1,−

(
w′1 + z1w′1

)
, 1, 0

)
, (22)

N2 =
1

√
A1W∗

(
A1

(
z′2+z′2w2

)
−A3

(
z′1+z′1w1

)
,A3

(
w′1+z1w′1

)
−A1

(
w′2+z2w′2

)
,−A3,A1

)
,

where

A1 = 1 −
(
z′1 + z′1w1

)2
+

(
w′1 + z1w′1

)2
,

A2 = 1 −
(
z′2 + z′2w2

)2
+

(
w′2 + z2w′2

)2

A3 =
(
w′1 + z1w′1

) (
w′2 + z2w′2

)
−

(
z′1 + z′1w1

) (
z′2 + z′2w2

)
,

W∗ = A1A2 − (A3)2 .
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and by using (29) and (30), ck
i j, (i, j, k = 1, 2) are given as

c1
11 =

z′′1 + z′′1 w1
√
|A1|

, c2
11 =

(
z′′2 + z′′2 w2

)
A1 −

(
z′′1 + z′′1 w1

)
A3

√
A1W∗

,

c1
12 =

z′1w′1
√
|A1|

, c2
12 =

z′2w′2A1 − z′1w′1A3
√

A1W∗
, (23)

c1
22 =

w′′1 + z1w′′1
√
|A1|

, c2
22 =

(
w′′2 + z2w′′2

)
A1 −

(
w′′1 + z1w′′1

)
A3

√
A1W∗

.

we can write the orthonormal tangent vector by using Gram-Schmidt orthonormalization method for ψs
and ψt,

X =
ψs
√
|E|
,

Y =

√
|E|

W

(
ψt −

F
E
ψs

)
. (24)

By the use of (6), (7), (24) and (8), the shape operator matrices can be presented as[
h1

11 h1
12

h1
12 h1

22

]
,

[
h2

11 h2
12

h2
12 h1

22

]
, (25)

where the functions hk
i j are given by

h1
11 = ξ

(
z′′1 + z′′1 w1

)
E
√
|A1|

, h1
12 =

Ez′1w′1 − F
(
z′′1 + z′′1 w1

)
EW
√
|A1|

,

h1
22 = ξ

(
w′′1 + z1w′′1

)
E2
− 2z′1w′1EF +

(
z′′1 + z′′1 w1

)
F2

E
√
|A1|

,

h2
11 = ξ

A1

(
z′′2 + z′′2 w2

)
− A3

(
z′′1 + z′′1 w1

)
E
√

A1W∗
, (26)

h2
12 =

(
z′2w′2A1 − z′1w′1A3

)
E −

[
A1

(
z′′2 + z′′2 w2

)
− A3

(
z′′1 + z′′1 w1

)]
F

EW
√

A1W∗
,

h2
22 = ξ

[(
w′′2 +z2w′′2

)
A1−

(
w′′1 +z1w′′1

)
A3

]
E2
−2

(
z′2w′2A1−z′1w′1A3

)
EF

+
[(

z′′2 +z′′2 w2

)
A1−A3

(
z′′1 +z′′1 w1

)]
F2

EW2√A1W∗
.

2.1. Non-null Flat Translation-Homothetical Surfaces
Theorem 2.4. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4

1. Then, its
Gaussian curvature is given as

K =

A1

((
z′′2 + z′′2 w2

) (
w′′2 + z2w′′2

)
−

(
z′2w′2

)2
)

+A2

((
z′′1 + z′′1 w1

) (
w′′1 + z1w′′1

)
−

(
z′1w′1

)2
)

−A3

((
z′′2 + z′′2 w2

) (
w′′1 + z1w′′1

)
+

(
z′′1 + z′′1 w1

) (
w′′2 + z2w′′2

)
− 2z′1w′1z′2w′2

)
W∗W2 .

where W and W∗ are defined as W2 = ξ
(
EG − F2

)
, W∗ = A1A2 − A2

3, respectively.
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Proof. By using (11) and (26), we obtain the desired result.

Theorem 2.5. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4
1. Then M

has zero Gaussian curvature if and only if

0 = A1

((
z′′2 + z′′2 w2

) (
w′′2 + z2w′′2

)
−

(
z′2w′2

)2
)

(27)

+A2

((
z′′1 + z′′1 w1

) (
w′′1 + z1w′′1

)
−

(
z′1w′1

)2
)

−A3

((
z′′2 + z′′2 w2

) (
w′′1 + z1w′′1

)
+

(
z′′1 + z′′1 w1

) (
w′′2 + z2w′′2

)
− 2z′1w′1z′2w′2

)
.

Theorem 2.6. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4
1. If M is

given by one of the following parametrizations, then it is flat surface:

(1) f (s, t) = a1w1 (t) + a1 + w1 (t) , 1 (s, t) = a2w2 (t) + a2 + w2 (t) ;
(2) f (s, t) = a1z1 (s) + a1 + z1 (s) , 1 (s, t) = a2z2 (s) + a2 + z2 (s) ;
(3) f (s, t) = a1w1 (t) + a1 + w1 (t) , 1 (s, t) = a2z2 (s) + a2 + z2 (s) ;
(4) f (s, t) = a1z1 (s) + a1 + z1 (s) , 1 (s, t) = a2w2 (t) + a2 + w2 (t) ;
(5) f (s, t) = a1, 1 (s, t) = a2w2 (t) + a2 + w2 (t) ;
(6) f (s, t) = a1, 1 (s, t) = a2z2 (s) + a2 + z2 (s) ;
(7) f (s, t) = a, 1 (s, t) = bea1sea2t

− 1;
(8) f (s, t) = a, 1 (s, t) = z2 (s) + w2 (t) + z2w2 (t) satisfying

z2 (s) =
(
(1 − c) (a3s + a4)

1
1−c − 1

)
, (28)

w2 (t) =

(
(c − 1) (a5t + a6)

c

) c
c−1

− 1,

(9) f (s, t) = a1a5ea2sea6t
− 1, 1 (s, t) = a3a7ea4sea8t

− 1; a4a6 = a2a8,
(10) f (s, t) = a1a5ea2sea6t

− 1, 1 (s, t) = a3a7ea4sea8t
− 1; a2a4 = a6a8,

where a, b, c, ai are real constants, i = 1, .., 8, c , 0, 1.

Proof. Let M be a non-null TH−type surface given by the parametrization (18) in E4
1. If z′1 (s) = 0, z′2 (s) = 0

or w′1 (t) = 0, w′2 (t) = 0 or z′1 (s) = 0, w′2 (t) = 0 (z′2 (s) = 0, w′1 (t) = 0 ) in (27), then we obtain the cases (1), (2),
(3) and (4). If z′1 (s) = 0 and w′1 (t) = 0,then we have(

z′′2 + z′′2 w2

) (
w′′2 + z2w′′2

)
−

(
z′2w′2

)2
= 0. (29)

In this equation, if z′2 = 0 (or w′2 = 0), then we obtain the surfaces (5) and (6). If z′1 (s) w′1 (t) , 0, then we get

z′′2 (s)z2(s) + z′′2 (s)(
z′2(s)

)2 =

(
w′2(t)

)2

w′′2 (t)w2(t) + w′′2 (t)
= c, (30)

where c ∈ IR. If c = 1, from (30) we get the differential equations z′′2 (s)z2(s)+ z′′2 (s) =
(
z′2(s)

)2
and w′′2 (t)w2(t)+

w′′2 (t) =
(
w′2(t)

)2
which have the solutions z2(s) = a3ea4s

− 1 and w2(t) = a5ea6t
− 1. Then, we obtain the surface

parameterization (7).
If c , 1, we yield the solution of the differential equation (30) as z2(s) = (1 − c) (a3s + a4)

1
1−c − 1 and

w2(t) = (c−1)(a5t+a6)
c

c−1 −1
c −1. Hence, we get the surface (8). Also, in equation (27) we suppose(

z′′1 + z′′1 w1

) (
w′′1 + z1w′′1

)
−

(
z′1w′1

)2
= 0. (31)
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z′′2 + z′′2 w2

) (
w′′2 + z2w′′2

)
−

(
z′2w′2

)2
= 0. (32)

and (
z′′2 + z′′2 w2

) (
w′′1 + z1w′′1

)
+

(
z′′1 + z′′1 w1

) (
w′′2 + z2w′′2

)
− 2z′1w′1z′2w′2 = 0 or A3 = 0. (33)

In a similar way, we obtain the solutions of the differential equations (31) and (32) as

z1(s) = a1ea2s
− 1, w1(t) = a5ea6t

− 1,
z2(s) = a3ea4s

− 1, w2(t) = a7ea8t
− 1. (34)

Substituting these functions into (33), we yield the surface parametrizations (9) and (10).

2.2. Non-null Minimal Translation-Homothetical Surfaces
Theorem 2.7. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4

1. Then, its
mean curvature vector is given as

H = −ξ

(
z′′1 + z′′1 w1

)
G − 2z′1w′1F +

(
w′′1 + z1w′′1

)
E

2W2
√
|A1|

N1 +

[(
z′′2 + z′′2 w2

)
G − 2z′2w′2F +

(
w′′2 + z2w′′2

)
E
]

A1

−

[(
z′′1 + z′′1 w1

)
G − 2z′1w′1F + w′′1 + z1w′′1 E

]
A3

2W2
√

A1W∗
N2.

(35)

Proof. By the use of (9), (10) and (23), we obtain the desired result.

Theorem 2.8. Let M be a non-null translation-homothetical surface with the parameterization (18) in E4
1. Then, M

has zero mean curvature if and only if(
z′′i + z′′i wi

)
G − 2z′i w

′

i F +
(
w′′i + ziw′′i

)
E = 0. (36)

Theorem 2.9. Let M be a non-null TH−type surface with the parameterization (18) in E4
1. Then, M is minimal if it

is given by one of the following parametrizations :

(1) f (s, t) = a1t + a2, 1 (s, t) = a3t + a4,
(2) f (s, t) = a1s + a2, 1 (s, t) = a3s + a4,
(3) f (s, t) = a1s + a2, 1 (s, t) = a3t + a4,
(4) f (s, t) = a1t + a2, 1 (s, t) = a3s + a4,
(5) f (s, t) = a, 1 (s, t) = (s + b) tan (ct + d) − 1,
(6) f (s, t) = a, 1 (s, t) = (t + b) tan (cs + d) − 1,
(7) f (s, t) = (s + b) tan (ct + d) − 1, 1 (s, t) = (s + b) tan (ct + d) − 1,
(8) f (s, t) = (t + b) tan (cs + d) − 1, 1 (s, t) = (t + b) tan (cs + d) − 1,
(9) f (s, t) = z1 (s) + w1 (t) + z1 (s) w1 (t) , 1 (s, t) = z2 (s) + w2 (t) + z2 (s) w2 (t)
where the functions satisfy

s = ±

∫
dzi (s)√

2c ln (zi (s) + 1) − 2ca1

, (37)

t = ±

∫
dwi (t)√

a2 (wi (t) + 1)4
−

d
2

,

or

s = ±

∫
dzi (s)√

a1 (zi (s) + 1)4
−

c
2

, (38)

t = ±

∫
dwi (t)√

2d ln (wi (s) + 1) − 2da2

,
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or

s = ±

∫
dzi (s)√

a1 (zi (s) + 1)2(1+k)
− a2

, (39)

t = ±

∫
dwi (t)√

a3 (wi (t) + 1)2(1+k) + a4

.

Proof. Let M is TH−type surface given by the parameterization (18) inE4
1. If M is minimal, then the equation

(36) is hold. Hence, we write

0 =
(
z′′1 + z′′1 w1

) (
1 +

(
w′1 + z1w′1

)2
+

(
w′2 + z2w′2

)2
)

(40)

−2z′1w′1
((

z′1 + z′1w1

) (
w′1 + z1w′1

)
+

(
z′2 + z′2w2

) (
w′2 + z2w′2

))
+

(
w′′1 + z1w′′1

) (
−1 +

(
z′1 + z′1w1

)2
+

(
z′2 + z′2w2

))
,

and

0 =
(
z′′2 + z′′2 w2

) (
1 +

(
w′1 + z1w′1

)2
+

(
w′2 + z2w′2

)2
)

(41)

−2z′2w′2
((

z′1 + z′1w1

) (
w′1 + z1w′1

)
+

(
z′2 + z′2w2

) (
w′2 + z2w′2

))
+

(
w′′2 + z2w′′2

) (
−1 +

(
z′1 + z′1w1

)2
+

(
z′2 + z′2w2

))
,

The surface parametrizations (1), (2), (3) and (4) are obtained by taking z′1 (s) = 0, z′2 (s) = 0 or w′1 (t) = 0,
w′2 (t) = 0 or z′1 (s) = 0,w′2 (t) = 0 or z′2 (s) = 0,w′1 (t) = 0, respectively. By taking z′1 (s) = 0 and w′1 (t) = 0, then
we get

−
w′′2

w2+1
+

z′′2
z2+1

+
(
z′2

)2
(
w′′2 (w2+1)−

(
w′2

)2
)
+

(
w′2

)2
(
z′′2 (z2+1)−

(
z′2

)2
)
= 0. (42)

In this equation, if we suppose z′′2 (s) = 0 or w′′2 (t) = 0, then we yield w2 (t) = tan(ct+d)
a1
−1 and z2 (s) = tan(ct+d)

a2
−1.

Hence, the surfaces (5) and (6) are obtained. Also, in (42), if z′′2 (s) w′′2 (t) , 0, the derivatives of (42) with
regards to s and t, one after another are obtained as(

z′′2 (z2 + 1) −
(
z′2

)2
)′

((
z′2

)2
)′ = −

(
w′′2 (w2 + 1) −

(
w′2

)2
)′

((
w′2

)2
)′ = c (43)

where c ∈ IR. Therefore, integrating this equation regarding s or t, we get

z′′2 (z2 + 1) − (1 + c)
(
z′2

)2
= k, (44)

w′′2 (w2 + 1) − (1 − c)
(
w′2

)2
= l,

where k, l ∈ IR. By taking c = 1 and c = −1 in (44) respectively, we get

z′′2 (z2 + 1) = k, (45)

w′′2 (w2 + 1) − 2
(
w′2

)2
= l,

and

z′′2 (z2 + 1) − 2
(
z′2

)2
= k,

w′′2 (w2 + 1) = l. (46)
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Thus, if we solve these differential equations, the results (37) and (38) are obtained. If c , 1 in (44), the
solution of the differential equation is congruent to the last result of (9). Finally, by taking z1(s) = z2 (s) and
w1(t) = w2 (t) , then we have the surfaces (7) and (8). This completes the proof.

2.3. Non-null Semiumbilical Translation-Homothetical Surfaces

Theorem 2.10. Let M be a non-null translation-homothetical surface in E4
1. Then, M has the normal curvature as

KN = −ξ

E
(
z′1w′1

(
w′′2 + z2w′′2

)
− z′2w′2

(
w′′1 + z1w′′1

))
−F

((
z′′1 + z′′1 w1

) (
w′′2 + z2w′′2

)
−

(
z′′2 + z′′2 w2

) (
w′′1 + z1w′′1

))
+G

(
z′2w′2

(
z′′1 + z′′1 w1

)
− z′1w′1

(
z′′2 + z′′2 w2

))
W3
√

W∗

. (47)

Proof. Let M be a non-null TH−type surface with (15) in E4
1. Substituting the second fundamental form

coefficients hk
i j into (12), we get the result.

Corollary 2.11. Let M be a non-null translation-homothetical surface with the parameterization (15). If the functions
zi, wi, (i = 1, 2) are linear polynomial functions, then M corresponds to semiumbilical surface in E4

1.

Proof. Let M be a non-null TH−type surface and suppose zi,wi, (i = 1, 2) are the linear polynomial functions
as

zi = ais + bi, (48)
wi = cit + di.

Thus, by the use of (47) and (48), we get z′′i (s) = 0, w′′i (t) = 0, i.e , KN = 0. This completes the proof.

Example. The surface given by the parameterization

ψ (s, t) = (s, t, 2st − 2s + 3t − 3,−st + 2s + 4t − 8)

is a semiumbilical TH−type surface and can be plotted by projection in 3−dimension with command
plot3d

([
s + t, f (s, t), 1(s, t)

]
: s = −2..2, t = 0..1

)
:

Figure 1: Semiumbilical TH−type surface
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3. Conclusion

TH−type surfaces (or Translation-Homothetical surfaces) have been previously discussed by Difi et
al.(2018) and Pamuk et al.(2021). They considered 3−dimensional spaces and 4−dimensional Euclidean
space. In this article, we define non-null translation-homothetical surfaces in Minkowski space-time and
classify these surfaces with respect to being flat, minimal and especially semiumbilical. The results provide
valuable insights into the nature of surfaces in Minkowski space and will be of interest to researchers and
scholars in the fields of mathematics, physics, and astronomy.
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Abstract. In this paper, we introduce the concept of an exponential type convex function. We establish
new integral inequalities of the Hermite-Hadamard type by using the Power-Mean and Hölder inequalities.
Additionally, we give definitions of the Riemann-Liouville fractional integrals. We use these Riemann-
Liouville fractional integrals to establish a new integral inequalities for exponential type convex function.

1. Introduction

The mathematical branches heavily rely on mathematical inequalities. Numerous scientists investigated
the characteristics of convexity and came up with several integral inequalities (see references [3]-[8]).
Hermite-Hadamard inequality is among the most well-known integral inequalities for convex functions.
This double integral inequality is stated as follows:

Let f : I→ R be a convex function. Then the following inequalities hold:

f
(

a + b
2

)
≤

1
b − a

b∫
a

f (x)dx ≤
f (a) + f (b)

2

for all a, b ∈ I with a < b.
Convex functions take a significant place in the Mathematical Inequalities. Many researchers have

carried out studies on different definitions of convex functions. Previous studies have focused on convexity
types such as s−convex, m−convex, (α,m)−convex and quasi-convex (see references [9]-[12]). However,
recent studies have found that many new types of convexity have been obtained. One of these new types
of convexity is exponential type convex functions. A new definition is given as follows:

Definition 1.1. [2] A nonnegative function f : I→ R is called exponential type convex function if, for every a, b ∈ I
and k ∈ [0, 1] ,

f (ka + (1 − k) b) ≤
(
ek
− 1

)
f (a) +

(
e1−k
− 1

)
f (b)

The class of all exponential type convex functions on interval I is indicated by EXPC (I).
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In [2], Kadakal and İşcan have defined exponential type convex functions and obtained new inequalities
related to this definition as follows:

Theorem 1.2. Let f : [a, b]→ R be an exponential type convex function. If a < b and f ∈ L [a, b], then the following
Hermite-Hadamard type inequalities hold:

1

2
(√

e − 1
) f

(
a + b

2

)
≤

1
b − a

b∫
a

f (x)dx ≤ (e − 2)
[

f (a) + f (b)
]

Theorem 1.3. Let f : I → R be a differentiable function on I◦, a, b ∈ I◦with a < b, and assume that f ′ ∈ L [a, b]. If∣∣∣ f ′∣∣∣ is an exponential type convex function on [a, b], then the inequality∣∣∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ (b − a)
(
4
√

e − e −
7
2

)
A

(∣∣∣ f ′ (a)
∣∣∣ , ∣∣∣ f ′ (b)

∣∣∣)
holds for k ∈ [0, 1], where A (u, v) is the arithmetic mean of u and v.

Theorem 1.4. Let f : I→ R be a differentiable function on I◦, a, b ∈ I◦with a < b, q > 1 and assume that f ′ ∈ L [a, b].
If

∣∣∣ f ′∣∣∣q is an exponential type convex function on [a, b], then the inequality∣∣∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ (b − a)
2

[2 (e − 2)]
1
q

(
1

p + 1

) 1
p

A
1
q
(∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q)

holds for k ∈ [0, 1], where 1
p +

1
q = 1 and A (u, v) is the arithmetic mean of u and v.

Theorem 1.5. Let f : I→ R be a differentiable function on I◦, a, b ∈ I◦with a < b, q ≥ 1 and assume that f ′ ∈ L [a, b].
If

∣∣∣ f ′∣∣∣q is an exponential type convex function on [a, b], then the inequality∣∣∣∣∣∣∣∣ f (a) + f (b)
2

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ (b − a)

22− 1
q

[
2
(
4
√

e − e −
7
2

)] 1
q

A
1
q
(∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q)

holds for k ∈ [0, 1], where A (u, v) is the arithmetic mean of u and v.

In [1], Alomari et al. proved the following result connected with the right part of Hermite-Hadamard
Inequality:

Lemma 1.6. Let f : I ⊂ R → R be an absolutely continuous function on I◦, where a, b ∈ I with a < b. Then the
following equality holds:

f (a) + r f (b)
r + 1

−
1

b − a

b∫
a

f (x)dx =
b − a
r + 1

1∫
0

[(r + 1) t − 1] f ′ (tb + (1 − t) a) dt.

for every fixed r ∈ [0, 1] .

As a result of the research exists, we investigate new inequalities that are connected to right hand side of
Hermite-Hadamard integral inequalities for some exponential type convex functions utilizing the Hölder
inequality, properties of modulus, power mean inequality, and elementary calculations.

The aim of this paper is to establish some Hermite-Hadamard type inequalities for exponential type
convex functions. In order to obtain our results, we utilized Lemma 1.6 and Lemma 3.2.



Ç. Yıldız, E. Bakan, H. Dönmez / TJOS 8 (1), 11–18 13

2. Hermite-Hadamard Inequality For Exponential Type Convex Functions

Theorem 2.1. Let f : I → R be a differentiable function on Io, a, b ∈ Io with a < b and assume that f ′ ∈ L [a, b]. If∣∣∣ f ′∣∣∣ is an exponential type convex function on [a, b], then the inequality∣∣∣∣∣∣∣∣ f (a) + r f (b)
r + 1

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ b − a
r + 1

[(
(2r + 2) e

1
r+1 −

3r2 + 6r + 2re + 2e + 5
2r + 2

) ∣∣∣ f ′ (b)
∣∣∣

+

(
(2r + 2) e

r
r+1 −

5r2 + 6r + 2er2 + 2er + 3
2r + 2

) ∣∣∣ f ′ (a)
∣∣∣]

holds for every fixed r ∈ [0, 1].

Proof. Using Lemma 1.6 and the exponential type convexity of
∣∣∣ f ′∣∣∣ , it follows that∣∣∣∣∣∣∣∣ f (a) + r f (b)

r + 1
−

1
b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣
≤

b − a
r + 1

1∫
0

|(r + 1) t − 1|
∣∣∣ f ′(tb + (1 − t) a)

∣∣∣ dt

≤
b − a
r + 1

1∫
0

|(r + 1) t − 1|
[(

et
− 1

) ∣∣∣ f ′ (b)
∣∣∣ + (

e1−t
− 1

) ∣∣∣ f ′ (a)
∣∣∣] dt.

Hence ∣∣∣∣∣∣∣∣ f (a) + r f (b)
r + 1

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣
≤

b − a
r + 1


1

r+1∫
0

(1 − (r + 1) t)
[(

et
− 1

) ∣∣∣ f ′ (b)
∣∣∣ + (

e1−t
− 1

) ∣∣∣ f ′ (a)
∣∣∣] dt

+

1∫
1

r+1

((r + 1) t − 1)
[(

et
− 1

) ∣∣∣ f ′ (b)
∣∣∣ + (

e1−t
− 1

) ∣∣∣ f ′ (a)
∣∣∣] dt


=

b − a
r + 1

[(
(2r + 2) e

1
r+1 −

3r2 + 6r + 2re + 2e + 5
2r + 2

) ∣∣∣ f ′ (b)
∣∣∣

+

(
(2r + 2) e

r
r+1 −

2r2e + 2re + 5r2 + 6r + 3
2r + 2

) ∣∣∣ f ′ (a)
∣∣∣]

which completes the proof.

Remark 2.2. Under the assumptions of Theorem 2.1 with r = 1, we get the conclusion of Theorem 1.3.

Corollary 2.3. Under the assumptions of Theorem 2.1 with r = 0, we obtain∣∣∣∣∣∣∣∣ f (a) −
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ b − a
2

[∣∣∣ f ′ (a)
∣∣∣ + (2e − 5)

∣∣∣ f ′ (b)
∣∣∣] .
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Theorem 2.4. Let f : I → R be a differentiable function on Io, a, b ∈ Io with a < b, q > 1 assume that f ′ ∈ L [a, b].
If

∣∣∣ f ′∣∣∣q is an exponential type convex function on [a, b], then the inequality∣∣∣∣∣∣∣∣ f (a) + r f (b)
r + 1

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ b − a
r + 1

[
rp+1 + 1

(r + 1)
(
p + 1

) ] 1
p

(2 (e − 2))
1
q A

1
q
(∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q)

holds for every fixed r ∈ [0, 1] and 1
p +

1
q = 1.

Proof. From Lemma 1.6 and using Hölder inequality with properties of modulus, we have∣∣∣∣∣∣∣∣ f (a) + r f (b)
r + 1

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣
≤

b − a
r + 1

1∫
0

|(r + 1) t − 1|
∣∣∣ f ′(tb + (1 − t) a)

∣∣∣ dt

≤
b − a
r + 1


1∫

0

|(r + 1) t − 1|p dt


1
p


1∫
0

∣∣∣ f ′ (tb + (1 − t) a)
∣∣∣q dt


1
q

≤
b − a
r + 1


1

r+1∫
0

(1 − (r + 1) t)p dt +

1∫
1

r+1

((r + 1) t − 1)p dt


1
p 

1∫
0

∣∣∣ f ′ (tb + (1 − t) a)
∣∣∣q dt


1
q

.

Since
∣∣∣ f ′∣∣∣q is exponential type convex function on [a, b], we get

∣∣∣∣∣∣∣∣ f (a) + r f (b)
r + 1

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ b − a
r + 1


1

r+1∫
0

(1 − (r + 1) t)p dt +

1∫
1

r+1

((r + 1) t − 1)p dt


1
p

×

∣∣∣ f ′ (b)
∣∣∣q 1∫

0

(
et
− 1

)
dt +

∣∣∣ f ′ (a)
∣∣∣q 1∫

0

(
e1−t
− 1

)
dt


1
q

=
b − a
r + 1

[
rp+1 + 1

(r + 1)
(
p + 1

) ] 1
p

(2 (e − 2))
1
q A

1
q
(∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q)

which completes the proof.

Remark 2.5. Under the assumptions of Theorem 2.4 with r = 1, we get the conclusion of Theorem 1.4.

Corollary 2.6. Under the assumptions of Theorem 2.4 with r = 0, we obtain∣∣∣∣∣∣∣∣ f (a) −
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ b − a(
p + 1

) 1
p

(2 (e − 2))
1
q A

1
q
(∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q) .
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Theorem 2.7. Let f : I → R be a differentiable function on Io, a, b ∈ Io with a < b, q ≥ 1 and assume that
f ′ ∈ L [a, b]. If

∣∣∣ f ′∣∣∣q is an exponential type convex function on [a, b], then the following inequality holds:∣∣∣∣∣∣∣∣ f (a) + r f (b)
r + 1

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣
≤

b − a
r + 1

(
r2 + 1
2r + 2

)1− 1
q
[(

e
1

r+1 (2r + 2) −
3r2 + 6r + 2re + 2e + 5

2r + 2

) ∣∣∣ f ′ (b)
∣∣∣q

+

(
e

r
r+1 (2r + 2) −

5r2 + 6r + 2er2 + 2er + 3
2r + 2

) ∣∣∣ f ′ (a)
∣∣∣q] 1

q

.

Proof. From Lemma 1.6 and using the well known power mean inequality, we have∣∣∣∣∣∣∣∣ f (a) + r f (b)
r + 1

−
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣
≤

b − a
r + 1

1∫
0

|(r + 1) t − 1|
∣∣∣ f ′(ta + (1 − t) b)

∣∣∣ dt

≤
b − a
r + 1


1∫

0

|(r + 1) t − 1| dt


1− 1

q


1∫
0

|(r + 1) t − 1|
∣∣∣ f ′ (ta + (1 − t) b)

∣∣∣q dt


1
q

.

On the other hand, we obtain

1∫
0

|(r + 1) t − 1| dt =

1
r+1∫

0

[1 − (r + 1) t] dt +

1∫
1

r+1

[(r + 1) t − 1] dt =
r2 + 1
2r + 2

.

Since
∣∣∣ f ′∣∣∣q is exponential type convex function on [a, b], we obtain∣∣∣∣∣∣∣∣ f (a) + r f (b)

r + 1
−

1
b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣
≤

b − a
r + 1

(
r2 + 1
2r + 2

)1− 1
q


1∫

0

|(r + 1) t − 1|
[(

et
− 1

) ∣∣∣ f ′(a)
∣∣∣q + (

e1−t
− 1

) ∣∣∣ f ′(b)
∣∣∣q] dt


1
q

=
b − a
r + 1

(
r2 + 1
2r + 2

)1− 1
q

×

[(
e

1
r+1 (2r + 2) −

3r2 + 6r + 2re + 2e + 5
2r + 2

) ∣∣∣ f ′ (b)
∣∣∣q

+

(
e

r
r+1 (2r + 2) −

5r2 + 6r + 2er2 + 2er + 3
2r + 2

) ∣∣∣ f ′ (a)
∣∣∣q] 1

q

,

which is required.

Remark 2.8. Under the assumptions of Theorem 2.7 with r = 1, we get the conclusion of Theorem 1.5.
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Corollary 2.9. Under the assumptions of Theorem 2.7 with q = 1, we obtain the Theorem 2.1.

Corollary 2.10. Under the assumptions of Theorem 2.7 with r = 0, we have∣∣∣∣∣∣∣∣ f (a) −
1

b − a

b∫
a

f (x)dx

∣∣∣∣∣∣∣∣ ≤ b − a
2

[∣∣∣ f ′ (a)
∣∣∣q + (2e − 5)

∣∣∣ f ′ (b)
∣∣∣q] 1

q .

3. Hermite-Hadamard Inequalities for Fractional Integrals

Now we give some necessary definitions and mathematical preliminaries of fractional calculus theory
which are used throughout this paper.

Definition 3.1. [13] Let f ∈ L1[a, b]. The Riemann-Liouville integrals Jαa+ f and Jαb− f of order α > 0 with a ≥ 0 are
defined by

Jαa+ f (x) =
1
Γ(α)

x∫
a

(x − t)α−1 f (t)dt, x > a

and

Jαb− f (x) =
1
Γ(α)

b∫
x

(t − x)α−1 f (t)dt, x < b

respectively where Γ(α) =
∞∫
0

e−uuα−1du. Here is J0
a+ f (x) = J0

b− f (x) = f (x).

In the case of α = 1, the fractional integral reduces to the classical integral.
In [14], Özdemir et al. proved the following result for fractional integrals. Also, different results have

been obtained for different values of r.

Lemma 3.2. Let f : I ⊂ R→ R be a differentiable mapping on I with a < r, a, r ∈ I. If f ′ ∈ L[a, r], then the following
equality for fractional integrals holds:

f (a) + f (r)
2

−
Γ(α + 1)
2(r − a)α

[
Jαr− f (a) + Jαa+ f (r)

]
=

r − a
2

∫ 1

0
[(1 − t)α − tα] f ′(r + (a − r)t)dt.

Theorem 3.3. Let f : I ⊂ R → R be a differentiable mapping on I with a < r, a, r ∈ I and f ′ ∈ L[a, r]. If
∣∣∣ f ′∣∣∣q is an

exponential type convex function on [a, b], then the following inequality for fractional integrals holds:∣∣∣∣∣ f (a) + f (r)
2

−
Γ(α + 1)
2(r − a)α

[
Jαr− f (a) + Jαa+ f (r)

]∣∣∣∣∣
≤

r − a

2(αp + 1)
1
p

(2 (e − 2))
1
q A

1
q
(∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q) .

Proof. From Lemma 3.2 and using Hölder inequality with properties of modulus, we obtain∣∣∣∣∣ f (a) + f (r)
2

−
Γ(α + 1)
2(r − a)α

[
Jαr− f (a) + Jαa+ f (r)

]∣∣∣∣∣
≤

r − a
2

∫ 1

0
|(1 − t)α − tα|

∣∣∣ f ′(r + (a − r)t)
∣∣∣ dt

≤
r − a

2


1∫
0

∣∣∣(1 − t)α − tα
∣∣∣p dt


1
p


1∫
0

∣∣∣ f ′(r + (a − r)t)
∣∣∣q dt


1
q

.
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We know that for α ∈ [0, 1] and ∀t1, t2 ∈ [0, 1],∣∣∣tα1 − tα2
∣∣∣ ≤ |t1 − t2|

α ,

therefore

1∫
0

∣∣∣(1 − t)α − tα
∣∣∣p dt ≤

1∫
0

|1 − 2t|αp dt

=

1
2∫
0

[1 − 2t]αp dt +

1∫
1
2

[2t − 1]αp dt

=
1

αp + 1
.

Also,
∣∣∣ f ′∣∣∣q is exponential type convex function on [a, b] ,we have∣∣∣ f ′(r + (a − r)t)

∣∣∣q =
∣∣∣ f ′(ta + (1 − t)r)

∣∣∣q
≤ (et

− 1)
∣∣∣ f ′(a)

∣∣∣q + (e1−t
− 1)

∣∣∣ f ′(r)
∣∣∣q , t ∈ (0, 1).

and consequently ∣∣∣∣∣ f (a) + f (r)
2

−
Γ(α + 1)
2(r − a)α

[
Jαr− f (a) + Jαa+ f (r)

]∣∣∣∣∣
≤

r − a

2(αp + 1)
1
p

(2 (e − 2))
1
q A

1
q
(∣∣∣ f ′ (a)

∣∣∣q , ∣∣∣ f ′ (b)
∣∣∣q)

which completes the proof.

Remark 3.4. If in Theorem 3.3, we choose α = 1 and r = b, then we obtain Theorem 1.4.

4. Conclusion

In this paper, we obtained new general integral inequalities for exponential type convex functions.
We proved the Hermite-Hadamard type integral inequalities and obtained new theorems with the Hölder
inequality. With this definition, many new integral inequalities can be obtained. Also, by using Hölder-
İşcan (see reference [15]) inequality and different Lemmas, new results can be obtained for exponential type
convex functions.
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Abstract. In this study, the sub-equation method is used as a tool for finding the analytical solutions of
Coupled Boiti-Leon-Pempinelli (CBLP) equation where the derivatives are in conformable form with the
fractional term. In the introduction section, the advantages of the conformable derivative are expressed.
By using the fractional wave transform and chain rule for conformable derivative, the nonlinear fractional
partial differential equation turns into a nonlinear integer order differential equation. This translation
gives us a great advantage in obtaining analytical solutions and interpreting the physical behavior of
the acquired solutions. In the rest of article, the sub-equation method is applied to Coupled Boiti-Leon-
Pempinelli equation, and the analytical results are derived successfully. This means that our method is
effective and powerful for constructing exact and explicit analytic solutions to nonlinear PDEs with the
fractional term. While this process, symbolic computation such as Mathematica is used. It is shown that,
with the help of symbolic computation, sub-equation method ensures a powerful and straightforward
mathematical tool for solving nonlinear partial differential equations.

1. Introduction

Nonlinear phenomena draws great attraction in the last decades. Understanding the physical nature of
the nonlinear mathematical models allures scientists because the only way for interpreting natural events
arises as a result of this curiosity [3–6, 16–18]. For this aim, many methods are developed such as homotopy
analysis method [7], differential transform method [8], exp-function method [9], Jacobi elliptic function
expansion method [10] and etc. As we see, both numerical methods and analytical methods are applied
to get the results. But analytical solutions of very few of the differential equations that arise as a result of
mathematical models of events encountered in nature can be obtained. This makes the analytical method
valuable. Because numerical methods give the approximate value for the expected solution and give us a
restricted chance to understand the physical nature of the solution. In spite of that the solutions which are
obtained as a result of analytical methods give us extensive perspective for explaining the behavior of the
solution.

In the beginning, integer order derivative and integral are used for modeling the natural event. But by the
time it is understood that Newtonian type derivative and integral fall short of modeling the event that arises
in the nonlinear nature. So the survey for fractional differentiation and integration is started. By the time
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it is understood that fractional calculus has a clearer physical meaning and a simpler statement compared
with the integer order models while describing complicated physical mechanics problems. This motivation
helped fractional calculus to be improved faster. First of all, scientists need to give an efficient and applicable
definition of fractional differentiation and integration. Riemann-Liouville, Caputo and Grünwald-Letnikov
definitions were the popular definition. But there were some deficiencies while describing the mathematical
model. For instance, the Riemann-Liouville fractional derivative of a constant is not zero. In addition to this
fractional initial/boundary conditions of problems which are described as mathematical models of different
physical, chemical, or engineering problems must be expressed in fractional form. More than these, basic
properties such as a derivative of the quotient of two functions, derivative of the product of two functions,
chain rule and etc. are not satisfied by Riemann-Liouville, Caputo, and Grünwald-Letnikov definitions. As
a result, Khalil et al. expressed a new definition that obeys the basic properties.

Definition 1.1. αth order conformable derivative(CFD) of a function f can be expressed as

Tα( f )(t) = lim
ε→0

f (t + εt1−α) − ( f )(t)
ε

,

for f : [0,∞)→ R and for all t > 0, α ∈ (0, 1).

Definition 1.2. Let f function is defined with n variables x1, ..., xn. The fractional partial derivatives of f of order
α ∈ (0, 1] in conformable sense with respect to xi is given by [19]

dα

dxαi
f (x1, ..., xn) = lim

ε→0

f (x1, ..., xi−1, xi + εx1−α
i , ..., xn) − f (x1, ..., xn)

ε
.

Definition 1.3. Let α ⩾ 0. Then conformable fractional integral of a function is defined as [13]

Ia
α( f )(s) =

s∫
a

f (t)
t1−α dt.

In this article, the analytical solutions of Coupled Boiti-Leon-Pempinelli equation where the
derivatives are in the conformable sense with the fractional term are obtained. To the best of our knowledge,
these solutions are seen firstly in the literature. Also, some graphical representations of the solutions are
given to understand the physical behavior of the solutions.

2. Brief Description of Considered Method

2.1. Sub-Equation Method
In this section sub-equation method [11] which established on the Riccati equation

φ′(ξ) = σ +
(
φ(ξ)
)2 . (1)

is going to be described. Regarding the general form of nonlinear time fractional partial differential equation
as

P
(
u,Dαt u,Dxu,D2

xu, ...
)
= 0 (2)

where Dαt u indicates fractional order differentiation in conformable sense. The fractional wave transforma-
tion [12] could be expressed

u(x, y, t) = U(ξ), ξ = kx + wy + c
tα

α
(3)

where c is a constant to be calculated later and by the help of the chain rule [14], Eq. (2) can turn into an
nonlinear differential equation with integer order

G(U(ξ),U′(ξ),U′′(ξ), ...) = 0. (4)
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Suppose that the solution of the reduced Eq. (4) can be expressed as

U(ξ) =
N∑

i=0

aiφ
i(ξ), aN , 0, (5)

where ai (0 ≤ i ≤ N) are constant coefficients to be calculated and positive integer N is going to be obtained
by using balancing principle [15] in equation (4) and φ(ξ) is the solution of Riccati equation (1). Some
solutions of equation (1) is given as follows.

φ(ξ) =



−
√
−σ tanh

(√
−σξ
)
, σ < 0

−
√
−σ coth

(√
−σξ
)
, σ < 0

√
σ tan

(√
σξ
)
, σ > 0

−
√
σ cot

(√
σξ
)
, σ > 0

−
1
ξ+ϖ , ϖ is a cons., σ = 0

(6)

After the all solutions procedure we get a polynomial due to φ(ξ). Equating zero to all the coefficients of
φi(ξ) (i = 0, 1, ...,N) ends with a nonlinear algebraic equation system depending on c, ai (i = 0, 1, ...,N). By
solving this algebraic equation system we have the values of c, ai (i = 0, 1, ...,N). Substituting all the results
in the formulas (6) we get the exact solutions for equation (2).

3. Solutions of the Equation

Consider (CBLP) equation in conformable sense as

DyDαt u −DxDy(u2
−Dxu) − 2D3

xv = 0,
Dαt v −D2

xv + 2uDxv = 0. (7)

Using the following wave transformation

u(x, y, t) = U(ξ), v(x, y, t) = V(ξ), ξ = kx + wy + c
tα

α
(8)

and chain rule [14] (7) turns into nonlinear differential equation system

cwU′′ − kw(U2
− kU′

)
′′

− 2k3V′′′

= 0,
cV′

− k2V′′

− 2kUV′

= 0 (9)

where the derivatives described in integer order. Now integrating twice the first equation in (7), we have

V
′

=
cw
2k3 U −

w
2k2 (U2

− kU
′

). (10)

Using this result in the second equation of Eq. (7) we have the following equation.

c2U − 3kcU2 + 2k2U3
− k4U

′′

= 0. (11)

Let the solution of Eq. (11) is given in terms of φ(ξ) as

U(ξ) =
N∑

i=0

aiφ
i(ξ), aN , 0. (12)
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Figure 1: Surface plot of the exact solution u1(x, y, t) for w = 0.1, a0 = −0.1, σ = −2, α = 0.75, t = 0.1

Using the balancing principle [15], we calculate N = 1. Collecting all the obtained results in Eq. (11), an
algebraic equation system come to exist with respect to w, k, c, a0, a1. Solving this obtained system led to
following solution set

a1 =
a0
√
−σ
, c = −

2a2
0

√
−σ
, k =

−a0
√
−σ

(13)

where σ < 0 and a0 and w are free constants. Using (6) and (3) the traveling wave solutions of Eq. (7) can
be deducted

u1(x, y, t) = a0 − a0tanh
(
ξ
√
−σ
)
,

v1(x, y, t) = −
wσtanh

(
ξ
√
−σ
)

√
−σ

,

u2(x, y, t) = a0 − a0coth
(
ξ
√
−σ
)
,

v2(x, y, t) = −
wσcoth

(
ξ
√
−σ
)

√
−σ

where ξ = wy − a0x
√
−σ
−

2a2
0tα

α
√
−σ

. Some graphical representations of the obtained results are given in Figure 1
and Figure 2.

4. Conclusion

In this article, it is obtained that sub-equation method shows great performance while obtaining the
exact solutions of the nonlinear partial differential equations where the derivatives are in conformable sense
with fractional term. While obtaining the solution symbolic computer software called Mathematica is used.
Also some graphical simulations of the obtained solutions are given. This article may give an insight to
the researchers who study on obtaining the analytical solutions of nonlinear fractional partial differential
equations.
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Figure 2: Surface plot of the exact solution v1(x, y, t) for w = 0.1, a0 = −0.1, σ = −2, α = 0.75, t = 0.1
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Abstract. In this paper, by using the fixed point results of α-φ-Geraghty type mappings, the existence
and uniqueness results for solutions to differential equations involving the generalized Caputo-Fabrizio
derivative are investigated in λ-metric spaces. As application, an illustrative example is given to show the
applicability of our theoretical results.

1. Introduction

In recent years, fractional calculus has attracted the attention of many researchers from various dis-
ciplines (physics, biology, chemistry, applied sciences,...). Indeed, The use of fractional derivatives has
been observed to be beneficial for modeling many problems in engineering sciences (see, for example,
[1, 2, 17, 21, 33, 35, 36].

Various there are several notions about fractional derivatives in the literature. Caputo and Riemann-
Liouville introduced the basic notions (see for example [10, 27]), which imply the singular kernel
k(t, s) = (t−s)−q

Γ(1−q) , 0 < q < 1. These derivatives play an important role in modeling phenomena in physics.
However, as introduced by Fabrizio and Caputo [8], some phenomena related to material heterogeneities
cannot be well modeled using fractional Caputo derivatives or Riemann-Liouville. Therefore, Fabrizio

and Caputo [8] proposed a new fractional derivative with non-singular kernel k(t, s) = e
−q(t−s)

1−q , 0 < q < 1.
Later fractional derivative of Caputo-Fabrizio was used by many researchers to model several problems in
engineering sciences (see [3, 4, 7, 11, 18, 26, 29, 30, 37]). Additionally, other fractional order derivatives with
non-singular kernels have been introduced by some researchers ( more details see [9, 10, 19, 20, 25, 32]).

In 1993, Czerwik proposed the notion of λ-metric (see [14, 15]). Following these initial works, the
existence of a fixed point for the different operators in the definition of λ-metric spaces has been widely
studied (see [12, 16, 22–24, 28, 31]).
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In this paper, we study the existence-uniqueness of solutions for problems of generalized fractional
order differential equations of the Caputo-Fabrizio in λ-metric space.

(
Dq

0,d,cz
)
(ξ) = f

(
ξ, z(ξ), (Dq

0,d,cz)(ξ)
)
, ξ ∈ J = [0,Λ] d > 0, c ≥ 0

z(0) = z0

(1)

Where Λ > 0, f : J × R × R −→ R is derivative function, Dq
0,d,c is generalized Caputo-Fabrizio fractional

derivative with q ∈ (0, 1).
This work is arranged as follows. In the second section, we recall the notions of fractional calculus and

the λ-metric space. The third Section is concerned to prove the main result. Finally, We provide an example
illustrating the main result.

2. Preliminaries

We start with definition of λ-metric spaces, which was introduced by Afshari, Aydi and Karapinar [5, 6].

Definition 2.1. Let Υ be a nonempty set, λ ∈ R∗+ and M : Υ × Υ→ [0,∞) such that for all ς, γ, ϵ ∈ Υ

(i) M(ς, γ) = 0⇔ ς = γ;
(ii) M(ς, γ) =M(γ, ς);

(iii) M(ς, γ) ≤ λ[M(ς, ϵ) +M(ϵ, γ)].

Then, the triple (Υ,M, λ) is called a λ-metric space.

Example 2.2. [5, 6] let M : [0, 1] × [0, 1]→ [0,∞) by defined by

M(γ, ϵ) =| γ2
− ϵ2

|, for all γ, ϵ ∈ [0, 1].

It is clear that the triple (Υ,M, λ) is a λ-metric space with λ ≥ 2, but it is easy to see that the pair ([0, 1],M) is not a
metric space.

Example 2.3. [5, 6] let Υ = C(R) and M : Υ × Υ→ R+ defined by

M(ϑ, η) =∥
(
ϑ − η

)2
∥L∞(R), for all ϑ, η ∈ C(R).

Then, the triple (C(R),M, 2) is a λ-metric space.

In 2012, B. Samet and Erdal Karapinar [22] originated the concept of α-admissibility presented in [30].

Definition 2.4. [30] Let P : Υ −→ Υ be a self-mapping and α : Υ × Υ −→ [0,∞) be a function. We say that P is a
α-admissible if

α(ϑ, η) ≥ 1 =⇒ α(Pϑ,Pη) ≥ 1 for all ϑ, η ∈ Υ.

Example 2.5. [29] Let Υ = R∗+. Define P : Υ −→ Υ and α : Υ × Υ −→ R+ as follows Pϑ = ln(ϑ) for all ϑ ∈ Y,
and

α(ϑ, η) =
{

0 if ϑ < η,
2 if ϑ ≥ η.

Then, P is α-admissible.

Example 2.6. [30] We define the mappingsP : R+ −→ R+ andα : R+×R+ −→ R+, as followsPϑ =
√
ϑ for all ϑ ∈

R+, and

α(ϑ, η) =
{

0 if ϑ < η,
eϑ−η if ϑ ≥ η.

Then, P is α-admissible.
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Definition 2.7. [6] Let (Υ,M, λ) be a λ-metric space and α : Υ×Υ −→ R+ be a function. We say that Y is α-regular
if

(θn)n∈N ⊂ Υ suth that, α(θn, θn+1) ≥ 1, ∀n ∈N and lim
n→∞

θn = θ,

there exists a subsequence (θnk )k∈N of (θn)n∈N, such that

α(θnk , θ) ≥ 1, ∀k ∈N.

We denote by Ψ the set of all increasing functions µ : R+ → [0, 1
c2 ), c ≥ 1 and Φ the set of all continuous

and nondecreasing functions φ : R+ → R+ satisfying

φ(ct) ≤ cφ(t) ≤ ct for c > 1.

Definition 2.8. [5] Let (Υ,M, λ) be a λ-metrice space. An operator P : Υ −→ Υ is a generalized α-φ-Geraghty
contraction, if there exists α : Υ × Υ −→ [0,∞) such that

α(ϑ, η)φ
(
λ3 M(Pϑ,Pη)

)
≤ µ
(
φ(M(ϑ, η))

)
φ(M(ϑ, η)), ∀ϑ, η ∈ Υ,

where µ ∈ Ψ and φ ∈ Φ.

Theorem 2.9. [5] Let (Υ,M, λ) be a λ-metrice space, and P : Υ −→ Υ be a generalized α-φ-Geraghty contraction.
Assume that

1) P is α-admissible;
2) there exists θ0 ∈ Υ such that α(θ0,Pθ0) ≥ 1;
3) either P is continous or Υ is α-regular.

Then P has a fixed point. Moreover, if

4) for all fixed point ϑ, η of P, either
α(ϑ, η) ≥ 1 or α(η, ϑ) ≥ 1,

then P has a uniques fixed point.

Now, we introduce definitions of generalized Caputo-Fabrizio fractional derivatives which are used
throughout this paper.

Definition 2.10. [8] Let d > 0, c ≥ 0, 0 < q < 1, m ∈N
⋃
{0} and f ∈ Cm+1(R+). The fractional derivative of order

q +m of f with respect to Kernel function Kd,c, where

Kd,c(ξ) = (
d2 + c2

d
)e−dξcos(cξ), ξ ≥ 0

is defined by

Dq+m
0,d,c

(
f
)
(ξ) =

( 1
1 − q

)(d2 + c2

d

) ∫ ξ

0
e
−dq(ξ−τ)

1−q cos
(cq(ξ − τ)

1 − q

)
f m+1(τ)dτ.

Definition 2.11. [8] Let h ∈ C[0,T]. The fractional integral of h is given by

(
Iq
0,d,ch
)
(ξ) = ηqh(ξ) + q

∫ ξ

0
1(τ)dτ − δq

c2

d2 + c2

∫ ξ

0
e
−dq(ξ−τ)

1−q h(τ)dτ

where ηq =
d(1−q)
d2+c2 and δq =

c2q
d2+c2 .
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3. Main Result

Let (C1(Λ), ∥ · ∥) be the Banach space of all continuous functions on J, where ∥ z ∥= sup
ξ∈Λ
| z(ξ) | and

M : C1(Λ) × C1(Λ)→ R∗+ be defined by

M(y, z) = sup
ξ∈Λ

(
y(ξ) − z(ξ)

)2
.

Then (C1(Λ),M, 2) is a complete λ−metrice space with λ = 2.

In this paper, we make use of the following assumptions:

(A1) There exists a function ν : C1(Λ) × C1(Λ)→]0,∞) and ξ0 ∈ C
1(Λ) such that

ν
(
ξ0(t), θh + ηqh(t) + q

∫ t

0
h(τ)dτ + δq

∫ t

0
exp{

−aq(t − τ)
1 − q

}h(τ)dτ
)
≥ 0,

h ∈ C1(Λ), with h(t) = f (t, ξ0(t), h(t)) and θh = x0 + ηqh(0).

(A2) There exists φ ∈ Φ and σ : C1(Λ)×C1(Λ)→ R∗+ and χ : Λ→]0, 1[ such that for each z, y, z1, y1 ∈ C
1(Λ)

and τ ∈ Λ

| f (τ, z, y) − f (τ, z1, y1) |≤ σ(z, y) | z − z1 | +χ(τ) | y − y1 |,

with

∥ 2ηq
σ(z, y)
1 − χs

+ (q + δq)
∫ t

0

σ(z, y)
1 − χs

dτ ∥2∞≤
1
4
φ
(
∥ (z − y)2

∥∞

)
,

where χs = sup
τ∈J
| χ(τ) |.

(A3) For each t ∈ Λ and z, y ∈ C1(Λ), we have

ν
(
z(t) , y(t)

)
≥ 0 ⇒ ν

(
A1,Ah

)
≥ 0,

where ν is defined in assumption (A1) and

Ah =θ1 + ηq1(t) + q
∫ t

0
1(τ)dτ + δq

∫ t

0
exp{

−aq(t − τ)
1 − q

}1(τ)dτ,

A1 =θh + ηqh(t) + q
∫ t

0
h(τ)dτ + δq

∫ t

0
exp{

−aq(t − τ)
1 − q

}h(τ)dτ,

and h, 1 ∈ C1(Λ), with h(τ) = f (τ, y(τ), h(τ), 1(τ) = f (τ, z(τ), 1(τ))) and θh = u0+ηqh(0), θ1 = u0+ηq1(0).

(A4) If (pn)n∈N ⊂ C
1(Λ) such that lim

n→∞
pn = p and ν(pn, pn+1) ≥ 0, then ν(pn, p) ≥ 0.

(A5) If u, v two fiexd solutions of problem (1), either

ν(u, v) ≥ 0 or ν(v,u) ≥ 0.
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Lemma 3.1. Let 1 ∈ C1[0,T]. A function x ∈ C1[0,T] is solution of problem
(
Dq

0,d,cz
)
(t) = 1(t), ∀t ∈ Λ = [0,T] 0 < q < 1, d > 0, c ≥ 0

z(0) = z0

(2)

if and only if z satisfies the following equation

z(t) = z0 −
d(1 − q)
d2 + c2 1(0) +

(
Iq
0,d;c1(.)

)
(t) t ∈ [0,T] (3)

Proof. Let z ∈ C1[0,T] be a solution of (2). One has(
Dq

0,a,bx
)′

(t) = 1′(t) , ∀t ∈ [0,T].

By Definition 2.10, we obtain(
Dq

0,d,cz
)′

(t) =
( 1

1 − q

)(d2 + c2

d

)
{
z′(t) +

∫ t

0

d
dt

(
e
−dq(t−s)

1−q cos
(cq(t − s)

1 − q

))
z′(t)ds

}
=
( 1

1 − q

)(d2 + c2

d

)
z′(t)

−

( 1
1 − q

)(d2 + c2

d

)( qd
1 − q

) ∫ t

0
e
−dq(t−s)

1−q cos
(cq(t − s)

1 − q

)
z′(t)ds

−

( 1
1 − q

)(d2 + c2

d

)( qc
1 − q

) ∫ t

0
e
−dq(t−s)

1−q sin
(cq(t − s)

1 − q

)
z′(t)ds

=
( 1

1 − q

)(d2 + c2

d

)
z′(t)

−

( qd
1 − q

)
1(t, z(t)) −

( qc
1 − q

)( 1
1 − q

)(d2 + c2

d

)
γ(t), (4)

where

γ(t) =
∫ t

0
e
−dq(t−s)

1−q sin
(cq(t − s)

1 − q

)
z′(t)ds.

On the other hand

γ′(t) =
∫ t

0

d
dt

(
e
−dq(t−s)

1−q sin
(cq(t − s)

1 − q

))
z′(t)ds.

Then,

γ(t)′ =
−dq
1 − q

∫ t

0
e
−dq(t−s)

1−q sin
(cq(t − s)

1 − q

)
z′(t)ds

+
cq

1 − q

∫ t

0
e
−dq(t−s)

1−q cos
(cq(t − s)

1 − q

)
z′(t)ds,

=
−dq
1 − q

γ(t) +
dcq

d2 + c2 1(t). (5)

Using that γ(0) = 0 and integrating the equality (5), we get

γ(t) =
dcq

d2 + c2

∫ t

0
e
−dq(t−s)

1−q 1(s)ds.
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Hence by (4), we deduce that(
Dq

0,d,cz
)′

(t) =
( 1

1 − q

)(d2 + c2

d

)
{
z
′

(t) −
( qd

1 − q

)
1(t) −

( qc
1 − q

)2 ∫ t

0
e
−dq(t−s)

1−q 1(s)ds
}

By using (
Dq

0,d,cx
)′

(t) = 1′(t) , t ∈ [0,T].

We obtain that

1′(t) =
( 1

1 − q

)(d2 + c2

d

)
{
z′(t) −

( qd
1 − q

)
1(t) −

( qc
1 − q

)2 ∫ t

0
e
−dq(t−s)

1−q 1(s)ds
}
.

Then,

z′(t) =
d(1 − q)
d2 + c2 1

′(t)

+
qd2

d2 + c2 1(t) +
dc2q2

(d2 + c2)(1 − q)

∫ t

0
e
−dq(t−s)

1−q 1(s)ds. (6)

Using that z(0) = z0 and integrating the (6), we have

z(t) − z0 =
qc2

d2 + c2

∫ t

0
1(τ)dτ +

d(1 − q)
d2 + c2 1(t) −

d(1 − q)
d2 + c2 1(0)

+
dc2q2

(d2 + c2)(1 − q)

∫ t

0

∫ τ

0
e
−dq(τ−s)

1−q 1(s)dsdτ.

From Fubini’s theorem, we have∫ t

0

∫ τ

0
e
−dq(τ−s)

1−q 1(s)dsdτ =

∫ t

0
e

dqs
1−q 1(s)

( ∫ t

s
e
−dqτ
1−q dτ

)
ds

=
(1 − q

dq

) ∫ t

0
1(s)ds −

(1 − q
dq

) ∫ t

0
e
−dq(t−s)

1−q 1(s)ds

Then,

z(t) − z0 =
qd2

d2 + c2

∫ t

0
1(τ)dτ +

d(1 − q)
d2 + c2 1(t) −

d(1 − q)
d2 + c2 1(0)

+
dc2q2

(d2 + c2)(1 − q)

((1 − q
dq

) ∫ t

0
1(s)ds −

(1 − q
dq

) ∫ t

0
e
−dq(t−s)

1−q 1(s)ds
)

=
qd2

d2 + c2

∫ t

0
1(τ)dτ +

d(1 − q)
d2 + c2 1(t) −

d(1 − q)
d2 + c2 1(0) +

c2q
d2 + c2

∫ t

0
1(s)ds

−
c2q

d2 + c2

∫ t

0
e
−dq(t−s)

1−q 1(s)ds

=
d(1 − q)
d2 + c2 1(t) −

d(1 − q)
d2 + c2 1(0) + q

( ∫ t

0
1(s)ds −

c2

d2 + c2

∫ t

0
e
−dq(t−s)

1−q 1(s)ds
)
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So, we get (3).

Conversely, if z satisfies (3), then
(
Dq

0,d,cz
)
(t) = 1(t), ∀t ∈ Λ = [0,T] and z(0) = z0.

We can deduce the following result

Lemma 3.2. A function x is a solution of problem 1, if and only if x satisfies the following integral equation

z(t) = θ1 +
(
Iq
0,a;b1(.)

)
(t) t ∈ Λ = [0,T]

with 1(t) = f (t, z(t), 1(t) and θ1 = z0 + ηq1(0) = z0 −
a(1−q)
a2+b2 1(0).

Theorem 3.3. Under assumptions (A1)-(A5), the problem(1) has a unique solution.

Proof. consider the maping Q : C1(Λ)→ C1(Λ) with

Q : C1(Λ) → C
1(Λ)

x 7→ Qz(t) = θh + ηqh(t) + q
∫ t

0
h(s)ds + δq

∫ t

0
exp{

−dq(t − s)
1 − q

}h(s)ds,

where h ∈ C1(Λ), such that h(t) = f (t, z(t), h(t)) and θh = z0 + ηqh(0).

Using Lemma 3.2, the problem reduces to finding a fixed point of the map Q.

Let α : C1(Λ) × C1(Λ)→ [0,∞) be the function defined by

α(x, y) =


1 if ν(x(t), y(t)) ≥ 0 t ∈ J,

0 otherwise.

We have to prove that Q is a generalized α-φ-Geraghty operator:

Lets x, y ∈ C1(Λ) and t ∈ Λ, we have

Qz(t) −Qy(t) = θ1 − θh + ηq[1(t) − h(t)] + q
∫ t

0
1(s) − h(s)ds

+ δq

∫ t

0
exp{

−dq(t − s)
1 − q

}1(s) − h(s)ds,

where h, 1 ∈ C1(Λ), such that h(t) = f (t, y(t), h(t)), 1(t) = f (t, z(t), 1(t)) and

θ1 = u0 + ηq1(0),
θh = u0 + ηqh(0).

Then

| Qz(t) −Qy(t) |≤| θ1 − θh | + ηq | 1(t) − h(t) | +q
∫ t

0
| 1(s) − h(s) | ds

+ δq

∫ t

0
exp{

−dq(t − s)
1 − q

} | 1(s) − h(s) | ds

≤ +ηq | 1(0) − h(0) | +ηq | 1(t) − h(t) |

+

∫ t

0

(
q + δq exp{

−dq(t − s)
1 − q

}

)
| 1(s) − h(s) | ds.
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By (A2), we get

| 1(t) − h(t) | = | f (t, z(t), 1(t)) − f (t, y(t), h(t)) |
≤ σ(x, y) | z(t) − y(t) | +χ(t) | 1(t) − h(t) |

≤ σ(z, y) |
(
z(t) − y(t)

)2
|
1/2 +χ(t) | 1(t) − h(t) | .

Thus,

∥ 1 − h ∥∞≤
σ(z, y)
1 − χs

∥

(
z − y

)2
∥

1/2
∞ .

Next, we have

| Qz(t) −Qy(t) | ≤ 2ηq
σ(x, y)
1 − χs

∥

(
z − y

)2
∥

1/2
∞

+

∫ t

0

(
q + δq exp{

−dq(t − s)
1 − q

}

)σ(z, y)
1 − χs

∥

(
z − y

)2
∥

1/2
∞ ds

≤ 2ηq
σ(z, y)
1 − χs

∥

(
z − y

)2
∥

1/2
∞

+

∫ t

0

(
q + δq

)σ(z, y)
1 − χs

∥

(
z − y

)2
∥

1/2
∞ ds

≤∥

(
z − y

)2
∥

1/2
∞

[
2ηq

σ(z, y)
1 − χs

+
(
q + δq

) ∫ t

0

σ(z, y)
1 − χs

ds
]

≤∥

(
z − y

)2
∥

1/2
∞ ∥

[
2ηq

σ(z, y)
1 − χs

+
(
q + δq

) ∫ t

0

σ(z, y)
1 − χs

ds
]
∥∞ .

So,

| Qz(t) −Qy(t) |2 ≤∥
(
z − y

)2
∥∞∥

[
2ηq

σ(z, y)
1 − χs

+
(
q + δq

) ∫ t

0

σ(z, y)
1 − χs

ds
]
∥

2
∞

≤∥

(
z − y

)2
∥∞∥

[
2ηq

σ(z, y)
1 − χs

+
(
q + δq

) ∫ t

0

σ(z, y)
1 − χs

ds
]
∥

2
∞ .

This implies

| Qz(t) −Qy(t) |2 ≤∥
(
z − y

)2
∥∞

1
4
φ(∥
(
z − y

)2
∥∞)

≤
1
4

M(z, y)φ(M(z, y)).

Then,

M(Qz,Qy) ≤
1
4

M(z, y)φ(M(z, y)).

And thus,

23M(Qz(t),Qy(t)) ≤
1

32
M(z, y)φ(M(z, y)).

Since φ ∈ Φ, we have

α(z, y)φ
(
23M(Qz(t),Qy(t)

)
≤ α(z, y)φ

( 1
32

M(z, y)φ(M(z, y))
)

≤ φ
( 1
32

M(z, y)
)
φ(M(z, y))

≤
1

32
φ
(
M(z, y)

)
φ(M(z, y)).
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Hence,

α(z, y)φ
(
c3M(Qz(t),Qy(t)

)
≤ µ
(
φ
(
M(z, y)

))
φ(M(z, y)) + Lψ(N(z, y)),

where µ(t) = t
32 , φ ∈ Φ, L = 0 and c = 2.

So, Q is generalized α-φ-Geraghty operator.

Lets z, y ∈ C1(Λ) such that α(z, y) ≥ 1.
Thus, for each t ∈ Λ, we have

ν(z(t), y(t)) ≥ 0.

By (A3), then
ν(Qz(t),Qy(t)) ≥ 0,

this implies that
α(Qz,Qy) ≥ 1.

Hence, Q is a α-admissible.

From (A1), there exist ξ0 ∈ C
1(Λ) such that such that

ν
(
ξ0(t), θh + ηqh(t) + q

∫ t

0
h(s)ds + δq

∫ t

0
exp{

−dq(t − s)
1 − q

}h(s)ds
)
≥ 0,

this implies that
ν(ξ0,Qξ0) ≥ 0.

Thus,
α(ξ0,Qξ0) ≥ 1.

So, there exist ξ0 ∈ C
1(Λ) such that

α(ξ0,Qξ0) ≥ 1.

Finally, if (pn)n∈N ⊂ C
1(Λ) such that lim

n→∞
pn = p and α(pn, pn+1) ≥ 1, which gives

ν(pn, pn+1) ≥ 0.

Then, from (A4) we have ν(pn, p) ≥ 0.
And thus,

ν(pn, p) ≥ 0.

This implies that
α(pn, p) ≥ 1.

Therefore, by applying Theorem 2.9, we conclude that if Q has a fixed point in C1(Λ), then it is a solution
of the fractional problem (1).
Moreover, (A5), if u and v are two fixed points of Q, then either

ν(u, v) ≥ 0 or ν(v,u) ≥ 0.

This implies that either

α(u, v) ≥ 1 or α(v,u) ≥ 1.

From an application of Theorem 2.9, then the problem (1) has the uniqueness solution.
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4. Example

We consider the following Caputo-Fabrizio fractional problem.{
(CF
D

q
0,1,0 z)(t) = 1

(
t, z(t), (CF

D
q
0,1,0 z)(t)

)
; t ∈ Λ := [0, 1],

z(0) = 0,
(7)

Where CF
D

q
0,1,0 is Generalized of Caputo-Fabrizio fractional derivative of order q ∈ (0, 1) and 1 : Λ×R×R→

R is a continuous function definied by the following expression

1(t, z, y) =
1
5

[1 + z + sin(z)
2 + z

−
e−t

1 + y

]
.

Let (C1(Λ),M, 2) is a complete λ−metrice space with c = 2, such that

d : C1(Λ) × C1(Λ)→ R+

(z, y) 7→M(z, y) = sup
t∈Λ

(
z(t) − y(t)

)2
=∥
(
z − y

)2
∥∞ .

Lets z, y, v,u ∈ C1(Λ) and t ∈ Λ, we have

1
(
t, z(t),u(t)

)
− 1
(
t, y(t), v(t)

)
=

1
5

[1 + z(t) + sin(x(t))
2 + z(t)

−
e−t

1 + u(t)

]
−

1
5

[1 + y(t) + sin(y(t))
2 + y(t)

−
e−t

1 + v(t)

]
=

1
5

[ z(t) − y(t)
(1 + z(t))(1 + y(t))

+
(2 + y(t)) sin(z(t)) − (2 + z(t)) sin(y(t))

(1 + z(t))(1 + y(t))

]
+

e−t

5
u(t) − v(t)

(1 + u(t))(1 + v(t))
.

And thus,

| 1
(
t, z(t),u(t)

)
− 1
(
t, y(t), v(t)

)
| ≤

1
5
| z(t) − y(t) |

+ | (2 + y(t)) sin(z(t)) − (2 + z(t)) sin(y(t)) |

+
e−t

5
| u(t) − v(t) | .

Case-1: if y(t) ≤ z(t), we get

| 1
(
t, z(t),u(t)

)
− 1
(
t, y(t), v(t)

)
| ≤ | z(t) − y(t) |

+ | (2 + z(t))
(

sin(z(t)) − sin(y(t))
)
|

+
e−t

5
| u(t) − v(t) |

≤ | z(t) − y(t) | +2(2+ | x(t) |)

| cos
(z(t) + y(t)

2

)
|| sin

(z(t) − y(t)
2

)
|

+
e−t

5
| u(t) − v(t) | .
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Since sin z ≤ x for all z ≥ 0, then

| 1
(
t, z(t),u(t)

)
− 1
(
t, y(t), v(t)

)
| ≤ | z(t) − y(t) | +(2+ | z(t) |) | z(t) − y(t) |

+
e−t

5
| u(t) − v(t) |

≤

(
3+ ∥ z ∥∞

)
∥ z − y ∥∞ +

e−t

5
∥ u − v ∥∞ .

Case-2: if y(t) > z(t), we obtain

| 1
(
t, z(t),u(t)

)
− 1
(
t, y(t), v(t)

)
| ≤

(
3+ ∥ y ∥∞

)
∥ z − y ∥∞ +

e−t

5
∥ u − v ∥∞ .

So,

| 1
(
t, z(t),u(t)

)
− 1
(
t, y(t), v(t)

)
| ≤ min{3+ ∥ y ∥∞, 3+ ∥ z ∥∞} ∥ z − y ∥∞

+
e−t

5
∥ u − v ∥∞ .

Then hypothesis (A2) is satisfied

| 1
(
t, z(t),u(t)

)
− 1
(
t, y(t), v(t)

)
| ≤ σ(z, y) | z(t) − y(t) | +χ(t) | u(t) − v(t) |,

where

σ(z, y) = min{3+ ∥ y ∥∞, 3+ ∥ z ∥∞},

χ(t) =
1
5

e−t.

We define the function α : C(Λ) × C(Λ)→ R∗+ by

α(z, y) =


1 if ϱ(z(t), y(t)) ≥ 0 t ∈ Λ,

0 otherwise,

and

ϱ : C(Λ) × C(Λ)→ R
(z, y) 7→ ϱ(z, y) =∥ z − y ∥∞ .

Thus, hypothesis (A3) is satisfied with
ξ0(t) = z(0).

Moreover (A4) holds from the definitions of the ϱ.

Finally, by Theorem 3.3, we get the existence of solutions and the uniqueness of problem (7).

Conclusion

This paper presents contributions to the study of differential equations involving the generalized Caputo-
Fabrizio fractional derivative in the λ-Metric Space, using fixed point theory of α-φ-Geraghty type. Fur-
thermore, we have concluded this study with an illustrative example of our theoretical results



N. Chefnaj, A. Taqbibt, K. Hilal, S. Melliani, A. Kajouni, / TJOS 8 (1), 24-36 35

Acknowledgements

The authors are thanklul to the refere for her/his valuable suggestions towards the improvement of the
paper.

Data Availability

No data were used to support this study.

Conflicts of Interest

The authors declare that they have no conflicts of interest

References

[1] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: Implicit fractional differential and integral equations: existence and stability.
De Gruyter (2018).
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Some Attributes of the Matrix Operators about the Weighted
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a İnönü University, Department of Mathematics, Malatya, Türkiye

Abstract. We can describe the norm for an operator given as T : X → Y as follows: It is the most
appropriate value of U that satisfies the following inequality

∥Tx∥Y ≤ U∥x∥X

and also for the lower bound of T we can say that the value of L agrees with the following inequality

∥Tx∥Y ≥ L∥x∥X,

where ∥.∥X and ∥.∥Y stand for the norms corresponding to the spaces X and Y. The main feature of this
article is that it converts the norms and lower bounds of those matrix operators used as weighted sequence
space ℓp(w) into a new space. This new sequence space is the generalized weighted sequence space. For
this purpose, the double sequential band matrix B̃(r̃, s̃) and also the space consisting of those sequences
whose B̃(r̃, s̃) transforms lie inside ℓp(w̃), where r̃ = (rn), s̃ = (sn) are convergent sequences of positive real
numbers. When comparing with the corresponding results in the literature, it can be seen that the results
of the present study are more general and comprehensive.

1. Introduction

Let us outline some fundamental definitions and results, which we will largely be used in the following
sections. Primarily, we will offer the concept of the sequence, the details of which are well known in
elementary analysis. Although there are many different ways to describe the sequence, all of which mean
the same thing, we have chosen to give the following definition here. The sentence ”x is a sequence”
means x := {xn} := {x0, x1, . . . , xn, . . .}, where each xn is a complex number. In other words, a sequence is
easily introduced as an ordered list of complex numbers. Thus if x is a sequence, then it can be viewed
as a mapping of x : N := {1, 2, . . .} → C. More generally terms, every sequence x in X is a transformation
x : N → X, where X is a non-empty set. The collection of all real or complex number sequences forms
a vector space which we denote by w, under the operations of coordinate-wise addition and the familiar
scalar multiplication. The subspaces of ω are significant in such applications because each of them is called
a sequence space.
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Given an infinite matrix A = (ank) having complex numbers ank as entries in which n, k ∈ N, it can be
written for a sequence x, as follows

(Ax)n :=
∑

ankxk; (n ∈N, x ∈ D00(A)),

in which D00(A) describes the defined subspace of ω consisting of x ∈ ω for which the summation exists as
a finite sum. For a simple notation, the summation ranges without limits from 0 to∞.

The XA is known to be the matrix domain of an infinite matrix A for any subspace X of the all real-valued
sequence space w is described as

XA := {x = (xk) ∈ ω : Ax ∈ X}

which is a sequence space. There are several techniques to create new sequence spaces from old ones like
X. One of them is to use an arbitrary matrix domain generated by an infinite matrix A such as XA. To briefly
explain the topic, these sequence spaces, namely X and XA, may overlap but in any case either of them may
contain the other one. The reader can find detailed information in the book ”Summability Theory and Its
Applications” by Başar [1] and therein.

Recently, we have seen a significant increase in the construction of new sequence spaces using matrix
domain in summability areas such as sequence spaces.

Many of the works [2–12] we have studied so far have something in common, they use the matrix
domain.

Attempts have been made to find the best upper bound for some well-known matrix operators denoted
by T from ℓp(w) to Fw,p. In the context of this statement, note that an upper bound for a matrix operator
denoted by T defined from one sequence space X into another denoted by Y can be given by the following
value of U

∥Tx∥Y ≤ U∥x∥X,

in which ∥.∥X and ∥.∥Y denote the commonly known norms prescribed for spaces X and Y, respectively.
Here, U does not dependent on x. Among them, the best value of U can be called the operator norm for T.

In addition, several researchers have tried to figure out the lower bounds for these matrix operators.
This concept was first discussed in Ref [13] on the Cesàro matrix. But after that, others such as in Refs
[14, 15] and [16, 17] have studied the lower bounds for some matrix operators defined on the sequence
space denoted by ℓp and simultaneously on the weighted sequence space denoted by ℓp(w) with the Lorentz
sequence space. Similarly, a lower bound of a matrix operator defined as T : X→ Y is defined as the value
of L satisfying the following inequality

∥Tx∥Y ≥ L∥x∥X.

This inequality can also be used for some applications of functional analysis. For example, for finding the
necessary and sufficient conditions under which an operator has its inverse, and for simultaneously finding
the operator kernel containing only the zero vector for this case. For these reasons, knowing the lower
bound for an operator is significant. In recent years, Dehghan and Talebi [18] have worked on the largest
possible lower bound for some matrices on the Fibonacci sequence spaces. Furthermore, Foroutannia and
Roopaei [19] have considered the problem of computing both the norm and lower and upper bounds for
some operators defined on weighted difference sequence spaces. One can refer to these works [20–26] and
those contained therein for related problems over some classical sequence spaces.

In this article, it is assumed that w = (wn) and also w̃ = (w̃n) are sequences consisting of positive real
terms. In this paper, a new space the generalized weighted difference sequence space, is introduced via
the generalized difference matrix. Moreover, some properties of this sequence space are investigated.
Among other things, it was found that although this space is semi-normed, it is not necessarily a normed
space. Recall that a semi-normed satisfies every axiom of a norm, but the semi-norm of a vector must be
zero without including the zero vector. Again, this is a semi-inner product space for the value of p = 2.
Moreover, one obtains an isomorphism when using this space. Next, the norm for some matrix operators
on the generalized weighted difference sequence space is defined. In the next step, we address the lower
bound problem for the described operators of ℓp(w) in the generalized weighted difference sequence space.
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2. The Sequence Space ℓp(w̃, B̃(r̃, s̃))

We examined in the former chapter that many topic lead to building new sequence spaces. Moreover,
the concepts we offered were inherently large. Let us start by presenting the following matrix B̃ = (b̃nk(r̃, s̃));

b̃nk(r̃, s̃) =


sn, k = n + 1
rn, k = n
0, 0 ≤ k < n or k > n + 1

where r̃ = (rn), s̃ = (sn) are convergent sequences of positive real numbers. It should be noted at this point
that many authors have described various sequence spaces and studied many different aspects of these
spaces, using a different matrix similar to this matrix but actually different. Some of them are available in
references [2–5].

We will see later that this matrix allows us to construct an efficient structure for solving algebraic and
topological properties. Applying the definition of matrix domain to this matrix, we define the new sequence
space whose result lies in the ℓp(w̃) space, as follows:

ℓp(w̃, B̃(r̃, s̃)) =

x = (xn) ∈ ω :
∞∑

n=1

w̃n |rnxn + snxn+1|
p < ∞

 ,
in which 1 ≤ p < ∞. For detailed information, the reader is advised to look at the references and therein
[27, 28]. We note here that, the space is a semi-normed space with the semi-norm defined by

∥x∥p,w̃,B̃ =

 ∞∑
n=1

w̃n |rnxn + snxn+1|
p


1/p

.

To calculate the truth of this assertion, we now give an example. If we consider the sequence xn =
1
rn

∏n−1
i=1

(
−ri+1

si

)
, so due to rnxn + snxn+1 = 0 we obtain ∥x∥p,w̃,B̃ = 0, then it follows, from the definition of the

norm, that ∥.∥p,w̃,B̃ defined on ℓp(w̃, B̃(r̃, s̃)) is not a norm.
Before we begin with the general theory, we will first state the following basic theorem, which indicate

that the set just described plays a significant role in its algebraic structure.

Theorem 2.1. The set ℓp(w̃, B̃(r̃, s̃)) is linear space, that is, sequence space.

Proof. We omit the proof which can be found in standard procedure.

Let us proceed with the following theorem about an algebraic property of this newly defined sequence
space.

Theorem 2.2. It is true that the inclusion relation ℓp(w̃) ⊂ ℓp(w̃, B̃(r̃, s̃)) is strictly valid.

Proof. If we take any x ∈ ℓp(w̃), then the following calculation shows that the inclusion is valid

w̃n |rnxn + snxn+1|
p
≤ w̃n2p−1 (|rnxn|

p + |snxn+1|
p)

≤ 2p−1max
[
|supn∈Nrn|

p, |supn∈Nsn|
p] w̃n (|xn|

p + |xn+1|
p)

by summing of n from 1 to∞, in which 1 ≤ p < ∞.
To show that the inclusion relation is strictly valid. If the sequence w̃ with (1, 1, 1, ...), we consider again

the sequence (xn) =
(

1
rn

∏n−1
i=1

(
−ri+1

si

))
∈ ℓp(w̃, B̃(r̃, s̃)). From this it is easy to deduce that (xn) < ℓp(w̃).

Theorem 2.3. If H =
{
x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)) : rnxn + snxn+1 = 0 for all n ∈N

}
, the quotient space ℓp(w̃, B̃(r̃, s̃))/H

is linearly isomorphic to the space ℓp(w̃).
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Proof. The basic approach to proving this theorem is to define a new T transformation from the space
ℓp(w̃, B̃(r̃, s̃)) to ℓp(w̃) that exploits the definition of the fundamental matrix transformation, for all x ∈
ℓp(w̃, B̃(r̃, s̃)) uniquely Tx = ((Tx)n) = (rnxn + snxn+1). Since it is fairly obvious that T is linear, the first issue
here is to show that T is surjective. One of the ways to accomplish this for any y = (yk) ∈ ℓp(w̃) is to say
xn =

1
rn

∑
∞

k=n
∏k−1

i=n

(
−si
ri+1

)
yk for all n ∈ N in the norm of ℓp(w̃, B̃(r̃, s̃)). In this case, by simple calculations, we

obtain the following equations

∥x∥p
p,w̃,B̃
=

∞∑
n=1

w̃n

∣∣∣∣∣∣∣ rn

rn

∞∑
k=n

k−1∏
i=n

(
−si

ri+1

)
yk +

sn

rn+1

∞∑
k=n+1

k−1∏
i=n+1

(
−si

ri+1

)
yk

∣∣∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣∣∣∣∣yn +

 ∞∑
k=n+1

k−1∏
i=n

(
−si

ri+1

)
yk −

∞∑
k=n+1

k−1∏
i=n

(
−si

ri+1

)
yk


∣∣∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣yn

∣∣∣p
= ∥y∥pp,w̃
< ∞

which implies that x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)). Returning back to the T transformation described above, it is very
simple to say that Tx = y. Due to the fact that the image of the space ℓp(w̃, B̃(r̃, s̃)) under the transformation
T is ℓp(w̃) and also ker T = H, we have that ℓp(w̃, B̃(r̃, s̃))/H is linearly isomorphic to the space ℓp(w̃) under
the first isomorphism theorem.

We will use an example to show that the transformation T defined above is not injective. Namely, for
x = (xn) =

(
1
rn

∏n−1
i=1

(
−ri+1

si

))
we get Tx = 0; in other words, ker T , {0}.

Theorem 2.4. If p is not equal to 2 and at the same time the space ℓp(w̃, B̃(r̃, s̃)) is not given as a semi-inner product
space, then it is concluded that the space ℓ2(w̃, B̃(r̃, s̃)) is defined as a semi-inner product space.

Proof. First, we will answer the question whether the semi-norm ∥.∥2,w̃,B̃ can be induced with a semi-
inner product. It is convenient at this point to use the notation zk = w̃1/2

k (rkxk + skxk+1) for all k ∈ N and
⟨z, z⟩2 =

∑
∞

k=1 |zk|
2. Indeed taken arbitrary, x ∈ ℓ2(w̃, B̃(r̃, s̃)), we get

∥x∥2,w̃,B̃ =
√
⟨z, z⟩2.

Moreover, it is easy to verify from the following equations that the semi-norm ∥.∥p,w̃,B̃ cannot be obtained
when considering a semi-inner product just defined as

∥x + y∥2p,w̃,B̃ + ∥x − y∥2p,w̃,B̃ = 4w̃2/p
1 + w̃2/p

2

( r2

r1

)2

, 4
(
w̃1 +

w̃2

2p

∣∣∣∣∣ r2

r1

∣∣∣∣∣p)2/p

= 2(∥x∥2p,w̃,B̃ + ∥y∥
2
p,w̃,B̃),

in which x =
(

2r1+s1

2r2
1
,− 1

2r1
, 0, 0, ...

)
, y =

(
2r1−s1

2r2
1
, 1

2r1
, 0, 0, ...

)
and p , 2.

We examined in the former chapter that many topic lead to building new sequence spaces. Moreover, the
concepts we offered were inherently large. Let us start by presenting the following matrix B̃ = (b̃nk(r̃, s̃));

b̃nk(r̃, s̃) =


sn, k = n + 1
rn, k = n
0, 0 ≤ k < n or k > n + 1
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where r̃ = (rn), s̃ = (sn) are convergent sequences of positive real numbers. It should be noted at this point
that many authors have described various sequence spaces and studied many different aspects of these
spaces, using a different matrix similar to this matrix but actually different. Some of them are available in
references [2–5].

We will see later that this matrix allows us to construct an efficient structure for solving algebraic and
topological properties. Applying the definition of matrix domain to this matrix, we define the new sequence
space whose result lies in the ℓp(w̃) space, as follows:

ℓp(w̃, B̃(r̃, s̃)) =

x = (xn) ∈ ω :
∞∑

n=1

w̃n |rnxn + snxn+1|
p < ∞

 ,
in which 1 ≤ p < ∞. For detailed information, the reader is advised to look at the references and therein
[27, 28]. We note here that, the space is a semi-normed space with the semi-norm defined by

∥x∥p,w̃,B̃ =

 ∞∑
n=1

w̃n |rnxn + snxn+1|
p


1/p

.

To calculate the truth of this assertion, we now give an example. If we consider the sequence xn =
1
rn

∏n−1
i=1

(
−ri+1

si

)
, so due to rnxn + snxn+1 = 0 we obtain ∥x∥p,w̃,B̃ = 0, then it follows, from the definition of the

norm, that ∥.∥p,w̃,B̃ defined on ℓp(w̃, B̃(r̃, s̃)) is not a norm.
Before we begin with the general theory, we will first state the following basic theorem, which indicate

that the set just described plays a significant role in its algebraic structure.

Theorem 2.5. The set ℓp(w̃, B̃(r̃, s̃)) is linear space, that is, sequence space.

Proof. We omit the proof which can be found in standard procedure.

Let us proceed with the following theorem about an algebraic property of this newly defined sequence
space.

Theorem 2.6. It is true that the inclusion relation ℓp(w̃) ⊂ ℓp(w̃, B̃(r̃, s̃)) is strictly valid.

Proof. If we take any x ∈ ℓp(w̃), then the following calculation shows that the inclusion is valid

w̃n |rnxn + snxn+1|
p
≤ w̃n2p−1 (|rnxn|

p + |snxn+1|
p)

≤ 2p−1max
[
|supn∈Nrn|

p, |supn∈Nsn|
p] w̃n (|xn|

p + |xn+1|
p)

by summing of n from 1 to∞, in which 1 ≤ p < ∞.
To show that the inclusion relation is strictly valid. If the sequence w̃ with (1, 1, 1, ...), we consider again

the sequence (xn) =
(

1
rn

∏n−1
i=1

(
−ri+1

si

))
∈ ℓp(w̃, B̃(r̃, s̃)). From this it is easy to deduce that (xn) < ℓp(w̃).

Theorem 2.7. If H =
{
x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)) : rnxn + snxn+1 = 0 for all n ∈N

}
, the quotient space ℓp(w̃, B̃(r̃, s̃))/H

is linearly isomorphic to the space ℓp(w̃).

Proof. The basic approach to proving this theorem is to define a new T transformation from the space
ℓp(w̃, B̃(r̃, s̃)) to ℓp(w̃) that exploits the definition of the fundamental matrix transformation, for all x ∈
ℓp(w̃, B̃(r̃, s̃)) uniquely Tx = ((Tx)n) = (rnxn + snxn+1). Since it is fairly obvious that T is linear, the first issue
here is to show that T is surjective. One of the ways to accomplish this for any y = (yk) ∈ ℓp(w̃) is to say
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xn =
1
rn

∑
∞

k=n
∏k−1

i=n

(
−si
ri+1

)
yk for all n ∈ N in the norm of ℓp(w̃, B̃(r̃, s̃)). In this case, by simple calculations, we

obtain the following equations

∥x∥p
p,w̃,B̃
=

∞∑
n=1

w̃n

∣∣∣∣∣∣∣ rn

rn

∞∑
k=n

k−1∏
i=n

(
−si

ri+1

)
yk +

sn

rn+1

∞∑
k=n+1

k−1∏
i=n+1

(
−si

ri+1

)
yk

∣∣∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣∣∣∣∣yn +

 ∞∑
k=n+1

k−1∏
i=n

(
−si

ri+1

)
yk −

∞∑
k=n+1

k−1∏
i=n

(
−si

ri+1

)
yk


∣∣∣∣∣∣∣
p

=

∞∑
n=1

w̃n

∣∣∣yn

∣∣∣p
= ∥y∥pp,w̃
< ∞

which implies that x = (xn) ∈ ℓp(w̃, B̃(r̃, s̃)). Returning back to the T transformation described above, it is very
simple to say that Tx = y. Due to the fact that the image of the space ℓp(w̃, B̃(r̃, s̃)) under the transformation
T is ℓp(w̃) and also ker T = H, we have that ℓp(w̃, B̃(r̃, s̃))/H is linearly isomorphic to the space ℓp(w̃) under
the first isomorphism theorem.

We will use an example to show that the transformation T defined above is not injective. Namely, for
x = (xn) =

(
1
rn

∏n−1
i=1

(
−ri+1

si

))
we get Tx = 0; in other words, ker T , {0}.

3. The Norm of Matrix Operators from ℓ1(w) to ℓ1(w̃, B̃(r̃, s̃))

Having defined a function from the space ℓ1(w) to the space ℓ1(w̃, B̃(r̃, s̃)), we will compute in this chapter
that it is a norm. Before proceeding with the development of the general theory, let us start by presenting a
very simple definition.

The matrix A = (ank) is said to be quasi-summable if A is an upper triangular matrix, namely, ank = 0 for
n > k. As it can be clearly seen, the matrix satisfies

∑k
n=1 ank = 1 for all k ∈N.

Theorem 3.1. The matrix T = (tnk) is a bounded matrix operator from the space ℓ1(w) to the space ℓ1(w̃, B̃(r̃, s̃))
if M = supk∈N

λk
wk
< ∞, in which λk =

∑
∞

n=1 w̃n

∣∣∣rntnk + sntn+1,k

∣∣∣. In that case, the norm of operator is obtained as
∥T∥1,w,w̃,B̃ =M.

For all n ∈ N, taking both wn = 1 and w̃n = 1 specially, the transformation T is a bounded operator from the
space ℓ1 to the space ℓ1(B̃(r̃, s̃)) and also ∥T∥1,B̃ = supk∈N λk.
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Proof. We take into consideration a sequence x = (xn) in ℓ1(w), thus

∥Tx∥1,w̃,B̃ =
∞∑

n=1

w̃n

∣∣∣∣∣∣∣
∞∑

k=1

(
rntnk + sntn+1,k

)
xk

∣∣∣∣∣∣∣
≤

∞∑
n=1

∞∑
k=1

w̃n

∣∣∣rntnk + sntn+1,k

∣∣∣ |xk|

=

∞∑
k=1

∞∑
n=1

w̃n

∣∣∣rntnk + sntn+1,k

∣∣∣ |xk|

=

∞∑
k=1

λk|xk|

≤M
∞∑

k=1

wk|xk|

=M∥x∥1,w.

From these equations it follows that ∥T∥1,w,w̃,B̃ ≤ M since
∥Tx∥1,w̃,B̃
∥x∥1,w

≤ M. We introduce the sequence ei =

(0, 0, ..., 0,
i.
1, 0, ...) for each i ∈ N to compute the inverse inequality, and then obtain ∥ei

∥1,w = wi and also
∥Tei
∥1,w̃,B̃ = λi. Therefore, it is easy to see that ∥T∥1,w,w̃,B̃ ≥M, and then ∥T∥1,w,w̃,B̃ =M.
Since special choices are made in the proof of the remaining part, no proof will be given here.

Theorem 3.2. Let us assume that T = (tnk) is the upper triangular matrix having the non-negative entries and
also assume that (wn) is an increasing given sequence. When the inequality tnk ≥ tn+1,k is valid for each values of
n ∈ N, constant k ∈ N and M′ = supk∈N

∑n
k=1 tnk < ∞, then T is defined as a bounded operator described from

ℓ1(w) to ℓ1(w, B̃(r̃, s̃)). At the same time, the norm of this given operator satisfies the inequality given in the form
∥T∥1,w,B̃ ≤ (supk∈N |rk| + supk∈N |sk|)M′. When the specific condition of T is being quasi summable matrix, also
rk ≥ −sk > 0 and sk−1 + rk = 1 is taken into consideration, thus the condition ∥T∥1,w,B̃ = 1 is satisfied.

Proof. Given the hypothesis, we must say that the matrix T = (tnk) satisfying the condition tnk ≥ tn+1,k (for
all n, k = 1, 2, ...) is an upper triangular and also the sequence (wn) is increasing. With simple calculations,
we can derive the following

λk =

∞∑
n=1

wn

∣∣∣rntnk + sntn+1,k

∣∣∣
=

k−1∑
n=1

wn

∣∣∣rntnk + sntn+1,k

∣∣∣ + wk|rk|tkk

≤ wk

 k−1∑
n=1

(
|rn|tnk + |sn|tn+1,k

)
+ |rk|tkk


= wk

[
(|r1|t1k + |s1|t2k) + ... +

(
|rk−1|tk−1,k + |sk−1|tkk

)
+ |rk|tkk

]
= wk [|r1|t1k + (|s1| + |r2|) t2k + ... + (|sk−1| + |rk|) tkk]

≤ (sup
k∈N
|rk| + sup

k∈N
|sk|)wk

k∑
n=1

tnk.

Obviously, ∥T∥1,w,B̃ = supk∈N
λk
wk
≤ (supk∈N |rk| + supk∈N |sk|) supk∈N

∑k
n=1 tnk = (supk∈N |rk| + supk∈N |sk|)M′

from Theorem 3.1.
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Let us suppose that T is a quasi summable matrix, so M′ = 1. If rk ≥ −sk > 0 holds, then of course
rntnk + sntn+1,k > 0 holds for every k,n ∈ N and also if the equality sk−1 + rk = 1 is satisfied, then we can
easily write λk ≤ wk

∑k
n=1 tnk thus ∥T∥1,w,B̃ ≤ 1. To obtain the inverse inequality, let us consider the sequence

e1 = (1, 0, 0, ...). It follows that ∥e1
∥1,w = w1 and ∥Te1

∥1,w,B̃ = w1, namely ∥T∥1,w,B̃ ≥ 1. As a result, we obtain
∥T∥1,w,B̃ = 1.

In the light of the above theorems, we are concerned here with the computation of the norm of some
specific quasi summable matrices. First, we consider the transpose of the well-known Riesz matrix R̃ = (r̃nk)
which is described as follows:

r̃nk =

{ qn

Qk
, n ≤ k

0, n > k,
(1)

where (qn) is a non-negative sequence with q1 > 0 and Qk = q1 + ... + qk for all k ∈N.
Taking qn = 1 for all n ∈ N, we derive the transpose of the Cesáro matrix of order one, also known as

the Copson matrix (see [17]). We denote this particular matrix by C̃ = (c̃nk), where

c̃nk =

{
1
k , n ≤ k
0, n > k.

Corollary 3.3. When (qn) is a decreasing sequence and (wn) is an increasing sequence, in that case R̃ is a bounded
operator from the space ℓ1(w) into the space ℓ1(w, B̃(r̃, s̃)) and, also ∥R̃∥1,w,B̃ = 1 for rn ≥ −sn > 0 and sn−1 + rn = 1
for every n ∈N.

Proof. First of all, since (qn) is a decreasing sequence from the hypothesis the following inequality r̃nk =
qn

Qk
≥

qn+1

Qk
= r̃n+1,k holds for all n ∈ N, each fixed k ∈ N. For R̃ is a non-negative upper triangular matrix

and (wn) is an increasing sequence, it follows from Theorem 3.2 that R̃ is a bounded operator from ℓ1(w)
into ℓ1(w, B̃(r̃, s̃)). Also due to the fact that

∑k
n=1 r̃nk = 1 for every k ∈ N, R̃ is a quasi summable matrix. If

rn ≥ −sn > 0 and sn−1 + rn = 1 for every n ∈N, then it is clear that ∥R̃∥1,w,B̃ = 1 from Theorem 3.2.

Corollary 3.4. If supk∈N

∑k
n=1 w̃n

kwk
< ∞, then the matrix C̃ defined just above is a bounded operator from the space

ℓ1(w) into ℓ1(w̃, B̃(r̃, s̃)) and ∥C̃∥1,w,w̃,B̃ ≤ (supk∈N |rk| + supk∈N |sk|) supk∈N

∑k
n=1 w̃n

kwk
.

Proof. We get the following inequality

λk =

∞∑
n=1

w̃n

∣∣∣rnc̃nk + snc̃n+1,k

∣∣∣
≤

1
k

 k−1∑
n=1

w̃n (|rn| + |sn|) + w̃k|rk|


=

supk∈N |rk|

k

k∑
n=1

w̃n +
supk∈N |sk|

k

k−1∑
n=1

w̃n

≤
supk∈N |rk| + supk∈N |sk|

k

k∑
n=1

w̃n.

Therefore, we obtain that ∥C̃∥1,w,w̃,B ≤ (supk∈N |rk| + supk∈N |sk|) supk∈N

∑k
n=1 w̃n

kwk
from Theorem 3.1.

Theorem 3.5. Let us suppose that T = (tnk) is a matrix having the non-negative entries and the inequalities tnk ≥

tn+1,k hold for all n ∈N and each fixed k ∈N. If
∑
∞

n=1 tnk < ∞ for each k ∈N and also M′′ = supk∈N
∑
∞

n=1 tnk < ∞,
then the matrix T is a bounded operator from the space ℓ1 to ℓ1(B̃(r̃, s̃)) and the norm of operator is ∥T∥1,B̃ ≤
(supk∈N |rk|+ supk∈N |sk|)M′′. When the fact that the specific condition of T is being quasi summable matrix is taken
into consideration for rk ≥ −sk > 0 and sk−1 + rk = 1 (for all k ∈N), then the condition ∥T∥1,B̃ = 1 is derived.
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Proof. For any k ∈N, we get

λk =

∞∑
n=1

∣∣∣rntnk + sntn+1,k

∣∣∣ = (sup
k∈N
|rk| + sup

k∈N
|sk|)

∞∑
n=1

tnk.

Using Theorem 3.1 here, we find that the norm ∥T∥1,B̃ ≤ (supk∈N |rk| + supk∈N |sk|)M′′. The rest of the proof
can be done similarly to the proof of Theorem 3.2.

The matrix H = (hnk) defined as hnk =
1

n+k for all n, k ∈ N is known to be the Hilbert matrix operator.
Here, we will discover the norm of the operator just mentioned.

Now, let us give the following integral to be used in the proofs:∫
∞

0

1
tα(t + c)

dt =
π

cα sinαπ
,

in which 0 < α < 1.

Theorem 3.6. Let wn =
1

nα for all n ∈N, in which 0 < α < 1. In this case, the Hilbert matrix operator H just described
is bounded from the space ℓ1(w) to the space ℓ1(w, B̃(r̃, s̃)) and also the norm ∥H∥1,w,B̃ ≤

π
sinαπ (supi∈N |ri|+supi∈N |si|).

Proof. For all n ∈N, we have

λn =

∞∑
i=1

wi

∣∣∣rihin + sihi+1,n

∣∣∣
≤

∞∑
i=1

1
iα

(
|ri|

i + n
+

|si|

i + n + 1

)
≤

∫
∞

0

1
tα

(
supi∈N |ri|

t + n
+

supi∈N |si|

t + n + 1

)
dt

=
π

sinαπ

(
supi∈N |ri|

nα
+

supi∈N |si|

(n + 1)α

)
.

It follows that

nαλn ≤
π

sinαπ

[
sup
i∈N
|ri| + sup

i∈N
|si|

( n
n + 1

)α]
≤

π
sinαπ

(
sup
i∈N
|ri| + sup

i∈N
|si|

)
.

Considering Theorem 3.1, this means that ∥H∥1,w,B̃ ≤
π

sinαπ

(
supi∈N |ri| + supi∈N |si|

)
.

4. The Norm of Matrix Operators from ℓp(w) to ℓp(w, B̃(r̃, s̃))

In this section, we are going to discuss calculating the norm of some matrix operators from the space
ℓp(w) to the space ℓp(w̃, B̃(r̃, s̃)). We now present an essential lemma which is obtained by Jameson and
Lashkaripour, since this important result is used in the proofs.

Lemma 4.1. [17] Let us suppose that A = (ank) is a matrix operator having the nonnegative entries ank ≥ 0, also
suppose that (un) and (vk) are positive sequences given such that

u1/p
n

∞∑
k=1

ank

v1/p
k

≤ K1 (for n ∈N, K1 ∈ R)

and
1

v(1−p)/p
k

∞∑
n=1

u(1−p)/p
n ank ≤ K2 (for k ∈N, K2 ∈ R)

in that case, that inequality ∥A∥p ≤
K1/p

2

K(1−p)/p
1

is valid, in which p > 1.
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Now, let us state and prove another necessary lemma.

Lemma 4.2. Let us assume that the equality ank =
(

w̃n
wk

)1/p (
rntnk + sntn+1,k

)
is valid for the matrix operators T = (tnk)

and A = (ank). At the same time, we have ∥T∥p,w,w̃,B̃ = ∥A∥p, for p ≥ 1. Under the conditions of this hypothesis, T is
bounded operator from the space ℓp(w) to the space ℓp(w̃, B̃(r̃, s̃)) iff A is bounded operator onto the space ℓp.

Proof. If the x lying in the space ℓp(w) is taken as arbitrarily, and the sequence y = (yk) is defined as
yk = w1/p

k xk for all k ∈N by making use of it, then we derive that equality ∥x∥p,w = ∥y∥p. Therefore, the proof
should be clear with the following basic calculations

∥T∥p
p,w,w̃,B̃

= sup
x∈ℓp(w),x,0

∥Tx∥p
p,w̃,B̃

∥x∥pp,w

= sup
x∈ℓp(w),x,0

∑
∞

n=1 w̃n

∣∣∣∑∞k=1
(
rntnk + sntn+1,k

)
xk

∣∣∣p∑
∞

k=1 wk|xk|
p

= sup
y∈ℓp

∑
∞

n=1

∣∣∣∣∑∞k=1

(
w̃n
wk

)1/p (
rntnk + sntn+1,k

)
yk

∣∣∣∣p∑
∞

k=1 |yk|
p

= sup
y∈ℓp

∑
∞

n=1

∣∣∣∑∞k=1 ankyk

∣∣∣p∑
∞

k=1 |yk|
p = sup

y∈ℓp

∥Ay∥pp
∥y∥pp

= ∥A∥pp.

Theorem 4.3. Let us assume that the matrix operator R̃ is as defined in (1), and also assume that (qn) is a decreasing
sequence having q1 = q2 = 2 and limn→∞Qn = ∞. For all n ∈N, if the sequence (wn) is taken as

(
2Qn−1

qn

)p
with Q0 = 1,

in that case, R̃ is bounded operator from the space ℓp(w) to the space ℓp(B̃(r̃, s̃)) and ∥R̃∥p,w,B̃ ≤
supn∈N |rn |+supn∈N |sn |

2 for
p > 1.

Proof. In Lemma 4.2, utilize the matrix R̃ in place of T. So, the matrix A = (ank) is described by

ank =


qk

2Qk−1Qk

(
rnqn + snqn+1

)
, n < k

1
2 rk

q2
k

Qk−1Qk
, n = k

0, n > k

and besides that, ∥R̃∥p,w,B̃ = ∥A∥p is obtained.
We derive

∞∑
k=1

ank =
rn

2
qn

qn

Qn−1Qn
+

1
2
(
rnqn + snqn+1

) ∞∑
k=n+1

qk

Qk−1Qk

=
rn

2
qn

(
1

Qn−1
−

1
Qn

)
+

1
2
(
rnqn + snqn+1

) 1
Qn

=
rn

2
qn

Qn−1
+

sn

2
qn+1

Qn

≤
supn∈N |rn| + supn∈N |sn|

2
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for all n ∈N. Also, we derive

∞∑
n=1

ank =
1
2

qk

Qk−1Qk

 k−1∑
n=1

(
rnqn + snqn+1

) + rk

2
qk

Qk−1Qk
qk

=
1
2

qk

Qk−1Qk

r1q1 +

k−1∑
n=1

(rn+1 + sn) qn+1


≤

supk∈N |rk| + supk∈N |sk|

2
qk

Qk−1Qk

k∑
n=1

qn

≤
supk∈N |rk| + supk∈N |sk|

2

for all k ∈ N. Now, In Lemma 4.1, if we take un = vn = 1 for all n ∈ N, we get K1 ≤
supn∈N |rn |+supn∈N |sn |

2 and

K2 ≤
supk∈N |rk |+supk∈N |sk |

2 which require that ∥R̃∥p,w,B̃ ≤
supn∈N |rn |+supn∈N |sn |

2 for p > 1.

Theorem 4.4. Let wn =
1

nα for all n ∈N, in which 1−p < α < 1 and p > 1. In that case, the Hilbert matrix operator
H is a bounded operator from the space ℓp(w) to the space ℓp(w, B̃(r̃, s̃)) also following inequality

∥H∥p,w,B̃ ≤
(
sup
n∈N
|rn| + sup

n∈N
|sn|

)
max

{
π

sin βπ
,
π

sinγπ

}
,

is valid, in which β = 1−α
p and γ = p−1+α

p .

Proof. Let us define the matrix A = (ank) as follows

ank =

(
k
n

)α/p ( rn

n + k
+

sn

n + k + 1

)
for all n, k ∈ N. In this case, ∥H∥p,w,B̃ = ∥A∥p which obtained by using Lemma 4.2. Specifically, when we
choose un = vn = n in Lemma 4.1 for all n ∈N, we find that

un
1
p

∞∑
k=1

ank

vk
1
p

= n1/p
∞∑

k=1

1
k1/p

(
k
n

)α/p ( rn

n + k
+

sn

n + k + 1

)
≤ nβ

∞∑
k=1

1
kβ

(
|rn|

n + k
+

|sn|

n + k + 1

)
≤ nβ

∫
∞

t=0

1
tβ

(
supn∈N |rn|

t + n
+

supn∈N |sn|

t + (n + 1)

)
dt

= nβ
(

supn∈N |rn|π

nβ sin βπ
+

supn∈N |sn|π

(n + 1)β sin βπ

)
≤

π
sin βπ

(
sup
n∈N
|rn| + sup

n∈N
|sn|

)
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for all n ∈N also

1

v
1−p

p

k

∞∑
n=1

un
1−p

p ank =
1

k(1−p)/p

∞∑
n=1

n(1−p)/p
(

k
n

)α/p ( rn

n + k
+

sn

n + k + 1

)

≤ kγ
∞∑

n=1

1
nγ

(
|rn|

n + k
+

|sn|

n + k + 1

)
≤ kγ

∫
∞

t=0

1
tγ

(
supn∈N |rn|

t + k
+

supn∈N |sn|

t + (k + 1)

)
dt

= kγ
(

supn∈N |rn|π

kγ sinγπ
+

supn∈N |sn|π

(k + 1)γ sinγπ

)
≤

π
sinγπ

(
sup
n∈N
|rn| + sup

n∈N
|sn|

)
for all k ∈N, where β = 1−α

p and γ = p−1+α
p . We therefore obtain that

∥H∥p,w,B̃ ≤
(
sup
n∈N
|rn| + sup

n∈N
|sn|

)
max

{
π

sin βπ
,
π

sinγπ

}
from Lemma 4.1.

5. Lower Bounds of Matrix Operators from ℓp(w) to ℓp(w̃, B̃(r̃, s̃))

An important problem posed in this paper is to calculate the lower bound of an operator T from the
space ℓp(w) to space ℓp(w̃, B̃(r̃, s̃)). Thus, the goal is to obtain the lower bound of the operator T for the largest
value L satisfying the following inequality

∥Tx∥p,w̃,B̃ ≥ L∥x∥p,w

for every decreasing sequence x = (xk) with xk ≥ 0.
We need the following lemma to perform the calculations in the proofs in this section.

Lemma 5.1. [17] Let us assume that both (qn) and (xn) are non-negative sequences, and that (xn) is also a decreasing
sequence satisfying condition limn→∞ xn = 0. For Qn =

∑n
i=1 qi with Q0 = 1 also Rn =

∑n
i=1 qixi, the following

statements holds, in which p ≥ 1 and n ∈N.

1. Rp
n − Rp

n−1 ≥ (Qp
n −Qp

n−1)xp
n.

2. When the series
∑
∞

i=1 qixi converges, the following inequality is satisfied. ∞∑
i=1

qixi


p

≥

∞∑
n=1

Qp
n(xp

n − xp
n+1).

Theorem 5.2. When T = (tnk) is a matrix operator with tnk ≥ 0 from the space ℓp(w) into the space ℓp(w̃, B̃(r̃, s̃)),
in which p ≥ 1, the following inequality tnk ≥ tn+1,k is valid for all n ∈ N, each fixed k ∈ N also the series

∑
∞

n=1 wn
diverges to infinity, in that case, for every decreasing sequence x = (xk) having xk ≥ 0, we have

∥Tx∥p,w̃,B̃ ≥ L∥x∥p,w

in which Lp = infn∈N
Sn
Wn

, Wn =
∑n

k=1 wk and Sn =
∑
∞

i=1 w̃i
(∑n

k=1
(
ritik + siti+1,k

))p where rn ≥ −sn > 0 for all n ∈N.
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Proof. Under the conditions of the hypothesis formulated in the theorem, we can give the proof as fol-
lows. Since

∑
∞

n=1 wn = ∞, we obtain limk→∞ xk = 0, and also, we can be establish that the series∑
∞

k=1
(
rntnk + sntn+1,k

)
xk is convergent for all n ∈ N. On the other hands, using Lemma 5.1 and Abel

summation, we have

∥Tx∥pp,w̃,B =
∞∑

n=1

w̃n

 ∞∑
k=1

(
rntnk + sntn+1,k

)
xk


p

≥

∞∑
n=1

w̃n

∞∑
i=1

 i∑
k=1

(
rntnk + sntn+1,k

)
p

(xp
i − xp

i+1)

=

∞∑
i=1

 ∞∑
n=1

w̃n

 i∑
k=1

(
rntnk + sntn+1,k

)
p (xp

i − xp
i+1)

=

∞∑
i=1

Si(x
p
i − xp

i+1) ≥ Lp
∞∑

i=1

Wi(x
p
i − xp

i+1) = Lp
∥x∥pp,w

which completes the proof.

The following lemma can be verified using a technique similar to the proof of Proposition 1 in [17].

Lemma 5.3. Let us assume that T = (tnk) be a non-negative matrix operator defined from the space ℓp(w) to the space
ℓp(w̃, B̃(r̃, s̃)), in which p ≥ 1. If the following inequality

rntnk + sntn+1,k ≥ rntn,k+1 + sntn+1,k+1

is valid also tnk ≥ tn+1,k for all k ∈ N, each fixed n ∈ N and rn ≥ −sn > 0, if the series
∑
∞

n=1 wn is divergent the
infinity, then we have

Lp
≥ inf

n∈N
[np
− (n − 1)p]

tn

wn
,

in which tn =
∑
∞

i=1 w̃i
(
ritin + siti+1,n

)p.

Theorem 5.4. Let H = (hnk) is the Hilbert matrix operator, wn =
1

np+α and w̃n =
1

nα for every n ∈N, in which p ≥ 1,
0 ≤ p + α ≤ 1 and rn ≥ −sn > 0. For every decreasing sequences x = (xk) that are not negative terms, we have

∥Hx∥p,w̃,B̃ ≥ L∥x∥p,w

in which Lp
≥

∑
∞

i=1
1

iα(i+1)p(i+2)p .

Proof. It is clear that both the Hilbert matrix H = (hnk) and the sequence (wn) satisfy the conditions listed in
Lemma 5.3, therefore, we obtain

Lp
≥ inf

n∈N
[np
− (n − 1)p]

tn

wn

≥ inf
n∈N

np−1np+α
∞∑

i=1

1
iα

( ri

i + n
+

si

i + n + 1

)p

≥ inf
n∈N

n2p+α−1
∞∑

i=1

1
iα

( ri

i + n
+

si

i + n + 1

)p
.

The rest of the proof can be obtained in the same way as in the proof of Theorem 4.3 in [19].
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Conclusion
In this manuscript, we have presented the norms for matrix operators which are defined between the

weighted sequence space denoted by ℓp(w) and the weighted difference sequence space ℓp(w̃, B̃(r̃, s̃)) which
is valid for 1 ≤ p < ∞. To make the presentation more understandable, we have used some specific matrices
like quasi summable ones (that is the transposes of Riesz and Cesàro matrices of the first order) and Hilbert
matrix. Firstly, ℓp(w̃, B̃(r̃, s̃)) space has been presented and its properties have been scrutinized. Next, we
have tried to compute the lower bound for the matrix given from ℓp(w) into ℓp(w̃, B̃(r̃, s̃)).
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