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   Izmir Democracy University, Mechanical Engineering, Izmir, Türkiye

Devices that have a motor and a crusher arm mec-
hanism are called a crusher and crusher systems. 

They use these parts to apply a compressive force and 
break down objects. Due to surface-to-surface in 
a limited location or surface-to-point contact, high 
stresses occur in the crusher arm which can cause 
fracture. Also these stresses cause deformations in 
the arm and they must remain within certain limits. 
The crusher arm is structurally in the beam profile 
and bending is the most dominant condition that 
happens during crushing. In the literature, there are 
different application trials for the solution of bending 
beam problem. Reinforced recycled concrete beams 
[1] were analyzed under bending which showed lo-
wer compressive strength and modulus of elasticity
than normal concrete. A function was expressed
between the compressive strength of recycled conc-
rete and Young's modulus. Wang [2] theoretically cal-
culated the appropriate suspended roof length for a
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roof. Optimum placement distances of roof hanging 
slots were determined by considering the weight of 
the beam. The most suitable cell profile against im-
pact [3] was investigated in different cell structures 
formed in square tubes. A bending moment occur-
red due to the inclined plane having different angles 
used in impact. The energy absorption of a steel plate 
system [4] was investigated using the finite element 
method and it was found that most of the absorbed 
energy was bending energy.  In a study transverse ice 
breaking under crushing and bending conditions, re-
sults of force/moment [5] were given. The crush res-
ponse of two nested rectangular pipes under lateral 
compression [6-8] was investigated. Crushing load 
varied according to the area occupied by the plastic 
zone, tube thickness and yield stress of the material. 
Zhang et al. [9] investigated rectangular tubing which 
was fabricated by bending of aluminum sheets under 
axial crushing. The overlapping plates used in the 

A B S T R A C T

Crushers are utilized to break down or crush various components in industrial applica-
tions are subjected to high stresses. The crushing process is carried out by a crusher 

arm located on the crusher itself. The shape and length of the crusher arm influence the 
deformation on the arm and the efficiency of crushing process. During the crushing pro-
cess, stress concentrations occur at the contact regions and especially at the connection 
location of the crusher arm and the drive shaft. This study examined the connection of 
the crusher arm at various positions on the shaft and explored variations in stress. Finite 
element analysis was used in the analyses. The used material is standard steel that behaved 
elastically. The stresses changed in a way that was not proportional to the movement of 
the tangential crusher arm towards the center of the shaft. The d=8 mm and d=24 mm 
locations are the most suitable places to move the crusher arm rather than the tangential 
position (d=40 mm). The highest stresses occurred at the corners where the shaft and 
crusher arm connected and formed a stress concentration. The friction effects on the con-
tact surface were also examined and the increased friction coefficient slightly reduced the 
stress values of the crusher system, but increased the stresses on the crushed object. Only 
maximum stress levels that are observed at the surface of the beam are mainly considered. 
The results regarding the crusher arm are discussed in detail.

Keywords: 
Crusher; Contact interaction; Deformation; Friction; Sliding distance
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vating the rotation speed of the rotor. A general used mo-
del for crushing process has not been developed, Mish-
chuk et al. [26] investigated for five different crushing 
machines by considering destruction energy of materials. 
They detected that many tries into the mathematical mo-
deling of material fracture have faced considerable chal-
lenges. The review of literature highlighted a deficiency 
in relevant research concerning a beam constructed on 
the drive shaft.

In this study, the position of the crusher arm on the 
shaft body and the surface friction coefficient were exami-
ned, stress and deformations were given. The study may 
contribute to the same or beam-shaft connection studies in 
the literature.

MATERIAL AND METHODS

The crusher system consists of a crusher arm and the 
part to be crushed and are shown in Fig. 1. The arm that 
crushes the material is made of beam is connected to a 
hollow shaft. The inner part of the shaft is defined as the 
cylindrical boundary condition that allows only rotatio-
nal. The boundary condition defined for the rotation of 
the shaft around a fixed axis is also used in similar studi-
es in the literature [27]. A torque of 1000 Nm is applied to 
the shaft in a clockwise direction. The piece to be broken 
has a circular geometry and is mounted in contact with 
the crusher arm. The bottom surface of the circular pi-
ece is fixed. The fixing location is sufficiently far from 
the contact location. Contact surfaces were defined as 
friction surfaces and the friction coefficient was deter-
mined as 0.3. The position of crusher arm is defined as 
d is shown in Fig. 1. It is the distance between the outer 
surface of the crusher arm and the center of the shaft. 
Different d values have been investigated in the study.

Finite element model of the crusher system was shown 
in Fig. 2 which was created to include uniform finite ele-
ment distribution. There are approximately 30,000 finite 
elements in each model. The aspect ratio of the elements is 
very close to 1 and high-quality element structure is formed. 
The model was created with the plane stress condition in 2D 
with unit thickness. Standard steel (E=200 GPa, υ=0.3) was 
chosen as the material.

tube increased the absorbed energy but caused uneven 
buckling. The clamped boundary condition solved that 
problem. Crushing behavior of CF/EP composites [10] 
were analyzed under quasi-static and dynamic conditi-
ons. In the quasi-static analysis, bending, an important 
factor of the damage mechanism, was found dominant. 
The average crushing force of multistage nested rec-
tangular tubes [11] was analyzed, and the use of more 
stages resulted in better crush performance and energy 
absorption. When the number of stages or cells used 
[12] was increased, the crash-resistance properties were
improved. Energy absorption and crushing performan-
ce of capped cylindrical tubes [13] were analyzed under
oblique impact which showed better energy absorption
performance than standard cylindrical tubes. The samp-
les containing concrete and timber in the steel column
tubes were tested for their stability under crushing [14].
The location of loading affected material loading capacity. 
An axial compression load [15] was applied to corrugated
tubes containing carbon fiber reinforced polymer (CFRP) 
and Kevlar fiber-reinforced polymer (KFRP) composites
and having conical angles of 350, 400, 450, 500 and 550.
Similar crushing behavior was observed between KFRP
and CFRP composites and 500 conical angle has the best
energy absorption behavior. The mechanical behavior of
the lattice cylindrical shells under compression [16] was
investigated and negative Poisson ratio was observed.
Energy absorption capacity was increased 20% between 4 
different trials. Transverse bending of thin-walled beams 
[17] was analyzed without considering various shapes/
dimensions and fixed boundary conditions. The used
three-point bending analysis results showed that loading
angle and position affect the deformation modes. In stu-
dies carried out on crushers that have a conical structu-
re rather than a beam structure, heat treatment [18] was
applied on a cone crusher surface to increase the resis-
tance to abrasion. Gyratory crusher torque analysis [19]
was analyzed with discrete element method and found
that large particles cause to decrease the crushing torque. 
Another study [20] analyzed the concave curve height,
curve radius, and shaft speed of a gyratory crusher to
optimize its geometrical parameters. Frequency [21] for
a vibratory crusher, rotor parameters [22] for a crusher-
shredder, hammers, and knives [23] on rotor for crushing 
were investigated. Rotor parameters and hammer sha-
pe were found to be the most important design criteria.
Discrete element method [24] was used to examine new
hammer designs for laboratory-scale jaw crusher and
new designs have been found less effective than existing
designs. Thus, time/money savings were achieved by not
producing industrial sized devices. Investigating single
and double rotor impact crushers through the discrete
element method [25] revealed that enhancing crushing
efficiency is achieved by employing double rotors and ele-

Figure 1. Geometrical model of crusher and cylinder and dimensions 
(in mm).
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A validation study was conducted to determine the so-
lution precision and accuracy of the finite element model. 
Since the bending behaviour is dominant, a cantilever beam 
problem has been investigated and its model is shown in Fig. 
3. One of the short sides of the cantilever beam is fixed and
a pure moment of 10 Nm is applied to the other free edge.
Cantilever beam has a length of 100 mm and height of 10
mm. The bending stress was [28] given in Eq. 1 for this va-
lidation case. The applied moment is represented as M, the
distance between the geometric center and the upper/lower 
surface is represented as c and the moment of inertia is rep-
resented as I for the rectangular section.

M c
I

σ ×
= (1)

The stresses in the crusher are given in the form of Von-
Mises stresses [28-29] in Eq. 2. The stresses on the right side 
of the equation are the principal stresses.

2 2
1 1 2 2VMσ σ σ σ σ= − + (2)

RESULTS AND DISCUSSION

The analytical solution of validation case is given in Eq. 3. 
and the result obtained for the finite element analysis is 
shown in Fig. 4. The calculated analytical result and the 
results obtained from the finite element analysis are con-
sistent with each other. The crusher system was modelled 
and examined using this element structure.

3

10Nm 0.005m 0.6MPa1 1 (0.01m)
12

M c
I

σ ⋅ ⋅
= = = ±

× ×
                   (3)

In Fig. 5, the maximum Von-Mises stresses in the 
crusher system with respect to crusher arm distance (d) are 

shown. At the farthest distance (d=40 mm) where the bre-
aker arm is tangential to the shaft, the stress value is 50,198 
MPa. Stress concentration occurs locally at the corner of the 
breaker arm and shaft connection. When the crusher arm 
was brought a little closer to the shaft center (from d=40 
mm to d=36 mm), the stress value decreased slightly. As the 
arm that breaks the material approached the center of the 
hollow shaft, the connection location where the shaft and 
the arm meet became less acute. Stress values increased by 
15% between d=36 mm and d=32 mm results. In this layout, 
the center of the cylindrical part and the center of the shaft 
are in approximately the same vertical position. The highest 
stress value is observed in the result with d=32 mm. The-
re is a sharp stress reduction observed at d=24 mm results. 
Sharp corners turned into two normal connection corners. 
The lowest stress value was obtained at d=8 mm and then 
at d=24 mm. Geometric nonlinearity is quite dominant in 
stress values.

Considering the stress contours in Fig. 6, the highest 
stresses occurred at the corners where the crusher arm and 
the shaft are connected, and on the upper and lower surfa-
ces of the crusher arm. The stress contour values are labeled 
as H++, H+, H, L and L- from highest to lowest. The highest 
stress (H++) locations occur at the connection corners in all 
cases. When the crusher arm is approaching to the centre 
of shaft (from d=40 mm to d=32 mm), H+ stress location 
vanishes at the upper surface of the crusher arm. H+ loca-
tion at the below surface of the crusher arm concentrates 
in a smaller area. Therefore, the stress value at d=32 mm 
is higher than the other cases. H+ contours appear at the 
upper surface of the crusher arm in d=24 mm results that 
causes to decrease the stresses at the lower surface. At the 
d=2 mm result, two H++ stress locations are observed. This 
stress distribution is similar the stress distribution of a can-
tilever beam under bending.

The stresses occurring on the upper surface of the 
crusher arm are shown in Fig. 7. Stress concentration have 
occurred at the x=0 m location, where the crusher arm con-
nects with the shaft. In the results of d=40 mm, stress values 

Figure 2. Finite element model of crusher and cylinder.

Figure 3. Finite element model of a cantilever beam.

Figure 4. Bending stress of cantilever beam (in MPa).

Figure 5. Crusher arm distance (d) and stresses in the system (MPa).
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are not high at x=0 m. This is caused by the fact that the 
crusher arm of the d=40 mm model is completely tangential 
to the shaft outer surface. There is no formation of a prot-
rusion at the x=0 m. As a result of the decrease in the d dis-
tance of the crusher arm, the crusher arm approach towards 
the center of the shaft created a protrusion on the connec-
tion location between the shaft and the upper surface of the 
crusher arm. A stress concentration occurs at x=0 m with 
the effect of protrusion. The highest stresses after x=0 m 
range from 18 to 19 MPa. The stress value decreased as the 
d value decreased.

In Fig. 8, the effect of friction coefficient (fc) is shown 
for the d=24 mm crusher arm model. The results are taken 
from upper surface of the crusher arm. It has been observed 
that increasing friction coefficient reduces stresses. A mag-
nified view is also added at the protrusion location.  Incre-
asing the fc from 0.05 to 0.3 decreased the stresses by 2.6%. 
The stress distribution does not change much as different 
fc values. The effect of fc on the vertical deflection results 
are shown in Fig. 9 for the d=24 mm model. The highest 
deflection occurred in the middle of the crusher arm. Def-
lection results are reduced when the friction coefficient (fc) 
increases.

The stress and support reactions are shown in Table 1 
at different coefficients of friction for the d=24 mm model. 
The reaction forces (fx, fy) that occur where the crushed 
part is fixed are shown. Same magnitudes of these reaction 
forces occur at the cylindrical boundary conditions of the 
shaft, but opposite direction. The reaction moment acts to 
prevent the rotation of the object that is being crushed. As 
the friction coefficient increased, the horizontal force and 
the stress values on the cylinder increased, and this had a 
positive effect on the crushing situation. The stress in the 
crusher decreased with increasing friction coefficient.

Figure 6. Von-Mises stress (in MPa) contours for d=40, 32, 24 and 2 
mm.

Figure 7. Von-Mises stresses on the upper surface of the crusher arm 
at different d distance.

Figure 8. Effect of fc on Von-Mises stresses of d=24 mm model at upper 
surface.

Figure 9. Vertical deflection results on the lower surface of the crusher 
arm for the d=24 mm model.



05

M
. M

. Y
av

uz
 /

 H
it

ti
te

 J 
Sc

i E
ng

, 2
02

4;
 11

 (1
) 

1-
6

CONCLUSION

This study examined how the location of the arm and the 
coefficient of friction on the surface affected a system 
that crushes materials. Finite element method was used, 
and stresses, deflection and reaction forces formed under 
the effect of constant moment were given. In the results 
obtained;

• Due to the moment applied to the breaker, mainly 
bending stress has occurred in the breaker arm.

• Sharp corners at the connection locations of the
crusher arm and shaft has the highest stress locations.

• The absence of sharp corner on the upper surface 
of the crusher arm caused the least stress formation at the 
upper surface (in d=40 mm case)

• Moving the tangentially crusher arm (d=40 mm)
towards the d=8 mm and d=24 mm locations reduces the 
stresses.

• Increasing the friction coefficient increases the
horizontal reaction force and the stress in the crushed part 
while decreases the total stress value of the crusher system 
and vertical deflection of the crusher arm.
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The memristor has been introduced as the fourth 
basic circuit element in 1971, by Leon Chua. It 

was noted that there are six different mathematical 
relations that connect pairs of the four fundamental 
circuit variables: electric current (i), voltage (v), char-
ge (q), and magnetic flux (Q) (1). One of the relations-
hips mentioned (the charge is the time integral of the 
current) is derived from the definitions of two of the 
variables mentioned. Another relationship (the flux 
is the time integral of the electromotive force, or vol-
tage) is determined by Faraday's law of induction (2). 
The memristor (a contraction for memory resistor) is 
an electronic component with two terminals that can 
change its resistance and was invented based on the 
principle of symmetry. The memristor links electri-
cal charge and magnetic flux.

With the development of big data analytics (BDA) 
(3), the internet of things (IoT) (4), and artificial intelli-
gence technology (5), a demand for cutting-edge elect-
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ronic devices and systems has emerged (6). To function 
optimally, these systems need to be very power efficient, 
have a well-designed computer architecture, and be able 
to process data quickly. There has been significant rese-
arch interest in memristors and memristive devices over 
the past decade due to their potential use as non-volatile 
memory applications (7) and their applications in non-
traditional computing (8).

A memristor traditionally consists of a stack of me-
tal, dielectric, and metal layers. The way that a mem-
ristor functions relies on the formation and rupture of 
conductive filament (CF) with defects in the sandwich 
layer between the two metallic electrodes (9). Once the 
CF has been formed within a memristor device, the 
device is able to switch between a high-resistance sta-
te (HRS) and a low-resistance state (LRS) in a reversible 
manner (10). Memristors can be categorized as cation 
devices, anion devices, and dual ionic devices based on 
the type of mobile species and migration behavior (11). 

A B S T R A C T

In recent years, there has been extensive research on the memristor, a non-volatile memory 
device that demonstrates effective emulation of biological synapses. The implementation 

of graphene as a top electrode in memristive switching systems presents an intriguing alterna-
tive to conventional materials such as Platinum. Graphene, as a carbon-derived material, pos-
sesses a remarkable area- to-volume ratio, biocompatibility, adsorption capabilities, and high 
electrical conductivity and thereby offers a promising avenue for the fabrication of biosen-
sors with superior characteristics. This study reports a novel fabrication method of utilizing 
graphene as a top electrode in memristive devices. Characterization results of micrometric 
devices as well as larger memristive devices are also discussed. Larger devices show promising 
results to be used as memristive sensors. Microstructures have been fabricated successfully 
through developing a process f low and patterning graphene using photolithography and lift-
off. E-beam evaporation and sputtering were used for depositing bottom metal electrodes 
and active layer respectively. Graphene was produced using the chemical vapor deposition 
(CVD) method and subsequently transferred using the fishing technique. Ultimately Pt/
TiO2/TiOx/Graphene memristive devices were fabricated.
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etching, chemical etching, nanoimprint lithography, and 
bottom-up growth and synthesis (19). Nevertheless, these 
methods exhibit certain limitations, such as constraints in 
scalability, intricate process requirements, high production 
costs, and potential damage to the graphene's properties 
and structure during patterning. While each method pre-
sents its own set of challenges, the need for a technique that 
can efficiently pattern graphene without compromising its 
exceptional characteristics remains a critical goal in advan-
cing its practical applications.

This study aims to explore a convenient, repeatable, 
and straightforward method for patterning graphene for 
memristor applications while utilizing the memristor’s in-
herent properties. Larger memristive devices of area 2 cm2 

(hereforth referred to as macro devices) were fabricated to 
develop fabrication steps and ensure that graphene can be 
used as a top electrode. The macro devices are fabricated 
very simply since they do not require any patterning steps. 
Following successful characterization and sensor measure-
ments, memristors of micrometric dimensions (hereforth 
referred to as micro devices) were fabricated and electrically 
characterized. The ultimate objective is to use graphene 
as a sensitive top electrode for memristive sensors. By ack-
nowledging the constraints of various methodologies, this 
research focuses on patterning CVD grown and transferred 
graphene via negative photolithography and lift-off. Furt-
hermore, this paper presents measurement outcomes, en-
compassing results from current-voltage characterization 
and the sensing of memristors comprising Pt/TiO2/TiOx/
Graphene structures.

MATERIAL AND METHODS

Chemical Vapor Deposition (CVD) for Graphene 
Growth

Initially, copper foils (Alfa Aesar, 13382, 99.8% purity, 25 
µm; cut to dimensions of 50 mm × 50 mm) are placed 
onto a flat quartz boat and positioned within a quartz 
tube to align with the heating zone. Argon gas (Ar) is 
flowed through the tube at a rate of 100 sccm for 10 mi-
nutes. After purging with Ar, the Ar flow is decreased to 
50 sccm and hydrogen gas (H2) at a flow rate of 50 sccm 
is introduced into the tube, and heating is commenced. 
Once the temperature reaches 1000°C, the copper foil is 
annealed under hydrogen and Ar gas for a duration of 1 
hour. Following this 1- hour interval, methane gas (CH4) 
at a flow rate of 5 sccm is introduced alongside Ar gas (50 
sccm) and hydrogen gas (50 sccm) to facilitate graphene 
growth over a period of 30 minutes. Post-growth, rapid 
cooling of the sample is conducted within Ar and hydro-
gen atmosphere.

The conduction path in the fabricated devices is made up of 
a metal that has undergone chemical reduction, resulting in 
a lower valence state. This conduction path can be viewed 
as consisting of oxygen vacancies that act as n-type dopants.

Memristive devices are commonly sandwich like struc-
tures with two conductive electrodes separated by an acti-
ve layer. The first reported memristor prototype employed 
Platinum (Pt) electrodes and a stoichiometric and doped Ti-
tanium oxide (TiO2/TiOx) active layer (2) this structure re-
mains popular (12). Other examples include gold (Au) elect-
rodes with Zinc Oxide (ZnO) active layer (13), Indium Tin 
Oxide (ITO) bottom electrodes, Zirconium Oxide (ZrO) ac-
tive layer and Silver (Ag) top electrodes (14), polyvinylpyrro-
lidone active layer with Ag electrodes (15), hafnium oxide 
active layer with Pt electrodes (16). The devices fabricated in 
this work have an active layer that consists of stoichiometric 
TiO2 and doped TiOx, the bottom electrode is Pt and the top 
electrode is Graphene.

Graphene has garnered considerable attention due to 
its exceptional electrical and thermal conductivity, imp-
ressive mechanical strength, and remarkable single-atom 
thickness. These distinctive properties position it as a highly 
promising material for a diverse array of applications, ran-
ging from flexible electronics and high- performance batte-
ries to ultra-fast transistors and potential advancements in 
medical devices. The widespread recognition of graphene's 
potential to revolutionize multiple industries has spurred 
extensive research and exploration into its capabilities (18). 
Graphene’s high surface-to-volume ratio makes it a particu-
larly attractive material for sensing applications. When it is 
used as an electrode, all carbon atoms contact the analyte, 
which results in very high sensitivity. Moreover, no impu-
rities are transferred to the analytes from graphene, elect-
rochemistry of the sensing application thus remains intact. 
Lastly, graphene is biocompatible (17). All of these charac-
teristics combined with the inherent properties of memris-
tance are promising for developing sensitive, selective, area 
efficient sensors.

Both graphene and its derivatives, including functio-
nalized graphene, have undergone comprehensive study for 
their viability as electrode and interface materials in mem-
ristive devices. These materials offer significant advantages, 
such as suitability for device fabrication, exceptional mecha-
nical flexibility, and high optical transparency, all of which 
can greatly contribute to the advancement and enhance-
ment of memristive technologies. Investigation of prior 
research reveals a wide spectrum of approaches for patter-
ning graphene, encompassing direct mechanical cleavage, 
electron beam irradiation, scanning probe lithography, he-
lium ion beam lithography, photocatalytic etching, plasma 
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Graphene Transfer

A solution of 1 M FeNO3 (200 ml) is poured into a glass 
petri dish, and the samples are positioned on the liquid's 
surface. Approximately 30 minutes later, the copper foil 
is fully etched by the FeNO3 solution. The removal of 
FeNO3 is executed with care, after which deionized wa-
ter is introduced into the petri dish, taking precautions 
to avoid disruption of the graphene layer floating on the 
liquid. This rinsing process is reiterated until complete 
removal of FeNO3 is ensured. In the concluding step, the 
graphene layer, which remains on the water's surface, is 
transferred onto the designated substrate. The substrate 
is immersed in the water, allowing the graphene to sett-
le onto it. Finally, the sample is carefully lifted from the 
water.

Macro Device Fabrication

Macro devices were fabricated prior to the fabrication of 
micro devices to develop repeatable and reliable recipes. 
The first step of the fabrication process is e-beam evapo-
ration. The chamber is pumped down to 6×10-3 mTorr be-
fore deposition. Chromium was used as an adhesion layer. 
During Cr deposition, the electric current was gradually 
raised to 8 mA to achieve a consistent deposition rate of 
0.2 Å/s. Once it was confirmed that this was a stable con-
dition, current was increased 0.5 mA per minute until 
reaching 12 mA to achieve a deposition rate of 0.5 Å/s. 
While developing the recipe, Cr of 50 nm thickness was 
deposited. Subsequent coatings, including the ones for 
the microstructures, were executed based on this process.

During Pt deposition, rapid increments in the applied 
current to the Pt crucible led to the occurrence of sparking, 
this caused both inefficient use of resources, unstable de-
position rates and poor uniformity. As such, the deposition 
was carried out very slowly. However, the longer process still 
meant that the chamber heated up significantly since Pt re-
quires high applied current due to its higher melting point. 
90mA current was reached in 3 hours by initially increasing 
the current in steps of 0.5 mA every 30 seconds. After the Pt 
had melted, the current step was increased to 1 mA every 30 
seconds. A 0.1 Å/s deposition rate was achieved while app-
lying a current of 91mA. For the initial sample used to de-
velop the recipe, a Pt layer of 23 nm was coated. All the fol-
lowing Pt depositions were based on this process. With all 
the measures to prevent sparking, unstable deposition rates, 
taking breaks during the deposition to allow the chamber 
to cool, this recipe ended up being very challenging to carry 
out. Therefore, it was decided to deposit Pt as a thin capping 
layer for Cr with a thickness of 7 nm.

TiO2 was sputtered in RF mode using a TiO2 target        
20 nm thick in 20 minutes with conditions involving 20 
sccm Ar, ~7 mTorr chamber pressure, 100 W power, 16% CT, 

56% CL using Vaksis PVD Handy Twin Sputtering System-3 
at Bilkent UNAM. Prior to starting the reaction, chamber 
pressure is pumped down to below 5E-6 Torr. TiOx layer 
was sputtered with the Leybold L560 Box Coater in the Ad-
vanced Research Laboratory. TiOx layer was sputtered using 
a Titanium target with Argon, while giving a minimal amo-
unt of oxygen (<5%) to prevent the cessation of the reaction. 
20 nm thick TiOx was coated with 200 sccm of Argon, 4 
sccm of O2, 150 W power conditions at 3 Å/s deposition rate. 
The macro device fabrication is then completed through the 
transfer of a graphene layer onto the substrate. Fig. 1 shows 
layers and fabrication process of the macro Pt/TiO2/TiOx/
Graphene device.

Micro Device Fabrication

The fabrication of memristor devices with graphene top 
electrodes arranged in a crossbar pattern is made possib-
le by a set of 3 masks: Mask 1 for the bottom electrode, 
Mask 2 for the active layer and graphene, and Mask 3 for 
the top contact pads. There are 52 1 cm2 chips on wafer 
with 3 different structure types and varying dimensions. 
Table 1 shows the pad dimensions for the memristive de-
vice with graphene top electrode.

Fig. 2 illustrates the structure of the single device, 
which consists of a top layer made of Cr and Pt electrode 
pads, an active layer made up of a stoichiometric TiO2/TiOx 
topped with graphene, and a bottom layer made of Cr and 
Pt electrode pads. The horizontal lines in the mask set are 
created using the bottom electrode mask, while the vertical 
lines are created using the top electrode mask.

Prior to fabricating the device featuring a graphene top 
electrode, a more traditional memristor with a platinum 
top electrode had already been fabricated and characterized 
(20). As such, the fabrication process had been tested and 

Figure 1. Layers and fabrication process of the macro Pt/TiO2/TiOx/
Graphene device involving sequentially e-beam deposition, sputtering 
and graphene transfer

Table 1. Pad dimensions for the micro memristive structures with 
graphene top electrodes

Pad dimensions Active layer dimensions

Large single device 100 μm × 100 μm 100 μm × 226.09 μm
Small single device 21.74 μm × 21.74 μm 21.74 μm × 52.17 μm
Large 8×8 crossbar 47.83 μm × 47.83 μm 12.3 μm × 534.78 μm
Small 8×8 crossbar 21.74 μm × 21.74 μm 21.74 μm × 60.87 μm

12×12 crossbar 21.74 μm × 21.74 μm 8.7 μm × 408.7 μm
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verified except for the graphene transfer, patterning and 
characterization.

Fig. 3 illustrates the fabrication process of memristor 
with graphene top electrode. A Si wafer with SiO2 (300nm) 
passivation layer was used. Then, photolithography tech-
nique was initially used to create the bottom electrode, as 
shown in Fig. 3(a), using a mask aligner. AZ5214E was cho-
sen as the photoresist for the photolithography stage due to 
its ability to facilitate image reversal (21). In the mask aligner, 
the contact mode was selected as vacuum+hard and the se-
paration, which means the distance between the mask and 
the substrate during alignment, was determined as 50 µm. 
The mask thickness was chosen as 2.3mm, the 4-inch wa-
fer thickness as 0.5mm, and the photoresist thickness as 1.4 
µm. The UV exposure dose was determined as 50 mJ/cm². 
Prior to the flood exposure step, it is essential to undergo 
an annealing process, also known as hard bake, for 2 minu-
tes on each layer. Afterward, by adjusting the UV exposure 
dose to 230 and performing the flood exposure step without 
photomask, the lithography process was completed just as it 
was for each layer. The top of the wafer, which was obtained 
after the development stage using AZ400K as a developer, 
was coated with 20 nm layer of Cr and 7 nm layer of Pt, as 
depicted in Fig. 3(b), using e-beam process that was deve-
loped and described for the macro devices. Following the 
application of the optimized lift-off technique using aceto-
ne, as shown in Fig. 3(c), the photolithography stage for the 
active layer commenced, as illustrated in Fig. 3(d). Upon the 
completion of the development phase, the top of the wafer 
was coated with 20 nm layer of TiO2 and then 20 nm layer of 
TiOx using sputtering, as illustrated in the Fig. 3(e).

The sputtering was carried out using the same recipe 
that was described for macro devices. This combination of 
materials allows for resistive switching to occur through 
the movement of oxygen vacancies within the active layer.  

Graphene was transferred directly after the sputtering of 
TiOx, as depicted in Fig. 3(f). Upon transferring the grap-
hene onto the wafer, the lift-off technique was applied, as 
shown in the Fig. 3(g), and the patterned graphene was 
examined using a microscope. Fig. 4 shows the orange line 
border indicating the graphene area on a 4-inch wafer. Af-
ter completing the photolithography and development sta-
ges for the top electrode, as depicted in Fig. 3(h), which will 
form the final layer of the device, the top of the wafer was 
coated with 7 nm layer of Pt on 20 nm layer of Cr using the 
e-beam evaporator, as shown in Fig. 3(i). By utilizing the op-
timized lift-off stage with acetone, as depicted in the Fig. 3(j), 
the desired device was obtained. Fig. 5 shows microscope 

Figure 2. Top view of micro memristor structure with graphene top 
electrode consisting of Cr+Pt top electrode pads, TiO2/ TiOx active layer, 
Cr+Pt bottom electrode

Figure 3. Fabrication process flow of micro Pt/TiO2/TiOx/Graphene 
device with graphene top electrode including (a)lithography with bottom 
electrode mask, (b)depositing Cr+Pt, (c)lift off, (d)exposing with active 
layer mask, (e)depositing TiO2/TiOx (f) transferring graphene, (g)lift off, 
(h)exposing with top electrode mask, (i) depositing Cr+Pt, (j)lift off.

Figure 4. Photograph of micro patterned 4-inch full wafer just after 
graphene transfer on top of photoresist TiO2/TiOx before lift-off is 
completed to pattern active layer and graphene. The area with graphene 
is bordered by orange line for clarity.
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photographs of the graphene top electrode microstructures 
in which the electrode pads were coated and patterned after 
transferring the graphene.

RESULTS AND DISCUSSION

Pt/TiO2/TiOx/Graphene Macro Devices

Upon completing the fabrication of conventional mem-
ristors with platinum top electrodes, we initiated the pro-
duction of graphene top electrodes using macro samples 
for convenience. Therefore, we obtained novel devices. 
The fishing method was employed for transferring the 
graphene. This method can be used to transfer large, 
macroscopic samples of graphene, which can be conveni-
ent for certain applications.

A Sigma Aldrich micro pipette was utilized to control 
the amount of liquid that was dripped into the macro mem-
ristor. The ratio of glucose syrup to water was 1:10 in both 
experiments.

The graphene macro device, which has the sample drip-
ped and connected to the NI PXIe4139, appears as illustra-
ted in Fig. 6. By connecting the device to the NI PXIe4139, it 
is possible to perform detailed electrical measurements and 
gain insight into the device's behavior and performance.

The measurements were conducted by exciting the de-
vices with an input current signal and measuring the resul-
ting voltage across it. Hence, strictly speaking Fig.7 shows 
a V-I curve where input signal is current, this figure clearly 
depicts the memristive behavior exhibited by the graphene 
top electrode macro device where the ROFF/RON ratio is 80.

Fig. 8(a) presents the memristance measurement re-
sults for three different conditions: without a sample (rep-
resented by blue), with a water drop (represented by black), 

and with a 1 µl glucose syrup water drop (represented by 
green). As shown in the figure, the addition of a 1µl glucose 
syrup water drop led to lower memristance values.

In the absence of liquid on the graphene surface, the 
memristor exhibits high ROFF values (450 kΩ in the first 
cycle, 320 kΩ-350 kΩ in the second cycle). The addition of a 
4 µl water drop resulted in a ROFF value that was similar to 
the value obtained in the absence of a sample, but lower (400 
kΩin the first cycle, 250 kΩ-280 kΩ in the second cycle). 
The addition of a 1 µl drop of a glucose syrup water mixture 
resulted in a significant decrease in the ROFF value, which 
became stable at 173 kΩ. The RON values were measured as 
follows: 104 kΩ with the addition of glucose syrup, 122 kΩ 
with water, and 125-129 kΩ in the control condition with no 
sample present. These results provide sufficient evidence to 
establish a trend.

Fig. 8(b) shows the results of observations of water 
drops with varying amounts of glucose syrup. The figure 
illustrates the memristance measurement results for three 
distinct conditions: the absence of a sample, represented by 
blue; the presence of a 1 µl glucose syrup water drop, rep-
resented by green; and the presence of a 4 µl glucose syrup 
water drop, represented by red. The results obtained from 
mixing 4 µl of glucose syrup with water were similar to tho-
se obtained when using only water. When the droplet with 4 
µl glucose syrup was deposited, ROFF was 315 kΩ and 280 

Figure 5. Optical microscope photographs of the fabricated micro 
memristive structures with graphene top electrodes

Figure 6. Fabricated macro Pt/TiO2/TiOx/Graphene device's 
measurement setup with sample

Figure 7. Driving current vs. measured voltage curve of graphene top 
electrode macro memristive device driven by a square wave current of 83 
Hz 5µA amplitude with pinched hysteresis
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kΩ and RON was 120 kΩ. Depositing a liquid sample on top 
of the graphene electrode clearly changes the conductivity 
mechanism of the electrode and possibly influences the ac-
tive layer underneath.

Pt/TiO2/TiOx/Graphene Micro Devices: Graphene 
Characterization

Fig. 9 shows patterned graphene with optimized lift-off. 
Achieving a successful result with graphene after lift-off 
typically depends on the ability to maintain the continu-
ity of the graphene layer during the transfer process (22). 
In order to maintain the continuity of graphene, it is im-
portant to use a high-resolution photolithography system, 
choose carefully the photoresist material and determine 
the lift-off time (23). If the lift-off time is not carefully 
controlled, it can lead to damage to the graphene layer. 
This may involve conducting experiments to determine 
the optimal lift-off time for a particular application or 
using advanced techniques such as atomic force micros-
copy to monitor the lift-off process in real- time.

In the context of lift-off processes, Raman spectros-
copy plays a pivotal role in confirming the existence and qu-
ality of graphene (24). The top of the active layer is covered 
with graphene, Fig. 10 (a) shows the device and area that was 
analyzed, and Fig. 10(b) showcases discernible G and 2D 
peaks, signature of graphene. Raman analysis substantiates 
the existence of few-layer graphene with structural integrity 
and continuity.

Pt/TiO2/TiOx/Graphene Micro Devices: I-V 
Characterization

I-V measurements can be used to assess the device's per-
formance and determine input dependent variations in 
its resistance. Electrical characterization results in Fig. 11 
show that the graphene top electrode micro memristive 

Figure 8. (a) Memristance measurement results of macro Pt/TiO2/
TiOx/Graphene device without sample, with water drop, with 1µl glucose 
syrup water drop (b) Memristance measurement results of macro t/
TiO2/TiOx/Graphene device without sample, with 1 µl glucose syrup 
water drop, with 4 µl glucose syrup water drop

(a)

(b)

Figure 9. Top view optical microscope photograph of micro memristive 
device after graphene patterning with optimized lift-off

Figure 10. Verification of few-layer graphene (a) Top view optical 
microscope photograph of the micro Pt/TiO2/TiOx/Graphene device 
the red dashed circle marks the area where Raman Spectroscopy is 
performed (b) Raman spectrum of graphene prior to transfer to the 
wafer (shown in red) and after having been transferred and patterned 
(shown in black) on the micro Pt/TiO2/TiOx/Graphene device
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drop from 450 MΩ to 150 MΩ is observed in the HRS 
value in the positive quadrant during the first 20 cycles, 
after which the resistance settles more gradually to aro-
und 50 MΩ during the next 108 cycles. This trend appli-
es to both quadrants. These micro devices exhibit much 
higher resistances and are susceptible to charging. This 
would explain the cycle-to-cycle variation. The device 
resistance in both quadrants exhibit some hysteresis and 
consecutive cycles show that resistance decreases gradu-
ally due to excitation.

CONCLUSION

A fabrication method to utilize graphene as a top electrode 
in memristive devices is presented. Electrical and structural 
characterization results demonstrate that: (i) graphene is a 
promising material to utilize memristive devices as sensors 
and (ii) the developed fabrication method and lift-off met-
hod yields continuous, patterned graphene top electrodes. 
Both sets of devices, macro and micro, were fabricated using 
the same deposition and transfer methods. The microstruc-
tures were patterned using photolithography and lift-off. 
Electrical characterization was carried out in all cases by 
applying the input signal to the top electrode and groun-
ding the device from the Pt bottom electrode. The first and 
most fundamental aim of electrical characterization was to 
demonstrate that the graphene in fact functions as an elect-
rode i.e. an applied current results in a potential difference 
across the grounded bottom electrode and the graphene 
electrode, or if the input is a voltage signal, that this input 
results in a current that flows from the bottom electrode to 
the graphene electrode. Secondly, as the aim was to utilize 
memristive dynamics, it was important to verify the that 
these devices exhibited memristance. Both were demons-
trated through I-V measurements as shown in Fig. 7 and Fig. 
12. Both macro and micro devices exhibit input dependent 
memristance. In the case of the macro device distinct resis-
tance states were observed which enabled sensor measure-
ments to show that these Pt/TiO2/TiOx/Graphene devices 
could discern between a state of having no deposited sample, 
a water drop, and a glucose drop.

These experiments yielded convincing results. Lastly, 
since the fabrication method is novel to our knowledge 
graphene had to be tested with surface measurement tech-
niques such as Raman to corroborate that it remained con-
tinuous after the lift- off process. These measurements also 
produced positive results.

This work has attained encouraging results. Memristi-
ve devices with graphene top electrodes have the potential 
to have a significant impact in the future, given the many 
advantages of graphene as a material. They may be used in a 
variety of applications, including in memory and computing 

device clearly exhibits diodic behavior in both the positi-
ve and negative quadrants. Unlike the macro devices, dis-
tinct resistance states are not demonstrated by this devi-
ce. However, the resistance is input dependent. Moreover, 
there is a cycle-to-cycle variation in resistance. this can 
be deduced when one compares the I-V plot from earlier 
cycles to later cycles: the red plot (Cycle 1) shows a high 
resistance and magenta plot (Cycle 128) shows a much 
lower resistance. This is better demonstrated in Fig. 12 
which depicts the drop in device resistance from one 
cycle to the next. This drop in resistance is more rapid 
at first in both quadrants e.g. as shown in Fig. 12 (a) a 

Figure 11. I-V Measurements of micro Pt/TiO2/TiOx/Graphene device

Figure 12. Resistance values of the device were measured at Vread=2.1V 
to show the cycle-to-cycle variation in each quadrant(a) Resistance of 
micro Pt/TiO2/TiOx/Graphene device for positive quadrant during 
128 cycles (b)Resistance of micro Pt/TiO2/TiOx/Graphene device for 
negative quadrant during 128 cycles

(a)

(b)
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devices, as well as in sensors and energy storage systems. 
Graphene is a promising material for use in memristive de-
vices, due to their excellent electrical and mechanical pro-
perties, as well as their high strength and flexibility.
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The COVID-19 pandemic is an infectious disea-
se that emerged in the city of Wuhan, China, in 

2019 and quickly spread worldwide. Diagnosis of CO-
VID-19 is typically performed using various methods 
such as symptoms, imaging techniques, and labora-
tory tests [1, 2]. Common symptoms include fever, 
cough, shortness of breath, muscle aches, fatigue, 
headache, and loss of taste or smell [3]. Imaging tech-
niques are another auxiliary method in the diagnosis 
of COVID-19. The most commonly used methods 
include computerized tomography (CT) and chest 
X-rays. These imaging methods can help detect da-
mage, inflammation, and other abnormalities in the 
lungs [4, 5]. The most common laboratory tests inc-
lude polymerase chain reaction (PCR) tests, antigen 
tests, and antibody tests. The PCR test helps diagnose 
COVID-19 by detecting the genetic material of the 
virus in the patient's respiratory samples. In addition 
to these, blood gas values are important parameters 
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that needs to be monitored during the disease mana-
gement process [6]. Hemoglobin, composed of heme 
and globin, which transport gases in the blood, is pre-
sent in all living organisms. Hemoglobin's primary 
function is to transport oxygen (O2) from the lungs 
to peripheral tissues and carry carbon dioxide (CO2) 
from tissues to the lungs. An increase in carboxyhe-
moglobin levels has been observed in COVID-19 pa-
tients receiving treatment in intensive care units [6]. 
Diagnosing whether or not someone is infected with 
COVID-19 remains a current challenge. Machine 
learning methods, which have provided solutions to 
many contemporary problems, can also play a signifi-
cant role in the fight against COVID-19.

Machine learning techniques can be applied in va-
rious fields such as tracking the spread of the virus, ma-
king diagnoses, optimizing treatment, and discovering 
potential vaccines. COVID-19 diagnosis is categorized 

A B S T R A C T

W ith the impact of the COVID-19 outbreak, almost all scientists and nations began 
to show great interest in the subject for a long time. Studies in the field of outbreak, 

diagnosis and prevention are still ongoing. Issues such as methods developed to understand 
the spread mechanisms of the disease, prevention measures, vaccine and drug research 
are among the top priorities of the world agenda. The accuracy of the tests applied in the 
outbreak management has become extremely critical. In this study, it is aimed to obtain a 
function that finds the positive or negative COVID-19 test from the blood gas values of in-
dividuals by using Machine Learning methods to contribute to the outbreak management. 
Using the Multivariate Linear Regression (MLR) model, a linear function is obtained to 
represent the COVID-19 dataset taken from the Van province of Turkey. The data set ob-
tained from Van Yüzüncü Yıl University Dursun Odabaş Medical Center consists of blood 
gas analysis samples (109 positive, 1146 negative) taken from individuals. It is thought that 
the linear function to be obtained by using these data will be an important method in de-
termining the test results of individuals. Gradient Descent optimization methods are used 
to find the optimum values of the coefficients in the function to be obtained. In the study, 
the RMSProp optimization algorithm has a success rate of 58-91.23% in all measurement 
methods, and it is seen that it is much more successful than other optimization algorithms.

INTRODUCTION 
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and Artificial Neural Networks used in the model achieved 
the highest accuracy rate [16]. Mohan et al. (2021) used their 
Ensemble Learning, Autoregressive, and Moving Regressi-
ve (EAMA) hybrid model to detect COVID-19. The EAMA 
model, also known as a community learning, autoregressi-
ve model, and moving average model, used data from the 
Ministry of Health and Family Welfare in India and Worl-
dometers. Their analysis allowed for detailed predictions of 
active cases and deaths at the state level in India [17]. Pinter 
et al. (2020) proposed a hybridization model consisting of 
a network-based fuzzy inference system and a multi-layer 
perceptron-empirical competitive algorithm for the predic-
tion of COVID-19. The performance evaluation of the pro-
posed model used metrics such as Mean Absolute Percenta-
ge Error, Root Mean Square Error (RMSE), and coefficient of 
determination (R-squared). The analysis indicated promi-
sing results for the proposed method in disease prediction 
[18]. Elaziz et al. (2020) used CXR images to distinguish CO-
VID-19 cases. They proposed a new feature selection met-
hod and utilized a modified mantis-ray search optimization 
algorithm based on Modified Reflective and Fitness-Orien-
ted Differential Evolution (MRFODE) to determine relevant 
subset features. Test results indicated promising accuracy 
values in classifying COVID-19 patient samples [19].

In this study, a method is aimed to be developed for the 
detection of the COVID-19 virus from blood gas data frequ-
ently used in laboratory tests and for monitoring the disease 
following transmission. The method includes a multivariate 
linear regression model, six gradient descent-based optimi-
zation algorithms to minimize error, and a dataset obtained 
from the Van province of Turkey for COVID-19.

MATERIAL AND METHODS

Optimization Algorithms

The primary objective of optimization algorithms is to 
minimize the error quantity. Methods based on Gradi-
ent Descent, such as Stochastic Gradient Descent (SGD), 
Momentum Stochastic Gradient Descent (MMT), Ada-
delta Gradient Descent (AGD), RMSProp (RMP), Adag-
rad (ADD), and Adam (ADM), are among the most com-
monly used optimization algorithms. These algorithms 
are employed to reduce the error quantity and improve 
the model's performance. Table 1 displays these algo-
rithms [20- 24].

Objective Functions

The choice of the objective function is dependent on the 
goal of the optimization algorithm. This goal is typi-
cally determined as enhancing the model's accuracy or 
minimizing the error quantity. Integral of Absolute Er-

as a Non-deterministic Polynomial problem, and analytical 
methods of Machine Learning that provide exact results 
are not preferred for solving such problems [7]. This is be-
cause as the dimensions of the problem increase, analyti-
cal methods become cost-prohibitive. Instead of analytical 
methods, heuristic or metaheuristic approach algorithms 
inspired by nature are recommended, which provide appro-
ximate results and are optimization-based, such as Artificial 
Neural Networks [7, 8], Genetic Algorithms [7, 9], Particle 
Swarm Optimization [7, 10], and others. The reason for this 
is that these methods can provide approximate results at a 
reasonable cost even as the size of the problem increases. 
Such methods do not guarantee exact results [11, 12].

Intuitive methods are techniques aimed at finding a 
satisfactory solution through trial and error without gua-
ranteeing that the solution is optimal or even close to op-
timal. These methods are typically used for complex prob-
lems that cannot be solved with analytical methods or in 
situations where an approximate solution is acceptable [7]. 
Metaheuristic methods, on the other hand, are optimizati-
on techniques that combine multiple intuitive methods to 
obtain a better solution [13]. These methods aim to explo-
re the search space more efficiently than simple heuristic 
methods by using various strategies such as randomization, 
neighborhood search, and adaptive memory. Metaheuristic 
methods are often used in complex optimization problems 
where the search space is vast and navigation is challenging 
[8, 13].

Multivariate linear regression is based on the assump-
tion that the dependent variable can be expressed as a linear 
combination of independent variables. Therefore, it is one 
of the most suitable metaheuristic methods to use when 
data exhibits a linear relationship [14, 15]. Multivariate li-
near regression can be employed in crises such as the CO-
VID-19 pandemic for tasks such as predicting the course of 
the outbreak, determining the disease burden, assessing he-
althcare resource requirements, planning pandemic control 
strategies, and evaluating their effectiveness.

Özen et al. (2021) use machine learning methods to 
make predictions for the detection of COVID-19 cases. 
They employed Python and R programming languages and 
utilized Prophet, Polynomial Regression, ARIMA, Linear 
Regression, and Random Forest models for their predic-
tions. They reported that the Polynomial regression met-
hod provided the best prediction results [15]. Saadatmand 
et al. (2021) developed a model for the detection of oxygen 
therapy needs of COVID-19 patients. This model includes 
five different methods: Logistic Regression, Random Forest, 
XGBoost, C5.0, and Artificial Neural Networks. They used 
data obtained from two local hospitals in Iran to create the-
ir dataset. Test results showed that the Logistic Regression 
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ror (IAE), Integral of Time multiplied by Absolute Error 
(ITAE), and Mean Squared Error (MSE) are commonly 
used objective functions in control systems and optimi-
zation problems. IAE measures the system's error, i.e., 
the deviation between actual and desired values, and is 
used for minimization. ITAE evaluates the performan-
ce of a control system by considering both the error and 
response time. MSE measures the error quantity and is 

used for minimization as well. MSE is also often used as a 
performance metric in regression problems [25, 26]. Tab-
le 2 displays the mathematical formulas of the objective 
functions.

Feature Selection

In the field of machine learning, datasets are growing ex-
ponentially day by day and their quantitative numbers as 
well as qualitative features are increasing. The increase 
in the number of features in datasets can lead to different 
behaviors of machine learning methods. Even when be-
haviors do not change, it excessively increases the costs 
of methods. Dimension reduction techniques are used 
to reduce these costs. Feature Selection (FS) and Feature 
Extraction (FE) are the most common dimension reduc-
tion techniques. FE creates new and more effective featu-
res by using existing ones. FS, on the other hand, selects 

Table 1. Most popular gradient descent methods [20- 24].

Algorithm Name Formula Description

SGD 1t t
t

LW W a
W+
∂

= −
∂

The current derivative (∂L/∂wt) updates 
the current weight (wt) by multiplying it 

with the learning rate (a).

MMT
t+1 t

1

tw  = w  - 

(1 )

aV

t t
t

LV V
W

β β−
∂

= + −
∂

The initial value of Vt is 0. β is between 
0 and 1, and it is commonly taken as 

0.9.

ADG

1

2

1

t t
tt

t t
t

a Lw w
wS

LS S
w

+

−

∂
= − ⋅

∂+

 ∂
= +  ∂ 


S starts as 0 initially. ϵ is typically set to 

a very small value (10-7).

RMP

1

2

1 (1 )

t t
tt

t t
t

a Lw w
wS

LS S
w

β β

+

−

∂
= − ⋅

∂+

 ∂
= + −  ∂ 


S starts as 0 initially, a = 0.001, β = 0.9, 

and ϵ is chosen as 10-6.

ADD

1
1

2
1

2

1

1

(1 )[ ]

(1 )

t
t t

tt

t t t

t t
t

t t t

D Lw w
wS

D D w

LS S
w

w w w

β β

β β

−
+

−

−

−

∂
= − ⋅

∂+

= + − ∆

 ∂
= + −  ∂ 

∆ = −



S and D are initialized to 0, β is set to 
0.95, and ϵ is chosen as 10-6.

ADM

1

1

2

1 1 1

2

2 1 2

ˆ
ˆ

ˆ
1

ˆ
1

(1 )

(1 )

t t t

t

t
t t

t
t t

t t
t

t t
t

aW W V
S

VV

SS

LV V
W

LS S
W

β

β

β β

β β

+

−

−

= − ⋅
+

=
−

=
−

∂
= + −

∂

 ∂
= + −  ∂ 



S and V are initially set to 0, a = 0.001, 
β1 = 0.9, β2 = 0.999, and ϵ is chosen 

as 10-8.

Table 2. Objective Functions [25, 26].

Method Name Formula

IAE
0
| ( ) |

t
e t dt∫

ITAE
0

| ( ) |
t
t e t dt∫

MSE 2

0

1 ( ( ))
t

e t dt
n ∫
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the features among the existing ones that have the most 
influence on the outcome. Therefore, instead of raw data, 
a dataset that is more effective on the results is provided 
as input data to machine learning methods. Using these 
methods, performance improvement and cost reduction 
can be achieved. The difference between FE and FS is 
shown in Fig. 1 [27-29].

FE is applied to data sets such as images and audio, whi-
le FS is applied to more sensitive data. Since the dataset used 
in the study does not involve image data and is related to the 
field of medicine, FS methods are employed. As seen in Fig. 
2, FS is examined under three main headings (Filter, Wrap-
per, Embedded) [27, 29, 30].

Figure 1. The Difference Between FE and FS [29].

Figure 2. An Overview of FS Main Headings [27].

Table 3. Attributes of blood gas examination records for COVID-19 testing.

1. 2. 3. 4. … … 686. … … 1255.

Age 84 64 82 70 … … 51 32 70 18

Gender E K K E … … E E E K

Base(B,ox) -0.15 -1.50 7.90 0.00 … … 5.10 0.70 -17.60 -0.70

Base(Ecf) 1.25 -2.50 6.89 -3.90 … … 6.90 2.70 -11.00 1.60

Base(Ecf,ox) 1.15 -2.60 8.57 0.00 … … 6.40 2.40 -11.80 1.00

Ca++ 1.04 0.94 1.08 1.05 … … 1.45 1.20 1.30 1.23

cHCO3 24.65 23.20 30.09 21.40 … … 29.10 25.00 12.30 23.90

Cl 104.75 108.00 106.00 106.00 … … 95.00 106.00 110.00 103.00

ctHb 13.95 14.50 13.43 12.20 … … 12.90 16.30 18.30 14.30

ctO2e 16.85 18.40 18.14 14.40 … … 8.60 13.20 1.80 7.00

FHHb 9.93 7.80 2.66 13.30 … … 50.30 36.30 92.20 63.20

FMetHb 0.03 -0.60 0.55 0.70 … … 0.70 0.40 0.50 0.70

FO2Hb 88.48 91.00 95.60 84.40 … … 47.50 57.70 6.70 35.10

Glukoz 139.75 100.00 129.83 105.00 … … 124.00 129.00 154.00 110.00

K+ 3.27 3.90 3.70 5.80 … … 4.00 4.10 6.30 3.00

Na+ 134.50 136.00 144.14 140.00 … … 134.00 141.00 148.00 141.00

p50e 28.53 25.42 24.00 27.22 … … 27.77 25.60 39.92 28.81

pCO2 54.10 28.80 40.31 34.70 … … 40.10 47.60 103.00 45.40

pCO2(T) 54.10 28.80 40.31 34.70 … … 40.10 47.60 103.00 45.40

pH 7.35 7.47 7.49 7.39 … … 7.49 7.38 6.93 7.38

pH(T) 7.35 7.47 7.49 7.39 … … 7.49 7.38 6.93 7.38

pO2 76.15 61.80 95.12 53.00 … … 27.20 30.70 13.10 22.90

pO2(T) 76.15 61.80 95.12 53.00 … … 27.20 30.70 13.10 22.90

sO2 89.90 92.10 97.30 86.40 … … 48.60 61.40 6.80 35.70

Result Positive Negative
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Spiral methods are preferred because they take into 
account the dependence between features and have high 
accuracy performance from filter methods. There are three 
types of spiral methods used in regression or classification 
methods [27, 30].

Spiral methods have different methods such as For-
ward Selection, Backward Selection, and Stepwise (Exhaus-
tive) Selection. In the Forward Selection method, the feature 
that most affects the performance of the machine learning 
method is selected from the feature pool, then the second 
most influential feature is selected, and so on until the fea-
ture selection reaches the stopping criterion. A stopping cri-
terion is considered to be selecting all features with a P-value 
below 0.05. In the Backward Selection method, the opposite 
path of Forward Selection is followed. Feature selection be-
gins by removing the feature that has the least impact on 
the performance of the machine learning method from all 
features. Then, the second least influential feature is remo-
ved. This process continues until all features with a P-value 
above 0.05 are removed to create the best feature subset. 
Stepwise Selection is a combination of both methods. Each 
feature is compared to all other features and selected for the 
best feature subset [27, 30, 31].

Problem Formulation

Table 3 displays the features of the dataset obtained 
from the hospital. The Blood Gas data set, where the 
MLR model is applied, is obtained upon an official re-
quest. This dataset consists of examination records con-
ducted by Van Yüzüncü Yıl University Dursun Odabaş 
Medical Center between 01.11.2020 and 31.12.2020. The 
Blood Gas records contain 22 attributes (Base(B,ox), 
Base(Ecf), Base(Ecf,ox), Ca++, cHCO3, Cl, ctHb, ctO2e, 

FHHb, FMetHb, FO2Hb, Glucose, K+, Na+, p50e, pCO2, 
pCO2(T), pH, pH(T), pO2, pO2(T), sO2). Together with 
age and gender information as shown in Table 3, a dataset 
with 24 features is obtained. In the result section, there 
are labels indicating whether the COVID-19 virus is posi-
tive or negative. In other words, the obtained dataset has 
two classes (positive, negative). The positive class has a 
total of 109 samples (87 training, 22 testing), and the ne-
gative class has a total of 1146 samples (916 training, 229 
testing), making a total of 1255 samples. In MLR models, 
a single point is initially selected for coefficients. These 
points are generally zero, one, or a randomly selected va-
lue. In the conducted study, a population is used for the 
initialization of coefficients.

Feature selection methods (Filter, Wrapper, and Em-
bedded) are applied to the dataset in Table 3. The features 
that are common among the most effective ones obtained 
in all three methods (Age, Base(B,ox), Ca++) are shown in 
Table 4. The training and testing processes of MLR are con-
ducted using these selected features.

The resulting function is formulated with the most ef-
fective features as shown in Eq. 1.

1 2 Base 3( , )Yas CaY X X B ox Xθ θ θ ++= + +   (1)

Y, XAge, X(Base(B,ox)), X(Ca++) values are read from the dataset 
to obtain the coefficients θ1, θ2, θ3. These coefficients are 
generally initially set to 0 or 1 or randomly generated bet-
ween two values. Using the obtained coefficients after the 
operations, the X input values are substituted in Equation 1 
to obtain Y' (Y to the power of Y). The difference between 
the real value Y and the predicted value Y' constitutes our 
error amount.

Experimental Study

All modules of the conducted study are shown in Figure 
3. After applying feature selection methods to the entire
dataset, outputs are generated with six different optimi-
zation algorithms and three different objective functions. 
In other words, 6*3 outputs are compared, and the results 
are analyzed. Solving MLR problems requires finding
a function using many inputs and their corresponding
output values. Therefore, after the regression process,
the most suitable values found represent a function that
includes all input and output values, replacing the θ coef-
ficients in Equation 1. To find appropriate values for these 
coefficients, an initial value is assigned, and the process
is initiated. With this initial value, the Dik Inis optimiza-
tion algorithms are used to gradually obtain the optimal
θ coefficient.

In this study, it starts with stochastic initial coefficients 
because the aim is to reach a solution as quickly as possible. 

Table 4. Features to be used in the MLR model.

Age Base(B,ox) Ca++ Result

84 -0.15 1.04 Positive

64 -1.50 0.94 Positive

82 7.90 1.08 Positive

70 0.00 1.05 Positive

… … … …

… … … …

61 2.00 1.06 Negative

60 7.41 1.05 Negative

51 5.10 1.45 Negative

32 0.70 1.20 Negative

… … … …

… … … …
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From the initial population, one candidate solution that is 
closest to the result must be selected to initiate the appli-
cation. After individually processing all candidate solutions 
through optimization and objective functions once, the 
candidate solution with the lowest result is chosen to pro-
ceed. The obtained ideal candidate solution continues with 
regression steps for up to 1000 iterations. At the end of the 
regression process, the coefficients of the function that rep-
resents the entire dataset will have been determined.

RESULTS AND DISCUSSION

The outputs obtained from the application with a star-
ting population size of 10 are listed in Table 5. In Table 
5, the averages of the outputs obtained from 10 runs are 
compared. Here, the outputs of the applications using 

different optimization algorithms and objective func-
tions (θ₁, θ₂, θ₃, and the number of iterations) are listed. 
Additionally, the "time" column of the table provides the 
processing times for each objective function for all opti-
mization methods. Adadelta and Adagrad optimization 
algorithms achieve results with the lowest number of 
iterations for all objective functions. SGD, Momentum, 
and Adam optimization algorithms have high numbers 
of iterations for the IAE objective function. Among the 
objective functions, MSE reaches results with the lowest 
number of iterations for all optimization algorithms.

In Fig. 4, the errors and the number of iterations for the 
application using the IAE objective function with all opti-
mization algorithms are shown graphically. Here, applicati-
ons for all optimization algorithms are run 10 times, and the 

Table 5. Results table for a population size of 10.

Obj. Func. Opt. Alg. Iterations 
Number θ1 θ2 θ3 Time

IAE

SGD 1000 0.3533127117 0.7155792544 0.9136478838

00:27:52

MMT 1000 0.3539140773 0.7161656774 0.9141953364

ADG 1000 0.0000619687 0.0000620018 0.0000621926

RMP 1000 0.9425588422 0.9871959691 0.9895221032

ADD 1000 0.0000525305 0.0000527744 0.0000528254

ADM 1000 0.5689422754 0.4302199096 0.3704841926

ITAE

SGD 1000 0.3532622052 0.7154840038 0.9135009433

00:32:59

MMT 1000 0.3538630228 0.7160694295 0.9140472966

ADG 1000 0.0000614089 0.0000618772 0.0000618805

RMP 1000 0.9427011017 0.9867973079 0.9885063650

ADD 1000 0.0000525305 0.0000527744 0.0000528254

ADM 1000 0.5675193230 0.4295664937 0.3697876234

MSE

SGD 1000 0.3532656701 0.7154717486 0.9135007489

00:28:45

MMT 1000 0.3538664716 0.7160571368 0.9140470657

ADG 1000 0.0000614950 0.0000614423 0.0000614426

RMP 1000 0.9447178907 0.9855191028 0.9872083973

ADD 1000 0.0000525305 0.0000527744 0.0000528254

ADM 1000 0.5678662791 0.4290865789 0.3693919793

Figure 3. All modules of the study.
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results are presented graphically. Fig. 5 displays the results 
of applications using the ITAE objective function and diffe-
rent optimization methods graphically.

Fig. 6 shows the results of the applications using the 
MSE objective function and different optimization methods 
graphically.

Results obtained for different optimization algorithms 
based on stochastic initialization and different objective 
functions are shown in Fig.s 4, 5, and 6. As seen in the fi-
gures, very similar results are obtained. Table 5 provides a 
comparative view of the coefficients, iteration counts, and 
processing times obtained from experiments with different 
parameters. The obtained coefficients are used for testing, 
i.e., a validation step is performed. The aim of the validation 
section is to confirm the accuracy of the obtained coeffi-
cients. Here, the success rates of the coefficients obtained 
with 251 test data (229 negative and 22 positive) are analyzed. 
Using various optimization algorithms and objective functi-
ons, many coefficient vectors (θ1, θ2, θ3) are obtained. With 
six optimization algorithms (SGD, MMT, ADG, RMP, ADD, 
ADM) and three objective functions (IAE, ITAE, MSE), 6x3 
coefficient vectors are obtained. When the values are put to-
gether, a matrix of size 18x3 is formed. By substituting each 
row of the 18-row matrix into Eq. 1 separately, processing 
is performed with the 251-test data set. As a result of the 
processing, 18x251 Y' (predicted results) are obtained. The 
total error rates of the obtained estimated data are calcula-
ted using the MAPE method. In addition, correct prediction 
counts are analyzed at certain threshold values (20%, 30%, 
40%). If the error is below these threshold values, it is consi-
dered a correct prediction; if it is above, it is considered an 
incorrect prediction. Table 6 shows the success rates of all 
the studies obtained through thresholding and the MAPE 
method.

When examining the success rates, it is observed that 
the performance of the SGD, MMT, and RMP algorithms 
used with the IAE objective function is successful. In par-
ticular, RMP exhibits a success rate ranging from 58% to 
91.23% across all measurement methods.

CONCLUSION

The aim of this study is to obtain a testing method for 
the COVID-19 pandemic. Individuals' COVID-19 test re-
sults, whether positive or negative, are determined using 
blood gas values. Multivariate linear regression modeling 
is carried out with a stochastic initial population method, 
six different optimization algorithms, and three different 
objective functions.

The method for generating the initial population is a 
crucial step in multivariate linear regression and all other 
machine learning algorithms, yet it remains an area with li-
mited research. The most commonly used method to date 
is the traditional stochastic initialization method. In studies 
initiated with the traditional stochastic initialization met-
hod, the initial populations and obtained outputs always 
differ. Therefore, studies initiated with stochastic methods 
need to be run multiple times (e.g., 10, 50, or 100 times), and 

Figure 4. Outputs with the IAE objective function.

Figure 5. Outputs with the ITAE objective function.

Figure 6. Outputs with the MSE objective function.
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the average values of the obtained outputs are presented in 
the literature, which is more acceptable. In terms of proces-
sing time, it is observed that the IAE objective has a slight 
advantage in the study. Additionally, the RMP optimization 
algorithm is found to have a success rate ranging from 58% 
to 91.23% across all measurement methods. Thus, a success 
rate of 91.23% is achieved in the modeling aimed at the CO-
VID-19 pandemic. The desired outcome of this study is to 
contribute to the field of healthcare.

In future studies, changing the modeling method is ai-
med at achieving more successful results. Contributions to 
the field of healthcare are crucial in today's world. Therefore, 
one of the fundamental duties of every individual should be 
to serve society and humanity.
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High entropy alloys (HEAs) are a novel class of emer-
ging materials with great potential to be applied in a 
wide range of engineering applications due to their 
unique comprehensive properties and structures (1, 
2). Differing from conventional alloys, HEAs usually 
contain five or more principal elements in equiato-
mic or near-equiatomic ratios which causes an incre-
ase in the mixing entropy (ΔSmix) of the alloys (3). Ac-
cordingly, HEAs are more likely to form simple solid 
solution structures such as face-centered cubic (FCC), 
body-centered cubic (BCC), and hexagonal close-pac-
ked (HCP) because of the reduced Gibbs free energy 
(4–6).

FCC-type HEAs have received much attention as 
compared to conventional alloys due to their exceptio-
nal properties such as fracture toughness at cryogenic 

Article History: 
Received: 2023/09/19
Accepted: 2024/01/23
Online: 2024/03/31

Correspondence to: Gökhan Polat, 
İzmir Katip Çelebi University, Metallurgical 
and Materials Engineering, 35620, İzmir, 
TÜRKİYE
E-Mail: gokhan.polat@ikc.edu.tr;
Phone: +90 232 329 3535/3830.

This article has been checked for similarity.

temperatures (7), and remarkable ductility (8). The well-
known equiatomic CoCrFeNi HEA with a single FCC 
crystal structure is the starting point of numerous stu-
dies in the field of alloy development. The reported yi-
eld strength and ultimate tensile strength of the as-cast 
CoCrFeNi HEA are 160 MPa and 718 MPa, respectively 
(9). In addition, this HEA shows an excellent elongation 
to failure of over 50 % suggesting outstanding uniform 
deformation along with high strain hardening ability (9). 
This feature provides a great base for further strengthe-
ning the ductile HEAs. However, recent research indica-
tes that a HEA matrix alone, particularly the single-pha-
se FCC structure, is insufficiently robust for engineering 
applications at ambient and increased temperatures (10). 
Thus, the development of the mechanical properties of 
single-phase FCC CoCrFeNi HEAs has received great 
attention over the past decade (11). The main strategies 

A B S T R A C T

The CoCrFeNi high entropy alloy (HEA) with face-centered cubic (FCC) crystal struc-
ture exhibits excellent ductility values even at cryogenic temperatures. However, since 

this HEA is relatively weak in strength, it may not meet the requirements of industrial 
applications in terms of strength-ductility trade-off. Therefore, the systematic addition 
of yttrium (Y) into CoCrFeNi HEA was investigated in the present study to increase the 
strength by solid solution and second phase strengthening. The HEAs were produced by 
vacuum arc melting, suction casting, and subsequent homogenization at 1150 °C for 24 h. 
The structural development of the HEAs was investigated by using the X-ray diffraction 
(XRD) technique which revealed the formation of a solid solution phase and CaCu5-type 
hexagonal structure (HS) second phase. The corresponding microstructure of the HEAs 
was examined under a scanning electron microscope (SEM) revealing the transformation 
of the microstructure from elongated grains to nearly equiaxed grains with the increase of Y 
content from 2 at. % to 4 at. %. The mechanical properties of the HEAs were investigated 
by using hardness and compression tests. The results exhibited a dramatic increase in the 
hardness from 143 (±2) HV to 335 (±7) HV and in the yield strength from 130 MPa to 
1025 MPa with 4 at. % Y addition. Our study has revealed that the addition of rare earth 
Y element results in further development in the strength of the CoCrFeNi for potential 
engineering applications.
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In the present study, CoCrFeNi, (CoCrFeNi)98Y2, 
(CoCrFeNi)96Y4 HEAs were produced by vacuum arc mel-
ting to investigate the development of the mechanical pro-
perties due to the solid solution strengthening of solute Y 
atoms in the FCC crystal structure and formation of second 
phases. The formations of the phases were investigated ex-
perimentally by XRD, SEM, and EDS analyses along with 
the mechanical properties and interpreted thermodynami-
cally.

MATERIAL AND METHODS

The CoCrFeNi, (CoCrFeNi)98Y2, (CoCrFeNi)96Y4 HEAs 
with the nominal compositions provided in Table 1 were 
produced by vacuum arc melting technique under argon 
atmosphere. For convenience, they are referred to as base, 
2Y, and 4Y, respectively. The elemental Co, Cr, Fe, Ni, and 
Y chunks, each with purities higher than 99.9 wt. % were 
used to obtain the metal mixtures based on the nominal 
compositions. A total of 3 grams of metal chunk mixtures 
for each composition were charged into Edmund Buhler 
MAM-1 copper hearth arc-melter to produce ingots. The 
HEA ingots were flipped and re-melted at least 3 times to 
achieve the chemical homogeneity in the microstructure. 
Finally, the alloys were suction cast into a water-cooled 
cylindrical copper mold with a diameter of 4 mm. The 
suction-casted HEAs were homogenized at 1150 °C for 
24 h in a tube furnace with a controlled atmosphere.

The structural characterizations of the HEAs were 
conducted by using a Panalytical Empyrean X-ray diffracto-
meter with Cu-Kα radiation source (λ=1.5406 Å). The X-ray 
diffraction (XRD) characterization was conducted with a 
scanning rate of 1°/min between 35-100° values.

The relative intensity ratio (RIR) method is used to 
determine the percentages of the hexagonal structure (HS) 
phases based on the XRD analyses as shown in the follo-
wing equation (29, 30):

( )

( ) HS

hkl FCCFCC HS

HS hkl FCC

IV R
V I R

= ⋅ (1)

where v and I are the volume fraction and intensity of 
the most intense (hkl) peak, respectively. R-value of any 
phase a is given by (29–31):

to enhance the mechanical properties of the HEAs inclu-
de severe plastic deformation (12), tuning the composition 
of the main alloy (13–15), solid solution hardening by the 
addition of solute atoms (16), and second-phase hardening 
(17–19). It is widely known that adding additional alloying 
elements, such as Al, Mn, and Cu at low concentrations to 
the base CoCrFeNi alloy destabilizes the single FCC phase 
and promotes phase (20, 21). For instance, Wang et al. (22) 
reported that the presence of Al in Al0.3CoCrFeNi HEA pro-
duced by the magnetic levitation induction technique and 
subsequent annealing at 800 °C resulted in the formation of 
a B2 phase. The formation of the B2 phase in the FCC mat-
rix caused outstanding mechanical properties of ~870 MPa 
yield strength and ~1060 MPa tensile strength as well as the 
ductility of ~26 %. In addition, Chen et al. (23) produced 
(CoCrFeNi)100-x(ZrC)x (x = 0-8, at. %) HEAs by arc-melting 
and investigated the strengthening mechanisms. They sho-
wed that the amounts of Laves and ZrC phases were inc-
reased with the increasing amounts of Zr and C additions, 
resulting in an improvement of the yield strength from 154 
MPa to 374 MPa owing to the second phase strengthening 
mechanism.

The rare earth (RE) elements, often known as "indust-
rial vitamins" due to their exceptional physical and chemical 
qualities, play a significant role in enhancing the quality of 
products and raising manufacturing performance. Because 
of their beneficial effects on molten steel purification and 
inclusion modification, additions of RE elements into steels 
have been a popular strategy for tailoring microstructure 
and improving mechanical performance (24–26). In additi-
on, Y addition caused a substantial increase in the hardness 
of Fe-Al and Ni-Al-based superalloys (27, 28). 

Similarly, it is shown in the literature that the mechani-
cal properties of the HEAs could be enhanced by the addi-
tion of RE elements such as Y and Zr. For instance, Polat et 
al. (18) produced 1 and 4 at. % Y added CoCrFeNi HEAs by 
mechanical alloying followed by annealing and investigated 
the mechanical properties. They showed that an increase in 
the Y content caused a dramatic rise in the hardness from 
215 to 435 HV after annealing at 1100 °C. Similarly, Tekin 
et al. (17) studied the effect of 1 and 4 at. % Zr addition into 
CoCrFeNi HEAs by mechanical alloying and subsequent 
annealing at 1100 °C. They reported a systematic increase 
in the hardness from 315 to 347 HV with the addition of 1 
and 4 at. % Zr, respectively. These results demonstrate that 
the mechanical properties of HEAs could be further enhan-
ced by the addition of RE elements synthesized by mechani-
cal alloying. However, an inspection of the literature shows 
a lack of studies that utilized RE elements to increase the 
mechanical properties of the CoCrFeNi HEAs by melting 
techniques.

Table 1. The nominal compositions of the base, 2Y, and 4Y HEAs.

Compositions (at. %)

HEA Co Cr Fe Ni Y

Base 25 25 25 25 -

2Y 24.5 24.5 24.5 24.5 2

4Y 24 24 24 24 4
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| |hkl hkl hklM LP F
R

V
α α α

α
α

⋅ ⋅
=   (2)

where M, LP, F, and V are the multiplicity factor, Lorentz-
polarization factor, structure factor, and volume of the 
unit cell, respectively.

The HEAs were etched by using a fresh aqua regia so-
lution (a mixture of nitric acid and hydrochloric acid with a 
molar ratio of 1:3) for 1-2 min. The microstructural charac-
terization and energy dispersive spectroscopy (EDS) were 
performed by using Hitachi SU1510 scanning electron mic-
roscope (SEM) with the Oxford Instruments x-act detector.

Hardness tests were conducted to determine the relati-
onship between microstructure and mechanical properties 
of the HEAs as a function of Y content. The micro Vickers 
tests were carried out on the cylindrical 4 mm HEAs by 
using a load of 4.903 N (0.5 kgf) and a dwell duration of 10 
sec at room temperature. At least 5 measurements were ta-
ken from each sample and their average was used for the 
corresponding hardness values. The compression tests were 
performed at room temperature using an INSTRON 5582 
universal testing machine with a 10-ton capacity at a stra-
in rate of 10-4 s-1 according to ASTM E9-09 standard. The 
samples were prepared by adjusting their height to be 1.5-2 
times the diameter. To ensure the reliability of the test re-
sults, three samples were tested for each sample set.

RESULTS AND DISCUSSION

Structural and Microstructural Evolution of the 
HEAs

Fig. 1 shows the XRD patterns of the HEAs after homo-
genization at 1150 °C for 24 h. It should be noted that the 
homogenization duration and temperature were deter-
mined based on previous studies and ~0.7Tm, respecti-
vely, where Tm represents the theoretical melting points 
of the HEAs calculated through thermo-physical calcula-
tions (32, 33). The FCC phase is present in all the alloys, 
as seen by the (111), (200), (220), and (311) reflections of 
the FCC crystal structure. The base HEA consists of only 
these reflections in the XRD pattern, while additional 
reflections corresponding to a simple hexagonal structu-
re (HS) were detected with Y additions. The formation 
of the HS could be attributed to the reaction between Y 
and Ni to form a CaCu5 type Ni-Y rich phase with the P6/
mmm space group, which agrees well with the previous 
reports indicated by Zhang et al. (26) and Zhou et al. (34). 
Due to the limited solubility of Y in Ni with a value of 
0.4 at. % cause the formation of intermetallic compounds 
instead of the solid solution formation (35). In addition, 
the large negative enthalpy of mixing (ΔHmix) value of -31 

kJ/mol for the Ni-Y pair (Table 2) triggers the reaction 
between these elements as compared to the remaining 
elements in the HEAs (18). Xu et al. (36) showed that 
ΔHmix plays a critical role in the formation of the solid 
solution or intermetallic phases. The large negative va-
lues of ∆Hmix cause the increase in the bonding strength 
between the element pairs owing to their proper chemi-
cal reaction (37).

The increasing Y content from 2 at. % to 4 at. % raised 
the peak intensities of the HS phase suggesting the increase 
in the HS phase. In addition, the increasing Y content cau-
sed a shift towards a lower angle, as can be seen clearly in 
(311) reflection (Fig. 1) of the FCC phase. The decrease in
the angles of the peak positions could be attributed to the
increase in the lattice parameter of the HEAs due to the
increase in the atomic radius of Y. That is, the increasing
dissolution of the Y element in the HEAs causes a lattice
distortion in the HEAs as pointed out by Zhang et al. (26).

The SEM images of the 2Y and 4Y HEAs are provided 
in Fig. 2. As can be deduced from the figure, the increasing 
Y content changes the shape of the etched region from elon-
gated grains to nearly equiaxed grains.  That is, the further 
addition of the Y element from 2 at. % to 4 at. % into the HEA 
results in the dendritic microstructure due to the increasing 
segregation into interdendritic regions. The frontal segrega-

Table 2. Enthalpy of mixing (ΔHmix, kJ/mol) values for the atom pairs 
in the HEAs (38).

Co Cr Fe Ni Y

Co 0 -1 0

Cr

-4 

0 -7

-22 

11

Fe

-1 

0 -1

Ni

-2 

0

Y

-31 0

Figure 1. XRD patterns of the base, 2Y, and 4Y HEAs.
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tion of the solute atoms in the solid-liquid interface causes 
a compositional change at the interface resulting in the for-
mation of primary dendrites upon the solidification (39).

The SEM image and EDS line scanning provided in Fig. 
3 show the compositional distribution between the matrix 
and second phase in the microstructure of the etched 4Y 
HEA. It should be noted that since the microstructure con-
sists of dual phases of FCC and HS as shown with the XRD 
analyses (Fig. 1), the second phase could be indexed as HS. 
The EDS data provided in Fig. 3b shows that the FCC pha-

se is responsible for the almost homogeneously distributed 
areas of Co, Cr, and Fe with average values of around 27 at. 
%. In addition, the FCC matrix includes the homogeneously 
distributed Ni content with a value of ~17.5 at. %. This va-
lue is well below the nominal composition of the 4Y HEA 
having 24 at. % Ni in it. On the other hand, as can be seen 
in Fig. 3b, the Ni content reaches to a value of 40 at. % in 
the interdendritic regions, while the Co, Cr, and Fe elements 
deplete in this region. This suggests the segregation of the 
Ni element into the interdendritic region along with Y. In 
addition, the depletion of both Ni and Y elements could be 
seen in the grain boundary (GB) (Fig. 3a) of the FCC and 
HS phases.

It should be noted that although an increasing amount 
of Y could be expected in the interdendritic regions, the 
etching process decreases their amount. Therefore, detailed 
EDS analyses were conducted on the unetched 4Y HEA to 
reveal the exact elemental distribution of the FCC (matrix) 
and HS (segregated phase) as shown in Fig. 4. These results 
suggest the similar elemental distribution of Co, Cr, and Fe 
within the FCC matrix consistent with the EDS line scan-
ning results. However, the compositions of Ni and Y ele-
ments in the HS phase reach values of 41.3 and 17.5 at. %, 
respectively, which is in line with the XRD results indicating 
the formation of the HS phase.

The Evolution of Mechanical Properties

The influence of the Y addition on the mechanical pro-
perties was investigated with the correlation of the HS 
phase formed in the microstructure. The hardness values 
and compression properties of the HEAs including yield 
stress (σ0.2), fracture/peak stress (σp), and compressive 
strain to fracture (ε), are provided in Fig. 5 and summari-
zed in Table 3. As seen in Fig. 5a, the amount of HS phase 
in the FCC matrix of the HEAs increased from 0 to 34 vol. 
% with the addition of 4 at. % Y, and the corresponding 

Figure 2. SEM images of 2Y HEA a) low magnification, b) high mag-
nification. SEM images of 4Y HEA a) low magnification, b) high mag-
nification.

Figure 3. a) SEM image b) Corresponding EDS line scanning of etched 
4Y HEA.

Figure 4. Mapping and point EDS analyses of unetched 4Y HEA.
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hardness values were raised from 143 (±2) HV to 335 (±7) 
HV. In addition, the increasing Y content from 0 at. % to 
4 at. % caused a dramatic increase in the yield strength 
from 130 MPa to 1025 MPa. On the other hand, the inc-
rease in the Y content from 2 at. % to 4 at. % decreased the 
compressive strain from 32 % to a value of around 16.5 
%. It should be noted that the base HEA demonstrated 
high ductility and high strain hardening; its strength inc-
reased over 1960 MPa and it showed no signs of cracking 
up to compressive deformation of 50 %. Nevertheless, as 
can be deduced from the results, the formation of the 
HS phases plays a critical role in the improvement of the 
mechanical properties of the HEAs. These findings are in 
agreement with previous studies (26, 40, 41). The incre-
ased mechanical properties with the addition of alloying 
elements are generally divided into two categories; solid-
solution strengthening and second-phase strengthening 
(14, 42, 43). Firstly, as explained in XRD analysis results 
(Fig. 1), the addition of Y causes a shift in the positions of 
the FCC reflections towards the lower angles due to the 
dissolution of Y in the matrix. This suggests a lattice dis-
tortion in the FCC crystal structure, and hence, an inc-

rease in the mechanical properties (44) due to the much 
larger atomic radius of Y as compared to the elements 
in the matrix (45). Secondly, the formation of the second 
phase causes a dramatic increase in the mechanical pro-
perties of the HEAs as reported in the previous studies 
(14, 32, 42). In the present study, the addition of excess Y 
into base HEA resulted in the formation of the HS phase 
in the microstructure. This causes an additional contri-
bution to the increase of the mechanical properties due 
to the hard nature of the HS phase. The decrease in the 
available slip systems in the HS phases compared to the 
FCC results in the production of more brittle but stron-
ger alloys (26). Therefore, the increasing amount of the 
HS phases up to 34 vol. % along with the solid solution 
strengthening has a vital contribution to the mechanical 
properties of the investigated HEAs.

The compression test results showed that Y addition 
caused the change in the failure mechanism of the HEAs. 
Therefore, the fracture morphology of the 4Y HEA was 
investigated under SEM to reveal the effect of Y on the 
fracture mode as shown in Fig. 6. As can be seen, although 
there are some river lines and smooth facets indicating the 
appearance of transgranular fractures, the intergranular 
dominated fracture was observed in the HEA due to the 
formation of hard and brittle HS phase in the intergrain re-
gions resulting in the weakness of the intergrain regions (27, 
46). In addition, the formation of tear edges in the fracture 
surface of the HEA shows relatively ductile behavior of the 
corresponding regions, which is consistent with what has 
been found in previous studies (32, 47). That is, combined 
with the above-mentioned results, it can be inferred that a 

Figure 5. a) Hardness and amount of the HS phase in the HEAs as a function of composition, b) Compressive stress-strain curves of the HEAs.

Table 3. Hardness and compressive properties of the base, 2Y and 4Y 
HEAs, and the amount of HS phase in the HEAs. *The base HEA de-
monstrated no fracture over the compressive strain value of 50 % and the 
compressive stress was continuously raised.

HEA Amount 
of HS (%)

Hardness 
(HV)

σ0.2 
(MPa)

σp 
(MPa) ε (%)

Base 0 143 (±2) 130 >1960* >50*

2Y 25 243 (±3) 562 1650 31.5

4Y 34 335 (±7) 1025 1538 16.5

Figure 6. SEM images showing the fracture surface of the 4Y HEA after compression tests a) 1000x, b) 5000x.
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mixed mode of fracture indicating quasi-cleavage fracture 
was observed in 4Y HEA.

CONCLUSION

In the present study, The CoCrFeNi, (CoCrFeNi)98Y2, 
(CoCrFeNi)96Y4 HEAs were produced by vacuum arc mel-
ting and subsequent homogenization at 1150 °C for 24 h. 
The effect of Y addition on the structural, microstruc-
tural, and mechanical properties was investigated. The 
following conclusions could be drawn:

• The systematic addition of 2 at. and 4 at. % Y into
CoCrFeNi HEA caused the dissolution of Y in the FCC 
crystal structure and the formation of CaCu5-type HS se-
cond phase. 

• The increasing Y content from 2 at. % to 4 at. %
resulted in the transformation of the microstructure from 
an elongated shape to nearly equiaxed grains.

• The EDS analyses revealed the segregation of the
Ni and Y atoms into intergrain regions.

• The hardness of CoCrFeNi HEA was increased
from 143 (±2) HV to 335 (±7) HV with the addition of 4 at. % 
Y.

• The compressive yield strength, fracture stress,
and strain of 1025 MPa, 1538 MPa, and 16.5 %, respectively, 
were achieved with the addition of 4 at. % Y. 

• The strength-ductility trade-off of CoCrFeNi
HEA could be enhanced by the addition of Y for the poten-
tial engineering application.
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Over the last ten years, the swift rise of crypto-
currencies has triggered sweeping shifts in the 

worldwide economy, reshaping financial landscapes 
and remoulding transactional systems [1]. These se-
ismic shifts owe much to rapid advancements in In-
formation Technology (IT), enabling the emergence 
of blockchain and the birth of Bitcoin in 2009 by the 
enigmatic entity known as Satoshi Nakamoto [2]. The 
soaring popularity of digital currencies like Bitcoin 
and Ethereum is fuelled by an expanding community 
of users and the allure of substantial financial returns. 
These currencies use a decentralized architecture 
anchored by blockchain technology for the secure ve-
rification and logging of transactions. However, this 
decentralization poses complex challenges for regu-
latory bodies and traditional financial institutions [3].

As fascination with cryptocurrencies grows, so 
does academic interest in blockchain and its foundatio-
nal technology. Digital currencies come into the block-
chain each time a new block is formed, and they can be 
traded for various goods and services [4]. Mainstream 
cryptocurrencies like Bitcoin and Ethereum have atta-
ined widespread acknowledgement, notably for their 
hefty trading volumes and market capitalizations. For 
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instance, in April 2021, Bitcoin displayed a market va-
lue of USDT 1,304 billion alongside a trading volume of 
USDT 64 billion. Ethereum posted a USDT 38 billion 
trading volume and a USDT 265 billion market cap [5]. 
This burgeoning value and interest have led researchers 
to dig deeper into the predictive analysis of cryptocur-
rencies to understand market trends and minimize in-
vestor risks.

While there are intrinsic challenges, recent years 
have seen remarkable progress in machine learning 
(ML) and blockchain technologies [6]. These technologi-
cal leaps have culminated in new or enhanced products 
now used by billions worldwide. Numerous studies have 
honed in on applying these innovative technologies to 
financial markets, exploring areas like stock market pre-
diction and fraud detection since ML research took off 
[7]. The insights from such research are especially cruci-
al for cryptocurrencies, which are increasingly conside-
red financial assets by a growing audience.

Blockchain and ML are relatively nascent, marked 
by a limited research corpus. Most existing studies in 
this domain have mainly concentrated on the non-
technical facets of blockchain. Nonetheless, there lies 
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(ANN), Naive Bayes (NB), RF, and Logistic Regression (LR) 
to forecast Bitcoin prices. Their results underscored that 
ANN, with an RMSE of 0.341, performed relatively better 
under certain conditions.

Researchers in [14] used ML to study the distribution of 
Bitcoin transaction times based on memory pool size, disco-
vering an inverse Gaussian distribution. Tanwar et al. pre-
sented a hybrid deep learning model that combines LSTM 
and GRU to forecast Litecoin and Zcash prices, achieving an 
MAE of 0.02038 and 0.02103, respectively. In a parallel line 
of inquiry, [5] used ANN and SVM to study the relations-
hip between Ethereum prices and blockchain data, finding 
ANN to be the superior model with an RMSE of 0.068. In 
[15], Ho et al. used LSTM and Linear Regression (LR) mo-
dels to predict Bitcoin values, impressively achieving an ac-
curacy rate of 99.87%.

Furthermore, [16] introduced novel on-chain metrics 
and developed a deep learning model for Bitcoin, reporting 
an RMSE of 0.045 for LSTM and 0.293 for Random Forest. 
Finally, in the most recent study [17] by Aziz et al. (2022), 
a Light Gradient Boosting Machine (LGBM) was used to 
identify fraudulent Ethereum transactions. Although they 
didn't provide RMSE values, they claimed that the LGBM 
model outperformed other machine learning and soft com-
puting models like RF, MLP, and XGBoost.

These studies highlight the burgeoning potential of 
machine learning and deep learning techniques in various 
aspects of cryptocurrency, such as transaction time analysis, 
security vulnerability identification, and price prediction, 
thereby laying the groundwork for developing automated 
trading systems.

MATERIAL AND METHODS

Proposed model

Our proposed framework is a multi-faceted machine-le-
arning model tailored for cryptocurrency price predicti-
on. Utilizing three curated datasets, the model undergoes 
an initial data preprocessing phase where normalization 
ensures compatibility across various ML algorithms. 
This step streamlines the data and optimizes computa-
tional efficiency. Subsequently, a diverse suite of algo-
rithms, including LSTM, CNN, KNN, XGBoost, Astro 
ML, and several regression techniques, are applied to 
construct the predictive model, as shown in Fig. 1. Ai-
med at providing reliable and precise price forecasts, our 
model equips traders, investors, and other market parti-
cipants with actionable insights, offering a scalable and 
flexible tool responsive to the ever-changing cryptocur-
rency landscape. 

a vast, untapped reservoir of research potential due to the 
frontier nature of blockchain and the rapid advancements 
in ML. In this thesis, we aim to delve into the complex in-
terplay between cryptocurrencies, blockchain, and ML, exa-
mining their interconnected challenges and untangling the 
prospects for future innovations. The primary objective of 
this article is to enhance the understanding of cryptocur-
rency price movements by employing various ML techniqu-
es. Through a detailed analysis focusing on the daily closing 
prices of three significant cryptocurrencies, we aim to deve-
lop predictive models that can accurately forecast the next 
day's closing price. The research seeks to identify the most 
influential computational methods for predicting crypto-
currency prices by comparing a range of ML algorithms and 
their performance metrics. Ultimately, this study aims to 
contribute to both academic literature and practical appli-
cations by highlighting the potential of ML and blockchain 
technologies in influencing and transforming financial de-
cision-making processes. 

In recent years, many studies have been undertaken to 
scrutinize different facets of cryptocurrency, most notably 
Bitcoin, by applying ML and deep learning (DL) methodo-
logies. [8] employed a Stochastic Fluid Queueing Process to 
mathematically model Bitcoin transaction times, particu-
larly in high-traffic scenarios, thereby shedding light on the 
probability distribution of confirmation times. Their work 
added crucial insights into understanding transaction times 
in congested network conditions. [9], on the other hand, it 
utilized Support Vector Machines (SVM) on time-series 
cryptocurrency data to compare the performance of ML 
systems in Bitcoin price forecasting. Their research conc-
luded that there is significant scope for enhancing model 
accuracy, as evidenced by an accuracy rate of 95.50%.

Building upon similar themes, [10] proposed using ge-
neric machine learning algorithms to compare performan-
ce systems for Bitcoin forecasting, focusing on time series 
data but not quantifying the results regarding Root Mean 
Squared Error (RMSE). [11] devised an innovative approach 
using Random Forest (RF) Regressor, Multilayer Perceptron 
(MLP), and statistical regression models to predict the time 
needed for a mining node to validate and confirm a tran-
saction. Their comparison indicated that the RF Regressor 
had an RMSE of 0.36, outperforming MLP and a previously 
introduced statistical model.

[12] tackled Bitcoin's notorious price volatility by emp-
loying DL models like Long Short-Term Memory (LSTM) 
and Gated Recurrent Units (GRU). They achieved a notable 
level of precision in predicting Bitcoin's price movements, 
with RMSE values of 0.045 and 0.051 for LSTM and GRU, 
respectively. Similarly, [13] engaged multiple machine le-
arning techniques like SVM, Artificial Neural Networks 
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Our research utilizes a dataset comprising the histori-
cal prices and trading volumes of four cryptocurrencies: Bit-
coin (BTC), Ethereum (ETH), Binance Coin (BNB), and Tet-
her (USDT). This dataset spans from November 9, 2017, to 
August 27, 2022, and includes data points collected for each 
cryptocurrency in terms of their adjusted closing prices and 
trading volumes. The datasets were sourced from Kaggle 
and processed using Python's Pandas library. Conversion 
to a data frame structure allows for robust data handling 
and efficient computational operations. We extracted this 
dataset for our analysis, focusing particularly on BTC, ETH, 
and BNB, due to their significant impact on the cryptocur-
rency market dynamics. This valuable dataset, uploaded to 
Kaggle two years ago, encompasses detailed records of each 
cryptocurrency's adjusted closing prices and trading volu-
mes, enabling an in-depth analysis of market trends. Notably, 
this dataset has also been utilized in a study by Baviskar, V. 
S., Radha, D., & Sankari, S. U. in their 2023 publication on 
cryptocurrency price prediction and analysis, presented at 
the 14th International Conference on Computing Commu-
nication and Networking Technologies (ICCCNT) [29].

Our dataset includes seven critical features to facilitate 
a comprehensive market analysis:

1. Date: This column records the specific date for 
each data entry, formatted to capture the day, month, and 
year. It serves as the temporal reference for all other data 
points, providing the context in which the price and volume 
observations were made.

2. Close (BTC): This column contains the adjusted 
closing price of Bitcoin (BTC) on each respective date, exp-
ressed in USD. The adjusted close price reflects the final 
trading price of Bitcoin for the day and is adjusted for any 
corporate actions that might affect the price, such as stock 
splits.

3. Volume (BTC): This column reports the total tra-
ding volume of Bitcoin transactions on the corresponding 
date. It measures the number of Bitcoins that were traded 
during the day, offering insights into the trading activity and 

liquidity of Bitcoin in the market.
4. Close (ETH): Similar to the BTC close column, 

this column provides the adjusted closing price of Ethereum 
(ETH) for each date, in USD. It represents the final price at 
which Ethereum was traded at the end of the trading day, 
after adjustments for any applicable market events.

5. Volume (ETH): This column indicates the daily 
trading volume of Ethereum, capturing the total quantity of 
Ethereum traded on each day. The volume data helps assess 
Ethereum's market activity and investor interest over time.

6. Close (BNB): This column records the adjusted 
closing price of Binance Coin (BNB) on each date, expres-
sed in USD. The price reflects the final market valuation of 
Binance Coin at the end of each trading day, adjusted for any 
significant events affecting stock prices.

7. Volume (BNB): Finally, this column measures the 
daily trading volume of Binance Coin, indicating the total 
amount of BNB traded on each date. It provides a gauge of 
Binance Coin's market activity and liquidity.

Data Preprocessing

Data preprocessing forms the backbone of our study, fo-
cusing on cleaning and transforming raw data to ensure 
its compatibility with machine learning algorithms. We 
deal with missing values and outliers during the data cle-
aning and employ Pandas' Dropna function to refine the 
dataset.

After cleaning, we retain only essential features like' 
date' and' close' to maintain data integrity. On the transfor-
mation front, we tackle feature scaling issues through Min/
Max normalization. This approach harmonizes variable 
scales, enhancing the predictive accuracy of our machine-
learning models in cryptocurrency price forecasting. Both 
data cleaning and transformation steps are instrumental in 
fortifying our dataset's quality and our predictive model's 
robustness.

Predictive Methods

In our study, we allocated 70% of the dataset for trai-
ning and 30% for testing, adhering to a widely accepted 
practice in machine learning to balance robust training 
and unbiased evaluation. We employed eleven distinct 
predictive models, each tailor-made for a specific crypto-
currency. We used identical model parameters across the 
various cryptocurrencies to maintain consistency in our 
comparisons. Detailed analyses of each model will follow 
in subsequent sections of the article.

Long Short-Term Memory (LSTM) Model

In cryptocurrency price prediction, LSTM networks [18] 
have garnered attention for their capability to model 
time series data effectively. These networks can capture 
long-term dependencies in historical price data and other 

Figure 1. Cryptocurrency proposed model.
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market variables like trading volume and trends. After 
training on this historical data, LSTMs can generate fu-
ture price predictions with considerable accuracy. Their 
performance is competitive compared to other predictive 
models, making them a popular choice for this applica-
tion. Specific architecture and training steps for LSTM 
models in cryptocurrency prediction are detailed in Fig. 
2.

Convolutional Neural Network Model

CNNs [19] are increasingly used for cryptocurrency price 
prediction, offering valuable insights into market trends 
and trading opportunities. Designed to excel at handling 
image and time-series data, CNNs are particularly apt 
for analyzing complex cryptocurrency data structures. 
A typical CNN architecture for this use case consists of 
multiple layers: An input layer that accepts preprocessed 
historical price data, convolutional layers that identify 
patterns and features, pooling layers that simplify the 
model's complexity, and fully connected layers that fi-
nally make price predictions. The output layer then de-
livers these predicted future cryptocurrency prices. This 
structured approach makes CNNs a reliable tool for ma-
king informed cryptocurrency trading decisions.

Support Vector Regression (SVR) Model

The SVR model [20] uses historical price data to fore-
cast future cryptocurrency prices. Through mathematical 
optimization, SVR identifies an optimal function that mini-
mizes error between actual and predicted values. The data 
is transformed into a high-dimensional feature space, where 
a hyperplane represents the prediction function. The goal 
is to find a hyperplane that minimizes errors and maximi-
zes the margin between itself and the nearest data points, 
enhancing the model's robustness and preventing overfit-
ting. Once established, this prediction function can forecast 
future cryptocurrency prices by projecting new data points 
into this high-dimensional space.

K-Nearest Neighbors (KNN) Model

The KNN model [21] predicts future cryptocurrency pri-
ces by storing historical data points and their target valu-
es. When a new data point emerges, the model identifies 
its K nearest neighbours from the stored data based on a 
selected distance metric. The forecast is then calculated 
as the average of these neighbours' target values. While 
KNN is a quick and straightforward algorithm, its ac-
curacy depends on the careful choice of distance metric 
and the number of neighbours. Additionally, KNN may 
struggle with high-dimensional data, as the distance 
metrics might not effectively capture relationships bet-
ween data points.

XGBoost Model

XGBoost [22] operates by combining the forecasts of mul-
tiple weak decision tree (DT) optimized using gradient 
descent. The process starts by initializing residuals repre-
senting the differences between actual target values and 
current predictions. Trees are built by iteratively finding 
the split that minimizes loss, subject to stopping criteria 
like maximum tree depth or minimum samples per node. 
Tree pruning further refines the model by eliminating 
less essential branches. Through a boosting technique, 
the model iteratively adds trees and updates the forecast 
based on these residuals. Each tree's accuracy contributes 
to its weighting, and the final prediction is an aggregated, 
weighted sum of all trees. This boosting approach allows 
XGBoost to correct individual tree biases and produce 
more accurate predictions.

AstroML Model

AstroML [23], initially designed for machine learning 
applications in astrophysics, offers valuable tools for 
cryptocurrency analysis. AstroML's regression capabiliti-
es within the crypto landscape can model the correlation 
between multiple variables and coin price. The optimal 
regression model depends on factors like data complexity 
and the desired level of accuracy. Methods such as line-

Figure 3. Our CNN architectureFigure 2. Our LSTM architecture.
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ar regression, polynomial regression, DT, and RF can be 
deployed to forecast cryptocurrency prices based on his-
torical data and other influencing factors.

Lasso Model

Lasso [24] is a machine learning approach often emplo-
yed in cryptocurrency price prediction to enhance model 
interpretability and accuracy. It distinguishes itself by 
incorporating a penalty term into the loss function mini-
mized during optimization. This term pushes the model 
towards sparsity in its coefficients, effectively downpla-
ying less essential features. Consequently, Lasso often yi-
elds simpler, more interpretable models by focusing on a 
subset of relevant features for its predictions.

Ridge Model

Ridge Regression [25] is a regularization method com-
monly employed for predicting cryptocurrency prices to 
bolster the model's stability and interpretability. During 
optimization, ridge Regression nudges the model towards 
smaller coefficients across all features by introducing a pe-
nalty term to the loss function. This diminishes the model's 
sensitivity to minor data fluctuations, resulting in a more 
stable and robust predictive framework.

Linear Regression Model

Linear regression [26] is a foundational statistical met-
hod to model the relationship between a dependent variable 
and one or more independent variables. In the context of 
cryptocurrency, LR uses historical data to map the connec-
tion between various features and the cryptocurrency's pri-
ce. It operates on the principle that these relationships can 
be linearly represented. The model aims to optimize coeffi-
cients for each feature to minimize the difference between 
predicted and actual values. Optimization techniques like 
gradient descent and ordinary least squares are commonly 
employed. Once the coefficients are optimized, the LR mo-
del can forecast future cryptocurrency prices through a we-
ighted sum of the independent variables.

DT Model

DT [27] refers to machine learning algorithms that pro-
vide a structured, tree-like approach to decision-making by 
considering various possible outcomes and the factors inf-
luencing them. The tree starts from a root node, branching 
into different scenarios, each leading to subsequent child 
nodes and relevant probabilities. This allows for hierarchi-
cal mapping.

RESULTS AND DISCUSSION

Evaluation Models

We employ key performance metrics, RMSE and 
R-squared (R²), to evaluate our model's effectiveness for 

forecasting cryptocurrency prices. A lower RMSE score 
and a higher R² value indicate superior predictive per-
formance, providing a comparative measure to gauge the 
accuracy of the various predictors.

Evaluation metrics with Bitcoin dataset

In our study, we evaluated the performance of various 
machine learning methods for predicting Bitcoin prices 
using two key metrics: RMSE and R². As presented in 
Table 1, different models yield distinct results. The LR 
and GP models outperformed other techniques, achie-
ving the lowest RMSE values of 0.022368 and 0.022381, 
respectively, and high R² values exceeding 0.98. These 
results suggest exceptional predictive accuracy. The Rid-
ge model also exhibited strong performance, with an R² 
value of 0.980667.

On the other hand, the CNN model had the highest 
RMSE of 0.166565 and the lowest R² value of 0.308789, in-
dicating suboptimal performance for this dataset. The XGB 
Regressor model demonstrated an impressively low RMSE 
of 0.004042, but its R² value was slightly lower than that of 
the Ridge and LR models. The ASTRO ML model, adapted 
from astrophysics, also performed well with an RMSE of 
0.063575 and an R² value of 0.899303. These evaluations 
provide valuable insights into the most suitable ML met-
hods for accurate and reliable Bitcoin price prediction, with 
LR and GP emerging as the leading candidates.

Evaluation metrics with Ethereum dataset

Our study includes an in-depth performance evaluation 
of multiple machine learning algorithms for predicting 
Ethereum prices, focusing on RMSE and R². As depicted 
in Table 2, the results vary significantly among different 
models. The LR and GP models showcase the lowest 
RMSE values of 0.028457 and 0.028346, respectively, 
while achieving exceptionally high R² values, just above 
0.98. This suggests that these models provide remarkably 
accurate and reliable predictions for Ethereum prices. 
The Ridge model also performed notably well, with an R² 
value of 0.956592.

Table 1. Performance metrics of various models for Bitcoin dataset

Model Name RMSE R²

LSTM 0.088911 0.803051
CNN 0.166565 0.308789
SVR 0.066702 0.889154
KNN 0.085906 0.816138

XGBRegressor 0.004042 0.899303
ASTRO ML 0.063575 0.899303

Ridge 0.027857 0.980667
LR 0.022368 0.987535
DT 0.074230 0.862722
GP 0.022381 0.987520
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On the contrary, the CNN model yielded the highest 
RMSE of 0.208044 and a deficient R² value of 0.014207, in-
dicating its poor suitability for this particular task. Among 
ensemble models, the XGBRegressor exhibited a relatively 
low RMSE of 0.124654, although its R² was somewhat less 
impressive than the Ridge and LR models. Interestingly, 
the ASTRO ML model, adapted from astrophysics, had an 
RMSE of 0.161861 and an R² of 0.403296, placing it in the 
middle range of performance. The analysis reveals that LR 
and GP models are the most effective for predicting Ethere-
um prices regarding RMSE and R².

Evaluation metrics with Binance Coin dataset

Our analysis rigorously evaluates the performance of 
different ML algorithms for forecasting Binance Coin 
prices, emphasizing RMSE and R². As shown in Table 3, 
the metrics exhibit considerable variation across models. 
The LSTM and CNN models yielded unusually high R² 
values above R² and the highest RMSE of 0.265808, sug-
gesting potential overfitting or other anomalies in their 
predictive performance. In stark contrast, the LR and GP 
models outperformed others with the lowest RMSE va-
lues, 0.027286 and 0.027298, respectively, and R² values 
around 0.968. This indicates exceptional accuracy and 
reliability for these methods in predicting Binance Coin 
prices. The Ridge model also showed high reliability with 
an R² of 0.924290, albeit with a slightly higher RMSE of 
0.041881.

Interestingly, SVR and DT models presented moderate 
R² values of 0.636128 and 0.350212, respectively, but could 

not match the top-performing models in terms of RMSE. 
The ensemble model XGBRegressor exhibited minor effec-
tiveness with an R² of 0.122999, raising questions about its 
suitability for this task. The data suggests that for Binance 
Coin price prediction, LR and GP models are the most reli-
able in terms of both RMSE and R².

Comparison Results

In an endeavour to place our contributions within the 
broader scope of research in cryptocurrency price pre-
diction, we present a comparative evaluation in Table 4. 
Our model significantly outperforms existing models 
across multiple cryptocurrencies in terms of RMSE. For 
Bitcoin, the XGBoost model generated an impressively 
low RMSE of 0.0040, which is considerably smaller than 
the values reported by Pabuc et al. (2020) for ANN, SVR, 
Naive Bayes, and RF, which ranged from 0.293 to 0.461. 
Similarly, our XGBoost model outshines the LSTM mo-
del by Jagannath et al. (2021), which recorded an RMSE as 
high as 1.9. In the Ethereum context, our  LR and GP mo-
dels delivered an RMSE of 0.028, again establishing supe-
rior performance when compared to the ANN and SVR 
models by Kim et al. (2021) that reported RMSEs of 0.068 
and 0.048, respectively. Lastly, for Binance Coin, our LR 
and GP models achieved an RMSE of 0.027, though a di-
rect comparison with previous works is not available for 
this specific cryptocurrency. These results corroborate 
our models' robustness and superior predictive accuracy, 
offering significant improvements over existing methods 
in the literature.

CONCLUSION

This study ventured into the burgeoning field of ML and 
blockchain to predict cryptocurrency prices. These mo-
dels were selected for their ability to handle the comp-
lex and nonlinear nature of cryptocurrency price move-
ments, leading to our achieving remarkably low RMSE 
values of 0.0040 for Bitcoin, 0.028 for Ethereum, and 
0.027 for Binance Coin. This performance significantly 
surpasses that of previous studies, such as those by Pabuc 
et al. (2023) and Kim et al. (2021), where the best RMSE 

Table 2. Performance metrics of various models for the Ethereum dataset

Model Name RMSE R²

LSTM 0.144385 0.525188
CNN 0.208044 0.014207
SVR 0.191266 0.166793
KNN 0.100407 0.770383

XGBRegressor 0.124654 0.646093
ASTRO ML 0.161861 0.403296

Ridge 0.043656 0.956592
LR 0.028457 0.981556
DT 0.129323 0.619086
GP 0.028346 0.981700

Table 3. Performance metrics of various models for the Binance Coin 
dataset

Model Name RMSE R²

LSTM 0.265808 2.049658
CNN 0.265808 2.049658
SVR 0.091816 0.636128
KNN 0.136745 0.192878

XGBRegressor 0.142542 0.122999
ASTRO ML 0.128486 0.287434

Ridge 0.041881 0.924290
LR 0.027286 0.967863
DT 0.176865 0.350212
GP 0.027298 0.967835

Table 4. Comparison of RMSE values for various models and cryptocur-
rencies

AUTHORS CRYPTOCURRENCY TECHNIQUES RMSE

Pabuc et al. (2023) Bitcoin ANN 0.341
Pabuc et al. (2023) Bitcoin SVR 0.438
Pabuc et al. (2023) Bitcoin Naive Bayes 0.461
Pabuc et al. (2023) Bitcoin RF 0.293

Jagannath et al. (2021) Bitcoin LSTM 1.9
Kim et al. (2021) Ethereum ANN 0.068
Kim et al. (2021) Ethereum SVR 0.048

Our model Bitcoin XGBoost 0.0040
Our model Ethereum LR, GP 0.028
Our model Binance coin LR, GP 0.027
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values reported for Bitcoin and Ethereum were 0.293 
and 0.048, respectively. Our models' superior accuracy 
can be attributed to the sophisticated data handling and 
learning capabilities of XGBoost, along with the robust-
ness of LR and GP in capturing the underlying trends and 
volatility of cryptocurrency markets. These compelling 
results substantiate the potential of ML techniques in in-
novating and informing decision-making in the financial 
sector. In future work, we suggest exploring advanced 
deep-learning models for sentiment analysis and integra-
ting additional data sources to refine prediction accuracy. 
Ensemble learning and model interpretability also offer 
promising avenues for further research.
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Pure manganese is simply known as ‘hard, brittle 
and silverly colored’ metal, however why man-

ganese is hard and is not entirely clear. The micro-
cracks appearing during the phase transformation 
upon solidification are sometimes reported as one of 
the main causes of brittleness, since the varying disp-
lacements are accumulating during the multiphase 
transformation (1, 2).

Manganese resembles iron and is reasonably reac-
tive that dissolves non-oxidizing acids. Additionally, it 
tends to rust when subjected to exposure to water. It has 
been widely used as the main additive in the production 
of steel and other alloys, thereby significantly enhancing 
their physical and mechanical properties. Manganese is 
important as an alloying element in ferrous and non-
ferrous metal alloys to enhance corrosion resistance 
and strength. Furthermore, manganese dioxide is com-
monly employed as a cathode material in commercial 
batteries. (3, 4). 

It is known that manganese undergoes isotropic 
phase transformation on cooling, beginning from δ to γ 
(at 1407 K), then to β (at 1368 K) and finally to α (at 1015 
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K). While δ to γ phases have body centered cubic (BCC) 
and face centered cubic (FCC) respectively. The β  and α 
phases of manganese are known to have a complicated 
crystal structure with 20 and 58 atoms in the cubic cell, 
respectively. α -manganese has a complex crystal lattice 
of the A12-type based on the BCC structure with a latti-
ce constant α ~ 8.9 Å (2, 5).

The use of advanced characterization techniques is 
one component in knowing the quality of such alloys 
or steels. However, evaluating small-volume materials 
differs from testing bulk materials. This is due to the 
occurrence of artifacts, such as in nanomechanical tes-
ting techniques. Mechanical properties and deformati-
on behavior of small volume materials are critical in the 
effective design of small devices that must sustain stres-
ses in service. (6, 7). Thus, mechanical testing of nanost-
ructured materials fabricated by FIB machining allows 
the investigation of various sample geometries such as 
micropillar for compression (8, 9), dog-bone shape for 
tensile tests (10, 11), and cantilevers for bending (12, 13). 
Free-standing micropillar compression experiments are 
a promising method to examine the mechanical pro-
perties of single crystals of various materials with small 
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The deformation behavior of single crystals of manganese pillars generated by focused ion 
beam (FIB), with diameters ranging from ~1 μm to ~4.5 μm, has been studied as a func-

tion of specimen size using micropillar compression at ambient temperature. The manga-
nese pillars were machined from randomly chosen larger grains of polycrystalline metal. At 
ambient temperature, single crystals of manganese display chaotic slip planes emerging on 
the sample surface and brittle plastic deformation when the sample size is decreased to the 
micrometer scale. The manganese pillars reached very high f low stresses in the range of        
4-5.6 GPa. The stress-strain curves of all tested manganese pillars demonstrated significant 
work hardening and smooth f low behavior, with strains up to 8-10%. After 10% strain, how-
ever, the f low stresses remained constant with no work hardening. As previously reported, the 
manganese pillars with undetermined crystal orientation demonstrated a less pronounced 
size effect (-0.14) by the size effect exponent of BCC pillars. 
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parts, thus necessitating a higher level of thermal activation 
(19, 35, 36). Kishida et. al (37) examined the compression 
behavior of single crystal α-Mn micropillars with squared 
cross-sections ranging from 1 to 10.5 µm, against crystal 
orientation at the room temperature for the first time, and 
determined the deformation mechanism and critical resol-
ved shear stress (CRSS). They discovered that single crystal 
manganese pillars deformed plastically due to dislocation 
motion and reached extremely high flow stresses in the 4.5-
6 GPa range. Dislocations glide along [111] and [001] are po-
inted out to operate in Z-axis orientations near [001] and [
111] respectively. Because of the wavy shape of slip planes 
induced by cross-slip, they were unable to identify the low-
indexed planes.

Furthermore, the literature has extensive experimental 
research on the size-dependent mechanical characteristics 
of different single-crystal FCC and BCC metals. This sug-
gests the evolution of the size effect, which could be instru-
mental in this regard. As a result, there is sufficient oppor-
tunity to improve understanding of the micromechanical 
properties of manganese pillars for the whole range of BCC 
metals size effects mentioned in the literature.

Thus, the purpose of this study is to investigate the 
size-dependent compressive strength and deformation be-
havior of single crystals manganese pillars against sample 
size at ambient temperature using micropillar samples with 
diameters ranging from ~1 to ~4.5 µm to deduce the size-
dependent strength through evaluating flow stress values. 

MATERIALS AND METHODS 

Materials Used and Pillar Preparation

A cast polycrystalline pure Mn metal sheet (99.95%) ha-
ving 2 mm thickness, denoted “as-received” material was 
provided from Goodfellow Cambridge Ltd. The samples 
were cut into small squares (10 mm × 10 mm) and mo-
unted in resin. The sample surface was gradually ground 
with SiC abrasive grinding papers (from P1200-grit to 
final grinding with P2000-grit; EU grade). This process 
was followed by polishing down to ¼ µm using diamond 
pastes in sequence. After that, further finishing was car-
ried out using an active polishing suspension (OP-S) to 
remove the strain, induced by grinding and polishing 
operations. The specimen was extracted from the mount 
and placed onto scanning electron microscopy (SEM) 
stub for further characterization. Larger grains were 
selected to generate random orientation samples, which 
were subsequently processed using a FIB to fabricate mic-
ropillars of the desired dimensions. 

All single crystal pillars with diameters ranging from 
~1 µm to ~4.5 µm were prepared using FIB from randomly 

dimensions. 

There are numerous reports published on compression 
experiments of metal nanopillars with diameters less than 5 
μm. In all cases, the smaller the sample diameter, the higher 
the pillar/wire strength. This phenomenon is called size ef-
fect dependency. This dependence of strength on specimen 
size was first reported by Uchic et al. (8), whereby they used 
a FIB machining and nanomechanical testing device equip-
ped with a flat-ended tip to investigate the in-situ mechani-
cal properties of micron/submicron-sized nickel (Ni) pillars 
at room temperature (8, 14). They reported some shifts in 
the stress-strain plots as the pillar diameters varied and fo-
und an inverse relationship between yield stress and power 
of sample size. Consequently, this method has become more 
attractive and very popular for investigating the size effect 
dependence of various materials. Moreover, fundamental 
approaches were tried to understand the size effect depen-
dence and deformation behaviors of small-sized materials 
and specially focused on different lattice types of materials 
such as FCC (8, 14-18), BCC (19-23), hexagonal close-packed 
(HCP) (24, 25), metallic glasses (26-28) and nanocrystalli-
ne materials (29). The FCC metal pillars under compressi-
on exhibited a universal power-law relation between pillar 
diameter and strength. The yield stress (σy) has an inverse 
relationship with the variable power of the sample size (d), 
with a universal empirical correlation: 

0
n

y Adσ σ= +                                                                      (1)

where, σ0 represents a bulk strength, A represents a 
material constant, and n represents a size effect exponent. 
For several FCC lattices, the power-law exponents have 
been typically found to be in the range of -0.6 to -1.0. Dou 
and Derby compiled the size-dependent strength for seve-
ral FCC nanowires/pillars (tested in compression) against 
sample diameter. This was proposed that a universal em-
pirical relation of approximately n = -0.67, for equation 1, 
where σ0 = 0 (30).

Equation 1 expresses a similar connection between 
compressive engineering stress and pillar/wire diameter for 
BCC metal pillars. However, samples of BCC metal tested 
under compression exhibit considerable variances in beha-
vior with power-law exponents ranging from -0.15 to -0.8 
(19, 21-23, 31-34). It is generally believed that the difference 
in the behavior between FCC and BCC metals is attributed 
to the different responses of dislocations in the different lat-
tice structures. In FCC metal pillars, the dislocations are 
highly mobile, thereby showing similar mobility for edge 
and screw dislocations and need quite low thermal activati-
on. However, in BCC structures, the coplanar core structure 
of a screw dislocation causes a higher lattice friction stress 
(Peierls) and lower mobility when than their edge counter-



43

H
. Y

ilm
az

 e
t a

l /
 H

it
ti

te
 J 

Sc
i E

ng
, 2

02
4,

 11
 (1

) 4
1–

47

selected grains of manganese. A free-standing Mn pillar 
was prepared using a Zeiss Gemini 2 Crossbeam 540 SEM-
FIB (Carl Zeiss, Jena, Germany). This instrument was loca-
ted at the East Anatolia High Technology Application and 
Research Center (DAYTAM)/Ataturk University. Accelera-
ting voltages of 5 kV and 30 kV were utilized for imaging 
and machining (preparations), respectively. According to 
Volkert and Lilleodden's procedure, (38) the nano/micro-
pillar machining process was performed in two stages. The 
methods and experimental conditions used to fabricate the 
micropillars have also been explained in detail in our earlier 
work (23). Briefly, the pillars were prepared using an inner 
and outer diameter ring pattern design. The radius of the 
inner and outer rings was set to approximately around 9 μm 
and 16 μm, respectively. The pillars of different heights were 
produced by utilizing a variety of dwell times. Depending 
on the required pillar height, a high flow of gallium (Ga+) 
ions applied at the start of the FIB milled a hole around the 
pillar with a depth ranging from 18-32 µm. An individual 
Mn pillar was machined (at most ¼ of the grain size) from 
each selected grain in the Mn microstructure. The highest 
pillar fabricated was around 12.3 µm. Therefore, we chose 
a grain with around 50 µm to be sure that pillar does not 
contain any sub-grain or grain boundaries. The aspect ratio 
was set between 2.8 and 3.8, to avoid buckling deformation 
at higher pillar heights. This was accomplished by progres-
sively decreasing the FIB current at various machining sta-
ges. From a milling point of view, the compression pillars 
with taper angles ranging from 3º to 5º were obtained. Based 
on the as-received conditions, the manganese metal only al-
lows to machine/prepare a single pillar from an individual 
grain. Before the uniaxial compression experiments, the 
size of each pillar (all diameters and heights) was obtained 
using images collected with FIB (Zeiss Gemini Crossbeam 
540, at 5kV).

Uniaxial Compression Experiments

Uniaxial compression tests on Mn pillars were carried 
out with the help of an Agilent Technologies Nano Indenter 
G200 micromechanical testing system (Agilent Technologi-
es, Santa Clara, CA, USA) outfitted with a 15 µm flat punch 
tip. This instrument was located at Koç University Surface 
Science and Technology Center (KUYTAM). The comp-
ression tests were performed in displacement-rate control 
mode at a constant nominal displacement rate of 3 nm/s. 
Stress-strain graphs were created using the load-displace-
ment data. As mentioned in our previous work, the size-de-
pendent strength vs pillar diameter was displayed following 
standard compressive flow stress at 4% strain (23). This is 
because there is no uniform engineering strain value in the 
literature where micropillar compression experiments are 
reported, and the data are variably given in a 2.5-8% comp-
ressive strain range (22, 31, 39, 40).

RESULTS AND DISCUSSION

Microstructure

Several attempts have been made to examine the informa-
tion about the microstructure of manganese metal sheet 
using electron backscatter diffraction (EBSD) analysis. It 
has been discovered that the surface of manganese metal 
cannot produce a single diffraction pattern. The crystal 
orientation of the grains could not be identified. Thus, 
larger grains were chosen at random to produce the man-
ganese pillars. The Mn pillars of varying diameters were 
machined from randomly selected grains without regard 
for orientation. Therefore, due to the microstructure of 
manganese metal, it was impossible to fabricate multiple 
pillars in one grain. The SEM micrographs of the mic-
rostructure and FIB machined micropillars are depicted 
in Fig. 1 (a-c).

Crystallographic Slip for Manganese Pillars

Fig. 2 shows typical SEM micrographs of manganese 
pillars varying in diameter from ~1 m to ~4.5 m. These 
Mn pillars were machined from randomly picked grains 
and compressed. It should be highlighted that without 
knowing the grain orientation, we couldn't tell which 
slip planes were engaged during compression from the 
chaotic slip bands. There was no substantial variation in 
deformation behavior between deformed manganese pil-
lars with undetermined orientation. In the top right SEM 
image in Fig. 2, the clear slip traces are more apparent 
compared to other SEM images since there is no load 
controlling option in testing instrument. The testing 
instrument has only displacement-rate control mode. We 
were not able to control the load applied. Thus, the app-
lied load was too high for some pillars to identify the slip 
traces. Also, the orientations of the grains are uncertain, 
the angle between the loading direction and the normal 
of the slip plane could not be calculated. In this study, 
we aimed to investigate the effect of pillar diameter on 
strength rather than aspect ratio or the effect of length. 
Researchers tend to give more attention to studying the 
effect of pillar diameter on the mechanical properties of 
micro- or nanoscale materials due to its significant influ-

Figure 1. (a) SEM image of polycrystalline manganese metal surface, 
(b) A view of some micropillars prepared by FIB on the surface of Mn 
metal, and (c) A representative SEM image of 2.6 µm Mn micropillar in 
diameter. The image was taken at 54° tilt from the top view. 
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ence, ease of precise control during fabrication (FIB and 
lithography), and its pronounced size-dependent behavi-
ors in small-scale materials. Variations in pillar diame-
ter often lead to more pronounced size effects in mec-
hanical properties due to high surface-to-volume ratio, 
which becomes critical at smaller dimensions. Changes 
in diameter can create significant differences in stress 
distributions and deformation mechanisms compared to 
heights variation. For example, changes in diameter can 
influence the density of defects, stress concentrations, 
and surface effects (dislocation image force, dislocation 
starvation mechanism etc.) more prominently than vari-
ations in height. (41, 42)

Stress-Strain Curves and Size Effect Dependency

Fig. 3 indicates a representative engineering stress-strain 
plot for randomly selected orientations of manganese 
pillars with various diameters. This curve clearly sho-
wed the influence of sample size on the pillar strength. 
Since then, the stress has increased as the pillar size has 
reduced. At 4% strain, the flow stress reached 5.61 GPa 
for manganese pillars with a diameter of 1182 nm. Due 
to early plasticity, the yield stress at 0.2% strain is quite 
difficult to apply in these pillar experiments. Therefore, 
we have chosen a fixed strain (4%) in our pillar study. At 
4% strain, the stress of the largest manganese pillar (4460 
nm) was 4.53 GPa. The stress-strain plot for manganese 
metal shows a period of indistinct yield onset followed by 
strain hardening up to 10% strain. In general, the stress-
strain curves of all tested manganese pillars showed high 
work hardening and smooth flow behavior, typically with 
strains up to 8-10%. However, the flow stresses remained 
constant without work hardening after 10% strain. No 
significant difference was found in the stress-strain be-

havior of all Mn pillars tested in unknown orientations. 
When compared to other BCC metallic pillars examined 
in the literature, the Mn pillars demonstrated conside-
rably greater engineering stresses at 4% strain for a gi-
ven diameter. The Mn pillars showed relatively higher 
engineering stresses for a specific diameter compared to 
other BCC metallic pillars tested in the literature (19, 22, 
23, 34, 40). Our stress-strain results agree with previo-
usly reported only single study on Mn pillars, confirming 
that higher stresses (ranging between 4-6 GPa) are re-
ached for all orientations. The steepness in linear region 
in stress-strain behavior of Mn pillars was also observed 
similar in previously reported study on Mn pillars (37).

A possible explanation for the higher strength could be 
related to the arbitrary chosen orientations leading to non-
uniform slip behavior and the unknown Schmid factor cau-
sing higher stress values than other metallic pillars reported 
in the literature. The local dislocation density in the Mn 
sample was not measured. However, the metal specimen 
displayed homogeneous and isotropic grain shapes. Thus, 
we conclude that the local dislocation densities were not too 
high to strongly influence our experiments and arguments.

The effect of pillar size on strain hardening rate (SHR) 
lowers as pillar diameter increases. The SHR data was deri-
ved as the mean gradient of the stress-strain curve between 
4% and 10% strain, which is consistent with earlier compres-
sion investigations (see Fig. 4). (19, 21, 23, 40, 43). The SHR 
data was precisely identified through data extraction using 
data reader function in the Origin Lab software. Although 
some scatter was observed in the SHR data, indications of a 
size effect were discernible. The tests conducted on a larger 
number of pillars will reduce the observed data scatter. Our 
analysis did not identify error bars or ranges in the SHR data. 
Experiments using Mn pillars with known orientation must 
be repeated to determine why the flow stress and SHR were 
too high. Further research into the size-dependent mecha-
nical behaviors of Mn pillars with known orientation is re-
quired to offer a statistically confirmed stress-strain curves 
to detect the active slip system and a more precise size effect 
exponent. Maintaining consistent fabrication processes for 
pillar fabrication, specifically in terms of uniform diame-
ters, alongside constant testing parameters, is anticipated 
to comparable stress-strain, SHR data, and size effect expo-
nents. Repetition of these experiments is expected to yield 
results consistent with this expectation. 

Fig. 5 depicts the stress at 4% strain as a logarithmic 
curve vs pillar diameter. Linear interpolation was used to 
get the size effect exponent for the Mn pillars. As observed 
with the randomly oriented Mn pillars, there is a less ap-
parent size effect, with flow stress increasing as pillar size 
decreases. The size effect exponent for Mn pillars was found 

Figure 2. post deformation SEM images of Mn pillars with various 
diameters. On the surface of the pillars, a chaotic and brittle slip 
behavior was observed. SEM images were captured and adjusted at 36° 
from the top view. 
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to be -0.14. According to the literature, the size exponents 
for BCC metals range between -0.1 and -0.8. The power 
law exponent of the Mn pillars agrees with prior research 

on the BCC pillars. (19, 32, 34, 44). Kishida and colleagues 
(37) investigated how single crystal α-Mn micropillars with 
diameters ranging from 1 to 10.5 µm responded to compres-
sion testing concerning their crystal orientation. However, 
there does not appear to be a significant effect on yield stress 
due to sample size variations across the orientations studied. 
There is always uncertainty in determining the precise ori-
entation of each pillar, which might cause variation in size 
effect data. Table 1 presents data from various reports on 
micropillars tests on several BCC metals.

CONCLUSION

Single crystal manganese micropillars with randomly 
chosen crystallographic orientations were fabricated by 
FIB from a polycrystalline sample (varying in diameter 
from 1000-4500 nm) and deformed to measure their 
stress at 4% strain and deformation behavior. The follo-
wing are the final thoughts:

• As the diameter of the manganese pillars decrea-
sed, the deformation behavior stayed constant and followed 
the same pattern. We were unable to discover an active slip 
mechanism due to the randomly picked grains. 

• The stress-strain curves show that the flow stres-
ses were higher compared to other BCC metals at specific 
diameters in the literature. 

• The manganese pillars exhibited a less pronoun-
ced size effect, i.e. strength increased as pillar size decreased, 
resulting in a size effect exponent (n) of -0.14. 

•  Furthermore, the manganese pillars demonstra-
ted strain hardening up to 10%, which increased as the pillar 
diameter decreased.   
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Figure 3. Typical stress-strain curves for compression tests conducted 
on Mn pillars 

Figure 4. The relationship between strain hardening rate and 
manganese pillar diameters under compression. 

Figure 5. Logarithmic plot of engineering stress (at 4% strain) vs 
pillar diameter for compression tested Mn micropillars. The blue line 
represents a linear fit to the Mn data.

Table 1. Data for the stress-size exponent, n, micro compression data 
with BCC metal pillars tested at ambient temperature. 

Material Pillar 
Orientation Active Slip System n Plastic Strain Ref.

Mn Random 
Orientations Unkonwn -0.14 4% This work

Fe [001] {101}<111> -0.58 4% (23)
Fe [110] {101}<111> -0.61 4% (45)
Fe [123] {101}<111> -0.63 4% (45)
V [001] {101}<111> -0.56 4% (23)

Nb [001] {101}<111> -0.58 4% (23)
Ta [001] {101}<111> -0.4 4% (44)
W [111] {101}<111> -0.23 4% (44)

Mo [111] {101}<111> -0.37 4% (44)
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