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Universidad Politécnica de Cartagena
Spain
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Abstract

This paper explores the co-infection dynamics of coronavirus disease 2019 (COVID-19) and Malaria
using Caputo-type fractional derivative to further understand the disease interactions and implement
effective control strategies. We demonstrate the positivity and boundedness of the solution through
Laplace transform techniques and establish the existence and uniqueness of the solution, showcasing
model stability using fractional-order stability theory. Simulation experiments across varying fractional
orders and disease classes offer insights into the co-infection dynamics. This is a new model and the
findings underscore the potential impact of control measures on mitigating co-infection under endemic
conditions. We conclude that infection with malaria does not guarantee immunity to COVID-19 and
infection with COVID-19 as well does not guarantee immunity to malaria.

Keywords: COVID-19; Malaria; vaccination; co-infection; model-fitting; simulations

AMS 2020 Classification: 92D30; 92D25; 92C42; 34C60

1 Introduction

Malaria is one of the most deadly diseases in the world’s history. It is caused by Plasmodium par-
asite [1] and transmitted to humans through the bites of infectious female Anopheles mosquitoes.
First discovered in 1880 in a military hospital in Algiers, Algeria [2], malaria has caused millions
of deaths in the past and still poses a great threat despite scientific investigations for hundreds of
years [3]. Although some countries in the world have attained an indigenous malaria-free state in
some particular years [4], most others still suffer the menace. In 2015, about 218 million malaria
cases were recorded worldwide with 453,000 cases of death [5]. Also, in 2019, about 229 million
cases of malaria with another estimated 409 thousand deaths were recorded in the world [6].
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According to the 2020 World Malaria Report, Nigeria’s malaria prevalence rate is at 303 per 1000
of its population [7]. The malaria prevalence rate is affected significantly by regions, rural-urban,
and socio-economic differences [8]. In Nigeria for instance, the malaria prevalence rate ranges
from 16 percent in the South-South and South-East regions to 34 percent in the North-West region
and 2.4 times in rural population than in urban population as reported by United States Agency
for International Development [9]. Also in socioeconomic groups, there is a seven times positive
difference between children in lower and higher socio-economic groups.
The COVID-19 pandemic has recently joined the league of most common deadly diseases in the
world. [10] described it as a positive-sense RNA virus that originated in the seafood market of live
animals with its first case traced to the city of Wuhan, China [11] in December 2019. COVID-19 is
highly contagious with three main routes; respiratory droplets, contact, and airborne [12]. Infected
individuals become symptomatic in stages, although its complete clinical manifestation is still
not clear as of the time of this research [13]. Symptoms include fever, dry cough, sore throat, loss
of smell and fatigue but in acute cases, it can lead to severe shortness of breath, hypoxia, and
death [12, 14]. Evidence suggests that older individuals and those with compromised immune
systems (from pre-existing conditions) are more likely to develop severe forms of COVID-19 [15].
In 2020, there were about 2,804,796 confirmed cases of COVID-19 in the world and 193,710
confirmed deaths [16]. Also, a total of 585,086,861 confirmed cases worldwide with a total of
6,422,914 deaths as of August 11, 2022 [17].
Malaria and COVID-19 are two life-threatening diseases that concurrently distort normal human
activities. Realizing the transmissible routes of COVID-19, the government placed restrictions in
markets, worship centers, airports, viewing centers, and other social gatherings to help reduce
unguided transmission of the disease. These unusual by-laws lasted for weeks and even months
interrupted routine malaria prevention and control measures and treatments, and by extension
increased new malaria cases and exacerbated untreated ones [18]. This suggests that COVID-
19 has caused havoc on every aspect of human life ranging from social, health, economy, and
education [19]. About 241 million malaria cases and 627 thousand deaths were recorded in
2020 worldwide as against the previous year, which makes about 14 million extra cases and 69
thousand extra deaths in the latter year [18]. Approximately two-thirds of these increased deaths
(47,000) were caused by the unavailability of malaria prevention, diagnosis and treatment linked
to COVID-19 disruptions [18]. Confirming the possible link between COVID-19 and Malaria [20]
found different types of Malaria associated with COVID-19 and stated that the prevalence of
Malaria among COVID-19 patients in Sudan is 32.4 percent.
Mathematical models have been so important in studying the behavioral pattern of infectious
diseases [21–28]. The mathematical model of malaria transmission was first developed by Ross [26].
His report showed that reducing the vector population to below a certain threshold can help
eradicate malaria. Chiyaka et al. [23] formulated a deterministic model with two latent periods in
the non-constant host and vector populations. While checking for ways to eradicate the disease,
they uniquely analyzed the spread of resistance and combined effects of intervention strategies
such as personal protection, vaccination and treatment with the assumption that the treated
individuals remain infectious for a while and discovered that personal control has a positive
impact on disease control. To ascertain the level of awareness of COVID-19 virus [28] studied
the mathematical model of COVID-19 which incorporates awareness programs and different
hospitalization strategies for mild and severe cases while [29] proposed an SEIQCRW transmission
model which adopts the SEIR model to study the current outbreak of COVID-19 in Nigeria with
nonlinear forces on infection. While considering the complexity of the disease [19] formulated
a stochastic model of COVID-19 under environmental white noise and recognized the random
nature of the input components. Several other mathematical models on COVID-19 are found in
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the literature, some of which are co-infection models [30–33].

Fractional differential equations have been widely used in recent years in modeling physical and
biological processes [33–41]. This is mainly because of some level of limitations exhibited by
mathematical models in integer-order derivatives. Although classical integer-order derivatives
yield good results, fractional-order derivatives are non-local operators and produce better and
more realistic results for a given real-life problem [41]. To further understand the different
fractional order operators and models, see [42–46]. Caputo fractional derivative as one of the
fractional differential operators is mostly used in modeling feasible real-life problems. This is
because of its convenience for the initial condition of the fractional differential equations. It has
long-term memory effects [21], and is very useful in translating higher fractional-order differential
systems to lower ones [47] with well-understood physical meaning compared to other fractional
operators [48]. [49] confirmed this when they analyzed the co-infection of HPV-CT in fractional
order using Caputo fractional derivative. Also [50] compared Caputo, Caputo-Fabrizio and
Atangana-Baleanu derivatives in their work. Their comparison shows that the Caputo derivative
presents better results in the form of stability. Other mathematical models with fractional-order
derivatives can be found in the works of [38, 51].

There are so many separate mathematical models in the literature on malaria and COVID-19
pandemic, however [27] started the work on the co-infection of the two diseases. They first
derived the sufficient conditions for the stability of the two diseases separately before considering
their entire equilibria where their findings suggest that using Malaria and COVID-19 protection
measures concurrently is best compared to dealing with them separately. [52] studied the fractional-
order mathematical model of COVID-19 and Malaria using the Atangana-Baleanu derivative
and discovered they could reduce the risk factor of getting COVID-19 after contracting Malaria
and vice versa. Still on the co-infection of COVID-19 and malaria [53] worked on the impact
of COVID-19 and Malaria co-infection on clinical outcomes and discovered that patients with
concurrent malaria and COVID-19 infection had greater mortality risk compared to mono-infection
with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Inspired by the above
literature, especially the work performed by [27] and the beautiful patterns and results gotten from
fractional derivatives as put together by [21, 41, 52, 54], we present this study of the co-infection
of COVID-19 and malaria in fractional order derivative using Caputo fractional operator since
the works of [27] and [53] are in integer derivative and [52] used Atangana-Baleanu fractional
derivative. We expect to obtain better results considering the stated advantages.

The ensuing parts of this paper (in sections) are as follows: Section 2 captures the preliminaries
where major definitions of the various fractional-order derivative operators are stated for easy and
better understanding of the whole work. In Section 3, we formulated the fractional mathematical
model and also carried out some vital analysis on the formulated model which included analysis
on the invariant domain, positivity, basic reproduction number, locally asymptotic stability,
existence and uniqueness of the solution and lastly the generalized Ulam-Hyers-Rassias stability.
In Section 4 we performed some numerical simulations and discussed our results therein. Lastly,
we concluded Section 5 based on our findings.

2 Preliminaries

This particular section presents some definitions of fractional derivatives and integrals that are of
great relevance to modeling real-life problems.
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Definition 1 [55]: The Caputo fractional derivative of order ω > 0 of a function f (t) of order ω ∈ R+ is
given as

CDω
t f (t) = Jn−ω

t Dn f (t) =
1

Γ(n − ω)

∫ t

0
(t − τ)n−ω−1 f (n)(τ)dτ, (1)

with the positive integer n given as n − 1 < ω ≤ n. As 0 < ω ≤ 1, the Caputo fractional derivative of
order ω > 0 above becomes

CDω
t f (t) =

1
Γ(1 − ω)

∫ t

0
(t − τ)−ω f ′(τ)dτ. (2)

Definition 2 [54]: Suppose that a function f ∈ C1(0, Y) is such that T > 0 and 0 < ω ≤ 1, then
Atangana-Baleanu derivative in Caputo sense is presented as

ABC
a Dω

t f (t) =
S(ω)

1 − ω

∫ t

a
Eω

(
−ω

(t − τ)ω

1 − ω

)
f ′(τ)dτ, t > 0, (3)

where S(ω) = (1 − ω) + ω
Γ(ω)

, denotes a normalization function satisfying S(0) = S(1) = 1.

Definition 3 [48]: The fractional integral of order ω > 0 of any function f ∈ C1(0, Y) is presented as

Jω
t f (t) =

1
Γ(ω)

∫ t

0
(t − τ)ω−1 f (τ)dτ, t > 0, (4)

as long as the integral part is integrable in R+. In other words, suppose that f (t) = P, where P is a
constant and results to;

Jω
t (P) =

1
Γ(ω)

∫ t

0
(t − τ)ω−1(P)dτ = P

tω

Γ(ω + 1)
. (5)

Definition 4 The solution of the Caputo fractional derivative can be written in the form of the Volterra
integral as given below;

f − f (0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1K (τ, f (τ)) dτ,

where the fractional order ω > 0.

Definition 5 [55]: The Laplace transform of Caputo fractional derivative (2) is presented as;

L {Dω
t f (t)} = sω f̃ (s)− sω−1 f (0), 0 < ω ≤ 1, (6)

with L as the Laplace transform operator.

3 Mathematical model formulation

The fractional-order model under this study is an interaction between human and vector popula-
tions. The human population at time t, denoted by NH(t) is sub-divided into seven distinct classes,
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namely; susceptible humans SH(t), susceptible humans vaccinated against COVID-19 VHC(t), in-
dividuals infected with malaria IHM(t), recovered individuals from malaria RHM(t), individuals
infected with COVID-19 IHC(t), recovered individuals from COVID-19 RHC(t) and individuals
co-infected with malaria and COVID-19 IMC(t). Therefore,

NH(t) = SH(t) + VHC(t) + IHM(t) + RHM(t) + IHC(t) + RHC(t) + IMC(t).

We considered the last stage of the mosquito life cycle and sub-divided the vector population at
time t, denoted by NV(t) into two distinct classes; susceptible vectors SV(t) and infectious vectors
with malaria IVM(t) hence the vector population is given by

NV(t) = SV(t) + IVM(t).

The model flow diagram is depicted in Figure 1 while the parameters of the model are described
properly in Table 1 below.

Ihm Rhm

Imc

Ihc Rhc

Sh

Vhc

Sv Ivm

%v

ηhm

ηhc

%h

µhc

β vm

(%h + ϕhm)

β
h
c

β v
m

α
hc
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βhc

%h
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(1−
χ
hc )β

hc

Λm

αhc

%h

%v

ν
iβ

hc

βhm

ν2
βvm

Λh

βvm

Figure 1. Model diagram

The rate of recruitment into the susceptible human population is given by ΛH and that of the vector
population is given by ΛV. The parameter ϱH is the natural human mortality rate. It is assumed
that infectious individuals can contact Malaria and/or COVID-19 individuals at the rates ϑHM and
ϑHC, respectively. The interacting ability between the human and vector population warrants that
individuals can move from one class to another. When treated, humans infected with Malaria
move to the recovered class at the rate αHM. Also, the human-to-unvaccinatedhuman transmission
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Table 1. Description of variables and parameters in the above model equation

Variable Description
SH Susceptible humans
VHC Susceptible humans vaccinated against COVID-19
IHM Individuals infected with Malaria
RHM Recovered individuals from Malaria
IHC Individuals infected with COVID-19
RHC Recovered individuals from COVID-19
IMC Infectious individuals co-infected with Malaria and COVID-19
SV Susceptible vectors
IVM Infectious vectors with Malaria
Parameter Description Value Reference
ΛH Human recruitment rate 206,139,587

54.69×365 day−1 [56, 57]
ΛV Vector recruitment rate 104

21 [56]
θ2 Human contact rate with COVID-19 patients 0.4531 [58]
ϱH Human natural death rate 1

54.69×365 day−1 [56, 57]
ηHM Loss of infection acquired immunity to Malaria 0.005 Assumed
ηHC Loss of infection acquired immunity to COVID-19 0.005 Assumed
µHC Fraction of susceptible humans vaccinated against COVID-19 0.025 [59]
χHC COVID-19 vaccine efficacy 0.95 [14]
θ1 Effective contact rate for vector to human transmission of Malaria 0.125 - 0.5 [60]
θ3 Effective contact rate for human to vector transmission of Malaria 0.48 [61]
αHM Malaria recovery rate 0.25 [56]
αHC COVID-19 recovery rate 0.3 [62]
ϑ1 Modification parameter accounting for susceptibility

of Malaria-infected individuals to COVID-19 1 Assumed
ϑ2 Modification parameter accounting for susceptibility

of COVID-19-infected individuals to Malaria 1 Assumed
φHM Malaria-induced death rate 0.000153 [7]
φHC COVID-19-induced death rate 0.015 [63]
ϱV Vector removal rate 1

21 [56, 57]

of COVID-19 is possible at the rate θ2, especially when safety measures are neglected and the
recovery rate of infected humans with COVID-19 is αHC. χHC is the COVID-19 vaccine efficacy
and θ1 is the contact rate for vector to human transmission of Malaria. ϑ1 is the modification
parameter accounting for the susceptibility of Malaria-infected individuals to COVID-19 and ϑ2

is the modification parameter accounting for susceptibility of COVID-19 infected individuals to
Malaria. Mosquitoes are recruited into the population at the rate ΛV and noting that the adult
mosquito has a life span, we have the vector removal rate as ϱV.
Following the assumptions above, the COVID-19 and Malaria co-infection model is given by the
following fractional differential equations;

CDω
t SH(t) = ΛH −

(
βVM IVM

NH

+
βHC(IHC + IMC)

NH

)
SH − ϱHSH − µHCSH + ηHM RHM + ηHC RHC,

CDω
t VHC(t) = µHCSH − (1 − χHC)

βHC(IHC + IMC)

NH

VHC − ϱHVHC −
βVM IVM

NH

VHC,

CDω
t IHM(t) =

βVM IVM

NH

(SH + VHC + RHC)− (αHM + ϱH + φHM)IHM − ϑ1

βHC(IHC + IMC)

NH

IHM + αHC IMC,
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CDω
t RHM(t) = αHM IHM − ϱH RHM − ηHM RHM −

βHC(IHC + IMC)

NH

RHM,

CDω
t IHC(t) =

βHC(IHC + IMC)

NH

(SH + (1 − χHC)VHC + RHM)− (αHC + ϱH + φHC)IHC − ϑ2

βVM IVM

NH

IHC + αHM IMC,

CDω
t RHC(t) = αHC IHC − ϱH RHC − ηHC RHC +

βVM IVM

NH

RHC,

CDω
t IMC(t) = ϑ1

βHC(IHC + IMC)

NH

IHM + ϑ2

βVM IVM

NH

IHC − (ϱH + φHM + φHC + αHM + αHC)IMC,

CDω
t SV(t) = ΛM −

βHM(IHM + IMC)

NH

SV − ϱVSV,

CDω
t IVM(t) =

βHM(IHM + IMC)

NH

SV − ϱV IVM,

with the corresponding initial conditions SH ≥ (0), VHC ≥ (0), IHM ≥ (0), RHM ≥ (0), IHC ≥ (0),
RHC ≥ (0), IMC ≥ (0), SV ≥ (0), IVM ≥ (0).

Invariant domain

Theorem 1 Suppose SH(t), VHC(t), IHM(t), RHM(t), IHC(t), RHC(t), IMC(t) are solutions of the system of equa-
tions for the human population, then the set

∆h =
{
(SH(t), VHC(t), IHM(t), RHM(t), IHC(t), RHC(t), IMC(t)) ∈ R7

+ : SH

+ VHC + IHM + RHM + IHC + RHC + IMC ≤
ΛH

ϱH

}
,

(7)

is positively invariant with respect to the model concerned.
For the vector population, Suppose Sv(t), IVM(t) are any solution of the system, then the set

∆v =

{
(SV(t), IVM(t)) ∈ R2

+ : SV + IVM ≤ ΛV

ϱV

}
, (8)

is positively invariant with respect to the model concerned.

Proof We shall adopt the proof put together by [64].

Positivity

Following the pattern in the work of [48], by contradiction, we assume that equation three of
the model is false. Then let t1 = min{t : SH(t)VHM(t)IHM(t)RHM(t)IHC(t)RHC(t)IMC(t) Sv(t)IVM(t) = 0}.
Suppose IHM(t1) = 0, it implies that SH(t) > 0, VHC(t) > 0, RHM(t) > 0, IHC(t) > 0, RHC(t) > 0,
IMC(t) > 0, SV(t) > 0, IVM(t) > 0 for all [0, t1]. We can assume that there exists the following
expression,

θ1 = min
0≤t≤tt

{
(βVM IVMSH + βVM IVM RHC + βVM IVM RHC − ϑ1βHC IHC − ϑ1βHC IMC)

IHM

− (αHM + ϱH + φHM + αHC IMC)

}
.

It follows that

CDω
t IHM − θ1 IHM > 0. (9)
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We can also determine a continuous function Φ1 to ascertain the following equation

CDω
t IHM − θ1 IHM = −Φ1(t).

By Laplace transform, the above inequality becomes

sω ĨHM(s)− sω−1 IHM(0)− θ1 ĨHM(s) = −Φ̃1(s),

from which

ĨHM(s) = IHM(0)
sω−1

sω − θ1
−

Φ1(s)
sω − θ1

=
IHM(0)

s

(
1 −

θ1

sω

)−1
−

Φ1(s)
sω

(
1 −

θ1

sω

)−1
(10)

= IHM(0)
∞∑

k=0

θk
1

sωk+1 − Φ1(s)
∞∑

k=0

θk
1

sωk+ω
.

Ignoring the non-positive term, the inverse Laplace transform gives the solution of (9) (using
Mittag-Leffler function), which satisfies the following expression:

IHM > IHM(0)
∞∑

k=0

(θ1tω)k

Γ(ωk + 1)
= IHM(0)Eω (θ1tω) ,

such that the positivity of the solution IHM is given by

IHM > IHM(0)Eω (θ1tω) > 0,

which contradicts IHM(t1) = 0. Similarly, suppose IMC(t1) = 0 which implies that SH(t) > 0,
VHC(t) > 0, RHM(t) > 0, IHM(t) > 0, RHC(t) > 0, IHC(t) > 0, SV(t) > 0, IVM(t) > 0 for all 0 ≤ t ≤ t1.
We assume that there exists the following expression:

θ2 = min
0≤t≤tt

{
(φ1βHC IHC IHM + φ1βHC IHM + φ2βVM IVM IHM)

IMC

− (ϱH + ϑM + ϑC + αHM + αHC)

}
,

so that

CDω
t IMC(t) > θ2 IMC(t). (11)

We can still determine a continuous function Φ2(t) to ascertain the following equation

CDω
t IMC(t)− θ2 IMC(t) = −Φ2(t).

By applying the Laplace transform, the above inequality becomes

sω ĨMC(s)− sω−1 IMC(0)− θ2 ĨMC(s) = −Φ̃2(s),
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from which

ĨMC(s) = Ic(0)
∞∑

k=0

θk
2

sωk+1 − Φ2(s)
∞∑

k=0

θk
2

sωk+ω
.

Ignoring the non-positive term, the inverse Laplace transform gives the solution of Eq. (11) (using
Mittag-Leffler function), satisfying the following expression:

IMC(t) > IMC(0)
∞∑

k=0

(θ2tω)k

Γ(ωk + 1)
= IMC(0)Eω (θ2tω) . (12)

Hence the positivity of this other solution IMC is given by IMC(t) > IMC(0)Eω (θ2tω) > 0, which
contradicts IMC(t1) = 0. More so, since the above have similar results, the same pattern will show
that the positivity of the solutions SH, VHC, RHM, RHC, SV and VHC respectively are given by

IHC(t) > IHC(0)Eω (θ3tω) > 0,

SH(t) > SH(0)Eω (θ4tω) > 0,

VHC(t) > VHC(0)Eω (θ5tω) > 0,

RHM(t) > RHM(0)Eω (θ6tω) > 0,

RHC(t) > RHC(0)Eω (θ7tω) > 0,

SV(t) > SV(0)Eω (θ8tω) > 0,

IVM(t) > IVM(0)Eω (θ9tω) > 0.

Basic reproduction number of the mathematical model

The Malaria-COVID-19 co-infection model has a disease-free equilibrium (DFE) as given below.
First, we set the right-hand side of the equations to zero to obtain

ξ0 =(S0
H
, V0

HC
, I0

HM
, R0

HM
, I0

HC
, R0

HC
, I0

MC
, S0

V
, I0

VM
)

=
( ΛH

ϱH + µHC

,
µHCSH

ϱH

, 0, 0, 0, 0, 0,
ΛH

ϱV

, 0
)

.
(13)

We apply the next-generation operator method to the model. Matrix F is of new infection and
matrix V is the transfer of infection in and out of the disease classes. Thus, we have

F =


0 0 0 βVM

0 βHC Q1
NH

βHC Q1
NH

0
0 0 0 0

βHMSV

NH
0 βHMSV

NH
0

 , (14)

where Q1 = [SH + (1 − χHC)]VHC.

V =


k1 0 −αHC 0
0 k2 −αHM 0
0 0 k3 0
0 0 0 ϱV

 , (15)
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where k1 = αHM + ϱH + φHM, k2 = αHC + ϱH + φHC, k3 = ϱH + φM + φC + αHM + αHC. The basic reproduction
number of the Malaria-COVID-19 co-infection model, denoted by R0 as illustrated in [65], is
presented as R0 = max{R0M,R0C} where R0M and R0C are respectively the Malaria and COVID-19
associated reproduction numbers, given by

R0M =

√
βHM βVMS∗

V

ϱVk1N∗
H

, and R0C =
βHC[S∗

H
+ (1 − χHC)V∗

HC
]

k2N∗
H

.

Local asymptotic stability of disease-free equilibrium (DFE) of the co-infection model

Theorem 2 At Disease-Free Equilibrium (DFE), the mathematical model is locally asymptotically stable
(LAS) if R0 < 1, and unstable if R0 > 1.

Proof The local stability of the model is analyzed using the Jacobean square matrix of the whole
system, evaluated at COVID-19-Malaria-free equilibrium, given by;

J =



−(ϱH + µHC) 0 0 ηHM
βHCSH

NH
ηHC

βHCSH

NH
0 βVMSH

NH

µHC ϱH 0 0 −
(1−χHC)βHCVHC

NH
0 −

(1−χHC)βHCVHC

NH
0 βVMVHC

NH

0 0 −k1 0 0 0 αHC 0 βVM(SH+VHC)
NH

0 0 αHM −(ϱH + ηHM) 0 0 0 0 0
0 0 0 0 H − k2 0 H + αHM 0 0
0 0 0 0 αHC −(ϱH + ηHC) 0 0 0
0 0 0 0 0 0 −k3 0 0
0 0 −

βHMSV

NH
0 0 0 −

βHMSV

NH
−ϱV 0

0 0 βHMSV

NH
0 0 0 βHMSV

NH
0 −ϱV


,

(16)

where H = βHC[SH+(1−χHC)VHC]
NH

.
The first three eigenvalues are λ1 = −(ηHC + ϱH), λ2 = −ϱV (twice), while the remaining eigenvalues
will as well satisfy the negativity requirement for stability (following the method of Routh-
Hurwitz).
Epidemiologically, Theorem 2 implies that the prevalence of COVID-19 and Malaria can be
eradicated from the population when R0 and if the initial population of the model is in the region
of attraction of the DFE. Hence, the DFE is locally asymptotically stable if R0 = max(R0C,R0M) < 1.

Existence and uniqueness of solution of the model

As significantly demonstrated by [66], we show the existence and uniqueness of the solution
of the fractional-order model. When we apply the fractional integral to the Caputo fractional
derivative model of order ω > 0 while maintaining its initial conditions, we have the following
Volterra-integral equations as a solution to the fractional model. This theory validates our claim
that a solution to our model equations exists and is unique:

SH − SH(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1K (τ, SH(τ)) dτ,

VHC − VHC(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1Q (τ, VHM(τ)) dτ,

IHM − IHM(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1V (τ, IHM(τ)) dτ,

(17)
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RHM(t)− RHM(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1F (τ, RHM(τ)) dτ,

IHC(t)− IHC(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1H (τ, IHC(τ)) dτ,

RHC(t)− RHC(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1G (τ, RHC(τ)) dτ,

IMC(t)− IMC(0)+ =
1

Γ(ω)

∫ t

0
(t − τ)ω−1U (τ, IMC(τ)) dτ,

Sv(t)− Sv(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1P (τ, Sv(τ)) dτ,

IVM(t)− IVM(0) =
1

Γ(ω)

∫ t

0
(t − τ)ω−1W (τ, IVM(τ)) dτ.

We assume that the functions (K, Q, V, F, H, G, U, P, W) : [0, b]× R → R are continuous so that
(R, ∥.∥) is the Banach space and H1 ([0, b]) is that of all the continuous function defined in
[0, b] → R carved with Chebychev norm. We now prove that the continuous functions K, Q, V, F,
H, G, U, P and W satisfy the Lipschitz condition when

sup
0<t≤Y

∥∥∥∥ IHM

NH

∥∥∥∥ ≤ Θ1, sup
0<t≤Y

∥∥∥∥ IHC

NH

∥∥∥∥ ≤ Θ2, sup
0<t≤Y

∥∥∥∥ IMC

NH

∥∥∥∥ ≤ Θ3, sup
0<t≤Y

∥∥∥∥ IVM

NH

∥∥∥∥ ≤ Θ4.

Thus, firstly we have

∥K(SH1)− K(SH2)∥ =

∥∥∥∥ΛH −

(
βVM IVM

NH

+
βHC(IHC + IMC)

NH

+ ϱH + µHC − ηHM RHM − ηHC RHC

)
SH1

−

(
ΛH −

(
βVM IVM

NH

+
βHC(IHC + IMC)

NH

+ ϱH + µHC − ηHM RHM − ηHC RHC

)
SH2

)∥∥∥∥
=

∥∥∥∥−βVM IVM

NH

(SH1 − SH2)−
βHC IHC

NH

(SH1 − SH2)−
βHC IMC

NH

(SH1 − SH2)− ϱH (SH1 − SH2)

− µHC (SH1 − SH2) + ηHM RHM (SH1 − SH2) + ηHC RHC (SH1 − SH2)

∥∥∥∥
≤ βVM sup

0≤t≤Y

∥∥∥∥ IVM

NH

∥∥∥∥ ∥SH1 − SH2∥+ βHC sup
0≤t≤Y

∥∥∥∥ IHC

NH

∥∥∥∥ ∥SH1 − SH2∥

+ βHC sup
0≤t≤Y

∥∥∥∥ IMC

NH

∥∥∥∥ ∥SH1 − SH2∥+ ϱH ∥SH1 − SH2∥+ µHC ∥SH1 − SH2∥

+ ηHM RHM ∥SH1 − SH2∥+ ηHC RHC ∥SH1 − SH2∥
≤ LK ∥SH1 − SH2∥ , (18)

where

LK = βVMΘ4 + βHCΘ2 + βHCΘ3 + ϱH + µHC + ηHM RHM + ηHC RHC > 0.

Secondly,

∥Q(VHC1)− Q(VHC2)∥ =

∥∥∥∥µHCSH −

(
βHC IHC

NH

+
χHC IMC

NH

− ϱH −
βVM IVM

NH

)
VHC1
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−

(
µHCSH −

(
βHC IHC

NH

+
χHC IMC

NH

− ϱH −
βVM IVM

NH

)
VHC2

)∥∥∥∥ (19)

= −

(
βHC IHC

NH

+
χHC IMC

NH

− ϱH −
βVM IVM

NH

)
∥VHC1 − VHC2∥

≤
(

βHC sup
0≤t≤Y

∥∥∥∥ IHC

NH

∥∥∥∥+ χHC sup
0≤t≤Y

∥∥∥∥ IMC

NH

∥∥∥∥+ βVM sup
0≤t≤Y

∥∥∥∥ IVM

NH

∥∥∥∥+ ϱH

)
∥VHC1 − VHC2∥

≤ LQ ∥VHC1 − VHC2∥ ,

where

LQ = βHCΘ2 + χHCΘ3 + βVMΘ4 + ϱH > 0.

Applying a similar approach gives the following

∥V(IHM1)− V(IHM2)∥ =

∥∥∥∥ βVM IVMSH

NH

+
βVM IVMVHC

NH

+
βVM IVM RHC

NH

−

(
αHM + ϱH + φHM +

ϑ1BHC IHC

NH

+
ϑ1 IMC

NH

− αHM

)
IHM1

∥∥∥∥
−

∥∥∥∥ βVM IVMSH

NH

+
βVM IVMVHC

NH

+
βVM IVM RHC

NH

−

(
αHM + ϱH + φHM +

ϑ1BHC IHC

NH

+
ϑ1 IMC

NH

− αHM

)
IHM2

∥∥∥∥
=

(
αHM + ϱH + φHM +

(
ϑ1BHC IHC

NH

+
ϑ1 IMC

NH

))
∥IHM1 − IHM2∥

≤ LV ∥IHM1 − IHM2∥ , (20)

where

LV = ϑ1BHCΘ2 + ϑ1Θ3 + αHM + ϱH + φHM > 0.

∥F(RHM1)− F(RHM2)∥ =

∥∥∥∥αHM IHM − ϱH − ηHM −

(
βHC IHC

NH

−
βHC IMC

NH

)
RHM1

−

(
αHM IHM − ϱH − ηHM −

(
βHC IHC

NH

−
βHC IMC

NH

)
RHM2

)∥∥∥∥
≤ LF ∥RHM1 − RHM2∥ , (21)

where

LF = βHCΘ2 + βHCΘ3 > 0.

∥H(IHC1)− H(IHC2)∥ =

∥∥∥∥(βHCSH

NH

+
βHC IMCSH

NH

+
βHCVHC

NH

+
βHC IMCVHC

NH

−
βHCχHCVHC

NH

−
βHC IMCχHCVHC

NH

+
βHC RHC

NH

+
βHC IMC RHC

NH

− αHC − ϱH + φHC −
ϑ2βVM IVM

NH

+ αHM IMC

)
IHC1

−

(
βHCSH

NH

+
βHC IMCSH

NH

+
βHCVHC

NH

+
βHC IMCVHC

NH

−
βHCχHCVHC

NH

−
βHC IMCχHCVHC

NH

+
βHC RHC

NH

+
βHC IMC RHC

NH

− αHC − ϱH + φHC −
ϑ2βVM IVM

NH

+ αHM IMC

)
IHC2

∥∥∥∥
≤ LH ∥IHC1 − IHC2∥ , (22)
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where

LH = βHCχHCΘ1 + βHCχHCΘ2 + ϑ2βVMΘ4 + αHC + ϱH > 0.

∥G(RHC1)− G(RHC2)∥ =

∥∥∥∥(αHC IHC − ϱH − ηHC −
βVM IVM

NH

)
RHC1

−

(
αHC IHC − ϱH − ηHC −

βVM IVM

NH

)
RHC2

∥∥∥∥
≤ LG ∥RHC1 − RHC2∥ , (23)

where

LG = βVMΘ4 + ϱH + ηHC > 0.

∥U(IMC1)− U(IMC2)∥ =

∥∥∥∥(ϑ1βHC IHCℑHM

NH

+
ϑ1βHC IHM

NH

+
ϑ2βVM IVM IHM

NH

− ϱH − φM − φC − αHM − αHC

)
IMC1

−

(
ϑ1βHC IHCℑHM

NH

+
ϑ1βHC IHM

NH

+
ϑ2βVM IVM IHM

NH

− ϱH − φM − φC − αHM − αHC

)
IMC2

∥∥∥∥
≤ LU ∥IMC1 − IMC2∥ , (24)

where

LU = ϱH + φM + φC + αHM + αHC > 0.

∥P(SV1)− P(SV2)∥ =

∥∥∥∥(ΛM −
βHM IHM

NH

−
βHM IMC

NH

− ϱV

)
SV1 −

(
ΛM −

βHM IHM

NH

−
βHM IMC

NH

− ϱV

)
SV2

∥∥∥∥
≤ LP ∥SV1 − SV2∥ , (25)

where

LP = βHMΘ1 + βHMΘ2 + ϱV > 0.

∥W(IVM1)−W(IVM2)∥ =

∥∥∥∥(βHM IHMSVM

NH

+
βHM IMCSVM

NH

− ϱV IVM

)
IVM1 −

(
βHM IHMSVM

NH

+
βHM IMCSVM

NH

− ϱV IVM)IVM2

∥∥∥∥
≤ LW ∥IVM1 − IVM2∥ , (26)

where

LW = ϱV > 0.

Theorem 3 Suppose
(

LK, LQ, LV , LF, LH, LG, LU , LP, LW
) Γ(1−ω) sin(πω)Yω

ωπ < 1, we then say that the
fractional model has a unique solution on the interval [0, b], letting (K, Q, V, F, H, G, U, P, W) : [0, b]×
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R → R be continuous and satisfying the Lipschitz condition.

Proof We can see the proof in the work of [67–69].

Furthermore, we look at the existence of solutions of the fractional model using Schaefer’s fixed
point theorem.

Theorem 4 Suppose that (K, Q, V, F, H, G, U, P, W) : [0, b]× R → R are continuous and that there
exists constants (LK1, LQ1, LV1, LF1, LH1, LG1, LU1, LP1, LW1) > 0 such that

∥K(t, SH)∥ ≤ LK1 (g + ∥SH∥) , ∥Q(t, VHC)∥ ≤ LQ1 (g + ∥VHC∥) , ∥V(t, IHM)∥ ≤ LV1 (g + ∥IHM∥) ,

∥F(t, RHM)∥ ≤ LF1 (g + ∥RHM∥) , ∥H(t, IHC)∥ ≤ LH1 (g + ∥IHC∥) , ∥G(t, RHC)∥ ≤ LG1 (g + ∥RHC∥) ,

∥U(t, IMC)∥ ≤ LU1 (g + ∥IMC∥) , ∥P(t, SV)∥ ≤ LP1 (g + ∥SV∥) , ∥W(t, IVM)∥ ≤ LW1 (g + ∥IVM∥) ,

where 0 < g ≤ 1 is an arbitrary number, then the system has at least one solution.

Proof The proof of this result is similar to the approach used in ([67–69], and therefore omitted.

Generalized Ulam-Hyers-Rassias stability

This particular stability for fractional systems has been studied in a few literature. In this section
we will adopt a similar approach in [70] to show that our fractional model is generalized Ulam-
Hyers-Rassias (UHR) stable. Following [70], we have the definition below.

Definition 6 The fractional model above is generalized UHR stable with respect to Ω(t) ∈ H1([0, b], R) if
there exists a real value κψ > 0 such that ϵ > 0 and for every solution (SH, VHM, IHM, RHM, IHC, RHC, IMC, SV, IVM) ∈
H1([0, b], R) of the following inequalities∣∣∣Dψ

t SH(t)− K(t, SH)
∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t VHM − Q(t, VHM)

∣∣∣ ≤ Ω(t),
∣∣∣Dψ

t IHM − V(t, IHM)
∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t RHM(t)− F(t, RHM(t))

∣∣∣ ≤ Ω(t),
∣∣∣Dψ

t IHC(t)− H(t, IHC(t))
∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t RHC(t)− G(t, RHC(t))

∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t IMC(t)− U(t, IMC(t))

∣∣∣ ≤ Ω(t),
∣∣∣Dψ

t SV(t)− P(t, SV(t))
∣∣∣ ≤ Ω(t),

∣∣∣Dψ
t IVM(t)−W(t, IVM(t))

∣∣∣ ≤ Ω(t),
∣∣∣Dψ

t SV(t)− P(t, SV(t))
∣∣∣ ≤ Ω(t),

there exists a solution (S̄H, V̄HM, ĪHM, R̄HM, ĪHC, R̄HC, ĪMC, S̄v, ĪVM) ∈ H1([0, b], R) of the fractional model with∣∣SH(t)− S̄H

∣∣ ≤ κψΩ(t),
∣∣VHM − V̄HM

∣∣ ≤ κψΩ(t),
∣∣IHM − ĪHM

∣∣ ≤ κψΩ(t),
∣∣RHM(t)− R̄HM(t)

∣∣ ≤ κψΩ(t),

∣∣IHC(t)− ĪHC(t)
∣∣ ≤ κψΩ(t),

∣∣RHC(t)− R̄HC(t)
∣∣ ≤ κψΩ(t),

∣∣IMC(t)− ĪMC(t)
∣∣ ≤ κψΩ(t),
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∣∣SV(t)− S̄V(t)
∣∣ ≤ κψΩ(t),

∣∣IVM(t)− ĪVM(t)
∣∣ ≤ κψΩ(t).

Theorem 5 The fractional model is generalized Ulam-Hyers-Rassias stable with respect to Ω ∈ H1([0, b], R)

if

(LK, LQ, LV, LF, LH, LG, LU, LP, LW) Tψ < 1.

Proof From Definition 6, let Ω denote the non-decreasing function of t, then there exists ϵ > 0
such that ∫ t

0
(t − τ)ψ−1Ω(τ)dτ ≤ ϵΩ(t),

for every t ∈ [0, b]. The functions K, Q, V, F, H, G, U, P, W have been shown to be continuous and

(LK, LQ, LV, LF, LH, LG, LU, LP, LW) > 0,

satisfies the Lipschitz condition as shown in the previous section. From Theorem 3, the fractional
model has the unique solution

S̄H = SH(0) +
1

Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, S̄H(τ))dτ.

Integrating the inequalities in Definition 6 we get∣∣∣∣SH − SH(0)−
1

Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, Sh(τ))dτ

∣∣∣∣ ≤ 1
Γ(ψ)

∫ t

0
(t − τ)ψ−1Ω(τ)dτ

≤ ϵΩ(t)Γ(1 − ψ) sin(πψ)

π
. (27)

Using (27) and the Lemma we get

∣∣SH − S̄H

∣∣ ≤
∣∣∣∣SH −

(
SH(0) +

1
Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, S̄H(τ))dτ

)∣∣∣∣
≤

∣∣∣∣SH − SH(0)−
(

1
Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, S̄H(τ))dτ +

1
Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, SH(τ))dτ

−
1

Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, SH(τ))dτ

)∣∣∣∣
≤

∣∣∣∣SH − Sh(0)−
1

Γ(ψ)

∫ t

0
(t − τ)ψ−1K(τ, SH(τ))dτ

∣∣∣∣
+

1
Γ(ψ)

∫ t

0
(t − τ)ψ−1 ∣∣K(τ, Sh(τ))− K(τ, S̄h(τ))

∣∣ dτ

≤ ϵΩ(t)Γ(1 − ψ) sin(πψ)

π
+

LKΓ(1 − ψ) sin(πψ)

π

∫ t

0
(t − τ)ψ−1 ∣∣SH(τ)− S̄H(τ)

∣∣ dτ

≤ ϵΩ(t)Γ(1 − ψ) sin(πψ)

π
Eψ

(
Lψ

KT

)
.
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By setting κψ = ϵΓ(1−ψ) sin(πψ)
π Eψ

(
Lψ

KT

)
, we have

∣∣SH − S̄H

∣∣ ≤ κψΩ(t), t ∈ [0, b].

Applying the similar approach we get∣∣VHM − V̄HM

∣∣ ≤ κψΩ(t),
∣∣IHM − ĪHM

∣∣ ≤ κψΩ(t),

∣∣RHM(t)− R̄HM(t)
∣∣ ≤ κψΩ(t),

∣∣IHC(t)− ĪHC(t)
∣∣ ≤ κψΩ(t),

∣∣RHC(t)− R̄HC(t)
∣∣ ≤ κψΩ(t),

∣∣IMC(t)− ĪMC(t)
∣∣ ≤ κψΩ(t),

∣∣SV(t)− S̄V(t)
∣∣ ≤ κψΩ(t),

∣∣IVM(t)− ĪVM(t)
∣∣ ≤ κψΩ(t),

for every t ∈ [0, b]. Hence, we conclude that the fractional model is generalized Ulam-Hyers-
Rassias stable with respect to Ω(t).

4 Numerical scheme and simulations

We carried out some numerical simulations to further explain the analytical results we presented
earlier. Most of our parameters are obtained from previous works of renowned authors who
have done similar works like this. However, there are few cases where certain parameters are
unavailable in the literature, such cases gave us room to assume relevant values for the sake of
this study.

The fractional predictor-corrector method was used in carrying out numerical simulations and
the numerical scheme was derived using the Adams-Bashforth linear multi-step method in the
Caputo sense, taking into consideration the convergence of the numerical method. The model is
simulated using parameters provided based on dynamical data relevant to COVID-19 and Malaria
co-infection in Nigeria. The total human population of Nigeria is estimated to be 206,139,587 as
of 2020 and its life expectancy is estimated at 54.69 years according to WHO, hence the natural
death rate ϱH is set at 1

54.69×365 per day and the recruitment rate ΛH set at 206,139,597
54.69×365 per day. Under

normal biological interpretation, we let all parameters used to be non-negative and considered
the following initial conditions; we assume that the total susceptible population is SH(0) =

200, 000, 000 and the total human population vaccinated against COVID-19, VHC(0) = 8, 000, 000.
Hence we set IHM(0) = 700, 000, RHM(0) = 100, 000, IHC(0) = 77, 239, RHC(0) = 72, 350, IMC(0) =

200, 000. We also assume susceptible vector population SV(0) = 50, 000, IVM(0) = 40, 000. It
is important to state that very scanty data is available in the literature on the co-infection of
COVID-19 and Malaria as of October 2021.

Let the uniform grid points be tk = kh, where k = 0, 1, 2, . . . , m with some integer m and the
grid step size h = T/m. Then by piece-wise interpolation with nodes and knots taken at tj,
j = 0, 1, 2, . . . , k + 1, Eq. (17) becomes the fractional variant of the one-step Adam-Moulton
method (Corrector formula);
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SH(tk+1)− SH(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1K
(
tj, SH(tj)

)
+ K (tk+1, Sp

H
(tk+1))

 ,

VHC(tk+1)− VHC(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1Q
(
tj, VHC(tj)

)
+ Q (tk+1, Vp

HC
(tk+1))

 ,

IHM(tk+1)− IHM(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1V
(
tj, IHM(tj)

)
+ H (tk+1, Ip

HM
(tk+1))

 ,

RHM(tk+1)− RHM(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1F
(
tj, RHM(tj)

)
+ K (tk+1, Rp

HM
(tk+1))

 ,

IHC(tk+1)− IHC(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1H
(
tj, IHC(tj)

)
+ Q (tk+1, Ip

HC
(tk+1))

 , (28)

RHC(tk+1)− RHC(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1G
(
tj, RHC(tj)

)
+ U (tk+1, Rp

HC
(tk+1))

 ,

IMC(tk+1)− IMC(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1U
(
tj, IMC(tj)

)
+ V (tk+1, Ip

MC
(tk+1))

 ,

Sv(tk+1)− Sv(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1P
(
tj, SV(tj)

)
+ W (tk+1, Sp

V
(tk+1))

 ,

IVM(tk+1)− IVM(0) =
hω

Γ(ω + 2)

 k∑
j=0

uj,k+1W
(
tj, IVM(tj)

)
+ V (tk+1, Ip

VM
(tk+1))

 ,

where the weight

uj,k+1 =


kω+1 − (k − ω)(k + 1)ω, j = 0,

(k − j + 2)ω+1 + (k − j)ω+1 − 2 (k − j + 1)ω+1 , 1 ≤ j ≤ k,

1, j = k + 1.

From the one-step Adams-Bashforth method, the predictor formula is presented as

Sp
H (tk+1)− SH(0) =

1
Γ (ω)

k∑
j=0

vj,k+1K
(
tj, SH(tj)

)
,

Vp
HC
(tk+1)− VHC(0) =

1
Γ (ω)

k∑
j=0

vj,k+1Q
(
tj, VHC(tj)

)
,

Ip
HM
(tk+1)− IHM(0) =

1
Γ (ω)

k∑
j=0

vj,k+1V
(
tj, IHM(tj)

)
,
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Rp
HM
(tk+1)− RHM(0) =

1
Γ (ω)

k∑
j=0

vj,k+1F
(
tj, RHM(tj)

)
,

Ip
HC
(tk+1)− IHC(0) =

1
Γ (ω)

k∑
j=0

vj,k+1H
(
tj, IHC(tj)

)
,

Rp
HC (tk+1)− RHC(0) =

1
Γ (ω)

k∑
j=0

vj,k+1G
(
tj, RHC(tj)

)
, (29)

Ip
MC (tk+1)− IMC(0) =

1
Γ (ω)

k∑
j=0

vj,k+1U
(
tj, IMC(tj)

)
,

Sp
v (tk+1)− Sv(0) =

1
Γ (ω)

k∑
j=0

vj,k+1P
(
tj, Sv(tj)

)
,

Ip
VM (tk+1)− IVM(0) =

1
Γ (ω)

k∑
j=0

vj,k+1W
(
tj, IVM(tj)

)
,

where the weight

vj,k+1 = ω−1hω ((k − j + 1)ω − (k − j)ω) .
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Figure 2. Fitting the cumulative number of COVID-19 reported cases
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Figure 3. Simulation for susceptible human at different fractional order values
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Figure 4. Simulation for vaccinated individuals against COVID-19 at different fractional order values
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Figure 5. Simulation for individuals infected with malaria at different fractional order values
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Figure 6. Simulation for individuals who recovered from malaria at different fractional order values
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Figure 7. Simulation for individuals infected with COVID-19 at different fractional order values
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Figure 8. Simulation for individuals who recovered from COVID-19 at different fractional order values
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Figure 9. Simulation for individuals co-infected with COVID-19 and Malaria at different fractional order values
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Figure 10. Simulation for susceptible vectors at different fractional order values
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Figure 11. Simulation for infectious vectors with malaria at different fractional order values
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Discussion of results

Figure 1 is the model flow diagram showing migration from one compartment to the other. Fitting
of our model is presented in Figure 2 where the cumulative reported cases were used to fit the
model to data from Nigeria. The figure showed that the co-infection model fits well with the
Nigerian COVID-19 data for daily cumulative reported cases.
The various simulations carried out on each compartment produce distinct results of the epidemic
as illustrated in the behavior of the figures. Figure 3, Figure 4, Figure 5, Figure 6, Figure 7, Figure 8,
Figure 9, Figure 10 and Figure 11 are results of the compartments generated at different fractional
order, ω = 0.95, 0.85, 0.75 and 0.65 using parameters values from Table 1. In Figure 3, we plot the
total susceptible population over time at different fractional order. It is observed that for the first 17
days, the fractional order is directly proportional to the total population; increasing the fractional
order causes an increase in the susceptible population, and decreasing the fractional order reduces
the population, indicating the absence of disease in the population. Between the 18th and 79th
days, we experience a rapid swap in the behaviour which demonstrates the susceptibility of the
human population. Figure 4 presents the simulations of individuals vaccinated against COVID-19
over time in different fractional order. It is observed that as we increase the fractional order, the
number of individuals vaccinated against COVID-19 increases for the first 17 days, after which we
observe a stable behaviour in the next 22 days due to the effect of vaccination on the population
class. Figure 5 shows the total infectious individuals with malaria over time at different fractional
order. It is observed that malaria infection causes a rapid increase in the population as fractional
order increases from day one. We plot the number of individuals who have recovered from malaria
over time at different fractional order in Figure 6. There is a migration from the infections class to
the recovered class as shown in the population of individuals from the first day. Figure 7 presents
the simulations of infectious individuals with COVID-19 over time. It is observed that fractional
order has no effect on individuals with COVID-19 for the first 23 days. After 23 days, an increase
in the fractional derivative order leads to an increase in the number of infectious individuals with
COVID-19 and a decrease in the fractional order decreases the number of infectious individuals
with COVID-19, too.
It is not until after the first 25 days that we noticed an effect due to fractional order on the number of
individuals who have recovered from COVID-19 as presented in Figure 8 Accordingly, an increase
in the fractional order causes an increase in the number of individuals who have recovered from
COVID-19 and a decrease in the fractional directly decreases the number of individuals who
have recovered from COVID-19. In Figure 9 we present the simulation of infectious individuals
co-infected with malaria and COVID-19 over time in different fractional order. It is observed that
the infectious population co-infected with malaria and COVID-19 is directly proportional to the
fractional order after the first 24 days; an increase in the fractional order causes an increase in the
co-infectious population and a decrease in population implies a decrease in the fractional order
too. Figure 10 presents the simulations of susceptible vectors over time. It is observed that an
increase in fractional order causes a sharp increase in the susceptible vectors and a decrease in the
population of vectors implies a decrease in fractional order. In Figure 11, we plot infectious vectors
with malaria over time at different fractional order. It noticed that an increase in the fractional
order increases the infectious vectors with malaria and decreasing the fractional order reduces the
number of infectious vectors with malaria.

Discussion of results on simulations of modification parameter on co-infection

Figure 12 presents simulations of the total co-infection class at different modification rates d1 of
0.5, 1.0, 1.5, and 2.0 of susceptibility of malaria-infected individuals to COVID-19 over time. It has
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Figure 12. Modification parameter for malaria on co-infection class at different values
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Figure 13. Modification parameter for COVID-19 on co-infection class at different values

clearly shown that, the co-infection class increases among those already infected with malaria
as time increases. A clear indication that a single infection with malaria does not guarantee
immunity to COVID-19. In Figure 13 we plot the simulations of the total co-infection class at
different modification rates d2 of 0.5, 1.0, 1.5, and 2.0 of susceptibility of COVID-19-infection to
malaria over time. The result shows clearly that the co-infection class increases among those
already infected with COVID-19. Singly infection with COVID-19 does not guarantee immunity
to malaria, thereby allowing co-infection.

5 Conclusion

In this paper, we have developed a novel mathematical model for COVID-19 and Malaria and
analyzed using fractional derivatives. In the results, we have shown how control measures such as
vaccination and other preventive measures for either disease could help to curtail the co-infection
of both diseases under an endemic scenario. The mathematical analysis of the model such as the
positivity and boundedness of the equilibrium of solutions are also proven with the help of Laplace
transform. We computed the basic reproduction number R0 and found that the COVID-19-malaria
model is locally asymptotically stable when R0 < 1. The fractional model fits well to Nigeria’s
situation after fitting the model to data related to the dynamics of the co-infection disease in
Nigeria. To further explain our earlier results, we simulated the model numerically and obtained
several graphical results. Results of the simulation showed a good agreement between theoretical
and numerical results; fractional order ω has effects on all the compartments over time and the
co-infection class indicates that a single infection with malaria does not guarantee immunity to
COVID-19 and infection with COVID-19 alone does not also guarantee immunity to malaria. A
careful look at the findings in this work will give a better understanding of COVID-19 pandemic
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and how it can be managed alongside malaria.
Based on our findings, there is a need for more awareness of the dangers of the widespread
COVID-19 and the continual adherence to safety measures of malaria despite the COVID-19
lockdown. The use of face masks, maintaining social distance in gatherings, routine washing of
hands, minimal travels, awareness programs, and timely hospitalization of infected individuals
with mild and severe cases among other safety measures put in place to control the spread of
COVID-19 need to be encouraged. For malaria cases, the use of insecticide-treated bed nets,
protecting doors and windows with nets, clearing of stagnant water, drainages and bushes to
avoid nurturing mosquitoes, and other routine malaria prevention strategies should be continued
despite subsequent COVID-19 lock-down or restrictions. This step will go a long way in checking
co-infection. The results obtained from the different simulations also explain more accurately,
the various methods of prevention of infection from the two diseases. In future research, we
recommend that researchers investigate the Hopf bifurcation of the delayed fractional-order
COVID-19 model. See the papers [71–73] for more information.
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* Corresponding Author
‡ sumeyraucar@balikesir.edu.tr (Sümeyra Uçar); ilknurkoca@mu.edu.tr (İlknur Koca); nozdemir@balikesir.edu.tr
(Necati Özdemir); tarik.inci@ege.edu.tr (Tarık İnci)

Abstract

Macrophages are essential components of the immune system’s response to tumors, engaging in
intricate interactions shaped by factors such as tumor type, progression, and the surrounding mi-
croenvironment. These dynamic relationships between macrophages and cancer cells have become a
focal point of research, as scientists seek innovative ways to harness the immune system, including
macrophages, for cancer immunotherapy. In this study, we introduce a novel model that examines the
interaction between tumor and macrophage cells. We provide an in-depth analysis of the equilibrium
points and their stability, as well as a thorough investigation into the solution properties of the model.
Moreover, by incorporating a stochastic approach, we account for inherent randomness and fluctua-
tions within the system, offering a more comprehensive understanding of tumor-immune dynamics.
Numerical simulations further validate the model, providing key insights into how stochastic elements
may influence tumor progression and immune response.

Keywords: Stochastic differential equations; numerical approximations; tumor model; stability analy-
sis

AMS 2020 Classification: 26A33; 34A34

1 Introduction

Tumor is the Latin word for swelling and is currently used to describe cancer. Cancer is a disease in
which the body’s own cells can grow uncontrollably, invade tissues, and cause specific problems.
There are two subgroups of tumors called benign and malignant. Malignant tumors, widely
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known as cancer, affect millions of people each year [1], and treatment regimens have diversified
over decades. Yet, cancer and its treatments must be addressed to overcome this disease.
The healthy body is capable of defending against cancer cells. Our immune system is well-
equipped to find and destroy cancerous cells before they progress to cancer. However, cancer cells
acquire functions to evade the immune system, surviving and eventually leading to neoplastic or
cancer growth in the body. Our immunity is composed of two different lines of defense. The first
line of defense is the innate immune system, which takes action if a germ or unknown antigen is
encountered in the body. Examples of the innate immune system include phagocytosis of bacteria,
acid secretion in the stomach, skin resistance, neutrophils, macrophages, and natural killer cells
[2–4].
Our tumor model introduces a significant advancement by capturing the complex interactions
between tumor and macrophage cells. This model’s novelty lies in its incorporation of stochastic
differential equations, which account for biological variability and offer a more nuanced under-
standing of these interactions. By integrating these stochastic elements, our model provides a
more realistic representation of the dynamic and often unpredictable nature of tumor growth and
immune response, enhancing the accuracy and applicability of predictive simulations.
On the other hand, adaptive immunity takes over the process if the innate immune system cannot
destroy the invaders. Acquired immunity is the process of generating a specific response to
individual invading agents such as bacteria, viruses, toxins, foreign tissues, etc. In the case of
reinfection with the same agents, this system generates quick responses. This system consists of B
and T lymphocytes. B lymphocytes secrete small proteins called immunoglobulins, which can
bind to and inactivate circulating antigens-substances found in foreign particles or germs that
trigger an immune response. This is called B-cell-mediated immunity or humoral immunity. The
other side of adaptive immunity is cell-mediated immunity, which is mediated by T lymphocytes.
T lymphocytes continuously scan the body to find and eliminate emerging malignant cells [2, 5, 6].
One of the pathways cancerous cells use to evade the immune system is expressing the PD-L1
receptors on their surface. PD-L1 is a ligand found on cancer cells that binds to receptors on
immune cells to inactivate them. It is one of the treatment options now in use for novel anticancer
therapy. In Contrary to this phenomenon, cytotoxic T cells are proliferated by IL-10, despite
its tumor-promoting effects. It is known that IL-10 has properties of both tumor-inhibiting and
promoting effects through various mechanisms [7–9].
There have been few mathematical tools and concepts used to predict real-world problems in the
last couple of decades, including classical differential and integral operators, fractional differential
and integral operators, and stochastic differential equations. For classical mechanical problems
with no memory, differentiation, and integration are used as a method of modeling. In fact, these
two mathematical operators have been used to simulate many real-world phenomena with some
limitations. Fractional calculus was introduced to replicate complex problems following power
law processes, exponential decay rule, and memory effects. The concepts have been applied
in particular to the modeling of real-life structures for example, understanding the dynamics
of financial systems, ecosystems, population dynamics, the spread of diseases and many more
[10–25].
A mathematical model that integrates uncertainty into its structure is called a stochastic system.
The system’s inherent complexity or external variables like noise may be the source of this
uncertainty. The presence of random variables and probability distributions, which show the
likelihood that various events will occur, are frequently characteristics of stochastic systems such
as bacterial growth, electrical flows fluctuating due to thermal noise, or gas particles’ moments.
Stochastic activities can be used to model and understand a wide variety of phenomena, from
chemical reactions to economics. They are also used to develop algorithms for predicting the
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behavior of complex systems. For the study of stochastic techniques, one needs mathematical
knowledge in probability, calculus, linear algebra, set theory, and topology, as well as branches of
mathematical analysis such as real analysis and measure theory [26–30].

Ambient noise in the real world unavoidably affects the population system. The model’s parame-
ters might not be strictly constant and instead might vary within certain bounds. Environmental
noise is thus an excellent way to describe these phenomena in disease models. In addition, stochas-
tic differential equation models are a crucial type of model when considering population dynamics
since they are more realistic than other models. There has been considerable research on biological
and epidemiological stochastic models. These models provide insight into the spread of diseases
and can help simulate clinical trials and other medical research [31–36].

The purpose of this work is to delve into a novel tumor model, a type of stochastic order model
which, for the first time, was put forward in employing classical derivative to aim at a tumor
model, based on more favorable stochastic theories. In [37], the authors present a system which
generates anti-PD-L1 variables, IL-10, CD8+T cells, and cancer cell and demonstrate the critical
role that IL-10 and anti-PD-L1 play in inactivating cancer cells, and the mechanism by which cancer
cells are eliminated during the single-dose administration of these two medications. Motivating
by this nice paper and, as explained above, macrophages and cancer cells are very closely related,
herein, we give the following model in order to see the macrophage effects. The integer order
differential equation the system that puts forth the tumor model can be seen below:

dT (t)
dt

= a + bI (t)C (t) T (t)
(

1 −
T (t)

p

)
− cT (t) ,

dC (t)
dt

= kC (t)
(

1 −
C (t)

q

)
− eC (t) T (t) I (t)− zC (t) T (t) Z (t)− m̃M (t)C (t) ,

dI (t)
dt

= − f I (t) ,

dZ (t)
dt

= −γZ (t) ,

dM (t)
dt

= rM

(
1 −

M (t)
kM

)
M (t) + p̃C (t) M (t)− d̃M (t) . (1)

Figure 1. The transfer diagram of the tumor model
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The variable factors concerning the model alter at time t as follows: T (t), C (t), I (t), Z (t), M (t)
characterize CD8+T lymphocytes, cancer cells, IL-10 cytokine, anti-PD-L1, makrophages in the
order given. p̃ is recruitment rate of macrophages, a is the initial density of CD8+T cells, b the
reproduction rate of CD8+Tcells under the influence of IL-10, d̃ shows death rate of macrophages,
kM display carrying capacity of macrophages, k is the tumor growth ratio, z the death rate of cancer
cells under the influence of anti-PD-L1, f is the decay rate of IL-10, q present the carrying capacity
of cancer cells, rM show proliferation ratios of macrophages, γ is the decay ratios anti-PD-L1, m̃ is
tumor killing rate by M (t), c refers to the carrying capacity of CD8+T cells, e is the death ratio of
cancer cells under the influence of IL-10, p displays the carrying capacity of CD8+T cells.

The article is further structured with subdivisions specified below: The equilibrium points and
their stability analysis are introduced in Section 2. Section 3 substantiates the existence and
uniqueness of the solution for our novel model while we again rake through the model by means
of the stochastic theory in Section 4. In Section 5, this model is depicted with respect to numerically
so as to look over the entire effect. As a final step, we discuss our acquired outcomes and conclude
our study.

2 Equilibrium points and stability analysis

Understanding equilibrium points helps analyze and predict the behavior of systems (physical,
mathematical, or engineering). The stability of equilibrium points is an important consideration in
determining the long-term behavior of a system. So in this section, we focus on the equilibrium
points of the system. The equilibrium points are the solutions of the model as follows:

a + bI (t)C (t) T (t)
(

1 −
T (t)

p

)
− cT (t) = 0,

kC (t)
(

1 −
C (t)

q

)
− eC (t) T (t) I (t)− zC (t) T (t) Z (t)− m̃M (t)C (t) = 0,

− f I (t) = 0,

−γZ (t) = 0,

rM

(
1 −

M (t)
kM

)
M (t) + p̃C (t) M (t)− d̃M (t) = 0.

The disease-free equilibrium point

E∗ = (T∗, C∗, I∗, Z∗, M∗) =

 a
c

, 0, 0, 0,
kM

(
rM − d̃

)
rM

 ,

and the endemic equilibrium point

E∗∗ = (T∗∗, C∗∗, I∗∗, Z∗∗, M∗∗) =

 a
c

,
q
(

d̃kMm̃ + krM − kMm̃rM

)
kMm̃p̃q + krM

, 0, 0,
dkM

(
p̃q + rM − d̃

)
kMm̃p̃q + krM

 .

Theorem 1 The disease-free equilibrium point E∗ =

(
a
c , 0, 0, 0,

kM(rM−d̃)
rM

)
is locally asymptotically

stable if d̃ < rM and
kMm̃(d̃−rM)

rM
+ k < 0.
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Proof The Jacobian matrix at the disease-free equilibrium point E∗ is

J (E∗) =



−c 0 0 0 0

0 k +
m̃kM(d̃−rM)

rM
0 0 0

0 0 − f 0 0
0 0 0 −γ 0

0
p̃kM(rM−d̃)

rM
0 0 −rM + rM

(
1 + d̃−rM

rM

)


.

The eigenvalues of this Jacobian matrix J (E∗) are

λ1 = − f ,

λ2 = d̃ − rM,

λ3 =
kMm̃

(
d̃ − rM

)
rM

+ k,

λ4 = −c,

λ5 = −γ.

If d̃ < rM and
kMm̃(d̃−rM)

rM
+ k < 0, then all eigenvalues are negative. So, from [38], the disease-free

equilibrium point E∗ =

(
a
c , 0, 0, 0,

kM(rM−d̃)
rM

)
is locally asymptotically stable.

Theorem 2 The endemic equilibrium point E∗∗ =

(
a
c ,

q(d̃kMm̃+drM−kMm̃rM)
kMm̃p̃q+drM

, 0, 0,
kkM( p̃q+rM−d̃)

kMm̃p̃q+krM

)
is lo-

cally asymptotically stable if N
1
2 < M.

Proof The Jacobian matrix at the endemic equilibrium point E∗∗ is

J (E∗∗) =



−c 0
bq(d̃kMm̃−kMm̃rM+krM)a

(
1− a

cp

)
(kMm̃p̃q+krM)c

0
k(−d̃m̃kM+m̃kMrM−drM)

kMm̃p̃q+krM
−

eqa(d̃kMm̃−kMm̃rM+krM)
(kMm̃p̃q+krM)c

0 0 − f
0 0 0

0 −
p̃kkM(−p̃q+d̃−rM)

kMm̃p̃q+krM
0

0 0

−
zqa(d̃kMm̃−kMm̃rM+krM)

(kMm̃p̃q+krM)c −
m̃q(d̃kMm̃−kMm̃rM+krM)

kMm̃p̃q+krM

0 0
−γ 0

0
rM( p̃m̃kMq−kp̃q+kd̃−p̃qkMm̃rM+ p̃qkrM−kd̃rM)

kMm̃p̃q+krM


.

If we make the following assumptions:

L =
1

2 (kMm̃p̃q + drM)
,

M = −kd̃kMm̃ + kkMm̃rM − kp̃krM − k2rM + kd̃rM − kr2
M,
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N =



−4kd̃k2
Mm̃2 p̃2q2 + 4kk2

Mm̃2 p̃2q2rM − 4k2kMm̃p̃2q2rM

+4kd̃2k2
Mm̃2 p̃q − 8kd̃k2

Mm̃2 p̃qrM + 4kk2
Mm̃2 p̃qr2

M
+k2d̃2k2

Mm̃2 − 2k2d̃k2
Mm̃2rM + 2k2d̃kMm̃p̃qrM

+k2k2
Mm̃2r2

M − 2k2kMm̃p̃qr2
M + k2 p̃2q2r2

M
+2k3d̃kMm̃rM − 2k3kMm̃r2

M − 2k3 p̃qr2
M

+2k2d̃2kMm̃rM − 4k2d̃kMm̃r2
M − 2k2d̃ p̃qr2

M
+2k2kMm̃r3

M + 2k2 p̃qr3
M + k4r2

M + 2k3d̃r2
M

−2k3r3
M + k2d̃2r2

M − 2k2d̃r3
M + k2r4

M



1
2

,

then, the eigenvalues of this Jacobian matrix J (E∗∗) are

λ1 = −a
(

M + N
1
2

)
,

λ2 = −a
(

M − N
1
2

)
,

λ3 = − f ,

λ4 = −c,

λ5 = −γ.

If M > N
1
2 , then all eigenvalues are negative. So, from [38], the endemic equilibrium point

E∗∗ =

(
a
c ,

q(d̃kMm̃+krM−kMm̃rM)
kMm̃p̃q+krM

, 0, 0,
kkM( p̃q+rM−d̃)

kMm̃p̃q+krM

)
is locally asymptotically stable.

3 Existence and uniqueness analysis of tumor model

In this section, we give the existence and uniqueness theorems to guarantee the existence of
solutions and we will present the conditions of existence and uniqueness for our model. Let us
consider our model as taking the right side like below:

dT(t)
dt

= T1(t, T),

dC(t)
dt

= T2(t, C),

dI(t)
dt

= T3(t, I),

dZ(t)
dt

= T4(t, Z),

dM(t)
dt

= T5(t, M).

Here we consider

T1(t, T) = a + bI (t)C (t) T (t)
(

1 −
T (t)

p

)
− cT (t) ,

T2(t, C) = kC (t)
(

1 −
C (t)

q

)
− eC (t) T (t) I (t)− zC (t) T (t) Z (t)− m̃M (t)C (t) ,

T3(t, I) = − f I (t) ,

T4(t, Z) = −γZ (t) ,
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T5(t, M) = rM

(
1 −

M (t)
kM

)
M (t) + p̃C (t) M (t)− d̃M (t) .

For the existence and uniqueness of the model, we consider the following theorem [39]:

Theorem 3 Assume that there are five positive constants t1, t2, t3, t4, t5 and t1,t2, t3, t4, t5 such that

i)

|T1(t, T)− T1(t, T1)|
2 ≤ t1 |T − T1|

2 ,

|T2(t, C)− T2(t, C1)|
2 ≤ t2 |C − C1|

2 ,

|T3(t, I)− T3(t, I1)|
2 ≤ t3 |I − I1|

2 ,

|T4(t, Z)− T4(t, Z1)|
2 ≤ t4 |Z − Z1|

2 ,

|T5(t, M)− T5(t, M1)|
2 ≤ t5 |M − M1|

2 .

ii)

|T1(t, T)|2 ≤ t1(1 + |T|2),

|T2(t, C)|2 ≤ t2(1 + |C|2),

|T3(t, I)|2 ≤ t3(1 + |I|2),

|T4(t, Z)|2 ≤ t4(1 + |Z|2),

|T5(t, M)|2 ≤ t5(1 + |M|2).

Then, there exists a unique solution if the above conditions are verified. We start with the first equation of
model T1(t, T). Then we verify first condition for equation T1(t, T) like below:

|T1(t, T)− T1(t, T1)|
2 ≤ t1 |T − T1|

2 .

Before we start the proof, let us define the following norm: ∥T∥∞ = sup
t∈Dt

|T(t)| , then we have

T, T1 ∈ R2 and t ∈ [0, T],

|T1(t, T)− T1(t, T1)|
2 =

∣∣∣∣∣
(

bI (t)C (t)− bI(t)C(t)
p (T (t) + T1 (t))

)
(T (t)− T1 (t))

−c (T (t)− T1 (t))

∣∣∣∣∣
2

≤
∣∣∣∣((bI (t)C (t))

(
1 −

T (t) + T1 (t)
p

)
− c
)
(T (t)− T1 (t))

∣∣∣∣2
≤

(
2b2 |I (t)|2 |C (t)|2

(
1 +

|T (t)|2 + |T1 (t)|
2

p

)
+ 2c2

)
|T (t)− T1 (t)|

2

≤

2b2 sup
t∈DI

|I (t)|2 sup
t∈DC

|C (t)|2

1 +

sup
t∈DT

|T (t)|2 + sup
t∈DT1

|T1 (t)|
2

p

+ 2c2


× |T (t)− T1 (t)|

2
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≤
(

2b2 ∥I∥2∞ ∥C∥2∞
(

1 +
∥T∥2∞ + ∥T1∥2∞

p

)
+ 2c2

)
|T (t)− T1 (t)|

2

≤ t1 |T − T1|
2 ,

where

t1 =

(
2b2 ∥I∥2∞ ∥C∥2∞

(
1 +

∥T∥2∞ + ∥T1∥2∞
p

)
+ 2c2

)
.

Now we proceed to show the second equation. If we have C, C1 ∈ R2 and t ∈ [0, T], then

|T2(t, C)− T2(t, C1)|
2 =

∣∣∣∣(k − eT (t) I (t)− zT (t) Z (t)− m̃M (t)) (C (t)− C1 (t))−
k
q

(
C2 (t)− C2

1 (t)
)∣∣∣∣2

=

∣∣∣∣∣
(
(k − eT (t) I (t)− zT (t) Z (t)− m̃M (t))− k

q (C (t) + C1 (t))
)

× (C (t)− C1 (t))

∣∣∣∣∣
2

≤
(

2
(

k2 + e2 |T (t)|2 |I (t)|2 + z2 |T (t)|2 |Z (t)|2 + m̃ |M (t)|2
)

+
2k2

q2

(
|C (t)|2 + |C1 (t)|

2
))

× |C (t)− C1 (t)|
2

≤


2

(
k2 + e2 sup

t∈DT

|T (t)|2 sup
t∈DI

|I (t)|2 + z2 sup
t∈DT

|T (t)|2 sup
t∈DZ

|Z (t)|2
)

+2m̃ sup
t∈DM

|M (t)|2 + 2d2

q2

 sup
t∈DC

|C (t)|2 + sup
t∈DC1

|C1 (t)|
2




× |C (t)− C1 (t)|

2

≤
(

2
(

k2 + e2 ∥T∥2∞ ∥I∥2∞ + z2 ∥T∥2∞ ∥Z∥2∞ + m̃ ∥M∥2∞)+ 2k2

q2

(
∥C∥2∞ + ∥C1∥2∞))

× |C (t)− C1 (t)|
2

≤ t2 |C − C1|
2 ,

where

t2 =

(
2
(

k2 + e2 ∥T∥2∞ ∥I∥2∞ + z2 ∥T∥2∞ ∥Z∥2∞ + m̃ ∥M∥2∞)+ 2k2

q2

(
∥C∥2∞ + ∥C1∥2∞

))
.

We take two positive constants I, I1 ∈ R2 and t ∈ [0, T], then

|T3(t, I)− T3(t, I1)|
2 = |− f I (t) + f I1 (t)|

2

≤ f 2 |I (t)− I1 (t)|
2

≤ t3 |I − I1|
2 ,

where

t3 = f 2.
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We take two positive constants Z, Z1 ∈ R2 and t ∈ [0, T], then

|T4(t, Z)− T4(t, Z1)|
2 = |−γZ (t) + γZ1 (t)|

2 ≤ γ2 |Z (t)− Z1 (t)|
2

≤ t4 |Z − Z1|
2 ,

where

t4 = γ2.

Finally, if we take two positive constants M, M1 ∈ R2 and t ∈ [0, T], then

|T5(t, M)− T5(t, M1)|
2 =

∣∣∣∣(rM + p̃C (t)− d̃
)
(M (t)− M1 (t))−

rM
kM

(
M2 (t)− M2

1 (t)
)∣∣∣∣2

=

∣∣∣∣((rM + p̃C (t)− d̃
)
−

rM
kM

(M (t) + M1 (t))
)
(M (t)− M1 (t))

∣∣∣∣2
≤
(

2
(

r2
M + p̃2 |C (t)|2 + d̃2

)
+

2r2
M

k2
M

(
|M (t)|2 + |M1 (t)|

2
))

× |M (t)− M1 (t)|
2

≤

2

(
r2

M + p̃2 sup
t∈DC

|C (t)|2 + d̃2

)
+

2r2
M

k2
M

 sup
t∈DM

|M (t)|2 + sup
t∈DM1

|M1 (t)|
2


× |M (t)− M1 (t)|

2

≤
(

2
(

r2
M + p̃2 ∥C∥2∞ + d̃2

)
+

2r2
M

k2
M

(
∥M∥2∞ + ∥M1∥2∞)

)
|M (t)− M1 (t)|

2

≤ t5 |M − M1|
2 ,

where

t5 =

(
2
(

r2
M + p̃2 ∥C∥2∞ + d̃2

)
+

2r2
M

k2
M

(
∥M∥2∞ + ∥M1∥2∞

))
.

So condition (i) is satisfied.
Now we prove the second condition for the tumor model via the following condition:
∀(t, T) ∈ R2 ×[t0, T] then we will show that

|T1(t, T)|2 =

∣∣∣∣a + bI (t)C (t) T (t)
(

1 −
T (t)

p

)
− cT (t)

∣∣∣∣2
≤ 4a2 + 4b2 |I (t)|2 |C (t)|2 |T (t)|2 + 4b2 |I (t)|2 |C (t)|2

∣∣T2 (t)
∣∣2

p2 + 4c2 |T (t)|2

≤ 4a2 + 4b2 sup
t∈DI

|I (t)|2 sup
t∈DC

|C (t)|2 |T (t)|2 + 4b2 sup
t∈DI

|I (t)|2 sup
t∈DC

|C (t)|2
sup
t∈DT

∣∣T2 (t)
∣∣2

p2

+4c2 |T (t)|2
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≤ 4a2 +
4b2

p2 ∥I∥2∞ ∥C∥2∞
∥∥∥T2

∥∥∥2

∞ +
(

4b2 ∥I∥2∞ ∥C∥2∞ + 4c2
)
|T|2

≤
(

4a2 +
4b2

p2 ∥I∥2∞ ∥C∥2∞
∥∥∥T2

∥∥∥2

∞
)1 +

4b2 ∥I∥2∞ ∥C∥2∞ + 4c2

4a2 + 4b2

p2 ∥I∥2∞ ∥C∥2∞ ∥T2∥2∞ |T|2


≤ t1(1 + |T|2),

where

t1 =

(
4a2 +

4b2

p2 ∥I∥2∞ ∥C∥2∞
∥∥∥T2

∥∥∥2

∞
)

,

and with under condition

4b2 ∥I∥2∞ ∥C∥2∞ + 4c2

4a2 + 4b2

p2 ∥I∥2∞ ∥C∥2∞ ∥T2∥2∞ < 1.

Now we continue with the second equation.

∀(t, C) ∈ R2 ×[t0, T] then we will show that

|T2(t, C)|2 =

∣∣∣∣kC (t)
(

1 −
C (t)

q

)
− eC (t) T (t) I (t)− zC (t) T (t) Z (t)− m̃M (t)C (t)

∣∣∣∣2
≤ 2

(
k2 + e2 |T (t)|2 |I (t)|2 + z2 |T (t)|2 |Z (t)|2 + m̃2 |M (t)|2

)
|C (t)|2 + 2

k2

q2

∣∣∣C2 (t)
∣∣∣2

≤ 2

(
k2 + e2 sup

t∈DT

|T (t)|2 sup
t∈DI

|I (t)|2 + z2 sup
t∈DT

|T (t)|2 sup
t∈DZ

|Z (t)|2 + m̃2 sup
t∈DM

|M (t)|2
)
|C (t)|2

+ 2
k2

q2 sup
t∈DC

∣∣∣C2 (t)
∣∣∣2

≤ 2
(

k2 + e2 ∥T∥2∞ ∥I∥2∞ + z2 ∥T∥2∞ ∥Z∥2∞ + m̃2 ∥M∥2∞) |C|2 + 2
k2

q2

∥∥∥C2
∥∥∥2

∞
≤ 2

k2

q2

∥∥∥C2
∥∥∥2

∞
1 +

2
(

k2 + e2 ∥T∥2∞ ∥I∥2∞ + z2 ∥T∥2∞ ∥Z∥2∞ + m̃2 ∥M∥2∞
)

2 k2

q2 ∥C2∥2∞ |C|2


≤ t2(1 + |C|2),

where

t2 = 2
k2

q2

∥∥∥C2
∥∥∥2

∞ ,

and with under condition

2
(

k2 + e2 ∥T∥2∞ ∥I∥2∞ + z2 ∥T∥2∞ ∥Z∥2∞ + m̃2 ∥M∥2∞
)

2 d2

q2 ∥C2∥2∞ < 1.
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∀(t, I) ∈ R2 ×[t0, T]

|T3(t, I)|2 = |− f I (t)|2 ≤ 1 + f 2 |I (t)|2

≤ t3(1 + |I|2),

where

t3 > 0,

and with under condition

f 2 < 1.

∀(t, Z) ∈ R2 ×[t0, T]

|T4(t, Z)|2 = |−γZ (t)|2 ≤ 1 + γ2 |Z (t)|2

≤ t4(1 + |Z|2),

where

t4 > 0,

and with under condition

γ2 < 1.

∀(t, M) ∈ R2 ×[t0, T]

|T5(t, M)|2 =

∣∣∣∣rM

(
1 −

M (t)
kM

)
M (t) + p̃C (t) M (t)− d̃M (t)

∣∣∣∣2
≤ 4r2

M |M (t)|2 + 4
r2

M
k2

M

∣∣∣M2 (t)
∣∣∣2 + 4 p̃2 |C (t)|2 |M (t)|2 + 4d̃2 |M (t)|2

≤
(

4r2
M + 4 p̃2 |C (t)|2 + 4d̃2

)
|M (t)|2 + 4

r2
M

k2
M

∣∣∣M2 (t)
∣∣∣2

≤
(

4r2
M + 4 p̃2 sup

t∈DC

|C (t)|2 + 4d̃2

)
|M (t)|2 + 4

r2
M

k2
M

sup
t∈DM

∣∣∣M2 (t)
∣∣∣2

≤
(

4r2
M + 4 p̃2 ∥C∥2∞ + 4d̃2

)
|M (t)|2 + 4

r2
M

k2
M

∥∥∥M2
∥∥∥2

∞
≤ 4

r2
M

k2
M

∥∥∥M2
∥∥∥2

∞
1 +

4r2
M + 4 p̃2 ∥C∥2∞ + 4d̃2

4 r2
M

k2
M
∥M2∥2∞

|M|2


≤ t5(1 + |M|2),
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where

t5 = 4
r2

M
k2

M

∥∥∥M2
∥∥∥2

∞ ,

and with under condition

4r2
M + 4 p̃2 ∥C∥2∞ + 4d̃2

4 r2
M

k2
M
∥M2∥2∞

< 1.

So, if the conditions below are satisfied, then the model has a unique solution

max



4b2∥I∥2∞∥C∥2∞+4c2

4a2+ 4b2
p2 ∥I∥2∞∥C∥2∞∥T2∥2∞ ,

2(k2+e2∥T∥2∞∥I∥2∞+z2∥T∥2∞∥Z∥2∞+m̃2∥M∥2∞)
2 k2

q2 ∥C2∥2∞ ,

f 2,
γ2,

4r2
M+4 p̃2∥C∥2∞+4d̃2

4
r2
M

k2
M
∥M2∥2∞

,


< 1.

By the above theorem, we can say that the model has a unique solution.

4 Stochastic model

In this section, we add to the model under investigation some environmental noise. The idea was
suggested by Atangana, where randomness was added to some models [40]. In this section, we
convert the deterministic model to the following stochastic system:

dT(t) =
(

a + bI (t)C (t) T (t)
(

1 −
T (t)

p

)
− cT (t)

)
+ σ1T(t)dB1(t),

dC(t) =

(
kC (t)

(
1 −

C(t)
q

)
− eC (t) T (t) I (t)

−zC (t) T (t) Z (t)− m̃M (t)C (t)

)
+ σ2C(t)dB2(t),

dI(t) = (− f I (t)) + σ3 I(t)dB3(t),

dZ(t) = (−γZ (t)) + σ4Z(t)dB4(t),

dM(t) =
(

rM

(
1 −

M (t)
kM

)
M (t) + p̃C (t) M (t)− d̃M (t)

)
+ σ5 M(t)dB5(t),

T(0) = T0, C(0) = C0, I(0) = I0, Z(0) = Z0 and M (0) = M0.

The existence of a unique solution to a general equation has been presented. Besides this, we
have presented the conditions under which the deterministic model admits a unique system of
solutions. Now we can present a numerical solution of the model by converting the stochastic
model into an integral system below:

T(t)− T(0) =

t∫
0

T1(T, C, I, Z, M, τ)dτ + σ1

t∫
0

T11(T, τ)dB1(τ),
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C(t)− C(0) =

t∫
0

T2(T, C, I, Z, M, τ)dτ + σ2

t∫
0

T21(C, τ)dB2(τ),

I(t)− I(0) =

t∫
0

T3(T, C, I, Z, M, τ)dτ + σ3

t∫
0

T31(I, τ)dB3(τ),

Z(t)− Z(0) =

t∫
0

T4(T, C, I, Z, M, τ)dτ + σ4

t∫
0

T41(Z, τ)dB4(τ),

M(t)− M(0) =

t∫
0

T5(T, C, I, Z, M, τ)dτ + σ5

t∫
0

T51(M, τ)dB5(τ).

If we choose to apply the classical Adams-Bashforth to the first component of the system, we have

Tn+1 = Tn +
3
2

∆tT1(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T1(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ1

tn+1∫
tn

T11(T, τ)dB1(τ),

Cn+1 = Cn +
3
2

∆tT2(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T2(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ2

tn+1∫
tn

T21(C, τ)dB2(τ),

In+1 = In +
3
2

∆tT3(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T3(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ3

tn+1∫
tn

T31(I, τ)dB3(τ),

Zn+1 = Zn +
3
2

∆tT4(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T4(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ4

tn+1∫
tn

T41(Z, τ)dB4(τ),

Mn+1 = Mn +
3
2

∆tT5(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T5(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ5

tn+1∫
tn

T51(M, τ)dB5(τ).

Using a sequence of partition of the interval [tn, tn+1], the last integrals can be approximated to

Tn+1 = Tn +
3
2

∆tT1(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T1(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ1

n∑
i=n−1

T11(Ti, ci) [B1(ti+1)− B1(ti)] ,
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Cn+1 = Cn +
3
2

∆tT2(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T2(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ2

n∑
i=n−1

T21(Ci, ci) [B2(ti+1)− B2(ti)] ,

In+1 = In +
3
2

∆tT3(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T3(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ3

n∑
i=n−1

T31(Ii, ci) [B3(ti+1)− B3(ti)] ,

Zn+1 = Zn +
3
2

∆tT4(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T4(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ4

n∑
i=n−1

T41(Zi, ci) [B4(ti+1)− B4(ti)] ,

Mn+1 = Mn +
3
2

∆tT5(Tn, Cn, In, Zn, Mn, tn)

−
∆t
2

T5(Tn−1, Cn−1, In−1, Zn−1, Mn−1, tn−1) + σ5

n∑
i=n−1

T51(Mi, ci) [B5(ti+1)− B5(ti)] ,

where ci ∈ (tn, tn+1) .

5 Numerical simulations

Deterministic and stochastic modeling are two different approaches used in mathematical mod-
eling to represent and analyze systems. Stochastic modeling of tumors provides insight into
the inherent uncertainties and complexities associated with cancer biology. It allows researchers
to better understand the range of possible outcomes so in this section, we show the numerical
simulations for the considered stochastic tumor model which is given by

dT(t) =
(

a + bI (t)C (t) T (t)
(

1 −
T (t)

p

)
− cT (t)

)
+ σ1T(t)dB1(t),

dC(t) =

(
kC (t)

(
1 −

C(t)
q

)
− eC (t) T (t) I (t)

−zC (t) T (t) Z (t)− m̃M (t)C (t)

)
+ σ2C(t)dB2(t),

dI(t) = (− f I (t)) + σ3 I(t)dB3(t),

dZ(t) = (−γZ (t)) + σ4Z(t)dB4(t),

dM(t) =
(

rM

(
1 −

M (t)
kM

)
M (t) + p̃C (t) M (t)− d̃M (t)

)
+ σ5 M(t)dB5(t),

T(0) = T0, C(0) = C0, I(0) = I0, Z(0) = Z0 and M (0) = M0.

For the numerical simulations of the system, we consider the values of the parameters as follows:

a = 10−4, b = 0.175, c = 5 ∗ 10−3, k = 0.02, e = 0.15, f = 0.01, p = 1, q = 1, z = 1, γ = 0.001925,

rM = 0.64, kM = 3.39, p̃ = 4.5 ∗ 10−9, d̃ = 0.55, m̃ = 1.8 ∗ 10−5.

The initial conditions are given as follows:

T(0) = 0, C(0) = 1, I(0) = 4, Z(0) = 2 and M (0) = 3.
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In the model, the densities of randomness values are given as figures

σ1 = 0.001, σ2 = 0.015, σ3 = 0.012, σ4 = 0.013, σ5 = 0.014.

Tumors are influenced by a multitude of factors that exhibit probabilistic behavior. It is now
strongly believed that even micro-biota have a role in cancer development and treatment. Chemother-
apy, radiotherapy, and targeted drug therapy along with surgery are used to treat cancer caused
by factors such as the likelihood of benefit from treatment, stage of cancer, cytogenetic of tumor,
comorbidities and patients’ performance status. Considering these complex behaviours of tumors,
we observe that a more accurate depiction of the model’s complexity arises when we examine the
densities of randomness in the stochastic tumor model. These models assist researchers and clini-
cians in understanding the variety of tumor characteristics and developing strategies for tailored
and adaptive cancer therapy by simulating a range of potential outcomes. Tumors are influenced
by a multitude of factors that exhibit probabilistic behavior. Chemotherapy, radiotherapy, and
drug therapy are used to treat cancer caused by factors such as genetics, environmental factors,
lack of exercise, and stress. Cancer is a complex and dynamic system influenced by a multitude of
factors so stochastic modeling provides a more realistic representation of these processes.
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(a) Numerical simulation for CD8+T lymphocytes T(t)
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(b) Numerical simulation for cancer cells C(t)
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(g) Numerical simulation for T − C phase
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6 Conclusions

One important class of white blood cells in the immune system are macrophages. They are a
component of the body’s primary defense against diseases and foreign invaders which is the
innate immune system. Also, macrophages are essential for both immune response and infection
defense because they clear pathogens and detritus from the body and coordinate the intricate
interactions between various immune system components. Given the importance of macrophage
cells to the body, this study includes a discussion of a novel tumor model and monitored the
propagation of the tumor model more comprehensively. The equilibrium points are produced
and the conditions proving the solution’s existence and exclusivity in relation to this tumor model
become clear. Then, the model is scrutinized carefully in terms of stochastic theory. In the end, a
number of numerical outputs for this model pertaining to the aforementioned stochastic model
are presented here.
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Abstract

In this paper, we explore the complex dynamics of a discrete-time SIS (Susceptible-Infected-Susceptible)-
epidemic model. The population is assumed to be divided into two compartments: susceptible and
infected populations where the birth rate is constant, the infection rate is saturated, and each recovered
population has a chance to become infected again. Two types of mathematical results are provided
namely the analytical results which consist of the existence of fixed points and their dynamical behav-
iors, and the numerical results, which consist of the global sensitivity analysis, bifurcation diagrams,
and the phase portraits. Two fixed points are obtained namely the disease-free and the endemic
fixed points and their stability properties. Some numerical simulations are provided to present the
global sensitivity analysis and the existence of some bifurcations. The occurrence of forward and
period-doubling bifurcations has confirmed the complexity of the solutions.

Keywords: SIS-epidemic model; saturated infection rate; bifurcation

AMS 2020 Classification: 37N25; 92B05; 39A60; 92D25

1 Introduction

The mathematical modeling using a deterministic approach is a powerful tool to reduce the
impact of the infectious disease [1–3]. In recent decades, two popular ways are used for the
deterministic approaches namely the continuous-time and the discrete-time models. There are
many epidemiological studies employing differential equations for the operator of the continuous
time model. See [4–9] and references therein. For the discrete-time model, the difference equation
is used and becomes popular due to the complexity of the dynamical behaviors in epidemiological
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cases. Most of them propose the complexity of dynamical behaviors such as period-doubling and
Neimark-Sacker bifurcations as well as the existence of chaotic solutions. See [10–17] and cited
articles therein.

The classical epidemic model is given by Kermack and MacKendrick [18, 19] defined by

dS
dt

= −βSI,
dI
dt

= βSI − ρI,
dR
dt

= ρI, (1)

where S is the susceptible compartment, I is the infected compartment, R is the recovered compart-
ment, β is the infection rate, and ρ is the recovery rate. Some modifications are applied to include
the real phenomena in nature. For example, Federico et al. [20] include the optimal vaccination
and the recovery rate to the susceptible compartment to model (1). In another way, Zhang and
Qiao [21] focus on studying the bifurcation analysis of model (5) by assuming the infection rate is
saturated and the population has a strong Allee effect. Interesting works were also given by Li
and Eskandari [1] which focus on the analytical and numerical results of a discrete-time seasonally
forced SIR epidemic model. On the other hand, Omame et al. [22] and Atede et al. [23] have
focused on investigating the application of model (1) on COVID-19 transmission by involving the
vaccination and the memory effect. Some of them have integrated deterministic and stochastic
approaches to describe the dynamical behaviors in modelling [24–30]. Following those articles,
in this work, we also focus on the mathematical results of a modified SIR model and do not
specifically discuss an epidemiological case. The model is modified based on some assumptions
as follows:

(i) The constant birth rate is denoted by Λ.
(ii) The population has a natural death rate denoted by δ1, δ2, and δ3 which respectively define

the natural death rate of susceptible, infected, and recovered compartments.
(iii) The recovered individuals can be infected by disease again with the transfer rate to suscepti-

ble prey denoted by ω.
(iv) The infection rate term βSI is replaced by the saturated infection rate term denoted by βSI

η+I .
This infection rate term naturally occurs in the epidemic model since each population can
protect itself from infection so that although the infection population increases, the infection
rate will have a threshold [31–33].

Thus, model (1) becomes

dS
dt

= Λ −
βSI

η + I
− δ1S + ωR,

dI
dt

=
βSI

η + I
− ρI − δ2 I,

dR
dt

= ρI − δ3R − ωR. (2)

By assuming all recovered compartments can be infected again, we drop the recovered compart-
ment R and hence the model (2) is simplified into

dS
dt

= Λ −
βSI

η + I
+ ωI − δ1S,

dI
dt

=
βSI

η + I
− (ω + δ2) I.

(3)

Now, we adopt similar ways as in [34–36] to construct the discrete-time model using the forward
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Euler scheme. We get

Sn+1 − Sn

h
=Λ −

βSn In

η + In
+ ωIn − δ1Sn,

In+1 − In

h
=

βSn In

η + In
− (ω + δ2)In.

(4)

From model (4), the simplification yields

Sn+1 = Sn + h
(

Λ −
βSn In

η + In
+ ωIn − δ1Sn

)
,

In+1 = In + h
(

βSn In

η + In
− (ω + δ2)In

)
.

(5)

Based on the above description, we get the key contributions and the novelty of this research are
given as follows:

(i) The model is constructed using a saturated infection rate and all recovered individuals
can be infected again. We also use the difference equation for the operator rather than the
differential equation. According to our literature review, although the model is simple, we
cannot find similar works as given by model (5).

(ii) All possible dynamical behaviors of fixed point are analyzed namely sink, source, saddle,
and non-hyperbolic.

(iii) The most influential parameter concerning the basic reproduction number and the popula-
tion density for each compartment is identified using the Partial Rank Correlation Coefficient
(PRCC) along with Saltelli sampling to generate the data.

(iv) More complex dynamics are provided numerically namely the forward and period-doubling
bifurcations.

We organize this article as follows: In Section 1, we give the introduction and model formulation.
In Section 2, we explore the dynamical behaviors of the model by identifying the feasible fixed
points, the basic reproduction number, and their stability properties. In Section 3, some numerical
simulations are provided such as the global sensitivity analysis, forward, and period-doubling
bifurcations by giving the PRCC bar chart, contour plots, PRCC time-series, bifurcation diagrams,
and phase portraits around fixed points. We end this article by presenting a conclusion in Section 4.

2 Analytical results and findings

We start investigating the feasible fixed point of model (5) by solving the following equation

S = S + h
(

Λ −
βSI

η + I
+ ωI − δ1S

)
,

I = I + h
(

βSI
η + I

− (ω + δ2)I
)

.
(6)

We find two fixed points on the axial and the interior of the model (5) which are discussed in the
next subsections.
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The disease-free fixed point

The first fixed point is given by the disease-free fixed point (DFF) denoted by

E0 =

(
Λ
δ1

, 0
)

,

which describes the condition when the disease disappears from the population. By following
[37–41], we apply the next generation matrix to obtain the basic reproduction number (R0)

which states the number of secondary infections caused by one primary infection in an entirely
susceptible population. We get

R0 =
βΛ

(ω + δ2) δ1η
. (7)

Now, we give the following theorem to present the dynamical behaviors of DFF.

Theorem 1 Let ha =
2
δ1

and hb =
2ω

(1−R0)(ω+δ2)
. The DFF E0 =

(
Λ
δ1

, 0
)

is

(i) a sink (locally asymptotically stable) if R0 < 1 and h < min {ha, hb}; or
(ii) a source if R0 > 1 and h > ha; or if R0 < 1 and h > min {ha, hb}; or

(iii) a saddle if h < hb and R0 > 1; or if h < ha and R0 < 1 and h > hb; or if h > ha and R0 < 1 and
h < hb; or

(iv) a non-hyperbolic if h = ha; or R0 = 1; or R0 < 1 and h = hb.

Proof For DFF, we have the following Jacobian matrix:

J(S, I)|E0 =

[
1 − 2h

ha

(δ1ωη−βΛ)h
δ1ωη

0 1 − 2h
hb

]
.

Therefore, we obtain a pair of eigenvalues λ1 = 1 − 2h
ha

and λ2 = 1 − 2h
hb

. By observing λ1, we have
the following condition

• |λ1| < 1 when h < ha; and
• |λ1| = 1 when h = ha; and
• |λ1| > 1 when h > ha.

We also have the sign of λ2 as follows.

• |λ2| < 1 when R0 < 1 and h < hb; and
• |λ2| = 1 when R0 = 1 or;

when R0 < 1 and h = hb; and
• |λ2| > 1 when R0 > 1; or

when R0 < 1 and h > hb.

Following Lemma 1 in [42], all statements given by Theorem 1 are proven.

The endemic fixed point

The next fixed point is given by the endemic fixed point (EFP) defined by Ê = (Ŝ, Î) where

Ŝ = (ω+δ2)(η+ Î)
β and Î = (R0−1)(ω+δ2)δ1η

βδ2+(ω+δ2)δ1
. The EFP describes the condition when the disease exists

in the population where the existence condition is given by R0 > 1. To investigate the dynamics
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Figure 1. PRCC results with respect to the value of the basic reproduction number (R0). The infection rate (β)
becomes the most influential parameter to the value of R0
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Figure 2. The contour plots of (a) (β, η), and (b) (β, ω) respect to the values of R0. The parameter β is directly
proportional while η and ω is inversely proportional to R0

around EFP, we do linearization around EFP. The Jacobian matrix at EFP is given by

J(S, I)|Ê =

1 − h
(
(β+δ1) Î+δ1η

η+ Î

)
−h

(
δ2η−ω Î

η+ Î

)
β Îh
η+ Î

1 −
(ω+δ2) Îh

η+ Î

 ,

and hence, we have eigenvalues

λ1,2 =
1
2

(
ξ ±

√
ξ2 − 4ζ

)
, (8)
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Figure 3. PRCC results respect to the density of susceptible individuals (S) and infected individuals (I). The
parameter β is directly proportional to I and inversely proportional to S while eta and ω are opposite to it

where

ξ = 2 −
h

η + Î

[
((β + δ1)− (ω + δ2)) Î + δ1η

]
,

ζ = 1 −
h

η + Î

[
((ω + δ2) + (β + δ1)) Î + δ1η

]
+

h2 Î
η + Î

[(ω + δ2) δ1 + βδ2] .

Let Φ(θ) = θ2 − θξ + ζ. We have

Φ(1) = 1 − ξ + ζ

= [h ((ω + δ2) δ1 + βδ2)− 2(ω + δ2)]
hÎ

η + Î
,
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Figure 4. Bifurcation diagrams and phase portraits of model (5) driven by β using parameter values: Λ = 0.8,
η = 0.6, ω = 0.6, δ1 = 0.1, δ2 = 0.1, and h = 0.1

which satisfies Φ(1) > 0 when h > 2(ω+δ2)
(ω+δ2)δ1+βδ2

. We also achieve

Φ(−1) = 1 + ξ + ζ

= 4 −
2h

η + Î

[
(β + δ1) Î + δ1η

]
+

h2 Î
η + Î

[(ω + δ2) δ1 + βδ2] .

Following Lemmas 1 and 2 in [42], we have the following theorem as the results.

Theorem 2 Let R0 > 1and h > 2(ω+δ2)
(ω+δ2)δ1+βδ2

. The EFP is

(i) a sink if Φ(−1) > 0 and ζ < 1; or
(ii) a source if Φ(−1) > 0 and ζ > 1; or

(iii) a saddle if Φ(−1) < 0; or
(iv) a non-hyperbolic if Φ(−1) = 0 and ξ ̸= 0, 2; or if ξ2 < 4ζ and ζ = 1.
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Ê−stable

η ≈ 0.5714 (R0 = 1)

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

η

0.0

0.1

0.2

0.3

I

E0−unstable

E0−stable
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Figure 5. Bifurcation diagrams and phase portraits of model (5) driven by η using parameter values: Λ = 0.8,
β = 0.05, ω = 0.6, δ1 = 0.1, δ2 = 0.1, and h = 0.1

3 Numerical results

To explore the complexity of the dynamical behaviors, some numerical simulations are demon-
strated. Since no one specific epidemiological case is related to the model, we use hypothetical
parameter values for the simulations. We first set the parameter values as follows.

Λ = 0.8, β = 0.01, η = 0.6, δ1 = 0.1, δ2 = 0.1, ω = 0.6, h = 0.5. (9)

By using the parameter values (9), we give the following subsections to show the global sensitivity
analysis, forward, and period-doubling bifurcations.

Global sensitivity analysis

To investigate the most influential parameter of model (5), we perform the global sensitivity
analysis [43, 44]. The Partial Rank Correlation Coefficient (PRCC) [45] is employed for parameter
ranking along with Saltelli sampling [46] to generate the sample data around the parameter values
given by (9). We consider the basic reproduction number and the population densities for the
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Ê−stable

ω ≈ 0.5667 (R0 = 1)

(a) Bifurcation diagram driven by η

(b) Phase portrait for different values of ω

Figure 6. Bifurcation diagrams and phase portraits of model (5) driven by ω using parameter values: Λ = 0.8,
β = 0.05, η = 0.6, δ1 = 0.1, δ2 = 0.1, and h = 0.1

constraint function and the rank of the parameter as the objective function. Since the birth rate
(Λ) and the natural death rate δi, i = 1, 2, 3 can be obtained directly if the real data exists, we
only focus on the impact of the infection rate (β), the recovery rate (ω), and the half-saturation
constant (η).

We first investigate the most influential parameter of model (5) concerning the value of the basic
reproduction number (R0). As a result, we have the infection rate (β) become the most influential
parameter with PRCC 0.583 while η and ω are respectively at the second and the third rank with
PRCC −0.583 and −0.426. See the bar chart of PRCC results in Figure 1. We also confirm that
β has a positive relationship with R0 while η and ω have a negative relationship with R0 by
observing the sign of the PRCC results. This means that if the value of β increases, then the value
of R0 increases. If the value of η or ω increases, the value of R0 will decrease. We give the contour
plot of these conditions in Figure 2.

Now, we investigate the most influential parameter concerning the density of the susceptible
compartment (S) and the infected compartment (I). Again, by applying PRCC and Saltelli
sampling as well as computing the PRCC value for n in range [0, 50], we find β still becomes
the most influential parameter to the density of S and I. See the numerical results in Figure 3.
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(a) Bifurcation diagram

(b) Some periodic solutions

Figure 7. Bifurcation diagram and periodic solutions of model (5) driven by h using parameter values: Λ = 0.8,
β = 0.05, η = 0.6, ω = 0.6, δ1 = 0.1, δ2 = 0.1, and h = 0.1

From the sign of the PRCC values, we also verify that β has a negative relationship with S
and a positive relationship with I, while η and ω have a positive relationship with S and a
negative relationship with I. This means that when the infection rate increases, the density of
the susceptible compartment decreases while the density of the infected compartment increases.
When the recovery rate and the half-saturation constant increase, the density of the susceptible
compartment increases, and the density of the infected compartment decreases.

Forward bifurcations

We then investigate the impact of the infection rate (β), the half-saturation constant (η), and the
recovery rate (ω) on the dynamics of model (5). Let the parameter values as in (9). By varying
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the value of β in the interval [0, 0.12], we investigate the existence and stability condition for each
fixed point. As a result, we have the bifurcation diagram as given in Figure 4(a) and phase portrait
in Figure 4(b). When β < β∗ where β∗ ≈ 0.0525 (or R0 ≈ 1), the nearby solution converges to
DFF E0 = (8, 0) which indicate the DFF is a sink. When β crosses β∗, the DFF loses its stability
followed by the occurrence of EFP Ê where the DFF becomes a saddle and EFP is a sink. This
phenomenon is called forward bifurcation where β is the bifurcation parameter and β∗ is the
bifurcation point. Similar dynamical behaviors are presented when the half saturation parameter
(η) and the recovery rate (ω) is varied. Using (9) and varying η in interval [0.2, 1], we have
a forward bifurcation where η and η∗ ≈ 0.5714 (or R0 ≈ 1) are respectively the bifurcation
parameter and bifurcation point. The forward bifurcation also occurs when ω crosses ω∗ ≈ 0.5667
which confirms that ω and ω∗ respectively become the bifurcation parameter and bifurcation
point. See Figure 5 and Figure 6 for the numerical simulations of the bifurcation diagrams and
their corresponding phase portraits. At these phenomena, we conclude that β, η, and ω have
impacts on the existence and stability of DFE and FEP. The disease in the population will become
extinct or endemic when the infection rate, half saturation constant, and the recovery rate are
varied.

Period-doubling bifurcation

In this subsection, we present the occurrence of the sequence of period-doubling bifurcation as
well as the example of the period of the solutions when the step-size (h). The parameter values
given by (9) are set and h is varied in [2.5, 3.3]. As a result, we have Figure 7(a) as the bifurcation
diagram. We confirm that the sink EFP becomes unstable when crosses h ≈ 2.61 and a period-2
solution occurs. Each branch of the periodic solution also split into the other period-2 solution
and so forth. This indicates the existence of the sequence of period-doubling bifurcation. We give
Figure 7(b) to show some of the periodic solutions such as a sink for h = 2.5, period-2 for h = 2.9,
period-4 for h = 3.1, period-8 for h = 3.12, period-6 for h = 3.175, and period-5 for h = 3.276.
This phenomenon shows that the endemic point may lose its stability when the step-size becomes
larger. Therefore, if we have less data for some interval of time, the dynamical behaviors may
change via period-doubling bifurcation and the forecasting will be wrong.

4 Conclusion

The discrete-time SIS-epidemic model with a saturated infection rate has been studied. Some
analytical and numerical results have been investigated. Two fixed points have been identified
namely disease-free and endemic fixed points as well as the basic reproduction number. We
have shown that the existence and stability of each fixed point depend on the basic reproduction
number. More information about the dynamics of the model has been explored numerically. The
PRCC along with Saltelli sampling has been used to investigate the most influential parameter
concerning the value of the basic reproduction number and the density of each compartment which
shows that the infection rate becomes the most influenced one. The existence of some bifurcations
is also demonstrated namely forward bifurcations and period-doubling bifurcation. We conclude
that the infection rate, the half-saturation constant, and the recovery rate have an impact not only
on the stability of the fixed points but also on the occurrence of forward bifurcation. Although the
model is mathematically explored such as the stability condition, sensitivity analysis, and some
bifurcation phenomena, this work has less epidemiological interpretation since we do not apply
this model to any epidemiological cases. Moreover, the model also studies two compartments only,
which means we can explore more by adding some compartments based on the real phenomena
in nature. This limitation will become interesting to study further.
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Abstract
Calcium signal transduction is essential for cellular activities such as gene transcription, death, and
neuronal plasticity. Dynamical changes in the concentration of calcium have a profound effect on the
intracellular activity of neurons. The Caputo fractional reaction-diffusion equation is a useful tool for
modeling the intricate biological process involved in calcium concentration regulation. We include the
Amyloid Beta, STIM-Orai mechanism, voltage-dependent calcium entry, inositol triphosphate receptor
(IPR), endoplasmic reticulum (ER) flux, SERCA pump, and plasma membrane flux in our mathematical
model. We use Green’s function and Hankel and Laplace integral transforms to solve the membrane
flux problem. Our simulations investigate the effects of various factors on the spatiotemporal behavior
of calcium levels, with a simulation on the buffers in Alzheimer’s disease-affected neurons. We also
look at the effects of calcium-binding substances like the S100B protein and BAPTA and EGTA. Our
results demonstrate how important the S100B protein Amyloid beta and the STIM-Orai mechanism
are, and how important they are to consider when simulating the calcium signaling system. As such,
our research indicates that a more realistic and complete model for modeling calcium dynamics may
be obtained by using a generalized reaction-diffusion technique.

Keywords: Fractional-order derivative; calcium ions; neuron; Alzheimer’s disease

AMS 2020 Classification: 35R11; 35A22; 35K57; 92C20

1 Introduction

Calcium ions Ca2+ serving as ubiquitous second messengers, play a crucial role in various
cellular processes. These include cellular differentiation, excitability, apoptosis, gene transcription,
and synaptic plasticity, all integral to maintaining cellular function and system regulation [1].
To regulate these diverse functions, cells employ multiple mechanisms to control intracellular
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calcium levels. These mechanisms include the passive entry of calcium from the extracellular
space through various voltage-gated and membrane ER pathways and diffusion within the
cell, followed by sequestration by intracellular entities [2, 3]. Calcium enters the cell through
voltage-operated calcium channels and certain exchangers. This diffusion triggers the immediate
activation of physiological processes. A significant amount of calcium is buffered immediately,
while the remainder undergoes further processing. The spatial and temporal dynamics of calcium
inside neurons are essential for healthy cellular function, which can be analyzed by mathematical
modeling.
The endoplasmic reticulum (ER) serves as a major internal calcium reservoir, playing a pivotal role
in intracellular calcium signaling. The ER releases calcium, contributing to calcium waves that
facilitate signaling cascades. Other factors, such as Plasma membrane calcium ATPase (PMCA),
Orai channel, and mitochondria, are also actively involved in maintaining cytoplasmic calcium
concentration.
Calcium diffuses within the cell through various pathways in cytosolic fluid and different or-
ganelles. This calcium homeostasis depending on various factors creates anomalous behavior of
the previous concentration profile. To address this complexity, Caputo’s differential framework
is applied to the nonlocal nature of the reaction-diffusion model. Non-integer differential equa-
tion considered the previous memory to compute the current step, which gives a better realistic
approach.
The calcium hypothesis has been studied and mathematically modeled over the past few decades.
Smith et al. have analyzed the asymptotic behavior of calcium signaling using a steady-state
analytical solution approach [4]. Dupont et al. have modeled calcium-induced calcium release of
intracellular pools and verified their results with experimental data [5]. Dupont et al. developed a
simplified model of the calcium kinase and its transductions [6]. Smith et al. examined several
aspects of calcium kinetics, including oscillation patterns, buffer interactions, and receptor involve-
ment [7]. Schmeitz et al. have investigated the time and space features of calcium signaling in T
cells in a variety of experimental data systems [8]. The work of Friedhoff et al. was an analysis of
the nature of calcium oscillations by means of stochastic methods [9]. The comprehensive study
of bifurcation analysis of calcium oscillations was the focus of the work of Marko et al. [10]. In
addition, Dave and Jha extended the studies by applying the models to Alzheimer’s dementia
and have shown aberrant calcium levels in nerve cells [11]. Manhas et al. have developed models
for the evaluation of calcium bifurcation studies in acinar cells [12]. Naik and Pardasani worked
out the finite element approach to calcium diffusion along with ER and the plasma membrane for
the oocyte [13]. Jha et al. investigated the fractional calcium reaction-diffusion in nerve cells [14].
Joshi and Yavuz explored the bifurcation of calcium transients in hepatocyte cells [15]. Vora et al.
developed one- and two-dimensional fractional calcium dynamics with Orai flow in neuronal cells
[16, 17]. Joshi and Jha studied the mechanism of chaotic calcium behavior using the Hilfer operator
on neuronal cells [18]. Vaishali and Adlakha studied the ATP-insulin-IP3 regulating calcium home-
ostasis in pancreatic cells [19]. Luchko and Yamamoto developed the time-fractional diffusion
wave model, which was solved using an analytical approach [20]. Pawar and Pardasani developed
models to elucidate the dynamics of calcium, inositol triphosphate (IP3), and amyloid-beta sys-
tems and shed light on cellular degeneration [21]. Lai et al. studied the regulation of calcium and
buffer by calcium channels in cardiac myocytes [22]. Luchko et al. established the uniqueness and
existence of the initial value and boundary fractional differential problem, which helps to derive
the maximum principle [23]. Agarwal et al. studied the advection-diffusion process of calcium by
using the Caputo-Fabrizio operator [24]. Tewari et al. have developed a computational model for
the homeostasis of calcium and mitochondria [25]. Jagtap and Adlakha studied the dynamics of
IP3R and calcium in the hepatocyte [26]. Singh et al. studied the calcium signaling in the alpha
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cells using a numerical approach [27]. Hardagna et al. studied the calcium diffusion in nerve
cells in polar dimensions using fractional dynamics [28]. Jha et al. studied the fractional order
investigation of the neuronal polar diffusion equation [29]. Joshi studied the COVID-19 dynamics
with neuro-degeneration using memory impact [30]. Purohit et al. studied the fractional dynamics
with the multi-order approach in physics [31]. Vaishali and Adlakha studied the system of calcium
homeostasis in beta cells [32]. Naik et al. studied the flip bifurcation analysis of the chemical
model in discrete time [33]. Manhas studied the IP3 and calcium oscillations for mitochondria
in non-excitable cells [34]. Kumar and Erturk studied the cholera disease by using the fractional
differential numerical method [35]. Nakul et al. studied the calcium diffusion in cholangiocyte
cells using the finite volume approach [36].
As of now, there is a dearth of comprehensive research exploring the collective impacts of the
Membrane and the endoplasmic reticulum (ER) through mathematical modeling. This study seeks
to bridge this gap by analyzing the combined effects of these parameters on calcium oscillations in
neuronal cells.

2 Essential mathematical definitions

Definition 1 Let a function f ∈ C((0, T)× (0, R)) is continuous and differentiable in space and time
where (r, t) ∈ (0, R), (0, T) [37–40].

Definition 2 Let n > 0, n ∈ R+ and Riemann–Liouville fractional integration defined by [37]

Jα f (t) =
1

Γ(α)

∫ t

0
(t − ξ)(α−1) f (ξ) dξ, α > 0, α ∈ R. (1)

Definition 3 Caputo fractional integration and differentiation is defined by [37],

c
0Dα

t f (t) = Jm−αDm f (t), (2)

c
0Dα

t f (t) =
1

Γ(m − α)

∫ t

0
(t − ξ)(m−α−1) f (ξ)m dξ, α > 0, α ∈ R + . (3)

Definition 4 The Mittag-Leffler function is defined by a non-negative variable parameter α, a real number
parameter β, and a complex plane variable p [37, 41],

Eα(p) =
∞∑

k=0

pk

Γ(αk + 1)
, (4)

Eα,β(p) =
∞∑

k=0

pk

Γ(αk + β)
, (5)

and transforming by Laplace definition [41],

L{Eα,β(ztα)} =
sα−1

sα ∓ z
, (6)

L{tγ−1Eµ,γ(±ptµ)} =
sµ−γ

sµ ∓ p
, Real(s) >| p |1/µ, p ∈ C, (7)

L{c0Dα
t f (t)} = sαF(s)−

n−1∑
k=0

sα−k−1 f k(0), n − 1 < α ≤ n. (8)
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Definition 5 Wright’s function, which is defined by [37],

ϕ(α, µ, p) =
∞∑

k=0

pk

Γ(αk + µ)k!
, µ > −1, µ ∈ C, (9)

and its Laplace transform is [41]

L{ϕ(α, µ,−ptµ)} = s−1esµ p. (10)

Definition 6 Mainardi's function [41] is given by,

Mα(p) =
∞∑

k=0

−pk

Γ(−αk + (1 − α))k!
, 0 < α < 1. (11)

Mainardi's function Laplace transform is

L
{

t−α Mα

( p
tα

)}
= sα−1e−sα p. (12)

3 Modeling and biological background

A fractional model has been created to examine the influence of the Amyloid beta, STIM-Orai
channel in conjunction with important factors such as buffer concentration, VGCC, IP3 receptors,
and ER fluxes. Subsequently, these components’ responsibilities are examined to learn how they
affect neuronal processes and diseases like Alzheimer’s disease.

Impact of protein

Calcium ions interact and combine with protein resulting in calcium-bound buffers, which is a nec-
essary step in modeling the spatiotemporal behavior of calcium ions. Entry of neurotransmitters
between nerve cells depends on this calcium buffer reaction. Errors in this buffering mechanism
have the potential to cause cell death and play a role in the emergence of neurodegenerative
illnesses like Parkinson’s and Alzheimer’s disease.
The buffer complex is described using a chemical reaction equation. The mathematical equation
for the buffer complex and cytosolic calcium ions is as follows [42],

[Ca2+] + [P]
k+
⇌
k−

[CaP]. (13)

[Ca2+] represents calcium-free ions, whereas [P] is a protein that binds to calcium ions and creates
a calcium-bound protein molecule bound via the k+ rate. This both-way process dissociates the
bound from calcium molecules and the protein at a disassociation rate of k−.

Impact of amyloid beta

The distortion of amyloid precursor protein (APP) results in the production of amyloid beta 42
(Aβ42), which perforates the plasma membrane. Amyloid beta plaques and tangles build up as a
result, inhibiting surrounding plasma membrane processes. Aβ42 opens up a new channel for
calcium ions, causing the concentration of calcium to rise quickly to unmanageable levels without
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a sustained influx. For weak neurons, the accumulating calcium is harmful [43]. Then we have

JAm = VAm
1

1 + e(V−q1)/q2
, (14)

where VAm is the rate of calcium ions entering through this pathway. q1 and q2 are voltage
dependence of calcium ions and values are -30,23 mV.

Impact of STIM-Orai

The development of memory carrier spines in neurons is mediated by the STIM-Orai pathway.
The calcium ions that stream from the nanodomain of the Orai channel are made easier by STIM
insights, which control calcium activity through ER calcium concentration. Calcium ions help
mature mushroom spines maintain their steady shape. Any disruption of channel clusters or
erratic flow might lead to cognitive impairments [44, 45],

JOrai = ϕ
IOrai

AOzF
. (15)

In this context, ϕ represents the probability of channel opening, IOrai denotes the current flowing
through the Orai channel.

Impact of IP3R

The main intracellular calcium storage is located in the ER. IP3 receptors (IP3R) have the ability
to release calcium, which is controlled by the biphasic connection between calcium and inositol
1,4,5-trisphosphate (IP3). Intracellular calcium oscillations are induced by IP3R flow and are
necessary for processes such as synaptic modulation, learning, and neurite development. The
intraorganellar network’s calcium homeostasis can be both elevated and disrupted by mutations
[11],

JIP3R = (CER − C)KIP3ROIP3R. (16)

CER is the calcium level in ER, C is cytosolic calcium, and OIP3R is the opening rate of the IPR,
which varies from zero to one.

Impact of SERCA

The Sarcoendoplasmic Reticulum Calcium ATPase (SERCA) pump is a component of the ER
calcium store replenishment system that attenuates cytoplasmic calcium signal hyperactivity.
Calcium sequestration systems may be severely overloaded by a modified SERCA pump [46],

JSERCA = VSERCA
C2

C2 + K2
SERCA

1
CER

. (17)

VSERCA is pump value, KSERCA is the dissociation factor of pump.

Impact of channel and leak flux

Calcium moves passively from the endoplasm into the cytoplasm via channels and leaks made of
different kinds of pores and proteins. Calcium homeostasis can be upset and the ER overloaded
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by poor calcium control. The mathematical formulation of leak and channel flow is as follows [46],

Jleak =
Dleak
C1

(1 + C1)

(
C0

1 + C1
− C

)
, (18)

JCh =
DChan

C1
(1 + C1)

(
C0

1 + C1
− C

)
, (19)

where Dleak is leak constant, DChan is channel conductance.

Impact of PMCA flux

Via the high-energy, high-affinity PMCA pump, which the tau protein may block, the plasma
membrane actively mediates calcium and dysregulates cytoplasmic calcium. This disturbance is
quantitatively represented by the mathematical expression of PMCA flux [46],

JPMCA = VPMCA
C2

C2 + K2
PMCA

. (20)

Impact of voltage-dependent calcium channel

Calcium ion channels that are gated by voltage are present in neurons and other excitable cells.
These ion channels allow the movement of ions, such as sodium, chloride, and calcium, into
and out of the cells. VDCC plays a crucial role in the influx of calcium into cells, which then
triggers various intracellular physiological processes [47, 48]. VDCCs are categorized into these
subtypes L, P/Q, N, and T subtypes. L-type calcium channels are of particular importance in brain
cells, initiating calcium-based activities and subsequent intracellular processes. This equation is
expressed as follows [46, 49],

IVDCC = PVz2 F2Vm

RT
C − Caoexp(−z FVm

RT )

1 − exp(−z FVm
RT )

, (21)

calcium flux is given by,

σCa =
−ICa

VneuronszF
. (22)

Table 1 shows all of the values for these parameters.

Modified model in Caputo sense

By combining channels, leaks, pumps, and buffer reactions, one may represent simplified neuronal
calcium homeostasis by converting the time derivative into a Caputo fractional derivative. The
following is how the suggested model is put forth:

∂uC
∂tu = D

(
∂2C
∂r2 +

1
r

∂C
∂r

)
− k+[P][Ca2+] + k−[CaP] + JIPR − JSERCA + Jleak + JCh. (23)

The other formulations, as is customary, represent the order of the Caputo derivative, u, which
has a lower limit equal to zero and an upper limit equal to t.
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The initial condition and boundary condition for the derivation of the above formula are as follows

C(r, 0) = g(r), C(∞, t) = 0. (24)

As follows, the Neumann condition refers to the natural state of calcium diffusion in nerve cells

∂[C]
∂n

= JAm + JOrai − JPMCA + JVDCC. (25)

To handle simple multiplication of the nonlinearity in JSERCA. Linearizing the equation by taking
two different possible aspects [50]:
Case 1: For C ≪ KSERCA. Then

C2

C2 + K2
SERCA

≪ C2

K2
SERCA

≪ C
KSERCA

. (26)

Case 2: For KSERCA ≪ C. Let K = βc, for 0 < β < 1,

C2

C2 + K2
SERCA

=
1

1 + β2 . (27)

Nondimensionalization for the term of the proposed model is as follows:

r∗ = r/l, t∗ = t/T, C∗ = C/K, C∗∞ = C∞/K, P∗∞ = P∞/[P]T.

To decrease the complexities of the following model, which is the proposed mathematical form,
and let

a = k+[P]− KIPROIPR +
KSERCA
VSERCA

−
1 + C1

C1
(Dleak + DChan),

b = k+[P]C∞ + CER(KIPROIPR) + k+[P]C∞ + (Dleak + DChan)[C0/C1],

C
0 Du

t C = DCa∇2C − aiC + bi, (28)

where i = 1, 2 for Case 1 and Case 2, respectively.

4 Main results

In this section, the solution of the calcium diffusion fractional dynamics is solved by using the
hybrid transform method.

Theorem 1 For variables of the range, 0 ≤ t <∞, 0 ≤ r <∞, u = (0, 1], have the form as Eq. (28) and
basic condition as Eq. (24), Neuronal calcium flow comes from various channels and receptors which are
considered a non-homogeneous condition, (25), can be derived as the form,

G(r, t) =
√

2√
π

∫∞
0

Eu[(Dk2 − ai)tu]J0(kr)kdk +
√

2√
π
(bi + jo)tu

∫∞
0

Eu,u+1[(Dk2 − ai)tu]J0(kr)kdk.

(29)
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Proof Using Eq. (28) as our foundational model.
Taking two cases for the SERCA pump, v. The Hankel transform is applied over the radius.

C
0 Du

t Ċ = Dk2Ċ − aiĊ + (bi + j0)δ(k), (30)

using the Laplace transform to apply temporal transformation

C̈(k, s) =
su−1 ˙g(k)

(su − Dk2 + ai)
+

bi + joδ(k)
s(su − Dk2 + ai)

δ(k), (31)

where k is the Hankel transform variable.
The Laplace transform is now used by the formulas below in the solution

Eu(ptu)← L→ su−1

su − p
,

tγ−1Eu,γ(ptu)← L→ sµ−1

sµ ∓ p
,

(32)

˙C(k, t) = Eu[(Dk2 − ai)tu] ˙g(k) + (bi + jo)tuEu,u+1[(Dk2 − ai)tu]δ(k). (33)

With the inverting transform, we obtain:

C(r, t) =

√
2√
π

∫∞
0

Eu[(Dk2 − ai)tu] ˙g(k)J0(kr)kdk

+
(bi + jo)tu

√
2√

π

∫∞
0

Eu,u+1[(Dk2 − ai)tu]δ(k)J0(kr)kdk, (34)

C(r, t) =

√
2√
π

∫∞
0

Eu[(Dk2 − ai)tu]J0(kr)k
∫∞

0
g(y)J0(kr)kdy ∗ dk

+
(bi + jo)tu

√
2√

π

∫∞
0

Eu,u+1[(Dk2 − ai)tu]

∫∞
0

δ(y)J0(kr)kdy ∗ dk, (35)

C(r, t) =

∫∞
0

G1(r − y, t)g(y)dy +

∫∞
0

G2(r − y, t)δ(y)dy. (36)

G1
u(r, t) =

√
2√
π

∫∞
0

Eu[(Dk2 − ai)tu]J0(kr)kdk, (37)

G2
u(r, t) = (bi + jo)tu

∫∞
0

Eu,u+1[(Dk2 − ai)tu]J0(kr)kdk, (38)

Gu(r, t) =

√
2√
π

∫∞
0

Eu[(Dk2 − ai)tu]J0(kr)kdk (39)

+

√
2√
π
(bi + jo)tu

∫∞
0

Eu,u+1[(Dk2 − ai)tu]J0(kr)kdk.

Hence proved.

Lemma 1 [38–40] An example of a function with an exponential combination is the Mittag-Leffler function
family. When Z ∈ C, a complex field, has any value, E(µ,γ)(x) converges. Eq. (40) is a Green’s function
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solution derived by a semi-analytical method for calcium diffusion in neuron cells. This analytical method,
however, needs to be revised to provide closed-form answers.

5 Analysis

The essential solution was obtained by using Green’s function to describe the outcome of the
integral transform. Below is the further analysis that was performed to get a closed-form answer.

Theorem 2 Taking 0 < u ≤ 1, 0 < r < ∞, 0 ≤ t < ∞, the mathematical form is (40) from this
closed-form solution obtained as,

G(r, t) =
1

2D
√

tu

∫∞
0

e
−r2
4tuk−aiktu

k−
1
2 Mu(k)dk +

(bi + jo)tu/2

2D

∫∞
0

e
−r2
4tuk−aiktu

k−
1
2 ϕ(−u, 1; k)dk. (40)

Proof Implementing the Hankel transform to a radial variable and using Eq. (40), we obtain,

Gu(r, t) = Eu[(Dk2 − ai)tu] + (bi + jo)tuEu,u+1[(Dk2 − ai)tu]. (41)

Now using the Laplace to transform the temporal domain, we obtain,

¨Gu,2(k, s) =
su−1

(su + Dk2 + ai)
+

s−1(bi + jo)
(su + Dk2 + ai)

, (42)

¨Gu,2(k, s) = su−1
∫∞

0
e−p(su+Dk2+ai)dp + (bi + jo)s−1

∫∞
0

e−p(su+Dk2+ai)dp. (43)

Applying the inverse Laplace now, and utilizing the definitions,

¨Gu,2(k, s) =
∫∞

0
e−p(Dk2+ai)t−u Mu

( p
tu

)
dp + (bi + jo)

∫∞
0

e−p(Dk2+ai)ϕ(−u, 1; −ptu)dp. (44)

Using the inverse Hankel transform, we get

G(r, t) =
1

2D
√

tu

∫∞
0

e
−r2
4tuk−aiktu

k−
1
2 Mu(k)dk +

(bi + jo)tu/2

2D

∫∞
0

e
−r2
4tuk−aiktu

k−
1
2 ϕ(−u, 1; k)dk. (45)

Hence the result.

Existence and uniqueness

Remark 1 [38, 39] The closed-form solution is gained by using Green’s function.
Let α, m > 0, then for p, continuous function defined below

E(m,α)(p) =
∞∑

k=0

pk/(m(µk + µ)), (46)

is the convergent and let constant Mi > 0 as,

| E(m,µ)(z) |≤ Mi. (47)

If α ≥ 0 and ξ ∈ C, thus additions of the above series uniformly converge throughout an entire complex
plane [39, 40].
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For the uniqueness of the solution, let us take c(r, t) = h(r, t)− ḣ(r, t). If a distinguished result exists
of this nature with this physiological constraint then c(r, t) ≡ 0 → h(ri, ti) ≡ ḣ(ri, ti) which shows the
uniqueness of the solution.

Theorem 3 c ∈ C[[0, T]× [0, R]] and states the Eq. (28), equality can be given as below,

maxΩc = maxΓc, (48)

where Γ is the boundary and Ω is the domain.

Proof This statement will be proven by contradiction.
Let us take into consideration

M = maxΩc, (49)

M̈ = maxΓc, (50)

concerning this M̈ ≤ M. Then M carries any arbitrary point (rM, tM).
Using a function that can be expressed as w : Ω → R fulfills our assumption as well, having
equivalent physiological values.
Now, we may proceed as follows

C
0 Du

t w − D∇2w + aiw − bi = 0, (51)

considering the function as it is described here

w = c + (M − M̈)t(−m). (52)

In maximal attainment at a level of c. (rM, tM) above equation implies

w = M̈ + (M − M̈)ϵ, w < M. (53)

Also, w ≥ c in Ω and at maximum point

w = c(rM, tM) + M − M̈. (54)

For the left-side equation

C
0 Du

t w − D
∂2w
∂r2 +

1
r

∂w
∂r

+ aiw − bi +
M − M̈Γ(1 − m)

Γ(1 − m − u)
t−m−u ≤ M − M̈Γ(1 − n)

Γ(1 − m − u)
t−m−u > 0. (55)

From above equation

C
0 Du

t c − D∇2c + aic − bi > 0. (56)

The positive output contradicts this

maxΩc = maxΓc. (57)

Hence proved.
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Applicability of the model

A multitude of cerebral processes, including neurotransmitter release, synaptic plasticity, and gene
transcription, are contingent upon calcium ions. To achieve physiological equivalence with in
vivo neuronal calcium dynamics, the calcium amounts in our model were adjusted. This method
ensures that the model accurately mimics the behavior of neuronal calcium.
A variety of brain processes, including neurotransmitter release, synaptic plasticity, and gene
transcription, are critically dependent upon calcium ions. In order to achieve physiological
equivalence with in vivo neuronal calcium dynamics, the calcium amounts in the model were
adjusted. This ensures that the model accurately mimics the behavior of neuronal calcium [14, 18].

6 Results and interpretation

The results demonstrate the distribution of calcium within a neuron in terms of spatial and
temporal dimensions. Table 1 provides the numerical values and accompanying descriptions of
the input parameters utilized in the generation of these results.
In Figure 1, shows the calcium pattern for a 100µM buffer. This graphic depicts the creation of a
calcium spike that is uniformly distributed in terms of temporal order transition for the cytosol.
This hysteresis memory emphasizes the nonlocal character of neuronal calcium transport at a scale
of 0.7µM. Calcium ions diffuse across the cytosolic buffer, binding to the ER storage receptors and
profoundly altering protein activity. Calcium ion concentration falls linearly as the radial distance
from the plasma membrane increases. Buffer is very important in calcium homeostasis. We can
observe the temporal impact on the calcium ions with differential order. Here EGTA buffer is
taken for normal neuronal cells which are bound with the calcium ions.
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Figure 1. The time diffusion of calcium ions, as simulated by successive orders of the time derivative, when the
buffer is 100 µM

In Figure 2, shows the radial distribution of calcium concentration at a buffer value of 100 µM
with a fractional order u = 1, 0.9, 0.8, 0.7. This illustration depicts the creation of a calcium spike



Jha et al. | 209

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Radial distance r

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

C
a
lc

iu
m

 c
o
n
c
e
n
tr

a
ti
o
n
 (

M
)

u=1

u=0.9

u=0.8

u=0.7

Figure 2. The radial distribution of calcium ions, as simulated by successive orders of the time derivative, when
the buffer is 100 µM
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Figure 3. Radial distribution of free calcium ions for a diffusion coefficient 150 and 250 with temporal order
u = 1

dispersed radially in the cytosolic free calcium concentration. At u = 0.9, the hysteresis memory
has a lower nonlocal character than u = 1.0. The lower fractional order u = 0.9 results in a
reduction in cytosolic free calcium ions, creating a subdiffusion impact on the spatial pattern. This
order includes all prior states up to 0.9 of the reaction-diffusion process, recording the transition
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Figure 4. Temporal pattern of free calcium ions for a diffusion coefficient 150 and 250 with temporal order u = 1

of the differential order of calcium ions.

In Figure 3, displays calcium concentration variations with a diffusion coefficient of D = 150 for
this reaction-diffusion process with radial distance. D = 250 shows that calcium concentration
increases with a reduced diffusion coefficient, signifying localized calcium signaling locations and
probable calcium overload.
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Figure 5. Radial diffusion of calcium ions with [B] = 200µM for a different order of time derivative
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Figure 6. Temporal pattern in Alzheimer’s impact of reduced protein [B] = 50µM on calcium ions for a different
order
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Figure 7. Radial distribution in Alzheimer’s impact of reduced protein [B] = 50µM on calcium ions for a
different order

Figure 4 displays calcium concentration variations with a diffusion coefficient of D = 150 for
this fractional temporal reaction-diffusion process. D = 250 shows that calcium concentration
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Figure 8. Radial distribution of free calcium ions for various protein impact

increases with a reduced diffusion coefficient, signifying intersection indicates the background
calcium level decreased.
In Figure 5, we show calcium concentration with increasing buffer concentration [B] = 200µM
along the radius. The figure shows that the calcium spectrum is controlled, with enhanced calcium
binding activity, showing that increasing buffer concentrations effectively regulate calcium levels.
In Figure 6, we illustrate the effect of the reduced buffer presence observed in Alzheimer’s im-
pacted neurons. This can increase the amount of calcium ions, degenerating neuronal homeostasis
and leading to neuronal death. The temporal pattern is higher than the normal neuronal cell.
In Figure 7, it illustrates the effect of the reduced buffer presence observed in the radial distance
with different temporal order. It can be observed that calcium spread and peak levels are higher
and prolonged than normal neuronal conditions. Long-term calcium behavior is harmful to
neurons, which leads to cell death.
In Figure 8, it illustrates the nature of the endogenous buffer calmodulin, S100B can control the
calcium spectrum in a well-controlled manner. The presence of the BAPTA buffer in the cytosol
could disperse calcium in a narrow spectrum. This effect can be useful for well-controlled calcium
dispersion in the Alzheimer’s impacted neuron.

Table 1. Values of physiological constants [4, 9, 43]

Symbols Description Value Unit
DCa Diffusion constant value 150-250 µM2/s
C1 Cell ratio 0.185 -
k+ Association constant rate (EGTA, S100B, BAPTA) 1.5,1.1,600 µM−1s−1

[Ca2+]∞ Background concentration level 0.1 µM
VSERCA Pump conductance 120 s−1(µM)−2

Dleak Leak flux constant 0.11 s−1

DChan Channel flux constant 6 s−1
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[P] Protein level 50-100 µM
ϕ Opening rate 0.9 -
IO Current of Orai 2.1 fA
AO Area of Orai 0.25 nm2

z Valency of calcium ions 2 -
C0 extracellular calcium concentration 2 µM

Vneuron Volume of cellular cytosol 523.6 µm3

Vm membrane potential -0.07 V
R Ideal gas constant 8.31 J/(mol.K)
T Absolute temperature 300 K

PV Permeability of ion 0.5 s−1

KSERCA Dissociation SERCA rate 0.18 µM
KPMCA PMCA pump rate 0.425 µM

CER ER calcium level 500 µM
VPMCA PMCA conductance 28 s−1(µM)−2

KIP3R IPR rate 0.52 s−1

7 Conclusion

In this work, we have simulated the interaction of calcium ions and buffers with temporal fractional
order, taking into account a variety of characteristics including neuronal membrane flux and ER
flux. Different endogenous and exogenous proteins have been investigated in the context of
Alzheimer’s disease. The Hankel transform has been used for the polar derivative and the Laplace
transform for initial conditions, resulting in Mittag-Leffler functions. Green’s functions have
been used to obtain closed-form solutions, which have also included Mainardi’s and Wright’s
functions. A modified calcium diffusion model, formulated within the Caputo framework, has
been successfully solved through a hybrid transform method. The existence and uniqueness of
the solution have been demonstrated for fundamental model analysis.

• We have obtained graphical results of the interaction of calcium and other factors with different
temporal order, reduced temporal memory reduced the calcium level in neurons.

• The study shows that the time fractional order has a converging effect on calcium levels for
radial distance, driven by many characteristics.

• The diffusion coefficient parameter has an inverse influence on calcium distribution, causing
calcium concentrations to accumulate near the membrane.

• The impact of Alzheimer’s disease is demonstrated by a reduced buffer quantity, resulting
in prolonged elevated calcium levels in neurons, which are hazardous. Prolonged conditions
could lead to cell death with lower buffer impact.

• Neuroprotection relies heavily on BAPTA binding concentration. Mobile and immobile buffers
have distinct effects on calcium levels, with EGTA, Calmodulin, and S100B considerably lower-
ing calcium concentrations.

Thus, our findings provide light on the fractional dynamics of calcium signaling and buffering
in neurons, offering insights into protein simulation possibilities for neurodegenerative illnesses
such as Alzheimer’s. The dual transform approach and fractional-order modeling provide a
solid foundation for comprehending the intricate interconnections seen in the neural calcium
reaction-diffusion process.
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Limitation and future scope

In this work, the experimental setup could play a pivotal role in the understanding of neuronal
degenerative diseases.
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Abstract

In this article, we present a mathematical model for the study of HIV/AIDS considering the imple-
mentation of Pre-Exposure Prophylaxis (PrEP). As a novel element in the construction of the model,
we consider the diagnosis of cases for attempting to enter the PrEP program, which allows us to study
different forms of PrEP. The diagnosis of new infections helps to reduce transmission in the population
because these patients are incorporated into the therapy and can achieve an undetectable viral load
in blood which prevents them from infecting others. The model contains a compartment of infected
persons with undetectable viral load in blood that is reached by adherence to treatment which is sepa-
rated from those simply infected with the virus as they do not transmit it. Considering the structure
of the model, we propose a method to study the effect of increased PrEP use and HIV incidence in a
population. In the case of incidence, we took into account the stochasticity of the behavior. Besides,
we find the basic reproduction number and present results that allow us to obtain the impact of the
parameters associated with transmission, treatment and diagnosis on the basic reproduction number.
We perform computational simulations, using demographic and HIV/AIDS data from Brazil, and
utilize the Markov Chain Monte Carlo (MCMC) method with a Bayesian approach to estimate model
parameters. We study two coverage increases at 25% and 35% that were selected according to the size
of the Brazilian population and the daily use of PrEP. We compare the increases in coverage focused on
HIV incidence, which is the number of new HIV cases infected and the number of HIV cases avoided,
we conclude that by increasing PrEP coverage the incidence of HIV is reduced and the number of cases
avoided increases.
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1 Introduction

HIV (human immunodeficiency virus) is a virus that attacks an individual’s immune system. HIV
is the cause of AIDS (Acquired Immune Deficiency Syndrome) which is an advanced stage of the
disease, in which the immune system is compromised [1] and fails to cope with certain diseases.
HIV-positive persons are diagnosed with AIDS if they have a CD4 count below 200 cells/mm3 or
if they contract certain opportunistic infections [1].
The HIV/AIDS virus is a problem that the world’s health systems are facing, and adherence to
treatment and preventive programs is an important element in controlling the pandemic. In 2021,
38.4 million [33.9 million - 43.8 million] people worldwide were living with HIV; 1.5 million [1.1
million - 2 million] people had become infected with HIV; 650,000 [510,000 - 860,000] people had
died of AIDS-related illnesses; and 28.7 million people were accessing antiretroviral therapy [2–4].
HIV treatment (antiretroviral therapy, ART) is currently available in one-or two-pill daily regimens
that can be initiated early in HIV infection and control HIV replication. The life expectancy of
persons who have achieved immune reconstitution and remain virologically suppressed should
be near normal. A suppressed or undetectable viral load in HIV-infected persons means that the
person does not infect his or her sexual partner [5–7].
Oral PrEP uses antiretroviral drugs in pill form to prevent the spread of HIV/AIDS. Currently,
there are two approved forms of oral PrEP in use: a combination of tenofovir and emtricitabine
or TDF/FTC (brand name Truvada) and a combination of tenofovir, alafenamide, and emtric-
itabine or F/TAF (brand name Descovy) [8]. PrEP reduces the risk of acquiring HIV sexually by
approximately 99% and the risk of acquiring HIV through injection drug use by at least 74% [9].
People using oral PrEP may have adherence problems due to daily use and forgetting to take the
pill, searching for the pill over time in places where it is distributed or sold, availability of the
product, etc. To counteract these complications generated by daily use, a new model of injectable
PrEP has appeared, which avoids interruptions in its use because the injection would only be
necessary once every two months [10, 11].
Studies of the impact of PrEP in a population with the use of mathematical models have been
increasing [7, 9, 12–21]. Moya et al. [7] presented a mathematical model for studying the influence
of PrEP and PEP (Post-Exposure Prophylaxis) in the presence of nondiagnostics and undetectables
and Moya and Rodrigues [9] introduced a fractional order mathematical model to study the
impact of the oral to the injectable Pre-Exposured Prophylaxis modality. Kim et al. [12] construct
a mathematical model of HIV infection among MSM (men who have sex with men) in South
Korea and simulate the effects of early antiretroviral therapy (ART), early diagnosis, PrEP, and
combined interventions on the incidence and prevalence of HIV/AIDS infection. Omondi et
al. [13] presented a mathematical model stratified by sex and sexual preference and included
PrEP in the dynamics. Li et al. [14] presented a mathematical model to assess the impact of PrEP,
biomedical interventions, and their combinations, and simulated it for a 20-year period. Silva and
Torres [15] proposed a mathematical model for HIV/AIDS transmission that includes the PrEP
preventive program and demonstrated that PrEP significantly reduces HIV transmission. Nabil
and Hamaizia [16] presented three-dimensional discrete-time model to describe the behavior of
cancer cells in the presence of healthy cells and HIV-infected cells and performed a theoretical
study of the model. Bolaji et al. [17] proposed a model for HIV and tuberculosis co-infection and
conclude that concentrating treatment on individuals infected with tuberculosis at the diagnosed
latent infection stage could effectively reduce the incidence of HIV in the study population. Naik
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et al [18] presented a fractional order model of HIV-1 using Caputo derivatives that involves
interactions between cancer cells, healthy CD4+ T cells, and virus-infected CD4+ T cells. Mustapha
et al. [19] developed a mathematical model that incorporates public awareness and treatment into
the dynamics of HIV/AIDS in an infected population with a detectable and undetectable viral
load. Yavuz et al. [20] presented a new mathematical model for the study of the transmission
of the hepatitis B virus (HBV). Moya et al. [21] presented a model for Tuberculosis with the
incorporation of 3HP treatment for latent tuberculosis and use the Markov Chains Monte Carlo
(MCMC) method with a Bayesian approach for the estimation of model parameters and the study
in Brazil, a methodology analogous to the presented in this paper.
The aim of our work is to present a model for HIV/AIDS dynamics with the incorporation of PrEP
as a compartment. The model allows studying different forms of PrEP based on adherence and
variations in PrEP coverage in the population. Furthermore, with the information provided by the
model, we can study the incidence of HIV for different increases in PrEP coverage and the basic
number reproduction and the impact on it of parameters associated with adherence to treatment
and diagnosis of cases. Based on the model structure, we perform parameter estimation using the
Markov Chains Monte Carlo (MCMC) method with a Bayesian approach.
Considering the structure of the model, we propose, we can study different forms of PrEP,
for example oral PrEP and injectable PrEP, and changes in PrEP coverage. Reproducing the
methodology used will allow us to compare these different forms of PrEP and possible increases
in coverage and make decisions based on the results of HIV incidence, HIV rate ratio, and the
number of cases avoided. In addition, in the dynamics we also have important elements such
as the diagnosis of cases due to the use of PrEP through HIV tests applied upon entry into
the program and adherence to PrEP (which allows us to study different variants), adherence
to antiretroviral treatment based on the undetectability of the viral load in the blood that we
quantify in a compartment since these individuals have the virus but do not infect. Using
computer simulations of the model, we will study the impact of an increase in PrEP coverage in
the population based on the incidence of HIV, the HIV rate ratio and the number of cases avoided.
This paper is organized as follows: in Section 2, we present the model, study its mathematical
properties, the incidence definition, and the incorporation of the PrEP program. Section 3 evaluates
the basic reproduction number and investigates its sensitivity analysis. Section 4 is devoted to
parameter estimation, Section 5 presents the computational simulations, and in Section 6 the
conclusions of the paper are discussed.

2 Model construction

For the construction of the model, we considered the following compartments: Susceptibles (S),
exposed to HIV/AIDS (E), people using PrEP (P), HIV cases (H), AIDS cases (A), and HIV/AIDS
positive cases with undetectable viral load in blood (V).
We consider several parameters: Λ is the recruitment rate, so parameter Λ will represent the
birth rate, while parameter αs refers to cases of people who become infected with HIV through
non-sexual routes, such as transmission from mother to child during childbirth, drug injection,
blood transfusions, among others.
The parameter µ represents the death rate from natural causes (death that is not associated with
the disease or its consequences). The virus transmission rate is defined as:

λ = β
(H + ϵA)

N
, (1)

where β is the effective contact rate, ϵ is the modification parameter that adapts the AIDS condition
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to contagion. and N is the total population (N = S + E + P + H + A + V).
We define dH as disease-associated death in people living with HIV and AIDS. We assume that
people who have undetectable viral load due to a low concentration of virus in the body die in
a way associated with the disease under the rate dH. The rate ϕ represents the movement of an
HIV/AIDS-positive individual who is diagnosed in HIV status so (1 − ϕ) is diagnosed with AIDS,
ϵs1 is the HIV/AIDS rate diagnosis in a risk contact.
Compartment V contains virus-infected individuals who, due to the adherence of antiretroviral
treatment, reach an undetectable viral load in blood and do not transmit the virus. Parameters
σHI and ν will represent HIV and AIDS cases that by adherence to therapy reach an undetectable
viral load in blood and σH and ω will represent the loss of undetectability in viral load in blood
for different reasons, such as treatment withdrawal, non-adherence to treatment, re-infection, etc,
and entry into the HIV and AIDS compartments, respectively. We define the rate of progression
from HIV to AIDS as τ.
The parameters ϵp and ϵ f represent the rate of PrEP use (coverage of PrEP use in a population)
and the rate of withdrawal and/or non-adherence to therapy. We assume that when the person
does not adhere to the treatment, they become susceptible to the virus, but as long as treatment is
followed properly, the person does not acquire the virus by any means. We assume that individuals
entering the PrEP program are tested for HIV/AIDS so this gives a chance of diagnosing new
cases. The parameter ϵD is related to the diagnosis of patients who were diagnosed for expressing
interest in entering the PrEP program and were tested for HIV/AIDS. In the model, the diagnosis
of cases for attempting to enter the PrEP program is studied. The other types of diagnosis are
found in the incorporated dynamics of the exit of cases exposed to the HIV (H) and AIDS (A)
compartments. Regarding the relationship between the use of PrEP and the diagnosis of new
cases due to attempts to enter the PrEP program, we have to take into account factors such as the
availability of both PrEP and HIV tests, which both have a cost on the market and in particular the
use of PrEP is daily, dissemination of the effectiveness of PrEP and expanding its use in different
social groups. These factors can be limiting to a positive impact of PrEP both in prevention and
diagnosis.
The model allows the study of different forms of PrEP and also takes into account different forms
of infection and the application of antiretroviral therapies.
Figure 1 shows the flow diagram of the model. The model that studies the behavior of HIV/AIDS
with the presence of PrEP in a population is described as:

dS
dt

=Λ + ϵ f P − (µ + λ + αs + ϵp)S, (2)

dE
dt

=λS − (ϵs1 + µ)E, (3)

dP
dt

=ϵpS − (µ + ϵ f + ϵD)P, (4)

dH
dt

=ϕ(ϵs1E + ϵDP) + σHV + αsS − (µ + dH + τ + σHI)H, (5)

dA
dt

=(1 − ϕ)(ϵs1E + ϵDP) + ωV + τH − (µ + dH + ν)A, (6)

dV
dt

=σHI H + νA − (µ + dH + σH + ω)V, (7)

with initial conditions:

S(t0) > 0, E(t0) > 0, P(t0) ≥ 0, H(t0) > 0, A(t0) > 0 and V(t0) > 0.
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The initial conditions for the PrEP compartment can start with the value zero because we can
make a prospective study of the epidemic after the implementation of PrEP in the population.

Figure 1. Flow chart of model (2)-(7). The recruitment rate is Λ and the death rate from natural causes is µ and is
the same in all compartments. The use of PrEP is only admitted to those susceptible and parameters ϵp and ϵ f
represent the rate of PrEP use and failure to use PrEP. Before entering the PrEP program it is necessary to do
HIV tests and with this, we help in the detection of new cases of HIV and AIDS, and is defined in parameter ϵD.
Those who are susceptible are exposed to the virus with the transmission rate of virus λ. The αs rate defines
the individuals who become infected through non-sexual routes. The exposed (E compartment) who acquire
the virus are diagnosed with HIV or AIDS with the diagnosis rate, ϵs1. The τ is the rate of evolution of the
disease from HIV to AIDS. Parameters σHI and ν are associated with those infected with HIV (H compartment)
and AIDS (A compartment) who, using retroviral treatment, achieve an undetectable viral load and enter V
compartment, and parameters ω and σH are when undetectability is lost and depending on the disease stages
enters H or A. The parameter dH represents death associated with HIV/AIDS

The parameters and their definitions are given in Table 1.

Table 1. Definition of model parameters (2)-(7)

Parameter Definition
Λ Recruitment rate
ϵ Modification parameter associated with virus transmission from AIDS patient
ϵp PrEP use selection rate
ϵ f PrEP therapy failure rate
ϵD Diagnosis rate of patients who attempted to enter the PrEP program
αs HIV infection rate by non-sexual routes
µ Death rate due to natural causes
β Effective contact rate
ν Rate of progression from AIDS to undetectable
ϕ Virus progression rate

ϵs1 Rate of detection and diagnosis of persons at risk contact
τ Rate of progression from HIV to AIDS

σHI Rate of progression from HIV to undetectable
ω Rate of progression from undetectable to AIDS
σH Rate of progression from undetectable to HIV
dH Death rate associated with HIV/AIDS
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Basic properties of model

Now, let us prove the existence and non-negativity of the solution of model (2)-(7), and let’s find
the biologically feasible region.

Non-negativity and boundless of solutions

Theorem 1 Let initial data be S(t0) > 0, E(t0) > 0, P(t0) > 0, H(t0) > 0, A(t0) > 0 and V(t0) >

0. Then, the solutions (S(t), E(t), P(t), H(t), A(t), V(t)) of model (2)-(7) are positive for all t > 0.
Furthermore,

lim
t→∞ sup N(t) ≤ Λ

µ
. (8)

Proof By first equation of model (2)-(7), we have that:

dS
dt

= Λ + ϵ f P − (µ + λ + αs + ϵp)S ≤ Λ − (µ + λ + αs + ϵp)S, (9)

can be rewritten as

d
dt

[
S(t) exp

{
(µ + λ + αs + ϵp)t +

∫ t

t0

λ(s)ds
}]

≥ Λ exp
{
(µ + λ + αs + ϵp)t +

∫ t

t0

λ(s)ds
}

.

(10)

Hence, for 0 ≤ t0 ≤ t∗,

S(t∗) exp
{
(µ + λ + αs + ϵp)t∗ +

∫ t∗

t0

λ(s)ds
}
− S(t0) ≥

∫ t∗

t0

Λ exp
{
(µ + λ + αs + ϵp)u +

∫u

t0

λ(w)dw
}

du.

(11)

So that,

S(t∗) ≥ S(t0) exp
{
−

(
(µ + λ + αs + ϵp)t∗ +

∫ t∗

t0

λ(s)ds
)}

+ exp
{
−

(
(µ + λ + αs + ϵp)t∗

+

∫ t∗

t0

λ(s)ds
)}

×
∫ t∗

t0

Λ exp
{
−

(
(µ + λ + αs + ϵp)u +

∫u

t0

λ(w)dw
)}

du > 0. (12)

Similarly, it can be shown that E(t), P(t), H(t), A(t) and V(t) > 0 for all t > 0.
Moreover, we have

dN
dt

= Λ − µN − dH(H + A + V). (13)

Then,

Λ − (µ + dH)N ≤ dN
dt

≤ Λ − µN, (14)

which gives

Λ
µ + dH

≤ lim
t→∞ inf N(t) ≤ lim

t→∞ sup N(t) ≤ Λ
µ

. (15)
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So, we have that

lim
t→∞ sup N(t) ≤ Λ

µ
.

Biologically feasible region

Now, let’s define the biologically feasible region for the model (2)-(7).

Lemma 1 The closed set Ω =

{
(S, E, P, H, A, V) ∈ R6

+ : N(t) ≤ Λ
µ

}
is positively-invariant and

attracts all solutions of model (2)-(7).

Proof The derivative of N (total population) is

dN
dt

= Λ − µN − dH(H + A + V). (16)

Since
dN
dt

≤ Λ − µN, it follows that
dN
dt

≤ 0, if N(t) ≥ Λ
µ

. Hence, the standard comparison

theorem from [22] can be used to show that N(t) ≤ N(t0) exp{−µt}+
Λ
µ

(
1 − exp{−µt}

)
.

In particular, if N(t0) ≤ Λ
µ

, then N(t) ≤ Λ
µ

for all t > 0. Hence, the domain Ω is positively

invariant.
Furthermore, if N(t0) >

Λ
µ

, the either the solution enters the domain Ω in finite time or N(t)

approaches
Λ
µ

asymptotically as t → ∞ . Hence, the domain Ω attracts all solutions in R6
+.

Existence of solution

Theorem 2 The solutions of model (2)-(7) with non-negative initial conditions exist for all time.

Proof The right-hand side of the model is locally Lipschitz continuous, and this proves the local
existence of the solution. The global existence of the solution follows from the bound found in
Theorem 1, inequality (8).

Incidence

Incidence is the number of newly diagnosed cases of a disease. The incidence rate is the number
of new cases of a disease divided by the number of people at risk of contracting the disease
[23, 24]. Prevalence differs from incidence in that prevalence includes all active cases, both new
and pre-existing, in the population at the specified time, whereas incidence is limited to new cases
only. New entries in the HIV compartment are incorporated into the model with the following
differential equation respectively:

dI
dt

= ϕ(ϵs1E + ϵDP) + αsS. (17)

The HIV incidence is defined as:

I∗(t) = I(t)− I(t − 1), (18)
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where t is the current time and t − 1 is the moment of time immediately preceding. Then, the HIV
incidence rate is:

HIV Incidence Rate (t) =
I∗(t) ∗ 100000

N
. (19)

Given that this methodology is deterministic by itself, we introduce stochasticity by considering
the negative binomial distribution (Negbin), one of the most general for modeling count data. Its
density function is given by:

fY(y) =
(

y + v − 1
y

)(
s

s + v

)y ( v
s + v

)v
, y ∈ N, (20)

where E(Y) = s > 0 is the expected value and v > 0 is the parameter that controls for overdisper-
sion. Let Y1 be a random vector representing the annual new cases. Considering stochasticity, we
have that Y1 = (Y11, . . . , Y1t) with Y1t ∼ Negbin(s1t, v), where:

s1t = I(t)− I(t − 1) = I∗(t). (21)

In this way, we are not only able to get a point estimate but also a confidence interval for allowing
stochasticity.

Increased PrEP coverage

The new PrEP coverage is based on the percentage increase of the current coverage, so the
parameter ϵp in the period 2025-2035 will have the following structure:

ϵp(t) = ϵp(t − 1) + psϵp(t − 1), (22)

where ϵp(t) is the current coverage in that year, ϵp(t − 1) is the coverage in the previous year, and
ps is the percent increase in coverage.

3 Basic reproduction number

In a population composed only of susceptible individuals, the average number of infections caused
by an infected individual is defined as basic reproduction number ℜ0. In our study, we have that
the compartment of undetectable infected individuals cannot be infected by the virus but upon
losing undetectability they pass to the infectious state of HIV or AIDS depending on the state of
the disease in which the individual is. The incorporation of these individuals in the study of the
basic reproduction number allows us to study the effect of reaching a state of virus undetectability
and the impact it has when it is lost.
If 0 < ℜ0 < 1, the infection will disappear in the long term, and if ℜ0 > 1 the infection can
spread in a population [25, 26]. The higher the ℜ0, the more difficult it will be to control the
epidemic. ℜ0 can be affected by several factors, such as the duration of infectivity of the affected
patients, the infectivity of the organism, and the degree of contact between susceptible and infected
populations.
Our interest is to study the disease-free equilibrium point due to its relationship with the basic
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reproduction number. The disease-free equilibrium point (DFE) is:

ϵ0 =

(
Λ

(µ + αs + ϵp)
, 0, 0, 0, 0, 0

)
. (23)

To find the basic reproduction number, we use the next-generation matrix method presented in
[25–27], where

F =


0 0

βΛ
N(µ + ϵp + αs)

ϵβΛ
N(µ + ϵp + αs)

0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


,

V =


k0 0 0 0 0
0 kp 0 0 0

−ϕϵs1 −ϕϵD k1 0 0
−(1 − ϕ)ϵs1 −(1 − ϕ)ϵD −τ k2 −ω

0 −σHI 0 −ν k3

 ,

are the matrices of transmission and transition terms, respectively and kp = µ + ϵ f + ϵp, k0 =

µ + ϵs1, k1 = µ + dH + τ + σHI , k2 = µ + dH + ν and k3 = µ + dH + σH + ω. Then, for model
(2)-(7) the basic reproduction number is

ℜ0 = ρ(FV−1) =

∣∣∣∣∣Λβϵs1

(
k3(k2ϕ + ϵ(k1(1 − ϕ) + ϕτ)) + (ϵσHI − ν)(σH(ϕ − 1) + ϕω)

)
N(µ + αs + ϵp)k0

(
k2(σHσHI − k1k3) + ν(σHτ + k1ω)

) ∣∣∣∣∣, (24)

where ρ(FV−1) is the spectral radius of matrix FV−1.
To find the basic reproduction number with the next-generation matrix method, we use the
infection-free equilibrium point (ϵ0) and now we will briefly present results that relate the stability
of this point with the behavior of the ℜ0.

Theorem 3 The infection-free equilibrium point (ϵ0) of model (2)-(7), is locally asymptotically stable (LAS)
if ℜ0 < 1 and unstable if ℜ0 > 1.

The threshold quantity ℜ0 is the basic reproduction number of HIV/AIDS model (2)-(7). It
measures the average number of new diseases generated by a single infectious agent in a fully
susceptible population. Consequently, the disease-free equilibrium of model (2)-(7) is locally
asymptotically stable (LAS) whenever ℜ0 < 1 and unstable if ℜ0 > 1. This means that HIV/AIDS
can be removed from the community (when ℜ0 < 1) if the population sizes of model (2)-(7) are in
the basin of attraction of the disease-free equilibrium ϵ0.
Now, we prove the global stability of the infection-free equilibrium point. Following [27], we can
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rewrite the model (2)-(7) as

dX
dt

= f (S, I),

dI
dt

= g(S, I), g(S, 0
R5
+
) = 0, (25)

where S ∈ R+ is the susceptible compartment, I ∈ R5
+ have the compartments exposed, HIV,

AIDS and undetectable of model (2)-(7) and 0
R5
+

is the null vector of the space R5
+.

The disease-free equilibrium is now denoted by E0 = (S0, 0R5) where S0 =
Λ

µ + αs + ϵp
.

The conditions (H1) and (H2) below must be satisfied to guarantee the global asymptotic stability
of E0.

(H1) : For
dS
dt

= f (S, 0R5), S0 is globally asymptotically stable,

(H2) : g(S, I) = AIT − g∗(S, I), g∗(S, I) ≥ 0, for (S, I) ∈ Ω, (26)

where A = DI g(S0, 0R5) (DIG(S0, 0R5) is the Jacobian of g at (S0, 0R5)) is a M-matrix (the off-
diagonal elements of A are non-negative) and Ω is the biologically feasible region.
The following theorem shows the global stability of the infection-free equilibrium point.

Theorem 4 The fix point E0 is a globally asymptotically stable equilibrium (G.A.S) of model (2)-(7)
provided that ℜ0 < 1 and that the conditions (H1) and (H2) are satisfied.

Proof Let

f (S, 0R5) = Λ − (µ + αs + ϵp).

As f (S, 0R5) is linear, then S0 is globally stable. Then, (H1) is satisfied. Let

A =


−k0 0 β ϵβ 0

0 −kp 0 0 0
ϕϵs1 ϕϵD −k1 0 σH

(1 − ϕ)ϵs1 (1 − ϕ)ϵD τ −k2 ω

0 0 σHI ν −k3

 ,

I = (E, P, H, A, V),

g∗(S, I) = AIT − g(X, I),

g∗(S, I) =


g∗1(X, I)
g∗2(X, I)
g∗3(X, I)
g∗4(X, I)
g∗5(X, I)

 =


β(H + ϵA)

(
1 −

S
N

)
0
0
0
0

 .
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Since
S
N

≤ 1 then 1 −
S
N

≥ 0. Thus g∗(S, I) ≥ 0 for all (S, I) ∈ Ω. Consequently, E0 is
a globally asymptotically stable point. Analogous proofs can be found in the bibliographical
references [28–30]. We will study the joint influence of parameters ϵs1, σHI , σH, ν and ω on the basic
reproduction number. These parameters are associated with treatment adherence and effectiveness
(undetectable virus in the blood), treatment failure, and diagnosis of cases exposed to the virus.
These parameters are defined in the interval [0, 1] and we want to study the joint behavior when
they are at the extreme values of the interval. At the extremes of the interval are the critical
behaviors because they may represent all individuals or none and it is of interest to study this
epidemiological situation together.
Firstly, we will study the undetectability in HIV and its impact on the basic reproduction number.
The following limit characterizes the increase in the number of patients with HIV who achieve
undetectability of the virus in the blood and the decrease in the number of patients who lose it
and pass to the HIV state:

lim
σHI→1
σH→0

ℜ0 =
βΛϵs1

(
(µ + dH + ω)

(
k2ϕ + ϵ((µ + dH + τ + 1)(1 − ϕ) + ϕτ)

)
+ (ϵ − ν)ϕω

)
N(µ + ϵp + αs)k0

(
ν(µ + dH + τ + 1)ω − k2(µ + dH + τ + 1)(µ + dH + ω)

) . (27)

The opposite case is defined as:

lim
σHI→0
σH→1

ℜ0 =
βΛϵs1

(
(µ + dH + ω + 1)

(
k2ϕ + ϵ((µ + dH + τ)(1 − ϕ) + ϕτ)

)
− ν((ϕ − 1) + ϕω)

)
N(µ + ϵp + αs)k0

(
ν(τ + (µ + dH + τ)ω)− k2(µ + dH + τ)(µ + dH + ω + 1)

) .

(28)
With the expressions (27)-(28) of ℜ0, we can characterize the impact that the increase and decrease
in the number of patients with HIV who achieve undetectable virus loads in the blood has together
with the increase and decrease in the number of patients who lose undetectability and acquire
detectable levels of HIV.
Now, we are going to study the case of patients with AIDS who achieve undetectability of the
virus in the blood and patients who lose undetectability and enter the compartment of AIDS. The
expressions that characterize this situation are:

lim
ν→1
ω→0

ℜ0 =
βΛϵs1

(
(µ + dH + σH)

(
(µ + dH + 1)ϕ + ϵ(k1(1 − ϕ) + ϕτ)

)
+ (ϵσHI − 1)σH(ϕ − 1)

)
N(µ + ϵp + αs)k0

(
(µ + dH + 1)(σHσHI − k1(µ + dH + σH)) + σHτ

) ,

(29)

lim
ν→0
ω→1

ℜ0 =
βΛϵs1

(
(µ + dH + σH + 1)

(
(µ + dH)ϕ + ϵ(k1(1 − ϕ) + ϕτ)

)
+ ϵσHI(σH(ϕ − 1)− ϕ)

)
N(µ + ϵp + αs)k0

(
(µ + dH)(σHσHI − k1(µ + dH + σH + 1))

) .

(30)
We will find the expressions for the increase and decrease in cases of HIV and AIDS that achieve
the virus’s undetectability in the blood and when they lose it and become infectious again. The
expressions for achieving the undetectability of the virus in the blood for HIV and AIDS together
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are:

lim
σHI→1

ν→1

ℜ0 =
βΛϵs1

(
k3
(
(µ + dH + 1)ϕ + ϵ((µ + dH + τ + 1)(1 − ϕ) + ϕτ)

)
+ (ϵ − 1)(σH(ϕ − 1) + ϕω)

)
N(µ + ϵp + αs)k0

(
(µ + dH + 1)(σH − (µ + dH + τ + 1)k3) + (σHτ + (µ + dH + τ + 1)ω)

) ,

(31)

lim
σHI→0

ν→0

ℜ0 =
βΛϵs1k3

(
(µ + dH)ϕ + ϵ((µ + dH + τ)(1 − ϕ) + ϕτ

)
−N(µ + ϵp + αs)k0(µ + dH)(µ + dH + τ)k3

. (32)

For the loss of the undetectability of the virus and return to the infectious state in the HIV and
AIDS compartments are:

lim
σH→1
ω→1

ℜ0 =
βΛϵs1

(
(µ + dH + 2)

(
k2ϕ + ϵ(k1(1 − ϕ) + ϕτ)

)
+ (ϵσHI − ν)(2ϕ − 1)

)
N(µ + ϵp + αs)k0

(
k2(σHI − k1(µ + dH + 2)) + ν(τ + k1)

) , (33)

lim
σH→0
ω→0

ℜ0 =
βΛϵs1(µ + dH)

(
k2ϕ + ϵ(k1(1 − ϕ) + ϕτ

)
−N(µ + ϵp + αs)k0k2k1(µ + dH)

. (34)

Besides, we are interested in studying the impact of the growth and decrease of the parameters
associated with HIV cases that reach AIDS (τ) and the achievement of undetectability of the virus
in the blood of cases with AIDS (ν). This factor is interesting because if a case reaches the stage
of AIDS and, with adherence to the treatment, we manage to have the undetectable status of the
virus in the blood, we would be avoiding new infections. The expressions of the limits of ℜ0 for
this situation are:

lim
τ→1
ν→0

ℜ0 =
βΛϵs1

(
k3(ϕ(µ + dH) + ϵ((µ + dH + σHI + 1)(1 − ϕ) + ϕ)) + ϵσHI(σH(ϕ − 1) + ϕω)

)
N(µ + ϵp + αs)k0

(
(µ + dH)(σHσHI − (µ + dH + σHI + 1)k3

) ,

(35)

lim
τ→0
ν→1

ℜ0 =
βΛϵs1

(
k3(ϕ(µ + dH + 1) + ϵ(µ + dH + σHI)(1 − ϕ)) + (ϵσHI − 1)(σH(ϕ − 1) + ϕω)

)
N(µ + ϵp + αs)k0

(
(µ + dH + 1)(σHσHI − (µ + dH + σHI)k3) + (µ + dH + σHI)ω

) .

(36)
Now, we are going to study the increase in the diagnosis of cases rate (ϵS1) in conjunction with
the undetectability of the virus in the blood, which leads to the diagnosis and effectiveness in
treatment in cases with HIV and AIDS. The following expressions characterize these situations:

lim
ϵs1→1
σHI→0

ℜ0 =
βΛ
(

k3(k2ϕ + ϵ((µ + dH + τ + 1)(1 − ϕ) + ϕτ))− ν(σH(ϕ − 1) + ϕω)
)

N(µ + ϵp + αs)(µ + 1)
(
ν(σHτ + (µ + dH + τ + 1)ω)− k2k3(µ + dH + τ + 1)

) . (37)
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lim
ϵs1→1
σHI→1

ℜ0 =
βΛ
(

k3(k2ϕ + ϵ((µ + dH + τ)(1 − ϕ) + ϕτ)) + (ϵ − ν)(σH(ϕ − 1)− ϕω)
)

N(µ + ϵp + αs)(µ + 1)
(
k2(σH − k3(µ + dH + τ)) + ν(σHτ + (µ + dH + τ + 1)ω)

) .

(38)
Finally, we will find the expressions of the limits for the cases of the increase in the diagnosis
of cases (ϵs1), the increase in the undetectability of the virus and the decrease in the loss of the
undetectability of the virus in the blood (we will call the positive scenario) and the increase
in the diagnosis of cases with the increase in the loss of undetectability of the virus and the
decrease in cases that achieve undetectability of the virus (we will call it semi-positive because
case detection is still a positive factor but here we see the infectiousness of the treatment, regarding
the undetectability of the virus or adverse situations). Then we have

lim
ϵs1→1
σHI→1

ν→1
σH→0
ω→0

ℜ0 =
βΛ(µ + dH)

(
(µ + dH + 1)ϕ + ϵ((µ + dH + τ + 1)(1 − ϕ) + ϕτ

)
−N(µ + ϵp + αs)(µ + 1)(µ + dH + 1)(µ + dH)(µ + dH + τ + 1)

, (39)

lim
ϵs1→1
σHI→0

ν→0
σH→1
ω→1

ℜ0 =
βΛ(µ + dH + 2)

(
(µ + dH)ϕ + ϵ((µ + dH + τ)(1 − ϕ) + ϕτ

)
−N(µ + ϵp + αs)(µ + 1)(µ + dH)(µ + dH + 2)(µ + dH + τ)

. (40)

By definition, the basic reproduction number is in the closed interval [0, 1], then in cases where
the result of the limits is negative, we use the modulus. In the next subsection, we are going to
study and obtain expressions for the impact of the parameters associated with the transmission,
the rate of PrEP use, the desistence of PrEP use, and contagion by means other than sexual, on the
basic reproduction number.

Sensitivity index

The sensitivity analysis of the basic reproduction number determines the relative importance of
the parameters present in the basic reproduction number, such as the parameters of transmission,
resistance, and recovery, among others. The sensitivity index can be defined using the partial
derivatives, provided that the variable is differentiable with respect to the parameter under study.
Sensitivity analysis also helps to identify the vitality of the parameter values in the predictions
using the model [31–33].

Definition 1 ([33]) The normalized forward sensitivity index of a variable, v, that depends on the differen-
tiability of a parameter p is defined as:

Υv
p :=

∂v
∂p

× p
v

. (41)

The sensitivity index of ℜ0 helps to determine the parameters that have an impact on it. We can
characterize the sensitivity index as follows:

• A positive value of the sensitivity index implies that an increase in the parameter value causes
an increase in the basic reproduction number.
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• A negative value of the sensitivity index implies that an increase in the parameter value causes
a decrease in the basic reproduction number.

The expressions of the sensitivity indices of the selected parameters are:

Υℜ0
αs = −

αs

αs + ϵp + µ
< 0, (42)

Υℜ0
ϵp = −

ϵp

αs + ϵp + µ
< 0. (43)

Parameters αs and ϵp have a negative sensitivity index with respect to ℜ0, which implies that
an increase in these parameters will mean a decrease in ℜ0. Epidemiologically, we have that an
increase in the parameters associated with cases that do not acquire the virus in a risk contact,
individuals who enter the PrEP contagion preventive method cause a reduction in the basic
reproduction number. In the case of αs, it also happens that an increase in this parameter causes a
decrease in the basic reproduction number because this is a different form of contagion by contact
between a susceptible and an infected human. In the case of the parameters associated with
deaths and entries into the susceptible community, they are logical values and associated with
demographics, since if more people infected with HIV/AIDS die, it leads to fewer infected and if
more elements enter the population, the number of susceptible increases, therefore, we have more
elements in the dynamics with the possibility of becoming infected with the virus.

4 Parameters estimation

Parameters selection

For the estimation of the model parameters, we used the MCMC (Markov Chains Monte Carlo)
with a Bayesian approach. The theory and examples of the MCMC technique with a Bayesian
approach that we use can be found in [34–36].
We select to estimate six parameters, the effective contact rate β, since it influences the HIV/AIDS
transmission rate; parameters σH and ω, which are related to the loss of undetectable viral load
and entry into the HIV and AIDS compartments, respectively; τ, which is associated with disease
progression to AIDS; ν, which is related to AIDS cases reaching undetectability; and dH, which is
death from the disease. These parameters are associated with treatment efficacy, progression to
AIDS, disease-associated death and transmission, and were selected because we are focusing our
study on HIV incidence.

Rate ratio

The a posteriori distribution of θ|Y1 = (Y11, . . . , Y1t)
T, is given by:

π(θ|Y1) ∝ L(θ|Y1)π(θ), (44)

with L(θ|Y1) being the likelihood corresponding to the negative binomial distribution in (20) and
π(θ) the independent prior structure generated by:

π(θ) ∝ π(ν)× π(σH)× π(τ)× π(ω)× π(dT)× π(β), (45)

where θ denote the vector of parameters to estimate, for the active tuberculosis model, this vector
will be θ = (ν, σH, τ, ω, dT, β) keeping the remaining parameters fixed. To forecast a new response,
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we use the a posteriori predictive distribution. It is given by,

p
(

Yi,pred|Yi,obs

)
=

∫
p
(

Yi,pred|θ
)

p(θ | Yi,obs)dθ. (46)

By sampling from (46), we can compute quantities of interest for prediction, the same way we
did it with the parameters. For example, one could compute the median and the 2.5% and
97.5% quantiles of this distribution to get a point and a symmetric credibility interval for the new
response.
An important element to be analyzed in this study is the rate ratio between a reference scenario
which in our case is the scenario where we maintain the implementation of PrEP at this moment
and the different types of PrEP studied and the increases in PrEP use. For this analysis, we use the
following procedure:

• Generate M vectors Yi,pred from pθ1

(
Yi,pred|Yi,obs

)
and pθ2

(
Yi,pred|Yi,obs

)
, where θ1 and θ2 are

defined for two different scenarios, and then we have M vectors for each scenario.
• Define each vector as Ysc1,j and Ysc2,j for j = 1, . . . , M for each scenario.
• For i = 1, . . . , M, we compute,

Ratioj =
Ysc1,j

Ysc2,j
=

(
Ysc1,1,j

Ysc2,1,j
, . . . ,

Ysc1,npred,j

Ysc2,npred,j

)T

,

where npred is the number of predicted observations.
• With the above steps, we obtain the rate ratio (Ratioj) with have dimension m.

So, as done for estimation and prediction, quantities of interest such as the median and quantiles
for constructing credibility intervals, can be obtained from the distribution of the rate ratio.

Estimation and prediction intervals

The algorithm was implemented in R through the Rstan package [34, 37, 38]. To solve the deter-
ministic system, we used a predictor-corrector method based on the Runge-Kutta predictor of
order 4 and corrector of order 5 [39].
Also, an extension of the Hamiltonian Monte Carlo (HMC) algorithm [35, 39–41], was used to
perform the statistical analysis. Once the sample is obtained quantities of interest such as the me-
dian and the 2.5% and 97.5% quantiles can be computed to get a point and a symmetric credibility
interval.
To construct the prediction intervals of HIV Incidence, we ran 20000 simulations, and for each
of those solved the system of differential equations. The vector of 20000 solutions was then
considered as the vector of medians and using as many values of the overdispersion parameter
we were able to sample the 2.5% and 97.5% quantiles from the negative binomial distribution,
such that the interval formed by these two quantiles is what we consider as the credibility region
[34, 36, 37, 42].

5 Computational simulations

Parameters values and demographic data

The initial conditions for the initialization of the simulations were extracted from demographic
data and for those concerning HIV, AIDS, undetectable (viral load), and incidence, we used the
data reported by the Brazilian Ministry of Public Health between 2003-2019 [43–47].



Moya et al. | 233

For the compartment of individuals who are in the PrEP program and the parameters that are
related to the use of PrEP in the population (ϵp, ϵ f ), we assume a value of zero until 2018, and the
values for the incorporation of PrEP in 2018 of the compartment and the parameters come from
[48, 49].
The initial conditions are H(0) = 260000, A(0) = 150000, V(0) = 0.4 × I(0), P(0) = 0, E(0) =
100000 and S(0) = 1.91 × 108 − V(0)− H(0)− A(0). We conducted simulations from 2003 until
2035 and compared with the actual data reported from 2003-2019.
For our study, we used that the probability of retention of the oral PrEP is 3 months after initiation
is 72.5% and the probability of full adherence to oral PrEP is 92.3% using more than 4 pills per
week [10, 49–51]. We assume that the probability of full adherence to oral PrEP is 96.3%. This
information is used to give value to the parameter ϵ f .
The data about HIV incidence was obtained from [52].
The a priori distributions for the parameters to be estimated were selected by the parameter
definition space, taking a normal distribution for the parameters that can take values outside the
unit interval and beta for those that are defined in (0, 1) because the support of it is in that interval.
Then, we picked a normal distribution (N(·, ·)) for β, and ω, whose space of definition is greater
than (0, 1); and for other parameters a beta distribution (Beta(a, b)) with a and b entries defined as
follows [53–55]:

a = Mean

(
Mean(1 − Mean)

Var
− 1

)
, (47)

b = (1 − Mean)

(
Mean(1 − Mean)

Var
− 1

)
, (48)

if Var < Mean(1 − Mean) where Mean is mean and Var is variance.
Table 2 shows the values of the parameters that are fixed, the intervals, and distributions a priori
for the parameters to be estimated with the MCMC with a Bayesian approach.

Table 2. Parameter values and a priori distributions

Parameter Point Interval A Priori Distribution Reference
Λ 4,590,490,56 - Fixed [43]
αs 0.00000001 - Fixed Assumed
µ 1/75.50 - Fixed [43]
β - (0, 10) N(2.5, 0.1) Assumed
ϵ 1.02 - Fixed Assumed

ϵD 0.00002 - Fixed Assumed
ϵs1 0.007 - Fixed [2]
ν - (0,0.4) Beta(0.021, 3.812) [56–59]
ϕ 0.65 - Fixed Assumed
τ - (1/15, 1/10) Beta(0.389, 4.680) [44, 60, 61]

σH - (0, 0.4) Beta(0.091, 2.549) [56–59]
σHI 2 - Fixed [61]
dH - (0, 0.1) Beta(0.069, 3.091) [62]
ω - (0.2, 2.5) N(0.52, 0.1) [61, 63]
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Results

In Figure 2, we can observe the posterior density functions of the parameters estimated with the
MCMC with a Bayesian approach.
For our study, we used two chains and Figure 3 show the traceplots for the chains representing
each parameter. In addition, the convergence of the Hamiltonian Monte Carlo (HMC) was verified
by the criterion shown in [35, 39–41]. Using the expressions of the limits (27)-(40) and the mean
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Figure 2. The posterior density functions obtained using MCMC with a Bayesian approach

of the values of the estimated parameters we have that the value obtained for the expression
(27) is 0.25, and for (28) is 1.15 which means that when the parameter associated with adherence
to treatment grows with HIV patients achieving the undetectability of the virus in blood the
basic reproduction number is less than the unit so that the epidemic under these conditions can
disappear in the population. The case when the adherence to HIV treatment tends to 0 and the
number of cases that lose the undetectability and are HIV positive is higher than the unit, leads to
an adverse epidemiological situation.
For expressions (29) and (30), the values obtained were 1.02 and 1.15, both greater than unity,
which means that the number of AIDS cases that achieve undetectability while maintaining HIV
status and other factors without intervention does not improve the epidemiological situation.
When the parameters associated with adherence to treatment and achieving undetectability
of the virus in blood grow together and when the parameters associated with the loss of this
undetectability for HIV and AIDS grow together, the basic reproduction number is less than unity,
so we would be in a favorable situation, see expressions (31) and (34) and Table 3. In the opposite
cases, by means of expressions (32) and (33), the basic reproduction number is greater than unity.
In the case when the diagnosis rate increases and the parameters associated with adherence to
HIV treatment increase and decrease, the basic reproduction number is less than unity but is more
favorable when the latter decreases.
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Figure 3. In this plot, each line represents an MCMC chain (2 chains), and each point represents the sampled
value of a specific parameter in each MCMC iteration

When we increase the number of patients who progress from HIV to AIDS and decrease the number
of AIDS cases who achieve undetectability according to formula (35), the basic reproduction
number is greater than unity, which means that this epidemiological situation has a negative effect
on the control of virus transmission. In the opposite situation by formula (36), the basic number
reproduction is lower than unity, which we can say from the information provided by the model
and the values of the parameters that if the number of cases with progression to AIDS increases,
we need to increase adherence to treatment to counteract it.
In the case of increased case detection and adherence to HIV treatment according to formula (38),
we have a positive impact on the basic reproduction number because it is less than unity. But if
the number of diagnoses increases but adherence to treatment decreases according to formula (37),
the basic reproduction number is greater than unity, so in order to have a positive effect on the
decrease of HIV/AIDS cases we must have greater adherence to treatment in HIV.
Generally, when the parameters associated with the diagnosis and adherence to treatment in HIV
and AIDS tend to the limit of the definition interval and the parameters of loss of the virus’s
undetectability in the blood tend to zero and return to the HIV and AIDS state, we are in a
favorable situation for the control and future eradication of the epidemic and the opposite case we
would be in an unfavorable situation because the basic reproduction number is greater than unity,
see expressions (39) and (40) in Table 3.

Table 4 shows the evolution of the parameters associated with PrEP use when we implement
the 25% coverage increase and 35% in 2025. Also, we assume that the health system has enough
medication to cover the number of new individuals starting to use PrEP per year, which is logical
taking into account the size of the Brazilian population. In the case a patient stops the PrEP use by
decision or due to adverse effects, he/she can re-enter after a period of time to use the preventive
method again, always remembering that our study, given the characteristics of the HIV/AIDS
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Table 3. Values of the expressions (27)-(40) related to the joint variation over the ℜ0 of the parameters associated
with treatment and diagnosis. The first column represents where the parameters will tend together, the second
column links the respective expression of the basic reproduction number and the last column shows the value of
the basic reproduction number when the parameters tend together to those values

Parameters Expressions Value of ℜ0
σHI → 1 and σH → 0 (27) 0.25
σHI → 0 and σH → 1 (28) 1.15

ν → 1 and ω → 0 (29) 1.02
ν → 1 and ω → 0 (30) 1.15

σHI → 1 and ν → 1 (31) 0.16
σHI → 0 and ν → 0 (32) 1.21
σH → 1 and ω → 1 (33) 1.07
σH → 0 and ω → 0 (34) 0.91

τ → 1 and ν → 0 (35) 1.01
τ → 0 and ν → 1 (36) 0.83

ϵs1 → 1 and σHI → 0 (37) 1.02
ϵs1 → 1 and σHI → 1 (38) 0.64

ϵs1 → 1, σHI → 1, ν → 1,
σH → 0, and ω → 0 (39) 0.11

ϵs1 → 1, σHI → 0, ν → 0,
σH → 1, and ω → 1 (40) 1.24

epidemic and the data, is annual. We compare two possible increases in coverage, Coverage I,

Table 4. Value of PrEP use rate with increases in coverage and number of new PrEP users per year from 2025-2035

Year ϵp with Coverage I Number of individuals ϵp with Coverage II Number of individuals
who started using PrEP who started using PrEP

2025 0.000375 82136 0.000405 88707
2026 0.00046875 103273 0.00054675 120458
2027 0.0005859375 129812 0.0007381125 163525
2028 0.0007324219 163120 0.0009940063 221378
2029 0.0009155274 204914 0.0013419085 300347
2030 0.0011444093 257342 0.0018115765 407366
2031 0.0014305116 323087 0.0024462831 552355
2032 0.0017881395 394781 0.0033015982 728920
2033 0.0022235174 510597 0.0044571576 1018180
2034 0.0027939681 638246 0.0060176282 1374650
2035 0.0034921721 802668 0.0081231698 1867099

which is an increase of 25% per year, and Coverage II, an increase of 35% per year, both following
formula (22), where the percentage increases are the ps value, with respect to keeping the current
rate of PrEP use fixed. We quantified the impact with the HIV incidence rate, HIV rate ratio and
number of avoided cases and began implementation in 2025 to study its effect until 2035.
With Coverage I basic number that, the HIV incidence reported by the model was 17.06 ([15.96,
18.92]), which represented a decrease of 18.98% ([18.04%, 18.62%]) with respect to the scenario
where we maintain the current coverage which was 20.85 ([19.61, 22.23]).
With Coverage II of HIV incidence rate was 15.15 ([14.15, 16.22]), which is a decrease of 27.66%
([27.03%, 27.84%]) with respect to the scenario where we maintain the current coverage until 2035.
Using HIV incidence as a quantification of the impact of increased coverage, we can conclude that
from the values reported by the model and the estimation technique, an increase in PrEP coverage
in Brazil favors the reduction of new cases of HIV, but we must take into account that given the
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Figure 4. Behavior of the HIV incidence rate for the different increases in coverage starting in 2025 using the
formula (22), and when we maintain PrEP use at current coverage (Current Scenario) until 2035. The credibility
intervals between 2.5% and 97.5% are shown and the black points are the real data reported [43–46, 52]

demographics of Brazil, we need to further reduce the incidence of HIV for future eradication of
the virus, see Figure 4.
The number of averted cases of HIV infection with the increased coverage is significant. The
35% annual increase in coverage (Coverage II) reported the highest number of averted cases with
respect to the 25% increase in coverage, with a difference of 26790 fewer cases for 2.5%, 26390 for
50% and 26420 cases averted for 97.5%, see Table 5.
The reported values of the rate ratio show that Coverage I has at the end of the study in 2035 a
value of 0.82 ([0.75, 0.89]) and Coverage II of 0.73 ([0.66, 0.80]), see Table 6, showing again that an
increase in PrEP coverage in the population has a positive impact.
Based on the data reported by model (2)-(7), and the parameter estimation method, we obtained
that through the HIV incidence, the number of HIV cases avoided, and the rate ratio that an
increase in PrEP coverage can reduce the impact of HIV/AIDS in Brazil. In this case, two annual
increases in PrEP coverage in Brazil of 25% and 35% were studied and the difference in the values
obtained was significant and we recommend increasing the use of PrEP and extending its use not
only to the vulnerable part of the population. to reduce the impact of the virus on the population.

Table 5. Number of cases avoided in 2035 with the different coverage increases started in 2025 and the difference
in the number of cases avoided between Coverage I and Coverage II

2.5% 50% 97.5%
Coverage I 15985 50879 85448

Coverage II 42774 77269 111868
Difference 26790 26390 26420
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Table 6. Rate ratio for the different coverage increases initiated in 2025 and studying the impact until 2035

Coverage I Coverage II

Year Estimated Lower Limit Upper Limit Estimated Lower Limit Upper Limit
2025 1.00 0.93 1.07 1.00 0.93 1.07
2026 0.98 0.91 1.05 0.97 0.90 1.04
2027 0.96 0.89 1.03 0.93 0.86 1.00
2028 0.94 0.87 1.01 0.90 0.84 0.97
2029 0.92 0.85 0.99 0.87 0.81 0.94
2030 0.90 0.83 0.97 0.85 0.78 0.92
2031 0.88 0.81 0.96 0.82 0.76 0.89
2032 0.87 0.80 0.94 0.80 0.73 0.87
2033 0.85 0.78 0.92 0.77 0.71 0.84
2034 0.83 0.76 0.91 0.75 0.68 0.82
2035 0.82 0.75 0.89 0.73 0.66 0.80

6 Conclusions

In this article, we presented a mathematical model for HIV/AIDS transmission that incorporates
current PrEP programs. We presented a methodology that incorporates increasing PrEP coverage
in the population into the model. The model allows for the study of different PrEP variants,
different coverages and takes into account the importance of antiretroviral treatment in the trans-
mission of the virus, in particular, adherence to treatment which leads to having an undetectable
viral load in the blood and not infecting, and the diagnosis of cases due to the attempt to enter
the PrEP program. We demonstrated the basic properties of the model: that it has a solution,
such solution is positive, and in which region it makes epidemiological sense. We focus on the
incidence of HIV cases because antiretroviral therapies allow the patient not to reach that state of
the disease, in addition to being the most advanced cases of the disease. In the model, we have
a compartment for people with undetectable viral load in the blood with the use of treatment
because they will not represent a problem in the transmission of the virus and we can monitor the
patient’s health status and try to control the evolution of the disease. Using the next-generation
matrix, we found the basic reproduction number and studied the joint and independent impact of
parameters associated with the effectiveness of the treatment, the number of cases with HIV that
reach the stage of AIDS, the use of PrEP, and contagion by other non-sexual ways.
To estimate parameters, we used the Markov Chains Monte Carlo (MCMC) with a Bayesian
approach and as a value to quantify the impact we have on the HIV incidence rate ratio. The
parameters selected to estimate are related to the effectiveness of antiretroviral treatment, death
associated with the disease, and transmission. Using demographic data from Brazil and data from
the bibliography for parameters and initial conditions, we performed computer simulations. We
presented a test to observe the behavior of the estimation of the selected parameters of the model.
We studied two possible increases in PrEP program coverage of 25% and 35%. With the results
reported by the model, the accumulated cases of the individuals and the new individuals who
enter the program are studied, since it is important that the results are logical with respect to the
study population. The results obtained are acceptable, as can be seen in Table 4.
We compare the behavior after increasing coverage by 25% and 35% in 2025 compared to main-
taining the current coverage with oral PrEP using as a basis the incidence of HIV, HIV rate ratio
and the number of cases avoided.
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The results of the study showed the potential of PrEP use to reduce the incidence of HIV in Brazil.
The model, after adapting the initial conditions and parameters, can be utilized to predict HIV
incidence in other regions, countries, or localities.
In future work, we intend to study the model in other scenarios and study the cost-benefit problem
of implementing injectable PrEP and increasing coverage.
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