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Abstract   
 

Entropy generation for the natural convection phenomena is studied for different geometrical cavities that have 

identical boundary conditions and unit area. The key characteristic parameter in this study was the Grashof number. 

The effect of Grashof number on Nusselt number and entropy generation has been studied using finite element 

method. The developed models in this study were validated against published work in the literature and results were 

found to be in close agreement. Entropy generation was found to increase with an increase in the Grashof number 

and the heat transfer was the dominant factor in increasing the entropy generation. A lower entropy generation is 

generally expected with an increase in the distance between the hot and cold boundaries. It is also noted that the rate 

of entropy generation decreases slowly when the flow domain is only slightly distorted, while the rate of entropy 

generation increases sharply when the flow domain changes significantly.   
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1. Introduction  

The natural convection phenomenon plays an important 

role in several engineering applications, among few which 

are the cooling process of electronic circuit boards, solar 

collectors, thermal storage, and environmental comfort. 

Natural convection, caused by temperature differences, is a 

key reason for large scale air circulation in the atmosphere. 

The temperature gradient affects the density which in turn 

creates the buoyancy force that drives the flow domain.  

The literature is rich with a lot of studies investigating 

several aspects of Benard problem in enclosed cavities and 

some of that work has been devoted to investigate the 

entropy generation phenomenon. Brahim et al. [1] 

investigated the entropy generation inside a square cavity at 

the onset of natural convection. Entropy generation in a 

square cavity as a function of the position of heat sources 

located on top and bottom walls has been investigated by 

Prakash et al. [2]. On the other hand, Hooman and Fmouri 

[3] studied the entropy generation process when the heated 

element is located at different positions inside the square 

cavity. Basak et al. [4] studied the effect of the inclination 

angle on the entropy generation for a square cavity. In an 

earlier study, Baytas [5] investigated the optimum 

inclination that minimizes the entropy generation in a 

square cavity. Another geometrical aspect which is the 

aspect ratio and its effect on entropy generation in a 

rectangular cavity has been studied by Oliveski et al. [6] 

and Sunden et al. [7]. For triangular enclosure, Varol et al. 

[8, 9] studied the entropy generation for isosceles triangle 

partially heated from below and the effect of the inclination 

angle with a non-uniformly heated boundary. For 

cylindrical geometry, Abu-Hijleh et al. [10] investigated the 

entropy generation for a horizontal cylinder and Abu-Hijleh 

and Heilen [11] investigated the phenomena for a rotating 

cylinder. For other complex geometry, Aounallah et al. [12] 

studied entropy generation in an enclosure with a wavy hot 

wall. A more thorough literature review can be found in the 

work of Oztop and Al-Salem [13]. 

 

 

Figure 1. The different configuration in this study (hot and cold boundaries are shown in bold lines). 
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The aim of the current work is to investigate how the 

geometry is affecting the production of entropy in the 

natural convection process of Rayleigh-Benard problem. 

Several geometries are investigated in this work, i.e., 

square, circle, horizontal and vertical ellipse and triangle as 

shown in Figure 1. All these geometries have a unit area 

with hot and cold boundaries of unit length, as depicted in 

the figure. 

 

2. Mathematical Model  

Five different cavities are considered in this study. The 

shapes include square, circle, vertical ellipse, horizontal 

ellipse and triangle as shown in Figure 1. In order to study 

the effect of the shape on entropy generation, all 

configurations had the same area. Moreover, the length of 

the boundaries where the temperatures are prescribed was 

also kept constant. 

The time-independent governing equations for the 

conservation of mass, momentum and energy are given 

respectively by: 
 

 
(1) 

 

(2) 

 

(3) 

 

where 𝒖 is the velocity vector in both x and y directions, 𝜌 

the density, p the pressure, T the temperature and 𝑇𝑐 the 

cold wall temperature, 𝜇, 𝛽 and 𝛼 are the fluid absolute 

viscosity, thermal expansion and thermal diffusivity, 

respectively, 𝑔 the gravitation constant and  𝑗̂ is the unit 

vector in the y direction. The fluid properties are assumed 

to be constant.  

The local entropy generation due to heat transfer and 

fluid friction is given according to the following 

expression: 
 

 

(4) 

 

where k is the thermal conductivity, Φ the viscous 

dissipation function that can be given in two- dimensional 

Cartesian coordinates by: 
 

 

(5) 

 

where u and v are the velocity components in x and y 

directions, respectively.  

In order to write Eqs. (1) – (3) in a non-dimensional 

form, the following non-dimensional parameters have been 

used 

 

    

   

 

(6) 

where �̂� and �̂� are the dimensionless velocities in x and y 

directions, respectively, θ is the dimensionless temperature, 

ν the kinematic viscosity, and Pr and Gr the Prandtl and 

Grashof numbers, respectively. Upon using these 

dimensionless parameters in Eqs. (1) – (3), the governing 

equations can be written as follows 

 

 

(7) 

 

(8) 

. 

(9) 

 

Similarly, the non-dimensional entropy generation rate 

per unit area, i.e., Eq.(4), is transformed using the above 

dimensionless parameters in a two-dimensional Cartesian 

coordinates as follows 

 

     

 

(10) 

where Ec is the Eckert number given by u2/(cPT) and τ the 

dimensionless temperature difference given by Tc/(Th-Tc) 

and the total entropy generation rate is estimated by 

integrating Eq.(10) over the entire domain 

 

 

(11) 

 

3. Model Validation 

Several researchers 1, 3, 4, 6 studied this problem 

numerically where Rayleigh number (Ra) was the 

governing parameter describing the flow. However, based 

on the choice of the dimensionless parameters, the Grashof 

number (Gr) is the parameter that described the flow in this 

study. Also, different scaling parameters has been used to 

nondimensionalize the governing equations. In the 

previously mentioned studies, the governing equations are 

given as 

 

  
(12) 

  
(13) 

  
(14) 

and the local entropy generation is given by: 

 

 

(15) 

 

where ∅ =
𝜇𝑇0

𝑘
(

𝛼

(𝐿∆𝑇)2), which is defined as the 

irreversibility.  
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In Eqs. (12) – (15), �̃� is the flow field that is driven by 

different set of dimensionless parameters, i.e., �̃� = (𝐿
𝛼⁄ )𝑢 

. In order to validate the results of this study with those 

existing in the literature, a simple transformation between 

the two flow fields, i.e.,  and  was done and the flow 

fields were related by 

 

 

(16) 

 

In order to calculate the entropy generation by Eq. (15), 

the flow field given by the solution of the governing 

equations (7) – (9) had to be transformed using Eq. (16). 

The benchmark model is depicted in Figure 2. Two 

parameters were investigated in this phase, i.e., the entropy 

generation given by Eq. (15) and Nusselt number (Nu).  

 

 
 

Figure 2. The benchmark model. 

 

The dimensionless entropy generation predicted by the 

current model was benchmarked with data existing in the 

literature, as shown in Figure 3, where the irreversibility 

parameter Φ is 0.01. It shows a good agreement between 

the entropy generation predicted by this study and the 

literature.  

 

 
Figure 3. A comparison of the dimensionless entopy 

generation with data in the literature. 

 

The local Nusselt number (Nu) is given by the 

following expression 

 

 

(17) 

where n is the unit vector normal to the plane, and the mean 

Nusselt number (Num) is given by 

 

(18) 

The obtained values of Num were validated against two 

studies, Oliverski 6 and Davis et al. 14 as shown in Table 1 

and the results showed that the current model is in good 

agreement with the results of these studies.  

 

Table 1. Benchmarking Nusselt number vs. Rayleigh 

number. 

 

 

    

Oliveski et al. 6 1.116 2.239 4.531 8.726 

Davis et al. 14 1.118 2.243 4.519 8.800 

Present study 1.1176 2.2462 4.5192 8.8326 

 

4. Numerical Procedure 

The governing equations were solved using COMSOL 

Multiphysics software. The momentum and energy 

equations were solved using PARDISO direct solver. The 

solution relative tolerance was set to 1×10-4. The �̂�, �̂� and θ 

have been formulated using linear shape functions. The 

domain was discretized using free triangular elements and 

rectangular elements were used on the boundaries to ensure 

capturing of the boundary layer for the flow field. This is 

shown by a coarse mesh depicted by Figure 4. 

 

Figure 4. Depiction of a coarse mesh of the domain. 

5. Results and Discussion 

In this study, the Prandtl number (Pr) was fixed to 0.7 

and Eckert number (Ec) that appears in Eq. (10) is 

expressed as 

. (19) 

Using the non-dimensional parameters of Eq.(6), this 

number is transformed to 

 

 

(20) 

 

where Cp is the specific heat at a constant pressure and was 

set as 1.005 [kJ/(kg K)], β equals 3.3×10-3[1/K], L is 1[m] 

and ȗ is the solution obtained from solving the governing 

Eqs. (7) – (9). To estimate the local non-dimensional 

entropy generation given by Eq. (10), the dimensionless 
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Table 2. Grid independency test for the total entropy generation  at Gr=1000. 
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Figure 2. Temperature distribution with velocity vectors (left) and local entropy generation (right) for Gr = 1000. 

 

Shape 
Mesh 1 

# of elements 
Mesh 2 

# of elements  

Relative error % 

Mesh 1 Mesh 2 

Square 5998 15850 0.010186 0.010205 0.1862 

Circle 3688 6486 0.013190 0.013259 0.5204 

H ellipse 2038 3418 0.021377 0.021394 0.0795 

V ellipse 3668 9128 0.012052 0.012027 0.2079 

Triangle 7214 17780 0.017170 0.017179 0.0524 
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temperature difference τ was set as 10. This choice was 

made such that the temperature difference between the hot 

and cold walls was not too large.  

To ensure the grid independency of the solution, the 

model was solved using different mesh sizes. For the two 

finest meshes, the total entropy generation 𝑆�̇�
̂  is given in 

Table 2. The results presented here are with a Gr of 1×103. 

The relative error in the prediction of 𝑆�̇�
̂  was well below a 

relative error of 1%.  

In this section, results for the temperature, velocity 

vector fields, local and total entropy generation and Nusselt 

number at different Grashof numbers are presented. Figure 

5 shows the temperatures distribution for the different 

geometries overlaid by the velocity vector field on the left 

side, and the local entropy generation on the right side. All 

the figures are for Gr of 1×103. For the square, circle and 

the horizontal ellipse, it can be noticed that the temperature 

distribution is symmetric about the center of the geometry. 

The buoyancy force resulting from this symmetrical 

temperature distribution, causes the fluid to rise from the 

center of the heated wall in a symmetric manner. This 

creates two circular motions on either sides of the 

geometries. In the case of the horizontal ellipse and 

triangle, the temperature distribution is not symmetric and 

hence, the flow domain is also not symmetric. From the 

different geometries studied, it is noticed that as the mean 

distance between the hot and cold boundaries decreases, the 

symmetric behavior can still be obtained at higher Gr.  

In Figure 5, the right column represents the local 

entropy generation for the different geometries. In Figure 5-

a, at a Gr of 1×103 the square configuration has the lowest 

local entropy generation. This is due to a uniform 

temperature distribution across the domain, unlike the other 

configurations, where a sharp temperature gradient exists at 

the endpoints of the hot and cold boundaries. Another 

observation is that as the hot and cold boundaries get closer 

to each other, a higher temperature gradient will be formed 

causing larger entropy generation in those areas as shown in 

Figure 5-c and e.  

 

 

Figure 6. Nu on the hot wall for the square at different Gr. 

Nu on the hot boundary for the square geometry is 

plotted in table 6 for different Gr. This figure shows that for 

Gr ≤ 1×104, the flow domain is symmetric and two eddies 

exist in the flow domain. These eddies then merge together 

at Gr = 5×104 and the fluid starts to flow counter-

clockwise. At this Gr, the highest Nu occurred around �̂�= 

0.8 and not at the end of the wall. This is due to the fact that 

the hot fluid continues to climb the right-side wall, 

lowering the rate of heat transfer in the �̂� direction.  

Figure 7 shows Nu on the hot wall for the circular 

geometry for different Gr. Unlike the square, the symmetric 

pattern collapsed earlier and the solution is only symmetric 

for Gr = 1×103. Another important distinction between the 

circular and square geometries is that the highest Nu is 

occurring at the beginning of the hot wall and not near its 

end. Since the flow is moving in the counter-clockwise 

direction, the highest temperature gradient is located at the 

point where the cold fluid touches the left hot side of the 

wall and hence increasing Nu.    

 

Figure 7. Nu on the hot wall for the circle at different Gr. 

For the horizontal ellipse, the Nu is plotted in Figure 8. 

The results obtained for this case are very similar to the 

circular shape. For these two configurations, the flow 

domain is not symmetric for Gr > 1×103. Also, the highest 

Nu exists at the beginning of the hot wall for the same 

reason discussed in the case of the circle.  

Nu on the hot boundary for the square geometry is 

plotted in Figure 6 for different Gr. This figure shows that 

for Gr ≤ 1×104, the flow domain is symmetric and two 

eddies exist in the flow domain. These eddies then merge 

together at Gr = 5×104 and the fluid starts to flow counter-

clockwise. At this Gr, the highest Nu occurred around �̂� = 

0.8 and not at the end of the wall. This is due to the fact that 

the hot fluid continues to climb the right-side wall, 

lowering the rate of heat transfer in the �̂� direction.  

 

 

Figure 3. Nu on the hot wall for the square at different Gr. 

Figure 7 shows Nu on the hot wall for the circular 

geometry for different Gr. Unlike the square, the symmetric 

pattern collapsed earlier and the solution is only symmetric 

for Gr = 1×103. Another important distinction between the 

circular and square geometries is that the highest Nu is 

occurring at the beginning of the hot wall and not near its 

end. Since the flow is moving in the counter-clockwise 

direction, the highest temperature gradient is located at the 

point where the cold fluid touches the left hot side of the 

wall and hence increasing Nu.    

For the horizontal ellipse, the Nu is plotted in Figure 5. 

The results obtained for this case are very similar to the 

circular shape. For these two configurations, the flow 

domain is not symmetric for Gr > 1×103. Also, the highest 
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Nu exists at the beginning of the hot wall for the same 

reason discussed in the case of the circle.  

 

 

Figure 4. Nu on the hot wall for the circle at different Gr. 

 

Figure 5. Nu on the hot wall for the horizontal ellipse at 

different Gr. 

Figure 6 shows Nu for the vertical ellipse. In this case 

Gr was increased only to 5×103, since no stable solution 

was obtained beyond this value. Unlike the previous case, 

even at Gr = 1×103 the solution was not symmetric. Nu was 

higher on the right wall where the temperature gradient was 

higher. It can be noticed from this solution that increasing 

Gr does not always increase the Nu, as shown in the case of 

Gr = 5×103. 

 

Figure 6. Nu on the hot wall for the vertical ellipse at 

different Gr. 

The local Nu for the triangle geometry is shown in 

Figure 7. Similar to the vertical ellipse, even at Gr = 1×103 

the solution was not symmetric and there was only one 

eddy in the flow domain. Nu was almost constant except on 

the left were the cold fluid was falling down and started to 

pass over the hot wall. In this configuration, Nu is directly 

related to Gr were it increases by increasing Gr.  

 

Figure 7. Nu on the hot wall for the triangle at different Gr. 

Num is plotted against Gr in Figure 8 for the different 

geometries. As anticipated, an increase in Gr provides more 

momentum to the eddies, and hence enhances the heat 

transfer rate, i.e., an increase in Nu. The highest Nu for all 

Gr was obtained for the horizontal ellipse were the distance 

between the hot and the cold walls is the least. The square, 

horizontal ellipse and triangle geometries have relatively 

steeper monotonic behavior for Nu vs Gr. It is noticed that 

as the mean distance between the hot and cold walls 

narrows, Num increases. The circular shape behaves a bit 

different compared to the other geometries. For the circle, 

Num tend to plateau around Gr = 1×105. Around this 

specific Gr value, the characteristics of the flow domain 

change from being circular to flowing in an almost 

rectangular manner as will be further discussed in Figure 

11.  Beyond this, Nu continues to increase sharply with Gr. 

The vertical ellipse on the other hand, has a moderate slope 

compared to the other geometries, due to the large distance 

between the hot and cold walls where the temperature 

gradient is the least.  

 

Figure 8. Mean Nu vs Gr for the different geometry. 

Figure 9 shows the total entropy generation for the 

different geometries versus Gr. In this study, the entropy 

generation that is due to viscous dissipation is very 

minimal. Thus, Bejan number (Be) that is given by the ratio 

of the entropy generation due to heat transfer to the total 

entropy generation, i.e., the first term of Eq. (10) divided by 

the entire equation, is almost one. Therefore, it was decided 

not to report Be in this study. Since the entropy generation 

is predominantly due to heat transfer, the entropy 

generation curves follow the heat transfer trend, i.e., Num. 

In this figure, again the highest entropy generation obtained 

was for the horizontal ellipse. For this shape the entropy 

generation is almost linear with Gr. Generally as the hot 

and cold walls get closer to each other, the entropy 

generation tends to increase. 
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Figure 9. Total entropy generation vs Gr for the different 

geometries. 

        

      For the range 5×104 ≤ Gr ≤ 1×105, the total entropy 

generation tends to increase at a significantly lower rate for 

the circular geometry in comparison to the other 

geometries. In order to analyze this phenomena, velocity 

contours are plotted for the horizontal ellipse, circular and 

triangular geometries in figures Figure 13-Figure 15, 

respectively. Figure 13 shows how the structure of the 

eddies is changing for the horizontal ellipse for Gr = 1×103 

to Gr = 1×106. A noticeable change in the contour lines in 

the entire range of the Gr values shown.  

      For the circular geometry, only a very slight change in 

the eddies can be observed in the range of 5×104 ≤ Gr ≤ 

1×105 (see Figure 14b and Figure 14c), where the increase 

in the total entropy generation tends to slow down. Beyond 

this  

 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 10. Velocity contours for horizontal ellipse at different Gr; (a) Gr=1×103, (b) Gr=5×104, (c) Gr=1×105, (d) 

Gr=1×106. 

 

 

 
(a) 

 
(b) 

 
(c) 

  
(d) 

 

Figure 11. Velocity contours for circular shape at different Gr; (a) Gr=1×103, (b) Gr=5×104, (c) Gr=1×105, (d) 

Gr=1×106. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 

Figure 12. Velocity contours for triangular shape at different Gr; (a) Gr=1×103, (b) Gr=5×104, (c) Gr=1×105, (d) 

Gr=1×106 

 

range eddies are highly distorted, which corresponds to a 

steeper increase in the total energy generation. Figure 15 

shows that the velocity contours of the triangular geometry 

are significantly distorted, where several lines are being 

broken and new eddies are being formed in the flow 

domain. Thus, it can be concluded that the faster those 

eddies are distorted the higher the entropy generation rate 

will be. 

 

6. Conclusions 

Entropy generation for the natural convection 

phenomena was calculated using finite element method for 

different shapes that were subject to similar boundary 

conditions. Both the entropy generation and Nu were found 

to increase with an increase in the Gr in very similar trends. 

In this study, viscous dissipation had a minimal effect on 

the entropy generation, while the heat transfer was the 

dominant factor. The highest entropy generation was found 

to be for the horizontal ellipse geometry, while the vertical 

ellipse had the least entropy generation. The rate of entropy 

generation decreased as the distance between the hot and 

cold boundaries increased. The rate of increment for the 

entropy generation tended to decrease when the flow 

pattern started to change. This was more noticeable in the 

case of the circle and the triangle, where more eddies 

started to form when Gr was increased.  

 

Nomenclature  

A area (m2) 

Cp specific heat at constant pressure (J/kg K) 

Ec Eckert number, 𝑢2/(𝐶𝑝 ∆𝑇) 

𝑔 gravitational acceleration (m/s2)  

Gr Grashof number, (𝑔𝛽𝐿3 (𝑇ℎ − 𝑇𝑐))/𝜈2  
k thermal conductivity (W/m K) 

L length of the boundary where the temperature is 

prescribed  

Nu Nusselt number, ℎ𝐿/𝑘 

p pressure (Pa) 

�̂� dimensionless pressure, 𝑝/𝜌𝑔𝛽∆𝑇𝐿 

Pr Prandtl number, 𝜈/𝛼 

Ra Rayleigh number, (𝑔𝛽𝐿3 (𝑇ℎ − 𝑇𝑐))/(𝜈 𝛼)  
T temperature (K) 

 u, v velocity components in x, y directions (m/s) 

u velocity vector (m/s) 

�̂� dimensionless velocity vector, 𝑢/√(𝑔𝛽∆𝑇𝐿) 

�̃� dimensionless velocity vector, 𝑢 𝐿/𝛼 

�̇� entropy generation per unit volume (J/m3 s K) 

�̂̇� dimensionless entropy generation per unit volume  

 x, y Cartesian coordinates (m) 

�̂�, �̂� dimensionless Cartesian coordinates  

Greeks 

𝛼 thermal expansion coefficient (K-1) 

𝛽 dynamic viscosity (kg/ms) 

𝜇 kinematic viscosity (m2/s) 

𝜌 density (kg/m3) 

𝜙 irreversibility ratio, (𝜇 𝑇0/𝑘)/(𝛼/𝐿∆𝑇) 

𝛷 viscous dissipation  

𝜃 dimensionless temperature, (𝑇 − 𝑇𝑐)/(𝑇ℎ − 𝑇𝑐  ) 

𝜏 dimensionless temperature difference given by 

𝑇𝑐/(𝑇ℎ − 𝑇𝑐  ) 

Subscripts 

   c cold  
   h hot 
   m mean 
   t total 
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