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TOBB University of Economy and Technology
Türkiye

Mohammed S. Abdo
Hodeidah University, Al-Hodeidah, Department of

Mathematics
Yemen

Naik, Parvaiz Ahmad
School of Mathematics and Statistics, Xi’an Jiaotong
University, China

Noeiaghdam, Samad
Irkutsk National Research Technical University

Russian Federation

Owolabi, Kolade
Federal University of Technology
Nigeria

Otero-Espinar, Maria Victoria
University of Santiago de Compostela

Spain
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5 A Caputo-Fabrizio fractional-order cholera model and its sensitivity analysis
Idris Ahmed, Ali Akgül, Fahd Jarad, Poom Kumam, Kamsing Nonlaopon 170-187

v



Mathematical Modelling and Numerical Simulation
with Applications, 2023, 3(2), 101–110

https://dergipark.org.tr/en/pub/mmnsa

ISSN Online: 2791-8564 / Open Access

https://doi.org/10.53391/mmnsa.1317989

R E S E A R C H PA P E R

A study on the solutions of (1+1)-dimensional
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Abstract

The basic principle of this study is to obtain various solutions to the (1+1) dimensional Mikhailov-
Novikov-Wang integrable equation (MNWIE). For this purpose, the generalized exponential rational
function method (GERFM) is applied to this equation. Thus, several trigonometric functions, hyper-
bolic functions, and dark soliton solutions to the studied equation are acquired. In this way, some new
solutions to the equation that have not been presented before have been obtained. In addition, 2D
and 3D graphics of the acquired solutions are drawn for specific values. The obtained results and the
graphic drawings of the results have been provided by using Wolfram Mathematica 12.

Keywords: Generalized exponential rational function method; (1+1)-dimensional Mikhailov-Novikov-
Wang integrable equation; trigonometric function solution; hyperbolic function solution; dark soliton
solution

AMS 2020 Classification: 35C07; 35A25; 35C08

1 Introduction

In this study, GERFM has been used, the solution methods of nonlinear evolution equations
(NLEEs), and this method has been applied to the (1+1)-dimensional MNWIE, which is a variant
of NLEEs. NLEEs have very important applications in areas such as mathematical physics, optical
fibers, mathematical chemistry, hydrodynamics, fluid dynamics, geochemistry, control theory,
meteorology, optics, mechanics, chemical kinematics, biophysics, biogenetics, and so on. A number
of methods have been developed by various researchers in order to obtain solutions for NLEEs,
which have such important areas of use in the scientific world:
Modified direct algebraic, modified Kudryashov and trigonometric-quantic B-spline methods
[1], improved Bernoulli sub-equation function method [2], modified extended tanh-function
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method [3], new extended generalized Kudryashov and generalized new Kudryashov methods
[4], new function method [5], exp (−φ(ξ)) method [6], double (G ′/G, 1/G)-expansion method
[7], modified extended tanh-expansion based method [8], modified simple equation method [9],
Jacobi elliptic function expansion method [10], modified (1/G ′)-expansion method [11].

(1+1)-dimensional MNWIE is given as [12]:

utt − uxxxt − 8uxuxt − 4uxxut + 2uxuxxxx + 4uxxuxxx + 24u2
xuxx = 0. (1)

Eq. (1) was derived by using the perturbative symmetry approach to the classification of integrable
equations. Also, this equation belongs to a hierarchy where the Boussinesq equation is a member
of this class. Hence, studying this equation can provide a good understanding of various nonlinear
scientific phenomena in physics [12, 13].

(1+1)-dimensional MNWIE has been studied by some researchers recently. Ray and Singh got
the kink-type multisoliton solutions of the equation with the help of simplified Hirota’s method
[14]. Raza et al. obtained new soliton solutions of the equation using the exp (−φ(ξ))-expansion
method, singular manifold method, and generalized projective Riccati equations method [15].
Akbulut et al. found exact solutions of the equation generalized Kudryashov method, exponential
rational function method, and modified extended tanh-function method [16]. Bekir et al. obtained
new exact soliton solutions of the equation using (G ′/G)-expansion method [17]. This study,
which was prepared to specify the solutions of the (1+1)-dimensional MNWIE using GERFM
[18–23] was designed as follows: In Section 2, GERFM’s basic principles are presented. In Section 3,
some solutions of (1+1)-dimensional MNWIE have been obtained by applying GERFM. In Section 4,
results and discussion are provided and finally, in Section 5, the concluding remarks are given.

2 Brief description of the GERFM

This section introduces an algorithm of the simplest version of the GERFM method, which is used
for finding integrable solutions, whose essential steps are given as follows:

Step1: We consider NLPDE given below:

P(u, ux, ut, uxx, ...) = 0. (2)

We first apply the wave transform given below to Eq. (2);

u(x, t) = u(η), η = x − ct, (3)

where c values that are not taken into account will be calculated later. Eq. (2) is transformed into
an ordinary differential equation by using Eq. (3):

R(u, u
′

, u
′′

, · · · ) = 0. (4)

Step2: Assume that we think that the solutions of Eq. (4) as:

u(η) = a0 +
M∑

i=1

aiΦ(η)i +
M∑

i=1

bi

Φ(η)i
, (5)



Tuluce Demiray and Bayrakci | 103

where

Φ(η) =
p1eq1η + p2eq2η

p3eq3η + p4eq4η . (6)

Here the value of M is determined through the homogeneous balance principle. p1, p2, p3, p4, q1, q2, q3, q4

are real or complex constants, a0, a1, a2, · · · , aM, b1, b2, · · · , bM are scalars and will be determined.
Step3: If Eq. (5) is taken into account in Eq. (4), P(eq1η, eq2η, eq3η, eq4η) = 0 equation system is
obtained. A system of equations is obtained by equating all coefficients of P to zero.
Step4: If we solve the obtained system of equations and the found values consider in Eq. (5), the
solutions of the discussed NLPDE are obtained.

3 Application of GERFM

To get the exact solutions of Eq. (1) we consider the following transformation:

u(x, t) = u(η), η = x − ct. (7)

Replacing Eq. (7) into Eq. (1) and the resulting equation is integrated assuming the integration
constant is zero. So the following equation is obtained,

c2u ′ + cu ′′′ + 6c(u ′)2 + 2u ′′′u ′ + (u ′′)2 + 8(u ′)3 = 0. (8)

u ′ = v transform is written in Eq. (8). Then take the integral and by considering the integration
constant as zero, we obtain

c2v + cv ′′ + 6cv2 + 2vv ′′ + (v ′)2 + 8v3 = 0. (9)

By using the balance principle in Eq. (9), we obtain

M = 2. (10)

If M = 2 is taken into account in Eq. (5), the following equality is achieved:

u(η) = a0 + a1Φ(η) + a2Φ
2(η) +

b1

Φ(η)
+

b2

Φ2(η)
. (11)

So the obtained different states of the considered equation via GERFM are as follows:

Family one: For p = [−2 − i, 2 − i,−1, 1] and q = [i,−i, i,−i] values, Eq. (6) is converted into,

Φ(η) =
cos(η) + 2sin(η)

sin(η)
. (12)

a0 = −10, a1 = 0, a2 = 0, b1 = 40, b2 = −50, c = 4. (13)

Embedding Eq. (13) in Eqs. (11) and (12), The trigonometric function solution of Eq. (1) is acquired
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as,

u1(x, t) =
10sin [4t − x]

cos [4t − x]− 2sin [4t − x]
. (14)

Figure 1. 3D plot of solution (14) for −35 ≤ x ≤ 35,−1 ≤ t ≤ 1 ranges and 2D plot of solution for t = 0.5 with
this range.

Family two: For p = [i,−i, 1, 1] and q = [i,−i, i,−i] values, Eq. (6) is converted into,

Φ(η) =
−sin(η)

cos(η)
. (15)

a0 = −4, a1 = 0, a2 = −2, b1 = 0, b2 = −2, c = 16. (16)

Embedding Eq. (16) in Eqs. (11) and (15), The trigonometric function solution of Eq. (1) is acquired
as,

u2(x, t) = 4cot [2x − 32t] . (17)

Figure 2. 3D plot of solution (17) for −20 ≤ x ≤ 20,−5 ≤ t ≤ 5 ranges and 2D plot of solution for t = 3 with
this range.
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Family three: For p = [1, 1,−1, 1] and q = [1,−1, 1,−1] values, Eq. (6) converted into,

Φ(η) =
−cosh(η)

sinh(η)
. (18)

Case-1:

a0 = 4, a1 = 0, a2 = −2, b1 = 0, b2 = −2, c = −16. (19)

Embedding Eq. (19) in Eqs. (11) and (18), The dark soliton solution of Eq. (1) is acquired as,

u3(x, t) = 4coth [2x + 32t] . (20)

Figure 3. 3D plot of solution (20) for −30 ≤ x ≤ 30,−2 ≤ t ≤ 2 ranges and 2D plot of solution for t = 1 with
this range.

Case-2:

a0 = 2, a1 = 0, a2 = 0, b1 = 0, b2 = −2, c = −4. (21)

Embedding Eq. (21) in Eqs. (11) and (18), The dark soliton solution of Eq. (1) is acquired as,

u4(x, t) = 2tanh [x + 4t] . (22)

Family four: For p = [−2,−3, 1, 1] and q = [1, 0, 1, 0] values, Eq. (6) converted into,

Φ(η) =
−3 − 2eη

1 + eη , (23)

a0 = −12, a1 = 0, a2 = 0, b1 = −60, b2 = −72, c = −1. (24)

Embedding Eq. (24) in Eqs. (11) and (23), The soliton solution of Eq. (1) is acquired as,

u5(x, t) = −

6

3 + 2e(x+t)
. (25)
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Figure 4. 3D plot of solution (22) for −15 ≤ x ≤ 15,−3 ≤ t ≤ 3 ranges and 2D plot of solution for t = 2 with
this range.

Figure 5. 3D plot of solution (25) for −15 ≤ x ≤ 15,−3 ≤ t ≤ 3 ranges and 2D plot of solution for t = 2 with
this range.

Family five: For p = [−2 − i,−2 + i, 1, 1] and q = [i,−i, i,−i] values, Eq. (6) converted into,

Φ(η) =
−2cos(η) + sin(η)

cos(η)
. (26)

a0 = −10, a1 = −8, a2 = −2, b1 = 0, b2 = 0, c = 4. (27)

Embedding Eq. (27) in Eqs. (11) and (26), The trigonometric function solution of Eq. (1) is acquired
as,

u6(x, t) = 2tan [4t − x] . (28)
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Figure 6. 3D plot of solution (28) for −30 ≤ x ≤ 30,−3 ≤ t ≤ 3 ranges and 2D plot of solution for t = 2 with
this range.

Family six: For p = [−3,−1, 1, 1] and q = [1,−1, 1,−1] values, Eq. (6) converted into,

Φ(η) =
−2cosh(η)− sinh(η)

cosh(η)
. (29)

a0 = −6, a1 = 0, a2 = 0, b1 = −24, b2 = −18, c = −4. (30)

Embedding Eq. (30) in Eqs. (11) and (29), the hyperbolic function solution of Eq. (1) is acquired as,

u7(x, t) =
3sinh [x + 4t]

2cosh [x + 4t] + sinh [x + 4t]
. (31)

Figure 7. 3D plot of solution (31) for −35 ≤ x ≤ 35,−4 ≤ t ≤ 4 ranges and 2D plot of solution for t = 3 with
this range.

4 Results and discussions

We have obtained seveeral trigonometric function, hyperbolic function and dark soliton solutions
of the (1+1)-dimensional MNWIE by applying the GERFM. Several methods were previously
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applied by some authors to obtain the solutions of the (1+1)-dimensional MNWIE. When we
compare the solutions we found with those of previously published papers, our u1(x, t) solution
is similar to solution (31) given by Raza et al. [15]. In addition to our u3(x, t) solution is similar to
(33) solution given by Raza et al. [15], and solutions (23)-(24) given by Akbulut et al. [16]. Our
u4(x, t) solution is similar to (27) and (28) solutions given by Akbulut et al. [16]. Our u7(x, t)

solution is similar to solution (24) given by Raza et al. [15]. According to our research, our other
solutions have not been provided before. Thus, the GERFM appears to be an effective method for
finding solutions to NLEEs.

5 Conclusion

In this study, (1+1)-dimensional MNWIE was investigated. GERFM, which is the solution method
of NLEEs, was applied to this equation. Thus, several trigonometric function, hyperbolic function
and dark soliton solutions of the equation were obtained. In order to understand the physical
appearance of the found solutions, 2D and 3D graphics were drawn. These obtained results can
be further extended and investigated to solve other equations of the Boussinesq type due to their
significance in making sense of various nonlinear phenomena. In addition, this considered method
can be applied to obtain solutions of equations used for various models. The most important
advantage of the method used in this study is that a wide variety of solution families can be
created. It is a more general method compared to other methods, as it offers a wide variety of
solution families. Despite these advantages, since a different algebraic equation system is created
for each solution family, the processing density increases.
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[11] Yokuş, A., Durur, H. and Duran, S. Simulation and refraction event of complex hyperbolic
type solitary wave in plasma and optical fiber for the perturbed Chen-Lee-Liu equation.
Optical and Quantum Electronics, 53, 402, (2021). [CrossRef]

[12] Mikhailov, A.V., Novikov, V.S. and Wang, J.P. On classification of integrable nonevolutionary
equations. Studies in Applied Mathematics, 118(4), 419–457, (2007). [CrossRef]

[13] Mikhailov, A.V. and Novikov, V.S. Perturbative symmetry approach. Journal of Physics A:

Mathematical and General, 35(22), 4775, (2002). [CrossRef]

[14] Ray, S.S. and Singh, S. New various multisoliton kink-type solutions of the (1+1)-dimensional
Mikhailov–Novikov–Wang equation. Mathematical Methods in the Applied Sciences, 44(18),
14690-14702, (2021). [CrossRef]

[15] Raza, N., Seadawy, A.R., Arshed S. and Rafiq, M.H. A variety of soliton solutions for the
Mikhailov-Novikov-Wang dynamical equation via three analytical methods. Journal of Geome-

try and Physics, 176, 104515, (2022). [CrossRef]

[16] Akbulut, A., Kaplan, M. and Kaabar, M.K.A. New exact solutions of the Mikhailov-Novikov-
Wang equation via three novel techniques. Journal of Ocean Engineering and Science, 8(1),
103-110, (2021). [CrossRef]

[17] Bekir, A., Shehata, M.S.M. and Zahran, E.H.M. Comparison between the new exact and
numerical solutions of the Mikhailov–Novikov–Wang equation. Numerical Methods for Partial

Differential Equations, (2021). [CrossRef]

[18] Srivastava, H.M., Günerhan, H. and Ghanbari, B. Exact traveling wave solutions for resonance
nonlinear Schrödinger equation with intermodal dispersions and the Kerr law nonlinearity.
Mathematical Methods in the Applied Sciences, 42(18), 7210-7221, (2019). [CrossRef]

https://doi.org/10.1016/j.physa.2021.126255
https://doi.org/10.1016/j.rinp.2021.104755
https://doi.org/10.11121/ijocta.01.2017.00488
https://doi.org/10.1016/j.ijleo.2016.12.050
https://doi.org/10.21597/jist.767930
https://doi.org/10.1088/0253-6102/70/4/405
https://doi.org/10.1016/j.ijleo.2019.163523
https://doi.org/10.1140/epjp/i2016-16244-x
https://doi.org/10.1007/s11082-021-03036-1
https://doi.org/10.1111/j.1467-9590.2007.00376.x
https://doi.org/10.1088/0305-4470/35/22/309
https://doi.org/10.1002/mma.7736
https://doi.org/10.1016/j.geomphys.2022.104515
https://doi.org/10.1016/j.joes.2021.12.004
https://doi.org/10.1002/num.22775
https://doi.org/10.1002/mma.5827


110 | Mathematical Modelling and Numerical Simulation with Applications, 2023, Vol. 3, No. 2, 101–110

[19] Ghanbari, B., Osman, M.S. and Baleanu, D. Generalized exponential rational function method
for extended Zakharov Kuzetsov equation with conformable derivative. Modern Physics

Letters A, 34(20), 1950155, (2019). [CrossRef]

[20] Ismael, H.F., Bulut, H. and Baskonus, H.M. W-shaped surfaces to the nematic liquid crystals
with three nonlinearity laws. Soft Computing, 25, 4513-4524, (2021). [CrossRef]
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Abstract

This paper investigates a fractional derivative model of Chlamydia-Gonorrhea co-infection using
Caputo derivative definition. The positivity boundedness of the model is established using Laplace
transform. Additionally, we investigated the existence and uniqueness of the model using methods
established by some fixed point theorems. We concluded that the model is Ulam-Hyers-Rassias stable.
Furthermore, we obtained plots of the model at different fractional derivative orders, which show
the significant role played by the fractional order on various classes of the model as it varies. We
observe distinct results for each class in different orders, highlighting the importance of considering
the fractional order in modeling Chlamydia-Gonorrhea co-infection. Moreover, the fractional model
presented in this paper can be used to study the dynamics of Chlamydia-Gonorrhea co-infection in a
more accurate and realistic way compared to traditional integer-order models.

Keywords: Chlamydia; Gonorrhea; fractional derivative; co-infection; control
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1 Introduction

Sexually Transmitted Diseases (STD), such as chlamydia, are a major public health concern in the
United States. Despite being asymptomatic in most cases, chlamydia is one of the most frequently
reported bacterial infections [1]. The number of reported cases of chlamydia remains high, with up
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to four million new infections estimated to have occurred in 2018, and youth between the ages of
15 and 24 accounting for two-thirds of these cases. In fact, it is believed that one in twenty sexually
active young women between the ages of 14 and 24 have chlamydia [1]. Untreated chlamydia
infections can lead to serious health consequences, such as Pelvic Inflammatory Disease (PID),
which can cause complications such as blocked Fallopian tubes, ectopic pregnancy, and longer
pelvic and abdominal pain. Although the number of reported cases of chlamydia may have
decreased in 2020 due to COVID-19 restrictions, such as clinic closures and reduced testing, it is
important to continue researching this disease to gain further insights on how to reduce its burden
on public health.
According to reports, gonorrhea is the second most common sexually transmitted disease in
the United States, with young people being the majority of those infected [2]. This STD causes
infections in the genitals, throat, and rectum, similar to chlamydia, and is particularly prevalent
among people aged 15-24 years. Gonorrhea commonly affects the cervix, uterus, and Fallopian
tubes in women, and the urethra in both genders. It can also spread from mother to child
during pregnancy. The Centers for Disease Control and Prevention (CDC) recommend a single
intramuscular dose of 500mg of ceftriaxone for treatment of gonorrhea, but there have been
cases of resistance to some antibiotics. This highlights the importance of continued research and
vigilance in addressing the growing concern of antibiotic-resistant gonorrhea.
Co-infection of both gonorrhea and chlamydia trachomatis is not uncommon, and understanding
the implications of this co-infection is necessary to manage such situations effectively. According to
some reports [3], individuals with this co-infection are more likely to develop pelvic inflammatory
disease (PID), which is a severe complication that can result from untreated STDs. Therefore, it
is important to study the dynamics of this co-infection and gain insights into how to manage it.
Furthermore, with increased drug resistance from some of these STDs, vaccination of individuals
may be a more effective solution. This will be investigated in this work to enable an informed
decision on how to tackle these diseases in the future.
The use of mathematical models in infectious disease research has proven to be valuable, but it
is crucial to use models that capture the memory effect. Fractional calculus has shown promise
in developing such models, and more research is needed to improve the accuracy of disease
predictions and control measures, hence this is our motivation in carrying out this research. Some
integer models have also been developed to understand the dynamics of specific infections, such
as Chlamydia trachomatis, Gonorrhea, or their co-infections and other diseases can be seen in
[4–17]. The work by Odionyenma et al. [4] presented an SVEIRT epidemiological model, which
centered on investigating the role of a vaccination class in the general dynamics of the model.
Optimal control analysis of the model was also carried out, showing that the most cost-effective
strategy in dealing with the transmission dynamics of the model. A study in [17] looked at a
co-infection model of Chlamydia and Gonorrhea, with target interest on the effect of treatment
for each disease on the co-infection on the population. It showed that implementing female
Chlamydia treatment and male Chlamydia treatment resulted in a significant decrease in the total
number of females and males co-infected with Chlamydia and Gonorrhea.
The use of non-integer order derivatives in modeling contagious illnesses has gained increasing
attention from scholars and analysts. Traditional epidemiological models can only be designated
via a fixed order, which is not applicable to fractional order derivatives. One study by Omame
et al. [18] investigated a new mathematical model for co-infection of COVID-19 and Hepatitis B
virus using the Atangana-Baleanu fractional derivative. The authors solved the model analytically
using the Laplace-Adomian decomposition method and discussed the stability of the iterative
scheme to approximate the solution. The numerical analysis showed that prevention and control
measures for either COVID-19 or Hepatitis B could significantly reduce the burden of co-infection.
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The dynamics of tuberculosis model using the Caputo-Fabrizio fractional derivative was studied
by Ullah in [19]. The study utilized data from reported cases of TB in the national TB program
Khyber Pakhtunkhwa, Pakistan from 2002 to 2017. The model was used to derive the reproduction
number R0, and other relevant variables. The Adams-Bashforth method was used to compute
the solution of the model iteratively. The study concluded that the fractional model provided
helpful information on TB and a better way to view the spread of the disease. There have been so
many studies on the use of fractional derivatives in modeling infectious diseases as can be seen in
[20–36].
Models that have utilized fractional derivatives in non-disease modeling can be seen in [37–40].
A fractional-order derivative chaotic system described by Caputo derivative was studied in the
work by [37]. The effect of the fractional-order derivative was carried out, the stability analysis
was utilized to determine the chaotic region where the order of the Caputo derivative presented
in the system, and the nature of the chaos was established using the Lyapunov’s exponents in the
fractional context. Also, the work by [38] analyzes a model describing the production of mobile
phone worms. This study explores the behaviors of the forced Korteweg–De Vries (KdV) equation,
which describes flowing over a hole. By utilizing the q-homotopy analysis transform technique
(q-HATT), the study finds solutions using a combination of the q-homotopy analysis scheme and
the Laplace transform. The study employs fractional operators to generalize models associated
with various characteristics. It establishes the existence, uniqueness, and convergence of the
models using a fixed-point theorem. The results demonstrate the reliability and systematic nature
of the solution procedure for investigating both integer and fractional-order nonlinear models.
The paper is organized as follows: Section 1 presents the introduction and model formulation.
Section 2 covers the basic theory of Caputo fractional derivative, including the existence and
uniqueness of solutions, the basic reproduction number, stability analysis of fractional order
systems, and global stability of the disease-free equilibrium.
Sections 3 and 4 provide details on the numerical simulations and their interpretations, with plots
displayed. Section 5 concludes the work with some recommendations for future research. The
model considered in this paper is a modified version of an existing integer order model considered
in [17]. We have modified it and also applied fractional calculus to analyze the model. This has
not been considered before.

Model description

At the time t, the population is represented by NH(t) and is divided into seven compartments.
These compartments are susceptible individuals who are unvaccinated (SH), those who are
vaccinated (VCL), those infected with Chlamydia (ICL), those treated for Chlamydia (TCL), those
infected with Gonorrhea (IG), those treated for Gonorrhea (TG), and those infected with both
Chlamydia and Gonorrhea (IGCL). The unvaccinated susceptible group, SH, is increased by the
recruitment rate ΛH. Individuals within this group can contract Chlamydia and/or Gonorrhea
from infected individuals at rates βCL and βG, respectively, with acquisition rates of λCL and λG.
Furthermore, the parameter ηL and ηG account for the increased infectiousness of individuals who
are infected with both Chlamydia and Gonorrhea, where other parameters are defined in Table 1.
Additionally, individuals who receive treatment move to the TCL or TG compartments, depending
on their infection status. Vaccinated individuals move from the VCL compartment to the SH

compartment at a rate proportional to their vaccine efficacy. The total population at time t can be
expressed as NH = SH + VCL + ICL + TCL + IG + TG + IGCL.
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Figure 1. Schematic diagram of model (1).

Table 1. Parameters and description

Parameter Description

ϵW ,ϵL Reinfection rates for Chlamydia and Gonorrhea
µ Natural death rate
ρ1(ρ2) Rate at which dually infected gets treated of Gonorrhea(Chlamydia)
ρ Treatment rate for gonorrhea
ω Waning of vaccine rate
γ Vaccination rate
τ Treatment rate for chlamydia
δ1 Disease-induced death rate for chlamydia infected individuals
δ2 Disease-induced death rate for gonorrhea infected individuals
δ3 Disease-induced death rate for co-infected individuals
ΛH Recruitment rate
βCL,βG Contact rate for Chlamydia and Gonorrhea infected individuals
ξ1,ξ2 Rate at which singly infected individuals

becomes dually infected with Chlamydia and Gonorrhea
ηL,ηg Modification parameter accounting for

increased infectiousness of individuals dually infected
with chlamydia and gonorrhea

The Chlamydia-Gonorrhea co-infection model is given by the following system of fractional order
differential equations based on the aforementioned formulations and assumptions:
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D
ζ
t SH(t) = ΛH − (λG + λCL)SH + ωVCL − (µ + γ)SH,

D
ζ
t VCL(t) = γSH − (µ + ω)VCL − VCL(λG + λCL),

D
ζ
t ICL(t) = λCLSH + ϵLλCLTCL − (µ + τ + δ1)ICL − ξ1λG ICL + ρ1 IGCL + VCLλCL,

D
ζ
t TCL(t) = τ ICL − (µ + ϵLλCL)TCL,

D
ζ
t IG(t) = λGSH − (µ + δ2 + ρ)IG + ρ2 IGCL + ϵWλGTG − ξ2λCL IG + VCLλG,

D
ζ
t TG(t) = ρIG − (µ + ϵWλG)TG,

D
ζ
t IGCL(t) = ξ1λG ICL + ξ2λCL IG − (µ + δ3 + ρ1 + ρ2)IGCL,

(1)

λCL =
βCL(ICL + ηL IGCL)

NH
,

λG =
βG(IG + ηg IGCL)

NH
,

(2)

with the corresponding initial conditions

SH(0) ≥ 0, VCL(0) ≥ 0, ICL(0) ≥ 0, TCL(0) ≥ 0, TG(0) ≥ 0 , IG(0) ≥ 0, IGCL(0) ≥ 0 . (3)

2 Preliminaries and basic properties of the model

Caputo fractional derivative has been widely used in modeling disease dynamics due to its ability
to capture the memory effect and long-range dependence in the system. This section provides
some basic definitions related to fractional calculus, with a focus on Caputo fractional derivative.
Specifically, we introduce the Riemann-Liouville fractional integral of order ζ > 0, which can be
obtained by replacing n with ζ in the integral formula. We also discuss the Ulam-Hyers-Rassias
stability of fractional order systems and derive the basic reproduction number for the co-infection
model. Furthermore, we establish the existence and uniqueness of the model’s solution, which is
essential for numerical simulation and analysis.

Definition 1 [41] The Caputo fractional derivative of order ζ > 0 of a function f (t) of order ζ ∈ R
+ is

defined by

D
ζ
t f (t) = J

n−ζ
t Dn f (t) =

1
Γ(n − ζ)

∫ t

0
(t − τ)n−ζ−1 f (n)(τ)dτ,

where n is an integer whose definition is n − 1 < ζ ≤ n. Actually, where 0 < ζ ≤ 1,
from the derivative above, where ζ > 0 gives

D
ζ
t f (t) =

1
Γ(1 − ζ)

∫ t

0
(t − τ)−ζ f ′(τ)dτ. (4)
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Definition 2 [34] The fractional integral of order ζ > 0 of a function f ∈ C1(0, T) is given by

J
ζ
t f (t) =

1
Γ(ζ)

∫ t

0
(t − τ)ζ−1 f (τ)dτ, t > 0,

if the integral exists in R
+. For convenience, suppose f (t) = K, where K is a constant then;

J
ζ
t (K) =

1
Γ(ζ)

∫ t

0
(t − τ)ζ−1(K)dτ = K

tζ

Γ(ζ + 1)
.

Definition 3 [41] The Laplace transform of Caputo fractional derivative is given by

L
{

D
ζ
t f (t)

}
= sζ f̃ (s)− sζ−1 f (0), 0 < ζ ≤ 1, (5)

where L is the operator of the Laplace transform..

Lemma 1 [42] Let ζ ∈ R
+, ϕ1(t) and ϕ2(t) represent positive functions and ϕ3(t) represent an increasing

and positive function for 0 ≤ t ≤ T, T > 0, ϕ3(t) ≤ M, where M is a constant. Suppose

ϕ1 ≤ ϕ2 + ϕ3(t)

∫T

0
(t − τ)ζ−1ϕ1(t)dτ,

then

ϕ1 ≤ ϕ2Eζ

(

ϕ3(t)
π

Γ(1 − ζ) sin(πζ)
Tζ

)

.

Theorem 1 Suppose SH(t), VCL(t), ICL(t), TCL(t), TG(t), IG(t), IGCL(t) are any solution of the system

(1)- (3), then the set

∆ =
{
(SH(t), VCL(t), ICL(t), TCL(t), TG(t), IG(t), IGCL(t)) ∈ R

7
+ : SH

+ VCL + ICL + TCL + TG + IG + IGCL ≤
ΛH

µ

}

, (6)

is positively invariant.

Proof:. When all of the equations in (1) are added, we have

D
ζ
t NH(t) = D

ζ
t SH(t) + D

ζ
t VCL(t) + D

ζ
t ICL(t) + D

ζ
t TCL(t) + D

ζ
t TG(t) + D

ζ
t IG + D

ζ
t IGCL

= ΛH − µ (SH + VCL + ICL + TCL + TG + IG + IGCL)

− (γSH + ωVCL + δ1 ICL + δ2 IG + δ3 IGCL)

≤ ΛH − µNH.
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If we apply the Laplace Transform to the above equation, we have

sζ ÑH(s)− sζ−1NH(0) ≤
ΛH

s
− µÑH(s),

from which

ÑH(s) ≤
ΛH

s(sζ + µ)
+ NH(0)

sζ−1

sζ + µ
.

The expression above gives the following result after partial fraction decomposition

ÑH(s) ≤
ΛH

µ

(

1
s

)

−

(

ΛH

µ
− NH(0)

) ∞∑

k=0

(−µ)k

sζk+1
.

The inverse Laplace transform gives

NH(t) ≤
ΛH

µ
−

(

ΛH

µ
− NH(0)

)

Eζ

(

−µtζ
)

,

as t → ∞, we have

NH ≤
ΛH

µ
, (7)

giving the condition for Eqs. (1)-(3) to be bounded and mathematically posed within the region.

Positivity of solution of the model

Using the approach by [34], and assuming that ICL class is not positively invariant. Let t1 = min{t :
SH(t), VCL(t), ICL(t), TCL(t), IG(t), TG(t), IGCL}. Suppose ICL(t1) = 0, it gives that SH(t) > 0,
VCL(t) > 0, TCL(t) > 0, IG(t) > 0, IGCL(t) > 0 for all [0, t1]. If the following expression exists,

θ1 = min
0≤t≤t1

{
(λCLSH + ϵLλCLTCL + ρ1 IGCL + VCLλCL)

ICL
− (µ + τ + δ1 + ξ1λG)

}

.

It will result in that

D
ζ
t ICL(t)− θ1 ICL(t) > 0. (8)

With Ω1, a continuous function, we can say that the following equation is ascertained

D
ζ
t ICL(t)− θ1 ICL(t) = −Ω1(t).

with Laplace transform applied to the inequality, it gives

sζ ĨCL(s)− sζ−1 ICL(0)− θ1 ĨCL(s) = −Ω̃1(s),
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from which

ĨCL(s) = ICL(0)
sζ−1

sζ
− θ1

−

Ω1(s)

sζ
− θ1

=
ICL(0)

s

(

1 −

θ1

sζ

)

−1

−

Ω1(s)

sζ

(

1 −

θ1

sζ

)

−1

= Is(0)
∞∑

k=0

θk
1

sζk+1
− Ω1(s)

∞∑

k=0

θk
1

sζk+ζ
.

The Mittag-Leffler function and the inverse Laplace transform yield the solution to Eq. (8)
satisfying the following expression;

ICL(t) > ICL(0)
∞∑

k=0

(θ1tζ)k

Γ(ζk + 1)
= ICL(0)Eζ

(

θ1tζ
)

.

Then the positivity of ICL is given by

ICL(t) > ICL(0)Eζ

(

θ1tζ
)

> 0,

which contradicts ICL(t1) = 0 Similarly, suppose TCL(t1) = 0 which implies that SH(t) > 0,
ICL(t) > 0, VCL(t) > 0, IG(t) > 0, TG(t) > 0, IGCL(t) > 0, ∀ 0 ≤ t ≤ t1. Making the following
assumption

θ2 = min
0≤t≤t1

{
τ ICL

TCL
− (µ + ϵLλCL)

}

,

then

D
ζ
t TCL(t) > θ2TCL(t). (9)

With Ω2, a continuous function, the following equation is ascertained

D
ζ
t TCL(t)− θ2TCL(t) = −Ω2(t).

Applying Laplace transform to the above inequality we get

sζ T̃CL(s)− sζ−1TCL(0)− θ2T̃CL(s) = −Ω̃2(s),

from which

T̃CL(s) = TCL(0)
sζ−1

sζ
− θ2

−

Ω2(s)

sζ
− θ2

= TCL(0)
∞∑

k=0

θk
2

sζk+1
− Ω2(s)

∞∑

k=0

θk
2

sζk+ζ
.

The solution of Eq. (9) is provided by utilizing the Mittag-Leffler function and the inverse Laplace
transform, satisfying the following expression
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TCL(t) > TCL(0)
∞∑

k=0

(θ2tζ)k

Γ(ζk + 1)
= TCL(0)Eζ

(

θ2tζ
)

.

which gives the positivity of solution of TCL as

TCL(t) > TCL(0)Eζ

(

θ2tζ
)

> 0,

which contradicts TCL(t1) = 0. If we follow the same method above, and assume TG(t1) = 0
which implies that SH(t) > 0, VCL(t) > 0, ICL(t) > 0, TCL, IG(t) > 0, IGCL(t) > 0, for all
0 ≤ t ≤ t1. Assuming that the following expression exist

θ3 = min
0≤t≤t1

{
ρIG

TG
− (µ + ϵwλG)

}

,

so that

D
ζ
t TG(t) > θ3TG(t). (10)

With Ω3, a continuous function, we can say that the following equation is ascertained

D
ζ
t TG(t)− θ3TG(t) = −Ω3(t).

With Laplace transform applied to the inequality, it gives;

sζ T̃G(s)− sζ−1TG(0)− θ3T̃G(s) = −Ω̃3(s),

which gives the following;

T̃G(s) = TG(0)
∞∑

k=0

θk
3

sζk+1
− Ω3(s)

∞∑

k=0

θk
3

sζk+ζ
.

The solution of Eq. (10) is provided by utilizing the Mittag-Leffler function and the inverse Laplace
transform. satisfying the following expression

TG(t) > TG(0)
∞∑

k=0

(θ3tζ)k

Γ(ζk + 1)
= Ic(0)Eζ

(

θ3tζ
)

. (11)

Hence the positivity of the solution TG is shown as TG(t) > TG(0)Eζ

(

θ3tζ
)

> 0, which contradicts
TG(t1) = 0. Again, we suppose IGCL(t1) = 0 which implies that SH(t) > 0, VCL(t) > 0, ICL(t) > 0,
TCL > 0, IG(t) > 0, TG > 0 for all 0 ≤ t ≤ t1. Assuming the expression below exists;

θ4 = min
0≤t≤t1

{
(ξ1λG ICL + ξ2λCLTG)

IGCL
− (µ + δ3 + ρ1 + ρ2)

}

,
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such that

D
ζ
t IGCL(t) > θ4 IGCL(t). (12)

Also, Ω4 can be gotten, such that the expression below is ascertained

D
ζ
t IGCL(t)− θ4 IGCL(t) = −Ω4(t).

If Laplace transform is applied to the above inequality, we have;

sζ ĨGCL(s)− sζ−1 IGCL(0)− θ4 ĨGCL(s) = −Ω̃p(s),

from which

ĨGCL(s) = IGCL(0)
∞∑

k=0

θk
4

sζk+1
− Ω4(s)

∞∑

k=0

θk
4

sζk+ζ
.

The following expressions are satisfied by the solution of (12) when the negative term is ignored
when using the Mittag-Leffler function and the inverse Laplace transform.

IGCL(t) > IGCL(0)
∞∑

k=0

(θptζ)k

Γ(ζk + 1)
= IGCL(0)Eζ

(

θ4tζ
)

.

and the positivity of solution of IGCL, is shown as;

IGCL(t) > IGCL(0)Eζ

(

θ4tζ
)

> 0,

which contradicts IGCL(t1) = 0. Using the same method shows that the positivity of the solutions
SH, VCL, and IG respectively are given by

SH(t) > SH(0)Eζ

(

θ5tζ
)

> 0, VCL(t) > VCL(0)Eζ

(

θ6tζ
)

> 0,

IG(t) > IG(0)Eζ

(

θ7tζ
)

> 0.

Existence and uniqueness of the solution of the model

In this section, we will demonstrate the existence and uniqueness of the solution to the fractional
model (1). To achieve this, we adopt a similar approach to the one used in [32], where the Banach
fixed point theorem was used. Additionally, we will apply Schaefer’s fixed point theorem to
establish the existence of the solution and demonstrate its boundedness. The fractional integral
will be applied to the Caputo fractional derivative model (1) of order ζ > 0, along with its
respective initial conditions (3). This process will yield Volterra-integral equations of the second
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kind, which will serve as the solution to the fractional model. Given that F, G, H, K, Q, U, and V
are the right side of the various classes of (1) respectively.

SH(t)− SH(0) =
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1F (t, SH(t)) dτ,

VCL(t)− VCL(0) =
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1G (t, VCL(t)) dτ,

ICL(t)− ICL(0) =
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1H (t, ICL()) dτ,

TCL(t)− TCL(0) =
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1K (t, TCL(t)) dτ, (13)

IG(t)− IG(0) =
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1Q (t, IG(t)) dτ,

TG(t)− TG(0) =
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1U (t, TG(t)) dτ,

IGCL(t)− IGCL(0) =
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1V (t, IGCL(t)) dτ.

The functions (F, G, H, K, Q, U, V) : [0, T] × D → D are assumed to be continuous such that
(D, ∥.∥) is the Banach space and H

1 ([0, T]) is the Banach space of all the continuous function
defined in [0, T] → D shaped with Chebyshev norm.

The continuous functions F, G, H, K, Q, U and V satisfy the Lipschitz condition if

sup
0<t≤T

∥

∥

∥

∥

SH

NH

∥

∥

∥

∥

≤ Θ1, sup
0<t≤T

∥

∥

∥

∥

VCL

NH

∥

∥

∥

∥

≤ Θ2 , sup
0<t≤T

∥

∥

∥

∥

ICL

NH

∥

∥

∥

∥

≤ Θ3, sup
0<t≤T

∥

∥

∥

∥

TCL

NH

∥

∥

∥

∥

≤ Θ4,

sup
0<t≤T

∥

∥

∥

∥

IG

NH

∥

∥

∥

∥

≤ Θ5, sup
0<t≤T

∥

∥

∥

∥

TG

NH

∥

∥

∥

∥

≤ Θ6, sup
0<t≤T

∥

∥

∥

∥

IGCL

NH

∥

∥

∥

∥

≤ Θ7.

Thus, firstly we have

∥F(SH1)− F(SH2)∥ =

∥

∥

∥

∥

∥

ΛH + ωVCL −

(

βCL (ICL + ηC IGCL)

NH
+

βG

(

IG + ηg IGCL

)

NH
+ µ + γ

)

SH1

−

(

ΛH + ωVCL −

(

βCL (ICL + ηC IGCL)

NH
+

βG

(

IG + ηg IGCL

)

NH
+ µ + γ

)

SH2

)∥

∥

∥

∥

∥

=

∥

∥

∥

∥

−

βCL ICL

NH
(SH1 − SH2)−

βCLηC IGCL

NH
(SH1 − SH2)−

βG IG

NH
(SH1 − SH2) (14)

−

βGηg IGCL

NH
(SH1 − SH2)− γ (SH1 − SH2)− µ (SH1 − SH2)

∥

∥

∥

∥

≤ βCL sup
0≤t≤T

∥

∥

∥

∥

ICL

NH

∥

∥

∥

∥

∥SH1 − SH2∥+ βCLηg sup
0≤t≤T

∥

∥

∥

∥

IGCL

NH

∥

∥

∥

∥

∥SH1 − SH2∥

+ γ ∥SH1 − SH2∥+ µ ∥SH1 − SH2∥

≤ LF ∥SH1 − SH2∥ ,
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where

LF =
(

βCLΘ3 + βCLηgΘ7 + γ + µ
)

> 0.

Secondly,

∥G(VCL1)− G(V2)∥ = ∥γSH − (µ + ω + λG + λCL)VCL1

− (γSH − (µ + ω + λG + λCL)VCL2)∥

= ∥ (µ + ω + λG + λCL) (VCL1 − VCL2)∥

≤ LG ∥VCL1 − VCL2∥ ,

where

LG = (µ + ω + λG + λCL) > 0.

With the same method, we arrive at the following

∥H(ICL1)− H(ICL2)∥ =

∥

∥

∥

∥

(

βCL(ICL1 + ηC IGCL)

NH

)

SH + ρ1 IGCL + ϵLTCL

(

βCL(ICL1 + ηC IGCL)

NH

)

−

(

ξ1βG(TG + ηg IGCL)

NH

)

ICL1 +

(

βCL(ICL1 + ηC IGCL)

NH

)

VCL

−

(

βCL(ICL2 + ηC IGCL)

NH

)

SH − ρ1 IGL − ϵLTCL

(

βCL(ICL2 + ηC IGCL)

NH

)

+

(

ξ1βG(TG + ηg IGCL)

NH

)

ICL2 −

(

βCL(ICL1 + ηC IGCL)

NH

)

VCL

+ (µ + τ + δ1)ICL2 − (µ + τ + δ1)ICL1∥

≤ βCL sup
0≤t≤T

∥

∥

∥

∥

SH

NH

∥

∥

∥

∥

∥ICL1 − ICL2∥ (15)

+ βCLϵLηg sup
0≤t≤T

∥

∥

∥

∥

TCL

NH

∥

∥

∥

∥

∥ICL1 − ICL2∥+ βCL sup
0≤t≤T

∥

∥

∥

∥

VCL

NH

∥

∥

∥

∥

∥ICL1 − ICL2∥

+ ξ1βG sup
0≤t≤T

∥

∥

∥

∥

TG

NH

∥

∥

∥

∥

∥ICL1 − ICL2∥+ µ ∥ICL1 − ICL2∥

+ τ ∥ICL1 − ICL2∥+ δ1 ∥ICL1 − ICL2∥

≤ LH ∥ICL1 − ICL2∥ ,

where LH = (βCLΘ1 + βCLΘ3 + βGϵLΘ4 + ξ1βGΘ6 + µ + τ + δ1) > 0.

∥K(TCL1)− K(TCL2)∥ =

∥

∥

∥

∥

τ ICL − µTCL1 −
ϵLβCL(ICL + ηC IGCL)

NH
TCL1

− τ ICL + µTCL2 +
ϵLβCL(ICL + ηC IGCL)

NH
TCL2

∥

∥

∥

∥

(16)

≤ ϵLβCL sup
0≤t≤T

∥

∥

∥

∥

ICL

NH

∥

∥

∥

∥

∥TCL1 − TCL2∥+ ϵLβCLηC sup
0≤t≤T

∥

∥

∥

∥

IGCL

NH

∥

∥

∥

∥

∥TCL1 − TCL2∥

+ µ ∥TCL1 − TCL2∥

≤ LK ∥TCL1 − TCL2∥ ,
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where LK = (ϵLβCLΘ3 + ϵLβCLΘ7 + µ) > 0.

∥Q(IG1)− Q(IG2)∥ =

∥

∥

∥

∥

∥

βG

(

IG1 + ηg IGCL

)

SH

NH
+

ϵW βG

(

IG1 + ηg IGCL

)

TG

NH
− (ρ + µ + δ2)IG1

−

ξ2βCL (ICL + ηC IGCL)

NH
+ ρ2 IGCL +

βG

(

IG1 + ηg IGCL

)

VCL

NH

+
βG

(

IG2 − ηg IGCL

)

SH

NH
−

ϵW βG

(

IG2 − ηg IGCL

)

TG

NH
+ (ρ + µ + δ2)IG2

+
ξ2βCL (ICL − ηC IGCL)

NH
− ρ2 IGCL −

βG

(

IG1 + ηg IGCL

)

VCL

NH

≤ βG sup
0≤t≤T

∥

∥

∥

∥

SH

NH

∥

∥

∥

∥

∥IG1 − IG2∥+ ϵW βG sup
0≤t≤T

∥

∥

∥

∥

TG

NH

∥

∥

∥

∥

∥IG1 − IG2∥

+ µ ∥IG1 − IG2∥+ ρ ∥IG1 − IG2∥+ δ2∥IG1 − IG2∥+ βG sup
0≤t≤T

∥

∥

∥

∥

VCL

NH

∥

∥

∥

∥

∥IG1 − IG2∥

≤ LQ ∥IG1 − IG2∥ ,

where LQ = (βGΘ1 + βGΘ2 + ϵW βGΘ6 + µ + ρ + δ2) > 0.

∥U(TG1)− U(TG2)∥ =

∥

∥

∥

∥

∥

ρIG1 −

(

µ +
ϵβG

(

IG + ηg IGCL

)

NH

)

TG1 +
VCLβG

(

IG + ηg IGCL

)

NH

− ρIG2 +

(

µ +
ϵβG

(

IG + ηg IGCL

)

NH

)

TG2 −
VCLβG

(

IG + ηg IGCL

)

NH

∥

∥

∥

∥

∥

≤ ϵβG sup
0≤t≤T

∥

∥

∥

∥

IG

NH

∥

∥

∥

∥

∥TG1 − TG2∥+ ϵβGηg sup
0≤t≤T

∥

∥

∥

∥

IGCL

NH

∥

∥

∥

∥

∥TG1 − TG2∥

+ µ∥TG1 − TG2∥,

≤ LU ∥TG1 − TG2∥ ,

where LU =
(

ϵβGΘ4 + ϵβGηgΘ6 + µ
)

> 0.

∥V(IGCL1)− V(IGCL2)∥ =

∥

∥

∥

∥

∥

ξ1βCL (ICL + ηC IGCL1) ICL

NH
+

ξ2βG

(

IG + ηg IGCL1
)

IG

NH

− (µ + δ1 + ρ1 + ρ2)IGCL1 + (µ + δ1 + ρ1 + ρ2)IGCL2

−

ξ1βCL (ICL + ηC IGCL2) ICL

NH
−

ξ2βG

(

IG + ηg IGCL2
)

IG

NH

∥

∥

∥

∥

∥

≤ ξ1βCLηC sup
0≤t≤T

∥

∥

∥

∥

ICL

NH

∥

∥

∥

∥

∥IGCL1 − IGCL2∥ (17)

+ ξ2βGηg sup
0≤t≤T

∥

∥

∥

∥

IG

NH

∥

∥

∥

∥

∥IGCL1 − IGCL2∥

+ µ∥IGCL1 − IGCL2∥+ δ1∥IGCL1 − IGCL2

+ ρ1∥IGCL1 − IGCL2 + ρ2∥IGCL1 − IGCL2∥

≤ LV ∥IGCL1 − IGCL2∥ ,
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where LV =
(

ξ1βCLηCθ3 + ξ2βGηgΘ5 + µ4 + δ1 + ρ1 + ρ2
)

> 0.

Theorem 2 Suppose
(

LF, LG, LH, LK, LQ, LU , LV

)

Γ(1−ζ) sin(πζ)Tζ

ζπ < 1, then the model (1)-(3) has a

unique solution on [0, T] assuming that (F, G, H, K, Q, U, V) : [0, T] × D → D are continuous and

satisfies the Lipschitz criteria.

Proof Considering the mapping ϑ : H
1 ([0, T], D) → H

1 ([0, T], D), where ϑ is defined in
(F, G, H, K, Q, U, V) : [0, T] × D → D. Using (15)-(17) and for all ((SH1, SH2), (VCL1, VCL2),
(ICL1, ICL2), (TCL1, TCL2), (IG1, IG2), (TG1, TG2), (IGCL1, IGCL2), ) ∈ H

1 ([0, T], D) and 0 ≤ t ≤ T

we get

∥ϑ(SH1(t))− ϑ(SH2(t))∥ =

∥

∥

∥

∥

∥

SH(0) +
1

Γ(ζ)

∫T

0
(t − τ)ζ−1 F (t, SH1(t)) dτ−

−

(

SH(0) +
1

Γ(ζ)

∫T

0
(t − τ)ζ−1 F (t, SH2(t)) dτ

)∥

∥

∥

∥

∥

≤
1

Γ(ζ)

∫T

0
(t − τ)ζ−1 ∥F(t, SH1(t))− F(t, SH2(t))∥ dτ

≤
LF

Γ(ζ)

∫T

0
(t − τ)ζ−1 ∥SH1(t)− SH2(t)∥ dτ

≤ LF

(

Tζ

Γ(ζ + 1)

)

∥SH1 − SH2∥H1 .

Similar process yields

∥ϑ(VCL1(t))− ϑ(VCL2(t))∥ ≤ LG

(

Tζ

Γ(ζ + 1)

)

∥VCL1 − VCL2∥H1 ,

∥ϑ(ICL1(t))− ϑ(ICL2(t))∥ ≤ LH

(

Tζ

Γ(ζ + 1)

)

∥ICL1 − ICL2∥H1 ,

∥ϑ(TCL1(t))− ϑ(TCL2(t))∥ ≤ LK

(

Tζ

Γ(ζ + 1)

)

∥TCL1 − TCL2∥H1 , (18)

∥ϑ(IG1(t))− ϑ(IG2(t))∥ ≤ LQ

(

Tζ

Γ(ζ + 1)

)

∥IG1 − IG2∥H1 ,

∥ϑ(TG1(t))− ϑ(TG2(t))∥ ≤ LU

(

Tζ

Γ(ζ + 1)

)

∥TG1 − TG2∥H1 ,

∥ϑ(IGCL1(t))− ϑ(IGCL2(t))∥ ≤ LV

(

Tζ

Γ(ζ + 1)

)

∥IGCL1 − IGCL2∥H1 .

.

It is evident from the condition that
(

LF, LG, LH, LK, LQ, LU , LV

)

Γ(1−ζ) sin(πζ)Tζ

ζπ < 1. The applica-
tion of the Banach contraction mapping principle reveals that the parameter ϑ has a distinct fixed
point in 0 ≤ t ≤ T. since it is a contraction mapping. ■

Utilizing Schaefer’s fixed point theorem, we investigate the fractional model (1)-(3) existence of
solutions.
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Theorem 3 Given that (F, G, H, K, Q, U, V) : [0, T] × D → D are continuous and that there exist

constants
(

LF1, LG1, LH1, LK1, LQ1, LU1, LV1
)

> 0 such that

∥F(t, SH)∥ ≤ LF1 (c + ∥SH∥) , ∥G(t, VCL)∥ ≤ LG1 (c + ∥VCL∥) ,

∥H(t, ICL)∥ ≤ LH1 (c + ∥ICL∥) , ∥K(t, TCL)∥ ≤ LK1 (c + ∥TCL∥) ,

∥Q(t, IG)∥ ≤ LQ1 (c + ∥IG∥) , ∥U(t, TG)∥ ≤ LU1 (c + ∥TG∥) , ∥V(t, IGCL)∥ ≤ LV1 (c + ∥IGCL∥) ,

where 0 < c ≤ 1 is an arbitrary number, then (1)-(3) has at least one solution.

Proof From (18) we have that the operator ϑ is continuous. Let {Sm+1
H }∞, {Vm+1

CL }∞, {Im+1
CL }∞,

{Tm+1
CL }∞, {Im+1

G }∞, {Tm+1
G }∞, {Im+1

GCL }∞, be sequences such that Sm+1
H → Sm

H , Vm+1
CL → VCLm, Im+1

CL →

Im
CL, Tm+1

CL → Tm
CL, Im+1

G → Im
G , Tm+1

G → Tm
G , Im+1

GCL → Im
GCL, in H

1 ([0, T], D). For each 0 ≤ t ≤ T

we have that

∥

∥

∥
ϑSm+1

H (t)− ϑSm
H(t)

∥

∥

∥
=

1
Γ(ζ)

∥

∥

∥

∥

∫ t

0
(t − τ)ζ−1 F

(

t, Sm+1
H (t)

)

dτ −

∫ t

0
(t − τ)ζ−1 F (t, Sm

H(t)) dτ

∥

∥

∥

∥

≤
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1

∥

∥

∥
F(t, Sm+1

H (t))− F(t, Sm
H(t))

∥

∥

∥
dτ (19)

≤
LF1Tζ

Γ(ζ + 1)

∥

∥

∥
Sm+1

H − Sm
H

∥

∥

∥
,

where
∥

∥

∥
Sm+1

H − Sm
H

∥

∥

∥

H

→ 0 as m → ∞. Using the same methodology yields

∥

∥

∥
ϑVm+1

CL (t)− ϑVm
CL(t)

∥

∥

∥
≤ LG1

(

Tζ

Γ(ζ + 1)

)

∥

∥

∥
Vm+1

CL − Vm
CL

∥

∥

∥

H1
,

∥

∥

∥
ϑIm+1

CL (t)− ϑIm
CL(t)

∥

∥

∥
≤ LH1

(

Tζ

Γ(ζ + 1)

)

∥

∥

∥
Im+1
CL − Im

CL

∥

∥

∥

H1
,

∥

∥

∥
ϑTm+1

CL (t)− ϑTm
CL(t)

∥

∥

∥
≤ LK1

(

Tζ

Γ(ζ + 1)

)

∥

∥

∥
Tm+1

CL − Tm
CL

∥

∥

∥

H1
,

∥

∥

∥
ϑIm+1

G (t)− ϑIm
G (t)

∥

∥

∥
≤ LQ1

(

Tζ

Γ(ζ + 1)

)

∥

∥

∥
Im+1
G − Im

G

∥

∥

∥

H1
,

∥

∥

∥
ϑTm+1

G (t)− ϑTm
G (t)

∥

∥

∥
≤ LU1

(

Tζ

Γ(ζ + 1)

)

∥

∥

∥
Tm+1

G − Tm
G

∥

∥

∥

H1
,

∥

∥

∥
ϑIm+1

GCL (t)− ϑIm
GCL(t)

∥

∥

∥
≤ LF1

(

Tζ

Γ(ζ + 1)

)

∥

∥

∥
Im+1
GCL − Im

GCL

∥

∥

∥

H1
,

where
∥

∥

∥
Vm+1

CL − Vm
CL

∥

∥

∥

H1
→ 0,

∥

∥

∥
Im+1
CL − Im

CL

∥

∥

∥

H1
→ 0,

∥

∥

∥
Tm+1

CL − Tm
CL

∥

∥

∥

H1
→ 0,

∥

∥

∥
Im+1
G − Im

G

∥

∥

∥

H1
→ 0,

∥

∥

∥
Tm+1

G − Tm
G

∥

∥

∥

H1
→ 0,

∥

∥

∥
Im+1
GCL − Im

GCL

∥

∥

∥

H1
→ 0, as m → ∞. Thus the operator ϑ is continuous. ■

Next, we show that the operator ϑ is a one-to-one bounded function on the set of H
1 ([0, T], D).

For each SH ∈ BSH
, VCL ∈ BVCL

, ICL ∈ BICL
, TCL ∈ BTCL

, IG ∈ BIG
, TG ∈ BTG

, IGCL ∈ BIGCL
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and for a > 0, there corresponds a value b > 0 where ∥ϑSh∥ ≤ b, ∥ϑSH∥ ≤ b, ∥ϑVCL∥ ≤ b,
∥ϑICL∥ ≤ b, ∥ϑTCL∥ ≤ b, ∥ϑIG∥ ≤ b, ∥ϑTG∥ ≤ b, ∥ϑIGCL∥ ≤ b, and the subset of Banach space of
all continuous functions on the interval 0 ≤ t ≤ T are defined by

BSH
=

{
SH ∈ H

1 ([0, T], D) : ∥SH∥ ≤ a
}

, BVCL
=

{
VCL ∈ H

1 ([0, T], D) : ∥VCL∥ ≤ a
}

,

BICL
=

{
ICL ∈ H

1 ([0, T], D) : ∥ICL∥ ≤ a
}

, BTCL
=

{
TCL ∈ H

1 ([0, T], D) : ∥TCL∥ ≤ a
}

,

BIG
=

{
IG ∈ H

1 ([0, T], D) : ∥IG∥ ≤ a
}

, BTG
=

{
TG ∈ H

1 ([0, T], D) : ∥TG∥ ≤ a
}

,

BIGCL
=

{
IGCL ∈ H

1 ([0, T], D) : ∥IGCL∥ ≤ a
}

.

So for any 0 ≤ t ≤ T,

∥ϑSH∥ ≤ ∥SH(0)∥+
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1 ∥F(t, SH(t))∥ dτ

≤ ∥SH(0)∥+
∥F(t, SH(t))∥

Γ(ζ)

∫ t

0
(t − τ)ζ−1dτ

≤ ∥SH(0)∥+ LF1 (c + ∥SH∥)

(

Tζ

Γ(ζ + 1)

)

≤ ∥SH(0)∥+ LF1 (c + a)

(

Tζ

Γ(ζ + 1)

)

.

Following a similar approach we have

∥ϑVCL∥ ≤ ∥VCL(0)∥+ LG1 (c + a)

(

Tζ

Γ(ζ + 1)

)

,

∥ϑICL∥ ≤ ∥ICL(0)∥+ LH1 (c + a)

(

Tζ

Γ(ζ + 1)

)

,

∥ϑTCL∥ ≤ ∥TCL(0)∥+ LK1 (c + a)

(

Tζ

Γ(ζ + 1)

)

,

∥ϑIG∥ ≤ ∥IG(0)∥+ LQ1 (c + a)

(

Tζ

Γ(ζ + 1)

)

,

∥ϑTG∥ ≤ ∥TG(0)∥+ LU1 (c + a)

(

Tζ

Γ(ζ + 1)

)

,

∥ϑIGCL∥ ≤ ∥IGCL(0)∥+ LV1 (c + a)

(

Tζ

Γ(ζ + 1)

)

.

On the other hand, let Ω maps bounded set into equal continuous sets in H
1 ([0, T], D). If

0 ≤ t1 ≤ t2 ≤ T, SH ∈ BSH
, VCL ∈ BVCL

, ICL ∈ BICL
, TCL ∈ BTCL

, IG ∈ BIG
, TG ∈ BTG

, IGCL ∈ BIGCL
,



Odionyenma et al. | 127

where t1, t2 ∈ [0, T], then

∥ϑSH(t1)− ϑSH(t2)∥ =
1

Γ(ζ)

∥

∥

∥

∥

∫ t1

0
(t1 − τ)ζ−1F(t, SH(t))−

∫ t2

0
(t2 − τ)ζ−1F(t, SH(t))

∥

∥

∥

∥

dτ

≤
1

Γ(ζ)

∥

∥

∥

∥

∫ t1

0

(

(t1 − τ)ζ−1
− (t2 − τ)ζ−1

)

F(t, SH(t))dτ

∥

∥

∥

∥

+
1

Γ(ζ)

∥

∥

∥

∥

∫ t2

t1

(t2 − τ)ζ−1F(t, Sh(t))dτ

∥

∥

∥

∥

≤
LF1 (c + a)

Γ(ζ)

∥

∥

∥

∥

∫ t1

0

(

(t1 − τ)ζ−1
− (t2 − τ)ζ−1

)

dτ +

∫ t2

t1

(t2 − τ)ζ−1dτ

∥

∥

∥

∥

≤

(

LF1 (c + a) Tζ

Γ(ζ + 1)

)

(

t
ζ
1 − t

ζ
2 + 2(t2 − t1)

ζ
)

.

Similar approach produces

∥ϑVCL(t1)− ϑVCL(t2)∥ ≤

(

LG1 (c + a) Tζ

Γ(ζ + 1)

)

(

t
ζ
1 − t

ζ
2 + 2(t2 − t1)

ζ
)

,

∥ϑICL(t1)− ϑICL(t2)∥ ≤

(

LH1 (c + a) Tζ

Γ(ζ + 1)

)

(

t
ζ
1 − t

ζ
2 + 2(t2 − t1)

ζ
)

,

∥ϑTCL(t1)− ϑTCL(t2)∥ ≤

(

LK1 (c + a) Tζ

Γ(ζ + 1)

)

(

t
ζ
1 − t

ζ
2 + 2(t2 − t1)

ζ
)

,

∥ϑICL(t1)− ϑICL(t2)∥ ≤

(

LQ1 (c + a) Tζ

Γ(ζ + 1)

)

(

t
ζ
1 − t

ζ
2 + 2(t2 − t1)

ζ
)

,

∥ϑTG(t1)− ϑTG(t2)∥ ≤

(

LU1 (c + a) Tζ

Γ(ζ + 1)

)

(

t
ζ
1 − t

ζ
2 + 2(t2 − t1)

ζ
)

,

∥ϑIGCL(t1)− ϑIGCL(t2)∥ ≤

(

LV1 (c + a) Tζ

Γ(ζ + 1)

)

(

t
ζ
1 − t

ζ
2 + 2(t2 − t1)

ζ
)

.

As t1 → t2 on the right side of the inequality, the expression tends to zero. ϑ is a continuous func-
tion, following the Arzela-Ascoli theorem. Now, to show that R(ϑ) = {(SH, VCL, ICL, TCL, IG, TG, IGCL) ∈

H
1 ([0, T], D) : (SH, VCL, ICL, TCL, IG, TG, IGCL) = λ (SH, VCL, ICL, TCL, IG, TG, IGCL)} is bounded

for some λ ∈ (0, 1) by (1). Suppose (SH, VCL, ICL, TCL, IG, TG, IGCL) ∈ R(ϑ), such that
(SH, VCL, ICL, TCL, IG, TG, IGCL) = λϑ (SH, VCL, ICL, TCL, IG, TG, IGCL), for each t ∈ [0, T] gives

∥SH(t)∥ ≤ SH(0) +
1

Γ(ζ)

∫T

0
(t − τ)ζ−1 ∥F(t, SH(t))∥ dτ

≤ SH(0) +
LF1

Γ(ζ)

∫T

0
(t − τ)ζ−1 (c + ∥SH(t)∥) dτ

≤ SH(0) +
cLF1

Γ(ζ)

∫T

0
(t − τ)ζ−1 dτ +

LF1

Γ(ζ)

∫T

0
(t − τ)ζ−1 ∥SH(t)∥ dτ (20)

≤ SH(0) +
(

LF1
Tζ

Γ(ζ + 1)

)

+

(

LF1Tζ

Γ(ζ + 1)

) ∫T

0
(t − τ)ζ−1 ∥SH(t)∥ dτ

≤

(

SH(0) +
LF1Tζ

Γ(ζ + 1)
Eζ

(

LF1Tζ
)

)

< ∞.
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Following a similar approach we have

∥VCL(t)∥ ≤

(

VCL(0) +
LG1Tζ

Γ(ζ + 1)
Eζ

(

LG1Tζ
)

)

< ∞,

∥ICL(t)∥ ≤

(

ICL(0) +
LH1Tζ

Γ(ζ + 1)
Eζ

(

LH1Tζ
)

)

< ∞,

∥TCL(t)∥ ≤

(

TCL(0) +
LFK1Tζ

Γ(ζ + 1)
Eζ

(

LK1Tζ
)

)

< ∞,

∥IG(t)∥ ≤

(

IG(0) +
LFQ1Tζ

Γ(ζ + 1)
Eζ

(

LQ1Tζ
)

)

< ∞,

∥TG(t)∥ ≤

(

TG(0) +
LU1Tζ

Γ(ζ + 1)
Eζ

(

LU1Tζ
)

)

< ∞,

∥IGCL(t)∥ ≤

(

IGCL(0) +
LV1Tζ

Γ(ζ + 1)
Eζ

(

LV1Tζ
)

)

< ∞.

Since we have proved that R(ϑ) is bounded, ϑ has a fixed point given by Schaefer’s fixed point
theorem and hence the solution of the model.

Basic reproduction number of the model

The Disease Free Equilibrium (DFE) of the co-infection model is given by

ξ0 =(S0
h, V0

CL, I0
CL, T0

CL, I0
G, T0

G, I0
GCL)

=
(

ΛH + ωVCL

µ + γ
,

γSH

µ + ω
, 0, 0, 0, 0, 0, 0

)

,
(21)

V =





(µ + τ + δ1) 0 −ρ1

0 (µ + ρ + δ2) 0
0 0 (µ + δ3 + ρ1 + ρ2)



 , F =







SH βCL
NH

0 SHηLβCL
NH

0 SH βG
NH

SH βG
NH

0 0 0






,

R0 =
∣

∣

∣
FV−1

− λI
∣

∣

∣
.

The basic reproduction number of the model obtained and stated below, using the approach
illustrated in [43], is given by R0 = max{R0CL,R0Go} where R0CL and R0Go are, respectively, the
Chlamydia and Gonorrhea associated reproduction numbers, given by

R0CL =
S∗

H βCL

N∗
H(τ + µ + δ1)

, and R0Go =
S∗

H βG

N∗
H(ρ + µ + δ2)

.

Generalized Ulam-Hyers-Rassias stability

We investigate the stability of the fractional model system using the Ulam-Hyers-Rassias(UHR)
Stability method as given in [42] to demonstrate UHR stability of the model.

Definition 4 The fractional model (1)-(3) is generalized Ulam-Hyers-Rassias (UHR) stable with re-

spect to Ω(t) ∈ H
1([0, T], D) if there exists a real value κϵ > 0 with ϵ > 0 and for all solution
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(SH, VCL, ICL, TCL, IG, TG, IGCL) ∈ H
1([0, T], D) of the following inequalities

∣

∣

∣D
ζ
t Sh(t)− F(t, SH(t))

∣

∣

∣ ≤ Ω(t),
∣

∣

∣D
ζ
t VCL(t)− G(t, VCL(t))

∣

∣

∣ ≤ Ω(t),

∣

∣

∣
D

ζ
t ICL(t)− H(t, ICL(t))

∣

∣

∣
≤ Ω(t),

∣

∣

∣
D

ζ
t TCL(t)− K(t, TCL(t))

∣

∣

∣
≤ Ω(t),

∣

∣

∣
D

ζ
t TG(t)− Q(t, TG(t))

∣

∣

∣
≤ Ω(t),

∣

∣

∣
D

ζ
t IGCL(t)− V(t, IGCL(t))

∣

∣

∣
≤ Ω(t),

there exists a solution (S̄H, V̄CL, ĪCL, T̄CL, ĪG, T̄G, ĪGCL, ) ∈ H
1([0, T], D) of the model (1)-(3) with

∣

∣SH(t)− S̄H(t)
∣

∣ ≤ κϵΩ(t),
∣

∣VCL(t)− V̄CL(t)
∣

∣ ≤ κϵΩ(t),
∣

∣ICL(t)− ĪCL(t)
∣

∣ ≤ κϵΩ(t),

∣

∣TCL(t)− T̄CL(t)
∣

∣ ≤ κϵΩ(t),

∣

∣IG(t)− ĪG(t)
∣

∣ ≤ κϵΩ(t),
∣

∣TG(t)− T̄G(t)
∣

∣ ≤ κϵΩ(t),
∣

∣IGCL(t)− ĪGCL(t)
∣

∣ ≤ κϵΩ(t).

Theorem 4 In relation to Ω ∈ H
1([0, T], D), the fractional model (1)-(3) are generalized Ulam-Hyers-

Rassias stable if
(

LF, LG, LH, LK, LQ, LV

)

Tζ
< 1.

Proof From definition (4), denoting Ω as a non-decreasing function of t, then there exists ϵ > 0
such that

∫ t

0
(t − τ)ζ−1

Ω(t)dτ ≤ ϵΩ(t),

for every t ∈ [0, T]. Where It has been demonstrated that the functions F, G, H, K, Q, V are
continuous and (LF, LG, LH, LK, LQ, LV) > 0 satisfies the Lipschitz condition as described in the
preceding section. The fractional model (1)-(3) unique solution comes from Theorem (2)

S̄H(t) = SH(0) +
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1F(t, S̄H(t))dτ.

Integrating the inequalities in Definition (4) we get

∣

∣

∣

∣

SH(t)− SH(0)−
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1F(t, SH(t))dτ

∣

∣

∣

∣

≤
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1

Ω(t)dτ,

≤
ϵΩ(t)Tζ

Γ(ζ + 1)
. (22)
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Using Lemma 1 and Eq. (22), we get

∣

∣SH(t)− S̄H(t)
∣

∣ ≤

∣

∣

∣

∣

SH(t)−

(

SH(0) +
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1F(t, S̄H(t))dτ

)∣

∣

∣

∣

≤

∣

∣

∣

∣

SH(t)− SH(0)−
(

1
Γ(ζ)

∫ t

0
(t − τ)ζ−1F(t, S̄H(t))dτ

+
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1F(t, SH(t))dτ −

1
Γ(ζ)

∫ t

0
(t − τ)ζ−1F(t, SH(t))dτ

)∣

∣

∣

∣

≤

∣

∣

∣

∣

SH(t)− SH(0)−
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1F(t, SH(t))dτ

∣

∣

∣

∣

+
1

Γ(ζ)

∫ t

0
(t − τ)ζ−1 ∣

∣F(t, SH(t))− F(t, S̄H(t))
∣

∣ dτ

≤
ϵΩ(t)Tζ

Γ(ζ + 1)
+

LFTζ

Γ(ζ + 1)

∫ t

0
(t − τ)ζ−1 ∣

∣SH(t)− S̄H(t)
∣

∣ dτ

≤
ϵΩ(t)Tζ

Γ(ζ + 1)
Eζ

(

LFTζ
)

.

By setting κζ = ϵTζ

Γ(ζ+1)Eζ

(

LFTζ
)

, we have

∣

∣SH(t)− S̄H(t)
∣

∣ ≤ κζΩ(t), t ∈ [0, T].

Using a similar method, we obtain

∣

∣VCL(t)− V̄CL(t)
∣

∣ ≤ κζΩ(t),
∣

∣ICL(t)− ĪCL(t)
∣

∣ ≤ κζΩ(t),
∣

∣TCL(t)− T̄CL(t)
∣

∣ ≤ κζΩ(t),

∣

∣IG(t)− ĪG(t)
∣

∣ ≤ κζΩ(t),
∣

∣IGCL(t)− ĪGCL(t)
∣

∣ ≤ κζΩ(t), t ∈ [0, T].

Consequently, this indicates that the model is UHR-stable in general with regard to Ω(t). ■

The disease-free equilibrium’s global asymptotic stability (GAS)

Theorem 5 Consider the model equation (1) with the DFE (21) given by E0, the DFE E0 of the model is

globally asymptotically stable in D whenever R0 ≤ 1.

We use the method presented in [44] to investigate global stability.

D
ζ
t X = F(X, W) =









ΛH − (λG + λCL)SH + ωVCL − (µ + γ)SH

γSH − (µ + ω)VCL − VCL(λG + λCL)

τ ICL − (µ + ϵLλCL)TCL + VCLλCL

pIG − (µ + ϵWλG)TG + VCLλG









, (23)

F(X, 0) =









ΛH + ωVCL − (µ + γ)SH

γSH − (µ + ω)VCL

−µTCL

−µTG









, (24)
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dW

dt
=





λCLSH + ϵLλCLTCL − (µ + τ + δ1)ICL − ξ1λG ICL + ρ1 IGCL

λGSH + ϵWλGTG − (ρ + µ + δ2)IG − ξ2λCL IG + ρ2 IGCL

ξ1λG ICL + ξ2λCL IG − (µ + δ3 + ρ1 + ρ2)IGCL



 , (25)

A =







βCL(SH+ϵLTC)
N − (µ + τ + δ1) 0 βC Lηc(SH+ϵLTCL)

N + ρ1

0 βG(SH+ϵW TG)
N − (p + µ + δ2)

βGηg(SH+ϵW TG)
N + ρ2

ξ1λG ξ2λCL −(µ + δ3 + ρ1 + ρ2)






, (26)

AW =







ICLβCL(SH+ϵLTC)
N − ICL(µ + τ + δ1) +

IGCLβC Lηc(SH+ϵLTCL)
N + IGCLρ1

IG βG(SH+ϵW TG)
N − IG(p + µ + δ2) +

IGCLβGηg(SH+ϵW TG)
N + IGCLρ2

ICLξ1λG + IGξ2λCL − IGCL(µ + δ3 + ρ1 + ρ2)






, (27)

G̃(X, W) = AW − G(X, W) =





ξ1λG ICL

ξ2λCL IG

0



 .

Since Ĝ(X, W) ≥ 0, this gives that the DFE is globally asymptotically stable.

3 Numerical scheme and algorithms

If tk = kh, k = 0, 1, 2, . . . , m be the uniform grid points represented by some integer m and the grid
step size represented by (h = T/m). Then, using piece-wise interpolation and knots and nodes
located at tj, j = 0, 1, 2, . . . , k + 1,, the fractional version of the one-step Adam-Moulton method is
reduced to equation (13) (Corrector formula as described in [45]);

SH(tk+1)− SH(0) =
hζ

Γ(ζ + 2)





k∑

j=0

uj,k+1F
(

tj, SH(tj)
)

+ F
(

tk+1, S
p
H(tk+1)

)



 ,

VCL(tk+1)− VCL(0) =
hζ

Γ(ζ + 2)





k∑

j=0

uj,k+1G
(

tj, VCL(tj)
)

+ G
(

tk+1, I
p
CL(tk+1)

)



 ,

ICL(tk+1)− ICL(0) =
hζ

Γ(ζ + 2)





k∑

j=0

uj,k+1H
(

tj, ICL(tj)
)

+ H
(

tk+1, I
p
CL(tk+1)

)



 ,

TCL(tk+1)− TCL(0) =
hζ

Γ(ζ + 2)





k∑

j=0

uj,k+1K
(

tj, TCL(tj)
)

+ K
(

tk+1, T
p
CL(tk+1)

)



 , (28)

IG(tk+1)− IG(0) =
hζ

Γ(ζ + 2)





k∑

j=0

uj,k+1Q
(

tj, IG(tj)
)

+ Q
(

tk+1, I
p
G(tk+1)

)



 ,

TG(tk+1)− TG(0) =
hζ

Γ(ζ + 2)





k∑

j=0

uj,k+1U
(

tj, TG(tj)
)

+ U
(

tk+1, T
p
G(tk+1)

)



 ,
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IGCL(tk+1)− IGCL(0) =
hζ

Γ(ζ + 2)





k∑

j=0

uj,k+1V
(

tj, IGCL(tj)
)

+ V
(

tk+1, I
p
GCL(tk+1)

)



 ,

given the weight

uj,k+1 =






kζ+1
− (k − ζ)(k + 1)ζ , j = 0.

(k − j + 2)ζ+1 + (k − j)ζ+1
− 2 (k − j + 1)ζ+1 , 1 ≤ j ≤ k.

1, j = k + 1.

Based on the well-known one-step Adams-Bashforth method, the predictor formula is provided
by

S
p
H (tk+1)− SH(0) =

1
Γ (ζ)

k∑

j=0

vj,k+1F
(

tj, SH(tj)
)

,

V
p

CL(tk+1)− VCL(0) =
1

Γ (ζ)

k∑

j=0

vj,k+1G
(

tj, VCL(tj)
)

,

I
p
CL(tk+1)− ICL(0) =

1
Γ (ζ)

k∑

j=0

vj,k+1H
(

tj, ICL(tj)
)

,

T
p
CL(tk+1)− TCL(0) =

1
Γ (ζ)

k∑

j=0

vj,k+1K
(

tj, TCL(tj)
)

, (29)

I
p
G(tk+1)− IG(0) =

1
Γ (ζ)

k∑

j=0

vj,k+1Q
(

tj, IG(tj)
)

,

T
p
G (tk+1)− TG(0) =

1
Γ (ζ)

k∑

j=0

vj,k+1U
(

tj, TG(tj)
)

,

I
p
GCL (tk+1)− IGCL(0) =

1
Γ (ζ)

k∑

j=0

vj,k+1V
(

tj, IGCL(tj)
)

,

given the weight

vj,k+1 = ζ−1hζ
(

(k − j + 1)ζ
− (k − j)ζ

)

.

4 Numerical simulations

In this numerical simulation, we employ a Caputo-based predictor-corrector method derived from
the Adams-Bashforth linear multistep method to solve the model described in model (1). The
parameter values used in the simulation are listed in Table 2, unless otherwise specified.
We set the initial conditions for the variables as follows: SH(0) = 35, 000, 000, VCL(0) = 3000,
ICL(0) = 3500, TCL(0) = 3000, IG(0) = 3000, TG(0) = 3000, and IGCL(0) = 3500. These initial
conditions are chosen arbitrarily based on the non-availability of data on the co-infection of
Chlamydia and Gonorrhea study.



Odionyenma et al. | 133

Table 2. Parameter values and corresponding references

Parameter Values Reference

ϵW 1.1 [9, 17]
ϵL 1.1 [9, 17]
µ 0.0122 [17]
βC, βG 1.1 [9, 17]
ω 0.5 [9]
γ 0.895 Assumed
τ 0.9 Assumed
δ1 0.5 [15]
δ2 0.05 Assumed
δ3 0.05 Assumed
ηc 1.2 [17]
ηg 1.2 [17]
ξ1, ξ2 1.2 Assumed
ρ1, ρ2 0.9 Assumed
ρ 0.9 Assumed
ΛH 596620.9 Assumed

We present the results of a numerical simulation of model (1) over a period of 10 years, using
different fractional order values ζ = 0.98, 0.88, 0.78, 0.68, 0.58. The simulation results for the
different classes ICL(t), IG(t), and IGCL(t) are shown in Figs. (2), (3), and (8), respectively. The
fractional order of the model is of high significance in modeling, as demonstrated by the simulation
results. Fig. (2) shows that the population of people infected with Chlamydia initially decreases as
the order increases, but after one and a half years, the trend reverses and remains uniform for the
rest of the period. The same trend is observed for the population of infectious Gonorrhea class as
the order of the model is varied. Fig. (4) demonstrates the importance of vaccination in reducing
the burden of Chlamydia. At a fractional order of ζ = 0.98, an effective reduction of individuals in
the class is achieved for the first four years, leading to the total eradication of people infected with
Chlamydia when the vaccination is sustained afterwards. Fig. (5) shows that effective treatment
of people infected with Chlamydia can also reduce the burden of the disease. At a fractional
order of ζ = 0.78, the desired result of reducing the burden of the disease is achieved in a shorter
period than that required for vaccination. When individuals with dual infection are treated for
Gonorrhea, there is a corresponding reduction in the population of individuals in the Chlamydia
class, as seen in Fig. (6). This is likely due to the use of similar antibiotics in treating some common
STDs. Similarly, Fig. (7) shows that effective treatment of one STD can lead to the collapse of other
similar diseases, whether detected at that point or not. Finally, Fig. (9) shows that increasing the
treatment rate leads to a corresponding decrease in the population of infected Gonorrhea patients,
as expected.
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Figure 2. Varying the fractional order and its effects on the dynamics of the infectious Chlamydia class
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Figure 3. Varying the fractional order and its effects on the dynamics of the infectious Gonorrhea class
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Figure 4. Effect of rate of vaccination on individuals infected with Chlamydia at ζ = 0.98
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Figure 6. The effect of varying the rate at which dually infected individuals gets treated of Gonorrhea at ζ = 0.88
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Figure 9. Varying the treatment rate of Gonorrhea and its effects on the Gonorrhea class

5 Conclusions

The results of the numerical simulation for model (1) are presented in Figs. (2)–(9), which show the
dynamics of the different classes of infections over a 10-year period for varying fractional order
values ζ. One important observation from Figs. (2) and (3) is that the populations of individuals
infected with chlamydia and gonorrhea, respectively, decrease as the fractional order increases
for the first year and a half, but then increase as the fractional order further increases. In contrast,
the population of individuals who are co-infected with both chlamydia and gonorrhea decreases
initially as the fractional order decreases, but increases thereafter.

Another key finding from the simulation is that increasing the vaccination rate leads to a decrease
in the population of individuals infected with chlamydia, as shown in Fig. (4). On the other
hand, varying the treatment rate for gonorrhea (Fig. (6)) and chlamydia (Fig. (7)) yields different
outcomes depending on the fractional order. Furthermore, the results in Fig. (9) indicate that
increasing the treatment rate for individuals infected with gonorrhea can reduce the burden of
gonorrhea infection in the population of individuals with gonorrhea.

It is worth noting that the Caputo-based predictor-corrector method was used for the numerical
simulation, and the Laplace transform was used to show that the model is bounded and positively
invariant. The existence and uniqueness of the model were established using methods based on
Banach and Schaefer’s fixed point theorem. Additionally, the model was found to be Ulam-Hyers-
Rassias stable.
Based on the results obtained from this study, we can conclude the following:

* Effective treatment of individuals infected with both Chlamydia and Gonorrhea is crucial in
achieving the desired outcome of reducing the burden of the diseases in a general sense.

* Vaccination has been shown to play a significant role in the fight against the investigated
diseases, and more efforts should be made in developing and administering vaccines if the
long-term goal of eradicating the diseases is desired

These conclusions are based on the simulation results of the proposed fractional model of
Chlamydia-Gonorrhea co-infection.

In summary, the results suggest that the effective treatment of individuals infected with both
Chlamydia and Gonorrhea, coupled with vaccination programs, can significantly reduce the
burden of the diseases. The findings of this study provide insights that can guide policymakers
and health-care providers in developing and implementing effective strategies for controlling and
managing Chlamydia-Gonorrhea co-infection. The results obtained from this study can aid in
the development of more effective treatment strategies for this type of co-infection. Additionally,
the methods used in this study can be applied to investigate the dynamics of other infectious
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diseases modeled using fractional calculus. Overall, this paper contributes to the growing body of
research on the application of fractional calculus in modeling infectious diseases, highlighting the
importance of considering the fractional order in the modeling process.
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Abstract

Load modeling is crucial in improving energy efficiency and saving energy sources. In the last
decade, machine learning has become favored and has demonstrated exceptional performance in
load modeling. However, their implementation heavily relies on the quality and quantity of available
data. Gathering sufficient high-quality data is time-consuming and extremely expensive. Therefore,
generative adversarial networks (GANs) have shown their prospect of generating synthetic data, which
can solve the data shortage problem. This study proposes GAN-based models (RCGAN, TimeGAN,
CWGAN, and RCWGAN) to generate synthetic load data. It focuses on Türkiye’s electricity load and
generates realistic synthetic load data. The educated synthetic load data can reduce prediction errors
in load when combined with recorded data and enhance risk management calculations.

Keywords: Load in Türkiye energy market; generative adversarial networks; synthetic data generation;
unsupervised learning; RCGAN; TimeGAN; CWGAN; RCWGAN

AMS 2020 Classification: 68T07; 82C32; 68T05

1 Introduction

A smart grid is an electricity distribution network incorporating information and communication
technologies to improve energy efficiency. It allows for the real-time exchange of data between
electricity suppliers and consumers, which enables suppliers to forecast electricity demand based
on current energy consumption and user profiles. This feature enables energy suppliers to optimize
electricity efficiency by providing accurate load modeling, resulting in a more efficient power
grid [1].
In the context of smart grids, accurate electricity demand forecasting is crucial for energy suppliers
to avoid financial losses and system troubles, e.g., drops in frequency and blackouts. However,
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obtaining an extensive and high-quality electricity dataset is challenging and expensive. Although
electricity grid models are known, data is short as a consequence of privacy concerns, which
restricts the researchers’ access to datasets and limits the development and application of further
load prediction models.
Generating synthetic data that accurately represents real data’s statistical behavior and charac-
teristics can help address subjects connected to sensitive data’s quantity, quality, and privacy. By
generating synthetic data that mimics the patterns and trends of real data, it is possible to provide
researchers and companies with a valuable resource for understanding the distribution of the
original data while also enabling efficient data storage, data augmentation, system testing, and
data disclosure. Synthetic data generation can also help mitigate concerns around data privacy, as
it can provide a substitute for sensitive or confidential data that is not accessible to third parties.
This study focuses explicitly on Generative Adversarial Networks (GANs) for generating syn-
thetic data regarding their implementation performance and flexibility in mirroring historical
data. GANs have successfully generated and manipulated images and natural languages, as
demonstrated by various studies [2, 3, 4, 5]. As a result, GANs have become a prominent method
for synthetic data generation.
GANs are powerful generative models that can assemble new samples having similar distribu-
tional properties to the real data, making them useful for data augmentation [6]. While initially
developed for image processing and computer vision, GANs have garnered significant interest
and advanced in various research fields [7]. GANs also demonstrated favorable outcomes in
generating sequential data (e.g., music, medical data, and finance). Therefore, this study focuses
on applying GANs to sequential data, specifically generating synthetic load data for Türkiye
energy market.
There are two primary strategies for applying GANs to electricity consumption data forecasting.
The first strategy uses a typical GAN architecture in generating synthetic load data. The perfor-
mance is evaluated concerning the divergence or convergence of synthetic data to real data. The
second strategy involves using more complex GAN architectures to generate synthetic electricity
consumption data and combining it with real data to expand and improve real load data. The
first approach is limited to scenario generation. It produces load profiles lacking precision, while
the second approach is data augmentation, which is highly influential but must fully illustrate
the capabilities of GANs. Therefore, this study focuses on the first strategy of synthetic data
generation using GANs to produce hourly electricity consumption records.
Although usually, studies suggest using Long Short-Term Memory (LSTM) in GANs, this study
avoids utilizing it to decrease the computational cost of training and overfitting problems. Instead,
the study uses Recurrent Neural Network (RNN). More specifically, it uses the GANs called Recur-
rent Conditional GAN (RCGAN) [8], Time-Series GAN (TimeGAN) [9], Conditional Wasserstein
GAN (CWGAN) [2], and Recurrent Conditional Wasserstein GAN (RCWGAN) as in [10].
The remaining part of the study is systematized as follows: Section 2 briefly reviews the literature
on GANs. Section 3 presents an overview of the GANs used in this study without delving into
technical facts. Section 4 introduces Türkiye’s load data and includes exploratory data analysis
and synthetic data generation using the selected GANs. Section 5 concludes the study.

2 Literature review

The concept of GANs was submitted in the paper by [11] and quickly gained traction in many
research fields, such as 3D object generation [12], electronic health record generation [8], image
processing [13] and generation [11, 14], face detection [15], audio synthesis [16, 17] natural lan-
guage processing [18], traffic controlling [19], energy market modeling [10], and stock market
modeling [20]. However, training GANs are challenging since they generally suffer from missing
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modes problem or model collapse, where the generated samples lack variety and only cover some
regions of the space. Another common issue is vanishing gradients that can stop GANs training
from converging to an optimal state. Dealing with these problems has gained significant attention
in GAN research, and various approaches have been proposed to mitigate them.
Consequently, many alternative GANs are developed from empirical and mathematical perspec-
tives to solve such problems. For instance, the study of [2] is the first study that extends the GANs
by comparing various distance measures and suggests using the Wasserstein-1-metric, which
leads to the development of WGAN. Later, [21] proposed the Least Squares GANs (LSGANs)
that adopt a least-squares loss function for the discriminator to overcome the vanishing gradients
problem. [22] also proposed a conditional model that extends the original GAN framework by in-
corporating additional information such as labels, tags, or attributes. This information is provided
to the GAN framework through an additional input layer. However, it is outside the content of
this study to provide a complete review of such approaches. Therefore, the study covers only the
studies focusing on time series data since it is interested in generating time series data, and it can
draw some inspiration from applying GANs in financial and electricity markets.
Various GANs have been proposed to generate financial and energy time series data. Financial
time series are more challenging to model than other time series because of their high volatility and
unexpected market behavior. Therefore, alternative GAN models have been proposed to overcome
these challenges. For instance, one of the earliest works presented by [20] offers QuantGANs for
financial time series data generation. The QuantGANs utilizes temporal convolutional networks
to capture long-range dependencies and can generate realistic stock price simulations employing
a data-driven neural network. The QuantGANs can capture the temporal dependence of financial
time series, including volatility clustering. [23] proposed a variant of Conditional GANs (cGANs),
called Stock-GAN, to generate order flow in the limit order book. The authors showed that
cGANs could generate a realistic and high-fidelity stock market. Similarly, [24] and [25] generated
transaction prices in a stock market by using cGAN and illustrated the accuracy of GANs in stock
markets.
Recently, the use of GANs in electricity markets has gained significant attention. [10] utilized
RCGAN, TimeGAN, CWGAN, and RCWGAN for univariate electricity consumption time series
data generation. In their empirical analysis, the authors showed that all four GANs could generate
realistic electricity consumption for an individual. Furthermore, they showed the GANs’ stability
and no vanishing gradient. [26] employed Deep Convolutional GANs (DCGANs) to generate
power profile scenarios for wind and solar power plants and energy consumption data. They show
that GANs captured the patterns of renewable energy production in both temporal and spatial
dimensions under the assumption of a large number of correlated resources. [27] utilized cWGAN
to generate synthetic energy consumption data and generated realistic energy consumption data
by given labels as a condition imitating real data distribution. [28] used deep learning GANs in
generating electricity consumption and fault diagnosis to develop smart management tools for
heating, ventilation, and air conditioning (HVAC). The authors showed that deep learning GAN
can help to increase the fault diagnosis accuracy in electricity consumption.
[29] proposed GANs as a novel method to generate realistic electrical load profiles of buildings.
They showed that the load profiles generated by GANs could mirror the general load trend and
the random variations of the actual loads in buildings. Furthermore, they suggested that GANs
detect changes in load profiles, anonymize smart meter data, and support grid management
applications. [30] utilized GANs to quantify the uncertainties related to the climate and human-
system-driven in the energy market. They revealed that climate-driven uncertainties in human
systems cause higher fluctuations in load profiles. [31] also aimed to build scenarios by embedding
GANs and understanding the stochastic and dynamic characteristics of renewable energy re-
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sources. They demonstrated that GANs achieved the controllable generation of renewable energy
generation scenarios covering various statistical characteristics and revealed new patterns. [32]
benefited GANs to generate scalable and realistic energy demand. The authors claimed that
GANs are promising for generating realistic energy demand data. [33] offer GANs a potential
approach for predicting large-scale building energy consumption to manage grid operations. To
this end, [33] used various GANs (the original GAN, cGAN, SGAN, InfoGAN, and ACGAN)
to predict large-scale building energy consumption. The authors claimed that the success of
the GANs highly depends on the data size. Further, they claim that SGAN and InfoGAN are
unsuitable for large-scale building electricity consumption prediction since these two GANs do
not control the number of generated building samples for different building types.

Machine learning applications in Türkiye’s energy market are not a new concept, and there are
remarkable works in the literature. For instance, [34] used artificial neural networks (ANN) to
predict and forecast energy consumption and make correct investments in Türkiye by considering
economic indicators (gross national product—GNP and gross domestic product—GDP) and
population increase as independent variables. [35] used ANN to forecast electricity consumption
in various sectors. Similarly, [36] model Türkiye’s energy consumption using ANN and regression
analyses to forecast projections by considering explanatory variables, such as socio-economic
and demographic factors (gross domestic product (GDP), import and export, population, and
employment). [37] and [38] developed acceptable methods based on the ANN model that uses
GDP, population, imports, exports, building area, and number of vehicles for estimating Türkiye’s
future energy demand while [39] developed forecasting models relying on ANN to predict the
energy consumption in Türkiye’s transportation sector. However, there is no study utilizing GANs
for Türkiye’s energy market.

3 Generative adversarial networks

Training GANs are challenging since they generally suffer from missing modes problem or model
collapse, where the generated samples lack variety and only cover some regions of the space.
Another common issue is vanishing gradients that can stop GANs training from converging to an
optimal state. Dealing with these problems has gained significant attention in GAN research, and
various approaches have been proposed to mitigate them. However, it is outside the content of
this study to provide a complete review of such approaches.

As [11] introduced, GANs belong to the family of unsupervised learning algorithms. They can
learn dense representations of input datasets and are utilized as generative models. The superiority
of GANs is the ability to generate new samples having (nearly) the same distribution as the
training dataset. They contain two competing neural networks, Generator (G) and Discriminator
(D). Therefore, the training of GANs relies on a zero-sum game. G directly produces samples
from a well-known distribution (e.g., normal and uniform distributions) as input (latent vector
z), and D attempts to distinguish between samples drawn from training and generated data.
The discriminator output (D(x)) corresponds to the probability that a sample belongs to the
distribution underlying the training data. On the other hand, the generator output (G(z)) is a
sample from the learned distribution. The competition between G and D is formulated as

min
G

max
D

V(D, G) = min
G

max
D

(

Ex∼µ

[

log
(

D(x)
)]

+Ez∼γ

[

log
(

1 − D(G(z))
)])

,

where D(x) : R
n 7→ [0, 1] and G(z) : R

d 7→ R
n, where G is the generator function that takes

random samples z ∈ R
d from a predefined distribution γ (usually a Gaussian distribution)

and generates samples G(z) [40, 41]. This linear function illustrates the adversarial competition
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between the generator and discriminator. Here, the discriminator outputs a binary variable, where
D(x) = 1 for real samples and D(x) = 0 for generated samples, while the generator outputs a
synthetic sample vector.
It is important to note that when it comes to generating or predicting time series data, it is
more significant to determine the correct conditional distribution rather than learning the joint
distribution. This is because, in predictive modeling, we are concerned with identifying the
conditional distributions of the future time series x f uture = xt+1:t+q, which refers to the following
q values given the past p observations of the time series xpast = xt−p+1:t at time t (for more
information, see [42].)
The GANs considered in this study are characterized by the selection of their respective loss
functions for the discriminator and generator.

Recurrent Conditional GAN (RCGAN)

The RCGAN shares a similar architecture with the traditional GAN but with a modification where
both the generator and discriminator are replaced with recurrent neural networks (RNNs). This
change enables the RCGAN to generate sequence data dependent on specific conditional inputs
and can produce realistic outputs.
Let RNN(X) be the vector consisting of T outputs from an RNN that receives a sequence of T

vectors {xt}
T
t=1(xt ∈ R

d), and let CE(a, b) denote the average cross-entropy between the sequences
a and b. Then, according to [8], the discriminator and generator loss of Xn, yn, where Xn ∈ R

T×d

and yn ∈ 0, 1T, can be expressed as

Dloss(Xn, yn) = −CE(RNND(Xn), yn),

Gloss(Zn) = Dloss(RNNG(Zn), 1) = −CE(RNND(RNNG(Zn)), 1),

where yn is a vector consisting of ones if the sequence is real and zeros if it is fake. Zn is a sequence
of T points drawned from the latent space Z, which is typically a m-dimensional Gaussian
distribution. Therefore, Zn is a matrix with dimensions T × m. The vector 1 represents the decision
of the discriminator accepting a given sequence as real data. During each training step, the
discriminator uses both real and fake sequences.

Time-series GAN (TimeGAN)

TimeGAN was initially introduced in the work by [9]. This approach focuses on datasets that
contain both static and temporal features. Static features remain constant and unchanging over
time (such as gender), while temporal features change and are updated over time.
The static and temporal features can be represented using the vectors S and X , respectively. We
can also assign specific values to random vectors S ∈ S and X ∈ X , represented by s and x,
respectively. Let us consider tuples S, X1:T, where the joint distribution is denoted as p, and the
length T of each sequence is also a random variable. In the training data, we can index individual
samples using n ∈ 1, . . . , N, and denote the training dataset as D = (sn, x{n, 1 : Tn)}Nn=1.
The objective is to find the density p̂(S, X1:T) that satisfactorily approximates the real data density
p(S, X1:T) using the training dataset D. However, achieving this task may require more work in
the traditional GAN framework. To address this issue, [9] suggests using an autoregressive de-
composition of p((S), X1:T) = p(S)Πp(Xt | S, X1:t−1) to concentrate on the additional information
given as conditionals.
TimeGAN is distinct from traditional GANs in that it comprises four neural network components:
two autoencoding components, namely the embedding and recovery functions, and two adversar-
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ial components, namely the generator and discriminator. The main concept behind TimeGAN is
that the autoencoding and adversarial components are trained jointly. Consequently, TimeGAN
can simultaneously learn how to encode features, generate replicas, and iterate across time. The
embedding network creates the latent space, while the adversarial network operates within this
space. By means of a supervised loss, the latent dynamics of both empirical and generated data
are synchronized.

Conditional Wasserstein GAN (CWGAN) and Recurrent Condition Wasserstein GAN (RCW-
GAN)

The WGAN was first presented in [2] as a solution to address the issues of mode collapse and
vanishing gradient in traditional GANs. Instead of optimizing the traditional GAN loss, which is
known to be prone to these issues, the WGAN optimizes the Wasserstein-1 distance. However,
calculating the exact Wasserstein-1 distance is often impractical, so instead, the objective function
is altered to approximate the Wasserstein-1 distance as

min
G

max
D

Ex∼pdata

[

D(x)
]

−Ez∼pz

[

D(G(z))
]

.

If D satisfies a Lipschitz constraint with a constant k, then it can be shown that the Wasserstein-1
distance is equivalent to the supremum of the output difference of D on pairs of inputs. The
WGAN uses weight clipping to enforce the Lipschitz constraint, which restricts the weights of D

to a compact interval such as [−c, c] where c is a small positive value (e.g., 0.01). However, this
technique can limit the capacity of the discriminator. It may cause the weights to converge to the
endpoints of the interval, leading to gradient issues like vanishing or exploding gradients.
The WGAN-GP method is an improvement over the WGAN, and it addresses the drawbacks
of weight-clipping by using a gradient penalty technique. Weight-clipping is replaced with soft
enforcement of the Lipschitz constraint through a penalty on the discriminator. This penalty
is based on a differentiable function being 1-Lipschitz if its gradients have a norm of at most 1
everywhere. Therefore, the new objective of the GAN is expressed as

min
G

max
D

Ex∼pdata

[

D(x)
]

−Ez∼pz

[

D(G(z))
]

− λEx̂∼px̂

[

∥∇(x̂D(x̂)∥2 − 1)2
]

,

where λ is the penalty coefficient.
The CWGAN is an extension of WGAN-GP that incorporates extra information into the model.
This leads to a modified optimization problem that is given by

min
G

max
D

Ex∼pdata

[

D(x | y)
]

−Ez∼pz

[

D(G(z | y))
]

− λEx̂∼px̂

[

(∥∇x̂D(x̂ | y)∥2 − 1)2
]

,

where y is the vector of additional information.
The RCWGAN architecture is similar to that of the CWGAN, but instead of using conventional
neural networks as the generator and discriminator, Recurrent Neural Networks (RNNs) are
employed.
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4 Empirical analysis

Data and its stylized facts

The study uses the load data from Türkiye gathered from Epias1 in its empirical analysis. The data
consists of seven years of hourly load in Türkiye’s energy market. The hourly load profile data
over the period 01.01.2016-31.12.2022 is visualized in Figure 1. The figure shows that the load data
contains inherent patterns that can be effectively leveraged through machine-learning techniques
for modeling purposes. The load has a strong seasonality and a slightly increasing trend. The
figure reveals a significant decrease in electricity consumption in Türkiye in the first and second
quarters compared to other years. The decline in electricity demand can be attributed to several
factors, such as the interruption of production in plants, reduced work hours resulting from
restrictions, and the implementation of lockdown measures in cities. While climatic conditions
and industrial activities commonly influence fluctuations in total electricity demand, these regular
variations cannot account for the significant decrease observed. [43] explains the sharp decline in
electricity demand as a direct consequence of the crisis caused by COVID-19 pandemic, clearly
highlighting the impact of the prevailing pandemic conditions. Table 1 summarizes the descriptive

2016 2017 2018 2019 2020 2021 2022 2023
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Figure 1. Visualization of load in Türkiye energy market (2016-01-01-2022-12-31)

statistics of hourly load in Türkiye for the considered period. The number of observations is 61345.
The average load and Standard Deviation (SD) of load are approximately 34053.14 MWh and
5581.85 MWh in Türkiye’s energy market. The SD indicates significant variability in load levels
across the considered period. The minimum load is 0 units, which could be an error in the data.
The 25% quantile of the observations has a load level below 29875.22 MWh representing the first
quartile of the load distribution. 50% of the observations have a load level below 33878.73 MWh.
It represents the median of the load data distribution. 75% of the observations have a load level
below 38059.42 MWh, which represents the third quartile of the load data distribution.

1 https://www.epias.com.tr/
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The maximum load is 55575.02 MWh could also be an outlier or a peak value in the investigated
period.

Table 1. Descriptive statistics of load in Türkiye energy market

Consumption
count 61345.000000
mean 34053.142402
std 5581.846170
min 0.000000
25% 29875.220000
50% 33878.730000
75% 38059.420000
max 55575.020000

Figure 2 presents the average daily load profile over seven years, 01.01.2016-31.12.2022. The
figure shows the variation in electricity consumption over daily, weekly, monthly, and yearly.
The figures are arranged sequentially starting from 2016 such that each row represents a specific
year; the top figure corresponds to daily electricity consumption in 2016, the second figure from
the top illustrates daily electricity consumption in 2017, and finally, the bottom figure presents
daily electricity consumption in 2022. The seven rows in each year are days of the week, Monday
through Sunday, and lines separate months.

In Figure 2, each cell corresponds to a calendar year day. The color intensity of the cells in the
heatmap represents the varying electricity consumption levels across days. The lighter shades indi-
cate higher electricity consumption, while darker shades represent lower electricity consumption.
By analyzing this heatmap, we can observe patterns and trends in electricity usage throughout
the years. The heatmap helps us to identify peak periods of electricity consumption, such as
during weekdays when industrial and commercial activities are at their highest and lower periods
during weekends or holidays when there is reduced demand. Such a visualization assists in
understanding energy consumption patterns, identifying potential areas for energy conservation,
and optimizing electricity distribution and resource planning strategies. For instance, we can
detect certain days of the week or times of the year when the load tends to be higher or lower
than average. Figure 2 also reveals a significant change in the load patterns over time, such as an
increase in demand in August due to changes in the climate. It also reveals a significant decrease
in the electricity demand during the weekends and public holidays.

Figure 3 contains distributions of yearly, daily, and monthly electricity consumption data. It
provides a visual representation of the distribution of electricity consumption across different
periods. The first row illustrates the yearly electricity consumption distributions. It shows the
distribution of electricity consumption across each year independently. The box in the middle of
the plot represents the interquartile range (IQR) of electricity consumption data, with the median
value marked as a line in the box. The whiskers extending from the box represent the range of the
data, excluding any outliers. The second row illustrates the distributional properties of electricity
consumption in days of the week. It shows the distribution of electricity consumption across
each weekday, with the x-axis representing the day of the week and the y-axis representing the
electricity consumption level. It reveals any significant change in the electricity consumption
on the business days and a slight decrease during the weekends. The third row shows the
distributions of electricity consumption for months of the year. It shows that there is an increase
in electricity consumption during summers, as in Figure 2, which is most probably due to the
cooling needs in the summer. All three figures show that there are outliers in the data indicating
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Figure 2. Daily electricity consumption behavior in Türkiye energy market (2016.01.01-2022.12.31)

unusual electricity consumption levels that should be investigated further. In contrast, patterns in
the data could reveal important insights into energy usage.

Data preprocessing

In standard modeling and machine learning applications, deseasonalizing the data may be nec-
essary to remove the effects of seasonality. However, deseasonalizing can make it difficult for
the GAN to learn the underlying patterns and generate realistic samples since seasonality is an
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Figure 3. Statistical distribution of load in Türkiye energy market (2016.01.01-2022.12.31)

essential feature of the data we want to preserve. Hence, the data is preprocessed using robust
scaling. This scaling method uses the interquartile range. Therefore, it is a robust scaling method
for outliers. It has a formula given as

yi =
xi − Qmedian(x)

Q3(x)− Q1(x)
,

where Q1 and Q3 correspond to the 1st quartile and 3rd quartile, i.e., in between 25th quantile
and 75th quantile range, respectively. Consequently, it removes the median and scales the data
between Q1 and Q3.

Table 2 provides descriptive load statistics after the preprocessing. The length of the training data
decreased to 8017. As it is clear, the number of data points is decreased significantly. Here, the
study uses only load data in 2017 for the training since the load is quite regular and identical in
a classical calendar year (see Figures 2 and 3). After scaling the data, the mean value of −0.045
suggests that the variable has a slightly negative skew, although the value is close to zero. The
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standard deviation of 0.677 indicates that the variable has moderate variability. The minimum
value of −1.983 and maximum value of 1.864 show the range of load values, with values falling
between these two extremes. The quartile values indicate the distribution across the dataset, with
the median (50th percentile) value of 0.000 falling at the center of the distribution.

Table 2. The descriptive statistics after preprocessing load

Preprocesed load
count 8017.000
mean -0.045
std 0.677
min -1.983
25% -0.595
50% 0.000
75% 0.405
max 1.864

Experimental studies

The study fixed time series parameters p and q as 4 for the CWGAN and 3 for the remaining
GANs to learn the conditional distribution. The discriminators utilize the conditioning time
series xt−p+1:t as inputs to generate the part of time series xt+1:t+q, i.e., it uses a rolling window
size p + q = 8 for the CWGAN and p + q = 6 for the others. It optimizes GANs algorithms for
a total of 1000 generator weight updates. It utilizes the Adam optimizer [44] with parameters
β1 = 0 and β2 = 0.9 to optimize neural network weights in the generator and discriminator and
sets the learning rates to 0.001. In the RCGAN and TimeGAN cases, it applies two time-scale
updates (TTUR) [45] and sets the learning rate to 0.003. Further, it updates discriminator weights
twice per generator weight update to improve stability. The number of epochs operated is 1.000,
with a batch size of 200 for all GANs. In the empirical performances, the study uses the Pytorch
library [46] to build the GANs. It supplies high-level building blocks for designing deep learning
models. Pytorch is a symbolic tensor manipulation framework alternative to TensorFlow.
Figure 4 shows the empirical distributional properties of the GANs and the real data to compare the
distributions. The figure reveals a close match between real and synthetic load data distributions.
All GANs have relatively close means, skewness, and kurtosis values. The histograms of real and
synthetic datasets and their skewness and kurtosis statistics are presented in the figure to measure
symmetry, tail behaviors, and changes in their auto-correlation. The histograms in the first column
illustrate that the distribution of hourly load from synthetic load data (orange) is nearly equivalent
to the real load data (blue). Only the RCGAN has positive skewness statistics, while the remaining
GANs have negative skewness statistics, which is also positive for the real data.
In contrast, the kurtosis statistics are all positive for the GANs and real data. The RCGAN has the
closes kurtosis statistics (−0.52) to the real data kurtosis statistics (−0.53) while the TimeGAN
kurtosis statistics (−0.16) has a more considerable distance. Consequently, the TimeGAN is more
peak than the real data. Furthermore, histograms of the log values presented in Figure 4 reveal
some discrepancies in the tails of TimeGAN. The CWGAN and RCWGAN are better than the other
two GANs in generating low loads, while the TimeGAN is the worst at generating low and high
loads. The RCGAN, on the other hand, is the best at generating high load. The auto-correlations
of all the GANs and real data are relatively close. While there are some differences in the skewness
and kurtosis statistics, the synthetic datasets’ distributional behaviors are nearly identical to the
real data distribution.
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(a) RCGAN
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(b) TimeGAN
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Figure 4. The generated and original load are compared in terms of their marginal distributions using a linear
scale (1st column), log-plot (2nd column), and the auto-correlation fit with real load data

Figure 5 presents scenarios generated by the GANs models, namely RCGAN, TimeGAN, CWGAN,
and RCWGAN. The figure presents 500 synthetic data generated by these models with gray curves.
Also, it includes a randomly selected synthetic data realization for each GAN (orange line) to
compare with the real data (blue line) to observe the similarity in behavior between the two. The
results show that the synthetic data generated by the GANs are bounded above and below, and
none of the generated data is exploding. However, the figure reveals that some GAN-generated
data points may have larger maximum and minimum values than the real data. This feature is
particularly interesting for risk management analysis, such as controlling whether the electricity
provider can handle extreme electricity demand. Additionally, the maximum and minimum
electricity consumption values generated by TimeGAN are closer to the real data than the other
GANs. Finally, the highlighted path’s behavior closely mimics the empirical dataset’s behavior.
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Figure 5. Synthetic load trajectories (orange and gray) generated by GANs and observed load (blue)

Table 3 provides key statistics for real and synthetic electricity consumption data generated by
RCGAN, TimeGAN, CWGAN, and RCWGAN. The first column lists the statistical measure of
interest: the mean, standard deviation, maximum, and minimum. The subsequent columns show
the corresponding values for each real and GANs. The mean of the real historical electricity
consumption data is −0.0453, while the mean of the synthetic data generated by RCWGAN is
−0.04467. This suggests that RCWGAN can generate synthetic data that closely resembles the
statistical properties of real data.
Similarly, the standard deviation of the synthetic load data generated by TimeGAN is lower than
generated load data by other GANs, implying that TimeGAN produced synthetic load data that is
less variable than the others. Although the table presents variations in the statistical properties,
these variations are relatively small. Overall, the table provides a helpful summary of the statistical
properties of the real and synthetic load data generated by the GANs. However, the table needs to
provide more information to compare the success of the GANs. Furthermore, the table presents
key statistics for a single synthetic load data. Hence, the comparison can change for other synthetic
load data (see Figure 5).

5 Conclusion

In the realm of power grid regulations, precise simulation and prediction of load have become
increasingly essential. Therefore, load modeling has been extensively researched using various
methods, including regression-based and artificial intelligence (AI) modeling techniques. Over
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Table 3. Key statistics of real and synthetic electricity consumption data

Historical RCGAN TimeGAN CWGAN RCWGAN

Mean -0.0453 -0.0043 -0.1320 -0.0436 -0.0467
Std 0.6773 0.6492 0.5111 0.7394 0.7225
Max 1.8637 2.0236 1.7280 2.4780 2.0411
Min -1.9829 -1.5733 -1.9408 -1.9993 -1.7571

the last decade, AI models have gained significant attention due to their ability to model load
without requiring detailed building and environmental parameters. Two primary approaches to
AI modeling exist, deep learning and traditional machine learning, which rely heavily on real-time
recorded load data. It is undeniable that time-dependent recorded load data serves as a critical
source of information for energy market participants.

Having representative and diverse training load data is crucial to achieving good performance
from AI models. However, obtaining such data can be challenging, costly, and time-consuming. In
cases where there is insufficient load data or the sampling of load data deviates from the observed
data distribution, the accuracy of model predictions can be significantly affected. As a result,
energy suppliers may experience substantial trading losses, and energy sources may be overused,
leading to more significant problems in the long run. Therefore, this paper proposes using GANs
for synthetic load data generation. Specifically, it utilizes the RCGAN, TimeGAN, CWGAN, and
RCWGAN models in real-world applications, achieving state-of-the-art results for synthetic load
data generation. The findings suggest that GANs can be utilized to address data privacy concerns
and enhance load modeling efficiency for grid modeling. As shown in Figure 4, the CWGAN
and RCWGAN models perform relatively better than the other GANs, with the ability to capture
values in the tails. In contrast, the TimeGAN model is unsuccessful in capturing tail values,
resulting in a more peaked distribution than the real data distribution.

Future work can explore enhancing GAN efficiency by providing additional information during
the training process. The study shows that GANs effectively generate synthetic data for load
modeling, enabling risk management and analysis of various scenarios. The significance of this
study lies in demonstrating the effectiveness of GANs for modeling electricity consumption
patterns, allowing non-academic researchers and institutions to make informed decisions and
develop strategies for energy-related challenges.

The results of our study demonstrate that the GANs proposed in this paper can effectively
generate synthetic data for load modeling. Therefore, the generated data can be combined with
existing empirical demand data to address risk management issues such as extreme demand tests,
optimal timing of maintenance for wind turbines, energy efficiency assessments for buildings, and
profitability analysis for demand- or time-dependent pricing strategies.

In essence, GANs offer a valuable solution for generating synthetic electricity consumption data,
enabling non-academic researchers and institutions to gain insights, conduct simulations, and
develop innovative approaches. This study opens up new possibilities for leveraging advanced
AI techniques to improve energy management and contribute to a more sustainable and efficient
energy future.
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Abstract

The progressive depletion of the ozone layer poses a significant threat to both human health and
the environment. Prolonged exposure to ultraviolet radiation increases the risk of developing skin
cancer, particularly melanoma. Early diagnosis and vigilant monitoring play a crucial role in the
successful treatment of melanoma. Effective diagnostic strategies need to be implemented to curb the
rising incidence of this disease worldwide. In this work, we propose an artificial intelligence-based
detection model that employs deep learning techniques to accurately monitor nevi with characteristics
that may indicate the presence of melanoma. A comprehensive dataset comprising 8598 images was
utilized for the model development. The dataset underwent training, validation, and testing processes,
employing the algorithms such as AlexNet, MobileNet, ResNet, VGG16, and VGG19, as documented in
current literature. Among these algorithms, the MobileNet model demonstrated superior performance,
achieving an accuracy of 84.94% after completing the training and testing phases. Future plans involve
integrating this model with a desktop program compatible with various operating systems, thereby
establishing a practical detection system. The proposed model has the potential to aid qualified
healthcare professionals in the diagnosis of melanoma. Furthermore, we envision the development
of a mobile application to facilitate melanoma detection in home environments, providing added
convenience and accessibility.

Keywords: Artificial intelligence; deep learning; machine learning; melanoma detection; skin cancer

AMS 2020 Classification: 68T01; 68T07; 68T40; 92B20

1 Introduction

Skin cancer is a disease that can have serious consequences if left untreated. Especially an
aggressive type of skin cancer, such as melanoma, can spread quickly and metastasize to other
organs. Skin cancer can be fatal if not diagnosed in time and treated appropriately. Because
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melanoma is more aggressive than other types of skin cancer and tends to metastasize, treatment
becomes more difficult when diagnosed in advanced stages. Even in cases of melanoma treated
with early diagnosis, in some cases, the disease can progress and become life-threatening. Because
skin cancer can have serious consequences, it is important to take preventive measures by reducing
risk factors such as regular skin examinations and sun exposure. Early detection can make
treatment more effective and prevent serious consequences. For the early diagnosis of this disease,
image processing [1, 2] and deep learning methods can be applied. Many studies have reported
the application of artificial intelligence (AI) algorithms in the detection of various types of cancer
[3–5], including skin cancer [6, 7].
Yildiz [8], proposes an automatic detection system for melanoma using deep learning methods,
specifically model C4Net. Sultana and Puhan [9] review the use of deep learning techniques to
detect melanoma from other skin lesions in clinical and dermoscopy images. They emphasized
that deep learning techniques outperform traditional methods in skin cancer detection, but data
labeling for deep learning techniques is challenging. A similar study to Sultana and Puhan was
conducted by Poorna et al. Poorna et al. [10] discuss the development of a computer vision-aided
system for the early diagnosis of melanoma, a type of skin cancer. The study compares the
accuracy and precision of conventional supervised learning techniques with deep learning-based
methods for melanoma detection. Their learning techniques used for the classification were Total
Dermoscopic Score, K Nearest Neighbor (KNN) [11–13] and, Support Vector Machine (SVM)
[14]. Kwiatkowska et al. [15] detected melanoma from dermoscopic images using ResNet and
its different versions. However, higher accuracy rates can be achieved with different models.
Shchetinin et al. [16] developed a computer-aided detection system for Melanoma detection with
Deep Neural Networks on HAM10000 dataset. By combining multiple dataset instead of a single
dataset, a system more suitable for real scenarios can be presented.
In this study, we developed a system for the early detection of melanoma using various deep-
learning techniques. The system is tested on a vast dataset. This dataset is a combination of 2
different datasets to increase the reality of the system and its feasibility for clinical applications.
Training and testing were performed on a relatively rich dataset in terms of the variety and
number of datasets. The presented system will play an active role in the early detection of skin
cancer, which is likely to threaten our lives even more in the future, and will contribute to the
development of future research on the diagnosis of this disease.

2 General properties of method

Preparing the dataset

In this study, two different datasets were blended. In this way, a rich dataset was obtained in
terms of data diversity. The nevus category data from the first dataset called nevus classifier [17]
was added to the new dataset for healthy nevus images. In the second dataset, called skin lesions
[18], the data in the melanoma category were added to the same new dataset as melanoma images
for cancerous nevus. Thus, a dataset containing healthy, labeled as nevus, and cancerous, labeled
as melanoma, nevus images were obtained.
The dataset consists of two classes: nevus and melanoma. The melanoma class represents cancer-
ous mole images and the nevus class represents healthy mole images. There are a total of 8598
data in the dataset. The distribution of the dataset is shown in Table 1. Each class in the dataset is
divided into 60% train, 20% test, and 20% validation.
Figure 1 illustrates some of the images in the dataset. In this work, since the dataset is rich and
diverse enough, there was no need to augment the data.



Orhan and Yavşan | 161

Table 1. The data distribution in the dataset

TRAIN

Melanoma Nevus
2328 3174

VALIDATION

Melanoma Nevus
582 794

TEST

Melanoma Nevus
728 992

Figure 1. Some of the dataset images

Proposed artificial intelligence models

The proposed AI model for the presented problem is based on a Convolutional Neural Network
(CNN). CNNs [19–21] are a deep learning discipline that has proven its success in computer vision
and has models designed for various problems. They can be used in vision systems of robots and
autonomous vehicles for face [22, 23], object [24] and, traffic sign [25, 26] recognition. A CNN
generally consists of Convolution, Pooling, and Fully Connected Layer structures. In a CNN, the
image is directly input into the network, followed by several convolution and pooling processes.
The outputs of the convolution and pooling processes feed one or more fully connected layers.
Eventually, the class label is extracted as an output. Figure 2 depicts a general CNN structure
for the detection problem in this paper. The convolutional layers shown in the CNN diagram in
Figure 2 serve as feature extractors. Thus, the features of the input images are extracted. Neurons
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Figure 2. Customized CNN schematic for the classification problem

in the convolutional layers are organized into feature maps. The aim of the pooling layer is to
reduce the size (width x height) of the input image. This simplifies the computation for the next
layer and also prevents overfitting. Filters similar to those used in the previous layer, convolution,
are also used in the pooling layer. In these filters, the image matrix is shifted and the highest
value of the pixels (maximum pooling) or the average (average pooling) is calculated. Maximum
pooling is often used because it produces higher performance due to the simplicity and rapidity
of the process.
The fully connected layer is the last layer of the CNN structure. In the CNN structure, the fully
connected layer follows the convolution and pooling layers in succession. A fully connected layer
is a standard layer used in classification problems [27]. Convolution and pooling layers can be
used many times before reaching the fully connected layer. However, the matrices at the output of
the convolution and pooling layers need to be flattened in order to be used in the fully connected
layer. Therefore, a flattening layer must be used before the fully connected layer. In the flattening
layer, the matrices from the convolution and pooling layers are converted into a vector. This
process is called flattening.
For the classification problem in this study; AlexNet, MobileNet, ResNet, VGG16 [28, 29] and
VGG19 models were used. These models were adapted to the presented problem by making the
revisions indicated in Figure 3. The nevus images obtained from Kaggle were sized 224 x 224 and
were input to the models. For each model, sigmoid was chosen as the activation function because
it is more suitable for two-class problems. Figure 3 symbolizes the revisions made to the models
proposed. In future studies, the softmax activation function may be preferred for classification
problems with a larger number of outputs, as in the 1000-class model in Figure 3.

3 Training and performance evaluation of models

The training of the CNN-based models using the sigmoid activation function was performed
for various values of the epoch, batch size, and learning rate parameters. For each model, the
weights that provided the highest accuracy value on the validation data at the end of the training
were determined. The testing process was carried out with these weights. Thus, test performance
was improved and over-fitting was prevented. The algorithm memorizes the data in the training
set, which is over-fitting. The algorithm that memorizes the training data cannot perform well
enough on the test data. Therefore, the determination of the training parameters is crucial. Table 2
lists the models proposed for this work and the parameters used in the training of these models.
The learning rate parameters are kept low to prevent over-fitting. Epoch values are set between
10-30. Also, an early stop was included in the algorithm during the training of some of the models.
When the training is terminated early (early stop), the training accuracy must be more than 95%.
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Figure 3. Revised CNN models

The parameters that produce the maximum accuracy on the validation data are assigned after the
termination of the training. This is one strategy used to avoid over-fitting.

precision =
TP

TP + FP
, (1)

recall =
TP

TP + FN
, (2)

accuracy =
TP + TN

TP + FN + TN + FP
, (3)

speci f icity =
TN

TN + FP
, (4)

F1score = 2 ·

precision · recall

precision + recall
. (5)

The performance of the proposed models was evaluated through the metrics in Eqs (1) - (5). The
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symbols in the metrics can be expressed as 1 and 0 as follows. True Positive (TP) means that the
true value is 1 and the predicted value is 1, True Negative (TN) means that the true value is 0
and the predicted value is 0, False Positive (FP) means that the true value is 0 but the predicted
value is 1 and False Negative (FN) means that the true value is 1 but the predicted value is 0. The
performances of the models are reported in the same list next to the hyper-parameters in Table 2.

Table 2. Hyper-parameters used to train the models and performance metrics presented to evaluate the test
performance of the models

Proposed

Models

Hyper-parameters for Training Performance Metrics

Epoch
Batch

Sıze

Learning

Rate
Accuracy Precision Recall Specificity

F1

Score

AlexNet 30 16 0.00015 0.6767 0.8263 0.5564 0.8406 0.665
MobileNet 10 16 0.000002 0.8494 0.7929 1 0.6442 0.8845

MobileNet 10 8 0.000002 0.8494 0.7929 1 0.6442 0.8845
ResNet 30 16 0.00015 0.8110 0.7683 0.96270 0.6043 0.8545
ResNet 60 16 0.00015 0.8203 0.7729 0.9747 0.6098 0.8622
VGG16 30 16 0.00015 0.8337 0.7936 0.9616 0.6593 0.8696
VGG19 30 16 0.00015 0.8279 0.7979 0.9395 0.6758 0.8629

In neural networks [30, 31], the training parameters are used for high performance, which can be set
similarly to the hyper-parameters in Table 2. The absolute minimum value of the error needs to be
found. In this process, various optimizers [32–35] are employed to reduce the computational load
and minimize losses in the training process. In the present work, Adaptive Moment Estimation
(Adam) Optimizer [33] is preferred. Adam algorithm is not only fast but also has low memory
usage [36].

MobileNet achieved the highest performance with close to 85% accuracy as a result of the tests of
the models on the GPU. Afterwards, the batch size value for the MobileNet model was increased
to save time. Figure 4 shows the ROC curve of the model. The area under the curve (AUC) can
be considered as an indicator of the model’s performance. The higher the AUC, the better the
performance of the trained model.

Besides the metrics expressed by Eqs. (1) - (5), the confusion matrix in Table 3 is utilized to evaluate
the test performance of the MobileNet model. The confusion matrix is composed of TP, TN, FP
and FN values calculated for the testing process.

Table 3. Test performance of the proposed model based on confusion matrix

Model
Prediction

Melanoma Nevus

Melanoma
469

(TN)

259

(FP)
Actual
Output Nevus

0

(FN)

992

(TP)

The test performance of the proposed model is evaluated on 728 cancerous and 992 healthy nevus
images that are not in the training dataset. While the model detected 259 out of 728 melanoma
images as healthy, was able to detect all 992 healthy mole images successfully (without failure).
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Figure 4. ROC curve of the MobileNet model

4 Results and discussion

In this work, an AI-supported detection model has been developed for skin cancer, the incidence
of which is increasing worldwide. AlexNet, MobileNet, ResNet, VGG16 and VGG19 models are
employed for the introduced classification problem for the early detection of skin cancer. The
proposed models have been trained and tested with a rich data set. The performance of the models
has been evaluated based on performance metrics frequently used in the literature. The MobileNet
model has offered the highest performance out of these models. The model has achieved 84.94%
accuracy after testing.

Figure 5. Classification outputs of the model

Table 4 has been prepared to compare the performance of the model with benchmark works in the
literature. Successful classifications have been performed with the model file obtained at the end
of the training. Also, some of the classified images have been illustrated in Figure 5.
Early diagnosis of skin cancer, aided by these and similar studies, will prevent deaths from this
disease. This paper proves that deep learning algorithms can be successfully used in the detection
of skin cancer. As the number and diversity of the dataset increase, the success and accuracy of
the deep learning model increase. However, labeling the data becomes more difficult. Also, the
proposed deep learning models should be considered as an assistant. The use of these models
should not be independent of experts, especially in the field of health.
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Table 4. Comparison of the model proposed in this study with competitive alternatives in the literature

Studies (Year) Dataset (Image Counts) Algorithm Accuracy

Deep learning+Sparse Coding
+SVM

74.30%
ISIC

Deep learning ensemble 80.70%
Multi-resolution-tract CNN 79.50%

Dermofit Image Library Multi-scale feature extraction
using full-CNN

81.80%

MED-NODE (170) 5 layered CNN 81.00%
MoleMap ResNet+bilinear pooling 71.00%

Fine-tuning using VGGNet 81.30%

Sultana and Puhan (2018)

ISBI 2016 (900)
CNN+Fisher Encoding 83.09%
TDS 57.30%
KNN 66.90%Poorna et al. (2020) ISIC (1600)
SVM 66.35%
ResNet 72.57%
ResNetXt 77.09%
SE-ResNet 81.62%

Kwiatkowska et al. (2021) ISIC 2018

SE-ResNetXt 0.721 ±0.007
InceptionV3 72.20%

Shchetinin et al. (2021) HAM10000
MobileNet 78.20%

Proposed study Kaggle Datasets (8598) MobileNet 84.94%
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for learning object manipulation of humanoid robots from demonstration. Cluster Computing,

25(3), 1575-1590, (2022). [CrossRef]

[25] Küçük, Ö., Gökçe, B. and Yavşan, E. Otonom tabanlı işaret ve şerit tanımak amacı ile bir
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Abstract
In recent years, the availability of advanced computational techniques has led to a growing emphasis
on fractional-order derivatives. This development has enabled researchers to explore the intricate
dynamics of various biological models by employing fractional-order derivatives instead of traditional
integer-order derivatives. This paper proposes a Caputo-Fabrizio fractional-order cholera epidemic
model. Fixed-point theorems are utilized to investigate the existence and uniqueness of solutions. A
recent and effective numerical scheme is employed to demonstrate the model’s complex behaviors
and highlight the advantages of fractional-order derivatives. Additionally, a sensitivity analysis is
conducted to identify the most influential parameters.

Keywords: Cholera; mathematical model; fixed-point theorems; sensitivity analysis; numerical simula-
tions

AMS 2020 Classification: 26A33; 65L03; 39A60

1 Introduction

Cholera is recognized as one of the most dangerous and infectious communicable diseases, which
spreads globally and poses a threat to the survival of the human population, rivaling war and
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poverty. Infectious diseases exhibit immense diversity, and their outbreaks render millions of
people vulnerable to infection, resulting in a significant economic burden on the healthcare
system. Cholera is an illness transmitted through water and is characterized by a sudden onset
of symptoms, including the presence of large amounts of watery diarrhea. The causative agent
of the disease is known as Vibrio cholerae, a species of Gram-negative, facultative anaerobic,
comma-shaped bacteria belonging to the family Vibrionaceae, with serotypes O1 or O139.
Infection with V. cholera can occur through the consumption of unhygienic water or contaminated
food. People who are infected with cholera may either display symptoms or remain asymptomatic.
Those who show symptoms may experience severe watery stool, vomiting, leg cramps, decreased
blood pressure, kidney failure, and loss of body fluids or electrolytes (dehydration). If immediate
treatment is not administered to halt these symptoms, they can potentially lead to death [1–4].
The incidence of cholera cases in Africa has been reported by the World Health Organization
(WHO, 2021). The epidemic has occurred in two neighboring countries, Niger and Nigeria.
In Niger Republic, the regions of Maradi and Zinder have been the most affected by cholera
cases. Due to the cross-border movement of populations between these two states and Nigerian
communities, many patients have been identified in Nigeria. The WHO announced that the
Nigeria Centre for Disease Control (NCDC) has reported a total of 31,425 suspected cases of
cholera in Nigeria since the beginning of the year 2021. Out of these cases, 311 have been
confirmed, and 816 deaths have been recorded across 22 states and the Federal Capital Territory
Abuja (FCT).
In modern times, mathematical modeling plays a vital role in investigating and analyzing the
transmission dynamics of diseases, as well as predicting the potential impacts of intervention
strategies aimed at controlling their spread. By using mathematical models, researchers can
simulate various scenarios, test different interventions, and gain insights into the effectiveness
of strategies for disease containment. These models help in making informed decisions and
formulating policies to mitigate the dissemination of diseases, [5–11]. In recent years, there
has been significant research conducted by numerous authors on the complex dynamics of the
Cholera model. Theoretical analyses of such systems have resulted in a multitude of interesting
findings, which have been published in various studies [12–15], along with the references cited
within those publications. These authors have focused on mathematical models that describe the
interactions between populations, contaminated water, and poor sanitation. By exploring these
models, valuable insights into the dynamics of Cholera can be gained, contributing to a better
understanding of the disease and the development of effective control strategies.
Tilahun et al. [16] developed a stochastic mathematical model to investigate the behavior of cholera
disease, with a specific focus on the direct contact transmission pathway. They extensively studied
the qualitative and quantitative behavior of the model. Adewole and Faniran [17] developed a
human host and environment model to examine the complex dynamics of cholera infection. In
their model, they considered the fraction of infectious individuals who do not adhere to treatment
as part of the overall human population. Their findings suggest that while compliance with
treatment is necessary, it alone is not sufficient to eradicate cholera. These studies contribute
to the understanding of cholera dynamics by incorporating various factors and transmission
pathways into mathematical models. The results emphasize the importance of considering both
direct contact transmission and the impact of treatment adherence in devising effective strategies
for cholera control.
Fractional operators, which extend the concept of differentiation and integration to non-integer
orders, find extensive applications in various fields of knowledge, including physics, biology,
finance, and control theory [18–25]. Their popularity has been on the rise due to their ability to
model systems with complex, non-linear, and non-local behavior. One of the main advantages of
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fractional operators is their capability to describe systems with memory effects, which are prevalent
in physical and biological systems. Additionally, they can effectively capture the behavior of
systems with long-range interactions, making them a valuable tool for modeling complex systems
[26–36]. In [37], a stochastic computational model of cholera infection was proposed in the context
of a direct contact transmission pathway using fractional calculus theory. The research results
suggest that policymakers should consider measures such as reducing interactions, improving
treatment rates, and enhancing hygiene facilities to eradicate cholera. Baleanu et al. [38] introduced
a novel Caputo-Fabrizio fractional model for humans. They utilized the Picard-Lindelöf approach
and fixed-point theory to explore the existence of a unique solution. Additionally, the authors
demonstrated the superiority of the model over the existing model when compared to real clinical
data.

2 Several fundamental concepts

In this section, we will examine some basic concepts of Caputo-Fabrizio fractional operators that
are relevant to the theoretical analysis of the proposed model.
Suppose H(x1, x2) = {ψ : ψ ∈ L2(x1, x2), and ψ′ ∈ (x1, x2)}, where L2(x1, x2) is the space of
square integrable functions on (x1, x2).

Definition 1 [39] Suppose ψ ∈ H1(x1, x2) and α ∈ (0, 1). Then

CFDα
κ ψ(κ) =

M(α)

1 − α

∫ κ

x1

ψ′(y) exp
[

−α
κ − y

1 − α

]

dy, (1)

is defined as the Caputo-Fabrizio fractional derivative, where M(α) is a normalization function with

M(0) = M(1) = 1. In addition, if ψ /∈ H1(x1, x2) then (1) gives

CFDα
κ ψ(κ) =

αM(α)

1 − α

∫ κ

x1

(ψ(κ)− ψ(y)) exp
[

−α
κ − y

1 − α

]

dy. (2)

Remark 1 Setting p = 1−α
α ∈ (0,∞), then α = 1

1+p ∈ (0, 1). In view of (2), we have

CFDα
κ ψ(κ) =

N (p)

p

∫ κ

x1

ψ′(y) exp
[

κ − y

p

]

dy, (3)

where N (p) is a normalization term similar to M(α) and N (0) = N (∞) = 1.

Remark 2 The relation:

lim
p→0

1
p

exp
[

κ − y

p

]

= δ(y − κ), (4)

is true, where δ(y − κ) is the Dirac delta function.

Losada and Nioto [39] modified Definition 1, as

CFDα
κ ψ(κ) =

(2 − α)

2(1 − α)

∫ κ

x1

ψ′(y) exp
[

−α
κ − y

1 − α

]

dy, (5)

while its corresponding fractional integral is as follows:
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Definition 2 Suppose 0 < α < 1, where α is order of the integral. Then

CF Iα
κ ψ(κ) =

2(1 − α)

(2 − α)M(α)
ψ(κ) +

2α

(2 − α)M(α)

∫ κ

0
ψ(y)dy, κ ≥ x1, (6)

is referred as Caputo-Fabrizio fractional integral of a function ψ.

Remark 3 From (6), the Caputo-Fabrizio fractional integral of a function ψ of order 0 < α < 1 is a mean

between the function ψ and its integral of order one, i.e.,

2(1 − α)

(2 − α)M(α)
+

2α

(2 − α)M(α)
= 1,

thus, M(α) = 2
2−α , 0 < α < 1.

If M(α) = 2
2−α , then the new Caputo derivative and its corresponding integral as follows [39]:

Definition 3 Let 0 < α < 1, then

CFDα
κ ψ(κ) =

1
1 − α

∫ κ

x1

ψ′(y) exp
[

−α
κ − y

1 − α

]

dx, κ ≥ x1, (7)

and its fractional integral as:

CF Iα
κ ψ(κ) = (1 − α)ψ(κ) + α

∫ κ

x1

ψ(y)dy, κ ≥ x1, (8)

respectively, are referred as Caputo-Fabrizio fractional derivative and fractional integral of order α of a

function ψ.

3 Description of the model

We study the Cholera model as proposed in [40]. The classical Cholera model is formulated by the
following system:

dS(κ)

dκ
= Ω − (λI − µ)S + ηV + γR,

dI(κ)

dκ
= λSI − (µ + ω + σ + β)I,

dR(κ)

dκ
= βI − (µ + γ)R,

dV(κ)

dκ
= σI − ηV.

(9)

Thus, the Caputo-Fabrizio fractional-order model is given by:

CFDαS = Ω − λSI − µS + ηV + γR,
CFDα I = λSI − µI − ωI − σI − βI,

CFDαR = βI − µR − γR,
CFDαV = σI − ηV,

(10)
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Table 1. States variables

Compartment Description

S Susceptible population
I Symptomatic infected population with Cholera
R Recovered population
V Environment

Table 2. Meaning of each parameters.

Parameters Biological Meanings

Ω Population recruitment rate
λ Contact rate
β Recovery rate
ω Death rate due infection
γ Loose of immunity
µ Natural death rate
σ Rate of infection among compartment I and V
η Rate of infection among compartment V and S

subject to

S(0) = S0 ≥ 0, I(0) = I0 ≥ 0, R(0) = R0 ≥ 0, and V(0) = V0 ≥ 0. (11)

Tables 1 and 2 display the biological meaning of each state variable and parameters used in the
model, respectively.

4 Qualitative analysis of the model

This section uses fixed point theorems to explore the existence and uniqueness of solutions to the
proposed model (10).

Existence and uniqueness result

By utilizing the fixed point theorems, this subsection aims to demonstrate the existence and
uniqueness of model (10). To facilitate this analysis, model (10) can be expressed as follows:

CFDαS = K1(κ, S),
CFDα I = K2(κ, I),

CFDαR = K3(κ, R),
CFDαV = K4(κ, V),

(12)

where

K1(κ, S) = Ω − λSI − µS + ηV + γR,

K2(κ, I) = λSI − µI − ωI − σI − βI,

K3(κ, R) = βI − µR − γR,

K4(κ, V) = σI − ηV.

(13)
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Applying fractional integral operator given in (6), system (12) reduces to the Volterra integral type
of order (0 < α < 1) given by

S(κ) = S(0) + 2
(1 − α)

(2 − α)M(α)
K1(κ, S) + 2

α

(2 − α)M(α)

∫ κ

0
K1(y, S)dy,

I(κ) = I(0) + 2
(1 − α)

(2 − α)M(α)
K2(κ, I) + 2

α

(2 − α)M(α)

∫ κ

0
K2(y, I)dy,

R(κ) = R(0) + 2
(1 − α)

(2 − α)M(α)
K3(κ, R) + 2

α

(2 − α)M(α)

∫ κ

0
K3(y, R)dy,

V(κ) = V(0) + 2
(1 − α)

(2 − α)M(α)
K4(κ, V) + 2

α

(2 − α)M(α)

∫ κ

0
K4(y, V)dy.

(14)

Next, under some assumptions, we demonstrate that the kernels K1, K2, K3 and K4 obey the
Lipschitz and contraction conditions. To do so, we state and prove the following lemma.

Lemma 1 The autonomous system (13) is Lipschitz continuous.

Proof For S and S∗, we have from (13), gives

∥K1(κ, S)−K1(κ, S∗)∥ = ∥λI(t)(S(κ)− S∗(κ))− µ(S(κ)− S∗(κ))∥

≤ ∥λI(κ)∥∥S(κ)− S∗(κ)∥+ µ∥S(κ)− S∗(κ)∥

≤ (ϵλ + µ)∥S(κ)− S∗(κ)∥

≤ l1∥S(κ)− S∗(κ)∥,

where 0 < l1 = (ϵλ + µ) and ∥I(κ)∥ ≤ ϵ is bounded.
For I and I∗, we have

∥K2(κ, I)−K2(I∗)∥ = ∥(λS − µ − ω − σ − β)(I(κ)− I∗(κ))∥

≤ (∥λS∥+ (µ + ω + σ + β))∥(I(κ)− I∗(κ))∥

≤ l2∥(I(κ)− I∗(κ))∥,

where 0 < l2 = (λϵ1 + (µ + ω + σ + β)) and ∥S(κ)∥ ≤ ϵ1 is bounded.
From R and R∗, we have

|K3(R)−K3(R∗)| = ∥− (µ + γ)(R(κ)− R∗(κ))∥

≤ (µ + γ)|(R(κ)− R∗(κ))∥

≤ l3∥R(κ)− R∗(κ)∥,

where 0 < l3 = (µ + γ).
From V and V∗, we have

|K4(V)−K4(V
∗)| = ∥− η(V(κ)− V∗(κ))∥

≤ l4∥(V(κ)− V∗(κ)∥,

where 0 < l4 = η. Hence it’s Lipschitz continuous and the proof of the lemma is complete. ■

Now, system (14) can be written in recursive form by the difference between the successive terms
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as given below:

χ1n = Sn(κ)− Sn−1(κ) =
2(1 − α)

(2 − α)M(α)
(K1(κ, Sn−1)−K1(κ, Sn−2))

+ 2
α

(2 − α)M(α)

∫ κ

0
(K1(κ, Sn−1)−K1(κ, Sn−2))dy,

χ2n = In(κ)− In−1(κ) =
2(1 − α)

(2 − α)M(α)
(K2(κ, In−1)−K2(κ, In−2))

+ 2
α

(2 − α)M(α)

∫ κ

0
(K2(κ, In−1)−K2(κ, In−2))dy,

χ3n = Rn(κ)− Rn−1(κ) =
2(1 − α)

(2 − α)M(α)
(K3(κ, Rn−1)−K3(κ, Rn−2))

+ 2
α

(2 − α)M(α)

∫ κ

0
(K3(κ, Rn−1)−K3(κ, Rn−2))dy,

χ4n = Vn(κ)− Vn−1(κ) =
2(1 − α)

(2 − α)M(α)
(K4(κ, Vn−1)−K4(κ, Vn−2))

+ 2
α

(2 − α)M(α)

∫ κ

0
(K4(κ, Vn−1)−K4(κ, Vn−2))dy,

(15)

subject to initial conditions S0(κ) = S(0), I0(κ) = I(0), R0(κ) = R(0), V0(κ) = V(0). From the
first equation in (15), taking norm and applying triangular inequality yields:

∥Sn(κ)− Sn−1(κ)∥ =
2(1 − α)

(2 − α)M(α)
∥(K1(κ, Sn−1)−K1(κ, Sn−2))∥

+ 2
α

(2 − α)M(α)

∫ t

0
∥(K1(κ, Sn−1)−K1(κ, Sn−2))∥dy.

(16)

In view of Lemma 1, we get

∥Sn(κ)− Sn−1(κ)∥ =
2(1 − α)

(2 − α)M(α)
l1∥Sn−1 − Sn−2∥

+
2α

(2 − α)M(α)
l1

∫ κ

0
∥Sn−1 − Sn−2∥dy.

(17)

Therefore, we obtain

∥χ1n(κ)∥ ≤
2(1 − α)

(2 − α)M(α)
l1∥χ1(n−1)(κ)∥+

2α

(2 − α)M(α)
l1

∫ κ

0
∥χ1(n−1)(y)∥dy. (18)

Thus, the rest of the equations in system (15) can be obtained in the same approach as:

∥χ2n(κ)∥ ≤
2(1 − α)

(2 − α)M(α)
l1∥χ2(n−1)(κ)∥+

2α

(2 − α)M(α)
l1

∫ κ

0
∥χ2(n−1)(y)∥dy,

∥χ3n(κ)∥ ≤
2(1 − α)

(2 − α)M(α)
l1∥χ3(n−1)(κ)∥+

2α

(2 − α)M(α)
l1

∫ κ

0
∥χ3(n−1)(y)∥dy,

∥χ4n(κ)∥ ≤
2(1 − α)

(2 − α)M(α)
l1∥χ4(n−1)(κ)∥+

2α

(2 − α)M(α)
l1

∫ κ

0
∥χ4(n−1)(y)∥dy.

(19)
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Hence, we have






Sn(κ) =
∑n

k=1 χ1k(κ),

In(κ) =
∑n

k=1 χ2k(κ),

Rn(κ) =
∑n

k=1 χ3k(κ),

Vn(κ) =
∑n

k=1 χ4k(κ).

(20)

The following theorem guarantees the existence of the solution.

Theorem 1 Consider the model given by (10), then there exist a solution if one can find κ1 for which

2(1 − α)

(2 − α)M(α)
lk +

2ακ1

(2 − α)M(α)
lk < 1, k = 1, 2, . . . , 4,

holds.

Proof From Lemma 1 and Eqs. (18) and (19), applying the recursive technique we obtained below:

∥χ1n(κ)∥ ≤ ∥Sn(0)∥
[

2(1 − α)

(2 − α)M(α)
l1 +

2ακ1

(2 − α)M(α)
l1

]n

,

∥χ2n(κ)∥ ≤ ∥In(0)∥
[

2(1 − α)

(2 − α)M(α)
l2 +

2ακ1

(2 − α)M(α)
l2

]n

,

∥χ3n(κ)∥ ≤ ∥Rn(0)∥
[

2(1 − α)

(2 − α)M(α)
l3 +

2ακ1

(2 − α)M(α)
l3

]n

,

∥χ4n(κ)∥ ≤ ∥Vn(0)∥
[

2(1 − α)

(2 − α)M(α)
l4 +

2ακ1

(2 − α)M(α)
l4

]n

.

(21)

This shows that the system solution exists and is continuous. Next, we show that (21) constructs
the solution for the model (10), we proceed as follows:

S(t)− S(0) = Sn(κ)− B1n(κ),

I(t)− I(0) = In(κ)− B2n(κ),

R(t)− R(0) = Rn(κ)− B3n(κ),

V(t)− V(0) = Vn(κ)− B4n(κ).

(22)

Thus, we obtain

∥B1n(κ)∥ =

∥

∥

∥

∥

2(1 − α)

(2 − α)M(α)
(K1(κ, S)−K1(κ, Sn−1))

+
2α

(2 − α)M(α)

∫ κ

0
(K1(κ, S)−K1(κ, Sn−1))dy

∥

∥

∥

∥

≤
2(1 − α)

(2 − α)M(α)
∥(K1(κ, S)−K1(κ, Sn))∥

+
2α

(2 − α)M(α)

∫ κ

0
∥(K1(κ, S)−K1(κ, Sn−1))∥dy

≤
2(1 − α)

(2 − α)M(α)
l1∥S − Sn−1∥+

2ακ

(2 − α)M(α)
l1∥S − Sn−1∥.

(23)
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Repeating the same process as above, we get

∥B1n(κ)∥ ≤

(

2(1 − α)

(2 − α)M(α)
+

2ακ

(2 − α)M(α)

)n+1

ln+1
1 b. (24)

At κ1, we have

∥B1n(κ)∥ ≤

(

2(1 − α)

(2 − α)M(α)
+

2α

(2 − α)M(α)
κ1

)n+1

ln+1
1 b. (25)

From (24), as n → ∞, gives ∥B1n(κ)∥ → 0. Similarly,

∥B2n(κ)∥ → 0, ∥B1n(κ)∥ → 0, ∥B3n(κ)∥ → 0, ∥B3n(κ)∥ → 0.

■

Next, to show the solution is unique, suppose that there exist S1(κ), I1(κ), R1(κ), and V1(κ), then

S(κ)− S1(κ) =
2(1 − α)

(2 − α)M(α)
(K1(κ, S)−K1(κ, S1))

+
2α

(2 − α)M(α)

∫ κ

0
(K1(κ, S)−K1(κ, S1))dy.

(26)

By taking the norm of (26), and from Lemma 1, we get

∥S(κ)− S1(κ)∥ =
2(1 − α)

(2 − α)M(α)
∥K1(κ, S)−K1(κ, S1)∥

+
2α

(2 − α)M(α)

∫ κ

0
∥K1(κ, S)−K1(κ, S1))∥dy

≤
2(1 − α)

(2 − α)M(α)
l1∥S(κ)− S1(κ)∥

+
2αt

(2 − α)M(α)
l1∥S(κ)− S1(κ)∥.

(27)

It simplifies to

∥S(κ)− S1(κ)∥

(

1 −

2(1 − α)

(2 − α)M(α)
l1 +

2ακ

(2 − α)M(α)
l1

)

≤ 0. (28)

Theorem 2 Given that the following inequality

(

1 −

2(1 − α)

(2 − α)M(α)
l1 +

2ακ

(2 − α)M(α)
l1

)

> 0,

holds. Then the solution of model (10) is unique.

Proof Suppose that (28) holds, then

∥S(κ)− S1(κ)∥

(

1 −

2(1 − α)

(2 − α)M(α)
l1 +

2ακ

(2 − α)M(α)
l1

)

≤ 0. (29)
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Hence,

∥S(κ)− S1(κ)∥ = 0,

which leads to

S(κ) = S1(κ).

Repeating the same techniques above can easily drive similar equality for the rest. Hence, we
conclude that the solution is unique. ■

Positivity and boundedness of solution

One of the important characteristics of epidemiological models is that their solutions are both
positive and bounded. In order to ensure this, we establish that all of the state variables are
non-negative for any time κ > 0, which implies that a trajectory starting with a positive initial
condition will stay positive for all κ > 0. Thus, system (10) gives

CFDαS(κ)|S=0 = Ω + ηV + γR ≥ 0,
CFDα I(κ)|I=0 ≥ 0,

CFDαR(κ)|R=0 = βI ≥ 0,
CFDαV(κ)|V=0 = σI ≥ 0.

(30)

Since N(κ) = S(κ) + I(κ) + R(κ) is the total human population. Thus, summing up the first three
equations of (10) leads

CFDα
0,κ N(κ) = Ω − µS − µI − ωI − σI − µR ≤ Ω − µS, (31)

then one has

N(κ) ≤

(

N(0)−
Ω

µ

)

Eα(−µκ) +
Ω

µ
.

Thus, we obtain

Θ =

{

(S(κ), I(κ), R(κ)) ∈ R
3
+ : 0 ≤ N(κ) ≤

Ω

µ

}

, (32)

which gives the biologically feasible region for the model (10). Therefore, Θ is positively invariant.
Hence, the proposed model (10) is mathematically and epidemiologically well-posed.

5 Sensitivity analysis

We conducted a sensitivity analysis in this section to ascertain the contribution of each parameter to
the basic reproduction number (R0). This strategy determines the extent to which each parameter
value contributes to the R0. Thus,

R0 =
1
µ
(λΩ − (µ + ω + σ + β)) ,
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is the basic reproduction number of model (10); whereas the sensitivity index of the model
parameter is given by the relation

Γ
R0
X =

∂R0

∂X
×

X

R0
.

The sensitivity analysis presented in Table 3 and Figure 1 examines the impact of various

Table 3. Sensitivity analysis of the parameter values

Parameters Value Sensitivity value

λ 0.011 0.263839
Ω 0.000096275 0.263839
µ 0.00002536 -1.062007
ω 0.0005 -0.956416
σ 15 -2.3985
β 6 -1.1992

Figure 1. Sensitivity analysis of the parameter values

parameters on the R0. The results show that the recruitment and contact rates are the most
sensitive parameters, significantly contributing to the R0 increase. This suggests that increasing
these parameters will increase the R0. On the other hand, the recovery rate is less sensitive,
indicating that an increase in the recovery rate will lead to a decrease in the R0. A response surface
plot has been generated to demonstrate how the behavior of R0 changes when varying the values
of the most sensitive parameters, as shown in Figure 2. Figure 2(a) is the plot of R0 versus the
rate of infection σ among Infected (I) individuals and Environment (V) and recruitment rate Ω.
Figure 2(b) is the plot of R0 versus death rate due to infection ω and recruitment rate Ω. Figure
2(c) is the plot of R0 versus contact rate λ and recovery rate β. Figure 2(d) is the plot of R0 versus
contact rate λ and recruitment rate Ω.
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(a) R0 versus σ and Ω. (b) R0 versus ω and Ω.

(c) R0 versus λ and β. (d) R0 versus λ and Ω.

Figure 2. Behavior of R0 while varying the value of the most sensitive parameters

6 Numerical simulations and discussions

The classical and fractional-order models need numerical techniques to understand the behavior
of the solution trajectories better. Here, we utilized a recent and effective numerical scheme
introduced by [41] to gain insight into the solution trajectories. For a detailed analysis of this
method’s convergence, accuracy, and stability, please refer to [41, 42]. In Table 4, we provided
the numerical values of the parameters used to find the proposed model’s numerical simulations.
Interestingly, as we varied the fractional order, we observed distinct memory effects in each

Table 4. Parameters values

Parameters Value

Ω 15
µ 0.02537
ω 0.004
β 0.0064
σ 0.0910
η 0.075
λ 0.061
γ 0.032

compartment, which were not present in the classical model, as shown in Figure 4. Figures 3 and
4 illustrate the dynamical behavior of each compartment in our study. We observed a decrease in
the number of susceptible individuals as the number of recovered individuals increased over time.
This trend can be attributed to the direct relationship between infectious and recovered individuals.
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Figure 3. Classical dynamical behavior of each state variable
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Figure 4. Caputo-Fabrizio fractional-order dynamical behavior of each state variable
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Additionally, there was an increase in the concentration of bacteria, which could be linked to the
contributions of infectious humans to environmental pollution. Human activities have continued
to contaminate the environment, potentially contributing to the exponential increase in bacteria in
the environment.

7 Conclusions

In this paper, we have successfully developed a fractional-order Cholera model to investigate
the transmission dynamics of the disease using the Caputo-Fabrizio derivative and establish
the existence and uniqueness of solutions via fixed point theorems. Furthermore, the sensitivity
analysis of the basic reproduction number has highlighted the significant contributions of the
parameters associated with the model. Specifically, the results indicate that the recruitment and
contact rate are the most sensitive parameters, significantly increasing the R0. We conclude
that these findings provide valuable insights into the factors that contribute to the transmission
dynamics of cholera and can inform public health policies and strategies for controlling the
transmission of the disease.
Moreover, the findings indicate that as the number of infectious individuals in the population
decreases, the number of recovered individuals in the system increases. This suggests a corre-
lation between the decline in the infected population and the rise in the number of individuals
who have successfully recovered from the disease. Moreover, results suggest that the proposed
model provides valuable insights into disease transmission dynamics by utilizing fractional-order
derivatives, thus the policymakers can gain a deeper understanding of disease outbreaks and
devise effective strategies to manage disease outbreaks.
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