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ABSTRACT 
 

The security of the RSA algorithm is based on the difficulty of the integer factorisation problem. Two large prime 

numbers are needed to construct an RSA algorithm for each user. This leads to the issue of generating large prime 

numbers in cryptography. In the literature, there are two main primality test methods: probabilistic and 

deterministic primality tests. This paper reviews the main probabilistic primality tests such as the Fermat, Slovay-

Strassen and Miller-Rabin test algorithms. Then we evaluate and compare their performance based on their 

execution times for different sizes of inputs. We present performance analyses based on their execution times. We 

also review the RSA encryption algorithm that uses two sufficiently large prime numbers. 

Keywords: Cryptology, Prime numbers, Probabilistic Primality tests, RSA algorithm  
 
1. INTRODUCTION 

The Integer Factorization Problem (IFP) is assumed as a difficult problem in mathematics for 

sufficiently large prime numbers. The security of the RSA algorithm is based on the difficulty of the 

IFP for the product of two large prime numbers. Thus, to ensure the security of the RSA algorithm, 

sufficiently large prime numbers must be generated. This is a challenging problem in cryptography 

(indeed, in number theory). In the literature, the current deterministic primality tests are not efficient for 

large numbers. In this context, the probabilistic primality tests are used to generate large prime numbers 

for the RSA algorithm.  

Prime numbers were first studied in detail by the mathematicians of the Pythagorean school in ancient 

Greece between 500 - 300 BC. In 200 BC, Eratosthenes developed a method for finding prime numbers 

and named this method the "Sieve of Eratosthenes." It is a well-known fact that every natural number 

can be expressed as a product of the powers of prime numbers. Moreover, the number of prime numbers 

is infinite. In the literature, numerous scientists have studied the characterization of prime numbers and 

discovered significant results on prime numbers. However, any efficient deterministic primality test 

algorithm hasn't yet been proposed in the literature to test sufficiently large numbers.  

Public key cryptosystems based on prime numbers are frequently used for encryption and signature 

processes in real life. Sufficiently large prime numbers are required to ensure the security of certain 

public key cryptosystems. Thus, prime numbers are always needed in cryptography. The mystery of 

prime numbers, which is still not fully understood, increases interest in mathematics and computer 

science. Primality tests are among the first studies conducted on prime numbers. 

In the main paper [6], the author aims to introduce quite modern cryptography and applications. An 

algorithmic approach has been emphasized with a focus on efficiency estimates. In the paper [13], a 

deterministic testing method has been developed to check whether an odd number is prime. In the paper 
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[7], a new method for finding prime numbers has been provided and a perfect secure prime number 

sequence has been defined. In the paper [12], it has been observed that if Michael O. Rabin's primality 

test failed with a 25% probability on every composite number, factoring would be easy. The reliability 

of Rabin's test when used to generate a random integer that is probably prime, rather than testing a 

specific number for primality, is also among the topics of research. 

The paper is organised as follows. In Section 2, the probabilistic primality tests, including the Fermat, 

Solovay-Strassen and Miller-Rabin tests are discussed. These tests allow us to determine whether an 

odd number is composite or prime with high probability. In Section 3, we address the security of the 

RSA algorithm based on two large prime numbers. In Section 4, the performance analyses of the 

probabilistic primality tests are provided in terms of their running time. 

2. PROBABILISTIC PRIMALITY TESTS 

In this section, we discuss the probabilistic primality tests such as the Fermat, Slovay-Strassen and 

Miller-Rabin tests.  

Prime numbers and their properties were first studied in detail by mathematicians of the Pythagorean 

school in ancient Greece between 𝟓𝟎𝟎 − 𝟑𝟎𝟎 BCE. In 𝟐𝟎𝟎 BCE, Eratosthenes developed the sieve 

method to find prime numbers, named the "Sieve of Eratosthenes." The Sieve of Eratosthenes is a 

method used to find prime numbers up to a certain integer. However, this method is not practical to test 

very large numbers, which is why it is not used in cryptography. Therefore, in cryptography, 

probabilistic primality tests are used to test sufficiently large prime numbers. 

Probabilistic Primality Tests are used to test whether an odd number is composite or prime with high 

probability. The most commonly used probabilistic primality tests are the Fermat, Solovay-Strassen, 

and Miller-Rabin tests. 

We first provide some probabilistic definitions before introducing the probabilistic primality tests. The 

probabilistic primality test is based on the concept of a witness and a liar.   

Definition 1. [13] For a number 𝑛, if there is a number 𝑎 between 1 and 𝑛 − 1 such that 𝑎 confirms 

that n  is a composite number according to the test, then 𝑎 is called witness for the composite number 

𝑛. On the other hand,  there may exist a number 𝑎 that says a composite number 𝑛 may be prime. Such 

a number 𝑎 is called a liar for a composite number 𝑛.  

Note that when the liar 𝑎 is used in the test, the test will incorrectly declare a composite number 𝑛 to 

be prime. To avoid such errors, repeating the test t  times (for a sufficiently large value t ) will further 

reduce the probability of error. 

2.1. Fermat’s Probabilistic Primality Test 

The Fermat Probabilistic Primality Test is the first test that forms the basis of probabilistic primality 

tests. It is based on Fermat's little theorem, which was proposed by Fermat in 1640. Fermat's little 

theorem can be stated as follows. 

Theorem  1. [6] (Fermat's little theorem)  If 𝑝 is an odd prime number and if 𝑎 is any integer which is 

not a multiple of 𝑝, then we have the congruence  

𝑎𝑝−1 ≡ 1 mod 𝑝 
(1) 

Usually, we assume that 1 ≤ 𝑎 ≤ 𝑝 − 1.  For 𝑎 = 1 and 𝑎 = 𝑝 − 1, it is trivial that 𝑎𝑝−1 ≡ 1 mod 𝑝. 

Thus, in the Fermat test, we assume that 2 ≤ 𝑎 ≤ 𝑝 − 2.  
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The equivalent statement of Theorem 1: if 𝑎𝑝−1  ≢ 1 mod 𝑝 for at least one base 𝑎 with 2 ≤ 𝑎 ≤ 𝑝 −
2, then 𝑝 is not a prime (namely, a composite number). On the other hand, if 𝑎𝑝−1 ≡ 1 mod 𝑝 for some 

base number 𝑎 with 2 ≤ 𝑎 ≤ 𝑝 −2, then 𝑝 may still be a prime or composite number. In this case, we 

cannot say that 𝑝 is an odd prime number, but we call 𝑝 as a pseudoprime number with a base 𝑎.  

The Fermat probabilistic primality test is based on Fermat's little theorem. For simplicity, we refer to 

the Fermat test. According to the above observation, we below define the Fermat test. 

Fermat Test: Let 𝑛 ≥ 3  be an odd integer, pick randomly some number 𝑎 with 2 ≤ 𝑎 ≤ 𝑛 − 2.   

If the congruence 𝑎𝑛−1 ≢ 1 mod 𝑛, then return “𝑛 is composite,” else return “𝑛 is pseudoprime base 

𝑎”. 

In the Fermat test, the congruence in (1) is checked for  𝑡 different values of base 𝑎 with 2 ≤ 𝑎 ≤ 𝑛 − 2 

to determine whether the number 𝑛 is a composite or pseudoprime number with a certain error rate. The 

algorithm of the Fermat test is given below for an odd number 𝑛. 

Algorithm 1. Fermat’s Test Algorithm 

Input: 𝑛 and 𝑡 ∈ ℤ+ 

Output: 𝑛 is a composite or a pseudoprime with the error rate 𝐸𝑛 (𝑡). 

1: 𝐅𝐨𝐫  pick randomly an integer 𝑎 with 2 ≤ 𝑎 ≤ 𝑛 − 2  

2:      𝑑 ← gcd (𝑎, 𝑛) 

3:      𝐢𝐟 𝑑 > 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

4:      𝐞𝐥𝐬𝐞 𝑏 ← 𝑎𝑛−1 mod 𝑛 

5:      𝐞𝐧𝐝 𝐢𝐟 

6:      𝐢𝐟 𝑏 ≠ 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

7:      𝐞𝐧𝐝 𝐢𝐟 

8: 𝐞𝐧𝐝 𝐟𝐨𝐫 

9: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑛 is a pseudoprime with the error rate  𝐸𝑛 (𝑡) 

Example 1. We verify whether 571 is composite or pseudoprime by the Fermat test. 

Input: 𝑛 = 571 and 𝑡 = 3 iterations. 

1: 𝐅𝐨𝐫  pick randomly an integer 𝑎 with 2 ≤ 𝑎 ≤ 569   

2: For  𝑎 = 2,       𝑎𝑛−1 = 2570 ≡ 1 mod 571 

3: For 𝑎 = 42 ,     𝑎𝑛−1 = 42570 ≡ 1 mod 571 

4: For 𝑎 = 123,    𝑎𝑛−1 = 123570 ≡ 1 mod 571 

Output: 571 is a pseudoprime number. 

Definition 2. Let 𝑛  be an odd composite integer and 𝑎 be an integer with 1 ≤ 𝑎 ≤ 𝑛 − 1. 

• An integer 𝑎 with 2 ≤ 𝑎 ≤ 𝑛 − 2 is called a Fermat witness if 𝑎𝑛−1 ≢ 1 mod 𝑛. In other words, an 

integer 𝑎 approves that 𝑛 is composite. 

• An integer 𝑎 with 1 ≤ 𝑎 ≤ 𝑛 − 1 is a Fermat liar for 𝑛 if  𝑎𝑛−1 ≡ 1 mod 𝑛. 

Definition 3.  (Carmichael Numbers) In the Fermat primality test, some composite numbers can give 

misleading results. These composite numbers pass the Fermat primality test for any base although they 

are not prime numbers. These numbers are called Carmichael numbers. Initially, in 1910, R. D. 

Carmichael discovered such numbers.  

According to Fermat's little theorem, for 𝑛 to be a prime number, for every base 𝑎, 𝑎𝑛 − 𝑎 must divide 

𝑎. However, there are composite Carmichael numbers that satisfy this division. Therefore, the Fermat 

test fails to detect Carmichael numbers. 

Example 2. We verify whether 561 is a pseudoprime or composite by the Fermat test. 

Input: 𝑛 = 561 with 𝑡 = 5 iterations. 



Akd.Uni. J. Sci.Eng.,  01  – 2024 
 

11 

1: For  pick randomly an integer 𝑎 with 2 ≤ 𝑎 ≤ 559   

2: For 𝑎 = 13, 𝑎𝑛−1 = 13560 ≡ 1 (mod 561) 

3: For 𝑎 = 29,  𝑎𝑛−1 = 3560 ≡ 1 (mod 561) 

4: For 𝑎 = 52,  𝑎𝑛−1 = 52560 ≡ 1 (mod 561) 

5: For 𝑎 = 76,  𝑎𝑛−1 = 76560 ≡ 1 (mod 561) 

6: For 𝑎 = 125,  𝑎𝑛−1 = 125560 ≡ 1 (mod 561) 

Output: 561 is a pseudoprime number 

However, 561 = 3 ⋅ 11 ⋅ 17 is a composite number. The base numbers 𝑎 = 13, 29, 52, 76 and 125 are 

Fermat liars for the composite number 561. Such numbers are called Carmichael numbers. 

 

2.2. Solovay-Strassen Primality Test 

The Solovay-Strassen primality test, developed by Robert Solovay and Volker Strassen, is the first 

probabilistic primality test used in Public Key Cryptography. This test is based on the Jacobi symbol 

and Euler’s criterion. The Jacobi symbol is a generalization of the Legendre symbol, introduced by 

Jacobi in 1837. 

Jacobi Symbol.  [12] Given any positive odd integer 𝒏 and any integer 𝒂, the Jacobi symbol (
𝒂

𝒏
) is 

defined as 

(
𝑎

𝑛
) = {

1 if  𝑎 is a quadratic residue mod 𝑛         
−1 if  𝑎 is a quadratic non − residue mod 𝑛

0 if  𝑎 divides 𝑛                                               

 

Theorem 2. (Euler's Criterion) If 𝒑 is an odd prime number and 𝒂 is a positive integer satisfying 

(𝒂, 𝒑) = 𝟏, then the following congruence holds: 

𝒂(𝒑−𝟏)/𝟐 ≡ (
𝒂

𝒑
)  𝐦𝐨𝐝 𝒑 

Equivalently, if this congruence does not hold, then 𝒑 is a composite number. On the other hand, if this 

congruence holds for at least one base 𝒂, then 𝒑 is pseudoprime for base 𝒂. 

 

According to these observations, the Solovay-Strassen primality test is defined as follows. 

Solovay-Strassen Test [12]: Let 𝒏  be an odd number and 𝒂 be a number with 𝟏 ≤ 𝒂 ≤ 𝒏 − 𝟏. If  

𝒂(𝒏−𝟏)/𝟐 ≡ (
𝒂

𝒏
)  𝐦𝐨𝐝 𝒏 

then 𝒏 is called pseudoprime with the base 𝒂. Otherwise, 𝒏 is a composite number.  

Definition 4.  Let 𝒏 be an odd composite number and 𝒂 is a number in the range 𝟏 ≤ 𝒂 ≤ 𝒏 − 𝟏. 

• If 𝒂(𝒏−𝟏)/𝟐 ≢ (
𝒂

𝒏
)  𝐦𝐨𝐝 𝒏, 𝒂 is called an Euler witness of 𝒏. 

• If 𝒂(𝒏−𝟏)/𝟐 ≡ (
𝒂

𝒏
) 𝐦𝐨𝐝 𝒏 although 𝒏 is an odd composite number, 𝒂 is called an Euler liar of 

𝒏. 

If n  is a prime number, the probability that a  is a witness at least 50%. This test is repeated 𝒕 times 

using 𝒕 different values of 𝒂. The probability of a composite number passing the test for  𝒕 times are at 

most  
𝟏

𝟐𝒕. The algorithm for this test is given below. 
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Algorithm 2: Solovay-Strassen Test Algorithm 

Input: An odd positive integer 𝑛 and 𝑡 ∈ ℤ+
 

Output: 𝑛 is either composite or pseudoprime with the error rate 𝐸𝑛(𝑡). 

1: 𝐅𝐨𝐫 pick randomly an integer 𝑎 with 1 ≤ 𝑎 ≤ 𝑛 − 1  

2:        𝑑 ← gcd (𝑎, 𝑛) 

3:         𝐢𝐟 𝑑 > 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

4:         𝐞𝐥𝐬𝐞 𝑏 ← 𝑎
𝑛−1

2  mod 𝑛 

5:         𝐞𝐧𝐝 𝐢𝐟  

6:         𝐢𝐟 𝑏 ≠ ±1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

7:         𝐞𝐧𝐝 𝐢𝐟 

8:          𝐽 ← (
𝑎

𝑛
) 

9:          𝐢𝐟 𝑏 ≠ 𝐽 mod 𝑛  𝐫𝐞𝐭𝐮𝐫𝐧  “composite” 

10:       𝐞𝐧𝐝 𝐢𝐟 

11: 𝐞𝐧𝐝 𝐟𝐨𝐫 

12: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑛 is pseudoprime with the error rate 𝐸𝑛(𝑡) 

Example 3. We determine if 349 is composite or pseudoprime by the Solovay-Strassen test. 

Input: 𝑛 = 349, 𝑡 = 3 ∈ ℤ+ 

1: For 𝑎 = 2,  𝑏 = −1 ← 2(349−1)/2 mod 349 

2: 𝐽 =  −1 ← (
2

349
) 

1: For 𝑎 = 3,  𝑏 = −1 ← 3(349−1)/2 mod 349 

2: 𝐽 =  −1 ← (
3

349
)  

1: For 𝑎 = 5,  𝑏 = −1 ← 5(349−1)/2 mod 349 

2: 𝐽 =  −1 ← (
5

349
)  

Output: 349 is a pseudoprime number. 

We finally review the Miller-Rabin probabilistic primality test, which is faster and has a lower error rate 

compared to the Solovay-Strassen test and the others. 

2.3. Miller-Rabin Primality Test 

One of the most commonly preferred techniques for testing the primality of a given large odd number 

is the Miller-Rabin (M-R) probabilistic primality test. This test was developed by Michael Rabin based 

on the idea of Gary Miller and is particularly known for its low error rate. 

In the Miller-Rabin probabilistic test, to determine whether a given odd number 𝒏 is prime, the first step 

is to find the values of 𝒔 and 𝒓 such that 𝒏 − 𝟏 = 𝟐𝒔 𝒓. 

 

Theorem 3. Let 𝒑 be a positive odd integer and 𝒂 be a number with 𝟏 ≤ 𝒂 ≤ 𝒑 − 𝟏. Write 𝒑– 𝟏 = 𝟐𝒔𝒓, 

where 𝒓 is an odd integer and 𝒔 is an integer. If 𝒑 is an odd prime number, then the equation 

𝒂𝒓  ≡ 𝟏 𝐦𝐨𝐝 𝒑 holds or the equation 𝒂𝟐𝒋𝒓 ≡ −𝟏 𝐦𝐨𝐝 𝒑 holds for any 𝒋 with 𝟎 ≤ 𝒋 ≤ 𝒔 − 𝟏. 

Equivalently, if the equation 𝒂𝒓  ≢ 𝟏 𝐦𝐨𝐝 𝒑 and the equation 𝒂𝟐𝒋𝒓 ≢ −𝟏 𝐦𝐨𝐝 𝒑 for every 𝒋 with 𝟎 ≤
𝒋 ≤ 𝒔 − 𝟏, then 𝒑 is a composite number. On the other hand, for an integer 𝒂 in the range 𝟏 ≤ 𝒂 ≤ 𝒑 −

𝟏, if the equation 𝒂𝒓 ≡ 𝟏 𝐦𝐨𝐝 𝒑 holds, or if for 𝟎 ≤ 𝒋 ≤ 𝒔 − 𝟏, the equation 𝒂𝟐𝒋𝒓 = 𝟏 𝐦𝐨𝐝 𝒑 holds, 

then 𝒑 is considered as a pseudoprime for the base 𝒂. 
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In view of the above observations, one can check whether a positive odd integer 𝒏 is prime. This method 

is called the Miller-Rabin test. 

 

Miller-Rabin Test [5]: Let 𝒏 be a positive odd integer and 𝒂 be a number with 𝟏 ≤ 𝒂 ≤ 𝒏 − 𝟏. Write 

𝒏– 𝟏 = 𝟐𝒔𝒓, where 𝒓 is an odd integer and 𝒔 is an integer. 

• If the equation 𝒂𝒓  ≢ 𝟏 𝐦𝐨𝐝 𝒑 and the equation 𝒂𝟐𝒋𝒓 ≢ −𝟏 𝐦𝐨𝐝 𝒑 for every 𝒋 with 𝟎 ≤ 𝒋 ≤
𝒔 − 𝟏, then 𝒑 is a composite number. 

• If 𝒂𝒓 ≡ 𝟏 𝐦𝐨𝐝 𝒏 or 𝒂𝟐𝒋𝒓 ≡ −𝟏 𝐦𝐨𝐝 𝒏 holds for any 𝒋 in the range 𝟎 ≤ 𝒋 ≤ 𝒔 − 𝟏, then 𝒏 is 

called a pseudoprime for the base 𝒂.  

The algorithm of this test is given below. 

Algorithm 3. Miller-Rabin Test Algorithm 

Input: Positive odd integer  𝑛 and 𝑡 ∈ ℤ+ 

Output ∶  𝑛 is either composite or prime with the error rate 𝐸𝑛(𝑡). 

1: Write 𝑛 − 1 = 2𝑠𝑟 where 𝑟 is an odd integer 

2:  𝐟𝐨𝐫 pick randomly an integer 𝑎 with 1 ≤ 𝑎 ≤ 𝑛 − 1  

2:        𝑑 ← gcd (𝑎, 𝑛) 

3:         𝐢𝐟 𝑑 > 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

4:         𝐞𝐥𝐬𝐞 𝑏 ← 𝑎𝑟 mod 𝑛 

5:         𝐞𝐧𝐝 𝐢𝐟  

6:         𝐢𝐟 𝑏 ≠ ±1 

7:      for  𝑗 from 1 to 𝑠 − 1  

8:         𝑐 ← 𝑎2𝑗𝑟 mod 𝑛 

9:                         𝐢𝐟 𝑐 = 1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

10:   𝐞𝐧𝐝 𝐢𝐟 

11.  end for 

12    𝐢𝐟 𝑐 ≠ −1 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

13:  𝐞𝐧𝐝 𝐢𝐟 

14: 𝐞𝐧𝐝 𝐢𝐟 

15.end for 

16: 𝐫𝐞𝐭𝐮𝐫𝐧 𝑛 is a pseudoprime with the error rate  𝐸𝑛 (𝑡) 

Definition 5.  Let 𝒏 be an odd composite number and 𝒂 is a number in the range 𝟏 ≤ 𝒂 ≤ 𝒏 − 𝟏. Write 

𝒏– 𝟏 = 𝟐𝒔𝒓, where 𝒓 is an odd integer and 𝒔 is an integer. 

• If the equation 𝒂𝒓  ≢ 𝟏 𝐦𝐨𝐝 𝒑 and the equation 𝒂𝟐𝒋𝒓 ≢ −𝟏 𝐦𝐨𝐝 𝒑 for every 𝒋 with 𝟎 ≤ 𝒋 ≤
𝒔 − 𝟏, then then 𝒂 is called a "strong witness" for 𝒏. 

• If 𝒂𝒓 ≡ 𝟏 𝐦𝐨𝐝 𝒏 or 𝒂𝟐𝒋𝒓 ≡ −𝟏 𝐦𝐨𝐝 𝒏 holds for any 𝒋 in the range 𝟎 ≤ 𝒋 ≤ 𝒔 − 𝟏 although 𝒏 

is an odd composite number, 𝒂 is called a strong liar of 𝒏. 

 

Example 4. We apply the Miller-Rabin test to check whether 91 is prime. 

Input: 𝑛 = 91 

Write 𝑛 − 1 = 90 = 2 ∙ 45 , where 𝑠 = 1, 𝑟 = 45  

For   𝑎 = 2,  𝑏 = 𝑎𝑟 = 245 ≡ 57 mod 91  

Since  𝑏 ≠ ± 1 mod 91, 𝐫𝐞𝐭𝐮𝐫𝐧 “composite” 

Output: 91 is composite 

Thus, 𝑎 = 2 is a strong witness. Moreover, we test it for different base numbers. 

Input: 𝑛 = 91 and 𝑡 = 3, 
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Write 𝑛 − 1 = 90 = 2 ∙ 45, where  𝑠 = 1, 𝑟 = 45 

For   𝑎 = 9,       𝑏 = 𝑎𝑟 = 945 ≡ 1 mod 91 

For  𝑎 = 16,     𝑏 = 𝑎𝑟 = 1645 ≡ 1 mod 91 

For 𝑎 = 75,      𝑏 = 𝑎𝑟 = 7545 ≡ 1 mod 91 

Output: 91 is a pseudoprime number. 

For randomly selected values of 𝑎 in the range 1 ≤ 𝑎 ≤ 90, the result indicated that 91 is a pseudoprime 

number. Since  91=7*13 is not a prime number, 𝑎 = 9, 𝑎 = 16, 𝑎 = 75   are strong liars.  

3. RSA ALGORITHM 

In this section, we review the RSA algorithm as an application of large prime numbers. Whitfield Diffie 

and Martin Hellman introduced public-key cryptography in 1976. Then, in 1977, Ronald Rivest, Adi 

Shamir and Leonard Adleman proposed the RSA cryptosystem, which became the most widely used 

public-key cryptography scheme [10]. 

In the paper [11], after defining RSA, they discuss how it can be used in the upcoming era of electronic 

mail. This system is based on the factorisation problem. The security of RSA relies on the difficulty of 

factoring a large integer that is the product of two sufficiently large prime numbers. The reliability of 

the algorithm is directly proportional to the size of the prime numbers used; however, due to the modular 

exponential nature of encryption and decryption processes, it presents time-related disadvantages. The 

RSA cryptosystem is the most widely used public-key cryptography scheme. Today, RSA is used in 

many applications such as SSL, S-HTTP, S-MIME, S/WAN, and STT. It is also used in web security 

certificates for credit card transactions.  

In the paper [9], the measurement of the distance between the selected primes 𝑝 and 𝑞 for RSA is 

defined, and applications are provided. In the book [10] the authors explain the most important 

techniques of modern cryptography. In the paper [7], the author has used the perfect secure prime 

number sequence defined in a new method for finding prime numbers in the RSA encryption method. 

3.1. The Structure of the RSA Algorithm 

There are three main components in the RSA algorithm. The first step is to generate a key pair, consisting 

of a public key and the corresponding private key. 

RSA Key Generation 

1. Two distinct large prime numbers 𝒑 and 𝒒 are generated. 

2. The value of 𝒏 = 𝒑 ⋅ 𝒒 is calculated. 

3. The value of  𝝋(𝒏) = (𝒑 − 𝟏) ∙ (𝒒 − 𝟏) is calculated. 

4. A random number 𝒆 is selected from 𝟏 < 𝒆 < 𝝋(𝒏) such that 𝐠𝐜𝐝 (𝒆, 𝝋(𝒏)) = 𝟏. 

5. The value of 𝒅 is found such that 𝒆 ∙ 𝒅 ≡ 𝟏 𝐦𝐨𝐝 (𝝋(𝒏)). 

 

The pairs (𝒏, 𝒆) are the public parameters, and (𝒑, 𝒒, (𝝋(𝒏)), 𝒅) are the private parameters. The RSA 

modulo parameter 𝒏 is always public. The parameter 𝒆 is the encryption key and the parameter 𝒅 is the 

decryption key. 

Below are the steps that person A would follow for RSA encryption to encrypt a message 𝒎  and send 

the encrypted message to person B. 
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RSA Encryption 

• The person A obtains the person B's public key, which is the pair (𝒏, 𝒆). 

• The message 𝒎 is written in the range [𝟎; 𝒏 − 𝟏]. 
• Then, 𝒄 ≡ 𝒎𝒆  𝐦𝐨𝐝 𝒏 is calculated. 

• Finally, A sends the encrypted message 𝒄 to person B. 

The process that person B will perform to decrypt the encrypted message 𝒄 from person A is outlined 

below. 

RSA Decryption 

The person B, who wants to decrypt the encrypted message 𝒄 sent by person A, uses their private key d 

to calculate: 𝒎 ≡  𝒄𝒅 𝐦𝐨𝐝 𝒏 and thus obtains the message 𝒎. 

3.2. Security of the RSA Algorithm 

The security of the RSA algorithm derives from the difficulty of factoring large numbers. The public 

and private keys are functions of a pair of large prime numbers. RSA, one of the public-key encryption 

algorithms, uses two different keys. Plaintext encrypted with the public key can only be decrypted 

with the private key. The security of the RSA algorithm relies on selecting very large prime numbers. 

To ensure the system's security, it is crucial to generate values for p and q, and thus n, that are resistant 

to factorization algorithms. Therefore, the parameters p and q should be selected according to certain 

criteria. The selected parameters provide a security level that is proportional to the size of the n 

parameter [12]. 

4. THE PERFORMANCE ANALYSES OF THE PRIMALITY TESTS 

In this section, we discuss the performance analyses of the probabilistic primality test algorithms. We 

implement the algorithms of the probabilistic primality tests given in Algorithms 1,2 and 3.  

This section aims to perform and compare the performance analyses of probabilistic primality tests. 

When analysing the performance of these tests, criteria such as runtime, memory requirements, and the 

number of operations performed are considered. Among the probabilistic primality tests, the three main 

tests, namely Fermat, Solovay-Strassen and Miller-Rabin are compared, and it is found that the Miller-

Rabin test performs better in terms of error rate and runtime. The reason for this is that the Fermat test 

is weak in detecting Carmichael numbers. The Solovay-Strassen test takes longer due to the increased 

runtime caused by Jacobi symbol calculations. Additionally, while the Solovay-Strassen test operates 

with an error rate of (𝟏/𝟐)𝒕, the Miller-Rabin test provides more accurate results with an error rate of 

(𝟏/𝟒)𝒕 (see in [12] for more detail). 

Below, we compare the performance of the probabilistic Primality Tests (Fermat, Miller-Rabin, and 

Solovay-Strassen) in terms of runtime for numbers with digit lengths ranging from 2 to 10. 

 Fermat Test: The Fermat test runtimes for numbers with digit lengths ranging from 2 to 10 are provided 

in Table 1. Here, the time taken for the largest-digit number 𝒑 = 𝟐𝟏𝟒𝟕𝟒𝟖𝟑𝟔𝟒𝟕 is 7.18 seconds. 
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Table 1. Fermat Test runtime 

FERMAT TEST 

Number of Digits Mersenne Number Runtime (s) 

2 31 1,84 

4 1023 1,84 

6 262143 3,15 

8 16777215 6,04 

10 2147483647 7,18 

 

Solovay-Strassen Test: The Solovay-Strassen Test runtimes for numbers with digit lengths ranging 

from 2 to 10 are provided in Table 2. Here, the time is taken for the largest-digit number  

𝑝 = 2147483647  is 5.62 seconds. 

Table 2. Solovay-Strassen Test runtime 

SOLOVAY-STRASSEN TEST 

Number of Digits Mersenne Number Runtime (s) 

2 31 1,84 

4 1023 1,84 

6 262143 3,15 

8 16777215 4,04 

10 2147483647 5,62 

 

Miller-Rabin Test: Miller-Rabin Test runtimes for numbers with digit lengths ranging from 2 to 10 are 

provided in Table 3. Here, the time is taken for the largest-digit number  

𝑝 = 2147483647  is 3.22 seconds. 

Table 3. Miller-Rabin Test runtime 

MILLER-RABIN TEST 

Number of Digits Mersenne Number Runtime (s) 

2 31 1,67 

4 1023 1,80 

6 262143 3,00 

8 16777215 3,10 

10 2147483647 3,22 

When we perform the performance analysis for numbers in the range of 20 to 200 digits using the Miller-

Rabin test and the Solovay-Strassen test, the data shows that the Miller-Rabin test reaches the result 

faster. 
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Figure 1. Comparison of the runtime of the Miller-Rabin and Solovay-Strassen tests 

 

5.CONCLUSION 

The RSA algorithm is the most popular public-key cryptosystem. This cryptosystem has both 

encryption and signature algorithms. The security of the RSA cryptosystem is based on the 

hardness of the integer factorisation problem for two sufficiently large prime numbers. To 

design the RSA  cryptosystem for each person, two sufficiently large prime numbers are needed. 

Thus, finding sufficiently large prime numbers is a significant problem in the literature. To 

determine whether large odd numbers are prime, probabilistic primality tests such as Fermat, 

Solovay-Strassen and Miller-Rabin tests have been examined in this work. Moreover, 

performance analyses of the Fermat, Solovay-Strassen, and Miller-Rabin tests have been 

discussed, and their runtimes have been compared. Based on the obtained experimental results, 

it was concluded that the Miller-Rabin probabilistic primality test is more efficient in terms of 

speed and performance criteria. 
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